input
stringlengths
2.65k
237k
output
stringclasses
1 value
<gh_stars>10-100 import numpy as np from scipy.optimize import minimize from scipy.linalg import null_space from pymoo.model.algorithm import Algorithm from pymoo.model.duplicate import DefaultDuplicateElimination from pymoo.model.individual import Individual from pymoo.model.initialization import Initialization from multiprocessing import Process, Queue, cpu_count import sys from .buffer import get_buffer from .utils import propose_next_batch, propose_next_batch_without_label, get_sample_num_from_families from ..solver import Solver def _local_optimization(x, y, f, eval_func, bounds, delta_s): ''' Local optimization of generated stochastic samples by minimizing distance to the target, see section 6.2.3. Input: x: a design sample, shape = (n_var,) y: performance of x, shape = (n_obj,) f: relative performance to the buffer origin, shape = (n_obj,) eval_func: problem's evaluation function bounds: problem's lower and upper bounds, shape = (2, n_var) delta_s: scaling factor for choosing reference point in local optimization, see section 6.2.3 Output: x_opt: locally optimized sample x ''' # choose reference point z f_norm = np.linalg.norm(f) s = 2.0 * f / np.sum(f) - 1 - f / f_norm s /= np.linalg.norm(s) z = y + s * delta_s * np.linalg.norm(f) # optimization objective, see eq(4) def fun(x): fx = eval_func(x, return_values_of=['F']) return np.linalg.norm(fx - z) # jacobian of the objective dy = eval_func(x, return_values_of=['dF']) if dy is None: jac = None else: def jac(x): fx, dfx = eval_func(x, return_values_of=['F', 'dF']) return ((fx - z) / np.linalg.norm(fx - z)) @ dfx # do optimization using LBFGS res = minimize(fun, x, method='L-BFGS-B', jac=jac, bounds=np.array(bounds).T) x_opt = res.x return x_opt def _get_kkt_dual_variables(F, G, DF, DG): ''' Optimizing for dual variables alpha and beta in KKT conditions, see section 4.2, proposition 4.5. Input: Given a design sample, F: performance value, shape = (n_obj,) G: active constraints, shape = (n_active_const,) DF: jacobian matrix of performance, shape = (n_obj, n_var) DG: jacobian matrix of active constraints, shape = (n_active_const, n_var) where n_var = D, n_obj = d, n_active_const = K' in the original paper Output: alpha_opt, beta_opt: optimized dual variables ''' # NOTE: use min-norm solution for solving alpha then determine beta instead? n_obj = len(F) n_active_const = len(G) if G is not None else 0 ''' Optimization formulation: To optimize the last line of (2) in section 4.2, we change it to a quadratic optization problem by: find x to let Ax = 0 --> min_x (Ax)^2 where x means [alpha, beta] and A means [DF, DG]. Constraints: alpha >= 0, beta >= 0, sum(alpha) = 1. NOTE: we currently ignore the constraint beta * G = 0 because G will always be 0 with only box constraints, but add that constraint will result in poor optimization solution (?) ''' if n_active_const > 0: # when there are active constraints def fun(x, n_obj=n_obj, DF=DF, DG=DG): alpha, beta = x[:n_obj], x[n_obj:] objective = alpha @ DF + beta @ DG return 0.5 * objective @ objective def jac(x, n_obj=n_obj, DF=DF, DG=DG): alpha, beta = x[:n_obj], x[n_obj:] objective = alpha @ DF + beta @ DG return np.vstack([DF, DG]) @ objective const = {'type': 'eq', 'fun': lambda x, n_obj=n_obj: np.sum(x[:n_obj]) - 1.0, 'jac': lambda x, n_obj=n_obj: np.concatenate([np.ones(n_obj), np.zeros_like(x[n_obj:])])} else: # when there's no active constraint def fun(x, DF=DF): objective = x @ DF return 0.5 * objective @ objective def jac(x, DF=DF): objective = x @ DF return DF @ objective const = {'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0, 'jac': np.ones_like} # specify different bounds for alpha and beta bounds = np.array([[0.0, np.inf]] * (n_obj + n_active_const)) # NOTE: we use random value to initialize alpha for now, maybe consider the location of F we can get a more accurate initialization alpha_init = np.random.random(len(F)) alpha_init /= np.sum(alpha_init) beta_init = np.zeros(n_active_const) # zero initialization for beta x_init = np.concatenate([alpha_init, beta_init]) # do optimization using SLSQP res = minimize(fun, x_init, method='SLSQP', jac=jac, bounds=bounds, constraints=const) x_opt = res.x alpha_opt, beta_opt = x_opt[:n_obj], x_opt[n_obj:] return alpha_opt, beta_opt def _get_active_box_const(x, bounds): ''' Getting the indices of active box constraints. Input: x: a design sample, shape = (n_var,) bounds: problem's lower and upper bounds, shape = (2, n_var) Output: active_idx: indices of all active constraints upper_active_idx: indices of upper active constraints lower_active_idx: indices of lower active constraints ''' eps = 1e-8 # epsilon value to determine 'active' upper_active = bounds[1] - x < eps lower_active = x - bounds[0] < eps active = np.logical_or(upper_active, lower_active) active_idx, upper_active_idx, lower_active_idx = np.where(active)[0], np.where(upper_active)[0], np.where(lower_active)[0] return active_idx, upper_active_idx, lower_active_idx def _get_box_const_value_jacobian_hessian(x, bounds): ''' Getting the value, jacobian and hessian of active box constraints. Input: x: a design sample, shape = (n_var,) bounds: problem's lower and upper bounds, shape = (2, n_var) Output: G: value of active box constraints (always 0), shape = (n_active_const,) DG: jacobian matrix of active box constraints (1/-1 at active locations, otherwise 0), shape = (n_active_const, n_var) HG: hessian matrix of active box constraints (always 0), shape = (n_active_const, n_var, n_var) ''' # get indices of active constraints active_idx, upper_active_idx, _ = _get_active_box_const(x, bounds) n_active_const, n_var = len(active_idx), len(x) if n_active_const > 0: G = np.zeros(n_active_const) DG = np.zeros((n_active_const, n_var)) for i, idx in enumerate(active_idx): constraint = np.zeros(n_var) if idx in upper_active_idx: constraint[idx] = 1 # upper active else: constraint[idx] = -1 # lower active DG[i] = constraint HG = np.zeros((n_active_const, n_var, n_var)) return G, DG, HG else: # no active constraints return None, None, None def _get_optimization_directions(x_opt, eval_func, bounds): ''' Getting the directions to explore local pareto manifold. Input: x_opt: locally optimized design sample, shape = (n_var,) eval_func: problem's evaluation function bounds: problem's lower and upper bounds, shape = (2, n_var) Output: directions: local exploration directions for alpha, beta and x (design sample) ''' # evaluate the value, jacobian and hessian of performance F, DF, HF = eval_func(x_opt, return_values_of=['F', 'dF', 'hF']) # evaluate the value, jacobian and hessian of box constraint (NOTE: assume no other types of constraints) G, DG, HG = _get_box_const_value_jacobian_hessian(x_opt, bounds) # KKT dual variables optimization alpha, beta = _get_kkt_dual_variables(F, G, DF, DG) n_obj, n_var, n_active_const = len(F), len(x_opt), len(G) if G is not None else 0 # compute H in eq(3) (NOTE: the two forms below are equivalent for box constraint since HG = 0) if n_active_const > 0: H = HF.T @ alpha + HG.T @ beta else: H = HF.T @ alpha # compute exploration directions (unnormalized) by taking the null space of image in eq(3) # TODO: this part is mainly copied from Adriana's implementation, to be checked # NOTE: seems useless to solve for d_alpha and d_beta, maybe need to consider all possible situations in null_space computation alpha_const = np.concatenate([np.ones(n_obj), np.zeros(n_active_const + n_var)]) if n_active_const > 0: comp_slack_const = np.column_stack([np.zeros((n_active_const, n_obj + n_active_const)), DG]) DxHx = np.vstack([alpha_const, comp_slack_const, np.column_stack([DF.T, DG.T, H])]) else: DxHx = np.vstack([alpha_const, np.column_stack([DF.T, H])]) directions = null_space(DxHx) # eliminate numerical error eps = 1e-8 directions[np.abs(directions) < eps] = 0.0 return directions def _first_order_approximation(x_opt, directions, bounds, n_grid_sample): ''' Exploring new samples from local manifold (first order approximation of pareto front). Input: x_opt: locally optimized design sample, shape = (n_var,) directions: local exploration directions for alpha, beta and x (design sample) bounds: problem's lower and upper bounds, shape = (2, n_var) n_grid_sample: number of samples on local manifold (grid), see section 6.3.1 Output: x_samples: new valid samples from local manifold (grid) ''' n_var = len(x_opt) lower_bound, upper_bound = bounds[0], bounds[1] active_idx, _, _ = _get_active_box_const(x_opt, bounds) n_active_const = len(active_idx) n_obj = len(directions) - n_var - n_active_const x_samples = np.array([x_opt]) # TODO: check why unused d_alpha and d_beta here d_alpha, d_beta, d_x = directions[:n_obj], directions[n_obj:n_obj + n_active_const], directions[-n_var:] eps = 1e-8 if np.linalg.norm(d_x) < eps: # direction is a zero vector return x_samples direction_dim = d_x.shape[1] if direction_dim > n_obj - 1: # more than d-1 directions to explore, randomly choose d-1 sub-directions indices = np.random.choice(np.arange(direction_dim), n_obj - 1) while np.linalg.norm(d_x[:, indices]) < eps: indices = np.random.choice(np.arange(direction_dim), n_obj - 1) d_x = d_x[:, indices] elif direction_dim < n_obj - 1: # less than d-1
-121.61 59.0 200 0 | -0.81 0.33 -40.64 0.79 | UsedTime: 132 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 1.60e+03-1267.96 |-1267.96 329.7 200 0 | -2.67 0.88 0.56 1.00 1 8.48e+04 -171.79 | -182.24 63.3 200 0 | -0.30 0.32 -30.75 0.64 1 1.19e+05 -171.79 | -178.25 116.8 200 0 | -0.31 0.16 -22.52 0.43 1 1.34e+05 -164.56 | -164.56 99.1 200 0 | -0.31 0.15 -18.09 0.35 1 1.47e+05 -135.20 | -135.20 92.1 200 0 | -0.31 0.14 -15.65 0.29 | UsedTime: 783 | """ args = Arguments(AgentModSAC, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.97 args.target_step = args.max_step * 2 args.eval_times = 2 ** 3 elif env_name == 'LunarLanderContinuous-v2': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 4.25e+03 -143.93 | -143.93 29.6 69 12 | -2.47 1.06 0.13 0.15 2 1.05e+05 170.35 | 170.35 57.9 645 177 | 0.06 1.59 15.93 0.20 2 1.59e+05 170.35 | 80.46 125.0 775 285 | 0.07 1.14 29.92 0.29 2 1.95e+05 221.39 | 221.39 19.7 449 127 | 0.12 1.09 32.16 0.40 | UsedTime: 421 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.26e+03 -139.77 | -139.77 36.7 67 12 | -2.16 11.20 0.12 0.15 1 1.11e+05 -105.09 | -105.09 84.3 821 244 | -0.14 27.60 1.04 0.21 1 2.03e+05 -15.21 | -15.21 22.7 1000 0 | -0.01 17.96 36.95 0.45 1 3.87e+05 59.39 | 54.09 160.7 756 223 | 0.00 16.57 88.99 0.73 1 4.03e+05 59.39 | 56.16 103.5 908 120 | 0.06 16.47 84.27 0.71 1 5.10e+05 186.59 | 186.59 103.6 547 257 | -0.02 12.72 67.97 0.57 1 5.89e+05 226.93 | 226.93 20.0 486 154 | 0.13 9.27 68.29 0.51 | UsedTime: 3407 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 4.15e+03 -169.01 | -169.01 87.9 110 59 | -2.18 11.86 0.10 0.15 1 1.09e+05 -84.47 | -84.47 80.1 465 293 | -0.30 30.64 -6.29 0.20 1 4.25e+05 -8.33 | -8.33 48.4 994 26 | 0.07 13.51 76.99 0.62 1 4.39e+05 87.29 | 87.29 86.9 892 141 | 0.04 12.76 70.37 0.61 1 5.57e+05 159.17 | 159.17 65.7 721 159 | 0.10 10.31 59.90 0.51 1 5.87e+05 190.09 | 190.09 71.7 577 175 | 0.09 9.45 61.74 0.48 1 6.20e+05 206.74 | 206.74 29.1 497 108 | 0.09 9.21 62.06 0.47 | UsedTime: 4433 | """ # env = gym.make('LunarLanderContinuous-v2') # get_gym_env_args(env=env, if_print=True) env_func = gym.make env_args = {'env_num': 1, 'env_name': 'LunarLanderContinuous-v2', 'max_step': 1000, 'state_dim': 8, 'action_dim': 2, 'if_discrete': False, 'target_return': 200, 'id': 'LunarLanderContinuous-v2'} args = Arguments(AgentModSAC, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.99 args.eval_times = 2 ** 5 elif env_name == 'BipedalWalker-v3': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 7.51e+03 -111.59 | -111.59 0.2 97 7 | -0.18 4.23 -0.03 0.02 3 1.48e+05 -110.19 | -110.19 1.6 84 30 | -0.59 2.46 3.18 0.03 3 5.02e+05 -31.84 | -102.27 54.0 1359 335 | -0.06 0.85 2.84 0.04 3 1.00e+06 -7.94 | -7.94 73.2 411 276 | -0.17 0.72 1.96 0.03 3 1.04e+06 131.50 | 131.50 168.3 990 627 | 0.06 0.46 1.69 0.04 3 1.11e+06 214.12 | 214.12 146.6 1029 405 | 0.09 0.50 1.63 0.04 3 1.20e+06 308.34 | 308.34 0.7 1106 20 | 0.29 0.72 4.56 0.05 | UsedTime: 8611 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.75e+03 -92.44 | -92.44 0.2 120 3 | -0.18 1.94 -0.00 0.02 3 3.95e+05 -37.16 | -37.16 9.2 1600 0 | -0.06 1.90 4.20 0.07 3 6.79e+05 -23.32 | -42.54 90.0 1197 599 | -0.02 0.91 1.57 0.04 3 6.93e+05 46.92 | 46.92 96.9 808 395 | -0.04 0.57 1.34 0.04 3 8.38e+05 118.86 | 118.86 154.5 999 538 | 0.14 1.44 0.75 0.05 3 1.00e+06 225.56 | 225.56 124.1 1207 382 | 0.13 0.72 4.75 0.06 3 1.02e+06 283.37 | 283.37 86.3 1259 245 | 0.14 0.80 3.96 0.06 3 1.19e+06 313.36 | 313.36 0.9 1097 20 | 0.21 0.78 6.80 0.06 | UsedTime: 9354 | SavedDir: ./BipedalWalker-v3_ModSAC_3 ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 6.55e+03 -109.86 | -109.86 4.5 156 30 | -0.06 0.71 -0.01 0.02 3 1.24e+05 -88.28 | -88.28 26.2 475 650 | -0.15 0.15 0.04 0.02 3 3.01e+05 -47.89 | -56.76 21.7 1341 540 | -0.03 0.19 -2.76 0.05 3 3.82e+05 80.89 | 53.79 140.1 983 596 | -0.01 0.18 0.46 0.05 3 4.35e+05 137.70 | 28.54 104.7 936 581 | -0.01 0.21 0.63 0.06 3 4.80e+05 158.71 | 25.54 114.7 524 338 | 0.18 0.17 6.17 0.06 3 5.31e+05 205.81 | 203.27 143.9 1048 388 | 0.14 0.15 4.00 0.06 3 6.93e+05 254.40 | 252.74 121.1 992 280 | 0.21 0.12 7.34 0.06 3 7.11e+05 304.79 | 304.79 73.4 1015 151 | 0.21 0.12 5.69 0.06 | UsedTime: 3215 | """ env_func = gym.make env_args = {'env_num': 1, 'env_name': 'BipedalWalker-v3', 'max_step': 1600, 'state_dim': 24, 'action_dim': 4, 'if_discrete': False, 'target_return': 300, 'id': 'BipedalWalker-v3', } args = Arguments(AgentModSAC, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.98 args.eval_times = 2 ** 4 else: raise ValueError('env_name:', env_name) args.learner_gpus = gpu_id args.random_seed += gpu_id if_check = 0 if if_check: train_and_evaluate(args) else: train_and_evaluate_mp(args) def demo_continuous_action_on_policy(): env_name = ['Pendulum-v0', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'BipedalWalker-v3'][ENV_ID] gpu_id = GPU_ID # >=0 means GPU ID, -1 means CPU if env_name in {'Pendulum-v0', 'Pendulum-v1'}: env = PendulumEnv(env_name, target_return=-500) "TotalStep: 1e5, TargetReward: -200, UsedTime: 600s" args = Arguments(AgentPPO, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.97 args.target_step = args.max_step * 8 args.eval_times = 2 ** 3 elif env_name == 'LunarLanderContinuous-v2': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.40e+03 -167.99 | -167.99 119.9 96 13 | -1.408795.41 0.02 -0.50 2 1.27e+05 -167.99 | -185.92 44.3 187 77 | 0.07 396.60 0.02 -0.51 2 2.27e+05 191.79 | 191.79 83.7 401 96 | 0.16 39.93 0.06 -0.52 2 3.40e+05 220.93 | 220.93 87.7 375 99 | 0.19 121.32 -0.01 -0.53 | UsedTime: 418 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 8.31e+03 -90.85 | -90.85 49.2 72 12 | -1.295778.93 0.01 -0.50 2 1.16e+05 -90.85 | -126.58 92.2 312 271 | 0.03 215.40 -0.01 -0.50 2 1.96e+05 133.57 | 133.57 156.4 380 108 | 0.04 227.81 0.04 -0.51 2 3.85e+05 195.56 | 195.56 78.4 393 87 | 0.14 26.79 -0.05 -0.54 2 4.97e+05 212.20 | 212.20 90.5 383 72 | 0.18 357.67 -0.01 -0.55 | UsedTime: 681 | """ # env = gym.make('LunarLanderContinuous-v2') # get_gym_env_args(env=env, if_print=True) env_func = gym.make env_args = {'env_num': 1, 'env_name': 'LunarLanderContinuous-v2', 'max_step': 1000, 'state_dim': 8, 'action_dim': 2, 'if_discrete': False, 'target_return': 200, 'id': 'LunarLanderContinuous-v2'} args = Arguments(AgentPPO, env_func=env_func, env_args=env_args) args.target_step = args.max_step * 2 args.gamma = 0.99 args.eval_times = 2 ** 5 elif env_name == 'BipedalWalker-v3': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 0 2.72e+04 -38.64 | -38.64 43.7 1236 630 | -0.11 83.06 -0.03 -0.50 0 4.32e+05 -30.57 | -30.57 4.7 1600 0 | -0.01 0.33 -0.06 -0.53 0 6.38e+05 179.12 | 179.12 5.2 1600 0 | 0.06 4.16 0.01 -0.57 0 1.06e+06 274.76 | 274.76 4.5 1600 0 | 0.12 1.11 0.03 -0.61 0 2.11e+06 287.37 | 287.37 46.9 1308 104 | 0.17 5.40 0.03 -0.72 0 2.33e+06 296.76 | 296.76 29.9 1191 30 | 0.20 2.86 0.00 -0.74 0 2.54e+06 307.66 | 307.66 1.9 1163 34 | 0.19 5.40 0.02 -0.75 | UsedTime: 1641 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 4 2.88e+04 -112.06 | -112.06 0.1 128 8
raise TypeError(f"difference argument is not iterable, got {iterable!r}") set_: typing.Set[T] if isinstance(self._set, set): set_ = self._set.difference(*iterables) else: set_ = set(self._set) set_.difference_update(*iterables) return type(self).from_iterable(set_, self.key) @classmethod def from_iterable(cls: Type[SortedKeySet[T]], iterable: Iterable[T], /, key: Callable[[T], Any]) -> SortedKeySet[T]: if not isinstance(iterable, Iterable): raise TypeError(f"from_iterable expects an iterable, got {iterable!r}") elif not callable(key): raise TypeError(f"from_iterable expects a callable key, got {key!r}") else: return cls.from_sorted(sorted(set(iterable), key=key), key) @abstractmethod @classmethod def from_sorted(cls: Type[SortedKeySet[T]], iterable: Iterable[T], /, key: Callable[[T], Any]) -> SortedKeySet[T]: raise NotImplementedError("from_sorted is a required method for sorted key sets") def index(self: SortedKeySet[Any], value: Any, start: int = 0, stop: Optional[int] = None, /) -> int: return self._sequence.index(value, start, stop) def intersection(self: SortedKeySet[T], /, *iterables: Iterable[Any]) -> SortedKeySet[T]: if len(iterables) == 0: return self.copy() for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"intersection argument is not iterable, got {iterable!r}") set_: typing.Set[T] if isinstance(self._set, set): set_ = self._set else: set_ = set(self._set) return type(self).from_iterable(set_.intersection(*iterables), self.key) def isdisjoint(self: SortedKeySet[Any], iterable: Iterable[Any], /) -> bool: if isinstance(iterable, Iterable): return self._set.isdisjoint(iterable) else: raise TypeError(f"isdisjoint argument is not iterable, got {iterable!r}") def issubset(self: SortedKeySet[Any], iterable: Iterable[Any], /) -> bool: if not isinstance(iterable, Iterable): raise TypeError(f"issubset argument is not iterable, got {iterable!r}") elif isinstance(iterable, set): return iterable.issuperset(self) elif isinstance(iterable, AbstractSet): return all(x in iterable for x in self) elif isinstance(self._set, set): return len(self._set.intersection(iterable)) == len(self) else: return len({x for x in iterable if x in self}) == len(self) def issuperset(self: SortedKeySet[Any], iterable: Iterable[Any], /) -> bool: if not isinstance(iterable, Iterable): raise TypeError(f"issuperset argument is not iterable, got {iterable!r}") elif isinstance(self._set, set): return self._set.issuperset(iterable) else: return all(x in self for x in iterable) def symmetric_difference(self: SortedKeySet[T], /, *iterables: Iterable[S]) -> SortedKeySet[Union[T, S]]: if len(iterables) == 0: return cast(SortedKeySet[Union[T, S]], self.copy()) for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"symmetric_difference argument is not iterable, got {iterable!r}") set_: typing.Set[Union[T, S]] if isinstance(self._set, set): set_ = self._set.symmetric_difference(iterables[0]) else: set_ = set(self._set) set_.symmetric_difference_update(iterables[0]) for i in range(1, len(iterables)): set_.symmetric_difference_update(iterables[i]) return type(self).from_iterable(set_, self.key) # type: ignore def union(self: SortedKeySet[T], /, *iterables: Iterable[S]) -> SortedKeySet[Union[T, S]]: for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"union argument is not iterable, got {iterable!r}") return type(self).from_iterable(chain(self, *iterables), self.key) # type: ignore @property def key(self: SortedKeySet[T], /) -> Callable[[T], Any]: return self._sequence.key @property @abstractmethod def _sequence(self: SortedKeySet[T], /) -> SortedKeySequence[T]: raise NotImplementedError("_sequence is a required property of sorted key sets") @property @abstractmethod def _set(self: SortedKeySet[T], /) -> AbstractSet[T]: raise NotImplementedError("_set is a required property of sorted key sets") class SortedMutableSet(SortedSet[T_co], MutableSet[T_co], ABC, Generic[T_co]): __slots__ = () def __and__(self: SortedMutableSet[T_co], other: Iterable[Any], /) -> SortedMutableSet[T_co]: if isinstance(other, AbstractSet): return self.intersection(other) else: return NotImplemented @overload def __getitem__(self: SortedMutableSet[T_co], index: int, /) -> T_co: ... @overload def __getitem__(self: SortedMutableSet[T_co], index: slice, /) -> MutableSequence[T_co]: ... def __getitem__(self, index, /): return self._sequence[index] def __iand__(self: SortedMutableSet[T_co], other: Iterable[Any], /) -> SortedMutableSet[T_co]: if isinstance(other, Iterable): self.intersection_update(other) return self else: return NotImplemented def __ior__(self: SortedMutableSet[T_co], other: Iterable[T], /) -> SortedMutableSet[Union[T_co, T]]: if isinstance(other, Iterable): self.update(cast(Iterable[T_co], other)) return cast(SortedMutableSet[Union[T_co, T]], self) else: return NotImplemented def __iter__(self: SortedMutableSet[T_co], /) -> SortedIterator[T_co]: return iter(self._sequence) def __isub__(self: SortedMutableSet[T_co], other: Iterable[Any], /) -> SortedMutableSet[T_co]: if isinstance(other, Iterable): self.difference_update(other) return self else: return NotImplemented def __ixor__(self: SortedMutableSet[T_co], other: Iterable[T], /) -> SortedMutableSet[Union[T_co, T]]: if isinstance(other, Iterable): self.symmetric_difference_update(cast(Iterable[T_co], other)) return cast(SortedMutableSet[Union[T_co, T]], self) else: return NotImplemented def __or__(self: SortedMutableSet[T_co], other: Iterable[T], /) -> SortedMutableSet[Union[T_co, T]]: if isinstance(other, AbstractSet): return cast(SortedMutableSet[Union[T_co, T]], self.union(other)) else: return NotImplemented __ror__ = __or__ def __rand__(self: SortedMutableSet[Any], other: Iterable[T], /) -> SortedMutableSet[T]: if isinstance(other, AbstractSet): return self.intersection(other) else: return NotImplemented def __rsub__(self: SortedMutableSet[Any], other: Iterable[T], /) -> SortedMutableSet[T]: if isinstance(other, AbstractSet): import more_collections.sorted as mcs set_ = mcs.SortedSet.from_iterable(other) set_ -= self return set_ else: return NotImplemented def __sub__(self: SortedMutableSet[T_co], other: Iterable[Any], /) -> SortedMutableSet[T_co]: if isinstance(other, AbstractSet): return self.difference(other) else: return NotImplemented def __xor__(self: SortedMutableSet[T_co], other: Iterable[T], /) -> SortedMutableSet[Union[T_co, T]]: if isinstance(other, AbstractSet): return cast(SortedMutableSet[Union[T_co, T]], self.symmetric_difference(other)) else: return NotImplemented __rxor__ = __xor__ def add(self: SortedMutableSet[T], value: T, /) -> None: len_ = len(self._set) self._set.add(value) if len(self._set) != len_: self._sequence.append(value) def clear(self: SortedMutableSet[Any], /) -> None: self._sequence.clear() self._set.clear() def difference(self: SortedMutableSet[T_co], /, *iterables: Iterable[Any]) -> SortedMutableSet[T_co]: return cast(SortedMutableSet[T_co], super().difference(*iterables)) def difference_update(self: SortedMutableSet[Any], /, *iterables: Iterable[Any]) -> None: for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"difference_update argument is not iterable, got {iterable!r}") for iterable in iterables: for x in iterable: self.discard(x) def discard(self: SortedMutableSet[Any], value: Any, /) -> None: len_ = len(self._set) self._set.discard(value) if len(self._set) != len_: self._sequence.remove(value) @classmethod def from_iterable(cls: Type[SortedMutableSet[T_co]], iterable: Iterable[T_co], /) -> SortedMutableSet[T_co]: if isinstance(iterable, Iterable): return cls.from_sorted(sorted(set(iterable))) # type: ignore else: raise TypeError(f"from_iterable expects an iterable, got {iterable!r}") @abstractmethod @classmethod def from_sorted(cls: Type[SortedMutableSet[T]], iterable: Iterable[T], /) -> SortedMutableSet[T]: raise NotImplementedError("from_sorted is a required method for sorted mutable sets") def intersection(self: SortedMutableSet[T_co], /, *iterables: Iterable[Any]) -> SortedMutableSet[T_co]: return cast(SortedMutableSet[T_co], super().intersection(*iterables)) def intersection_update(self: SortedMutableSet[Any], /, *iterables: Iterable[Any]) -> None: if len(iterables) == 0: self.clear() return for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"intersection_update argument is not iterable, got {iterable!r}") set_: typing.Set[T_co] if isinstance(self._set, set): set_ = self._set.intersection(*iterables) else: set_ = set(self._set) set_.intersection_update(*iterables) set_.symmetric_difference_update(self._set) self.difference_update(set_) def pop(self: SortedMutableSet[T_co], index: int = -1, /) -> T_co: if not isinstance(index, SupportsIndex): raise TypeError(f"pop could not interpret index as an integer, got {index!r}") index = operator.index(index) len_ = len(self._set) if index < 0: index += len_ if not 0 <= index < len_: raise IndexError("index out of range") value = self._sequence.pop(index) self._set.remove(value) return value def remove(self: SortedMutableSet[Any], value: Any, /) -> None: len_ = len(self._set) self._set.discard(value) if len(self._set) == len_: raise KeyError(value) self._sequence.remove(value) def symmetric_difference(self: SortedMutableSet[T_co], /, *iterables: Iterable[T]) -> SortedMutableSet[Union[T_co, T]]: return cast(SortedMutableSet[T_co], super().symmetric_difference(*iterables)) def symmetric_difference_update(self: SortedMutableSet[T_co], /, *iterables: Iterable[T_co]) -> None: if len(iterables) == 0: return for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"symmetric_difference_update argument is not iterable, got {iterable!r}") set_: typing.Set[T_co] = set(iterables[0]) for i in range(1, len(iterables)): set_.symmetric_difference_update(iterables[i]) for x in set_: if x in self: self.remove(x) else: self.add(x) def union(self: SortedMutableSet[T_co], /, *iterables: Iterable[T]) -> SortedMutableSet[Union[T_co, T]]: return cast(SortedMutableSet[T_co], super().union(*iterables)) def update(self: SortedMutableSet[T_co], /, *iterables: Iterable[T_co]) -> None: for iterable in iterables: if not isinstance(iterable, Iterable): raise TypeError(f"update argument is not iterable, got {iterable!r}") for iterable in iterables: for x in iterable: self.add(x) @property @abstractmethod def _sequence(self: SortedMutableSet[T_co], /) -> SortedMutableSequence[T_co]: raise NotImplementedError("_sequence is a required property of sorted mutable sets") @property @abstractmethod def _set(self: SortedMutableSet[T_co], /) -> MutableSet[T_co]: raise NotImplementedError("_set is a required property of sorted mutable sets") class SortedKeyMutableSet(SortedKeySet[T_co], MutableSet[T_co], ABC, Generic[T_co]): __slots__ = () def __and__(self: SortedKeyMutableSet[T_co], other: Iterable[Any], /) -> SortedKeyMutableSet[T_co]: if isinstance(other, AbstractSet): return self.intersection(other) else: return NotImplemented @overload def __getitem__(self: SortedKeyMutableSet[T_co], index: int, /) -> T_co: ... @overload def __getitem__(self: SortedKeyMutableSet[T_co], index: slice, /) -> MutableSequence[T_co]: ... def __getitem__(self, index, /): return self._sequence[index] def __iand__(self: SortedKeyMutableSet[T_co], other: Iterable[Any], /) -> SortedKeyMutableSet[T_co]: if isinstance(other, Iterable): self.intersection_update(other) return self else: return NotImplemented def __ior__(self: SortedKeyMutableSet[T_co], other: Iterable[T], /) -> SortedKeyMutableSet[Union[T_co, T]]: if isinstance(other, Iterable): self.update(cast(Iterable[T_co], other)) return cast(SortedKeyMutableSet[Union[T_co, T]], self) else: return NotImplemented def __isub__(self: SortedKeyMutableSet[T_co], other: Iterable[Any], /) -> SortedKeyMutableSet[T_co]: if isinstance(other, Iterable): self.difference_update(other) return self else: return NotImplemented def __iter__(self: SortedKeyMutableSet[T_co], /) -> SortedKeyIterator[T_co]: return iter(self._sequence) def __ixor__(self: SortedKeyMutableSet[T_co], other: Iterable[T], /) -> SortedKeyMutableSet[Union[T_co, T]]: if isinstance(other, Iterable): self.symmetric_difference_update(cast(Iterable[T_co], other)) return cast(SortedKeyMutableSet[Union[T_co, T]], self) else: return NotImplemented def __or__(self: SortedKeyMutableSet[T_co], other: Iterable[T], /) -> SortedKeyMutableSet[Union[T_co, T]]: if isinstance(other, AbstractSet): return self.union(other) else: return NotImplemented __ror__ = __or__ def __rand__(self: SortedKeyMutableSet[Any], other: Iterable[T], /) -> SortedKeyMutableSet[T]: if isinstance(other, AbstractSet): return self.intersection(other) else: return NotImplemented def __rsub__(self: SortedKeyMutableSet[Any], other: Iterable[T], /) -> SortedKeyMutableSet[T]: if isinstance(other, AbstractSet): import more_collections.sorted as mcs set_ = mcs.SortedSet.from_iterable(other) set_ -= self return set_ else: return NotImplemented def __sub__(self: SortedKeyMutableSet[T_co], other: Iterable[Any], /) -> SortedKeyMutableSet[T_co]: if isinstance(other, AbstractSet): return self.difference(other) else: return NotImplemented def __xor__(self: SortedKeyMutableSet[T_co], other: Iterable[T], /) -> SortedKeyMutableSet[Union[T_co, T]]: if isinstance(other, AbstractSet): return self.symmetric_difference(other) else: return NotImplemented __rxor__ = __xor__ def add(self: SortedKeyMutableSet[T], value: T, /) -> None: len_
import sys import re import operator import itertools from os import path from FileTools import loadAirlineCallsigns reOpenTag = re.compile('^<([a-z_]+)>$') reOpenAnyTag = re.compile('^<([a-z_="]+)>$') reCloseTag = re.compile('^</([a-z_]+)>$') xml_temp = '.*<{0}>([a-z ]+)</{0}>.*' xml_temp2 = '.*<{0}>([a-z ]*?)</{0}>.*' reCmdStart = re.compile('<command=\"([a-z_]+)\">') reConfid = re.compile(':[0-9].[0-9]*') NO_CALLSIGN = 'NO_CALLSIGN' NO_AIRLINE = 'NO_AIRLINE_' UNKNOWN_AIRLINE = 'UNKNOWN_AIRLINE_' NO_FLIGHTNUMBER = '_NO_FLIGHTNUMBER' NO_CONCEPT = 'NO_CONCEPT' DEFAULT_SCORE = 1.0 NOISE_TOKENS = ['_spn_', '_nsn_'] PRECISION = 4 CONF_SEPARATOR = ':' CONFMODE_OFF = 0 CONFMODE_MIN = 1 CONFMODE_PROD = 2 CONFMODE_ARITMEAN = 3 CONFMODE_GEOMEAN = 4 CONFIDENCE_SUM_MODES = dict(off=CONFMODE_OFF, min=CONFMODE_MIN, prod=CONFMODE_PROD, amean=CONFMODE_ARITMEAN, gmean=CONFMODE_GEOMEAN) def prod(iterable): return reduce(operator.mul, iterable, 1) def reIsNotEmpty(re_groups, group_id=1): if re_groups is not None and len(re_groups.group(group_id).strip()) > 0: return True else: return False def multiMatch(item, matchingFunctions, matchAll=False): """ Convenience function to evaluate an item with a series of matching functions If matchAll is false, returns true if at least one matching function returns true. If matchAll is true, returns true if all matching functions return true. If matchingFunctions is an empty list, returns False. """ if len(matchingFunctions) == 0: return False matches = [matchFunc(item) for matchFunc in matchingFunctions] if matchAll: return all(matches) else: return True in matches def getAbsolutePath(): # Ensure that script can be executed from anywhere (e.g. via python tools/GenerateConcept.py) scriptpath = path.dirname(sys.argv[0]) return path.abspath(scriptpath) def parseConfidenceMode(confidenceKey): return CONFIDENCE_SUM_MODES.get(confidenceKey, CONFMODE_OFF) class TagFrame(object): """ A token sequence surrounded by an XML tag. Each token consists of a word/tag string and a confidence value. """ DEFAULT_CONFIDENCE = DEFAULT_SCORE def __init__(self, tokenPairs, isStrict=False): # Validate if isStrict: # Validate length of list if len(tokenPairs) < 2: raise ValueError("token pair list too short (len={0}): {1}".format(len(tokenPairs), tokenPairs)) # Validate tokenPairs is a pair list if len(tokenPairs[0]) != 2: raise ValueError("Invalid format for token pairs: {0}".format(tokenPairs)) # Validate a tag is surrounding the sentence firstToken = tokenPairs[0][0] lastToken = tokenPairs[-1][0] matchTag = reOpenTag.match(firstToken) matchCmd = reCmdStart.match(firstToken) # More validation if isStrict: if not (matchCmd and lastToken == '</command>') and not ( matchTag and lastToken == '</{0}>'.format(matchTag.group(1))): raise ValueError( "First/Last item must be matching opening/closing xml tags: {0} ... {1}".format(firstToken, lastToken)) self.tokenPairs = tokenPairs self.isStrict = isStrict def __str__(self): return 'TagFrame({0})'.format(self.tokenPairs) @classmethod def loadFromMBR(cls, inputFile, isStrict=False): # mdr input (one token per line, multiple token features) with open(inputFile) as f: tokenPairs = list() for line in f: items = line.strip().lower().split() token = items[-2] confidence = float(items[-1]) tokenPairs.append((token, confidence)) tokenPairs = cls.repairTagStructure(tokenPairs) return TagFrame(tokenPairs, isStrict) @classmethod def loadFromString(cls, string, isStrict=False): if string is None: return None string = str(string) # Ensure we are dealing with str, not unicode object string = string.strip() string = string.replace('>', '> ') # Workaround for faulty spacing around tags string = string.replace('<', ' <') string = string.replace(' ', ' ') stringtmp = '' for s in string.split(): reSearch = re.search(reConfid, s) if reSearch is not None: stringtmp = stringtmp + ' ' + s.replace(reSearch.group(0), ' ' + reSearch.group(0) + ' ') else: stringtmp = stringtmp + ' ' + s string = (' '.join(stringtmp.split())).replace(' :', ':') string = string.strip().lower() if len(string) == 0: return None else: tokenPairs = list() for word in string.split(): confidence = cls.DEFAULT_CONFIDENCE if CONF_SEPARATOR in word: word, confidence = word.split(CONF_SEPARATOR, 1) confidence = float(confidence) tokenPairs.append((word, confidence)) tokenPairs = cls.repairTagStructure(tokenPairs) return TagFrame(tokenPairs, isStrict) @classmethod def repairTagStructure(cls, tokenPairs): """ Fixes a sentence so that all XML tags that were opened are also closed at the end. Input is a list of token pairs (i.e. (word,confidence)) """ repairedTokenPairs = list() openTags = list() for tokenPair in tokenPairs: word = tokenPair[0] if reOpenAnyTag.match(word): # The only tags surrounding a command should be <s> and <commands> # Close all other tags when a new command starts if word.startswith('<command='): while len(openTags) > 0: if openTags[-1] in ['<s>', '<commands>']: break else: openTag = openTags.pop() cls._appendClosingPair_(repairedTokenPairs, openTag) # Add the opened tag openTags.append(word) repairedTokenPairs.append(tokenPair) elif reCloseTag.match(word): matchFound = False # Close all tags up until and including the current one while not matchFound and len(openTags) > 0: openTag = openTags.pop() cls._appendClosingPair_(repairedTokenPairs, openTag) closeTag = repairedTokenPairs[-1][0] if word == closeTag: matchFound = True # In case there was no open tag matching the current closing tag # Put in a new opening tag and close it immediately. # This should make bug hunting easier than just not printing it. if not matchFound: openPair = ('<' + word[2:], cls.DEFAULT_CONFIDENCE) repairedTokenPairs.append(openPair) repairedTokenPairs.append(tokenPair) # This is the closing tag else: # Regular word repairedTokenPairs.append(tokenPair) # If there are any tags left open, close them at the end of the utterance. while len(openTags) > 0: openTag = openTags.pop() cls._appendClosingPair_(repairedTokenPairs, openTag) return repairedTokenPairs @staticmethod def getClosingTag(openingTag): openRE = reOpenAnyTag.match(openingTag) if openRE: name = openRE.group(1) if name.startswith('command='): # The ending tag for commands is just </command> name = 'command' closingTag = '</{0}>'.format(name) else: closingTag = None return closingTag @classmethod def _appendClosingPair_(cls, tokenPairs, openTag): """ Convenience method that takes an opening tag, calculates its closing tag, turns it into a (tag,confidence) pair and appends it to the given token pair list. """ closeTag = cls.getClosingTag(openTag) closePair = (closeTag, cls.DEFAULT_CONFIDENCE) tokenPairs.append(closePair) def __len__(self): return len(self.tokenPairs) def isEmptyTag(self): return len(self) <= 2 def getFramePairs(self, contentOnly=False): if contentOnly: return self.tokenPairs[1:-1] else: return self.tokenPairs def getSplitPairs(self, contentOnly=False): tokenPairs = self.getFramePairs(contentOnly) tokens = list() confidences = list() for token, confidence in tokenPairs: tokens.append(token) confidences.append(confidence) return tokens, confidences def getTokens(self, contentOnly=False): tokenPairs = self.getFramePairs(contentOnly) return [token for token, _ in tokenPairs] def getConfidenceValues(self, contentOnly=False): tokenPairs = self.getFramePairs(contentOnly) return [confidence for _, confidence in tokenPairs] def getFramePair(self, i): return self.tokenPairs[i] def getToken(self, i): return self.tokenPairs[i][0] def getConfidenceValue(self, i): return self.tokenPairs[i][1] def containsTerm(self, term, termIsSet=False): if termIsSet: terms = term else: terms = [term] for token in self.getTokens(): if token in terms: return True return False def toString(self, contentOnly=False): return ' '.join(self.getTokens(contentOnly=contentOnly)) @staticmethod def _splitByMatch_(tokenPairs, matchFunc, n=0, assignMatchToHead=False): """ Splits a list of tuples according to a matching function. The matching function is applied to the nth item of the tuple (default 0). Returns two lists. The second list starts with the matched item. If no match was found, returns the full list as first element and None as second element. """ for i in range(len(tokenPairs)): token = tokenPairs[i][n] if matchFunc(token): if assignMatchToHead: head = tokenPairs[:i + 1] tail = tokenPairs[i + 1:] else: head = tokenPairs[:i] tail = tokenPairs[i:] return head, tail # In case no item matched return tokenPairs, None def _extractSubframe_(self, startMatch, endMatch, n=0): head, rest = TagFrame._splitByMatch_(self.tokenPairs, startMatch, n=n, assignMatchToHead=False) if rest is None: return None, self body, tail = TagFrame._splitByMatch_(rest, endMatch, n=n, assignMatchToHead=True) extractedFrame = TagFrame(body, self.isStrict) outerFrame = TagFrame(head + tail, self.isStrict) return extractedFrame, outerFrame def extractTag(self, tag, is_command=False): """ Extracts a tag frame from a parent tag frame. tag is the name of the tag to be extracted. If is_command is true, tag is used as <command="{tag}"> rather than as the tag itself. Returns a tuple (extractedFrame, outerFrame), where the former is the extracted tag frame and the later is the remaindr of the parent frame without the extracted bit. """ if is_command: startTag = '<command="{0}">'.format(tag) endTag = '</command>' else: startTag = '<{0}>'.format(tag) endTag = '</{0}>'.format(tag) return self._extractSubframe_(startTag.__eq__, endTag.__eq__, n=0) def extractCommand(self): """ Extract the first command found inside the frame. Returns a tuple (extractedFrame, outerFrame), where the former is the extracted command frame and the later is the remaindEr of the parent frame without the extracted bit. """ return self._extractSubframe_(reCmdStart.match, '</command>'.__eq__, n=0) def extractNoise(self, startMatches=None, endMatches=None, contentOnly=False): """ Extracts all noise tokens (and their confidences) from a frame. To match TagFrame format, the tokens are surrounded by artificial <noise> tags. startMatches is a list of truth functions. Noise is only extracted after one of the functions has returned true for a token. If startMatches is None, search starts immediately from the start. endMatches is a list of truth functions. Noise is only extracted until one of the functions has returned true for a token. If endMatches is None, search continues until the end of the frame. """ noiseSequence = [('<noise>', 1.0)] if startMatches is None: hasStarted = True # If no start string is given, start immediately
1, Ns)) write_eq(Symbol(r'{C_{p,k}}^{\circ}'), cp[k]) write_eq(cp[k], cpfunc, sympy=True) write_eq(cp[k], expand(cpfunc)) write_eq(diff(cp[k], T), simplify(diff(cpfunc, T))) dcpdT = R * \ (a[k, 1] + T * (2 * a[k, 2] + T * (3 * a[k, 3] + 4 * a[k, 4] * T))) dcpdT = assert_subs(diff(cpfunc, T), ( diff(cpfunc, T), dcpdT )) write_eq(diff(cp[k], T), dcpdT, sympy=True) write_eq(cp_tot_sym, cp_tot) cvfunc = simplify(cpfunc - R) cv = MyIndexedFunc(r'{C_v}', T) cv_tot_sym = MyImplicitSymbol(r'\bar{c_v}', T) cv_tot = Sum(nk[k] / n_sym * cv[k], (k, 1, Ns)) write_eq(Symbol(r'{C_{v,k}}^{\circ}'), cv[k]) write_eq(cv[k], cvfunc, sympy=True) write_eq(cv[k], expand(cvfunc)) write_eq(diff(cv[k], T), simplify(diff(cvfunc, T))) dcvdT = assert_subs(diff(cvfunc, T), ( diff(cvfunc, T), R * (a[k, 1] + T * ( 2 * a[k, 2] + T * (3 * a[k, 3] + T * 4 * a[k, 4]))) )) write_eq(diff(cv[k], T), dcvdT, sympy=True) write_eq(cv_tot_sym, cv_tot) hfunc = R * (T * (a[k, 0] + T * (a[k, 1] * Rational(1, 2) + T * ( a[k, 2] * Rational(1, 3) + T * ( a[k, 3] * Rational(1, 4) + a[k, 4] * T * Rational(1, 5)) ))) + a[k, 5]) # check that the dH/dT = cp identity holds write_eq(Symbol(r'H_k^{\circ}'), h[k]) write_eq(h[k], hfunc, sympy=True, register=True) write_eq(h[k], expand(hfunc)) dhdT = simplify(diff(hfunc, T)) dhdT = assert_subs(dhdT, ( dhdT, R * (a[k, 0] + T * (a[k, 1] + T * ( a[k, 2] + T * (a[k, 3] + T * a[k, 4])))))) write_eq(diff(h[k], T), dhdT, sympy=True) # and du/dT write_dummy_eq(r'H_k = U_k + \frac{P V}{n}') write_eq(u[k], h[k] - R * T) ufunc = h[k] - R * T ufunc = collect(assert_subs(ufunc, (h[k], hfunc)), R) write_eq(u[k], ufunc, sympy=True) dudT = diff(ufunc, T) dudT = assert_subs(dudT, ( dudT, R * (-1 + a[k, 0] + T * (a[k, 1] + T * ( a[k, 2] + T * (a[k, 3] + T * a[k, 4])))))) write_eq(diff(u[k], T), dudT, sympy=True) # finally do the entropy and B terms Sfunc = R * (a[k, 0] * log(T) + T * (a[k, 1] + T * (a[k, 2] * Rational(1, 2) + T * (a[k, 3] * Rational(1, 3) + a[k, 4] * T * Rational(1, 4)))) + a[k, 6]) s = MyIndexedFunc(r'S', T) write_eq(Eq(Symbol(r'S_k^{\circ}'), s[k]), Sfunc) Jac = MyIndexedBase(r'\mathcal{J}', (Ns - 1, Ns - 1)) # reaction rates write_section('Definitions') nu_f = MyIndexedBase(r'\nu^{\prime}') nu_r = MyIndexedBase(r'\nu^{\prime\prime}') nu = nu_r[k, i] - nu_f[k, i] nu_sym = MyIndexedBase(r'\nu') write_eq(nu_sym[k, i], nu) q_sym = MyIndexedFunc('q', args=(nk, T, V, P)) omega_k = Sum(nu_sym[k, i] * q_sym[i], (i, 1, Nr)) omega_sym_q_k = omega_k write_eq(wdot[k], omega_k, register=True) Rop_sym = MyIndexedFunc('R', args=(nk, T, V, P)) ci = MyIndexedFunc('c', args=(nk, T, V, P)) q = Rop_sym[i] * ci[i] write_eq(q_sym[i], q, register=True) omega_k = assert_subs(omega_k, (q_sym[i], q)) write_eq(wdot[k], omega_k, sympy=True) # arrhenius coeffs A = MyIndexedBase(r'A') Beta = MyIndexedBase(r'\beta') Ea = MyIndexedBase(r'{E_{a}}') write_section('Rate of Progress') Ropf_sym = MyIndexedFunc(r'{R_f}', args=(nk, T, V, P)) Ropr_sym = MyIndexedFunc(r'{R_r}', args=(nk, T, V, P)) Rop = Ropf_sym[i] - Ropr_sym[i] write_eq(Rop_sym[i], Ropf_sym[i] - Ropr_sym[i], sympy=True, register=True) kf_sym = MyIndexedFunc(r'{k_f}', T) Ropf = kf_sym[i] * Product(Ck[k]**nu_f[k, i], (k, 1, Ns)) write_eq(Ropf_sym[i], Ropf, sympy=True, register=True) kr_sym = MyIndexedFunc(r'{k_r}', T) Ropr = kr_sym[i] * Product(Ck[k]**nu_r[k, i], (k, 1, Ns)) write_eq(Ropr_sym[i], Ropr, register=True) write_section('Third-body effect') # write the various ci forms ci_elem = Integer(1) write_conditional( ci[i], ci_elem, r'\quad for elementary reactions', enum_conds=reaction_type.elementary) ci_thd_sym = MyImplicitSymbol('[X]_i', args=(nk, T, V, P)) write_conditional( ci[i], ci_thd_sym, r'\quad for third-body enhanced reactions', enum_conds=reaction_type.thd) Pri_sym = MyImplicitSymbol('P_{r, i}', args=(nk, T, V, P)) Fi_sym = MyImplicitSymbol('F_{i}', args=(nk, T, V, P)) ci_fall = (Pri_sym / (1 + Pri_sym)) * Fi_sym write_conditional(ci[i], ci_fall, r'\quad for unimolecular/recombination falloff reactions', enum_conds=[reaction_type.fall]) ci_chem = (1 / (1 + Pri_sym)) * Fi_sym write_conditional(ci[i], ci_chem, r'\quad for chemically-activated bimolecular reactions', enum_conds=[reaction_type.chem]) write_section('Forward Reaction Rate') kf = A[i] * (T**Beta[i]) * exp(-Ea[i] / (R * T)) write_eq(kf_sym[i], kf, register=True, enum_conds=[reaction_type.elementary, reaction_type.thd, reaction_type.fall, reaction_type.chem]) write_section('Equilibrium Constants') Kp_sym = MyIndexedFunc(r'{K_p}', args=(T, a)) Kc_sym = MyIndexedFunc(r'{K_c}', args=(T)) write_eq( Kc_sym[i], Kp_sym[i] * ((Patm / (R * T))**Sum(nu_sym[k, i], (k, 1, Ns)))) write_dummy_eq(latex(Kp_sym[i]) + ' = ' + r'\text{exp}(\frac{\Delta S^{\circ}_k}{R_u} - \frac{\Delta H^{\circ}_k}{R_u T})') write_dummy_eq(latex(Kp_sym[i]) + ' = ' + r'\text{exp}\left(\sum_{k=1}^{N_s}\nu_{ki}\left(\frac{S^{\circ}_k}{R_u} - \frac{H^{\circ}_k}{R_u T}\right)\right)') B_sym = MyIndexedFunc('B', T) Kc = ((Patm / R)**Sum(nu_sym[k, i], (k, 1, Ns))) * \ exp(Sum(nu_sym[k, i] * B_sym[k], (k, 1, Ns))) write_eq(Kc_sym[i], Kc, sympy=True, register=True) write_dummy_eq(latex( B_sym[k]) + r'= \frac{S^{\circ}_k}{R_u} - \frac{H^{\circ}_k}{R_u T} - ln(T)') Bk = simplify(Sfunc / R - hfunc / (R * T) - log(T)) Bk_rep = a[k, 6] - a[k, 0] + (a[k, 0] - Integer(1))*log(T) +\ T * (a[k, 1] * Rational(1, 2) + T * (a[k, 2] * Rational(1, 6) + T * (a[k, 3] * Rational(1, 12) + a[k, 4] * T * Rational(1, 20)))) - \ a[k, 5] / T Bk = assert_subs(Bk, (Bk, Bk_rep)) write_eq(B_sym[k], Bk, register=True, sympy=True) write_section('Reverse Reaction Rate') kr = kf / Kc kr_sym = MyIndexedFunc(r'{k_r}', args=(T)) write_conditional(kr_sym[i], kf_sym[i] / Kc_sym[i], r'\quad if non-explicit', enum_conds=reversible_type.non_explicit) register_equal(kr_sym[i], kf_sym[i] / Kc_sym[i]) A_rexp = MyIndexedBase(r'{A_{r}}') Beta_rexp = MyIndexedBase(r'{\beta_r}') Ea_rexp = MyIndexedBase(r'{E_{a,r}}') kr_rexp = A_rexp[i] * T**Beta_rexp[i] * exp(-Ea_rexp[i] / (R * T)) Ropr_rexp = kr_rexp * Product(Ck[k]**nu_r[k, i], (k, 1, Ns)) write_conditional(Ropr_sym[i], Ropr_rexp, r'\quad if explicit', enum_conds=reversible_type.explicit) write_section('Third-Body Efficiencies') thd_bdy_eff = MyIndexedBase(r'\alpha') ci_thd = Sum(thd_bdy_eff[k, i] * Ck[k], (k, 1, Ns)) write_eq(ci_thd_sym, ci_thd) ci_thd = assert_subs( ci_thd, (Sum(thd_bdy_eff[k, i] * Ck[k], (k, 1, Ns)), Sum((thd_bdy_eff[k, i] - 1) * Ck[k], (k, 1, Ns)) + Sum(Ck[k], (k, 1, Ns))), (Sum(Ck[k], (k, 1, Ns)), Ctot_sym), ) write_eq(ci_thd_sym, ci_thd) ci_thd = assert_subs(ci_thd, (Sum((thd_bdy_eff[k, i] - 1) * Ck[k], (k, 1, Ns)), Sum((thd_bdy_eff[k, i] - 1) * Ck[k], (k, 1, Ns - 1)) + (thd_bdy_eff[Ns, i] - 1) * Ck[Ns]), (Ck[Ns], Cns)) write_eq(ci_thd_sym, ci_thd) ci_thd = assert_subs(ci_thd, (Ctot, Ctot_sym)) ci_thd = simplify(ci_thd) write_conditional(ci_thd_sym, ci_thd, text=r'\quad for mixture as third-body', enum_conds=thd_body_type.mix) ci_thd_unity = assert_subs(ci_thd, (thd_bdy_eff[k, i], S.One), (thd_bdy_eff[Ns, i], S.One), assumptions=[(thd_bdy_eff[k, i], S.One), (thd_bdy_eff[Ns, i], S.One)]) ci_thd_unity = simplify(ci_thd_unity) write_conditional(ci_thd_sym, ci_thd_unity, text=r'\quad for all $\alpha_{ki} = 1$', enum_conds=thd_body_type.unity) ci_thd_species = KroneckerDelta(Ns, m) * Cns + ( 1 - KroneckerDelta(Ns, m)) * Ck[m] ci_thd_species = assert_subs(ci_thd_species, ( Ctot, Ctot_sym)) write_conditional(ci_thd_sym, ci_thd_species, text=r'\quad for a single species third-body', enum_conds=thd_body_type.species) write_section('Falloff Reactions') k0 = Symbol('A_0') * T**Symbol(r'\beta_0') * \ exp(-Symbol('E_{a, 0}') / (R * T)) kinf = Symbol(r'A_{\infty}') * T**Symbol(r'\beta_{\infty}') * \ exp(-Symbol(r'E_{a, \infty}') / (R * T)) k0_sym = MyImplicitSymbol(r'k_{0, i}', T) write_eq(k0_sym, k0, sympy=True, register=True) kinf_sym = MyImplicitSymbol(r'k_{\infty, i}', T) write_eq(kinf_sym, kinf, sympy=True, register=True) Pri_mix = ci_thd_sym * k0_sym / kinf_sym write_conditional(Pri_sym, Pri_mix, text=r'\quad for the mixture as the third-body', enum_conds=[thd_body_type.mix]) Pri_spec = ci_thd_species * k0_sym / kinf_sym write_conditional(Pri_sym, Pri_spec, text=r'\quad for species $m$ as the third-body', enum_conds=[thd_body_type.species]) Pri_unity = ci_thd_unity * k0_sym / kinf_sym write_conditional(Pri_sym, Pri_unity, text=r'\quad for for all $\alpha_{i, j} = 1$', enum_conds=[thd_body_type.unity]) Fi_lind = Integer(1) write_conditional(Fi_sym, Fi_lind, text=r'\quad for Lindemann', enum_conds=[reaction_type.fall, reaction_type.chem, falloff_form.lind]) Fcent_sym = MyImplicitSymbol('F_{cent}', T) Atroe_sym = MyImplicitSymbol('A_{Troe}', args=(Pri_sym, Fcent_sym)) Btroe_sym = MyImplicitSymbol('B_{Troe}', args=(Pri_sym, Fcent_sym)) Fcent_power = (1 + (Atroe_sym / Btroe_sym)**2)**-1 Fi_troe = Fcent_sym**Fcent_power Fi_troe_sym = ImplicitSymbol('F_{i}', args=(Fcent_sym, Pri_sym)) register_equal(Fi_troe_sym, Fi_troe) write_conditional(Fi_sym, Fi_troe, text=r'\quad for Troe', enum_conds=[reaction_type.fall, reaction_type.chem, falloff_form.troe]) X_sym = MyImplicitSymbol('X', Pri_sym) a_fall, b_fall, c_fall, d_fall, e_fall, \ Tstar, Tstarstar, Tstarstarstar = symbols( 'a b c d e T^{*} T^{**} T^{***}') Fi_sri = d_fall * T ** e_fall * ( a_fall * exp(-b_fall / T) + exp(-T / c_fall))**X_sym write_conditional(Fi_sym, Fi_sri, text=r'\quad for SRI', enum_conds=[reaction_type.fall, reaction_type.chem, falloff_form.sri]) Fcent = (S.One - a_fall) * exp(-T / Tstarstarstar) + a_fall * exp(-T / Tstar) + \ exp(-Tstarstar / T) write_eq(Fcent_sym, Fcent, register=True, sympy=True) Atroe = log(Pri_sym, 10) - Float(0.67) * log(Fcent_sym, 10) - Float(0.4) write_eq(Atroe_sym, Atroe, register=True, sympy=True) Btroe = Float(0.806) - Float(1.1762) * log(Fcent_sym, 10) - \ Float(0.14) * log(Pri_sym, 10) write_eq(Btroe_sym, Btroe, register=True, sympy=True) X = (1 + (log(Pri_sym, 10))**2)**-1 write_eq(X_sym, X, register=True, sympy=True) write_section('Pressure-Dependent Reactions') # pdep latexfile.write('For PLog reactions\n') A_1, A_2, beta_1, beta_2, Ea_1, Ea_2 = symbols(r'A_1 A_2 \beta_1' + r' \beta_2 E_{a_1} E_{a_2}') k1 = A_1 * T**beta_1 * exp(Ea_1
# -*- coding:utf-8 -*- import os import stat import copy import re import shutil import zipfile from os.path import join, getsize from flask import current_app, session from openpyxl import Workbook, load_workbook from robot.api import TestData from robot.parsing.model import Step from utils.file import get_projectdirfromkey, remove_dir from utils.mylogger import getlogger log = getlogger("TestCaseUnite") def getCaseContent(cpath, cname): '''反写:自动化结果反写中,取得测试用例内容 ''' if not os.path.exists(cpath): return "Can not find case file:"+cpath content = '' suite = TestData(source=cpath) for t in suite.testcase_table.tests: if t.name == cname: isHand = False if t.tags.value and 'Hand' in t.tags.value: isHand = True for s in t.steps: ststr = (' ' * 4).join(s.as_list()) if ststr.strip() == 'No Operation': continue if isHand: if ststr.strip().startswith('#*'): ststr = ststr.replace('#*', '') content += ststr + '\r\n' return content def export_casezip(key, exp_filedir=''): dir = exp_filedir if dir == '': dir = get_projectdirfromkey(key) + '/runtime' zip_name = os.path.basename(key) + '.zip' zip_path = os.path.join(dir, zip_name) try: z = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) for dirpath, dirnames, filenames in os.walk(key): fpath = dirpath.replace(key, '') fpath = fpath and fpath + os.sep or '' for filename in filenames: z.write(os.path.join(dirpath, filename), fpath + filename) z.close() except Exception as e: log.error("下载zip用例异常:{}".format(e)) return (False, "{}".format(e)) return (True, zip_path) def export_casexlsx(key, db, exp_filedir=''): export_dir = key if not os.path.isdir(export_dir): log.error("不支持导出一个文件中的用例:"+export_dir) return (False, "不支持导出一个文件中的用例:"+export_dir) basename = os.path.basename(export_dir) dir = exp_filedir if dir == '': dir = get_projectdirfromkey(export_dir) + '/runtime' os.mkdir(dir) if not os.path.exists(dir) else None export_file = os.path.join(dir, basename+'.xlsx') db.refresh_caseinfo(export_dir, "Force") cases = [] sql = "SELECT info_key,info_name,info_doc,info_tags FROM testcase WHERE info_key like '{}%' ;".format( key) res = db.runsql(sql) for i in res: (info_key, info_name, info_doc, info_tag) = i cases.append([info_key, info_name, info_doc, info_tag]) wb = Workbook() ws = wb.active ws.append(["导出&导入用例:"]) ws.append(["'_'用在文件名前后,表示用例文件:如 '_用例文件名_' 表示'用例文件名.robot'"]) ws.append(["'-'用来连接目录,没有此符号表示没有子目录:如 '目录1-目录11' 表示 '目录1/目录11'"]) ws.append(["每个sheet的第一列,是后面用例所在的用例文件名(.robot)"]) ws.append(["... ..."]) ws.append(["注意:通过xlsx文件导入用例,如果是自动化用例,且用例已经存在,则只更新doc和tag,不更新用例内容"]) ws.append(["... ..."]) ws.append(["此'sheet'页面,不会被导入"]) ws.append(["... ..."]) ws.append(["Export&Import Cases:"]) ws.append( ["'_'after the file name,Means a suite:'_SuiteName_' means 'SuiteName.robot'"]) ws.append( ["'-'concat the dirs,no this sign no subdir:'dir1-dir11' means 'dir1/dir11'"]) ws.append( ["First Column of each sheet,is the suite name of the case in this line(.robot)"]) ws.append(["... ..."]) ws.append(["Caution:Import cases from xlsx file,if it is Auto-case and it exists,then update doc and tag Only,Do not update Case content."]) ws.append(["... ..."]) ws.append(["This 'sheet' ,Wont be imported."]) for c in cases: if not os.path.exists(c[0]): continue casecontent = getCaseContent(c[0], c[1]) suitename = os.path.basename(c[0]) tags = c[3].split(',') tags.remove('${EMPTY}') if '${EMPTY}' in tags else None category = "Auto" if "HAND" in tags or "Hand" in tags or 'hand' in tags: category = "Hand" casecontent = casecontent.replace(' '*4 + '#', '') sheetname = _get_ws(export_dir, c[0]) #print("Get sheete name :"+sheetname) # print(suitename,c[1],c[2],casecontent,c[3],category) if not sheetname in wb.sheetnames: ws = wb.create_sheet(sheetname) #ws = wb.active ws.append(["Suite_Name", "Case_Name", "Case_Doc", "Case_Content", "Case_Tag", "Case_Type"]) else: ws = wb[sheetname] #ws = wb.active ws.append([suitename, c[1], c[2], casecontent, c[3], category]) os.remove(export_file) if os.path.exists(export_file) else None wb.save(export_file) log.info("生成测试用例文件 {} 到目录 {}".format(export_dir, export_file)) return (True, export_file) def _get_ws(export_dir, suite_key): """ return worksheet name suite_key= /xxx/project/TestCase/v50/1dir1/test1.robot expor_dir= /xxx/project/TestCase """ suite_name = os.path.basename(suite_key) # test1.robot suite_dir = os.path.dirname(suite_key) # /xxx/project/TestCase/v50/1dir1 subdir = suite_dir.split(export_dir)[1] # /v50/1dir1 subdir = subdir.replace('/', '-') # _v50_1dir1 subdir = subdir[1:] # v50_1dir1 if subdir == '': singal_suite = suite_name.split(".")[0] return "_"+singal_suite+"_" return subdir def do_importfromzip(temp_file, path): zip_file = temp_file try: if not os.path.exists(zip_file): return ('fail', 'Can not find xlsx file :{}'.format(zip_file)) if not os.path.isdir(path): return ('fail', 'The Node is NOT A DIR :{}'.format(path)) if not zipfile.is_zipfile(zip_file): return ('fail', 'The file is not a zip file :{}'.format(os.path.basename(zip_file))) remove_dir(path) if os.path.exists(path) else None os.mkdir(path) fz = zipfile.ZipFile(zip_file, 'r') for file in fz.namelist(): fz.extract(file, path) return ('success', path) except Exception as e: log.error("从zip文件导入发生异常:{}".format(e)) return ("fail", "Exception occured .") def do_unzip_project(temp_file, path): zip_file = temp_file try: if not os.path.exists(zip_file): return ('fail', '找不到zip文件:{}'.format(zip_file)) app = current_app._get_current_object() if not zipfile.is_zipfile(zip_file): return ('fail', '不是一个zip文件 :{}'.format(os.path.basename(zip_file))) remove_dir(path) if os.path.exists(path) else None os.mkdir(path) fz = zipfile.ZipFile(zip_file, 'r') for file in fz.namelist(): fz.extract(file, path) projectfile = '' project_content = '' for p in os.listdir(path): if os.path.exists(os.path.join(path, p, 'platforminterface/project.conf')): projectfile = os.path.join( path, p, 'platforminterface/project.conf') project_content = os.path.join(path, p) if not projectfile: msg = "Load Project Fail: 找不到 project.conf:{} ".format(projectfile) log.error(msg) return ('fail', msg) log.info("读取 Project file: {}".format(projectfile)) with open(projectfile, 'r') as f: for l in f: if l.startswith('#'): continue if len(l.strip()) == 0: continue splits = l.strip().split('|') if len(splits) != 4: log.error("错误的 project.conf 行 " + l) return ('fail', "错误的 project.conf 行 " + l) (projectname, owner, users, cron) = splits project_path = os.path.join( app.config['AUTO_HOME'], 'workspace', owner, projectname) if os.path.exists(project_path): msg = '目标目录存在:{}'.format(project_path) log.error(msg) return ('fail', msg) log.info("复制文件从 {} 到 {} ".format( project_content, project_path)) try: shutil.copytree(project_content, project_path) except Exception as e: return ('fail', "{}".format(e)) return ('success', project_path) except Exception as e: log.error("从zip文件导入发生异常:{}".format(e)) return ("fail", "Exception occured .") def do_uploadcaserecord(temp_file): if not os.path.exists(temp_file): return ('fail', 'Can not find file :{}'.format(temp_file)) app = current_app._get_current_object() total = 0 success = 0 formaterror = 0 exits = 0 with open(temp_file, 'r') as f: for l in f: l = l.strip() if len(l) != 0: total += 1 else: continue splits = l.split('|') if len(splits) != 8: formaterror += 1 log.error("uploadcaserecord 错误到列:"+l) continue (info_key, info_name, info_testproject, info_projectversion, ontime, run_status, run_elapsedtime, run_user) = splits sql = ''' INSERT into caserecord (info_key,info_name,info_testproject,info_projectversion,ontime,run_status,run_elapsedtime,run_user) VALUES ('{}','{}','{}','{}','{}','{}','{}','{}'); '''.format(info_key, info_name, info_testproject, info_projectversion, ontime, run_status, run_elapsedtime, run_user) res = app.config['DB'].runsql(sql) if res: success += 1 else: exits += 1 log.error("uploadcaserecord 记录存在:"+l) return ('success', 'Finished with total:{}, sucess:{}, error:{}, exists:{}'.format(total, success, formaterror, exits)) def do_importfromxlsx(temp_file, path): xls_file = temp_file dest_dir = path if not os.path.isdir(dest_dir): return ('fail', 'The Node is NOT A DIR :{}'.format(dest_dir)) if not os.path.exists(xls_file): return ('fail', 'Can not find xlsx file :{}'.format(xls_file)) xls_name = os.path.basename(xls_file).split('.')[0] dir_name = os.path.basename(dest_dir) if not xls_name == dir_name: return ('fail', 'Filename {} is not equal to dir name :{}'.format(xls_name, dest_dir)) try: wb = load_workbook(xls_file) update_cases = 0 unupdate_case = 0 failedlist = [] for stn in wb.sheetnames[1:]: ws = wb[stn] if not ws['A1'] != 'Suite_Name': return ('fail', 'sheet:{} A1:{} Expect:Suite_Name'.format(stn, ws['A1'])) if not ws['B1'] != 'Case_Name': return ('fail', 'sheet:{} B1:{} Expect:Case_Name'.format(stn, ws['B1'])) if not ws['C1'] != 'Case_Doc': return ('fail', 'sheet:{} C1:{} Expect:Case_Doc'.format(stn, ws['C1'])) if not ws['D1'] != 'Case_Content': return ('fail', 'sheet:{} C1:{} Expect:Case_Content'.format(stn, ws['D1'])) if not ws['E1'] != 'Case_Tag': return ('fail', 'sheet:{} C1:{} Expect:Case_Tag'.format(stn, ws['E1'])) if not ws['F1'] != 'Case_Type': return ('fail', 'sheet:{} C1:{} Expect:Case_Type'.format(stn, ws['F1'])) for r in ws.rows: (a, b, c, d, e, f) = r if a.value == 'Suite_Name': # omit the 1st line continue fields = [a.value if a.value else '', b.value if b.value else '', c.value if c.value else '', d.value if d.value else '', e.value if e.value else '', f.value if f.value else '' ] (done, msg) = _update_onecase(dest_dir, stn, fields) if done: update_cases += 1 else: unupdate_case += 1 failedlist.append( "sheet:{} suite:{} case:{} ->{}".format(stn, a.value, b.value, msg)) return ('success', 'S:{},F:{},Failist:{}'.format(update_cases, unupdate_case, '\n'.join(failedlist))) except Exception as e: log.error("do_uploadcase 异常:{}".format(e)) return ('fail', 'Deal with xlsx file fail :{}'.format(xls_file)) def _update_onecase(dest_dir, sheetname, fields): stn = sheetname DONE = False robotname = fields[0].split('.')[0] if stn.startswith('_') and stn.endswith('_'): if not '_'+robotname+'_' == stn: return (False, "Sheetname Should be same as the First column(no metter ext):{} vs {}".format(stn, robotname)) robotfile = os.path.join(dest_dir, robotname+'.robot') else: subdir = stn.replace('-', '/') robotfile = os.path.join(dest_dir, subdir, robotname+'.robot') file_dir = os.path.dirname(robotfile) os.makedirs(file_dir, exist_ok=True) log.info("Updating robotfile:{} with args:{}".format(robotfile, fields)) isHand = False if fields[5] == '手工' or fields[5] == 'HAND' or fields[5] == 'Hand' or fields[5] == 'hand': isHand = True brandnew = "*** Settings ***\n" + \ "*** Variables ***\n" + \ "*** Test Cases ***\n" + \ "NewTestCase\n" + \ " [Documentation] This is Doc \n" + \ " [Tags] tag1 tag2\n" + \ " Log This is a Brandnew case.\n" name = fields[1].strip() doc = fields[2].strip() content = fields[3].strip() tags = fields[4].strip().replace(',', ',').split(',') # Chinese characters if isHand: tags.append('Hand') tags = list(set(tags)) space_splitter = re.compile(u'[ \t\xa0]{2,}|\t+') # robot spliter try: # 如果文件不存在,直接创建文件和用例 if not os.path.exists(robotfile): log.info("测试用例文件不存在,创建 :"+robotfile) with open(robotfile, 'w') as f: f.write(brandnew) suite = TestData(source=robotfile) t = suite.testcase_table.tests[0] t.name = name t.tags.value = tags t.doc.value = doc.replace('\n', '\\n') steps = [] if isHand: lines = content.split('\n') for l in lines: step = Step([], comment="#*"+l.strip()) steps.append(step) steps.append(Step(["No
<reponame>abrikoseg/batchflow """ Progress notifier. """ import sys import math from time import time, gmtime, strftime from tqdm import tqdm from tqdm.notebook import tqdm as tqdm_notebook from tqdm.autonotebook import tqdm as tqdm_auto import numpy as np import matplotlib.pyplot as plt try: from IPython import display except ImportError: pass from .named_expr import NamedExpression, eval_expr from .monitor import ResourceMonitor, MONITOR_ALIASES from .utils_telegram import TelegramMessage class DummyBar: """ Progress tracker without visual representation. """ #pylint: disable=invalid-name def __init__(self, total, *args, **kwargs): self.total = total self.args, self.kwargs = args, kwargs self.n = 0 self.desc = '' self.postfix = '' self.start_t = time() def update(self, n): self.n += n @property def format_dict(self): return {'n': self.n, 'total': self.total, 't': time() - self.start_t} def format_meter(self, n, total, t, **kwargs): _ = kwargs return f'{n}/{total} iterations done; elapsed time is {t:3.3} seconds' def display(self, *args, **kwargs): _ = args, kwargs def set_description(self, desc): self.desc = desc def set_postfix_str(self, postfix): self.postfix = postfix def close(self): pass class Notifier: """ Progress tracker and a resource monitor tool in one. Allows to dynamically track and display containers (pipeline variables, images, monitor), log them to file in both textual and visual formats. Instance can be used to wrap iterators or by calling :meth:`.update` manually. Parameters ---------- bar : {'n', 'a', 'j', True} or callable Sets the type of used progress bar: - `callable` must provide a tqdm-like interface. - `n` stands for notebook version of tqdm bar. - `a` stands for automatic choise of appropriate tqdm bar. - `j` stands for graph drawing as a progress bar. - `t` or True for standard text tqdm is used. - otherwise, no progress bar will be displayed. Note that iterations, as well as everything else (monitors, variables, logs) are still tracked. update_total : bool Whether the total amount of iterations should be computed at initialization. desc : str Prefix for created descriptions. disable : bool Whether to disable the notifier completely: progress bar, monitors and graphs. total, batch_size, n_iters, n_epochs, drop_last, length Parameters to calculate total amount of iterations. frequency : int Frequency of notifier updates. monitors : str, :class:`.Monitor`, :class:`.NamedExpression`, dict or sequence of them Set tracked ('monitored') entities: they are displayed in the bar description. Strings are either registered monitor identifiers or names of pipeline variables. Named expressions are evaluated with the pipeline. If dict, then 'source' key should be one of the above to identify container. Other available keys: - 'name' is used to display at bar descriptions and plot titles - 'plot_function' is used to display container data. Can be used to change the default way of displaying graphs. graphs : str, :class:`.Monitor`, :class:`.NamedExpression`, or sequence of them Same semantics, as `monitors`, but tracked entities are displayed in dynamically updated plots. log_file : str If provided, a textual log is written into the supplied path. telegram : bool Whether to send notifications to a Telegram Bot. Works with both textual bars and figures (from `graphs`). Under the hood, keeps track of two messages - one with text, one with media, and edits them when needed. `silent` parameters controls, whether messages are sent with notifications or not. One must supply telegram `token` and `chat_id` either by passing directly or setting environment variables `TELEGRAM_TOKEN` and `TELEGRAM_CHAT_ID`. To get them: - create a bot <https://core.telegram.org/bots#6-botfather> and copy its `{token}` - add the bot to a chat and send it a message such as `/start` - go to <https://api.telegram.org/bot`{token}`/getUpdates> to find out the `{chat_id}` window : int Allows to plot only the last `window` values from every tracked container. layout : str If `h`, then subplots are drawn horizontally; vertically otherwise. figsize : tuple of numbers Total size of drawn figure. savepath : str Path to save image, created by tracking entities with `graphs`. *args, **kwargs Positional and keyword arguments that are used to create underlying progress bar. """ COLOUR_RUNNING = '#2196f3' COLOUR_SUCCESS = '#4caf50' COLOUR_FAILURE = '#f44336' def __init__(self, bar=None, *args, update_total=True, disable=False, total=None, batch_size=None, n_iters=None, n_epochs=None, drop_last=False, length=None, frequency=1, monitors=None, graphs=None, log_file=None, telegram=False, token=<PASSWORD>, chat_id=None, silent=True, window=None, layout='h', figsize=None, savepath=None, **kwargs): # Prepare data containers like monitors and pipeline variables if monitors: monitors = monitors if isinstance(monitors, (tuple, list)) else [monitors] else: monitors = [] if graphs: graphs = graphs if isinstance(graphs, (tuple, list)) else [graphs] else: graphs = [] self.has_monitors = False self.has_graphs = len(graphs) > 0 self.n_monitors = len(monitors) self.data_containers = [] for container in monitors + graphs: if not isinstance(container, dict): container = {'source': container} if isinstance(container['source'], str) and container['source'].lower() in MONITOR_ALIASES: container['source'] = MONITOR_ALIASES[container['source'].lower()]() source = container.get('source') if source is None: raise ValueError('Passed dictionaries as `monitors` or `graphs` should contain `source` key!') if isinstance(source, ResourceMonitor): self.has_monitors = True if 'name' not in container: if isinstance(source, ResourceMonitor): container['name'] = source.__class__.__name__ elif isinstance(source, NamedExpression): container['name'] = source.name elif isinstance(source, str): container['name'] = source else: container['name'] = None self.data_containers.append(container) self.frequency = frequency self.timestamps = [] self.start_monitors() # Prepare file log self.log_file = log_file if self.log_file: with open(self.log_file, 'w'): pass # Create bar; set the number of total iterations, if possible self.bar = None bar_func = None if callable(bar): bar_func = bar elif bar in ['n', 'nb', 'notebook', 'j', 'jpn', 'jupyter']: bar_func = tqdm_notebook elif bar in [True, 'a', 'auto']: bar_func = tqdm_auto elif bar in ['t', 'tqdm']: bar_func = tqdm elif bar in ['telegram', 'tg']: bar_func = tqdm_auto telegram = True elif bar in [False, None]: bar_func = DummyBar else: raise ValueError('Unknown bar value:', bar) # Set default values for bars if bar_func is tqdm or bar_func is tqdm_notebook: if bar_func is tqdm: ncols = min(80 + 10 * self.n_monitors, 120) colour = self.COLOUR_SUCCESS elif bar_func is tqdm_notebook: ncols = min(700 + 150 * self.n_monitors, 1000) colour = None kwargs = { 'ncols': ncols, 'colour': colour, 'file': sys.stdout, **kwargs } self.bar_func = lambda total: bar_func(total=total, *args, **kwargs) # Turn off everything if `disable` self._disable = disable if update_total: self.update_total(total=total, batch_size=batch_size, n_iters=n_iters, n_epochs=n_epochs, drop_last=drop_last, length=length) # Prepare plot params #pylint: disable=invalid-unary-operand-type self.slice = slice(-window, None, None) if isinstance(window, int) else slice(None) self.layout, self.figsize, self.savepath = layout, figsize, savepath # Prepare Telegram notifications self.telegram = telegram if self.telegram: self.telegram_text = TelegramMessage(token=token, chat_id=chat_id, silent=silent) self.telegram_media = TelegramMessage(token=token, chat_id=chat_id, silent=silent) def update_total(self, batch_size, n_iters, n_epochs, drop_last, length, total=None): """ Re-calculate total number of iterations. """ if total is None: if n_iters is not None: total = n_iters if n_epochs is not None: if drop_last: total = length // batch_size * n_epochs else: total = math.ceil(length * n_epochs / batch_size) # Force close previous bar, create new if self.bar is not None: try: # jupyter bar must be closed and reopened self.bar.display(close=True) self.bar = self.bar_func(total=total) except TypeError: # text bar can work with a simple reassigning of `total` self.bar.total = total else: self.bar = self.bar_func(total=total) if self._disable: self.disable() def disable(self): """ Completely disable notifier: progress bar, monitors and graphs. """ if self.bar is not None: try: # jupyter bar must be closed and reopened self.bar.display(close=True) except TypeError: pass finally: self.bar = DummyBar(total=self.total) self.data_containers = [] self.has_graphs = False self.log_file = None self.telegram = False def update(self, n=1, pipeline=None, batch=None): """ Update Notifier with new info: - fetch up-to-date data from batch, pipeline and monitors - set bar postfix - draw plots anew - update log log_file - send notifications to Telegram - increment underlying progress bar tracker """ if self.bar.n == 0 or (self.bar.n + 1) % self.frequency == 0 or (self.bar.n == self.bar.total - 1): self.timestamps.append(gmtime()) if self.data_containers: self.update_data(pipeline=pipeline, batch=batch) self.update_postfix() if self.has_graphs: self.update_plots(index=self.n_monitors, add_suptitle=True) if self.log_file: self.update_log_file() if self.telegram: self.update_telegram() self.bar.update(n) def update_data(self, pipeline=None, batch=None): """ Get data from monitor or pipeline. """ for container in self.data_containers: source = container['source'] if isinstance(source, ResourceMonitor): source.fetch() container['data'] = source.data elif isinstance(source, str): value = pipeline.v(source) container['data'] = value else: value = eval_expr(source, pipeline=pipeline, batch=batch) container['data'] = value def update_postfix(self): """ Set the new bar description, if needed. """ postfix = self.create_description(iteration=-1) previous_postfix =
function] cls.add_method('InitEndDeviceInfo', 'ns3::LoRaWANEndDeviceInfoNS', [param('ns3::Ipv4Address', 'arg0')]) ## lorawan-gateway-application.h (module 'lorawan'): void ns3::LoRaWANNetworkServer::PopulateEndDevices() [member function] cls.add_method('PopulateEndDevices', 'void', []) ## lorawan-gateway-application.h (module 'lorawan'): void ns3::LoRaWANNetworkServer::RW1TimerExpired(uint32_t deviceAddr) [member function] cls.add_method('RW1TimerExpired', 'void', [param('uint32_t', 'deviceAddr')]) ## lorawan-gateway-application.h (module 'lorawan'): void ns3::LoRaWANNetworkServer::RW2TimerExpired(uint32_t deviceAddr) [member function] cls.add_method('RW2TimerExpired', 'void', [param('uint32_t', 'deviceAddr')]) ## lorawan-gateway-application.h (module 'lorawan'): void ns3::LoRaWANNetworkServer::SendDSPacket(uint32_t deviceAddr, ns3::Ptr<ns3::LoRaWANGatewayApplication> gatewayPtr, bool RW1, bool RW2) [member function] cls.add_method('SendDSPacket', 'void', [param('uint32_t', 'deviceAddr'), param('ns3::Ptr< ns3::LoRaWANGatewayApplication >', 'gatewayPtr'), param('bool', 'RW1'), param('bool', 'RW2')]) ## lorawan-gateway-application.h (module 'lorawan'): void ns3::LoRaWANNetworkServer::SetConfirmedDataDown(bool confirmedData) [member function] cls.add_method('SetConfirmedDataDown', 'void', [param('bool', 'confirmedData')]) ## lorawan-gateway-application.h (module 'lorawan'): static void ns3::LoRaWANNetworkServer::clearLoRaWANNetworkServerPointer() [member function] cls.add_method('clearLoRaWANNetworkServerPointer', 'void', [], is_static=True) ## lorawan-gateway-application.h (module 'lorawan'): static ns3::Ptr<ns3::LoRaWANNetworkServer> ns3::LoRaWANNetworkServer::getLoRaWANNetworkServerPointer() [member function] cls.add_method('getLoRaWANNetworkServerPointer', 'ns3::Ptr< ns3::LoRaWANNetworkServer >', [], is_static=True) ## lorawan-gateway-application.h (module 'lorawan'): static bool ns3::LoRaWANNetworkServer::haveLoRaWANNetworkServerObject() [member function] cls.add_method('haveLoRaWANNetworkServerObject', 'bool', [], is_static=True) return def register_Ns3LoRaWANPhy_methods(root_module, cls): ## lorawan-phy.h (module 'lorawan'): static ns3::TypeId ns3::LoRaWANPhy::GetTypeId() [member function] cls.add_method('GetTypeId', 'ns3::TypeId', [], is_static=True) ## lorawan-phy.h (module 'lorawan'): ns3::LoRaWANPhy::LoRaWANPhy() [constructor] cls.add_constructor([]) ## lorawan-phy.h (module 'lorawan'): ns3::LoRaWANPhy::LoRaWANPhy(uint8_t arg0) [constructor] cls.add_constructor([param('uint8_t', 'arg0')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::PrintCurrentTxConf() const [member function] cls.add_method('PrintCurrentTxConf', 'void', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): bool ns3::LoRaWANPhy::SetTxConf(int8_t power, uint8_t channelIndex, uint8_t dataRateIndex, uint8_t codeRate, uint8_t preambleLength, bool implicitHeader, bool crcOn) [member function] cls.add_method('SetTxConf', 'bool', [param('int8_t', 'power'), param('uint8_t', 'channelIndex'), param('uint8_t', 'dataRateIndex'), param('uint8_t', 'codeRate'), param('uint8_t', 'preambleLength'), param('bool', 'implicitHeader'), param('bool', 'crcOn')]) ## lorawan-phy.h (module 'lorawan'): uint8_t ns3::LoRaWANPhy::GetCurrentChannelIndex() const [member function] cls.add_method('GetCurrentChannelIndex', 'uint8_t', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): uint8_t ns3::LoRaWANPhy::GetCurrentDataRateIndex() const [member function] cls.add_method('GetCurrentDataRateIndex', 'uint8_t', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): ns3::Time ns3::LoRaWANPhy::CalculateTxTime(uint8_t payloadLength) [member function] cls.add_method('CalculateTxTime', 'ns3::Time', [param('uint8_t', 'payloadLength')]) ## lorawan-phy.h (module 'lorawan'): ns3::Time ns3::LoRaWANPhy::CalculatePreambleTime() [member function] cls.add_method('CalculatePreambleTime', 'ns3::Time', []) ## lorawan-phy.h (module 'lorawan'): bool ns3::LoRaWANPhy::preambleDetected() const [member function] cls.add_method('preambleDetected', 'bool', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetMobility(ns3::Ptr<ns3::MobilityModel> m) [member function] cls.add_method('SetMobility', 'void', [param('ns3::Ptr< ns3::MobilityModel >', 'm')], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::MobilityModel> ns3::LoRaWANPhy::GetMobility() [member function] cls.add_method('GetMobility', 'ns3::Ptr< ns3::MobilityModel >', [], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetChannel(ns3::Ptr<ns3::SpectrumChannel> c) [member function] cls.add_method('SetChannel', 'void', [param('ns3::Ptr< ns3::SpectrumChannel >', 'c')], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::SpectrumChannel> ns3::LoRaWANPhy::GetChannel() [member function] cls.add_method('GetChannel', 'ns3::Ptr< ns3::SpectrumChannel >', []) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetDevice(ns3::Ptr<ns3::NetDevice> d) [member function] cls.add_method('SetDevice', 'void', [param('ns3::Ptr< ns3::NetDevice >', 'd')], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::NetDevice> ns3::LoRaWANPhy::GetDevice() [member function] cls.add_method('GetDevice', 'ns3::Ptr< ns3::NetDevice >', [], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetAntenna(ns3::Ptr<ns3::AntennaModel> a) [member function] cls.add_method('SetAntenna', 'void', [param('ns3::Ptr< ns3::AntennaModel >', 'a')]) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::AntennaModel> ns3::LoRaWANPhy::GetRxAntenna() [member function] cls.add_method('GetRxAntenna', 'ns3::Ptr< ns3::AntennaModel >', [], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::SpectrumModel const> ns3::LoRaWANPhy::GetRxSpectrumModel() const [member function] cls.add_method('GetRxSpectrumModel', 'ns3::Ptr< ns3::SpectrumModel const >', [], is_const=True, is_virtual=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetTxPowerSpectralDensity(ns3::Ptr<ns3::SpectrumValue> txPsd) [member function] cls.add_method('SetTxPowerSpectralDensity', 'void', [param('ns3::Ptr< ns3::SpectrumValue >', 'txPsd')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetNoisePowerSpectralDensity(ns3::Ptr<ns3::SpectrumValue const> noisePsd) [member function] cls.add_method('SetNoisePowerSpectralDensity', 'void', [param('ns3::Ptr< ns3::SpectrumValue const >', 'noisePsd')]) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::SpectrumValue const> ns3::LoRaWANPhy::GetNoisePowerSpectralDensity() [member function] cls.add_method('GetNoisePowerSpectralDensity', 'ns3::Ptr< ns3::SpectrumValue const >', []) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::StartRx(ns3::Ptr<ns3::SpectrumSignalParameters> params) [member function] cls.add_method('StartRx', 'void', [param('ns3::Ptr< ns3::SpectrumSignalParameters >', 'params')], is_virtual=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetErrorModel(ns3::Ptr<ns3::LoRaWANErrorModel> e) [member function] cls.add_method('SetErrorModel', 'void', [param('ns3::Ptr< ns3::LoRaWANErrorModel >', 'e')]) ## lorawan-phy.h (module 'lorawan'): ns3::Ptr<ns3::LoRaWANErrorModel> ns3::LoRaWANPhy::GetErrorModel() const [member function] cls.add_method('GetErrorModel', 'ns3::Ptr< ns3::LoRaWANErrorModel >', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetTRXStateRequest(ns3::LoRaWANPhyEnumeration state) [member function] cls.add_method('SetTRXStateRequest', 'void', [param('ns3::LoRaWANPhyEnumeration', 'state')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetPdDataIndicationCallback(ns3::PdDataIndicationCallback c) [member function] cls.add_method('SetPdDataIndicationCallback', 'void', [param('ns3::PdDataIndicationCallback', 'c')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetPdDataDestroyedCallback(ns3::PdDataDestroyedCallback c) [member function] cls.add_method('SetPdDataDestroyedCallback', 'void', [param('ns3::PdDataDestroyedCallback', 'c')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetPdDataConfirmCallback(ns3::PdDataConfirmCallback c) [member function] cls.add_method('SetPdDataConfirmCallback', 'void', [param('ns3::PdDataConfirmCallback', 'c')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::SetSetTRXStateConfirmCallback(ns3::SetTRXStateConfirmCallback c) [member function] cls.add_method('SetSetTRXStateConfirmCallback', 'void', [param('ns3::SetTRXStateConfirmCallback', 'c')]) ## lorawan-phy.h (module 'lorawan'): int64_t ns3::LoRaWANPhy::AssignStreams(int64_t stream) [member function] cls.add_method('AssignStreams', 'int64_t', [param('int64_t', 'stream')]) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::PdDataRequest(uint32_t const phyPayloadLength, ns3::Ptr<ns3::Packet> p) [member function] cls.add_method('PdDataRequest', 'void', [param('uint32_t const', 'phyPayloadLength'), param('ns3::Ptr< ns3::Packet >', 'p')]) ## lorawan-phy.h (module 'lorawan'): uint8_t ns3::LoRaWANPhy::GetIndex() const [member function] cls.add_method('GetIndex', 'uint8_t', [], is_const=True) ## lorawan-phy.h (module 'lorawan'): void ns3::LoRaWANPhy::DoDispose() [member function] cls.add_method('DoDispose', 'void', [], visibility='private', is_virtual=True) return def register_Ns3LoRaWANSpectrumSignalParameters_methods(root_module, cls): ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::LoRaWANSpectrumSignalParameters() [constructor] cls.add_constructor([]) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::LoRaWANSpectrumSignalParameters(ns3::LoRaWANSpectrumSignalParameters const & p) [copy constructor] cls.add_constructor([param('ns3::LoRaWANSpectrumSignalParameters const &', 'p')]) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::Ptr<ns3::SpectrumSignalParameters> ns3::LoRaWANSpectrumSignalParameters::Copy() [member function] cls.add_method('Copy', 'ns3::Ptr< ns3::SpectrumSignalParameters >', [], is_virtual=True) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::channelIndex [variable] cls.add_instance_attribute('channelIndex', 'uint8_t', is_const=False) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::codeRate [variable] cls.add_instance_attribute('codeRate', 'uint8_t', is_const=False) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::dataRateIndex [variable] cls.add_instance_attribute('dataRateIndex', 'uint8_t', is_const=False) ## lorawan-spectrum-signal-parameters.h (module 'lorawan'): ns3::LoRaWANSpectrumSignalParameters::packet [variable] cls.add_instance_attribute('packet', 'ns3::Ptr< ns3::Packet >', is_const=False) return def register_Ns3LogNormalRandomVariable_methods(root_module, cls): ## random-variable-stream.h (module 'core'): static ns3::TypeId ns3::LogNormalRandomVariable::GetTypeId() [member function] cls.add_method('GetTypeId', 'ns3::TypeId', [], is_static=True) ## random-variable-stream.h (module 'core'): ns3::LogNormalRandomVariable::LogNormalRandomVariable() [constructor] cls.add_constructor([]) ## random-variable-stream.h (module 'core'): double ns3::LogNormalRandomVariable::GetMu() const [member function] cls.add_method('GetMu', 'double', [], is_const=True) ## random-variable-stream.h (module 'core'): double ns3::LogNormalRandomVariable::GetSigma() const [member function] cls.add_method('GetSigma', 'double', [], is_const=True) ## random-variable-stream.h (module 'core'): double ns3::LogNormalRandomVariable::GetValue(double mu, double sigma) [member function] cls.add_method('GetValue', 'double', [param('double', 'mu'), param('double', 'sigma')]) ## random-variable-stream.h (module 'core'): uint32_t ns3::LogNormalRandomVariable::GetInteger(uint32_t mu, uint32_t sigma) [member function] cls.add_method('GetInteger', 'uint32_t', [param('uint32_t', 'mu'), param('uint32_t', 'sigma')]) ## random-variable-stream.h (module 'core'): double ns3::LogNormalRandomVariable::GetValue() [member function] cls.add_method('GetValue', 'double', [], is_virtual=True) ## random-variable-stream.h (module 'core'): uint32_t ns3::LogNormalRandomVariable::GetInteger() [member function] cls.add_method('GetInteger', 'uint32_t', [], is_virtual=True) return def register_Ns3NetDevice_methods(root_module, cls): ## net-device.h (module 'network'): ns3::NetDevice::NetDevice() [constructor] cls.add_constructor([]) ## net-device.h (module 'network'): ns3::NetDevice::NetDevice(ns3::NetDevice const & arg0) [copy constructor] cls.add_constructor([param('ns3::NetDevice const &', 'arg0')]) ## net-device.h (module 'network'): void ns3::NetDevice::AddLinkChangeCallback(ns3::Callback<void, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty> callback) [member function] cls.add_method('AddLinkChangeCallback', 'void', [param('ns3::Callback< void, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty, ns3::empty >', 'callback')], is_pure_virtual=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Address ns3::NetDevice::GetAddress() const [member function] cls.add_method('GetAddress', 'ns3::Address', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Address ns3::NetDevice::GetBroadcast() const [member function] cls.add_method('GetBroadcast', 'ns3::Address', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Ptr<ns3::Channel> ns3::NetDevice::GetChannel() const [member function] cls.add_method('GetChannel', 'ns3::Ptr< ns3::Channel >', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): uint32_t ns3::NetDevice::GetIfIndex() const [member function] cls.add_method('GetIfIndex', 'uint32_t', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): uint16_t ns3::NetDevice::GetMtu() const [member function] cls.add_method('GetMtu', 'uint16_t', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Address ns3::NetDevice::GetMulticast(ns3::Ipv4Address multicastGroup) const [member function] cls.add_method('GetMulticast', 'ns3::Address', [param('ns3::Ipv4Address', 'multicastGroup')], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Address ns3::NetDevice::GetMulticast(ns3::Ipv6Address addr) const [member function] cls.add_method('GetMulticast', 'ns3::Address', [param('ns3::Ipv6Address', 'addr')], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): ns3::Ptr<ns3::Node> ns3::NetDevice::GetNode() const [member function] cls.add_method('GetNode', 'ns3::Ptr< ns3::Node >', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): static ns3::TypeId ns3::NetDevice::GetTypeId() [member function] cls.add_method('GetTypeId', 'ns3::TypeId', [], is_static=True) ## net-device.h (module 'network'): bool ns3::NetDevice::IsBridge() const [member function] cls.add_method('IsBridge', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::IsBroadcast() const [member function] cls.add_method('IsBroadcast', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::IsLinkUp() const [member function] cls.add_method('IsLinkUp', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::IsMulticast() const [member function] cls.add_method('IsMulticast', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::IsPointToPoint() const [member function] cls.add_method('IsPointToPoint', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::NeedsArp() const [member function] cls.add_method('NeedsArp', 'bool', [], is_pure_virtual=True, is_const=True, is_virtual=True) ## net-device.h (module 'network'): bool ns3::NetDevice::Send(ns3::Ptr<ns3::Packet> packet, ns3::Address const & dest, uint16_t protocolNumber) [member
0) m.e43 = Constraint(expr= m.x7 - m.x81 - m.x84 - m.x87 - m.x90 == 0) m.e44 = Constraint(expr= m.x7 - m.x82 - m.x85 - m.x88 - m.x91 == 0) m.e45 = Constraint(expr= m.x7 - m.x83 - m.x86 - m.x89 - m.x92 == 0) m.e46 = Constraint(expr= m.x8 - m.x93 - m.x96 - m.x99 - m.x102 == 0) m.e47 = Constraint(expr= m.x8 - m.x94 - m.x97 - m.x100 - m.x103 == 0) m.e48 = Constraint(expr= m.x8 - m.x95 - m.x98 - m.x101 - m.x104 == 0) m.e49 = Constraint(expr= m.x9 - 52.5 * m.b129 <= 0) m.e50 = Constraint(expr= m.x10 - 52.5 * m.b130 <= 0) m.e51 = Constraint(expr= m.x11 - 52.5 * m.b131 <= 0) m.e52 = Constraint(expr= m.x12 - 52.5 * m.b135 <= 0) m.e53 = Constraint(expr= m.x13 - 52.5 * m.b136 <= 0) m.e54 = Constraint(expr= m.x14 - 52.5 * m.b137 <= 0) m.e55 = Constraint(expr= m.x15 - 52.5 * m.b141 <= 0) m.e56 = Constraint(expr= m.x16 - 52.5 * m.b142 <= 0) m.e57 = Constraint(expr= m.x17 - 52.5 * m.b143 <= 0) m.e58 = Constraint(expr= m.x18 - 52.5 * m.b147 <= 0) m.e59 = Constraint(expr= m.x19 - 52.5 * m.b148 <= 0) m.e60 = Constraint(expr= m.x20 - 52.5 * m.b149 <= 0) m.e61 = Constraint(expr= m.x21 - 52.5 * m.b129 <= 0) m.e62 = Constraint(expr= m.x22 - 51.5 * m.b132 <= 0) m.e63 = Constraint(expr= m.x23 - 51.5 * m.b133 <= 0) m.e64 = Constraint(expr= m.x24 - 52.5 * m.b135 <= 0) m.e65 = Constraint(expr= m.x25 - 51.5 * m.b138 <= 0) m.e66 = Constraint(expr= m.x26 - 51.5 * m.b139 <= 0) m.e67 = Constraint(expr= m.x27 - 52.5 * m.b141 <= 0) m.e68 = Constraint(expr= m.x28 - 51.5 * m.b144 <= 0) m.e69 = Constraint(expr= m.x29 - 51.5 * m.b145 <= 0) m.e70 = Constraint(expr= m.x30 - 52.5 * m.b147 <= 0) m.e71 = Constraint(expr= m.x31 - 51.5 * m.b150 <= 0) m.e72 = Constraint(expr= m.x32 - 51.5 * m.b151 <= 0) m.e73 = Constraint(expr= m.x33 - 52.5 * m.b130 <= 0) m.e74 = Constraint(expr= m.x34 - 51.5 * m.b132 <= 0) m.e75 = Constraint(expr= m.x35 - 53.5 * m.b134 <= 0) m.e76 = Constraint(expr= m.x36 - 52.5 * m.b136 <= 0) m.e77 = Constraint(expr= m.x37 - 51.5 * m.b138 <= 0) m.e78 = Constraint(expr= m.x38 - 53.5 * m.b140 <= 0) m.e79 = Constraint(expr= m.x39 - 52.5 * m.b142 <= 0) m.e80 = Constraint(expr= m.x40 - 51.5 * m.b144 <= 0) m.e81 = Constraint(expr= m.x41 - 53.5 * m.b146 <= 0) m.e82 = Constraint(expr= m.x42 - 52.5 * m.b148 <= 0) m.e83 = Constraint(expr= m.x43 - 51.5 * m.b150 <= 0) m.e84 = Constraint(expr= m.x44 - 53.5 * m.b152 <= 0) m.e85 = Constraint(expr= m.x45 - 52.5 * m.b131 <= 0) m.e86 = Constraint(expr= m.x46 - 51.5 * m.b133 <= 0) m.e87 = Constraint(expr= m.x47 - 53.5 * m.b134 <= 0) m.e88 = Constraint(expr= m.x48 - 52.5 * m.b137 <= 0) m.e89 = Constraint(expr= m.x49 - 51.5 * m.b139 <= 0) m.e90 = Constraint(expr= m.x50 - 53.5 * m.b140 <= 0) m.e91 = Constraint(expr= m.x51 - 52.5 * m.b143 <= 0) m.e92 = Constraint(expr= m.x52 - 51.5 * m.b145 <= 0) m.e93 = Constraint(expr= m.x53 - 53.5 * m.b146 <= 0) m.e94 = Constraint(expr= m.x54 - 52.5 * m.b149 <= 0) m.e95 = Constraint(expr= m.x55 - 51.5 * m.b151 <= 0) m.e96 = Constraint(expr= m.x56 - 53.5 * m.b152 <= 0) m.e97 = Constraint(expr= m.x57 - 82 * m.b129 <= 0) m.e98 = Constraint(expr= m.x58 - 82 * m.b130 <= 0) m.e99 = Constraint(expr= m.x59 - 82 * m.b131 <= 0) m.e100 = Constraint(expr= m.x60 - 82 * m.b135 <= 0) m.e101 = Constraint(expr= m.x61 - 82 * m.b136 <= 0) m.e102 = Constraint(expr= m.x62 - 82 * m.b137 <= 0) m.e103 = Constraint(expr= m.x63 - 82 * m.b141 <= 0) m.e104 = Constraint(expr= m.x64 - 82 * m.b142 <= 0) m.e105 = Constraint(expr= m.x65 - 82 * m.b143 <= 0) m.e106 = Constraint(expr= m.x66 - 82 * m.b147 <= 0) m.e107 = Constraint(expr= m.x67 - 82 * m.b148 <= 0) m.e108 = Constraint(expr= m.x68 - 82 * m.b149 <= 0) m.e109 = Constraint(expr= m.x69 - 82 * m.b129 <= 0) m.e110 = Constraint(expr= m.x70 - 82.5 * m.b132 <= 0) m.e111 = Constraint(expr= m.x71 - 82.5 * m.b133 <= 0) m.e112 = Constraint(expr= m.x72 - 82 * m.b135 <= 0) m.e113 = Constraint(expr= m.x73 - 82.5 * m.b138 <= 0) m.e114 = Constraint(expr= m.x74 - 82.5 * m.b139 <= 0) m.e115 = Constraint(expr= m.x75 - 82 * m.b141 <= 0) m.e116 = Constraint(expr= m.x76 - 82.5 * m.b144 <= 0) m.e117 = Constraint(expr= m.x77 - 82.5 * m.b145 <= 0) m.e118 = Constraint(expr= m.x78 - 82 * m.b147 <= 0) m.e119 = Constraint(expr= m.x79 - 82.5 * m.b150 <= 0) m.e120 = Constraint(expr= m.x80 - 82.5 * m.b151 <= 0) m.e121 = Constraint(expr= m.x81 - 82 * m.b130 <= 0) m.e122 = Constraint(expr= m.x82 - 82.5 * m.b132 <= 0) m.e123 = Constraint(expr= m.x83 - 83.5 * m.b134 <= 0) m.e124 = Constraint(expr= m.x84 - 82 * m.b136 <= 0) m.e125 = Constraint(expr= m.x85 - 82.5 * m.b138 <= 0) m.e126 = Constraint(expr= m.x86 - 83.5 * m.b140 <= 0) m.e127 = Constraint(expr= m.x87 - 82 * m.b142 <= 0) m.e128 = Constraint(expr= m.x88 - 82.5 * m.b144 <= 0) m.e129 = Constraint(expr= m.x89 - 83.5 * m.b146 <= 0) m.e130 = Constraint(expr= m.x90 - 82 * m.b148 <= 0) m.e131 = Constraint(expr= m.x91 - 82.5 * m.b150 <= 0) m.e132 = Constraint(expr= m.x92 - 83.5 * m.b152 <= 0) m.e133 = Constraint(expr= m.x93 - 82 * m.b131 <= 0) m.e134 = Constraint(expr= m.x94 - 82.5 * m.b133 <= 0) m.e135 = Constraint(expr= m.x95 - 83.5 * m.b134 <= 0) m.e136 = Constraint(expr= m.x96 - 82 * m.b137 <= 0) m.e137 = Constraint(expr= m.x97 - 82.5 * m.b139 <= 0) m.e138 = Constraint(expr= m.x98 - 83.5 * m.b140 <= 0) m.e139 = Constraint(expr= m.x99 - 82 * m.b143 <= 0) m.e140 = Constraint(expr= m.x100 - 82.5 * m.b145 <= 0) m.e141 = Constraint(expr= m.x101 - 83.5 * m.b146 <= 0) m.e142 = Constraint(expr= m.x102 - 82 * m.b149 <= 0) m.e143 = Constraint(expr= m.x103 - 82.5 * m.b151 <= 0) m.e144 = Constraint(expr= m.x104 - 83.5 * m.b152 <= 0) m.e145 = Constraint(expr= m.x9 - m.x21 + 6 * m.b129 <= 0) m.e146 = Constraint(expr= m.x10 - m.x33 + 4 * m.b130 <= 0) m.e147 = Constraint(expr= m.x11 - m.x45 + 3.5 * m.b131 <= 0) m.e148 = Constraint(expr= m.x22 - m.x34 + 5 * m.b132 <= 0) m.e149 = Constraint(expr= m.x23 - m.x46 + 4.5 * m.b133 <= 0) m.e150 = Constraint(expr= m.x35 - m.x47 + 2.5 * m.b134 <= 0) m.e151 = Constraint(expr= -m.x12 + m.x24 + 6 * m.b135 <= 0) m.e152 = Constraint(expr= -m.x13 + m.x36 + 4 * m.b136 <= 0) m.e153 = Constraint(expr= -m.x14 + m.x48 + 3.5 * m.b137 <= 0) m.e154 = Constraint(expr= -m.x25 + m.x37 + 5 * m.b138 <= 0) m.e155 = Constraint(expr= -m.x26 + m.x49 + 4.5 * m.b139 <= 0) m.e156 = Constraint(expr= -m.x38 + m.x50 + 2.5 * m.b140 <= 0) m.e157 = Constraint(expr= m.x63 - m.x75 + 5.5 * m.b141 <= 0) m.e158 = Constraint(expr= m.x64 - m.x87 + 4.5 * m.b142 <= 0) m.e159 = Constraint(expr= m.x65 - m.x99 + 4.5 * m.b143 <= 0) m.e160 = Constraint(expr= m.x76 - m.x88 + 4 * m.b144 <= 0) m.e161 = Constraint(expr= m.x77 - m.x100 + 4 * m.b145 <= 0) m.e162 = Constraint(expr= m.x89 - m.x101 + 3 * m.b146 <= 0) m.e163 = Constraint(expr= -m.x66 + m.x78 + 5.5 * m.b147 <= 0) m.e164 = Constraint(expr= -m.x67 + m.x90 + 4.5 * m.b148 <= 0) m.e165 = Constraint(expr= -m.x68 + m.x102 + 4.5 * m.b149 <= 0) m.e166 = Constraint(expr= -m.x79 + m.x91 + 4 * m.b150 <= 0) m.e167 = Constraint(expr= -m.x80 + m.x103 + 4 * m.b151 <= 0) m.e168 = Constraint(expr= -m.x92 + m.x104 + 3 * m.b152 <= 0) m.e169 = Constraint(expr= m.b129 + m.b135 + m.b141 + m.b147 == 1) m.e170 = Constraint(expr= m.b130 + m.b136 + m.b142 + m.b148 == 1) m.e171 = Constraint(expr= m.b131 + m.b137 + m.b143 + m.b149 == 1) m.e172 = Constraint(expr= m.b132 + m.b138 + m.b144 + m.b150 == 1) m.e173 = Constraint(expr= m.b133 + m.b139 + m.b145 + m.b151 == 1) m.e174 = Constraint(expr= m.b134 + m.b140 + m.b146 + m.b152 == 1) m.e175 = Constraint(expr= m.x1 - m.x105 - m.x109
= oldLDFlags updateMakeFileForDarwin("CA/src/c_make.as", addedCFlags, addedLDFlags) os.system("bash install.sh") fileOptions = utils.getCommandOutput("file -b --mime-type INSTALL.py", False) if fileOptions == "": fileOptions = utils.getCommandOutput("file -b --mime INSTALL.py", False) if fileOptions != "": # fix file command used by MaSuRCA, its not compatible with the system if os.path.exists("bin/expand_fastq"): os.system("cp bin/expand_fastq bin/expand_fastq.orig") testIn = open("bin/expand_fastq.orig", 'r') testOut = open("bin/expand_fastq", 'w') for line in testIn.xreadlines(): if "case $(file" in line: testOut.write("case $(file -b --mime \"$FILE\" |awk '{print $1}'|sed s/\\;//g) in\n") else: testOut.write(line.strip() + "\n") testIn.close() testOut.close() else: os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf ./Utilities/cpp%s%s-%s%sMaSuRCA"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) # update path to CA which is always hardcoded to Linux-amd64 os.system("cp bin/masurca bin/masurca.orig") os.system("cat bin/masurca.orig | sed s/Linux-amd64/%s-%s/g |sed s/check_exec\\(\\\"jellyfish\\\"/check_exec\\(\\\"jellyfish-2.0\\\"/g > bin/masurca"%(OSTYPE, MACHINETYPE.replace("x86_64", "amd64"))) if OSTYPE == "Darwin": os.system("cp bin/masurca bin/masurca.orig") os.system("cat bin/masurca.orig | awk '{if (match($0, \"save NUM_SUPER_READS\")) { print $0\"\\n\\tprint FILE \\\"export NUM_SUPER_READS=\\\\$NUM_SUPER_READS\\\\n\\\";\"; } else { print $0}}' | sed s/\\(\\'..TOTAL_READS\\'/\\(\\\\\\\\\\$ENV{\\'TOTAL_READS\\'}/g| sed s/'<..$NUM_SUPER_READS.'/\"<ENVIRON[\\\\\\\\\\\"NUM_SUPER_READS\\\\\\\\\\\"]\"/g | sed s/'>=..$NUM_SUPER_READS.'/\">=ENVIRON[\\\\\\\\\\\"NUM_SUPER_READS\\\\\\\\\\\"]\"/g > bin/masurca") # reset env variables again addEnvironmentVar("CFLAGS", " %s "%(addedCFlags)) addEnvironmentVar("CPPFLAGS", " %s "%(addedCFlags)) addEnvironmentVar("CXXFLAGS", " %s "%(addedCFlags)) addEnvironmentVar("LDFLAGS", " %s "%(addedLDFlags)) os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf ./MaSuRCA-2.2.0") os.system("rm msrca.tar.gz") if not os.path.exists("./Utilities/cpp%s%s-%s%smira"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): mira = utils.getFromPath("mira", "MIRA", False) if mira == "": if "mira" in packagesToInstall: dl = 'y' else: print "MIRA binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': if OSTYPE == "Darwin": os.system("curl -L ftp://ftp.cbcb.umd.edu/pub/data/metamos/mira_4.0rc5_darwin13.0.0_x86_64_static.tar.bz2 -o mira.tar.bz2") else: os.system("curl -L ftp://ftp.cbcb.umd.edu/pub/data/metamos/mira_4.0rc5_linux-gnu_x86_64_static.tar.bz2 -o mira.tar.bz2") os.system("tar xvjf mira.tar.bz2") os.system("rm -f mira.tar.bz2") os.system("mv `ls -d mira*` ./Utilities/cpp%s%s-%s%smira"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) if not os.path.exists("./Utilities/cpp%s%s-%s%sidba"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): idba = utils.getFromPath("idba", "IDBA-UD", False) if idba == "": if "idba" in packagesToInstall: dl = 'y' else: print "IDBA-UD binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L https://github.com/loneknightpy/idba/releases/download/1.1.3/idba-1.1.3.tar.gz -o idba.tar.gz") os.system("tar xvzf idba.tar.gz") os.system("mv idba-1.1.3 ./Utilities/cpp%s%s-%s%sidba"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.chdir("./Utilities/cpp%s%s-%s%sidba"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mv src/sequence/short_sequence.h src/sequence/short_sequence.orig") os.system("cat src/sequence/short_sequence.orig |awk '{if (match($0, \"kMaxShortSequence = 128\")) print \"static const uint32_t kMaxShortSequence = 32768;\"; else print $0}' > src/sequence/short_sequence.h") os.system("mv src/basic/kmer.h src/basic/kmer.orig") os.system("cat src/basic/kmer.orig |awk '{if (match($0, \"kNumUint64 = 4\")) print \" static const uint32_t kNumUint64 = 16;\"; else print $0}' > src/basic/kmer.h") os.system("./configure") os.system("make") os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf idba.tar.gz") if not os.path.exists("./Utilities/cpp%s%s-%s%seautils"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): eautils = utils.getFromPath("fastq-mcf", "EA-UTILS", False) if eautils == "": if "eautils" in packagesToInstall: dl = 'y' else: print "EA-UTILS binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L https://github.com/ExpressionAnalysis/ea-utils/tarball/master -o eautils.tar.gz") os.system("curl -L ftp://ftp.gnu.org/gnu/gsl/gsl-1.16.tar.gz -o gsl.tar.gz") os.system("tar xvzf eautils.tar.gz") os.system("tar xvzf gsl.tar.gz") os.system("mv ExpressionAnalysis-ea-utils* ./Utilities/cpp%s%s-%s%seautils"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mv gsl-1.16 ./Utilities/cpp%s%s-%s%seautils/clipper/gsl"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.chdir("./Utilities/cpp%s%s-%s%seautils/clipper/gsl"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("./configure --prefix=`pwd`/build") os.system("make") os.system("make install") os.chdir("..") os.system("mv Makefile Makefile.orig") os.system("cat Makefile.orig |sed s/CFLAGS?=/CFLAGS+=/g |sed s/CPPFLAGS?=/CPPFLAGS+=/g > Makefile") addEnvironmentVar("CFLAGS", "-I. -L%s/Utilities/cpp%s%s-%s%seautils/gsl/build/lib/"%(METAMOS_ROOT, os.sep, OSTYPE, MACHINETYPE, os.sep)) addEnvironmentVar("CPPFLAGS", "-I. -L%s/Utilities/cpp%s%s-%s%seautils/gsl/build/lib/"%(METAMOS_ROOT, os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("make") os.system("cp fastq-mcf ../") os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf eautils.tar.gz") os.system("rm -rf gsl.tar.gz") if not os.path.exists("./Utilities/cpp%s%s-%s%sabyss"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): abyss = utils.getFromPath("ABYSS", "ABySS", False) if abyss == "": if "abyss" in packagesToInstall: dl = 'y' else: print "ABySS binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L https://github.com/sparsehash/sparsehash/archive/sparsehash-2.0.2.tar.gz -o sparse.tar.gz") os.system("tar xvzf sparse.tar.gz") os.chdir("sparsehash-sparsehash-2.0.2") os.system("./configure --prefix=`pwd`") os.system("make install") os.chdir("%s"%(METAMOS_ROOT)) os.system("curl -L http://sourceforge.net/projects/boost/files/boost/1.54.0/boost_1_54_0.tar.gz -o boost.tar.gz") os.system("tar xvzf boost.tar.gz") os.system("curl -L http://www.bcgsc.ca/platform/bioinfo/software/abyss/releases/1.3.6/abyss-1.3.6.tar.gz -o abyss.tar.gz") os.system("tar xvzf abyss.tar.gz") os.chdir("abyss-1.3.6") os.system("ln -s %s/boost_1_54_0/boost boost"%(METAMOS_ROOT)) addEnvironmentVar("CFLAGS", "-I%s/sparsehash-sparsehash-2.0.2/include"%(METAMOS_ROOT)) addEnvironmentVar("CPPFLAGS", "-I%s/sparsehash-sparsehash-2.0.2/include"%(METAMOS_ROOT)) addEnvironmentVar("CXXFLAGS", "-I%s/sparsehash-sparsehash-2.0.2/include"%(METAMOS_ROOT)) # sparse hash library has unused variables which cause warnings with gcc 4.8 so disable -Werror if GCC_VERSION >= 4.8: os.system("mv configure configure.original") os.system("cat configure.original |sed s/\-Werror//g > configure") os.system("chmod a+rx configure") os.system("./configure --enable-maxk=96 --prefix=`pwd`/build") os.system("make install") os.chdir("%s"%(METAMOS_ROOT)) os.system("mkdir ./Utilities/cpp%s%s-%s%sabyss"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mv abyss-1.3.6/build/* ./Utilities/cpp%s%s-%s%sabyss/"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) # update abysss to use installed mpi command="mpirun" mpi=utils.getFromPath(command, "MPI", False) if not os.path.exists("%s%s%s"%(mpi, os.sep, command)): command="openmpirun" mpi=utils.getFromPath(command, "MPI", False) if not os.path.exists("%s%s%s"%(mpi, os.sep, command)): mpi = command = "" os.chdir("./Utilities/cpp%s%s-%s%sabyss/bin/"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("cp abyss-pe abyss-pe-orig") if mpi != "" and os.path.exists("ABYSS-P"): testIn = open("abyss-pe-orig", 'r') testOut = open("abyss-pe", 'w') for line in testIn.xreadlines(): if "which mpirun" in line: testOut.write("mpirun?=$(shell which %s)\n"%(command)) elif "ifdef np" in line: testOut.write(line) testOut.write("ifneq ($(mpirun),mpirun)\n") elif "ABYSS-P" in line: testOut.write(line) testOut.write("else\n") testOut.write("\tABYSS $(abyssopt) $(ABYSS_OPTIONS) -o $@ $(in) $(se)\n") testOut.write("endif\n") else: testOut.write(line) testIn.close() testOut.close() else: print "Error: cannot find MPI in your path. Disabling ABySS threading." os.system("cat abyss-pe-orig |awk -v found=0 -v skipping=0 '{if (match($0, \"ifdef np\")) {skipping=1; } if (skipping && match($1, \"ABYSS\")) {print $0; skipping=1; found=1} if (found && match($1, \"endif\")) {skipping=0;found = 0;} else if (skipping == 0) { print $0; } }' > abyss-pe") os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf sparsehash-sparsehash-2.0.2") os.system("rm -rf sparse.tar.gz") os.system("rm -rf abyss-1.3.6") os.system("rm -rf abyss.tar.gz") os.system("rm -rf boost_1_54_0") os.system("rm -rf boost.tar.gz") if not os.path.exists("./Utilities/cpp%s%s-%s%ssga"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): sga = utils.getFromPath("sga", "SGA", False) if sga == "": if "sga" in packagesToInstall: dl = 'y' else: print "SGA binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L https://github.com/sparsehash/sparsehash/archive/sparsehash-2.0.2.tar.gz -o sparse.tar.gz") os.system("tar xvzf sparse.tar.gz") os.chdir("sparsehash-sparsehash-2.0.2") os.system("./configure --prefix=`pwd`") updateMakeFileForDarwin("Makefile", addedCFlags, addedLDFlags) os.system("make install") os.chdir("%s"%(METAMOS_ROOT)) os.system("curl -L https://github.com/pezmaster31/bamtools/archive/v2.3.0.tar.gz -o bamtools.tar.gz") os.system("tar xvzf bamtools.tar.gz") os.system("curl -L http://sourceforge.net/projects/bio-bwa/files/bwa-0.7.5a.tar.bz2 -o bwa.tar.bz2") os.system("tar xvjf bwa.tar.bz2") os.chdir("bwa-0.7.5a") os.system("make") os.chdir("%s"%(METAMOS_ROOT)) os.system("curl -L https://github.com/jts/sga/archive/v0.10.10.tar.gz -o sga.tar.gz") os.system("tar xvzf sga.tar.gz") os.system("mv sga-0.10.10 ./Utilities/cpp%s%s-%s%ssga"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mv bamtools-2.3.0 ./Utilities/cpp%s%s-%s%ssga/bamtools"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mv sparsehash-sparsehash-2.0.2 ./Utilities/cpp%s%s-%s%ssga/sparsehash"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.chdir("./Utilities/cpp%s%s-%s%ssga/bamtools"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("mkdir build") os.chdir("build") os.system("export CC=`which gcc` && cmake ..") os.system("make") os.chdir("%s"%(METAMOS_ROOT)) os.chdir("./Utilities/cpp%s%s-%s%ssga/src"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) # sparse hash library has unused variables which cause warnings with gcc 4.8 so disable -Werror if GCC_VERSION >= 4.8: os.system("mv configure.ac configure.original") os.system("cat configure.original |sed s/\-Werror//g > configure.ac") os.system("sh ./autogen.sh") os.system("./configure --with-sparsehash=`pwd`/../sparsehash --with-bamtools=`pwd`/../bamtools --prefix=`pwd`/../") updateMakeFileForDarwin("Makefile", addedCFlags, addedLDFlags) os.system("make install") os.chdir("%s"%(METAMOS_ROOT)) os.system("mv bwa-0.7.5a/bwa ./Utilities/cpp%s%s-%s%ssga/bin/"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.system("cp %s/Utilities/cpp%s%s-%s%ssamtools %s/Utilities/cpp%s%s-%s%ssga/bin%ssamtools"%(METAMOS_ROOT, os.sep, OSTYPE, MACHINETYPE, os.sep, METAMOS_ROOT, os.sep, OSTYPE, MACHINETYPE, os.sep, os.sep)) os.system("rm -rf sparsehash-sparsehash-2.0.2") os.system("rm -rf sparse.tar.gz") os.system("rm -rf bamtools-2.3.0") os.system("rm -rf bamtools.tar.gz") os.system("rm -rf sga-0.10.10") os.system("rm -rf sga.tar.gz") os.system("rm -rf bwa.tar.bz2") os.system("rm -rf bwa-0.7.5a") if not os.path.exists("./Utilities/cpp%s%s-%s%sedena"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): edena = utils.getFromPath("edena", "EDENA", False) if "edena" in packagesToInstall: dl = 'y' else: print "Edena binaries not found, optional for Assemble step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L ftp://ftp.cbcb.umd.edu/pub/data/metamos/EdenaV3_130110.tar.gz -o edena.tar.gz") os.system("tar xvzf edena.tar.gz") os.system("mv EdenaV3.130110 ./Utilities/cpp%s%s-%s%sedena"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.chdir("./Utilities/cpp%s%s-%s%sedena"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) updateMakeFileForDarwin("src/Makefile", addedCFlags, addedLDFlags) os.system("make") os.chdir("%s"%(METAMOS_ROOT)) os.system("rm -rf edena.tar.gz") if not os.path.exists("./quast"): if "quast" in packagesToInstall: dl = 'y' else: print "QUAST tool not found, optional for Validate step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("curl -L http://downloads.sourceforge.net/project/quast/quast-2.2.tar.gz -o quast.tar.gz") os.system("tar xvzf quast.tar.gz") os.system("mv ./quast-2.2 ./quast") os.system("rm -rf quast.tar.gz") # since quast requires a reference, also download refseq ftpSite = "ftp://ftp.ncbi.nih.gov/genomes/" file = "all.fna.tar.gz" if not os.path.exists("./Utilities/DB/refseq/") and not nodbs: print "Downloading refseq genomes (Bacteria/%s, Viruses/%s)..."%(file,file) print "\tThis file is large and may take time to download" os.system("curl -L %s/archive/old_refseq/Bacteria/%s -o bacteria.tar.gz"%(ftpSite, file)) os.system("curl -L %s/Viruses/%s -o viruses.tar.gz"%(ftpSite, file)) os.system("mkdir -p ./Utilities/DB/refseq/temp") os.system("mv bacteria.tar.gz ./Utilities/DB/refseq/temp") os.system("mv viruses.tar.gz ./Utilities/DB/refseq/temp") os.chdir("./Utilities/DB/refseq/temp") os.system("tar xvzf bacteria.tar.gz") os.system("tar xvzf viruses.tar.gz") os.chdir("..") print "Current directory is %s"%(os.getcwd()) for file in os.listdir("%s/temp"%(os.getcwd())): file = "%s%stemp%s%s"%(os.getcwd(), os.sep, os.sep, file) if os.path.isdir(file): prefix = os.path.splitext(os.path.basename(file))[0] os.system("cat %s/*.fna > %s.fna"%(file, prefix)) os.system("rm -rf temp") os.chdir("%s"%(METAMOS_ROOT)) if not os.path.exists("./Utilities/cpp%s%s-%s%sfreebayes"%(os.sep, OSTYPE, MACHINETYPE, os.sep)): if "freebayes" in packagesToInstall: dl = 'y' else: print "FreeBayes tool not found, optional for Validate step, download now?" dl = raw_input("Enter Y/N: ") if dl == 'y' or dl == 'Y': os.system("git clone --recursive git://github.com/ekg/freebayes.git freebayes") os.system("mv ./freebayes ./Utilities/cpp/%s%s-%s%sfreebayes"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) os.chdir("./Utilities/cpp/%s%s-%s%sfreebayes"%(os.sep, OSTYPE, MACHINETYPE, os.sep)) updateMakeFileForDarwin("src/makefile", addedCFlags, addedLDFlags) # dont set static building libs on
import os import sys import locale try: from configparser import ConfigParser except ImportError: from ConfigParser import SafeConfigParser as ConfigParser try: from importlib import reload except ImportError: pass import logging from resources.extensions import * class SMAConfigParser(ConfigParser, object): def getlist(self, section, option, vars=None, separator=",", default=[], lower=True, replace=[' ']): value = self.get(section, option, vars=vars) if not isinstance(value, str) and isinstance(value, list): return value if value == '': return list(default) value = value.split(separator) for r in replace: value = [x.replace(r, '') for x in value] if lower: value = [x.lower() for x in value] value = [x.strip() for x in value] return value def getdict(self, section, option, vars=None, listseparator=",", dictseparator=":", default={}, lower=True, replace=[' '], valueModifier=None): l = self.getlist(section, option, vars, listseparator, [], lower, replace) output = dict(default) for listitem in l: split = listitem.split(dictseparator, 1) if len(split) > 1: if valueModifier: try: split[1] = valueModifier(split[1]) except: self.log.exception("Invalid value for getdict") continue output[split[0]] = split[1] return output def getpath(self, section, option, vars=None): path = self.get(section, option, vars=vars).strip() if path == '': return None return os.path.normpath(path) def getdirectory(self, section, option, vars=None): directory = self.getpath(section, option, vars) try: os.makedirs(directory) except: pass return directory def getdirectories(self, section, option, vars=None, separator=",", default=[]): directories = self.getlist(section, option, vars=vars, separator=separator, default=default, lower=False) directories = [os.path.normpath(x) for x in directories] for d in directories: if not os.path.isdir(d): try: os.makedirs(d) except: pass return directories def getextension(self, section, option, vars=None): extension = self.get(section, option, vars=vars).lower().replace(' ', '').replace('.', '') if extension == '': return None return extension def getextensions(self, section, option, separator=",", vars=None): return self.getlist(section, option, vars, separator, replace=[' ', '.']) def getint(self, section, option, vars=None): if sys.version[0] == '2': return int(super(SMAConfigParser, self).get(section, option, vars=vars)) return super(SMAConfigParser, self).getint(section, option, vars=vars) class ReadSettings: defaults = { 'Converter': { 'ffmpeg': 'ffmpeg' if os.name != 'nt' else 'ffmpeg.exe', 'ffprobe': 'ffprobe' if os.name != 'nt' else 'ffprobe.exe', 'threads': 0, 'hwaccels': '', 'hwaccel-decoders': 'h264_cuvid, mjpeg_cuvid, mpeg1_cuvid, mpeg2_cuvid, mpeg4_cuvid, vc1_cuvid, hevc_qsv, h264_qsv, hevc_vaapi, h264_vaapi', 'hwdevices': 'vaapi:/dev/dri/renderD128', 'hwaccel-output-format': 'vaapi:vaapi', 'output-directory': '', 'output-format': 'mp4', 'output-extension': 'mp4', 'temp-extension': '', 'minimum-size': '0', 'ignored-extensions': 'nfo, ds_store', 'copy-to': '', 'move-to': '', 'delete-original': True, 'sort-streams': True, 'process-same-extensions': False, 'bypass-if-copying-all': False, 'force-convert': False, 'post-process': False, 'wait-post-process': False, 'detailed-progress': False, 'opts-separator': ',', 'preopts': '', 'postopts': '', 'regex-directory-replace': r'[^\w\-_\. ]', }, 'Permissions': { 'chmod': '0644', 'uid': -1, 'gid': -1, }, 'Metadata': { 'relocate-moov': True, 'full-path-guess': True, 'tag': True, 'tag-language': 'eng', 'download-artwork': 'poster', 'sanitize-disposition': '', 'strip-metadata': False, 'keep-titles': False, }, 'Video': { 'codec': 'h264, x264', 'max-bitrate': 0, 'bitrate-ratio': '', 'crf': -1, 'crf-profiles': '', 'preset': '', 'codec-parameters': '', 'dynamic-parameters': False, 'max-width': 0, 'profile': '', 'max-level': 0.0, 'pix-fmt': '', 'filter': '', 'force-filter': False, }, 'HDR': { 'codec': '', 'pix-fmt': '', 'space': 'bt2020nc', 'transfer': 'smpte2084', 'primaries': 'bt2020', 'preset': '', 'codec-parameters': '', 'filter': '', 'force-filter': False, 'profile': '', }, 'Audio': { 'codec': 'ac3', 'languages': '', 'default-language': '', 'first-stream-of-language': False, 'allow-language-relax': True, 'channel-bitrate': 128, 'max-bitrate': 0, 'max-channels': 0, 'prefer-more-channels': True, 'default-more-channels': True, 'filter': '', 'force-filter': False, 'sample-rates': '', 'sample-format': '', 'copy-original': False, 'copy-original-before': False, 'aac-adtstoasc': False, 'ignore-truehd': 'mp4, m4v', 'ignored-dispositions': '', 'unique-dispositions': False, 'stream-codec-combinations': '', }, 'Universal Audio': { 'codec': 'aac', 'channel-bitrate': 128, 'first-stream-only': False, 'move-after': False, 'filter': '', 'force-filter': False, }, 'Audio.ChannelFilters': { '6-2': 'pan=stereo|FL=0.5*FC+0.707*FL+0.707*BL+0.5*LFE|FR=0.5*FC+0.707*FR+0.707*BR+0.5*LFE', }, 'Subtitle': { 'codec': 'mov_text', 'codec-image-based': '', 'languages': '', 'default-language': '', 'first-stream-of-language': False, 'encoding': '', 'burn-subtitles': False, 'burn-dispositions': '', 'embed-subs': True, 'embed-image-subs': False, 'embed-only-internal-subs': False, 'filename-dispositions': 'forced', 'ignore-embedded-subs': False, 'ignored-dispositions': '', 'unique-dispositions': False, 'attachment-codec': '', }, 'Subtitle.Subliminal': { 'download-subs': False, 'download-hearing-impaired-subs': False, 'providers': '', }, 'Subtitle.Subliminal.Auth': { 'opensubtitles': '', 'tvsubtitles': '', }, 'Sonarr': { 'host': 'localhost', 'port': 8989, 'apikey': '', 'ssl': False, 'webroot': '', 'force-rename': False, 'rescan': True, 'block-reprocess': False, }, 'Radarr': { 'host': 'localhost', 'port': 7878, 'apikey': '', 'ssl': False, 'webroot': '', 'force-rename': False, 'rescan': True, 'block-reprocess': False, }, 'Sickbeard': { 'host': 'localhost', 'port': 8081, 'ssl': False, 'apikey': '', 'webroot': '', 'username': '', 'password': '', }, 'Sickrage': { 'host': 'localhost', 'port': 8081, 'ssl': False, 'apikey': '', 'webroot': '', 'username': '', 'password': '', }, 'SABNZBD': { 'convert': True, 'sickbeard-category': 'sickbeard', 'sickrage-category': 'sickrage', 'sonarr-category': 'sonarr', 'radarr-category': 'radarr', 'bypass-category': 'bypass', 'output-directory': '', 'path-mapping': '', }, 'Deluge': { 'sickbeard-label': 'sickbeard', 'sickrage-label': 'sickrage', 'sonarr-label': 'sonarr', 'radarr-label': 'radarr', 'bypass-label': 'bypass', 'convert': True, 'host': 'localhost', 'port': 58846, 'username': '', 'password': '', 'output-directory': '', 'remove': False, 'path-mapping': '', }, 'qBittorrent': { 'sickbeard-label': 'sickbeard', 'sickrage-label': 'sickrage', 'sonarr-label': 'sonarr', 'radarr-label': 'radarr', 'bypass-label': 'bypass', 'convert': True, 'action-before': '', 'action-after': '', 'host': 'localhost', 'port': 8080, 'ssl': False, 'username': '', 'password': '', 'output-directory': '', 'path-mapping': '', }, 'uTorrent': { 'sickbeard-label': 'sickbeard', 'sickrage-label': 'sickrage', 'sonarr-label': 'sonarr', 'radarr-label': 'radarr', 'bypass-label': 'bypass', 'convert': True, 'webui': False, 'action-before': '', 'action-after': '', 'host': 'localhost', 'ssl': False, 'port': 8080, 'username': '', 'password': '', 'output-directory': '', 'path-mapping': '', }, 'Plex': { 'host': 'localhost', 'port': 32400, 'refresh': False, 'token': '', }, } migration = { 'MP4': { 'ffmpeg': "Converter.ffmpeg", 'ffprobe': "Converter.ffprobe", 'threads': 'Converter.threads', 'output_directory': 'Converter.output-directory', 'copy_to': 'Converter.copy-to', 'move_to': 'Converter.move-to', 'output_extension': 'Converter.output-extension', 'temp_extension': 'Converter.temp-extension', 'output_format': 'Converter.output-format', 'delete_original': 'Converter.delete-original', 'relocate_moov': 'Metadata.relocate-moov', 'ios-audio': 'Universal Audio.codec', 'ios-first-track-only': 'Universal Audio.first-stream-only', 'ios-move-last': 'Universal Audio.move-after', 'ios-audio-filter': 'Universal Audio.filter', 'max-audio-channels': 'Audio.max-channels', 'audio-language': 'Audio.languages', 'audio-default-language': 'Audio.default-language', 'audio-codec': 'Audio.codec', 'ignore-truehd': 'Audio.ignore-truehd', 'audio-filter': 'Audio.filter', 'audio-sample-rates': 'Audio.sample-rates', 'audio-channel-bitrate': 'Audio.channel-bitrate', 'audio-copy-original': 'Audio.copy-original', 'audio-first-track-of-language': 'Audio.first-stream-of-language', 'allow-audio-language-relax': 'Audio.allow-language-relax', 'sort-streams': 'Converter.sort-streams', 'prefer-more-channels': 'Audio.prefer-more-channels', 'video-codec': 'Video.codec', 'video-bitrate': 'Video.max-bitrate', 'video-crf': 'Video.crf', 'video-crf-profiles': 'Video.crf-profiles', 'video-max-width': 'Video.max-width', 'video-profile': 'Video.profile', 'h264-max-level': 'Video.max-level', 'aac_adtstoasc': 'Audio.aac-adtstoasc', 'hwaccels': 'Converter.hwaccels', 'hwaccel-decoders': 'Converter.hwaccel-decoders', 'subtitle-codec': 'Subtitle.codec', 'subtitle-codec-image-based': 'Subtitle.codec-image-based', 'subtitle-language': 'Subtitle.languages', 'subtitle-default-language': 'Subtitle.default-language', 'subtitle-encoding': 'Subtitle.encoding', 'burn-subtitles': 'Subtitle.burn-subtitles', 'attachment-codec': 'Subtitle.attachment-codec', 'process-same-extensions': 'Converter.process-same-extensions', 'force-convert': 'Converter.force-convert', 'fullpathguess': 'Metadata.full-path-guess', 'tagfile': 'Metadata.tag', 'tag-language': 'Metadata.tag-language', 'download-artwork': 'Metadata.download-artwork', 'download-subs': 'Subtitle.download-subs', 'download-hearing-impaired-subs': 'Subtitle.download-hearing-impaired-subs', 'embed-subs': 'Subtitle.embed-subs', 'embed-image-subs': 'Subtitle.embed-image-subs', 'embed-only-internal-subs': 'Subtitle.embed-only-internal-subs', 'sub-providers': 'Subtitle.download-providers', 'post-process': 'Converter.post-process', 'ignored-extensions': 'Converter.ignored-extensions', 'pix-fmt': 'Video.pix-fmt', 'preopts': 'Converter.preopts', 'postopts': 'Converter.postopts', }, 'SickBeard': { 'host': 'Sickbeard.host', 'port': 'Sickbeard.port', 'ssl': "Sickbeard.ssl", 'api_key': 'Sickbeard.apikey', 'web_root': 'Sickbeard.webroot', 'username': 'Sickbeard.username', 'password': '<PASSWORD>' }, 'Sonarr': { 'host': 'Sonarr.host', 'port': 'Sonarr.port', 'apikey': 'Sonarr.apikey', 'ssl': 'Sonarr.ssl', 'web_root': 'Sonarr.webroot', }, "Radarr": { 'host': 'Radarr.host', 'port': 'Radarr.port', 'apikey': 'Radarr.apikey', 'ssl': 'Radarr.ssl', 'web_root': 'Radarr.webroot', }, 'uTorrent': { 'sickbeard-label': 'uTorrent.sickbeard-label', 'sickrage-label': 'uTorrent.sickrage-label', 'sonarr-label': 'uTorrent.sonarr-label', 'radarr-label': 'uTorrent.radarr-label', 'bypass-label': 'uTorrent.bypass-label', 'convert': 'uTorrent.convert', 'webui': 'uTorrent.webui', 'action_before': 'uTorrent.action-before', 'action_after': 'uTorrent.action-after', 'host': 'uTorrent.host', 'username': 'uTorrent.username', 'password': '<PASSWORD>', 'output_directory': 'uTorrent.output-directory', }, "SABNZBD": { 'convert': 'SABNZBD.convert', 'sickbeard-category': 'SABNZBD.sickbeard-category', 'sickrage-category': 'SABNZBD.sickrage-category', 'sonarr-category': 'SABNZBD.sonarr-category', 'radarr-category': 'SABNZBD.radarr-category', 'bypass-category': 'SABNZBD.bypass-category', 'output_directory': 'SABNZBD.output-directory', }, "Sickrage": { 'host': 'Sickrage.host', 'port': 'Sickrage.port', 'ssl': "Sickrage.ssl", 'api_key': 'Sickrage.apikey', 'web_root': 'Sickrage.webroot', 'username': 'Sickrage.username', 'password': '<PASSWORD>', }, "Deluge": { 'sickbeard-label': 'Deluge.sickbeard-label', 'sickrage-label': 'Deluge.sickrage-label', 'sonarr-label': 'Deluge.sonarr-label', 'radarr-label': 'Deluge.radarr-label', 'bypass-label': 'Deluge.bypass-label', 'convert': 'Deluge.convert', 'host': 'Deluge.host', 'port': 'Deluge.port', 'username': 'Deluge.username', 'password': '<PASSWORD>', 'output_directory': 'Deluge.output-directory', 'remove': 'Deluge.remove', }, "qBittorrent": { 'sickbeard-label': 'qBittorrent.sickbeard-label', 'sickrage-label': 'qBittorrent.sickrage-label', 'sonarr-label': 'qBittorrent.sonarr-label', 'radarr-label': 'qBittorrent.radarr-label', 'bypass-label': 'qBittorrent.bypass-label', 'convert': 'qBittorrent.convert', 'action_before': 'qBittorrent.action-before', 'action_after': 'qBittorrent.action-after', 'host': 'qBittorrent.host', 'username': 'qBittorrent.username', 'password': '<PASSWORD>', 'output_directory': 'qBittorrent.output-directory', }, "Plex": { 'host': 'Plex.host', 'port': 'Plex.port', 'refresh': 'Plex.refresh', 'token': 'Plex.token' }, "Permissions": { 'chmod': 'Permissions.chmod', 'uid': 'Permissions.uid', 'gid': 'Permissions.gid' } } migration2 = { "Subtitle.Subliminal": { "download-subs": "Subtitle", "download-hearing-impaired-subs": "Subtitle", "providers": "Subtitle.download-providers", } } CONFIG_DEFAULT = "autoProcess.ini" CONFIG_DIRECTORY = "./config" RESOURCE_DIRECTORY = "./resources" RELATIVE_TO_ROOT = "../" ENV_CONFIG_VAR = "SMA_CONFIG" @property def CONFIG_RELATIVEPATH(self): return os.path.join(self.CONFIG_DIRECTORY, self.CONFIG_DEFAULT) def __init__(self, configFile=None, logger=None): self.log = logger or logging.getLogger(__name__) self.log.info(sys.executable) if sys.version_info.major == 2: self.log.warning("Python 2 is no longer officially supported. Use with caution.") rootpath = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), self.RELATIVE_TO_ROOT)) defaultConfigFile = os.path.normpath(os.path.join(rootpath, self.CONFIG_RELATIVEPATH)) oldConfigFile = os.path.normpath(os.path.join(rootpath, self.CONFIG_DEFAULT)) envConfigFile = os.environ.get(self.ENV_CONFIG_VAR) if envConfigFile and os.path.exists(os.path.realpath(envConfigFile)): configFile = os.path.realpath(envConfigFile) self.log.debug("%s environment variable override found." % (self.ENV_CONFIG_VAR)) elif not configFile: if not os.path.exists(defaultConfigFile) and os.path.exists(oldConfigFile): try: os.rename(oldConfigFile, defaultConfigFile) self.log.info("Moved configuration file to new default location %s." % defaultConfigFile) configFile = defaultConfigFile except: configFile = oldConfigFile self.log.debug("Unable to move configuration file to new location, using old location.") else: configFile = defaultConfigFile self.log.debug("Loading default config file.") if os.path.isdir(configFile): new = os.path.realpath(os.path.join(configFile, self.CONFIG_RELATIVEPATH)) old = os.path.realpath(os.path.join(configFile, self.CONFIG_DEFAULT)) if not os.path.exists(new) and os.path.exists(old): configFile = old else: configFile = new self.log.debug("Configuration file specified is a directory, joining with %s." % (self.CONFIG_DEFAULT)) self.log.info("Loading config file %s." % configFile) # Setup encoding to avoid UTF-8 errors if sys.version[0] == '2': SYS_ENCODING = None try: locale.setlocale(locale.LC_ALL, "") SYS_ENCODING = locale.getpreferredencoding() except (locale.Error, IOError): pass # For OSes that are poorly configured just force UTF-8 if not SYS_ENCODING or SYS_ENCODING in ('ANSI_X3.4-1968',
<gh_stars>1-10 from keras.layers import Input from keras.models import Model from keras.layers import Dense, Dropout, Reshape, Permute from keras.layers.convolutional import Convolution2D from keras.layers.convolutional import MaxPooling2D, ZeroPadding2D from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import ELU from keras.layers.recurrent import GRU from keras import backend as K from math import floor import librosa import matplotlib.pyplot as plt import numpy as np import time import tensorflow as ts from pydub import AudioSegment from flask import Flask #AUDIO PROCESSOR: def change_3gp_to_mp3(fileName): output_Path = fileName + ".mp3" AudioSegment.from_file(fileName).export( output_Path, format="mp3") return output_Path def compute_melgram(audio_path): ''' Compute a mel-spectrogram and returns it in a shape of (1,1,96,1366), where 96 == #mel-bins and 1366 == #time frame parameters ---------- audio_path: path for the audio file. Any format supported by audioread will work. ''' # mel-spectrogram parameters SR = 12000 N_FFT = 512 N_MELS = 96 HOP_LEN = 256 DURA = 29.12 # to make it 1366 frame.. src, sr = librosa.load(audio_path, sr=SR) # whole signal n_sample = src.shape[0] n_sample_fit = int(DURA*SR) if n_sample < n_sample_fit: # if too short src = np.hstack((src, np.zeros((int(DURA*SR) - n_sample,)))) elif n_sample > n_sample_fit: # if too long src = src[(n_sample-n_sample_fit)/2:(n_sample+n_sample_fit)/2] logam = librosa.logamplitude melgram = librosa.feature.melspectrogram ret = logam(melgram(y=src, sr=SR, hop_length=HOP_LEN, n_fft=N_FFT, n_mels=N_MELS)**2, ref_power=1.0) ret = ret[np.newaxis, np.newaxis, :] return ret def compute_melgram_multiframe(audio_path, all_song=True): ''' Compute a mel-spectrogram in multiple frames of the song and returns it in a shape of (N,1,96,1366), where 96 == #mel-bins, 1366 == #time frame, and N=#frames parameters ---------- audio_path: path for the audio file. Any format supported by audioread will work. ''' # mel-spectrogram parameters SR = 12000 N_FFT = 512 N_MELS = 96 HOP_LEN = 256 DURA = 29.12 # to make it 1366 frame.. if all_song: DURA_TRASH = 0 else: DURA_TRASH = 20 src, sr = librosa.load(audio_path, sr=SR) # whole signal n_sample = src.shape[0] n_sample_fit = int(DURA*SR) n_sample_trash = int(DURA_TRASH*SR) # remove the trash at the beginning and at the end src = src[n_sample_trash:(n_sample-n_sample_trash)] n_sample=n_sample-2*n_sample_trash # print n_sample # print n_sample_fit ret = np.zeros((0, 1, 96, 1366), dtype=np.float32) if n_sample < n_sample_fit: # if too short src = np.hstack((src, np.zeros((int(DURA*SR) - n_sample,)))) logam = librosa.logamplitude melgram = librosa.feature.melspectrogram ret = logam(melgram(y=src, sr=SR, hop_length=HOP_LEN, n_fft=N_FFT, n_mels=N_MELS)**2, ref_power=1.0) ret = ret[np.newaxis, np.newaxis, :] elif n_sample > n_sample_fit: # if too long N = int(floor(n_sample/n_sample_fit)) src_total=src for i in range(0, N): src = src_total[(i*n_sample_fit):(i+1)*(n_sample_fit)] logam = librosa.logamplitude melgram = librosa.feature.melspectrogram retI = logam(melgram(y=src, sr=SR, hop_length=HOP_LEN, n_fft=N_FFT, n_mels=N_MELS)**2, ref_power=1.0) retI = retI[np.newaxis, np.newaxis, :] # print retI.shape ret = np.concatenate((ret, retI), axis=0) return ret #Functions: K.set_image_dim_ordering('th') def pop_layer(model): if not model.outputs: raise Exception('Sequential model cannot be popped: model is empty.') model.layers.pop() if not model.layers: model.outputs = [] model.inbound_nodes = [] model.outbound_nodes = [] else: model.layers[-1].outbound_nodes = [] model.outputs = [model.layers[-1].output] model.built = False def MusicTaggerCRNN(weights='msd', input_tensor=None): '''Instantiate the MusicTaggerCRNN architecture, optionally loading weights pre-trained on Million Song Dataset. Note that when using TensorFlow, for best performance you should set `image_dim_ordering="tf"` in your Keras config at ~/.keras/keras.json. For preparing mel-spectrogram input, see `audio_conv_utils.py` in [applications](https://github.com/fchollet/keras/tree/master/keras/applications). You will need to install [Librosa](http://librosa.github.io/librosa/) to use it. # Arguments weights: one of `None` (random initialization) or "msd" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. # Returns A Keras model instance. ''' if weights not in {'msd', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `msd` ' '(pre-training on Million Song Dataset).') # Determine proper input shape if K.image_dim_ordering() == 'th': input_shape = (96, 1366, 1) else: input_shape = (1, 96, 1366) if input_tensor is None: melgram_input = Input(shape=input_shape) else: melgram_input = Input(shape=input_tensor) # Determine input axis if K.image_dim_ordering() == 'th': channel_axis = 1 freq_axis = 2 time_axis = 3 else: channel_axis = 3 freq_axis = 1 time_axis = 2 # Input block x = ZeroPadding2D(padding=(0, 37))(melgram_input) x = BatchNormalization(axis=time_axis, name='bn_0_freq')(x) # Conv block 1 x = Convolution2D(64, 3, 3, border_mode='same', name='conv1', trainable=False)(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn1', trainable=False)(x) x = ELU()(x) x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1', trainable=False)(x) x = Dropout(0.1, name='dropout1', trainable=False)(x) # Conv block 2 x = Convolution2D(128, 3, 3, border_mode='same', name='conv2', trainable=False)(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn2', trainable=False)(x) x = ELU()(x) x = MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2', trainable=False)(x) x = Dropout(0.1, name='dropout2', trainable=False)(x) # Conv block 3 x = Convolution2D(128, 3, 3, border_mode='same', name='conv3', trainable=False)(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn3', trainable=False)(x) x = ELU()(x) x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3', trainable=False)(x) x = Dropout(0.1, name='dropout3', trainable=False)(x) # Conv block 4 x = Convolution2D(128, 3, 3, border_mode='same', name='conv4', trainable=False)(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn4', trainable=False)(x) x = ELU()(x) x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4', trainable=False)(x) x = Dropout(0.1, name='dropout4', trainable=False)(x) # reshaping if K.image_dim_ordering() == 'th': x = Permute((3, 1, 2))(x) x = Reshape((15, 128))(x) # GRU block 1, 2, output x = GRU(32, return_sequences=True, name='gru1')(x) x = GRU(32, return_sequences=False, name='gru2')(x) x = Dropout(0.3, name='final_drop')(x) if weights is None: # Create model x = Dense(10, activation='sigmoid', name='output')(x) model = Model(melgram_input, x) return model else: # Load input x = Dense(50, activation='sigmoid', name='output')(x) if K.image_dim_ordering() == 'tf': raise RuntimeError("Please set image_dim_ordering == 'th'." "You can set it at ~/.keras/keras.json") # Create model initial_model = Model(melgram_input, x) initial_model.load_weights('weights/music_tagger_crnn_weights_%s.h5' % K._BACKEND, by_name=True) # Eliminate last layer pop_layer(initial_model) # Add new Dense layer last = initial_model.get_layer('final_drop') preds = (Dense(10, activation='sigmoid', name='preds'))(last.output) model = Model(initial_model.input, preds) return model # UTILS def sort_result(tags, preds): result = zip(tags, preds) sorted_result = sorted(result, key=lambda x: x[1], reverse=True) save_result_file(sorted_result) for name, score in sorted_result: score = np.array(score) score *= 100 print(name, ':', '%5.3f ' % score, ' ',) print return sorted_result def save_result_file(sorted_result): file = open('result.txt', 'w') for name, score in sorted_result: score = np.array(score) score *= 100 file.write(name + ':' + '%5.3f' % score + ';') file.close() def predict_label(preds): labels=preds.argsort()[::-1] return labels[0] # Melgram computation def extract_melgrams(list_path, MULTIFRAMES, process_all_song, num_songs_genre): melgrams = np.zeros((0, 1, 96, 1366), dtype=np.float32) song_paths = open(list_path, 'r').read().splitlines() labels = list() num_frames_total = list() for song_ind, song_path in enumerate(song_paths): print(song_path) song_path = change_3gp_to_mp3(song_path) if MULTIFRAMES: melgram = compute_melgram_multiframe(song_path, process_all_song) num_frames = melgram.shape[0] num_frames_total.append(num_frames) print ('num frames:', num_frames) if num_songs_genre != '': index = int(floor(song_ind/num_songs_genre)) for i in range(0, num_frames): labels.append(index) else: pass else: melgram = compute_melgram(song_path) melgrams = np.concatenate((melgrams, melgram), axis=0) if num_songs_genre != '': return melgrams, labels, num_frames_total else: return melgrams, num_frames_total # Parameters to set TEST = 1 LOAD_MODEL = 0 LOAD_WEIGHTS = 1 MULTIFRAMES = 1 time_elapsed = 0 # GTZAN Dataset Tags tags = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] tags = np.array(tags) # Paths to set model_name = "example_model" model_path = "models_trained/" + model_name + "/" weights_path = "models_trained/" + model_name + "/weights/" test_songs_list = 'list_example.txt' # Errors here: def init_model(): # Initialize model global model, graph model = MusicTaggerCRNN(weights=None, input_tensor=(1, 96, 1366)) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) graph = ts.get_default_graph() if LOAD_WEIGHTS: model.load_weights(weights_path + 'crnn_net_gru_adam_ours_epoch_40.h5') return model def main_body(): X_test, num_frames_test = extract_melgrams(test_songs_list, MULTIFRAMES, process_all_song=False, num_songs_genre='') num_frames_test = np.array(num_frames_test) t0 = time.time() print('\n--------- Predicting ---------', '\n') results = np.zeros((X_test.shape[0], tags.shape[0])) predicted_labels_mean = np.zeros((num_frames_test.shape[0], 1)) predicted_labels_frames = np.zeros((X_test.shape[0], 1)) song_paths = open(test_songs_list, 'r').read().splitlines() previous_numFrames = 0 n = 0 for i in range(0, num_frames_test.shape[0]): print('Song number' + str(i) + ': ' + song_paths[i]) num_frames = num_frames_test[i] print('Num_frames of 30s: ', str(num_frames), '\n') with graph.as_default(): results[previous_numFrames:previous_numFrames + num_frames] = model.predict( X_test[previous_numFrames:previous_numFrames + num_frames, :, :, :]) s_counter = 0 for j in range(previous_numFrames, previous_numFrames + num_frames): # normalize the results total = results[j, :].sum() results[j, :] = results[j, :] / total print('Percentage of genre prediction for seconds ' + str(20 + s_counter * 30) + ' to ' \ + str(20 + (s_counter + 1) * 30) + ': ') sort_result(tags, results[j, :].tolist()) predicted_label_frames = predict_label(results[j, :]) predicted_labels_frames[n] = predicted_label_frames s_counter += 1 n += 1 print('\n', 'Mean genre of the song: ') results_song = results[previous_numFrames:previous_numFrames + num_frames] mean = results_song.mean(0) sorted_result = sort_result(tags, mean.tolist()) predicted_label_mean = predict_label(mean) predicted_labels_mean[i] = predicted_label_mean print('\n', 'The predicted music genre for the song is', str(tags[predicted_label_mean]), '!\n') previous_numFrames = previous_numFrames + num_frames print('************************************************************************************************') return sorted_result def change_to_json(sorted_result): ziped = [] for name, score
