input
stringlengths
2.65k
237k
output
stringclasses
1 value
np.nonzero(ball_box) paddle_pixels = np.nonzero(paddle_line) nonlocal trigger_pulled if action == 1: trigger_pulled = True if done: trigger_pulled = False if not trigger_pulled: return 'N' try: # we get dim 1 of ball pixels and 0 of paddle pixels, which are both horizontal axis ball_x_center = (np.min(ball_pixels[1]) + np.max(ball_pixels[1])) / 2. paddle_x_center = (np.min(paddle_pixels[0]) + np.max(paddle_pixels[0])) / 2. # case where paddle is too far to the right if ball_x_center - paddle_x_center < -limit and (action != 3): return 1 # too far to the left elif ball_x_center - paddle_x_center > limit and (action != 2): return -1 else: return 0 except ValueError: return 'N' def inv_translation_fn(token): if token == 1: return [0, 1, 2] elif token == -1: return [0, 1, 3] if is_dense: return SoftDenseConstraint('paddle_direction_dense_Breakout', dfa_string, reward_shaping, translation_fn, gamma=0.99) return Constraint('paddle_direction_Breakout', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=inv_translation_fn) @register('1d_dithering2_Breakout') def one_d_dithering_breakout(is_hard, is_dense, reward_shaping, k=2): with open("./baselines/constraint/constraints/1d_dithering.lisp" ) as dfa_file: dfa_string = dfa_file.read() if is_dense: return SoftDenseConstraint('1d_dithering2_dense_Breakout', dfa_string, reward_shaping, lambda obs, action, done: action, gamma=0.99) return Constraint('1d_dithering2_Breakout', dfa_string, is_hard, reward_shaping, lambda obs, action, done: action, inv_translation_fn=lambda token: [token]) @register('1d_dithering2_SpaceInvaders') def one_d_dithering_spaceinvaders(is_hard, is_dense, reward_shaping, k=2): with open("./baselines/constraint/constraints/1d_dithering.lisp" ) as dfa_file: dfa_string = dfa_file.read() translation_dict = dict([(0, 1), (1, 1), (2, 2), (3, 3), (4, 2), (5, 3)]) inv_translation_dict = {1: [0, 1], 2: [2, 4], 3: [3, 5]} translation_fn = lambda obs, action, done: translation_dict[action] inv_translation_fn = lambda token: inv_translation_dict[token] if is_dense: return SoftDenseConstraint('1d_dithering2_dense_Breakout', dfa_string, reward_shaping, translation_dict, gamma=.99) return Constraint('1d_dithering2_SpaceInvaders', dfa_string, is_hard, reward_shaping, translation_fn, inv_translation_fn=inv_translation_fn) def build_one_d_actuation(num_actions, k): dfa_string_template = '(defdfa {name} (({input_symbols}) ({states}) {start_state} ({accepting_states})) ({transitions}))' transition_template = '({initial_state} {target_state} {symbol})' name = '1d_{k}_actuation'.format(k=k) input_symbols = ' '.join(list(map(str, range(num_actions)))) states = ' '.join(list(map(str, range(num_actions * k + 1)))) # add one for the start state start_state = 0 accepting_states = ' '.join( [str(a * k) for a in range(1, num_actions + 1)]) transitions = [] for a in range(num_actions): transitions.append( transition_template.format(initial_state=0, target_state=a * k + 1, symbol=a)) for r in range(k - 1): transitions.append( transition_template.format(initial_state=a * k + r + 1, target_state=a * k + r + 2, symbol=a)) transitions = ' '.join(transitions) dfa_string = dfa_string_template.format(name=name, input_symbols=input_symbols, states=states, start_state=start_state, accepting_states=accepting_states, transitions=transitions) return dfa_string @register('1d_actuation4_Breakout') def oned_actuation_breakout4(is_hard, is_dense, reward_shaping): if is_dense: return SoftDenseConstraint( '1d_actuation_dense_breakout4', build_one_d_actuation(4, k=4), reward_shaping, translation_fn=lambda obs, action, done: action, gamma=0.99) return Constraint('1d_actuation_breakout4', build_one_d_actuation(4, k=4), is_hard, reward_shaping, translation_fn=lambda obs, action, done: action, inv_translation_fn=lambda token: [token]) @register('1d_actuation4_SpaceInvaders') def oned_actuation_spaceinvaders4(is_hard, is_dense, reward_shaping): translation_dict = dict([(0, 0), (1, 1), (2, 2), (3, 3), (4, 2), (5, 3)]) inv_translation_dict = {0: [0], 1: [1], 2: [2, 4], 3: [3, 5]} translation_fn = lambda obs, action, done: translation_dict[action] inv_translation_fn = lambda token: inv_translation_dict[token] if is_dense: return SoftDenseConstraint('1d_actuation_dense_SpaceInvaders', build_one_d_actuation(4, k=4), reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('1d_actuation_SpaceInvaders', build_one_d_actuation(4, k=4), is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=inv_translation_fn) @register("2d_actuation4_Seaquest") def twod_actuation4_seaquest(is_hard, is_dense, reward_shaping): with open("./baselines/constraint/constraints/seaquest_actuation.lisp" ) as dfa_file: dfa_string = dfa_file.read() if is_dense: return SoftDenseConstraint( '2d_actuation4_dense_Seaquest', dfa_string, reward_shaping, translation_fn=lambda obs, action, done: action, gamma=0.99) return Constraint('2d_actuation4_Seaquest', dfa_string, is_hard, reward_shaping, translation_fn=lambda obs, action, done: action, inv_translation_fn=lambda token: [token]) @register("2d_dithering4_Seaquest") def twod_dithering4_seaquest(is_hard, is_dense, reward_shaping): with open("./baselines/constraint/constraints/seaquest_dithering.lisp" ) as dfa_file: dfa_string = dfa_file.read() if is_dense: return SoftDenseConstraint( '2d_dithering4_dense_Seaquest', dfa_string, reward_shaping, translation_fn=lambda obs, action, done: action, gamma=0.99) return Constraint('2d_dithering4_Seaquest', dfa_string, is_hard, reward_shaping, translation_fn=lambda obs, action, done: action, inv_translation_fn=lambda token: [token]) @register("proximity_pointgoal1") def proximity_point_goal_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): token = max(obs['hazards_lidar'] - 0.6) // 0.04 return token if is_linear: return LinearConstraint('proximity_PointGoal1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_PointGoal1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_PointGoal1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_cargoal1") def proximity_car_goal_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): token = max(obs['hazards_lidar'] - 0.6) // 0.04 return token if is_linear: return LinearConstraint('proximity_CarGoal1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_CarGoal1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_CarGoal1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_doggogoal1") def proximity_doggo_goal_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): token = max(obs['hazards_lidar'] - 0.6) // 0.04 return token if is_linear: assert False if is_dense: return SoftDenseConstraint('proximity_DoggoGoal1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_DoggoGoal1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_pointgoal2") def proximity_point_goal_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 vases_token = max(obs['vases_lidar'] - 0.6) // 0.04 token = max(hazards_token, vases_token) return token if is_linear: return LinearConstraint('proximity_PointGoal2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_PointGoal2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_PointGoal2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_cargoal2") def proximity_car_goal_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 vases_token = max(obs['vases_lidar'] - 0.6) // 0.04 token = max(hazards_token, vases_token) return token if is_linear: return LinearConstraint('proximity_CarGoal2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_CarGoal2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_CarGoal2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_doggogoal2") def proximity_doggo_goal_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 vases_token = max(obs['vases_lidar'] - 0.6) // 0.04 token = max(hazards_token, vases_token) return token if is_linear: assert False if is_dense: return SoftDenseConstraint('proximity_DoggoGoal2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_DoggoGoal2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_pointbutton1") def proximity_point_button_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token) return token if is_linear: return LinearConstraint('proximity_PointButton1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_PointButton1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_PointButton1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_carbutton1") def proximity_car_button_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token) return token if is_linear: return LinearConstraint('proximity_CarButton1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_CarButton1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_CarButton1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_doggobutton1") def proximity_doggo_button_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token) return token if is_linear: return False if is_dense: return SoftDenseConstraint('proximity_DoggoButton1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_DoggoButton1', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_pointbutton2") def proximity_point_button_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token) return token if is_linear: return LinearConstraint('proximity_PointButton2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_PointButton2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_PointButton2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_carbutton2") def proximity_car_button_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token, 0) return token if is_linear: return LinearConstraint('proximity_CarButton2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_CarButton2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_CarButton2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_doggobutton2") def proximity_doggo_button_two(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 gremlins_token = max(obs['gremlins_lidar'] - 0.6) // 0.04 wrong_button_token = max(obs['buttons_lidar'] - obs['goal_lidar'] - 0.6) // 0.04 token = max(hazards_token, gremlins_token, wrong_button_token) return token if is_linear: return False if is_dense: return SoftDenseConstraint('proximity_DoggoButton2', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) return Constraint('proximity_DoggoButton2', dfa_string, is_hard, reward_shaping, translation_fn=translation_fn, inv_translation_fn=lambda token: [token]) @register("proximity_pointpush1") def proximity_point_push_one(is_hard, is_dense, reward_shaping, is_linear=False): with open("../constraint/constraints/proximity_highres.lisp") as dfa_file: dfa_string = dfa_file.read() def translation_fn(obs, action, done): hazards_token = max(obs['hazards_lidar'] - 0.6) // 0.04 token = hazards_token return token if is_linear: return LinearConstraint('proximity_pointpush1', dfa_string, reward_shaping, translation_fn=translation_fn, gamma=0.99) if is_dense: return SoftDenseConstraint('proximity_pointpush1', dfa_string,
<filename>submit_to_anubis.py #!/usr/bin/env python ################################################################################ # Script for submitting samples to the ANUBIS analysis service. # # Last change: 19/October/2009 # Contact: <EMAIL> # # Usage: submit_to_anubis.py [options] ANALYSIS_SUBJECT_1 ANALYSIS_SUBJECT_2 ... # OR submit_to_anubis.py [options] -r DIRECTORY # # Options: # -h, --help show this help message and exit # -a ANALYSIS_TYPE, --analysis-type=ANALYSIS_TYPE # specifies the type of ANALYSIS_SUBJECT. One of ['URL', # 'FILE']. The default is FILE. # -e EMAIL, --email=EMAIL # specifies the recipient of the analysis result. As # soon as the analysis-server has finished processing # the file the generated report will be sent to the # given emailaddress. You can choose to omit this # argument if you do not want to receive an email- # message containg the analysis-result # -r, --recursive recursively submit all samples found # -u USER, --user=USER the name of your user if any # -p PASSWORD, --password=PASSWORD # the correct password for your user # --ssl connect via SSL # -f, --force-analysis force Anubis to rerun the analysis for this # sample even if a cached report exists. (Works only # when the user has sufficient privileges.) # --keep-files=KEEP_FILES # specifies which result files too keep # in addition to the profile and the xml-report. # One of ['ALL', 'ANUBIS_LOG', 'NORMAL']. default is # NORMAL. Requires # sufficient user privileges. # --anubis-date=ANUBIS_DATE # changes the date in the virtual environment where the # binary to the specified date. Format: YYYY-MM-DD. # Requires sufficient user privileges. # --timeout=TIMEOUT specifies a different timeout value. Requires # sufficient user privileges. # # # ANALYSIS_SUBJECT_1/ANALYSIS_SUBJECT_2/...: # Depending on the analysis-type parameter these arguments will # be interpreted as the name of a file that shall be uploaded to # anubis or an URL that shall be analyzed by Anubis. # In case of analysis_type='FILE' it specifies the relative or # absolute path to the file that will be # sent to the analysis-server. # If - is given for the filename the file is read from stdin. # Note: On Windows you have start the python interpreter with -u # in order to have a stdin-stream in binary mode. # # The script returns 0 for successful submissions and values > 0 in case of # an error. # # Example: python ./submit_to_anubis.py --email <EMAIL> testfile.exe # ################################################################################ SECLAB_URL = "http://anubis.iseclab.org/submit.php" SECLAB_RESULT_URL = "http://anubis.iseclab.org/?action=result&" import sys import optparse import os import time import httplib, urllib, urlparse from email.MIMEText import MIMEText from email.MIMEMultipart import MIMEMultipart from email import Encoders from email.MIMEBase import MIMEBase # the number of sucessfully submitted samples num_success = 0 # the number of samples that we failed to submit num_failed = 0 # stores the parsed command-line arguments cmdline = None # This function was copied from an email of <NAME> and # afterwards modified def httprequest(url, postdata={}, headers=None, ssl = False): """A urllib.urlopen() replacement for http://... that gets the content-type right for multipart POST requests. "url" is the http URL to open. "postdata" is a dictionary describing data to post. If the dict is empty (the default) a GET request is made, otherwise a POST request is made. Each postdata item maps a string name to either: - a string value; or - a file part specification of the form: {"filename": <filename>, # file to load content from "content": <content>, # (optional) file content "headers": <headers>} # (optional) headers <filename> is used to load the content (can be overridden by <content>) and as the filename to report in the request. <headers> is a dictionary of headers to use for the part. Note: currently the file part content but be US-ASCII text. "headers" is an optional dictionary of headers to send with the request. Note that the "Content-Type" and "Content-Length" headers are automatically determined. The current urllib.urlopen() *always* uses: Content-Type: application/x-www-form-urlencoded for POST requests. This is incorrect if the postdata includes a file to upload. If a file is to be posted the post data is: Content-Type: multipart/form-data This returns the response content if the request was successfull (HTTP code 200). Otherwise an IOError is raised. For example, this invocation: url = 'http://www.perl.org/survey.cgi' postdata = { "name": "<NAME>", "email": "<EMAIL>", "gender": "M", "born": "1964", "init": {"filename": "~/.profile"}, } Inspiration: Perl's HTTP::Request module. http://aspn.activestate.com/ASPN/Reference/Products/ActivePerl/site/lib/HTTP/Request/Common.html """ if not url.startswith("http://"): raise "Invalid URL, only http:// URLs are allow: url='%s'" % url if not headers: headers = {} if not postdata: method = "GET" body = None else: method = "POST" # Determine if require a multipart content-type: 'contentType'. for part in postdata.values(): if isinstance(part, dict): contentType = "multipart/form-data" break else: contentType = "application/x-www-form-urlencoded" headers["Content-Type"] = contentType # Encode the post data: 'body'. if contentType == "application/x-www-form-urlencoded": body = urllib.urlencode(postdata) elif contentType == "multipart/form-data": message = MIMEMultipart(_subtype="form-data") for name, value in postdata.items(): if isinstance(value, dict): # Get content. if "content" in value: content = value["content"] else: fp = open(value["filename"], "rb") content = fp.read() part = MIMEBase('application', "octet-stream") part.set_payload( content ) # Encoders.encode_base64(part) # Add content-disposition header. dispHeaders = value.get("headers", {}) if "Content-Disposition" not in dispHeaders: #XXX Should be a case-INsensitive check. part.add_header("Content-Disposition", "form-data", name=name, filename=value["filename"]) for dhName, dhValue in dispHeaders: part.add_header(dhName, dhValue) else: # Do not use ctor to set payload to avoid adding a # trailing newline. part = MIMEText(None) part.set_payload(value, "us-ascii") part.add_header("Content-Disposition", "form-data", name=name) message.attach(part) message.epilogue = "" # Make sure body ends with a newline. # Split off the headers block from the .as_string() to get # just the message content. Also add the multipart Message's # headers (mainly to get the Content-Type header _with_ the # boundary attribute). headerBlock, body = message.as_string().split("\n\n",1) for hName, hValue in message.items(): headers[hName] = hValue #print "XXX ~~~~~~~~~~~~ multi-part body ~~~~~~~~~~~~~~~~~~~" #import sys #sys.stdout.write(body) #print "XXX ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" else: raise "Invalid content-type: '%s'" % contentType # Make the HTTP request and get the response. # Precondition: 'url', 'method', 'headers', 'body' are all setup properly. scheme, netloc, path, parameters, query, fragment = urlparse.urlparse(url) if parameters or query or fragment: raise "Unexpected URL form: parameters, query or fragment parts "\ "are not allowed: parameters=%r, query=%r, fragment=%r"\ % (parameters, query, fragment) if ssl: conn = httplib.HTTPSConnection(netloc) else: conn = httplib.HTTPConnection(netloc) conn.request(method, path, body, headers) response = conn.getresponse() return response def submit(analysis_type, analysis_subject, aux_files = [], email_addr = None, user_name = None, user_password = <PASSWORD>, force_analysis = False, keep_files = None, anubis_date = None, timeout = None, ssl = False, dump_process = False): """ Submits the 'analysis_subject' to ANUBIS. Returns the task_id of the created task. """ if len(aux_files) > 0: assert(analysis_type == "file") def get_anubis_error_msg(http_page): lines = http_page.splitlines() have_h1 = False start_ind = 0 end_ind = 0 for line_no, line in enumerate(lines): if line == '<h1 class="bodystart">Fatal Submission Error</h1>': have_h1 = True elif have_h1 and line == "<p>": start_ind = line_no + 1 elif start_ind > 0 and line == "</p>": end_ind = line_no - 1 error_msg = http_page if start_ind > 0 and end_ind >= start_ind and end_ind < len(lines): error_msg = "\n".join(lines[start_ind:end_ind+1]) # show the first 500 characters return error_msg[:500] try: post_data = {} if analysis_type == "FILE": if (analysis_subject == "-"): content = sys.stdin.read() fn = "stdin" else: content = open(analysis_subject, "rb").read() fn = analysis_subject post_data['analysisType'] = 'file' post_data["executable"] = {"content" : content, "filename" : fn} elif analysis_type == "URL": post_data['analysisType'] = 'url' post_data['url'] = analysis_subject else: assert(False) for c, af in enumerate(aux_files): content = open(af, "rb").read() post_data["aux_file[%s]" % c] = {"content" : content, "filename" : af} if (email_addr): post_data["notification"] = "email" post_data["email"] = email_addr else: post_data["notification"] = "browser" post_data["email"] = "" if (user_name): post_data["username"] = user_name post_data["password"] = <PASSWORD> if force_analysis: post_data["force_analysis"] = "on" if anubis_date: post_data["anubis_date"] = anubis_date if timeout: post_data['timeout'] = str(timeout) if keep_files: post_data['keep_files_level'] = keep_files.lower() if dump_process: post_data["dump_process"] = "on" response = httprequest(SECLAB_URL, post_data, ssl=ssl) if response.status == 200 and response.getheader("taskid"): return response.getheader('taskid') error_code = response.getheader("AnubisAPI.error.result") if not error_code: # legacy code - do our best to find a reasonable explanation # of what happened error_code = get_anubis_error_msg(response.read()) print "Error submitting analysis subject '%s'." % (analysis_subject) print "The anubis server replied: %s" % (error_code) except IOError: print "File does not exist!" except Exception: import traceback traceback.print_exc() return None def submit_dir(directory, email_addr = None, user_name = None, user_password = <PASSWORD>, force_analysis = False,
<gh_stars>0 # -*- encoding: utf-8 -*- from . import FixtureTest class CountryBoundaryTest(FixtureTest): def test_boundary(self): import dsl z, x, y = (8, 0, 0) # +---------------------+ # | | # | aaaaaaa*cccccccc | # | a b c | # | a b c | # | a b c | # | *bbbbbbb c | # | c c | # | c c | # | cccccccccccccccc | # | | # +---------------------+ # # a = claimed boundary. ways in a boundary=claim relation. we should # get a linestring geometry for the whole relation from osm2pgsql. # # b = "on the ground" boundary. ways in a boundary=administrative # relation, but ways have disputed=yes, disputed_by=XX on them. # we pick up each way as an individual geometry. # # c = accepted boundary. ways in a boundary=administrative relation, # ways have no extra tagging on them. the ways in b/c relation # give us a country polygon, from which we extract the boundary. # self.generate_fixtures( # "a" relation gives us a linestring. dsl.way(1, dsl.fit_in_tile( z, x, y, 'LINESTRING(0.1 0.5, 0.1 0.9, 0.5 0.9)'), { 'admin_level': '2', 'boundary': 'claim', 'claimed_by': 'XX', 'source': 'openstreetmap.org', 'type': 'boundary', 'name': 'XX Claim', }), # "b" ways give us linestring(s) dsl.way(2, dsl.fit_in_tile( z, x, y, 'LINESTRING(0.1 0.5, 0.5 0.5, 0.5 0.9)'), { 'admin_level': '2', 'boundary': 'administrative', 'disputed': 'yes', 'disputed_by': 'XX', 'source': 'openstreetmap.org', }), # "b & c" ways + country relation give us a polygon => oriented # boundary curve. we get an oriented boundary curve for each # country boundary. (note: b & c together should be a closed ring). dsl.way(3, dsl.fit_in_tile( z, x, y, 'LINESTRING(0.5 0.9, 0.9 0.9, 0.9 0.1, 0.1 0.1, 0.1 0.5, ' '0.5 0.5, 0.5 0.9)'), { 'admin_level': '2', 'boundary': 'administrative', 'name': 'XX', 'source': 'openstreetmap.org', 'mz_boundary_from_polygon': True, # need this for hack }), dsl.way(4, dsl.fit_in_tile( z, x, y, 'LINESTRING(0.5 0.9, 0.9 0.9, 0.9 0.1, 0.1 0.1, 0.1 0.5, ' '0.5 0.5, 0.5 0.9)'), { 'admin_level': '2', 'boundary': 'administrative', 'name': 'YY', 'source': 'openstreetmap.org', 'mz_boundary_from_polygon': True, # need this for hack }), # this is just here to turn off maritime boundaries for everything # in this tile. dsl.way(5, dsl.tile_box(z, x, y), { 'source': 'tilezen.org', 'maritime_boundary': True, 'min_zoom': 0, 'kind': 'maritime', }), ) # should get a non-disputed section of border self.assert_has_feature( z, x, y, 'boundaries', { 'kind': 'country', 'name:left': 'XX', 'name:right': 'YY', 'name': 'XX - YY', }) # should get a section recognised only by XX self.assert_has_feature( z, x, y, 'boundaries', { 'kind': 'unrecognized_country', 'kind:xx': 'country', 'name': 'XX Claim', # we should have dropped the claimed_by/disputed_by tags 'claimed_by': type(None), 'disputed_by': type(None), }) # should get a section recognised _except_ by XX self.assert_has_feature( z, x, y, 'boundaries', { 'kind': 'country', 'kind:xx': 'unrecognized_country', 'name': 'XX - YY', }) def test_claim(self): # test that a claim by countries BB & CC (and recognised by DD) is # only kind:country for those countries. everyone else's view is # kind: unrecognized_country. # # TODO: recognized_by not working yet. import dsl z, x, y = (8, 0, 0) self.generate_fixtures( dsl.way(1, dsl.tile_diagonal(z, x, y), { 'admin_level': '2', 'boundary': 'claim', 'name': 'Extent of CC claim', 'claimed_by': 'CC', 'disputed_by': 'AA;DD', }), dsl.way(2, dsl.tile_diagonal(z, x, y), { 'admin_level': '2', 'boundary': 'claim', 'name': 'Extent of BB claim', 'claimed_by': 'BB', 'disputed_by': 'AA', 'recognized_by': 'DD', }), dsl.way(3, dsl.tile_diagonal(z, x, y), { 'admin_level': '3', 'boundary': 'administrative', 'name': 'Region Name', 'type': 'boundary', }), dsl.way(4, dsl.tile_diagonal(z, x, y), { 'dispute': 'yes', 'disputed_by': 'AA', 'name': 'BB claim', # note: also CC claim?! }), ) self.assert_has_feature( z, x, y, 'boundaries', { # generally unrecognised 'kind': 'unrecognized_country', # but BB & CC both claim this as a border 'kind:bb': 'country', 'kind:cc': 'country', # AA disputes that this border exists. NOTE: the kind:aa is # added to the output even though it duplicates the kind. this # is to help with multi-level fallback. see # https://github.com/tilezen/vector-datasource/pull/1895#discussion_r283912502 'kind:aa': 'unrecognized_country', # DD recognizes BB's claim, so should see this as a country. 'kind:dd': 'country', }) # because AA disputes the whole boundary (way 4), all the boundaries # should be unrecognized (either by default or kind:aa). with self.features_in_tile_layer(z, x, y, 'boundaries') as features: for feature in features: # calculate fallback: prefer kind:aa if it exists, else fall # back to kind. props = feature['properties'] kind = props.get('kind') kind_aa = props.get('kind:aa', kind) self.assertTrue(kind_aa is not None) self.assertTrue(kind_aa.startswith('unrecognized_')) def test_whole_claim(self): # test that something where XA claims the whole boundary of XB works # as expected - we get a boundary where XB is a country except in # XA's viewpoint and a second boundary feature where the whole thing # is just a boundary of XA in XA's viewpoint. import dsl z, x, y = 8, 0, 0 # # +----------------+ # | | # | aaaaaaaaaaa | # | a a | # | a a | # | a a | # | a a | # | aaaaaaaaaaa | # | | # +----------------+ # # this is mapped in OSM using 3 different elements: # # 1. a country boundary relation for XB # 2. the ways making up the country boundary relation are tagged # disputed=yes, disputed_by=XA # 3. a claim relation with claimed_by=XA containing the same ways # as the country boundary relation. # linestring = 'LINESTRING(0.1 0.1, 0.1 0.9, 0.9 0.9, 0.9 0.1, 0.1 0.1)' self.generate_fixtures( # country boundary relation gives us a linestring boundary # extracted from the country polygon. dsl.way(1, dsl.fit_in_tile(z, x, y, linestring), { 'admin_level': '2', 'boundary': 'administrative', 'name': 'XB', 'source': 'openstreetmap.org', 'type': 'boundary', 'mz_boundary_from_polygon': True, }), # ways making up the country boundary tagged disputed dsl.way(2, dsl.fit_in_tile(z, x, y, linestring), { 'disputed': 'yes', 'disputed_by': 'XA', 'source': 'openstreetmap.org', }), # claim relation dsl.way(3, dsl.fit_in_tile(z, x, y, linestring), { 'admin_level': '2', 'boundary': 'claim', 'claimed_by': 'XA', 'name': "Extent of XA's claim", 'source': 'openstreetmap.org', }), ) saw_xa = False saw_xb = False with self.features_in_tile_layer(z, x, y, 'boundaries') as features: for feature in features: props = feature['properties'] kind = props.get('kind') if kind == 'disputed_reference_line': # generally accepted viewpoint, XA should dispute self.assertEqual( props.get('kind:xa'), 'unrecognized') self.assertEqual(props.get('name'), 'XB') saw_xb = True elif kind == 'disputed_claim': # XA's viewpoint, which should claim it as part of XA self.assertEqual(props.get('kind:xa'), 'country') self.assertEqual(props.get('name'), "Extent of XA's claim") saw_xa = True self.assertTrue(saw_xa, "Expected to see XA's viewpoint boundary") self.assertTrue(saw_xb, "Expected to see XB's country boundary") class PlaceTest(FixtureTest): def test_disputed_capital(self): import dsl z, x, y = 16, 0, 0 # a country capital which CN doesn't think is a country capital. this # is just a test case, and any resemblance to real disputes, living or # dead, is purely coincidental. self.generate_fixtures( dsl.way(1, dsl.tile_centre_shape(z, x, y), { 'name': 'Foo', 'featurecla': 'Admin-0 capital', 'fclass_cn': 'Admin-1 capital', 'scalerank': 4, 'min_zoom': 4, 'source': 'naturalearthdata.com', }), ) self.assert_has_feature( z, x, y, 'places', { 'kind': 'locality', 'country_capital': type(True), 'country_capital:cn': type(False), 'region_capital:cn': type(True), }) # NOTE: this isn't a test, just a factoring-out of common code used by all # the subsequent tests, which are testing variations of what happens when # the default (featurecla) is different from an override (fclass_iso). def _check(self, default, dispute, expected): import dsl z, x, y = 16, 0, 0 self.generate_fixtures( dsl.way(1, dsl.tile_centre_shape(z, x, y), { 'name': 'Foo', 'featurecla': default, 'fclass_iso': dispute, 'scalerank': 4, 'min_zoom': 4, 'source': 'naturalearthdata.com', }), ) expected['kind'] = 'locality' self.assert_has_feature(z, x, y, 'places', expected) def test_country_country(self): # explicit override still comes out in the output self._check( 'Admin-0 capital', 'Admin-0 capital', {'country_capital:iso': type(True)} ) def test_country_region(self): # region override disables country_capital and adds region_capital. self._check( 'Admin-0 capital', 'Admin-1 capital', { 'country_capital:iso': type(False), 'region_capital:iso': type(True), } ) def test_country_none(self): # override to none should just disable country_capital self._check( 'Admin-0 capital', 'Populated place', {'country_capital:iso': type(False)} ) def test_region_country(self): # override sets country_capital and disables region_capital self._check( 'Admin-1 capital', 'Admin-0 capital', { 'country_capital:iso': type(True), 'region_capital:iso': type(False), } ) def test_region_region(self):
![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) <a href="https://hub.callysto.ca/jupyter/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fcallysto%2Fcurriculum-notebooks&branch=master&subPath=Science/ReflectionsOfLightByPlaneAndSphericalMirrors/reflections-of-light-by-plane-and-spherical-mirrors.ipynb&depth=1" target="_parent"><img src="https://raw.githubusercontent.com/callysto/curriculum-notebooks/master/open-in-callysto-button.svg?sanitize=true" width="123" height="24" alt="Open in Callysto"/></a> from IPython.display import display, Math, Latex, HTML HTML('''<script> function code_toggle() { if (code_shown){ $('div.input').hide('500'); $('#toggleButton').val('Show Code') } else { $('div.input').show('500'); $('#toggleButton').val('Hide Code') } code_shown = !code_shown } $( document ).ready(function(){ code_shown=false; $('div.input').hide() }); </script> <form action="javascript:code_toggle()"><input type="submit" id="toggleButton" value="Show Code"></form>''') from helper import * %matplotlib inline # Reflection of Light ## by Plane and Spherical Mirrors ## Introduction When light shines onto the surface of an object, some of the light is reflected, while the rest is either absorbed or transmitted. We can imagine the light consisting of many narrow beams that travel in straight-line paths called **rays**. The light rays that strike the surface are called the **incident rays**. The light rays that reflect off the surface are called the **reflected rays**. This model of light is called the **ray model**, and it can be used to describe many aspects of light, including the reflection and formation of images by plane and spherical mirrors. ## Law of Reflection <img src="Images/law_of_reflection.svg" width="50%"/> To measure the angles of the incident and reflected rays, we first draw the **normal**, which is the line perpendicular to the surface. The **angle of incidence, $\theta_{i}$,** is the angle between the incident ray and the normal. Likewise, the **angle of reflection, $\theta_{r}$,** is the angle between the reflected ray and the normal. The incident ray, the reflected ray, and the normal to the reflecting surface all lie within the same plane. This is shown in the figure above. Notice that the angle of reflection is equal to the angle of incidence. This is known as the **law of reflection**, and it can be expressed by the following equation: $$\theta_{r} = \theta_{i}$$ Use the slider below to change the angle of incidence. This changes the angle between the incident ray and the normal. Notice how the angle of reflection also changes when the slider is moved. interactive_plot = widgets.interactive(f, Angle=widgets.IntSlider(value=45,min=0,max=90,step=15,continuous_update=False)) output = interactive_plot.children[-1] output.layout.height = '280px' interactive_plot **Question:** *When the angle of incidence increases, what happens to the angle of reflection?* #Assign each multiple choice to these four variables #Option_1 contains the answer option_1 = "The angle of reflection increases." option_2 = "The angle of reflection decreases." option_3 = "The angle of reflection remains constant." option_4 = "The angle of reflection equals zero." multiple_choice(option_1, option_2, option_3, option_4) ## Specular and Diffuse Reflections For a very smooth surface, such as a mirror, almost all of the light is reflected to produce a **specular reflection**. In a specular reflection, the reflected light rays are parallel to one another and point in the same direction. This allows specular reflections to form images. If the surface is not very smooth, then the light may bounce off of the surface in various directions. This produces a **diffuse reflection**. Diffuse reflections cannot form images. <img src="Images/specular_diffuse_reflections.svg" width="70%"/> **Note:** The law of reflection still applies to diffuse reflections, even though the reflected rays are pointing in various directions. We can imagine that each small section of the rough surface is like a flat plane orientated differently than the sections around it. Since each of these sections is orientated differently, the angle of incidence is different at each section. This causes the reflected rays to scatter. **Question:** *Which of the following is an example of a specular reflection?* #Assign each multiple choice to these four variables #Option_1 contains the answer option_1 = "The reflection off a clean window." option_2 = "The reflection off a wooden deck." option_3 = "The reflection off a carpet floor." option_4 = "The reflection off a table cloth." multiple_choice(option_1, option_2, option_3, option_4) **Question:** *Which of the following is an example of a diffuse reflection?* #Assign each multiple choice to these four variables #Option_1 contains the answer option_1 = "The reflection off a concrete sidewalk." option_2 = "The reflection off a mirror." option_3 = "The reflection off the surface of a still lake." option_4 = "The reflection off a polished sheet of metal." multiple_choice(option_1, option_2, option_3, option_4) ## Image Formation by Plane Mirrors A **plane mirror** is simply a mirror made from a flat (or planar) surface. These types of mirrors are commonly found in bedroom or bathroom fixtures. When an object is reflected in a plane mirror, the image of the object appears to be located behind the mirror. This is because our brains interpret the reflected light rays entering our eyes as having travelled in straight-line paths. The light rays entering our eyes simply do not contain enough information for our brains to differentiate between a straight-line path and a path that changed direction due to a reflection. <img src="Images/plane_mirror_reflection.svg" width="60%"/> Notice in the figure above that the light rays do not actually converge at the location where the image appears to be formed (behind the mirror). Since the light rays do not actually go behind the mirror, they are represented as projections using dashed lines. If a film were placed at the image location behind the mirror, it would not be able to capture the image. As a result, this type of image is called a **virtual image**. For objects reflected in a plane mirror, the distance of the image from the mirror, $d_{i}$, is always equal to the distance of the object from the mirror, $d_{o}$. If the object is moved toward the mirror, the image of the object will also move toward the mirror such that the object and the image are always equidistant from the surface of the mirror. Use the slider below to change the object distance. Notice how the image distance also changes when the slider is moved. interactive_plot = widgets.interactive(f,Distance=widgets.IntSlider(value=30,min=10,max=50,step=10,continuous_update=False)) output = interactive_plot.children[-1] output.layout.height = '280px' interactive_plot #Print question distance = round(random.uniform(5,10),1) print("If you stand " + str(distance) + " m in front of a plane mirror, how many metres behind the mirror is your virtual image?") #Answer calculation answer = distance #Assign each multiple choice to these four variables #Option_1 contains the answer option_1 = str(round((answer),1)) + " m" option_2 = str(round((answer * 2),1)) + " m" option_3 = str(round((answer / 2),1)) + " m" option_4 = str(round((answer / 4),1)) + " m" multiple_choice(option_1, option_2, option_3, option_4) #Print question distance = round(random.uniform(5,10),1) print("If you stand " + str(distance) + " m in front of a plane mirror, how many metres will separate you from your virtual image?") #Answer calculation answer = (distance * 2) #Assign each multiple choice to these four variables #Option_1 contains the answer option_1 = str(round((answer),1)) + " m" option_2 = str(round((answer * 2),1)) + " m" option_3 = str(round((answer / 2),1)) + " m" option_4 = str(round((answer / 4),1)) + " m" multiple_choice(option_1, option_2, option_3, option_4) ## Spherical Mirrors Two common types of curved mirror are formed from a section of a sphere. If the reflection takes place on the inside of the spherical section, then the mirror is called a **concave mirror**. The reflecting surface of a concave mirror curves inward and away from the viewer. If the reflection takes place on the outside of the spherical section, then the mirror is called a **convex mirror**. The reflecting surface of a convex mirror curves outward and toward the viewer. <img src="Images/concave_convex_mirrors.svg" width="75%"/> The **centre of curvature, $C$,** is the point located at the centre of the sphere used to create the mirror. The **vertex, $V$,** is the point located at the geometric centre of the mirror itself. The **focus, $F$,** is the point located midway between the centre of curvature and the vertex. The line passing through the centre of curvature and the vertex is called the **principal axis**. Notice that the focus also lies on the principal axis. When an incident ray parallel to the principle axis strikes the mirror, the reflected ray always passes through the focus. When an incident ray passes through the focus and strikes the mirror, the reflected ray is always parallel to the principle axis. (In the above diagrams, reverse the arrow directions to see this case). These properties make the focus particularly useful when examining spherical mirrors. **Note:** The distance from the centre of curvature to the vertex is
# ccm clusters import os import shutil import time import subprocess import signal import yaml import uuid import datetime from six import print_ from distutils.version import LooseVersion from ccmlib import common from ccmlib.cluster import Cluster from ccmlib.scylla_node import ScyllaNode from ccmlib.node import NodeError from ccmlib import scylla_repository SNITCH = 'org.apache.cassandra.locator.GossipingPropertyFileSnitch' class ScyllaCluster(Cluster): def __init__(self, path, name, partitioner=None, install_dir=None, create_directory=True, version=None, verbose=False, force_wait_for_cluster_start=False, manager=None, skip_manager_server=False, **kwargs): install_func = common.scylla_extract_install_dir_and_mode cassandra_version = kwargs.get('cassandra_version', version) docker_image = kwargs.get('docker_image') if cassandra_version: self.scylla_reloc = True self.scylla_mode = None elif docker_image: self.scylla_reloc = False self.scylla_mode = None else: self.scylla_reloc = False install_dir, self.scylla_mode = install_func(install_dir) self.started = False self.force_wait_for_cluster_start = (force_wait_for_cluster_start != False) self._scylla_manager = None self.skip_manager_server = skip_manager_server self.scylla_version = cassandra_version super(ScyllaCluster, self).__init__(path, name, partitioner, install_dir, create_directory, version, verbose, snitch=SNITCH, cassandra_version=cassandra_version, docker_image=docker_image) if not manager: scylla_ext_opts = os.getenv('SCYLLA_EXT_OPTS', "").split() opts_i = 0 while opts_i < len(scylla_ext_opts): if scylla_ext_opts[opts_i].startswith("--scylla-manager="): manager = scylla_ext_opts[opts_i].split('=')[1] opts_i += 1 if manager: self._scylla_manager = ScyllaManager(self, manager) if os.path.exists(os.path.join(self.get_path(), common.SCYLLAMANAGER_DIR)): self._scylla_manager = ScyllaManager(self) def load_from_repository(self, version, verbose): install_dir, version = scylla_repository.setup(version, verbose) install_dir, self.scylla_mode = common.scylla_extract_install_dir_and_mode(install_dir) return install_dir, version def create_node(self, name, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save=True, binary_interface=None): return ScyllaNode(name, self, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save, binary_interface, scylla_manager=self._scylla_manager) # copy from cluster def __update_pids(self, started): for node, p, _ in started: node._update_pid(p) def start_nodes(self, nodes=None, no_wait=False, verbose=False, wait_for_binary_proto=None, wait_other_notice=None, jvm_args=None, profile_options=None, quiet_start=False): if wait_for_binary_proto is None: wait_for_binary_proto = self.force_wait_for_cluster_start if wait_other_notice is None: wait_other_notice = self.force_wait_for_cluster_start self.debug(f"start_nodes: no_wait={no_wait} wait_for_binary_proto={wait_for_binary_proto} wait_other_notice={wait_other_notice} force_wait_for_cluster_start={self.force_wait_for_cluster_start}") self.started=True p = None if jvm_args is None: jvm_args = [] marks = [] if wait_other_notice: marks = [(node, node.mark_log()) for node in self.nodes.values() if node.is_running()] if nodes is None: nodes = self.nodes.values() elif isinstance(nodes, ScyllaNode): nodes = [nodes] started = [] for node in nodes: if not node.is_running(): if started: last_node, _, last_mark = started[-1] last_node.watch_log_for("node is now in normal status|Starting listening for CQL clients", verbose=verbose, from_mark=last_mark, process=last_node._process_scylla) mark = 0 if os.path.exists(node.logfilename()): mark = node.mark_log() p = node.start(update_pid=False, jvm_args=jvm_args, profile_options=profile_options, no_wait=no_wait, wait_for_binary_proto=wait_for_binary_proto, wait_other_notice=wait_other_notice) started.append((node, p, mark)) marks.append((node, mark)) self.__update_pids(started) for node, p, _ in started: if not node.is_running(): raise NodeError("Error starting {0}.".format(node.name), p) if wait_for_binary_proto: for node, _, mark in started: node.watch_log_for("Starting listening for CQL clients", verbose=verbose, from_mark=mark) if wait_other_notice: for old_node, mark in marks: for node, _, _ in started: if old_node is not node: old_node.watch_log_for_alive(node, from_mark=mark) return started # override cluster def start(self, no_wait=False, verbose=False, wait_for_binary_proto=None, wait_other_notice=None, jvm_args=None, profile_options=None, quiet_start=False): kwargs = dict(**locals()) del kwargs['self'] started = self.start_nodes(**kwargs) if self._scylla_manager and not self.skip_manager_server: self._scylla_manager.start() return started def stop_nodes(self, nodes=None, wait=True, gently=True, wait_other_notice=False, other_nodes=None, wait_seconds=None): if nodes is None: nodes = self.nodes.values() elif isinstance(nodes, ScyllaNode): nodes = [nodes] marks = [] if wait_other_notice: if not other_nodes: other_nodes = [node for node in self.nodes.values() if not node in nodes] marks = [(node, node.mark_log()) for node in other_nodes if node.is_live()] # stop all nodes in parallel for node in nodes: node.do_stop(gently=gently) # wait for stopped nodes is needed if wait or wait_other_notice: for node in nodes: node.wait_until_stopped(wait_seconds, marks, dump_core=gently) return [node for node in nodes if not node.is_running()] def stop(self, wait=True, gently=True, wait_other_notice=False, other_nodes=None, wait_seconds=None): if self._scylla_manager and not self.skip_manager_server: self._scylla_manager.stop(gently) kwargs = dict(**locals()) del kwargs['self'] return self.stop_nodes(**kwargs) def get_scylla_mode(self): return self.scylla_mode def is_scylla_reloc(self): return self.scylla_reloc def enable_internode_ssl(self, node_ssl_path, internode_encryption='all'): shutil.copyfile(os.path.join(node_ssl_path, 'trust.pem'), os.path.join(self.get_path(), 'internode-trust.pem')) shutil.copyfile(os.path.join(node_ssl_path, 'ccm_node.pem'), os.path.join(self.get_path(), 'internode-ccm_node.pem')) shutil.copyfile(os.path.join(node_ssl_path, 'ccm_node.key'), os.path.join(self.get_path(), 'internode-ccm_node.key')) node_ssl_options = { 'internode_encryption': internode_encryption, 'certificate': os.path.join(self.get_path(), 'internode-ccm_node.pem'), 'keyfile': os.path.join(self.get_path(), 'internode-ccm_node.key'), 'truststore': os.path.join(self.get_path(), 'internode-trust.pem'), } self._config_options['server_encryption_options'] = node_ssl_options self._update_config() def _update_config(self, install_dir=None): """ add scylla specific item to the cluster.conf :return: None """ super(ScyllaCluster, self)._update_config() filename = os.path.join(self.get_path(), 'cluster.conf') with open(filename, 'r') as f: data = yaml.safe_load(f) if self.is_scylla_reloc(): data['scylla_version'] = self.scylla_version if self._scylla_manager and self._scylla_manager.install_dir: data['scylla_manager_install_path'] = self._scylla_manager.install_dir with open(filename, 'w') as f: yaml.safe_dump(data, f) def sctool(self, cmd): if self._scylla_manager == None: raise Exception("scylla manager not enabled - sctool command cannot be executed") return self._scylla_manager.sctool(cmd) def start_scylla_manager(self): if not self._scylla_manager or self.skip_manager_server: return self._scylla_manager.start() def stop_scylla_manager(self, gently=True): if not self._scylla_manager or self.skip_manager_server: return self._scylla_manager.stop(gently) def upgrade_cluster(self, upgrade_version): """ Support when uses relocatable packages only :param upgrade_version: relocatables name. Example: unstable/master:2020-11-18T08:57:53Z """ for node in self.nodelist(): node.upgrade(upgrade_version) self._update_config(install_dir=self.nodelist()[0].node_install_dir) class ScyllaManager: def __init__(self, scylla_cluster, install_dir=None): self.scylla_cluster = scylla_cluster self._process_scylla_manager = None self._pid = None self.auth_token = <PASSWORD>(uuid.<PASSWORD>()) self.install_dir = install_dir if install_dir: if not os.path.exists(self._get_path()): os.mkdir(self._get_path()) self._install(install_dir) else: self._update_pid() @property def version(self): stdout, _ = self.sctool(["version"], ignore_exit_status=True) version_string = stdout[stdout.find(": ") + 2:].strip() # Removing unnecessary information version_code = LooseVersion(version_string) return version_code def _install(self, install_dir): self._copy_config_files(install_dir) self._copy_bin_files(install_dir) self._update_config(install_dir) def _get_api_address(self): return "%s:5080" % self.scylla_cluster.get_node_ip(1) def _update_config(self, install_dir=None): conf_file = os.path.join(self._get_path(), common.SCYLLAMANAGER_CONF) with open(conf_file, 'r') as f: data = yaml.safe_load(f) data['http'] = self._get_api_address() if not 'database' in data: data['database'] = {} data['database']['hosts'] = [self.scylla_cluster.get_node_ip(1)] data['database']['replication_factor'] = 3 if install_dir and (self.version < LooseVersion("2.5") or LooseVersion('666') < self.version < LooseVersion('666.dev-0.20210430.2217cc84')): data['database']['migrate_dir'] = os.path.join(install_dir, 'schema', 'cql') if 'https' in data: del data['https'] if 'tls_cert_file' in data: del data['tls_cert_file'] if 'tls_key_file' in data: del data['tls_key_file'] if not 'logger' in data: data['logger'] = {} data['logger']['mode'] = 'stderr' if not 'repair' in data: data['repair'] = {} if self.version < LooseVersion("2.2"): data['repair']['segments_per_repair'] = 16 data['prometheus'] = "{}:56091".format(self.scylla_cluster.get_node_ip(1)) # Changing port to 56091 since the manager and the first node share the same ip and 56090 is already in use # by the first node's manager agent data["debug"] = "{}:5611".format(self.scylla_cluster.get_node_ip(1)) # Since both the manager server and the first node use the same address, the manager can't use port # 56112, as node 1's agent already seized it if 'ssh' in data: del data['ssh'] keys_to_delete = [] for key in data: if not data[key]: keys_to_delete.append(key) # can't delete from dict during loop for key in keys_to_delete: del data[key] with open(conf_file, 'w') as f: yaml.safe_dump(data, f, default_flow_style=False) def _copy_config_files(self, install_dir): conf_dir = os.path.join(install_dir, 'etc') if not os.path.exists(conf_dir): raise Exception("%s is not a valid scylla-manager install dir" % install_dir) for name in os.listdir(conf_dir): filename = os.path.join(conf_dir, name) if os.path.isfile(filename): shutil.copy(filename, self._get_path()) def _copy_bin_files(self, install_dir): os.mkdir(os.path.join(self._get_path(), 'bin')) files = ['sctool', 'scylla-manager', 'scylla-manager-agent'] for name in files: src = os.path.join(install_dir, name) if not os.path.exists(src): raise Exception("%s not found in scylla-manager install dir" % src) shutil.copy(src,os.path.join(self._get_path(), 'bin', name)) @property def is_agent_available(self): return os.path.exists(os.path.join(self._get_path(), 'bin', 'scylla-manager-agent')) def _get_path(self): return os.path.join(self.scylla_cluster.get_path(), common.SCYLLAMANAGER_DIR) def _get_pid_file(self): return os.path.join(self._get_path(), "scylla-manager.pid") def _update_pid(self): if not os.path.isfile(self._get_pid_file()): return start = time.time() pidfile = self._get_pid_file() while not (os.path.isfile(pidfile) and os.stat(pidfile).st_size > 0): if time.time() - start > 30.0: print_("Timed out waiting for pidfile {} to be filled (current time is %s): File {} size={}".format( pidfile, datetime.now(), 'exists' if os.path.isfile(pidfile) else 'does not exist' if not os.path.exists(pidfile) else 'is not a file', os.stat(pidfile).st_size if os.path.exists(pidfile) else -1)) break else: time.sleep(0.1) try: with open(self._get_pid_file(), 'r') as f: self._pid = int(f.readline().strip()) except IOError as e: raise NodeError('Problem starting scylla-manager due to %s' % (e)) def start(self): # some configurations are set post initialisation (cluster id) so # we are forced to update the config prior to calling start self._update_config(self.install_dir) # check process is not running if self._pid: try: os.kill(self._pid, 0) return except OSError as err: pass log_file = os.path.join(self._get_path(),'scylla-manager.log') scylla_log = open(log_file, 'a') if os.path.isfile(self._get_pid_file()): os.remove(self._get_pid_file()) args = [os.path.join(self._get_path(), 'bin', 'scylla-manager'), '--config-file', os.path.join(self._get_path(), 'scylla-manager.yaml')] self._process_scylla_manager = subprocess.Popen(args, stdout=scylla_log, stderr=scylla_log, close_fds=True) self._process_scylla_manager.poll() with open(self._get_pid_file(), 'w') as pid_file: pid_file.write(str(self._process_scylla_manager.pid)) api_interface = common.parse_interface(self._get_api_address(), 5080) if not common.check_socket_listening(api_interface,timeout=180): raise Exception("scylla manager interface %s:%s is not listening after 180 seconds, scylla manager may have failed to start." % (api_interface[0], api_interface[1])) return self._process_scylla_manager def stop(self, gently): if self._process_scylla_manager: if gently: try: self._process_scylla_manager.terminate() except OSError as e: pass else: try: self._process_scylla_manager.kill() except OSError as e: pass else: if self._pid: signal_mapping = {True: signal.SIGTERM, False: signal.SIGKILL} try: os.kill(self._pid, signal_mapping[gently]) except OSError: pass def sctool(self, cmd, ignore_exit_status=False): sctool = os.path.join(self._get_path(), 'bin', 'sctool') args = [sctool, '--api-url', "http://%s/api/v1" % self._get_api_address()] args += cmd p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = p.communicate() exit_status = p.wait() if exit_status != 0 and not ignore_exit_status: raise Exception(" ".join(args), exit_status, stdout, stderr) return stdout, stderr def agent_check_location(self, location_list, extra_config_file_list=None): agent_bin
False elif language == 'stick': rhyctx.durations_stick = True else: raise ValueError("unknown durations behavior %s; try temporary or stick" % language) # Instruments def add_sfx(self, words): if len(words) != 4 or words[2] != 'on': raise ValueError("must have 4 words: sfx SFXNAME on CHANNELTYPE") _, name, _, channel = words try: channel = channeltypes[channel] except KeyError: raise ValueError("unknown channel; try pulse, triangle, or noise") if self.cur_song is not None: name = '::'.join((self.cur_song.name, name)) if name in self.sfxs: raise ValueError("sfx %s was already defined on line %d" % (name, self.sfxs[name].linenum)) inst = PentlySfx(channel, pitchctx=self.pitchctx, name=name, linenum=self.linenum) self.sfxs[name] = inst self.cur_obj = ('sfx', inst) def add_instrument(self, words): if len(words) != 2: raise ValueError("must have 2 words: instrument INSTNAME") name = words[1] if self.cur_song is not None: name = '::'.join((self.cur_song.name, name)) if name in self.instruments: raise ValueError("instrument %s was already defined on line %d" % (name, self.instruments[name].linenum)) inst = PentlyInstrument(name=name, linenum=self.linenum) self.instruments[name] = inst self.cur_obj = ('instrument', inst) def add_rate(self, words): self.ensure_in_object('rate', 'sfx') if len(words) != 2: raise ValueError("must have 2 words: rate FRAMESPERSTEP") rate = int(words[1]) self.cur_obj[1].set_rate(rate, linenum=self.linenum) def add_volume(self, words): self.ensure_in_object('volume', ('sfx', 'instrument')) if len(words) < 2: raise ValueError("volume requires at least one step") obj = self.cur_obj[1] obj.set_volume([int(x) for x in words[1:] if x != '|'], linenum=self.linenum) def add_decay(self, words): self.ensure_in_object('decay', 'instrument') if len(words) != 2: raise ValueError("must have 2 words: decay UNITSPER16FRAMES") obj = self.cur_obj[1] obj.set_decay(int(words[1]), linenum=self.linenum) def add_timbre(self, words): self.ensure_in_object('timbre', ('sfx', 'instrument')) if len(words) < 2: raise ValueError("timbre requires at least one step") obj = self.cur_obj[1] obj.set_timbre(words[1:], linenum=self.linenum) def add_pitch(self, words): self.ensure_in_object('pitch', ('sfx', 'instrument')) if len(words) < 2: raise ValueError("pitch requires at least one step") obj = self.cur_obj[1] obj.set_pitch(words[1:], linenum=self.linenum) def add_detached(self, words): self.ensure_in_object('detached', 'instrument') if len(words) > 1: raise ValueError("detached in instrument takes no arguments") self.cur_obj[1].set_detached(True) def add_drum(self, words): if len(words) not in (3, 4): raise ValueError("must have 3 words: drum DRUMNAME") self.cur_obj = None drumname = words[1] if self.cur_song is not None: drumname = '::'.join((self.cur_song.name, drumname)) if drumname in self.drums: raise ValueError("drum %s was already defined on line %d" % (drumname, self.drums[drumname].linenum)) d = PentlyDrum(words[2:], name=drumname, linenum=self.linenum) self.drums[drumname] = d # Songs and patterns def add_song(self, words): if len(words) != 2: raise ValueError("must have 2 words: song SONGNAME") if self.cur_song: raise ValueError("song %s began on line %d and was not ended with fine or dal segno" % (self.cur_song.name, self.cur_song.linenum)) self.cur_obj = None songname = words[1] if songname in self.songs: oldlinenum = self.songs[songname].linenum raise ValueError("song %s was already defined on line %d" % (songname, oldlinenum)) song = PentlySong(pitchctx=self.pitchctx, rhyctx=self.rhyctx, name=songname, linenum=self.linenum) self.cur_song = self.songs[songname] = song def end_song(self, words): if not self.cur_song: raise ValueError("no song is open") song = self.cur_song words = ' '.join(words).lower() if words == 'fine': endcmd = 'fine' elif words in ('dal segno', 'dalsegno'): endcmd = 'dalSegno' elif words in ('da capo', 'dacapo'): if song.segno_linenum is not None: raise ValueError("cannot loop to start because segno was set on line %d" % song.segno_linenum) endcmd = 'dalSegno' else: raise ValueError('song end must be "fine" or "dal segno" or "da capo", not ' + end) song.conductor.append(endcmd) song.bytesize += 1 self.cur_song = self.cur_obj = None def add_segno(self, words): if len(words) > 1: raise ValueError('segno takes no arguments') if not self.cur_song: raise ValueError("no song is open") song = self.cur_song if song.segno_linenum is not None: raise ValueError('loop point for song %s was already set at line %d' % (self.cur_song.name, self.segno_linenum)) song.conductor.append('segno') song.bytesize += 1 song.segno_linenum = self.linenum self.cur_obj = None def add_time(self, words): if len(words) < 2: raise ValueError('no time signature given') if len(words) > 2 and (len(words) != 4 or words[2] != 'scale'): raise ValueError("time with scale must have 4 words: time N/D scale D") try: sp = timesignames[words[1].lower()] except KeyError: sp = words[1].split('/', 1) if len(sp) != 2: raise ValueError("time signature must be a fraction separated by /") timenum, timeden = int(sp[0]), int(sp[1]) rhyctx = self.get_pitchrhy_parent().rhyctx rhyctx.set_time_signature(timenum, timeden) if len(words) > 2: self.add_scale(words[2:]) def add_scale(self, words): if len(words) != 2: raise ValueError("must have 2 words: scale ROWVALUE") target = self.get_pitchrhy_parent() target.rhyctx.set_scale(int(words[1])) def add_tempo(self, words): if not self.cur_song: raise ValueError("tempo must be used in a song") if len(words) != 2: raise ValueError("must have 2 words: pickup MEASURE[:BEAT[:ROW]]") tempo = float(words[1]) if not 1.0 <= tempo <= 1500.0: raise ValueError("tempo must be positive and no more than 1500 rows per minute") song = self.cur_song song.rhyctx.tempo = tempo # to be picked up on next wait rows def add_song_wait(self, words): if not self.cur_song: raise ValueError("at must be used in a song") if len(words) < 2: raise ValueError("must have 2 words: at MEASURE[:BEAT[:ROW]]") song = self.cur_song mbr = [int(x) for x in words[1].split(':', 2)] # If we're waiting at least one row, update the tempo and # put in a wait command rows_to_wait = song.rhyctx.wait_for_measure(*mbr) song.wait_rows(rows_to_wait) self.cur_obj = None # end any song-local pattern or instrument if len(words) > 2: self.dokeyword(words[2:]) def add_song_pickup(self, words): if not self.cur_song: raise ValueError("at must be used in a song") if len(words) != 2: raise ValueError("must have 2 words: pickup MEASURE[:BEAT[:ROW]]") rhyctx = self.cur_song.rhyctx mbr = [int(x) for x in words[1].split(':', 2)] rhyctx.set_measure(*mbr) @staticmethod def extract_prepositions(words): return dict(zip(words[2::2], words[3::2])) def add_attack(self, words): if len(words) != 3 or words[1] != 'on': raise ValueError('syntax: attack on CHANNELNAME') if self.cur_song.name is None: raise ValueError('no song is open') self.cur_obj = None chname = words[2] song = self.cur_song song.set_attack(chname) def add_play(self, words): if len(words) % 2 != 0: raise ValueError('syntax: pattern PATTERNNAME [on TRACK] [with INSTRUMENT]') if self.cur_song.name is None: raise ValueError('no song is open') self.cur_obj = None patname = words[1] pps = self.extract_prepositions(words) track = pps.pop('on', None) instrument = pps.pop('with', None) transpose = int(pps.pop('up', 0)) - int(pps.pop('down', 0)) if pps: raise ValueError("unknown prepositions: " + " ".join(pps)) song = self.cur_song song.play(patname, track=track, instrument=instrument, transpose=transpose) def add_stop(self, words): if self.cur_song.name is None: raise ValueError('no song is open') self.cur_obj = None if len(words) < 2: raise ValueError('must stop at least one track') self.cur_song.stop_tracks(words[1:]) def add_pattern(self, words): if len(words) % 2 != 0: raise ValueError('syntax: pattern PATTERNNAME [on TRACK] [with INSTRUMENT]') patname = words[1] if patname in self.patterns: raise ValueError("pattern %s was already defined on line %d" % (patname, self.patterns[patname].linenum)) if self.cur_song is not None: patname = '::'.join((self.cur_song.name, patname)) pitchrhy = self.cur_song else: pitchrhy = self pps = self.extract_prepositions(words) track = pps.pop('on', None) if track and track not in pitched_tracks: raise ValueError('unknown track ' + track) instrument = pps.pop('with', None) if pps: raise ValueError("unknown prepositions: " + " ".join(pps)) pat = PentlyPattern(pitchctx=pitchrhy.pitchctx, rhyctx=pitchrhy.rhyctx, instrument=instrument, track=track, name=patname, linenum=self.linenum) self.patterns[patname] = pat self.cur_obj = ('pattern', pat) def add_fallthrough(self, words): if len(words) > 1: raise ValueError("fallthrough takes no arguments") self.ensure_in_object('fallthrough', 'pattern') self.cur_obj[1].set_fallthrough(True) self.cur_obj = None def add_definition(self, name, value): if name.startswith('EN'): self.get_pitchrhy_parent().pitchctx.add_arp_name(name[2:], value) return raise ValueError("unknown definable %s" % repr(name)) keywordhandlers = { 'notenames': add_notenames, 'durations': add_durations, 'sfx': add_sfx, 'volume': add_volume, 'rate': add_rate, 'decay': add_decay, 'timbre': add_timbre, 'pitch': add_pitch, 'instrument': add_instrument, 'drum': add_drum, 'detached': add_detached, 'song': add_song, 'fine': end_song, 'dal': end_song, 'dalSegno': end_song, 'da': end_song, 'daCapo': end_song, 'segno': add_segno, 'time': add_time, 'scale': add_scale, 'attack': add_attack, 'pattern': add_pattern, 'fallthrough': add_fallthrough, 'at': add_song_wait, 'pickup': add_song_pickup, 'tempo': add_tempo, 'play': add_play, 'stop': add_stop, } def dokeyword(self, words): if words[0].startswith('@'): defmatch = ' '.join(words).split("=", 1) if len(defmatch) > 1: self.add_definition(defmatch[0][1:].rstrip(), defmatch[1].strip()) return try: kwh = self.keywordhandlers[words[0]] except KeyError: pass else: return kwh(self, words) if self.cur_obj and self.cur_obj[0] == 'pattern': pat = self.cur_obj[1] for word in words: pat.add_pattern_note(word) return if self.unk_keywords < 100: print("unknown keyword %s inside %s" % (repr(words), self.cur_obj or self.cur_song.name), file=sys.stderr) self.unk_keywords += 1 # Pass 3: Try to find envelopes that overlap envelopes def wrapdata(atoms, lineprefix, maxlength=79): lpfx = len(lineprefix) maxlength -= lpfx out, lout = [], 0 for atom in atoms: lthis = len(atom) if len(out) > 0 and lthis + lout > maxlength: yield lineprefix+','.join(out) out, lout = [], 0 out.append(atom) lout += lthis + 1 yield lineprefix+','.join(out) def format_dbyt(n): return '$%04x' % n def print_all_dicts(parser): print("\nParsed %d lines, with %d using a
Constraint(expr=m.x28*m.x2514 + m.x653*m.x2520 + m.x1278*m.x2526 + m.x1903*m.x2532 <= 8) m.c1297 = Constraint(expr=m.x29*m.x2514 + m.x654*m.x2520 + m.x1279*m.x2526 + m.x1904*m.x2532 <= 8) m.c1298 = Constraint(expr=m.x30*m.x2514 + m.x655*m.x2520 + m.x1280*m.x2526 + m.x1905*m.x2532 <= 8) m.c1299 = Constraint(expr=m.x31*m.x2514 + m.x656*m.x2520 + m.x1281*m.x2526 + m.x1906*m.x2532 <= 8) m.c1300 = Constraint(expr=m.x32*m.x2514 + m.x657*m.x2520 + m.x1282*m.x2526 + m.x1907*m.x2532 <= 8) m.c1301 = Constraint(expr=m.x33*m.x2514 + m.x658*m.x2520 + m.x1283*m.x2526 + m.x1908*m.x2532 <= 8) m.c1302 = Constraint(expr=m.x34*m.x2514 + m.x659*m.x2520 + m.x1284*m.x2526 + m.x1909*m.x2532 <= 8) m.c1303 = Constraint(expr=m.x35*m.x2514 + m.x660*m.x2520 + m.x1285*m.x2526 + m.x1910*m.x2532 <= 8) m.c1304 = Constraint(expr=m.x36*m.x2514 + m.x661*m.x2520 + m.x1286*m.x2526 + m.x1911*m.x2532 <= 8) m.c1305 = Constraint(expr=m.x37*m.x2514 + m.x662*m.x2520 + m.x1287*m.x2526 + m.x1912*m.x2532 <= 8) m.c1306 = Constraint(expr=m.x38*m.x2514 + m.x663*m.x2520 + m.x1288*m.x2526 + m.x1913*m.x2532 <= 8) m.c1307 = Constraint(expr=m.x39*m.x2514 + m.x664*m.x2520 + m.x1289*m.x2526 + m.x1914*m.x2532 <= 8) m.c1308 = Constraint(expr=m.x40*m.x2514 + m.x665*m.x2520 + m.x1290*m.x2526 + m.x1915*m.x2532 <= 8) m.c1309 = Constraint(expr=m.x41*m.x2514 + m.x666*m.x2520 + m.x1291*m.x2526 + m.x1916*m.x2532 <= 8) m.c1310 = Constraint(expr=m.x42*m.x2514 + m.x667*m.x2520 + m.x1292*m.x2526 + m.x1917*m.x2532 <= 8) m.c1311 = Constraint(expr=m.x43*m.x2514 + m.x668*m.x2520 + m.x1293*m.x2526 + m.x1918*m.x2532 <= 8) m.c1312 = Constraint(expr=m.x44*m.x2514 + m.x669*m.x2520 + m.x1294*m.x2526 + m.x1919*m.x2532 <= 8) m.c1313 = Constraint(expr=m.x45*m.x2514 + m.x670*m.x2520 + m.x1295*m.x2526 + m.x1920*m.x2532 <= 8) m.c1314 = Constraint(expr=m.x46*m.x2514 + m.x671*m.x2520 + m.x1296*m.x2526 + m.x1921*m.x2532 <= 8) m.c1315 = Constraint(expr=m.x47*m.x2514 + m.x672*m.x2520 + m.x1297*m.x2526 + m.x1922*m.x2532 <= 8) m.c1316 = Constraint(expr=m.x48*m.x2514 + m.x673*m.x2520 + m.x1298*m.x2526 + m.x1923*m.x2532 <= 8) m.c1317 = Constraint(expr=m.x49*m.x2514 + m.x674*m.x2520 + m.x1299*m.x2526 + m.x1924*m.x2532 <= 8) m.c1318 = Constraint(expr=m.x50*m.x2514 + m.x675*m.x2520 + m.x1300*m.x2526 + m.x1925*m.x2532 <= 8) m.c1319 = Constraint(expr=m.x51*m.x2514 + m.x676*m.x2520 + m.x1301*m.x2526 + m.x1926*m.x2532 <= 8) m.c1320 = Constraint(expr=m.x52*m.x2514 + m.x677*m.x2520 + m.x1302*m.x2526 + m.x1927*m.x2532 <= 8) m.c1321 = Constraint(expr=m.x53*m.x2514 + m.x678*m.x2520 + m.x1303*m.x2526 + m.x1928*m.x2532 <= 8) m.c1322 = Constraint(expr=m.x54*m.x2514 + m.x679*m.x2520 + m.x1304*m.x2526 + m.x1929*m.x2532 <= 8) m.c1323 = Constraint(expr=m.x55*m.x2514 + m.x680*m.x2520 + m.x1305*m.x2526 + m.x1930*m.x2532 <= 8) m.c1324 = Constraint(expr=m.x56*m.x2514 + m.x681*m.x2520 + m.x1306*m.x2526 + m.x1931*m.x2532 <= 8) m.c1325 = Constraint(expr=m.x57*m.x2514 + m.x682*m.x2520 + m.x1307*m.x2526 + m.x1932*m.x2532 <= 8) m.c1326 = Constraint(expr=m.x58*m.x2514 + m.x683*m.x2520 + m.x1308*m.x2526 + m.x1933*m.x2532 <= 8) m.c1327 = Constraint(expr=m.x59*m.x2514 + m.x684*m.x2520 + m.x1309*m.x2526 + m.x1934*m.x2532 <= 8) m.c1328 = Constraint(expr=m.x60*m.x2514 + m.x685*m.x2520 + m.x1310*m.x2526 + m.x1935*m.x2532 <= 8) m.c1329 = Constraint(expr=m.x61*m.x2514 + m.x686*m.x2520 + m.x1311*m.x2526 + m.x1936*m.x2532 <= 8) m.c1330 = Constraint(expr=m.x62*m.x2514 + m.x687*m.x2520 + m.x1312*m.x2526 + m.x1937*m.x2532 <= 8) m.c1331 = Constraint(expr=m.x63*m.x2514 + m.x688*m.x2520 + m.x1313*m.x2526 + m.x1938*m.x2532 <= 8) m.c1332 = Constraint(expr=m.x64*m.x2514 + m.x689*m.x2520 + m.x1314*m.x2526 + m.x1939*m.x2532 <= 8) m.c1333 = Constraint(expr=m.x65*m.x2514 + m.x690*m.x2520 + m.x1315*m.x2526 + m.x1940*m.x2532 <= 8) m.c1334 = Constraint(expr=m.x66*m.x2514 + m.x691*m.x2520 + m.x1316*m.x2526 + m.x1941*m.x2532 <= 8) m.c1335 = Constraint(expr=m.x67*m.x2514 + m.x692*m.x2520 + m.x1317*m.x2526 + m.x1942*m.x2532 <= 8) m.c1336 = Constraint(expr=m.x68*m.x2514 + m.x693*m.x2520 + m.x1318*m.x2526 + m.x1943*m.x2532 <= 8) m.c1337 = Constraint(expr=m.x69*m.x2514 + m.x694*m.x2520 + m.x1319*m.x2526 + m.x1944*m.x2532 <= 8) m.c1338 = Constraint(expr=m.x70*m.x2514 + m.x695*m.x2520 + m.x1320*m.x2526 + m.x1945*m.x2532 <= 8) m.c1339 = Constraint(expr=m.x71*m.x2514 + m.x696*m.x2520 + m.x1321*m.x2526 + m.x1946*m.x2532 <= 8) m.c1340 = Constraint(expr=m.x72*m.x2514 + m.x697*m.x2520 + m.x1322*m.x2526 + m.x1947*m.x2532 <= 8) m.c1341 = Constraint(expr=m.x73*m.x2514 + m.x698*m.x2520 + m.x1323*m.x2526 + m.x1948*m.x2532 <= 8) m.c1342 = Constraint(expr=m.x74*m.x2514 + m.x699*m.x2520 + m.x1324*m.x2526 + m.x1949*m.x2532 <= 8) m.c1343 = Constraint(expr=m.x75*m.x2514 + m.x700*m.x2520 + m.x1325*m.x2526 + m.x1950*m.x2532 <= 8) m.c1344 = Constraint(expr=m.x76*m.x2514 + m.x701*m.x2520 + m.x1326*m.x2526 + m.x1951*m.x2532 <= 8) m.c1345 = Constraint(expr=m.x77*m.x2514 + m.x702*m.x2520 + m.x1327*m.x2526 + m.x1952*m.x2532 <= 8) m.c1346 = Constraint(expr=m.x78*m.x2514 + m.x703*m.x2520 + m.x1328*m.x2526 + m.x1953*m.x2532 <= 8) m.c1347 = Constraint(expr=m.x79*m.x2514 + m.x704*m.x2520 + m.x1329*m.x2526 + m.x1954*m.x2532 <= 8) m.c1348 = Constraint(expr=m.x80*m.x2514 + m.x705*m.x2520 + m.x1330*m.x2526 + m.x1955*m.x2532 <= 8) m.c1349 = Constraint(expr=m.x81*m.x2514 + m.x706*m.x2520 + m.x1331*m.x2526 + m.x1956*m.x2532 <= 8) m.c1350 = Constraint(expr=m.x82*m.x2514 + m.x707*m.x2520 + m.x1332*m.x2526 + m.x1957*m.x2532 <= 8) m.c1351 = Constraint(expr=m.x83*m.x2514 + m.x708*m.x2520 + m.x1333*m.x2526 + m.x1958*m.x2532 <= 8) m.c1352 = Constraint(expr=m.x84*m.x2514 + m.x709*m.x2520 + m.x1334*m.x2526 + m.x1959*m.x2532 <= 8) m.c1353 = Constraint(expr=m.x85*m.x2514 + m.x710*m.x2520 + m.x1335*m.x2526 + m.x1960*m.x2532 <= 8) m.c1354 = Constraint(expr=m.x86*m.x2514 + m.x711*m.x2520 + m.x1336*m.x2526 + m.x1961*m.x2532 <= 8) m.c1355 = Constraint(expr=m.x87*m.x2514 + m.x712*m.x2520 + m.x1337*m.x2526 + m.x1962*m.x2532 <= 8) m.c1356 = Constraint(expr=m.x88*m.x2514 + m.x713*m.x2520 + m.x1338*m.x2526 + m.x1963*m.x2532 <= 8) m.c1357 = Constraint(expr=m.x89*m.x2514 + m.x714*m.x2520 + m.x1339*m.x2526 + m.x1964*m.x2532 <= 8) m.c1358 = Constraint(expr=m.x90*m.x2514 + m.x715*m.x2520 + m.x1340*m.x2526 + m.x1965*m.x2532 <= 8) m.c1359 = Constraint(expr=m.x91*m.x2514 + m.x716*m.x2520 + m.x1341*m.x2526 + m.x1966*m.x2532 <= 8) m.c1360 = Constraint(expr=m.x92*m.x2514 + m.x717*m.x2520 + m.x1342*m.x2526 + m.x1967*m.x2532 <= 8) m.c1361 = Constraint(expr=m.x93*m.x2514 + m.x718*m.x2520 + m.x1343*m.x2526 + m.x1968*m.x2532 <= 8) m.c1362 = Constraint(expr=m.x94*m.x2514 + m.x719*m.x2520 + m.x1344*m.x2526 + m.x1969*m.x2532 <= 8) m.c1363 = Constraint(expr=m.x95*m.x2514 + m.x720*m.x2520 + m.x1345*m.x2526 + m.x1970*m.x2532 <= 8) m.c1364 = Constraint(expr=m.x96*m.x2514 + m.x721*m.x2520 + m.x1346*m.x2526 + m.x1971*m.x2532 <= 8) m.c1365 = Constraint(expr=m.x97*m.x2514 + m.x722*m.x2520 + m.x1347*m.x2526 + m.x1972*m.x2532 <= 8) m.c1366 = Constraint(expr=m.x98*m.x2514 + m.x723*m.x2520 + m.x1348*m.x2526 + m.x1973*m.x2532 <= 8) m.c1367 = Constraint(expr=m.x99*m.x2514 + m.x724*m.x2520 + m.x1349*m.x2526 + m.x1974*m.x2532 <= 8) m.c1368 = Constraint(expr=m.x100*m.x2514 + m.x725*m.x2520 + m.x1350*m.x2526 + m.x1975*m.x2532 <= 8) m.c1369 = Constraint(expr=m.x101*m.x2514 + m.x726*m.x2520 + m.x1351*m.x2526 + m.x1976*m.x2532 <= 8) m.c1370 = Constraint(expr=m.x102*m.x2514 + m.x727*m.x2520 + m.x1352*m.x2526 + m.x1977*m.x2532 <= 8) m.c1371 = Constraint(expr=m.x103*m.x2514 + m.x728*m.x2520 + m.x1353*m.x2526 + m.x1978*m.x2532 <= 8) m.c1372 = Constraint(expr=m.x104*m.x2514 + m.x729*m.x2520 + m.x1354*m.x2526 + m.x1979*m.x2532 <= 8) m.c1373 = Constraint(expr=m.x105*m.x2514 + m.x730*m.x2520 + m.x1355*m.x2526 + m.x1980*m.x2532 <= 8) m.c1374 = Constraint(expr=m.x106*m.x2514 + m.x731*m.x2520 + m.x1356*m.x2526 + m.x1981*m.x2532 <= 8) m.c1375 = Constraint(expr=m.x107*m.x2514 + m.x732*m.x2520 + m.x1357*m.x2526 + m.x1982*m.x2532 <= 8) m.c1376 = Constraint(expr=m.x108*m.x2514 + m.x733*m.x2520 + m.x1358*m.x2526 + m.x1983*m.x2532 <= 8) m.c1377 = Constraint(expr=m.x109*m.x2514 + m.x734*m.x2520 + m.x1359*m.x2526 + m.x1984*m.x2532 <= 8) m.c1378 = Constraint(expr=m.x110*m.x2514 + m.x735*m.x2520 + m.x1360*m.x2526 + m.x1985*m.x2532 <= 8) m.c1379 = Constraint(expr=m.x111*m.x2514 + m.x736*m.x2520 + m.x1361*m.x2526 + m.x1986*m.x2532 <= 8) m.c1380 = Constraint(expr=m.x112*m.x2514 + m.x737*m.x2520 + m.x1362*m.x2526 + m.x1987*m.x2532 <= 8) m.c1381 = Constraint(expr=m.x113*m.x2514 + m.x738*m.x2520 + m.x1363*m.x2526 + m.x1988*m.x2532 <= 8) m.c1382 = Constraint(expr=m.x114*m.x2514 + m.x739*m.x2520 + m.x1364*m.x2526 + m.x1989*m.x2532 <= 8) m.c1383 = Constraint(expr=m.x115*m.x2514 + m.x740*m.x2520 + m.x1365*m.x2526 + m.x1990*m.x2532 <= 8) m.c1384 = Constraint(expr=m.x116*m.x2514 + m.x741*m.x2520 + m.x1366*m.x2526 + m.x1991*m.x2532 <= 8) m.c1385 = Constraint(expr=m.x117*m.x2514 + m.x742*m.x2520 + m.x1367*m.x2526 + m.x1992*m.x2532 <= 8) m.c1386 = Constraint(expr=m.x118*m.x2514 + m.x743*m.x2520 + m.x1368*m.x2526 + m.x1993*m.x2532 <= 8) m.c1387 = Constraint(expr=m.x119*m.x2514 + m.x744*m.x2520 + m.x1369*m.x2526 + m.x1994*m.x2532 <= 8) m.c1388 = Constraint(expr=m.x120*m.x2514 + m.x745*m.x2520 + m.x1370*m.x2526 + m.x1995*m.x2532 <= 8) m.c1389 = Constraint(expr=m.x121*m.x2514 + m.x746*m.x2520 + m.x1371*m.x2526 + m.x1996*m.x2532 <= 8) m.c1390 = Constraint(expr=m.x122*m.x2514 + m.x747*m.x2520 + m.x1372*m.x2526 + m.x1997*m.x2532 <= 8) m.c1391 = Constraint(expr=m.x123*m.x2514 + m.x748*m.x2520 + m.x1373*m.x2526 + m.x1998*m.x2532 <= 8) m.c1392 = Constraint(expr=m.x124*m.x2514 + m.x749*m.x2520 + m.x1374*m.x2526 + m.x1999*m.x2532 <= 8) m.c1393 = Constraint(expr=m.x125*m.x2514 + m.x750*m.x2520 + m.x1375*m.x2526 + m.x2000*m.x2532 <= 8) m.c1394 = Constraint(expr=m.x126*m.x2514 + m.x751*m.x2520 + m.x1376*m.x2526 + m.x2001*m.x2532 <= 8) m.c1395 = Constraint(expr=m.x127*m.x2514 + m.x752*m.x2520 + m.x1377*m.x2526 + m.x2002*m.x2532 <= 8) m.c1396 = Constraint(expr=m.x128*m.x2514 + m.x753*m.x2520 + m.x1378*m.x2526 + m.x2003*m.x2532 <= 8) m.c1397 = Constraint(expr=m.x129*m.x2514 + m.x754*m.x2520 + m.x1379*m.x2526 + m.x2004*m.x2532 <= 8) m.c1398 = Constraint(expr=m.x130*m.x2514 + m.x755*m.x2520 + m.x1380*m.x2526 + m.x2005*m.x2532 <= 8) m.c1399 = Constraint(expr=m.x131*m.x2514 + m.x756*m.x2520 + m.x1381*m.x2526 + m.x2006*m.x2532 <= 8) m.c1400 = Constraint(expr=m.x132*m.x2514 + m.x757*m.x2520 + m.x1382*m.x2526 + m.x2007*m.x2532 <= 8) m.c1401 = Constraint(expr=m.x133*m.x2514 + m.x758*m.x2520 + m.x1383*m.x2526 + m.x2008*m.x2532 <= 8) m.c1402 = Constraint(expr=m.x134*m.x2514 + m.x759*m.x2520 + m.x1384*m.x2526 + m.x2009*m.x2532 <= 8) m.c1403 = Constraint(expr=m.x135*m.x2514 + m.x760*m.x2520 + m.x1385*m.x2526 + m.x2010*m.x2532 <= 8) m.c1404 = Constraint(expr=m.x136*m.x2514 + m.x761*m.x2520 + m.x1386*m.x2526 + m.x2011*m.x2532 <= 8) m.c1405 = Constraint(expr=m.x137*m.x2514 + m.x762*m.x2520 + m.x1387*m.x2526 + m.x2012*m.x2532 <= 8) m.c1406 = Constraint(expr=m.x138*m.x2514 + m.x763*m.x2520 + m.x1388*m.x2526 + m.x2013*m.x2532 <= 8) m.c1407 = Constraint(expr=m.x139*m.x2514 + m.x764*m.x2520 + m.x1389*m.x2526 + m.x2014*m.x2532 <= 8) m.c1408 = Constraint(expr=m.x140*m.x2514 + m.x765*m.x2520 + m.x1390*m.x2526 + m.x2015*m.x2532 <= 8) m.c1409 = Constraint(expr=m.x141*m.x2514 + m.x766*m.x2520 + m.x1391*m.x2526 + m.x2016*m.x2532 <= 8) m.c1410 = Constraint(expr=m.x142*m.x2514 + m.x767*m.x2520 + m.x1392*m.x2526 + m.x2017*m.x2532 <= 8) m.c1411 = Constraint(expr=m.x143*m.x2514 + m.x768*m.x2520 + m.x1393*m.x2526 + m.x2018*m.x2532 <= 8) m.c1412 = Constraint(expr=m.x144*m.x2514 + m.x769*m.x2520 + m.x1394*m.x2526 + m.x2019*m.x2532 <= 8) m.c1413 = Constraint(expr=m.x145*m.x2514 + m.x770*m.x2520 + m.x1395*m.x2526 + m.x2020*m.x2532 <= 8) m.c1414 = Constraint(expr=m.x146*m.x2514 + m.x771*m.x2520 + m.x1396*m.x2526 + m.x2021*m.x2532 <= 8) m.c1415 = Constraint(expr=m.x147*m.x2514 + m.x772*m.x2520 + m.x1397*m.x2526 + m.x2022*m.x2532 <= 8) m.c1416 = Constraint(expr=m.x148*m.x2514 + m.x773*m.x2520 + m.x1398*m.x2526 + m.x2023*m.x2532 <= 8) m.c1417 = Constraint(expr=m.x149*m.x2514 + m.x774*m.x2520 + m.x1399*m.x2526 + m.x2024*m.x2532 <= 8) m.c1418 = Constraint(expr=m.x150*m.x2514 + m.x775*m.x2520 + m.x1400*m.x2526 + m.x2025*m.x2532 <= 8) m.c1419 = Constraint(expr=m.x151*m.x2514 + m.x776*m.x2520 + m.x1401*m.x2526 + m.x2026*m.x2532 <= 8) m.c1420 = Constraint(expr=m.x152*m.x2514 + m.x777*m.x2520 + m.x1402*m.x2526 + m.x2027*m.x2532 <= 8) m.c1421 = Constraint(expr=m.x153*m.x2514 + m.x778*m.x2520 + m.x1403*m.x2526 + m.x2028*m.x2532 <= 8) m.c1422 = Constraint(expr=m.x154*m.x2514 + m.x779*m.x2520 + m.x1404*m.x2526 + m.x2029*m.x2532 <= 8) m.c1423 = Constraint(expr=m.x155*m.x2514 + m.x780*m.x2520 + m.x1405*m.x2526 + m.x2030*m.x2532 <= 8) m.c1424 =
0.1 or endBall.yPosition > maxFieldCorner + 0.1): emit = True else: # Check lower left corner if (endBall.xPosition < 0 and endBall.xPosition > -2 and endBall.yPosition > -2 and endBall.yPosition < 0): emit = False # Check upper left corner elif (endBall.xPosition < 0 and endBall.xPosition > -2 and endBall.yPosition < maxFieldCorner+2 and endBall.yPosition > maxFieldCorner): emit = False # Check lower right corner elif (endBall.xPosition > maxFieldLine and endBall.xPosition < maxFieldLine+2 and endBall.yPosition > -2 and endBall.yPosition < 0): emit = False # Check upper right corner elif (endBall.xPosition > maxFieldLine and endBall.xPosition < maxFieldLine+2 and endBall.yPosition < maxFieldCorner+2 and endBall.yPosition > maxFieldCorner): emit = False # the ball is off the pitch but at the doors (behind the door mirror) elif (startBall.xPosition < 0 or startBall.xPosition > maxFieldLine) and (startBall.yPosition > minGoalLimit and startBall.yPosition < maxGoalLimit): if (endBall.xPosition <-5 or endBall.xPosition > maxFieldLine +5): emit = True if emit == True: ballOutFrame = int(startBall.timestamp + self.windowSize) # print("Emitting BallOut at frame", str(ballOutFrame)) # Check that the BallOut is not after a special event # that is, an offside, a foul, or a penalty # For each list of events for lst in self.specialEvents: for event in lst: #frame BallOut -> 28951 #frame Penalty -> 28928 # Check that the BallOut moment is after "event" # within a certain range (the observation range) frame = event[0] #print("Checking Offside... Frame", str(frame)) # Il frame corrente (index) è successivo al momento di evento speciale if ballOutFrame >= frame: # print("Offside at frame", str(frame), "\tBallOut at frame", str(ballOutFrame)) if (ballOutFrame - frame) <= self.windowSize + 100: print("Canceling BallOut at frame", str(ballOutFrame)) emit = False index += self.stride return [None, int(index)] output = self._setEvent(startBall, index, startBall) index += self.stride return [output, int(index)] else: return [None, int(index)] def _fieldLimit(self): """ Extracts the headland position, to be modified if different reference systems are decided () """ return [0, self.xDimension] def _fieldCorner(self): """ Extracts the position of the sides of the field, to be modified if different reference systems are decided () """ return [0, self.yDimension] def _goalLimit(self): return [self.yDimension/2 - 3.75, 3.75 + self.yDimension/2] def _setEvent(self,data,index,player): # Da questo momento il player è inteso come palla return [{'event': 'BallOut', 'timestamp': player.timestamp + self.windowSize}] #'x': player.xPosition, #'y': player.yPosition} def _initialize(self, list): self.windowSize = list[0] class GoalEvent(GenericEvent): "Class that defines the event detector for the goal" def __init__(self, file, xDimension, yDimension): """ :param file: File containing a list of initialization parameters for the module """ self.name = "Goal" self.version = "1.0" if not(file is None): self._readFromFile(file) #print('Event: {}\nVersion: {}\nWindow: {}\n'.format(self.name, self.version, self.windowSize)) self.xDimension = xDimension self.yDimension = yDimension def recognize(self, data, index): """ Function that identifies whether the ball has entered the goal area         : param data: Compact dataset with positional data and features         : param index: Index from which the window starts         : return: A dictionary with the recognized event, None in case nothing has been recognized """ minFieldLine, maxFieldLine = self._fieldLimit() minGoalLimit, maxGoalLimit = self._goalLimit() startBall = data[index].get('ball') for i in range(int(self.windowSize)) : if (index + i) >= len(data) : return [None, index] ball = data[index + i].get('ball') if (minFieldLine < ball.xPosition) and (ball.xPosition < maxFieldLine): return [None, index] elif (ball.yPosition < minGoalLimit - 1) or (ball.yPosition > maxGoalLimit + 1): return [None, index] elif (ball.xPosition < minFieldLine - 5) or (ball.xPosition > maxFieldLine + 5): return [None, index] i += 1 output = self._setEvent(startBall, index, startBall) if output != None: index += i return [output, int(index)] def _fieldLimit(self): """ Extracts the headland position, to be modified if different reference systems are decided () """ return [0, self.xDimension] def _goalLimit(self): return [self.yDimension/2 - 3.75, 3.75 + self.yDimension/2] def _setEvent(self,data,index,player): return [{'event': 'Goal', 'timestamp': player.timestamp + math.floor(self.windowSize/2)}] #'x': player.xPosition, #'y': player.yPosition} def _initialize(self, list): self.windowSize = list[0] # DATA STORING class XML(): @staticmethod def createEventXML(eventList, filename): """ Create an xml file from a list of dictionaries containing events         : param data: Data structure from which to create the JSON file         : param filename: String with the path to the JSON file         : Return: """ id = 0 annotations = ET.Element('annotations') for event in eventList: track = ET.SubElement(annotations, 'track') track.attrib['id'] = str(int(id)) track.attrib['label'] = event['event'] box = ET.SubElement(track, 'box') box.attrib['frame'] = str(int(event['timestamp'])) box.attrib['keyframe'] = '1' box.attrib['occluded'] = '0' box.attrib['outside'] = '0' box.attrib['xbr'] = '10' box.attrib['xtl'] = '100' box.attrib['ybr'] = '10' box.attrib['ytl'] = '100' for attributeName in event: if ((attributeName != 'event') and (attributeName != 'timestamp')): attribute = ET.SubElement(box, 'attribute') attribute.attrib['name'] = attributeName attribute.text = str(event[attributeName]) id = id + 1 #tree = ET.ElementTree(annotations) xml = DOM.parseString(ET.tostring(annotations)) with open(filename, 'w') as f: f.write(xml.toprettyxml()) @staticmethod def getHalfTimeFrame(filename): "Extract second half start frame from Annotations_Atomic_Manual.xml" result = 54000000 tree = ET.parse(filename) annotations = tree.getroot() if (annotations.tag != 'annotations'): raise Exception('No /annotations found in XML') else: for track in annotations: if (track.tag == 'track'): if (track.attrib.get('id') is None): raise Exception('No attribute "id" in /track') elif (int(track.attrib['id']) == 0): if (track.attrib.get('label') is None): raise Exception('No attribute "label" in /track') elif(track.attrib['label'] != 'SecondHalf'): raise Exception('This track has an id = 0 but is not a second half!') else: box = track[0] if (box.tag != 'box'): raise Exception('No /box found in /track') else: if (box.attrib.get('frame') is None): raise Exception('No attribute "frame" in /box') else: result = int(box.attrib['frame']) return result @staticmethod def getGoalkeepersId(filename): results = [] tree = ET.parse(filename) annotations = tree.getroot() if (annotations.tag != 'annotations'): raise Exception('No /annotations found in XML') else: for track in annotations: if (track.tag == 'track'): if (track.attrib.get('id') is None): raise Exception('No attribute "id" in /track') elif (int(track.attrib['id']) == -1): if (track.attrib.get('label') is None): raise Exception('No attribute "label" in /track') elif(track.attrib['label'] != 'GoalKeeper'): raise Exception('This track has not goalkeepers!') else: box = track[0] if (box.tag != 'box'): raise Exception('No /box found in /track') else: for attribute in box: if (attribute.attrib['name'] == 'goalKeeperId'): results.append(attribute.text) return results[0], int(results[1]) + PLAYERVALUE @staticmethod def getSpecialEvents(filename): "Extract frames for goals, fouls and punishments from Annotations_Atomic_Manual.xml" offsides = [] fouls = [] penalties = [] tree = ET.parse(filename) annotations = tree.getroot() if (annotations.tag != 'annotations'): raise Exception('No /annotations found in XML') else: for track in annotations: if (track.tag == 'track'): if (track.attrib.get('id') is None): raise Exception('No attribute "id" in /track') elif (int(track.attrib['id']) > 0): if (track.attrib.get('label') is None): raise Exception('No attribute "label" in /track') else: actualList = None if(track.attrib['label'] == 'Offside'): actualList = offsides elif(track.attrib['label'] == 'Penalty'): actualList = penalties elif(track.attrib['label'] == 'Foul'): actualList = fouls else: continue box = track[0] if (box.tag != 'box'): raise Exception('No /box found in /track') else: if (box.attrib.get('frame') is None): raise Exception('No attribute "frame" in /box') else: if (len(box) <= 0): raise Exception('No sub attributes in /box') currentEvent = [int(box.attrib['frame'])] for attribute in box: if (attribute.tag != 'attribute') or (attribute.attrib.get('name' is None)): raise Exception('Malformed sub attributes in /box') else: currentEvent.append(attribute.text) actualList.append(currentEvent) return [offsides, fouls, penalties] @staticmethod def getRefereeEvents(filename): "Estrae i frame per goal, falli e punizioni da Annotations_Atomic_Manual.xml" goals = [] fouls = [] penalties = [] tree = ET.parse(filename) annotations = tree.getroot() if (annotations.tag != 'annotations'): raise Exception('No /annotations found in XML') else: for track in annotations: if (track.tag == 'track'): if (track.attrib.get('id') is None): raise Exception('No attribute "id" in /track') elif (int(track.attrib['id']) > 0): if (track.attrib.get('label') is None): raise Exception('No attribute "label" in /track') else: actualList = None if(track.attrib['label'] == 'Goal'): actualList = goals elif(track.attrib['label'] == 'Penalty'): actualList = penalties elif(track.attrib['label'] == 'Foul'): actualList = fouls else: continue box = track[0] if (box.tag != 'box'): raise Exception('No /box found in /track') else: if (box.attrib.get('frame') is None): raise Exception('No attribute "frame" in /box') else: if (len(box) <= 0): raise Exception('No sub attributes in /box') currentEvent = [int(box.attrib['frame'])] for attribute in box: if (attribute.tag != 'attribute') or (attribute.attrib.get('name' is None)): raise Exception('Malformed sub attributes in /box') else: currentEvent.append(attribute.text) actualList.append(currentEvent) return [goals, fouls, penalties] #detector class Detector(): "Class that performs the
933, 899, 736, 195, 147, 366, 181, 973, 59, 873, 379], [161, 879, 580, 471, 865, 871, 542, 206, 816, 807, 436, 387, 893, 970, 145], [367, 686, 933, 883, 434, 565, 652, 528, 199, 346, 378, 377, 911, 746, 288], [844, 843, 849, 486, 101, 957, 940, 223, 930, 113, 359, 782, 652, 783, 559], [56, 652, 242, 424, 531, 187, 16, 752, 168, 603, 702, 435, 237, 814, 398], [10, 230, 815, 547, 434, 244, 56, 947, 758, 155, 407, 213, 366, 418, 518], [438, 950, 214, 575, 809, 811, 370, 916, 57, 964, 918, 461, 428, 971, 456], [190, 751, 7, 549, 101, 648, 636, 735, 371, 122, 316, 848, 463, 552, 41], [82, 332, 595, 889, 290, 652, 211, 874, 249, 740, 352, 870, 517, 810, 422], [248, 681, 64, 600, 6, 399, 108, 991, 123, 413, 862, 309, 28, 957, 861], [603, 104, 908, 12, 827, 54, 796, 166, 701, 933, 180, 308, 604, 374, 950], [495, 877, 743, 460, 546, 160, 966, 712, 708, 606, 52, 445, 957, 762, 950], [39, 185, 527, 228, 972, 273, 584, 336, 352, 376, 681, 554, 34, 322, 125]]), [686, 345, 940, 678, 562, 159, 206, 990, 927, 298, 539, 662, 265, 951, 400, 720, 379, 145, 288, 559, 398, 518, 456, 41, 422, 861, 950, 950, 125, 322, 34, 554, 681, 376, 352, 336, 584, 273, 972, 228, 527, 185, 39, 495, 603, 248, 82, 190, 438, 10, 56, 844, 367, 161, 116, 528, 940, 929, 898, 770, 67, 357, 491, 61, 867, 425, 746, 957, 613, 873, 970, 746, 783, 814, 418, 971, 552, 810, 957, 374, 762, 957, 445, 52, 606, 708, 712, 966, 160, 546, 460, 743, 877, 104, 681, 332, 751, 950, 230, 652, 843, 686, 879, 943, 331, 211, 933, 899, 736, 195, 147, 366, 181, 973, 59, 893, 911, 652, 237, 366, 428, 463, 517, 28, 604, 308, 180, 933, 701, 166, 796, 54, 827, 12, 908, 64, 595, 7, 214, 815, 242, 849, 933, 580, 471, 865, 871, 542, 206, 816, 807, 436, 387, 377, 782, 435, 213, 461, 848, 870, 309, 862, 413, 123, 991, 108, 399, 6, 600, 889, 549, 575, 547, 424, 486, 883, 434, 565, 652, 528, 199, 346, 378, 359, 702, 407, 918, 316, 352, 740, 249, 874, 211, 652, 290, 101, 809, 434, 531, 101, 957, 940, 223, 930, 113, 603, 155, 964, 122, 371, 735, 636, 648, 811, 244, 187, 16, 752, 168, 758, 57, 916, 370, 56, 947]) def test_snail_040(self): self.assertEqual(snail([[234, 459, 8, 740, 18, 612, 971, 482, 105, 70], [725, 582, 552, 166, 909, 83, 323, 842, 901, 479], [139, 880, 685, 560, 197, 820, 458, 261, 491, 930], [917, 677, 674, 610, 470, 744, 893, 604, 310, 818], [826, 470, 627, 391, 222, 544, 687, 939, 544, 952], [68, 614, 803, 517, 852, 251, 87, 88, 838, 229], [269, 848, 520, 498, 486, 567, 575, 779, 706, 74], [567, 438, 209, 639, 573, 640, 885, 830, 665, 130], [183, 483, 877, 703, 75, 515, 323, 482, 901, 562], [426, 570, 572, 144, 924, 285, 48, 976, 282, 802]]), [234, 459, 8, 740, 18, 612, 971, 482, 105, 70, 479, 930, 818, 952, 229, 74, 130, 562, 802, 282, 976, 48, 285, 924, 144, 572, 570, 426, 183, 567, 269, 68, 826, 917, 139, 725, 582, 552, 166, 909, 83, 323, 842, 901, 491, 310, 544, 838, 706, 665, 901, 482, 323, 515, 75, 703, 877, 483, 438, 848, 614, 470, 677, 880, 685, 560, 197, 820, 458, 261, 604, 939, 88, 779, 830, 885, 640, 573, 639, 209, 520, 803, 627, 674, 610, 470, 744, 893, 687, 87, 575, 567, 486, 498, 517, 391, 222, 544, 251, 852]) def test_snail_041(self): self.assertEqual(snail( [[966, 770, 415, 443, 591], [733, 239, 637, 938, 246], [567, 292, 816, 631, 702], [315, 312, 771, 408, 474], [275, 740, 146, 719, 961]]), [966, 770, 415, 443, 591, 246, 702, 474, 961, 719, 146, 740, 275, 315, 567, 733, 239, 637, 938, 631, 408, 771, 312, 292, 816]) def test_snail_042(self): self.assertEqual(snail([[928, 128, 90, 593, 147, 757, 325, 206, 400, 949, 633, 558, 879], [190, 99, 708, 968, 665, 847, 159, 388, 584, 547, 469, 788, 586], [684, 65, 832, 834, 651, 891, 458, 712, 596, 377, 465, 789, 44], [653, 136, 125, 990, 21, 351, 405, 771, 910, 922, 213, 998, 75], [165, 220, 334, 367, 603, 930, 821, 232, 624, 209, 353, 156, 271], [437, 145, 802, 747, 716, 565, 784, 364, 524, 475, 283, 81, 501], [821, 590, 652, 948, 704, 922, 334, 102, 905, 13, 335, 462, 425], [118, 633, 924, 637, 123, 245, 432, 807, 579, 480, 828, 79, 942], [805, 592, 718, 356, 790, 549, 125, 844, 691, 71, 835, 150, 747], [87, 541, 24, 922, 952, 881, 463, 192, 319, 765, 771, 368, 432], [149, 859, 949, 368, 342, 942, 337, 598, 490, 889, 50, 794, 786], [868, 167, 392, 93, 126, 521, 922, 941, 210, 170, 982, 94, 43], [583, 931, 24, 750, 990, 453, 518, 9, 657, 789, 678, 676, 756]]), [928, 128, 90, 593, 147, 757, 325, 206, 400, 949, 633, 558, 879, 586, 44, 75, 271, 501, 425, 942, 747, 432, 786, 43, 756, 676, 678, 789, 657, 9, 518, 453, 990, 750, 24, 931, 583, 868, 149, 87, 805, 118, 821, 437, 165, 653, 684, 190, 99, 708, 968, 665, 847, 159, 388, 584, 547, 469, 788, 789, 998, 156, 81, 462, 79, 150, 368, 794, 94, 982, 170, 210, 941, 922, 521, 126, 93, 392, 167, 859, 541, 592, 633, 590, 145, 220, 136, 65, 832, 834, 651, 891, 458, 712, 596, 377, 465, 213, 353, 283, 335, 828, 835, 771, 50, 889, 490, 598, 337, 942, 342, 368, 949, 24, 718, 924, 652, 802, 334, 125, 990, 21, 351, 405, 771, 910, 922, 209, 475, 13, 480, 71, 765, 319, 192, 463, 881, 952, 922, 356, 637, 948, 747, 367, 603, 930, 821, 232, 624, 524, 905, 579, 691, 844, 125, 549, 790, 123, 704, 716, 565, 784, 364, 102, 807, 432, 245, 922, 334]) def test_snail_043(self): self.assertEqual(snail( [[87, 462, 110, 33, 41, 613, 234, 971, 424, 490, 399], [489, 50, 350, 304, 182, 24, 614, 707, 935, 678, 706], [363, 94, 140, 854, 757, 467, 369, 903, 629, 342, 144], [838, 301, 145, 18, 841, 484, 374, 723, 136, 333, 757], [316, 713, 514, 19, 847, 337, 830, 358, 313, 138, 270], [869, 803, 76, 126, 424, 80, 383, 117, 180, 519, 534], [663, 709, 774, 866, 180, 59, 780, 653, 290, 958, 920], [931, 926, 174, 65, 301, 51, 255, 19, 439, 910, 474], [229, 84, 159, 158, 470, 597, 842, 83, 794, 285, 20], [248, 938, 591, 246, 529, 506, 869, 146, 600, 738, 931], [391, 267, 55, 182, 281, 344, 431, 338, 792, 443, 687]]), [87, 462, 110, 33, 41, 613, 234, 971, 424, 490, 399, 706, 144, 757, 270, 534, 920, 474, 20, 931, 687, 443, 792, 338, 431, 344, 281, 182, 55, 267, 391, 248, 229, 931, 663, 869, 316, 838, 363, 489, 50, 350, 304, 182, 24, 614, 707, 935, 678, 342, 333, 138, 519, 958, 910, 285, 738, 600, 146, 869, 506, 529, 246, 591, 938, 84, 926, 709, 803, 713, 301, 94, 140, 854, 757, 467, 369, 903, 629, 136, 313, 180, 290, 439, 794, 83, 842, 597, 470, 158, 159, 174, 774, 76, 514, 145, 18, 841, 484, 374, 723, 358, 117, 653, 19, 255, 51, 301, 65, 866, 126, 19, 847, 337, 830, 383, 780, 59, 180, 424, 80]) def test_snail_044(self): self.assertEqual(snail( [[64, 644, 694, 5, 163, 760, 568, 84, 67, 517, 872], [933, 412, 172, 162, 97,
A SPECIFIC VALUE. THIS HAS IMMEDIATE EFFECT AND DO NOT FADE THE SOUND AFFECT ALL SOUNDS WITH OR WITHOUT PANNING EFFECT. PANNING SOUND EFFECT WILL BE CONSERVED AFTER ADJUSTING THE VOLUME :param volume_: float; volume value, default is 1.0 :return : None """ # SET THE VOLUME IN CASE OF AN INPUT ERROR if 0.0 >= volume_ >= 1.0: volume_ = 1.0 objs = self.snd_obj i = 0 # SET THE VOLUME FOR ALL SOUNDS for channel in self.channels: try: single_obj = objs[i] except IndexError as e: raise IndexError("\n %s " % e) if single_obj is not None: # WITH PANNING if hasattr(single_obj, "pos") and single_obj.pos is not None: if hasattr(channel, "set_volume"): # Calculate the sound panning, left & right volume values left, right = self.stereo_panning(single_obj.pos, self.screen_size.w) left *= volume_ right *= volume_ channel.set_volume(left, right) # WITHOUT PANNING else: if single_obj is not None: if hasattr(single_obj.sound, "set_volume"): single_obj.sound.set_volume(volume_) i += 1 def pause_sound(self, name_: str = None, id_=None) -> None: """ PAUSE A SINGLE SOUND FROM THE MIXER (AT LEAST ONE SEARCH ELEMENT HAS TO BE PROVIDED NAME OR ID) :param name_ : string | None; Given sound name (name given at the time eof the SoundObject construction) :param id_ : int | None; Default None. ID number such as object_id_ = id(sound_). :return : None """ if name_ is None and id_ is None: raise ValueError("\nInvalid function call, at least one argument must be set!") # search by name take precedence (if name value is not undefined) if name_ is not None: id_ = None objs = self.snd_obj i = 0 # SET THE VOLUME FOR ALL SOUNDS for channel in self.channels: if hasattr(channel, "pause"): try: single_obj = objs[i] except IndexError as e: raise IndexError("\n %s " % e) if single_obj is not None: # search by name if name_ is not None: if single_obj.name == name_: channel.pause() # search by id_ elif id_ is not None: if single_obj.obj_id == id_: channel.pause() i += 1 ... def pause_sounds(self) -> None: """ PAUSE ALL SOUND OBJECTS (THIS HAS IMMEDIATE EFFECT) :return : None """ objs = self.snd_obj i = 0 # SET THE VOLUME FOR ALL SOUNDS for channel in self.channels: try: single_obj = objs[i] except IndexError as e: raise IndexError("\n %s " % e) if single_obj is not None: if hasattr(channel, "pause"): channel.pause() i += 1 def unpause_sounds(self) -> None: """ UNPAUSE ALL SOUND OBJECTS (THIS HAS IMMEDIATE EFFECT) :return : None """ objs = self.snd_obj i = 0 for channel in self.channels: try: single_obj = objs[i] except IndexError as e: raise IndexError("\n %s " % e) if single_obj is not None: if hasattr(channel, "unpause"): channel.unpause() i += 1 def unpause_sound(self, name_: str = None, id_=None) -> None: """ UNPAUSE A SINGLE SOUND FROM THE MIXER (AT LEAST ONE SEARCH ELEMENT HAS TO BE PROVIDED NAME OR ID) :param name_ : string | None; Given sound name (name given at the time eof the SoundObject construction) :param id_ : int | None; Default None. ID number such as object_id_ = id(sound_). :return : None """ if name_ is None and id_ is None: raise ValueError("\nInvalid function call, at least one argument must be set!") # search by name take precedence (if name value is not undefined) if name_ is not None: id_ = None objs = self.snd_obj i = 0 for channel in self.channels: try: single_obj = objs[i] except IndexError as e: raise IndexError("\n %s " % e) if single_obj is not None: # search by name if name_ is not None: if single_obj.name == name_: channel.unpause() # search by id_ elif id_ is not None: if single_obj.obj_id == id_: channel.unpause() i += 1 def show_free_channels(self) -> list: """ RETURN A LIST OF FREE CHANNELS (NUMERICAL VALUES). :return: list; RETURN A LIST """ free_channels = [] i = 0 free_channels_append = free_channels.append start = self.start for c in self.channels: if not c.get_busy(): free_channels_append(i + start) i += 1 print("Free channels : %s " % free_channels) return free_channels def show_sounds_playing(self): """ DISPLAY ALL SOUNDS OBJECTS """ j = 0 for object_ in self.snd_obj: if object_: timeleft = round(object_.length - (time() - object_.time), 2) # if timeleft < 0, most likely to be a sound with attribute loop enabled if timeleft < 0.0: timeleft = 0.0 print('Name %s priority %s channel %s length(s) %s time left(s) %s' % (object_.name, object_.priority, object_.active_channel, round(object_.length, 2), timeleft)) j += 1 def get_identical_sounds(self, sound_: pygame.mixer.Sound) -> list: """ RETURN A LIST OF CHANNEL(S) PLAYING IDENTICAL SOUND OBJECT(s) SEARCH BY IDENTICAL PYGAME.SOUND OBJECT :param sound_ : Mixer object; Object to compare to :return : python list; List containing channels number playing similar sound object, if no match is found, return an empty list """ assert isinstance(sound_, pygame.mixer.Sound), \ "\nPositional argument sound_ must be a pygame.mixer.Sound type, got %s " % type(sound_) duplicate = [] duplicate_append = duplicate.append for obj in self.snd_obj: if obj: if obj.sound == sound_: duplicate_append(obj.active_channel) return duplicate def get_identical_id(self, id_: int) -> list: """ RETURN A LIST CONTAINING ANY IDENTICAL SOUND BEING MIXED. USE THE UNIQUE ID FOR REFERENCING OBJECTS :param id_: python integer; unique id number that reference a sound object :return : list; Return a list of channels containing identical sound object """ assert isinstance(id_, int), \ "\nPositional argument id_ must be an int type, got %s " % type(id_) duplicate = [] duplicate_append = duplicate.append for obj in self.snd_obj: if obj: if obj.obj_id == id_: duplicate_append(obj) return duplicate def stop(self, stop_list_: list): """ STOP ALL SOUND BEING PLAYED ON THE GIVEN LIST OF CHANNELS. ONLY SOUND WITH PRIORITY LEVEL 0 CAN BE STOPPED. :param stop_list_: python list; list of channels :return : None """ assert isinstance(stop_list_, list), \ "\nPositional argument stop_list must be a python list type, got %s " % type(stop_list_) start = self.start snd_obj = self.snd_obj channels = self.channels for c in stop_list_: l = c - start if snd_obj[l]: if snd_obj[l].priority == 0: channels[l].set_volume(0.0, 0.0) channels[l].stop() self.update() def stop_all_except(self, exception_: list): """ STOP ALL SOUND OBJECT EXCEPT SOUNDS FROM A GIVEN LIST OF ID(SOUND) IT WILL STOP SOUND PLAYING ON ALL CHANNELS REGARDLESS OF THEIR PRIORITY. :param exception_: Can be a single pygame.Sound id value or a list containing all pygame.Sound object id numbers. """ assert isinstance(exception_, list),\ "\nPositional argument exception_ must be a python list type, got %s " % type(exception_) start = self.start snd_obj = self.snd_obj channels = self.channels for c in self.all: l = c - start snd_object = snd_obj[l] if snd_object: if snd_object.obj_id not in exception_: channels[l].set_volume(0.0) channels[l].stop() self.update() def stop_all(self): """ STOP ALL SOUNDS NO EXCEPTIONS. :return: None """ start = self.start snd_obj = self.snd_obj channels = self.channels for c in self.all: l = c - start snd_object = snd_obj[l] if snd_object: channels[l].set_volume(0.0) channels[l].stop() self.update() def stop_name(self, name_: str = ""): """ STOP A PYGAME.SOUND OBJECT IF PLAYING ON ANY OF THE CHANNELS. :param name_: string; Sound name to stop :return : None """ assert isinstance(name_, str),\ "\nPositional argument name_ must be a python string type, got %s " % type(name_) channels = self.channels start = self.start for sound in self.snd_obj: if sound and sound.name == name_: try: channels[sound.active_channel - start].set_volume(0.0) channels[sound.active_channel - start].stop() except IndexError: # IGNORE ERROR ... self.update() def stop_object(self, object_id: int): """ STOP A GIVEN SOUND USING THE PYGAME.SOUND OBJECT ID NUMBER. :param object_id: integer; Object unique identifier such as id(sound) :return : None """ assert isinstance(object_id, int), \ "\nPositional argument object_id must be a python string type, got %s " % type(object_id) channels = self.channels start = self.start for sound in self.snd_obj: if sound and sound.obj_id == object_id: try: channels[sound.active_channel - start].set_volume(0.0) channels[sound.active_channel - start].stop() except IndexError: # IGNORE ERROR ... self.update() def return_time_left(self, object_id) -> float: """ RETURN THE TIME LEFT IN SECONDS (RETURN -1 IF
<filename>components/server/tests/data/test_datamodel.py<gh_stars>0 """Unit tests for the data model.""" import json import pathlib import unittest def setUpModule(): # pylint: disable=invalid-name """Read the data model once for all data model tests.""" with pathlib.Path("src/data/datamodel.json").open() as data_model_json: DataModelTestCase.data_model = json.load(data_model_json) class DataModelTestCase(unittest.TestCase): # skipcq: PTC-W0046 """Base class for data model unit tests.""" data_model = {} class DataModelTest(DataModelTestCase): """Unit tests for the data model.""" def test_top_level_keys(self): """Test that the top level keys are correct.""" self.assertEqual({"metrics", "subjects", "sources", "scales"}, set(self.data_model.keys())) def test_metrics_have_sources(self): """Test that each metric has one or more sources.""" for metric in self.data_model["metrics"].values(): self.assertTrue(len(metric["sources"]) >= 1) def test_source_parameters(self): """Test that the sources have at least one parameter for each metric supported by the source.""" for metric_id, metric in self.data_model["metrics"].items(): for source in metric["sources"]: # pylint: disable=superfluous-parens if not (parameters := self.data_model["sources"][source]["parameters"]): continue parameter_metrics = [] for parameter in parameters.values(): parameter_metrics.extend(parameter["metrics"]) self.assertTrue( metric_id in parameter_metrics, f"No parameters for metric '{metric_id}' in source '{source}'" ) def test_addition(self): """Test each metric had its addition defined correctly.""" for metric in self.data_model["metrics"].values(): self.assertTrue(metric["addition"] in ("max", "min", "sum")) def test_default_source(self): """Test that each metric has a default source, and that the default source is listed as possible source.""" for metric in self.data_model["metrics"].values(): self.assertTrue(metric["default_source"] in metric["sources"]) def test_metrics_belong_to_at_least_one_subject(self): """Test that each metric belongs to at least one subject.""" for metric in self.data_model["metrics"]: for subject in self.data_model["subjects"].values(): if metric in subject["metrics"]: break else: # pragma: no cover self.fail(f"Metric {metric} not listed in any subject.") def test_metric_direction(self): """Test that all metrics have a valid direction.""" for metric_uuid, metric in self.data_model["metrics"].items(): direction = metric["direction"] self.assertTrue(direction in ("<", ">"), f"Metric {metric_uuid} has an invalid direction: {direction}") def test_metrics_have_scales(self): """Test that all metrics have one or more allowed scales and a default scale that's in the allowed scales.""" scales = self.data_model["scales"].keys() for metric_id, metric in self.data_model["metrics"].items(): allowed_scales = metric.get("scales", []) self.assertTrue(len(allowed_scales) > 0, f"Metric {metric} has no scales") for scale in allowed_scales: self.assertTrue(scale in scales, f"Metric scale {scale} not in collection of all scales") default_scale = metric["default_scale"] self.assertTrue( default_scale in allowed_scales, f"Default scale {default_scale} of metric {metric_id} not in allowed scales: {allowed_scales}", ) def test_all_scales_are_used(self): """Test that all scales are used at least once.""" for scale in self.data_model["scales"].keys(): for metric in self.data_model["metrics"].values(): if scale in metric.get("scales", []): break else: # pragma: no cover self.fail(f"Scale {scale} not used for any metric.") class DataModelSourcesTest(DataModelTestCase): """Unit tests for sources in the data model.""" def test_source_attributes(self): """Test that sources have a name and description.""" for source_id, source in self.data_model["sources"].items(): expected_attributes = ["name", "description"] if source_id not in ["calendar", "manual_number", "random_number"]: expected_attributes.append("url") for attribute in expected_attributes: self.assertTrue(attribute in source, f"Source '{source_id} has no '{attribute}' attribute.") self.assertTrue( source["description"].endswith("."), f"The description of source '{source_id}' doesn't end with a dot." ) def test_sources_with_landing_url(self): """Test that the the sources with landing url also have url.""" for source in self.data_model["sources"]: if "landing_url" in self.data_model["sources"][source]["parameters"]: self.assertTrue( "url" in self.data_model["sources"][source]["parameters"], f"Source '{source}' has the 'landing_url' parameter, but not the 'url' parameter.", ) def test_source_parameter_metrics(self): """Test that the metrics listed for source parameters are metrics supported by the source.""" for source_id, source in self.data_model["sources"].items(): for parameter_key, parameter_value in source["parameters"].items(): for metric in parameter_value["metrics"]: self.assertTrue( source_id in self.data_model["metrics"][metric]["sources"], f"Parameter '{parameter_key}' of source '{source_id}' lists metric '{metric}' as metric " f"needing this parameter, but that metric doesn't list '{source_id}' as allowed source", ) def test_source_parameter_names(self): """Test that each source parameter has a name and short name.""" for source_id, source in self.data_model["sources"].items(): for parameter_key, parameter_value in source["parameters"].items(): for field in ["name", "short_name"]: error_message = f"Parameter '{parameter_key}' of source '{source_id}' has no {field}" self.assertTrue(field in parameter_value, error_message) def test_parameter_api_values(self): """Test the api values. Check that the api values are only used for single or multiple choice parameters and that the keys match with the possible regular values. The api values are the values used in the source. """ for source_id, source in self.data_model["sources"].items(): for parameter_key, parameter in source["parameters"].items(): if "api_values" not in parameter: continue self.assertTrue( "values" in parameter, f"Parameter {parameter_key} of source {source_id} has api values, but no values.", ) self.assertTrue( set(parameter["api_values"].keys()).issubset(set(parameter["values"])), f"The api values of parameter {parameter_key} are not a subset of the values.", ) def test_multiple_choice_parameters(self): """Test that multiple choice parameters have both a default value and a list of options.""" for source_id, source in self.data_model["sources"].items(): for parameter_id, parameter in source["parameters"].items(): if parameter["type"].startswith("multiple_choice"): self.assertTrue("default_value" in parameter) self.assertTrue( "placeholder" in parameter, f"Parameter {parameter_id} of source {source_id} has no placeholder" ) self.assertEqual(list, type(parameter["default_value"])) if parameter["type"] == "multiple_choice": self.assertTrue("values" in parameter) if parameter["type"] == "multiple_choice_with_addition": self.assertFalse("values" in parameter) self.assertEqual([], parameter["default_value"]) def test_mandatory_parameters(self): """Test that each metric has a mandatory field with true or false value.""" for source_id, source in self.data_model["sources"].items(): for parameter_id, parameter_values in source["parameters"].items(): self.assertTrue( "mandatory" in parameter_values, f"The parameter '{parameter_id}' of source '{source_id}' has no 'mandatory' field", ) self.assertTrue( parameter_values["mandatory"] in (True, False), f"The 'mandatory' field of parameter '{parameter_id}' of source '{source_id}' is neither " "true nor false", ) def test_integer_parameter_unit(self): """Test that integer type parameters have a unit.""" for source_id, source in self.data_model["sources"].items(): for parameter_id, parameter_values in source["parameters"].items(): if parameter_values["type"] == "integer": self.assertTrue( "unit" in parameter_values, f"Parameter '{parameter_id}' of source '{source_id}' has integer type but no unit parameter", ) def test_invalid_characters_in_names(self): """Test that we don't use dots in metric or source names since we want to be able to use the names as keys.""" for source in self.data_model["sources"].values(): self.assertFalse("." in source["name"]) for metric in self.data_model["metrics"].values(): self.assertFalse("." in metric["name"]) def test_validate_on(self): """Test that the list of parameters to validate on are in fact parameters of the source.""" for source in self.data_model["sources"].values(): parameter_keys = source["parameters"].keys() for parameter_value in source["parameters"].values(): for parameter_key in parameter_value.get("validate_on", []): self.assertTrue(parameter_key in parameter_keys) def test_source_parameter_help(self): """Test that source parameters have a help url or text, but not both, and that they are formatted correctly.""" for source in self.data_model["sources"].values(): for parameter_key, parameter in source["parameters"].items(): parameter_description = f"The parameter '{parameter_key}' of the source '{source['name']}'" self.assertFalse( "help" in parameter and "help_url" in parameter, f"{parameter_description} has both a help and a help_url", ) if "help" in parameter: self.assertTrue(parameter["help"].endswith("."), f"{parameter_description} does not end with a dot") def test_entity_attributes(self): """Test that entities have the required attributes.""" for source_id, source in self.data_model["sources"].items(): for entity_key, entity_value in source["entities"].items(): self.assertTrue("name" in entity_value.keys()) self.assertTrue("name_plural" in entity_value.keys(), f"No 'name_plural' in {source_id}.{entity_key}") def test_colors(self): """Test that the color values are correct.""" for source_id, source in self.data_model["sources"].items(): for entity_key, entity_value in source["entities"].items(): for attribute in entity_value["attributes"]: for color_value in attribute.get("color", {}).values(): self.assertTrue( color_value in ("active", "error", "negative", "positive", "warning"), f"Color {color_value} of {source_id}.{entity_key} is not correct", ) def test_entity_attribute_type(self): """Test that each entity attribute has a correct type.""" allowed_types = ("date", "datetime", "string", "float", "integer", "minutes", "status") for source_id, source in self.data_model["sources"].items(): for entity_key, entity_value in source["entities"].items(): for attribute in entity_value["attributes"]: if "type" in attribute: self.assertIn( attribute["type"], allowed_types, f"Attribute {attribute['key']} of {source_id}.{entity_key} has an invalid type " f"({attribute['type']}); should be one of {allowed_types}", ) def test_measured_attribute(self): """Test that the measured attribute is actually a key of an entity attribute and has a computable type.""" for source in self.data_model["sources"].values(): for entities in source["entities"].values(): if measured_attribute := entities.get("measured_attribute"): self.assertIn(measured_attribute, [attribute["key"] for attribute in entities["attributes"]]) for attribute in entities["attributes"]: if measured_attribute == attribute["key"]: self.assertIn(attribute["type"], ["integer", "float", "minutes"]) def test_configuration(self): """Test that sources with a configuration have a correct configuration.""" for source_id, source in self.data_model["sources"].items(): if "configuration" in source: for configuration in source["configuration"].values(): self.assertIn("name", configuration) self.assertIn("value", configuration) self.assertTrue(len(configuration["metrics"]) > 0) for metric in configuration["metrics"]: self.assertIn(source_id, self.data_model["metrics"][metric]["sources"]) def test_logos(self): """Test that a logo exists for each source type and vice versa.""" sources = self.data_model["sources"] logos_path = pathlib.Path("src/routes/logos") for source_type in sources: logo_path = logos_path / f"{source_type}.png" self.assertTrue(logo_path.exists(), f"No logo exists for {source_type}") for logo_path in logos_path.glob("*.png"): self.assertTrue(logo_path.stem in sources, f"No source exists in the data model for {logo_path}") class DataModelSpecificSourcesTest(DataModelTestCase): """Unit tests for specific sources in the data model.""" def test_quality_time_source_type_parameter(self): """Test that the source type parameter of the Quality-time source lists all source types.""" all_source_names = {source["name"] for source in self.data_model["sources"].values()} quality_time_source_names = set( self.data_model["sources"]["quality_time"]["parameters"]["source_type"]["values"] ) self.assertEqual(all_source_names, quality_time_source_names) all_source_api_values = { (source["name"], source_id) for source_id, source
skip_0: if varying_in: shader_source += "varying " + input + "_vs_output;\n" else: shader_source += insert_layout_location(index_counter) shader_source += "in " + input + "_vs_output;\n" index_counter += 1 for instance_input in instance_inputs: shader_source += insert_layout_location(index_counter) shader_source += "layout(location = " + str(index_counter) + ") in " + instance_input + "_instance_input;\n" index_counter += 1 # outputs structs index_counter = 0 if _shader.shader_type == "vs": for output in outputs: if output.split()[1] != "position": if varying_in: shader_source += "varying " + output + "_" + _shader.shader_type + "_output;\n" else: shader_source += insert_layout_location(index_counter) shader_source += "out " + output + "_" + _shader.shader_type + "_output;\n" index_counter += 1 elif _shader.shader_type == "ps": for p in range(0, len(outputs)): if "SV_Depth" in output_semantics[p]: continue else: if not gl_frag_color: output_index = output_semantics[p].replace("SV_Target", "") if output_index != "": shader_source += "layout(location = " + output_index + ") " else: shader_source += insert_layout_location(0) shader_source += "out " + outputs[p] + "_ps_output;\n" if _info.v_flip: shader_source += "uniform float v_flip;\n" # global structs for access to inputs or outputs from any function in vs or ps if _shader.shader_type != "cs": shader_source += generate_global_io_struct(inputs, "struct " + _shader.input_struct_name) if _shader.instance_input_struct_name: if len(instance_inputs) > 0: shader_source += generate_global_io_struct(instance_inputs, "struct " + _shader.instance_input_struct_name) if len(outputs) > 0: shader_source += generate_global_io_struct(outputs, "struct " + _shader.output_struct_name) # convert sample_texture to sample_texture_2d etc if explicit_texture_sampling: texture_types = texture_types_from_resource_decl(_shader.resource_decl) _shader.functions_source = replace_texture_samples(_shader.functions_source, texture_types) _shader.main_func_source = replace_texture_samples(_shader.main_func_source, texture_types) if uniform_pack: _shader.functions_source = insert_uniform_unpack_assignment(_shader.functions_source, uniform_pack) _shader.main_func_source = insert_uniform_unpack_assignment(_shader.main_func_source, uniform_pack) resource_decl = _shader.resource_decl if _info.shader_sub_platform == "gles": resource_decl = replace_token_pasting(resource_decl) shader_source += _tp.struct_decls shader_source += uniform_buffers shader_source += resource_decl shader_source += _shader.functions_source glsl_main = _shader.main_func_source skip_function_start = glsl_main.find("{") + 1 skip_function_end = glsl_main.rfind("return") glsl_main = glsl_main[skip_function_start:skip_function_end].strip() input_name = { "vs": "_vs_input", "ps": "_vs_output", "cs": "_cs_input" } output_name = { "vs": "_vs_output", "ps": "_ps_output", "cs": "_cs_output" } if _shader.shader_type == "cs": shader_source += "layout(" shader_source += "local_size_x = " + str(_tp.threads[0]) + ", " shader_source += "local_size_y = " + str(_tp.threads[1]) + ", " shader_source += "local_size_z = " + str(_tp.threads[2]) shader_source += ") in;\n" shader_source += "void main()\n{\n" shader_source += "ivec3 gid = ivec3(gl_GlobalInvocationID);\n" shader_source += glsl_main shader_source += "\n}\n" else: # vs and ps need to assign in / out attributes to structs pre_assign = generate_input_assignment(inputs, _shader.input_struct_name, "_input", input_name[_shader.shader_type]) if _shader.instance_input_struct_name: if len(instance_inputs) > 0: pre_assign += generate_input_assignment(instance_inputs, _shader.instance_input_struct_name, "instance_input", "_instance_input") post_assign = generate_output_assignment(_info, outputs, "_output", output_name[_shader.shader_type], gl_frag_color) shader_source += "void main()\n{\n" shader_source += "\n" + pre_assign + "\n" shader_source += glsl_main shader_source += "\n" + post_assign + "\n" shader_source += "}\n" # condition source shader_source = replace_io_tokens(shader_source) shader_source = format_source(shader_source, 4) # replace sv_semantic tokens for sv in _shader.sv_semantics: if sv[0] == "SV_InstanceID": shader_source = replace_token(sv[2], "gl_InstanceID", shader_source) elif sv[0] == "SV_VertexID": shader_source = replace_token(sv[2], "gl_VertexID", shader_source) extension = { "vs": ".vsc", "ps": ".psc", "cs": ".csc" } temp_extension = { "vs": ".vert", "ps": ".frag", "cs": ".comp" } temp_path = os.path.join(_info.temp_dir, pmfx_name) output_path = os.path.join(_info.output_dir, pmfx_name) os.makedirs(temp_path, exist_ok=True) os.makedirs(output_path, exist_ok=True) temp_file_and_path = os.path.join(temp_path, _tp.name + temp_extension[_shader.shader_type]) temp_shader_source = open(temp_file_and_path, "w") temp_shader_source.write(shader_source) temp_shader_source.close() output_path = os.path.join(_info.output_dir, pmfx_name) os.makedirs(output_path, exist_ok=True) output_file_and_path = os.path.join(output_path, _tp.name + extension[_shader.shader_type]) if _info.shader_sub_platform == "nvn": nvn_sdk = os.getenv("NINTENDO_SDK_ROOT") if not nvn_sdk: print("error: you must have nintendo switch sdk installed, " "'NINTENDO_SDK_ROOT' environment variable is set and is added to your PATH.", flush=True) sys.exit(1) exe = os.path.normpath(_info.nvn_exe) nvn_type = { "vs": "-stage vertex", "ps": "-stage fragment", "cs": "-stage compute" } cmd = "-input " + sanitize_file_path(temp_file_and_path) + " " cmd += nvn_type[_shader.shader_type] + " " + sanitize_file_path(temp_file_and_path) + " " cmd += "-output " + sanitize_file_path(output_file_and_path) + " " error_code, error_list, output_list = call_wait_subprocess(exe + " " + cmd) _tp.error_code = error_code _tp.error_list = error_list _tp.output_list = output_list else: exe = os.path.join(_info.tools_dir, "bin", "glsl", get_platform_name(), "validator" + get_platform_exe()) if _info.shader_sub_platform == "spirv": exe += " -V " exe += " -o " + output_file_and_path error_code, error_list, output_list = call_wait_subprocess(exe + " " + temp_file_and_path) _tp.error_code = error_code _tp.error_list = error_list _tp.output_list = output_list if _info.shader_sub_platform != "spirv": # copy glsl shader to data shader_file = open(output_file_and_path, "w") shader_file.write(shader_source) shader_file.close() return error_code # we need to convert ubytes 255 to float 1.0 def convert_ubyte_to_float(semantic): if semantic.find("COLOR"): return False return True # gets metal packed types from hlsl semantic, all types are float except COLOR: uchar, BLENDINDICES uchar def get_metal_packed_decl(stage_in, input, semantic): vector_sizes = ["2", "3", "4"] packed_decl = "" if not stage_in: packed_decl = "packed_" split = input.split(" ") type = split[0] if semantic.find("COLOR") != -1 or semantic.find("BLENDINDICES") != -1: packed_decl += "uchar" count = type[len(type)-1] if count in vector_sizes: packed_decl += count else: packed_decl += type for i in range(1, len(split)): packed_decl += " " + split[i] return packed_decl # finds token in source code def find_token(token, string): delimiters = [ "(", ")", "{", "}", ".", ",", "+", "-", "=", "*", "/", "&", "|", "~", "\n", "\t", "<", ">", "[", "]", ";", " " ] fp = string.find(token) if fp != -1: left = False right = False # check left if fp > 0: for d in delimiters: if string[fp-1] == d: left = True break else: left = True # check right ep = fp + len(token) if fp < ep-1: for d in delimiters: if string[ep] == d: right = True break else: right = True if left and right: return fp # try again tt = find_token(token, string[fp+len(token):]) if tt == -1: return -1 return fp+len(token) + tt return -1 # replace all occurences of token in source code def replace_token(token, replace, string): iter = 0 while True: pos = find_token(token, string) if pos == -1: break else: string = string[:pos] + replace + string[pos+len(token):] pass return string # metal main functions require textures and buffers to be passed in as args, and do not support global decls def metal_functions(functions, cbuffers, textures): cbuf_members_list = [] for c in cbuffers: cbuf_members = parse_and_split_block(c) cbuf_members_list.append(cbuf_members) texture_list = textures.split(";") texture_args = [] for t in texture_list: cpos = t.find(",") if cpos == -1: continue spos = t.find("(") macro_args = t[spos + 1:].split(",") tex_type = t[:spos] + "_arg" name_pos = 0 if t.find("texture_2dms") != -1: name_pos = 2 name = macro_args[name_pos].strip() texture_args.append((name, tex_type + "(" + name + ")")) fl = find_functions(functions) final_funcs = "" func_sig_additions = dict() for f in fl: bp = f.find("(") ep = f.find(")") fb = f[ep:] fn = f.find(" ") fn = f[fn+1:bp] sig = f[:bp+1] count = 0 # insert cbuf members for c in cbuf_members_list: for i in range(0, len(c), 2): ap = c[i+1].find("[") member = c[i+1] if ap != -1: member = member[:ap] if find_token(member, fb) != -1: if count > 0: sig += ",\n" if fn in func_sig_additions.keys(): func_sig_additions[fn].append(member) else: func_sig_additions[fn] = [member] ref_type = "& " if ap != -1: ref_type = "* " sig += "constant " + c[i] + ref_type + member count += 1 # insert texture members for t in texture_args: if find_token(t[0], fb) != -1: if count > 0: sig += ",\n" sig += t[1] count += 1 if fn in func_sig_additions.keys(): func_sig_additions[fn].append(t[0]) func_sig_additions[fn].append("sampler_" + t[0]) else: func_sig_additions[fn] = [t[0]] func_sig_additions[fn].append("sampler_" + t[0]) if bp != -1 and ep != -1: args = f[bp+1:ep] arg_list = args.split(",") for arg in arg_list: if count > 0: sig += ",\n" count += 1 address_space = "thread" toks = arg.split(" ") if '' in toks: toks.remove('') if '\n' in toks: toks.remove('\n') ref = False for t in toks: if t == "out" or t == "inout": ref = True if t == "in": address_space = "constant" ref = True if not ref: sig += arg else: array = toks[2].find("[") if array == -1: sig += address_space + " " + toks[1] + "& " + toks[2] else: sig += address_space + " " + toks[1] + "* " + toks[2][:array] # find used cbuf memb func = sig + fb final_funcs += func return final_funcs, func_sig_additions #
""" This module defines a class called "balto_gui" that can be used to create a graphical user interface (GUI) for downloading data from OpenDAP servers from and into a Jupyter notebook. If used with Binder, this GUI runs in a browser window and does not require the user to install anything on their computer. However, this module should be included in the same directory as the Jupyter notebook. """ #------------------------------------------------------------------------ # # Copyright (C) 2020. <NAME> # #------------------------------------------------------------------------ from ipyleaflet import Map, basemaps, FullScreenControl from ipyleaflet import MeasureControl, Rectangle ## from ipyleaflet import ScaleControl # (doesn't work) from traitlets import Tuple ## import ipyleaflet as ipyl import ipywidgets as widgets from ipywidgets import Layout from IPython.display import display, HTML ## from IPython.core.display import display ## from IPython.lib.display import display import pydap.client # (for open_url, etc.) import requests # (used by get_filenames() ) import json import datetime # (used by get_duration() ) import copy import numpy as np import balto_plot as bp #------------------------------------------------------------------------ # # class balto_gui # __init__() # pix_str() # show_gui() # make_acc_gui() # make_tab_gui() # make_data_panel() # reset_data_panel() # make_map_panel() # make_dates_panel() # make_download_panel() # make_prefs_panel() # #-------------------------- # get_map_bounds() # replace_map_bounds() # replace_map_bounds2() # update_map_bounds() # zoom_out_to_new_bounds() # -------------------------- # get_url_dir_filenames() # update_filename_list() # get_opendap_file_url() # open_dataset() # update_data_panel() # -------------------------- # update_var_info() # get_all_var_shortnames() # get_all_var_longnames() # get_all_var_units() # -------------------------- # get_var_shortname() # get_var_longname() # get_var_units() # get_var_shape() # get_var_dimensions() # get_var_dtype() # get_var_attributes() # get_var_time_attributes() # ------------------------------- # update_datetime_panel() # get_years_from_time_since() # clear_datetime_notes() # append_datetime_notes() # list_to_string() # ------------------------------- # pad_with_zeros() # get_actual_time_units() # get_time_delta_str() # get_datetime_obj_from_str() # get_datetime_obj_from_one_str() # get_start_datetime_obj() # get_end_datetime_obj() # get_dt_from_datetime_str() # split_datetime_str() # split_date_str() # split_time_str() # get_datetime_from_time_since() # get_time_since_from_datetime() # get_month_difference() # ------------------------------- # get_new_time_index_range() # get_new_lat_index_range() # get_new_lon_index_range() # ------------------------------- # get_duration() ## not used yet # ---------------------------- # get_download_format() # clear_download_log() # append_download_log() # print_user_choices() # download_data() # show_grid() # ------------------------------- # get_opendap_package() # (in prefs panel) # ---------------------------- # get_abbreviated_var_name() # get_possible_svo_names() # #------------------------------ # Example GES DISC opendap URL #------------------------------ # https://gpm1.gesdisc.eosdis.nasa.gov/opendap/GPM_L3/GPM_3IMERGHHE.05/2014/091/ # 3B-HHR-E.MS.MRG.3IMERG.20140401-S000000-E002959.0000.V05B.HDF5.nc # ?HQprecipitation[1999:2200][919:1049],lon[1999:2200],lat[919:1049] #------------------------------------------------------------------------ class balto_gui: #-------------------------------------------------------------------- def __init__(self): self.version = '0.5' self.user_var = None self.default_url_dir = 'http://test.opendap.org/dap/data/nc/' self.timeout_secs = 60 # (seconds) #---------------------------------------------------------- # "full_box_width" = (label_width + widget_width) # gui_width = left_label_width + mid_width + button_width # The 2nd, label + widget box, is referred to as "next". # (2 * half_widget_width) + left_label + next_label = 540 #---------------------------------------------------------- self.gui_width = 680 self.left_label_width = 120 self.next_label_width = 50 self.all_label_width = 170 self.full_box_width = 540 self.widget_width = (self.full_box_width - self.left_label_width) # self.half_widget_width = (self.full_box_width - self.all_label_width)/2 # self.half_widget_width = 183 self.left_widget_width = 230 self.next_widget_width = 136 self.left_box_width = (self.left_label_width + self.left_widget_width) self.next_box_width = (self.next_label_width + self.next_widget_width) self.button_width = 70 # big enough for "Reset" #----------------------------------------------------- self.map_width = (self.gui_width - 40) self.map_height = 230 # was 250 self.map_center_init = (20.0, 0) self.add_fullscreen_control = True self.add_scale_control = False # (doesn't work) self.add_measure_control = True #----------------------------------------------------- self.gui_width_px = self.pix_str( self.gui_width ) self.map_width_px = self.pix_str( self.map_width ) self.map_height_px = self.pix_str( self.map_height ) #----------------------------------------------------- self.date_width_px = '240px' self.time_width_px = '180px' self.hint_width_px = '120px' #--------------------------------------------------- self.log_box_width_px = self.pix_str( self.full_box_width ) self.log_box_height_px = '200px' #--------------------------------------------------- # These styles are used to control width of labels # self.init_label_style is the initial default. #--------------------------------------------------- llw_px = self.pix_str( self.left_label_width ) nlw_px = self.pix_str( self.next_label_width ) self.init_label_style = {'description_width': 'initial'} self.left_label_style = {'description_width': llw_px} self.next_label_style = {'description_width': nlw_px} self.date_style = {'description_width': '70px'} self.time_style = {'description_width': '70px'} # __init__() #-------------------------------------------------------------------- def pix_str(self, num): return str(num) + 'px' #-------------------------------------------------------------------- def show_gui(self, ACC_STYLE=False, SHOW_MAP=True): #------------------------------------------------------ # Encountered a problem where there was some problem # with ipyleaflets (used for the map panel) that # prevented any part of the GUI from being displayed. # The SHOW_MAP flag helps to test for this problem. #------------------------------------------------------ #------------------------------------ # Create & display the complete GUI #----------------------------------- if (ACC_STYLE): self.make_acc_gui() else: # Use the TAB style self.make_tab_gui( SHOW_MAP=SHOW_MAP) gui_output = widgets.Output() display(self.gui, gui_output) # show_gui() #-------------------------------------------------------------------- def make_acc_gui(self): gui_width_px = self.gui_width_px self.make_data_panel() self.make_map_panel() self.make_datetime_panel() self.make_download_panel() self.make_prefs_panel() #--------------------------- p0 = self.data_panel p1 = self.map_panel p2 = self.datetime_panel p3 = self.download_panel p4 = self.prefs_panel #--------------------------- p0_title = 'Browse Data' p1_title = 'Spatial Extent' p2_title = 'Date Range' p3_title = 'Download Data' p4_title = 'Settings' #------------------------------------------------------- # selected_index=None causes all cells to be collapsed #------------------------------------------------------- acc = widgets.Accordion( children=[p0, p1, p2, p3, p4], selected_index=None, layout=Layout(width=gui_width_px) ) acc.set_title(0, p0_title) acc.set_title(1, p1_title) acc.set_title(2, p2_title) acc.set_title(3, p3_title) acc.set_title(4, p4_title) # title = 'BALTO User Interface' # L_tags = "<b><font size=5>" # R_tags = "</font></b>" # heading = (L_tags + title + R_tags) pad = self.get_padding(1, HORIZONTAL=False) # 1 lines head = widgets.HTML(value=f"<b><font size=4>BALTO User Interface</font></b>") # head = widgets.Label('BALTO User Interface') # self.gui = widgets.VBox([pad, head, acc]) # (top padding self.gui = widgets.VBox([head, acc]) # (no top padding) # make_acc_gui() #-------------------------------------------------------------------- def make_tab_gui(self, SHOW_MAP=True): #--------------------------------------------------------- # If there is a problem with ipyleaflet, it can prevent # any part of the GUI from being displayed. You can # set SHOW_MAP=False to remove the map to test for this. #--------------------------------------------------------- gui_width_px = self.gui_width_px self.make_data_panel() self.make_map_panel( SHOW_MAP=SHOW_MAP ) self.make_datetime_panel() self.make_download_panel() self.make_prefs_panel() #--------------------------- p0 = self.data_panel p1 = self.map_panel p2 = self.datetime_panel p3 = self.download_panel p4 = self.prefs_panel #--------------------------- p0_title = 'Browse Data' p1_title = 'Spatial Extent' p2_title = 'Date Range' p3_title = 'Download Data' p4_title = 'Settings' #------------------------------------------------------- # selected_index=0 shows Browse Data panel #------------------------------------------------------- tab = widgets.Tab( children=[p0, p1, p2, p3, p4], selected_index=0, layout=Layout(width=gui_width_px) ) tab.set_title(0, p0_title) tab.set_title(1, p1_title) tab.set_title(2, p2_title) tab.set_title(3, p3_title) tab.set_title(4, p4_title) #### tab.titles = [str(i) for i in range(len(children))] # title = 'BALTO User Interface' # L_tags = "<b><font size=5>" # R_tags = "</font></b>" # heading = (L_tags + title + R_tags) pad = self.get_padding(1, HORIZONTAL=False) # 1 lines head = widgets.HTML(value=f"<b><font size=5>BALTO User Interface</font></b>") # head = widgets.Label('BALTO User Interface') ## self.gui = widgets.VBox([pad, head, acc]) self.gui = widgets.VBox([head, tab]) # (no padding above) # make_tab_gui() #-------------------------------------------------------------------- def get_padding(self, n, HORIZONTAL=True): #------------------------------- # Get some white space padding #------------------------------- if (HORIZONTAL): #-------------------------------- # Use overloaded multiplication #-------------------------------- ## s = (' ' * n) # overloaded multiplication s = "<p>" + ('&nbsp;' * n) + "</p>" pad = widgets.HTML( value=s ) else: s = ("<br>" * n) pad = widgets.HTML( value=s ) return pad # get_padding() #-------------------------------------------------------------------- def make_data_panel(self): #----------------------------------- # Browse data on an OpenDAP server #----------------------------------- left_style = self.left_label_style next_style = self.next_label_style full_width_px = self.pix_str( self.full_box_width ) left_width_px = self.pix_str( self.left_box_width ) next_width_px = self.pix_str( self.next_box_width ) btn_width_px = self.pix_str( self.button_width ) #--------------------------------------------------------- o1 = widgets.Text(description='OpenDAP URL Dir:', value=self.default_url_dir, disabled=False, style=left_style, layout=Layout(width=full_width_px)) b1 = widgets.Button(description="Go", layout=Layout(width=btn_width_px)) o2 = widgets.Dropdown( description='Filename:', options=[''], value='', disabled=False, style=left_style, layout=Layout(width=full_width_px) ) #------------------------------------------------------------------ oL = widgets.Text(description='Long name:', style=left_style, value='', layout=Layout(width=full_width_px) ) ## o3 = widgets.Select( description='Variable:', o3 = widgets.Dropdown( description='Variable:', options=[''], value='', disabled=False, style=left_style, layout=Layout(width=left_width_px) ) o4 = widgets.Text(description='Units:', style=next_style, value='', layout=Layout(width=next_width_px) ) #------------------------------------------------------------------ o5 = widgets.Text(description='Dimensions:', style=left_style, value='', layout=Layout(width=left_width_px) ) o6 = widgets.Text(description='Shape:', style=next_style, value='', layout=Layout(width=next_width_px) ) #------------------------------------------------------------------ o7 = widgets.Text(description='Data type:', style=left_style, value='', layout=Layout(width=full_width_px) ) o8 = widgets.Dropdown( description='Attributes:', options=[''], value='', disabled=False, style=left_style, layout=Layout(width=full_width_px) ) o9 = widgets.Text(description='Status:', style=left_style, value='Ready.', layout=Layout(width=full_width_px) ) b2 = widgets.Button(description="Reset", layout=Layout(width=btn_width_px)) ## pd = widgets.HTML(('&nbsp;' * 1)) # for padding #------------------------------- # Arrange widgets in the panel #------------------------------- url_box = widgets.HBox([o1, b1]) # directory + Go button stat_box = widgets.HBox([o9, b2]) # status + Reset button name_box = widgets.VBox([o3, o5]) ## pad_box = widgets.VBox([pd, pd]) unit_box = widgets.VBox([o4, o6]) mid_box = widgets.HBox([name_box, unit_box]) ## mid_box = widgets.HBox([name_box, pad_box, unit_box]) panel = widgets.VBox([url_box, o2, oL, mid_box, o7, o8, stat_box]) self.data_url_dir = o1 # on an OpenDAP server self.data_filename = o2 self.data_var_long_name = oL self.data_var_name = o3 # short_name self.data_var_units = o4 self.data_var_dims = o5 self.data_var_shape = o6 self.data_var_type = o7 self.data_var_atts = o8 self.data_status = o9 self.data_panel = panel #----------------- # Event handlers #----------------------------------------------------- # Note: NEED to set names='value' here. If names # keyword is omitted, only works intermittently. #------------------------------------------------------------ # "on_click" handler function is passed b1 as argument. # "observe" handler function is passed "change", which # is a dictionary, as argument. See Traitlet events. #------------------------------------------------------------ b1.on_click( self.update_filename_list ) b2.on_click( self.reset_data_panel ) o2.observe( self.update_data_panel, names=['options','value'] ) o3.observe( self.update_var_info, names=['options', 'value'] ) ## o3.observe( self.update_var_info, names='value' ) ## o2.observe( self.update_data_panel, names='All' ) ## o3.observe( self.update_var_info, names='All' ) #------------------------------------------------------- # It turned out this wasn't an issue, but interesting. #------------------------------------------------------- # Note: Method functions have type "method" instead # of "function" and