<reponame>azeem59/MDFlakerForPaperUpdated import csv import matplotlib.pyplot as plt import mysql_handler as mh from prettytable import PrettyTable import click import datetime import os from pathlib import Path from changes_github import func_timer def save_csv(file_path, headers, rows): with open(file_path, 'w', encoding='utf8', newline='') as f: f_csv = csv.writer(f) f_csv.writerow(headers) for row in rows: f_csv.writerow(row) print('save data to csv done!') def combine_csv_path(folder, file_name): now = datetime.datetime.now() file_name = file_name + '_' + datetime.datetime.strftime(now, '%Y-%m-%d_%H-%M-%S') + '.csv' last_folder = Path(os.path.abspath(os.path.join(os.getcwd(), ".."))) file_dir = last_folder / 'output' / 'csv' / folder if not os.path.exists(file_dir): os.mkdir(file_dir) file_path = file_dir / file_name return file_path def combine_image_path(folder, image_name): now = datetime.datetime.now() file_name = image_name + '_' + datetime.datetime.strftime(now, '%Y-%m-%d_%H-%M-%S') + '.jpg' last_folder = Path(os.path.abspath(os.path.join(os.getcwd(), ".."))) file_dir = last_folder / 'output' / 'image' / folder if not os.path.exists(file_dir): os.mkdir(file_dir) file_path = file_dir / file_name return file_path def show_size(): size = [[1, 9], [10, 19], [20, 29], [30, 39], [40, 49], [50, 59], [60, 69]] x_label = ['1-9', '10-19', '20-29', '30-39', '40-49', '50-59', '60-69', '>=70'] result = [] for s in size: start = s[0] end = s[1] result.append(len(mh.search_size_between(start, end))) result.append(len(mh.search_size_bigger_than(69))) # x = range(result) name = "Test_Case_Size_Distribution" plt.ylabel("Count") plt.xlabel("Size") plt.title(name) plt.bar(x_label, result) for a, b in zip(x_label, result): plt.text(a, b + 1, '%.0f' % b, ha='center', va='bottom') image_path = combine_image_path('size', name) plt.savefig(image_path) print('save image done!') plt.show() def show_size_bigger_than(size=30): results = mh.search_size_bigger_than(size) print("count: " + str(len(results))) headers = ['Test Case', 'Size', 'Path'] file_name = 'size_bigger_than_' + str(size) file_path = combine_csv_path('size', file_name) save_csv(file_path, headers, results) table = PrettyTable(headers) for s in results: name = s[0] path = s[1] size = s[2] table.add_row([name, path, size]) print(table) def show_size_between(start=30, end=50): results = mh.search_size_between(start, end) print("count: " + str(len(results))) headers = ['Test Case', 'Size', 'Test Smells', 'Path'] file_name = 'size_between_' + str(start) + '&' + str(end) file_path = combine_csv_path('size', file_name) save_csv(file_path, headers, results) table = PrettyTable(headers) for r in results: table.add_row([r[0], r[1], r[2], r[3]]) print(table) def show_smell(): plt.figure(figsize=(10, 10)) plt.figure(1) bar1 = plt.subplot(211) bar2 = plt.subplot(223) bar3 = plt.subplot(224) def show_smell_1(): smells = len(mh.search_test_smell()) no_smells = len(mh.search_no_smell()) x_label = ["Test Cases with Smells", "Test Cases without Smells"] size = [smells, no_smells] bar1.set_title("Test Case Smell Distribution") color = ["blue", "green"] patches, l_text, p_text = bar1.pie(size, colors=color, labels=x_label, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6) bar1.axis("equal") bar1.legend() def show_smell_2(): result = mh.smell_distribution() x_label = [] y_value = [] for rt in result: x_label.append(str(rt[0])) y_value.append(rt[1]) bar2.set_ylabel("Number of Test Cases") bar2.set_xlabel("Number of Smells") bar2.set_title("Test Smells Distribution") bar2.bar(x_label, y_value) for a, b in zip(x_label, y_value): bar2.text(a, b + 1, '%d' % b, ha='center', va='bottom') def show_smell_type(): result = mh.smell_type() x_label = [] y_value = [] for rt in result: x_label.append(rt[0]) y_value.append(rt[1]) bar3.set_xlabel("Test Smell Type") bar3.set_ylabel("Count") bar3.set_title("Test Smells Type Distribution") bar3.bar(x_label, y_value) for a, b in zip(x_label, y_value): bar3.text(a, b + 1, '%d' % b, ha='center', va='bottom') folder = 'test_smell' results = mh.search_test_smell() headers = ['Test Case', 'Number of Smells', 'Path'] file_name = 'test_smell_count' file_path = combine_csv_path(folder, file_name) save_csv(file_path, headers, results) table = PrettyTable(headers) print("count: " + str(len(results))) for r in results: table.add_row([r[0], r[1], r[2]]) print(table) show_smell_1() show_smell_2() show_smell_type() image_path = combine_image_path(folder, 'Test_Smell_Distribution') plt.savefig(image_path) print('save image done!') plt.show() def show_smell_details(test_case="all"): results = mh.search_smell_details(test_case) headers = ['Test Case', 'Number of Smells', 'Smell type', 'Tip', 'Location', 'Path'] file_name = 'test_smell_details' + '__' + test_case file_path = combine_csv_path('test_smell', file_name) save_csv(file_path, headers, results) table = PrettyTable(headers) for r in results: table.add_row([r[0], r[1], r[2], r[3], r[4], r[5]]) print(table) def show_dependency_cover(days=3600): # dependency_cover_T = len(mh.search_dependency_cover_T(days)) # git_diff_N = len(mh.search_git_diff_N(days)) # dependency_cover_F = len(mh.search_dependency_cover_F(days)) dependency_cover_F_count = mh.search_dependency_cover_F_count(days) # # def show_bar(): # x_label = ['dependency_cover_T', 'git_diff_N', 'dependency_cover_F&git_diff_Y'] # y_value = [dependency_cover_T, git_diff_N, dependency_cover_F] # plt.xlabel("Dependency Coverage") # plt.ylabel("Number of failed tests") # plt.title("Dependency Coverage Distribution" + " (within " + str(days) + " days)") # plt.bar(x_label, y_value) # for a, b in zip(x_label, y_value): # plt.text(a, b + 1, '%d' % b, ha='center', va='bottom') # plt.show() def show_F_count(): headers = ['Failed Test Case', 'NT-FDUC', 'Path', 'Latest Failed Build ID'] file_name = 'Dependency_Cover' file_path = combine_csv_path('dependency_cover', file_name) save_csv(file_path, headers, dependency_cover_F_count) table = PrettyTable(headers) for r in dependency_cover_F_count: table.add_row([r[0], r[1], r[2], r[3]]) print(table) show_F_count() # show_bar() def show_latest_dependency_cover(build_id=0): results = mh.search_latest_failed_build(build_id) if len(results) > 0: data = [] for r in results: temp = [r[0]] if r[2] == 'F': temp.append('Not Covered') else: temp.append('Covered') temp.append(r[3]) temp.append(r[1]) temp.append(r[4]) temp.append(r[5]) data.append(temp) headers = ['Failed Test', 'Coverage status', 'Previous State', 'Build ID', 'Build Finished Time', 'Path'] file_name = results[0][1] + '_dependency_cover' file_path = combine_csv_path('dependency_cover', file_name) save_csv(file_path, headers, data) table = PrettyTable(headers) for r in data: table.add_row([r[0], r[1], r[2], r[3], r[4], r[5]]) print(table) else: print('Build passed or build failed without failed tests or no such build') def show_build_history(days=3600): failed_tests = mh.search_failed_times(days) build_status = mh.search_build_status(days) folder = 'build_history' def show_status(): x_label = ['passed', 'failed without failed tests', 'failed with failed tests'] y_value = [] sum = 0 for r in build_status: if r[0] == 2: sum += r[1] elif r[0] == 3 or r[0] == 4: continue else: y_value.append(r[1]) y_value.append(sum) plt.xlabel("Status") plt.ylabel("Number of builds") plt.title("Build History Status Distribution" + " (within " + str(days) + " days)") plt.bar(x_label, y_value) for a, b in zip(x_label, y_value): plt.text(a, b + 1, '%d' % b, ha='center', va='bottom') image_path = combine_image_path(folder, "Build_History_Status_Distribution" + "(within_" + str(days) + "_days)") plt.savefig(image_path) plt.show() def show_failed_times(): headers = ['Failed Test Name', 'Failed Times', 'Path'] file_name = 'Test_Case_failed_times' file_path = combine_csv_path(folder, file_name) save_csv(file_path, headers, failed_tests) table = PrettyTable(['Failed Test Name', 'Failed Times', 'Path']) for r in failed_tests: table.add_row([r[0], r[1], r[2]]) print(table) show_failed_times() show_status() def show_flakiness_score_one(build_id): flakiness_list = mh.flakiness_score_one(build_id) headers = ['Build ID', 'Test Case', 'Score', 'NT-FDUC', 'Size', 'Number of Test Smells', 'Dependency Cover', 'Path'] table = PrettyTable(headers) rows = [] if flakiness_list: for f in flakiness_list: for k, v in f.items(): temp = [v['build_id'], k, v['score'], v['failed_times'], v['size'], v['test_smells'], v['dependency_cover'], v['path']] table.add_row(temp) rows.append(temp) folder = 'flakiness_score' file_name = 'Flakiness_Score_' + str(build_id) file_path = combine_csv_path(folder, file_name) save_csv(file_path, headers, rows) print(table.get_string(sortby="Score", reversesort=True)) else: print('Build passed or build failed without failed tests or no such build') def show_flakiness_score(test_case): results = mh.flakiness_score(test_case) score_dic = {} x_label = ['0', '0-1', '1-2', '2-3', '3-5', '5-7', '7-9', '>9'] y_value = [0, 0, 0, 0, 0, 0, 0, 0] for r in results: score = r[1] * 0.2 + (r[2] - 29 if r[2] > 30 else 0) * 0.05 + r[3] * 0.4 + (2 if r[4] == 'F' else 0) if score == 0: y_value[0] += 1 elif 0 < score <= 1: y_value[1] += 1 elif 1 < score <= 2: y_value[2] += 1 elif 2 < score <= 3: y_value[3] += 1 elif 3 < score <= 5: y_value[4] += 1 elif 5 < score <= 7: y_value[5] += 1 elif 7 < score <= 9: y_value[6] += 1 elif score > 9: y_value[7] += 1 if score > 0: score = format(score, '.2f') score_dic[r[0]] = {'failed_times': r[1], 'size': r[2], 'test_smells': r[3], 'recent_cover': r[4], 'git_diff': r[5], 'build_id': r[6], 'path': r[7], 'score': score} plt.xlabel("Flakiness Score") plt.ylabel("Number of Test Cases") plt.title("Flakiness Score Distribution") plt.bar(x_label, y_value) for a, b in zip(x_label, y_value): plt.text(a, b + 1, '%d' % b, ha='center', va='bottom') headers = ['Test Case', 'Score', 'NT-FDUC', 'Size', 'Number of Test Smells', 'Latest Dependency Cover', 'Latest Failed build_id', 'Path'] table = PrettyTable(headers) rows = [] for key, value in score_dic.items(): temp = [key, value['score'], value['failed_times'], value['size'], value['test_smells'], value['recent_cover'], value['build_id'], value['path']] table.add_row(temp) rows.append(temp) folder = 'flakiness_score' file_name = 'Flakiness_Score' file_path = combine_csv_path(folder, file_name) save_csv(file_path, headers, rows) print(table.get_string(sortby="Score", reversesort=True)) image_path = combine_image_path(folder, "Flakiness_Score_Distribution") plt.savefig(image_path) plt.show() @func_timer def show_flakiness(): results = mh.search_flakiness() headers = ['Build ID', 'Test Method', 'Flaky or Not', 'Detection Method', 'Traceback Coverage', 'Number of Smells', 'Flaky Frequency', 'Size', 'Path'] rows = [] table = PrettyTable(headers) for res in results: if res[3] == 'T': method = 'Traceback Coverage' else: method = 'Multi-Factor' if res[4] == 'T': cover = 'Covered' else: cover = 'Not Covered' if res[7] == 0: smells = 'Unavailable' size = 'Unavailable' temp = [res[0], res[1], 'flaky', method, cover, smells, res[6], size, res[8]] else: temp = [res[0], res[1], 'flaky', method, cover, res[5], res[6], res[7], res[8]] table.add_row(temp) rows.append(temp) folder =
data (no time-format in first column) df = df.loc[df['Heures'].str.len() == 11] # drop daylight saving time hours (no data there) df = df.loc[(df['Éolien terrestre'] != '*') & (df['Solaire'] != '*')] # just display beginning of hours df['Heures'] = df['Heures'].str[:5] # construct full date to later use as index df['timestamp'] = df['Dates'] + ' ' + df['Heures'] df['timestamp'] = pd.to_datetime(df['timestamp'], dayfirst=True,) # drop autumn dst hours as they contain inconsistent data (none or copy of # hour before) dst_transitions_autumn = [ d.replace(hour=2) for d in pytz.timezone('Europe/Paris')._utc_transition_times if d.year >= 2000 and d.month == 10] df = df.loc[~df['timestamp'].isin(dst_transitions_autumn)] df.set_index(df['timestamp'], inplace=True) # Transfer to UTC df.index = df.index.tz_localize('Europe/Paris') df.index = df.index.tz_convert(None) colmap = { 'Éolien terrestre': { 'variable': 'wind_onshore', 'region': 'FR', 'attribute': 'generation_actual', 'source': 'RTE', 'web': url, 'unit': 'MW' }, 'Solaire': { 'variable': 'solar', 'region': 'FR', 'attribute': 'generation_actual', 'source': 'RTE', 'web': url, 'unit': 'MW' } } # Drop any column not in colmap df = df[[key for key in colmap.keys() if key in df.columns]] # Create the MultiIndex tuples = [tuple(colmap[col][level] for level in headers) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples, names=headers) return df def terna_file_to_initial_dataframe(filepath): """ Parse the xml or read excel directly, returning the data from the file in a simple-index dataframe. Some files are formated as xml, some are pure excel files. This function handles both cases. Parameters: ---------- filepath: str The path of the file to process Returns: ---------- df: pandas.DataFrame A pandas dataframe containing the data from the specified file. """ # First, we'll try to parse the file as if it is xml. try: excelHandler = ExcelHandler() parse(filepath, excelHandler) # Create the dataframe from the parsed data df = pd.DataFrame(excelHandler.tables[0][2:], columns=excelHandler.tables[0][1]) # Convert the "Generation [MWh]" column to numeric df["Generation [MWh]"] = pd.to_numeric(df["Generation [MWh]"]) except: # In the case of an exception, treat the file as excel. df = pd.read_excel(filepath, header=1) return df def read_terna(filepath, url, headers): """ Read a file from Terna into a dataframe Parameters: ---------- filepath: str The path of the file to read. url: The url of the Terna page. headers: Levels for the MultiIndex. Returns: ---------- df: pandas.DataFrame A pandas multi-index dataframe containing the data from the specified file. """ # Reading the file into a pandas dataframe df = terna_file_to_initial_dataframe(filepath) # Casting the "Date/Time" column to datetime df["Date/Hour"] = pd.to_datetime(df["Date/Hour"]) # Setting the index to "Date/Hour" # Renaming the bidding area names to conform to the codes from areas.csv df["Bidding Area"] = "IT_" + df["Bidding Area"] # The dictionary mapping energy types from the file to the variable - attribute pairs # in the final format solar_and_eolic_types = { "Wind" : ("wind_onshore", "generation_actual"), "Photovoltaic Estimated" : ("solar", "generation_forecast"), "Photovoltaic Measured" : ("solar", "generation_actual") } # Keeping only the data for solar and eolic sources df = df.loc[df["Type"].isin(solar_and_eolic_types.keys()), :] # Reshaping the data so that each combination of a bidding area and type # is represented as a column of its own. # The new column names are formatted as follows: "Generation [MWh]:{area_code}:{type}" df = df.pivot_table(index=["Date/Hour"], columns=["Bidding Area","Type"], aggfunc='first') df.columns = df.columns.map(lambda x: '{}:{}:{}'.format(x[0], x[1], x[2])) # Note that at this point the "Date/Hour" column has become the frame's index. # Creating a mapping from column names to the corresponding multiindex hierarchy area_codes = ["IT_CNOR", "IT_CSUD", "IT_NORD", "IT_SARD", "IT_SICI", "IT_SUD"] column_map = {} for area_code in area_codes: for energy_type in solar_and_eolic_types: variable, attribute = solar_and_eolic_types[energy_type] column_name = "Generation [MWh]:{}:{}".format(area_code, energy_type) column_map[column_name] = { "region" : area_code, "variable" : variable, "attribute" : attribute, "source" : "Terna", "web" : url, "unit" : "MWh" } # Drop any column not in the column mapping df = df[list(column_map.keys())] # Create the MultiIndex tuples = [tuple(column_map[col][level] for level in headers) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples, names=headers) return df def read(data_path, areas, source_name, variable_name, res_key, headers, param_dict, start_from_user=None, end_from_user=None): """ For the sources specified in the sources.yml file, pass each downloaded file to the correct read function. Parameters ---------- source_name : str Name of source to read files from variable_name : str Indicator for subset of data available together in the same files param_dict : dict Dictionary of further parameters, i.e. the URL of the Source to be placed in the column-MultiIndex res_key : str Resolution of the source data. Must be one of ['15min', '30min', 60min'] headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe data_path : str, default: 'original_data' Base download directory in which to save all downloaded files start_from_user : datetime.date, default None Start of period for which to read the data end_from_user : datetime.date, default None End of period for which to read the data Returns ---------- data_set: pandas.DataFrame A DataFrame containing the combined data for variable_name """ data_set = pd.DataFrame() variable_dir = os.path.join(data_path, source_name, variable_name) logger.info('reading %s - %s', source_name, variable_name) files_existing = sum([len(files) for r, d, files in os.walk(variable_dir)]) files_success = 0 # Check if there are folders for variable_name if not os.path.exists(variable_dir): logger.warning('folder not found for %s, %s', source_name, variable_name) return data_set # For each file downloaded for that variable for container in sorted(os.listdir(variable_dir)): # Skip this file if period covered excluded by user if start_from_user: # start lies after file end => filecontent is too old if start_from_user > yaml.load(container.split('_')[1]): continue # go to next container if end_from_user: # end lies before file start => filecontent is too recent if end_from_user < yaml.load(container.split('_')[0]) - timedelta(days=1): continue # go to next container files = os.listdir(os.path.join(variable_dir, container)) # Check if there is only one file per folder if len(files) == 0: logger.warning('found no file in %s %s %s', source_name, variable_name, container) continue elif len(files) > 1: logger.warning('found more than one file in %s %s %s', source_name, variable_name, container) continue filepath = os.path.join(variable_dir, container, files[0]) # Check if file is not empty if os.path.getsize(filepath) < 128: logger.warning('%s \n file is smaller than 128 Byte. It is probably' ' empty and will thus be skipped from reading', filepath) else: logger.debug('reading data:\n\t ' 'Source: %s\n\t ' 'Variable: %s\n\t ' 'Filename: %s', source_name, variable_name, files[0]) update_progress(files_success, files_existing) url = param_dict['web'] if source_name == 'OPSD': data_to_add = read_opsd(filepath, url, headers) elif source_name == 'CEPS': data_to_add = read_ceps(filepath, variable_name, url, headers) elif source_name == 'ENTSO-E Transparency FTP': data_to_add = read_entso_e_transparency( areas, filepath, variable_name, url, headers, res_key, **param_dict) elif source_name == 'ENTSO-E Data Portal': data_to_add = read_entso_e_portal(filepath, url, headers) elif source_name == 'ENTSO-E Power Statistics': data_to_add = read_entso_e_statistics(filepath, url, headers) elif source_name == 'Energinet.dk': data_to_add = read_energinet_dk(filepath, url, headers) elif source_name == 'Elia': data_to_add = read_elia(filepath, variable_name, url, headers) elif source_name == 'PSE': data_to_add = read_pse(filepath, variable_name, url, headers) elif source_name == 'RTE': data_to_add = read_rte(filepath, variable_name, url, headers) elif source_name == 'Svenska Kraftnaet': data_to_add = read_svenska_kraftnaet( filepath, variable_name, url, headers) elif source_name == '50Hertz': data_to_add = read_hertz(filepath, variable_name, url, headers) elif source_name == 'Amprion': data_to_add = read_amprion( filepath, variable_name, url, headers) elif source_name == 'TenneT': data_to_add = read_tennet( filepath, variable_name, url, headers) elif source_name == 'TransnetBW': data_to_add = read_transnetbw( filepath, variable_name, url, headers) elif source_name == 'APG': data_to_add = read_apg(filepath, url, headers) elif source_name == "Terna": data_to_add = read_terna(filepath, url, headers) if data_set.empty: data_set = data_to_add else: data_set = data_set.combine_first(data_to_add) files_success += 1 update_progress(files_success, files_existing) if data_set.empty: logger.warning('returned empty DataFrame for %s, %s', source_name, variable_name) return data_set # Reindex with a new index that is sure to be continous in order to later # expose gaps in the data. no_gaps = pd.DatetimeIndex(start=data_set.index[0], end=data_set.index[-1], freq=res_key) data_set = data_set.reindex(index=no_gaps) # Cut off the data outside of [start_from_user:end_from_user] # In order to make sure that the respective time period is covered in both # UTC and CE(S)T, we set the start in CE(S)T, but the end in UTC if start_from_user: start_from_user = ( pytz.timezone('Europe/Brussels') .localize(datetime.combine(start_from_user, time())) .astimezone(pytz.timezone('UTC'))) if end_from_user: end_from_user = ( pytz.timezone('UTC')
- shape [len, batch] ################################## programs_input = programs[:-1] programs_target = programs[1:] full_answers_input = full_answers[:-1] full_answers_target = full_answers[1:] # print("programs_input.size()", programs_input.size()) # print("programs_target.size()", programs_target.size()) # print("full_answers_input.size()", full_answers_input.size()) # print("full_answers_target.size()", full_answers_target.size()) # print("programs_input", programs_input) # print("programs_target", programs_target) # print("full_answers_input", full_answers_input) # print("full_answers_target", full_answers_target) ################################## # Forward training data ################################## output = model( questions, gt_scene_graphs, programs_input, full_answers_input ) programs_output, short_answer_logits = output ################################## # Evaluate on training data ################################## with torch.no_grad(): ################################## # Calculate Fast Evaluation for each module ################################## this_short_answer_acc1 = accuracy(short_answer_logits, short_answer_label, topk=(1,)) short_answer_acc.update(this_short_answer_acc1[0].item(), this_batch_size) text_pad_idx = GQATorchDataset.TEXT.vocab.stoi[GQATorchDataset.TEXT.pad_token] ################################## # Convert output probability to top1 guess # So that we could measure accuracy ################################## programs_output_pred = programs_output.detach().topk( k=1, dim=-1, largest=True, sorted=True )[1].squeeze(-1) # full_answers_output_pred = full_answers_output.detach().topk( # k=1, dim=-1, largest=True, sorted=True # )[1].squeeze(-1) this_program_acc, this_program_group_acc, this_program_non_empty_acc = program_string_exact_match_acc( programs_output_pred, programs_target, padding_idx=text_pad_idx, group_accuracy_WAY_NUM=GQATorchDataset.MAX_EXECUTION_STEP) program_acc.update(this_program_acc, this_batch_size) program_group_acc.update(this_program_group_acc, this_batch_size // GQATorchDataset.MAX_EXECUTION_STEP) program_non_empty_acc.update(this_program_non_empty_acc, this_batch_size) # this_full_answers_acc = string_exact_match_acc( # full_answers_output_pred, full_answers_target, padding_idx=text_pad_idx # ) # full_answer_acc.update(this_full_answers_acc, this_batch_size) ################################## # Neural Execution Engine Bitmap loss # ground truth stored at gt_scene_graphs.y # using torch.nn.BCELoss - torch.nn.functional.binary_cross_entropy # should also add a special precision recall for that ################################## # execution_bitmap_loss = criterion['execution_bitmap'](execution_bitmap, gt_scene_graphs.y) # precision, precision_div, recall, recall_div = bitmap_precision_recall( # execution_bitmap, gt_scene_graphs.y, threshold=0.5 # ) # bitmap_precision.update(precision, precision_div) # bitmap_recall.update(recall, recall_div) ################################## # Calculate each module's loss and get global loss ################################## def text_generation_loss(loss_fn, output, target): text_vocab_size = len(GQATorchDataset.TEXT.vocab) output = output.contiguous().view(-1, text_vocab_size) target = target.contiguous().view(-1) this_text_loss = loss_fn(output, target) return this_text_loss program_loss = text_generation_loss(criterion['program'], programs_output, programs_target) # full_answer_loss = text_generation_loss( # criterion['full_answer'], full_answers_output, full_answers_target # ) ################################## # using sigmoid loss for short answer ################################## # num_short_answer_choices = 1842 # short_answer_label_one_hot = torch.nn.functional.one_hot(short_answer_label, num_short_answer_choices).float() # short_answer_loss = criterion['short_answer'](short_answer_logits, short_answer_label_one_hot) # sigmoid loss ################################## # normal softmax loss for short answer ################################## short_answer_loss = criterion['short_answer'](short_answer_logits, short_answer_label) # loss = program_loss + full_answer_loss + short_answer_loss # + execution_bitmap_loss loss = program_loss + short_answer_loss # measure accuracy and record loss losses.update(loss.item(), this_batch_size) ################################## # compute gradient and do SGD step ################################## optimizer.zero_grad() loss.backward() optimizer.step() ################################## # measure elapsed time ################################## batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 or i == len(train_loader) - 1: progress.display(i) ################################## # Give final score ################################## progress.display(batch=len(train_loader)) """ Input shape: [Len, Batch] A fast GPU-based string exact match accuracy calculator TODO: if the prediction does not stop at target's padding area. (should rarely happen if at all) """ def string_exact_match_acc(predictions, target, padding_idx=1): ################################## # Do token-level match first # Generate a matching matrix: if equals or pad, then put 1, else 0 # Shape: [Len, Batch] ################################## target_len = target.size(0) # truncated predictions = predictions[:target_len] char_match_matrix = (predictions == target).long() # print("char_match_matrix", char_match_matrix) cond_match_matrix = torch.where(target == padding_idx, torch.ones_like(target), char_match_matrix) # print("cond_match_matrix", cond_match_matrix) del char_match_matrix ################################## # Reduction of token-level match # 1 means exact match, 0 means at least one token not matching # Dim: note that the first dim is len, batch is the second dim ################################## # ret: (values, indices) match_reduced, _ = torch.min(input=cond_match_matrix, dim=0, keepdim=False) # print("match_reduced", match_reduced) this_batch_size = target.size(1) # print("this_batch_size", this_batch_size) # mul 100, converting to percentage accuracy = torch.sum(match_reduced).item() / this_batch_size * 100.0 return accuracy """ Input shape: [Len, Batch] A fast GPU-based string exact match accuracy calculator TODO: if the prediction does not stop at target's padding area. (should rarely happen if at all) group_accuracy_WAY_NUM: only calculated as correct if the whole group is correct. Used in program accuracy: only correct if all instructions are correct. -1 means ignore """ def program_string_exact_match_acc(predictions, target, padding_idx=1, group_accuracy_WAY_NUM=-1): ################################## # Do token-level match first # Generate a matching matrix: if equals or pad, then put 1, else 0 # Shape: [Len, Batch] ################################## target_len = target.size(0) # truncated predictions = predictions[:target_len] char_match_matrix = (predictions == target).long() cond_match_matrix = torch.where(target == padding_idx, torch.ones_like(target), char_match_matrix) del char_match_matrix ################################## # Reduction of token-level match # 1 means exact match, 0 means at least one token not matching # Dim: note that the first dim is len, batch is the second dim ################################## # ret: (values, indices) match_reduced, _ = torch.min(input=cond_match_matrix, dim=0, keepdim=False) this_batch_size = target.size(1) # mul 100, converting to percentage accuracy = torch.sum(match_reduced).item() / this_batch_size * 100.0 ################################## # Calculate Batch Accuracy ################################## group_batch_size = this_batch_size // group_accuracy_WAY_NUM match_reduced_group_reshape = match_reduced.view(group_batch_size, group_accuracy_WAY_NUM) # print("match_reduced_group_reshape", match_reduced_group_reshape) # ret: (values, indices) group_match_reduced, _ = torch.min(input=match_reduced_group_reshape, dim=1, keepdim=False) # print("group_match_reduced", group_match_reduced) # mul 100, converting to percentage group_accuracy = torch.sum(group_match_reduced).item() / group_batch_size * 100.0 ################################## # Calculate Empty # start of sentence, end of sentence, padding # Shape: [Len=2, Batch] ################################## # empty and counted as correct empty_instr_flag = (target[2] == padding_idx) & match_reduced.bool() empty_instr_flag = empty_instr_flag.long() # print("empty_instr_flag", empty_instr_flag) empty_count = torch.sum(empty_instr_flag).item() # print("empty_count", empty_count) non_empty_accuracy = (torch.sum(match_reduced).item() - empty_count) / (this_batch_size - empty_count) * 100.0 ################################## # Return ################################## return accuracy, group_accuracy , non_empty_accuracy def validate(val_loader, model, criterion, args, FAST_VALIDATE_FLAG=False, DUMP_RESULT=False): batch_time = AverageMeter('Time', ':6.3f') program_acc = AverageMeter('Acc@Program', ':6.2f') program_group_acc = AverageMeter('Acc@ProgramGroup', ':4.2f') program_non_empty_acc = AverageMeter('Acc@ProgramNonEmpty', ':4.2f') # bitmap_precision = AverageMeter('Precision@Bitmap', ':4.2f') # bitmap_recall = AverageMeter('Recall@Bitmap', ':4.2f') # full_answer_acc = AverageMeter('Acc@Full', ':6.2f') short_answer_acc = AverageMeter('Acc@Short', ':6.2f') progress = ProgressMeter( len(val_loader), [ batch_time, program_acc, program_group_acc, program_non_empty_acc, short_answer_acc ], prefix='Test: ' ) # switch to evaluate mode model.eval() if DUMP_RESULT: quesid2ans = {} with torch.no_grad(): end = time.time() for i, (data_batch) in enumerate(val_loader): questionID, questions, gt_scene_graphs, programs, full_answers, short_answer_label, types = data_batch questions, gt_scene_graphs, programs, full_answers, short_answer_label = [ datum.to(device=cuda, non_blocking=True) for datum in [ questions, gt_scene_graphs, programs, full_answers, short_answer_label ] ] this_batch_size = questions.size(1) if FAST_VALIDATE_FLAG: raise NotImplementedError("Should not use fast validation. Only for short answer accuracy") ################################## # Prepare training input and training target for text generation ################################## programs_input = programs[:-1] programs_target = programs[1:] full_answers_input = full_answers[:-1] full_answers_target = full_answers[1:] ################################## # Forward evaluate data ################################## output = model( questions, gt_scene_graphs, programs_input, full_answers_input ) programs_output, short_answer_logits = output ################################## # Convert output probability to top1 guess # So that we could measure accuracy ################################## programs_output_pred = programs_output.detach().topk( k=1, dim=-1, largest=True, sorted=True )[1].squeeze(-1) # full_answers_output_pred = full_answers_output.detach().topk( # k=1, dim=-1, largest=True, sorted=True # )[1].squeeze(-1) else: programs_target = programs full_answers_target = full_answers ################################## # Greedy decoding-based evaluation ################################## output = model( questions, gt_scene_graphs, None, None, SAMPLE_FLAG=True ) programs_output_pred, short_answer_logits = output ################################## # Neural Execution Engine Bitmap loss # ground truth stored at gt_scene_graphs.y # using torch.nn.BCELoss - torch.nn.functional.binary_cross_entropy ################################## # precision, precision_div, recall, recall_div = bitmap_precision_recall( # execution_bitmap, gt_scene_graphs.y, threshold=0.5 # ) # bitmap_precision.update(precision, precision_div) # bitmap_recall.update(recall, recall_div) ################################## # Calculate Fast Evaluation for each module ################################## this_short_answer_acc1 = accuracy(short_answer_logits.detach(), short_answer_label, topk=(1,)) short_answer_acc.update(this_short_answer_acc1[0].item(), this_batch_size) text_pad_idx = GQATorchDataset.TEXT.vocab.stoi[GQATorchDataset.TEXT.pad_token] this_program_acc, this_program_group_acc, this_program_non_empty_acc = program_string_exact_match_acc( programs_output_pred, programs_target, padding_idx=text_pad_idx, group_accuracy_WAY_NUM=GQATorchDataset.MAX_EXECUTION_STEP ) program_acc.update(this_program_acc, this_batch_size) program_group_acc.update(this_program_group_acc, this_batch_size // GQATorchDataset.MAX_EXECUTION_STEP) program_non_empty_acc.update(this_program_non_empty_acc, this_batch_size) # this_full_answers_acc = string_exact_match_acc( # full_answers_output_pred.detach(), full_answers_target, padding_idx=text_pad_idx # ) # full_answer_acc.update(this_full_answers_acc, this_batch_size) ################################## # Example Visualization from the first batch ################################## if i == 0 and True: for batch_idx in range(min(this_batch_size, 128)): ################################## # print Question and Question ID ################################## question = questions[:, batch_idx].cpu() question_sent, _ = GQATorchDataset.indices_to_string(question, True) print("Question({}) QID({}):".format(batch_idx, questionID[batch_idx]), question_sent) if utils.is_main_process(): logging.info("Question({}) QID({}): {}".format(batch_idx, questionID[batch_idx], question_sent)) ################################## # print program prediction ################################## for instr_idx in range(GQATorchDataset.MAX_EXECUTION_STEP): true_batch_idx = instr_idx + GQATorchDataset.MAX_EXECUTION_STEP * batch_idx gt = programs[:, true_batch_idx].cpu() pred = programs_output_pred[:, true_batch_idx] pred_sent, _ = GQATorchDataset.indices_to_string(pred, True) gt_sent, _ = GQATorchDataset.indices_to_string(gt, True) if len(pred_sent) == 0 and len(gt_sent) == 0: # skip if both target and prediciton are empty continue # gt_caption print( "Generated Program ({}): ".format(true_batch_idx), pred_sent, " Ground Truth Program ({}):".format(true_batch_idx), gt_sent ) if utils.is_main_process(): # gt_caption logging.info("Generated Program ({}): {} Ground Truth Program ({}): {}".format( true_batch_idx, pred_sent, true_batch_idx, gt_sent )) ################################## # print full answer prediction ################################## # gt = full_answers[:, batch_idx].cpu() # pred = full_answers_output_pred[:, batch_idx] # pred_sent, _ = GQATorchDataset.indices_to_string(pred, True) # gt_sent, _ = GQATorchDataset.indices_to_string(gt, True) # # gt_caption # print( # "Generated Full Answer ({}): ".format(batch_idx), pred_sent, # "Ground Truth Full Answer ({}):".format(batch_idx), gt_sent # ) # if utils.is_main_process(): # # gt_caption # logging.info("Generated Full Answer ({}): {}
= np.argmin(dis, axis=1) for attack_ind, track_id in enumerate(dets_ids): if track_id is None or self.multiple_ori_ids[track_id] <= self.FRAME_THR \ or dets_ids[ious_inds[attack_ind]] not in self.multiple_ori2att \ or track_id not in self.multiple_ori2att: continue if ious[attack_ind, ious_inds[attack_ind]] > self.ATTACK_IOU_THR or ( track_id in self.low_iou_ids and ious[attack_ind, ious_inds[attack_ind]] > 0 ): attack_ids.append(track_id) target_ids.append(dets_ids[ious_inds[attack_ind]]) attack_inds.append(attack_ind) target_inds.append(ious_inds[attack_ind]) if hasattr(self, f'temp_i_{track_id}'): self.__setattr__(f'temp_i_{track_id}', 0) elif ious[attack_ind, ious_inds[attack_ind]] == 0 and track_id in self.low_iou_ids: if hasattr(self, f'temp_i_{track_id}'): self.__setattr__(f'temp_i_{track_id}', self.__getattribute__(f'temp_i_{track_id}') + 1) else: self.__setattr__(f'temp_i_{track_id}', 1) if self.__getattribute__(f'temp_i_{track_id}') > 10: self.low_iou_ids.remove(track_id) elif dets_ids[dis_inds[attack_ind]] in self.multiple_ori2att: attack_ids.append(track_id) target_ids.append(dets_ids[dis_inds[attack_ind]]) attack_inds.append(attack_ind) target_inds.append(dis_inds[attack_ind]) fit_index = self.CheckFit(dets, scores_keep, dets_second, scores_second, attack_ids, attack_inds) if len( attack_ids) else [] if fit_index: attack_ids = np.array(attack_ids)[fit_index] target_ids = np.array(target_ids)[fit_index] attack_inds = np.array(attack_inds)[fit_index] target_inds = np.array(target_inds)[fit_index] noise, attack_iter, suc = self.attack_mt_det( imgs, img_info, dets, dets_second, outputs_index_1, outputs_index_2, last_info=self.ad_last_info, outputs_ori=outputs, attack_ids=attack_ids, attack_inds=attack_inds, target_ids=target_ids, target_inds=target_inds ) self.low_iou_ids.update(set(attack_ids)) if suc: self.attacked_ids.update(set(attack_ids)) print( f'attack ids: {attack_ids}\tattack frame {self.frame_id_}: SUCCESS\tl2 distance: {(noise ** 2).sum().sqrt().item()}\titeration: {attack_iter}') else: print( f'attack ids: {attack_ids}\tattack frame {self.frame_id_}: FAIL\tl2 distance: {(noise ** 2).sum().sqrt().item() if noise is not None else None}\titeration: {attack_iter}') adImg = cv2.imread(os.path.join(self.args.img_dir, img_info[-1][0])) if adImg is None: import pdb; pdb.set_trace() if noise is not None: l2_dis = (noise ** 2).sum().sqrt().item() imgs = (imgs + noise) imgs[0, 0] = torch.clip(imgs[0, 0], min=-0.485 / 0.229, max=(1 - 0.485) / 0.229) imgs[0, 1] = torch.clip(imgs[0, 1], min=-0.456 / 0.224, max=(1 - 0.456) / 0.224) imgs[0, 2] = torch.clip(imgs[0, 2], min=-0.406 / 0.225, max=(1 - 0.406) / 0.225) imgs = imgs.data noise = self.recoverNoise(noise, adImg) adImg = np.clip(adImg + noise, a_min=0, a_max=255) noise = (noise - np.min(noise)) / (np.max(noise) - np.min(noise)) noise = (noise * 255).astype(np.uint8) else: l2_dis = None output_stracks_att = self.update(imgs, img_info, img_size, [], ids, track_id=None) output_stracks_att_ind = [] for ind, track in enumerate(output_stracks_att): if track.track_id not in self.multiple_att_ids: self.multiple_att_ids[track.track_id] = 0 self.multiple_att_ids[track.track_id] += 1 if self.multiple_att_ids[track.track_id] <= self.FRAME_THR: output_stracks_att_ind.append(ind) if len(output_stracks_ori_ind) and len(output_stracks_att_ind): ori_dets = [track.curr_tlbr for i, track in enumerate(output_stracks_ori) if i in output_stracks_ori_ind] att_dets = [track.curr_tlbr for i, track in enumerate(output_stracks_att) if i in output_stracks_att_ind] ori_dets = np.stack(ori_dets).astype(np.float64) att_dets = np.stack(att_dets).astype(np.float64) ious = bbox_ious(ori_dets, att_dets) row_ind, col_ind = linear_sum_assignment(-ious) for i in range(len(row_ind)): if ious[row_ind[i], col_ind[i]] > 0.9: ori_id = output_stracks_ori[output_stracks_ori_ind[row_ind[i]]].track_id att_id = output_stracks_att[output_stracks_att_ind[col_ind[i]]].track_id self.multiple_ori2att[ori_id] = att_id return output_stracks_ori, output_stracks_att, adImg, noise, l2_dis def update_attack_mt(self, imgs, img_info, img_size, data_list, ids, **kwargs): self.frame_id_ += 1 activated_starcks = [] refind_stracks = [] lost_stracks = [] removed_stracks = [] imgs.requires_grad = True # model_2 = copy.deepcopy(self.model_2) self.model_2.zero_grad() outputs = self.model_2(imgs) if self.decoder is not None: outputs = self.decoder(outputs, dtype=outputs.type()) outputs_post, outputs_index = postprocess(outputs.detach(), self.num_classes, self.confthre, self.nmsthre) output_results = self.convert_to_coco_format([outputs_post[0].detach()], img_info, ids) data_list.extend(output_results) output_results = outputs_post[0] outputs = outputs[0] if output_results.shape[1] == 5: scores = output_results[:, 4] bboxes = output_results[:, :4] else: output_results = output_results.detach().cpu().numpy() scores = output_results[:, 4] * output_results[:, 5] bboxes = output_results[:, :4] # x1y1x2y2 img_h, img_w = img_info[0], img_info[1] scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w)) bboxes /= scale remain_inds = scores > self.args.track_thresh inds_low = scores > 0.1 inds_high = scores < self.args.track_thresh inds_second = np.logical_and(inds_low, inds_high) dets_second = bboxes[inds_second] dets = bboxes[remain_inds] scores_keep = scores[remain_inds] scores_second = scores[inds_second] outputs_index_1 = outputs_index[remain_inds] outputs_index_2 = outputs_index[inds_second] dets_ids = [None for _ in range(len(dets) + len(dets_second))] if len(dets) > 0: '''Detections''' detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for (tlbr, s) in zip(dets, scores_keep)] else: detections = [] ''' Add newly detected tracklets to tracked_stracks''' unconfirmed = [] tracked_stracks = [] # type: list[STrack] for track in self.tracked_stracks_: if not track.is_activated: unconfirmed.append(track) else: tracked_stracks.append(track) ''' Step 2: First association, with high score detection boxes''' strack_pool = joint_stracks(tracked_stracks, self.lost_stracks_) # Predict the current location with KF STrack.multi_predict(strack_pool) dists = matching.iou_distance(strack_pool, detections) if not self.args.mot20: dists = matching.fuse_score(dists, detections) matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh) for itracked, idet in matches: track = strack_pool[itracked] det = detections[idet] if track.state == TrackState.Tracked: track.update(detections[idet], self.frame_id_) activated_starcks.append(track) else: track.re_activate_(det, self.frame_id_, new_id=False) refind_stracks.append(track) dets_ids[idet] = track.track_id ''' Step 3: Second association, with low score detection boxes''' # association the untrack to the low score detections if len(dets_second) > 0: '''Detections''' detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for (tlbr, s) in zip(dets_second, scores_second)] else: detections_second = [] r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] dists = matching.iou_distance(r_tracked_stracks, detections_second) matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5) for itracked, idet in matches: track = r_tracked_stracks[itracked] det = detections_second[idet] if track.state == TrackState.Tracked: track.update(det, self.frame_id_) activated_starcks.append(track) else: track.re_activate_(det, self.frame_id_, new_id=False) refind_stracks.append(track) dets_ids[idet + len(dets)] = track.track_id for it in u_track: track = r_tracked_stracks[it] if not track.state == TrackState.Lost: track.mark_lost() lost_stracks.append(track) '''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' detections = [detections[i] for i in u_detection] dists = matching.iou_distance(unconfirmed, detections) if not self.args.mot20: dists = matching.fuse_score(dists, detections) matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) for itracked, idet in matches: unconfirmed[itracked].update(detections[idet], self.frame_id_) activated_starcks.append(unconfirmed[itracked]) for it in u_unconfirmed: track = unconfirmed[it] track.mark_removed() removed_stracks.append(track) """ Step 4: Init new stracks""" for inew in u_detection: track = detections[inew] if track.score < self.det_thresh: continue track.activate_(self.kalman_filter, self.frame_id_) activated_starcks.append(track) """ Step 5: Update state""" for track in self.lost_stracks_: if self.frame_id_ - track.end_frame > self.max_time_lost: track.mark_removed() removed_stracks.append(track) # print('Ramained match {} s'.format(t4-t3)) self.tracked_stracks_ = [t for t in self.tracked_stracks_ if t.state == TrackState.Tracked] self.tracked_stracks_ = joint_stracks(self.tracked_stracks_, activated_starcks) self.tracked_stracks_ = joint_stracks(self.tracked_stracks_, refind_stracks) self.lost_stracks_ = sub_stracks(self.lost_stracks_, self.tracked_stracks_) self.lost_stracks_.extend(lost_stracks) self.lost_stracks_ = sub_stracks(self.lost_stracks_, self.removed_stracks_) self.removed_stracks_.extend(removed_stracks) self.tracked_stracks_, self.lost_stracks_ = remove_duplicate_stracks(self.tracked_stracks_, self.lost_stracks_) # get scores of lost tracks dets_ = np.concatenate([dets, dets_second]) output_stracks_ori = [track for track in self.tracked_stracks_ if track.is_activated] id_set = set([track.track_id for track in output_stracks_ori]) for i in range(len(dets_ids)): if dets_ids[i] is not None and dets_ids[i] not in id_set: dets_ids[i] = None output_stracks_ori_ind = [] for ind, track in enumerate(output_stracks_ori): if track.track_id not in self.multiple_ori_ids: self.multiple_ori_ids[track.track_id] = 0 self.multiple_ori_ids[track.track_id] += 1 if self.multiple_ori_ids[track.track_id] <= self.FRAME_THR: output_stracks_ori_ind.append(ind) noise = None attack_ids = [] target_ids = [] attack_inds = [] target_inds = [] if len(dets_) > 0: ious = bbox_ious(np.ascontiguousarray(dets_[:, :4], dtype=np.float64), np.ascontiguousarray(dets_[:, :4], dtype=np.float64)) ious[range(len(dets_)), range(len(dets_))] = 0 ious_inds = np.argmax(ious, axis=1) dis = bbox_dis(np.ascontiguousarray(dets_[:, :4], dtype=np.float64), np.ascontiguousarray(dets_[:, :4], dtype=np.float64)) dis[range(len(dets_)), range(len(dets_))] = np.inf dis_inds = np.argmin(dis, axis=1) for attack_ind, track_id in enumerate(dets_ids): if track_id is None or self.multiple_ori_ids[track_id] <= self.FRAME_THR \ or dets_ids[ious_inds[attack_ind]] not in self.multiple_ori2att \ or track_id not in self.multiple_ori2att: continue if ious[attack_ind, ious_inds[attack_ind]] > self.ATTACK_IOU_THR or ( track_id in self.low_iou_ids and ious[attack_ind, ious_inds[attack_ind]] > 0 ): attack_ids.append(track_id) target_ids.append(dets_ids[ious_inds[attack_ind]]) attack_inds.append(attack_ind) target_inds.append(ious_inds[attack_ind]) if hasattr(self, f'temp_i_{track_id}'): self.__setattr__(f'temp_i_{track_id}', 0) elif ious[attack_ind, ious_inds[attack_ind]] == 0 and track_id in self.low_iou_ids: if hasattr(self, f'temp_i_{track_id}'): self.__setattr__(f'temp_i_{track_id}', self.__getattribute__(f'temp_i_{track_id}') + 1) else: self.__setattr__(f'temp_i_{track_id}', 1) if self.__getattribute__(f'temp_i_{track_id}') > 10: self.low_iou_ids.remove(track_id) elif dets_ids[dis_inds[attack_ind]] in self.multiple_ori2att: attack_ids.append(track_id) target_ids.append(dets_ids[dis_inds[attack_ind]]) attack_inds.append(attack_ind) target_inds.append(dis_inds[attack_ind]) fit_index = self.CheckFit(dets, scores_keep, dets_second, scores_second, attack_ids, attack_inds) if len( attack_ids) else [] if fit_index: attack_ids = np.array(attack_ids)[fit_index] target_ids = np.array(target_ids)[fit_index] attack_inds = np.array(attack_inds)[fit_index] target_inds = np.array(target_inds)[fit_index] if self.args.rand: noise, attack_iter, suc = self.attack_mt_random( imgs, img_info, dets, dets_second, outputs_index_1, outputs_index_2, last_info, outputs_ori, attack_ids, attack_inds, target_ids, target_inds ) else: noise, attack_iter, suc = self.attack_mt( imgs, img_info, dets, dets_second, outputs_index_1, outputs_index_2, last_info=self.ad_last_info, outputs_ori=outputs, attack_ids=attack_ids, attack_inds=attack_inds, target_ids=target_ids, target_inds=target_inds ) self.low_iou_ids.update(set(attack_ids)) if suc: self.attacked_ids.update(set(attack_ids)) print( f'attack ids: {attack_ids}\tattack frame {self.frame_id_}: SUCCESS\tl2 distance: {(noise ** 2).sum().sqrt().item()}\titeration: {attack_iter}') else: print( f'attack ids: {attack_ids}\tattack frame {self.frame_id_}: FAIL\tl2 distance: {(noise ** 2).sum().sqrt().item() if noise is not None else None}\titeration: {attack_iter}') adImg = cv2.imread(os.path.join(self.args.img_dir, img_info[-1][0])) if adImg is None: import pdb; pdb.set_trace() if noise is not None: l2_dis = (noise ** 2).sum().sqrt().item() imgs = (imgs + noise) imgs[0, 0] = torch.clip(imgs[0, 0], min=-0.485 / 0.229, max=(1 - 0.485) / 0.229) imgs[0, 1] = torch.clip(imgs[0, 1], min=-0.456 / 0.224, max=(1 - 0.456) / 0.224) imgs[0, 2] = torch.clip(imgs[0, 2], min=-0.406 / 0.225, max=(1 - 0.406) / 0.225) imgs = imgs.data noise = self.recoverNoise(noise, adImg) adImg = np.clip(adImg + noise, a_min=0, a_max=255) noise = (noise - np.min(noise)) / (np.max(noise) - np.min(noise)) noise = (noise * 255).astype(np.uint8) else: l2_dis = None output_stracks_att = self.update(imgs, img_info, img_size, [], ids, track_id=None) output_stracks_att_ind = [] for ind, track in enumerate(output_stracks_att): if track.track_id not in self.multiple_att_ids: self.multiple_att_ids[track.track_id] = 0 self.multiple_att_ids[track.track_id]
Constraint(expr=m.x186*m.x2516 + m.x811*m.x2522 + m.x1436*m.x2528 + m.x2061*m.x2534 <= 8) m.c2705 = Constraint(expr=m.x187*m.x2516 + m.x812*m.x2522 + m.x1437*m.x2528 + m.x2062*m.x2534 <= 8) m.c2706 = Constraint(expr=m.x188*m.x2516 + m.x813*m.x2522 + m.x1438*m.x2528 + m.x2063*m.x2534 <= 8) m.c2707 = Constraint(expr=m.x189*m.x2516 + m.x814*m.x2522 + m.x1439*m.x2528 + m.x2064*m.x2534 <= 8) m.c2708 = Constraint(expr=m.x190*m.x2516 + m.x815*m.x2522 + m.x1440*m.x2528 + m.x2065*m.x2534 <= 8) m.c2709 = Constraint(expr=m.x191*m.x2516 + m.x816*m.x2522 + m.x1441*m.x2528 + m.x2066*m.x2534 <= 8) m.c2710 = Constraint(expr=m.x192*m.x2516 + m.x817*m.x2522 + m.x1442*m.x2528 + m.x2067*m.x2534 <= 8) m.c2711 = Constraint(expr=m.x193*m.x2516 + m.x818*m.x2522 + m.x1443*m.x2528 + m.x2068*m.x2534 <= 8) m.c2712 = Constraint(expr=m.x194*m.x2516 + m.x819*m.x2522 + m.x1444*m.x2528 + m.x2069*m.x2534 <= 8) m.c2713 = Constraint(expr=m.x195*m.x2516 + m.x820*m.x2522 + m.x1445*m.x2528 + m.x2070*m.x2534 <= 8) m.c2714 = Constraint(expr=m.x196*m.x2516 + m.x821*m.x2522 + m.x1446*m.x2528 + m.x2071*m.x2534 <= 8) m.c2715 = Constraint(expr=m.x197*m.x2516 + m.x822*m.x2522 + m.x1447*m.x2528 + m.x2072*m.x2534 <= 8) m.c2716 = Constraint(expr=m.x198*m.x2516 + m.x823*m.x2522 + m.x1448*m.x2528 + m.x2073*m.x2534 <= 8) m.c2717 = Constraint(expr=m.x199*m.x2516 + m.x824*m.x2522 + m.x1449*m.x2528 + m.x2074*m.x2534 <= 8) m.c2718 = Constraint(expr=m.x200*m.x2516 + m.x825*m.x2522 + m.x1450*m.x2528 + m.x2075*m.x2534 <= 8) m.c2719 = Constraint(expr=m.x201*m.x2516 + m.x826*m.x2522 + m.x1451*m.x2528 + m.x2076*m.x2534 <= 8) m.c2720 = Constraint(expr=m.x202*m.x2516 + m.x827*m.x2522 + m.x1452*m.x2528 + m.x2077*m.x2534 <= 8) m.c2721 = Constraint(expr=m.x203*m.x2516 + m.x828*m.x2522 + m.x1453*m.x2528 + m.x2078*m.x2534 <= 8) m.c2722 = Constraint(expr=m.x204*m.x2516 + m.x829*m.x2522 + m.x1454*m.x2528 + m.x2079*m.x2534 <= 8) m.c2723 = Constraint(expr=m.x205*m.x2516 + m.x830*m.x2522 + m.x1455*m.x2528 + m.x2080*m.x2534 <= 8) m.c2724 = Constraint(expr=m.x206*m.x2516 + m.x831*m.x2522 + m.x1456*m.x2528 + m.x2081*m.x2534 <= 8) m.c2725 = Constraint(expr=m.x207*m.x2516 + m.x832*m.x2522 + m.x1457*m.x2528 + m.x2082*m.x2534 <= 8) m.c2726 = Constraint(expr=m.x208*m.x2516 + m.x833*m.x2522 + m.x1458*m.x2528 + m.x2083*m.x2534 <= 8) m.c2727 = Constraint(expr=m.x209*m.x2516 + m.x834*m.x2522 + m.x1459*m.x2528 + m.x2084*m.x2534 <= 8) m.c2728 = Constraint(expr=m.x210*m.x2516 + m.x835*m.x2522 + m.x1460*m.x2528 + m.x2085*m.x2534 <= 8) m.c2729 = Constraint(expr=m.x211*m.x2516 + m.x836*m.x2522 + m.x1461*m.x2528 + m.x2086*m.x2534 <= 8) m.c2730 = Constraint(expr=m.x212*m.x2516 + m.x837*m.x2522 + m.x1462*m.x2528 + m.x2087*m.x2534 <= 8) m.c2731 = Constraint(expr=m.x213*m.x2516 + m.x838*m.x2522 + m.x1463*m.x2528 + m.x2088*m.x2534 <= 8) m.c2732 = Constraint(expr=m.x214*m.x2516 + m.x839*m.x2522 + m.x1464*m.x2528 + m.x2089*m.x2534 <= 8) m.c2733 = Constraint(expr=m.x215*m.x2516 + m.x840*m.x2522 + m.x1465*m.x2528 + m.x2090*m.x2534 <= 8) m.c2734 = Constraint(expr=m.x216*m.x2516 + m.x841*m.x2522 + m.x1466*m.x2528 + m.x2091*m.x2534 <= 8) m.c2735 = Constraint(expr=m.x217*m.x2516 + m.x842*m.x2522 + m.x1467*m.x2528 + m.x2092*m.x2534 <= 8) m.c2736 = Constraint(expr=m.x218*m.x2516 + m.x843*m.x2522 + m.x1468*m.x2528 + m.x2093*m.x2534 <= 8) m.c2737 = Constraint(expr=m.x219*m.x2516 + m.x844*m.x2522 + m.x1469*m.x2528 + m.x2094*m.x2534 <= 8) m.c2738 = Constraint(expr=m.x220*m.x2516 + m.x845*m.x2522 + m.x1470*m.x2528 + m.x2095*m.x2534 <= 8) m.c2739 = Constraint(expr=m.x221*m.x2516 + m.x846*m.x2522 + m.x1471*m.x2528 + m.x2096*m.x2534 <= 8) m.c2740 = Constraint(expr=m.x222*m.x2516 + m.x847*m.x2522 + m.x1472*m.x2528 + m.x2097*m.x2534 <= 8) m.c2741 = Constraint(expr=m.x223*m.x2516 + m.x848*m.x2522 + m.x1473*m.x2528 + m.x2098*m.x2534 <= 8) m.c2742 = Constraint(expr=m.x224*m.x2516 + m.x849*m.x2522 + m.x1474*m.x2528 + m.x2099*m.x2534 <= 8) m.c2743 = Constraint(expr=m.x225*m.x2516 + m.x850*m.x2522 + m.x1475*m.x2528 + m.x2100*m.x2534 <= 8) m.c2744 = Constraint(expr=m.x226*m.x2516 + m.x851*m.x2522 + m.x1476*m.x2528 + m.x2101*m.x2534 <= 8) m.c2745 = Constraint(expr=m.x227*m.x2516 + m.x852*m.x2522 + m.x1477*m.x2528 + m.x2102*m.x2534 <= 8) m.c2746 = Constraint(expr=m.x228*m.x2516 + m.x853*m.x2522 + m.x1478*m.x2528 + m.x2103*m.x2534 <= 8) m.c2747 = Constraint(expr=m.x229*m.x2516 + m.x854*m.x2522 + m.x1479*m.x2528 + m.x2104*m.x2534 <= 8) m.c2748 = Constraint(expr=m.x230*m.x2516 + m.x855*m.x2522 + m.x1480*m.x2528 + m.x2105*m.x2534 <= 8) m.c2749 = Constraint(expr=m.x231*m.x2516 + m.x856*m.x2522 + m.x1481*m.x2528 + m.x2106*m.x2534 <= 8) m.c2750 = Constraint(expr=m.x232*m.x2516 + m.x857*m.x2522 + m.x1482*m.x2528 + m.x2107*m.x2534 <= 8) m.c2751 = Constraint(expr=m.x233*m.x2516 + m.x858*m.x2522 + m.x1483*m.x2528 + m.x2108*m.x2534 <= 8) m.c2752 = Constraint(expr=m.x234*m.x2516 + m.x859*m.x2522 + m.x1484*m.x2528 + m.x2109*m.x2534 <= 8) m.c2753 = Constraint(expr=m.x235*m.x2516 + m.x860*m.x2522 + m.x1485*m.x2528 + m.x2110*m.x2534 <= 8) m.c2754 = Constraint(expr=m.x236*m.x2516 + m.x861*m.x2522 + m.x1486*m.x2528 + m.x2111*m.x2534 <= 8) m.c2755 = Constraint(expr=m.x237*m.x2516 + m.x862*m.x2522 + m.x1487*m.x2528 + m.x2112*m.x2534 <= 8) m.c2756 = Constraint(expr=m.x238*m.x2516 + m.x863*m.x2522 + m.x1488*m.x2528 + m.x2113*m.x2534 <= 8) m.c2757 = Constraint(expr=m.x239*m.x2516 + m.x864*m.x2522 + m.x1489*m.x2528 + m.x2114*m.x2534 <= 8) m.c2758 = Constraint(expr=m.x240*m.x2516 + m.x865*m.x2522 + m.x1490*m.x2528 + m.x2115*m.x2534 <= 8) m.c2759 = Constraint(expr=m.x241*m.x2516 + m.x866*m.x2522 + m.x1491*m.x2528 + m.x2116*m.x2534 <= 8) m.c2760 = Constraint(expr=m.x242*m.x2516 + m.x867*m.x2522 + m.x1492*m.x2528 + m.x2117*m.x2534 <= 8) m.c2761 = Constraint(expr=m.x243*m.x2516 + m.x868*m.x2522 + m.x1493*m.x2528 + m.x2118*m.x2534 <= 8) m.c2762 = Constraint(expr=m.x244*m.x2516 + m.x869*m.x2522 + m.x1494*m.x2528 + m.x2119*m.x2534 <= 8) m.c2763 = Constraint(expr=m.x245*m.x2516 + m.x870*m.x2522 + m.x1495*m.x2528 + m.x2120*m.x2534 <= 8) m.c2764 = Constraint(expr=m.x246*m.x2516 + m.x871*m.x2522 + m.x1496*m.x2528 + m.x2121*m.x2534 <= 8) m.c2765 = Constraint(expr=m.x247*m.x2516 + m.x872*m.x2522 + m.x1497*m.x2528 + m.x2122*m.x2534 <= 8) m.c2766 = Constraint(expr=m.x248*m.x2516 + m.x873*m.x2522 + m.x1498*m.x2528 + m.x2123*m.x2534 <= 8) m.c2767 = Constraint(expr=m.x249*m.x2516 + m.x874*m.x2522 + m.x1499*m.x2528 + m.x2124*m.x2534 <= 8) m.c2768 = Constraint(expr=m.x250*m.x2516 + m.x875*m.x2522 + m.x1500*m.x2528 + m.x2125*m.x2534 <= 8) m.c2769 = Constraint(expr=m.x251*m.x2516 + m.x876*m.x2522 + m.x1501*m.x2528 + m.x2126*m.x2534 <= 8) m.c2770 = Constraint(expr=m.x252*m.x2516 + m.x877*m.x2522 + m.x1502*m.x2528 + m.x2127*m.x2534 <= 8) m.c2771 = Constraint(expr=m.x253*m.x2516 + m.x878*m.x2522 + m.x1503*m.x2528 + m.x2128*m.x2534 <= 8) m.c2772 = Constraint(expr=m.x254*m.x2516 + m.x879*m.x2522 + m.x1504*m.x2528 + m.x2129*m.x2534 <= 8) m.c2773 = Constraint(expr=m.x255*m.x2516 + m.x880*m.x2522 + m.x1505*m.x2528 + m.x2130*m.x2534 <= 8) m.c2774 = Constraint(expr=m.x256*m.x2516 + m.x881*m.x2522 + m.x1506*m.x2528 + m.x2131*m.x2534 <= 8) m.c2775 = Constraint(expr=m.x257*m.x2516 + m.x882*m.x2522 + m.x1507*m.x2528 + m.x2132*m.x2534 <= 8) m.c2776 = Constraint(expr=m.x258*m.x2516 + m.x883*m.x2522 + m.x1508*m.x2528 + m.x2133*m.x2534 <= 8) m.c2777 = Constraint(expr=m.x259*m.x2516 + m.x884*m.x2522 + m.x1509*m.x2528 + m.x2134*m.x2534 <= 8) m.c2778 = Constraint(expr=m.x260*m.x2516 + m.x885*m.x2522 + m.x1510*m.x2528 + m.x2135*m.x2534 <= 8) m.c2779 = Constraint(expr=m.x261*m.x2516 + m.x886*m.x2522 + m.x1511*m.x2528 + m.x2136*m.x2534 <= 8) m.c2780 = Constraint(expr=m.x262*m.x2516 + m.x887*m.x2522 + m.x1512*m.x2528 + m.x2137*m.x2534 <= 8) m.c2781 = Constraint(expr=m.x263*m.x2516 + m.x888*m.x2522 + m.x1513*m.x2528 + m.x2138*m.x2534 <= 8) m.c2782 = Constraint(expr=m.x264*m.x2516 + m.x889*m.x2522 + m.x1514*m.x2528 + m.x2139*m.x2534 <= 8) m.c2783 = Constraint(expr=m.x265*m.x2516 + m.x890*m.x2522 + m.x1515*m.x2528 + m.x2140*m.x2534 <= 8) m.c2784 = Constraint(expr=m.x266*m.x2516 + m.x891*m.x2522 + m.x1516*m.x2528 + m.x2141*m.x2534 <= 8) m.c2785 = Constraint(expr=m.x267*m.x2516 + m.x892*m.x2522 + m.x1517*m.x2528 + m.x2142*m.x2534 <= 8) m.c2786 = Constraint(expr=m.x268*m.x2516 + m.x893*m.x2522 + m.x1518*m.x2528 + m.x2143*m.x2534 <= 8) m.c2787 = Constraint(expr=m.x269*m.x2516 + m.x894*m.x2522 + m.x1519*m.x2528 + m.x2144*m.x2534 <= 8) m.c2788 = Constraint(expr=m.x270*m.x2516 + m.x895*m.x2522 + m.x1520*m.x2528 + m.x2145*m.x2534 <= 8) m.c2789 = Constraint(expr=m.x271*m.x2516 + m.x896*m.x2522 + m.x1521*m.x2528 + m.x2146*m.x2534 <= 8) m.c2790 = Constraint(expr=m.x272*m.x2516 + m.x897*m.x2522 + m.x1522*m.x2528 + m.x2147*m.x2534 <= 8) m.c2791 = Constraint(expr=m.x273*m.x2516 + m.x898*m.x2522 + m.x1523*m.x2528 + m.x2148*m.x2534 <= 8) m.c2792 = Constraint(expr=m.x274*m.x2516 + m.x899*m.x2522 + m.x1524*m.x2528 + m.x2149*m.x2534 <= 8) m.c2793 = Constraint(expr=m.x275*m.x2516 + m.x900*m.x2522 + m.x1525*m.x2528 + m.x2150*m.x2534 <= 8) m.c2794 = Constraint(expr=m.x276*m.x2516 + m.x901*m.x2522 + m.x1526*m.x2528 + m.x2151*m.x2534 <= 8) m.c2795 = Constraint(expr=m.x277*m.x2516 + m.x902*m.x2522 + m.x1527*m.x2528 + m.x2152*m.x2534 <= 8) m.c2796 = Constraint(expr=m.x278*m.x2516 + m.x903*m.x2522 + m.x1528*m.x2528 + m.x2153*m.x2534 <= 8) m.c2797 = Constraint(expr=m.x279*m.x2516 + m.x904*m.x2522 + m.x1529*m.x2528 + m.x2154*m.x2534 <= 8) m.c2798 = Constraint(expr=m.x280*m.x2516 + m.x905*m.x2522 + m.x1530*m.x2528 + m.x2155*m.x2534 <= 8) m.c2799 = Constraint(expr=m.x281*m.x2516 + m.x906*m.x2522 + m.x1531*m.x2528 + m.x2156*m.x2534 <= 8) m.c2800 = Constraint(expr=m.x282*m.x2516 + m.x907*m.x2522 + m.x1532*m.x2528 + m.x2157*m.x2534 <= 8) m.c2801 = Constraint(expr=m.x283*m.x2516 + m.x908*m.x2522 + m.x1533*m.x2528 + m.x2158*m.x2534 <= 8) m.c2802 = Constraint(expr=m.x284*m.x2516 + m.x909*m.x2522 + m.x1534*m.x2528 + m.x2159*m.x2534 <= 8) m.c2803 = Constraint(expr=m.x285*m.x2516 + m.x910*m.x2522 + m.x1535*m.x2528 + m.x2160*m.x2534 <= 8) m.c2804 = Constraint(expr=m.x286*m.x2516 + m.x911*m.x2522 + m.x1536*m.x2528 + m.x2161*m.x2534 <= 8) m.c2805 = Constraint(expr=m.x287*m.x2516 + m.x912*m.x2522 + m.x1537*m.x2528 + m.x2162*m.x2534 <= 8) m.c2806 = Constraint(expr=m.x288*m.x2516 + m.x913*m.x2522 + m.x1538*m.x2528 + m.x2163*m.x2534 <= 8) m.c2807 = Constraint(expr=m.x289*m.x2516 + m.x914*m.x2522 + m.x1539*m.x2528 + m.x2164*m.x2534 <= 8) m.c2808 = Constraint(expr=m.x290*m.x2516 + m.x915*m.x2522 + m.x1540*m.x2528 + m.x2165*m.x2534 <= 8) m.c2809 = Constraint(expr=m.x291*m.x2516 + m.x916*m.x2522 + m.x1541*m.x2528 + m.x2166*m.x2534 <= 8) m.c2810 = Constraint(expr=m.x292*m.x2516 + m.x917*m.x2522 + m.x1542*m.x2528 + m.x2167*m.x2534 <= 8) m.c2811 = Constraint(expr=m.x293*m.x2516 + m.x918*m.x2522 + m.x1543*m.x2528 + m.x2168*m.x2534 <= 8) m.c2812 = Constraint(expr=m.x294*m.x2516 + m.x919*m.x2522 + m.x1544*m.x2528 + m.x2169*m.x2534 <= 8) m.c2813 = Constraint(expr=m.x295*m.x2516 + m.x920*m.x2522 + m.x1545*m.x2528 + m.x2170*m.x2534 <= 8) m.c2814 = Constraint(expr=m.x296*m.x2516 + m.x921*m.x2522 + m.x1546*m.x2528 + m.x2171*m.x2534 <= 8) m.c2815 = Constraint(expr=m.x297*m.x2516 + m.x922*m.x2522 + m.x1547*m.x2528 + m.x2172*m.x2534 <= 8) m.c2816 = Constraint(expr=m.x298*m.x2516 + m.x923*m.x2522 + m.x1548*m.x2528 + m.x2173*m.x2534 <= 8) m.c2817 = Constraint(expr=m.x299*m.x2516 + m.x924*m.x2522 + m.x1549*m.x2528 + m.x2174*m.x2534 <= 8) m.c2818 = Constraint(expr=m.x300*m.x2516 + m.x925*m.x2522 + m.x1550*m.x2528 + m.x2175*m.x2534 <= 8) m.c2819 = Constraint(expr=m.x301*m.x2516 + m.x926*m.x2522 + m.x1551*m.x2528 + m.x2176*m.x2534 <= 8) m.c2820 = Constraint(expr=m.x302*m.x2516 + m.x927*m.x2522 + m.x1552*m.x2528 + m.x2177*m.x2534 <= 8) m.c2821 = Constraint(expr=m.x303*m.x2516 + m.x928*m.x2522 + m.x1553*m.x2528 + m.x2178*m.x2534 <= 8) m.c2822 = Constraint(expr=m.x304*m.x2516 + m.x929*m.x2522 + m.x1554*m.x2528 + m.x2179*m.x2534 <= 8) m.c2823 = Constraint(expr=m.x305*m.x2516 + m.x930*m.x2522 + m.x1555*m.x2528 + m.x2180*m.x2534 <= 8) m.c2824 = Constraint(expr=m.x306*m.x2516 + m.x931*m.x2522 + m.x1556*m.x2528 + m.x2181*m.x2534 <= 8) m.c2825 = Constraint(expr=m.x307*m.x2516 + m.x932*m.x2522 + m.x1557*m.x2528 + m.x2182*m.x2534 <= 8) m.c2826 = Constraint(expr=m.x308*m.x2516 + m.x933*m.x2522 + m.x1558*m.x2528 + m.x2183*m.x2534 <= 8) m.c2827 = Constraint(expr=m.x309*m.x2516 + m.x934*m.x2522 + m.x1559*m.x2528 + m.x2184*m.x2534 <= 8) m.c2828 = Constraint(expr=m.x310*m.x2516 + m.x935*m.x2522 + m.x1560*m.x2528 + m.x2185*m.x2534 <= 8) m.c2829 = Constraint(expr=m.x311*m.x2516 + m.x936*m.x2522 + m.x1561*m.x2528 + m.x2186*m.x2534 <= 8) m.c2830 = Constraint(expr=m.x312*m.x2516 + m.x937*m.x2522 + m.x1562*m.x2528 + m.x2187*m.x2534 <= 8) m.c2831 = Constraint(expr=m.x313*m.x2516 + m.x938*m.x2522 + m.x1563*m.x2528 + m.x2188*m.x2534 <= 8) m.c2832 =
import re import sys from io import StringIO import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.decomposition import NMF, MiniBatchNMF from sklearn.decomposition import non_negative_factorization from sklearn.decomposition import _nmf as nmf # For testing internals from scipy.sparse import csc_matrix import pytest from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import ignore_warnings from sklearn.utils.extmath import squared_norm from sklearn.base import clone from sklearn.exceptions import ConvergenceWarning @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_convergence_warning(Estimator, solver): convergence_warning = ( "Maximum number of iterations 1 reached. Increase it to improve convergence." ) A = np.ones((2, 2)) with pytest.warns(ConvergenceWarning, match=convergence_warning): Estimator(max_iter=1, **solver).fit(A) def test_initialize_nn_output(): # Test that initialization does not return negative values rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) for init in ("random", "nndsvd", "nndsvda", "nndsvdar"): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert not ((W < 0).any() or (H < 0).any()) @pytest.mark.filterwarnings( r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in" r" the initialization" ) def test_parameter_checking(): A = np.ones((2, 2)) name = "spam" with ignore_warnings(category=FutureWarning): # TODO remove in 1.2 msg = "Invalid regularization parameter: got 'spam' instead of one of" with pytest.raises(ValueError, match=msg): NMF(regularization=name).fit(A) msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0" with pytest.raises(ValueError, match=msg): NMF(solver="cd", beta_loss=1.0).fit(A) msg = "Negative values in data passed to" with pytest.raises(ValueError, match=msg): NMF().fit(-A) clf = NMF(2, tol=0.1).fit(A) with pytest.raises(ValueError, match=msg): clf.transform(-A) with pytest.raises(ValueError, match=msg): nmf._initialize_nmf(-A, 2, "nndsvd") for init in ["nndsvd", "nndsvda", "nndsvdar"]: msg = re.escape( "init = '{}' can only be used when " "n_components <= min(n_samples, n_features)".format(init) ) with pytest.raises(ValueError, match=msg): NMF(3, init=init).fit(A) with pytest.raises(ValueError, match=msg): MiniBatchNMF(3, init=init).fit(A) with pytest.raises(ValueError, match=msg): nmf._initialize_nmf(A, 3, init) @pytest.mark.parametrize( "param, match", [ ({"n_components": 0}, "Number of components must be a positive integer"), ({"max_iter": -1}, "Maximum number of iterations must be a positive integer"), ({"tol": -1}, "Tolerance for stopping criteria must be positive"), ({"init": "wrong"}, "Invalid init parameter"), ({"beta_loss": "wrong"}, "Invalid beta_loss parameter"), ], ) @pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF]) def test_nmf_common_wrong_params(Estimator, param, match): # Check that appropriate errors are raised for invalid values of parameters common # to NMF and MiniBatchNMF. A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): Estimator(**param).fit(A) @pytest.mark.parametrize( "param, match", [ ({"solver": "wrong"}, "Invalid solver parameter"), ], ) def test_nmf_wrong_params(param, match): # Check that appropriate errors are raised for invalid values specific to NMF # parameters A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): NMF(**param).fit(A) @pytest.mark.parametrize( "param, match", [ ({"batch_size": 0}, "batch_size must be a positive integer"), ], ) def test_minibatch_nmf_wrong_params(param, match): # Check that appropriate errors are raised for invalid values specific to # MiniBatchNMF parameters A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): MiniBatchNMF(**param).fit(A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init="nndsvd") error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert error <= sdev def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd") Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda") War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_almost_equal(evl[ref != 0], ref[ref != 0]) # ignore UserWarning raised when both solver='mu' and init='nndsvd' @ignore_warnings(category=UserWarning) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) @pytest.mark.parametrize("init", (None, "nndsvd", "nndsvda", "nndsvdar", "random")) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H): # Test that the decomposition does not contain negative values A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)] model = Estimator( n_components=2, init=init, alpha_W=alpha_W, alpha_H=alpha_H, random_state=0, **solver, ) transf = model.fit_transform(A) assert not ((model.components_ < 0).any() or (transf < 0).any()) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_fit_close(Estimator, solver): rng = np.random.mtrand.RandomState(42) # Test that the fit is not too far away pnmf = Estimator( 5, init="nndsvdar", random_state=0, max_iter=600, **solver, ) X = np.abs(rng.randn(6, 5)) assert pnmf.fit(X).reconstruction_err_ < 0.1 def test_nmf_true_reconstruction(): # Test that the fit is not too far away from an exact solution # (by construction) n_samples = 15 n_features = 10 n_components = 5 beta_loss = 1 batch_size = 3 max_iter = 1000 rng = np.random.mtrand.RandomState(42) W_true = np.zeros([n_samples, n_components]) W_array = np.abs(rng.randn(n_samples)) for j in range(n_components): W_true[j % n_samples, j] = W_array[j % n_samples] H_true = np.zeros([n_components, n_features]) H_array = np.abs(rng.randn(n_components)) for j in range(n_features): H_true[j % n_components, j] = H_array[j % n_components] X = np.dot(W_true, H_true) model = NMF( n_components=n_components, solver="mu", beta_loss=beta_loss, max_iter=max_iter, random_state=0, ) transf = model.fit_transform(X) X_calc = np.dot(transf, model.components_) assert model.reconstruction_err_ < 0.1 assert_allclose(X, X_calc) mbmodel = MiniBatchNMF( n_components=n_components, beta_loss=beta_loss, batch_size=batch_size, random_state=0, max_iter=max_iter, ) transf = mbmodel.fit_transform(X) X_calc = np.dot(transf, mbmodel.components_) assert mbmodel.reconstruction_err_ < 0.1 assert_allclose(X, X_calc, atol=1) @pytest.mark.parametrize("solver", ["cd", "mu"]) def test_nmf_transform(solver): # Test that fit_transform is equivalent to fit.transform for NMF # Test that NMF.transform returns close values rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) m = NMF( solver=solver, n_components=3, init="random", random_state=0, tol=1e-6, ) ft = m.fit_transform(A) t = m.transform(A) assert_allclose(ft, t, atol=1e-1) def test_minibatch_nmf_transform(): # Test that fit_transform is equivalent to fit.transform for MiniBatchNMF # Only guaranteed with fresh restarts rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) m = MiniBatchNMF( n_components=3, random_state=0, tol=1e-3, fresh_restarts=True, ) ft = m.fit_transform(A) t = m.transform(A) assert_allclose(ft, t) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_transform_custom_init(Estimator, solver): # Smoke test that checks if NMF.transform works with custom initialization random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 5)) n_components = 4 avg = np.sqrt(A.mean() / n_components) H_init = np.abs(avg * random_state.randn(n_components, 5)) W_init = np.abs(avg * random_state.randn(6, n_components)) m = Estimator( n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver ) m.fit_transform(A, W=W_init, H=H_init) m.transform(A) @pytest.mark.parametrize("solver", ("cd", "mu")) def test_nmf_inverse_transform(solver): # Test that NMF.inverse_transform returns close values random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 4)) m = NMF( solver=solver, n_components=4, init="random", random_state=0, max_iter=1000, ) ft = m.fit_transform(A) A_new = m.inverse_transform(ft) assert_array_almost_equal(A, A_new, decimal=2) def test_mbnmf_inverse_transform(): # Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform # is close to the identity rng = np.random.RandomState(0) A = np.abs(rng.randn(6, 4)) nmf = MiniBatchNMF( random_state=rng, max_iter=500, init="nndsvdar", fresh_restarts=True, ) ft = nmf.fit_transform(A) A_new = nmf.inverse_transform(ft) assert_allclose(A, A_new, rtol=1e-3, atol=1e-2) @pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF]) def test_n_components_greater_n_features(Estimator): # Smoke test for the case of more components than features. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(30, 10)) Estimator(n_components=15, random_state=0, tol=1e-2).fit(A) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_nmf_sparse_input(Estimator, solver, alpha_W, alpha_H): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) est1 = Estimator( n_components=5, init="random", alpha_W=alpha_W, alpha_H=alpha_H, random_state=0, tol=0, max_iter=100, **solver, ) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_allclose(W1, W2) assert_allclose(H1, H2) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_sparse_transform(Estimator, solver): # Test that transform works on sparse data. Issue #2124 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(3, 2)) A[1, 1] = 0 A = csc_matrix(A) model = Estimator(random_state=0, n_components=2, max_iter=400, **solver) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_allclose(A_fit_tr, A_tr, atol=1e-1) @pytest.mark.parametrize("init", ["random", "nndsvd"]) @pytest.mark.parametrize("solver", ("cd", "mu")) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H): # Test that the function is called in the same way, either directly # or through the NMF class max_iter = 500 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 W_nmf, H, _ = non_negative_factorization( A, init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) W_nmf_2, H, _ = non_negative_factorization( A, H=H, update_H=False, init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) model_class = NMF( init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_allclose(W_nmf, W_cls) assert_allclose(W_nmf_2, W_cls_2) def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = non_negative_factorization msg = re.escape( "Number of components must be a positive integer; got (n_components=1.5)" ) with pytest.raises(ValueError, match=msg): nnmf(A, A,
from .vefm_271 import mesh, vertex, edge, face from math import pi, acos, sin, cos, atan, tan, fabs, sqrt def check_contains(cl, name, print_value=False): dir_class = dir(cl) for el in dir_class: if el.startswith("_"): pass else: if print_value: tmp = getattr(cl, el) print(name, " contains ==>", el, " value = ", tmp) else: print(name, " contains ==>", el) print("\ncheck_contains finished\n\n") class geodesic(mesh): def __init__(self): mesh.__init__(self) self.PKHG_parameters = None self.panels = [] self.vertsdone = [] self.skeleton = [] # List of verts in the full skeleton edges. self.vertskeleton = [] # config needs this member self.edgeskeleton = [] # config needs this member self.sphericalverts = [] self.a45 = pi * 0.25 self.a90 = pi * 0.5 self.a180 = pi self.a270 = pi * 1.5 self.a360 = pi * 2 # define members here # setparams needs: self.frequency = None self.eccentricity = None self.squish = None self.radius = None self.square = None self.squarez = None self.cart = None self.shape = None self.baselevel = None self.faceshape = None self.dualflag = None self.rotxy = None self.rotz = None self.klass = None self.sform = None self.super = None self.odd = None # config needs self.panelpoints = None self.paneledges = None self.reversepanel = None self.edgelength = None self.vertsdone = None self.panels = [] def setparameters(self, params): parameters = self.PKHG_parameters = params self.frequency = parameters[0] # How many subdivisions - up to 20. self.eccentricity = parameters[1] # Elliptical if >1.0. self.squish = parameters[2] # Flattened if < 1.0. self.radius = parameters[3] # Exactly what it says. self.square = parameters[4] # Controls amount of superellipse in X/Y plane. self.squarez = parameters[5] # Controls amount of superellipse in Z dimension. self.cart = parameters[6] # Cuts out sphericalisation step. self.shape = parameters[7] # Full sphere, dome, flatbase. self.baselevel = parameters[8] # Where the base is cut on a flatbase dome. self.faceshape = parameters[9] # Triangular, hexagonal, tri-hex. self.dualflag = parameters[10] self.rotxy = parameters[11] self.rotz = parameters[12] self.klass = parameters[13] self.sform = parameters[14] self.super = 0 # Toggles superellipse. if self.square != 2.0 or self.squarez != 2.0: self.super = 1 self.odd = 0 # Is the frequency odd. It matters for dome building. if self.frequency % 2 != 0: self.odd = 1 def makegeodesic(self): self.vertedgefacedata() # PKHG only a pass 13okt11 self.config() # Generate all the configuration information. if self.klass: self.class2() if self.faceshape == 1: self.hexify() # Hexagonal faces elif self.faceshape == 2: self.starify() # Hex and Triangle faces if self.dualflag: self.dual() if not self.cart: self.sphericalize() # Convert x,y,z positions into spherical u,v. self.sphere2cartesian() # Convert spherical uv back into cartesian x,y,z for final shape. for i in range(len(self.verts)): self.verts[i].index = i for edg in self.edges: edg.findvect() def vertedgefacedata(self): pass def config(self): for i in range(len(self.vertskeleton)): self.vertskeleton[i].index = i for edges in self.edgeskeleton: s = skeletonrow(self.frequency, edges, 0, self) # self a geodesic self.skeleton.append(s) for i in range(len(self.verts)): self.verts[i].index = i for i in range(len(self.panelpoints)): a = self.vertsdone[self.panelpoints[i][0]][1] b = self.vertsdone[self.panelpoints[i][1]][1] c = self.vertsdone[self.panelpoints[i][2]][1] panpoints = [self.verts[a], self.verts[b], self.verts[c]] panedges = [self.skeleton[self.paneledges[i][0]], self.skeleton[self.paneledges[i][1]], self.skeleton[self.paneledges[i][2]]] reverseflag = 0 for flag in self.reversepanel: if flag == i: reverseflag = 1 p = panel(panpoints, panedges, reverseflag, self) def sphericalize(self): if self.shape == 2: self.cutbasecomp() for vert in(self.verts): x = vert.vector.x y = vert.vector.y z = vert.vector.z u = self.usphericalise(x, y, z) v = self.vsphericalise(x, y, z) self.sphericalverts.append([u, v]) def sphere2cartesian(self): for i in range(len(self.verts)): if self.cart: x = self.verts[i].vector.x * self.radius * self.eccentricity y = self.verts[i].vector.y * self.radius z = self.verts[i].vector.z * self.radius * self.squish else: u = self.sphericalverts[i][0] v = self.sphericalverts[i][1] if self.squish != 1.0 or self.eccentricity > 1.0: scalez = 1 / self.squish v = self.ellipsecomp(scalez, v) u = self.ellipsecomp(self.eccentricity, u) if self.super: r1 = self.superell(self.square, u, self.rotxy) r2 = self.superell(self.squarez, v, self.rotz) else: r1 = 1.0 r2 = 1.0 if self.sform[12]: r1 = r1 * self.superform(self.sform[0], self.sform[1], self.sform[2], self.sform[3], self.sform[14] + u, self.sform[4], self.sform[5], self.sform[16] * v) if self.sform[13]: r2 = r2 * self.superform(self.sform[6], self.sform[7], self.sform[8], self.sform[9], self.sform[15] + v, self.sform[10], self.sform[11], self.sform[17] * v) x, y, z = self.cartesian(u, v, r1, r2) self.verts[i] = vertex((x, y, z)) def usphericalise(self, x, y, z): if y == 0.0: if x > 0: theta = 0.0 else: theta = self.a180 elif x == 0.0: if y > 0: theta = self.a90 else: theta = self.a270 else: theta = atan(y / x) if x < 0.0 and y < 0.0: theta = theta + self.a180 elif x < 0.0 and y > 0.0: theta = theta + self.a180 u = theta return u def vsphericalise(self, x, y, z): if z == 0.0: phi = self.a90 else: rho = sqrt(x ** 2 + y ** 2 + z ** 2) phi = acos(z / rho) v = phi return v def ellipsecomp(self, efactor, theta): if theta == self.a90: result = self.a90 elif theta == self.a270: result = self.a270 else: result = atan(tan(theta) / efactor**0.5) if result >= 0.0: x = result y = self.a180 + result if fabs(x - theta) <= fabs(y - theta): result = x else: result = y else: x = self.a180 + result y = result if fabs(x - theta) <= fabs(y - theta): result = x else: result = y return result def cutbasecomp(self): pass def cartesian(self, u, v, r1, r2): x = r1 * cos(u) * r2 * sin(v) * self.radius * self.eccentricity y = r1 * sin(u) * r2 * sin(v) * self.radius z = r2 * cos(v) * self.radius * self.squish return x, y, z class edgerow: def __init__(self, count, anchor, leftindex, rightindex, stepvector, endflag, parentgeo): self.points = [] self.edges = [] # Make a row of evenly spaced points. for i in range(count + 1): if i == 0: self.points.append(leftindex) elif i == count and not endflag: self.points.append(rightindex) else: # PKHG Vectors added! newpoint = anchor + (stepvector * i) vertcount = len(parentgeo.verts) self.points.append(vertcount) newpoint.index = vertcount parentgeo.verts.append(newpoint) for i in range(count): a = parentgeo.verts[self.points[i]] b = parentgeo.verts[self.points[i + 1]] line = edge(a, b) self.edges.append(len(parentgeo.edges)) parentgeo.edges.append(line) class skeletonrow: def __init__(self, count, skeletonedge, shortflag, parentgeo): self.points = [] self.edges = [] self.vect = skeletonedge.vect self.step = skeletonedge.vect / float(count) # Make a row of evenly spaced points. for i in range(count + 1): vert1 = skeletonedge.a vert2 = skeletonedge.b if i == 0: if parentgeo.vertsdone[vert1.index][0]: self.points.append(parentgeo.vertsdone[vert1.index][1]) else: newpoint = vertex(vert1.vector) vertcount = len(parentgeo.verts) self.points.append(vertcount) newpoint.index = vertcount parentgeo.vertsdone[vert1.index] = [1, vertcount] parentgeo.verts.append(newpoint) elif i == count: if parentgeo.vertsdone[vert2.index][0]: self.points.append(parentgeo.vertsdone[vert2.index][1]) else: newpoint = vertex(vert2.vector) vertcount = len(parentgeo.verts) self.points.append(vertcount) newpoint.index = vertcount parentgeo.vertsdone[vert2.index] = [1, vertcount] parentgeo.verts.append(newpoint) else: newpoint = vertex(vert1.vector + (self.step * i)) # must be a vertex! vertcount = len(parentgeo.verts) self.points.append(vertcount) newpoint.index = vertcount parentgeo.verts.append(newpoint) for i in range(count): a = parentgeo.verts[self.points[i]] b = parentgeo.verts[self.points[i + 1]] line = edge(a, b) self.edges.append(len(parentgeo.edges)) parentgeo.edges.append(line) class facefill: def __init__(self, upper, lower, reverseflag, parentgeo, finish): for i in range(finish): a, b, c = upper.points[i], lower.points[i + 1], lower.points[i] if reverseflag: upface = face([parentgeo.verts[a], parentgeo.verts[c], parentgeo.verts[b]]) else: upface = face([parentgeo.verts[a], parentgeo.verts[b], parentgeo.verts[c]]) parentgeo.faces.append(upface) if i == finish - 1: pass else: d = upper.points[i + 1] if reverseflag: downface = face([parentgeo.verts[b], parentgeo.verts[d], parentgeo.verts[a]]) else: downface = face([parentgeo.verts[b], parentgeo.verts[a], parentgeo.verts[d]]) line = edge(parentgeo.verts[a], parentgeo.verts[b]) line2 = edge(parentgeo.verts[d], parentgeo.verts[b]) parentgeo.faces.append(downface) parentgeo.edges.append(line) parentgeo.edges.append(line2) class panel: def __init__(self, points, edges, reverseflag, parentgeo): self.cardinal = points[0] self.leftv = points[1] self.rightv = points[2] self.leftedge = edges[0] self.rightedge = edges[1] self.baseedge = edges[2] self.rows = [] self.orient(parentgeo, edges) self.createrows(parentgeo) self.createfaces(parentgeo, reverseflag) def orient(self, parentgeo, edges): if self.leftedge.points[0] != self.cardinal.index: self.leftedge.points.reverse() self.leftedge.vect.negative() if self.rightedge.points[0] != self.cardinal.index: self.rightedge.points.reverse() self.rightedge.vect.negative() if self.baseedge.points[0] != self.leftv.index: self.baseedge.points.reverse() self.baseedge.vect.negative() def createrows(self, parentgeo): for i in range(len(self.leftedge.points)): if i == parentgeo.frequency: newrow = self.baseedge else: newrow = edgerow(i, parentgeo.verts[self.leftedge.points[i]], self.leftedge.points[i], self.rightedge.points[i], self.baseedge.step, 0, parentgeo) self.rows.append(newrow) def createfaces(self, parentgeo, reverseflag): for i in range(len(self.leftedge.points) - 1): facefill(self.rows[i], self.rows[i + 1], reverseflag, parentgeo, len(self.rows[i].points)) # for point on top? YES! class tetrahedron(geodesic, mesh): def __init__(self, parameter): geodesic.__init__(mesh) geodesic.setparameters(self,
_cond2, _cond3, _cond4)): return True return False def extra_space_exists(str1: str, str2: str) -> bool: """ Return True if a space shouldn't exist between two items """ ls1, ls2 = len(str1), len(str2) if _extra_space_exists(str1, str2, ls1, ls2): return True # 36010G20 KT _vrb: bool = str1.startswith('VRB') _d35 = str1[3:5].isdigit() _d05 = str1[:5].isdigit() _cond1 = (_d05 or (_vrb and _d35)) conds = ( str2 == 'KT' and str1[-1].isdigit() and _cond1, # 36010K T str2 == 'T' and ls1 >= 6 and _cond1 and str1[-1] == 'K', # OVC022 CB str2 in CLOUD_TRANSLATIONS and str2 not in CLOUD_LIST and ls1 >= 3 and str1[:3] in CLOUD_LIST, # FM 122400 str1 in ['FM', 'TL'] and (str2.isdigit() or (str2.endswith('Z') and str2[:-1].isdigit())), # TX 20/10 str1 in ['TX', 'TN'] and str2.find('/') != -1 ) if any(conds): return True return False # noinspection SpellCheckingInspection ITEM_REMV = ['AUTO', 'COR', 'NSC', 'NCD', '$', 'KT', 'M', '.', 'RTD', 'SPECI', 'METAR', 'CORR'] ITEM_REPL = {'CALM': '00000KT'} VIS_PERMUTATIONS = [''.join(p) for p in permutations('P6SM')] VIS_PERMUTATIONS.remove('6MPS') def sanitize_report_list(wxdata: typing.List[str], # noqa pylint: disable=too-many-branches,too-many-locals remove_clr_and_skc: bool = True ) -> typing.Tuple[typing.List[str], typing.List[str], str]: """ Sanitize wxData We can remove and identify "one-off" elements and fix other issues before parsing a line We also return the runway visibility and wind shear since they are very easy to recognize and their location in the report is non-standard """ shear = '' runway_vis = [] for i, item in reversed(list(enumerate(wxdata))): ilen = len(item) _i5d = item[:5].isdigit() _i3d = item[1:3].isdigit() _ivrb = item.startswith('VRB') try: _i5kt = item[5] in ['K', 'T'] except IndexError: _i5kt = False try: _i8kt = item[8] in ['K', 'T'] except IndexError: _i8kt = False cond1 = (ilen == 6 and _i5kt and (_i5d or _ivrb)) cond2 = (ilen == 9 and _i8kt and item[5] == 'G' and (_i5d or _ivrb)) # Remove elements containing only '/' # noinspection SpellCheckingInspection if is_unknown(item): wxdata.pop(i) # Identify Runway Visibility elif ilen > 4 and item[0] == 'R' and (item[3] == '/' or item[4] == '/') and _i3d: runway_vis.append(wxdata.pop(i)) # Remove RE from wx codes, REVCTS -> VCTS elif ilen in [4, 6] and item.startswith('RE'): wxdata[i] = item[2:] # Fix a slew of easily identifiable conditions where a space does not belong elif i and extra_space_exists(wxdata[i - 1], item): wxdata[i - 1] += wxdata.pop(i) # Remove spurious elements elif item in ITEM_REMV: wxdata.pop(i) # Remove 'Sky Clear' from METAR but not TAF elif remove_clr_and_skc and item in ['CLR', 'SKC']: wxdata.pop(i) # Replace certain items elif item in ITEM_REPL: wxdata[i] = ITEM_REPL[item] # Remove amend signifier from start of report ('CCA', 'CCB',etc) elif ilen == 3 and item.startswith('CC') and item[2].isalpha(): wxdata.pop(i) # Identify Wind Shear elif ilen > 6 and item.startswith('WS') and item[5] == '/': shear = wxdata.pop(i).replace('KT', '') # Fix inconsistent 'P6SM' Ex: TP6SM or 6PSM -> P6SM elif ilen > 3 and item[-4:] in VIS_PERMUTATIONS: wxdata[i] = 'P6SM' # Fix wind T elif cond1 or cond2: wxdata[i] = item[:-1] + 'KT' # Fix joined TX-TN elif ilen > 16 and len(item.split('/')) == 3: if item.startswith('TX') and 'TN' not in item: tn_index = item.find('TN') wxdata.insert(i + 1, item[:tn_index]) wxdata[i] = item[tn_index:] elif item.startswith('TN') and item.find('TX') != -1: tx_index = item.find('TX') wxdata.insert(i + 1, item[:tx_index]) wxdata[i] = item[tx_index:] return wxdata, runway_vis, shear # pylint: disable=too-many-branches def get_altimeter(wxdata: typing.List[str], units: Units, version: str = 'NA' # noqa ) -> typing.Tuple[typing.List[str], typing.Optional[Number]]: """ Returns the report list and the removed altimeter item Version is 'NA' (North American / default) or 'IN' (International) """ if not wxdata: return wxdata, None altimeter = '' target: str = wxdata[-1] if version == 'NA': # Version target if target[0] == 'A': altimeter = wxdata.pop()[1:] # Other version but prefer normal if available elif target[0] == 'Q': if wxdata[-2][0] == 'A': wxdata.pop() altimeter = wxdata.pop()[1:] else: units.altimeter = 'hPa' altimeter = wxdata.pop()[1:].lstrip('.') # Else grab the digits elif len(target) == 4 and target.isdigit(): altimeter = wxdata.pop() elif version == 'IN': # Version target if target[0] == 'Q': altimeter = wxdata.pop()[1:].lstrip('.') if '/' in altimeter: altimeter = altimeter[:altimeter.find('/')] # Other version but prefer normal if available elif target[0] == 'A': if len(wxdata) >= 2 and wxdata[-2][0] == 'Q': wxdata.pop() altimeter = wxdata.pop()[1:] else: units.altimeter = 'inHg' altimeter = wxdata.pop()[1:] # Some stations report both, but we only need one if wxdata and (wxdata[-1][0] == 'A' or wxdata[-1][0] == 'Q'): wxdata.pop() # convert to Number if not altimeter: return wxdata, None if units.altimeter == 'inHg' and '.' not in altimeter: value = altimeter[:2] + '.' + altimeter[2:] else: value = altimeter if altimeter == 'M' * len(altimeter): return wxdata, None while value and not value[0].isdigit(): value = value[1:] if value.endswith('INS'): value = value[:-3] if altimeter.endswith('INS'): altimeter = altimeter[:-3] return wxdata, make_number(value, altimeter) def get_taf_alt_ice_turb(wxdata: typing.List[str] ) -> typing.Tuple[typing.List[str], str, typing.List[str], typing.List[str]]: """ Returns the report list and removed: Altimeter string, Icing list, Turbulence list """ altimeter = '' icing, turbulence = [], [] for i, item in reversed(list(enumerate(wxdata))): if len(item) > 6 and item.startswith('QNH') and item[3:7].isdigit(): altimeter = wxdata.pop(i)[3:7] elif item.isdigit(): if item[0] == '6': icing.append(wxdata.pop(i)) elif item[0] == '5': turbulence.append(wxdata.pop(i)) return wxdata, altimeter, icing, turbulence def is_possible_temp(temp: str) -> bool: """ Returns True if all characters are digits or 'M' (for minus) """ for char in temp: if not (char.isdigit() or char == 'M'): return False return True def get_temp_and_dew(wxdata: typing.List[str] ) -> typing.Tuple[typing.List[str], typing.Optional[Number], typing.Optional[Number]]: """ Returns the report list and removed temperature and dewpoint strings """ for i, item in reversed(list(enumerate(wxdata))): if '/' in item: # ///07 if item[0] == '/': item = '/' + item.lstrip('/') # 07/// elif item[-1] == '/': item = item.rstrip('/') + '/' tempdew = item.split('/') if len(tempdew) != 2: continue valid = True for j, temp in enumerate(tempdew): if temp in ['MM', 'XX']: tempdew[j] = '' elif not is_possible_temp(temp): valid = False break if valid: wxdata.pop(i) return wxdata, make_number(tempdew[0]), make_number(tempdew[1]) return wxdata, None, None def get_station_and_time(wxdata: typing.List[str]) -> typing.Tuple[typing.List[str], str, str]: """ Returns the report list and removed station ident and time strings """ station = wxdata.pop(0) qtime = wxdata[0] if wxdata and qtime.endswith('Z') and qtime[:-1].isdigit(): rtime = wxdata.pop(0) elif wxdata and len(qtime) == 6 and qtime.isdigit(): rtime = wxdata.pop(0) + 'Z' else: rtime = '' return wxdata, station, rtime # pylint: disable=too-many-boolean-expressions def get_wind(wxdata: typing.List[str], units: Units # noqa pylint: disable=too-many-locals ) -> typing.Tuple[typing.List[str], typing.Optional[Number], typing.Optional[Number], typing.Optional[Number], typing.List[typing.Optional[Number]]]: """ Returns the report list and removed: Direction string, speed string, gust string, variable direction list """ direction, speed, gust = '', '', '' variable: typing.List[typing.Optional[Number]] = [] if wxdata: item = copy(wxdata[0]) for rep in ['(E)']: item = item.replace(rep, '') item = item.replace('O', '0') # 09010KT, 09010G15KT _cond1 = any((item.endswith('KT'), item.endswith('KTS'), item.endswith('MPS'), item.endswith('KMH'))) _cond2 = bool(len(item) == 5 or (len(item) >= 8 and item.find('G') != -1) and item.find('/') == -1) _cond3 = (_cond2 and (item[:5].isdigit() or (item.startswith('VRB') and item[3:5].isdigit()))) if _cond1 or _cond3: # In order of frequency if item.endswith('KT'): item = item.replace('KT', '') elif item.endswith('KTS'): item = item.replace('KTS', '') elif item.endswith('MPS'): units.wind_speed = 'm/s' item = item.replace('MPS', '') elif item.endswith('KMH'): units.wind_speed = 'km/h' item = item.replace('KMH', '') direction = item[:3] if 'G' in item: g_index = item.find('G') gust = item[g_index + 1:] speed = item[3:g_index] else: speed = item[3:] wxdata.pop(0) # Separated Gust if wxdata and 1 < len(wxdata[0]) < 4 and wxdata[0][0] == 'G' and wxdata[0][1:].isdigit(): gust = wxdata.pop(0)[1:] # Variable Wind Direction try: _wxlen7 = len(wxdata[0]) == 7 except IndexError: _wxlen7 = False try: _wxd03d = wxdata[0][:3].isdigit() except IndexError: _wxd03d = False if wxdata and _wxlen7 and _wxd03d and wxdata[0][3] == 'V' and wxdata[0][4:].isdigit(): variable = [make_number(i, speak=i) for i in wxdata.pop(0).split('V')] # Convert to Number direction = CARDINAL_DIRECTIONS.get(direction, direction) _resulting_direction = make_number(direction, speak=direction) _resulting_speed = make_number(speed) _resulting_gust = make_number(gust) return wxdata, _resulting_direction, _resulting_speed, _resulting_gust, variable def get_visibility(wxdata: typing.List[str], units: Units) -> typing.Tuple[typing.List[str], typing.Optional[Number]]: """ Returns the report list and removed visibility string """ visibility = '' if wxdata: item = copy(wxdata[0]) # Vis
# -*- coding: utf-8 -*- # #START_LICENSE########################################################### # # # This file is part of the Environment for Tree Exploration program # (ETE). http://ete.cgenomics.org # # ETE is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ETE is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public # License for more details. # # You should have received a copy of the GNU General Public License # along with ETE. If not, see <http://www.gnu.org/licenses/>. # # # ABOUT THE ETE PACKAGE # ===================== # # ETE is distributed under the GPL copyleft license (2008-2011). # # If you make use of ETE in published work, please cite: # # <NAME>, <NAME> and <NAME>. # ETE: a python Environment for Tree Exploration. Jaime BMC # Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24 # # Note that extra references to the specific methods implemented in # the toolkit are available in the documentation. # # More info at http://ete.cgenomics.org # # # #END_LICENSE############################################################# __VERSION__="ete2-2.2rev1056" #START_LICENSE########################################################### # # Copyright (C) 2009 by <NAME>. All rights reserved. # email: <EMAIL> # # This file is part of the Environment for Tree Exploration program (ETE). # http://ete.cgenomics.org # # ETE is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ETE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ETE. If not, see <http://www.gnu.org/licenses/>. # # #END_LICENSE############################################################# import os import cPickle import random import copy from collections import deque import itertools from ete2.parser.newick import read_newick, write_newick # the following imports are necessary to set fixed styles and faces try: from ete2.treeview.main import NodeStyle, _FaceAreas, FaceContainer, FACE_POSITIONS from ete2.treeview.faces import Face except ImportError: TREEVIEW = False else: TREEVIEW = True __all__ = ["Tree", "TreeNode"] DEFAULT_COMPACT = False DEFAULT_SHOWINTERNAL = False DEFAULT_DIST = 1.0 DEFAULT_SUPPORT = 1.0 DEFAULT_NAME = "NoName" class TreeError(Exception): """ A problem occurred during a TreeNode operation """ def __init__(self, value=''): self.value = value def __str__(self): return repr(self.value) class TreeNode(object): """ TreeNode (Tree) class is used to store a tree structure. A tree consists of a collection of TreeNode instances connected in a hierarchical way. Trees can be loaded from the New Hampshire Newick format (newick). :argument newick: Path to the file containing the tree or, alternatively, the text string containing the same information. :argument 0 format: subnewick format .. table:: ====== ============================================== FORMAT DESCRIPTION ====== ============================================== 0 flexible with support values 1 flexible with internal node names 2 all branches + leaf names + internal supports 3 all branches + all names 4 leaf branches + leaf names 5 internal and leaf branches + leaf names 6 internal branches + leaf names 7 leaf branches + all names 8 all names 9 leaf names 100 topology only ====== ============================================== :returns: a tree node object which represents the base of the tree. ** Examples: ** :: t1 = Tree() # creates an empty tree t2 = Tree('(A:1,(B:1,(C:1,D:1):0.5):0.5);') t3 = Tree('/home/user/myNewickFile.txt') """ def _get_dist(self): return self._dist def _set_dist(self, value): try: self._dist = float(value) except ValueError: raise def _get_support(self): return self._support def _set_support(self, value): try: self._support = float(value) except ValueError: raise def _get_up(self): return self._up def _set_up(self, value): if type(value) == type(self) or value is None: self._up = value else: raise ValueError("bad node_up type") def _get_children(self): return self._children def _set_children(self, value): if type(value) == list and \ len(set([type(n)==type(self) for n in value]))<2: self._children = value else: raise ValueError("bad children type") def _get_style(self): if self._img_style is None: self._set_style(None) return self._img_style def _set_style(self, value): self.set_style(value) #: Branch length distance to parent node. Default = 0.0 img_style = property(fget=_get_style, fset=_set_style) #: Branch length distance to parent node. Default = 0.0 dist = property(fget=_get_dist, fset=_set_dist) #: Branch support for current node support = property(fget=_get_support, fset=_set_support) #: Pointer to parent node up = property(fget=_get_up, fset=_set_up) #: A list of children nodes children = property(fget=_get_children, fset=_set_children) def _set_face_areas(self, value): if isinstance(value, _FaceAreas): self._faces = value else: raise ValueError("[%s] is not a valid FaceAreas instance" %type(value)) def _get_face_areas(self): if not hasattr(self, "_faces"): self._faces = _FaceAreas() return self._faces faces = property(fget=_get_face_areas, \ fset=_set_face_areas) def __init__(self, newick=None, format=0, dist=None, support=None, name=None): self._children = [] self._up = None self._dist = DEFAULT_DIST self._support = DEFAULT_SUPPORT self._img_style = None self.features = set([]) # Add basic features self.features.update(["dist", "support", "name"]) if dist is not None: self.dist = dist if support is not None: self.support = support self.name = name if name is not None else DEFAULT_NAME # Initialize tree if newick is not None: read_newick(newick, root_node = self, format=format) def __nonzero__(self): return True def __repr__(self): return "Tree node '%s' (%s)" %(self.name, hex(self.__hash__())) def __and__(self, value): """ This allows to execute tree&'A' to obtain the descendant node whose name is A""" value=str(value) try: first_match = self.iter_search_nodes(name=value).next() return first_match except StopIteration: raise ValueError, "Node not found" def __add__(self, value): """ This allows to sum two trees.""" # Should a make the sum with two copies of the original trees? if type(value) == self.__class__: new_root = self.__class__() new_root.add_child(self) new_root.add_child(value) return new_root else: raise ValueError, "Invalid node type" def __str__(self): """ Print tree in newick format. """ return self.get_ascii(compact=DEFAULT_COMPACT, \ show_internal=DEFAULT_SHOWINTERNAL) def __contains__(self, item): """ Check if item belongs to this node. The 'item' argument must be a node instance or its associated name.""" if isinstance(item, self.__class__): return item in set(self.get_descendants()) elif type(item)==str: return item in set([n.name for n in self.traverse()]) def __len__(self): """Node len returns number of children.""" return len(self.get_leaves()) def __iter__(self): """ Iterator over leaf nodes""" return self.iter_leaves() def add_feature(self, pr_name, pr_value): """ Add or update a node's feature. """ setattr(self, pr_name, pr_value) self.features.add(pr_name) def add_features(self, **features): """ Add or update several features. """ for fname, fvalue in features.iteritems(): setattr(self, fname, fvalue) self.features.add(fname) def del_feature(self, pr_name): """ Permanently deletes a node's feature. """ if hasattr(self, pr_name): delattr(self, pr_name) self.features.remove(pr_name) # Topology management def add_child(self, child=None, name=None, dist=None, support=None): """ Adds a new child to this node. If child node is not suplied as an argument, a new node instance will be created. :argument None child: the node instance to be added as a child. :argument None name: the name that will be given to the child. :argument None dist: the distance from the node to the child. :argument None support': the support value of child partition. :returns: The child node instance """ if child is None: child = self.__class__() if name is not None: child.name = name if dist is not None: child.dist = dist if support is not None: child.support = support self.children.append(child) child.up = self return child def remove_child(self, child): """ Removes a child from this node (parent and child nodes still exit but are no longer connected). """ try: self.children.remove(child) except ValueError, e: raise TreeError, e else: child.up = None return child def add_sister(self, sister=None, name=None, dist=None): """ Adds a sister to this node. If sister node is not supplied as an argument, a new TreeNode instance will be created and returned. """ if self.up == None: raise TreeError("A parent node is required to add a sister") else: return self.up.add_child(child=sister, name=name, dist=dist) def remove_sister(self, sister=None): """ Removes a node's sister node. It has the same effect as **`TreeNode.up.remove_child(sister)`** If a sister node is not supplied, the first sister will be deleted and returned. :argument sister: A
###################################################################### # Author: Dr. <NAME> <NAME>, <NAME> # Username: heggens alfarozavalae, jamalie # # Assignment: A08: UPC Barcodes # # Purpose: Determine how to do some basic operations on lists # ###################################################################### # Acknowledgements: # # None: Original work # licensed under a Creative Commons # Attribution-Noncommercial-Share Alike 3.0 United States License. #################################################################################### import turtle # importing the turtle library def is_valid_input(barcode): """ This function verifies if the barcode is 12 digits and if they are all positive numbers. :param barcode: parameter that takes the user's input to check if it is a valid 12 digit or not :return: Fruitful. a True or False Boolean value. """ if len(barcode) == 12 and barcode.isnumeric(): # checks the user's input to see if it is a valid 12 digit barcode return True # true when the barcode is 12 digits return False # returns false when it is not 12 digits input def is_valid_modulo(barcode): """ :param barcode: takes the user's input and does several operations to the odd and even positions with the module check character method. :return: checkdigit (the variable that should match the last digit of the barcode """ oddnumbers = [] # creating new list for i in range(0,len(barcode),2): # creating for loop to go through the elements in the barcode starting from the first one (odd) and skipping every other one oddnumbers.append(barcode[i]) # appending into the oddnumbers list each of the elements retrieved in the for loop oddnumber_sum = sum(map(int,oddnumbers)) # adding all the elements in the list created and using map to make them integers oddbythree = int(oddnumber_sum) * 3 # multiplying the oddnumber_sum by three as one of the steps in module check character evennumbers = [] # creates new empty list for even numbers for i in range(1,len(barcode),2): # for loop to start in the first even element of the barcode and skipping every other one evennumbers.append(barcode[i]) # appending the retrieved even numbers into the empty list evennumbers = evennumbers[:-1] # taking out the last even number (module check character) evennumber_sum = sum(map(int,evennumbers)) # adding all the even numbers after changing them into integers. final = oddbythree + evennumber_sum # adding the result from odd numbers and even numbers to get to the final step final = final % 10 # checking if the final number is divisible by 10 with modulus if final is not 0: # if function to check if the final digit is not zero checkdigit = 10 - final # subtracting 10 from the final one when the final is not zero else: checkdigit = final # if there's no remainder in modulus of final % 10 the final value stays the same return checkdigit # returning the checkdigit value def translate(barcode): """ This function will translate the barcode into binary numbers so that we can draw the turtle by using the turtle module :param barcode: taking the barcode from the user's input :return: Fruitful. returns leftl and rights values of the lists lefside and rightside """ leftside = ['0001101', '0011001', '0010011', '0111101', '0100011', '0110001', '0101111', '0111011', '0110111', '0001011'] # creating a list with all the elements from the left side table. rightside = ['1110010','1100110','1101100','1000010','1011100','1001110','1010000','1000100','1001000','1110100'] # # creating a list with all the elements from the right side table. barcode = list(barcode) # making the barcode a list leftl = [] # creating an empty list to go through the first 6 elements of barcode for i in barcode[0:6]: # for loop to run in the first 6 elements lf = leftside[int(i)] # getting the first six elements of the list leftl.append(lf) # appending the first 6 elements into the leftl variable rights = [] # creating an empty list to go through the remainder 6 elements of barcode for i in barcode[6:12]: # for loop to run in the remainder 6 elements rs = rightside[int(i)] # getting the first six elements of the list rights.append(rs) # appending the first 6 elements into the leftl variable return (leftl, rights) # returning both leftl and rights to use them in main for drawing def drawing_blackline(t): """ :param t: turtle object that will draw the black lines in the barcode :return: None. Void """ t.color("black") # setting the color of the turtle to be black t.begin_fill() # beginning to fill with the turtle for i in range(2): # for loop to run twice t.forward(2) # turtle t moves forward by 2 t.left(90) # turtle t turns 90 degrees left to go up t.forward(200) # turtle t goes forward 200 up t.left(90) # turtle t turns 90 degrees left again t.end_fill() # finishing the filling of t t.forward(2) # moving to the right by 2 without leaving a trace def drawing_blackline_long(t): """ :param t: turtle object that will draw the black lines in the barcode for guard and center :return: None. Void """ t.color("black") # setting the color of the turtle to be black t.begin_fill() for i in range(2): # for loop to run twice t.forward(2) # turtle t moves forward by 2 t.left(90) # turtle t turns 90 degrees left to go up t.forward(248) # turtle t goes forward 248 up t.left(90) # turtle t turns 90 degrees left again t.end_fill() # finishing the filling of t t.forward(2) # moving to the right by 2 without leaving a trace def drawing_white_line(t): """ :param t: turtle object t to draw the while lines. :return: none. Void function . """ t.color("white") # setting the color of the turtle to be black t.begin_fill() # beginning to fill with the turtle for i in range(2): # for loop to run twice t.forward(2) # turtle t moves forward by 2 t.left(90) # turtle t turns 90 degrees left to go up t.forward(200) # turtle t goes forward 200 up t.left(90) # turtle t turns 90 degrees left again t.end_fill() # finishing the filling of t t.forward(2) # moving to the right by 2 without leaving a trace def drawing_white_line_long(t): """ :param t: turtle object t to draw the while lines for guard and center :return: none. Void function . """ t.color("white") # setting the color of the turtle to be black t.begin_fill() for i in range(2): # for loop to run twice t.forward(2) # moving to the right by 2 t.left(90) # turtle t turns 90 degrees left to go up t.forward(248) # turtle t goes forward 248 up t.left(90) t.end_fill() # finishing the filling of t t.forward(2) # moving to the right by 2 without leaving a trace def main(): """ :return: main function where the user is asked for a barcode and list is created to run the other functions that check characters in barcode """ input_code = input("Enter a 12 digit code [0-9]: ") # asking user for input of barcode while not is_valid_input(input_code): # while loop to check if it is valid input_code = input("Invalid number. Enter a 12 digit code [0-9]: ") # asking user to input a valid barcode again list(input_code) # making the barcode a list # TODO turtle draw code t = turtle.Turtle() # creating the turtle t.hideturtle() # hiding turtle to move its position wn = turtle.Screen() # creating the turtle screen t.speed(0) # setting the speed of the turtle t.penup() # putting the pen up to start moving t.setpos(-250, -100) # setting the left side position left, right = translate(input_code) # calling the two return variables from the translate function if is_valid_modulo(input_code) != int(input_code[11]): # if function run the module check character in the barcode t.write("Wrong barcode.", move=False, align="left", font=("Arial", 15, "normal")) # writing the text when the barcode doesnt exist else: guard_left = ["1", "0", "1"] # creating list for left guard for i in guard_left: # loop for left guard if i == "0": # if function for drawing white lines when i is 0 drawing_white_line_long(t) else: drawing_blackline_long(t) # # if function for drawing white lines when i
""" Toolbox for simulating compositional data from ScRNA-seq This toolbox provides data generation and modelling solutions for compositional data with different specifications. This data might e.g. come from scRNA-seq experiments. For scenarios 1-4, we first generate composition parameters (b_true, w_true) and a covariance matrix (x) from some input specifications. We then build a concentration vector for each sample (row of x) that sums up to 1. From there, we can calculate each row of the cell count matrix (y) via a multinomial distribution :authors: <NAME> """ import numpy as np import anndata as ad import pandas as pd from scipy.special import softmax def generate_normal_uncorrelated(N, D, K, n_total, noise_std_true=1): """ Scenario 1: Normally distributed, independent covariates Parameters ---------- N -- int Number of samples D -- int Number of covariates K -- int Number of cell types n_total -- list Number of individual cells per sample noise_std_true -- float noise level. 0: No noise Returns ------- data Anndata object """ # Generate random composition parameters b_true = np.random.normal(0, 1, size=K).astype(np.float32) # bias (alpha) w_true = np.random.normal(0, 1, size=(D, K)).astype(np.float32) # weights (beta) # Generate random covariate matrix x = np.random.normal(0, 1, size=(N, D)).astype(np.float32) noise = noise_std_true * np.random.randn(N, 1).astype(np.float32) # Generate y y = np.zeros([N, K], dtype=np.float32) for i in range(N): # Concentration should sum to 1 for each sample concentration = softmax(x[i, :].T@w_true + b_true + noise[i, :]).astype(np.float32) y[i, :] = np.random.multinomial(n_total[i], concentration).astype(np.float32) x_names = ["x_" + str(n) for n in range(x.shape[1])] x_df = pd.DataFrame(x, columns=x_names) data = ad.AnnData(X=y, obs=x_df, uns={"b_true": b_true, "w_true": w_true}) return data def generate_normal_correlated(N, D, K, n_total, noise_std_true, covariate_mean=None, covariate_var=None): """ Scenario 2: Correlated covariates Parameters ---------- N -- int Number of samples D -- int Number of covariates K -- int Number of cell types n_total -- list Number of individual cells per sample noise_std_true -- float noise level. 0: No noise covariate_mean -- numpy array [D] Mean of each covariate covariate_var -- numpy array [DxD] Covariance matrix for covariates Returns ------- data Anndata object """ if covariate_mean is None: covariate_mean = np.zeros(shape=D) # Generate randomized covariate covariance matrix if none is specified if covariate_var is None: # Covariates drawn from MvNormal(0, Cov), Cov_ij = p ^|i-j| , p=0.4 # Tibshirani for correlated covariates: Tibshirani (1996) p = 0.4 covariate_var = np.zeros((D, D)) for i in range(D): for j in range(D): covariate_var[i, j] = p**np.abs(i-j) # Generate random composition parameters b_true = np.random.normal(0, 1, size=K).astype(np.float32) # bias (alpha) w_true = np.random.normal(0, 1, size=(D, K)).astype(np.float32) # weights (beta) # Generate random covariate matrix x = np.random.multivariate_normal(size=N, mean=covariate_mean, cov=covariate_var).astype(np.float32) noise = noise_std_true * np.random.randn(N, 1).astype(np.float32) # Generate y y = np.zeros([N, K], dtype=np.float32) for i in range(N): # Concentration should sum to 1 for each sample concentration = softmax(x[i, :].T @ w_true + b_true + noise[i, :]).astype(np.float32) y[i, :] = np.random.multinomial(n_total[i], concentration).astype(np.float32) x_names = ["x_" + str(n) for n in range(x.shape[1])] x_df = pd.DataFrame(x, columns=x_names) data = ad.AnnData(X=y, obs=x_df, uns={"b_true": b_true, "w_true": w_true}) return data def generate_normal_xy_correlated(N, D, K, n_total, noise_std_true=1, covariate_mean=None, covariate_var=None, sigma=None): """ Scenario 3: Correlated cell types and covariates Parameters ---------- N -- int Number of samples D -- int Number of covariates K -- int Number of cell types n_total -- list Number of individual cells per sample noise_std_true -- float noise level. 0: No noise covariate_mean -- numpy array [D] Mean of each covariate covariate_var -- numpy array [DxD] Covariance matrix for all covaraiates sigma -- numpy array [KxK] correlation matrix for cell types Returns ------- data Anndata object """ if covariate_mean is None: covariate_mean = np.zeros(shape=D) if sigma is None: sigma = np.identity(K) # Generate randomized covariate covariance matrix if none is specified if covariate_var is None: # Covaraits drawn from MvNormal(0, Cov) Cov_ij = p ^|i-j| , p=0.4 # Tibshirani for correlated covariates: Tibshirani (1996) p = 0.4 covariate_var = np.zeros((D, D)) for i in range(D): for j in range(D): covariate_var[i, j] = p**np.abs(i-j) # Generate random composition parameters b_true = np.random.normal(0, 1, size=K).astype(np.float32) # bias (alpha) w_true = np.random.normal(0, 1, size=(D, K)).astype(np.float32) # weights (beta) # Generate random covariate matrix x = np.random.multivariate_normal(size=N, mean=covariate_mean, cov=covariate_var).astype(np.float32) noise = noise_std_true * np.random.randn(N, 1).astype(np.float32) # Generate y y = np.zeros([N, K], dtype=np.float32) for i in range(N): # Each row of y is now influenced by sigma alpha = np.random.multivariate_normal(mean=x[i, :].T@w_true + b_true, cov=sigma*noise[i, :]).astype(np.float32) concentration = softmax(alpha).astype(np.float32) y[i, :] = np.random.multinomial(n_total[i], concentration).astype(np.float32) x_names = ["x_" + str(n) for n in range(x.shape[1])] x_df = pd.DataFrame(x, columns=x_names) data = ad.AnnData(X=y, obs=x_df, uns={"b_true": b_true, "w_true": w_true}) return data def sparse_effect_matrix(D, K, n_d, n_k): """ Generates a sparse effect matrix Parameters ---------- D -- int Number of covariates K -- int Number of cell types n_d -- int Number of covariates that effect a cell type n_k -- int Number of cell types that are affected by any covariate Returns ------- w_true Effect matrix """ # Choose indices of affected cell types and covariates randomly d_eff = np.random.choice(range(D), size=n_d, replace=False) k_eff = np.random.choice(range(K), size=n_k, replace=False) # Possible entries of w_true w_choice = [0.3, 0.5, 1] w_true = np.zeros((D, K)) # Fill in w_true for i in d_eff: for j in k_eff: c = np.random.choice(3, 1) w_true[i, j] = w_choice[c] return w_true def generate_sparse_xy_correlated(N, D, K, n_total, noise_std_true=1, covariate_mean=None, covariate_var=None, sigma=None, b_true=None, w_true=None): """ Scenario 4: Sparse true parameters Parameters ---------- N -- int Number of samples D -- int Number of covariates K -- int Number of cell types n_total -- list Number of individual cells per sample noise_std_true -- float noise level. 0: No noise covariate_mean -- numpy array [D] Mean of each covariate covariate_var -- numpy array [DxD] Covariance matrix for all covaraiates sigma -- numpy array [KxK] correlation matrix for cell types b_true -- numpy array [K] bias coefficients w_true -- numpy array [DxK] Effect matrix Returns ------- data Anndata object """ if covariate_mean is None: covariate_mean = np.zeros(shape=D) if sigma is None: sigma = np.identity(K) # Generate randomized covariate covariance matrix if none is specified if covariate_var is None: # Covaraits drawn from MvNormal(0, Cov) Cov_ij = p ^|i-j| , p=0.4 # Tibshirani for correlated covariates: Tibshirani (1996) p = 0.4 covariate_var = np.zeros((D, D)) for i in range(D): for j in range(D): covariate_var[i, j] = p ** np.abs(i - j) # Uniform intercepts if none are specifed if b_true is None: b_true = np.random.uniform(-3,3, size=K).astype(np.float32) # bias (alpha) # Randomly select covariates that should correlate if none are specified if w_true is None: n_d = np.random.choice(range(D), size=1) n_k = np.random.choice(range(K), size=1) w_true = sparse_effect_matrix(D, K, n_d, n_k) # Generate random covariate matrix x = np.random.multivariate_normal(size=N, mean=covariate_mean, cov=covariate_var).astype(np.float32) noise = noise_std_true * np.random.randn(N, 1).astype(np.float32) # Generate y y = np.zeros([N, K], dtype=np.float32) for i in range(N): # Each row of y is now influenced by sigma alpha = np.random.multivariate_normal(mean=x[i, :].T @ w_true + b_true, cov=sigma * noise[i, :]).astype( np.float32) concentration = softmax(alpha).astype(np.float32) y[i, :] = np.random.multinomial(n_total[i], concentration).astype(np.float32) x_names = ["x_" + str(n) for n in range(x.shape[1])] x_df = pd.DataFrame(x, columns=x_names) data = ad.AnnData(X=y, obs=x_df, uns={"b_true": b_true, "w_true": w_true}) return data def generate_case_control(cases=1, K=5, n_total=1000, n_samples=[5,5], noise_std_true=0, sigma=None, b_true=None, w_true=None): """ Generates compositional data with binary covariates Parameters ---------- cases -- int number of covariates K -- int Number of cell types n_total -- int number of cells per sample n_samples -- list Number of samples per case combination as array[2**cases] noise_std_true -- float noise level. 0: No noise - Not in use atm!!! sigma -- numpy array [KxK] correlation matrix for cell types b_true -- numpy array [K] bias coefficients w_true -- numpy array [DxK] Effect matrix Returns ------- Anndata object """ D = cases**2 # Uniform intercepts if none are specifed if b_true is None: b_true = np.random.uniform(-3, 3, size=K).astype(np.float32) # bias (alpha) # Randomly select covariates that should correlate if none are specified if w_true is None: n_d = np.random.choice(range(D), size=1) n_k = np.random.choice(range(K),
<filename>ztfquery/sedm.py #! /usr/bin/env python # """ Access SEDM data from pharos """ PHAROS_BASEURL = "http://pharos.caltech.edu" import os import requests import json import numpy as np import pandas import warnings from . import io SEDMLOCAL_BASESOURCE = io.LOCALSOURCE+"SEDM" SEDMLOCALSOURCE = SEDMLOCAL_BASESOURCE+"/redux" if not os.path.exists(SEDMLOCAL_BASESOURCE): os.makedirs(SEDMLOCAL_BASESOURCE) if not os.path.exists(SEDMLOCALSOURCE): os.makedirs(SEDMLOCALSOURCE) ####################### # # # High level method # # # ####################### def _download_sedm_data_(night, pharosfile, fileout=None, verbose=False): """ """ url = PHAROS_BASEURL+"/data/%s/"%night+pharosfile if verbose: print(url) return io.download_single_url(url,fileout=fileout, auth=io._load_id_("pharos"), cookies="no_cookies") def _relative_to_source_(relative_datapath, source=None): """ """ if source is None: return relative_datapath if source in ["pharos"]: return [PHAROS_BASEURL+"/data/"+l for l in relative_datapath] if source in ["local"]: return [SEDMLOCALSOURCE+"/"+l for l in relative_datapath] def get_night_file(night): """ get the what.list for a given night night format: YYYYMMDD """ response = _download_sedm_data_(night, "what.list") return response.text.splitlines() def get_pharos_night_data(date, auth=None): """ """ username,password = io._load_id_("pharos") if auth is None else auth requests_prop = {"data":json.dumps({"obsdate":date, "username":username, "password":password, }), "headers":{'content-type': 'application/json'}} t = requests.post(PHAROS_BASEURL+"/get_user_observations", **requests_prop).text if "data" not in t: raise IOError("night file download fails. Check you authentification maybe?") return np.sort(json.loads(t)["data"]) ####################### # # # INTERNAL JSON DB # # # ####################### # 20181012 20181105 EMPTY_WHAT_DF = pandas.DataFrame(columns=["filename","airmass", "shutter", "exptime", "target", "night"]) def _parse_line_(line): """ """ try: filename, rest = line.split('(') info, what = rest.split(")") what = what.replace(":", "") return [filename.replace(" ","")]+info.split("/")+[what.replace(" [A]","").strip()] except: return None def whatfiles_to_dataframe(whatfile): """ """ parsed_lines = [_parse_line_(l_) for l_ in whatfile] return pandas.DataFrame([l for l in parsed_lines if l is not None], columns=["filename","airmass", "shutter", "exptime", "target"]) class _SEDMFiles_(): """ """ SOURCEFILE = SEDMLOCAL_BASESOURCE+"/whatfiles.json" PHAROSFILES = SEDMLOCAL_BASESOURCE+"/pharosfiles.json" def __init__(self): """ """ self.load() def get_night_data(self, night, from_dict=False): """ """ if from_dict: df_night = pandas.DataFrame(whatfiles_to_dataframe(self._data[night])) df_night["night"] = night return df_night return self.data[self.data["night"].isin(np.atleast_1d(night))] def get_pharos_night_data(self, night): """ """ return self._pharoslist[night] def get_data_betweenrange(self, start="2018-08-01", end=None): """ """ lower_bound = True if start is None else (self.datetime>start) upper_bound = True if end is None and end not in ["now","today"] else (self.datetime<end) return self.data[lower_bound & upper_bound] def get_target_data(self, target, timerange=None): """ """ data_ = self.data if timerange is None else self.get_data_betweenrange(*timerange) return data_[data_["target"].isin(np.atleast_1d(target))] def get_observed_targets(self, timerange=None): """ """ data_ = self.data if timerange is None else self.get_data_betweenrange(*timerange) return np.unique(data_["target"]) def get_nights_with_target(self, target, timerange=None): """ """ return np.unique( self.get_target_data(target, timerange=timerange)["night"] ) # -------- # # I/O # # -------- # def download_nightrange(self, start="2018-08-01", end="now", update=False, pharosfiles=False, dump=True): """ """ if end is None or end in ["today", "now"]: from datetime import datetime today = datetime.today() end = today.isoformat().split("T")[0] self.add_night(["%4d%02d%02d"%(tt.year,tt.month, tt.day) for tt in pandas.date_range(start=start, end=end) ], update=update) if pharosfiles: self.add_pharoslist(["%4d%02d%02d"%(tt.year,tt.month, tt.day) for tt in pandas.date_range(start=start, end=end) ], update=update) if dump: self.dump("whatfile" if not pharosfiles else "both") def add_night(self, night, update=False): """ night (or list of) with the given format YYYYMMDD if the given night is already known, this will the download except if update is True """ for night_ in np.atleast_1d(night): if night_ in self._data and not update: continue self._data[night_] = get_night_file(night_) self.dump("whatfile") self._build_dataframe_() def load(self): """ """ # What Files if os.path.isfile( self.SOURCEFILE ): self._data = json.load( open(self.SOURCEFILE, 'r') ) else: self._data = {} # What Pharos Data if os.path.isfile( self.PHAROSFILES ): self._pharoslist = json.load( open(self.PHAROSFILES, 'r') ) else: self._pharoslist = {} self._build_dataframe_() def dump(self, which="both"): """ Save the current version of whatfiles and or pharos files on your computer. Parameters ---------- which: [str] -optional- what kind of data do you want to dump ? - whatfile - pharosfile - both """ if not which in ["whatfile","pharosfile","both","*", "all"]: raise ValueError("which can only be whatfile or pharosfile or both") if which in ["whatfile", "both","*", "all"]: with open(self.SOURCEFILE, 'w') as outfile: json.dump(self._data, outfile) if which in ["pharosfile","both","*", "all"]: with open(self.PHAROSFILES, 'w') as outfile: json.dump(self._pharoslist, outfile) def _build_dataframe_(self): """ """ if len(self._data.keys())>0: self.data = pandas.concat(self.get_night_data(night, from_dict=True) for night in self._data.keys()) else: self.data = EMPTY_WHAT_DF # ---------------- # # Pharos Data # # ---------------- # def add_pharoslist(self, night, update=False): """ """ for night_ in np.atleast_1d(night): if night_ in self._pharoslist and not update: continue try: self._pharoslist[night_] = [l.replace("/data/","") for l in get_pharos_night_data(night_)] except: warnings.warn("Pharos List download: Failed for %s"%night_) self.dump("pharosfile") # ================ # # Properties # # ================ # @property def datetime(self): """ pandas.to_datetime(p.sedmwhatfiles.data["night"]) """ return pandas.to_datetime(self.data["night"]) ################## # # # PHAROS # # # ################## class SEDMQuery( object ): """ """ PROPERTIES = ["auth", "date"] def __init__(self, auth=None, date=None): """ """ self.sedmwhatfiles = _SEDMFiles_() self.reset() self.set_date(date) self.set_auth(io._load_id_("pharos") if auth is None else auth) def reset(self): """ set the authentification, date and any other properties to default """ self._properties = {k:None for k in self.PROPERTIES} # -------- # # SETTER # # -------- # def set_date(self, date): """ attach a date for faster night access interation """ self._properties["date"] = date def set_auth(self, auth): """ provide your authentification. """ self._properties["auth"] = auth # ----------- # # Downloader # # ----------- # def download_night_fluxcal(self, night, nodl=False, auth=None, download_dir="default", show_progress=False, notebook=False, verbose=True, overwrite=False, nprocess=None): """ download SEDM fluxcalibration file for the given night Parameters ---------- nodl: [bool] -optional- do not launch the download, instead, returns list of queried url and where they are going to be stored. download_dir: [string] -optional- Directory where the file should be downloaded. If th overwrite: [bool] -optional- Check if the requested data already exist in the target download directory. If so, this will skip the download except if overwrite is set to True. nprocess: [None/int] -optional- Number of parallel downloading you want to do. If None, it will be set to 1 and will not use multiprocess auth: [str, str] -optional- [username, password] of you IRSA account. If used, information stored in ~/.ztfquery will be ignored. Returns ------- Void or list (see nodl) """ relative_path = [l for l in self.get_night_data(night, source='pharos') if l.split("/")[-1].startswith("fluxcal")] return self._download_from_relative_path_(relative_path, nodl=nodl, auth=auth, download_dir=download_dir, show_progress=show_progress, notebook=notebook, verbose=verbose, overwrite=overwrite, nprocess=nprocess) def download_target_data(self, target, which="cube", extension="fits", timerange=["2018-08-01", None], nodl=False, auth=None, download_dir="default", show_progress=False, notebook=False, verbose=True, overwrite=False, nprocess=None ): """ download SEDM data associated to the given target. Parameters ---------- target: [string] Name of a source (e.g. ZTF18abuhzfc) of any part of a filename (i.e. 20180913_06_28_51) which: [string] -optional- kind oif data you want. - cube / spec / ccd / all extension: [string] -optional- Extension of the file - these exist depending on the file you want: fits / png / pdf / pkl / all timerange: [iso format dates] -optional- time range between which you are looking for file. If the dates are not yet stored in you whatfiles.json, this will first download it. if the second data is None, it means 'today' nodl: [bool] -optional- do not launch the download, instead, returns list of queried url and where they are going to be stored. download_dir: [string] -optional- Directory where the file should be downloaded. If th overwrite: [bool] -optional- Check if the requested data already exist in the target download directory. If so, this will skip the download except if overwrite is set to True. nprocess: [None/int] -optional- Number of parallel downloading you want to do. If None, it will be set to 1 and will not use multiprocess auth: [str, str] -optional- [username, password] of you IRSA account. If used, information stored in ~/.ztfquery will be ignored. Returns ------- Void or list (see nodl) """ # Build the path (local and url) if "astrom" in which or "guider" in which: print("TMP which=astrom fixe") relative_path = [l.replace("e3d","guider").replace(target,"astrom") for l in self.get_data_path(target, which="cube",extension="fits", timerange=timerange, source="pharos")] else: relative_path = self.get_data_path(target, which=which,extension=extension, timerange=timerange, source="pharos") return self._download_from_relative_path_(relative_path, nodl=nodl, auth=auth, download_dir=download_dir, show_progress=show_progress, notebook=notebook, verbose=verbose, overwrite=overwrite, nprocess=nprocess) # - Internal method def _download_from_relative_path_(self, relative_path, nodl=False, auth=None, download_dir="default", show_progress=False, notebook=False, verbose=True, overwrite=False, nprocess=None): """ Given a relative path, this builds the data to download and where to. Parameters ---------- nodl: [bool] -optional- do not launch the download, instead, returns list of queried url and where they are going to be stored. download_dir: [string] -optional- Directory where the
<filename>server.py<gh_stars>1-10 # coding: utf-8 import argparse import json # std from datetime import datetime # web from flask import Flask, render_template, request from flask import jsonify from flask_cors import CORS, cross_origin from flask_frozen import Freezer from flask import Response from flask_htpasswd import HtPasswdAuth from kneed import KneeLocator # mabed from mabed.functions import Functions import datetime app = Flask(__name__, static_folder='browser/static', template_folder='browser/templates') app.config['FLASK_HTPASSWD_PATH'] = '.htpasswd' app.config['FLASK_SECRET'] = 'Hey Hey Kids, secure me!' htpasswd = HtPasswdAuth(app) # ================================================================== # 1. Tests and Debug # ================================================================== # Enable CORS # cors = CORS(app) # app.config['CORS_HEADERS'] = 'Content-Type' # Disable Cache @app.after_request def add_header(r): r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" r.headers["Pragma"] = "no-cache" r.headers["Expires"] = "0" r.headers['Cache-Control'] = 'public, max-age=0' return r # Settings Form submit @app.route('/settings', methods=['POST']) # @cross_origin() def settings(): data = request.form return jsonify(data) @app.route('/event_descriptions') def event_descriptions(): event_descriptions = functions.event_descriptions("test3") events = [] for event in event_descriptions: start_date = datetime.strptime(event[1], "%Y-%m-%d %H:%M:%S") end_date = datetime.strptime(event[1], "%Y-%m-%d %H:%M:%S") obj = { "media": { "url": "static/images/img.jpg" }, "start_date": { "month": start_date.month, "day": start_date.day, "year": start_date.year }, "end_date": { "month": end_date.month, "day": end_date.day, "year": end_date.year }, "text": { "headline": event[3], "text": "<p>" + event[4] + "</p>" } } events.append(obj) res = { "events": events } return jsonify(res) # ================================================================== # 2. MABED # ================================================================== # Run MABED @app.route('/detect_events', methods=['POST', 'GET']) # @cross_origin() def detect_events(): data = request.form index = data['index'] k = int(data['top_events']) maf = float(data['min_absolute_frequency']) mrf = float(data['max_relative_frequency']) tsl = int(data['time_slice_length']) p = float(data['p_value']) theta = float(data['t_value']) sigma = float(data['s_value']) session = data['session'] filter = data['filter'] cluster = int(data['cluster']) events="" res = False if filter=="all": events = functions.event_descriptions(index, k, maf, mrf, tsl, p, theta, sigma, cluster) elif filter == "proposedconfirmed": filter = ["proposed","confirmed"] events = functions.filtered_event_descriptions(index, k, maf, mrf, tsl, p, theta, sigma, session, filter, cluster) else: events = functions.filtered_event_descriptions(index, k, maf, mrf, tsl, p, theta, sigma, session, [filter], cluster) if not events: events = "No Result!" else: res = True return jsonify({"result": res, "events":events}) # ================================================================== # 3. Images # ================================================================== @app.route('/images') def images(): with open('twitter2015.json') as f: data = json.load(f) clusters_num = len(data['duplicates']) clusters = data['duplicates'] return render_template('images.html', clusters_num=clusters_num, clusters=clusters ) # ================================================================== # 4. Tweets # ================================================================== # Get Tweets @app.route('/tweets', methods=['POST']) # @cross_origin() def tweets(): data = request.form tweets= functions.get_tweets(index=data['index'], word=data['word']) clusters= functions.get_clusters(index=data['index'], word=data['word']) return jsonify({"tweets": tweets, "clusters": clusters}) # Get Tweets @app.route('/tweets_filter', methods=['POST']) # @cross_origin() def tweets_filter(): data = request.form tweets= functions.get_tweets_query_state(index=data['index'], word=data['word'], state=data['state'], session=data['session']) clusters= functions.get_clusters(index=data['index'], word=data['word']) return jsonify({"tweets": tweets, "clusters": clusters}) @app.route('/tweets_scroll', methods=['POST']) # @cross_origin() def tweets_scroll(): data = request.form tweets= functions.get_tweets_scroll(index=data['index'], sid=data['sid'], scroll_size=int(data['scroll_size'])) return jsonify({"tweets": tweets}) # Get Event related tweets @app.route('/event_tweets', methods=['POST']) # @cross_origin() def event_tweets(): data = request.form index = data['index'] event = json.loads(data['obj']) main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] tweets = functions.get_event_tweets(index, main_term, related_terms) clusters = functions.get_event_clusters(index, main_term, related_terms) return jsonify({"tweets": tweets, "clusters": clusters}) # Get Event related tweets @app.route('/event_filter_tweets', methods=['POST']) def event_filter_tweets(): data = request.form index = data['index'] state = data['state'] session = data['session'] event = json.loads(data['obj']) main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] tweets = functions.get_event_filter_tweets(index, main_term, related_terms, state, session) clusters = functions.get_event_clusters(index, main_term, related_terms) return jsonify({"tweets": tweets, "clusters": clusters}) @app.route('/tweets_state', methods=['POST']) # @cross_origin() def tweets_state(): data = request.form tweets= functions.get_tweets_state(index=data['index'], session=data['session'], state=data['state']) return jsonify({"tweets": tweets}) # Get Image Cluster tweets @app.route('/cluster_tweets', methods=['POST', 'GET']) # @cross_origin() def cluster_tweets(): data = request.form index = data['index'] cid = data['cid'] event = json.loads(data['obj']) main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] tres = functions.get_event_tweets2(index, main_term, related_terms, cid) event_tweets = tres res = functions.get_cluster_tweets(index, cid) tweets = res['hits']['hits'] tweets = {"results":tweets} return jsonify({"tweets": tweets, "event_tweets": event_tweets}) # Get Search Image Cluster tweets @app.route('/cluster_search_tweets', methods=['POST', 'GET']) # @cross_origin() def cluster_search_tweets(): data = request.form index = data['index'] cid = data['cid'] word = data['word'] search_tweets = functions.get_big_tweets(index=index, word=word) res = functions.get_cluster_tweets(index, cid) tweets = res['hits']['hits'] tweets = {"results": tweets} return jsonify({"tweets": tweets, "search_tweets": search_tweets}) # Get Event main image @app.route('/event_image', methods=['POST']) # @cross_origin() def event_image(): data = request.form index = data['index'] event = json.loads(data['obj']) main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] image = functions.get_event_image(index, main_term, related_terms) res = False if image: image = image['hits']['hits'][0]['_source'] res = True return jsonify({"result":res, "image": image}) # Test & Debug @app.route('/mark_valid', methods=['POST', 'GET']) # @cross_origin() def mark_valid(): data = request.form res = functions.set_all_status("twitter2015", "session_Twitter2015", "proposed") return jsonify(res) @app.route('/mark_event', methods=['POST', 'GET']) # @cross_origin() def mark_event(): data = request.form index = data['index'] session = data['session'] functions.set_status(index, session, data) return jsonify(data) @app.route('/mark_cluster', methods=['POST', 'GET']) # @cross_origin() def mark_cluster(): data = request.form index = data['index'] session = data['session'] cid = data['cid'] state = data['state'] res = functions.set_cluster_state(index, session, cid, state) return jsonify(res) @app.route('/mark_tweet', methods=['POST', 'GET']) # @cross_origin() def mark_tweet(): data = request.form index = data['index'] session = data['session'] tid = data['tid'] val = data['val'] functions.set_tweet_state(index, session, tid, val) return jsonify(data) @app.route('/mark_search_tweets', methods=['POST', 'GET']) # @cross_origin() def mark_search_tweets(): data = request.form index = data['index'] session = data['session'] word= data['word'] state = data['state'] functions.set_search_status(index, session, state, word) return jsonify(data) @app.route('/mark_search_tweets_force', methods=['POST', 'GET']) def mark_search_tweets_force(): data = request.form index = data['index'] session = data['session'] word= data['word'] state = data['state'] functions.set_search_status_force(index, session, state, word) return jsonify(data) @app.route('/delete_field', methods=['POST', 'GET']) # @cross_origin() def delete_field(): up1 = functions.update_all("twitter2017", "tweet", "imagesCluster", "") return jsonify(up1) # ================================================================== # 5. Export # ================================================================== @app.route('/export_events', methods=['POST', 'GET']) # @cross_origin() def export_events(): # data = request.form # session = data['session_id'] # res = functions.get_session(session) res = functions.get_session('6n7aD2QBU2R9ngE9d8IB') index = res['_source']['s_index'] events = json.loads(res['_source']['events']) for event in events: main_term = event['main_term'].replace(",", " ") # event['main_term']=main_term related_terms = event['related_terms'] # tweets = functions.get_event_tweets(index, main_term, related_terms) # tweets = tweets['hits']['hits'] event['tweets'] = 'tweets' return jsonify(events) # return Response(str(events), # mimetype='application/json', # headers={'Content-Disposition': 'attachment;filename=events.json'}) @app.route('/export_tweets', methods=['POST', 'GET']) # @cross_origin() def export_tweets(): session = request.args.get('session') # data = request.form # session = data['session_id'] # res = functions.get_session(session) res = functions.get_session(session) index = res['_source']['s_index'] events = json.loads(res['_source']['events']) for event in events: main_term = event['main_term'].replace(",", " ") # event['main_term']=main_term related_terms = event['related_terms'] # tweets = functions.get_event_tweets(index, main_term, related_terms) # tweets = tweets['hits']['hits'] event['tweets'] = 'tweets' return jsonify(session) # return Response(str(events), # mimetype='application/json', # headers={'Content-Disposition': 'attachment;filename=events.json'}) @app.route('/export_confirmed_tweets', methods=['POST', 'GET']) # @cross_origin() def export_confirmed_tweets(): session = request.args.get('session') res = functions.get_session(session) index = res['_source']['s_index'] s_name = res['_source']['s_name'] tweets = functions.export_event(index,s_name) return Response(str(tweets), mimetype='application/json', headers={'Content-Disposition':'attachment;filename='+s_name+'tweets.json'}) # ================================================================== # 6. Beta # ================================================================== @app.route('/event_tweets_count', methods=['POST', 'GET']) def event_tweets_count(): data = request.form index = data['index'] event = json.loads(data['obj']) main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] count = functions.get_event_tweets_count(index, main_term, related_terms) all_count = functions.get_all_count(index) percentage = 100*(count/all_count) res = {'count':count, 'all': all_count, 'percentage':percentage} return jsonify(res) @app.route('/get_all_count', methods=['POST', 'GET']) def get_all_count(): data = request.form index = data['index'] count = functions.get_all_count(index) res = {'count':count} return jsonify(res) @app.route('/get_words_count', methods=['POST', 'GET']) def get_words_count(): data = request.form index = data['index'] words = data['words'] count = functions.get_words_count(index, words) res = {'count':count} return jsonify(res) @app.route('/get_keywords', methods=['POST', 'GET']) def get_keywords(): data = request.form index = data['index'] words = data['words'] sd = data['sd'] ed = data['ed'] count = data['count'] # event = json.loads(data['obj']) # main_term = event['main_term'].replace(",", " ") # related_terms = event['related_terms'] start_time = int(sd) / 1000 start_time = datetime.datetime.fromtimestamp(start_time) end_time = int(ed) / 1000 end_time = datetime.datetime.fromtimestamp(end_time) start_ms = start_time.timestamp() * 1000 end_ms = end_time.timestamp() * 1000 # count = functions.get_range_count(index, start_ms, end_ms) newKeywords = functions.process_range_tweets(index, start_ms, end_ms, words, 100) res = {"words":words, "count":count, "newKeywords":newKeywords} # res = {"words":words, "count":count} return jsonify(res) @app.route('/get_word2vec', methods=['POST', 'GET']) def get_word2vec(): # data = request.form index = 'twitter2017' words = "fêtes" count = 10 # count = functions.get_range_count(index, start_ms, end_ms) newKeywords = functions.process_w2v_tweets(index, words, 10) res = {"words":words, "count":count, "newKeywords":newKeywords} # res = {"words":words, "count":count} print(res) return jsonify(res) @app.route('/get_sse', methods=['POST', 'GET']) def get_sse(): data = request.form index = data['index'] words = data['words'] event = json.loads(data['obj']) keywords = json.loads(data['keywords']) newKeywords = keywords['words'] main_term = event['main_term'].replace(",", " ") related_terms = event['related_terms'] sd = data['sd'] ed = data['ed'] start_time = int(sd) / 1000 start_time = datetime.datetime.fromtimestamp(start_time) end_time = int(ed) / 1000 end_time = datetime.datetime.fromtimestamp(end_time) start_ms = start_time.timestamp() * 1000 end_ms = end_time.timestamp() * 1000 sse = {} sse_points = [] # mean = functions.getMean(index, main_term, related_terms) # sse0 = functions.getSSE(index, main_term, related_terms, mean) # sse[0]=sse0 related_string = "" least_value = 100.0 for t in related_terms: related_string = related_string + " "+ t['word'] if float(t['value'])<least_value: least_value=float(t['value']) words = main_term +" "+ related_string # newKeywords = functions.process_range_tweets(index, start_ms, end_ms, words, 20) # newKeywords = [('couleurs', 0.9541982412338257), ('cette…', 0.9535157084465027), ('consultation', 0.9513106346130371), ('tgvmax', 0.9512830972671509), ('lyonmag', 0.9508819580078125), ('vous…', 0.9507380127906799), ('sublime', 0.9503788948059082), ('le_progres', 0.9499937891960144), ('vue', 0.9492042660713196), ('oliviermontels', 0.9490641355514526), ('sport2job', 0.9481754899024963), ('lyonnai…', 0.9481167197227478), ('hauteurs', 0.9463335275650024), ('illuminations', 0.9462761282920837), ('familial', 0.9458074569702148), ('fdl2017…', 0.945579469203949), ('leprogreslyon', 0.9455731511116028), ('weekend', 0.9454441070556641), ('pensant', 0.9449157118797302), ('radioscoopinfos', 0.9441419839859009)] print("---------------") print("newKeywords") print(newKeywords) print("related_terms") print(related_terms) print("---------------") sse2 = [] for i in range(0, 40): temp_terms = [] temp_terms = temp_terms +
# -*- coding: utf-8 -*- import os import mab.gd.logging as logging import emcee from numpy import * import numpy import scipy from mab.gd import gdfast_schw from kaplot import * logger = logging.getLogger("gd.schw.solution2") class Dummy(object): pass dummy = Dummy() def lnprob(u): x = exp(u) x /= sum(x) logp = sum([k.logp(x) for k in dummy.opts]) #print logp return logp def domcmc(x, opts): dummy.opts = opts N = len(x) x0 = x ndim = N nwalkers = 2*ndim grad = zeros(N) for opt in opts: opt.dlogpdx(x, grad) def gen(): x = array([x0[i]*(1+1e-8*(random.random()*2-1)) for i in range(ndim)]) x /= sum(x) return x p0 = [log(gen()) for i in xrange(nwalkers)] dummy.opts = opts sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[], threads=50) result = sampler.run_mcmc(p0, 1000) print sampler.flatchain.shape x = sampler.flatchain print "x shape", x.shape print "acceptance_fraction", sampler.acceptance_fraction logprob = array(sampler.lnprobability.flat) mozaic(2,2,box) #m = x.mean(axis=0).reshape(20, 8) #s = x.std(axis=0).reshape(20, 8) m = x.mean(axis=0).reshape(8, 20) s = x.std(axis=0).reshape(8, 20) #mozaic(2,2,box) select(0, 0) indexedimage(x0.reshape(8,20)) select(0, 1) indexedimage(m) select(1, 0) indexedimage(s) select(1,1) histogram(logprob, bincount=100) l = lnprob(log(x0)) vline(l, color="red") xlim(l-40, l+1) draw() import pdb pdb.set_trace() dsa class Discrete(object): def __init__(self, modelpath, light_model, aperture_light, profile_model, schwsetname, schwmodelname, storage_2d_m0, storage_2d_m2, storage_2d_m4, storage_3d, storage_2d_losvd, fitdensity2d, fitdensity3d, observation, binned_data_m2, binned_data_m4, dfgrid, max_iterations=1000, regularization=None, postfix=""): self.modelpath = modelpath self.light_model = light_model self.profile_model = profile_model self.schwsetname = schwsetname self.schwmodelname = schwmodelname self.storage_2d_m0 = storage_2d_m0 self.storage_2d_m2 = storage_2d_m2 self.storage_2d_m4 = storage_2d_m4 self.storage_3d = storage_3d self.storage_2d_losvd = storage_2d_losvd self.aperture_light = aperture_light self.binned_data_m2 = binned_data_m2 self.binned_data_m4 = binned_data_m4 #self.storage_2d_binned = storage_2d_binned self.fitdensity2d = fitdensity2d self.fitdensity3d = fitdensity3d self.observation = observation self.dfgrid = dfgrid self.max_iterations = max_iterations self.regularization = regularization #self.regularization_delta = regularization_delta #self.use_jeans = use_jeans #self.jeans_fraction = jeans_fraction self.dirname = os.path.join(self.modelpath, "schw", self.schwsetname, self.schwmodelname) self.logger = logging.getLogger("gd.schw.solution.likelihood") self.postfix = postfix def run(self, args, opts, scope): self.init() self.solve(scope) def init(self): self.observation.load() self.storage_2d_m0.init() self.storage_2d_m0.load() self.storage_2d_m2.init() self.storage_2d_m2.load() self.storage_2d_m4.init() self.storage_2d_m4.load() self.binned_data_m2.load() self.binned_data_m4.load() #self.storage_2d_binned.init() #self.storage_2d_binned.load() self.storage_3d.init() self.storage_3d.load() self.storage_2d_losvd.load() #self.storage_2d.aperture.load() self.aperture_light.load() def solve(self, scope): stars = self.observation.stars self.logger.info("using %d stars/observations" % len(stars)) #stars_inrange = stars.filter(lambda star: self.storage_2d.aperture.inrange(star.xi, star.eta)) stars_inrange = stars.filter(lambda star: self.storage_2d_losvd.aperture.inrange(star.xi, star.eta)) self.logger.info("stars in aperture range : %d" % len(stars_inrange)) self.logger.info("stars outside aperture range: %d" % (len(stars)-len(stars_inrange))) vmax = self.storage_2d_losvd.vmax #print "vmax", vmax delta_v = 2*vmax/self.storage_2d_losvd.Nv #print "res", delta_v for star in stars: star.aperture_index = self.storage_2d_losvd.aperture.findindex(star.xi, star.eta) losvds = self.storage_2d_losvd.losvds stars_invrange = stars.filter(lambda star: abs(star.vlos) < vmax) self.logger.info("stars in velocity range : %d" % len(stars_invrange)) self.logger.info("stars outside velocity range: %d" % (len(stars)-len(stars_invrange))) stars = stars_invrange sigma_v = 2.01 numpy.random.seed(8) for star in stars: star.vlos = star.vlos_true# + numpy.random.normal(0, sigma_v) #star.vlos = star.vlos_true + numpy.random.normal(0, sigma_v) #print star.vlos, vmax, self.storage_2d_losvd.Nv star.v_index = int(((star.vlos+vmax)/(2*vmax)) * self.storage_2d_losvd.Nv); outlier = True for losvd in losvds: if losvd[star.v_index, star.aperture_index] != 0: outlier = False break star.is_outlier = outlier stars_no_outlier = stars.filter(lambda star: not star.is_outlier) self.logger.info("non-outlier stars : %d" % len(stars_no_outlier)) self.logger.info("outlier stars : %d" % (len(stars)-len(stars_no_outlier))) Rborders = arange(self.storage_2d_losvd.NR+1) / (0.0+self.storage_2d_losvd.NR) * (self.storage_2d_losvd.Rmax) R1s = Rborders[0:-1] R2s = Rborders[1:] dRs = R2s - R1s delta_R = R2s[0] - R1s[0] assert all(abs(dRs - delta_R) < 1e-10), "no constant dR" #print Rborders self.rho2d_target = array([self.light_model.cumdensityR(R1, R2, M=1.) for R1, R2 in zip(R1s, R2s)]) rho2ds = sum(losvds, axis=1) rho2dmatrix = sum(losvds, axis=1) rho3dmatrix = self.storage_3d.moments3d[:,0,:] #rho2dmatrix = self.storage_2d_m0.moments[:,0,:] r1s = self.storage_3d.rborders[:-1] r2s = self.storage_3d.rborders[1:] delta_r = r2s[0] - r1s[0] #R1s = self.storage_2d.rborders[:-1] #R2s = self.storage_2d.rborders[1:] self.rho3d_target = array([self.light_model.cumdensityr(r1, r2, M=1.) for r1, r2 in zip(r1s, r2s)]) #for i in range(losvds.shape[0]): #for j in range(losvds.shape[1]): # print i, sum(losvds[i]), for i in range(losvds.shape[0]): #print sum(losvds[i]) for j in range(losvds.shape[2]): #dens = sum(losvds[i,:,j]) #if dens > 0: #print self.rho2d_target.shape #print losvds.shape #losvds[i,j,:] /= self.rho2d_target #losvds[i,:,j] = scipy.ndimage.gaussian_filter(losvds[i,:,j], sigma_v/delta_v, mode='constant') pass losvds[i] = scipy.ndimage.gaussian_filter(losvds[i], [sigma_v/delta_v, 0.51]) losvds[i] /= (delta_v * delta_R) #print #print losvds.shape, delta_v, delta_R, Rborders[0], Rborders[-1] #print Rborders #for i in range(losvds.shape[0]): #for j in range(losvds.shape[1]): # print i, sum(losvds[i]*delta_v*delta_R), v_indices = [star.v_index for star in stars] aperture_indices = [star.aperture_index for star in stars] #print losvds.shape pmatrix = array(list((losvds/(self.rho2d_target/delta_R))[:,v_indices, aperture_indices])) pmatrix = array(list((losvds)[:,v_indices, aperture_indices])) pmatrix = pmatrix * 1. #print pmatrix.shape rho2d_error = self.rho2d_target.max() * 0.000001*0.5 * 0.1 error_x = 1e-3 if 1: filename = os.path.join(self.modelpath, "df/orbitweights_tang.npy") orbitweights = load(filename) c = orbitweights.flatten() c /= sum(c) x = c xtrue = x if 0: self.x0 = x self.true_losvd = numpy.tensordot(self.storage_2d_losvd.losvds, c, axes=[(0,),(0,)]) self.true_rho2d = numpy.tensordot(self.storage_2d_losvd.masses, c, axes=[(0,),(0,)]) #self.true_rho2d = numpy.tensordot(rho2ds, c, axes=[(0,),(0,)]) self.true_rho3d = numpy.tensordot(rho3dmatrix, c, axes=[(0,),(0,)]) filename = os.path.join(self.modelpath, "df/losvd_tang.npy") save(filename, self.true_losvd) filename = os.path.join(self.modelpath, "df/masses_tang.npy") save(filename, self.true_rho2d) dsa if 0: #graph(self.true_rho3d) #graph(self.rho3d_target, color="red") #avg = graph((self.true_rho3d-self.rho3d_target)/self.rho3d_target.max(), color="red") draw() #import pdb; pdb.set_trace() else: filename = os.path.join(self.modelpath, "df/losvd_tang.npy") self.true_losvd = load(filename) filename = os.path.join(self.modelpath, "df/masses_tang.npy") self.true_rho2d = load(filename) self.true_losvd = scipy.ndimage.gaussian_filter(self.true_losvd, [sigma_v/delta_v, 0.51]) self.true_losvd /= (delta_v * delta_R) debug = False if 0: filename = os.path.join(self.dirname, "results/orbitweights" +self.postfix +".npy") x = numpy.load(filename) logger.info("loading orbitweights %s" % filename) else: x = x*0 + 1. x = random.random(len(x)) x /= sum(x) u = log(x) #print rho2dmatrix.shape rho3dmatrix = rho3dmatrix * 1 #rhoerror = maximum(self.rho3d_target*rho2d_error, self.rho3d_target.max() * 0.001) rhoerror = self.rho3d_target*rho2d_error s = self.rho3d_target/self.rho3d_target.max() rhoerror = self.rho3d_target.max() * 0.05 * maximum(0.1, s) + self.rho3d_target * 0 rhoerror = self.rho3d_target.max() * 0.07 * maximum(0.1/7, s) + self.rho3d_target * 0 rhoerror = maximum(self.rho3d_target.max() * 0.01*1.5, self.rho3d_target * 0.01*2) + self.rho3d_target * 0 #rhoerror = maximum(rhoerror*1e-4, rho2d_error) #self.opt = gdfast_schw.OptimizationProblemSchw(pmatrix, rho3dmatrix, x, self.rho3d_target, rhoerror, error_x, True, False, True) fit_mass_3d = False #fit_mass_3d = True if fit_mass_3d: mass_matrix = rho3dmatrix mass_target = self.rho3d_target mass_error = rhoerror else: rhoerror = maximum(self.rho2d_target.max() * 0.01*0.05, self.rho2d_target * 0.001)# + self.rho3d_target * 0 mass_matrix = rho2dmatrix mass_target = self.rho2d_target mass_error = rhoerror entropy_scale = 1e-20 self.opt = gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, entropy_scale, True, True, True) #print "true L?", self.opt.likelihood(log(xtrue)) self.opt_kin = gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, entropy_scale, True, False, False) self.opts = [ gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, 0, True, False, False), gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, 0, False, True, False), gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, 0, False, False, True), gdfast_schw.OptimizationProblemSchw(pmatrix, mass_matrix, x, mass_target, mass_error, error_x, entropy_scale, False, False, False), ] debug = False #debug = True if 1: #x = numpy.load("xlast.npy") #print dir(self.light_model) N = 250000 light_profile = self.light_model.light_profile rs = light_profile.sample_r(N=N, rmax=100.) costheta = numpy.random.random(N) * 2 - 1 phi = numpy.random.random(N) * 2 * pi eta = numpy.random.random(N) * 2 * pi theta = numpy.arccos(costheta) #sintheta = numpy.sqrt(1-costheta**2) sintheta = numpy.sin(theta) #print r.shape, sintheta.shape, phi.shape, len(dt) xp = x x = rs * sintheta * numpy.cos(phi) y = rs * sintheta * numpy.sin(phi) Rs = sqrt(x**2+y**2) x = xp #ps = self. Rs = Rs[Rs<1.5] rs = rs[rs<1.5] #rs = rs[rs>0.1] #normal = scipy.integrate.quad(lambda R: light_profile.densityR(R,M=1.)*2*pi*R, 0, 1.5)[0] normal = scipy.integrate.quad(lambda r: light_profile.densityr(r,M=1.)*4*pi*r**2, 0, 1.5)[0] if debug: print "normal", normal #normal = 1. if fit_mass_3d: ps = [log(light_profile.densityr(r,M=1.)*4*pi*r**2/normal) for r in rs] else: ps = [log(light_profile.densityR(R,M=1.)*2*pi*R/normal) for R in Rs] N = len(ps) if debug: print N print "tot p", sum(ps) print "mean p", mean(ps) print rho3dmatrix.shape if fit_mass_3d: mass_indices = [int(r/1.5*100) for r in rs] mass_matrix = rho3dmatrix[:,mass_indices] * 1. / delta_r mass_matrixN = rho3dmatrix * 1./delta_r totalmass_matrix = sum(rho3dmatrix, axis=1) ptotalmass_matrix = sum(self.storage_2d_losvd.masses, axis=1) counts, bins = numpy.histogram(rs, 100, [0, 1.5], new=True) else: mass_indices = [int(R/1.5*30) for R in Rs] mass_matrix = self.storage_2d_losvd.masses[:,mass_indices] * 1. / delta_R mass_matrixN = self.storage_2d_losvd.masses * 1. / delta_R totalmass_matrix = ptotalmass_matrix = sum(self.storage_2d_losvd.masses, axis=1) counts, bins = numpy.histogram(Rs, 30, [0, 1.5]) counts /= sum(counts) counts = counts / 2000 if debug: print "2d, delta_R", delta_R #mass = dot(self.storage_2d_losvd.masses.T, xtrue) if debug: print "total 3d", sum(dot(rho3dmatrix.T, xtrue)) print "total 2d", sum(dot(self.storage_2d_losvd.masses.T, xtrue)) print "normal check", dot(xtrue, totalmass_matrix) opt_matrix_mass = gdfast_schw.OptimizationMatrix(mass_matrix, totalmass_matrix) counts = array(counts).astype(float64)# * 1. #print counts, sum(counts) rho3dmatrix = rho3dmatrix * 1. #print "-->", rho3dmatrix.shape, counts.shape #print rho3dmatrix.dtype, counts.dtype counts = self.true_rho2d counts /= sum(counts) counts *= 200000 opt_matrix_massN = gdfast_schw.OptimizationMatrixN(mass_matrixN, counts, totalmass_matrix) if debug: print "logp", opt_matrix_mass.logp(xtrue), opt_matrix_mass.logp(x) print "logp", opt_matrix_massN.logp(xtrue), opt_matrix_massN.logp(x) print opt_matrix_mass.logp(xtrue)/N print sum(self.rho3d_target) #print (self.rho3d_target-mass)/self.rho3d_target #print "x =", x, sum(x) if 0: box() #mask = (rho3dmatrix/delta_r) > 1 #rho3dmatrix[mask] = 1000 I = rho3dmatrix * 1. I /= I.max() I = log10(I) I[I<-6] = -6 indexedimage(I) draw() diff = log(dot(x, mass_matrix))-log(dot(xtrue, mass_matrix)) indices = argsort(diff) #import pdb #pdb.set_trace() #sysdsa if 1: #x = xtrue #print "sum(x)", sum(x) opt_matrix_kin = gdfast_schw.OptimizationMatrix(pmatrix, ptotalmass_matrix) counts_kin, binsx, biny = numpy.histogram2d([star.v_index for star in stars], [star.aperture_index for star in stars], bins=[30,30], range=[(0,30),(0, 30)]) if 0: counts_kin2 = numpy.zeros((30, 30)) for star in stars: counts_kin2[star.v_index, star.aperture_index] += 1 mozaic(2,2,box) indexedimage(counts_kin) select(0,1) indexedimage(counts_kin2) draw() mask = counts_kin > 0 counts_kin = counts_kin[mask] counts_kin = counts_kin * 1. pmatrixN = losvds[:,mask] #debug = True if 1: pmatrixN = losvds * 1.0 pmatrixN = pmatrixN.reshape((pmatrixN.shape[0], -1)) * 1. counts_kin = self.true_losvd * 1. counts_kin = counts_kin.reshape(-1) * 1. counts_kin /= sum(counts_kin) counts_kin *= 2000 #@import pdb #pdb.set_trace() if debug: print "%d versus %d speedup: %f" % (pmatrixN.shape[1], len(stars), len(stars)*1./pmatrixN.shape[1]) #pmatrixN = array(list((losvds/(self.rho2d_target/delta_R))[:,v_indices, aperture_indices])) #pmatrix = array(list((losvds)[:,v_indices, aperture_indices])) pmatrixN = pmatrixN * 1.0 #print sum(counts_kin == 0) opt_matrix_kinN = gdfast_schw.OptimizationMatrixN(pmatrixN, counts_kin, ptotalmass_matrix) for k in [pmatrixN, counts_kin, ptotalmass_matrix]: print k.min(), k.max(), k.sum(), k.std() dsa opt_norm = gdfast_schw.OptimizationNormalize(1.-.000001, 0.001) opt_entropy = gdfast_schw.OptimizationEntropy(1.e-2) opt = self.opt_kin u = log(x) if debug: for i in [0, 1]: x1 = x * 1. x2 = x * 1. dx = 1e-8 x2[i] += dx grad = x * 0 for opt in [opt_matrix_kin, opt_matrix_kinN, opt_entropy]:#, opt_matrix_mass, opt_matrix_massN, opt_norm]: grad = x * 0 print u.shape, grad.shape opt.dlogpdx(x, grad) #sys.exit(0) w1 = opt.logp(x1) w2 = opt.logp(x2) print "w", opt.logp(x) print "grad", grad[i] print "grad", (w2-w1)/dx#/x[i] print print #opt_matrix_kin.dlogpdx(x, grad) #grad *= x #print "grad3", grad[i] #print "logp", opt.likelihood(u) #print "logp", opt_matrix_kin.logp(x) print sys.exit(0) #x = x * 0 + 1 #x /= sum(x) global calls calls = 0 debug = False debug=True opts = [opt_matrix_kinN, opt_matrix_massN, opt_norm] def f_and_g(x): global calls #if calls > 10: # numpy.save("xlast.npy", x) # dsa #calls += 1 if 1: grad = x * 0 logp = opt_matrix_kinN.logp(x)*1 +\ opt_matrix_massN.logp(x)*0 +\ opt_norm.logp(x) * 1 #+\ #opt_entropy.logp(x) * 1. opt_matrix_kinN.dlogpdx(x, grad) #opt_matrix_massN.dlogpdx(x, grad) opt_norm.dlogpdx(x, grad) #opt_entropy.dlogpdx(x, grad) if debug: print "%10f %10f %10f %10f %10f" % (logp, sum(x), dot(totalmass_matrix, x/sum(x)), dot(ptotalmass_matrix, x/sum(x)), dot(losvds.T, x).sum() * delta_R * delta_v / dot(ptotalmass_matrix, x/sum(x))) #print if 0: print ".", sum(x), dot(totalmass_matrix, x/sum(x)) print logp for i in [0, 10, 100]: x1 = x * 1.#/sum(x) x2 = x * 1.#/sum(x) dx = 1e-7 x2[i] += dx #for opt in [opt_matrix_kin, opt_matrix_massN, opt_norm]: for opt in [opt_matrix_massN]: grad = x * 0 opt.dlogpdx(x, grad) w1 = opt.logp(x1) w2 = opt.logp(x2) print "grad", grad[i] print "grad man", (w2-w1)/dx#/x[i] print return -logp, -grad u = log(x) #print u w = -self.opt.likelihood(u) grad = u * 0 self.opt.dfdx(u, grad) #print w if 0: print w for i in [0, 1]: u1 = u *
execution uncertain_nodes.append(other_node) return uncertain_nodes @staticmethod def _defines_name_raises_or_returns( name: str, handler: nodes.ExceptHandler ) -> bool: """Return True if some child of `handler` defines the name `name`, raises, or returns. """ def _define_raise_or_return(stmt: nodes.NodeNG) -> bool: if isinstance(stmt, (nodes.Raise, nodes.Return)): return True if isinstance(stmt, nodes.Assign): for target in stmt.targets: for elt in utils.get_all_elements(target): if isinstance(elt, nodes.AssignName) and elt.name == name: return True if isinstance(stmt, nodes.If): # Check for assignments inside the test if ( isinstance(stmt.test, nodes.NamedExpr) and stmt.test.target.name == name ): return True if isinstance(stmt.test, nodes.Call): for arg_or_kwarg in stmt.test.args + [ kw.value for kw in stmt.test.keywords ]: if ( isinstance(arg_or_kwarg, nodes.NamedExpr) and arg_or_kwarg.target.name == name ): return True return False for stmt in handler.get_children(): if _define_raise_or_return(stmt): return True if isinstance(stmt, (nodes.If, nodes.With)): if any( _define_raise_or_return(nested_stmt) for nested_stmt in stmt.get_children() ): return True return False @staticmethod def _check_loop_finishes_via_except( node: nodes.NodeNG, other_node_try_except: nodes.TryExcept ) -> bool: """Check for a case described in https://github.com/PyCQA/pylint/issues/5683. It consists of a specific control flow scenario where the only non-break exit from a loop consists of the very except handler we are examining, such that code in the `else` branch of the loop can depend on it being assigned. Example: for _ in range(3): try: do_something() except: name = 1 <-- only non-break exit from loop else: break else: print(name) """ if not other_node_try_except.orelse: return False closest_loop: Optional[ Union[nodes.For, nodes.While] ] = utils.get_node_first_ancestor_of_type(node, (nodes.For, nodes.While)) if closest_loop is None: return False if not any( else_statement is node or else_statement.parent_of(node) for else_statement in closest_loop.orelse ): # `node` not guarded by `else` return False for inner_else_statement in other_node_try_except.orelse: if isinstance(inner_else_statement, nodes.Break): break_stmt = inner_else_statement break else: # No break statement return False def _try_in_loop_body( other_node_try_except: nodes.TryExcept, loop: Union[nodes.For, nodes.While] ) -> bool: """Return True if `other_node_try_except` is a descendant of `loop`.""" return any( loop_body_statement is other_node_try_except or loop_body_statement.parent_of(other_node_try_except) for loop_body_statement in loop.body ) if not _try_in_loop_body(other_node_try_except, closest_loop): for ancestor in closest_loop.node_ancestors(): if isinstance(ancestor, (nodes.For, nodes.While)): if _try_in_loop_body(other_node_try_except, ancestor): break else: # `other_node_try_except` didn't have a shared ancestor loop return False for loop_stmt in closest_loop.body: if NamesConsumer._recursive_search_for_continue_before_break( loop_stmt, break_stmt ): break else: # No continue found, so we arrived at our special case! return True return False @staticmethod def _recursive_search_for_continue_before_break( stmt: nodes.Statement, break_stmt: nodes.Break ) -> bool: """Return True if any Continue node can be found in descendants of `stmt` before encountering `break_stmt`, ignoring any nested loops. """ if stmt is break_stmt: return False if isinstance(stmt, nodes.Continue): return True for child in stmt.get_children(): if isinstance(stmt, (nodes.For, nodes.While)): continue if NamesConsumer._recursive_search_for_continue_before_break( child, break_stmt ): return True return False @staticmethod def _uncertain_nodes_in_try_blocks_when_evaluating_except_blocks( found_nodes: List[nodes.NodeNG], node_statement: nodes.Statement ) -> List[nodes.NodeNG]: """Return any nodes in ``found_nodes`` that should be treated as uncertain because they are in a try block and the ``node_statement`` being evaluated is in one of its except handlers. """ uncertain_nodes: List[nodes.NodeNG] = [] closest_except_handler = utils.get_node_first_ancestor_of_type( node_statement, nodes.ExceptHandler ) if closest_except_handler is None: return uncertain_nodes for other_node in found_nodes: other_node_statement = other_node.statement(future=True) # If the other statement is the except handler guarding `node`, it executes if other_node_statement is closest_except_handler: continue # Ensure other_node is in a try block ( other_node_try_ancestor, other_node_try_ancestor_visited_child, ) = utils.get_node_first_ancestor_of_type_and_its_child( other_node_statement, nodes.TryExcept ) if other_node_try_ancestor is None: continue if ( other_node_try_ancestor_visited_child not in other_node_try_ancestor.body ): continue # Make sure nesting is correct -- there should be at least one # except handler that is a sibling attached to the try ancestor, # or is an ancestor of the try ancestor. if not any( closest_except_handler in other_node_try_ancestor.handlers or other_node_try_ancestor_except_handler in closest_except_handler.node_ancestors() for other_node_try_ancestor_except_handler in other_node_try_ancestor.handlers ): continue # Passed all tests for uncertain execution uncertain_nodes.append(other_node) return uncertain_nodes @staticmethod def _uncertain_nodes_in_try_blocks_when_evaluating_finally_blocks( found_nodes: List[nodes.NodeNG], node_statement: nodes.Statement ) -> List[nodes.NodeNG]: uncertain_nodes: List[nodes.NodeNG] = [] ( closest_try_finally_ancestor, child_of_closest_try_finally_ancestor, ) = utils.get_node_first_ancestor_of_type_and_its_child( node_statement, nodes.TryFinally ) if closest_try_finally_ancestor is None: return uncertain_nodes if ( child_of_closest_try_finally_ancestor not in closest_try_finally_ancestor.finalbody ): return uncertain_nodes for other_node in found_nodes: other_node_statement = other_node.statement(future=True) ( other_node_try_finally_ancestor, child_of_other_node_try_finally_ancestor, ) = utils.get_node_first_ancestor_of_type_and_its_child( other_node_statement, nodes.TryFinally ) if other_node_try_finally_ancestor is None: continue # other_node needs to descend from the try of a try/finally. if ( child_of_other_node_try_finally_ancestor not in other_node_try_finally_ancestor.body ): continue # If the two try/finally ancestors are not the same, then # node_statement's closest try/finally ancestor needs to be in # the final body of other_node's try/finally ancestor, or # descend from one of the statements in that final body. if ( other_node_try_finally_ancestor is not closest_try_finally_ancestor and not any( other_node_final_statement is closest_try_finally_ancestor or other_node_final_statement.parent_of( closest_try_finally_ancestor ) for other_node_final_statement in other_node_try_finally_ancestor.finalbody ) ): continue # Passed all tests for uncertain execution uncertain_nodes.append(other_node) return uncertain_nodes # pylint: disable=too-many-public-methods class VariablesChecker(BaseChecker): """BaseChecker for variables. Checks for * unused variables / imports * undefined variables * redefinition of variable from builtins or from an outer scope * use of variable before assignment * __all__ consistency * self/cls assignment """ __implements__ = IAstroidChecker name = "variables" msgs = MSGS priority = -1 options = ( ( "init-import", { "default": 0, "type": "yn", "metavar": "<y or n>", "help": "Tells whether we should check for unused import in " "__init__ files.", }, ), ( "dummy-variables-rgx", { "default": "_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_", "type": "regexp", "metavar": "<regexp>", "help": "A regular expression matching the name of dummy " "variables (i.e. expected to not be used).", }, ), ( "additional-builtins", { "default": (), "type": "csv", "metavar": "<comma separated list>", "help": "List of additional names supposed to be defined in " "builtins. Remember that you should avoid defining new builtins " "when possible.", }, ), ( "callbacks", { "default": ("cb_", "_cb"), "type": "csv", "metavar": "<callbacks>", "help": "List of strings which can identify a callback " "function by name. A callback name must start or " "end with one of those strings.", }, ), ( "redefining-builtins-modules", { "default": ( "six.moves", "past.builtins", "future.builtins", "builtins", "io", ), "type": "csv", "metavar": "<comma separated list>", "help": "List of qualified module names which can have objects " "that can redefine builtins.", }, ), ( "ignored-argument-names", { "default": IGNORED_ARGUMENT_NAMES, "type": "regexp", "metavar": "<regexp>", "help": "Argument names that match this expression will be " "ignored. Default to name with leading underscore.", }, ), ( "allow-global-unused-variables", { "default": True, "type": "yn", "metavar": "<y or n>", "help": "Tells whether unused global variables should be treated as a violation.", }, ), ( "allowed-redefined-builtins", { "default": (), "type": "csv", "metavar": "<comma separated list>", "help": "List of names allowed to shadow builtins", }, ), ) def __init__(self, linter=None): super().__init__(linter) self._to_consume: List[NamesConsumer] = [] self._checking_mod_attr = None self._loop_variables = [] self._type_annotation_names = [] self._except_handler_names_queue: List[ Tuple[nodes.ExceptHandler, nodes.AssignName] ] = [] """This is a queue, last in first out.""" self._postponed_evaluation_enabled = False def open(self) -> None: """Called when loading the checker.""" self._is_undefined_variable_enabled = self.linter.is_message_enabled( "undefined-variable" ) self._is_used_before_assignment_enabled = self.linter.is_message_enabled( "used-before-assignment" ) self._is_undefined_loop_variable_enabled = self.linter.is_message_enabled( "undefined-loop-variable" ) @utils.check_messages("redefined-outer-name") def visit_for(self, node: nodes.For) -> None: assigned_to = [a.name for a in node.target.nodes_of_class(nodes.AssignName)] # Only check variables that are used dummy_rgx = self.config.dummy_variables_rgx assigned_to = [var for var in assigned_to if not dummy_rgx.match(var)] for variable in assigned_to: for outer_for, outer_variables in self._loop_variables: if variable in outer_variables and not in_for_else_branch( outer_for, node ): self.add_message( "redefined-outer-name", args=(variable, outer_for.fromlineno), node=node, ) break self._loop_variables.append((node, assigned_to)) @utils.check_messages("redefined-outer-name") def leave_for(self, node: nodes.For) -> None: self._loop_variables.pop() self._store_type_annotation_names(node) def visit_module(self, node: nodes.Module) -> None: """Visit module : update consumption analysis variable checks globals doesn't overrides builtins """ self._to_consume = [NamesConsumer(node, "module")] self._postponed_evaluation_enabled = is_postponed_evaluation_enabled(node) for name, stmts in node.locals.items(): if utils.is_builtin(name): if self._should_ignore_redefined_builtin(stmts[0]) or name == "__doc__": continue self.add_message("redefined-builtin", args=name, node=stmts[0]) @utils.check_messages( "unused-import", "unused-wildcard-import", "redefined-builtin", "undefined-all-variable", "invalid-all-object", "invalid-all-format", "unused-variable", ) def leave_module(self, node: nodes.Module) -> None: """Leave module: check globals.""" assert len(self._to_consume) == 1 self._check_metaclasses(node) not_consumed = self._to_consume.pop().to_consume # attempt to check for __all__ if defined if "__all__" in node.locals: self._check_all(node, not_consumed) # check for unused globals self._check_globals(not_consumed) # don't check unused imports in __init__ files if not self.config.init_import and node.package: return self._check_imports(not_consumed) def visit_classdef(self, node: nodes.ClassDef) -> None: """Visit class: update consumption analysis variable.""" self._to_consume.append(NamesConsumer(node, "class"))
""" Implements an asynchronous interface for a Frontier Silicon device. For example internet radios from: Medion, Hama, Auna, ... """ import asyncio from asyncio.exceptions import TimeoutError import typing as t import logging from afsapi.exceptions import ( FSApiException, InvalidPinException, InvalidSessionException, NotImplementedException, OutOfRangeException, ConnectionError, ) from afsapi.models import Preset, Equaliser, PlayerMode, PlayControl, PlayState from afsapi.throttler import Throttler from afsapi.utils import unpack_xml, maybe from enum import Enum import aiohttp import xml.etree.ElementTree as ET DataItem = t.Union[str, int] DEFAULT_TIMEOUT_IN_SECONDS = 15 TIME_AFTER_READ_CALLS_IN_SECONDS = 0 TIME_AFTER_SET_CALLS_IN_SECONDS = 0.3 TIME_AFTER_SLOW_SET_CALLS_IN_SECONDS = 1.0 FSApiValueType = Enum("FSApiValueType", "TEXT BOOL INT LONG SIGNED_LONG") VALUE_TYPE_TO_XML_PATH = { FSApiValueType.TEXT: "c8_array", FSApiValueType.INT: "u8", FSApiValueType.LONG: "u32", FSApiValueType.SIGNED_LONG: "s32", } READ_ONLY = False READ_WRITE = True # implemented API calls API = { # sys "power": "netRemote.sys.power", "mode": "netRemote.sys.mode", # sys.info "friendly_name": "netRemote.sys.info.friendlyName", "radio_id": "netRemote.sys.info.radioId", "version": "netRemote.sys.info.version", # sys.caps "valid_modes": "netRemote.sys.caps.validModes", "equalisers": "netRemote.sys.caps.eqPresets", "sleep": "netRemote.sys.sleep", # sys.audio "eqpreset": "netRemote.sys.audio.eqpreset", "eqloudness": "netRemote.sys.audio.eqloudness", "bass": "netRemote.sys.audio.eqcustom.param0", "treble": "netRemote.sys.audio.eqcustom.param1", # volume "volume_steps": "netRemote.sys.caps.volumeSteps", "volume": "netRemote.sys.audio.volume", "mute": "netRemote.sys.audio.mute", # play "status": "netRemote.play.status", "name": "netRemote.play.info.name", "control": "netRemote.play.control", "shuffle": "netRemote.play.shuffle", "repeat": "netRemote.play.repeat", "position": "netRemote.play.position", "rate": "netRemote.play.rate", # info "text": "netRemote.play.info.text", "artist": "netRemote.play.info.artist", "album": "netRemote.play.info.album", "graphic_uri": "netRemote.play.info.graphicUri", "duration": "netRemote.play.info.duration", # nav "nav_state": "netRemote.nav.state", "numitems": "netRemote.nav.numitems", "nav_list": "netRemote.nav.list", "navigate": "netRemote.nav.action.navigate", "selectItem": "netRemote.nav.action.selectItem", "presets": "netRemote.nav.presets", "selectPreset": "netRemote.nav.action.selectPreset", } LOGGER = logging.getLogger(__name__) # pylint: disable=R0904 class AFSAPI: """Builds the interface to a Frontier Silicon device.""" def __init__( self, webfsapi_endpoint: str, pin: t.Union[str, int], timeout: int = DEFAULT_TIMEOUT_IN_SECONDS, ): """Initialize the Frontier Silicon device.""" self.webfsapi_endpoint = webfsapi_endpoint self.pin = str(pin) self.timeout = timeout self.sid: t.Optional[str] = None self.__volume_steps: t.Optional[int] = None self.__modes = None self.__equalisers = None self._current_nav_path: list[int] = [] self.__throttler = Throttler() @staticmethod async def get_webfsapi_endpoint( fsapi_device_url: str, timeout: int = DEFAULT_TIMEOUT_IN_SECONDS ) -> str: async with aiohttp.ClientSession( connector=aiohttp.TCPConnector(force_close=True), timeout=aiohttp.ClientTimeout(total=timeout), ) as client: try: resp = await client.get(fsapi_device_url) doc = ET.fromstring(await resp.text(encoding="utf-8")) api = doc.find("webfsapi") if api is not None and api.text: return api.text else: raise FSApiException( f"Could not retrieve webfsapi endpoint from {fsapi_device_url}" ) except (aiohttp.ServerTimeoutError, asyncio.TimeoutError): raise ConnectionError( f"Did not get a response in time from {fsapi_device_url}" ) except aiohttp.ClientConnectionError: raise ConnectionError(f"Could not connect to {fsapi_device_url}") @staticmethod async def create( fsapi_device_url: str, pin: t.Union[str, int], timeout: int = DEFAULT_TIMEOUT_IN_SECONDS, ) -> "AFSAPI": webfsapi_endpoint = await AFSAPI.get_webfsapi_endpoint( fsapi_device_url, timeout ) return AFSAPI(webfsapi_endpoint, pin, timeout) # http request helpers async def _create_session(self) -> t.Optional[str]: return unpack_xml( await self.__call("CREATE_SESSION", retry_with_session=False), "sessionId" ) async def __call( self, path: str, extra: t.Optional[t.Dict[str, DataItem]] = None, force_new_session: bool = False, retry_with_session: bool = True, throttle_wait_after_call: float = TIME_AFTER_READ_CALLS_IN_SECONDS, ) -> ET.Element: """Execute a frontier silicon API call.""" params: t.Dict[str, DataItem] = dict(pin=self.pin) if force_new_session: self.sid = await self._create_session() if self.sid: params.update(sid=self.sid) if extra: params.update(**extra) async with aiohttp.ClientSession( connector=aiohttp.TCPConnector(force_close=True), timeout=aiohttp.ClientTimeout(total=self.timeout), ) as client: try: async with self.__throttler.throttle(throttle_wait_after_call): result = await client.get( f"{self.webfsapi_endpoint}/{path}", params=params ) LOGGER.debug(f"Called {path} with {params}: {result.status}") if result.status == 403: raise InvalidPinException("Access denied - incorrect PIN") elif result.status == 404: # Bad session ID or service endpoint logging.warn( f"Service call failed with 404 to {self.webfsapi_endpoint}/{path}" ) if not force_new_session and retry_with_session: # retry command with a forced new session return await self.__call(path, extra, force_new_session=True) else: raise InvalidSessionException( "Wrong session-id or invalid command" ) elif result.status != 200: raise FSApiException( f"Unexpected result {result.status}: {await result.text()}" ) doc = ET.fromstring(await result.text(encoding="utf-8")) status = unpack_xml(doc, "status") if status == "FS_OK" or status == "FS_LIST_END": return doc elif status == "FS_NODE_DOES_NOT_EXIST": raise NotImplementedException( f"FSAPI service {path} not implemented at {self.webfsapi_endpoint}." ) elif status == "FS_NODE_BLOCKED": raise FSApiException("Device is not in the correct mode") elif status == "FS_FAIL": raise OutOfRangeException( "Command failed. Value is not in range for this command." ) elif status == "FS_PACKET_BAD": raise FSApiException("This command can't be SET") logging.error(f"Unexpected FSAPI status {status}") raise FSApiException(f"Unexpected FSAPI status '{status}'") except aiohttp.ClientConnectionError: raise ConnectionError(f"Could not connect to {self.webfsapi_endpoint}") except TimeoutError: if not force_new_session and retry_with_session: return await self.__call(path, extra, force_new_session=True) else: raise ConnectionError( f"{self.webfsapi_endpoint} did not respond within {self.timeout} seconds" ) # Helper methods # Handlers async def handle_get(self, item: str) -> ET.Element: return await self.__call(f"GET/{item}") async def handle_set( self, item: str, value: t.Any, throttle_wait_after_call: float = TIME_AFTER_SET_CALLS_IN_SECONDS, ) -> t.Optional[bool]: status = unpack_xml( await self.__call( f"SET/{item}", dict(value=value), throttle_wait_after_call=throttle_wait_after_call, ), "status", ) return maybe(status, lambda x: x == "FS_OK") async def handle_text(self, item: str) -> t.Optional[str]: return unpack_xml(await self.handle_get(item), "value/c8_array") async def handle_int(self, item: str) -> t.Optional[int]: val = unpack_xml(await self.handle_get(item), "value/u8") return maybe(val, int) # returns an int, assuming the value does not exceed 8 bits async def handle_long(self, item: str) -> t.Optional[int]: val = unpack_xml(await self.handle_get(item), "value/u32") return maybe(val, int) async def handle_signed_long( self, item: str, ) -> t.Optional[int]: val = unpack_xml(await self.handle_get(item), "value/s32") return maybe(val, int) async def handle_list( self, list_name: str ) -> t.AsyncIterable[t.Tuple[str, t.Dict[str, t.Optional[DataItem]]]]: def _handle_item( item: ET.Element, ) -> t.Tuple[str, t.Dict[str, t.Optional[DataItem]]]: key = item.attrib["key"] def _handle_field(field: ET.Element) -> t.Tuple[str, t.Optional[DataItem]]: # TODO: Handle other field types if "name" in field.attrib: id = field.attrib["name"] s = unpack_xml(field, "c8_array") v = maybe(unpack_xml(field, "u8"), int) return (id, s or v) raise ValueError("Invalid field") value = dict(map(_handle_field, item.findall("field"))) return key, value async def _get_next_items( start: int, count: int ) -> t.Tuple[list[ET.Element], bool]: try: doc = await self.__call( f"LIST_GET_NEXT/{list_name}/{start}", {"maxItems": count} ) if doc and unpack_xml(doc, "status") == "FS_OK": return doc.findall("item"), doc.find("listend") is not None else: return [], True except OutOfRangeException: return [], True start = -1 count = 50 # asking for more items gives a bigger chance on FS_NODE_BLOCKED errors on subsequent requests has_next = True while has_next: items, end_reached = await _get_next_items(start, count) for item in items: yield _handle_item(item) start += count if end_reached: has_next = False # sys async def get_friendly_name(self) -> t.Optional[str]: """Get the friendly name of the device.""" return await self.handle_text(API["friendly_name"]) async def set_friendly_name(self, value: str) -> t.Optional[bool]: """Set the friendly name of the device.""" return await self.handle_set(API["friendly_name"], value) async def get_version(self) -> t.Optional[str]: """Get the friendly name of the device.""" return await self.handle_text(API["version"]) async def get_radio_id(self) -> t.Optional[str]: """Get the friendly name of the device.""" return await self.handle_text(API["radio_id"]) async def get_power(self) -> t.Optional[bool]: """Check if the device is on.""" power = await self.handle_int(API["power"]) return bool(power) async def set_power(self, value: bool = False) -> t.Optional[bool]: """Power on or off the device.""" power = await self.handle_set( API["power"], int(value), throttle_wait_after_call=TIME_AFTER_SLOW_SET_CALLS_IN_SECONDS, ) return bool(power) async def get_volume_steps(self) -> t.Optional[int]: """Read the maximum volume level of the device.""" if not self.__volume_steps: self.__volume_steps = await self.handle_int(API["volume_steps"]) return self.__volume_steps # Volume async def get_volume(self) -> t.Optional[int]: """Read the volume level of the device.""" return await self.handle_int(API["volume"]) async def set_volume(self, value: int) -> t.Optional[bool]: """Set the volume level of the device.""" return await self.handle_set(API["volume"], value) # Mute async def get_mute(self) -> t.Optional[bool]: """Check if the device is muted.""" mute = await self.handle_int(API["mute"]) return bool(mute) async def set_mute(self, value: bool = False) -> t.Optional[bool]: """Mute or unmute the device.""" mute = await self.handle_set(API["mute"], int(value)) return bool(mute) async def get_play_status(self) -> t.Optional[PlayState]: """Get the play status of the device.""" status = await self.handle_int(API["status"]) if status: return PlayState(status) else: return None async def get_play_name(self) -> t.Optional[str]: """Get the name of the played item.""" return await self.handle_text(API["name"]) async def get_play_text(self) -> t.Optional[str]: """Get the text associated with the played media.""" return await self.handle_text(API["text"]) async def get_play_artist(self) -> t.Optional[str]: """Get the artists of the current media(song).""" return await self.handle_text(API["artist"]) async def get_play_album(self) -> t.Optional[str]: """Get the songs's album.""" return await self.handle_text(API["album"]) async def get_play_graphic(self) -> t.Optional[str]: """Get the album art associated with the song/album/artist.""" return await self.handle_text(API["graphic_uri"]) # Shuffle async def get_play_shuffle(self) -> t.Optional[bool]: status = await self.handle_int(API["shuffle"]) if status: return status == 1 return None async def set_play_shuffle(self, value: bool) -> t.Optional[bool]: return await self.handle_set(API["shuffle"], int(value)) # Repeat async def get_play_repeat(self) -> t.Optional[bool]: status = await self.handle_int(API["repeat"]) if status: return status == 1 return None async def play_repeat(self, value: bool) -> t.Optional[bool]: return await self.handle_set(API["repeat"], int(value)) async def get_play_duration(self) -> t.Optional[int]: """Get the duration of the played media.""" return await self.handle_long(API["duration"]) async def get_play_position(self) -> t.Optional[int]: """ The user can jump to a specific moment of the track. This means that the range of
j] = 0.125 * np.sum([.5 * G[i-2, j],\ # -1. * G[i-1, j-1], -1. * G[i-1, j+1], \ # -1. * G[i, j-2], 4. * R[i, j-1], 5. * G[i,j], 4. * R[i, j+1], -1. * G[i, j+2], \ # -1. * G[i+1, j-1], -1. * G[i+1, j+1], \ # .5 * G[i+2, j]]) # # # B at Green locations in Red rows # B[i, j] = 0.125 * np.sum([-1. * G[i-2, j], \ # -1. * G[i-1, j-1], 4. * B[i-1, j], -1. * G[i-1, j+1], \ # .5 * G[i, j-2], 5. * G[i,j], .5 * G[i, j+2], \ # -1. * G[i+1, j-1], 4. * B[i+1,j], -1. * G[i+1, j+1], \ # -1. * G[i+2, j]]) # # # Green locations in Blue rows # elif (((i % 2) == 0) and ((j % 2) == 0)): # # # R at Green locations in Blue rows # R[i, j] = 0.125 * np.sum([-1. * G[i-2, j], \ # -1. * G[i-1, j-1], 4. * R[i-1, j], -1. * G[i-1, j+1], \ # .5 * G[i, j-2], 5. * G[i,j], .5 * G[i, j+2], \ # -1. * G[i+1, j-1], 4. * R[i+1, j], -1. * G[i+1, j+1], \ # -1. * G[i+2, j]]) # # # B at Green locations in Blue rows # B[i, j] = 0.125 * np.sum([.5 * G[i-2, j], \ # -1. * G [i-1, j-1], -1. * G[i-1, j+1], \ # -1. * G[i, j-2], 4. * B[i, j-1], 5. * G[i,j], 4. * B[i, j+1], -1. * G[i, j+2], \ # -1. * G[i+1, j-1], -1. * G[i+1, j+1], \ # .5 * G[i+2, j]]) # # # R at Blue locations # elif (((i % 2) == 0) and ((j % 2) != 0)): # R[i, j] = 0.125 * np.sum([-1.5 * B[i-2, j], \ # 2. * R[i-1, j-1], 2. * R[i-1, j+1], \ # -1.5 * B[i, j-2], 6. * B[i,j], -1.5 * B[i, j+2], \ # 2. * R[i+1, j-1], 2. * R[i+1, j+1], \ # -1.5 * B[i+2, j]]) # # # B at Red locations # elif (((i % 2) != 0) and ((j % 2) == 0)): # B[i, j] = 0.125 * np.sum([-1.5 * R[i-2, j], \ # 2. * B[i-1, j-1], 2. * B[i-1, j+1], \ # -1.5 * R[i, j-2], 6. * R[i,j], -1.5 * R[i, j+2], \ # 2. * B[i+1, j-1], 2. * B[i+1, j+1], \ # -1.5 * R[i+2, j]]) # # if (timeshow): # elapsed_time = time.process_time() - t0 # print("Red/Blue: row index: " + str(i-1) + " of " + str(height) + \ # " | elapsed time: " + "{:.3f}".format(elapsed_time) + " seconds") # # elif (bayer_pattern == "grbg"): # # G[::2, ::2] = raw[::2, ::2] # G[1::2, 1::2] = raw[1::2, 1::2] # R[::2, 1::2] = raw[::2, 1::2] # B[1::2, ::2] = raw[1::2, ::2] # # # Green channel # for i in range(no_of_pixel_pad, height + no_of_pixel_pad): # # # to display progress # t0 = time.process_time() # # for j in range(no_of_pixel_pad, width + no_of_pixel_pad): # # # G at Red location # if (((i % 2) == 0) and ((j % 2) != 0)): # G[i, j] = 0.125 * np.sum([-1. * R[i-2, j], \ # 2. * G[i-1, j], \ # -1. * R[i, j-2], 2. * G[i, j-1], 4. * R[i,j], 2. * G[i, j+1], -1. * R[i, j+2],\ # 2. * G[i+1, j], \ # -1. * R[i+2, j]]) # # G at Blue location # elif (((i % 2) != 0) and ((j % 2) == 0)): # G[i, j] = 0.125 * np.sum([-1. * B[i-2, j], \ # 2. * G[i-1, j], \ # -1. * B[i, j-2], 2. * G[i, j-1], 4. * B[i,j], 2. * G[i, j+1], -1. * B[i, j+2], \ # 2. * G[i+1, j],\ # -1. * B[i+2, j]]) # if (timeshow): # elapsed_time = time.process_time() - t0 # print("Green: row index: " + str(i-1) + " of " + str(height) + \ # " | elapsed time: " + "{:.3f}".format(elapsed_time) + " seconds") # # # Red and Blue channel # for i in range(no_of_pixel_pad, height + no_of_pixel_pad): # # # to display progress # t0 = time.process_time() # # for j in range(no_of_pixel_pad, width + no_of_pixel_pad): # # # Green locations in Red rows # if (((i % 2) == 0) and ((j % 2) == 0)): # # R at Green locations in Red rows # R[i, j] = 0.125 * np.sum([.5 * G[i-2, j],\ # -1. * G[i-1, j-1], -1. * G[i-1, j+1], \ # -1. * G[i, j-2], 4. * R[i, j-1], 5. * G[i,j], 4. * R[i, j+1], -1. * G[i, j+2], \ # -1. * G[i+1, j-1], -1. * G[i+1, j+1], \ # .5 * G[i+2, j]]) # # # B at Green locations in Red rows # B[i, j] = 0.125 * np.sum([-1. * G[i-2, j], \ # -1. * G[i-1, j-1], 4. * B[i-1, j], -1. * G[i-1, j+1], \ # .5 * G[i, j-2], 5. * G[i,j], .5 * G[i, j+2], \ # -1. * G[i+1, j-1], 4. * B[i+1,j], -1. * G[i+1, j+1], \ # -1. * G[i+2, j]]) # # # Green locations in Blue rows # elif (((i % 2) != 0) and ((j % 2) != 0)): # # # R at Green locations in Blue rows # R[i, j] = 0.125 * np.sum([-1. * G[i-2, j], \ # -1. * G[i-1, j-1], 4. * R[i-1, j], -1. * G[i-1, j+1], \ # .5 * G[i, j-2], 5. * G[i,j], .5 * G[i, j+2], \ # -1. * G[i+1, j-1], 4. * R[i+1, j], -1. * G[i+1, j+1], \ # -1. * G[i+2, j]]) # # # B at Green locations in Blue rows # B[i, j] = 0.125 * np.sum([.5 * G[i-2, j], \ # -1. * G [i-1, j-1], -1. * G[i-1, j+1], \ # -1. * G[i, j-2], 4. * B[i, j-1], 5. * G[i,j], 4. * B[i, j+1], -1. * G[i, j+2], \ # -1. * G[i+1, j-1], -1. * G[i+1, j+1], \ # .5 * G[i+2, j]]) # # # R at Blue locations # elif (((i % 2) != 0) and ((j % 2) == 0)): # R[i, j] = 0.125 * np.sum([-1.5 * B[i-2, j], \ # 2. * R[i-1, j-1], 2. * R[i-1, j+1], \ # -1.5 * B[i, j-2], 6. * B[i,j], -1.5 * B[i, j+2], \ # 2. * R[i+1, j-1], 2. * R[i+1, j+1], \ # -1.5 * B[i+2, j]]) # # # B at Red locations # elif (((i % 2) == 0) and ((j % 2) != 0)): # B[i, j] = 0.125 * np.sum([-1.5 * R[i-2, j], \ # 2. * B[i-1, j-1], 2. * B[i-1, j+1], \ # -1.5 * R[i, j-2], 6. * R[i,j], -1.5 * R[i, j+2], \ # 2. * B[i+1, j-1], 2. * B[i+1, j+1], \ # -1.5 * R[i+2, j]]) # # if (timeshow): # elapsed_time = time.process_time() - t0 # print("Red/Blue: row index: " + str(i-1) + " of " + str(height) + \ # " | elapsed time: " + "{:.3f}".format(elapsed_time) + " seconds") # # elif (bayer_pattern == "bggr"): # # G[::2, 1::2] = raw[::2, 1::2] # G[1::2, ::2] = raw[1::2, ::2] # R[1::2, 1::2] = raw[1::2, 1::2] # B[::2, ::2] = raw[::2, ::2] # # # Green channel # for i in range(no_of_pixel_pad, height + no_of_pixel_pad): # # # to display progress # t0 = time.process_time() # # for j in range(no_of_pixel_pad, width + no_of_pixel_pad): # # # G at Red location # if (((i % 2) != 0) and ((j % 2) != 0)): # G[i, j] = 0.125 * np.sum([-1. * R[i-2, j], \ # 2. * G[i-1, j], \ # -1. * R[i, j-2], 2. * G[i, j-1], 4. * R[i,j], 2. * G[i, j+1], -1. * R[i, j+2],\ # 2. * G[i+1, j], \ # -1. * R[i+2, j]]) # # G at Blue location # elif (((i % 2) == 0) and ((j % 2) == 0)): # G[i, j] = 0.125 * np.sum([-1. * B[i-2, j], \ # 2. * G[i-1, j], \ # -1. * B[i, j-2], 2. * G[i, j-1], 4. * B[i,j], 2. * G[i, j+1], -1. * B[i, j+2], \ # 2. * G[i+1, j],\ # -1. * B[i+2, j]]) # if (timeshow): # elapsed_time = time.process_time() - t0 # print("Green: row index: " + str(i-1) + " of " + str(height) + \ # " | elapsed time: " + "{:.3f}".format(elapsed_time) + " seconds") # # # Red and Blue channel # for i in range(no_of_pixel_pad, height + no_of_pixel_pad): # # # to display progress # t0 = time.process_time() # # for j in range(no_of_pixel_pad, width + no_of_pixel_pad): # # #
zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] != data[band].attrs['nodata']), # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "legend": { # "url": "" "styles": ["seasonal_WOfS_frequency", "seasonal_WOfS_frequency_blues_transparent"] }, "wcs_default_bands": ["frequency"], "styles": [ { "name": "seasonal_WOfS_frequency", "title": " Water Summary", "abstract": "WOfS seasonal summary showing the frequency of Wetness", "needed_bands": ["frequency"], "color_ramp": [ { "value": 0.0, "color": "#000000", "alpha": 0.0 }, { "value": 0.02, "color": "#000000", "alpha": 0.0 }, { "value": 0.05, "color": "#8e0101", "alpha": 0.25 }, { "value": 0.1, "color": "#cf2200", "alpha": 0.75 }, { "value": 0.2, "color": "#e38400" }, { "value": 0.3, "color": "#e3df00" }, { "value": 0.4, "color": "#62e300" }, { "value": 0.5, "color": "#00e32d" }, { "value": 0.6, "color": "#00e3c8" }, { "value": 0.7, "color": "#0097e3" }, { "value": 0.8, "color": "#005fe3" }, { "value": 0.9, "color": "#000fe3" }, { "value": 1.0, "color": "#5700e3" } ], "legend": { "units": "%", "radix_point": 0, "scale_by": 100.0, "major_ticks": 0.1 } }, { "name": "seasonal_WOfS_frequency_blues_transparent", "title": "Water Summary (Blue)", "abstract": "WOfS seasonal summary showing the frequency of Wetness", "needed_bands": ["frequency"], "color_ramp": [ { "value": 0.0, "color": "#ffffff", "alpha": 0.0, }, { "value": 0.001, "color": "#d5fef9", "alpha": 0.0, }, { "value": 0.02, "color": "#d5fef9", }, { "value": 0.2, "color": "#71e3ff" }, { "value": 0.4, "color": "#01ccff" }, { "value": 0.6, "color": "#0178ff" }, { "value": 0.8, "color": "#2701ff" }, { "value": 1.0, "color": "#5700e3" } ], "legend": { "units": "%", "radix_point": 0, "scale_by": 100.0, "major_ticks": 0.1 } }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "seasonal_WOfS_frequency", }, { # Included as a keyword for the layer "label": "WOfS Daily Observations", # Included as a keyword for the layer "type": "albers", # Included as a keyword for the layer "variant": "25m", # The WMS name for the layer "name": "wofs_albers", # The Datacube name for the associated data product "product_name": "wofs_albers", "abstract": """ Water Observations from Space (WOfS) provides surface water observations derived from satellite imagery for all of Australia. The current product (Version 2.1.5) includes observations taken from 1986 to the present, from the Landsat 5, 7 and 8 satellites. WOfS covers all of mainland Australia and Tasmania but excludes off-shore Territories. The WOfS product allows users to get a better understanding of where water is normally present in a landscape, where water is seldom observed, and where inundation has occurred occasionally. Data is provided as Water Observation Feature Layers (WOFLs), in a 1 to 1 relationship with the input satellite data. Hence there is one WOFL for each satellite dataset processed for the occurrence of water. The details of the WOfS algorithm and derived statistics are available at http://dx.doi.org/10.1016/j.rse.2015.11.003. For service status information, see https://status.dea.ga.gov.au""", #"pq_band": "water", # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 35.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [200, 180, 180, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] & data[band].attrs['nodata']) == 0, # "pq_manual_merge": True, # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [ "nodata", "noncontiguous", ], # Include UTC dates for GSKY lookup "feature_info_include_utc_dates": True, "data_manual_merge": False, "always_fetch_bands": [ ], "apply_solar_corrections": False, "fuse_func": "datacube_wms.wms_utils.wofls_fuser", # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "legend": { "styles": ["observations"] }, "wcs_default_bands": ["water"], "styles": [ { "name": "observations", "title": "Observations", "abstract": "Observations", "value_map": { "water": [ { "title": "Invalid", "abstract": "Slope or Cloud", "flags": { "or": { "terrain_or_low_angle": True, "cloud_shadow": True, "cloud": True, "high_slope": True, "noncontiguous": True } }, "color": "#707070" }, { # Possible Sea Glint, also mark as invalid "title": "", "abstract": "", "flags": { "dry": True, "sea": True }, "color": "#707070" }, { "title": "Dry", "abstract": "Dry", "flags": { "dry": True, "sea": False, }, "color": "#D99694" }, { "title": "Wet", "abstract": "Wet or Sea", "flags": { "or": { "wet": True, "sea": True } }, "color": "#4F81BD" } ] } }, { "name": "wet", "title": "Wet Only", "abstract": "Wet Only", "value_map": { "water": [ { "title": "Invalid", "abstract": "Slope or Cloud", "flags": { "or": { "terrain_or_low_angle": True, "cloud_shadow": True, "cloud": True, "high_slope": True, "noncontiguous": True } }, "color": "#707070", "mask": True }, { # Possible Sea Glint, also mark as invalid "title": "", "abstract": "", "flags": { "dry": True, "sea": True }, "color": "#707070", "mask": True }, { "title": "Dry", "abstract": "Dry", "flags": { "dry": True, "sea": False, }, "color": "#D99694", "mask": True }, { "title": "Wet", "abstract": "Wet or Sea", "flags": { "or": { "wet": True, "sea": True } }, "color": "#4F81BD" } ] } } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "observations", } ], }, { # Name and title of the platform layer. # Platform layers are not mappable. The name is for internal server use only. "name": "Sentinel-2 NRT", "title": "Near Real-Time", "abstract": "This is a 90-day rolling archive of daily Sentinel-2 Near Real Time data. " "The Near Real-Time capability provides analysis-ready data " "that is processed on receipt using the best-available ancillary information at the time to " "provide atmospheric corrections. For more information see " "http://pid.geoscience.gov.au/dataset/ga/122229", # Products available for this platform. # For each product, the "name" is the Datacube name, and the label is used # to describe the label to end-users. "products": [ { # Included as a keyword for the layer "label": "Sentinel 2 (A and B combined)", # Included as a keyword for the layer "type": "", # Included as a keyword for the layer "variant": "Surface Reflectance", "abstract":""" This is a 90-day rolling archive of daily Sentinel-2 Near Real Time data. The Near Real-Time capability provides analysis-ready data that is processed on receipt using the best-available ancillary information at the time to provide atmospheric corrections. For more information see http://pid.geoscience.gov.au/dataset/ga/122229 The Normalised Difference Chlorophyll Index (NDCI) is based on the method of Mishra & Mishra 2012, and adapted to bands on the Sentinel-2A & B sensors. The index indicates levels of chlorophyll-a (chl-a) concentrations in complex turbid productive waters such as those encountered in many
<filename>moirai/webapi/api.py # -*- coding: utf-8; -*- # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import ahio import io import zipfile import hashlib import json import dateutil.parser import logging import os.path import tempfile import scipy.io as sio from multiprocessing import Pipe from bson import json_util from enum import Enum from cheroot.wsgi import Server from cheroot.wsgi import PathInfoDispatcher from flask import Flask, request, send_file from moirai.database import DatabaseV1 from moirai.hardware import Hardware from moirai import __version__ class APIv1: """ Starts a WebServer for the API endpoint. """ def __init__(self, processHandler): self.app = Flask(__name__) self.database = DatabaseV1() self.hardware = Hardware() self.ph = processHandler logging.getLogger('werkzeug').setLevel(logging.ERROR) def run(self): """ Entry point for the class. Adds routes and starts listening. """ @self.app.after_request def add_header(response): response.headers['Cache-Control'] = 'no-store' return response self.app.add_url_rule('/', view_func=lambda: 'Moirai Control System\n') self.app.add_url_rule('/login', view_func=self.login, methods=['POST']) self.app.add_url_rule( '/version', view_func=self.version, methods=['GET']) self.app.add_url_rule( '/set-password', view_func=self.set_password, methods=['POST']) self.app.add_url_rule( '/last_error', view_func=self.last_error, methods=['GET']) self.app.add_url_rule( '/hardware/drivers', view_func=self.hardware_drivers, methods=['GET']) self.app.add_url_rule( '/hardware/configuration', view_func=self.hardware_set_configuration, methods=['POST']) self.app.add_url_rule( '/hardware/configuration', view_func=self.hardware_get_configuration, methods=['GET']) self.app.add_url_rule( '/system_response/tests', view_func=self.system_response_get_tests, methods=['GET']) self.app.add_url_rule( '/system_response/tests', view_func=self.system_response_set_tests, methods=['POST']) self.app.add_url_rule( '/system_response/test/run', view_func=self.system_response_run, methods=['POST']) self.app.add_url_rule( '/system_response/test/stop', view_func=self.system_response_stop, methods=['GET']) self.app.add_url_rule( '/live_graph/tests', view_func=self.live_graph_list_tests, methods=['GET']) self.app.add_url_rule( '/live_graph/test', view_func=self.live_graph_get_test, methods=['POST']) self.app.add_url_rule( '/live_graph/test/remove', view_func=self.live_graph_remove_test, methods=['POST']) self.app.add_url_rule( '/live_graph/test/export', view_func=self.live_graph_export_mat, methods=['POST']) self.app.add_url_rule( '/controllers', view_func=self.controller_set, methods=['POST']) self.app.add_url_rule( '/controllers', view_func=self.controller_get, methods=['GET']) self.app.add_url_rule( '/controllers/run', view_func=self.controller_run, methods=['POST']) self.app.add_url_rule( '/controllers/export', view_func=self.controller_export, methods=['POST']) self.app.add_url_rule( '/controllers/import', view_func=self.controller_import, methods=['POST']) self.app.add_url_rule( '/controllers/stop', view_func=self.controller_stop, methods=['GET']) self.app.add_url_rule( '/db/dump', view_func=self.dump_database, methods=['GET']) self.app.add_url_rule( '/db/restore', view_func=self.restore_database, methods=['POST']) self.app.add_url_rule( '/simulation/run', view_func=self.model_simulation_run, methods=['POST']) self.app.add_url_rule( '/pid/run', view_func=self.pid_run, methods=['POST']) self.app.add_url_rule( '/free/run', view_func=self.free_run, methods=['POST']) d = PathInfoDispatcher({'/': self.app}) self.server = Server(('0.0.0.0', 5000), d) self.server.start() def stop(self): self.server.stop() def version(self): return json.dumps({'version': __version__}) def verify_token(self): """ Verifies the token sent as a HTTP Authorization header. """ try: authorization = request.headers.get('Authorization') token = authorization.split(' ')[-1] return self.database.verify_token(token) except Exception: # noqa: E722 pylint: disable=E722 return False def login(self): """ Authenticates the user. Should be called with a POST request containing the following body: { "password": string } @returns: On success, HTTP 200 Ok and body: { "token": string } On failure, HTTP 403 Unauthorized and body: {} """ password = request.json.get('password', '') hasher = hashlib.sha512() hasher.update(bytes(password, 'utf-8')) password = <PASSWORD>() saved_password = self.database.get_setting('password') if saved_password == password: return json.dumps({'token': self.database.generate_token()}) return '{}', 403 def set_password(self): """ Sets the password. Required body: { "password": string } @returns: On success, HTTP 200 Ok and body: {} On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 password = request.json.get('password', '') hasher = hashlib.sha512() hasher.update(bytes(password, 'utf-8')) password = <PASSWORD>() self.database.set_setting('password', password) return '{}' def last_error(self): """ Returns the last error in the database. @returns: { message: string } """ if not self.verify_token(): return '{}', 403 error = self.database.get_setting('test_error') return json.dumps({'message': error}) def hardware_drivers(self): """ Returns a JSON object with all the available drivers, their setups, if any, and ports, if listable. @returns: { name: string, has_setup: boolean, setup_arguments: [ { name: string, default_value: string } ], ports: [ { id: number, name: string, analog: { input: boolean, output: boolean, read_range: [number, number], write_range: [number, number] } digital: { input: boolean, output: boolean, pwm: boolean } } ] } """ if not self.verify_token(): return '{}', 403 drivers = self.hardware.list_drivers() drivers = [{ 'name': driver, 'has_setup': self.hardware.driver_has_setup(driver), 'setup_arguments': self.hardware.driver_setup_arguments(driver), 'ports': self.__ports_for_driver(driver) } for driver in drivers] return json.dumps(drivers) def hardware_set_configuration(self): """ Saves the given driver configuration. It must be a POST request with the following body: { name: string, setup_arguments: [ { name: string, value: string } ], ports: [ { id: number, name: string | number, alias: string, type: number, defaultValue: string } ], configurations: [ { port: number, alias: string, formula: string } ] } @returns: On success, HTTP 200 Ok and body: {} On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 configuration = request.json self.database.set_setting('hardware_configuration', configuration) return '{}' def hardware_get_configuration(self): """ Returns the saved driver configuration. It must be a GET request. @returns: On success, HTTP 200 Ok and body: { name: string, setup_arguments: [ { name: string, value: string } ], ports: [ { id: number, name: string | number, alias: string, type: number, defaultValue: string } ], configurations: [ { port: number, alias: string, formula: string } ] } or {} if there is no configuration saved On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 config = self.database.get_setting('hardware_configuration') or {} return json.dumps(config) def system_response_get_tests(self): """ Returns the saved system response tests. It must be a GET request. @returns: On success, HTTP 200 Ok and body: [{ id: number name: string type: string inputs: string[] output: string[] points: [{ x: number y: number }] fixedOutputs: [{ alias: string value: number }] logRate: number }] or [] if there is no configuration saved On failure, HTTP 403 Unauthorized and body: [] """ if not self.verify_token(): return '{}', 403 tests = self.database.get_setting('system_response_tests') or [] return json.dumps(tests) def system_response_set_tests(self): """ Sets the saved system response tests. It must be a POST request with the following body: [{ id: number name: string type: string inputs: string[] output: string[] points: [{ x: number y: number }] fixedOutputs: [{ alias: string value: number }] logRate: number }] @returns: On success, HTTP 200 Ok and body: {} On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 tests = request.json self.database.set_setting('system_response_tests', tests) return '{}' def system_response_run(self): """ Runs the given test. It must be a POST request with the following body: { test: number } @returns: On success, HTTP 200 Ok and body: {} On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 test = request.json['test'] self.ph.send_command("hardware", "run_test", test) return '{}' def system_response_stop(self): """ Stops the running test. It must be a GET request. @returns: On success, HTTP 200 Ok and body: {} On failure, HTTP 403 Unauthorized and body: {} """ if not self.verify_token(): return '{}', 403 self.database.set_setting('current_test', None) return '{}' def live_graph_list_tests(self): """ Returns a list of available graphs. It must be a GET request. @returns: On success, HTTP 200 Ok and body: [ { name: string date: string (ISO 8601) running: boolean } ] On failure, HTTP 403 Unauthorized and body: [] """ if not self.verify_token(): return '{}', 403 running_test = self.database.get_setting('current_test') tests = self.database.list_test_data() if len(tests) == 0: return '[]' last_date = max([test['date'] for test in tests]) tests = [{ 'name': t['name'], 'date': t['date'].isoformat(), 'running': t['name'] == running_test and t['date'] == last_date } for t in tests] return json.dumps(tests) def live_graph_get_test(self): """ Returns a graph. It must be a POST request with following body: { test: string start_time: string (ISO 8601) skip?: number } @returns: On success, HTTP 200 Ok and body: [ { sensor: string time: string | number value: string | number } ] On failure, HTTP 403 Unauthorized and body: [] """ if not self.verify_token(): return '{}', 403 test = request.json['test'] start_time = dateutil.parser.parse(request.json['start_time']) skip = request.json.get('skip', 0) points = self.database.get_test_data(test, start_time, skip) return json.dumps(points) def live_graph_remove_test(self): """ Deletes a test. It must be a POST request with following
for the get_builds method :param value: :type value: :class:`<[Build]> <azure.devops.v5_1.build.models.[Build]>` :param continuation_token: The continuation token to be used to get the next page of results. :type continuation_token: str """ self.value = value self.continuation_token = continuation_token def queue_build(self, build, project, ignore_warnings=None, check_in_ticket=None, source_build_id=None): """QueueBuild. Queues a build :param :class:`<Build> <azure.devops.v5_1.build.models.Build>` build: :param str project: Project ID or project name :param bool ignore_warnings: :param str check_in_ticket: :param int source_build_id: :rtype: :class:`<Build> <azure.devops.v5_1.build.models.Build>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') query_parameters = {} if ignore_warnings is not None: query_parameters['ignoreWarnings'] = self._serialize.query('ignore_warnings', ignore_warnings, 'bool') if check_in_ticket is not None: query_parameters['checkInTicket'] = self._serialize.query('check_in_ticket', check_in_ticket, 'str') if source_build_id is not None: query_parameters['sourceBuildId'] = self._serialize.query('source_build_id', source_build_id, 'int') content = self._serialize.body(build, 'Build') response = self._send(http_method='POST', location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf', version='5.1', route_values=route_values, query_parameters=query_parameters, content=content) return self._deserialize('Build', response) def update_build(self, build, project, build_id, retry=None): """UpdateBuild. Updates a build. :param :class:`<Build> <azure.devops.v5_1.build.models.Build>` build: The build. :param str project: Project ID or project name :param int build_id: The ID of the build. :param bool retry: :rtype: :class:`<Build> <azure.devops.v5_1.build.models.Build>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if build_id is not None: route_values['buildId'] = self._serialize.url('build_id', build_id, 'int') query_parameters = {} if retry is not None: query_parameters['retry'] = self._serialize.query('retry', retry, 'bool') content = self._serialize.body(build, 'Build') response = self._send(http_method='PATCH', location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf', version='5.1', route_values=route_values, query_parameters=query_parameters, content=content) return self._deserialize('Build', response) def update_builds(self, builds, project): """UpdateBuilds. Updates multiple builds. :param [Build] builds: The builds to update. :param str project: Project ID or project name :rtype: [Build] """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') content = self._serialize.body(builds, '[Build]') response = self._send(http_method='PATCH', location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf', version='5.1', route_values=route_values, content=content) return self._deserialize('[Build]', self._unwrap_collection(response)) def get_build_changes(self, project, build_id, continuation_token=None, top=None, include_source_change=None): """GetBuildChanges. Gets the changes associated with a build :param str project: Project ID or project name :param int build_id: :param str continuation_token: :param int top: The maximum number of changes to return :param bool include_source_change: :rtype: :class:`<GetBuildChangesResponseValue>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if build_id is not None: route_values['buildId'] = self._serialize.url('build_id', build_id, 'int') query_parameters = {} if continuation_token is not None: query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str') if top is not None: query_parameters['$top'] = self._serialize.query('top', top, 'int') if include_source_change is not None: query_parameters['includeSourceChange'] = self._serialize.query('include_source_change', include_source_change, 'bool') response = self._send(http_method='GET', location_id='54572c7b-bbd3-45d4-80dc-28be08941620', version='5.1', route_values=route_values, query_parameters=query_parameters) response_value = self._deserialize('[Change]', self._unwrap_collection(response)) continuation_token = self._get_continuation_token(response) return self.GetBuildChangesResponseValue(response_value, continuation_token) class GetBuildChangesResponseValue(object): def __init__(self, value, continuation_token): """ Response for the get_build_changes method :param value: :type value: :class:`<[Change]> <azure.devops.v5_1.build.models.[Change]>` :param continuation_token: The continuation token to be used to get the next page of results. :type continuation_token: str """ self.value = value self.continuation_token = continuation_token def get_build_controller(self, controller_id): """GetBuildController. Gets a controller :param int controller_id: :rtype: :class:`<BuildController> <azure.devops.v5_1.build.models.BuildController>` """ route_values = {} if controller_id is not None: route_values['controllerId'] = self._serialize.url('controller_id', controller_id, 'int') response = self._send(http_method='GET', location_id='fcac1932-2ee1-437f-9b6f-7f696be858f6', version='5.1', route_values=route_values) return self._deserialize('BuildController', response) def get_build_controllers(self, name=None): """GetBuildControllers. Gets controller, optionally filtered by name :param str name: :rtype: [BuildController] """ query_parameters = {} if name is not None: query_parameters['name'] = self._serialize.query('name', name, 'str') response = self._send(http_method='GET', location_id='fcac1932-2ee1-437f-9b6f-7f696be858f6', version='5.1', query_parameters=query_parameters) return self._deserialize('[BuildController]', self._unwrap_collection(response)) def create_definition(self, definition, project, definition_to_clone_id=None, definition_to_clone_revision=None): """CreateDefinition. Creates a new definition. :param :class:`<BuildDefinition> <azure.devops.v5_1.build.models.BuildDefinition>` definition: The definition. :param str project: Project ID or project name :param int definition_to_clone_id: :param int definition_to_clone_revision: :rtype: :class:`<BuildDefinition> <azure.devops.v5_1.build.models.BuildDefinition>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') query_parameters = {} if definition_to_clone_id is not None: query_parameters['definitionToCloneId'] = self._serialize.query('definition_to_clone_id', definition_to_clone_id, 'int') if definition_to_clone_revision is not None: query_parameters['definitionToCloneRevision'] = self._serialize.query('definition_to_clone_revision', definition_to_clone_revision, 'int') content = self._serialize.body(definition, 'BuildDefinition') response = self._send(http_method='POST', location_id='dbeaf647-6167-421a-bda9-c9327b25e2e6', version='5.1', route_values=route_values, query_parameters=query_parameters, content=content) return self._deserialize('BuildDefinition', response) def delete_definition(self, project, definition_id): """DeleteDefinition. Deletes a definition and all associated builds. :param str project: Project ID or project name :param int definition_id: The ID of the definition. """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if definition_id is not None: route_values['definitionId'] = self._serialize.url('definition_id', definition_id, 'int') self._send(http_method='DELETE', location_id='dbeaf647-6167-421a-bda9-c9327b25e2e6', version='5.1', route_values=route_values) def get_definition(self, project, definition_id, revision=None, min_metrics_time=None, property_filters=None, include_latest_builds=None): """GetDefinition. Gets a definition, optionally at a specific revision. :param str project: Project ID or project name :param int definition_id: The ID of the definition. :param int revision: The revision number to retrieve. If this is not specified, the latest version will be returned. :param datetime min_metrics_time: If specified, indicates the date from which metrics should be included. :param [str] property_filters: A comma-delimited list of properties to include in the results. :param bool include_latest_builds: :rtype: :class:`<BuildDefinition> <azure.devops.v5_1.build.models.BuildDefinition>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if definition_id is not None: route_values['definitionId'] = self._serialize.url('definition_id', definition_id, 'int') query_parameters = {} if revision is not None: query_parameters['revision'] = self._serialize.query('revision', revision, 'int') if min_metrics_time is not None: query_parameters['minMetricsTime'] = self._serialize.query('min_metrics_time', min_metrics_time, 'iso-8601') if property_filters is not None: property_filters = ",".join(property_filters) query_parameters['propertyFilters'] = self._serialize.query('property_filters', property_filters, 'str') if include_latest_builds is not None: query_parameters['includeLatestBuilds'] = self._serialize.query('include_latest_builds', include_latest_builds, 'bool') response = self._send(http_method='GET', location_id='dbeaf647-6167-421a-bda9-c9327b25e2e6', version='5.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('BuildDefinition', response) def get_definitions(self, project, name=None, repository_id=None, repository_type=None, query_order=None, top=None, continuation_token=None, min_metrics_time=None, definition_ids=None, path=None, built_after=None, not_built_after=None, include_all_properties=None, include_latest_builds=None, task_id_filter=None, process_type=None, yaml_filename=None): """GetDefinitions. Gets a list of definitions. :param str project: Project ID or project name :param str name: If specified, filters to definitions whose names match this pattern. :param str repository_id: A repository ID. If specified, filters to definitions that use this repository. :param str repository_type: If specified, filters to definitions that have a repository of this type. :param str query_order: Indicates the order in which definitions should be returned. :param int top: The maximum number of definitions to return. :param str continuation_token: A continuation token, returned by a previous call to this method, that can be used to return the next set of definitions. :param datetime min_metrics_time: If specified, indicates the date from which metrics should be included. :param [int] definition_ids: A comma-delimited list that specifies the IDs of definitions to retrieve. :param str path: If specified, filters to definitions under this folder. :param datetime built_after: If specified, filters to definitions that have builds after this date. :param datetime not_built_after: If specified, filters to definitions that do not have builds after this date. :param bool include_all_properties: Indicates whether the full definitions should be returned. By default, shallow representations of the definitions are returned. :param bool include_latest_builds: Indicates whether to return the latest and latest completed builds for this definition. :param str task_id_filter: If specified, filters to definitions that use the specified task. :param int process_type: If specified, filters to definitions with the given process type. :param str yaml_filename: If specified, filters to YAML definitions that match the given filename. :rtype: :class:`<GetDefinitionsResponseValue>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') query_parameters = {} if name is not None: query_parameters['name'] = self._serialize.query('name', name, 'str') if repository_id is not None: query_parameters['repositoryId'] = self._serialize.query('repository_id', repository_id, 'str') if repository_type is not None: query_parameters['repositoryType'] = self._serialize.query('repository_type', repository_type, 'str') if query_order is not None: query_parameters['queryOrder'] = self._serialize.query('query_order', query_order, 'str') if top is not None: query_parameters['$top'] = self._serialize.query('top', top, 'int') if continuation_token is not None: query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str') if min_metrics_time is not None: query_parameters['minMetricsTime'] = self._serialize.query('min_metrics_time', min_metrics_time, 'iso-8601') if definition_ids is not None: definition_ids = ",".join(map(str, definition_ids)) query_parameters['definitionIds'] = self._serialize.query('definition_ids', definition_ids, 'str') if path is not None: query_parameters['path'] = self._serialize.query('path', path, 'str') if built_after is not None: query_parameters['builtAfter'] = self._serialize.query('built_after', built_after, 'iso-8601') if not_built_after is not None: query_parameters['notBuiltAfter'] = self._serialize.query('not_built_after', not_built_after, 'iso-8601') if include_all_properties is not None: query_parameters['includeAllProperties'] = self._serialize.query('include_all_properties', include_all_properties, 'bool') if include_latest_builds is not None: query_parameters['includeLatestBuilds'] = self._serialize.query('include_latest_builds', include_latest_builds, 'bool') if task_id_filter is not None: query_parameters['taskIdFilter'] = self._serialize.query('task_id_filter', task_id_filter, 'str') if process_type is not None: query_parameters['processType'] = self._serialize.query('process_type', process_type, 'int') if yaml_filename is not None: query_parameters['yamlFilename'] = self._serialize.query('yaml_filename', yaml_filename, 'str') response = self._send(http_method='GET', location_id='dbeaf647-6167-421a-bda9-c9327b25e2e6', version='5.1', route_values=route_values, query_parameters=query_parameters) response_value = self._deserialize('[BuildDefinitionReference]', self._unwrap_collection(response)) continuation_token
<reponame>arsh-khokhar/Bayesian-Nets-Fraud-Detection """ File name: Factor.py Author: <NAME>, <NAME> Date last modified: 21 March, 2021 Python Version: 3.8 This script contains the Factor class with necessary utility functions for doing inference using variable elimination or enumeration. """ from enum import IntEnum import numpy as np from typing import List class Sign(IntEnum): """ IntEnum class used to represent whether a variable in a given table row is + or - """ POSITIVE = 5 NEGATIVE = -5 UNDEFINED = -10 class Factor: """ Representation of a factor for inference Attributes solution_variables Non-evidence variables that are on the solution side given_variables Non-evidence variables that are on the given side variables All of the variables that this factor table 2D numpy array, representing the factor's probability table solution_evidence Evidence variables that are on the solution side (only used for printing the representation) given_evidence Evidence variables that are on the given side (only used for printing the representation) is_probability Indicates if the factor is a probability table as well """ def __init__(self, solution_variables: List[str], given_variables: List[str], values: List[float], solution_evidence=None, given_evidence=None, is_probability=True) -> None: """ Constructor of a Factor :param solution_variables: Non-evidence variables that are on the solution side :param given_variables: Non-evidence variables that are on the given side :param values: probability values of the table :param solution_evidence: Evidence variables that are on the solution side (only used for printing the representation) :param given_evidence: Evidence variables that are on the given side (only used for printing the representation) :param is_probability: Indicates if the factor is a probability table as well """ self.solution_variables = solution_variables self.given_variables = given_variables self.variables = given_variables + solution_variables # generating the table using the variables and the values self.table = self.generate_table(self.variables, values) # default value must be set to None for solution_evidence # and given_evidence so that each Factor object can create # its own copy of them. If default value is set to empty # list, multiple objects refer to the same empty list object # which causes issues if solution_evidence is None: self.solution_evidence = [] else: self.solution_evidence = solution_evidence if given_evidence is None: self.given_evidence = [] else: self.given_evidence = given_evidence # If the factor is also a probability table. self.is_probability = is_probability @staticmethod def generate_table_skeleton(variables: List[str]) -> np.ndarray: """ Generate a probability table with all the possible combinations of the input variables without any probability values :param variables: variables to generate the skeleton table for :return: Mutidimensional numpy array representing the factor table with the values (i.e. last column) unassigned """ num_variables = len(variables) num_rows = 2**num_variables # assuming the domain length is 2 for all vars num_cols = num_variables + 1 # one col per var + last col for probability values table = np.zeros([num_rows, num_cols]) table.fill(Sign.UNDEFINED) # initializing everything with undefined for i in range(len(variables)): # combination_len is the length of same value for generating the # combinations with other variables. E.g., for a table with 3 variables, # The first column will be ++++---- (combination_len is 4 for this one) # The second column will be ++--++-- (combination_len is 2 for this one) # The last variable's column will be +-+-+-+- (combination_len is 1 here) combination_len = 2**(num_variables - i)//2 for j in range(0, num_rows, combination_len*2): table[j:combination_len+j, [i]] = Sign.POSITIVE table[combination_len+j:2*combination_len+j, [i]] = Sign.NEGATIVE return table def generate_table(self, variables: List[str], values: List[float]) -> np.ndarray: """ Generate a probability table with all the possible combinations of the input variables and the given probability values. Values must be in correct order for this to work correctly. :param variables: variables for the table :param values: probability values of each row in correct order :return: Mutidimensional numpy array representing the factor table """ table = self.generate_table_skeleton(variables) table[:, -1] = values # last column is the probability values return table def print_representation(self) -> None: """ Print out the representation of a factor ex P(+x,y|-t,a) """ if self.is_probability: print('P(', end='') else: print('f(', end='') Factor.print_representation_helper(self.solution_evidence, self.solution_variables) if len(self.given_variables) > 0 or len(self.given_evidence) > 0: print('|', end='') Factor.print_representation_helper(self.given_evidence, self.given_variables) print(')') @staticmethod def print_representation_helper(evidence_vars: List[str], variables: List[str]) -> None: """ Print out the variables portion of a factor representation :param evidence_vars: Evidence vars to print :param variables: Non-evidence vars to print """ for i, entry in enumerate(evidence_vars): var, value = entry if value == Sign.POSITIVE: print('+{0}'.format(var.lower()), end='') else: print('-{0}'.format(var.lower()), end='') if i != len(evidence_vars) - 1 or len(variables) > 0: print(',', end='') for i, var in enumerate(variables): print(var, end='') if i != len(variables) - 1: print(',', end='') def print_factor(self) -> None: """ Print the factor """ for row in self.table: for i, cell in enumerate(row): if cell == Sign.POSITIVE: print('{:^10s}'.format("+" + self.variables[i].lower()), end='|') elif cell == Sign.NEGATIVE: print('{:^10s}'.format("-" + self.variables[i].lower()), end='|') else: cell_value = "{:^.5f}".format(cell) print('{:^10s}'.format(cell_value), end='|\n') print() def remove_var(self, variable: str) -> None: """ Remove a variable from variables, given_variables, and solution_variables after it's observed or summed out :param variable: The variable to remove """ self.variables.remove(variable) self.safe_remove_list(self.given_variables, variable) self.safe_remove_list(self.solution_variables, variable) @staticmethod def safe_remove_list(input_list: list, value) -> None: """ Deletes an entry from a list without throwing the ValueError exception in case the entry is not in the set :param input_list: set from which the entry has to be removed :param value: the set entry to be removed """ try: input_list.remove(value) except ValueError: pass def observe_var(self, variable: str, value: Sign) -> None: """ Restricts a variable to some value in the factor :param variable: Variable to restrict :param value: value for restriction """ if variable not in self.variables: return index = self.variables.index(variable) self.table = self.table[self.table[:, index] == value] index = self.variables.index(variable) self.table = np.delete(self.table, index, axis=1) if variable in self.solution_variables: self.solution_evidence.append((variable.lower(), value)) if variable in self.given_variables: self.given_evidence.append((variable.lower(), value)) self.remove_var(variable) def normalize(self) -> None: """ Normalizes the factor so that all rows add up to 1 """ sum_of_vals = sum(self.table[:, -1]) self.table[:, -1] /= sum_of_vals def sumout(self, variable: str) -> None: """ Sums out a variable in the factor :param variable: variable to sumout """ if variable not in self.variables: return index = self.variables.index(variable) # getting the index of the variable self.table = np.delete(self.table, index, axis=1) self.remove_var(variable) # new table for summed out rows summed_out = self.generate_table_skeleton(self.variables) summed_out[:, -1] = 0 for row1 in summed_out: for row2 in self.table: # if two rows are the same after removing a variable, # their values are added if np.array_equal(row1[:-1], row2[:-1]): row1[-1] = row1[-1] + row2[-1] self.table = summed_out @staticmethod def multiply(factor1, factor2): """ Multiply two factors together and return a new product factor :param factor1: The first factor to multiply :param factor2: The second factor to multiply :return: A new factor that's the product of factor1 and factor2 """ # factor1 cannot have any solution variables that factor2 has as given variables # since we assume that only the reverse is true later in the function if not any((True for x in factor1.solution_variables if x in factor2.given_variables)): temp = factor2 factor2 = factor1 factor1 = temp # list(dict.fromkeys( ... )) is used to remove duplicates while maintaining order new_solution_vars = list(dict.fromkeys(factor1.solution_variables + factor2.solution_variables)) new_given_vars = list(dict.fromkeys(factor1.given_variables + [item for item in factor2.given_variables if item not in new_solution_vars])) # generate the probabilities for our new factor # (no sorting is required since the variable ordering consistent between # the two original factors) new_prob_list = [] for row1 in factor1.table: for row2 in factor2.table: if Factor.is_valid_row_multiply(factor1.variables, factor2.variables, row1, row2): new_prob_list.append(row1[-1] * row2[-1]) return Factor(new_solution_vars, new_given_vars, new_prob_list, list(set(factor1.solution_evidence + factor2.solution_evidence)), list(set(factor1.given_evidence + factor2.given_evidence)), False) @staticmethod def is_valid_row_multiply(variables1: list, variables2: list, row1: list, row2: list) -> bool: """ Two rows are valid if there are no contradictions between them Ex if two rows have +x and -x respectively then they're not valid :param variables1: Variables of factor 1 :param variables2: Variables of factor 2 :param row1: Row from factor 1 :param row2: Row from factor 2 :return: True if two rows are valid
#!/usr/bin/env python """ ================================================ ABElectronics Expander Pi Requires smbus2 or python smbus to be installed ================================================ """ from __future__ import absolute_import, division, print_function, \ unicode_literals try: from smbus2 import SMBus except ImportError: try: from smbus import SMBus except ImportError: raise ImportError("python-smbus or smbus2 not found") try: import spidev except ImportError: raise ImportError( "spidev not found.") import re import platform import datetime """ Private Classes """ class _ABEHelpers: """ Local Functions used across all Expander Pi classes """ @staticmethod def updatebyte(byte, bit, value): """ internal method for setting the value of a single bit within a byte """ if value == 0: return byte & ~(1 << bit) elif value == 1: return byte | (1 << bit) @staticmethod def get_smbus(): """ internal method for getting an instance of the i2c bus """ i2c__bus = 1 # detect the device that is being used device = platform.uname()[1] if device == "orangepione": # running on orange pi one i2c__bus = 0 elif device == "orangepiplus": # running on orange pi plus i2c__bus = 0 elif device == "orangepipcplus": # running on orange pi pc plus i2c__bus = 0 elif device == "linaro-alip": # running on Asus Tinker Board i2c__bus = 1 elif device == "raspberrypi": # running on raspberry pi # detect i2C port number and assign to i2c__bus for line in open('/proc/cpuinfo').readlines(): model = re.match('(.*?)\\s*:\\s*(.*)', line) if model: (name, value) = (model.group(1), model.group(2)) if name == "Revision": if value[-4:] in ('0002', '0003'): i2c__bus = 0 else: i2c__bus = 1 break try: return SMBus(i2c__bus) except IOError: raise 'Could not open the i2c bus' """ Public Classes """ class ADC: """ Based on the Microchip MCP3208 """ # variables __adcrefvoltage = 4.096 # reference voltage for the ADC chip. __spiADC = None def __init__(self): # Define SPI bus and init self.__spiADC = spidev.SpiDev() self.__spiADC.open(0, 0) self.__spiADC.max_speed_hz = (1900000) # public methods def read_adc_voltage(self, channel, mode): """ Read the voltage from the selected channel on the ADC Channel = 1 to 8 Mode = 0 or 1 - 0 = single ended, 1 = differential """ if (mode < 0) or (mode > 1): raise ValueError('read_adc_voltage: mode out of range') if (channel > 4) and (mode == 1): raise ValueError('read_adc_voltage: channel out of range') if (channel > 8) or (channel < 1): raise ValueError('read_adc_voltage: channel out of range') raw = self.read_adc_raw(channel, mode) voltage = (self.__adcrefvoltage / 4096) * raw return voltage def read_adc_raw(self, channel, mode): """ Read the raw value from the selected channel on the ADC Channel = 1 to 8 Mode = 0 or 1 - 0 = single ended, 1 = differential """ if (mode < 0) or (mode > 1): raise ValueError('read_adc_voltage: mode out of range') if (channel > 4) and (mode == 1): raise ValueError('read_adc_voltage: channel out of range when \ mode = 1') if (channel > 8) or (channel < 1): raise ValueError('read_adc_voltage: channel out of range') channel = channel - 1 if mode == 0: raw = self.__spiADC.xfer2( [6 + (channel >> 2), (channel & 3) << 6, 0]) if mode == 1: raw = self.__spiADC.xfer2( [4 + (channel >> 2), (channel & 3) << 6, 0]) ret = ((raw[1] & 0x0F) << 8) + (raw[2]) return ret def set_adc_refvoltage(self, voltage): """ set the reference voltage for the analogue to digital converter. By default the ADC uses an onboard 4.096V voltage reference. If you choose to use an external voltage reference you will need to use this method to set the ADC reference voltage to match the supplied reference voltage. The reference voltage must be less than or equal to the voltage on the Raspberry Pi 5V rail. """ if (voltage >= 0.0) and (voltage <= 5.5): self.__adcrefvoltage = voltage else: raise ValueError('set_adc_refvoltage: reference voltage \ out of range') return class DAC: """ Based on the Microchip MCP4822 Define SPI bus and init """ __spiDAC = None dactx = [0, 0] # Max DAC output voltage. Depends on gain factor # The following table is in the form <gain factor>:<max voltage> __dacMaxOutput__ = { 1: 2.048, # This is Vref 2: 4.096 # This is double Vref } maxdacvoltage = 2.048 # public methods def __init__(self, gainFactor=1): """Class Constructor gainFactor -- Set the DAC's gain factor. The value should be 1 or 2. Gain factor is used to determine output voltage from the formula: Vout = G * Vref * D/4096 Where G is gain factor, Vref (for this chip) is 2.048 and D is the 12-bit digital value """ # Define SPI bus and init self.__spiDAC = spidev.SpiDev() self.__spiDAC.open(0, 1) self.__spiDAC.max_speed_hz = (20000000) if (gainFactor != 1) and (gainFactor != 2): raise ValueError('DAC __init__: Invalid gain factor. \ Must be 1 or 2') else: self.gain = gainFactor self.maxdacvoltage = self.__dacMaxOutput__[self.gain] def set_dac_voltage(self, channel, voltage): """ set the voltage for the selected channel on the DAC voltage can be between 0 and 2.047 volts when gain is set to 1\ or 4.096 when gain is set to 2 """ if (channel > 2) or (channel < 1): raise ValueError('set_dac_voltage: DAC channel needs to be 1 or 2') if (voltage >= 0.0) and (voltage < self.maxdacvoltage): rawval = (voltage / 2.048) * 4096 / self.gain self.set_dac_raw(channel, int(rawval)) else: raise ValueError('set_dac_voltage: voltage out of range') return def set_dac_raw(self, channel, value): """ Set the raw value from the selected channel on the DAC Channel = 1 or 2 Value between 0 and 4095 """ if (channel > 2) or (channel < 1): raise ValueError('set_dac_voltage: DAC channel needs to be 1 or 2') if (value < 0) and (value > 4095): raise ValueError('set_dac_voltage: value out of range') self.dactx[1] = (value & 0xff) if self.gain == 1: self.dactx[0] = (((value >> 8) & 0xff) | (channel - 1) << 7 | 1 << 5 | 1 << 4) else: self.dactx[0] = (((value >> 8) & 0xff) | (channel - 1) << 7 | 1 << 4) # Write to device self.__spiDAC.xfer2(self.dactx) return class IO: """ The MCP23017 chip is split into two 8-bit ports. port 0 controls pins 1 to 8 while port 1 controls pins 9 to 16. When writing to or reading from a port the least significant bit represents the lowest numbered pin on the selected port. # """ # Define registers values from datasheet IODIRA = 0x00 # IO direction A - 1= input 0 = output IODIRB = 0x01 # IO direction B - 1= input 0 = output # Input polarity A - If a bit is set, the corresponding GPIO register bit # will reflect the inverted value on the pin. IPOLA = 0x02 # Input polarity B - If a bit is set, the corresponding GPIO register bit # will reflect the inverted value on the pin. IPOLB = 0x03 # The GPINTEN register controls the interrupt-onchange feature for each # pin on port A. GPINTENA = 0x04 # The GPINTEN register controls the interrupt-onchange feature for each # pin on port B. GPINTENB = 0x05 # Default value for port A - These bits set the compare value for pins # configured for interrupt-on-change. If the associated pin level is the # opposite from the register bit, an interrupt occurs. DEFVALA = 0x06 # Default value for port B - These bits set the compare value for pins # configured for interrupt-on-change. If the associated pin level is the # opposite from the register bit, an interrupt occurs. DEFVALB = 0x07 # Interrupt control register for port A. If 1 interrupt is fired when the # pin matches the default value, if 0 the interrupt is fired on state # change INTCONA = 0x08 # Interrupt control register for port B. If 1 interrupt is fired when the # pin matches the default value, if 0 the interrupt is fired on state # change INTCONB = 0x09 IOCON = 0x0A # see datasheet for configuration register GPPUA
<gh_stars>1-10 """Provides a class for constructing simulations based on Firedrake. Simulations proceed forward in time by solving a sequence of Initial Boundary Values Problems (IBVP's). Using the Firedrake framework, the PDE's are discretized in space with Finite Elements (FE). The symbolic capabilities of Firedrake are used to automatically implement backward difference formula (BDF) time discretizations and to automatically linearize nonlinear problems with Newton's method. Nonlinear and linear solvers are provided by PETSc and are accessed via the Firedrake interface. This module imports `firedrake` as `fe` and its documentation writes `fe` instead of `firedrake`. """ import typing import pathlib import ufl import firedrake as fe import sapphire.time_discretization import sapphire.output class Simulation: """A PDE-based simulation using the Firedrake framework. The PDE's are discretized in space using finite elements and in time using backward difference formulas. Implementing a simulation requires at least instantiating this class and calling the instance's `run` method. """ def __init__(self, solution: fe.Function, time: float = 0., time_stencil_size: int = 2, timestep_size: float = 1., quadrature_degree: int = None, solver_parameters: dict = { "snes_type": "newtonls", "snes_monitor": None, "ksp_type": "preonly", "pc_type": "lu", "mat_type": "aij", "pc_factor_mat_solver_type": "mumps"}, output_directory_path: str = "output/", fieldnames: typing.Iterable[str] = None): """ Instantiating this class requires enough information to fully specify the FE spatial discretization and weak form residual. boundary conditions, and initial values. All of these required arguments are Firedrake objects used according to Firedrake conventions. Backward Difference Formula time discretizations are automatically implemented. To use a different time discretization, inherit this class and redefine `time_discrete_terms`. Args: solution: Solution for a single time step. As a `fe.Function`, this also defines the mesh, element, and solution function space. time: The initial time. time_stencil_size: The number of solutions at discrete times used for approximating time derivatives. This also determines the number of stored solutions. Must be greater than zero. Defaults to 2. Set to 1 for steady state problems. Increase for higher-order time accuracy. timestep_size: The size of discrete time steps. Defaults to 1. Higher order time discretizations are assumed to use a constant time step size. quadrature_degree: The quadrature degree used for numerical integration. Defaults to `None`, in which case Firedrake will automatically choose a suitable quadrature degree. solver_parameters: The solver parameters dictionary which Firedrake uses to configure PETSc. output_directory_path: String that will be converted to a Path where output files will be written. Defaults to "output/". fieldnames: A list of names for the components of `solution`. Defaults to `None`. These names can be used when indexing solutions that are split either by `firedrake.split` or `firedrake.Function.split`. If not `None`, then the `dict` `self.solution_fields` will be created. The `dict` will have two items for each field, containing the results of either splitting method. The results of `firedrake.split` will be suffixed with "_ufl". """ assert(time_stencil_size > 0) self.fieldcount = len(solution.split()) if fieldnames is None: fieldnames = ["w_{}" for i in range(self.fieldcount)] assert(len(fieldnames) == self.fieldcount) self.fieldnames = fieldnames self.solution = solution self.time = fe.Constant(time) self.solution_space = self.solution.function_space() self.mesh = self.solution_space.mesh() self.unit_vectors = unit_vectors(self.mesh) self.element = self.solution_space.ufl_element() self.timestep_size = fe.Constant(timestep_size) self.quadrature_degree = quadrature_degree self.dx = fe.dx(degree = self.quadrature_degree) self.solver_parameters = solver_parameters initial_values = self.initial_values() if initial_values is not None: self.solution = self.solution.assign(initial_values) # States for time dependent simulation and checkpointing self.solutions = [self.solution,] self.times = [self.time,] self.state = { "solution": self.solution, "time": self.time, "index": 0} self.states = [self.state,] for i in range(1, time_stencil_size): self.solutions.append(fe.Function(self.solution)) self.times.append(fe.Constant(self.time - i*timestep_size)) self.states.append({ "solution": self.solutions[i], "time": self.times[i], "index": -i}) # Continuation helpers self.backup_solution = fe.Function(self.solution) # Mixed solution indexing helpers self.solution_fields = {} self.solution_subfunctions = {} self.test_functions = {} self.time_discrete_terms = {} self.solution_subspaces = {} for name, field, field_pp, testfun, timeterm in zip( fieldnames, fe.split(self.solution), self.solution.split(), fe.TestFunctions(self.solution_space), time_discrete_terms( solutions = self.solutions, timestep_size = self.timestep_size)): self.solution_fields[name] = field self.solution_subfunctions[name] = field_pp self.test_functions[name] = testfun self.time_discrete_terms[name] = timeterm self.solution_subspaces[name] = self.solution_space.sub( fieldnames.index(name)) # Output controls self.output_directory_path = pathlib.Path(output_directory_path) self.output_directory_path.mkdir(parents = True, exist_ok = True) self.vtk_solution_file = None self.plotvars = None self.snes_iteration_count = 0 def run(self, endtime: float, write_checkpoints: bool = True, write_vtk_solutions: bool = False, write_plots: bool = False, write_initial_outputs: bool = True, endtime_tolerance: float = 1.e-8, solve: typing.Callable = None) \ -> (typing.List[fe.Function], float): """Run simulation forward in time. Args: endtime (float): Run until reaching this time. write_vtk_solutions (bool): Write checkpoints if True. write_vtk_solutions (bool): Write solutions to VTK if True. write_plots (bool): Write plots if True. Writing the plots to disk can in some cases dominate the processing time. Additionally, much more data is generated, requiring more disk storage space. write_initial_outputs (bool): Write for initial values before solving the first time step. Default to True. You may want to set this to False if, for example, you are calling `run` repeatedly with later endtimes. In such a case, the initial values are the same as the previously computed solution, and so they should not be written again. endtime_tolerance (float): Allows endtime to be only approximately reached. This is larger than a typical floating point comparison tolerance because errors accumulate between timesteps. solve (callable): This is called to solve each time step. By default, this will be set to `self.solve`. """ if write_initial_outputs: self.write_outputs( headers = True, checkpoint = write_checkpoints, vtk = write_vtk_solutions, plots = write_plots) if solve is None: solve = self.solve while self.time.__float__() < (endtime - endtime_tolerance): self.states = self.push_back_states() self.time = self.time.assign(self.time + self.timestep_size) self.state["index"] += 1 self.solution = solve() print("Solved at time t = {}".format(self.time.__float__())) self.write_outputs( headers = False, checkpoint = write_checkpoints, vtk = write_vtk_solutions, plots = write_plots) return self.states def solve(self) -> fe.Function: """Set up the problem and solver, and solve. This is a JIT (just in time), ensuring that the problem and solver setup are up-to-date before calling the solver. All compiled objects are cached, so the JIT problem and solver setup does not have any significant performance overhead. """ problem = fe.NonlinearVariationalProblem( F = self.weak_form_residual(), u = self.solution, bcs = self.dirichlet_boundary_conditions(), J = fe.derivative(self.weak_form_residual(), self.solution)) solver = fe.NonlinearVariationalSolver( problem = problem, nullspace = self.nullspace(), solver_parameters = self.solver_parameters) solver.solve() self.snes_iteration_count += solver.snes.getIterationNumber() return self.solution def weak_form_residual(self): raise("This method must be redefined by the derived class.") def initial_values(self): return None def dirichlet_boundary_conditions(self): return None def nullspace(self): return None def push_back_states(self) -> typing.List[typing.Dict]: """Push back states, including solutions, times, and indices. Sufficient solutions are stored for the time discretization. Advancing the simulation forward in time requires re-indexing the solutions and times. """ for i in range(len(self.states[1:])): rightstate = self.states[-1 - i] leftstate = self.states[-2 - i] rightstate["index"] = leftstate["index"] for key in "solution", "time": # Set values of `fe.Function` and `fe.Constant` # with their `assign` methods. rightstate[key] = rightstate[key].assign(leftstate[key]) return self.states def postprocess(self) -> 'Simulation': """ This is called by `write_outputs` before writing. Redefine this to add post-processing. """ return self def kwargs_for_writeplots(self) -> dict: """Return kwargs needed for `sappphire.outupt.writeplots`. By default, no plots are made. This must be redefined to return a dict if `run` is called with `plot = True`. """ return None def write_checkpoint(self): sapphire.output.write_checkpoint( states=self.states, dirpath=self.output_directory_path, filename="checkpoints") def write_outputs(self, headers: bool, checkpoint: bool = True, vtk: bool = False, plots: bool = False): """Write all outputs. This creates or appends the CSV report, writes the latest solution, and plots (in 1D/2D case). Redefine this to control outputs. Args:
filter_obj def apply_options_obj(options, obj, dest): """Updates an object with options Parameters ---------- options : dict * dict containing options definition obj : :class:`taniumpy.object_types.base.BaseType` * TaniumPy object to apply `options` to dest : list of str * list of valid destinations (i.e. `filter` or `group`) Returns ------- obj : :class:`taniumpy.object_types.base.BaseType` * TaniumPy object updated with attributes from `options` """ # if no user supplied options, return the filter object unchanged if not options: return obj for k, v in options.items(): for om in pytan.constants.OPTION_MAPS: if om['destination'] != dest: continue om_attrs = list(om.get('attrs', {}).keys()) om_attr = om.get('attr', '') if om_attr: om_attrs.append(om_attr) if k.lower() not in om_attrs: continue dbg = "option {!r} value {!r} mapped to: {!r}".format manuallog.debug(dbg(k, v, om)) valid_values = om.get('valid_values', []) valid_type = om.get('valid_type', str) if valid_values: valid_values = eval(valid_values) valid_values_str = " -- valid values: " valid_values_str += ', '.join(valid_values) else: valid_values = [] valid_values_str = "" if len(str(v)) == 0: err = ( "Option {!r} requires a {} value{}" ).format raise pytan.exceptions.DefinitionParserError(err(k, valid_type, valid_values_str)) if valid_type == int: try: v = int(v) except: err = ( "Option {!r} value {!r} is not an integer" ).format raise pytan.exceptions.DefinitionParserError(err(k, v)) if valid_type == str: if not is_str(v): err = ( "Option {!r} value {!r} is not a string" ).format raise pytan.exceptions.DefinitionParserError(err(k, v)) value_match = None if valid_values: for x in valid_values: if v.lower() == x.lower(): value_match = x break if value_match is None: err = ( "Option {!r} value {!r} does not match one of {}" ).format raise pytan.exceptions.DefinitionParserError(err(k, v, valid_values)) else: v = value_match # update obj with k = v setattr(obj, k, v) break dbg = "Options {!r} updated to: {}".format manuallog.debug(dbg(options, str(obj))) return obj def chk_def_key(def_dict, key, keytypes, keysubtypes=None, req=False): """Checks that def_dict has key Parameters ---------- def_dict : dict * Definition dictionary key : str * key to check for in def_dict keytypes : list of str * list of str of valid types for key keysubtypes : list of str * if key is a dict or list, validate that all values of dict or list are in keysubtypes req : bool * False: key does not have to be in def_dict * True: key must be in def_dict, throw :exc:`pytan.exceptions.DefinitionParserError` if not """ if key not in def_dict: if req: err = "Definition {} missing 'filter' key!".format raise pytan.exceptions.DefinitionParserError(err(def_dict)) return val = def_dict.get(key) if type(val) not in keytypes: err = ( "'{}' key in definition dictionary must be a {}, you supplied " "a {}!" ).format raise pytan.exceptions.DefinitionParserError(err(key, keytypes, type(val))) if not keysubtypes or not val: return if is_dict(val): subtypes = [type(x) for x in list(val.values())] else: subtypes = [type(x) for x in val] if not all([x in keysubtypes for x in subtypes]): err = ( "'{}' key in definition dictionary must be a {} of {}s, " "you supplied {}!" ).format raise pytan.exceptions.DefinitionParserError(err(key, keytypes, keysubtypes, subtypes)) def empty_obj(taniumpy_object): """Validate that a given TaniumPy object is not empty Parameters ---------- taniumpy_object : :class:`taniumpy.object_types.base.BaseType` * object to check if empty Returns ------- bool * True if `taniumpy_object` is considered empty, False otherwise """ v = [getattr(taniumpy_object, '_list_properties', {}), is_str(taniumpy_object)] if any(v) and not taniumpy_object: return True else: return False def get_q_obj_map(qtype): """Gets an object map for `qtype` Parameters ---------- qtype : str * question type to get object map from in :data:`pytan.constants.Q_OBJ_MAP` Returns ------- obj_map : dict * matching object map for `qtype` from :data:`pytan.constants.Q_OBJ_MAP` """ try: obj_map = pytan.constants.Q_OBJ_MAP[qtype.lower()] except KeyError: err = "{} not a valid question type, must be one of {!r}".format raise pytan.exceptions.HandlerError(err(qtype, list(pytan.constants.Q_OBJ_MAP.keys()))) return obj_map def get_obj_map(objtype): """Gets an object map for `objtype` Parameters ---------- objtype : str * object type to get object map from in :data:`pytan.constants.GET_OBJ_MAP` Returns ------- obj_map : dict * matching object map for `objtype` from :data:`pytan.constants.GET_OBJ_MAP` """ try: obj_map = pytan.constants.GET_OBJ_MAP[objtype.lower()] except KeyError: err = "{} not a valid object to get, must be one of {!r}".format raise pytan.exceptions.HandlerError(err(objtype, list(pytan.constants.GET_OBJ_MAP.keys()))) return obj_map def get_taniumpy_obj(obj_map): """Gets a taniumpy object from `obj_map` Parameters ---------- obj_map : str * str of taniumpy object to fetch Returns ------- obj : :class:`taniumpy.object_types.base.BaseType` * matching taniumpy object for `obj_map` """ try: obj = getattr(taniumpy, obj_map) except Exception as e: err = "Could not find taniumpy object {}: {}".format raise pytan.exceptions.HandlerError(err(obj_map, e)) return obj def check_dictkey(d, key, valid_types, valid_list_types): """Yet another method to check a dictionary for a key Parameters ---------- d : dict * dictionary to check for key key : str * key to check for in d valid_types : list of str * list of str of valid types for key valid_list_types : list of str * if key is a list, validate that all values of list are in valid_list_types """ if key in d: k_val = d[key] k_type = type(k_val) if k_type not in valid_types: err = "{!r} must be one of {}, you supplied {}!".format raise pytan.exceptions.HandlerError(err(key, valid_types, k_type)) if is_list(k_val) and valid_list_types: valid_list_types = [eval(x) for x in valid_list_types] list_types = [type(x) for x in k_val] list_types_match = [x in valid_list_types for x in list_types] if not all(list_types_match): err = "{!r} must be a list of {}, you supplied {}!".format raise pytan.exceptions.HandlerError(err(key, valid_list_types, list_types)) def func_timing(f): """Decorator to add timing information around a function """ def wrap(*args, **kwargs): time1 = datetime.datetime.utcnow() ret = f(*args, **kwargs) time2 = datetime.datetime.utcnow() elapsed = time2 - time1 m = '{}() TIMING start: {}, end: {}, elapsed: {}'.format timinglog.debug(m(f.__name__, time1, time2, elapsed)) return ret return wrap def eval_timing(c): """Yet another method to time things -- c will be evaluated and timing information will be printed out """ t_start = datetime.now() r = eval(c) t_end = datetime.now() t_elapsed = t_end - t_start m = "Timing info for {} -- START: {}, END: {}, ELAPSED: {}, RESPONSE LEN: {}".format mylog.warn(m(c, t_start, t_end, t_elapsed, len(r))) return (c, r, t_start, t_end, t_elapsed) def xml_pretty(x, pretty=True, indent=' ', **kwargs): """Uses :mod:`xmltodict` to pretty print an XML str `x` Parameters ---------- x : str * XML string to pretty print Returns ------- str : * The pretty printed string of `x` """ x_parsed = xmltodict.parse(x) x_unparsed = xmltodict.unparse(x_parsed, pretty=pretty, indent=indent) return x_unparsed def log_session_communication(h): """Uses :func:`xml_pretty` to pretty print the last request and response bodies from the session object in h to the logging system Parameters ---------- h : Handler object * Handler object with session object containing last request and response body """ response_obj = h.session.LAST_REQUESTS_RESPONSE request_body = response_obj.request.body response_body = response_obj.text try: req = xml_pretty(request_body) except Exception as e: req = "Failed to prettify xml: {}, raw xml:\n{}".format(e, request_body) prettylog.debug("Last HTTP request:\n{}".format(req)) try: resp = xml_pretty(response_body) except Exception as e: resp = "Failed to prettify xml: {}, raw xml:\n{}".format(e, response_body) prettylog.debug("Last HTTP response:\n{}".format(xml_pretty(resp))) def xml_pretty_resultxml(x): """Uses :mod:`xmltodict` to pretty print an the ResultXML element in XML str `x` Parameters ---------- x : str * XML string to pretty print Returns ------- str : * The pretty printed string of ResultXML in `x` """ x_parsed = xmltodict.parse(x) x_find = x_parsed["soap:Envelope"]["soap:Body"]["t:return"]["ResultXML"] x_unparsed = xml_pretty(x_find) return x_unparsed def xml_pretty_resultobj(x): """Uses :mod:`xmltodict` to pretty print an the result-object element in XML str `x` Parameters ---------- x : str * XML string to pretty print Returns ------- str : * The pretty printed string of result-object in `x` """ x_parsed = xmltodict.parse(x) x_find = x_parsed["soap:Envelope"]["soap:Body"]["t:return"] x_find = x_parsed["result-object"] x_unparsed = xmltodict.unparse(x_find, pretty=True, indent=' ') return x_unparsed def get_dict_list_len(d, keys=[], negate=False): """Gets the sum of each list in dict `d` Parameters ---------- d : dict of str : list * dict to sums of keys : list of str * list of keys to get sums of, if empty gets a sum of all keys negate : bool * only used if keys supplied * False : get the sums of `d` that do match keys * True : get the sums of `d` that do not match keys Returns ------- list_len : int
s.define(monom + t*t*t) sage: t.define(monom + s*s) sage: [s.coefficient(i) for i in range(9)] [0, 1, 0, 1, 3, 3, 7, 30, 63] sage: [t.coefficient(i) for i in range(9)] [0, 1, 1, 0, 2, 6, 7, 20, 75] Test Recursive 3 :: sage: s = L() sage: s._name = 's' sage: s.define(one+monom*s*s*s) sage: [s.coefficient(i) for i in range(10)] [1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675] """ self._copy(x) x._reference = self def coefficient(self, n): """ Return the coefficient of xn in self. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: f = L(ZZ) sage: [f.coefficient(i) for i in range(5)] [0, 1, -1, 2, -2] """ # The following line must not be written n < self.get_aorder() # because comparison of Integer and OnfinityOrder is not implemented. if self.get_aorder() > n: return self.parent()._zero_base_ring assert self.is_initialized return self._stream[n] def get_aorder(self): """ Return the approximate order of self. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: a = L.gen() sage: a.get_aorder() 1 """ self.refine_aorder() return self.aorder def get_order(self): """ Return the order of self. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: a = L.gen() sage: a.get_order() 1 """ self.refine_aorder() return self.order def get_stream(self): """ Return self's underlying Stream object. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: a = L.gen() sage: s = a.get_stream() sage: [s[i] for i in range(5)] [0, 1, 0, 0, 0] """ self.refine_aorder() return self._stream def _approximate_order(self, compute_coefficients, new_order, *series): if self.is_initialized: return ochanged = self.aorder_changed ao = new_order(*[s.aorder for s in series]) ao = inf if ao == unk else ao tchanged = self.set_approximate_order(ao) if len(series) == 0: must_initialize_coefficient_stream = True tchanged = ochanged = False elif len(series) == 1 or len(series) == 2: must_initialize_coefficient_stream = ( self.aorder == unk or self.is_initialized is False) else: raise ValueError if ochanged or tchanged: for s in series: s.compute_aorder() ao = new_order(*[s.aorder for s in series]) tchanged = self.set_approximate_order(ao) if must_initialize_coefficient_stream: self.initialize_coefficient_stream(compute_coefficients) if hasattr(self, '_reference') and self._reference is not None: self._reference._copy(self) def _new(self, compute_coefficients, order_op, *series, **kwds): parent = kwds['parent'] if 'parent' in kwds else self.parent() new_fps = self.__class__(parent, stream=None, order=unk, aorder=self.aorder, aorder_changed=True, is_initialized=False) new_fps.compute_aorder = lambda: new_fps._approximate_order(compute_coefficients, order_op, *series) return new_fps def _add_(self, y): """ EXAMPLES: Test Plus 1 :: sage: from sage.combinat.species.series import * sage: from sage.combinat.species.stream import Stream sage: L = LazyPowerSeriesRing(QQ) sage: gs0 = L([0]) sage: gs1 = L([1]) sage: sum1 = gs0 + gs1 sage: sum2 = gs1 + gs1 sage: sum3 = gs1 + gs0 sage: [gs0.coefficient(i) for i in range(11)] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] sage: [gs1.coefficient(i) for i in range(11)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] sage: [sum1.coefficient(i) for i in range(11)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] sage: [sum2.coefficient(i) for i in range(11)] [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] sage: [sum3.coefficient(i) for i in range(11)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] Test Plus 2 :: sage: gs1 = L([1,2,4,8,0]) sage: gs2 = L([-1, 0,-1,-9,22,0]) sage: sum = gs1 + gs2 sage: sum2 = gs2 + gs1 sage: [ sum.coefficient(i) for i in range(5) ] [0, 2, 3, -1, 22] sage: [ sum.coefficient(i) for i in range(5, 11) ] [0, 0, 0, 0, 0, 0] sage: [ sum2.coefficient(i) for i in range(5) ] [0, 2, 3, -1, 22] sage: [ sum2.coefficient(i) for i in range(5, 11) ] [0, 0, 0, 0, 0, 0] """ return self._new(partial(self._plus_gen, y), min, self, y) add = _add_ def _plus_gen(self, y, ao): """ EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: gs1 = L([1]) sage: g = gs1._plus_gen(gs1, 0) sage: [next(g) for i in range(5)] [2, 2, 2, 2, 2] :: sage: g = gs1._plus_gen(gs1, 2) sage: [next(g) for i in range(5)] [0, 0, 2, 2, 2] """ base_ring = self.parent().base_ring() zero = base_ring(0) for n in range(ao): yield zero n = ao while True: yield self._stream[n] + y._stream[n] n += 1 def _mul_(self, y): """ EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: gs0 = L(0) sage: gs1 = L([1]) :: sage: prod0 = gs0 * gs1 sage: [prod0.coefficient(i) for i in range(11)] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] :: sage: prod1 = gs1 * gs0 sage: [prod1.coefficient(i) for i in range(11)] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] :: sage: prod2 = gs1 * gs1 sage: [prod2.coefficient(i) for i in range(11)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] :: sage: gs1 = L([1,2,4,8,0]) sage: gs2 = L([-1, 0,-1,-9,22,0]) :: sage: prod1 = gs1 * gs2 sage: [prod1.coefficient(i) for i in range(11)] [-1, -2, -5, -19, 0, 0, 16, 176, 0, 0, 0] :: sage: prod2 = gs2 * gs1 sage: [prod2.coefficient(i) for i in range(11)] [-1, -2, -5, -19, 0, 0, 16, 176, 0, 0, 0] """ return self._new(partial(self._times_gen, y), lambda a,b:a+b, self, y) times = _mul_ def _times_gen(self, y, ao): r""" Return an iterator for the coefficients of self \* y. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: f = L([1,1,0]) sage: g = f._times_gen(f,0) sage: [next(g) for i in range(5)] [1, 2, 1, 0, 0] """ base_ring = self.parent().base_ring() zero = base_ring(0) for n in range(ao): yield zero n = ao while True: low = self.aorder high = n - y.aorder nth_coefficient = zero #Handle the zero series if low == inf or high == inf: yield zero n += 1 continue for k in range(low, high+1): cx = self._stream[k] if cx == 0: continue nth_coefficient += cx * y._stream[n-k] yield nth_coefficient n += 1 def __pow__(self, n): """ EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: f = L([1,1,0]) # 1+x sage: g = f^3 sage: g.coefficients(4) [1, 3, 3, 1] :: sage: f^0 1 """ if not isinstance(n, (int, Integer)) or n < 0: raise ValueError("n must be a nonnegative integer") return prod([self]*n, self.parent().identity_element()) def __invert__(self): """ Return 1 over this power series, i.e. invert this power series. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: x = L.gen() Geometric series:: sage: a = ~(1-x); a.compute_coefficients(10); a 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + O(x^11) (Shifted) Fibonacci numbers:: sage: b = ~(1-x-x^2); b.compute_coefficients(10); b 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 + 34*x^8 + 55*x^9 + 89*x^10 + O(x^11) Series whose constant coefficient is `0` cannot be inverted:: sage: ~x Traceback (most recent call last): .... ZeroDivisionError: cannot invert x because constant coefficient is 0 """ if self.get_aorder() > 0: raise ZeroDivisionError( 'cannot invert {} because ' 'constant coefficient is 0'.format(self)) return self._new(self._invert_gen, lambda a: 0, self) invert = __invert__ def _invert_gen(self, ao): r""" Return an iterator for the coefficients of 1 over this power series. TESTS:: sage: L = LazyPowerSeriesRing(QQ) sage: f = L([1, -1, 0]) sage: g = f._invert_gen(0) sage: [next(g) for i in range(10)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] """ from itertools import count assert ao == 0 ic0 = ~self.coefficient(0) yield ic0 if self.order == 0: return one = self.parent()(1) base = one - ic0 * self base.coefficient(0) ao_base = base.get_aorder() assert ao_base >= 1 current = one + base k = 1 for n in count(1): while ao_base*k < n: current = one + base * current k += 1 current.coefficient(n) # make sure new current is initialized ao_base = base.get_aorder() # update this so that while above is faster yield current.coefficient(n) * ic0 def _div_(self, other): """ Divide this power series by ``other``. EXAMPLES:: sage: L = LazyPowerSeriesRing(QQ) sage: x = L.gen() Fibonacci numbers:: sage: b = x / (1-x-x^2); b.compute_coefficients(10); b x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 + 21*x^8 + 34*x^9 + 55*x^10 + O(x^11) """
import numpy as np import logging import six import loopy as lp import cantera as ct from nose.plugins.attrib import attr from unittest.case import SkipTest from parameterized import parameterized try: from scipy.sparse import csr_matrix, csc_matrix except ImportError: csr_matrix = None csc_matrix = None from pyjac.core.rate_subs import ( get_concentrations, get_rop, get_rop_net, get_spec_rates, get_molar_rates, get_thd_body_concs, get_rxn_pres_mod, get_reduced_pressure_kernel, get_lind_kernel, get_sri_kernel, get_troe_kernel, get_simple_arrhenius_rates, polyfit_kernel_gen, get_plog_arrhenius_rates, get_cheb_arrhenius_rates, get_rev_rates, get_temperature_rate, get_extra_var_rates) from pyjac.loopy_utils.loopy_utils import ( loopy_options, kernel_call, set_adept_editor, populate, get_target) from pyjac.core.enum_types import RateSpecialization, FiniteDifferenceMode from pyjac.core.create_jacobian import ( dRopi_dnj, dci_thd_dnj, dci_lind_dnj, dci_sri_dnj, dci_troe_dnj, total_specific_energy, dTdot_dnj, dEdot_dnj, thermo_temperature_derivative, dRopidT, dRopi_plog_dT, dRopi_cheb_dT, dTdotdT, dci_thd_dT, dci_lind_dT, dci_troe_dT, dci_sri_dT, dEdotdT, dTdotdE, dEdotdE, dRopidE, dRopi_plog_dE, dRopi_cheb_dE, dci_thd_dE, dci_lind_dE, dci_troe_dE, dci_sri_dE, determine_jac_inds, reset_arrays, get_jacobian_kernel, finite_difference_jacobian) from pyjac.core import array_creator as arc from pyjac.core.enum_types import reaction_type, falloff_form from pyjac.kernel_utils import kernel_gen as k_gen from pyjac.tests import get_test_langs, TestClass from pyjac.tests.test_utils import ( kernel_runner, get_comparable, _generic_tester, _full_kernel_test, with_check_inds, inNd, skipif, xfail) from pyjac.core.enum_types import KernelType from pyjac import utils class editor(object): def __init__(self, independent, dependent, problem_size, order, do_not_set=[], skip_on_missing=None): def __replace_problem_size(shape): new_shape = [] for x in shape: if x != arc.problem_size.name: new_shape.append(x) else: new_shape.append(problem_size) return tuple(new_shape) assert len(independent.shape) == 2 self.independent = independent.copy(shape=__replace_problem_size( independent.shape)) indep_size = independent.shape[1] assert len(dependent.shape) == 2 self.dependent = dependent.copy(shape=__replace_problem_size( dependent.shape)) dep_size = dependent.shape[1] self.problem_size = problem_size # create the jacobian self.output = arc.creator('jac', np.float64, (problem_size, dep_size, indep_size), order=order) self.output = self.output(*['i', 'j', 'k'])[0] self.do_not_set = utils.listify(do_not_set) self.skip_on_missing = skip_on_missing def set_single_kernel(self, single_kernel): """ It's far easier to use two generated kernels, one that uses the full problem size (for calling via loopy), and another that uses a problem size of 1, to work with Adept indexing in the AD kernel """ self.single_kernel = single_kernel def set_skip_on_missing(self, func): """ If set, skip if the :class:`kernel_info` returned by this function is None """ self.skip_on_missing = func def __call__(self, knl): return set_adept_editor(knl, self.single_kernel, self.problem_size, self.independent, self.dependent, self.output, self.do_not_set) # various convenience wrappers def _get_fall_call_wrapper(): def fall_wrapper(loopy_opts, namestore, test_size): return get_simple_arrhenius_rates(loopy_opts, namestore, test_size, falloff=True) return fall_wrapper def _get_plog_call_wrapper(rate_info): def plog_wrapper(loopy_opts, namestore, test_size): if rate_info['plog']['num']: return get_plog_arrhenius_rates(loopy_opts, namestore, rate_info['plog']['max_P'], test_size) return plog_wrapper def _get_cheb_call_wrapper(rate_info): def cheb_wrapper(loopy_opts, namestore, test_size): if rate_info['cheb']['num']: return get_cheb_arrhenius_rates(loopy_opts, namestore, np.max(rate_info['cheb']['num_P']), np.max(rate_info['cheb']['num_T']), test_size) return cheb_wrapper def _get_poly_wrapper(name, conp): def poly_wrapper(loopy_opts, namestore, test_size): return polyfit_kernel_gen(name, loopy_opts, namestore, test_size) return poly_wrapper def _get_ad_jacobian(self, test_size, conp=True, pregen=None, return_kernel=False): """ Convenience method to evaluate the finite difference Jacobian from a given Phi / parameter set Parameters ---------- test_size: int The number of conditions to test conp: bool If True, CONP else CONV pregen: Callable [None] If not None, this corresponds to a previously generated AD-Jacobian kernel Used in the validation tester to speed up chunked Jacobian evaluation return_kernel: bool [False] If True, we want __get_jacobian to return the kernel and kernel call rather than the evaluated array (to be used with :param:`pregen`) """ class create_arr(object): def __init__(self, dim): self.dim = dim @classmethod def new(cls, inds): if isinstance(inds, np.ndarray): dim = inds.size elif isinstance(inds, list): dim = len(inds) elif isinstance(inds, arc.creator): dim = inds.initializer.size elif isinstance(inds, int): dim = inds else: return None return cls(dim) def __call__(self, order): return np.zeros((test_size, self.dim), order=order) # get rate info rate_info = determine_jac_inds( self.store.reacs, self.store.specs, RateSpecialization.fixed) # create loopy options # --> have to turn off the temperature guard to avoid fmin / max issues with # Adept ad_opts = loopy_options(order='C', lang='c', auto_diff=True) # create namestore store = arc.NameStore(ad_opts, rate_info, conp, test_size) # and the editor edit = editor(store.n_arr, store.n_dot, test_size, order=ad_opts.order) # setup args phi = self.store.phi_cp if conp else self.store.phi_cv allint = {'net': rate_info['net']['allint']} args = { 'phi': lambda x: np.array(phi, order=x, copy=True), 'jac': lambda x: np.zeros((test_size,) + store.jac.shape[1:], order=x), 'wdot': create_arr.new(store.num_specs), 'Atroe': create_arr.new(store.num_troe), 'Btroe': create_arr.new(store.num_troe), 'Fcent': create_arr.new(store.num_troe), 'Fi': create_arr.new(store.num_fall), 'Pr': create_arr.new(store.num_fall), 'X': create_arr.new(store.num_sri), 'conc': create_arr.new(store.num_specs), 'dphi': lambda x: np.zeros_like(phi, order=x), 'kf': create_arr.new(store.num_reacs), 'kf_fall': create_arr.new(store.num_fall), 'kr': create_arr.new(store.num_rev_reacs), 'pres_mod': create_arr.new(store.num_thd), 'rop_fwd': create_arr.new(store.num_reacs), 'rop_rev': create_arr.new(store.num_rev_reacs), 'rop_net': create_arr.new(store.num_reacs), 'thd_conc': create_arr.new(store.num_thd), 'b': create_arr.new(store.num_specs), 'Kc': create_arr.new(store.num_rev_reacs) } if conp: args['P_arr'] = lambda x: np.array(self.store.P, order=x, copy=True) args['h'] = create_arr.new(store.num_specs) args['cp'] = create_arr.new(store.num_specs) else: args['V_arr'] = lambda x: np.array(self.store.V, order=x, copy=True) args['u'] = create_arr.new(store.num_specs) args['cv'] = create_arr.new(store.num_specs) # trim unused args args = {k: v for k, v in six.iteritems(args) if v is not None} # obtain the finite difference jacobian kc = kernel_call('dnkdnj', [None], **args) # check for pregenerated kernel if pregen is not None: return pregen(kc) __b_call_wrapper = _get_poly_wrapper('b', conp) __cp_call_wrapper = _get_poly_wrapper('cp', conp) __cv_call_wrapper = _get_poly_wrapper('cv', conp) __h_call_wrapper = _get_poly_wrapper('h', conp) __u_call_wrapper = _get_poly_wrapper('u', conp) def __extra_call_wrapper(loopy_opts, namestore, test_size): return get_extra_var_rates(loopy_opts, namestore, conp=conp, test_size=test_size) def __temperature_wrapper(loopy_opts, namestore, test_size): return get_temperature_rate(loopy_opts, namestore, conp=conp, test_size=test_size) return _get_jacobian( self, __extra_call_wrapper, kc, edit, ad_opts, conp, extra_funcs=[get_concentrations, get_simple_arrhenius_rates, _get_plog_call_wrapper(rate_info), _get_cheb_call_wrapper(rate_info), get_thd_body_concs, _get_fall_call_wrapper(), get_reduced_pressure_kernel, get_lind_kernel, get_sri_kernel, get_troe_kernel, __b_call_wrapper, get_rev_rates, get_rxn_pres_mod, get_rop, get_rop_net, get_spec_rates] + ( [__h_call_wrapper, __cp_call_wrapper] if conp else [__u_call_wrapper, __cv_call_wrapper]) + [ get_molar_rates, __temperature_wrapper], allint=allint, return_kernel=return_kernel) def _make_array(self, array): """ Creates an array for comparison to an autorun kernel from the result of __get_jacobian Parameters ---------- array : :class:`numpy.ndarray` The input Jacobian array Returns ------- reshaped : :class:`numpy.ndarray` The reshaped / reordered array for comparison to the autorun kernel """ for i in range(array.shape[0]): # reshape inner array array[i, :, :] = np.reshape(array[i, :, :].flatten(order='K'), array.shape[1:], order='F') return array def _get_jacobian(self, func, kernel_call, editor, ad_opts, conp, extra_funcs=[], return_kernel=False, **kwargs): """ Computes an autodifferentiated kernel, exposed to external classes in order to share with the :mod:`functional_tester` Parameters ---------- func: Callable The function to autodifferentiate kernel_call: :class:`kernel_call` The kernel call with arguements, etc. to use editor: :class:`editor` The jacobian editor responsible for creating the AD kernel ad_opts: :class:`loopy_options` The AD enabled loopy options object extra_funcs: list of Callable Additional functions that must be called before :param:`func`. These can be used to chain together functions to find derivatives of complicated values (e.g. ROP) return_kernel: bool [False] If True, return a callable function that takes as as an arguement the new kernel_call w/ updated args and returns the result Note: The user is responsible for checking that the arguements are of valid shape kwargs: dict Additional args for :param:`func Returns ------- ad_jac : :class:`numpy.ndarray` The resulting autodifferentiated jacobian. The shape of which depends on the values specified in the editor """ # find rate info rate_info = determine_jac_inds( self.store.reacs, self.store.specs, ad_opts.rate_spec) # create namestore namestore = arc.NameStore(ad_opts, rate_info, conp, self.store.test_size) # get kw args this function expects def __get_arg_dict(check, **in_args): try: # py2-3 compat arg_count = check.func_code.co_argcount args = check.func_code.co_varnames[:arg_count] except AttributeError: arg_count = check.__code__.co_argcount args = check.__code__.co_varnames[:arg_count] args_dict = {} for k, v in six.iteritems(in_args): if k in args: args_dict[k] = v return args_dict # create the kernel info infos = [] info = func(ad_opts, namestore, test_size=self.store.test_size, **__get_arg_dict(func, **kwargs)) infos.extend(utils.listify(info)) # create a dummy kernel generator knl = k_gen.make_kernel_generator( kernel_type=KernelType.jacobian, loopy_opts=ad_opts, kernels=infos, namestore=namestore, test_size=self.store.test_size, extra_kernel_data=[editor.output] ) knl._make_kernels() # get list of current args have_match = kernel_call.strict_name_match new_args = [] new_kernels = [] for k in knl.kernels: if have_match and kernel_call.name != k.name: continue new_kernels.append(k) for arg in k.args: if arg not in new_args and not isinstance( arg, lp.TemporaryVariable): new_args.append(arg) knl = new_kernels[:] # generate dependencies with full test size to get extra args def __raise(f): raise SkipTest('Mechanism {} does not contain derivatives corresponding to ' '{}'.format(self.store.gas.name, f.__name__)) infos = [] for f in extra_funcs: info = f(ad_opts, namestore, test_size=self.store.test_size, **__get_arg_dict(f, **kwargs)) is_skip = editor.skip_on_missing is not None and \ f == editor.skip_on_missing if is_skip and any(x is None for x in utils.listify(info)): # empty map (e.g. no PLOG) __raise(f) infos.extend([x for x in utils.listify(info) if x is not None]) for i in infos: for arg in i.kernel_data: if arg not in new_args and not isinstance( arg, lp.TemporaryVariable): new_args.append(arg) for i in range(len(knl)): knl[i] = knl[i].copy(args=new_args[:]) # and a generator for the single kernel single_name = arc.NameStore(ad_opts, rate_info, conp, 1) single_info = [] for f in extra_funcs + [func]: info = f(ad_opts, single_name, test_size=1, **__get_arg_dict(f, **kwargs)) for i in utils.listify(info): if f == func and have_match and kernel_call.name != i.name: continue if i is None: # empty map (e.g. no PLOG) continue single_info.append(i) single_knl = k_gen.make_kernel_generator( kernel_type=KernelType.species_rates,