# -*- coding: utf-8 -*- import logging import itertools import typing import semver import copy as py_copy from typing import List, Set, Dict, Tuple, Optional from enzi import config from enzi.config import DependencyRef from enzi.config import Config as EnziConfig from enzi.config import DependencyVersion from enzi.config import Locked from enzi.frontend import Enzi from enzi.git import GitVersions from enzi.io import EnziIO from enzi.utils import flat_map, unique from enzi.ver import VersionReq from semver import VersionInfo as Version logger = logging.getLogger(__name__) class Dependency(object): def __init__(self, name: str): self.name = name # the sources for this dependency <K=DependencyRef, V=DependencySource> self.sources: typing.MutableMapping[DependencyRef, DependencySource] = { } # the enzi config we chose self.config: typing.Optional[EnziConfig] = None def source(self): # TODO: inspect this code min_source = min(self.sources.keys()) return self.sources[min_source] class DependencyConstraint(object): # TODO: rewrite in more python way __allow_cons__ = ("Version", "Revision") def __init__(self, cons, val=None): if not cons in self.__allow_cons__: raise ValueError('dep cons must in {}'.format(self.__allow_cons__)) self.cons: str = cons if val is None or isinstance(val, (VersionReq, Version)) or type(val) == str: self.value: typing.Union[str, Version, None] = val else: raise ValueError( 'dep cons\'s value must be semver.VersionInfo or str') def __str__(self): return str(self.value) @staticmethod def Version(version: Version): return DependencyConstraint('Version', version) @staticmethod def Revision(revision: str): return DependencyConstraint('Revision', revision) @staticmethod def From(dep: config.Dependency): if dep.use_version: return DependencyConstraint.Version(dep.rev_ver) else: return DependencyConstraint.Revision(dep.rev_ver) def is_version(self): return self.cons == 'Version' def is_revision(self): return self.cons == 'Revision' class State(object): # TODO: rewrite in more python way __allow_states__ = ('Open', 'Locked', 'Constrained', 'Pick') def __init__(self, state, val=None): if not state in self.__allow_states__: raise ValueError('state must in {}'.format(self.__allow_states__)) self.state: str = state self.value: typing.Union[int, set, typing.Tuple[int, set], None] = val @staticmethod def Open(): return State('Open') @staticmethod def Locked(lock_id: int): return State('Locked', lock_id) @staticmethod def Constrained(versions: set): return State('Constrained', versions) @staticmethod def Pick(pick_id, versions: set): return State('Pick', (pick_id, versions)) def is_open(self): return self.state == 'Open' def is_locked(self): return self.state == 'Locked' def is_constrained(self): return self.state == 'Constrained' def is_pick(self): return self.state == 'Pick' def pick(self) -> int: if self.is_pick(): return self.value[0] elif self.is_locked(): return self.value @property def lock_id(self): if self.is_locked(): return self.value else: raise RuntimeError( 'INTERNAL ERROR: try to get lock id of a non-locked State') @lock_id.setter def lock_id(self, value): if not type(value) == int: raise ValueError('ids must be a int') if self.is_locked(): self.value = value else: raise RuntimeError( 'INTERNAL ERROR: try to set lock_id for a State::{}'.format(self.state)) @property def ids(self) -> set: if self.is_constrained(): return self.value elif self.is_pick(): return self.value[1] else: raise RuntimeError( 'INTERNAL ERROR: try to get ids of State::{}'.format(self.state)) @ids.setter def ids(self, ids): if not type(ids) == set: raise ValueError('ids must be a set') if self.is_constrained(): self.value = ids elif self.is_pick(): # self.value[1] = ids self.value = (self.value[0], ids) else: raise RuntimeError( 'INTERNAL ERROR: try to set ids for a State::{}'.format(self.state)) def dump_cons_map(cons_map: dict): str_buf = [] names = cons_map.keys() names = sorted(names) str_buf.append('{') for name in names: cons = cons_map[name] str_buf.append('\n\t\"{}\" :'.format(name)) for pkg_name, con in cons: str_buf.append(' {}({});'.format(con, pkg_name)) str_buf.append('\n}') return ''.join(str_buf) class DependencySource(object): def __init__(self, dep_id: DependencyRef, versions: GitVersions, pick=None, options=None, state=State.Open()): self.id: DependencyRef = dep_id self.versions: GitVersions = versions self.pick: typing.Optional[int] = pick self.options: typing.Optional[typing.MutableSet[int]] = options self.state: State = state def current_pick(self) -> Optional[DependencyVersion]: if self.state.is_open() or self.state.is_constrained(): return None else: pick_id = self.state.pick() return DependencyVersion.Git(self.versions.revisions[pick_id]) class DepTableDumper(object): """ dumper for DependencyResolver.table """ def __init__(self, table: typing.MutableMapping[str, Dependency]): self.table = table def __str__(self): str_buf = ['{'] names = list(self.table.keys()) names.sort() for name in names: dep = self.table[name] str_buf.append('\n\t{} :'.format(name)) for dep_id, src in dep.sources.items(): str_buf.append('\n\t\t[{}] :'.format(dep_id)) state: State = src.state if state.is_open(): str_buf.append(' open') elif state.is_locked(): str_buf.append(' locked {}'.format(state.lock_id)) elif state.is_constrained(): ids = state.ids str_buf.append(' {} possible'.format(ids)) else: ids = state.ids pick_id = state.pick() str_buf.append( ' picked #{} out of {} possible'.format(pick_id, ids)) str_buf.append('\n}') return ''.join(str_buf) # TODO: use a more elegant way __repr__ = __str__ def find_version(versions: typing.List[typing.Tuple[Version, str]], rev: str): rev_filter = filter(lambda x: x[1] == rev, versions) rev_map = map(lambda x: x[0], rev_filter) try: return max(rev_map) except ValueError: return None class DependencyResolver(object): def __init__(self, enzi: Enzi): self.table: typing.MutableMapping[str, Dependency] = {} # <K=str, Dependency> # self.decisions: typing.MutableMapping[str, int] = {} # <K=str, int> # a cache for dep name <-> dep git url, use for name/git url conflicts self.git_urls: typing.MutableMapping[str, str] = {} self.enzi = enzi def resolve(self) -> Locked: self.register_dep_in_config( self.enzi.config.dependencies, self.enzi.config) iteration = 0 any_change = True while any_change: logger.debug('resolve: iteration {}, table {}'.format( iteration, DepTableDumper(self.table))) iteration += 1 self.init() self.mark() any_change = self.pick() self.close() logger.debug('resolve: resolved after {} iterations'.format(iteration)) logger.debug('resolve: resolved table {}'.format( DepTableDumper(self.table))) enzi = self.enzi locked = {} for name, dep in self.table.items(): dep_config: EnziConfig = dep.config deps: typing.Set[str] = set(dep_config.dependencies.keys()) src: DependencySource = dep.source() enzi_src = enzi.dependency_source(src.id) git_url = '' if enzi_src.is_git(): git_url = enzi_src.git_url else: raise ValueError('INTERNAL ERROR: unreachable') pick = src.state.pick() if pick is None: logger.error('resolver: pick is none') raise ValueError('pick is none') rev = src.versions.revisions[pick] version = find_version(src.versions.versions, rev) lock_dep = config.LockedDependency( revision=rev, version=version, source=config.LockedSource(git_url), dependencies=deps ) locked[name] = lock_dep return config.Locked( dependencies=locked, config_path=self.enzi.config_path, config_mtime=self.enzi.config_mtime) def init(self): for dep in self.table.values(): for src in dep.sources.values(): if not src.state.is_open(): continue logger.debug('resolve init {}[{}]'.format(dep.name, src.id)) ids = set(range(len(src.versions.revisions))) src.state = State.Constrained(ids) def mark(self): def inner_dep(econfig: EnziConfig): pkg_name = econfig.package['name'] return map(lambda item: (item[0], (pkg_name, item[1])), econfig.dependencies.items()) other_econf = filter(lambda x: x, map( lambda dep: dep.config, self.table.values())) econfig_iter = itertools.chain([self.enzi.config, ], other_econf) flat_dep = flat_map(inner_dep, econfig_iter) flat_dep = list(flat_dep) dep_iter = map(lambda dep: (dep[0], dep[1][0], dep[1][1]), flat_dep) cons_map = {} # <K=str, V=list[(str, DependencyConstraint)]> for name, pkg_name, dep in dep_iter: if not name in cons_map: cons_map[name] = [] v = cons_map[name] v.append((pkg_name, DependencyConstraint.From(dep))) logger.debug("resolve: gathered constraints {}".format( dump_cons_map(cons_map))) self.table, table = {}, self.table for name, cons in cons_map.items(): for _, con in cons: logger.debug("resolve: impose {} on {}".format(con, name)) for src in table[name].sources.values(): self.impose(name, con, src, cons) self.table = table def pick(self): any_change = False open_pending = set() for dep in self.table.values(): for src_id, src in dep.sources.items(): state: State = src.state if state.is_open(): raise RuntimeError( 'INTERNAL ERROR: unreachable, state = Open') elif state.is_locked(): pass elif state.is_constrained(): ids = state.ids any_change = True logger.debug( 'resolve:pick: picking version for {}[{}]'.format(dep.name, src.id.id)) pick_id = min(ids) dep.sources[src_id].state = State.Pick(pick_id, ids) elif state.is_pick(): pick_id, ids = state.value if not pick_id in ids: logger.debug('resolve:pick: picked version for {}[{}] no longer valid, resetting'.format( dep.name, src.id)) if dep.config: open_pending.update(dep.config.dependencies.keys()) any_change = True src.state = State.Open() while open_pending: opens, open_pending = open_pending, set() for dep_name in opens: logger.debug('resolve:pick: resetting {}'.format(dep_name)) dep = self.table[dep_name] for src in dep.source.values(): if not src.state.is_open(): any_change = True if dep.config: open_pending.update(dep.config.dependencies.keys()) src.state = State.Open() return any_change def close(self): logger.debug('resolve:close: computing closure over dependencies') enzi_io = EnziIO(self.enzi) econfigs: typing.List[typing.Tuple[str, EnziConfig]] = [] for dep in self.table.values(): src: DependencySource = dep.source() version = src.current_pick() if not version: continue econfig = enzi_io.dep_config_version(src.id, version) econfigs.append((dep.name, econfig)) for name, econfig in econfigs: if econfig: logger.debug('resolve:close: for {} load enzi configuration {}' .format(name, econfig.debug_str())) self.register_dep_in_config(econfig.dependencies, econfig) self.table[name].config = econfig def req_indices(self, name: str, con: DependencyConstraint, src: DependencySource): if con.is_version(): git_ver = src.versions con: GitVersions = con.value ids = dict(map(lambda eitem: (eitem[1], eitem[0]), enumerate(git_ver.revisions))) # logger.debug(ids) def try_match_ver(item): v, h = item if con.matches(v): return ids[h] else: return None revs = set(filter(lambda x: (not x is None), map( try_match_ver, git_ver.versions))) return revs elif con.is_revision(): git_ver = src.versions git_refs: dict = git_ver.refs git_revs: list = git_ver.revisions con: str = con.value revs = set() ref = git_refs.get(con, None) if ref: idx = git_revs.index(ref) revs.add(idx) else: enum_revs = enumerate(git_revs) revs_map = map( lambda item: item[0] if item[1].startswith(con) else None, enum_revs ) revs_filter = filter(lambda x: x, revs_map) revs = set(revs_filter) return revs else: raise RuntimeError("INTERNAL ERROR") def impose(self, name: str, con: DependencyConstraint, src: DependencySource, all_cons: list): indices = self.req_indices(name, con, src) if not indices: raise RuntimeError( 'Dependency {} from {} cannot statisfy requirement {}'.format( name, self.enzi.dependecy(src.id).source.git_url, str(con) )) def extract_id(state: State): if state.is_open(): raise RuntimeError('INTERNAL ERROR: unreachable, state = Open') elif state.is_locked(): raise RuntimeError('INTERNAL ERROR: unreachable') elif state.is_constrained() or state.is_pick(): ids = state.ids is_ids = ids.intersection(indices) if not is_ids: msg_buf = ["Requirement {} conflicts with other requirement on dependency
<reponame>sratgh/CarND-Capstone #!/usr/bin/env python import rospy from std_msgs.msg import Int32, Bool from geometry_msgs.msg import PoseStamped, Pose, TwistStamped from styx_msgs.msg import TrafficLightArray, TrafficLight from styx_msgs.msg import Lane, Waypoint from scipy.spatial import KDTree from sensor_msgs.msg import Image from cv_bridge import CvBridge from light_classification.tl_classifier import TLClassifier import tf import cv2 import yaml import os import sys import math import numpy as np # This calibration paramter debounces the light state # received from the camera, such that toggeling between # different states is avoided in case the tl_classifier # is not sure STATE_COUNT_THRESHOLD = 5 # This calibration paramter decides if images are saved # to the linux-filesystem. This may sacrifice some computational # power in favour of having the images for later analysis. SAVE_CAMERA_IMAGES_IS_ACTIVE = False # This calibration paramter decides if the traffic classifer # light classifer is used or the state of the traffic light # is taken from the simulator. Turn this to True only when # using the code in the simulator! USE_TRAFFIC_LIGHT_STATE_FROM_SIMULATOR = False # This calibration paramter renders the rate for # proceesing images and detecting traffic lights # It should be chosen by ansering the question how fast # do images change and traffic lights disappear? # Unit is Hz TRAFFIC_LIGHT_DETECTION_UPDATE_FREQUENCY = 2 # This calibration parameter allwos to tune the threshold in meters for paying # attention to the state of traffic light. Below that threshold, camea images # are processed, above this is not done. SAFE_DISTANCE_TO_TRAFFIC_LIGHT = 60 #80 SAFE_DISTANCE_TO_STOP_LINE = 40 # 60 # Distance to start decelerating. This distance is the threshold in meters for # starting to slow down the vehicle. This parameter is related with the definition # of the functions to define the reference velocity, thus, when modifing it, the # MID_POINT parameter in waypoint_updater must be modified also. This distance is # measured from the DISTANCE_START_DECELERATING = 120 # 180 # State machine parameters NUM_PREV_STATES = 5 # Number of previous states to be saved CRUISE = 1 DECELERATING = 2 STOPPED = 3 SPEEDING_UP = 4 class TLDetector(object): def __init__(self): rospy.init_node('tl_detector') self.pose = None self.waypoints = None self.camera_image = None self.lights = [] self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 self.directory_for_images = '/data/' self.image_counter = 0 self.image_counter_red = 0 self.image_counter_yellow = 0 self.image_counter_green = 0 self.tl_prev_states = [-1]*NUM_PREV_STATES # Save the last five states self.car_state = CRUISE self.current_vel = None self.counter_stopped = 0 sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.stop_line_positions = self.config['stop_line_positions'] self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.distance_to_traffic_light_pub = rospy.Publisher('/distance_to_traffic_light', Int32, queue_size=1) self.distance_to_stop_line_pub = rospy.Publisher('/distance_to_stop_line', Int32, queue_size=1) self.stopped_time_pub = rospy.Publisher('/stopped_time', Int32, queue_size=1)#JUST FOR DEBUGGING self.close_to_tl_pub = rospy.Publisher('/close_to_tl', Bool, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() try: self.light_classifier.load_model("light_classification/tl_classifier_mobilenet.h5") except ValueError: print("Cannot find classification model. Check if it exists.") USE_TRAFFIC_LIGHT_STATE_FROM_SIMULATOR = True rospy.loginfo("tl_detector: Since no classification model can be found, set USE_TRAFFIC_LIGHT_STATE_FROM_SIMULATOR to True") self.listener = tf.TransformListener() self.loop() #rospy.spin() def loop(self): """ This member function manages all threads inside the tl_detector node and makes the execution deterministic. """ rate = rospy.Rate(TRAFFIC_LIGHT_DETECTION_UPDATE_FREQUENCY) while not rospy.is_shutdown(): if not None in (self.waypoints, self.pose, self.camera_image): light_wp, state,close_to_tl = self.process_traffic_lights() output_light_wp = light_wp prev_state = self.car_state #rospy.loginfo('light_wp',light_wp,'prev_state',self.state) ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' ''' State machine ''' self.tl_prev_states.pop(0) self.tl_prev_states.append(state) # Counts the number of red light detections in the last NUM_PREV_STATES count_red = self.tl_prev_states.count(TrafficLight.RED) # Counts the number of green light detections in the last NUM_PREV_STATES count_green = self.tl_prev_states.count(TrafficLight.GREEN) pub_light_wp = -1 if (self.car_state == CRUISE) and (light_wp>=0): '''If it is in cruise and count_red is higher than the specified value our car starts decelerating''' self.car_state = DECELERATING self.last_wp = light_wp pub_light_wp = light_wp rospy.loginfo("tl_detector: DECELERATING") if (self.car_state == DECELERATING): pub_light_wp = self.last_wp #if (light_wp==-1): # self.car_state = SPEEDING_UP # pub_light_wp = -1 #if close_to_tl: #if (count_red>=3): # ''' If it is decelerating and detects red light, it updates the last_wp # in order to stop in the stop line''' # self.last_wp = light_wp # pub_light_wp = light_wp if (count_green>=5): ''' If it is decelerating but detects green light, it continues in cruise''' self.car_state = SPEEDING_UP pub_light_wp = -1 rospy.loginfo("tl_detector: SPEEDING_UP") if (abs(self.current_vel)<=0.5): ''' If it is decelerating and the velocity is lower than specified it goes to stopped state''' self.car_state = STOPPED rospy.loginfo("tl_detector: STOPPED") if (self.car_state == STOPPED): pub_light_wp = self.last_wp stopped_time = self.counter_stopped/TRAFFIC_LIGHT_DETECTION_UPDATE_FREQUENCY self.stopped_time_pub.publish(stopped_time) if (count_green>=5):# or stopped_time>30: ''' If it is stopped and our traffic light turns on green, it changes to speeding up''' self.car_state = SPEEDING_UP pub_light_wp = -1 rospy.loginfo("tl_detector: SPEEDING_UP") self.counter_stopped = 0 self.counter_stopped = self.counter_stopped + 1 if (self.car_state == SPEEDING_UP): pub_light_wp = -1 if self.beyond_tl(): '''If it is beyond the traffic light, it goes to cruise state''' self.car_state = CRUISE self.tl_prev_states = [-1]*NUM_PREV_STATES rospy.loginfo("tl_detector: CRUISE") #rospy.loginfo('prev_state %s'%prev_state+' state %s'%self.car_state+' prev_light_wp %s'%output_light_wp+' pub_light_wp %s'%pub_light_wp) #rospy.loginfo('light_wp',light_wp,'prev_state',self.state) self.upcoming_red_light_pub.publish(Int32(pub_light_wp)) self.close_to_tl_pub.publish(close_to_tl) ''' if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: self.last_state = self.state light_wp = light_wp if state == TrafficLight.RED else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 #else: # rospy.loginfo("tl_detector: Missing information, traffic light detection aborted.") ''' rate.sleep() def pose_cb(self, msg): """ This member function is called when pose is published in order to keep the current pose as a member variable. """ self.pose = msg def waypoints_cb(self, waypoints): """ This member function is called when waypoints is published in order to keep the waypoints as a member variable. """ self.waypoints = waypoints number_of_waypoints = len(self.waypoints.waypoints) #rospy.loginfo("tl_detector: Catched %d waypoints", number_of_waypoints) def traffic_cb(self, msg): """ This member function is called when the state of the traffic lights are published in order to keep is as a member variable. """ self.lights = msg.lights def image_cb(self, msg): """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ #rospy.loginfo("tl_detector: Catched an image.") self.has_image = True self.camera_image = msg if SAVE_CAMERA_IMAGES_IS_ACTIVE: self.save_image(msg) def save_image(self, img): """ This member function catches images and saves them to disc. Arguments: img: The image from the simulator. """ curr_dir = os.path.dirname(os.path.realpath(__file__)) img.encoding = "rgb8" cv_image = CvBridge().imgmsg_to_cv2(img, "bgr8") # pred_img = self.light_classifier.preprocess_image(img=cv_image) pred_img = cv2.resize(cv_image, (224,224)) # pred_img = np.array(img).astype('float32')/255 # pred_img = np.expand_dims(img, axis=0) file_name = curr_dir + self.directory_for_images+ 'none/img_'+'%06d'% self.image_counter +'.png' self.image_counter += 1 stop_line_waypoint_index = -1 state_of_traffic_light = TrafficLight.UNKNOWN light = None stop_line_position = None stop_line_waypoint_index = None distance = lambda a,b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) if not None in (self.waypoints, self.pose): vehicle_index = self.get_index_of_closest_waypoint_to_current_pose(self.pose.pose.position) vehicle_position = self.waypoints.waypoints[vehicle_index].pose.pose.position traffic_light_index = self.get_index_of_closest_traffic_light_to_current_pose(vehicle_position) if traffic_light_index >= 0: traffic_light_waypoint_index = self.get_index_of_closest_waypoint_to_current_pose(self.lights[traffic_light_index].pose.pose.position) traffic_light_position = self.waypoints.waypoints[traffic_light_waypoint_index].pose.pose.position if traffic_light_waypoint_index > vehicle_index: distance_to_traffic_light = distance(vehicle_position, traffic_light_position) if distance_to_traffic_light < SAFE_DISTANCE_TO_TRAFFIC_LIGHT * 2 and distance_to_traffic_light > 15: traffic_light_state = self.lights[traffic_light_index].state if traffic_light_state == TrafficLight.RED: file_name = curr_dir + self.directory_for_images+ 'red/img_'+'%06d'% self.image_counter_red +'.png' self.image_counter_red += 1 self.image_counter -= 1 cv2.imwrite(file_name, pred_img) elif traffic_light_state == TrafficLight.YELLOW: file_name = curr_dir + self.directory_for_images+ 'yellow/img_'+'%06d'% self.image_counter_yellow +'.png' self.image_counter_yellow += 1 self.image_counter -= 1 cv2.imwrite(file_name, pred_img) elif traffic_light_state == TrafficLight.GREEN: file_name = curr_dir + self.directory_for_images+ 'green/img_'+'%06d'% self.image_counter_green +'.png' self.image_counter_green += 1 self.image_counter -= 1 cv2.imwrite(file_name, pred_img) if self.image_counter % 4 == 0: cv2.imwrite(file_name, pred_img) # self.image_counter += 1 # rospy.loginfo("tl_detector.py: Camera image saved to %s!", file_name) def get_light_state(self, light): """ This member function determines the current color of the traffic light. Arguments: light (TrafficLight): light to classify Returns: int:
= [] local_var_files = {} if 'custom_signature_id' in params: form_params.append(('custom_signature_id', params['custom_signature_id'])) body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/vnd.api+json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/vnd.api+json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CustomSignatureDefinition', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete(self, id, **kwargs): """ Delete a(n) Custom Signature Definition This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Custom Signature Definition ID (required) :return: Meta If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_with_http_info(id, **kwargs) else: (data) = self.delete_with_http_info(id, **kwargs) return data def delete_with_http_info(self, id, **kwargs): """ Delete a(n) Custom Signature Definition This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Custom Signature Definition ID (required) :return: Meta If the method is called asynchronously, returns the request thread. """ all_params = ['id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `delete`") collection_formats = {} resource_path = '/api/v2/custom_signature_definitions/{id}.json_api'.replace('{format}', 'json_api') path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/vnd.api+json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/vnd.api+json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Meta', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list(self, **kwargs): """ Get a list of Custom Signature Definitions This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str include: Related objects that can be included in the response: custom_signature, results See Including Objects for more information. :param dict(str, str) filter: Filter Params for Searching. Equality Searchable Attributes: [id, language, status, version_number] Searchable Association: [custom_signature] See Searching Lists for more information. See the filter parameter of the association's list action to see what attributes are searchable on each association. See Conditions on Relationships in Searching Lists for more information. :param str page: Page Number and Page Size. Number is the page number of the collection to return, size is the number of items to return per page. :return: PaginatedCollection If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_with_http_info(**kwargs) else: (data) = self.list_with_http_info(**kwargs) return data def list_with_http_info(self, **kwargs): """ Get a list of Custom Signature Definitions This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str include: Related objects that can be included in the response: custom_signature, results See Including Objects for more information. :param dict(str, str) filter: Filter Params for Searching. Equality Searchable Attributes: [id, language, status, version_number] Searchable Association: [custom_signature] See Searching Lists for more information. See the filter parameter of the association's list action to see what attributes are searchable on each association. See Conditions on Relationships in Searching Lists for more information. :param str page: Page Number and Page Size. Number is the page number of the collection to return, size is the number of items to return per page. :return: PaginatedCollection If the method is called asynchronously, returns the request thread. """ all_params = ['include', 'filter', 'page'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/api/v2/custom_signature_definitions.json_api'.replace('{format}', 'json_api') path_params = {} query_params = {} if 'include' in params: query_params['include'] = params['include'] header_params = {} form_params = [] local_var_files = {} if 'filter' in params: form_params.append(('filter', params['filter'])) if 'page' in params: form_params.append(('page', params['page'])) body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/vnd.api+json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/vnd.api+json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PaginatedCollection', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def show(self, id, **kwargs): """ Show a single Custom Signature Definition This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.show(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Custom Signature Definition ID (required) :param str include: Related objects that can be included in the response: custom_signature, results See Including Objects for more information. :return: CustomSignatureDefinition If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.show_with_http_info(id, **kwargs) else: (data) = self.show_with_http_info(id, **kwargs) return data def show_with_http_info(self, id, **kwargs): """ Show a single Custom Signature Definition This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.show_with_http_info(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Custom Signature Definition ID (required) :param str include: Related objects that can be included in the response: custom_signature, results See Including Objects for more information. :return: CustomSignatureDefinition If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'include'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method show" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `show`") collection_formats = {} resource_path = '/api/v2/custom_signature_definitions/{id}.json_api'.replace('{format}', 'json_api') path_params = {} if 'id' in params: path_params['id'] = params['id'] query_params = {} if 'include' in params: query_params['include'] = params['include'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/vnd.api+json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/vnd.api+json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CustomSignatureDefinition', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update(self, id, **kwargs): """ Update a(n) Custom Signature Definition This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update(id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: Custom Signature Definition ID (required) :param str include: Related
{'Type': 'Digital', 'x': 1189, 'y': 1752, 'width': 1032}, # Bottom hat down 'Joy_7': {'Type': 'Digital', 'x': 1189, 'y': 1808, 'width': 1032}, # Bottom hat left 'Joy_8': {'Type': 'Digital', 'x': 1189, 'y': 1640, 'width': 1032}, # Bottom hat up 'Joy_9': {'Type': 'Digital', 'x': 1198, 'y': 1275, 'width': 832}, # Rear hat down 'Joy_10': {'Type': 'Digital', 'x': 1198, 'y': 1219, 'width': 832}, # Rear hat right 'Joy_11': {'Type': 'Digital', 'x': 1198, 'y': 1163, 'width': 832}, # Rear hat up 'Joy_12': {'Type': 'Digital', 'x': 1198, 'y': 1331, 'width': 832}, # Rear hat left 'Joy_13': {'Type': 'Digital', 'x': 1261, 'y': 1549, 'width': 932}, # Mouse button 'Joy_14': {'Type': 'Digital', 'x': 1042, 'y': 814, 'width': 892}, # Right back 'Joy_15': {'Type': 'Digital', 'x': 904, 'y': 724, 'width': 892}, # Middle back 'Joy_16': {'Type': 'Digital', 'x': 684, 'y': 634, 'width': 892}, # Left back 'Joy_POV1Up': {'Type': 'Digital', 'x': 132, 'y': 1896, 'width': 932}, # PoV hat up (looks like witch hat) 'Joy_POV1Right': {'Type': 'Digital', 'x': 132, 'y': 1952, 'width': 932}, # PoV hat right (looks like witch hat) 'Joy_POV1Down': {'Type': 'Digital', 'x': 132, 'y': 2008, 'width': 932}, # PoV hat down (looks like witch hat) 'Joy_POV1Left': {'Type': 'Digital', 'x': 132, 'y': 1840, 'width': 932}, # PoV hat left (looks like witch hat) 'Joy_XAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1493, 'width': 932}, # Mouse X axis 'Joy_YAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1437, 'width': 932}, # Mouse Y axis 'Joy_ZAxis': {'Type': 'Analogue', 'x': 80, 'y': 714, 'width': 692}, # Throttle }, 'CHProThrottle2': { # CH Pro Throttle with CH manager 'Joy_1': {'Type': 'Digital', 'x': 1261, 'y': 1549, 'width': 932}, # Mouse button 'Joy_2': {'Type': 'Digital', 'x': 1042, 'y': 814, 'width': 892}, # Right back 'Joy_3': {'Type': 'Digital', 'x': 904, 'y': 724, 'width': 892}, # Middle back 'Joy_4': {'Type': 'Digital', 'x': 684, 'y': 634, 'width': 892}, # Left back 'Joy_5': {'Type': 'Digital', 'x': 1198, 'y': 1275, 'width': 832}, # Rear hat down 'Joy_6': {'Type': 'Digital', 'x': 1198, 'y': 1219, 'width': 832}, # Rear hat right 'Joy_7': {'Type': 'Digital', 'x': 1198, 'y': 1163, 'width': 832}, # Rear hat up 'Joy_8': {'Type': 'Digital', 'x': 1198, 'y': 1331, 'width': 832}, # Rear hat left 'Joy_9': {'Type': 'Digital', 'x': 1114, 'y': 966, 'width': 832}, # Castle hat right 'Joy_10': {'Type': 'Digital', 'x': 1114, 'y': 1022, 'width': 832}, # Castle hat down 'Joy_11': {'Type': 'Digital', 'x': 1114, 'y': 1078, 'width': 832}, # Castle hat left 'Joy_12': {'Type': 'Digital', 'x': 1114, 'y': 910, 'width': 832}, # Castle hat up 'Joy_13': {'Type': 'Digital', 'x': 1189, 'y': 1696, 'width': 1032}, # Bottom hat right 'Joy_14': {'Type': 'Digital', 'x': 1189, 'y': 1752, 'width': 1032}, # Bottom hat down 'Joy_15': {'Type': 'Digital', 'x': 1189, 'y': 1808, 'width': 1032}, # Bottom hat left 'Joy_16': {'Type': 'Digital', 'x': 1189, 'y': 1640, 'width': 1032}, # Bottom hat up 'Joy_POV1Up': {'Type': 'Digital', 'x': 132, 'y': 1896, 'width': 932}, # PoV hat up (looks like witch hat) 'Joy_POV1Right': {'Type': 'Digital', 'x': 132, 'y': 1952, 'width': 932}, # PoV hat right (looks like witch hat) 'Joy_POV1Down': {'Type': 'Digital', 'x': 132, 'y': 2008, 'width': 932}, # PoV hat down (looks like witch hat) 'Joy_POV1Left': {'Type': 'Digital', 'x': 132, 'y': 1840, 'width': 932}, # PoV hat left (looks like witch hat) 'Joy_XAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1493, 'width': 932}, # Mouse X axis 'Joy_YAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1437, 'width': 932}, # Mouse Y axis 'Joy_ZAxis': {'Type': 'Analogue', 'x': 80, 'y': 714, 'width': 692}, # Throttle }, '068EC010': { # CH Pro Throttle with CH manager, alternate 'displayName': 'CH Pro Throttle with CH manager, alternate', 'Joy_1': {'Type': 'Digital', 'x': 1261, 'y': 1549, 'width': 932}, # Mouse button 'Joy_2': {'Type': 'Digital', 'x': 1042, 'y': 814, 'width': 892}, # Right back 'Joy_3': {'Type': 'Digital', 'x': 904, 'y': 724, 'width': 892}, # Middle back 'Joy_4': {'Type': 'Digital', 'x': 684, 'y': 634, 'width': 892}, # Left back 'Joy_5': {'Type': 'Digital', 'x': 1198, 'y': 1275, 'width': 832}, # Rear hat down 'Joy_6': {'Type': 'Digital', 'x': 1198, 'y': 1219, 'width': 832}, # Rear hat right 'Joy_7': {'Type': 'Digital', 'x': 1198, 'y': 1163, 'width': 832}, # Rear hat up 'Joy_8': {'Type': 'Digital', 'x': 1198, 'y': 1331, 'width': 832}, # Rear hat left 'Joy_9': {'Type': 'Digital', 'x': 1114, 'y': 966, 'width': 832}, # Castle hat right 'Joy_10': {'Type': 'Digital', 'x': 1114, 'y': 1022, 'width': 832}, # Castle hat down 'Joy_11': {'Type': 'Digital', 'x': 1114, 'y': 1078, 'width': 832}, # Castle hat left 'Joy_12': {'Type': 'Digital', 'x': 1114, 'y': 910, 'width': 832}, # Castle hat up 'Joy_13': {'Type': 'Digital', 'x': 1189, 'y': 1696, 'width': 1032}, # Bottom hat right 'Joy_14': {'Type': 'Digital', 'x': 1189, 'y': 1752, 'width': 1032}, # Bottom hat down 'Joy_15': {'Type': 'Digital', 'x': 1189, 'y': 1808, 'width': 1032}, # Bottom hat left 'Joy_16': {'Type': 'Digital', 'x': 1189, 'y': 1640, 'width': 1032}, # Bottom hat up 'Joy_POV1Up': {'Type': 'Digital', 'x': 132, 'y': 1896, 'width': 932}, # PoV hat up (looks like witch hat) 'Joy_POV1Right': {'Type': 'Digital', 'x': 132, 'y': 1952, 'width': 932}, # PoV hat right (looks like witch hat) 'Joy_POV1Down': {'Type': 'Digital', 'x': 132, 'y': 2008, 'width': 932}, # PoV hat down (looks like witch hat) 'Joy_POV1Left': {'Type': 'Digital', 'x': 132, 'y': 1840, 'width': 932}, # PoV hat left (looks like witch hat) 'Joy_XAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1493, 'width': 932}, # Mouse X axis 'Joy_YAxis': {'Type': 'Analogue', 'x': 1261, 'y': 1437, 'width': 932}, # Mouse Y axis 'Joy_ZAxis': {'Type': 'Analogue', 'x': 80, 'y': 714, 'width': 692}, # Throttle }, '068E00FA': { # CH Quadrant throttle 'displayName': 'CH Quadrant throttle', 'Joy_XAxis': {'Type': 'Analogue', 'x': 354, 'y': 804, 'width': 932}, # Throttle 1 'Joy_YAxis': {'Type': 'Analogue', 'x': 554, 'y': 564, 'width': 932}, # Throttle 2 'Joy_ZAxis': {'Type': 'Analogue', 'x': 754, 'y': 324, 'width': 932}, # Throttle 3 'Joy_RXAxis': {'Type': 'Analogue', 'x': 2214, 'y': 324, 'width': 932}, # Throttle 4 'Joy_RYAxis': {'Type': 'Analogue', 'x': 2414, 'y': 564, 'width': 932}, # Throttle 5 'Joy_RZAxis': {'Type': 'Analogue', 'x': 2614, 'y': 804, 'width': 932}, # Throttle 6 'Joy_1': {'Type': 'Digital', 'x': 354, 'y': 1484, 'width': 932}, # Switch 1 up 'Joy_2': {'Type': 'Digital', 'x': 354, 'y': 1540, 'width': 932}, # Switch 1 down 'Joy_3': {'Type': 'Digital', 'x': 554, 'y': 1724, 'width': 932}, # Switch 2 up 'Joy_4': {'Type': 'Digital', 'x': 554, 'y': 1780, 'width': 932}, # Switch 2 down 'Joy_5': {'Type': 'Digital', 'x': 754, 'y': 1964, 'width': 932}, # Switch 3 up 'Joy_6': {'Type': 'Digital', 'x': 754, 'y': 2020, 'width': 932}, # Switch 3 down 'Joy_7': {'Type': 'Digital', 'x': 2214, 'y': 1964, 'width': 932}, # Switch 4 up 'Joy_8': {'Type': 'Digital', 'x': 2214, 'y': 2020, 'width': 932}, # Switch 4 down 'Joy_9': {'Type': 'Digital', 'x': 2414, 'y': 1724, 'width': 932}, # Switch 5 up 'Joy_10': {'Type': 'Digital', 'x': 2414, 'y': 1780, 'width': 932}, # Switch 5 down 'Joy_11': {'Type': 'Digital', 'x': 2614, 'y': 1484, 'width': 932}, # Switch 6 up 'Joy_12': {'Type': 'Digital', 'x': 2614, 'y': 1540, 'width': 932}, # Switch 6 down }, '06A30C2D': { # CH Pro Flight Quadrant throttle 'displayName': 'CH Pro Flight Quadrant throttle', 'Joy_XAxis': {'Type': 'Analogue', 'x': 554, 'y': 564, 'width': 932}, # Throttle 1 'Joy_YAxis': {'Type': 'Analogue', 'x': 1474, 'y': 324, 'width': 932}, # Throttle 2 'Joy_ZAxis': {'Type': 'Analogue', 'x': 2414, 'y': 564, 'width': 932}, # Throttle 3 'Joy_1': {'Type': 'Digital', 'x': 354, 'y': 1484, 'width': 932}, # Switch 1 up 'Joy_2': {'Type': 'Digital', 'x': 354, 'y': 1540, 'width': 932}, # Switch 1 down 'Joy_3': {'Type': 'Digital', 'x': 1474, 'y': 1754, 'width': 932}, # Switch 2 up 'Joy_4': {'Type': 'Digital', 'x': 1474, 'y': 1810, 'width': 932}, # Switch 2 down 'Joy_5': {'Type': 'Digital', 'x': 2614, 'y': 1484, 'width': 932}, # Switch 3 up 'Joy_6': {'Type': 'Digital', 'x': 2614, 'y': 1540, 'width': 932}, # Switch 3 down }, 'ThrustMasterHOTAS4': { 'Joy_1': {'Type': 'Digital', 'x': 1394, 'y': 614, 'width': 1082}, # Stick primary trigger 'Joy_2': {'Type': 'Digital', 'x': 2114, 'y':
{} self.point_db = {} self.gs = None self._ref_gs = GeometrySearch(GEO_FILL_LENGTH, use_dist=True, perform_self_testing=perform_self_testing) self._ref_way_db = {} self._way_db_iter = None self._way_db_sub_iter = None self._perform_self_testing = perform_self_testing # Expected properties of 'reference_geometry': # # - All points in a ways that should be connected are close (within SNAP_POINT_DISTANCE) # from a point in the connecting way, which is an endpoint # - No overlaps or duplicates # - There may be very short segments (cleaned up) # - Segments with the same RLID may sometimes be disconnected # - There may be closed ways (start and end point the same), but no self-crossing ways # # After processing: # - Any points closer than SNAP_POINT_DISTANCE have been merged to a single point # - Segments with same RLID has been connected to as long segments as possible # - Store in a GeometrySearch object with distance on each point # # group segments per RLID, and register all endpoints and midpoints (=non-endpoints) for searching rlid_ways = {} endpoints = TwoDimSearch() point_count = 0 last_print = 0 _log.info("Setting up endpoint 2D search data structures...") for idx, way in enumerate(reference_geometry): last_print = print_progress(last_print, idx, len(reference_geometry), progress_text="endpoint 2D search data structures") for ep in (way.way[0], way.way[-1]): endpoints.insert(ep, way) point_count += len(way.way) if way.rlid in rlid_ways: rlid_ways[way.rlid].append(way) else: rlid_ways[way.rlid] = [way] _log.info(f"({len(endpoints)} endpoints of {point_count} total points)") _log.info("Snap points to nearby endpoints.") # Due to snapping we may introduce duplicate points in the ways, which is ok as we # remove them later. ep_count, mp_count = self._snap_points_to_nearby_endpoints(rlid_ways, endpoints) _log.info(f"done (snapped {ep_count} endpoints and {mp_count} midpoints)") # In rare cases DKReflinjetillkomst has lines cut short, we try to connect those _log.info("Snap still unconnected endpoints to nearby points by extension...") ep_count = 0 uc_count = 0 second_pass = [] midpoints = TwoDimSearch() for ways in rlid_ways.values(): for way in ways: for mp in way.way[1:-1]: midpoints.insert(mp, way) for ways in rlid_ways.values(): for way in ways: if way.way[0] == way.way[-1]: continue # makes no sense to extend-snap closed loops for way_idx in [ 0, -1 ]: if len(endpoints[way.way[way_idx]]) > 1: # already connected continue uc_count += 1 min_ext_dist, min_dev_dist, p = extend_and_snap(way.way, way_idx == 0, endpoints, midpoints, self.POINT_SNAP_DISTANCE, self.MAX_SNAP_DISTANCE) if p is None: continue if min_dev_dist > 1e-5: # keep very tight limit on first pass so we extend in the right order second_pass.append(way) continue _log.info(f"extend snap ext:{min_ext_dist:g} dev:{min_dev_dist:g} for RLID {way.rlid}" f" at {latlon_str(p)}") endpoints.remove(way.way[way_idx], way) # must be removed before midpoint test below so we don't snap to ourself if p in midpoints: # for midpoints it may be better to snap to an endpoint instead p = self._snap_to_nearby_point(p, endpoints, self.MAX_SNAP_DISTANCE) endpoints.insert(p, way) way.way[way_idx] = Point(p.x, p.y) ep_count += 1 for way in second_pass: for way_idx in [ 0, -1 ]: if len(endpoints[way.way[way_idx]]) > 1: continue min_ext_dist, min_dev_dist, p = extend_and_snap(way.way, way_idx == 0, endpoints, midpoints, self.POINT_SNAP_DISTANCE, self.MAX_SNAP_DISTANCE) if p is None: continue _log.info(f"extend snap ext:{min_ext_dist:g} dev:{min_dev_dist:g} for RLID {way.rlid} at {latlon_str(p)}") endpoints.remove(way.way[way_idx], way) if p in midpoints: p = self._snap_to_nearby_point(p, endpoints, self.MAX_SNAP_DISTANCE) endpoints.insert(p, way) way.way[way_idx] = Point(p.x, p.y) ep_count += 1 _log.info(f"done (snapped {ep_count} endpoints, {uc_count - ep_count} still unconnected)") if ep_count > 0: _log.warning("extend snaps typically means that there are gaps in the data source's geometry") if self._perform_self_testing: for ways in rlid_ways.values(): for way in ways: for ep in [ way.way[0], way.way[-1] ]: dist, new_point, _ = endpoints.find_nearest_within(ep, self.POINT_SNAP_DISTANCE, exclude_self=True) if new_point is not None: _log.error(f"endpoints placed too closely together: {dist}, {ep}, {new_point}") raise RuntimeError("endpoints placed too closely together") _log.info("Join segments with same RLID and insert to search data structure...") self._insert_into_reference_geometry(rlid_ways, endpoints) _log.info("done") def __iter__(self): self._way_db_iter = iter(self.way_db.values()) self._way_db_sub_iter = None return self def __next__(self): if self._way_db_sub_iter is None: ways = next(self._way_db_iter) # when StopIteration is raised iteration is complete self._way_db_sub_iter = iter(ways) try: way = next(self._way_db_sub_iter) return way except StopIteration: self._way_db_sub_iter = None return self.__next__() @staticmethod def _snap_to_nearby_point(p, snappoints, snap_distance): _, snap, _ = snappoints.find_nearest_within(p, snap_distance, exclude_self=True) if snap is None: return p return snap def _snap_points_to_nearby_endpoints(self, rlid_ways, endpoints): ep_count = 0 mp_count = 0 midpoints = [] prev_count = -1 pass_count = 0 while pass_count < 2 or prev_count != ep_count + mp_count: snapped_points = set() prev_count = ep_count + mp_count if pass_count == 0: # snap really close one first to make sure we don't make a unnecessarily long snap snap_distance = 0.001 else: snap_distance = self.POINT_SNAP_DISTANCE for ways in rlid_ways.values(): for way in ways: for way_idx in range(0, len(way.way)): is_midpoint = way_idx not in (0, len(way.way) - 1) ep_list = endpoints.find_all_within_list(way.way[way_idx], snap_distance) if len(ep_list) == 0: # the own endpoint is expected to exist in endpoints set assert is_midpoint continue if len(ep_list) == 1 and not is_midpoint: assert ep_list[0][0] == way.way[way_idx] continue new_point = ep_list[0][0] if pass_count == 0: # first pass we can pick any point due to short snap distance snapped_points.add(new_point) else: # prefer to snap to a point already snapped for ep in ep_list: if ep[0] in snapped_points: new_point = ep[0] break # move all the nearby endpoints to the point we have chosen for snapping (new_point) for ep in ep_list: old_point = ep[0] if old_point == new_point: continue ep_set = ep[1] endpoints.remove_set(old_point) for w in ep_set: if w.way[0] == old_point: w.way[0] = Point(new_point.x, new_point.y) if w.way[-1] == old_point: w.way[-1] = Point(new_point.x, new_point.y) assert new_point in (w.way[0], w.way[-1]) ep_count += 1 endpoints.insert(new_point, w) midpoints.append((way_idx, way)) if way.way[way_idx] != new_point: assert is_midpoint way.way[way_idx] = Point(new_point.x, new_point.y) mp_count += 1 _log.debug(f"snap_counts {mp_count} {ep_count}") pass_count += 1 # also add connected midpoints, we need to do it here afterwards to not disturb the multiple pass endpoint snapping # FIXME: modifying contents and meaning of endpoints is a hard-to-follow side effect for mp in midpoints: idx = mp[0] way = mp[1] endpoints.insert(way.way[idx], way) return ep_count, mp_count def _insert_into_reference_geometry(self, rlid_ways, endpoints): last_print = 0 for idx, ways in enumerate(rlid_ways.values()): if len(rlid_ways) > 50: last_print = print_progress(last_print, idx, len(rlid_ways), progress_text="Join segments") # make longest possible ways of RLID segments joined_ways = join_ways(ways) joined_ways = join_DKReflinjetillkomst_gaps(joined_ways) joined_ways = remove_DKReflinjetillkomst_overlaps(joined_ways, self.POINT_SNAP_DISTANCE) for way in joined_ways: # very short segments lead to problems with snapping (can cause gaps where there should not be any) new_way = remove_short_segments_and_redundant_points(way, self.POINT_SNAP_DISTANCE, endpoints) if len(new_way) < 2: _log.debug(f"Skipping zero length segment for {way.rlid}") continue assert new_way[0] == way.way[0] and new_way[-1] == way.way[-1] way.way = new_way test_self_connections(way) if self._perform_self_testing: self._test_way_dist(way, allow_unset=True) self._ref_gs.insert(way) self._test_way_dist(self._ref_gs.find_reference_way(way.way[0], way.rlid)) if way.rlid in self._ref_way_db: self._ref_way_db[way.rlid].append(way) else: self._ref_way_db[way.rlid] = [ way ] def get_reference_geometry(self): ref_ways = [] for ways in self._ref_way_db.values(): for way in ways: ref_ways.append(way) return ref_ways def insert_missing_reference_geometry_if_any(self, geometry_ways): missing_ways = {} for way in geometry_ways: if not way.rlid in self._ref_way_db: wc = way.make_copy_new_way(copy_way(way.way)) if way.rlid in missing_ways: missing_ways[way.rlid].append(wc) else: missing_ways[way.rlid] = [ wc ] if len(missing_ways) == 0: return False # snap endpoints to self endpoints = TwoDimSearch() rlids = [] for ways in list(missing_ways.values()): # this type of geometry may have overlaps, so we pre-join using NVDB tags ways = join_ways_using_nvdb_tags(ways, self.POINT_SNAP_DISTANCE) missing_ways[ways[0].rlid] = ways rlids.append(ways[0].rlid) for way in ways: for ep in [ way.way[0], way.way[-1] ]: endpoints.insert(ep, way) self._snap_points_to_nearby_endpoints(missing_ways, endpoints) self._insert_into_reference_geometry(missing_ways, endpoints) # Missing segments may be missing because they have been snapped to zero and thus excluded. # If that is the case they won't be reinserted either, so we only log after the insertion # we we know if any actually got in. did_insert = False for rlid in rlids: if rlid in self._ref_way_db: _log.warning(f"RLID {rlid} was not in reference geometry, inserted it.") did_insert = True return did_insert def insert_rlid_node(self, node, data_src_name, do_snap=True): did_snap = False if do_snap: dist, p, snap_way = self._ref_gs.snap_point_into_geometry(node.way, self.POINT_SNAP_DISTANCE, self.MAX_SNAP_DISTANCE) if p is None: _log.warning(f"node with RLID {node.rlid} {latlon_str(node.way)} in {data_src_name} has no" f" existing geometry within {self.MAX_SNAP_DISTANCE} meters") else: did_snap = True if dist > self.POINT_SNAP_DISTANCE: _log.info("Node %s snap distance %s", node.rlid, dist) node.way.x = p[0] node.way.y =
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2016 Pluralsight, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of various Maximum Likelihood Estimation methods The various methods below fit a logistic functions to the binned response percentiles for each questions. The input data is for a single question and consists of theta, r, and f; theta: a regularly spaced set of ability levels r: the number of correct responses for each ability group in theta f: the total number of responses for each ability group in theta Percentages (p) are just r/f (However, I have now refactored the code to eliminate this division, which may help some /0 headaches and should make it easier to extend this to possibly more generic methods in the future (perhaps a KDE-based one?)) a is the discriminatory power (slope): larger lambda means more discrimination (closer for a step-function) b is the difficulty, the location parameter (offset along the x-axis) c is the pseudo-guesing parameter (lower asymptotote) d is the upper asymptote (not used here) lamdba (or lam) is the same as a zeta is the adjusted difficulty, -a * b (conversely, b = -zeta / lam) The original equality is: zeta + lam * theta == a * (theta - b) Code is based on work by <NAME> and <NAME>: Item Response Theory: Parameter Estimation Techniques http://www.crcpress.com/product/isbn/9780824758257 The original BASIC code that this was ported from can be downloaded here: http://www.crcpress.com/downloads/DK2939/IRTPET.zip Some more documentation: Main equation for partial derivative of log-likelihood dL / dx \\frac{\\partial L}{\\partial x} = \\sum \\frac{1}{P}\\frac{\\partial P}{\\partial x} - \\sum (f - r)}\\frac{1}{1 - P}\\frac{\\partial P}{\\partial x} All these algorithms minimize L and look for zeros in dL / dx The differences in the methods have to do with how P is defined. This version uses the 3PL (a, b, c) formulation for everything, which has different properties than the (zeta, lambda, c) formulation (in general the former is less stable). If you know nothing, use the main zlc formulation and ignore this one :) """ from __future__ import division import numpy as np from scipy.optimize import root # , minimize from .util import ( ConvergenceError, dev_ab, logistic, scale_guessing, logistic3PLabc, chi_squared, reduced_chi_squared, expand_dims, pack_abc, unpack_abc, get_L_abc, ) ######################################################################## ## Functions to compute 1st and 2nd derivatives of the likelihood ## for the 1, 2, & 3 parameter logistic models ## For consistency, all functions now use: np.nansum( [<>] , axis=1 or 2) ######################################################################## def J_1PL(theta, r, f, P, a, b, c=0, Pstar=None): """Get the Jacobian of the log likelihood for the 1PL model (1st derivative wrt b) a here is an ARRAY, not a scalar """ a = a * np.ones(P.shape) # force a to be an array theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P Prat = 1 if Pstar is None else Pstar / P L2 = -a * rmfP * Prat return np.nansum([L2], axis=1) def H_1PL(theta, r, f, P, a, b, c=0, Pstar=None): """Get the Hessian Matrix of the log likelihood for the 1PL model (2nd derivative wrt b) """ theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P Q = 1 - P Pstar, Prat = (P, 1) if Pstar is None else (Pstar, Pstar / P) EL22 = -(a ** 2) * f * Prat * Pstar * Q return np.nansum([[EL22]], axis=2) def J_2PL(theta, r, f, P, a, b, c=0, Pstar=None): """Get the Jacobian of the log likelihood for the 2PL model (1st derivatives wrt a,b) a here is an ARRAY, not a scalar """ a = a * np.ones(P.shape) # force a to be an array theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P Prat = 1 if Pstar is None else Pstar / P thmb = theta - b L1, L2 = np.array([thmb, -a]) * rmfP * Prat return np.nansum([L1, L2], axis=1) def H_2PL(theta, r, f, P, a, b, c=0, Pstar=None): """Get the Hessian Matrix of the log likelihood for the 2PL model (2nd derivative wrt a,b) """ theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P Q = 1 - P Pstar, Prat = (P, 1) if Pstar is None else (Pstar, Pstar / P) thmb = theta - b EL11, EL22, EL12 = np.array([thmb ** 2, -(a ** 2), a * thmb]) * f * Prat * Pstar * Q return np.nansum([[EL11, EL12], [EL12, EL22]], axis=2) def J_3PL(theta, r, f, P, a, b, c, Pstar): """Get the Jacobian of the log likelihood for the 3PL model (1st derivatives wrt a,b,c) a here is an ARRAY, not a scalar """ a = a * np.ones(P.shape) # force a to be an array theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P iPc = 1 / (P - c) Prat = Pstar / P thmb = theta - b L1, L2, L3 = np.array([thmb, -a, iPc]) * rmfP * Prat return np.nansum([L1, L2, L3], axis=1) def H_3PL(theta, r, f, P, a, b, c, Pstar): """Get the Hessian Matrix of the log likelihood for the 3PL model (2nd derivative wrt a,b,c) """ theta, r, f = expand_dims(P, theta, r, f) rmfP = r - f * P iPc = 1 / (P - c) Q = 1 - P Qic = Q / (1 - c) Prat = Pstar / P thmb = theta - b EL11, EL22, EL33 = ( np.array([-P * Q * thmb ** 2 * Prat, -(a ** 2) * P * Q * Prat, Qic * iPc]) * f * Prat ) EL12, EL13, EL23 = ( np.array([a * thmb * P * Q * Prat, -thmb * Qic, a * Qic]) * f * Prat ) return np.nansum( [[EL11, EL12, EL13], [EL12, EL22, EL23], [EL13, EL23, EL33]], axis=2 ) ######################################################################## ## Compute optimal values for the fit parameters using ## maximum likelihood estimation in the 1PL, 2PL, and 3PL cases: ######################################################################## JH = {1: (J_1PL, H_1PL), 2: (J_2PL, H_2PL), 3: (J_3PL, H_3PL)} def get_derivative_L(num_params, theta, r, f, a=None, b=None, c=None, do2nd=False): DL = JH[num_params][do2nd] def derivative_L(abc): _a, _b, _c = unpack_abc(a, b, c, abc) # unpack the parameters Pstar = logistic(dev_ab(_a, _b, theta)) P = scale_guessing(Pstar, _c) return DL(theta, r, f, P, _a, _b, _c, Pstar) return derivative_L def get_JL(num_params, theta, r, f, a=None, b=None, c=None): return get_derivative_L(num_params, theta, r, f, a, b, c, do2nd=False) def get_HL(num_params, theta, r, f, a=None, b=None, c=None): return get_derivative_L(num_params, theta, r, f, a, b, c, do2nd=True) def mle_abc( num_params, theta, r, f, a, b, c, use_2nd=False, force_convergence=True, method=None, return_history=False, verbose=True, ): """Perform logistic ICC model parameter estimation using MLE Based on theoretical foundations for the 3PL model in "Item Response Theory: Parameter Estimation Techniques" This function is capable of performing 1PL, 2PL or 3PL depending on the value passed as "num_params" If return_history is True, this additionally stores and returns the history of abc values. """ theta, r, f = list(map(np.asanyarray, [theta, r, f])) # ensure these are arrays count = [0] # Get the Jacobian (1st derivatives) of the log likelihood function # based on current values of the a, b, c parameters. # if use_2nd=True, also return the Hessian (2nd derivatives) J, H = JH[num_params] if return_history: abc_hist = [] A, B, C = a, b, c def JL(params): count[0] += 1 # unpack the parameters a, b, c = unpack_abc(A, B, C, params) Pstar = logistic(dev_ab(a, b, theta)) P = scale_guessing(Pstar, c) if c == 0 and num_params < 3: Pstar = None # optimize :) JLL = J(theta, r, f,
<reponame>jaxsbin/shangmi<gh_stars>1-10 # -*- coding: utf-8 -*- from django.conf import settings from itsdangerous import URLSafeTimedSerializer as utsr from django.db import connection from django.utils import timezone from django.http import HttpResponse, QueryDict import base64 import requests import six import models import socket import hashlib import xmltodict import json from datetime import datetime def sign(params, sign_key="<KEY>"): method = params.get('method') params = [(u'%s' % key, u'%s' % val) for key, val in params.iteritems() if val] params = sorted(params) sorted_params_string = ''.join(''.join(pair) for pair in params) sign_str = method + sorted_params_string + sign_key, md5 = hashlib.md5() md5.update(sign_str[0]) return md5.hexdigest().upper() def get_local_ip(): myname = socket.getfqdn(socket.gethostname()) myaddr = socket.gethostbyname(myname) return myaddr def pay_sign(params, sign_key): params = [(u'%s' % key, u'%s' % val) for key, val in params.iteritems() if val] sorted_params_string = '&'.join('='.join(pair) for pair in sorted(params)) sign = '{}&key={}'.format(sorted_params_string.encode('utf-8'), sign_key) md5 = hashlib.md5() md5.update(sign) return md5.hexdigest().upper() def get_actives(): url = "https://mcp.ddky.com/weixin/rest.htm" date = datetime.now() date = str(date).split('.')[0] request_data = { 'activityId':587, 'city':'beijing', 'lat':39.91488908, 'lng':116.40387397, 'method':'ddky.promotion.onebuy.new.activity.pageinfo', 'pageType':1, 'plat':'H5', 'platform':'H5', 't': date, 'v':'1.0', 'versionName':'3.5.0' } end_url = get_url(url, request_data) response = requests.get(end_url) res = None try: json_str = re.findall(r'[^()]+', response.content)[1] res = json.loads(json_str) # print res,'res ok' except Exception as e: res = json.loads(response.content) return res def xml_response_to_dict(rep): d = xmltodict.parse(rep.content) return dict(d['response']) def get_phone_area(phone): url = 'http://i.ataohao.com/api/hw?cmd=80100031&param=%3Cnumber%3E{phone}%3C/number%3E%3Ctype%3E1%3C/type%3E'.format( phone=phone) res = requests.get(url=url) data = xml_response_to_dict(res) return data.get('locInfo') def get_url(url, params): p = '' for key in params: p += "&" + key + "=" + str(params.get(key)) sign_str = sign(params) p = url + '?sign=' +sign_str + p return p def dictfetchall(cursor): "Return all rows from a cursor as a dict" columns = [col[0] for col in cursor.description] return [ dict(zip(columns, row)) for row in cursor.fetchall() ] def confirm_validate_token(token, expiration=settings.SMALL_WEIXIN_TOKEN_VALID_TIME): serializer = utsr(settings.SECRET_KEY) salt = base64.encodestring(settings.SECRET_KEY) return serializer.loads(token, salt=salt, max_age=expiration) def generate_validate_token(openid): serializer = utsr(settings.SECRET_KEY) salt = base64.encodestring(settings.SECRET_KEY) return serializer.dumps(openid, salt) def request_user(request): if request.method == "GET": token = request.GET.get('token') else: params = QueryDict(request.body) token = params.get('token') openid = confirm_validate_token(token) user = models.User.objects.get(openid=openid) return user def distance_to_location(current_lng, current_lat, radius): add_lat = radius / settings.CM_DISCOVER_STORE_LAT_TO_DISTANCE add_lng = radius / settings.CM_DISCOVER_STORE_LNG_TO_DISTANCE radius_lat_location = add_lat / 3600 radius_lng_location = add_lng / 3600 start_lat = current_lat - radius_lat_location end_lat = current_lat + radius_lat_location start_lng = current_lng - radius_lng_location end_lng = current_lng + radius_lng_location return [start_lng, end_lng, start_lat, end_lat] def search(key_word): sql = ''' SELECT i.* FROM recommendorder_item as i WHERE i.item_id in ('%(item_ids)s') AND i.source = '%(source)s' ''' cur = connection.cursor() cur.execute(sql, {'item_ids': "','".join(item_list), 'source': source}) item_detail_list = dictfetchall(cur) def get_models_by_postion(position): sql = ''' SELECT models.*, unlike.unlikes, likes.likes FROM "yalongApp_ylmodel" as models LEFT JOIN (SELECT count(ulike.id) unlikes ,ulike.collecteder_id FROM "yalongApp_unlike" AS ulike LEFT JOIN "yalongApp_ylmodel" as model ON collecteder_id=model.id GROUP BY collecteder_id) AS unlike ON unlike.collecteder_id=models.id LEFT JOIN (SELECT count(li.id) likes ,li.collecteder_id FROM "yalongApp_like" AS li LEFT JOIN "yalongApp_ylmodel" as model1 ON li.collecteder_id=model1.id GROUP BY collecteder_id) AS likes ON likes.collecteder_id=models.id WHERE models.position=1 ''' cur = connection.cursor() cur.execute(sql, {'position': position }) item_detail_list = dictfetchall(cur) def dictfetchall(cursor): "Return all rows from a cursor as a dict" columns = [col[0] for col in cursor.description] return [ dict(zip(columns, row)) for row in cursor.fetchall() ] def __category_names_to_ids(names): cursor = connection.cursor() cursor.execute(""" SELECT array_agg(id) as categories from standard_category where (%s) """ % ' or '.join(["name='%s'" % n for n in names])) result = dictfetchall(cursor) return result[0]['categories'] def __extract_operator(key): toks = key.split('__') if len(toks) == 2: return toks[0], toks[1] return key, None def __convert_to_sql(k, v): if v['splitter'] == 'or': sub = [] if k == 'category_id': v['value'] = __category_names_to_ids(v['value']) for i in v['value']: sub.append("%s='%s'" % (k, i)) return '(%s)' % ' or '.join(sub) elif v['splitter'] == 'between': return "(%s between '%s' and '%s')" % (k, v['value'][0], v['value'][1]) def __strip_each(l): return [val.strip() for val in l] def growth_rate(rate): if rate: return '+%.2f' % rate if rate > 0 else '%.2f' % rate def query_builder(q, m): toks = q.split('@') d = {} for t in toks: kv = t.strip().split('=') if len(kv) != 2: continue key = kv[0].strip() key, opeartor = __extract_operator(key) if key in m: if opeartor and opeartor == u'在': values = kv[1].split('~') if len(values) != 2: continue d[m[key]] = {'splitter': 'between', 'value': __strip_each(values)} else: d[m[key]] = {'splitter': 'or', 'value': __strip_each(kv[1].split(','))} out = [] for key, values in d.items(): out.append(__convert_to_sql(key, values)) return ' and '.join(out) def construct_where_clause(filter_dict, params): def handle_single_filter(key): if key.endswith('__contains'): filter_dict[key] = '%' + filter_dict[key] + '%' col_name = key[0: -len('__contains')] return '%s LIKE %%(%s)s' % (col_name, key) if key.endswith('__lt'): col_name = key[0: -len('__lt')] return '%s<%%(%s)s' % (col_name, key) if key.endswith('__gt'): col_name = key[0: -len('__gt')] return '%s>%%(%s)s' % (col_name, key) else: return '%s = %%(%s)s' % (key, key) if filter_dict is None or len(filter_dict) == 0: return '' clauses = [handle_single_filter(k) for k in filter_dict.keys()] for k, v in six.iteritems(filter_dict): params[k] = v return '\nWHERE ' + "\n AND \n\t".join(clauses) def get_store_active_v1(store_id, data_type, active_id): if data_type == 'today': today = timezone.now().date() sql = """ SELECT m.store_id, m.active_id, u.phone, to_char(log.time, 'YYYY-MM-DD HH24:MI:SS') AS time, active.name AS active_name, saler.name AS saler_name, plog.price AS price_sum, saler.is_boss FROM shangmi_activestoremap AS m LEFT JOIN shangmi_activelog AS log ON m.id=log.active_map_id LEFT JOIN shangmi_active AS active ON m.active_id=active.id LEFT JOIN shangmi_saler AS saler ON saler.id=log.saler_id LEFT JOIN shangmi_customergetpricelog as plog ON log.customer_get_price_log_id=plog.id LEFT JOIN shangmi_user AS u ON plog.customer_id=u.id WHERE m.store_id={store_id} AND active.status=1 AND log.is_writeoff=FALSE AND log.time::date='{date}' AND active.id={active_id} AND plog.is_writeoff=TRUE; """.format(store_id=store_id, date=today, active_id=active_id) elif data_type == 'all': sql = """ SELECT m.store_id, m.active_id, u.phone, to_char(log.time, 'YYYY-MM-DD HH24:MI:SS') AS time, active.name AS active_name, saler.name AS saler_name, plog.price AS price_sum, saler.is_boss FROM shangmi_activestoremap AS m LEFT JOIN shangmi_activelog AS log ON m.id=log.active_map_id LEFT JOIN shangmi_active AS active ON m.active_id=active.id LEFT JOIN shangmi_saler AS saler ON saler.id=log.saler_id LEFT JOIN shangmi_customergetpricelog as plog ON log.customer_get_price_log_id=plog.id LEFT JOIN shangmi_user AS u ON plog.customer_id=u.id WHERE m.store_id={store_id} AND active.status=1 AND plog.is_writeoff=TRUE AND log.is_writeoff=FALSE AND active.id={active_id}; """.format(store_id=store_id, active_id=active_id) elif data_type == 'history': sql = """ SELECT m.store_id, m.active_id, u.phone, to_char(log.time, 'YYYY-MM-DD HH24:MI:SS') AS time, active.name AS active_name, saler.name AS saler_name, plog.price AS price_sum, saler.is_boss FROM shangmi_activestoremap AS m LEFT JOIN shangmi_activelog AS log ON m.id=log.active_map_id LEFT JOIN shangmi_active AS active ON m.active_id=active.id LEFT JOIN shangmi_saler AS saler ON saler.id=log.saler_id LEFT JOIN shangmi_customergetpricelog as plog ON log.customer_get_price_log_id=plog.id LEFT JOIN shangmi_user AS u ON plog.customer_id=u.id WHERE m.store_id={store_id} AND active.status=1 AND log.is_writeoff=TRUE AND plog.is_writeoff=TRUE AND active.id={active_id} ; """.format(store_id=store_id, active_id=active_id) else: return [] cur = connection.cursor() cur.execute(sql) item_detail_list = dictfetchall(cur) distribute = models.StoreMoneyDistribution.objects.get( active_id=active_id) for data in item_detail_list: if data.get('is_boss') == True: data['distribute'] = distribute.boss_money else: data['distribute'] = distribute.boss_distribute_money data['phone'] = data['phone'][0:3]+ '****'+ data['phone'][7:] return item_detail_list def get_store_active(store_id, data_type, active_id): if data_type == 'today': today = timezone.now().date() sql = """ SELECT m.store_id, m.active_id, count(log.customer_id) AS num, MAX(active.name) AS active_name, max(saler.name) AS saler_name, sum(plog.price) AS price_sum FROM shangmi_activestoremap AS m LEFT JOIN shangmi_activelog AS log ON m.id=log.active_map_id LEFT JOIN shangmi_active AS active ON m.active_id=active.id LEFT JOIN shangmi_saler AS saler ON saler.id=log.saler_id LEFT JOIN shangmi_customergetpricelog as plog ON log.customer_get_price_log_id=plog.id WHERE m.store_id={store_id} AND active.status=1 AND log.is_writeoff=FALSE AND log.time::date='{date}' AND active.id={active_id} AND plog.is_writeoff=TRUE GROUP BY m.store_id, m.active_id, log.saler_id; """.format(store_id=store_id, date=today, active_id=active_id) elif data_type == 'all': sql = """ SELECT m.store_id, m.active_id, count(log.customer_id) AS num, MAX(active.name) AS active_name, max(saler.name) AS saler_name, sum(plog.price) AS price_sum FROM shangmi_activestoremap AS m LEFT JOIN shangmi_activelog AS log ON m.id=log.active_map_id LEFT JOIN shangmi_active AS active ON m.active_id=active.id LEFT JOIN shangmi_saler AS saler ON saler.id=log.saler_id LEFT JOIN shangmi_customergetpricelog as plog ON log.customer_get_price_log_id=plog.id WHERE m.store_id={store_id} AND active.status=1 AND plog.is_writeoff=TRUE AND log.is_writeoff=FALSE AND active.id={active_id} GROUP BY m.store_id, m.active_id, log.saler_id; """.format(store_id=store_id, active_id=active_id) elif
<reponame>TeMU-BSC/PharmaCoNER-Tagger<gh_stars>1-10 import sklearn.preprocessing import utils import collections import codecs import utils_nlp import re import time import token import os import pickle import random class Dataset(object): """A class for handling data sets.""" def __init__(self, name='', verbose=False, debug=False): self.name = name self.verbose = verbose self.debug = debug def _parse_gaz(self,gaz_filepath): with open(gaz_filepath) as f: s = f.read() lines = s.splitlines() gaz_set = set([]) for l in lines: gaz_set.add(l) self.gaz_set = gaz_set def _parse_aff(self, aff_filepath): with open(aff_filepath) as f: s = f.read() lines = s.splitlines() aff_set = dict(suffix=[], prefix=[], root=[]) for l in lines: tmp = l.split('\n') if tmp[0].strip() == 'suffix': aff_set['suffix'].append(tmp[2].strip()) elif tmp[0].strip() == 'prefix': aff_set['prefix'].append(tmp[2].strip()) elif tmp[0].strip() == 'root': aff_set['root'].append(tmp[2].strip()) self.aff_set = aff_set def _parse_dataset(self, dataset_filepath, parameters): token_count = collections.defaultdict(lambda: 0) label_count = collections.defaultdict(lambda: 0) character_count = collections.defaultdict(lambda: 0) if parameters['use_pos']: pos_tag_count = collections.defaultdict(lambda: 0) if parameters['use_gaz']: gaz_count = collections.defaultdict(lambda: 0) #self._parse_gaz(parameters['gaz_filepath']) if parameters['use_aff']: aff_count = collections.defaultdict(lambda: 0) line_count = -1 tokens = [] labels = [] pos_tags = [] new_token_sequence = [] new_label_sequence = [] if parameters['use_pos']: new_pos_tag_sequence = [] if parameters['use_gaz']: new_gaz_sequence = [] gazs = [] if parameters['use_aff']: new_aff_sequence = [] affs = [] if dataset_filepath: f = codecs.open(dataset_filepath, 'r', 'UTF-8') for line in f: line_count += 1 line = line.strip().split(' ') if len(line) == 0 or len(line[0]) == 0 or '-DOCSTART-' in line[0]: if len(new_token_sequence) > 0: labels.append(new_label_sequence) tokens.append(new_token_sequence) if parameters['use_pos']: pos_tags.append(new_pos_tag_sequence) if parameters['use_gaz']: gazs.append(new_gaz_sequence) if parameters['use_aff']: affs.append(new_aff_sequence) new_aff_sequence = [] new_token_sequence = [] new_label_sequence = [] new_pos_tag_sequence = [] new_gaz_sequence = [] continue token = str(line[0]) label = str(line[-1]) # beware: in both cases we are assuming bioes if parameters['use_pos']: ''' if parameters['tokenizer'] == 'pos': pos_tag = str(line[-2]) else: pos_tag = str(line[-3]) ''' if parameters['tokenizer'] == 'pos': pos_tag = str(line[-3]) else: pos_tag = str(line[-4]) #print(pos_tag) if parameters['use_gaz']: gaz = token.lower() in self.gaz_set if gaz: gaz = 1 else: gaz = 0 if parameters['use_aff']: aff = 0 # Check for prefix for pref in self.aff_set['prefix']: pattern = '^' + re.escape(pref.lower()) result = re.match(pattern, token.lower()) if result: aff = 1 for suf in self.aff_set['suffix']: pattern = re.escape(suf.lower()) + '$' result = re.match(pattern, token.lower()) if result: aff = 1 for rot in self.aff_set['root']: result = token.lower().find(rot) if result > 1: aff = 1 token_count[token] += 1 label_count[label] += 1 if parameters['use_pos']: pos_tag_count[pos_tag] += 1 if parameters['use_gaz']: gaz_count[gaz] += 1 if parameters['use_aff']: aff_count[aff] += 1 new_token_sequence.append(token) new_label_sequence.append(label) if parameters['use_pos']: new_pos_tag_sequence.append(pos_tag) if parameters['use_gaz']: new_gaz_sequence.append(gaz) if parameters['use_aff']: new_aff_sequence.append(aff) for character in token: character_count[character] += 1 if self.debug and line_count > 200: break# for debugging purposes if len(new_token_sequence) > 0: labels.append(new_label_sequence) tokens.append(new_token_sequence) if parameters['use_pos']: pos_tags.append(new_pos_tag_sequence) if parameters['use_gaz']: gazs.append(new_gaz_sequence) if parameters['use_aff']: affs.append(new_aff_sequence) f.close() if not parameters['use_pos']: pos_tags = None pos_tag_count = None if not parameters['use_gaz']: gazs = None gaz_count = None if not parameters['use_aff']: affs = None aff_count = None return labels, tokens, token_count, label_count, character_count, pos_tags, pos_tag_count, gazs, gaz_count, affs, aff_count def _convert_to_indices(self, dataset_types, parameters): tokens = self.tokens labels = self.labels if parameters['use_pos']: pos_tags = self.pos_tags if parameters['use_gaz']: gazs = self.gazs if parameters['use_aff']: affs = self.affs token_to_index = self.token_to_index character_to_index = self.character_to_index label_to_index = self.label_to_index index_to_label = self.index_to_label if parameters['use_pos']: index_to_pos_tag = self.index_to_pos_tag pos_tag_to_index = self.pos_tag_to_index if parameters['use_gaz']: gaz_to_index = self.gaz_to_index if parameters['use_aff']: aff_to_index = self.aff_to_index # Map tokens and labels to their indices token_indices = {} label_indices = {} characters = {} if parameters['use_pos']: pos_tag_indices = {} if parameters['use_gaz']: gaz_indices = {} if parameters['use_aff']: aff_indices = {} token_lengths = {} character_indices = {} character_indices_padded = {} for dataset_type in dataset_types: token_indices[dataset_type] = [] characters[dataset_type] = [] #if parameters['use_pos']: # pos_tags[dataset_type] = [] character_indices[dataset_type] = [] token_lengths[dataset_type] = [] character_indices_padded[dataset_type] = [] for token_sequence in tokens[dataset_type]: token_indices[dataset_type].append([token_to_index.get(token, self.UNK_TOKEN_INDEX) for token in token_sequence]) characters[dataset_type].append([list(token) for token in token_sequence]) character_indices[dataset_type].append([[character_to_index.get(character, random.randint(1, max(self.index_to_character.keys()))) for character in token] for token in token_sequence]) token_lengths[dataset_type].append([len(token) for token in token_sequence]) longest_token_length_in_sequence = max(token_lengths[dataset_type][-1]) character_indices_padded[dataset_type].append([utils.pad_list(temp_token_indices, longest_token_length_in_sequence, self.PADDING_CHARACTER_INDEX) for temp_token_indices in character_indices[dataset_type][-1]]) label_indices[dataset_type] = [] for label_sequence in labels[dataset_type]: label_indices[dataset_type].append([label_to_index[label] for label in label_sequence]) if parameters['use_pos']: pos_tag_indices[dataset_type] = [] for pos_tag_sequence in pos_tags[dataset_type]: pos_tag_indices[dataset_type].append([pos_tag_to_index[pos_tag] for pos_tag in pos_tag_sequence]) if parameters['use_gaz']: gaz_indices[dataset_type] = [] for gaz_sequence in gazs[dataset_type]: gaz_indices[dataset_type].append([gaz_to_index[gaz] for gaz in gaz_sequence]) if parameters['use_aff']: aff_indices[dataset_type] = [] for aff_sequence in affs[dataset_type]: aff_indices[dataset_type].append([aff_to_index[aff] for aff in aff_sequence]) if self.verbose: print('token_lengths[\'train\'][0][0:10]: {0}'.format(token_lengths['train'][0][0:10])) if self.verbose: print('characters[\'train\'][0][0:10]: {0}'.format(characters['train'][0][0:10])) if self.verbose: print('token_indices[\'train\'][0:10]: {0}'.format(token_indices['train'][0:10])) if self.verbose: print('label_indices[\'train\'][0:10]: {0}'.format(label_indices['train'][0:10])) if self.verbose: print('character_indices[\'train\'][0][0:10]: {0}'.format(character_indices['train'][0][0:10])) if self.verbose: print('character_indices_padded[\'train\'][0][0:10]: {0}'.format(character_indices_padded['train'][0][0:10])) # Vectorize the labels if parameters['use_pos']: if self.verbose: print('pos_tag_indices[\'train\'][0:10]: {0}'.format(pos_tag_indices['train'][0:10])) if parameters['use_gaz']: if self.verbose: print('gaz_indices[\'train\'][0:10]: {0}'.format(gaz_indices['train'][0:10])) if parameters['use_aff']: if self.verbose: print('aff_indices[\'train\'][0:10]: {0}'.format(aff_indices['train'][0:10])) # [Numpy 1-hot array](http://stackoverflow.com/a/42263603/395857) label_binarizer = sklearn.preprocessing.LabelBinarizer() label_binarizer.fit(range(max(index_to_label.keys()) + 1)) label_vector_indices = {} for dataset_type in dataset_types: label_vector_indices[dataset_type] = [] for label_indices_sequence in label_indices[dataset_type]: label_vector_indices[dataset_type].append(label_binarizer.transform(label_indices_sequence)) if parameters['use_pos']: pos_tag_binarizer = sklearn.preprocessing.LabelBinarizer() pos_tag_binarizer.fit(range(max(index_to_pos_tag.keys()) + 1)) pos_tag_vector_indices = {} for dataset_type in dataset_types: pos_tag_vector_indices[dataset_type] = [] for pos_tag_indices_sequence in pos_tag_indices[dataset_type]: pos_tag_vector_indices[dataset_type].append(pos_tag_binarizer.transform(pos_tag_indices_sequence)) if parameters['use_gaz']: gaz_vector_indices = {} for dataset_type in dataset_types: gaz_vector_indices[dataset_type] = [] for gaz_indices_sequence in gaz_indices[dataset_type]: gaz_vector_index = [] for element in gaz_indices_sequence: gaz_vector_index.append([element]) gaz_vector_indices[dataset_type].append(gaz_vector_index) if parameters['use_aff']: aff_vector_indices = {} for dataset_type in dataset_types: aff_vector_indices[dataset_type] = [] for aff_indices_sequence in aff_indices[dataset_type]: aff_vector_index = [] for element in aff_indices_sequence: aff_vector_index.append([element]) aff_vector_indices[dataset_type].append(aff_vector_index) if self.verbose: print('label_vector_indices[\'train\'][0:2]: {0}'.format(label_vector_indices['train'][0:2])) if self.verbose: print('len(label_vector_indices[\'train\']): {0}'.format(len(label_vector_indices['train']))) if parameters['use_pos']: if self.verbose: print('pos_tag_vector_indices[\'train\'][0:2]: {0}'.format(pos_tag_vector_indices['train'][0:2])) if self.verbose: print('len(pos_tag_vector_indices[\'train\']): {0}'.format(len(pos_tag_vector_indices['train']))) if parameters['use_gaz']: if self.verbose: print('gaz_vector_indices[\'train\'][0:2]: {0}'.format(gaz_vector_indices['train'][0:2])) if self.verbose: print('len(gaz_vector_indices[\'train\']): {0}'.format(len(gaz_vector_indices['train']))) if parameters['use_aff']: if self.verbose: print('aff_vector_indices[\'train\'][0:2]: {0}'.format(aff_vector_indices['train'][0:2])) if self.verbose: print('len(aff_vector_indices[\'train\']): {0}'.format(len(aff_vector_indices['train']))) if not parameters['use_pos']: pos_tag_indices = None pos_tag_vector_indices = None if not parameters['use_gaz']: gaz_indices = None gaz_vector_indices = None if not parameters['use_aff']: aff_indices = None aff_vector_indices = None return token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices, pos_tag_indices, pos_tag_vector_indices, gaz_indices, gaz_vector_indices, aff_indices, aff_vector_indices def update_dataset(self, dataset_filepaths, dataset_types): ''' dataset_filepaths : dictionary with keys 'train', 'valid', 'test', 'deploy' Overwrites the data of type specified in dataset_types using the existing token_to_index, character_to_index, and label_to_index mappings. ''' for dataset_type in dataset_types: self.labels[dataset_type], self.tokens[dataset_type], _, _, _,self.pos_tags[dataset_type] = self._parse_dataset(dataset_filepaths.get(dataset_type, None),parameters) token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices, pos_tag_indices, pos_tag_vector_indices, gaz_indices, gaz_vector_indices, aff_indices, aff_vector_indices = self._convert_to_indices(dataset_types,parameters) self.token_indices.update(token_indices) self.label_indices.update(label_indices) self.character_indices_padded.update(character_indices_padded) self.character_indices.update(character_indices) self.token_lengths.update(token_lengths) self.characters.update(characters) self.label_vector_indices.update(label_vector_indices) if parameters['use_pos']: self.pos_tag_indices.update(pos_tag_indices) self.pos_tag_vector_indices.update(pos_tag_vector_indices) if parameters['use_gaz']: self.gaz_indices.update(gaz_indices) self.gaz_vector_indices.update(gaz_vector_indices) if parameters['use_aff']: self.aff_indices.update(aff_indices) self.aff_vector_indices.update(aff_vector_indices) def load_dataset(self, dataset_filepaths, parameters, token_to_vector=None): ''' dataset_filepaths : dictionary with keys 'train', 'valid', 'test', 'deploy' ''' start_time = time.time() print('Load dataset... ', end='', flush=True) if parameters['token_pretrained_embedding_filepath'] != '': if token_to_vector==None: token_to_vector = utils_nlp.load_pretrained_token_embeddings(parameters) else: token_to_vector = {} if self.verbose: print("len(token_to_vector): {0}".format(len(token_to_vector))) if parameters['use_gaz']: self._parse_gaz(parameters['gaz_filepath']) if parameters['use_aff']: self._parse_aff(parameters['aff_filepath']) # Load pretraining dataset to ensure that index to label is compatible to the pretrained model, # and that token embeddings that are learned in the pretrained model are loaded properly. all_tokens_in_pretraining_dataset = [] all_characters_in_pretraining_dataset = [] if parameters['use_pretrained_model']: pretraining_dataset = pickle.load(open(os.path.join(parameters['pretrained_model_folder'], 'dataset.pickle'), 'rb')) all_tokens_in_pretraining_dataset = pretraining_dataset.index_to_token.values() all_characters_in_pretraining_dataset = pretraining_dataset.index_to_character.values() remap_to_unk_count_threshold = 1 self.UNK_TOKEN_INDEX = 0 self.PADDING_CHARACTER_INDEX = 0 self.tokens_mapped_to_unk = [] self.UNK = 'UNK' self.unique_labels = [] labels = {} tokens = {} pos_tags = {} gazs = {} affs = {} label_count = {} token_count = {} character_count = {} pos_tag_count = {} gaz_count = {} aff_count = {} for dataset_type in ['train', 'valid', 'test', 'deploy']: labels[dataset_type], tokens[dataset_type], token_count[dataset_type], label_count[dataset_type], character_count[dataset_type], \ pos_tags[dataset_type], pos_tag_count[dataset_type],gazs[dataset_type],gaz_count[dataset_type], affs[dataset_type],aff_count[dataset_type] = self._parse_dataset(dataset_filepaths.get(dataset_type, None),parameters) if self.verbose: print("dataset_type: {0}".format(dataset_type)) if self.verbose: print("len(token_count[dataset_type]): {0}".format(len(token_count[dataset_type]))) token_count['all'] = {} for token in list(token_count['train'].keys()) + list(token_count['valid'].keys()) + list(token_count['test'].keys()) + list(token_count['deploy'].keys()): token_count['all'][token] = token_count['train'][token] + token_count['valid'][token] + token_count['test'][token] + token_count['deploy'][token] if parameters['load_all_pretrained_token_embeddings']: for token in token_to_vector: if token not in token_count['all']: token_count['all'][token] = -1 token_count['train'][token] = -1 for token in all_tokens_in_pretraining_dataset: if token not in token_count['all']: token_count['all'][token] = -1 token_count['train'][token] = -1 character_count['all'] = {} for character in list(character_count['train'].keys()) + list(character_count['valid'].keys()) + list(character_count['test'].keys()) + list(character_count['deploy'].keys()): character_count['all'][character] = character_count['train'][character] + character_count['valid'][character] + character_count['test'][character] + character_count['deploy'][character] for character in all_characters_in_pretraining_dataset: if character not in character_count['all']: character_count['all'][character] = -1 character_count['train'][character] = -1 for dataset_type in dataset_filepaths.keys(): if self.verbose: print("dataset_type: {0}".format(dataset_type)) if self.verbose: print("len(token_count[dataset_type]): {0}".format(len(token_count[dataset_type]))) label_count['all'] = {} for character in list(label_count['train'].keys()) + list(label_count['valid'].keys()) + list(label_count['test'].keys()) + list(label_count['deploy'].keys()): label_count['all'][character] = label_count['train'][character] + label_count['valid'][character] + label_count['test'][character] + label_count['deploy'][character] if parameters['use_pos']:
1) ) res = self.post_agreement_update(agreement_id, { 'countersignedAgreementPath': 'countersigned/file.jpg' }) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) expected_agreement_json = { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'countersigned', 'signedAgreementPath': 'path/file.pdf', 'signedAgreementReturnedAt': '2016-10-01T01:01:01.000000Z', 'countersignedAgreementReturnedAt': '2016-11-01T01:01:01.000000Z', 'countersignedAgreementPath': 'countersigned/file.jpg' } assert data['agreement'] == expected_agreement_json res2 = self.client.get('/agreements/{}'.format(agreement_id)) assert res2.status_code == 200 assert json.loads(res2.get_data(as_text=True))['agreement'] == expected_agreement_json @fixture_params( 'live_example_framework', { 'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}, 'slug': 'g-cloud-11', } ) def test_cannot_update_countersigned_agreement_path_if_agreement_has_not_been_approved(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_path='path/file.pdf', signed_agreement_returned_at=datetime(2016, 10, 1, 1, 1, 1) ) res = self.post_agreement_update(agreement_id, { 'countersignedAgreementPath': 'countersigned/file.jpg' }) assert res.status_code == 400 assert json.loads(res.get_data(as_text=True)) == { 'error': 'Can not update countersignedAgreementPath if agreement has not been approved for countersigning' } @fixture_params( 'live_example_framework', { 'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}, 'slug': 'g-cloud-12', } ) def test_can_update_countersigned_agreement_path_without_approval_for_esignature_framework( self, supplier_framework ): agreement_id = self.create_agreement( supplier_framework, signed_agreement_path='path/file.pdf', signed_agreement_returned_at=datetime(2016, 10, 1, 1, 1, 1) ) res = self.post_agreement_update(agreement_id, { 'countersignedAgreementPath': 'countersigned/file.jpg' }) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) expected_agreement_json = { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'countersigned', 'signedAgreementPath': 'path/file.pdf', 'signedAgreementReturnedAt': '2016-10-01T01:01:01.000000Z', 'countersignedAgreementPath': 'countersigned/file.jpg' } assert data['agreement'] == expected_agreement_json res2 = self.client.get('/agreements/{}'.format(agreement_id)) assert res2.status_code == 200 assert json.loads(res2.get_data(as_text=True))['agreement'] == expected_agreement_json def test_can_unset_countersigned_agreement_path(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_path='path/file.pdf', signed_agreement_returned_at=datetime(2016, 10, 1, 1, 1, 1), countersigned_agreement_returned_at=datetime(2016, 11, 1, 1, 1, 1), countersigned_agreement_path='countersigned/that/bad/boy.pdf' ) res = self.post_agreement_update(agreement_id, { 'countersignedAgreementPath': None }) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) expected_agreement_json = { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved', 'signedAgreementPath': 'path/file.pdf', 'signedAgreementReturnedAt': '2016-10-01T01:01:01.000000Z', 'countersignedAgreementReturnedAt': '2016-11-01T01:01:01.000000Z' } assert data['agreement'] == expected_agreement_json res2 = self.client.get('/agreements/{}'.format(agreement_id)) assert res2.status_code == 200 assert json.loads(res2.get_data(as_text=True))['agreement'] == expected_agreement_json @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) class TestSignFrameworkAgreementThatHasFrameworkAgreementVersion(BaseFrameworkAgreementTest): def sign_agreement(self, agreement_id, agreement): return self.client.post( '/agreements/{}/sign'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>', 'agreement': agreement }), content_type='application/json') def test_can_sign_framework_agreement(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={'signerName': 'name', 'signerRole': 'role'}, signed_agreement_path='/example.pdf' ) with freeze_time('2016-12-12'): res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': 1}}) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'signed', 'signedAgreementPath': '/example.pdf', 'signedAgreementDetails': { 'signerName': 'name', 'signerRole': 'role', 'uploaderUserId': user_role_supplier, 'frameworkAgreementVersion': 'v1.0' }, 'signedAgreementReturnedAt': '2016-12-12T00:00:00.000000Z' } def test_signing_framework_agreement_produces_audit_event(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={'signerName': 'name', 'signerRole': 'role'}, signed_agreement_path='/example.pdf' ) res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': user_role_supplier}}) assert res.status_code == 200 agreement = FrameworkAgreement.query.filter( FrameworkAgreement.id == agreement_id ).first() audit = AuditEvent.query.filter( AuditEvent.object == agreement ).first() assert audit.type == "sign_agreement" assert audit.user == "<EMAIL>" assert audit.data == { 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'update': {'signedAgreementDetails': {'uploaderUserId': user_role_supplier}} } def test_can_re_sign_framework_agreement(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={ 'signerName': 'name', 'signerRole': 'role', 'uploaderUserId': 2, 'frameworkAgreementVersion': 'v1.0' }, signed_agreement_path='/example.pdf', signed_agreement_returned_at=datetime.utcnow() ) with freeze_time('2016-12-12'): res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': user_role_supplier}}) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'signed', 'signedAgreementPath': '/example.pdf', 'signedAgreementDetails': { 'signerName': 'name', 'signerRole': 'role', 'uploaderUserId': 1, 'frameworkAgreementVersion': 'v1.0' }, 'signedAgreementReturnedAt': '2016-12-12T00:00:00.000000Z' } def test_can_not_sign_framework_agreement_that_has_no_signer_name(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={'signerRole': 'role'}, signed_agreement_path='/example.pdf' ) res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': user_role_supplier}}) assert res.status_code == 400 assert ( json.loads(res.get_data(as_text=True))['error'] == {'signerName': 'answer_required'}) def test_can_not_sign_framework_agreement_that_has_no_signer_role(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={'signerName': 'name'}, signed_agreement_path='/example.pdf' ) res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': user_role_supplier}}) assert res.status_code == 400 assert ( json.loads(res.get_data(as_text=True))['error'] == {'signerRole': 'answer_required'}) def test_400_if_user_signing_framework_agreement_does_not_exist(self, user_role_supplier, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_details={'signerName': 'name', 'signerRole': 'role'}, signed_agreement_path='/example.pdf' ) # The user_role_supplier fixture sets up user with ID 1; there is no user with ID 20 res = self.sign_agreement(agreement_id, {'signedAgreementDetails': {'uploaderUserId': 20}}) assert res.status_code == 400 assert ( json.loads(res.get_data(as_text=True))['error'] == "No user found with id '20'") # Frameworks prior to G-Cloud 8 do not have framework_agreement_version set, and signing these stores only the timestamp class TestSignFrameworkAgreementThatHasNoFrameworkAgreementVersion(BaseFrameworkAgreementTest): def sign_agreement(self, agreement_id): return self.client.post( '/agreements/{}/sign'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>' }), content_type='application/json') def test_can_sign_framework_agreement(self, supplier_framework): agreement_id = self.create_agreement(supplier_framework) with freeze_time('2016-12-12'): res = self.sign_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'signed', 'signedAgreementReturnedAt': '2016-12-12T00:00:00.000000Z' } def test_signing_framework_agreement_produces_audit_event(self, supplier_framework): agreement_id = self.create_agreement(supplier_framework) res = self.sign_agreement(agreement_id) assert res.status_code == 200 agreement = FrameworkAgreement.query.filter( FrameworkAgreement.id == agreement_id ).first() audit = AuditEvent.query.filter( AuditEvent.object == agreement ).first() assert audit.type == "sign_agreement" assert audit.user == "<EMAIL>" assert audit.data == { 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], } def test_can_re_sign_framework_agreement(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime.utcnow() ) with freeze_time('2016-12-12'): res = self.sign_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'signed', 'signedAgreementReturnedAt': '2016-12-12T00:00:00.000000Z' } class TestPutFrameworkAgreementOnHold(BaseFrameworkAgreementTest): def put_framework_agreement_on_hold(self, agreement_id): return self.client.post( '/agreements/{}/on-hold'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>' }), content_type='application/json') @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) def test_can_put_framework_agreement_on_hold(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1), ) with freeze_time('2016-12-12'): res = self.put_framework_agreement_on_hold(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'on-hold', 'signedAgreementReturnedAt': '2016-10-01T00:00:00.000000Z', 'signedAgreementPutOnHoldAt': '2016-12-12T00:00:00.000000Z' } agreement = FrameworkAgreement.query.filter( FrameworkAgreement.id == agreement_id ).first() audit = AuditEvent.query.filter( AuditEvent.object == agreement ).first() assert audit.type == "update_agreement" assert audit.user == "<EMAIL>" assert audit.data == { 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'on-hold' } @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) def test_can_not_put_unsigned_framework_agreement_on_hold(self, supplier_framework): agreement_id = self.create_agreement(supplier_framework) res = self.put_framework_agreement_on_hold(agreement_id) assert res.status_code == 400 error_message = json.loads(res.get_data(as_text=True))['error'] assert error_message == "Framework agreement must have status 'signed' to be put on hold" @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) def test_can_not_put_countersigned_framework_agreement_on_hold(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 9, 1), countersigned_agreement_returned_at=datetime(2016, 10, 1) ) res = self.put_framework_agreement_on_hold(agreement_id) assert res.status_code == 400 error_message = json.loads(res.get_data(as_text=True))['error'] assert error_message == "Framework agreement must have status 'signed' to be put on hold" def test_can_not_put_framework_agreement_on_hold_that_has_no_framework_agreement_version(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1) ) res = self.put_framework_agreement_on_hold(agreement_id) assert res.status_code == 400 error_message = json.loads(res.get_data(as_text=True))['error'] assert error_message == "Framework agreement must have a 'frameworkAgreementVersion' to be put on hold" class TestApproveFrameworkAgreement(BaseFrameworkAgreementTest): def approve_framework_agreement(self, agreement_id): return self.client.post( '/agreements/{}/approve'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>', 'agreement': {'userId': '1234'} }), content_type='application/json') def unapprove_framework_agreement(self, agreement_id): return self.client.post( '/agreements/{}/approve'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>', 'agreement': {'userId': '1234', 'unapprove': True} }), content_type='application/json') @fixture_params( 'live_example_framework', { 'framework_agreement_details': { 'frameworkAgreementVersion': 'v1.0', 'countersignerName': 'The Boss', 'countersignerRole': 'Director of Strings' } } ) def test_can_approve_signed_framework_agreement(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1), ) with freeze_time('2016-12-12'): res = self.approve_framework_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved', 'signedAgreementReturnedAt': '2016-10-01T00:00:00.000000Z', 'countersignedAgreementReturnedAt': '2016-12-12T00:00:00.000000Z', 'countersignedAgreementDetails': { 'countersignerName': 'The Boss', 'countersignerRole': 'Director of Strings', 'approvedByUserId': '1234' } } agreement = FrameworkAgreement.query.filter( FrameworkAgreement.id == agreement_id ).first() audit = AuditEvent.query.filter( AuditEvent.object == agreement ).first() assert audit.type == "countersign_agreement" assert audit.user == "<EMAIL>" assert audit.data == { 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved' } @fixture_params( 'live_example_framework', { 'framework_agreement_details': { 'frameworkAgreementVersion': 'v1.0', 'countersignerName': 'The Boss', 'countersignerRole': 'Director of Strings' } } ) def test_can_approve_on_hold_framework_agreement(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1), ) with freeze_time('2016-10-02'): on_hold_res = self.client.post( '/agreements/{}/on-hold'.format(agreement_id), data=json.dumps( { 'updated_by': '<EMAIL>' }), content_type='application/json') assert on_hold_res.status_code == 200 on_hold_data = json.loads(on_hold_res.get_data(as_text=True))['agreement'] assert on_hold_data['status'] == 'on-hold' with freeze_time('2016-10-03'): res = self.approve_framework_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert 'signedAgreementPutOnHoldAt' not in data['agreement'] assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved', 'signedAgreementReturnedAt': '2016-10-01T00:00:00.000000Z', 'countersignedAgreementReturnedAt': '2016-10-03T00:00:00.000000Z', 'countersignedAgreementDetails': { 'countersignerName': '<NAME>', 'countersignerRole': 'Director of Strings', 'approvedByUserId': '1234' } } @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) def test_can_not_approve_unsigned_framework_agreement(self, supplier_framework): agreement_id = self.create_agreement(supplier_framework) res = self.approve_framework_agreement(agreement_id) assert res.status_code == 400 error_message = json.loads(res.get_data(as_text=True))['error'] assert error_message == "Framework agreement must have status 'signed' or 'on hold' to be countersigned" def test_can_approve_framework_agreement_that_has_no_framework_agreement_version(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1) ) with freeze_time('2016-10-03'): res = self.approve_framework_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved', 'signedAgreementReturnedAt': '2016-10-01T00:00:00.000000Z', 'countersignedAgreementReturnedAt': '2016-10-03T00:00:00.000000Z', 'countersignedAgreementDetails': {'approvedByUserId': '1234'} } @fixture_params('live_example_framework', {'framework_agreement_details': {'frameworkAgreementVersion': 'v1.0'}}) def test_can_approve_framework_agreement_with_agreement_version_but_no_name_or_role(self, supplier_framework): agreement_id = self.create_agreement( supplier_framework, signed_agreement_returned_at=datetime(2016, 10, 1) ) with freeze_time('2016-10-03'): res = self.approve_framework_agreement(agreement_id) assert res.status_code == 200 data = json.loads(res.get_data(as_text=True)) assert data['agreement'] == { 'id': agreement_id, 'supplierId': supplier_framework['supplierId'], 'frameworkSlug': supplier_framework['frameworkSlug'], 'status': 'approved', 'signedAgreementReturnedAt': '2016-10-01T00:00:00.000000Z', 'countersignedAgreementReturnedAt': '2016-10-03T00:00:00.000000Z', 'countersignedAgreementDetails': {'approvedByUserId': '1234'} } @fixture_params( 'live_example_framework', { 'framework_agreement_details': { 'frameworkAgreementVersion': 'v1.0', 'countersignerName': 'The Boss', 'countersignerRole': 'Director of Strings' } } ) def test_serialized_supplier_framework_contains_updater_details_after_approval(self, supplier_framework): user = User( id=1234, name='Chris', email_address='<EMAIL>',
== 3: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0], dList[4][1] - window, dList[4][2] - window] dw[1] = [dList[1][0], dList[1][1] - window, dList[1][2] + window] dw[2] = [dList[2][0], dList[2][1] + window, dList[2][2] + window] dw[3] = [dList[5][0], dList[5][1] + window, dList[5][2] - window] ew[0] = [dList[4][0] + embrasure, dList[4][1] - window, dList[4][2] - window] ew[1] = [dList[1][0] + embrasure, dList[1][1] - window, dList[1][2] + window] ew[2] = [dList[2][0] + embrasure, dList[2][1] + window, dList[2][2] + window] ew[3] = [dList[5][0] + embrasure, dList[5][1] + window, dList[5][2] - window] elif side == 0: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0] + window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] + window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] - window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] - window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] + window, dList[4][1] + embrasure, dList[4][2] - window] ew[1] = [dList[1][0] + window, dList[1][1] + embrasure, dList[1][2] + window] ew[2] = [dList[2][0] - window, dList[2][1] + embrasure, dList[2][2] + window] ew[3] = [dList[5][0] - window, dList[5][1] + embrasure, dList[5][2] - window] elif side == 2: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0] - window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] - window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] + window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] + window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] - window, dList[4][1] - embrasure, dList[4][2] - window] ew[1] = [dList[1][0] - window, dList[1][1] - embrasure, dList[1][2] + window] ew[2] = [dList[2][0] + window, dList[2][1] - embrasure, dList[2][2] + window] ew[3] = [dList[5][0] + window, dList[5][1] - embrasure, dList[5][2] - window] dwring = GMLPointList(dw[0]) + ' ' + GMLPointList(dw[3]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(dw[1]) + ' ' + GMLPointList(dw[0]) binosemantics(lod3geometry, d4, dwring) dw0 = GMLPointList(dw[0]) + ' ' + GMLPointList(dw[1]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(ew[0]) + ' ' + GMLPointList(dw[0]) dw1 = GMLPointList(dw[1]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(dw[1]) dw2 = GMLPointList(dw[3]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(dw[3]) dw3 = GMLPointList(dw[3]) + ' ' + GMLPointList(dw[0]) + ' ' + GMLPointList(ew[0]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(dw[3]) ew0 = GMLPointList(ew[0]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(ew[0]) for bipoly in [dw0, dw1, dw2, dw3]: binosemantics(lod3geometry, bipoly) binosemantics(lod3geometry, ew0) else: d4 = dListGML[4] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[5] + ' ' + dListGML[4] if side == 1: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0], dList[4][1] + window, dList[4][2] - window] dw[1] = [dList[1][0], dList[1][1] + window, dList[1][2] + window] dw[2] = [dList[2][0], dList[2][1] - window, dList[2][2] + window] dw[3] = [dList[5][0], dList[5][1] - window, dList[5][2] - window] ew[0] = [dList[4][0], dList[4][1] + window, dList[4][2] - window] ew[1] = [dList[1][0], dList[1][1] + window, dList[1][2] + window] ew[2] = [dList[2][0], dList[2][1] - window, dList[2][2] + window] ew[3] = [dList[5][0], dList[5][1] - window, dList[5][2] - window] elif side == 3: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0], dList[4][1] - window, dList[4][2] - window] dw[1] = [dList[1][0], dList[1][1] - window, dList[1][2] + window] dw[2] = [dList[2][0], dList[2][1] + window, dList[2][2] + window] dw[3] = [dList[5][0], dList[5][1] + window, dList[5][2] - window] ew[0] = [dList[4][0], dList[4][1] - window, dList[4][2] - window] ew[1] = [dList[1][0], dList[1][1] - window, dList[1][2] + window] ew[2] = [dList[2][0], dList[2][1] + window, dList[2][2] + window] ew[3] = [dList[5][0], dList[5][1] + window, dList[5][2] - window] elif side == 0: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0] + window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] + window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] - window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] - window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] + window, dList[4][1], dList[4][2] - window] ew[1] = [dList[1][0] + window, dList[1][1], dList[1][2] + window] ew[2] = [dList[2][0] - window, dList[2][1], dList[2][2] + window] ew[3] = [dList[5][0] - window, dList[5][1], dList[5][2] - window] elif side == 2: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0] - window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] - window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] + window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] + window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] - window, dList[4][1], dList[4][2] - window] ew[1] = [dList[1][0] - window, dList[1][1], dList[1][2] + window] ew[2] = [dList[2][0] + window, dList[2][1], dList[2][2] + window] ew[3] = [dList[5][0] + window, dList[5][1], dList[5][2] - window] dwring = GMLPointList(dw[0]) + ' ' + GMLPointList(dw[3]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(dw[1]) + ' ' + GMLPointList(dw[0]) #ew0 = GMLPointList(ew[0]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(ew[0]) binosemantics(lod3geometry, d4, dwring) #binosemantics(lod3geometry, ew0) elif kind == 'chimney': lod3geometry = etree.SubElement(bi, "{%s}lod3Geometry" % ns_bldg) d1 = dListGML[0] + ' ' + dListGML[1] + ' ' + dListGML[4] + ' ' + dListGML[7] + ' ' + dListGML[0] d2 = dListGML[3] + ' ' + dListGML[6] + ' ' + dListGML[5] + ' ' + dListGML[2] + ' ' + dListGML[3] d3 = dListGML[0] + ' ' + dListGML[7] + ' ' + dListGML[6] + ' ' + dListGML[3] + ' ' + dListGML[0] d4 = dListGML[4] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[5] + ' ' + dListGML[4] binosemantics(lod3geometry, d1) binosemantics(lod3geometry, d2) binosemantics(lod3geometry, d3) binosemantics(lod3geometry, d4) d5 = dListGML[7] + ' ' + dListGML[4] + ' ' + dListGML[5] + ' ' + dListGML[6] + ' ' + dListGML[7] binosemantics(lod3geometry, d5) #-- Closure surface in the roof # d0 = dListGML[0] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[3] + ' ' + dListGML[0] # binosemantics(lod3geometry, d0) #-- Closure surface in the roof d0 = dListGML[0] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[3] + ' ' + dListGML[0] bisemantics(lod3geometry, d0, "ClosureSurface") if semantics == 1: if kind == 'dormer': d1 = dListGML[0] + ' ' + dListGML[1] + ' ' + dListGML[4] + ' ' + dListGML[0] d2 = dListGML[0] + ' ' + dListGML[4] + ' ' + dListGML[5] + ' ' + dListGML[3] + ' ' + dListGML[0] d3 = dListGML[5] + ' ' + dListGML[2] + ' ' + dListGML[3] + ' ' + dListGML[5] bisemantics(bi, d1, "WallSurface") bisemantics(bi, d2, "RoofSurface") bisemantics(bi, d3, "WallSurface") if window is None: d4 = dListGML[4] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[5] + ' ' + dListGML[4] bisemantics(bi, d4, "WallSurface") if window is not None: #-- Face with the window if embrasure is not None and embrasure > 0.0: d4 = dListGML[4] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[5] + ' ' + dListGML[4] if side == 1: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0], dList[4][1] + window, dList[4][2] - window] dw[1] = [dList[1][0], dList[1][1] + window, dList[1][2] + window] dw[2] = [dList[2][0], dList[2][1] - window, dList[2][2] + window] dw[3] = [dList[5][0], dList[5][1] - window, dList[5][2] - window] ew[0] = [dList[4][0] - embrasure, dList[4][1] + window, dList[4][2]
<filename>chemics/biomass_composition.py<gh_stars>10-100 """ Use the `biocomp()` function to calculate biomass composition. Use the `plot_biocomp()` function to create a Matplotlib figure of the biomass composition results. """ import numpy as np def biocomp(yc, yh, yo=None, yh2o=0, yash=0, alpha=0.6, beta=0.8, gamma=0.8, delta=1, epsilon=1, printcomp=False): """ Determine bimoass composition from ultimate analysis mass fractions of C, H, and O. Composition returned as cellulose, hemicellulose, lignins, and extractives based on method discussed in the Debiagi 2015 paper [1]_. Parameters ---------- yc : float Mass fraction of carbon in biomass, dry ash free basis [-] yh : float Mass fraction of hydrogen in biomass, dry ash free basis [-] yo : float, optional Mass fraction of oxygen in biomass, if not given then value is calculated as difference, dry ash free basis [-]. Default is None. yh2o : float, optional Mass fraction of water in biomass, as received basis [-]. Default is 0. yash : float, optional Mass fraction of ash in biomass, as received basis [-]. Default is 0. alpha : float, optional Splitting parameter as molar ratio of cellulose and hemicellulose contained in reference mixture RM1 [-]. Default is 0.6. beta : float, optional Splitting parameter as molar ratio of lignin LIG-O and lignin LIG-C contained in reference mixture RM2 [-]. Default is 0.8. gamma : float, optional Splitting parameter as molar ratio of lignin LIG-H and lignin LIG-C contained in reference mixture RM3 [-]. Default is 0.8. delta : float, optional Splitting parameter as molar ratio of lignins (LIG-H and LIG-C) and extractive TGL to define reference mixture RM2 [-]. Default is 1.0. epsilon : float, optional Splitting parameter as molar ratio of lignins (LIG-O and LIG-C) and extractive TANN to define reference mixture RM3 [-]. Default is 1.0. printcomp : bool, optional Print composition results if True. Default is False. Returns ------- comp : dict Dictionary representing reference mixtures and biomass compositions on the basis of mole fractions (x) and mass fractions (y). - `y_rm1` mass fractions [C, H, O] of reference mixture RM1 - `y_rm2` mass fractions [C, H, O] of reference mixture RM2 - `y_rm3` mass fractions [C, H, O] of reference mixture RM3 - `x_daf` mole fractions [cell, hemi, ligc, ligh, ligo, tann, tgl] of biomass as dry ash-free basis - `x_wet` mole fractions [cell, hemi, ligc, ligh, ligo, tann, tgl] of biomass as wet basis - `y_daf` mass fractions [cell, hemi, ligc, ligh, ligo, tann, tgl] of biomass as dry ash-free basis - `y_wet` mass fractions [cell, hemi, ligc, ligh, ligo, tann, tgl] of biomass as wet basis - `y_wetash` mass fractions [cell, hemi, ligc, ligh, ligo, tann, tgl] of biomass as wet ash basis Raises ------ ValueError When sum of mass fractions is not equal to one. Examples -------- >>> yc = 0.534 >>> yh = 0.06 >>> bc = biocomp(yc, yh) >>> bc['y_daf'] array([0.2936, 0.1594, 0.0712, 0.2934, 0.1822, 0, 0]) >>> yc = 0.500 >>> yh = 0.060 >>> yo = 0.440 >>> yash = 0.15 >>> biocomp(yc, yh, yo, yash=yash, printcomp=True) basis cell hemi ligc ligh ligo tann tgl x_daf 0.5016 0.3344 0.0328 0.0614 0.0698 0.0000 0.0000 x_wet 0.5016 0.3344 0.0328 0.0614 0.0698 0.0000 0.0000 y_daf 0.4275 0.2322 0.0445 0.1409 0.1549 0.0000 0.0000 y_wet 0.4275 0.2322 0.0445 0.1409 0.1549 0.0000 0.0000 y_wetash 0.3634 0.1974 0.0378 0.1197 0.1317 0.0000 0.0000 References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis. Energy and Fuels, vol. 29, no. 10, pp. 6544-6555, 2015. """ # Determine oxygen mass fraction by difference if not explicitly given if yo is None: yo = 1 - yc - yh # Check that mass fractions sum to one sumy = yc + yh + yo tol = 1e-4 if abs(sumy - 1.0) > tol: raise ValueError('Sum of mass fractions must equal one.') # Cellulose, hemicellulose, and lignins as arrays of [C, H, O] # See Figure 1 in reference for these formulas cell = np.array([6, 10, 5]) hemi = np.array([5, 8, 4]) ligc = np.array([15, 14, 4]) ligh = np.array([22, 28, 9]) ligo = np.array([20, 22, 10]) tann = np.array([15, 12, 7]) tgl = np.array([57, 100, 7]) # Molecular weight of cellulose, hemicellulose, lignins, and water mw_cell = 162.141 mw_hemi = 132.115 mw_ligc = 258.273 mw_ligh = 436.457 mw_ligo = 422.386 mw_tann = 304.254 mw_tgl = 897.42 mw_h2o = 18.015 # Solve for pseudo species # ----------------------------------------------------------------------- # Reference mixture where rm = [C, H, O] rm1 = alpha * cell + (1 - alpha) * hemi rm2 = beta * delta * ligh + (1 - beta) * delta * ligc + (1 - beta * delta - (1 - beta) * delta) * tgl rm3 = gamma * epsilon * ligo + (1 - gamma) * epsilon * ligc + (1 - gamma * epsilon - (1 - gamma) * epsilon) * tann # Molecular weight of reference mixture where C, H, O given as 12, 1, 16 mw_rm1 = sum(rm1 * [12, 1, 16]) mw_rm2 = sum(rm2 * [12, 1, 16]) mw_rm3 = sum(rm3 * [12, 1, 16]) # Mass fraction of reference mixture where y_rm = [yC, yH, yO] y_rm1 = (rm1 * [12, 1, 16]) / mw_rm1 y_rm2 = (rm2 * [12, 1, 16]) / mw_rm2 y_rm3 = (rm3 * [12, 1, 16]) / mw_rm3 # Mass fraction of pseudo species where ys = [S1, S2, S3] # Solve system of linear equations Ax = b # A is 3x3 matrix with columns = [yC, yH, yO] a = np.array([y_rm1, y_rm2, y_rm3]).T b = np.array([yc, yh, yo]) ys = np.linalg.solve(a, b) # Sum of mass fractions and molecular weights as sum(ys/MW) sum_ymw = sum(ys / [mw_rm1, mw_rm2, mw_rm3]) # Mole fraction of pseudo species where xs = [S1, S2, S3] xs = (ys / [mw_rm1, mw_rm2, mw_rm3]) / sum_ymw # Biomass composition # ----------------------------------------------------------------------- # Mole fraction as dry ash free basis for biomass components where # x_daf = [cell, hemi, ligc, ligh, ligo, tann, tgl] x_dafcell = alpha * xs[0] x_dafhemi = (1 - alpha) * xs[0] x_dafligc = (1 - beta) * delta * xs[1] + (1 - gamma) * epsilon * xs[2] x_dafligh = beta * delta * xs[1] x_dafligo = gamma * epsilon * xs[2] x_daftann = (1 - gamma * epsilon - (1 - gamma) * epsilon) * xs[2] x_daftgl = (1 - beta * delta - (1 - beta) * delta) * xs[1] x_daf = np.array([x_dafcell, x_dafhemi, x_dafligc, x_dafligh, x_dafligo, x_daftann, x_daftgl]) # Molecular weight vector for biomass components where # mw_comp = [mw_cell, mw_hemi, mw_ligc, mw_ligh, mw_ligo, mw_tann, mw_tgl] mw_comp = x_daf * [mw_cell, mw_hemi, mw_ligc, mw_ligh, mw_ligo, mw_tann, mw_tgl] # Average molecular weight of all biomass components mw_avg = sum(mw_comp) # Mass fraction as dry ash free basis for biomass components where # y_daf = [cell, hemi, ligc, ligh, ligo, tann, tgl] y_daf = mw_comp / mw_avg # Mass fraction as wet basis for biomass components where # y_wet = [cell, hemi, ligc, ligh, ligo, tann, tgl] y_wet = y_daf * (1 - yh2o) # Mass fraction as wet + ash basis for biomass components where # y_wetash = [cell, hemi, ligc, ligh, ligo, tann, tgl] y_wetash = y_daf * (1 - yh2o - yash) # Mole fraction as wet basis for biomass components where # x_wet = [cell, hemi, ligc, ligh, ligo, tann, tgl] ywet_yh2o = np.concatenate((y_wet, [yh2o])) sum_xmw = sum(ywet_yh2o / [mw_cell, mw_hemi, mw_ligc, mw_ligh, mw_ligo, mw_tann, mw_tgl, mw_h2o]) x_wet = (y_wet / [mw_cell, mw_hemi, mw_ligc, mw_ligh, mw_ligo, mw_tann, mw_tgl]) / sum_xmw comp = { 'y_rm1': y_rm1, 'y_rm2': y_rm2, 'y_rm3': y_rm3, 'x_daf': x_daf, 'x_wet': x_wet, 'y_daf': y_daf, 'y_wet': y_wet, 'y_wetash': y_wetash } # Print biomass composition results if printcomp: print('basis\t cell\t hemi\t ligc\t ligh\t ligo\t tann\t tgl') print('x_daf\t', ' '.join(f'{x:.4f}' for x
''' author: bg goal: type: modelz - sklearn for workflow management + PyTorch/keras for transfer learning components + pytorch for nn modules how: wrapper class for workflow management (pytorch opt&loss + sklearn pipe&metrics) + ArchitectureMixin and implementation for custom architectures. ref: refactors: ''' from tqdm import tqdm from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin, RegressorMixin, ClusterMixin from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV, StratifiedKFold ## TODO: use same @ transforms from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.utils.multiclass import unique_labels import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import nnarchs from zdata import ZSerializableMixin from report import ZReporter import cv2 ## K-Means Clustering class ZModel(ZSerializableMixin, BaseEstimator): ## TODO: VS internal class for nn.Module subclassing <<< subClassing Vs has-a ## cuda, optimizer, loss, evaluate MSG_LOSS_PER_EPOCH = "[{:20s}] Train Epoch {:5d}: Loss: {:15.4f} \tn = {:5d}".format MSG_ACC_ON_PREDICT = "[{:20s}] Predict on n ={:5d}: Acc: {:15.4f}".format MSG_YHAT_Y_VALZ = "{:3d}. {:4.2f} ===> {:4.2f}".format def __init__(self, parent_caller_name, nnModel=None, ##TODO: non-nn Models and traditional ML use_cuda=False, ##TODO: pass to ZNNArch epochs=3, loss_func=(nn.CrossEntropyLoss, {}) , optimizer=(optim.SGD, {'lr':0.001, 'momentum':0.9}) ): ## setup layers and initialize model weights and biases self.parent_caller_name = parent_caller_name ## for loggin purposes self.nnModel = nnModel self.epochs = epochs self.loss_func = loss_func self.optimizer = optimizer self.loss_thresh = 1e-6 ## TODO: cuda calls self.use_cuda = use_cuda self.init_cuda() ### === sklearn pipeline management imple === def fit(self, X, y=None): ## X is NxF, y is Nx1 ## train model + batches self.train(X, y) return self def transform(self, X, y=None):## X is NxF, y is Nx1 ## predict with no_grad and return list of predictions as is return self.predict(X, y, log=False) def score(self, X_, y_=None):## y is Nx1 yhat = self.predict(X_, y_) ACC_ = self.score(yhat, y_) return ACC_ ### === things pyTorch and cuda ========== def zscore(self, yhat, y_):## y is Nx1 ACC_ = np.array( [ int( int(y) == int( yh ) ) for y, yh in zip(y_, yhat )]).mean() ZReporter.add_log_entry( self.MSG_ACC_ON_PREDICT(self.parent_caller_name, len(y_), ACC_ ) ) return ACC_ def init_cuda(self): if self.use_cuda: if torch.cuda.is_available(): self.device = torch.device('cuda') else: print('Cuda is not available') self.device = torch.device('cpu') ## TODO: returns + skl.metrics def train(self, X_train, y_train=None): N_ = len(X_train) lossor = self.loss_func[0]( **self.loss_func[1]) optimor = self.optimizer[0]( self.nnModel.parameters(), **self.optimizer[1]) def fwd_pass(x, y=None, ebatch=0): if (y is not None) and isinstance(y, np.ndarray): ## force tensor <<< TODO: fix at source y = torch.tensor(y) ## 1. train on batch self.nnModel.train() ## set to training mode outz = self.nnModel.forward( x ) # print(outz) # print(y) # print( type(outz), type(y)) # print( f"****** SHAPEZ::: *****\n yhat ={outz[0].shape} y = {y[0].shape }") l_ = lossor( outz, y) optimor.zero_grad() l_.backward() optimor.step() ## 2. evaluate batch ##TODO: ensure batches if ebatch % 10 == 0 or ebatch == self.epochs: self.nnModel.eval() outz = self.nnModel.forward(x) l_ = lossor( outz, y) return l_.item() LOSS_ = 0. for e in range( self.epochs): if isinstance(X_train, DataLoader): pass else: if y_train is None: for x in X_train: LOSS_ += fwd_pass(x, ebatch=e+1) else: for x, y in zip(X_train, y_train): LOSS_ += fwd_pass(x, y, e+1) ZReporter.add_log_entry( self.MSG_LOSS_PER_EPOCH(self.parent_caller_name, e+1, LOSS_ ,N_ ) ) ## TODO: better flow and when to stop if LOSS_ <= self.loss_thresh: break def predict(self, X_, y_=None, log=True, to_numpy=True): ## run evaluation and return list of results as is. Score will handle metrics def eval_pass(x): with torch.no_grad(): self.nnModel.eval() outz = self.nnModel.forward(x) o = torch.argmax( outz ).cpu() return o.numpy() if to_numpy else o yhat = [] if isinstance(X_, DataLoader): pass else: for x in X_: yhat.append( eval_pass(x) ) if log: ACC_ = self.zscore(yhat, y_) return yhat class ZModelKMeans(ZSModel): def __init__(self): pass def train(self, X_train): pass def predict(self, X_): pass ### --- TBD: Skorch == sklearn + pytorch already! for now i want to moi-flow ### --- TODO: Captum == Model intepretability for PyTorch class ZTrainingManager(): MSG_GSEARCH_RESULTS = "[{:7s}] Best score = {:2.4f} estimator = {:10s} paramz = {:50s}".format ## SCORE, ESTIMATOR, PARAMZ ### === workflow management, permutations and hyperparam tuning configuration def __init__(self, data_pipez=None, model_pipez=None): ## NO:ByNNs = setup layers and initialize model weights and biases # workflow management, permutations and hyperparam tuning configuration if data_pipez is not None and model_pipez is not None: self.build_permutationz(data_pipez, model_pipez) ### === setup permutationz === def build_permutationz(self, data_pipez, model_pipez): ''' data_pipez : list of data pipelines model_pipez : list of (model pipelines and grid search params) tuples ''' self.permutationz = [] ## reset d_, m_ = np.meshgrid( range( len(data_pipez)), range(len(model_pipez)) ) for x, y in zip(d_, m_): for i, j in zip(x, y): self.permutationz.append( (data_pipez[i], model_pipez[j]) ) ### === run training with skl.grid search on each permutation def run(self, data_X, data_y = None, train_test_split=1., save_best=False, log=False): ## for each permutation apply data and grid search ## 1. Deal data allocation TODO: when to train_test split if isinstance(data_X, np.ndarray): n_train = int(len(data_X)*train_test_split) train_X, test_X = data_X[:n_train], data_X[n_train:] ## TODO: check if a ZPdData or something or array/list train_y, test_y = [], [] ## hack for print :/ if data_y is not None: train_y, test_y = data_y[:n_train], data_y[n_train:] if log: print( type(train_y[0]), train_y[0].shape ) if log: print( type(train_X[0]), train_X[0].shape ) print(f"Train-Test-Split {train_test_split}: train = {len(train_X)}, {len(train_y)} \t test = {len(test_X)}, {len(test_y)}") else: ## TODO: dataloader, Zdataset train_X, train_y = data_X, data_y test_X, test_y = [], [] ## 2. train O_ = [] for i in tqdm( range( len( self.permutationz ) ) ): o = self._run_permutation(i, train_X, train_y ) p = f"Perm_{i+1}" O_.append( [p,*o] ) # print("<<<<<<<\n", o, "\n>>>>>>>>") ZReporter.add_log_entry( ZTrainingManager.MSG_GSEARCH_RESULTS(f"{p} {o[0]}", o[1], *[str(i) for i in o[2:]]) ) ## 3. test/validate return O_ def _run_permutation(self, idx, X, y , log=False): data_pipe, model_pipe = self.permutationz[ idx] model_pipe, g_paramz = model_pipe def update_gsearch_param_keys(mp, gp): O_ = {} m = mp.steps[-1][0] for k, v in gp.items(): O_[ f"model_pipe__{m}__{k}" ] = v if log: print(f"\n\n***********{m}***********") return O_ , m g_paramz , m_name = update_gsearch_param_keys(model_pipe, g_paramz) # print( data_pipe ) dz = "__".join([str(x[0]) for x in data_pipe.steps]) m_name = f"{m_name} {dz}" piper = Pipeline([ ('data_pipe', data_pipe), ('model_pipe', model_pipe)]) # print(f"============\n{piper}\n{g_paramz}\n==============<<<<") gsearch = GridSearchCV(estimator=piper, param_grid=g_paramz, cv=StratifiedKFold(n_splits=2), ## random_state=99, shuffle=True n_jobs=1, return_train_score=True) gsearch.fit(X, y) return (m_name, gsearch.best_score_, gsearch.best_estimator_ , gsearch.best_params_) def _save_best_model(self): ## TODO pass if __name__ == "__main__": from sklearn.utils.estimator_checks import check_estimator # check_estimator( ZModel() ) ## check adheres to sklearn interface and standards # TODO: parametrize_with_checks pytest decorator epochz = 3 N, nf, nclasses = 12, 40, 2 #.reshape(1, -1) tmpX = [ torch.tensor( np.random.randint(0, 100, size=nf).reshape(1, -1).astype(np.float32) ) for i in range(N)] tmpY = [ x.sum()**2 for x in tmpX] ymu = np.array(tmpY).mean() ##mean ymu = np.percentile( np.array(tmpY), 0.5) ## median tmpY = [ torch.tensor( np.array([ int(y > ymu),] ).astype(np.long) ) for y in tmpY] ## TODO: qcut percentile tmpX = tmpX * 300 tmpY = tmpY * 300 n_train = int(len(tmpY)*0.75) mlp = nnarchs.ZNNArchitectureFactory.mlp(nf, nclasses) print(mlp ) model = ZModel( "Tryzex", mlp, epochs=epochz, loss_func=(nn.CrossEntropyLoss, {} ), optimizer=(optim.SGD, {'lr':0.001, 'momentum':0.9} ) ) print( model ) model.train(tmpX[:n_train], tmpY[:n_train]) yhat = model.predict(tmpX[n_train:], tmpY[n_train:] , log=True) # model.score(yhat, tmpY[n_train:]) c = "=" print(f"{c*10} End Model --> Dumping to File {c*10}\n") fpath = "./tester.zmd" model.dump(fpath ) model2 = ZModel("Tryzex_2",) model2.load(fpath) model2.predict(tmpX, tmpY , log=True) model2.epochs =5 model2.fit(tmpX[:n_train], tmpY[:n_train]) yhat = model2.transform(tmpX[n_train:], tmpY[n_train:]) model2.zscore(yhat, tmpY[n_train:]) print( f"****** SHAPEZ::: *****\n yhat ={yhat[0].shape} y = {tmpY[0].shape }") print(f"{c*10} End Model2 <-- Loaded from file, predicted, retrained and predicted {c*10}\n") epochz
import serial.serialutil import pygame, math, sys, uart, serial, threading, time, numpy from scipy.optimize import curve_fit from statistics import pstdev # Constants BLUE = (25, 25, 200) PURPLE = (150, 25, 200) BLACK = (23, 23, 23) GREY = (56, 56, 56) WHITE = (254, 254, 254) RED = (200, 25, 25) GREEN = (25, 200, 25) CM_TO_PX = 1.724 SCREEN_WIDTH = 1920 SCREEN_HEIGHT = 1080 move_avg = [14] turn_avg = [70.12] ir_cal = [1043, 745, 610, 487, 2191, 1530, 1169, 945, 778, 672, 583, 528, 466, 406, 381, 330, 298, 268, 248, 225, 236, 235, 196, 235, 196, 168, 144, 166, 120] pg_cal = [16.12, 22.64, 27.04, 31.84, 7.79, 11.29, 14.86, 19.04, 23.14, 26.72, 28.85, 33.23, 36.98, 40.65, 44.12, 48.08, 51.49, 26.79, 33.26, 39.66, 66.9, 1000.0, 1000.0, 1000.0, 1000.0, 64.08, 8.82, 1000.0, 69.69] configs = { 3: {'COEFF': 67040.0548282411, 'PWR': -1.0002365394867478}, 9: {'COEFF': 86338.93790129754, 'PWR': -1.0514768371387075} } #Which Cybot we're using CYBOT_NUM = 3 COEFF = configs[CYBOT_NUM]['COEFF'] PWR = configs[CYBOT_NUM]['PWR'] IR_RAW = 0 CliffData = [] def polar_to_cart(deg, amt): """Convert polar coordinates to cartesian""" x = float(amt) * math.sin(math.radians(int(deg))) y = float(amt) * math.cos(math.radians(int(deg))) return x,y def line_of_best_fit(): """Set formula for calculating ir values""" def objective(x, a, b): return a * pow(x, b) global COEFF, PWR popt, _ = curve_fit(objective, ir_cal, pg_cal) COEFF, PWR = popt print("COEFF = " + str(COEFF)) print("PWR = " + str(PWR)) def ir_to_cm(val): """Convert ir values into centimeters""" return COEFF * pow(val,PWR) def get_dist(x1,x2,y1,y2): """Find distance between two points""" return abs(math.sqrt(pow(x1-x2,2) + pow(y1-y2,2))) def avg(list): """Find average value in a list or list-like object""" return sum(list) / len(list) class Player(): """Cybot player class""" def __init__(self): self.x = SCREEN_WIDTH / 2 self.y = SCREEN_HEIGHT / 2 self.servo_pos = 0 self.rot = 90.0 self.size = 34.8 * CM_TO_PX self.rect = pygame.Rect(self.x-30,self.y-30,60,60) self.manual = True self.lBump = "" self.rBump = "" self.estimating = False def position(self, angle, dist): """Update position info""" self.rot += angle # movement handling x, y = polar_to_cart(self.rot, dist * CM_TO_PX) self.x += x self.y += y self.rect = pygame.Rect(self.x-(self.size/2),self.y-(self.size/2),self.size,self.size) def bump(self, leftBump, rightBump): """Update bumper status on gui and draw""" if leftBump == 1: x, y = polar_to_cart(self.rot + 45, self.size / 1.5) self.lBump = "left " CliffData.append(Cliff(False, self.x + x, self.y + y, self.x, self.y, bump=True)) else: self.lBump = "" if rightBump == 1: x, y = polar_to_cart(self.rot - 45, self.size / 1.5) self.rBump = "right " CliffData.append(Cliff(False, self.x + x, self.y + y, self.x, self.y, bump=True)) else: self.rBump = "" def cliff(self, cliffVal) : """Cliff handling""" lx, ly = polar_to_cart(self.rot + 45, self.size / 1.5) flx, fly = polar_to_cart(self.rot + 15, self.size / 1.5) rx, ry = polar_to_cart(self.rot - 45, self.size / 1.5) frx, fry = polar_to_cart(self.rot - 15, self.size / 1.5) if cliffVal & 0b1: # l high CliffData.append(Cliff(False,self.x + lx,self.y + ly,self.x,self.y)) if cliffVal & 0b10: # l low CliffData.append(Cliff(True,self.x + lx,self.y + ly,self.x,self.y)) if cliffVal >> 2 & 0b1: # lf high CliffData.append(Cliff(False,self.x + flx,self.y + fly,self.x,self.y)) if cliffVal >> 2 & 0b10: # lf low CliffData.append(Cliff(True,self.x + flx,self.y + fly,self.x,self.y)) if cliffVal >> 4 & 0b1: # r high CliffData.append(Cliff(False,self.x + rx,self.y + ry,self.x,self.y)) if cliffVal >> 4 & 0b10: # r low CliffData.append(Cliff(True,self.x + rx,self.y + ry,self.x,self.y)) if cliffVal >> 8 & 0b1: # rf high CliffData.append(Cliff(False,self.x + frx,self.y + fry,self.x,self.y)) if cliffVal >> 8 & 0b10: # rf low CliffData.append(Cliff(True,self.x + frx,self.y + fry,self.x,self.y)) def calibrate_ir(self): """Auto-calibrate ir sensor w/ ping sensor""" print("Calibrating IR sensors...") while self.lBump == "" and self.rBump == "": cybot_uart.send_data('w') time.sleep(0.25) cybot_uart.send_data('w') # stop moving time.sleep(0.1) for _ in range(20): cybot_uart.send_data('s') time.sleep(0.25) cybot_uart.send_data('s') cybot_uart.send_data('m') time.sleep(0.5) if ScanData[len(ScanData) - 1].pg[0] >= 500: continue ir_cal.append(IR_RAW) pg_cal.append(ScanData[len(ScanData) - 1].pg[0]) print("Complete!") print("Recommend: Find line of best fit (f).") def forward(self): """Move forward until key isn't pressed""" self.estimating = True cybot_uart.send_data('w') while self.estimating: continue cybot_uart.send_data('w') def back(self): """Move backward until key isn't pressed.""" self.estimating = True cybot_uart.send_data('s') while self.estimating: continue cybot_uart.send_data('s') def left(self): """Turn left until key isn't pressed.""" self.estimating = True cybot_uart.send_data('a') while self.estimating: continue cybot_uart.send_data('a') def right(self): """Turn right until key isn't pressed/""" self.estimating = True cybot_uart.send_data('d') while self.estimating: continue cybot_uart.send_data('d') def clear(self): self.x = SCREEN_WIDTH / 2 self.y = SCREEN_HEIGHT / 2 self.rot = 0 self.rect = pygame.Rect(self.x-30,self.y-30,60,60) ScanData.clear() def scan(self,theta,ir,pg): """Process results of single scan point""" global IR_RAW self.servo_pos = theta IR_RAW = int(ir) # for calibration ir = ir_to_cm(ir) irx, iry = polar_to_cart(int(self.servo_pos) - 90 + self.rot, ir * CM_TO_PX) pgx, pgy = polar_to_cart(int(self.servo_pos) - 90 + self.rot, pg * CM_TO_PX) offsetx, offsety = polar_to_cart(self.rot, float(34.8 / 2) * CM_TO_PX) #Cutoff for IR sensor, in cm if ir < 65: ScanData.append(Point(self.x+irx+offsetx, self.y+iry+offsety, self.x+pgx+offsetx, self.y+pgy+offsety,ir,pg)) #Average IR and Ping for more accurate results avg_x = (self.x+pgx+offsetx + self.x+irx+offsetx) / 2 avg_y = (self.y+pgy+offsety + self.y+iry+offsety) / 2 #Add obstacle to grid at calculated coordinates obstacle_grid[avg_x][avg_y] = Obstacle(self.x+irx+offsetx, self.y+iry+offsety, avg_x, avg_y) print(obstacle_grid) class Point(): """Class to hold scan data""" def __init__(self,irx,iry,pgx,pgy,ir,pg): self.ir = [ir,[irx,iry]] self.pg = [pg,[pgx,pgy]] class Obstacle(): """ This represents an obstacle in the field. Contains a PointCloud object holding all points determined to be a part of this object. """ def __init__(self, ix, iy, px, py): self.ix = ix self.iy = iy self.px = px self.py = py self.points = PointCloud((px, py)) def __str__(self): return "Obstacle(" + str(self.px) + ", " + str(self.py) + ", irx: " + str(self.ix) + ", iry: " + str(self.iy) + ")" def __repr__(self): return self.__str__() class PointCloud(list): """ Represents a point cloud that defines an obstacle. Dynamically calculates centerpoint, and automatically rejects outlier points using calculated Z-score. """ def __init__(self, center): super().__init__(self) self.least_point = None self.most_point = None self.center = center def append(self, item): """ All the magic happens here. Calculates Z-score for point being appended, automatically rejects if outside bounds. If within bounds, appends and recalculates centerpoint. """ distance = math.hypot(item[0] - self.center[0], item[1] - self.center[1]) if(len(self) > 1): x_stdev = pstdev([a[0] for a in self]) y_stdev = pstdev([a[1] for a in self]) if(x_stdev != 0 and y_stdev != 0): x_score = (item[0] - self.center[0]) / x_stdev # x y_score = (item[1] - self.center[1]) / y_stdev # print(x_score) print(y_score) if(x_score > 8 or y_score > 8): return super().append(item) #Update centerpoint x = [p[0] for p in self] y = [p[1] for p in self] self.center = (sum(x) / len(self), sum(y) / len(self)) #mew char #Update points used for diameter calculations. if self.least_point == None or (item[0] < self.least_point[0] and item[1] < self.least_point[1]): self.least_point = item if self.most_point == None or (item[0] > self.most_point[0] and item[1] > self.most_point[1]): self.most_point = item class Grid(): ''' Class for transparently working on the grid. Acts similar to 2d list. If grid[a] does not exist, the inner list is automatically created. Index into the grid like so: grid[x][y]. If no obstacle exists at (x,y), returns None. When adding to inner list, first looks at locations within near_threshold to see if obstacle already exists. ''' def __init__(self, near_threshold=5, outer=True, container=None): self.grid_dict = {} self.near_threshold = near_threshold self.outer = outer self.container = container self.points = [] def get_obstacles(self): obstacles = [] for row in self.grid_dict.values(): for obst in row.grid_dict.values(): obstacles.append(obst) return obstacles def clear(self): del self.grid_dict self.grid_dict = {} def __getitem__(self, key): """ If key does not exist and is outer, create inner Grid() at key. If key does not exist and is inner, return None. """ key = int(key) try: return self.grid_dict[key] except KeyError: if(self.outer): self.grid_dict[key] = Grid(near_threshold=self.near_threshold,outer=False, container = self) return self.grid_dict[key] return None def __setitem__(self, key, newval): """ Looks at values near key to determine if an obstacle is nearby, if so, then add to that obstacle's point cloud instead of adding to grid. Otherwise, add to grid. """ if(not self.outer): x = int(newval.px) y = int(newval.py) for i in range(int(x - self.near_threshold), int(x + self.near_threshold)): for j in range(int(y - self.near_threshold), int(y + self.near_threshold)): if self.container[i][j] != None: self.container[i][j].points.append((newval.px, newval.py)) return #If no near obstacle found, add to grid self.grid_dict[int(key)] = newval def __str__(self): return str(self.grid_dict) def __repr__(self): return