# Import kivy tools from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.gridlayout import GridLayout from kivy.uix.recycleboxlayout import RecycleBoxLayout from kivy.uix.label import Label from kivy.uix.button import Button from kivy.uix.checkbox import CheckBox from kivy.uix.spinner import Spinner from kivy.uix.recycleview import RecycleView from kivy.uix.recycleview.views import RecycleDataViewBehavior from kivy.uix.behaviors import FocusBehavior from kivy.uix.recycleview.layout import LayoutSelectionBehavior from kivy.properties import BooleanProperty, ObjectProperty from kivy.uix.screenmanager import ScreenManager, Screen from kivy.lang import Builder # Import the kv files Builder.load_file('./src/rv.kv') Builder.load_file('./src/screenhome.kv') Builder.load_file('./src/screenprofile.kv') Builder.load_file('./src/screensettings.kv') Builder.load_file('./src/screenproduct.kv') Builder.load_file('./src/screenquantities.kv') Builder.load_file('./src/screenfinal.kv') Builder.load_file('./src/manager.kv') # Other imports import pandas as pd import re from Algo_main import algo # Import the algorithm for NutriScore computation class SelectableRecycleBoxLayout(FocusBehavior, LayoutSelectionBehavior, RecycleBoxLayout): ''' Add selection and focus behaviour to the view ''' pass class SelectableGrid(RecycleDataViewBehavior, GridLayout): ''' Add selection support to the Label ''' index = None selected = BooleanProperty(False) selectable = BooleanProperty(True) def refresh_view_attrs(self, rv, index, data): ''' Catch and handle the view changes ''' self.index = index self.ids['id_label1'].text = data['label1']['text'] self.ids['id_label2'].text = data['label2']['text'] self.ids['id_label3'].text = data['label3']['text'] return super(SelectableGrid, self).refresh_view_attrs( rv, index, data) def on_touch_down(self, touch): ''' Add selection on touch down ''' if super(SelectableGrid, self).on_touch_down(touch): return True if self.collide_point(*touch.pos) and self.selectable: return self.parent.select_with_touch(self.index, touch) def apply_selection(self, rv, index, is_selected): ''' Respond to the selection of items ''' self.selected = is_selected class SelectableQuantity(RecycleDataViewBehavior, GridLayout): ''' Add selection support to the Label ''' index = None selected = BooleanProperty(False) selectable = BooleanProperty(True) def refresh_view_attrs(self, rv, index, data): ''' Catch and handle the view changes ''' self.index = index self.ids['id_label1'].text = data['label1']['text'] self.ids['id_label2'].text = data['label2']['text'] self.ids['id_label3'].text = data['label3']['text'] return super(SelectableQuantity, self).refresh_view_attrs( rv, index, data) class RV(RecycleView): ''' Class for the RecycleView Controller ''' def __init__(self, **kwargs): super(RV, self).__init__(**kwargs) def upload(self, query, active): ''' Search data according to the user input ''' # Reset data self.data = [] # Check if the Raw Food CheckBox is active or not if active: self.parent.parent.getSelection('API', query, True) self.data = [{'label1': {'text': 'API'}, 'label2': {'text': query}, 'label3': {'text': 'Add/Remove'}}] else: isinside = allTrue for item in query.split(): # Split the query in keywords isinside = isinside & \ (DF['product_name'].str.contains(item, case=False) | \ DF['Brands'].str.contains(item, case=False)) if any(isinside): selection = DF[isinside] # Select products to display for row in selection.itertuples(): # Iterate through the columns of DF d = {'label1': {'text': str(row[0])}, \ 'label2': {'text': str(row[1])}, 'label3': {'text': str(row[-1])}} # barcode, product_name, brand self.data.append(d) else: isinside = DF.index.str.contains(query, case=False) # Search for Barcode if any(isinside): selection = DF[isinside] for row in selection.itertuples(): d = {'label1': {'text': str(row[0])}, \ 'label2': {'text': str(row[1])}, 'label3': {'text': str(row[-1])}} # barcode, product_name, brand self.data.append(d) else: # In case no product is found self.data = [{'label1': {'text': ''}, \ 'label2': {'text': 'No product found'}, 'label3': {'text': ''}}] def getQuantities(self, dict): ''' Gather data for display on Quantities Screen ''' self.data = [] code = dict['code'] product_name = dict['product_name'] quantity = dict['quantity'] for index in range(len(code)): d = {'label1': {'text': code[index]}, 'label2': {'text': product_name[index]}, \ 'label3': {'text': quantity[index]}} self.data.append(d) class ScreenHome(Screen): ''' Class for the Home Screen. No variables or functions needed for this screen ''' pass class ScreenProfile(Screen): ''' Class for the Profile Screen ''' def updateDF(self): global DF DF = pd.read_csv('https://drive.google.com/uc?export=download&id=1aLUh1UoQcS9lBa6oVRln-DuskxK5uK3y', \ index_col=[0], low_memory = False) DF.to_csv('./data/OpenFoodFacts_final.csv.gz', compression='gzip') self.ids['update'].text = 'Updated' self.ids['update'].background_color = (0,1,0,1) def update(self): self.ids['update'].text = 'Updating' self.ids['update'].background_color = (50/255,164/255,206/255,1) class ScreenSettings(Screen): ''' Class for the Settings Screen ''' settings = {'rec': True,'name': '', 'surname': '', 'age': 0, 'sex': True, 'weight': 0, \ 'email': '', 'activity': 0, 'days': 0} id_profile = -999 def resetForm(self): ''' Reset the indicators of invalid input ''' self.ids.sex.color = (1,1,1,1) self.ids.activity.color = (1,1,1,1) self.ids.age.hint_text_color = (0.5, 0.5, 0.5, 1.0) self.ids.weight.hint_text_color = (0.5, 0.5, 0.5, 1.0) self.ids.days.hint_text_color = (0.5, 0.5, 0.5, 1.0) self.ids.email.hint_text_color = (0.5, 0.5, 0.5, 1.0) self.ids.name.hint_text_color = (0.5, 0.5, 0.5, 1.0) self.ids.surname.hint_text_color = (0.5, 0.5, 0.5, 1.0) def setForm(self, id_profile): self.id_profile = id_profile self.settings = {'rec': True,'name': '', 'surname': '', 'age': 0, 'sex': True, 'weight': 0, \ 'email': '', 'activity': 0, 'days': 0} if int(self.id_profile) >= 0: self.ids.name.text = str(profile_list.iloc[self.id_profile]['name']) self.ids.surname.text= str(profile_list.iloc[self.id_profile]['surname']) self.ids.age.text = str(profile_list.iloc[self.id_profile]['age']) if bool(profile_list.iloc[self.id_profile]['sex']): self.ids.male.active = True self.ids.female.active = False else: self.ids.male.active = False self.ids.female.active = True self.ids.weight.text = str(profile_list.iloc[self.id_profile]['weight']) self.ids.email.text = str(profile_list.iloc[self.id_profile]['email']) self.ids.days.text = str(profile_list.iloc[self.id_profile]['days']) if int(profile_list.iloc[self.id_profile]['activity']) == 1.8: self.ids.seated.active = False self.ids.both.active = False self.ids.standing.active = True elif int(profile_list.iloc[self.id_profile]['activity']) == 1.6: self.ids.seated.active = False self.ids.both.active = True self.ids.standing.active = False else: self.ids.seated.active = True self.ids.both.active = False self.ids.standing.active = False elif int(self.id_profile) == -999: self.ids.name.text = '' self.ids.surname.text = '' self.ids.age.text = '' self.ids.male.active = False self.ids.female.active = False self.ids.email.text = '' self.ids.weight.text = '' self.ids.seated.active = False self.ids.both.active = False self.ids.standing.active = False self.ids.days.text = '' else: self.changeScreen(False) def changeScreen(self, valid): ''' Handle the validity of the inputs and the change of current screen ''' if valid: self.resetForm() # Check name validity if self.ids.name.text.strip() == '': self.ids.name.hint_text_color = (1,0,0,1) return False # Check surname validity elif self.ids.surname.text.strip() == '': self.ids.surname.hint_text_color = (1,0,0,1) return False # Check age validity elif self.ids.age.text.strip() == '' or int(self.ids.age.text) <= 0 or \ int(self.ids.age.text) >= 120: self.ids.age.text = '' self.ids.age.hint_text_color = (1,0,0,1) return False # Check sex validity elif not(self.ids.male.active or self.ids.female.active): self.ids.sex.color = (1,0,0,1) return False # Check email validity elif not re.match(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", self.ids.email.text): self.ids.email.text = '' self.ids.email.hint_text_color = (1,0,0,1) return False # Check weight validity elif self.ids.weight.text.strip() == '' or int(self.ids.weight.text) <= 0: self.ids.weight.text = '' self.ids.weight.hint_text_color = (1,0,0,1) return False # Check activity validity elif not(self.ids.seated.active or self.ids.both.active or self.ids.standing.active): self.ids.activity.color = (1,0,0,1) return False # Check days validity elif self.ids.days.text.strip() == '' or int(self.ids.days.text) <= 0: self.ids.days.text = '' self.ids.days.hint_text_color = (1,0,0,1) return False else: # Validation of the form and reset self.settings['rec'] = True self.settings['name'] = self.ids.name.text self.settings['surname'] = self.ids.surname.text self.settings['age'] = int(self.ids.age.text) self.settings['weight'] = int(self.ids.weight.text) self.settings['email'] = self.ids.email.text self.settings['days'] = int(self.ids.days.text) self.settings['sex'] = self.ids.male.active if self.ids.seated.active: self.settings['activity'] = 1.4 if self.ids.both.active: self.settings['activity'] = 1.6 if self.ids.standing.active: self.settings['activity'] = 1.8 self.resetForm() else: # If the user pass the settings screen self.settings['rec'] = False self.manager.setSettings(self.settings, self.id_profile) # Change the current screen self.manager.current = 'Product Screen' class ScreenProduct(Screen): ''' Class for the Product Screen ''' temp_dict = {'code':'', 'product_name': ''} def getSelection(self, text1, text2, state): # Select or deselect temporarly a product if state: self.temp_dict['code'] = text1 self.temp_dict['product_name'] = text2 else: self.temp_dict['code'] = '' self.temp_dict['product_name'] = '' class ScreenQuantities(Screen): ''' Class for the Quantities Screen ''' temp_dict = {'code': [], 'product_name': [], 'quantity': [], 'color': []} def initQuantity(self, data): ''' Initialize the dictionary of the products ''' if self.temp_dict['quantity'] == []: self.temp_dict = data self.ids.rv.getQuantities(data) def updateQuantity(self, index, text1, text2, text3): ''' Store the quantities input by the user ''' l = len(self.temp_dict['quantity']) if text3 == '' or text3 == '-' or int(text3) < 0: text3 = '0' if index < l: self.temp_dict['code'][index] = text1 self.temp_dict['product_name'][index] = text2 self.temp_dict['quantity'][index] = text3 # Append the list of quantities if needed else: temp = ['0' for i in range(index-l)] self.temp_dict['code'] = self.temp_dict['code'] + temp + [text1] self.temp_dict['product_name'] = self.temp_dict['product_name'] + temp + [text2] self.temp_dict['quantity'] = self.temp_dict['quantity'] + temp + [text3] # Update the data displayed self.initQuantity(self.temp_dict) class ScreenFinal(Screen): ''' Class for the Final Screen. No variables or functions needed for this screen ''' pass class Manager(ScreenManager): ''' Class for the Manager Controller. Store main data ''' selected_products = {'code': [], 'product_name': [], 'quantity': []} settings = {'Rec': True, 'Name': '', 'Surname': '', 'Email': '', 'Age': 0, 'Sex': True, 'Pal': 0, \ 'Weight': 0, 'Day': 0} def getProfiles(self): self.ids.screen_profile.ids.profile_spinner.values = \ [str(index + 1) + ' : ' + str(profile_list['name'][index]) + ' ' + str(profile_list['surname'][index]) \ for index in profile_list.index] def toSettings(self, text): if text == 'new': id_profile = -999 elif text == 'pass': id_profile = -1000 else: items = text.split() id_profile = items[0].strip() id_profile = int(id_profile) - 1 self.ids.screen_settings.setForm(id_profile) if id_profile != -1000: self.current = 'Settings Screen' def addProduct(self): ''' Add product to main storage ''' item1 = self.ids.screen_product.temp_dict['code'] item2 = self.ids.screen_product.temp_dict['product_name'] if item1 != '' and item2 != '': self.selected_products['code'].append(item1) self.selected_products['product_name'].append(item2) self.selected_products['quantity'].append('0') def deleteProduct(self): ''' Remove product of main storage ''' item1 = self.ids.screen_product.temp_dict['code'] item2
import logging import pandas as pd from django.contrib import messages from django.contrib.auth.decorators import login_required, user_passes_test from django.core.exceptions import ObjectDoesNotExist from django.core.paginator import Paginator from django.db.models import Count, Prefetch, Q from django.forms import formset_factory from django.http import HttpRequest, HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.utils import timezone from zoo_checks.ingest import TRACKS_REQ_COLS from .forms import ( AnimalCountForm, ExportForm, GroupCountForm, SpeciesCountForm, TallyDateForm, UploadFileForm, ) from .helpers import ( clean_df, get_init_anim_count_form, get_init_group_count_form, get_init_spec_count_form, qs_to_df, set_formset_order, today_time, ) from .ingest import ExcelUploadError, handle_upload, ingest_changesets from .models import ( Animal, AnimalCount, Enclosure, Group, GroupCount, Role, Species, SpeciesCount, User, ) baselogger = logging.getLogger("zootable") LOGGER = baselogger.getChild(__name__) """ helpers that need models """ def get_accessible_enclosures(user: User): # superuser sees all enclosures if not user.is_superuser: enclosures = Enclosure.objects.filter(roles__in=user.roles.all()).distinct() else: enclosures = Enclosure.objects.all() return enclosures def redirect_if_not_permitted(request: HttpRequest, enclosure: Enclosure) -> bool: """ Returns ------- True if user does not belong to enclosure or if not superuser False if user belongs to enclosure or is superuser """ if request.user.is_superuser or request.user.roles.filter(enclosures=enclosure): return False messages.error( request, f"You do not have permissions to access enclosure {enclosure.name}" ) LOGGER.error( ( "Insufficient permissions to access enclosure" f" {enclosure.name}, user: {request.user.username}" ) ) return True def enclosure_counts_to_dict(enclosures, animal_counts, group_counts) -> dict: """ repackage enclosure counts into dict for template render dict order of enclosures is same as list/query order not using defaultdict(list) because django templates have difficulty with them """ def create_counts_dict(enclosures, counts) -> dict: """Takes a list/queryset of counts and enclosures Returns a dictionary - keys: enclosures - values: list of counts belonging to the enclosure We do this (once) in order to be able to iterate over counts for each enclosure """ counts_dict = {} for enc in enclosures: counts_dict[enc] = [] [counts_dict[c.enclosure].append(c) for c in counts] return counts_dict def separate_conditions(counts) -> dict: """ Arguments: Animal counts Returns: dictionary - keys: condition names - values: list of counts """ cond_dict = {} for cond in AnimalCount.CONDITIONS: cond_dict[cond[1]] = [] # init to empty list [cond_dict[c.get_condition_display()].append(c) for c in counts] return cond_dict def separate_group_count_attributes(counts) -> dict: """ Arguments: Group counts (typically w/in an enclosure) Returns: dictionary - keys: Seen, BAR, Needs Attn - values: sum of group counts within each key """ count_dict = {} count_dict["Seen"] = sum([c.count_seen for c in counts]) count_dict["BAR"] = sum([c.count_bar for c in counts]) count_dict["Needs Attn"] = sum([c.needs_attn for c in counts]) return count_dict enc_anim_ct_dict = create_counts_dict(enclosures, animal_counts) enc_group_ct_dict = create_counts_dict(enclosures, group_counts) counts_dict = {} for enc in enclosures: enc_anim_counts_sum = sum( [ c.condition in [o_c[0] for o_c in AnimalCount.OBSERVED_CONDITIONS] for c in enc_anim_ct_dict[enc] ] ) enc_group_counts_sum = sum( [c.count_seen + c.count_bar for c in enc_group_ct_dict[enc]] ) total_groups = sum([g.population_total for g in enc.groups.all()]) counts_dict[enc] = { "animal_count_total": enc_anim_counts_sum, "animal_conditions": separate_conditions(enc_anim_ct_dict[enc]), "group_counts": separate_group_count_attributes(enc_group_ct_dict[enc]), "group_count_total": enc_group_counts_sum, "total_animals": enc.animals.count(), "total_groups": total_groups, } return counts_dict def get_selected_role(request: HttpRequest): # user requests view all if request.GET.get("view_all", False): request.session.pop("selected_role", None) return # might have a default selected role in session # or might be requesting a selected role else: # default selected role, gets cleared if you log out default_role = request.session.get("selected_role", None) # get role query param (default_role if not found) role_name = request.GET.get("role", default_role) if role_name is not None: try: request.session["selected_role"] = role_name return Role.objects.get(slug=role_name) except ObjectDoesNotExist: # role probably changed or bad query messages.info(request, "Selected role not found") request.session.pop("selected_role", None) LOGGER.info(f"role not found and removed from session: {role_name}") return else: return """ views """ @login_required # TODO: logins may not be sufficient - user a part of a group? # TODO: add pagination def home(request: HttpRequest): enclosures_query = get_accessible_enclosures(request.user) # only show enclosures that have active animals/groups query = Q(animals__active=True) | Q(groups__active=True) selected_role = get_selected_role(request) if selected_role is not None: query = query & Q(roles=selected_role) # prefetching in order to build up the info displayed for each enclosure groups_prefetch = Prefetch("groups", queryset=Group.objects.filter(active=True)) animals_prefetch = Prefetch("animals", queryset=Animal.objects.filter(active=True)) enclosures_query = ( enclosures_query.prefetch_related(groups_prefetch, animals_prefetch) .filter(query) .distinct() ) paginator = Paginator(enclosures_query, 10) page = request.GET.get("page", 1) enclosures = paginator.get_page(page) page_range = range( max(int(page) - 5, 1), min(int(page) + 5, paginator.num_pages) + 1 ) roles = request.user.roles.all() cts = Enclosure.all_counts(enclosures) enclosure_cts_dict = enclosure_counts_to_dict(enclosures, *cts) return render( request, "home.html", { "enclosures": enclosures, "cts_dict": enclosure_cts_dict, "page_range": page_range, "roles": roles, "selected_role": selected_role, }, ) @login_required def count(request: HttpRequest, enclosure_slug, year=None, month=None, day=None): enclosure = get_object_or_404(Enclosure, slug=enclosure_slug) if redirect_if_not_permitted(request, enclosure): return redirect("home") if None in [year, month, day]: dateday = today_time() else: dateday = timezone.make_aware(timezone.datetime(year, month, day)) if dateday.date() == today_time().date(): count_today = True else: count_today = False enclosure_animals = ( enclosure.animals.filter(active=True) .order_by("species__common_name", "name", "accession_number") .select_related("species") ) enclosure_groups = ( enclosure.groups.filter(active=True) .order_by("species__common_name", "accession_number") .select_related("species") ) enclosure_species = enclosure.species().order_by("common_name") SpeciesCountFormset = formset_factory(SpeciesCountForm, extra=0) GroupCountFormset = formset_factory(GroupCountForm, extra=0) AnimalCountFormset = formset_factory(AnimalCountForm, extra=0) species_counts_on_day = SpeciesCount.counts_on_day( enclosure_species, enclosure, day=dateday ) init_spec = get_init_spec_count_form( enclosure, enclosure_species, species_counts_on_day ) group_counts_on_day = GroupCount.counts_on_day(enclosure_groups, day=dateday) init_group = get_init_group_count_form(enclosure_groups, group_counts_on_day) animal_counts_on_day = AnimalCount.counts_on_day(enclosure_animals, day=dateday) init_anim = get_init_anim_count_form(enclosure_animals, animal_counts_on_day) # if this is a POST request we need to process the form data if request.method == "POST": # create a form instance and populate it with data from the request: species_formset = SpeciesCountFormset( request.POST, initial=init_spec, prefix="species_formset" ) groups_formset = GroupCountFormset( request.POST, initial=init_group, prefix="groups_formset" ) # TODO: Test to make sure we are editing the correct animal counts animals_formset = AnimalCountFormset( request.POST, initial=init_anim, prefix="animals_formset", ) # check whether it's valid: if ( species_formset.is_valid() and animals_formset.is_valid() and groups_formset.is_valid() ): def save_form_in_formset(form): # TODO: move this into model/(form?) and overwrite the save method if form.has_changed(): instance = form.save(commit=False) instance.user = request.user # if setting count for a diff day than today, set the date/datetime if not count_today: instance.datetimecounted = ( dateday + timezone.timedelta(days=1) - timezone.timedelta(seconds=1) ) instance.datecounted = dateday.date() instance.update_or_create_from_form() # process the data in form.cleaned_data as required for formset in (species_formset, animals_formset, groups_formset): for form in formset: save_form_in_formset(form) messages.success(request, "Saved") LOGGER.info("Saved counts") return redirect( "count", enclosure_slug=enclosure.slug, year=dateday.year, month=dateday.month, day=dateday.day, ) else: ( formset_order, species_formset, groups_formset, animals_formset, ) = set_formset_order( enclosure, enclosure_species, enclosure_groups, enclosure_animals, species_formset, groups_formset, animals_formset, dateday, ) messages.error(request, "There was an error processing the form") LOGGER.error("Error in processing the form") # if a GET (or any other method) we'll create a blank form else: species_formset = SpeciesCountFormset( initial=init_spec, prefix="species_formset" ) groups_formset = GroupCountFormset(initial=init_group, prefix="groups_formset") animals_formset = AnimalCountFormset( initial=init_anim, prefix="animals_formset", ) ( formset_order, species_formset, groups_formset, animals_formset, ) = set_formset_order( enclosure, enclosure_species, enclosure_groups, enclosure_animals, species_formset, groups_formset, animals_formset, dateday, ) dateform = TallyDateForm() return render( request, "tally.html", { "dateday": dateday.date(), "enclosure": enclosure, "species_formset": species_formset, "groups_formset": groups_formset, "animals_formset": animals_formset, "formset_order": formset_order, "dateform": dateform, "conditions": AnimalCount.CONDITIONS, }, ) @login_required def tally_date_handler(request: HttpRequest, enclosure_slug): """Called from tally page to change date tally""" # if it's a POST: pull out the date from the cleaned data then send it to "count" if request.method == "POST": form = TallyDateForm(request.POST) if form.is_valid(): target_date = form.cleaned_data["tally_date"] return redirect( "count", enclosure_slug=enclosure_slug, year=target_date.year, month=target_date.month, day=target_date.day, ) else: messages.error(request, "Error in date entered") LOGGER.error("Error in date entered") # if it's a GET: just redirect back to count method return redirect("count", enclosure_slug=enclosure_slug) @login_required def edit_species_count( request: HttpRequest, species_slug, enclosure_slug, year, month, day ): species = get_object_or_404(Species, slug=species_slug) enclosure = get_object_or_404(Enclosure, slug=enclosure_slug) if redirect_if_not_permitted(request, enclosure): return redirect("home") dateday = timezone.make_aware(timezone.datetime(year, month, day)) count = species.count_on_day(enclosure, day=dateday) init_form = { "count": 0 if count is None else count.count, "species": species, "enclosure": enclosure, } if request.method == "POST": form = SpeciesCountForm(request.POST, init_form) if form.is_valid(): # save the data if form.has_changed(): obj = form.save(commit=False) obj.user = request.user # force insert because otherwise it always updated obj.id = None if dateday.date() == timezone.localdate(): obj.datetimecounted = timezone.localtime() else: obj.datetimecounted = ( dateday + timezone.timedelta(days=1) - timezone.timedelta(seconds=1) ) obj.datecounted = dateday obj.update_or_create_from_form() return redirect("count", enclosure_slug=enclosure.slug) else: form = SpeciesCountForm(initial=init_form) return render( request, "edit_species_count.html", { "form": form, "count": count, "species": species, "enclosure": enclosure, "dateday": dateday, }, ) @login_required def edit_group_count(request: HttpRequest, group, year, month, day): group = get_object_or_404( Group.objects.select_related("enclosure", "species"), accession_number=group ) enclosure = group.enclosure if redirect_if_not_permitted(request, enclosure): return redirect("home") dateday = timezone.make_aware(timezone.datetime(year, month, day)) count = group.count_on_day(day=dateday) init_form = { "count_seen": 0 if count is None else count.count_seen, "count_bar": 0 if count is None else count.count_bar, "comment": "" if count is None else count.comment, "count_total": group.population_total, "group": group,
"NULL", ""] try: schNo = getattr(Parcel,schDistNoField) schNa = getattr(Parcel,schDistField) pinToTest = getattr(Parcel,pinField) year = getattr(Parcel,yearField) if schNo is not None and schNa is not None: '''schNa = schNa.replace("SCHOOL DISTRICT", "").replace("SCHOOL DISTIRCT", "").replace("SCHOOL DIST","").replace("SCHOOL DIST.", "").replace("SCH DIST", "").replace("SCHOOL", "").replace("SCH D OF", "").replace("SCH", "").replace("SD", "").strip()''' try: if schNo != schNameNoDict[schNa] or schNa != schNoNameDict[schNo]: getattr(Parcel,errorType + "Errors").append("The values provided in " + schDistNoField.upper() + " and " + schDistField.upper() + " field do not match. Please verify values are in acceptable domain list.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['schoolDist'] += 1 except: getattr(Parcel,errorType + "Errors").append("One or both of the values in the SCHOOLDISTNO field or SCHOOLDIST field are not in the acceptable domain list. Please verify values.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error,Parcel) if schNo is None and schNa is not None: '''schNa = schNa.replace("SCHOOL DISTRICT", "").replace("SCHOOL DISTIRCT", "").replace("SCHOOL DIST","").replace("SCHOOL DIST.", "").replace("SCH DIST", "").replace("SCHOOL", "").replace("SCH D OF", "").replace("SCH", "").replace("SD", "").strip()''' if schNa not in schNameNoDict: getattr(Parcel,errorType + "Errors").append("The value provided in " + schDistField.upper() + " is not within the acceptable domain list. Please verify value.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['schoolDist'] += 1 if schNa is None and schNo is not None: if schNo not in schNoNameDict or len(schNo) != 4: getattr(Parcel,errorType + "Errors").append("The value provided in " + schDistNoField.upper() + " is not within the acceptable domain list or is not 4 digits long as expected. Please verify value.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['schoolDist'] += 1 if schNo is None and schNa is None and pinToTest not in ignoreList and pinToTest is not None and (year is not None and int(year) <= 2018): getattr(Parcel,errorType + "Errors").append("Both the " + schDistNoField.upper() + " & the " + schDistField.upper() + " are <Null> and a value is expected.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['schoolDist'] += 1 return (Error,Parcel) except: getattr(Parcel,errorType + "Errors").append("An unknown issue occurred with the " + schDistField.upper() + " or " + schDistNoField.upper() + " field. Please inspect the values of these fields.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error, Parcel) def fieldCompleteness(Error,Parcel,fieldList,passList,CompDict): for field in fieldList: if field.upper() in passList: pass else: stringToTest = getattr(Parcel,field.lower()) if stringToTest is None: pass else: if stringToTest is not None or stringToTest != '': CompDict[field] = CompDict[field]+1 return(Error,Parcel) def fieldCompletenessComparison(Error,fieldList,passList,currentStatDict,previousStatDict): for field in fieldList: if field.upper() in passList: pass else: if previousStatDict[field] > 0: Error.comparisonDict[field] = round((100*(currentStatDict[field] - previousStatDict[field])/ previousStatDict[field]),2) elif previousStatDict[field] == 0 and currentStatDict[field] == 0 : Error.comparisonDict[field] = 0.0 elif previousStatDict[field] == 0 : Error.comparisonDict[field] = 100.0 #Error.comparisonDict[field] = round((100*(currentStatDict[field] - previousStatDict[field])/(Error.recordTotalCount)),2) return(Error) #checkSchemaFunction def checkSchema(Error,inFc,schemaType,fieldPassLst): fieldList = arcpy.ListFields(inFc) realFieldList = [] fieldDictNames = {} incorrectFields = [] excessFields = [] missingFields = [] var = True arcpy.AddMessage("Checking for all appropriate fields in " + str(inFc) + "...") for field in fieldList: fieldDictNames[field.name] = [[field.type],[field.length]] #if error fields already exits, delete them for field in fieldList: if field.name == 'GeneralElementErrors': arcpy.DeleteField_management(inFc, ['GeneralElementErrors','AddressElementErrors','TaxrollElementErrors','GeometricElementErrors']) for field in fieldDictNames: if field.upper() not in fieldPassLst: if field not in schemaType.keys(): excessFields.append(field) var = False elif fieldDictNames[field][0][0] not in schemaType[field][0] or fieldDictNames[field][1][0] not in schemaType[field][1]: incorrectFields.append(field) var = False else: missingFields = [i for i in schemaType.keys() if i not in fieldDictNames.keys()] if len(missingFields) > 0: var = False if var == False: arcpy.AddMessage("\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") arcpy.AddMessage(" IMMEDIATE ERROR REQUIRING ATTENTION") arcpy.AddMessage("\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") arcpy.AddMessage("CERTAIN FIELDS DO NOT MEET THE PARCEL SCHEMA REQUIREMENTS.\n") if len(incorrectFields) > 0: arcpy.AddMessage("THE PROBLEMATIC FIELDS INCLUDE: (" + str(incorrectFields).strip("[").strip("]").replace('u','') + ")\n") arcpy.AddMessage("------->> PLEASE CHECK TO MAKE SURE THE NAMES, DATA TYPES, AND LENGTHS MATCH THE SCHEMA REQUIREMENTS.\n") if len(excessFields) > 0: arcpy.AddMessage("THE EXCESS FIELDS INCLUDE: (" + str(excessFields).strip("[").strip("]").replace('u','') + ")\n") arcpy.AddMessage("------->> PLEASE REMOVED FIELDS THAT ARE NOT IN THE PARCEL ATTRIBUTE SCHEMA.\n") if len(missingFields) > 0: arcpy.AddMessage("THE MISSING FIELDS INCLUDE: (" + str(missingFields).strip("[").strip("]").replace('u','') + ")\n") arcpy.AddMessage("------->> PLEASE ADD FIELDS THAT ARE NOT IN THE PARCEL ATTRIBUTE SCHEMA.\n") arcpy.AddMessage("PLEASE MAKE NEEDED ALTERATIONS TO THESE FIELDS AND RUN THE TOOL AGAIN.\n") arcpy.AddMessage("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") exit() #check for valid postal address # Error.postalCheck(totError,currParcel,'pstladress','general',pinSkips,'taxrollyear','parcelid',badPstladdSet) def postalCheck (Error,Parcel,PostalAd,errorType,ignoreList,taxYear,pinField,badPstladdSet, acceptYears): nullList = ["<Null>", "<NULL>", "NULL", ""] try: address = getattr(Parcel,PostalAd) year = getattr(Parcel, taxYear) pinToTest = getattr(Parcel,pinField) if address is None: pass else: if year is not None: if int(year) <= int(acceptYears[1]): #or pinToTest in ignorelist: if ('UNAVAILABLE' in address or 'ADDRESS' in address or 'ADDDRESS' in address or 'UNKNOWN' in address or ' 00000' in address or 'NULL' in address or ('NONE' in address and 'HONONEGAH' not in address) or 'MAIL EXEMPT' in address or 'TAX EX' in address or 'UNASSIGNED' in address or 'N/A' in address) or(address in badPstladdSet) or any(x.islower() for x in address): getattr(Parcel,errorType + "Errors").append("A value provided in the " + PostalAd.upper() + " field may contain an incomplete address. Please verify the value is correct or set to <Null> if complete address is unknown.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['postalCheck'] += 1 elif address in nullList or address.isspace(): Error.flags_dict['postalCheck'] += 1 Error.badcharsCount += 1 #for wrong <null> values else: pass return(Error,Parcel) except: getattr(Parcel,errorType + "Errors").append("An unknown issue occurred with the PSTLADRESS field. Please inspect the value of this field.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error, Parcel) #totError = Error.checkBadChars (totError ) def checkBadChars(Error ): if Error.badcharsCount >= 100: arcpy.AddMessage("\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") arcpy.AddMessage("THERE ARE AT LEAST 100 INSTANCES OF THE STRINGS '<Null>', \'NULL\', BLANKS AND/OR LOWER CASE CHARACTERS WITHIN THE ATTRIBUTE TABLE. \n") arcpy.AddMessage("RUN THE \"NULL FIELDS AND SET THE UPPERCASE TOOL\" AVAILABLE HERE: https://www.sco.wisc.edu/parcels/tools \n") arcpy.AddMessage("ONCE COMPLETE, RUN VALIDATION TOOL AGAIN.\n") arcpy.AddMessage("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") exit() def totalAssdValueCheck(Error,Parcel,cnt,lnd,imp,errorType): try: cnt = 0.0 if (getattr(Parcel,cnt) is None) else float(getattr(Parcel,cnt)) lnd = 0.0 if (getattr(Parcel,lnd) is None) else float(getattr(Parcel,lnd)) imp = 0.0 if (getattr(Parcel,imp) is None) else float(getattr(Parcel,imp)) if lnd + imp <> cnt: getattr(Parcel,errorType + "Errors").append("CNTASSDVALUE is not equal to LNDVALUE + IMPVALUE as expected. Correct this issue and refer to the submission documentation for futher clarification as needed.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['cntCheck'] += 1 return(Error,Parcel) except: getattr(Parcel,errorType + "Errors").append("An unknown issue occurred when comparing your CNTASSDVALUE value to the sum of LNDVALUE and IMPVALUE. Please inspect these fields.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error, Parcel) # parcels with MFLValue should have auxclass of W1-W3 or W5-W9 def mfLValueCheck(Error, Parcel, mflvalue, auxField, errorType): try: mflValueTest = getattr(Parcel,mflvalue) auxToTest = getattr(Parcel,auxField) if mflValueTest is None or float(mflValueTest) == 0.0: if auxToTest is not None and re.search('W', auxToTest) is not None and re.search('AW', auxToTest) is None and re.search('W4', auxToTest) is None: getattr(Parcel, errorType + "Errors").append("A <null> value provided in MFLVALUE field does not match the (" + str(auxToTest) + ") AUXCLASS value(s). Refer to submission documentation for verification.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['mflvalueCheck'] += 1 elif mflValueTest is not None and float(mflValueTest) > 0.0: if auxToTest is None: getattr(Parcel, errorType + "Errors").append("A <Null> value is expected in the MFLVALUE field according to the AUXCLASS field. Please verify.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['mflvalueCheck'] += 1 elif re.search('W4', auxToTest) is not None: getattr(Parcel, errorType + "Errors").append("MFLVALUE does not include properties with AUXCLASS value of W4. Please verify.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['mflvalueCheck'] += 1 else: pass return(Error, Parcel) except: getattr(Parcel,errorType + "Errors").append("An unknown issue occurred with the MFLVALUE field. Please inspect the value of field.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error, Parcel) def mflLndValueCheck(Error,Parcel,parcelidfield, parcelidList,lnd,mfl,errorType): try: lnd = 0.0 if (getattr(Parcel,lnd) is None) else float(getattr(Parcel,lnd)) mfl = 0.0 if (getattr(Parcel,mfl) is None) else float(getattr(Parcel,mfl)) parcelid = getattr(Parcel, parcelidfield) if lnd == mfl and (lnd <> 0.0 and mfl <> 0.0): Error.mflLnd += 1 if Error.mflLnd <= 10: parcelidList.append (parcelid) # need to save parcelid to add flag if necessary if Error.mflLnd > 10: getattr(Parcel,errorType + "Errors").append("MFLVALUE should not equal LNDVALUE in most cases. Please correct this issue and refer to the submission documentation for further clarification as needed.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) Error.flags_dict['mflvalueCheck'] += 1 return(Error,Parcel) except: getattr(Parcel,errorType + "Errors").append("An unknown issue occurred with the MFLVALUE/LNDVALUE field. Please inspect these fields.") setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) return (Error, Parcel) # add flag to parcels that have more than 10 parcels with mflvalue == landvalue #def addmflLandValueFlags (Error, outFC, fieldNames): # errorType = "tax" # with arcpy.da.UpdateCursor(output_fc_temp, fieldNames) as cursor: # for row in cursor: # for parcelid in parcelidList: # if row[3] == parcelid: # arcpy.AddMessage("sisi") # arcpy.AddMessage(Parcel) # getattr(Parcel,errorType + "Errors").append("MFLVALUE should not equal LNDVALUE in most cases. Please correct this issue and refer to the submission documentation for further clarification as needed.") # setattr(Error,errorType + "ErrorCount", getattr(Error,errorType + "ErrorCount") + 1) # return(Error,Parcel) # checks that parcels with auxclass x1-x4 have taxroll values = <null> def auxclassFullyX4Check (Error,Parcel,auxclassField,propclassField,errorType): try: auxclass = getattr(Parcel,auxclassField) propclass = getattr(Parcel,propclassField) taxRollFields = {'IMPVALUE': getattr(Parcel, "impvalue"), 'CNTASSDVALUE': getattr(Parcel, "cntassdvalue"), 'LNDVALUE': getattr(Parcel, "lndvalue"), 'MFLVALUE': getattr(Parcel, "mflvalue"), 'ESTFMKVALUE': getattr(Parcel, "estfmkvalue"), 'NETPRPTA': getattr(Parcel, "netprpta"), 'GRSPRPTA': getattr(Parcel, "grsprpta")} probFields = [] if auxclass is not None: if auxclass == 'X4' and propclass is None: for key, val in taxRollFields.iteritems(): if val is not None: probFields.append(key) if len(probFields) > 0: getattr(Parcel,errorType + "Errors").append("A <Null> value is
r.Link('%(bar)s', 'blah', '%(foo)s') """ self.reset() (built, d) = self.buildRecipe(recipestr2, "TestLink") for p in built: self.updatePkg(self.workDir, p[0], p[1]) a = os.lstat(util.joinPaths(self.workDir, 'foo')) b = os.lstat(util.joinPaths(self.workDir, 'bar')) c = os.lstat(util.joinPaths(self.workDir, 'blah')) assert(a[stat.ST_INO] == b[stat.ST_INO]) assert(b[stat.ST_INO] == c[stat.ST_INO]) def testLinkDir(self): recipe1 = """ class FooRecipe(PackageRecipe): name = 'foo' version = '1' clearBuildReqs() def setup(r): r.MakeDirs('/var/foo', '/var/bar/') r.Create('/var/foo/testme', contents='arbitrary data') r.Link('/var/foo/tested', '/var/foo/testme') """ (built, d) = self.buildRecipe(recipe1, "FooRecipe") self.updatePkg(built[0][0]) assert(os.lstat(self.rootDir + '/var/foo/testme').st_ino == os.lstat(self.rootDir + '/var/foo/tested').st_ino) class MakeDirsTest(rephelp.RepositoryHelper): def testMakeDirsTest1(self): """ Test creating directories """ recipestr1 = """ class TestMakeDirs(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(self): self.MakeDirs('foo') self.Run('ls foo') """ (built, d) = self.buildRecipe(recipestr1, "TestMakeDirs") recipestr2 = """ class TestMakeDirs(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(self): self.MakeDirs('/bar/blah') self.ExcludeDirectories(exceptions='/bar/blah') """ self.reset() (built, d) = self.buildRecipe(recipestr2, "TestMakeDirs") for p in built: self.updatePkg(self.workDir, p[0], p[1]) assert(stat.S_ISDIR( os.lstat(util.joinPaths(self.workDir, '/bar/blah'))[stat.ST_MODE])) class SugidTest(rephelp.RepositoryHelper): def testSugidTest1(self): """ Test to make sure that setu/gid gets restored. Warning: this won't catch variances when running as root! """ recipestr1 = """ class TestSugid(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(self): self.Create('%(essentialbindir)s/a', mode=06755) """ self.reset() (built, d) = self.buildRecipe(recipestr1, "TestSugid") self.mimicRoot() for p in built: self.updatePkg(self.workDir, p[0], p[1]) self.realRoot() a = os.lstat(util.joinPaths(self.workDir, 'bin/a')) assert (a.st_mode & 07777 == 06755) class CreateTest(rephelp.RepositoryHelper): def testCreateTest1(self): """ Test creating files directly """ recipestr1 = """ class TestCreate(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(self): self.Create(('/a', '/b')) self.Create('/c', '/d', contents='ABCDEFGABCDEFGABCDEFGABCDEFG') self.Create('/e', contents='%(essentialbindir)s') self.Create('/f', contents='%(essentialbindir)s', macros=False) self.Create('%(essentialbindir)s/{g,h}', mode=0755) """ self.reset() (built, d) = self.buildRecipe(recipestr1, "TestCreate") for p in built: self.updatePkg(self.workDir, p[0], p[1]) a = os.lstat(util.joinPaths(self.workDir, 'a')) b = os.lstat(util.joinPaths(self.workDir, 'b')) F = file(util.joinPaths(self.workDir, 'c')) c = F.read() F.close F = file(util.joinPaths(self.workDir, 'd')) d = F.read() F.close F = file(util.joinPaths(self.workDir, 'e')) e = F.read() F.close F = file(util.joinPaths(self.workDir, 'e')) e = F.read() F.close F = file(util.joinPaths(self.workDir, 'f')) f = F.read() F.close g = os.lstat(util.joinPaths(self.workDir, '/bin/g')) h = os.lstat(util.joinPaths(self.workDir, '/bin/g')) assert (a.st_size == 0) assert (b.st_size == 0) assert (c == 'ABCDEFGABCDEFGABCDEFGABCDEFG\n') assert (d == 'ABCDEFGABCDEFGABCDEFGABCDEFG\n') assert (e == '/bin\n') assert (f == '%(essentialbindir)s\n') assert (g.st_mode & 0777 == 0755) assert (h.st_mode & 0777 == 0755) class SymlinkTest(rephelp.RepositoryHelper): def testSymlinkTest1(self): """ Test creating files directly """ recipestr1 = """ class TestSymlink(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.Create('/a') r.Symlink('/one/argument') """ self.assertRaises(errors.CookError, self.buildRecipe, recipestr1, "TestSymlink") def testSymlinkTest2(self): recipestr2 = """ class TestSymlink(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.Symlink('/asdf/foo', '/bar/blah') r.DanglingSymlinks(exceptions='.*') """ self.buildRecipe(recipestr2, "TestSymlink") class DocTest(rephelp.RepositoryHelper): def exists(self, file): return os.path.exists(self.workDir + file) def testDocs(self): recipestr1 = """ class TestDocs(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.Create('README') r.Doc('README') r.Create('docs/README.too') r.Doc('docs/') """ self.reset() (built, d) = self.buildRecipe(recipestr1, "TestDocs") for p in built: self.updatePkg(self.workDir, p[0], p[1]) docdir = '/usr/share/doc/test-0/' for file in 'README', 'docs/README.too': assert(self.exists(docdir + file)) class ConfigureTest(rephelp.RepositoryHelper): def testConfigure(self): recipestr1 = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('configure', mode=0755, contents='''#!/bin/sh exit 0 ''') r.Configure() r.Create('/asdf/foo') """ (built, d) = self.buildRecipe(recipestr1, "TestConfigure") # make sure that the package doesn't mention the bootstrap # bootstrap flavor assert(built[0][2].isEmpty()) def testConfigureSubDirMissingOK(self): recipestr1 = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('configure', mode=0755, contents='''#!/bin/sh touch mustNotExist exit 0 ''') r.Configure(subDir='missing', skipMissingSubDir=True) r.Run('test -f mustNotExist && exit 1 ; exit 0') r.Create('/asdf/foo') """ (built, d) = self.buildRecipe(recipestr1, "TestConfigure") def testConfigureSubDirMissingBad(self): recipestr1 = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('configure', mode=0755, contents='''#!/bin/sh exit 0 ''') r.Configure(subDir='missing') r.Create('/asdf/foo') """ self.assertRaises(RuntimeError, self.buildRecipe, recipestr1, "TestConfigure") def testConfigureLocal(self): recipestr1 = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('configure', mode=0755, contents='''#!/bin/sh -x echo "$CONFIG_SITE" > $1 ''') r.MakeDirs('/make', '/conf') r.ManualConfigure('%(destdir)s/conf/target') r.ManualConfigure('%(destdir)s/conf/local', local=True) r.Make('%(destdir)s/make/target', makeName='./configure') r.Make('%(destdir)s/make/local', local=True, makeName='./configure') # run again to make sure any state changed by Make was restored. r.ManualConfigure('%(destdir)s/conf/target') r.ManualConfigure('%(destdir)s/conf/local', local=True) """ self.overrideBuildFlavor('is:x86 target: x86_64') (built, d) = self.buildRecipe(recipestr1, "TestConfigure") self.updatePkg('test[is:x86 target:x86_64]') for dir in ('%s/make/', '%s/conf'): dir = dir % self.cfg.root self.verifyFile('%s/local' % dir, ' '.join([ '%s/%s' % (self.cfg.siteConfigPath[0], x) for x in ('x86', 'linux')]) + '\n') self.verifyFile('%s/target' % dir, ' '.join([ '%s/%s' % (self.cfg.siteConfigPath[0], x) for x in ('x86_64', 'linux')]) + '\n') def testConfigureMissingReq(self): recipestr = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('configure', mode=0755, contents='''#!/bin/sh echo "$0: line 2000: foo: command not found" # exit 1 ''') r.ManualConfigure() r.Create('/opt/foo') """ self.logFilter.add() self.assertRaises(RuntimeError, self.buildRecipe, recipestr.replace('# exit', 'exit'), "TestConfigure", logBuild = True) self.logFilter.remove() self.logFilter.regexpCompare([ 'error: .*', 'warning: ./configure: line 2000: foo: command not found', 'warning: Failed to find possible build requirement for path "foo"', ]) # now repeat with foo in the repository but not installed self.addComponent('foo:runtime', '1', fileContents = [ ('/usr/bin/foo', rephelp.RegularFile(contents="", perms=0755)),]) repos = self.openRepository() self.logFilter.add() reportedBuildReqs = set() self.mock(packagepolicy.reportMissingBuildRequires, 'updateArgs', lambda *args: mockedSaveArgSet(args[0], None, reportedBuildReqs, *args[1:])) (built, d) = self.buildRecipe(recipestr, "TestConfigure", logBuild = True, repos=repos) self.logFilter.remove() self.logFilter.compare([ 'warning: ./configure: line 2000: foo: command not found', "warning: Some missing buildRequires ['foo:runtime']", ]) self.assertEquals(reportedBuildReqs, set(['foo:runtime'])) self.unmock() # now test with absolute path in error message self.logFilter.add() (built, d) = self.buildRecipe(recipestr.replace( 'foo: command not found', '/usr/bin/foo: command not found'), "TestConfigure", logBuild = True) self.logFilter.remove() self.logFilter.regexpCompare([ 'warning: .*: /usr/bin/foo: command not found', r"warning: Some missing buildRequires \['foo:runtime'\]", ]) # test that the logfile got the warning message client = self.getConaryClient() repos = client.getRepos() nvf = [x for x in built if x[0] == 'test:debuginfo'][0] nvf = repos.findTrove(self.cfg.buildLabel, nvf) fileDict = client.getFilesFromTrove(*nvf[0]) fileObj = fileDict['/usr/src/debug/buildlogs/test-0-log.bz2'] b = bz2.BZ2Decompressor() buildLog = b.decompress(fileObj.read()) self.assertFalse( \ "warning: Suggested buildRequires additions: ['foo:runtime']" \ not in buildLog) # finally repeat with foo installed, not just in repository self.updatePkg('foo:runtime') self.logFilter.add() reportedBuildReqs = set() self.mock(packagepolicy.reportMissingBuildRequires, 'updateArgs', lambda *args: mockedSaveArgSet(args[0], None, reportedBuildReqs, *args[1:])) (built, d) = self.buildRecipe(recipestr, "TestConfigure", logBuild = True) self.logFilter.remove() self.logFilter.compare([ 'warning: ./configure: line 2000: foo: command not found', "warning: Some missing buildRequires ['foo:runtime']", ]) self.assertEquals(reportedBuildReqs, set(['foo:runtime'])) def testConfigureMissingReq2(self): """ test that regexp matching is not fooled by dir argument """ recipestr1 = """ class TestConfigure(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.Create('configure', mode=0755, contents='''#!/bin/sh echo "/random/path/configure: line 2000: foo: command not found" ''') r.ManualConfigure('') r.Create('/opt/foo') """ self.logFilter.add() (built, d) = self.buildRecipe(recipestr1, "TestConfigure", logBuild = True) self.logFilter.remove() self.logFilter.compare([ 'warning: /random/path/configure: line 2000: foo: ' 'command not found', 'warning: Failed to find possible build requirement for path "foo"', ]) class CMakeTest(rephelp.RepositoryHelper): def testCMake(self): if not util.checkPath('cmake'): raise testhelp.SkipTestException('cmake not installed') recipestr1 = """ class TestCMake(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addSource('CMakeLists.txt', contents = '''\ PROJECT(floo) ADD_EXECUTABLE(floo floo.c) ''') r.addSource('floo.c', contents = ''' int main() { return 0; } ''') r.CMake() r.Make() r.Copy('floo', '/usr/bin/floo') """ (built, d) = self.buildRecipe(recipestr1, "TestCMake") def testCMakeSubDir(self): if not util.checkPath('cmake'): raise testhelp.SkipTestException('cmake not installed') # Same as previous test, but run in a subdir recipestr1 = """ class TestCMake(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.Create('floo/CMakeLists.txt', contents = '''\ PROJECT(floo) ''') r.CMake(dir = 'floo') r.Copy('floo/Makefile', '/usr/share/floo/') """ (built, d) = self.buildRecipe(recipestr1, "TestCMake") class RemoveTest(rephelp.RepositoryHelper): def testRemove(self): recipestr1 = """ class TestRemove(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.MakeDirs('a/b') r.Create('a/file') r.Install('a', '/a') r.Remove('/a/*') """ self.reset() (built, d) = self.buildRecipe(recipestr1, "TestRemove") for p in built: self.updatePkg(self.workDir, p[0], p[1]) def testRemoveRecursive(self): # Test for CNY-69 recipestr1 = """ class TestRemove(PackageRecipe): name = 'testr' version = '0.1' clearBuildReqs() def setup(r): r.Create("%(datadir)s/%(name)s/dir1/file1", contents="file1") r.Create("%(datadir)s/%(name)s/dir1/dir2/file2", contents="file2") r.Create("%(datadir)s/%(name)s/dir1/dir2/dir3/file3", contents="file3") r.Create("%(datadir)s/%(name)s/dir1/dir2/dir5/file4", contents="file4") r.Remove("%(datadir)s/%(name)s/dir1/dir2", recursive=True) """ repos = self.openRepository() oldVal = self.cfg.cleanAfterCook self.cfg.cleanAfterCook = False try: (build, d) = self.buildRecipe(recipestr1, "TestRemove") finally: self.cfg.cleanAfterCook = oldVal dr = os.path.join(self.workDir, '../build/testr/_ROOT_', 'usr/share/testr') self.assertEqual(os.listdir(dr), ["dir1"]) def testUnmatchedRemove(self): recipestr = """ class TestRemove(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.MakeDirs('/a') """ self.reset() err = self.assertRaises(RuntimeError, self.buildRecipe, recipestr + "r.Remove(r.glob('/a/*'))\n", "TestRemove") assert(str(err) == "Remove: No files matched: Glob('/a/*')") err = self.assertRaises(RuntimeError, self.buildRecipe, recipestr + "r.Remove('/a/*')\n", "TestRemove") assert(str(err) == "Remove: No files matched: '/a/*'") err = self.assertRaises(RuntimeError, self.buildRecipe, recipestr + "r.Remove(r.glob('/a/*'), '/b/*')\n", "TestRemove") assert(str(err) == "Remove: No files matched: (Glob('/a/*'), '/b/*')") def testUnmatchedRemove2(self): recipestr = """ class TestRemove(PackageRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.MakeDirs('/a') r.Remove('/a/*', allowNoMatch = True) """ self.reset() self.logFilter.add() (built, d) = self.buildRecipe(recipestr, "TestRemove") self.logFilter.remove() self.assertEquals(self.logFilter.records[0], "warning: Remove: No files matched: '/a/*'") class BuildLabelTest(rephelp.RepositoryHelper): def testBuildLabel(self): recipestr1 = """ class TestBuildLabel(PackageRecipe): name = 'test' version =
Target Variable for Neural Network - this is the target variable # ## ------------------------------------------------------------------------------------------------------ # In[30]: Declare some functions def setTarget(df, targetVariable): y = df[targetVariable] return y # In[31]: Set target variable y = setTarget(beforeafterDF, targetVariable) logger.info(' Y target variable as a pandas.series -> numpy.array ') logger.info('----------------------------------------------------------') logger.info(y.head()) logger.info(f'(y describe = {y.describe()}') logger.info('----------------------------------------------------------') # In[33]: if( explore ): logger.info(f'(y values from 0 to 10 = {y.values[0:10]}') logger.info(f'(y head = {y.head()}') logger.info(f'(y describe = {y.describe()}') # ## ------------------------------------------------------------------------------------------------------ # ## Normalization # ## ------------------------------------------------------------------------------------------------------ # ### Normalize the whole X # In[35]: Declare some functions def normalizeX(df): """Return a normalized value of df. Save MinMaxScaler normalizer for X variable""" scaler = MinMaxScaler(feature_range=(scaler_min, scaler_max)) # scaler.fit(df) scaler.fit(df.astype(np.float64)) # normalized = scaler.transform(df) normalized = scaler.transform(df.astype(np.float64)) # store MinMaxScaler for X joblib.dump(scaler, 'models/scaler_normalizeX.save') return normalized, scaler # In[36]: Normalize Features and Save Normalized values, Normalize input variables set X_normalized, X_normalized_MinMaxScaler = normalizeX(X) logger.info('') logger.info('--------- X_normalized done ------------') logger.info('-------------------------- X -----------------------------') # ## ------------------------------------------------------------------------------------------------------ # ## Load MinMaxScalerXFull # ## ------------------------------------------------------------------------------------------------------ # In[37]: Declare some functions def loadMinMaxScalerXFull(): X_normalized_MinMaxScaler = joblib.load('models/scaler_normalizeX.save') return X_normalized_MinMaxScaler # In[38]: Load Saved Normalized Data (Normalizer) X_normalized_MinMaxScaler = loadMinMaxScalerXFull() logger.info('') logger.info('--------- X_normalized_MinMaxScaler load done ------------') logger.info('-------------------------- X -----------------------------') # In[40]: if( explore ): printNormalizedX(X_normalized) X_normalized[1] # In[42]: De-normalize Features set X_denormalized = X_normalized_MinMaxScaler.inverse_transform(X_normalized) # In[43]: if( explore ): X_denormalized[1] X_denormalized[-1] # ### Normalize the whole y # In[45]: Declare some functions def normalizeY(df): """Return a normalized value of df. Save MinMaxScaler normalizer for Y variable""" new_df = df.copy() new_df_reshaped = new_df.values.reshape(-1,1) scaler = MinMaxScaler(feature_range=(scaler_min, scaler_max)) scaler.fit(new_df_reshaped.astype(np.float64)) normalizedY = scaler.transform(new_df_reshaped.astype(np.float64)) normalizedY = normalizedY.flatten() # store MinMaxScaler for Y joblib.dump(scaler, 'models/scaler_normalizeY.save') return normalizedY, scaler # In[46]: Normalize Target and Save Normalized values, Normalize target variable set y_normalized, y_normalized_MinMaxScaler = normalizeY(y) logger.info('') logger.info('--------- y_normalized done ------------') logger.info('-------------------------- y -----------------------------') # In[48]: if( explore ): printNormalizedY(y_normalized) y_normalized[0:3] # ## ------------------------------------------------------------------------------------------------------ # ## Load MinMaxScalerYFull # ## ------------------------------------------------------------------------------------------------------ # In[50]: Declare some functions def loadMinMaxScalerYFull(): y_normalized_MinMaxScaler = joblib.load('models/scaler_normalizeY.save') return y_normalized_MinMaxScaler # In[51]: Load Saved Normalized Data (Normalizer) y_normalized_MinMaxScaler = loadMinMaxScalerYFull() logger.info('') logger.info('--------- y_normalized_MinMaxScaler load done ------------') logger.info('-------------------------- y -----------------------------') # In[52]: De-normalize Features set y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1)) # In[53]: if( explore ): y_denormalized[0:3] y_denormalized[-3:] logger.info('') logger.info('') logger.info('--------- Normalization done ------------') logger.info('----------------------------------------------------------') # ## ------------------------------------------------------------------------------------------------------ # ## Train Neural Network with Optimizer Class, trainMultiLayerRegressor method # ## ------------------------------------------------------------------------------------------------------ logger.info('----------------------------------------------------------') logger.info('----------------------- MLP start ------------------------') logger.info('----------------------------------------------------------') # In[55]: Declare some functions def trainMultiLayerRegressor(X_normalized, y_normalized, activation, neuronsWhole): # Train Neural Network mlp = MLPRegressor(hidden_layer_sizes=neuronsWhole, max_iter=250, activation=activation, solver="lbfgs", learning_rate="constant", learning_rate_init=0.01, alpha=0.01, verbose=False, momentum=0.9, early_stopping=False, tol=0.00000001, shuffle=False, # n_iter_no_change=20, \ random_state=1234) mlp.fit(X_normalized, y_normalized) # Save model on file system joblib.dump(mlp, 'models/saved_mlp_model.pkl') return mlp # In[56]: Train Neural Network mlp = trainMultiLayerRegressor(X_normalized, y_normalized, activation_function, neuronsWhole) # In[57]: Declare some funcitons def predictMultiLayerRegressor(mlp, X_normalized): y_predicted = mlp.predict(X_normalized) return y_predicted # In[58]: Create prediction y_predicted = predictMultiLayerRegressor(mlp, X_normalized) # In[59]: Evaluete the model from utils import evaluateGoodnessOfPrediction goodness_of_fitt = evaluateGoodnessOfPrediction(y_normalized, y_predicted) logger.info('------------- Neural Network Goodness of Fitt ------------') logger.info('----------------------------------------------------------') logger.info(' evaluateGoodnessOfPrediction(y_normalized, y_predicted)') logger.info(' This dictionary is also the part of the return of Train') logger.info(f'( goodness_of_fitt = \n {goodness_of_fitt}') logger.info('----------------------------------------------------------') # TODO # visszatérni az értékekkel és eltárolni őket valamilyen változóban # ## ------------------------------------------------------------------------------------------------------ # ## Report # ## ------------------------------------------------------------------------------------------------------ VisualizePredictedYScatter(y_normalized, y_predicted, targetVariable) VisualizePredictedYLineWithValues(y_normalized, y_predicted, targetVariable, 'Normalized') # ### De-normlaize # ## ------------------------------------------------------------------------------------------------------ # ## I want to see the result in original scale. I don't care about the X but the y_normalized and y_predcited. # ## ------------------------------------------------------------------------------------------------------ # In[65]: De-normalize target variable and predicted target variable y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1)) y_predicted_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_predicted.reshape(y_predicted.shape[0],1)) # In[68]: Declare De-normalizer functions def denormalizeX(X_normalized, X_normalized_MinMaxScaler): X_denormalized = X_normalized_MinMaxScaler.inverse_transform(X_normalized) return X_denormalized # In[69]: De-normalize Features X_denormalized = denormalizeX(X_normalized, X_normalized_MinMaxScaler) # In[74]: Declare De-normalizer functions def denormalizeY(y_normalized, y_normalized_MinMaxScaler): y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1)) return y_denormalized # In[75]: De-normalize Target y_denormalized = denormalizeY(y_normalized, y_normalized_MinMaxScaler) y_predicted_denormalized = denormalizeY(y_predicted, y_normalized_MinMaxScaler) # ## ------------------------------------------------------------------------------------------------------ # ## Report # ## ------------------------------------------------------------------------------------------------------ VisualizePredictedYLineWithValues(y_denormalized, y_predicted_denormalized, targetVariable, 'Denormalized') # ## ------------------------------------------------------------------------------------------------------ # ## Linear Regression Learn # ## ------------------------------------------------------------------------------------------------------ logger.info('----------------------------------------------------------') logger.info('-------------- Linear Regression start -------------------') logger.info('----------------------------------------------------------') # In[125]: Declare some functions # TODO: # Átvezetni valahogy, hogy a bemeneti változók fényében kezelje hogy hány változó van a dataframeben # Ugy látom, hogy az advice-ban sehol nem szerepel a trainer aminek az az oka # hogy az Advice-nak semmi szüksége nincs a lag-ok-ra se a lead-ek-re # Ugyanis miután meg van tanulva egy model, az már csak a model beolvasásával törödik # és abban egyáltalán nem szerepelnek a lagok meg a lagek, # When pandas.DataFrame (preProcessedDF) was constructed, the order of the variables # was determined by the program. The target variable is the latest. # As far as we do not care about the previous or following target variable, # the program hasn't got to count till the last column. # As soon as we get the pandas.DataFrame, the program will know the number of # the columns. # So 'index' is a temporal variable what contains the number of the columns -1 # In other words, the lag will be computed for every column, except the last one. logger.info('----------------------------------------------------------') logger.info('-------------- Create Before After Diagnosis -------------') logger.info('----------------------------------------------------------') logger.info(' preProcessedDF the input of createBeforeafterDFLags()') logger.info('') logger.info(f' preProcessedDF.shape = {preProcessedDF.shape}') logger.info(f' preProcessedDF.columns = {preProcessedDF.columns}') # ## ------------------------------------------------------------------------------------------------------ # ## Linear Regression Calculate N'th previous values # ## ------------------------------------------------------------------------------------------------------ def createBeforeafterDFLags(df, lag): beforeafterDFLags = df.copy() dfColumnsNumber = beforeafterDFLags.shape[1] logger.info(f' createBeforeafterDFLags(df, lag) df col number = {dfColumnsNumber}') # index = 10 index = dfColumnsNumber - 1 logger.info(f' createBeforeafterDFLags(df, lag) df col number -1 = {index} \n') inputVariables = np.flip(beforeafterDFLags.columns[0:index].ravel(), axis=-1) logger.info(f' Input Variables in createBeforeafterDFLags = {inputVariables} \n') for i in inputVariables: new_column = beforeafterDFLags[i].shift(lag) new_column_name = (str('prev') + str(1) + i) beforeafterDFLags.insert(loc=index, column=new_column_name, value=new_column) beforeafterDFLags = beforeafterDFLags[lag:] # remove first row as we haven't got data in lag var return beforeafterDFLags, index # return not just the df but an int as well # In[126]: Create lag variables (see above -> 'prev1CPU', 'prev1Inter', etc) beforeafterDFLags, index1 = createBeforeafterDFLags(preProcessedDF, 1) logger.info('----------------------------------------------------------') logger.info('-------------- Create Before After Diagnosis -------------') logger.info('----------------------------------------------------------') logger.info(' after createBeforeafterDFLags(preProcessedDF, 1)') logger.info(' beforeafterDFLags, index1 = createBeforeafterDFLags(preProcessedDF, 1)') logger.info(f' beforeafterDFLags.shape = {beforeafterDFLags.shape} \n') logger.info(f' beforeafterDFLags.columns = {beforeafterDFLags.columns}') logger.info('---------------------------------------------------------- \n') logger.debug(f"\n {beforeafterDFLags[['prev1CPU', 'CPU']].head(10)}") logger.debug('----------------------------------------------------------') logger.debug(f"\n {beforeafterDFLags[['WorkerCount', 'prev1WorkerCount']].head(10)}") logger.debug('----------------------------------------------------------') logger.debug(f"\n {beforeafterDFLags[['WorkerCount', 'prev1WorkerCount']].tail(10)}") # ## ------------------------------------------------------------------------------------------------------ # ## Linear Regression Calculate N'th next values # ## ------------------------------------------------------------------------------------------------------ # Na itt viszont már para van itt viszont már tudnia kell, hogy mi is tulajdonképen # változók hossza def createBeforeafterDFLeads(df, index, lead = 1): beforeafterDFLeads = df.copy() inputVariables = np.flip(beforeafterDFLeads.columns[0:index].ravel(), axis=-1) logger.info(f'Input Variables in createBeforeafterDFLeads: {inputVariables} \n') # In the case of WorkerCount column we take account the next value. # Every other case we take account the parameter what was given by the user. for i in inputVariables: if( i == 'WorkerCount'): lead_value = 1 else: lead_value = lead new_column = beforeafterDFLeads[i].shift(-lead_value) new_column_name = (str('next') + str(1) + i) beforeafterDFLeads.insert(loc=index, column=new_column_name, value=new_column) beforeafterDFLeads = beforeafterDFLeads[:-lead] # remove last row as we haven't got data in lead (next) variables beforeafterDFLeads = beforeafterDFLeads.iloc[:,:-1] # remove last column - Latency return beforeafterDFLeads # In[129]: Create lead variables (see above -> 'next1CPU', 'next1Inter', etc) beforeafterDF = createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead) logger.info('----------------------------------------------------------') logger.info('-------------- Create Before After Diagnosis -------------') logger.info('----------------------------------------------------------') logger.info(' after createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead)') logger.info(' beforeafterDF = createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead)') logger.info(f' beforeafterDF.shape = {beforeafterDF.shape} \n') logger.info(f' beforeafterDF.columns = {beforeafterDF.columns}') logger.info('---------------------------------------------------------- \n') logger.debug(f"\n {beforeafterDF[['prev1CPU', 'CPU', 'next1CPU']].head(10)}") logger.debug('----------------------------------------------------------') logger.debug(f"\n {beforeafterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].head(10)}") logger.debug('----------------------------------------------------------') logger.debug(f"\n {beforeafterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].tail(10)}") # In[131]: Assert logger.debug('----------------------------------------------------------') logger.debug('---------- Assert --------------') logger.debug('----------------------------------------------------------') logger.debug(f'---------------- original _input_metrics length
<reponame>ginking/archimedes-1 # -*- coding: utf-8 -*- # NOTE TRADINGKING IS NOW ALLY PROGRESS AS NORMAL AS INCORPORATED CHANGES IN PLACE from __future__ import unicode_literals from datetime import datetime from datetime import timedelta from holidays import UnitedStates from lxml.etree import Element from lxml.etree import SubElement from lxml.etree import tostring from oauth2 import Consumer from oauth2 import Client from oauth2 import Token from os import getenv from os import path from pytz import timezone from pytz import utc from simplejson import loads from threading import Timer from logs import Logs # Read the authentication keys for TradeKing from environment variables. TRADEKING_CONSUMER_KEY = getenv("TRADEKING_CONSUMER_KEY") TRADEKING_CONSUMER_SECRET = getenv("TRADEKING_CONSUMER_SECRET") TRADEKING_ACCESS_TOKEN = getenv("TRADEKING_ACCESS_TOKEN") TRADEKING_ACCESS_TOKEN_SECRET = getenv("TRADEKING_ACCESS_TOKEN_SECRET") # Read the TradeKing account number from the environment variable. TRADEKING_ACCOUNT_NUMBER = getenv("TRADEKING_ACCOUNT_NUMBER") # Only allow actual trades when the environment variable confirms it. USE_REAL_MONEY = getenv("USE_REAL_MONEY") == "YES" # The base URL for API requests to TradeKing. TRADEKING_API_URL = "https://api.tradeking.com/v1/%s.json" # The XML namespace for FIXML requests. FIXML_NAMESPACE = "http://www.fixprotocol.org/FIXML-5-0-SP2" # The HTTP headers for FIXML requests. FIXML_HEADERS = {"Content-Type": "text/xml"} # The amount of cash in dollars to hold from being spent. #CASH_HOLD = 1000 CASH_HOLD = 1 # The fraction of the stock price at which to set order limits. LIMIT_FRACTION = 0.1 # The delay in seconds for the second leg of a trade. ORDER_DELAY_S = 30 * 60 # Blacklsited stock ticker symbols, e.g. to avoid insider trading or above 100USD (low account) TICKER_BLACKLIST = [] # We're using NYSE and NASDAQ, which are both in the easters timezone. MARKET_TIMEZONE = timezone("US/Eastern") # The filename pattern for historical market data. MARKET_DATA_FILE = "market_data/%s_%s.txt" class Trading: """A helper for making stock trades.""" def __init__(self, logs_to_cloud): self.logs = Logs(name="trading", to_cloud=logs_to_cloud) def make_trades(self, companies): """Executes trades for the specified companies based on sentiment.""" # Determine whether the markets are open. market_status = self.get_market_status() if not market_status: self.logs.error("Not trading without market status.") return False # Filter for any strategies resulting in trades. actionable_strategies = [] market_status = self.get_market_status() for company in companies: strategy = self.get_strategy(company, market_status) if strategy["action"] != "hold": actionable_strategies.append(strategy) else: self.logs.warn("Dropping strategy: %s" % strategy) if not actionable_strategies: self.logs.warn("No actionable strategies for trading.") return False # Calculate the budget per strategy. balance = self.get_balance() budget = self.get_budget(balance, len(actionable_strategies)) if not budget: self.logs.warn("No budget for trading: %s %s %s" % (budget, balance, actionable_strategies)) return False self.logs.debug("Using budget: %s x $%s" % (len(actionable_strategies), budget)) # Handle trades for each strategy. success = True for strategy in actionable_strategies: ticker = strategy["ticker"] action = strategy["action"] # Execute the strategy. if action == "bull": self.logs.info("Bull: %s %s" % (ticker, budget)) success = success and self.bull(ticker, budget) elif action == "bear": self.logs.info("Bear: %s %s" % (ticker, budget)) success = success and self.bear(ticker, budget) else: self.logs.error("Unknown strategy: %s" % strategy) return success def get_strategy(self, company, market_status): """Determines the strategy for trading a company based on sentiment and market status. """ ticker = company["ticker"] sentiment = company["sentiment"] strategy = {} strategy["name"] = company["name"] if "root" in company: strategy["root"] = company["root"] strategy["sentiment"] = company["sentiment"] strategy["ticker"] = ticker strategy["exchange"] = company["exchange"] # Don't do anything with blacklisted stocks. if ticker in TICKER_BLACKLIST: strategy["action"] = "hold" strategy["reason"] = "blacklist" return strategy # TODO: Figure out some strategy for the markets closed case. # Don't trade unless the markets are open or are about to open. if market_status != "open" and market_status != "pre": strategy["action"] = "hold" strategy["reason"] = "market closed" return strategy # Can't trade without sentiment. if sentiment == 0: strategy["action"] = "hold" strategy["reason"] = "neutral sentiment" return strategy # Determine bull or bear based on sentiment direction. if sentiment > 0: strategy["action"] = "bull" strategy["reason"] = "positive sentiment" return strategy else: # sentiment < 0 strategy["action"] = "bear" strategy["reason"] = "negative sentiment" return strategy def get_budget(self, balance, num_strategies): """Calculates the budget per company based on the available balance.""" if num_strategies <= 0: self.logs.warn("No budget without strategies.") return 0.0 return round(max(0.0, balance - CASH_HOLD) / num_strategies, 2) def get_market_status(self): """Finds out whether the markets are open right now.""" clock_url = TRADEKING_API_URL % "market/clock" response = self.make_request(url=clock_url) if not response: self.logs.error("No clock response.") return None try: clock_response = response["response"] current = clock_response["status"]["current"] except KeyError: self.logs.error("Malformed clock response: %s" % response) return None if current not in ["pre", "open", "after", "close"]: self.logs.error("Unknown market status: %s" % current) return None self.logs.debug("Current market status: %s" % current) return current def get_historical_prices(self, ticker, timestamp): """Finds the last price at or before a timestamp and at EOD.""" # Start with today's quotes. quotes = self.get_day_quotes(ticker, timestamp) if not quotes: self.logs.warn("No quotes for day: %s" % timestamp) return None # Depending on where we land relative to the trading day, pick the # right quote and EOD quote. first_quote = quotes[0] first_quote_time = first_quote["time"] last_quote = quotes[-1] last_quote_time = last_quote["time"] if timestamp < first_quote_time: self.logs.debug("Using previous quote.") previous_day = self.get_previous_day(timestamp) previous_quotes = self.get_day_quotes(ticker, previous_day) if not previous_quotes: self.logs.error("No quotes for previous day: %s" % previous_day) return None quote_at = previous_quotes[-1] quote_eod = last_quote elif timestamp >= first_quote_time and timestamp <= last_quote_time: self.logs.debug("Using closest quote.") # Walk through the quotes unitl we stepped over the timestamp. previous_quote = first_quote for quote in quotes: quote_time = quote["time"] if quote_time > timestamp: break previous_quote = quote quote_at = previous_quote quote_eod = last_quote else: # timestamp > last_quote_time self.logs.debug("Using last quote.") quote_at = last_quote next_day = self.get_next_day(timestamp) next_quotes = self.get_day_quotes(ticker, next_day) if not next_quotes: self.logs.error("No quotes for next day: %s" % next_day) return None quote_eod = next_quotes[-1] self.logs.debug("Using quotes: %s %s" % (quote_at, quote_eod)) return {"at": quote_at["price"], "eod": quote_eod["price"]} def get_day_quotes(self, ticker, timestamp): """Collects all quotes from the day of the market timestamp.""" # The timestamp is expected in market time. day = timestamp.strftime("%Y%m%d") filename = MARKET_DATA_FILE % (ticker, day) if not path.isfile(filename): self.logs.error("Day quotes not on file for: %s %s" % (ticker, timestamp)) return None quotes_file = open(filename, "r") try: lines = quotes_file.readlines() quotes = [] # Skip the header line, then read the quotes. for line in lines[1:]: columns = line.split(",") market_time_str = columns[1] try: market_time = MARKET_TIMEZONE.localize(datetime.strptime( market_time_str, "%Y%m%d%H%M")) except ValueError: self.logs.error("Failed to decode market time: %s" % market_time_str) return None price_str = columns[2] try: price = float(price_str) except ValueError: self.logs.error("Failed to decode price: %s" % price_str) return None quote = {"time": market_time, "price": price} quotes.append(quote) return quotes except IOError as exception: self.logs.error("Failed to read quotes cache file: %s" % exception) return None finally: quotes_file.close() def is_trading_day(self, timestamp): """Tests whether markets are open on a given day.""" # Markets are closed on holidays. if timestamp in UnitedStates(): self.logs.debug("Identified holiday: %s" % timestamp) return False # Markets are closed on weekends. if timestamp.weekday() in [5, 6]: self.logs.debug("Identified weekend: %s" % timestamp) return False # Otherwise markets are open. return True def get_previous_day(self, timestamp): """Finds the previous trading day.""" previous_day = timestamp - timedelta(days=1) # Walk backwards until we hit a trading day. while not self.is_trading_day(previous_day): previous_day -= timedelta(days=1) self.logs.debug("Previous trading day for %s: %s" % (timestamp, previous_day)) return previous_day def get_next_day(self, timestamp): """Finds the next trading day.""" next_day = timestamp + timedelta(days=1) # Walk forward until we hit a trading day. while not self.is_trading_day(next_day): next_day += timedelta(days=1) self.logs.debug("Next trading day for %s: %s" % (timestamp, next_day)) return next_day def utc_to_market_time(self, timestamp): """Converts a UTC timestamp to local market time.""" utc_time = utc.localize(timestamp) market_time = utc_time.astimezone(MARKET_TIMEZONE) return market_time def market_time_to_utc(self, timestamp): """Converts a timestamp in local market time to UTC.""" market_time = MARKET_TIMEZONE.localize(timestamp) utc_time = market_time.astimezone(utc) return utc_time def as_market_time(self, year, month, day, hour=0, minute=0, second=0): """Creates a timestamp in market time.""" market_time = datetime(year, month, day, hour, minute, second) return MARKET_TIMEZONE.localize(market_time) def make_request(self, url, method="GET", body="", headers=None): """Makes a request to the TradeKing API.""" consumer = Consumer(key=TRADEKING_CONSUMER_KEY, secret=TRADEKING_CONSUMER_SECRET) token = Token(key=TRADEKING_ACCESS_TOKEN, secret=TRADEKING_ACCESS_TOKEN_SECRET) client = Client(consumer, token) self.logs.debug("TradeKing request: %s %s %s %s" % (url, method, body, headers)) response, content = client.request(url, method=method, body=body, headers=headers) self.logs.debug("TradeKing response: %s %s" % (response, content)) try: return loads(content) except ValueError: self.logs.error("Failed to decode JSON response: %s" % content) return None def fixml_buy_now(self, ticker, quantity, limit): """Generates the FIXML for a buy order.""" fixml = Element("FIXML") fixml.set("xmlns", FIXML_NAMESPACE)
'CaPjVaQrpyN138TarQ7CYBqBOz0ZF7.png', u'Sport 1 Cz': logobase + 'kCLlfkFz3Ba3BL9Jc9ZPgUKXh2piyv.png', u'Sport 1 LT': logobase + 'nRFc87aOV1vRnjEqmQZUneZe4HiCqn.png', u'Sport 1 Select': logobase + '899pteevSriMFxe4omDA4G6l9i0czY.png', u'Sport 1 Voetbal HD': logobase + '0WEqpl3cqObcLs2J0l5DDhVPZalvXx.png', u'Sport 2 Cz': logobase + 'YLmEjnczWQGJcZC0SxRcH4ifPcwYlx.png', u'Sport Klub 1 HD': logobase + 'cLQ3uuWhQqxCQk5RUDwA9x7bLUHBwn.png', u'Sport Klub 2 HD': logobase + 'LiIua5Nyy8xdHFYhwgrwbcajbKz6fH.png', u'Sport Klub 3 HD': logobase + 'UkUGpf3hamDPGPtkqximS96rrts4jx.png', u'Sport TV 1': logobase + '7u5sbYjzJdQopdQ6bAH7GLDUsPWnXc.png', u'Sport TV 2': logobase + 'u6T8L5PPYKHCbBATjdzjLpTC8zzCdV.png', u'Sport TV 3': logobase + 'dYTM6Oqhaqw18FI6uYPS5yhjCmc1nZ.png', u'Sport TV 4': logobase + 'YfFhr0OCmbN8vHUuGCLp488dxGpKVw.png', u'Sport TV 5': logobase + 'YyzfJTMsBcmTKptLzxZcAcLKFj52LT.png', u'Super Tennis HD': logobase + 'mjQW91VJdjIEhADvOO2s6OiKNeUdUK.png', u'TGirls TV': logobase + 'FufZ2heFswzvAbRkTQZs8UJBYGsxuG.png', u'TLC HD': logobase + 'gT4olUY9nFJbGRCdwd7hHJp1NJ5eJr.png', u'TLC': logobase + 'gT4olUY9nFJbGRCdwd7hHJp1NJ5eJr.png', u'TV 1000 Action East': logobase + 'GblbxkDGXZyW5oWt9W8wuERQAiZ7ZT.png', u'TV 1000 Русское кино': logobase + 'ch5DX6f8hxDnmyzrjotUoKHNGzcw9P.png', u'TV 1000': logobase + 'WJMEvVafVakrm7BUMy1lzku7VQCx25.png', u'TV Bakhoristan': logobase + 'LoXaN929SQC5r5aQ3JETDXwG6VlPMk.png', u'TV Plus BG': logobase + 'cxxTbCRSZsh4l1CNpZ4mYychepxUGw.png', u'TV Safina': logobase + 'mJUmNhJbQqcr2NPppAryEJqDPBJGV0.png', u'TV Sale': logobase + 'hs0YdiUTlpRtb3wTiP4cXboX0H9oTN.png', u'TV Smichov': logobase + 'hqgkCNoqMXiAgNU6uedqUNIR7Z0ox5.png', u'TV XXI (TV21)': logobase + 'TKchoTWZFRMmGDBok08zoEFJ8mJJCe.png', u'TV1000 Comedy HD': logobase + 'ygGiR2hkQLySH6khdo8GV9CyMJ8dXi.png', u'TV1000 Megahit HD': logobase + 'lVPY7WCjn1WM6NL6tfLFy8iGA4yk3Z.png', u'TV1000 Premium HD': logobase + 'raoDrpin8VKmi522LZWzSF0fLRO04m.png', u'TV2 Sport HD': logobase + 'iL3TM972YPxOxajyfbuNcKGPFrVvTg.png', u'TV4 Sport HD': logobase + 'm8tNJfJGN7cYZtUWBggz3PMVB28clK.png', u'TV5 Monde Europe': logobase + 'ko7rbRBnyK1iINkLOA2adRvgVOEgUK.png', u'TV6 LT': logobase + 'SKskx67yBUvbTdMIIZjH1Z4EcB8nYX.png', u'TVT 1': logobase + 'CKKdhDfmno9O52tMfWptiAQT0IBWV8.png', u'Teledeporte': logobase + '57r0Kq1rFB6vcMeldfWDvp438Jz5qT.png', u'Teletravel HD': logobase + '4ZlASq3oDpOjXfhwluOzY74sy9elaE.png', u'TiJi': logobase + 'mD3GW0E7rdPwc4stjk7xrLI2gZn4Hq.png', u'Tonis': logobase + '38BRA5jO6LAsQ6rv1NC3FMJ6KALp8z.png', u'Top Shop': logobase + 'uD257Lhw7Ko2YD1reC0nRqW7lpy93D.png', u'Topsong TV': logobase + 'DsJRpcbI6rgjONbQftC5nHt1XMAXYQ.png', u'Torrent TV - Android': logobase + 'wf43FCQBGnvSrknDmSJXTOtbVWgOiP.png', u'Travel + adventure HD': logobase + 'b1HifWKMyefmDDvaDAJTwNNTaD8LF4.png', u'Travel + adventure': logobase + 'b1HifWKMyefmDDvaDAJTwNNTaD8LF4.png', u'Travel Channel HD': logobase + 'zfnAGLCvIu1fx9hfrITAZMoo9HYww4.png', u'UBR': logobase + 'F6EzmjkOBVB0gmn1kQX6itv5VvFml5.png', u'Ukraine Today': logobase + '3AVq6O577A7uw9uZ7fxIvpvE3CxdtW.png', u'VH1 Classic': logobase + 'FhxUFQ2Bsfom4vb8Ce41gFObAbh1Vh.png', u'VH1': logobase + '58.png', u'VIVA DE': logobase + 'HagNMshKtJ7zKnk9fdmBLhITjoWdrJ.png', u'Venus': logobase + 'R2ug0cuB3SmBBA6LK1uoNbEV66u39v.png', u'Viasat Explore': logobase + 'uCqpsdKP0ialUUYxUk2fXshYdYfxzW.png', u'Viasat Fotboll': logobase + '0JLqj3qwFoT1Y61scCyUdWioV5U6hx.png', u'Viasat History': logobase + 'MWGbB8wJp5Gm4vbPHl0ktohDDjMKdr.png', u'Viasat Hockey': logobase + 'CuAbCRGdf3Z1FGFiwErTbHZ3lAMJzr.png', u'Viasat Motor': logobase + 'RuYtGxEpqJ5DG7WxGCMWNDXosRdh59.png', u'Viasat Nature East': logobase + 'yimDcPvajJcUKQm9bY15cDdp3rJFcp.png', u'Viasat Nature-History HD': logobase + 'pSP6zxmuO4PU6xa6KRlZ9L8vvVM2Dy.png', u'Viasat Sport Baltic': logobase + 'ZIITckvF1w5u1MlubmhoG45HxPgcZZ.png', u'Viasat Sport HD': logobase + 'prAZKkny3W1HGM03lP0EhzcMmTPZdi.png', u'Viasat Sport Sverige': logobase + 'prAZKkny3W1HGM03lP0EhzcMmTPZdi.png', u'Viasat Sport': logobase + 'prAZKkny3W1HGM03lP0EhzcMmTPZdi.png', u'Viasat TV3 Sport 1': logobase + 'LUsZ9yjy6izQJHd2z2Hf7uBZ4UyUcM.png', u'Vip TV HD': logobase + 'VXNvw8nbJhjRncTmxkuglf8htUxN2N.png', u'WedTV (Свадебный)': logobase + 'u93ysJkZEp1NzeG7jTbVgB7nKhDTqH.png', u'World Fashion': logobase + '2YI4sT9YkGezrw9vZPn0uIRhZ7E2BV.png', u'WowGirls': logobase + 'phiImbBi8hRs3LqmOOpLVsPqQkD2Hc.png', u'XXL': logobase + '6nJtj85PlL0MxB8RDkM3toyGND3Anc.png', u'ZDF': logobase + '5SH5FeZiITw27CPxscjksZp272u7He.png', u'Zee TV': logobase + '1HooaeEhMSvpKmWv6nneZxnTmG5r6Q.png', u'Zoom': logobase + 'SyisYhg411o7z9kXci4vfpLq4KBZZ4.png', u'bTV BG': logobase + 'xiNqovHjloSoVzrVieKo6saLQTUnJ7.png', u'nSport + HD': logobase + 'JSpj8Lq758dRJzBaTEjM8nbSfnLf9M.png', u'АРМ ТВ': logobase + 'OgrdBlfYISfcpr0XO0ImEyelCMjUVx.png', u'Авто плюс': logobase + 'WkRxjy6fJEBJ5NZiaGn2j05eqfFfQq.png', u'Беларусь 24': logobase + 'GxA1KJP5YwpWc38BoPEmLwQH6uDeEz.png', u'Беларусь 5': logobase + 'aMU4HXJN11Bo9WissbPW4rhe06vAql.png', u'Белсат ТВ': logobase + '9VYuUQxx1ss7ieu2upENtlibyamBP0.png', u'Бигуди': logobase + 'JvcMdB5e6KVBpbXT12ulzmDqenheRx.png', u'Бобер': logobase + '2Edln8vEbg7UUSVUo7lIJPR780OWAR.png', u'Боец': logobase + 'pmkJgRqsuZDzuN4c6v6jZaBVKCN3K3.png', u'Бойцовский клуб': logobase + 'oo4RN3hUUjuVbtegW8Q5QE0bT6GwwD.png', u'ВТВ': logobase + 'svsUD6TinXyv3B1q5sZf3fI9ebmpaF.png', u'Вместе РФ': logobase + 'qa50GYekwBWym7KtoJdzrWHWqN8TeU.png', u'Вопросы и ответы': logobase + 'xbV8M35FkvpieQ3TUEL8fhwU8MzjmQ.png', u'Время': logobase + 'F44yKDJQLsX0llpZ2wupg8V5vHx5fF.png', u'Громадське ТБ HD': logobase + 'Ovkd9TiVv3nLcKPwQS2wkJ85KyYCMQ.png', u'Детский мир': logobase + '00Vf3rPABNnbNQ6Rv0dnfcg3JsJelA.png', u'Детский': logobase + 'jk8kody2p38CKdj5KGXWMwRLjgFIlG.png', u'Джус ТВ': logobase + 'qVNFoyUAOJSDvN9tHhf9j2AP7x4VkV.png', u'Дождь HD': logobase + '381.png', u'Дождь': logobase + '381.png', u'Дом кино International': logobase + '69MqZE2YHJNewQkqRbJea33WuRkKgo.png', u'Дом кино': logobase + 'jlC78Fy13KWjQUN6l3FtbsRLZDvc0x.png', u'Домашний (+4)': logobase + 'LRMaRyPCroUq4dVcRhwKJKVuhvdvUZ.png', u'Домашний': logobase + 'qmqrH2E2EX11qitbIvq0CYsxQjsHGm.png', u'Драйв ТВ': logobase + 'pmmgMKcRbxeYkjVUVr4IAWM0UuZHO4.png', u'Еврокино': logobase + '34mszCG0j0Vf6kFcMrLPnFEA8UPdu6.png', u'Еда HD': logobase + 'ojUD1jhpv7HBOLmubpEBOsANkpYNtk.png', u'Еда ТВ': logobase + 'TWdAdMXfMSylb2mQ4efFnOAYosymNC.png', u'Еспресо ТВ': logobase + 'lOwm890F5URuR5Ej7IacerzECPIDt4.png', u'<NAME>': logobase + 'xgKSMwqBdEyXnbVgb8LtNXSMiaPcOx.png', u'Живи': logobase + 'cOluSjslxxs3JZtSVO8c15xh7h8SDU.png', u'Загородная жизнь': logobase + 'cGGo8HRkVhy66UXKXZ4tH5HyUaaxJA.png', u'Звезда (+4)': logobase + '01VqCLfVy5OsMBN1qXjxOTp5NKT4QS.png', u'Звезда': logobase + '0HLRrFHt2QIkbJpLc1fy0RVe7hqCEC.png', u'Здоровое ТВ': logobase + '2LgJcyMnjJpMAhUqX3rdQ4ChOmbuTo.png', u'Зоо ТВ': logobase + 'RtAhntWPlKQs6CIYAb72piNF9EsN3E.png', u'Зоопарк': logobase + '1Ugpb5T1THFcFpn19Mnua21KxHkjct.png', u'Иллюзион+': logobase + 'XOO3bLrAAvCj45nIsxsGCppY14bY1n.png', u'Индия': logobase + 'XVWyHt5bFFcZNzmysBSjuVdGBGl45D.png', u'Интер': logobase + '3SP67FapzyZqMVZTPiJIcN09KRkTeu.png', u'Интер+': logobase + 'QEdaDBbqr13CCfwKQAP77UZYPQIPn0.png', u'Искушение': logobase + 'p3WsIen84SZK76zTMWnslNgUjsqsMZ.png', u'История': logobase + 'PNRaeOUFzOPFtrclFBBRTckj6Lvo0u.png', u'К1': logobase + 'mk2mYb28HFIxkFIiMNQWmKUdn1Y8hD.png', u'К2': logobase + 'IjG76jf8k8HTNLooNpUiEXtkPfA2rG.png', u'КХЛ HD': logobase + 'kRN7BwVtcdaXrU4Mdg24qhFAxjx9oZ.png', u'КХЛ ТВ': logobase + '216.png', u'Карусель': logobase + 'S233D4b6eq7KOXfdyi4dY2GokKeltg.png', u'<NAME>': logobase + 'C1AZimW2NnNA17H1uJLxxePUMTPQZ7.png', u'Кино ТВ': logobase + 'KkITMDICqC1erWdSqyOqoccqde2wHC.png', u'Кино премиум HD': logobase + 'p580CRZ8bBS6dw3plMWhhxXSzQ59uS.png', u'Кинопоказ': logobase + 'v0JEbxExcFI8dVEzCkpZUoktgiS9t7.png', u'Кинорейс 1': logobase + 'q3N266MTLCzzNVXy3q330VIVgTp93L.png', u'Кинорейс 2': logobase + 'RO9ac4e18hSAsPhquZ9JzyTHo5oqMK.png', u'Комедия ТВ': logobase + 'L2MEpT2YePoDvmKRjYy6yyt5ssH1m4.png', u'Красная линия': logobase + 'I43S6jd5noclar0LlPJnyY8adonmUV.png', u'Кто есть кто': logobase + 'MwNkO3fXd6KefRdiGlOdOQ5q0Zu7kS.png', u'Кубань 24 Орбита': logobase + 'FauvJxsKmI5a1fR62uSH9hJfHs5TCr.png', u'Кубань 24': logobase + 'CAAqiN96tQzFDdtz3vjrrgeIjAKqNq.png', u'Культура Украина': logobase + 'pyKdve4YhoChQFGSha8J0FBWBf302a.png', u'Кухня ТВ': logobase + 'G0WbVMphlP9oJ6KvHRfx0xDfhrF9Re.png', u'Ля-минор': logobase + '8FJA3xMMHcrZuGifHViyVQLjVIem5u.png', u'М1': logobase + 'ezvu2ugYMGnZ968LlnjPw7VjqWIPeM.png', u'М2': logobase + 'U4s78hznNz7mFYZQICkxN7J0HTtlCP.png', u'Малятко ТВ': logobase + 'kjYF9vS2IDTMehpzC7WWfjnZ4NVpuk.png', u'Мама': logobase + 'nw9fROQIjjKSDp8Wjkjl1Wt0n0xHxd.png', u'Марс ТВ': logobase + 'KnDO2ZAW1Xlahhp1ysdlDUPCQI3Jix.png', u'Матч ТВ HD': logobase + 'MXyy9Uud7oDuH8JqVisjsD0csgAHnQ.png', u'Матч ТВ': logobase + 'hQDOuQjUVczvUU2ocLE0tkC1siCqpo.png', u'Мега': logobase + 'IXY7dRFoq0qCqn4UbY47iP36vVZ6ck.png', u'Мир (+3)': logobase + 'QxOYkz6f80IdhmC4RSHI1cMd32CqYZ.png', u'Мир 24': logobase + 'auv6717gJOWi0A2VoeDQaCsx9G1NOj.png', u'Мир HD': logobase + 'Oq6h2IicTagHENQu1mFkjLk5rChMnr.png', u'Мир': logobase + 'Oq6h2IicTagHENQu1mFkjLk5rChMnr.png', u'Многосерийное ТВ': logobase + '4TMYdVpZYXafyIumuB5d7PrjFnslyT.png', u'Москва 24': logobase + 'dZcmoqRoZLhCBh8BE4RnbQivuDY6hH.png', u'Москва Доверие': logobase + '9oPazhJQrGZcSN64ZOS3WjLwGmQIZy.png', u'<NAME>': logobase + 'Qa41eifERrD77xQsmpRGbeTq95Ldlv.png', u'Мужское кино': logobase + 'PUDb8m2JFLndsPvb56tdH0V4RW0kZc.png', u'Мужской': logobase + '6YbhuWNqPKQWWsUGbBnSbAbm7IGssX.png', u'Муз ТВ': logobase + 'gttVvZmkAklbl2i0Mqy1MCzSCn7WiY.png', u'<NAME>': logobase + 'fD2Hnsq5BPMGvobLDMPZP049yNhBYt.png', u'Мульт': logobase + 'ZVzHvGF8mZ6RTsSh6aWsPbF1FBLjyp.png', u'Мультимания': logobase + '132.png', u'НЛО ТВ': logobase + '2VGhYruaQo19G1NLGoOiTrwmPxef7d.png', u'НСТ': logobase + 'fKYzdlWRz68qd9mRZnWuxMY73EyaSz.png', u'НТВ (+4)': logobase + 'B5GA1cfgmn8EsxrdwfNUIrEbdqarXf.png', u'НТВ (+7)': logobase + 'B5GA1cfgmn8EsxrdwfNUIrEbdqarXf.png', u'НТВ HD': logobase + 'zdJ3ye6d3UWl5a56zm6LjqYH6ziSOs.png', u'НТВ': logobase + 'B5GA1cfgmn8EsxrdwfNUIrEbdqarXf.png', u'НТВ+ 3D': logobase + 'qvuG0JySlHPlEH9A7G4xMNjBqOB35h.png', u'НТВ+ Баскетбол': logobase + 'bIWuyv7DJ65D5hIANkeo9SyIHGUXtn.png', u'НТВ+ Кино Союз': logobase + 'F3RiiQtowA2YoHw73iEzcMLZwfDiSx.png', u'НТВ+ Кино плюс': logobase + 'cnz8ZMypP2HV6phwv3rkSVQ7CgJExi.png', u'НТВ+ Киноклуб': logobase + 'nRnksgRuhojvbFDqh5KZ30XJQ4iyFO.png', u'НТВ+ Наше кино': logobase + 'UXJcZjVdZVIzciVHgGT3e6XxdRaBsD.png', u'НТВ+ Премьера': logobase + 'lDiI54Y3LjIAOg5VV0adicP3OJrdgo.png', u'НТВ+ Спорт плюс': logobase + '222.png', u'НТВ+ Спорт': logobase + '2WCUNhvAYk7RJUCcbt4N8xvOxWGlbx.png', u'НТВ+ Теннис': logobase + 'SdtlGA6I7WvjOpHsbabE4C9DP7JvJ7.png', u'НТВ+ Футбол 1 HD': logobase + '5gVddUBrGBIvdTx0cpRgCMJwVgphJz.png', u'НТВ+ Футбол 1': logobase + 'EQQJV8zgnv5MCfa5VBcvOm1GsLWovM.png', u'НТВ+ Футбол 2 HD': logobase + '8X1dxETwOup3Qton0J35BoW5glu5UG.png', u'НТВ+ Футбол 2': logobase + 'hD6OLNWbxyDtqE5VlVxCaoNeEoYpFb.png', u'НТВ+ Футбол 3 HD': logobase + 'eC4IeAxFTXXMsVfQaQHPtAN7LvosGd.png', u'НТВ+ Футбол 3': logobase + '4B2emgwWQ7kgFJwdoh0zNxDguh4Fh3.png', u'НТН (Украина)': logobase + 'LpQE1Odb1EoH5dJ90gWjItVyEYBXsw.png', u'НТРК "ИРТА"': logobase + 'd8zPTPLcK87xhBnGVFhgkuwFBY2TnK.png', u'Нано ТВ': logobase + 'QuURIfJUmXegxsHMYqMivVwxizbfKd.png', u'Наука 2.0': logobase + 'ypWbqYqKApM8cnDK1FibvQgpmgEay9.png', u'Наше любимое кино': logobase + 'LSR5M6VxB0YDwv6803zrGFkq7vGQ3J.png', u'Ника ТВ': logobase + 'pb3d3rBN4qW7ggzsosbAZXflfIv0Ty.png', u'Новороссия ТВ': logobase + 'zUchDq13UVJRmlwAl3feV8cgKHYSyE.png', u'Новый канал': logobase + 'k7YdHhVpFZPIkBMXS2P2O2TkZSPf0y.png', u'Ностальгия': logobase + 'tIfiXoDaXoZevuGu9pZJSvX8unv1xl.png', u'Ночной клуб': logobase + 'nXifSdkxHJVKI4SKtgtBQmCSHXtgOt.png', u'ОТР': logobase + 'CqxKorK72v3ULbWkB3ZOhdte0duYZa.png', u'Оплот 2': logobase + 'EqwpuUgrI6Wl6JVDK2fLtXkNaqOXeU.png', u'Оплот ТВ': logobase + 'gvofGxTug45qSt1vsX0BPzQxGTrwTr.png', u'Оружие': logobase + 'CyDUCmYXK8WS2kXCX5kiAOFejnlwoP.png', u'Остросюжетное HD': logobase + 'mxF7CZsqsDRMMK4pN8ekdccEgvEsZC.png', u'Охотник и рыболов': logobase + 'Ws2ddPI0b5Ie7PymoPUsboVlz9lYMS.png', u'Парк развлечений': logobase + 'beyfqyeacrFG0PrOeKUQhzQ4bV6Q5d.png', u'Первый автомобильный (Украина)': logobase + 'oZTXrmNOxeJIVSbnuxqbiuAL3voXYa.png', u'Первый городской (Киров)': logobase + 'sxUNuJVQpUjRMmASa5TvwlGykSBAkY.png', u'Первый городской Одесса': logobase + 'vBOI3YTA4FDLD0c7BHHjq476p9GMCZ.png', u'Первый деловой': logobase + 'a1Qf3MpxC9FPD68Tj8vtUTNK8P25xr.png', u'Первый канал (+4)': logobase + 'nHJycH0CkOhPeZ9DmB47iSMWP5HyWz.png', u'Первый канал (+6)': logobase + 'xEhi4YWxLlIcHq33Y44NrYvyHRArwa.png', u'Первый канал (Европа)': logobase + 'WimZD6efLd6QotrPP9uiJeF7t50nFv.png', u'Первый канал (СНГ)': logobase + 'WimZD6efLd6QotrPP9uiJeF7t50nFv.png', u'Первый канал HD': logobase + 'VxAFWzh1y88c8Aqa17TsxD2IO5pqoi.png', u'Первый канал': logobase + 'WimZD6efLd6QotrPP9uiJeF7t50nFv.png', u'Первый музыкальный HD': logobase + 'YxKl6Jqi6fmlUJjYGPnBhWhntKzI65.png', u'Первый музыкальный UHD': logobase + 'YxKl6Jqi6fmlUJjYGPnBhWhntKzI65.png', u'Первый музыкальный Россия HD': logobase + 'h7EDhdGypKmtfEP98O052SLlXUCcXt.png', u'Первый музыкальный Россия': logobase + 'MkX2WG1zhZ2KcYFdL0xWH1T4xkO7UW.png', u'Первый музыкальный канал': logobase + 'gYpYhzD3akuKSFpRmkh2p36pXnqHoW.png', u'Первый национальный (Украина)': logobase + '8yGRnEG4pNYMLFDVekA2yeOAX1lGZ2.png', u'Первый образовательный': logobase + '1kXxtStMuodaPU09H3rla3ry3QA2Wr.png', u'Перец (+4)': logobase + '28.png', u'Перец': logobase + '28.png', u'Пиксель ТВ': logobase + 'BdCXB7wPZMNvlWzB5xEFzmsYUXcfXW.png', u'ПлюсПлюс': logobase + '6gVIy7RMokFO61iVawgwbthe5mhgqm.png', u'Право ТВ': logobase + 'jqV4vr8830fm6lYlX9F7w3tRvcrRra.png', u'Просвещение': logobase + 'Fpx3Vqqk2VNcXl4YjsfO53XscWadvF.png', u'Психология 21': logobase + 'AyLAdiqcKu5X8ykdLf2bO9HsxMlJdO.png', u'Пятница (+2)': logobase + '0fafj6PSIWdqtBdgwYTl9M06SDU2wA.png', u'Пятница (+4)': logobase + 'fF9FYWNiHFfuR1ZrkaboYHwi1O37TJ.png', u'Пятница (+7)': logobase + '0fafj6PSIWdqtBdgwYTl9M06SDU2wA.png', u'Пятница': logobase + '0fafj6PSIWdqtBdgwYTl9M06SDU2wA.png', u'Пятый канал (+4)': logobase + 'tUE3C0hSxn7AxGHhST36CWi6HgJbIi.png', u'Пятый канал': logobase + 'nIUDYY41OO4Xo0ntGpGv2rfpOR5ngt.png', u'РБК': logobase + 'JUMDXZxxB3UiVpMpU8t0aCpbVzxTmP.png', u'РЕН ТВ (+2)': logobase + 'xwSFxBlid4YhPjZl8ibcIeTlzP0VVS.png', u'РЕН ТВ (+4) (резерв)': logobase + '2Z3hcLqC0pQC9gLkuZSl5WkHfS5HYb.png', u'РЕН ТВ (+4)': logobase + 'BE7n1y2cjisjflpQuMdC9P3c79rWb7.png', u'РЕН ТВ': logobase + 'LJvkfB2kYaDzij1Y13Fy6syUCkP5Y6.png', u'<NAME>': logobase + 'DixgG6tVZzcVHO2LPQEx3QrtfoVah3.png', u'<NAME>': logobase + 'hBFJBYNiqZUom0ooVtNEJKliZwfioO.png', u'Радость моя': logobase + 'VRylZFYgFq7AL0FWcbf5JVOX3desn3.png', u'Ретро ТВ': logobase + 'axrNIB7372SHIRwqT0jBbfyvjSoZ7I.png', u'Россия 1 (+4)': logobase + 'DL17FIS3R8m6eWTwFvdDYualmxvkGV.png', u'Россия 1': logobase + 'UUrfoqi6NQcc9gRLnCc8ODZJ2T3ShE.png', u'Россия 24': logobase + 'LWfGV6eICPYL7psaBfw2dOgGrOtHFS.png', u'Россия HD': logobase + 'ghvqmVpPWqn9x6POAm9UJBvXFzTrqN.png', u'Россия К (+4)': logobase + 'lzLdqpUZ8iHL9JEV7vQGG1gSlyswfB.png', u'Россия К': logobase + 'W9pWrec1BOJTmj8okrFeyM44wcpyd4.png', u'Россия РТР (Украина)': logobase + '5o9OWeEw90hM5ouECuTLwj5QP8MwU3.png', u'Русская ночь': logobase + '9Sh9bJuj6js5AJsypAd6UvwnsIB25R.png', u'Русский бестселлер': logobase + 'b5JXaosgmcanh9EVJg52yBefvdLQF7.png', u'Русский детектив': logobase + '7I7VjbsFMIkZdoSbHFXiKEVZKNUbOM.png', u'Русский иллюзион': logobase + 'E9Imfr8aHN5midPVpNhJ3fo49FHbQE.png', u'Русский роман': logobase + '2smriIFxtj7Ojh4jyZq0K1XrT98XjS.png', u'Русский экстрим': logobase + 'upndVpIdjY3vb5vrituof5UcKISNcQ.png', u'Рыжий': logobase + 'wfBSy60qHaPSKPpTfrNv9Q167iHIPu.png', u'СТБ': logobase + 'saZlIDrdaXWoiQa8sfZp2bEAeH0kXk.png', u'СТРК HD': logobase + 'xOmVS1kQFIHeAwqtJbBfrbE75Quj2a.png', u'СТС (+4)': logobase +
# standard library import socketserver import logging import threading import time import socket import struct import binascii from uuid import getnode as get_mac # third party # from this package # ####################################### # THE HANDLERS FOR THE ACTUAL CONNECTIONS # ####################################### class PhantomDataTransferHandler(socketserver.BaseRequestHandler): """ A handler object will be instantiated to handle a new connection to the PhantomDataTransferServer, which is being used to transmit image data from the phantom camera to the control unit. This module will only handle a single connection, which means receiving all the bytes of the image and then returning the complete byte string back to the server, before the handler closes. CHANGELOG Added 23.02.2019 """ def handle(self): """ Main method for handling the data transfer connection. Will handle a single data transmission and then end itself CHANGELOG Added 23.02.2019 Changed 26.02.2019 Now the program is not expecting the complete amount of pixels to be received, but is also fine with the last 100 bytes missing from the last TCP package. The missing bytes will just be padded with zeros. This was necessary as the camera seems to miss a few bytes from time to time. Changed 18.03.2019 Fixed a bug, where the program would call strip on the data and randomly interpret some of the pixels as whitespace characters, which would cause some pixels to go missing. :return: """ self.server.logger.debug( 'New DATA STREAM connection from IP %s and PORT %s', self.client_address[0], self.client_address[1] ) # To this buffer we will append all the incoming byte data and then, when all the data is received return the # contens of the buffer to the server, so that the PhantomSocket client can access it there buffer = [] buffer_length = 0 while self.server.running: data = self.request.recv(524288) if data and data[0] == '' or len(data) == 0: continue if len(buffer) != self.server.size: buffer.append(data) buffer_length += len(data) self.server.logger.debug('Received: %s/%s', buffer_length, self.server.size) if buffer_length == self.server.size: # Once the image has been received, the byte string is being passed to the server object by setting # its 'image_bytes' attribute. The the main loop is being ended, thus ending the whole handler thread append_bytes = ('\x00' * (self.server.size - len(buffer))).encode('utf-8') buffer_bytes = b''.join(buffer) self.server.image_bytes = buffer_bytes self.server.logger.debug('Received %s bytes; had to append %s', len(buffer), len(append_bytes)) self.server.logger.debug('Finished receiving image with %s bytes', len(self.server.image_bytes)) break self.request.close() self.server.logger.debug('Data Handler shutting down...') class PhantomXDataTransferHandler(threading.Thread): """ This thread will be started by the 10G Data transfer server, if an image has to be received """ # CONSTANT DEFINITIONS # -------------------- # The protocol identifier, which a phantom camera uses in the ethernet frame header to identify the data packages PHANTOM_ETHERNET_PROTOCOL = b'\x88\xb7' # The header size is required to compute the payload size, which in turn is required to extract the payload data # from the whole ethernet frame. # 10.05.2019 # Turns out the header size is actually 32 and not 14 HEADER_SIZE = 32 def __init__(self, server): """ The constructor CHANGELOG Added 19.03.2019 :param server: """ threading.Thread.__init__(self) self.server = server self.socket = None # MAIN THREAD METHOD # ------------------ # This is the method, that is being executed as the thread def run(self): """ A new socket will be created to listen for raw ethernet frames. All ethernet frames are then received and decoded to check for their protocol identifier, if it matches a phantom camera the payload is being appended to the buffer for the image data CHANGELOG Added 19.03.2019 :return: void """ self.server.logger.debug('New RAW frame handler for INTERFACE %s', self.server.ip) # Creating the socket to accept the raw ethernet frame # For the case of a RAW socket connection "server.ip" has to be the string identifier of a network interface. # "socket.htons(3)" specifies to listen for all protocols (The irrelevant packages are filtered after receiving) self.socket = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.htons(3)) self.socket.bind((self.server.ip, 0)) # To this buffer we will append all the incoming byte data and then, when all the data is received return the # contents of the buffer to the server, so that the PhantomSocket client can access it there # The handler object really only interact with the server, so that the client has to only interact with the # server. buffer = [] buffer_length = 0 self.server.logger.debug("Running status: %s", self.server.running) while self.server.running: data = self.socket.recv(10000) # This will decode the raw bytes string, which has been received into the various parts of the header and # the payload and save those as values in a dictionary for easy access data_dict = self.unpack_data(data) # A package is only processed as part of the image, if the protocol identifier matches the one used by the # phantom camera. # If that is the case, the payload data is being appended to the buffer. if data_dict['protocol'] == self.PHANTOM_ETHERNET_PROTOCOL: payload = data_dict['payload'] buffer.append(payload) buffer_length += len(payload) self.server.logger.debug('Received %s/%s bytes total', buffer_length, self.server.size) # when all data has been received, the buffer is being concatenated to one long bytes string and returned # to the server. if buffer_length >= self.server.size: self.server.image_bytes = b''.join(buffer)[0:self.server.size] self.server.logger.debug('Received image with %s/%s bytes', buffer_length, self.server.size) break self.socket.close() self.server.logger.debug('Data Handler shutting down...') # HELPER METHODS # -------------- @classmethod def unpack_data(cls, data): """ Given the data received as bytes string, this method will unpack the various informations within the header and the payload into a dictionary with the keys "source" for the src MAC address, "destination" for the dst MAC, "protocol" for the used protocol identifier and "payload" for the data sent within the ethernet frame CHANGELOG Added 19.03.2019 Changed 10.05.2019 Fixed the unpacking by changing the header size from 14 to 32 and modifying the struct unpack accordingly :param data: :return: data """ payload_length = len(data) - 32 format_string = '!6s6s2s18s{}s'.format(payload_length) source_address, destination_address, protocol, _, payload = struct.unpack(format_string, data) data_dict = { 'source': source_address, 'destination': destination_address, 'protocol': protocol, 'payload': payload } return data_dict # ################################ # THE DATA TRANSFER SERVER OBJECTS # ################################ class DataTransferServer: """ This is the base class for all possible variations of data transfer servers. The most important ones being the one for the "normal" network data transmission and the one for the 10G network transmission. This class defines all the common functionality which all data transfer servers have to share (acting as sort of an interface as well.). IMPORTANT: A child class inheriting from this class has to initialize the according socketserver.Server class first, as this base class makes assumptions about that behaviour. CHANGELOG Added 19.03.2019 """ def __init__(self, ip, port, format, handler_class): """ The constructor. CHANGELOG Added 19.03.2019 :param ip: :param port: :param format: :param handler_class: """ # Creating a new logger, whose name is a combination from the module name and the class name of this very class self.log_name = '{}.{}'.format(__name__, self.__class__.__name__) self.logger = logging.getLogger(self.log_name) # Saving the ip and the port. The tuple of both ip and port is needed for most of the networking functionality # of python. self.ip = ip self.port = port self.address = (self.ip, self.port) self.format = format self.handler_class = handler_class self.size = 0 self.image_bytes = None self.running = None self.thread = None def set_data_size(self, size): self.size = size class PhantomDataTransferServer(socketserver.ThreadingTCPServer, DataTransferServer): """ This is a threaded server, that is being started, by the main phantom control instance, the PhantomSocket. It listens for incoming connections FROM the phantom camera, because over these secondary channels the camera transmits the raw byte data. The way it works: The main program execution maintains a reference to this object. This object will work as the main access point for receiving images using the "receive_image" method. But the actual process of receiving the image is not handled in this object. Although this object listens for incoming data connections, but as soon as a camera makes a request for a new connection for transferring an image, this object automatically creates a handler object and passes the data connection to that handler, which is then in
<filename>main.py<gh_stars>0 #!/usr/bin/env python # If you keep OpenSCAD in an unusual location, uncomment the following line of code and # set it to the full path to the openscad executable. # Note: Windows/python now support forward-slash characters in paths, so please use # those instead of backslashes which create a lot of confusion in code strings. # OPENSCAD_PATH = "C:/Program Files/OpenSCAD/openscad" # do not edit below unless you know what you are doing! import os import configparser import platform from shutil import copy, rmtree import shlex import random as rd import time import numpy as np import math import re from PIL import Image import subprocess as sp halt = -1 # debug: terminate skipping this shell (0 to n to enable) # Make sure we have a fresh random seed rd.seed() USE_SCAD_THREAD_TRAVERSAL = False STL_DIR = "stl_files" PREV_DIR = "prev" def openscad(): try: if OPENSCAD_PATH: return OPENSCAD_PATH except NameError: pass if os.getenv("OPENSCAD_PATH"): return os.getenv("OPENSCAD_PATH") if platform.system() == "Darwin": return "/Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD" if platform.system() == "Windows": # Note: Windows allows forward slashes now return '"C:/Program Files/OpenSCAD/openscad"' # Default to linux-friendly CLI program name return "openscad" def prepwd(): # Linux and other systems that use PATH variables don't need an absolute path configured. # if os.path.exists(openscad_exe) == False: # input("ERROR: openscad path not found.") # exit() if os.path.exists(STL_DIR): rmtree(STL_DIR) os.mkdir(STL_DIR) # Default perms: world-writable if os.path.exists(PREV_DIR): rmtree(PREV_DIR) os.mkdir(PREV_DIR) # Default perms: world-writable def has_scad_threading(): cmd = [openscad(), "--help"] # Note: help comes on stderr out = sp.check_output(cmd, stderr=sp.STDOUT, universal_newlines=True) m = re.search(r"enable experimental features:\s(.+?)\n\s*\n", out, flags=re.DOTALL) if m: return "thread-traversal" in re.split(r"\s*\|\s*", m[1]) return False def scad_version(): cmd = [openscad(), "--version"] # Note: version comes on stderr out = sp.check_output(cmd, stderr=sp.STDOUT, universal_newlines=True) m = re.search(r"enable experimental features:\s(.+?)\n\s*\n", out, flags=re.DOTALL) m = re.match(r"^\s*OpenSCAD version (\d{4})\.(\d\d)\.(\d\d)\s*$", out) return (int(m[1]), int(m[2]), int(m[3])) if m else () def execscad(threadid=0): print("Executing OpenSCAD script...") cmd = [openscad()] if USE_SCAD_THREAD_TRAVERSAL: cmd.append("--enable=thread-traversal") cmd.extend( [ "-o", os.path.join(os.getcwd(), STL_DIR, str(shell + 1) + ".stl"), os.path.join(os.getcwd(), "make_shells.scad"), ] ) print(cmd) sp.run(cmd) def udnbers(n, vi, nc, mw, mh, stag): for y in range(0, mh): for x in range(0, mw): x3 = int((x + stag[y]) % mw) x2 = [x - 1, x + 1, x, x] y2 = [y, y, y - 1, y + 1] for i in range(0, 4): if stag[y] % mw > 0: x2[i] = int((x2[i] + mw) % mw) else: if x2[i] < 0: x2[i] = 0 if x2[i] > mw - 1: x2[i] = mw - 1 if ( not ((x3 == 0 and i == 0) or (x3 == mh - 1 and i == 1)) and y2[i] > -1 and y2[i] < mh ): n[x, y, i] = vi[int(x2[i]), int(y2[i])] == 0 else: n[x, y, i] = 0 nc[x, y] = len(np.argwhere(n[x, y].astype("int"))) def genmaze(mw, mh, stag, st, ex): im = Image.new("L", [2 * mw + 1, 2 * mh + 1], 0) visited = np.zeros(mw * mh) nbercount = np.zeros(mw * mh) nbers = np.ones(mw * mh * 4) walls = np.ones(mw * mh * 4) r = int((mw * mh) / 2) vcount = 1 visited[r] = 1 visited = visited.reshape([mw, mh]) nbers = nbers.reshape([mw, mh, 4]) nbercount = nbercount.reshape([mw, mh]) walls = walls.reshape([mw, mh, 4]) udnbers(nbers, visited, nbercount, mw, mh, stag) while vcount < (mw * mh): v = np.transpose(np.nonzero(np.logical_and(visited == 1, nbercount > 0))) # choose branch r = rd.randint(0, len(v) - 1) c = v[r] # choose wall to break if nbers[c[0], c[1]][0] == 1 or nbers[c[0], c[1]][1] == 1: # horizontal bias when possible r = rd.randint(0, nbercount[c[0], c[1]] - 1 + hbias) if r > nbercount[c[0], c[1]] - 1: r = int(r - (nbercount[c[0], c[1]])) if nbers[c[0], c[1]][0] == 1 and nbers[c[0], c[1]][1] == 1: r = int(r % 2) else: r = 0 else: # otherwise just vertical r = rd.randint(0, nbercount[c[0], c[1]] - 1) n = np.argwhere(nbers[c[0], c[1]])[r] # break wall walls[c[0], c[1], n] = 0 c2 = c # walls: 0=L 1=R 2=U 3=D if n == 0: n2 = 1 c2[0] = c[0] - 1 elif n == 1: n2 = 0 c2[0] = c[0] + 1 elif n == 2: n2 = 3 c2[1] = c[1] - 1 else: n2 = 2 c2[1] = c[1] + 1 c2[0] = int((c2[0] + mw) % mw) visited[c2[0], c2[1]] = 1 walls[c2[0], c2[1], n2] = 0 udnbers(nbers, visited, nbercount, mw, mh, stag) vcount = vcount + 1 # preview if ((i == 0 and shell < shells - 1) or (i == 1 and shell > 0)) and tpp != 1: im.putpixel((1 + ex * 2, 0), 255) im.putpixel((1 + st * 2, mh * 2), 255) for y in range(0, mh): for x in range(0, mw): imx = 1 + x * 2 imy = 1 + y * 2 imnx = [imx - 1, imx + 1, imx, imx] imny = [imy, imy, imy - 1, imy + 1] if visited[x, y] == 1: im.putpixel((imx, imy), 255) for idx in range(0, 4): if walls[x, y, idx] == 0: im.putpixel((imnx[idx], imny[idx]), 255) if tpp == 2: im.save(os.path.join(os.getcwd(), PREV_DIR, str(shell + 1) + "a.png")) else: im.save(os.path.join(os.getcwd(), PREV_DIR, str(shell + 1) + ".png")) return walls def gen(): global shell global d2 global mh global mw global i global tpp if shell < shells: if shell == halt: exit() if shell + 1 > 0 and shell + 1 < shells and shell + 1 == tp and tpp < 1: tpp = -1 if tpp < 1: print("part: " + str(shell + 1)) wt = mwt if tpp < 1: if shell == 0: d = (mw * us * p) / np.pi + wt - marge * 2 else: if shell == tp: d = d2 else: d = d2 + us + wt + marge * 2 if i == 0: mw = int(math.ceil((d / p + us) * np.pi / 2 / us)) if shell == (shells - 2): mh += 1 else: if shell == (shells - 1): mw = int(math.ceil((d / p + us) * np.pi / 2 / us)) else: mw = int(math.ceil((d2 / p + us) * np.pi / 2 / us)) mh += 1 else: d = d2 + us + wt + marge * 2 mw = int(math.ceil((d / p + us) * np.pi / 2 / us)) mh += 1 # stag/shift stag = np.zeros(mh) if stagmode in (1, 2): for y in range(0, mh): if y == 0 or stagmode == 1: stag[y] = rd.randint(0, mh - 1) else: stag[y] = stag[y - 1] + rd.randint(0, mh - 1) elif stagmode == 3: stag = np.multiply(np.arange(0, mh), stagconst).astype("int") # maze st = rd.randint(0, mw - 1) ex = rd.randint(0, mw - 1) marr = genmaze(int(mw), int(mh), stag, st, ex) matrix = [] for y in range(0, mh): row = [] for x in range(0, mw * p): x2 = x % mw r = marr[x2, y, 1] == 0 u = marr[x2, y, 3] == 0 if u and r: row.append("3") elif u: row.append("2") elif r: row.append("1") else: row.append("0") matrix.append(f"[{','.join(row)}]") s = f"[{','.join(matrix)}];" if tpp < 1: maze_num = 1 open_mode = "w" else: maze_num = 2 open_mode = "a+" with open("maze.scad", open_mode) as maze: maze.write(f"maze{maze_num}=") maze.write( "\n".join( [ s, f"h{maze_num}={mh};", f"w{maze_num}={mw * p};", f"st{maze_num}={st};", f"ex{maze_num}={ex};", ] ) ) base = 1 lid = 0 if shell == shells - 1: lid = 1 base = 0 if shell > shells - 2: mos = 0 else: mos = shells - shell - 2 with open("config.scad", "w+") as cfg: cfg.write( "\n".join( [ f"p={p};", f"tpp={tpp};", f"is={shell};", f"os={mos};", f"lid={lid};", f"base={base};", f"iw={wt};", f"id={d};", f"s={us};", f"i={i};", f"bd={d + wt * 2 + us * 2};", f"m={marge};", ] ) ) if shell < shells - 2: d2 = d if shell > 0 and shell < shells and shell == tp and tpp < 1: if i == 0: # double nub transition tpp
"fit_prior": Categorical([True, False]), "alpha": Real(0, 1, prior='uniform') } }, { "id": 11, "type": "classification", "model": GaussianNB(), "search_space": { "var_smoothing": Real(0, 1, prior='uniform') } }, { "id": 12, "type": "classification", "model": BernoulliNB(), "search_space": { "fit_prior": Categorical([True, False]), "alpha": Real(0, 1, prior='uniform') } }, { #ALL DOCUMENDATION FEATURES "id": 0, "type": "regression", "model": RandomForestRegressor(), "principal": "RandomForest", "family": "ensemble", "search_space": [ { "n_estimators": Integer(100, 500), "criterion": Categorical(['mse']), # 'squared_error', 'absolute_error', 'poisson' "max_depth": Integer(6, 20), # values of max_depth are integers from 6 to 20 "min_samples_split": Integer(2, 10), "min_samples_leaf": Integer(1, 10), "min_weight_fraction_leaf": Real(0, 0.5, prior='uniform'), "max_features": Categorical(['auto', 'sqrt','log2']), #"max_leaf_nodes": Integer(0, 10), #"min_impurity_decrease": Real(0, 1, prior='uniform'), "bootstrap": Categorical([False]), # values for boostrap can be either True or False "oob_score": Categorical([False]), "n_jobs": [njobs], "random_state": [rands], #"verbose": Integer(0, 2), #"warm_start": Categorical([False, True]), "ccp_alpha": Real(0, 1, prior='uniform'), #"max_samples": Integer(0, len(X)), }, { "n_estimators": Integer(100, 500), "criterion": Categorical(['mse']), # 'squared_error', 'absolute_error', 'poisson' "max_depth": Integer(6, 20), "min_samples_split": Integer(2, 10), "min_samples_leaf": Integer(2, 10), "min_weight_fraction_leaf": Real(0, 0.5, prior='uniform'), "max_features": Categorical(['auto', 'sqrt','log2']), #"max_leaf_nodes": Integer(0, 10), #"min_impurity_decrease": Real(0, 1, prior='uniform'), "bootstrap": Categorical([True]), "oob_score": Categorical([False, True]), "n_jobs": [njobs], "random_state": [rands], #"verbose": Integer(0, 2), #"warm_start": Categorical([False, True]) "ccp_alpha": Real(0, 1, prior='uniform'), #"max_samples": Integer(0, len(X)), } ] }, { #ALL DOCUMENDATION FEATURES "id": 1, "type": "regression", "model": DecisionTreeRegressor(), "principal": "DecisionTree", "family": "tree", "search_space": { "criterion": Categorical(['mse', 'friedman_mse', 'mae']), # 'squared_error', 'absolute_error', 'poisson' #"splitter": Categorical(['best', 'random']), #"max_depth": Integer(6, 20), # values of max_depth are integers from 6 to 20 "min_samples_split": Integer(2, 10), "min_samples_leaf": Integer(2, 10), "min_weight_fraction_leaf": Real(0, 0.5, prior='uniform'), "max_features": Categorical(['auto', 'sqrt','log2']), "random_state": [rands], #"max_leaf_nodes":Integer(0, 10), #"min_impurity_decrease": Real(0, 1, prior='uniform'), #"alpha": Real(0, 1, prior='uniform') } }, { "id": 2, "type": "regression", "model": KNeighborsRegressor(), "search_space": { "n_neighbors": Integer(1, 10), "weights": Categorical(['uniform', 'distance']), "algorithm": Categorical(['auto', 'ball_tree', 'kd_tree', 'brute']), "leaf_size": Integer(1, 50), "p": Integer(1, 2), "metric": Categorical(['minkowski']), #metric_params": Categorical(['']), "n_jobs": [njobs], } }, { "id": 3, "type": "regression", "model": SVR(), "search_space": [ { "C": Real(0.1, 10, prior='uniform'), "kernel": Categorical(['linear']), #precomputed #Precomputed matrix must be a square matrix "gamma": Categorical(['scale']), #auto #will chose one of the existing #"shrinking": Categorical([True, False]), #"probability": Categorical([True, False]), "tol": [0.01], #"epsilon": Real(0, 0.5, prior='uniform'), #"shrinking": Categorical(['ovo', 'ovr']), #"cache_size": Integer(1, 500), #"verbose": Categorical([True, False]), #"max_iter": Integer(-1, 1000), }, #{ # "C": Real(0.1, 10, prior='uniform'), # "kernel": Categorical(['rbf']), #precomputed #Precomputed matrix must be a square matrix # "gamma": Categorical(['scale']), #auto #will chose one of the existing # #"shrinking": Categorical([True, False]), # #"probability": Categorical([True, False]), # "tol": [0.01], # #"epsilon": Real(0, 0.5, prior='uniform'), # #"shrinking": Categorical(['ovo', 'ovr']), # #"cache_size": Integer(1, 500), # #"verbose": Categorical([True, False]), # #"max_iter": Integer(-1, 1000), #}, #{ # "C": Real(0.1, 10, prior='uniform'), # "kernel": Categorical(['sigmoid']), #precomputed #Precomputed matrix must be a square matrix # "gamma": Categorical(['scale']), #auto #will chose one of the existing # "coef0": Real(0, 1, prior='uniform'), # #"shrinking": Categorical([True, False]), # #"probability": Categorical([True, False]), # "tol": [0.01], # #"epsilon": Real(0, 0.5, prior='uniform'), # #"shrinking": Categorical(['ovo', 'ovr']), # #"cache_size": Integer(1, 500), # #"verbose": Categorical([True, False]), # #"max_iter": Integer(-1, 1000), #}, { "C": Real(0.1, 10, prior='uniform'), "kernel": Categorical(['poly']), #precomputed #Precomputed matrix must be a square matrix "degree": [1], "gamma": Categorical(['scale']), #auto #will chose one of the existing "coef0": Real(0, 1, prior='uniform'), #"shrinking": Categorical([True, False]), #"probability": Categorical([True, False]), "tol": [0.01], #"epsilon": Real(0, 0.5, prior='uniform'), #"shrinking": Categorical(['ovo', 'ovr']), #"cache_size": Integer(1, 500), #"verbose": Categorical([True, False]), #"max_iter": Integer(-1, 1000), } ] }, { "id": 4, "type": "regression", "model": SGDRegressor(), "principal": "StohasticGradient", "family": "linear", "search_space": [ { "loss": Categorical(['squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive']), "penalty": Categorical(['l2', 'l1']), "alpha": Real(0, 0.5, prior='uniform'), "fit_intercept": Categorical([True, False]), #"max_iter": Integer(500, 1000), #"tol": Real(0, 0.5, prior='uniform'), #"shuffle": Categorical([True, False]), #"verbose": Categorical([True, False]), #"epsilon": Real(0, 0.5, prior='uniform'), "random_state": [rands], "learning_rate": Categorical(['constant', 'optimal', 'invscaling', 'adaptive']), "eta0": Real(0, 0.5, prior='uniform'), #eta0 must be > 0 #"power_t": Real(0, 0.5, prior='uniform'), #"early_stopping": Categorical([True, False]), #"validation_fraction": Real(0, 0.5, prior='uniform'), #"n_iter_no_change": Integer(1, 10), #"warm_start": Categorical([True, False]), #"average": Categorical([True, False]), }, { "loss": Categorical(['squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive']), "penalty": Categorical(['elasticnet']), "alpha": Real(0, 0.5, prior='uniform'), "l1_ratio": Real(0, 0.5, prior='uniform'), "fit_intercept": Categorical([True, False]), #"max_iter": Integer(500, 1000), #"tol": Real(0, 0.5, prior='uniform'), #"shuffle": Categorical([True, False]), #"verbose": Categorical([True, False]), #"epsilon": Real(0, 0.5, prior='uniform'), "random_state": [rands], "learning_rate": Categorical(['constant', 'optimal', 'invscaling', 'adaptive']), "eta0": Real(0, 0.5, prior='uniform'), #eta0 must be > 0 #"power_t": Real(0, 0.5, prior='uniform'), #"early_stopping": Categorical([True, False]), #"validation_fraction": Real(0, 0.5, prior='uniform'), #"n_iter_no_change": Integer(1, 10), #"warm_start": Categorical([True, False]), #"average": Categorical([True, False]), } ] }, { "id": 5, "type": "regression", "model": Ridge(), "principal": "StohasticGradient", "family": "linear", "search_space": [ { "alpha": Real(0, 0.5, prior='uniform'), "fit_intercept": Categorical([True, False]), "normalize": Categorical([True, False]), "copy_X": Categorical([True, False]), #"max_iter": Integer(500, 1000), #"tol": Real(0, 0.5, prior='uniform'), "solver": Categorical(['svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga']), "positive": Categorical([False]), "random_state": [rands], }, { "alpha": Real(0, 0.5, prior='uniform'), "fit_intercept": Categorical([True, False]), "normalize": Categorical([True, False]), "copy_X": Categorical([True, False]), #"max_iter": Integer(500, 1000), #"tol": Real(0, 0.5, prior='uniform'), "solver": Categorical(['lbfgs']), "positive": Categorical([True]), "random_state": [rands], } ] }, { "id": 6, "type": "regression", "model": LinearRegression(), "search_space": { "fit_intercept": Categorical([True, False]), "normalize": Categorical([True, False]), #"copy_X": Categorical([True, False]), "n_jobs": [njobs], #"positive": Categorical([False, True]), } }, { "id": 7, "type": "regression", "model": BayesianRidge(), "search_space": { "n_iter": [300], "tol": Real(0, 0.5, prior='uniform'), "alpha_1": Real(0, 0.5, prior='uniform'), "alpha_2": Real(0, 0.5, prior='uniform'), "lambda_1": Real(0, 0.5, prior='uniform'), "lambda_2": Real(0, 0.5, prior='uniform'), "alpha_init": Real(0, 0.5, prior='uniform'), "compute_score": Categorical([True, False]), "fit_intercept": Categorical([True, False]), "normalize": Categorical([True, False]), #"copy_X": Categorical([True, False]), #"verbose": Categorical([True, False]), } }, { "id": 8, "type": "regression", "model": ARDRegression(), "search_space": { "n_iter": [300], "tol": Real(0, 0.5, prior='uniform'), "alpha_1": Real(0, 0.5, prior='uniform'), "alpha_2": Real(0, 0.5, prior='uniform'), "lambda_1": Real(0, 0.5, prior='uniform'), "lambda_2": Real(0, 0.5, prior='uniform'), "compute_score": Categorical([True, False]), "threshold_lambda":Real(10000, 20000, prior='uniform'), "fit_intercept": Categorical([True, False]), "normalize": Categorical([True, False]), #"copy_X": Categorical([True, False]), #"verbose": Categorical([True, False]), } } ] return models def sample_gausian(df, cls, n, r): df = df.sample(n = n, random_state = r) return df def sample_stratified(df, cls, n, r): n = min(n, df[cls].value_counts().min()) df_ = df.groupby(cls).apply(lambda x: x.sample(n)) df_.index = df_.index.droplevel(0) return df_ def load_data(df: None, args): # Load Dataset mode_intr_meth = args['mode_intr_meth'] if mode_intr_meth == "trai": data_path = args["data_trai_path"] data_name = args["data_trai_name"] data_extn = args["data_trai_extn"] data_sepa = args["data_trai_sepa"] data_deci = args["data_trai_deci"] elif mode_intr_meth == "pred": data_path = args["data_pred_path"] data_name = args["data_pred_name"] data_extn = args["data_pred_extn"] data_sepa = args["data_pred_sepa"] data_deci = args["data_pred_deci"] data_mode = args["data_mode"] if data_mode == "local": df = pd.read_csv('{0}/{1}.{2}'.format(data_path, data_name, data_extn), sep=data_sepa, decimal=data_deci, low_memory=False) elif data_mode == "drive": from google.colab import drive drive.mount('/content/drive', force_remount=True) df = pd.read_csv('{0}/{1}.{2}'.format(data_path, data_name, data_extn), sep=data_sepa, decimal=data_deci, low_memory=False) elif data_mode == "dataframe": df = df data_smpl_mode = args["data_smpl_mode"] data_smpl_pop = args["data_smpl_pops"] if data_smpl_mode == True: data_smpl_ran = args["rands"] data_smpl_typ = args["data_smpl_type"] df_class = args['mode_pres_cols_clas'] print("Sampling mode with {} samples".format(data_smpl_pop)) if data_smpl_typ == "gausian": df = sample_gausian(df=df, cls=df_class, n = data_smpl_pop, r = data_smpl_ran) elif data_smpl_typ == "stratified": df = sample_stratified(df=df, cls=df_class, n = data_smpl_pop, r = data_smpl_ran) else: print("Complete mode with {} samples".format(data_smpl_pop)) return df def dict_list(list, key_name, key_value, val_name): for item in list: if item[key_name]==key_value: return item[val_name] def detect_rows(df): #Check Row Lenght return len(df.index) def detect_cols(df): #Check Col Lenght return len(df.columns) def detect_shape(df): #Check Shape return df.shape def detect_format(metric, value): if metric == "time": return "{}s".format(value) elif metric == "accuracy": return "{}%".format(value) elif metric == "r2": return "{}%".format(value) def detect_sample(df, args): #Sampling Method args['data_smpl_mode'] = False args['data_smpl_pops'] = 0 df = load_data(df, args) #------------------------------------# thrs_per = args["mode_pres_rows_thrs_per"] thrs_min = args["mode_pres_rows_thrs_min"] lens_alls = len(df) lens_thrd = int(lens_alls * thrs_per) #------------------------------------# if thrs_per == -1: #Manual Mode - Complete Dataset sample = {"smpl_mode": False, "smpl_pops": lens_alls } elif thrs_per == 0: sample = {"smpl_mode": True, "smpl_pops": thrs_min } elif thrs_per >= 0: if lens_alls <= thrs_min: #Automatic Mode - Dataset's length is smaller than sample ratio sample = {"smpl_mode": False, "smpl_pops": lens_alls } elif lens_alls > thrs_min: #Automatic Mode - Dataset's length is grater than sample ratio sample = {"smpl_mode": True, "smpl_pops": lens_thrd } return sample def detect_types(df, args): df_types = pd.DataFrame(df.dtypes).reset_index().rename(columns={"index": "feature_name", 0: "feature_orig"}) type_num = ["int16","int32","int64","float16","float32","float64"] type_str = ["string", "object"] type_cat = ["bool"] def transform(feature_name, feature_orig): if str.lower(str(feature_orig)) in type_num: df_types_thes = args['mode_pres_ftrs_thrs_typ'] if (1.*df[feature_name].nunique()/df[feature_name].count() < df_types_thes): #or some other threshold return ["Numeric", "Categorical"] elif (1.*df[feature_name].nunique()/df[feature_name].count() >= df_types_thes): #or some other threshold return
freedom] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.chi2CDF: [input, -3] #[input, degrees of freedom] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.chi2QF: [input, -3] #[input, degrees of freedom] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.chi2QF: [input, 3] #[input, degrees of freedom] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############# TEST F DISTRIBUTION ######################## def testFDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fPDF: [input, 4, 10] ''') self.assertEqual( engine.action(0.0), 0.0) self.assertAlmostEqual(engine.action(1.5), 0.2682, places=3) self.assertAlmostEqual(engine.action(2.0), 0.1568, places=3) self.assertAlmostEqual(engine.action(10.0), 0.000614, places=4) self.assertEqual( engine.action(-20.0), 0.0) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fCDF: [input, 4, 10] ''') self.assertEqual( engine.action(0.0), 0.0) self.assertAlmostEqual(engine.action(0.1), 0.0200, places=3) self.assertAlmostEqual(engine.action(0.9), 0.5006, places=3) self.assertAlmostEqual(engine.action(4.0), 0.9657, places=3) self.assertAlmostEqual(engine.action(100.0), 0.9999, places=3) self.assertEqual( engine.action(-20.0), 0.0) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fQF: [input, 4, 10] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.001), 0.0208, places=3) self.assertAlmostEqual(engine.action(0.400), 0.7158, places=3) self.assertAlmostEqual(engine.action(0.999), 11.282, places=2) self.assertEqual( engine.action(1.000), float('inf')) ### check edge case handling ### # no real edge cases (doesnt act like a delta anywhere) ### must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fPDF: [input, 0, 10] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fCDF: [input, 4, 0] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fQF: [input, 0, 10] ''') self.assertRaises(PFAException, lambda: engine.action(0.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.fQF: [input, 4, 10] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## GAMMA DISTRIBUTION ##################### def testGammaDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaPDF: [input, 3.0, 3.0] #[input, shape, scale] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(1.000), 0.0133, places=3) self.assertAlmostEqual(engine.action(2.000), 0.0380, places=3) self.assertAlmostEqual(engine.action(4.000), 0.0781, places=3) self.assertEqual( engine.action(-20.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaCDF: [input, 3.0, 3.0] #[input, shape, scale] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(3.000), 0.0803, places=3) self.assertAlmostEqual(engine.action(6.000), 0.3233, places=3) self.assertAlmostEqual(engine.action(10.00), 0.6472, places=3) self.assertAlmostEqual(engine.action(100.0), 1.0000, places=3) self.assertEqual( engine.action(-20.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaQF: [input, 3.0, 3.0] #[input, shape, scale] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.001), 0.5716, places=3) self.assertAlmostEqual(engine.action(0.400), 6.8552, places=3) self.assertAlmostEqual(engine.action(0.999), 33.687, places=2) self.assertEqual( engine.action(1.000), float('inf')) ### it must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaPDF: [input, -1.3, -3.0] #[input, shape, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaCDF: [input, -3.0, 1.0] #[input, shape, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaQF: [input, -1.0, 3.0] #[input, shape, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.gammaQF: [input, 2.0, 3.0] #[input, shape, scale] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## BETA DISTRIBUTION ##################### def testBetaDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaPDF: [input, 4, 3] #[input, shape1, shape2] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.100), 0.0486, places=3) self.assertAlmostEqual(engine.action(0.800), 1.2288, places=3) self.assertAlmostEqual(engine.action(-20.0), 0.0000, places=3) self.assertEqual( engine.action(9.000), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaCDF: [input, 4, 3] #[input, shape1, shape2] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.100), 0.0013, places=3) self.assertAlmostEqual(engine.action(0.900), 0.9842, places=3) self.assertAlmostEqual(engine.action(4.000), 1.0000, places=3) self.assertEqual( engine.action(-20.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaQF: [input, 4, 3] #[input, shape1, shape2] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.001), 0.0939, places=3) self.assertAlmostEqual(engine.action(0.400), 0.5292, places=3) self.assertAlmostEqual(engine.action(0.999), 0.9621, places=3) self.assertEqual( engine.action(1.000), 1.0000) ### it must handle edge cases properly ### ## no real edge cases ### it must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaPDF: [input, 0, 3] #[input, shape1, shape2] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaCDF: [input, 4, -3] #[input, shape1, shape2] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaQF: [input, -4, 0] #[input, shape1, shape2] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.betaQF: [input, 4, 3] #[input, shape1, shape2] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## CAUCHY DISTRIBUTION ##################### def testCauchyDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyPDF: [input, 4, 3] #[input, location, scale] ''') self.assertAlmostEqual(engine.action(-3.00), 0.0165, places=3) self.assertAlmostEqual(engine.action(0.000), 0.0382, places=3) self.assertAlmostEqual(engine.action(0.500), 0.0449, places=3) self.assertAlmostEqual(engine.action(10.00), 0.0212, places=3) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyCDF: [input, 4, 3] #[input, location, scale] ''') self.assertAlmostEqual(engine.action(0.000), 0.2048, places=3) self.assertAlmostEqual(engine.action(0.100), 0.2087, places=3) self.assertAlmostEqual(engine.action(0.900), 0.2448, places=3) self.assertAlmostEqual(engine.action(4.000), 0.5000, places=3) self.assertAlmostEqual(engine.action(-20.0), 0.0396, places=3) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyQF: [input, 4, 3] #[input, location, scale] ''') self.assertEqual( engine.action(0.000), float('-inf')) self.assertAlmostEqual(engine.action(0.001), -950.926, places=1) self.assertAlmostEqual(engine.action(0.400), 3.0252, places=3) self.assertAlmostEqual(engine.action(0.999), 958.926, places=2) self.assertEqual( engine.action(1.000), float('inf')) ### must handle edge cases ### ## cauchy distribution DOESNT become a delta fcn when scale=0 ### must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyPDF: [input, 4, -3] #[input, location, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyCDF: [input, 4, 0] #[input, location, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyQF: [input, 4, -1] #[input, location, scale] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.cauchyQF: [input, 4, 3] #[input, location, scale] ''') self.assertRaises(PFAException, lambda: engine.action(1.4)) self.assertRaises(PFAException, lambda: engine.action(-.4)) ############## LOGNORMAL DISTRIBUTION ##################### def testLogNormalDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalPDF: [input, 2.0, 1.0] #[input, meanlog, sdlog] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(1.000), 0.0539, places=3) self.assertAlmostEqual(engine.action(2.000), 0.0849, places=3) self.assertAlmostEqual(engine.action(4.000), 0.0826, places=3) self.assertEqual( engine.action(-20.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalCDF: [input, 2.0, 1.0] #[input, meanlog, sdlog] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.900), 0.0176, places=3) self.assertAlmostEqual(engine.action(4.000), 0.2697, places=3) self.assertAlmostEqual(engine.action(100.0), 0.9954, places=3) self.assertEqual( engine.action(-20.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalQF: [input, 2.0, 1.0] #[input, meanlog, sdlog] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(0.001), 0.3361, places=3) self.assertAlmostEqual(engine.action(0.400), 5.7354, places=3) self.assertAlmostEqual(engine.action(0.999), 162.43, places=2) self.assertEqual( engine.action(1.000), float('inf')) ### must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalPDF: [input, 2.0, -3.0] #[input, meanlog, sdlog] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalCDF: [input, 2.0, 0.0] #[input, meanlog, sdlog] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalQF: [input, 2.0, -1.0] #[input, meanlog, sdlog] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.lognormalQF: [input, 2.0, 1.0] #[input, meanlog, sdlog] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## STUDENTT DISTRIBUTION ##################### def testStudentTDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tPDF: [input, 2] #[input, degrees of freedom, noncentrality] ''') self.assertAlmostEqual(engine.action(-1.00), 0.1924, places=3) self.assertAlmostEqual(engine.action(1.000), 0.1924, places=3) self.assertAlmostEqual(engine.action(2.000), 0.0680, places=3) self.assertAlmostEqual(engine.action(4.000), 0.0131, places=3) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tCDF: [input, 2] #[input, degrees of freedom, noncentrality] ''') self.assertAlmostEqual(engine.action(-0.90), 0.2315, places=3) self.assertAlmostEqual(engine.action(0.000), 0.5000, places=3) self.assertAlmostEqual(engine.action(0.900), 0.7684, places=3) self.assertAlmostEqual(engine.action(100.0), 0.9999, places=3) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tQF: [input, 2] #[input, degrees of freedom, noncentrality] ''') self.assertEqual( engine.action(0.000), float('-inf')) self.assertAlmostEqual(engine.action(0.001), -22.33, places=2) self.assertAlmostEqual(engine.action(0.400), -.2887, places=3) self.assertAlmostEqual(engine.action(0.999), 22.327, places=2) self.assertEqual( engine.action(1.000), float('inf')) ### must handle exceptions properly ### engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tPDF: [input, -2] #[input, degrees of freedom, noncentrality] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tCDF: [input, -1] #[input, degrees of freedom, noncentrality] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tQF: [input, 0] #[input, degrees of freedom, noncentrality] ''') self.assertRaises(PFAException, lambda: engine.action(.4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.tQF: [input, 2] #[input, degrees of freedom, noncentrality] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## BINOMIAL DISTRIBUTION ##################### def testBinomialDistribution(self): engine, = PFAEngine.fromYaml(''' input: int output: double action: - prob.dist.binomialPDF: [input, 4, .4] #[input, size, prob] ''') self.assertEqual( engine.action(0), 0.1296) self.assertAlmostEqual(engine.action(1), 0.3456, places=3) self.assertAlmostEqual(engine.action(2), 0.3456, places=3) self.assertAlmostEqual(engine.action(10), 0.0000, places=3) self.assertEqual( engine.action(-20), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialCDF: [input, 4, .4] #[input, size, prob] ''') self.assertAlmostEqual(engine.action(0.0), 0.1296, places=3) self.assertAlmostEqual(engine.action(2.0), 0.8208, places=3) self.assertAlmostEqual(engine.action(2.5), 0.8208, places=3) self.assertAlmostEqual(engine.action(10.0), 1.0000, places=3) self.assertEqual( engine.action(-10.0), 0.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialQF: [input, 4, .4] #[input, size, prob] ''') self.assertEqual(engine.action(0.0), 0.0) self.assertEqual(engine.action(0.3), 1.0) self.assertEqual(engine.action(0.5), 2.0) self.assertEqual(engine.action(0.8), 2.0) self.assertEqual(engine.action(1.0), 4.0) ### must handle edge cases properly ### engine, = PFAEngine.fromYaml(''' input: int output: double action: - prob.dist.binomialPDF: [input, 4, 0.0] #[input, size, prob] ''') self.assertEqual(engine.action(0), 1.0) self.assertEqual(engine.action(1), 0.0) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialCDF: [input, 4, 0.0] #[input, size, prob] ''') self.assertEqual(engine.action(0.0), 1.0000) self.assertEqual(engine.action(-1.0), 0.0000) self.assertEqual(engine.action(2.0), 1.0000) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialQF: [input, 4, 0.0] #[input, size, prob] ''') self.assertEqual(engine.action(0.0), 0.0000) self.assertEqual(engine.action(0.3), 0.0000) self.assertEqual(engine.action(1.0), 4.0000) ### must raise the right exceptions ### engine, = PFAEngine.fromYaml(''' input: int output: double action: - prob.dist.binomialPDF: [input, -4, 0.4] #[input, size, prob] ''') self.assertRaises(PFAException, lambda: engine.action(5)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialCDF: [input, 4, 1.1] #[input, size, prob] ''') self.assertRaises(PFAException, lambda: engine.action(4)) engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.binomialQF: [input, 4, 0.4] #[input, size, prob] ''') self.assertRaises(PFAException, lambda: engine.action(-.4)) self.assertRaises(PFAException, lambda: engine.action(1.4)) ############## UNIFORM DISTRIBUTION ##################### def testUniformDistribution(self): engine, = PFAEngine.fromYaml(''' input: double output: double action: - prob.dist.uniformPDF: [input, 1.0, 3.0] #[input, min, max] ''') self.assertEqual( engine.action(0.000), 0.0000) self.assertAlmostEqual(engine.action(1.000), 0.5000, places=3) self.assertAlmostEqual(engine.action(2.000), 0.5000,
<filename>template/plugin/file.py # # The Template-Python distribution is Copyright (C) <NAME> 2007-2008, # derived from the Perl Template Toolkit Copyright (C) 1996-2007 Andy # Wardley. All Rights Reserved. # # The file "LICENSE" at the top level of this source distribution describes # the terms under which this file may be distributed. # import os import re try: import pwd import grp except ImportError: # Modules not available, probably because this is Windows: pwd = grp = None from template import util from template.plugin import Plugin from template.util import TemplateException """ template.plugin.file - Plugin providing information about files SYNOPSIS [% USE File(filepath) %] [% File.path %] # full path [% File.name %] # filename [% File.dir %] # directory DESCRIPTION This plugin provides an abstraction of a file. It can be used to fetch details about files from the file system, or to represent abstract files (e.g. when creating an index page) that may or may not exist on a file system. A file name or path should be specified as a constructor argument. e.g. [% USE File('foo.html') %] [% USE File('foo/bar/baz.html') %] [% USE File('/foo/bar/baz.html') %] The file should exist on the current file system (unless 'nostat' option set, see below) as an absolute file when specified with as leading '/' as per '/foo/bar/baz.html', or otherwise as one relative to the current working directory. The initializer performs a stat() on the file and makes the 13 elements returned available as the plugin items: dev ino mode nlink uid gid rdev size atime mtime ctime blksize blocks e.g. [% USE File('/foo/bar/baz.html') %] [% File.mtime %] [% File.mode %] ... In addition, the 'user' and 'group' items are set to contain the user and group names as returned by calls to getpwuid() and getgrgid() for the file 'uid' and 'gid' elements, respectively. On Win32 platforms on which getpwuid() and getgrid() are not available, these values are None. [% USE File('/tmp/foo.html') %] [% File.uid %] # e.g. 500 [% File.user %] # e.g. abw This user/group lookup can be disabled by setting the 'noid' option. [% USE File('/tmp/foo.html', noid=1) %] [% File.uid %] # e.g. 500 [% File.user %] # nothing The 'isdir' flag will be set if the file is a directory. [% USE File('/tmp') %] [% File.isdir %] # 1 If the stat() on the file fails (e.g. file doesn't exists, bad permission, etc) then the constructor will throw a 'File' exception. This can be caught within a TRY...CATCH block. [% TRY %] [% USE File('/tmp/myfile') %] File exists! [% CATCH File %] File error: [% error.info %] [% END %] Note the capitalisation of the exception type, 'File' to indicate an error thrown by the 'File' plugin, to distinguish it from a regular 'file' exception thrown by the Template Toolkit. Note that the 'File' plugin can also be referenced by the lower case name 'file'. However, exceptions are always thrown of the 'File' type, regardless of the capitalisation of the plugin named used. [% USE file('foo.html') %] [% file.mtime %] As with any other Template Toolkit plugin, an alternate name can be specified for the object created. [% USE foo = file('foo.html') %] [% foo.mtime %] The 'nostat' option can be specified to prevent the plugin initializer from performing a stat() on the file specified. In this case, the File does not have to exist in the file system, no attempt will be made to verify that it does, and no error will be thrown if it doesn't. The entries for the items usually returned by stat() will be set empty. [% USE file('/some/where/over/the/rainbow.html', nostat=1) %] [% file.mtime %] # nothing All File plugins, regardless of the nostat option, have set a number of items relating to the original path specified. * path The full, original file path specified to the constructor. [% USE file('/foo/bar.html') %] [% file.path %] # /foo/bar.html * name The name of the file without any leading directories. [% USE file('/foo/bar.html') %] [% file.name %] # bar.html * dir The directory element of the path with the filename removed. [% USE file('/foo/bar.html') %] [% file.name %] # /foo * ext The file extension, if any, appearing at the end of the path following a '.' (not included in the extension). [% USE file('/foo/bar.html') %] [% file.ext %] # html * home This contains a string of the form '../..' to represent the upward path from a file to its root directory. [% USE file('bar.html') %] [% file.home %] # nothing [% USE file('foo/bar.html') %] [% file.home %] # .. [% USE file('foo/bar/baz.html') %] [% file.home %] # ../.. * root The 'root' item can be specified as a constructor argument, indicating a root directory in which the named file resides. This is otherwise set empty. [% USE file('foo/bar.html', root='/tmp') %] [% file.root %] # /tmp * abs This returns the absolute file path by constructing a path from the 'root' and 'path' options. [% USE file('foo/bar.html', root='/tmp') %] [% file.path %] # foo/bar.html [% file.root %] # /tmp [% File.abs %] # /tmp/foo/bar.html In addition, the following method is provided: * rel(path) This returns a relative path from the current file to another path specified as an argument. It is constructed by appending the path to the 'home' item. [% USE file('foo/bar/baz.html') %] [% file.rel('wiz/waz.html') %] # ../../wiz/waz.html EXAMPLES [% USE file('/foo/bar/baz.html') %] [% file.path %] # /foo/bar/baz.html [% file.dir %] # /foo/bar [% file.name %] # baz.html [% file.home %] # ../.. [% file.root %] # '' [% file.abs %] # /foo/bar/baz.html [% file.ext %] # html [% file.mtime %] # 987654321 [% file.atime %] # 987654321 [% file.uid %] # 500 [% file.user %] # abw [% USE file('foo.html') %] [% file.path %] # foo.html [% file.dir %] # '' [% file.name %] # foo.html [% file.root %] # '' [% file.home %] # '' [% file.abs %] # foo.html [% USE file('foo/bar/baz.html') %] [% file.path %] # foo/bar/baz.html [% file.dir %] # foo/bar [% file.name %] # baz.html [% file.root %] # '' [% file.home %] # ../.. [% file.abs %] # foo/bar/baz.html [% USE file('foo/bar/baz.html', root='/tmp') %] [% file.path %] # foo/bar/baz.html [% file.dir %] # foo/bar [% file.name %] # baz.html [% file.root %] # /tmp [% file.home %] # ../.. [% file.abs %] # /tmp/foo/bar/baz.html # calculate other file paths relative to this file and its root [% USE file('foo/bar/baz.html', root => '/tmp/tt2') %] [% file.path('baz/qux.html') %] # ../../baz/qux.html [% file.dir('wiz/woz.html') %] # ../../wiz/woz.html """ STAT_KEYS = ("dev", "ino", "mode", "nlink", "uid", "gid", "rdev", "size", "atime", "mtime", "ctime", "blksize", "blocks") class File(Plugin): """Plugin for encapsulating information about a system file.""" def __init__(self, context, path, config=None): """Initialize a new File object. Takes the pathname of the file as the argument following the context and an optional dictionary of configuration parameters. """ if not isinstance(config, dict): config = {} if not path: self.throw("no file specified") if os.path.isabs(path): root = "" else: root = config.get("root") if root: if root.endswith("/"): root = root[:-1] else: root = "" dir, name = os.path.split(path) name, ext = util.unpack(re.split(r"(\.\w+)$", name), 2) if ext is None: ext = "" if dir.endswith("/"): dir = dir[:-1] if dir == ".": dir = "" name = name + ext if ext.startswith("."): ext = ext[1:] fields = splitpath(dir) if fields and not fields[0]: fields.pop(0) home = "/".join(("..",) * len(fields)) abspath = os.path.join(root, path) self.path = path self.name = name self.root = root self.home = home self.dir = dir self.ext = ext self.abs = abspath self.user = "" self.group = "" self.isdir = "" self.stat = config.get("stat") or not config.get("nostat") if self.stat: try: stat = os.stat(abspath) except OSError, e: self.throw("%s: %s" % (abspath, e)) for key in STAT_KEYS: setattr(self, key, getattr(stat, "st_%s" % key, None)) if not config.get("noid"): self.user = pwd and getpwuid(self.uid) self.group = grp and getgrgid(self.gid) self.isdir = os.path.isdir(abspath) else: for key in STAT_KEYS: setattr(self, key, "") def rel(self, path): """Generate a relative filename for some other file relative to this one. """ if isinstance(path, self.__class__): path = path.path if path.startswith("/"): return path elif not self.home: return path else: return "%s/%s" % (self.home, path) def throw(self, error): raise TemplateException('File', error) def splitpath(path): def helper(path): while True: path, base = os.path.split(path) if base: yield base else: break pathcomp = list(helper(path)) pathcomp.reverse() return pathcomp def getpwuid(uid): try: return pwd.getpwuid(uid).pw_name except KeyError: return uid def getgrgid(gid): try: return
<reponame>bell-bot/audio_adversarial_examples<filename>datasets.py # -*- coding: future_fstrings -*- import os from re import L from typing import Dict, Tuple import sys import logging import numpy import regex as re # import torchaudio.datasets.tedlium as tedlium import librosa from Data import tedlium_local as tedlium import torchaudio from torch import Tensor import pandas as pd from utils import get_git_root from Preprocessing.pre_processing import resample_audio ######### ------------------ PATHING ------------- ############ """Specify path to TEDLIUM directory""" data_paths = os.path.join(get_git_root(os.getcwd()) ,'Data') DATASET_TEDLIUM_PATH = data_paths DATASET_MLCOMMONS_PATH = data_paths KEYWORDS_LINK_CSV_PATH = os.path.join(data_paths, "KeywordPerSample", "keywords.csv") KEYPHRASES_LINK_CSV_PATH = os.path.join(data_paths, "Keyphrases" , "keyphrases.csv") LABELS_KEYPHRASES_CSV_PATH = os.path.join(data_paths, "Keyphrases" , "labels.csv") ############# ---------CSV HEADERS --------------################ #TODO! Might be better to have a header called keyword_id, in order to take into account the different varations of keywords and phrases inside the same sample class KeywordsCSVHeaders: """ Represents the fields keywords.csv file KEYWORD: The keyword linking the two audio files (sample of a TED audio file and an MSWC recording of that keyword) TED_SAMPLE_ID: Represents the sample id of an audio. In other words, it is a unique id that maps to a segment of a TED audio file. Hence, this is NOT the same as "talk_id", which represents the id of an entire audio file TED_DATASET_TYPE: The type of dataset the sample exists in (Train vs Dev vs Test set) MSWC_ID: The id of the keyword recording """ KEYWORD = "Keyword" TED_SAMPLE_ID= "TEDLIUM_SampleID" TED_DATASET_TYPE = "TEDLIUM_SET" MSWC_ID = "MSWC_AudioID" CSV_header = [KEYWORD, TED_SAMPLE_ID, TED_DATASET_TYPE, MSWC_ID] class KeyphrasesCSVHeaders: KEYWORD = "Keyword" TED_SAMPLE_ID= "TEDLIUM_SampleID" TED_DATASET_TYPE = "TEDLIUM_SET" MSWC_ID = "MSWC_AudioID" KEYWORD_ID = "Word_ID" CSV_header = [KEYWORD, TED_SAMPLE_ID, TED_DATASET_TYPE, MSWC_ID, KEYWORD_ID] class LabelsCSVHeaders: """ Represents the fields labels.csv file KEYWORD: The keyword linking the two audio files (sample of a TED audio file and an MSWC recording of that keyword) TED_SAMPLE_ID: Represents the sample id of an audio. In other words, it is a unique id that maps to a segment of a TED audio file. Hence, this is NOT the same as "talk_id", which represents the id of an entire audio file TED_DATASET_TYPE: The type of dataset the sample exists in (Train vs Dev vs Test set) MSWC_ID: The id of the keyword recording """ KEYWORD = "Keyword" # Keyword_id = "Keyword_id" TED_SAMPLE_ID= "TEDLIUM_SampleID" TED_DATASET_TYPE = "TEDLIUM_SET" TED_TALK_ID = "TED_TALK_ID" MSWC_ID = "MSWC_AudioID" START_TIMESTAMP = "start_time" END_TIMESTAMP = "end_time" CONFIDENCE = "confidence" CSV_header = [KEYWORD, TED_SAMPLE_ID,TED_TALK_ID, TED_DATASET_TYPE, MSWC_ID, START_TIMESTAMP, END_TIMESTAMP, CONFIDENCE] ############# --------- DATASETS --------------################ #TODO! Customise for each subset, in speaker-adaptation. Might require changing the metadata class TEDLIUMCustom(tedlium.TEDLIUM): """ Please have a directory with the TEDLIUM dataset downloaded (release-3). Instance Variables: self._path: self._filelist: self._dict_path: self._phoneme_dict: Additional Instance Variables: self.train_audio_sets self.dev_audio_sets self.test_audio_sets """ def __init__(self, root=DATASET_TEDLIUM_PATH, release= "release3", subset=None): super().__init__(root, release=release) path_to_speaker_adaptation = os.path.join(root, tedlium._RELEASE_CONFIGS[release]["folder_in_archive"], "speaker-adaptation") train_audio_sets = set(line.strip() for line in open(os.path.join(path_to_speaker_adaptation, "train.lst"))) dev_audio_sets = set(line.strip() for line in open(os.path.join(path_to_speaker_adaptation, "dev.lst"))) test_audio_sets = set(line.strip() for line in open(os.path.join(path_to_speaker_adaptation, "test.lst"))) self.recordings_set_dict = { "train": train_audio_sets, "dev": dev_audio_sets, "test": test_audio_sets } def __len__(self) -> int: """Get number of items. Returns: int: TEDLIUM Dataset Length """ return super().__len__() def _load_audio(self, path: str, start_time: float, end_time: float, sample_rate: int = 16000, to_numpy=True) -> [Tensor, int]: """ Returns audio data Args: Returns: """ waveform, sample_rate = super()._load_audio(path, start_time, end_time, sample_rate) return (waveform.numpy(), sample_rate) if to_numpy else (waveform , sample_rate) def __getitem__(self, sampleID: int) -> Dict: """Load the n-th sample from the dataset, where n is the audioFileID/fileSampleId Please note that filesampleID is different from talk_id returned by the function, which denotes the entire recording instead Args: AudioFileID (int): The index of the sample to be loaded, which is also termed as the unique ID Returns: Dictionary: ``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier, start_time, end_time)`` """ fileid, line = self._filelist[sampleID] return self._load_tedlium_item(fileid, line, self._path) def get_audio_file(self, sampleID:int): fileid, line = self._filelist[sampleID] return os.path.join(self._path, "sph", fileid) def _load_tedlium_item(self, fileid: str, line: int, path: str) -> Dict: """Loads a TEDLIUM dataset sample given a file name and corresponding sentence name. Functionality taken from original source code. ----> Custom function returns start time and end time as well Args: fileid (str): File id to identify both text and audio files corresponding to the sample line (int): Line identifier for the sample inside the text file path (str): Dataset root path Returns: Dictionary (Tensor, int, str, int, int, int): ``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier, start_time, end_time)`` """ transcript_path = os.path.join(path, "stm", fileid) with open(transcript_path + ".stm") as f: transcript = f.readlines()[line] talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6) wave_path = os.path.join(path, "sph", fileid) waveform, sample_rate = self._load_audio(wave_path + self._ext_audio, start_time=start_time, end_time=end_time) results_dict = { "waveform": waveform, "sample_rate": sample_rate, "transcript": transcript, "talk_id": talk_id, "speaker_id":speaker_id , "identifier": identifier , "start_time": float(start_time), "end_time": float(end_time), } return results_dict class MultiLingualSpokenWordsEnglish(): MLCOMMONS_FOLDER_NAME = "Multilingual_Spoken_Words" AUDIO_DIR_NAME="audio" SPLITS_DIR_NAME="splits" ALIGNMENTS_DIR_NAME="alignments" def raise_directory_error(self): raise RuntimeError( "Please configure the path to the Spoken Keywords Dataset, with the directory name \"{}\", containing the three subfolders:".format(self.MLCOMMONS_FOLDER_NAME) \ + "\n" + \ "\"{}\" for audio, \"{}\" for splits directory, and \"{}\" for alignemnts directory".format(self.AUDIO_DIR_NAME,self.SPLITS_DIR_NAME,self.ALIGNMENTS_DIR_NAME) ) #TODO! Accept 4 kinds of values: Train vs test vs Dev vs "all" def __init__(self, root=DATASET_MLCOMMONS_PATH, read_splits_file=False, subset="train") -> None: """ Loads the MLCommons MultiLingual dataset (English version). read_splits_file is used to generate the keywords csv file """ if self.MLCOMMONS_FOLDER_NAME not in os.listdir(root): self.raise_directory_error() self._path = os.path.join(root, self.MLCOMMONS_FOLDER_NAME) #Initialise the folder names into dictionaries self._subfolder_names_dict = { "audio" : self.AUDIO_DIR_NAME, "splits" : self.SPLITS_DIR_NAME, "alignments": self.ALIGNMENTS_DIR_NAME, } #Check if all three subfolders are in the directory. Exit if they are not all there current_subfolders = os.listdir(self._path) if not all([subfolder_name in current_subfolders for subfolder_name in self._subfolder_names_dict.values()]): self.raise_directory_error() #Retrieve the splits csv file from MSWC folder if read_splits_file: self._path_to_splits = os.path.join(self._path, self._subfolder_names_dict["splits"]) self.splits_df = pd.read_csv(os.path.join(self._path_to_splits, "en_splits.csv")) if subset == "train": self.splits_df = self.splits_df[self.splits_df["SET"] == "TRAIN"] elif subset == "dev": self.splits_df = self.splits_df[self.splits_df["SET"] == "VALID"] else: self.splits_df = self.splits_df[self.splits_df["SET"] == "TEST"] #Extra step to preprocesses words to one form of apostrophe self.splits_df["WORD"].replace("`|’", "'", regex=True, inplace=True) #Retrieve the words that have been validated as True, affirming that the spoken audio matches the transcription self.splits_df = self.splits_df[self.splits_df["VALID"] == True] #Retrieve the keywords in the dataset self.keywords = set(self.splits_df["WORD"].unique()) def _load_audio(self, path_to_audio, to_numpy=True): """Loads audio data from file given file path Returns: waveform: Tensor / np.array sample_rate: int """ # waveform, sample_rate = torchaudio.load(path_to_audio) # return (waveform.numpy(), sample_rate) if to_numpy else (waveform , sample_rate) waveform, sample_rate = librosa.load(path_to_audio) return (waveform, sample_rate) if to_numpy else (waveform , sample_rate) def __getitem__(self, MSWC_AudioID) -> Dict: """Retrieves sample data from file given Audio ID """ path_to_audio = os.path.join(self._path,self.AUDIO_DIR_NAME ,"en", "clips", MSWC_AudioID) waveform, sample_rate= self._load_audio(path_to_audio) results_dict = { "waveform": waveform, "sample_rate": sample_rate , "MSWC_AudioID": MSWC_AudioID } return results_dict #TODO! Create mapping between talk ids and datatype set (i.e not just sample mapping). Use the defined train_audio_sets, dev_audio_sets, test_audio_sets to help. Might be better to implement this in the TEDLIUMCustom instead of here. class CTRLF_DatasetWrapper: COLS_OUTPUT= ['TED_waveform', 'TED_sample_rate', 'TED_transcript', 'TED_talk_id', 'TED_start_time', 'TED_end_time', 'MSWC_audio_waveform', 'MSWC_sample_rate', 'MSWC_ID', 'keyword', 'keyword_start_time', 'keyword_end_time', 'confidence'] """ Main class wrapper for both TEDLIUM dataset and MSWC dataset. Using the labels csv file, use the functions to retrieve audio samples and their corresponding keywords that was linked to. Args: single_keywords_label: Represents a toggle which defines what types of labels we are dealing with. ------------> NOTE: This was added for the time being as handling of multiple keywords may require some changes in the implementation of the code here and elsewhere """ def __init__(self,path_to_labels_csv=LABELS_KEYPHRASES_CSV_PATH, path_to_TED=DATASET_TEDLIUM_PATH, path_to_MSWC=DATASET_MLCOMMONS_PATH, single_keywords_labels=True): self._path_to_TED = path_to_TED self._path_to_MSWC = path_to_MSWC self.single_keywords_labels = single_keywords_labels #Initialise keyword dataframe self.labels_df = pd.read_csv(path_to_labels_csv) #Initialise Ted talk dataset self.TED = TEDLIUMCustom(root=path_to_TED,release="release3") #Initialise Keyword dataset self.MSWC = MultiLingualSpokenWordsEnglish(root=path_to_MSWC) def get(self, TEDSample_id: int, sampling_rate=16000): """ Given Ted Sample ID and the dataset type, return three separate corresponding dictionaries. Returns: DataFrame Headers: ['TED_waveform', 'TED_sample_rate', 'TED_transcript', 'TED_talk_id', 'TED_start_time', 'TED_end_time', 'MSWC_audio_waveform', 'MSWC_sample_rate', 'MSWC_ID', 'keyword', 'keyword_start_time', 'keyword_end_time', 'confidence'] """ output_df = pd.DataFrame(columns=self.COLS_OUTPUT) TED_results_dict = self.TED.__getitem__(TEDSample_id) TEDSample_id = str(TEDSample_id) #TODO: Return pandas
<gh_stars>0 import json import os from django.conf import settings from django.contrib import messages from django.contrib.auth import authenticate, login as li, logout as lo from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth.hashers import make_password from django.contrib.auth.signals import user_login_failed from django.forms.models import model_to_dict from django.db import IntegrityError, InternalError from django.http import JsonResponse, Http404 from django.shortcuts import render, HttpResponseRedirect, reverse, get_object_or_404 from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _ from django.views.generic import View from django.contrib.sitemaps import Sitemap from accounts.forms import (CreateBaseUserInstance, CreateIndividualProfileForm, CreateCompanyNameInTripCreationForm, CreateCorporateProfileForm, ChangeProfilePictureForm, ChangeProfileDescriptionForm, UpdateBaseUserInstance, UpdateIndividualProfileForm, UpdatePrivacySettingsForm, ChangePasswordForm, ResetPasswordByEmailForm, ResetPasswordByTokenForm, UpdateCorporateProfileContactForm, UpdateCorporateProfileInformationForm, UpdateCompanyLogoForm, UpdateTravelInquiryForm) from accounts.models import User, IndividualProfile, CompanyName, CorporateProfile, generate_short_uuid4 from jagdreisencheck.cryptography import (generate_password_reset_token, decode_password_reset_token) from mailing.views import send_mail, validate_referral from travelling.models import Trip, Rating from inquiries.models import TripInquiry # Create your views here. def login(request): template_name = 'accounts/login/login-page.html' if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') nxt = request.POST.get('next') if username and password: user = authenticate(request, email=username, password=password) if user is not None: if not user.is_active: messages.error(request, _('Your Account is inactive!'), extra_tags='danger') return HttpResponseRedirect(reverse('accounts:user_login')) else: li(request, user) if user.is_company: nxt = reverse('accounts:console') elif str(nxt) == str(reverse('accounts:user_login')): nxt = '/' return HttpResponseRedirect(nxt) else: user_login_failed.send( sender=User, request=request, credentials={ 'email': username }, ) messages.error(request, _('An account with these credential does not exist. Please try again or reset ' 'your password.')) return HttpResponseRedirect(reverse('accounts:user_login')) return render(request=request, context={}, template_name=template_name) def logout(request): lo(request) return HttpResponseRedirect("/") def register_user(request): if request.user.is_authenticated and not settings.DEBUG and not eval(os.environ['testsystem']): return HttpResponseRedirect("/") template = 'accounts/registration/user-registration/base.html' user_form = CreateBaseUserInstance profile_form = CreateIndividualProfileForm context = { 'user_form': user_form, 'profile_form': profile_form } if request.method == 'POST': uform = user_form(request.POST) pform = profile_form(request.POST, request.FILES) context = { 'user_form': uform, 'profile_form': pform } if uform.is_valid(): if request.POST.get('password') == request.POST.get('confirm_passwd'): uform = uform.save(commit=False) uform.password = <PASSWORD>(request.POST.get('password')) uform.is_company = False if pform.is_valid(): uform.save() pform = pform.save(commit=False) pform.id = uform.id pform.user = User.objects.get(pk=uform.pk) pform.save() ref_link = '{}{}{}{}{}'.format(reverse('accounts:validate_account'), '?token=', uform.activation_key['token'].decode('utf-8'), '&email=', uform.email) if request.POST.get('next'): ref_link += '&next={}'.format(request.POST.get('next')) mctx = { 'headline': _('Welcome aboard!'), 'request': request, 'user': uform, 'token': uform.activation_key['token'].decode('utf-8'), 'link': ref_link } html_template = 'accounts/registration/user-registration/sign-up-email.html' send_mail(subject=_('Verify your Account'), recipients=[uform.email], html_template=html_template, context=mctx) uform.referral_code = uform.pk uform.save() if request.POST.get('referred_by'): try: user = User.objects.get(referral_code=request.POST.get('referred_by')) uform.referred_by = user.referral_code uform.save() except User.DoesNotExist or IntegrityError or IndexError or User.MultipleObjectsReturned: pass return HttpResponseRedirect(reverse('accounts:thankyou')) else: uform.delete() return render(request, template, context) else: uform.errors['password'] = _('The passwords do not match') context['user_form'] = uform return render(request, template, context) return render(request, template, context) def check_username_email(request): email = False if request.GET.get('email'): email = request.GET.get('email') try: user = User.objects.get(email=email) email = False except User.DoesNotExist: email = True resp = json.dumps({'email': email}) return JsonResponse(resp, safe=False) def register_company(request): if request.user.is_authenticated and not settings.DEBUG and not eval(os.environ['testsystem']): return HttpResponseRedirect("/") template = 'accounts/registration/company-registration/base.html' user_form = CreateBaseUserInstance company_form = CreateCompanyNameInTripCreationForm profile_form = CreateCorporateProfileForm context = { 'user_form': user_form, 'company_form': company_form, 'profile_form': profile_form } if request.method == 'POST': uform = user_form(request.POST) cform = company_form(request.POST) pform = profile_form(request.POST) context = { 'user_form': uform, 'company_form': cform, 'profile_form': pform, } if uform.is_valid(): if request.POST.get('password') == request.POST.get('confirm_passwd'): uform = uform.save(commit=False) uform.password = <PASSWORD>(request.POST.get('password')) uform.is_company = True try: uform.save() except IntegrityError or InternalError: messages.error(request=request, message=_('The user already exists! Please try resetting your ' 'password or drop us an e-mail')) return render(request, template, context) try: instance = CompanyName.objects.get(name__iexact=request.POST.get('name')) company_name = CreateCompanyNameInTripCreationForm(request.POST, instance=instance) if instance.has_profile: messages.error(request, message=_('This company already has a corporate profile. ' 'If this is your company and you perceive an abuse contact us' 'immediately at <EMAIL>.')) return HttpResponseRedirect("/") if company_name.is_valid(): company_name = company_name.save(commit=False) company_name.has_profile = True company_name.save() else: messages.error(request, message=_('There is a problem with your data.')) return render(request, template, context) except CompanyName.DoesNotExist: if cform.is_valid(): company_name = cform.save(commit=False) company_name.id = uform.id company_name.created_by = User.objects.get(id=uform.id) company_name.has_profile = True company_name.slug = slugify(company_name.name).replace("-", "_") company_name.save() else: uform.delete() return render(request, template, context) if pform.is_valid(): profile_form = pform.save(commit=False) profile_form.id = uform.id profile_form.company_name = company_name profile_form.admin = uform profile_form.save() uform.company_name = company_name.name uform.save() ref_link = '{}{}{}{}{}{}{}'.format(reverse('accounts:validate_account'), '?token=', uform.activation_key['token'].decode('utf-8'), '&email=', uform.email, '&next=', reverse('travelling:create_trip')) mctx = { 'headline': _('Welcome aboard!'), 'request': request, 'user': uform, 'token': uform.activation_key['token'].decode('utf-8'), 'link': ref_link } html_template = 'accounts/registration/company-registration/sign-up-email.html' send_mail(subject=_('Verify your Account'), recipients=[uform.email], html_template=html_template, context=mctx) messages.success(request=request, message=_('Thank you for registering! Please check your e-Mails.')) return HttpResponseRedirect("{}{}".format(reverse('accounts:thankyou'), "?corporate")) else: uform.delete() company_name.has_profile = False company_name.created_by = None company_name.save() return render(request, template, context) else: messages.error(request=request, message=_('The passwords do not match!')) uform.errors['password'] = _("The passwords do not match") return render(request, template, context) return render(request, template, context) @login_required def create_company_name_in_trip(request): if request.method == 'POST' and request.is_ajax(): form = CreateCompanyNameInTripCreationForm(request.POST) try: CompanyName.objects.get(name__iexact=request.POST.get("name")) return JsonResponse(data={"msg": _("Company already exists!"), "errors": [_("Company already exists!")]}) except CompanyName.DoesNotExist: pass if form.is_valid(): form = form.save(commit=False) form.id = generate_short_uuid4() form.created_by = request.user form.has_profile = False form.slug = slugify(form.name).replace("-", "_") form.save() company = model_to_dict(form) company['pk'] = form.pk company = { 'pk': form.pk, 'name': form.name } return JsonResponse(data={ 'msg': _('Company created successfully.'), 'company': company, }) else: return JsonResponse(data={ 'msg': _('Error while creating company.'), 'errors': form.errors }) else: return JsonResponse(data={'msg': _('Forbidden request.')}) def profile_page(request, pk): context = dict() try: user = User.objects.get(pk=pk) if not request.user.is_authenticated: messages.error(request=request, message=_('Login required! Hunter profiles may only be viewed when logged in.')) url = reverse('accounts:user_login') url = '{}{}{}'.format(url, '?next=', request.path) return HttpResponseRedirect(url) except User.DoesNotExist: try: user = CorporateProfile.objects.get(company_name__slug=pk) except CorporateProfile.DoesNotExist: raise Http404(_("Does not exist")) if user.company_name: trips = Trip.objects.filter(company=user.company_name) reviews = Rating.objects.filter(trip__company=user.company_name) rate_count = 0 trip_count = 0 for trip in trips: if type(trip.overall_rating).__name__ == 'NoneType': trip_overall_rating = 0 else: trip_overall_rating = trip.overall_rating if trip_overall_rating > 0: rate_count += trip.overall_rating trip_count += 1 trip_counter = trips.exclude(overall_rating__isnull=True).count() if trips.count() > 0 and trip_counter > 0: avg_company_rating = rate_count / trip_counter else: avg_company_rating = 0 quick_facts = {'avg_company_rating': avg_company_rating} template = 'accounts/company/company-profile.html' context['object'] = user context['quick_facts'] = quick_facts context['reviews'] = reviews context['trips'] = trips if request.user.pk == user.pk: context['change_profile_pic_form'] = ChangeProfilePictureForm context['change_profile_descr_form'] = ChangeProfileDescriptionForm else: profile = IndividualProfile.objects.get(pk=pk) reviews = Rating.objects.filter(user=profile.user) template = 'accounts/user/user-profile.html' context['object'] = profile context['reviews'] = reviews return render(request, template, context) class UpdateProfileView(View): ''' This function handles all user profile updates and manages the required forms. Allowed methods are GET and POST. The context is parsed as objects (according to django good practice) and the actual identifier name. Required methods are ´get` and `post´. @:return Configured view that is capable of handling all profile updates. ''' http_method_names = ['get', 'post'] login_required = True def _get_model(self): try: profile = IndividualProfile.objects.get(pk=self.request.user.pk) except IndividualProfile.DoesNotExist: profile = CorporateProfile.objects.get(pk=self.request.user.pk) except CorporateProfile.DoesNotExist: return HttpResponseRedirect("/") return profile def _get_forms(self): forms = dict() forms['base_form'] = UpdateBaseUserInstance(instance=self.request.user) forms['password_form'] = ChangePasswordForm() if self.request.user.is_company: forms['profile_contact_form'] = UpdateCorporateProfileContactForm(instance=self._get_model()) forms['profile_info_form'] = UpdateCorporateProfileInformationForm(instance=self._get_model()) forms['profile_logo_form'] = UpdateCompanyLogoForm(instance=self._get_model().company_name) else: forms['profile_form'] = UpdateIndividualProfileForm(instance=self._get_model()) forms['profile_info_form'] = UpdatePrivacySettingsForm(instance=self._get_model()) return forms def get_context_data(self): context = dict() context['object'] = self._get_model() context['profile'] = self._get_model() context.update(self._get_forms()) return context def _get_template(self): if self.request.user.is_company: template_name = 'accounts/company/settings/corporate-settings.html' else: template_name = 'accounts/user/settings/individual-settings.html' return template_name def get(self, request, *args, **kwargs): if not self.request.user.is_authenticated: messages.error(request=request, message=_('Forbidden request.')) return HttpResponseRedirect("/") return render(request=self.request, context=self.get_context_data(), template_name=self._get_template()) def post(self, request, *args, **kwargs): if not self.request.user.is_authenticated: messages.error(request=request, message=_('Forbidden request.')) return HttpResponseRedirect("/") if not self.request.POST.get('form-name'): return self.get(self.request) context = self.get_context_data() form_name = self.request.POST.get('form-name') if form_name == 'base-user': request = self.request.POST.copy() request['email'] = self.request.user.email form = UpdateBaseUserInstance(request, instance=self.request.user) if form.is_valid(): form = form.save(commit=False) form.save() messages.success(request=self.request, message=_("User data updated successfully.")) else: context.update({'base_form': form}) return render(self.request, self._get_template(), context) elif form_name == 'public-settings': form = UpdateIndividualProfileForm(request.POST, files=self.request.FILES, instance=self._get_model()) if form.is_valid(): form = form.save(commit=False) form.save() messages.success(request=self.request, message=_("Profile data updated successfully.")) else: context.update({'profile_form': form}) return render(self.request, self._get_template(), context) elif form_name == 'corporate-contact': form = UpdateCorporateProfileContactForm(data=request.POST, files=self.request.FILES, instance=self._get_model()) if form.is_valid(): form = form.save(commit=False) form.save() messages.success(request=request, message=_("Contact information changed successfully.")) else: context.update({'profile_contact_form': form}) return render(self.request, self._get_template(), context) elif form_name == 'corporate-profile': data = self.request.POST.copy() data['operator_type'] = self._get_model().operator_type form = UpdateCorporateProfileInformationForm(data, request.FILES, instance=self._get_model()) form2 = UpdateCompanyLogoForm(request.POST, request.FILES, instance=self._get_model().company_name) if form.is_valid() and form2.is_valid(): form = form.save(commit=False) form.save() form2.save() messages.success(request=request, message=_("Profile information updated successfully.")) else: context.update({'profile_info_form': form}) return render(self.request, self._get_template(), context) elif form_name == 'privacy-settings': form = UpdatePrivacySettingsForm(self.request.POST, files=self.request.FILES, instance=self._get_model()) if form.is_valid(): form = form.save(commit=False) form.save() messages.success(request=self.request, message=_("Privacy settings updated successfully.")) else: context.update({'profile_info_form': form}) return render(self.request, self._get_template(), context) elif form_name == 'password-settings': form = ChangePasswordForm(request.POST, instance=self.request.user) old_password = self.request.user.password if form.is_valid():
import ast from threading import Thread import sys from queue import Queue, Empty from subprocess import Popen, PIPE import time import datetime import traceback class PipeToJava: def __init__(self, headless=True): self.buffer = [] on_posix = 'posix' in sys.builtin_module_names args = ['java', '-jar', '../BotTest.jar'] if not headless: args.append("true") self.p = Popen(args, stdin=PIPE, stdout=PIPE, bufsize=4096, close_fds=on_posix) self.q = Queue() self.t = Thread(target=self.enqueue_output, args=(self.p.stdout, self.q)) self.t.daemon = True self.t.start() def enqueue_output(self, out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() def get_buffer(self): local_buffer = [] try: while 1: read = self.q.get_nowait() local_buffer.append(read.strip().decode('latin-1')) except Empty: pass for message in local_buffer: if len(message.split(';')) > 5: # Shitty attempt to differentiate actual messages and debug prints self.buffer.append(message) return self.buffer def remove_from_buffer(self, bot_id, message_id): new_buffer = [] for entry in self.buffer: if not ('{};{}'.format(bot_id, message_id) in entry): new_buffer.append(entry) self.buffer = new_buffer[:] class Interface: def __init__(self, bot, color=''): self.bot = bot # type: Bot self.pipe = self.bot.pipe # type: PipeToJava self.current_id = 0 self.bank_info = {} self.new_hunt_timer = 0 self.color = color self.end_color = '\033[0m' self.hdv_opended = False def add_command(self, command, parameters=None): # <botInstance>;<msgId>;<dest>;<msgType>;<command>;[param1, param2...] message = '{};{};i;cmd;{};{}\r\n'.format(self.bot.id, self.current_id, command, parameters) self.bot.llf.log(self.bot, '[Interface {}] Sending : {}'.format(self.bot.id, message.strip())) self.current_id += 1 self.pipe.p.stdin.write(bytes(message, 'utf-8')) self.pipe.p.stdin.flush() return self.current_id-1 def wait_for_return(self, message_id, timeout=5*60): # print('[Interface] Waiting for response...') ret_val = None message_queue = [] start = time.time() while ret_val is None and time.time()-start < timeout: partial_message = '{};{};m;rtn'.format(self.bot.id, message_id) buffer = self.pipe.get_buffer() start = time.time() if self.bot.in_fight else start # prevent timeout if in fight for message in buffer: if int(message.split(';')[0]) == self.bot.id and message not in message_queue: self.bot.llf.log(self.bot, '[Interface {}] Recieved : {}'.format(self.bot.id, message)) message_queue.append(message) for message in message_queue: if partial_message in message and not self.bot.in_fight: ret_val = ast.literal_eval(message.split(';')[-1]) self.pipe.remove_from_buffer(self.bot.id, int(message.split(';')[1])) del message_queue[message_queue.index(message)] elif 'info;combat;["start"]' in message: self.bot.llf.log(self.bot, '[Fight {}] Started'.format(self.bot.id)) start_fight = time.time() self.bot.in_fight = True self.pipe.remove_from_buffer(self.bot.id, int(message.split(';')[1])) del message_queue[message_queue.index(message)] elif 'info;combat;["end"]' in message: self.bot.llf.log(self.bot, '[Fight {}] Ended in {} mins'.format(self.bot.id, round((time.time()-start_fight)/60, 1))) self.bot.in_fight = False self.pipe.remove_from_buffer(self.bot.id, int(message.split(';')[1])) del message_queue[message_queue.index(message)] self.get_player_stats() elif 'info;disconnect;[True]' in message: self.bot.llf.log(self.bot, '[Interface {}] Disconnected'.format(self.bot.id)) self.bot.connected = False self.pipe.remove_from_buffer(self.bot.id, int(message.split(';')[1])) del message_queue[message_queue.index(message)] self.connect() time.sleep(0.1) if not self.bot.in_fight and ret_val is not None: # print('[Interface] Recieved : ', ret_val) return tuple(ret_val) else: print('[Interface] Request timed out') raise Exception('Request timed out') def execute_command(self, command, parameters=None): """ Executes interface commands, logs errors :param command: command to send :param parameters: params for the command :return: return value form interface """ try: msg_id = self.add_command(command, parameters) return self.wait_for_return(msg_id) except Exception as e: self.bot.llf.log(self.bot, '[Interface {}] ERROR : \n{}'.format(self.bot.id, e.args)) with open('../Utils/InterfaceErrors.txt', 'a') as f: f.write('\n\n' + str(datetime.datetime.now()) + '\n') f.write(traceback.format_exc()) time.sleep(60) def connect(self, max_tries=5): """ Connects a bot instance :return: Boolean/['Save'] """ connection_param = [ self.bot.credentials['username'], self.bot.credentials['password'], self.bot.credentials['name'], self.bot.credentials['server'] ] tries, banned = 0, False while not self.bot.connected and tries < max_tries and not banned: self.bot.occupation = 'Connecting' self.bot.hf.update_db() ret_val = self.execute_command('connect', connection_param)[0] tries += 1 self.bot.connected = True if ret_val is True else False banned = True if ret_val == 'Banned' else False if self.bot.connected: self.get_player_stats() self.get_sub_left() current_map, current_cell, current_worldmap, map_id = self.bot.interface.get_map() self.bot.position = (current_map, current_worldmap) dd_stats = self.get_dd_stat() if dd_stats[0]: self.bot.mount = 'equipped' self.mount_dd() if dd_stats[0] < 100: self.set_dd_xp(90) else: self.set_dd_xp(0) else: self.bot.mount = self.bot.llf.get_mount_situation(self.bot.credentials['name']) if self.bot.mount == 'resting': self.bot.hf.fetch_bot_mobile() return [True] elif banned: self.bot.llf.set_banned(self.bot.credentials['name']) else: time.sleep(max(15, tries*30)) return [False] def disconnect(self): """ Disconnects the bot instance :return: """ success = [False] if self.bot.connected: dd_stats = self.bot.interface.get_dd_stat() if dd_stats[0]: level, energy, idx = dd_stats if energy < 1000: self.bot.hf.drop_bot_mobile(idx) success = [self.execute_command('disconnect')[0]] if success[0]: self.get_player_stats() self.bot.llf.log(self.bot, '[Position {}] {}'.format(self.bot.id, 'OFFLINE')) self.bot.connected = False self.bot.occupation = 'Sleeping' self.bot.hf.update_db() self.bot.llf.push_log_file('../packetErrors.txt', 'PacketErrors') return success def get_map(self): """ Gets the map the player is on :return: coords, cell, worldmap, mapID """ current_map, current_cell, current_worldmap, map_id = self.execute_command('getMap') self.bot.position = (current_map, current_worldmap, current_cell) self.bot.llf.log(self.bot, '[Position {}] {}'.format(self.bot.id, current_map)) return current_map, current_cell, current_worldmap, map_id def move(self, cell): """ Moves the bot on a map :param cell: target cell number :return: Boolean """ return self.execute_command('move', [cell]) def change_map(self, cell, direction): """ Moves the bot to an adjacent map :param cell: target cell number for map change :param direction: cardnial direction as 'n', 's', 'w', 'e' :return: Boolean """ return self.execute_command('changeMap', [cell, direction]) def get_map_resources(self): """ Gets the resources and their info for the map the player is on :return: TODO """ return self.execute_command('getResources') def get_player_stats(self): """ Get the bot player stats :return: {"Weight": <>, "WeightMax": <>, "Lvl": <>, "Job": {"job_id": level, ...}} """ stats = self.execute_command('getStats') stats = stats[0] self.bot.inventory.kamas = stats['Inventory']['Kamas'] self.bot.inventory.items = stats['Inventory']['Items'] self.bot.characteristics.level = stats['Lvl'] self.bot.characteristics.health_percent = stats['Health'] self.bot.characteristics.xp = stats['Xp'] self.bot.characteristics.xp_next_level_floor = stats['XpNextLevelFloor'] self.bot.characteristics.weight = stats['Weight'] self.bot.characteristics.weight_max = stats['WeightMax'] self.bot.characteristics.jobs = stats['Job'] self.bot.characteristics.int = stats['Caracs']['Int'] self.bot.characteristics.agi = stats['Caracs']['Agi'] self.bot.characteristics.cha = stats['Caracs']['Cha'] self.bot.characteristics.fo = stats['Caracs']['Fo'] self.bot.characteristics.vi = stats['Caracs']['Vi'] self.bot.characteristics.sa = stats['Caracs']['Sa'] self.bot.characteristics.available_stat_points = stats['Caracs']['Available'] self.bot.inventory.equip_preferred_stuff() if self.bot.characteristics.available_stat_points: caracs_to_augment = self.bot.llf.get_caracs_to_augment(self.bot) for carac in caracs_to_augment: self.assign_carac_points(carac[0], carac[1]) return stats def harvest_resource(self, cell): """ Harvests the resource on the cell given :param cell: cell number :return: [id, number_harvested, new_pods, max_pods], or combat or false """ ret_val = self.execute_command('harvest', [cell]) self.get_player_stats() return ret_val def move_harvest(self, cell_move, cell_resource): """ Moves to cell_move and harvests the resource on cell_resource :param cell_move: :param cell_resource: :return: """ ret_val = self.execute_command('moveHarvest', [cell_move, cell_resource]) self.get_player_stats() return ret_val def go_to_astrub(self): """ Goes to Astrub and makes the player exit the building (should arrive at 6, -19, cell 397, worldmap 1) :return: Boolean """ return self.execute_command('goAstrub') def go_to_incarnam(self): """ Enters the building and uses the gate to go to Incarnam :return: Boolean """ return self.execute_command('goIncarnam') def get_bank_door(self): return self.execute_command('getBankDoor') def enter_bank(self): """ Enters the bank on the map if there is one :return: Boolean """ bank_door_cell = self.get_bank_door()[0] if bank_door_cell: self.move(bank_door_cell) return self.execute_command('goBank') else: return [False] def open_bank(self): """ Opens bank :return: items json / False """ bank_content = self.execute_command('openBank') self.bank_info = bank_content[0] return bank_content def close_bank(self): """ Closes Bank :return: Boolean """ self.bank_info = {} return self.execute_command('closeBank') def exit_bank(self): """ Exits bank :return: Boolean """ banks = { "(4, -18)": 409, "(-31, -54)": 409, "(-27, 35)": 409, "(2, -2)": 410, "(14, 25)": 480 } return self.move(banks[str(self.bot.position[0])]) def drop_in_bank_list(self, item_id_list): """ Drops some items in bank :param item_id_list: [ItemID1, ItemID2...] / ['all'] Ids are inventory ids :return: New bank content, new inventory content """ if item_id_list in ['All', 'all']: inventory_content, bank_content = self.execute_command('dropBankAll') else: inventory_content, bank_content = self.execute_command('dropBankList', item_id_list) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def drop_in_bank_unique(self, item_id, quantity): """ Drops a certain quantity of a certain item in inventory :param item_id: Item unique inventory id :param quantity: quantity of item to drop :return: New bank content, new inventory content """ inventory_content, bank_content = self.execute_command('dropBank', [item_id, quantity]) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def get_from_bank_list(self, item_id_list): """ Retrieves some items in bank :param item_id_list: [ItemID1, ItemID2...] / ['All'] :return: New bank content, new inventory content """ inventory_content, bank_content = self.execute_command('getBankList', item_id_list) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def get_from_bank_unique(self, item_id, quantity): """ Retrieves a certain quantity of a certain item in bank :param item_id: Item unique inventory id :param quantity: quantity of item to retrieve :return: New bank content, new inventory content """ inventory_content, bank_content = self.execute_command('getBank', [item_id, quantity]) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def put_kamas_in_bank(self, quantity): """ Drops a specified quantity of kamas in bank :param quantity: quantity of kamas to drop :return: New bank content, new inventory content """ kamas = self.bot.inventory.kamas if quantity in ['all', 'All'] or quantity > kamas: quantity = kamas inventory_content, bank_content = self.execute_command('dropBankKamas', [quantity]) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def get_kamas_from_bank(self, quantity): """ Retrieves a specified quantity of kamas from bank :param quantity: quantity of kamas to drop :return: New bank content, new inventory content """ kamas = self.bank_info['Kamas'] if quantity in ['all', 'All'] or quantity > kamas: quantity = kamas if quantity: inventory_content, bank_content = self.execute_command('getBankKamas', [quantity]) self.bank_info = bank_content self.get_player_stats() return inventory_content, bank_content def get_hunting_hall_door_cell(self): """ Returns the cell id of the hunting hall door, or
<filename>scripts/msct_register.py<gh_stars>0 #!/usr/bin/env python ######################################################################################### # Various modules for registration. # # --------------------------------------------------------------------------------------- # Copyright (c) 2015 NeuroPoly, Polytechnique Montreal <www.neuro.polymtl.ca> # Authors: <NAME>, <NAME> # # License: see the LICENSE.TXT ######################################################################################### # TODO: before running the PCA, correct for the "stretch" effect caused by curvature # TODO: columnwise: check inverse field # TODO: columnwise: add regularization: should not binarize at 0.5, especially problematic for edge (because division by zero to compute Sx, Sy). # TODO: remove register2d_centermass and generalize register2d_centermassrot # TODO: add flag for setting threshold on PCA # TODO: clean code for generate_warping_field (unify with centermass_rot) from __future__ import division, absolute_import import sys, os, shutil, logging from math import asin, cos, sin, acos import numpy as np from scipy import ndimage from scipy.io import loadmat from nibabel import load, Nifti1Image, save from spinalcordtoolbox.image import Image import sct_utils as sct from sct_convert import convert from sct_register_multimodal import Paramreg logger = logging.getLogger(__name__) def register_slicewise(fname_src, fname_dest, fname_mask='', warp_forward_out='step0Warp.nii.gz', warp_inverse_out='step0InverseWarp.nii.gz', paramreg=None, ants_registration_params=None, path_qc='./', remove_temp_files=0, verbose=0): im_and_seg = (paramreg.algo == 'centermassrot') and (paramreg.rot_method == 'hog') # bool for simplicity # future contributor wanting to implement a method that use both im and seg will add: and (paramreg.rot_method == 'OTHER_METHOD') if im_and_seg is True: fname_src_im = fname_src[0] fname_dest_im = fname_dest[0] fname_src_seg = fname_src[1] fname_dest_seg = fname_dest[1] del fname_src del fname_dest # to be sure it is not missused later # create temporary folder path_tmp = sct.tmp_create(basename="register", verbose=verbose) # copy data to temp folder sct.printv('\nCopy input data to temp folder...', verbose) if im_and_seg is False: convert(fname_src, os.path.join(path_tmp, "src.nii")) convert(fname_dest, os.path.join(path_tmp, "dest.nii")) else: convert(fname_src_im, os.path.join(path_tmp, "src_im.nii")) convert(fname_dest_im, os.path.join(path_tmp, "dest_im.nii")) convert(fname_src_seg, os.path.join(path_tmp, "src_seg.nii")) convert(fname_dest_seg, os.path.join(path_tmp, "dest_seg.nii")) if fname_mask != '': convert(fname_mask, os.path.join(path_tmp, "mask.nii.gz")) # go to temporary folder curdir = os.getcwd() os.chdir(path_tmp) # Calculate displacement if paramreg.algo == 'centermass': # translation of center of mass between source and destination in voxel space register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=0, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'centermassrot': if im_and_seg is False: # translation of center of mass and rotation based on source and destination first eigenvectors from PCA. register2d_centermassrot('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=1, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose, pca_eigenratio_th=float(paramreg.pca_eigenratio_th)) else: # translation based of center of mass and rotation based on the symmetry of the image register2d_centermassrot(['src_im.nii','src_seg.nii'], ['dest_im.nii', 'dest_seg.nii'], fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, rot=2, polydeg=int(paramreg.poly), path_qc=path_qc, verbose=verbose) elif paramreg.algo == 'columnwise': # scaling R-L, then column-wise center of mass alignment and scaling register2d_columnwise('src.nii', 'dest.nii', fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, verbose=verbose, path_qc=path_qc, smoothWarpXY=int(paramreg.smoothWarpXY)) else: # convert SCT flags into ANTs-compatible flags algo_dic = {'translation': 'Translation', 'rigid': 'Rigid', 'affine': 'Affine', 'syn': 'SyN', 'bsplinesyn': 'BSplineSyN', 'centermass': 'centermass'} paramreg.algo = algo_dic[paramreg.algo] # run slicewise registration register2d('src.nii', 'dest.nii', fname_mask=fname_mask, fname_warp=warp_forward_out, fname_warp_inv=warp_inverse_out, paramreg=paramreg, ants_registration_params=ants_registration_params, verbose=verbose) sct.printv('\nMove warping fields...', verbose) sct.copy(warp_forward_out, curdir) sct.copy(warp_inverse_out, curdir) # go back os.chdir(curdir) if remove_temp_files: sct.rmtree(path_tmp, verbose=verbose) def register2d_centermassrot(fname_src, fname_dest, fname_warp='warp_forward.nii.gz', fname_warp_inv='warp_inverse.nii.gz', rot=1, polydeg=0, path_qc='./', verbose=0, pca_eigenratio_th=1.6): """ Rotate the source image to match the orientation of the destination image, using the first and second eigenvector of the PCA. This function should be used on segmentations (not images). This works for 2D and 3D images. If 3D, it splits the image and performs the rotation slice-by-slice. input: fname_source: name of moving image (type: string), if rot == 2, this needs to be a list with the first element being the image fname and the second the segmentation fname fname_dest: name of fixed image (type: string), if rot == 2, needs to be a list fname_warp: name of output 3d forward warping field fname_warp_inv: name of output 3d inverse warping field rot: estimate rotation with pca (=1), hog (=2) or no rotation (=0) Default = 1 Depending on the rotation method, input might be segmentation only or image and segmentation polydeg: degree of polynomial regularization along z for rotation angle (type: int). 0: no regularization verbose: output: none """ if rot == 2: # if following methods need im and seg, add "and rot == x" fname_src_im = fname_src[0] fname_dest_im = fname_dest[0] fname_src_seg = fname_src[1] fname_dest_seg = fname_dest[1] del fname_src del fname_dest # to be sure it is not missused later if verbose == 2: import matplotlib matplotlib.use('Agg') # prevent display figure import matplotlib.pyplot as plt # Get image dimensions and retrieve nz sct.printv('\nGet image dimensions of destination image...', verbose) if rot == 1 or rot == 0: nx, ny, nz, nt, px, py, pz, pt = Image(fname_dest).dim else: nx, ny, nz, nt, px, py, pz, pt = Image(fname_dest_im).dim sct.printv(' matrix size: ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose) sct.printv(' voxel size: ' + str(px) + 'mm x ' + str(py) + 'mm x ' + str(pz) + 'mm', verbose) if rot == 1 or rot == 0: # Split source volume along z sct.printv('\nSplit input volume...', verbose) from sct_image import split_data im_src = Image('src.nii') split_source_list = split_data(im_src, 2) for im in split_source_list: im.save() # Split destination volume along z sct.printv('\nSplit destination volume...', verbose) im_dest = Image('dest.nii') split_dest_list = split_data(im_dest, 2) for im in split_dest_list: im.save() # display image data_src = im_src.data data_dest = im_dest.data if len(data_src.shape) == 2: # reshape 2D data into pseudo 3D (only one slice) new_shape = list(data_src.shape) new_shape.append(1) new_shape = tuple(new_shape) data_src = data_src.reshape(new_shape) data_dest = data_dest.reshape(new_shape) elif rot == 2: # im and seg case # Split source volume along z sct.printv('\nSplit input volume...', verbose) from sct_image import split_data im_src_im = Image('src_im.nii') split_source_list = split_data(im_src_im, 2) for im in split_source_list: im.save() im_src_seg = Image('src_seg.nii') split_source_list = split_data(im_src_seg, 2) for im in split_source_list: im.save() # Split destination volume along z sct.printv('\nSplit destination volume...', verbose) im_dest_im = Image('dest_im.nii') split_dest_list = split_data(im_dest_im, 2) for im in split_dest_list: im.save() im_dest_seg = Image('dest_seg.nii') split_dest_list = split_data(im_dest_seg, 2) for im in split_dest_list: im.save() # display image data_src_im = im_src_im.data data_dest_im = im_dest_im.data data_src_seg = im_src_seg.data data_dest_seg = im_dest_seg.data else: raise ValueError("rot param == " + str(rot) + " not implemented") # initialize displacement and rotation coord_src = [None] * nz pca_src = [None] * nz coord_dest = [None] * nz pca_dest = [None] * nz centermass_src = np.zeros([nz, 2]) centermass_dest = np.zeros([nz, 2]) # displacement_forward = np.zeros([nz, 2]) # displacement_inverse = np.zeros([nz, 2]) angle_src_dest = np.zeros(nz) z_nonzero = [] if rot == 1 or rot == 0: # Loop across slices for iz in range(0, nz): try: # compute PCA and get center or mass coord_src[iz], pca_src[iz], centermass_src[iz, :] = compute_pca(data_src[:, :, iz]) coord_dest[iz], pca_dest[iz], centermass_dest[iz, :] = compute_pca(data_dest[:, :, iz]) # compute (src,dest) angle for first eigenvector if rot == 1: eigenv_src = pca_src[iz].components_.T[0][0], pca_src[iz].components_.T[1][0] # pca_src.components_.T[0] eigenv_dest = pca_dest[iz].components_.T[0][0], pca_dest[iz].components_.T[1][0] # pca_dest.components_.T[0] # Make sure first element is always positive (to prevent sign flipping) if eigenv_src[0] <= 0: eigenv_src = tuple([i * (-1) for i in eigenv_src]) if eigenv_dest[0] <= 0: eigenv_dest = tuple([i * (-1) for i in eigenv_dest]) angle_src_dest[iz] = angle_between(eigenv_src, eigenv_dest) # check if ratio between the two eigenvectors is high enough to prevent poor robustness if pca_src[iz].explained_variance_ratio_[0] / pca_src[iz].explained_variance_ratio_[1] < pca_eigenratio_th: angle_src_dest[iz] = 0 if pca_dest[iz].explained_variance_ratio_[0] / pca_dest[iz].explained_variance_ratio_[1] < pca_eigenratio_th: angle_src_dest[iz] = 0 # append to list of z_nonzero z_nonzero.append(iz) # if one of the slice is empty, ignore it except ValueError: sct.printv('WARNING: Slice #' + str(iz) + ' is empty. It will be ignored.', verbose, 'warning') elif rot == 2: # im and seg case raise NotImplementedError("This method is not implemented yet, it will be in a future version") # for iz in range(0, nz): # try: # _, _, centermass_src[iz, :] = compute_pca(data_src_seg[:, :, iz]) # _, _, centermass_dest[iz, :] = compute_pca(data_dest_seg[:, :, iz]) # # # TODO: Here will be put the new method to find the angle # # #angle_src = find_angle(data_src_im[:, :, iz], centermass_src[iz, :], parameters) # #angle_dest = find_angle(data_dest_im[:, :, iz], centermass_dest[iz, :], parameters) # # # if (angle_src is None) or (angle_dest is None): # # sct.printv('WARNING: Slice #' + str(iz) + ' no angle found in dest or src. It will be ignored.', verbose, 'warning') # # continue # # # angle_src_dest[iz] = angle_src-angle_dest # # except
return self.getErrorItem("Value should be set") value = properties[propertyName] defaultValue = recommendedDefaults[propertyName] if defaultValue is None: return self.getErrorItem("Config's default value can't be null or undefined") if not checkXmxValueFormat(value) and checkXmxValueFormat(defaultValue): # Xmx is in the default-value but not the value, should be an error return self.getErrorItem('Invalid value format') if not checkXmxValueFormat(defaultValue): # if default value does not contain Xmx, then there is no point in validating existing value return None valueInt = formatXmxSizeToBytes(getXmxSize(value)) defaultValueXmx = getXmxSize(defaultValue) defaultValueInt = formatXmxSizeToBytes(defaultValueXmx) if valueInt < defaultValueInt: return self.getWarnItem("Value is less than the recommended default of -Xmx" + defaultValueXmx) return None def validateMapReduce2Configurations(self, properties, recommendedDefaults, configurations, services, hosts): validationItems = [ {"config-name": 'mapreduce.map.java.opts', "item": self.validateXmxValue(properties, recommendedDefaults, 'mapreduce.map.java.opts')}, {"config-name": 'mapreduce.reduce.java.opts', "item": self.validateXmxValue(properties, recommendedDefaults, 'mapreduce.reduce.java.opts')}, {"config-name": 'mapreduce.task.io.sort.mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'mapreduce.task.io.sort.mb')}, {"config-name": 'mapreduce.map.memory.mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'mapreduce.map.memory.mb')}, {"config-name": 'mapreduce.reduce.memory.mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'mapreduce.reduce.memory.mb')}, {"config-name": 'yarn.app.mapreduce.am.resource.mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'yarn.app.mapreduce.am.resource.mb')}, {"config-name": 'yarn.app.mapreduce.am.command-opts', "item": self.validateXmxValue(properties, recommendedDefaults, 'yarn.app.mapreduce.am.command-opts')}, {"config-name": 'mapreduce.job.queuename', "item": self.validatorYarnQueue(properties, recommendedDefaults, 'mapreduce.job.queuename', services)} ] return self.toConfigurationValidationProblems(validationItems, "mapred-site") def validateYARNConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): clusterEnv = getSiteProperties(configurations, "cluster-env") validationItems = [ {"config-name": 'yarn.nodemanager.resource.memory-mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'yarn.nodemanager.resource.memory-mb')}, {"config-name": 'yarn.scheduler.minimum-allocation-mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'yarn.scheduler.minimum-allocation-mb')}, {"config-name": 'yarn.nodemanager.linux-container-executor.group', "item": self.validatorEqualsPropertyItem(properties, "yarn.nodemanager.linux-container-executor.group", clusterEnv, "user_group")}, {"config-name": 'yarn.scheduler.maximum-allocation-mb', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'yarn.scheduler.maximum-allocation-mb')} ] return self.toConfigurationValidationProblems(validationItems, "yarn-site") def validateYARNEnvConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): validationItems = [{"config-name": 'service_check.queue.name', "item": self.validatorYarnQueue(properties, recommendedDefaults, 'service_check.queue.name', services)} ] return self.toConfigurationValidationProblems(validationItems, "yarn-env") def validateHbaseEnvConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): hbase_site = getSiteProperties(configurations, "hbase-site") validationItems = [ {"config-name": 'hbase_regionserver_heapsize', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'hbase_regionserver_heapsize')}, {"config-name": 'hbase_master_heapsize', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'hbase_master_heapsize')}, {"config-name": "hbase_user", "item": self.validatorEqualsPropertyItem(properties, "hbase_user", hbase_site, "hbase.superuser")} ] return self.toConfigurationValidationProblems(validationItems, "hbase-env") def validateHDFSConfigurations(self, properties, recommendedDefaults, configurations, services, hosts): clusterEnv = getSiteProperties(configurations, "cluster-env") validationItems = [{"config-name": 'dfs.datanode.du.reserved', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'dfs.datanode.du.reserved')}, {"config-name": 'dfs.datanode.data.dir', "item": self.validatorOneDataDirPerPartition(properties, 'dfs.datanode.data.dir', services, hosts, clusterEnv)}] return self.toConfigurationValidationProblems(validationItems, "hdfs-site") def validateHDFSConfigurationsEnv(self, properties, recommendedDefaults, configurations, services, hosts): validationItems = [ {"config-name": 'namenode_heapsize', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'namenode_heapsize')}, {"config-name": 'namenode_opt_newsize', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'namenode_opt_newsize')}, {"config-name": 'namenode_opt_maxnewsize', "item": self.validatorLessThenDefaultValue(properties, recommendedDefaults, 'namenode_opt_maxnewsize')}] return self.toConfigurationValidationProblems(validationItems, "hadoop-env") def validatorOneDataDirPerPartition(self, properties, propertyName, services, hosts, clusterEnv): if not propertyName in properties: return self.getErrorItem("Value should be set") dirs = properties[propertyName] if not (clusterEnv and "one_dir_per_partition" in clusterEnv and clusterEnv["one_dir_per_partition"].lower() == "true"): return None dataNodeHosts = self.getDataNodeHosts(services, hosts) warnings = set() for host in dataNodeHosts: hostName = host["Hosts"]["host_name"] mountPoints = [] for diskInfo in host["Hosts"]["disk_info"]: mountPoints.append(diskInfo["mountpoint"]) if get_mounts_with_multiple_data_dirs(mountPoints, dirs): # A detailed message can be too long on large clusters: # warnings.append("Host: " + hostName + "; Mount: " + mountPoint + "; Data directories: " + ", ".join(dirList)) warnings.add(hostName) break; if len(warnings) > 0: return self.getWarnItem("cluster-env/one_dir_per_partition is enabled but there are multiple data directories on the same mount. Affected hosts: {0}".format(", ".join(sorted(warnings)))) return None """ Returns the list of Data Node hosts. """ def getDataNodeHosts(self, services, hosts): if len(hosts["items"]) > 0: dataNodeHosts = self.getHostsWithComponent("HDFS", "DATANODE", services, hosts) if dataNodeHosts is not None: return dataNodeHosts return [] def getMastersWithMultipleInstances(self): return ['ZOOKEEPER_SERVER', 'HBASE_MASTER'] def getNotValuableComponents(self): return ['JOURNALNODE', 'ZKFC', 'GANGLIA_MONITOR'] def getNotPreferableOnServerComponents(self): return ['GANGLIA_SERVER', 'METRICS_COLLECTOR'] def getCardinalitiesDict(self,host): return { 'ZOOKEEPER_SERVER': {"min": 3}, 'HBASE_MASTER': {"min": 1}, } def getComponentLayoutSchemes(self): return { 'NAMENODE': {"else": 0}, 'SECONDARY_NAMENODE': {"else": 1}, 'HBASE_MASTER': {6: 0, 31: 2, "else": 3}, 'HISTORYSERVER': {31: 1, "else": 2}, 'RESOURCEMANAGER': {31: 1, "else": 2}, 'OOZIE_SERVER': {6: 1, 31: 2, "else": 3}, 'HIVE_SERVER': {6: 1, 31: 2, "else": 4}, 'HIVE_METASTORE': {6: 1, 31: 2, "else": 4}, 'WEBHCAT_SERVER': {6: 1, 31: 2, "else": 4}, 'METRICS_COLLECTOR': {3: 2, 6: 2, 31: 3, "else": 5}, } def get_system_min_uid(self): login_defs = '/etc/login.defs' uid_min_tag = 'UID_MIN' comment_tag = '#' uid_min = uid_default = '1000' uid = None if os.path.exists(login_defs): with open(login_defs, 'r') as f: data = f.read().split('\n') # look for uid_min_tag in file uid = filter(lambda x: uid_min_tag in x, data) # filter all lines, where uid_min_tag was found in comments uid = filter(lambda x: x.find(comment_tag) > x.find(uid_min_tag) or x.find(comment_tag) == -1, uid) if uid is not None and len(uid) > 0: uid = uid[0] comment = uid.find(comment_tag) tag = uid.find(uid_min_tag) if comment == -1: uid_tag = tag + len(uid_min_tag) uid_min = uid[uid_tag:].strip() elif comment > tag: uid_tag = tag + len(uid_min_tag) uid_min = uid[uid_tag:comment].strip() # check result for value try: int(uid_min) except ValueError: return uid_default return uid_min def mergeValidators(self, parentValidators, childValidators): for service, configsDict in childValidators.iteritems(): if service not in parentValidators: parentValidators[service] = {} parentValidators[service].update(configsDict) def checkSiteProperties(self, siteProperties, *propertyNames): """ Check if properties defined in site properties. :param siteProperties: config properties dict :param *propertyNames: property names to validate :returns: True if all properties defined, in other cases returns False """ if siteProperties is None: return False for name in propertyNames: if not (name in siteProperties): return False return True """ Returns the dictionary of configs for 'capacity-scheduler'. """ def getCapacitySchedulerProperties(self, services): capacity_scheduler_properties = dict() received_as_key_value_pair = True if "capacity-scheduler" in services['configurations']: if "capacity-scheduler" in services['configurations']["capacity-scheduler"]["properties"]: cap_sched_props_as_str = services['configurations']["capacity-scheduler"]["properties"]["capacity-scheduler"] if cap_sched_props_as_str: cap_sched_props_as_str = str(cap_sched_props_as_str).split('\n') if len(cap_sched_props_as_str) > 0 and cap_sched_props_as_str[0] != 'null': # Received confgs as one "\n" separated string for property in cap_sched_props_as_str: key, sep, value = property.partition("=") capacity_scheduler_properties[key] = value self.logger.info("'capacity-scheduler' configs is passed-in as a single '\\n' separated string. " "count(services['configurations']['capacity-scheduler']['properties']['capacity-scheduler']) = " "{0}".format(len(capacity_scheduler_properties))) received_as_key_value_pair = False else: self.logger.info("Passed-in services['configurations']['capacity-scheduler']['properties']['capacity-scheduler'] is 'null'.") else: self.logger.info("'capacity-schdeuler' configs not passed-in as single '\\n' string in " "services['configurations']['capacity-scheduler']['properties']['capacity-scheduler'].") if not capacity_scheduler_properties: # Received configs as a dictionary (Generally on 1st invocation). capacity_scheduler_properties = services['configurations']["capacity-scheduler"]["properties"] self.logger.info("'capacity-scheduler' configs is passed-in as a dictionary. " "count(services['configurations']['capacity-scheduler']['properties']) = {0}".format(len(capacity_scheduler_properties))) else: self.logger.error("Couldn't retrieve 'capacity-scheduler' from services.") self.logger.info("Retrieved 'capacity-scheduler' received as dictionary : '{0}'. configs : {1}" \ .format(received_as_key_value_pair, capacity_scheduler_properties.items())) return capacity_scheduler_properties, received_as_key_value_pair """ Gets all YARN leaf queues. """ def getAllYarnLeafQueues(self, capacitySchedulerProperties): config_list = capacitySchedulerProperties.keys() yarn_queues = None leafQueueNames = set() if 'yarn.scheduler.capacity.root.queues' in config_list: yarn_queues = capacitySchedulerProperties.get('yarn.scheduler.capacity.root.queues') if yarn_queues: toProcessQueues = yarn_queues.split(",") while len(toProcessQueues) > 0: queue = toProcessQueues.pop() queueKey = "yarn.scheduler.capacity.root." + queue + ".queues" if queueKey in capacitySchedulerProperties: # If parent queue, add children subQueues = capacitySchedulerProperties[queueKey].split(",") for subQueue in subQueues: toProcessQueues.append(queue + "." + subQueue) else: # Leaf queues # We only take the leaf queue name instead of the complete path, as leaf queue names are unique in YARN. # Eg: If YARN queues are like : # (1). 'yarn.scheduler.capacity.root.a1.b1.c1.d1', # (2). 'yarn.scheduler.capacity.root.a1.b1.c2', # (3). 'yarn.scheduler.capacity.root.default, # Added leaf queues names are as : d1, c2 and default for the 3 leaf queues. leafQueuePathSplits = queue.split(".") if leafQueuePathSplits > 0: leafQueueName = leafQueuePathSplits[-1] leafQueueNames.add(leafQueueName) return leafQueueNames def get_service_component_meta(self, service, component, services): """ Function retrieve service component meta information as dict from services.json If no service or component found, would be returned empty dict Return value example: "advertise_version" : true, "bulk_commands_display_name" : "", "bulk_commands_master_component_name" : "", "cardinality" : "1+", "component_category" : "CLIENT", "component_name" : "HBASE_CLIENT", "custom_commands" : [ ], "decommission_allowed" : false, "display_name" : "HBase Client", "has_bulk_commands_definition" : false, "is_client" : true, "is_master" : false, "reassign_allowed" : false, "recovery_enabled" : false, "service_name" : "HBASE", "stack_name" : "HDP", "stack_version" : "2.5", "hostnames" : [ "host1", "host2" ] :type service str :type component str :type services dict :rtype dict """ __stack_services = "StackServices" __stack_service_components = "StackServiceComponents" if not services: return {} service_meta = [item for item in services["services"] if item[__stack_services]["service_name"] == service] if len(service_meta) == 0: return {} service_meta = service_meta[0] component_meta = [item for item in service_meta["components"] if item[__stack_service_components]["component_name"] == component] if len(component_meta) == 0: return {} return component_meta[0][__stack_service_components] def is_secured_cluster(self, services): """ Detects if cluster is secured or not :type services dict :rtype bool """ return services and "cluster-env" in services["configurations"] and\ "security_enabled" in services["configurations"]["cluster-env"]["properties"] and\ services["configurations"]["cluster-env"]["properties"]["security_enabled"].lower() == "true" def get_services_list(self, services): """ Returns available services as list :type services dict :rtype list """ if not services: return [] return [service["StackServices"]["service_name"] for service in services["services"]] def get_components_list(self, service, services): """ Return list of components for specific service :type service str :type services dict :rtype list """ __stack_services = "StackServices" __stack_service_components = "StackServiceComponents" if not services: return [] service_meta = [item for item
"""This module tests SyntaxErrors. Here's an example of the sort of thing that is tested. >>> def f(x): ... global x Traceback (most recent call last): SyntaxError: name 'x' is local and global (<doctest test.test_syntax[0]>, line 1) The tests are all raise SyntaxErrors. They were created by checking each C call that raises SyntaxError. There are several modules that raise these exceptions-- ast.c, compile.c, future.c, pythonrun.c, and symtable.c. The parser itself outlaws a lot of invalid syntax. None of these errors are tested here at the moment. We should add some tests; since there are infinitely many programs with invalid syntax, we would need to be judicious in selecting some. The compiler generates a synthetic module name for code executed by doctest. Since all the code comes from the same module, a suffix like [1] is appended to the module name, As a consequence, changing the order of tests in this module means renumbering all the errors after it. (Maybe we should enable the ellipsis option for these tests.) In ast.c, syntax errors are raised by calling ast_error(). Errors from set_context(): >>> obj.None = 1 Traceback (most recent call last): File "<doctest test.test_syntax[1]>", line 1 SyntaxError: cannot assign to None >>> None = 1 Traceback (most recent call last): File "<doctest test.test_syntax[2]>", line 1 SyntaxError: cannot assign to None It's a syntax error to assign to the empty tuple. Why isn't it an error to assign to the empty list? It will always raise some error at runtime. >>> () = 1 Traceback (most recent call last): File "<doctest test.test_syntax[3]>", line 1 SyntaxError: can't assign to () >>> f() = 1 Traceback (most recent call last): File "<doctest test.test_syntax[4]>", line 1 SyntaxError: can't assign to function call >>> del f() Traceback (most recent call last): File "<doctest test.test_syntax[5]>", line 1 SyntaxError: can't delete function call >>> a + 1 = 2 Traceback (most recent call last): File "<doctest test.test_syntax[6]>", line 1 SyntaxError: can't assign to operator >>> (x for x in x) = 1 Traceback (most recent call last): File "<doctest test.test_syntax[7]>", line 1 SyntaxError: can't assign to generator expression >>> 1 = 1 Traceback (most recent call last): File "<doctest test.test_syntax[8]>", line 1 SyntaxError: can't assign to literal >>> "abc" = 1 Traceback (most recent call last): File "<doctest test.test_syntax[8]>", line 1 SyntaxError: can't assign to literal >>> `1` = 1 Traceback (most recent call last): File "<doctest test.test_syntax[10]>", line 1 SyntaxError: can't assign to repr If the left-hand side of an assignment is a list or tuple, an illegal expression inside that contain should still cause a syntax error. This test just checks a couple of cases rather than enumerating all of them. >>> (a, "b", c) = (1, 2, 3) Traceback (most recent call last): File "<doctest test.test_syntax[11]>", line 1 SyntaxError: can't assign to literal >>> [a, b, c + 1] = [1, 2, 3] Traceback (most recent call last): File "<doctest test.test_syntax[12]>", line 1 SyntaxError: can't assign to operator >>> a if 1 else b = 1 Traceback (most recent call last): File "<doctest test.test_syntax[13]>", line 1 SyntaxError: can't assign to conditional expression From compiler_complex_args(): >>> def f(None=1): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[14]>", line 1 SyntaxError: cannot assign to None From ast_for_arguments(): >>> def f(x, y=1, z): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[15]>", line 1 SyntaxError: non-default argument follows default argument >>> def f(x, None): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[16]>", line 1 SyntaxError: cannot assign to None >>> def f(*None): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[17]>", line 1 SyntaxError: cannot assign to None >>> def f(**None): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[18]>", line 1 SyntaxError: cannot assign to None From ast_for_funcdef(): >>> def None(x): ... pass Traceback (most recent call last): File "<doctest test.test_syntax[19]>", line 1 SyntaxError: cannot assign to None From ast_for_call(): >>> def f(it, *varargs): ... return list(it) >>> L = range(10) >>> f(x for x in L) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> f(x for x in L, 1) Traceback (most recent call last): File "<doctest test.test_syntax[23]>", line 1 SyntaxError: Generator expression must be parenthesized if not sole argument >>> f((x for x in L), 1) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> f(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, ... i12, i13, i14, i15, i16, i17, i18, i19, i20, i21, i22, ... i23, i24, i25, i26, i27, i28, i29, i30, i31, i32, i33, ... i34, i35, i36, i37, i38, i39, i40, i41, i42, i43, i44, ... i45, i46, i47, i48, i49, i50, i51, i52, i53, i54, i55, ... i56, i57, i58, i59, i60, i61, i62, i63, i64, i65, i66, ... i67, i68, i69, i70, i71, i72, i73, i74, i75, i76, i77, ... i78, i79, i80, i81, i82, i83, i84, i85, i86, i87, i88, ... i89, i90, i91, i92, i93, i94, i95, i96, i97, i98, i99, ... i100, i101, i102, i103, i104, i105, i106, i107, i108, ... i109, i110, i111, i112, i113, i114, i115, i116, i117, ... i118, i119, i120, i121, i122, i123, i124, i125, i126, ... i127, i128, i129, i130, i131, i132, i133, i134, i135, ... i136, i137, i138, i139, i140, i141, i142, i143, i144, ... i145, i146, i147, i148, i149, i150, i151, i152, i153, ... i154, i155, i156, i157, i158, i159, i160, i161, i162, ... i163, i164, i165, i166, i167, i168, i169, i170, i171, ... i172, i173, i174, i175, i176, i177, i178, i179, i180, ... i181, i182, i183, i184, i185, i186, i187, i188, i189, ... i190, i191, i192, i193, i194, i195, i196, i197, i198, ... i199, i200, i201, i202, i203, i204, i205, i206, i207, ... i208, i209, i210, i211, i212, i213, i214, i215, i216, ... i217, i218, i219, i220, i221, i222, i223, i224, i225, ... i226, i227, i228, i229, i230, i231, i232, i233, i234, ... i235, i236, i237, i238, i239, i240, i241, i242, i243, ... i244, i245, i246, i247, i248, i249, i250, i251, i252, ... i253, i254, i255) Traceback (most recent call last): File "<doctest test.test_syntax[25]>", line 1 SyntaxError: more than 255 arguments The actual error cases counts positional arguments, keyword arguments, and generator expression arguments separately. This test combines the three. >>> f(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, ... i12, i13, i14, i15, i16, i17, i18, i19, i20, i21, i22, ... i23, i24, i25, i26, i27, i28, i29, i30, i31, i32, i33, ... i34, i35, i36, i37, i38, i39, i40, i41, i42, i43, i44, ... i45, i46, i47, i48, i49, i50, i51, i52, i53, i54, i55, ... i56, i57, i58, i59, i60, i61, i62, i63, i64, i65, i66, ... i67, i68, i69, i70, i71, i72, i73, i74, i75, i76, i77, ... i78, i79, i80, i81, i82, i83, i84, i85, i86, i87, i88, ... i89, i90, i91, i92, i93, i94, i95, i96, i97, i98, i99, ... i100, i101, i102, i103, i104, i105, i106, i107, i108, ... i109, i110, i111, i112, i113, i114, i115, i116, i117, ... i118, i119, i120, i121, i122, i123, i124, i125, i126, ... i127, i128, i129, i130, i131, i132, i133, i134, i135, ... i136, i137, i138, i139, i140, i141, i142, i143, i144, ... i145, i146, i147, i148, i149, i150, i151, i152, i153, ... i154, i155, i156, i157, i158, i159, i160, i161, i162, ... i163, i164, i165, i166, i167, i168, i169, i170, i171, ... i172, i173, i174, i175, i176, i177, i178, i179, i180, ... i181, i182, i183, i184, i185, i186, i187, i188, i189, ... i190, i191, i192, i193, i194, i195, i196, i197, i198, ... i199, i200, i201, i202, i203, i204, i205, i206, i207, ... i208, i209, i210, i211, i212, i213, i214, i215, i216, ... i217, i218, i219, i220, i221, i222, i223, i224, i225, ... i226, i227, i228, i229, i230, i231, i232, i233, i234, ... i235, i236, i237, i238, i239, i240, i241, i242, i243, ... (x for x in i244), i245, i246, i247, i248, i249, i250, i251, ... i252=1, i253=1, i254=1, i255=1) Traceback (most recent call last): File "<doctest test.test_syntax[26]>", line 1 SyntaxError: more than 255 arguments >>> f(lambda x: x[0] = 3) Traceback (most recent call last): File "<doctest test.test_syntax[27]>", line 1 SyntaxError: lambda cannot contain assignment The grammar accepts any test (basically, any expression) in the keyword slot of a call site. Test a few different options. >>> f(x()=2) Traceback (most recent call last): File "<doctest test.test_syntax[28]>", line 1 SyntaxError: keyword can't be an expression >>> f(a or b=1) Traceback (most recent call last): File "<doctest test.test_syntax[29]>", line 1 SyntaxError: keyword can't be an expression >>> f(x.y=1) Traceback (most recent call last): File "<doctest test.test_syntax[30]>", line 1 SyntaxError: keyword can't be an expression More set_context(): >>> (x for x in x) += 1 Traceback (most recent call last): File "<doctest test.test_syntax[31]>", line 1 SyntaxError: can't assign to generator expression >>>
library".format(showName), verbosity=self.logVerbosity) currentShowValues = self.SearchTVLibrary(showName = showName) if currentShowValues is None: self._ActionDatabase("INSERT INTO TVLibrary (ShowName) VALUES (?)", (showName, )) showID = self._ActionDatabase("SELECT (ShowID) FROM TVLibrary WHERE ShowName=?", (showName, ))[0][0] return showID else: goodlogging.Log.Fatal("DB", "An entry for {0} already exists in the TV library".format(showName)) ############################################################################ # UpdateShowDirInTVLibrary ############################################################################ def UpdateShowDirInTVLibrary(self, showID, showDir): """ Update show directory entry for given show id in TVLibrary table. Parameters ---------- showID : int Show id value. showDir : string Show directory name. """ goodlogging.Log.Info("DB", "Updating TV library for ShowID={0}: ShowDir={1}".format(showID, showDir)) self._ActionDatabase("UPDATE TVLibrary SET ShowDir=? WHERE ShowID=?", (showDir, showID)) ############################################################################ # SearchTVLibrary ############################################################################ def SearchTVLibrary(self, showName = None, showID = None, showDir = None): """ Search TVLibrary table. If none of the optonal arguments are given it looks up all entries of the table, otherwise it will look up entries which match the given arguments. Note that it only looks up based on one argument - if show directory is given this will be used, otherwise show id will be used if it is given, otherwise show name will be used. Parameters ---------- showName : string [optional : default = None] Show name. showID : int [optional : default = None] Show id value. showDir : string [optional : default = None] Show directory name. Returns ---------- list or None If no result is found this returns None otherwise it will return a the result of the SQL query as a list. In the case that the result is expected to be unique and multiple entries are return a fatal error will be raised. """ unique = True if showName is None and showID is None and showDir is None: goodlogging.Log.Info("DB", "Looking up all items in TV library", verbosity=self.logVerbosity) queryString = "SELECT * FROM TVLibrary" queryTuple = None unique = False elif showDir is not None: goodlogging.Log.Info("DB", "Looking up from TV library where ShowDir is {0}".format(showDir), verbosity=self.logVerbosity) queryString = "SELECT * FROM TVLibrary WHERE ShowDir=?" queryTuple = (showDir, ) elif showID is not None: goodlogging.Log.Info("DB", "Looking up from TV library where ShowID is {0}".format(showID), verbosity=self.logVerbosity) queryString = "SELECT * FROM TVLibrary WHERE ShowID=?" queryTuple = (showID, ) elif showName is not None: goodlogging.Log.Info("DB", "Looking up from TV library where ShowName is {0}".format(showName), verbosity=self.logVerbosity) queryString = "SELECT * FROM TVLibrary WHERE ShowName=?" queryTuple = (showName, ) result = self._ActionDatabase(queryString, queryTuple, error = False) if result is None: return None elif len(result) == 0: return None elif len(result) == 1: goodlogging.Log.Info("DB", "Found match in TVLibrary: {0}".format(result), verbosity=self.logVerbosity) return result elif len(result) > 1: if unique is True: goodlogging.Log.Fatal("DB", "Database corrupted - multiple matches found in TV Library: {0}".format(result)) else: goodlogging.Log.Info("DB", "Found multiple matches in TVLibrary: {0}".format(result), verbosity=self.logVerbosity) return result ############################################################################ # SearchFileNameTable ############################################################################ def SearchFileNameTable(self, fileName): """ Search FileName table. Find the show id for a given file name. Parameters ---------- fileName : string File name to look up in table. Returns ---------- int or None If a match is found in the database table the show id for this entry is returned, otherwise this returns None. """ goodlogging.Log.Info("DB", "Looking up filename string '{0}' in database".format(fileName), verbosity=self.logVerbosity) queryString = "SELECT ShowID FROM FileName WHERE FileName=?" queryTuple = (fileName, ) result = self._ActionDatabase(queryString, queryTuple, error = False) if result is None: goodlogging.Log.Info("DB", "No match found in database for '{0}'".format(fileName), verbosity=self.logVerbosity) return None elif len(result) == 0: return None elif len(result) == 1: goodlogging.Log.Info("DB", "Found file name match: {0}".format(result), verbosity=self.logVerbosity) return result[0][0] elif len(result) > 1: goodlogging.Log.Fatal("DB", "Database corrupted - multiple matches found in database table for: {0}".format(result)) ############################################################################ # AddFileNameTable ############################################################################ def AddToFileNameTable(self, fileName, showID): """ Add entry to FileName table. If the file name and show id combination already exists in the table a fatal error is raised. Parameters ---------- fileName : string File name. showID : int Show id. """ goodlogging.Log.Info("DB", "Adding filename string match '{0}'={1} to database".format(fileName, showID), verbosity=self.logVerbosity) currentValues = self.SearchFileNameTable(fileName) if currentValues is None: self._ActionDatabase("INSERT INTO FileName (FileName, ShowID) VALUES (?,?)", (fileName, showID)) else: goodlogging.Log.Fatal("DB", "An entry for '{0}' already exists in the FileName table".format(fileName)) ############################################################################ # SearchSeasonDirTable ############################################################################ def SearchSeasonDirTable(self, showID, seasonNum): """ Search SeasonDir table. Find the season directory for a given show id and season combination. Parameters ---------- showID : int Show id for given show. seasonNum : int Season number. Returns ---------- string or None If no match is found this returns None, if a single match is found then the season directory name value is returned. If multiple matches are found a fatal error is raised. """ goodlogging.Log.Info("DB", "Looking up directory for ShowID={0} Season={1} in database".format(showID, seasonNum), verbosity=self.logVerbosity) queryString = "SELECT SeasonDir FROM SeasonDir WHERE ShowID=? AND Season=?" queryTuple = (showID, seasonNum) result = self._ActionDatabase(queryString, queryTuple, error = False) if result is None: goodlogging.Log.Info("DB", "No match found in database", verbosity=self.logVerbosity) return None elif len(result) == 0: return None elif len(result) == 1: goodlogging.Log.Info("DB", "Found database match: {0}".format(result), verbosity=self.logVerbosity) return result[0][0] elif len(result) > 1: goodlogging.Log.Fatal("DB", "Database corrupted - multiple matches found in database table for: {0}".format(result)) ############################################################################ # AddSeasonDirTable ############################################################################ def AddSeasonDirTable(self, showID, seasonNum, seasonDir): """ Add entry to SeasonDir table. If a different entry for season directory is found for the given show id and season number combination this raises a fatal error. Parameters ---------- showID : int Show id. seasonNum : int Season number. seasonDir : string Season directory name. """ goodlogging.Log.Info("DB", "Adding season directory ({0}) to database for ShowID={1}, Season={2}".format(seasonDir, showID, seasonNum), verbosity=self.logVerbosity) currentValue = self.SearchSeasonDirTable(showID, seasonNum) if currentValue is None: self._ActionDatabase("INSERT INTO SeasonDir (ShowID, Season, SeasonDir) VALUES (?,?,?)", (showID, seasonNum, seasonDir)) else: if currentValue == seasonDir: goodlogging.Log.Info("DB", "A matching entry already exists in the SeasonDir table", verbosity=self.logVerbosity) else: goodlogging.Log.Fatal("DB", "A different entry already exists in the SeasonDir table") ############################################################################ # _PrintDatabaseTable ############################################################################ def _PrintDatabaseTable(self, tableName, rowSelect = None): """ Prints contents of database table. An optional argument (rowSelect) can be given which contains a list of column names and values against which to search, allowing a subset of the table to be printed. Gets database column headings using PRAGMA call. Automatically adjusts each column width based on the longest element that needs to be printed Parameters ---------- tableName : int Name of table to print. rowSelect : list of tuples A list of column names and values against to search against. Returns: int The number of table rows printed. """ goodlogging.Log.Info("DB", "{0}".format(tableName)) goodlogging.Log.IncreaseIndent() tableInfo = self._ActionDatabase("PRAGMA table_info({0})".format(tableName)) dbQuery = "SELECT * FROM {0}".format(tableName) dbQueryParams = [] if rowSelect is not None: dbQuery = dbQuery + " WHERE " + ' AND '.join(['{0}=?'.format(i) for i, j in rowSelect]) dbQueryParams = [j for i, j in rowSelect] tableData = self._ActionDatabase(dbQuery, dbQueryParams) columnCount = len(tableInfo) columnWidths = [0]*columnCount columnHeadings = [] for count, column in enumerate(tableInfo): columnHeadings.append(column[1]) columnWidths[count] = len(column[1]) for row in tableData: for count, column in enumerate(row): if len(str(column)) > columnWidths[count]: columnWidths[count] = len(column) printStr = "|" for count, column in enumerate(columnWidths): printStr = printStr + " {{0[{0}]:{1}}} |".format(count, columnWidths[count]) goodlogging.Log.Info("DB", printStr.format(columnHeadings)) goodlogging.Log.Info("DB", "-"*(sum(columnWidths)+3*len(columnWidths)+1)) for row in tableData: noneReplacedRow = ['-' if i is None else i for i in row] goodlogging.Log.Info("DB", printStr.format(noneReplacedRow)) goodlogging.Log.DecreaseIndent() goodlogging.Log.NewLine() return len(tableData) ############################################################################ # PrintAllTables ############################################################################ def PrintAllTables(self): """ Prints contents of every table. """ goodlogging.Log.Info("DB", "Database contents:\n") for table in self._tableDict.keys(): self._PrintDatabaseTable(table) ############################################################################ # _UpdateDatabaseFromResponse ############################################################################ def _UpdateDatabaseFromResponse(self, response, mode): """ Update database table given a user input in the form "TABLENAME COL1=VAL1 COL2=VAL2". Either ADD or DELETE from table depending on mode argument. If the change succeeds the updated table is printed to stdout. Parameters ---------- response : string User input. mode : string Valid values are 'ADD' or 'DEL'. Returns ---------- None Will always return None. There are numerous early returns in the cases where the database update cannot proceed for any reason. """ # Get tableName from user input (form TABLENAME COL1=VAL1 COL2=VAL2 etc) try: tableName,
<gh_stars>0 from torch_struct import ( CKY, CKY_CRF, DepTree, LinearChain, SemiMarkov, Alignment, deptree_nonproj, deptree_part, ) from torch_struct import ( LogSemiring, CheckpointSemiring, CheckpointShardSemiring, KMaxSemiring, SparseMaxSemiring, MaxSemiring, StdSemiring, EntropySemiring, ) from .extensions import ( LinearChainTest, SemiMarkovTest, DepTreeTest, CKYTest, CKY_CRFTest, test_lookup, ) import torch from hypothesis import given from hypothesis.strategies import integers, data, sampled_from import pytest from hypothesis import settings settings.register_profile("ci", max_examples=50, deadline=None) settings.load_profile("ci") smint = integers(min_value=2, max_value=4) tint = integers(min_value=1, max_value=2) lint = integers(min_value=2, max_value=10) algorithms = { "LinearChain": (LinearChain, LinearChainTest), "SemiMarkov": (SemiMarkov, SemiMarkovTest), "Dep": (DepTree, DepTreeTest), "CKY_CRF": (CKY_CRF, CKY_CRFTest), "CKY": (CKY, CKYTest), } class Gen: "Helper class for tests" def __init__(self, model_test, data, semiring): model_test = algorithms[model_test] self.data = data self.model = model_test[0] self.struct = self.model(semiring) self.test = model_test[1] self.vals, (self.batch, self.N) = data.draw(self.test.logpotentials()) # jitter if not isinstance(self.vals, tuple): self.vals = self.vals + 1e-6 * torch.rand(*self.vals.shape) self.semiring = semiring def enum(self, semiring=None): return self.test.enumerate( semiring if semiring is not None else self.semiring, self.vals ) # Model specific tests. @given(smint, smint, smint) @settings(max_examples=50, deadline=None) def test_linear_chain_counting(batch, N, C): vals = torch.ones(batch, N, C, C) semiring = StdSemiring alpha = LinearChain(semiring).sum(vals) c = pow(C, N + 1) assert (alpha == c).all() # Semiring tests @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "Dep"]) @pytest.mark.parametrize("semiring", [LogSemiring, MaxSemiring]) def test_log_shapes(model_test, semiring, data): gen = Gen(model_test, data, semiring) alpha = gen.struct.sum(gen.vals) count = gen.enum()[0] assert alpha.shape[0] == gen.batch assert count.shape[0] == gen.batch assert alpha.shape == count.shape assert torch.isclose(count[0], alpha[0]) @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov"]) def test_entropy(model_test, data): "Test entropy by manual enumeration" gen = Gen(model_test, data, EntropySemiring) alpha = gen.struct.sum(gen.vals) log_z = gen.model(LogSemiring).sum(gen.vals) log_probs = gen.enum(LogSemiring)[1] log_probs = torch.stack(log_probs, dim=1) - log_z entropy = -log_probs.mul(log_probs.exp()).sum(1).squeeze(0) assert entropy.shape == alpha.shape assert torch.isclose(entropy, alpha).all() @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain"]) def test_sparse_max(model_test, data): gen = Gen(model_test, data, SparseMaxSemiring) gen.vals.requires_grad_(True) gen.struct.sum(gen.vals) sparsemax = gen.struct.marginals(gen.vals) sparsemax.sum().backward() @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "Dep"]) def test_kmax(model_test, data): "Test out the k-max semiring" K = 2 gen = Gen(model_test, data, KMaxSemiring(K)) max1 = gen.model(MaxSemiring).sum(gen.vals) alpha = gen.struct.sum(gen.vals, _raw=True) # 2max is less than max. assert (alpha[0] == max1).all() assert (alpha[1] <= max1).all() topk = gen.struct.marginals(gen.vals, _raw=True) argmax = gen.model(MaxSemiring).marginals(gen.vals) # Argmax is different than 2-argmax assert (topk[0] == argmax).all() assert (topk[1] != topk[0]).any() if model_test != "Dep": log_probs = gen.enum(MaxSemiring)[1] tops = torch.topk(torch.cat(log_probs, dim=0), 5, 0)[0] assert torch.isclose(gen.struct.score(topk[1], gen.vals), alpha[1]).all() for k in range(K): assert (torch.isclose(alpha[k], tops[k])).all() @given(data()) @pytest.mark.parametrize("model_test", ["CKY"]) @pytest.mark.parametrize("semiring", [LogSemiring, MaxSemiring]) def test_cky(model_test, semiring, data): gen = Gen(model_test, data, semiring) alpha = gen.struct.sum(gen.vals) count = gen.enum()[0] assert alpha.shape[0] == gen.batch assert count.shape[0] == gen.batch assert alpha.shape == count.shape assert torch.isclose(count[0], alpha[0]) @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "CKY_CRF", "Dep"]) def test_max(model_test, data): "Test that argmax score is the same as max" gen = Gen(model_test, data, MaxSemiring) score = gen.struct.sum(gen.vals) marginals = gen.struct.marginals(gen.vals) assert torch.isclose(score, gen.struct.score(gen.vals, marginals)).all() @given(data()) @pytest.mark.parametrize("semiring", [LogSemiring, MaxSemiring]) @pytest.mark.parametrize("model_test", ["Dep"]) def test_labeled_proj_deptree(model_test, semiring, data): gen = Gen(model_test, data, semiring) arc_scores = torch.rand(3, 5, 5, 7) gen.vals = semiring.sum(arc_scores) count = gen.enum()[0] alpha = gen.struct.sum(arc_scores) assert torch.isclose(count, alpha).all() struct = gen.model(MaxSemiring) max_score = struct.sum(arc_scores) argmax = struct.marginals(arc_scores) assert torch.isclose(max_score, struct.score(arc_scores, argmax)).all() # todo: add CKY, DepTree too? @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "Dep", "CKY_CRF"]) def test_parts_from_marginals(model_test, data): gen = Gen(model_test, data, MaxSemiring) edge = gen.struct.marginals(gen.vals).long() sequence, extra = gen.model.from_parts(edge) edge_ = gen.model.to_parts(sequence, extra) assert (torch.isclose(edge, edge_)).all(), edge - edge_ sequence_, extra_ = gen.model.from_parts(edge_) assert extra == extra_, (extra, extra_) assert (torch.isclose(sequence, sequence_)).all(), sequence - sequence_ @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov"]) def test_parts_from_sequence(model_test, data): gen = Gen(model_test, data, LogSemiring) C = gen.vals.size(-1) if isinstance(gen.struct, LinearChain): K = 2 background = 0 extra = C elif isinstance(gen.struct, SemiMarkov): K = gen.vals.size(-3) background = -1 extra = C, K else: raise NotImplementedError() sequence = torch.full((gen.batch, gen.N), background, dtype=int) for b in range(gen.batch): i = 0 while i < gen.N: symbol = torch.randint(0, C, (1,)).item() sequence[b, i] = symbol length = torch.randint(1, K, (1,)).item() i += length edge = gen.model.to_parts(sequence, extra) sequence_, extra_ = gen.model.from_parts(edge) assert extra == extra_, (extra, extra_) assert (torch.isclose(sequence, sequence_)).all(), sequence - sequence_ edge_ = gen.model.to_parts(sequence_, extra_) assert (torch.isclose(edge, edge_)).all(), edge - edge_ @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "CKY_CRF", "Dep"]) def test_generic_lengths(model_test, data): gen = Gen(model_test, data, LogSemiring) model, struct, vals, N, batch = gen.model, gen.struct, gen.vals, gen.N, gen.batch lengths = torch.tensor( [data.draw(integers(min_value=2, max_value=N)) for b in range(batch - 1)] + [N] ) m = model(MaxSemiring).marginals(vals, lengths=lengths) maxes = struct.score(vals, m) part = model().sum(vals, lengths=lengths) # Check that max is correct assert (maxes <= part + 1e-3).all() m_part = model(MaxSemiring).sum(vals, lengths=lengths) assert (torch.isclose(maxes, m_part)).all(), maxes - m_part if model == CKY: return seqs, extra = struct.from_parts(m) full = struct.to_parts(seqs, extra, lengths=lengths) assert (full == m.type_as(full)).all(), "%s %s %s" % ( full.shape, m.shape, (full - m.type_as(full)).nonzero(), ) @given(data()) @pytest.mark.parametrize( "model_test", ["LinearChain", "SemiMarkov", "Dep", "CKY", "CKY_CRF"] ) def test_params(model_test, data): gen = Gen(model_test, data, LogSemiring) _, struct, vals, _, _ = gen.model, gen.struct, gen.vals, gen.N, gen.batch if isinstance(vals, tuple): vals = tuple((v.requires_grad_(True) for v in vals)) else: vals.requires_grad_(True) alpha = struct.sum(vals) alpha.sum().backward() @given(data()) @pytest.mark.parametrize("model_test", ["LinearChain", "SemiMarkov", "Dep"]) def test_gumbel(model_test, data): gen = Gen(model_test, data, LogSemiring) gen.vals.requires_grad_(True) alpha = gen.struct.marginals(gen.vals) print(alpha[0]) print(torch.autograd.grad(alpha, gen.vals, alpha.detach())[0][0]) def test_hmm(): C, V, batch, N = 5, 20, 2, 5 transition = torch.rand(C, C) emission = torch.rand(V, C) init = torch.rand(C) observations = torch.randint(0, V, (batch, N)) out = LinearChain.hmm(transition, emission, init, observations) LinearChain().sum(out) def test_sparse_max2(): print(LinearChain(SparseMaxSemiring).sum(torch.rand(1, 8, 3, 3))) print(LinearChain(SparseMaxSemiring).marginals(torch.rand(1, 8, 3, 3))) # assert(False) def test_lc_custom(): model = LinearChain vals, _ = model._rand() struct = LinearChain(LogSemiring) marginals = struct.marginals(vals) s = struct.sum(vals) struct = LinearChain(CheckpointSemiring(LogSemiring, 1)) marginals2 = struct.marginals(vals) s2 = struct.sum(vals) assert torch.isclose(s, s2).all() assert torch.isclose(marginals, marginals2).all() struct = LinearChain(CheckpointShardSemiring(LogSemiring, 1)) marginals2 = struct.marginals(vals) s2 = struct.sum(vals) assert torch.isclose(s, s2).all() assert torch.isclose(marginals, marginals2).all() # struct = LinearChain(LogMemSemiring) # marginals2 = struct.marginals(vals) # s2 = struct.sum(vals) # assert torch.isclose(s, s2).all() # assert torch.isclose(marginals, marginals).all() # struct = LinearChain(LogMemSemiring) # marginals = struct.marginals(vals) # s = struct.sum(vals) # struct = LinearChain(LogSemiringKO) # marginals2 = struct.marginals(vals) # s2 = struct.sum(vals) # assert torch.isclose(s, s2).all() # assert torch.isclose(marginals, marginals).all() # print(marginals) # print(marginals2) # struct = LinearChain(LogSemiring) # marginals = struct.marginals(vals) # s = struct.sum(vals) # struct = LinearChain(LogSemiringKO) # marginals2 = struct.marginals(vals) # s2 = struct.sum(vals) # assert torch.isclose(s, s2).all() # print(marginals) # print(marginals2) # struct = LinearChain(MaxSemiring) # marginals = struct.marginals(vals) # s = struct.sum(vals) # struct = LinearChain(MaxSemiringKO) # marginals2 = struct.marginals(vals) # s2 = struct.sum(vals) # assert torch.isclose(s, s2).all() # assert torch.isclose(marginals, marginals2).all() @given(data()) @pytest.mark.parametrize("model_test", ["Dep"]) @pytest.mark.parametrize("semiring", [LogSemiring]) def test_non_proj(model_test, semiring, data): gen = Gen(model_test, data, semiring) alpha = deptree_part(gen.vals, False) count = gen.test.enumerate(LogSemiring, gen.vals, non_proj=True, multi_root=False)[ 0 ] assert alpha.shape[0] == gen.batch assert count.shape[0] == gen.batch assert alpha.shape == count.shape # assert torch.isclose(count[0], alpha[0], 1e-2) alpha = deptree_part(gen.vals, True) count = gen.test.enumerate(LogSemiring, gen.vals, non_proj=True, multi_root=True)[0] assert alpha.shape[0] == gen.batch assert count.shape[0] == gen.batch assert alpha.shape == count.shape # assert torch.isclose(count[0], alpha[0], 1e-2) marginals = deptree_nonproj(gen.vals, multi_root=False) print(marginals.sum(1)) marginals = deptree_nonproj(gen.vals, multi_root=True) print(marginals.sum(1)) # # assert(False) # # vals, _ = model._rand() # # struct = model(MaxSemiring) # # score = struct.sum(vals) # # marginals = struct.marginals(vals) # # assert torch.isclose(score, struct.score(vals, marginals)).all() @given(data()) @settings(max_examples=50, deadline=None) def ignore_alignment(data): # log_potentials = torch.ones(2, 2, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) # print("FINAL", v) # log_potentials = torch.ones(2, 3, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) # print("FINAL", v) # log_potentials = torch.ones(2, 6, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) # print("FINAL", v) # log_potentials = torch.ones(2, 7, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) # print("FINAL", v) # log_potentials = torch.ones(2, 8, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) # print("FINAL", v) # assert False # model = data.draw(sampled_from([Alignment])) # semiring = data.draw(sampled_from([StdSemiring])) # struct = model(semiring) # vals, (batch, N) = model._rand() # print(batch, N) # struct = model(semiring) # # , max_gap=max(3, abs(vals.shape[1] - vals.shape[2]) + 1)) # vals.fill_(1) # alpha = struct.sum(vals) model = data.draw(sampled_from([Alignment])) semiring = data.draw(sampled_from([StdSemiring])) test = test_lookup[model](semiring) struct = model(semiring, sparse_rounds=10) vals, (batch, N) = test._rand() alpha = struct.sum(vals) count = test.enumerate(vals)[0] assert torch.isclose(count, alpha).all() model = data.draw(sampled_from([Alignment])) semiring = data.draw(sampled_from([LogSemiring])) struct = model(semiring, sparse_rounds=10) vals, (batch, N) = model._rand() alpha = struct.sum(vals) count = test_lookup[model](semiring).enumerate(vals)[0] assert torch.isclose(count, alpha).all() # model = data.draw(sampled_from([Alignment])) # semiring = data.draw(sampled_from([MaxSemiring])) # struct = model(semiring) # log_potentials = torch.ones(2, 2, 2, 3) # v = Alignment(StdSemiring).sum(log_potentials) log_potentials = torch.ones(2, 2, 8, 3) v = Alignment(MaxSemiring).sum(log_potentials) # print(v) # assert False m = Alignment(MaxSemiring).marginals(log_potentials) score = Alignment(MaxSemiring).score(log_potentials, m) assert torch.isclose(v, score).all() semiring
<filename>03_conv_nets/3-1_introduction/lesson_1_37_CNN_for_CIFAR.py ### Convolutional Neural Networks ''' In this notebook, we train a CNN to classify images from the CIFAR-10 database. The images in this database are small color images that fall into one of ten classes; some example images are pictured below. ''' ''' Test for CUDA Since these are larger (32x32x3) images, it may prove useful to speed up your training time by using a GPU. CUDA is a parallel computing platform and CUDA Tensors are the same as typical Tensors, only they utilize GPU's for computation. ''' import torch import numpy as np # check if CUDA is available train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') ''' Load the Data Downloading may take a minute. We load in the training and test data, split the training data into a training and validation set, then create DataLoaders for each of these sets of data. ''' from torchvision import datasets import torchvision.transforms as transforms from torch.utils.data.sampler import SubsetRandomSampler # number of subprocesses to use for data loading num_workers = 0 # how many samples per batch to load batch_size = 20 # percentage of training set to use as validation valid_size = 0.2 # convert data to a normalized torch.FloatTensor transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ##### alternatively with data augmentation transform_aug = transforms.Compose([ transforms.RandomHorizontalFlip(), # randomly flip and rotate transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # choose the training and test datasets train_data = datasets.CIFAR10('data', train=True, download=True, transform=transform_aug) test_data = datasets.CIFAR10('data', train=False, download=True, transform=transform_test) # obtain training indices that will be used for validation num_train = len(train_data) indices = list(range(num_train)) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] # define samplers for obtaining training and validation batches train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) # prepare data loaders (combine dataset and sampler) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers) valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) # specify the image classes classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] #### Visualize a Batch of Training Data import matplotlib.pyplot as plt #%matplotlib inline # helper function to un-normalize and display an image def imshow(img): img = img / 2 + 0.5 # unnormalize plt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image # obtain one batch of training images dataiter = iter(train_loader) images, labels = dataiter.next() images = images.numpy() # convert images to numpy for display # plot the images in the batch, along with the corresponding labels fig = plt.figure(figsize=(25, 4)) # display 20 images for idx in np.arange(20): ax = fig.add_subplot(2, int(20/2), idx+1, xticks=[], yticks=[]) imshow(images[idx]) ax.set_title(classes[labels[idx]]) plt.show() ''' View an Image in More Detail Here, we look at the normalized red, green, and blue (RGB) color channels as three separate, grayscale intensity images. ''' rgb_img = np.squeeze(images[3]) channels = ['red channel', 'green channel', 'blue channel'] fig = plt.figure(figsize = (36, 36)) for idx in np.arange(rgb_img.shape[0]): ax = fig.add_subplot(1, 3, idx + 1) img = rgb_img[idx] ax.imshow(img, cmap='gray') ax.set_title(channels[idx]) width, height = img.shape thresh = img.max()/2.5 for x in range(width): for y in range(height): val = round(img[x][y],2) if img[x][y] !=0 else 0 ax.annotate(str(val), xy=(y,x), horizontalalignment='center', verticalalignment='center', size=8, color='white' if img[x][y]<thresh else 'black') plt.show() #### Define the Network Architecture ''' This time, you'll define a CNN architecture. Instead of an MLP, which used linear, fully-connected layers, you'll use the following: Convolutional layers, which can be thought of as stack of filtered images. Maxpooling layers, which reduce the x-y size of an input, keeping only the most active pixels from the previous layer. The usual Linear + Dropout layers to avoid overfitting and produce a 10-dim output. A network with 2 convolutional layers is shown in the image below and in the code, and you've been given starter code with one convolutional and one maxpooling layer. TODO: Define a model with multiple convolutional layers, and define the feedforward network behavior. The more convolutional layers you include, the more complex patterns in color and shape a model can detect. It's suggested that your final model include 2 or 3 convolutional layers as well as linear layers + dropout in between to avoid overfitting. It's good practice to look at existing research and implementations of related models as a starting point for defining your own models. You may find it useful to look at this PyTorch classification example or this, more complex Keras example to help decide on a final structure. Output volume for a convolutional layer To compute the output size of a given convolutional layer we can perform the following calculation (taken from Stanford's cs231n course): We can compute the spatial size of the output volume as a function of the input volume size (W), the kernel/filter size (F), the stride with which they are applied (S), and the amount of zero padding used (P) on the border. The correct formula for calculating how many neurons define the output_W is given by (W−F+2P)/S+1. For example for a 7x7 input and a 3x3 filter with stride 1 and pad 0 we would get a 5x5 output. With stride 2 we would get a 3x3 output. ''' ### see here for the winning architecture: # http://blog.kaggle.com/2015/01/02/cifar-10-competition-winners-interviews-with-dr-ben-graham-phil-culliton-zygmunt-zajac/ ### see here for pytorch tutorial: # https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py #################### NOTE this ist version 1, the bigger model import torch.nn as nn import torch.nn.functional as F # define the CNN architecture class Net1(nn.Module): def __init__(self): super(Net1, self).__init__() # setup num_classes = 10 drop_p = 0.5 # convolutional layer self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) # max pooling layer self.pool = nn.MaxPool2d(2, 2) # fully connected layer self.fc1 = nn.Linear(1024, 256, bias=True) self.fc2 = nn.Linear(256, 64, bias=True) self.fc3 = nn.Linear(64, num_classes, bias=True) # dropout self.dropout = nn.Dropout(drop_p) def forward(self, x): # add sequence of convolutional and max pooling layers x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) # flatten image, keep batch size x = x.view(x.shape[0], -1) x = self.dropout(self.fc1(x)) x = self.dropout(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x ##################### NOTE this is version 2, the smaller model import torch.nn as nn import torch.nn.functional as F # define the CNN architecture class Net2(nn.Module): def __init__(self): super(Net2, self).__init__() # setup num_classes = 10 drop_p = 0.25 # convolutional layer self.conv1 = nn.Conv2d(3, 8, 3, padding=1) self.conv2 = nn.Conv2d(8, 16, 3, padding=1) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) # max pooling layer self.pool = nn.MaxPool2d(2, 2) # fully connected layer self.fc1 = nn.Linear(512, 128, bias=True) self.fc2 = nn.Linear(128, 64, bias=True) self.fc3 = nn.Linear(64, num_classes, bias=True) # dropout self.dropout = nn.Dropout(drop_p) def forward(self, x): # add sequence of convolutional and max pooling layers x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) # flatten image, keep batch size x = x.view(x.shape[0], -1) x = self.dropout(self.fc1(x)) x = self.dropout(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x ##################### NOTE this is the official solution example, it is similar to version 1 # * Conv-layer sind wie bei mir # * hat einen fc layer weniger als ich # * hat einen dropout hinter dem letzten conv, das hatte ich nicht # * hat eine relu hinter dem ersten fc, das hatte ich nicht import torch.nn as nn import torch.nn.functional as F # define the CNN architecture class Net(nn.Module): def __init__(self): super(Net, self).__init__() # convolutional layer self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) # max pooling layer self.pool = nn.MaxPool2d(2, 2) # fully connected layer self.fc1 = nn.Linear(64 * 4 * 4, 500) self.fc2 = nn.Linear(500, 10) # dropout self.dropout = nn.Dropout(0.25) def forward(self, x): # add sequence of convolutional and max pooling layers x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) # flatten image, keep batch size x = x.view(-1, 64 * 4 * 4) x = self.dropout(x) x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x #################### NOTE this is version 3, after seeing the official solution import torch.nn as nn import torch.nn.functional as F # define the CNN architecture class Net3(nn.Module): def __init__(self): super(Net3, self).__init__() # setup num_classes = 10 drop_p = 0.5 # convolutional layer self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32,
<gh_stars>0 import os import sys import json import copy import mdtraj import numpy as np import time import pandas as pd import pickle import mdtraj as md import multiprocessing as mp try: import cupy as cp cudaExists = True import kernel except ImportError as e: cudaExists = False print("Can't load CuPy, contact fingerprint will not run") # sys.path.insert(1, os.path.join(sys.path[0], '../test_contacts/contacts/contacts/')) import importlib ligand_map = {'A': 0, 'C': 0, 'N': 1, 'NA': 1, 'O': 2, 'OA': 2, 'F': 3, 'P': 4, 'S': 5, 'SA': 5, 'CL': 6, 'BR': 7, 'I': 8, 'H': 9} protein_map = {'A': 0, 'C': 0, 'N': 1, 'NA': 1, 'O': 2, 'OA': 2, 'S': 3, 'SA': 3, 'H': 4} # import MDAnalysis as mda # import MDAnalysis.analysis.rms def ALIGN_A_RMSD_B(P, Q, A, B): # P is the one to be aligned (N * 3) # Q is the ref (N * 3) # A is the list of index to be considered for alignment (protein) (N * 1) # B is the list of index to calculate RMSD (ligand) (N * 1) # Returns rmsd between subset P[B] and Q[B] PU = P[A] # Get subset QU = Q[A] # Get subset PC = PU - PU.mean(axis=0) # Center points QC = QU - QU.mean(axis=0) # Center points # Kabsch method C = np.dot(np.transpose(PC), QC) V, S, W = np.linalg.svd(C,full_matrices=False) d = (np.linalg.det(V) * np.linalg.det(W)) < 0.0 if d: S[-1] = -S[-1] V[:, -1] = -V[:, -1] # Create Rotation matrix U U = np.dot(V, W) P = P - PU.mean(axis=0) # Move all points Q = Q - QU.mean(axis=0) # Move all points P = np.dot(P, U) # Rotate P diff = P[B] - Q[B] N = len(P[B]) return np.sqrt((diff * diff).sum() / N), P + QU.mean(axis=0) def pureRMSD(P, Q): # Assume P and Q are aligned firsted diff = P - Q N = len(P) return np.sqrt((diff * diff).sum() / N) def ReadLog(fname): with open(fname,'r') as f: cont = f.readlines() Step = [] Time = [] Temperature = [] Etot = [] EKtot = [] EPtot = [] Bond = [] Angle = [] Dihedral = [] Elec = [] vdW = [] Solvent = [] start_print = False for line in cont: if '(6.) RESULTS' in line: start_print = True if 'Averages over' in line: start_print = False if start_print == True: if 'Step' in line: ele = line.split() Step.append(int(ele[1])) Time.append(float(ele[3])) if 'Temperature' in line: Temperature.append(float(line.split(':')[1].strip())) if 'Etot' in line: ele = line.split() Etot.append(float(ele[1])) EKtot.append(float(ele[3])) EPtot.append(float(ele[5])) if 'Bond' in line: ele = line.split() Bond.append(float(ele[1])) Angle.append(float(ele[3])) Dihedral.append(float(ele[5])) if 'Elec' in line: ele = line.split() Elec.append(float(ele[1])) vdW.append(float(ele[3])) Solvent.append(float(ele[5])) # print(line.strip('\n')) output = np.array([Step, Time, Temperature, Etot, EKtot, EPtot, Bond, Angle, Dihedral, Elec, vdW, Solvent]).T output = pd.DataFrame(output, columns=['Step', 'Time', 'Temperature', 'Etot', 'EKtot', 'EPtot', 'Bond', 'Angle', 'Dihedral', 'Elec', 'vdW', 'Solvent']) return output def Distribute_Lig_pose_RMSD(arg): obj, crystalComp = arg obj.calculateRMSD(crystalComp) return obj def readMDCRD(fname, natom): with open(fname, 'r') as f: f.readline() cont = f.read() xyz = list(map(float,cont.split())) return np.array(xyz).reshape(-1, natom, 3) class mdgxTrajectory: def __init__(self, trjFile, outFile, rstFile, ioutfm): self.trjFile = trjFile self.outFile = outFile self.rstFile = rstFile self.ioutfm = ioutfm self.hasRMSD = False self.hasTrjFile = False self.hasOutFile = False self.output = None self.RMSD = [] self.contactScore = [] self.hasContactScore = False self.ligandTrajectory = None # We store this information for contact calculation self.ligandTrajectoryH = None # We store this information for contact calculation self.hasLigandTrajectory = False # self.trjLength = 0 # self.rmsd = [] def calculateRMSD(self, prmtop, crystalComp, lig_len, ligand_res): # This function also logs the ligand trajectory even if RMSD calculation fails try: if (not self.hasRMSD): Profile = np.random.random() < 0.00 if Profile: t0 = time.time() if self.ioutfm == 1: # Binary netcdf trajectory comp = mdtraj.load_netcdf(self.trjFile, top=prmtop) elif self.ioutfm == 0: # ASCII MDCRD trajectory, loading is slower systemLen = crystalComp.n_atoms comp = readMDCRD(self.trjFile, systemLen) if Profile: t1 = time.time() self.trjLength = len(comp) if Profile: t2 = time.time() R = [] LT = [] systemLen = crystalComp.n_atoms referenceXYZ = crystalComp.xyz[0] if self.ioutfm == 1: for xyz in comp.xyz: R_this, LT_this = ALIGN_A_RMSD_B(xyz*10, referenceXYZ*10, range(0, systemLen-lig_len), range((systemLen-lig_len), systemLen)) R.append(R_this) LT.append(LT_this) elif self.ioutfm == 0: for xyz in comp: R_this, LT_this = ALIGN_A_RMSD_B(xyz, referenceXYZ*10, range(0, systemLen-lig_len), range((systemLen-lig_len), systemLen)) R.append(R_this) LT.append(LT_this) self.RMSD = np.array(R) LT = np.array(LT) if Profile: t3 = time.time() self.output = ReadLog(self.outFile) if Profile: t4 = time.time() self.hasRMSD = True if Profile: print(f' Profiling: Loading comp {(t1-t0)*1000:.3f} ms | Superpose {(t2-t1)*1000:.3f} ms | RMSD {(t3-t2)*1000:.3f} ms | Read output {(t4-t3)*1000:.3f} ms ') self.hasTrjFile = True self.hasOutFile = True if not self.hasLigandTrajectory: # Also store ligand trajectories for contact analysis lig = crystalComp.top.select(f"residue {ligand_res} and not symbol H") ligH = crystalComp.top.select(f"residue {ligand_res}") pro = crystalComp.top.select(f"not residue {ligand_res} and not symbol H") self.ligandTrajectory = LT[:,lig] self.ligandTrajectoryH = LT[:, ligH] self.hasLigandTrajectory = True except: pass def readOutput(self): try: self.output = ReadLog(self.outFile) self.hasOutFile = True except: pass def readLigTraj(self, prmtop, initialPose, ligand_res): # This function just logs the ligand trajectory # initialPose is for getting the systemLen if not self.hasLigandTrajectory: if self.ioutfm == 1: # Binary netcdf trajectory initialComp = mdtraj.load_netcdf(self.trjFile, top=prmtop) elif self.ioutfm == 0: # ASCII MDCRD trajectory, loading is slower initialComp = mdtraj.load(self.initialPose, top=prmtop) systemLen = initialComp.n_atoms comp = readMDCRD(self.trjFile, systemLen) lig = initialComp.top.select(f"residue {ligand_res} and not symbol H") ligH = initialComp.top.select(f"residue {ligand_res}") pro = initialComp.top.select(f"not residue {ligand_res} and not symbol H") self.ligandTrajectory = LT[:,lig] self.ligandTrajectoryH = LT[:, ligH] self.hasLigandTrajectory = True def getContactScore(self, prmtop, ligand_res): t0 = time.time() if self.ioutfm == 1: comp = md.load(self.trjFile, top=prmtop) elif self.ioutfm == 0: comp = md.load_mdcrd(self.trjFile, top=prmtop) # print(comp) t1 = time.time() pro = comp.top.select(f"not residue {ligand_res} and not symbol H") lig = comp.top.select(f"residue {ligand_res} and not symbol H") close_atoms = np.array([ 45, 106, 107, 167, 168, 170, 175, 176, 177, 178, 179, 180, 181, 182, 232, 259, 381, 386, 387, 388]) # self.proteinCoordinates = comp.xyz[0][pro][close_atoms]*10 # self.ligandTrajectory2 = comp.xyz[:,lig]*10 x_ligand = cp.array(comp.xyz[:,lig,0].flatten()*10) y_ligand = cp.array(comp.xyz[:,lig,1].flatten()*10) z_ligand = cp.array(comp.xyz[:,lig,2].flatten()*10) x_protein = cp.array(comp.xyz[0][pro][close_atoms][:,0]*10) y_protein = cp.array(comp.xyz[0][pro][close_atoms][:,1]*10) z_protein = cp.array(comp.xyz[0][pro][close_atoms][:,2]*10) t_protein = cp.array(cp.arange(len(close_atoms)), dtype=cp.int32) # types_protein = cp.array([protein_map[x.element.symbol.upper()] for x in np.array(list(comp.top.atoms))[pro]], dtype=cp.int32) types_ligand = cp.tile(cp.array([ligand_map[x.element.symbol.upper()] for x in np.array(list(comp.top.atoms))[lig]], dtype=cp.int32), comp.n_frames) offset = cp.linspace(0,len(types_ligand),comp.n_frames+1,dtype=cp.int32) nbins = 1 binsize = 3.4 t2 = time.time() feat = kernel.compute(x_ligand, y_ligand, z_ligand, types_ligand, offset, x_protein, y_protein, z_protein, t_protein, cutoff=nbins*binsize,binsize=binsize,nbins=nbins, n_receptor_types=len(t_protein), max_ligand_atoms=(len(lig)+31)//32*32) print(feat.shape) t3 = time.time() self.features = cp.asnumpy(feat) # print(feat2.shape) t35 = time.time() # self.contactScore = feat2.reshape(len(comp), -1, len(pro)) # self.contactScore = contactScore.get() # self.hasContactScore = True t4 = time.time() print(f'Timing: Load {(t1-t0)*1000:.2f} ms, set {(t2-t1)*1000:.2f} ms, calc {(t3-t2)*1000:.2f} ms, convert {(t4-t3)*1000:.2f} ms') print(f'Timing: feat get {(t35-t3)*1000:.2f} ms, reshape {(t4-t35)*1000:.2f} ms') def inheritMdgxTrajectory(self, TRJ): self.trjFile = TRJ.trjFile self.outFile = TRJ.outFile self.rstFile = TRJ.rstFile self.hasRMSD = TRJ.hasRMSD # if self.hasRMSD: self.RMSD = TRJ.RMSD self.ioutfm = TRJ.ioutfm self.hasTrjFile = TRJ.hasTrjFile self.hasOutFile = TRJ.hasOutFile self.output = TRJ.output try: self.hasContactScore = TRJ.hasContactScore self.contactScore = TRJ.contactScore except: self.hasContactScore = False self.contactScore = None # try: self.ligandTrajectory = TRJ.ligandTrajectory self.ligandTrajectoryH = TRJ.ligandTrajectoryH self.hasLigandTrajectory = TRJ.hasLigandTrajectory # self.proteinCheck = TRJ.proteinCheck # except: # self.ligandTrajectory = None # self.hasLigandTrajectory = False # self.RMSD = TRJ.RMSD class Pose: def __init__(self, name, rank, successQR=False, ligand_res=None, settings=None, folderMetadata=None, simulationPrefixes=['EM','QR','MD']): self.poseName = name self.ligandName = name.split('_')[0] self.nrep = {} self.length = {} self.writeCrdInterval = {} self.ioutfm = {} self.timeStep = {} self.successQR = successQR # If QR succeeds all subsequent rounds succeed. self.ligand_res = ligand_res self.simulationPrefixes = simulationPrefixes for simPrefix in self.simulationPrefixes: self.nrep[simPrefix] = int(settings[simPrefix]['N-rep']) self.length[simPrefix] = int(settings[simPrefix]['cntrl']['nstlim']) self.writeCrdInterval[simPrefix] = int(settings[simPrefix]['cntrl']['ntwx']) self.ioutfm[simPrefix] = int(settings[simPrefix]['cntrl']['ioutfm']) self.timeStep[simPrefix] = float(settings[simPrefix]['cntrl']['dt']) if 'EX' in simPrefix: self.nrep[simPrefix] = self.nrep['MD'] self.outSuffix = settings['EM']['files']['-osf'] self.rstSuffix = settings['EM']['files']['-rsf'] self.crdSuffix = settings['EM']['files']['-xsf'] self.rootFolder = folderMetadata['rootFolder'] self.referenceFolder = folderMetadata['referenceFolder'] self.structureFolder = folderMetadata['structureFolder'] self.simulationFolder = folderMetadata['simulationFolder'] self.inpcrdFolder = folderMetadata['inpcrdFolder'] self.prmtopFolder = folderMetadata['prmtopFolder'] self.traj = {} for simPrefix in self.simulationPrefixes: self.traj[simPrefix] = [] if simPrefix == 'EM' or simPrefix == 'QR': pass elif not self.successQR: continue for ii in range(self.nrep[simPrefix]): trjFile = f'{self.simulationFolder}/{self.poseName}/{simPrefix}_R{ii+1}{self.crdSuffix}' outFile = f'{self.simulationFolder}/{self.poseName}/{simPrefix}_R{ii+1}{self.outSuffix}' rstFile = f'{self.simulationFolder}/{self.poseName}/{simPrefix}_R{ii+1}{self.rstSuffix}' self.traj[simPrefix].append(mdgxTrajectory(trjFile, outFile, rstFile, self.ioutfm[simPrefix])) # Also include initial pose self.initialPose = f'{self.inpcrdFolder}/{name}.inpcrd'
}, 89: { 'col_and_row': u'D17', 'row': 4, 'col': 17, 'well_id': 89, }, 90: { 'col_and_row': u'D18', 'row': 4, 'col': 18, 'well_id': 90, }, 91: { 'col_and_row': u'D19', 'row': 4, 'col': 19, 'well_id': 91, }, 92: { 'col_and_row': u'D20', 'row': 4, 'col': 20, 'well_id': 92, }, 93: { 'col_and_row': u'D21', 'row': 4, 'col': 21, 'well_id': 93, }, 94: { 'col_and_row': u'D22', 'row': 4, 'col': 22, 'well_id': 94, }, 95: { 'col_and_row': u'D23', 'row': 4, 'col': 23, 'well_id': 95, }, 96: { 'col_and_row': u'D24', 'row': 4, 'col': 24, 'well_id': 96, }, 97: { 'col_and_row': u'E1', 'row': 5, 'col': 1, 'well_id': 97, }, 98: { 'col_and_row': u'E2', 'row': 5, 'col': 2, 'well_id': 98, }, 99: { 'col_and_row': u'E3', 'row': 5, 'col': 3, 'well_id': 99, }, 100: { 'col_and_row': u'E4', 'row': 5, 'col': 4, 'well_id': 100, }, 101: { 'col_and_row': u'E5', 'row': 5, 'col': 5, 'well_id': 101, }, 102: { 'col_and_row': u'E6', 'row': 5, 'col': 6, 'well_id': 102, }, 103: { 'col_and_row': u'E7', 'row': 5, 'col': 7, 'well_id': 103, }, 104: { 'col_and_row': u'E8', 'row': 5, 'col': 8, 'well_id': 104, }, 105: { 'col_and_row': u'E9', 'row': 5, 'col': 9, 'well_id': 105, }, 106: { 'col_and_row': u'E10', 'row': 5, 'col': 10, 'well_id': 106, }, 107: { 'col_and_row': u'E11', 'row': 5, 'col': 11, 'well_id': 107, }, 108: { 'col_and_row': u'E12', 'row': 5, 'col': 12, 'well_id': 108, }, 109: { 'col_and_row': u'E13', 'row': 5, 'col': 13, 'well_id': 109, }, 110: { 'col_and_row': u'E14', 'row': 5, 'col': 14, 'well_id': 110, }, 111: { 'col_and_row': u'E15', 'row': 5, 'col': 15, 'well_id': 111, }, 112: { 'col_and_row': u'E16', 'row': 5, 'col': 16, 'well_id': 112, }, 113: { 'col_and_row': u'E17', 'row': 5, 'col': 17, 'well_id': 113, }, 114: { 'col_and_row': u'E18', 'row': 5, 'col': 18, 'well_id': 114, }, 115: { 'col_and_row': u'E19', 'row': 5, 'col': 19, 'well_id': 115, }, 116: { 'col_and_row': u'E20', 'row': 5, 'col': 20, 'well_id': 116, }, 117: { 'col_and_row': u'E21', 'row': 5, 'col': 21, 'well_id': 117, }, 118: { 'col_and_row': u'E22', 'row': 5, 'col': 22, 'well_id': 118, }, 119: { 'col_and_row': u'E23', 'row': 5, 'col': 23, 'well_id': 119, }, 120: { 'col_and_row': u'E24', 'row': 5, 'col': 24, 'well_id': 120, }, 121: { 'col_and_row': u'F1', 'row': 6, 'col': 1, 'well_id': 121, }, 122: { 'col_and_row': u'F2', 'row': 6, 'col': 2, 'well_id': 122, }, 123: { 'col_and_row': u'F3', 'row': 6, 'col': 3, 'well_id': 123, }, 124: { 'col_and_row': u'F4', 'row': 6, 'col': 4, 'well_id': 124, }, 125: { 'col_and_row': u'F5', 'row': 6, 'col': 5, 'well_id': 125, }, 126: { 'col_and_row': u'F6', 'row': 6, 'col': 6, 'well_id': 126, }, 127: { 'col_and_row': u'F7', 'row': 6, 'col': 7, 'well_id': 127, }, 128: { 'col_and_row': u'F8', 'row': 6, 'col': 8, 'well_id': 128, }, 129: { 'col_and_row': u'F9', 'row': 6, 'col': 9, 'well_id': 129, }, 130: { 'col_and_row': u'F10', 'row': 6, 'col': 10, 'well_id': 130, }, 131: { 'col_and_row': u'F11', 'row': 6, 'col': 11, 'well_id': 131, }, 132: { 'col_and_row': u'F12', 'row': 6, 'col': 12, 'well_id': 132, }, 133: { 'col_and_row': u'F13', 'row': 6, 'col': 13, 'well_id': 133, }, 134: { 'col_and_row': u'F14', 'row': 6, 'col': 14, 'well_id': 134, }, 135: { 'col_and_row': u'F15', 'row': 6, 'col': 15, 'well_id': 135, }, 136: { 'col_and_row': u'F16', 'row': 6, 'col': 16, 'well_id': 136, }, 137: { 'col_and_row': u'F17', 'row': 6, 'col': 17, 'well_id': 137, }, 138: { 'col_and_row': u'F18', 'row': 6, 'col': 18, 'well_id': 138, }, 139: { 'col_and_row': u'F19', 'row': 6, 'col': 19, 'well_id': 139, }, 140: { 'col_and_row': u'F20', 'row': 6, 'col': 20, 'well_id': 140, }, 141: { 'col_and_row': u'F21', 'row': 6, 'col': 21, 'well_id': 141, }, 142: { 'col_and_row': u'F22', 'row': 6, 'col': 22, 'well_id': 142, }, 143: { 'col_and_row': u'F23', 'row': 6, 'col': 23, 'well_id': 143, }, 144: { 'col_and_row': u'F24', 'row': 6, 'col': 24, 'well_id': 144, }, 145: { 'col_and_row': u'G1', 'row': 7, 'col': 1, 'well_id': 145, }, 146: { 'col_and_row': u'G2', 'row': 7, 'col': 2, 'well_id': 146, }, 147: { 'col_and_row': u'G3', 'row': 7, 'col': 3, 'well_id': 147, }, 148: { 'col_and_row': u'G4', 'row': 7, 'col': 4, 'well_id': 148, }, 149: { 'col_and_row': u'G5', 'row': 7, 'col': 5, 'well_id': 149, }, 150: { 'col_and_row': u'G6', 'row': 7, 'col': 6, 'well_id': 150, }, 151: { 'col_and_row': u'G7', 'row': 7, 'col': 7, 'well_id': 151, }, 152: { 'col_and_row': u'G8', 'row': 7, 'col': 8, 'well_id': 152, }, 153: { 'col_and_row': u'G9', 'row': 7, 'col': 9, 'well_id': 153, }, 154: { 'col_and_row': u'G10', 'row': 7, 'col': 10, 'well_id': 154, }, 155: { 'col_and_row': u'G11', 'row': 7, 'col': 11, 'well_id': 155, }, 156: { 'col_and_row': u'G12', 'row': 7, 'col': 12, 'well_id': 156, }, 157: { 'col_and_row': u'G13', 'row': 7, 'col': 13, 'well_id': 157, }, 158: { 'col_and_row': u'G14', 'row': 7, 'col': 14, 'well_id': 158, }, 159: { 'col_and_row': u'G15', 'row': 7, 'col': 15, 'well_id': 159, }, 160: { 'col_and_row': u'G16', 'row': 7, 'col': 16, 'well_id': 160, }, 161: { 'col_and_row': u'G17', 'row': 7, 'col': 17, 'well_id': 161, }, 162: { 'col_and_row': u'G18', 'row': 7, 'col': 18, 'well_id': 162, }, 163: { 'col_and_row': u'G19', 'row': 7, 'col': 19, 'well_id': 163, }, 164: { 'col_and_row': u'G20', 'row': 7, 'col': 20, 'well_id': 164, }, 165: { 'col_and_row': u'G21', 'row': 7, 'col': 21, 'well_id': 165, }, 166: { 'col_and_row': u'G22', 'row': 7, 'col': 22, 'well_id': 166, }, 167: { 'col_and_row': u'G23', 'row': 7, 'col': 23, 'well_id': 167, }, 168: { 'col_and_row': u'G24', 'row': 7, 'col': 24, 'well_id': 168, }, 169: { 'col_and_row': u'H1', 'row': 8, 'col': 1, 'well_id': 169, }, 170: { 'col_and_row': u'H2', 'row': 8, 'col': 2, 'well_id': 170, }, 171: { 'col_and_row': u'H3', 'row': 8, 'col': 3, 'well_id': 171, }, 172: { 'col_and_row': u'H4', 'row': 8, 'col': 4, 'well_id': 172, }, 173: { 'col_and_row': u'H5', 'row': 8, 'col': 5, 'well_id': 173, }, 174: { 'col_and_row': u'H6', 'row': 8, 'col': 6, 'well_id': 174, }, 175: { 'col_and_row': u'H7', 'row': 8, 'col': 7, 'well_id': 175, }, 176: { 'col_and_row': u'H8', 'row': 8, 'col': 8, 'well_id': 176, }, 177: { 'col_and_row': u'H9', 'row': 8, 'col': 9, 'well_id': 177, }, 178: { 'col_and_row': u'H10', 'row': 8, 'col': 10, 'well_id': 178, }, 179: { 'col_and_row': u'H11', 'row': 8, 'col': 11, 'well_id': 179, }, 180: { 'col_and_row': u'H12', 'row': 8, 'col': 12, 'well_id': 180, }, 181: { 'col_and_row': u'H13', 'row': 8, 'col': 13, 'well_id': 181, }, 182: { 'col_and_row': u'H14', 'row': 8, 'col': 14, 'well_id': 182, }, 183: { 'col_and_row': u'H15', 'row': 8, 'col': 15, 'well_id': 183, }, 184: { 'col_and_row': u'H16', 'row': 8, 'col': 16, 'well_id': 184, }, 185: { 'col_and_row': u'H17', 'row': 8, 'col': 17, 'well_id': 185, }, 186: { 'col_and_row': u'H18', 'row': 8, 'col': 18, 'well_id': 186, }, 187: { 'col_and_row': u'H19', 'row': 8, 'col': 19, 'well_id': 187, }, 188: { 'col_and_row': u'H20', 'row': 8, 'col': 20, 'well_id': 188, }, 189: { 'col_and_row': u'H21', 'row': 8, 'col': 21, 'well_id': 189, }, 190: { 'col_and_row': u'H22', 'row': 8, 'col': 22, 'well_id': 190, }, 191: { 'col_and_row': u'H23', 'row': 8, 'col': 23, 'well_id': 191, }, 192: { 'col_and_row': u'H24', 'row': 8, 'col': 24, 'well_id': 192, }, 193: { 'col_and_row': u'I1', 'row': 9, 'col': 1, 'well_id': 193, }, 194: { 'col_and_row': u'I2', 'row': 9, 'col': 2, 'well_id': 194, }, 195: { 'col_and_row': u'I3', 'row': 9, 'col': 3, 'well_id': 195, }, 196: { 'col_and_row': u'I4', 'row': 9, 'col': 4, 'well_id': 196, }, 197: { 'col_and_row': u'I5', 'row': 9, 'col': 5, 'well_id': 197, }, 198: { 'col_and_row': u'I6', 'row': 9, 'col': 6, 'well_id': 198, }, 199: { 'col_and_row': u'I7', 'row': 9, 'col': 7, 'well_id': 199, }, 200: { 'col_and_row': u'I8', 'row': 9, 'col': 8, 'well_id': 200, }, 201: { 'col_and_row': u'I9', 'row': 9, 'col': 9, 'well_id': 201, }, 202: { 'col_and_row': u'I10', 'row': 9, 'col': 10, 'well_id': 202, }, 203: { 'col_and_row': u'I11', 'row': 9, 'col': 11, 'well_id': 203, }, 204: { 'col_and_row': u'I12', 'row': 9, 'col': 12, 'well_id': 204, }, 205: { 'col_and_row':