NT 5.1; .NET CLR 1.1.4322)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; {1C69E7AA-C14E-200E-5A77-8EAB2D667A07})') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; acc=baadshah; acc=none; freenet DSL 1.1; (none))') uagent.append('Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 8.51') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.1) Gecko/20060111 Firefox/1.5.0.1') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; snprtz|S26320700000083|2600#Service Pack 1#2#5#154321|isdn)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; Alexa Toolbar; mxie; .NET CLR 1.1.4322)') uagent.append('Mozilla/5.0 (Macintosh; U; PPC Mac OS X; ja-jp) AppleWebKit/417.9 (KHTML, like Gecko) Safari/417.8') uagent.append('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12) Gecko/20051010 Firefox/1.0.7 (Ubuntu package 1.0.7)') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090913 Firefox/3.5.3') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.1 (KHTML, like Gecko) Chrome/4.0.219.6 Safari/532.1') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.5.30729; .NET CLR 3.0.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.2; Win64; x64; Trident/4.0)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; SV1; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.1; Windows XP)') uagent.append('Opera/9.80 (Windows NT 5.2; U; ru) Presto/2.5.22 Version/10.51') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090913 Firefox/3.5.3') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; ru; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 2.0.50727)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.2; de-de; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1 (.NET CLR 3.0.04506.648)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727; .NET4.0C; .NET4.0E') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.1 (KHTML, like Gecko) Chrome/4.0.219.6 Safari/532.1') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Opera/9.60 (J2ME/MIDP; Opera Mini/4.2.14912/812; U; ru) Presto/2.4.15') uagent.append('Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-US) AppleWebKit/125.4 (KHTML, like Gecko, Safari) OmniWeb/v563.57') uagent.append('Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaN95_8GB/31.0.015; Profile/MIDP-2.0 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.5.30729; .NET CLR 3.0.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.2; Win64; x64; Trident/4.0)') uagent.append('Mozilla/5.0 (Windows; U; WinNT4.0; en-US; rv:1.8.0.5) Gecko/20060706 K-Meleon/1.0') uagent.append('Lynx/2.8.6rel.4 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.8g') uagent.append('Mozilla/4.76 [en] (PalmOS; U; WebPro/3.0.1a; Palm-Arz1)') uagent.append('Mozilla/5.0 (Macintosh; U; PPC Mac OS X; de-de) AppleWebKit/418 (KHTML, like Gecko) Shiira/1.2.2 Safari/125') uagent.append('Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.6) Gecko/2007072300 Iceweasel/2.0.0.6 (Debian-2.0.0.6-0etch1+lenny1)') uagent.append('Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413') uagent.append('Mozilla/4.0 (compatible; MSIE 6.1; Windows NT 5.1; Trident/4.0; SV1; .NET CLR 3.5.30729; InfoPath.2)') uagent.append('Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)') uagent.append('Links (2.2; GNU/kFreeBSD 6.3-1-486 i686; 80x25)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; WOW64; Trident/4.0; SLCC1)') uagent.append('Mozilla/1.22 (compatible; Konqueror/4.3; Linux) KHTML/4.3.5 (like Gecko)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows CE; IEMobile 6.5)') uagent.append('Opera/9.80 (Macintosh; U; de-de) Presto/2.8.131 Version/11.10') uagent.append('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.9) Gecko/20100318 Mandriva/2.0.4-69.1mib2010.0 SeaMonkey/2.0.4') uagent.append('Mozilla/4.0 (compatible; MSIE 6.1; Windows XP) Gecko/20060706 IEMobile/7.0') uagent.append('Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us) AppleWebKit/531.21.10 (KHTML, like Gecko) Version/4.0.4 Mobile/7B334b Safari/531.21.10') uagent.append('Mozilla/5.0 (Macintosh; I; Intel Mac OS X 10_6_7; ru-ru)') uagent.append('Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)') uagent.append('Mozilla/1.22 (compatible; MSIE 6.0; Windows NT 6.1; Trident/4.0; GTB6; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; OfficeLiveConnector.1.4; OfficeLivePatch.1.3)') uagent.append('Mozilla/5.0 (compatible; YandexBot/3.0; +http://yandex.com/uagent)') uagent.append('Mozilla/4.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16') uagent.append('Mozilla/1.22 (X11; U; Linux x86_64; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1') uagent.append('Mozilla/5.0 (compatible; MSIE 2.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.0.30729; InfoPath.2)') uagent.append('Opera/9.80 (Windows NT 5.2; U; ru) Presto/2.5.22 Version/10.51') uagent.append('Mozilla/5.0 (compatible; MSIE 2.0; Windows CE; IEMobile 7.0)') uagent.append('Mozilla/4.0 (Macintosh; U; PPC Mac OS X; en-US)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.0; en; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7') uagent.append('BlackBerry8300/4.2.2 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/107 UP.Link/6.2.3.15.0') uagent.append('Mozilla/1.22 (compatible; MSIE 2.0; Windows 3.1)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Avant Browser [avantbrowser.com]; iOpus-I-M; QXW03416; .NET CLR 1.1.4322)') uagent.append('Mozilla/3.0 (Windows NT 6.1; ru-ru; rv:1.9.1.3.) Win32; x86 Firefox/3.5.3 (.NET CLR 2.0.50727)') uagent.append('Opera/7.0 (compatible; MSIE 2.0; Windows 3.1)') uagent.append('Opera/9.80 (Windows NT 5.1; U; en-US) Presto/2.8.131 Version/11.10') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; America Online Browser 1.1; rev1.5; Windows NT 5.1;)') uagent.append('Mozilla/5.0 (Windows; U; Windows CE 4.21; rv:1.8b4) Gecko/20050720 Minimo/0.007') uagent.append('BlackBerry9000/5.0.0.93 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/179') uagent.append('Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)') uagent.append('Googlebot/2.1 (http://www.googlebot.com/bot.html)') uagent.append('Opera/9.20 (Windows NT 6.0; U; en)') uagent.append('Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.1) Gecko/20061205 Iceweasel/2.0.0.1 (Debian-2.0.0.1+dfsg-2)') uagent.append('Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; FDM; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 1.1.4322)') uagent.append('Opera/10.00 (X11; Linux i686; U; en) Presto/2.2.0') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.0; he-IL) AppleWebKit/528.16 (KHTML, like Gecko) Version/4.0 Safari/528.16') uagent.append('Mozilla/5.0 (compatible; Yahoo! Slurp/3.0; http://help.yahoo.com/help/us/ysearch/slurp)') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 Firefox/3.6.13') uagent.append('Mozilla/4.0 (compatible; MSIE 9.0; Windows NT 5.1; Trident/5.0)') uagent.append('Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727)') uagent.append('Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 6.0)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0b; Windows 98)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; ru; rv:1.9.2.3) Gecko/20100401 Firefox/4.0 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.8) Gecko/20100804 Gentoo Firefox/3.6.8') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.7) Gecko/20100809 Fedora/3.6.7-1.fc14 Firefox/3.6.7') uagent.append('Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)') uagent.append('Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)') uagent.append('YahooSeeker/1.2 (compatible; Mozilla 4.0; MSIE 5.5; yahooseeker at yahoo-inc dot com ; http://help.yahoo.com/help/us/shop/merchant/)') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090913 Firefox/3.5.3') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.1 (KHTML, like Gecko) Chrome/4.0.219.6 Safari/532.1') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.5.30729; .NET CLR 3.0.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.2; Win64; x64; Trident/4.0)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; SV1; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.1; Windows XP)') uagent.append('Opera/9.80 (Windows NT 5.2; U; ru) Presto/2.5.22 Version/10.51') uagent.append('AppEngine-Google; (+http://code.google.com/appengine; appid: webetrex)') uagent.append('Mozilla/5.0 (compatible; MSIE 9.0; AOL 9.7; AOLBuild 4343.19; Windows NT 6.1; WOW64; Trident/5.0; FunWebProducts)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; AOL 9.7; AOLBuild 4343.27; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; AOL 9.7; AOLBuild 4343.21; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; AOL 9.7; AOLBuild 4343.19; Windows NT 5.1; Trident/4.0; GTB7.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; AOL 9.7; AOLBuild 4343.19; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)') uagent.append('Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.7; AOLBuild 4343.19; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)') uagent.append('Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.1.3) Gecko/20090913 Firefox/3.5.3') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; ru; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 2.0.50727)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.2; de-de; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.1) Gecko/20090718 Firefox/3.5.1 (.NET CLR 3.0.04506.648)') uagent.append('Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727; .NET4.0C; .NET4.0E') uagent.append('Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.1 (KHTML, like Gecko) Chrome/4.0.219.6 Safari/532.1') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; InfoPath.2)') uagent.append('Opera/9.60 (J2ME/MIDP; Opera Mini/4.2.14912/812; U; ru) Presto/2.4.15') uagent.append('Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-US) AppleWebKit/125.4 (KHTML, like Gecko, Safari) OmniWeb/v563.57') uagent.append('Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaN95_8GB/31.0.015; Profile/MIDP-2.0 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; .NET CLR 3.5.30729; .NET CLR 3.0.30729)') uagent.append('Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.2; Win64; x64; Trident/4.0)') uagent.append('Mozilla/5.0 (Windows; U; WinNT4.0; en-US; rv:1.8.0.5) Gecko/20060706 K-Meleon/1.0') uagent.append('Lynx/2.8.6rel.4 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.8g') uagent.append('Mozilla/4.76 [en] (PalmOS; U; WebPro/3.0.1a; Palm-Arz1)') uagent.append('Mozilla/5.0 (Macintosh; U; PPC Mac OS X; de-de) AppleWebKit/418 (KHTML, like Gecko) Shiira/1.2.2 Safari/125') uagent.append('Mozilla/5.0 (X11; U; Linux i686
if not name and not rule_id: raise SDKException( 'OperationWindow', '102', 'Either Name or Rule Id is needed') if name and not isinstance(name, str) or rule_id and not isinstance(rule_id, int): raise SDKException('OperationWindow', '106') if name: rule_id = self.get(name=name).rule_id flag, response = self._cvpysdk_object.make_request( 'DELETE', self._operation_window + '/' + str(rule_id)) if flag: if response.json(): error_code = response.json().get("error", {}).get('errorCode') if int(error_code): raise SDKException('OperationWindow', '103') else: raise SDKException('Response', '102') else: response_string = self._update_response( response.text) raise SDKException('Response', '102', response_string) def list_operation_window(self): """Lists the operation rules for the associated commcell entity. Returns: Returns the List of operation rules (dictionary) associated with given commcell entity Example -- [{'ruleEnabled': True, 'endDate': 0, 'level': 0, 'name': 'Rule1', 'ruleId': 1, 'startDate': 0, 'operations': ['FULL_DATA_MANAGEMENT', 'NON_FULL_DATA_MANAGEMENT'], 'company': {'_type_': 61, 'providerId': 0, 'providerDomainName': ''}, 'dayTime': [{'startTime': 28800, 'endTime': 64800, 'dayOfWeek': ['sunday','monday']}]} ] Raises: SDKException: if the Operation rules could not be Listed if response is empty if response is not success """ flag, response = self._cvpysdk_object.make_request( 'GET', self.connect_string) if flag: if response.json(): error_code = response.json().get("error", {}).get('errorCode') if int(error_code) == 0: list_of_rules = response.json().get("operationWindow") operation_reverse_mapping = {value:key for key, value in OPERATION_MAPPING.items()} if list_of_rules is not None: for operation_rule in list_of_rules: operations = operation_rule.get("operations") day_of_week = operation_rule.get("dayTime", [{}])[0].get("dayOfWeek") if operations is not None: operation_rule["operations"] = [operation_reverse_mapping[operation] for operation in operations] if day_of_week is not None: operation_rule["dayTime"][0]["dayOfWeek"] = [DAY_OF_WEEK_MAPPING[day] for day in day_of_week] return list_of_rules raise SDKException('OperationWindow', '104') raise SDKException('Response', '102') response_string = self._update_response(response.text) raise SDKException('Response', '102', response_string) def get(self, rule_id=None, name=None): """Returns the operation rule object for a given rule Args: rule_id (int) -- Rule Id of an operation Window name (str) -- Name of the operation window Returns: object - instance of the OperationWindowDetails class for the given operation window name/rule Raises: SDKException: if type of the operation window name argument is not string if no operation window exists with such name """ if not name and not rule_id: raise SDKException( 'OperationWindow', '102', 'Either Name or Rule Id is needed') if name and not isinstance(name, str) or rule_id and not isinstance(rule_id, int): raise SDKException('OperationWindow', '106') list_of_rules = self.list_operation_window() if rule_id: for operation_rule in list_of_rules: if operation_rule.get("ruleId") == rule_id: return OperationWindowDetails(self.generic_entity_obj, rule_id, self.entity_details) raise Exception("No such operation window with rule id as {0} exists".format(rule_id)) if name: rules = [operation_rule.get("ruleId") for operation_rule in list_of_rules if operation_rule.get("name") == name] if not rules: raise Exception("No such operation window with name as {0} exists".format(name)) if len(rules) == 1: return OperationWindowDetails(self.generic_entity_obj, rules[0], self.entity_details) raise Exception("More than one operation window are named as {0} exists".format(name)) class OperationWindowDetails: """Helper class for modifying operation window""" def __init__(self, generic_entity_obj, rule_id, entity_details): """ Initialize the OperationWindowDetails class instance for modifying OperationWindow. Args: generic_entity_obj (object) -- Commcell entity object Expected value : commcell/Client/Agent/Instance/BackupSet/Subclient/Clientgroup Entity rule_id (int) -- Rule id of the operation window to be modified entity_details -- Details related to the entity Usually gets initialized from OperationWindow class Returns: object - instance of the OperationWindowDetails class """ from .commcell import Commcell if isinstance(generic_entity_obj, Commcell): self._commcell_object = generic_entity_obj else: self._commcell_object = generic_entity_obj._commcell_object self._cvpysdk_object = self._commcell_object._cvpysdk_object self._update_response = self._commcell_object._update_response_ self._commcell_services = self._commcell_object._services self._operation_window = self._commcell_services['OPERATION_WINDOW'] self._rule_id = rule_id self._name = None self._start_date = None self._end_date = None self._operations = None self._day_of_week = None self._start_time = None self._end_time = None self._commcell_id = self._commcell_object.commcell_id self._clientgroup_id = entity_details["clientGroupId"] self._client_id = entity_details["clientId"] self._agent_id = entity_details["applicationId"] self._instance_id = entity_details["instanceId"] self._backupset_id = entity_details["backupsetId"] self._subclient_id = entity_details["subclientId"] self._entity_level = entity_details["entity_level"] self._refresh() def modify_operation_window(self, **modify_options): """Modifies the Operation rule. Args: modify_options(dict) -- Arbitrary keyword arguments. modify_options Args: name (str) -- Name of the Operation rule start_date (int) -- The start date for the operation rule. Valid values are UNIX-style timestamps (seconds since January 1, 1970). default - current date end_date (int) -- The end date for the operation rule. Valid values are UNIX-style timestamps (seconds since January 1, 1970). default - 365 days operations (list) -- List of operations for which the operation window is created Acceptable Values: FULL_DATA_MANAGEMENT/NON_FULL_DATA_MANAGEMENT/SYNTHETIC_FULL/ DATA_RECOVERY/AUX_COPY/DR_BACKUP/DATA_VERIFICATION/ERASE_SPARE_MEDIA/ SHELF_MANAGEMENT/DELETE_DATA_BY_BROWSING/DELETE_ARCHIVED_DATA/ OFFLINE_CONTENT_INDEXING/ONLINE_CONTENT_INDEXING/SRM/INFORMATION_MANAGEMENT/ MEDIA_REFRESHING/DATA_ANALYTICS/DATA_PRUNING/BACKUP_COPY/CLEANUP_OPERATION day_of_week (list) -- List of days of the week on which the operation rule applies to Acceptable Values: sunday/ monday/ tuesday/ wednesday/ thursday/ friday/ saturday default- Weekdays start_time (int) -- The start time for the "do not run" interval. Valid values are UNIX-style timestamps (seconds since January 1, 1970). default - 28800 (8 AM) end_time (int) -- The end time for the "do not run" interval. Valid values are UNIX-style timestamps (seconds since January 1, 1970). default - 86400 (6 PM) Raises: SDKException: if the Operation window could not be Modified if response is empty if response is not success """ start_date = modify_options.get("start_date", self.start_date) end_date = modify_options.get("end_date", self.end_date) start_time = modify_options.get("start_time", self.start_time) end_time = modify_options.get("end_time", self.end_time) name = modify_options.get("name", self.name) operations = modify_options.get("operations", self.operations) day_of_week = modify_options.get("day_of_week", self.day_of_week) if not operations: # Empty list can be passed operations_list = operations else: operations_list = [OPERATION_MAPPING[operation.upper()] for operation in operations] day_of_week_list = [DAY_OF_WEEK_MAPPING.index(day.lower()) for day in day_of_week] payload = { "operationWindow": { "ruleEnabled": True, "startDate": start_date, "endDate": end_date, "name": name, "ruleId": int(self.rule_id), "operations": operations_list, "dayTime": [{ "startTime": start_time, "endTime": end_time, "dayOfWeek": day_of_week_list }] }, "entity": { "clientGroupId": int(self._clientgroup_id), "clientId": int(self._client_id), "applicationId": int(self._agent_id), "instanceId": int(self._instance_id), "backupsetId": int(self._backupset_id), "subclientId": int(self._subclient_id) } } flag, response = self._cvpysdk_object.make_request( 'PUT', self._operation_window, payload=payload) if flag: if response.json(): error_code = response.json().get("error", {}).get('errorCode') if int(error_code) == 0: int(response.json().get('operationWindow', {}).get('ruleId')) self._refresh() else: raise SDKException('OperationWindow', '105') else: raise SDKException('Response', '102') else: response_string = self._update_response(response.text) raise SDKException('Response', '101', response_string) def _refresh(self): """Refreshes the properties of a rule""" self._get_rule_properties() def _get_rule_properties(self): """ Assigns the properties of an operation rule by getting the rule using rule id """ xml = "<Api_GetOperationWindowReq><ruleId>" + str(self.rule_id) + "</ruleId></Api_GetOperationWindowReq>" response_json = self._commcell_object._qoperation_execute(xml) if response_json: error_code = response_json.get("error", {}).get('errorCode') if int(error_code) == 0: response_json = response_json.get('operationWindow', {})[0] self._name = response_json.get('name') self._start_date = response_json.get('startDate') self._end_date = response_json.get('endDate') operations = response_json.get('operations') operation_reverse_mapping = {value:key for key, value in OPERATION_MAPPING.items()} self._operations = [operation_reverse_mapping[operation] for operation in operations] day_of_week = response_json.get('dayTime', [{}])[0].get('dayOfWeek') self._day_of_week = [DAY_OF_WEEK_MAPPING[day] for day in day_of_week] self._start_time = response_json.get('dayTime', [{}])[0].get('startTime') self._end_time = response_json.get('dayTime', [{}])[0].get('endTime') else: raise SDKException('OperationWindow', '102', response_json.get("error", {}).get('errorMessage')) else: raise SDKException('Response', '102') @property def name(self): """Treats name as a read-only attribute.""" return self._name @name.setter def name(self, name): """ Modifies the name of the operation rule Args: name: (str) --Name of the operation rule to be modified """ self.modify_operation_window(name=name) @property def start_date(self): """Treats start_date as a read-only attribute.""" return self._start_date @start_date.setter def start_date(self, start_date): """ Modifies the start_date of the operation rule Args: start_date: (int) --The start date for the operation rule. Valid values are UNIX-style timestamps (seconds since January 1, 1970). Returns: None """ self.modify_operation_window(start_date=start_date) @property def end_date(self): """Treats end_date as a read-only attribute.""" return self._end_date @end_date.setter def end_date(self, end_date): """ Modifies the end_date of the operation rule Args: end_date: (int) -- The end date for the operation rule. Valid values are UNIX-style timestamps (seconds since January 1, 1970). Returns: None """ self.modify_operation_window(end_date=end_date) @property def operations(self): """Treats opearations as a read-only attribute.""" return self._operations @operations.setter def operations(self, operations): """ Modifies the operations of the operation rule Args: operations: (list) -- List of operations for which the operation window is created Acceptable Values: FULL_DATA_MANAGEMENT/NON_FULL_DATA_MANAGEMENT/SYNTHETIC_FULL/ DATA_RECOVERY/AUX_COPY/DR_BACKUP/DATA_VERIFICATION/ERASE_SPARE_MEDIA/ SHELF_MANAGEMENT/DELETE_DATA_BY_BROWSING/DELETE_ARCHIVED_DATA/ OFFLINE_CONTENT_INDEXING/ONLINE_CONTENT_INDEXING/SRM/INFORMATION_MANAGEMENT/ MEDIA_REFRESHING/DATA_ANALYTICS/DATA_PRUNING/BACKUP_COPY/CLEANUP_OPERATION Returns: None """ self.modify_operation_window(operations=operations) @property def day_of_week(self): """Treats day_of_week as a read-only attribute.""" return self._day_of_week @day_of_week.setter def day_of_week(self, day_of_week): """ Modifies the day_of_week of the operation rule Args: day_of_week: (list) -- List of days of the week on which the operation rule applies to Acceptable Values: sunday/ monday/ tuesday/ wednesday/ thursday/ friday/ saturday Returns: None """ self.modify_operation_window(day_of_week=day_of_week) @property def start_time(self): """Treats start_time as a read-only attribute.""" return self._start_time @start_time.setter def start_time(self, start_time): """ Modifies the start_time of the operation rule Args: start_time: (int) -- The start time for the "do not run" interval. Valid values are UNIX-style timestamps (seconds since January 1, 1970). Returns: None """ self.modify_operation_window(start_time=start_time) @property def end_time(self): """Treats end_time as a read-only attribute.""" return self._end_time @end_time.setter def end_time(self, end_time): """
<filename>kamodo/readers/tiegcm.py import numpy as np from kamodo import Kamodo, kamodofy, gridify import time from scipy.interpolate import RegularGridInterpolator, interp1d from datetime import datetime,timedelta # pip install pytiegcm from tiegcm.tiegcm import TIEGCM # 'UN', 'VN', 'O1', 'NO', 'N4S', 'HE', 'NE', 'TE', 'TI', 'TEC', 'O2', 'O2P_ELD', 'OMEGA', 'POTEN', 'UI_ExB', 'VI_ExB', 'WI_ExB', 'OP', 'N2P_ELD', 'NPLUS', 'NOP_ELD', 'SIGMA_PED', 'SIGMA_HAL', 'DEN', 'QJOULE', 'Z', 'ZG', 'O_N2', 'QJOULE_INTEG', 'EFLUX', 'HMF2', 'NMF2', 'N2D_ELD', 'O2N', 'N2N', 'ZMAG', 'TLBC', 'ULBC', 'VLBC', 'TLBC_NM', 'ULBC_NM', 'VLBC_NM', 'LBC', 'latitude', 'longitude' # constants and dictionaries <EMAIL> def totalseconds_to_datetime(seconds): date0=datetime(1970,1,1,0,0,0) date1=date0+timedelta(seconds=seconds) return(date1) def seconds_from_1970(_datetime): datetime0=datetime(1970,1,1,0,0,0) _timedelta=_datetime-datetime0 return(_timedelta.total_seconds()) def parse_units(varname, variable): """Parses units based on variable input""" try: units = variable.units units = units.replace('-','**-') units = units.replace('mmr','1').replace('S', 'ohm**-1') units = units.replace('cm3','cm**3').replace('erg/g/s', 'erg/(g*s)') units = units.replace('none','1') except: units = '' if varname == 'Z': units = 'cm' return units def sort_variables(self, variables): variables_3d = [] variables_4d = [] for varname in variables: try: varshape = self._tiegcm.rootgrp.variables[varname].shape except: continue if len(varshape) == 4: variables_4d.append(varname) elif len(varshape) == 3: variables_3d.append(varname) return variables_4d + variables_3d class TIEGCM_Kamodo(Kamodo): def __init__(self, filename, variables_requested = None, date = None, time = None, debug= False, runpath = "./", runname = "noname", **kwargs): self._tiegcm = TIEGCM(filename) self._ilev = np.array(self._tiegcm.rootgrp.variables['ilev']) self._time = np.array(self._tiegcm.rootgrp.variables['time']) self._year=np.array(self._tiegcm.rootgrp.variables['year']) self._day=np.array(self._tiegcm.rootgrp.variables['day']) self._mtime=np.array(self._tiegcm.rootgrp.variables['mtime']) _seconds=[] for i in range(0,len(self._year)): year=self._year[i] day,hour,minute=self._mtime[i] _datetime=datetime(year,1,1,int(hour),int(minute),0)+timedelta(days=int(day)-1) _seconds.append(seconds_from_1970(_datetime)) self._time=np.array(_seconds) self._lat = self._tiegcm.lat self._lon = self._tiegcm.lon self._registered = 0 self.time_of_day=self._time[0] self.datetime=totalseconds_to_datetime(self.time_of_day) super(TIEGCM_Kamodo, self).__init__() print('opening {}'.format(filename)) # needed by CCMC online visualization based on Kamodo self.filename = filename self.runpath = runpath self.runname = runname self.missing_value = np.NAN self.variables=dict() # Interpolation values self.plots = dict() self.plottype = "LonLat" self.cut = 'IP' self.cutunit = '[]' self.cutV = 0. # within all the coordinate ranges self.nT = 1 self.nX = 1 self.nY = 37 self.nZ = 73 self.newt = 1440. self.newx = self.cutV self.newy = np.linspace(-90., 90., self.nY) self.newz = np.linspace(-180., 180., self.nZ) self.xname="IP" self.xunit='' self.yname="Lat" self.yunit='deg' self.zname="Lon" self.zunit='deg' self.lonrange=dict(min=self._lon.min(),max=self._lon.max(),n=len(self._lon)) self.latrange=dict(min=self._lat.min(),max=self._lat.max(),n=len(self._lat)) self.hrange=dict(min=80,max=450,n=34) self._H=np.linspace(self.hrange['min'],self.hrange['max'],self.hrange['n']) self.tol = 1.1 self.plots[self.plottype] = dict(cut=self.cut, cutV=self.cutV, tol=self.tol, nT=self.nT,nX=self.nX, nY=self.nY, nZ=self.nZ, newt=self.newt, newx=self.newx, newy=self.newy, newz=self.newz) self.gridSize=len(self._ilev)*len(self._lat)*len(self._lon) self.gridMinDx=np.asarray([self._lon[1]-self._lon[0],self._lat[1]-self._lat[0]]).min() # Get grids ready to use self.setup_interpolating_grids() if variables_requested is None: variables = self._tiegcm.rootgrp.variables.keys() else: variables = variables_requested variables = sort_variables(self, variables) for varname in variables: units = parse_units(varname, self._tiegcm.rootgrp.variables[varname]) try: self._tiegcm.set_variable_boundary_condition(varname) except: # print('can not set boundary condition for {}, skipping..'.format(varname)) continue self._tiegcm.wrap_variable(varname) variable = self._tiegcm.rootgrp.variables[varname] if len(variable.shape) not in [3,4]: # skip this variable continue if varname == 'ZMAG': continue elif len(variable.shape) == 4: self.register_4d_variable(units, variable, varname) elif len(variable.shape) == 3: self.register_3d_variable(units, variable, varname) self.variables[varname]=dict(data=variable,units=units) print('registered {} variables'.format(self._registered)) # register user's input variables, assuming kamodo-compatible # for varname, variable in kwargs.items(): # self[varname] = variable # def ilev(points): # return self.lev(*points) # # self['ilev'] = ilev # vertical interpolation as is done in CCMC-Vis (3DView) IDL code @np.vectorize # can't do gridify here unless 'self' is somwhow known # @gridify(t = self._time, z=self._H, lat = self._lat, lon = self._lon) def vert_interp(self,t, z, lat, lon): # 1) meshgrid and squeeze the shapes of time, lat, lon if they are not the same # 2) calculate z_levels for all points # 3) construct rgi for (time, z_level, lat, lon) # 4) interpolate over z varname=self.varname z_levels=np.squeeze(self['Z'](t=t,lat=lat,lon=lon)) data_levels=np.squeeze(self[varname](t=t,lat=lat,lon=lon)) interp = interp1d(z_levels, data_levels, bounds_error=False) return interp(z) def register_3d_variable(self, units, variable, varname): """Registers a 3d interpolator with 3d signature""" rgi = RegularGridInterpolator((self._time, self._lat, self._lon), variable, bounds_error = False) @kamodofy(units = units, data = variable) @gridify(t = self._time, lat = self._lat, lon = self._lon) def interpolator(xvec): """Interpolates 3d variable""" return rgi(xvec) self[varname] = interpolator self._registered += 1 def register_4d_variable(self, units, variable, varname): """Registers a 4d interpolator with 4d signature""" rgi = RegularGridInterpolator((self._time, self._ilev, self._lat, self._lon), variable, bounds_error = False) @kamodofy(units = units, data = variable) @gridify(t = self._time, ilev = self._ilev, lat = self._lat, lon = self._lon) # @np.vectorize def interpolator(xvec): """Interpolates 4d variable""" return rgi(xvec) self.variables['varname']=dict(data=variable,units=units,interpolator=rgi) self[varname] = interpolator self._registered += 1 @np.vectorize def lev(self, t, z, lat, lon): """Finds ilev for a given height""" # 2) calculate z_levels for all points # 3) construct rgi for (time, z_level, lat, lon) # 4) interpolate over z z_levels = np.squeeze(self.Z(t = t, lat = lat, lon = lon)) # ilev has a default level = interp1d(z_levels, self._ilev, bounds_error=False) return level(z) def set_plot(self, plottype = "XY", time_in_day="12:00:00", date=None, cutV = 0, lonrange=dict(min=-180,max=180,n=73), # reference to self._lon_density not possible? latrange=dict(min=-90,max=90,n=37), hrange=dict(min=1,max=15,n=15) ): '''Set plotting variables for available preset plot types: XY, YZ, YZ, XYZ''' if 'min' not in lonrange.keys(): lonrange['min']=self.lonrange['min'] if 'max' not in lonrange.keys(): lonrange['max']=self.lonrange['max'] if 'n' not in lonrange.keys(): lonrange['n']=self.lonrange['n'] if 'min' not in latrange.keys(): latrange['min']=self.latrange['min'] if 'max' not in latrange.keys(): latrange['max']=self.latrange['max'] if 'n' not in latrange.keys(): latrange['n']=self.latrange['n'] if 'min' not in hrange.keys(): hrange['min']=self.hrange['min'] if 'max' not in hrange.keys(): hrange['max']=self.hrange['max'] if 'n' not in hrange.keys(): hrange['n']=self.hrange['n'] tic = time.perf_counter() if plottype == self.plottype: if cutV == self.cutV: if lonrange['min'] == self.lonrange['min'] and lonrange['max'] == self.lonrange['max'] and lonrange['n'] == self.lonrange['n']: if latrange['min'] == self.latrange['min'] and latrange['max'] == self.latrange['max'] and latrange['n'] == self.latrange['n']: if hrange['min'] == self.hrange['min'] and hrange['max'] == self.hrange['max'] and hrange['n'] == self.hrange['n']: print('Plottype (',plottype,') and cut value (',cutV,') are unchanged, returning.') return self.lonrange=lonrange self.latrange=latrange self.hrange=hrange ip_max=70 h_km_max=7000 h_m_max=7e6 if date is None or time_in_day is None: self.time_of_day=self._time[0] self.datetime=totalseconds_to_datetime(self.time_of_day) else: self.plotdate=date self.plottime=time_in_day datetime0=datetime.strptime(date,"%Y/%m/%d") datetime1=datetime.strptime(date+" "+time_in_day,"%Y/%m/%d %H:%M:%S") self.datetime=datetime1 # self.time_of_day=(datetime1-datetime0).total_seconds()/60. self.time_of_day=seconds_from_1970(datetime1) print("datetime: ",self.datetime) self.filetime=self.datetime.strftime("%Y/%m/%d %H:%M:%S") self.date=self.datetime.strftime("%Y/%m/%d") self.plottime=self.datetime.strftime("%H:%M:%S") # time selection self.nT = 1 # self.newt = self.plottime self.newt = self.time_of_day # X=IP or Height # Y=Lat # Z=Lon if plottype == "LonLat" or plottype == "LonLatH": # auto-detect whether we are using IP or H (or H in cm or km) if cutV < ip_max: self.cut="IP" self.cutunit=" []" self.cutfactor=1. else: self.cut="H" if cutV < h_km_max: self.cutunit=" [km]" self.cutfactor=1e5 elif cutV < h_m_max: self.cutunit=" [m]" self.cutfactor=100. else: self.cutunit=" [cm]" self.cutfactor=1. self.plottype = plottype self.cutV = cutV self.nX = 1 self.nY = latrange['n'] self.nZ = lonrange['n'] self.newx = cutV*self.cutfactor self.newy = np.linspace(latrange['min'],latrange['max'],latrange['n']) self.newz = np.linspace(lonrange['min'],lonrange['max'],lonrange['n']) else: self.cutunit="[deg]" #both for Lon=const (LatIP, LatH) and Lat=const (LonIP, LonH) # auto-detect whether we are using IP or H (or H in cm or km) if hrange['max'] < ip_max: self.xname="IP" self.xunit="[]" self.xfactor=1. self.xformat=".4f" else: self.xname="H" self.xformat=".4g" if hrange['max'] < h_km_max: self.xunit=" [km]" self.xfactor=1e5 elif hrange['max'] < h_m_max: self.xunit=" [m]" self.xfactor=100. else: self.xunit="[cm]" self.xfactor=1. self.plottype = plottype if plottype == "LonIP" or plottype == "LonH": self.cut = 'Lat' self.cutV = cutV self.nX = hrange['n'] self.nY = 1 self.nZ = lonrange['n'] self.newx=np.linspace(hrange['min'],hrange['max'],hrange['n'])*self.xfactor self.newy = cutV self.newz=np.linspace(lonrange['min'],lonrange['max'],lonrange['n']) elif plottype == "LatIP" or plottype == "LatH": self.plottype = plottype self.cut = 'Lon' self.cutV = cutV self.nX=hrange['n'] self.nY=latrange['n'] self.nZ=1 self.newx = np.linspace(hrange['min'],hrange['max'],hrange['n'])*self.xfactor self.newy = np.linspace(latrange['min'],latrange['max'],latrange['n']) self.newz = cutV else: print('Error, unknown plottype. ',plottype) return self.plots[plottype] = dict(cut=self.cut, cutV=self.cutV, tol=self.tol, nT=self.nT,nX=self.nX, nY=self.nY, nZ=self.nZ, newt=self.newt,newx=self.newx, newy=self.newy, newz=self.newz) self.setup_interpolating_grids() # self.reinterpolate_values() # for varname in self.variables: # self.plots[plottype][varname]=self.variables[varname]['interpolator'] toc = time.perf_counter() print(f"Time resetting plot and precomputing interpolations: {toc - tic:0.4f} seconds") return def setup_interpolating_grids(self): '''setup the grid to interpolate to, trim to necessary size of source grid, and compute interpolation weights''' tt, xx, yy, zz = np.meshgrid(self.newt,self.newx,self.newy,self.newz, indexing = 'xy') self.newgrid = np.ndarray(shape=(np.size(np.reshape(xx,-1)),4), dtype=np.float32) self.newgrid[:,0] = np.reshape(tt,-1) self.newgrid[:,1] = np.reshape(xx,-1) self.newgrid[:,2] = np.reshape(yy,-1) self.newgrid[:,3] = np.reshape(zz,-1) print("newgrid shape: ",self.newgrid.shape) def get_plot(self, var, colorscale="Viridis",style="linear"): ''' Return a plotly figure object for the available plot types set in set_plot().. colorscale = Viridis [default], Cividis, BlueRed or Rainbow ''' #Set some text strings txtbot="Model: TIEGCM, Run: " + str(self.runname) + ", " + str(self.gridSize) + " cells, minimum dx=" + str(self.gridMinDx) if style == "linear": txtbar=var + " [" + self.variables[var]['units'] + "]" if style == "log": txtbar="log("+var + ") [" + self.variables[var]['units'] + "]" print("before interpolation") # Get values from interpolation already computed tic = time.perf_counter() if (self.newgrid[:,1]).max() < 50: # IP or height is column 1 (CTIPe_singletime: 0) # result=self[var](self.newgrid[:,0].ravel(),self.newgrid[:,1].ravel(),self.newgrid[:,2].ravel(),self.newgrid[:,3].ravel()) result=self[var](self.newt,self.newx,self.newy,self.newz) else: self.varname=var # once we have a gridify'd version we can use this # result=vert_interp(self.newt,self.newx,self.newy,self.newz) # have to use np.vectorize'd version result=self.vert_interp(self,self.newgrid[:,0].ravel(),self.newgrid[:,1].ravel(),self.newgrid[:,2].ravel(),self.newgrid[:,3].ravel()) toc = time.perf_counter() print(f"Time for computing interpolations: {toc - tic:0.4f} seconds") print("result.shape after interpolation: ",result.shape) if self.plottype == "LonLat"
when the browse mode element is not found. prevError=_("no previous embedded object")) qn("annotation", key="a", # Translators: Input help message for a quick navigation command in browse mode. nextDoc=_("moves to the next annotation"), # Translators: Message presented when the browse mode element is not found. nextError=_("no next annotation"), # Translators: Input help message for a quick navigation command in browse mode. prevDoc=_("moves to the previous annotation"), # Translators: Message presented when the browse mode element is not found. prevError=_("no previous annotation")) qn("error", key="w", # Translators: Input help message for a quick navigation command in browse mode. nextDoc=_("moves to the next error"), # Translators: Message presented when the browse mode element is not found. nextError=_("no next error"), # Translators: Input help message for a quick navigation command in browse mode. prevDoc=_("moves to the previous error"), # Translators: Message presented when the browse mode element is not found. prevError=_("no previous error")) qn( "article", key=None, # Translators: Input help message for a quick navigation command in browse mode. nextDoc=_("moves to the next article"), # Translators: Message presented when the browse mode element is not found. nextError=_("no next article"), # Translators: Input help message for a quick navigation command in browse mode. prevDoc=_("moves to the previous article"), # Translators: Message presented when the browse mode element is not found. prevError=_("no previous article") ) qn( "grouping", key=None, # Translators: Input help message for a quick navigation command in browse mode. nextDoc=_("moves to the next grouping"), # Translators: Message presented when the browse mode element is not found. nextError=_("no next grouping"), # Translators: Input help message for a quick navigation command in browse mode. prevDoc=_("moves to the previous grouping"), # Translators: Message presented when the browse mode element is not found. prevError=_("no previous grouping") ) del qn class ElementsListDialog( DpiScalingHelperMixinWithoutInit, gui.contextHelp.ContextHelpMixin, wx.Dialog # wxPython does not seem to call base class initializer, put last in MRO ): helpId = "ElementsList" ELEMENT_TYPES = ( # Translators: The label of a radio button to select the type of element # in the browse mode Elements List dialog. ("link", _("Lin&ks")), # Translators: The label of a radio button to select the type of element # in the browse mode Elements List dialog. ("heading", _("&Headings")), # Translators: The label of a radio button to select the type of element # in the browse mode Elements List dialog. ("formField", _("&Form fields")), # Translators: The label of a radio button to select the type of element # in the browse mode Elements List dialog. ("button", _("&Buttons")), # Translators: The label of a radio button to select the type of element # in the browse mode Elements List dialog. ("landmark", _("Lan&dmarks")), ) Element = collections.namedtuple("Element", ("item", "parent")) lastSelectedElementType=0 def __init__(self, document): super().__init__( parent=gui.mainFrame, # Translators: The title of the browse mode Elements List dialog. title=_("Elements List") ) self.document = document mainSizer = wx.BoxSizer(wx.VERTICAL) contentsSizer = wx.BoxSizer(wx.VERTICAL) # Translators: The label of a group of radio buttons to select the type of element # in the browse mode Elements List dialog. child = wx.RadioBox(self, wx.ID_ANY, label=_("Type:"), choices=tuple(et[1] for et in self.ELEMENT_TYPES)) child.SetSelection(self.lastSelectedElementType) child.Bind(wx.EVT_RADIOBOX, self.onElementTypeChange) contentsSizer.Add(child, flag=wx.EXPAND) contentsSizer.AddSpacer(gui.guiHelper.SPACE_BETWEEN_VERTICAL_DIALOG_ITEMS) self.tree = wx.TreeCtrl( self, size=self.scaleSize((500, 300)), # height is chosen to ensure the dialog will fit on an 800x600 screen style=wx.TR_HAS_BUTTONS | wx.TR_HIDE_ROOT | wx.TR_LINES_AT_ROOT | wx.TR_SINGLE | wx.TR_EDIT_LABELS ) self.tree.Bind(wx.EVT_SET_FOCUS, self.onTreeSetFocus) self.tree.Bind(wx.EVT_CHAR, self.onTreeChar) self.tree.Bind(wx.EVT_TREE_BEGIN_LABEL_EDIT, self.onTreeLabelEditBegin) self.tree.Bind(wx.EVT_TREE_END_LABEL_EDIT, self.onTreeLabelEditEnd) self.treeRoot = self.tree.AddRoot("root") contentsSizer.Add(self.tree,flag=wx.EXPAND) contentsSizer.AddSpacer(gui.guiHelper.SPACE_BETWEEN_VERTICAL_DIALOG_ITEMS) # Translators: The label of an editable text field to filter the elements # in the browse mode Elements List dialog. filterText = _("Filter b&y:") labeledCtrl = gui.guiHelper.LabeledControlHelper(self, filterText, wx.TextCtrl) self.filterEdit = labeledCtrl.control self.filterEdit.Bind(wx.EVT_TEXT, self.onFilterEditTextChange) contentsSizer.Add(labeledCtrl.sizer) contentsSizer.AddSpacer(gui.guiHelper.SPACE_BETWEEN_VERTICAL_DIALOG_ITEMS) bHelper = gui.guiHelper.ButtonHelper(wx.HORIZONTAL) # Translators: The label of a button to activate an element in the browse mode Elements List dialog. # Beware not to set an accelerator that would collide with other controls in this dialog, such as an # element type radio label. self.activateButton = bHelper.addButton(self, label=_("Activate")) self.activateButton.Bind(wx.EVT_BUTTON, lambda evt: self.onAction(True)) # Translators: The label of a button to move to an element # in the browse mode Elements List dialog. self.moveButton = bHelper.addButton(self, label=_("&Move to")) self.moveButton.Bind(wx.EVT_BUTTON, lambda evt: self.onAction(False)) bHelper.addButton(self, id=wx.ID_CANCEL) contentsSizer.Add(bHelper.sizer, flag=wx.ALIGN_RIGHT) mainSizer.Add(contentsSizer, border=gui.guiHelper.BORDER_FOR_DIALOGS, flag=wx.ALL) mainSizer.Fit(self) self.SetSizer(mainSizer) self.tree.SetFocus() self.initElementType(self.ELEMENT_TYPES[self.lastSelectedElementType][0]) self.CentreOnScreen() def onElementTypeChange(self, evt): elementType=evt.GetInt() # We need to make sure this gets executed after the focus event. # Otherwise, NVDA doesn't seem to get the event. queueHandler.queueFunction(queueHandler.eventQueue, self.initElementType, self.ELEMENT_TYPES[elementType][0]) self.lastSelectedElementType=elementType def initElementType(self, elType): if elType in ("link","button"): # Links and buttons can be activated. self.activateButton.Enable() self.SetAffirmativeId(self.activateButton.GetId()) else: # No other element type can be activated. self.activateButton.Disable() self.SetAffirmativeId(self.moveButton.GetId()) # Gather the elements of this type. self._elements = [] self._initialElement = None parentElements = [] isAfterSelection=False for item in self.document._iterNodesByType(elType): # Find the parent element, if any. for parent in reversed(parentElements): if item.isChild(parent.item): break else: # We're not a child of this parent, so this parent has no more children and can be removed from the stack. parentElements.pop() else: # No parent found, so we're at the root. # Note that parentElements will be empty at this point, as all parents are no longer relevant and have thus been removed from the stack. parent = None element=self.Element(item,parent) self._elements.append(element) if not isAfterSelection: isAfterSelection=item.isAfterSelection if not isAfterSelection: # The element immediately preceding or overlapping the caret should be the initially selected element. # Since we have not yet passed the selection, use this as the initial element. try: self._initialElement = self._elements[-1] except IndexError: # No previous element. pass # This could be the parent of a subsequent element, so add it to the parents stack. parentElements.append(element) # Start with no filtering. self.filterEdit.ChangeValue("") self.filter("", newElementType=True) def filter(self, filterText, newElementType=False): # If this is a new element type, use the element nearest the cursor. # Otherwise, use the currently selected element. # #8753: wxPython 4 returns "invalid tree item" when the tree view is empty, so use initial element if appropriate. try: defaultElement = self._initialElement if newElementType else self.tree.GetItemData(self.tree.GetSelection()) except: defaultElement = self._initialElement # Clear the tree. self.tree.DeleteChildren(self.treeRoot) # Populate the tree with elements matching the filter text. elementsToTreeItems = {} defaultItem = None matched = False #Do case-insensitive matching by lowering both filterText and each element's text. filterText=filterText.lower() for element in self._elements: label=element.item.label if filterText and filterText not in label.lower(): continue matched = True parent = element.parent if parent: parent = elementsToTreeItems.get(parent) item = self.tree.AppendItem(parent or self.treeRoot, label) self.tree.SetItemData(item, element) elementsToTreeItems[element] = item if element == defaultElement: defaultItem = item self.tree.ExpandAll() if not matched: # No items, so disable the buttons. self.activateButton.Disable() self.moveButton.Disable() return # If there's no default item, use the first item in the tree. self.tree.SelectItem(defaultItem or self.tree.GetFirstChild(self.treeRoot)[0]) # Enable the button(s). # If the activate button isn't the default button, it is disabled for this element type and shouldn't be enabled here. if self.AffirmativeId == self.activateButton.Id: self.activateButton.Enable() self.moveButton.Enable() def onTreeSetFocus(self, evt): # Start with no search. self._searchText = "" self._searchCallLater = None evt.Skip() def onTreeChar(self, evt): key = evt.KeyCode if key == wx.WXK_RETURN: # The enter key should be propagated to the dialog and thus activate the default button, # but this is broken (wx ticket #3725). # Therefore, we must catch the enter key here. # Activate the current default button. evt = wx.CommandEvent(wx.wxEVT_COMMAND_BUTTON_CLICKED, wx.ID_ANY) button = self.FindWindowById(self.AffirmativeId) if button.Enabled: button.ProcessEvent(evt) else: wx.Bell() elif key == wx.WXK_F2: item=self.tree.GetSelection() if item: selectedItemType=self.tree.GetItemData(item).item self.tree.EditLabel(item) evt.Skip() elif key >= wx.WXK_START or key == wx.WXK_BACK: # Non-printable character. self._searchText = "" evt.Skip() else: # Search the list. # We have to implement this ourselves, as tree views don't accept space as a search character. char = chr(evt.UnicodeKey).lower() # IF the same character is typed twice, do the same search. if self._searchText != char: self._searchText += char if self._searchCallLater: self._searchCallLater.Restart() else: self._searchCallLater = wx.CallLater(1000, self._clearSearchText) self.search(self._searchText) def onTreeLabelEditBegin(self,evt): item=self.tree.GetSelection() selectedItemType = self.tree.GetItemData(item).item if not selectedItemType.isRenameAllowed: evt.Veto() def onTreeLabelEditEnd(self,evt): selectedItemNewName=evt.GetLabel() item=self.tree.GetSelection() selectedItemType = self.tree.GetItemData(item).item selectedItemType.rename(selectedItemNewName) def _clearSearchText(self): self._searchText = "" def search(self, searchText): item = self.tree.GetSelection() if not item: # No items. return # First try searching from the current item. # Failing that, search from the first item. items = itertools.chain(self._iterReachableTreeItemsFromItem(item), self._iterReachableTreeItemsFromItem(self.tree.GetFirstChild(self.treeRoot)[0])) if len(searchText) == 1: # If only a single character has been entered, skip (search after) the current item. next(items) for item in items: if self.tree.GetItemText(item).lower().startswith(searchText): self.tree.SelectItem(item) return # Not found. wx.Bell() def _iterReachableTreeItemsFromItem(self, item): while item: yield item childItem = self.tree.GetFirstChild(item)[0] if childItem and self.tree.IsExpanded(item): # Has children and is reachable, so recurse. for childItem in self._iterReachableTreeItemsFromItem(childItem): yield childItem item = self.tree.GetNextSibling(item) def onFilterEditTextChange(self, evt): self.filter(self.filterEdit.GetValue()) evt.Skip() def onAction(self, activate): prevFocus = gui.mainFrame.prevFocus self.Close() # Save off the last selected element type on to the class so its used in initialization next time. self.__class__.lastSelectedElementType=self.lastSelectedElementType item = self.tree.GetSelection() item = self.tree.GetItemData(item).item if activate: item.activate() else: def move(): speech.cancelSpeech() # Avoid double announce if item.obj is about to gain focus. if not ( self.document.passThrough and getattr(item, "obj", False) and item.obj != prevFocus and controlTypes.State.FOCUSABLE in item.obj.states ): # #8831: Report before moving because moving might change the focus, which # might mutate the document, potentially invalidating info if it is # offset-based. item.report() item.moveTo() # We must use core.callLater rather than wx.CallLater to ensure that the callback runs within NVDA's core pump. # If it didn't, and it directly or indirectly called wx.Yield, it could start executing NVDA's core pump from within the yield, causing recursion. core.callLater(100, move) class BrowseModeDocumentTextInfo(textInfos.TextInfo): def _get_focusableNVDAObjectAtStart(self): try: item = next(self.obj._iterNodesByType("focusable", "up", self)) except StopIteration: return self.obj.rootNVDAObject if not item: return self.obj.rootNVDAObject return item.obj class BrowseModeDocumentTreeInterceptor(documentBase.DocumentWithTableNavigation,cursorManager.CursorManager,BrowseModeTreeInterceptor,treeInterceptorHandler.DocumentTreeInterceptor): programmaticScrollMayFireEvent = False def __init__(self,obj): super(BrowseModeDocumentTreeInterceptor,self).__init__(obj) self._lastProgrammaticScrollTime = None self.documentConstantIdentifier = self.documentConstantIdentifier self._lastFocusObj = None self._objPendingFocusBeforeActivate = None self._hadFirstGainFocus = False self._enteringFromOutside = True # We need to cache this because it will be unavailable once the document dies. if not hasattr(self.rootNVDAObject.appModule, "_browseModeRememberedCaretPositions"): self.rootNVDAObject.appModule._browseModeRememberedCaretPositions = {} self._lastCaretPosition = None #: True if the last caret move was due to a focus change. self._lastCaretMoveWasFocus = False def terminate(self): if self.shouldRememberCaretPositionAcrossLoads and self._lastCaretPosition: try: self.rootNVDAObject.appModule._browseModeRememberedCaretPositions[self.documentConstantIdentifier] = self._lastCaretPosition except AttributeError: #
#!/usr/bin/env python3 """ Compute the embeddings for every task and store to disk. Since many tasks might be too large to store in GPU memory (or even CPU memory), and because Wavenet-like models will be expensive at inference time, we cache all embeddings to disk. One benefit of this approach is that since all embeddings are cached as numpy arrays, the final training code can be pytorch-only, regardless of whether the embedding model is tensorflow based. TODO: * Ideally, we would run this within a docker container, for security. https://github.com/neuralaudio/hear2021-eval-kit/issues/51 * Profiling should occur here (both embedding time AFTER loading to GPU, and complete wall time include disk writes). * This is currently pytorch only. https://github.com/neuralaudio/hear2021-eval-kit/issues/52 Using the included get_audio_embedding_numpy, we could instead have this work both for pytorch and tensorflow. https://github.com/neuralaudio/hear2021-eval-kit/issues/49 """ import json import os.path import pickle import random import shutil from importlib import import_module from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import soundfile as sf import tensorflow as tf import torch from intervaltree import IntervalTree from torch.utils.data import DataLoader, Dataset from tqdm.auto import tqdm # import wandb import heareval.gpu_max_mem as gpu_max_mem TORCH = "torch" TENSORFLOW = "tf" class Embedding: """ A wrapper class to help with loading embedding models and computing embeddings using the HEAR 2021 API for both torch and tensorflow models. # TODO: Still need to implement and test this with TensorFlow Args: module_name: the import name for the embedding module model_path: location to load the model from """ def __init__( self, module_name: str, model_path: str = None, model_options: Optional[Dict[str, Any]] = None, ): print(f"Importing {module_name}") self.module = import_module(module_name) if model_options is None: model_options = {} # Load the model using the model weights path if they were provided if model_path is not None: print(f"Loading model using: {model_path}") self.model = self.module.load_model(model_path, **model_options) # type: ignore else: self.model = self.module.load_model(**model_options) # type: ignore # Check to see what type of model this is: torch or tensorflow if isinstance(self.model, torch.nn.Module): self.type = TORCH self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) elif isinstance(self.model, tf.Module): self.type = TENSORFLOW # Tensorflow automatically manages data transfers to device, # so we don't need to set self.device else: raise TypeError(f"Unsupported model type received: {type(self.model)}") @property def name(self): # TODO: would be nice to include version in this string, a versioned string. # Potentially can set a version from the command line too to help with testing # the same model but with difference versions of the weights. return self.module.__name__ @property def sample_rate(self): return self.model.sample_rate def as_tensor(self, x: Union[np.ndarray, torch.Tensor]): if self.type == TORCH: # Load array as tensor onto device if isinstance(x, np.ndarray): x = torch.tensor(x, device=self.device) elif isinstance(x, torch.Tensor): x = x.to(self.device) else: raise TypeError( "Input must be one of np.ndarray or torch.Tensor for" f"torch audio embedding models. " f"Received: {type(x)}" ) elif self.type == TENSORFLOW: # Load array as tensor onto device if not isinstance(x, np.ndarray): x = x.numpy() x = tf.convert_to_tensor(x) else: raise AssertionError("Unknown type") return x def get_scene_embedding_as_numpy( self, audio: Union[np.ndarray, torch.Tensor] ) -> np.ndarray: audio = self.as_tensor(audio) if self.type == TORCH: with torch.no_grad(): embeddings = self.module.get_scene_embeddings( # type: ignore audio, self.model ) return embeddings.detach().cpu().numpy() elif self.type == TENSORFLOW: embeddings = self.module.get_scene_embeddings( # type: ignore audio, self.model ) return embeddings.numpy() else: raise NotImplementedError("Unknown type") def get_timestamp_embedding_as_numpy( self, audio: Union[np.ndarray, torch.Tensor] ) -> Tuple[np.ndarray, np.ndarray]: audio = self.as_tensor(audio) if self.type == TORCH: with torch.no_grad(): # flake8: noqa embeddings, timestamps = self.module.get_timestamp_embeddings( # type: ignore audio, self.model, ) gpu_max_mem.measure() embeddings = embeddings.detach().cpu().numpy() timestamps = timestamps.detach().cpu().numpy() return embeddings, timestamps elif self.type == TENSORFLOW: # flake8: noqa embeddings, timestamps = self.module.get_timestamp_embeddings( # type: ignore audio, self.model, ) gpu_max_mem.measure() embeddings = embeddings.numpy() timestamps = timestamps.numpy() return embeddings, timestamps else: raise NotImplementedError("Unknown type") class AudioFileDataset(Dataset): """ Read in a JSON file and return audio and audio filenames """ def __init__(self, data: Dict, audio_dir: Path, sample_rate: int): self.filenames = list(data.keys()) self.audio_dir = audio_dir assert self.audio_dir.is_dir(), f"{audio_dir} is not a directory" self.sample_rate = sample_rate def __len__(self): return len(self.filenames) def __getitem__(self, idx): # Load in audio here in the Dataset. When the batch size is larger than # 1 then the torch dataloader can take advantage of multiprocessing. audio_path = self.audio_dir.joinpath(self.filenames[idx]) audio, sr = sf.read(str(audio_path), dtype=np.float32) assert sr == self.sample_rate return audio, self.filenames[idx] def get_dataloader_for_embedding( data: Dict, audio_dir: Path, embedding: Embedding, batch_size: int = 64 ): if embedding.type == TORCH or embedding.type == TENSORFLOW: return DataLoader( AudioFileDataset(data, audio_dir, embedding.sample_rate), batch_size=batch_size, shuffle=False, ) else: raise AssertionError("Unknown embedding type") def save_scene_embedding_and_labels( embeddings: np.ndarray, labels: List[Dict], filenames: Tuple[str], outdir: Path ): assert len(embeddings) == len(filenames) assert len(labels) == len(filenames) for i, filename in enumerate(filenames): out_file = outdir.joinpath(f"{filename}") np.save(f"{out_file}.embedding.npy", embeddings[i]) json.dump(labels[i], open(f"{out_file}.target-labels.json", "w")) def save_timestamp_embedding_and_labels( embeddings: np.ndarray, timestamps: np.ndarray, labels: np.ndarray, filename: Tuple[str], outdir: Path, ): for i, file in enumerate(filename): out_file = outdir.joinpath(f"{file}") np.save(f"{out_file}.embedding.npy", embeddings[i]) assert len(timestamps[i].shape) == 1 json.dump(timestamps[i].tolist(), open(f"{out_file}.timestamps.json", "w")) json.dump(labels[i], open(f"{out_file}.target-labels.json", "w"), indent=4) def get_labels_for_timestamps(labels: List, timestamps: np.ndarray) -> List: # -> List[List[List[str]]]: # -> List[List[str]]: # TODO: Is this function redundant? # A list of labels present at each timestamp timestamp_labels = [] # NOTE: Make sure dataset events are specified in ms. assert len(labels) == len(timestamps) for i, label in enumerate(labels): tree = IntervalTree() # Add all events to the label tree for event in label: # We add 0.0001 so that the end also includes the event tree.addi(event["start"], event["end"] + 0.0001, event["label"]) labels_for_sound = [] # Update the binary vector of labels with intervals for each timestamp for j, t in enumerate(timestamps[i]): interval_labels: List[str] = [interval.data for interval in tree[t]] labels_for_sound.append(interval_labels) # If we want to store the timestamp too # labels_for_sound.append([float(t), interval_labels]) timestamp_labels.append(labels_for_sound) assert len(timestamp_labels) == len(timestamps) return timestamp_labels def memmap_embeddings( outdir: Path, prng: random.Random, metadata: Dict, split_name: str, embed_task_dir: Path, ): """ Memmap all the embeddings to one file, and pickle all the labels. (We assume labels can fit in memory.) TODO: This writes things to disk double, we could clean that up after. We might also be able to get away with writing to disk only once. """ embedding_files = list(outdir.glob("*.embedding.npy")) prng.shuffle(embedding_files) # First count the number of embeddings total nembeddings = 0 ndim: int for embedding_file in tqdm(embedding_files): emb = np.load(embedding_file).astype(np.float32) if metadata["embedding_type"] == "scene": assert emb.ndim == 1 nembeddings += 1 ndim = emb.shape[0] assert emb.dtype == np.float32 elif metadata["embedding_type"] == "event": assert emb.ndim == 2 nembeddings += emb.shape[0] ndim = emb.shape[1] assert emb.dtype == np.float32 else: raise ValueError(f"Unknown embedding type: {metadata['embedding_type']}") open( embed_task_dir.joinpath(f"{split_name}.embedding-dimensions.json"), "wt" ).write(json.dumps((nembeddings, ndim))) embedding_memmap = np.memmap( filename=embed_task_dir.joinpath(f"{split_name}.embeddings.npy"), dtype=np.float32, mode="w+", shape=(nembeddings, ndim), ) idx = 0 labels = [] filename_timestamps = [] for embedding_file in tqdm(embedding_files): emb = np.load(embedding_file) lbl = json.load( open(str(embedding_file).replace("embedding.npy", "target-labels.json")) ) if metadata["embedding_type"] == "scene": assert emb.ndim == 1 embedding_memmap[idx] = emb # lbl will be a list of labels, make sure that it has exactly one label # for multiclass problems. Will be a list of zero or more for multilabel. if metadata["prediction_type"] == "multiclass": assert len(lbl) == 1 elif metadata["prediction_type"] == "multilabel": assert isinstance(lbl, list) else: NotImplementedError( "Only multiclass and multilabel prediction types" f"implemented for scene embeddings. Received {metadata['prediction_type']}" ) labels.append(lbl) idx += 1 elif metadata["embedding_type"] == "event": assert emb.ndim == 2 embedding_memmap[idx : idx + emb.shape[0]] = emb assert emb.shape[0] == len(lbl) labels += lbl timestamps = json.load( open(str(embedding_file).replace("embedding.npy", "timestamps.json")) ) slug = str(embedding_file).replace(".embedding.npy", "") filename_timestamps += [(slug, timestamp) for timestamp in timestamps] assert emb.shape[0] == len( timestamps ), f"{emb.shape[0]} != {len(timestamps)}" assert len(lbl) == len(timestamps), f"{len(lbl)} != {len(timestamps)}" idx += emb.shape[0] else: raise ValueError(f"Unknown embedding type: {metadata['embedding_type']}") # Write changes to disk embedding_memmap.flush() # TODO: Convert labels to indices? pickle.dump( labels, open( embed_task_dir.joinpath(f"{split_name}.target-labels.pkl"), "wb", ), ) if metadata["embedding_type"] == "event": assert len(labels) == len(filename_timestamps) open( embed_task_dir.joinpath(f"{split_name}.filename-timestamps.json"), "wt", ).write(json.dumps(filename_timestamps, indent=4)) def task_embeddings( embedding: Embedding, task_path: Path, embed_task_dir: Path, ): prng = random.Random() prng.seed(0) metadata_path = task_path.joinpath("task_metadata.json") metadata = json.load(metadata_path.open()) label_vocab_path = task_path.joinpath("labelvocabulary.csv") # wandb.init(project="heareval", tags=["embedding", task_name]) # Copy these two files to the embeddings directory, # so we have everything we need in embeddings for doing downstream # prediction and
<filename>resources/mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/Pmv/hostappInterface/comput_util.py ## Automatically adapted for numpy.oldnumeric Apr 10, 2008 by ## ## Copyright (C) The Scripps Research Institute 2006 ## ## Authors: <NAME> <<EMAIL>> ## ## $Header: /opt/cvs/python/packages/share1.5/Pmv/hostappInterface/comput_util.py,v 1.22 2010/11/30 07:23:01 autin Exp $ ## $Id: comput_util.py,v 1.22 2010/11/30 07:23:01 autin Exp $ ## ## ## utils function use for computation during pattern detection import numpy.oldnumeric as Numeric from MolKit.pdbWriter import PdbWriter #from MolKit.chargeCalculator import KollmanChargeCalculator,GasteigerChargeCalculator from PyAutoDock.MolecularSystem import MolecularSystem from PyAutoDock.AutoDockScorer import AutoDock305Scorer, AutoDock4Scorer #from PyAutoDock.AutoDockScorer import AutoDockTermWeights305, AutoDockTermWeights4 #from PyAutoDock.trilinterp_scorer import TrilinterpScorer,TrilinterpScorer_AD3 from PyAutoDock.scorer import WeightedMultiTerm from PyAutoDock.electrostatics import Electrostatics from PyAutoDock.vanDerWaals import VanDerWaals,HydrogenBonding #from PyAutoDock.vanDerWaals import HydrogenBonding from PyAutoDock.desolvation import Desolvation #import warnings from MolKit.molecule import Atom #######################MATH FUNCTION########################################################## def transformedCoordinatesWithMatrice(mol,matrice): """ for a nodeset, this function returns transformed coordinates. This function will use the pickedInstance attribute if found. @type mol: MolKit node @param mol: the molecule to be transfromed @type matrice: 4x4array @param matrice: the matrix to apply to the molecule node @rtype: array @return: the transformed list of 3d points from the molecule atom coordinates """ vt = [] #transfo = matrice#Numeric.transpose(Numeric.reshape(pat.mat_transfo,(4,4))) scaleFactor = 1.#pat.scaleFactor #for node in nodes: #find all atoms and their coordinates coords = mol.allAtoms.coords# nodes.findType(Atom).coords #g = nodes[0].top.geomContainer.geoms['master'] # M1 = g.GetMatrix(g.LastParentBeforeRoot()) # apply the AR transfo matrix M = matrice#Numeric.dot(transfo,M1) for pt in coords: ptx = (M[0][0]*pt[0]+M[0][1]*pt[1]+M[0][2]*pt[2]+M[0][3]) /scaleFactor pty = (M[1][0]*pt[0]+M[1][1]*pt[1]+M[1][2]*pt[2]+M[1][3]) /scaleFactor ptz = (M[2][0]*pt[0]+M[2][1]*pt[1]+M[2][2]*pt[2]+M[2][3]) /scaleFactor vt.append( (ptx, pty, ptz) ) return vt def rotatePoint(pt,m,ax): x=pt[0] y=pt[1] z=pt[2] u=ax[0] v=ax[1] w=ax[2] ux=u*x uy=u*y uz=u*z vx=v*x vy=v*y vz=v*z wx=w*x wy=w*y wz=w*z sa=sin(ax[3]) ca=cos(ax[3]) pt[0]=(u*(ux+vy+wz)+(x*(v*v+w*w)-u*(vy+wz))*ca+(-wy+vz)*sa)+ m[0] pt[1]=(v*(ux+vy+wz)+(y*(u*u+w*w)-v*(ux+wz))*ca+(wx-uz)*sa)+ m[1] pt[2]=(w*(ux+vy+wz)+(z*(u*u+v*v)-w*(ux+vy))*ca+(-vx+uy)*sa)+ m[2] return pt def matrixToEuler(mat): """ code from 'http://www.euclideanspace.com/maths/geometry/rotations/conversions/' notes : this conversion uses conventions as described on page: 'http://www.euclideanspace.com/maths/geometry/rotations/euler/index.htm' Coordinate System: right hand Positive angle: right hand Order of euler angles: heading first, then attitude, then bank matrix row column ordering: [m00 m01 m02] [m10 m11 m12] [m20 m21 m22] @type mat: 4x4array @param mat: the matrix to convert in euler angle (heading,attitude,bank) @rtype: 3d array @return: the computed euler angle from the matrice """ #Assuming the angles are in radians. #3,3 matrix m[0:3,0:3] #return heading,attitude,bank Y,Z,X import math if (mat[1][0] > 0.998) : # singularity at north pole heading = math.atan2(mat[0][2],mat[2][2]) attitude = math.pi/2. bank = 0 return (heading,attitude,bank) if (mat[1][0] < -0.998) : # singularity at south pole heading = math.atan2(mat[0][2],mat[2][2]) attitude = -math.pi/2. bank = 0 return (heading,attitude,bank) heading = math.atan2(-mat[2][0],mat[0][0]) bank = math.atan2(-mat[1][2],mat[1][1]) attitude = math.asin(mat[1][0]) if mat[0][0] < 0 : if (attitude < 0.) and (math.degrees(attitude) > -90.): attitude = -math.pi-attitude elif (attitude > 0.) and (math.degrees(attitude) < 90.): attitude = math.pi-attitude return (heading,attitude,bank) def eulerToMatrix(euler): #double heading, double attitude, double bank """ code from 'http://www.euclideanspace.com/maths/geometry/rotations/conversions/'. this conversion uses NASA standard aeroplane conventions as described on page: 'http://www.euclideanspace.com/maths/geometry/rotations/euler/index.htm' Coordinate System: right hand Positive angle: right hand Order of euler angles: heading first, then attitude, then bank matrix row column ordering: [m00 m01 m02] [m10 m11 m12] [m20 m21 m22] @type euler: 3d array @param euler: the euler angle to convert in matrice @rtype: 4x4array @return: the matrix computed from the euler angle """ # Assuming the angles are in radians. import math heading=euler[0] attitude=euler[1] bank=euler[2] m=[[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]] ch = math.cos(heading) sh = math.sin(heading) ca = math.cos(attitude) sa = math.sin(attitude) cb = math.cos(bank) sb = math.sin(bank) m[0][0] = ch * ca m[0][1] = sh*sb - ch*sa*cb m[0][2] = ch*sa*sb + sh*cb m[1][0] = sa m[1][1] = ca*cb m[1][2] = -ca*sb m[2][0] = -sh*ca m[2][1] = sh*sa*cb + ch*sb m[2][2] = -sh*sa*sb + ch*cb return m rotY90n = Numeric.array([[ 0., 0., 1., 0.], [ 0., 1., 0., 0.], [ 1., 0., 0., 0.], [ 0., 0., 0., 1.]],'f') def ApplyMatrix(coords,mat): """ Apply the 4x4 transformation matrix to the given list of 3d points @type coords: array @param coords: the list of point to transform. @type mat: 4x4array @param mat: the matrix to apply to the 3d points @rtype: array @return: the transformed list of 3d points """ #4x4matrix" coords = Numeric.array(coords) one = Numeric.ones( (coords.shape[0], 1), coords.dtype.char ) c = Numeric.concatenate( (coords, one), 1 ) return Numeric.dot(c, Numeric.transpose(mat))[:, :3] def Decompose4x4(matrix): """ Takes a matrix in shape (16,) in OpenGL form (sequential values go down columns) and decomposes it into its rotation (shape (16,)), translation (shape (3,)), and scale (shape (3,)) @type matrix: 4x4array @param matrix: the matrix to decompose @rtype: list of array @return: the decomposition of the matrix ie : rotation,translation,scale """ m = matrix transl = Numeric.array((m[12], m[13], m[14]), 'f') scale0 = Numeric.sqrt(m[0]*m[0]+m[4]*m[4]+m[8]*m[8]) scale1 = Numeric.sqrt(m[1]*m[1]+m[5]*m[5]+m[9]*m[9]) scale2 = Numeric.sqrt(m[2]*m[2]+m[6]*m[6]+m[10]*m[10]) scale = Numeric.array((scale0,scale1,scale2)).astype('f') mat = Numeric.reshape(m, (4,4)) rot = Numeric.identity(4).astype('f') rot[:3,:3] = mat[:3,:3].astype('f') rot[:,0] = (rot[:,0]/scale0).astype('f') rot[:,1] = (rot[:,1]/scale1).astype('f') rot[:,2] = (rot[:,2]/scale2).astype('f') rot.shape = (16,) #rot1 = rot.astype('f') return rot, transl, scale def rotatePoint(pt,m,ax): """ rotate a point (x,y,z) arount an axis by alha degree. @type pt: point @param pt: the point to rotate @type m: array @param m: translation offset to apply after the rotation @type ax: vector4D @param ax: axise of rotation (ax[0:3]) and the angle of rotation (ax[3]) @rtype: point @return: the new rotated point """ x=pt[0] y=pt[1] z=pt[2] u=ax[0] v=ax[1] w=ax[2] ux=u*x uy=u*y uz=u*z vx=v*x vy=v*y vz=v*z wx=w*x wy=w*y wz=w*z sa=sin(ax[3]) ca=cos(ax[3]) pt[0]=(u*(ux+vy+wz)+(x*(v*v+w*w)-u*(vy+wz))*ca+(-wy+vz)*sa)+ m[0] pt[1]=(v*(ux+vy+wz)+(y*(u*u+w*w)-v*(ux+wz))*ca+(wx-uz)*sa)+ m[1] pt[2]=(w*(ux+vy+wz)+(z*(u*u+v*v)-w*(ux+vy))*ca+(-vx+uy)*sa)+ m[2] return pt def norm(A): """Return vector norm""" return Numeric.sqrt(sum(A*A)) def dist(A,B): """Return distnce between point A and point B""" return Numeric.sqrt((A[0]-B[0])**2+(A[1]-B[1])**2+(A[2]-B[2])**2) def normsq(A): """Return square of vector norm""" return abs(sum(A*A)) def normalize(A): """Normalize the Vector A""" if (norm(A)==0.0) : return A else :return A/norm(A) def getCenter(coords): """ Get the center from a 3d array of coordinate x,y,z. @type coords: liste/array @param coords: the coordinates @rtype: list/array @return: the center of mass of the coordinates """ coords = Numeric.array(coords)#self.allAtoms.coords center = sum(coords)/(len(coords)*1.0) center = list(center) for i in range(3): center[i] = round(center[i], 4) #print "center =", self.center return center def computeRadius(protein,center=None): """ Get the radius of gyration of a protein. @type protein: MolKit Protein @param protein: the molecule @type center: list/array @param center: the center of the molecule @rtype: float @return: the radius of the molecule """ if center == None : center = protein.getCenter() rs = 0. for atom in protein.allAtoms: r = dist(center,atom._coords[0]) if r > rs: rs = r return rs def convertColor(col,toint=True): """ This function will convert a color array [r,g,b] from range 1-255 to range 0.-1 (vice/versa) @type col: array @param col: the color [r,g,b] @type toint: boolean @param toint: way of the convertion, if true convert to 1-255, if false convert to range 0-1 @rtype: array @return: the converted color [0-1.,0-1.,0-1.] or [1-255,1-255,1-255] """ if toint and max(col)<=1.0: col = map( lambda x: x*255, col) elif not toint and max(col)>1.0: col = map( lambda x: x/255., col) return col DGatomIds=['ASPOD1','ASPOD2','GLUOE1','GLUOE2', 'SERHG', 'THRHG1','TYROH','TYRHH', 'LYSNZ','LYSHZ1','LYSHZ2','LYSHZ3','ARGNE','ARGNH1','ARGNH2', 'ARGHH11','ARGHH12','ARGHH21','ARGHH22','ARGHE','GLNHE21', 'GLNHE22','GLNHE2', 'ASNHD2','ASNHD21', 'ASNHD22','HISHD1','HISHE2' , 'CYSHG', 'HN'] def lookupDGFunc(atom): assert isinstance(atom, Atom) if atom.name in ['HN']: atom.atomId = atom.name else: atom.atomId=atom.parent.type+atom.name if atom.atomId not in DGatomIds: atom.atomId=atom.element return atom.atomId.upper() def norm(A): "Return vector norm" return Numeric.sqrt(sum(A*A)) def dist(A,B): return Numeric.sqrt((A[0]-B[0])**2+(A[1]-B[1])**2+(A[2]-B[2])**2) def normsq(A): "Return square of vector norm" return abs(sum(A*A)) def normalize(A): "Normalize the Vector" if (norm(A)==0.0) : return A else :return A/norm(A) def changeR(txt): from Pmv.pmvPalettes import RasmolAminoSortedKeys from MolKit.protein import ResidueSetSelector #problem this residue not in r_keyD rname = txt[0:3] rnum = txt[3:] if rname not in RasmolAminoSortedKeys :#ResidueSetSelector.r_keyD.keys() : print rname rname=rname.replace(" ","") if len(rname) == 1 : return rname+rnum return rname[1]+rnum else : rname=rname.replace(" ","") r1n=ResidueSetSelector.r_keyD[rname] return r1n+rnum def patchRasmolAminoColor(): from Pmv.pmvPalettes import RasmolAmino,RasmolAminoSortedKeys RasmolAminocorrected=RasmolAmino.copy() for res in RasmolAminoSortedKeys: name=res.strip() if name in ['A', 'C', 'G', 'T', 'U']: name = 'D'+name RasmolAminocorrected[name]= RasmolAmino[res] del RasmolAminocorrected[res] return RasmolAminocorrected #######################ENERGY CLASS & FUNCTION########################################################## class EnergyHandler: """ object to manage the different energies calculation between set of atoms """ def __init__(self,viewer): self.viewer = viewer # list the energies instance to manage self.data = {} # keys name, values: energie classs instance self.current_scorer = None self.realTime = True def add(self,atomset1,atomset2,score_type='c_ad3Score',**kw): """ a pairs of atoms to get energies between them should be receptor ligan """ # make name from
<filename>ea_transformer.py import math from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from hilbert import decode, encode from pyzorder import ZOrderIndexer from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.helpers import build_model_with_cfg, overlay_external_default_cfg from timm.models.layers import StdConv2dSame, DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model # from dcn_v2_amp import DCN from PIL import Image as DCN def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CrossAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.q = nn.Linear(dim, dim * 1, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, xq): B, N, C = x.shape _, Nq, _ = xq.shape kv = self.kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q_ = self.q(xq).reshape(B, Nq, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = q_[0], kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) x = self.proj(x) x = self.proj_drop(x) return x class LocalAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., local_ks=3, length=196): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) mask = torch.ones(length, length) for i in range(length): for j in range(i-local_ks//2, i+local_ks//2+1, 1): j = min(max(0, j), length-1) mask[i, j] = 0 mask = mask.unsqueeze(0).unsqueeze(1) self.mask = nn.Parameter(mask, requires_grad=False) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.masked_fill_(self.mask.bool(), -np.inf) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LocalBranch(nn.Module): def __init__(self, dim, local_type='conv', local_ks=3, length=196, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.local_type = local_type if local_type == 'conv': self.linear = nn.Linear(dim, dim) self.local = nn.Conv1d(dim, dim, kernel_size=local_ks, padding=local_ks//2, padding_mode='zeros', groups=1) elif local_type == 'dcn': self.linear = nn.Linear(dim, dim) self.local = DCN(dim, dim, kernel_size=(local_ks, 1), stride=1, padding=(local_ks//2, 0), deformable_groups=2) elif local_type == 'attn': self.local = LocalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop, local_ks=local_ks, length=length) else: self.local = nn.Identity() def forward(self, x): if self.local_type in ['conv']: x = self.linear(x) x = x.permute(0, 2, 1) x = self.local(x) x = x.permute(0, 2, 1) return x elif self.local_type == 'dcn': x = self.linear(x) x = x.permute(0, 2, 1).unsqueeze(3).contiguous() x = self.local(x) x = x.squeeze(3).permute(0, 2, 1) return x elif self.local_type == 'attn': x = self.local(x) return x else: x = self.local(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), local_type='conv', local_ks=3, length=196, local_ratio=0.5, ffn_type='base'): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if ffn_type == 'base': MLP = Mlp else: raise Exception('invalid ffn_type: {}'.format(ffn_type)) self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Block_local(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), local_type='conv', local_ks=3, length=196, local_ratio=0.5, ffn_type='base'): super().__init__() local_dim = int(dim * local_ratio) self.global_dim = dim - local_dim div = 2 self.num_heads = num_heads // div self.norm1 = norm_layer(self.global_dim) self.norm1_local = norm_layer(local_dim) self.attn = Attention(self.global_dim, num_heads=self.num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.local = LocalBranch(local_dim, local_type=local_type, local_ks=local_ks, length=length, num_heads=self.num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if ffn_type == 'base': MLP = Mlp else: raise Exception('invalid ffn_type: {}'.format(ffn_type)) self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): # torch.Size([64, 257, 192]) x_attn = self.drop_path(self.attn(self.norm1(x[:, :, :self.global_dim]))) x_local = self.drop_path(self.local(self.norm1_local(x[:, :, self.global_dim:]))) x = x + torch.cat([x_attn, x_local], dim=2) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Block_cls(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), local_type='conv', local_ks=3, local_ratio=0.5, ffn_type='base'): super().__init__() self.norm1 = norm_layer(dim) self.attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if ffn_type == 'base': MLP = Mlp else: raise Exception('invalid ffn_type: {}'.format(ffn_type)) self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, xq): xq = xq + self.drop_path(self.attn(x, self.norm1(xq))) xq = xq + self.drop_path(self.mlp(self.norm2(xq))) return xq class LocED(nn.Module): def __init__(self, size=16, size_p=1, dim=2, loc_encoder='sis'): super().__init__() size = int(size) if loc_encoder in ['zorder', 'hilbert']: if size & (size - 1) != 0: raise 'invalid size \'{}\' for \'{}\' mode'.format(size, loc_encoder) if loc_encoder in ['sis']: if size_p == 1: raise 'invalid size \'{}\' for \'{}\' mode'.format(size_p, loc_encoder) max_num = size ** dim indexes = np.arange(max_num) if 'sweep' == loc_encoder: # ['sweep', 'scan', 'zorder', 'hilbert', 'sis'] locs_flat = indexes elif 'scan' == loc_encoder: indexes = indexes.reshape(size, size) for i in np.arange(1, size, step=2): indexes[i, :] = indexes[i, :][::-1] locs_flat = indexes.reshape(-1) elif 'zorder' == loc_encoder: zi = ZOrderIndexer((0, size - 1), (0, size - 1)) locs_flat = [] for z in indexes: r, c = zi.rc(int(z)) locs_flat.append(c * size + r) locs_flat = np.array(locs_flat) elif 'hilbert' == loc_encoder: bit = int(math.log2(size)) locs = decode(indexes, dim, bit) locs_flat = self.flat_locs_hilbert(locs, dim, bit) elif 'sis' == loc_encoder: locs_flat = [] axis_patches = size // size_p for i in range(axis_patches): for j in range(axis_patches): for ii in range(size_p): for jj in range(size_p): locs_flat.append((size_p * i + ii) * size + (size_p * j + jj)) locs_flat = np.array(locs_flat) else: raise Exception('invalid encoder mode') locs_flat_inv = np.argsort(locs_flat) index_flat = torch.LongTensor(locs_flat.astype(np.int64)).unsqueeze(0).unsqueeze(2) index_flat_inv = torch.LongTensor(locs_flat_inv.astype(np.int64)).unsqueeze(0).unsqueeze(2) self.index_flat = nn.Parameter(index_flat, requires_grad=False) self.index_flat_inv = nn.Parameter(index_flat_inv, requires_grad=False) def flat_locs_hilbert(self, locs, num_dim, num_bit): ret = [] l = 2 ** num_bit for i in range(len(locs)): loc = locs[i] loc_flat = 0 for j in range(num_dim): loc_flat += loc[j] * (l ** j) ret.append(loc_flat) return np.array(ret).astype(np.uint64) def __call__(self, img): img_encode = self.encode(img) return img_encode def encode(self, img): img_encode = torch.zeros(img.shape, dtype=img.dtype, device=img.device).scatter_(1, self.index_flat_inv.expand(img.shape), img) return img_encode def decode(self, img): img_decode = torch.zeros(img.shape, dtype=img.dtype, device=img.device).scatter_(1, self.index_flat.expand(img.shape), img) return img_decode class EATransformer(nn.Module): def __init__(self, img_size=256, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, depth_cls=2, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), pos_emb=True, cls_token=False, cls_token_head=True, loc_encoder='sis', block_type='base_local', local_type='conv', local_ks=3, local_ratio=0.5, ffn_type='base', sfc_mode='first'): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.cls_token_ = cls_token self.cls_token_head_ = cls_token_head self.sfc_mode = sfc_mode axis_patches = img_size // patch_size num_patches = axis_patches ** 2 self.num_patches = num_patches if sfc_mode == 'first': self.loc_encoder = LocED(size=img_size, size_p=patch_size, dim=2, loc_encoder=loc_encoder) self.patch_embed = nn.Conv1d(in_chans, embed_dim, kernel_size=patch_size ** 2, stride=patch_size ** 2) elif sfc_mode == 'second': self.loc_encoder
``day_of_month='1-7,15-21'`` (for the first and third weeks of the month). .. attribute:: month_of_year - A (list of) integers from 1-12 that represents the months of the year during which execution can occur. - A string representing a Crontab pattern. This may get pretty advanced, such as ``month_of_year='*/3'`` (for the first month of every quarter) or ``month_of_year='2-12/2'`` (for every even numbered month). .. attribute:: nowfun Function returning the current date and time (:class:`~datetime.datetime`). .. attribute:: app The Celery app instance. It's important to realize that any day on which execution should occur must be represented by entries in all three of the day and month attributes. For example, if ``day_of_week`` is 0 and ``day_of_month`` is every seventh day, only months that begin on Sunday and are also in the ``month_of_year`` attribute will have execution events. Or, ``day_of_week`` is 1 and ``day_of_month`` is '1-7,15-21' means every first and third Monday of every month present in ``month_of_year``. """ def __init__(self, minute='*', hour='*', day_of_week='*', day_of_month='*', month_of_year='*', **kwargs): self._orig_minute = cronfield(minute) self._orig_hour = cronfield(hour) self._orig_day_of_week = cronfield(day_of_week) self._orig_day_of_month = cronfield(day_of_month) self._orig_month_of_year = cronfield(month_of_year) self.hour = self._expand_cronspec(hour, 24) self.minute = self._expand_cronspec(minute, 60) self.day_of_week = self._expand_cronspec(day_of_week, 7) self.day_of_month = self._expand_cronspec(day_of_month, 31, 1) self.month_of_year = self._expand_cronspec(month_of_year, 12, 1) super(crontab, self).__init__(**kwargs) @staticmethod def _expand_cronspec(cronspec, max_, min_=0): """Expand cron specification. Takes the given cronspec argument in one of the forms: .. code-block:: text int (like 7) str (like '3-5,*/15', '*', or 'monday') set (like {0,15,30,45} list (like [8-17]) And convert it to an (expanded) set representing all time unit values on which the Crontab triggers. Only in case of the base type being :class:`str`, parsing occurs. (It's fast and happens only once for each Crontab instance, so there's no significant performance overhead involved.) For the other base types, merely Python type conversions happen. The argument ``max_`` is needed to determine the expansion of ``*`` and ranges. The argument ``min_`` is needed to determine the expansion of ``*`` and ranges for 1-based cronspecs, such as day of month or month of year. The default is sufficient for minute, hour, and day of week. """ if isinstance(cronspec, numbers.Integral): result = {cronspec} elif isinstance(cronspec, string_t): result = crontab_parser(max_, min_).parse(cronspec) elif isinstance(cronspec, set): result = cronspec elif isinstance(cronspec, Iterable): result = set(cronspec) else: raise TypeError(CRON_INVALID_TYPE.format(type=type(cronspec))) # assure the result does not preceed the min or exceed the max for number in result: if number >= max_ + min_ or number < min_: raise ValueError(CRON_PATTERN_INVALID.format( min=min_, max=max_ - 1 + min_, value=number)) return result def _delta_to_next(self, last_run_at, next_hour, next_minute): """Find next delta. Takes a :class:`~datetime.datetime` of last run, next minute and hour, and returns a :class:`~celery.utils.time.ffwd` for the next scheduled day and time. Only called when ``day_of_month`` and/or ``month_of_year`` cronspec is specified to further limit scheduled task execution. """ datedata = AttributeDict(year=last_run_at.year) days_of_month = sorted(self.day_of_month) months_of_year = sorted(self.month_of_year) def day_out_of_range(year, month, day): try: datetime(year=year, month=month, day=day) except ValueError: return True return False def roll_over(): for _ in range(2000): flag = (datedata.dom == len(days_of_month) or day_out_of_range(datedata.year, months_of_year[datedata.moy], days_of_month[datedata.dom]) or (self.maybe_make_aware(datetime(datedata.year, months_of_year[datedata.moy], days_of_month[datedata.dom])) < last_run_at)) if flag: datedata.dom = 0 datedata.moy += 1 if datedata.moy == len(months_of_year): datedata.moy = 0 datedata.year += 1 else: break else: # Tried 2000 times, we're most likely in an infinite loop raise RuntimeError('unable to rollover, ' 'time specification is probably invalid') if last_run_at.month in self.month_of_year: datedata.dom = bisect(days_of_month, last_run_at.day) datedata.moy = bisect_left(months_of_year, last_run_at.month) else: datedata.dom = 0 datedata.moy = bisect(months_of_year, last_run_at.month) if datedata.moy == len(months_of_year): datedata.moy = 0 roll_over() while 1: th = datetime(year=datedata.year, month=months_of_year[datedata.moy], day=days_of_month[datedata.dom]) if th.isoweekday() % 7 in self.day_of_week: break datedata.dom += 1 roll_over() return ffwd(year=datedata.year, month=months_of_year[datedata.moy], day=days_of_month[datedata.dom], hour=next_hour, minute=next_minute, second=0, microsecond=0) def __repr__(self): return CRON_REPR.format(self) def __reduce__(self): return (self.__class__, (self._orig_minute, self._orig_hour, self._orig_day_of_week, self._orig_day_of_month, self._orig_month_of_year), None) def remaining_delta(self, last_run_at, tz=None, ffwd=ffwd): # pylint: disable=redefined-outer-name # caching global ffwd tz = tz or self.tz last_run_at = self.maybe_make_aware(last_run_at) now = self.maybe_make_aware(self.now()) dow_num = last_run_at.isoweekday() % 7 # Sunday is day 0, not day 7 execute_this_date = ( last_run_at.month in self.month_of_year and last_run_at.day in self.day_of_month and dow_num in self.day_of_week ) execute_this_hour = ( execute_this_date and last_run_at.day == now.day and last_run_at.month == now.month and last_run_at.year == now.year and last_run_at.hour in self.hour and last_run_at.minute < max(self.minute) ) if execute_this_hour: next_minute = min(minute for minute in self.minute if minute > last_run_at.minute) delta = ffwd(minute=next_minute, second=0, microsecond=0) else: next_minute = min(self.minute) execute_today = (execute_this_date and last_run_at.hour < max(self.hour)) if execute_today: next_hour = min(hour for hour in self.hour if hour > last_run_at.hour) delta = ffwd(hour=next_hour, minute=next_minute, second=0, microsecond=0) else: next_hour = min(self.hour) all_dom_moy = (self._orig_day_of_month == '*' and self._orig_month_of_year == '*') if all_dom_moy: next_day = min([day for day in self.day_of_week if day > dow_num] or self.day_of_week) add_week = next_day == dow_num delta = ffwd( weeks=add_week and 1 or 0, weekday=(next_day - 1) % 7, hour=next_hour, minute=next_minute, second=0, microsecond=0, ) else: delta = self._delta_to_next(last_run_at, next_hour, next_minute) return self.to_local(last_run_at), delta, self.to_local(now) def remaining_estimate(self, last_run_at, ffwd=ffwd): """Estimate of next run time. Returns when the periodic task should run next as a :class:`~datetime.timedelta`. """ # pylint: disable=redefined-outer-name # caching global ffwd return remaining(*self.remaining_delta(last_run_at, ffwd=ffwd)) def is_due(self, last_run_at): """Return tuple of ``(is_due, next_time_to_run)``. Note: Next time to run is in seconds. SeeAlso: :meth:`celery.schedules.schedule.is_due` for more information. """ rem_delta = self.remaining_estimate(last_run_at) rem = max(rem_delta.total_seconds(), 0) due = rem == 0 if due: rem_delta = self.remaining_estimate(self.now()) rem = max(rem_delta.total_seconds(), 0) return schedstate(due, rem) def __eq__(self, other): if isinstance(other, crontab): return ( other.month_of_year == self.month_of_year and other.day_of_month == self.day_of_month and other.day_of_week == self.day_of_week and other.hour == self.hour and other.minute == self.minute ) return NotImplemented def __ne__(self, other): res = self.__eq__(other) if res is NotImplemented: return True return not res def maybe_schedule(s, relative=False, app=None): """Return schedule from number, timedelta, or actual schedule.""" if s is not None: if isinstance(s, numbers.Number): s = timedelta(seconds=s) if isinstance(s, timedelta): return schedule(s, relative, app=app) else: s.app = app return s @python_2_unicode_compatible class solar(BaseSchedule): """Solar event. A solar event can be used as the ``run_every`` value of a periodic task entry to schedule based on certain solar events. Notes: Available event valus are: - ``dawn_astronomical`` - ``dawn_nautical`` - ``dawn_civil`` - ``sunrise`` - ``solar_noon`` - ``sunset`` - ``dusk_civil`` - ``dusk_nautical`` - ``dusk_astronomical`` Arguments: event (str): Solar event that triggers this task. See note for available values. lat (int): The latitude of the observer. lon (int): The longitude of the observer. nowfun (Callable): Function returning the current date and time as a class:`~datetime.datetime`. app (~@Celery): Celery app instance. """ _all_events = { 'dawn_astronomical', 'dawn_nautical', 'dawn_civil', 'sunrise', 'solar_noon', 'sunset', 'dusk_civil', 'dusk_nautical', 'dusk_astronomical', } _horizons = { 'dawn_astronomical': '-18', 'dawn_nautical': '-12', 'dawn_civil': '-6', 'sunrise': '-0:34', 'solar_noon': '0', 'sunset': '-0:34', 'dusk_civil': '-6', 'dusk_nautical': '-12', 'dusk_astronomical': '18', } _methods = { 'dawn_astronomical': 'next_rising', 'dawn_nautical': 'next_rising', 'dawn_civil': 'next_rising', 'sunrise': 'next_rising', 'solar_noon': 'next_transit', 'sunset': 'next_setting', 'dusk_civil': 'next_setting', 'dusk_nautical': 'next_setting', 'dusk_astronomical': 'next_setting', } _use_center_l = { 'dawn_astronomical': True, 'dawn_nautical': True, 'dawn_civil': True, 'sunrise': False, 'solar_noon': True, 'sunset': False, 'dusk_civil': True, 'dusk_nautical': True, 'dusk_astronomical': True, } def __init__(self, event, lat, lon, **kwargs): self.ephem = __import__('ephem') self.event = event self.lat = lat self.lon = lon super(solar, self).__init__(**kwargs) if event not in self._all_events: raise ValueError(SOLAR_INVALID_EVENT.format( event=event, all_events=', '.join(sorted(self._all_events)), )) if lat < -90 or lat > 90: raise ValueError(SOLAR_INVALID_LATITUDE.format(lat=lat)) if lon < -180 or lon > 180: raise ValueError(SOLAR_INVALID_LONGITUDE.format(lon=lon)) cal = self.ephem.Observer() cal.lat = str(lat) cal.lon = str(lon) cal.elev = 0 cal.horizon = self._horizons[event] cal.pressure = 0 self.cal = cal self.method = self._methods[event] self.use_center = self._use_center_l[event] def __reduce__(self): return self.__class__, (self.event, self.lat, self.lon) def __repr__(self): return '<solar: {0} at latitude {1}, longitude: {2}>'.format( self.event, self.lat, self.lon, ) def remaining_estimate(self, last_run_at): """Return estimate of next time to run. Returns: ~datetime.timedelta: when the periodic task should run next, or if it shouldn't run today (e.g., the sun does not rise today), returns the time when the next check should take place. """ last_run_at = self.maybe_make_aware(last_run_at) last_run_at_utc = localize(last_run_at, timezone.utc) self.cal.date = last_run_at_utc try: next_utc = getattr(self.cal, self.method)(
Parameters: - path """ self.send_listStatus(path) return self.recv_listStatus() def send_listStatus(self, path): self._oprot.writeMessageBegin('listStatus', TMessageType.CALL, self._seqid) args = listStatus_args() args.path = path args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_listStatus(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = listStatus_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success != None: return result.success if result.ouch != None: raise result.ouch raise TApplicationException(TApplicationException.MISSING_RESULT, "listStatus failed: unknown result"); def chmod(self, path, mode): """ Parameters: - path - mode """ self.send_chmod(path, mode) self.recv_chmod() def send_chmod(self, path, mode): self._oprot.writeMessageBegin('chmod', TMessageType.CALL, self._seqid) args = chmod_args() args.path = path args.mode = mode args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_chmod(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = chmod_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.ouch != None: raise result.ouch return def chown(self, path, owner, group): """ Parameters: - path - owner - group """ self.send_chown(path, owner, group) self.recv_chown() def send_chown(self, path, owner, group): self._oprot.writeMessageBegin('chown', TMessageType.CALL, self._seqid) args = chown_args() args.path = path args.owner = owner args.group = group args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_chown(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = chown_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.ouch != None: raise result.ouch return def setReplication(self, path, replication): """ Parameters: - path - replication """ self.send_setReplication(path, replication) self.recv_setReplication() def send_setReplication(self, path, replication): self._oprot.writeMessageBegin('setReplication', TMessageType.CALL, self._seqid) args = setReplication_args() args.path = path args.replication = replication args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_setReplication(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = setReplication_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.ouch != None: raise result.ouch return def getFileBlockLocations(self, path, start, length): """ Parameters: - path - start - length """ self.send_getFileBlockLocations(path, start, length) return self.recv_getFileBlockLocations() def send_getFileBlockLocations(self, path, start, length): self._oprot.writeMessageBegin('getFileBlockLocations', TMessageType.CALL, self._seqid) args = getFileBlockLocations_args() args.path = path args.start = start args.length = length args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_getFileBlockLocations(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = getFileBlockLocations_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success != None: return result.success if result.ouch != None: raise result.ouch raise TApplicationException(TApplicationException.MISSING_RESULT, "getFileBlockLocations failed: unknown result"); class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["setInactivityTimeoutPeriod"] = Processor.process_setInactivityTimeoutPeriod self._processMap["shutdown"] = Processor.process_shutdown self._processMap["create"] = Processor.process_create self._processMap["createFile"] = Processor.process_createFile self._processMap["open"] = Processor.process_open self._processMap["append"] = Processor.process_append self._processMap["write"] = Processor.process_write self._processMap["read"] = Processor.process_read self._processMap["close"] = Processor.process_close self._processMap["rm"] = Processor.process_rm self._processMap["rename"] = Processor.process_rename self._processMap["mkdirs"] = Processor.process_mkdirs self._processMap["exists"] = Processor.process_exists self._processMap["stat"] = Processor.process_stat self._processMap["listStatus"] = Processor.process_listStatus self._processMap["chmod"] = Processor.process_chmod self._processMap["chown"] = Processor.process_chown self._processMap["setReplication"] = Processor.process_setReplication self._processMap["getFileBlockLocations"] = Processor.process_getFileBlockLocations def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_setInactivityTimeoutPeriod(self, seqid, iprot, oprot): args = setInactivityTimeoutPeriod_args() args.read(iprot) iprot.readMessageEnd() result = setInactivityTimeoutPeriod_result() self._handler.setInactivityTimeoutPeriod(args.periodInSeconds) oprot.writeMessageBegin("setInactivityTimeoutPeriod", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_shutdown(self, seqid, iprot, oprot): args = shutdown_args() args.read(iprot) iprot.readMessageEnd() result = shutdown_result() self._handler.shutdown(args.status) oprot.writeMessageBegin("shutdown", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_create(self, seqid, iprot, oprot): args = create_args() args.read(iprot) iprot.readMessageEnd() result = create_result() try: result.success = self._handler.create(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("create", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_createFile(self, seqid, iprot, oprot): args = createFile_args() args.read(iprot) iprot.readMessageEnd() result = createFile_result() try: result.success = self._handler.createFile(args.path, args.mode, args.overwrite, args.bufferSize, args.block_replication, args.blocksize) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("createFile", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_open(self, seqid, iprot, oprot): args = open_args() args.read(iprot) iprot.readMessageEnd() result = open_result() try: result.success = self._handler.open(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("open", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_append(self, seqid, iprot, oprot): args = append_args() args.read(iprot) iprot.readMessageEnd() result = append_result() try: result.success = self._handler.append(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("append", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_write(self, seqid, iprot, oprot): args = write_args() args.read(iprot) iprot.readMessageEnd() result = write_result() try: result.success = self._handler.write(args.handle, args.data) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("write", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_read(self, seqid, iprot, oprot): args = read_args() args.read(iprot) iprot.readMessageEnd() result = read_result() try: result.success = self._handler.read(args.handle, args.offset, args.size) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("read", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_close(self, seqid, iprot, oprot): args = close_args() args.read(iprot) iprot.readMessageEnd() result = close_result() try: result.success = self._handler.close(args.out) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("close", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_rm(self, seqid, iprot, oprot): args = rm_args() args.read(iprot) iprot.readMessageEnd() result = rm_result() try: result.success = self._handler.rm(args.path, args.recursive) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("rm", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_rename(self, seqid, iprot, oprot): args = rename_args() args.read(iprot) iprot.readMessageEnd() result = rename_result() try: result.success = self._handler.rename(args.path, args.dest) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("rename", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_mkdirs(self, seqid, iprot, oprot): args = mkdirs_args() args.read(iprot) iprot.readMessageEnd() result = mkdirs_result() try: result.success = self._handler.mkdirs(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("mkdirs", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_exists(self, seqid, iprot, oprot): args = exists_args() args.read(iprot) iprot.readMessageEnd() result = exists_result() try: result.success = self._handler.exists(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("exists", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_stat(self, seqid, iprot, oprot): args = stat_args() args.read(iprot) iprot.readMessageEnd() result = stat_result() try: result.success = self._handler.stat(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("stat", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_listStatus(self, seqid, iprot, oprot): args = listStatus_args() args.read(iprot) iprot.readMessageEnd() result = listStatus_result() try: result.success = self._handler.listStatus(args.path) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("listStatus", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_chmod(self, seqid, iprot, oprot): args = chmod_args() args.read(iprot) iprot.readMessageEnd() result = chmod_result() try: self._handler.chmod(args.path, args.mode) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("chmod", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_chown(self, seqid, iprot, oprot): args = chown_args() args.read(iprot) iprot.readMessageEnd() result = chown_result() try: self._handler.chown(args.path, args.owner, args.group) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("chown", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_setReplication(self, seqid, iprot, oprot): args = setReplication_args() args.read(iprot) iprot.readMessageEnd() result = setReplication_result() try: self._handler.setReplication(args.path, args.replication) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("setReplication", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_getFileBlockLocations(self, seqid, iprot, oprot): args = getFileBlockLocations_args() args.read(iprot) iprot.readMessageEnd() result = getFileBlockLocations_result() try: result.success = self._handler.getFileBlockLocations(args.path, args.start, args.length) except ThriftIOException, ouch: result.ouch = ouch oprot.writeMessageBegin("getFileBlockLocations", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class setInactivityTimeoutPeriod_args: """ Attributes: - periodInSeconds """ thrift_spec = ( None, # 0 (1, TType.I64, 'periodInSeconds', None, None, ), # 1 ) def __init__(self, periodInSeconds=None,): self.periodInSeconds = periodInSeconds def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.periodInSeconds = iprot.readI64(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('setInactivityTimeoutPeriod_args') if self.periodInSeconds != None: oprot.writeFieldBegin('periodInSeconds', TType.I64, 1) oprot.writeI64(self.periodInSeconds) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class setInactivityTimeoutPeriod_result: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('setInactivityTimeoutPeriod_result') oprot.writeFieldStop() oprot.writeStructEnd() def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class shutdown_args: """ Attributes: - status """ thrift_spec = ( None, # 0 (1, TType.I32, 'status', None, None, ), #
<reponame>hatemhosny/jupytext """ContentsManager that allows to open Rmd, py, R and ipynb files as notebooks """ import os from datetime import timedelta import nbformat import mock from tornado.web import HTTPError from traitlets import Unicode, Float, Bool, Enum from traitlets.config import Configurable # import notebook.transutils before notebook.services.contents.filemanager #75 try: import notebook.transutils # noqa except ImportError: pass try: from notebook.services.contents.largefilemanager import LargeFileManager except ImportError: # Older versions of notebook do not have the LargeFileManager #217 from notebook.services.contents.filemanager import FileContentsManager as LargeFileManager from .jupytext import reads, writes, create_prefix_dir from .combine import combine_inputs_with_outputs from .formats import rearrange_jupytext_metadata, check_file_version from .formats import NOTEBOOK_EXTENSIONS, long_form_one_format, long_form_multiple_formats from .formats import short_form_one_format, short_form_multiple_formats from .paired_paths import paired_paths, find_base_path_and_format, base_path, full_path, InconsistentPath from .kernels import set_kernelspec_from_language def preferred_format(incomplete_format, preferred_formats): """Return the preferred format for the given extension""" incomplete_format = long_form_one_format(incomplete_format) if 'format_name' in incomplete_format: return incomplete_format for fmt in long_form_multiple_formats(preferred_formats): if ((incomplete_format['extension'] == fmt['extension'] or ( fmt['extension'] == '.auto' and incomplete_format['extension'] not in ['.md', '.Rmd', '.ipynb'])) and incomplete_format.get('suffix') == fmt.get('suffix', incomplete_format.get('suffix')) and incomplete_format.get('prefix') == fmt.get('prefix', incomplete_format.get('prefix'))): fmt.update(incomplete_format) return fmt return incomplete_format def _jupytext_writes(fmt): def _writes(nbk, version=nbformat.NO_CONVERT, **kwargs): return writes(nbk, fmt, version=version, **kwargs) return _writes def _jupytext_reads(fmt): def _reads(text, as_version, **kwargs): return reads(text, fmt, as_version=as_version, **kwargs) return _reads class TextFileContentsManager(LargeFileManager, Configurable): """ A FileContentsManager Class that reads and stores notebooks to classical Jupyter notebooks (.ipynb), R Markdown notebooks (.Rmd), Julia (.jl), Python (.py) or R scripts (.R) """ # Dictionary: notebook path => (fmt, formats) where fmt is the current format, and formats the paired formats. paired_notebooks = dict() def all_nb_extensions(self): """All extensions that should be classified as notebooks""" return [ext if ext.startswith('.') else '.' + ext for ext in self.notebook_extensions.split(',')] default_jupytext_formats = Unicode( u'', help='Save notebooks to these file extensions. ' 'Can be any of ipynb,Rmd,md,jl,py,R,nb.jl,nb.py,nb.R ' 'comma separated. If you want another format than the ' 'default one, append the format name to the extension, ' 'e.g. ipynb,py:percent to save the notebook to ' 'hydrogen/spyder/vscode compatible scripts', config=True) preferred_jupytext_formats_save = Unicode( u'', help='Preferred format when saving notebooks as text, per extension. ' 'Use "jl:percent,py:percent,R:percent" if you want to save ' 'Julia, Python and R scripts in the double percent format and ' 'only write "jupytext_formats": "py" in the notebook metadata.', config=True) preferred_jupytext_formats_read = Unicode( u'', help='Preferred format when reading notebooks from text, per ' 'extension. Use "py:sphinx" if you want to read all python ' 'scripts as Sphinx gallery scripts.', config=True) default_notebook_metadata_filter = Unicode( u'', help="Cell metadata that should be save in the text representations. " "Examples: 'all', '-all', 'widgets,nteract', 'kernelspec,jupytext-all'", config=True) default_cell_metadata_filter = Unicode( u'', help="Notebook metadata that should be saved in the text representations. " "Examples: 'all', 'hide_input,hide_output'", config=True) comment_magics = Enum( values=[True, False], allow_none=True, help='Should Jupyter magic commands be commented out in the text representation?', config=True) split_at_heading = Bool( False, help='Split markdown cells on headings (Markdown and R Markdown formats only)', config=True) sphinx_convert_rst2md = Bool( False, help='When opening a Sphinx Gallery script, convert the reStructuredText to markdown', config=True) outdated_text_notebook_margin = Float( 1.0, help='Refuse to overwrite inputs of a ipynb notebooks with those of a ' 'text notebook when the text notebook plus margin is older than ' 'the ipynb notebook', config=True) default_cell_markers = Unicode( u'', help='Start and end cell markers for the light format, comma separated. Use "{{{,}}}" to mark cells' 'as foldable regions in Vim, and "region,endregion" to mark cells as Vscode/PyCharm regions', config=True) notebook_extensions = Unicode( u','.join(NOTEBOOK_EXTENSIONS), help='A comma separated list of notebook extensions', config=True) def drop_paired_notebook(self, path): """Remove the current notebook from the list of paired notebooks""" if path not in self.paired_notebooks: return fmt, formats = self.paired_notebooks.pop(path) prev_paired_paths = paired_paths(path, fmt, formats) for alt_path, _ in prev_paired_paths: if alt_path in self.paired_notebooks: self.drop_paired_notebook(alt_path) def update_paired_notebooks(self, path, fmt, formats): """Update the list of paired notebooks to include/update the current pair""" if not formats: self.drop_paired_notebook(path) return new_paired_paths = paired_paths(path, fmt, formats) for alt_path, _ in new_paired_paths: self.drop_paired_notebook(alt_path) long_formats = long_form_multiple_formats(formats) if len(long_formats) == 1 and set(long_formats[0]) <= {'extension'}: return short_formats = short_form_multiple_formats(formats) for alt_path, alt_fmt in new_paired_paths: self.paired_notebooks[alt_path] = short_form_one_format(alt_fmt), short_formats def set_default_format_options(self, format_options, read=False): """Set default format option""" if self.default_notebook_metadata_filter: format_options.setdefault('notebook_metadata_filter', self.default_notebook_metadata_filter) if self.default_cell_metadata_filter: format_options.setdefault('cell_metadata_filter', self.default_cell_metadata_filter) if self.comment_magics is not None: format_options.setdefault('comment_magics', self.comment_magics) if self.split_at_heading: format_options.setdefault('split_at_heading', self.split_at_heading) if not read and self.default_cell_markers: format_options.setdefault('cell_markers', self.default_cell_markers) if read and self.sphinx_convert_rst2md: format_options.setdefault('rst2md', self.sphinx_convert_rst2md) def default_formats(self, path): """Return the default formats, if they apply to the current path #157""" formats = long_form_multiple_formats(self.default_jupytext_formats) for fmt in formats: try: base_path(path, fmt) return self.default_jupytext_formats except InconsistentPath: continue return None def create_prefix_dir(self, path, fmt): """Create the prefix dir, if missing""" create_prefix_dir(self._get_os_path(path.strip('/')), fmt) def save(self, model, path=''): """Save the file model and return the model with no content.""" if model['type'] != 'notebook': return super(TextFileContentsManager, self).save(model, path) nbk = model['content'] try: metadata = nbk.get('metadata') rearrange_jupytext_metadata(metadata) jupytext_metadata = metadata.setdefault('jupytext', {}) jupytext_formats = jupytext_metadata.get('formats') or self.default_formats(path) if not jupytext_formats: text_representation = jupytext_metadata.get('text_representation', {}) ext = os.path.splitext(path)[1] fmt = {'extension': ext} if ext == text_representation.get('extension') and text_representation.get('format_name'): fmt['format_name'] = text_representation.get('format_name') jupytext_formats = [fmt] jupytext_formats = long_form_multiple_formats(jupytext_formats, metadata) # Set preferred formats if not format name is given yet jupytext_formats = [preferred_format(fmt, self.preferred_jupytext_formats_save) for fmt in jupytext_formats] base, fmt = find_base_path_and_format(path, jupytext_formats) self.update_paired_notebooks(path, fmt, jupytext_formats) self.set_default_format_options(jupytext_metadata) if not jupytext_metadata: metadata.pop('jupytext') # Save as ipynb first return_value = None value = None for fmt in jupytext_formats[::-1]: if fmt['extension'] != '.ipynb': continue alt_path = full_path(base, fmt) self.create_prefix_dir(alt_path, fmt) self.log.info("Saving %s", os.path.basename(alt_path)) value = super(TextFileContentsManager, self).save(model, alt_path) if alt_path == path: return_value = value # And then to the other formats, in reverse order so that # the first format is the most recent for fmt in jupytext_formats[::-1]: if fmt['extension'] == '.ipynb': continue alt_path = full_path(base, fmt) self.create_prefix_dir(alt_path, fmt) if 'format_name' in fmt and fmt['extension'] not in ['.Rmd', '.md']: self.log.info("Saving %s in format %s:%s", os.path.basename(alt_path), fmt['extension'][1:], fmt['format_name']) else: self.log.info("Saving %s", os.path.basename(alt_path)) with mock.patch('nbformat.writes', _jupytext_writes(fmt)): value = super(TextFileContentsManager, self).save(model, alt_path) if alt_path == path: return_value = value # Update modified timestamp to match that of the pair #207 return_value['last_modified'] = value['last_modified'] return return_value except Exception as err: raise HTTPError(400, str(err)) def get(self, path, content=True, type=None, format=None, load_alternative_format=True): """ Takes a path for an entity and returns its model""" path = path.strip('/') os_path = self._get_os_path(path) ext = os.path.splitext(path)[1] # Not a notebook? if (not self.exists(path) or os.path.isdir(os_path) or (type != 'notebook' if type else ext not in self.all_nb_extensions())): return super(TextFileContentsManager, self).get(path, content, type, format) fmt = preferred_format(ext, self.preferred_jupytext_formats_read) if ext == '.ipynb': model = self._notebook_model(path, content=content) else: self.set_default_format_options(fmt, read=True) with mock.patch('nbformat.reads', _jupytext_reads(fmt)): model = self._notebook_model(path, content=content) if not load_alternative_format: return model if not content: # Modification time of a paired notebook, in this context - Jupyter is checking timestamp # before saving - is the most recent among all representations #118 if path not in self.paired_notebooks: return model fmt, formats = self.paired_notebooks.get(path) for alt_path, _ in paired_paths(path, fmt, formats): if alt_path != path and self.exists(alt_path): alt_model = self._notebook_model(alt_path, content=False) if alt_model['last_modified'] > model['last_modified']: model['last_modified'] = alt_model['last_modified'] return model # We will now read a second file if this is a paired notebooks. nbk = model['content'] jupytext_formats = nbk.metadata.get('jupytext', {}).get('formats') or self.default_formats(path) jupytext_formats = long_form_multiple_formats(jupytext_formats) # Compute paired notebooks from formats alt_paths = [(path, fmt)] if jupytext_formats: try: _, fmt = find_base_path_and_format(path, jupytext_formats) alt_paths = paired_paths(path, fmt, jupytext_formats) self.update_paired_notebooks(path, fmt, jupytext_formats) except InconsistentPath as err: self.log.info("Unable to read paired notebook: %s", str(err)) else: if path in self.paired_notebooks: fmt, formats = self.paired_notebooks.get(path) alt_paths = paired_paths(path, fmt, formats) if len(alt_paths) > 1 and ext == '.ipynb': # Apply default options (like saving and reloading would do) jupytext_metadata = model['content']['metadata'].get('jupytext', {}) self.set_default_format_options(jupytext_metadata, read=True) if jupytext_metadata: model['content']['metadata']['jupytext'] = jupytext_metadata org_model = model fmt_inputs = fmt path_inputs = path_outputs = path model_outputs = None # Source format is first non ipynb format found on disk if path.endswith('.ipynb'): for alt_path, alt_fmt in alt_paths: if not alt_path.endswith('.ipynb') and self.exists(alt_path): self.log.info(u'Reading SOURCE from {}'.format(alt_path)) path_inputs = alt_path fmt_inputs = alt_fmt model_outputs = model model = self.get(alt_path, content=content, type=type, format=format, load_alternative_format=False) break # Outputs taken from ipynb if in group, if file exists else: for alt_path, _ in alt_paths:
for files. On Windows a merely adapter to os.utime """ os.utime(filepath, (time.time(), mtime)) else: def lmtime(filepath, mtime): """Set mtime for files, while not de-referencing symlinks. To overcome absence of os.lutime Works only on linux and OSX ATM """ from .cmd import Runner # convert mtime to format touch understands [[CC]YY]MMDDhhmm[.SS] smtime = time.strftime("%Y%m%d%H%M.%S", time.localtime(mtime)) lgr.log(3, "Setting mtime for %s to %s == %s", filepath, mtime, smtime) Runner().run(['touch', '-h', '-t', '%s' % smtime, filepath]) rfilepath = realpath(filepath) if islink(filepath) and exists(rfilepath): # trust noone - adjust also of the target file # since it seemed like downloading under OSX (was it using curl?) # didn't bother with timestamps lgr.log(3, "File is a symlink to %s Setting mtime for it to %s", rfilepath, mtime) os.utime(rfilepath, (time.time(), mtime)) # doesn't work on OSX # Runner().run(['touch', '-h', '-d', '@%s' % mtime, filepath]) def assure_tuple_or_list(obj): """Given an object, wrap into a tuple if not list or tuple """ if isinstance(obj, (list, tuple)): return obj return (obj,) def assure_list(s, copy=False, iterate=True): """Given not a list, would place it into a list. If None - empty list is returned Parameters ---------- s: list or anything copy: bool, optional If list is passed, it would generate a shallow copy of the list iterate: bool, optional If it is not a list, but something iterable (but not a text_type) iterate over it. """ if isinstance(s, list): return s if not copy else s[:] elif isinstance(s, text_type): return [s] elif iterate and hasattr(s, '__iter__'): return list(s) elif s is None: return [] else: return [s] def assure_list_from_str(s, sep='\n'): """Given a multiline string convert it to a list of return None if empty Parameters ---------- s: str or list """ if not s: return None if isinstance(s, list): return s return s.split(sep) def assure_dict_from_str(s, **kwargs): """Given a multiline string with key=value items convert it to a dictionary Parameters ---------- s: str or dict Returns None if input s is empty """ if not s: return None if isinstance(s, dict): return s out = {} for value_str in assure_list_from_str(s, **kwargs): if '=' not in value_str: raise ValueError("{} is not in key=value format".format(repr(value_str))) k, v = value_str.split('=', 1) if k in out: err = "key {} was already defined in {}, but new value {} was provided".format(k, out, v) raise ValueError(err) out[k] = v return out def assure_unicode(s, encoding='utf-8'): """Convert/decode to unicode (PY2) or str (PY3) if of 'binary_type'""" return s.decode(encoding) if isinstance(s, binary_type) else s def assure_bool(s): """Convert value into boolean following convention for strings to recognize on,True,yes as True, off,False,no as False """ if isinstance(s, string_types): if s.isdigit(): return bool(int(s)) sl = s.lower() if sl in {'y', 'yes', 'true', 'on'}: return True elif sl in {'n', 'no', 'false', 'off'}: return False else: raise ValueError("Do not know how to treat %r as a boolean" % s) return bool(s) def unique(seq, key=None): """Given a sequence return a list only with unique elements while maintaining order This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.com/a/480227/1265472 for more information. Enhancement -- added ability to compare for uniqueness using a key function Parameters ---------- seq: Sequence to analyze key: callable, optional Function to call on each element so we could decide not on a full element, but on its member etc """ seen = set() seen_add = seen.add if not key: return [x for x in seq if not (x in seen or seen_add(x))] else: # OPT: could be optimized, since key is called twice, but for our cases # should be just as fine return [x for x in seq if not (key(x) in seen or seen_add(key(x)))] # # Generators helpers # def saved_generator(gen): """Given a generator returns two generators, where 2nd one just replays So the first one would be going through the generated items and 2nd one would be yielding saved items """ saved = [] def gen1(): for x in gen: # iterating over original generator saved.append(x) yield x def gen2(): for x in saved: # yielding saved entries yield x return gen1(), gen2() # # Decorators # def better_wraps(to_be_wrapped): """Decorator to replace `functools.wraps` This is based on `wrapt` instead of `functools` and in opposition to `wraps` preserves the correct signature of the decorated function. It is written with the intention to replace the use of `wraps` without any need to rewrite the actual decorators. """ @wrapt.decorator(adapter=to_be_wrapped) def intermediator(to_be_wrapper, instance, args, kwargs): return to_be_wrapper(*args, **kwargs) return intermediator # Borrowed from pandas # Copyright: 2011-2014, Lambda Foundry, Inc. and PyData Development Team # License: BSD-3 def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, `*args`, `**kwargs`)""" @better_wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and isinstance(args[0], collections.Callable) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # TODO: just provide decorators for tempfile.mk* functions. This is ugly! def get_tempfile_kwargs(tkwargs=None, prefix="", wrapped=None): """Updates kwargs to be passed to tempfile. calls depending on env vars """ if tkwargs is None: tkwargs_ = {} else: # operate on a copy of tkwargs to avoid any side-effects tkwargs_ = tkwargs.copy() # TODO: don't remember why I had this one originally # if len(targs)<2 and \ if 'prefix' not in tkwargs_: tkwargs_['prefix'] = '_'.join( ['datalad_temp'] + ([prefix] if prefix else []) + ([''] if (on_windows or not wrapped) else [wrapped.__name__])) directory = os.environ.get('DATALAD_TESTS_TEMP_DIR') if directory and 'dir' not in tkwargs_: tkwargs_['dir'] = directory return tkwargs_ @optional_args def line_profile(func): """Q&D helper to line profile the function and spit out stats """ import line_profiler prof = line_profiler.LineProfiler() @wraps(func) def newfunc(*args, **kwargs): try: pfunc = prof(func) return pfunc(*args, **kwargs) finally: prof.print_stats() return newfunc # # Context Managers # @contextmanager def nothing_cm(): """Just a dummy cm to programmically switch context managers""" yield @contextmanager def swallow_outputs(): """Context manager to help consuming both stdout and stderr, and print() stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno. print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mocking it later had no effect. Overriding print function had desired effect """ class StringIOAdapter(object): """Little adapter to help getting out/err values """ def __init__(self): kw = get_tempfile_kwargs({}, prefix="outputs") self._out = open(tempfile.mktemp(**kw), 'w') self._err = open(tempfile.mktemp(**kw), 'w') def _read(self, h): with open(h.name) as f: return f.read() @property def out(self): self._out.flush() return self._read(self._out) @property def err(self): self._err.flush() return self._read(self._err) @property def handles(self): return self._out, self._err def cleanup(self): self._out.close() self._err.close() out_name = self._out.name err_name = self._err.name del self._out del self._err gc.collect() rmtemp(out_name) rmtemp(err_name) def fake_print(*args, **kwargs): sep = kwargs.pop('sep', ' ') end = kwargs.pop('end', '\n') file = kwargs.pop('file', sys.stdout) if file in (oldout, olderr, sys.stdout, sys.stderr): # we mock sys.stdout.write(sep.join(args) + end) else: # must be some other file one -- leave it alone oldprint(*args, sep=sep, end=end, file=file) from .ui import ui # preserve -- they could have been mocked already oldprint = getattr(__builtin__, 'print') oldout, olderr = sys.stdout, sys.stderr olduiout = ui.out adapter = StringIOAdapter() try: sys.stdout, sys.stderr = adapter.handles ui.out = adapter.handles[0] setattr(__builtin__, 'print', fake_print) yield adapter finally: sys.stdout, sys.stderr, ui.out = oldout, olderr, olduiout setattr(__builtin__, 'print', oldprint) adapter.cleanup() @contextmanager def swallow_logs(new_level=None, file_=None, name='datalad'): """Context manager to consume all logs. """ lgr = logging.getLogger(name) # Keep old settings old_level = lgr.level old_handlers = lgr.handlers # Let's log everything into a string # TODO: generalize with the one for swallow_outputs class StringIOAdapter(object): """Little adapter to help getting out values And to stay consistent with how swallow_outputs behaves """ def __init__(self): if file_ is None: kw = get_tempfile_kwargs({}, prefix="logs") out_file = tempfile.mktemp(**kw) else: out_file = file_ # PY3 requires clearly one or another. race condition possible self._out = open(out_file, 'a') self._final_out = None def _read(self, h): with open(h.name)
] optimizer_cls = AdamW optimizer_kwargs = { "betas": (args.adam_beta1, args.adam_beta2), "eps": args.adam_epsilon, } optimizer_kwargs["lr"] = args.learning_rate return optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) def convert_example_to_features(example, tokenizer, max_seq_length, doc_stride, max_query_length): Feature = collections.namedtuple( "Feature", [ "unique_id", "tokens", "example_index", "token_to_orig_map", "token_is_max_context", ], ) extra = [] unique_id = 0 query_tokens = tokenizer.tokenize(example["question"])[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example["context"]): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 _DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context( doc_spans, doc_span_index, split_token_index ) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) feature = Feature( unique_id=unique_id, tokens=tokens, example_index=0, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, ) extra.append(feature) unique_id += 1 # extra is used as additional data but sparseml doesn't support it return ( torch.from_numpy(np.array([np.array(input_ids, dtype=np.int64)])), torch.from_numpy(np.array([np.array(input_mask, dtype=np.int64)])), torch.from_numpy(np.array([np.array(segment_ids, dtype=np.int64)])), ) def _check_is_max_context(doc_spans, cur_span_index, position): best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def drop_layers(model, layers_to_keep): layer_drop_matching = { 1:[0], 3:[0,5,11], 6:[0,2,4,6,8,11], 9:[0,2,3,4,5,7,8,9,11], 12:[0,1,2,3,4,5,6,7,8,9,10,11], } encoder_layers = model.bert.encoder.layer # change based on model name assert layers_to_keep <= len(encoder_layers) assert layers_to_keep in layer_drop_matching.keys() trimmed_encoder_layers = nn.ModuleList() for i in layer_drop_matching[layers_to_keep]: trimmed_encoder_layers.append(encoder_layers[i]) trimmed_model = copy.deepcopy(model) trimmed_model.bert.encoder.layer = trimmed_encoder_layers return trimmed_model #################################################################################### # End SparseML Integration #################################################################################### def main(): ### Dataset processing classes in main due to hugging face custom dataset map def prepare_train_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not ( offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char ): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while ( token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char ): token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Post-processing: def post_processing_function(examples, features, predictions): predictions = postprocess_qa_predictions( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, null_score_diff_threshold=data_args.null_score_diff_threshold, output_dir=training_args.output_dir, is_world_process_zero=trainer.is_world_process_zero(), ) if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [ {"id": k, "prediction_text": v} for k, v in predictions.items() ] references = [ {"id": ex["id"], "answers": ex[answer_column_name]} for ex in datasets["validation"] ] return EvalPrediction(predictions=formatted_predictions, label_ids=references) # Validation preprocessing def prepare_validation_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples transformers.utils.logging.set_verbosity_info() parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", ) logger.setLevel( logging.INFO if is_main_process(training_args.local_rank) else logging.WARN ) logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) set_seed(training_args.seed) if data_args.dataset_name is not None: datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, field="data") config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, ) model = AutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) if data_args.layers_to_keep > 0: logger.info("Keeping %s model layers", data_args.layers_to_keep)
= None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' preset_values = None ''' ''' def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetHairDynamics(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_defines = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' preset_values = None ''' ''' def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetInterfaceTheme(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetKeyconfig(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' def add(self, _context, filepath): ''' ''' pass def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def post_cb(self, context): ''' ''' pass def pre_cb(self, context): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetNodeColor(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_defines = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' preset_values = None ''' ''' def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetOperator(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_defines = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' preset_values = None ''' ''' def as_filename(self, name): ''' ''' pass def as_keywords(self, ignore): ''' ''' pass def as_pointer(self): ''' ''' pass def bl_rna_get_subclass(self): ''' ''' pass def bl_rna_get_subclass_py(self): ''' ''' pass def check(self, _context): ''' ''' pass def driver_add(self): ''' ''' pass def driver_remove(self): ''' ''' pass def execute(self, context): ''' ''' pass def get(self): ''' ''' pass def invoke(self, context, _event): ''' ''' pass def is_property_hidden(self): ''' ''' pass def is_property_overridable_library(self): ''' ''' pass def is_property_readonly(self): ''' ''' pass def is_property_set(self): ''' ''' pass def items(self): ''' ''' pass def keyframe_delete(self): ''' ''' pass def keyframe_insert(self): ''' ''' pass def keys(self): ''' ''' pass def operator_path(self, operator): ''' ''' pass def path_from_id(self): ''' ''' pass def path_resolve(self): ''' ''' pass def pop(self): ''' ''' pass def property_overridable_library_set(self): ''' ''' pass def property_unset(self): ''' ''' pass def type_recast(self): ''' ''' pass def values(self): ''' ''' pass class AddPresetRender(AddPresetBase, bpy_types.Operator): bl_idname = None ''' ''' bl_label = None ''' ''' bl_options = None ''' ''' bl_rna = None ''' ''' id_data = None ''' ''' preset_defines = None ''' ''' preset_menu = None ''' ''' preset_subdir = None ''' ''' preset_values = None