yet made a choice.\nThe current line is: " + currentLine) print("Make sure this Dependent section depends upon a Random section, and make sure that Random section must always be visited before this Dependent section.\n") return -26 if chosenSubelement >= myNumChoices: print("\nError! This Dependent section does not have enough subsections. The section it depends on chose element #" + chosenSubelement + " but this Dependent section only has #" + myNumChoices + " subsections.\nThe current line is: " + currentLine) print("\nMake sure this Dependent section depends upon the correct Random section, make sure that the Random section and the Dependent section have the same number of subsections.") return -28 print(currentLine, file=saveChoicesFile, end='') print(chosenSubelement, file=saveChoicesFile) print('\t'+str(chosenSubelement), file=txtChoicesFile, end='') global globalCsvNames, globalCsvData globalCsvNames += ",v" + myVariableName.replace("-", "_") globalCsvData += "," + str(chosenSubelement+1) for i in range(chosenSubelement): retval = skipElement(inFile, currentLine) if (retval < 0): return retval retval = recursiveGenerate(inFile, outFile, saveChoicesFile, txtChoicesFile, myVariableName + "-" + str(chosenSubelement+1), dictionaryRepeatSame, dictionaryRepeatNever, dictionaryMatchSame, dictionaryMatchDifferent, dictionaryMatchOnlyOneEver, dictionaryMaxSelectionsPerSubPoint, startString, endString, currentString, currentPlusIntervalString, dictionaryLastChoice) if (retval < 0): return retval next_line = '' while (not "*end_dependent* "+myLabel+" " in next_line): next_line = inFile.readline() if not next_line: #readline returns an empty string when it reaches EOF print("\nError! Could not find *end_dependent* for the Dependent section with the label: " + myLabel) print("The program finished following a subsection for this Dependent section but was unable to find this Dependent section's end tag. Make sure the end tag is in the file. Make sure the Random and Constant and Dependent sections have the correct number of subsections.") return -27 next_line = next_line.rstrip('\n')+' ' return 1 def intersection(list1, list2): """ Returns the intersection and then the items in list2 that are not in list 1. """ int_dict = {} not_int_dict = {} list1_dict = {} for e in list1: list1_dict[e] = 1 for e in list2: if e in list1_dict: int_dict[e] = 1 else: not_int_dict[e] = 1 return [list(int_dict.keys()), list(not_int_dict.keys())] def nonUniformShuffle(freeToChoose, nonUniformFirstSubPoint, nonUniformFirstSubPointPercentage): """ Shuffle the list, but obey any nonUniformFirstSubPoint percentage. """ if logging: print('freeToChoose: ' + str(freeToChoose)) shuffle(freeToChoose) if (nonUniformFirstSubPoint and (0 in freeToChoose)): freeToChoose.remove(0) if (random()*100. < nonUniformFirstSubPointPercentage): freeToChoose.insert(0, 0) else: freeToChoose.append(0) def getChoiceForRepeatSame(myLabel, dictionaryRepeatSame, freeToChoose, myVariableName): """ Get a Random section's choice if RepeatSame. """ if myLabel in dictionaryRepeatSame: if dictionaryRepeatSame[myLabel] in freeToChoose: chosenSubelement = dictionaryRepeatSame[myLabel] else: print("\nError! Cannot satisfy both Repeat Same (aka 'Same when repeat') and either Match Different or Match Only One Ever.") print("The label for this Random section: " + str(myLabel) + ". The 'key' which contains the label and also a concatenated list of the iterations for any ongoing repetitions: " + str(myVariableName)) print("\nAny given text file was supposed to choose the same choice each time it encountered this Random section (so this random section, or one of its parents must Repeat). All of the matched text files were supposed to choose different choices on the same iteration of the repetition. The program was not able to satisfy both constraints. The most likely cause is that not all of the matched files encountered this Random section on the same iteration of a parent Random section.") print("\nFor example, if the first text file chose the first choice on the first iteration, then the second file did not encounter this Random section (due to a different choice in a Random parent), then the first file did not encounter this Random section in the second iteration, and finally the second file chose the first choice on the second iteration (a valid choice since it has not yet chosen anything and the other file did not choose on this repetition), then on any future repetition if they both encounter this Random section they will not be able to satisfy both constraints.") print("\nThis error may not always occur because the files may choose differently by chance, or because they choose the same but never encounter this Random section on the same iteration.") print("To alleviate this problem: remove one of the constraints (Repeat Same, Match Different, or Match Only One Ever), add more choices, reduce the number of matched files, or make the parent Random section Match Same so that all matched files encounter this Random section on the same iterations.") return -14 else: chosenSubelement = freeToChoose[0] return chosenSubelement def getChoiceForDifferentDouble(repeatDifferentDoublePercentage, dictionaryLastChoice, myLabel, freeToChoose): """ Get a Random section's choice if RepeatDifferentDouble. """ if random()*100. < repeatDifferentDoublePercentage: chosenSubelement = dictionaryLastChoice[myLabel] else: freeToChoose.remove(dictionaryLastChoice[myLabel]) freeToChoose += [dictionaryLastChoice[myLabel]] # needed in case there is only one choice chosenSubelement = freeToChoose[0] return chosenSubelement def getChoiceForMatchSame(repeatSame, myLabel, myVariableName, dictionaryMatchSame, dictionaryRepeatSame, repeatNever, dictionaryRepeatNever): """ Get a Random section's choice if MatchSame. """ if repeatSame and myLabel in dictionaryRepeatSame and dictionaryMatchSame[myVariableName] != dictionaryRepeatSame[myLabel]: print("\nError! Cannot satisfy both Match Same and Repeat Same (aka 'Same when repeat').") print("The label for this Random section: " + str(myLabel) + ". The 'key' which contains the label and also a concatenated list of the iterations for any ongoing repetitions: " + str(myVariableName)) print("\nThis Random section or one of its parents repeats. This section is supposed to always choose the same result as it has previously chosen, and is supposed to choose the same result as the matched text files chose on the same iteration of the repetition. The program was not able to satisfy both requirements. Most likely this random section is within another random section, and that parent random section does not use Match Same. So this section does not run on the same iterations for all the matched files. In the first iteration it did run for this file, no previous file had chosen this section, and this file chose differently than the others. Then in a future iteration, this file and a previous one both ran, putting the two requirements in conflict.") print("\nTo solve this problem, make the parent repeating section Match Same, or remove one of the two restrictions. Alternatively, if the current template file is run again there is a chance that the text files will choose similarly and this error will not appear.") return -16 if repeatNever and myLabel in dictionaryRepeatNever and dictionaryMatchSame[myVariableName] in dictionaryRepeatNever[myLabel]: print("\nError! Cannot satisfy both Match Same and Repeat Never (aka 'Always different when repeat').") print("The label for this Random section: " + str(myLabel) + ". The 'key' which contains the label and also a concatenated list of the iterations for any ongoing repetitions: " + str(myVariableName)) print("\nThis Random section or one of its parents repeats. This section is supposed to always choose the same result as the matched text files chose on the same iteration of the repetition, and this text file is not supposed to contain duplicates. The program was not able to satisfy both requirements. Most likely this random section is within another random section, and that parent random section does not use Match Same. So this section does not run on the same iterations for all the matched files. This text file made a choice in an iteration that no previous file chose during. Then in a later iteration, the previous files made that same choice and now this file cannot satisfy both requirements.") print("\nTo solve this problem, make the parent repeating section Match Same, or remove one of the two restrictions. Alternatively, if the current template file is run again there may be a chance that the text files will choose similarly and this error will not appear.") return -17 chosenSubelement = dictionaryMatchSame[myVariableName] if logging: print('This section is MatchSame, and a previous resume in the batch has already chosen: ', chosenSubelement) return chosenSubelement def getChosenSubElement(repeatSame, repeatNever, repeatNoDoubles, repeatDifferentDouble, repeatDifferentDoublePercentage, nonUniformFirstSubPoint, nonUniformFirstSubPointPercentage, matchMaxSelectionsPerSubPoint, maxSelectionsPerSubPointInteger, matchSame, matchDifferent, matchOnlyOneEver, myVariableName, myNumChoices, myLabel, dictionaryRepeatSame, dictionaryRepeatNever, dictionaryMatchSame, dictionaryMatchDifferent, dictionaryMatchOnlyOneEver, dictionaryMaxSelectionsPerSubPoint, dictionaryLastChoice, minimumNumberOfEntries, maximumNumberOfEntries): """ Get a Random section's chosen subelement based on RepeatNever, MatchOnlyOneEver, MatchSame, etc. """ freeToChoose = list(range(myNumChoices)) if
<reponame>illbebach/Dying-Bullish-Euphoria<gh_stars>1-10 # Program for testing "no new highs lately" or "dying bullish euphoria" (DBE) # strategy. # Author: <NAME> # Date: June 2019 # New to version 2.0 # * Added a ticker price threshold for reentry. When the ticker (index) falls # below a user entered percent of the most recent new high then the program # reenters the market regardless of the signal (bull or bear). # New to version 1.2 # * Added plotting # * Counts days since last M-day high # New to version 1.1 # * Can upload data from a spreadsheet. For some reason downloading from # this program only retrieves data since about 1970 for the S&P 500. # However, you can manually download data from Y! that goes back to 1950. # Similar issues for other indices. Hence uploading from a spreadsheet # may be prefered. # * Fixes copy of dataframe. v 1.0 did this incorrectly, so that the original # dataframe was modified in the loop. I don't think it caused any issues, # but it was not consistent with my intention. # Import Modules import pandas as pd import datetime import numpy as np #import math #import json #%% Upload historical prices from an Excel spreadsheet # If you want to download data from Yahoo! don't run this cell. # # For correct formating download data from Yahoo! into csv format and then # simply "save as" a .xlsx spreadsheet. # If you run this cell you probably do not want to run the next cell which # downloads prices from Y! # File name and sheet name # Most recent data should be at the bottom. eodDataFile = "snp500data_2019-6-18.xlsx" sheet = "Data" # Reads in col headings as str. origDataDF = pd.read_excel(eodDataFile, sheet, index_col = 0) # Do this if you want a smaller dataset for testing, checking post-discovery # results, etc. #origDataDF = origDataDF.tail(1000) #%% Download Historical stock prices from Y!. # Should include date, open, high, low, close, adjusted close, and volume. # If you imported data from a spreadsheet above don't run this cell. # Import module to download stock prices from Yahoo! import pandas_datareader as web # NOTE: this cell need not be run every time a parameter is changed, as the # data in this dataframe is not changed elsewhere in the program. Only run # this cell when parameters for this cell are changed! Otherwise you are # querying Yahoo for data unnecessarily. # Cell Parameters tkr = '^IXIC' # Stock ticker that data will be downloaded for # First trading day for SPY etf is 1993 Jan 29. # By trial and error it seems the oldest date DataReader will allow is # 1970 Jan 1, even tho S&P 500 data on Yahoo! goes back to approx 1950 Jan 3 # For NASDAQ (^IXIC) 1971, Feb 5 startDate = datetime.date(1971, 2, 1) # start date (yr, mo, day) endDate = datetime.date(2019, 8, 2) # end date # Download data. Most recent data is on bottom. origDataDF = web.DataReader(tkr, 'yahoo', startDate, endDate) #%% Parameters reentryPct = 0.01 # If the price drops below (reentryPct * most recent New # high) then reenter position regardless of signal. # To disable set to 0 M = 107 # Looking for a new M-day hi N = 134 # in last N days K = 250 # Starting point for calculations. Should be at least # as large as M+N series = 'Adj Close' # Can use 'Close', 'High', 'Low', 'Open', 'Adj Close' # For indices 'Close' = 'Adj Close' (I think) ################################################### # Have we had a new M-day high in the last N days? # First copy original downloaded data into new dataframe so we get clean data # each time we rerun this cell. eodDF = origDataDF.copy(deep = True) # Find new M-day highs (True) and calculate reentry price eodDF['MdayHi'] = eodDF[series].rolling(M).max() eodDF['newHi'] = np.where(eodDF[series] == eodDF['MdayHi'], True, False) eodDF['rePt'] = reentryPct*eodDF['MdayHi'] # Count days since last new M-day high. # I found this soln on Stack Overflow. # First run comparison to find where new contiguous groups begin (True) eodDF['dSinceNewHi'] = (eodDF['newHi'] != eodDF['newHi'].shift(1)) # Now use cumsum() (cummulative sum) to count the number of "groups" eodDF['dSinceNewHi'] = eodDF['dSinceNewHi'].cumsum() # Now groupby() with cumcount() to form running count of each group. This # counts first occurance as 0, which is correct when we transition to a new # high (Trues), but is 1 too small when we transistion to "not a new high" # (false). We are counting days since a new high (Falses) so add 1. eodDF['dSinceNewHi'] = eodDF.groupby('dSinceNewHi').cumcount() + 1 # Finally, all occurances of 'True' in 'newHi' col yield a corresponding 0 in # 'dSinceNewHi' col. eodDF.loc[eodDF['newHi'] == True, 'dSinceNewHi'] = 0 # Have we had a new M-day high in the last N days? eodDF.loc[eodDF['dSinceNewHi'] < N, 'signal'] = 'bull' eodDF.loc[eodDF['signal'] != 'bull', 'signal'] = 'bear' # Erase any signals prior to start of tracking eodDF.loc[eodDF.index.values < eodDF.index.values[K], 'signal'] = np.nan # IMPORTANT: we are assuming the signal is an end-of-day signal. So when # the signal changes from 'bear' to 'bull' we would purchase the tkr at market # close. We would therefor be in the market the following day. So there is a # one-day lag between the signal and returns. The shift moves all signals # foward one day. We then change the wording: bull=True, bear=False. eodDF['inMkt'] = eodDF['signal'].shift(1) eodDF['inMkt'] = eodDF['inMkt'].where(eodDF['inMkt'] == 'bull', False) eodDF['inMkt'] = eodDF['inMkt'].where(eodDF['inMkt'] == False, True) # Set values to False prior to when we start tracking. First possible valid # signal day occurs at index M+N, but we will not be in the market that day. eodDF.loc[eodDF.index.values <= eodDF.index.values[K], 'inMkt'] = False ############################################################################ # Now we calculate reetnry points due to price crossing below user set # threashold. This will trigger if the signal is bear but the price has dropped # below a user set percent of the most recent new high. We will then get back # into the market and stay there until a new high is reached again. # Create new column in dataframe, populate with NaN eodDF['reentrySignal'] = np.nan # Retrieve indexes where price is below reentry point and signal is 'bear'. # If the signal rises above the reentry point while the signal is still 'bear' # that will not be captured here, so we will forward fill below. idxList = eodDF.loc[ (eodDF.Low < eodDF.rePt) & (eodDF.signal == 'bear')].index # We want to be in the market on these days eodDF.loc[idxList, 'reentrySignal'] = True # Marker for a new high; turn off reentrySignal eodDF.loc[eodDF.dSinceNewHi == 0, 'reentrySignal'] = False # Now forward fill. True will forward fill until we hit the False marker. # False will forward fill until it hits a True. eodDF['reentrySignal'] = eodDF['reentrySignal'].fillna(method = 'ffill') # All is good except that we need to extend the sequence of Trues by 1 so that # we can transfer them to the inMkt column. Otherwise we'll be in the market # until we hit a new high (good) and then we will be out one day (bad) before # jumping back in. # This gets the True where we need it. eodDF['reentrySignal'] = ( eodDF['reentrySignal'] + eodDF['reentrySignal'].shift(1) ) # But now we have a bunch of 2s that should be 1s. Fix that. eodDF.loc[ eodDF['reentrySignal'] == 2, 'reentrySignal' ] = 1 # Not necessary, but change back to Trues and Falses eodDF.loc[ eodDF['reentrySignal'] == 0, 'reentrySignal' ] = False eodDF.loc[ eodDF['reentrySignal'] == 1, 'reentrySignal' ] = True # Now copy the Trues over the inMkt column eodDF.loc[ eodDF['reentrySignal'] == True, 'inMkt' ] = True #%%############################### # Calculate returns and statistics # Calculate daily tkr returns. shift(1) is previous day's data eodDF['tkrRtnDay'] = eodDF['Adj Close']/eodDF['Adj Close'].shift(1) # Calculate running return. Note that first valid sell signal occurs at least # M+N days after first day of data. Must estable M-day hi followed by N days # w/o a new M-day hi. So this col only makes sence for index location # past M+N eodDF['tkrCumRtn'] = eodDF['Adj Close']/eodDF['Adj Close'][K] # Calculate running CAGR. # Intermediate calculatioin: years since starting date at M+N index days_per_yr = 365.2422 eodDF['yrs'] = (eodDF.index.values - eodDF.index.values[K]).astype( 'timedelta64[D]') / (days_per_yr * np.timedelta64(1, 'D')) eodDF['tkrCAGR'] = eodDF['tkrCumRtn']**(1 / eodDF['yrs']) # Calculate daily return for algorithm. Same as return for ticker, except
#!/usr/bin/env python # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2012, Cloudscaling # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """nova HACKING file compliance testing built on top of pep8.py """ import inspect import logging import os import re import sys import tokenize import traceback import warnings import pep8 # Don't need this for testing logging.disable('LOG') #N1xx comments #N2xx except #N3xx imports #N4xx docstrings #N5xx dictionaries/lists #N6xx Calling methods #N7xx localization IMPORT_EXCEPTIONS = ['sqlalchemy', 'migrate', 'nova.db.sqlalchemy.session'] DOCSTRING_TRIPLE = ['"""', "'''"] VERBOSE_MISSING_IMPORT = False def is_import_exception(mod): return mod in IMPORT_EXCEPTIONS or \ any(mod.startswith(m + '.') for m in IMPORT_EXCEPTIONS) def import_normalize(line): # convert "from x import y" to "import x.y" # handle "from x import y as z" to "import x.y as z" split_line = line.split() if (line.startswith("from ") and "," not in line and split_line[2] == "import" and split_line[3] != "*" and split_line[1] != "__future__" and (len(split_line) == 4 or (len(split_line) == 6 and split_line[4] == "as"))): mod = split_line[3] return "import %s.%s" % (split_line[1], split_line[3]) else: return line def nova_todo_format(physical_line): """Check for 'TODO()'. nova HACKING guide recommendation for TODO: Include your name with TODOs as in "#TODO(termie)" N101 """ pos = physical_line.find('TODO') pos1 = physical_line.find('TODO(') pos2 = physical_line.find('#') # make sure its a comment if (pos != pos1 and pos2 >= 0 and pos2 < pos): return pos, "NOVA N101: Use TODO(NAME)" def nova_except_format(logical_line): """Check for 'except:'. nova HACKING guide recommends not using except: Do not write "except:", use "except Exception:" at the very least N201 """ if logical_line.startswith("except:"): return 6, "NOVA N201: no 'except:' at least use 'except Exception:'" def nova_except_format_assert(logical_line): """Check for 'assertRaises(Exception'. nova HACKING guide recommends not using assertRaises(Exception...): Do not use overly broad Exception type N202 """ if logical_line.startswith("self.assertRaises(Exception"): return 1, "NOVA N202: assertRaises Exception too broad" def nova_one_import_per_line(logical_line): """Check for import format. nova HACKING guide recommends one import per line: Do not import more than one module per line Examples: BAD: from nova.rpc.common import RemoteError, LOG N301 """ pos = logical_line.find(',') parts = logical_line.split() if pos > -1 and (parts[0] == "import" or parts[0] == "from" and parts[2] == "import") and \ not is_import_exception(parts[1]): return pos, "NOVA N301: one import per line" _missingImport = set([]) def nova_import_module_only(logical_line): """Check for import module only. nova HACKING guide recommends importing only modules: Do not import objects, only modules N302 import only modules N303 Invalid Import N304 Relative Import """ def importModuleCheck(mod, parent=None, added=False): """ If can't find module on first try, recursively check for relative imports """ current_path = os.path.dirname(pep8.current_file) try: with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) valid = True if parent: if is_import_exception(parent): return parent_mod = __import__(parent, globals(), locals(), [mod], -1) valid = inspect.ismodule(getattr(parent_mod, mod)) else: __import__(mod, globals(), locals(), [], -1) valid = inspect.ismodule(sys.modules[mod]) if not valid: if added: sys.path.pop() added = False return logical_line.find(mod), ("NOVA N304: No " "relative imports. '%s' is a relative import" % logical_line) return logical_line.find(mod), ("NOVA N302: import only " "modules. '%s' does not import a module" % logical_line) except (ImportError, NameError) as exc: if not added: added = True sys.path.append(current_path) return importModuleCheck(mod, parent, added) else: name = logical_line.split()[1] if name not in _missingImport: if VERBOSE_MISSING_IMPORT: print >> sys.stderr, ("ERROR: import '%s' failed: %s" % (name, exc)) _missingImport.add(name) added = False sys.path.pop() return except AttributeError: # Invalid import return logical_line.find(mod), ("NOVA N303: Invalid import, " "AttributeError raised") # convert "from x import y" to " import x.y" # convert "from x import y as z" to " import x.y" import_normalize(logical_line) split_line = logical_line.split() if (logical_line.startswith("import ") and "," not in logical_line and (len(split_line) == 2 or (len(split_line) == 4 and split_line[2] == "as"))): mod = split_line[1] return importModuleCheck(mod) # TODO(jogo) handle "from x import *" #TODO(jogo): import template: N305 def nova_import_alphabetical(physical_line, line_number, lines): """Check for imports in alphabetical order. nova HACKING guide recommendation for imports: imports in human alphabetical order N306 """ # handle import x # use .lower since capitalization shouldn't dictate order split_line = import_normalize(physical_line.strip()).lower().split() split_previous = import_normalize(lines[line_number - 2] ).strip().lower().split() # with or without "as y" length = [2, 4] if (len(split_line) in length and len(split_previous) in length and split_line[0] == "import" and split_previous[0] == "import"): if split_line[1] < split_previous[1]: return (0, "NOVA N306: imports not in alphabetical order (%s, %s)" % (split_previous[1], split_line[1])) def nova_docstring_start_space(physical_line): """Check for docstring not start with space. nova HACKING guide recommendation for docstring: Docstring should not start with space N401 """ pos = max([physical_line.find(i) for i in DOCSTRING_TRIPLE]) # start if (pos != -1 and len(physical_line) > pos + 1): if (physical_line[pos + 3] == ' '): return (pos, "NOVA N401: one line docstring should not start with" " a space") def nova_docstring_one_line(physical_line): """Check one line docstring end. nova HACKING guide recommendation for one line docstring: A one line docstring looks like this and ends in a period. N402 """ pos = max([physical_line.find(i) for i in DOCSTRING_TRIPLE]) # start end = max([physical_line[-4:-1] == i for i in DOCSTRING_TRIPLE]) # end if (pos != -1 and end and len(physical_line) > pos + 4): if (physical_line[-5] != '.'): return pos, "NOVA N402: one line docstring needs a period" def nova_docstring_multiline_end(physical_line): """Check multi line docstring end. nova HACKING guide recommendation for docstring: Docstring should end on a new line N403 """ pos = max([physical_line.find(i) for i in DOCSTRING_TRIPLE]) # start if (pos != -1 and len(physical_line) == pos): print physical_line if (physical_line[pos + 3] == ' '): return (pos, "NOVA N403: multi line docstring end on new line") FORMAT_RE = re.compile("%(?:" "%|" # Ignore plain percents "(\(\w+\))?" # mapping key "([#0 +-]?" # flag "(?:\d+|\*)?" # width "(?:\.\d+)?" # precision "[hlL]?" # length mod "\w))") # type class LocalizationError(Exception): pass def check_l18n(): """Generator that checks token stream for localization errors. Expects tokens to be ``send``ed one by one. Raises LocalizationError if some error is found. """ while True: try: token_type, text, _, _, _ = yield except GeneratorExit: return if token_type == tokenize.NAME and text == "_": while True: token_type, text, start, _, _ = yield if token_type != tokenize.NL: break if token_type != tokenize.OP or text != "(": continue # not a localization call format_string = '' while True: token_type, text, start, _, _ = yield if token_type == tokenize.STRING: format_string += eval(text) elif token_type == tokenize.NL: pass else: break if not format_string: raise LocalizationError(start, "NOVA N701: Empty localization string") if token_type != tokenize.OP: raise LocalizationError(start, "NOVA N701: Invalid localization call") if text != ")": if text == "%": raise LocalizationError(start, "NOVA N702: Formatting operation should be outside" " of localization method call") elif text == "+": raise LocalizationError(start, "NOVA N702: Use bare string concatenation instead" " of +") else: raise LocalizationError(start, "NOVA N702: Argument to _ must be just a string") format_specs = FORMAT_RE.findall(format_string) positional_specs = [(key, spec) for key, spec in format_specs if not key and spec] # not spec means %%, key means %(smth)s if len(positional_specs) > 1: raise LocalizationError(start, "NOVA N703: Multiple positional placeholders") def nova_localization_strings(logical_line, tokens): """Check localization in line. N701: bad localization call N702: complex expression instead of string as argument to _() N703: multiple positional placeholders """ gen = check_l18n() next(gen) try: map(gen.send, tokens) gen.close() except LocalizationError as e: return e.args #TODO(jogo) Dict and list objects current_file = "" def readlines(filename): """Record the current file being tested.""" pep8.current_file = filename return open(filename).readlines() def add_nova(): """Monkey patch in nova guidelines. Look for functions that start with nova_ and have arguments and add them to pep8 module Assumes you know how to write pep8.py checks """ for name, function in globals().items(): if not inspect.isfunction(function): continue args = inspect.getargspec(function)[0] if args and name.startswith("nova"): exec("pep8.%s = %s" % (name, name)) if __name__ == "__main__": #include nova path sys.path.append(os.getcwd())
Task = property(__Task.value, __Task.set, None, None) # Attribute Name uses Python identifier Name __Name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Name'), 'Name', '__avm_Workflow__Name', pyxb.binding.datatypes.string) __Name._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 555, 4) __Name._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 555, 4) Name = property(__Name.value, __Name.set, None, None) _ElementMap.update({ __Task.name() : __Task }) _AttributeMap.update({ __Name.name() : __Name }) Namespace.addCategoryObject('typeBinding', u'Workflow', Workflow_) # Complex type {avm}WorkflowTaskBase with content type EMPTY class WorkflowTaskBase_ (pyxb.binding.basis.complexTypeDefinition): """Complex type {avm}WorkflowTaskBase with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'WorkflowTaskBase') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 557, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType # Attribute Name uses Python identifier Name __Name = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Name'), 'Name', '__avm_WorkflowTaskBase__Name', pyxb.binding.datatypes.string) __Name._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 558, 4) __Name._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 558, 4) Name = property(__Name.value, __Name.set, None, None) _ElementMap.update({ }) _AttributeMap.update({ __Name.name() : __Name }) Namespace.addCategoryObject('typeBinding', u'WorkflowTaskBase', WorkflowTaskBase_) # Complex type {avm}Settings with content type EMPTY class Settings_ (pyxb.binding.basis.complexTypeDefinition): """Complex type {avm}Settings with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'Settings') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 576, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType _ElementMap.update({ }) _AttributeMap.update({ }) Namespace.addCategoryObject('typeBinding', u'Settings', Settings_) # Complex type {avm}DesignDomainFeature with content type EMPTY class DesignDomainFeature_ (pyxb.binding.basis.complexTypeDefinition): """Complex type {avm}DesignDomainFeature with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'DesignDomainFeature') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 588, 2) _ElementMap = {} _AttributeMap = {} # Base type is pyxb.binding.datatypes.anyType _ElementMap.update({ }) _AttributeMap.update({ }) Namespace.addCategoryObject('typeBinding', u'DesignDomainFeature', DesignDomainFeature_) # Complex type {avm}Value with content type ELEMENT_ONLY class Value_ (ValueNode_): """Complex type {avm}Value with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'Value') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 107, 2) _ElementMap = ValueNode_._ElementMap.copy() _AttributeMap = ValueNode_._AttributeMap.copy() # Base type is ValueNode_ # Element ValueExpression uses Python identifier ValueExpression __ValueExpression = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'ValueExpression'), 'ValueExpression', '__avm_Value__ValueExpression', False, pyxb.utils.utility.Location(u'avm.xsd', 111, 10), ) ValueExpression = property(__ValueExpression.value, __ValueExpression.set, None, None) # Element DataSource uses Python identifier DataSource __DataSource = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'DataSource'), 'DataSource', '__avm_Value__DataSource', True, pyxb.utils.utility.Location(u'avm.xsd', 112, 10), ) DataSource = property(__DataSource.value, __DataSource.set, None, None) # Attribute DimensionType uses Python identifier DimensionType __DimensionType = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'DimensionType'), 'DimensionType', '__avm_Value__DimensionType', DimensionTypeEnum) __DimensionType._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 114, 8) __DimensionType._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 114, 8) DimensionType = property(__DimensionType.value, __DimensionType.set, None, None) # Attribute DataType uses Python identifier DataType __DataType = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'DataType'), 'DataType', '__avm_Value__DataType', DataTypeEnum) __DataType._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 115, 8) __DataType._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 115, 8) DataType = property(__DataType.value, __DataType.set, None, None) # Attribute Dimensions uses Python identifier Dimensions __Dimensions = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Dimensions'), 'Dimensions', '__avm_Value__Dimensions', pyxb.binding.datatypes.string) __Dimensions._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 116, 8) __Dimensions._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 116, 8) Dimensions = property(__Dimensions.value, __Dimensions.set, None, None) # Attribute Unit uses Python identifier Unit __Unit = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Unit'), 'Unit', '__avm_Value__Unit', pyxb.binding.datatypes.string) __Unit._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 117, 8) __Unit._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 117, 8) Unit = property(__Unit.value, __Unit.set, None, None) # Attribute ID inherited from {avm}ValueNode _ElementMap.update({ __ValueExpression.name() : __ValueExpression, __DataSource.name() : __DataSource }) _AttributeMap.update({ __DimensionType.name() : __DimensionType, __DataType.name() : __DataType, __Dimensions.name() : __Dimensions, __Unit.name() : __Unit }) Namespace.addCategoryObject('typeBinding', u'Value', Value_) # Complex type {avm}FixedValue with content type ELEMENT_ONLY class FixedValue_ (ValueExpressionType_): """Complex type {avm}FixedValue with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'FixedValue') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 121, 2) _ElementMap = ValueExpressionType_._ElementMap.copy() _AttributeMap = ValueExpressionType_._AttributeMap.copy() # Base type is ValueExpressionType_ # Element Value uses Python identifier Value __Value = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'Value'), 'Value', '__avm_FixedValue__Value', False, pyxb.utils.utility.Location(u'avm.xsd', 125, 10), ) Value = property(__Value.value, __Value.set, None, None) # Attribute Uncertainty uses Python identifier Uncertainty __Uncertainty = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Uncertainty'), 'Uncertainty', '__avm_FixedValue__Uncertainty', pyxb.binding.datatypes.float) __Uncertainty._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 127, 8) __Uncertainty._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 127, 8) Uncertainty = property(__Uncertainty.value, __Uncertainty.set, None, None) _ElementMap.update({ __Value.name() : __Value }) _AttributeMap.update({ __Uncertainty.name() : __Uncertainty }) Namespace.addCategoryObject('typeBinding', u'FixedValue', FixedValue_) # Complex type {avm}CalculatedValue with content type ELEMENT_ONLY class CalculatedValue_ (ValueExpressionType_): """Complex type {avm}CalculatedValue with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'CalculatedValue') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 131, 2) _ElementMap = ValueExpressionType_._ElementMap.copy() _AttributeMap = ValueExpressionType_._AttributeMap.copy() # Base type is ValueExpressionType_ # Element Expression uses Python identifier Expression __Expression = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'Expression'), 'Expression', '__avm_CalculatedValue__Expression', False, pyxb.utils.utility.Location(u'avm.xsd', 135, 10), ) Expression = property(__Expression.value, __Expression.set, None, None) # Attribute Type uses Python identifier Type __Type = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Type'), 'Type', '__avm_CalculatedValue__Type', CalculationTypeEnum, required=True) __Type._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 137, 8) __Type._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 137, 8) Type = property(__Type.value, __Type.set, None, None) _ElementMap.update({ __Expression.name() : __Expression }) _AttributeMap.update({ __Type.name() : __Type }) Namespace.addCategoryObject('typeBinding', u'CalculatedValue', CalculatedValue_) # Complex type {avm}DerivedValue with content type EMPTY class DerivedValue_ (ValueExpressionType_): """Complex type {avm}DerivedValue with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'DerivedValue') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 141, 2) _ElementMap = ValueExpressionType_._ElementMap.copy() _AttributeMap = ValueExpressionType_._AttributeMap.copy() # Base type is ValueExpressionType_ # Attribute ValueSource uses Python identifier ValueSource __ValueSource = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'ValueSource'), 'ValueSource', '__avm_DerivedValue__ValueSource', pyxb.binding.datatypes.IDREF, required=True) __ValueSource._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 144, 8) __ValueSource._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 144, 8) ValueSource = property(__ValueSource.value, __ValueSource.set, None, None) _ElementMap.update({ }) _AttributeMap.update({ __ValueSource.name() : __ValueSource }) Namespace.addCategoryObject('typeBinding', u'DerivedValue', DerivedValue_) # Complex type {avm}ParametricValue with content type ELEMENT_ONLY class ParametricValue_ (ValueExpressionType_): """Complex type {avm}ParametricValue with content type ELEMENT_ONLY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_ELEMENT_ONLY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'ParametricValue') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 196, 2) _ElementMap = ValueExpressionType_._ElementMap.copy() _AttributeMap = ValueExpressionType_._AttributeMap.copy() # Base type is ValueExpressionType_ # Element Default uses Python identifier Default __Default = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'Default'), 'Default', '__avm_ParametricValue__Default', False, pyxb.utils.utility.Location(u'avm.xsd', 200, 10), ) Default = property(__Default.value, __Default.set, None, None) # Element Maximum uses Python identifier Maximum __Maximum = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'Maximum'), 'Maximum', '__avm_ParametricValue__Maximum', False, pyxb.utils.utility.Location(u'avm.xsd', 201, 10), ) Maximum = property(__Maximum.value, __Maximum.set, None, None) # Element Minimum uses Python identifier Minimum __Minimum = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'Minimum'), 'Minimum', '__avm_ParametricValue__Minimum', False, pyxb.utils.utility.Location(u'avm.xsd', 202, 10), ) Minimum = property(__Minimum.value, __Minimum.set, None, None) # Element AssignedValue uses Python identifier AssignedValue __AssignedValue = pyxb.binding.content.ElementDeclaration(pyxb.namespace.ExpandedName(None, u'AssignedValue'), 'AssignedValue', '__avm_ParametricValue__AssignedValue', False, pyxb.utils.utility.Location(u'avm.xsd', 203, 10), ) AssignedValue = property(__AssignedValue.value, __AssignedValue.set, None, None) _ElementMap.update({ __Default.name() : __Default, __Maximum.name() : __Maximum, __Minimum.name() : __Minimum, __AssignedValue.name() : __AssignedValue }) _AttributeMap.update({ }) Namespace.addCategoryObject('typeBinding', u'ParametricValue', ParametricValue_) # Complex type {avm}ProbabilisticValue with content type EMPTY class ProbabilisticValue_ (ValueExpressionType_): """Complex type {avm}ProbabilisticValue with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = True _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'ProbabilisticValue') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 209, 2) _ElementMap = ValueExpressionType_._ElementMap.copy() _AttributeMap = ValueExpressionType_._AttributeMap.copy() # Base type is ValueExpressionType_ _ElementMap.update({ }) _AttributeMap.update({ }) Namespace.addCategoryObject('typeBinding', u'ProbabilisticValue', ProbabilisticValue_) # Complex type {avm}SecurityClassification with content type EMPTY class SecurityClassification_ (DistributionRestriction_): """Complex type {avm}SecurityClassification with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'SecurityClassification') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 248, 2) _ElementMap = DistributionRestriction_._ElementMap.copy() _AttributeMap = DistributionRestriction_._AttributeMap.copy() # Base type is DistributionRestriction_ # Attribute Notes inherited from {avm}DistributionRestriction # Attribute Level uses Python identifier Level __Level = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Level'), 'Level', '__avm_SecurityClassification__Level', pyxb.binding.datatypes.string) __Level._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 251, 8) __Level._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 251, 8) Level = property(__Level.value, __Level.set, None, None) _ElementMap.update({ }) _AttributeMap.update({ __Level.name() : __Level }) Namespace.addCategoryObject('typeBinding', u'SecurityClassification', SecurityClassification_) # Complex type {avm}Proprietary with content type EMPTY class Proprietary_ (DistributionRestriction_): """Complex type {avm}Proprietary with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'Proprietary') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 255, 2) _ElementMap = DistributionRestriction_._ElementMap.copy() _AttributeMap = DistributionRestriction_._AttributeMap.copy() # Base type is DistributionRestriction_ # Attribute Notes inherited from {avm}DistributionRestriction # Attribute Organization uses Python identifier Organization __Organization = pyxb.binding.content.AttributeUse(pyxb.namespace.ExpandedName(None, u'Organization'), 'Organization', '__avm_Proprietary__Organization', pyxb.binding.datatypes.string, required=True) __Organization._DeclarationLocation = pyxb.utils.utility.Location(u'avm.xsd', 258, 8) __Organization._UseLocation = pyxb.utils.utility.Location(u'avm.xsd', 258, 8) Organization = property(__Organization.value, __Organization.set, None, None) _ElementMap.update({ }) _AttributeMap.update({ __Organization.name() : __Organization }) Namespace.addCategoryObject('typeBinding', u'Proprietary', Proprietary_) # Complex type {avm}ITAR with content type EMPTY class ITAR_ (DistributionRestriction_): """Complex type {avm}ITAR with content type EMPTY""" _TypeDefinition = None _ContentTypeTag = pyxb.binding.basis.complexTypeDefinition._CT_EMPTY _Abstract = False _ExpandedName = pyxb.namespace.ExpandedName(Namespace, u'ITAR') _XSDLocation = pyxb.utils.utility.Location(u'avm.xsd', 262, 2) _ElementMap = DistributionRestriction_._ElementMap.copy() _AttributeMap = DistributionRestriction_._AttributeMap.copy() # Base type is DistributionRestriction_ # Attribute Notes inherited from {avm}DistributionRestriction
= typeidlist[str(fulldetails["structureTypeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) notifyingMessage = (pinger + " Sovereignty Structure Destroyed - [" + timestamp + "]\n" + bolders + "The " + structureType + " In " + systemName + " Has Been Destroyed!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]") return notifyingMessage def SovAllClaimAquiredMsg(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) corpDetails = ESI.getCorpData(fulldetails["corpID"]) corpName = corpDetails["name"] if "alliance_id" in corpDetails: allianceDetails = ESI.getAllianceData(corpDetails["alliance_id"]) allianceName = allianceDetails["name"] else: allianceName = "[No Alliance]" notifyingMessage = (pinger + " Sovereignty Claim Acquired - [" + timestamp + "]\n" + bolders + "Sovereignty Has Been Acquired In " + systemName + "!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nOwner: " + getLink(corpName, ("http://evemaps.dotlan.net/corp/" + str(fulldetails["corpID"])), bolders) + " [" + getLink(allianceName, ("http://evemaps.dotlan.net/alliance/" + str(corpDetails["alliance_id"])), bolders) + "]") return notifyingMessage def SovAllClaimLostMsg(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) corpDetails = ESI.getCorpData(fulldetails["corpID"]) corpName = corpDetails["name"] if "alliance_id" in corpDetails: allianceDetails = ESI.getAllianceData(corpDetails["alliance_id"]) allianceName = allianceDetails["name"] else: allianceName = "[No Alliance]" notifyingMessage = (pinger + " Sovereignty Claim Lost - [" + timestamp + "]\n" + bolders + "Sovereignty Has Been Lost In " + systemName + "!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nOwner: " + getLink(corpName, ("http://evemaps.dotlan.net/corp/" + str(fulldetails["corpID"])), bolders) + " [" + getLink(allianceName, ("http://evemaps.dotlan.net/alliance/" + str(corpDetails["alliance_id"])), bolders) + "]") return notifyingMessage def SovStructureSelfDestructRequested(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): structureType = typeidlist[str(fulldetails["structureTypeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) requesterString = ESI.getFullCharacterLink(fulldetails["charID"], bolders) notifyingMessage = (pinger + " Sovereignty Started Self-Destruct - [" + timestamp + "]\n" + bolders + "A Self-Destruct Request Has Been Made For The " + structureType + " In " + systemName + "!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nRequested By: " + requesterString + "\nDestruction Time: " + getRealTime(fulldetails["destructTime"])) return notifyingMessage def SovStructureSelfDestructFinished(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): structureType = typeidlist[str(fulldetails["structureTypeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) notifyingMessage = (pinger + " Sovereignty Finished Self-Destruct - [" + timestamp + "]\n" + bolders + "The Self-Destruct Request For The " + structureType + " In " + systemName + " Has Completed!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]") return notifyingMessage def SovStructureSelfDestructCancel(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): structureType = typeidlist[str(fulldetails["structureTypeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) cancellerString = ESI.getFullCharacterLink(fulldetails["charID"], bolders) notifyingMessage = (pinger + " Sovereignty Cancelled Self-Destruct - [" + timestamp + "]\n" + bolders + "The Self-Destruct Request For The " + structureType + " In " + systemName + " Has Been Cancelled!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nCancelled By: " + cancellerString) return notifyingMessage def OrbitalAttacked(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) planetDetails = ESI.getPlanetDetails(fulldetails["planetID"]) planetName = planetDetails["name"] attackerString = ESI.getFullCharacterLink(fulldetails["aggressorID"], bolders) notifyingMessage = (pinger + " Customs Office Under Attack - [" + timestamp + "]\n" + bolders + "A Customs Office Is Under Attack!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " (" + planetName.replace(systemName, "Planet") + ") [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nAttacker: " + attackerString + "\nHealth: " + str(round((float(fulldetails["shieldLevel"]) * 100), 2)) + "% Shield") return notifyingMessage def OrbitalReinforced(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) planetDetails = ESI.getPlanetDetails(fulldetails["planetID"]) planetName = planetDetails["name"] attackerString = ESI.getFullCharacterLink(fulldetails["aggressorID"], bolders) notifyingMessage = (pinger + " Customs Office Reinforced - [" + timestamp + "]\n" + bolders + "A Customs Office Has Been Reinforced!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " (" + planetName.replace(systemName, "Planet") + ") [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nAttacker: " + attackerString + "\nComes Out At: " + getRealTime(fulldetails["reinforceExitTime"])) return notifyingMessage def TowerAlertMsg(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): posType = typeidlist[str(fulldetails["typeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) moonDetails = ESI.getMoonDetails(fulldetails["moonID"]) moonName = moonDetails["name"] attackerString = ESI.getFullCharacterLink(fulldetails["aggressorID"], bolders) notifyingMessage = (pinger + " Tower Under Attack - [" + timestamp + "]\n" + bolders + "A(n) " + posType + " in " + systemName + " Is Under Attack!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " (" + moonName.replace(systemName, "Planet") + ") [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nAttacker: " + attackerString + "\nHealth: " + str(round(float(fulldetails["shieldValue"] * 100), 2)) + "% Shield / " + str(round(float(fulldetails["armorValue"] * 100), 2)) + "% Armor / " + str(round(float(fulldetails["hullValue"] * 100), 2)) + "% Structure") return notifyingMessage def TowerResourceAlertMsg(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): posType = typeidlist[str(fulldetails["typeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) moonDetails = ESI.getMoonDetails(fulldetails["moonID"]) moonName = moonDetails["name"] corpDetails = ESI.getCorpData(fulldetails["corpID"]) corpName = corpDetails["name"] notifyingMessage = (pinger + " Tower Low On Fuel - [" + timestamp + "]\n" + bolders + "A(n) " + posType + " in " + systemName + " Is Low On Fuel!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " (" + moonName.replace(systemName, "Planet") + ") [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nOwner: " + getLink(corpName, ("http://evemaps.dotlan.net/corp/" + corpName.replace(" ","_")), bolders) + "\nRequired Fuel: \n```\n") for fuels in fulldetails["wants"]: notifyingMessage += (typeidlist[str(fuels["typeID"])] + ": " + str(fuels["quantity"]) + " Units Remaining\n") notifyingMessage += "```" return notifyingMessage def AllAnchoringMsg(timestamp, fulldetails, typeidlist, geographicinformation, bolders, pinger, accessToken): posType = typeidlist[str(fulldetails["typeID"])] systemName = ESI.getSystemName(geographicinformation, str(fulldetails["solarSystemID"])) regionName = ESI.getRegionName(geographicinformation, str(fulldetails["solarSystemID"])) moonDetails = ESI.getMoonDetails(fulldetails["moonID"]) moonName = moonDetails["name"] corpDetails = ESI.getCorpData(fulldetails["corpID"]) corpName = corpDetails["name"] if "alliance_id" in corpDetails: allianceDetails = ESI.getAllianceData(corpDetails["alliance_id"]) allianceName = allianceDetails["name"] anchorerString = (getLink(corpName, ("http://evemaps.dotlan.net/corp/" + str(fulldetails["corpID"])), bolders) + " [" + getLink(allianceName, ("http://evemaps.dotlan.net/alliance/" + str(corpDetails["alliance_id"])), bolders) + "]") else: anchorerString = (getLink(corpName, ("http://evemaps.dotlan.net/corp/" + str(fulldetails["corpID"])), bolders)) notifyingMessage = (pinger + " Tower Anchoring - [" + timestamp + "]\n" + bolders + "A(n) " + posType + " Has Begun Anchoring in " + systemName + "!" + bolders + "\nLocation: " + getLink(systemName, ("http://evemaps.dotlan.net/system/" + systemName.replace(" ","_")), bolders) + " (" + moonName.replace(systemName, "Planet") + ") [" + getLink(regionName, ("http://evemaps.dotlan.net/map/" + regionName.replace(" ","_") + "/" + systemName.replace(" ","_")), bolders) + "]\nAnchoring Entity: " + anchorerString) return notifyingMessage def findFunction(type): functionList = { "EntosisCaptureStarted" : EntosisCaptureStarted, "StructureDestroyed" : StructureDestroyed, "StructureLostArmor" : StructureLostArmor, "StructureLostShields" : StructureLostShields, "StructureUnderAttack" : StructureUnderAttack, "MoonminingAutomaticFracture" : MoonminingAutomaticFracture, "MoonminingExtractionCancelled" : MoonminingExtractionCancelled, "MoonminingExtractionFinished" : MoonminingExtractionFinished, "MoonminingExtractionStarted" : MoonminingExtractionStarted, "MoonminingLaserFired" : MoonminingLaserFired, "StructureAnchoring" : StructureAnchoring, "StructureFuelAlert" : StructureFuelAlert, "StructureOnline" : StructureOnline, "StructureUnanchoring" : StructureUnanchoring, "StructureServicesOffline" : StructureServicesOffline, "StructureWentHighPower" : StructureWentHighPower, "StructureWentLowPower" : StructureWentLowPower, "StructuresReinforcementChanged" : StructuresReinforcementChanged, "OwnershipTransferred" : OwnershipTransferred, "SovCommandNodeEventStarted" : SovCommandNodeEventStarted, "SovStructureReinforced" : SovStructureReinforced, "SovStructureDestroyed" : SovStructureDestroyed, "SovAllClaimAquiredMsg" : SovAllClaimAquiredMsg, "SovAllClaimLostMsg" : SovAllClaimLostMsg, "SovStructureSelfDestructRequested" : SovStructureSelfDestructRequested, "SovStructureSelfDestructFinished" : SovStructureSelfDestructFinished, "SovStructureSelfDestructCancel" : SovStructureSelfDestructCancel, "OrbitalAttacked" : OrbitalAttacked, "OrbitalReinforced" : OrbitalReinforced, "TowerAlertMsg"
layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test (list of rectangles, shape_type) tuple shape = (10, 4, 2) vertices = 20 * np.random.random(shape) data = (vertices, "rectangle") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test list of (rectangle, shape_type) tuples data = [(vertices[i], "rectangle") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_rectangles_roundtrip(): """Test a full roundtrip with rectangles data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) new_layer = Shapes(layer.data) assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_integer_rectangle(): """Test instantiating rectangles with integer data.""" shape = (10, 2, 2) np.random.seed(1) data = np.random.randint(20, size=shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_negative_rectangle(): """Test instantiating rectangles with negative data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) - 10 layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_empty_rectangle(): """Test instantiating rectangles with empty data.""" shape = (0, 0, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_3D_rectangles(): """Test instantiating Shapes layer with 3D planar rectangles.""" # Test a single four corner rectangle np.random.seed(0) planes = np.tile(np.arange(10).reshape((10, 1, 1)), (1, 4, 1)) corners = np.random.uniform(0, 10, size=(10, 4, 2)) data = np.concatenate((planes, corners), axis=2) layer = Shapes(data) assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 3 assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_ellipses(): """Test instantiating Shapes layer with a random 2D ellipses.""" # Test a single four corner ellipses shape = (1, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple four corner ellipses shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test a single ellipse center radii, which gets converted into four # corner ellipse shape = (1, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == 1 assert len(layer.data[0]) == 4 assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple center radii ellipses shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_ellipses_with_shape_type(): """Test instantiating ellipses with shape_type in data""" # Test single four corner (vertices, shape_type) tuple shape = (1, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple four corner (list of vertices, shape_type) tuple shape = (10, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test list of four corner (vertices, shape_type) tuples shape = (10, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = [(vertices[i], "ellipse") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test single (center-radii, shape_type) ellipse shape = (1, 2, 2) np.random.seed(0) data = (20 * np.random.random(shape), "ellipse") layer = Shapes(data) assert layer.nshapes == 1 assert len(layer.data[0]) == 4 assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test (list of center-radii, shape_type) tuple shape = (10, 2, 2) np.random.seed(0) center_radii = 20 * np.random.random(shape) data = (center_radii, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test list of (center-radii, shape_type) tuples shape = (10, 2, 2) np.random.seed(0) center_radii = 20 * np.random.random(shape) data = [(center_radii[i], "ellipse") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_4D_ellispse(): """Test instantiating Shapes layer with 4D planar ellipse.""" # Test a single 4D ellipse np.random.seed(0) data = [ [ [3, 5, 108, 108], [3, 5, 108, 148], [3, 5, 148, 148], [3, 5, 148, 108], ] ] layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 4 assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_ellipses_roundtrip(): """Test a full roundtrip with ellipss data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') new_layer = Shapes(layer.data, shape_type='ellipse') assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_lines(): """Test instantiating Shapes layer with a random 2D lines.""" # Test a single two end point line shape = (1, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test multiple lines shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) def test_lines_with_shape_type(): """Test instantiating lines with shape_type""" # Test (single line, shape_type) tuple shape = (1, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = (end_points, 'line') layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == end_points[0]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test (multiple lines, shape_type) tuple shape = (10, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = (end_points, "line") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test list of (line, shape_type) tuples shape = (10, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = [(end_points[i], "line") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) def test_lines_roundtrip(): """Test a full roundtrip with line data.""" shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') new_layer = Shapes(layer.data, shape_type='line') assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_paths(): """Test instantiating Shapes layer with a random 2D paths.""" # Test a single path with 6 points shape = (1, 6, 2) np.random.seed(0) data = 20 * np.random.random(shape)
user, user_connections in six.iteritems(self.connections[project_id]): if user == '': # do not collect anonymous connections continue for uid, client in six.iteritems(user_connections): if client.examined_at and client.examined_at + project.get("connection_lifetime", 24*365*3600) < now: to_return.add(user) raise Return((to_return, None)) @coroutine def check_expired_connections(self): """ For each project ask web application about users whose connections expired. Close connections of deactivated users and keep valid users' connections. """ projects, error = yield self.structure.project_list() if error: raise Return((None, error)) checks = [] for project in projects: if project.get('connection_check', False): checks.append(self.check_project_expired_connections(project)) try: # run all checks in parallel yield checks except Exception as err: logger.error(err) tornado.ioloop.IOLoop.instance().add_timeout( time.time()+self.CONNECTION_EXPIRE_CHECK_INTERVAL, self.check_expired_connections ) raise Return((True, None)) @coroutine def check_project_expired_connections(self, project): now = time.time() project_id = project['_id'] checked_at = self.expired_connections.get(project_id, {}).get("checked_at") if checked_at and (now - checked_at < project.get("connection_check_interval", 60)): raise Return((True, None)) users = self.expired_connections.get(project_id, {}).get("users", {}).copy() if not users: raise Return((True, None)) self.expired_connections[project_id]["users"] = set() expired_reconnect_clients = self.expired_reconnections.get(project_id, [])[:] self.expired_reconnections[project_id] = [] inactive_users, error = yield self.check_users(project, users) if error: raise Return((False, error)) self.expired_connections[project_id]["checked_at"] = now now = time.time() clients_to_disconnect = [] if isinstance(inactive_users, list): # a list of inactive users received, iterate trough connections # destroy inactive, update active. if project_id in self.connections: for user, user_connections in six.iteritems(self.connections[project_id]): for uid, client in six.iteritems(user_connections): if client.user in inactive_users: clients_to_disconnect.append(client) elif client.user in users: client.examined_at = now for client in clients_to_disconnect: yield client.send_disconnect_message("deactivated") yield client.close_sock() if isinstance(inactive_users, list): # now deal with users waiting for reconnect with expired credentials for client in expired_reconnect_clients: is_valid = client.user not in inactive_users if is_valid: client.examined_at = now if client.connect_queue: yield client.connect_queue.put(is_valid) else: yield client.close_sock() raise Return((True, None)) @staticmethod @coroutine def check_users(project, users, timeout=5): address = project.get("connection_check_address") if not address: logger.debug("no connection check address for project {0}".format(project['name'])) raise Return(()) http_client = AsyncHTTPClient() request = HTTPRequest( address, method="POST", body=urlencode({ 'users': json.dumps(list(users)) }), request_timeout=timeout ) try: response = yield http_client.fetch(request) except Exception as err: logger.error(err) raise Return((None, None)) else: if response.code != 200: raise Return((None, None)) try: content = [str(x) for x in json.loads(response.body)] except Exception as err: logger.error(err) raise Return((None, err)) raise Return((content, None)) def add_connection(self, project_id, user, uid, client): """ Register new client's connection. """ if project_id not in self.connections: self.connections[project_id] = {} if user not in self.connections[project_id]: self.connections[project_id][user] = {} self.connections[project_id][user][uid] = client def remove_connection(self, project_id, user, uid): """ Remove client's connection """ try: del self.connections[project_id][user][uid] except KeyError: pass if project_id in self.connections and user in self.connections[project_id]: # clean connections if self.connections[project_id][user]: return try: del self.connections[project_id][user] except KeyError: pass if self.connections[project_id]: return try: del self.connections[project_id] except KeyError: pass def add_admin_connection(self, uid, client): """ Register administrator's connection (from web-interface). """ self.admin_connections[uid] = client def remove_admin_connection(self, uid): """ Remove administrator's connection. """ try: del self.admin_connections[uid] except KeyError: pass @coroutine def get_project(self, project_id): """ Project settings can change during client's connection. Every time we need project - we must extract actual project data from structure. """ project, error = yield self.structure.get_project_by_id(project_id) if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) if not project: raise Return((None, self.PROJECT_NOT_FOUND)) raise Return((project, None)) def extract_namespace_name(self, channel): """ Get namespace name from channel name """ if self.NAMESPACE_SEPARATOR in channel: # namespace:rest_of_channel namespace_name = channel.split(self.NAMESPACE_SEPARATOR, 1)[0] else: namespace_name = None return namespace_name @coroutine def get_namespace(self, project, channel): namespace_name = self.extract_namespace_name(channel) if not namespace_name: raise Return((project, None)) namespace, error = yield self.structure.get_namespace_by_name( project, namespace_name ) if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) if not namespace: raise Return((None, self.NAMESPACE_NOT_FOUND)) raise Return((namespace, None)) @coroutine def handle_ping(self, params): """ Ping message received. """ params['updated_at'] = time.time() self.nodes[params.get('uid')] = params @coroutine def handle_unsubscribe(self, params): """ Unsubscribe message received - unsubscribe client from certain channels. """ project = params.get("project") user = params.get("user") channel = params.get("channel", None) project_id = project['_id'] # try to find user's connection user_connections = self.connections.get(project_id, {}).get(user, {}) if not user_connections: raise Return((True, None)) for uid, connection in six.iteritems(user_connections): if not channel: # unsubscribe from all channels for chan, channel_info in six.iteritems(connection.channels): yield connection.handle_unsubscribe({ "channel": chan }) else: # unsubscribe from certain channel yield connection.handle_unsubscribe({ "channel": channel }) raise Return((True, None)) @coroutine def handle_disconnect(self, params): """ Handle disconnect message - when user deactivated in web application and its connections must be closed by Centrifuge by force """ project = params.get("project") user = params.get("user") reason = params.get("reason", None) project_id = project['_id'] # try to find user's connection user_connections = self.connections.get(project_id, {}).get(user, {}) if not user_connections: raise Return((True, None)) clients_to_disconnect = [] for uid, client in six.iteritems(user_connections): clients_to_disconnect.append(client) for client in clients_to_disconnect: yield client.send_disconnect_message(reason=reason) yield client.close_sock(pause=False) raise Return((True, None)) @coroutine def handle_update_structure(self, params): """ Update structure message received - structure changed and other node sent us a signal about update. """ result, error = yield self.structure.update() raise Return((result, error)) # noinspection PyCallingNonCallable @coroutine def process_call(self, project, method, params): """ Call appropriate method from this class according to specified method. Note, that all permission checking must be done before calling this method. """ handle_func = getattr(self, "process_%s" % method, None) if handle_func: result, error = yield handle_func(project, params) raise Return((result, error)) else: raise Return((None, self.METHOD_NOT_FOUND)) @coroutine def publish_message(self, project, message): """ Publish event into PUB socket stream """ project_id = message['project_id'] channel = message['channel'] namespace, error = yield self.get_namespace(project, channel) if error: raise Return((False, error)) if namespace.get('is_watching', False): # send to admin channel self.engine.publish_admin_message(message) # send to event channel subscription_key = self.engine.get_subscription_key( project_id, channel ) # no need in project id when sending message to clients del message['project_id'] self.engine.publish_message(subscription_key, message) if namespace.get('history', False): yield self.engine.add_history_message( project_id, channel, message, history_size=namespace.get('history_size'), history_expire=namespace.get('history_expire', 0) ) if self.collector: self.collector.incr('messages') raise Return((True, None)) @coroutine def prepare_message(self, project, params, client): """ Prepare message before actual publishing. """ data = params.get('data', None) message = { 'project_id': project['_id'], 'uid': uuid.uuid4().hex, 'timestamp': int(time.time()), 'client': client, 'channel': params.get('channel'), 'data': data } for callback in self.pre_publish_callbacks: try: message = yield callback(message) except Exception as err: logger.exception(err) else: if message is None: raise Return((None, None)) raise Return((message, None)) @coroutine def process_publish(self, project, params, client=None): """ Publish message into appropriate channel. """ message, error = yield self.prepare_message( project, params, client ) if error: raise Return((False, self.INTERNAL_SERVER_ERROR)) if not message: # message was discarded raise Return((False, None)) # publish prepared message result, error = yield self.publish_message( project, message ) if error: raise Return((False, error)) for callback in self.post_publish_callbacks: try: yield callback(message) except Exception as err: logger.exception(err) raise Return((True, None)) @coroutine def process_history(self, project, params): """ Return a list of last messages sent into channel. """ project_id = project['_id'] channel = params.get("channel") data, error = yield self.engine.get_history(project_id, channel) if error: raise Return((data, self.INTERNAL_SERVER_ERROR)) raise Return((data, None)) @coroutine def process_presence(self, project, params): """ Return current presence information for channel. """ project_id = project['_id'] channel = params.get("channel") data, error = yield self.engine.get_presence(project_id, channel) if error: raise Return((data, self.INTERNAL_SERVER_ERROR)) raise Return((data, None)) @coroutine def process_unsubscribe(self, project, params): """ Unsubscribe user from channels. """ params["project"] = project message = { 'app_id': self.uid, 'method': 'unsubscribe', 'params': params } # handle on this node result, error = yield self.handle_unsubscribe(params) # send to other nodes self.engine.publish_control_message(message) if error: raise Return((result, self.INTERNAL_SERVER_ERROR)) raise Return((result, None)) @coroutine def process_disconnect(self, project, params): """ Unsubscribe user from channels. """ params["project"] = project message = { 'app_id': self.uid, 'method': 'disconnect', 'params': params } # handle on this node result, error = yield self.handle_disconnect(params) # send to other nodes self.engine.publish_control_message(message) if error: raise Return((result, self.INTERNAL_SERVER_ERROR)) raise Return((result, None)) @coroutine def process_dump_structure(self, project, params): projects, error = yield self.structure.project_list() if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) namespaces, error = yield self.structure.namespace_list() if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) data = { "projects": projects, "namespaces": namespaces } raise Return((data, None)) @coroutine def process_project_list(self, project, params): projects, error = yield self.structure.project_list() if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) raise Return((projects, None)) @coroutine def process_project_get(self, project, params): if not project: raise Return((None, self.PROJECT_NOT_FOUND)) raise Return((project, None)) @coroutine def process_project_by_name(self, project, params): project, error = yield self.structure.get_project_by_name( params.get("name") ) if error: raise Return((None, self.INTERNAL_SERVER_ERROR)) if not project: raise Return((None, self.PROJECT_NOT_FOUND)) raise Return((project, None)) @coroutine def process_project_create(self, project, params, error_form=False):
self.get_index(date1) S2 = self.get_index(date2) print("removing "+str(S1+(self.n_t-S2-1))+" time points") new_datax = self.x[S1:S2+1,:,:] new_datay = self.y[S1:S2+1,:,:] new_dates = self.dates[S1:S2+1] if type(self.mask) == bool: # just return the data because it's not masked new_mask = self.mask else: new_mask = self.mask[S1:S2+1,:,:] self.x = new_datax self.y = new_datay self.dates= new_dates self.mask = new_mask self.n_t = np.shape(new_datax)[0] # rebuild yrpd self.nyrs = self.dates[-1].year - self.dates[0].year + 1 self.yrpd = np.ma.empty([self.nyrs,self.periods],dtype = int) self.yrpd[:,:] = -1 if self.periods == 12: for tt in range(self.n_t): yr = self.dates[tt].year - self.dates[0].year mt = self.dates[tt].month - 1 # print(yr,mt,tt) self.yrpd[yr,mt] = tt elif self.periods < 12: for tt in range(self.n_t): yr = self.dates[tt].year - self.dates[0].year mt = int(self.dates[tt].month*periods/12) - 1 # print(yr,mt,tt) self.yrpd[yr,mt] = tt elif self.periods > 12: for tt in range(self.n_t): yr = self.dates[tt].year - self.dates[0].year # day_of_year = (self.dates[tt] - dt.datetime(self.dates[tt].year,1,1)).days + 1 day_of_year = self.dates[tt].timetuple().tm_yday mt = int(day_of_year*self.periods/366) - 1 # print(yr,mt,tt) self.yrpd[yr,mt] = tt self.yrpd.mask = self.yrpd < 0 print("New vec_data_year, size "+str(self.n_t)+", for "+str(self.nyrs)+" years") def __getitem__(self,indx): if (type(indx) == int) or (type(indx) == np.int64): t_p = indx m = slice(None) n = slice(None) else: t_p,m,n = indx if type(self.mask) == bool: # just return the data because it's not masked return self.x[t_p,m,n], self.y[t_p,m,n] else: temp_x = self.x[t_p,m,n] temp_y = self.y[t_p,m,n] temp_mask = self.mask[t_p,m,n] if type(temp_x) == np.ndarray: temp_x[temp_mask==False] = np.nan temp_y[temp_mask==False] = np.nan return temp_x, temp_y elif temp_mask: return temp_x, temp_y else: return np.nan, np.nan def mag(self,indx): """ crude getitem for magnitudes indx = [3,item,thing] to get the bits you want we cannot pass : instead of ':' write 'slice(None)' instead of 'a:b' write 'slice(a,b,None)' """ if (type(indx) == int) or (type(indx) == np.int64): t_p = indx m = slice(None) n = slice(None) else: t_p,m,n = indx if type(self.mask) == bool: # just return the data because it's not masked return np.hypot(self.x[t_p,m,n], self.y[t_p,m,n]) else: temp_x = self.x[t_p,m,n] temp_y = self.y[t_p,m,n] temp_mask = self.mask[t_p,m,n] if type(temp_x) == np.ndarray: temp_x[temp_mask==False] = np.nan temp_y[temp_mask==False] = np.nan return np.hypot(temp_x, temp_y) elif temp_mask: return np.hypot(temp_x, temp_y) else: return np.nan def mean_series(self,mask = False,year_set = [],time_set = [],method='mean',mult_array=False,magnitude= False): """ Mask needs to be 1 for true 0 for false """ # check if there's data here already if self.files: mask,y0,yE,t0,tE = get_range_mask(self,mask,year_set,time_set) # using all periods within yrpd including empty out_listx = [] out_listy = [] d_list = [] dprev = self.dates[0] for y in range(y0,yE+1): for p in range(self.periods): if self.yrpd.mask[y,p]: out_listx.append(np.nan) out_listy.append(np.nan) d_list.append(dprev) else: tp = self.yrpd[y,p] tempx = self.x[tp] tempx[mask[tp]==False] = np.nan tempy = self.y[tp] tempy[mask[tp]==False] = np.nan if type(mult_array) == np.ndarray: tempx = tempx*mult_array tempy = tempy*mult_array if magnitude: if method=='mean': out_listx.append(np.nanmean( np.hypot(tempx,tempy))) if method=='median': out_listx.append(np.nanmedian( np.hypot(tempx,tempy))) if method=='std': out_listx.append(np.nanstd( np.hypot(tempx,tempy))) else: if method=='mean': out_listx.append(np.nanmean(tempx)) out_listy.append(np.nanmean(tempy)) if method=='median': out_listx.append(np.nanmedian(tempx)) out_listy.append(np.nanmedian(tempy)) if method=='std': out_listx.append(np.nanstd(tempx)) out_listy.append(np.nanstd(tempy)) d_list.append(self.dates[tp]) dprev = self.dates[tp] if magnitude: return d_list, out_listx else: return d_list, out_listx, out_listy def centile_series(self,centiles,mask = False,year_set = [],time_set = [],method='mean',mult_array=False): """ Mask needs to be 1 for true 0 for false """ # check if there's data here already if self.files: mask,y0,yE,t0,tE = get_range_mask(self,mask,year_set,time_set) # using all periods within yrpd including empty out_listx = [] out_listy = [] d_list = [] dprev = self.dates[0] for y in range(y0,yE+1): for p in range(self.periods): if self.yrpd.mask[y,p]: out_list.append(np.nan) d_list.append(dprev) else: tp = self.yrpd[y,p] tempx = self.x[tp] tempx[mask[tp]==False] = np.nan tempy = self.y[tp] tempy[mask[tp]==False] = np.nan if type(mult_array) == np.ndarray: tempx = tempx*mult_array tempy = tempy*mult_array if magnitude: out_listx.append(np.nanpercentile( np.hypot(tempx,tempy),centiles)) else: out_listx.append(np.nanpercentile(tempx,centiles)) out_listy.append(np.nanpercentile(tempy,centiles)) d_list.append(self.dates[tp]) dprev = self.dates[tp] if magnitude: return d_list, out_listx else: return d_list, out_listx, out_listy def print_date(self,t,string='auto',year_only=False): """ Quickly return a date lable from a given data_year time point return format can be overidden by setting string to datetime string format otherwise it is 'auto' year_only = true overides everything and just gives the year """ # simply get a date string for a time point if year_only: # year_only overides str_option = '%Y' elif string=='auto': # auto generate the strftime option from no. of periods # if periods = 4 then year + JFM etc... # Add this option later use yrpd to find quarter # manually set JFM etc # if periods < 12 then months only if self.periods <= 12: str_option = '%Y-%m' elif self.periods <= 366: str_option = '%Y-%m-%d' # longer then days too else: str_option = '%Y-%m-%d-T%H' else: str_option = string return self.dates[t].strftime(str_option) def build_mask(self): """ fills the mask array with ones if it isn't there yet """ if type(self.mask) == bool: self.mask = np.ones(self.x.shape,dtype=bool) def build_static_mask(self,mask,points = False,overwrite=False): """ Makes a satic 2d mask for all data or only the time points listed in points option mask is 1/True for good, nan/False bad overwrite = True, makes the mask identical to input mask overwrite = False, apends the current mask to match if you want to make a temporal mask for a condition do it your self with logical ie. DY.build_mask() DY.mask[DY.data > limit] = 0 will temporarily mask out all data over the limit """ if type(self.mask) == bool: self.build_mask() if (type(mask[0,0])!=bool) and (type(mask[0,0])!=np.bool_): print('mask needs to be binary, not',type(mask[0,0])) return if type(points) == bool: points = np.arange(0,self.n_t,dtype=int) if overwrite: temp_mask = np.ones_like(self.x,dtype=bool) for tt in points: temp_mask[tt][mask==False] = False self.mask = temp_mask else: for tt in points: self.mask[tt][mask==False] = False def append(self,date,datax,datay): # check if there's data here already if ~self.files: print("nothing here, so can't append") return False # check the new data is the correct size m_check,n_check = np.shape(datax) if m_check==self.m&n_check==self.n: # append the data self.x = np.append(self.x,np.expand_dims(datax,axis=0),axis = 0) self.y = np.append(self.y,np.expand_dims(datay,axis=0),axis = 0) self.dates.append(date) # find the final entry in the yrpd loc = np.where(self.yrpd == self.n_t) # add the next entry(ies) if loc[1][0] == self.periods - 1: # add new rows if needed - keep the yrmth consistent self.yrpd = np.ma.append(self.yrpd, np.ma.masked_values(np.ones([1,self.periods]),1),axis=0) self.yrpd[-1,0] = self.n_t + 1 else: self.yrpd[-1,loc[1][0]] = self.n_t + 1 self.n_t += 1 return True else: return True # adds another time slice to the data, and sorts out the yrpd array def clim_map(self,periods,mask = False,magnitude = False,year_set = [],time_set = []): """ periods is the list of period no.s to use in the map ie. periods = [0,1,2] with give the map of average over the first three months of a monthly data_year setting magnitude = True, takes the average of the vector hypot, rather than the average of each component """ # check if there's data here already if self.files: mask,y0,yE,t0,tE = get_range_mask(self,mask,year_set,time_set) if len(periods) == 0: periods = np.arange(0,self.periods) idx = [self.yrpd[y0:yE+1,mn].compressed() for mn in periods] temp_mask = np.sum([mask[j,:,:] for i in idx for j in i if j>=t0 and j<=tE],axis = 0) if magnitude: temp_x = np.nanmean( [np.hypot(self.x[j],self.y[j]) for i in idx for j in i if j>=t0 and j<=tE], axis = 0) temp_x[temp_mask==False] = np.nan return temp_x else: temp_x = np.nanmean( [self.x[j] for i in idx for j in i if j>=t0 and j<=tE], axis = 0) temp_y = np.nanmean( [self.y[j] for i in idx for j in i if j>=t0 and j<=tE], axis = 0) temp_x[temp_mask==False] = np.nan temp_y[temp_mask==False] = np.nan return temp_x,temp_y # check if there's data here already def clim_mean(self,mask = False,magnitude = False,year_set = [],time_set = [],method='mean',first_p = 0): """ Mask needs to be 1 for true 0 for false """ # check if there's data here already if self.files: mask,y0,yE,t0,tE = get_range_mask(self,mask,year_set,time_set) temp_x = np.empty([self.periods]) temp_y = np.empty([self.periods]) if magnitude: for mn in range(self.periods): idx = self.yrpd[y0:yE+1,mn].compressed() t_mn = np.sum((idx>=t0)&(idx<=tE)) temp_x1 = np.empty([t_mn,self.m,self.n]) temp_y1 = np.empty([t_mn,self.m,self.n]) temp_mask = np.empty([t_mn,self.m,self.n],dtype=bool) temp_x1[:,:,:] = [self.x[i] for i in idx if i>=t0 and i<=tE] temp_y1[:,:,:] = [self.y[i] for i in idx if i>=t0 and i<=tE] temp_mask[:,:,:] = [self.mask[i] for i in idx if i>=t0 and i<=tE] temp = np.hypot(temp_x1,temp_y1) temp[temp_mask==False]
<gh_stars>0 """ main file to create an index from the the begining """ import json import logging import logging.config import multiprocessing import os import tempfile import uuid from typing import Any, Dict, List, Optional, Tuple, Union, cast import faiss import fire import fsspec import numpy as np import pandas as pd from autofaiss.external.build import ( create_index, estimate_memory_required_for_index_creation, get_estimated_construction_time_infos, ) from autofaiss.external.optimize import ( get_optimal_hyperparameters, get_optimal_index_keys_v2, optimize_and_measure_index, optimize_and_measure_indices, ) from autofaiss.external.scores import compute_fast_metrics, compute_medium_metrics from autofaiss.indices.index_utils import set_search_hyperparameters from autofaiss.readers.embeddings_iterators import get_file_list, make_path_absolute, read_total_nb_vectors_and_dim from autofaiss.utils.cast import cast_bytes_to_memory_string, cast_memory_to_bytes from autofaiss.utils.decorators import Timeit logger = logging.getLogger("autofaiss") def _log_output_dict(infos: Dict): logger.info("{") for key, value in infos.items(): logger.info(f"\t{key}: {value}") logger.info("}") def setup_logging(logging_level: int): """Setup the logging.""" logging.config.dictConfig(dict(version=1, disable_existing_loggers=False)) logging_format = "%(asctime)s [%(levelname)s]: %(message)s" logging.basicConfig(level=logging_level, format=logging_format) def build_index( embeddings: Union[str, np.ndarray, List[str]], index_path: Optional[str] = "knn.index", index_infos_path: Optional[str] = "index_infos.json", ids_path: Optional[str] = None, save_on_disk: bool = True, file_format: str = "npy", embedding_column_name: str = "embedding", id_columns: Optional[List[str]] = None, index_key: Optional[str] = None, index_param: Optional[str] = None, max_index_query_time_ms: float = 10.0, max_index_memory_usage: str = "16G", current_memory_available: str = "32G", use_gpu: bool = False, metric_type: str = "ip", nb_cores: Optional[int] = None, make_direct_map: bool = False, should_be_memory_mappable: bool = False, distributed: Optional[str] = None, temporary_indices_folder: str = "hdfs://root/tmp/distributed_autofaiss_indices", verbose: int = logging.INFO, nb_indices_to_keep: int = 1, ) -> Union[Tuple[Optional[Any], Optional[Dict[str, Union[str, float, int]]]], Dict[str, Dict]]: """ Reads embeddings and creates a quantized index from them. The index is stored on the current machine at the given output path. Parameters ---------- embeddings : Union[str, np.ndarray, List[str]] Local path containing all preprocessed vectors and cached files. This could be a single directory or multiple directories. Files will be added if empty. Or directly the Numpy array of embeddings index_path: Optional(str) Destination path of the quantized model. index_infos_path: Optional(str) Destination path of the metadata file. ids_path: Optional(str) Only useful when id_columns is not None and file_format=`parquet`. T his will be the path (in any filesystem) where the mapping files Ids->vector index will be store in parquet format save_on_disk: bool Whether to save the index on disk, default to True. file_format: Optional(str) npy or parquet ; default npy embedding_column_name: Optional(str) embeddings column name for parquet ; default embedding id_columns: Optional(List[str]) Can only be used when file_format=`parquet`. In this case these are the names of the columns containing the Ids of the vectors, and separate files will be generated to map these ids to indices in the KNN index ; default None index_key: Optional(str) Optional string to give to the index factory in order to create the index. If None, an index is chosen based on an heuristic. index_param: Optional(str) Optional string with hyperparameters to set to the index. If None, the hyper-parameters are chosen based on an heuristic. max_index_query_time_ms: float Bound on the query time for KNN search, this bound is approximative max_index_memory_usage: str Maximum size allowed for the index, this bound is strict current_memory_available: str Memory available on the machine creating the index, having more memory is a boost because it reduces the swipe between RAM and disk. use_gpu: bool Experimental, gpu training is faster, not tested so far metric_type: str Similarity function used for query: - "ip" for inner product - "l2" for euclidian distance nb_cores: Optional[int] Number of cores to use. Will try to guess the right number if not provided make_direct_map: bool Create a direct map allowing reconstruction of embeddings. This is only needed for IVF indices. Note that might increase the RAM usage (approximately 8GB for 1 billion embeddings) should_be_memory_mappable: bool If set to true, the created index will be selected only among the indices that can be memory-mapped on disk. This makes it possible to use 50GB indices on a machine with only 1GB of RAM. Default to False distributed: Optional[str] If "pyspark", create the indices using pyspark. Only "parquet" file format is supported. temporary_indices_folder: str Folder to save the temporary small indices that are generated by each spark executor. Only used when distributed = "pyspark". verbose: int set verbosity of outputs via logging level, default is `logging.INFO` nb_indices_to_keep: int Number of indices to keep at most when distributed is "pyspark". It allows you to build an index larger than `current_memory_available` If it is not equal to 1, - You are expected to have at most `nb_indices_to_keep` indices with the following names: "{index_path}i" where i ranges from 1 to `nb_indices_to_keep` - `build_index` returns a mapping from index path to metrics instead of a tuple (index, metrics) Default to 1. """ setup_logging(verbose) if index_path is not None: index_path = make_path_absolute(index_path) elif save_on_disk: logger.error("Please specify a index_path if you set save_on_disk as True") return None, None if index_infos_path is not None: index_infos_path = make_path_absolute(index_infos_path) elif save_on_disk: logger.error("Please specify a index_infos_path if you set save_on_disk as True") return None, None if ids_path is not None: ids_path = make_path_absolute(ids_path) if nb_indices_to_keep < 1: logger.error("Please specify nb_indices_to_keep an integer value larger or equal to 1") return None, None elif nb_indices_to_keep > 1 and distributed is None: logger.error('nb_indices_to_keep can only be larger than 1 when distributed is "pyspark"') return None, None current_bytes = cast_memory_to_bytes(current_memory_available) max_index_bytes = cast_memory_to_bytes(max_index_memory_usage) memory_left = current_bytes - max_index_bytes if nb_indices_to_keep == 1 and memory_left < current_bytes * 0.1: logger.error( "You do not have enough memory to build this index, " "please increase current_memory_available or decrease max_index_memory_usage" ) return None, None if nb_cores is None: nb_cores = multiprocessing.cpu_count() logger.info(f"Using {nb_cores} omp threads (processes), consider increasing --nb_cores if you have more") faiss.omp_set_num_threads(nb_cores) if isinstance(embeddings, np.ndarray): tmp_dir_embeddings = tempfile.TemporaryDirectory() np.save(os.path.join(tmp_dir_embeddings.name, "emb.npy"), embeddings) embeddings_path = tmp_dir_embeddings.name else: embeddings_path = embeddings # type: ignore with Timeit("Launching the whole pipeline"): with Timeit("Reading total number of vectors and dimension"): _, embeddings_file_paths = get_file_list(path=embeddings_path, file_format=file_format) nb_vectors, vec_dim, file_counts = read_total_nb_vectors_and_dim( embeddings_file_paths, file_format=file_format, embedding_column_name=embedding_column_name ) embeddings_file_paths, file_counts = zip( # type: ignore *((fp, count) for fp, count in zip(embeddings_file_paths, file_counts) if count > 0) ) embeddings_file_paths = list(embeddings_file_paths) file_counts = list(file_counts) logger.info(f"There are {nb_vectors} embeddings of dim {vec_dim}") with Timeit("Compute estimated construction time of the index", indent=1): for log_lines in get_estimated_construction_time_infos(nb_vectors, vec_dim, indent=2).split("\n"): logger.info(log_lines) with Timeit("Checking that your have enough memory available to create the index", indent=1): necessary_mem, index_key_used = estimate_memory_required_for_index_creation( nb_vectors, vec_dim, index_key, max_index_memory_usage, make_direct_map, nb_indices_to_keep ) logger.info( f"{cast_bytes_to_memory_string(necessary_mem)} of memory " "will be needed to build the index (more might be used if you have more)" ) prefix = "(default) " if index_key is None else "" if necessary_mem > cast_memory_to_bytes(current_memory_available): r = ( f"The current memory available on your machine ({current_memory_available}) is not " f"enough to create the {prefix}index {index_key_used} that requires " f"{cast_bytes_to_memory_string(necessary_mem)} to train. " "You can decrease the number of clusters of you index since the Kmeans algorithm " "used for clusterisation is responsible for this high memory usage." "Consider increasing the options current_memory_available or decreasing max_index_memory_usage" ) logger.error(r) return None, None if index_key is None: with Timeit("Selecting most promising index types given data characteristics", indent=1): best_index_keys = get_optimal_index_keys_v2( nb_vectors, vec_dim, max_index_memory_usage, make_direct_map=make_direct_map, should_be_memory_mappable=should_be_memory_mappable, use_gpu=use_gpu, ) if not best_index_keys: return None, None index_key = best_index_keys[0] if id_columns is not None: logger.info(f"Id columns provided {id_columns} - will be reading the corresponding columns") if ids_path is not None: logger.info(f"\tWill be writing the Ids DataFrame in parquet format to {ids_path}") fs, _ = fsspec.core.url_to_fs(ids_path) if fs.exists(ids_path): fs.rm(ids_path, recursive=True) fs.mkdirs(ids_path) else: logger.error( "\tAs ids_path=None - the Ids DataFrame will not be written and will be ignored subsequently" ) logger.error("\tPlease provide a value ids_path for the Ids to be written") def write_ids_df_to_parquet(ids: pd.DataFrame, batch_id: int): filename = f"part-{batch_id:08d}-{uuid.uuid1()}.parquet" output_file = os.path.join(ids_path, filename) # type: ignore with fsspec.open(output_file, "wb") as f: logger.debug(f"Writing id DataFrame to file {output_file}") ids.to_parquet(f) with Timeit("Creating the index", indent=1): index, indices_folder = create_index( embeddings_file_paths, index_key, metric_type, nb_vectors, current_memory_available, use_gpu=use_gpu, file_format=file_format, embedding_column_name=embedding_column_name, id_columns=id_columns, embedding_ids_df_handler=write_ids_df_to_parquet if ids_path and id_columns else None, make_direct_map=make_direct_map, distributed=distributed, temporary_indices_folder=temporary_indices_folder, file_counts=file_counts if distributed is not None else None, nb_indices_to_keep=nb_indices_to_keep, ) if nb_indices_to_keep > 1: indices_folder = cast(str, indices_folder) index_path2_metric_infos = optimize_and_measure_indices( indices_folder, embedding_column_name, embeddings_file_paths, file_format, index_infos_path, index_key, index_param, index_path, max_index_query_time_ms, save_on_disk, use_gpu, ) for path,
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ <NAME>, <NAME>, <NAME> Sandia National Laboratories December 12, 2019 Sudoku Board and Cell data structures. """ # import json import uuid import config_data import copy import logging logger = logging.getLogger(__name__) class Cell(): """ A single cell on a Sudoku board. Each cell tracks and provides manipulation for the set of candidate values that the Cell may take. """ # An ordered list of display_list = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G'] def __init__(self, identifier, value='.', degree=3): """ Initializes a Cell with an identifier and valueset or another cell. Args: identifier : a string identifier within a board (value expected), or a cell to copy value : the collection of potential values, or '.' for complete value set degree (int) : the number of blocks on a side (determines values) Returns: Cell : a new cell. Fields: propagated (boolean) : True if the cell assignment has been propagated to sister cells (i.e., removing values from that cell) Identifier parameter must be either a string or a Cell. NOTE: the value set is copied via set.copy(), which is fine for ints and strs, but won't work if the values become some other complex object type. """ if isinstance(identifier, Cell): # If identifier is a Cell, make a copy self._id = identifier._id assert isinstance(self._id, str), "Cell's id should be a string" self._propagated = identifier._propagated assert isinstance(self._propagated, bool), \ "Cell's _propagated should be a boolean" self._values = sorted(list(identifier._values)) self._degree = identifier._degree else: # If identifier is a unique ID (str or int) self._id = identifier self._propagated = False self._degree = degree if (value == '0' or value == '.'): # Get all possible values self._values = sorted(Cell.getPossibleValuesByDegree(degree)) elif isinstance(value, str): self._values = [self.getValueDisplays( self._degree).index(value)] elif isinstance(value, list): self._values = sorted((value)) elif isinstance(value, int): self._values = [value] assert isinstance(self._values, list), "Cell's values should be a list" @ classmethod def getPossibleValuesByDegree(cls, degree=3): """ Returns sorted list of all possible values for puzzle of degree. Raises: TypeError if degree is not squareable """ try: return [x for x in range(degree ** 2)] except TypeError: assert False, "Cell's degree must be square-able (**2)" @ classmethod def getValueDisplays(cls, degree=3): """ Returns sorted list of all display values for puzzle of degree. Note: this could be canonicalized to save memory, but it isn't. """ return [cls.display_list[idx] for idx in cls.getPossibleValuesByDegree(degree)] @ classmethod def displayValues(cls, values): """ Returns list of displays of the sorted list of values. """ return sorted([cls.display_list[idx] for idx in values]) @ classmethod def displayValue(cls, val): """ Returns displays of the value val. """ return cls.display_list[val] def __str__(self): return 'Cell(ID=' + str(self._id) + \ ', Propagated=' + str(self._propagated) + \ ', ValueSet={' + self.getStateStr(True) + '})' def assign(self, value): """ Assigns value to self, removing all other candidates. Args: value : the only value this cell can take on Returns: boolean : True if other values were eliminated by this assignment False if no cell update occurred Raises: AssertionError : if value was not a valid possibility """ assert value in self._values, \ "Cannot assign %s to Cell %s" % ( str(value), str(self.getIdentifier())) if len(self._values) > 1: self._values = [value] return True return False def exclude(self, value): """ Remove value from self's set of candidate values. Return True if the value was present, False otherwise. """ try: self._values.remove(value) return True except ValueError: return False def getCertainValue(self): """ If cell has only one candidate value, return it Otherwise return None """ if(len(self._values) == 1): return self._values[0] return None def getIdentifier(self): """ Return identifier for self. """ return self._id def getStateStr(self, uncertain=False, goal_cell = None): """ If uncertain is False, then return value if Cell is certain otherwise return '.' If uncertain is True, return the value set as a string """ displays = Cell.getValueDisplays(self._degree) width = sum([len(x) for x in displays]) + 1 if(uncertain): s = [displays[val] for val in self.getValues()] if not s: # Underconstrained: highlight a conflict return str.center('X', width) s = str(''.join(s)) if goal_cell == self.getIdentifier(): # Highlight the goal cell s = '*' + s + '*' elif goal_cell and goal_cell[1] == self.getIdentifier()[1]: # Save space to match with the goal cell s = ' ' + s + ' ' return str.center(''.join(s), width) elif self.isCertain(): return displays[self.getCertainValue()] + ' ' else: return '. ' def getValues(self): """ Return ordered list of current possible values. """ return sorted(self._values) def getValueSet(self): """ Return set of current possible values. """ return set(self._values) def hasValue(self, value): """ Return True iff value is possible in this Cell. """ return value in self._values def isCertain(self): """ Return True iff this Cell has only one possible value. """ return len(self._values) == 1 def isOverConstrained(self): """ Return True iff this Cell has no possible values remaining. """ return len(self._values) == 0 def isPropagated(self): return self._propagated def setPropagated(self): self._propagated = True # ----------------------------------------------------- class Board(): """ A single Sudoku board that maintains the current uncertainty state. A Board is an associative memory of cells indexed by location (e.g. A1, D3, etc.) Boards merely maintain state and answer questions about the state, see Unit and Solver for manipulation methods. """ unit_defns = {} unit_map = {} @ classmethod def getCellUnits(cls, cell_id, degree=3): """ Return units associated with cell_id in a puzzle of degree. cell_id may be a string or a Cell. """ if not isinstance(cell_id, str): cell_id = cell_id.getIdentifier() return cls.unit_map[degree][cell_id] @ classmethod def getUnitCells(cls, unit_id, degree=3): """ Return cells associated with unit_id in a puzzle of degree. """ return cls.unit_defns[degree][unit_id] @ classmethod def getAllCells(cls, degree=3): """ Get all cell names in a puzzle of degree. """ return cls.unit_map[degree].keys() @ classmethod def getAllUnits(cls, degree=3): """ Get all unit names in a puzzle of degree. """ return cls.unit_defns[degree].keys() @ classmethod def getSortedRows(cls, degree=3): """ Get all unit names in a puzzle of degree. """ return sorted([name for name in filter(lambda x: cls.getUnitType(x) == 'row', cls.unit_defns[degree].keys())]) @ classmethod def getUnitType(cls, unit): """ Get the type of the unit. Note: previously we kept collections identifying the unit names, which was cleaner, but for now we're relying on the encoding in the unit name. """ if unit[0] == 'c': return 'column' elif unit[0] == 'r': return 'row' elif unit[0] == 'b': return 'box' else: return 'Invalid Input' @ classmethod def getAssociatedCellIds(cls, cell_id): """ Get all cell IDs in units associated with target cell, without repeats. Return empty list if no cell_id is given """ associated_cells = [] if cell_id: associated_units = cls.getCellUnits(cell_id) for unit_id in associated_units: unit_cells = cls.getUnitCells(unit_id) for unit_cell in unit_cells: if unit_cell not in associated_cells and unit_cell != cell_id: associated_cells.append(unit_cell) return associated_cells @ classmethod def getCommonCells(cls, cell_id_list): """ Get list of all cells jointly associated to all cells in the list """ common_cell_set = set(cls.getAssociatedCellIds(cell_id_list[0])) for cell_id in cell_id_list: common_cell_set = common_cell_set & set( cls.getAssociatedCellIds(cell_id)) return list(common_cell_set) @ classmethod def getCommonUnits(cls, cell_id_list): """ Get list of all units jointly associated to all cells in the list """ common_unit_set = set(cls.getCellUnits(cell_id_list[0])) for cell_id in cell_id_list: common_unit_set = common_unit_set & set(cls.getCellUnits(cell_id)) return list(common_unit_set) @ classmethod def getUnionUnitSet(cls, cell_id_list): """ Get union set of units for the given cells """ union_unit_set = set(cls.getCellUnits(cell_id_list[0])) for cell_id in cell_id_list: union_unit_set = union_unit_set | set(cls.getCellUnits(cell_id)) return union_unit_set @ classmethod def getCellID(cls, row, col): """ Returns cell identifier given row and column identifier strings. """ r = row[1] c = col[1:] return r + c @ classmethod def getCellIDFromArrayIndex(cls, row, col): """ Returns cell identifier given row and column integer. """ rnm = cls._rname(row) cnm = cls._cname(col) return cls.getCellID(rnm, cnm) @ classmethod def getBoxID(cls, row, col, deg): """ Returns box identifier given row ('rX') and column ('cY[Y]') identifier and puzzle degree. """ r = row[1] c = col[1:] # 1. Convert r back to int past 0 ('A' is 1) # 2. Bump up to next round for divide to
using an exec based plugin. :param flocker: Flocker represents a Flocker volume attached to a kubelet's host \ machine and exposed to the pod for its usage. This depends on the Flocker \ control service being running :param gce_persistent_disk: GCEPersistentDisk represents a GCE Disk resource that \ is attached to a kubelet's host machine and then exposed to the pod. \ Provisioned by an admin. More info: \ https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk :param glusterfs: Glusterfs represents a Glusterfs volume that is attached to a \ host and exposed to the pod. Provisioned by an admin. More info: \ https://examples.k8s.io/volumes/glusterfs/README.md :param iscsi: ISCSI represents an ISCSI Disk resource that is attached to a \ kubelet's host machine and then exposed to the pod. Provisioned by an admin. :param local: Local represents directly-attached storage with node affinity :param mount_options: A list of mount options, e.g. ["ro", "soft"]. Not validated - \ mount will simply fail if one is invalid. More info: \ https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options :param nfs: NFS represents an NFS mount on the host. Provisioned by an admin. More \ info: https://kubernetes.io/docs/concepts/storage/volumes#nfs :param node_affinity: NodeAffinity defines constraints that limit what nodes this \ volume can be accessed from. This field influences the scheduling of pods that \ use this volume. :param persistent_volume_reclaim_policy: What happens to a persistent volume when \ released from its claim. Valid options are Retain (default for manually \ created PersistentVolumes), Delete (default for dynamically provisioned \ PersistentVolumes), and Recycle (deprecated). Recycle must be supported by the \ volume plugin underlying this PersistentVolume. More info: \ https://kubernetes.io/docs/concepts/storage/persistent-volumes#reclaiming :param photon_persistent_disk: PhotonPersistentDisk represents a PhotonController \ persistent disk attached and mounted on kubelets host machine :param portworx_volume: PortworxVolume represents a portworx volume attached and \ mounted on kubelets host machine :param quobyte: Quobyte represents a Quobyte mount on the host that shares a pod's \ lifetime :param rbd: RBD represents a Rados Block Device mount on the host that shares a \ pod's lifetime. More info: https://examples.k8s.io/volumes/rbd/README.md :param scale_io: ScaleIO represents a ScaleIO persistent volume attached and \ mounted on Kubernetes nodes. :param storage_class_name: Name of StorageClass to which this persistent volume \ belongs. Empty value means that this volume does not belong to any \ StorageClass. :param storageos: StorageOS represents a StorageOS volume that is attached to the \ kubelet's host machine and mounted into the pod More info: \ https://examples.k8s.io/volumes/storageos/README.md :param volume_mode: volumeMode defines if a volume is intended to be used with a \ formatted filesystem or to remain in raw block state. Value of Filesystem is \ implied when not included in spec. :param vsphere_volume: VsphereVolume represents a vSphere volume attached and \ mounted on kubelets host machine """ def __init__( self, access_modes: List[str], capacity: Optional[dict] = None, host_path: Optional[HostPathVolumeSource] = None, aws_elastic_block_store: Optional[AWSElasticBlockStoreVolumeSource] = None, azure_disk: Optional[AzureDiskVolumeSource] = None, azure_file: Optional[AzureFilePersistentVolumeSource] = None, cephfs: Optional[CephFSPersistentVolumeSource] = None, cinder: Optional[CinderPersistentVolumeSource] = None, claim_ref: Optional[ObjectReference] = None, csi: Optional[CSIPersistentVolumeSource] = None, fc: Optional[FCVolumeSource] = None, flex_volume: Optional[FlexPersistentVolumeSource] = None, flocker: Optional[FlockerVolumeSource] = None, gce_persistent_disk: Optional[GCEPersistentDiskVolumeSource] = None, glusterfs: Optional[GlusterfsPersistentVolumeSource] = None, iscsi: Optional[ISCSIPersistentVolumeSource] = None, local: Optional[LocalVolumeSource] = None, mount_options: Optional[List[str]] = None, nfs: Optional[NFSVolumeSource] = None, node_affinity: Optional[VolumeNodeAffinity] = None, persistent_volume_reclaim_policy: Optional[str] = None, photon_persistent_disk: Optional[PhotonPersistentDiskVolumeSource] = None, portworx_volume: Optional[PortworxVolumeSource] = None, quobyte: Optional[QuobyteVolumeSource] = None, rbd: Optional[RBDPersistentVolumeSource] = None, scale_io: Optional[ScaleIOPersistentVolumeSource] = None, storage_class_name: Optional[str] = None, storageos: Optional[StorageOSPersistentVolumeSource] = None, volume_mode: Optional[str] = None, vsphere_volume: Optional[VsphereVirtualDiskVolumeSource] = None, ): self.accessModes = access_modes self.capacity = capacity self.hostPath = host_path self.awsElasticBlockStore = aws_elastic_block_store self.azureDisk = azure_disk self.azureFile = azure_file self.cephfs = cephfs self.cinder = cinder self.claimRef = claim_ref self.csi = csi self.fc = fc self.flexVolume = flex_volume self.flocker = flocker self.gcePersistentDisk = gce_persistent_disk self.glusterfs = glusterfs self.iscsi = iscsi self.local = local self.mountOptions = mount_options self.nfs = nfs self.nodeAffinity = node_affinity self.persistentVolumeReclaimPolicy = persistent_volume_reclaim_policy self.photonPersistentDisk = photon_persistent_disk self.portworxVolume = portworx_volume self.quobyte = quobyte self.rbd = rbd self.scaleIO = scale_io self.storageClassName = storage_class_name self.storageos = storageos self.volumeMode = volume_mode self.vsphereVolume = vsphere_volume class LoadBalancerIngress(HelmYaml): """ :param hostname: Hostname is set for load-balancer ingress points that are DNS \ based (typically AWS load-balancers) :param ip: IP is set for load-balancer ingress points that are IP based (typically \ GCE or OpenStack load-balancers) """ def __init__(self, hostname: str, ip: str): self.hostname = hostname self.ip = ip class Taint(HelmYaml): """ :param effect: Required. The effect of the taint on pods that do not tolerate the \ taint. Valid effects are NoSchedule, PreferNoSchedule and NoExecute. :param key: Required. The taint key to be applied to a node. :param time_added: TimeAdded represents the time at which the taint was added. It \ is only written for NoExecute taints. :param value: The taint value corresponding to the taint key. """ def __init__( self, effect: str, key: str, time_added: Optional[datetime] = None, value: Optional[str] = None, ): self.effect = effect self.key = key self.timeAdded = self._get_kube_date_string(time_added) self.value = value @staticmethod def _get_kube_date_string(datetime_obj: Optional[datetime]): return ( datetime_obj.strftime("%Y-%m-%dT%H:%M:%SZ%Z") if datetime_obj else datetime_obj ) class ConfigMapNodeConfigSource(HelmYaml): """ :param name: Name is the metadata.name of the referenced ConfigMap. This field is \ required in all cases. :param kubelet_config_key: KubeletConfigKey declares which key of the referenced \ ConfigMap corresponds to the KubeletConfiguration structure This field is \ required in all cases. :param namespace: Namespace is the metadata.namespace of the referenced ConfigMap. \ This field is required in all cases. :param resource_version: ResourceVersion is the metadata.ResourceVersion of the \ referenced ConfigMap. This field is forbidden in Node.Spec, and required in \ Node.Status. :param uid: UID is the metadata.UID of the referenced ConfigMap. This field is \ forbidden in Node.Spec, and required in Node.Status. """ def __init__( self, name: str, kubelet_config_key: str, namespace: str, resource_version: Optional[str] = None, uid: Optional[str] = None, ): self.name = name self.kubeletConfigKey = kubelet_config_key self.namespace = namespace self.resourceVersion = resource_version self.uid = uid class EndpointPort(HelmYaml): """ :param name: The name of this port. This must match the 'name' field in the \ corresponding ServicePort. Must be a DNS_LABEL. Optional only if one port is \ defined. :param app_protocol: The application protocol for this port. This field follows \ standard Kubernetes label syntax. Un-prefixed names are reserved for IANA \ standard service names (as per RFC-6335 and \ http://www.iana.org/assignments/service-names). Non-standard protocols should \ use prefixed names such as mycompany.com/my-custom-protocol. Field can be \ enabled with ServiceAppProtocol feature gate. :param port: The port number of the endpoint. :param protocol: The IP protocol for this port. Must be UDP, TCP, or SCTP. Default \ is TCP. """ def __init__( self, name: str, app_protocol: str, port: int, protocol: Optional[str] = None ): self.name = name self.appProtocol = app_protocol self.port = port self.protocol = protocol class EndpointAddress(HelmYaml): """ :param hostname: The Hostname of this endpoint :param ip: The IP of this endpoint. May not be loopback (127.0.0.0/8), link-local \ (169.254.0.0/16), or link-local multicast ((172.16.17.32/24). IPv6 is also \ accepted but not fully supported on all platforms. Also, certain kubernetes \ components, like kube-proxy, are not IPv6 ready. :param node_name: Optional: Node hosting this endpoint. This can be used to \ determine endpoints local to a node. :param target_ref: Reference to object providing the endpoint. """ def __init__( self, hostname: str, ip: str, node_name: Optional[str] = None, target_ref: Optional[ObjectReference] = None, ): self.hostname = hostname self.ip = ip self.nodeName = node_name self.targetRef = target_ref class EndpointSubset(HelmYaml): """ :param addresses: IP addresses which offer the related ports that are marked as \ ready. These endpoints should be considered safe for load balancers and \ clients to utilize. :param not_ready_addresses: IP addresses which offer the related ports but are not \ currently marked as ready because they have not yet finished starting, have \ recently failed a readiness check, or have recently failed a liveness check. :param ports: Port numbers available on the related IP addresses. """ def __init__( self, addresses: List[EndpointAddress], not_ready_addresses: Optional[List[EndpointAddress]] =
else: result = backtrack(lexerbuf) return result def _sedlex_rnd_152(lexerbuf: lexbuf): result = -1 result = _sedlex_st_61(lexerbuf) return result def _sedlex_rnd_151(lexerbuf: lexbuf): result = -1 result = _sedlex_st_60(lexerbuf) return result def _sedlex_st_59(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_20(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_150[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_149(lexerbuf: lexbuf): result = -1 result = 60 return result def _sedlex_rnd_148(lexerbuf: lexbuf): result = -1 result = _sedlex_st_52(lexerbuf) return result def _sedlex_st_58(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_19(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_147[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_146(lexerbuf: lexbuf): result = -1 result = _sedlex_st_59(lexerbuf) return result def _sedlex_rnd_145(lexerbuf: lexbuf): result = -1 result = _sedlex_st_52(lexerbuf) return result def _sedlex_st_57(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_20(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_144[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_143(lexerbuf: lexbuf): result = -1 result = 60 return result def _sedlex_rnd_142(lexerbuf: lexbuf): result = -1 result = _sedlex_st_55(lexerbuf) return result def _sedlex_st_56(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_19(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_141[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_140(lexerbuf: lexbuf): result = -1 result = _sedlex_st_57(lexerbuf) return result def _sedlex_rnd_139(lexerbuf: lexbuf): result = -1 result = _sedlex_st_55(lexerbuf) return result def _sedlex_st_55(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_20(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_138[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_137(lexerbuf: lexbuf): result = -1 result = _sedlex_st_56(lexerbuf) return result def _sedlex_rnd_136(lexerbuf: lexbuf): result = -1 result = _sedlex_st_55(lexerbuf) return result def _sedlex_st_54(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 60) state_id = _sedlex_decide_19(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_135[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_134(lexerbuf: lexbuf): result = -1 result = _sedlex_st_57(lexerbuf) return result def _sedlex_rnd_133(lexerbuf: lexbuf): result = -1 result = _sedlex_st_55(lexerbuf) return result def _sedlex_st_53(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_20(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_132[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_131(lexerbuf: lexbuf): result = -1 result = _sedlex_st_54(lexerbuf) return result def _sedlex_rnd_130(lexerbuf: lexbuf): result = -1 result = _sedlex_st_52(lexerbuf) return result def _sedlex_st_52(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_21(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_129[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_21(c: int): if c <= -1: return -1 else: if c <= 93: return _sedlex_DT_table_14[c - 0] - 1 else: return 0 def _sedlex_rnd_128(lexerbuf: lexbuf): result = -1 result = _sedlex_st_58(lexerbuf) return result def _sedlex_rnd_127(lexerbuf: lexbuf): result = -1 result = _sedlex_st_53(lexerbuf) return result def _sedlex_rnd_126(lexerbuf: lexbuf): result = -1 result = _sedlex_st_52(lexerbuf) return result def _sedlex_st_50(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_20(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_125[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_20(c: int): if c <= -1: return -1 else: if c <= 93: return _sedlex_DT_table_13[c - 0] - 1 else: return 0 def _sedlex_rnd_124(lexerbuf: lexbuf): result = -1 result = 60 return result def _sedlex_rnd_123(lexerbuf: lexbuf): result = -1 result = _sedlex_st_49(lexerbuf) return result def _sedlex_st_49(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_19(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_122[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_19(c: int): if c <= -1: return -1 else: if c <= 61: return _sedlex_DT_table_12[c - 0] - 1 else: return 0 def _sedlex_rnd_121(lexerbuf: lexbuf): result = -1 result = _sedlex_st_50(lexerbuf) return result def _sedlex_rnd_120(lexerbuf: lexbuf): result = -1 result = _sedlex_st_49(lexerbuf) return result def _sedlex_st_48(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_18(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_119[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_18(c: int): if c <= -1: return -1 else: if c <= 91: return _sedlex_DT_table_11[c - 0] - 1 else: return 0 def _sedlex_rnd_118(lexerbuf: lexbuf): result = -1 result = _sedlex_st_52(lexerbuf) return result def _sedlex_rnd_117(lexerbuf: lexbuf): result = -1 result = _sedlex_st_50(lexerbuf) return result def _sedlex_rnd_116(lexerbuf: lexbuf): result = -1 result = _sedlex_st_49(lexerbuf) return result def _sedlex_st_47(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 25) state_id = _sedlex_decide_17(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_115[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_17(c: int): if c <= 60: return -1 else: if c <= 91: return _sedlex_DT_table_10[c - 61] - 1 else: return -1 def _sedlex_rnd_114(lexerbuf: lexbuf): result = -1 result = _sedlex_st_60(lexerbuf) return result def _sedlex_rnd_113(lexerbuf: lexbuf): result = -1 result = _sedlex_st_48(lexerbuf) return result def _sedlex_st_46(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 57) state_id = _sedlex_decide_16(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_112[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_111(lexerbuf: lexbuf): result = -1 result = _sedlex_st_46(lexerbuf) return result def _sedlex_st_45(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 57) state_id = _sedlex_decide_16(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_110[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_16(c: int): if c <= 47: return -1 else: if c <= 122: return _sedlex_DT_table_9[c - 48] - 1 else: return -1 def _sedlex_rnd_109(lexerbuf: lexbuf): result = -1 result = _sedlex_st_46(lexerbuf) return result def _sedlex_st_42(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 22) state_id = _sedlex_decide_15(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_108[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_15(c: int): if c <= 60: return -1 else: if c <= 62: return _sedlex_DT_table_8[c - 61] - 1 else: return -1 def _sedlex_rnd_107(lexerbuf: lexbuf): result = -1 result = 24 return result def _sedlex_rnd_106(lexerbuf: lexbuf): result = -1 result = 23 return result def _sedlex_st_40(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 20) state_id = _sedlex_decide_14(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_105[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_14(c: int): if c <= 60: return -1 else: if c <= 61: return 0 else: return -1 def _sedlex_rnd_104(lexerbuf: lexbuf): result = -1 result = 21 return result def _sedlex_st_37(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 17) state_id = _sedlex_decide_13(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_103[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_13(c: int): if c <= 59: return -1 else: if c <= 61: return _sedlex_DT_table_8[c - 60] - 1 else: return -1 def _sedlex_rnd_102(lexerbuf: lexbuf): result = -1 result = 19 return result def _sedlex_rnd_101(lexerbuf: lexbuf): result = -1 result = 18 return result def _sedlex_st_34(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 14) state_id = _sedlex_decide_12(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_100[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_12(c: int): if c <= 57: return -1 else: if c <= 58: return 0 else: return -1 def _sedlex_rnd_99(lexerbuf: lexbuf): result = -1 result = 15 return result def _sedlex_st_33(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 58) state_id = _sedlex_decide_10(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_98[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_97(lexerbuf: lexbuf): result = -1 result = _sedlex_st_28(lexerbuf) return result def _sedlex_rnd_96(lexerbuf: lexbuf): result = -1 result = _sedlex_st_30(lexerbuf) return result def _sedlex_rnd_95(lexerbuf: lexbuf): result = -1 result = _sedlex_st_26(lexerbuf) return result def _sedlex_st_32(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 58) state_id = _sedlex_decide_11(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_94[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_93(lexerbuf: lexbuf): result = -1 result = _sedlex_st_32(lexerbuf) return result def _sedlex_st_31(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_11(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_92[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_11(c: int): if c <= 47: return -1 else: if c <= 122: return _sedlex_DT_table_7[c - 48] - 1 else: return -1 def _sedlex_rnd_91(lexerbuf: lexbuf): result = -1 result = _sedlex_st_32(lexerbuf) return result def _sedlex_st_30(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 58) state_id = _sedlex_decide_10(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_90[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_10(c: int): if c <= 45: return -1 else: if c <= 101: return _sedlex_DT_table_6[c - 46] - 1 else: return -1 def _sedlex_rnd_89(lexerbuf: lexbuf): result = -1 result = _sedlex_st_28(lexerbuf) return result def _sedlex_rnd_88(lexerbuf: lexbuf): result = -1 result = _sedlex_st_30(lexerbuf) return result def _sedlex_rnd_87(lexerbuf: lexbuf): result = -1 result = _sedlex_st_26(lexerbuf) return result def _sedlex_st_29(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 58) state_id = _sedlex_decide_8(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_86[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_85(lexerbuf: lexbuf): result = -1 result = _sedlex_st_29(lexerbuf) return result def _sedlex_st_28(lexerbuf: lexbuf): result = -1 state_id = _sedlex_decide_8(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_84[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_rnd_83(lexerbuf: lexbuf): result = -1 result = _sedlex_st_29(lexerbuf) return result def _sedlex_st_27(lexerbuf: lexbuf): result = -1 mark(lexerbuf, 58) state_id = _sedlex_decide_9(public_next_int(lexerbuf)) if state_id >= 0: result = _sedlex_rnd_82[state_id](lexerbuf) else: result = backtrack(lexerbuf) return result def _sedlex_decide_9(c: int): if c <= 47: return
""" The portalpy module for working with the ArcGIS Online and Portal APIs.""" from __future__ import absolute_import import copy import json import imghdr import logging import os import tempfile from .connection import _ArcGISConnection, _normalize_url from .connection import _is_http_url from .connection import _parse_hostname, _unpack from .common._utils import _to_utf8 from six.moves.urllib import request from six.moves.urllib_parse import urlparse __version__ = '1.7.0' _log = logging.getLogger(__name__) class Portal(object): """ An object representing a connection to a single portal (via URL). .. note:: To instantiate a Portal object execute code like this: PortalPy.Portal(portalUrl, user, password) There are a few things you should know as you use the methods below. Group IDs - Many of the group functions require a group id. This id is different than the group's name or title. To determine a group id, use the search_groups function using the title to get the group id. Time - Many of the methods return a time field. All time is returned as millseconds since 1 January 1970. Python expects time in seconds since 1 January 1970 so make sure to divide times from PortalPy by 1000. See the example a few lines down to see how to convert from PortalPy time to Python time. Example - converting time .. code-block:: python import time . . . group = portalAdmin.get_group('67e1761068b7453693a0c68c92a62e2e') pythontime = time.ctime(group['created']/1000) Example - list users in group .. code-block:: python portal = PortalPy.Portal(portalUrl, user, password) resp = portal.get_group_members('67e1761068b7453693a0c68c92a62e2e') for user in resp['users']: print user Example - create a group .. code-block:: python portal= PortalPy.Portal(portalUrl, user, password) group_id = portalAdmin.create_group('my group', 'test tag', 'a group to share travel maps') Example - delete a user named amy and assign her content to bob .. code-block:: python portal = PortalPy.Portal(portalUrl, user, password) portal.delete_user('amy.user', True, 'bob.user') """ _is_arcpy = False def __init__(self, url, username=None, password=<PASSWORD>, key_file=None, cert_file=None, expiration=60, referer=None, proxy_host=None, proxy_port=None, connection=None, workdir=tempfile.gettempdir(), tokenurl=None, verify_cert=True, client_id=None): """ The Portal constructor. Requires URL and optionally username/password.""" url = url.strip() # be permissive in accepting home app urls homepos = url.find('/home') if homepos != -1: url = url[:homepos] self._is_arcpy = url.lower() == "pro" if self._is_arcpy: try: import arcpy url = arcpy.GetActivePortalURL() self.url = url except ImportError: raise ImportError("Could not import arcpy") except: raise ValueError("Could not use Pro authentication.") else: self.url = url if url: normalized_url = self.url '''_normalize_url(self.url)''' if not normalized_url[-1] == '/': normalized_url += '/' if normalized_url.lower().find("www.arcgis.com") > -1: urlscheme = urlparse(normalized_url).scheme self.resturl = "{scheme}://www.arcgis.com/sharing/rest/".format(scheme=urlscheme) elif normalized_url.lower().endswith("sharing/"): self.resturl = normalized_url + 'rest/' elif normalized_url.lower().endswith("sharing/rest/"): self.resturl = normalized_url else: self.resturl = normalized_url + 'sharing/rest/' self.hostname = _parse_hostname(url) self.workdir = workdir # Setup the instance members self._basepostdata = { 'f': 'json' } self._version = None self._properties = None self._resources = None self._languages = None self._regions = None self._is_pre_162 = False self._is_pre_21 = False # If a connection was passed in, use it, otherwise setup the # connection (use all SSL until portal informs us otherwise) if connection: _log.debug('Using existing connection to: ' + \ _parse_hostname(connection.baseurl)) self.con = connection if not connection: _log.debug('Connecting to portal: ' + self.hostname) if self._is_arcpy: self.con = _ArcGISConnection(baseurl="pro", tokenurl=tokenurl, username=username, password=password, key_file=key_file, cert_file=cert_file, expiration=expiration, all_ssl=True, referer=referer, proxy_host=proxy_host, proxy_port=proxy_port, verify_cert=verify_cert) else: self.con = _ArcGISConnection(baseurl=self.resturl, tokenurl=tokenurl, username=username, password=password, key_file=key_file, cert_file=cert_file, expiration=expiration, all_ssl=True, referer=referer, proxy_host=proxy_host, proxy_port=proxy_port, verify_cert=verify_cert, client_id=client_id) #self.get_version(True) self.get_properties(True) def add_group_users(self, user_names, group_id): """ Adds users to the group specified. .. note:: This method will only work if the user for the Portal object is either an administrator for the entire Portal or the owner of the group. ============ ====================================== **Argument** **Description** ------------ -------------------------------------- user_names list of usernames ------------ -------------------------------------- group_id required string, specifying group id ============ ====================================== :return: A dictionary with a key of "not_added" which contains the users that were not added to the group. """ if self._is_pre_21: _log.warning('The auto_accept option is not supported in ' \ + 'pre-2.0 portals') return #user_names = _unpack(user_names, 'username') postdata = self._postdata() postdata['users'] = ','.join(user_names) resp = self.con.post('community/groups/' + group_id + '/addUsers', postdata) return resp def add_item(self, item_properties, data=None, thumbnail=None, metadata=None, owner=None, folder=None): """ Adds content to a Portal. .. note:: That content can be a file (such as a layer package, geoprocessing package, map package) or it can be a URL (to an ArcGIS Server service, WMS service, or an application). If you are uploading a package or other file, provide a path or URL to the file in the data argument. From a technical perspective, none of the item properties below are required. However, it is strongly recommended that title, type, typeKeywords, tags, snippet, and description be provided. ============ ==================================================== **Argument** **Description** ------------ ---------------------------------------------------- item_properties required dictionary, see below for the keys and values ------------ ---------------------------------------------------- data optional string, either a path or URL to the data ------------ ---------------------------------------------------- thumbnail optional string, either a path or URL to an image ------------ ---------------------------------------------------- metadata optional string, either a path or URL to metadata. ------------ ---------------------------------------------------- owner optional string, defaults to logged in user. ------------ ---------------------------------------------------- folder optional string, content folder where placing item ============ ==================================================== ================ ============================================================================ **Key** **Value** ---------------- ---------------------------------------------------------------------------- type optional string, indicates type of item. See URL 1 below for valid values. ---------------- ---------------------------------------------------------------------------- typeKeywords optional string list. Lists all sub-types. See URL 1 for valid values. ---------------- ---------------------------------------------------------------------------- description optional string. Description of the item. ---------------- ---------------------------------------------------------------------------- title optional string. Name of the item. ---------------- ---------------------------------------------------------------------------- url optional string. URL to item that are based on URLs. ---------------- ---------------------------------------------------------------------------- tags optional string of comma-separated values. Used for searches on items. ---------------- ---------------------------------------------------------------------------- snippet optional string. Provides a very short summary of the what the item is. ---------------- ---------------------------------------------------------------------------- extent optional string with comma separated values for min x, min y, max x, max y. ---------------- ---------------------------------------------------------------------------- spatialReference optional string. Coordinate system that the item is in. ---------------- ---------------------------------------------------------------------------- accessInformation optional string. Information on the source of the content. ---------------- ---------------------------------------------------------------------------- licenseInfo optional string, any license information or restrictions regarding the content. ---------------- ---------------------------------------------------------------------------- culture optional string. Locale, country and language information. ---------------- ---------------------------------------------------------------------------- access optional string. Valid values: private, shared, org, or public. ---------------- ---------------------------------------------------------------------------- commentsEnabled optional boolean. Default is true. Controls whether comments are allowed. ---------------- ---------------------------------------------------------------------------- culture optional string. Language and country information. ================ ============================================================================ URL 1: http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#//02r3000000ms000000 :return: The item id of the uploaded item if successful, None if unsuccessful. """ # Postdata is a dictionary object whose keys and values will be sent via an HTTP Post. postdata = self._postdata() postdata.update(_to_utf8(item_properties)) # Build the files list (tuples) files = [] if data: if _is_http_url(data): data = request.urlretrieve(data)[0] else: if not os.path.isfile(os.path.abspath(data)): raise RuntimeError("File("+data+") not found.") files.append(('file', data, os.path.basename(data))) if metadata: if _is_http_url(metadata): metadata = request.urlretrieve(metadata)[0] files.append(('metadata', metadata, 'metadata.xml')) if thumbnail: if _is_http_url(thumbnail): thumbnail = request.urlretrieve(thumbnail)[0] file_ext = os.path.splitext(thumbnail)[1] if not file_ext: file_ext = imghdr.what(thumbnail) if file_ext in ('gif', 'png', 'jpeg'): new_thumbnail = thumbnail + '.' + file_ext os.rename(thumbnail, new_thumbnail) thumbnail = new_thumbnail files.append(('thumbnail', thumbnail, os.path.basename(thumbnail))) # If owner isn't specified, use the logged in user if not owner: owner = self.logged_in_user()['username'] # Setup the item path, including the folder, and post to it path = 'content/users/' + owner if folder and folder != '/': folder_id = self.get_folder_id(owner, folder) path += '/' + folder_id path += '/addItem' resp = self.con.post(path, postdata, files) if resp and resp.get('success'): return resp['id'] def publish_item(self, itemid, data=None, text=None, fileType="serviceDefinition", publishParameters=None, outputType=None, overwrite=False, owner=None, folder=None, buildInitialCache=False): """ Publishes a hosted service based on an existing source item. Publishers can create feature services as well as tiled map services. Feature services can be created using input files of type csv, shapefile, serviceDefinition, featureCollection, and fileGeodatabase. CSV files that contain location fields, (ie.address fields or X, Y fields) are spatially enabled during the process of publishing. Shapefiles and file geodatabases should be packaged as *.zip files. Tiled map services can be created from service definition (*.sd) files, tile packages, and existing feature services. Service definitions are authored in ArcGIS for Desktop and contain both the cartographic definition
Description: 查询os通过当前云 Summary: 查询os通过当前云 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindosbycurrentcloudResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findosbycurrentcloud.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findosbycurrentcloud_ex_async( self, request: deps_models.QueryBuildpackFindosbycurrentcloudRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindosbycurrentcloudResponse: """ Description: 查询os通过当前云 Summary: 查询os通过当前云 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindosbycurrentcloudResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findosbycurrentcloud.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findbyappsv( self, request: deps_models.QueryBuildpackFindbyappsvRequest, ) -> deps_models.QueryBuildpackFindbyappsvResponse: """ Description: 通过appv1查询buildpack Summary: 查询buildpack """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findbyappsv_ex(request, headers, runtime) async def query_buildpack_findbyappsv_async( self, request: deps_models.QueryBuildpackFindbyappsvRequest, ) -> deps_models.QueryBuildpackFindbyappsvResponse: """ Description: 通过appv1查询buildpack Summary: 查询buildpack """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findbyappsv_ex_async(request, headers, runtime) def query_buildpack_findbyappsv_ex( self, request: deps_models.QueryBuildpackFindbyappsvRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappsvResponse: """ Description: 通过appv1查询buildpack Summary: 查询buildpack """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappsvResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findbyappsv.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findbyappsv_ex_async( self, request: deps_models.QueryBuildpackFindbyappsvRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappsvResponse: """ Description: 通过appv1查询buildpack Summary: 查询buildpack """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappsvResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findbyappsv.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findbyapps( self, request: deps_models.QueryBuildpackFindbyappsRequest, ) -> deps_models.QueryBuildpackFindbyappsResponse: """ Description: 通过app查询 Summary: 通过app查询 """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findbyapps_ex(request, headers, runtime) async def query_buildpack_findbyapps_async( self, request: deps_models.QueryBuildpackFindbyappsRequest, ) -> deps_models.QueryBuildpackFindbyappsResponse: """ Description: 通过app查询 Summary: 通过app查询 """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findbyapps_ex_async(request, headers, runtime) def query_buildpack_findbyapps_ex( self, request: deps_models.QueryBuildpackFindbyappsRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappsResponse: """ Description: 通过app查询 Summary: 通过app查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappsResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findbyapps.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findbyapps_ex_async( self, request: deps_models.QueryBuildpackFindbyappsRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappsResponse: """ Description: 通过app查询 Summary: 通过app查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappsResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findbyapps.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findbyappservices( self, request: deps_models.QueryBuildpackFindbyappservicesRequest, ) -> deps_models.QueryBuildpackFindbyappservicesResponse: """ Description: 通过app服务查询 Summary: 通过app服务查询 """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findbyappservices_ex(request, headers, runtime) async def query_buildpack_findbyappservices_async( self, request: deps_models.QueryBuildpackFindbyappservicesRequest, ) -> deps_models.QueryBuildpackFindbyappservicesResponse: """ Description: 通过app服务查询 Summary: 通过app服务查询 """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findbyappservices_ex_async(request, headers, runtime) def query_buildpack_findbyappservices_ex( self, request: deps_models.QueryBuildpackFindbyappservicesRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappservicesResponse: """ Description: 通过app服务查询 Summary: 通过app服务查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappservicesResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findbyappservices.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findbyappservices_ex_async( self, request: deps_models.QueryBuildpackFindbyappservicesRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappservicesResponse: """ Description: 通过app服务查询 Summary: 通过app服务查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappservicesResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findbyappservices.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findbyappv( self, request: deps_models.QueryBuildpackFindbyappvRequest, ) -> deps_models.QueryBuildpackFindbyappvResponse: """ Description: 通过appv1查询 Summary: 通过appv1查询 """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findbyappv_ex(request, headers, runtime) async def query_buildpack_findbyappv_async( self, request: deps_models.QueryBuildpackFindbyappvRequest, ) -> deps_models.QueryBuildpackFindbyappvResponse: """ Description: 通过appv1查询 Summary: 通过appv1查询 """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findbyappv_ex_async(request, headers, runtime) def query_buildpack_findbyappv_ex( self, request: deps_models.QueryBuildpackFindbyappvRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappvResponse: """ Description: 通过appv1查询 Summary: 通过appv1查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappvResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findbyappv.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findbyappv_ex_async( self, request: deps_models.QueryBuildpackFindbyappvRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappvResponse: """ Description: 通过appv1查询 Summary: 通过appv1查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappvResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findbyappv.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findbyapp( self, request: deps_models.QueryBuildpackFindbyappRequest, ) -> deps_models.QueryBuildpackFindbyappResponse: """ Description: 通过app查询 Summary: 通过app查询 """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findbyapp_ex(request, headers, runtime) async def query_buildpack_findbyapp_async( self, request: deps_models.QueryBuildpackFindbyappRequest, ) -> deps_models.QueryBuildpackFindbyappResponse: """ Description: 通过app查询 Summary: 通过app查询 """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findbyapp_ex_async(request, headers, runtime) def query_buildpack_findbyapp_ex( self, request: deps_models.QueryBuildpackFindbyappRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappResponse: """ Description: 通过app查询 Summary: 通过app查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findbyapp.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findbyapp_ex_async( self, request: deps_models.QueryBuildpackFindbyappRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindbyappResponse: """ Description: 通过app查询 Summary: 通过app查询 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindbyappResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findbyapp.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def create_buildpack_generatesignurl( self, request: deps_models.CreateBuildpackGeneratesignurlRequest, ) -> deps_models.CreateBuildpackGeneratesignurlResponse: """ Description: 生成url Summary: 生成url """ runtime = util_models.RuntimeOptions() headers = {} return self.create_buildpack_generatesignurl_ex(request, headers, runtime) async def create_buildpack_generatesignurl_async( self, request: deps_models.CreateBuildpackGeneratesignurlRequest, ) -> deps_models.CreateBuildpackGeneratesignurlResponse: """ Description: 生成url Summary: 生成url """ runtime = util_models.RuntimeOptions() headers = {} return await self.create_buildpack_generatesignurl_ex_async(request, headers, runtime) def create_buildpack_generatesignurl_ex( self, request: deps_models.CreateBuildpackGeneratesignurlRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.CreateBuildpackGeneratesignurlResponse: """ Description: 生成url Summary: 生成url """ UtilClient.validate_model(request) return deps_models.CreateBuildpackGeneratesignurlResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.generatesignurl.create', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def create_buildpack_generatesignurl_ex_async( self, request: deps_models.CreateBuildpackGeneratesignurlRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.CreateBuildpackGeneratesignurlResponse: """ Description: 生成url Summary: 生成url """ UtilClient.validate_model(request) return deps_models.CreateBuildpackGeneratesignurlResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.generatesignurl.create', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_sumpackagessize( self, request: deps_models.QueryBuildpackSumpackagessizeRequest, ) -> deps_models.QueryBuildpackSumpackagessizeResponse: """ Description: 查询pagessize Summary: 查询pagessize """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_sumpackagessize_ex(request, headers, runtime) async def query_buildpack_sumpackagessize_async( self, request: deps_models.QueryBuildpackSumpackagessizeRequest, ) -> deps_models.QueryBuildpackSumpackagessizeResponse: """ Description: 查询pagessize Summary: 查询pagessize """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_sumpackagessize_ex_async(request, headers, runtime) def query_buildpack_sumpackagessize_ex( self, request: deps_models.QueryBuildpackSumpackagessizeRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackSumpackagessizeResponse: """ Description: 查询pagessize Summary: 查询pagessize """ UtilClient.validate_model(request) return deps_models.QueryBuildpackSumpackagessizeResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.sumpackagessize.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_sumpackagessize_ex_async( self, request: deps_models.QueryBuildpackSumpackagessizeRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackSumpackagessizeResponse: """ Description: 查询pagessize Summary: 查询pagessize """ UtilClient.validate_model(request) return deps_models.QueryBuildpackSumpackagessizeResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.sumpackagessize.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_supportcoderepo( self, request: deps_models.QueryBuildpackSupportcoderepoRequest, ) -> deps_models.QueryBuildpackSupportcoderepoResponse: """ Description: 查询是否supportcode Summary: 查询是否supportcode """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_supportcoderepo_ex(request, headers, runtime) async def query_buildpack_supportcoderepo_async( self, request: deps_models.QueryBuildpackSupportcoderepoRequest, ) -> deps_models.QueryBuildpackSupportcoderepoResponse: """ Description: 查询是否supportcode Summary: 查询是否supportcode """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_supportcoderepo_ex_async(request, headers, runtime) def query_buildpack_supportcoderepo_ex( self, request: deps_models.QueryBuildpackSupportcoderepoRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackSupportcoderepoResponse: """ Description: 查询是否supportcode Summary: 查询是否supportcode """ UtilClient.validate_model(request) return deps_models.QueryBuildpackSupportcoderepoResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.supportcoderepo.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_supportcoderepo_ex_async( self, request: deps_models.QueryBuildpackSupportcoderepoRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackSupportcoderepoResponse: """ Description: 查询是否supportcode Summary: 查询是否supportcode """ UtilClient.validate_model(request) return deps_models.QueryBuildpackSupportcoderepoResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.supportcoderepo.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpack_findavailablebyappserviceids( self, request: deps_models.QueryBuildpackFindavailablebyappserviceidsRequest, ) -> deps_models.QueryBuildpackFindavailablebyappserviceidsResponse: """ Description: 通过可用的app服务id查询Composite信息 Summary: 查询Composite信息 """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpack_findavailablebyappserviceids_ex(request, headers, runtime) async def query_buildpack_findavailablebyappserviceids_async( self, request: deps_models.QueryBuildpackFindavailablebyappserviceidsRequest, ) -> deps_models.QueryBuildpackFindavailablebyappserviceidsResponse: """ Description: 通过可用的app服务id查询Composite信息 Summary: 查询Composite信息 """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpack_findavailablebyappserviceids_ex_async(request, headers, runtime) def query_buildpack_findavailablebyappserviceids_ex( self, request: deps_models.QueryBuildpackFindavailablebyappserviceidsRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindavailablebyappserviceidsResponse: """ Description: 通过可用的app服务id查询Composite信息 Summary: 查询Composite信息 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindavailablebyappserviceidsResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpack.findavailablebyappserviceids.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpack_findavailablebyappserviceids_ex_async( self, request: deps_models.QueryBuildpackFindavailablebyappserviceidsRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpackFindavailablebyappserviceidsResponse: """ Description: 通过可用的app服务id查询Composite信息 Summary: 查询Composite信息 """ UtilClient.validate_model(request) return deps_models.QueryBuildpackFindavailablebyappserviceidsResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpack.findavailablebyappserviceids.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def query_buildpacknew( self, request: deps_models.QueryBuildpacknewRequest, ) -> deps_models.QueryBuildpacknewResponse: """ Description: pageQuery Summary: pageQuery """ runtime = util_models.RuntimeOptions() headers = {} return self.query_buildpacknew_ex(request, headers, runtime) async def query_buildpacknew_async( self, request: deps_models.QueryBuildpacknewRequest, ) -> deps_models.QueryBuildpacknewResponse: """ Description: pageQuery Summary: pageQuery """ runtime = util_models.RuntimeOptions() headers = {} return await self.query_buildpacknew_ex_async(request, headers, runtime) def query_buildpacknew_ex( self, request: deps_models.QueryBuildpacknewRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpacknewResponse: """ Description: pageQuery Summary: pageQuery """ UtilClient.validate_model(request) return deps_models.QueryBuildpacknewResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpacknew.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def query_buildpacknew_ex_async( self, request: deps_models.QueryBuildpacknewRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.QueryBuildpacknewResponse: """ Description: pageQuery Summary: pageQuery """ UtilClient.validate_model(request) return deps_models.QueryBuildpacknewResponse().from_map( await self.do_request_async('1.0', 'antcloud.deps.buildpacknew.query', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) def get_buildpacknew( self, request: deps_models.GetBuildpacknewRequest, ) -> deps_models.GetBuildpacknewResponse: """ Description: buildpacknewget Summary: buildpacknewget """ runtime = util_models.RuntimeOptions() headers = {} return self.get_buildpacknew_ex(request, headers, runtime) async def get_buildpacknew_async( self, request: deps_models.GetBuildpacknewRequest, ) -> deps_models.GetBuildpacknewResponse: """ Description: buildpacknewget Summary: buildpacknewget """ runtime = util_models.RuntimeOptions() headers = {} return await self.get_buildpacknew_ex_async(request, headers, runtime) def get_buildpacknew_ex( self, request: deps_models.GetBuildpacknewRequest, headers: Dict[str, str], runtime: util_models.RuntimeOptions, ) -> deps_models.GetBuildpacknewResponse: """ Description: buildpacknewget Summary: buildpacknewget """ UtilClient.validate_model(request) return deps_models.GetBuildpacknewResponse().from_map( self.do_request('1.0', 'antcloud.deps.buildpacknew.get', 'HTTPS', 'POST', f'/gateway.do', TeaCore.to_map(request), headers, runtime) ) async def get_buildpacknew_ex_async( self, request: deps_models.GetBuildpacknewRequest, headers: Dict[str, str],
osid.resource.ResourceLookupSession.get_resources_by_genus_type # NOTE: This implementation currently ignores plenary view collection = JSONClientValidated('authorization', collection='Authorization', runtime=self._runtime) result = collection.find( dict({'genusTypeId': str(authorization_genus_type)}, **self._view_filter())).sort('_id', DESCENDING) return objects.AuthorizationList(result, runtime=self._runtime, proxy=self._proxy) @utilities.arguments_not_none def get_authorizations_by_parent_genus_type(self, authorization_genus_type): """Gets an ``AuthorizationList`` corresponding to the given authorization genus ``Type`` and include authorizations of genus types derived from the specified ``Type``. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: authorization_genus_type (osid.type.Type): an authorization genus type return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: NullArgument - ``authorization_genus_type`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceLookupSession.get_resources_by_parent_genus_type # STILL NEED TO IMPLEMENT!!! return objects.AuthorizationList([]) @utilities.arguments_not_none def get_authorizations_by_record_type(self, authorization_record_type): """Gets an ``AuthorizationList`` containing the given authorization record ``Type``. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: authorization_record_type (osid.type.Type): an authorization record type return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: NullArgument - ``authorization_record_type`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.ResourceLookupSession.get_resources_by_record_type # STILL NEED TO IMPLEMENT!!! return objects.AuthorizationList([]) @utilities.arguments_not_none def get_authorizations_on_date(self, from_, to): """Gets an ``AuthorizationList`` effective during the entire given date range inclusive but not confined to the date range. arg: from (osid.calendaring.DateTime): starting date arg: to (osid.calendaring.DateTime): ending date return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: InvalidArgument - ``from`` is greater than ``to`` raise: NullArgument - ``from`` or ``to`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.relationship.RelationshipLookupSession.get_relationships_on_date authorization_list = [] for authorization in self.get_authorizations(): if overlap(from_, to, authorization.start_date, authorization.end_date): authorization_list.append(authorization) return objects.AuthorizationList(authorization_list, runtime=self._runtime) @utilities.arguments_not_none def get_authorizations_for_resource(self, resource_id): """Gets a list of ``Authorizations`` associated with a given resource. Authorizations related to the given resource, including those related through an ``Agent,`` are returned. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: resource_id (osid.id.Id): a resource ``Id`` return: (osid.authorization.AuthorizationList) - the returned ``Authorization list`` raise: NullArgument - ``resource_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_resource_on_date(self, resource_id, from_, to): """Gets an ``AuthorizationList`` effective during the entire given date range inclusive but not confined to the date range. Authorizations related to the given resource, including those related through an ``Agent,`` are returned. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. In effective mode, authorizations are returned that are currently effective. In any effective mode, active authorizations and those currently expired are returned. arg: resource_id (osid.id.Id): a resource ``Id`` arg: from (osid.calendaring.DateTime): starting date arg: to (osid.calendaring.DateTime): ending date return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: InvalidArgument - ``from`` is greater than ``to`` raise: NullArgument - ``resource_id, from`` or ``to`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_agent(self, agent_id): """Gets a list of ``Authorizations`` associated with a given agent. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: agent_id (osid.id.Id): an agent ``Id`` return: (osid.authorization.AuthorizationList) - the returned ``Authorization list`` raise: NullArgument - ``agent_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_agent_on_date(self, agent_id, from_, to): """Gets an ``AuthorizationList`` for the given agent and effective during the entire given date range inclusive but not confined to the date range. arg: agent_id (osid.id.Id): an agent ``Id`` arg: from (osid.calendaring.DateTime): starting date arg: to (osid.calendaring.DateTime): ending date return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: InvalidArgument - ``from`` is greater than ``to`` raise: NullArgument - ``agent_id, from`` or ``to`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_function(self, function_id): """Gets a list of ``Authorizations`` associated with a given function. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: function_id (osid.id.Id): a function ``Id`` return: (osid.authorization.AuthorizationList) - the returned ``Authorization list`` raise: NullArgument - ``function_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.learning.ActivityLookupSession.get_activities_for_objective_template # NOTE: This implementation currently ignores plenary view collection = JSONClientValidated('authorization', collection='Authorization', runtime=self._runtime) result = collection.find( dict({'functionId': str(function_id)}, **self._view_filter())) return objects.AuthorizationList(result, runtime=self._runtime) @utilities.arguments_not_none def get_authorizations_for_function_on_date(self, function_id, from_, to): """Gets an ``AuthorizationList`` for the given function and effective during the entire given date range inclusive but not confined to the date range. arg: function_id (osid.id.Id): a function ``Id`` arg: from (osid.calendaring.DateTime): starting date arg: to (osid.calendaring.DateTime): ending date return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: InvalidArgument - ``from`` is greater than ``to`` raise: NullArgument - ``function_id, from`` or ``to`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_resource_and_function(self, resource_id, function_id): """Gets a list of ``Authorizations`` associated with a given resource. Authorizations related to the given resource, including those related through an ``Agent,`` are returned. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. arg: resource_id (osid.id.Id): a resource ``Id`` arg: function_id (osid.id.Id): a function ``Id`` return: (osid.authorization.AuthorizationList) - the returned ``Authorization list`` raise: NullArgument - ``resource_id`` or ``function_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.relationship.RelationshipLookupSession.get_relationships_for_peers # NOTE: This implementation currently ignores plenary and effective views collection = JSONClientValidated('authorization', collection='Authorization', runtime=self._runtime) result = collection.find( dict({'sourceId': str(resource_id), 'destinationId': str(function_id)}, **self._view_filter())).sort('_id', ASCENDING) return objects.AuthorizationList(result, runtime=self._runtime) @utilities.arguments_not_none def get_authorizations_for_resource_and_function_on_date(self, resource_id, function_id, from_, to): """Gets an ``AuthorizationList`` effective during the entire given date range inclusive but not confined to the date range. Authorizations related to the given resource, including those related through an ``Agent,`` are returned. In plenary mode, the returned list contains all known authorizations or an error results. Otherwise, the returned list may contain only those authorizations that are accessible through this session. In effective mode, authorizations are returned that are currently effective. In any effective mode, active authorizations and those currently expired are returned. arg: resource_id (osid.id.Id): a resource ``Id`` arg: function_id (osid.id.Id): a function ``Id`` arg: from (osid.calendaring.DateTime): starting date arg: to (osid.calendaring.DateTime): ending date return: (osid.authorization.AuthorizationList) - the returned ``Authorization`` list raise: InvalidArgument - ``from`` is greater than ``to`` raise: NullArgument - ``resource_id, function_id, from`` or ``to`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure occurred *compliance: mandatory -- This method must be implemented.* """ raise errors.Unimplemented() @utilities.arguments_not_none def get_authorizations_for_agent_and_function(self, agent_id, function_id): """Gets a list of ``Authorizations``
<MappingProjection>` between them, in which supervised learning is used to modify the `matrix <MappingProjection.matrix>` parameter of the `MappingProjections <MappingProjection>` in the sequence, so that the input to the first ProcessingMechanism in the sequence generates an output from the last ProcessingMechanism that matches as closely as possible a target value `specified as input <Composition_Target_Inputs>` in the Composition's `learn <Composition.learn>` method. The Mechanisms in the pathway must be compatible with learning (that is, their `function <Mechanism_Base.function>` must be compatible with the `function <LearningMechanism.function>` of the `LearningMechanism` for the MappingProjections they receive (see `LearningMechanism_Function`). The Composition's `learning methods <Composition_Learning_Methods>` return a learning `Pathway`, in which its `learning_components <Pathway.learning_components>` attribute is assigned a dict containing the set of learning components generated for the Pathway, as described below. .. _Composition_Learning_Components: *Supervised Learning Components* ================================ For each `learning pathway <Composition_Learning_Pathway>` specified in the **pathways** argument of a Composition's constructor or one of its `learning methods <Composition_Learning_Methods>`, it creates the following Components, and assigns to them the `NodeRoles <NodeRole>` indicated: .. _TARGET_MECHANISM: * *TARGET_MECHANISM* -- receives the desired `value <Mechanism_Base.value>` for the `OUTPUT_MECHANISM`, that is used by the *OBJECTIVE_MECHANISM* as the target in computing the error signal (see above); that value must be specified as an input to the TARGET_MECHANISM, either in the **inputs** argument of the Composition's `learn <Composition.learn>` method, or in its **targets** argument in an entry for either the *TARGET_MECHANISM* or the `OUTPUT_MECHANISM <OUTPUT_MECHANISM>` (see `below <Composition_Target_Inputs>`); the Mechanism is assigned the `NodeRoles <NodeRole>` `TARGET` and `LEARNING` in the Composition. .. * a MappingProjection that projects from the *TARGET_MECHANISM* to the *TARGET* `InputPort <ComparatorMechanism_Structure>` of the *OBJECTIVE_MECHANISM*. .. * a MappingProjection that projects from the last ProcessingMechanism in the learning Pathway to the *SAMPLE* `InputPort <ComparatorMechanism_Structure>` of the *OBJECTIVE_MECHANISM*. .. .. _OBJECTIVE_MECHANISM: * *OBJECTIVE_MECHANISM* -- usually a `ComparatorMechanism`, used to `calculate an error signal <ComparatorMechanism_Execution>` for the sequence by comparing the value received by the ComparatorMechanism's *SAMPLE* `InputPort <ComparatorMechanism_Structure>` (from the `output <LearningMechanism_Activation_Output>` of the last Processing Mechanism in the `learning Pathway <Composition_Learning_Pathway>`) with the value received in the *OBJECTIVE_MECHANISM*'s *TARGET* `InputPort <ComparatorMechanism_Structure>` (from the *TARGET_MECHANISM* generated by the method -- see below); this is assigned the `NodeRole` `LEARNING` in the Composition. .. .. _LEARNING_MECHANISMS: * *LEARNING_MECHANISMS* -- a `LearningMechanism` for each MappingProjection in the sequence, each of which calculates the `learning_signal <LearningMechanism.learning_signal>` used to modify the `matrix <MappingProjection.matrix>` parameter for the coresponding MappingProjection, along with a `LearningSignal` and `LearningProjection` that convey the `learning_signal <LearningMechanism.learning_signal>` to the MappingProjection's *MATRIX* `ParameterPort<Mapping_Matrix_ParameterPort>`; depending on learning method, additional MappingProjections may be created to and/or from the LearningMechanism -- see `LearningMechanism_Learning_Configurations` for details); these are assigned the `NodeRole` `LEARNING` in the Composition. .. .. _LEARNING_FUNCTION: * *LEARNING_FUNCTION* -- the `LearningFunction` used by each of the `LEARNING_MECHANISMS` in the learning pathway. .. .. _LEARNED_PROJECTIONS: * *LEARNED_PROJECTIONS* -- a `LearningProjection` from each `LearningMechanism` to the `MappingProjection` for which it modifies it s`matrix <MappingProjection.matrix>` parameter. It also assigns the following item to the list of `learning_components` for the pathway: .. _OUTPUT_MECHANISM: * *OUTPUT_MECHANISM* -- the final `Node <Component_Nodes>` in the learning Pathway, the target `value <Mechanism_Base.value>` for which is specified as input to the `TARGET_MECHANISM`; the Node is assigned the `NodeRoles <NodeRole>` `OUTPUT` in the Composition. The items with names listed above are placed in a dict that is assigned to the `learning_components <Pathway.learning_components>` attribute of the `Pathway` returned by the learning method used to create the `Pathway`; they key for each item in the dict is the name of the item (as listed above), and the object(s) created of that type are its value (see `LearningMechanism_Single_Layer_Learning` for a more detailed description and figure showing these Components). If the learning Pathway <Composition_Learning_Pathway>` involves more than two ProcessingMechanisms (e.g. using `add_backpropagation_learning_pathway` for a multilayered neural network), then multiple LearningMechanisms are created, along with MappingProjections that provide them with the `error_signal <LearningMechanism.error_signal>` from the preceding LearningMechanism, and `LearningProjections <LearningProjection>` that modify the corresponding MappingProjections (*LEARNED_PROJECTION*\\s) in the `learning Pathway <Composition_Learning_Pathway>`, as shown for an example in the figure below. These additional learning components are listed in the *LEARNING_MECHANISMS* and *LEARNED_PROJECTIONS* entries of the dictionary assigned to the `learning_components <Pathway.learning_components>` attribute of the `learning Pathway <Composition_Learning_Pathway>` return by the learning method. .. _Composition_MultilayerLearning_Figure: **Figure: Supervised Learning Components** .. figure:: _static/Composition_Multilayer_Learning_fig.svg :alt: Schematic of LearningMechanism and LearningProjections in a Process :scale: 50 % *Components for supervised learning Pathway*: the Pathway has three Mechanisms generated by a call to a `supervised learning method <Composition_Learning_Methods>` (e.g., ``add_backpropagation_learning_pathway(pathway=[A,B,C])``), with `NodeRole` assigned to each `Node <Composition_Nodes>` in the Composition's `graph <Composition.graph>` (in italics below Mechanism type) and the names of the learning components returned by the learning method (capitalized and in italics, above each Mechanism). The description above (and `example <Composition_Examples_Learning_XOR>` >below) pertain to simple linear sequences. However, more complex configurations, with convergent, divergent and/or intersecting sequences can be built using multiple calls to the learning method (see `example <BasicsAndPrimer_Rumelhart_Model>` in `BasicsAndPrimer`). In each the learning method determines how the sequence to be added relates to any existing ones with which it abuts or intersects, and automatically creates andconfigures the relevant learning components so that the error terms are properly computed and propagated by each LearningMechanism to the next in the configuration. It is important to note that, in doing so, the status of a Mechanism in the final configuration takes precedence over its status in any of the individual sequences specified in the `learning methods <Composition_Learning_Methods>` when building the Composition. In particular, whereas ordinarily the last ProcessingMechanism of a sequence specified in a learning method projects to a *OBJECTIVE_MECHANISM*, this may be superceded if multiple sequences are created. This is the case if: i) the Mechanism is in a seqence that is contiguous (i.e., abuts or intersects) with others already in the Composition, ii) the Mechanism appears in any of those other sequences and, iii) it is not the last Mechanism in *all* of them; in that in that case, it will not project to a *OBJECTIVE_MECHANISM* (see `figure below <Composition_Learning_Output_vs_Terminal_Figure>` for an example). Furthermore, if it *is* the last Mechanism in all of them (that is, all of the specified pathways converge on that Mechanism), only one *OBJECTIVE_MECHANISM* is created for that Mechanism (i.e., not one for each sequence). Finally, it should be noted that, by default, learning components are *not* assigned the `NodeRole` of `OUTPUT` even though they may be the `TERMINAL` Mechanism of a Composition; conversely, even though the last Mechanism of a `learning Pathway <Composition_Learning_Pathway>` projects to an *OBJECTIVE_MECHANISM*, and thus is not the `TERMINAL` `Node <Composition_Nodes>` of a Composition, if it does not project to any other Mechanisms in the Composition it is nevertheless assigned as an `OUTPUT` of the Composition. That is, Mechanisms that would otherwise have been the `TERMINAL` Mechanism of a Composition preserve their role as an `OUTPUT` Node of the Composition if they are part of a `learning Pathway <Composition_Learning_Pathway>` eventhough they project to another Mechanism (the *OBJECTIVE_MECHANISM*) in the Composition. .. _Composition_Learning_Output_vs_Terminal_Figure: **OUTPUT** vs. **TERMINAL** Roles in Learning Configuration .. figure:: _static/Composition_Learning_OUTPUT_vs_TERMINAL_fig.svg :alt: Schematic of Mechanisms and Projections involved in learning :scale: 50 % Configuration of Components generated by the creation of two intersecting `learning Pathways <Composition_Learning_Pathway>` (e.g., ``add_backpropagation_learning_pathway(pathway=[A,B])`` and ``add_backpropagation_learning_pathway(pathway=[D,B,C])``). Mechanism B is the last Mechanism of the sequence specified for the first pathway, and so would project to a `ComparatorMechanism`, and would be assigned as an `OUTPUT` `Node <Composition_Nodes>` of the Composition, if that pathway was created on its own. However, since Mechanims B is also in the middle of the sequence specified for the second pathway, it does not project to a ComparatorMechanism, and is relegated to being an `INTERNAL` Node of the Composition Mechanism C is now the one that projects to the ComparatorMechanism and assigned as the `OUTPUT` Node. .. _Composition_Learning_Execution: *Execution of Learning* ======================= For learning to occur when a Composition is run, its `learn <Composition.learn>` method must be used instead of the `run <Composition.run>` method, and its `disable_learning <Composition.disable_learning>` attribute must be False. When the `learn <Composition.learn>` method is used, all Components *unrelated* to learning are executed in the same way as with the `run <Composition.run>` method. If the Composition has any `nested Composition
|_ __ _ __ _ ___ ___ # \___ \| __/ _` |/ _` |/ _ / __| # ___) | || (_| | (_| | __\__ \ # |____/ \__\__,_|\__, |\___|___/ # |___/ # ################################################################################################ @app.route('/workflow/stage', cors=True, methods=['POST'], authorizer=authorizer) def create_stage_api(): """ Create a stage state machine from a list of existing operations. A stage is a set of operations that are grouped so they can be executed in parallel. When the stage is executed as part of a workflow, operations within a stage are executed as branches in a parallel Step Functions state. The generated state machines status is tracked by the workflow engine control plane during execution. An optional Configuration for each operator in the stage can be input to override the default configuration for the stage. Body: .. code-block:: python { "Name":"stage-name", "Operations": ["operation-name1", "operation-name2", ...] } Returns: A dict mapping keys to the corresponding stage created including the ARN of the state machine created. { "Name": string, "Operations": [ "operation-name1", "operation-name2", ... ], "Configuration": { "operation-name1": operation-configuration-object1, "operation-name2": operation-configuration-object1, ... } }, { "Name": "TestStage", "Operations": [ "TestOperator" ], "Configuration": { "TestOperator": { "MediaType": "Video", "Enabled": true } } } Raises: 200: The stage was created successfully. 400: Bad Request - one of the input state machines was not found or was invalid 409: Conflict 500: ChaliceViewError - internal server error """ stage = None stage = json.loads(app.current_request.raw_body.decode()) logger.info(json.loads(app.current_request.raw_body.decode())) stage = create_stage(stage) return stage def create_stage(stage): try: stage_table = DYNAMO_RESOURCE.Table(STAGE_TABLE_NAME) Configuration = {} logger.info(stage) validate(instance=stage, schema=SCHEMA["create_stage_request"]) logger.info("Stage schema is valid") Name = stage["Name"] # Check if this stage already exists response = stage_table.get_item( Key={ 'Name': Name }, ConsistentRead=True) if "Item" in response: raise ConflictError( "A stage with the name '%s' already exists" % Name) # Build the stage state machine. The stage machine consists of a parallel state with # branches for each operator and a call to the stage completion lambda at the end. # The parallel state takes a stage object as input. Each # operator returns and operatorOutput object. The outputs for each operator are # returned from the parallel state as elements of the "outputs" array. stageAsl = { "StartAt": "Preprocess Media", "States": { "Complete Stage {}".format(Name): { "Type": "Task", # FIXME - testing NoQ workflows #"Resource": COMPLETE_STAGE_LAMBDA_ARN, "Resource": COMPLETE_STAGE_LAMBDA_ARN, "End": True } } } stageAsl["StartAt"] = Name stageAsl["States"][Name] = { "Type": "Parallel", "Next": "Complete Stage {}".format(Name), "ResultPath": "$.Outputs", "Branches": [ ], "Catch": [ { "ErrorEquals": ["States.ALL"], "Next": "Complete Stage {}".format(Name), "ResultPath": "$.Outputs" } ] } # Add a branch to the stage state machine for each operation, build up default # Configuration for the stage based on the operator Configuration for op in stage["Operations"]: # lookup base workflow operation = get_operation_by_name(op) logger.info(json.dumps(operation, cls=DecimalEncoder)) stageAsl["States"][Name]["Branches"].append( json.loads(operation["StateMachineAsl"])) Configuration[op] = operation["Configuration"] stageAslString = json.dumps(stageAsl) stageAslString = stageAslString.replace("%%STAGE_NAME%%", stage["Name"]) stageAsl = json.loads(stageAslString) logger.info(json.dumps(stageAsl)) stage["Configuration"] = Configuration # Build stage stage["Definition"] = json.dumps(stageAsl) stage["Version"] = "v0" stage["Id"] = str(uuid.uuid4()) stage["Created"] = str(datetime.now().timestamp()) stage["ResourceType"] = "STAGE" stage["ApiVersion"] = API_VERSION stage_table.put_item(Item=stage) except ValidationError as e: logger.error("got bad request error: {}".format(e)) raise BadRequestError(e) except Exception as e: logger.error("Exception {}".format(e)) stage = None raise ChaliceViewError("Exception '%s'" % e) return stage @app.route('/workflow/stage', cors=True, methods=['PUT'], authorizer=authorizer) def update_stage(): """ Update a stage NOT IMPLEMENTED XXX """ stage = {"Message": "NOT IMPLEMENTED"} return stage @app.route('/workflow/stage', cors=True, methods=['GET'], authorizer=authorizer) def list_stages(): """ List all stage defintions Returns: A list of operation definitions. Raises: 200: All operations returned sucessfully. 500: ChaliceViewError - internal server error """ table = DYNAMO_RESOURCE.Table(STAGE_TABLE_NAME) response = table.scan() stages = response['Items'] while 'LastEvaluatedKey' in response: response = table.scan(ExclusiveStartKey=response['LastEvaluatedKey']) stages.extend(response['Items']) return stages @app.route('/workflow/stage/{Name}', cors=True, methods=['GET'], authorizer=authorizer) def get_stage_by_name(Name): """ Get a stage definition by name Returns: A dictionary contianing the stage definition. Raises: 200: All stages returned sucessfully. 404: Not found 500: Internal server error """ stage_table = DYNAMO_RESOURCE.Table(STAGE_TABLE_NAME) stage = None response = stage_table.get_item( Key={ 'Name': Name }) if "Item" in response: stage = response["Item"] else: raise NotFoundError( "Exception: stage '%s' not found" % Name) return stage @app.route('/workflow/stage/{Name}', cors=True, methods=['DELETE'], authorizer=authorizer) def delete_stage_api(Name): """ Delete a stage Returns: A dictionary contianing the stage definition. Raises: 200: Stage deleted sucessfully. 400: Bad Request - there are dependent workflows and query parameter force=False 404: Not found 500: ChaliceViewError - internal server error """ Force = False params = app.current_request.query_params if params and "force" in params and params["force"] == "true": Force = True stage = delete_stage(Name, Force) return stage def delete_stage(Name, Force): table = DYNAMO_RESOURCE.Table(STAGE_TABLE_NAME) logger.info("delete_stage({},{})".format(Name, Force)) try: stage = {} response = table.get_item( Key={ 'Name': Name }, ConsistentRead=True) if "Item" in response: workflows = list_workflows_by_stage(Name) stage = response["Item"] if len(workflows) != 0 and Force == False: Message = """Dependent workflows were found for stage {}. Either delete the dependent workflows or set the query parameter force=true to delete the stage anyhow. Undeleted dependent workflows will be kept but will contain the deleted definition of the stage. To find the workflow that depend on a stage use the following endpoint: GET /workflow/list/stage/""".format(Name) raise BadRequestError(Message) response = table.delete_item( Key={ 'Name': Name }) flag_stage_dependent_workflows(Name) else: stage["Message"] = "Warning: stage '{}' not found".format(Name) except BadRequestError as e: logger.error("got bad request error: {}".format(e)) raise except Exception as e: stage = None logger.error("Exception {}".format(e)) raise ChaliceViewError("Exception: '%s'" % e) return stage def flag_stage_dependent_workflows(StageName): try: table = DYNAMO_RESOURCE.Table(WORKFLOW_TABLE_NAME) workflows = list_workflows_by_stage(StageName) for workflow in workflows: result = table.update_item( Key={ 'Name': workflow["Name"] }, UpdateExpression="SET StaleStages = list_append(StaleStages, :i)", ExpressionAttributeValues={ ':i': [StageName], }, ReturnValues="UPDATED_NEW" ) except Exception as e: logger.error("Exception flagging workflows dependent on dropped stage {}".format(e)) raise ChaliceViewError("Exception: '%s'" % e) return StageName ############################################################################### # __ __ _ __ _ # \ \ / /__ _ __| | __/ _| | _____ _____ # \ \ /\ / / _ \| '__| |/ / |_| |/ _ \ \ /\ / / __| # \ V V / (_) | | | <| _| | (_) \ V V /\__ \ # \_/\_/ \___/|_| |_|\_\_| |_|\___/ \_/\_/ |___/ # ############################################################################### @app.route('/workflow', cors=True, methods=['POST'], authorizer=authorizer) def create_workflow_api(): """ Create a workflow from a list of existing stages. A workflow is a pipeline of stages that are executed sequentially to transform and extract metadata for a set of MediaType objects. Each stage must contain either a "Next" key indicating the next stage to execute or and "End" key indicating it is the last stage. Body: .. code-block:: python { "Name": string, "StartAt": string - name of starting stage, "Stages": { "stage-name": { "Next": "string - name of next stage" }, ..., "stage-name": { "End": true } } } Returns: A dict mapping keys to the corresponding workflow created including the AWS resources used to execute each stage. .. code-block:: python { "Name": string, "StartAt": string - name of starting stage, "Stages": { "stage-name": { "Resource": queueARN, "StateMachine": stateMachineARN, "Configuration": stageConfigurationObject, "Next": "string - name of next stage" }, ..., "stage-name": { "Resource": queueARN, "StateMachine": stateMachineARN, "Configuration": stageConfigurationObject, "End": true } } } Raises: 200: The workflow was created successfully. 400: Bad Request - one of the input stages was not found or was invalid 500: ChaliceViewError - internal server error """ workflow = json.loads(app.current_request.raw_body.decode()) logger.info(json.dumps(workflow)) return create_workflow("api", workflow) def create_workflow(trigger, workflow): try: workflow_table = DYNAMO_RESOURCE.Table(WORKFLOW_TABLE_NAME) workflow["Trigger"] = trigger workflow["Operations"] = [] workflow["StaleOperations"] = [] workflow["StaleStages"] = [] workflow["Version"] = "v0" workflow["Id"] = str(uuid.uuid4()) workflow["Created"] = str(datetime.now().timestamp()) workflow["Revisions"] = str(1) workflow["ResourceType"] = "WORKFLOW" workflow["ApiVersion"] = API_VERSION logger.info(json.dumps(workflow)) # Validate inputs checkRequiredInput("Name", workflow, "Workflow Definition") checkRequiredInput("StartAt", workflow, "Workflow Definition") checkRequiredInput("Stages", workflow, "Workflow Definition") workflow = build_workflow(workflow) # Build state machine response = SFN_CLIENT.create_state_machine( name=workflow["Name"] + "-" + STACK_SHORT_UUID, definition=json.dumps(workflow["WorkflowAsl"]), roleArn=STAGE_EXECUTION_ROLE, tags=[ { 'key': 'environment', 'value': 'mie' }, ] ) workflow.pop("WorkflowAsl") workflow["StateMachineArn"] = response["stateMachineArn"] workflow_table.put_item( Item=workflow, ConditionExpression="attribute_not_exists(#workflow_name)", ExpressionAttributeNames={ '#workflow_name': "Name" }) except ClientError as e: # Ignore the ConditionalCheckFailedException, bubble up # other exceptions. if e.response['Error']['Code'] == 'ConditionalCheckFailedException': raise ConflictError("Workflow with Name {} already exists".format(workflow["Name"])) else: raise except Exception as e: if "StateMachineArn" in workflow: response = SFN_CLIENT.delete_state_machine( workflow["StateMachineArn"] ) logger.error("Exception {}".format(e)) workflow = None
script example_section_data.append( Code(entries, "\n".join(item.out), ce_status) ) if figname: example_section_data.append(Fig(figname)) else: assert isinstance(item.out, list) example_section_data.append(Text("\n".join(item.out))) # TODO fix this if plt.close not called and still a ligering figure. fig_managers = executor.fig_man() if len(fig_managers) != 0: print(f"Unclosed figures in {qa}!!") plt.close("all") return processed_example_data(example_section_data), figs def get_classes(code): """ Extract Pygments token classes names for given code block """ list(lex(code, PythonLexer())) FMT = HtmlFormatter() classes = [FMT.ttype2class.get(x) for x, y in lex(code, PythonLexer())] classes = [c if c is not None else "" for c in classes] return classes def processed_example_data(example_section_data) -> Section: """this should be no-op on already ingested""" new_example_section_data = Section() for in_out in example_section_data: type_ = in_out.__class__.__name__ # color examples with pygments classes if type_ == "Text": blocks = parse_rst_section(in_out.value) for b in blocks: new_example_section_data.append(b) elif type_ == "Code": in_ = in_out.entries # assert len(in_[0]) == 3, len(in_[0]) if len(in_[0]) == 2: text = "".join([x for x, y in in_]) classes = get_classes(text) in_out.entries = [ii + (cc,) for ii, cc in zip(in_, classes)] if type_ != "Text": new_example_section_data.append(in_out) return new_example_section_data @lru_cache def normalise_ref(ref): """ Consistently normalize references. Refs are sometime import path, not fully qualified names, tough type inference in examples regularly give us fully qualified names. When visiting a ref, this tries to import it and replace it by the normal full-qualified form. This is expensive, ad we likely want to move the logic of finding the correct ref earlier in the process and us this as an assertion the refs are normalized. It is critical to normalize in order to have the correct information when using interactive ?/??, or similar inspector of live objects; """ if ref.startswith(("builtins.", "__main__")): return ref try: mod_name, name = ref.rsplit(".", maxsplit=1) mod = __import__(mod_name) for sub in mod_name.split(".")[1:]: mod = getattr(mod, sub) obj = getattr(mod, name) if isinstance(obj, ModuleType): return ref if getattr(obj, "__name__", None) is None: return ref return obj.__module__ + "." + obj.__name__ except Exception: pass return ref @dataclass class Config: # we might want to suppress progress/ rich as it infers with ipdb. dummy_progress: bool = False # Do not actually touch disk dry_run: bool = False exec_failure: Optional[str] = None # should move to enum jedi_failure_mode: Optional[str] = None # move to enum ? logo: Optional[str] = None # should change to path likely execute_exclude_patterns: Sequence[str] = () infer: bool = True exclude: Sequence[str] = () # list of dotted object name to exclude from collection examples_folder: Optional[str] = None # < to path ? submodules: Sequence[str] = () exec: bool = False source: Optional[str] = None homepage: Optional[str] = None docs: Optional[str] = None docs_path: Optional[str] = None wait_for_plt_show: Optional[bool] = True examples_exclude: Sequence[str] = () exclude_jedi: Sequence[str] = () implied_imports: Dict[str, str] = dataclasses.field(default_factory=dict) expected_errors: Dict[str, List[str]] = dataclasses.field(default_factory=dict) early_error: bool = True def replace(self, **kwargs): return dataclasses.replace(self, **kwargs) def load_configuration(path: str) -> Tuple[str, MutableMapping[str, Any]]: """ Given a path, load a configuration from a File. """ conffile = Path(path).expanduser() if conffile.exists(): conf: MutableMapping[str, Any] = toml.loads(conffile.read_text()) assert len(conf.keys()) == 1 root = next(iter(conf.keys())) return root, conf[root] else: sys.exit(f"{conffile!r} does not exists.") def gen_main( infer: Optional[bool], exec_: Optional[bool], target_file: str, debug, *, dummy_progress: bool, dry_run=bool, api: bool, examples: bool, fail, narrative, ) -> None: """ Main entry point to generate docbundle files, This will take care of reading single configuration file with the option for the library you want to build the docs for, scrape API, narrative and examples, and put it into a doc bundle for later consumption. Parameters ---------- infer : bool | None CLI override of whether to run type inference on examples exec_ : bool | None CLI override of whether to execute examples/code blocks target_file : str Patch of configuration file dummy_progress : bool CLI flag to disable progress that might screw up with ipdb formatting when debugging. api : bool CLI override of whether to build api docs examples : bool CLI override of whether to build examples docs fail TBD narrative : bool CLI override of whether to build narrative docs dry_run : bool don't write to disk debug : bool set log level to debug Returns ------- None """ target_module_name, conf = load_configuration(target_file) config = Config(**conf, dry_run=dry_run, dummy_progress=dummy_progress) if exec_ is not None: config.exec = exec_ if infer is not None: config.infer = infer target_dir = Path("~/.papyri/data").expanduser() if not target_dir.exists() and not config.dry_run: target_dir.mkdir(parents=True, exist_ok=True) if dry_run: temp_dir = tempfile.TemporaryDirectory() target_dir = Path(temp_dir.name) g = Gen(dummy_progress=dummy_progress, config=config) g.log.info("Will write data to %s", target_dir) if debug: g.log.setLevel("DEBUG") g.log.debug("Log level set to debug") g.collect_package_metadata( target_module_name, relative_dir=Path(target_file).parent, ) if examples: g.collect_examples_out() if api: g.collect_api_docs(target_module_name) if narrative: g.collect_narrative_docs() p = target_dir / (g.root + "_" + g.version) p.mkdir(exist_ok=True) g.log.info("Saving current Doc bundle to %s", p) g.clean(p) g.write(p) if dry_run: temp_dir.cleanup() def full_qual(obj): if isinstance(obj, ModuleType): return obj.__name__ else: try: if hasattr(obj, "__qualname__") and ( getattr(obj, "__module__", None) is not None ): return obj.__module__ + "." + obj.__qualname__ elif hasattr(obj, "__name__") and ( getattr(obj, "__module__", None) is not None ): return obj.__module__ + "." + obj.__name__ except Exception: pass return None return None class DFSCollector: """ Depth first search collector. Will scan documentation to find all reachable items in the namespace of our root object (we don't want to go scan other libraries). Three was some issues with BFS collector originally, I'm not sure I remember what. """ def __init__(self, root, others): """ Parameters ---------- root Base object, typically module we want to scan itself. We will attempt to no scan any object which does not belong to the root or one of its children. others List of other objects to use a base to explore the object graph. Typically this is because some packages do not import some submodules by default, so we need to pass these submodules explicitly. """ assert isinstance(root, ModuleType), root self.root = root.__name__ assert "." not in self.root self.obj: Dict[str, Any] = dict() self.aliases = defaultdict(lambda: []) self._open_list = [(root, [root.__name__])] for o in others: self._open_list.append((o, o.__name__.split("."))) def scan(self) -> None: """ Attempt to find all objects. """ while len(self._open_list) >= 1: current, stack = self._open_list.pop(0) # numpy objects ane no bool values. if id(current) not in [id(x) for x in self.obj.values()]: self.visit(current, stack) def prune(self) -> None: """ Some object can be reached many times via multiple path. We try to remove duplicate path we use to reach given objects. Notes ----- At some point we might want to save all objects aliases, in order to extract the canonical import name (visible to users), and to resolve references. """ for qa, item in self.obj.items(): if (nqa := full_qual(item)) != qa: print("after import qa differs : {qa} -> {nqa}") if self.obj[nqa] == item: print("present twice") del self.obj[nqa] else: print("differs: {item} != {other}") def items(self) -> Dict[str, Any]: self.scan() self.prune() return self.obj def visit(self, obj, stack): """ Recursively visit Module, Classes, and Functions by tracking which path we took there. """ try: qa = full_qual(obj) except Exception as e: raise RuntimeError(f"error visiting {'.'.join(self.stack)}") from e if not qa: if ( "__doc__" not in stack and hasattr(obj, "__doc__") and not full_qual(type(obj)).startswith("builtins.") ): # might be worth looking into like np.exp. pass return if not qa.split(".")[0] == self.root: return if obj in self.obj.values(): return if (qa in self.obj) and self.obj[qa] != obj: pass self.obj[qa] = obj self.aliases[qa].append(".".join(stack)) if isinstance(obj, ModuleType): return self.visit_ModuleType(obj, stack) elif isinstance(obj, FunctionType): return self.visit_FunctionType(obj, stack) elif isinstance(obj, type): return self.visit_ClassType(obj, stack) else: pass def visit_ModuleType(self, mod, stack): for k in dir(mod): # TODO: scipy 1.8 workaround, remove. if not hasattr(mod, k): print(f"scipy 1.8 workround : ({mod.__name__!r},{k!r}),") continue self._open_list.append((getattr(mod, k), stack + [k])) def visit_ClassType(self, klass, stack): for k, v in klass.__dict__.items(): self._open_list.append((v, stack + [k])) def visit_FunctionType(self, fun, stack): pass class DocBlob(Node): """ An object containing information about the documentation of an arbitrary object. Instead of docblob begin a NumpyDocString, I'm thinking of them having a numpydocstring. This helps with
script will be completely wiped, and replaced with the new one. """ def __init__(self): self.version = 5.0 def check_update(self): """Sends the request to the github repository, and checks to see if the script needs and update.""" print(SquidNet.logo.fget()) print("[+] Checking for updates.....") version = self.version - 1.0 updated = False try: req = urllib.request.Request(url="https://raw.githubusercontent.com/DrSquidX/SquidNet2/main/SquidNet2Version.json") recv = urllib.request.urlopen(req).read().decode() version_info = open("SquidNet2Version.json","w") version_info.write(recv) version_info.close() json_info = json.load(open(version_info.name,"r")) version = float(json_info[0]["SquidNet2"]) except: print("[+] There was an error with checking updates, starting SquidNet2.") if version > self.version: print(f"[+] Your Version of SquidNet2 is outdated. You have version {self.version}, whereas the current update is version v{version}.") if sys.argv[0].endswith(".py"): update = input("\n[+] Do you wish to update?(y/n): ").lower() if update == "y" or update == "yes": print(f"[+] Updating SquidNet2 to v{version}") updated = True req = urllib.request.Request(url="https://raw.githubusercontent.com/DrSquidX/SquidNet2/main/MainScripts/SquidNet2.py") resp = urllib.request.urlopen(req).read() file = open(sys.argv[0],"wb") file.write(resp) file.close() else: print("[+] Choosing not to update.") else: updated = False print("[+] Not updating due to the file not being a '.py'.\n[+] Starting SquidNet2 in 3 seconds.....") time.sleep(3) if not updated: if sys.platform == "win32": os.system("cls") else: os.system("clear") Squidnet = Config(self.version) else: print("[+] Restart the Script to have the Update be effective!") class Config: """ # Configuration This class is needed for configuring the settings that allow the server to function properly. There are 2 choices of configuration: Option-Parsing and the usage of a Config file.""" def __init__(self, version): self.version = version self.config_file = "server.config" self.filearg = sys.argv[0].split("/")[len(sys.argv[0].split("/"))-1] if ".py" in self.filearg: self.filearg = f"python3 {self.filearg}" self.parse_args() def information(self): print(f"""[+] SquidNet2: The Sequel to SquidNet that nobody asked for, but everyone needed. [+] Written in Python 3.8.3 [+] Why SquidNet2? SquidNet2 offers all of the features(except for SSH, just use SquidNetSSH) that the original had, but better. One prime example is the significantly improved web interface, with many others like more security and more stability. There are more functions that were built on top of the original and there are more possibilities with SquidNet2 that are achievable compared to SquidNet. [+] The SquidNet2 Framework: SquidNet2 - Server: This script is the server part of the SquidNet2 framework. It is the foundation and handler of all the bots and admin connections. It acts as a command and control server, where the bots connect to this server, and the admin also has to as well, to then execute commands on this server. This is so that the admins can communicate and connect to the server wherever and whenever they want, as long as the Server itself is up. SquidNet2 - Admin: While this acts as the handler to ensure control of remote computers, there still needs to be an admin that is able to remotely execute commands on the bot computers. This is where the admin comes into play. The admin connects to the server, and logs into the admin account that has been configured when the server had started. Once authentication is complete, the admin will have access to the server and all of the bots that are connected to it. SquidNet2 - Bots: The bots are the victim computers that will unknowingly connect to the SquidNet2 server. There is a payload that is automatically generated by the server that can then be run by victim computers and connect to that server specifically. There are numerous commands that are built into the payload, which the admin of the server can run them to extract information or run commands remotely on those computers. These bots can also run shell commands, if there are not any commands being sent that are part of the in-built commands that the payload provides. [+] Usefulness and function of SquidNet2: - Remotely accessing lost computers - Taking control of other people's computers(illegal without consent) - Penetration Testing - Impressive - Lots of options for overall better experience [+] Risks: - Being careless and taking control of computers, which is illegal. - Server might not be up to security standards(need to improve authentication) [+] Topology of the SquidNet2 Framework: _________ | | - Admin | Admin | Sends commands to the server. |_______| The admin also recieves messages from the server with information ^ regarding command output, or other | important info on the server's | status. V ____________ | | - Server | Server | Recieves the Admin's instruction | | and sends it to the bots |__________| It also recieves bot output and sends ^ ^ ^ it to the admin. / | \\ / | \\ V V V _________ _________ _________ - Bots | | | | | | Recieves the command via the server, | Bot | | Bot | | Bot | executes it and sends any output back. |_______| |_______| |_______| They are being remotely controlled. [+] Key: <-->(arrows) - Indicate direction of messages and packets '-' - Notations [+] Features: Web Interface: A web interface that cleanly shows information about the bots in nice tables, with the additional ability to also be able to run commands via the web interface to the bots and more. There is information displayed that shows the settings and configuration of the server, giving the user information that shows what the server is using to function. Options for Server configuration: There is the ability to use the option-parsing that most scripts use, or to use a configuration file that allows for quick and easy configuration, and allows the server to be started quicker without needing to constantly type the same credentials over and over again. Numerous Commands: {SquidNet.help_msg.fget(None).replace("[+]"," ").replace("[(SERVER)]: Info about each command:"," ").replace("!"," !").strip()} [+] For your information: Read the github README.md file for more information on the SquidNet2 framework. This script was made for educational purposes only. Any illegal use of this script not caused by the developer is not responsible for any damages done. This script follows this license(MIT): ''' MIT License Copyright (c) 2022 DrSquidX Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' Thank you for agreeing with these terms. [+] Overall: SquidNet2 is the far superior version of SquidNet, with many features that were reused and improved onto, as well as many new features being added to increase the stability and function of the framework. [+] Happy (Ethical) Hacking! - DrSquid """) sys.exit() def help_msg(self): print(f""" Usage: {self.filearg} [options..] Options: -h, --help Show this help message and exit. --ip, --ipaddr The IP Address that the server will bind to.(required) --p, --port The port that will bind to the IP address.(default: 8080) --eip, --externalip The external IP that Bots will connect to.(default: opt.ip) --ep, --externalport The external Port that Bots will connect to.(default: opt.p) --ek, --enckey The encryption key used on the bots for file encryption.(default: b'<KEY> --l, --logfile The file used for server logging.(default: log.txt) --au, --adminuser The username for the admin account.(default: admin) --ap, --adminpass The password for the admin account.(default: <PASSWORD>) --fd, --ftpdir
are used rule elements. Constant groups et cetera """ @staticmethod def single_position(): """ Single position N. 0...9 for 0...9 A...Z for 10...35 * for max_length - for (max_length - 1) + for (max_length + 1) a...k user-defined numeric variables (with the "v" command) l initial or updated word's length (updated whenever "v" is used) m initial or memorized word's last character position p position of the character last found with the "/" or "%" commands z "infinite" position or length (beyond end of word) """ if RUNTIME_CONFIG.is_jtr(): return Word(jtr_numeric_constants, exact=1) elif RUNTIME_CONFIG.is_hc(): return Word(hc_numeric_constants, exact=1) else: raise FatalRuntimeError( "Unknown RUNTIME_CONFIG['running_style'] Type: {}".format( RUNTIME_CONFIG['running_style'])) @staticmethod @jtr_only_func def in_bracket_position(): """ Valid positions that can appear in [], only valid in JtR mode Example: A[1-3A-B]"ab" """ # the chars that must be escaped in a range. "-" is valid position in JtR. must_escaped_chars = "-" # first, purge all must_escaped_chars from purged = jtr_numeric_constants for c in must_escaped_chars: purged = purged.replace(c, "") # next, add the escaped version valid_singles = Word(purged, exact=1) for c in must_escaped_chars: valid_singles = Literal("\\" + c) | valid_singles # valid position ranges using a dash: A-Z, 0-9 valid_ranges = Word(jtr_numeric_constants_dash_allowed, exact=1) + \ Literal("-") + Word(jtr_numeric_constants_dash_allowed, exact=1) return valid_ranges | valid_singles @staticmethod def positions_in_bracket(): """ add [] to valid in_bracket_position""" # combine both return Elements._add_brackets(Groups.in_bracket_position()) @staticmethod def single_char(): """ Valid single char X""" initial_chars = printables # Additional requirements for JTR. if RUNTIME_CONFIG.is_jtr(): # purge the must escape chars for c in jtr_must_escape_for_single_char: initial_chars = initial_chars.replace(c, "") escaped_valid_chars = Word(initial_chars, exact=1) # escape must escape chars. for c in jtr_must_escape_for_single_char: escaped_valid_chars = Literal("\\" + c) | escaped_valid_chars # add could escape chars. for c in jtr_could_escape_for_single_char: escaped_valid_chars = Literal("\\" + c) | escaped_valid_chars else: escaped_valid_chars = Word(initial_chars, exact=1) # Consider space return escaped_valid_chars | White(" ", max=1) @staticmethod def single_char_for_char_class(): """ Valid single char X that considers character class""" initial_chars = printables if RUNTIME_CONFIG.is_jtr(): for c in "?" + jtr_must_escape_for_single_char: initial_chars = initial_chars.replace(c, "") valid_single_char = Word(initial_chars, exact=1) for c in jtr_must_escape_for_single_char: valid_single_char = Literal("\\" + c) | valid_single_char else: valid_single_char = Word(initial_chars, exact=1) # Consider space valid_single_char = valid_single_char | White(" ", max=1) return valid_single_char @staticmethod def range_char_for_char_class(): """ Valid range char [X] that considers character class""" initial_chars = printables if RUNTIME_CONFIG.is_jtr(): for c in "?" + jtr_must_escape_for_range: initial_chars = initial_chars.replace(c, "") valid_in_bracket_char = Word(initial_chars, exact=1) for c in jtr_must_escape_for_range: valid_in_bracket_char = Literal("\\" + c) | valid_in_bracket_char else: valid_in_bracket_char = Word(initial_chars, exact=1) # Consider space valid_in_bracket_char = valid_in_bracket_char | White(" ", max=1) return valid_in_bracket_char @staticmethod def range_char_for_char_class_in_bracket(): """ add brackets (aka add '[]') to a group of chars """ return Elements._add_brackets(Groups.range_char_for_char_class()) @staticmethod def single_class(): """ character class """ return Word(CHAR_CLASSES, exact=1) @staticmethod def class_range(): """ character class in range""" return Groups.single_class() @staticmethod def class_range_in_bracket(): """ character class in range with parallel""" return Elements._add_brackets(Groups.class_range()) @staticmethod @jtr_only_func def in_bracket_char(): """ A range of chars that can appear in [], only valid in JtR To parse a range, not like single_char, we don't parse chars separately, we read the range as a whole. At this stage you just need to capture [], that's it. So it should be Literal("[") + allchar(replace"]") + Literal("]") """ # Escape ] initial_chars = printables for c in jtr_must_escape_for_range: initial_chars = initial_chars.replace(c, "") valid_in_bracket_char = Word(initial_chars, exact=1) for c in jtr_must_escape_for_range: valid_in_bracket_char = Literal("\\" + c) | valid_in_bracket_char # Consider space valid_in_bracket_char = valid_in_bracket_char | White(" ", max=1) return valid_in_bracket_char @staticmethod @jtr_only_func def chars_in_bracket(): r""" add [] to valid in_bracket_char """ return Elements._add_brackets(Groups.in_bracket_char()) @staticmethod def single_char_append(): """ Valid single char X in Az"", only valid in JtR """ # Remove " from chars initial_chars = printables.replace('"', "") # Escape [ AND \ for c in jtr_must_escape_for_single_char: initial_chars = initial_chars.replace(c, "") escaped_valid_chars = Word(initial_chars, exact=1) for c in jtr_must_escape_for_single_char: escaped_valid_chars = Literal("\\" + c) | escaped_valid_chars for c in jtr_could_escape_for_single_char: escaped_valid_chars = Literal("\\" + c) | escaped_valid_chars # Consider space escaped_valid_chars = escaped_valid_chars | White(" ", max=1) return escaped_valid_chars @staticmethod @jtr_only_func def in_bracket_char_append(): """ A range that appears in Az"[]", The difference is " is not allowed To parse a range, not like single_char, we don't parse chars seperately, we read the range as a whole. """ # Note: Remove " from strings, its illegal to have it in quotes initial_chars = printables.replace('"', "") for c in jtr_must_escape_for_range: initial_chars = initial_chars.replace(c, "") valid_single_char = Word(initial_chars, exact=1) for c in jtr_must_escape_for_range: valid_single_char = Literal("\\" + c) | valid_single_char # Consider space valid_single_char = valid_single_char | White(" ", max=1) return valid_single_char @staticmethod @jtr_only_func def chars_append_in_bracket(): r""" add [] to valid in_bracket_char_append """ return Elements._add_brackets(Groups.in_bracket_char_append()) @staticmethod def get_all_possible(char_type): """ Get all possible chars/positions. Specify what type do you want. If type == JtR, need to consider ranges and parallelism. """ if char_type == "char": all_values = Groups.single_char() if RUNTIME_CONFIG.is_jtr(): in_bracket_char = Groups.chars_in_bracket() slash_p_range_char = Elements._create_slash_parallel_cmds( in_bracket_char) slash_number = Elements._create_slash_number_cmds() all_values = slash_number | slash_p_range_char | in_bracket_char | all_values elif char_type == "char_append": all_values = Groups.single_char_append() if RUNTIME_CONFIG.is_jtr(): in_bracket_char_append = Groups.chars_append_in_bracket() slash_p_range_char_append = Elements._create_slash_parallel_cmds( in_bracket_char_append) slash_number = Elements._create_slash_number_cmds() all_values = slash_number | slash_p_range_char_append | in_bracket_char_append | all_values elif char_type == "char_for_class": all_values = Groups.single_char_for_char_class() if RUNTIME_CONFIG.is_jtr(): # JTR supports in_bracket_char_for_class = Groups.range_char_for_char_class_in_bracket( ) slash_p_in_bracket_char_class = Elements._create_slash_parallel_cmds( in_bracket_char_for_class) slash_number = Elements._create_slash_number_cmds() all_values = slash_number | in_bracket_char_for_class | slash_p_in_bracket_char_class | all_values elif char_type == "class": all_values = Groups.single_class() if RUNTIME_CONFIG.is_jtr(): # JTR supports in_bracket_class = Groups.class_range_in_bracket() slash_p_in_bracket_class = Elements._create_slash_parallel_cmds( in_bracket_class) slash_number = Elements._create_slash_number_cmds() all_values = slash_number | in_bracket_class | slash_p_in_bracket_class | all_values elif char_type == "simple_position": all_values = Groups.single_position() if RUNTIME_CONFIG.is_jtr(): in_bracket_position = Groups.positions_in_bracket() slash_p_in_bracket_position = Elements._create_slash_parallel_cmds( in_bracket_position) slash_number = Elements._create_slash_number_cmds() all_values = slash_number | slash_p_in_bracket_position | in_bracket_position | all_values else: raise Exception("Unknown Char_Class") return all_values @staticmethod @jtr_only_func def character_classes_group(): """ All character classes ?? matches "?" ?v matches vowels: "aeiouAEIOU" ?c matches consonants: "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ" ?w matches whitespace: space and horizontal tabulation characters ?p matches punctuation: ".,:;'?!`" and the double quote character ?s matches symbols "$%^&*()-_+=|\<>[]{}#@/~" ?l matches lowercase letters [a-z] ?u matches uppercase letters [A-Z] ?d matches digits [0-9] ?a matches letters [a-zA-Z] ?x matches letters and digits [a-zA-Z0-9] ?z matches all characters """ all_chars = Groups.get_all_possible("class") return Literal('?') + all_chars class Elements(): """This class creates a parser capable for the JTR Rule language.""" @staticmethod @jtr_only_func def _add_brackets(cmds): """Add brackets to commands, and accept one/more cmds inside the bracket. JTR Only This function does not modify cmds or add dash to cmds. """ if not isinstance(cmds, MatchFirst) and not isinstance(cmds, Word): raise Exception("Wrong Usage of func _create_group_of_cmds") if cmds.matches("]"): raise Exception("Cores should escape brackets {}".format(cmds)) return Combine(Literal("[") + OneOrMore(cmds) + Literal("]")) @staticmethod @jtr_only_func def _create_slash_parallel_cmds(parallel_cmds): """Add \p, \p1-\p9, \r to a cmd range ([cmds]). JTR Only""" slash = ZeroOrMore( Literal("\p") + Word(nums, exact=1) | Literal("\p") | Literal("\\r")) slash_cmd = Combine(slash + parallel_cmds) return slash_cmd @staticmethod @jtr_only_func def _create_slash_number_cmds(): """Create \0-\9, which refers to previous ranges. JTR Only""" slash_num = Combine(Literal("\\") + Word(nums, exact=1)) return slash_num @staticmethod def reject_flags(): """ Parse Rejection Flags. JTR Only -: no-op: don't reject -c reject this rule unless current hash type is case-sensitive -8 reject this rule unless current hash type uses 8-bit characters -s reject this rule unless some password hashes were split at loading -p reject this rule unless word pair commands are currently allowed ->N reject this rule unless length N or longer is supported -<N reject this rule unless length N or shorter is supported """ if RUNTIME_CONFIG[ 'running_style'] != RunningStyle.JTR: # Only used in JTR return Empty() str_reject_flags_prefix = "-" str_reject_flags_cores = "c8sp:" str_reject_flags_length = "<>" word_reject_flags_prefix = Word(str_reject_flags_prefix, exact=1) word_reject_flags_cores = Word(str_reject_flags_cores, exact=1) word_reject_flags_length = Word(str_reject_flags_length, exact=1) simple_reject_flags = Combine(word_reject_flags_prefix + word_reject_flags_cores) simple_reject_flags_length = Combine( word_reject_flags_prefix + word_reject_flags_length + Word(jtr_numeric_constants_dash_allowed, exact=1)) # -[:c] parallel_reject_flags = Combine(word_reject_flags_prefix + Elements. _add_brackets(word_reject_flags_cores)) # -\r\p[:c] parallel_reject_flags_slash = Combine( word_reject_flags_prefix + Elements._create_slash_parallel_cmds( Elements._add_brackets(word_reject_flags_cores))) # ->8, -<7
<gh_stars>0 from io import BytesIO import os from collections import OrderedDict from typing import List from pathlib import Path import random from sslib.bzs import parseBzs, buildBzs import nlzss11 from sslib.u8file import U8File from sslib import parseMSB, buildMSB, Patcher, AllPatcher EXTRACT_ROOT_PATH='actual-extract' MODIFIED_ROOT_PATH='modified-extract' extracts={ ('D003_0', 0): ['oarc/GetTriForceSingle.arc'], # Triforce part ('D301', 0): ['oarc/GetBowA.arc'], # Bow ('F001r', 3):[ 'oarc/GetKobunALetter.arc', # Cawlin's Letter 'oarc/GetPouchA.arc' # Adventure Pouch ], ('F002r', 1):[ 'oarc/GetPouchB.arc', # Extra Pouch Slot 'oarc/GetMedal.arc', # all Medals 'oarc/GetNetA.arc' # Bug Net ], ('F004r', 0):[ 'oarc/GetPachinkoB.arc', # Scatershot 'oarc/GetBowB.arc', # Iron Bow 'oarc/GetBowC.arc', # Sacred Bow 'oarc/GetBeetleC.arc', # Quick beetle 'oarc/GetBeetleD.arc', # Though Beetle 'oarc/GetNetB.arc' # Big Bug Net # a bunch more bottles and other stuff is also here ], ('F202', 1): [ 'oarc/GetPachinkoA.arc', # slingshot 'oarc/GetHookShot.arc', # clawshots 'oarc/GetMoleGloveB.arc', # mogma mitts 'oarc/GetVacuum.arc', # gust bellows 'oarc/GetWhip.arc', # whip 'oarc/GetBombBag.arc' # bomb bag ], ('F210', 0):['oarc/GetMoleGloveA.arc'], # digging mitts ('S100', 2):['oarc/GetSizuku.arc'], # water dragon scale ('S200', 2):['oarc/GetEarring.arc'], # fireshield earrings ('D100', 1):['oarc/GetBeetleA.arc'], # beetle ('F300', 0):['oarc/GetBeetleB.arc'], # hook beetle ('F301_5', 0):['oarc/GetMapSea.arc'], # Sand Sea Map ('F402', 2):['oarc/GetHarp.arc'], # all Songs & Harp ('F000', 0):[ 'oarc/MoldoGut_Baby.arc', # babies rattle 'oarc/GetSeedLife.arc' # LTS ], ('F000', 4):[ 'oarc/GetShieldWood.arc', # wooden shield 'oarc/GetShieldHylia.arc' # hylian shield ], ('F100', 3):[ # stuff for silent realms 'oarc/PLHarpPlay.arc', 'oarc/SirenEntrance.arc', 'oarc/PLSwordStick.arc' ], ('F020', 1):['oarc/GetBirdStatue.arc'], # Bird statuette ('F023', 0):['oarc/GetTerryCage.arc'], # Beedle's Beetle } def get_stagepath(stage: str, layer: int=0, rootpath: str=EXTRACT_ROOT_PATH) -> Path: return Path(__file__).parent / rootpath / 'DATA' / 'files' / 'Stage' / stage / f'{stage}_stg_l{layer}.arc.LZ' def extract_objects(): try: os.mkdir('oarc') except: pass for (file, layer), objs in extracts.items(): with get_stagepath(file, layer).open('rb') as f: data=nlzss11.decompress(f.read()) data=BytesIO(data) data=U8File.parse_u8(data) for objname in objs: outdata=data.get_file_data(objname) with open(objname,'wb') as out: out.write(outdata) def get_names(): with open(EXTRACT_ROOT_PATH+'/DATA/files/Stage/F000/F000_stg_l4.arc.LZ','rb') as f: data=nlzss11.decompress(f.read()) data=BytesIO(data) data=U8File.parse_u8(data) # room=data.get_data('rarc/D000_r00.arc:dat/room.bzs') for arc in len(data.get_all_paths): if arc.endswith('.arc'): print(arc) # print(data._get_subarc(arc).get_all_paths_recursive()) def testpatch(): # open the skyloft cave file with open(EXTRACT_ROOT_PATH+'/DATA/files/Stage/D000/D000_stg_l0.arc.LZ','rb') as f: # extract in memory data=nlzss11.decompress(f.read()) data=BytesIO(data) data=U8File.parse_u8(data) # add hookshot and gust bellows with open('oarc/GetHookShot.arc','rb') as h: data.add_file_data('oarc/GetHookShot.arc', h.read()) with open('oarc/GetVacuum.arc','rb') as h: data.add_file_data('oarc/GetVacuum.arc', h.read()) # open room # room=parse_bzs(data.get_data('rarc/D000_r00.arc:dat/room.bzs')) # get objects # objects=room.children['LAY '].layers[0].children['OBJS'].objects # find chest with id 68 and replace the content with hookshot # for obj in objects: # if obj['name']==b'TBox\x00\x00\x00\x00': # if (obj['talk_behaviour']&0xF700)>>9 == 64: # obj['talk_behaviour']==(obj['talk_behaviour']&0xF700)+0x14 # print('patched hookshot') # for obj in objects: # if obj['name']==b'TBox\x00\x00\x00\x00': # if (obj['talk_behaviour']&0xF700)>>9 == 67: # obj['talk_behaviour']==(obj['talk_behaviour']&0xF700)+0x31 # print('patched gust bellows') # write room back # data.update_file('rarc/D000_r00.arc:dat/room.bzs',build_bzs(room)) # write stage to memory # with open('D000_stg_l0.arc', 'wb') as o: # data.writeto(o) return data def testpatch2(): with open(f'{EXTRACT_ROOT_PATH}/DATA/files/Stage/D000/D000_stg_l0.arc.LZ','rb') as f: extracted_data=nlzss11.decompress(f.read()) stagearc=U8File.parse_u8(BytesIO(extracted_data)) roomarc=U8File.parse_u8(BytesIO(stagearc.get_file_data(f'rarc/D000_r00.arc'))) room=parseBzs(roomarc.get_file_data('dat/room.bzs')) objects=room['LAY ']['l0']['OBJS'] # find chest with id 68 and replace the content with hookshot for obj in objects: if obj['name']==b'TBox\x00\x00\x00\x00': if (obj['unk4']&0xFE00)>>9 == 68: obj['posy']=obj['posy']+50 obj['unk4']=(obj['unk4']&0xFE00)+0x14 print('patched hookshot') if (obj['unk4']&0xFE00)>>9 == 67: obj['posy']=obj['posy']+50 obj['unk4']=(obj['unk4']&0xFE00)+0x31 print('patched gust bellows') roomarc.set_file_data('dat/room.bzs', buildBzs(room)) stagearc.set_file_data('rarc/D000_r00.arc', roomarc.to_buffer()) # add gust bellows and hookshot oarcs so they properly work with open('oarc/GetHookShot.arc','rb') as f: arc=f.read() stagearc.add_file_data('oarc/GetHookShot.arc', arc) with open('oarc/GetVacuum.arc','rb') as f: arc=f.read() stagearc.add_file_data('oarc/GetVacuum.arc', arc) with open(f'{MODIFIED_ROOT_PATH}/DATA/files/Stage/D000/D000_stg_l0.arc.LZ','wb') as f: f.write(nlzss11.compress(stagearc.to_buffer())) def extract_stage_rooms(name: str) -> OrderedDict: with open(f'{EXTRACT_ROOT_PATH}/DATA/files/Stage/{name}/{name}_stg_l0.arc.LZ','rb') as f: extracted_data=nlzss11.decompress(f.read()) stagearc=U8File.parse_u8(BytesIO(extracted_data)) stage = parseBzs(stagearc.get_file_data('dat/stage.bzs')) rooms = OrderedDict() for i in range(len(stage['RMPL'])): roomarc=U8File.parse_u8(BytesIO(stagearc.get_file_data(f'rarc/{name}_r{i:02}.arc'))) rooms[f'r{i:02}'] = parseBzs(roomarc.get_file_data('dat/room.bzs')) return stage, rooms def upgrade_test(): # patch stage with get_stagepath('D000',0).open('rb') as f: extracted_data=nlzss11.decompress(f.read()) stagearc=U8File.parse_u8(BytesIO(extracted_data)) stagedef=parseBzs(stagearc.get_file_data('dat/stage.bzs')) room0arc=U8File.parse_u8(BytesIO(stagearc.get_file_data('rarc/D000_r00.arc'))) roomdef=parseBzs(room0arc.get_file_data('dat/room.bzs')) # get chest chest=next(filter(lambda x: x['name']=='TBox', roomdef['LAY ']['l0']['OBJS'])) chest['anglez']=(chest['anglez']&~0x1FF) | 53 # Beetle room0arc.set_file_data('dat/room.bzs',buildBzs(roomdef)) # add both beetle models with open('oarc/GetBeetleA.arc','rb') as h: stagearc.add_file_data('oarc/GetBeetleA.arc', h.read()) with open('oarc/GetBeetleB.arc','rb') as h: stagearc.add_file_data('oarc/GetBeetleB.arc', h.read()) stagearc.set_file_data('rarc/D000_r00.arc',room0arc.to_buffer()) # write back with get_stagepath('D000',0,rootpath=MODIFIED_ROOT_PATH).open('wb') as f: f.write(nlzss11.compress(stagearc.to_buffer())) # patch get item event with open(Path(__file__).parent / EXTRACT_ROOT_PATH / 'DATA' / 'files' / 'EU' / 'Object' / 'en_GB' / '0-Common.arc', 'rb') as f: evntarc=U8File.parse_u8(BytesIO(f.read())) itemmsbf=parseMSB(evntarc.get_file_data('0-Common/003-ItemGet.msbf')) evnt=itemmsbf['FLW3']['flow'][422] # event triggered after beetle text box evnt['type']='type3' evnt['subType']=0 evnt['param1']=0 evnt['param3']=9 evnt['param2']=75 # Hook Beetle evntarc.set_file_data('0-Common/003-ItemGet.msbf',buildMSB(itemmsbf)) with open(Path(__file__).parent / MODIFIED_ROOT_PATH / 'DATA' / 'files' / 'EU' / 'Object' / 'en_GB' / '0-Common.arc', 'wb') as f: f.write(evntarc.to_buffer()) def upgrade_with_patch(): # config for repacking as ISO # patcher = Patcher( # actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, # modified_extract_path=Path(__file__).parent / MODIFIED_ROOT_PATH, # oarc_cache_path=Path(__file__).parent / 'oarc', # keep_path=True, # copy_unmodified=False) # set to true during dev to overwrite maybe bad experiments # for use with riivolution patcher = Patcher( actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, modified_extract_path=Path(__file__).parent / 'temp', oarc_cache_path=Path(__file__).parent / 'oarc', keep_path=False, copy_unmodified=False) def patch_D000_r0(roomdef): chest=next(filter(lambda x: x['name']=='TBox', roomdef['LAY ']['l0']['OBJS'])) chest['anglez']=(chest['anglez']&~0x1FF) | 53 # Beetle return roomdef patcher.set_room_patch('D000',0,patch_D000_r0) def patch_item_get(itemmsbf): evnt=itemmsbf['FLW3']['flow'][422] # event triggered after beetle text box evnt['type']='type3' evnt['subType']=0 evnt['param1']=0 evnt['param3']=9 evnt['param2']=75 # Hook Beetle return itemmsbf patcher.set_event_patch('003-ItemGet.msbf', patch_item_get) patcher.add_stage_oarc('D000',0,['GetBeetleA','GetBeetleB']) patcher.do_patch() def bingo_patch(): # open all light pillars as part of the zelda event before the save prompt # make eldin layer 1 by default, move trial to layer 0, move lava draining to layer 0 # make eldin caves layer 1 only # # config for repacking as ISO patcher = Patcher( actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, modified_extract_path=Path(__file__).parent / MODIFIED_ROOT_PATH, oarc_cache_path=Path(__file__).parent / 'oarc', keep_path=True, copy_unmodified=False) # set to true during dev to overwrite maybe bad experiments # for use with riivolution # patcher = Patcher( # actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, # modified_extract_path=Path(__file__).parent / 'temp', # oarc_cache_path=Path(__file__).parent / 'oarc', # keep_path=False, # copy_unmodified=False) # skyloft: move trial to layer 0 def patch_F000_r0(roomdef): trial=next(filter(lambda x: x['name']=='WarpObj', roomdef['LAY ']['l4']['OBJ '])) # trial_butterflies=next(filter(lambda x: x['name']=='InsctTg', roomdef['LAY ']['l4']['STAG'])) # trial['posy'] += 100 # fix object ID of trial trial['id']=0x02F2 # trial_butterflies['id']=0xFEF3 roomdef['LAY ']['l4']['OBJ '].remove(trial) roomdef['LAY ']['l0']['OBJ '].append(trial) # roomdef['LAY ']['l4']['STAG'].remove(trial_butterflies) # roomdef['LAY ']['l0']['STAG'].append(trial_butterflies) roomdef['LAY ']['l0']['ARCN'].append('SirenEntrance') roomdef['LAY ']['l0']['ARCN'].append('PLSwordStick') roomdef['LAY ']['l0']['ARCN'].append('PLHarpPlay') roomdef['LAY ']['l0']['OBJN'].append('WarpObj') patcher.set_room_patch('F000', 0, patch_F000_r0) patcher.add_stage_oarc('F000', 0, ('SirenEntrance','PLSwordStick','PLHarpPlay')) # faron: force layer 1 always, add trial to layer 0 def patch_F100(stagedef): stagedef['LYSE'] = [OrderedDict((('story_flag', -1), ('night', 0), ('layer', 1)))] return stagedef patcher.set_stage_patch('F100', patch_F100) def patch_F100_r0(roomdef): trial=next(filter(lambda x: x['name']=='WarpObj', roomdef['LAY ']['l3']['OBJ '])) trial_butterflies=next(filter(lambda x: x['name']=='InsctTg', roomdef['LAY ']['l3']['STAG'])) # trial['posy'] += 100 # fix object ID of trial trial['id']=0x02F2 trial_butterflies['id']=0xFEF3 roomdef['LAY ']['l3']['OBJ '].remove(trial) roomdef['LAY ']['l0']['OBJ '].append(trial) roomdef['LAY ']['l3']['STAG'].remove(trial_butterflies) roomdef['LAY ']['l0']['STAG'].append(trial_butterflies) roomdef['LAY ']['l0']['ARCN'].append('SirenEntrance') roomdef['LAY ']['l0']['ARCN'].append('PLSwordStick') roomdef['LAY ']['l0']['ARCN'].append('PLHarpPlay') roomdef['LAY ']['l0']['OBJN'].append('WarpObj') patcher.set_room_patch('F100', 0, patch_F100_r0) patcher.add_stage_oarc('F100', 0, ('SirenEntrance','PLSwordStick','PLHarpPlay')) # deep woods: remove layer 3+ def patch_F101(stagedef): stagedef['LYSE']=[layer for layer in stagedef['LYSE'] if layer['layer'] < 3] patcher.set_stage_patch('F101',patch_F101) def fill_skyloft(): # config for repacking as ISO patcher = Patcher( actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, modified_extract_path=Path(__file__).parent / MODIFIED_ROOT_PATH, oarc_cache_path=Path(__file__).parent / 'oarc', keep_path=True, copy_unmodified=False) # set to true during dev to overwrite maybe bad experiments # for use with riivolution # patcher = Patcher( # actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, # modified_extract_path=Path(__file__).parent / 'temp', # oarc_cache_path=Path(__file__).parent / 'oarc', # keep_path=False, # copy_unmodified=False) def patch_F000_r0(roomdef): roomdef['LAY ']['l0']['ARCN'].append('BLastBoss') roomdef['LAY ']['l0']['ARCN'].append('PLLastBoss') roomdef['LAY ']['l0']['OBJN'].append('BLasBos') roomdef['LAY ']['l0']['OBJ '].append( { "params1": bytes.fromhex('FFFFFFC0'), "params2": bytes.fromhex('FFFFFFFF'), "posx": -4698.884765625, "posy": 1237.6900634765625, "posz": -6364.4482421875, "anglex": 0, "angley": 0, "anglez": 0, "id": 0xFDC5, "name": "BLasBos" }) # save_obj=next(filter(lambda x: x['name']=='saveObj', roomdef['LAY ']['l0']['OBJS'])) # 0x1C3 # for i in range(400): # cloned = save_obj.copy() # cloned['id'] = 0xFC00 | (0x1C5 + i) # cloned['posy'] += (i + 1) * 200 # roomdef['LAY ']['l0']['OBJS'].append(cloned) return roomdef patcher.set_room_patch('F000',0,patch_F000_r0) patcher.add_stage_oarc('F000',0,['BLastBoss','PLLastBoss']) patcher.do_patch() def patch_faron(): with get_stagepath('F100',0).open('rb') as f: extracted_data=nlzss11.decompress(f.read()) stagearc=U8File.parse_u8(BytesIO(extracted_data)) # patch layers, force layer 1 stagedef=parseBzs(stagearc.get_file_data('dat/stage.bzs')) stagedef['LYSE'] = [OrderedDict((('story_flag', -1), ('night', 0), ('layer', 1)))] stagearc.set_file_data('dat/stage.bzs', buildBzs(stagedef)) room0arc=U8File.parse_u8(BytesIO(stagearc.get_file_data('rarc/F100_r00.arc'))) roomdef=parseBzs(room0arc.get_file_data('dat/room.bzs')) # grab the trial from layer 3 and put in on layer 0 trial=next(filter(lambda x: x['name']=='WarpObj', roomdef['LAY ']['l3']['OBJ '])) trial_butterflies=next(filter(lambda x: x['name']=='InsctTg', roomdef['LAY ']['l3']['STAG'])) # trial['posy'] += 100 # fix object ID of trial trial['id']=0x02F2 trial_butterflies['id']=0xFEF3 roomdef['LAY ']['l3']['OBJ '].remove(trial) roomdef['LAY ']['l0']['OBJ '].append(trial) roomdef['LAY ']['l3']['STAG'].remove(trial_butterflies) roomdef['LAY ']['l0']['STAG'].append(trial_butterflies) roomdef['LAY ']['l0']['ARCN'].append('SirenEntrance') roomdef['LAY ']['l0']['ARCN'].append('PLSwordStick') roomdef['LAY ']['l0']['OBJN'].append('WarpObj') room0arc.set_file_data('dat/room.bzs', buildBzs(roomdef)) roomdat=BytesIO() room0arc.writeto(roomdat) stagearc.set_file_data('rarc/F100_r00.arc', roomdat.getbuffer()) # add the trial arc(s) with open('oarc/SirenEntrance.arc','rb') as f: arc=f.read() stagearc.add_file_data('oarc/SirenEntrance.arc', arc) with open('oarc/PLHarpPlay.arc','rb') as f: arc=f.read() stagearc.add_file_data('oarc/PLHarpPlay.arc', arc) with open('oarc/PLSwordStick.arc','rb') as f: arc=f.read() stagearc.add_file_data('oarc/PLSwordStick.arc', arc) stagedat=BytesIO() stagearc.writeto(stagedat) with get_stagepath('F100',0, rootpath=MODIFIED_ROOT_PATH).open('wb') as f: f.write(nlzss11.compress(stagedat.getbuffer())) def demise(): patcher = Patcher( actual_extract_path=Path(__file__).parent / EXTRACT_ROOT_PATH, modified_extract_path=Path(__file__).parent / 'temp', oarc_cache_path=Path(__file__).parent / 'oarc', keep_path=False, copy_unmodified=False) def patch_B400_r0(roomdef): orig_last_boss = next(filter(lambda x: x['name']=='BLasBos', roomdef['LAY ']['l1']['OBJ '])) las_bos = orig_last_boss.copy() las_bos['id'] = 0xFC06 las_bos['posx'] += 1000 roomdef['LAY ']['l1']['OBJ '].append(las_bos) las_bos = orig_last_boss.copy() las_bos['id'] = 0xFC07 las_bos['posx'] -= 1000 roomdef['LAY ']['l1']['OBJ '].append(las_bos) return roomdef patcher.set_room_patch('B400', 0, patch_B400_r0) patcher.do_patch() def extract_obj_pack(): data
{"ExonicFunc_ensGene": ["frameshift_deletion", "frameshift_insertion", "stopgain", "stoploss"]}}, {"terms": {"ExonicFunc_refGene": ["frameshift_deletion", "frameshift_insertion", "stopgain", "stoploss"]}}, {"term": {"Func_ensGene": "splicing"}}, {"term": {"Func_refGene": "splicing"}} ], "minimum_should_match": 1 } }, "size": 0, "aggs" : { "values" : { "nested" : { "path" : "AAChange_refGene" }, "aggs" : { "values" : {"terms" : {"field" : "AAChange_refGene.Gene", "size" : 30000}} } } } }""" results = es.search(index=index_name, doc_type=doc_type_name, body=compound_heterozygous_query_body_template, request_timeout=120) return natsorted([ele['key'] for ele in results["aggregations"]["values"]["values"]["buckets"] if ele['key']]) def get_values_from_es(es, index_name, doc_type_name, field_es_name, field_path): if not field_path: body_non_nested_template = """ { "size": 0, "aggs" : { "values" : { "terms" : { "field" : "%s", "size" : 30000 } } } } """ body = body_non_nested_template % (field_es_name) results = es.search(index=index_name, doc_type=doc_type_name, body=body, request_timeout=120) return [ele['key'] for ele in results["aggregations"]["values"]["buckets"] if ele['key']] elif field_path: body_nested_template = """ { "size": 0, "aggs" : { "values" : { "nested" : { "path" : "%s" }, "aggs" : { "values" : {"terms" : {"field" : "%s.%s", "size" : 30000}} } } } } """ body = body_nested_template % (field_path, field_path, field_es_name) results = es.search(index=index_name, doc_type=doc_type_name, body=body, request_timeout=120) return [ele['key'] for ele in results["aggregations"]["values"]["values"]["buckets"] if ele['key']] def get_family_dict(es, index_name, doc_type_name): family_ids = get_values_from_es(es, index_name, doc_type_name, 'Family_ID', 'sample') family_dict = {} body_template = """ { "_source": false, "size": 1, "query": { "nested": { "path": "sample", "score_mode": "none", "query": { "bool": { "must" : [{"term": { "sample.Family_ID": "%s"}}, {"exists": { "field": "sample.Father_ID"}}, {"exists": { "field": "sample.Mother_ID"}} ] } }, "inner_hits": {} } } } """ family_dict = {} for family_id in family_ids: body = body_template % (family_id) results = es.search(index=index_name, doc_type=doc_type_name, body=body, request_timeout=120) result = results['hits']['hits'][0]['inner_hits']['sample']['hits']['hits'][0]["_source"] father_id = result.get('Father_ID') mother_id = result.get('Mother_ID') child_id = result.get('Sample_ID') child_sex = result.get('Sex') family_dict[family_id] = {'father_id': father_id, 'mother_id': mother_id, 'child_id': child_id, 'child_sex': child_sex} return family_dict def pop_sample_with_id(sample_array, sample_id): saved_index = 0 for index, sample in enumerate(sample_array): if sample.get('Sample_ID') == sample_id: saved_index = index sample = sample_array.pop(saved_index) return sample def pop_sample_with_id_apply_compound_het_rules(sample_array, sample_id): saved_index = 0 for index, sample in enumerate(sample_array): if sample.get('Sample_ID') == sample_id: saved_index = index sample = sample_array.pop(saved_index) if (sample.get('Mother_Genotype') in ["0/1", "0|1", "1|0"] and sample.get('Father_Genotype') in ["0/0", "0|0"]): return sample elif (sample.get('Mother_Genotype') in ["0/0", "0|0"] and sample.get('Father_Genotype') in ["0/1", "0|1", "1|0"]): return sample return None def are_variants_compound_heterozygous(variants): compound_heterozygous_found = False gt_pair_whose_reverse_to_find = None compound_heterozygous_variants = [] for variant in variants: father_gt = variant.get('Father_Genotype') mother_gt = variant.get('Mother_Genotype') sum_digits = sum([int(char) for char in father_gt + mother_gt if char.isdigit()]) if sum_digits != 1: continue if not gt_pair_whose_reverse_to_find: gt_pair_whose_reverse_to_find = [father_gt, mother_gt] compound_heterozygous_variants.append(variant) continue current_gt_pair = [father_gt, mother_gt] current_gt_pair.reverse() if gt_pair_whose_reverse_to_find == current_gt_pair: compound_heterozygous_variants.append(variant) compound_heterozygous_found = True if compound_heterozygous_found: return compound_heterozygous_variants else: return False def annotate_autosomal_recessive(es, index_name, doc_type_name, family_dict, annotation): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) if annotation == 'vep': query_body = autosomal_recessive_vep_query_body_template % (child_id) elif annotation == 'annovar': query_body = autosomal_recessive_annovar_query_body_template % (child_id) # print(query_body) query_body = json.loads(query_body) for hit in helpers.scan( es, query=query_body, scroll=u'5m', size=1000, preserve_order=False, index=index_name, doc_type=doc_type_name): es_id = hit['_id'] sample_array = hit["_source"]["sample"] sample = pop_sample_with_id(sample_array, child_id) tmp_id = es_id + child_id mendelian_diseases = sample.get('mendelian_diseases', []) if 'autosomal_recessive' in mendelian_diseases: if tmp_id not in sample_matched: sample_matched.append(tmp_id) continue to_update = False if mendelian_diseases: if 'autosomal_recessive' not in mendelian_diseases: mendelian_diseases.append('autosomal_recessive') to_update = True else: to_update = True sample['mendelian_diseases'] = ['autosomal_recessive'] if tmp_id not in sample_matched: sample_matched.append(tmp_id) if to_update: sample_array.append(sample) action = { "_index": index_name, '_op_type': 'update', "_type": doc_type_name, "_id": es_id, "doc": { "sample": sample_array } } count += 1 actions.append(action) if count % 500 == 0: helpers.bulk(es, actions, refresh=True) actions = [] helpers.bulk(es, actions, refresh=True) es.indices.refresh(index_name) es.cluster.health(wait_for_no_relocating_shards=True) print('Found {} autosomal_recessive samples'.format(len(list(set(sample_matched))))) def annotate_denovo(es, index_name, doc_type_name, family_dict): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) query_body = denovo_query_body_template % (child_id) # print(query_body) query_body = json.loads(query_body) for hit in helpers.scan( es, query=query_body, scroll=u'5m', size=1000, preserve_order=False, index=index_name, doc_type=doc_type_name): es_id = hit['_id'] sample_array = hit["_source"]["sample"] sample = pop_sample_with_id(sample_array, child_id) tmp_id = es_id + child_id mendelian_diseases = sample.get('mendelian_diseases', []) if 'denovo' in mendelian_diseases: if tmp_id not in sample_matched: sample_matched.append(tmp_id) continue to_update = False if mendelian_diseases: if 'denovo' not in mendelian_diseases: mendelian_diseases.append('denovo') print(es_id, mendelian_diseases) to_update = True else: sample['mendelian_diseases'] = ['denovo'] to_update = True if tmp_id not in sample_matched: sample_matched.append(tmp_id) if to_update: sample_array.append(sample) action = { "_index": index_name, '_op_type': 'update', "_type": doc_type_name, "_id": es_id, "doc": { "sample": sample_array } } count += 1 actions.append(action) if count % 500 == 0: helpers.bulk(es, actions, refresh=True) actions = [] helpers.bulk(es, actions, refresh=True) es.indices.refresh(index_name) es.cluster.health(wait_for_no_relocating_shards=True) print('Found {} denovo samples'.format(len(list(set(sample_matched))))) def annotate_autosomal_dominant(es, index_name, doc_type_name, family_dict): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) query_body = autosomal_dominant_query_body_template % (child_id) # print(query_body) query_body = json.loads(query_body) for hit in helpers.scan( es, query=query_body, scroll=u'5m', size=1000, preserve_order=False, index=index_name, doc_type=doc_type_name): # pprint.pprint(hit["_source"]) es_id = hit['_id'] sample_array = hit["_source"]["sample"] sample = pop_sample_with_id(sample_array, child_id) mendelian_diseases = sample.get('mendelian_diseases', []) tmp_id = es_id + child_id if 'autosomal_dominant' in mendelian_diseases: if tmp_id not in sample_matched: sample_matched.append(tmp_id) continue if is_autosomal_dominant(sample): to_update = False if mendelian_diseases: if 'autosomal_dominant' not in mendelian_diseases: mendelian_diseases.append('autosomal_dominant') print(es_id, mendelian_diseases) to_update = True else: sample['mendelian_diseases'] = ['autosomal_dominant'] to_update = True if tmp_id not in sample_matched: sample_matched.append(tmp_id) if to_update: sample_array.append(sample) action = { "_index": index_name, '_op_type': 'update', "_type": doc_type_name, "_id": es_id, "doc": { "sample": sample_array } } count += 1 actions.append(action) if count % 500 == 0: helpers.bulk(es, actions, refresh=True) actions = [] helpers.bulk(es, actions, refresh=True) es.indices.refresh(index_name) es.cluster.health(wait_for_no_relocating_shards=True) print('Found {} autosomal dominant samples'.format(len(list(set(sample_matched))))) range_rules = { 'hg19/GRCh37': ([60001, 2699520], [154931044, 155260560]), 'hg38/GRCh38': ([10001, 2781479], [155701383, 156030895]) } 24, 382, 427 def annotate_x_linked_dominant(es, index_name, doc_type_name, family_dict): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) query_body = x_linked_dominant_query_body_template % ( child_id, range_rules['hg19/GRCh37'][0][0], range_rules['hg19/GRCh37'][0][1], range_rules['hg19/GRCh37'][1][0], range_rules['hg19/GRCh37'][1][1]) # print(query_body) query_body = json.loads(query_body) for hit in helpers.scan( es, query=query_body, scroll=u'5m', size=1000, preserve_order=False, index=index_name, doc_type=doc_type_name): # pprint.pprint(hit["_source"]) es_id = hit['_id'] # print(es_id) sample_array = hit["_source"]["sample"] sample = pop_sample_with_id(sample_array, child_id) tmp_id = es_id + child_id mendelian_diseases = sample.get('mendelian_diseases', []) if 'x_linked_dominant' in mendelian_diseases: if tmp_id not in sample_matched: sample_matched.append(tmp_id) continue if is_x_linked_dominant(sample): to_update = False if mendelian_diseases: if 'x_linked_dominant' not in mendelian_diseases: mendelian_diseases.append('x_linked_dominant') print(es_id, mendelian_diseases) to_update = True else: sample['mendelian_diseases'] = ['x_linked_dominant'] to_update = True if tmp_id not in sample_matched: sample_matched.append(tmp_id) if to_update: sample_array.append(sample) action = { "_index": index_name, '_op_type': 'update', "_type": doc_type_name, "_id": es_id, "doc": { "sample": sample_array } } count += 1 actions.append(action) if count % 500 == 0: helpers.bulk(es, actions, refresh=True) actions = [] helpers.bulk(es, actions, refresh=True) es.indices.refresh(index_name) es.cluster.health(wait_for_no_relocating_shards=True) print('Found {} x_linked_dominant samples'.format(len(list(set(sample_matched))))) def annotate_x_linked_recessive(es, index_name, doc_type_name, family_dict, annotation): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) if annotation == 'vep': query_body = x_linked_recessive_vep_query_body_template % ( child_id, range_rules['hg19/GRCh37'][0][0], range_rules['hg19/GRCh37'][0][1], range_rules['hg19/GRCh37'][1][0], range_rules['hg19/GRCh37'][1][1] ) elif annotation == 'annovar': query_body = x_linked_recessive_annovar_query_body_template % ( child_id, range_rules['hg19/GRCh37'][0][0], range_rules['hg19/GRCh37'][0][1], range_rules['hg19/GRCh37'][1][0], range_rules['hg19/GRCh37'][1][1] ) # print(query_body) query_body = json.loads(query_body) for hit in helpers.scan( es, query=query_body, scroll=u'5m', size=1000, preserve_order=False, index=index_name, doc_type=doc_type_name): # pprint.pprint(hit["_source"]) es_id = hit['_id'] sample_array = hit["_source"]["sample"] sample = pop_sample_with_id(sample_array, child_id) tmp_id = es_id + child_id mendelian_diseases = sample.get('mendelian_diseases', []) if 'x_linked_recessive' in mendelian_diseases: if tmp_id not in sample_matched: sample_matched.append(tmp_id) continue if is_x_linked_recessive(sample): # sample['mendelian_diseases'] = 'x_linked_recessive' to_update = False if mendelian_diseases: if 'x_linked_recessive' not in mendelian_diseases: mendelian_diseases.append('x_linked_recessive') print(es_id, mendelian_diseases) to_update = True else: sample['mendelian_diseases'] = ['x_linked_recessive'] to_update = True if tmp_id not in sample_matched: sample_matched.append(tmp_id) # if to_update: # es.update(index=index_name, doc_type=doc_type_name, id=es_id, # body={"doc": {"sample": sample_array}}) if to_update: sample_array.append(sample) action = { "_index": index_name, '_op_type': 'update', "_type": doc_type_name, "_id": es_id, "doc": { "sample": sample_array } } count += 1 actions.append(action) if count % 500 == 0: helpers.bulk(es, actions, refresh=True) actions = [] helpers.bulk(es, actions, refresh=True) es.indices.refresh(index_name) es.cluster.health(wait_for_no_relocating_shards=True) print('Found {} x_linked_recessive samples'.format(len(list(set(sample_matched))))) def annotate_x_linked_denovo(es, index_name, doc_type_name, family_dict): sample_matched = [] for family_id, family in family_dict.items(): count = 0 actions = [] child_id = family.get('child_id') # print(child_id) query_body = x_linked_de_novo_query_body_template % ( child_id, range_rules['hg19/GRCh37'][0][0], range_rules['hg19/GRCh37'][0][1], range_rules['hg19/GRCh37'][1][0], range_rules['hg19/GRCh37'][1][1]) # print(query_body) query_body
utilitiesquantumgates import quantumgates from utilitiesquantumgates import utilities from tensorboardutilities import tensorboardutilities from datetime import datetime import time #%% datatypes npdatatype=np.complex64 tfdatatype=tf.complex64 tfrealdatatype=tf.float32 # to use double switch aboe to complex128 #%% number of training points # ntrain=100 # training set # nvalid=50 # validation set #%% epochs epochs=100 # maximal number of epochs display_steps=2 # number of steps between each validations #%% learning rate learning_rate=0.01 #%% threshold for stopping iterations in validation cost threshold_valid=inputaccuracy #%% set the tensorboard utilities tensorboarddir = tensorboardutilities.getdirname(); #%% random seed timestamp = int(time.mktime(datetime.now().timetuple())) RANDOM_SEED=timestamp if verbose>1: print('Random seed = ' + repr(timestamp)) #%% define graph tf.reset_default_graph() #%% summaries for tensorflow def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.scalar('norm', tf.norm(var)) tf.summary.histogram('histogram', var) #%% seed random number generation tf.set_random_seed(RANDOM_SEED) np.random.seed(seed=RANDOM_SEED) #%% generate the tf tensor for the input gate #XT=tf.constant(X_np,dtype=tfdatatype) #%% unitary rigging of X RXT_np=quantumgates.riggunitary(X_np,M) RXT=tf.constant(RXT_np,dtype=tfdatatype) #%% random unitary matrix dataU_np=quantumgates.randomU(M,npdatatype) U=tf.constant(dataU_np,dtype=tfdatatype) #%% generate the training matrix W0=tf.random_uniform([M,M],dtype=tfrealdatatype) WC=tf.complex(tf.random_uniform([M,M],dtype=tfrealdatatype),tf.random_uniform([M,M],dtype=tfrealdatatype)) Wreal=tf.get_variable("Wr",initializer=W0,dtype=tfrealdatatype) Wimag=tf.get_variable("Wi",initializer=W0,dtype=tfrealdatatype) W=tf.get_variable("W",initializer=WC,dtype=tfdatatype,trainable=False) #%% transfer matrix transfer_matrix=tf.get_variable("transfer_matrix",initializer=WC,trainable=False) #%% place holder x=tf.placeholder(dtype=tfdatatype,shape=(M,1),name="x") #%% generate training set xtrains=np.zeros((M,ntrain),dtype=npdatatype) for j in range(ntrain): for i in range(M): xtrains[i,j]=np.random.random_sample()+1j*np.random.random_sample() #%% normalize training set xtrains=tf.keras.utils.normalize(xtrains,axis=0,order=2) #%% generate validation set xvalids=np.zeros((M,ntrain),dtype=npdatatype) for j in range(nvalid): for i in range(M): xvalids[i,j]=np.random.random_sample()+1j*np.random.random_sample() #%% normalize validation set xvalids=tf.keras.utils.normalize(xvalids,axis=0,order=2) #%% projector that extract the first N rows from a vector M #project=tf.constant(quantumgates.projector(N,M,npdatatype),dtype=tfdatatype) #%% equation with tf.name_scope("equation") as scope: with tf.name_scope("Wreal") as scope: variable_summaries(Wreal) with tf.name_scope("Wimag") as scope: variable_summaries(Wimag) yt=tf.matmul(RXT,x) W=tf.complex(Wreal,Wimag) transfer_matrix=tf.matmul(U,W) equation=tf.matmul(transfer_matrix,x)-yt eqreal=tf.real(equation) eqimag=tf.imag(equation) cost_function=tf.reduce_mean(tf.square(eqreal)+ tf.square(eqimag)) tf.summary.scalar('cost_function',cost_function) #%%TO DO : TRY OTHER MINIMIZER with tf.name_scope("train") as scope: # global_step=tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') # optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize( # cost_function, global_step=global_step) # optimizer = tf.train.AdamOptimizer(learning_rate).minimize( # cost_function, global_step=global_step) optimizer = tf.train.AdamOptimizer(learning_rate).minimize( cost_function) #%% message if verbose>0: print('Running with M ' + repr(M) + ' ntrain ' + repr(ntrain) + ' nvalid ' + repr(nvalid)) #%% writer train_writer=tf.summary.FileWriter(tensorboarddir) merged=tf.summary.merge_all() #%% xtmp=np.zeros((M,1),dtype=npdatatype) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer.add_graph(sess.graph) Tinitial=transfer_matrix.eval() for epoch in range(epochs): avg_cost=0. for i in range(ntrain): xtmp=np.reshape(xtrains[0:M,i],(M,1)) sess.run(optimizer,feed_dict={x: xtmp}) avg_cost+=sess.run(cost_function, feed_dict={x: xtmp}) summary=sess.run(merged, feed_dict={x: xtmp}) train_writer.add_summary(summary,i+epoch*epochs) avg_cost=avg_cost/ntrain # messagers if epoch % display_steps == 0: # evaluate the validation error avg_cost_valid=0. for i in range(nvalid): xtmp_valid=np.reshape(xvalids[0:M,i],(M,1)) avg_cost_valid+=sess.run(cost_function, feed_dict= {x: xtmp_valid}) avg_cost_valid=avg_cost_valid/nvalid if verbose>1: print('epoch '+repr(epoch)) print('cost '+repr(avg_cost)) print('valid cost '+repr(avg_cost_valid)) # check the validation cost and if needed exit the iteration if avg_cost_valid < threshold_valid: if verbose: print('Convergence in validation reached at epoch ' + repr(epoch)) break if epoch>=epochs-1: if verbose>0: print('No convergence, maximal epochs reached ' +repr(epochs)) Tfinal=transfer_matrix.eval() Wfinal=W.eval() TVV=tf.matmul(W,W,adjoint_a=True).eval() # print('Determinant Structure matrix ' + repr(np.linalg.det(dataU_np))) #%% if verbose>1: print("Final Sinput=W") utilities.printonscreennp(Wfinal) print("Final TV V for unitarity ") utilities.printonscreennp(TVV) print("Initial T") utilities.printonscreennp(Tinitial) print("Final T") utilities.printonscreennp(Tfinal) #%% sess.close() #%% set the output dictionary of parameters out=dict(); out['accuracy']=threshold_valid out['epoch']=epoch out['ntrain']=ntrain out['nvalid']=nvalid out['N']=X_np.shape[0] out['M']=M out['X']=X_np return out, Wfinal, Tfinal, Tinitial #%%%% def traincomplex(X_np,U_np, verbose=2, inputaccuracy=1e-4, ntrain=100, nvalid=50): # Given a gate with size N, and a complex system described by an input MxM U_np transfer matrix # use a NN to train an input gate to act as the input unitary class # # The input gate is only a phase gate, described by a diagonal matrix # with diagonal exp(i phi1), exp(i phi2), ..., exp(i phin) # # with phi1, phi2, ..., phin are trainable # # TO DO, make batch training (not use it can train without batch) # # Date: 5 April 2019, by Claudio # # Input: # X_np, gate as numpy matrix # U_np, complex system unitary matrix (not checked if unitary) a numpy matrix # verbose, 0 no output, 1 minimal, 2 all #%% vari import here ###### DA FINIRE !!!!!!!!! from utilitiesquantumgates import quantumgates from utilitiesquantumgates import utilities from tensorboardutilities import tensorboardutilities from datetime import datetime import time #%% datatypes npdatatype=np.complex64 tfdatatype=tf.complex64 tfrealdatatype=tf.float32 # to use double switch aboe to complex128 #%% number of training points # ntrain=100 # training set # nvalid=50 # validation set #%% epochs epochs=100 # maximal number of epochs display_steps=2 # number of steps between each validations #%% learning rate learning_rate=0.01 #%% threshold for stopping iterations in validation cost threshold_valid=inputaccuracy #%% set the tensorboard utilities tensorboarddir = tensorboardutilities.getdirname(); #%% random seed timestamp = int(time.mktime(datetime.now().timetuple())) RANDOM_SEED=timestamp if verbose>1: print('Random seed = ' + repr(timestamp)) #%% define graph tf.reset_default_graph() #%% summaries for tensorflow def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.scalar('norm', tf.norm(var)) tf.summary.histogram('histogram', var) #%% seed random number generation tf.set_random_seed(RANDOM_SEED) np.random.seed(seed=RANDOM_SEED) #%% generate the tf tensor for the input gate #XT=tf.constant(X_np,dtype=tfdatatype) #Extract N and M in input N=X_np.shape[0] M=U_np.shape[0] #%% unitary rigging of X RXT_np=quantumgates.riggunitary(X_np,M) RXT=tf.constant(RXT_np,dtype=tfdatatype) #%% random unitary matrix U=tf.constant(U_np,dtype=tfdatatype) #%% generate the training matrix W0=tf.random_uniform([M,M],dtype=tfrealdatatype) WC=tf.complex(tf.random_uniform([M,M],dtype=tfrealdatatype),tf.random_uniform([M,M],dtype=tfrealdatatype)) Wreal=tf.get_variable("Wr",initializer=W0,dtype=tfrealdatatype) Wimag=tf.get_variable("Wi",initializer=W0,dtype=tfrealdatatype) W=tf.get_variable("W",initializer=WC,dtype=tfdatatype,trainable=False) #%% transfer matrix transfer_matrix=tf.get_variable("transfer_matrix",initializer=WC,trainable=False) #%% place holder x=tf.placeholder(dtype=tfdatatype,shape=(M,1),name="x") #%% generate training set xtrains=np.zeros((M,ntrain),dtype=npdatatype) for j in range(ntrain): for i in range(M): xtrains[i,j]=np.random.random_sample()+1j*np.random.random_sample() #%% normalize training set xtrains=tf.keras.utils.normalize(xtrains,axis=0,order=2) #%% generate validation set xvalids=np.zeros((M,ntrain),dtype=npdatatype) for j in range(nvalid): for i in range(M): xvalids[i,j]=np.random.random_sample()+1j*np.random.random_sample() #%% normalize validation set xvalids=tf.keras.utils.normalize(xvalids,axis=0,order=2) #%% projector that extract the first N rows from a vector M #project=tf.constant(quantumgates.projector(N,M,npdatatype),dtype=tfdatatype) #%% equation with tf.name_scope("equation") as scope: with tf.name_scope("Wreal") as scope: variable_summaries(Wreal) with tf.name_scope("Wimag") as scope: variable_summaries(Wimag) yt=tf.matmul(RXT,x) W=tf.complex(Wreal,Wimag) transfer_matrix=tf.matmul(U,W) equation=tf.matmul(transfer_matrix,x)-yt eqreal=tf.real(equation) eqimag=tf.imag(equation) cost_function=tf.reduce_mean(tf.square(eqreal)+ tf.square(eqimag)) tf.summary.scalar('cost_function',cost_function) #%%TO DO : TRY OTHER MINIMIZER with tf.name_scope("train") as scope: # global_step=tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') # optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize( # cost_function, global_step=global_step) # optimizer = tf.train.AdamOptimizer(learning_rate).minimize( # cost_function, global_step=global_step) optimizer = tf.train.AdamOptimizer(learning_rate).minimize( cost_function) #%% message if verbose>0: print('Running with M ' + repr(M) + ' ntrain ' + repr(ntrain) + ' nvalid ' + repr(nvalid)) #%% writer train_writer=tf.summary.FileWriter(tensorboarddir) merged=tf.summary.merge_all() #%% xtmp=np.zeros((M,1),dtype=npdatatype) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer.add_graph(sess.graph) Tinitial=transfer_matrix.eval() for epoch in range(epochs): avg_cost=0. for i in range(ntrain): xtmp=np.reshape(xtrains[0:M,i],(M,1)) sess.run(optimizer,feed_dict={x: xtmp}) avg_cost+=sess.run(cost_function, feed_dict={x: xtmp}) summary=sess.run(merged, feed_dict={x: xtmp}) train_writer.add_summary(summary,i+epoch*epochs) avg_cost=avg_cost/ntrain # messagers if epoch % display_steps == 0: # evaluate the validation error avg_cost_valid=0. for i in range(nvalid): xtmp_valid=np.reshape(xvalids[0:M,i],(M,1)) avg_cost_valid+=sess.run(cost_function, feed_dict= {x: xtmp_valid}) avg_cost_valid=avg_cost_valid/nvalid if verbose>1: print('epoch '+repr(epoch)) print('cost '+repr(avg_cost)) print('valid cost '+repr(avg_cost_valid)) # check the validation cost and if needed exit the iteration if avg_cost_valid < threshold_valid: if verbose: print('Convergence in validation reached at epoch ' + repr(epoch)) break if epoch>=epochs-1: if verbose>0: print('No convergence, maximal epochs reached ' +repr(epochs)) Tfinal=transfer_matrix.eval() Wfinal=W.eval() TVV=tf.matmul(W,W,adjoint_a=True).eval() # print('Determinant Structure matrix ' + repr(np.linalg.det(dataU_np))) #%% if verbose>1: print("Final Sinput=W") utilities.printonscreennp(Wfinal) print("Final TV V for unitarity ") utilities.printonscreennp(TVV) print("Initial T") utilities.printonscreennp(Tinitial) print("Final T") utilities.printonscreennp(Tfinal) #%% sess.close() #%% set the output dictionary of parameters out=dict(); out['accuracy']=threshold_valid out['epoch']=epoch out['ntrain']=ntrain out['nvalid']=nvalid out['N']=N out['M']=M out['X']=X_np out['U']=U_np return out, Wfinal, Tfinal, Tinitial #%% class for training SLM with single input class SLM: def trainSLMsingleinputquantized(X_np,U_np, verbose=2, inputaccuracy=1e-4, epochs=10,display_steps=100, realMIN=-1.0, realMAX=1.0, imagMIN=0.0, imagMAX=0.0, quantizedbits=8): # Given a gate with size N, generate a random unitary matrix and # use a NN to train an input gate to act as the input unitary class # # Input: # X_Np, gate as numpy matrix # M, size embedding space # verbose, 0 no output, 1 minimal, 2 steps, 3 all # # Use single input SLM # # WrealMAX, WrealMIN, maximal and minimal value for Wreal # # WimagMAX, WimagMIN, maximal and minimal value for Wimag (if both 0 is a real weigth) # # quantized bits #%% vari import here ###### DA FINIRE !!!!!!!!! from utilitiesquantumgates import
<reponame>meGregV/blpapi-python # service.py """A service which provides access to API data (provide or consume). All API data is associated with a 'Service'. A service object is obtained from a Session and contains zero or more 'Operations'. A service can be a provider service (can generate API data) or a consumer service. """ from .event import Event from .name import getNamePair from .request import Request from .schema import SchemaElementDefinition from .exception import _ExceptionUtil from . import utils from . import internals class Operation(object): """Defines an operation which can be performed by a Service. Operation objects are obtained from a Service object. They provide read-only access to the schema of the Operations Request and the schema of the possible response. """ def __init__(self, handle, sessions): self.__handle = handle self.__sessions = sessions def name(self): """Return the name of this Operation.""" return internals.blpapi_Operation_name(self.__handle) def description(self): """Return a human readable description of this Operation.""" return internals.blpapi_Operation_description(self.__handle) def requestDefinition(self): """Return a SchemaElementDefinition for this Operation. Return a SchemaElementDefinition which defines the schema for this Operation. """ errCode, definition = internals.blpapi_Operation_requestDefinition( self.__handle) return None if 0 != errCode else\ SchemaElementDefinition(definition, self.__sessions) def numResponseDefinitions(self): """Return the number of the response types for this Operation. Return the number of the response types that can be returned by this Operation. """ return internals.blpapi_Operation_numResponseDefinitions(self.__handle) def getResponseDefinitionAt(self, position): """Return a SchemaElementDefinition for the response to this Operation. Return a SchemaElementDefinition which defines the schema for the response that this Operation delivers. If 'position' >= numResponseDefinitions() an exception is raised. """ errCode, definition = internals.blpapi_Operation_responseDefinition( self.__handle, position) _ExceptionUtil.raiseOnError(errCode) return SchemaElementDefinition(definition, self.__sessions) def responseDefinitions(self): """Return an iterator over response for this Operation. Return an iterator over response types that can be returned by this Operation. Response type is defined by SchemaElementDefinition object. """ return utils.Iterator(self, Operation.numResponseDefinitions, Operation.getResponseDefinitionAt) def _sessions(self): """Return session(s) this object is related to. For internal use.""" return self.__sessions class Service(object): """Defines a service which provides access to API data. A Service object is obtained from a Session and contains the Operations (each of which contains its own schema) and the schema for Events which this Service may produce. A Service object is also used to create Request objects used with a Session to issue requests. Provider services are created to generate API data and must be registered before use. The Service object is a handle to the underlying data which is owned by the Session. Once a Service has been succesfully opened in a Session it remains accessible until the Session is terminated. """ def __init__(self, handle, sessions): self.__handle = handle self.__sessions = sessions internals.blpapi_Service_addRef(self.__handle) def __del__(self): try: self.destroy() except (NameError, AttributeError): pass def destroy(self): if self.__handle: internals.blpapi_Service_release(self.__handle) self.__handle = None def __str__(self): """Convert the service schema to a string.""" return self.toString() def toString(self, level=0, spacesPerLevel=4): """Convert this Service schema to a string. Convert this Service schema to a string at (absolute value specified for) the optionally specified indentation 'level'. If 'level' is specified, optionally specify 'spacesPerLevel', the number of spaces per indentation level for this and all of its nested objects. If 'level' is negative, suppress indentation of the first line. If 'spacesPerLevel' is negative, format the entire output on one line, suppressing all but the initial indentation (as governed by 'level'). """ return internals.blpapi_Service_printHelper(self.__handle, level, spacesPerLevel) def createPublishEvent(self): """Create an Event suitable for publishing to this Service. Use an EventFormatter to add Messages to the Event and set fields. """ errCode, event = internals.blpapi_Service_createPublishEvent( self.__handle) _ExceptionUtil.raiseOnError(errCode) return Event(event, self.__sessions) def createAdminEvent(self): """Create an Admin Event suitable for publishing to this Service. Use an EventFormatter to add Messages to the Event and set fields. """ errCode, event = internals.blpapi_Service_createAdminEvent( self.__handle) _ExceptionUtil.raiseOnError(errCode) return Event(event, self.__sessions) def createResponseEvent(self, correlationId): """Create a response Event to answer the request. Use an EventFormatter to add a Message to the Event and set fields. """ errCode, event = internals.blpapi_Service_createResponseEvent( self.__handle, correlationId._handle()) _ExceptionUtil.raiseOnError(errCode) return Event(event, self.__sessions) def name(self): """Return the name of this service.""" return internals.blpapi_Service_name(self.__handle) def description(self): """Return a human-readable description of this service.""" return internals.blpapi_Service_description(self.__handle) def hasOperation(self, name): """Return True if the specified 'name' is a valid Operation. Return True if the specified 'name' identifies a valid Operation in this Service. """ names = getNamePair(name) return internals.blpapi_Service_hasOperation(self.__handle, names[0], names[1]) def getOperation(self, nameOrIndex): """Return a specified operation. Return an 'Operation' object identified by the specified 'nameOrIndex', which must be either a string, a Name, or an integer. If 'nameOrIndex' is a string or a Name and 'hasOperation(nameOrIndex) != True', or if 'nameOrIndex' is an integer and 'nameOrIndex >= numOperations()', then an exception is raised. """ if not isinstance(nameOrIndex, int): names = getNamePair(nameOrIndex) errCode, operation = internals.blpapi_Service_getOperation( self.__handle, names[0], names[1]) _ExceptionUtil.raiseOnError(errCode) return Operation(operation, self.__sessions) errCode, operation = internals.blpapi_Service_getOperationAt( self.__handle, nameOrIndex) _ExceptionUtil.raiseOnError(errCode) return Operation(operation, self.__sessions) def numOperations(self): """Return the number of Operations defined by this Service.""" return internals.blpapi_Service_numOperations(self.__handle) def operations(self): """Return an iterator over Operations defined by this Service""" return utils.Iterator(self, Service.numOperations, Service.getOperation) def hasEventDefinition(self, name): """Return True if the specified 'name' identifies a valid event. Return True if the specified 'name' identifies a valid event in this Service, False otherwise. Exception is raised if 'name' is neither a Name nor a string. """ names = getNamePair(name) return internals.blpapi_Service_hasEventDefinition(self.__handle, names[0], names[1]) def getEventDefinition(self, nameOrIndex): """Return the definition of a specified event. Return a 'SchemaElementDefinition' object describing the element identified by the specified 'nameOrIndex', which must be either a string or an integer. If 'nameOrIndex' is a string and 'hasEventDefinition(nameOrIndex) != True', then a 'NotFoundException' is raised; if 'nameOrIndex' is an integer and 'nameOrIndex >= numEventDefinitions()' then an 'IndexOutOfRangeException' is raised. """ if not isinstance(nameOrIndex, int): names = getNamePair(nameOrIndex) errCode, definition = internals.blpapi_Service_getEventDefinition( self.__handle, names[0], names[1]) _ExceptionUtil.raiseOnError(errCode) return SchemaElementDefinition(definition, self.__sessions) errCode, definition = internals.blpapi_Service_getEventDefinitionAt( self.__handle, nameOrIndex) _ExceptionUtil.raiseOnError(errCode) return SchemaElementDefinition(definition, self.__sessions) def numEventDefinitions(self): """Return the number of unsolicited events defined by this Service.""" return internals.blpapi_Service_numEventDefinitions(self.__handle) def eventDefinitions(self): """Return an iterator over unsolicited events defined by this Service. """ return utils.Iterator(self, Service.numEventDefinitions, Service.getEventDefinition) def authorizationServiceName(self): """Return the authorization service name. Return the name of the Service which must be used in order to authorize access to restricted operations on this Service. If no authorization is required to access operations on this service an empty string is returned. Authorization services never require authorization to use. """ return internals.blpapi_Service_authorizationServiceName(self.__handle) def createRequest(self, operation): """Return a empty Request object for the specified 'operation'. If 'operation' does not identify a valid operation in the Service then an exception is raised. An application must populate the Request before issuing it using Session.sendRequest(). """ errCode, request = internals.blpapi_Service_createRequest( self.__handle, operation) _ExceptionUtil.raiseOnError(errCode) return Request(request, self.__sessions) def createAuthorizationRequest(self, authorizationOperation=None): """Return an empty Request object for 'authorizationOperation'. If the 'authorizationOperation' does not identify a valid operation for this Service then an exception is raised. An application must populate the Request before issuing it using Session.sendAuthorizationRequest(). """ errCode, request = internals.blpapi_Service_createAuthorizationRequest( self.__handle, authorizationOperation) _ExceptionUtil.raiseOnError(errCode) return Request(request, self.__sessions) def _handle(self): """Return the internal implementation.""" return self.__handle def _sessions(self): """Return session(s) this object is related to. For internal use.""" return self.__sessions __copyright__ = """ Copyright 2012. Bloomberg Finance L.P. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
True: return ( 65739, # {U_io_bind1} None, None, None, _idris_Python_46_Prim_46_next(None, e8), (65753, e10, e9, e8) # {U_{Python.Prim.iterate:iter:0_lam5}1} ) # Prelude.List.reverse, reverse' def _idris_Prelude_46_List_46_reverse_58_reverse_39__58_0(e0, e1, e2): while True: if e2: # Prelude.List.:: in0, in1 = e2.head, e2.tail e0, e1, e2, = None, e1.cons(in0), in1, continue return _idris_error("unreachable due to tail call") else: # Prelude.List.Nil return e1 return _idris_error("unreachable due to case in tail position") # Decidable.Equality.Decidable.Equality.Char implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_Char_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.Int implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_Int_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.Integer implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_Integer_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.ManagedPtr implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_ManagedPtr_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.Ptr implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_Ptr_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.String implementation of Decidable.Equality.DecEq, method decEq, primitiveNotEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_String_58__33_decEq_58_0_58_primitiveNotEq_58_0(): while True: return None # Decidable.Equality.Decidable.Equality.Bool implementation of Decidable.Equality.DecEq, method decEq def _idris_Decidable_46_Equality_46_Decidable_46_Equality_46__64_Decidable_46_Equality_46_DecEq_36_Bool_58__33_decEq_58_0( e0, e1 ): while True: if not e1: # Prelude.Bool.False if not e0: # Prelude.Bool.False return (0,) # Prelude.Basics.Yes else: # Prelude.Bool.True return (1,) # Prelude.Basics.No return _idris_error("unreachable due to case in tail position") else: # Prelude.Bool.True if not e0: # Prelude.Bool.False return (1,) # Prelude.Basics.No else: # Prelude.Bool.True return (0,) # Prelude.Basics.Yes return _idris_error("unreachable due to case in tail position") return _idris_error("unreachable due to case in tail position") # Prelude.Interfaces.Prelude.Nat.Nat implementation of Prelude.Interfaces.Eq, method == def _idris_Prelude_46_Interfaces_46_Prelude_46_Nat_46__64_Prelude_46_Interfaces_46_Eq_36_Nat_58__33__61__61__58_0( e0, e1 ): while True: if e1 == 0: if e0 == 0: return True else: return False return _idris_error("unreachable due to case in tail position") elif True: in0 = (e1 - 1) if e0 == 0: return False else: in1 = (e0 - 1) e0, e1, = in1, in0, continue return _idris_error("unreachable due to tail call") return _idris_error("unreachable due to case in tail position") else: return False return _idris_error("unreachable due to case in tail position") # Prelude.Interfaces.Prelude.Show.Prec implementation of Prelude.Interfaces.Eq, method == def _idris_Prelude_46_Interfaces_46_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Eq_36_Prec_58__33__61__61__58_0( e0, e1 ): while True: if e1[0] == 4: # Prelude.Show.User in0 = e1[1] if e0[0] == 4: # Prelude.Show.User in1 = e0[1] return _idris_Prelude_46_Interfaces_46_Prelude_46_Nat_46__64_Prelude_46_Interfaces_46_Eq_36_Nat_58__33__61__61__58_0( in1, in0 ) else: aux1 = (_idris_Prelude_46_Show_46_precCon(e0) == _idris_Prelude_46_Show_46_precCon(e1)) if aux1 == 0: return False else: return True return _idris_error("unreachable due to case in tail position") return _idris_error("unreachable due to case in tail position") else: aux2 = (_idris_Prelude_46_Show_46_precCon(e0) == _idris_Prelude_46_Show_46_precCon(e1)) if aux2 == 0: return False else: return True return _idris_error("unreachable due to case in tail position") return _idris_error("unreachable due to case in tail position") # Prelude.Foldable.Prelude.List.List implementation of Prelude.Foldable.Foldable, method foldr def _idris_Prelude_46_Foldable_46_Prelude_46_List_46__64_Prelude_46_Foldable_46_Foldable_36_List_58__33_foldr_58_0( e0, e1, e2, e3, e4 ): while True: if e4: # Prelude.List.:: in0, in1 = e4.head, e4.tail return APPLY0( APPLY0(e2, in0), _idris_Prelude_46_Foldable_46_Prelude_46_List_46__64_Prelude_46_Foldable_46_Foldable_36_List_58__33_foldr_58_0( None, None, e2, e3, in1 ) ) else: # Prelude.List.Nil return e3 return _idris_error("unreachable due to case in tail position") # Prelude.Functor.Prelude.Monad.IO' ffi implementation of Prelude.Functor.Functor, method map def _idris_Prelude_46_Functor_46_Prelude_46_Monad_46__64_Prelude_46_Functor_46_Functor_36_IO_39__32_ffi_58__33_map_58_0( e0, e1, e2, e3, e4 ): while True: return (65739, None, None, None, e4, (65703, e3)) # {U_io_bind1}, {U_Prelude.Functor.{[email protected]$IO' ffi:!map:0_lam0}1} # Prelude.Interfaces.Prelude.Interfaces.Integer implementation of Prelude.Interfaces.Ord, method compare def _idris_Prelude_46_Interfaces_46_Prelude_46_Interfaces_46__64_Prelude_46_Interfaces_46_Ord_36_Integer_58__33_compare_58_0( e0, e1 ): while True: aux2 = (e0 == e1) if aux2 == 0: aux3 = False else: aux3 = True aux1 = aux3 if not aux1: # Prelude.Bool.False aux5 = (e0 < e1) if aux5 == 0: aux6 = False else: aux6 = True aux4 = aux6 if not aux4: # Prelude.Bool.False return (2,) # Prelude.Interfaces.GT else: # Prelude.Bool.True return (0,) # Prelude.Interfaces.LT return _idris_error("unreachable due to case in tail position") else: # Prelude.Bool.True return (1,) # Prelude.Interfaces.EQ return _idris_error("unreachable due to case in tail position") # Prelude.Interfaces.Prelude.Nat.Nat implementation of Prelude.Interfaces.Ord, method compare def _idris_Prelude_46_Interfaces_46_Prelude_46_Nat_46__64_Prelude_46_Interfaces_46_Ord_36_Nat_58__33_compare_58_0( e0, e1 ): while True: if e1 == 0: if e0 == 0: return (1,) # Prelude.Interfaces.EQ else: in0 = (e0 - 1) return (2,) # Prelude.Interfaces.GT return _idris_error("unreachable due to case in tail position") else: in1 = (e1 - 1) if e0 == 0: return (0,) # Prelude.Interfaces.LT else: in2 = (e0 - 1) e0, e1, = in2, in1, continue return _idris_error("unreachable due to tail call") return _idris_error("unreachable due to case in tail position") return _idris_error("unreachable due to case in tail position") # Prelude.Interfaces.Prelude.Show.Prec implementation of Prelude.Interfaces.Ord, method >= def _idris_Prelude_46_Interfaces_46_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Ord_36_Prec_58__33__62__61__58_0( e0, e1 ): while True: aux2 = _idris_Prelude_46_Interfaces_46_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Ord_36_Prec_58__33_compare_58_0( e0, e1 ) if aux2[0] == 2: # Prelude.Interfaces.GT aux3 = True else: aux3 = False aux1 = aux3 if not aux1: # Prelude.Bool.False return _idris_Prelude_46_Interfaces_46__123_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Ord_36_Prec_58__33__62__61__58_0_95_lam0_125_( e0, e1 ) else: # Prelude.Bool.True return True return _idris_error("unreachable due to case in tail position") # Prelude.Interfaces.Prelude.Show.Prec implementation of Prelude.Interfaces.Ord, method compare def _idris_Prelude_46_Interfaces_46_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Ord_36_Prec_58__33_compare_58_0( e0, e1 ): while True: if e1[0] == 4: # Prelude.Show.User in0 = e1[1] if e0[0] == 4: # Prelude.Show.User in1 = e0[1] return _idris_Prelude_46_Interfaces_46_Prelude_46_Nat_46__64_Prelude_46_Interfaces_46_Ord_36_Nat_58__33_compare_58_0( in1, in0 ) else: return _idris_Prelude_46_Interfaces_46_Prelude_46_Interfaces_46__64_Prelude_46_Interfaces_46_Ord_36_Integer_58__33_compare_58_0( _idris_Prelude_46_Show_46_precCon(e0), _idris_Prelude_46_Show_46_precCon(e1) ) return _idris_error("unreachable due to case in tail position") else: return _idris_Prelude_46_Interfaces_46_Prelude_46_Interfaces_46__64_Prelude_46_Interfaces_46_Ord_36_Integer_58__33_compare_58_0( _idris_Prelude_46_Show_46_precCon(e0), _idris_Prelude_46_Show_46_precCon(e1) ) return _idris_error("unreachable due to case in tail position") # Prelude.Show.Prelude.Show.Nat implementation of Prelude.Show.Show, method show def _idris_Prelude_46_Show_46_Prelude_46_Show_46__64_Prelude_46_Show_46_Show_36_Nat_58__33_show_58_0( e0 ): while True: return _idris_Prelude_46_Show_46_primNumShow(None, (65741,), (0,), e0) # {U_prim__toStrBigInt1}, Prelude.Show.Open # with block in Prelude.Strings.strM def _idris__95_Prelude_46_Strings_46_strM_95_with_95_22(e0, e1): while True: if e1[0] == 1: # Prelude.Basics.No return (0,) # Prelude.Strings.StrNil else: # Prelude.Basics.Yes return (1, e0[0]) # Prelude.Strings.StrCons return _idris_error("unreachable due to case in tail position") # with block in Prelude.Interfaces.Prelude.Show.Prec implementation of Prelude.Interfaces.Ord, method > def _idris__95_Prelude_46_Interfaces_46_Prelude_46_Show_46__64_Prelude_46_Interfaces_46_Ord_36_Prec_58__33__62__58_0_95_with_95_27( e0, e1, e2 ): while True: if e0[0] == 2: # Prelude.Interfaces.GT return True else: return False return _idris_error("unreachable due to case in tail position") # with block in Prelude.Show.firstCharIs def _idris__95_Prelude_46_Show_46_firstCharIs_95_with_95_44(e0, e1, e2): while True: if e2[0] == 1: # Prelude.Strings.StrCons in0 = e2[1] return APPLY0(e0, in0) else: # Prelude.Strings.StrNil return False return _idris_error("unreachable due to case in tail position") # constructor of Prelude.Algebra.Monoid#Semigroup ty def _idris_Prelude_46_Algebra_46_Monoid_95_ictor_35__34_Semigroup_32_ty_34_(e0, e1): while True: assert e1[0] == 0 # constructor of Prelude.Algebra.Monoid in0, in1 = e1[1:] return in0 return _idris_error("unreachable due to case in tail position") # Python.Exceptions.case block in fromString at ./Python/Exceptions.idr:56:21 def _idris_Python_46_Exceptions_46_fromString_95__95__95__95__95_Python_95__95_Exceptions_95__95_idr_95_56_95_21_95_case( e0, e1 ): while True: return { u'ArithmeticError': (3,), # Python.Exceptions.ArithmeticError u'AssertionError': (7,), # Python.Exceptions.AssertionError u'AttributeError': (8,), # Python.Exceptions.AttributeError u'BufferError': (2,), # Python.Exceptions.BufferError u'EOFError': (14,), # Python.Exceptions.EOFError u'EnvironmentError': (9,), # Python.Exceptions.EnvironmentError u'FloatingPointError': (4,), # Python.Exceptions.FloatingPointError u'IOError': (10,), # Python.Exceptions.IOError u'ImportError': (15,), # Python.Exceptions.ImportError u'IndentationError': (26,), # Python.Exceptions.IndentationError u'IndexError': (17,), # Python.Exceptions.IndexError u'KeyError': (18,), # Python.Exceptions.KeyError u'LookupError': (16,), # Python.Exceptions.LookupError u'MemoryError': (19,), # Python.Exceptions.MemoryError u'NameError': (20,), # Python.Exceptions.NameError u'NotImplementedError': (24,), # Python.Exceptions.NotImplementedError u'OSError': (11,), # Python.Exceptions.OSError u'OverflowError': (5,), # Python.Exceptions.OverflowError u'ReferenceError': (22,), # Python.Exceptions.ReferenceError u'RuntimeError': (23,), # Python.Exceptions.RuntimeError u'StandardError': (1,), # Python.Exceptions.StandardError u'StopIteration': (0,), # Python.Exceptions.StopIteration u'SyntaxError': (25,), # Python.Exceptions.SyntaxError u'SystemError': (28,), # Python.Exceptions.SystemError u'TabError': (27,), # Python.Exceptions.TabError u'TypeError': (29,), # Python.Exceptions.TypeError u'UnboundLocalError': (21,), # Python.Exceptions.UnboundLocalError u'UnicodeDecodeError': (32,), # Python.Exceptions.UnicodeDecodeError u'UnicodeEncodeError': (33,), # Python.Exceptions.UnicodeEncodeError u'UnicodeError': (31,), # Python.Exceptions.UnicodeError u'UnicodeTranslateError': (34,), # Python.Exceptions.UnicodeTranslateError u'VMSError': (13,), # Python.Exceptions.VMSError u'ValueError': (30,), # Python.Exceptions.ValueError u'WindowsError': (12,), # Python.Exceptions.WindowsError u'ZeroDivisionError': (6,) # Python.Exceptions.ZeroDivisionError }.get(e0, (35,)) # Python.Exceptions.Other # Python.Exceptions.case block in try at ./Python/Exceptions.idr:106:16 def _idris_Python_46_Exceptions_46_try_95__95__95__95__95_Python_95__95_Exceptions_95__95_idr_95_106_95_16_95_case( e0, e1, e2, e3, e4 ): while True: if e3[0] == 0: # Prelude.Either.Left in0 = e3[1] return ( 65740, # {U_io_pure1} None, None, ( 1, # Python.Exceptions.Except _idris_Python_46_Exceptions_46_fromString( _idris_Python_46_Fields_46__47__46_( None, None, _idris_Python_46_Fields_46__47__46_(None, None, in0, u'__class__', None), u'__name__', None ) ), in0 ) ) else: # Prelude.Either.Right in1 = e3[1] return (65740, None, None, (0, in1)) # {U_io_pure1}, Python.Exceptions.OK return _idris_error("unreachable due to case in tail position") # Python.Exceptions.case block in case block in try at ./Python/Exceptions.idr:106:16 at ./Python/Exceptions.idr:118:10 def _idris_Python_46_Exceptions_46_try_95__95__95__95__95_Python_95__95_Exceptions_95__95_idr_95_106_95_16_95_case_95__95__95__95__95_Python_95__95_Exceptions_95__95_idr_95_118_95_10_95_case( e0, e1, e2, e3, e4, e5 ): while True: if e2[0] == 0: # Prelude.Either.Left in0 = e2[1] return ( 65740, # {U_io_pure1} None, None, ( 1, # Python.Exceptions.Except _idris_Python_46_Exceptions_46_fromString( _idris_Python_46_Fields_46__47__46_( None, None, _idris_Python_46_Fields_46__47__46_(None, None, in0, u'__class__', None), u'__name__', None ) ), in0 ) ) else: # Prelude.Either.Right in1 = e2[1] return (65740, None, None, (0, in1)) # {U_io_pure1}, Python.Exceptions.OK return _idris_error("unreachable due to case in tail position") # Python.Exceptions.case block in catch at ./Python/Exceptions.idr:130:16 def _idris_Python_46_Exceptions_46_catch_95__95__95__95__95_Python_95__95_Exceptions_95__95_idr_95_130_95_16_95_case( e0, e1, e2, e3, e4, e5 ): while True: if e4[0] == 1: # Python.Exceptions.Except in0, in1 = e4[1:] return APPLY0(APPLY0(e2, in0), in1) else: # Python.Exceptions.OK in2 = e4[1] return (65740, None, None, in2) # {U_io_pure1} return _idris_error("unreachable due to case in tail position") # Python.Prim.case block in next at ./Python/Prim.idr:61:11 def _idris_Python_46_Prim_46_next_95__95__95__95__95_Python_95__95_Prim_95__95_idr_95_61_95_11_95_case( e0, e1, e2,