arg_default # If a relative path has been provided either in the environmental # var or as the default that path needs to be appended to the # module path. Since all full paths begin with a path delimiter # this is a valid test if my_tmp[0] != "/": my_tmp = ( PathUtils.include_trailing_path_delimiter(self.module_dir) + my_tmp ) # OK here is where it gets a bit tricky, when passed on the command # line the path is calculated from the current directory, in all other # cases from the module path. Since the app should be in the initial # directory calculating the real path should resolve to a fully # qualified path. To remove all indirection use real path my_tmp = PathUtils.real_path(my_tmp) # At this point the path should be a fully qualified path # Msg.user( "Result Path: %s" % ( str( my_tmp ))) # Msg.user("Result Path: %s" % (str(my_tmp))) if not PathUtils.valid_path(my_tmp): raise FileNotFoundError( "Initial Directory for %s Resolution Failed[%s] could not be" "located" % (arg_cmd_switch, my_tmp) ) if not PathUtils.check_exe(my_tmp): my_tmp = PathUtils.include_trailing_path_delimiter(my_tmp) return my_tmp # set up director and archive new directories def initialize_output(self): self.mode = self.option_def(CmdLine.Switches[CmdLine.mode], None) self.output_root = PathUtils.exclude_trailing_path_delimiter( self.option_def( CmdLine.Switches[CmdLine.target_dir], PathUtils.current_dir() ) ) Msg.user("Output Root: %s" % (str(self.output_root))) # check launcher type here since we need to know if we are running # with LSF Msg.user("Before Launcher Type", "MASTERRUN") self.launcher_type = self.option_def( CmdLine.Switches[CmdLine.run_launcher], Defaults.run_launcher ) Msg.user("Launcher Type: %s" % (str(self.launcher_type)), "MASTERRUN") # ok the root output directory has been established. # next check to see if there is an expiration if there is handle that # and exit the session my_expire = self.option_def(CmdLine.Switches[CmdLine.expire], None) my_session_type = ( Formats.perf_output_dir if SysUtils.found(self.mode.find(Modes.perf)) else Formats.regress_output_dir ) if my_expire is not None: self.handle_expire(my_expire, my_session_type) raise Exception( "Problem with handle_expire, should have terminated ....." ) # Continuing create the full output directory which if exists should # be archived or removed my_output_base = Formats.main_output_dir % self.output_root self.output_dir = "%s/%s/" % ( PathUtils.exclude_trailing_path_delimiter(my_output_base), PathUtils.exclude_trailing_path_delimiter(my_session_type), ) Msg.user("Target Output Dir: %s" % (str(self.output_dir))) mod_time = None # if there is no expire setting then if PathUtils.check_dir(self.output_dir): # check modification time of the directory, if it is created very # recently, delay a bit when running on LSF. # since client machines might hold a stale directory handler still. mod_time = PathUtils.time_modified(self.output_dir) if self.option_def( CmdLine.Switches[CmdLine.no_archive], Defaults.no_archive ): PathUtils.rmdir( self.output_dir, True ) # remove output directory tree else: PathUtils.archive_dir(self.output_dir) PathUtils.mkdir(self.output_dir) if mod_time is not None: self.waitForLfs(mod_time) return True # Wait a bit for LSF to expire stale file handle for regression directory # if running with LSF def waitForLfs(self, aModTime): if self.launcher_type == LauncherType.Lsf: time_diff = int(DateTime.Time() - aModTime) if time_diff < MasterRun.cLsfWaitTime: sec_delay = MasterRun.cLsfWaitTime - time_diff Msg.info( "Using LSF, delaying %d seconds so that stale " "output/regression file handle will expire..." % sec_delay ) SysUtils.sleep_seconds_with_progress(sec_delay) Msg.info("Waiting done, resumed master run") def writeVersionInfo(self): out_line_fmt = ( "{}, scm_system: {}, revision number: {}, location: {}, url: {}\n" ) version_info = "" for app_tag, app_config in self.m_app_info.mTagToApp.items(): Msg.user("app_tag: %s, app_config: %s" % (app_tag, app_config)) version_data = app_config.parameter("version") for item in version_data: if item["status"]: version_info += out_line_fmt.format( app_config.name(), item["scm_type"], str(item["version"]), item["folder"], item["url"], ) with open(self.output_dir + "version_info.txt", "w+") as outfile: if version_info: outfile.write(version_info) else: outfile.write("No version information found") # Call the report methods from each of the sequence apps. Some apps # report, others pass through def modulesReport(self): for app_cfg in self.m_app_info.mSequenceApps: reporter = app_cfg.createReporter() reporter.report(self.m_app_info, app_cfg.tag()) @staticmethod def to_int(a_value): return int(a_value) @staticmethod def to_hex(a_value): return hex(int(a_value, 0)) # populate the general options def populate_options(self): self.options[CtrlItmKeys.fdir] = self.fctrl_dir self.options[CtrlItmKeys.no_sim] = self.option_def( CmdLine.Switches[CmdLine.no_sim], CtrlItmDefs.no_sim ) self.options[CtrlItmKeys.num_chips] = self.option_def( CmdLine.Switches[CmdLine.num_chips], CtrlItmDefs.num_chips, self.to_int, ) self.options[CtrlItmKeys.num_cores] = self.option_def( CmdLine.Switches[CmdLine.num_cores], CtrlItmDefs.num_cores, self.to_int, ) self.options[CtrlItmKeys.num_threads] = self.option_def( CmdLine.Switches[CmdLine.num_threads], CtrlItmDefs.num_threads, self.to_int, ) self.options[CtrlItmKeys.min_instr] = self.option_def( CmdLine.Switches[CmdLine.min_instr], CtrlItmDefs.min_instr, self.to_int, ) self.options[CtrlItmKeys.max_instr] = self.option_def( CmdLine.Switches[CmdLine.max_instr], CtrlItmDefs.max_instr, self.to_int, ) self.options[CtrlItmKeys.timeout] = self.option_def( CmdLine.Switches[CmdLine.timeout], CtrlItmDefs.timeout, self.to_int ) self.options[CtrlItmKeys.seed] = self.option_def( CmdLine.Switches[CmdLine.seed], CtrlItmDefs.seed, self.to_hex ) self.options[CtrlItmKeys.suffix] = Defaults.suffix self.max_fails = self.option_def( CmdLine.Switches[CmdLine.max_fails], Defaults.max_fails, self.to_int, ) if self.max_fails > 0: self.is_term_proc = self.query_terminated self.on_fail_proc = self.handle_on_fail def process_general_options(self): # run options self.num_runs = self.option_def( CmdLine.Switches[CmdLine.num_runs], Defaults.num_runs, self.to_int ) self.sum_level = self.option_def( CmdLine.Switches[CmdLine.sum_level], SummaryLevel.Fail, self.to_int ) Msg.user("process-max: %d" % (self.m_app_info.mProcessMax), "MASTER") # create the proper summary def initialize_summary(self): my_keep = self.option_def( CmdLine.Switches[CmdLine.keep], Defaults.keep ) clean_up_rules = CleanUpRules(my_keep) if SysUtils.found(self.mode.find(Modes.perf)): self.mode = Modes.perf self.options[CtrlItmKeys.no_sim] = True self.summary = PerformanceSummary(self.output_dir, clean_up_rules) elif SysUtils.found(self.mode.find(Modes.regress)): self.mode = Modes.regress self.summary = RegressionSummary(self.output_dir, clean_up_rules) else: self.mode = Modes.count self.m_app_info.mMode = "count" self.summary = RegressionSummary(self.output_dir, clean_up_rules) if self.summary is not None: self.summary.set_on_fail_proc(self.on_fail_proc) self.summary.set_is_term_proc(self.is_term_proc) def initialize_process_queue(self): global workers_done_event self.process_queue = ProcessQueue() self.process_queue.process_cmd = self.process_cmd self.process_queue.processor_name = self.processor_name self.process_queue.summary = self.summary self.process_queue.process_max = self.m_app_info.mProcessMax self.process_queue.launcher_type = self.launcher_type Msg.user("Done Event: %s" % (str(workers_done_event)), "MAIN") self.process_queue.done_event = workers_done_event # Msg.user( "Done Event: %s" % (str( workers_done_event)), "MAIN") self.process_queue.open_queue() # self.process_queue.open_queue(self.process_cmd, self.summary, # self.process_max, workers_done_event, # self.process_launcher ) def initialize_processor_cmd(self): # the default task processor is "forrest_run.py" # the default directory is the same directory as the master_run # the processor can be replaced with a command line argument which may # or may not contain a path # if it does not contain a path then the default path will be used # if a directory is passed on the command line in all cases that will # be the location of the processor my_run_dir = None my_run_name = None my_tmp_name = None my_tmp_path = None my_run_path = self.option_def(CmdLine.Switches[CmdLine.run_name], None) if my_run_path is not None: my_run_dir, my_run_name = PathUtils.split_path(my_run_path) Msg.user( "Client Dir: %s, Client Name: %s (1)" % (str(my_run_dir), str(my_run_name)), "PROCESS_CMD", ) if my_run_dir is None: my_tmp_path = self.locate_directory( CmdLine.Switches[CmdLine.run_dir], EnVars.run_path, self.module_dir, ) if PathUtils.check_exe(my_tmp_path): my_run_dir, my_tmp_name = PathUtils.split_path(my_tmp_path) else: my_run_dir = my_tmp_path if my_run_name is None: my_run_name = ( my_tmp_name if my_tmp_name is not None else Defaults.run_name ) my_process_cmd = PathUtils.real_path( PathUtils.append_path( PathUtils.include_trailing_path_delimiter(my_run_dir), my_run_name, ) ) Msg.user("Process Cmd: %s (1)" % (str(my_process_cmd)), "PROCESS_CMD") my_msg_lev = self.option_def( CmdLine.Switches[CmdLine.client_lev], None ) if my_msg_lev is not None: if my_msg_lev: my_process_cmd += Msg.get_level_as_str() else: my_process_cmd += " -l " + my_msg_lev Msg.user( "Process Cmd: %s" % (str(my_process_cmd)), "PROCESS_CMD" ) if self.m_app_info.mConfigPath is not None: my_process_cmd += " -w %s" % self.m_app_info.mConfigPath my_process_cmd += " -f %s" self.processor_name = my_run_name.replace(".py", "").replace( "_run", "" ) self.process_cmd = my_process_cmd Msg.dbg("Process Cmd: %s" % (str(self.process_cmd))) # Msg.dbg( "Process Cmd: %s" % (self.process_cmd)) # An expire value has been found # There are several possibilities # 1. "clean" was pass on the command line, in this case remove the output # directory which should the last directory that received output for # that mode # 2. "purge" was passed on the command line, in this case purge all # output directories for that mode # 3. a zero (0) was passed on the command line # 4. a none zero integer was passed on the command line, purge all # directories related to the mode # if none of these are found and exception is raised in all cases # master_run terminates immediately def handle_expire(self, arg_expire, arg_mask): try: Msg.user( "Expire: %s, Mask: %s" % (str(arg_expire), str(arg_mask)), "EXPIRE", ) my_output_base = Formats.main_output_dir % self.output_root Msg.user( "Expire [1], Output Base: %s" % (str(my_output_base)), "EXPIRE" ) Msg.info("Output Directories Cleanup, Please wait ...") if int(arg_expire) == Expire.all: Msg.info("Building Directory List, [%s]" % (my_output_base)) my_dirs = PathUtils.list_dirs(my_output_base) Msg.dbg("All Dirs: %s" % (str(my_dirs)), "EXPIRE") for my_dir in my_dirs: if my_dir.startswith(arg_mask): my_full_dir = "%s%s" % ( PathUtils.include_trailing_path_delimiter( my_output_base ), my_dir, ) Msg.info("Removing: %s" % (my_full_dir)) PathUtils.rmdir(my_full_dir, True) else: Msg.info( "Checking for Expired Directories: %s" % (my_full_dir) ) my_expiredate = DateTime.DateDelta(int(my_expire)) PathUtils.expire(my_full_dir, my_expiredate) except Exception as ex: Msg.error_trace() Msg.err(str(ex)) finally: Msg.info("Operation Complete, Restart Master Run to continue ...") sys.exit(1) def run_mode(self): return self.mode def sig_interrupt_handler(a_signal, frame): # Allows us to catch SIGINTs and inform child threads to quit at next # chance. Since the child threads are daemons, this should not be needed, # but we can remove
as shaded regions. Parameters ---------- data : dict The Python data dictionary generated from running main.py type_ : str Which type of data to plot, one of "eval" or "train" ind : iter of int The list of hyperparameter settings indices to plot smooth_over : int The number of previous data points to smooth over. Note that this is *not* the number of timesteps to smooth over, but rather the number of data points to smooth over. For example, if you save the return every 1,000 timesteps, then setting this value to 15 will smooth over the last 15 readings, or 15,000 timesteps. fig : plt.figure The figure to plot on, by default None. If None, creates a new figure ax : plt.Axes The axis to plot on, by default None, If None, creates a new axis figsize : tuple(int, int) The size of the figure to plot name : str, optional The name of the agent, used for the legend last_ind : int, optional The index of the last element to plot in the returns list, by default -1. This is useful if you want to plot many things on the same axis, but all of which have a different number of elements. This way, we can plot the first last_ind elements of each returns for each agent. xlim : float, optional The x limit for the plot, by default None ylim : float, optional The y limit for the plot, by default None alpha : float, optional The alpha channel for the plot, by default 0.1 colours : list of str The colours to use for each plot of each hyperparameter setting env_type : str, optional The type of environment, one of 'continuing', 'episodic'. By default 'continuing' significance : float, optional The significance level for the confidence interval, by default 0.01 Returns ------- plt.figure, plt.Axes The figure and axes of the plot Raises ------ ValueError When an axis is passed but no figure is passed When an appropriate number of colours is not specified to cover all hyperparameter settings """ if colours is not None and len(colours) != len(ind): raise ValueError("must have one colour for each hyperparameter " + "setting") if colours is None: colours = _get_default_colours(ind) # Set up figure # if ax is None and fig is None: # fig = plt.figure(figsize=figsize) # ax = fig.add_subplot() # if xlim is not None: # ax.set_xlim(xlim) # if ylim is not None: # ax.set_ylim(ylim) conf_level = "{:.2f}".format(1-significance) title = f"""Average {type_.title()} Return per Run with {conf_level} Confidence Intervals""" fig, ax = _setup_fig(fig, ax, figsize, title, xlim, ylim, xlabel, ylabel) # Plot with bootstrap confidence interval for i in range(len(ind)): data = exp.reduce_episodes(data, ind[i], type_=type_) _, mean, conf = exp.get_mean_err(data, type_, ind[i], smooth_over, exp.bootstrap_conf, err_args={ "significance": significance, }, keep_shape=keep_shape) mean = mean[:last_ind] conf = conf[:, :last_ind] episodes = np.arange(mean.shape[0]) # Plot based on colours label = name print(mean.shape, conf.shape, episodes.shape) _plot_shaded(ax, episodes, mean, conf, colours[i], label, alpha) ax.legend() conf_level = "{:.2f}".format(1-significance) ax.set_title(f"""Average {type_.title()} Return per Run with {conf_level} Confidence Intervals""") # ax.set_ylabel(ylabel) # ax.set_xlabel(xlabel) fig.show() return fig, ax @deprecated(reason="""Use exp.get_mean_err with exp.bootstrap_conf""") def get_mean_bootstrap_conf(data, type_, ind, smooth_over, env_type="continuing", significance=0.01, keep_shape=False): """ Gets the mean return per episode along with the bootstrap confidence interval on an episode-by-episode basis over all runs. Parameters ---------- data : dict The Python data dictionary generated from running main.py type_ : str Which type of data to plot, one of "eval" or "train" ind : int The hyperparameter setting to plot smooth_over : int The number of previous returns to smooth over. If less than 2, then no smoothing is performed env_type : str, optional The type of environment, one of 'continuing', 'episodic'. By default 'continuing' significance : float, optional The significance level for the confidence interval, by default 0.01 Returns ------- 3-tuple of array_like The timesteps at each return to plot, the mean return to plot, and the confidence interval for each episode to plot as a shaded region """ timesteps = None # So the linter doesn't have a temper tantrum # Determine the timesteps to plot at if type_ == "eval": timesteps = \ data["experiment_data"][ind]["runs"][0]["timesteps_at_eval"] elif type_ == "train": timesteps_per_ep = \ data["experiment_data"][ind]["runs"][0]["train_episode_steps"] timesteps = exp.get_cumulative_timesteps(timesteps_per_ep) # Get the mean over all episodes per evaluation step (for online # returns, this axis will have length 1 so we squeeze it) returns = exp.get_returns(data, type_, ind, env_type=env_type) returns = returns.mean(axis=-1) # Smooth over returns returns = exp.smooth(returns, smooth_over, keep_shape=keep_shape) # Get the standard deviation of mean episodes per evaluation # step over all runs conf = exp.bootstrap_conf(returns, significance) # Get the mean over all runs mean = returns.mean(axis=0) # If we do not keep the shape, then due to smoothing we lose some # episodes if not keep_shape: end = len(timesteps) - smooth_over + 1 timesteps = timesteps[:end] return timesteps, mean, conf def plot_mean_with_runs(data, type_, ind, smooth_over, names, colours=None, figsize=(12, 6), xlim=None, ylim=None, alpha=0.2, plot_avg=True, env_type="continuing", keep_shape=False, fig=None, ax=None, detrend=None): """ Plots the mean return over all runs and the return for each run for a list of data dictionaries and hyperparameter indices Plots both the mean return per episode (over runs) as well as the return for each individual run (including "mini-runs", if a set of concurrent episodes were run for all runs, e.g. multiple evaluation episodes per run at set intervals) Note that this function takes in a list of data dictionaries and will plot the runs for each ind (which is a list of lists, where each super-list refers to a data dictionary and each sub-list refers to the indices for that data dictionary to plot). Example ------- plot_mean_with_runs([sac_data, linear_data], "train", [[3439], [38, 3]], smooth_over=[5, 2], names=["SAC", "LAC"], figsize=(12, 6), alpha=0.2, plot_avg=True, env_type="episodic") will plot hyperparameter index 3439 for the sac_data, smoothing over the last 5 episodes, and the label will have the term "SAC" in it; also plots the mean and each individual run on the linear_data for hyperparameter settings 38 and 3, smoothing over the last 2 episodes for each and with the term "LAC" in the labels. Parameters ---------- data : list of dict The Python data dictionaries generated from running main.py for the agents type_ : str Which type of data to plot, one of "eval" or "train" ind : iter of iter of int The list of lists of hyperparameter settings indices to plot for each agent. For example [[1, 2], [3, 4]] means that the first agent plots will use hyperparameter settings indices 1 and 2, while the second will use 3 and 4. smooth_over : list of int The number of previous data points to smooth over for the agent's plot for each data dictionary. Note that this is *not* the number of timesteps to smooth over, but rather the number of data points to smooth over. For example, if you save the return every 1,000 timesteps, then setting this value to 15 will smooth over the last 15 readings, or 15,000 timesteps. For example, [1, 2] will mean that the plots using the first data dictionary will smooth over the past 1 data points, while the second will smooth over the passed 2 data points for each hyperparameter setting. figsize : tuple(int, int) The size of the figure to plot names : list of str The name of the agents, used for the legend colours : list of list of str, optional The colours to use for each hyperparameter settings plot for each data dictionary, by default None xlim : float, optional The x limit for the plot, by default None ylim : float, optional The y limit for the plot, by default None alpha : float, optional The alpha to use for plots of the runs, by default 0.1 plot_avg : bool, optional If
"""Test suite for faceted module""" from collections import OrderedDict from itertools import product import matplotlib.axes import matplotlib.figure import matplotlib.pyplot as plt import numpy as np import pytest from ..faceted import ( _DEFAULT_ASPECT, _DEFAULT_WIDTH, faceted, faceted_ax, _infer_constraints, _infer_grid_class, HeightConstrainedAxesGrid, HeightAndWidthConstrainedAxesGrid, WidthConstrainedAxesGrid, ) plt.switch_backend("agg") _TOP_PAD = _BOTTOM_PAD = _LEFT_PAD = _RIGHT_PAD = 0.25 _HORIZONTAL_INTERNAL_PAD = 0.25 _VERTICAL_INTERNAL_PAD = 0.5 _INTERNAL_PAD = (_HORIZONTAL_INTERNAL_PAD, _VERTICAL_INTERNAL_PAD) _ASPECT_CONSTRAINT = 0.5 _HEIGHT_CONSTRAINT = 7.0 _WIDTH_CONSTRAINT = 8.0 _SHORT_SIDE_PAD = 0.25 _LONG_SIDE_PAD = 0.25 _CBAR_THICKNESS = 0.125 def get_bounds(fig, ax): return ax.bbox.transformed(fig.transFigure.inverted()).bounds def test_faceted_cbar_mode_none(): fig, axes = faceted(1, 2, width=_WIDTH_CONSTRAINT, aspect=_ASPECT_CONSTRAINT) assert len(axes) == 2 plt.close(fig) def test_faceted_cbar_mode_single(): fig, axes, cax = faceted( 1, 2, width=_WIDTH_CONSTRAINT, aspect=_ASPECT_CONSTRAINT, cbar_mode="single" ) assert len(axes) == 2 plt.close(fig) def test_faceted_cbar_mode_each(): fig, axes, caxes = faceted( 1, 2, width=_WIDTH_CONSTRAINT, aspect=_ASPECT_CONSTRAINT, cbar_mode="each" ) assert len(axes) == 2 assert len(axes) == len(caxes) plt.close(fig) @pytest.mark.parametrize( ("width", "height", "aspect"), [(1, 1, None), (1, None, 1), (None, 1, 1)] ) def test_faceted_cbar_mode_invalid(width, height, aspect): with pytest.raises(ValueError): faceted(1, 2, width=width, height=height, aspect=aspect, cbar_mode="invalid") def test_faceted_invalid_internal_pad(): with pytest.raises(ValueError): faceted( 1, 2, width=_WIDTH_CONSTRAINT, aspect=_ASPECT_CONSTRAINT, internal_pad=(1, 2, 3), ) @pytest.mark.parametrize( ("inputs", "expected"), [ ((None, None, None), (_DEFAULT_WIDTH, None, _DEFAULT_ASPECT)), ((3.0, None, None), (3.0, None, _DEFAULT_ASPECT)), ((None, 3.0, None), (None, 3.0, _DEFAULT_ASPECT)), ((None, None, 3.0), (_DEFAULT_WIDTH, None, 3.0)), ((3.0, 3.0, None), (3.0, 3.0, None)), ((None, 3.0, 3.0), (None, 3.0, 3.0)), ((3.0, None, 3.0), (3.0, None, 3.0)), ((3.0, 3.0, 3.0), ValueError), ], ids=lambda x: str(x), ) def test__infer_constraints(inputs, expected): if not isinstance(expected, tuple) and issubclass(expected, Exception): with pytest.raises(expected): _infer_constraints(*inputs) else: result = _infer_constraints(*inputs) assert result == expected @pytest.mark.parametrize( ("width", "height", "aspect", "expected"), [ (5.0, 5.0, None, HeightAndWidthConstrainedAxesGrid), (5.0, None, 5.0, WidthConstrainedAxesGrid), (None, 5.0, 5.0, HeightConstrainedAxesGrid), ], ) def test__infer_grid_class(width, height, aspect, expected): result = _infer_grid_class(width, height, aspect) assert result == expected _LAYOUTS = [(1, 1), (1, 2), (2, 1), (2, 2), (5, 3)] _CBAR_MODES = [None, "single", "each", "edge"] _CBAR_LOCATIONS = ["bottom", "right", "top", "left"] _CONSTRAINTS = ["height-and-aspect", "width-and-aspect", "height-and-width"] _CG_LAYOUTS = product(_CBAR_MODES, _CBAR_LOCATIONS, _LAYOUTS, _CONSTRAINTS) def format_layout(layout): cbar_mode, cbar_loc, (rows, cols), constraint = layout return "cbar_mode={!r}, cbar_location={!r}, rows={}, cols={}, constraint={}".format( cbar_mode, cbar_loc, rows, cols, constraint ) _CG_IDS = OrderedDict([(layout, format_layout(layout)) for layout in _CG_LAYOUTS]) @pytest.fixture(params=_CG_IDS.keys(), ids=_CG_IDS.values()) def grid(request): mode, location, (rows, cols), constraint = request.param if constraint == "width-and-aspect": obj = WidthConstrainedAxesGrid( rows, cols, width=_WIDTH_CONSTRAINT, aspect=_ASPECT_CONSTRAINT, top_pad=_TOP_PAD, bottom_pad=_BOTTOM_PAD, left_pad=_LEFT_PAD, right_pad=_RIGHT_PAD, cbar_mode=mode, cbar_pad=_LONG_SIDE_PAD, axes_pad=_INTERNAL_PAD, cbar_location=location, cbar_size=_CBAR_THICKNESS, cbar_short_side_pad=_SHORT_SIDE_PAD, ) elif constraint == "height-and-aspect": obj = HeightConstrainedAxesGrid( rows, cols, height=_HEIGHT_CONSTRAINT, aspect=_ASPECT_CONSTRAINT, top_pad=_TOP_PAD, bottom_pad=_BOTTOM_PAD, left_pad=_LEFT_PAD, right_pad=_RIGHT_PAD, cbar_mode=mode, cbar_pad=_LONG_SIDE_PAD, axes_pad=_INTERNAL_PAD, cbar_location=location, cbar_size=_CBAR_THICKNESS, cbar_short_side_pad=_SHORT_SIDE_PAD, ) elif constraint == "height-and-width": obj = HeightAndWidthConstrainedAxesGrid( rows, cols, height=_HEIGHT_CONSTRAINT, width=_WIDTH_CONSTRAINT, top_pad=_TOP_PAD, bottom_pad=_BOTTOM_PAD, left_pad=_LEFT_PAD, right_pad=_RIGHT_PAD, cbar_mode=mode, cbar_pad=_LONG_SIDE_PAD, axes_pad=_INTERNAL_PAD, cbar_location=location, cbar_size=_CBAR_THICKNESS, cbar_short_side_pad=_SHORT_SIDE_PAD, ) else: raise NotImplementedError() yield obj plt.close(obj.fig) def get_tile_width(grid, left_pad=_LEFT_PAD, right_pad=_RIGHT_PAD): return ( grid.width - left_pad - right_pad - (grid.cols - 1) * _HORIZONTAL_INTERNAL_PAD ) / grid.cols def get_tile_height(grid, bottom_pad=_BOTTOM_PAD, top_pad=_TOP_PAD): return ( grid.height - bottom_pad - top_pad - (grid.rows - 1) * _VERTICAL_INTERNAL_PAD ) / grid.rows def test_constrained_axes_positions(grid): if grid.cbar_mode == "each": check_constrained_axes_positions_each(grid) elif grid.cbar_mode == "single": check_constrained_axes_positions_single(grid) elif grid.cbar_mode == "edge": check_constrained_axes_positions_edge(grid) elif grid.cbar_mode is None: check_constrained_axes_positions_none(grid) def test_constrained_caxes_positions(grid): if grid.cbar_mode == "each": check_constrained_caxes_positions_each(grid) elif grid.cbar_mode == "single": check_constrained_caxes_positions_single(grid) elif grid.cbar_mode == "edge": check_constrained_caxes_positions_edge(grid) elif grid.cbar_mode is None: pytest.skip("Skipping colorbar positions test, because cbar_mode=None") def test_plot_aspect(grid): fig = grid.fig width, height = fig.get_size_inches() for ax in grid.axes: ax_bounds = get_bounds(fig, ax) _, _, _plot_width, _plot_height = ax_bounds plot_width = _plot_width * width plot_height = _plot_height * height expected = grid.aspect result = plot_height / plot_width np.testing.assert_allclose(result, expected) def check_constrained_axes_positions_none(grid): rows, cols = grid.rows, grid.cols width, height = grid.width, grid.height tile_width, tile_height = get_tile_width(grid), get_tile_height(grid) fig = grid.fig indexes = list(product(range(rows - 1, -1, -1), range(cols))) for ax, (row, col) in zip(grid.axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = (_LEFT_PAD + col * (_HORIZONTAL_INTERNAL_PAD + tile_width)) / width y0 = (_BOTTOM_PAD + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = tile_width / width dy = tile_height / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) def check_constrained_axes_positions_single(grid): rows, cols = grid.rows, grid.cols width, height = grid.width, grid.height cbar_location = grid.cbar_location fig = grid.fig left_pad, right_pad = _LEFT_PAD, _RIGHT_PAD bottom_pad, top_pad = _BOTTOM_PAD, _TOP_PAD if cbar_location == "left": left_pad = _LEFT_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD elif cbar_location == "right": right_pad = _RIGHT_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD elif cbar_location == "bottom": bottom_pad = _BOTTOM_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD elif cbar_location == "top": top_pad = _TOP_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD tile_width = get_tile_width(grid, left_pad=left_pad, right_pad=right_pad) tile_height = get_tile_height(grid, bottom_pad=bottom_pad, top_pad=top_pad) indexes = list(product(range(rows - 1, -1, -1), range(cols))) axes = grid.axes for ax, (row, col) in zip(axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = (left_pad + col * (_HORIZONTAL_INTERNAL_PAD + tile_width)) / width y0 = (bottom_pad + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = tile_width / width dy = tile_height / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) def check_constrained_caxes_positions_single(grid): width, height = grid.width, grid.height cbar_location = grid.cbar_location fig = grid.fig cax = grid.caxes cax_bounds = get_bounds(fig, cax) if cbar_location == "bottom": x0 = (_LEFT_PAD + _SHORT_SIDE_PAD) / width y0 = _BOTTOM_PAD / height dx = (width - _LEFT_PAD - _RIGHT_PAD - 2.0 * _SHORT_SIDE_PAD) / width dy = _CBAR_THICKNESS / height elif cbar_location == "right": x0 = (width - _CBAR_THICKNESS - _RIGHT_PAD) / width y0 = (_BOTTOM_PAD + _SHORT_SIDE_PAD) / height dx = _CBAR_THICKNESS / width dy = (height - _TOP_PAD - _BOTTOM_PAD - 2.0 * _SHORT_SIDE_PAD) / height elif cbar_location == "top": x0 = (_LEFT_PAD + _SHORT_SIDE_PAD) / width y0 = (height - _CBAR_THICKNESS - _TOP_PAD) / height dx = (width - _LEFT_PAD - _RIGHT_PAD - 2.0 * _SHORT_SIDE_PAD) / width dy = _CBAR_THICKNESS / height elif cbar_location == "left": x0 = _LEFT_PAD / width y0 = (_BOTTOM_PAD + _SHORT_SIDE_PAD) / height dx = _CBAR_THICKNESS / width dy = (height - _TOP_PAD - _BOTTOM_PAD - 2.0 * _SHORT_SIDE_PAD) / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(cax_bounds, expected_bounds) def check_constrained_axes_positions_each(grid): rows, cols = grid.rows, grid.cols width, height = grid.width, grid.height tile_width, tile_height = get_tile_width(grid), get_tile_height(grid) cbar_location = grid.cbar_location fig = grid.fig indexes = list(product(range(rows - 1, -1, -1), range(cols))) axes = grid.axes if cbar_location == "bottom": for ax, (row, col) in zip(axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = (_LEFT_PAD + col * (tile_width + _HORIZONTAL_INTERNAL_PAD)) / width y0 = ( _BOTTOM_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD + row * (tile_height + _VERTICAL_INTERNAL_PAD) ) / height dx = tile_width / width dy = (tile_height - _CBAR_THICKNESS - _LONG_SIDE_PAD) / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) elif cbar_location == "top": for ax, (row, col) in zip(axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = (_LEFT_PAD + col * (_HORIZONTAL_INTERNAL_PAD + tile_width)) / width y0 = (_BOTTOM_PAD + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = tile_width / width dy = (tile_height - _CBAR_THICKNESS - _LONG_SIDE_PAD) / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) elif cbar_location == "right": for ax, (row, col) in zip(axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = (_LEFT_PAD + col * (_HORIZONTAL_INTERNAL_PAD + tile_width)) / width y0 = (_BOTTOM_PAD + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = (tile_width - _CBAR_THICKNESS - _LONG_SIDE_PAD) / width dy = tile_height / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) elif cbar_location == "left": for ax, (row, col) in zip(axes, indexes): ax_bounds = get_bounds(fig, ax) x0 = ( _LEFT_PAD + _CBAR_THICKNESS + _LONG_SIDE_PAD + col * (_HORIZONTAL_INTERNAL_PAD + tile_width) ) / width y0 = (_BOTTOM_PAD + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = (tile_width - _CBAR_THICKNESS - _LONG_SIDE_PAD) / width dy = tile_height / height expected_bounds = [x0, y0, dx, dy] np.testing.assert_allclose(ax_bounds, expected_bounds) def check_constrained_caxes_positions_each(grid): rows, cols = grid.rows, grid.cols width, height = grid.width, grid.height tile_width, tile_height = get_tile_width(grid), get_tile_height(grid) cbar_location = grid.cbar_location fig = grid.fig indexes = list(product(range(rows - 1, -1, -1), range(cols))) caxes = grid.caxes if cbar_location == "bottom": for cax, (row, col) in zip(caxes, indexes): cax_bounds = get_bounds(fig, cax) x0 = ( _LEFT_PAD + col * (_HORIZONTAL_INTERNAL_PAD + tile_width) + _SHORT_SIDE_PAD ) / width y0 = (_BOTTOM_PAD + row * (_VERTICAL_INTERNAL_PAD + tile_height)) / height dx = (tile_width - 2.0 * _SHORT_SIDE_PAD) / width dy = _CBAR_THICKNESS / height expected_bounds
#!/usr/bin/env python from __future__ import print_function import cx_Oracle import datetime import calendar import sys import logging import CondCore.Utilities.conddb_serialization_metadata as sm import CondCore.Utilities.credentials as auth import CondCore.Utilities.conddb_time as conddb_time import os authPathEnvVar = 'COND_AUTH_PATH' prod_db_service = ('cms_orcon_prod',{'w':'cms_orcon_prod/cms_cond_general_w','r':'cms_orcon_prod/cms_cond_general_r'}) adg_db_service = ('cms_orcon_adg',{'r':'cms_orcon_adg/cms_cond_general_r'}) dev_db_service = ('cms_orcoff_prep',{'w':'cms_orcoff_prep/cms_cond_general_w','r':'cms_orcoff_prep/cms_cond_general_r'}) schema_name = 'CMS_CONDITIONS' fmt_str = "[%(asctime)s] %(levelname)s: %(message)s" logLevel = logging.INFO logFormatter = logging.Formatter(fmt_str) def print_table( headers, table ): ws = [] for h in headers: ws.append(len(h)) for row in table: ind = 0 for c in row: c = str(c) if ind<len(ws): if len(c)> ws[ind]: ws[ind] = len(c) ind += 1 def printf( row ): line = '' ind = 0 for w in ws: fmt = '{:<%s}' %w if ind<len(ws): line += (fmt.format( row[ind] )+' ') ind += 1 print(line) printf( headers ) hsep = '' for w in ws: fmt = '{:-<%s}' %w hsep += (fmt.format('')+' ') print(hsep) for row in table: printf( row ) class version_db(object): def __init__(self, db ): self.db = db self.cmssw_boost_map = {} self.boost_run_map = [] def fetch_cmssw_boost_map( self ): cursor = self.db.cursor() cursor.execute('SELECT BOOST_VERSION, CMSSW_VERSION FROM CMSSW_BOOST_MAP'); rows = cursor.fetchall() self.cmssw_boost_map = {} for r in rows: self.cmssw_boost_map[r[1]]=r[0] return self.cmssw_boost_map def fetch_boost_run_map( self ): cursor = self.db.cursor() cursor.execute('SELECT RUN_NUMBER, RUN_START_TIME, BOOST_VERSION, INSERTION_TIME FROM BOOST_RUN_MAP ORDER BY RUN_NUMBER, INSERTION_TIME') rows = cursor.fetchall() self.boost_run_map = [] for r in rows: self.boost_run_map.append( (r[0],r[1],r[2],str(r[3])) ) return self.boost_run_map def insert_boost_run_range( self, run, boost_version, min_ts ): cursor = self.db.cursor() cursor.execute('SELECT MIN(RUN_NUMBER) FROM RUN_INFO WHERE RUN_NUMBER >= :RUN',(run,)) res = cursor.fetchone() if res is not None and res[0] is not None: min_run = res[0] cursor.execute('SELECT START_TIME FROM RUN_INFO WHERE RUN_NUMBER=:RUN',(min_run,)) min_run_time = cursor.fetchone()[0] min_run_ts = calendar.timegm( min_run_time.utctimetuple() ) << 32 else: min_run = run min_run_ts = conddb_time.string_to_timestamp(min_ts) now = datetime.datetime.utcnow() cursor.execute('INSERT INTO BOOST_RUN_MAP ( RUN_NUMBER, RUN_START_TIME, BOOST_VERSION, INSERTION_TIME ) VALUES (:RUN, :RUN_START_T, :BOOST, :TIME)',(run,min_run_ts,boost_version,now) ) def insert_cmssw_boost( self, cmssw_version,boost_version ): cursor = self.db.cursor() cursor.execute('INSERT INTO CMSSW_BOOST_MAP ( CMSSW_VERSION, BOOST_VERSION ) VALUES ( :CMSSW_VERSION, :BOOST_VERSION )',(cmssw_version,boost_version)) def lookup_boost_in_cmssw( self, cmssw_version ): cmssw_v = sm.check_cmssw_version( cmssw_version ) the_arch = None releaseRoot = None if sm.is_release_cycle( cmssw_v ): cmssw_v = sm.strip_cmssw_version( cmssw_v ) archs = sm.get_production_arch( cmssw_v ) for arch in archs: path = sm.get_release_root( cmssw_v, arch ) if os.path.exists(os.path.join(path,cmssw_v)): releaseRoot = path the_arch = arch break if releaseRoot is None: for arch in archs: the_arch = arch releaseRoot = sm.get_release_root( cmssw_v, arch ) for r in sorted (os.listdir( releaseRoot )): if r.startswith(cmssw_v): cmssw_v = r logging.debug('Boost version will be verified in release %s' %cmssw_v) if cmssw_v in self.cmssw_boost_map.keys(): return self.cmssw_boost_map[cmssw_v] if releaseRoot is None: archs = sm.get_production_arch( cmssw_v ) for arch in archs: path = sm.get_release_root( cmssw_v, arch ) if os.path.exists(os.path.join(path,cmssw_v)): releaseRoot = path the_arch = arch break logging.debug('Release path: %s' %releaseRoot) boost_version = sm.get_cmssw_boost( the_arch, '%s/%s' %(releaseRoot,cmssw_v) ) if not boost_version is None: self.cmssw_boost_map[cmssw_v] = boost_version self.insert_cmssw_boost( cmssw_v,boost_version ) return boost_version def populate_for_gts( self ): cursor = self.db.cursor() cursor.execute('SELECT DISTINCT(RELEASE) FROM GLOBAL_TAG') rows = cursor.fetchall() for r in rows: self.lookup_boost_in_cmssw( r[0] ) class conddb_tool(object): def __init__( self ): self.db = None self.version_db = None self.args = None self.logger = logging.getLogger() self.logger.setLevel(logLevel) consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logFormatter) self.logger.addHandler(consoleHandler) self.iovs = None self.versionIovs = None def connect( self ): if self.args.db is None: self.args.db = 'pro' if self.args.db == 'dev' or self.args.db == 'oradev' : db_service = dev_db_service elif self.args.db == 'orapro': db_service = adg_db_service elif self.args.db != 'onlineorapro' or self.args.db != 'pro': db_service = prod_db_service else: raise Exception("Database '%s' is not known." %args.db ) if self.args.accessType not in db_service[1].keys(): raise Exception('The specified database connection %s does not support the requested action.' %db_service[0]) service = db_service[1][self.args.accessType] creds = auth.get_credentials( authPathEnvVar, service, self.args.auth ) if creds is None: raise Exception("Could not find credentials for service %s" %service) (username, account, pwd) = creds connStr = '%s/%s@%s' %(username,pwd,db_service[0]) self.db = cx_Oracle.connect(connStr) logging.info('Connected to %s as user %s' %(db_service[0],username)) self.db.current_schema = schema_name def process_tag_boost_version( self, t, timetype, tagBoostVersion, minIov, timeCut, validate ): if self.iovs is None: self.iovs = [] cursor = self.db.cursor() stmt = 'SELECT IOV.SINCE SINCE, IOV.INSERTION_TIME INSERTION_TIME, P.STREAMER_INFO STREAMER_INFO FROM TAG, IOV, PAYLOAD P WHERE TAG.NAME = IOV.TAG_NAME AND P.HASH = IOV.PAYLOAD_HASH AND TAG.NAME = :TAG_NAME' params = (t,) if timeCut and tagBoostVersion is not None and not validate: whereClauseOnSince = ' AND IOV.INSERTION_TIME>:TIME_CUT' stmt = stmt + whereClauseOnSince params = params + (timeCut,) stmt = stmt + ' ORDER BY SINCE' logging.debug('Executing: "%s"' %stmt) cursor.execute(stmt,params) for r in cursor: streamer_info = str(r[2].read()) self.iovs.append((r[0],r[1],streamer_info)) niovs = 0 self.versionIovs = [] lastBoost = None update = False if tagBoostVersion is not None: update = True for iov in self.iovs: if validate and timeCut is not None and timeCut < iov[1]: continue niovs += 1 iovBoostVersion, tagBoostVersion = sm.update_tag_boost_version( tagBoostVersion, minIov, iov[2], iov[0], timetype, self.version_db.boost_run_map ) if minIov is None or iov[0]<minIov: minIov = iov[0] logging.debug('iov: %s - inserted on %s - streamer: %s' %(iov[0],iov[1],iov[2])) logging.debug('current tag boost version: %s minIov: %s' %(tagBoostVersion,minIov)) if lastBoost is None or lastBoost!=iovBoostVersion: self.versionIovs.append((iov[0],iovBoostVersion)) lastBoost = iovBoostVersion if tagBoostVersion is None: if niovs == 0: logging.warning( 'No iovs found. boost version cannot be determined.') return None, None else: logging.error('Could not determine the tag boost version.' ) return None, None else: if niovs == 0: logging.info('Tag boost version has not changed.') else: msg = 'Found tag boost version %s ( min iov: %s ) combining payloads from %s iovs' %(tagBoostVersion,minIov,niovs) if timeCut is not None: if update: msg += ' (iov insertion time>%s)' %str(timeCut) else: msg += ' (iov insertion time<%s)' %str(timeCut) logging.info( msg ) return tagBoostVersion, minIov def validate_boost_version( self, t, timetype, tagBoostVersion ): cursor = self.db.cursor() cursor.execute('SELECT GT.NAME, GT.RELEASE, GT.SNAPSHOT_TIME FROM GLOBAL_TAG GT, GLOBAL_TAG_MAP GTM WHERE GT.NAME = GTM.GLOBAL_TAG_NAME AND GTM.TAG_NAME = :TAG_NAME',(t,)) rows = cursor.fetchall() invalid_gts = [] ngt = 0 gts = [] for r in rows: gts.append((r[0],r[1],r[2])) if len(gts)>0: logging.info('validating %s gts.' %len(gts)) boost_snapshot_map = {} for gt in gts: ngt += 1 logging.debug('Validating for GT %s (release %s)' %(gt[0],gt[1])) gtCMSSWVersion = sm.check_cmssw_version( gt[1] ) gtBoostVersion = self.version_db.lookup_boost_in_cmssw( gtCMSSWVersion ) if sm.cmp_boost_version( gtBoostVersion, tagBoostVersion )<0: logging.warning( 'The boost version computed from all the iovs in the tag (%s) is incompatible with the gt [%s] %s (consuming ver: %s, snapshot: %s)' %(tagBoostVersion,ngt,gt[0],gtBoostVersion,str(gt[2]))) if str(gt[2]) not in boost_snapshot_map.keys(): tagSnapshotBoostVersion = None minIov = None tagSnapshotBoostVersion, minIov = self.process_tag_boost_version(t, timetype, tagSnapshotBoostVersion, minIov, gt[2]) if tagSnapshotBoostVersion is not None: boost_snapshot_map[str(gt[2])] = tagSnapshotBoostVersion else: continue else: tagSnapshotBoostVersion = boost_snapshot_map[str(gt[2])] if sm.cmp_boost_version( gtBoostVersion, tagSnapshotBoostVersion )<0: logging.error('The snapshot from tag used by gt %s (consuming ver: %s) has an incompatible combined boost version %s' %(gt[0],gtBoostVersion,tagSnapshotBoostVersion)) invalid_gts.append( ( gt[0], gtBoostVersion ) ) if len(invalid_gts)==0: if ngt>0: logging.info('boost version for the tag validated in %s referencing Gts' %(ngt)) else: logging.info('No GT referencing this tag found.') else: logging.error( 'boost version for the tag is invalid.') return invalid_gts def update_tag_boost_version_in_db( self, t, tagBoostVersion, minIov, update ): cursor = self.db.cursor() now = datetime.datetime.utcnow() if update: cursor.execute('UPDATE TAG_METADATA SET MIN_SERIALIZATION_V=:BOOST_V, MIN_SINCE=:MIN_IOV, MODIFICATION_TIME=:NOW WHERE TAG_NAME = :NAME',( tagBoostVersion,minIov,now,t)) else: cursor.execute('INSERT INTO TAG_METADATA ( TAG_NAME, MIN_SERIALIZATION_V, MIN_SINCE, MODIFICATION_TIME ) VALUES ( :NAME, :BOOST_V, :MIN_IOV, :NOW )',(t, tagBoostVersion,minIov,now)) logging.info('Minimum boost version for the tag updated.') def update_tags( self ): cursor = self.db.cursor() self.version_db = version_db( self.db ) self.version_db.fetch_cmssw_boost_map() self.version_db.fetch_boost_run_map() tags = {} wpars = () if self.args.name is not None: stmt0 = 'SELECT NAME FROM TAG WHERE NAME = :TAG_NAME' wpars = (self.args.name,) cursor.execute(stmt0,wpars); rows = cursor.fetchall() found = False for r in rows: found = True break if not found: raise Exception('Tag %s does not exists in the database.' %self.args.name ) tags[self.args.name] = None stmt1 = 'SELECT MIN_SERIALIZATION_V, MIN_SINCE, CAST(MODIFICATION_TIME AS TIMESTAMP(0)) FROM TAG_METADATA WHERE TAG_NAME = :NAME' cursor.execute(stmt1,wpars); rows = cursor.fetchall() for r in rows: tags[self.args.name] = (r[0],r[1],r[2]) else: stmt0 = 'SELECT NAME FROM TAG WHERE NAME NOT IN ( SELECT TAG_NAME FROM TAG_METADATA) ORDER BY NAME' nmax = 100 if self.args.max is not None: nmax = self.args.max if self.args.all: nmax =
value/colors supported for now if (def_val_dim == 1 or def_val_dim == 4) and default_value.count(None) < def_val_dim: sampler_name = prefix + action.name + "_mat_node_anim" if getIndex(samplers, sampler_name) == -1: sampler = {} interpolation = animateGetInterpolation(exportSettings, default_value) sampler['interpolation'] = interpolation if interpolation == 'CONVERSION_NEEDED': sampler['interpolation'] = 'LINEAR' def_val_data, in_tangent_data, out_tangent_data = animateDefaultValue(exportSettings, default_value, interpolation) keys = sorted(def_val_data.keys()) values = [] final_keys = [] key_offset = 0.0 if len(keys) > 0 and exportSettings['move_keyframes']: key_offset = bpy.context.scene.frame_start / bpy.context.scene.render.fps for key in keys: if key - key_offset < 0.0: continue final_keys.append(key - key_offset) if interpolation == 'CUBICSPLINE': for i in range(0, def_val_dim): values.append(in_tangent_data[key][i]) for i in range(0, def_val_dim): values.append(def_val_data[key][i]) if interpolation == 'CUBICSPLINE': for i in range(0, def_val_dim): values.append(out_tangent_data[key][i]) componentType = "FLOAT" count = len(final_keys) type = "SCALAR" input = gltf.generateAccessor(glTF, exportSettings['binary'], final_keys, componentType, count, type, "") sampler['input'] = input componentType = "FLOAT" count = len(values) // def_val_dim if def_val_dim == 1: type = "SCALAR" else: type = "VEC4" output = gltf.generateAccessor(glTF, exportSettings['binary'], values, componentType, count, type, "") sampler['output'] = output sampler['name'] = sampler_name samplers.append(sampler) if energy.count(None) < 1: sampler_name = prefix + action.name + '_energy' if getIndex(samplers, sampler_name) == -1: sampler = {} interpolation = animateGetInterpolation(exportSettings, energy) sampler['interpolation'] = interpolation if interpolation == 'CONVERSION_NEEDED': sampler['interpolation'] = 'LINEAR' energy_data, in_tangent_data, out_tangent_data = animateEnergy(exportSettings, energy, interpolation) keys = sorted(energy_data.keys()) values = [] final_keys = [] key_offset = 0.0 if len(keys) > 0 and exportSettings['move_keyframes']: key_offset = bpy.context.scene.frame_start / bpy.context.scene.render.fps for key in keys: if key - key_offset < 0.0: continue final_keys.append(key - key_offset) if interpolation == 'CUBICSPLINE': values.append(in_tangent_data[key][0]) values.append(energy_data[key][0]) if interpolation == 'CUBICSPLINE': values.append(out_tangent_data[key][0]) componentType = "FLOAT" count = len(final_keys) type = "SCALAR" input = gltf.generateAccessor(glTF, exportSettings['binary'], final_keys, componentType, count, type, "") sampler['input'] = input componentType = "FLOAT" count = len(values) type = "SCALAR" output = gltf.generateAccessor(glTF, exportSettings['binary'], values, componentType, count, type, "") sampler['output'] = output sampler['name'] = sampler_name samplers.append(sampler) processed_paths = [] # gather fcurves in data dict for bl_fcurve in action.fcurves: node_name = getNameInBrackets(bl_fcurve.data_path) if node_name != None and not is_morph_data: if (node_type == 'JOINT' or node_type == 'MAT_NODE') and used_node_name != node_name: continue elif node_type == 'NODE' or node_type == 'NODE_X_90': continue else: prefix = node_name + "_" postfix = "_" + node_name data_path = getAnimParam(bl_fcurve.data_path) if data_path == 'location': path = 'translation' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_' + path generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name + postfix, samplers, channels) elif (data_path == 'rotation_axis_angle' or data_path == 'rotation_euler' or data_path == 'rotation_quaternion'): path = 'rotation' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_' + path generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name + postfix, samplers, channels) elif data_path == 'scale': path = 'scale' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_' + path generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name + postfix, samplers, channels) elif data_path == 'value': path = 'weights' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_' + path generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name + postfix, samplers, channels) elif data_path == 'default_value': if def_val_dim == 1: path = 'material.nodeValue["' + used_node_name + '"]' else: path = 'material.nodeRGB["' + used_node_name + '"]' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_mat_node_anim' channel = generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name, samplers, channels) if bl_mat_name != None: channel['target']['extras'] = { 'material': gltf.getMaterialIndex(glTF, bl_mat_name) } elif data_path == 'energy': path = 'intensity' if path in processed_paths: continue processed_paths.append(path) sampler_name = prefix + action.name + '_energy' generateAnimChannel(glTF, bl_obj, sampler_name, path, bl_node_name, samplers, channels) # # Property: animations # def generateAnimations(operator, context, exportSettings, glTF): """ Generates the top level animations, channels and samplers entry. """ animations = [] channels = [] samplers = [] filtered_objects_with_dg = exportSettings['filtered_objects_with_dg'] bl_backup_action = {} if exportSettings['bake_armature_actions']: start = None end = None for current_bl_action in bpy.data.actions: # filter out non-object actions if current_bl_action.id_root != 'OBJECT': continue for current_bl_fcurve in current_bl_action.fcurves: if current_bl_fcurve is None: continue if start == None: start = current_bl_fcurve.range()[0] else: start = min(start, current_bl_fcurve.range()[0]) if end == None: end = current_bl_fcurve.range()[1] else: end = max(end, current_bl_fcurve.range()[1]) if start is None or end is None or exportSettings['frame_range']: start = bpy.context.scene.frame_start end = bpy.context.scene.frame_end for bl_obj in filtered_objects_with_dg: if bl_obj.animation_data is not None: bl_backup_action[bl_obj.name] = bl_obj.animation_data.action if bl_obj.pose is None: continue obj_scene = getSceneByObject(bl_obj) if obj_scene is not None: prev_active_scene = bpy.context.scene bpy.context.window.scene = obj_scene setSelectedObject(bl_obj) bpy.ops.nla.bake(frame_start=start, frame_end=end, only_selected=False, visual_keying=True) restoreSelectedObjects() bpy.context.window.scene = prev_active_scene for bl_obj in filtered_objects_with_dg: if bl_obj.animation_data is None: continue bl_action = bl_obj.animation_data.action if bl_action is None: continue generateAnimationsParameter(operator, context, exportSettings, glTF, bl_action, channels, samplers, bl_obj, None, None, None, bl_obj.rotation_mode, mathutils.Matrix.Identity(4), mathutils.Matrix.Identity(4), False) if exportSettings['skins']: if bl_obj.type == 'ARMATURE' and len(bl_obj.pose.bones) > 0: # Precalculate joint animation data. start = None end = None for current_bl_action in bpy.data.actions: # filter out non-object actions if current_bl_action.id_root != 'OBJECT': continue for current_bl_fcurve in current_bl_action.fcurves: if current_bl_fcurve is None: continue if start == None: start = current_bl_fcurve.range()[0] else: start = min(start, current_bl_fcurve.range()[0]) if end == None: end = current_bl_fcurve.range()[1] else: end = max(end, current_bl_fcurve.range()[1]) if start is None or end is None: start = bpy.context.scene.frame_start end = bpy.context.scene.frame_end for frame in range(int(start), int(end) + 1): bpy.context.scene.frame_set(frame) for bl_bone in bl_obj.pose.bones: matrix_basis = bl_bone.matrix_basis correction_matrix_local = bl_bone.bone.matrix_local.copy() if bl_bone.parent is not None: correction_matrix_local = bl_bone.parent.bone.matrix_local.inverted() @ correction_matrix_local if not exportSettings['joint_cache'].get(bl_bone.name): exportSettings['joint_cache'][bl_bone.name] = {} if exportSettings['bake_armature_actions']: matrix_basis = bl_obj.convert_space(pose_bone=bl_bone, matrix=bl_bone.matrix, from_space='POSE', to_space='LOCAL') matrix = correction_matrix_local @ matrix_basis tmp_location, tmp_rotation, tmp_scale = decomposeTransformSwizzle(matrix) exportSettings['joint_cache'][bl_bone.name][float(frame)] = [tmp_location, tmp_rotation, tmp_scale] for bl_bone in bl_obj.pose.bones: matrix_basis = bl_bone.matrix_basis correction_matrix_local = bl_bone.bone.matrix_local.copy() if bl_bone.parent is not None: correction_matrix_local = bl_bone.parent.bone.matrix_local.inverted() @ correction_matrix_local if exportSettings['bake_armature_actions']: matrix_basis = bl_obj.convert_space(pose_bone=bl_bone, matrix=bl_bone.matrix, from_space='POSE', to_space='LOCAL') generateAnimationsParameter(operator, context, exportSettings, glTF, bl_action, channels, samplers, bl_obj, bl_bone.name, None, None, bl_bone.rotation_mode, correction_matrix_local, matrix_basis, False) # export morph targets animation data processed_meshes = [] for bl_obj in filtered_objects_with_dg: if bl_obj.type != 'MESH' or bl_obj.data is None: continue bl_mesh = bl_obj.data if bl_mesh in processed_meshes: continue if bl_mesh.shape_keys is None or bl_mesh.shape_keys.animation_data is None: continue bl_action = bl_mesh.shape_keys.animation_data.action if bl_action is None: continue generateAnimationsParameter(operator, context, exportSettings, glTF, bl_action, channels, samplers, bl_obj, None, None, None, bl_obj.rotation_mode, mathutils.Matrix.Identity(4), mathutils.Matrix.Identity(4), True) processed_meshes.append(bl_mesh) # export light animation for bl_obj in filtered_objects_with_dg: if bl_obj.type != 'LIGHT' or bl_obj.data is None: continue bl_light = bl_obj.data if bl_light.animation_data is None: continue bl_action = bl_light.animation_data.action if bl_action is None: continue generateAnimationsParameter(operator, context, exportSettings, glTF, bl_action, channels, samplers, bl_obj, None, None, None, bl_obj.rotation_mode, mathutils.Matrix.Identity(4), mathutils.Matrix.Identity(4), True) # export material animation for bl_obj in filtered_objects_with_dg: # export morph targets animation data. if bl_obj.type != 'MESH' or bl_obj.data is None: continue bl_mesh = bl_obj.data for bl_mat in bl_mesh.materials: if bl_mat == None: continue if bl_mat.node_tree == None or bl_mat.node_tree.animation_data == None: continue bl_action = bl_mat.node_tree.animation_data.action if bl_action == None: continue correction_matrix_local = mathutils.Matrix.Identity(4) matrix_basis = mathutils.Matrix.Identity(4) node_names = [n.name for n in bl_mat.node_tree.nodes] for name in node_names: generateAnimationsParameter(operator, context, exportSettings, glTF, bl_action, channels, samplers, bl_obj, None, bl_mat.name, name, bl_obj.rotation_mode, correction_matrix_local, matrix_basis, False) if exportSettings['bake_armature_actions']: for bl_obj in filtered_objects_with_dg: if bl_backup_action.get(bl_obj.name) is not None: bl_obj.animation_data.action = bl_backup_action[bl_obj.name] if len(channels) > 0 or len(samplers) > 0: # collect channel/samplers by node anim_data = {} for channel in channels: bl_obj = channel['bl_obj'] name = bl_obj.name # shallow copy (might be repetitions, need to find out why) sampler = samplers[channel['sampler']].copy() if not name in anim_data: anim_data[name] = [[], [], None] # fix sampler index in new array channel['sampler'] = len(anim_data[name][1]) # sampler 'name' is used to gather the index. However, 'name' is # no property of sampler and has to be removed. del sampler['name'] anim_data[name][0].append(channel) anim_data[name][1].append(sampler) anim_data[name][2] = bl_obj del channel['bl_obj'] for name, data in anim_data.items(): animation = { 'name': name, 'channels' : data[0], 'samplers' : data[1] } v3dExt = gltf.appendExtension(glTF, 'S8S_v3d_animation_data', animation) bl_obj = data[2] v3dExt['auto'] = bl_obj.v3d.anim_auto v3dExt['loop'] = bl_obj.v3d.anim_loop v3dExt['repeatInfinite'] = bl_obj.v3d.anim_repeat_infinite v3dExt['repeatCount'] = bl_obj.v3d.anim_repeat_count # frame to sec v3dExt['offset'] = animateConvertKeys([bl_obj.v3d.anim_offset])[0]
from .geometry import near, isnear, orient2d, inrng, slide import numpy as np import math class vec3: @classmethod def O(cls): return cls(0, 0, 0) @classmethod def U(cls, r=1): return cls(r, r, r) @classmethod def X(cls, r=1): return cls(r, 0, 0) @classmethod def Y(cls, r=1): return cls(0, r, 0) @classmethod def Z(cls, r=1): return cls(0, 0, r) @classmethod def nX(cls, r=1): return cls(-r, 0, 0) @classmethod def nY(cls, r=1): return cls(0, -r, 0) @classmethod def nZ(cls, r=1): return cls(0, 0, -r) @classmethod def com(cls, pts): xs, ys, zs = zip(*[(p.x, p.y, p.z) for p in pts]) return cls(sum(xs) / len(xs), sum(ys) / len(ys), sum(zs) / len(zs)) def isnan(self): return math.isnan(self.x) or math.isnan(self.y) or math.isnan(self.z) def isO(self): return self.x == 0 and self.y == 0 and self.z == 0 def xy(self): return vec3(self.x, self.y, 0) def yz(self): return vec3(0, self.y, self.z) def zx(self): return vec3(self.x, 0, self.z) def cp(self): return vec3(self.x, self.y, self.z) def fp(self): return vec3(-self.x, -self.y, -self.z) def inv(self): return vec3(1 / self.x, 1 / self.y, 1 / self.z) @classmethod def sum(cls, pts): r = vec3.O() for p in pts: r.trn(p) return r def __add__(self, o): if isinstance(o, vec3): return vec3(self.x + o.x, self.y + o.y, self.z + o.z) else: return vec3(self.x + o, self.y + o, self.z + o) def __sub__(self, o): if isinstance(o, vec3): return vec3(self.x - o.x, self.y - o.y, self.z - o.z) else: return vec3(self.x - o, self.y - o, self.z - o) def __mul__(self, o): if isinstance(o, vec3): return vec3(self.x * o.x, self.y * o.y, self.z * o.z) else: return vec3(self.x * o, self.y * o, self.z * o) def __iter__(self): yield self.x yield self.y yield self.z def scl(self, o): if isinstance(o, vec3): return self.set(self.x * o.x, self.y * o.y, self.z * o.z) else: return self.set(self.x * o, self.y * o, self.z * o) def sclps(self, os): for o in os: o.set(self.x * o.x, self.y * o.y, self.z * o.z) return os def quant(self, n=4): return vec3(round(self.x, 4), round(self.y, 4), round(self.z, 4)) def __repr__(self): return 'vec3({:.4f}, {:.4f}, {:.4f})'.format(self.x, self.y, self.z) def __init__(self, x, y, z): self.set(x, y, z) def setto(self, o): return self.set(o.x, o.y, o.z) def set(self, x, y, z): self.x, self.y, self.z = x, y, z return self def near(self, o, e=0.00001): """Snap to other if sufficiently near.""" raise NotImplementedError # TODO: this will snap for any axis despite the others... self.set(near(self.x, o.x, e), near(self.y, o.y, e), near(self.z, o.z, e)) def isnear(self, o, e=0.00001): if isnear(self.x, o.x, e): if isnear(self.y, o.y, e): if isnear(self.z, o.z, e): return True return False def ang(self, o): cosa = (self.dot(o) / (self.mag() * o.mag())) cosa = min(max(cosa, -1), 1) return np.arccos(cosa) def axy(self, o): return self.xy().ang(o.xy()) def saxy(self, o): a = (np.arctan2(self.x, self.y) - np.arctan2(o.x, o.y)) return a + 2 * np.pi if a < 0 else a def d(self, o): return (o - self).mag() def dxy(self, o): dx = o.x - self.x dy = o.y - self.y return np.sqrt(dx ** 2 + dy ** 2) def dexy(self, u, v): uv = (v - u) c = self.dot(uv) if c < u.dot(uv): return self.dxy(u) elif c > v.dot(uv): return self.dxy(v) else: nm = uv.crs(vec3.Z()) return abs(self.dot(nm) - u.dot(nm)) def dlxy(self, loop): return min([self.dexy(u, v) for u, v in slide(loop, 2)]) def tov(self, o): return o - self def rot(self, q): x = self.x * (q.w ** 2 + q.x ** 2 - q.y ** 2 - q.z ** 2) +\ self.y * (2 * (q.x * q.y - q.w * q.z)) +\ self.z * (2 * (q.x * q.z + q.w * q.y)) y = self.x * (2 * (q.x * q.y + q.w * q.z)) +\ self.y * (q.w ** 2 - q.x ** 2 + q.y ** 2 - q.z ** 2) +\ self.z * (2 * (q.y * q.z - q.w * q.x)) z = self.x * (2 * (q.x * q.z - q.w * q.y)) +\ self.y * (2 * (q.y * q.z + q.w * q.x)) +\ self.z * (q.w ** 2 - q.x ** 2 - q.y ** 2 + q.z ** 2) return self.set(x, y, z) def trn(self, o): return self.set(self.x + o.x, self.y + o.y, self.z + o.z) def xtrn(self, dx): return self.set(self.x + dx, self.y, self.z) def ytrn(self, dy): return self.set(self.x, self.y + dy, self.z) def ztrn(self, dz): return self.set(self.x, self.y, self.z + dz) def trnps(self, os, cp=False): for o in os: o.set(self.x + o.x, self.y + o.y, self.z + o.z) return os def trnpy(self, py): return (self.trnps(py[0]), [self.trnps(h) for h in py[1]]) def crs(self, o): return vec3(self.y * o.z - self.z * o.y, self.z * o.x - self.x * o.z, self.x * o.y - self.y * o.x) def dot(self, o): return self.x * o.x + self.y * o.y + self.z * o.z def mag(self): return np.sqrt(self.dot(self)) def nrm(self): mag = self.mag() if mag > 0: return vec3(self.x / mag, self.y / mag, self.z / mag) else: return vec3.O() def nrmd(self): mag = self.mag() if mag > 0: return self.set(self.x / mag, self.y / mag, self.z / mag) else: return self def lerp(self, o, d): return self + (self.tov(o) * d) def ring(self, r, n, inscribe=True): from .quat import quat alpha = np.pi * (2.0 / n) sr = r if inscribe else r / np.cos(alpha / 2.0) z = vec3(0, 0, 1) loop = [] for x in range(n): loop.append(vec3(sr, 0, 0).rot(quat.av(x * alpha - alpha / 2.0, z))) return [p.trn(self) for p in loop] def line(self, o, n, ends=False): line = [] if ends: line.append(self.cp()) for i in range(n): t = (i + 1) / (n + 1) line.append(self.lerp(o, t)) if ends: line.append(o.cp()) return line def spline(self, o, st, ot, n, alpha=0.5): s = self.d(o) / n st.scl(s) ot.scl(s) #n += 1 n -= 1 ps = [self, self + st, o + ot, o] x, y, z = zip(*[(p.x, p.y, p.z) for p in ps]) t = np.cumsum([0] + [u.d(v) ** alpha for u, v in slide(ps, 2, 1)]) x = self.catmull(x, t, n)[1:-1] y = self.catmull(y, t, n)[1:-1] z = self.catmull(z, t, n)[1:-1] return [vec3(x, y, z) for x, y, z in zip(x, y, z)] def catmull(self, xs, t, n): def coordinate(xs, t, k): l01 = xs[0]*(t[1] - k)/(t[1] - t[0]) + xs[1]*(k - t[0])/(t[1] - t[0]) l12 = xs[1]*(t[2] - k)/(t[2] - t[1]) + xs[2]*(k - t[1])/(t[2] - t[1]) l23 = xs[2]*(t[3] - k)/(t[3] - t[2]) + xs[3]*(k - t[2])/(t[3] - t[2]) l012 = l01*(t[2] - k)/(t[2] - t[0]) + l12*(k - t[0])/(t[2] - t[0]) l123 = l12*(t[3] - k)/(t[3] - t[1]) + l23*(k - t[1])/(t[3] - t[1]) c12 = l012*(t[2] - k)/(t[2] - t[1]) + l123*(k - t[1])/(t[2] - t[1]) return c12 curve = [xs[0]] for i in range(1, len(xs) - 2): for j in range(n): k = t[1] + (j / n) * (t[2] - t[1]) x = coordinate(xs[i - 1:i + 3], t[i - 1:i + 3], k) curve.append(x) curve.append(xs[-2]) curve.append(xs[-1]) return curve def fan(self, r, n, inscribe=True): ring = self.ring(r, n, inscribe) return [(self, ring[i - 1], ring[i]) for i in range(n)] def insxy(self, u, v, e=0.00001): return self.onsxy(u, v, ie=False, e=e) ''' if isnear(orient2d(self, u, v, epsilon=e), 0): uv = u.tov(v) u_uv = u.dot(uv) v_uv = v.dot(uv) self_uv = self.dot(uv) if v_uv < u_uv: u_uv, v_uv = v_uv, u_uv return u_uv <= self_uv and self_uv <= v_uv else: return False ''' def onsxy(self, u, v, ie=False, e=0.00001): perp = self.leftof(u, v, e) if perp == 0: t = (v - u).nrm() a, b, c = u.dot(t), self.dot(t), v.dot(t) return (ie and (a == b or b == c)) or inrng(b, a, c) else: return False #e = gtl.epsilon_c e = 0.00001 if orient2d(self, u, v) == 0: tn = (v - u) a, b, c = self.dot(tn), u.dot(tn), v.dot(tn) try: b, c =
<filename>azsmart/defaults.py """ Contains default configuration. To override this just set orca definitions in the calling notebook or script. Defines data model for running azsmart simulation w/ orca and urbansim. Note: the actually loading of dating tables from h5 sources will be done via TableLoad template/configs. """ from __future__ import division, print_function import os import numpy as np import pandas as pd import orca from azsmart.framework import * from smartpy_core.wrangling import * def load_defaults(): ######################## # default settings ######################## # default version/scenario # this is an idea I'm still working out orca.add_injectable('sim_version', 'proj1819') @orca.injectable() def config_root(sim_version): """ Root directory for configuration files. """ curr_dir = os.path.dirname(__file__) return curr_dir.replace( 'azsmart\\azsmart', 'azsmart\\configs\\{}'.format(sim_version)) # the assumed base year orca.add_injectable('base_year', 2018) # the assumed end year orca.add_injectable('end_year', 2055) @orca.injectable() def year(base_year): """ The current year. This will be the base unless called within the context of a run. """ if 'iter_var' in orca.list_injectables(): year = orca.get_injectable('iter_var') if year is not None: return year return base_year # Adding a couple of lists of MPAs for convenient use orca.add_injectable( 'mag_mpas', [ 'AJ','FL','GR','MA','PC','QC','AV','BU','CA','CC','CH','EL', 'FM','FH','GB','GI','GL','GO','GU','LP','CO','ME','PA','PE', 'PH','SA','SC','SU','TE','TO','WI','YO' ]) orca.add_injectable( 'cag_mpas', [ 'AJ','FL','GR','MA','PC','QC','KE','MM','MR','SP','WK', 'AK','SN','CG','CL','EY','TC' ]) @orca.injectable() def all_mpas(mag_mpas, cag_mpas): mpas = list(set(mag_mpas + cag_mpas)) mpas.sort() return mpas ################################## # MSA level control totals ################################## @orca.table(cache=True, cache_scope='forever') def msa_hh_pop_controls(county_hh_pop_controls): """ Aggregates household pop controls to the msa. """ return county_hh_pop_controls.local.groupby(level=0).sum() @orca.table(cache=True, cache_scope='forever') def msa_seasonal_controls(county_seasonal_controls): """ Aggregates county seasonal controls to the MSA. """ return county_seasonal_controls.local.groupby(level=0).sum() @orca.table(cache=True, cache_scope='forever') def msa_gq_controls(county_gq_controls): """ Aggregates county gq controls to the MSA. """ return county_gq_controls.local.groupby(['year', 'gq_type']).sum().reset_index(level=1) @orca.table(cache=True, cache_scope='forever') def msa_transient_controls(county_transient_controls): """ Aggregates county transient controls to the MSA. """ return county_transient_controls.local.groupby(['year', 'transient_type']).sum() @orca.table(cache=True, cache_scope='forever') def msa_emp_controls(county_emp_controls): """ Aggregates employment to the MSA. """ return county_emp_controls.local.groupby( ['year', 'qcew_naics', 'job_class'])['emp'].sum().reset_index(level=[1, 2]) ################# # parcels schema ################# @orca.column('parcels') def place_key(parcels, year): """ Year dependent combination of place and county. """ if year == 2017: return parcels['county'] + '_' + parcels['city_17'] else: return parcels['county'] + '_' + parcels['city'] @orca.column('parcels', cache=True, cache_scope='iteration') def bldg_sqft(parcels, buildings): """ Total built square feet per parcel. """ b = buildings.to_frame(['parcel_id', 'total_sqft']) return b.groupby('parcel_id')['total_sqft'].sum().reindex(parcels.index).fillna(0) @orca.column('parcels', cache=True, cache_scope='iteration') def bldg_far(parcels, buildings): """ Total build floor-area-ratio for the parcel. """ return fill_nulls(parcels['bldg_sqft'] / parcels['area']) @orca.column('parcels', cache=True, cache_scope='iteration') def posths_enrollment(parcels, posths): """ Post high school enrollment. """ p = posths.local return p.groupby( 'parcel_id')['enrollment'].sum().reindex(parcels.index).fillna(0) @orca.column('parcels', cache=True, cache_scope='iteration') def k6_enrollment(parcels, k12): """ Kinder through 6th grade enrollment (elementary). """ k = k12.local return k.groupby( 'parcel_id')['K6'].sum().reindex(parcels.index).fillna(0) @orca.column('parcels', cache=True, cache_scope='iteration') def g7_8_enrollment(parcels, k12): """ Enrollment for grades 7-8 (middle). """ k = k12.local return k.groupby( 'parcel_id')['G7_8'].sum().reindex(parcels.index).fillna(0) @orca.column('parcels', cache=True, cache_scope='iteration') def g9_12_enrollment(parcels, k12): """ Enrollment for grades 9-12 (high school). """ k = k12.local return k.groupby( 'parcel_id')['G9_12'].sum().reindex(parcels.index).fillna(0) @orca.column('parcels', cache=True, cache_scope='iteration') def k12_enrollment(parcels): """ Enrollment for grades kinder through 12th. """ return parcels['k6_enrollment'] + parcels['g7_8_enrollment'] + parcels['g9_12_enrollment'] @orca.column('parcels', cache=True, cache_scope='iteration') def enrollment_all(parcels): """ Enrollment for all grades """ return parcels['k12_enrollment'] + parcels['posths_enrollment'] @orca.column('parcels', cache=True) def is_MC(parcels): """ Dummy for Maricopa County. """ return (parcels.county == 'MC').astype(int) @orca.column('parcels') def is_PC(parcels): """ Dummy for Pinal County. """ return (parcels.county == 'PC').astype(int) @orca.column('parcels', cache=True) def is_tribe(parcels): """ Dummy for tribal areas. """ tribal_mpas = ['AK', 'FM', 'GR', 'SA', 'SN', 'TC'] return parcels['mpa'].isin(tribal_mpas).astype(int) @orca.column('parcels', cache=True) def east_valley(parcels): """ Dummy for presence in East Valley. """ in_ev = parcels['mpa'].isin([ 'AJ', 'CA', 'CC', 'CH', 'FH', 'FM', 'GC', 'GI', 'GU', 'ME', 'PA', 'QC', 'SA', 'SC', 'TE' ]) return (parcels['is_MC'] & in_ev).astype(int) @orca.column('parcels', cache=True) def west_valley(parcels): """ Dummy for presence in West Valley. """ in_wv = parcels['mpa'].isin([ 'AV', 'BU', 'EL', 'GB', 'GL', 'GO', 'LP', 'PE', 'SU', 'TO', 'WI', 'YO' ]) return (parcels['is_MC'] & in_wv).astype(int) @orca.column('parcels', cache=True) def mpa_sc(parcels): """ Dummy for presence in Scottsdale. """ return (parcels['mpa'] == 'SC').astype(int) @orca.column('parcels', cache=True) def mpa_ch(parcels): """ Dummy for presence in Chandler. """ return (parcels['mpa'] == 'CH').astype(int) @orca.column('parcels', cache=True) def mpa_ph(parcels): """ Dummy for presence in Phoenix. """ return (parcels['mpa'] == 'PH').astype(int) @orca.column('parcels', cache=True) def mpa_pa(parcels): """ Dummy for presence in Paradise Valley. """ return (parcels['mpa'] == 'PA').astype(int) @orca.column('parcels') def freeway_dist(year, parcels): """ Year dependent freeway distance. """ if year <= 2024: return parcels['fwys_2019_dist'] elif year <= 2030: return parcels['fwys_2030_dist'] else: return parcels['fwys_2031_dist'] # make all parcel columns available # Note: this is ugly, but right now I'm hard-coding these so we don't have to # load the table first parcel_broadcast_cols = [ 'exlu_long_display_id', 'exlu_display_name', 'exlu_sector_name', 'exlu_dev_status', 'gp_mpa_lucode', # 'gp_mag_lucode', 'dev_objectid', 'phx_devpolyid', 'redev_tpcid', 'city', 'county', 'county_fullname', 'mpa', 'mpa_fullname', 'maz', 'taz', 'raz', 'ewc_pinal', 'city_17', 'age_restricted', 'bg_geoid', 'section_id', 'hex_id', 'school_district_name', 'school_district_id', 'job_center_id', 'job_center_name', 'zcta_geoid', 'phx_village', 'phx_aoi', 'phx_lua_zone', 'MPO', 'x', 'y', 'area', 'lr_extensions_dist', 'fwys_2030_dist', 'bus_dist', 'rail_dist', 'airport_dist', 'fwys_2024_dist', 'fwys_2019_dist', 'cbd_dist', 'lr_dist', 'fwys_2031_dist', 'lr_stop_dist', 'fwys_2016_dist', 'place_key', 'is_MC', 'is_PC', 'is_tribe', 'east_valley', 'west_valley', 'mpa_sc', 'mpa_ch', 'mpa_ph', 'mpa_pa', 'freeway_dist' ] for par_col in parcel_broadcast_cols: for curr_tab in ['buildings', 'households', 'persons', 'jobs', 'seasonal_households', 'gq_persons', 'flu_space', 'k12', 'posths']: make_broadcast_injectable('parcels', curr_tab, par_col, 'parcel_id') ################### # buildings schema ################### @orca.column('buildings', cache=True) def is_rsf(buildings): """ Dummy for single family. """ return (buildings['building_type_name'] == 'rsf').astype(int) @orca.column('buildings', cache=True) def is_rmf(buildings): """ Dummy for multi family. """ return (buildings['building_type_name'] == 'rmf').astype(int) @orca.column('buildings', cache=True) def is_mf(buildings): """ Duplicate dummy for for multi family. TODO: remove this and update variables referencing it """ return buildings['is_rmf'] @orca.column('buildings', cache=True) def is_mh(buildings): """ Dummy for mobile home. """ return (buildings['building_type_name'] == 'mh').astype(int) @orca.column('buildings', cache=True) def is_med(buildings): """ Dummy for medical buildings. """ return (buildings['building_type_name'] == 'med').astype(int) @orca.column('buildings', cache=True) def sb_med_sector_sampling_weights(buildings): """ For medical model sector sampling purpose in elcm. """ return (0.75*(buildings['building_type_name'] == 'med') + 0.17*(buildings['building_type_name'] == 'off') \ + 0.05*(buildings['building_type_name'] == 'retl') + 0.03*(buildings['building_type_name'] == 'gq')).astype(float) @orca.column('buildings', 'building_age', cache=True) def building_age(buildings, year): return year - buildings['year_built'] @orca.column('buildings', cache=True, cache_scope='forever') def sqft_per_res_unit(buildings): return fill_nulls( buildings['residential_sqft'] / buildings['residential_units'], 0) @orca.column('buildings', cache=True, cache_scope='forever') def res_sqft_per_unit(buildings): """ TEMPORARY -- this is a duplication of `sqft_per_res_unit' so just return it. TODO: eliminate dependencies to this. """ return buildings['sqft_per_res_unit'] @orca.column('buildings', cache=True, cache_scope='forever') def land_area_per_unit(buildings): """ Land area per residential unit, only for residential buildings """ return fill_nulls(buildings['area'] / buildings['residential_units']) @orca.column('buildings', cache=True, cache_scope='forever') def value_per_res_unit(buildings): return fill_nulls( buildings['total_fcv'] / buildings['residential_units'], 0) @orca.column('buildings', cache=True, cache_scope='forever') def value_per_res_sqft(buildings): return fill_nulls( buildings['total_fcv'] / buildings['residential_sqft'], 0) @orca.column('buildings', cache=True, cache_scope='forever') def value_per_nonres_sqft(buildings): return fill_nulls( buildings['total_fcv'] / buildings['non_residential_sqft'], 0) @orca.column('buildings', cache=True, cache_scope='forever') def is_residential(buildings): return buildings['building_type_name'].isin(['rsf', 'rmf', 'mh']) @orca.column('buildings', cache=True, cache_scope='iteration') def res_hh(buildings, households): hh_sums = households.local.groupby('building_id').size() return hh_sums.reindex(buildings.index).fillna(0) @orca.column('buildings', cache=True, cache_scope='iteration') def seas_hh(buildings, seasonal_households): seas_sums = seasonal_households.local.groupby('building_id').size() return seas_sums.reindex(buildings.index).fillna(0) @orca.column('buildings', cache=True, cache_scope='iteration') def total_hh(buildings): return buildings['res_hh'] + buildings['seas_hh'] @orca.column('buildings', cache=True, cache_scope='iteration') def vac_res_units(buildings): return buildings['residential_units'] - buildings['total_hh'] @orca.column('buildings', cache=True, cache_scope='iteration') def site_based_jobs(buildings, jobs): sb = jobs.local.query("job_class == 'site based'") return sb.groupby('building_id').size().reindex(buildings.index).fillna(0) @orca.column('buildings', cache=True, cache_scope='iteration') def job_spaces(buildings): est_job_spaces = np.round(fill_nulls( buildings['non_residential_sqft'] / buildings['sqft_per_job'], 0)) return pd.DataFrame([est_job_spaces, buildings['site_based_jobs']]).max() @orca.column('buildings', cache=True, cache_scope='iteration') def vac_job_spaces(buildings): return buildings['job_spaces'] - buildings['site_based_jobs'] @orca.column('buildings', cache=True, cache_scope='iteration') def total_sqft(buildings): return buildings['residential_sqft'].fillna(0) + buildings['non_residential_sqft'].fillna(0) @orca.column('buildings', cache=True, cache_scope='iteration') def res_units_in_last5(buildings): """ # of residential units built in the last 5 years. """ is_new = (buildings['building_age'] <= 5).astype(int) return buildings['residential_units'] * is_new @orca.column('buildings', cache=True, cache_scope='iteration') def sf_res_units_in_last5(buildings): """ # of single family residential units built in the last 5 years. """ is_sf = buildings['building_type_name'] == 'rsf' is_new = (buildings['building_age'] <= 5) return buildings['residential_units'] * (is_sf & is_new).astype(int) @orca.column('buildings', cache=True, cache_scope='iteration') def mf_res_units_in_last5(buildings): """ # of single family residential units built in the last 5 years. """ is_mf = buildings['building_type_name'] == 'rmf' is_new = (buildings['building_age'] <= 5) return buildings['residential_units'] * (is_mf & is_new).astype(int) @orca.column('buildings') def sb_edu_jobs(buildings, jobs): """ Number of naics 61 (education) jobs in a building. """ sb_naics61_jobs = jobs.local.query("job_class == 'site based' and mag_naics == '61'") return sb_naics61_jobs.groupby('building_id').size().reindex(buildings.index).fillna(0) # broadcast building variables bldg_broadcast_cols = ['building_type_name', 'residential_sqft', 'residential_units', 'total_fcv', 'year_built', 'parcel_id'] for bldg_col in bldg_broadcast_cols: for curr_tab in ['households', 'persons', 'jobs', 'seasonal_households', 'gq_persons']: make_broadcast_injectable('buildings', curr_tab, bldg_col, 'building_id') ##################### # households schema ##################### @orca.column('households', cache=True, cache_scope='iteration') def income_quintile(households): """ Household income quintile. TODO: do we want to do this at the county level? """ return pd.Series( pd.qcut( households['income'], 5, [1, 2, 3, 4, 5]), index=households.index ) @orca.column('households', cache=True, cache_scope='iteration') def income_quintile_MC(households): """ Household income quintile for MC housedolds only. """ MC_hhlds = households.to_frame(['income', 'county']).query("county == 'MC'") return
crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.port_in_connect.source, testentity.port_in, "The connection's source is the pulled up port") self.assertEqual(testentity.port_in_connect.target, testentity.sub1.port_in, "The connection's target is the subentity's input port") # check port pull up self.assertTrue(isinstance(testentity.port_out, crest.Output), "The entity pulled up an output port") self.assertEqual(testentity.port_out.value, testentity.sub2.port_out.value, "The pulled up port has the same value") self.assertEqual(testentity.port_out.resource, testentity.sub2.port_out.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.port_out_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.port_out_connect.source, testentity.sub2.port_out, "The connection's source is the subentity output port") self.assertEqual(testentity.port_out_connect.target, testentity.port_out, "The connection's target is the pulled up output port") def test_named_pullup_multiple_ports(self): class SubClass(self.testclass): def __init__(self): api.pullup(my_port_in=self.sub1.port_in, my_port_out=self.sub2.port_out) testentity = SubClass() # check port pull up self.assertTrue(isinstance(testentity.my_port_in, crest.Input), "The entity pulled up port") self.assertEqual(testentity.my_port_in.value, testentity.sub1.port_in.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_in.resource, testentity.sub1.port_in.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_in_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_in_connect.source, testentity.my_port_in, "The connection's source is the pulled up port") self.assertEqual(testentity.my_port_in_connect.target, testentity.sub1.port_in, "The connection's target is the subentity's input port") # check port pull up self.assertTrue(isinstance(testentity.my_port_out, crest.Output), "The entity pulled up an output port") self.assertEqual(testentity.my_port_out.value, testentity.sub2.port_out.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_out.resource, testentity.sub2.port_out.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_out_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_out_connect.source, testentity.sub2.port_out, "The connection's source is the subentity output port") self.assertEqual(testentity.my_port_out_connect.target, testentity.my_port_out, "The connection's target is the pulled up output port") def test_pullup_multiple_ports_name_clash(self): class SubClass(self.testclass): def __init__(self): api.pullup(self.sub1.port_in, self.sub2.port_in) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception),"Error during pullup. There exists already an object called 'port_in'.") def test_pullup_two_individual_pullups_name_clash(self): class SubClass(self.testclass): def __init__(self): api.pullup(self.sub1.port_in) api.pullup(self.sub2.port_in) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception),"Error during pullup. There exists already an object called 'port_in'.") def test_pullup_influence_name_clash(self): class SubClass(self.testclass): def __init__(self): self.port_in_connect = crest.Influence(source=self.sub1.port_out, target=self.sub2.port_out) api.pullup(self.sub1.port_in) api.pullup(self.sub2.port_in) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception), "Error during pullup. Cannot create connection influence. Name 'port_in_connect' already exists.") def test_pullup_multiple_ports_avoid_name_clash(self): class SubClass(self.testclass): def __init__(self): api.pullup(my_port_in1=self.sub1.port_in, my_port_in2=self.sub2.port_in) testentity = SubClass() # check port pull up self.assertTrue(isinstance(testentity.my_port_in1, crest.Input), "The entity pulled up port") self.assertEqual(testentity.my_port_in1.value, testentity.sub1.port_in.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_in1.resource, testentity.sub1.port_in.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_in1_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_in1_connect.source, testentity.my_port_in1, "The connection's source is the pulled up port") self.assertEqual(testentity.my_port_in1_connect.target, testentity.sub1.port_in, "The connection's target is the subentity's input port") # check port pull up self.assertTrue(isinstance(testentity.my_port_in2, crest.Input), "The entity pulled up port") self.assertEqual(testentity.my_port_in2.value, testentity.sub1.port_in.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_in2.resource, testentity.sub1.port_in.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_in2_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_in2_connect.source, testentity.my_port_in2, "The connection's source is the pulled up port") self.assertEqual(testentity.my_port_in2_connect.target, testentity.sub2.port_in, "The connection's target is the subentity's input port") def test_pullup_two_individual_pullups_avoid_name_clash(self): class SubClass(self.testclass): def __init__(self): api.pullup(my_port_in1=self.sub1.port_in) api.pullup(my_port_in2=self.sub2.port_in) testentity = SubClass() # check port pull up self.assertTrue(isinstance(testentity.my_port_in1, crest.Input), "The entity pulled up port") self.assertEqual(testentity.my_port_in1.value, testentity.sub1.port_in.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_in1.resource, testentity.sub1.port_in.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_in1_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_in1_connect.source, testentity.my_port_in1, "The connection's source is the pulled up port") self.assertEqual(testentity.my_port_in1_connect.target, testentity.sub1.port_in, "The connection's target is the subentity's input port") # check port pull up self.assertTrue(isinstance(testentity.my_port_in2, crest.Input), "The entity pulled up port") self.assertEqual(testentity.my_port_in2.value, testentity.sub1.port_in.value, "The pulled up port has the same value") self.assertEqual(testentity.my_port_in2.resource, testentity.sub1.port_in.resource, "The pulled up port has the same resource") # check influence self.assertTrue(isinstance(testentity.my_port_in2_connect, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_port_in2_connect.source, testentity.my_port_in2, "The connection's source is the pulled up port") self.assertEqual(testentity.my_port_in2_connect.target, testentity.sub2.port_in, "The connection's target is the subentity's input port") class ConvenienceAPI_RelayTest(unittest.TestCase): """ These tests checks the api's relay function. """ def setUp(self): """Create an entity with subentities from which we can pullup and relay""" res = crest.Resource("test", crest.REAL) class TestSubEntity(crest.Entity): state = current = crest.State() port_in = crest.Input(res, 111) port_in2 = crest.Input(res, 222) port_out = crest.Output(res, 11111) port_out2 = crest.Output(res, 22222) class TestEntity(crest.Entity): state = current = crest.State() local = crest.Local(res, 9999) local2 = crest.Local(res, 8888) sub1 = TestSubEntity() sub2 = TestSubEntity() self.testclass = TestEntity def test_single_relay(self): class SubClass(self.testclass): def __init__(self): api.relay( (self.sub1.port_out, self.sub2.port_in) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.sub1_port_out_TO_sub2_port_in, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.sub1_port_out_TO_sub2_port_in.source, testentity.sub1.port_out, "The connection's correctly set.") self.assertEqual(testentity.sub1_port_out_TO_sub2_port_in.target, testentity.sub2.port_in, "The connection's target is correctly set.") def test_single_named_relay(self): class SubClass(self.testclass): def __init__(self): api.relay( my_relay=(self.sub1.port_out, self.sub2.port_in) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.my_relay, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_relay.source, testentity.sub1.port_out, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay.target, testentity.sub2.port_in, "The connection's target is correctly set.") def test_multiple_relay(self): class SubClass(self.testclass): def __init__(self): api.relay( (self.sub1.port_out, self.sub2.port_in), (self.sub1.port_out2, self.sub2.port_in2) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.sub1_port_out_TO_sub2_port_in, crest.Influence), "The entity created an influence for the relayed port") self.assertEqual(testentity.sub1_port_out_TO_sub2_port_in.source, testentity.sub1.port_out, "The connection's source is correctly set.") self.assertEqual(testentity.sub1_port_out_TO_sub2_port_in.target, testentity.sub2.port_in, "The connection's target is correctly set.") # check influence self.assertTrue(isinstance(testentity.sub1_port_out2_TO_sub2_port_in2, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.sub1_port_out2_TO_sub2_port_in2.source, testentity.sub1.port_out2, "The connection's source is correctly set.") self.assertEqual(testentity.sub1_port_out2_TO_sub2_port_in2.target, testentity.sub2.port_in2, "The connection's target correctly set.") def test_multiple_named_relay(self): class SubClass(self.testclass): def __init__(self): api.relay( my_relay=(self.sub1.port_out, self.sub2.port_in), my_relay2=(self.sub1.port_out2, self.sub2.port_in2) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.my_relay, crest.Influence), "The entity created an influence for the relayed port") self.assertEqual(testentity.my_relay.source, testentity.sub1.port_out, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay.target, testentity.sub2.port_in, "The connection's target is correctly set.") # check influence self.assertTrue(isinstance(testentity.my_relay2, crest.Influence), "The entity created an influence for the pulled up port") self.assertEqual(testentity.my_relay2.source, testentity.sub1.port_out2, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay2.target, testentity.sub2.port_in2, "The connection's target correctly set.") def test_relay_name_clash(self): class SubClass(self.testclass): def __init__(self): api.relay( (self.sub1.port_out, self.sub2.port_in), (self.sub1.port_out, self.sub2.port_in)) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception), "Error during relay. Cannot create influence. Name 'sub1_port_out_TO_sub2_port_in' already exists.") def test_named_relay_name_clash(self): class SubClass(self.testclass): def __init__(self): api.relay(my_relay=(self.sub1.port_out, self.sub2.port_in)) api.relay(my_relay=(self.sub1.port_out2, self.sub2.port_in2)) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception), "Error during relay. Cannot create influence. Name 'my_relay' already exists.") def test_source_is_not_port(self): class SubClass(self.testclass): def __init__(self): api.relay(my_relay=(self.state, self.sub2.port_in)) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception), "Source object 'state' is not a Port.") def test_target_is_not_port(self): class SubClass(self.testclass): def __init__(self): api.relay(my_relay=(self.sub1.port_out, self.state)) with self.assertRaises(ValueError) as context: SubClass() self.assertEqual(str(context.exception), "Target object 'state' is not a Port.") def test_both_ports_in_entity(self): class SubClass(self.testclass): def __init__(self): api.relay( my_relay=(self.local, self.local2) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.my_relay, crest.Influence), "The entity created an influence for the relayed port") self.assertEqual(testentity.my_relay.source, testentity.local, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay.target, testentity.local2, "The connection's target is correctly set.") def test_source_port_in_subentity(self): class SubClass(self.testclass): def __init__(self): api.relay( my_relay=(self.sub1.port_out, self.local2) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.my_relay, crest.Influence), "The entity created an influence for the relayed port") self.assertEqual(testentity.my_relay.source, testentity.sub1.port_out, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay.target, testentity.local2, "The connection's target is correctly set.") def test_target_port_in_subentity(self): class SubClass(self.testclass): def __init__(self): api.relay( my_relay=(self.local, self.sub1.port_in) ) testentity = SubClass() # check influence self.assertTrue(isinstance(testentity.my_relay, crest.Influence), "The entity created an influence for the relayed port") self.assertEqual(testentity.my_relay.source, testentity.local, "The connection's source is correctly set.") self.assertEqual(testentity.my_relay.target, testentity.sub1.port_in, "The connection's target is correctly set.") def test_source_parent_is_None_throws_error(self): class SubClass(self.testclass): def __init__(self): pass local = crest.Local(crest.Resource("dummy", crest.REAL), 12345) testentity = SubClass() with self.assertRaises(ValueError) as context: api.relay( my_relay=(local, testentity.sub1.port_in) ) self.assertEqual(str(context.exception), "Either the source or the target port are not inside an entity") def test_target_parent_is_None_throws_error(self): class SubClass(self.testclass): def __init__(self): pass local = crest.Local(crest.Resource("dummy", crest.REAL), 12345) testentity = SubClass() with self.assertRaises(ValueError) as context: api.relay( my_relay=(testentity.sub1.port_in, local) ) self.assertEqual(str(context.exception), "Either the source or the target port are not
<gh_stars>1-10 import gpflow import numpy as np import pandas as pd import os import sys import matplotlib.pyplot as plt import tensorflow as tf import tensorflow_probability as tfp import gpflow from gpflow.utilities import ops, print_summary from gpflow.config import set_default_float, default_float, set_default_summary_fmt from gpflow.ci_utils import ci_niter from typing import Optional from gpflow import covariances, kernels, likelihoods from gpflow.base import Parameter from gpflow.config import default_float, default_jitter from gpflow.expectations import expectation from gpflow.inducing_variables import InducingPoints from gpflow.kernels import Kernel from gpflow.mean_functions import MeanFunction, Zero from gpflow.probability_distributions import DiagonalGaussian from gpflow.utilities import positive, to_default_float from gpflow.utilities.ops import pca_reduce from gpflow.models.model import BayesianModel from gpflow.models.training_mixins import InputData, InternalDataTrainingLossMixin, OutputData from gpflow.models.util import data_input_to_tensor, inducingpoint_wrapper #import cop-e-cat dfs Y = data_df[['ALBUMIN', 'ANION GAP', 'BASE EXCESS', 'BICARBONATE', 'BILIRUBIN', 'CALCIUM', 'CARBOXYHEMOGLOBIN', 'CHLORIDE', 'CREATININE', 'HEMATOCRIT', 'HEMOGLOBIN', 'INSPIRED OXYGEN', 'INTERNATIONAL NORMALIZED RATIO', 'LACTATE', 'METHEMOGLOBIN', 'PARTIAL THROMBOPLASTIN TIME', 'PCO2', 'PH', 'PLATELETS', 'PO2', 'POTASSIUM', 'SODIUM', 'UREA NITROGEN', 'URINE OUTPUT', 'WHITE BLOOD CELLS', 'FIO2', 'PEEP', 'OXYGEN (L)', 'Respiratory Aids', 'Nonsteroidal Anti-inflammatory Agents (NSAIDs)', 'Corticosteroids - Topical', 'Mineralocorticoids', 'Glucocorticosteroids', 'Influenza Agents', 'Antiretrovirals',]] # Y = Y[:300] for col in Y.columns: Y[(Y < 0) | (Y > 1000)][col] = Y[(Y > 0) & (Y < 1000)][col].mean() std = Y.std() zero_std, = np.where(std == 0) std[zero_std] = 1 Y = (Y - Y.mean()) / std class tGPLVM(BayesianModel, InternalDataTrainingLossMixin): def __init__( self, data: OutputData, X_data_mean: tf.Tensor, X_data_var: tf.Tensor, kernel: Kernel, mean_function=None, num_inducing_variables: Optional[int] = None, inducing_variable=None, X_prior_mean=None, X_prior_var=None, degrees_of_freedom=3, ): """ Initialise tGPLVM object. This method only works with a Gaussian likelihood. :param data: data matrix, size N (number of points) x D (dimensions) :param X_data_mean: initial latent positions, size N (number of points) x Q (latent dimensions). :param X_data_var: variance of latent positions ([N, Q]), for the initialisation of the latent space. :param kernel: kernel specification, by default Squared Exponential :param num_inducing_variables: number of inducing points, M :param inducing_variable: matrix of inducing points, size M (inducing points) x Q (latent dimensions). By default random permutation of X_data_mean. :param X_prior_mean: prior mean used in KL term of bound. By default 0. Same size as X_data_mean. :param X_prior_var: prior variance used in KL term of bound. By default 1. """ super().__init__() num_data, self.num_latent_gps = X_data_mean.shape if mean_function is None: mean_function = Zero() self.mean_function = mean_function self.kernel = kernel self.likelihood = likelihoods.Gaussian() self.data = data_input_to_tensor(data) assert X_data_var.ndim == 2 self.X_data_mean = Parameter(X_data_mean) self.X_data_var = Parameter(X_data_var, transform=positive()) self.num_data = num_data self.output_dim = self.data.shape[-1] self.dof = degrees_of_freedom assert np.all(X_data_mean.shape == X_data_var.shape) assert X_data_mean.shape[0] == self.data.shape[0], "X mean and Y must be same size." assert X_data_var.shape[0] == self.data.shape[0], "X var and Y must be same size." if (inducing_variable is None) == (num_inducing_variables is None): raise ValueError( "BayesianGPLVM needs exactly one of `inducing_variable` and `num_inducing_variables`" ) if inducing_variable is None: Z = X_data_mean[xu_init] inducing_variable = InducingPoints(Z) self.inducing_variable = inducingpoint_wrapper(inducing_variable) assert X_data_mean.shape[1] == self.num_latent_gps # deal with parameters for the prior mean variance of X if X_prior_mean is None: X_prior_mean = tf.zeros((self.num_data, self.num_latent_gps), dtype=default_float()) if X_prior_var is None: X_prior_var = tf.ones((self.num_data, self.num_latent_gps)) self.X_prior_mean = tf.convert_to_tensor(np.atleast_1d(X_prior_mean), dtype=default_float()) self.X_prior_var = tf.convert_to_tensor(np.atleast_1d(X_prior_var), dtype=default_float()) assert self.X_prior_mean.shape[0] == self.num_data assert self.X_prior_mean.shape[1] == self.num_latent_gps assert self.X_prior_var.shape[0] == self.num_data assert self.X_prior_var.shape[1] == self.num_latent_gps def maximum_log_likelihood_objective(self) -> tf.Tensor: return self.elbo() def elbo(self) -> tf.Tensor: """ Construct a tensorflow function to compute the bound on the marginal likelihood. """ Y_data = self.data pX = DiagonalGaussian(self.X_data_mean, self.X_data_var) num_inducing = self.inducing_variable.num_inducing psi0 = tf.reduce_sum(expectation(pX, self.kernel)) psi1 = expectation(pX, (self.kernel, self.inducing_variable)) psi2 = tf.reduce_sum( expectation( pX, (self.kernel, self.inducing_variable), (self.kernel, self.inducing_variable) ), axis=0, ) cov_uu = covariances.Kuu(self.inducing_variable, self.kernel, jitter=default_jitter()) L = tf.linalg.cholesky(cov_uu) sigma2 = self.likelihood.variance sigma = tf.sqrt(sigma2) # Compute intermediate matrices A = tf.linalg.triangular_solve(L, tf.transpose(psi1), lower=True) / sigma tmp = tf.linalg.triangular_solve(L, psi2, lower=True) AAT = tf.linalg.triangular_solve(L, tf.transpose(tmp), lower=True) / sigma2 B = AAT + tf.eye(num_inducing, dtype=default_float()) LB = tf.linalg.cholesky(B) log_det_B = 2.0 * tf.reduce_sum(tf.math.log(tf.linalg.diag_part(LB))) c = tf.linalg.triangular_solve(LB, tf.linalg.matmul(A, Y_data), lower=True) / sigma # KL[q(x) || p(x)] dX_data_var = ( self.X_data_var if self.X_data_var.shape.ndims == 2 else tf.linalg.diag_part(self.X_data_var) ) NQ = to_default_float(tf.size(self.X_data_mean)) D = to_default_float(tf.shape(Y_data)[1]) KL = -0.5 * tf.reduce_sum(tf.math.log(dX_data_var)) KL += 0.5 * tf.reduce_sum(tf.math.log(self.X_prior_var)) KL -= 0.5 * NQ KL += 0.5 * tf.reduce_sum( (tf.square(self.X_data_mean - self.X_prior_mean) + dX_data_var) / self.X_prior_var ) # compute log marginal bound ND = to_default_float(tf.size(Y_data)) bound = -0.5 * ND * tf.math.log(2 * np.pi * sigma2) bound += -0.5 * D * log_det_B bound += -0.5 * tf.reduce_sum(tf.square(Y_data)) / sigma2 bound += 0.5 * tf.reduce_sum(tf.square(c)) bound += -0.5 * D * (tf.reduce_sum(psi0) / sigma2 - tf.reduce_sum(tf.linalg.diag_part(AAT))) bound -= KL return bound def calc_num_latent_gps_from_data(self, data, kernel, likelihood): """ Calculates the number of latent GPs required based on the data as well as the type of kernel and likelihood. """ _, Y = data output_dim = Y.shape[-1] if isinstance(kernel, MultioutputKernel): # MultioutputKernels already have num_latent_gps attributes num_latent_gps = kernel.num_latent_gps elif isinstance(likelihood, SwitchedLikelihood): # the SwitchedLikelihood partitions/stitches based on the last # column in Y, but we should not add a separate latent GP for this! # hence decrement by 1 num_latent_gps = output_dim - 1 assert num_latent_gps > 0 else: num_latent_gps = output_dim return num_latent_gps def predict_f(self, Xnew, full_cov=False, full_output_cov=False): """ :param Xnew: points at which to predict """ if full_output_cov: raise NotImplementedError pX = DiagonalGaussian(self.X_data_mean, self.X_data_var) Y_data = self.data num_inducing = self.inducing_variable.num_inducing psi1 = expectation(pX, (self.kernel, self.inducing_variable)) psi2 = tf.reduce_sum( expectation( pX, (self.kernel, self.inducing_variable), (self.kernel, self.inducing_variable) ), axis=0, ) jitter = default_jitter() Kus = covariances.Kuf(self.inducing_variable, self.kernel, Xnew) sigma2 = self.likelihood.variance sigma = tf.sqrt(sigma2) L = tf.linalg.cholesky(covariances.Kuu(self.inducing_variable, self.kernel, jitter=jitter)) A = tf.linalg.triangular_solve(L, tf.transpose(psi1), lower=True) / sigma tmp = tf.linalg.triangular_solve(L, psi2, lower=True) AAT = tf.linalg.triangular_solve(L, tf.transpose(tmp), lower=True) / sigma2 B = AAT + tf.eye(num_inducing, dtype=default_float()) LB = tf.linalg.cholesky(B) c = tf.linalg.triangular_solve(LB, tf.linalg.matmul(A, Y_data), lower=True) / sigma tmp1 = tf.linalg.triangular_solve(L, Kus, lower=True) tmp2 = tf.linalg.triangular_solve(LB, tmp1, lower=True) mean = tf.linalg.matmul(tmp2, c, transpose_a=True) if full_cov: var = ( self.kernel(Xnew) + tf.linalg.matmul(tmp2, tmp2, transpose_a=True) - tf.linalg.matmul(tmp1, tmp1, transpose_a=True) ) shape = tf.stack([1, 1, tf.shape(Y_data)[1]]) var = tf.tile(tf.expand_dims(var, 2), shape) else: var = ( self.kernel(Xnew, full_cov=False) + tf.reduce_sum(tf.square(tmp2), axis=0) - tf.reduce_sum(tf.square(tmp1), axis=0) ) shape = tf.stack([1, tf.shape(Y_data)[1]]) var = tf.tile(tf.expand_dims(var, 1), shape) return mean + self.mean_function(Xnew), var def predict_f_samples( self, Xnew: InputData, num_samples: Optional[int] = None, full_cov: bool = True, full_output_cov: bool = False, ) -> tf.Tensor: """ Produce samples from the posterior latent function(s) at the input points. :param Xnew: InputData Input locations at which to draw samples, shape [..., N, D] where N is the number of rows and D is the input dimension of each point. :param num_samples: Number of samples to draw. If `None`, a single sample is drawn and the return shape is [..., N, P], for any positive integer the return shape contains an extra batch dimension, [..., S, N, P], with S = num_samples and P is the number of outputs. :param full_cov: If True, draw correlated samples over the inputs. Computes the Cholesky over the dense covariance matrix of size [num_data, num_data]. If False, draw samples that are uncorrelated over the inputs. :param full_output_cov: If True, draw correlated samples over the outputs. If False, draw samples that are uncorrelated over the outputs. Currently, the method does not support `full_output_cov=True` and `full_cov=True`. """ mean, cov = self.predict_f(Xnew, full_cov=full_cov, full_output_cov=full_output_cov) y = tfp.distributions.StudentT(self.df, mean, cov, name='StudentT') return y.sample(sample_shape=(num_samples)) def predict_y(self, Xnew, full_cov=False, full_output_cov=False): """ Compute the mean and variance of the held-out data at the input points. """ f_mean, f_var = self.predict_f(Xnew, full_cov=full_cov, full_output_cov=full_output_cov) return self.likelihood.predict_mean_and_var(f_mean, f_var) def predict_log_density(self, data, full_cov=False, full_output_cov=False): """ Compute the log density of the data at the new data points. """ X, Y = data f_mean, f_var = self.predict_f(X, full_cov=full_cov, full_output_cov=full_output_cov) return self.likelihood.predict_log_density(f_mean, f_var, Y) from sklearn.decomposition import PCA latent_dim = 3 # number of latent dimensions num_inducing = 20 # number of inducing pts num_data = Y.shape[0] # number of data points pca = PCA(n_components = latent_dim) X_mean_init = tf.convert_to_tensor(pca.fit_transform(Y)) X_var_init = tf.ones((num_data, latent_dim), dtype=default_float()) np.random.seed(1) # for reproducibility batchsize = 30 opt = gpflow.optimizers.Scipy() maxiter = ci_niter(100) params = None for i in range(0, Y.shape[0] - batchsize, batchsize): print(i) inducing_variable = tf.convert_to_tensor( np.random.permutation(X_mean_init[i:i+batchsize].numpy())[:num_inducing], dtype=default_float() ) lengthscales =
modulus 7^20 sage: Zp(7, 20, 'capped-abs') 7-adic Ring with capped absolute precision 20 We create a capped relative ring with each print mode:: sage: k = Zp(7, 8, print_mode='series'); k 7-adic Ring with capped relative precision 8 sage: k(7*(19)) 5*7 + 2*7^2 + O(7^9) sage: k(7*(-19)) 2*7 + 4*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + O(7^9) :: sage: k = Zp(7, print_mode='val-unit'); k 7-adic Ring with capped relative precision 20 sage: k(7*(19)) 7 * 19 + O(7^21) sage: k(7*(-19)) 7 * 79792266297611982 + O(7^21) :: sage: k = Zp(7, print_mode='terse'); k 7-adic Ring with capped relative precision 20 sage: k(7*(19)) 133 + O(7^21) sage: k(7*(-19)) 558545864083283874 + O(7^21) Note that `p`-adic rings are cached (via weak references):: sage: a = Zp(7); b = Zp(7) sage: a is b True We create some elements in various rings:: sage: R = Zp(5); a = R(4); a 4 + O(5^20) sage: S = Zp(5, 10, type = 'capped-abs'); b = S(2); b 2 + O(5^10) sage: a + b 1 + 5 + O(5^10) """ def create_key(self, p, prec = None, type = 'capped-rel', print_mode = None, names = None, ram_name = None, print_pos = None, print_sep = None, print_alphabet = None, print_max_terms = None, show_prec = None, check = True, label = None): r""" Creates a key from input parameters for ``Zp``. See the documentation for ``Zp`` for more information. TESTS:: sage: Zp.create_key(5,40) (5, 40, 'capped-rel', 'series', '5', True, '|', (), -1, 'bigoh', None) sage: Zp.create_key(5,40,print_mode='digits') (5, 40, 'capped-rel', 'digits', '5', True, '|', ('0', '1', '2', '3', '4'), -1, 'dots', None) """ if isinstance(names, (int, Integer)): # old pickle; names is what used to be halt. names = ram_name ram_name = print_pos print_pos = print_sep print_alphabet = print_max_terms print_max_terms = check check = True if label is not None and type not in ['lattice-cap','lattice-float']: raise ValueError("label keyword only supported for lattice precision") return get_key_base(p, prec, type, print_mode, names, ram_name, print_pos, print_sep, print_alphabet, print_max_terms, show_prec, check, ['capped-rel', 'fixed-mod', 'capped-abs', 'floating-point', 'lattice-cap', 'lattice-float'], label=label) def create_object(self, version, key): r""" Creates an object using a given key. See the documentation for ``Zp`` for more information. TESTS:: sage: Zp.create_object((3,4,2),(5, 41, 'capped-rel', 'series', '5', True, '|', (), -1)) 5-adic Ring with capped relative precision 41 """ if (version[0] < 3 or (len(version) > 1 and version[0] == 3 and version[1] < 2) or (len(version) > 2 and version[0] == 3 and version[1] == 2 and version[2] < 3)): p, prec, type, print_mode, name = key print_pos, print_sep, print_alphabet, print_max_terms = None, None, None, None elif version[0] < 8: p, prec, type, print_mode, name, print_pos, print_sep, print_alphabet, print_max_terms = key show_prec = None label = None else: p, prec, type, print_mode, name, print_pos, print_sep, print_alphabet, print_max_terms, show_prec, label = key if (version[0] < 4 or (len(version) > 1 and version[0] == 4 and version[1] < 5) or (len(version) > 2 and version[0] == 4 and version[1] == 5 and version[2] < 3)): # keys changed in order to reduce irrelevant duplications: e.g. two Zps with print_mode 'series' # that are identical except for different 'print_alphabet' now return the same object. key = get_key_base(p, prec, type, print_mode, name, None, print_pos, print_sep, print_alphabet, print_max_terms, None, False, ['capped-rel', 'fixed-mod', 'capped-abs', 'lattice-cap', 'lattice-float']) try: obj = self._cache[version, key]() if obj is not None: return obj except KeyError: pass p, prec, type, print_mode, name, print_pos, print_sep, print_alphabet, print_max_terms, show_prec, label = key if type == 'capped-rel': return pAdicRingCappedRelative(p, prec, {'mode': print_mode, 'pos': print_pos, 'sep': print_sep, 'alphabet': print_alphabet, 'ram_name': name, 'max_ram_terms': print_max_terms, 'show_prec': show_prec}, name) elif type == 'fixed-mod': return pAdicRingFixedMod(p, prec, {'mode': print_mode, 'pos': print_pos, 'sep': print_sep, 'alphabet': print_alphabet, 'ram_name': name, 'max_ram_terms': print_max_terms, 'show_prec': show_prec}, name) elif type == 'capped-abs': return pAdicRingCappedAbsolute(p, prec, {'mode': print_mode, 'pos': print_pos, 'sep': print_sep, 'alphabet': print_alphabet, 'ram_name': name, 'max_ram_terms': print_max_terms, 'show_prec': show_prec}, name) elif type == 'floating-point': return pAdicRingFloatingPoint(p, prec, {'mode': print_mode, 'pos': print_pos, 'sep': print_sep, 'alphabet': print_alphabet, 'ram_name': name, 'max_ram_terms': print_max_terms, 'show_prec': show_prec}, name) elif type[:8] == 'lattice-': subtype = type[8:] return pAdicRingLattice(p, prec, subtype, {'mode': print_mode, 'pos': print_pos, 'sep': print_sep, 'alphabet': print_alphabet, 'ram_name': name, 'max_ram_terms': print_max_terms, 'show_prec': show_prec}, name, label) else: raise ValueError("unexpected type") Zp = Zp_class("Zp") ###################################################### # Zq -- unramified extensions ###################################################### def Zq(q, prec = None, type = 'capped-rel', modulus = None, names=None, print_mode=None, ram_name = None, res_name = None, print_pos = None, print_sep = None, print_max_ram_terms = None, print_max_unram_terms = None, print_max_terse_terms = None, show_prec = None, check = True, implementation = 'FLINT'): r""" Given a prime power `q = p^n`, return the unique unramified extension of `\mathbb{Z}_p` of degree `n`. INPUT: - ``q`` -- integer, list or tuple: the prime power in `\mathbb{Q}_q`. Or a factorization object, single element list ``[(p, n)]`` where ``p`` is a prime and ``n`` a positive integer, or the pair ``(p, n)``. - ``prec`` -- integer (default: ``20``) the precision cap of the field. Individual elements keep track of their own precision. See TYPES and PRECISION below. - ``type`` -- string (default: ``'capped-rel'``) Valid types are ``'capped-abs'``, ``'capped-rel'``, ``'fixed-mod'``, and ``'floating-point'``. See TYPES and PRECISION below - modulus -- polynomial (default None) A polynomial defining an unramified extension of `\mathbb{Z}_p`. See MODULUS below. - ``names`` -- string or tuple (``None`` is only allowed when `q=p`). The name of the generator, reducing to a generator of the residue field. - ``print_mode`` -- string (default: ``None``). Valid modes are ``'series'``, ``'val-unit'``, ``'terse'``, and ``'bars'``. See PRINTING below. - ``ram_name`` -- string (defaults to string representation of `p` if None). ``ram_name`` controls how the prime is printed. See PRINTING below. - ``res_name`` -- string (defaults to ``None``, which corresponds to adding a ``'0'`` to the end of the name). Controls how elements of the reside field print. - ``print_pos`` -- bool (default ``None``) Whether to only use positive integers in the representations of elements. See PRINTING below. - ``print_sep`` -- string (default ``None``) The separator character used in the ``'bars'`` mode. See PRINTING below. - ``print_max_ram_terms`` -- integer (default ``None``) The maximum number of powers of `p` shown. See PRINTING below. - ``print_max_unram_terms`` -- integer (default ``None``) The maximum number of entries shown in a coefficient of `p`. See PRINTING below. - ``print_max_terse_terms`` -- integer (default ``None``) The maximum number of terms in the polynomial representation of an element (using ``'terse'``). See PRINTING below. - ``show_prec`` -- bool (default ``None``) Whether to show the precision for elements. See PRINTING below. - ``check`` -- bool (default ``True``) whether to check inputs. - ``implementation`` -- string (default ``FLINT``) which implementation to use. ``NTL`` is the other option. OUTPUT: - The corresponding unramified `p`-adic ring. TYPES AND PRECISION: There are two types of precision for a `p`-adic element. The first is relative precision (default), which gives the number of known `p`-adic digits:: sage: R.<a> = Zq(25, 20, 'capped-rel', print_mode='series'); b = 25*a; b a*5^2 + O(5^22) sage: b.precision_relative() 20 The second type of precision is absolute precision, which gives the power of `p` that this element is defined modulo:: sage: b.precision_absolute() 22 There are many types of `p`-adic rings: capped relative rings (``type='capped-rel'``), capped absolute rings (``type='capped-abs'``), fixed modulus rings (``type='fixed-mod'``), and floating point rings (``type='floating-point'``). In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.:: sage: R.<a> = Zq(9, 5, 'capped-rel', print_mode='series'); b = (1+2*a)^4; b 2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^5) sage: c = R(3249); c 3^2 + 3^4 + 3^5 + 3^6 + O(3^7) sage: b
= None if ctx.aliasExpr: kwargs['alias'] = self.visit(ctx.aliasExpr) name = self.visit(ctx.name) workarea = self.visit(ctx.workArea) if isinstance(workarea, float): workarea = int(workarea) return make_func_code('DB.use', name, workarea, opentype, **kwargs) def visitLocate(self, ctx): kwargs = OrderedDict() scope, for_cond, while_cond, nooptimize = self.getQueryConditions(ctx.queryCondition()) if for_cond: kwargs['for_cond'] = for_cond if while_cond: kwargs['while_cond'] = while_cond scope = scope or ('rest',) else: scope = scope or ('all',) if nooptimize: kwargs['nooptimize'] = True return make_func_code('DB.locate', **kwargs) def visitContinueLocate(self, ctx): return make_func_code('DB.continue_locate') def visitAppendFrom(self, ctx): if ctx.ARRAY(): return make_func_code('DB.insert', None, self.visit(ctx.expr())) sourcename = self.visit(ctx.specialExpr(0)) kwargs = {} if ctx.FOR(): kwargs['for_cond'] = add_args_to_code('lambda: {}', [self.visit(ctx.expr())]) if ctx.typeExpr: kwargs['filetype'] = self.visit(ctx.typeExpr) return make_func_code('DB.append_from', None, sourcename, **kwargs) def visitAppend(self, ctx): menupopup = not ctx.BLANK() tablename = self.visit(ctx.specialExpr()) return make_func_code('DB.append', tablename, menupopup) def visitInsert(self, ctx): table = self.visit(ctx.specialExpr()) if ctx.ARRAY() or ctx.NAME() or ctx.MEMVAR(): values = self.visit(ctx.expr()) else: values = self.visit(ctx.args()) fields = self.visit(ctx.specialArgs()) if fields: if len(fields) != len(values): raise Exception('number of fields must match number of values') values = {field: value for field, value in zip(fields, values)} else: values = tuple(values) return make_func_code('DB.insert', table, values) def visitReplace(self, ctx): value = self.visit(ctx.expr(0)) field = self.visit_with_disabled_scope(ctx.specialExpr(0)) scope, for_cond, while_cond, nooptimize = self.getQueryConditions(ctx.queryCondition()) scope = scope or ('next', 1) if string_type(field): field = field.lower().rsplit('.', 1) tablename = field[0] if len(field) == 2 else None field = field[-1] else: tablename = None return make_func_code('DB.replace', tablename, scope, field, value) def visitSkipRecord(self, ctx): table = self.visit(ctx.specialExpr()) skipnum = self.visit(ctx.expr()) or 1 return make_func_code('DB.skip', table, skipnum) def visitCopyTo(self, ctx): copyTo = self.visit(ctx.specialExpr()) if ctx.STRUCTURE(): return make_func_code('DB.copy_structure', copyTo) def visitDeleteRecord(self, ctx): kwargs = OrderedDict() scope, for_cond, while_cond, nooptimize = self.getQueryConditions(ctx.queryCondition()) scope = scope or ('next', 1) name = self.visit(ctx.inExpr) if for_cond: kwargs['for_cond'] = for_cond if while_cond: kwargs['while_cond'] = while_cond if ctx.RECALL(): kwargs['recall'] = True return make_func_code('DB.delete_record', name, scope, **kwargs) def visitPack(self, ctx): if ctx.DATABASE(): return make_func_code('DB.pack_database') elif ctx.DBF(): pack = 'dbf' elif ctx.MEMO(): pack = 'memo' else: pack = 'both' tablename = self.visit(ctx.tableName) workarea = self.visit(ctx.workArea) return make_func_code('DB.pack', pack, tablename, workarea) def visitIndexOn(self, ctx): field = self.visit(ctx.specialExpr()[0]) indexname = self.visit(ctx.specialExpr()[1]) tag_flag = not not ctx.TAG() compact_flag = not not ctx.COMPACT() if ctx.ASCENDING() and ctx.DESCENDING(): raise Exception('Invalid statement: {}'.format(self.getCtxText(ctx))) order = 'descending' if ctx.DESCENDING() else 'ascending' unique_flag = not not ctx.UNIQUE() return make_func_code('DB.index_on', field, indexname, order, tag_flag, compact_flag, unique_flag) def visitCount(self, ctx): kwargs = OrderedDict() scope, for_cond, while_cond, nooptimize = self.getQueryConditions(ctx.queryCondition()) if for_cond: kwargs['for_cond'] = for_cond if while_cond: kwargs['while_cond'] = while_cond scope = scope or ('rest',) else: scope = scope or ('all',) if nooptimize: kwargs['nooptimize'] = True return add_args_to_code('{} = {}', (self.visit(ctx.toExpr), make_func_code('DB.count', None, scope, **kwargs))) def visitSum(self, ctx): kwargs = OrderedDict() scope, for_cond, while_cond, nooptimize = self.getQueryConditions(ctx.queryCondition()) if for_cond: kwargs['for_cond'] = for_cond if while_cond: kwargs['while_cond'] = while_cond scope = scope or ('rest',) else: scope = scope or ('all',) if nooptimize: kwargs['nooptimize'] = True sumexpr = add_args_to_code('lambda: {}', [self.visit(ctx.sumExpr)]) return add_args_to_code('{} = {}', (self.visit(ctx.toExpr), make_func_code('DB.sum', None, scope, sumexpr, **kwargs))) def getQueryConditions(self, conditions): scope, for_cond, while_cond, nooptimize = None, None, None, None condition_types = [(condition.FOR() or condition.WHILE() or condition.NOOPTIMIZE() or type(condition.scopeClause())) for condition in conditions] condition_types = [condition_type or condition_type.symbol.type for condition_type in condition_types] if len(set(condition_types)) < len(condition_types): raise Exception('Bad Query Condition') for condition in conditions: if condition.FOR(): for_cond = add_args_to_code('lambda: {}', [self.visit(condition.expr())]) if condition.WHILE(): while_cond = add_args_to_code('lambda: {}', [self.visit(condition.expr())]) if condition.scopeClause(): scope = self.visit(condition.scopeClause()) if condition.NOOPTIMIZE(): nooptimize = True return scope, for_cond, while_cond, nooptimize def visitReindex(self, ctx): return make_func_code('DB.reindex', not not ctx.COMPACT()) def visitUpdateCmd(self, ctx): table = self.visit(ctx.tableExpr) set_fields = [(str(self.visit_with_disabled_scope(i)), self.visit(e)) for i, e in zip(ctx.identifier(), ctx.expr())] kwargs = {} if ctx.whereExpr: kwargs['where'] = add_args_to_code('lambda: {}', [self.visit(ctx.whereExpr)]) if ctx.joinArgs: kwargs['join'] = self.visit(ctx.joinArgs) if ctx.fromArgs: kwargs['from_args'] = self.visit(ctx.fromArgs) return make_func_code('DB.update', table, set_fields, **kwargs) def visitSeekRecord(self, ctx): tablename = self.visit(ctx.tablenameExpr) seek_expr = self.visit(ctx.seekExpr) kwargs = OrderedDict() if ctx.orderExpr or ctx.tagName: kwargs['key_index'] = self.visit(ctx.orderExpr or ctx.tagName) if ctx.cdxFileExpr or ctx.idxFileExpr: kwargs['key_index_file'] = self.visit(ctx.cdxFileExpr or ctx.idxFileExpr) if ctx.DESCENDING(): kwargs['descending'] = True return make_func_code('DB.seek', tablename, seek_expr, **kwargs) def visitZapTable(self, ctx): return make_func_code('DB.zap', self.visit(ctx.specialExpr())) def visitBrowse(self, ctx): return make_func_code('DB.browse') def visitScatterExpr(self, ctx): kwargs = {} if ctx.FIELDS(): fields = self.visit(ctx.args(0)) if ctx.LIKE(): kwargs['type'] = 'like' elif ctx.EXCEPT(): kwargs['type'] = 'except' kwargs['fields'] = fields if ctx.MEMO(): kwargs['memo'] = True if ctx.BLANK(): kwargs['blank'] = True if ctx.NAME(): name = self.visit(ctx.expr(0)) if ctx.ADDITIVE(): kwargs['additive'] = name kwargs['totype'] = 'name' elif ctx.TO(): name = self.visit(ctx.expr(0)) kwargs['totype'] = 'array' func = make_func_code('vfpfunc.scatter', **kwargs) if not ctx.MEMVAR(): return add_args_to_code('{} = {}', (name, func)) return func def visitGatherExpr(self, ctx): kwargs = {} if ctx.FIELDS(): kwargs['fields'] = self.visit(ctx.args(0)) if ctx.LIKE(): kwargs['type'] = 'like' elif ctx.EXCEPT(): kwargs['type'] = 'except' if ctx.MEMO(): kwargs['memo'] = True if ctx.NAME() or ctx.FROM(): kwargs['val'] = self.visit(ctx.expr(0)) return make_func_code('vfpfunc.gather', **kwargs) def visitScopeClause(self, ctx): if ctx.ALL(): return 'all', elif ctx.NEXT(): return 'next', self.visit(ctx.expr()) elif ctx.RECORD(): return 'record', self.visit(ctx.expr()) elif ctx.REST(): return 'rest', def visitReport(self, ctx): return make_func_code('vfpfunc.report_form', self.visit(ctx.specialExpr())) def visitSetCmd(self, ctx): setword = ctx.setword.text.lower() kwargs = {'set_value': True} args = () if ctx.BAR(): setword += ' bar' if setword == 'printer': if ctx.TO(): if ctx.DEFAULT(): kwargs.update({'Default': True}) elif ctx.NAME(): kwargs.update({'Name': self.visit(ctx.specialExpr()[0])}) elif ctx.specialExpr(): kwargs.update({'File': self.visit(ctx.specialExpr()[0])}) if ctx.ADDITIVE(): kwargs.update({'additive': True}) else: args = ('ON' if ctx.ON() else 'OFF',) kwargs.update({'prompt': True} if ctx.PROMPT() else {}) elif setword == 'typeahead': args = (self.visit(ctx.expr()[0]),) elif setword == 'procedure': kwargs.update({'additive': True} if ctx.ADDITIVE() else {}) args = self.list_visit(ctx.specialExpr()) elif setword == 'bell': args = ('TO', self.visit(ctx.specialExpr()[0])) if ctx.TO() else ('ON' if ctx.ON() else 'OFF',) elif setword in ('cursor', 'deleted', 'escape', 'exact', 'exclusive', 'multilocks', 'near', 'status', 'status bar', 'tableprompt', 'talk', 'unique'): args = ('ON' if ctx.ON() else 'OFF',) elif setword == 'century': if ctx.TO(): if len(ctx.expr()) > 0: kwargs.update({'century': self.visit(ctx.expr()[0])}) else: kwargs.update({'century': 19}) if len(ctx.expr()) > 1: kwargs.update({'rollover': self.visit(ctx.expr()[1])}) else: kwargs.update({'rollover': 67}) else: args = ('ON' if ctx.ON() else 'OFF',) elif setword == 'classlib': args = (self.visit(ctx.specialExpr(0)),) if ctx.IN(): kwargs['class_file'] = self.visit(ctx.specialExpr(1)) if ctx.ALIAS(): kwargs['alias'] = self.visit(ctx.specialExpr(2 if ctx.IN() else 1)) if ctx.ADDITIVE(): kwargs['additive'] = True elif setword == 'compatible': args = ('ON' if ctx.ON() or ctx.DB4() else 'OFF',) if ctx.PROMPT() or ctx.NOPROMPT(): args = (args[0], 'PROMPT' if ctx.PROMPT() else 'NOPROMPT') elif setword == 'sysmenu': args = [x.symbol.text.lower() for x in (ctx.ON(), ctx.OFF(), ctx.TO(), ctx.SAVE(), ctx.NOSAVE()) if x] if ctx.expr(): args += [self.visit(ctx.expr()[0])] elif ctx.DEFAULT(): args += ['default'] elif setword == 'date': args = (str(self.visit_with_disabled_scope(ctx.identifier())),) elif setword == 'refresh': args = self.list_visit(ctx.expr()) if len(args) < 2: args.append(5) elif setword == 'notify': arg = 'ON' if ctx.ON() else 'OFF' if ctx.CURSOR(): kwargs.update({'cursor': arg}) else: args = (arg,) elif setword == 'clock': args = [x.symbol.text.lower() for x in (ctx.ON(), ctx.OFF(), ctx.TO(), ctx.STATUS()) if x] if ctx.expr(): args += self.list_visit(ctx.expr()) elif setword == 'memowidth': args = (self.visit(ctx.expr()[0]),) elif setword == 'library': kwargs.update({'additive': True} if ctx.ADDITIVE() else {}) args = self.list_visit(ctx.specialExpr()) elif setword == 'filter': args = self.list_visit(ctx.specialExpr()) elif setword == 'order': order = self.visit(ctx.specialExpr(0)) of_expr = self.visit(ctx.ofExpr) in_expr = self.visit(ctx.inExpr) kwargs.update({'descending': True} if ctx.DESCENDING() else {}) kwargs.update({'tag': True} if ctx.TAG() else {}) args = (order, of_expr, in_expr) elif setword == 'index': args = (self.visit(ctx.specialExpr(0)),) elif setword == 'udfparms': args = ['value' if ctx.VALUE() else 'reference'] else: return return make_func_code('vfpfunc.set', setword, *args, **kwargs) def visitPush(self, ctx): pass def visitPop(self, ctx): pass def visitShellRun(self, ctx): start, stop = ctx.getSourceInterval() if ctx.identifier(): pass #Add /N options start = ctx.identifier().getSourceInterval()[0] tokens = ctx.parser._input.tokens[start + 1:stop + 1] # FIXME: Need more cleanup on the arguments. command = ''.join(create_string(tok.text) for tok in tokens).strip().split() for i, arg in enumerate(command): if arg.startswith('&'): command[i] = CodeStr(arg[1:]) self.imports.append('import subprocess') return make_func_code('subprocess.call', command) def visitReturnStmt(self, ctx): if not ctx.expr(): return [CodeStr('return')] return [add_args_to_code('return {}', [self.visit(ctx.expr())])] def visitAssert(self, ctx): if ctx.expr(1): return add_args_to_code('assert {}, {}', (self.visit(ctx.expr(0)), self.visit(ctx.expr(1)))) else: return add_args_to_code('assert {}', (self.visit(ctx.expr(0)),)) def visitListStmt(self, ctx): pass def visitSaveToCmd(self, ctx): pass def visitUnlockCmd(self, ctx): pass def visitCompileCmd(self, ctx): pass def visitSortCmd(self, ctx): pass def visitCopyToArray(self, ctx): pass def visitRestoreCmd(self, ctx): pass def visitZoomCmd(self, ctx): pass def visitTextBlock(self, ctx): kwargs = {} if ctx.NOSHOW(): kwargs['show'] = False text = self.visit(ctx.textChunk()) val = make_func_code('vfpfunc.text', text, **kwargs)
<gh_stars>0 # Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import torch import random import numpy as np import networkx as nx from math import sqrt from sklearn import preprocessing from sklearn.metrics import mean_absolute_error, mean_squared_error def encode_classes(col): """ Input: categorical vector of any type Output: categorical vector of int in range 0-num_classes """ classes = set(col) classes_dict = {c: i for i, c in enumerate(classes)} labels = np.array(list(map(classes_dict.get, col)), dtype=np.int32) return labels def onehot_classes(col): """ Input: categorical vector of int in range 0-num_classes Output: one-hot representation of the input vector """ col2onehot = np.zeros((col.size, col.max() + 1), dtype=float) col2onehot[np.arange(col.size), col] = 1 return col2onehot def miss_deg_num(nxg, mask): """ Input: networkx graph, mask representing missing node features Outputs: vector containing range of missing node features (sorted) vector containing mean degree for each value in the range vector containing the number of nodes in the graph for each value in the range """ list_missingness = list(mask.shape[1] - mask.sum(axis=1)) t = [] for i, j in zip(list_missingness, nxg.degree): t.append((int(i), j[1])) d_deg = dict( set( (a, sum(y for x, y in t if x == a) / sum(1 for x, _ in t if x == a)) for a, b in t ) ) d_num = dict((i, list_missingness.count(i)) for i in set(list_missingness)) sk = np.sort(list(d_deg.keys())) deg = [d_deg[i] for i in sk] num = [d_num[i] for i in sk] return sk, deg, num def degrade_dataset(X, missingness, rand, v): """ Inputs: dataset to corrupt % of data to eliminate[0,1] rand random state replace with = 'zero' or 'nan' Outputs: corrupted Dataset binary mask """ X_1d = X.flatten() n = len(X_1d) mask_1d = np.ones(n) # my modification random.seed(rand) corrupt_ids = random.sample(range(n), int(missingness * n)) for i in corrupt_ids: X_1d[i] = v mask_1d[i] = 0 cX = X_1d.reshape(X.shape) mask = mask_1d.reshape(X.shape) return cX, mask def data2onehot(data, mask, num_cols, cat_cols): """ Inputs: corrupted dataset mask of the corruption vector contaning indexes of columns having numerical values vector contaning indexes of columns having categorical values Outputs: one-hot encoding of the dataset one-hot encoding of the corruption mask mask of the numerical entries of the one-hot dataset mask of the categorical entries of the one-hot dataset vector containing start-end idx for each categorical variable """ # find most frequent class fill_with = [] for col in cat_cols: l = list(data[:, col]) fill_with.append(max(set(l), key=l.count)) # meadian imputation filled_data = data.copy() for i, col in enumerate(cat_cols): filled_data[:, col] = np.where(mask[:, col], filled_data[:, col], fill_with[i]) for i, col in enumerate(num_cols): filled_data[:, col] = np.where( mask[:, col], filled_data[:, col], np.nanmedian(data[:, col]) ) # encode into 0-N lables for col in cat_cols: filled_data[:, col] = encode_classes(filled_data[:, col]) num_data = filled_data[:, num_cols] num_mask = mask[:, num_cols] cat_data = filled_data[:, cat_cols] cat_mask = mask[:, cat_cols] # onehot encoding for masks and categorical variables onehot_cat = [] cat_masks = [] for j in range(cat_data.shape[1]): col = cat_data[:, j].astype(int) col2onehot = np.zeros((col.size, col.max() + 1), dtype=float) col2onehot[np.arange(col.size), col] = 1 mask2onehot = np.zeros((col.size, col.max() + 1), dtype=float) for i in range(cat_data.shape[0]): if cat_mask[i, j] > 0: mask2onehot[i, :] = 1 else: mask2onehot[i, :] = 0 onehot_cat.append(col2onehot) cat_masks.append(mask2onehot) # onehot_cat[0].shape=[303,x] cat_starting_col = [] oh_data = num_data oh_mask = num_mask # build the big mask for i in range(len(onehot_cat)): cat_starting_col.append(oh_mask.shape[1]) oh_data = np.c_[oh_data, onehot_cat[i]] oh_mask = np.c_[oh_mask, cat_masks[i]] # oh_data.shape: 303,32 oh_num_mask = np.zeros(oh_data.shape) oh_cat_mask = np.zeros(oh_data.shape) # build numerical mask oh_num_mask[:, range(num_data.shape[1])] = num_mask # build categorical mask oh_cat_cols = [] for i in range(len(cat_masks)): start = cat_starting_col[i] finish = start + cat_masks[i].shape[1] oh_cat_mask[:, start:finish] = cat_masks[i] oh_cat_cols.append((start, finish)) # import ipdb # ipdb.set_trace() return oh_data, oh_mask, oh_num_mask, oh_cat_mask, oh_cat_cols def preprocess(data, mask, num_cols, cat_cols): a, b, c, d, e = data2onehot(data, mask, num_cols, cat_cols) l = list(a, b, c, d, e) return l def similarity(x, mx, y, my, metric, weight_missingness): """ Inputs: feature vector mask of the feature vector feature vector mask of the feature vector boolean, weight or not the missing elements on the feature vector metric, cosine similarity or euclidean similarity Output: similarity score of the two feature vectors """ xy_to_keep = np.multiply(mx, my) if np.sum(xy_to_keep) < 1.0: return 0.0 # keep elements present in both vectors rx = np.multiply(x, xy_to_keep) ry = np.multiply(y, xy_to_keep) if metric == "cosine": dot = np.dot(rx, ry) den = np.linalg.norm(rx) * np.linalg.norm(ry) sim = float(dot / max(den, 1e-6)) elif metric == "euclidean": sim = 1 / (1 + np.linalg.norm(rx - ry)) if weight_missingness: # compute weighting factor ones = np.ones(xy_to_keep.shape) wdot = np.dot(xy_to_keep, ones) wden = np.linalg.norm(xy_to_keep) * np.linalg.norm(ones) sim *= float(wdot / wden) return sim def similarity_matrix(X, mask, metric, weight_missingness): """ Inputs: corrupted dataset mask of the corruption boolean, weight or not the missing elements on the feature vector metric, cosine similarity or euclidean similarity Output: matrix containing pairwise similarity """ obs_len = len(X[:, 0]) M_cos_sim = np.zeros((obs_len, obs_len), dtype=float) for i in range(0, obs_len): for j in range(i, obs_len): M_cos_sim[i][j] = similarity( X[i], mask[i], X[j], mask[j], metric, weight_missingness ) M_cos_sim[j][i] = M_cos_sim[i][j] return M_cos_sim def compute_weighted_adj(M, percentile): """ Inputs: similarity matrix percentile of connections to keep Output: weighted adjacency matrix """ if False: m_len = len(M[0, :]) m_sample = [] for i in range(0, m_len): for j in range(i, m_len): if i != j: m_sample.append(M[i][j]) treshold = np.percentile(m_sample, percentile) M[M < treshold] = 0.0 np.fill_diagonal(M, 0.0) else: for i in range(M.shape[0]): # first pruning treshold = np.percentile(M[i], percentile) M[i][M[i] < treshold] = 0.0 # second pruning v = M.flatten() treshold = np.percentile(v, percentile) M[M < treshold] = 0.0 np.fill_diagonal(M, 0.0) # 让对角线元素为0 # import ipdb # ipdb.set_trace() return M def dataset2nxg(cX, mask, percentile, metric, weight_missingness): """ Inputs: corrupted dataset mask of the corruption percentile of connections to keep boolean, weight or not the missing elements on the feature vector metric, cosine similarity or euclidean similarity Outputs: networkx MultiDiGraph """ cX_sim = similarity_matrix(cX, mask, metric, weight_missingness) # 对称阵 cX_wadj = compute_weighted_adj(cX_sim, percentile) ngx = nx.DiGraph(cX_wadj) return ngx def new_edges(x_tr, mask_tr, x_te, mask_te, percentile, metric, weight_missingness): """ Inputs: old dataset old dataset mask of the corruption new dataset new dataset mask of the corruption percentile of connections to keep boolean, weight or not the missing elements on the feature vector metric, cosine similarity or euclidean similarity Output: list containg [src, dest] of edges that needs to be added in order to integrate the new dataset in the older one """ M_sim = np.zeros((x_te.shape[0], np.r_[x_tr, x_te].shape[0])) for i in range(x_te.shape[0]): for j in range(x_tr.shape[0]): M_sim[i][j] = similarity( x_tr[j], mask_tr[j], x_te[i], mask_te[i], metric, weight_missingness ) for i in range(x_te.shape[0]): for j in range(0, i): M_sim[i][x_tr.shape[0] + j] = similarity( x_te[i], mask_te[i], x_te[j], mask_te[j], metric, weight_missingness ) if False: # One step pruning treshold = np.percentile(M_sim.flatten(), percentile) edges = np.argwhere(M_sim >= treshold) else: # Two steps pruning for i in range(M_sim.shape[0]): treshold = np.percentile(M_sim[i], percentile) M_sim[i][M_sim[i] < treshold] = 0.0 treshold = np.percentile(M_sim.flatten(), percentile) M_sim[M_sim < treshold] = 0.0 edges = np.argwhere(M_sim > 0.0) return edges def imputation_accuracy(target, output, inv_mask): """ Inputs: target dataset imputed dataset inverse of the matrix used for the dataset corruption Outputs: mean absolute error mean root mean squared error """ mae = mean_absolute_error(target[inv_mask], output[inv_mask]) rmse = sqrt(mean_squared_error(target[inv_mask], output[inv_mask])) return mae, rmse def proper_onehot(x, oh_cat_cols): """ Inputs: dataset with soft categorical variables vector containing start-end idx for each categorical variable Output: dataset with hard categorical variables """ for start, finish in oh_cat_cols: x[:, start:finish] = ( x[:, start:finish] == x[:, start:finish].max(1)[:, None] ).astype(int) return x def batch_mask(size, batch_size): """ Inputs: lenght of
<gh_stars>0 #!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import matplotlib.pyplot as plt # In[2]: d08=pd.read_csv("1902HackDATA/IPL2008CSV.csv") #***Basic/General/Normal Information d08.head() d08.dtypes d08.info() d08.describe() # In[3]: d08 # In[4]: d08['Strike Rate1']=None d08['Economy1']=None # In[5]: for i in range(d08.shape[0]): try: d08['Strike Rate1'][i]=float(d08['Strike Rate'][i]) except ValueError: d08['Strike Rate1'][i]=0.0 try: d08['Economy1'][i]=float(d08['Economy'][i]) except ValueError: d08['Economy1'][i]=0.0 # In[6]: pd.set_option('display.max_rows',500) pd.set_option('display.max_columns',100) #pd.reset_option('display.max_rows') #pd.reset_option('display.max_columns') #d08.isnull().any() d08 # In[7]: for x in d08['Strike Rate1']: if(x<0): print('True') print('No_one') for x in d08['Economy1']: if(x<0): print('True1') print('No_one1') # In[8]: d08.isnull().any() # In[9]: print([x for x in d08]) # In[10]: for x in ['Runs', 'Balls', 'Balls Bowled', 'Runs Conceded', 'Wickets', 'Ct_St', 'Run Outs', 'Matches Played ', 'Age', 'Strike Rate1', 'Economy1']: print(x, min(d08[x]), max(d08[x])) # In[11]: pdtr=['Year','RunMi','RunMx','BallMi','BallMx',"4'sMi","4'sMx","6'sMi","6'sMx",'Highest Run Scored Mi','Highest Run Scored Mx','Balls Bowled Mi', 'Balls Bowled Mx','Runs Conceded Mi','Runs Conceded Mx','WicketsMi','WicketsMx','Ct_StMi','Ct_StMx','Run Outs Mi', 'Run Outs Mx','Matches Played Mi', 'Matches Played Mx','Strike Rate1 Mi','Strike Rate1 Mx','Economy1Mi','Economy1Mx'] # In[12]: len(d08['Player'].unique()) # In[13]: fo=open('1902HackData/PdtrCSV.csv', 'w+') fo.write('Sl.No') for a in pdtr: fo.write(',') fo.write(a) fo.write('\n') # In[14]: from matplotlib.lines import Line2D clr=['blue','red'] stl=[Line2D([0],[0], color=c, linewidth=3, linestyle='--') for c in clr] plt.scatter(d08['Runs'],d08['Strike Rate1'],c='blue') plt.scatter(d08['Runs'],d08['Balls'],c='red') lbl=['RunVsStrike Rate', 'RunVsBalls'] plt.legend(stl, lbl) plt.ylim((0,400)) plt.xlabel('Run',fontsize=16) plt.ylabel('StrikeRate/Balls', fontsize=16) plt.title('Scatter Visulization',fontsize=16) # In[15]: plt.scatter(d08['Matches Played '],d08['Strike Rate1'],c='blue') plt.xlabel('Matches Played', fontsize=16) plt.ylabel('Strike Rate', fontsize=16) plt.title('Scatter Visulization',fontsize=16) # In[16]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d08['Runs Conceded'],d08['Economy1'],c='green') plt.scatter(d08['Balls Bowled'],d08['Economy1'],c='yellow') plt.scatter(d08['Wickets'],d08['Economy1'],c='red') plt.legend(lbl) plt.xlabel('Economy',fontsize=16) plt.ylabel('RunsConceded/BallsBowled/Wickets', fontsize=12) plt.title('Scatter Visulization',fontsize=16) # In[17]: plt.scatter(d08['Matches Played '], d08['Economy1'],c='blue') plt.xlabel('Matches Played') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=16) # In[18]: lbl=['Ct_St','Run Outs'] plt.scatter(d08['Matches Played '],d08['Ct_St'],c='red') plt.scatter(d08['Matches Played '],d08['Run Outs'],c='pink') plt.legend(lbl) plt.xlabel('Matches Played') plt.ylabel('Ct_St/Run Outs') plt.title('Scatter Visulization',fontsize=14) # In[19]: val=['2008','0','410','0','300','0' ,'0' ,'0' ,'0' ,'12' ,'48','15','310', '10','450','0','9','2','8','0','0','1','14','80','160','6','13'] fo.write('1') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[20]: d09=pd.read_csv("1902HackDATA/IPL2009CSV.csv") #***Basic/General/Normal Information d09.head() d09.dtypes d09.info() d09.describe() # In[21]: d09 # In[22]: d09.shape # In[23]: d09.isnull().any() # In[24]: d09['Strike Rate1']=None d09['Economy1']=None # In[25]: for i in range(d09.shape[0]): try: d09['Strike Rate1'][i]=float(d09['Strike Rate'][i]) except ValueError: d09['Strike Rate1'][i]=0.0 try: d09['Economy1'][i]=float(d09['Economy'][i]) except ValueError: d09['Economy1'][i]=0.0 # In[26]: pd.set_option('display.max_rows',500) pd.set_option('display.max_columns',100) #pd.reset_option('display.max_rows') #pd.reset_option('display.max_columns') #d09.isnull().any() d09 # In[27]: d09.isnull().any() # In[28]: len(d09['Player'].unique()) # In[29]: lbl=['Strike Rate1', 'Balls'] plt.scatter(d09['Runs'],d09['Strike Rate1'],c='blue') plt.scatter(d09['Runs'],d09['Balls'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel("StrikeRate/Balls") plt.title('Scatter Visulization',fontsize=14) # In[30]: plt.scatter(d09['Matches Played'],d09['Strike Rate1'],c='blue') plt.xlabel('Matches Played') plt.ylabel('Strike Rate') plt.title('Scatter Visulization',fontsize=14) # In[31]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d09['Runs Conceded'],d09['Economy1'],c='green') plt.scatter(d09['Balls Bowled'],d09['Economy1'],c='yellow') plt.scatter(d09['Wickets'],d09['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConceded/BallsBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[32]: lbl=['Matches Played', 'Wickets'] plt.scatter(d09['Matches Played'], d09['Economy1'],c='blue') plt.scatter(d09['Wickets'],d09['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[33]: lbl=['Ct_St','Run Outs'] plt.scatter(d09['Matches Played'],d09['Ct_St'],c='red') plt.scatter(d09['Matches Played'],d09['Run Outs'],c='pink') plt.legend(lbl) plt.xlabel('Matches Played') plt.ylabel('Ct_St/RunOuts') plt.title('Scatter Visulization',fontsize=14) # In[34]: val=['2009','0','390','0','300','0' ,'0' ,'0' ,'0' ,'12' ,'48','5','300','4','400', '0','15','2.5','10','0','0','1','16','90','150','5','10'] fo.write('2') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[35]: d10=pd.read_csv("1902HackDATA/IPL2010CSV.csv") #***Basic/General/Normal Information d10.head() d10.dtypes d10.info() d10.describe() # In[36]: d10 # In[37]: d10.isnull().any() # In[38]: artt=[x for x in d10] print(artt) # In[39]: d10['Strike Rate1']=None d10['Economy1']=None # In[40]: martt=['Runs', 'Balls', 'Four', 'Six', 'Strike Rate', 'Balls Bowled', 'Runs Conceded', 'Economy', 'Wickets'] for x in martt: d10[x].fillna(0, inplace=True) # In[41]: d10.isnull().any() # In[42]: for i in range(d10.shape[0]): try: d10['Strike Rate1'][i]=float(d10['Strike Rate'][i]) except ValueError: d10['Strike Rate1'][i]=0.0 try: d10['Economy1'][i]=float(d10['Economy'][i]) except ValueError: d10['Economy1'][i]=0.0 # In[43]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') d10.isnull().any() d10 # In[44]: print([x for x in d10], '\n') print(len(d10['Player Name'].unique())) # In[45]: lbl=['Strike Rate', 'Balls'] plt.scatter(d10['Runs'],d10['Strike Rate1'],c='blue') plt.scatter(d10['Runs'],d10['Balls'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Balls') plt.title('Scatter Visulization',fontsize=14) # In[46]: lbl=['Strike Rate','Run Outs','Four', 'Six'] plt.scatter(d10['Matches Played'],d10['Strike Rate1'],c='blue') plt.scatter(d10['Matches Played'],d10['Run Outs'],c='black') plt.scatter(d10['Matches Played'],d10['Four'],c='green') plt.scatter(d10['Matches Played'],d10['Six'],c='red') plt.legend(lbl) plt.xlabel('Matches Played') plt.ylabel('StrikeRate/Run Outs/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[47]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d10['Runs Conceded'],d10['Economy1'],c='green') plt.scatter(d10['Balls Bowled'],d10['Economy1'],c='yellow') plt.scatter(d10['Wickets'],d10['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConceded/BallsBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[48]: lbl=['Matches Played', 'Wickets'] plt.scatter(d10['Matches Played'], d10['Economy1'],c='blue') plt.scatter(d10['Wickets'],d10['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[49]: lbl=['Ct_St','Run Outs','Four', 'Six'] plt.scatter(d10['Matches Played'],d10['ct_st'],c='red') plt.scatter(d10['Matches Played'],d10['Run Outs'],c='black') plt.scatter(d10['Matches Played'],d10['Four'],c='blue') plt.scatter(d10['Matches Played'],d10['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('ct_st/Run Outs/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[50]: val=['2010','0','450','0','380','10' ,'50' ,'0' ,'15' ,'12' ,'50','6','300','10','400', '0','15','5','15','0','2.5','1','16','120','190','7','10'] fo.write('3') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[51]: d11=pd.read_csv("1902HackDATA/IPL2011CSV.csv") #***Basic/General/Normal Information d11.head() d11.dtypes d11.info() d11.describe() # In[52]: d11 # In[53]: d11.isnull().any() # In[54]: print([x for x in d11], '\n', len(d09['Player'].unique())) # In[55]: martt11=['Runs', 'Balls ', 'Strike Rate', 'Four', 'Six', 'Balls Bowled', 'Runs Conceded', 'Wicket', 'Economy'] for x in martt11: d11[x].fillna(0, inplace=True) # In[56]: d11['Strike Rate1']=None d11['Economy1']=None # In[57]: for i in range(d11.shape[0]): try: d11['Strike Rate1'][i]=float(d11['Strike Rate'][i]) except ValueError: d11['Strike Rate1'][i]=0.0 try: d11['Economy1'][i]=float(d11['Economy'][i]) except ValueError: d11['Economy1'][i]=0.0 # In[58]: d11.isnull().any() # In[59]: pd.set_option('display.max_rows',500) pd.set_option('display.max_columns',100) #pd.reset_option('display.max_rows') #pd.reset_option('display.max_columns') #d11.isnull().any() d11 # In[60]: print([x for x in d11], '\n') print(len(d11['Player Name'].unique())) # In[61]: lbl=['Strike Rate', 'Balls'] plt.scatter(d11['Runs'],d11['Strike Rate1'],c='blue') plt.scatter(d11['Runs'],d11['Balls '],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Balls') plt.title('Scatter Visulization',fontsize=14) # In[62]: lbl=['Strike Rate','Run Outs','Four', 'Six'] plt.scatter(d11['Matches Played'],d11['Strike Rate1'],c='blue') plt.scatter(d11['Matches Played'],d11['Run Outs'],c='black') plt.scatter(d11['Matches Played'],d11['Four'],c='green') plt.scatter(d11['Matches Played'],d11['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[63]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d11['Runs Conceded'],d11['Economy1'],c='green') plt.scatter(d11['Balls Bowled'],d11['Economy1'],c='yellow') plt.scatter(d11['Wicket'],d11['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConcede/BallsBowled/Wicket') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[64]: lbl=['Matches Played', 'Wickets'] plt.scatter(d11['Matches Played'], d11['Economy1'],c='blue') plt.scatter(d11['Wicket'],d11['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wicket') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[65]: lbl=['Ct_St','Run Outs','Four', 'Six'] plt.scatter(d11['Matches Played'],d11['ct_st'],c='red') plt.scatter(d11['Matches Played'],d11['Run Outs'],c='black') plt.scatter(d11['Matches Played'],d11['Four'],c='blue') plt.scatter(d11['Matches Played'],d11['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('ct_st/Run Outs/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[66]: val=['2011','0','480','0','400','20' ,'55' ,'5' ,'20' ,'12' ,'50','12','300','10','400','4', '15','8','20','0','2.5','1','16','130','200','7','12'] fo.write('4') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[67]: d12=pd.read_csv("1902HackDATA/IPL2012CSV.csv") #***Basic/General/Normal Information d12.head() d12.dtypes d12.info() d12.describe() # In[68]: d12.isnull().any() # In[69]: d12['Strike Rate1']=None d12['Economy1']=None # In[70]: for i in range(d12.shape[0]): try: d12['Strike Rate1'][i]=float(d12['Strike Rate'][i]) except ValueError: d12['Strike Rate1'][i]=0.0 try: d12['Economy1'][i]=float(d12['Economy'][i]) except ValueError: d12['Economy1'][i]=0.0 # In[71]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') d12 # In[72]: #d12.isnull().any() print([x for x in d12], '\n') print(len(d12["Player's Name"].unique())) # In[73]: lbl=['Strike Rate', 'Balls'] plt.scatter(d12['Run'],d12['Strike Rate1'],c='blue') plt.scatter(d12['Run'],d12['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[74]: lbl=['Strike Rate','Four', 'Six'] plt.scatter(d12['Matches Played'],d12['Strike Rate1'],c='blue') plt.scatter(d12['Matches Played'],d12['Four'],c='green') plt.scatter(d12['Matches Played'],d12['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[75]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d12['Runs Concede'],d12['Economy1'],c='green') plt.scatter(d12['Balls Bowled'],d12['Economy1'],c='yellow') plt.scatter(d12['Wickets'],d12['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConcede/BallsBowled/Wicket') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[76]: lbl=['Matches Played', 'Wickets'] plt.scatter(d12['Matches Played'], d12['Economy1'],c='blue') plt.scatter(d12['Wickets'],d12['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[77]: lbl=['Ct_St','Four', 'Six'] plt.scatter(d12['Matches Played'],d12['Ct_St'],c='red') plt.scatter(d12['Matches Played'],d12['Four'],c='blue') plt.scatter(d12['Matches Played'],d12['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[78]: val=['2012','0','495','0','480','25' ,'60' ,'3' ,'10' ,'0' ,'0','12','350','20','380','5', '18','8','10','0','2','1','17','130','170','7.1','9'] fo.write('5') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[79]: d13=pd.read_csv("1902HackDATA/IPL2013CSV.csv") #***Basic/General/Normal Information d13.head() d13.dtypes d13.info() d13.describe() # In[80]: #d13 d13.isnull().any() # In[81]: d13['Strike Rate1']=None d13['Economy1']=None # In[82]: for i in range(d13.shape[0]): try: d13['Strike Rate1'][i]=float(d13['Strike Rate'][i]) except ValueError: d13['Strike Rate1'][i]=0.0 try: d13['Economy1'][i]=float(d13['Economy'][i]) except ValueError: d13['Economy1'][i]=0.0 # In[83]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d13.isnull().any() d13 # In[84]: print([x for x in d13], '\n') print(len(d13["Player's Name"].unique())) # In[85]: lbl=['Strike Rate', 'Balls'] plt.scatter(d13['Run'],d13['Strike Rate1'],c='blue') plt.scatter(d13['Run'],d13['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[86]: lbl=['Balls','Strike Rate'] plt.scatter(d13['Highest Run Scored'],d13['Ball'],c='red') plt.scatter(d13['Highest Run Scored'],d13['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HighestRunScored') plt.ylabel('Ball/Strike Rate') plt.title('Scatter Visulization',fontsize=14) # In[87]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d13['Matches Played'],d13['Strike Rate1'],c='blue') plt.scatter(d13['Matches Played'],d13['Run Outs'],c='black') plt.scatter(d13['Matches Played'],d13['Four'],c='green') plt.scatter(d13['Matches Played'],d13['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[88]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d13['RunsConceded'],d13['Economy1'],c='green') plt.scatter(d13['BallsBowled'],d13['Economy1'],c='yellow') plt.scatter(d13['Wickets'],d13['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConcede/BallsBowled/Wicket') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[89]: lbl=['Matches Played', 'Wickets'] plt.scatter(d13['Matches Played'], d13['Economy1'],c='blue') plt.scatter(d13['Wickets'],d13['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[90]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d13['Matches Played'],d13['Ct_St'],c='red') plt.scatter(d13['Matches Played'],d13['Run Outs'],c='black') plt.scatter(d13['Matches Played'],d13['Four'],c='blue') plt.scatter(d13['Matches Played'],d13['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[91]: val=['2013','0','540','0','450','28' ,'65' ,'10' ,'20' ,'20' ,'100','12','405', '10','490','7','11','10','20','0','2.5','1','18','130','180','7.5','10.5'] fo.write('6') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[92]: d14=pd.read_csv("1902HackDATA/IPL2014CSV.csv") #***Basic/General/Normal Information d14.head() d14.dtypes d14.info() d14.describe() # In[93]: #d14 d14.isnull().any() # In[94]: d14['Strike Rate1']=None d14['Economy1']=None # In[95]: for i in range(d14.shape[0]): try: d14['Strike Rate1'][i]=float(d14['Strike Rate'][i]) except ValueError: d14['Strike Rate1'][i]=0.0 try: d14['Economy1'][i]=float(d14['Economy'][i]) except ValueError: d14['Economy1'][i]=0.0 # In[96]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d14.isnull().any() d14 # In[97]: print([x for x in d14], '\n') print(len(d14['Players Name'].unique())) # In[98]: lbl=['Strike Rate', 'Balls'] plt.scatter(d14['Run'],d14['Strike Rate1'],c='blue') plt.scatter(d14['Run'],d14['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[99]: lbl=['Balls','Strike Rate'] plt.scatter(d14['Highest Run Scored'],d14['Ball'],c='red') plt.scatter(d14['Highest Run Scored'],d14['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HighestRunScored') plt.ylabel('Ball/StrikeRate') plt.title('Scatter Visulization',fontsize=14) # In[100]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d14['Matches Played'],d14['Strike Rate1'],c='blue') plt.scatter(d14['Matches Played'],d14['Run Outs'],c='black') plt.scatter(d14['Matches Played'],d14['Four'],c='green') plt.scatter(d14['Matches Played'],d14['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[101]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d14['Runs Scored'],d14['Economy1'],c='green') plt.scatter(d14['Balls Bowled'],d14['Economy1'],c='yellow') plt.scatter(d14['Wickets'],d14['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConceded/BallsBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[102]: lbl=['Matches Played', 'Wickets'] plt.scatter(d14['Matches Played'], d14['Economy1'],c='blue') plt.scatter(d14['Wickets'],d14['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[103]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d14['Matches Played'],d14['Ct_St'],c='red') plt.scatter(d14['Matches Played'],d14['Run Outs'],c='black') plt.scatter(d14['Matches Played'],d14['Four'],c='blue') plt.scatter(d14['Matches Played'],d14['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[104]: val=['2014','10','450','20','390','25' ,'50' ,'5' ,'24' ,'10' ,'100','12','390','20', '490','2','19','8','18','0','2.5','1','16','100','150','7','12'] fo.write('7') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[105]: d15=pd.read_csv("1902HackDATA/IPL2015CSV.csv") #***Basic/General/Normal Information d15.head() d15.dtypes d15.info() d15.describe() # In[106]: d15.isnull().any() # In[107]: d15['Strike Rate1']=None d15['Economy1']=None # In[108]: for i in range(d15.shape[0]): try: d15['Strike Rate1'][i]=float(d15['Strike Rate'][i]) except ValueError: d15['Strike Rate1'][i]=0.0 try: d15['Economy1'][i]=float(d15['Economy'][i]) except ValueError: d15['Economy1'][i]=0.0 # In[109]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d14.isnull().any() d15 # In[110]: print([x for x in d15], '\n') print(len(d15["Player's Name"].unique())) # In[111]: lbl=['Strike Rate', 'Balls'] plt.scatter(d15['Run'],d15['Strike Rate1'],c='blue') plt.scatter(d15['Run'],d15['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[112]: lbl=['Balls','Strike Rate'] plt.scatter(d15['Highest Run Scored'],d15['Ball'],c='red') plt.scatter(d15['Highest Run Scored'],d15['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HighestRunScored') plt.ylabel('Ball/StrikeRate') plt.title('Scatter Visulization',fontsize=14) # In[113]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d15['Matches Played'],d15['Strike Rate1'],c='blue') plt.scatter(d15['Matches Played'],d15['Run Outs'],c='black') plt.scatter(d15['Matches Played'],d15['Four'],c='green') plt.scatter(d15['Matches Played'],d15['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[114]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d15['Runs Conceded'],d15['Economy1'],c='green') plt.scatter(d15['Balls Bowled'],d15['Economy1'],c='yellow') plt.scatter(d15['Wickets'],d15['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConceded/BallsBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[115]: lbl=['Matches Played', 'Wickets'] plt.scatter(d15['Matches Played'], d15['Economy1'],c='blue') plt.scatter(d15['Wickets'],d15['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[116]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d15['Matches Played'],d15['Ct_St'],c='red') plt.scatter(d15['Matches Played'],d15['Run Outs'],c='black') plt.scatter(d15['Matches Played'],d15['Four'],c='blue') plt.scatter(d15['Matches Played'],d15['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[117]: val=['2015','20','480','30','330','15' ,'40' ,'5' ,'12' ,'10' ,'110','12','330','10', '410','7','22','8','16','0','3.1','1','17','125','180','7.8','11'] fo.write('8') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[118]: d16=pd.read_csv("1902HackDATA/IPL2016CSV.csv") #***Basic/General/Normal Information d16.head() d16.dtypes d16.info() d16.describe() # In[119]: d16.isnull().any() # In[120]: d16['Ct_St'].fillna(0, inplace=True) # In[121]: d16['Strike Rate1']=None d16['Economy1']=None # In[122]: for i in range(d16.shape[0]): try: d16['Strike Rate1'][i]=float(d16['Strike Rate'][i]) except ValueError: d16['Strike Rate1'][i]=0.0 try: d16['Economy1'][i]=float(d16['Economy'][i]) except ValueError: d16['Economy1'][i]=0.0 # In[123]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d16.isnull().any() d16 # In[124]: print([x for x in d16], '\n') print(len(d16["Player's Name"].unique())) # In[125]: lbl=['Strike Rate', 'Balls'] plt.scatter(d16['Run'],d16['Strike Rate1'],c='blue') plt.scatter(d16['Run'],d16['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[126]: lbl=['Balls','Strike Rate'] plt.scatter(d16['Highest Run Scored'],d16['Ball'],c='red') plt.scatter(d16['Highest Run Scored'],d16['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HigestRunScored') plt.ylabel('Ball/StrikeRate') plt.title('Scatter Visulization',fontsize=14) # In[127]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d16['Matches Played'],d16['Strike Rate1'],c='blue') plt.scatter(d16['Matches Played'],d16['Run Outs'],c='black') plt.scatter(d16['Matches Played'],d16['Four'],c='green') plt.scatter(d16['Matches Played'],d16['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[128]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d16['Runs Conceded'],d16['Economy1'],c='green') plt.scatter(d16['Balls Bowled'],d16['Economy1'],c='yellow') plt.scatter(d16['Wickets'],d16['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunConcede/BallBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[129]: lbl=['Matches Played', 'Wickets'] plt.scatter(d16['Matches Played'], d16['Economy1'],c='blue') plt.scatter(d16['Wickets'],d16['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[130]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d16['Matches Played'],d16['Ct_St'],c='red') plt.scatter(d16['Matches Played'],d16['Run Outs'],c='black') plt.scatter(d16['Matches Played'],d16['Four'],c='blue') plt.scatter(d16['Matches Played'],d16['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[131]: val=['2016','30','500','40','470','18' ,'60' ,'8' ,'24' ,'10' ,'113','12','360','10','410', '3','20','8','20','0','2.5','1','17','100','160','7.5','10'] fo.write('9') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[132]: d17=pd.read_csv("1902HackDATA/IPL2017CSV.csv") #***Basic/General/Normal Information d17.head() d17.dtypes d17.info() d17.describe() # In[133]: d17.isnull().any() # In[134]: d17['Six'].fillna(0, inplace=True) # In[135]: d17['Strike Rate1']=None d17['Economy1']=None # In[136]: for i in range(d17.shape[0]): try: d17['Strike Rate1'][i]=float(d17['Strike Rate'][i]) except ValueError: d17['Strike Rate1'][i]=0.0 try: d17['Economy1'][i]=float(d17['Economy'][i]) except ValueError: d17['Economy1'][i]=0.0 # In[137]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d17.isnull().any() d17 # In[138]: print([x for x in d17], '\n') print(len(d17["Player's Name"].unique())) # In[139]: lbl=['Strike Rate', 'Balls'] plt.scatter(d17['Run'],d17['Strike Rate1'],c='blue') plt.scatter(d17['Run'],d17['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[140]: lbl=['Balls','Strike Rate'] plt.scatter(d17['Highest Run Scored'],d17['Ball'],c='red') plt.scatter(d17['Highest Run Scored'],d17['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HighestRunScored') plt.ylabel('Ball/StrikeRate') plt.title('Scatter Visulization',fontsize=14) # In[141]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d17['Matches Played'],d17['Strike Rate1'],c='blue') plt.scatter(d17['Matches Played'],d17['Run Outs'],c='black') plt.scatter(d17['Matches Played'],d17['Four'],c='green') plt.scatter(d17['Matches Played'],d17['Six'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[142]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d17['Runs Conceded'],d17['Economy1'],c='green') plt.scatter(d17['Balls Bowled'],d17['Economy1'],c='yellow') plt.scatter(d17['Wickets'],d17['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunConceded/BallBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[143]: lbl=['Matches Played', 'Wickets'] plt.scatter(d17['Matches Played'], d17['Economy1'],c='blue') plt.scatter(d17['Wickets'],d17['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[144]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d17['Matches Played'],d17['Ct_St'],c='red') plt.scatter(d17['Matches Played'],d17['Run Outs'],c='black') plt.scatter(d17['Matches Played'],d17['Four'],c='blue') plt.scatter(d17['Matches Played'],d17['Six'],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[145]: val=['2017','10','500','10','400','25' ,'40' ,'10' ,'26' ,'10' ,'105','18','340','20','430', '3','18','10','17','0','3.5','1','17','130','160','7.5','12'] fo.write('10') for va in val: fo.write(',') fo.write(va) fo.write('\n') # In[146]: d18=pd.read_csv("1902HackDATA/IPL2018CSV.csv") #***Basic/General/Normal Information d18.head() d18.dtypes d18.info() d18.describe() # In[147]: #d18.isnull().any().count() pd.isnull(d18).sum() # In[148]: d18['Economy'].fillna(0, inplace=True) # In[149]: d18['Strike Rate1']=None d18['Economy1']=None # In[150]: for i in range(d18.shape[0]): try: d18['Strike Rate1'][i]=float(d18['Strike Rate'][i]) except ValueError: d18['Strike Rate1'][i]=0.0 try: d18['Economy1'][i]=float(d18['Economy'][i]) except ValueError: d18['Economy1'][i]=0.0 # In[151]: #pd.set_option('display.max_rows',500) #pd.set_option('display.max_columns',100) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') #d18.isnull().any() d18 # In[152]: print([x for x in d18], '\n') print(len(d18["Player's Name"].unique())) # In[153]: lbl=['Strike Rate', 'Balls'] plt.scatter(d18['Run'],d18['Strike Rate1'],c='blue') plt.scatter(d18['Run'],d18['Ball'],c='red') plt.legend(lbl) plt.xlabel('Run') plt.ylabel('StrikeRate/Ball') plt.title('Scatter Visulization',fontsize=14) # In[154]: lbl=['Balls','Strike Rate'] plt.scatter(d18['Highest Run Scored'],d18['Ball'],c='red') plt.scatter(d18['Highest Run Scored'],d18['Strike Rate1'],c='green') plt.legend(lbl) plt.xlabel('HighestRunScored') plt.ylabel('Ball/StrikeRate') plt.title('Scatter Visulization',fontsize=14) # In[155]: lbl=['Strike Rate', 'Run Outs', 'Four', 'Six'] plt.scatter(d18['Matches Played'],d18['Strike Rate1'],c='blue') plt.scatter(d18['Matches Played'],d18['Run Outs'],c='black') plt.scatter(d18['Matches Played'],d18["4's"],c='green') plt.scatter(d18['Matches Played'],d18["6's"],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('StrikeRate/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[156]: lbl=['Runs Conceded','Balls Bowled','Wickets'] plt.scatter(d18['Runs Scored'],d18['Economy1'],c='green') plt.scatter(d18['Balls Bowled'],d18['Economy1'],c='yellow') plt.scatter(d18['Wickets'],d18['Economy1'],c='red') plt.legend(lbl) plt.xlabel('RunsConcede/BallsBowled/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[157]: lbl=['Matches Played', 'Wickets'] plt.scatter(d18['Matches Played'], d18['Economy1'],c='blue') plt.scatter(d18['Wickets'],d18['Economy1'],c='red') plt.legend(lbl) plt.xlabel('MatchesPlayed/Wickets') plt.ylabel('Economy') plt.title('Scatter Visulization',fontsize=14) # In[158]: lbl=['Ct_St', 'Run Outs', 'Four', 'Six'] plt.scatter(d18['Matches Played'],d18['Ct_St'],c='red') plt.scatter(d18['Matches Played'],d18['Run Outs'],c='black') plt.scatter(d18['Matches Played'],d18["4's"],c='blue') plt.scatter(d18['Matches Played'],d18["6's"],c='green') plt.legend(lbl) plt.xlabel('MatchesPlayed') plt.ylabel('Ct_St/RunOuts/Four/Six') plt.title('Scatter Visulization',fontsize=14) # In[159]: val=['2018','20','600','30','420','20' ,'60' ,'8' ,'27' ,'12' ,'115','12','400','20','480', '2','19','9','18.5','0','2.5','1','17','140','180','7.4','11.9'] fo.write('11') for va in val: fo.write(',') fo.write(va) fo.write('\n') fo.close() # In[160]: dptr=pd.read_csv("1902HackDATA/PdtrCSV.csv") #***Basic/General/Normal Information dptr.head() dptr.dtypes dptr.info() dptr.describe() # In[161]: #pd.set_option('display.max_rows',500) pd.set_option('display.max_columns',100) #pd.reset_option('display.max_rows') #pd.reset_option('display.max_columns') #ddptr.isnull().any() dptr # In[162]: dptr.shape # In[163]: lbl=[pdtr[x] for x in range(1,7)] plt.plot(dptr['Year'], dptr[lbl[0]],c='purple') plt.plot(dptr['Year'], dptr[lbl[1]],c='red') plt.plot(dptr['Year'], dptr[lbl[2]],c='blue') plt.plot(dptr['Year'], dptr[lbl[3]],c='green') plt.plot(dptr['Year'], dptr[lbl[4]],c='brown') plt.plot(dptr['Year'], dptr[lbl[5]],c='black') plt.xlabel('Year') plt.ylabel('Statistic') plt.legend(lbl) plt.title('Line Plot Visulization',fontsize=14) # In[164]: lbl=[pdtr[x] for x in range(7,15)] plt.plot(dptr['Year'], dptr[lbl[0]],c='purple') plt.plot(dptr['Year'], dptr[lbl[1]],c='red') plt.plot(dptr['Year'], dptr[lbl[2]],c='blue') plt.plot(dptr['Year'], dptr[lbl[3]],c='green') plt.plot(dptr['Year'], dptr[lbl[4]],c='yellow') plt.plot(dptr['Year'], dptr[lbl[5]],c='black') plt.plot(dptr['Year'], dptr[lbl[6]],c='cyan') plt.plot(dptr['Year'], dptr[lbl[7]],c='magenta') plt.xlabel('Year') plt.ylabel('Statistic') plt.legend(lbl) plt.title('Line Plot Visulization',fontsize=14) # In[165]: lbl=[pdtr[x] for x in range(15,21)] plt.plot(dptr['Year'], dptr[lbl[0]],c='purple') plt.plot(dptr['Year'], dptr[lbl[1]],c='red') plt.plot(dptr['Year'], dptr[lbl[2]],c='blue') plt.plot(dptr['Year'], dptr[lbl[3]],c='green') plt.plot(dptr['Year'], dptr[lbl[4]],c='yellow') plt.plot(dptr['Year'], dptr[lbl[5]],c='black') plt.xlabel('Year') plt.ylabel('Statistic') plt.legend(lbl) plt.title('Line Plot Visulization',fontsize=14) # In[166]: lbl=[pdtr[x] for x in range(21,27)] plt.plot(dptr['Year'], dptr[lbl[0]],c='olive') plt.plot(dptr['Year'], dptr[lbl[1]],c='red') plt.plot(dptr['Year'], dptr[lbl[2]],c='blue') plt.plot(dptr['Year'], dptr[lbl[3]],c='green') plt.plot(dptr['Year'], dptr[lbl[4]],c='grey') plt.plot(dptr['Year'], dptr[lbl[5]],c='black') plt.xlabel('Year') plt.ylabel('Statistic') plt.legend(lbl) plt.title('Line Plot Visulization',fontsize=14) # In[167]: ev_al_m=['Year', 'Run', 'Ball', "4's", "6's", 'Highest Run Scored', 'Balls Bowled', 'Runs Conceded', 'Wickets', 'Ct_St', 'Run Outs', 'Matches Played', 'Strike Rate1', 'Economy1'] evbt=['Year', 'Run', 'Ball', "4's", "6's", 'Highest Run Scored', 'Wickets', 'Ct_St','Run Outs', 'Matches Played', 'Strike Rate1'] evbl=['Year', 'Highest Run Scored', 'Balls Bowled', 'Runs Conceded', 'Wickets', 'Ct_St', 'Run Outs', 'Matches Played', 'Economy1'] # In[168]: val19=[] for x in dptr: sm=0 for i in range(6): sm+=float(dptr[x][i]) for i in range(6,11): sm+=(i-5)*float(dptr[x][i]) val19.append(round(sm/21,5)) val19[0]=12 val19[1]=2019 #print(val19) val19m=[] for x in range(0, len(val19), 2): ttt=(float(val19[x])+float(val19[x+1]))/2 val19m.append(round(ttt,5)) val19m[0]=2019 #print(val19m) # In[169]: val19bt=[2019] val19bl=[2019] val19al=[2019] for x in range(2,12,2): ttt=(float(val19[x])+2.82*float(val19[x+1]))/3 val19bt.append(round(ttt,5)) for x in range(2,10,2): ttt=(float(val19[x])+2.82*float(val19[x+1]))/3 val19al.append(round(ttt,5)) for x in range(10, 15, 2): ttt=(7*float(val19[x])+float(val19[x+1]))/7 val19bl.append(round(ttt,5)) val19al.append(round(ttt,5)) ttt=(float(val19[16])+0.45*float(val19[17]))/2 val19bt.append(round(ttt,5)) ttt=(float(val19[16])+1.4*float(val19[17]))/2 val19bl.append(round(ttt,5)) ttt=(float(val19[16])+1.05*float(val19[17]))/2 val19al.append(round(ttt,5)) for x in range(18, 22, 2): ttt=(float(val19[x])+1.3*float(val19[x+1]))/2 val19bt.append(round(ttt,5)) val19bl.append(round(ttt,5)) val19al.append(round(ttt,5)) ttt=(float(val19[22])+1.72*float(val19[23]))/2 val19bt.append(round(ttt,5)) val19bl.append(round(ttt,5)) val19al.append(round(ttt,5)) ttt=(float(val19[24])+7*float(val19[25]))/7 val19bt.append(round(ttt,5)) val19al.append(round(ttt,5)) ttt=(5*float(val19[26])+float(val19[27]))/5 val19bl.append(round(ttt,5)) val19al.append(round(ttt,5)) #print(val19bt) #print(val19bl) #print(val19al) # In[170]: print(len(val19al),len(val19m),len(ev_al_m)) #print(len(val19al),val19[18],val19[19],val19[20],val19[21],val19[22]) #d14['Run'][1] # In[171]: #ev_al_m --> val19m'Pram1' and val19al'Pram2' #evbt --> val19bt'Pram3' #evbl --> val19bl'Pram4' #Because all data set does not have same column name ev_al_m14=['Year', 'Run', 'Ball', "Four", "Six", 'Highest Run Scored', 'Balls Bowled', 'Runs Scored', 'Wickets', 'Ct_St', 'Run Outs', 'Matches
<filename>django/docs/topics/testing/overview.txt.py XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXX XXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXX XXXXX XXX XXXXXX XXXXXXXXXXXXX XX XXXXXXXXX XXX XXXXXXXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXX XXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXXXXXXXXXXXX XXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXX XX XXXXX XXXX XXX XXXXXXX XXXXXXXXX XXXXXX XX XXXXXXX XXX XX XXXXX XXXXX XXXX XXXXXXX XXXXX XX XXXXXXX XXX XX XXX XXXXX XXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXX XXXX XXXXX XXX X XXXXXX XXXXXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXXXXX XXXX XXXXXX XXXXXXX XXXXX XXXXX X XXXXXXXXXXX XXXXXXXXX XXXX XX XX XXXXXXX XXXXX XXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX X XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXXXX X XXXXXXXXXXX XX XXXXXXX XXXXXXXXXXX XXXX XXXXXXXXXXX XXXXXX XXXXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXX XXX XXXXX XXX XXXXXXXXX XXXXXXXXXXXXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XXXX XXXXXXXX XXXX XXX XXXXXXXXX XXXX XXXXX XXXXXXXXXXXXXXXXX XXX XXXXXXX XXXXXXXX XX XXX XXXX XXXXXXX XX XX XXXX XXX XXX XXXX XXXXX XXXXX XXX XXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX XXXX XXXXX XXXX XXXXXX XXXX XXXXXXXXX XXXXXXXXXXXXX XXXXX X XXXX XXXXX XXX XX XXXXX XXXX XXXXXX XXX XXX XXXX XXXXXX XXX XXXX XXXXXXX XXXXX XXXXXXXXXXXXXXXX XXX XXX XXXXXX XXXXXXXXXXXXXX XX XXXXXXXXXXXX XXXXX XXXXXX XXX XXXXX XXXXX XXX XXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXX X XXXXXXXXXXXX XXXX XX XXX XXX XXXXXXXXXXXX XXXX XXXXX XX XXXX XX XXX XXXX XXXX X XXX XXXXXX XXX XX XXXX XXXX XXXXX XXXXX XXXXXX XXXXXX XXXX XX XXXXXXXXXXX XX XXXX X XXXXX XXXXXXX XX XXX XXX XXXXX XXXX XXXXX XXXX XXXXXXXXX XXXXXXXXXX XXXX XX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XX XXXX XXXXXXXX XXXXXXXXXXXXXX XXXXXX XXX XXXXX XXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XX XXXX XXXXX XXXX XX XXXXXXXX XXXXXX XXXX XX XXXXXXXX XX XXXXXXXX XXXXXXX XX XXXX XX XXXXXX XXXX XXXX XXXXXXX XX XXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXX XXXX XX XXXXXXX XXXX XXXX XX X XXXXXXXXXXX XXX XXXXXXXX XXX XXXXXXXXX XXX XX XXXX XXXXX XXXXXXXX XXXX XXX XXXXXXXX XXXXX XXXXXXXX XXXX XXXX XXXXX XX XXX XXXXX XXXX XXX XXXX XXXXXX XXXXXXXX XXXXX XXXX XXX XXXX XX XXXX XXXXX XXXX XXXX XXXX XXX XX XXXXXXXXX XXX XXXX XXXX XXX XX X XXXXXX XX XXXXXXXXXXXXXXX XXXXXXX XXXXX XXXXXXXXXXXXX XXXX XXXXXX XXXXXXX XXXXXX XXX XXXX XXXXX XXX XXXXXXXXXXXXXXX XXXXXXX XX XXXX XXXXXXXXX XXXXXXXXXXXXX XXXXXXXXX X XXXXXXXXXXX XXXX XXXX XXXXXXXXX XX XXXXX XX XXX XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXX XXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXX XXXX XXXXXXXX XXXXX XX XXX XXXX XXXXX XXXXXXXXXX XXXXX XXX XXXXXXX XXXXXXX XXXXXXXXXX XXX XXX XXXXXXX XXXXXXXXXX XXXXX XX XXX XX XXXXXXXXX XXX XXXXXX XX XXXXX XXXXXXX XX XXXXXXXXXXXXX XXXXXXX XXXX XXXX XXXXX XXX XX X XXXX XXXXXX XXXXXX XXXX XX X XXXXXXXX XXXXXXX XXXXXXXXXXXX XXXXXXXXX XX XXXX XXXXXXX XXX XXXXXXXXXX X XXX XXX XXX XXXXX XX XXX XXXXXXXXXXXXX XXXXXX X XXXXXXXXXXX XXXX XXXXXXXXXXXXX X XXX XXX XXX XXXXX XXXXX XXXXXX XXX XXXXXXXXX XXXXXXX X XXXXXXXXXXX XXXX XXXXXXX X XXX XXXX XXX XXXX XXXX X XXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXX XXXX XXX XXXX XXXXXX X XXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXX XXXXXXX X XXXX XX X XXXXXXXXX XX XXXXXXXX XXXXX XXXXX XXXX XXXXXXXXXXX X XXXXXXXXXXX XXXX XXXXXXXX XXX XXX XXXXXXX X XXXXXX XXXXXXXX XXXXXXX XXXXX XXXXX XXX XXXXXX XXX XXXXXXXXXXXXXX XXXXXXX XX XXXX XXXX XXXXX XXX XXXXX XXXXXXXXXXX XXXX XXX XXXXXXXXXXXX XXXXXXXXX X XXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXX XX XXX XXXXX XXXXXXXXXX XXXXX XXX XXXXX XXX XXXXXXXX XXX XXXX XXXXXX XXXX XXXX XXX XXX XXXXXXXXX XXXXXXX XXXX XX XXXXXXXX XXX XXXX XXXX XXXXXXXXXXX XXXXXX X XXXXXXXX XXXX XXX XXXX XXXXXX XXXX XXXXXX XXXXXXX XX XXX XXXX XXXXXXXXX XXXXXX XX XXX XXXX XXXXX XXXX XXX XXX XXX XXXX XXXXXX XXX XXXXXXXX XXXX XXXXXXXXXXXX XXX XXXXXXX XXX XXXX XXXXXXXXX XX XXXXXX XXXX XXXXXXXX XXXXXXXXXX XXX XX XXXX XXXXXX XX XXX XXXXXX XX XXXX XXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXX XXXXXXX XXXXXX XXXX XXXX XXXXX XXX XXXXXXXXXXXX XXXXXXX XXX XXXX XX XXX XXXXXXX XX XXX XXXXXXXX XXXXXXX XXXXXXX XXX XXX XXXX XXXX XXX XX XXXXXXXXX XX XXX XX XXX XXXX XX XXXX XXX XXX XXXXXXXXX XXXXXXX XXXX XX XXXXXXX XXX XXX XXXXX XXXXXXXXXX X XXXXXX XXXX XXX XXX XXXX XXX XXXX XXXX XXXXXXXXXXXX XXX XXX XXXXXXXXXXX XX XXXXXXX XX XXX XXXXX XXX XXXXXX XXX XXXXXXXXXXXX XXXX XX XXXXXXXXX XXX XXX XXXX XXXXXXXXX XXXXXXX XX XXX XXX XXXX XXX XX XXXXXXXXXX XX XXXXXXXXXXXX XXXX XXXX XXXXXXXX XXXXXXX XXXX X XXXX XXXX XX XXX XXXX XXXXX XXXX XXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXX XXXXXXXXX XXXXXXX XXX XXXXXXX XXXX XXXXX XXXXXX XX XXXXXXX XXXXXXXXXXX XXXXXXXXX XXXXXXX XXXX XXXX XXXXX XXXXXX XXXXXXXXXX XXXX XXXXX XXXXXXXX XX XXXX XXXX XXXXXXXX XXX XXXXX XXXXX XX XXXX XXXXX XXXX XXXXX XX XXXX XXXX XXXX XXXXXX XXXXXXXX XXXXX XXX XXXXX XXXXXXX XXXX X XXXXXX XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXX XXXX XXXXXXX X XXXXXXXX XXXXXXXX XXXXX XXXXXX XXXX XXX XXX XXXX XXXXXX XXXXXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXX XXXXXXXXX XXX XXXXXXX XXX XXX XXXXXX XXXXXXXXXX XX XXXXXXX XXX XXXXX XXXX XX XXXXX XXX XXXX XXXXXXXXX XXX XXXXXXXXX XXXX XXX XXX XXXXX XXXX XXXX XXXXXXXXX XXX XXX XXXXXXX XXX XXXX XXXXXXXXX XXXX XXXXX XXXXXXXXX XX XXXXX XXX XXXXXXXXXXXXX XXXXXXXXX XXXXXXX XXXX XXXX XXXXXXXX XXX XXXX XXXXXXXX XXXXXXX XXXXX XX XXX XXXXXXXX XXXX XXX XXXXXX XX XXXX XXXXX XX XXXXXXXX XXX XXXXXXXXXX XXXX XXXX XX XXXXXXX XX XXXXX XX XXXX XX XX XX XXXXX XX XXXXXXXXX XX XXX XXXXXXXX XXXXXXXX XX X XXXX XXX XX XXXXXXXXXX XXXXXXXXXXXX XXX XXXX XXXXXXXX XXX XXX XX XXXXXXXXXX XX XXX XXXX XXXX XXXXXX XX XXXXX XXXXXXX XXX XXXX XX XXXXX XX XXXXXXX XXX XXXXXXXXX XXX XXX XXXXXXXXXXXXX XXXXXXXXXX XXXXXX XX XXXXXXXX XXXX XXXXXX XXX XXXXXXXXXXXXX XXXXXXX XXX XXXXXXXXX XXXX XXX XX XXXXXX XXXX XXXXXXX XXXXX XX X XXXXXXXXXX XXXXXXXXXXX XXXXXX XXXXX XXXXX XXX XX XXXXXXXXXXX XX X XXXXXXXX XXX XXXXXXXX XXX XXXXXXX XXXX XXXXXXXX XXXXX XXX XXXXXXX XX XXXXXXXXXX XXXXXXXXX XX XXX XXXXX XX XXXX XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXX XXXXXXX XXX XXXXX XXXX XXX XX XXXXXXXXX XXXXXXXX XX XXXXXXX XXXXXX XXX XXXXXXXX XXXX XX XXXXXXX XX XXXXXXX XXXXXXXXX XXX XXXXXXXXXX XXXXXXXXXXX XXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXX XXXXXX X XXXXXX XX XXXXXXXX XX XXXXXXXXX XXXX XXXX XXXXXXXXX XXX XXXXXXXX XX XXX XXXX XX XXX X XXXXXXXXX XXXXXXXX XXXXX XXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXX XX XXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXX XXX XXX XXXXX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXX XXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXXXX XX XXX XXXXXXXX XXXXXXXXXXXX XXXXXXXXX XXXXX XXXX XXXXX X XXXXXXXX XXXXXXXXX XXX XXXX XXXXXX XXXX XXXXXXXXX XXX XXX XX XXX XXXX XXXXXXXX XXXXXXXX XXX XXXX XX XXXX XXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXX XXX XXXX XXXXXXXX XX XXXXXXX XX XXX XXXX XXXXXXXXX XX XXXXXXXXXXXXXXXX XX XXXXXX XXXX XX XXXX XXXX XXXX XXX XXXXX XXXX XXXXXXX XXX XXXXXXXXXX XXXXXXXXXX XX XXXXXX X XXX XXXXXXXX XX XXX XXXXXXX XXX XXXXXXXXXXXX XXXXXXX XXXX XXX XXXXXXXXX XXXXXXXX XX XXXX XXXX XXXXXXXXX XXX XXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXX XXXXXXX XX XXXXXX XXXXX XXXXXX XXX XXX XXXX XXX XXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXX XX XXXXXXX XXX XXXXXXXXXX XXXXXXXXX XXXX XX XXX XXXX XXXXXXXXX XXX XXX XXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXX XXXXXXX XX XXXXX XXX XXXXX XXXXXXXX XXXXXXXXX XX XXXXX XX XXXXXX XXXXXXXXX XXXXXXXX XXXX XXXXXXX XXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XX XXX XXX XXXXX XXXXX XXXX XXXXXXX XX XXXXX XXX XXXXXXXX XXXXXXX XXXXXXXX XX XXXXXXXXXXXX XXXXXXX XXXX XXXX XXXX XXXXXXXXXX XXXXXXXX XXXX XXXXXXX XXXXXX XX XXXX XXXX XXXXXXXX XX XXXXXX XXX XXXXXXXX XXXX XXX XXXXXXX XXX XXXXXXXXX XXXX XXXX XXXXX XXXXXXXX XXX XXXX XXXXXXXX XX XXX XXX XXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXX XXXXXXXX XX XXX XXXX X XXXXXXXX XXXXX XX XXXXXXXXXXXX XXXX XXX X XXXX XXXXXXXX XXXXXXX XXXXXXXXXX XXXX XXXXX XXXXXXX XXXX XXXXXX XXX XX X XXX XXXX XX XXXX XXXX XXXXXXXXXXX XXXXXXXX XXXXXXX XX XXXX XXXXX XXXXXX X XXXXXXX XXXX XXXX XX XXXX XX XXXXXXX XX XXXXX XXXX XXXX XXXXXXX XX XXXXXXXXXX XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXX XXXXXXXXXXXXXX XXXXXXXX XXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX XXXXX XX XXXXX XXXXX XXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXX XX XXXXXXXXX XXXX XXX XXXXXXXXXXXX XXXX XXXXXX XXXX X XXXXX XXXXXXXXX XXX XXXXXX XXXX XXXXXX XXXXXXXX XXXXX XX XXX XXXXXXXXX XXXX X XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXX XXX XXXXXX X XXXXX XXX XXXXX XXXXXXXXXXXX XXXXX XXXXX XXXXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXX XX XXXXXXXXXX XXXXXXXX XXXXXXXXXX XXX XXXXXXXX XXXXX XXXXX X XXXX XXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXX XXXXXXXXX XXXX XXX XXXXX XXX XXXXXXXX XXXXXXX XXXXXXXXX XX XX XXX XXXXXXXX XXXXX XXX XXXX XX XXXXXX XXX XXX XXXXXXXX XX XXXXX XXX XXXXXX XXXXXXXXXX XXXXXXXXXXXX XX XXXX XXXX XXXXXXXXX XXXX XX XXX XXXX XXXX XXXXXXXX XXXX XXXXXX XX XXXXX XXXX XX XXX
where: callCount = the number of calls made timeTakenCPU = the CPU time spent in microseconds timeTakenWall = the actual time ( wall time ) spent in microseconds """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def pixelAspect(self): """ self.pixelAspect() -> int. Pixel Aspect ratio of the node. @return: float. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def proxy(self): """ self.proxy() -> bool @return: True if proxy is enabled, False otherwise. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def readKnobs(self, s): """ self.readKnobs(s) -> None. Read the knobs from a string (TCL syntax). @param s: A string. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def redraw(self): """ self.redraw() -> None. Force a redraw of the node. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def removeKnob(self, k): """ self.removeKnob(k) -> None. Remove knob k from this node or panel. Throws a ValueError exception if k is not found on the node. @param k: Knob. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def resetKnobsToDefault(self): """ self.resetKnobsToDefault() -> None Reset all the knobs to their default values. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def running(self): """ self.running() -> Node rendering when paralled threads are running or None. Class method. @return: Node rendering when paralled threads are running or None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def sample(self, c, x, y, dx, dy, frame): """ self.sample(c, x, y, dx, dy) -> Floating point value. Return pixel values from an image. This requires the image to be calculated, so performance may be very bad if this is placed into an expression in a control panel. Produces a cubic filtered result. Any sizes less than 1, including 0, produce the same filtered result, this is correct based on sampling theory. Note that integers are at the corners of pixels, to center on a pixel add .5 to both coordinates. If the optional dx,dy are not given then the exact value of the square pixel that x,y lands in is returned. This is also called 'impulse filtering'. @param c: Channel name. @param x: Centre of the area to sample (X coordinate). @param y: Centre of the area to sample (Y coordinate). @param dx: Optional size of the area to sample (X coordinate). @param dy: Optional size of the area to sample (Y coordinate). @param frame: Optional frame to sample the node at. @return: Floating point value. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def screenHeight(self): """ self.screenHeight() -> int. Height of the node when displayed on screen in the DAG, at 1:1 zoom, in pixels. @return: int. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def screenWidth(self): """ self.screenWidth() -> int. Width of the node when displayed on screen in the DAG, at 1:1 zoom, in pixels. @return: int. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def selectOnly(self): """ self.selectOnly() -> None. Set this node to be the only selection, as if it had been clicked in the DAG. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setInput(self, i, node): """ self.setInput(i, node) -> bool Connect input i to node if canSetInput() returns true. @param i: Input number. @param node: The node to connect to input i. @return: True if canSetInput() returns true, or if the input is already correct. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setName(self, name, uncollide, updateExpressions): """ self.setName(name, uncollide=True, updateExpressions=False) -> None Set name of the node and resolve name collisions if optional named argument 'uncollide' is True. @param name: A string. @param uncollide: Optional boolean to resolve name collisions. Defaults to True. @param updateExpressions: Optional boolean to update expressions in other nodes to point at the new name. Defaults to False. @return: None """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setSelected(self, selected): """ self.setSelected(selected) -> None. Set the selection state of the node. This is the same as changing the 'selected' knob. @param selected: New selection state - True or False. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setTab(self, tabIndex): """ self.setTab(tabIndex) -> None @param tabIndex: The tab to show (first is 0). @return: None """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setXYpos(self, x, y): """ self.setXYpos(x, y) -> None. Set the (x, y) position of node in node graph. @param x: The x position of node in node graph. @param y: The y position of node in node graph. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setXpos(self, x): """ self.setXpos(x) -> None. Set the x position of node in node graph. @param x: The x position of node in node graph. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def setYpos(self, y): """ self.setYpos(y) -> None. Set the y position of node in node graph. @param y: The y position of node in node graph. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def showControlPanel(self, forceFloat): """ self.showControlPanel(forceFloat = false) -> None @param forceFloat: Optional python object. If it evaluates to True the control panel will always open as a floating panel. Default is False. @return: None """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def showInfo(self, s): """ self.showInfo(s) -> None. Creates a dialog box showing the result of script s. @param s: A string. @return: None. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def shown(self): """ self.shown() -> true if the properties panel is open. This can be used to skip updates that are not visible to the user. @return: true if the properties panel is open. This can be used to skip updates that are not visible to the user. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def treeHasError(self): """ treeHasError() -> bool True if the node or any in its input tree have an error, or False otherwise. Error state of the node and its input tree. Note that this will always return false for viewers, which cannot generate their input trees. Instead, choose an input of the viewer (e.g. the active one), and call treeHasError() on that. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def upstreamFrameRange(self, i): """ self.upstreamFrameRange(i) -> FrameRange Frame range for the i'th input of this node. @param i: Input number. @return: FrameRange. Returns None when querying an invalid input. """ raise NotImplementedError("This function is not written yet. Please put in an issue on the github page.") def width(self): """ self.width() -> int. Width
""" Each stat kind is populated from one or more stat sections (which are described in the containers module). Ns_Kind_CompositeIndex -> composite-indexes Kind_CompositeIndex -> composite-indexes Ns_Kind_IsRootEntity -> entities + builtin-indexes Ns_Kind_NotRootEntity -> entities + builtin-indexes Kind_IsRootEntity -> entities + builtin-indexes Kind_NotRootEntity -> entities + builtin-indexes Ns_PropertyType_PropertyName_Kind -> entity-properties + index-properties Ns_PropertyName_Kind -> entity-properties + index-properties Ns_PropertyType_Kind -> entity-properties + index-properties PropertyType_PropertyName_Kind -> entity-properties + index-properties Ns_PropertyType -> entity-properties + index-properties PropertyName_Kind -> entity-properties + index-properties PropertyType_Kind -> entity-properties + index-properties PropertyType -> entity-properties + index-properties Ns_Kind -> entities + builtin-indexes + composite-indexes Kind -> entities + builtin-indexes + composite-indexes Namespace -> entities + builtin-indexes + composite-indexes Ns_Total -> entities + builtin-indexes + composite-indexes Total -> entities + builtin-indexes + composite-indexes """ import datetime import logging import sys import time from collections import defaultdict import six from appscale.common.unpackaged import APPSCALE_PYTHON_APPSERVER from appscale.datastore.fdb.stats.containers import CountBytes, StatsPropTypes sys.path.append(APPSCALE_PYTHON_APPSERVER) from google.appengine.datastore import entity_pb # The value the datastore uses to populate the meaning field for timestammps. GD_WHEN = 7 logger = logging.getLogger(__name__) def fill_entity(project_id, kind, properties, name=None, id_=None, namespace=''): entity = entity_pb.EntityProto() key = entity.mutable_key() key.set_app(project_id) if namespace: key.set_name_space(namespace) path = key.mutable_path() element = path.add_element() element.set_type(kind) if name is not None: element.set_name(name) else: element.set_id(id_) group = entity.mutable_entity_group() group.add_element().CopyFrom(element) for prop_name, value in six.iteritems(properties): prop = entity.add_property() prop.set_name(prop_name) prop.set_multiple(False) value_pb = prop.mutable_value() if isinstance(value, datetime.datetime): value_pb.set_int64value( int(time.mktime(value.timetuple()) * 1000000 + value.microsecond)) prop.set_meaning(GD_WHEN) elif isinstance(value, int): value_pb.set_int64value(value) else: value_pb.set_stringvalue(value.encode('utf-8')) return entity def fill_entities(project_id, project_stats, timestamp): entities = [] composite_stats = project_stats.composite_stats.stats stats_kind = u'__Stat_Ns_Kind_CompositeIndex__' for namespace, by_index in six.iteritems(composite_stats): for (index_id, kind), fields in six.iteritems(by_index): name = u'_'.join([kind, six.text_type(index_id)]) props = {'index_id': index_id, 'kind_name': kind, 'timestamp': timestamp, 'count': fields.count, 'bytes': fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name, namespace=namespace)) stats_kind = u'__Stat_Kind_CompositeIndex__' composite_stats_by_index = defaultdict(CountBytes) for namespace, by_index in six.iteritems(composite_stats): for key, fields in six.iteritems(by_index): composite_stats_by_index[key] += fields for (index_id, kind), fields in six.iteritems(composite_stats_by_index): name = u'_'.join([kind, six.text_type(index_id)]) props = {'index_id': index_id, 'kind_name': kind, 'timestamp': timestamp, 'count': fields.count, 'bytes': fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name)) entity_stats = project_stats.entity_stats stats_kind = u'__Stat_Ns_Kind_IsRootEntity__' for namespace, by_kind in six.iteritems(entity_stats.entities_root): for kind, entity_fields in six.iteritems(by_kind): builtin_fields = entity_stats.builtin_indexes_root[namespace][kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind, namespace=namespace)) stats_kind = u'__Stat_Ns_Kind_NotRootEntity__' for namespace, by_kind in six.iteritems(entity_stats.entities_notroot): for kind, entity_fields in six.iteritems(by_kind): builtin_fields = entity_stats.builtin_indexes_notroot[namespace][kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind, namespace=namespace)) stats_kind = u'__Stat_Ns_Kind__' entity_stats_by_ns_kind = defaultdict(lambda: defaultdict(CountBytes)) for namespace, by_kind in six.iteritems(entity_stats.entities_root): for kind, fields in six.iteritems(by_kind): entity_stats_by_ns_kind[namespace][kind] += fields for namespace, by_kind in six.iteritems(entity_stats.entities_notroot): for kind, fields in six.iteritems(by_kind): entity_stats_by_ns_kind[namespace][kind] += fields builtin_stats_by_ns_kind = defaultdict(lambda: defaultdict(CountBytes)) for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_root): for kind, fields in six.iteritems(by_kind): builtin_stats_by_ns_kind[namespace][kind] += fields for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_notroot): for kind, fields in six.iteritems(by_kind): builtin_stats_by_ns_kind[namespace][kind] += fields composite_stats_by_ns_kind = defaultdict(lambda: defaultdict(CountBytes)) for namespace, by_index in six.iteritems(composite_stats): for (index_id, kind), fields in six.iteritems(by_index): composite_stats_by_ns_kind[namespace][kind] += fields for namespace, by_kind in six.iteritems(entity_stats_by_ns_kind): for kind, entity_fields in six.iteritems(by_kind): builtin_fields = builtin_stats_by_ns_kind[namespace][kind] composite_fields = composite_stats_by_ns_kind[namespace][kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'composite_index_count': composite_fields.count, 'composite_index_bytes': composite_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes + composite_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind, namespace=namespace)) stats_kind = u'__Stat_Kind_IsRootEntity__' root_entity_stats_by_kind = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.entities_root): for kind, fields in six.iteritems(by_kind): root_entity_stats_by_kind[kind] += fields root_builtin_stats_by_kind = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_root): for kind, fields in six.iteritems(by_kind): root_builtin_stats_by_kind[kind] += fields for kind, entity_fields in six.iteritems(root_entity_stats_by_kind): builtin_fields = root_builtin_stats_by_kind[kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind)) stats_kind = u'__Stat_Kind_NotRootEntity__' notroot_entity_stats_by_kind = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.entities_notroot): for kind, fields in six.iteritems(by_kind): notroot_entity_stats_by_kind[kind] += fields notroot_builtin_stats_by_kind = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_notroot): for kind, fields in six.iteritems(by_kind): notroot_builtin_stats_by_kind[kind] += fields for kind, entity_fields in six.iteritems(notroot_entity_stats_by_kind): builtin_fields = notroot_builtin_stats_by_kind[kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind)) stats_kind = u'__Stat_Kind__' entity_stats_by_kind = defaultdict(CountBytes) for kind, fields in six.iteritems(root_entity_stats_by_kind): entity_stats_by_kind[kind] += fields for kind, fields in six.iteritems(notroot_entity_stats_by_kind): entity_stats_by_kind[kind] += fields builtin_stats_by_kind = defaultdict(CountBytes) for kind, fields in six.iteritems(root_builtin_stats_by_kind): builtin_stats_by_kind[kind] += fields for kind, fields in six.iteritems(notroot_builtin_stats_by_kind): builtin_stats_by_kind[kind] += fields composite_stats_by_kind = defaultdict(CountBytes) for (index_id, kind), fields in six.iteritems(composite_stats_by_index): composite_stats_by_kind[kind] += fields for kind, entity_fields in six.iteritems(entity_stats_by_kind): builtin_fields = builtin_stats_by_kind[kind] composite_fields = composite_stats_by_kind[kind] props = {'kind_name': kind, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'composite_index_count': composite_fields.count, 'composite_index_bytes': composite_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes + composite_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, kind)) stats_kind = u'__Stat_Namespace__' composite_stats_by_ns = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(composite_stats): composite_stats_by_ns[namespace] += sum(six.itervalues(by_kind), CountBytes()) entity_stats_by_ns = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.entities_root): entity_stats_by_ns[namespace] += sum(six.itervalues(by_kind), CountBytes()) for namespace, by_kind in six.iteritems(entity_stats.entities_notroot): entity_stats_by_ns[namespace] += sum(six.itervalues(by_kind), CountBytes()) builtin_stats_by_ns = defaultdict(CountBytes) for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_root): builtin_stats_by_ns[namespace] += sum(six.itervalues(by_kind), CountBytes()) for namespace, by_kind in six.iteritems(entity_stats.builtin_indexes_notroot): builtin_stats_by_ns[namespace] += sum(six.itervalues(by_kind), CountBytes()) for namespace, entity_fields in six.iteritems(entity_stats_by_ns): builtin_fields = builtin_stats_by_ns[namespace] composite_fields = composite_stats_by_ns[namespace] props = {'subject_namespace': namespace, 'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'composite_index_count': composite_fields.count, 'composite_index_bytes': composite_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes + composite_fields.bytes} if namespace: entities.append(fill_entity(project_id, stats_kind, props, namespace)) else: entities.append(fill_entity(project_id, stats_kind, props, id_=1)) stats_kind = u'__Stat_Ns_Total__' name = u'total_entity_usage' for namespace, entity_fields in six.iteritems(entity_stats_by_ns): builtin_fields = builtin_stats_by_ns[namespace] composite_fields = composite_stats_by_ns[namespace] props = {'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'composite_index_count': composite_fields.count, 'composite_index_bytes': composite_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes + composite_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name, namespace=namespace)) stats_kind = u'__Stat_Total__' name = u'total_entity_usage' entity_fields = sum(six.itervalues(entity_stats_by_ns), CountBytes()) builtin_fields = sum(six.itervalues(builtin_stats_by_ns), CountBytes()) composite_fields = sum(six.itervalues(composite_stats_by_ns), CountBytes()) props = {'timestamp': timestamp, 'builtin_index_count': builtin_fields.count, 'builtin_index_bytes': builtin_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'composite_index_count': composite_fields.count, 'composite_index_bytes': composite_fields.bytes, 'bytes': entity_fields.bytes + builtin_fields.bytes + composite_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name)) prop_stats = project_stats.property_stats stats_kind = u'__Stat_Ns_PropertyType_PropertyName_Kind__' for namespace, by_kind in six.iteritems(prop_stats.entity_stats): for kind, by_type in six.iteritems(by_kind): for prop_type, by_name in six.iteritems(by_type): type_name = StatsPropTypes.NAMES[prop_type] for prop_name, entity_fields in six.iteritems(by_name): name = u'_'.join([type_name, prop_name, kind]) index_fields = prop_stats.index_stats[namespace][kind][prop_type]\ [prop_name] props = {'kind_name': kind, 'timestamp': timestamp, 'property_type': type_name, 'property_name': prop_name, 'builtin_index_count': index_fields.count, 'builtin_index_bytes': index_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + index_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name, namespace=namespace)) stats_kind = u'__Stat_Ns_PropertyType_Kind__' for namespace, by_kind in six.iteritems(prop_stats.entity_stats): for kind, by_type in six.iteritems(by_kind): for prop_type, by_name in six.iteritems(by_type): type_name = StatsPropTypes.NAMES[prop_type] name = u'_'.join([type_name, kind]) entity_fields = sum(six.itervalues(by_name), CountBytes()) index_fields = sum( six.itervalues(prop_stats.index_stats[namespace][kind][prop_type]), CountBytes()) props = {'kind_name': kind, 'timestamp': timestamp, 'property_type': type_name, 'builtin_index_count': index_fields.count, 'builtin_index_bytes': index_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + index_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name, namespace=namespace)) stats_kind = u'__Stat_Ns_PropertyName_Kind__' for namespace, by_kind in six.iteritems(prop_stats.entity_stats): for kind, by_type in six.iteritems(by_kind): combined_entities = defaultdict(CountBytes) combined_indexes = defaultdict(CountBytes) for prop_type, by_name in six.iteritems(by_type): for prop_name, fields in six.iteritems(by_name): combined_entities[prop_name] += fields combined_indexes[prop_name] += prop_stats.index_stats[namespace]\ [kind][prop_type][prop_name] for prop_name, entity_fields in six.iteritems(combined_entities): name = u'_'.join([prop_name, kind]) index_fields = combined_indexes[prop_name] props = {'kind_name': kind, 'timestamp': timestamp, 'property_name': prop_name, 'builtin_index_count': index_fields.count, 'builtin_index_bytes': index_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + index_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name, namespace=namespace)) stats_kind = u'__Stat_Ns_PropertyType__' for namespace, by_kind in six.iteritems(prop_stats.entity_stats): combined_entities = defaultdict(CountBytes) combined_indexes = defaultdict(CountBytes) for kind, by_type in six.iteritems(by_kind): for prop_type, by_name in six.iteritems(by_type): combined_entities[prop_type] += sum( six.itervalues(by_name), CountBytes()) combined_indexes[prop_type] += sum( six.itervalues(prop_stats.index_stats[namespace][kind][prop_type]), CountBytes()) for prop_type, entity_fields in six.iteritems(combined_entities): type_name = StatsPropTypes.NAMES[prop_type] index_fields = combined_indexes[prop_type] props = {'timestamp': timestamp, 'property_type': type_name, 'builtin_index_count': index_fields.count, 'builtin_index_bytes': index_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + index_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, type_name, namespace=namespace)) stats_kind = u'__Stat_PropertyName_Kind__' combined_entities = defaultdict(lambda: defaultdict(CountBytes)) combined_indexes = defaultdict(lambda: defaultdict(CountBytes)) for namespace, by_kind in six.iteritems(prop_stats.entity_stats): for kind, by_type in six.iteritems(by_kind): for prop_type, by_name in six.iteritems(by_type): for prop_name, fields in six.iteritems(by_name): combined_entities[prop_name][kind] += fields combined_indexes[prop_name][kind] += prop_stats.index_stats\ [namespace][kind][prop_type][prop_name] for prop_name, by_kind in six.iteritems(combined_entities): for kind, entity_fields in six.iteritems(by_kind): index_fields = combined_indexes[prop_name][kind] name = u'_'.join([prop_name, kind]) props = {'timestamp': timestamp, 'kind_name': kind, 'property_name': prop_name, 'builtin_index_count': index_fields.count, 'builtin_index_bytes': index_fields.bytes, 'count': entity_fields.count, 'entity_bytes': entity_fields.bytes, 'bytes': entity_fields.bytes + index_fields.bytes} entities.append(fill_entity(project_id, stats_kind, props, name)) stats_kind = u'__Stat_PropertyType_Kind__' combined_entities = defaultdict(lambda: defaultdict(CountBytes)) combined_indexes = defaultdict(lambda: defaultdict(CountBytes)) for namespace, by_kind in six.iteritems(prop_stats.entity_stats): for kind, by_type in six.iteritems(by_kind): for prop_type, by_name in six.iteritems(by_type): combined_entities[prop_type][kind] +=
``px``, etc. hx : list, optional list of normalized field heights along x axis, of length ``numRays``; if ``None``, a list of 0.0s for ``hx`` is created. hy : list, optional list of normalized field heights along y axis, of length ``numRays``; if ``None``, a list of 0.0s for ``hy`` is created px : list, optional list of normalized heights in pupil coordinates, along x axis, of length ``numRays``; if ``None``, a list of 0.0s for ``px`` is created. py : list, optional list of normalized heights in pupil coordinates, along y axis, of length ``numRays``; if ``None``, a list of 0.0s for ``py`` is created Exr : list, optional list of real part of the electric field in x direction for each ray. if ``None``, a list of 0.0s for ``Exr`` is created. See Notes Exi : list, optional list of imaginary part of the electric field in x direction for each ray. if ``None``, a list of 0.0s for ``Exi`` is created. See Notes Eyr : list, optional list of real part of the electric field in y direction for each ray. if ``None``, a list of 0.0s for ``Eyr`` is created. See Notes Eyi : list, optional list of imaginary part of the electric field in y direction for each ray. if ``None``, a list of 0.0s for ``Eyi`` is created. See Notes Ezr : list, optional list of real part of the electric field in z direction for each ray. if ``None``, a list of 0.0s for ``Ezr`` is created. See Notes Ezi : list, optional list of imaginary part of the electric field in z direction for each ray. if ``None``, a list of 0.0s for ``Ezi`` is created. See Notes Ex : float normalized electric field magnitude in x direction to be defined in array position 0. If not provided, an unpolarized ray will be traced. See Notes. Ey : float normalized electric field magnitude in y direction to be defined in array position 0. If not provided, an unpolarized ray will be traced. See Notes. Phax : float relative phase in x direction in degrees Phay : float relative phase in y direction in degrees intensity : float or list, optional initial intensities. If a list of length ``numRays`` is given it is used. If a single float value is passed, all rays use the same value for their initial intensities. If ``None``, all rays use a value of ``1.0`` as their initial intensities. waveNum : integer or list (of integers), optional wavelength number. If a list of integers of length ``numRays`` is given it is used. If a single integer value is passed, all rays use the same value for wavelength number. If ``None``, all rays use wavelength number equal to 1. mode : integer, optional 0 = real (Default), 1 = paraxial surf : integer, optional surface to trace the ray to. (``surf = -1``, default) timeout : integer, optional command timeout specified in milli-seconds Returns ------- error : list of integers 0 = ray traced successfully; +ve number = the ray missed the surface; -ve number = the ray total internal reflected (TIR) at surface given by the absolute value of the ``error`` intensity : list of reals the relative transmitted intensity of the ray, including any pupil or surface apodization defined. Exr : list of real values list of real parts of the electric field components in x Exi : list of real values list of imaginary parts of the electric field components in x Eyr : list of real values list of real parts of the electric field components in y Eyi : list of real values list of imaginary parts of the electric field components in y Ezr : list of real values list of real parts of the electric field components in z Ezi : list of real values list of imaginary parts of the electric field components in z If ray tracing fails, a single integer error code is returned, which has the following meaning: -1 = Couldn't retrieve data in PostArrayTraceMessage, -999 = Couldn't communicate with Zemax, -998 = timeout reached Notes ----- 1. If all six of the electric field values ``Exr``, ``Exi``, ``Eyr``, ``Eyi``, ``Ezr``, and ``Ezi`` for a ray are zero Zemax will use the ``Ex`` and ``Ey`` values provided in array position 0 to determine the electric field. Otherwise, the electric field is defined by these six values. 2. The defined electric field vector must be orthogonal to the ray vector or incorrect ray tracing will result. 3. Even if these six values are defined for each ray, values for ``Ex`` and ``Ey`` in the array position 0 must still be defined, otherwise an unpolarized ray trace will result. """ rd = getRayDataArray(numRays, tType=2, mode=mode, endSurf=surf, x=Ex, y=Ey, z=Phax, l=Phay) hx = hx if hx else [0.0] * numRays hy = hy if hy else [0.0] * numRays px = px if px else [0.0] * numRays py = py if py else [0.0] * numRays Exr = Exr if Exr else [0.0] * numRays Exi = Exi if Exi else [0.0] * numRays Eyr = Eyr if Eyr else [0.0] * numRays Eyi = Eyi if Eyi else [0.0] * numRays Ezr = Ezr if Ezr else [0.0] * numRays Ezi = Ezi if Ezi else [0.0] * numRays if intensity: intensity = intensity if isinstance(intensity, list) else [intensity]*numRays else: intensity = [1.0] * numRays if waveNum: waveNum = waveNum if isinstance(waveNum, list) else [waveNum]*numRays else: waveNum = [1] * numRays # fill up the structure for i in xrange(1, numRays+1): rd[i].x = hx[i-1] rd[i].y = hy[i-1] rd[i].z = px[i-1] rd[i].l = py[i-1] rd[i].Exr = Exr[i-1] rd[i].Exi = Exi[i-1] rd[i].Eyr = Eyr[i-1] rd[i].Eyi = Eyi[i-1] rd[i].Ezr = Ezr[i-1] rd[i].Ezi = Ezi[i-1] rd[i].intensity = intensity[i-1] rd[i].wave = waveNum[i-1] # call ray tracing ret = zArrayTrace(rd, timeout) d = {} if ret == 0: reals = ['intensity', 'Exr', 'Exi', 'Eyr', 'Eyi', 'Ezr', 'Ezi'] ints = ['error', ] for r in reals: exec(r + " = [0.0] * numRays", locals(), d) for i in ints: exec(i + " = [0] * numRays", locals(), d) for i in xrange(1, numRays+1): d["intensity"][i-1] = rd[i].intensity d["Exr"][i-1] = rd[i].Exr d["Exi"][i-1] = rd[i].Exi d["Eyr"][i-1] = rd[i].Eyr d["Eyi"][i-1] = rd[i].Eyi d["Ezr"][i-1] = rd[i].Ezr d["Ezi"][i-1] = rd[i].Ezi d["error"][i-1] = rd[i].error return (d["error"], d["intensity"], d["Exr"], d["Exi"], d["Eyr"], d["Eyi"], d["Ezr"], d["Ezi"]) else: return ret def zGetPolTraceDirectArray(numRays, x=None, y=None, z=None, l=None, m=None, n=None, Exr=None, Exi=None, Eyr=None, Eyi=None, Ezr=None, Ezi=None, Ex=0, Ey=0, Phax=0, Phay=0, intensity=None, waveNum=None, mode=0, startSurf=0, lastSurf=-1, timeout=5000): """Trace large number of polarized rays defined by the ``x``, ``y``, ``z``, ``l``, ``m`` and ``n`` coordinates on any starting surface as well as electric field magnitude and relative phase. Similar to ``GetPolTraceDirect()`` Ray tracing is performed on the lens file in the LDE of main Zemax application (not in the DDE server) Parameters ---------- numRays : integer number of rays to trace. ``numRays`` should be equal to the length of the lists (if provided) ``hx``, ``hy``, ``px``, etc. x : list, optional list specifying the x coordinates of the ray at the start surface, of length ``numRays``; if ``None``, a list of 0.0s for ``x`` is created. y : list, optional list specifying the y coordinates of the ray at the start surface, of length ``numRays``; if ``None``, a list of 0.0s for ``y`` is created z : list, optional list specifying the z coordinates of the ray at the start surface, of length ``numRays``; if ``None``, a list of 0.0s for ``z`` is created. l : list, optional list of x-direction cosines, of length ``numRays``; if ``None``, a list of 0.0s for ``l`` is created m : list,
<filename>tests/plugins/test_accounts.py import bcrypt import unittest import uuid from unittest import mock from kinto.core import utils from kinto.core.events import ACTIONS, ResourceChanged from kinto.core.testing import get_user_headers, DummyRequest from pyramid.exceptions import ConfigurationError from pyramid_mailer import get_mailer from kinto.plugins.accounts import scripts, ACCOUNT_CACHE_KEY from kinto.plugins.accounts.utils import ( get_cached_reset_password, get_cached_validation_key, hash_password, ) from kinto.plugins.accounts.views import on_account_created from kinto.plugins.accounts.views.validation import on_account_activated from .. import support class AccountsWebTest(support.BaseWebTest, unittest.TestCase): @classmethod def get_app_settings(cls, extras=None): if extras is None: extras = {} extras.setdefault("multiauth.policies", "account") extras.setdefault("includes", "kinto.plugins.accounts") extras.setdefault("account_create_principals", "system.Everyone") # XXX: this should be a default setting. extras.setdefault( "multiauth.policy.account.use", "kinto.plugins.accounts.authentication." "AccountsAuthenticationPolicy", ) extras.setdefault("account_cache_ttl_seconds", "30") return super().get_app_settings(extras) class AccountsValidationWebTest(AccountsWebTest): def setUp(self): self.mailer = get_mailer(self.app.app.registry) self.mailer.outbox = [] # Reset the outbox before each test. @classmethod def get_app_settings(cls, extras=None): if extras is None: extras = {} # Enable the account validation option. extras.setdefault("account_validation", True) # Use a testing mailer. extras.setdefault("mail.mailer", "testing") # Email templates for the user creation. extras.setdefault( "account_validation.email_subject_template", "{name}, activate your account {id}" ) extras.setdefault( "account_validation.email_body_template", "{activation-form-url}/{id}/{activation-key} {bad-key}", ) # Email templates for the user validated confirmation. extras.setdefault( "account_validation.email_confirmation_subject_template", "{name}, your account {id} is now active", ) extras.setdefault( "account_validation.email_confirmation_body_template", "Your account {id} has been successfully activated. Connect to {homepage}", ) # Email templates for the reset password. extras.setdefault( "account_validation.email_reset_password_subject_template", "{name}, here is a temporary reset password for {id}", ) extras.setdefault( "account_validation.email_reset_password_body_template", "You can use this temporary reset password {reset-password} to change your account {id} password", ) return super().get_app_settings(extras) class BadAccountsConfigTest(support.BaseWebTest, unittest.TestCase): def test_raise_configuration_if_accounts_not_mentioned(self): with self.assertRaises(ConfigurationError) as cm: self.make_app( {"includes": "kinto.plugins.accounts", "multiauth.policies": "basicauth"} ) assert "Account policy missing" in str(cm.exception) class HelloViewTest(AccountsWebTest): def test_accounts_capability_if_enabled(self): resp = self.app.get("/") capabilities = resp.json["capabilities"] self.assertIn("accounts", capabilities) class HelloActivationViewTest(AccountsValidationWebTest): def test_account_validation_capability_if_enabled(self): resp = self.app.get("/") capabilities = resp.json["capabilities"] self.assertIn("accounts", capabilities) self.assertIn("validation_enabled", capabilities["accounts"]) self.assertTrue(capabilities["accounts"]["validation_enabled"]) class AccountCreationTest(AccountsWebTest): def test_anyone_can_create_an_account(self): self.app.post_json("/accounts", {"data": {"id": "alice", "password": "<PASSWORD>"}}, status=201) def test_account_can_be_created_with_put(self): self.app.put_json("/accounts/alice", {"data": {"password": "<PASSWORD>"}}, status=201) def test_password_is_stored_encrypted(self): self.app.put_json("/accounts/alice", {"data": {"password": "<PASSWORD>"}}, status=201) stored = self.app.app.registry.storage.get( parent_id="alice", resource_name="account", object_id="alice" ) assert stored["password"] != "<PASSWORD>" def test_authentication_is_accepted_if_account_exists(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" def test_password_field_is_mandatory(self): self.app.post_json("/accounts", {"data": {"id": "me"}}, status=400) def test_id_field_is_mandatory(self): self.app.post_json("/accounts", {"data": {"password": "<PASSWORD>"}}, status=400) def test_id_can_be_email(self): self.app.put_json( "/accounts/[email protected]", {"data": {"password": "<PASSWORD>"}}, status=201 ) def test_account_can_have_metadata(self): resp = self.app.post_json( "/accounts", {"data": {"id": "me", "password": "<PASSWORD>", "age": 42}}, status=201 ) assert resp.json["data"]["age"] == 42 def test_cannot_create_account_if_already_exists(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) resp = self.app.post_json( "/accounts", {"data": {"id": "me", "password": "bouh"}}, status=403 ) assert "already exists" in resp.json["message"] def test_username_and_account_id_must_match(self): resp = self.app.put_json( "/accounts/alice", {"data": {"id": "bob", "password": "<PASSWORD>"}}, status=400 ) assert "does not match" in resp.json["message"] def test_returns_existing_account_if_authenticated(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) self.app.post_json( "/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, headers=get_user_headers("me", "bouh"), status=200, ) def test_cannot_create_other_account_if_authenticated(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) resp = self.app.post_json( "/accounts", {"data": {"id": "you", "password": "<PASSWORD>"}}, headers=get_user_headers("me", "bouh"), status=400, ) assert "do not match" in resp.json["message"] def test_authentication_does_not_call_bcrypt_twice(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) with mock.patch("kinto.plugins.accounts.authentication.bcrypt") as mocked_bcrypt: resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" assert mocked_bcrypt.checkpw.call_count == 1 def test_authentication_checks_bcrypt_again_if_password_changes(self): self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) with mock.patch("kinto.plugins.accounts.authentication.bcrypt") as mocked_bcrypt: resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" self.app.patch_json( "/accounts/me", {"data": {"password": "<PASSWORD>"}}, status=200, headers=get_user_headers("me", "bouh"), ) resp = self.app.get("/", headers=get_user_headers("me", "blah")) assert resp.json["user"]["id"] == "account:me" assert mocked_bcrypt.checkpw.call_count == 2 def test_authentication_refresh_the_cache_each_time_we_authenticate(self): hmac_secret = self.app.app.registry.settings["userid_hmac_secret"] cache_key = utils.hmac_digest(hmac_secret, ACCOUNT_CACHE_KEY.format("me")) self.app.post_json("/accounts", {"data": {"id": "me", "password": "<PASSWORD>"}}, status=201) resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" self.app.app.registry.cache.expire(cache_key, 10) resp = self.app.get("/", headers=get_user_headers("me", "bouh")) assert resp.json["user"]["id"] == "account:me" assert self.app.app.registry.cache.ttl(cache_key) >= 20 resp = self.app.get("/", headers=get_user_headers("me", "blah")) assert "user" not in resp.json def test_validate_view_not_active(self): # The `validate` view is only active when the `account_validation` option is enabled. # Create the user. self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>"}}, status=201 ) # Validate the user. self.app.post_json("/accounts/<EMAIL>/validate/some_validation_key", status=404) def test_reset_password_view_not_active(self): # The `validate` view is only active when the `account_validation` option is enabled. # Create the user. self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>"}}, status=201 ) # Ask for a reset password. self.app.post_json("/accounts/<EMAIL>/reset-password", status=404) class AccountValidationCreationTest(AccountsValidationWebTest): def test_create_account_fails_if_not_email(self): resp = self.app.post_json( "/accounts", {"data": {"id": "alice", "password": "<PASSWORD>"}}, status=400 ) assert "user id should match" in resp.json["message"] def test_create_account_stores_activated_field(self): uuid_string = "20e81ab7-51c0-444f-b204-f1c4cfe1aa7a" with mock.patch("uuid.uuid4", return_value=uuid.UUID(uuid_string)): resp = self.app.post_json( "/accounts", { "data": { "id": "<EMAIL>", "password": "<PASSWORD>", "email-context": { "name": "Alice", "activation-form-url": "https://example.com", }, } }, status=201, ) assert "activation-key" not in resp.json["data"] assert "validated" in resp.json["data"] assert not resp.json["data"]["validated"] assert len(self.mailer.outbox) == 1 mail = self.mailer.outbox[0] # Get the validation email. assert mail.sender == "<EMAIL>" assert mail.subject == "Alice, activate your account <EMAIL>" assert mail.recipients == ["<EMAIL>"] # The {{bad-key}} from the template will be rendered as {bad-key} in # the final email, instead of failing the formatting. assert mail.body == f"https://example.com/<EMAIL>/{uuid_string} {{bad-key}}" # The activation key is stored in the cache. assert get_cached_validation_key("<EMAIL>", self.app.app.registry) == uuid_string def test_cant_authenticate_with_unactivated_account(self): self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>", "activated": False}}, status=201, ) resp = self.app.get("/", headers=get_user_headers("<EMAIL>", "<PASSWORD>")) assert "user" not in resp.json def test_validation_fail_bad_user(self): # Validation should fail on a non existing user. resp = self.app.post_json("/accounts/<EMAIL>/validate/123", {}, status=403) assert "Account ID and activation key do not match" in resp.json["message"] def test_validation_fail_bad_activation_key(self): uuid_string = "20e81ab7-51c0-444f-b204-f1c4cfe1aa7a" with mock.patch("uuid.uuid4", return_value=uuid.UUID(uuid_string)): self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>"}}, status=201 ) # Validate the user. resp = self.app.post_json( "/accounts/<EMAIL>/validate/bad-activation-key", {}, status=403 ) assert "Account ID and activation key do not match" in resp.json["message"] # The activation key is still in the cache assert get_cached_validation_key("<EMAIL>", self.app.app.registry) is not None def test_validation_validates_user(self): # On user activation the 'validated' field is set to True. uuid_string = "20e81ab7-51c0-444f-b204-f1c4cfe1aa7a" with mock.patch("uuid.uuid4", return_value=uuid.UUID(uuid_string)): self.app.post_json( "/accounts", { "data": { "id": "<EMAIL>", "password": "<PASSWORD>", "email-context": {"name": "Alice", "homepage": "https://example.com"}, } }, status=201, ) resp = self.app.post_json( "/accounts/<EMAIL>/validate/" + uuid_string, {}, status=200 ) assert "validated" in resp.json assert resp.json["validated"] # An active user can authenticate. resp = self.app.get("/", headers=get_user_headers("<EMAIL>", "12éé6")) assert resp.json["user"]["id"] == "account:<EMAIL>" # Once activated, the activation key is removed from the cache. assert get_cached_validation_key("<EMAIL>", self.app.app.registry) is None assert len(self.mailer.outbox) == 2 # Validation email, reset password email. mail = self.mailer.outbox[1] # Get the confirmation email. assert mail.sender == "<EMAIL>" assert mail.subject == "Alice, your account <EMAIL> is now active" assert mail.recipients == ["<EMAIL>"] assert ( mail.body == "Your account <EMAIL> has been successfully activated. Connect to https://example.com" ) def test_previously_created_accounts_can_still_authenticate(self): """Accounts created before activating the 'account validation' option can still authenticate.""" # Create an account without going through the accounts API. hashed_password = <PASSWORD>_password("<PASSWORD>") self.app.app.registry.storage.create( parent_id="alice", resource_name="account", record={"id": "alice", "password": <PASSWORD>}, ) resp = self.app.get("/", headers=get_user_headers("alice", "<PASSWORD>")) assert resp.json["user"]["id"] == "account:alice" def test_reset_password_bad_user(self): resp = self.app.post_json("/accounts/<EMAIL>/reset-password", {}, status=200) # Don't give information on the existence of a user id: return a generic message. assert resp.json["message"] == "A temporary reset password has been sent by mail" # Make sure no email was sent. assert len(self.mailer.outbox) == 0 def test_reset_password_bad_email(self): # Create an account without going through the accounts API. hashed_password = <PASSWORD>_password("<PASSWORD>") self.app.app.registry.storage.create( parent_id="alice", resource_name="account", record={"id": "alice", "password": <PASSWORD>}, ) resp = self.app.post_json("/accounts/alice/reset-password", {}, status=400) assert "user id should match" in resp.json["message"] def test_reset_password_sends_email(self): reset_password = "<PASSWORD>" with mock.patch("uuid.uuid4", return_value=uuid.UUID(reset_password)): # Create the user. self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>"}}, status=201 ) # Ask for a reset password. resp = self.app.post_json( "/accounts/<EMAIL>/reset-password", {"data": {"email-context": {"name": "Alice"}}}, status=200, ) assert resp.json["message"] == "A temporary reset password has been sent by mail" assert len(self.mailer.outbox) == 2 # Validation email, reset password email. mail = self.mailer.outbox[1] # Get the reset password email assert mail.sender == "<EMAIL>" assert mail.subject == "Alice, here is a temporary reset password for <EMAIL>" assert ( mail.body == f"You can use this temporary reset password {reset_password} to change your account <EMAIL> password" ) # The reset password is stored in the cache. cached_password = get_cached_reset_password( "<EMAIL>", self.app.app.registry ).encode(encoding="utf-8") pwd_str = reset_password.encode(encoding="utf-8") assert bcrypt.checkpw(pwd_str, cached_password) def test_fail_use_reset_password_bad_data(self): validation_key = reset_password = "<PASSWORD>" with mock.patch("uuid.uuid4", return_value=uuid.UUID(reset_password)): # Create the user. self.app.post_json( "/accounts", {"data": {"id": "<EMAIL>", "password": "<PASSWORD>"}}, status=201 )
hasattr(self.callbacks,'logger'): return tcgSupport.fail(self.callbacks.logger,self.callbacks.devname,StatusCode,op=currentFuncName(1), msg=msg, status=status) def getRange(self, rangeNo, auth, authAs=None): ''' Reads a band from the drive. Parameters: rangeNo - the band to read auth - Default auth in case if authAs is None Optional named parameters: authAs - tuple of authority, credential, or AuthAs structure. Defaults to (Anybody) Returns a Range object with values read. Attributes of this object are reflected from the names as specified in the TCG specification. Consult setRange named parameters for attribute definitions. ''' status, rv, kwrv = self.invoke('Band%d' % rangeNo, 'Get', authAs=self._getAuthAs(authAs, auth)) if status != StatusCode.Success: return self.fail(rv, status) str_kwrv = tcgSupport.convert(kwrv) if len(str_kwrv) == 0: return None, True if self.SSC != 'Enterprise': for key in list(locking_table.keys()): str_kwrv[key] = str_kwrv[locking_table[key]] for key in list(str_kwrv.keys()): if not isinstance(key, str): del str_kwrv[key] str_kwrv['LockOnReset'] = 0 in str_kwrv['LockOnReset'] return SedObject(str_kwrv), True def setRange(self, auth, rangeNo, authAs=None, **kwargs): ''' Modifies a bands fields. Support provided only for Enterprise and Opalv2.0 Parameters: rangeNo - The band to modify. (required) auth - Default auth in case if authAs is None Optional named parameters: authAs - Tuple of authority, credential, or AuthAs structure. RangeStart - The starting LBA of the band. RangeLength - The number of LBAs included in the band. ReadLocked - Prohibit read access to the band (True) or allow read access to the band (False) ReadLockEnabled - Enable (True) ReadLocked field for this band. WriteLocked - Prohibit write access to the band (True) or allow write access to the band (False) WriteLockEnabled- Enable (True) WriteLocked field for this band. LockOnReset - Enable locks on power cycle (True) or do not modify locks on power cycle (False) ''' for key, value in list(kwargs.items()): if key == 'LockOnReset': value = [0] if kwargs.get('LockOnReset') == str(True) else [] self.token.update({key:value}) arg = tcgSupport.tokens(self) status, rv, kwrv = self.invoke('Band%d' % rangeNo, 'Set', arg, authAs=self._getAuthAs(authAs, auth), **self.token) self.token.clear() if status != StatusCode.Success: return self.fail(rv, status) return True def enable_range_access(self, objectId, user, auth, authAs=None): ''' Provides band access to users. Opal 2.0 specific method. Parameters: objectId - Locking Range object value. user - User to whom access needs to be provided. auth - Default auth in case if authAs is None. Optional Parameters: authAs - Tuple of authority, credential, or AuthAs structure. ''' Userno = int(''.join(filter(str.isdigit, user))) if Userno == 1: User = baseObjectIds['User##'] else: User = baseObjectIds['User##'] + Userno status, rv, kwrv = self.invoke(objectId, 'Set', (1, [(3, [("\x00\x00\x0C\x05", struct.pack(">Q", User)), ("\x00\x00\x0C\x05", struct.pack(">Q", User)), ("\x00\x00\x04\x0E", 1)])]), authAs=self._getAuthAs(authAs, auth), noNamed=True, useTls=True) if status != StatusCode.Success: return self.fail(rv, status) return True def get_MEK(self, rangeNo, auth, authAs=None): ''' Obtain the Media Encrytion Key (MEK) UID for the range from the Locking Table Support provided only for Opal2.0. Parameters: rangeNo - The band number. (required) auth - Default auth in case if authAs is None Optional Parameters: authAs - Tuple of authority, credential, or AuthAs structure ''' status, rv, kwrv = self.invoke('Band%d' % rangeNo, 'Get', ([(3, 0x0A), (4, 0x0A)]), authAs=self._getAuthAs(authAs, auth), noNamed=True, useTls=True) if status != StatusCode.Success: return self.fail(rv, status) kwrv['K_AES_256_Range' + str(rangeNo) + '_Key_UID'] = kwrv.pop(list(kwrv.keys())[0]) return SedObject(kwrv), True def erase(self, rangeNo, authAs=None): ''' Erases a band. Support provided only for Enterprise. Parameters: rangeNo - the band to modify Optional parameters: authAs - tuple of authority, credential, or AuthAs structure. ''' status, rv, kwrv = self.invoke('Band%d' % rangeNo, 'Erase', authAs=self._getAuthAs(authAs, 'EraseMaster'), noNamed=True) if status != StatusCode.Success: return self.fail(rv, status) return True def gen_key(self, range_key, auth, authAs=None): ''' Performs a secure erase of the range. Support provided only for Opal2.0. Parameters: range_key - Key Object value as an hexadecimal number Optional parameters: authAs - tuple of authority, credential, or AuthAs structure. ''' status, rv, kwrv = self.invoke(range_key, 'GenKey', authAs=self._getAuthAs(authAs, auth), noClose=True, noNamed=False, useTls=True) if status != StatusCode.Success: return self.fail(rv, status) return True def changePIN(self, auth, pin, authAs=None, obj=None): ''' Modify credentials for an authority. Support provided only for Enterprise and Opalv2.0 auth - An authority string or numeric value identifying the authority to modify. pin - The new PIN to apply to this authority. authAs - tuple of authority, credential, or AuthAs structure. ''' obj = auth if obj == None else obj self.token.update({'PIN':pin}) arg = tcgSupport.tokens(self) status, rv, kwrv = self.invoke(obj, 'Set', arg, authAs=self._getAuthAs(authAs, auth), useTls=True, **self.token) self.token.clear() if status != StatusCode.Success: return self.fail(rv, status) return True def checkPIN(self, auth, pin): ''' Validate credentials for an authority. Support provided only for Enterprise and Opalv2.0 Parameters: auth - A Authority string or numeric value identifying the authority to modify. pin - The PIN to validate. May be a string or an object with the attribute 'plainText'. Returns True if successfully authenticated, False otherwise. Does not invoke fail method. ''' return self._checkPIN(auth, pin) def writeaccess(self, user, tableno, authAs=None): ''' Provides DataStore Table write access to users. Opal 2.0 specific method. Parameters: user - User to whom access needs to be provided. Optional Parameters: authAs - Tuple of authority, credential, or AuthAs structure. ''' if int(''.join(filter(str.isdigit, user))) == 1: User = baseObjectIds['User##'] else: User = baseObjectIds['User##'] + int(''.join(filter(str.isdigit, user))) status, rv, kwrv = self.invoke('ACE_DataStore%d_Set_All' % tableno, 'Set', (1, [(3, [("\x00\x00\x0C\x05", struct.pack(">Q", User))])]), noNamed=True, sp='LockingSP', authAs=self._getAuthAs(authAs, 'Admin1')) if status != StatusCode.Success: return False return True def readaccess(self, user, tableno, authAs=None): ''' Provides DataStore Table read access to users. Opal 2.0 specific method. Parameters: user - User to whom access needs to be provided. Optional Parameters: authAs - Tuple of authority, credential, or AuthAs structure. ''' if int(''.join(filter(str.isdigit, user))) == 1: User = baseObjectIds['User##'] else: User = baseObjectIds['User##'] + int(''.join(filter(str.isdigit, user))) status, rv, kwrv = self.invoke('ACE_DataStore%d_Get_All' % tableno, 'Set', (1, [(3, [("\x00\x00\x0C\x05", struct.pack(">Q", User))])]), noNamed=True, sp='LockingSP', authAs=self._getAuthAs(authAs, 'Admin1')) if status != StatusCode.Success: return False return True def readData(self, auth, authAs=None): ''' Read the SED DataStore. Data is available as the callback.dataStore attribute. Support provided only for Enterprise. Optional named parameters: authAs - tuple of authority, credential, or AuthAs structure. Defaults to (Anybody). Returns the DataStore object of non-volatile values, None when datastore is empty, False on error. ''' authAs = self._getAuthAs(authAs, auth) if self.checkPIN(authAs[0], self.mSID) == True: authAs = (authAs[0], self.mSID) if ''.join(re.split("[^a-zA-Z]+", auth)) == "User": name_value = ([(0o1, 00), (0o2, self.data_length)]) else: name_value = [('startRow', 0)] status, rv, kwrv = self.invoke('DataStore', 'Get', name_value, sp='LockingSP', authAs=authAs, noNamed=True, ) if status != StatusCode.Success: return self.fail(rv, status) elif len(rv) > 0: self.callbacks.dataStore = tcgSupport.fromSerialized(rv[0]) return self.callbacks.dataStore return None def writeData(self, auth, data, authAs=None): ''' Write the SED DataStore. Optional named parameters: authAs - tuple of authority, credential, or AuthAs structure. Defaults to (BandMaster0, mSID). Needs to authenticate as any BandMaster or EraseMaster. Returns True when data is written. Returns False if data is invalid or data is not dirty. ''' authAs = self._getAuthAs(authAs, auth) if self.checkPIN(authAs[0], self.mSID) == True: authAs = (authAs[0], self.mSID) if ''.join(re.split("[^a-zA-Z]+", auth)) == "User": name_value, s_data = (00, 00), (0o1, tcgSupport.serialize(data)) else: name_value, s_data = [('startRow', 0)], tcgSupport.serialize(data) status, rv, kwrv = self.invoke('DataStore', 'Set', name_value, s_data, sp='LockingSP', authAs=authAs, noNamed=True, ) if status != StatusCode.Success: return self.fail(rv, status) return True def getPort(self, uid, authAs=None): ''' Retrieve the port table for the specified port uid.Support provided only for Enterprise and Opalv2.0 Parameters: uid - Port UID. Port UIDs are enumerable through the ports attribute. Optional named parameters: authAs - tuple of authority, credential, or AuthAs structure. Returns a Port object with attributes reflected from the TCG object table fields. Consult setPort named parameters for attribute definitions. ''' status, rv, kwrv = self.invoke(uid, 'Get', authAs=self._getAuthAs(authAs, 'SID') ) if status != StatusCode.Success: return self.fail(rv, status) if len(kwrv) == 0: return None str_kwrv = tcgSupport.convert(kwrv) if self.SSC != 'Enterprise': for key, val in portlocking_table.items(): str_kwrv[key] = str_kwrv[portlocking_table[key]] if 'LockOnReset' in str_kwrv: str_kwrv['LockOnReset'] = 0 in str_kwrv['LockOnReset'] if 'PortLocked' in kwrv: str_kwrv['PortLocked'] = bool(str_kwrv['PortLocked']) if 'UID' in str_kwrv: str_kwrv['UID'] = uid return SedObject(str_kwrv) def setPort(self, port, authAs=None, **kwargs): ''' Set the locked
lambda t: (time2str(t,cad='%Y-%m-%d_%H:%M:%S') +('%0.3f'%(t%1)).lstrip('0')) #taurustrend timestamp format ml = min(len(v) for v in table.values()) for i in range(ml): #len(table.values()[0])): csv+=sep.join([time_to_text(table.values()[0][i][0]), str(table.values()[0][i][0])] +[value_to_text(table[k][i][1]) for k in keys]) csv+=linesep print('Text file generated in %d milliseconds'%(1000*(time.time()-start))) return csv def correlate_values(self,values,stop=None,resolution=None,debug=False,rule=None,MAX_VALUES=50000): ''' Correlates values to have all epochs in all columns :param values: {curve_name:[values]} :param resolution: two epochs with difference smaller than resolution will be considered equal :param stop: an end date for correlation :param rule: a method(tupleA,tupleB,epoch) like (min,max,median,average,last,etc...) that will take two last column (t,value) tuples and time and will return the tuple to keep ''' start = time.time() self.log.info('correlate_values(%d x %d,resolution=%s,MAX_VALUES=%d) started at %s'%( len(values),max(len(v) for v in values.values()),resolution,MAX_VALUES,time.ctime(start))) stop = stop or start keys = sorted(values.keys()) table = dict((k,list()) for k in keys) index = dict((k,0) for k in keys) lasts = dict((k,(0,None)) for k in keys) first,last = min([t[0][0] if t else 1e12 for t in values.values()]),max([t[-1][0] if t else 0 for t in values.values()]) if resolution is None: #Avg: aproximated time resolution of each row avg = (last-first)/min((MAX_VALUES/6,max(len(v) for v in values.values()) or 1)) if avg < 10: resolution = 1 elif 10 <= avg<60: resolution = 10 elif 60 <= avg<600: resolution = 60 elif 600 <= avg<3600: resolution = 600 else: resolution = 3600 #defaults self.log.info('correlate_values(...) resolution set to %2.3f -> %d s'%(avg,resolution)) assert resolution>.1, 'Resolution must be > 0' if rule is None: rule = fn.partial(choose_first_value,tmin=-resolution*10) #if rule is None: rule = fn.partial(choose_last_max_value,tmin=-resolution*10) epochs = range(int(first-resolution),int(last+resolution),int(resolution)) for k,data in values.items(): self.log.info('Correlating %s->%s values from %s'%(len(data),len(epochs),k)) i,v,end = 0,data[0] if data else (first,None),data[-1][0] if data else (last,None) for t in epochs: v,tt = None,t+resolution #Inserted value will be (<end of interval>,<correlated value>) #The idea is that if there's a value in the interval, it is chosen #If there's no value, then it will be generated using previous/next values #If there's no next or previous then value will be None #NOTE: Already tried a lot of optimization, reducing number of IFs doesn't improve #Only could guess if iterating through values could be better than iterating times if i<len(data): for r in data[i:]: if r[0]>(tt): if v is None: #No value in the interval if not table[k]: v = (t,None) else: v = rule(*[table[k][-1],r,tt]) #Generating value from previous/next break #therefore, r[0]<=(t+resolution) else: i,v = i+1,(t,r[1]) ## A more ellaborated election (e.g. to maximize change) #elif v is None: #i,v = i+1,(t,r[1]) #else: #i,v = i+1,rule(*[v,r,tt]) else: #Filling table with Nones v = (t+resolution,None) table[k].append((tt,v[1])) self.log.info('\t%s values in table'%(len(table[k]))) self.log.info('Values correlated in %d milliseconds'%(1000*(time.time()-start))) return table ################################################################################################# ################################################################################################# def get_extractor_values(self, attribute, start_date, stop_date, decimate, asHistoryBuffer): """ Getting attribute values using Java Extractors """ self.log.info('Using Java Extractor ...') try: extractor = self.get_extractor(attribute=attribute) #self.clean_extractor(extractor) result = self.__extractorCommand(extractor,'GetAttDataBetweenDates',[attribute,start_date,stop_date]) vattr,vsize=str(result[1][0]),int(result[0][0]) time.sleep(0.2) if vattr not in [a.name for a in extractor.attribute_list_query()]: raise Exception,'%s_NotIn%sAttributeList'%(vattr,extractor.name()) self.log.debug( '\treading last value of attribute %s'%vattr) last_value = extractor.read_attribute(vattr).value self.log.debug('\treading %s attribute history values of %s (last_value = %s)'% (vsize,vattr,last_value)) history=extractor.attribute_history(vattr,vsize) if N>0: history = history[-N:] #DECIMATION IS DONE HERE ########################################################################## if decimate: nhist,l0 = [],len(history) for i,h in enumerate(history): #if not i or h.value!=history[i-1].value or ((i+1)<l0 and history[i+1].value!=h.value) or h.time.tv_sec>=(300+nhist[-1].time.tv_sec): if not i or data_has_changed(h_to_tuple(h),h_to_tuple(history[i-1]),h_to_tuple(history[i+1]) if i+1<l0 else None): nhist.append(h) self.log.debug('\tIn get_attribute_values(%s,...).extractor: decimated repeated results ... %s -> %s'%(attribute,len(history),len(nhist))) history = nhist #Sorting extracted values try: history=[v for t,u,v in sorted((h.time.tv_sec,h.time.tv_usec,h) for h in history)] except Exception,e: self.log.error('Unable to sort history values: %s'%e) self.clean_extractor(extractor,vattr) self.attr_extracted[attribute]=(lambda s: s if ':' in s else self.tango_host+'/'+s)(extractor.name()) except Exception,e: self.log.warning( traceback.format_exc()) raise Exception,'Archiving.Reader_ExtractorFailed(%s)!:%s' % (extractor.name(),str(e)) if int(PyTango.__version__.split('.')[0])>=7: values = asHistoryBuffer and history or [(ctime2time(h.time),h.value) for h in history] self.last_reads = history and (ctime2time(history[0].time),ctime2time(history[-1].time)) or (1e10,1e10) else: values = asHistoryBuffer and history or [(ctime2time(h.value.time),h.value.value) for h in history] self.last_reads = history and (ctime2time(history[0].value.time),ctime2time(history[-1].value.time)) or (1e10,1e10) return values def clear_cache(self): self.cache.clear() for m in dir(self): try: m = getattr(self,m) if fn.isCallable(m) and hasattr(m,'cache'): m.cache.clear() except: traceback.print_exc() def clean_extractor(self,extractor,vattr=None): ''' removing dynamic attributes from extractor devices ...''' #self.log.debug('In PyTangoArchiving.Reader.__cleanExtractor(): removing dynamic attributes') self.log.debug( 'In PyTangoArchiving.Reader.__cleanExtractor(): removing dynamic attributes') self.log.debug( '%s(%s)'%(type(extractor),extractor) ) if hasattr(extractor,'dev_name'): name,proxy=extractor.dev_name(),extractor else: name,proxy=str(extractor),self.servers.proxies[str(extractor)] if vattr: proxy.RemoveDynamicAttribute(vattr) else: proxy.RemoveDynamicAttributes() #def __initMySQLconnection(self): #try: self.db = MySQLdb.connect(db=self.db_name,host=self.host,user=self.user,passwd=<PASSWORD>) #except Exception,e: #self.log.error( 'Unable to create a MySQLdb connection to "%s"@%s.%s: %s'%(self.user,self.host,self.db_name,traceback.format_exc())) #self.db = None def __extractorCommand(self,extractor=None,command='',args=[]): if not command: raise Exception,'Reader__extractorCommand:CommandArgumentRequired!' if not extractor: extractor = self.get_extractor() extractor.ping() try: self.log.debug( 'in damn Reader.__extractorCommand: calling HdbExtractor(%s).%s(%s)'%(extractor.name(),command,args)) result = extractor.command_inout(*([command]+(args and [args] or []))) except PyTango.DevFailed, e: #e.args[0]['reason'],e.args[0]['desc'],e.args[0]['origin'] reason = '__len__' in dir(e.args[0]) and e.args[0]['reason'] or e.args[0] if 'Broken pipe' in str(reason): extractor.init() result = extractor.command_inout(*([command]+(args and [args] or []))) elif 'MEMORY_ERROR' in str(reason): #raise Exception,'Extractor_%s'%reason self.clean_extractor(extractor.name()) extractor.init() result = extractor.command_inout(*([command]+(args and [args] or []))) else: self.log.warning(traceback.format_exc()) raise Exception,'Reader__extractorCommand:Failed(%s)!'% str(e) #self.log.debug( 'in Reader.__extractorCommand: command finished') return result ################################################################################################# # Multiprocess Class for Reader ################################################################################################# class ReaderByBunches(Reader): """ Class that splits in bunches every query done against the database. It allows only database queries; not extractor devices It uses multiprocessing and threading to run queries in parallel """ DEFAULT_BUNCH_SIZE = 1000 def init_buncher(self): self._process_event,self._threading_event,self._command_event = multiprocessing.Event(),threading.Event(),threading.Event() self._receiver = threading.Thread(target=self._receive_data) self._receiver.daemon = True #Therefore, keep_alive routines should not be needed! self._last_alive = time.time() self.callbacks = defaultdict(list) def __del__(self): self.stop() type(self).__base__.__del__(self) def start(self): self._reader.start() self._receiver.start() self.get_attributes() def stop(self): self.log.info('ReaderProces().stop()') self._process_event.set(),self._threading_event.set() self._pipe1.close(),self._pipe2.close() def alive(self): if not self._reader.is_alive(): raise Exception('ReaderProcess is not Alive!!! (last contact at %s)'%time.ctime(self._last_alive)) self._last_alive = time.time() return self._last_alive # Protected methods @staticmethod def get_key(d): return str(sorted(d.items())) def _receive_data(self): """ It will be receive data who will really process the data In that process, first check the cache, if the query is contained by a cached array, just return it Then, for each query, split in bunches and with each result launch callback and update cache. Finally, proceed with the next queried value """ while not self._threading_event.is_set(): try: #self.log.info('... ReaderThread: Polling ...') assert self._reader.is_alive() if self._pipe1.poll(0.1): #self.log.info('... ReaderThread: Receiving ... (%s)'%(ReaderProcess.__instances.keys())) key,query = self._pipe1.recv() if key.lower() in self.asked_attributes: #Updating last_dates dictionary self.debug('... ReaderThread: Received %s last_dates %s'%(key,query)) self.last_dates[key] = query else: self.log.info('... ReaderThread: Received data = %s [%s]; %s queries pending'%( key,isSequence(query) and len(query) or type(query),len(self.callbacks))) for callback in self.callbacks[key]: try: self.debug('\tlaunching callback %s'%callback) callback(query) except: self.warning('\tError in %s callback %s!'%(key,callback)) self.warning(traceback.format_exc()) self.callbacks.pop(key) except Exception,e: self.warning('\tError in thread!\n%s'%(traceback.format_exc())) self._threading_event.wait(0.1) self.log.info('Exiting PyTangoArchiving.ReaderProcess()._receive_data thread') def _send_query(self,key,query,callback): assert self.alive() if key not in self.callbacks: self.callbacks[key] = [callback] self._pipe1.send((key,query)) elif callback not in self.callbacks[key]: self.callbacks[key].append(callback) return def get_attribute_values(self,attribute,callback,start_date,stop_date=None, asHistoryBuffer=False,decimate=False,notNone=False,N=0): """This method should be capable of> - cut queries in pieces, - execute a callback for each of - but, keep the complete query in cache (for reading arrays) This method reads values for an attribute between specified dates. This method may use MySQL queries or an H/TdbExtractor DeviceServer to get the values from the database. The format of values returned is [(epoch,value),] The flag 'asHistoryBuffer' forces to return the rawHistBuffer returned by the DS. :param attributes: list of attributes :param start_date: timestamp of the first value :param stop_date: timestamp of the last value :param asHistoryBuffer: return a history buffer object instead of a list (for trends) :param N: if N>0, only the last N values will be returned :param decimate: remove repeated values, False by default but True when called from trends :return: a list with values (History or tuple values depending of args) """ #Previous implementation was discarded due to this exception #raise Exception("MySQLdb.SSCursor.fetchmany failed due to (2013, 'Lost connection to MySQL server during query')") assert self.alive() """ This method will just put the query in the queue """ decimate,window = decimate if isSequence(decimate) else (decimate,'0') if callable(decimate): decimate = decimate.__module__+'.'+decimate.__name__ query = {'attribute':attribute,'start_date':start_date,'stop_date':stop_date,'asHistoryBuffer':asHistoryBuffer,'decimate':(decimate,window),'N':N} assert hasattr(callback,'__call__'),'2nd argument must be callable' self.asked_attributes.append(attribute.lower()) key = self.get_key(query) self.log.info('thread.send_query(%s)'%key) self._send_query(key,query,callback) def get_attributes_values(self,attributes,callback,start_date,stop_date=None, correlate=False,asHistoryBuffer=False,trace = False, text = False, N=0 ): """ Works like
idx): input = self.tensor[idx] target = self.classes[idx] return input, target def __len__(self): return len(self.tensor) class MultiTransformDataset(data.Dataset): def __init__(self, dataset, t): self.dataset = dataset self.transform = transforms.Compose( [transforms.ToPILImage()] + t) def __getitem__(self, idx): input, target = self.dataset[idx] return input, self.transform(input), target def __len__(self): return len(self.dataset) class QuickDrawDataset(data.Dataset): def __init__(self, root, classes, transform): self.classes = classes self.labels = torch.arange(len(classes)) self.transform = transform self.qdd = QuickDrawData(recognized=True, max_drawings=10000, cache_dir=root) self.qdd.load_drawings(classes) def __getitem__(self, idx): c = self.classes[idx%len(self.classes)] label = self.labels[idx%len(self.classes)] img = self.qdd.get_drawing(c).image if self.transform: img = self.transform(img) return img, label def __len__(self): return 10000 #return len(self.classes) class USPS(data.Dataset): """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset. The data-format is : [label [index:value ]*256 \n] * num_lines, where ``label`` lies in ``[1, 10]``. The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]`` and make pixel values in ``[0, 255]``. Args: root (string): Root directory of dataset to store``USPS`` data files. split (string): One of {'train', 'test'}. Accordingly dataset is selected. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { 'train': [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2", "usps.bz2", 7291 ], 'test': [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2", "usps.t.bz2", 2007 ], } def __init__(self, root, split='train', transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.split = split # training set or test set if self.split not in self.split_list: raise ValueError('Wrong split entered! Please use split="train" ' 'or split="test"') self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.total_images = self.split_list[split][2] full_path = os.path.join(self.root, self.filename) if download and not os.path.exists(full_path): self.download() import bz2 fp = bz2.open(full_path) datas = [] targets = [] for line in tqdm( fp, desc='processing data', total=self.total_images): label, *pixels = line.decode().split() pixels = [float(x.split(':')[-1]) for x in pixels] im = np.asarray(pixels).reshape((16, 16)) im = (im + 1) / 2 * 255 im = im.astype(dtype=np.uint8) datas.append(im) targets.append(int(label) - 1) assert len(targets) == self.total_images, \ 'total number of images are wrong! maybe the download is corrupted?' self.data = np.stack(datas, axis=0) self.targets = targets self.labels = list(range(10)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def download(self): download_url(self.url, self.root, self.filename, md5=None) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Split: {}\n'.format(self.split) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format( tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format( tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class MNISTM(data.Dataset): """`MNIST-M Dataset.""" url = "https://github.com/VanushVaswani/keras_mnistm/releases/download/1.0/keras_mnistm.pkl.gz" raw_folder = "raw" processed_folder = "processed" training_file = "mnist_m_train.pt" test_file = "mnist_m_test.pt" def __init__(self, root, mnist_root="data", train=True, transform=None, target_transform=None, download=False): """Init MNIST-M dataset.""" super(MNISTM, self).__init__() self.root = os.path.expanduser(root) self.mnist_root = os.path.expanduser(mnist_root) self.transform = transform self.target_transform = target_transform self.train = train # training set or test set if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found." + " You can use download=True to download it") if self.train: self.train_data, self.train_labels = torch.load( os.path.join(self.root, self.processed_folder, self.training_file) ) else: self.test_data, self.test_labels = torch.load( os.path.join(self.root, self.processed_folder, self.test_file) ) def __getitem__(self, index): """Get images and target for data loader. Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.squeeze().numpy(), mode="RGB") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): """Return size of dataset.""" if self.train: return len(self.train_data) else: return len(self.test_data) def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and os.path.exists( os.path.join(self.root, self.processed_folder, self.test_file) ) def download(self): """Download the MNIST data.""" # import essential packages from six.moves import urllib import gzip import pickle from torchvision import datasets # check if dataset already exists if self._check_exists(): return # make data dirs try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise # download pkl files print("Downloading " + self.url) filename = self.url.rpartition("/")[2] file_path = os.path.join(self.root, self.raw_folder, filename) if not os.path.exists(file_path.replace(".gz", "")): data = urllib.request.urlopen(self.url) with open(file_path, "wb") as f: f.write(data.read()) with open(file_path.replace(".gz", ""), "wb") as out_f, gzip.GzipFile(file_path) as zip_f: out_f.write(zip_f.read()) os.unlink(file_path) # process and save as torch files print("Processing...") # load MNIST-M images from pkl file with open(file_path.replace(".gz", ""), "rb") as f: mnist_m_data = pickle.load(f, encoding="bytes") mnist_m_train_data = torch.ByteTensor(mnist_m_data[b"train"]) mnist_m_test_data = torch.ByteTensor(mnist_m_data[b"test"]) # get MNIST labels mnist_train_labels = datasets.MNIST(root=self.mnist_root, train=True, download=True).train_labels mnist_test_labels = datasets.MNIST(root=self.mnist_root, train=False, download=True).test_labels # save MNIST-M dataset training_set = (mnist_m_train_data, mnist_train_labels) test_set = (mnist_m_test_data, mnist_test_labels) with open(os.path.join(self.root, self.processed_folder, self.training_file), "wb") as f: torch.save(training_set, f) with open(os.path.join(self.root, self.processed_folder, self.test_file), "wb") as f: torch.save(test_set, f) print("Done!") class BSVHN(data.Dataset): """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset. Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which expect the class labels to be in the range `[0, C-1]` Args: root (string): Root directory of dataset where directory ``SVHN`` exists. split (string): One of {'train', 'test', 'extra'}. Accordingly dataset is selected. 'extra' is Extra training set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "" filename = "" file_md5 = "" split_list = { 'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], 'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], 'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} def __init__(self, root, split='train', transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.split = split # training set or test set or extra set if self.split not in self.split_list: raise ValueError('Wrong split entered! Please use split="train" ' 'or split="extra" or split="test"') self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat['X'] # loading from the .mat file gives an np array of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.labels = loaded_mat['y'].astype(np.int64).squeeze() # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.labels, self.labels == 10, 0) self.labels_idx = [np.where(self.labels == i)[0] for i in range(10)] self.data = np.transpose(self.data, (3, 2, 0, 1)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ np.random.seed() label = np.random.randint(0, 10) idxes = self.labels_idx[label] index = np.random.choice(idxes) img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(np.transpose(img,
actions for a set of members. These ACL classes can then be bundled and attached to a base base using the ``ACLSet`` class. ======== ================ Type Description ======== ================ Scope The scope specifies where the ACL is valid for, e.g. ONE-level, all SUB-levels or RESET previous ACLs Members A list of users this acl is valid for. Role Instead of actions you can also refer to a ACLRole object. Actions You can have multiple actions, where one action is described by ``a topic``, a ``set of acls`` and additional ``options`` that have to be checked while ACLs are resolved. ======== ================ >>> # Create an ACLSet object >>> aclset = ACLSet() >>> # Create an ACL object and attach it to the ACLSet >>> acl = ACL() >>> acl.set_priority(0) >>> acl.set_members([u"user1", u"user2"]) >>> acl.add_action('^org\.clacks\.event\.ClientLeave$', 'rwx') >>> aclset.add(acl) >>> # Now add the set to the resolver >>> resolver = ACLResolver() >>> resolver.add_acl_set(aclset) >>> # You can now check for acls, both should return True now. >>> resolver.check('user1', 'org.clacks.event.ClientLeave', 'r') >>> resolver.check('user1', 'org.clacks.event.ClientLeave', 'rwx') ACL members can also contain regular expressions, like this: >>> acl.set_members([u"user1", u"^user[0-9]*$"]) >>> ... >>> resolver.check('user45', 'org.clacks.event.ClientLeave', 'r') """ priority = None ONE = 1 SUB = 2 PSUB = 3 RESET = 4 members = None actions = None scope = None uses_role = False role = None id = None def __init__(self, scope=SUB, role=None): self.env = Environment.getInstance() self.log = logging.getLogger(__name__) self.actions = [] self.members = [] r = PluginRegistry.getInstance("ACLResolver") self.id = r.get_next_acl_id() # Is this a role base or manually configured ACL object. if role: self.use_role(role) else: if scope not in (ACL.ONE, ACL.SUB, ACL.PSUB, ACL.RESET): raise TypeError(C.make_error("ACL_INVALID_SCOPE", scope=scope)) self.set_scope(scope) def use_role(self, rolename): """ Mark this ACL to use a role instead of direct permission settings. ============== ============= Key Description ============== ============= rolename The name of the role to use. ============== ============= """ if not isinstance(rolename, str): raise ACLException(C.make_error("ATTRIBUTE_INVALID", "rolename", str.__name__)) r = PluginRegistry.getInstance("ACLResolver") if rolename in r.acl_roles: self.uses_role = True self.role = rolename else: raise ACLException(C.make_error("ROLE_NOT_FOUND", role=rolename)) def set_scope(self, scope): """ This methods updates the ACLs scope level. See :class:`clacks.agent.acl.ACL` for details on the scope-levels. ============== ============= Key Description ============== ============= priority The new priority value for this ACl. ============== ============= """ if scope not in [ACL.ONE, ACL.SUB, ACL.PSUB, ACL.RESET]: raise TypeError(C.make_error("ACL_INVALID_SCOPE", scope=scope)) if self.uses_role: raise ACLException(C.make_error("ACL_INVALID_SCOPE_TARGET")) self.scope = scope def set_priority(self, priority): """ Sets the priority of this ACL object. Lower values mean higher priority. If no priority is given, a priority of 0 will be used when this ACL gets added to an ACLSet, the next will get 1, then 2 aso. ============== ============= Key Description ============== ============= priority The new priority value for this ACl. ============== ============= Example:: aclset = ACLSet() acl = ACL(scope=ACL.ONE) acl.set_members([u'tester1', u'tester2']) acl.add_action('^org\.clacks\.event\.ClientLeave$', 'rwx') acl.set_priority(100) """ self.priority = priority def set_members(self, members): """ Set the members for this acl ============== ============= Key Description ============== ============= members A list of user names ============== ============= Example:: aclset = ACLSet() acl = ACL(scope=ACL.ONE) acl.set_members([u'peter', u'klaus']) """ if type(members) != list: raise ACLException(C.make_error("ATTRIBUTE_INVALID", "members", list.__name__)) self.members = members def clear_actions(self): """ This method removes all defined actions from this acl. """ self.role = None self.uses_role = False self.actions = [] def add_action(self, topic, acls, options=None): """ Adds a new action to this ACL object. ============== ============= Key Description ============== ============= topic The topic action we want to create ACLs for. E.g. 'org.clacks.factory.Person' acls The acls this action contain. E.g. 'rwcdm'. options Special additional options that have to be checked. ============== ============= .. _topic_description: **Topic** Topics are defined as regular expressions, which gives a huge flexibility. For example ``^clacks\.[^\.]*\.factory$`` would match for: * clacks.test.factory * clacks.hallo.factory but not for: * clacks.factory * clacks.level1.level2.factory Where ``^clacks\..*\.factory$`` matches for: * clacks.factory * clacks.level1.factory * clacks.level1.level2.factory .. _acls_description: **Acls** The acls paramter describes the action we can perform on a given ``topic``. Possible actions are: * r - Read * w - Write * c - Create * d - Delete * o - Owner only, this acl affects only logged in user itself. * m - Manager, this acl applies for the manager of on object. * s - Search - or being found * x - Execute * e - Receive event The actions have to passed as a string, which contains all actions at once:: >>> add_action(``topic``, "rwcdm", ``options``) .. _options_description: **Options** Options are additional check parameters that have to be fulfilled to get this acl to match. The ``options`` parameter is a dictionary which contains a key and a value for each additional option we want to check for, e.g. :: >>> add_action('topic', 'acls', {'uid': 'hanspeter', 'ou': 'technik'}) If you've got a user object (``user1``) as dictionary, then you can check permissions like this:: >>> resolver.check('some.topic', 'rwcdm', user1) The resolver will then check if the keys ``uid`` and ``ou`` are present in the user1 dictionary and then check if the values match. If not all options match, the ACL will not match. """ if options and type(options) != dict: raise ACLException(C.make_error("ATTRIBUTE_INVALID", "options", dict.__name__)) if self.uses_role and self.role: raise ACLException(C.make_error("ACL_TYPE_MISMATCH")) # Check given acls allowed are 'rwcdsexom' if not all(map(lambda x: x in 'rwcdsexom', acls)): raise ACLException(C.make_error("ACL_STRING_INVALID")) acl = { 'topic': topic, 'acls': acls, 'options': options if options else {}} self.actions.append(acl) def get_members(self): """ Returns the list of members this ACL is valid for. """ return self.members def __str__(self): return self.repr_self() def repr_self(self, indent=0): """ Generates a human readable representation of the ACL-object. """ if self.uses_role: r = PluginRegistry.getInstance("ACLResolver") rstr = "\n%s<ACL> %s" % (" " * indent, str(self.members)) rstr += "\n%s" % r.acl_roles[self.role].repr_self(indent + 1) else: rstr = "\n%s<ACL scope(%s)> %s: " % ((" " * indent), self.scope, str(self.members)) for entry in self.actions: rstr += "\n%s%s:%s %s" % ((" " * (indent + 1)), entry['topic'], str(entry['acls']), str(entry['options'])) return rstr def __getManagerUids(self, dn): """ Returns a list with all uids that can manage the given dn. """ index = PluginRegistry.getInstance("ObjectIndex") res = index.search({'dn': dn, 'manager': {'$ne': [], '$exists': True}}, {'manager': 1}) if res.count(): uids = [] for item in res: for manager_dn in item['manager']: p_uid = self.__getUidByDn(manager_dn) if p_uid: uids.append(p_uid) return uids else: return None def __getUidByDn(self, dn): """ Returns the uid for a given dn. """ index = PluginRegistry.getInstance("ObjectIndex") res = index.search({'dn': dn, '_type': 'User'}, {'uid': 1}) if res.count() == 1: return res[0]['uid'][0] elif res.count() > 1: raise ValueError(C.make_error("ENTRY_NOT_UNIQUE", dn=dn)) else: return None def match(self, user, topic, acls, targetBase, options=None, skip_user_check=False, used_roles=None, override_users=None): """ Check if this ``ACL`` object matches the given criteria. .. warning:: Do NOT use this to validate permissions. Use ACLResolver->check() instead =============== ============= Key Description =============== ============= user The user we want to check for. E.g. 'hans' topic The topic action we want to check for. E.g. 'org.clacks.factory' acls A string containing the acls we want to check for. options Special additional options that have to be checked. skip_user_check Skips checks for users, this is required to resolve roles. used_roles A list of roles used in this recursion, to be able to check for endless-recursions. override_users If an acl ises a role, then the original user list will be passed to the roles-match method to ensure that we can match for the correct list of users. targetBase To object that was initially checked for (DN) =============== ============= """ # Initialize list of already used roles, to avoid recursions if not used_roles: used_roles = [] if self.uses_role: # Roles do not have users themselves, so we need to check # for the original set of users. override_users = self.members # Check for recursions while resolving the acls. if self.role in used_roles: raise ACLException(C.make_error("ACL_LOOP", role=self.role)) # Resolve acls used in the role. used_roles.append(self.role) r = PluginRegistry.getInstance("ACLResolver") self.log.debug("checking ACL role entries for role: %s" % self.role) for acl in r.acl_roles[self.role]: (match,
'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.263641, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 3.77863, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0470729, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.239662, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.291835, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.188072, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.303354, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.153123, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.644548, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.170357, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.64886, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0551338, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00788859, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0731378, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.058341, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.128272, 'Execution Unit/Register Files/Runtime Dynamic': 0.0662296, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.165852, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.395951, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.75177, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00120338, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00120338, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00106476, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000421276, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000838073, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00430959, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0109441, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0560847, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 3.56746, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.182412, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.190489, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 5.95912, 'Instruction Fetch Unit/Runtime Dynamic': 0.44424, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.024622, 'L2/Runtime Dynamic': 0.00956625, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.52169, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.639103, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.041559, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.041559, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.71794, 'Load Store Unit/Runtime Dynamic': 0.885617, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.102477, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.204955, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0363696, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0367381, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.221812, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0299073, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.440397, 'Memory Management Unit/Runtime Dynamic': 0.0666454, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 17.3804, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.145032, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0102503, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0932487, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming
raise TypeError( # pragma: no cover "Unexpected type %r." % type(op)) def mark_last_node(self): """ Marks the last node as the final output. """ if self.last_added_op is None: raise RuntimeError("last_added_op is None.") # pragma: no cover self.mark(-1, self.last_added_op) def mark(self, i, op): """ Marks one input or result as an intermediate result after a full einsum step. :param op: integer (an input) or an instance of @see cl EinsumSubOp. """ if not isinstance(i, int): raise TypeError( # pragma: no cover "i must an integer not %r." % type(i)) if i != -1 and i not in self._inputs: raise RuntimeError( # pragma: no cover "Input %d was not registered in %r." % (i, self._inputs)) if isinstance(op, EinsumSubOp): if id(op) not in self._nodes: raise RuntimeError( # pragma: no cover "Key %d not found, op=%r." % (id(op), op)) self._mark[i] = op self._mark[id(op)] = i self.last_op = op else: raise TypeError( # pragma: no cover "Unexpected type %r." % type(i)) def __iter__(self): "Iterates on nodes." for op in self._ops: yield op def to_dot(self, **kwargs): """ Produces a graph in :epkg:`dot`. :param kwargs: additional graph option :return: string """ options = { 'orientation': 'portrait', 'ranksep': '0.25', 'nodesep': '0.05', 'width': '0.5', 'height': '0.1', 'size': '5', 'node': '[shape=record]', } options.update(kwargs) def d2s(d): it = [] for k, v in sorted(d.items()): it.append("%s=%s" % (k, v)) return " ".join(it) def d2sd(d): it = [] for k, v in sorted(d.items()): if len(v) > 1: it.append("%s=%s" % (k, ",".join(map(str, v)))) return " ".join(it) rows = ["digraph{"] for k, v in options.items(): if isinstance(v, str) and "[" in v: rows.append("{} {};".format(k, v)) else: rows.append("{}={};".format(k, v)) for k, v in self._nodes.items(): if isinstance(v, int): let = [(r, self.metadata['letters'][i]) for i, r in enumerate(self.metadata['mat0'][v]) if r != -1] dup = self.metadata['duplicates'][v] if dup is None: dup = "" else: dup = " - %s" % d2sd(dup) let.sort() letters = "".join(_[1] for _ in let) lab = "input %d\\\\n%s\\\\n%s%s" % ( v, letters, str(self.metadata['mat0'][v]), dup) sk = v extended_lab = "" else: lab = "%s\\\\n%s" % (v.name, d2s(v.kwargs)) sk = id(v) extended_lab = v.dot_label() if extended_lab: extended_lab = "\\\\n" + extended_lab if sk in self._mark and isinstance(self._mark[sk], int): la = self._mark[sk] lab = lab.replace("\\\\n", " - I%d\\\\n" % la) s = ('%d [label="%s%s" style=filled ' 'fillcolor=red];' % (k, lab, extended_lab)) else: s = '%d [label="%s%s"];' % (k, lab, extended_lab) rows.append(s) if not hasattr(v, 'inputs'): continue for i in v.inputs: vid = i if isinstance(i, int) else id(i) s = "%d -> %d;" % (vid, k) rows.append(s) rows.append("}") return "\n".join(rows) def apply_sequence(self, *inputs, verbose=False, **kwargs): """ Applies a sequence of operations on a list of inputs. :param inputs: inputs: :param verbose: prints out intermediate results :param kwargs: additional parameters, see :meth:`apply <mlprodict.testing.einsum.einsum_impl_classes.EinsumSubOp.apply>`. :return: output """ if verbose: print('######### apply_sequence') data = {i: inp for i, inp in enumerate(inputs)} last = None for op in self: last = op.apply(data, verbose=verbose, **kwargs) if last is None: raise RuntimeError( # pragma: no cover "Sequence of operations is empty.") return last def clean_unused_nodes(self, verbose=False): """ Cleans nodes with unused outputs. :param verbose: display intermediate information """ def iteration(it): # Walks through all nodes. is_used = {} for node in self._ops: if not isinstance(node, EinsumSubOp): continue if id(node) not in is_used: is_used[id(node)] = [] for inp in node.inputs: if not isinstance(inp, EinsumSubOp): continue idn = id(inp) if idn not in is_used: is_used[idn] = [] is_used[idn].append(id(node)) # Remove unused nodes. removed = [] for k, v in is_used.items(): if len(v) == 0: removed.append(k) removed = set(removed) i_rem = [] for i, op in enumerate(self._ops): if not isinstance(op, EinsumSubOp): continue if id(op) in removed and id(op) not in self._mark: i_rem.append((i, id(op))) for i, idn in reversed(i_rem): if verbose: print("[GraphEinsumSubOp.clean_nodes] remove node " "i=%d: %d - id=%d" % (it, i, idn)) del self._ops[i] del self._nodes[idn] return len(i_rem) > 0 it = 1 while iteration(it): it += 1 self.last_op = None self.last_added_op = None def simplify_mm_nodes(self, verbose=False): """ Node name suffixed by `mm` are an artifact to keep the graph consistent while building it. They can now be replaced by the equivalent node without suffix `mm`. :param verbose: display intermediate information """ for op in self: if not isinstance(op, EinsumSubOp): continue if op.name.endswith('_mm'): if verbose: print("[GraphEinsumSubOp.simplify_mm_nodes] node %r" " - id=%d" % (op.name, id(op))) if len(op.inputs) != 2: raise RuntimeError( # pragma: no cover "Expecting 2 inputs for node %r not %r id=%r." % ( op.name, len(op.inputs), id(op))) op.name = op.name[:-3] op.inputs = op.inputs[:1] def _get_forward_nodes(self): """ Returns the forward nodes. """ forward = {} for op in self: if isinstance(op, int): continue for inp in op.inputs: key = inp if isinstance(inp, int) else id(inp) if key in forward: forward[key].append(op) else: forward[key] = [op] return forward def _pprint_forward(self): rows = [] for op in self: line = "%r <- %s(%s)" % ( id(op), op.name, ", ".join(map(str, [id(_) for _ in op.inputs]))) rows.append(line) return "\n".join(rows) def _replace_node_sequence(self, added, deleted): """ Removes a sequence of nodes. The method does not check that the graph remains consistent. """ forward = self._get_forward_nodes() key = id(deleted[-1]) if key not in forward: raise RuntimeError( # pragma: no cover "Key {} missing in all forward nodes (other keys {}), " "all keys:\n{}".format( key, [id(_) for _ in deleted], self._pprint_forward())) # deletion mark_input = None for d in deleted: del self._nodes[id(d)] if id(d) in self._mark: del self._mark[id(d)] dels = [] for k, v in self._mark.items(): if id(v) == id(d): mark_input = k dels.append(k) if len(dels) != 1: raise RuntimeError( # pragma: no cover "Input %d has more than one marked operator " "(%r)." % (id(d), dels)) del self._mark[dels[0]] dels = set(id(o) for o in deleted) rem = [] for i, op in enumerate(self._ops): if id(op) in dels: rem.append(i) if len(rem) != len(deleted): raise RuntimeError( # pragma: no cover "Mismatched length %r, %r, len=%r." % ( rem, dels, len(deleted))) for i in reversed(rem): del self._ops[i] self.last_add_op = None # insertion if added is not None: self._ops.insert(rem[0], added) self._nodes[id(added)] = added for op in forward[key]: new_inputs = list(op.inputs) for i in range(len(op.inputs)): # pylint: disable=C0200 if id(op.inputs[i]) == key: new_inputs[i] = added op.inputs = tuple(new_inputs) if mark_input is not None: self.mark(mark_input, added) else: inps = deleted[0].inputs if len(inps) != 1: raise RuntimeError( # pragma: no cover "More than one input. Call another method.") inp = inps[0] for op in forward[key]: new_inputs = list(op.inputs) for i in range(len(op.inputs)): # pylint: disable=C0200 if id(op.inputs[i]) == key: new_inputs[i] = inp op.inputs = tuple(new_inputs) if mark_input is not None: self.mark(mark_input, inp) def remove_duplicate_transpose(self, verbose=False): """ Removes consecutive transpose by merging them. :param verbose: display intermediate information """ modif = 1 while modif > 0: modif = 0 candidates = [] forward = self._get_forward_nodes() for op in self: if op.name == "transpose": inp = op.inputs[0] if (isinstance(inp, EinsumSubOp) and inp.name == 'transpose' and len(forward[id(inp)]) == 1): candidates.append(op) if len(candidates) > 0: modif = 1 # Not efficient to take the first one and to # start again but the graph should not be too big. cand = candidates[0] op2 = cand op1 = cand.inputs[0] perm1 = op1.kwargs['perm'] perm2 = op2.kwargs['perm'] if len(perm1) != len(perm2): raise RuntimeError( # pragma: no cover "Transposition should have the same length " "%r, %r." % (perm1, perm2)) perm = list(perm1) for i in range(len(perm)): # pylint: disable=C0200 perm[i] = perm1[perm2[i]] if list(range(len(perm))) == perm: # identity, everything needs to be removed new_op = None else: new_op = op2.__class__( op2.full_dim, op2.name, op1.inputs[0], perm=tuple(perm)) self._replace_node_sequence(new_op, [op1, op2]) if verbose: print("[GraphEinsumSubOp.remove_duplicate_transpose] remove nodes %r" " - id=%d,%d + %d perm1=%r perm2=%r -> perm=%r" % ( op2.name, id(op1), id(op2), id(new_op) if new_op is not None else -1, perm1, perm2, perm)) def to_onnx(self, output, *inputs, dtype=None, verbose=False, opset=None, **kwargs): """ Converts the graph into ONNX. :param output: output name :param inputs: input names :param dtype: type used for all operators :param
<filename>gymV02/qcore/utils/handle_data.py #!/usr/bin/python # -*- coding: utf-8 -*- ''' Implement the classes required to handle orders and the access to information related to books and candles subscribed by an agent @author: ucaiado Created on 07/05/2018 ''' import os import yaml from collections import namedtuple import numpy as np from neutrinogym.qcore import PROD if not PROD: from neutrinogym import neutrino from neutrinogym.neutrino import fx else: import neutrino from neutrino import fx from .neutrino_utils import (get_begin_time, SymbolSubscriptionError) from .handle_orders import Instrument import pdb; ''' Begin help functions ''' s_trade_info = 'price qty buyer seller time agr trade_id' TradeInfo = namedtuple('TradeInfo', s_trade_info) OrderLevelInfo = namedtuple('OrderLevelInfo', 'price qty order_id broker') PriceLevelInfo = namedtuple('PriceLevelInfo', 'price qty') s_order_info = 'neutrino_order symbol side order_id price qty ' s_order_info += 'cum_qty status secondary_order_id time_in_force id is_alive ' s_order_info += 'is_pending' OrderInfo = namedtuple('OrderInfo', s_order_info) s_count_info = 'bid_count ask_count trade_count new_bid cancel_bid ' s_count_info += 'replace_bid new_ask cancel_ask replace_ask status_changed' CountsInfo = namedtuple('CountsInfo', s_count_info) def fill_orderinfo(order): return OrderInfo(order, order.symbol, str(order.side), 'None', # order.orderId, order.current.price, order.current.qty, order.current.cumQty, str(order.current.status), order.current.secondaryOrderID, str(order.current.timeInForce), order.userData['id'], order.isAlive(), order.isPending()) ''' End help functions ''' class CandlesHandler(object): ''' Candles Data Handler ''' def __init__(self): ''' Instanciate a CandlesHandler object ''' self._data_holder = {} self._alias = {} self._key_to_alias = {} self.b_should_load_again = False def reset(self, this_candle=None, this_conf=None): ''' Unsubscribe all data ''' b_t = not isinstance(this_conf, type(None)) if isinstance(this_candle, type(None)): for this_candle in self._data_holder.values(): for d_conf in this_candle.l_to_subscribe: try: fx.unsubscribeIndicator(str(d_conf['symbol']), str(d_conf['what']), str(d_conf['conf']), this_candle.i_lastbgtime) except IndexError: pass del this_candle self._data_holder = {} self._alias = {} self._key_to_alias = {} else: for d_conf in this_candle.l_to_subscribe: if str(d_conf['what']) != 'CANDLE' and b_t: if isinstance(this_conf, dict): if sum( [(d_conf[s_key]!=this_conf[s_key]) * 1 for s_key in this_conf]): continue try: fx.unsubscribeIndicator(str(d_conf['symbol']), str(d_conf['what']), str(d_conf['conf']), this_candle.i_lastbgtime) except IndexError: pass if not b_t: self._data_holder.pop(this_candle.main_key) self._alias.pop(self._key_to_alias[this_candle.main_key]) self._key_to_alias.pop(this_candle.main_key) del this_candle def check_pending_candles_subscriptions(self, fx_now): if self.b_should_load_again: self.b_should_load_again = False self.on_symbols_load(fx_now) def subscribe(self, s_symbol, interval, i_nbars, s_alias, s_type=None): ''' Subscribe the data streaming of a new candle :param s_symbol: string. symbol to be subscribed :param interval: CandleIntervals object. The interval of the candle :param i_nbars: integer. :param s_alias: string. An alias to the candle :return: CandleData. ''' self.b_should_load_again = True if not isinstance(interval, int): i_interval = interval.value else: i_interval = interval * 60 s_key = '{}:interval={:0.0f}'.format(s_symbol, i_interval) self._alias[s_alias] = s_key self._key_to_alias[s_key] = s_alias if s_key not in self._data_holder: self._data_holder[s_key] = CandleData(s_symbol, i_interval, i_nbars) self._data_holder[s_key].set_name(s_alias) return self._data_holder[s_key] def on_symbols_load(self, f_fxnow): ''' Initiate the Candles attributes when the instrument is synchronized :param f_fxnow: float. the current time, in seconds ''' self.b_should_load_again = False s_txt = None for this_candle in iter(self._data_holder.values()): if this_candle.v3_obj: this_candle.v3_obj.b_ready = True s_txt = this_candle.on_symbols_load(f_fxnow) return s_txt def add_indicator_to(self, this_candle, **kwargs): ''' Add a new indicator to the candle passed :param s_ta_name: string. Indicator name (ta-lib) :param i_time_period: inter. rolling windows length :param s_input: string. the input used by SMA and EMA :param s_alias: string. alias to the indicator :return: CandleData object. ''' self.b_should_load_again = True return this_candle.add_indicator(**kwargs) def get_candle(self, s_alias=None, s_symbol=None, i_interval=None): ''' Return the candle data related to the the alias or symbol/interval :param s_symbol: string. symbol to be subscribed :param i_interval: integer. The interval of the candle, in seconds :return: CandleData object. ''' if not s_symbol: s_key = self._alias.get(s_alias, None) # if not s_key: # return None return self._data_holder.get(s_key, None) s_key = '{}:interval={:0.0f}'.format(s_symbol, i_interval) return self._data_holder.get(s_key, None) def get_current_value(self, this_candle, s_alias, i_iidx=0): ''' Return the current value of the information required :param this_candle: CandleData object. Candle to retrive information :param s_alias: string. alias to the indicator desired :return: float. The value of the information required ''' return this_candle.get_value(s_alias, -1, i_inner_idx=i_iidx) def get_previous_value(self, this_candle, s_alias, i_iidx=0): ''' Return the previous value of the information required :param this_candle: CandleData object. Candle to retrive information :param s_alias: string. alias to the indicator desired :return: float. The value of the information required ''' return this_candle.get_value(s_alias, -2, i_inner_idx=i_iidx) def get_value(self, this_candle, s_alias, i_idx, i_iidx=0): ''' Return the value of the information required in the index passed :param this_candle: CandleData object. Candle to retrive information :param s_alias: string. alias to the indicator desired :param i_idx: integer. position of the information in array :return: float. The value of the information required ''' return this_candle.get_value(s_alias, i_idx, i_inner_idx=i_iidx) def get_all_values(self, this_candle, s_alias): ''' Return all values of the information required :param this_candle: CandleData object. Candle to retrive information :param s_alias: string. alias to the indicator desired :return: numpy array. The values of the information required ''' l_basic = ['HIGH', 'LOW', 'CLOSE', 'OPEN', 'QTY', 'VOLUME', 'TS', 'QTY_BUYER', 'QTY_SELLER', 'CUMQTY_SELLER', 'CUMQTY_BUYER', 'CUMQTY'] s_info2 = '' if s_alias not in l_basic: s_name = this_candle._alias.get(s_alias, None) if not s_name: return elif s_alias in l_basic: s_name = 'CANDLE:{}'.format(this_candle.main_key) s_info2 = 'CANDLE' s_info = s_alias d_data = this_candle.d_candle_data[s_name] if s_info2 == 'CANDLE': if len(d_data['data'][s_info]) > 0: return np.array(d_data['data'][s_info]) else: if len(d_data['data']) > 0: return np.array(d_data['data']) return None def update(self, hist): ''' Update data and check if the candle information is complete :param raw_data: neutrino object. :return: CandleData object. ''' l_aux = str(hist.Indicator()).split(':') d_conf = dict([x.split('=') for x in l_aux[2].split(';')]) s_name = l_aux[1] # s_interval = l_aux[2].split(';')[0] s_interval = d_conf['interval'] # s_key = s_name + ':' + s_interval s_key = s_name + ':interval=' + s_interval obj_aux = self._data_holder.get(s_key, None) if isinstance(obj_aux, type(None)): return None return obj_aux.update(hist) class CandleData(object): ''' Candle Data representation ''' def __init__(self, s_symbol, i_interval, i_nbars): ''' Instatiate a CandleData object :param symbol: string. symbol to be subscribed :param resol: integer. The lenth of the candle, in seconds :param window: inter. Numb of candle to return after the first update :param begin: integer. how long to recover, in seconds ''' self.s_symbol = s_symbol self.symbol_name = s_symbol self.s_conf = 'interval={:0.0f}'.format(i_interval) self.i_interval = i_interval self.i_nbars = i_nbars self.s_name = '' s_key = 'CANDLE:{}:interval={:0.0f}'.format(s_symbol, i_interval) self.main_key = s_key.replace('CANDLE:', '') self.d_candle_data = {s_key: {'ID': 0, 'data': None}} self._last_idx = 0 self.d_last_ts = {s_key: 0} self.i_count = 0 self._alias = {} self.l_to_subscribe = [] self.i_lastbgtime = 0 # control the last tradeID used self.d_last_tradeid = {s_key: 0} self.i_last_tradeid = -1 self.count = 1 self.data_updated = 0 self.v3_obj = None self.l_to_subscribe.append({'symbol': self.s_symbol, 'what': "CANDLE", 'conf': self.s_conf}) def set_name(self, s_name): ''' ''' self.s_name = s_name def on_symbols_load(self, f_fxnow): ''' Subscribe the indicators in the buffer :param f_fxnow: float. The current time, in seconds ''' s_txt, i_bgt = get_begin_time(f_fxnow, self.i_nbars, self.i_interval) self.i_lastbgtime = i_bgt for d_conf in self.l_to_subscribe: fx.subscribeIndicator(str(d_conf['symbol']), str(d_conf['what']), str(d_conf['conf']), i_bgt) self.count = len(self.l_to_subscribe) return s_txt def get_value(self, s_alias, i_idx, s_info=None, f_timeperiod=None, i_inner_idx=0): ''' Return the desired information related to the candle. f_timeperiod and s_info are required just if s_alias is None :param s_alias: string. the alias to the information requested :param i_idx: integer. the index of the information in values list :param s_info: string. information requested :param f_timeperiod: float. timepreriod of the indicator :param i_inner_idx: integer. inner index of the information desired :return: float. The value of the information requested ''' l_basic = ['HIGH', 'LOW', 'CLOSE', 'OPEN', 'QTY', 'VOLUME', 'TS', 'QTY_BUYER', 'QTY_SELLER', 'CUMQTY_SELLER', 'CUMQTY_BUYER', 'CUMQTY'] # if not len(self): # return None if s_info: s_info2 = s_info if s_info in l_basic: s_info2 = 'CANDLE' s_name = '{}:{}:'.format(s_info2, self.s_symbol) + self.s_conf if f_timeperiod and s_info2 != 'CANDLE': s_name += ';time_period={:0.0f}'.format(f_timeperiod) else: if s_alias not in l_basic: s_info2 = s_alias s_name = self._alias.get(s_alias, None) if not s_name: return elif s_alias in l_basic: s_info2 = 'CANDLE' s_name = '{}:{}:'.format(s_info2, self.s_symbol) + self.s_conf s_info = s_alias if f_timeperiod and s_info2 != 'CANDLE': s_name += ';time_period={:0.0f}'.format(f_timeperiod) d_data = self.d_candle_data[s_name] if s_info2 == 'CANDLE': if not d_data['data']: return None if not d_data['data'][s_info]: return None if len(d_data['data'][s_info]) >= abs(i_idx): return d_data['data'][s_info][i_idx] else: if d_data['data'] and len(d_data['data']) >= abs(i_idx): return d_data['data'][i_idx][i_inner_idx] return None def add_indicator(self, **kwargs): ''' Add a new infdicator to the candle :param s_ta_name: string. Indicator name (ta-lib) :param i_time_period: inter. rolling windows length :param s_alias: string. :return: Boolean. If it susbcribed new data ''' # SMA:PETR4:interval=60;time_period=20 s_ta_name = kwargs.get('s_ta_name') i_time_period = kwargs.get('i_time_period') s_alias = kwargs.get('s_alias') s_input = kwargs.get('s_input', None) i_ma_period = kwargs.get('i_ma_period', None) # define the basic conf s_conf = "interval={:0.0f};time_period={:0.0f}" s_conf = s_conf.format(self.i_interval, i_time_period) # define input for TAs that accept these variables if not s_input: if s_ta_name in ['EMA', 'SMA', 'MOM',
<reponame>charlienew/GANCS<gh_stars>10-100 import numpy as np import tensorflow as tf FLAGS = tf.app.flags.FLAGS class Model: """A neural network model. Currently only supports a feedforward architecture.""" def __init__(self, name, features): self.name = name self.outputs = [features] def _get_layer_str(self, layer=None): if layer is None: layer = self.get_num_layers() return '%s_L%03d' % (self.name, layer+1) def _get_num_inputs(self): return int(self.get_output().get_shape()[-1]) def _glorot_initializer(self, prev_units, num_units, stddev_factor=1.0): """Initialization in the style of Glorot 2010. stddev_factor should be 1.0 for linear activations, and 2.0 for ReLUs""" stddev = np.sqrt(stddev_factor / np.sqrt(prev_units*num_units)) return tf.truncated_normal([prev_units, num_units], mean=0.0, stddev=stddev) def _glorot_initializer_conv2d(self, prev_units, num_units, mapsize, stddev_factor=1.0): """Initialization in the style of Glorot 2010. stddev_factor should be 1.0 for linear activations, and 2.0 for ReLUs""" stddev = np.sqrt(stddev_factor / (np.sqrt(prev_units*num_units)*mapsize*mapsize)) return tf.truncated_normal([mapsize, mapsize, prev_units, num_units], mean=0.0, stddev=stddev) def get_num_layers(self): return len(self.outputs) def add_batch_norm(self, scale=False): """Adds a batch normalization layer to this model. See ArXiv 1502.03167v3 for details.""" # TBD: This appears to be very flaky, often raising InvalidArgumentError internally with tf.variable_scope(self._get_layer_str()): out = tf.contrib.layers.batch_norm(self.get_output(), scale=scale) self.outputs.append(out) return self def add_flatten(self): """Transforms the output of this network to a 1D tensor""" with tf.variable_scope(self._get_layer_str()): batch_size = int(self.get_output().get_shape()[0]) out = tf.reshape(self.get_output(), [batch_size, -1]) self.outputs.append(out) return self def add_dense(self, num_units, stddev_factor=1.0): """Adds a dense linear layer to this model. Uses Glorot 2010 initialization assuming linear activation.""" assert len(self.get_output().get_shape()) == 2, "Previous layer must be 2-dimensional (batch, channels)" with tf.variable_scope(self._get_layer_str()): prev_units = self._get_num_inputs() # Weight term initw = self._glorot_initializer(prev_units, num_units, stddev_factor=stddev_factor) weight = tf.get_variable('weight', initializer=initw) # Bias term initb = tf.constant(0.0, shape=[num_units]) bias = tf.get_variable('bias', initializer=initb) # Output of this layer out = tf.matmul(self.get_output(), weight) + bias self.outputs.append(out) return self def add_sigmoid(self): """Adds a sigmoid (0,1) activation function layer to this model.""" with tf.variable_scope(self._get_layer_str()): prev_units = self._get_num_inputs() out = tf.nn.sigmoid(self.get_output()) self.outputs.append(out) return self def add_softmax(self): """Adds a softmax operation to this model""" with tf.variable_scope(self._get_layer_str()): this_input = tf.square(self.get_output()) reduction_indices = list(range(1, len(this_input.get_shape()))) acc = tf.reduce_sum(this_input, reduction_indices=reduction_indices, keep_dims=True) out = this_input / (acc+FLAGS.epsilon) #out = tf.verify_tensor_all_finite(out, "add_softmax failed; is sum equal to zero?") self.outputs.append(out) return self def add_relu(self): """Adds a ReLU activation function to this model""" with tf.variable_scope(self._get_layer_str()): out = tf.nn.relu(self.get_output()) self.outputs.append(out) return self def add_elu(self): """Adds a ELU activation function to this model""" with tf.variable_scope(self._get_layer_str()): out = tf.nn.elu(self.get_output()) self.outputs.append(out) return self def add_lrelu(self, leak=.2): """Adds a leaky ReLU (LReLU) activation function to this model""" with tf.variable_scope(self._get_layer_str()): t1 = .5 * (1 + leak) t2 = .5 * (1 - leak) out = t1 * self.get_output() + \ t2 * tf.abs(self.get_output()) self.outputs.append(out) return self def add_conv2d(self, num_units, mapsize=1, stride=1, stddev_factor=1.0): """Adds a 2D convolutional layer.""" assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)" with tf.variable_scope(self._get_layer_str()): prev_units = self._get_num_inputs() # Weight term and convolution initw = self._glorot_initializer_conv2d(prev_units, num_units, mapsize, stddev_factor=stddev_factor) weight = tf.get_variable('weight', initializer=initw) out = tf.nn.conv2d(self.get_output(), weight, strides=[1, stride, stride, 1], padding='SAME') # Bias term initb = tf.constant(0.0, shape=[num_units]) bias = tf.get_variable('bias', initializer=initb) out = tf.nn.bias_add(out, bias) self.outputs.append(out) return self def add_conv2d_transpose(self, num_units, mapsize=1, stride=1, stddev_factor=1.0): """Adds a transposed 2D convolutional layer""" assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)" with tf.variable_scope(self._get_layer_str()): prev_units = self._get_num_inputs() # Weight term and convolution initw = self._glorot_initializer_conv2d(prev_units, num_units, mapsize, stddev_factor=stddev_factor) weight = tf.get_variable('weight', initializer=initw) weight = tf.transpose(weight, perm=[0, 1, 3, 2]) prev_output = self.get_output() output_shape = [FLAGS.batch_size, int(prev_output.get_shape()[1]) * stride, int(prev_output.get_shape()[2]) * stride, num_units] out = tf.nn.conv2d_transpose(self.get_output(), weight, output_shape=output_shape, strides=[1, stride, stride, 1], padding='SAME') # Bias term initb = tf.constant(0.0, shape=[num_units]) bias = tf.get_variable('bias', initializer=initb) out = tf.nn.bias_add(out, bias) self.outputs.append(out) return self def add_residual_block(self, num_units, mapsize=3, num_layers=2, stddev_factor=1e-3): """Adds a residual block as per Arxiv 1512.03385, Figure 3""" assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)" # Add projection in series if needed prior to shortcut if num_units != int(self.get_output().get_shape()[3]): self.add_conv2d(num_units, mapsize=1, stride=1, stddev_factor=1.) bypass = self.get_output() # Residual block for _ in range(num_layers): self.add_batch_norm() self.add_relu() self.add_conv2d(num_units, mapsize=mapsize, stride=1, stddev_factor=stddev_factor) self.add_sum(bypass) return self def add_bottleneck_residual_block(self, num_units, mapsize=3, stride=1, transpose=False): """Adds a bottleneck residual block as per Arxiv 1512.03385, Figure 3""" assert len(self.get_output().get_shape()) == 4 and "Previous layer must be 4-dimensional (batch, width, height, channels)" # Add projection in series if needed prior to shortcut if num_units != int(self.get_output().get_shape()[3]) or stride != 1: ms = 1 if stride == 1 else mapsize #bypass.add_batch_norm() # TBD: Needed? if transpose: self.add_conv2d_transpose(num_units, mapsize=ms, stride=stride, stddev_factor=1.) else: self.add_conv2d(num_units, mapsize=ms, stride=stride, stddev_factor=1.) bypass = self.get_output() # Bottleneck residual block self.add_batch_norm() self.add_relu() self.add_conv2d(num_units//4, mapsize=1, stride=1, stddev_factor=2.) self.add_batch_norm() self.add_relu() if transpose: self.add_conv2d_transpose(num_units//4, mapsize=mapsize, stride=1, stddev_factor=2.) else: self.add_conv2d(num_units//4, mapsize=mapsize, stride=1, stddev_factor=2.) self.add_batch_norm() self.add_relu() self.add_conv2d(num_units, mapsize=1, stride=1, stddev_factor=2.) self.add_sum(bypass) return self def add_sum(self, term): """Adds a layer that sums the top layer with the given term""" with tf.variable_scope(self._get_layer_str()): prev_shape = self.get_output().get_shape() term_shape = term.get_shape() #print("%s %s" % (prev_shape, term_shape)) assert prev_shape == term_shape and "Can't sum terms with a different size" out = tf.add(self.get_output(), term) self.outputs.append(out) return self def add_mean(self): """Adds a layer that averages the inputs from the previous layer""" with tf.variable_scope(self._get_layer_str()): prev_shape = self.get_output().get_shape() reduction_indices = list(range(len(prev_shape))) assert len(reduction_indices) > 2 and "Can't average a (batch, activation) tensor" reduction_indices = reduction_indices[1:-1] out = tf.reduce_mean(self.get_output(), reduction_indices=reduction_indices) self.outputs.append(out) return self def add_upscale(self, size=None): """Adds a layer that upscales the output by 2x through nearest neighbor interpolation""" prev_shape = self.get_output().get_shape() if size is None: size = [2 * int(s) for s in prev_shape[1:3]] out = tf.image.resize_nearest_neighbor(self.get_output(), size) self.outputs.append(out) return self def add_concat(self, layer_add): last_layer = self.get_output() prev_shape = last_layer.get_shape() try: out = tf.concat(axis = 3, values = [last_layer, layer_add]) self.outputs.append(out) except: print('fail to concat {0} and {1}'.format(last_layer, layer_add)) return self def add_layer(self, layer_add): self.outputs.append(layer_add) return self def get_output(self): """Returns the output from the topmost layer of the network""" return self.outputs[-1] def get_variable(self, layer, name): """Returns a variable given its layer and name. The variable must already exist.""" scope = self._get_layer_str(layer) collection = tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope) # TBD: Ugly! for var in collection: if var.name[:-2] == scope+'/'+name: return var return None def get_all_layer_variables(self, layer): """Returns all variables in the given layer""" scope = self._get_layer_str(layer) return tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope) def _discriminator_model(sess, features, disc_input, layer_output_skip=5, hybrid_disc=0): # update 05092017, hybrid_disc consider whether to use hybrid space for discriminator # to study the kspace distribution/smoothness properties # Fully convolutional model mapsize = 3 layers = [8, 16, 32, 64]#[64, 128, 256, 512] old_vars = tf.global_variables()#tf.all_variables() , all_variables() are deprecated # get discriminator input disc_hybird = 2 * disc_input - 1 print(hybrid_disc, 'discriminator input dimensions: {0}'.format(disc_hybird.get_shape())) model = Model('DIS', disc_hybird) # discriminator network structure for layer in range(len(layers)): nunits = layers[layer] stddev_factor = 2.0 model.add_conv2d(nunits, mapsize=mapsize, stride=2, stddev_factor=stddev_factor) model.add_batch_norm() model.add_relu() # Finalization a la "all convolutional net" model.add_conv2d(nunits, mapsize=mapsize, stride=1, stddev_factor=stddev_factor) model.add_batch_norm() model.add_relu() model.add_conv2d(nunits, mapsize=1, stride=1, stddev_factor=stddev_factor) model.add_batch_norm() model.add_relu() # Linearly map to real/fake and return average score # (softmax will be applied later) model.add_conv2d(1, mapsize=1, stride=1, stddev_factor=stddev_factor) model.add_mean() new_vars = tf.global_variables()#tf.all_variables() , all_variables() are deprecated disc_vars = list(set(new_vars) - set(old_vars)) #select output output_layers = [model.outputs[0]] + model.outputs[1:-1][::layer_output_skip] + [model.outputs[-1]] return model.get_output(), disc_vars, output_layers def conv(batch_input, out_channels, stride=2, size_kernel=4): with tf.variable_scope("conv"): in_channels = batch_input.get_shape()[3] filter = tf.get_variable("filter", [size_kernel, size_kernel, in_channels, out_channels], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02)) # [batch, in_height, in_width, in_channels], [filter_width, filter_height, in_channels, out_channels] # => [batch, out_height, out_width, out_channels] padded_input = tf.pad(batch_input, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT") conv = tf.nn.conv2d(padded_input, filter, [1, stride, stride, 1], padding="VALID") return conv def deconv(batch_input, out_channels, size_kernel=3): with tf.variable_scope("deconv"): batch, in_height, in_width, in_channels = [int(d) for d in batch_input.get_shape()] filter = tf.get_variable("filter", [size_kernel, size_kernel, out_channels, in_channels], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02)) # [batch, in_height, in_width, in_channels], [filter_width, filter_height, out_channels, in_channels] # => [batch, out_height, out_width, out_channels] conv = tf.nn.conv2d_transpose(batch_input, filter, [batch, in_height * 2, in_width * 2, out_channels], [1, 2, 2, 1], padding="SAME") return conv def lrelu(x, a): with tf.name_scope("lrelu"): # adding these together creates the leak part and linear part # then cancels them
<gh_stars>0 ''' Plot a variable (XYZ coord, ZTD, residuals) vs. time with TRACE file as input Input: trace_file - .TRACE file location from pea - str output_dir - output_directory for plots - str Plotting Options -PPP - Plot XYZ Coords in PPP mode - str -SPP - Plot XYZ Coords in SPP mode - str -ZTD - Plot ZTD Estimates from PPP - str -RES - Plot residuals of all satellites - str -resid_sats - Plot residuals of list of satellites - str in comma separated format, e.g. G02,G05,G32,G25,G15 -resid_LC - Choose linear combination plotted - str default: L1L2 options: L1L2, L1L5 -resid_codpha - Choose code or phase plotted - str default: Code options: Code, Phase, or Code,Phase -resid_fit - Choose pre or post fit plotted - str default: Postfit options: Prefit, Postfit, or Prefit,Postfit Output: Time-series plot/s of the variable/s saved in output_dir <NAME> (based on code developed by <NAME> at Geoscience Australia) 2020-12-03 15:34 ''' import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pandas as pd from pathlib import Path from numpy import loadtxt import argparse from datetime import datetime, timedelta from gn_lib.gn_io.trace import _read_trace, _read_trace_res, _read_trace_LC, _read_trace_el from gn_lib.gn_io.sinex import _read_snx_solution from gn_lib.gn_io.trop import _read_tro_solution from gn_lib.gn_const import J2000_ORIGIN from gn_lib.gn_datetime import yydoysec2datetime as _yydoysec2datetime from gn_lib.gn_datetime import j20002datetime as _j20002datetime # Old trace file parsing function - still needed for SPP #============================================================================== def parseTRACEfile(tracefile): #, ds, satels): # Final dict output = {} # Placeholder for the datetime of Epoch 1 epoch1_dt = 0 # Open the TRACE file: with open(tracefile) as f: # Run through line by line for line in f: # Removing any trailing space line = line.rstrip() if 'station : ' in line: output['station'] = line.split(':')[1] # Now search through for any time a new Epoch block starts and save State and Residual info if '################# Starting Epoch' in line: parts = line.split(' ') # Get the Epoch number: for part in parts: try: epoch = int(part) except ValueError: continue line = f.readline() line = line.rstrip() # Before reaching the end of the Epoch block, save all the info: while '- States' not in line: line = f.readline() # First, find the start datetime of the processing, i.e. Epoch 1 if (epoch1_dt == 0) & ('*1 PDE-CS GPST' in line): parts = line.split(' ') nums = [] for part in parts: try: nums.append(float(part)) except ValueError: continue # GPS-Time start point: gps_st = datetime.strptime('1980 006','%Y %j') # Add number of weeks and seconds to start point to get Epoch 1: epoch1_dt = gps_st + timedelta(weeks = nums[0], seconds = nums[1]) # Save to output output['Epoch1'] = epoch1_dt # If spp info, record: if '*3 sppos sol:' in line: if 'sppPos' not in output: output['sppPos'] = {} output['sppPos']['X'] = [] output['sppPos']['Y'] = [] output['sppPos']['Z'] = [] parts = line.split(' ') nums = [] for part in parts: try: nums.append(float(part)) except ValueError: continue output['sppPos']['X'].append(nums[0]) output['sppPos']['Y'].append(nums[1]) output['sppPos']['Z'].append(nums[2]) else: pass return output def calc_diff_lag(y, x, lag): ''' Calculate y[n+1] - y[n] up to (n-1), and output new_y ''' new_y = y[lag:] - y[:-lag] if len(x) == len(new_y): return new_y,x else: x = x[:-lag] return new_y,x def resid_plot( data, station, LC, cod_or_ph, fit, sats, st_epoch = 0, en_epoch = None, xlim1 = None, xlim2 = None, ymin = None, ymax = None, flex_st = None, flex_en = None, save_fig = False, show = False, diff_lag = 0): """ Plot of the Residuals for given inputs of Linear-Combination type, code/phase, pre/post fit, and sats Input data - Results to be plotted (dict from parseTRACEfile) - dict station - The station of interest - str LC - Options being 'L1L2' and 'L1L5' - str cod_or_ph - Code or Phase data (to plot) - str fit - Type of residual to plot: either 'Postfit' or 'Prefit' - str sat - List of satellites to plot - list of str st_epoch - If plotting is to start at epoch other than Epoch 1 - int OPTIONAL If a portion of the plot is to be highlight to show a flex event, need start and end epochs flex_st - Epoch number where flex event starts - int flex_en - Epoch number where flex event ends - int If the figure is to be saved, set save_fig = True, this will save to pwd Output Zenith Tropospheric Delay Plot """ fig1,ax1 = plt.subplots(1,1, figsize = (12,6) ) # Get Epoch info: epochs = data.index.get_level_values(1).values epoch1 = J2000_ORIGIN + np.timedelta64(epochs[st_epoch],'s') if en_epoch == None: epochN = J2000_ORIGIN + np.timedelta64(epochs[-1],'s') else: epochN = J2000_ORIGIN + np.timedelta64(epochs[en_epoch],'s') date_str = epoch1.astype(datetime).strftime("%Y-DOY-%j")+'-'+epochN.astype(datetime).strftime("%j") #epoch1 = data['Epoch1'] alph = 0.95 for sat in sats: sat_mask = (data['PRN'] == sat) if cod_or_ph == 'Code': cp = 'P' elif cod_or_ph == 'Phase': cp = 'L' if LC == 'L1L2': cp += '12' elif LC == 'L1L5': cp += '15' cp_mask = (data.index.get_level_values(0) == cp) data2plot = data[sat_mask & cp_mask] y = np.array(data2plot[fit.upper()]) data2plot = data2plot.reset_index(level=[0,1]) x = np.array(data2plot['level_1']) x_times = J2000_ORIGIN + np.array(x,dtype='timedelta64[s]') if diff_lag: y,x_times = calc_diff_lag(y,x_times,diff_lag) ax1.plot(x_times[st_epoch:en_epoch], y[st_epoch:en_epoch], label=sat, alpha=alph) alph *= 0.88 # If indices given for start and end to flex event given, highlight that part if flex_st: ax1.axvspan(flex_st, flex_en, alpha=0.1, color='red') ax1.set_ylim(ymin=ymin,ymax=ymax) ax1.set_ylabel('Residual (m)') # Formating x-axis myFmt = mdates.DateFormatter('%b-%d %H:%M') ax1.xaxis.set_major_formatter(myFmt) fig1.autofmt_xdate() #ax1.set_xlabel(f'Epoch Number (Epoch 1: {epoch1.strftime("%Y-DOY-%j %H:%M:%S")})') ax1.grid(True) ax1.legend() if xlim1: ax1.set_xlim(xmin=xlim1, xmax=xlim2) ax1.title.set_text(f'{station} - {LC} - {cod_or_ph} {fit} Residual Plot - {date_str} Epoch {xlim1}-{xlim2}') if save_fig: f_save = f'{save_fig}{date_str}_{station}-{LC}-_{cod_or_ph}_{fit}_Residuals__Epoch-{xlim1}-{xlim2}.png' fig1.savefig(f_save) print(f'Saved: {f_save}') elif st_epoch !=0: ax1.title.set_text(f'{station} - {LC} - {cod_or_ph} {fit} Residual Plot - {date_str} Epoch {st_epoch}-end') if save_fig: f_save = f'{save_fig}{date_str}_{station}-{LC}-_{cod_or_ph}_{fit}_Residuals_St_Epoch-{st_epoch}.png' fig1.savefig(f_save) print(f'Saved: {f_save}') else: ax1.title.set_text(f'{station} - {LC} - {cod_or_ph} {fit} Residual Plot - {date_str}') if save_fig: f_save = f'{save_fig}{date_str}_{station}-{LC}-_{cod_or_ph}_{fit}_Residuals.png' fig1.savefig(f_save) print(f'Saved: {f_save}') if show: fig1.show() return fig1,ax1 def pos_plot( data, station, st_epoch = 0, en_epoch = None, flex_st = None, flex_en = None, save_fig = False, show = False, diff_lag = 0): """ Coordinate (X,Y,Z) plot using the data from the parseTRACEfile function and named station. This is a 3 panel plot, each running horizontally and in X, Y, Z order from top to bottom Input data - Results to be plotted (dict from parseTRACEfile) - dict station - The station of interest - str st_epoch - If plotting is to start at some epoch other than Epoch 1 (optional) - int OPTIONAL If a portion of the plot is to be highlight to show a flex event, need start and end epochs flex_st - Epoch number where flex event starts - int flex_en - Epoch number where flex event ends - int If the figure is to be saved, set save_fig = True, this will save to pwd Output PPP POS Plot """ # Get Epoch info: epochs = data.index.get_level_values(1).values epoch1 = J2000_ORIGIN + np.timedelta64(epochs[st_epoch],'s') date_str = epoch1.astype(datetime).strftime("%Y-DOY-%j") # Set up figure fig2,ax2 = plt.subplots(3,1, figsize = (18,14) ) # Get y, x and error ues for the X coord plot yX = data.EST.X.values[st_epoch:en_epoch] yerrX = np.sqrt(data.VAR.X.values[st_epoch:en_epoch]) x = epochs[st_epoch:en_epoch] x_times = J2000_ORIGIN + np.array(x,dtype='timedelta64[s]') # Plot the x and y values for the top most subplot, including error range if diff_lag: yX,x_times = calc_diff_lag(yX,x_times,diff_lag) ax2[0].plot(x_times,yX) ax2[0].fill_between(x_times, yX-yerrX, yX+yerrX,alpha=0.2) # If indices given for start and end to flex event give, highlight that part if flex_st: ax2[0].axvspan(flex_st, flex_en, alpha=0.2, color='red') # Label the subplot ax2[0].set_ylabel('X Coordinate (m)') ax2[0].tick_params(labelbottom=False) ax2[0].title.set_text('X') ax2[0].grid(True) # Get y and error values for the Y coord plot yY = data.EST.Y.values[st_epoch:en_epoch] yerrY = np.sqrt(data.VAR.Y.values[st_epoch:en_epoch]) # Plot the x and y values for the middle subplot, including error range if diff_lag: yY,x_times = calc_diff_lag(yY,x_times,diff_lag) ax2[1].plot(x_times,yY) ax2[1].fill_between(x_times, yY-yerrY, yY+yerrY,alpha=0.2) # If indices given for start and end to flex event give,
<reponame>MinervaVilchez/tytus<filename>parser/team25/code/astFunciones.py from astExpresion import Expresion, ExpresionCadena, ExpresionID, ExpresionNumero, TIPO_DE_DATO from reporteErrores.errorReport import ErrorReport # EN EL AMBITO MAS EXTERIOR SE INGRESAN A LA LISTA , EN ESTAS SUB CLASES SOLO SE SUBE EL ERROR import math import hashlib import random from datetime import datetime class FuncionNumerica(Expresion): def __init__(self, funcion, parametro1=None, parametro2=None, linea = 0): self.parametro1 = parametro1 self.parametro2 = parametro2 self.funcion = funcion.upper() self.linea = linea def dibujar(self): identificador = str(hash(self)) nodo = "\n" + identificador + "[ label =\"" + self.funcion + "\" ];" # Retorno if self.parametro1: nodo += "\n" + identificador + " -> " + \ str(hash(self.parametro1)) + ";" nodo += self.parametro1.dibujar() if self.parametro2: nodo += "\n" + identificador + " -> " + \ str(hash(self.parametro2)) + ";" nodo += self.parametro2.dibujar() return nodo def getTipo(self , valorNumerico): if (valorNumerico % 1) == 0: return TIPO_DE_DATO.ENTERO else: return TIPO_DE_DATO.DECIMAL def metodo_width_bucket(self , lista_numeros , ts): if len(lista_numeros) == 4: #EXPRESION , MIN_VALLUE , MAX_VALUE , N_BLOQUES valorPrueba = lista_numeros[0].ejecutar(ts) if isinstance(valorPrueba , ErrorReport): return valorPrueba rangoInicial = lista_numeros[1].ejecutar(ts) if isinstance(rangoInicial , ErrorReport): return rangoInicial rangoMax = lista_numeros[2].ejecutar(ts) if isinstance(rangoMax , ErrorReport): return rangoMax nBloques = lista_numeros[3].ejecutar(ts) if isinstance(nBloques , ErrorReport): return nBloques # validacion de tipo numerico , if not isinstance(valorPrueba , ExpresionNumero): return ErrorReport('sintactico', 'Error solo se acepta un tipo numero' ,self.linea) if not isinstance(rangoInicial, ExpresionNumero): return ErrorReport('sintactico', 'Error solo se acepta un tipo numero' ,self.linea) if not isinstance(rangoMax, ExpresionNumero): return ErrorReport('sintactico', 'Error solo se acepta un tipo numero' ,self.linea) if not isinstance(nBloques, ExpresionNumero): return ErrorReport('sintactico', 'Error solo se acepta un tipo numero' ,self.linea) if not self.getTipo(nBloques.val) == TIPO_DE_DATO.ENTERO: return ErrorReport('sintactico', 'Error solo se acepta un ENTERO en el ultimo parametro' ,self.linea) # dando los meros valores valorPrueba = valorPrueba.val rangoInicial = rangoInicial.val rangoMax = rangoMax.val nBloques = nBloques.val if valorPrueba >= rangoMax: return ExpresionNumero(1 + nBloques,TIPO_DE_DATO.ENTERO,self.linea) elif valorPrueba < rangoInicial: return ExpresionNumero( (1-1)*0 , TIPO_DE_DATO.ENTERO,self.linea) else: diferencia = rangoMax-rangoInicial subIntervalos = diferencia/nBloques # _ , _ , _ , _ auxUbicacion = 1 aux = rangoInicial + subIntervalos while(not valorPrueba < aux): #print(str(aux - subIntervalos) +' , ' + str(aux)) aux += subIntervalos auxUbicacion +=1 return ExpresionNumero(auxUbicacion, TIPO_DE_DATO.ENTERO,self.linea) else: return ErrorReport('sintactico', 'error en width_bucket se esperaba solo 4 parametros' ,self.linea) def ejecutar(self, ts = None): if self.parametro2 != None: # 2 PARAMETROS nodoSyn1 = self.parametro1.ejecutar(ts) if isinstance(nodoSyn1 , ErrorReport): return nodoSyn1 nodoSyn2 = self.parametro2.ejecutar(ts) if isinstance(nodoSyn2 , ErrorReport): return nodoSyn2 if isinstance(nodoSyn1 , ExpresionNumero) and isinstance(nodoSyn2 , ExpresionNumero): if self.funcion == "ATAN2": rads = math.atan2(nodoSyn1.val,nodoSyn2.val) return ExpresionNumero(rads,self.getTipo(rads),self.linea) if self.funcion == "ATAN2D": rads = math.atan2(nodoSyn1.val,nodoSyn2.val) grados = (rads * 180/math.pi) return ExpresionNumero(grados,self.getTipo(grados),self.linea) if self.funcion == "DIV": izq = nodoSyn1.val der = nodoSyn2.val if der == 0: return ErrorReport('semantico', 'error DIVISION entre 0' ,self.linea) valor = izq/der return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="GCD": valor = math.gcd(nodoSyn1.val , nodoSyn2.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="MOD": try: valor = (nodoSyn1.val % nodoSyn2.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except: return ErrorReport('semantico', 'error en MODULO' ,self.linea) if self.funcion =="POWER": try: valor = (nodoSyn1.val ** nodoSyn2.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except: return ErrorReport('semantico', 'error en MODULO' ,self.linea) if self.funcion =="ROUND": valor = round(nodoSyn1.val , nodoSyn2.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "TRUNC": if self.getTipo(nodoSyn2.val) != TIPO_DE_DATO.ENTERO: return ErrorReport('semantico', 'error en Metodo TRUNC el segundo parametro tiene que ser un entero' ,self.linea) cadenaInt = str(nodoSyn1.val) numero_truncado = '' indice = 0 decimalesAdjuntados = 0 for i in range(len(cadenaInt)): if cadenaInt[i] == '.': numero_truncado += cadenaInt[i] indice = i break else: numero_truncado += cadenaInt[i] indice+=1 while(decimalesAdjuntados < nodoSyn2.val): if indice < len(cadenaInt): numero_truncado += cadenaInt[indice] else: numero_truncado += '0' indice+=1 decimalesAdjuntados+=1 valor = float(numero_truncado) return ExpresionNumero(valor,self.getTipo(valor),self.linea) else: return ErrorReport('semantico', 'error de tipo, se esperaba un ENTERO O DECIMAL' ,self.linea) elif self.parametro1 != None: # 1 PARAMETRO if isinstance(self.parametro1,list): if self.funcion =="WIDTH_BUCKET": return self.metodo_width_bucket(self.parametro1,ts) nodoSyn1 = self.parametro1.ejecutar(ts) if isinstance(nodoSyn1 , ErrorReport): return nodoSyn1 if isinstance(nodoSyn1 , ExpresionNumero): # decimales y eneteros if self.funcion == "ACOS": # RADIANEES if nodoSyn1.val > 1 or nodoSyn1.val < 1: return ErrorReport('semantico', 'Error en ACOS ,el parametro debe estar entre -1 y 1' ,self.linea) return ExpresionNumero(math.acos(nodoSyn1.val),self.getTipo(nodoSyn1.val),self.linea) if self.funcion == "ACOSD": # GRADOS if nodoSyn1.val > 1 or nodoSyn1.val < 1: return ErrorReport('semantico', 'Error en ACOSD , el parametro debe estar entre -1 y 1' ,self.linea) rads = math.acos(nodoSyn1.val) grados = (rads * 180/math.pi) return ExpresionNumero(grados,self.getTipo(grados),self.linea) if self.funcion == "ASIN": if nodoSyn1.val > 1 or nodoSyn1.val < 1: return ErrorReport('semantico', 'Error en ASIN ,el parametro debe estar entre -1 y 1' ,self.linea) valor = math.asin(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "ASIND": if nodoSyn1.val > 1 or nodoSyn1.val < 1: return ErrorReport('semantico', 'Error en ASIND ,el parametro debe estar entre -1 y 1' ,self.linea) rads = math.asin(nodoSyn1.val) grados = (rads * 180/math.pi) return ExpresionNumero(grados,self.getTipo(grados),self.linea) if self.funcion == "ATAN": try: rads = math.atan(nodoSyn1.val) return ExpresionNumero(rads,self.getTipo(rads),self.linea) except: return ErrorReport('semantico', 'Error en ATAN por el valor del parametro ' ,self.linea) if self.funcion == "ATAND": try: rads = math.atan(nodoSyn1.val) grados = (rads * 180/math.pi) return ExpresionNumero(grados,self.getTipo(grados),self.linea) except: return ErrorReport('semantico', 'Error en ATAND por el valor del parametro ' ,self.linea) if self.funcion == "COS": valor = math.cos(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "COSD": rads = math.cos(nodoSyn1.val) grados = (rads * 180/math.pi) return ExpresionNumero(grados,self.getTipo(grados),self.linea) if self.funcion == "COT": tangente=math.tan(nodoSyn1.val) if tangente == 0: return ErrorReport('semantico', 'Error en COT por el valor del parametro ' ,self.linea) cot = 1 / tangente return ExpresionNumero(cot,self.getTipo(cot),self.linea) if self.funcion == "COTD": tangente=math.tan(nodoSyn1.val) if tangente == 0: return ErrorReport('semantico', 'Error en COTD por el valor del parametro ' ,self.linea) cot =math.degrees(1 / tangente) return ExpresionNumero(cot,self.getTipo(cot),self.linea) if self.funcion == "SIN": radianes=math.sin(nodoSyn1.val) return ExpresionNumero(radianes,self.getTipo(radianes),self.linea) if self.funcion == "SIND": grados=math.degrees(math.sin(nodoSyn1.val)) return ExpresionNumero(grados,self.getTipo(grados),self.linea) if self.funcion == "TAN": try: radianes=math.tan(nodoSyn1.val) return ExpresionNumero(radianes,self.getTipo(radianes),self.linea) except: return ErrorReport('semantico', 'Error en TAN por el valor del parametro ' ,self.linea) if self.funcion == "TAND": try: grados=math.degrees(math.tan(nodoSyn1.val)) return ExpresionNumero(grados,self.getTipo(grados),self.linea) except: return ErrorReport('semantico', 'Error en TAND por el valor del parametro ' ,self.linea) if self.funcion == "COSH": try: valor=math.cosh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except: return ErrorReport('semantico', 'Error en COSH por el valor del parametro ' ,self.linea) if self.funcion == "SINH": try: valor=math.sinh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except: return ErrorReport('semantico', 'Error en SINH por el valor del parametro ' ,self.linea) if self.funcion == "TANH": try: valor=math.tanh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except: return ErrorReport('semantico', 'Error en TANH por el valor del parametro ' ,self.linea) if self.funcion == "ACOSH": if nodoSyn1.val < 1: return ErrorReport('semantico', 'Error en ACOSH, el parametro debe de ser mayor o igual a 1 ' ,self.linea) valor=math.acosh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "ASINH": valor=math.asinh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "ATANH": if nodoSyn1.val > 0.99 or nodoSyn1.val < -0.99: return ErrorReport('semantico', 'Error en ATANH, el parametro debe estar entre 0.99 y -0.99 ' ,self.linea) valor=math.atanh(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) #_________________________________ fin de trigonometricas if self.funcion == "ABS": valor=math.fabs(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion == "CBRT": #RAIZ CUBICA SOLO PARA ENTREROS if (nodoSyn1.val % 1) == 0: valor = raizCubica(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) else: return ErrorReport('semantico', 'error CBRT solo recibe enteros, NO decimales' ,self.linea) if self.funcion =="CEIL" or self.funcion == "CEILING": valor = math.ceil(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="DEGREES": valor = math.degrees(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="FACTORIAL": valor = math.factorial(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="FLOOR":# POR SI VIENE EN UN INSERT valor = math.floor(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) if self.funcion =="LN": try: valor = math.log(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except : return ErrorReport('semantico', 'error en el paramtro de LN' ,self.linea) if self.funcion =="LOG": try: valor = math.log10(nodoSyn1.val) return ExpresionNumero(valor,self.getTipo(valor),self.linea) except : return ErrorReport('semantico', 'error en el paramtro de LOG' ,self.linea) if self.funcion =="EXP": try: valor =
# -*- coding: utf-8 -*- import os import json import requests import configparser from easydict import EasyDict as edict from datetime import datetime from archives_tools.dacs import iso2DACS import uuid #funtions for debugging def pp(output): try: print (json.dumps(output, indent=2)) except: import ast print (json.dumps(ast.literal_eval(str(output)), indent=2)) def serializeOutput(filePath, output): f = open(filePath, "w") try: f.write(json.dumps(output, indent=2)) except: f.write(json.dumps(ast.literal_eval(str(output)), indent=2)) f.close def fields(object): for key in object.keys(): print (key) #error handler def checkError(response): if not response.status_code == 200: print ("ERROR: HTTP Response " + str(response.status_code)) try: pp(response.json()) log = open("aspace.log", "a") log.write("\n" + str(datetime.now()) + " -- " + "ERROR: HTTP Response " + str(response.status_code) + "\n" + json.dumps(response.json(), indent=2)) log.close() except: print (response.status_code) log = open("aspace.log", "a") log.write("\n" + str(datetime.now()) + " -- " + "ERROR: HTTP Response " + str(response.status_code)) log.close() #reads config file for lower functions def readConfig(): #load config file from user directory if os.name == "nt": configPath = os.path.join(os.getenv("APPDATA"), ".aspaceLibrary") else: configPath = os.path.join(os.path.expanduser("~"), ".aspaceLibrary") if not os.path.isdir(configPath): os.makedirs(configPath) configFile = os.path.join(configPath, "local_settings.cfg") config = configparser.ConfigParser() config.read(configFile) return config #writes the config file back def writeConfig(config): #load config file from user directory if os.name == "nt": configPath = os.path.join(os.getenv("APPDATA"), ".aspaceLibrary") else: configPath = os.path.join(os.path.expanduser("~"), ".aspaceLibrary") if not os.path.isdir(configPath): os.makedirs(configPath) configFile = os.path.join(configPath, "local_settings.cfg") with open(configFile, 'w') as f: config.write(f) #basic function to get ASpace login details from a config file def getLogin(aspaceLogin = None): if aspaceLogin is None: try: config = readConfig() #make tuple with basic ASpace login info aspaceLogin = (config.get('ArchivesSpace', 'baseURL'), config.get('ArchivesSpace', 'user'), config.get('ArchivesSpace', 'password')) except: raise ValueError("ERROR: No config file present. Enter credentials with setURL(), setPassword(), or use a tuple, like: session = AS.getSession(\"http://localhost:8089\", \"admin\", \"admin\")") return aspaceLogin else: return aspaceLogin #function to update the URL in the config file def setURL(URL): config = readConfig() if not config.has_section("ArchivesSpace"): config.add_section('ArchivesSpace') config.set('ArchivesSpace', 'baseURL', URL) writeConfig(config) print ("URL path updated") #function to update the user in the config file def setUser(user): config = readConfig() if not config.has_section("ArchivesSpace"): config.add_section('ArchivesSpace') config.set('ArchivesSpace', 'user', user) writeConfig(config) print ("User updated") #function to update the URL in the config file def setPassword(password): config = readConfig() if not config.has_section("ArchivesSpace"): config.add_section('ArchivesSpace') config.set('ArchivesSpace', 'password', password) writeConfig(config) print ("Password updated") #function to get an ArchivesSpace session def getSession(aspaceLogin = None): #get tuple of login details if not provided with one aspaceLogin = getLogin(aspaceLogin) #inital request for session r = requests.post(aspaceLogin[0] + "/users/" + aspaceLogin[1] + "/login", data = {"password":aspaceLogin[2]}) if r.status_code == 403: print ("ASpace Connection Failed. Response 403, invalid credentials. Please check credentials in local_settings.cfg") elif r.status_code != 200: print ("ASpace Connection Failed. Response " + str(r.status_code) + ". Please check settings in local_settings.cfg") else: checkError(r) print ("ASpace Connection Successful") sessionID = r.json()["session"] session = {'X-ArchivesSpace-Session':sessionID} return session def makeObject(jsonData): #handles paginated returns if "results" in jsonData: jsonData = jsonData["results"] if isinstance(jsonData, list): itemList = [] #checks if list of json objects or just a single one for thing in jsonData: object = edict(thing) #object.fields = fields(thing) #object.json = thing itemList.append(object) return itemList else: #single json object object = edict(jsonData) #object.fields = fields(jsonData) #object.json = jsonData return object ################################################################ #GETTING LIST OF LARGE SETS: ACCESSIONS, RESOURCES, etc. ################################################################ def getResourceList(session, repo, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) resourceData= requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/resources?all_ids=true", headers=session) checkError(resourceData) return resourceData.json() #get a list of accession numbers def getAccessionList(session, repo, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) accessionData= requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/accessions?all_ids=true", headers=session) checkError(accessionData) return accessionData.json() #get a list of subjects def getSubjectList(session, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) subjectData= requests.get(aspaceLogin[0] + "/subjects?all_ids=true", headers=session) checkError(subjectData) return subjectData.json() #get a list of top containers def getContainerList(session, repo, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) containerData= requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/top_containers?all_ids=true", headers=session) checkError(locationData) return containerData.json() #get a list of locations def getLocationList(session, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) locationData= requests.get(aspaceLogin[0] + "/locations?all_ids=true", headers=session) checkError(locationData) return locationData.json() #get a list of digital objects def getDAOList(session, repo, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) daoData= requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/digital_objects?all_ids=true", headers=session) checkError(daoData) return daoData.json() ################################################################ #REQUEST FUNCTIONS ################################################################ def singleRequest(session, repo, number, requestType, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) requestData = requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/" + requestType + "/" + str(number), headers=session) checkError(requestData) returnList = makeObject(requestData.json()) return returnList def multipleRequest(session, repo, param, requestType, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) #get list of all resources and loop thorugh them if param.lower().strip() == "all": if requestType.lower() == "resources": numberSet = getResourceList(session, repo, aspaceLogin) elif requestType.lower() == "accessions": numberSet = getAccessionList(session, repo, aspaceLogin) elif requestType.lower() == "subjects": numberSet = getSubjectList(session, aspaceLogin) elif requestType.lower() == "top_containers": numberSet = getContainerList(session, repo, aspaceLogin) elif requestType.lower() == "locations": numberSet = getLocationList(session, aspaceLogin) elif requestType.lower() == "digital_objects": numberSet = getDAOList(session, repo, aspaceLogin) returnList = [] for number in numberSet: if requestType.lower() == "subjects" or requestType.lower() == "locations": requestData = requests.get(aspaceLogin[0] + "/" + requestType + "/" + str(number), headers=session) else: requestData = requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/" + requestType + "/" + str(number), headers=session) checkError(requestData) asObject = makeObject(requestData.json()) returnList.append(asObject) return returnList else: if "-" in param: range = int(param.split("-")[1]) - int(param.split("-")[0]) page = int(param.split("-")[0]) / range limiter = "page=" + str(page + 1) + "&page_size=" + str(range) elif "," in param: limiter = "id_set=" + param.replace(" ", "") else: print ("Invalid parameter, requires 'all', set (53, 75, 120), or paginated (1-100") if requestType.lower() == "subjects": requestData= requests.get(aspaceLogin[0] + "/" + requestType + "?" + limiter, headers=session) else: requestData= requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/" + requestType + "?" + limiter, headers=session) checkError(requestData) returnList = makeObject(requestData.json()) return returnList def postObject(session, object, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) uri = object.uri try: objectString = json.dumps(object) except: import ast objectString = json.dumps(ast.literal_eval(str(object))) postData = requests.post(aspaceLogin[0] + str(uri), data=objectString, headers=session) checkError(postData) return postData.status_code def deleteObject(session, object, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) if "uri" in object.keys(): uri = object.uri elif "record_uri" in object.keys(): uri = object.record_uri else: print ("ERROR: Could not find uri for record") deleteRequest = requests.delete(aspaceLogin[0] + str(uri), headers=session) checkError(deleteRequest) return deleteRequest.status_code ################################################################ #REPOSITORIES ################################################################ def getRepositories(session, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) repoData = requests.get(aspaceLogin[0] + "/repositories", headers=session) checkError(repoData) repoList = makeObject(repoData.json()) return repoList ################################################################ #RESOURCES ################################################################ #returns a list of resources you can iterate though with all, a set, or a range of resource numbers def getResources(session, repo, param, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) resourceList = multipleRequest(session, repo, param, "resources", aspaceLogin) return resourceList #return resource object with number def getResource(session, repo, number, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) resource = singleRequest(session, repo, number, "resources", aspaceLogin) return resource #return a resource object by id_0 field using the index def getResourceID(session, repo, id_0, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) response = requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/search?page=1&aq={\"query\":{\"field\":\"identifier\", \"value\":\"" + id_0 + "\", \"jsonmodel_type\":\"field_query\"}}", headers=session) checkError(response) if len(response.json()["results"]) < 1: print ("Error: could not find results for resource " + str(id_0)) else: resourceID = response.json()["results"][0]["id"].split("/resources/")[1] resource = singleRequest(session, repo, resourceID, "resources", aspaceLogin) return resource #returns a list of resources updated since ISO param def getResourcesSince(session, repo, param, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) """also accepts ISO (does not work) if "-" in param: if "t" in param.lower(): timeObject = datetime.strptime(param, '%Y-%m-%dT%H:%M:%S.%fZ') else: timeObject = datetime.strptime(param, '%Y-%m-%d %H:%M:%S.%fZ') param = (timeObject - datetime(1970, 1, 1)).total_seconds() """ resourceList = [] requestData = requests.get(aspaceLogin[0] + "/repositories/" + str(repo) + "/resources?all_ids=true&modified_since=" + str(param), headers=session) checkError(requestData) requestList = requestData.json() for resourceID in requestList: resourceList.append(getResource(session, repo, resourceID, aspaceLogin)) return resourceList #creates an empty resource def makeResource(): resourceString = '{"jsonmodel_type":"resource","external_ids":[],"subjects":[],"linked_events":[],"extents":[],"dates":[],"external_documents":[],"rights_statements":[],"linked_agents":[],"restrictions":false,"revision_statements":[],"instances":[],"deaccessions":[],"related_accessions":[],"classifications":[],"notes":[],"title":"","id_0":"","level":"","language":"","ead_id":"","finding_aid_date":"","ead_location":""}' emptyResource = json.loads(resourceString) resourceObject = makeObject(emptyResource) return resourceObject def postResource(session, repo, resourceObject, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) path = "/repositories/" + str(repo) + "/resources" if "uri" in resourceObject.keys(): if len(resourceObject.uri) > 0: path = resourceObject.uri try: resourceString = json.dumps(resourceObject) except: import ast resourceString = json.dumps(ast.literal_eval(str(resourceObject))) postResource = requests.post(aspaceLogin[0] + path, data=resourceString, headers=session) checkError(postResource) return postResource.status_code ################################################################ #NAVIGATION ################################################################ #return resource tree object from resource Object def getTree(session, resourceObject, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) uri = resourceObject.uri treeData = requests.get(aspaceLogin[0] + str(uri) + "/tree", headers=session) checkError(treeData) treeObject = makeObject(treeData.json()) return treeObject #return a list of child objects from a Resource object or an Archival Object def getChildren(session, object, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) def findChild(tree, uri, childrenObject): for child in tree["children"]: if child["record_uri"] == uri: childrenObject = makeObject(child) elif len(child["children"]) < 1: pass else: childrenObject = findChild(child, uri, childrenObject) return childrenObject if object.jsonmodel_type == "archival_object": #get children of archival object aoURI = object.uri resourceURI = object.resource.ref childrenData = requests.get(aspaceLogin[0] + str(resourceURI) + "/tree", headers=session) checkError(childrenData) #limit to only children below original archival object childrenObject = findChild(childrenData.json(), aoURI, None) if childrenObject is None: print ("ERROR could not find archival object in resource tree, uri: " + aoURI + " ref_id: " + object.ref_id) #now just returns patent object, even if with .children being empty. This way it won't just fail if there is no children #elif len(childrenObject["children"]) < 1: #print ("ERROR archival object has no children, uri: " + aoURI + " ref_id: " + object.ref_id) else: return childrenObject else: #get children of a resource childrenData = getTree(session, object, aspaceLogin) return childrenData ################################################################ #ARCHIVAL OBJECTS ################################################################ #return archival object by id def getArchObj(session, recordUri, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) aoData = requests.get(aspaceLogin[0] + str(recordUri), headers=session) checkError(aoData) aoObject = makeObject(aoData.json()) return aoObject #return archival object by Ref ID def getArchObjID(session, repo, refID, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) params = {"ref_id[]": refID} aoData = requests.get(aspaceLogin[0] + "/repositories/" + repo + "/find_by_id/archival_objects", headers=session, params=params) checkError(aoData) if len(aoData.json()["archival_objects"]) < 1: print ("ERROR cound not find archival object for ref ID " + refID) else: recordUri = aoData.json()["archival_objects"][0]["ref"] aoObject = getArchObj(session, recordUri, aspaceLogin) return aoObject #creates an empty archival object def makeArchObj(): objectString = '{"jsonmodel_type":"archival_object","external_ids":[],"subjects":[],"linked_events":[],"extents":[],"dates":[],"external_documents":[],"rights_statements":[],"linked_agents":[],"restrictions_apply":false,"instances":[],"notes":[],"title":"","level":""}' emptyArchObj = json.loads(objectString) aoObject = makeObject(emptyArchObj) return aoObject def postArchObj(session, repo, aoObject, aspaceLogin = None): #get ASpace Login info aspaceLogin = getLogin(aspaceLogin) aoString = json.dumps(aoObject) if "ref_id" in
<reponame>duserzym/BiCEP_GUI<gh_stars>1-10 import pandas as pd import pandas as pd from importlib import reload # allows reloading of modules import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA import ipywidgets as widgets from IPython.display import display, clear_output from importlib import reload import asyncio import pickle import pmagpy.pmag as pmag import pmagpy.ipmag as ipmag import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from pmagpy import contribution_builder as cb import scipy as scipy import pickle from sklearn.decomposition import PCA from scipy.optimize import curve_fit import sys model_circle_fast=pickle.load(open('model_circle_fast.pkl','rb')) model_circle_slow=pickle.load(open('model_circle_slow.pkl','rb')) def sufficient_statistics(ptrm, nrm): """ inputs list of ptrm and nrm data and computes sufficent statistcs needed for computations Inputs ------ ptrm: list list of ptrm data nrm: list list of nrm data Returns ------- dict containing mean ptrm and nrm, and covariances in xx, xy and yy. """ corr = np.cov( np.stack((ptrm, nrm), axis=0) ) return {'xbar': np.mean(ptrm), 'ybar': np.mean(nrm), 'S2xx': corr[0,0], 'S2yy': corr[1,1], 'S2xy': corr[0,1] } def TaubinSVD(x,y): """ Function from PmagPy algebraic circle fit input: list [[x_1, y_1], [x_2, y_2], ....] output: a, b, r. a and b are the center of the fitting circle, and r is the radius Algebraic circle fit by Taubin <NAME>, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) """ X = np.array(list(map(float, x))) Xprime=X Y = np.array(list(map(float, y))) Yprime=Y XY = np.array(list(zip(X, Y))) XY = np.array(XY) X = XY[:,0] - np.mean(XY[:,0]) # norming points by x avg Y = XY[:,1] - np.mean(XY[:,1]) # norming points by y avg centroid = [np.mean(XY[:,0]), np.mean(XY[:,1])] Z = X * X + Y * Y Zmean = np.mean(Z) Z0 = (Z - Zmean)/(2. * np.sqrt(Zmean)) ZXY = np.array([Z0, X, Y]).T U, S, V = np.linalg.svd(ZXY, full_matrices=False) # V = V.transpose() A = V[:,2] A[0] = A[0]/(2. * np.sqrt(Zmean)) A = np.concatenate([A, [(-1. * Zmean * A[0])]], axis=0) a, b = (-1 * A[1:3]) / A[0] / 2 + centroid r = np.sqrt(A[1]*A[1]+A[2]*A[2]-4*A[0]*A[3])/abs(A[0])/2 errors=[] for i in list(range(0,len(Xprime)-1)): errors.append((np.sqrt((Xprime[i]-a)**2+(Yprime[i]-b)**2)-r)**2) sigma=np.sqrt((sum(errors))/(len(Xprime)-1)) return a,b,r,sigma def bestfit_line(ptrm, nrm): """ Returns the slope and intercept of the best fit line to a set of pTRM and NRM data using York Regression Inputs ------ ptrm: list or array list of pTRM data nrm: list or array list of NRM data Returns ------- dictionary of slope and intercept for best fitting line. """ stat = sufficient_statistics(ptrm, nrm) w = .5*(stat['S2xx'] - stat['S2yy'])/stat['S2xy'] m = -w-np.sqrt(w**2+1) b = stat['ybar']-m*stat['xbar'] return {'slope': m, 'intercept': b } def get_drat(IZZI,IZZI_trunc,P): """Calculates the difference ratio (DRAT) of pTRM checks (Selkin and Tauxe, 2000) to check for alteration Inputs ------ IZZI: pandas.DataFrame DataFrame object in BiCEP format of all in field and zero field measurements for a specimen. IZZI_trunc: pandas.DataFrame DataFrame object- same as IZZI but truncated only for temperatures used in interpretation P: pandas.DataFrame DataFrame object containing pTRM checks up to the maximum temperature of an interpretation Returns ------- absdiff: float maximum DRAT for all pTRM check measurements. returns zero if the interpretation is not valid. """ try: IZZI_reduced=IZZI[IZZI.temp_step.isin(P.temp_step)] a=np.sum((IZZI_trunc.PTRM-np.mean(IZZI_trunc.PTRM))*(IZZI_trunc.NRM-np.mean(IZZI_trunc.NRM))) b=a/np.abs(a)*np.sqrt(np.sum((IZZI_trunc.NRM-np.mean(IZZI_trunc.NRM))**2)/np.sum((IZZI_trunc.PTRM-np.mean(IZZI_trunc.PTRM))**2)) yint=np.mean(IZZI_trunc.NRM)-b*np.mean(IZZI_trunc.PTRM) line={'slope':b,'intercept':yint} xprime=0.5*(IZZI_trunc.PTRM+(IZZI_trunc.NRM-line['intercept'])/line['slope']) yprime=0.5*(IZZI_trunc.NRM+line['slope']*IZZI_trunc.PTRM+line['intercept']) scalefactor=np.sqrt((min(xprime)-max(xprime))**2+(min(yprime)-max(yprime))**2) absdiff=max(np.abs(P.PTRM.values-IZZI_reduced.PTRM.values)/scalefactor)*100 return(absdiff) except: return 0 def get_mad(IZZI,pca): """ Calculates the free Maximum Angle of Deviation (MAD) of Kirshvink et al (1980) Inputs ------ IZZI: pandas.DataFrame DataFrame object in BiCEP format of in field and zero field measurements for a specimen (interpretation). pca: scikitlearn.decomposition.PCA object pca used to fit the vector direction. Returns ------- mad: float maximum angle of deviation for that intepretation """ try: fit=pca.fit(IZZI.loc[:,'NRM_x':'NRM_z'].values).explained_variance_ return np.degrees(np.arctan(np.sqrt((fit[2]+fit[1])/(fit[0])))) except: return 0 def get_dang(NRM_trunc_dirs,pca): """ Calculates the Deviation Angle Inputs ------ NRM_trunc_dirs: numpy.ndarray Vector directions for zero field measurements for specimen pca: scikitlearn.decomposition.PCA object pca used to fit the vector direction. Returns ------- dang: float deviation angle for that intepretation """ try: length, vector=pca.explained_variance_[0], pca.components_[0] NRM_vect=np.mean(NRM_trunc_dirs,axis=0) NRM_mean_magn=np.sqrt(sum(NRM_vect**2)) vector_magn=np.sqrt(sum(vector**2)) return(np.degrees(np.arccos(np.abs(np.dot(NRM_vect,vector)/(NRM_mean_magn*vector_magn))))) except: return(0) def calculate_anisotropy_correction(IZZI): """ Calculates anisotropy correction factor for a paleointensity interpretation, given an s tensor Inputs ------ IZZI: pandas.DataFrame DataFrame object in BiCEP format of in field and zero field measurements for a specimen (interpretation). Returns ------- c: float Anisotropy correction factor """ #Convert the s tensor into a numpy array strlist=IZZI['s_tensor'].iloc[0].split(':') slist=[] for stringo in strlist: slist.append(float(stringo.strip())) stensor=np.array([[slist[0],slist[3],slist[5]],[slist[3],slist[1],slist[4]],[slist[5],slist[4],slist[2]]]) #Fit a PCA to the IZZI directions NRM_trunc_dirs=IZZI.loc[:,'NRM_x':'NRM_z'] pca=PCA(n_components=3) pca=pca.fit(NRM_trunc_dirs) #Calculate the anisotropy correction factor (see Standard Paleointensity Definitions) vector=pca.components_[0] vector=vector/np.sqrt(np.sum(vector**2)) ancvector=np.matmul(np.linalg.inv(stensor),vector) ancvector=ancvector/np.sqrt(np.sum(ancvector**2)) labmag=np.matmul(stensor,np.array([0,0,-1])) ancmag=np.matmul(stensor,ancvector) c=np.sqrt(np.sum(labmag**2))/np.sqrt(np.sum(ancmag**2)) return(c) def calculate_NLT_correction(IZZI,c): """ Calculates the correction for non linear TRM for a paleointensity interpretation, given the anisotropy and cooling rate corrections Inputs ------ IZZI: pandas.DataFrame DataFrame object in BiCEP format of in field and zero field measurements for a specimen (interpretation). c: float Combined Anisotropy and Cooling Rate correction- needed because the nonlinearity is applied after this. Returns ------- c: float NLT correction factor """ a=np.sum((IZZI.PTRM-np.mean(IZZI.PTRM))*(IZZI.NRM-np.mean(IZZI.NRM))) b=a/np.abs(a)*np.sqrt(np.sum((IZZI.NRM-np.mean(IZZI.NRM))**2)/np.sum((IZZI.PTRM-np.mean(IZZI.PTRM))**2)) beta=IZZI['NLT_beta'].iloc[0] correction=c*IZZI.correction.iloc[0] B_lab=IZZI.B_lab.iloc[0]*1e6 total_correction=(np.arctanh(correction*np.abs(b)*np.tanh(beta*B_lab)))/(np.abs(b)*beta*B_lab) return(total_correction) class ThellierData(): """ Class which supports several methods using the BiCEP method in pandas. Inputs ------ datafile: string for file name in BiCEP format """ def __init__(self,datafile): self.data=pd.read_csv(datafile) self.groupType='site' try: self.redo=pd.read_csv('thellier_gui.redo',delim_whitespace=True,header=None) except: self.redo=None self.collections={siteName:SpecimenCollection(self,siteName,self.groupType) for siteName in self.data[self.groupType].unique()} def __repr__(self): reprstr='Set of Thellier Data Containing the '+'S'+self.groupType[1:]+'s:\n' for key in self.collections.keys(): reprstr+= key+'\t('+str(len(self.collections[key].specimens))+' specimens)\n' return(reprstr) def __getitem__(self,item): return(self.collections[item]) def switch_grouping(self): if self.groupType=='site': self.groupType='sample' else: self.groupType='site' self.collections={siteName:SpecimenCollection(self,siteName,self.groupType) for siteName in self.data[self.groupType].unique()} class SpecimenCollection(): """ Collection of specimens (site or sample, from ThellierData Dataset) Parameters ---------- parentData: ThellierData object Set of Thellier Data the site/sample is derived from collectionName: string Name of specimen/site key: string Either 'site' for site or 'sample' for sample """ def __init__(self,parentData,collectionName,key): self.name=collectionName self.key=key self.parentData=parentData self.data=parentData.data[parentData.data[self.key]==collectionName] self.specimens={specimenName:Specimen(self,specimenName) for specimenName in self.data.specimen.unique()} self.fit=None self.methcodes='IE-BICEP' self.artist=None def __repr__(self): reprstr='Site containing the specimens:\n' for specimenName in self.specimens.keys(): reprstr+=specimenName+'\n' return(reprstr) def __getitem__(self,item): return(self.specimens[item]) def BiCEP_fit(self,n_samples=30000,priorstd=5,model=None,**kwargs): """ Performs the fitting routine using the BiCEP method for a given list of specimens from a single site. Inputs ------ Specimenlist: iterable of specimen names (strings) """ minPTRMs=[] minNRMs=[] B_lab_list=[] klist=[] NRM0s=[] pTRMsList=np.array([]) NRMsList=np.array([]) lengths=[] philist=[] dist_to_edgelist=[] B_ancs=[] dmaxlist=[] PTRMmaxlist=[] centroidlist=[] i=0 #try: for specimen in self.specimens.values(): if specimen.active==True: specimen.save_changes() minPTRM,minNRM,PTRMmax,k,phi,dist_to_edge,sigma,PTRMS,NRMS=specimen.BiCEP_prep() NRM0=specimen.NRM0 minPTRMs.append(minPTRM) minNRMs.append(minNRM) line=bestfit_line(specimen.IZZI_trunc.PTRM,specimen.IZZI_trunc.NRM) B_anc=-line['slope']*specimen.B_lab*specimen.IZZI_trunc.correction.iloc[0] B_ancs.append(B_anc) Pi,Pj=np.meshgrid(PTRMS,PTRMS) Ni,Nj=np.meshgrid(NRMS,NRMS) dmax=np.amax(np.sqrt((Pi-Pj)**2+(Ni-Nj)**2)) centroid=np.sqrt(np.mean(PTRMS)**2+np.mean(NRMS)**2) B_lab_list.append(specimen.B_lab) klist.append(k) philist.append(phi) dist_to_edgelist.append(dist_to_edge) NRM0s.append(NRM0) pTRMsList=np.append(pTRMsList,PTRMS) NRMsList=np.append(NRMsList,NRMS) lengths.append(int(len(PTRMS))) dmaxlist.append(dmax) PTRMmaxlist.append(PTRMmax) centroidlist.append(centroid) i+=1 if model==None: if i<7: model_circle=model_circle_slow else: model_circle=model_circle_fast else: model_circle=model fit_circle=model_circle.sampling ( data={'I':len(pTRMsList),'M':len(lengths),'PTRM':pTRMsList,'NRM':NRMsList,'N':lengths,'PTRMmax':PTRMmaxlist,'B_labs':B_lab_list,'dmax':np.sqrt(dmaxlist),'centroid':centroidlist,'priorstd':priorstd},iter=n_samples,warmup=int(n_samples/2), init=[{'k_scale':np.array(klist)*np.array(dist_to_edgelist),'phi':philist,'dist_to_edge':dist_to_edgelist,'int_real':B_ancs}]*4,**kwargs) self.fit=fit_circle #except: #print('Something went wrong trying to do the BiCEP fit, try changing your temperature range') def save_magic_tables(self): """ Saves data from the currently displayed site to the GUI Inputs ------ None Returns ------- None """ fit=self.fit sitestable=pd.read_csv(self.key+'s.txt',skiprows=1,sep='\t') sitestable.loc[sitestable[self.key]==self.name,'int_abs_min']=round(np.percentile(fit['int_site'],2.5),1)/1e6 sitestable.loc[sitestable[self.key]==self.name,'int_abs_max']=round(np.percentile(fit['int_site'],97.5),1)/1e6 sitestable.loc[sitestable[self.key]==self.name,'int_abs']=round(np.percentile(fit['int_site'],50),1)/1e6 specimenstable=pd.read_csv('specimens.txt',skiprows=1,sep='\t') speclist=[spec for spec in self.specimens.keys() if self.specimens[spec].active==True] for i in range(len(speclist)): specimen=speclist[i] specfilter=(~specimenstable.method_codes.str.contains('LP-AN').fillna(False))&(specimenstable.specimen==specimen) specimenstable.loc[specfilter,'int_abs_min']=round(np.percentile(fit['int_real'][:,i],2.5),1)/1e6 specimenstable.loc[specfilter,'int_abs_max']=round(np.percentile(fit['int_real'][:,i],97.5),1)/1e6 specimenstable.loc[specfilter,'int_abs']=round(np.percentile(fit['int_real'][:,i],50),1)/1e6 specimenstable.loc[specfilter,'int_k_min']=round(np.percentile(fit['k'][:,i],2.5),3) specimenstable.loc[specfilter,'int_k_max']=round(np.percentile(fit['k'][:,i],97.5),3) specimenstable.loc[specfilter,'int_k']=round(np.percentile(fit['k'][:,i],50),3) specimenstable.loc[specfilter,'meas_step_min']=self[specimen].savedLowerTemp specimenstable.loc[specfilter,'meas_step_max']=self[specimen].savedUpperTemp method_codes=self[specimen].methcodes.split(':') method_codes=list(set(method_codes)) newstr='' for code in method_codes[:-1]: newstr+=code newstr+=':' newstr+=method_codes[-1] specimenstable.loc[specfilter,'method_codes']=self[specimen].methcodes extra_columns=self[specimen].extracolumnsdict for col in extra_columns.keys(): specimenstable.loc[specfilter,col]=extra_columns[col] sitestable.loc[sitestable.site==self.name,'method_codes']=self.methcodes specimenstable['meas_step_unit']='Kelvin' sitestable=sitestable.fillna('') specimenstable=specimenstable.fillna('') sitesdict=sitestable.to_dict('records') specimensdict=specimenstable.to_dict('records') pmag.magic_write('sites.txt',sitesdict,'sites') pmag.magic_write('specimens.txt',specimensdict,'specimens') def regplot(self,ax,legend=False,title=None): """ Plots B vs k for all specimens in a site given a BiCEP or unpooled fit Inputs ------ ax: matplotlib axis axes to plot to legend: bool If set to True, plots a legend title: str Title for plot. Does not plot title if set to None. """ B_lab_list=[] for specimen in self.specimens.values(): B_lab_list.append(specimen.B_lab) try: Bs=self.fit['int_real'] ks=self.fit['k'] mink,maxk=np.amin(ks),np.amax(ks) minB,maxB=self.fit['c']*mink+self.fit['int_site'],self.fit['c']*maxk+self.fit['int_site'] c=np.random.choice(range(len(minB)),100) ax.plot([mink,maxk],[minB[c],maxB[c]],color='skyblue',alpha=0.12) except: Bs=self.fit['slope']*np.array(B_lab_list).T ks=self.fit['k'] ax.set_xlabel(r'$\vec{k}$'); ax.plot(np.percentile(ks,(2.5,97.5),axis=0),[np.median(Bs,axis=0),np.median(Bs,axis=0)],'k') ax.plot([np.median(ks,axis=0),np.median(ks,axis=0)],np.percentile(Bs,(2.5,97.5),axis=0),'k') ax.plot(np.median(ks,axis=0),np.median(Bs,axis=0),'o',markerfacecolor='lightgreen',markeredgecolor='k') ax.axvline(0,color='k',linewidth=1) if title!=None: ax.set_title(title,fontsize=20,loc='left') def get_specimen_rhats(self): """ Finds the worst Rhat va; for each specimen and assigns it to that specimen """ rhats=self.fit.summary()['summary'][:,-1] rhat_params=self.fit.summary()['summary_rownames'] specimenlist=[specimen for specimen in self.specimens.values() if specimen.active==True] for i in list(range(len(specimenlist))): rhats_specimen=rhats[np.char.find(rhat_params,'['+str(i+1)+']')!=-1] worst_rhat_specimen=rhats_specimen[np.abs(rhats_specimen-1)==max(np.abs(rhats_specimen-1))][0] specimenlist[i].rhat=worst_rhat_specimen def histplot(self,ax,**kwargs): """ Plots a histogram of the site level paleointensity estimate. Inputs ------ **kwargs: arguments to be passed to the histogram plot Returns ------- None """ ax.hist(self.fit['int_site'],bins=100,color='skyblue',density=True) minB,maxB=np.percentile(self.fit['int_site'],(2.5,97.5)) ax.plot([minB,maxB],[0,0],'k',linewidth=4) ax.set_xlabel('Intensity ($\mu$T)') ax.set_ylabel('Probability Density') class Specimen(): """ Specimen from a given site or sample SpecimenCollection object. Parameters ---------- parentCollection: SpecimenCollection object Site/Sample the specimen is derived from. specimenName: string Name of specimen """ def __init__(self,parentCollection,specimenName): #Inherent properties self.parentCollection=parentCollection #Site or sample this specimen belongs to self.name=specimenName self.data=parentCollection.data[parentCollection.data.specimen==specimenName] self.active=True #Used for BiCEP GUI- set to false if
= N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
* s * iv(k, b * s) * kv( (-1) + k, s) + ( -3) * b * k * s * iv(k, b * s) * kv( (-1) + k, s) + (-8) * b * k ** 2 * iv( k, b * s) * kv( k, s) + 2 * iv((-1) + k, b * s) * ( ((-1) + k) * s * kv((-2) + k, s) + ( (-1) + 3 * k ** 2) * kv((-1) + k, s) + ( -1) * ((-1) + k) * s * kv(k, s)) + ( -4) * b * s * iv( k, b * s) * kv(1 + k, s) + 4 * b * k * s * iv( k, b * s) * kv(1 + k, s) + 8 * iv( 1 + k, b * s) * kv( 1 + k, s) + ( -4) * k * iv( 1 + k, b * s) * kv(1 + k, s)) + iv(k, s) ** 2 * ( (-2) * iv((-1) + k, b * s) * ( (4 * k * s + s ** 3) * kv((-2) + k, s) + ( 4 * k + 4 * k ** 2 + s ** 2 + 3 * k * s ** 2) * kv( (-1) + k, s) + (-1) * s ** 3 * kv( k, s)) + s * ( b * (4 * k + s ** 2) * iv((-2) + k, b * s) * kv( (-1) + k, s) + 8 * iv( 1 + k, b * s) * ( (-1) * k * kv(k, s) + s * kv(1 + k, s)) + b * iv( k, b * s) * ( 3 * (4 * k + s ** 2) * kv((-1) + k, s) + ( -4) * s * ( (-2) * k * kv(k, s) + s * kv( 1 + k, s)))))) psi1_k0 = lambda s, b: (1 / 16) * pi ** (-2) * iv(1, s) * ( (-4) * s ** 2 * (iv(0, s) + iv(2, s)) * ( b * iv(0, b * s) * kv(0, s) + (-1) * iv(1, b * s) * kv(1, s)) + ( -8) * s * (iv(0, s) + s * iv(1, s)) * ( b * iv(0, b * s) * kv(1, s) + (-1) * iv(1, b * s) * kv(2, s))) pi1_k0 = lambda s, b: (1 / 2) * pi ** (-2) * iv(1, s) * ( b * iv(0, b * s) + (-1) * s * iv(1, b * s) * ( iv(1, s) * kv(1, s) + iv(0, s) * kv(2, s))) self._psi_xn1 = psi1(self._k, self._xn, self._b) self._psi_yn1 = psi1(self._k, self._yn, self._b) self._pi_xn1 = pi1(self._k, self._xn, self._b) self._pi_yn1 = pi1(self._k, self._yn, self._b) self._omega_xn1 = omega1(self._k, self._xn, self._b) self._omega_yn1 = omega1(self._k, self._yn, self._b) self._psi_xn1_k0 = psi1_k0(self._xn_k0, self._b) self._omega_xn1_k0 = 0 self._pi_xn1_k0 = pi1_k0(self._xn_k0, self._b) self._finish1 = True return True def _solve_prepare2(self): err_msg = 'run _solve_prepare_yn first. ' assert self._finish_yn, err_msg psi2 = lambda k, s, b: (1 / 16) * pi ** (-2) * ( s ** 2 * ((iv((-2) + k, s) + iv(k, s)) * iv(1 + k, s) + iv((-1) + k, s) * ( iv(k, s) + iv(2 + k, s))) * ( iv((-1) + k, b * s) * kv((-1) + k, s) + (-1) * iv(1 + k, b * s) * kv(1 + k, s)) + ( -4) * b ** (-1) * (s * iv((-1) + k, s) + (-1) * ((-1) + k) * iv(k, s)) * ( b * ((-2) + k) * iv((-1) + k, b * s) * iv(1 + k, s) * kv((-1) + k, s) + ( -1) * k * iv(k, b * s) * iv( 1 + k, s) * kv(k, s) + iv((-1) + k, s) * ( (-1) * k * iv(k, b * s) * kv(k, s) + b * (2 + k) * iv(1 + k, b * s) * kv( 1 + k, s)))) pi2 = lambda k, s, b: (1 / 4) * b ** (-1) * pi ** (-2) * ( iv(k, s) * iv(1 + k, s) * ( b * ((-2) + k) * iv((-1) + k, b * s) * kv((-1) + k, s) + (-1) * k * iv(k, b * s) * kv( k, s)) + iv( (-1) + k, s) * ( (-1) * b * s * iv((-1) + k, b * s) * iv(1 + k, s) * kv((-1) + k, s) + b * s * iv( 1 + k, s) * iv(1 + k, b * s) * kv( 1 + k, s) + iv(k, s) * ( (-1) * k * iv(k, b * s) * kv(k, s) + b * (2 + k) * iv(1 + k, b * s) * kv( 1 + k, s)))) omega2 = lambda k, s, b: (1 / 2) * b ** (-1) * pi ** (-2) * s ** (-1) * ( (-1) * b * s ** 2 * iv((-1) + k, s) ** 2 * ( iv((-1) + k, b * s) * kv((-1) + k, s) + iv(1 + k, b * s) * kv(1 + k, s)) + b * s * iv( (-1) + k, s) * iv( k, s) * ( ((-2) + 3 * k) * iv((-1) + k, b * s) * kv((-1) + k, s) + ((-2) + k) * iv( 1 + k, b * s) * kv(1 + k, s)) + iv(k, s) ** 2 * ( b * (4 * k + (-2) * k ** 2 + s ** 2) * iv((-1) + k, b * s) * kv((-1) + k, s) + 2 * k ** 2 * iv( k, b * s) * kv( k, s) + b * s ** 2 * iv(1 + k, b * s) * kv(1 + k, s))) omega2_k0 = lambda s, b: pi ** (-2) * ( s * iv(0, s) ** 2 + (-2) * iv(0, s) * iv(1, s) + (-1) * s * iv(1, s) ** 2) * iv(1, b * s) * kv( 1, s) self._psi_xn2 = psi2(self._k, self._xn, self._b) self._psi_yn2 = psi2(self._k, self._yn, self._b) self._pi_xn2 = pi2(self._k, self._xn, self._b) self._pi_yn2 = pi2(self._k, self._yn, self._b) self._omega_xn2 = omega2(self._k, self._xn, self._b) self._omega_yn2 = omega2(self._k, self._yn, self._b) self._psi_yn2_k0 = 0 self._omega_yn2_k0 = omega2_k0(self._yn_k0, self._b) self._pi_yn2_k0 = 0 self._finish2 = True return True def _solve_prepare3(self): err_msg = 'run _solve_prepare_xn first. ' assert self._finish_xn, err_msg psi3 = lambda k, s, b: (1 / 8) * pi ** (-2) * s * ( ((iv((-2) + k, s) + iv(k, s)) * iv(1 + k, s) + iv((-1) + k, s) * ( iv(k, s) + iv(2 + k, s))) * ( (-1) * b * s * iv((-1) + k, b * s) * kv(k, s) + iv(k, b * s) * ( s * kv((-1) + k, s) + 2 * ((-1) + k) * kv(k, s))) + (-2) * ( s * iv((-1) + k, s) + (-1) * ((-1) + k) * iv(k, s)) * ( b * iv((-1) + k, b * s) * iv(1 + k, s) * kv((-1) + k, s) + (-1) * iv(k, b * s) * iv( 1 + k, s) * kv(k, s) + iv( (-1) + k, s) * ( (-1) * iv(k, b * s) * kv(k, s) + b * iv(1 + k, b
# Copyright (c) 2018, Science and Technology Facilities Council # This software is distributed under a BSD licence. See LICENSE.txt. """ load_functions -------------- Module for top-level functions that open MRC files and form the main API of the package. """ # Import Python 3 features for future-proofing from __future__ import (absolute_import, division, print_function, unicode_literals) import io import os from .bzip2mrcfile import Bzip2MrcFile from .constants import MAP_ID, MAP_ID_OFFSET_BYTES from .future_mrcfile import FutureMrcFile from .gzipmrcfile import GzipMrcFile from .mrcfile import MrcFile from .mrcmemmap import MrcMemmap from . import utils def new(name, data=None, compression=None, overwrite=False): """Create a new MRC file. Args: name: The file name to use. data: Data to put in the file, as a :class:`numpy array <numpy.ndarray>`. The default is :data:`None`, to create an empty file. compression: The compression format to use. Acceptable values are: :data:`None` (the default; for no compression), ``'gzip'`` or ``'bzip2'``. It's good practice to name compressed files with an appropriate extension (for example, ``.mrc.gz`` for gzip) but this is not enforced. overwrite: Flag to force overwriting of an existing file. If :data:`False` and a file of the same name already exists, the file is not overwritten and an exception is raised. Returns: An :class:`~mrcfile.mrcfile.MrcFile` object (or a subclass of it if ``compression`` is specified). Raises: :exc:`ValueError`: If the file already exists and overwrite is :data:`False`. :exc:`ValueError`: If the compression format is not recognised. Warns: RuntimeWarning: If the data array contains Inf or NaN values. """ if compression == 'gzip': NewMrc = GzipMrcFile elif compression == 'bzip2': NewMrc = Bzip2MrcFile elif compression is not None: raise ValueError("Unknown compression format '{0}'" .format(compression)) else: NewMrc = MrcFile mrc = NewMrc(name, mode='w+', overwrite=overwrite) if data is not None: mrc.set_data(data) return mrc def open(name, mode='r', permissive=False, header_only=False): # @ReservedAssignment """Open an MRC file. This function opens both normal and compressed MRC files. Supported compression formats are: gzip, bzip2. It is possible to use this function to create new MRC files (using mode ``w+``) but the :func:`new` function is more flexible. This function offers a permissive read mode for attempting to open corrupt or invalid files. In permissive mode, :mod:`warnings` are issued instead of exceptions if problems with the file are encountered. See :class:`~mrcfile.mrcinterpreter.MrcInterpreter` or the :doc:`usage guide <../usage_guide>` for more information. Args: name: The file name to open. mode: The file mode to use. This should be one of the following: ``r`` for read-only, ``r+`` for read and write, or ``w+`` for a new empty file. The default is ``r``. permissive: Read the file in permissive mode. The default is :data:`False`. header_only: Only read the header (and extended header) from the file. The default is :data:`False`. Returns: An :class:`~mrcfile.mrcfile.MrcFile` object (or a :class:`~mrcfile.gzipmrcfile.GzipMrcFile` object if the file is gzipped). Raises: :exc:`ValueError`: If the mode is not one of ``r``, ``r+`` or ``w+``. :exc:`ValueError`: If the file is not a valid MRC file and ``permissive`` is :data:`False`. :exc:`ValueError`: If the mode is ``w+`` and the file already exists. (Call :func:`new` with ``overwrite=True`` to deliberately overwrite an existing file.) :exc:`OSError`: If the mode is ``r`` or ``r+`` and the file does not exist. Warns: RuntimeWarning: If the file appears to be a valid MRC file but the data block is longer than expected from the dimensions in the header. RuntimeWarning: If the file is not a valid MRC file and ``permissive`` is :data:`True`. RuntimeWarning: If the header's ``exttyp`` field is set to a known value but the extended header's size is not a multiple of the number of bytes in the corresponding dtype. """ NewMrc = MrcFile if os.path.exists(name): with io.open(name, 'rb') as f: start = f.read(MAP_ID_OFFSET_BYTES + len(MAP_ID)) # Check for map ID string to avoid trying to decompress normal files # where the nx value happens to include the magic number for a # compressed format. (This still risks failing to correctly decompress # compressed files which happen to have 'MAP ' at position 208, but # that is less likely and if it does occur, the CompressedMrcFile # class can always be used directly instead.) if start[-len(MAP_ID):] != MAP_ID: if start[:2] == b'\x1f\x8b': NewMrc = GzipMrcFile elif start[:2] == b'BZ': NewMrc = Bzip2MrcFile return NewMrc(name, mode=mode, permissive=permissive, header_only=header_only) def open_async(name, mode='r', permissive=False): """Open an MRC file asynchronously in a separate thread. This allows a file to be opened in the background while the main thread continues with other work. This can be a good way to improve performance if the main thread is busy with intensive computation, but will be less effective if the main thread is itself busy with disk I/O. Multiple files can be opened in the background simultaneously. However, this implementation is relatively crude; each call to this function will start a new thread and immediately use it to start opening a file. If you try to open many large files at the same time, performance will decrease as all of the threads attempt to access the disk at once. You'll also risk running out of memory to store the data from all the files. This function returns a :class:`~mrcfile.future_mrcfile.FutureMrcFile` object, which deliberately mimics the API of the :class:`~concurrent.futures.Future` object from Python 3's :mod:`concurrent.futures` module. (Future versions of this library might return genuine :class:`~concurrent.futures.Future` objects instead.) To get the real :class:`~mrcfile.mrcfile.MrcFile` object from a :class:`~mrcfile.future_mrcfile.FutureMrcFile`, call :meth:`~mrcfile.future_mrcfile.FutureMrcFile.result`. This will block until the file has been read and the :class:`~mrcfile.mrcfile.MrcFile` object is ready. To check if the :class:`~mrcfile.mrcfile.MrcFile` is ready without blocking, call :meth:`~mrcfile.future_mrcfile.FutureMrcFile.running` or :meth:`~mrcfile.future_mrcfile.FutureMrcFile.done`. Args: name: The file name to open. mode: The file mode (one of ``r``, ``r+`` or ``w+``). permissive: Read the file in permissive mode. The default is :data:`False`. Returns: A :class:`~mrcfile.future_mrcfile.FutureMrcFile` object. """ return FutureMrcFile(open, (name,), dict(mode=mode, permissive=permissive)) def mmap(name, mode='r', permissive=False): """Open a memory-mapped MRC file. This allows much faster opening of large files, because the data is only accessed on disk when a slice is read or written from the data array. See the :class:`~mrcfile.mrcmemmap.MrcMemmap` class documentation for more information. Because the memory-mapped data array accesses the disk directly, compressed files cannot be opened with this function. In all other ways, :func:`mmap` behaves in exactly the same way as :func:`open`. The :class:`~mrcfile.mrcmemmap.MrcMemmap` object returned by this function can be used in exactly the same way as a normal :class:`~mrcfile.mrcfile.MrcFile` object. Args: name: The file name to open. mode: The file mode (one of ``r``, ``r+`` or ``w+``). permissive: Read the file in permissive mode. The default is :data:`False`. Returns: An :class:`~mrcfile.mrcmemmap.MrcMemmap` object. """ return MrcMemmap(name, mode=mode, permissive=permissive) def new_mmap(name, shape, mrc_mode=0, fill=None, overwrite=False): """Create a new, empty memory-mapped MRC file. This function is useful for creating very large files. The initial contents of the data array can be set with the ``fill`` parameter if needed, but be aware that filling a large array can take a long time. If ``fill`` is not set, the new data array's contents are unspecified and system-dependent. (Some systems fill a new empty mmap with zeros, others fill it with the bytes from the disk at the newly-mapped location.) If you are definitely going to fill the entire array with new data anyway you can safely leave ``fill`` as :data:`None`, otherwise it is advised to use a sensible fill value (or ensure you are on a system that fills new mmaps with a reasonable default value). Args: name: The file name to use. shape: The shape of the data array to open, as a 2-, 3- or 4-tuple of ints. For example, ``(nz, ny, nx)`` for a new 3D volume, or ``(ny, nx)`` for a new 2D image. mrc_mode: The MRC mode to use for the new file. One of 0, 1, 2, 4 or 6, which correspond to numpy dtypes as follows: * mode 0 -> int8 * mode 1 -> int16 * mode 2 -> float32 * mode 4 -> complex64 * mode
*= stem.segL # Get the end point position end_co = stem.p.co.copy() stem.spline.bezier_points.add() newPoint = stem.spline.bezier_points[-1] (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType) newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax) # There are some cases where a point cannot have handles as VECTOR straight away, set these now. if numSplit != 0: tempPoint = stem.spline.bezier_points[-2] (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR') if len(stem.spline.bezier_points) == 2: tempPoint = stem.spline.bezier_points[0] (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR') # Update the last point in the spline to be the newly added one stem.updateEnd() #return splineList def genLeafMesh(leafScale,leafScaleX,loc,quat,index,downAngle,downAngleV,rotate,rotateV,oldRot,bend,leaves, leafShape): if leafShape == 'hex': verts = [Vector((0,0,0)),Vector((0.5,0,1/3)),Vector((0.5,0,2/3)),Vector((0,0,1)),Vector((-0.5,0,2/3)),Vector((-0.5,0,1/3))] edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,0],[0,3]] faces = [[0,1,2,3],[0,3,4,5]] elif leafShape == 'rect': verts = [Vector((1,0,0)),Vector((1,0,1)),Vector((-1,0,1)),Vector((-1,0,0))] edges = [[0,1],[1,2],[2,3],[3,0]] faces = [[0,1,2,3],] #faces = [[0,1,5],[1,2,4,5],[2,3,4]] vertsList = [] facesList = [] # If the special -ve flag is used we need a different rotation of the leaf geometry if leaves < 0: rotMat = Matrix.Rotation(oldRot,3,'Y') oldRot += rotate/(abs(leaves)-1) else: oldRot += rotate+uniform(-rotateV,rotateV) downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV,downAngleV),3,'X') rotMat = Matrix.Rotation(oldRot,3,'Z') normal = yAxis.copy() #dirVec = zAxis.copy() orientationVec = zAxis.copy() # If the bending of the leaves is used we need to rotated them differently if (bend != 0.0) and (leaves >= 0): # normal.rotate(downRotMat) # orientationVec.rotate(downRotMat) # # normal.rotate(rotMat) # orientationVec.rotate(rotMat) normal.rotate(quat) orientationVec.rotate(quat) thetaPos = atan2(loc.y,loc.x) thetaBend = thetaPos - atan2(normal.y,normal.x) rotateZ = Matrix.Rotation(bend*thetaBend,3,'Z') normal.rotate(rotateZ) orientationVec.rotate(rotateZ) phiBend = atan2((normal.xy).length,normal.z) orientation = atan2(orientationVec.y,orientationVec.x) rotateZOrien = Matrix.Rotation(orientation,3,'X') rotateX = Matrix.Rotation(bend*phiBend,3,'Z') rotateZOrien2 = Matrix.Rotation(-orientation,3,'X') # For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh for v in verts: v.z *= leafScale v.x *= leafScaleX*leafScale if leaves > 0: v.rotate(downRotMat) v.rotate(rotMat) v.rotate(quat) if (bend != 0.0) and (leaves > 0): # Correct the rotation v.rotate(rotateZ) v.rotate(rotateZOrien) v.rotate(rotateX) v.rotate(rotateZOrien2) #v.rotate(quat) for v in verts: v += loc vertsList.append([v.x,v.y,v.z]) for f in faces: facesList.append([f[0] + index,f[1] + index,f[2] + index,f[3] + index]) return vertsList,facesList,oldRot def addTree(props): global splitError #startTime = time.time() # Set the seed for repeatable results seed(props.seed)# # Set all other variables levels = props.levels# length = props.length# lengthV = props.lengthV# branches = props.branches# curveRes = props.curveRes# curve = toRad(props.curve)# curveV = toRad(props.curveV)# curveBack = toRad(props.curveBack)# baseSplits = props.baseSplits# segSplits = props.segSplits# splitAngle = toRad(props.splitAngle)# splitAngleV = toRad(props.splitAngleV)# scale = props.scale# scaleV = props.scaleV# attractUp = props.attractUp# shape = int(props.shape)# baseSize = props.baseSize ratio = props.ratio taper = props.taper# ratioPower = props.ratioPower# downAngle = toRad(props.downAngle)# downAngleV = toRad(props.downAngleV)# rotate = toRad(props.rotate)# rotateV = toRad(props.rotateV)# scale0 = props.scale0# scaleV0 = props.scaleV0# prune = props.prune# pruneWidth = props.pruneWidth# pruneWidthPeak = props.pruneWidthPeak# prunePowerLow = props.prunePowerLow# prunePowerHigh = props.prunePowerHigh# pruneRatio = props.pruneRatio# leafScale = props.leafScale# leafScaleX = props.leafScaleX# leafShape = props.leafShape bend = props.bend# leafDist = int(props.leafDist)# bevelRes = props.bevelRes# resU = props.resU# useArm = props.useArm frameRate = props.frameRate windSpeed = props.windSpeed windGust = props.windGust armAnim = props.armAnim leafObj = None # Some effects can be turned ON and OFF, the necessary variables are changed here if not props.bevel: bevelDepth = 0.0 else: bevelDepth = 1.0 if not props.showLeaves: leaves = 0 else: leaves = props.leaves if props.handleType == '0': handles = 'AUTO' else: handles = 'VECTOR' for ob in bpy.data.objects: ob.select = False childP = [] stemList = [] # Initialise the tree object and curve and adjust the settings cu = bpy.data.curves.new('tree','CURVE') treeOb = bpy.data.objects.new('tree',cu) bpy.context.scene.objects.link(treeOb) cu.dimensions = '3D' cu.fill_mode = 'FULL' cu.bevel_depth = bevelDepth cu.bevel_resolution = bevelRes # Fix the scale of the tree now scaleVal = scale + uniform(-scaleV,scaleV) # If pruning is turned on we need to draw the pruning envelope if prune: enHandle = 'VECTOR' enNum = 128 enCu = bpy.data.curves.new('envelope','CURVE') enOb = bpy.data.objects.new('envelope',enCu) enOb.parent = treeOb bpy.context.scene.objects.link(enOb) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0,0,scaleVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) # Set the coordinates by varying the z value, envelope will be aligned to the x-axis for c in range(enNum): newSpline.bezier_points.add() newPoint = newSpline.bezier_points[-1] ratioVal = (c+1)/(enNum) zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal newPoint.co = Vector((scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),0,zVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0,0,scaleVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) # Create a second envelope but this time on the y-axis for c in range(enNum): newSpline.bezier_points.add() newPoint = newSpline.bezier_points[-1] ratioVal = (c+1)/(enNum) zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal newPoint.co = Vector((0,scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),zVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) leafVerts = [] leafFaces = [] levelCount = [] splineToBone = deque(['']) addsplinetobone = splineToBone.append # Each of the levels needed by the user we grow all the splines for n in range(levels): storeN = n stemList = deque() addstem = stemList.append # If n is used as an index to access parameters for the tree it must be at most 3 or it will reference outside the array index n = min(3,n) vertAtt = attractUp splitError = 0.0 # If this is the first level of growth (the trunk) then we need some special work to begin the tree if n == 0: vertAtt = 0.0 newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0,0,0)) newPoint.handle_right = Vector((0,0,1)) newPoint.handle_left = Vector((0,0,-1)) #(newPoint.handle_right_type,newPoint.handle_left_type) = ('VECTOR','VECTOR') branchL = (scaleVal)*(length[0] + uniform(-lengthV[0],lengthV[0])) childStems = branches[1] startRad = branchL*ratio*(scale0 + uniform(-scaleV0,scaleV0)) endRad = startRad*(1 - taper[0]) newPoint.radius = startRad addstem(stemSpline(newSpline,curve[0]/curveRes[0],curveV[0]/curveRes[0],0,curveRes[0],branchL/curveRes[0],childStems,startRad,endRad,0)) # If this isn't the trunk then we may have multiple stem to intialise else: # Store the old rotation to allow new stems to be rotated away from the previous one. oldRotate = 0 # For each of the points defined in the list of stem starting points we need to grow a stem. for p in childP: # Add a spline and set the coordinate of the first point. newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = p.co tempPos = zAxis.copy() # If the -ve flag for downAngle is used we need a special formula to find it if downAngleV[n] < 0.0: downV = downAngleV[n]*(1 - 2*shapeRatio(0,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal))) random() # Otherwise just find a random value else: downV = uniform(-downAngleV[n],downAngleV[n]) downRotMat = Matrix.Rotation(downAngle[n]+downV,3,'X') tempPos.rotate(downRotMat) # If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction. if rotate[n] < 0.0: oldRotate = -copysign(rotate[n] + uniform(-rotateV[n],rotateV[n]),oldRotate) # Otherwise just generate a random number in the specified range else: oldRotate += rotate[n]+uniform(-rotateV[n],rotateV[n]) # Rotate the direction of growth and set the new point coordinates rotMat = Matrix.Rotation(oldRotate,3,'Z') tempPos.rotate(rotMat) tempPos.rotate(p.quat) newPoint.handle_right = p.co + tempPos # If this is the first level of branching then upward attraction has no effect and a special formula is used to find branch length and the number of child stems if n == 1: vertAtt = 0.0 lMax = length[1] + uniform(-lengthV[1],lengthV[1]) branchL = p.lengthPar*lMax*shapeRatio(shape,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal)) childStems = branches[2]*(0.2 + 0.8*(branchL/p.lengthPar)/lMax) elif storeN <= levels - 2: branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset) childStems = branches[min(3,n+1)]*(1.0 - 0.5*p.offset/p.lengthPar) # If this is the last level before leaves then we need to generate the child points differently else: branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset) if leaves < 0: childStems = False else: childStems = leaves*shapeRatio(leafDist,p.offset/p.lengthPar) # Determine the starting and ending radii of the stem using the tapering of the stem startRad = min(p.radiusPar[0]*((branchL/p.lengthPar)**ratioPower), p.radiusPar[1]) endRad = startRad*(1 - taper[n]) newPoint.radius = startRad # If curveBack is used then the curviness of the stem is different for the first half if curveBack[n] == 0: curveVal = curve[n]/curveRes[n] else: curveVal = 2*curve[n]/curveRes[n] # Add the new stem to list of stems to grow and define which bone it will be parented to addstem(stemSpline(newSpline,curveVal,curveV[n]/curveRes[n],0,curveRes[n],branchL/curveRes[n],childStems,startRad,endRad,len(cu.splines)-1)) addsplinetobone(p.parBone) childP = [] # Now grow each of the stems in the list of those to be extended for st in stemList: # When using pruning, we need to ensure that the random effects will be the same for each
<reponame>Xarthisius/yt import abc from functools import wraps import numpy as np from yt.config import ytcfg from yt.data_objects.image_array import ImageArray from yt.funcs import ensure_numpy_array, is_sequence, mylog from yt.geometry.grid_geometry_handler import GridIndex from yt.geometry.oct_geometry_handler import OctreeIndex from yt.utilities.amr_kdtree.api import AMRKDTree from yt.utilities.lib.bounding_volume_hierarchy import BVH from yt.utilities.lib.misc_utilities import zlines, zpoints from yt.utilities.lib.octree_raytracing import OctreeRayTracing from yt.utilities.lib.partitioned_grid import PartitionedGrid from yt.utilities.on_demand_imports import NotAModule from yt.utilities.parallel_tools.parallel_analysis_interface import ( ParallelAnalysisInterface, ) from yt.visualization.image_writer import apply_colormap from .transfer_function_helper import TransferFunctionHelper from .transfer_functions import ( ColorTransferFunction, ProjectionTransferFunction, TransferFunction, ) from .utils import ( data_source_or_all, get_corners, new_interpolated_projection_sampler, new_mesh_sampler, new_projection_sampler, new_volume_render_sampler, ) from .zbuffer_array import ZBuffer try: from yt.utilities.lib.embree_mesh import mesh_traversal # Catch ValueError in case size of objects in Cython change except (ImportError, ValueError): mesh_traversal = NotAModule("pyembree") ytcfg["yt", "ray_tracing_engine"] = "yt" try: from yt.utilities.lib.embree_mesh import mesh_construction # Catch ValueError in case size of objects in Cython change except (ImportError, ValueError): mesh_construction = NotAModule("pyembree") ytcfg["yt", "ray_tracing_engine"] = "yt" def invalidate_volume(f): @wraps(f) def wrapper(*args, **kwargs): ret = f(*args, **kwargs) obj = args[0] if isinstance(obj._transfer_function, ProjectionTransferFunction): obj.sampler_type = "projection" obj._log_field = False obj._use_ghost_zones = False del obj.volume obj._volume_valid = False return ret return wrapper def validate_volume(f): @wraps(f) def wrapper(*args, **kwargs): obj = args[0] fields = [obj.field] log_fields = [obj.log_field] if obj.weight_field is not None: fields.append(obj.weight_field) log_fields.append(obj.log_field) if not obj._volume_valid: obj.volume.set_fields( fields, log_fields, no_ghost=(not obj.use_ghost_zones) ) obj._volume_valid = True return f(*args, **kwargs) return wrapper class RenderSource(ParallelAnalysisInterface): """Base Class for Render Sources. Will be inherited for volumes, streamlines, etc. """ volume_method = None def __init__(self): super().__init__() self.opaque = False self.zbuffer = None @abc.abstractmethod def render(self, camera, zbuffer=None): pass @abc.abstractmethod def _validate(self): pass class OpaqueSource(RenderSource): """A base class for opaque render sources. Will be inherited from for LineSources, BoxSources, etc. """ def __init__(self): super().__init__() self.opaque = True def set_zbuffer(self, zbuffer): self.zbuffer = zbuffer def create_volume_source(data_source, field): data_source = data_source_or_all(data_source) ds = data_source.ds index_class = ds.index.__class__ if issubclass(index_class, GridIndex): return KDTreeVolumeSource(data_source, field) elif issubclass(index_class, OctreeIndex): return OctreeVolumeSource(data_source, field) else: raise NotImplementedError class VolumeSource(RenderSource, abc.ABC): """A class for rendering data from a volumetric data source Examples of such sources include a sphere, cylinder, or the entire computational domain. A :class:`VolumeSource` provides the framework to decompose an arbitrary yt data source into bricks that can be traversed and volume rendered. Parameters ---------- data_source: :class:`AMR3DData` or :class:`Dataset`, optional This is the source to be rendered, which can be any arbitrary yt data object or dataset. field : string The name of the field to be rendered. Examples -------- The easiest way to make a VolumeSource is to use the volume_render function, so that the VolumeSource gets created automatically. This example shows how to do this and then access the resulting source: >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> im, sc = yt.volume_render(ds) >>> volume_source = sc.get_source(0) You can also create VolumeSource instances by hand and add them to Scenes. This example manually creates a VolumeSource, adds it to a scene, sets the camera, and renders an image. >>> import yt >>> from yt.visualization.volume_rendering.api import ( ... Camera, Scene, create_volume_source) >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> sc = Scene() >>> source = create_volume_source(ds.all_data(), "density") >>> sc.add_source(source) >>> sc.add_camera() >>> im = sc.render() """ _image = None data_source = None volume_method = None def __init__(self, data_source, field): r"""Initialize a new volumetric source for rendering.""" super().__init__() self.data_source = data_source_or_all(data_source) field = self.data_source._determine_fields(field)[0] self.current_image = None self.check_nans = False self.num_threads = 0 self.num_samples = 10 self.sampler_type = "volume-render" self._volume_valid = False # these are caches for properties, defined below self._volume = None self._transfer_function = None self._field = field self._log_field = self.data_source.ds.field_info[field].take_log self._use_ghost_zones = False self._weight_field = None self.tfh = TransferFunctionHelper(self.data_source.pf) self.tfh.set_field(self.field) @property def transfer_function(self): """The transfer function associated with this VolumeSource""" if self._transfer_function is not None: return self._transfer_function if self.tfh.tf is not None: self._transfer_function = self.tfh.tf return self._transfer_function mylog.info("Creating transfer function") self.tfh.set_field(self.field) self.tfh.set_log(self.log_field) self.tfh.build_transfer_function() self.tfh.setup_default() self._transfer_function = self.tfh.tf return self._transfer_function @transfer_function.setter def transfer_function(self, value): self.tfh.tf = None valid_types = ( TransferFunction, ColorTransferFunction, ProjectionTransferFunction, type(None), ) if not isinstance(value, valid_types): raise RuntimeError( "transfer_function not a valid type, " "received object of type %s" % type(value) ) if isinstance(value, ProjectionTransferFunction): self.sampler_type = "projection" if self._volume is not None: fields = [self.field] if self.weight_field is not None: fields.append(self.weight_field) self._volume_valid = False self._transfer_function = value @property def volume(self): """The abstract volume associated with this VolumeSource This object does the heavy lifting to access data in an efficient manner using a KDTree """ return self._get_volume() @volume.setter def volume(self, value): assert isinstance(value, AMRKDTree) del self._volume self._field = value.fields self._log_field = value.log_fields self._volume = value assert self._volume_valid @volume.deleter def volume(self): del self._volume self._volume = None @property def field(self): """The field to be rendered""" return self._field @field.setter @invalidate_volume def field(self, value): field = self.data_source._determine_fields(value) if len(field) > 1: raise RuntimeError( "VolumeSource.field can only be a single field but received " "multiple fields: %s" ) % field field = field[0] if self._field != field: log_field = self.data_source.ds.field_info[field].take_log self.tfh.bounds = None else: log_field = self._log_field self._log_field = log_field self._field = value self.transfer_function = None self.tfh.set_field(value) self.tfh.set_log(log_field) @property def log_field(self): """Whether or not the field rendering is computed in log space""" return self._log_field @log_field.setter @invalidate_volume def log_field(self, value): self.transfer_function = None self.tfh.set_log(value) self._log_field = value @property def use_ghost_zones(self): """Whether or not ghost zones are used to estimate vertex-centered data values at grid boundaries""" return self._use_ghost_zones @use_ghost_zones.setter @invalidate_volume def use_ghost_zones(self, value): self._use_ghost_zones = value @property def weight_field(self): """The weight field for the rendering Currently this is only used for off-axis projections. """ return self._weight_field @weight_field.setter @invalidate_volume def weight_field(self, value): self._weight_field = value def set_transfer_function(self, transfer_function): """Set transfer function for this source""" self.transfer_function = transfer_function return self def _validate(self): """Make sure that all dependencies have been met""" if self.data_source is None: raise RuntimeError("Data source not initialized") def set_volume(self, volume): """Associates an AMRKDTree with the VolumeSource""" self.volume = volume return self def set_field(self, field): """Set the source's field to render Parameters ---------- field: field name The field to render """ self.field = field return self def set_log(self, log_field): """Set whether the rendering of the source's field is done in log space Generally volume renderings of data whose values span a large dynamic range should be done on log space and volume renderings of data with small dynamic range should be done in linear space. Parameters ---------- log_field: boolean If True, the volume rendering will be done in log space, and if False will be done in linear space. """ self.log_field = log_field return self def set_weight_field(self, weight_field): """Set the source's weight field .. note:: This is currently only used for renderings using the ProjectionTransferFunction Parameters ---------- weight_field: field name The weight field to use in the rendering """ self.weight_field = weight_field return self def set_use_ghost_zones(self, use_ghost_zones): """Set whether or not interpolation at grid edges uses ghost zones Parameters ---------- use_ghost_zones: boolean If True, the AMRKDTree estimates vertex centered data using ghost zones, which can eliminate seams in the resulting volume rendering. Defaults to False for performance reasons. """ self.use_ghost_zones = use_ghost_zones return self def set_sampler(self, camera, interpolated=True): """Sets a volume render sampler The type of sampler is determined based on the ``sampler_type`` attribute of the VolumeSource. Currently the ``volume_render`` and ``projection`` sampler types are supported. The 'interpolated' argument is only meaningful for projections. If True, the data is first interpolated to the cell vertices, and then tri-linearly interpolated to the ray sampling positions. If False, then the cell-centered data is simply accumulated along the ray. Interpolation is always performed for volume renderings. """ if self.sampler_type == "volume-render": sampler = new_volume_render_sampler(camera, self) elif self.sampler_type == "projection" and interpolated: sampler = new_interpolated_projection_sampler(camera, self) elif self.sampler_type == "projection": sampler = new_projection_sampler(camera, self) else: NotImplementedError(f"{self.sampler_type} not implemented yet") self.sampler = sampler assert self.sampler is not None @abc.abstractmethod def _get_volume(self): """The abstract volume associated with this VolumeSource This object does the heavy lifting to access data in an efficient manner using a KDTree """ pass @abc.abstractmethod @validate_volume def render(self, camera, zbuffer=None): """Renders an image using the provided camera Parameters ---------- camera: :class:`yt.visualization.volume_rendering.camera.Camera` instance A volume rendering camera. Can be any type of camera. zbuffer: :class:`yt.visualization.volume_rendering.zbuffer_array.Zbuffer` instance # noqa:
import numpy as np from matplotlib.patches import Ellipse import matplotlib.pyplot as plt def make_fisher_matrix(params_dict, fisher_params, hpeak=0.0, obs='GS', sigma=None, sigma_mod_frac=0., k_min=None, k_max=None, z_min=None, z_max=None, axis_PS=None, cosmo_key='CDM', add_sigma_poisson=False): """ Make Fisher matrix and its inverse from global signal or powerspectra Parameters ---------- params_dict : dict Dictionary of parameter objects fisher_params : list List of parameter strings to use for Fisher matrix (these strings must be the keys to params_dict) hpeak : float TODO obs : str 'GS' - global signal, 'PS' - power spectrum sigma : None,array TODO sigma_mod_frac : float Fraction of modelling error in PS e.g. 0.2 adds a 20% error on the PS in quadrature to the 21cmsense error k_min : None,float Minimum k to use for PS [1/Mpc] k_max : None,float Maximum k to use for PS [1/Mpc] z_min : None,float Minimum redshift to use for PS z_max : None,float Maximum redshift to use for PS axis_PS : None,int TODO cosmo_key : None,str TODO add_sigma_poisson : bool TODO Return ------- Fisher matrix, Finv matrix """ Fij_matrix = np.zeros((len(fisher_params), len(fisher_params))) for i,p1 in enumerate(fisher_params): if i == 0 and obs == 'PS': k_where = np.arange(len(params_dict[p1].PS_err[0]['k'])) if k_min is not None and k_max is not None: # k range in 1/Mpc k_where = np.where((params_dict[p1].PS_err[0]['k'] <= k_max) & (params_dict[p1].PS_err[0]['k'] >= k_min))[0] z_where = np.arange(len(params_dict[p1].PS_z_HERA)) if z_min is not None and z_max is not None: z_where = np.where((params_dict[p1].PS_z_HERA <= z_max) & (params_dict[p1].PS_z_HERA >= z_min))[0] # Model error (e.g. 20%) sigma_mod = sigma_mod_frac * params_dict[p1].PS_fid[z_where][:,k_where] # if cosmo_key is None: # cosmo_key = params_dict[p1].deriv_PS.keys()[0] PS0 = params_dict[p1].deriv_PS[cosmo_key][z_where][:,k_where] # Poisson error if add_sigma_poisson: sigma_poisson = params_dict[p1].PS_err_Poisson[z_where][:,k_where] else: sigma_poisson = 0. # Fisher as a function of redshift or k? if axis_PS is not None: Fij_matrix = np.zeros((PS0.shape[axis_PS-1], len(fisher_params), len(fisher_params))) for j,p2 in enumerate(fisher_params): if obs == 'GS': if i==0 and j==0: print('GS shape:',params_dict[p1].deriv_GS[cosmo_key].shape) Fij_matrix[i,j] = Fij(params_dict[p1].deriv_GS[cosmo_key], params_dict[p2].deriv_GS[cosmo_key], sigma_obs=1, sigma_mod=0.) elif obs == 'PS': if sigma is None: sigma_PS = params_dict[p1].PS_sigma[z_where][:,k_where] else: sigma_PS = sigma if i==0 and j==0: print('PS shape:',params_dict[p1].deriv_PS[cosmo_key][z_where][:,k_where].shape) if axis_PS is not None: Fij_matrix[:,i,j] = Fij(params_dict[p1].deriv_PS[cosmo_key][z_where][:,k_where], params_dict[p2].deriv_PS[cosmo_key][z_where][:,k_where], sigma_obs=sigma_PS, sigma_mod=sigma_mod, sigma_poisson=sigma_poisson, axis=axis_PS) else: Fij_matrix[i,j] = Fij(params_dict[p1].deriv_PS[cosmo_key][z_where][:,k_where], params_dict[p2].deriv_PS[cosmo_key][z_where][:,k_where], sigma_obs=sigma_PS, sigma_mod=sigma_mod, sigma_poisson=sigma_poisson, axis=axis_PS) Finv = np.linalg.inv(Fij_matrix) return Fij_matrix, Finv def Fij(dObs_dtheta_i, dObs_dtheta_j, sigma_obs=1., sigma_mod=0., sigma_poisson=0., axis=None): """ Make fisher matrix elements Parameters ---------- dObs_dtheta_i : array_like derivative wrt theta_i dObs_dtheta_j : array_like derivative wrt theta_j sigma_obs : array_like measurement uncertainties in the observations sigma_mod : modelling uncertainty axis : None or int or tuple of ints, optional Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis. Return ------ F_ij fisher matrix element : float """ sigma_sq = sigma_obs**2. + sigma_mod**2. + sigma_poisson**2. return np.sum(dObs_dtheta_i * dObs_dtheta_j/sigma_sq, axis=axis) def fisher_correlations(Fij_matrix, fisher_params, plot=True): """ Fisher correlation matrix Parameters ---------- Fij_matrix : array_like Fisher information matrix fisher_params: list ordered list of parameters in the fisher matrix plot: bool heatmap plot Return ------ R_ij_fisher correlation matrix """ R_ij_fisher = np.zeros((len(fisher_params), len(fisher_params))) for i,p1 in enumerate(fisher_params): for j,p2 in enumerate(fisher_params): R_ij_fisher[i,j] = Fij_matrix[i,j]/np.sqrt(Fij_matrix[i,i]*Fij_matrix[j,j]) if plot: mask = np.triu(np.ones_like(R_ij_fisher, dtype=bool)) sns.heatmap(R_ij_fisher, mask=mask, cmap='RdBu', xticklabels=fisher_params,yticklabels=fisher_params, square=True, linewidths=.5, cbar_kws={"shrink": 1, 'label':'Correlation $r_{ij}$'}) return R_ij_fisher # TODO generalize alpha_std = {1.:1.52, 2.:2.48, 3.:3.44} def get_ellipse_params(i: int, j: int, cov: np.array): """ Extract ellipse parameters from covariance matrix. Based on Coe 2009 Parameters ---------- i : int index of parameter 1 j : int index of parameter 2 cov : array_like covariance matrix Return ------ ellipse a, b, angle in degrees """ # equations 1-4 Coe 2009. returns in degrees def length(cov, sign=1): """ Calculate length of the ellipse semi-major/semi-minor axes Aka the eigenvalues of the covariance matrix """ return np.sqrt(0.5*(cov[i,i] + cov[j,j]) + sign*np.sqrt(0.25*(cov[i,i] - cov[j,j])**2. + cov[i,j]*cov[j,i])) def angle_deg(cov): """ Calculate angle of ellipse in degrees (anti-clockwise from x axis) Gets the quadrant right! """ return np.degrees(0.5*np.arctan2(2*cov[i,j],(cov[i,i] - cov[j,j]))) a = length(cov, sign=1) b = length(cov, sign=-1) t = angle_deg(cov) return a, b, t def plot_ellipse(ax, par1, par2, parameters, fiducial, cov, resize_lims=True, positive_definite=[], N_std=[1.,2.,3.], plot_rescale = 4., kwargs=[{'ls': '-'}], color='tab:blue', default_kwargs={'lw':0}): """ Plot N-sigma ellipses, from Coe 2009. Parameters ---------- ax : matpotlib axis axis upon which the ellipses will be drawn par1 : string parameter 1 name par2 : string parameter 2 name parameters : list list of parameter names fiducial : array_like(ndim,) fiducial values of parameters cov : array_like(ndim,ndim,) covariance matrix color : string color to plot ellipse with positive_definite : list of string convenience input, parameter names passed in this list will be cut off at 0 in plots. Returns ------- list of float : sigma_x, sigma_y, sigma_xy """ # Find parameters in list params = parameters pind = dict(zip(params, list(range(len(params))))) i = pind[par1] j = pind[par2] sigma_x = np.sqrt(cov[i,i]) sigma_y = np.sqrt(cov[j,j]) sigma_xy = cov[i,j] a, b, theta = get_ellipse_params(i, j, cov=cov) # Plot for each N sigma for nn, N in enumerate(N_std): # use defaults and then override with other kwargs kwargs_temp = default_kwargs.copy() if len(kwargs) > 1: kwargs_temp.update(kwargs[nn]) else: kwargs_temp.update(kwargs[0]) kwargs_n = kwargs_temp e = Ellipse( xy=(fiducial[i], fiducial[j]), width=a * 2 * alpha_std[N], height=b * 2 * alpha_std[N], angle=theta, zorder=0, facecolor=color, **kwargs_n) ax.add_artist(e) e.set_clip_box(ax.bbox) # Rescale the axes a bit if resize_lims: if par1 in positive_definite: ax.set_xlim(max(0.0, -plot_rescale*sigma_x), fiducial[i]+plot_rescale*sigma_x) else: ax.set_xlim(fiducial[i] - plot_rescale * sigma_x, fiducial[i] + plot_rescale * sigma_x) if par2 in positive_definite: ax.set_ylim(max(0.0, fiducial[j] - plot_rescale * sigma_y), fiducial[j] + plot_rescale * sigma_y) else: ax.set_ylim(fiducial[j] - plot_rescale * sigma_y, fiducial[j] + plot_rescale * sigma_y) return sigma_x, sigma_y, sigma_xy def title_double_ellipses(axes, labels, chain=None, med=None, sigma=None, title_fontsize=18, title_pad=55, vspace=0., color='k' ): """ Plot title with parameter constraints from 2 covariance matrixes/chains Parameters ---------- axes : matpotlib axess axes upon which the titles will be added labels : list(ndim,) list of parameter names chain : array_like(ndim,), optional MCMC chain of parameters med : array_like(ndim,), optional list of median values sigma : array_like(ndim,) list of sigmas color : string color to plot ellipse with Returns ------- None """ if chain is not None: l, med, u = np.percentile(chain, [16,50,84], axis=0) q_m, q_p = med - l, u - med for i in range(len(labels)): if med[i] < 100: fmt = "{{0:{0}}}".format('.2f').format else: fmt = "{{0:{0}}}".format('.0f').format if chain is not None: CI = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" CI = CI.format(fmt(med[i]), fmt(q_m[i]), fmt(q_p[i])) else: CI = r"${{{0}}} \pm {{{1}}}$" CI = CI.format(fmt(med[i]), fmt(sigma[i])) axes[i,i].set_title(f'{labels[i]}', fontsize=title_fontsize, pad=title_pad) axes[i,i].annotate(f'{CI}', xy=(0.5,1.05+vspace), ha='center', xycoords='axes fraction', color=color) return def plot_triangle(params, fiducial, cov, fig=None, ax=None, positive_definite=[], labels=None, resize_lims=True, N_std=[1.,2.], plot_rescale = 4., ellipse_color='tab:blue', ellipse_kwargs=[{}, {'alpha':0.5}], title_fontsize=20, xlabel_kwargs={'labelpad': 5, 'fontsize':18}, ylabel_kwargs={'labelpad': 5, 'fontsize':18}, fig_kwargs={'figsize': (8, 8)}, plot1D_kwargs={'c':'black', 'lw':1}): """ Make a triangle plot from a covariance matrix Based on https://github.com/xzackli/fishchips-public/blob/master/fishchips/util.py Parameters ---------- params : list of strings List of parameter strings fiducial : array Numpy array consisting of where the centers of ellipses should be cov : numpy array Covariance matrix to plot fig : optional, matplotlib figure Pass this if you already have a figure ax : array containing matplotlib axes Pass this if you already have a set of matplotlib axes positive_definite: list List of parameter strings which are positive definite resize_lims : bool Resize ellipse limits to scale of the errors [default = True] N_std : list List of number of standard deviations to plot labels : list List of labels corresponding to each dimension of the covariance matrix ellipse_kwargs : dict Keyword arguments for passing to the 1-sigma Matplotlib Ellipse call. You can change this to change the color of your ellipses, for example. xlabel_kwargs : dict Keyword arguments which are passed to `ax.set_xlabel()`. You can change the color and font-size of the x-labels, for example. By default, it includes a little bit of label padding. ylabel_kwargs : dict Keyword arguments which are passed to `ax.set_ylabel()`. You can change the color and font-size of the y-labels, for example. By default, it includes a
# Copyright 2015 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Specialized tasks for NPIV World-Wide Port Names (WWPNs).""" from oslo_log import log as logging from pypowervm import const as c from pypowervm import exceptions as e from pypowervm.i18n import _ from pypowervm import util as u from pypowervm.utils import uuid from pypowervm.wrappers import base_partition as bp from pypowervm.wrappers import job as pvm_job from pypowervm.wrappers import managed_system as pvm_ms from pypowervm.wrappers import virtual_io_server as pvm_vios import six LOG = logging.getLogger(__name__) _ANY_WWPN = '-1' _FUSED_ANY_WWPN = '-1 -1' _GET_NEXT_WWPNS = 'GetNextWWPNs' def build_wwpn_pair(adapter, host_uuid, pair_count=1): """Builds a WWPN pair that can be used for a VirtualFCAdapter. Note: The API will only generate up to 8 pairs at a time. Any more will cause the API to raise an error. :param adapter: The adapter to talk over the API. :param host_uuid: The host system for the generation. :param pair_count: (Optional, Default: 1) The number of WWPN pairs to generate. Can not be more than 8 or else the API will fail. :return: Non-mutable WWPN Pairs (list) """ # Build up the job & invoke resp = adapter.read( pvm_ms.System.schema_type, root_id=host_uuid, suffix_type=c.SUFFIX_TYPE_DO, suffix_parm=_GET_NEXT_WWPNS) job_w = pvm_job.Job.wrap(resp) job_p = [job_w.create_job_parameter('numberPairsRequested', str(pair_count))] job_w.run_job(host_uuid, job_parms=job_p) # Get the job result, and parse the output. job_result = job_w.get_job_results_as_dict() return job_result['wwpnList'].split(',') def find_vios_for_wwpn(vios_wraps, p_port_wwpn): """Will find the VIOS that has a PhysFCPort for the p_port_wwpn. :param vios_wraps: A list or set of VIOS wrappers. :param p_port_wwpn: The physical port's WWPN. :return: The VIOS wrapper that contains a physical port with the WWPN. If there is not one, then None will be returned. :return: The port (which is a PhysFCPort wrapper) on the VIOS wrapper that represents the physical port. """ # Sanitize our input s_p_port_wwpn = u.sanitize_wwpn_for_api(p_port_wwpn) for vios_w in vios_wraps: for port in vios_w.pfc_ports: # No need to sanitize the API WWPN, it comes from the API. if u.sanitize_wwpn_for_api(port.wwpn) == s_p_port_wwpn: return vios_w, port return None, None def find_vios_for_vfc_wwpns(vios_wraps, vfc_wwpns): """Will find the VIOS that is hosting the vfc_wwpns. :param vios_wraps: A list or set of VIOS wrappers. :param vfc_wwpns: The list or set of virtual fibre channel WWPNs. :return: The VIOS wrapper that supports the vfc adapters. If there is not one, then None will be returned. :return: The VFCMapping on the VIOS that supports the client adapters. """ # Sanitize our input vfc_wwpns = {u.sanitize_wwpn_for_api(x) for x in vfc_wwpns} for vios_w in vios_wraps: for vfc_map in vios_w.vfc_mappings: # If the map has no client adapter...then move on if not vfc_map.client_adapter: continue # Maps without backing ports are effectively stale. We shouldn't # consider them. if vfc_map.backing_port is None: continue # If the WWPNs match, return it if vfc_wwpns == set(vfc_map.client_adapter.wwpns): return vios_w, vfc_map return None, None def intersect_wwpns(wwpn_set1, wwpn_set2): """Will return the intersection of WWPNs between the two sets. :param wwpn_set1: A list of WWPNs. :param wwpn_set2: A list of WWPNs. :return: The intersection of the WWPNs. Will maintain the WWPN format of wwpn_set1, but the comparison done will be agnostic of formats (ex. colons and/or upper/lower case). """ wwpn_set2 = [u.sanitize_wwpn_for_api(x) for x in wwpn_set2] return [y for y in wwpn_set1 if u.sanitize_wwpn_for_api(y) in wwpn_set2] def derive_base_npiv_map(vios_wraps, p_port_wwpns, v_port_count): """Builds a blank NPIV port mapping, without any known vFC WWPNs. This method is functionally similar to the derive_npiv_map. However, the derive_npiv_map method assumes knowledge of the Virtual Fibre Channel mappings beforehand. This method will generate a similar map, but when sent to the add_map method, that method will allow the API to generate the globally unique WWPNs rather than pre-seeding them. :param vios_wraps: A list of VIOS wrappers. Can be built using the extended attribute group (xag) of VIO_FMAP. :param p_port_wwpns: A list of the WWPNs (strings) that can be used to map the ports to. These WWPNs should reside on Physical FC Ports on the VIOS wrappers that were passed in. :param v_port_count: The number of virtual ports to create. :return: A list of sets. The format will be similar to that of the derive_npiv_map method. However, instead of a fused_vfc_port_wwpn a marker will be used to indicate that the API should generate the WWPN. """ # Double the count of the markers. Should result in -1 -1 as the WWPN. v_port_markers = [_ANY_WWPN] * v_port_count * 2 return derive_npiv_map(vios_wraps, p_port_wwpns, v_port_markers) def derive_npiv_map(vios_wraps, p_port_wwpns, v_port_wwpns, preserve=True): """This method will derive a NPIV map. A NPIV map is the linkage between an NPIV virtual FC Port and the backing physical port. Two v_port_wwpns get tied to an individual p_port_wwpn. A list of the 'mappings' will be returned. One per pair of v_port_wwpns. The mappings will first attempt to spread across the VIOSes. Within each VIOS, the port with the most available free NPIV ports will be selected. There are scenarios where ports on a single VIOS could be reused. - 4 v_port_wwpns, all p_port_wwpns reside on single VIOS - 8 v_port_wwpns, only two VIOSes - Etc... In these scenarios, the ports will be spread such that they're running across all the physical ports (that were passed in) on a given VIOS. In even rarer scenarios, the same physical port may be re-used if the v_port_wwpn pairs exceed the total number of p_port_wwpns. :param vios_wraps: A list of VIOS wrappers. Can be built using the extended attribute group (xag) of VIO_FMAP. :param p_port_wwpns: A list of the WWPNs (strings) that can be used to map the ports to. These WWPNs should reside on Physical FC Ports on the VIOS wrappers that were passed in. :param v_port_wwpns: A list of the virtual fibre channel port WWPNs. Must be an even number of ports. :param preserve: (Optional, Default=True) If True, existing mappings with matching virtual fibre channel ports are preserved. Else new mappings are generated. :return: A list of tuples representing both new and preserved mappings. The format will be: [ (p_port_wwpn1, fused_vfc_port_wwpn1), (p_port_wwpn2, fused_vfc_port_wwpn2), etc... ] A 'fused_vfc_port_wwpn' is simply taking two v_port_wwpns, sanitizing them and then putting them into a single string separated by a space. """ # Fuse all the v_port_wwpns together. fused_v_port_wwpns = _fuse_vfc_ports(v_port_wwpns) # Up front sanitization of all the p_port_wwpns p_port_wwpns = list(map(u.sanitize_wwpn_for_api, p_port_wwpns)) existing_maps = [] new_fused_wwpns = [] # Detect if any mappings already exist on the system. for fused_v_wwpn in fused_v_port_wwpns: # If the mapping already exists, then add it to the existing maps. vfc_map = has_client_wwpns(vios_wraps, fused_v_wwpn.split(" "))[1] # Preserve an existing mapping if preserve=True. Otherwise, the # backing_port may not be set and this is not an error condition if # the vfc mapping is getting rebuilt. if vfc_map is not None and preserve: # Maps without backing ports are effectively stale. We shouldn't # need to preserve them. if vfc_map.backing_port is not None: mapping = (vfc_map.backing_port.wwpn, fused_v_wwpn) existing_maps.append(mapping) else: new_fused_wwpns.append(fused_v_wwpn) LOG.debug("Add new map for client wwpns %s. Existing map=%s, " "preserve=%s", fused_v_wwpn, vfc_map, preserve) return _derive_npiv_map( vios_wraps, new_fused_wwpns, p_port_wwpns, existing_maps) def _derive_npiv_map(vios_wraps, new_fused_wwpns, p_port_wwpns, existing_maps): # Determine how many mappings are needed. needed_maps = len(new_fused_wwpns) newly_built_maps = [] next_vio_pos = 0 fuse_map_pos = 0 loops_since_last_add = 0 # This loop will continue through each VIOS (first set of load balancing # should be done by VIOS) and if there are ports on that VIOS, will add # them to the mapping. # # There is a rate limiter here though. If none of the VIOSes are servicing # the request, then this has potential to be infinite loop. The rate # limiter detects
UrlMapDefaultRouteActionRetryPolicyPerTryTimeout.to_proto( resource.per_try_timeout ) ) else: res.ClearField("per_try_timeout") return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionRetryPolicy( retry_condition=Primitive.from_proto(resource.retry_condition), num_retries=Primitive.from_proto(resource.num_retries), per_try_timeout=UrlMapDefaultRouteActionRetryPolicyPerTryTimeout.from_proto( resource.per_try_timeout ), ) class UrlMapDefaultRouteActionRetryPolicyArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapDefaultRouteActionRetryPolicy.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapDefaultRouteActionRetryPolicy.from_proto(i) for i in resources] class UrlMapDefaultRouteActionRetryPolicyPerTryTimeout(object): def __init__(self, seconds: int = None, nanos: int = None): self.seconds = seconds self.nanos = nanos @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionRetryPolicyPerTryTimeout() if Primitive.to_proto(resource.seconds): res.seconds = Primitive.to_proto(resource.seconds) if Primitive.to_proto(resource.nanos): res.nanos = Primitive.to_proto(resource.nanos) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionRetryPolicyPerTryTimeout( seconds=Primitive.from_proto(resource.seconds), nanos=Primitive.from_proto(resource.nanos), ) class UrlMapDefaultRouteActionRetryPolicyPerTryTimeoutArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionRetryPolicyPerTryTimeout.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionRetryPolicyPerTryTimeout.from_proto(i) for i in resources ] class UrlMapDefaultRouteActionRequestMirrorPolicy(object): def __init__(self, backend_service: str = None): self.backend_service = backend_service @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionRequestMirrorPolicy() if Primitive.to_proto(resource.backend_service): res.backend_service = Primitive.to_proto(resource.backend_service) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionRequestMirrorPolicy( backend_service=Primitive.from_proto(resource.backend_service), ) class UrlMapDefaultRouteActionRequestMirrorPolicyArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionRequestMirrorPolicy.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionRequestMirrorPolicy.from_proto(i) for i in resources ] class UrlMapDefaultRouteActionCorsPolicy(object): def __init__( self, allow_origin: list = None, allow_origin_regex: list = None, allow_method: list = None, allow_header: list = None, expose_header: list = None, max_age: int = None, allow_credentials: bool = None, disabled: bool = None, ): self.allow_origin = allow_origin self.allow_origin_regex = allow_origin_regex self.allow_method = allow_method self.allow_header = allow_header self.expose_header = expose_header self.max_age = max_age self.allow_credentials = allow_credentials self.disabled = disabled @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionCorsPolicy() if Primitive.to_proto(resource.allow_origin): res.allow_origin.extend(Primitive.to_proto(resource.allow_origin)) if Primitive.to_proto(resource.allow_origin_regex): res.allow_origin_regex.extend( Primitive.to_proto(resource.allow_origin_regex) ) if Primitive.to_proto(resource.allow_method): res.allow_method.extend(Primitive.to_proto(resource.allow_method)) if Primitive.to_proto(resource.allow_header): res.allow_header.extend(Primitive.to_proto(resource.allow_header)) if Primitive.to_proto(resource.expose_header): res.expose_header.extend(Primitive.to_proto(resource.expose_header)) if Primitive.to_proto(resource.max_age): res.max_age = Primitive.to_proto(resource.max_age) if Primitive.to_proto(resource.allow_credentials): res.allow_credentials = Primitive.to_proto(resource.allow_credentials) if Primitive.to_proto(resource.disabled): res.disabled = Primitive.to_proto(resource.disabled) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionCorsPolicy( allow_origin=Primitive.from_proto(resource.allow_origin), allow_origin_regex=Primitive.from_proto(resource.allow_origin_regex), allow_method=Primitive.from_proto(resource.allow_method), allow_header=Primitive.from_proto(resource.allow_header), expose_header=Primitive.from_proto(resource.expose_header), max_age=Primitive.from_proto(resource.max_age), allow_credentials=Primitive.from_proto(resource.allow_credentials), disabled=Primitive.from_proto(resource.disabled), ) class UrlMapDefaultRouteActionCorsPolicyArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapDefaultRouteActionCorsPolicy.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapDefaultRouteActionCorsPolicy.from_proto(i) for i in resources] class UrlMapDefaultRouteActionFaultInjectionPolicy(object): def __init__(self, delay: dict = None, abort: dict = None): self.delay = delay self.abort = abort @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionFaultInjectionPolicy() if UrlMapDefaultRouteActionFaultInjectionPolicyDelay.to_proto(resource.delay): res.delay.CopyFrom( UrlMapDefaultRouteActionFaultInjectionPolicyDelay.to_proto( resource.delay ) ) else: res.ClearField("delay") if UrlMapDefaultRouteActionFaultInjectionPolicyAbort.to_proto(resource.abort): res.abort.CopyFrom( UrlMapDefaultRouteActionFaultInjectionPolicyAbort.to_proto( resource.abort ) ) else: res.ClearField("abort") return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionFaultInjectionPolicy( delay=UrlMapDefaultRouteActionFaultInjectionPolicyDelay.from_proto( resource.delay ), abort=UrlMapDefaultRouteActionFaultInjectionPolicyAbort.from_proto( resource.abort ), ) class UrlMapDefaultRouteActionFaultInjectionPolicyArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionFaultInjectionPolicy.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionFaultInjectionPolicy.from_proto(i) for i in resources ] class UrlMapDefaultRouteActionFaultInjectionPolicyDelay(object): def __init__(self, fixed_delay: dict = None, percentage: float = None): self.fixed_delay = fixed_delay self.percentage = percentage @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionFaultInjectionPolicyDelay() if UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay.to_proto( resource.fixed_delay ): res.fixed_delay.CopyFrom( UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay.to_proto( resource.fixed_delay ) ) else: res.ClearField("fixed_delay") if Primitive.to_proto(resource.percentage): res.percentage = Primitive.to_proto(resource.percentage) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionFaultInjectionPolicyDelay( fixed_delay=UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay.from_proto( resource.fixed_delay ), percentage=Primitive.from_proto(resource.percentage), ) class UrlMapDefaultRouteActionFaultInjectionPolicyDelayArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionFaultInjectionPolicyDelay.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionFaultInjectionPolicyDelay.from_proto(i) for i in resources ] class UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay(object): def __init__(self, seconds: int = None, nanos: int = None): self.seconds = seconds self.nanos = nanos @classmethod def to_proto(self, resource): if not resource: return None res = ( url_map_pb2.ComputeBetaUrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay() ) if Primitive.to_proto(resource.seconds): res.seconds = Primitive.to_proto(resource.seconds) if Primitive.to_proto(resource.nanos): res.nanos = Primitive.to_proto(resource.nanos) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay( seconds=Primitive.from_proto(resource.seconds), nanos=Primitive.from_proto(resource.nanos), ) class UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelayArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionFaultInjectionPolicyDelayFixedDelay.from_proto(i) for i in resources ] class UrlMapDefaultRouteActionFaultInjectionPolicyAbort(object): def __init__(self, http_status: int = None, percentage: float = None): self.http_status = http_status self.percentage = percentage @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultRouteActionFaultInjectionPolicyAbort() if Primitive.to_proto(resource.http_status): res.http_status = Primitive.to_proto(resource.http_status) if Primitive.to_proto(resource.percentage): res.percentage = Primitive.to_proto(resource.percentage) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultRouteActionFaultInjectionPolicyAbort( http_status=Primitive.from_proto(resource.http_status), percentage=Primitive.from_proto(resource.percentage), ) class UrlMapDefaultRouteActionFaultInjectionPolicyAbortArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [ UrlMapDefaultRouteActionFaultInjectionPolicyAbort.to_proto(i) for i in resources ] @classmethod def from_proto(self, resources): return [ UrlMapDefaultRouteActionFaultInjectionPolicyAbort.from_proto(i) for i in resources ] class UrlMapDefaultUrlRedirect(object): def __init__( self, host_redirect: str = None, path_redirect: str = None, prefix_redirect: str = None, redirect_response_code: str = None, https_redirect: bool = None, strip_query: bool = None, ): self.host_redirect = host_redirect self.path_redirect = path_redirect self.prefix_redirect = prefix_redirect self.redirect_response_code = redirect_response_code self.https_redirect = https_redirect self.strip_query = strip_query @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapDefaultUrlRedirect() if Primitive.to_proto(resource.host_redirect): res.host_redirect = Primitive.to_proto(resource.host_redirect) if Primitive.to_proto(resource.path_redirect): res.path_redirect = Primitive.to_proto(resource.path_redirect) if Primitive.to_proto(resource.prefix_redirect): res.prefix_redirect = Primitive.to_proto(resource.prefix_redirect) if UrlMapDefaultUrlRedirectRedirectResponseCodeEnum.to_proto( resource.redirect_response_code ): res.redirect_response_code = UrlMapDefaultUrlRedirectRedirectResponseCodeEnum.to_proto( resource.redirect_response_code ) if Primitive.to_proto(resource.https_redirect): res.https_redirect = Primitive.to_proto(resource.https_redirect) if Primitive.to_proto(resource.strip_query): res.strip_query = Primitive.to_proto(resource.strip_query) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapDefaultUrlRedirect( host_redirect=Primitive.from_proto(resource.host_redirect), path_redirect=Primitive.from_proto(resource.path_redirect), prefix_redirect=Primitive.from_proto(resource.prefix_redirect), redirect_response_code=UrlMapDefaultUrlRedirectRedirectResponseCodeEnum.from_proto( resource.redirect_response_code ), https_redirect=Primitive.from_proto(resource.https_redirect), strip_query=Primitive.from_proto(resource.strip_query), ) class UrlMapDefaultUrlRedirectArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapDefaultUrlRedirect.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapDefaultUrlRedirect.from_proto(i) for i in resources] class UrlMapHostRule(object): def __init__( self, description: str = None, host: list = None, path_matcher: str = None ): self.description = description self.host = host self.path_matcher = path_matcher @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapHostRule() if Primitive.to_proto(resource.description): res.description = Primitive.to_proto(resource.description) if Primitive.to_proto(resource.host): res.host.extend(Primitive.to_proto(resource.host)) if Primitive.to_proto(resource.path_matcher): res.path_matcher = Primitive.to_proto(resource.path_matcher) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapHostRule( description=Primitive.from_proto(resource.description), host=Primitive.from_proto(resource.host), path_matcher=Primitive.from_proto(resource.path_matcher), ) class UrlMapHostRuleArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapHostRule.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapHostRule.from_proto(i) for i in resources] class UrlMapPathMatcher(object): def __init__( self, name: str = None, description: str = None, default_service: str = None, default_route_action: dict = None, default_url_redirect: dict = None, path_rule: list = None, route_rule: list = None, header_action: dict = None, ): self.name = name self.description = description self.default_service = default_service self.default_route_action = default_route_action self.default_url_redirect = default_url_redirect self.path_rule = path_rule self.route_rule = route_rule self.header_action = header_action @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapPathMatcher() if Primitive.to_proto(resource.name): res.name = Primitive.to_proto(resource.name) if Primitive.to_proto(resource.description): res.description = Primitive.to_proto(resource.description) if Primitive.to_proto(resource.default_service): res.default_service = Primitive.to_proto(resource.default_service) if UrlMapDefaultRouteAction.to_proto(resource.default_route_action): res.default_route_action.CopyFrom( UrlMapDefaultRouteAction.to_proto(resource.default_route_action) ) else: res.ClearField("default_route_action") if UrlMapPathMatcherDefaultUrlRedirect.to_proto(resource.default_url_redirect): res.default_url_redirect.CopyFrom( UrlMapPathMatcherDefaultUrlRedirect.to_proto( resource.default_url_redirect ) ) else: res.ClearField("default_url_redirect") if UrlMapPathMatcherPathRuleArray.to_proto(resource.path_rule): res.path_rule.extend( UrlMapPathMatcherPathRuleArray.to_proto(resource.path_rule) ) if UrlMapPathMatcherRouteRuleArray.to_proto(resource.route_rule): res.route_rule.extend( UrlMapPathMatcherRouteRuleArray.to_proto(resource.route_rule) ) if UrlMapHeaderAction.to_proto(resource.header_action): res.header_action.CopyFrom( UrlMapHeaderAction.to_proto(resource.header_action) ) else: res.ClearField("header_action") return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapPathMatcher( name=Primitive.from_proto(resource.name), description=Primitive.from_proto(resource.description), default_service=Primitive.from_proto(resource.default_service), default_route_action=UrlMapDefaultRouteAction.from_proto( resource.default_route_action ), default_url_redirect=UrlMapPathMatcherDefaultUrlRedirect.from_proto( resource.default_url_redirect ), path_rule=UrlMapPathMatcherPathRuleArray.from_proto(resource.path_rule), route_rule=UrlMapPathMatcherRouteRuleArray.from_proto(resource.route_rule), header_action=UrlMapHeaderAction.from_proto(resource.header_action), ) class UrlMapPathMatcherArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapPathMatcher.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapPathMatcher.from_proto(i) for i in resources] class UrlMapPathMatcherDefaultUrlRedirect(object): def __init__( self, host_redirect: str = None, path_redirect: str = None, prefix_redirect: str = None, redirect_response_code: str = None, https_redirect: bool = None, strip_query: bool = None, ): self.host_redirect = host_redirect self.path_redirect = path_redirect self.prefix_redirect = prefix_redirect self.redirect_response_code = redirect_response_code self.https_redirect = https_redirect self.strip_query = strip_query @classmethod def to_proto(self, resource): if not resource: return None res = url_map_pb2.ComputeBetaUrlMapPathMatcherDefaultUrlRedirect() if Primitive.to_proto(resource.host_redirect): res.host_redirect = Primitive.to_proto(resource.host_redirect) if Primitive.to_proto(resource.path_redirect): res.path_redirect = Primitive.to_proto(resource.path_redirect) if Primitive.to_proto(resource.prefix_redirect): res.prefix_redirect = Primitive.to_proto(resource.prefix_redirect) if UrlMapPathMatcherDefaultUrlRedirectRedirectResponseCodeEnum.to_proto( resource.redirect_response_code ): res.redirect_response_code = UrlMapPathMatcherDefaultUrlRedirectRedirectResponseCodeEnum.to_proto( resource.redirect_response_code ) if Primitive.to_proto(resource.https_redirect): res.https_redirect = Primitive.to_proto(resource.https_redirect) if Primitive.to_proto(resource.strip_query): res.strip_query = Primitive.to_proto(resource.strip_query) return res @classmethod def from_proto(self, resource): if not resource: return None return UrlMapPathMatcherDefaultUrlRedirect( host_redirect=Primitive.from_proto(resource.host_redirect), path_redirect=Primitive.from_proto(resource.path_redirect), prefix_redirect=Primitive.from_proto(resource.prefix_redirect), redirect_response_code=UrlMapPathMatcherDefaultUrlRedirectRedirectResponseCodeEnum.from_proto( resource.redirect_response_code ), https_redirect=Primitive.from_proto(resource.https_redirect), strip_query=Primitive.from_proto(resource.strip_query), ) class UrlMapPathMatcherDefaultUrlRedirectArray(object): @classmethod def to_proto(self, resources): if not resources: return resources return [UrlMapPathMatcherDefaultUrlRedirect.to_proto(i) for i in resources] @classmethod def from_proto(self, resources): return [UrlMapPathMatcherDefaultUrlRedirect.from_proto(i) for i in resources] class UrlMapPathMatcherPathRule(object): def __init__( self, backend_service: str = None,
import numpy as np import os from numba import jit fit_arg,blr,ns=False,0.1,'all' log_path=os.path.join('./logs/avion/vol1/log_real_processed.csv') # les booleans qui déterminent plusieurs comportements, voir coms fit_on_v=fit_arg #est ce qu'on fit sur la vitesse prédite ou sur l'acc used_logged_v_in_model=not fit_arg bo=False # si on utilise l'optimizer scipy, on passe 'scipy' en argument # sinon le learning rate de la descente de gradient est base_lr base_lr=1.0 if blr=="scipy" else blr fit_strategy="scipy" if blr=="scipy" else "custom_gradient" # si wind_signal, on considère la valeur du vent à chaque instant # est un paramètre d'optimisation # sinon, le vent est considéré comme une constante wind_signal=False assume_nul_wind=False # if true, le signal de vent constant vaut zéro nsecs=ns # nsecs désigne la taille du batch en secondes # n_epochs=20 #le nombre d'epochs # log_name désigne le nom des fichiers que l'on enregistrera # on customisera chaque fichier avec le numero de l'epoch et la timestamp # log_name="3_SEPTEMBRE_fit_v_%s_lr_%s_ns_%s"%(str(fit_on_v),str(base_lr) if blr!="scipy" else 'scipy',str(ns)) # CI DESSOUS LES PARAMETRES PROPRES AU MODELE # Ci dessous, on décide quels paramètres on souhaite identifier # id_mass=False # id_wind=not assume_nul_wind train_proportion=1.0 #proportion data train vs validation # log_path=os.path.join('./logs/avion/vol1/log_real_processed.csv') # save_dir_name="results" # Paramètres utilitaires mass=8.5 g=np.array([0,0,9.81]) Aire_1,Aire_2,Aire_3,Aire_4,Aire_5 = 0.62*0.262* 1.292 * 0.5,\ 0.62*0.262* 1.292 * 0.5, \ 0.34*0.01* 1.292 * 0.5,\ 0.34*0.1* 1.292 * 0.5, \ 1.08*0.31* 1.292 * 0.5 Aire_list = [Aire_1,Aire_2,Aire_3,Aire_4,Aire_5] cp_1,cp_2,cp_3,cp_4,cp_5 = np.array([-0.013,0.475,-0.040], dtype=float).flatten(), \ np.array([-0.013,-0.475,-0.040], dtype=float).flatten(), \ np.array([-1.006,0.85,-0.134], dtype=float).flatten(),\ np.array([-1.006,-0.85,-0.134], dtype=float).flatten(),\ np.array([0.021,0,-0.064], dtype=float).flatten() cp_list=[cp_1,cp_2,cp_3,cp_4,cp_5] Area=np.pi*(11.0e-02)**2 r0=11e-02 rho0=1.204 kv_motor=800.0 pwmmin=1075.0 pwmmax=1950.0 U_batt=16.8 vwi0=0.0 vwj0=0.0 vwk0=0.0 alpha_0=0.07 alpha_s = 0.3391428111 delta_s = 15.0*np.pi/180 cd0sa_0 = 0.9 cd0fp_0 = 0.010 cd1sa_0 = 2 cl1sa_0 = 5 cd1fp_0 = 2.5 coeff_drag_shift_0= 0.5 coeff_lift_shift_0= 0.05 coeff_lift_gain_0= 2.5 C_t = 1.1e-4 C_q = 1e-8 C_h = 1e-4 # alpha_0= 0* 0.07 # alpha_s = 0.3391428111 # delta_s = 15.0*np.pi/180 # cd0sa_0 = 0* 0.010 # cd0fp_0 = 0* 0.010 # cd1sa_0 = 0* 4.55 # cl1sa_0 = 0* 5 # cd1fp_0 = 0* 2.5 # coeff_drag_shift_0= 0*0.5 # coeff_lift_shift_0= 0*0.05 # coeff_lift_gain_0= 0*2.5 # C_t = 1.1e-4 # C_q = 0*1e-8 # C_h = 0*1e-4 physical_params=[mass, Area, r0, rho0, kv_motor, pwmmin, pwmmax, U_batt, cd0sa_0, cd0fp_0, cd1sa_0, cl1sa_0 , cd1fp_0, coeff_drag_shift_0, coeff_lift_shift_0, coeff_lift_gain_0, vwi0, vwj0] # Bounds and scaling factors bounds={} bounds['m']=(0,np.inf) bounds['A']=(0,np.inf) bounds['r']=(0,np.inf) bounds['cd0sa']=(0,np.inf) bounds['cd0fp']=(-np.inf,np.inf) bounds['cd1sa']=(-np.inf,np.inf) bounds['cl1sa']=(-np.inf,np.inf) bounds['cd1fp']=(-np.inf,np.inf) bounds['coeff_drag_shift']=(0,np.inf) bounds['coeff_lift_shift']=(0,np.inf) bounds['coeff_lift_gain']=(0,np.inf) bounds['vw_i']=(-15,15) bounds['vw_j']=(-15,15) "scaler corresponds roughly to the power of ten of the parameter" "it does not have to though, it may be used to improve the grad descent" # scalers={} # for i in bounds: # scalers[i]=1.0 # %% ####### Saving function # import json # import datetime # #generating a new log name if none is provided # if log_name=="": # # log_name=str(datetime.datetime.now().strftime("%d-%m-%Y_%H-%M-%S")) # # spath=os.path.join(os.getcwd(),save_dir_name,log_name) # #on enlève les logs avec le même nom # import shutil # try: # shutil.rmtree(spath) # except: # pass # os.makedirs(spath) # #on sauvegarde les paramètres de départ # with open(os.path.join(spath,'data.json'), 'w') as fp: # json.dump(metap, fp) # import pandas as pd # # la fonction saver va être utilisée souvent # def saver(name=None,save_path=os.path.join(os.getcwd(),"results_tests"),**kwargs): # dname=str(int(time.time())) if (name is None) else name # "le fonctionnement est simple:on prend tout ce qu'il y a dans **kwargs" # "et on le met dans un dictionnaire qu'on save dans un .json" # D={} # for i in kwargs: # if type(kwargs[i])==dict: # for j in kwargs[i]: # D[j]=kwargs[i][j] # else: # D[i]=kwargs[i].tolist() if isinstance(kwargs[i],np.ndarray) else kwargs[i] # with open(os.path.join(save_path,'%s.json'%(dname)), 'w') as fp: # json.dump(D, fp) # return 0 # %% ####### SYMPY PROBLEM " le but de cette partie est de génerer une fonction qui renvoie : " " new_acc,new_v,sqerr_a,sqerr_v,Ja.T,Jv.T , c'est à dire " " l'acc pred, la vitesse pred, l'erreur quad sur acc, l'erreur quad sur v" " la jacobienne de l'erreur quad sur l'acc et la vitesse " @jit(nogil=True) def Rotation(R,angle): c, s = np.cos(angle*np.pi/180), np.sin(angle*np.pi/180) r = np.array([[1,0, 0], [0,c, -s],[0,s, c]] , dtype=np.float) return R @ r #CI DESSOUS : on spécifie quelles variables sont les variables d'identif import dill model_func = dill.load(open('./.Funcs/model_func_'+str(used_logged_v_in_model)+"simple_"+str(bo),'rb'))[0] function_moteur_physique= dill.load(open('./.Funcs/model_func_'+str(used_logged_v_in_model)+"simple_"+str(bo),'rb'))[1] # CI DESSOUS : on spécifie quelles variables sont les variables d'identif import time t7=time.time() "cleansing memory" # très recommandé d'effacer les variables de sympy pour éviter les soucis # dans le restes des fonctions # del(dt,m,cost_scaler_a,cost_scaler_v, # vlog_i,vlog_j,vlog_k, # vpred_i,vpred_j,vpred_k, # alog_i,alog_j,alog_k, # vnext_i,vnext_j,vnext_k, # vw_i,vw_j, # kt, # b1, # c1,c2,c3, # ch1,ch2, # di,dj,dk, # rho,A,r,r1,r2,r3,r4,r5,r6,r7,r8,r9,R, # omega_1,omega_2,omega_3,omega_4,omega_5,omega_6, # omega_c1,omega_c2,omega_c3,omega_c4,omega_c5,omega_c6) "test " # %% ####### IMPORT DATA # a la fin de ce bloc, on obtient une liste de datasets, correspondant # aux batches. print("LOADING DATA...") import pandas as pd raw_data=pd.read_csv(log_path) print("PROCESSING DATA...") prep_data=raw_data.drop(columns=[i for i in raw_data.keys() if (("forces" in i ) or ('pos' in i) or ("joy" in i)) ]) prep_data=prep_data.drop(columns=[i for i in raw_data.keys() if (("level" in i ) or ('Unnamed' in i) or ("index" in i)) ]) # on choisit tmin et tmax selon quel log on utilise # if "vol12" in log_path: # tmin,tmax=(-1,1e10) # elif "vol1" in log_path: # tmin,tmax=(41,265) # elif "vol2" in log_path: # tmin,tmax=(10,140) # tmin=1 # tmax=500 # prep_data=prep_data[prep_data['t']>tmin] # prep_data=prep_data[prep_data['t']<tmax] prep_data=prep_data.reset_index() for i in range(3): prep_data['speed_pred[%i]'%(i)]=np.r_[prep_data['speed[%i]'%(i)].values[1:len(prep_data)],0] prep_data['dt']=np.r_[prep_data['t'].values[1:]-prep_data['t'].values[:-1],0] prep_data['t']-=prep_data['t'][0] prep_data=prep_data.drop(index=[0,len(prep_data)-1]) prep_data=prep_data.reset_index() data_prepared=prep_data[:len(prep_data)//50] data_prepared=prep_data def scale_to_01(df): return (df-df.min())/(df.max()-df.min()) for i in range(6): data_prepared['omega_c[%i]'%(i+1)]=scale_to_01(data_prepared['PWM_motor[%i]'%(i+1)])*925 "splitting the dataset into nsec" data_batches=[data_prepared] N_train_batches=1 N_val_batches=0 print("DATA PROCESS DONE") # print("Importing model func...") # %% ####### Identification Data Struct # On répartit les variables entre deux dicts: id_variables et non_id_variables # Cette étape est liée, par les booléens utilisés, à la premi_re étape non_id_variables={"m":mass, "A":Area, "r":r0, "rho":rho0, 'cd0sa':cd0sa_0, 'cd0fp':cd0fp_0, 'cd1sa':cd1sa_0, 'cl1sa':cl1sa_0, 'cd1fp':cd1fp_0, 'coeff_drag_shift':coeff_drag_shift_0, 'coeff_lift_shift':coeff_lift_shift_0, 'coeff_lift_gain':coeff_lift_gain_0, "vw_i":vwi0, "vw_j":vwj0, "vw_k":vwk0, "alpha_stall":alpha_s, "largeur_stall":delta_s, "Ct": C_t, "Cq": C_q, "Ch": C_h } id_variables={} for key_ in ('cd0sa','cd0fp', 'cd1sa','cl1sa','cd1fp', 'coeff_drag_shift','coeff_lift_shift', 'coeff_lift_gain'): id_variables[key_]=non_id_variables[key_] if wind_signal: id_variables['vw_i']=vwi0*np.zeros(len(data_prepared)) id_variables['vw_j']=vwj0*np.zeros(len(data_prepared)) "cleaning non_id_variables to avoid having variables in both dicts" rem=[] for i in non_id_variables.keys(): if i in id_variables.keys(): rem.append(i) for j in rem: del(non_id_variables[j]) # for i in id_variables.keys(): # id_variables[i]=id_variables[i]/scalers[i] # %% ####### MODEL function # ici, on définit les fonctions que l'on appellera dans la partie # optimisation. import transforms3d as tf3d # import copy @jit(nogil=True) def arg_wrapping(batch,id_variables,data_index,speed_pred_previous): "cette fonction sert à fabriquer, à partir des inputs, l'argument que " "l'on enverra en input à la fonction lambdifiée de la partie sympy " "batch est un dataframe" "id_variables sont les variables d'identification" "scalers sont les coefficients de mise à l'échelle" "data_index est un entier, qui sert à récupérer la bonne valeur " "dans le batch de données" "speed_pred_previous est la vitesse prédite précédente" "omegas_pred est la vitesse angulaire pred précédente,à partir de kt" i=data_index # cost_scaler_v=1.0 # cost_scaler_a=1.0 dt=min(batch['dt'][i],1e-2) vlog_i,vlog_j,vlog_k=batch['speed[0]'][i],batch['speed[1]'][i],batch['speed[2]'][i] v_log = np.array([[vlog_i], [vlog_j], [vlog_k]]) vpred_i,vpred_j,vpred_k=speed_pred_previous v_pred=np.array([[vpred_i], [vpred_j], [vpred_k]]) alog_i,alog_j,alog_k=batch['acc_ned_grad[0]'][i],batch['acc_ned_grad[1]'][i],batch['acc_ned_grad[2]'][i] alog=np.array([[alog_i], [alog_j], [alog_k]]) # vnext_i,vnext_j,vnext_k=batch['speed[0]'][i],batch['speed[1]'][i],batch['speed[2]'][i] m=non_id_variables['m'] if 'm' in non_id_variables else id_variables['m'] vw_i=non_id_variables['vw_i'] if 'vw_i' in non_id_variables else id_variables['vw_i'] vw_j=non_id_variables['vw_j'] if 'vw_j' in non_id_variables else id_variables['vw_j'] if wind_signal: vw_i,vw_j=vw_i[i],vw_j[i] v_W=np.array([[vw_i], [vw_j], [vwk0]]) Omega=np.zeros(3) cd0sa=non_id_variables['cd0sa'] if 'cd0sa' in non_id_variables else id_variables['cd0sa'] cd0fp=non_id_variables['cd0fp'] if 'cd0fp' in non_id_variables else id_variables['cd0fp'] cd1sa=non_id_variables['cd1sa'] if 'cd1sa' in non_id_variables else id_variables['cd1sa'] cl1sa=non_id_variables['cl1sa'] if 'cl1sa' in non_id_variables else id_variables['cl1sa'] cd1fp=non_id_variables['cd1fp'] if 'cd1fp' in non_id_variables else id_variables['cd1fp'] coeff_drag_shift=non_id_variables['coeff_drag_shift'] if 'coeff_drag_shift' in non_id_variables else id_variables['coeff_drag_shift'] coeff_lift_shift=non_id_variables['coeff_lift_shift'] if 'coeff_lift_shift' in non_id_variables else id_variables['coeff_lift_shift'] coeff_lift_gain=non_id_variables['coeff_lift_gain'] if 'coeff_lift_gain' in non_id_variables else id_variables['coeff_lift_gain'] R=tf3d.quaternions.quat2mat(np.array([batch['q[%i]'%(j)][i] for j in range(4)])) R_list =[R,R,Rotation(R,-45),Rotation(R,-135),R] "reverse mixing" pwm_null_angle=1527 RW_delta=batch['PWM_motor[1]'][i]-pwm_null_angle LW_delta=batch['PWM_motor[2]'][i]-pwm_null_angle RVT_delta=batch['PWM_motor[3]'][i]-pwm_null_angle LVT_delta=batch['PWM_motor[4]'][i]-pwm_null_angle delta0_list=np.array([RW_delta,-LW_delta,RVT_delta,-LVT_delta,0.0]) delta_pwm=500 delta0_list/=delta_pwm delta0_list=delta0_list*15.0/180.0*np.pi ## Commande entre -15:15 pour les 4 premier terme, le dernier terme vaut 0 (pour l'homogéinité des longueur) omega_rotor = batch['omega_c[5]'][i] ## Vitesse de rotation des helices (supposé les mêmes pour les deux moteurs) alpha_list=[0,0,0,0,0] for p, cp in enumerate(cp_list) : # Cette boucle calcul les coefs aéro pour chaque surface VelinLDPlane = function_moteur_physique[0](Omega, cp, v_pred.flatten(), v_W.flatten(), R_list[p].flatten()) dragDirection = function_moteur_physique[1](Omega, cp, v_pred.flatten(), v_W.flatten(), R_list[p].flatten()) liftDirection = function_moteur_physique[2](Omega, cp, v_pred.flatten(), v_W.flatten(), R_list[p].flatten()) alpha_list[p] = -function_moteur_physique[3](dragDirection, liftDirection, np.array([[1],[0],[0]]).flatten(), VelinLDPlane) X=(alog.flatten(),v_log.flatten(),dt, Aire_list, Omega.flatten(), R.flatten(), v_pred.flatten(), v_W.flatten(), cp_list, alpha_list, alpha_0, \ alpha_s, delta0_list.flatten(), delta_s, cl1sa, cd1fp, coeff_drag_shift, coeff_lift_shift, coeff_lift_gain,\ cd0fp, cd0sa, cd1sa, C_t, C_q, C_h, omega_rotor, g.flatten(), m) return X @jit(nogil=True) def pred_on_batch(batch,id_variables): "si n est la taille du batch" "cette fonction sert à appeler n fois la fonction lambdifiée" " de sympy " "on obtient n acc prédites, n vitesses prédites, n jacobiennes...." "batch est un dataframe" "id_variables sont les variables d'identification" "scalers sont les coefficients de mise à l'échelle" acc_pred=np.zeros((len(batch),3)) speed_pred=np.zeros((len(batch),3)) square_error_a=np.zeros((len(batch),1)) square_error_v=np.zeros((len(batch),1)) jac_error_a=np.zeros((len(batch),len(id_variables))) jac_error_v=np.zeros((len(batch),len(id_variables))) for i in batch.index: print("\r Pred on batch %i / %i "%(i,max(batch.index)), end='', flush=True) speed_pred_prev=speed_pred[i-1] if i>min(batch.index) else (batch['speed[0]'][i],batch['speed[1]'][i],batch['speed[2]'][i]) X=arg_wrapping(batch,id_variables,i,speed_pred_prev) Y=model_func(*X) # print(Y) acc_pred[i]=Y[:3].reshape(3,) speed_pred[i]=Y[3:6].reshape(3,) square_error_a[i]=Y[6:7].reshape(1,) square_error_v[i]=Y[7:8].reshape(1,) jac_error_a[i]=Y[8:8+len(id_variables)].reshape(len(id_variables),) jac_error_v[i]=Y[8+len(id_variables):8+2*len(id_variables)].reshape(len(id_variables),) return acc_pred,speed_pred,square_error_a,square_error_v,jac_error_a,jac_error_v # %% Gradient # import random def X_to_dict(X,base_dict=id_variables): "sert à transformer un vecteur en dictionnaire " out_dict={} index_j=0 for i,key in enumerate(base_dict.keys()): out_dict[key]=X[index_j:index_j+len(base_dict[key])] if isinstance(base_dict[key],np.ndarray) else X[index_j] index_j+=len(base_dict[key]) if isinstance(base_dict[key],np.ndarray) else 1 return out_dict def dict_to_X(input_dict): "sert à transformer un dictinonaire en vecteur " out=np.r_[tuple([np.array(input_dict[key]).flatten() for key in input_dict])]
<reponame>mightqxc/panda-atm<filename>pandaatm/atmbody/slow_task_analyzer.py import os import time import datetime import copy import json from pandacommon.pandalogger import logger_utils from pandaatm.atmconfig import atm_config from pandaatm.atmcore import core_utils from pandaatm.atmbody.agent_base import AgentBase from pandaatm.atmutils.slow_task_analyzer_utils import get_job_durations, get_jobs_time_consumption_statistics, bad_job_test_main base_logger = logger_utils.setup_logger('slow_task_analyzer') # agent class class SlowTaskAnalyzer(AgentBase): def __init__(self): super().__init__() # parameters self.sleepPeriod = 300 self.sinceHours = 336 self.taskDurationMaxHours = 168 self.taskSuccefulRunTimeMinPercent = 80 self.taskEachStatusMaxHours = 12 self.joblessIntervalMaxHours = 16 self.jobBadTimeMaxPercent = 10 self.jobMaxHoursMap = { 'finished': {'wait': 16, 'run': 96}, 'failed': {'wait': 16, 'run': 16}, 'cancelled': {'wait': 16, 'run': 16}, 'closed': {'wait': 12, 'run': 16}, } self.reportDir = '/tmp/slow_task_dumps' def _slow_task_attempts_display(self, ret_dict: dict) -> str : result_str_line_template = '{jediTaskID:>10} {attemptNr:>4} | {finalStatus:>10} {startTime:>20} {endTime:>20} {attemptDuration:>15} {successful_run_time_ratio:>6} ' result_str_list = [] result_str_list.append(result_str_line_template.format(jediTaskID='taskID', attemptNr='#N', finalStatus='status', startTime='startTime', endTime='endTime', attemptDuration='duration', successful_run_time_ratio='SRTR%')) for k in sorted(ret_dict): v = ret_dict[k] result_str_line = result_str_line_template.format( jediTaskID=k[0], attemptNr=k[1], finalStatus=v['finalStatus'], startTime=v['startTime'].strftime('%y-%m-%d %H:%M:%S'), endTime=v['endTime'].strftime('%y-%m-%d %H:%M:%S'), attemptDuration=core_utils.timedelta_parse_dict(v['attemptDuration'])['str_dcolon'], successful_run_time_ratio='{0:.2f}%'.format(v['jobs_time_consumption_stats_dict']['_successful_run_time_ratio']*100), ) result_str_list.append(result_str_line) return '\n'.join(result_str_list) def _get_job_attr_dict(self, jobspec): wait_duration, run_duration = get_job_durations(jobspec) diag_display_str_list = [] if jobspec.transExitCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('trans-{0}'.format(jobspec.transExitCode)) if jobspec.pilotErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('pilot-{0}: {1}'.format(jobspec.pilotErrorCode, jobspec.pilotErrorDiag)) if jobspec.exeErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('exe-{0}: {1}'.format(jobspec.exeErrorCode, jobspec.exeErrorDiag)) if jobspec.ddmErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('ddm-{0}: {1}'.format(jobspec.ddmErrorCode, jobspec.ddmErrorDiag)) if jobspec.brokerageErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('brokr-{0}: {1}'.format(jobspec.brokerageErrorCode, jobspec.brokerageErrorDiag)) if jobspec.jobDispatcherErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('jdisp-{0}: {1}'.format(jobspec.jobDispatcherErrorCode, jobspec.jobDispatcherErrorDiag)) if jobspec.taskBufferErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('tbuf-{0}: {1}'.format(jobspec.taskBufferErrorCode, jobspec.taskBufferErrorDiag)) if jobspec.supErrorCode not in (None, 0, 'NULL', '0'): diag_display_str_list.append('sup-{0}: {1}'.format(jobspec.supErrorCode, jobspec.supErrorDiag)) retDict = { 'PandaID': jobspec.PandaID, 'jobStatus': jobspec.jobStatus, 'priority': jobspec.currentPriority, 'waitDuration': wait_duration, 'runDuration': run_duration, 'errorInfo': '{0:>11} | {1:>24} | '.format(jobspec.jobStatus, jobspec.computingSite) + '; '.join(diag_display_str_list), } return retDict def _get_task_status_log(self, status_list): status_log_list = [] last_modification_time = None for i in range(len(status_list)): status, modificationTime = status_list[i] if i >= 1: last_duration = modificationTime - last_modification_time status_log_list[i-1]['duration'] = last_duration status_log_dict = { 'status': status, 'modificationTime': modificationTime, 'duration': datetime.timedelta(), } status_log_list.append(status_log_dict) last_modification_time = modificationTime return status_log_list def _search_long_status(self, status_log_list): long_status_log_list = [] for status_log_dict in status_log_list: if status_log_dict['status'] not in ('scouting', 'running', 'processing') \ and status_log_dict['duration'] > datetime.timedelta(hours=self.taskEachStatusMaxHours): long_status_log_list.append(status_log_dict) return long_status_log_list def _long_status_display(self, long_status_log_list) -> str: result_str_line_template = ' {status:>11} | {modificationTime:>17} | {duration:>15}' result_str_list = [] result_str_list.append(result_str_line_template.format( status='status', modificationTime='modificationTime', duration='duration', )) for status_log_dict in long_status_log_list: result_str_list.append(result_str_line_template.format( status=status_log_dict['status'], modificationTime=status_log_dict['modificationTime'].strftime('%y-%m-%d %H:%M:%S'), duration=core_utils.timedelta_parse_dict(status_log_dict['duration'])['str_dcolon'], )) result_str = '\n'.join(result_str_list) return result_str def _search_bad_intervals(self, jobspec_list, attempt_start): bad_interval_list = [] last_jobful_time = attempt_start last_job_pandaid = None for jobspec in sorted(jobspec_list, key=(lambda x: x.creationTime)): if jobspec.endTime <= last_jobful_time: continue if jobspec.creationTime <= last_jobful_time: # jobs duration overlap, good pass else: # jobless interval interval = jobspec.creationTime - last_jobful_time if interval > datetime.timedelta(hours=self.joblessIntervalMaxHours): bad_interval_dict = { 'duration': interval, 'lastJobPandaID': last_job_pandaid, 'lastJobEndTime': last_jobful_time, 'nextJobPandaID': jobspec.PandaID, 'nextJobCreationTime': jobspec.creationTime, } bad_interval_list.append(bad_interval_dict) last_jobful_time = jobspec.endTime last_job_pandaid = jobspec.PandaID return bad_interval_list def _bad_intervals_display(self, bad_interval_list) -> str: result_str_line_template = ' {lastJobPandaID:>20} , {lastJobEndTime_str:>17} | {nextJobPandaID:>20} , {nextJobCreationTime_str:>17} | {duration_str:>15}' result_str_list = [] result_str_list.append(result_str_line_template.format( lastJobPandaID='PreviousJob PanDAID', lastJobEndTime_str='Ended At', nextJobPandaID='FollowingJob PanDAID', nextJobCreationTime_str='Created At', duration_str='Duration', )) for gap in bad_interval_list: result_str_list.append(result_str_line_template.format( lastJobPandaID=gap['lastJobPandaID'], lastJobEndTime_str=gap['lastJobEndTime'].strftime('%y-%m-%d %H:%M:%S'), nextJobPandaID=gap['nextJobPandaID'], nextJobCreationTime_str=gap['nextJobCreationTime'].strftime('%y-%m-%d %H:%M:%S'), duration_str=core_utils.timedelta_parse_dict(gap['duration'])['str_dcolon'], )) result_str = '\n'.join(result_str_list) return result_str def _bad_job_time_consumed_set(self, task_attempt_duration, jobs_time_consumption_stats_dict): ret_msg_set = set() for status in ['finished', 'failed', 'closed', 'cancelled']: for dur_type in ['wait', 'run']: if (status, dur_type) == ('finished', 'run'): continue if jobs_time_consumption_stats_dict[status][dur_type]*100/task_attempt_duration >= self.jobBadTimeMaxPercent: msg_tag = 'Job{0}{1}Long'.format(status.capitalize(), dur_type.capitalize()) ret_msg_set.add(msg_tag) return ret_msg_set def _bad_job_qualify(self, job_attr_dict): retVal = False status = job_attr_dict['jobStatus'] # according to status for status in ['finished', 'failed', 'closed', 'cancelled']: if status != job_attr_dict['jobStatus']: continue for dur_type in ['wait', 'run']: dur_name = '{0}Duration'.format(dur_type) if job_attr_dict[dur_name] > datetime.timedelta(hours=self.jobMaxHoursMap[status][dur_type]): retVal = True return retVal def _bad_jobs_display(self, pandaid_list, err_info_dict) -> str: sorted_err_info_list = sorted(err_info_dict.items(), key=(lambda x: (x[1]['n_jobs'], x[1]['waitDuration'] + x[1]['runDuration'])), reverse=True) errors_str = '\n '.join([ '{n_jobs:>6} | {avg_wait:>12} | {avg_run:>12} | {avg_prio:>7} | {info}'.format( n_jobs=x[1]['n_jobs'], avg_wait=core_utils.timedelta_parse_dict(x[1]['waitDuration']/x[1]['n_jobs'])['str_dcolon'], avg_run=core_utils.timedelta_parse_dict(x[1]['runDuration']/x[1]['n_jobs'])['str_dcolon'], avg_prio=int(x[1]['priority']/x[1]['n_jobs']), info=x[0] ) for x in sorted_err_info_list ]) result_str = ( ' Jobs: {pandaids_str}\n' ' NJobs | AvgWaiting | AvgRunning | AvgPrio | jobStatus | computingSite | Dialogs \n' ' {errors_str}\n' ).format( pandaids_str=','.join(sorted([ str(i) for i in pandaid_list ])), errors_str=errors_str ) return result_str def _jobs_time_consumption_stats_display(self, task_attempt_duration, jobs_time_consumption_stats_dict) -> str: # function to format one data record def get_data_str(data_time): data_str = '{duration:>13} ({percent:>2}%)'.format( duration=core_utils.timedelta_parse_dict(data_time)['str_dcolon'], percent=int(data_time*100/task_attempt_duration), ) return data_str # dict result dict result_dict = { 'wfn': get_data_str(jobs_time_consumption_stats_dict['finished']['wait']), 'wfa': get_data_str(jobs_time_consumption_stats_dict['failed']['wait']), 'wcl': get_data_str(jobs_time_consumption_stats_dict['closed']['wait']), 'wcn': get_data_str(jobs_time_consumption_stats_dict['cancelled']['wait']), 'wto': get_data_str(jobs_time_consumption_stats_dict['total']['wait']), 'rfn': get_data_str(jobs_time_consumption_stats_dict['finished']['run']), 'rfa': get_data_str(jobs_time_consumption_stats_dict['failed']['run']), 'rcl': get_data_str(jobs_time_consumption_stats_dict['closed']['run']), 'rcn': get_data_str(jobs_time_consumption_stats_dict['cancelled']['run']), 'rto': get_data_str(jobs_time_consumption_stats_dict['total']['run']), 'tfn': get_data_str(jobs_time_consumption_stats_dict['finished']['total']), 'tfa': get_data_str(jobs_time_consumption_stats_dict['failed']['total']), 'tcl': get_data_str(jobs_time_consumption_stats_dict['closed']['total']), 'tcn': get_data_str(jobs_time_consumption_stats_dict['cancelled']['total']), 'tto': get_data_str(jobs_time_consumption_stats_dict['total']['total']), } # get result string result_str = ( ' | waiting | running | total | \n' ' finished | {wfn:>20} | {rfn:>20} | {tfn:>20} | \n' ' failed | {wfa:>20} | {rfa:>20} | {tfa:>20} | \n' ' closed | {wcl:>20} | {rcl:>20} | {tcl:>20} | \n' ' cancelled | {wcn:>20} | {rcn:>20} | {tcn:>20} | \n' ' total | {wto:>20} | {rto:>20} | {tto:>20} | \n' '\n' ' {summary}\n' ).format( summary='jobful time: {0:.2f}% , successful run time: {1:.2f}%'.format( jobs_time_consumption_stats_dict['_jobful_time_ratio']*100, jobs_time_consumption_stats_dict['_successful_run_time_ratio']*100), **result_dict ) return result_str def run(self): tmp_log = logger_utils.make_logger(base_logger, method_name='SlowTaskAnalyzer.run') while True: # start tmp_log.info('start cycle') # make report file timeNow = datetime.datetime.utcnow() report_file = os.path.join(self.reportDir, 'slow_tasks_{0}.txt'.format(timeNow.strftime('%y%m%d_%H%M%S'))) with open(report_file, 'w') as dump_file: # dump opening information dump_str = ( 'Report created at {timestamp}\n\n' 'Parameters:\n' 'sinceHours = {sinceHours}\n' 'taskDurationMaxHours = {taskDurationMaxHours}\n' 'taskSuccefulRunTimeMinPercent = {taskSuccefulRunTimeMinPercent}\n' 'taskEachStatusMaxHours = {taskEachStatusMaxHours}\n' 'joblessIntervalMaxHours = {joblessIntervalMaxHours}\n' 'jobBadTimeMaxPercent = {jobBadTimeMaxPercent}\n' 'jobMaxHoursMap = {jobMaxHoursMap}\n' '\n' ).format( timestamp=timeNow.strftime('%y-%m-%d %H:%M:%S'), sinceHours=self.sinceHours, taskDurationMaxHours=self.taskDurationMaxHours, taskSuccefulRunTimeMinPercent=self.taskSuccefulRunTimeMinPercent, taskEachStatusMaxHours=self.taskEachStatusMaxHours, joblessIntervalMaxHours=self.joblessIntervalMaxHours, jobBadTimeMaxPercent=self.jobBadTimeMaxPercent, jobMaxHoursMap=self.jobMaxHoursMap, ) dump_file.write(dump_str) # candidate slow task attempts tmp_log.debug('fetching candidate slow task attempts created since {0} hours ago'.format(self.sinceHours)) created_since = datetime.datetime.utcnow() - datetime.timedelta(hours=self.sinceHours) task_duration = datetime.timedelta(hours=self.taskDurationMaxHours) cand_ret_dict = self.dbProxy.slowTaskAttemptsFilter01_ATM(created_since=created_since, prod_source_label=None, task_duration=task_duration) # filter to get slow task attempts tmp_log.debug('filtering slow task attempts') ret_dict = {} for k, v in cand_ret_dict.items(): jediTaskID, attemptNr = k key_name = '{0}_{1:02}'.format(*k) new_v = copy.deepcopy(v) jobspec_list = self.dbProxy.slowTaskJobsInAttempt_ATM(jediTaskID=jediTaskID, attemptNr=attemptNr, attempt_start=v['startTime'], attempt_end=v['endTime']) # time consumption statistics of jobs task_attempt_duration = v['attemptDuration'] jobs_time_consumption_stats_dict = get_jobs_time_consumption_statistics(jobspec_list) jobful_time_ratio = jobs_time_consumption_stats_dict['total']['total'] / task_attempt_duration successful_run_time_ratio = jobs_time_consumption_stats_dict['finished']['run'] / task_attempt_duration jobs_time_consumption_stats_dict['_jobful_time_ratio'] = jobful_time_ratio jobs_time_consumption_stats_dict['_successful_run_time_ratio'] = successful_run_time_ratio # fill new value dictionary new_v['jobspec_list'] = jobspec_list new_v['jobs_time_consumption_stats_dict'] = jobs_time_consumption_stats_dict # more criteria of slow task if successful_run_time_ratio*100 < self.taskSuccefulRunTimeMinPercent: # successful run time occupied too little percentage of task duration ret_dict[k] = new_v tmp_log.debug('got a slow task attempt {0}'.format(key_name)) n_slow_task_attempts = len(ret_dict) dump_str = 'got {0} slow task attempts: \n{1}\n'.format(n_slow_task_attempts, self._slow_task_attempts_display(ret_dict)) dump_file.write(dump_str) tmp_log.debug(dump_str) # get culprits of slow task attempts tmp_log.debug('fetching culprits') dump_str = dump_str = '\n' + '='*64 + '\n' + 'Culprits of slowness:' + '\n\n' dump_file.write(dump_str) for k in sorted(ret_dict): jediTaskID, attemptNr = k dump_str = 'About jediTaskID={0} , attemptNr={1} \n\n'.format(jediTaskID, attemptNr) dump_file.write(dump_str) key_name = '{0}_{1:02}'.format(*k) new_v = ret_dict[k] slow_reason_set = set() task_attempt_duration = new_v['attemptDuration'] jobspec_list = new_v['jobspec_list'] jobs_time_consumption_stats_dict = new_v['jobs_time_consumption_stats_dict'] # culprit task status (stuck long) long_status_log_list = self._search_long_status(self._get_task_status_log(new_v['statusList'])) n_long_status = len(long_status_log_list) bad_status_str = ','.join(sorted({ x['status'] for x in long_status_log_list })) if n_long_status == 0: tmp_log.debug('taskID_attempt={0} got 0 long status'.format(key_name)) else: long_status_display_str = self._long_status_display(long_status_log_list) dump_str = 'taskID_attempt={0} got {1} long status: \n{2}\n\n\n'.format(key_name, n_long_status, long_status_display_str) dump_file.write(dump_str) tmp_log.debug(dump_str) slow_reason_set.add('TaskStatusLong') # culprit intervals between jobs bad_interval_list = self._search_bad_intervals(jobspec_list, new_v['startTime']) n_bad_intervals = len(bad_interval_list) if n_bad_intervals == 0: tmp_log.debug('taskID_attempt={0} got 0 culprit intervals'.format(key_name)) else: bad_intervals_display_str = self._bad_intervals_display(bad_interval_list) slow_reason_set.add('JoblessIntervalLong') dump_str = 'taskID_attempt={0} got {1} culprit intervals: \n{2}\n\n\n'.format(key_name, n_bad_intervals, bad_intervals_display_str) dump_file.write(dump_str) tmp_log.debug(dump_str) # time consumption statistics of jobs jobs_time_consumption_stats_display = self._jobs_time_consumption_stats_display(task_attempt_duration, jobs_time_consumption_stats_dict) dump_str = 'taskID_attempt={0} time consumption stats of jobs: \n{1}\n'.format(key_name, jobs_time_consumption_stats_display) dump_file.write(dump_str) tmp_log.debug(dump_str) # job symptom tags according to time consumption job_slow_reason_set = self._bad_job_time_consumed_set(task_attempt_duration, jobs_time_consumption_stats_dict) if not job_slow_reason_set: tmp_log.debug('taskID_attempt={0} had no bad job symptom'.format(key_name)) else: slow_reason_set |= job_slow_reason_set dump_str = 'taskID_attempt={0} got bad job symptoms: {1}\n\n'.format(key_name, ','.join(sorted(job_slow_reason_set))) dump_file.write(dump_str) tmp_log.debug(dump_str) # find some bad jobs as hint pandaid_list = [] err_info_dict = {} for jobspec in jobspec_list: job_attr_dict = self._get_job_attr_dict(jobspec) retVal = self._bad_job_qualify(job_attr_dict) if retVal: # qualified bad job pandaid_list.append(jobspec.PandaID) err_info = job_attr_dict['errorInfo'] if err_info in err_info_dict: err_info_dict[err_info]['n_jobs'] += 1 err_info_dict[err_info]['waitDuration'] += job_attr_dict['waitDuration'] err_info_dict[err_info]['runDuration'] += job_attr_dict['runDuration'] err_info_dict[err_info]['priority'] += job_attr_dict['priority'] else: err_info_dict[err_info] = {} err_info_dict[err_info]['n_jobs'] = 1 err_info_dict[err_info]['waitDuration'] = job_attr_dict['waitDuration'] err_info_dict[err_info]['runDuration'] = job_attr_dict['runDuration'] err_info_dict[err_info]['priority'] = job_attr_dict['priority'] n_bad_jobs = len(pandaid_list) if n_bad_jobs == 0: tmp_log.debug('taskID_attempt={0} got 0 bad jobs'.format(key_name))
# -*- coding: utf-8 -*- # # Parse a RSD log file. # # This class is used by KanataConverter. # # There are several IDs in this script: # # iid: An unique id for each instruction in a RSD log file. # This is outputted from SystemVerilog code. # mid: The index of a micro op in an instruction. # This is outputted from SystemVerilog code. # # gid: An unique id for each mico op in this script. # This is calculated from iid and mid for internal use. # cid: An unique id for each 'committed' micro op in a Kanata log. # This is calculated from gid. # import re # # Global constants # RSD_PARSER_INITIAL_CYCLE = -1 RSD_PARSER_RETIREMENT_STAGE_ID = 14 RSD_PARSER_CID_DEFAULT = -1 class RSD_ParserError( Exception ): """ An exeception class for RSD_Parser """ pass class RSD_Parser( object ): """ Parse RSD log data. """ # Constants # RSD log command strings. RSD_HEADER = "RSD_Kanata" RSD_VERSION = 0 RSD_CMD_LABEL = "L" RSD_CMD_STAGE = "S" RSD_CMD_CYCLE = "C" RSD_CMD_COMMENT = "#" # Bit width of OpSerial in SystemVerilog code. # OpSerial becomes iid in this python script. OP_SERIAL_WIDTH = 10 # Max micro ops per an instruction. MAX_MICRO_OPS_PER_INSN = 4 # Wrap around of gid caused by wrap around of iid. GID_WRAP_AROUND = 2 ** OP_SERIAL_WIDTH * MAX_MICRO_OPS_PER_INSN def CreateGID( self, iid, mid ): """ Create unique 'gid' from 'iid' and 'mid'. """ if mid >= RSD_Parser.MAX_MICRO_OPS_PER_INSN: raise RSD_ParserError( "'mid' exceeds MAX_MICRO_OPS_PER_INSN at iid(%s)" % iid ) gid = mid + iid * RSD_Parser.MAX_MICRO_OPS_PER_INSN # Convert a gid wrapped around to a unique gid. # - Search min( n : gid + n * GID_WRAP_AROUND > max-retired-gid - margin ) # - margin : GID_WRAP_AROUND / 2 # - Set gid = gid + n * GID_WRAP_AROUND if len( self.retired ) != 0: numWrapAround = ( self.maxRetiredOp + RSD_Parser.GID_WRAP_AROUND / 2 - gid ) / RSD_Parser.GID_WRAP_AROUND gid += RSD_Parser.GID_WRAP_AROUND * numWrapAround return gid # Event types EVENT_INIT = 0 EVENT_STAGE_BEGIN = 1 EVENT_STAGE_END = 2 EVENT_STALL_BEGIN = 3 EVENT_STALL_END = 4 EVENT_RETIRE = 5 EVENT_FLUSH = 6 # # Internal classes # class Label( object ): """ Label information of an op """ def __init__( self ): self.iid = 0 self.mid = 0 self.pc = 0 self.code = "" def __repr__( self ): return "{iid:%d, mid:%d, pc: %s, code: %s}" % ( self.iid, self.mid, self.pc, self.code ) class Op( object ): """ Op class. """ def __init__( self, iid, mid, gid, stall, clear, stageID, updatedCycle ): self.iid = iid self.mid = mid self.gid = gid self.cid = RSD_PARSER_CID_DEFAULT self.stageID = stageID self.stall = stall self.clear = clear self.updatedCycle = updatedCycle self.commit = False self.label = RSD_Parser.Label() def __repr__( self ): return ( "{gid:%s, cid: %s, stall:%s, clear:%s, stageID:%s, updatedCycle: %s}" % ( self.gid, self.cid, self.stall, self.clear, self.stageID, self.updatedCycle ) ) class Event( object ): """ Event class """ def __init__( self, gid, type, stageID, comment ): self.gid = gid self.type = type self.stageID = stageID self.comment = comment def __repr__( self ): return ( "{gid:%s, type:%s, stageID:%s, comment:%s}" % ( self.gid, self.type, self.stageID, self.comment ) ) def __init__( self ): """ Initializer """ self.inputFileName = "" self.inputFile = None # A current processor cycle. self.currentCycle = RSD_PARSER_INITIAL_CYCLE self.ops = {} # gid -> Op map self.events = {} # cycle -> Event map self.retired = set( [] ) # retired gids self.maxRetiredOp = 0; # The maximum number in retired ops. self.committedOpNum = 0; # Num of committed ops. def Open( self, inputFileName ): self.inputFileName = inputFileName self.inputFile = open( inputFileName, "r" ); def Close( self ): if self.inputFile is not None : self.inputFile.close() # # Parsing file # def ProcessHeader( self, line ): """ Process a file hedaer """ words = re.split( r"[\t\n\r]", line ) header = words[0] if header != self.RSD_HEADER : raise RSD_ParserError( "An unknown file format." ) # Check a file version version = int( words[1] ) if version != self.RSD_VERSION : raise RSD_ParserError( "An unknown file version: %d" % ( version ) ) def ProcessLine( self, line ): """ Process a line. """ words = re.split( r"[\t\n\r]", line ) cmd = words[0] if cmd == self.RSD_CMD_STAGE : self.OnRSD_Stage( words ) elif cmd == self.RSD_CMD_LABEL : self.OnRSD_Label( words ) elif cmd == self.RSD_CMD_CYCLE : self.OnRSD_Cycle( words ) elif cmd == self.RSD_CMD_COMMENT : pass # A comment is not processed. else: raise RSD_ParserError( "Unknown command:'%s'" % (cmd) ); def OnRSD_Stage( self, words ): """ Dump a stage state. Format: 'S', stage, valid, stall, flush, iid, mid, comment """ # Check whether an op on this stage is valid or not. if words[2] == 'x': valid = False else: valid = int( words[2] ) if( not valid ): return op = self.CreateOpFromString( words ) # if both stall and clear signals are asserted, it means send bubble and # it is not pipeline flush. flush = op.clear and not op.stall; if (op.gid in self.retired): if flush: # Ops in a backend may be flush more than once, because there # are ops in pipeline stages and an active list. return else: print "A retired op is dumped. op: (%s)" % ( op.__repr__() ) comment = words[7] current = self.currentCycle gid = op.gid retire = op.stageID == RSD_PARSER_RETIREMENT_STAGE_ID # Check whether an event occurs or not. if gid in self.ops: prevOp = self.ops[ gid ] op.label = prevOp.label # End stalling if prevOp.stall and not op.stall: self.AddEvent( current, gid, self.EVENT_STALL_END, prevOp.stageID, "" ) # End and begin a current stage For output comment. self.AddEvent( current, gid, self.EVENT_STAGE_END, prevOp.stageID, "" ) self.AddEvent( current, gid, self.EVENT_STAGE_BEGIN, op.stageID, comment ) # Begin stalling if not prevOp.stall and op.stall: self.AddEvent( current, gid, self.EVENT_STALL_BEGIN, op.stageID, comment ) # End/Begin a stage if prevOp.stageID != op.stageID: self.AddEvent( current, gid, self.EVENT_STAGE_END, prevOp.stageID, "" ) self.AddEvent( current, gid, self.EVENT_STAGE_BEGIN, op.stageID, comment ) if retire: self.AddRetiredGID( gid ) # Count num of commmitted ops. op.commit = True op.cid = self.committedOpNum self.committedOpNum += 1 # Close a last stage self.AddEvent( current + 1, gid, self.EVENT_STAGE_END, op.stageID, "" ) self.AddEvent( current + 1, gid, self.EVENT_RETIRE, op.stageID, "" ) else: # Initalize/Begin a stage self.AddEvent( current, gid, self.EVENT_INIT, op.stageID, "" ) self.AddEvent( current, gid, self.EVENT_STAGE_BEGIN, op.stageID, comment ) if ( op.stall ): self.AddEvent( current, gid, self.EVENT_STALL_BEGIN, op.stageID, "" ) # if both stall and clear signals are asserted, it means send bubble and # it is not pipeline flush. if flush: self.AddRetiredGID( gid ) prevOp = self.ops[ gid ] if prevOp.stageID == 0: # When an instruction was flushed in NextPCStage, # delete the op from self.ops so that the instruction is not dumped del self.ops[ gid ] return else: # Add events about flush self.AddEvent( current, gid, self.EVENT_STAGE_END, op.stageID, "" ) self.AddEvent( current, gid, self.EVENT_FLUSH, op.stageID, comment ) self.ops[ gid ] = op def CreateOpFromString( self, words ): """ Create an op from strings split from a source line text. Format: 'S', stage, stall, valid, clear, iid, mid """ stageID = int( words[1] ) stall = int( words[3] ) != 0 clear = int( words[4] ) != 0 iid = int( words[5] ) mid = int( words[6] ) gid = self.CreateGID( iid, mid ) return self.Op( iid, mid, gid, stall, clear, stageID, self.currentCycle ) def AddEvent( self, cycle, gid, type, stageID, comment ): """ Add an event to an event list. """ event = self.Event( gid, type, stageID, comment ) if cycle not in self.events: self.events[ cycle ] = [] self.events[ cycle ].append( event ) def OnRSD_Label( self, words ): """ Dump information about an op Format: 'L', iid, mid, pc, code """ iid = int( words[1] ) mid = int( words[2] ) pc = words[3] code = words[4] gid = self.CreateGID( iid, mid ) # Add label information to a label database.
ord(".") a[2] = ord("?") assert p[2] == b"?" def test_from_buffer_more_cases(): try: from _cffi_backend import _testbuff except ImportError: py.test.skip("not for pypy") BChar = new_primitive_type("char") BCharP = new_pointer_type(BChar) BCharA = new_array_type(BCharP, None) # def check1(bufobj, expected): c = from_buffer(BCharA, bufobj) assert typeof(c) is BCharA if sys.version_info >= (3,): expected = [bytes(c, "ascii") for c in expected] assert list(c) == list(expected) # def check(methods, expected, expected_for_memoryview=None): if sys.version_info >= (3,): if methods <= 7: return if expected_for_memoryview is not None: expected = expected_for_memoryview class X(object): pass _testbuff(X, methods) bufobj = X() check1(bufobj, expected) try: from __builtin__ import buffer bufobjb = buffer(bufobj) except (TypeError, ImportError): pass else: check1(bufobjb, expected) try: bufobjm = memoryview(bufobj) except (TypeError, NameError): pass else: check1(bufobjm, expected_for_memoryview or expected) # check(1, "RDB") check(2, "WRB") check(4, "CHB") check(8, "GTB") check(16, "ROB") # check(1 | 2, "RDB") check(1 | 4, "RDB") check(2 | 4, "CHB") check(1 | 8, "RDB", "GTB") check(1 | 16, "RDB", "ROB") check(2 | 8, "WRB", "GTB") check(2 | 16, "WRB", "ROB") check(4 | 8, "CHB", "GTB") check(4 | 16, "CHB", "ROB") def test_from_buffer_require_writable(): BChar = new_primitive_type("char") BCharP = new_pointer_type(BChar) BCharA = new_array_type(BCharP, None) p1 = from_buffer(BCharA, b"foo", False) assert p1 == from_buffer(BCharA, b"foo", False) py.test.raises((TypeError, BufferError), from_buffer, BCharA, b"foo", True) ba = bytearray(b"foo") p1 = from_buffer(BCharA, ba, True) p1[0] = b"g" assert ba == b"goo" def test_from_buffer_types(): BInt = new_primitive_type("int") BIntP = new_pointer_type(BInt) BIntA = new_array_type(BIntP, None) lst = [-12345678, 87654321, 489148] bytestring = bytearray(buffer(newp(BIntA, lst))[:] + b'XYZ') lst2 = lst + [42, -999999999] bytestring2 = bytearray(buffer(newp(BIntA, lst2))[:] + b'XYZ') # p1 = from_buffer(BIntA, bytestring) # int[] assert typeof(p1) is BIntA assert len(p1) == 3 assert p1[0] == lst[0] assert p1[1] == lst[1] assert p1[2] == lst[2] with pytest.raises(IndexError): p1[3] with pytest.raises(IndexError): p1[-1] # py.test.raises(TypeError, from_buffer, BInt, bytestring) # p2 = from_buffer(BIntP, bytestring) # int * assert p2 == p1 or 'PY_DOT_PY' in globals() # note: on py.py ^^^, bytearray buffers are not emulated well enough assert typeof(p2) is BIntP assert p2[0] == lst[0] assert p2[1] == lst[1] assert p2[2] == lst[2] # hopefully does not crash, but doesn't raise an exception: p2[3] p2[-1] # not enough data even for one, but this is not enforced: from_buffer(BIntP, b"") # BIntA2 = new_array_type(BIntP, 2) p2 = from_buffer(BIntA2, bytestring) # int[2] assert typeof(p2) is BIntA2 assert len(p2) == 2 assert p2[0] == lst[0] assert p2[1] == lst[1] with pytest.raises(IndexError): p2[2] with pytest.raises(IndexError): p2[-1] assert p2 == p1 or 'PY_DOT_PY' in globals() # BIntA4 = new_array_type(BIntP, 4) # int[4]: too big py.test.raises(ValueError, from_buffer, BIntA4, bytestring) # BStruct = new_struct_type("foo") complete_struct_or_union(BStruct, [('a1', BInt, -1), ('a2', BInt, -1)]) BStructP = new_pointer_type(BStruct) BStructA = new_array_type(BStructP, None) p1 = from_buffer(BStructA, bytestring2) # struct[] assert len(p1) == 2 assert typeof(p1) is BStructA assert p1[0].a1 == lst2[0] assert p1[0].a2 == lst2[1] assert p1[1].a1 == lst2[2] assert p1[1].a2 == lst2[3] with pytest.raises(IndexError): p1[2] with pytest.raises(IndexError): p1[-1] assert repr(p1) == "<cdata 'foo[]' buffer len 2 from 'bytearray' object>" # p2 = from_buffer(BStructP, bytestring2) # 'struct *' assert p2 == p1 or 'PY_DOT_PY' in globals() assert typeof(p2) is BStructP assert p2.a1 == lst2[0] assert p2.a2 == lst2[1] assert p2[0].a1 == lst2[0] assert p2[0].a2 == lst2[1] assert p2[1].a1 == lst2[2] assert p2[1].a2 == lst2[3] # does not crash: p2[2] p2[-1] # not enough data even for one, but this is not enforced: from_buffer(BStructP, b"") from_buffer(BStructP, b"1234567") # release(p1) assert repr(p1) == "<cdata 'foo[]' buffer RELEASED>" # BEmptyStruct = new_struct_type("empty") complete_struct_or_union(BEmptyStruct, [], Ellipsis, 0) assert sizeof(BEmptyStruct) == 0 BEmptyStructP = new_pointer_type(BEmptyStruct) BEmptyStructA = new_array_type(BEmptyStructP, None) py.test.raises(ZeroDivisionError, from_buffer, # empty[] BEmptyStructA, bytestring) # BEmptyStructA5 = new_array_type(BEmptyStructP, 5) p1 = from_buffer(BEmptyStructA5, bytestring) # struct empty[5] assert typeof(p1) is BEmptyStructA5 assert len(p1) == 5 assert (cast(BIntP, p1) == from_buffer(BIntA, bytestring) or 'PY_DOT_PY' in globals()) # BVarStruct = new_struct_type("varfoo") BVarStructP = new_pointer_type(BVarStruct) complete_struct_or_union(BVarStruct, [('a1', BInt, -1), ('va', BIntA, -1)]) with pytest.raises(TypeError): from_buffer(BVarStruct, bytestring) pv = from_buffer(BVarStructP, bytestring) # varfoo * assert pv.a1 == lst[0] assert pv.va[0] == lst[1] assert pv.va[1] == lst[2] assert sizeof(pv[0]) == 1 * size_of_int() with pytest.raises(TypeError): len(pv.va) # hopefully does not crash, but doesn't raise an exception: pv.va[2] pv.va[-1] # not enough data even for one, but this is not enforced: from_buffer(BVarStructP, b"") assert repr(pv) == "<cdata 'varfoo *' buffer from 'bytearray' object>" assert repr(pv[0]).startswith("<cdata 'varfoo &' ") # release(pv) assert repr(pv) == "<cdata 'varfoo *' buffer RELEASED>" assert repr(pv[0]).startswith("<cdata 'varfoo &' ") # pv = from_buffer(BVarStructP, bytestring) # make a fresh one with pytest.raises(ValueError): release(pv[0]) def test_issue483(): BInt = new_primitive_type("int") BIntP = new_pointer_type(BInt) BIntA = new_array_type(BIntP, None) lst = list(range(25)) bytestring = bytearray(buffer(newp(BIntA, lst))[:] + b'XYZ') p1 = from_buffer(BIntA, bytestring) # int[] assert len(buffer(p1)) == 25 * size_of_int() assert sizeof(p1) == 25 * size_of_int() # p2 = from_buffer(BIntP, bytestring) assert sizeof(p2) == size_of_ptr() assert len(buffer(p2)) == size_of_int() # first element only, by default def test_memmove(): Short = new_primitive_type("short") ShortA = new_array_type(new_pointer_type(Short), None) Char = new_primitive_type("char") CharA = new_array_type(new_pointer_type(Char), None) p = newp(ShortA, [-1234, -2345, -3456, -4567, -5678]) memmove(p, p + 1, 4) assert list(p) == [-2345, -3456, -3456, -4567, -5678] p[2] = 999 memmove(p + 2, p, 6) assert list(p) == [-2345, -3456, -2345, -3456, 999] memmove(p + 4, newp(CharA, b"\x71\x72"), 2) if sys.byteorder == 'little': assert list(p) == [-2345, -3456, -2345, -3456, 0x7271] else: assert list(p) == [-2345, -3456, -2345, -3456, 0x7172] def test_memmove_buffer(): import array Short = new_primitive_type("short") ShortA = new_array_type(new_pointer_type(Short), None) a = array.array('H', [10000, 20000, 30000]) p = newp(ShortA, 5) memmove(p, a, 6) assert list(p) == [10000, 20000, 30000, 0, 0] memmove(p + 1, a, 6) assert list(p) == [10000, 10000, 20000, 30000, 0] b = array.array('h', [-1000, -2000, -3000]) memmove(b, a, 4) assert b.tolist() == [10000, 20000, -3000] assert a.tolist() == [10000, 20000, 30000] p[0] = 999 p[1] = 998 p[2] = 997 p[3] = 996 p[4] = 995 memmove(b, p, 2) assert b.tolist() == [999, 20000, -3000] memmove(b, p + 2, 4) assert b.tolist() == [997, 996, -3000] p[2] = -p[2] p[3] = -p[3] memmove(b, p + 2, 6) assert b.tolist() == [-997, -996, 995] def test_memmove_readonly_readwrite(): SignedChar = new_primitive_type("signed char") SignedCharA = new_array_type(new_pointer_type(SignedChar), None) p = newp(SignedCharA, 5) memmove(p, b"abcde", 3) assert list(p) == [ord("a"), ord("b"), ord("c"), 0, 0] memmove(p, bytearray(b"ABCDE"), 2) assert list(p) == [ord("A"), ord("B"), ord("c"), 0, 0] py.test.raises((TypeError, BufferError), memmove, b"abcde", p, 3) ba = bytearray(b"xxxxx") memmove(dest=ba, src=p, n=3) assert ba == bytearray(b"ABcxx") memmove(ba, b"EFGH", 4) assert ba == bytearray(b"EFGHx") def test_memmove_sign_check(): SignedChar = new_primitive_type("signed char") SignedCharA = new_array_type(new_pointer_type(SignedChar), None) p = newp(SignedCharA, 5) py.test.raises(ValueError, memmove, p, p + 1, -1) # not segfault def test_memmove_bad_cdata(): BInt = new_primitive_type("int") p = cast(BInt, 42) py.test.raises(TypeError, memmove, p, bytearray(b'a'), 1) py.test.raises(TypeError, memmove, bytearray(b'a'), p, 1) def test_dereference_null_ptr(): BInt = new_primitive_type("int") BIntPtr = new_pointer_type(BInt) p = cast(BIntPtr, 0) with pytest.raises(RuntimeError): p[0] with pytest.raises(RuntimeError): p[0] = 42 with pytest.raises(RuntimeError): p[42] with pytest.raises(RuntimeError): p[42] = -1 def test_mixup(): BStruct1 = new_struct_type("foo") BStruct2 = new_struct_type("foo") # <= same name as BStruct1 BStruct3 = new_struct_type("bar") BStruct1Ptr = new_pointer_type(BStruct1) BStruct2Ptr = new_pointer_type(BStruct2) BStruct3Ptr = new_pointer_type(BStruct3) BStruct1PtrPtr = new_pointer_type(BStruct1Ptr) BStruct2PtrPtr = new_pointer_type(BStruct2Ptr) BStruct3PtrPtr = new_pointer_type(BStruct3Ptr) pp1 = newp(BStruct1PtrPtr) pp2 = newp(BStruct2PtrPtr) pp3 = newp(BStruct3PtrPtr) pp1[0] = pp1[0] with pytest.raises(TypeError) as e: pp3[0] = pp1[0] assert str(e.value).startswith("initializer for ctype 'bar *' must be a ") assert str(e.value).endswith(", not cdata 'foo *'") with pytest.raises(TypeError) as e: pp2[0] = pp1[0] assert str(e.value) == ("initializer for ctype 'foo *' appears indeed to " "be 'foo *', but the types are different (check " "that you are not e.g. mixing up different ffi " "instances)") def test_stdcall_function_type(): assert FFI_CDECL == FFI_DEFAULT_ABI try: stdcall = FFI_STDCALL except NameError: stdcall = FFI_DEFAULT_ABI BInt = new_primitive_type("int") BFunc = new_function_type((BInt, BInt), BInt, False, stdcall) if stdcall != FFI_DEFAULT_ABI: assert repr(BFunc) == "<ctype 'int(__stdcall *)(int, int)'>" else: assert repr(BFunc) == "<ctype 'int(*)(int, int)'>" def test_get_common_types(): d = {} _get_common_types(d) assert d['bool'] == '_Bool' def test_unpack(): BChar = new_primitive_type("char") BArray = new_array_type(new_pointer_type(BChar), 10) # char[10] p = newp(BArray, b"abc\x00def") p0 = p assert unpack(p, 10) ==
<reponame>wjsi/aliyun-odps-python-sdk<filename>docs/source/conf.py # -*- coding: utf-8 -*- # # PyOdps documentation build configuration file, created by # sphinx-quickstart on Wed Nov 18 09:47:14 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shutil import atexit import tempfile import textwrap import codecs import re from sphinx.directives import Include dirname = os.path.dirname docroot = os.path.dirname(os.path.abspath(__file__)) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, dirname(dirname(dirname(os.path.abspath(__file__))))) sys.path.append(os.path.abspath('../sphinx-ext/')) # on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'PyODPS' copyright = u'2014-2018, The Alibaba Group Holding Ltd.' author = u'<NAME>' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. from odps import __version__ version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. if 'gettext' not in sys.argv: try: import odps.internal with_internal = True exclude_patterns = ['*-ext.rst', '*-ext-*.rst'] except ImportError: with_internal = False exclude_patterns = ['*-int.rst', '*-int-*.rst'] else: with_internal = None # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = '_static/PyODPS.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'PyOdpsdoc' # -- Options for LaTeX output --------------------------------------------- latex_engine = 'xelatex' latex_elements = { 'preamble': textwrap.dedent(r""" \usepackage{svg} \usepackage{hyperref} \setcounter{tocdepth}{2} """) } if on_rtd: del latex_engine latex_elements['preamble'] = textwrap.dedent(r""" \hypersetup{unicode=true} \usepackage{CJKutf8} \usepackage{svg} \usepackage{hyperref} \setcounter{tocdepth}{2} \DeclareUnicodeCharacter{00A0}{\nobreakspace} \DeclareUnicodeCharacter{2203}{\ensuremath{\exists}} \DeclareUnicodeCharacter{2200}{\ensuremath{\forall}} \DeclareUnicodeCharacter{2286}{\ensuremath{\subseteq}} \DeclareUnicodeCharacter{2713}{x} \DeclareUnicodeCharacter{27FA}{\ensuremath{\Longleftrightarrow}} \DeclareUnicodeCharacter{221A}{\ensuremath{\sqrt{}}} \DeclareUnicodeCharacter{221B}{\ensuremath{\sqrt[3]{}}} \DeclareUnicodeCharacter{2295}{\ensuremath{\oplus}} \DeclareUnicodeCharacter{2297}{\ensuremath{\otimes}} \begin{CJK}{UTF8}{gbsn} \AtEndDocument{\end{CJK}} """) # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PyOdps.tex', u'PyODPS Documentation', u'The Alibaba Group Holding Ltd.', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pyodps', u'PyODPS Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PyODPS', u'PyODPS Documentation', author, 'PyODPS', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all
import re from typing import Any, Callable, Dict, Iterator, List, Mapping, OrderedDict, Union import asdf from asdf import ValidationError from asdf.schema import _type_to_tag from asdf.tagged import TaggedDict from weldx.asdf.extension import WxSyntaxError from weldx.asdf.tags.weldx.time.datetimeindex import DatetimeIndexType from weldx.asdf.tags.weldx.time.timedeltaindex import TimedeltaIndexType from weldx.constants import WELDX_QUANTITY as Q_ from weldx.constants import WELDX_UNIT_REGISTRY as UREG def _walk_validator( instance: OrderedDict, validator_dict: OrderedDict, validator_function: Callable[[Mapping, Any, str], Iterator[ValidationError]], position=None, allow_missing_keys: bool = False, ) -> Iterator[ValidationError]: """Walk instance and validation dict entries in parallel and apply a validator func. This function can be used to recursively walk both the instance dictionary and the custom validation dictionary in parallel. Once a leaf dictionary entry is reached, the validation function is applied to the selected items. Parameters ---------- instance: Tree serialization (with default dtypes) of the instance validator_dict: OrderedDict representation of the validation structure. validator_function: Custom python validator function to apply along the (nested) dictionary position: String representation of the current nested schema position allow_missing_keys: If True will skip validation if the requested key to validate does not exist. Yields ------ asdf.ValidationError """ if position is None: # pragma: no cover position = [] if isinstance(validator_dict, dict): for key, item in validator_dict.items(): if isinstance(item, Mapping): yield from _walk_validator( instance[key], validator_dict[key], validator_function, position=position + [key], allow_missing_keys=allow_missing_keys, ) else: if key in instance: yield from validator_function(instance[key], item, position + [key]) elif allow_missing_keys: # pragma: no cover pass else: # pragma: no cover pass # TODO: if a property is not required the key might be missing # yield ValidationError(f"Missing key {key}") else: yield from validator_function(instance, validator_dict, position) def _unit_validator( instance: Mapping, expected_dimensionality: str, position: List[str] ) -> Iterator[ValidationError]: """Validate the 'unit' key of the instance against the given string. Parameters ---------- instance: Tree serialization with 'unit' key to validate. expected_dimensionality: String representation of the unit dimensionality to test against. position: Current position in nested structure for debugging Yields ------ asdf.ValidationError """ if not position: position = instance unit = instance["unit"] valid = Q_(unit).check(UREG.get_dimensionality(expected_dimensionality)) if not valid: yield ValidationError( f"Error validating unit dimension for property '{position}'. " f"Expected unit of dimension '{expected_dimensionality}' " f"but got unit '{unit}'" ) def _compare(_int, exp_string): """Compare helper of two strings for _custom_shape_validator. An integer and an expected string are compared so that the string either contains a ":" and thus describes an interval or a string consisting of numbers. So if our integer is within the interval or equal to the described number, True is returned. The interval can be open, in that there is no number left or right of the ":" symbol. Examples: --------- _int = 5 exp_string = "5" -> True _int = 5 exp_string = ":" -> True Open interval: _int = 5 exp_string = "3:" -> True _int = 5 exp_string = "4" -> False _int = 5 exp_string = "6:8" -> False Parameters ---------- _int: Integer exp_string: String with the expected dimension Returns ------- bool True or False """ if _int < 0: raise WxSyntaxError("Negative dimension found") if ":" in exp_string: ranges = exp_string.split(":") if ranges[0] == "": ranges[0] = 0 elif ranges[0].isnumeric(): ranges[0] = int(ranges[0]) else: raise WxSyntaxError(f"Non numeric character in range {exp_string}") if ranges[1] == "": ranges[1] = _int elif ranges[1].isnumeric(): ranges[1] = int(ranges[1]) else: raise WxSyntaxError(f"Non numeric character in range {exp_string}") if ranges[0] > ranges[1]: raise WxSyntaxError(f"The range should not be descending in {exp_string}") return int(ranges[0]) <= _int <= int(ranges[1]) else: return _int == int(exp_string) def _prepare_list(_list, list_expected): """Prepare a List and an expected List for validation. The preparation of the lists consists in accepting all lists that contain white spaces and rewriting all lists that contain the symbols ":" as well as "~" to a ":". In addition, lists that begin with "..." or parentheses are reversed for validation to work. parameters ---------- _list: List with values list_expected: List with expected values returns ------- _list: prepared List list_expected: prepared List with expected values """ # remove blank spaces in dict_test _list = [x.replace(" ", "") if isinstance(x, str) else x for x in _list] # accept "~" additionally as input of ":". And remove blank spaces. list_expected = [ x.replace(" ", "").replace("~", ":") if isinstance(x, str) else x for x in list_expected ] # turn around the list if "..." or "(" are at the beginning. # because the validation is made from begin -> end. # like this we validate the array from end -> begin. if "(" in str(list_expected[0]) or "..." in str(list_expected[0]): list_expected = list(reversed(list_expected)) _list = list(reversed(_list)) return _list, list_expected def _is_range_format_valid(format_string: str): """ Return 'True' if a string represents a valid range definition and 'False' otherwise. Parameters ---------- format_string: String that should be checked. Returns ------- bool: 'True' if the passed string is a valid range definition, 'False' otherwise """ if ":" in format_string: if len(format_string.split(":")) != 2: return False format_string = format_string.replace(":", "") return format_string.isalnum() or format_string == "" return format_string.isalnum() def _validate_expected_list(list_expected): """Validate an expected List and raises exceptions. The syntax of the expected list is validated. Examples that will raise errors: Variable length should be at beginning or end. [1, 2, "...", 4, 5] [1, 2, "(3)", 4, 5] Additional arguments are not accepted [1, 2, 3, 4, "5..."] [1, 2, 3, 4, "5(5)"] params ------ list_expected: Expected List to validate against raises ------ ValueError: ValueError will be raised if an rule violation is found """ validator = 0 for exp in list_expected: if validator == 1 and not ("(" in str(exp) or "..." in str(exp)): raise WxSyntaxError( "Optional dimensions in the expected " "shape should only stand at the end/beginning." ) if validator == 2: raise WxSyntaxError('After "..." should not be another dimension.') if "..." in str(exp): if "..." != exp: raise WxSyntaxError( f'"..." should not have additional properties:' f" {exp} was found." ) validator = 2 elif "(" in str(exp): val = re.search(r"\((.*)\)", exp) if ( val is None or len(val.group(1)) + 2 != len(exp) or not _is_range_format_valid(val.group(1)) ): raise WxSyntaxError( f'Invalid optional dimension format. Correct format is "(_)", but ' f" {exp} was found." ) validator = 1 elif not _is_range_format_valid(str(exp)): raise WxSyntaxError( f"{exp} is an invalid range format." f"Consult the documentation for a list of all valid options" ) def _compare_lists(_list, list_expected): """Compare two lists. The two lists are interpreted as a list of dimensions. We compare the dimensions of these lists and in the case of a mismatch, False is returned. If the dimensions match and there are variables in the list_expected, they are entered into a dictionary and this is output. The dictionary can be empty if there are no variables in the list_expected. Examples: --------- _compare_lists([1, 2, 3], [1, 2, 3]) -> {} _compare_lists([1, 2, 3], [1, n1, n2]) -> {n1: 2, n2: 3} _compare_lists([1, 2, 3], [1, "..."]) -> {} _compare_lists([1, 2, 3], [1, 2, 4]) -> False params ------ _list: List of Integer list_expected: List build by the rules in _custom_shape_validator returns ------- False: when a dimension mismatch occurs dict_values: when no dimension mismatch occurs. Can be empty {}. Dictionary - keys: variable names in the validation schemes. values: values of the validation schemes. """ dict_values = dict() has_variable_dim_num = False for i, exp in enumerate(list_expected): if "..." in str(exp): has_variable_dim_num = True break # all the following dimensions are accepted if "(" in str(exp): if i < len(_list): exp = re.search(r"\((.*)\)", exp).group(1) else: # pragma: no cover continue # TODO: actually covered, but not registered by codecov - bug? # all alphanumeric strings are OK - only numeric strings are not # eg: "n", "n1", "n1234", "myasdfstring1337" if str(exp).isalnum() and not str(exp).isnumeric(): if exp not in dict_values: dict_values[exp] = _list[i] elif _list[i] != dict_values[exp]: return False elif i >= len(_list) or not _compare(_list[i], str(exp)): return False if (len(_list) > len(list_expected)) and not has_variable_dim_num: return False return dict_values def _get_instance_shape(instance_dict: Union[TaggedDict, Dict[str, Any]]) -> List[int]: """Get the shape of an ASDF instance from its tagged dict form.""" if
#! /usr/bin/python """Code to combine different slabs into a single high resolution slab # This code was developed by <NAME> at the ARAMIS lab. # Maintainer: <NAME> (2019) # # For any use of this code, the following paper must be cited: # # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. # Robust imaging of hippocampal inner structure at 7T: in vivo # acquisition protocol and methodological choices. """ import os import shutil import argparse import io import contextlib import gzip import numpy as np import nibabel as nib import nilearn as nil import nilearn.image import nipype.interfaces.spm as spm import nipype.interfaces.matlab as mlab import check_spm def read_cli_args(): """Read command-line interface arguments Parse the input to the command line with the argparse module. Args: N/A Returns: args (argparse.Namespace): parsed arguments cli_usage (string): command-line interface usage message """ # read command line arguments cli_description = 'Code to combine different slabs into a single high' cli_description = '{0} resolution slab'.format(cli_description) parser = argparse.ArgumentParser(description=cli_description) # add arguments #-- mandatory arguments #---- first slab of first repetition parser.add_argument( 'rep1s1_path', metavar='rep1s1', help='.nii(.gz) first slab of first repetition') #---- second slab of first repetition parser.add_argument( 'rep1s2_path', metavar='rep1s2', help='.nii(.gz) second slab of first repetition') #---- first slab of first repetition parser.add_argument( 'rep2s1_path', metavar='rep2s1', help='.nii(.gz) first slab of second repetition') #---- second slab of first repetition parser.add_argument( 'rep2s2_path', metavar='rep2s2', help='.nii(.gz) second slab of second repetition') #---- low resolution volume parser.add_argument( 'lowres_path', metavar='lowres', help='.nii(.gz) low resolution volume') #---- output dir parser.add_argument( 'outdir_path', metavar='out_dir', help='path where output files will be stored') #-- optional arguments parser.add_argument( '-spm', '--spm_path', help='path to SPM folder (i.e., where spm.m is located)') # parse all arguments args = parser.parse_args() # store usage message in string cli_usage = None with io.StringIO() as buf, contextlib.redirect_stdout(buf): parser.print_usage() cli_usage = buf.getvalue() if cli_usage is None: raise ValueError('the CLI usage variable must not be empty') return args, cli_usage def check_spm_available(args, cli_usage): """Check SPM can be found by Matlab Make sure SPM can be found by Matlab and terminate the program if it cannot. Args: args (argparse.Namespace): parsed arguments cli_usage (string): command-line interface usage message Returns: spm_path (string): path to SPM folder. Will be either user-defined, or if not, automatically retrieved with the 'which spm' Matlab command """ # initialise path #-- folder spm_path = None #-- script ([folder]/spm.m) spmscript_path = None # check if SPM path provided by the user if args.spm_path: # SPM path provided # check if the user provided a path to spm.m (which they should # not...) instead of path to folder abs_argsspm_path = os.path.abspath(args.spm_path) # check if exists if os.path.exists(abs_argsspm_path): if os.path.isfile(abs_argsspm_path): # path fo file provided # get file name argsspm_filename = os.path.basename(args.spm_path) # check that the file name is spm.m if argsspm_filename != 'spm.m': # file name is not spm.m. Crash raise ValueError( '{0} is not a valid path to SPM.'.format(args.spm_path)) else: # file name is spm.m. define SPM path as the folder # containing the provided spm.m spmscript_path = args.spm_path spm_path = os.path.dirname(spmscript_path) elif os.path.isdir(abs_argsspm_path): # a path to a folder was provided spm_path = args.spm_path spmscript_path = os.path.join(spm_path, 'spm.m') else: # neither a folder nor a file was provided raise ValueError( '{0} is not a valid path to SPM.'.format(args.spm_path)) # add to matlab path mlab.MatlabCommand.set_default_paths(args.spm_path) else: raise ValueError( '{0} does not exist.'.format(args.spm_path)) print('[SPM_PATH] provided by user. Using {0}'.format(spm_path)) else: # SPM path not provided # Check if SPM path can be found anyway # (e.g., if file $HOME/matlab/startup.m contains the line # addpath [spm_folder]) [ spm_found, spm_path, spmscript_path] = check_spm.check_system_spm_available() if not spm_found: # SPM not found error_msg = 'SPM not found.\nPlease provide the path to' error_msg = '{0} SPM with flag -spm [SPM_PATH]'.format(error_msg) error_msg = '{0}\n{1}'.format(error_msg, cli_usage) raise IOError(error_msg) print('[SPM_PATH] not provided by user. Using {0}'.format(spm_path)) # sanity check: make sure the path is OK #-- check the path to SPM is a valid folder abs_spm_path = os.path.abspath(spm_path) #---- check if exists if os.path.exists(abs_spm_path): #---- exists #---- check if is a folder if not os.path.isdir(abs_spm_path): raise IOError('{0} is not a valid folder'.format(spm_path)) else: #---- does not exist raise IOError('{0} does not exist'.format(spm_path)) #-- check if the SPM folder contains a file spm.m #---- get absolute path to spm.m abs_spmscript_path = os.path.abspath(spmscript_path) #---- check if file exists if os.path.exists(abs_spmscript_path): #---- spm.m is inside the folder. Check it is a file. if not os.path.isfile(abs_spmscript_path): raise IOError('{0} is not a file'.format(spmscript_path)) else: #---- spm.m does not exist error_msg = '{0} does not contain a file spm.m.'.format(spm_path) error_msg = '{0} It is not a valid folder'.format(error_msg) raise IOError(error_msg) return spm_path def prepare_folders(outdir_path): """Create temporary folders Will create two subfolders inside the output directory: 1. 'debug' subfolder: contains all intermediary images generated prior to te output recombined images 2. 'temp' subfolder: contains all temporary data generated for SPM processing (SPM modifies the header of the images which it is working on, so we duplicate the image to be SPM-processed before feeding them to SPM). Args: outdir_path (string): absolute path to output dir, where results will get stored Returns: debugdir_path (string): path to 'debug' subfolder where all intermediary images are stored tempdir_path (string): path to temporary subfolder where images to be processed with SPM are duplicated and stored """ # Output directory: check if exists and create if not if os.path.isdir(outdir_path): # check if output directory is empty if os.listdir(outdir_path): error_msg = 'Error: please provide an empty output dir' raise IOError(error_msg) else: # create the output directory os.makedirs(outdir_path) # define paths debugdir_path = "{0}/debug/".format(outdir_path) tempdir_path = "{0}/temp/".format(outdir_path) # create subfolders if do not exist already #-- debug try: os.makedirs(debugdir_path) except OSError: if not os.path.isdir(debugdir_path): raise #-- temp try: os.makedirs(tempdir_path) except OSError: if not os.path.isdir(tempdir_path): raise return [debugdir_path, tempdir_path] def spm_path_filestore(debugdir_path, spm_path): """Store SPM location in file Will save the path to SPM to a new file, so the user knows what version of SPM they have been using after the recombination process is complete. Args: debugdir_path (string): path to 'debug' subfolder where all intermediary images are stored spm_path (string): path to SPM folder. Will be either user-defined, or if not, automatically retrieved with the 'which spm' Matlab command Returns: N/A """ # define location of the file that contains the path to spm spm_path_store_path = os.path.join(debugdir_path, 'spm_location.txt') # check if file already exists (should not) spm_path_store_filename = os.path.basename(spm_path_store_path) spm_path_store_dirname = os.path.dirname(spm_path_store_path) if os.path.exists(spm_path_store_path): raise IOError( 'There already is a file {0} in {1}'.format( spm_path_store_filename, spm_path_store_dirname)) # write spm_path to the store file with open(spm_path_store_path, 'w') as spm_path_store_file: spm_path_store_file.write(spm_path) def nii_copy(im_inpath, im_outpath): """Copy from input to output path with output in .nii Convenience function to copy an image from an input path to an output path, while making sure the destination file has a .nii extension (and not a .nii.gz one). This is to make sure we will be feeding SPM with uncompressed images. Args: im_inpath (string): path to the input image. The file can be either of type .nii or of type .nii.gz im_outpath (string): path to the output copied image. The file is of type .nii Returns: N/A """ # Get extension of input image filename imfilename = os.path.basename(im_inpath) imfilename_ext = os.path.splitext(imfilename)[1] error_msg = 'input image must be of type either .nii or .nii.gz' if imfilename_ext == '.nii': # if .nii, standard copy shutil.copyfile(im_inpath, im_outpath) elif imfilename_ext == '.gz': # check if the extension is .nii.gz imfilename_start = os.path.splitext(imfilename)[0] imfilename_start_ext = os.path.splitext(imfilename_start)[1] if imfilename_start_ext == '.nii': # extension is .nii.gz with gzip.open(im_inpath, 'rb') as im_infile: with open(im_outpath, 'wb') as im_outfile: shutil.copyfileobj(im_infile, im_outfile) else: raise IOError(error_msg) else: raise IOError(error_msg) def safe_remove(impath, dirpath): """Check if image is in right folder before removing Make sure the image to be removed is located somewhere within the subfolder hierarchy of a defined folder (i.e., temporary folder or folder containing the intermediary results). This is mostly to ensure avoiding any accidental deletion anywhere outside the working directory. Args: impath (string): path to the image to delete. dirpath (string): path to folder containing the image
by one SciELO Collection. `editor_address` references the institution who operates the process. `publisher_address` references the institution who is responsible for the Journal. """ #Custom manager objects = JournalCustomManager() nocacheobjects = models.Manager() userobjects = modelmanagers.JournalManager() #Relation fields creator = models.ForeignKey(User, related_name='enjoy_creator', editable=False) sponsor = models.ManyToManyField('Sponsor', verbose_name=_('Sponsor'), related_name='journal_sponsor', null=True, blank=True) previous_title = models.ForeignKey('Journal', verbose_name=_('Previous title'), related_name='prev_title', null=True, blank=True) use_license = models.ForeignKey('UseLicense', verbose_name=_('Use license')) collections = models.ManyToManyField('Collection', through='Membership') languages = models.ManyToManyField('Language',) national_code = models.CharField(_('National Code'), max_length=64, null=True, blank=True) abstract_keyword_languages = models.ManyToManyField('Language', related_name="abstract_keyword_languages", ) subject_categories = models.ManyToManyField(SubjectCategory, verbose_name=_("Subject Categories"), related_name="journals", null=True) study_areas = models.ManyToManyField(StudyArea, verbose_name=_("Study Area"), related_name="journals_migration_tmp", null=True) editors = models.ManyToManyField(User, related_name='user_editors', null=True, blank=True) #Fields current_ahead_documents = models.IntegerField(_('Total of ahead of print documents for the current year'), max_length=3, default=0, blank=True, null=True) previous_ahead_documents = models.IntegerField(_('Total of ahead of print documents for the previous year'), max_length=3, default=0, blank=True, null=True) twitter_user = models.CharField(_('Twitter User'), max_length=128, null=True, blank=True) title = models.CharField(_('Journal Title'), max_length=256, db_index=True) title_iso = models.CharField(_('ISO abbreviated title'), max_length=256, db_index=True) short_title = models.CharField(_('Short Title'), max_length=256, db_index=True, null=True) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) acronym = models.CharField(_('Acronym'), max_length=16, blank=False) scielo_issn = models.CharField(_('The ISSN used to build the Journal PID.'), max_length=16, choices=sorted(choices.SCIELO_ISSN, key=lambda SCIELO_ISSN: SCIELO_ISSN[1])) print_issn = models.CharField(_('Print ISSN'), max_length=9, db_index=True) eletronic_issn = models.CharField(_('Electronic ISSN'), max_length=9, db_index=True) subject_descriptors = models.CharField(_('Subject / Descriptors'), max_length=1024) init_year = models.CharField(_('Initial Year'), max_length=4) init_vol = models.CharField(_('Initial Volume'), max_length=16) init_num = models.CharField(_('Initial Number'), max_length=16) final_year = models.CharField(_('Final Year'), max_length=4, null=True, blank=True) final_vol = models.CharField(_('Final Volume'), max_length=16, null=False, blank=True) final_num = models.CharField(_('Final Number'), max_length=16, null=False, blank=True) medline_title = models.CharField(_('Medline Title'), max_length=256, null=True, blank=True) medline_code = models.CharField(_('Medline Code'), max_length=64, null=True, blank=True) frequency = models.CharField(_('Frequency'), max_length=16, choices=sorted(choices.FREQUENCY, key=lambda FREQUENCY: FREQUENCY[1])) editorial_standard = models.CharField(_('Editorial Standard'), max_length=64, choices=sorted(choices.STANDARD, key=lambda STANDARD: STANDARD[1])) ctrl_vocabulary = models.CharField(_('Controlled Vocabulary'), max_length=64, choices=choices.CTRL_VOCABULARY) pub_level = models.CharField(_('Publication Level'), max_length=64, choices=sorted(choices.PUBLICATION_LEVEL, key=lambda PUBLICATION_LEVEL: PUBLICATION_LEVEL[1])) secs_code = models.CharField(_('SECS Code'), max_length=64, null=False, blank=True) copyrighter = models.CharField(_('Copyrighter'), max_length=254) url_online_submission = models.CharField(_('URL of online submission'), max_length=128, null=True, blank=True) url_journal = models.CharField(_('URL of the journal'), max_length=128, null=True, blank=True) notes = models.TextField(_('Notes'), max_length=254, null=True, blank=True) index_coverage = models.TextField(_('Index Coverage'), null=True, blank=True) cover = models.ImageField(_('Journal Cover'), upload_to='img/journal_cover/', null=True, blank=True) logo = models.ImageField(_('Journal Logo'), upload_to='img/journals_logos', null=True, blank=True) is_trashed = models.BooleanField(_('Is trashed?'), default=False, db_index=True) other_previous_title = models.CharField(_('Other Previous Title'), max_length=255, blank=True) editor_name = models.CharField(_('Editor Names'), max_length=512) editor_address = models.CharField(_('Editor Address'), max_length=512) editor_address_city = models.CharField(_('Editor City'), max_length=256) editor_address_state = models.CharField(_('Editor State/Province/Region'), max_length=128) editor_address_zip = models.CharField(_('Editor Zip/Postal Code'), max_length=64) editor_address_country = modelfields.CountryField(_('Editor Country')) editor_phone1 = models.CharField(_('Editor Phone 1'), max_length=32) editor_phone2 = models.CharField(_('Editor Phone 2'), null=True, blank=True, max_length=32) editor_email = models.EmailField(_('Editor E-mail')) publisher_name = models.CharField(_('Publisher Name'), max_length=256) publisher_country = modelfields.CountryField(_('Publisher Country')) publisher_state = models.CharField(_('Publisher State/Province/Region'), max_length=64) publication_city = models.CharField(_('Publication City'), max_length=64) is_indexed_scie = models.BooleanField(_('SCIE'), default=False) is_indexed_ssci = models.BooleanField(_('SSCI'), default=False) is_indexed_aehci = models.BooleanField(_('A&HCI'), default=False) def __unicode__(self): return self.title class Meta: ordering = ['title'] permissions = (("list_journal", "Can list Journals"), ("list_editor_journal", "Can list editor Journals")) def issues_as_grid(self, is_available=True): objects_all = self.issue_set.available(is_available).order_by( '-publication_year', '-volume') grid = OrderedDict() for issue in objects_all: year_node = grid.setdefault(issue.publication_year, OrderedDict()) volume_node = year_node.setdefault(issue.volume, []) volume_node.append(issue) for year, volume in grid.items(): for vol, issues in volume.items(): issues.sort(key=lambda x: x.order) return grid def has_issues(self, issues): """ Returns ``True`` if all the given issues are bound to the journal. ``issues`` is a list of Issue pk. """ issues_to_test = set(int(issue) for issue in issues) bound_issues = set(issue.pk for issue in self.issue_set.all()) return issues_to_test.issubset(bound_issues) def reorder_issues(self, new_order, publication_year, volume=None): """ Make persistent the ordering received as a list of ``pk``, to all the issues in a given ``publication_year`` and ``volume``. The lenght of ``new_order`` must match with the subset of issues by ``publication_year`` and ``volume``. """ filters = {'publication_year': publication_year} if volume: filters['volume'] = volume issues = self.issue_set.filter(**filters) issues_count = issues.count() new_order_count = len(new_order) if new_order_count != issues_count: raise ValueError('new_order lenght does not match. %s:%s' % (new_order_count, issues_count)) with transaction.commit_on_success(): for i, pk in enumerate(new_order): order = i + 1 issue = issues.get(pk=pk) issue.order = order issue.save() def is_editor(self, user): """ Returns a boolean value depending if the given user is an editor of the current journal. """ try: self.editors.get(id=user.id) except ObjectDoesNotExist: return False return True @property def scielo_pid(self): """ Returns the ISSN used as PID on SciELO public catalogs. """ attr = u'print_issn' if self.scielo_issn == u'print' else u'eletronic_issn' return getattr(self, attr) def join(self, collection, responsible): """Make this journal part of the collection. """ Membership.objects.create(journal=self, collection=collection, created_by=responsible, status='inprogress') def membership_info(self, collection, attribute=None): """Retrieve info about the relation of this journal with a given collection. """ rel = self.membership_set.get(collection=collection) if attribute: return getattr(rel, attribute) else: return rel def change_status(self, collection, new_status, reason, responsible): rel = self.membership_info(collection) rel.status = new_status rel.reason = reason rel.save() class Membership(models.Model): """ Represents the many-to-many relation between Journal and Collection. """ journal = models.ForeignKey('Journal') collection = models.ForeignKey('Collection') status = models.CharField(max_length=16, default="inprogress", choices=choices.JOURNAL_PUBLICATION_STATUS) since = models.DateTimeField(auto_now=True) reason = models.TextField(_('Why are you changing the publication status?'), blank=True, default="") created_by = models.ForeignKey(User, editable=False) def save(self, *args, **kwargs): """ Always save a copy at JournalTimeline """ super(Membership, self).save(*args, **kwargs) JournalTimeline.objects.create(journal=self.journal, collection=self.collection, status=self.status, reason=self.reason, created_by=self.created_by, since=self.since) class Meta(): unique_together = ("journal", "collection") class JournalTimeline(models.Model): """ Represents the status history of a journal. """ journal = models.ForeignKey('Journal', related_name='statuses') collection = models.ForeignKey('Collection') status = models.CharField(max_length=16, choices=choices.JOURNAL_PUBLICATION_STATUS) since = models.DateTimeField() reason = models.TextField(default="") created_by = models.ForeignKey(User) class JournalTitle(caching.base.CachingMixin, models.Model): objects = caching.base.CachingManager() nocacheobjects = models.Manager() journal = models.ForeignKey(Journal, related_name='other_titles') title = models.CharField(_('Title'), null=False, max_length=128) category = models.CharField(_('Title Category'), null=False, max_length=128, choices=sorted(choices.TITLE_CATEGORY, key=lambda TITLE_CATEGORY: TITLE_CATEGORY[1])) class JournalMission(caching.base.CachingMixin, models.Model): objects = caching.base.CachingManager() nocacheobjects = models.Manager() journal = models.ForeignKey(Journal, related_name='missions') description = models.TextField(_('Mission')) language = models.ForeignKey('Language', blank=False, null=True) class UseLicense(caching.base.CachingMixin, models.Model): objects = caching.base.CachingManager() nocacheobjects = models.Manager() license_code = models.CharField(_('License Code'), unique=True, null=False, blank=False, max_length=64) reference_url = models.URLField(_('License Reference URL'), null=True, blank=True) disclaimer = models.TextField(_('Disclaimer'), null=True, blank=True, max_length=512) is_default = models.BooleanField(_('Is Default?'), default=False) def __unicode__(self): return self.license_code class Meta: ordering = ['license_code'] def save(self, *args, **kwargs): """ Only one UseLicense must be the default (is_default==True). If already have one, these will be unset as default (is_default==False) If None is already setted, this instance been saved, will be the default. If the only one is unsetted as default, then will be foreced to be the default anyway, to allways get one license setted as default """ qs = UseLicense.objects.filter(is_default=True) if (qs.count() == 0 ) or (self in qs): # no other was default, or ``self`` is the current default one, # so ``self`` will be set as default self.is_default = True if self.is_default: if self.pk: qs = qs.exclude(pk=self.pk) if qs.count() != 0: qs.update(is_default=False) super(UseLicense, self).save(*args, **kwargs) class TranslatedData(caching.base.CachingMixin, models.Model): objects = caching.base.CachingManager() nocacheobjects = models.Manager() translation = models.CharField(_('Translation'), null=True, blank=True, max_length=512) language = models.CharField(_('Language'), choices=sorted(choices.LANGUAGE, key=lambda LANGUAGE: LANGUAGE[1]), null=False, blank=False, max_length=32) model = models.CharField(_('Model'), null=False, blank=False, max_length=32) field = models.CharField(_('Field'), null=False, blank=False, max_length=32) def __unicode__(self): return self.translation if self.translation is not None else 'Missing trans: {0}.{1}'.format(self.model, self.field) class SectionTitle(caching.base.CachingMixin, models.Model): objects = caching.base.CachingManager() nocacheobjects = models.Manager() section = models.ForeignKey('Section', related_name='titles') title = models.CharField(_('Title'), max_length=256, null=False) language = models.ForeignKey('Language') class Meta: ordering = ['title'] class Section(caching.base.CachingMixin, models.Model): """ Represents a multilingual section of one/many Issues of a given Journal. ``legacy_code`` contains the section code used by the old title manager. We've decided to store this value just by historical reasons, and we don't know if it will last forever. """ #Custom manager objects = SectionCustomManager() nocacheobjects = models.Manager() userobjects = modelmanagers.SectionManager() journal = models.ForeignKey(Journal) code = models.CharField(unique=True, max_length=21, blank=True) legacy_code = models.CharField(null=True, blank=True, max_length=16) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) is_trashed = models.BooleanField(_('Is trashed?'), default=False, db_index=True) def __unicode__(self): return ' / '.join([sec_title.title for sec_title in self.titles.all().order_by('language')]) @property def actual_code(self): if not self.pk or not self.code: raise AttributeError('section must be saved in order to have a code') return self.code def is_used(self): try: return True if self.issue_set.all().count() else False except ValueError: # raised when the object is not yet saved return False def add_title(self, title, language): """ Adds a section title in the given language. A Language instance must be passed as the language argument. """ SectionTitle.objects.create(section=self, title=title, language=language) def _suggest_code(self,
is computed. Returns ------- corr: float Interquartile range of 1-dimensional sequence. """ #ny.percentile(sig, 75) - ny.percentile(sig, 25) return np.percentile(sig, 75) - np.percentile(sig, 25) # Kurtosis def calc_kurtosis(sig): """Compute kurtosis along the specified axes. Parameters ---------- input: ndarray input from which kurtosis is computed. Returns ------- k: int kurtosis result. """ return kurtosis(sig) # Skewness def calc_skewness(sig): """Compute skewness along the specified axes. Parameters ---------- input: ndarray input from which skewness is computed. Returns ------- s: int skewness result. """ return skew(sig) # Mean def calc_mean(sig): """Compute mean value along the specified axes. Parameters ---------- input: ndarray input from which mean is computed. Returns ------- m: int mean result. """ # m = mean(sig) return np.mean(sig) # Standard Deviation def calc_std(sig): """Compute standard deviation (std) along the specified axes. Parameters ---------- input: ndarray input from which std is computed. Returns ------- std_value: int std result. """ return np.std(sig) # Interquartile Range def calc_iqr(sig): """Compute interquartile range along the specified axes. Parameters ---------- input: ndarray input from which interquartile range is computed. Returns ------- iqr: int interquartile range result. """ # iqr = subtract(*percentile(sig, [75, 25])) return np.percentile(sig, 75) - np.percentile(sig, 25) # Mean Absolute Deviation def calc_meanad(sig): """Compute mean absolute deviation along the specified axes. Parameters ---------- input: ndarray input from which mean absolute deviation is computed. Returns ------- mad: int mean absolute deviation result. """ m = np.mean(sig) diff = [abs(x-m) for x in sig] return np.mean(diff) # Median Absolute Deviation def calc_medad(sig): """Compute mean absolute deviation along the specified axes. Parameters ---------- input: ndarray input from which mean absolute deviation is computed. Returns ------- mad: int mean absolute deviation result. """ m = np.median(sig) diff = [abs(x-m) for x in sig] return np.median(diff) # Root Mean Square def rms(sig): """Compute root mean square along the specified axes. Parameters ---------- input: ndarray input from which root mean square is computed. Returns ------- rms: int square root of the arithmetic mean (average) of the squares of the original values. """ return np.sqrt(np.sum(np.array(sig)**2)/len(sig)) # Histogram for json format def hist(sig, nbins, r): """Compute histogram along the specified axes. Parameters ---------- sig: ndarray input from histogram is computed. nbins: int the number of equal-width bins in the givel range. rang: float the lower(-r) and upper(r) range of the bins. Returns ------- histsig: ndarray the values of the histogram bin_edges: ndarray the bin_edges, 'len(hist)+1' """ histsig, bin_edges = np.histogram(sig, bins=nbins[0], range=[-r[0], r[0]], density=True) #TODO:subsampling parameter # bin_edges = bin_edges[:-1] # bin_edges += (bin_edges[1]-bin_edges[0])/2. return tuple(histsig) def minpeaks(sig): """Compute number of minimum peaks along the specified axes. Parameters ---------- sig: ndarray Returns ------- float min number of peaks """ diff_sig = np.diff(sig) return np.sum([1 for nd in range(len(diff_sig[:-1])) if (diff_sig[nd]<0 and diff_sig[nd + 1]>0)]) def maxpeaks(sig): """Compute number of peaks along the specified axes. Parameters ---------- sig: ndarray input from histogram is computed. type: string can be 'all', 'max', and 'min', and expresses which peaks are going to be accounted Returns ------- num_p: float total number of peaks """ diff_sig = np.diff(sig) return np.sum([1 for nd in range(len(diff_sig[:-1])) if (diff_sig[nd+1]<0 and diff_sig[nd]>0)]) # Spectral Centroid def spectral_centroid(sign, fs): #center portion of the signal """Barycenter of the spectrum. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- spread: float centroid """ f, ff = plotfft(sign, fs) if not np.sum(ff): return 0 else: return np.dot(f,ff/np.sum(ff)) # Spectral Spread def spectral_spread(sign, fs): """Measures the spread of the spectrum around its mean value. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- spread: float spread """ f, ff = plotfft(sign, fs) spect_centr = spectral_centroid(sign, fs) if not np.sum(ff): return 0 else: return np.dot(((f-spect_centr)**2), (ff / np.sum(ff))) # Spectral Skewness def spectral_skewness(sign, fs): """Measures the asymmetry of a distribution around its mean value. Computed from the 3rd order moment. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- skeness: float skeness """ f, ff = plotfft(sign, fs) spect_centr = spectral_centroid(sign, fs) if not spectral_spread(sign, fs): return 0 else: skew = ((f - spect_centr) ** 3) * (ff / np.sum(ff)) return np.sum(skew) / (spectral_spread(sign, fs) ** (3 / 2)) # Spectral Kurtosis def spectral_kurtosis(sign, fs): """Measures the flatness of a distribution around its mean value. Computed from the 4th order moment. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- kurtosis: float kurtosis """ f, ff = plotfft(sign, fs) if not spectral_spread(sign, fs): return 0 else: spect_kurt = ((f - spectral_centroid(sign, fs)) ** 4) * (ff / np.sum(ff)) return np.sum(spect_kurt) / (spectral_spread(sign, fs)**2) # Spectral Slope def spectral_slope(sign, fs): """Computes the constants m and b of the function aFFT = mf + b, obtained by linear regression of the spectral amplitude. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- m: float slope b: float y-intercept """ f, ff = plotfft(sign, fs) if not(list(f)): return 0 else: if not (len(f) * np.dot(f, f) - np.sum(f) ** 2): return 0 else: return (len(f) * np.dot(f, ff) - np.sum(f) * np.sum(ff)) / (len(f) * np.dot(f, f) - np.sum(f) ** 2) # Spectral Decrease def spectral_decrease(sign, fs): """Represents the amount of decraesing of the spectra amplitude. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- spectrak decrease """ f, ff = plotfft(sign, fs) k = len(ff) soma_num = 0 for a in range(2, k): soma_num = soma_num + ((ff[a]-ff[1])/(a-1)) ff2 = ff[2:] if not np.sum(ff2): return 0 else: soma_den = 1 / np.sum(ff2) return soma_den * soma_num def spectral_roll_on(sign, fs): """Compute the spectral roll-on of the signal, i.e., the frequency where 5% of the signal energy is contained below of this value. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- roll_off: float spectral roll-on """ output = 0 f, ff = plotfft(sign, fs) cum_ff = np.cumsum(ff) value = 0.05*(sum(ff)) for i in range(len(ff)): if cum_ff[i] >= value: output = f[i] break return output def spectral_roll_off(sign, fs): """Compute the spectral roll-off of the signal, i.e., the frequency where 95% of the signal energy is contained below of this value. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- roll_off: float spectral roll-off """ output = 0 f, ff = plotfft(sign, fs) cum_ff = np.cumsum(ff) value = 0.95*(sum(ff)) for i in range(len(ff)): if cum_ff[i] >= value: output = f[i] break return output def curve_distance(sign, fs): """Euclidean distance of the signal's cumulative sum of the FFT elements to the respective linear regression. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- curve distance: float curve distance """ f, ff = plotfft(sign, fs) cum_ff = np.cumsum(ff) points_y = np.linspace(0, cum_ff[-1], len(cum_ff)) return np.sum(points_y-cum_ff) def spect_variation(sign, fs): """Amount of variation of the spectrum along time. Computed from the normalized cross-correlation between two consecutive amplitude spectra. Parameters ---------- sign: ndarray signal from which spectral slope is computed. fs: int sampling frequency of the signal Returns ------- variation: float """ f, ff = plotfft(sign, fs) energy, freq = signal_energy(ff, f) sum1 = 0 sum2 = 0 sum3 = 0 for a in range(len(energy)-1): sum1 = sum1+(energy[a-1]*energy[a]) sum2 = sum2+(energy[a-1]**2) sum3 = sum3+(energy[a]**2) if not sum2 or not sum3: variation = 1 else: variation = 1-((sum1)/((sum2**0.5)*(sum3**0.5))) return variation # Variance def variance(sign, FS): """ Measures how far the numbers are spread out. Parameters ---------- sig: ndarray input from histogram is computed. fs: int sampling frequency of the signal Returns ------- num_p: float signal variance """ time = compute_time(sign, FS) soma_den = 0 soma_num = 0 for z in range(0, len(sign)): soma_num = soma_num + (time[z]*((sign[z]*np.mean(sign))**2)) soma_den = soma_den +
= OrderedDict([ ('peer_address', YLeaf(YType.str, 'peer-address')), ('plsp_id', YLeaf(YType.int32, 'plsp-id')), ('tunnel_name', YLeaf(YType.str, 'tunnel-name')), ('pcc_address', YLeaf(YType.str, 'pcc-address')), ('tunnel_name_xr', YLeaf(YType.str, 'tunnel-name-xr')), ]) self.peer_address = None self.plsp_id = None self.tunnel_name = None self.pcc_address = None self.tunnel_name_xr = None self.brief_lsp_information = YList(self) self._segment_path = lambda: "tunnel-info" + "[peer-address='" + str(self.peer_address) + "']" + "[plsp-id='" + str(self.plsp_id) + "']" + "[tunnel-name='" + str(self.tunnel_name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/tunnel-infos/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.TunnelInfos.TunnelInfo, ['peer_address', 'plsp_id', 'tunnel_name', 'pcc_address', 'tunnel_name_xr'], name, value) class BriefLspInformation(Entity): """ Brief LSP information .. attribute:: source_address Source address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: destination_address Destination address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: tunnel_id Tunnel ID **type**\: int **range:** 0..4294967295 .. attribute:: lspid LSP ID **type**\: int **range:** 0..4294967295 .. attribute:: binding_sid Binding SID **type**\: int **range:** 0..4294967295 .. attribute:: lsp_setup_type LSP Setup Type **type**\: :py:class:`LspSetup <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.LspSetup>` .. attribute:: operational_state Operational state **type**\: :py:class:`PcepLspState <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PcepLspState>` .. attribute:: administrative_state Admin state **type**\: :py:class:`LspState <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.LspState>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.TunnelInfos.TunnelInfo.BriefLspInformation, self).__init__() self.yang_name = "brief-lsp-information" self.yang_parent_name = "tunnel-info" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('source_address', YLeaf(YType.str, 'source-address')), ('destination_address', YLeaf(YType.str, 'destination-address')), ('tunnel_id', YLeaf(YType.uint32, 'tunnel-id')), ('lspid', YLeaf(YType.uint32, 'lspid')), ('binding_sid', YLeaf(YType.uint32, 'binding-sid')), ('lsp_setup_type', YLeaf(YType.enumeration, 'lsp-setup-type')), ('operational_state', YLeaf(YType.enumeration, 'operational-state')), ('administrative_state', YLeaf(YType.enumeration, 'administrative-state')), ]) self.source_address = None self.destination_address = None self.tunnel_id = None self.lspid = None self.binding_sid = None self.lsp_setup_type = None self.operational_state = None self.administrative_state = None self._segment_path = lambda: "brief-lsp-information" def __setattr__(self, name, value): self._perform_setattr(PceLspData.TunnelInfos.TunnelInfo.BriefLspInformation, ['source_address', 'destination_address', 'tunnel_id', 'lspid', 'binding_sid', 'lsp_setup_type', 'operational_state', 'administrative_state'], name, value) class LspSummary(Entity): """ LSP summary database in XTC .. attribute:: all_ls_ps Summary for all peers **type**\: :py:class:`AllLsPs <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.LspSummary.AllLsPs>` .. attribute:: peer_ls_ps_info Number of LSPs for specific peer **type**\: list of :py:class:`PeerLsPsInfo <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.LspSummary.PeerLsPsInfo>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.LspSummary, self).__init__() self.yang_name = "lsp-summary" self.yang_parent_name = "pce-lsp-data" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([("all-ls-ps", ("all_ls_ps", PceLspData.LspSummary.AllLsPs))]) self._child_list_classes = OrderedDict([("peer-ls-ps-info", ("peer_ls_ps_info", PceLspData.LspSummary.PeerLsPsInfo))]) self._leafs = OrderedDict() self.all_ls_ps = PceLspData.LspSummary.AllLsPs() self.all_ls_ps.parent = self self._children_name_map["all_ls_ps"] = "all-ls-ps" self._children_yang_names.add("all-ls-ps") self.peer_ls_ps_info = YList(self) self._segment_path = lambda: "lsp-summary" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.LspSummary, [], name, value) class AllLsPs(Entity): """ Summary for all peers .. attribute:: all_ls_ps Number of all LSPs **type**\: int **range:** 0..4294967295 .. attribute:: up_ls_ps Number of operational LSPs **type**\: int **range:** 0..4294967295 .. attribute:: admin_up_ls_ps Number of administratively up LSPs **type**\: int **range:** 0..4294967295 .. attribute:: sr_ls_ps Number of LSPs with Segment routing setup type **type**\: int **range:** 0..4294967295 .. attribute:: rsvp_ls_ps Number of LSPs with RSVP setup type **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.LspSummary.AllLsPs, self).__init__() self.yang_name = "all-ls-ps" self.yang_parent_name = "lsp-summary" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('all_ls_ps', YLeaf(YType.uint32, 'all-ls-ps')), ('up_ls_ps', YLeaf(YType.uint32, 'up-ls-ps')), ('admin_up_ls_ps', YLeaf(YType.uint32, 'admin-up-ls-ps')), ('sr_ls_ps', YLeaf(YType.uint32, 'sr-ls-ps')), ('rsvp_ls_ps', YLeaf(YType.uint32, 'rsvp-ls-ps')), ]) self.all_ls_ps = None self.up_ls_ps = None self.admin_up_ls_ps = None self.sr_ls_ps = None self.rsvp_ls_ps = None self._segment_path = lambda: "all-ls-ps" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/lsp-summary/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.LspSummary.AllLsPs, ['all_ls_ps', 'up_ls_ps', 'admin_up_ls_ps', 'sr_ls_ps', 'rsvp_ls_ps'], name, value) class PeerLsPsInfo(Entity): """ Number of LSPs for specific peer .. attribute:: lsp_summary Number of LSPs for specific peer **type**\: :py:class:`LspSummary_ <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.LspSummary.PeerLsPsInfo.LspSummary_>` .. attribute:: peer_address Peer IPv4 address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.LspSummary.PeerLsPsInfo, self).__init__() self.yang_name = "peer-ls-ps-info" self.yang_parent_name = "lsp-summary" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([("lsp-summary", ("lsp_summary", PceLspData.LspSummary.PeerLsPsInfo.LspSummary_))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('peer_address', YLeaf(YType.str, 'peer-address')), ]) self.peer_address = None self.lsp_summary = PceLspData.LspSummary.PeerLsPsInfo.LspSummary_() self.lsp_summary.parent = self self._children_name_map["lsp_summary"] = "lsp-summary" self._children_yang_names.add("lsp-summary") self._segment_path = lambda: "peer-ls-ps-info" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/lsp-summary/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.LspSummary.PeerLsPsInfo, ['peer_address'], name, value) class LspSummary_(Entity): """ Number of LSPs for specific peer .. attribute:: all_ls_ps Number of all LSPs **type**\: int **range:** 0..4294967295 .. attribute:: up_ls_ps Number of operational LSPs **type**\: int **range:** 0..4294967295 .. attribute:: admin_up_ls_ps Number of administratively up LSPs **type**\: int **range:** 0..4294967295 .. attribute:: sr_ls_ps Number of LSPs with Segment routing setup type **type**\: int **range:** 0..4294967295 .. attribute:: rsvp_ls_ps Number of LSPs with RSVP setup type **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.LspSummary.PeerLsPsInfo.LspSummary_, self).__init__() self.yang_name = "lsp-summary" self.yang_parent_name = "peer-ls-ps-info" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('all_ls_ps', YLeaf(YType.uint32, 'all-ls-ps')), ('up_ls_ps', YLeaf(YType.uint32, 'up-ls-ps')), ('admin_up_ls_ps', YLeaf(YType.uint32, 'admin-up-ls-ps')), ('sr_ls_ps', YLeaf(YType.uint32, 'sr-ls-ps')), ('rsvp_ls_ps', YLeaf(YType.uint32, 'rsvp-ls-ps')), ]) self.all_ls_ps = None self.up_ls_ps = None self.admin_up_ls_ps = None self.sr_ls_ps = None self.rsvp_ls_ps = None self._segment_path = lambda: "lsp-summary" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/lsp-summary/peer-ls-ps-info/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.LspSummary.PeerLsPsInfo.LspSummary_, ['all_ls_ps', 'up_ls_ps', 'admin_up_ls_ps', 'sr_ls_ps', 'rsvp_ls_ps'], name, value) class TunnelDetailInfos(Entity): """ Detailed tunnel database in XTC .. attribute:: tunnel_detail_info Detailed tunnel information **type**\: list of :py:class:`TunnelDetailInfo <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.TunnelDetailInfos.TunnelDetailInfo>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.TunnelDetailInfos, self).__init__() self.yang_name = "tunnel-detail-infos" self.yang_parent_name = "pce-lsp-data" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("tunnel-detail-info", ("tunnel_detail_info", PceLspData.TunnelDetailInfos.TunnelDetailInfo))]) self._leafs = OrderedDict() self.tunnel_detail_info = YList(self) self._segment_path = lambda: "tunnel-detail-infos" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.TunnelDetailInfos, [], name, value) class TunnelDetailInfo(Entity): """ Detailed tunnel information .. attribute:: peer_address (key) Peer Address **type**\: union of the below types: **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? **type**\: str **pattern:** ((\:\|[0\-9a\-fA\-F]{0,4})\:)([0\-9a\-fA\-F]{0,4}\:){0,5}((([0\-9a\-fA\-F]{0,4}\:)?(\:\|[0\-9a\-fA\-F]{0,4}))\|(((25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])\\.){3}(25[0\-5]\|2[0\-4][0\-9]\|[01]?[0\-9]?[0\-9])))(%[\\p{N}\\p{L}]+)? .. attribute:: plsp_id (key) PCEP LSP ID **type**\: int **range:** \-2147483648..2147483647 .. attribute:: tunnel_name (key) Tunnel name **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ .. attribute:: private_lsp_information Private LSP information **type**\: :py:class:`PrivateLspInformation <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation>` .. attribute:: pcc_address PCC address **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? .. attribute:: tunnel_name_xr Tunnel Name **type**\: str .. attribute:: detail_lsp_information Detail LSP information **type**\: list of :py:class:`DetailLspInformation <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.TunnelDetailInfos.TunnelDetailInfo.DetailLspInformation>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.TunnelDetailInfos.TunnelDetailInfo, self).__init__() self.yang_name = "tunnel-detail-info" self.yang_parent_name = "tunnel-detail-infos" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['peer_address','plsp_id','tunnel_name'] self._child_container_classes = OrderedDict([("private-lsp-information", ("private_lsp_information", PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation))]) self._child_list_classes = OrderedDict([("detail-lsp-information", ("detail_lsp_information", PceLspData.TunnelDetailInfos.TunnelDetailInfo.DetailLspInformation))]) self._leafs = OrderedDict([ ('peer_address', YLeaf(YType.str, 'peer-address')), ('plsp_id', YLeaf(YType.int32, 'plsp-id')), ('tunnel_name', YLeaf(YType.str, 'tunnel-name')), ('pcc_address', YLeaf(YType.str, 'pcc-address')), ('tunnel_name_xr', YLeaf(YType.str, 'tunnel-name-xr')), ]) self.peer_address = None self.plsp_id = None self.tunnel_name = None self.pcc_address = None self.tunnel_name_xr = None self.private_lsp_information = PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation() self.private_lsp_information.parent = self self._children_name_map["private_lsp_information"] = "private-lsp-information" self._children_yang_names.add("private-lsp-information") self.detail_lsp_information = YList(self) self._segment_path = lambda: "tunnel-detail-info" + "[peer-address='" + str(self.peer_address) + "']" + "[plsp-id='" + str(self.plsp_id) + "']" + "[tunnel-name='" + str(self.tunnel_name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-infra-xtc-oper:pce-lsp-data/tunnel-detail-infos/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(PceLspData.TunnelDetailInfos.TunnelDetailInfo, ['peer_address', 'plsp_id', 'tunnel_name', 'pcc_address', 'tunnel_name_xr'], name, value) class PrivateLspInformation(Entity): """ Private LSP information .. attribute:: event_buffer LSP Event buffer **type**\: list of :py:class:`EventBuffer <ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_xtc_oper.PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation.EventBuffer>` """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation, self).__init__() self.yang_name = "private-lsp-information" self.yang_parent_name = "tunnel-detail-info" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("event-buffer", ("event_buffer", PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation.EventBuffer))]) self._leafs = OrderedDict() self.event_buffer = YList(self) self._segment_path = lambda: "private-lsp-information" def __setattr__(self, name, value): self._perform_setattr(PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation, [], name, value) class EventBuffer(Entity): """ LSP Event buffer .. attribute:: event_message Event message **type**\: str .. attribute:: time_stamp Event time, relative to Jan 1, 1970 **type**\: int **range:** 0..4294967295 """ _prefix = 'infra-xtc-oper' _revision = '2017-08-24' def __init__(self): super(PceLspData.TunnelDetailInfos.TunnelDetailInfo.PrivateLspInformation.EventBuffer, self).__init__()
from collections import defaultdict from typing import Iterable, List import torch from ppq.core import (COMPELING_OP_TYPES, LINEAR_ACTIVATIONS, ORT_OOS_FUSE_START_OPS, PPLCUDA_ACTIVATIONS, QuantizationProperty, QuantizationStates, RoundingPolicy, TargetPlatform, TensorQuantizationConfig, empty_ppq_cache) from ppq.executor import BaseGraphExecutor from ppq.IR import GraphCommandProcesser, QuantableOperation, Variable from ppq.IR.base.graph import Operation from ppq.IR.quantize import QuantableVariable from ppq.IR.search import SearchableGraph, TraversalCommand from ppq.quantization.observer.range import minmax_to_scale_offset from .base import QuantizationOptimizationPass class QuantizeReducePass(QuantizationOptimizationPass): """ QuantizeReducePass 用来简化量化定点信息:通常每一个 Quantable 算子都有前后两个定点信息, 而运算时通常可以屏蔽一半定点信息以加速。QuantizeReducePass 被设计用来找出可以屏蔽的定点信息。 对于两个相邻算子(op_1 -> op_2)而言,将会出现以下几种情况 1. op_1 与 op_2 均不量化,此时无需对数据流进行额外处理 2. op_1 量化,op_2 不量化,op_1 需要对结果进行量化 3. op_1 不量化,op_2 量化,此时需要按 op_2 的量化参数对数据流进行量化 4. op_1 与 op_2 均量化,此时分情况讨论: 4.1. op_1 量化位宽高于 op_2,此时按 op_2 的量化参数对数据流进行量化 4.2. op_1 量化位宽低于 op_2,此时按 op_1 的量化参数对数据流进行量化 4.3. op_1 量化位等于 op_2,此时按 op_1 的量化参数对数据流进行量化 ------> op_2 对于更为复杂的网络结构 op_1 ----+ ------> op_3 op_1 如果有定点信息,则必须对数据流进行量化 op_2, op_3 则需要分别确认是否需要再次对输入数据执行再次量化 总结: 当 下游节点 的量化位宽大于等于 上游节点 时,按 上游节点 的量化信息执行量化,此时量化操作发生在上游 当 下游节点 的量化位宽小于 上游节点 时,按 下游节点 的量化信息执行量化,此时量化操作发生在下游(上游量化未必可以省略) QuantizeReducePass is used to reduce quantization fixation: we could block half of fixation points to accelerate the inference for 2 neighbouring ops(op_1 -> op_2), there are several situations: 1. neither of op_1 and op_2 needs quantization 2. op_1 needs quantization while op_2 doesn't 3. op_2 needs quantization while op_1 does 4. both need quantization: 4.1. bit width of op_1 is larger than op_2, then we should use quantization parameters of op_2 4.2. bit width of op_2 is larger than op_1, then we should use quantization parameters of op_1 4.3. equal, we should use quantization parameters of op_1 Conclusion: when the bit width of downstream op is larger or equal to that of upstream op, we should use quantization information of upstream op, otherwise we should use quantization information of downstream op(and the upstream quantization may not be omitted) """ def __init__(self) -> None: super().__init__(name='PPQ Quantize Point Reduce Pass') def optimize( self, processer: GraphCommandProcesser, dataloader: Iterable, executor: BaseGraphExecutor, **kwargs ) -> None: graph = processer.graph for _, varaible in graph.variables.items(): assert isinstance(varaible, Variable) source_op = varaible.source_op if source_op is None: continue # input variables in network, they do not have a source if not isinstance(source_op, QuantableOperation): continue source_config = source_op.config.output_quantization_config[source_op.outputs.index(varaible)] for downstream_op, dest_idx in zip(varaible.dest_ops, varaible.dest_idx): if downstream_op is None: continue # output variables in network, they do not have a destination if not isinstance(downstream_op, QuantableOperation): continue input_config = downstream_op.config.input_quantization_config[dest_idx] if source_op.platform == downstream_op.platform: if input_config.state == QuantizationStates.INITIAL: input_config.dominated_by = source_config class QuantizeRefinePass(QuantizationOptimizationPass): """ 修复算子上的定点错误,主要针对 Onnx 的一些特殊算子,其部分输入需要定点,而部分输入不需要定点 例如对于 Reshape 算子而言,其存在 data, shape 两个输入,其中 shape 不需要定点 因此 QuantizeRefinePass 会纠正 Reshape 算子的 Quantization config,避免错误地对 shape 输入进行量化。 目前我们针对 'Reshape', 'Slice', 'Gather', 'Clip', 'Pad', 'Resize', 'Split' 算子进行了详细讨论 修正了已知的所有量化行为错误 对于所有平台的 Quantizer 而言,都应当调用 QuantizeRefinePass 修复上述量化行为错误 customize quantization for special operators, more specificly, for certain op, some of inputs need quantization while some don't, this pass refines quantization behaviors of 'Reshape', 'Slice', 'Gather', 'Clip', 'Pad', 'Resize', 'Split' ops this pass should be applied regardless of backend platforms """ def __init__(self) -> None: super().__init__(name='PPQ Quantization Config Refine Pass') @ empty_ppq_cache def optimize( self, processer: GraphCommandProcesser, dataloader: Iterable, executor: BaseGraphExecutor, **kwargs ) -> None: graph = processer.graph for _, operation in graph.operations.items(): if not isinstance(operation, QuantableOperation): continue if operation.type in {'Reshape', 'Slice', 'Gather', 'Clip', 'Pad', 'Resize', 'Split'}: if operation.type == 'Reshape': # Inputs: # data (differentiable) : T # An input tensor. # shape (non-differentiable) : tensor(int64) # Specified shape for output. # see aslo https://github.com/onnx/onnx/blob/master/docs/Operators.md#Reshape assert len(operation.config.input_quantization_config) == 2, f'Reshape Operation {operation.name} should have exact 2 inputs, '\ f'while {len(operation.config.input_quantization_config)} was given, is graph defination different from onnx opset 11?' operation.config.input_quantization_config[-1].state = QuantizationStates.SOI continue if operation.type == 'Slice': # Inputs (3 - 5) # data (differentiable) : T # Tensor of data to extract slices from. # starts (non-differentiable) : Tind # 1-D tensor of starting indices of corresponding axis in `axes` # ends (non-differentiable) : Tind # 1-D tensor of ending indices (exclusive) of corresponding axis in `axes` # axes (optional, non-differentiable) : Tind # 1-D tensor of axes that `starts` and `ends` apply to. Negative value means # counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). # steps (optional, non-differentiable) : Tind # 1-D tensor of slice step of corresponding axis in `axes`. # Negative value means slicing backward. 'steps' cannot be 0. Defaults to 1. # see aslo https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Slice-11 assert len(operation.config.input_quantization_config) in {3, 4, 5}, f'Reshape {operation.name} Operation should have 3 - 5 inputs, '\ f'while {len(operation.config.input_quantization_config)} was given, is graph defination different from onnx opset 11?' for config in operation.config.input_quantization_config[1: ]: config.state = QuantizationStates.SOI continue if operation.type == 'Gather': # Inputs # data (differentiable) : T # Tensor of rank r >= 1. # indices (non-differentiable) : Tind # Tensor of int32/int64 indices, of any rank q. # All index values are expected to be within bounds [-s, s-1] along axis of size s. # It is an error if any of the index values are out of bounds. # see also https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Gather-11 assert len(operation.config.input_quantization_config) == 2, f'Gather Operation {operation.name} should have 2 inputs, '\ f'while {len(operation.config.input_quantization_config)} was given, is graph defination different from onnx opset 11?' operation.config.input_quantization_config[-1].state = QuantizationStates.SOI continue if operation.type == 'Clip': # Inputs (1 - 3) # input : T # Input tensor whose elements to be clipped # min (optional) : T # Minimum value, under which element is replaced by min. # It must be a scalar(tensor of empty shape). # max (optional) : T # Maximum value, above which element is replaced by max. # It must be a scalar(tensor of empty shape). # see aslo https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Clip-11 assert len(operation.config.input_quantization_config) in {1, 2, 3}, f'Clip Operation {operation.name} should have 1 - 3 inputs, '\ f'while {len(operation.config.input_quantization_config)} was given, is graph defination different from onnx opset 11?' for config in operation.config.input_quantization_config[1: ]: config.state = QuantizationStates.PASSIVE_INIT continue if operation.type == 'Pad': # Inputs (2 - 3) # data : T # Input tensor. # pads : tensor(int64) # Tensor of integers indicating the number of padding elements to add or remove # (if negative) at the beginning and end of each axis. # For 2D input tensor, it is the number of pixels. `pads` should be a 1D tensor of shape [2 * input_rank]. # `pads` format should be: [x1_begin, x2_begin,...,x1_end, x2_end,...], # where xi_begin is the number of pad values added at the beginning of axis `i` and xi_end, # the number of pad values added at the end of axis `i`. # constant_value (optional) : T # (Optional) A scalar value to be used if the mode chosen is `constant` (by default it is 0). # https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Pad-11 assert len(operation.config.input_quantization_config) in {2, 3}, f'Pad Operation {operation.name} should have 2 - 3 inputs, '\ f'while {len(operation.config.input_quantization_config)} was given, is graph defination different from onnx opset 11?' operation.config.input_quantization_config[1].state = QuantizationStates.SOI if len(operation.config.input_quantization_config) == 3: operation.config.input_quantization_config[-1].state = QuantizationStates.PASSIVE_INIT continue if operation.type == 'Resize': # Inputs (3 - 4) # X : T1 # N-D tensor # roi : T2 # 1-D tensor given as [start1, ..., startN, end1, ..., endN], # where N is the rank of X. The RoIs' coordinates are normalized in the coordinate system of the input image. # It only takes effect when coordinate_transformation_mode is "tf_crop_and_resize" # scales : tensor(float) # The scale array along each dimension. # It takes value greater than 0. If it's less than 1, it's sampling down, # otherwise, it's upsampling. The number of elements of 'scales' should be the same as the rank of input 'X'. # Only one of 'scales' and 'sizes' can be specified. # If 'size' is needed, the user can use an empty string as the name of 'scales' in this operator's input list. # sizes (optional) : tensor(int64) # The size of the output tensor. # The number of elements of 'sizes' should be the same as the rank of input 'X'.
SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimmjm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vijpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vipjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vijmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vipjmm') SETermsRef.append([ind1, ind2, -1, -1]) if SEmodel>=11: ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uippjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vippjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uippjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vippjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimmjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimmjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimmjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimmjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uippjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vippjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uippjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vippjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimmjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimmjpp') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimmjmm') SETermsRef.append([ind1, ind2, -1, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimmjmm') SETermsRef.append([ind1, ind2, -1, -1]) if SEmodel>=12: ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Uipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipj') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Uimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimj') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uijp') ind3 = ResolvedVarNames.index('Uijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vijp') ind3 = ResolvedVarNames.index('Vijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uijp') ind3 = ResolvedVarNames.index('Vijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Uijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vijm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Uipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vipj') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Uimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimj') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijp') ind3 = ResolvedVarNames.index('Uijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vijp') ind3 = ResolvedVarNames.index('Vijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijp') ind3 = ResolvedVarNames.index('Vijp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Uijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vijm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) if SEmodel>=13: ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Uipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjp') ind3 = ResolvedVarNames.index('Vipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Vipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Uipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjm') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjp') ind3 = ResolvedVarNames.index('Uimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimjp') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjp') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Uimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimjm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Uipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vipjp') ind3 = ResolvedVarNames.index('Vipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Vipjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Uipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vipjm') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjp') ind3 = ResolvedVarNames.index('Uimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimjp') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjp') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Uimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Vimjm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Vij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) if SEmodel>=14: ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Uipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjp') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjp') ind3 = ResolvedVarNames.index('Vipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjp') ind3 = ResolvedVarNames.index('Uipj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Uipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipj') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipj') ind3 = ResolvedVarNames.index('Vipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipj') ind3 = ResolvedVarNames.index('Uipjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Uijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uipjm') ind3 = ResolvedVarNames.index('Vijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vipjm') ind3 = ResolvedVarNames.index('Uijm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Uimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vijm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uijm') ind3 = ResolvedVarNames.index('Vimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vijm') ind3 = ResolvedVarNames.index('Uimjm') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Uimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimjm') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjm') ind3 = ResolvedVarNames.index('Vimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimjm') ind3 = ResolvedVarNames.index('Uimj') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Uimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimj') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimj') ind3 = ResolvedVarNames.index('Vimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Vimj') ind3 = ResolvedVarNames.index('Uimjp') SETermsRef.append([ind1, ind2, ind3, -1]) ind1 = ResolvedVarNames.index('Uij') ind2 = ResolvedVarNames.index('Uimjp') ind3 = ResolvedVarNames.index('Uijp') SETermsRef.append([ind1,
of the sound device, and not the format you gave to `Mix_OpenAudio`, although they may in reality be the same. This is an unfortunate but necessary speed concern. Use `Mix_QuerySpec` to determine if you can handle the data before you register your effect, and take appropriate actions. You may also specify a callback (`d`) that is called when the channel finishes playing. This gives you a more fine-grained control than `Mix_ChannelFinished`, in case you need to free effect-specific resources, etc. If you don't need this, you can specify None. You may set the callbacks before or after calling `Mix_PlayChannel`. Things like `Mix_SetPanning` are just internal special effect functions, so if you are using that, you've already incurred the overhead of a copy to a separate buffer, and that these effects will be in the queue with any functions you've registered. The list of registered effects for a channel is reset when a chunk finishes playing, so you need to explicitly set them with each call to ``Mix_PlayChannel*``. You may also register a special effect function that is to be run after final mixing occurs. The rules for these callbacks are identical to those in `Mix_RegisterEffect`, but they are run after all the channels and the music have been mixed into a single stream, whereas channel-specific effects run on a given channel before any other mixing occurs. These global effect callbacks are call "posteffects". Posteffects only have their `d` function called when they are unregistered (since the main output stream is never "done" in the same sense as a channel). You must unregister them manually when you've had enough. Your callback will be told that the channel being mixed is (`MIX_CHANNEL_POST`) if the processing is considered a posteffect. After all these effects have finished processing, the callback registered through `Mix_SetPostMix` runs, and then the stream goes to the audio device. Do not call `SDL_LockAudio` from your callback function. :Parameters: `chan` : int Channel to set effect on, or `MIX_CHANNEL_POST` for postmix. `f` : function Callback function for effect. Must have the signature (channel: int, stream: `SDL_array`, udata: any) -> None; where channel is the channel being affected, stream contains the audio data and udata is the user variable passed in to this function. `d` : function Callback function for when the effect is done. The function must have the signature (channel: int, udata: any) -> None. `arg` : any User data passed to both callbacks. """ f = _make_MixEffectFunc(f, arg) d = _make_MixEffectDoneFunc(d, arg) _effect_func_refs.append(f) _effect_func_refs.append(d) # TODO: override EffectDone callback to remove refs and prevent # memory leak. Be careful with MIX_CHANNEL_POST _Mix_RegisterEffect(chan, f, d, arg) # Mix_UnregisterEffect cannot be implemented Mix_UnregisterAllEffects = _dll.function( 'Mix_UnregisterAllEffects', '''Unregister all effects for a channel. You may not need to call this explicitly, unless you need to stop all effects from processing in the middle of a chunk's playback. Note that this will also shut off some internal effect processing, since `Mix_SetPanning` and others may use this API under the hood. This is called internally when a channel completes playback. Posteffects are never implicitly unregistered as they are for channels, but they may be explicitly unregistered through this function by specifying `MIX_CHANNEL_POST` for a channel. :Parameters: - `channel`: int ''', args=['channel'], arg_types=[c_int], return_type=c_int, error_return=0) Mix_SetPanning = _dll.function( 'Mix_SetPanning', '''Set the panning of a channel. The left and right channels are specified as integers between 0 and 255, quietest to loudest, respectively. Technically, this is just individual volume control for a sample with two (stereo) channels, so it can be used for more than just panning. If you want real panning, call it like this:: Mix_SetPanning(channel, left, 255 - left) Setting (channel) to `MIX_CHANNEL_POST` registers this as a posteffect, and the panning will be done to the final mixed stream before passing it on to the audio device. This uses the `Mix_RegisterEffect` API internally, and returns without registering the effect function if the audio device is not configured for stereo output. Setting both (left) and (right) to 255 causes this effect to be unregistered, since that is the data's normal state. :Parameters: - `channel`: int - `left`: int - `right`: int ''', args=['channel', 'left', 'right'], arg_types=[c_int, c_ubyte, c_ubyte], return_type=c_int, error_return=0) Mix_SetPosition = _dll.function( 'Mix_SetPosition', '''Set the position of a channel. `angle` is an integer from 0 to 360, that specifies the location of the sound in relation to the listener. `angle` will be reduced as neccesary (540 becomes 180 degrees, -100 becomes 260). Angle 0 is due north, and rotates clockwise as the value increases. For efficiency, the precision of this effect may be limited (angles 1 through 7 might all produce the same effect, 8 through 15 are equal, etc). `distance` is an integer between 0 and 255 that specifies the space between the sound and the listener. The larger the number, the further away the sound is. Using 255 does not guarantee that the channel will be culled from the mixing process or be completely silent. For efficiency, the precision of this effect may be limited (distance 0 through 5 might all produce the same effect, 6 through 10 are equal, etc). Setting `angle` and `distance` to 0 unregisters this effect, since the data would be unchanged. If you need more precise positional audio, consider using OpenAL for spatialized effects instead of SDL_mixer. This is only meant to be a basic effect for simple "3D" games. If the audio device is configured for mono output, then you won't get any effectiveness from the angle; however, distance attenuation on the channel will still occur. While this effect will function with stereo voices, it makes more sense to use voices with only one channel of sound, so when they are mixed through this effect, the positioning will sound correct. You can convert them to mono through SDL before giving them to the mixer in the first place if you like. Setting `channel` to `MIX_CHANNEL_POST` registers this as a posteffect, and the positioning will be done to the final mixed stream before passing it on to the audio device. This is a convenience wrapper over `Mix_SetDistance` and `Mix_SetPanning`. :Parameters: - `channel`: int - `angle`: int - `distance`: int ''', args=['channel', 'angle', 'distance'], arg_types=[c_int, c_short, c_ubyte], return_type=c_int, error_return=0) Mix_SetDistance = _dll.function( 'Mix_SetDistance', '''Set the "distance" of a channel. `distance` is an integer from 0 to 255 that specifies the location of the sound in relation to the listener. Distance 0 is overlapping the listener, and 255 is as far away as possible A distance of 255 does not guarantee silence; in such a case, you might want to try changing the chunk's volume, or just cull the sample from the mixing process with `Mix_HaltChannel`. For efficiency, the precision of this effect may be limited (distances 1 through 7 might all produce the same effect, 8 through 15 are equal, etc). `distance` is an integer between 0 and 255 that specifies the space between the sound and the listener. The larger the number, the further away the sound is. Setting `distance` to 0 unregisters this effect, since the data would be unchanged. If you need more precise positional audio, consider using OpenAL for spatialized effects instead of SDL_mixer. This is only meant to be a basic effect for simple "3D" games. Setting `channel` to `MIX_CHANNEL_POST` registers this as a posteffect, and the distance attenuation will be done to the final mixed stream before passing it on to the audio device. This uses the `Mix_RegisterEffect` API internally. :Parameters: - `channel`: int - `distance`: distance ''', args=['channel', 'distance'], arg_types=[c_int, c_ubyte], return_type=c_int, error_return=0) Mix_SetReverseStereo = _dll.function( 'Mix_SetReverseStereo', '''Causes a channel to reverse its stereo. This is handy if the user has his or her speakers hooked up backwards, or you would like to have a minor bit
command (%s for help, %s to quit): ' % (cyan('h'), cyan('q')) if num is not None: choice = num else: choice = get_input(msg) if isinstance(choice, int): if 0 <= choice <= len(entries): break else: if num is not None: exit("Invalid number {}: must be between 0 and {}" .format(num, len(entries) - 1)) else: msg = "Invalid number: must be between 0 and %s" print(msg % (len(entries) - 1)) elif choice == 'x': if command is None: print('No command has been set. Set command with `c`') else: return _run_ssh_command(entries, username, idfile, command, tunnel) elif choice == 'h': _print_help = True elif choice in ['q', 'quit', 'exit']: print('bye!') return else: # All of these commands take one or more arguments, so the # split length must be at least 2. commands = choice.split() if len(commands) < 2: print(yellow('Unknown command "%s".' % choice)) else: cmd = commands[0] if cmd in ['u', 'i', 'p']: if cmd == 'u': username = commands[1] elif cmd == 'i': _idfile = commands[1] if not os.path.exists(_idfile): print(yellow('No such file: %s' % _idfile)) continue idfile = _idfile elif cmd == 'p': p = commands[1] try: profile = LsiProfile.load(p) _username = profile.username _idfile = expanduser(profile.identity_file) except LsiProfile.LoadError: print(yellow('No such profile: %s' % repr(p))) continue username = _username idfile = _idfile print('username: %s' % green(repr(username))) print('identity file: %s' % green(repr(idfile))) elif cmd == 'f': entries = filter_entries(entries, commands[1:], []) _print_entries = True elif cmd == 'e': entries = filter_entries(entries, [], commands[1:]) _print_entries = True elif cmd == 'c': command = ' '.join(commands[1:]) elif cmd == 'limit': try: limit = int(commands[1]) _print_entries = True except ValueError: print(yellow('Invalid limit (must be an integer)')) elif cmd == 'sort': sort_by = commands[1] if sort_by not in show: show.append(sort_by) _print_entries = True elif cmd == 'show': if show is None: show = commands[1:] else: show.extend(commands[1:]) _print_entries = True else: print(yellow('Unknown command "%s".' % cmd)) return _connect_ssh(entries[choice], username, idfile, tunnel) def _get_path(cmd): """Queries bash to find the path to a commmand on the system.""" if cmd in _PATHS: return _PATHS[cmd] out = subprocess.check_output('which {}'.format(cmd), shell=True) _PATHS[cmd] = out.decode("utf-8").strip() return _PATHS[cmd] def _build_ssh_command(hostname, username, idfile, ssh_command, tunnel): """Uses hostname and other info to construct an SSH command.""" command = [_get_path('ssh'), '-o', 'StrictHostKeyChecking=no', '-o', 'ConnectTimeout=5'] if idfile is not None: command.extend(['-i', idfile]) if tunnel is not None: # If there's a tunnel, run the ssh command on the tunneled host. command.extend(['-A', '-t', tunnel, 'ssh', '-A', '-t']) if username is not None: command.append('{}@{}'.format(username, hostname)) else: command.append(hostname) if ssh_command is not None: command.append(repr(ssh_command)) return(' '.join(command)) def _build_scp_command(hostname, username, idfile, is_get, local_path, remote_path): """ Uses hostname and other info to construct an SCP command. :param hostname: The hostname of the remote machine. :type hostname: ``str`` :param username: The username to use on the remote machine. :type username: ``str`` :param idfile: A path to the identity file to use. :type idfile: ``str`` :param is_get: If true, we are getting a file rather than putting a file. :type is_get: ``bool`` :param local_path: The path on the local file system. :type local_path: ``str`` :param remote_path: The path on the remote file system. :type remote_path: ``str`` """ if hostname.strip() == '' or hostname is None: raise ValueError('Empty hostname') command = [_get_path('scp'), '-o', 'StrictHostKeyChecking=no', '-o', 'ConnectTimeout=5', '-o', 'UserKnownHostsFile={}'.format(_KNOWN_HOSTS_FILE)] if idfile is not None: command.extend(['-i', idfile]) if username is not None: hostname = '%s@%s' % (username, hostname) remote_path = '{}:{}'.format(hostname, remote_path) if is_get: command.extend([remote_path, local_path]) else: command.extend([local_path, remote_path]) return ' '.join(command) def _copy_to(entries, remote_path, local_path, profile): """ Performs an SCP command where the remote_path is the target and the local_path is the source. :param entries: A list of entries. :type entries: ``list`` of :py:class:`HostEntry` :param remote_path: The target path on the remote machine(s). :type remote_path: ``str`` :param local_path: The source path on the local machine. :type local_path: ``str`` :param profile: The profile, holding username/idfile info, etc. :type profile: :py:class:`Profile` """ commands = [] for entry in entries: hname = entry.hostname or entry.public_ip cmd = _build_scp_command(hname, profile.username, profile.identity_file, is_get=False, local_path=local_path, remote_path=remote_path) print('Command:', cmd) commands.append({ 'command': cmd, 'description': entry.display() }) stream_commands(commands) print(green('Finished copying')) def _copy_from(entries, remote_path, local_path, profile): """ Performs an SCP command where the remote_path is the source and the local_path is a format string, formatted individually for each host being copied from so as to create one or more distinct paths on the local system. :param entries: A list of entries. :type entries: ``list`` of :py:class:`HostEntry` :param remote_path: The source path on the remote machine(s). :type remote_path: ``str`` :param local_path: A format string for the path on the local machine. :type local_path: ``str`` :param profile: The profile, holding username/idfile info, etc. :type profile: :py:class:`Profile` """ commands = [] paths = set() for entry in entries: hname = entry.hostname or entry.public_ip _local_path = entry.format_string(local_path) if _local_path in paths: raise ValueError('Duplicate local paths: one or more paths ' 'had value {} after formatting.' .format(local_path)) paths.add(_local_path) # If the path references a folder, create the folder if it doesn't # exist. _folder = os.path.split(_local_path)[0] if len(_folder) > 0: if not os.path.exists(_folder): print('Creating directory ' + _folder) os.makedirs(_folder) cmd = _build_scp_command(hname, profile.username, profile.identity_file, is_get=True, local_path=_local_path, remote_path=remote_path) print('Command:', cmd) commands.append({ 'command': cmd, 'description': entry.display() }) stream_commands(commands) print(green('Finished copying')) def _run_ssh_command(entries, username, idfile, command, tunnel, parallel=False): """ Runs the given command over SSH in parallel on all hosts in `entries`. :param entries: The host entries the hostnames from. :type entries: ``list`` of :py:class:`HostEntry` :param username: To use a specific username. :type username: ``str`` or ``NoneType`` :param idfile: The SSH identity file to use, or none. :type idfile: ``str`` or ``NoneType`` :param command: The command to run. :type command: ``str`` :param parallel: If true, commands will be run in parallel. :type parallel: ``bool`` """ if len(entries) == 0: print('(No hosts to run command on)') return 1 if command.strip() == '' or command is None: raise ValueError('No command given') print('Running command {0} on {1} matching hosts' .format(green(repr(command)), len(entries))) shell_cmds = [] for entry in entries: hname = entry.hostname or entry.public_ip cmd = _build_ssh_command(hname, username, idfile, command, tunnel) shell_cmds.append({ 'command': cmd, 'description': entry.display() }) stream_commands(shell_cmds, parallel=parallel) print(green('All commands finished')) def _connect_ssh(entry, username, idfile, tunnel=None): """ SSH into to a host. :param entry: The host entry to pull the hostname from. :type entry: :py:class:`HostEntry` :param username: To use a specific username. :type username: ``str`` or ``NoneType`` :param idfile: The SSH identity file to use, if supplying a username. :type idfile: ``str`` or ``NoneType`` :param tunnel: Host to tunnel SSH command through. :type tunnel: ``str`` or ``NoneType`` :return: An exit status code. :rtype: ``int`` """ if entry.hostname != "" and entry.hostname is not None: _host = entry.hostname elif entry.public_ip != "" and entry.public_ip is not None: _host = entry.public_ip elif entry.private_ip != "" and entry.private_ip is not None: if tunnel is None: raise ValueError("Entry does not have a hostname or public IP. " "You can connect via private IP if you use a " "tunnel.") _host = entry.private_ip else: raise ValueError("No hostname, public IP or private IP information " "found on host entry. I don't know how to connect.") command = _build_ssh_command(_host, username, idfile, None, tunnel) print('Connecting to %s...' % cyan(entry.display())) print('SSH command: %s' % green(command)) proc = subprocess.Popen(command, shell=True) return proc.wait() def _print_version(): """Print the version and exit.""" from __init__ import __version__ print(__version__) sys.exit(0) def _get_args(): """Parse command-line arguments.""" parser = argparse.ArgumentParser(description='List EC2 instances') parser.add_argument('-l', '--latest', action='store_true', default=False, help='Query AWS for latest instances') parser.add_argument('--version', action='store_true', default=False, help='Print version and exit') parser.add_argument('--refresh-only', action='store_true', default=False, help='Refresh cache and exit') parser.add_argument('--host', help='Specific host to list', default=None) parser.add_argument('-s', '--ssh', action='store_true', help='SSH to instance', default=False) parser.add_argument('-i', '--identity-file', help='SSH identify file', default=None) parser.add_argument('-u', '--username', default=None, help='Log in as this user') parser.add_argument('filters', nargs='*', help='Text filters for output lines') parser.add_argument('-v', '--exclude', nargs='+', help='Exclude results that match these') parser.add_argument('-c', '--command', type=str, help='Command to run on matching instance(s)') parser.add_argument('-y', '--no-prompt', action='store_true', default=False, help="Don't ask for confirmation before running a " "command") parser.add_argument('-p', '--profile', type=str, help='Profile to use (defined
# encoding: utf-8 """ @author: liaoxingyu @contact: <EMAIL> """ import copy import torch from torch import nn from .backbones.resnet import ResNet, BasicBlock, Bottleneck from .backbones.senet import SENet, SEResNetBottleneck, SEBottleneck, SEResNeXtBottleneck from .backbones.resnet_ibn_a import resnet50_ibn_a from .backbones.twins import twins_svt_small,SELayer from timm.models.resnet import Bottleneck,tv_resnet50 def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out') nn.init.constant_(m.bias, 0.0) elif classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') if m.bias is not None: nn.init.constant_(m.bias, 0.0) elif classname.find('BatchNorm') != -1: if m.affine: nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0.0) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: nn.init.normal_(m.weight, std=0.001) if m.bias: nn.init.constant_(m.bias, 0.0) class Baseline(nn.Module): in_planes = 2048 def __init__(self, num_classes, last_stride, model_path, neck, neck_feat, model_name, pretrain_choice): super(Baseline, self).__init__() if model_name == 'resnet18': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, layers=[2, 2, 2, 2]) elif model_name == 'resnet34': self.in_planes = 512 self.base = ResNet(last_stride=last_stride, block=BasicBlock, layers=[3, 4, 6, 3]) elif model_name == 'resnet50': self.base = ResNet(last_stride=last_stride, block=Bottleneck, layers=[3, 4, 6, 3]) elif model_name == 'resnet101': self.base = ResNet(last_stride=last_stride, block=Bottleneck, layers=[3, 4, 23, 3]) elif model_name == 'resnet152': self.base = ResNet(last_stride=last_stride, block=Bottleneck, layers=[3, 8, 36, 3]) elif model_name == 'se_resnet50': self.base = SENet(block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) elif model_name == 'se_resnet101': self.base = SENet(block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) elif model_name == 'se_resnet152': self.base = SENet(block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) elif model_name == 'se_resnext50': self.base = SENet(block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) elif model_name == 'se_resnext101': self.base = SENet(block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) elif model_name == 'senet154': self.base = SENet(block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16, dropout_p=0.2, last_stride=last_stride) elif model_name == 'resnet50_ibn_a': self.base = resnet50_ibn_a(last_stride) elif model_name == 'twins_svt_small': self.base = twins_svt_small(pretrained=True) self.in_planes = 512 # resnet = tv_resnet50(pretrained=True) # resnetPost1 = resnet.layer3 # resnetPost2 = resnet.layer4 # resnetPost1.load_state_dict(resnet.layer3.state_dict()) # resnetPost2.load_state_dict(resnet.layer4.state_dict()) # self.globalBranch = copy.deepcopy(resnetPost1) # self.localBranch = nn.Sequential(copy.deepcopy(resnetPost1), # copy.deepcopy(resnetPost2)) if pretrain_choice == 'imagenet' and model_name != 'twins_svt_small': self.base.load_param(model_path) print('Loading pretrained ImageNet model......') self.avggap = nn.AdaptiveAvgPool2d(1) self.maxgap = nn.AdaptiveMaxPool2d(1) # self.gap = nn.AdaptiveMaxPool2d(1) # self.gap = nn.AdaptiveAvgPool2d(1) # self.f_1_avggap = nn.AdaptiveAvgPool2d(1) # self.f_1_maxgap = nn.AdaptiveMaxPool2d(1) # self.f_2_avggap = nn.AdaptiveAvgPool2d(1) # self.f_2_maxgap = nn.AdaptiveMaxPool2d(1) # self.f_3_avggap = nn.AdaptiveAvgPool2d(1) # self.f_3_maxgap = nn.AdaptiveMaxPool2d(1) # self.f_4_avggap = nn.AdaptiveAvgPool2d(1) # self.f_4_maxgap = nn.AdaptiveMaxPool2d(1) # reductiong = nn.Sequential(nn.Conv2d(2048, 256, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU()) # reductionl = nn.Sequential(nn.Conv2d(2048, 1024, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU()) # # # self._init_reduction(reductiong) # self._init_reduction(reductionl) # # reductiong.apply(_init_reduction) # # reductionl.apply(_init_reduction) # # self._init_reduction(reduction) # # self.reduction_0 = copy.deepcopy(reductiong) # self.reduction_1 = copy.deepcopy(reductionl) # self.reduction_2 = copy.deepcopy(reductionl) # self.reduction_3 = copy.deepcopy(reductionl) # self.reduction_4 = copy.deepcopy(reductionl) # se = SELayer(channel=512) self.b1 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=1), nn.BatchNorm2d(512), # se, nn.ReLU() ) self._init_reduction(self.b1) # self.b2 = nn.Sequential( # nn.Conv2d(256, 512, kernel_size=3, stride=2), # nn.BatchNorm2d(512), # # se, # nn.ReLU() # ) # self._init_reduction(self.b2) # self.b3 = nn.Sequential( # nn.Conv2d(512, 256, kernel_size=1, stride=1), # nn.BatchNorm2d(256), # # se, # nn.ReLU() # ) # self._init_reduction(self.b3) # self.b4 = nn.Sequential( # nn.Conv2d(64, 128, kernel_size=3, stride=2), # nn.BatchNorm2d(128), # # se, # nn.ReLU() # ) self.num_classes = num_classes self.neck = neck self.neck_feat = neck_feat if self.neck == 'no': self.in_planes = self.in_planes self.classifier = nn.Linear(self.in_planes, self.num_classes) # self.classifier_f1 = nn.Linear(self.in_planes, self.num_classes) # self.classifier_f2 = nn.Linear(self.in_planes, self.num_classes) # self.classifier_f3 = nn.Linear(self.in_planes, self.num_classes) # self.classifier_f4 = nn.Linear(self.in_planes, self.num_classes) # self.classifier = nn.Linear(self.in_planes, self.num_classes, bias=False) # new add by luo # self.classifier.apply(weights_init_classifier) # new add by luo elif self.neck == 'bnneck': # self.in_planes = self.in_planes//8 self.bottleneck = nn.BatchNorm1d(self.in_planes) self.bottleneck.bias.requires_grad_(False) # no shift self.classifier = nn.Linear(self.in_planes, self.num_classes, bias=False) self.bottleneck.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) self.bottleneck_f1 = nn.BatchNorm1d(self.in_planes) self.bottleneck_f1.bias.requires_grad_(False) # no shift self.classifier_f1 = nn.Linear(self.in_planes, self.num_classes, bias=False) self.bottleneck_f1.apply(weights_init_kaiming) self.classifier_f1.apply(weights_init_classifier) self.bottleneck_f2 = nn.BatchNorm1d(self.in_planes) self.bottleneck_f2.bias.requires_grad_(False) # no shift self.classifier_f2 = nn.Linear(self.in_planes, self.num_classes, bias=False) self.bottleneck_f2.apply(weights_init_kaiming) self.classifier_f2.apply(weights_init_classifier) # # # self.bottleneck_f3 = nn.BatchNorm1d(self.in_planes) # self.bottleneck_f3.bias.requires_grad_(False) # no shift # self.classifier_f3 = nn.Linear(self.in_planes, self.num_classes, bias=False) # # self.bottleneck_f3.apply(weights_init_kaiming) # self.classifier_f3.apply(weights_init_classifier) # # self.bottleneck_f4 = nn.BatchNorm1d(self.in_planes) # self.bottleneck_f4.bias.requires_grad_(False) # no shift # self.classifier_f4 = nn.Linear(self.in_planes, self.num_classes, bias=False) # # self.bottleneck_f4.apply(weights_init_kaiming) # self.classifier_f4.apply(weights_init_classifier) ##single # def forward(self, x): # feat_map = self.base(x) # # print(feat_map.shape) # # global_feat = self.gap(feat_map) # (b, 2048, 1, 1) # # global_feat = global_feat.view(global_feat.shape[0], -1) # flatten to (bs, 2048) # global_feat = feat_map.view(feat_map.shape[0], -1) # flatten to (bs, 2048) # # if self.neck == 'no': # feat = global_feat # elif self.neck == 'bnneck': # feat = self.bottleneck(global_feat) # normalize for angular softmax # # if self.training: # cls_score = self.classifier(feat) # # return cls_score, global_feat # global feature for triplet loss # else: # if self.neck_feat == 'after': # # print("Test with feature after BN") # return feat # else: # # print("Test with feature before BN") # return global_feat @staticmethod def _init_reduction(reduction): # conv nn.init.kaiming_normal_(reduction[0].weight, mode='fan_in') # nn.init.constant_(reduction[0].bias, 0.) # bn nn.init.normal_(reduction[1].weight, mean=1., std=0.02) nn.init.constant_(reduction[1].bias, 0.) # ##multi # def forward(self, x): # feat_map = self.base(x) ###b,512,7,7 # global_feat = self.maxgap(feat_map).squeeze(dim=3).squeeze(dim=2) ##b,1024 # # global_feat = self.reduction_0(global_feat) # # # ###local branch # local_f1_map = feat_map[:,:,0:3,:] ##b,512,1,2 # local_f2_map = feat_map[:,:,2:5,:] ##b,512,1,2 # local_f3_map = feat_map[:,:,4:7,:] ##b,512,1,2 # # # local_f1_final = self.avggap(local_f1_map).squeeze(dim=3).squeeze(dim=2) ## b,512 # local_f2_final = self.avggap(local_f2_map).squeeze(dim=3).squeeze(dim=2) # local_f3_final = self.avggap(local_f3_map).squeeze(dim=3).squeeze(dim=2) # # # if self.neck == 'no': # feat = global_feat # feat_f1 = local_f1_final # feat_f2 = local_f2_final # feat_f3 = local_f3_final # # # elif self.neck == 'bnneck': # feat = self.bottleneck(global_feat) # normalize for angular softmax # # feat_f1 = self.bottleneck_f1(local_f1_final) # feat_f2 = self.bottleneck_f2(local_f2_final) # feat_f3 = self.bottleneck_f3(local_f3_final) # # # if self.training: # cls_score = self.classifier(feat) # cls_f1 = self.classifier_f1(feat_f1) # cls_f2 = self.classifier_f2(feat_f2) # cls_f3 = self.classifier_f3(feat_f3) # # # # return cls_score, global_feat # global feature for triplet loss # return [cls_score,cls_f1,cls_f2,cls_f3], [global_feat,local_f1_final,local_f2_final,local_f3_final] # global feature for triplet loss # else: # if self.neck_feat == 'after': # # print("Test with feature after BN") # final_feat = torch.cat([feat,feat_f1,feat_f2,feat_f3],dim=1) #b,3072 # return final_feat # else: # # print("Test with feature before BN") # final_feat = torch.cat([global_feat,local_f1_final,local_f2_final,local_f3_final],dim=1) # return final_feat # #multi block3 # def forward(self, x): # feat_mapBlock3 , feat_map = self.base(x) ###b,512,7,7 # global_feat = self.avggap(feat_map).squeeze(dim=3).squeeze(dim=2) ##b,1024 # # # ###local branch # local_f1_map = feat_mapBlock3[:, 0:64, :, :] ##b,64,14,14 # local_f2_map = feat_mapBlock3[:, 64:128, :, :] ##b,64,14,14 # local_f3_map = feat_mapBlock3[:, 128:192, :, :] ##b,64,14,14 # local_f4_map = feat_mapBlock3[:, 192:256, :, :] ##b,64,14,14 # # local_f1_final = self.avggap(self.b1(local_f1_map)).squeeze(dim=3).squeeze(dim=2) ## b,512 # local_f2_final = self.avggap(self.b2(local_f2_map)).squeeze(dim=3).squeeze(dim=2) # local_f3_final = self.avggap(self.b3(local_f3_map)).squeeze(dim=3).squeeze(dim=2) # local_f4_final = self.avggap(self.b4(local_f4_map)).squeeze(dim=3).squeeze(dim=2) # # feat_local_final = torch.cat([local_f1_final, local_f2_final, local_f3_final, local_f4_final], dim=1) # # if self.neck == 'no': # feat = global_feat # feat_local = feat_local_final # # elif self.neck == 'bnneck': # feat = self.bottleneck(global_feat) # normalize for angular softmax # feat_local = self.bottleneck_f1(feat_local_final) # # if self.training: # cls_score = self.classifier(feat) # cls_f1 = self.classifier_f1(feat_local) # # # return cls_score, global_feat # global feature for triplet loss # return [cls_score, cls_f1], [global_feat, feat_local_final] # global feature for triplet loss # else: # if self.neck_feat == 'after': # # print("Test with feature after BN") # final_feat = torch.cat([feat, feat_local], dim=1) # b,3072 # return final_feat # else: # # print("Test with feature before BN") # final_feat = torch.cat([global_feat, feat_local], dim=1) # return final_feat # multi block3 block2 def forward(self, x): feat_mapBlock3, feat_map = self.base(x) ###b,512,7,7 global_feat = self.avggap(feat_map).squeeze(dim=3).squeeze(dim=2) ##b,512 global_feat_blk3 = self.b1(feat_mapBlock3) ## b,512,12,12 ###local branch local_f1_map = global_feat_blk3[:, :, 0:6, :] ##b,512,6,12 local_f2_map = global_feat_blk3[:, :, 6:12, :] ##b,512,6,12 # local_f1_final = self.avggap(self.b1(local_f1_map)).squeeze(dim=3).squeeze(dim=2) ## b,512 # local_f2_final = self.avggap(self.b2(local_f2_map)).squeeze(dim=3).squeeze(dim=2) local_f1_final = self.avggap(local_f1_map).squeeze(dim=3).squeeze(dim=2) ## b,512 local_f2_final = self.avggap(local_f2_map).squeeze(dim=3).squeeze(dim=2) # feat_local_final = torch.cat([local_f1_final,local_f2_final],dim=1) if self.neck == 'no': feat = global_feat # feat_local =
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by <NAME> at 2019-08-20 """Step_refine_pipline_final.py :description : basic check .mass balance,annotation,notes :param : :returns: :rtype: """ import os import pickle import re import cobra import pandas as pd from Bio import SeqIO import My_def os.chdir('../../ComplementaryData/Step_03_Compare_Refine/') # %% os.chdir('ComplementaryData/Step_03_Compare_Refine/') print('----- loading data -----') Lreu_draft_3_refined = cobra.io.load_json_model('Lreu_draft_3_refined_part03.json') Lreuteri_530 = cobra.io.load_json_model('../Step_02_DraftModels/Template/template_models/Lreuteri_530_standlized.json') iNF517 = cobra.io.load_json_model('../Step_02_DraftModels/Template/template_models/iNF517_standlized.json') iML1515 = cobra.io.load_json_model('../Step_02_DraftModels/Template/template_models/iML1515_standlized.json') # %% <general step: mass balance> iML1515_mets = set([i.id for i in iML1515.metabolites]) iNF517_mets = set([i.id for i in iNF517.metabolites]) Lreuteri_530_mets = set([i.id for i in Lreuteri_530.metabolites]) iML1515_reas = set([i.id for i in iML1515.reactions]) iNF517_reas = set([i.id for i in iNF517.reactions]) Lreuteri_530_reas = set([i.id for i in Lreuteri_530.reactions]) iML1515_reas_balanced = set([i.id for i in iML1515.reactions if i.check_mass_balance() == {}]) iNF517_reas_balanced = set([i.id for i in iNF517.reactions if i.check_mass_balance() == {}]) Lreuteri_530_reas_balanced = set([i.id for i in Lreuteri_530.reactions if i.check_mass_balance() == {}]) Lreu_draft_3_refined_reas = set([i.id for i in Lreu_draft_3_refined.reactions]) Lreu_draft_3_refined_reas_balanced = set([i.id for i in Lreu_draft_3_refined.reactions if i.check_mass_balance() == {}]) print('unbalanced reactions number:\t', len(Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced)) # <metabolites> for met_i in Lreu_draft_3_refined.metabolites: if met_i.id in iML1515_mets: met_temp = iML1515.metabolites.get_by_id(met_i.id) elif met_i.id in Lreuteri_530_mets: met_temp = Lreuteri_530.metabolites.get_by_id(met_i.id) elif met_i.id in iNF517_mets: met_temp = iNF517.metabolites.get_by_id(met_i.id) else: # print(met_i) continue if met_i.formula != met_temp.formula: # print(met_i.id, met_i.formula, met_temp.formula) if met_temp.formula not in ['X', 'R', '']: Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula = met_temp.formula Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).charge = met_temp.charge elif met_i.charge != met_temp.charge: # print(met_i.id, met_i.charge, met_temp.charge) if met_temp.formula not in ['X', 'R', '']: Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).charge = met_temp.charge Lreu_draft_3_refined_reas_balanced = set([i.id for i in Lreu_draft_3_refined.reactions if i.check_mass_balance() == {}]) print('unbalanced reactions number:\t', len(Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced)) # <reactions> for rea_i in (Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced) & Lreuteri_530_reas_balanced: if Lreu_draft_3_refined.reactions.get_by_id(rea_i).reaction != Lreuteri_530.reactions.get_by_id(rea_i).reaction: # print(Lreu_draft_3_refined.reactions.get_by_id(rea_i)) # print(Lreuteri_530.reactions.get_by_id(rea_i)) if '_LRE' not in Lreu_draft_3_refined.reactions.get_by_id(rea_i).reaction: pass # Lreu_draft_3_refined.reactions.get_by_id(rea_i).reaction = Lreuteri_530.reactions.get_by_id(rea_i).reaction for met_i in Lreu_draft_3_refined.reactions.get_by_id(rea_i).metabolites.keys(): if met_temp.formula not in ['X', 'R', '']: Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula = Lreuteri_530.metabolites.get_by_id( met_i.id).formula Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).charge = Lreuteri_530.metabolites.get_by_id( met_i.id).charge Lreu_draft_3_refined_reas_balanced = set([i.id for i in Lreu_draft_3_refined.reactions if i.check_mass_balance() == {}]) print('unbalanced reactions number:\t', len(Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced)) for rea_i in (Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced) & iML1515_reas_balanced: if Lreu_draft_3_refined.reactions.get_by_id(rea_i).reaction != iML1515.reactions.get_by_id(rea_i).reaction: # print(Lreu_draft_3_refined.reactions.get_by_id(rea_i)) # print(iML1515.reactions.get_by_id(rea_i)) # if rea_i not in ['MPTS']: Lreu_draft_3_refined.reactions.get_by_id(rea_i).reaction = iML1515.reactions.get_by_id(rea_i).reaction for met_i in Lreu_draft_3_refined.reactions.get_by_id(rea_i).metabolites.keys(): try: Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula = iML1515.metabolites.get_by_id( met_i.id).formula Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).charge = iML1515.metabolites.get_by_id(met_i.id).charge except: pass Lreu_draft_3_refined_reas_balanced = set([i.id for i in Lreu_draft_3_refined.reactions if i.check_mass_balance() == {}]) print('unbalanced reactions number:\t', len(Lreu_draft_3_refined_reas - Lreu_draft_3_refined_reas_balanced)) # <hand check>manual check for met_i in Lreu_draft_3_refined.metabolites: # replace ACP:'X' to 'C11H21N2O7PRS' if 'acp_c' in met_i.id: # try: # met_i.id = met_i.id.replace('acp_c','ACP_c') # except: # new_id = met_i.id.replace('acp_c','ACP_c') # Lreu_draft_3_refined = My_def.merge_model.merge_reactionsid(Lreu_draft_3_refined, new_id, met_i.id) formula = Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula = formula.replace('X', 'C11H21N2O7PRS') elif 'ACP_c' in met_i.id: formula = Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).formula = formula.replace('X', 'C11H21N2O7PRS') Lreu_draft_3_refined.reactions.get_by_id('FMETTRS').reaction = Lreuteri_530.reactions.get_by_id('FMETTRS').reaction Lreu_draft_3_refined.reactions.get_by_id( 'PROTRS').reaction = 'atp_c + pro__L_c + trnapro_c --> amp_c + ppi_c + protrna_c' refine_dic = { "2h3mp_c": ['C6H11O3', -1], "2h3mp_e": ['C6H11O3', -1], "2h3mb_c": ['C5H9O3', -1], "dimp_c": ['C10H12N4O7P', -1], "fol_e": ['C19H17N7O6', -2], "MGD_c": ['C20H20N10O14P2S2Mo', -2], "ppoh_e": ['C3H8O', 0], "PreZ_c": ['C10H11N5O7P', -1], "RTAala_c": ['C219H433N27O218P27', 25], "PGlac2_c": ['C40H62N7O22', -1], "glutrnagln_c": ['C5H7NO3R', 0], "pa_LRE_c": ['C37.36H67.59O8P', -2], "RNA_LRE_c": ['C9.52H9.91N3.75O6.58P1', -1], "PROT_LRE_c": ['C4.91H8.91N1.42O1.5S0.37', 1], "CPS_LRE_c": ['C24H47O27P', -2], "DNA_LRE_c": ['C9.81H11.31N3.69O6P', -1], "LIP_LRE_c": ['C41.68H77.65N0.46O10.17P', -1], "LTAtotal_LRE_c": ['C162.46H312.39N15.3O136.3P20', -5], } for met_i, formula in refine_dic.items(): Lreu_draft_3_refined.metabolites.get_by_id(met_i).formula = formula[0] Lreu_draft_3_refined.metabolites.get_by_id(met_i).charge = formula[1] Lreu_draft_3_refined_reas_unbalanced = set( [i.id for i in Lreu_draft_3_refined.reactions if (i.check_mass_balance() != {}) and ("EX" not in i.id)]) print('unbalanced reactions number:\t', len(Lreu_draft_3_refined_reas_unbalanced)) # removed_set = set(['PUACGAMS','HDMAT7','MCMAT8','GLUTRS2','ACKVAL','PTAVAL','ACKILE','PTAILE','SBTD','SBTD_L_1','NTPP10','ACKLEU','PTALEU','PYNP4']) # # for rea_i in list(Lreu_draft_3_refined_reas_unbalanced - removed_set): # # rea = Lreu_draft_3_refined.reactions.get_by_id(rea_i) # # if '_LRE' in rea.reaction: # # continue # if rea.check_mass_balance() !={}: # print('\n', rea) # print(rea.check_mass_balance()) Lreu_draft_3_refined.objective = "BIOMASS" Lreu_draft_3_refined.optimize() print('Lreu_draft_3_refined Biomass_LRE:', Lreu_draft_3_refined.optimize()) # %% <general step: metabolites and reactions annotation> bigg = pickle.load(open('../bigg_database/universal_model.pickle', 'rb')) bigg_mets = set([i.id for i in bigg.metabolites]) bigg_reas = set([i.id for i in bigg.reactions]) # Lreu_draft_3_refined = cobra.io.load_json_model('Lreu_draft_3_refined_part03.json') for met_i in Lreu_draft_3_refined.metabolites: annotation_i = met_i.annotation if met_i.id in iML1515_mets: annotation_i = My_def.model_refine.merge_annotation(annotation_i, iML1515.metabolites.get_by_id(met_i.id).annotation) if met_i.id in Lreuteri_530_mets: annotation_i = My_def.model_refine.merge_annotation(annotation_i, Lreuteri_530.metabolites.get_by_id(met_i.id).annotation) if met_i.id in iNF517_mets: annotation_i = My_def.model_refine.merge_annotation(annotation_i, iNF517.metabolites.get_by_id(met_i.id).annotation) if met_i.id in bigg_mets: annotation_temp = bigg.metabolites.get_by_id(met_i.id).annotation annotation_temp = My_def.model_refine.convert_annotation(annotation_temp) annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if 'bigg.metabolite' not in annotation_i.keys(): annotation_temp = {'bigg.metabolite': met_i.id.split('_')[0]} annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if 'kegg.compound' in annotation_i.keys(): annotation_temp = annotation_i['kegg.compound'] if type(annotation_temp) == list: annotation_i['kegg.compound'] = [i for i in annotation_temp if i.startswith('C')] if 'sbo' not in annotation_i: if '_LRE' in met_i.id: # pass annotation_temp = {'sbo': ['SBO:0000649']} # Biomass else: annotation_temp = {'sbo': ['SBO:0000247']} # Simple chemical annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) Lreu_draft_3_refined.metabolites.get_by_id(met_i.id).annotation = annotation_i for rea_i in Lreu_draft_3_refined.reactions: annotation_i = rea_i.annotation if rea_i.id in iML1515_reas: annotation_temp = iML1515.reactions.get_by_id(rea_i.id).annotation annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if rea_i.id in Lreuteri_530_reas: annotation_temp = Lreuteri_530.reactions.get_by_id(rea_i.id).annotation annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if rea_i.id in iNF517_reas: annotation_temp = iNF517.reactions.get_by_id(rea_i.id).annotation annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if rea_i.id in bigg_reas: annotation_temp = bigg.reactions.get_by_id(rea_i.id).annotation annotation_temp = My_def.model_refine.convert_annotation(annotation_temp) annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) if 'bigg.reaction' not in annotation_i.keys(): annotation_i = My_def.model_refine.merge_annotation(annotation_i, {'bigg.reaction': rea_i.id}) if 'rhea' in annotation_i.keys(): annotation_temp = annotation_i['rhea'] if type(annotation_temp) == list: annotation_i['rhea'] = [i.split('#')[0] for i in annotation_temp] # if 'sbo' not in annotation_i: if rea_i.id.startswith('EX'): annotation_temp = {'sbo': ['SBO:0000627']} # Exchange reactions elif 'BIOMASS' in rea_i.id or '_LRE' in rea_i.reaction: # : annotation_temp = {'sbo': ['SBO:0000629']} # Biomass reaction elif '_c' in rea_i.reaction and '_e' in rea_i.reaction: annotation_temp = {'sbo': ['SBO:0000655']} # Transport reaction else: annotation_temp = {'sbo': ['SBO:0000176']} annotation_i = My_def.model_refine.merge_annotation(annotation_i, annotation_temp) Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).annotation = annotation_i for rea_i in Lreu_draft_3_refined.reactions: for i, j in rea_i.annotation.items(): if type(j) == str: rea_i.annotation[i] = [j] # get metacyc annotation important for subsystems. def fill_specific_database(model_1, to_database): model = model_1.copy() id_rea_list = [rea_i.id for rea_i in model.reactions] metanetx_rea_list = [] bigg_rea_list = [] kegg_rea_list = [] biocyc_rea_list = [] for rea_i in model.reactions: if type(rea_i.annotation['bigg.reaction']) == str: rea_i.annotation['bigg.reaction'] = [rea_i.annotation['bigg.reaction']] else: bigg_rea_list = bigg_rea_list + rea_i.annotation['bigg.reaction'] if 'metanetx.reaction' in rea_i.annotation.keys(): metanetx_rea_list = metanetx_rea_list + rea_i.annotation['metanetx.reaction'] if 'kegg.reaction' in rea_i.annotation.keys(): kegg_rea_list = kegg_rea_list + rea_i.annotation['kegg.reaction'] if 'biocyc' in rea_i.annotation.keys(): biocyc_rea_list = biocyc_rea_list + rea_i.annotation['biocyc'] biocyc_rea_list = [i.replace('META:', '') for i in biocyc_rea_list] targetlist_from_id, MNX_IDlist = My_def.mapIDsViaMNXref('rxns', id_rea_list, 'bigg', to_database) targetlist_from_meatnetx, MNX_IDlist = My_def.mapIDsViaMNXref('rxns', metanetx_rea_list, 'metanetx', to_database) targetlist_from_kegg, MNX_IDlist = My_def.mapIDsViaMNXref('rxns', kegg_rea_list, 'kegg', to_database) targetlist_from_biocyc, MNX_IDlist = My_def.mapIDsViaMNXref('rxns', biocyc_rea_list, 'metacyc', to_database) targetlist_from_bigg, MNX_IDlist = My_def.mapIDsViaMNXref('rxns', bigg_rea_list, 'bigg', to_database) if to_database == 'metacyc': annotation_key = 'biocyc' if to_database == 'kegg': annotation_key = 'kegg.reaction' for rea_i in model.reactions: if annotation_key in rea_i.annotation.keys(): to_temp = rea_i.annotation[annotation_key] if rea_i.annotation[annotation_key] != ['']: continue to_temp = [targetlist_from_id[id_rea_list.index(rea_i.id)]] list_ann = ['metanetx.reaction', 'kegg.reaction', 'biocyc', 'bigg.reaction'] list_ann.remove(annotation_key) for ann_i in list_ann: if ann_i in rea_i.annotation.keys(): for i in rea_i.annotation[ann_i]: if ann_i == 'metanetx.reaction': to_temp_i = targetlist_from_meatnetx[metanetx_rea_list.index(i)] elif ann_i == 'kegg.reaction': to_temp_i = targetlist_from_kegg[kegg_rea_list.index(i)] elif ann_i == 'biocyc': i = i.replace('META:', '') to_temp_i = targetlist_from_biocyc[biocyc_rea_list.index(i)] elif ann_i == 'bigg.reaction': to_temp_i = targetlist_from_bigg[bigg_rea_list.index(i)] if type(to_temp_i) == str: to_temp_i = [to_temp_i] to_temp.extend(to_temp_i) to_temp = set(to_temp) - {''} if len(to_temp) != 0: # print(to_temp) rea_i.annotation[annotation_key] = list(to_temp) return model to_database = 'metacyc' Lreu_draft_3_refined = fill_specific_database(Lreu_draft_3_refined, to_database) to_database = 'kegg' Lreu_draft_3_refined = fill_specific_database(Lreu_draft_3_refined, to_database) # %% <general step: subsystem annotation> metacyc_subsystem = {} for i in open('../Initial_data/MetaCyc_subSystems.csv', 'r'): i = i.replace('\n', '') temp = i.split('\t') if temp[1] != '': metacyc_subsystem[temp[0]] = temp[1:] kegg_subsystem = {} for i in open('../Initial_data/KEGG_subSystems.csv', 'r'): i = i.replace('\n', '') temp = i.split('\t') if temp[1] != '': kegg_subsystem[temp[0]] = temp[1:] sub_count = 0 for rea_i in Lreu_draft_3_refined.reactions: subsystem = [] if 'biocyc' in rea_i.annotation.keys(): for i in rea_i.annotation['biocyc']: i = i.replace('META:', '') if i in metacyc_subsystem.keys(): subsystem.extend(metacyc_subsystem[i]) elif 'kegg.reaction' in rea_i.annotation.keys(): for i in rea_i.annotation['kegg.reaction']: if i in kegg_subsystem.keys(): subsystem.extend(kegg_subsystem[i]) subsystem = set(subsystem) - {''} if len(subsystem) > 0: rea_i.annotation['subsystem'] = list(set(subsystem)) sub_count += 1 # %% <general step: notes> for rea_i in Lreu_draft_3_refined.reactions: if rea_i.notes == []: rea_i.notes = {} if 'from' in rea_i.notes.keys(): if 'Lreu_from_Lreuteri_530' in rea_i.notes['from']: Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes['from'].remove('Lreu_from_Lreuteri_530') if 'transport' in rea_i.notes['from']: Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes['from'].remove('transport') Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes['from'].append('transport_reaction') if 'EX' in rea_i.notes['from']: Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes['from'].remove('EX') Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes['from'].append('exchange_reaction') else: if rea_i.id in iML1515_reas: notes_temp = {'from': ['iML1515', 'gap']} elif rea_i.id in Lreuteri_530_reas: notes_temp = {'from': ['Lreuteri_530', 'gap']} elif rea_i.id in iNF517_reas: notes_temp = {'from': ['iNF517', 'gap']} else: notes_temp = {'from': ['gap']} Lreu_draft_3_refined.reactions.get_by_id(rea_i.id).notes = notes_temp # %% <general step: genes annotation and add _missing tag to missing genes > print('blast ing') # find missing genes ''' os.system('mkdir blast_tmps/') Lreu_draft_3_refined_seq = '../Step_02_DraftModels/Lreuteri_biogaia_v03_2.faa' iNF517_seq = '../Step_02_DraftModels/Template/template_seqs/iNF517.faa' iML1515_seq = '../Step_02_DraftModels/Template/template_seqs/iML1515.faa' Lreuteri_530_seq = '../Step_02_DraftModels/Template/template_seqs/Lreuteri_530.faa' iBT721_seq = '../Step_02_DraftModels/Template/template_seqs/iBT721.faa' qseq_file = Lreu_draft_3_refined_seq mk_db = 'diamond makedb --in '+ qseq_file +' -d blast_tmps/qseq_db \n' os.system(mk_db) print('diamond blasting...') options = ' --top 10 --more-sensitive ' df = pd.DataFrame() for sseq_file in [iNF517_seq,iML1515_seq,Lreuteri_530_seq,iBT721_seq]: diamond_blastp_cmd ='diamond blastp -d blast_tmps/qseq_db -q ' + sseq_file + options +' -o ' +\ 'blast_tmps/blast_result_s_in_q.csv --evalue 1 --outfmt 6 qseqid sseqid
# Integer matrix multiply 8816 A/B # load 1/2/4 submatrix partition_contiguous_idx = lane_in_quad // factor_in_partition # 0011 0011 0011 0011 # access_strided_idx = lane_idx // warp_bfa_access_shape[1] access_strided_idx = lane_idx // new_obj.layout.factor access_contiguous_idx = ( (lane_in_pair * factor_in_partition) ^ # 0202 0202 0202 0202 0202 0202 0202 0202 (lane_in_quad_quad // new_obj.layout.factor) ) # 0000 1111 2222 3333 0000 1111 2222 3333 # stride: 0000 1111 2222 3333 4444 5555 6666 7777 # acc_idx_c: 0202 1313 2020 3131 0202 1313 2020 3131 # if 01 45, noop: ^ 0 # if 23 67, switch: ^ 1 # if 1 3 5 7, += 1 acc_idx_c = (lane_idx & 1) * 2 # 0202 if (access_strided_idx // 2) & 1 == 1: acc_idx_c ^= 0b10 # 0202 0202 2020 2020 0202 0202 2020 2020 if access_strided_idx & 1 == 1: acc_idx_c += 1 assert acc_idx_c == access_contiguous_idx, f"{lane_idx}, {acc_idx_c}, {access_contiguous_idx}" elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and new_obj.operand_a): # Integer matrix multiply 16832 A # Q0 Q2 # Q1 Q3 partition_contiguous_idx = lane_in_quad // factor_in_partition access_strided_idx = lane_in_quad_quad // new_obj.layout.factor # stride: 0000 1111 2222 3333 0000 1111 2222 3333 # 0202.... + 0[16] [16] ^ access_contiguous_idx = ( ((lane_in_pair * factor_in_partition + quad_quad) ^ access_strided_idx)) elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and not new_obj.operand_a): # Integer matrix multiply 16832 B # Q0 Q1 # Q2 Q3 partition_contiguous_idx = lane_in_quad // factor_in_partition access_strided_idx = lane_in_quad_pair // new_obj.layout.factor + quad_quad * 2 access_contiguous_idx = (((lane_in_pair * factor_in_partition + ((lane_idx & 8) >> 3)) ^ access_strided_idx)) elif new_obj.layout.factor == 2: # Super Matrix multiply kBlock = 32 if (new_obj.lds_shape[0] == new_obj.lds_shape.prod()): # Matrix multiply 1688 A/B # (Q stands for 1 8x128bit block). # Q0 # Q1 # Q2 # Q3 # Four blocks are next to each other in the strided dimension. partition_contiguous_idx = (lane_idx % new_obj.layout.factor) # these lines are matching swizzle behavior in tensorop layout. # for k > 0, offset is handled in set_wmma_index access_contiguous_idx = (lane_in_quad_pair // new_obj.layout.factor ) # 00 11 22 33 00 11 22 33 access_strided_idx = lane_idx // new_obj.layout.factor # 00 11 22 33 .... elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and new_obj.operand_a): # Matrix multiply 16816|1688.TF32 A # Q0 Q2 (check mma inst for more details.) # Q1 Q3 partition_contiguous_idx = (lane_idx % new_obj.layout.factor) access_contiguous_idx = (( quad_quad ^ (lane_in_quad_pair // new_obj.layout.factor))) access_strided_idx = (lane_in_quad_quad // new_obj.layout.factor) elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and not new_obj.operand_a): # 16816: f16 # Matrix multiply 16816|1688.TF32 B # Q0 Q1 # Q2 Q3 partition_contiguous_idx = (lane_idx % new_obj.layout.factor) access_contiguous_idx = ( ((quad_pair & 1) ^ (lane_in_quad_pair // new_obj.layout.factor))) access_strided_idx = ((lane_in_quad_pair + (lane_idx >> 4 << 3)) // new_obj.layout.factor) elif (new_obj.lds_shape[1] == new_obj.lds_shape.prod()): # Matrix multiply 16832.SP B # Q0 Q1 Q2 Q3 partition_contiguous_idx = (lane_idx % new_obj.layout.factor) access_contiguous_idx = (( quad_pair ^ (lane_in_quad_pair // new_obj.layout.factor))) access_strided_idx = lane_in_quad_pair // new_obj.layout.factor elif new_obj.layout.factor == 1: # Super Matrix multiply kBlock = 64 if (new_obj.lds_shape[0] == new_obj.lds_shape.prod()): # Q0 # Q1 # Q2 # Q3 partition_contiguous_idx = (lane_in_quad_pair >> 2) access_contiguous_idx = lane_in_quad access_strided_idx = lane_idx elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and new_obj.operand_a): # Matrix multiply 16816|1688.TF32 A # Q0 Q2 # Q1 Q3 partition_contiguous_idx = (lane_in_quad_pair >> 2) access_contiguous_idx = (quad_quad ^ lane_in_quad) access_strided_idx = lane_in_quad_quad elif (new_obj.lds_shape[0] == (new_obj.lds_shape.prod() // 2) and not new_obj.operand_a): # Matrix multiply 16816|1688.TF32 B # Q0 Q1 # Q2 Q3 partition_contiguous_idx = (lane_in_quad_pair >> 2) access_contiguous_idx = ((quad_pair & 1) ^ lane_in_quad) access_strided_idx = lane_in_quad_pair + (lane_idx >> 4 << 3) elif (new_obj.lds_shape[1] == new_obj.lds_shape.prod()): # Matrix multiply 16832.SP B # Q0 Q1 Q2 Q3 partition_contiguous_idx = (lane_in_quad_pair >> 2) access_contiguous_idx = (quad_pair ^ lane_in_quad) access_strided_idx = lane_in_quad_pair else: raise NotImplementedError access_contiguous = ( partition_contiguous_idx * new_obj.layout.part_shape[1] + access_contiguous_idx) access_strided = access_strided_idx expected_offset = access_contiguous + access_strided_idx * new_obj.stride_ ref_offset = layout.get_ldm_initial_offset_ref(lane_idx, self.lds_shape, not self.operand_a) assert ref_offset == expected_offset * self.element_per_acc, f"{lane_idx}, {expected_offset}, {ref_offset}" new_obj.byte_offset_ = ( (access_contiguous + access_strided * new_obj.stride_) * new_obj.dtype.bitsize() * new_obj.element_per_acc // 8) # for k part, of partk == 2 and k of smem is 4, then num warp gemm iters is 2 # so 0 1 # 0 1 new_obj.add_tile_offset_python( warp_idx_mn, new_obj.num_warp_gemm_iters * warp_idx_k) return new_obj @pccm.cuda.member_function(device=True, forceinline=True) def add_tile_offset(self): code = pccm.FunctionCode(f""" int mn_offset = warp_idx_mn; int k_offset = warp_idx_k; // tv::printf2_block_once(threadIdx.x, k_offset, mn_offset); int whole_tiles = mn_offset / {self.k_groups_per_tile}; int k_groups_delta = mn_offset % {self.k_groups_per_tile}; byte_offset_ ^= k_groups_delta * {self.dtype.bitsize()} * {self.layout.element_per_acc} * {self.lds_shape[1]} / 8; // tv::printf2_block_once(threadIdx.x, "premuteK", byte_offset_); pointer_ += k_offset * stride_ * {self.warp_tile_shape_km[0]} / {self.layout.factor} + whole_tiles * stride_ / sections_; """) return code.arg("warp_idx_k, warp_idx_mn", "int") def add_tile_offset_python(self, warp_idx_k: int, warp_idx_mn: int): mn_offset = warp_idx_mn k_offset = warp_idx_k whole_tiles = mn_offset // self.k_groups_per_tile k_groups_delta = mn_offset % self.k_groups_per_tile self.byte_offset_ ^= int(k_groups_delta * self.dtype.bitsize() * self.layout.element_per_acc * self.lds_shape[1] // 8) self.pointer_ += (k_offset * self.stride_ * self.warp_tile_shape_km[0] // self.layout.factor + whole_tiles * self.my_layout.sw_shape[1]) @pccm.cuda.member_function(device=True, forceinline=True) def tile_increment(self): code = pccm.FunctionCode(f""" add_tile_offset(0, num_tile); """) return code.arg("num_tile", "int") def tile_increment_python(self, num: int): return self.add_tile_offset_python(0, num) @pccm.cuda.member_function(name="operator++", device=True, forceinline=True) def operator_pp(self): code = pccm.FunctionCode(f""" // Integer matrix multiply 16832 Interleaved-32 // NONE // Integer matrix multiply 16816 Interleaved-32 || Integer matrix multiply 16816 kblock=32 // Integer matrix multiply 8816 Interleaved-32 // ^1 ^1 // Matrix multiply 1684.TF32 kblock=16 || Integer matrix multiply 16816 kblock=64 // Matrix multiply 1688 kblock=32 || Integer matrix multiply 8816 kblock=64 // ^1 ^3 ^1 ^3 // Matrix multiply 1688 kblock=64 // ^1 ^3 ^1 ^7 ^1 ^3 ^1 ^7 // Matrix multiply 16816 kblock=32 | 1688.TF32 kblock=16 || Integer matrix multiply 16832 kblock=64 // ^2 ^2 // Matrix multiply 16816 kblock=64 | 1688.TF32 kblock=32 || Integer matrix multiply 16832 kblock=128 // ^2 ^6 ^2 ^6 if (({self.k_groups_per_tile} / {self.partk}) > 1) {{ int mask = (({self.k_groups_per_tile} / {self.partk}) == 8) ? 3 : ((({self.k_groups_per_tile} / {self.partk}) == 4) ? 1 : 0); if (((wmma_k_index_ & mask) % 2) == 0) byte_offset_ ^= 1 * {self.lds_shape[1]} * {self.dtype.bitsize()} * {self.layout.element_per_acc} / 8; else if ((wmma_k_index_ & mask) == 1) byte_offset_ ^= 3 * {self.lds_shape[1]} * {self.dtype.bitsize()} * {self.layout.element_per_acc} / 8; else if ((wmma_k_index_ & mask) == 3) byte_offset_ ^= 7 * {self.lds_shape[1]} * {self.dtype.bitsize()} * {self.layout.element_per_acc} / 8; }} wmma_k_index_++; // tv::printf2_block_once(threadIdx.x, "premuteK", byte_offset_); if (wmma_k_index_ == ({self.k_groups_per_tile} / {self.partk})) {{ wmma_k_index_ = 0; // k group increment add_tile_offset(0, {self.k_groups_per_tile}); }} return *this; """) return code.ret(f"{self.class_name} &") def increment_python(self): # Integer matrix multiply 16832 Interleaved-32 # NONE # Integer matrix multiply 16816 Interleaved-32 || Integer matrix multiply 16816 kblock=32 # Integer matrix multiply 8816 Interleaved-32 # ^1 ^1 # Matrix multiply 1684.TF32 kblock=16 || Integer matrix multiply 16816 kblock=64 # Matrix multiply 1688 kblock=32 || Integer matrix multiply 8816 kblock=64 # ^1 ^3 ^1 ^3 # Matrix multiply 1688 kblock=64 # ^1 ^3 ^1 ^7 ^1 ^3 ^1 ^7 # Matrix multiply 16816 kblock=32 | 1688.TF32 kblock=16 || Integer matrix multiply 16832 kblock=64 # ^2 ^2 # Matrix multiply 16816 kblock=64 | 1688.TF32 kblock=32 || Integer matrix multiply 16832 kblock=128 # ^2 ^6 ^2 ^6 k_inc_width = self.lds_shape[1] * self.dtype.bitsize( ) * self.layout.element_per_acc // 8 num_k_inc = (self.k_groups_per_tile // self.partk) if (num_k_inc > 1): # mask: largest number of bit for increment mask = self.k_group_inc_mask # if self.k_groups_per_tile // self.partk == 8: # mask = 0b11 # elif self.k_groups_per_tile // self.partk == 4: # mask = 0b1 # else: # mask = 0 # bit 0 advance self.byte_offset_ ^= layout_tensorop.swizzle_increment( self.wmma_k_index_ & mask, k_inc_width) # if (((self.wmma_k_index_ & mask) % 2) == 0): # self.byte_offset_ ^= (1 * self.lds_shape[1] * # self.dtype.bitsize() * # self.layout.element_per_acc // 8) # # bit 1 advance # elif ((self.wmma_k_index_ & mask) == 1): # self.byte_offset_ ^= (0b11 * self.lds_shape[1] * # self.dtype.bitsize() * # self.layout.element_per_acc // 8) # # bit 2 advance
# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by <NAME> # (<EMAIL>) and <NAME> (<EMAIL>). # Student side autograding was added by <NAME>, <NAME>, and # <NAME> (<EMAIL>). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem): """ Search the deepest nodes in the search tree first. Your search algorithm needs to return a list of actions that reaches the goal. Make sure to implement a graph search algorithm. To get started, you might want to try some of these simple commands to understand the search problem that is being passed in: print("Start:", problem.getStartState()) print("Is the start a goal?", problem.isGoalState(problem.getStartState())) print("Start's successors:", problem.getSuccessors(problem.getStartState())) """ class SearchNode: """ Creates node: <state, action, parent_node> """ def __init__(self, state, action=None, parent=None): self.state = state self.action = action self.parent = parent def extract_solution(self): """ Gets complete path from goal state to parent node """ action_path = [] search_node = self while search_node: if search_node.action: action_path.append(search_node.action) search_node = search_node.parent return list(reversed(action_path)) start_node = SearchNode(problem.getStartState()) if problem.isGoalState(start_node.state): return start_node.extract_solution() frontier = util.Stack() explored = set() frontier.push(start_node) # run until stack is empty while not frontier.isEmpty(): node = frontier.pop() # choose the deepest node in frontier explored.add(node.state) if problem.isGoalState(node.state): return node.extract_solution() # expand node successors = problem.getSuccessors(node.state) for succ in successors: # make-child-node child_node = SearchNode(succ[0], succ[1], node) if child_node.state not in explored: frontier.push(child_node) # no solution util.raiseNotDefined() def breadthFirstSearch(problem): """Search the shallowest nodes in the search tree first.""" class SearchNode: """ Creates node: <state, action, parent_node> """ def __init__(self, state, action=None, parent=None): self.state = state self.action = action self.parent = parent def extract_solution(self): """ Gets complete path from goal state to parent node """ action_path = [] search_node = self while search_node: if search_node.action: action_path.append(search_node.action) search_node = search_node.parent return list(reversed(action_path)) def is_in_frontier(self, data_structure): for n in data_structure.list: if n.state == self.state: return True return False start_node = SearchNode(problem.getStartState()) if problem.isGoalState(start_node.state): return start_node.extract_solution() frontier = util.Queue() # FIFO frontier.push(start_node) explored = set() while not frontier.isEmpty(): node = frontier.pop() # choose the shallowest node in frontier explored.add(node.state) if problem.isGoalState(node.state): return node.extract_solution() successors = problem.getSuccessors(node.state) for succ in successors: child_node = SearchNode(succ[0], succ[1], node) if child_node.state not in explored and\ not child_node.is_in_frontier(frontier): frontier.push(child_node) # no solution util.raiseNotDefined() def uniformCostSearch(problem): """Search the node of least total cost first.""" class SearchNode: """ Creates node: <state, action, cost, parent_node> """ def __init__(self, state, action=None, path_cost = 0, parent=None): self.state = state self.action = action self.parent = parent if parent: self.path_cost = path_cost + parent.path_cost else: self.path_cost = path_cost def extract_solution(self): """ Gets complete path from goal state to parent node """ action_path = [] search_node = self while search_node: if search_node.action: action_path.append(search_node.action) search_node = search_node.parent return list(reversed(action_path)) def is_in_priority_queue(self, priority_queue): """ Check if the node is already in the priority queue """ for index, (p, c, i) in enumerate(priority_queue.heap): if i.state == self.state: return True else: return False start_node = SearchNode(problem.getStartState()) if problem.isGoalState(start_node.state): return start_node.extract_solution() frontier = util.PriorityQueue() # FIFO frontier.push(start_node, start_node.path_cost) explored = set() while not frontier.isEmpty(): node = frontier.pop() # chooses the lowest-cost node in frontier # goal-test if problem.isGoalState(node.state): return node.extract_solution() if node.state not in explored: explored.add(node.state) successors = problem.getSuccessors(node.state) for succ in successors: child_node = SearchNode(succ[0], succ[1], succ[2], node) frontier.update(child_node, child_node.path_cost) # no solution util.raiseNotDefined() def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 # In both pratical task and Assignment 1 def aStarSearch(problem, heuristic=nullHeuristic): """Search the node that has the lowest combined cost and heuristic first.""" # class to represent SearchNode class SearchNode: """ Creates node: <state, action, f(s), g(s), h(s), parent_node> """ def __init__(self, state, action=None, g=None, h=None, parent=None): self.state = state self.action = action self.parent = parent # heuristic value self.h = h # combined cost if parent: self.g = g + parent.g else: self.g = 0 # evaluation function value self.f = self.g + self.h def extract_solution(self): """ Gets complete path from goal state to parent node """ action_path = [] search_node = self while search_node: if search_node.action: action_path.append(search_node.action) search_node = search_node.parent return list(reversed(action_path)) # make search node function def make_search_node(state, action=None, cost=None, parent=None): if hasattr(problem, 'heuristicInfo'): if parent: # same parent - avoid re-calculation # for reducing computations in logic if parent == problem.heuristicInfo["parent"]: problem.heuristicInfo["sameParent"] = True else: problem.heuristicInfo["sameParent"] = False # adding parent info for reducing computations problem.heuristicInfo["parent"] = parent # get heuristic value h_value = heuristic(state, problem) return SearchNode(state, action, cost, h_value, parent) # create open list open = util.PriorityQueue() node = make_search_node(problem.getStartState()) open.push(node, node.f) closed = set() best_g = {} # maps states to numbers # run until open list is empty while not open.isEmpty(): node = open.pop() # pop-min if node.state not in closed or node.g < best_g[node.state]: closed.add(node.state) best_g[node.state] = node.g # goal-test if problem.isGoalState(node.state): return node.extract_solution() # expand node successors = problem.getSuccessors(node.state) for succ in successors: child_node = make_search_node(succ[0],succ[1],succ[2], node) if child_node.h < float("inf"): open.push(child_node, child_node.f) # no solution util.raiseNotDefined() # Extensions Assignment 1 def iterativeDeepeningSearch(problem): """Search the deepest node in an iterative manner.""" class SearchNode: """ Creates node: <state, action, depth, parent_node> """ def __init__(self, state, action=None, depth = 0, parent=None): self.state = state self.action = action self.parent = parent if parent: self.depth = depth + parent.depth else: self.depth = depth def extract_solution(self): """ Gets complete path from initial state to goal state """ action_path = [] search_node = self while search_node: if search_node.action: action_path.append(search_node.action) search_node = search_node.parent return list(reversed(action_path)) # limit for IDS limit = 0 # controlling infinite loop LOOP_COUNT = 0 LOOP_LIMIT = 999999999 # running iteratively # increasing limit until goal-state is found while True: # no solution hard limit check if LOOP_COUNT == LOOP_LIMIT: break node = SearchNode(problem.getStartState()) # goal-test if problem.isGoalState(node.state): return node.extract_solution() frontier = util.Stack() # LIFO stack explored = set() # empty set frontier.push(node) # run until frontier is empty while not frontier.isEmpty(): node = frontier.pop() # choose the deepest node in frontier explored.add(node.state) # never expand branch farther than the limit if node.depth < limit: # expand node successors = problem.getSuccessors(node.state) for succ in successors: # make-child-node # path step cost is considered as depth child_node = SearchNode(succ[0], succ[1], succ[2], node) # child.STATE is not in explored if child_node.state not
<filename>tuf/scripts/repo.py #!/usr/bin/env python # Copyright 2018, New York University and the TUF contributors # SPDX-License-Identifier: MIT OR Apache-2.0 """ <Program Name> repo.py <Author> <NAME> <<EMAIL>> <Started> January 2018. <Copyright> See LICENSE-MIT OR LICENSE for licensing information. <Purpose> Provide a command-line interface to create and modify TUF repositories. The CLI removes the need to write Python code when creating or modifying repositories, which is the case with repository_tool.py and developer_tool.py. Note: 'pip install securesystemslib[crypto,pynacl]' is required by the CLI, which installs the 3rd-party dependencies: cryptography and pynacl. <Usage> Note: arguments within brackets are optional. $ repo.py --init [--consistent, --bare, --path, --root_pw, --targets_pw, --snapshot_pw, --timestamp_pw] $ repo.py --add <target> <dir> ... [--path, --recursive] $ repo.py --remove <glob pattern> $ repo.py --distrust --pubkeys </path/to/pubkey> [--role] $ repo.py --trust --pubkeys </path/to/pubkey> [--role] $ repo.py --sign </path/to/key> [--role <targets>] $ repo.py --key <keytype> [--filename <filename> --path </path/to/repo>, --pw [my_password]] $ repo.py --delegate <glob pattern> --delegatee <rolename> --pubkeys </path/to/pubkey> [--role <rolename> --terminating --threshold <X> --sign </path/to/role_privkey>] $ repo.py --revoke --delegatee <rolename> [--role <rolename> --sign </path/to/role_privkey>] $ repo.py --verbose <0-5> $ repo.py --clean [--path] <Options> --init: Create new TUF repository in current working or specified directory. --consistent: Enable consistent snapshots for newly created TUF repository. --bare: Specify creation of bare TUF repository with no key created or set. --path: Choose specified path location of a TUF repository or key(s). --role: Specify top-level role(s) affected by the main command-line option. --pubkeys: Indicate location of key(s) affected by the main command-line option. --root_pw: Set password for encrypting top-level key file of root role. --targets_pw: Set password for encrypting top-level key file of targets role. --snapshot_pw: Set password for encrypting top-level key file of snapshot role. --timestamp_pw: Set password for encrypting top-level key file of timestamp role. --add: Add file specified by <target> to the Targets metadata. --recursive: Include files in subdirectories of specified directory <dir>. --remove: Remove target files from Targets metadata matching <glob pattern>. --distrust: Discontinue trust of keys located in </path/to/pubkey> directory of a role. --trust: Indicate trusted keys located in </path/to/pubkey> directory of a role. --sign: Sign metadata of target role(s) with keys in specified directory. --key: Generate cryptographic key of specified type <keytype> (default: Ed25519). --filename: Specify filename associated with generated top-level key. --pw: Set password for the generated key of specified type <keytype>. --delegate: Delegate trust of target files from Targets role (or <rolename> specified in --role) to --delegatee role with specified <rolename>. --delegatee: Specify role that is targeted by delegator in --role to sign for target files matching delegated <glob pattern> or in revocation of trust. --terminating: Mark delegation to --delegatee role from delegator as a terminating one. --threshold: Specify signature threshold of --delegatee role as the value <X>. --revoke: Revoke trust of target files from delegated role (--delegatee) --verbose: Set the verbosity level of logging messages. Accepts values 1-5. --clean: Delete repo in current working or specified directory. """ # Help with Python 2+3 compatibility, where the print statement is a function, # an implicit relative import is invalid, and the '/' operator performs true # division. Example: print 'hello world' raises a 'SyntaxError' exception. from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import sys import logging import argparse import shutil import time import fnmatch import securesystemslib # pylint: disable=unused-import from securesystemslib import exceptions as sslib_exceptions from securesystemslib import formats as sslib_formats from securesystemslib import interface as sslib_interface from securesystemslib import keys as sslib_keys from securesystemslib import settings as sslib_settings from securesystemslib import util as sslib_util from tuf import exceptions from tuf import formats from tuf import keydb from tuf import log from tuf import repository_tool as repo_tool from tuf import roledb # See 'log.py' to learn how logging is handled in TUF. logger = logging.getLogger(__name__) repo_tool.disable_console_log_messages() PROG_NAME = 'repo.py' REPO_DIR = 'tufrepo' CLIENT_DIR = 'tufclient' KEYSTORE_DIR = 'tufkeystore' ROOT_KEY_NAME = 'root_key' TARGETS_KEY_NAME = 'targets_key' SNAPSHOT_KEY_NAME = 'snapshot_key' TIMESTAMP_KEY_NAME = 'timestamp_key' STAGED_METADATA_DIR = 'metadata.staged' METADATA_DIR = 'metadata' # The keytype strings, as expected on the command line. ED25519_KEYTYPE = 'ed25519' ECDSA_KEYTYPE = 'ecdsa' RSA_KEYTYPE = 'rsa' SUPPORTED_CLI_KEYTYPES = (ECDSA_KEYTYPE, ED25519_KEYTYPE, RSA_KEYTYPE) # The supported keytype strings (as they appear in metadata) are listed here # because they won't necessarily match the key types supported by # securesystemslib. SUPPORTED_KEY_TYPES = ('ed25519', 'ecdsa-sha2-nistp256', 'rsa') # pylint: disable=protected-access # ... to allow use of sslib _generate_and_write_*_keypair convenience methods def process_command_line_arguments(parsed_arguments): """ <Purpose> Perform the relevant operations on the repo according to the chosen command-line options. Which functions are executed depends on 'parsed_arguments'. For instance, the --init and --clean options will cause the init_repo() and clean_repo() functions to be called. Multiple operations can be executed in one invocation of the CLI. <Arguments> parsed_arguments: The parsed arguments returned by argparse.parse_args(). <Exceptions> securesystemslib.exceptions.Error, if any of the arguments are improperly formatted or if any of the argument could not be processed. <Side Effects> None. <Returns> None. """ # Do we have a valid argparse Namespace? if not isinstance(parsed_arguments, argparse.Namespace): raise exceptions.Error('Invalid namespace: ' + repr(parsed_arguments)) else: logger.debug('We have a valid argparse Namespace.') # TODO: Make sure the order that the arguments are processed allows for the # most convenient use of multiple options in one invocation of the CLI. For # instance, it might be best for --clean to be processed first before --init # so that a user can do the following: repo.py --clean --init (that is, first # clear the repo in the current working directory, and then initialize a new # one. if parsed_arguments.clean: clean_repo(parsed_arguments) if parsed_arguments.init: init_repo(parsed_arguments) if parsed_arguments.remove: remove_targets(parsed_arguments) if parsed_arguments.add: add_targets(parsed_arguments) if parsed_arguments.distrust: remove_verification_key(parsed_arguments) if parsed_arguments.trust: add_verification_key(parsed_arguments) if parsed_arguments.key: gen_key(parsed_arguments) if parsed_arguments.revoke: revoke(parsed_arguments) if parsed_arguments.delegate: delegate(parsed_arguments) # --sign should be processed last, after the other options, so that metadata # is signed last after potentially being modified by the other options. if parsed_arguments.sign: sign_role(parsed_arguments) def delegate(parsed_arguments): if not parsed_arguments.delegatee: raise exceptions.Error( '--delegatee must be set to perform the delegation.') if parsed_arguments.delegatee in ('root', 'snapshot', 'timestamp', 'targets'): raise exceptions.Error( 'Cannot delegate to the top-level role: ' + repr(parsed_arguments.delegatee)) if not parsed_arguments.pubkeys: raise exceptions.Error( '--pubkeys must be set to perform the delegation.') public_keys = [] for public_key in parsed_arguments.pubkeys: imported_pubkey = import_publickey_from_file(public_key) public_keys.append(imported_pubkey) repository = repo_tool.load_repository( os.path.join(parsed_arguments.path, REPO_DIR)) if parsed_arguments.role == 'targets': repository.targets.delegate(parsed_arguments.delegatee, public_keys, parsed_arguments.delegate, parsed_arguments.threshold, parsed_arguments.terminating, list_of_targets=None, path_hash_prefixes=None) targets_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, TARGETS_KEY_NAME), parsed_arguments.targets_pw) repository.targets.load_signing_key(targets_private) # A delegated (non-top-level-Targets) role. else: repository.targets(parsed_arguments.role).delegate( parsed_arguments.delegatee, public_keys, parsed_arguments.delegate, parsed_arguments.threshold, parsed_arguments.terminating, list_of_targets=None, path_hash_prefixes=None) # Update the required top-level roles, Snapshot and Timestamp, to make a new # release. Automatically making a new release can be disabled via # --no_release. if not parsed_arguments.no_release: snapshot_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, SNAPSHOT_KEY_NAME), parsed_arguments.snapshot_pw) timestamp_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, TIMESTAMP_KEY_NAME), parsed_arguments.timestamp_pw) repository.snapshot.load_signing_key(snapshot_private) repository.timestamp.load_signing_key(timestamp_private) consistent_snapshot = roledb.get_roleinfo('root', repository._repository_name)['consistent_snapshot'] repository.writeall(consistent_snapshot=consistent_snapshot) # Move staged metadata directory to "live" metadata directory. write_to_live_repo(parsed_arguments) def revoke(parsed_arguments): repository = repo_tool.load_repository( os.path.join(parsed_arguments.path, REPO_DIR)) if parsed_arguments.role == 'targets': repository.targets.revoke(parsed_arguments.delegatee) targets_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, TARGETS_KEY_NAME), parsed_arguments.targets_pw) repository.targets.load_signing_key(targets_private) # A non-top-level role. else: repository.targets(parsed_arguments.role).revoke(parsed_arguments.delegatee) role_privatekey = import_privatekey_from_file(parsed_arguments.sign) repository.targets(parsed_arguments.role).load_signing_key(role_privatekey) # Update the required top-level roles, Snapshot and Timestamp, to make a new # release. Automatically making a new release can be disabled via # --no_release. if not parsed_arguments.no_release: snapshot_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, SNAPSHOT_KEY_NAME), parsed_arguments.snapshot_pw) timestamp_private = import_privatekey_from_file( os.path.join(parsed_arguments.path, KEYSTORE_DIR, TIMESTAMP_KEY_NAME), parsed_arguments.timestamp_pw) repository.snapshot.load_signing_key(snapshot_private) repository.timestamp.load_signing_key(timestamp_private) consistent_snapshot = roledb.get_roleinfo('root', repository._repository_name)['consistent_snapshot'] repository.writeall(consistent_snapshot=consistent_snapshot) # Move staged metadata directory to "live" metadata directory. write_to_live_repo(parsed_arguments) def gen_key(parsed_arguments): if parsed_arguments.filename: parsed_arguments.filename = os.path.join(parsed_arguments.path, KEYSTORE_DIR, parsed_arguments.filename) keypath = None keygen_kwargs = { "password": parsed_arguments.pw, "filepath": parsed_arguments.filename, "prompt": (not parsed_arguments.pw) # prompt if no default or passed pw } if parsed_arguments.key not in SUPPORTED_CLI_KEYTYPES: exceptions.Error( 'Invalid key type: ' + repr(parsed_arguments.key) + '. Supported' ' key types: ' + repr(SUPPORTED_CLI_KEYTYPES)) elif parsed_arguments.key == ECDSA_KEYTYPE: keypath = sslib_interface._generate_and_write_ecdsa_keypair( **keygen_kwargs) elif parsed_arguments.key == ED25519_KEYTYPE: keypath = sslib_interface._generate_and_write_ed25519_keypair( **keygen_kwargs) # RSA key.. else: keypath = sslib_interface._generate_and_write_rsa_keypair( **keygen_kwargs) # If a filename is not given, the generated keypair is saved to the current # working directory. By default, the keypair is written to <KEYID>.pub # and <KEYID> (private key). if not parsed_arguments.filename: privkey_repo_path = os.path.join(parsed_arguments.path,
RESUMABLE_UPLOAD_THRESHOLD=5): with _NamedTemporaryFile() as temp: with open(temp.name, 'wb') as file_obj: file_obj.write(DATA) with open(temp.name, 'rb') as file_obj: blob.upload_from_file(file_obj, rewind=True) rq = connection.http._requested self.assertEqual(len(rq), 3) # Requested[0] headers = dict( [(x.title(), str(y)) for x, y in rq[0].pop('headers').items()]) self.assertEqual(headers['X-Upload-Content-Length'], '6') self.assertEqual(headers['X-Upload-Content-Type'], 'application/octet-stream') uri = rq[0].pop('uri') scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual(scheme, 'http') self.assertEqual(netloc, 'example.com') self.assertEqual(path, '/b/name/o') self.assertEqual(dict(parse_qsl(qs)), {'uploadType': 'resumable', 'name': BLOB_NAME}) self.assertEqual(rq[0], { 'method': 'POST', 'body': '', 'connection_type': None, 'redirections': 5, }) # Requested[1] headers = dict( [(x.title(), str(y)) for x, y in rq[1].pop('headers').items()]) self.assertEqual(headers['Content-Range'], 'bytes 0-4/6') self.assertEqual(rq[1], { 'method': 'PUT', 'uri': UPLOAD_URL, 'body': DATA[:5], 'connection_type': None, 'redirections': 5, }) # Requested[2] headers = dict( [(x.title(), str(y)) for x, y in rq[2].pop('headers').items()]) self.assertEqual(headers['Content-Range'], 'bytes 5-5/6') self.assertEqual(rq[2], { 'method': 'PUT', 'uri': UPLOAD_URL, 'body': DATA[5:], 'connection_type': None, 'redirections': 5, }) def test_upload_from_file_w_slash_in_name(self): from six.moves.http_client import OK from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit from gcloud._testing import _NamedTemporaryFile from gcloud.streaming import http_wrapper BLOB_NAME = 'parent/child' UPLOAD_URL = 'http://example.com/upload/name/parent%2Fchild' DATA = b'ABCDEF' loc_response = {'status': OK, 'location': UPLOAD_URL} chunk1_response = {'status': http_wrapper.RESUME_INCOMPLETE, 'range': 'bytes 0-4'} chunk2_response = {'status': OK} connection = _Connection( (loc_response, '{}'), (chunk1_response, ''), (chunk2_response, ''), ) client = _Client(connection) bucket = _Bucket(client) blob = self._makeOne(BLOB_NAME, bucket=bucket) blob._CHUNK_SIZE_MULTIPLE = 1 blob.chunk_size = 5 with _NamedTemporaryFile() as temp: with open(temp.name, 'wb') as file_obj: file_obj.write(DATA) with open(temp.name, 'rb') as file_obj: blob.upload_from_file(file_obj, rewind=True) self.assertEqual(file_obj.tell(), len(DATA)) rq = connection.http._requested self.assertEqual(len(rq), 1) self.assertEqual(rq[0]['redirections'], 5) self.assertEqual(rq[0]['body'], DATA) self.assertEqual(rq[0]['connection_type'], None) self.assertEqual(rq[0]['method'], 'POST') uri = rq[0]['uri'] scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual(scheme, 'http') self.assertEqual(netloc, 'example.com') self.assertEqual(path, '/b/name/o') self.assertEqual(dict(parse_qsl(qs)), {'uploadType': 'media', 'name': 'parent/child'}) headers = dict( [(x.title(), str(y)) for x, y in rq[0]['headers'].items()]) self.assertEqual(headers['Content-Length'], '6') self.assertEqual(headers['Content-Type'], 'application/octet-stream') def _upload_from_filename_test_helper(self, properties=None, content_type_arg=None, expected_content_type=None): from six.moves.http_client import OK from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit from gcloud._testing import _NamedTemporaryFile from gcloud.streaming import http_wrapper BLOB_NAME = 'blob-name' UPLOAD_URL = 'http://example.com/upload/name/key' DATA = b'ABCDEF' loc_response = {'status': OK, 'location': UPLOAD_URL} chunk1_response = {'status': http_wrapper.RESUME_INCOMPLETE, 'range': 'bytes 0-4'} chunk2_response = {'status': OK} connection = _Connection( (loc_response, '{}'), (chunk1_response, ''), (chunk2_response, ''), ) client = _Client(connection) bucket = _Bucket(client) blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) blob._CHUNK_SIZE_MULTIPLE = 1 blob.chunk_size = 5 with _NamedTemporaryFile(suffix='.jpeg') as temp: with open(temp.name, 'wb') as file_obj: file_obj.write(DATA) blob.upload_from_filename(temp.name, content_type=content_type_arg) rq = connection.http._requested self.assertEqual(len(rq), 1) self.assertEqual(rq[0]['method'], 'POST') uri = rq[0]['uri'] scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual(scheme, 'http') self.assertEqual(netloc, 'example.com') self.assertEqual(path, '/b/name/o') self.assertEqual(dict(parse_qsl(qs)), {'uploadType': 'media', 'name': BLOB_NAME}) headers = dict( [(x.title(), str(y)) for x, y in rq[0]['headers'].items()]) self.assertEqual(headers['Content-Length'], '6') self.assertEqual(headers['Content-Type'], expected_content_type) def test_upload_from_filename(self): self._upload_from_filename_test_helper( expected_content_type='image/jpeg') def test_upload_from_filename_with_content_type(self): EXPECTED_CONTENT_TYPE = 'foo/bar' self._upload_from_filename_test_helper( properties={'contentType': EXPECTED_CONTENT_TYPE}, expected_content_type=EXPECTED_CONTENT_TYPE) def test_upload_from_filename_with_content_type_passed(self): EXPECTED_CONTENT_TYPE = 'foo/bar' self._upload_from_filename_test_helper( content_type_arg=EXPECTED_CONTENT_TYPE, expected_content_type=EXPECTED_CONTENT_TYPE) def test_upload_from_filename_both_content_type_sources(self): EXPECTED_CONTENT_TYPE = 'foo/bar' ALT_CONTENT_TYPE = 'foo/baz' self._upload_from_filename_test_helper( properties={'contentType': ALT_CONTENT_TYPE}, content_type_arg=EXPECTED_CONTENT_TYPE, expected_content_type=EXPECTED_CONTENT_TYPE) def test_upload_from_string_w_bytes(self): from six.moves.http_client import OK from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit from gcloud.streaming import http_wrapper BLOB_NAME = 'blob-name' UPLOAD_URL = 'http://example.com/upload/name/key' DATA = b'ABCDEF' loc_response = {'status': OK, 'location': UPLOAD_URL} chunk1_response = {'status': http_wrapper.RESUME_INCOMPLETE, 'range': 'bytes 0-4'} chunk2_response = {'status': OK} connection = _Connection( (loc_response, '{}'), (chunk1_response, ''), (chunk2_response, ''), ) client = _Client(connection) bucket = _Bucket(client) blob = self._makeOne(BLOB_NAME, bucket=bucket) blob._CHUNK_SIZE_MULTIPLE = 1 blob.chunk_size = 5 blob.upload_from_string(DATA) rq = connection.http._requested self.assertEqual(len(rq), 1) self.assertEqual(rq[0]['method'], 'POST') uri = rq[0]['uri'] scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual(scheme, 'http') self.assertEqual(netloc, 'example.com') self.assertEqual(path, '/b/name/o') self.assertEqual(dict(parse_qsl(qs)), {'uploadType': 'media', 'name': BLOB_NAME}) headers = dict( [(x.title(), str(y)) for x, y in rq[0]['headers'].items()]) self.assertEqual(headers['Content-Length'], '6') self.assertEqual(headers['Content-Type'], 'text/plain') self.assertEqual(rq[0]['body'], DATA) def test_upload_from_string_w_text(self): from six.moves.http_client import OK from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit from gcloud.streaming import http_wrapper BLOB_NAME = 'blob-name' UPLOAD_URL = 'http://example.com/upload/name/key' DATA = u'ABCDEF\u1234' ENCODED = DATA.encode('utf-8') loc_response = {'status': OK, 'location': UPLOAD_URL} chunk1_response = {'status': http_wrapper.RESUME_INCOMPLETE, 'range': 'bytes 0-4'} chunk2_response = {'status': OK} connection = _Connection( (loc_response, '{}'), (chunk1_response, ''), (chunk2_response, ''), ) client = _Client(connection) bucket = _Bucket(client=client) blob = self._makeOne(BLOB_NAME, bucket=bucket) blob._CHUNK_SIZE_MULTIPLE = 1 blob.chunk_size = 5 blob.upload_from_string(DATA) rq = connection.http._requested self.assertEqual(len(rq), 1) self.assertEqual(rq[0]['method'], 'POST') uri = rq[0]['uri'] scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual(scheme, 'http') self.assertEqual(netloc, 'example.com') self.assertEqual(path, '/b/name/o') self.assertEqual(dict(parse_qsl(qs)), {'uploadType': 'media', 'name': BLOB_NAME}) headers = dict( [(x.title(), str(y)) for x, y in rq[0]['headers'].items()]) self.assertEqual(headers['Content-Length'], str(len(ENCODED))) self.assertEqual(headers['Content-Type'], 'text/plain') self.assertEqual(rq[0]['body'], ENCODED) def test_make_public(self): from gcloud.storage.acl import _ACLEntity BLOB_NAME = 'blob-name' permissive = [{'entity': 'allUsers', 'role': _ACLEntity.READER_ROLE}] after = {'acl': permissive} connection = _Connection(after) client = _Client(connection) bucket = _Bucket(client=client) blob = self._makeOne(BLOB_NAME, bucket=bucket) blob.acl.loaded = True blob.make_public() self.assertEqual(list(blob.acl), permissive) kw = connection._requested self.assertEqual(len(kw), 1) self.assertEqual(kw[0]['method'], 'PATCH') self.assertEqual(kw[0]['path'], '/b/name/o/%s' % BLOB_NAME) self.assertEqual(kw[0]['data'], {'acl': permissive}) self.assertEqual(kw[0]['query_params'], {'projection': 'full'}) def test_cache_control_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CACHE_CONTROL = 'no-cache' properties = {'cacheControl': CACHE_CONTROL} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.cache_control, CACHE_CONTROL) def test_cache_control_setter(self): BLOB_NAME = 'blob-name' CACHE_CONTROL = 'no-cache' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.cache_control, None) blob.cache_control = CACHE_CONTROL self.assertEqual(blob.cache_control, CACHE_CONTROL) def test_component_count(self): BUCKET = object() COMPONENT_COUNT = 42 blob = self._makeOne('blob-name', bucket=BUCKET, properties={'componentCount': COMPONENT_COUNT}) self.assertEqual(blob.component_count, COMPONENT_COUNT) def test_component_count_unset(self): BUCKET = object() blob = self._makeOne('blob-name', bucket=BUCKET) self.assertEqual(blob.component_count, None) def test_component_count_string_val(self): BUCKET = object() COMPONENT_COUNT = 42 blob = self._makeOne( 'blob-name', bucket=BUCKET, properties={'componentCount': str(COMPONENT_COUNT)}) self.assertEqual(blob.component_count, COMPONENT_COUNT) def test_content_disposition_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CONTENT_DISPOSITION = 'Attachment; filename=example.jpg' properties = {'contentDisposition': CONTENT_DISPOSITION} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.content_disposition, CONTENT_DISPOSITION) def test_content_disposition_setter(self): BLOB_NAME = 'blob-name' CONTENT_DISPOSITION = 'Attachment; filename=example.jpg' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.content_disposition, None) blob.content_disposition = CONTENT_DISPOSITION self.assertEqual(blob.content_disposition, CONTENT_DISPOSITION) def test_content_encoding_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CONTENT_ENCODING = 'gzip' properties = {'contentEncoding': CONTENT_ENCODING} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.content_encoding, CONTENT_ENCODING) def test_content_encoding_setter(self): BLOB_NAME = 'blob-name' CONTENT_ENCODING = 'gzip' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.content_encoding, None) blob.content_encoding = CONTENT_ENCODING self.assertEqual(blob.content_encoding, CONTENT_ENCODING) def test_content_language_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CONTENT_LANGUAGE = 'pt-BR' properties = {'contentLanguage': CONTENT_LANGUAGE} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.content_language, CONTENT_LANGUAGE) def test_content_language_setter(self): BLOB_NAME = 'blob-name' CONTENT_LANGUAGE = 'pt-BR' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.content_language, None) blob.content_language = CONTENT_LANGUAGE self.assertEqual(blob.content_language, CONTENT_LANGUAGE) def test_content_type_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CONTENT_TYPE = 'image/jpeg' properties = {'contentType': CONTENT_TYPE} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.content_type, CONTENT_TYPE) def test_content_type_setter(self): BLOB_NAME = 'blob-name' CONTENT_TYPE = 'image/jpeg' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.content_type, None) blob.content_type = CONTENT_TYPE self.assertEqual(blob.content_type, CONTENT_TYPE) def test_crc32c_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() CRC32C = 'DEADBEEF' properties = {'crc32c': CRC32C} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.crc32c, CRC32C) def test_crc32c_setter(self): BLOB_NAME = 'blob-name' CRC32C = 'DEADBEEF' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.crc32c, None) blob.crc32c = CRC32C self.assertEqual(blob.crc32c, CRC32C) def test_etag(self): BLOB_NAME = 'blob-name' bucket = _Bucket() ETAG = 'ETAG' properties = {'etag': ETAG} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.etag, ETAG) def test_generation(self): BUCKET = object() GENERATION = 42 blob = self._makeOne('blob-name', bucket=BUCKET, properties={'generation': GENERATION}) self.assertEqual(blob.generation, GENERATION) def test_generation_unset(self): BUCKET = object() blob = self._makeOne('blob-name', bucket=BUCKET) self.assertEqual(blob.generation, None) def test_generation_string_val(self): BUCKET = object() GENERATION = 42 blob = self._makeOne('blob-name', bucket=BUCKET, properties={'generation': str(GENERATION)}) self.assertEqual(blob.generation, GENERATION) def test_id(self): BLOB_NAME = 'blob-name' bucket = _Bucket() ID = 'ID' properties = {'id': ID} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.id, ID) def test_md5_hash_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() MD5_HASH = 'DEADBEEF' properties = {'md5Hash': MD5_HASH} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.md5_hash, MD5_HASH) def test_md5_hash_setter(self): BLOB_NAME = 'blob-name' MD5_HASH = 'DEADBEEF' bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.md5_hash, None) blob.md5_hash = MD5_HASH self.assertEqual(blob.md5_hash, MD5_HASH) def test_media_link(self): BLOB_NAME = 'blob-name' bucket = _Bucket() MEDIA_LINK = 'http://example.com/media/' properties = {'mediaLink': MEDIA_LINK} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.media_link, MEDIA_LINK) def test_metadata_getter(self): BLOB_NAME = 'blob-name' bucket = _Bucket() METADATA = {'foo': 'Foo'} properties = {'metadata': METADATA} blob = self._makeOne(BLOB_NAME, bucket=bucket, properties=properties) self.assertEqual(blob.metadata, METADATA) def test_metadata_setter(self): BLOB_NAME = 'blob-name' METADATA = {'foo': 'Foo'} bucket = _Bucket() blob = self._makeOne(BLOB_NAME, bucket=bucket) self.assertEqual(blob.metadata, None) blob.metadata = METADATA self.assertEqual(blob.metadata, METADATA) def test_metageneration(self): BUCKET = object() METAGENERATION = 42 blob = self._makeOne('blob-name', bucket=BUCKET, properties={'metageneration': METAGENERATION}) self.assertEqual(blob.metageneration, METAGENERATION) def test_metageneration_unset(self): BUCKET = object() blob = self._makeOne('blob-name', bucket=BUCKET) self.assertEqual(blob.metageneration, None) def test_metageneration_string_val(self): BUCKET = object() METAGENERATION = 42 blob = self._makeOne( 'blob-name', bucket=BUCKET, properties={'metageneration': str(METAGENERATION)}) self.assertEqual(blob.metageneration, METAGENERATION) def test_owner(self): BLOB_NAME = 'blob-name'
""" Some basic inference functions adapted from my inferno module which should be available here soon: https://github.com/nealegibson/inferno Really they are just rewritten versions of https://github.com/nealegibson/Infer But there are many other options for optimisers/MCMCs/etc, and they should (in principle) all do much the same job! """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fmin from tqdm.auto import tqdm import time def fopt(f,x0,var=None,args=[],min=False,**kwargs): """ Optimisation function using scipy's fmin. This uses a simple wrapper to allow maximising as well as minimising functions, as well as allowing for a fixed set of parameters. inferno.opt or inferno.optimise has more options. f - function to be optimised, which can be called as f(x0,*args) x0 - array of starting points var - array with the same length as x0 indicating variable parameters. Parameters are variable if >0, so boolean True/False, integers, or even error arrays will work args - additional arguments passed to fmin (see scipy.optimize.fmin) min - if True minimises rather than maximises the function f wrt x0 kwargs - additional keyword args are passed to fmin """ if var is None: var = np.ones(x0.size) var_ind = var>0 x = np.copy(x0) #define wrapper function to re-construct the full parameter array from subset def wrapper(p,*args): x[var_ind] = p # get full parameter array if min: return f(x,*args) #call the function and return else: return -f(x,*args) #or the negative of the func to maximise the function instead #call scipy's fmin on the wrapper function x[var_ind] = fmin(wrapper,x0[var_ind],args=args,**kwargs) return x def apply_uniform_logPrior(logL,bounds): """ Simple funciton decorator that takes in a log Likelihood function, and returns a log Posterior that is bounded according to bounds. logL - input function of form logL(p,*args,**kwargs) bounds - list of (lower/upper) bounds for each parameter e.g. for a parameter vector of length 5, could use: bounds = [(0,1),(-np.inf,np.inf),None,(-10,10),(2,9)] then can define logP from logL as follows: logP = apply_uniform_prior(logL,bounds) logP is then a callable function just like logL logP(p,*args,...) """ #convert bounds into lower and upper limits of len(p) lower_lims = np.array([i[0] if i is not None else -np.inf for i in bounds]) upper_lims = np.array([i[1] if i is not None else np.inf for i in bounds]) #define the posterior distribution def logP(p,*args,**kwargs): #apply priors - return -np.inf if outside prior range if np.any(p<lower_lims): return -np.inf if np.any(p>upper_lims): return -np.inf return logL(p,*args,**kwargs) #else return the logL return logP #return the function def uniform_logPrior(bounds): """ same as above, but returns the logPrior directly """ lower = np.array([t[0] if type(t) is tuple else -np.inf for t in bounds]) upper = np.array([t[1] if type(t) is tuple else np.inf for t in bounds]) def log_prior(x,*args,**kwargs): """ logPrior with simple bounds """ if np.any(x<lower): return -np.inf elif np.any(x>upper): return -np.inf else: return 0. return log_prior def miniMCMC(f,x,x_err,burnin,chain,N=32,args=[],a=2,dlogP=50): """ Simple MCMC function. This is missing a lot of functionality and checks of more extensive codes, see inferno.mcmc for a fully-featured mcmc implementation with multiple flavours of MCMC. This version runs a simple implementation of an Affine Invariant MCMC (this is a misnomer as most non-trivial Metropolis Hastings steps can be affine invariant!). However, this MCMC flavour does require minimal tuning, and therefore is good for testing. See Goodman & Weare (2010) for a description of the algorithm, and Foreman-Mackey et al. (2012) for another clear description of the algorithm (and of the widely used 'emcee' implementation). The basic idea is that at each step, we loop through each chain in turn, and pick another random chain, and create a proposal based on the positions of the current and random other chain. This implementation splits the set of chains in two, and picks a random chain from the other set. This allows the proposals to be pre-computed, and also for the logPosteriors to be computed in parallel. See Foreman-Mackey et al. (2012) for an explanation. The initial set of chains are simply drawn from a diagonalised Gaussian distribution. Chains are replaced at random if more than dlogP from maximum likelihood to ensure the starting points are ok. If more than half the points are outside this range code will raise an exception. This is usually because the starting distribution is too large for one of the parameters, and/or the starting point is far from the max. This can usually be fixed by calling again with smaller x_err. Note that full mcmc implementation inferno.mcmc has many more features for refining starting points and running different flavours of MCMC. The total number of samples will be N * (burnin * chain) inputs ------ f - logPosterior function, which can be called as f(x,*args), and returns the value of the logPosterior for the parameter vector x x - array of starting points (means) to populate initial chains x_err - corresponding uncertainties (stdevs) burnin - length of burnin period, where current state is not recorded chain - length of chain, where each state of the chain is recorded N - number of chains/walkers, must be even greater than 16 args - additional arguments to the logPosterior f - i.e. f(x,*args) a - parameter used to control the acceptance ratio. This can be varied based on the acceptance, but is fixed here. See inferno.mcmc(mode="AffInv") dlogP - starting points for chains are rejected if more than dlogP from the maximum likelihood computed from the initial draw. This will include points in restricted prior space (ie with f(x)=-np.inf). If more than a quarter are outside this range, will raise an exception returns a dictionary with the following parameters -------------------------------------------------- 'p' - means of the parameters 'e' - standard deviation of the parameters 'chains' - array of chains of shape: (chains x N x len(x)) 'logP' - corresponding values of logP at each point in the chain, shape: (chains x N) 'Xinit' - initial points in the chain, useful for debugging, shape: (N x len(x)) 'Xinit_logP' - corresponding values of logP, shape: (N) """ #check a few inputs are ok assert N%2==0 and N>16, "N must be even and greater than 16" #define simple mapping function, written in this way to allow easy parallelisation with multiprocessing def f_args(x): return f(x,*args) #create simple wrapper function that doesn't require args def map_func(X): return np.array(list(map(f_args,X))) #create mapping function using default map #get starting points for the chains and compute logP for each X = np.random.multivariate_normal(x,np.diag(x_err**2),N) #use gaussian distribution XlogP = map_func(X) #compute logP Xinit,Xinit_logP=np.copy(X),np.copy(XlogP) #define arrays for chains chains = np.empty((chain,N,x.size)) # accepted chains logP = np.empty((chain,N)) # accepted posterior values n_steps = burnin+chain #and total number of steps acc = np.full((n_steps,N),False) # acceptance array, start with all False #re-draw starting points for outliers cull_index = XlogP.max() - XlogP > dlogP if np.sum(~cull_index) < np.sum(x_err>0.)*2: #raise exception if number of good points is too low raise ValueError("too many points ({}/{}) with ndim {} are outside acceptable range, use smaller x_err".format(np.sum(cull_index),len(cull_index),np.sum(x_err>0.))) if np.any(cull_index): print("redrawing {}/{} points".format(np.sum(cull_index),N)) ind_good = np.where(~cull_index)[0] good_points_ind = np.random.choice(ind_good,cull_index.sum()) X[cull_index],XlogP[cull_index] = X[good_points_ind],XlogP[good_points_ind] #predefine random arrays, for acceptance, step sizes, and random other chain RandNoArr = np.random.rand(n_steps,N) #for acceptance step #then z and z^D-1 used in proposal and acceptance z = (np.random.rand(n_steps,N) * (np.sqrt(4.*a)-np.sqrt(4./a)) + np.sqrt(4./a))**2 / 4. z_Dm1 = z**(np.sum(x_err>0.)-1) #pick random other chain to use for each step rand_chain = np.random.randint(0,N//2,(n_steps,N)) #first pick a random value from 0 to N//2 for each chain rand_chain[:,:N//2]+=N//2 #then add on N//2 for the 1st set slices = [slice(0,N//2),slice(N//2,None)] start_time = time.time() #get start time #compute MCMC chain for i in tqdm(range(n_steps),position=0,desc='running mcmc chain'): for sl in slices: #loop over each half of chains in turn #get proposal steps and compute logP X_prop = X[rand_chain[i,sl]] + z[i][sl,np.newaxis] * (X[sl] - X[rand_chain[i,sl]]) XlogP_prop = map_func(X_prop) #compute logP for proposal
import math import os import sys from ConfigParser import RawConfigParser DEFAULT_SIZE = 400 BOARD_SIZE = 8 CHECKER_SIZE = 30 MAX_VALID_SQ = 32 MOVE = 0 JUMP = 1 OCCUPIED = 0 BLACK = 1 WHITE = 2 MAN = 4 KING = 8 FREE = 16 COLORS = BLACK | WHITE TYPES = OCCUPIED | BLACK | WHITE | MAN | KING | FREE HUMAN = 0 COMPUTER = 1 MIN = 0 MAX = 1 IMAGE_DIR = 'images' + os.sep RAVEN_ICON = IMAGE_DIR + '_raven.ico' BULLET_IMAGE = IMAGE_DIR + 'bullet_green.gif' CROWN_IMAGE = IMAGE_DIR + 'crown.gif' BOLD_IMAGE = IMAGE_DIR + 'text_bold.gif' ITALIC_IMAGE = IMAGE_DIR + 'text_italic.gif' BULLETS_IMAGE = IMAGE_DIR + 'text_list_bullets.gif' NUMBERS_IMAGE = IMAGE_DIR + 'text_list_numbers.gif' ADDLINK_IMAGE = IMAGE_DIR + 'link.gif' REMLINK_IMAGE = IMAGE_DIR + 'link_break.gif' UNDO_IMAGE = IMAGE_DIR + 'resultset_previous.gif' UNDO_ALL_IMAGE = IMAGE_DIR + 'resultset_first.gif' REDO_IMAGE = IMAGE_DIR + 'resultset_next.gif' REDO_ALL_IMAGE = IMAGE_DIR + 'resultset_last.gif' LIGHT_SQUARES = 'tan' DARK_SQUARES = 'dark green' OUTLINE_COLOR = 'white' LIGHT_CHECKERS = 'white' DARK_CHECKERS = 'red' WHITE_CHAR = 'w' WHITE_KING = 'W' BLACK_CHAR = 'b' BLACK_KING = 'B' FREE_CHAR = '.' OCCUPIED_CHAR = '-' INFINITY = 9999999 MAX_DEPTH = 10 VERSION = '0.4' TITLE = 'Raven ' + VERSION PROGRAM_TITLE = 'Raven Checkers' CUR_DIR = sys.path[0] TRAINING_DIR = 'training' # search values for transposition table hashfALPHA, hashfBETA, hashfEXACT = range(3) # constants for evaluation function TURN = 2 # color to move gets + turn BRV = 3 # multiplier for back rank KCV = 5 # multiplier for kings in center MCV = 1 # multiplier for men in center MEV = 1 # multiplier for men on edge KEV = 5 # multiplier for kings on edge CRAMP = 5 # multiplier for cramp OPENING = 2 # multipliers for tempo MIDGAME = -1 ENDGAME = 2 INTACT_DOUBLE_CORNER = 3 BLACK_IDX = [5, 6] WHITE_IDX = [-5, -6] KING_IDX = [-6, -5, 5, 6] FIRST = 0 MID = 1 LAST = -1 # (white) # 45 46 47 48 # 39 40 41 42 # 34 35 36 37 # 28 29 30 31 # 23 24 25 26 # 17 18 19 20 # 12 13 14 15 # 6 7 8 9 # (black) # other squares reachable from a particular square with a white man WHITE_MAP = {45: {39, 40, 34, 35, 28, 29, 30, 23, 24, 25, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 46: {40, 41, 34, 35, 36, 28, 29, 30, 31, 23, 24, 25, 26, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 47: {41, 42, 35, 36, 37, 29, 30, 31, 23, 24, 25, 26, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 48: {42, 36, 37, 30, 31, 24, 25, 26, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 39: {34, 28, 29, 23, 24, 17, 18, 19, 12, 13, 14, 6, 7, 8, 9}, 40: {34, 35, 28, 29, 30, 23, 24, 25, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 41: {35, 36, 29, 30, 31, 23, 24, 25, 26, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 42: {36, 37, 30, 31, 24, 25, 26, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 34: {28, 29, 23, 24, 17, 18, 19, 12, 13, 14, 6, 7, 8, 9}, 35: {29, 30, 23, 24, 25, 17, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 36: {30, 31, 24, 25, 26, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 37: {31, 25, 26, 19, 20, 13, 14, 15, 7, 8, 9}, 28: {23, 17, 18, 12, 13, 6, 7, 8}, 29: {23, 24, 17, 18, 19, 12, 13, 14, 6, 7, 8, 9}, 30: {24, 25, 18, 19, 20, 12, 13, 14, 15, 6, 7, 8, 9}, 31: {25, 26, 19, 20, 13, 14, 15, 7, 8, 9}, 23: {17, 18, 12, 13, 6, 7, 8}, 24: {18, 19, 12, 13, 14, 6, 7, 8, 9}, 25: {19, 20, 13, 14, 15, 7, 8, 9}, 26: {20, 14, 15, 8, 9}, 17: {12, 6, 7}, 18: {12, 13, 6, 7, 8}, 19: {13, 14, 7, 8, 9}, 20: {14, 15, 8, 9}, 12: {6, 7}, 13: {7, 8}, 14: {8, 9}, 15: {9}, 6: set(), 7: set(), 8: set(), 9: set()} # (white) # 45 46 47 48 # 39 40 41 42 # 34 35 36 37 # 28 29 30 31 # 23 24 25 26 # 17 18 19 20 # 12 13 14 15 # 6 7 8 9 # (black) # other squares reachable from a particular square with a black man BLACK_MAP = {6: {12, 17, 18, 23, 24, 28, 29, 30, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48}, 7: {12, 13, 17, 18, 19, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 8: {13, 14, 18, 19, 20, 23, 24, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 9: {14, 15, 19, 20, 24, 25, 26, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 12: {17, 18, 23, 24, 28, 29, 30, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48}, 13: {18, 19, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 14: {19, 20, 24, 25, 26, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 15: {20, 25, 26, 30, 31, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48}, 17: {23, 28, 29, 34, 35, 39, 40, 41, 45, 46, 47}, 18: {23, 24, 28, 29, 30, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48}, 19: {24, 25, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 48}, 20: {25, 26, 30, 31, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48}, 23: {28, 29, 34, 35, 39, 40, 41, 45, 46, 47}, 24: {29, 30, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48}, 25: {30, 31, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48}, 26: {31, 36, 37, 41, 42, 46, 47, 48}, 28: {34, 39, 40, 45, 46}, 29: {34, 35, 39, 40, 41, 45, 46, 47}, 30: {35, 36, 40, 41, 42, 45, 46, 47, 48}, 31: {36, 37, 41, 42, 46, 47, 48}, 34: {39, 40, 45, 46}, 35: {40, 41, 45, 46, 47}, 36: {41, 42, 46, 47, 48}, 37: {42, 47, 48}, 39: {45}, 40: {45, 46}, 41: {46, 47}, 42: {47, 48}, 45: set(), 46: set(), 47: set(), 48: set()} # translate from simple input notation to real checkerboard notation IMAP = {'a1': 5, 'c1': 6, 'e1': 7, 'g1': 8, 'b2': 10, 'd2': 11, 'f2': 12, 'h2': 13, 'a3': 14, 'c3': 15, 'e3': 16, 'g3': 17, 'b4': 19, 'd4': 20, 'f4': 21, 'h4': 22, 'a5': 23, 'c5': 24, 'e5': 25, 'g5': 26, 'b6': 28, 'd6': 29, 'f6': 30, 'h6': 31, 'a7': 32, 'c7': 33, 'e7': 34, 'g7': 35, 'b8': 37, 'd8': 38, 'f8': 39, 'h8': 40} CB_MAP = {5: 4, 6: 3, 7: 2, 8: 1, 10: 8, 11: 7, 12: 6, 13: 5, 14: 12, 15: 11, 16: 10, 17: 9, 19: 16, 20: 15, 21: 14, 22: 13, 23: 20, 24: 19, 25: 18, 26: 17, 28: 24, 29: 23, 30: 22, 31: 21, 32: 28, 33: 27, 34: 26, 35: 25, 37: 32, 38: 31, 39: 30, 40: 29} def create_position_map(): """ Maps compressed grid indices xi + yi * 8 to internal board indices """ pos = {1: 45, 3: 46, 5: 47, 7: 48, 8: 39, 10: 40, 12: 41, 14: 42, 17: 34, 19: 35, 21: 36, 23: 37, 24: 28, 26: 29, 28: 30, 30: 31, 33: 23, 35: 24, 37: 25, 39: 26, 40: 17, 42: 18, 44: 19, 46: 20, 49: 12, 51: 13, 53: 14, 55: 15, 56: 6, 58: 7, 60: 8, 62: 9} return pos def create_key_map(): """ Maps internal board indices to checkerboard label
# Owner(s): ["module: nn"] import inspect import torch from unittest import mock from unittest.mock import MagicMock, patch from torch.testing import floating_types from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes from torch.testing._internal.common_quantization import skipIfNoFBGEMM from torch.testing._internal.common_utils import TestCase, run_tests # Returns a database of args & kwargs that can be used to construct each module. # Each entry is in class -> (args, kwargs) format. # Example: torch.nn.Linear -> ([10, 5], {}) # TODO: Merge this in with the initial ModuleInfo implementation. def build_constructor_arg_db(): return { torch.nn.AdaptiveAvgPool1d: ((5,), {}), torch.nn.AdaptiveAvgPool2d: ((5,), {}), torch.nn.AdaptiveAvgPool3d: ((5,), {}), torch.nn.AdaptiveLogSoftmaxWithLoss: ((100, 20, [5, 10, 15]), {}), torch.nn.AdaptiveMaxPool1d: ((5,), {}), torch.nn.AdaptiveMaxPool2d: ((5,), {}), torch.nn.AdaptiveMaxPool3d: ((5,), {}), torch.nn.AlphaDropout: ((), {}), torch.nn.AvgPool1d: ((3,), {}), torch.nn.AvgPool2d: ((3,), {}), torch.nn.AvgPool3d: ((3,), {}), torch.nn.BCELoss: ((), {}), torch.nn.BCEWithLogitsLoss: ((), {}), torch.nn.BatchNorm1d: ((5,), {}), torch.nn.BatchNorm2d: ((5,), {}), torch.nn.BatchNorm3d: ((5,), {}), torch.nn.Bilinear: ((2, 3, 4), {}), torch.nn.CELU: ((), {}), torch.nn.CTCLoss: ((), {}), torch.nn.ChannelShuffle: ((4,), {}), torch.nn.ConstantPad1d: ((2, 3.5), {}), torch.nn.ConstantPad2d: ((2, 3.5), {}), torch.nn.ConstantPad3d: ((2, 3.5), {}), torch.nn.Conv1d: ((3, 3, 3), {}), torch.nn.Conv2d: ((3, 3, 3), {}), torch.nn.Conv3d: ((3, 3, 3), {}), torch.nn.ConvTranspose1d: ((3, 3, 3), {}), torch.nn.ConvTranspose2d: ((3, 3, 3), {}), torch.nn.ConvTranspose3d: ((3, 3, 3), {}), torch.nn.CosineEmbeddingLoss: ((), {}), torch.nn.CosineSimilarity: ((), {}), torch.nn.CrossEntropyLoss: ((), {}), torch.nn.CrossMapLRN2d: ((5,), {}), torch.nn.Dropout1d: ((), {}), torch.nn.Dropout2d: ((), {}), torch.nn.Dropout3d: ((), {}), torch.nn.Dropout: ((), {}), torch.nn.ELU: ((), {}), torch.nn.Embedding: ((10, 5), {}), torch.nn.EmbeddingBag: ((10, 5), {}), torch.nn.FeatureAlphaDropout: ((), {}), torch.nn.Flatten: ((), {}), torch.nn.Fold: ((5, 2), {}), torch.nn.FractionalMaxPool2d: ((5, 2), {}), torch.nn.FractionalMaxPool3d: ((5, 2), {}), torch.nn.GELU: ((), {}), torch.nn.GLU: ((), {}), torch.nn.GRU: ((5, 10), {}), torch.nn.GRUCell: ((5, 10), {}), torch.nn.GaussianNLLLoss: ((), {}), torch.nn.GroupNorm: ((3, 6, 1e-5, True), {}), torch.nn.Hardshrink: ((), {}), torch.nn.Hardsigmoid: ((), {}), torch.nn.Hardswish: ((), {}), torch.nn.Hardtanh: ((), {}), torch.nn.HingeEmbeddingLoss: ((), {}), torch.nn.HuberLoss: ((), {}), torch.nn.Identity: ((), {}), torch.nn.InstanceNorm1d: ((5, 1e-5, 0.1, True), {}), torch.nn.InstanceNorm2d: ((5, 1e-5, 0.1, True), {}), torch.nn.InstanceNorm3d: ((5, 1e-5, 0.1, True), {}), torch.nn.KLDivLoss: ((), {}), torch.nn.L1Loss: ((), {}), torch.nn.LPPool1d: ((2, 3), {}), torch.nn.LPPool2d: ((2, 3), {}), torch.nn.LSTM: ((5, 10), {}), torch.nn.LSTMCell: ((5, 10), {}), torch.nn.LayerNorm: ((2,), {}), torch.nn.LazyBatchNorm1d: ((), {}), torch.nn.LazyBatchNorm2d: ((), {}), torch.nn.LazyBatchNorm3d: ((), {}), torch.nn.LazyConv1d: ((5, 2), {}), torch.nn.LazyConv2d: ((5, 2), {}), torch.nn.LazyConv3d: ((5, 2), {}), torch.nn.LazyConvTranspose1d: ((5, 2), {}), torch.nn.LazyConvTranspose2d: ((5, 2), {}), torch.nn.LazyConvTranspose3d: ((5, 2), {}), torch.nn.LazyInstanceNorm1d: ((), {}), torch.nn.LazyInstanceNorm2d: ((), {}), torch.nn.LazyInstanceNorm3d: ((), {}), torch.nn.LazyLinear: ((5,), {}), torch.nn.LeakyReLU: ((), {}), torch.nn.Linear: ((10, 5), {}), torch.nn.LocalResponseNorm: ((2,), {}), torch.nn.LogSigmoid: ((), {}), torch.nn.LogSoftmax: ((), {}), torch.nn.MSELoss: ((), {}), torch.nn.MarginRankingLoss: ((), {}), torch.nn.MaxPool1d: ((3,), {}), torch.nn.MaxPool2d: ((3,), {}), torch.nn.MaxPool3d: ((3,), {}), torch.nn.MaxUnpool1d: ((5,), {}), torch.nn.MaxUnpool2d: ((5,), {}), torch.nn.MaxUnpool3d: ((5,), {}), torch.nn.Mish: ((), {}), torch.nn.ModuleDict: ((), {}), torch.nn.ModuleList: ((), {}), torch.nn.MultiLabelMarginLoss: ((), {}), torch.nn.MultiLabelSoftMarginLoss: ((), {}), torch.nn.MultiMarginLoss: ((), {}), torch.nn.MultiheadAttention: ((100, 2), {}), torch.nn.NLLLoss2d: ((), {}), torch.nn.NLLLoss: ((), {}), torch.nn.PReLU: ((), {}), torch.nn.PairwiseDistance: ((), {}), torch.nn.ParameterDict: ((), {}), torch.nn.ParameterList: ((), {}), torch.nn.PixelShuffle: ((2,), {}), torch.nn.PixelUnshuffle: ((2,), {}), torch.nn.PoissonNLLLoss: ((), {}), torch.nn.RNN: ((5, 10), {}), torch.nn.RNNBase: (('LSTM', 5, 10), {}), torch.nn.RNNCell: ((5, 10), {}), torch.nn.RNNCellBase: ((5, 10, True, 2), {}), torch.nn.RReLU: ((), {}), torch.nn.ReLU6: ((), {}), torch.nn.ReLU: ((), {}), torch.nn.ReflectionPad1d: ((2,), {}), torch.nn.ReflectionPad2d: ((2,), {}), torch.nn.ReflectionPad3d: ((2,), {}), torch.nn.ReplicationPad1d: ((2,), {}), torch.nn.ReplicationPad2d: ((2,), {}), torch.nn.ReplicationPad3d: ((2,), {}), torch.nn.SELU: ((), {}), torch.nn.Sequential: ((), {}), torch.nn.SiLU: ((), {}), torch.nn.Sigmoid: ((), {}), torch.nn.SmoothL1Loss: ((), {}), torch.nn.SoftMarginLoss: ((), {}), torch.nn.Softmax2d: ((), {}), torch.nn.Softmax: ((), {}), torch.nn.Softmin: ((), {}), torch.nn.Softplus: ((), {}), torch.nn.Softshrink: ((), {}), torch.nn.Softsign: ((), {}), torch.nn.SyncBatchNorm: ((5,), {}), torch.nn.Tanh: ((), {}), torch.nn.Tanhshrink: ((), {}), torch.nn.Threshold: ((0.1, 20), {}), torch.nn.Transformer: ((), {}), torch.nn.TransformerDecoder: ((torch.nn.TransformerDecoderLayer, 3), {}), torch.nn.TransformerDecoderLayer: ((10, 2), {}), torch.nn.TransformerEncoder: ((torch.nn.TransformerEncoderLayer, 3), {}), torch.nn.TransformerEncoderLayer: ((10, 2), {}), torch.nn.TripletMarginLoss: ((), {}), torch.nn.TripletMarginWithDistanceLoss: ((), {}), torch.nn.Unflatten: ((1, (2, 5, 5)), {}), torch.nn.Unfold: ((3,), {}), torch.nn.Upsample: ((), {}), torch.nn.UpsamplingBilinear2d: ((), {}), torch.nn.UpsamplingNearest2d: ((), {}), torch.nn.ZeroPad2d: ((0,), {}), torch.nn.qat.Conv1d: ((3, 3, 3), { 'qconfig': torch.ao.quantization.default_qconfig, }), torch.nn.qat.Conv2d: ((3, 3, 3), { 'qconfig': torch.ao.quantization.default_qconfig, }), torch.nn.qat.Conv3d: ((3, 3, 3), { 'qconfig': torch.ao.quantization.default_qconfig, }), torch.nn.qat.Linear: ((5, 2), { 'qconfig': torch.ao.quantization.default_qconfig, }), torch.nn.qat.Embedding: ((10, 12), { 'qconfig': torch.ao.quantization.float_qparams_weight_only_qconfig, }), torch.nn.qat.EmbeddingBag: ((10, 12), { 'qconfig': torch.ao.quantization.float_qparams_weight_only_qconfig, }), torch.nn.quantizable.LSTM: ((5, 6), {}), torch.nn.quantizable.LSTMCell: ((5, 6), {}), torch.nn.quantizable.MultiheadAttention: ((10, 2), {}), torch.nn.quantized.BatchNorm2d: ((2,), {}), torch.nn.quantized.BatchNorm3d: ((2,), {}), torch.nn.quantized.Dropout: ((), {}), torch.nn.quantized.Conv1d: ((3, 3, 3), {}), torch.nn.quantized.Conv2d: ((3, 3, 3), {}), torch.nn.quantized.Conv3d: ((3, 3, 3), {}), torch.nn.quantized.ConvTranspose1d: ((3, 3, 3), {}), torch.nn.quantized.ConvTranspose2d: ((3, 3, 3), {}), torch.nn.quantized.ConvTranspose3d: ((16, 33, (3, 3, 5)), { 'stride': (2, 1, 1), 'padding': (4, 2, 2), 'output_padding': (2, 2, 2), 'dilation': (1, 1, 1), }), torch.nn.quantized.DeQuantize: ((), {}), torch.nn.quantized.ELU: ((0.01, 0), {}), torch.nn.quantized.Embedding: ((10, 3), { 'factory_kwargs': {}, }), torch.nn.quantized.EmbeddingBag: ((10, 3), { 'factory_kwargs': {}, }), torch.nn.quantized.GroupNorm: ((2, 4, torch.nn.Parameter(torch.tensor(2.)), torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}), torch.nn.quantized.Hardswish: ((0.1, 0,), {}), torch.nn.quantized.InstanceNorm1d: ((2, torch.nn.Parameter(torch.tensor(2.)), torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}), torch.nn.quantized.InstanceNorm2d: ((2, torch.nn.Parameter(torch.tensor(2.)), torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}), torch.nn.quantized.InstanceNorm3d: ((2, torch.nn.Parameter(torch.tensor(2.)), torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}), torch.nn.quantized.LayerNorm: ((2, torch.nn.Parameter(torch.tensor(2.)), torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}), torch.nn.quantized.LeakyReLU: ((0.01, 0), {}), torch.nn.quantized.Linear: ((5, 2), { 'factory_kwargs': {}, }), torch.nn.quantized.MaxPool2d: ((3,), {}), torch.nn.quantized.Quantize: ((0.1, 0), { 'dtype': torch.int16, 'factory_kwargs': {}, }), torch.nn.quantized.ReLU6: ((), {}), torch.nn.quantized.Sigmoid: ((0.1, 0), {}), torch.nn.quantized.Softmax: ((), {}), torch.nn.quantized.FloatFunctional: ((), {}), torch.nn.quantized.FXFloatFunctional: ((), {}), torch.nn.quantized.QFunctional: ((), {}), } # Instantiates the given class with the given args, kwargs, optionally on a given device. def instantiate_class(cls, args, kwargs, extra_kwargs): return cls(*args, **kwargs) if extra_kwargs is None else cls(*args, **kwargs, **extra_kwargs) # Returns a function that calls the real implementation of a method # in addition to passing args to a mock object. def mock_wrapper(method): mock = MagicMock() def wrapper(self, *args, **kwargs): mock(*args, **kwargs) return method(self, *args, **kwargs) wrapper.mock = mock return wrapper # Returns a set of args / kwargs that can be used to construct the module. def get_example_args(module_cls, constructor_arg_db, extra_kwargs=None): assert module_cls in constructor_arg_db, \ f"No entry for {module_cls} in the constructor arg DB. Please add it to pass these tests." args, kwargs = constructor_arg_db[module_cls] extra_kwargs = {} if extra_kwargs is None else extra_kwargs # Recursively instantiate args / kwargs that are class objects. args = [instantiate_class(arg, *get_example_args(arg, constructor_arg_db), extra_kwargs=extra_kwargs) if inspect.isclass(arg) else torch.nn.Parameter(arg.to(**extra_kwargs)) if isinstance(arg, torch.nn.Parameter) else arg for arg in args] kwargs = {k: instantiate_class(v, *get_example_args(v, constructor_arg_db), extra_kwargs=extra_kwargs) if inspect.isclass(v) else torch.nn.Parameter(v.to(*extra_kwargs)) if isinstance(v, torch.nn.Parameter) else v for k, v in kwargs.items()} kwargs.update(extra_kwargs) return args, kwargs def generate_test_func(test_cls, module_cls, constructor_arg_db, verify_kwargs=True, module_is_lazy=False, check_nonexistent_arg=True): # Generate a function for testing the given module. @dtypes(*floating_types()) def run_test(test_cls, device, dtype, module_cls=module_cls): # Check if this module creates parameters or registers buffers. # The mock magic here passes through to the real Parameter / register_buffer # logic and is only used to check for calls. args, kwargs = get_example_args(module_cls, constructor_arg_db) # Some modules need to pass factory_kwargs so as not to conflict with existing args such as dtype. module_needs_factory_kwargs = 'factory_kwargs' in kwargs if module_needs_factory_kwargs: del kwargs['factory_kwargs'] extra_kwargs = { 'factory_kwargs': { 'device': device, 'dtype': dtype, } } else: extra_kwargs = { 'device': device, 'dtype': dtype, } parameter_new = mock_wrapper(torch.nn.Parameter.__new__) with patch.object(torch.nn.Parameter, '__new__', parameter_new): register_buffer = mock_wrapper(torch.nn.Module.register_buffer) with patch.object(torch.nn.Module, 'register_buffer', register_buffer): m = module_cls(*args, **kwargs) module_creates_params_or_buffers = parameter_new.mock.called or register_buffer.mock.called # == Verify factory kwargs are supported. == if verify_kwargs and module_creates_params_or_buffers: args, kwargs = get_example_args(module_cls, constructor_arg_db, extra_kwargs=extra_kwargs) if module_is_lazy: # Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers. uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__) with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new): uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__) with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new): m = module_cls(*args, **kwargs) uninit_param_new.mock.assert_has_calls( [mock.call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls]) uninit_buffer_new.mock.assert_has_calls( [mock.call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls]) else: # Check device placement and dtype for parameters and buffers. # Only verify floating point dtypes since that's what the kwarg applies to. # Note that dtype verification is also skipped if the module requires factory_kwargs. m = module_cls(*args, **kwargs) for name, param in m.named_parameters(): test_cls.assertEqual( str(param.device), device, f'Parameter {name} is on {param.device.type} instead of the expected device {device}') if param.dtype.is_floating_point and not module_needs_factory_kwargs: test_cls.assertEqual( param.dtype, dtype, f'Parameter {name} is of dtype {param.dtype} instead of the expected dtype {dtype}') for name, buffer in m.named_buffers(): test_cls.assertEqual( str(buffer.device), device, f'Buffer {name} is on {buffer.device.type} instead of the expected device {device}') if buffer.dtype.is_floating_point and