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ BVT tests for Secondary Storage """ #Import Local Modules import marvin from marvin.cloudstackTestCase import * from marvin.cloudstackAPI import * from marvin.lib.utils import * from marvin.lib.base import * from marvin.lib.common import * from nose.plugins.attrib import attr from marvin.cloudstackAPI import (listImageStores) from marvin.cloudstackAPI import (updateImageStore) #Import System modules import time _multiprocess_shared_ = True class TestSecStorageServices(cloudstackTestCase): @classmethod def setUpClass(cls): cls.apiclient = super(TestSecStorageServices, cls).getClsTestClient().getApiClient() cls._cleanup = [] return @classmethod def tearDownClass(cls): try: #Cleanup resources used cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return def setUp(self): self.apiclient = self.testClient.getApiClient() self.cleanup = [] # Get Zone and pod self.zones = [] self.pods = [] for zone in self.config.zones: cmd = listZones.listZonesCmd() cmd.name = zone.name z = self.apiclient.listZones(cmd) if isinstance(z, list) and len(z) > 0: self.zones.append(z[0].id) for pod in zone.pods: podcmd = listPods.listPodsCmd() podcmd.zoneid = z[0].id p = self.apiclient.listPods(podcmd) if isinstance(p, list) and len(p) >0: self.pods.append(p[0].id) self.domains = [] dcmd = listDomains.listDomainsCmd() domains = self.apiclient.listDomains(dcmd) assert isinstance(domains, list) and len(domains) > 0 for domain in domains: self.domains.append(domain.id) return def tearDown(self): try: #Clean up, terminate the created templates cleanup_resources(self.apiclient, self.cleanup) except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return @attr(tags = ["advanced", "advancedns", "smoke", "basic", "eip", "sg"], required_hardware="false") def test_01_sys_vm_start(self): """Test system VM start """ # 1. verify listHosts has all 'routing' hosts in UP state # 2. verify listStoragePools shows all primary storage pools # in UP state # 3. verify that secondary storage was added successfully list_hosts_response = list_hosts( self.apiclient, type='Routing', ) self.assertEqual( isinstance(list_hosts_response, list), True, "Check list response returns a valid list" ) # ListHosts has all 'routing' hosts in UP state self.assertNotEqual( len(list_hosts_response), 0, "Check list host response" ) for host in list_hosts_response: self.assertEqual( host.state, 'Up', "Check state of routing hosts is Up or not" ) # ListStoragePools shows all primary storage pools in UP state list_storage_response = list_storage_pools( self.apiclient, ) self.assertEqual( isinstance(list_storage_response, list), True, "Check list response returns a valid list" ) self.assertNotEqual( len(list_storage_response), 0, "Check list storage pools response" ) for primary_storage in list_hosts_response: self.assertEqual( primary_storage.state, 'Up', "Check state of primary storage pools is Up or not" ) for _ in range(2): list_ssvm_response = list_ssvms( self.apiclient, systemvmtype='secondarystoragevm', ) self.assertEqual( isinstance(list_ssvm_response, list), True, "Check list response returns a valid list" ) #Verify SSVM response self.assertNotEqual( len(list_ssvm_response), 0, "Check list System VMs response" ) for ssvm in list_ssvm_response: if ssvm.state != 'Running': time.sleep(30) continue for ssvm in list_ssvm_response: self.assertEqual( ssvm.state, 'Running', "Check whether state of SSVM is running" ) return @attr(tags = ["advanced", "advancedns", "smoke", "basic", "eip", "sg"], required_hardware="false") def test_02_sys_template_ready(self): """Test system templates are ready """ # Validate the following # If SSVM is in UP state and running # 1. wait for listTemplates to show all builtin templates downloaded and # in Ready state hypervisors = {} for zone in self.config.zones: for pod in zone.pods: for cluster in pod.clusters: hypervisors[cluster.hypervisor] = "self" for zid in self.zones: for k, v in list(hypervisors.items()): self.debug("Checking BUILTIN templates in zone: %s" %zid) list_template_response = list_templates( self.apiclient, hypervisor=k, zoneid=zid, templatefilter=v, listall=True, account='system' ) self.assertEqual(validateList(list_template_response)[0], PASS,\ "templates list validation failed") # Ensure all BUILTIN templates are downloaded templateid = None for template in list_template_response: if template.templatetype == "BUILTIN": templateid = template.id template_response = list_templates( self.apiclient, id=templateid, zoneid=zid, templatefilter=v, listall=True, account='system' ) if isinstance(template_response, list): template = template_response[0] else: raise Exception("ListTemplate API returned invalid list") if template.status == 'Download Complete': self.debug("Template %s is ready in zone %s"%(template.templatetype, zid)) elif 'Downloaded' not in template.status.split(): self.debug("templates status is %s"%template.status) self.assertEqual( template.isready, True, "Builtin template is not ready %s in zone %s"%(template.status, zid) ) @attr(tags = ["advanced", "advancedns", "smoke", "basic", "eip", "sg"], required_hardware="false") def test_03_check_read_only_flag(self): """Test the secondary storage read-only flag """ # Validate the following # It is possible to enable/disable the read-only flag on a secondary storage and filter by it # 1. Make the first secondary storage as read-only and verify its state has been changed # 2. Search for the read-only storages and make sure ours is in the list # 3. Make it again read/write and verify it has been set properly first_storage = self.list_secondary_storages(self.apiclient)[0] first_storage_id = first_storage['id'] # Step 1 self.update_secondary_storage(self.apiclient, first_storage_id, True) updated_storage = self.list_secondary_storages(self.apiclient, first_storage_id)[0] self.assertEqual( updated_storage['readonly'], True, "Check if the secondary storage status has been set to read-only" ) # Step 2 readonly_storages = self.list_secondary_storages(self.apiclient, readonly=True) self.assertEqual( isinstance(readonly_storages, list), True, "Check list response returns a valid list" ) result = any(d['id'] == first_storage_id for d in readonly_storages) self.assertEqual( result, True, "Check if we are able to list storages by their read-only status" ) # Step 3 self.update_secondary_storage(self.apiclient, first_storage_id, False) updated_storage = self.list_secondary_storages(self.apiclient, first_storage_id)[0] self.assertEqual( updated_storage['readonly'], False, "Check if the secondary storage status has been set back to read-write" ) @attr(tags = ["advanced", "advancedns", "smoke", "basic", "eip", "sg"], required_hardware="false") def test_04_migrate_to_read_only_storage(self): """Test migrations to a read-only secondary storage """ # Validate the following # It is not possible to migrate a storage to a read-only one # NOTE: This test requires more than one secondary storage in the system # 1. Make the first storage read-only # 2. Try complete migration from the second to the first storage - it should fail # 3. Try balanced migration from the second to the first storage - it should fail # 4. Make the first storage read-write again storages = self.list_secondary_storages(self.apiclient) if (len(storages)) < 2: self.skipTest( "This test requires more than one secondary storage") first_storage = self.list_secondary_storages(self.apiclient)[0] first_storage_id = first_storage['id'] second_storage = self.list_secondary_storages(self.apiclient)[1] second_storage_id = second_storage['id'] # Set the first storage to read-only self.update_secondary_storage(self.apiclient, first_storage_id, True) # Try complete migration from second to the first storage success = False try: self.migrate_secondary_storage(self.apiclient, second_storage_id, first_storage_id, "complete") except Exception as ex: if re.search("No destination valid store\(s\) available to migrate.", str(ex)): success = True else: self.debug("Secondary storage complete migration to a read-only one\ did not fail appropriately. Error was actually : " + str(ex)); self.assertEqual(success, True, "Check if a complete migration to a read-only storage one fails appropriately") # Try balanced migration from second to the first storage success = False try: self.migrate_secondary_storage(self.apiclient, second_storage_id, first_storage_id, "balance") except Exception as ex: if re.search("No destination valid store\(s\) available to migrate.", str(ex)): success = True else: self.debug("Secondary storage balanced migration to a read-only one\ did not fail appropriately. Error was actually : " + str(ex)) self.assertEqual(success, True, "Check if a balanced migration to a read-only storage one fails appropriately") # Set the first storage back to read-write self.update_secondary_storage(self.apiclient, first_storage_id, False) @attr(tags = ["advanced", "advancedns", "smoke", "basic", "eip", "sg"], required_hardware="false") def test_05_migrate_to_less_free_space(self): """Test migrations when the destination storage has less space """ # Validate the following # Migration to a secondary storage with less space should be refused # NOTE: This test requires more than one secondary storage in the system # 1. Try complete migration from a storage with more (or equal) free space - migration should be refused storages = self.list_secondary_storages(self.apiclient) if (len(storages)) < 2: self.skipTest( "This test requires more than one secondary storage") first_storage = self.list_secondary_storages(self.apiclient)[0] first_storage_disksizeused = first_storage['disksizeused'] first_storage_disksizetotal = first_storage['disksizetotal'] second_storage = self.list_secondary_storages(self.apiclient)[1] second_storage_disksizeused = second_storage['disksizeused'] second_storage_disksizetotal = second_storage['disksizetotal'] first_storage_freespace = first_storage_disksizetotal - first_storage_disksizeused second_storage_freespace = second_storage_disksizetotal - second_storage_disksizeused if first_storage_freespace == second_storage_freespace: self.skipTest( "This test requires two secondary storages with different free space") # Setting the storage
from django.apps import apps from django.contrib.auth.management import create_permissions from project import settings # def post_migrate_create_organization(sender, **kwargs): # for app_config in apps.get_app_configs(): # create_permissions(app_config, apps=apps, verbosity=0) # # Organization = sender.get_model("Organization") # org, created = Organization.objects.get_or_create( # name="MIT", url="https://lookit.mit.edu" # ) def post_migrate_create_social_app(sender, **kwargs): Site = apps.get_model("sites.Site") SocialApp = apps.get_model("socialaccount.SocialApp") site = Site.objects.first() site.domain = settings.SITE_DOMAIN site.name = settings.SITE_NAME site.save() if not SocialApp.objects.exists(): app = SocialApp.objects.create( key="", name="OSF", provider="osf", # Defaults are valid for staging client_id=settings.OSF_OAUTH_CLIENT_ID, secret=settings.OSF_OAUTH_SECRET, ) app.sites.clear() app.sites.add(site) def post_migrate_create_flatpages(sender, **kwargs): Site = apps.get_model("sites.Site") FlatPage = apps.get_model("flatpages.FlatPage") flatpages = [ dict( url="/", title="Home", content=f""" <div class="main"> <div class="home-jumbotron"> <div class="content"> <h1>Lookit<br> <small>the online child lab</small></h1> <p>A project of the MIT Early Childhood Cognition Lab</p><a class="btn btn-primary btn-lg ember-view" href="/studies" id="ember821">Participate in a Study</a> </div> </div> <div class="information-row lookit-row"> <div class="container"> <div class="row"> <div class="col-md-4"> <div class="home-content-icon"> <i class="fa fa-flask"></i> </div> <h3 class="text-center">Bringing science home</h3> <p>Here at MIT's Early Childhood Cognition Lab, we're trying a new approach in developmental psychology: bringing the experiments to you.</p> </div> <div class="col-md-4"> <div class="home-content-icon"> <i class="fa fa-cogs"></i> </div> <h3 class="text-center">Help us understand how your child thinks</h3> <p>Our online studies are quick and fun, and let you as a parent contribute to our collective understanding of the fascinating phenomenon of children's learning. In some experiments you'll step into the role of a researcher, asking your child questions or controlling the experiment based on what he or she does.</p> </div> <div class="col-md-4"> <div class="home-content-icon"> <i class="fa fa-coffee"></i> </div> <h3 class="text-center">Participate whenever and wherever</h3> <p>Log in or create an account at the top right to get started! You can participate in studies from home by doing an online activity with your child that is videotaped via your webcam.</p> </div> </div> </div> </div> <div class="news-row lookit-row"> <div class="container"> <div class="row"> <h3>News</h3> <div class="col-xs-12"> <div class="row"> <div class="col-md-2 col-md-offset-1"> March 30, 2017 </div> <div class="col-md-7"> Our two papers describing online replications of classic developmental studies on a prototype of the Lookit system are now available in the <a href="http://www.mitpressjournals.org/doi/abs/10.1162/OPMI_a_00002#.WN2QeY61vtc">first issue of Open Mind</a>, a new open-access journal from MIT Press! Thank you so much to all of our early participants who made this work possible. </div> </div> <div class="row"> <div class="col-md-2 col-md-offset-1"> September 16, 2016 </div> <div class="col-md-7"> We're back up and running! If you had an account on the old site, you should have received an email letting you know how to access your new account. We're getting started by piloting a study about babies' intuitive understanding of physics! </div> </div> <div class="row"> <div class="col-md-2 col-md-offset-1"> August 4, 2016 </div> <div class="col-md-7"> Lookit is taking a break while our partners at the Center for Open Science work on re-engineering the site so it's easier for both parents and researchers to use. We're looking forward to re-opening the login system and starting up some new studies early this fall! Please contact <EMAIL> with any questions. </div> </div> <div class="row"> <div class="col-md-2 col-md-offset-1"> October 1, 2015 </div> <div class="col-md-7"> We've finished collecting data for replications of three classic studies, looking at infants' and children's understanding of probability, language, and reliability. The results will be featured here as soon as they're published! </div> </div> <div class="row"> <div class="col-md-2 col-md-offset-1"> June 30, 2014 </div> <div class="col-md-7"> An MIT News press release discusses Lookit <a href="https://newsoffice.mit.edu/2014/mit-launches-online-lab-early-childhood-learning-lookit">here</a>. The project was also featured in <a href="http://www.bostonmagazine.com/health/blog/2014/06/19/new-mit-lab/">Boston Magazine</a> and on the <a href="https://www.sciencenews.org/blog/growth-curve/your-baby-can-watch-movies-science">Science News blog</a>. Stay up-to-date and connect with other science-minded parents through our <a href="https://www.facebook.com/lookit.mit.edu">Facebook page</a>! </div> </div> <div class="row"> <div class="col-md-2 col-md-offset-1"> February 5, 2014 </div> <div class="col-md-7"> Beta testing of Lookit within the MIT community begins! Many thanks to our first volunteers. </div> </div> </div> </div> </div> </div> <footer> <div class="footer-row lookit-row"> <div class="container"> <div class="row"> <div class="col-md-1"><img src="{settings.STATIC_URL}images/nsf.gif"></div> <div class="col-md-11"> This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1429216; the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216, and by an NSF Graduate Research Fellowship under Grant No. 1122374. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. </div> </div> </div> </div> </footer> </div> """, ), dict( url="/faq/", title="FAQ", content=f""" <div class="main"> <div class="lookit-row lookit-page-title"> <div class="container"> <h2>Frequently Asked Questions</h2> </div> </div> <div class="lookit-row faq-row"> <div class="container"> <h3>Participation</h3> <div class="panel-group" id="accordion" role="tablist"> <div class="panel panel-default"> <div class="panel-heading" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse1">What is a "study" about cognitive development?</a></h4> </div> <div id="collapse1" class="panel-collapse collapse" > <div class="panel-body"> <div> <p>Cognitive development is the science of what kids understand and how they learn. Researchers in cognitive development are interested in questions like...</p> <ul> <li>what knowledge and abilities infants are born with, and what they have to learn from experience</li> <li>how abilities like mathematical reasoning are organized and how they develop over time</li> <li>what strategies children use to learn from the wide variety of data they observe</li> </ul> <p>A study is meant to answer a very specific question about how children learn or what they know: for instance, "Do three-month-olds recognize their parents' faces?"</p> </div> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse2">How can we participate online?</a></h4> </div> <div id="collapse2" class="panel-collapse collapse"> <div class="panel-body"> <div> <p>If you have any children between 3 months and 7 years old and would like to participate, create an account and take a look at what we have available for your child's age range. You'll need a working webcam to participate.</p> <p>When you select a study, you'll be asked to read a consent form and record yourself stating that you and your child agree to participate. Then we'll guide you through what will happen during the study. Depending on your child's age, your child may answer questions directly or we may be looking for indirect signs of what she thinks is going on--like how long she looks at a surprising outcome.</p> <p>Some portions of the study will be automatically recorded using your webcam and sent securely to our MIT lab. Trained researchers will watch the video and record your child's responses--for instance, which way he pointed, or how long she looked at each image. We'll put these together with responses from lots of other children to learn more about how kids think!</p> </div> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading collapsed" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse3">How do we provide consent to participate?</a></h4> </div> <div id="collapse3" class="panel-collapse collapse"> <div class="panel-body"> <div> <p>Rather than having the parent or legal guardian sign a form, we ask that you read aloud (or sign in ASL) a statement of consent which is recorded using your webcam and sent back to our lab. This statement holds the same weight as a signed form, but should be less hassle for you. It also lets us verify that you understand written English and that you understand you're being videotaped.</p> <p>If we receive a consent form that does NOT clearly demonstrate informed consent--for instance, we see a parent and child but the parent does not read the statement--any other video collected during that session will be deleted without viewing.</p> <div class="row"> <div class="col-sm-10 col-sm-offset-1 col-md-8 col-md-offset-2 col-lg-6 col-lg-offset-3"> <video controls="true" src="{settings.STATIC_URL}videos/consent.mp4"></video> </div> </div> </div> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading" role="tab"> <h4 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#collapse4">How is our information kept confidential?</a></h4> </div> <div id="collapse4" class="panel-collapse collapse"> <div class="panel-body"> <div> <p>We do not publish or use identifying information about individual children or families. We never publish children's names or birthdates (birthdates are used only to figure out how old children are at the time of the study). Your video is transmitted over a secure https connection to our lab and kept on a password-protected server. See 'Who will see our video?'</p> </div> </div> </div> </div> <div class="panel panel-default"> <div
= getResultPercentage(testSetData) resultSet.append(["Condition (Multi Agent Attributes)", testSetPercentage, copy.deepcopy(testSetData)]) #Creating source metamemes via the script facade testSetData = testSourceCreateMeme('SourceCreateMeme.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Meme Creation", testSetPercentage, copy.deepcopy(testSetData)]) #Set a source meme property via the script facade testSetData = testSourceProperty('SourceProperty.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Meme Property Set", testSetPercentage, copy.deepcopy(testSetData)]) #Delete a source meme property via the script facade testSetData = testSourcePropertyRemove('SourceProperty.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Meme Property Remove", testSetPercentage, copy.deepcopy(testSetData)]) #Add a member meme via the script facade testSetData = testSourceMember('SourceMember.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Member Meme Add", testSetPercentage, copy.deepcopy(testSetData)]) #Remove a member meme via the script facade testSetData = testSourceMemberRemove('SourceMember.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Member Meme Remove", testSetPercentage, copy.deepcopy(testSetData)]) #Add an enhancement via the script facade testSetData = testSourceEnhancement('SourceEnhancement.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Enhancement Add", testSetPercentage, copy.deepcopy(testSetData)]) #Remove an enhancement via the script facade testSetData = testSourceEnhancementRemove('SourceEnhancement.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Enhancement Remove", testSetPercentage, copy.deepcopy(testSetData)]) #Set the singleton flag via the script facade testSetData = testSourceSingletonSet('SourceCreateMeme.atest') testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Editor Singleton Setting", testSetPercentage, copy.deepcopy(testSetData)]) #Create a Generic entity and check to see that it's meme is Graphyne.Generic testSetData = testGeneric() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Generic Entity", testSetPercentage, copy.deepcopy(testSetData)]) #Test Entity Deletion testSetData = testDeleteEntity() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Entity Deletion", testSetPercentage, copy.deepcopy(testSetData)]) #Atomic and subatomic links testSetData = testSubatomicLinks() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Subatomic Links", testSetPercentage, copy.deepcopy(testSetData)]) #getting the cluster member list testSetData = testGetClusterMembers() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Cluster Member List", testSetPercentage, copy.deepcopy(testSetData)]) testSetData = testGetHasCounterpartsByType() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Has Counterparts by Type", testSetPercentage, copy.deepcopy(testSetData)]) testSetData = testGetEntityMetaMemeType() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["API method testGetEntityMetaMemeType", testSetPercentage, copy.deepcopy(testSetData)]) testSetData = testInstallExecutor() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["API method testInstallExecutor", testSetPercentage, copy.deepcopy(testSetData)]) #getting the cluster dictionary testSetData = testGetCluster() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Cluster", testSetPercentage, copy.deepcopy(testSetData)]) #testRevertEntity testSetData = testRevertEntity() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["API Method revertEntity", testSetPercentage, copy.deepcopy(testSetData)]) #testPropertyChangeEvent testSetData = testPropertyChangeEvent() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Property Change Event", testSetPercentage, copy.deepcopy(testSetData)]) #testLinkEvent testSetData = testLinkEvent() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Link Event", testSetPercentage, copy.deepcopy(testSetData)]) #testBrokenEvents testSetData = testBrokenEvents() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Broken Event", testSetPercentage, copy.deepcopy(testSetData)]) #testLinkEvent testSetData = testInitializeEvent() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Initialize Event", testSetPercentage, copy.deepcopy(testSetData)]) #testBrokenEvents testSetData = testRemoveEvent() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Remove Event", testSetPercentage, copy.deepcopy(testSetData)]) #testAtomicSubatomic testSetData = testAtomicSubatomic() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Atomic and Subatomic", testSetPercentage, copy.deepcopy(testSetData)]) #testGetTraverseReport testSetData = testGetTraverseReport() testSetPercentage = getResultPercentage(testSetData) resultSet.append(["Traverse Report", testSetPercentage, copy.deepcopy(testSetData)]) #endTime = time.time() #validationTime = endTime - startTime #publishResults(resultSet, validationTime, css) return resultSet #Graph.logQ.put( [logType , logLevel.DEBUG , method , "exiting"]) def smokeTestSet(persistence, lLevel, css, profileName, persistenceArg = None, persistenceType = None, resetDatabase = False, createTestDatabase = False, scaleFactor = 0): ''' repoLocations = a list of all of the filesystem location that that compose the repository. useDeaultSchema. I True, then load the 'default schema' of Graphyne persistenceType = The type of database used by the persistence engine. This is used to determine which flavor of SQL syntax to use. Enumeration of Possible values: Default to None, which is no persistence "sqlite" - Sqlite3 "mssql" - Miscrosoft SQL Server "hana" - SAP Hana persistenceArg = the Module/class supplied to host the entityRepository and LinkRepository. If default, then use the Graphyne.DatabaseDrivers.NonPersistent module. Enumeration of possible values: None - May only be used in conjunction with "sqlite" as persistenceType and will throw an InconsistentPersistenceArchitecture otherwise "none" - no persistence. May only be used in conjunction with "sqlite" as persistenceType and will throw an InconsistentPersistenceArchitecture otherwise "memory" - Use SQLite in in-memory mode (connection = ":memory:") "<valid filename with .sqlite as extension>" - Use SQLite, with that file as the database "<filename with .sqlite as extension, but no file>" - Use SQLite and create that file to use as the DB file "<anything else>" - Presume that it is a pyodbc connection string and throw a InconsistentPersistenceArchitecture exception if the dbtype is "sqlite". createTestDatabase = a flag for creating regression test data. This flag is only to be used for regression testing the graph and even then, only if the test database does not already exist. scaleFactor = Scale factor (S). Given N non-singleton memes, N*S "ballast" entities will be created in the DB before starting the test suite. This allows us to use larger datasets to test scalability (at least with regards to entity repository size) *If persistenceType is None (no persistence, then this is ignored and won't throw any InconsistentPersistenceArchitecture exceptions) ''' global testImplicit print(("\nStarting Graphyne Smoke Test: %s") %(persistence.__name__)) print(("...%s: Engine Start") %(persistence.__name__)) #Only test implicit memes in the case that we are using persistence if persistenceType is None: testImplicit = False #Don't validate the repo when we are performance testing if scaleFactor < 1: validateOnLoad = True else: validateOnLoad = False time.sleep(10.0) installFilePath = os.path.dirname(__file__) testRepo = os.path.join(installFilePath, "Config", "Test", "TestRepository") #mainAngRepo = os.path.join(os.environ['ANGELA_HOME'], "RMLRepository") try: Graph.startLogger(lLevel) Graph.startDB([testRepo], persistenceType, persistenceArg, True, resetDatabase, True, validateOnLoad) except Exception as e: print(("Graph not started. Traceback = %s" %e)) raise e print(("...Engine Started: %s") %persistence.__name__) time.sleep(30.0) print(("...%s: Engine Started") %(persistence.__name__)) #If scaleFactor > 0, then we are also testing performance if (scaleFactor > 0): print("Performance Test: ...Creating Content") for unusedj in range(1, scaleFactor): for moduleID in Graph.templateRepository.modules.keys(): if moduleID != "BrokenExamples": #The module BrokenExamples contaons mmemes that are deliberately malformed. Don't beother with these module = Graph.templateRepository.modules[moduleID] for listing in module: template = Graph.templateRepository.resolveTemplateAbsolutely(listing[1]) if template.className == "Meme": if template.isSingleton != True: try: unusedEntityID = Graph.api.createEntityFromMeme(template.path.fullTemplatePath) except Exception as e: pass print("Performance Test: Finished Creating Content") # /Scale Factor' entityCount = Graph.countEntities() startTime = time.time() try: resultSet = runTests(css) except Exception as e: print(("test run problem. Traceback = %s" %e)) raise e endTime = time.time() validationTime = endTime - startTime testReport = {"resultSet" : resultSet, "validationTime" : validationTime, "persistence" : persistence.__name__, "profileName" : profileName, "entityCount" : entityCount} #publishResults(resultSet, validationTime, css) print(("...%s: Test run finished. Waiting 30 seconds for log thread to catch up before starting shutdown") %(persistence.__name__)) time.sleep(30.0) print(("...%s: Engine Stop (%s)") %(persistence.__name__, profileName)) Graph.stopLogger() print(("...%s: Engine Stopped (%s)") %(persistence.__name__, profileName)) return testReport if __name__ == "__main__": print("\nStarting Graphyne Smoke Test") parser = argparse.ArgumentParser(description="Graphyne Smoke Test") parser.add_argument("-l", "--logl", type=str, help="|String| Graphyne's log level during the validation run. \n Options are (in increasing order of verbosity) 'warning', 'info' and 'debug'. \n Default is 'warning'") parser.add_argument("-r", "--resetdb", type=str, help="|String| Reset the esisting persistence DB This defaults to true and is only ever relevant when Graphyne is using relational database persistence.") parser.add_argument("-d", "--dbtype", type=str, help="|String| The database type to be used. If --dbtype is a relational database, it will also determine which flavor of SQL syntax to use.\n Possible options are 'none', 'sqlite', 'mssql' and 'hana'. \n Default is 'none'") parser.add_argument("-c", "--dbtcon", type=str, help="|String| The database connection string (if a relational DB) or filename (if SQLite).\n 'none' - no persistence. This is the default value\n 'memory' - Use SQLite in in-memory mode (connection = ':memory:') None persistence defaults to memory id SQlite is used\n '<valid filename>' - Use SQLite, with that file as the database\n <filename with .sqlite as extension, but no file> - Use SQLite and create that file to use as the DB file\n <anything else> - Presume that it is a pyodbc connection string") args = parser.parse_args() lLevel = Graph.logLevel.WARNING if args.logl: if args.logl == "info": lLevel = Graph.logLevel.INFO print("\n -- log level = 'info'") elif args.logl == "debug": lLevel = Graph.logLevel.DEBUG print("\n -- log level = 'debug'") elif args.logl == "warning": pass else: print("Invalid log level %s! Permitted valies of --logl are 'warning', 'info' and 'debug'!" %args.logl) sys.exit() persistenceType = None if args.dbtype: if (args.dbtype is None) or (args.dbtype == 'none'): pass elif (args.dbtype == 'sqlite') or (args.dbtype == 'mssql') or (args.dbtype == 'hana'): persistenceType = args.dbtype print("\n -- using
102, 195, 251, 219, 219, 126, 60], 9718: [60, 102, 195, 223, 219, 219, 126, 60], 9719: [60, 126, 219, 219, 223, 195, 102, 60], 9720: [255, 198, 204, 216, 240, 224, 192, 128], 9721: [255, 99, 51, 27, 15, 7, 3, 1], 9722: [1, 3, 7, 15, 27, 51, 99, 255], 9723: [0, 124, 108, 108, 108, 124, 0, 0], 9724: [0, 124, 124, 124, 124, 124, 0, 0], 9725: [0, 0, 60, 36, 36, 60, 0, 0], 9726: [0, 0, 60, 60, 60, 60, 0, 0], 9727: [128, 192, 224, 240, 216, 204, 198, 255], 9765: [124, 198, 108, 56, 254, 56, 56, 0], 9768: [24, 60, 24, 126, 24, 24, 24, 0], 9775: [0, 126, 129, 177, 243, 255, 126, 0], 9776: [0, 0, 254, 0, 254, 0, 254, 0], 9777: [0, 0, 198, 0, 254, 0, 254, 0], 9778: [0, 0, 254, 0, 198, 0, 254, 0], 9779: [0, 0, 198, 0, 198, 0, 254, 0], 9780: [0, 0, 254, 0, 254, 0, 198, 0], 9781: [0, 0, 198, 0, 254, 0, 198, 0], 9782: [0, 0, 254, 0, 198, 0, 198, 0], 9783: [0, 0, 198, 0, 198, 0, 198, 0], 9785: [126, 129, 165, 129, 153, 189, 129, 126], 9786: [126, 129, 165, 129, 189, 153, 129, 126], 9787: [126, 255, 219, 255, 195, 231, 255, 126], 9824: [16, 56, 124, 254, 254, 56, 124, 0], 9825: [108, 254, 198, 198, 108, 56, 16, 0], 9826: [16, 56, 108, 198, 108, 56, 16, 0], 9827: [16, 56, 84, 254, 84, 16, 56, 0], 9828: [16, 56, 108, 198, 238, 56, 124, 0], 9829: [108, 254, 254, 254, 124, 56, 16, 0], 9830: [16, 56, 124, 254, 124, 56, 16, 0], 9831: [56, 56, 198, 198, 238, 40, 124, 0], 9833: [12, 12, 12, 12, 12, 60, 124, 56], 9834: [24, 28, 30, 27, 24, 120, 248, 112], 9835: [127, 99, 99, 99, 99, 103, 230, 192], 9836: [127, 99, 127, 99, 99, 103, 230, 192], 9866: [0, 0, 0, 0, 0, 0, 254, 0], 9867: [0, 0, 0, 0, 0, 0, 198, 0], 9868: [0, 0, 0, 0, 254, 0, 254, 0], 9869: [0, 0, 0, 0, 198, 0, 254, 0], 9870: [0, 0, 0, 0, 254, 0, 198, 0], 9871: [0, 0, 0, 0, 198, 0, 198, 0], 9898: [0, 0, 60, 66, 66, 66, 60, 0], 9899: [0, 0, 60, 126, 126, 126, 60, 0], 9900: [0, 56, 124, 108, 124, 56, 0, 0], 9992: [48, 56, 156, 255, 255, 156, 56, 48], 10036: [146, 84, 56, 254, 56, 84, 146, 0], 10240: [0, 0, 0, 0, 0, 0, 0, 0], 10241: [240, 240, 0, 0, 0, 0, 0, 0], 10242: [0, 0, 240, 240, 0, 0, 0, 0], 10243: [240, 240, 240, 240, 0, 0, 0, 0], 10244: [0, 0, 0, 0, 240, 240, 0, 0], 10245: [240, 240, 0, 0, 240, 240, 0, 0], 10246: [0, 0, 240, 240, 240, 240, 0, 0], 10247: [240, 240, 240, 240, 240, 240, 0, 0], 10248: [15, 15, 0, 0, 0, 0, 0, 0], 10249: [255, 255, 0, 0, 0, 0, 0, 0], 10250: [15, 15, 240, 240, 0, 0, 0, 0], 10251: [255, 255, 240, 240, 0, 0, 0, 0], 10252: [15, 15, 0, 0, 240, 240, 0, 0], 10253: [255, 255, 0, 0, 240, 240, 0, 0], 10254: [15, 15, 240, 240, 240, 240, 0, 0], 10255: [255, 255, 240, 240, 240, 240, 0, 0], 10256: [0, 0, 15, 15, 0, 0, 0, 0], 10257: [240, 240, 15, 15, 0, 0, 0, 0], 10258: [0, 0, 255, 255, 0, 0, 0, 0], 10259: [240, 240, 255, 255, 0, 0, 0, 0], 10260: [0, 0, 15, 15, 240, 240, 0, 0], 10261: [240, 240, 15, 15, 240, 240, 0, 0], 10262: [0, 0, 255, 255, 240, 240, 0, 0], 10263: [240, 240, 255, 255, 240, 240, 0, 0], 10264: [15, 15, 15, 15, 0, 0, 0, 0], 10265: [255, 255, 15, 15, 0, 0, 0, 0], 10266: [15, 15, 255, 255, 0, 0, 0, 0], 10267: [255, 255, 255, 255, 0, 0, 0, 0], 10268: [15, 15, 15, 15, 240, 240, 0, 0], 10269: [255, 255, 15, 15, 240, 240, 0, 0], 10270: [15, 15, 255, 255, 240, 240, 0, 0], 10271: [255, 255, 255, 255, 240, 240, 0, 0], 10272: [0, 0, 0, 0, 15, 15, 0, 0], 10273: [240, 240, 0, 0, 15, 15, 0, 0], 10274: [0, 0, 240, 240, 15, 15, 0, 0], 10275: [240, 240, 240, 240, 15, 15, 0, 0], 10276: [0, 0, 0, 0, 255, 255, 0, 0], 10277: [240, 240, 0, 0, 255, 255, 0, 0], 10278: [0, 0, 240, 240, 255, 255, 0, 0], 10279: [240, 240, 240, 240, 255, 255, 0, 0], 10280: [15, 15, 0, 0, 15, 15, 0, 0], 10281: [255, 255, 0, 0, 15, 15, 0, 0], 10282: [15, 15, 240, 240, 15, 15, 0, 0], 10283: [255, 255, 240, 240, 15, 15, 0, 0], 10284: [15, 15, 0, 0, 255, 255, 0, 0], 10285: [255, 255, 0, 0, 255, 255, 0, 0], 10286: [15, 15, 240, 240, 255, 255, 0, 0], 10287: [255, 255, 240, 240, 255, 255, 0, 0], 10288: [0, 0, 15, 15, 15, 15, 0, 0], 10289: [240, 240, 15, 15, 15, 15, 0, 0], 10290: [0, 0, 255, 255, 15, 15, 0, 0], 10291: [240, 240, 255, 255, 15, 15, 0, 0], 10292: [0, 0, 15, 15, 255, 255, 0, 0], 10293: [240, 240, 15, 15, 255, 255, 0, 0], 10294: [0, 0, 255, 255, 255, 255, 0, 0], 10295: [240, 240, 255, 255, 255, 255, 0, 0], 10296: [15, 15, 15, 15, 15, 15, 0, 0], 10297: [255, 255, 15, 15, 15, 15, 0, 0], 10298: [15, 15, 255, 255, 15, 15, 0, 0], 10299: [255, 255, 255, 255, 15, 15, 0, 0], 10300: [15, 15, 15, 15, 255, 255, 0, 0], 10301: [255, 255, 15, 15, 255, 255, 0, 0], 10302: [15, 15, 255, 255, 255, 255, 0, 0], 10303: [255, 255, 255, 255, 255, 255, 0, 0], 10304: [0, 0, 0, 0, 0, 0, 240, 240], 10305: [240, 240, 0, 0, 0, 0, 240, 240], 10306: [0, 0, 240, 240, 0, 0, 240, 240], 10307: [240, 240, 240, 240, 0, 0, 240, 240], 10308: [0, 0, 0, 0, 240, 240, 240, 240], 10309: [240, 240, 0, 0, 240, 240, 240, 240], 10310: [0, 0, 240, 240, 240, 240, 240, 240], 10311: [240, 240, 240, 240, 240, 240, 240, 240], 10312: [15, 15, 0, 0, 0, 0, 240, 240], 10313: [255, 255, 0, 0, 0, 0, 240, 240], 10314: [15, 15, 240, 240, 0, 0, 240, 240], 10315: [255, 255, 240, 240, 0, 0, 240, 240], 10316: [15, 15, 0, 0, 240, 240, 240, 240], 10317: [255, 255, 0, 0, 240, 240, 240, 240], 10318: [15, 15, 240, 240, 240, 240, 240, 240], 10319: [255, 255, 240, 240, 240, 240, 240, 240], 10320: [0, 0, 15, 15, 0, 0, 240, 240], 10321: [240, 240, 15, 15, 0, 0, 240, 240], 10322: [0, 0, 255, 255, 0, 0, 240, 240], 10323: [240, 240, 255, 255, 0, 0, 240, 240], 10324: [0, 0, 15, 15, 240, 240, 240, 240], 10325: [240, 240, 15, 15, 240, 240, 240, 240], 10326: [0, 0, 255, 255, 240, 240, 240, 240], 10327: [240, 240, 255, 255, 240, 240, 240, 240], 10328: [15, 15, 15, 15, 0, 0, 240, 240], 10329: [255, 255, 15, 15, 0, 0, 240, 240], 10330: [15, 15, 255, 255, 0, 0, 240, 240], 10331: [255, 255, 255, 255, 0, 0, 240, 240], 10332: [15, 15, 15, 15, 240, 240, 240, 240], 10333: [255, 255, 15, 15, 240, 240, 240, 240], 10334: [15, 15, 255,
import copy import datetime import logging from dataclasses import dataclass from enum import Enum from typing import Dict, List, Sized, Callable from googleapiwrapper.gmail_api import ThreadQueryResults from pythoncommons.file_utils import FileUtils from pythoncommons.html_utils import HtmlGenerator from pythoncommons.result_printer import ( TabulateTableFormat, GenericTableWithHeader, ResultPrinter, DEFAULT_TABLE_FORMATS, TableRenderingConfig, ) from pythoncommons.string_utils import StringUtils, auto_str from yarndevtools.commands.unittestresultaggregator.common import ( get_key_by_testcase_filter, OperationMode, SummaryMode, TestCaseFilter, FailedTestCase, FailedTestCaseAggregated, BuildComparisonResult, ) from yarndevtools.constants import ( REPORT_FILE_DETAILED_HTML, REPORT_FILE_DETAILED_TXT, REPORT_FILE_SHORT_HTML, REPORT_FILE_SHORT_TXT, ) LOG = logging.getLogger(__name__) class TableOutputFormat(Enum): REGULAR = "regular" HTML = "html" REGULAR_WITH_COLORS = "regular_colorized" class TableDataType(Enum): MATCHED_LINES = "matched lines per thread" MATCHED_LINES_AGGREGATED = "matched lines aggregated" MAIL_SUBJECTS = "found mail subjects" UNIQUE_MAIL_SUBJECTS = "found unique mail subjects" LATEST_FAILURES = "latest failures" TESTCASES_TO_JIRAS = "testcases to jiras" UNKNOWN_FAILURES = "unknown failures" REOCCURRED_FAILURES = "reoccurred failures" BUILD_COMPARISON = "build comparison" def __init__(self, key, header_value=None): self.key = key if not header_value: header_value = key.upper() self.header = header_value @dataclass class OutputFormatRules: truncate_length: bool abbrev_tc_package: str or None truncate_subject_with: str or None # TODO Get rid of this later? @auto_str class UnitTestResultAggregatorTableRenderingConfig(TableRenderingConfig): def __init__( self, data_type: TableDataType = None, testcase_filters: List[TestCaseFilter] or None = None, header: List[str] = None, table_types: List[TableOutputFormat] = None, out_fmt: OutputFormatRules or None = None, row_callback=None, tabulate_formats: List[TabulateTableFormat] = DEFAULT_TABLE_FORMATS, simple_mode=False, max_width=200, max_width_separator=" ", add_row_numbers=False, print_result=False, ): super().__init__(row_callback, tabulate_formats=tabulate_formats) self.print_result = print_result self.add_row_numbers = add_row_numbers self.max_width_separator = max_width_separator self.max_width = max_width self.testcase_filters = [] if not testcase_filters else testcase_filters self.header = header self.data_type = data_type self.table_types = table_types self.out_fmt = out_fmt self.simple_mode = simple_mode LOG.info( f"Testcase filters for data type '{self.data_type}': {[tcf.short_str() for tcf in self.testcase_filters]}" ) class SummaryGenerator: jira_crosscheck_headers = ["Known failure?", "Reoccurred failure?"] matched_testcases_all_header = ["Date", "Subject", "Testcase", "Message ID", "Thread ID"] matched_testcases_aggregated_header_basic = [ "Testcase", "TC parameter", "Frequency of failures", "Latest failure", ] matched_testcases_aggregated_header_full = matched_testcases_aggregated_header_basic + jira_crosscheck_headers def __init__(self, table_renderer): self.table_renderer = table_renderer self._callback_dict: Dict[TableOutputFormat, Callable] = { TableOutputFormat.REGULAR: self._regular_table, TableOutputFormat.REGULAR_WITH_COLORS: self._colorized_table, TableOutputFormat.HTML: self._html_table, } @classmethod def process_testcase_filter_results( cls, tc_filter_results, query_result: ThreadQueryResults, config, output_manager ): if config.summary_mode != SummaryMode.NONE.value: # TODO fix # truncate = self.config.operation_mode == OperationMode.PRINT truncate = True if config.summary_mode == SummaryMode.TEXT.value else False # We apply the specified truncation / abbreviation rules only for TEXT based tables # HTML / Gsheet output is just fine with longer names. # If SummaryMode.ALL is used, we leave all values intact for simplicity. if config.abbrev_tc_package or config.truncate_subject_with: if config.summary_mode in [SummaryMode.ALL.value, SummaryMode.HTML.value]: LOG.warning( f"Either abbreviate package or truncate subject is enabled " f"but SummaryMode is set to '{config.summary_mode}'. " "Leaving all data intact so truncate / abbreviate options are ignored." ) config.abbrev_tc_package = None config.truncate_subject_with = None data_dict: Dict[TableDataType, Callable[[TestCaseFilter, OutputFormatRules], List[List[str]]]] = { TableDataType.MATCHED_LINES: lambda tcf, out_fmt: DataConverter.convert_data_to_rows( tc_filter_results.get_failed_testcases_by_filter(tcf), out_fmt, ), TableDataType.MATCHED_LINES_AGGREGATED: lambda tcf, out_fmt: DataConverter.render_aggregated_rows_table( tc_filter_results.get_aggregated_testcases_by_filter(tcf), out_fmt, ), TableDataType.MAIL_SUBJECTS: lambda tcf, out_fmt: DataConverter.convert_email_subjects(query_result), TableDataType.UNIQUE_MAIL_SUBJECTS: lambda tcf, out_fmt: DataConverter.convert_unique_email_subjects( query_result ), TableDataType.LATEST_FAILURES: lambda tcf, out_fmt: DataConverter.render_latest_failures_table( tc_filter_results.get_latest_failed_testcases_by_filter(tcf) ), TableDataType.BUILD_COMPARISON: lambda tcf, out_fmt: DataConverter.render_build_comparison_table( tc_filter_results.get_build_comparison_result_by_filter(tcf) ), TableDataType.UNKNOWN_FAILURES: lambda tcf, out_fmt: DataConverter.render_aggregated_rows_table( tc_filter_results.get_aggregated_testcases_by_filter(tcf, filter_unknown=True), out_fmt, basic_mode=True, ), TableDataType.REOCCURRED_FAILURES: lambda tcf, out_fmt: DataConverter.render_aggregated_rows_table( tc_filter_results.get_aggregated_testcases_by_filter(tcf, filter_reoccurred=True), out_fmt, basic_mode=True, ), TableDataType.TESTCASES_TO_JIRAS: lambda tcf, out_fmt: DataConverter.render_aggregated_rows_table( tc_filter_results.get_aggregated_testcases_by_filter(tcf), out_fmt ), } detailed_render_confs = cls.detailed_render_confs(config, truncate) short_render_confs = cls.short_render_confs(config, truncate) detailed_report_files: Dict[SummaryMode, str] = { SummaryMode.HTML: REPORT_FILE_DETAILED_HTML, SummaryMode.TEXT: REPORT_FILE_DETAILED_TXT, } short_report_files: Dict[SummaryMode, str] = { SummaryMode.HTML: REPORT_FILE_SHORT_HTML, SummaryMode.TEXT: REPORT_FILE_SHORT_TXT, } cls._render_reports(config, data_dict, output_manager, short_render_confs, short_report_files) table_renderer = cls._render_reports( config, data_dict, output_manager, detailed_render_confs, detailed_report_files ) # These should be written to files regardless of the SummaryMode setting output_manager.process_rendered_table_data(table_renderer, TableDataType.MAIL_SUBJECTS) output_manager.process_rendered_table_data(table_renderer, TableDataType.UNIQUE_MAIL_SUBJECTS) if config.operation_mode == OperationMode.GSHEET: # We need to re-generate all the data here, as table renderer might rendered truncated data. LOG.info("Updating Google sheet with data...") for tcf in config.testcase_filters.get_non_aggregate_filters(): failed_testcases = tc_filter_results.get_failed_testcases_by_filter(tcf) table_data = DataConverter.convert_data_to_rows(failed_testcases, OutputFormatRules(False, None, None)) SummaryGenerator._write_to_sheet( config, "data", cls.matched_testcases_all_header, output_manager, table_data, tcf ) for tcf in config.testcase_filters.get_aggregate_filters(): failed_testcases = tc_filter_results.get_aggregated_testcases_by_filter(tcf) table_data = DataConverter.render_aggregated_rows_table( failed_testcases, OutputFormatRules(False, None, None) ) SummaryGenerator._write_to_sheet( config, f"aggregated data for aggregation filter {tcf}", cls.matched_testcases_aggregated_header_full, output_manager, table_data, tcf, ) @classmethod def _render_reports(cls, config, data_dict, output_manager, render_confs, report_files: Dict[SummaryMode, str]): LOG.debug(f"Rendering reports by configs: {render_confs}.\n" f"Report files: {report_files}") text_based_report: bool = config.summary_mode in [SummaryMode.TEXT.value, SummaryMode.ALL.value] html_report: bool = config.summary_mode in [SummaryMode.HTML.value, SummaryMode.ALL.value] table_renderer = TableRenderer() for render_conf in render_confs: table_renderer.render_by_config(render_conf, data_dict[render_conf.data_type]) summary_generator = SummaryGenerator(table_renderer) if text_based_report: regular_summary: str = summary_generator.generate_summary(render_confs, TableOutputFormat.REGULAR) output_manager.process_regular_summary(regular_summary, report_files[SummaryMode.TEXT]) if html_report: html_summary: str = summary_generator.generate_summary(render_confs, TableOutputFormat.HTML) output_manager.process_html_summary(html_summary, report_files[SummaryMode.HTML]) return table_renderer @classmethod def short_render_confs(cls, config, truncate) -> List[UnitTestResultAggregatorTableRenderingConfig]: return [ UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.BUILD_COMPARISON, header=["Testcase", "Still failing", "Fixed", "New failure"], testcase_filters=config.testcase_filters.LATEST_FAILURE_FILTERS, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(truncate, config.abbrev_tc_package, config.truncate_subject_with), ), UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.UNKNOWN_FAILURES, testcase_filters=config.testcase_filters.get_match_expression_aggregate_filters(), header=cls.matched_testcases_aggregated_header_basic, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(False, config.abbrev_tc_package, None), ), UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.REOCCURRED_FAILURES, testcase_filters=config.testcase_filters.get_match_expression_aggregate_filters(), header=cls.matched_testcases_aggregated_header_basic, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(False, config.abbrev_tc_package, None), ), UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.TESTCASES_TO_JIRAS, testcase_filters=config.testcase_filters.get_match_expression_aggregate_filters(), header=cls.matched_testcases_aggregated_header_full, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(False, config.abbrev_tc_package, None), ), ] @classmethod def detailed_render_confs(cls, config, truncate) -> List[UnitTestResultAggregatorTableRenderingConfig]: # Render tables in 2 steps # EXAMPLE SCENARIO / CONFIG: # match_expression #1 = 'YARN::org.apache.hadoop.yarn', pattern='.*org\\.apache\\.hadoop\\.yarn.*') # match_expression #2 = 'MR::org.apache.hadoop.mapreduce', pattern='.*org\\.apache\\.hadoop\\.mapreduce.*') # Aggregation filter #1 = CDPD-7.x # Aggregation filter #2 = CDPD-7.1.x # Note: Step numbers are in parentheses # Failed testcases_ALL --> Global all (1) # Failed testcases_YARN_ALL (1) # Failed testcases_MR_ALL (1) # Failed testcases_YARN_Aggregated_CDPD-7.1.x (2) # Failed testcases_YARN_Aggregated_CDPD-7.x (2) # Failed testcases_MR_Aggregated_CDPD-7.1.x (2) # Failed testcases_MR_Aggregated_CDPD-7.x (2) return [ # Render tables for all match expressions + ALL values # --> 3 tables in case of 2 match expressions UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.MATCHED_LINES, testcase_filters=config.testcase_filters.get_non_aggregate_filters(), header=cls.matched_testcases_all_header, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(truncate, config.abbrev_tc_package, config.truncate_subject_with), ), # Render tables for all match expressions AND all aggregation filters # --> 4 tables in case of 2 match expressions and 2 aggregate filters UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.MATCHED_LINES_AGGREGATED, testcase_filters=config.testcase_filters.get_aggregate_filters(), header=cls.matched_testcases_aggregated_header_full, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(False, config.abbrev_tc_package, None), ), UnitTestResultAggregatorTableRenderingConfig( simple_mode=True, header=["Subject", "Thread ID"], data_type=TableDataType.MAIL_SUBJECTS, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], testcase_filters=None, out_fmt=None, ), UnitTestResultAggregatorTableRenderingConfig( simple_mode=True, header=["Subject"], data_type=TableDataType.UNIQUE_MAIL_SUBJECTS, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], testcase_filters=None, out_fmt=None, ), UnitTestResultAggregatorTableRenderingConfig( data_type=TableDataType.LATEST_FAILURES, header=["Testcase", "Failure date", "Subject"], testcase_filters=config.testcase_filters.LATEST_FAILURE_FILTERS, table_types=[TableOutputFormat.REGULAR, TableOutputFormat.HTML], out_fmt=OutputFormatRules(truncate, config.abbrev_tc_package, config.truncate_subject_with), ), ] + SummaryGenerator.short_render_confs(config, truncate) @staticmethod def _write_to_sheet(config, data_descriptor, header, output_manager, table_data, tcf): worksheet_name: str = config.get_worksheet_name(tcf) LOG.info( f"Writing GSheet {data_descriptor}. " f"Worksheet name: {worksheet_name}, " f"Number of lines will be written: {len(table_data)}" ) output_manager.update_gsheet(header, table_data, worksheet_name=worksheet_name, create_not_existing=True) def _regular_table(self, dt: TableDataType, alias=None): rendered_tables = self.table_renderer.get_tables( dt, table_fmt=TabulateTableFormat.GRID, colorized=False, alias=alias ) self._ensure_one_table_found(rendered_tables, dt) return rendered_tables[0] def _colorized_table(self, dt: TableDataType, alias=None): rendered_tables = self.table_renderer.get_tables( dt, table_fmt=TabulateTableFormat.GRID, colorized=True, alias=alias ) self._ensure_one_table_found(rendered_tables, dt) return rendered_tables[0] def _html_table(self, dt: TableDataType, alias=None): rendered_tables = self.table_renderer.get_tables( dt, table_fmt=TabulateTableFormat.HTML, colorized=False, alias=alias ) self._ensure_one_table_found(rendered_tables, dt) return rendered_tables[0] @staticmethod def _ensure_one_table_found(tables: Sized, dt: TableDataType): if not tables: raise ValueError(f"Rendered table not found for Table data type: {dt}") if len(tables) > 1: raise ValueError( f"Multiple result tables are found for table data type: {dt}. " f"Should have found exactly one table per type." ) def generate_summary( self, render_confs: List[UnitTestResultAggregatorTableRenderingConfig], table_output_format: TableOutputFormat ) -> str: tables: List[GenericTableWithHeader] = [] for conf in render_confs: for tcf in conf.testcase_filters: alias = get_key_by_testcase_filter(tcf) rendered_table = self._callback_dict[table_output_format](conf.data_type, alias=alias) tables.append(rendered_table) if conf.simple_mode: rendered_table = self._callback_dict[table_output_format](conf.data_type, alias=None) tables.append(rendered_table) if table_output_format in [TableOutputFormat.REGULAR, TableOutputFormat.REGULAR_WITH_COLORS]: return self._generate_final_concat_of_tables(tables) elif table_output_format in [TableOutputFormat.HTML]: return self._generate_final_concat_of_tables_html(tables) else: raise ValueError(f"Invalid state! Table type is not in any of: {[t for t in TableOutputFormat]}") @staticmethod def _generate_final_concat_of_tables(tables) -> str: printable_summary_str: str = "" for table in tables: printable_summary_str += str(table) printable_summary_str += "\n\n" return printable_summary_str @staticmethod def _generate_final_concat_of_tables_html(tables) -> str: table_tuples = [(ht.header, ht.table) for ht in tables] html_sep = HtmlGenerator.generate_separator(tag="hr", breaks=2) return ( HtmlGenerator() .begin_html_tag() .add_basic_table_style() .append_html_tables( table_tuples, separator=html_sep, header_type="h1", additional_separator_at_beginning=True ) .render() ) # TODO Try to extract this to common class (pythoncommons?), BranchComparator should move to this implementation later. class TableRenderer: def __init__(self): self._tables: Dict[str, List[GenericTableWithHeader]] = {} def render_by_config( self, conf: UnitTestResultAggregatorTableRenderingConfig, data_callable: Callable[[TestCaseFilter or None, OutputFormatRules], List[List[str]]], ): if conf.simple_mode: self._render_tables( header=conf.header, data=data_callable(None, conf.out_fmt), dtype=conf.data_type, formats=conf.tabulate_formats, ) for tcf in conf.testcase_filters: key = get_key_by_testcase_filter(tcf) self._render_tables( header=conf.header, data=data_callable(tcf, conf.out_fmt), dtype=conf.data_type, formats=conf.tabulate_formats, append_to_header_title=f"_{key}", table_alias=key, ) def _render_tables( self, header: List[str], data: List[List[str]], dtype: TableDataType, formats: List[TabulateTableFormat], colorized=False, table_alias=None, append_to_header_title=None, raise_error_if_header_vs_data_len_mismatched=True, ) -> Dict[TabulateTableFormat, GenericTableWithHeader]: if not formats: raise ValueError("Formats should not be empty!") if raise_error_if_header_vs_data_len_mismatched: if data and len(header) != len(data[0]): raise ValueError( "Mismatch in length of header columns and data columns." f"Header: {header}, " f"First row of data table: {data[0]}" ) render_conf = UnitTestResultAggregatorTableRenderingConfig( row_callback=lambda row: row,
- ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return s def func_aafe1dd3eefe46588c6a04ec53f17d6d(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return N def func_2b80f44fc0fe4599b0f29f82b7d58dfe(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return r def func_8136c2c855054178a0e74d642193371d(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return D def func_be066bc3e2f24db4a8cff98e27d9205e(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return q def func_419aa477399c4133959e23c15bc75550(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return t def func_e6e276ba5e774b4aaf0e4c447b4fb7dc(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return i def func_f9c03cc188834c0bac4b556e10d984f3(infile): for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return b def func_d32823bcf0f54f5aa5fc66c6480f7e40(): infile = open('codejam/test_files/Y14R5P1/A.in') for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return t def func_fd450b8e8bbe4256a2fee67704a8d691(): infile = open('codejam/test_files/Y14R5P1/A.in') for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return ans def func_4ccf53b13e6b4652a8672d867b0d2e76(): infile = open('codejam/test_files/Y14R5P1/A.in') for test in range(int(infile.readline())): N, p, q, r, s = map(int, infile.readline().split()) D = [((i * p + q) % r + s) for i in range(N)] S = sum(D) ans = S A, B, C = 0, 0, S a = 0 b = -1 while b < N - 1: b += 1 C -= D[b] B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) ans = float(S - ans) / S print 'Case #%s: %.16f' % (test + 1, ans) infile.close() return A def func_8ffc3bde3c2a4590b3568d35be214df7(): infile = open('codejam/test_files/Y14R5P1/A.in') for
kmeans.cluster_centers_ else: return None, None def _log_interesting_stats(self, stats): """ # Provide interesting insights about the data to the user and send them to the logging server in order for it to generate charts :param stats: The stats extracted up until this point for all columns """ for col_name in stats: col_stats = stats[col_name] # Overall quality if col_stats['quality_score'] < 6: # Some scores are not that useful on their own, so we should only warn users about them if overall quality is bad. self.log.warning('Column "{}" is considered of low quality, the scores that influenced this decision will be listed below') if 'duplicates_score' in col_stats and col_stats['duplicates_score'] < 6: duplicates_percentage = col_stats['duplicates_percentage'] w = f'{duplicates_percentage}% of the values in column {col_name} seem to be repeated, this might indicate that your data is of poor quality.' self.log.warning(w) col_stats['duplicates_score_warning'] = w else: col_stats['duplicates_score_warning'] = None else: col_stats['duplicates_score_warning'] = None #Compound scores if col_stats['consistency_score'] < 3: w = f'The values in column {col_name} rate poorly in terms of consistency. This means that the data has too many empty values, values with a hard to determine type and duplicate values. Please see the detailed logs below for more info' self.log.warning(w) col_stats['consistency_score_warning'] = w else: col_stats['consistency_score_warning'] = None if col_stats['redundancy_score'] < 5: w = f'The data in the column {col_name} is likely somewhat redundant, any insight it can give us can already by deduced from your other columns. Please see the detailed logs below for more info' self.log.warning(w) col_stats['redundancy_score_warning'] = w else: col_stats['redundancy_score_warning'] = None if col_stats['variability_score'] < 6: w = f'The data in the column {col_name} seems to contain too much noise/randomness based on the value variability. That is to say, the data is too unevenly distributed and has too many outliers. Please see the detailed logs below for more info.' self.log.warning(w) col_stats['variability_score_warning'] = w else: col_stats['variability_score_warning'] = None # Some scores are meaningful on their own, and the user should be warnned if they fall below a certain threshold if col_stats['empty_cells_score'] < 8: empty_cells_percentage = col_stats['empty_percentage'] w = f'{empty_cells_percentage}% of the values in column {col_name} are empty, this might indicate that your data is of poor quality.' self.log.warning(w) col_stats['empty_cells_score_warning'] = w else: col_stats['empty_cells_score_warning'] = None if col_stats['data_type_distribution_score'] < 7: #self.log.infoChart(stats[col_name]['data_type_dist'], type='list', uid='Dubious Data Type Distribution for column "{}"'.format(col_name)) percentage_of_data_not_of_principal_type = col_stats['data_type_distribution_score'] * 100 principal_data_type = col_stats['data_type'] w = f'{percentage_of_data_not_of_principal_type}% of your data is not of type {principal_data_type}, which was detected to be the data type for column {col_name}, this might indicate that your data is of poor quality.' self.log.warning(w) col_stats['data_type_distribution_score_warning'] = w else: col_stats['data_type_distribution_score_warning'] = None if 'z_test_based_outlier_score' in col_stats and col_stats['z_test_based_outlier_score'] < 6: percentage_of_outliers = col_stats['z_test_based_outlier_score']*100 w = f"""Column {col_name} has a very high amount of outliers, {percentage_of_outliers}% of your data is more than 3 standard deviations away from the mean, this means that there might be too much randomness in this column for us to make an accurate prediction based on it.""" self.log.warning(w) col_stats['z_test_based_outlier_score_warning'] = w else: col_stats['z_test_based_outlier_score_warning'] = None if 'lof_based_outlier_score' in col_stats and col_stats['lof_based_outlier_score'] < 4: percentage_of_outliers = col_stats['percentage_of_log_based_outliers'] w = f"""Column {col_name} has a very high amount of outliers, {percentage_of_outliers}% of your data doesn't fit closely in any cluster using the KNN algorithm (20n) to cluster your data, this means that there might be too much randomness in this column for us to make an accurate prediction based on it.""" self.log.warning(w) col_stats['lof_based_outlier_score_warning'] = w else: col_stats['lof_based_outlier_score_warning'] = None if col_stats['value_distribution_score'] < 3: max_probability_key = col_stats['max_probability_key'] w = f"""Column {col_name} is very biased towards the value {max_probability_key}, please make sure that the data in this column is correct !""" self.log.warning(w) col_stats['value_distribution_score_warning'] = w else: col_stats['value_distribution_score_warning'] = None if col_stats['similarity_score'] < 6: similar_percentage = col_stats['max_similarity'] * 100 similar_col_name = col_stats['most_similar_column_name'] w = f'Column {col_name} and {similar_col_name} are {similar_percentage}% the same, please make sure these represent two distinct features of your data !' self.log.warning(w) col_stats['similarity_score_warning'] = w else: col_stats['similarity_score_warning'] = None ''' if col_stats['correlation_score'] < 5: not_quite_correlation_percentage = col_stats['correlation_score'] * 100 most_correlated_column = col_stats['most_correlated_column'] self.log.warning(f"""Using a statistical predictor we\'v discovered a correlation of roughly {not_quite_correlation_percentage}% between column {col_name} and column {most_correlated_column}""") ''' # We might want to inform the user about a few stats regarding his column regardless of the score, this is done below self.log.info('Data distribution for column "{}"'.format(col_name)) self.log.infoChart(stats[col_name]['data_subtype_dist'], type='list', uid='Data Type Distribution for column "{}"'.format(col_name)) def run(self, input_data, modify_light_metadata, hmd=None, print_logs=True): """ # Runs the stats generation phase # This shouldn't alter the columns themselves, but rather provide the `stats` metadata object and update the types for each column # A lot of information about the data distribution and quality will also be logged to the server in this phase """ ''' @TODO Uncomment when we need multiprocessing, possibly disable on OSX no_processes = multiprocessing.cpu_count() - 2 if no_processes < 1: no_processes = 1 pool = multiprocessing.Pool(processes=no_processes) ''' if print_logs == False: self.log = logging.getLogger('null-logger') self.log.propagate = False # we dont need to generate statistic over all of the data, so we subsample, based on our accepted margin of error population_size = len(input_data.data_frame) if population_size < 50: sample_size = population_size else: sample_size = int(calculate_sample_size(population_size=population_size, margin_error=self.transaction.lmd['sample_margin_of_error'], confidence_level=self.transaction.lmd['sample_confidence_level'])) #if sample_size > 3000 and sample_size > population_size/8: # sample_size = min(round(population_size/8),3000) # get the indexes of randomly selected rows given the population size input_data_sample_indexes = random.sample(range(population_size), sample_size) self.log.info('population_size={population_size}, sample_size={sample_size} {percent:.2f}%'.format(population_size=population_size, sample_size=sample_size, percent=(sample_size/population_size)*100)) all_sampled_data = input_data.data_frame.iloc[input_data_sample_indexes] stats = {} col_data_dict = {} for col_name in all_sampled_data.columns.values: col_data = all_sampled_data[col_name].dropna() full_col_data = all_sampled_data[col_name] data_type, curr_data_subtype, data_type_dist, data_subtype_dist, additional_info, column_status = self._get_column_data_type(col_data, input_data.data_frame, col_name) if column_status == 'Column empty': if modify_light_metadata: self.transaction.lmd['malformed_columns']['names'].append(col_name) self.transaction.lmd['malformed_columns']['indices'].append(i) continue new_col_data = [] if curr_data_subtype == DATA_SUBTYPES.TIMESTAMP: #data_type == DATA_TYPES.DATE: for element in col_data: if str(element) in [str(''), str(None), str(False), str(np.nan), 'NaN', 'nan', 'NA', 'null']: new_col_data.append(None) else: try: new_col_data.append(int(parse_datetime(element).timestamp())) except: self.log.warning(f'Could not convert string from col "{col_name}" to date and it was expected, instead got: {element}') new_col_data.append(None) col_data = new_col_data if data_type == DATA_TYPES.NUMERIC or curr_data_subtype == DATA_SUBTYPES.TIMESTAMP: histogram, _ = StatsGenerator.get_histogram(col_data, data_type=data_type, data_subtype=curr_data_subtype) x = histogram['x'] y = histogram['y'] col_data = StatsGenerator.clean_int_and_date_data(col_data) # This means the column is all nulls, which we don't handle at the moment if len(col_data) < 1: return None xp = [] if len(col_data) > 0: max_value = max(col_data) min_value = min(col_data) mean = np.mean(col_data) median = np.median(col_data) var = np.var(col_data) skew = st.skew(col_data) kurtosis = st.kurtosis(col_data) inc_rate = 0.1 initial_step_size = abs(max_value-min_value)/100 xp += [min_value] i = min_value + initial_step_size while i < max_value: xp += [i] i_inc = abs(i-min_value)*inc_rate i = i + i_inc else: max_value = 0 min_value = 0 mean = 0 median = 0 var = 0 skew = 0 kurtosis = 0 xp = [] is_float = True if max([1 if int(i) != i else 0 for i in col_data]) == 1 else False col_stats = { 'data_type': data_type, 'data_subtype': curr_data_subtype, "mean": mean, "median": median, "variance": var, "skewness": skew, "kurtosis": kurtosis, "max": max_value, "min": min_value, "is_float": is_float, "histogram": { "x": x, "y": y }, "percentage_buckets": xp } elif data_type == DATA_TYPES.CATEGORICAL or curr_data_subtype == DATA_SUBTYPES.DATE: histogram, _ = StatsGenerator.get_histogram(input_data.data_frame[col_name], data_type=data_type, data_subtype=curr_data_subtype) col_stats = { 'data_type': data_type, 'data_subtype': curr_data_subtype, "histogram": histogram, "percentage_buckets": histogram['x'] } elif curr_data_subtype == DATA_SUBTYPES.IMAGE: histogram, percentage_buckets = StatsGenerator.get_histogram(col_data, data_subtype=curr_data_subtype) col_stats = { 'data_type': data_type, 'data_subtype': curr_data_subtype, 'percentage_buckets': percentage_buckets, 'histogram': histogram } # @TODO This is probably wrong, look into it a bit later else: # see if its a sentence or a word histogram, _ = StatsGenerator.get_histogram(col_data, data_type=data_type, data_subtype=curr_data_subtype) dictionary = list(histogram.keys()) # if no words, then no dictionary if len(col_data) == 0: dictionary_available = False dictionary_lenght_percentage = 0 dictionary = [] else: dictionary_available = True dictionary_lenght_percentage = len( dictionary) / len(col_data) * 100 # if the number of uniques is too large then treat is a text is_full_text = True if curr_data_subtype == DATA_SUBTYPES.TEXT else False if dictionary_lenght_percentage > 10 and len(col_data) > 50 and is_full_text==False:
@param **kw Further keyword arguments are used in case of ``algo==proper_x_dist`` and are supplied to the x_distance() method calls. """ if algo == 'circumference': f = self.circumference elif algo in ('coord', 'proper_x_dist'): f = lambda param: self(param)[0] else: raise ValueError("Unknown algorithm: %s" % algo) last_param = [None] def func(param): param = clip(param, 0, np.pi) value = f(param) last_param[0] = param return value func_neg = lambda param: -f(clip(param, 0, np.pi)) with self.fix_evaluator(): xa, xb, xc = bracket(func_neg, 0.0, 0.1, grow_limit=2)[:3] res = minimize_scalar(func_neg, bracket=(xa, xb, xc), options=dict(xtol=1e-1)) x_max = res.x try: xa, xb, xc = bracket(func, x_max, x_max+0.1, grow_limit=2)[:3] if xb < 0 or xc < 0: # Something went wrong in bracketing. Do it half-manually now. # This case occurs if the MOTS is *too little* deformed # such that the "neck" is not very pronounced. params = self.collocation_points() xs = [f(x) for x in params] max1 = next(params[i] for i, x in enumerate(xs) if xs[i+1] < x) max2 = next(params[i] for i, x in reversed(list(enumerate(xs))) if xs[i-1] < x) xa, xb, xc = bracket(func, max1, max1+0.1*(max2-max1), grow_limit=2)[:3] except RuntimeError: # This happens in bipolar coordinates in extremely distorted # cases where the "neck" is streched over a large parameter # interval. x0 = last_param[0] xa, xb, xc = bracket(func, x0, x0+0.1, grow_limit=5, maxiter=10000)[:3] if algo == 'proper_x_dist': func = lambda param: self.x_distance(param, **kw) xa, xb, xc = bracket(func, xb, xb+1e-2, grow_limit=2)[:3] res = minimize_scalar(func, bracket=(xa, xb, xc), options=dict(xtol=xtol)) else: res = minimize_scalar(func, bracket=(xa, xb, xc), options=dict(xtol=xtol)) return res.x, res.fun def locate_intersection(self, other_curve, xtol=1e-8, domain1=(0, np.pi), domain2=(0, np.pi), strict1=True, strict2=True, N1=20, N2=20): r"""Locate one point at which this curve intersects another curve. @return Tuple ``(param1, param2)``, where ``param1`` is the parameter value of this curve and ``param2`` the parameter value of the `other_curve` at which the two curves have the same location. If no intersection is found, returns ``(None, None)``. @param other_curve Curve to find the intersection with. @param xtol Tolerance in curve parameter values for the search. Default is `1e-8`. @param domain1,domain2 Optional interval of the curves to consider. Default is the full curve, i.e. ``(0, pi)`` for both. @param strict1,strict2 Whether to only allow solutions in the given domains `domain1`, `domain2`, respectively (default). If either is `False`, the respective domain is used just for the initial coarse check to find a starting point. Setting e.g. ``N1=1`` and ``strict1=False`` allows specifying a starting point on this (first) curve. @param N1,N2 Number of equally spaced rough samples to check for a good starting point. To avoid running into some local minimal distance (e.g. at the curve ends), this number should be high enough. Alternatively (or additionally), one may specify a smaller domain if there is prior knowledge about the curve shapes. """ z_dist = self.z_distance_using_metric( metric=None, other_curve=other_curve, allow_intersection=True, ) if z_dist >= 0: return (None, None) c1 = self c2 = other_curve with c1.fix_evaluator(), c2.fix_evaluator(): space1 = np.linspace(*domain1, N1, endpoint=False) space1 += (space1[1] - space1[0]) / 2.0 space2 = np.linspace(*domain2, N2, endpoint=False) space2 += (space2[1] - space2[0]) / 2.0 pts1 = [[c1(la), la] for la in space1] pts2 = [[c2(la), la] for la in space2] dists = [[np.linalg.norm(np.asarray(p1)-p2), l1, l2] for p1, l1 in pts1 for p2, l2 in pts2] _, la1, la2 = min(dists, key=lambda d: d[0]) dyn_domain1 = domain1 if strict1 else (0.0, np.pi) dyn_domain2 = domain2 if strict2 else (0.0, np.pi) def func(x): la1, la2 = x p1 = np.asarray(c1(clip(la1, *dyn_domain1))) p2 = np.asarray(c2(clip(la2, *dyn_domain2))) return p2 - p1 sol = root(func, x0=[la1, la2], tol=xtol) if not sol.success: return (None, None) la1, la2 = sol.x if strict1: la1 = clip(la1, *domain1) if strict2: la2 = clip(la2, *domain2) if np.linalg.norm(func((la1, la2))) > np.sqrt(xtol): # points are too far apart to be an intersection return (None, None) return (la1, la2) def locate_self_intersection(self, neck=None, xtol=1e-8): r"""Locate a *loop* in the MOTS around its neck. @return Two parameter values ``(param1, param2)`` where the curve has the same location in the x-z-plane. If not loop is found, returns ``(None, None)``. @param neck Parameter where the neck is located. If not given, finds the neck using default arguments of find_neck(). @param xtol Tolerance in curve parameter values for the search. Default is `1e-8`. """ try: return self._locate_self_intersection(neck=neck, xtol=xtol) except _IntersectionDetectionError: raise pass return None, None def _locate_self_intersection(self, neck, xtol): r"""Implements locate_self_intersection().""" if neck is None: neck = self.find_neck()[0] with self.fix_evaluator(): match_cache = dict() def find_matching_param(la1, max_step=None, _recurse=2): try: return match_cache[la1] except KeyError: pass if abs(la1-neck) < xtol: return la1 x1 = self(la1)[0] def f(la): # x-coord difference return self(la)[0] - x1 dl = neck - la1 if max_step: dl = min(dl, max_step) a = neck + dl while f(a) > 0: dl = dl/2.0 a = neck + dl if abs(dl) < xtol: return la1 step = min(dl/2.0, max_step) if max_step else (dl/2.0) b = a + step while f(b) < 0: a, b = b, b+step if b >= np.pi: if _recurse > 0: max_step = (max_step/10.0) if max_step else 0.05 return find_matching_param(la1, max_step=max_step, _recurse=_recurse-1) # Last resort: seems the x-coordinate is not reached # on this branch at all. Returning pi guarantees a # large `delta_z` (albeit with a jump that might be # problematic). In practice, however, this often works. return np.pi # We now have a <= la2 <= b (la2 == matching param) la2 = brentq(f, a=a, b=b, xtol=xtol) match_cache[la1] = la2 return la2 def delta_z(la): la2 = find_matching_param(la) return self(la)[1] - self(la2)[1] for step in np.linspace(0.01, np.pi-neck, 100): # Note that `step>0`, but the minimum lies at `a<neck` the way # we have defined `delta_z()`. The minimize call will however # happily turn around... res = minimize_scalar(delta_z, bracket=(neck, neck+step), options=dict(xtol=1e-2)) a = res.x if delta_z(a) < 0: break if delta_z(a) >= 0: raise _IntersectionDetectionError("probably no intersection") # We start with `shrink=2.0` to make this fully compatible with # the original strategy (i.e. so that results are reproducible). # In practice, however, this `step` might be larger than the # distance to the domain boundaries, making the following # `brent()` call stop immediately at the wrong point. The cause is # that, first of all we assume here `a>neck`, but our definition # of `delta_z()` leads to a minimum at `a<neck`. Secondly, with # extreme parameterizations (e.g. using bipolar coordinates plus # `curv2` coordinate space reparameterization), the `neck` region # could house the vast majority of affine parameters. step_shrinks = [2.0] step_shrinks.extend(np.linspace( (neck-a)/((1-0.9)*a), max(10.0, (neck-a)/((1-0.1)*a)), 10 )) # For the above: # a + step = x*a, where 0<x<1, step<0 # <=> (a-neck)/shrink = (x-1)*a # <=> shrink = (a-neck)/(a*(x-1)) # = (neck-a)/(a*(1-x)) > 0 for shrink in step_shrinks: step = (a-neck)/shrink b = a + step while delta_z(b) < 0: a, b = b, b+step if not 0 <= b <= np.pi: raise _IntersectionDetectionError("curve upside down...") la1 = brentq(delta_z, a=a, b=b, xtol=xtol) if la1 > 0.0: break la2 = find_matching_param(la1) return la1, la2 def get_distance_function(self, other_curve, Ns=None, xatol=1e-12, mp_finish=True, dps=50, minima_to_check=1): r"""Return a callable computing the distance between this and another curve. The computed distance is the coordinate distance between a point of this curve to the closest point on another curve. The returned callable will take one mandatory argument: the parameter at which to evaluate the current curve. The resulting point is then taken and the given `other_curve` searched for the point closest to that point. The distance to this function is then returned. A second optional parameter of the returned function determines whether only the distance (`False`, default) or the distance and the parameter on the other curve is returned (if `True`). @param other_curve The curve to which the distance should be computed in the returned function. @param Ns Number of points to take on `other_curve` for finding the initial guess for the minimum search.
#!/usr/bin/env python """ Copyright (c) 2016, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import print_function import re import os import glob import ads import codecs import argparse import subprocess parser = argparse.ArgumentParser() parser.add_argument('infiles', type=str, nargs='*', help='List of input PDF file(s)') parser.add_argument('-catbib', '--catbib', type=str, help='Name of master bibliography file written') parser.add_argument('-adstoken', '--adstoken', type=str, help='ADS token to use. (Creates file ads.token).') args = parser.parse_args() class BibtexEntry(object): """ Bibtex entry class """ def __init__(self, entry): self.lines = entry # entry is a list of bibtex lines self.doi = u'' self.bibcode = u'' self.get_doi() self.get_bibcode() def __repr__(self): return self.bibcode def get_doi(self): """ sets BibtexEntry.doi = DOI for this BibtexEntry """ re_doi = u'\s*doi\s*=\s*\{(.*)\}.*' self.doi = self.search_re_lines(re_doi) def get_bibcode(self): """ sets BibtexEntry.bibcode = bibcode for this BibtexEntry """ re_bibcode = u'@[^\{]*\{([^,]*),.*' self.bibcode = self.search_re_lines(re_bibcode) def search_re_lines(self, regexp): """ Searches self.lines for re, returning group(1) of the match, if found. Otherwise returns an empty string. """ rec = re.compile(regexp, re.IGNORECASE) for l in self.lines: rem = rec.match(l) if rem: return rem.group(1) else: return '' class BibtexCollection(object): """ Holds a set of bibtex files, each of which can have multiple entries """ def __init__(self): self.bib_files = {} # filename is key, list of BibtexEntry is value self.bibcode_entries = {} # Dictionary of BibtexEntry objects keyed by bibcode def read_from_string(self, bibtex_string): bibtex_lines = bibtex_string.split(u'\n') for bl in bibtex_lines: bl = bl + u'\n' self.read_from_lines(bibtex_lines) def read_from_lines(self, bibtexlines): self.bib_files["bibtexlines"] = self.get_entries(bibtexlines) self.make_unique_entries() def read_from_files(self, bibtexfiles): """ Make a BibtexCollection given a list of input files. """ for f in bibtexfiles: # Open and read f fbib = codecs.open(f, encoding='utf-8') lines = [] for l in fbib: lines.append(l) fbib.close() # Turn lines into a list of BibtexEntry objects self.bib_files[f] = self.get_entries(lines) print('Found {} bibtex files'.format(len(self.bib_files))) # Gets a unique set of BibtexEntry objects by bibcode self.make_unique_entries() print('Found {} unique bibtex entries'.format(len(self.bibcode_entries))) print(self.bibcode_entries) def write_unique_entries(self, outfile): """ Writes unique entries into a master Bibtex file """ self.outfile = outfile f = codecs.open(self.outfile, encoding='utf-8', mode='w') for bc, entry in self.bibcode_entries.iteritems(): for l in entry.lines: f.write(l) f.write(u'\n\n') f.close() def make_unique_entries(self): """ Makes a list of unique BibtexEntry objects keyed by bibcode """ for f, belist in self.bib_files.iteritems(): for be in belist: if be.bibcode in self.bibcode_entries.keys(): print('Duplicate bibcode {} - Continuing with replacement ...'.format(be.doi)) self.bibcode_entries[be.bibcode] = be def get_entries(self, lines): """ Turns a list of lines into a list of BibtexEntry objects """ entries = [] for bibentry in self.gen_bib_entries(lines): entries.append(BibtexEntry(bibentry)) return entries def gen_bib_entries(self, line_list): """ Yields each entry in list of unicode bibtex lines """ re_entry_start = re.compile(u'@.*') re_entry_end = re.compile(u'\}') found_entry = False for l in line_list: m_entry_start = re_entry_start.match(l) if m_entry_start: found_entry = True entry = [] if found_entry: entry.append(l) m_entry_end = re_entry_end.match(l) if m_entry_end: found_entry = False yield entry class Document(object): """ Class for a document (eg. pdf or ps article) """ def __init__(self, file): """ Initializes Document using filename 'file' """ self.name = file self.doi = '' self.arxiv = '' self.paper = None self.bibcode = None self.bibtex = None # Try to get DOI self.get_doi() if not self.doi: # Try to get arXiv number if no DOI self.get_arxiv() # Get bibcode for this paper if self.doi: self.query_ads_bibcode({'identifier':self.doi}) elif self.arxiv: self.query_ads_bibcode({'identifier':self.arxiv}) else: print('Cannot find {} in ADS with no identifier.'.format(self.name)) def get_doi(self): """ Gets DOI identifier from the file. Sets: self.doi """ pdfgrep_doi_re = "doi\s*:\s*[^ \"'\n'\"]*" pdfgrep_stdout = self.call_pdfgrep(pdfgrep_doi_re) re_doi = re.compile('(\s*)doi(\s*):(\s*)([^\s\n]*)', re.IGNORECASE) m = re_doi.match(pdfgrep_stdout) if m: self.doi = m.group(4) if self.doi: print('Found DOI {} in {}'.format(self.doi, self.name)) else: print('Could not find DOI in {}'.format(self.name)) def get_arxiv(self): """ Gets arXiv identifier from the file. Sets: self.arxiv """ pdfgrep_arx_re = "arXiv:[0-9\.]+v?[0-9]* \[[a-zA-Z-\.]+\] [0-9]{1,2} [a-zA-Z]+ [0-9]{4}" pdfgrep_stdout = self.call_pdfgrep(pdfgrep_arx_re) re_arx = re.compile('(arXiv:[0-9\.]+).*', re.IGNORECASE) m_arxiv = re_arx.match(pdfgrep_stdout) if m_arxiv: self.arxiv = m_arxiv.group(1) if self.arxiv: print('Found arXiv ID {} in {}'.format(self.arxiv, self.name)) else: print('Could not find arXiv ID in {}'.format(self.name)) def call_pdfgrep(self, pdfgrep_re): """ Calls pdfgrep with regular expression pdfgrep_re (case insensitive) Returns a tuple corresponding to pdfgrep's (STDOUT, STDERR) """ pdfgrep_call = subprocess.Popen(["pdfgrep", "-ioP", pdfgrep_re, self.name], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) pdfgrep_stdout, pdfgrep_err = pdfgrep_call.communicate() if pdfgrep_err: print('Error in function call_pdfgrep returned from subprocess.Popen:') print(pdfgrep_err) exit() else: return pdfgrep_stdout def query_ads_bibcode(self, query): """ Query ADS for this paper's bibcode Uses the dictionary query keyed by argument name expected by ads.SearchQuery """ try: paper_query = ads.SearchQuery(**query) paper_list = [] for p in paper_query: paper_list.append(p) nresults = len(paper_list) if nresults==0: print('ERROR: Could not find paper on ADS with query {} for paper {}'.format(query, self.name)) elif nresults==1: self.paper = paper_list[0] self.bibcode = self.paper.bibcode else: print('ERROR: Found {} results on ADS with query {} for paper {}:'.format(nresults, query, self.name)) for p in paper_list: print(p.bibcode) print('-----') except ads.exceptions.APIResponseError: print('ERROR: ADS APIResponseError. You probably exceeded your rate limit.') self.paper = None raise def bibtex_lines_to_string(self, lines): """ Turn Bibtex lines into a single unicode string. """ return u'\n'.join(lines) + u'\n\n' def save_bibtex(self): """ Save Bibtex for this file """ if self.paper: # Add file link to bibtex file_type = 'PDF' bibtex_ads = self.bibtex_lines_to_string(self.bibtex) file_bibtex_string = ':{}:{}'.format(self.name, file_type) file_bibtex_string = '{' + file_bibtex_string + '}' file_bibtex_string = ',\n File = {}'.format(file_bibtex_string) bibtex_last = bibtex_ads[-4:] bibtex_body = bibtex_ads[:-4] bibtex_body += unicode(file_bibtex_string) bibtex = bibtex_body + bibtex_last # Save bibtex bibtex_file_name = self.paper.bibcode+'.bib' fout = open(bibtex_file_name,'w') fout.write(bibtex) fout.close() print('Wrote {} for {}'.format(bibtex_file_name, self.name)) else: print('No paper information for {}, bibtex not written.'.format(self.name)) class DocumentCollection(object): """ Class for a set of documents (eg. pdf or ps articles) """ def __init__(self, files): """ Initializes DocumentCollection using a list of filenames """ self.documents = [Document(f) for f in files] self.set_document_bibtex() def set_document_bibtex(self): """ Uses query_ads_bibtex to set bibtex for documents in the collection """ bibcodes = [d.bibcode for d in self.documents] bc_ads = self.query_ads_bibtex(bibcodes) for d in self.documents: d.bibtex = bc_ads.bibcode_entries[d.bibcode].lines def query_ads_bibtex(self, bibcodes): """ Query ADS for the paper bibtexes specified by a list of bibcodes ('bibcodes') """ bc_ads = BibtexCollection() try: bibtex_string = ads.ExportQuery(bibcodes=bibcodes, format='bibtex').execute() bc_ads.read_from_string(bibtex_string) bibcodes_found = bc_ads.bibcode_entries.keys() nresults = len(bibcodes_found) nbibcodes = len(bibcodes) if nresults==nbibcodes: return bc_ads else: print('WARNING: did not retrieve bibtex for {} bibcodes:'.format(nresults-nbibcodes)) for bc in bibcodes: if not bc in bibcodes_found: print(bc) except ads.exceptions.APIResponseError: print('ERROR: ADS APIResponseError. You probably exceeded your rate limit.') raise class ADSToken(object): """ Class for managing the ADS token. """ def __init__(self, token=None): self.token = token if token: self.set_ads_token() else: self.read_ads_token() def exists(self): if ads.config.token: return True else: return False def set_ads_token(self): """ Sets ADS token in file .adstoken """ pybib_dir = os.path.dirname(os.path.realpath(__file__)) fads_name = os.path.join(pybib_dir,'.adstoken') try: fads = open(fads_name,'w') except: print('ERROR: Could not open {} for writing!'.format(fads_name)) fads_name = os.path.join(os.getcwd(),fads_name) try: fads = open(fads_name,'w') except: print('ERROR: Could not open {} for writing!'.format(fads_name)) exit() pass fads.write('ads.config.token = {}\n'.format(self.token)) fads.close() print('Wrote {}'.format(fads_name)) def read_ads_token(self): """ Reads ADS token from
(1 - alpha) x = ts.to_numpy()[:i + 1] ema = sum(weights * x) / sum(weights) debias_fact = sum(weights) ** 2 / (sum(weights) ** 2 - sum(weights ** 2)) var = debias_fact * sum(weights * (x - ema) ** 2) / sum(weights) std[i] = np.sqrt(var) std[0] = np.NaN return std dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), date(2019, 1, 7), date(2019, 1, 8), ] x = pd.Series([3.0, 2.0, 3.0, 1.0, 3.0, 6.0], index=dates) result = exponential_std(x) expected = exp_std_calc(x) assert_series_equal(result, expected, obj="Exponentially weighted standard deviation") result = exponential_std(x, 0.8) expected = exp_std_calc(x, 0.8) assert_series_equal(result, expected, obj="Exponentially weighted standard deviation weight 1") def test_var(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), date(2019, 1, 7), date(2019, 1, 8), ] x = pd.Series([3.0, 2.0, 3.0, 1.0, 3.0, 6.0], index=dates) result = var(x) expected = pd.Series([np.nan, 0.500000, 0.333333, 0.916667, 0.800000, 2.800000], index=dates) assert_series_equal(result, expected, obj="var") result = var(x, Window(2, 0)) expected = pd.Series([np.nan, 0.5, 0.5, 2.0, 2.0, 4.5], index=dates) assert_series_equal(result, expected, obj="var window 2") result = var(x, Window('1w', 0)) expected = pd.Series([np.nan, 0.500000, 0.333333, 0.916666, 0.800000, 3.500000], index=dates) assert_series_equal(result, expected, obj="var window 1w") def test_cov(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), date(2019, 1, 7), date(2019, 1, 8), ] x = pd.Series([3.0, 2.0, 3.0, 1.0, 3.0, 6.0], index=dates) y = pd.Series([3.5, 1.8, 2.9, 1.2, 3.1, 5.9], index=dates) result = cov(x, y) expected = pd.Series([np.nan, 0.850000, 0.466667, 0.950000, 0.825000, 2.700000], index=dates) assert_series_equal(result, expected, obj="cov") result = cov(x, y, Window(2, 0)) expected = pd.Series([np.nan, 0.850000, 0.549999, 1.7000000, 1.900000, 4.200000], index=dates) assert_series_equal(result, expected, obj="cov window 2") result = cov(x, y, Window('1w', 0)) expected = pd.Series([np.nan, 0.850000, 0.466667, 0.950000, 0.825000, 3.375000], index=dates) assert_series_equal(result, expected, obj="cov window 1w") def test_zscores(): with pytest.raises(MqValueError): zscores(pd.Series(range(5)), "2d") assert_series_equal(zscores(pd.Series(dtype=float)), pd.Series(dtype=float)) assert_series_equal(zscores(pd.Series(dtype=float), 1), pd.Series(dtype=float)) assert_series_equal(zscores(pd.Series([1])), pd.Series([0.0])) assert_series_equal(zscores(pd.Series([1]), Window(1, 0)), pd.Series([0.0])) dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), date(2019, 1, 7), date(2019, 1, 8), ] x = pd.Series([3.0, 2.0, 3.0, 1.0, 3.0, 6.0], index=dates) result = zscores(x) expected = pd.Series([0.000000, -0.597614, 0.000000, -1.195229, 0.000000, 1.792843], index=dates) assert_series_equal(result, expected, obj="z-score") assert_series_equal(result, (x - x.mean()) / x.std(), obj="full series zscore") result = zscores(x, Window(2, 0)) expected = pd.Series([0.0, -0.707107, 0.707107, -0.707107, 0.707107, 0.707107], index=dates) assert_series_equal(result, expected, obj="z-score window 2") assert_series_equal(zscores(x, Window(5, 5)), zscores(x, 5)) result = zscores(x, Window('1w', 0)) expected = pd.Series([0.0, -0.707106, 0.577350, -1.305582, 0.670820, 1.603567], index=dates) assert_series_equal(result, expected, obj="z-score window 1w") result = zscores(x, '1w') expected = pd.Series([1.603567], index=dates[-1:]) assert_series_equal(result, expected, obj='z-score window string 1w') result = zscores(x, '1m') expected = pd.Series(dtype=float) assert_series_equal(result, expected, obj="z-score window too large") def test_winsorize(): assert_series_equal(winsorize(pd.Series(dtype=float)), pd.Series(dtype=float)) x = generate_series(10000) # You must use absolute returns here, generate_series uses random absolute returns and as such has a decent chance # of going negative on a sample of 10k, if it goes negative the relative return will be garbage and test can fail r = returns(x, type=Returns.ABSOLUTE) for limit in [1.0, 2.0]: mu = r.mean() sigma = r.std() b_upper = mu + sigma * limit * 1.001 b_lower = mu - sigma * limit * 1.001 assert (True in r.ge(b_upper).values) assert (True in r.le(b_lower).values) wr = winsorize(r, limit) assert (True not in wr.ge(b_upper).values) assert (True not in wr.le(b_lower).values) def test_percentiles(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), date(2019, 1, 7), date(2019, 1, 8), ] x = pd.Series([3.0, 2.0, 3.0, 1.0, 3.0, 6.0], index=dates) y = pd.Series([3.5, 1.8, 2.9, 1.2, 3.1, 6.0], index=dates) assert_series_equal(percentiles(pd.Series(dtype=float), y), pd.Series(dtype=float)) assert_series_equal(percentiles(x, pd.Series(dtype=float)), pd.Series(dtype=float)) assert_series_equal(percentiles(x, y, Window(7, 0)), pd.Series(dtype=float)) result = percentiles(x, y, 2) expected = pd.Series([50.0, 50.0, 100.0, 75.0], index=dates[2:]) assert_series_equal(result, expected, obj="percentiles with window length 2") result = percentiles(x, y, Window(2, 0)) expected = pd.Series([100.0, 0.0, 50.0, 50.0, 100.0, 75.0], index=dates) assert_series_equal(result, expected, obj="percentiles with window 2 and ramp 0") result = percentiles(x, y, Window('1w', 0)) expected = pd.Series([100.0, 0.0, 33.333333, 25.0, 100.0, 90.0], index=dates) assert_series_equal(result, expected, obj="percentiles with window 1w") result = percentiles(x, y, Window('1w', '3d')) expected = pd.Series([25.0, 100.0, 90.0], index=dates[3:]) assert_series_equal(result, expected, obj="percentiles with window 1w and ramp 3d") result = percentiles(x) expected = pd.Series([50.0, 25.0, 66.667, 12.500, 70.0, 91.667], index=dates) assert_series_equal(result, expected, obj="percentiles over historical values") result = percentiles(x, y) expected = pd.Series([100.0, 0.0, 33.333, 25.0, 100.0, 91.667], index=dates) assert_series_equal(result, expected, obj="percentiles without window length") with pytest.raises(ValueError): percentiles(x, pd.Series(dtype=float), Window(6, 1)) def test_percentile(): with pytest.raises(MqError): percentile(pd.Series(dtype=float), -1) with pytest.raises(MqError): percentile(pd.Series(dtype=float), 100.1) with pytest.raises(MqTypeError): percentile(pd.Series(range(5), index=range(5)), 90, "2d") for n in range(0, 101, 5): assert percentile(pd.Series(x * 10 for x in range(0, 11)), n) == n x = percentile(pd.Series(x for x in range(0, 5)), 50, 2) assert_series_equal(x, pd.Series([1.5, 2.5, 3.5], index=pd.RangeIndex(2, 5))) x = percentile(pd.Series(dtype=float), 90, "1d") assert_series_equal(x, pd.Series(dtype=float), obj="Percentile with empty series") def test_percentile_str(): today = datetime.datetime.now() days = pd.date_range(today, periods=12, freq='D') start = pd.Series([29, 56, 82, 13, 35, 53, 25, 23, 21, 12, 15, 9], index=days) actual = percentile(start, 2, '10d') expected = pd.Series([12.18, 9.54], index=pd.date_range(today + datetime.timedelta(days=10), periods=2, freq='D')) assert_series_equal(actual, expected) actual = percentile(start, 50, '1w') expected = percentile(start, 50, 7) assert_series_equal(actual, expected) def test_regression(): x1 = pd.Series([0.0, 1.0, 4.0, 9.0, 16.0, 25.0, np.nan], index=pd.date_range('2019-1-1', periods=7), name='x1') x2 = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], index=pd.date_range('2019-1-1', periods=8)) y = pd.Series([10.0, 14.0, 20.0, 28.0, 38.0, 50.0, 60.0], index=pd.date_range('2019-1-1', periods=7)) with pytest.raises(MqTypeError): LinearRegression([x1, x2], y, 1) regression = LinearRegression([x1, x2], y, True) np.testing.assert_almost_equal(regression.coefficient(0), 10.0) np.testing.assert_almost_equal(regression.coefficient(1), 1.0) np.testing.assert_almost_equal(regression.coefficient(2), 3.0) np.testing.assert_almost_equal(regression.r_squared(), 1.0) expected = pd.Series([10.0, 14.0, 20.0, 28.0, 38.0, 50.0], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.fitted_values(), expected) dates_predict = [date(2019, 2, 1), date(2019, 2, 2)] predicted = regression.predict([pd.Series([2.0, 3.0], index=dates_predict), pd.Series([6.0, 7.0], index=dates_predict)]) expected = pd.Series([30.0, 34.0], index=dates_predict) assert_series_equal(predicted, expected) np.testing.assert_almost_equal(regression.standard_deviation_of_errors(), 0) def test_rolling_linear_regression(): x1 = pd.Series([0.0, 1.0, 4.0, 9.0, 16.0, 25.0, np.nan], index=pd.date_range('2019-1-1', periods=7), name='x1') x2 = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], index=pd.date_range('2019-1-1', periods=8)) y = pd.Series([10.0, 14.0, 20.0, 28.0, 28.0, 40.0, 60.0], index=pd.date_range('2019-1-1', periods=7)) with pytest.raises(MqValueError): RollingLinearRegression([x1, x2], y, 3, True) with pytest.raises(MqTypeError): RollingLinearRegression([x1, x2], y, 4, 1) regression = RollingLinearRegression([x1, x2], y, 4, True) expected = pd.Series([np.nan, np.nan, np.nan, 10.0, 2.5, 19.0], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.coefficient(0), expected, check_names=False) expected = pd.Series([np.nan, np.nan, np.nan, 1.0, -1.5, 1.0], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.coefficient(1), expected, check_names=False) expected = pd.Series([np.nan, np.nan, np.nan, 3.0, 12.5, -1.0], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.coefficient(2), expected, check_names=False) expected = pd.Series([np.nan, np.nan, np.nan, 1.0, 0.964029, 0.901961], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.r_squared(), expected, check_names=False) expected = pd.Series([np.nan, np.nan, np.nan, 28.0, 28.5, 39.0], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.fitted_values(), expected, check_names=False) expected = pd.Series([np.nan, np.nan, np.nan, 0.0, 2.236068, 4.472136], index=pd.date_range('2019-1-1', periods=6)) assert_series_equal(regression.standard_deviation_of_errors(), expected, check_names=False) def test_sir_model(): n = 1000 d = 100 i0 = 100 r0 = 0 s0 = n beta = 0.5 gamma = 0.25 t = np.linspace(0, d, d) def deriv(y, t_loc, n_loc, beta_loc, gamma_loc): s, i, r = y dsdt = -beta_loc * s * i / n_loc didt = beta_loc * s * i / n_loc - gamma_loc * i drdt = gamma_loc * i return dsdt, didt, drdt def get_series(beta_loc, gamma_loc): # Initial conditions vector y0 = s0, i0, r0 # Integrate the SIR equations over the time grid, t. ret = odeint(deriv, y0, t, args=(n, beta_loc, gamma_loc)) s, i, r = ret.T dr = pd.date_range(dt.date.today(), dt.date.today() + dt.timedelta(days=d - 1)) return pd.Series(s, dr), pd.Series(i, dr), pd.Series(r, dr) (s, i, r) = get_series(beta, gamma) sir = SIRModel(beta, gamma, s, i, r, n) assert abs(sir.beta() - beta) < 0.01 assert abs(sir.gamma() - gamma) < 0.01 beta = 0.4 gamma = 0.25 (s, i, r) = get_series(0.4, 0.25) s_predict = sir.predict_s() i_predict = sir.predict_i() r_predict = sir.predict_r() assert s_predict.size == d assert i_predict.size == d assert r_predict.size == d with pytest.raises(MqTypeError): SIRModel(beta, gamma, s, i, r, n, fit=0) sir = SIRModel(beta, gamma, s, i, r, n, fit=False) assert sir.beta() == beta assert sir.gamma() == gamma sir1 = SIRModel(beta, gamma, s, i, r, n, fit=False) with DataContext(end=dt.date.today() + dt.timedelta(days=d - 1)): sir2 = SIRModel(beta, gamma, s[0], i, r[0],
True) self.update_treestore.set_value(iter, 1, sepolicy.boolean_desc(bools)) self.update_treestore.set_value(iter, 2, action[self.cur_dict["boolean"][bools]['active']]) self.update_treestore.set_value(iter, 3, True) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 1, (_("SELinux name: %s")) % bools) self.update_treestore.set_value(niter, 3, False) for path, tclass in self.cur_dict["fcontext"]: operation = self.cur_dict["fcontext"][(path, tclass)]["action"] setype = self.cur_dict["fcontext"][(path, tclass)]["type"] iter = self.update_treestore.append(None) self.update_treestore.set_value(iter, 0, True) self.update_treestore.set_value(iter, 2, operation) self.update_treestore.set_value(iter, 0, True) if operation == "-a": self.update_treestore.set_value(iter, 1, (_("Add file labeling for %s")) % self.application) if operation == "-d": self.update_treestore.set_value(iter, 1, (_("Delete file labeling for %s")) % self.application) if operation == "-m": self.update_treestore.set_value(iter, 1, (_("Modify file labeling for %s")) % self.application) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("File path: %s")) % path) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("File class: %s")) % sepolicy.file_type_str[tclass]) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("SELinux file type: %s")) % setype) for port, protocol in self.cur_dict["port"]: operation = self.cur_dict["port"][(port, protocol)]["action"] iter = self.update_treestore.append(None) self.update_treestore.set_value(iter, 0, True) self.update_treestore.set_value(iter, 2, operation) self.update_treestore.set_value(iter, 3, True) if operation == "-a": self.update_treestore.set_value(iter, 1, (_("Add ports for %s")) % self.application) if operation == "-d": self.update_treestore.set_value(iter, 1, (_("Delete ports for %s")) % self.application) if operation == "-m": self.update_treestore.set_value(iter, 1, (_("Modify ports for %s")) % self.application) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 1, (_("Network ports: %s")) % port) self.update_treestore.set_value(niter, 3, False) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 1, (_("Network protocol: %s")) % protocol) self.update_treestore.set_value(niter, 3, False) setype = self.cur_dict["port"][(port, protocol)]["type"] niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("SELinux file type: %s")) % setype) for user in self.cur_dict["user"]: operation = self.cur_dict["user"][user]["action"] iter = self.update_treestore.append(None) self.update_treestore.set_value(iter, 0, True) self.update_treestore.set_value(iter, 2, operation) self.update_treestore.set_value(iter, 0, True) if operation == "-a": self.update_treestore.set_value(iter, 1, _("Add user")) if operation == "-d": self.update_treestore.set_value(iter, 1, _("Delete user")) if operation == "-m": self.update_treestore.set_value(iter, 1, _("Modify user")) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 1, (_("SELinux User : %s")) % user) self.update_treestore.set_value(niter, 3, False) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) roles = self.cur_dict["user"][user]["role"] self.update_treestore.set_value(niter, 1, (_("Roles: %s")) % roles) mls = self.cur_dict["user"][user].get("range", "") niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, _("MLS/MCS Range: %s") % mls) for login in self.cur_dict["login"]: operation = self.cur_dict["login"][login]["action"] iter = self.update_treestore.append(None) self.update_treestore.set_value(iter, 0, True) self.update_treestore.set_value(iter, 2, operation) self.update_treestore.set_value(iter, 0, True) if operation == "-a": self.update_treestore.set_value(iter, 1, _("Add login mapping")) if operation == "-d": self.update_treestore.set_value(iter, 1, _("Delete login mapping")) if operation == "-m": self.update_treestore.set_value(iter, 1, _("Modify login mapping")) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("Login Name : %s")) % login) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) seuser = self.cur_dict["login"][login]["seuser"] self.update_treestore.set_value(niter, 1, (_("SELinux User: %s")) % seuser) mls = self.cur_dict["login"][login].get("range", "") niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, _("MLS/MCS Range: %s") % mls) for path in self.cur_dict["fcontext-equiv"]: operation = self.cur_dict["fcontext-equiv"][path]["action"] iter = self.update_treestore.append(None) self.update_treestore.set_value(iter, 0, True) self.update_treestore.set_value(iter, 2, operation) self.update_treestore.set_value(iter, 0, True) if operation == "-a": self.update_treestore.set_value(iter, 1, (_("Add file equiv labeling."))) if operation == "-d": self.update_treestore.set_value(iter, 1, (_("Delete file equiv labeling."))) if operation == "-m": self.update_treestore.set_value(iter, 1, (_("Modify file equiv labeling."))) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) self.update_treestore.set_value(niter, 1, (_("File path : %s")) % path) niter = self.update_treestore.append(iter) self.update_treestore.set_value(niter, 3, False) src = self.cur_dict["fcontext-equiv"][path]["src"] self.update_treestore.set_value(niter, 1, (_("Equivalence: %s")) % src) self.show_popup(self.update_window) def set_active_application_button(self): if self.boolean_radio_button.get_active(): self.active_button = self.boolean_radio_button if self.files_radio_button.get_active(): self.active_button = self.files_radio_button if self.transitions_radio_button.get_active(): self.active_button = self.transitions_radio_button if self.network_radio_button.get_active(): self.active_button = self.network_radio_button def clearbuttons(self, clear=True): self.main_selection_window.hide() self.boolean_radio_button.set_visible(False) self.files_radio_button.set_visible(False) self.network_radio_button.set_visible(False) self.transitions_radio_button.set_visible(False) self.system_radio_button.set_visible(False) self.lockdown_radio_button.set_visible(False) self.user_radio_button.set_visible(False) self.login_radio_button.set_visible(False) if clear: self.completion_entry.set_text("") def show_system_page(self): self.clearbuttons() self.system_radio_button.set_visible(True) self.lockdown_radio_button.set_visible(True) self.applications_selection_button.set_label(_("System")) self.system_radio_button.set_active(True) self.tab_change() self.idle_func() def show_file_equiv_page(self, *args): self.clearbuttons() self.file_equiv_initialize() self.file_equiv_radio_button.set_active(True) self.applications_selection_button.set_label(_("File Equivalence")) self.tab_change() self.idle_func() self.add_button.set_sensitive(True) self.delete_button.set_sensitive(True) def show_users_page(self): self.clearbuttons() self.login_radio_button.set_visible(True) self.user_radio_button.set_visible(True) self.applications_selection_button.set_label(_("Users")) self.login_radio_button.set_active(True) self.tab_change() self.user_initialize() self.login_initialize() self.idle_func() self.add_button.set_sensitive(True) self.delete_button.set_sensitive(True) def show_applications_page(self): self.clearbuttons(False) self.boolean_radio_button.set_visible(True) self.files_radio_button.set_visible(True) self.network_radio_button.set_visible(True) self.transitions_radio_button.set_visible(True) self.boolean_radio_button.set_active(True) self.tab_change() self.idle_func() def system_interface(self, *args): self.show_system_page() def users_interface(self, *args): self.show_users_page() def show_mislabeled_files(self, checkbutton, *args): iterlist = [] ctr = 0 ipage = self.inner_notebook_files.get_current_page() if checkbutton.get_active() == True: for items in self.liststore: iter = self.treesort.get_iter(ctr) iter = self.treesort.convert_iter_to_child_iter(iter) iter = self.treefilter.convert_iter_to_child_iter(iter) if iter != None: if self.liststore.get_value(iter, 4) == False: iterlist.append(iter) ctr += 1 for iters in iterlist: self.liststore.remove(iters) elif self.application != None: self.liststore.clear() if ipage == EXE_PAGE: self.executable_files_initialize(self.application) elif ipage == WRITABLE_PAGE: self.writable_files_initialize(self.application) elif ipage == APP_PAGE: self.application_files_initialize(self.application) def fix_mislabeled(self, path): cur = selinux.getfilecon(path)[1].split(":")[2] con = selinux.matchpathcon(path, 0)[1].split(":")[2] if self.verify(_("Run restorecon on %(PATH)s to change its type from %(CUR_CONTEXT)s to the default %(DEF_CONTEXT)s?") % {"PATH": path, "CUR_CONTEXT": cur, "DEF_CONTEXT": con}, title="restorecon dialog") == Gtk.ResponseType.YES: self.dbus.restorecon(path) self.application_selected() def new_updates(self, *args): self.update_button.set_sensitive(self.modified()) self.revert_button.set_sensitive(self.modified()) def update_or_revert_changes(self, button, *args): self.update_gui() self.update = (button.get_label() == _("Update")) if self.update: self.update_window.set_title(_("Update Changes")) else: self.update_window.set_title(_("Revert Changes")) def apply_changes_button_press(self, *args): self.close_popup() if self.update: self.update_the_system() else: self.revert_data() self.finish_init = False self.previously_modified_initialize(self.dbus.customized()) self.finish_init = True self.clear_filters() self.application_selected() self.new_updates() self.update_treestore.clear() def update_the_system(self, *args): self.close_popup() update_buffer = self.format_update() self.wait_mouse() try: self.dbus.semanage(update_buffer) except dbus.exceptions.DBusException as e: print(e) self.ready_mouse() self.init_cur() def ipage_value_lookup(self, lookup): ipage_values = {"Executable Files": 0, "Writable Files": 1, "Application File Type": 2, "Inbound": 1, "Outbound": 0} for value in ipage_values: if value == lookup: return ipage_values[value] return "Booleans" def get_attributes_update(self, attribute): attribute = attribute.split(": ")[1] bool_id = attribute.split(": ")[0] if bool_id == "SELinux name": self.bool_revert = attribute else: return attribute def format_update(self): self.revert_data() update_buffer = "" for k in self.cur_dict: if k in "boolean": for b in self.cur_dict[k]: update_buffer += "boolean -m -%d %s\n" % (self.cur_dict[k][b]["active"], b) if k in "login": for l in self.cur_dict[k]: if self.cur_dict[k][l]["action"] == "-d": update_buffer += "login -d %s\n" % l elif "range" in self.cur_dict[k][l]: update_buffer += "login %s -s %s -r %s %s\n" % (self.cur_dict[k][l]["action"], self.cur_dict[k][l]["seuser"], self.cur_dict[k][l]["range"], l) else: update_buffer += "login %s -s %s %s\n" % (self.cur_dict[k][l]["action"], self.cur_dict[k][l]["seuser"], l) if k in "user": for u in self.cur_dict[k]: if self.cur_dict[k][u]["action"] == "-d": update_buffer += "user -d %s\n" % u elif "level" in self.cur_dict[k][u] and "range" in self.cur_dict[k][u]: update_buffer += "user %s -L %s -r %s -R %s %s\n" % (self.cur_dict[k][u]["action"], self.cur_dict[k][u]["level"], self.cur_dict[k][u]["range"], self.cur_dict[k][u]["role"], u) else: update_buffer += "user %s -R %s %s\n" % (self.cur_dict[k][u]["action"], self.cur_dict[k][u]["role"], u) if k in "fcontext-equiv": for f in self.cur_dict[k]: if self.cur_dict[k][f]["action"] == "-d": update_buffer += "fcontext -d %s\n" % f else: update_buffer += "fcontext %s -e %s %s\n" % (self.cur_dict[k][f]["action"], self.cur_dict[k][f]["src"], f) if k in "fcontext": for f in self.cur_dict[k]: if self.cur_dict[k][f]["action"] == "-d": update_buffer += "fcontext -d %s\n" % f else: update_buffer += "fcontext %s -t %s -f %s %s\n" % (self.cur_dict[k][f]["action"], self.cur_dict[k][f]["type"], self.cur_dict[k][f]["class"], f) if k in "port": for port, protocol in self.cur_dict[k]: if self.cur_dict[k][(port, protocol)]["action"] == "-d": update_buffer += "port -d -p %s %s\n" % (protocol, port) else: update_buffer += "port %s -t %s -p %s %s\n" % (self.cur_dict[k][f]["action"], self.cur_dict[k][f]["type"], protocol, port) return update_buffer def revert_data(self): ctr = 0 remove_list = [] update_buffer = "" for items in self.update_treestore: if not self.update_treestore[ctr][0]: remove_list.append(ctr) ctr += 1 remove_list.reverse() for ctr in remove_list: self.remove_cur(ctr) def reveal_advanced_system(self, label, *args): advanced = label.get_text() == ADVANCED_LABEL[0] if advanced: label.set_text(ADVANCED_LABEL[1]) else: label.set_text(ADVANCED_LABEL[0]) self.system_policy_label.set_visible(advanced) self.system_policy_type_combobox.set_visible(advanced) def reveal_advanced(self, label, *args): advanced = label.get_text() == ADVANCED_LABEL[0] if advanced: label.set_text(ADVANCED_LABEL[1]) else: label.set_text(ADVANCED_LABEL[0]) self.files_mls_label.set_visible(advanced) self.files_mls_entry.set_visible(advanced) self.network_mls_label.set_visible(advanced) self.network_mls_entry.set_visible(advanced) def on_show_advanced_search_window(self, label, *args): if label.get_text() == ADVANCED_SEARCH_LABEL[1]: label.set_text(ADVANCED_SEARCH_LABEL[0]) self.close_popup() else: label.set_text(ADVANCED_SEARCH_LABEL[1]) self.show_popup(self.advanced_search_window) def set_enforce_text(self, value): if value: self.status_bar.push(self.context_id, _("System Status: Enforcing")) self.current_status_enforcing.set_active(True) else: self.status_bar.push(self.context_id, _("System Status: Permissive")) self.current_status_permissive.set_active(True) def set_enforce(self, button): if not self.finish_init: return self.dbus.setenforce(button.get_active()) self.set_enforce_text(button.get_active()) def on_browse_select(self, *args): filename = self.file_dialog.get_filename() if filename == None: return self.clear_entry = False self.file_dialog.hide() self.files_path_entry.set_text(filename) if self.import_export == 'Import': self.import_config(filename) elif self.import_export == 'Export': self.export_config(filename) def recursive_path(self, *args): path = self.files_path_entry.get_text() if self.recursive_path_toggle.get_active(): if not path.endswith("(/.*)?"): self.files_path_entry.set_text(path + "(/.*)?") elif path.endswith("(/.*)?"): path = path.split("(/.*)?")[0] self.files_path_entry.set_text(path) def highlight_entry_text(self, entry_obj, *args): txt = entry_obj.get_text() if self.clear_entry: entry_obj.set_text('') self.clear_entry = False def autofill_add_files_entry(self, entry): text = entry.get_text() if text == '': return if text.endswith("(/.*)?"): self.recursive_path_toggle.set_active(True) for d in sepolicy.DEFAULT_DIRS: if text.startswith(d): for t in self.files_type_combolist: if t[0].endswith(sepolicy.DEFAULT_DIRS[d]): self.combo_set_active_text(self.files_type_combobox, t[0]) def resize_columns(self, *args): self.boolean_column_1 = self.boolean_treeview.get_col(1) width = self.boolean_column_1.get_width() renderer = self.boolean_column_1.get_cell_renderers() def browse_for_files(self, *args): self.file_dialog.show() def close_config_window(self, *args): self.file_dialog.hide() def change_default_policy(self, *args): if self.typeHistory == self.system_policy_type_combobox.get_active(): return if self.verify(_("Changing the policy type will cause a relabel of the entire file system on the next boot. Relabeling takes a long time depending on the size of the file system.
import keras from keras.models import Sequential, Model, load_model from keras.layers import Dense, Dropout, Activation, Flatten, Input, Lambda from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Concatenate, Reshape, Softmax from keras import backend as K import keras.losses import os import pickle import numpy as np from sklearn import preprocessing import pandas as pd import matplotlib.pyplot as plt import string import keras.backend as K from keras.legacy import interfaces from keras.optimizers import Optimizer from scrambler.models import * def one_hot_encode_msa(msa, ns=21) : one_hot = np.zeros((msa.shape[0], msa.shape[1], ns)) for i in range(msa.shape[0]) : for j in range(msa.shape[1]) : one_hot[i, j, int(msa[i, j])] = 1. return one_hot def parse_a3m(filename): seqs = [] table = str.maketrans(dict.fromkeys(string.ascii_lowercase)) # read file line by line for line in open(filename,"r"): # skip labels if line[0] != '>': # remove lowercase letters and right whitespaces seqs.append(line.rstrip().translate(table)) # convert letters into numbers alphabet = np.array(list("ARNDCQEGHILKMFPSTWYV-"), dtype='|S1').view(np.uint8) msa = np.array([list(s) for s in seqs], dtype='|S1').view(np.uint8) for i in range(alphabet.shape[0]): msa[msa == alphabet[i]] = i # treat all unknown characters as gaps msa[msa > 20] = 20 return msa def make_a3m(seqs) : alphabet = np.array(list("ARNDCQEGHILKMFPSTWYV-"), dtype='|S1').view(np.uint8) msa = np.array([list(s) for s in seqs], dtype='|S1').view(np.uint8) for i in range(alphabet.shape[0]): msa[msa == alphabet[i]] = i msa[msa > 20] = 20 return msa #Code from https://gist.github.com/mayukh18/c576a37a74a9a5160ff32a535c2907b9 class AdamAccumulate(Optimizer): def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs): if accum_iters < 1: raise ValueError('accum_iters must be >= 1') super(AdamAccumulate, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(decay, name='decay') if epsilon is None: epsilon = K.epsilon() self.epsilon = epsilon self.initial_decay = decay self.amsgrad = amsgrad self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations)) self.accum_iters_float = K.cast(self.accum_iters, K.floatx()) @interfaces.legacy_get_updates_support def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr completed_updates = K.cast(K.tf.floordiv(self.iterations, self.accum_iters), K.floatx()) if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * completed_updates)) t = completed_updates + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) # self.iterations incremented after processing a batch # batch: 1 2 3 4 5 6 7 8 9 # self.iterations: 0 1 2 3 4 5 6 7 8 # update_switch = 1: x x (if accum_iters=4) update_switch = K.equal((self.iterations + 1) % self.accum_iters, 0) update_switch = K.cast(update_switch, K.floatx()) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] else: vhats = [K.zeros(1) for _ in params] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat, tg in zip(params, grads, ms, vs, vhats, gs): sum_grad = tg + g avg_grad = sum_grad / self.accum_iters_float m_t = (self.beta_1 * m) + (1. - self.beta_1) * avg_grad v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(avg_grad) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, (1 - update_switch) * vhat + update_switch * vhat_t)) else: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, (1 - update_switch) * m + update_switch * m_t)) self.updates.append(K.update(v, (1 - update_switch) * v + update_switch * v_t)) self.updates.append(K.update(tg, (1 - update_switch) * sum_grad)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, (1 - update_switch) * p + update_switch * new_p)) return self.updates def get_config(self): config = {'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad} base_config = super(AdamAccumulate, self).get_config() return dict(list(base_config.items()) + list(config.items())) from keras.layers import Layer, InputSpec from keras import initializers, regularizers, constraints class LegacyInstanceNormalization(Layer): def __init__(self, axis=None, epsilon=1e-3, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs): super(LegacyInstanceNormalization, self).__init__(**kwargs) self.supports_masking = True self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint) def build(self, input_shape): ndim = len(input_shape) if self.axis == 0: raise ValueError('Axis cannot be zero') if (self.axis is not None) and (ndim == 2): raise ValueError('Cannot specify axis for rank 1 tensor') self.input_spec = InputSpec(ndim=ndim) if self.axis is None: shape = (1,) else: shape = (input_shape[self.axis],) if self.scale: self.gamma = self.add_weight(shape=shape, name='gamma', initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint) else: self.gamma = None if self.center: self.beta = self.add_weight(shape=shape, name='beta', initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint) else: self.beta = None self.built = True def call(self, inputs, training=None): input_shape = K.int_shape(inputs) reduction_axes = list(range(0, len(input_shape))) if self.axis is not None: del reduction_axes[self.axis] del reduction_axes[0] mean = K.mean(inputs, reduction_axes, keepdims=True) stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon normed = (inputs - mean) / stddev broadcast_shape = [1] * len(input_shape) if self.axis is not None: broadcast_shape[self.axis] = input_shape[self.axis] if self.scale: broadcast_gamma = K.reshape(self.gamma, broadcast_shape) normed = normed * broadcast_gamma if self.center: broadcast_beta = K.reshape(self.beta, broadcast_shape) normed = normed + broadcast_beta return normed def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(InstanceNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items())) #1-hot MSA to PSSM def msa2pssm(msa1hot, w): beff = tf.reduce_sum(w) f_i = tf.reduce_sum(w[:,None,None]*msa1hot, axis=0) / beff + 0.005#1e-9 h_i = tf.reduce_sum( -f_i * tf.math.log(f_i), axis=1) return tf.concat([f_i, h_i[:,None]], axis=1) #Reweight MSA based on cutoff def reweight(msa1hot, cutoff): with tf.name_scope('reweight'): id_min = tf.cast(tf.shape(msa1hot)[1], tf.float32) * cutoff id_mtx = tf.tensordot(msa1hot, msa1hot, [[1,2], [1,2]]) id_mask = id_mtx > id_min w = 1.0/tf.reduce_sum(tf.cast(id_mask, dtype=tf.float32),-1) return w #Shrunk covariance inversion def fast_dca(msa1hot, weights, penalty = 4.5): nr = tf.shape(msa1hot)[0] nc = tf.shape(msa1hot)[1] ns = tf.shape(msa1hot)[2] with tf.name_scope('covariance'): x = tf.reshape(msa1hot, (nr, nc * ns)) num_points = tf.reduce_sum(weights) - tf.sqrt(tf.reduce_mean(weights)) mean = tf.reduce_sum(x * weights[:,None], axis=0, keepdims=True) / num_points x = (x - mean) * tf.sqrt(weights[:,None]) cov = tf.matmul(tf.transpose(x), x)/num_points with tf.name_scope('inv_convariance'): cov_reg = cov + tf.eye(nc * ns) * penalty / tf.sqrt(tf.reduce_sum(weights)) inv_cov = tf.linalg.inv(cov_reg) x1 = tf.reshape(inv_cov,(nc, ns, nc, ns)) x2 = tf.transpose(x1, [0,2,1,3]) features = tf.reshape(x2, (nc, nc, ns * ns)) x3 = tf.sqrt(tf.reduce_sum(tf.square(x1[:,:-1,:,:-1]),(1,3))) * (1-tf.eye(nc)) apc = tf.reduce_sum(x3,0,keepdims=True) * tf.reduce_sum(x3,1,keepdims=True) / tf.reduce_sum(x3) contacts = (x3 - apc) * (1-tf.eye(nc)) return tf.concat([features, contacts[:,:,None]], axis=2) #Collect input features (keras code) def keras_collect_features(inputs, wmin=0.8) : f1d_seq_batched, msa1hot_batched = inputs f1d_seq = f1d_seq_batched[0, ...] msa1hot = msa1hot_batched[0, ...] nrow = K.shape(msa1hot)[0] ncol = K.shape(msa1hot)[1] w = reweight(msa1hot, wmin) # 1D features f1d_pssm = msa2pssm(msa1hot, w) f1d = tf.concat(values=[f1d_seq, f1d_pssm], axis=1) f1d = tf.expand_dims(f1d, axis=0) f1d = tf.reshape(f1d, [1,ncol,42]) # 2D features f2d_dca = tf.cond(nrow>1, lambda: fast_dca(msa1hot, w), lambda: tf.zeros([ncol,ncol,442], tf.float32)) f2d_dca = tf.expand_dims(f2d_dca, axis=0) f2d = tf.concat([tf.tile(f1d[:,:,None,:], [1,1,ncol,1]), tf.tile(f1d[:,None,:,:], [1,ncol,1,1]), f2d_dca], axis=-1) f2d = tf.reshape(f2d, [1,ncol,ncol,442+2*42]) return f2d #Collect input features (tf code) def pssm_func(inputs, diag=0.0): x,y = inputs _,_,L,A = [tf.shape(y)[k] for k in range(4)] with tf.name_scope('1d_features'): # sequence x_i = x[0,:,:20] # pssm f_i = y[0,0, :, :] # entropy h_i = tf.zeros((L,1)) #h_i = K.sum(-f_i * K.log(f_i + 1e-8), axis=-1, keepdims=True) # tile and combined 1D features feat_1D = tf.concat([x_i,f_i,h_i], axis=-1) feat_1D_tile_A = tf.tile(feat_1D[:,None,:], [1,L,1]) feat_1D_tile_B = tf.tile(feat_1D[None,:,:], [L,1,1]) with tf.name_scope('2d_features'): ic = diag * tf.eye(L*A) ic = tf.reshape(ic,(L,A,L,A)) ic = tf.transpose(ic,(0,2,1,3)) ic = tf.reshape(ic,(L,L,A*A)) i0 = tf.zeros([L,L,1]) feat_2D = tf.concat([ic,i0], axis=-1) feat = tf.concat([feat_1D_tile_A, feat_1D_tile_B, feat_2D],axis=-1) return tf.reshape(feat, [1,L,L,442+2*42]) def load_trrosetta_model(model_path) : saved_model = load_model(model_path, custom_objects = { 'InstanceNormalization' : LegacyInstanceNormalization, 'reweight' : reweight, 'wmin' : 0.8, 'msa2pssm' : msa2pssm, 'tf' : tf, 'fast_dca' : fast_dca, 'keras_collect_features' : pssm_func }) return saved_model def _get_kl_divergence_keras(p_dist, p_theta, p_phi, p_omega, t_dist, t_theta, t_phi, t_omega) : kl_dist = K.mean(K.sum(t_dist * K.log(t_dist / p_dist), axis=-1), axis=(-1, -2)) kl_theta = K.mean(K.sum(t_theta * K.log(t_theta / p_theta), axis=-1), axis=(-1, -2)) kl_phi = K.mean(K.sum(t_phi * K.log(t_phi / p_phi), axis=-1), axis=(-1, -2)) kl_omega = K.mean(K.sum(t_omega * K.log(t_omega / p_omega), axis=-1), axis=(-1, -2)) return K.mean(kl_dist + kl_theta + kl_phi + kl_omega, axis=1) def optimize_trrosetta_scores(predictor, x, batch_size, n_iters, input_background, drop=None, scrambler_mode='inclusion', norm_mode='instance', adam_accum_iters=2, adam_lr=0.01, adam_beta_1=0.5, adam_beta_2=0.9, n_samples=4, sample_mode='gumbel', entropy_mode='target', entropy_bits=0., entropy_weight=1.) : if not isinstance(x, list) : x = [x] group = [np.zeros((x[0].shape[0], 1))] if
stc.StyleSetSpec(wx.stc.STC_P_STRING, "fore:%(strfg)s,face:%(mono)s" % faces) stc.StyleSetSpec(wx.stc.STC_P_CHARACTER, "fore:%(strfg)s,face:%(mono)s" % faces) stc.StyleSetSpec(wx.stc.STC_P_WORD, "fore:%(keywordfg)s,bold" % faces) stc.StyleSetSpec(wx.stc.STC_P_TRIPLE, "fore:%(q3sfg)s" % faces) stc.StyleSetSpec(wx.stc.STC_P_TRIPLEDOUBLE, "fore:%(q3fg)s,back:%(q3bg)s" % faces) stc.StyleSetSpec(wx.stc.STC_P_CLASSNAME, "fore:%(deffg)s,bold" % faces) stc.StyleSetSpec(wx.stc.STC_P_DEFNAME, "fore:%(deffg)s,bold" % faces) stc.StyleSetSpec(wx.stc.STC_P_OPERATOR, "") stc.StyleSetSpec(wx.stc.STC_P_IDENTIFIER, "") stc.StyleSetSpec(wx.stc.STC_P_COMMENTBLOCK, "fore:#7F7F7F") stc.StyleSetSpec(wx.stc.STC_P_STRINGEOL, "fore:#000000,face:%(mono)s," "back:%(eolbg)s,eolfilled" % faces) stc.CallTipSetBackground(faces['calltipbg']) stc.CallTipSetForeground(faces['calltipfg']) class FormDialog(wx.Dialog): """ Dialog for displaying a complex editable form. Uses ComboBox for fields with choices. Uses two ListBoxes for list fields. @param props [{ name: field name ?type: (bool | list | anything) if field has direct content, or callback(dialog, field, panel, data) making controls ?label: field label if not using name ?help: field tooltip ?path: [data path, if, more, complex, nesting] ?choices: [value, ] or callback(field, path, data) returning list ?choicesedit true if value not limited to given choices ?component specific wx component to use ?toggle: if true, field is toggle-able and children hidden when off ?children: [{field}, ] ?link: "name" of linked field, cleared and repopulated on change, or callable(data) doing required change and returning field name ?tb: [{type, ?help}] for SQLiteTextCtrl component, adds toolbar, supported toolbar buttons "open" and "paste" }] @param autocomp list of words to add to SQLiteTextCtrl autocomplete, or a dict for words and subwords @param onclose callable(data) on closing dialog, returning whether to close """ def __init__(self, parent, title, props=None, data=None, edit=None, autocomp=None, onclose=None): wx.Dialog.__init__(self, parent, title=title, style=wx.CAPTION | wx.CLOSE_BOX | wx.RESIZE_BORDER) self._ignore_change = False self._editmode = bool(edit) if edit is not None else True self._comps = collections.defaultdict(list) # {(path): [wx component, ]} self._autocomp = autocomp self._onclose = onclose self._toggles = {} # {(path): wx.CheckBox, } self._props = [] self._data = {} self._rows = 0 panel_wrap = wx.ScrolledWindow(self) panel_items = self._panel = wx.Panel(panel_wrap) panel_wrap.SetScrollRate(0, 20) self.Sizer = wx.BoxSizer(wx.VERTICAL) sizer_buttons = self.CreateButtonSizer(wx.OK | (wx.CANCEL if self._editmode else 0)) panel_wrap.Sizer = wx.BoxSizer(wx.VERTICAL) panel_items.Sizer = wx.GridBagSizer(hgap=5, vgap=0) panel_items.Sizer.SetEmptyCellSize((0, 0)) panel_wrap.Sizer.Add(panel_items, border=10, proportion=1, flag=wx.RIGHT | wx.GROW) self.Sizer.Add(panel_wrap, border=15, proportion=1, flag=wx.LEFT | wx.TOP | wx.GROW) self.Sizer.Add(sizer_buttons, border=5, flag=wx.ALL | wx.ALIGN_CENTER_HORIZONTAL) self.Bind(wx.EVT_BUTTON, self._OnClose, id=wx.ID_OK) for x in self, panel_wrap, panel_items: ColourManager.Manage(x, "ForegroundColour", wx.SYS_COLOUR_BTNTEXT) ColourManager.Manage(x, "BackgroundColour", wx.SYS_COLOUR_BTNFACE) self.Populate(props, data, edit) if self._editmode: self.MinSize = (440, panel_items.Size[1] + 80) else: self.MinSize = (440, panel_items.Size[1] + 10) self.Fit() self.CenterOnParent() def Populate(self, props, data, edit=None): """ Clears current content, if any, adds controls to dialog, and populates with data. """ self._ignore_change = True self._props = copy.deepcopy(props or []) self._data = copy.deepcopy(data or {}) if edit is not None: self._editmode = edit self._rows = 0 while self._panel.Sizer.Children: self._panel.Sizer.Remove(0) for c in self._panel.Children: c.Destroy() self._toggles.clear() self._comps.clear() for f in self._props: self._AddField(f) for f in self._props: self._PopulateField(f) self._panel.Sizer.AddGrowableCol(6, 1) if len(self._comps) == 1: self._panel.Sizer.AddGrowableRow(0, 1) self._ignore_change = False self.Layout() def GetData(self): """Returns the current data values.""" result = copy.deepcopy(self._data) for p in sorted(self._toggles, key=len, reverse=True): if not self._toggles[p].Value: ptr = result for x in p[:-1]: ptr = ptr.get(x) or {} ptr.pop(p[-1], None) return result def _GetValue(self, field, path=()): """Returns field data value.""" ptr = self._data path = field.get("path") or path for x in path: ptr = ptr.get(x, {}) if isinstance(ptr, dict) else ptr[x] return ptr.get(field["name"]) def _SetValue(self, field, value, path=()): """Sets field data value.""" ptr = parent = self._data path = field.get("path") or path for x in path: ptr = ptr.get(x) if isinstance(ptr, dict) else ptr[x] if ptr is None: ptr = parent[x] = {} parent = ptr ptr[field["name"]] = value def _DelValue(self, field, path=()): """Deletes field data value.""" ptr = self._data path = field.get("path") or path for x in path: ptr = ptr.get(x, {}) ptr.pop(field["name"], None) def _GetField(self, name, path=()): """Returns field from props.""" fields, path = self._props, list(path) + [name] while fields: for f in fields: if [f["name"]] == path: return f if f["name"] == path[0] and f.get("children"): fields, path = f["children"], path[1:] break # for f def _GetChoices(self, field, path): """Returns the choices list for field, if any.""" result = field.get("choices") or [] if callable(result): if path: parentfield = self._GetField(path[-1], path[:-1]) data = self._GetValue(parentfield, path[:-1]) else: data = self.GetData() result = result(data) return result def _Unprint(self, s, escape=True): """Returns string with unprintable characters escaped or stripped.""" enc = "unicode_escape" if isinstance(s, unicode) else "string_escape" repl = (lambda m: m.group(0).encode(enc)) if escape else "" return re.sub(r"[\x00-\x1f]", repl, s) def _AddField(self, field, path=()): """Adds field controls to dialog.""" callback = field["type"] if callable(field.get("type")) \ and field["type"] not in (bool, list) else None if not callback and not self._editmode and self._GetValue(field, path) is None: return MAXCOL = 8 parent, sizer = self._panel, self._panel.Sizer level, fpath = len(path), path + (field["name"], ) col = 0 if field.get("toggle"): toggle = wx.CheckBox(parent) if field.get("help"): toggle.ToolTip = field["help"] if self._editmode: toggle.Label = label=field["label"] if "label" in field else field["name"] sizer.Add(toggle, border=5, pos=(self._rows, level), span=(1, 2), flag=wx.TOP | wx.BOTTOM) else: # Show ordinary label in view mode, checkbox goes very gray label = wx.StaticText(parent, label=field["label"] if "label" in field else field["name"]) if field.get("help"): label.ToolTip = field["help"] mysizer = wx.BoxSizer(wx.HORIZONTAL) mysizer.Add(toggle, border=5, flag=wx.RIGHT) mysizer.Add(label) sizer.Add(mysizer, border=5, pos=(self._rows, level), span=(1, 2), flag=wx.TOP | wx.BOTTOM) self._comps[fpath].append(toggle) self._toggles[tuple(field.get("path") or fpath)] = toggle self._BindHandler(self._OnToggleField, toggle, field, path, toggle) col += 2 if callback: callback(self, field, parent, self._data) elif not field.get("toggle") or any(field.get(x) for x in ["type", "choices", "component"]): ctrls = self._MakeControls(field, path) for c in ctrls: colspan = 2 if isinstance(c, wx.StaticText) else MAXCOL - level - col brd, BRD = (5, wx.BOTTOM) if isinstance(c, wx.CheckBox) else (0, 0) sizer.Add(c, border=brd, pos=(self._rows, level + col), span=(1, colspan), flag=BRD | wx.GROW) col += colspan self._rows += 1 for f in field.get("children") or (): self._AddField(f, fpath) def _PopulateField(self, field, path=()): """Populates field controls with data state.""" if not self._editmode and self._GetValue(field, path) is None: return fpath = path + (field["name"], ) choices = self._GetChoices(field, path) value = self._GetValue(field, path) ctrls = [x for x in self._comps[fpath] if not isinstance(x, (wx.StaticText, wx.Sizer))] if list is field.get("type"): value = value or [] listbox1, listbox2 = (x for x in ctrls if isinstance(x, wx.ListBox)) listbox1.SetItems([self._Unprint(x) for x in choices if x not in value]) listbox2.SetItems(map(self._Unprint, value or [])) for j, x in enumerate(x for x in choices if x not in value): listbox1.SetClientData(j, x) for j, x in enumerate(value or []): listbox2.SetClientData(j, x) listbox1.Enable(self._editmode) listbox2.Enable(self._editmode) for c in ctrls: if isinstance(c, wx.Button): c.Enable(self._editmode) else: for i, c in enumerate(ctrls): if not i and isinstance(c, wx.CheckBox) and field.get("toggle"): c.Value = (value is not None) self._OnToggleField(field, path, c) c.Enable(self._editmode) continue # for i, c if isinstance(c, wx.stc.StyledTextCtrl): c.SetText(value or "") if self._autocomp and isinstance(c, SQLiteTextCtrl): c.AutoCompClearAdded() c.AutoCompAddWords(self._autocomp) if isinstance(self._autocomp, dict): for w, ww in self._autocomp.items(): c.AutoCompAddSubWords(w, ww) elif isinstance(c, wx.CheckBox): c.Value = bool(value) else: if isinstance(value, (list, tuple)): value = "".join(value) if isinstance(c, wx.ComboBox): c.SetItems(map(self._Unprint, choices)) for j, x in enumerate(choices): c.SetClientData(j, x) value = self._Unprint(value) if value else value c.Value = "" if value is None else value if isinstance(c, wx.TextCtrl): c.SetEditable(self._editmode) else: c.Enable(self._editmode) for f in field.get("children") or (): self._PopulateField(f, fpath) def _MakeControls(self, field, path=()): """Returns a list of wx components for field.""" result = [] parent, ctrl = self._panel, None fpath = path + (field["name"], ) label = field["label"] if "label" in field else field["name"] accname = "ctrl_%s" % self._rows # Associating label click with control if list is field.get("type"): if not field.get("toggle") and field.get("type") not in (bool, list): result.append(wx.StaticText(parent, label=label, name=accname + "_label")) sizer_f = wx.BoxSizer(wx.VERTICAL) sizer_l = wx.BoxSizer(wx.HORIZONTAL) sizer_b1 = wx.BoxSizer(wx.VERTICAL) sizer_b2 = wx.BoxSizer(wx.VERTICAL) ctrl1 = wx.ListBox(parent, style=wx.LB_EXTENDED) b1 = wx.Button(parent, label=">", size=(30, -1)) b2 = wx.Button(parent, label="<", size=(30, -1)) ctrl2 = wx.ListBox(parent, style=wx.LB_EXTENDED) b3 = wx.Button(parent, label=u"\u2191", size=(20, -1)) b4 = wx.Button(parent, label=u"\u2193", size=(20, -1)) b1.ToolTip = "Add selected from left to right" b2.ToolTip = "Remove selected from right" b3.ToolTip = "Move selected items higher" b4.ToolTip = "Move selected items lower" ctrl1.SetName(accname) ctrl1.MinSize = ctrl2.MinSize = (150, 100) if field.get("help"): ctrl1.ToolTip = field["help"] sizer_b1.Add(b1); sizer_b1.Add(b2) sizer_b2.Add(b3); sizer_b2.Add(b4) sizer_l.Add(ctrl1, proportion=1) sizer_l.Add(sizer_b1, flag=wx.ALIGN_CENTER_VERTICAL) sizer_l.Add(ctrl2, proportion=1) sizer_l.Add(sizer_b2, flag=wx.ALIGN_CENTER_VERTICAL) toplabel = wx.StaticText(parent, label=label, name=accname + "_label") sizer_f.Add(toplabel, flag=wx.GROW) sizer_f.Add(sizer_l, border=10,
REM @ider def _get_all_{tbl}_rowids({self}): r""" all_{tbl}_rowids <- {tbl}.get_all_rowids() Returns: list_ (list): unfiltered {tbl}_rowids TemplateInfo: Tider_all_rowids tbl = {tbl} Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {self}._get_all_{tbl}_rowids() """ all_{tbl}_rowids = {self}.{dbself}.get_all_rowids({TABLE}) return all_{tbl}_rowids # ENDBLOCK ''' ) # RL IDER ALL ROWID Tider_rl_dependant_all_rowids = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{root}_{leaf}_all_rowids({self}, {root}_rowid_list, eager=True, nInput=None): r""" {leaf}_rowid_list <- {root}.{leaf}.all_rowids([{root}_rowid_list]) Gets {leaf} rowids of {root} under the current state configuration. Args: {root}_rowid_list (list): Returns: list: {leaf}_rowid_list TemplateInfo: Tider_rl_dependant_all_rowids root = {root} leaf = {leaf} """ # FIXME: broken colnames = ({LEAF_PARENT}_ROWID,) {leaf}_rowid_list = {self}.{dbself}.get( {LEAF_TABLE}, colnames, {root}_rowid_list, id_colname={ROOT}_ROWID, eager=eager, nInput=nInput) return {leaf}_rowid_list # ENDBLOCK ''') # # #----------------- # --- GETTERS --- #----------------- # LINES GETTER Tline_pc_dependant_rowid = ut.codeblock( r''' # STARTBLOCK {child}_rowid_list = {self}.get_{parent}_{child}_rowid({parent}_rowid_list, config2_=config2_, ensure=ensure) # ENDBLOCK ''' ) # RL GETTER MULTICOLUMN Tgetter_rl_pclines_dependant_multicolumn = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{root}_{multicol}({self}, {root}_rowid_list, config2_=None, ensure=True): r""" {leaf}_rowid_list <- {root}.{leaf}.{multicol}s[{root}_rowid_list] Get {col} data of the {root} table using the dependant {leaf} table Args: {root}_rowid_list (list): Returns: list: {col}_list TemplateInfo: Tgetter_rl_pclines_dependant_column root = {root} col = {col} leaf = {leaf} Example: >>> # DISABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {root}_rowid_list = {self}._get_all_{root}_rowids() >>> {multicol}_list = {self}.get_{root}_{multicol}({root}_rowid_list, config2_=config2_) >>> assert len({multicol}_list) == len({root}_rowid_list) """ # REM Get leaf rowids {pc_dependant_rowid_lines} # REM Get col values {multicol}_list = {self}.get_{leaf}_{multicol}({leaf}_rowid_list) return {multicol}_list # ENDBLOCK ''') # NATIVE MULTICOLUMN GETTER # eg. get_chip_sizes Tgetter_native_multicolumn = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{tbl}_{multicol}({self}, {tbl}_rowid_list, eager=True): r""" Returns zipped tuple of information from {multicol} columns Tgetter_native_multicolumn Args: {tbl}_rowid_list (list): Returns: list: {multicol}_list Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {tbl}_rowid_list = {self}._get_all_{tbl}_rowids() >>> ensure = False >>> {multicol}_list = {self}.get_{tbl}_{multicol}({tbl}_rowid_list, eager=eager) >>> assert len({tbl}_rowid_list) == len({multicol}_list) """ id_iter = {tbl}_rowid_list colnames = {MULTICOLNAMES} {multicol}_list = {self}.{dbself}.get({TABLE}, colnames, id_iter, id_colname='rowid', eager=eager) return {multicol}_list # ENDBLOCK ''') # RL GETTER COLUMN Tgetter_rl_pclines_dependant_column = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{root}_{col}({self}, {root}_rowid_list, config2_=None, ensure=True): r""" {leaf}_rowid_list <- {root}.{leaf}.{col}s[{root}_rowid_list] Get {col} data of the {root} table using the dependant {leaf} table Args: {root}_rowid_list (list): Returns: list: {col}_list TemplateInfo: Tgetter_rl_pclines_dependant_column root = {root} col = {col} leaf = {leaf} """ # REM Get leaf rowids {pc_dependant_rowid_lines} # REM Get col values {col}_list = {self}.get_{leaf}_{col}({leaf}_rowid_list) return {col}_list # ENDBLOCK ''') # NATIVE COLUMN GETTER Tgetter_table_column = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{tbl}_{col}({self}, {tbl}_rowid_list, eager=True, nInput=None): r""" {col}_list <- {tbl}.{col}[{tbl}_rowid_list] gets data from the "native" column "{col}" in the "{tbl}" table Args: {tbl}_rowid_list (list): Returns: list: {col}_list TemplateInfo: Tgetter_table_column col = {col} tbl = {tbl} Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {tbl}_rowid_list = {self}._get_all_{tbl}_rowids() >>> eager = True >>> {col}_list = {self}.get_{tbl}_{col}({tbl}_rowid_list, eager=eager) >>> assert len({tbl}_rowid_list) == len({col}_list) """ id_iter = {tbl}_rowid_list colnames = ({COLNAME},) {col}_list = {self}.{dbself}.get({TABLE}, colnames, id_iter, id_colname='rowid', eager=eager, nInput=nInput) return {col}_list # ENDBLOCK ''') Tgetter_extern = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{tbl}_{externcol}({self}, {tbl}_rowid_list, eager=True, nInput=None): r""" {externcol}_list <- {tbl}.{externcol}[{tbl}_rowid_list] Args: {tbl}_rowid_list (list): Returns: list: {externcol}_list TemplateInfo: Tgetter_extern tbl = {tbl} externtbl = {externtbl} externcol = {externcol} Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {tbl}_rowid_list = {self}._get_all_{tbl}_rowids() >>> eager = True >>> {externcol}_list = {self}.get_{tbl}_{externcol}({tbl}_rowid_list, eager=eager) >>> assert len({tbl}_rowid_list) == len({externcol}_list) """ {externtbl}_rowid_list = {self}.get_{tbl}_{externtbl}_rowid({tbl}_rowid_list, eager=eager, nInput=nInput) {externcol}_list = {self}.get_{externtbl}_{externcol}({externtbl}_rowid_list, eager=eager, nInput=nInput) return {externcol}_list # ENDBLOCK ''') # RL GETTER ROWID Tgetter_rl_dependant_rowids = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{root}_{leaf}_rowid({self}, {root}_rowid_list, config2_=None, ensure=True, eager=True, nInput=None): r""" {leaf}_rowid_list <- {root}.{leaf}.rowids[{root}_rowid_list] Get {leaf} rowids of {root} under the current state configuration. Args: {root}_rowid_list (list): Returns: list: {leaf}_rowid_list TemplateInfo: Tgetter_rl_dependant_rowids root = {root} leaf_parent = {leaf_parent} leaf = {leaf} Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {root}_rowid_list = {self}._get_all_{root}_rowids() >>> {leaf}_rowid_list1 = {self}.get_{root}_{leaf}_rowid({root}_rowid_list, config2_, ensure=False) >>> {leaf}_rowid_list2 = {self}.get_{root}_{leaf}_rowid({root}_rowid_list, config2_, ensure=True) >>> {leaf}_rowid_list3 = {self}.get_{root}_{leaf}_rowid({root}_rowid_list, config2_, ensure=False) >>> print({leaf}_rowid_list1) >>> print({leaf}_rowid_list2) >>> print({leaf}_rowid_list3) """ # REM if ensure: # REM # Ensuring dependant columns is equivalent to adding cleanly # REM return {self}.add_{root}_{leaf}({root}_rowid_list, config2_=config2_) # REM else: # Get leaf_parent rowids {leaf_parent}_rowid_list = {self}.get_{root}_{leaf_parent}_rowid({root}_rowid_list, config2_=config2_, ensure=ensure) {leaf}_rowid_list = get_{leaf_parent}_{leaf}_rowid({self}, {leaf_parent}_rowid_list, config2_=config2_, ensure=ensure) # REM colnames = ({LEAF}_ROWID,) # REM config_rowid = {self}.get_{leaf}_config_rowid(config2_=config2_) # REM andwhere_colnames = ({LEAF_PARENT}_ROWID, CONFIG_ROWID,) # REM params_iter = [({leaf_parent}_rowid, config_rowid,) for {leaf_parent}_rowid in {leaf_parent}_rowid_list] # REM {leaf}_rowid_list = {self}.{dbself}.get_where2( # REM {LEAF_TABLE}, colnames, params_iter, andwhere_colnames, eager=eager, nInput=nInput) return {leaf}_rowid_list # ENDBLOCK ''') # PL GETTER ROWID WITHOUT ENSURE Tgetter_pl_dependant_rowids_ = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{parent}_{leaf}_rowids_({self}, {parent}_rowid_list, config2_=None, eager=True, nInput=None): r""" equivalent to get_{parent}_{leaf}_rowids_ except ensure is constrained to be False. Also you save a stack frame because get_{parent}_{leaf}_rowids just calls this function if ensure is False TemplateInfo: Tgetter_pl_dependant_rowids_ """ colnames = ({LEAF}_ROWID,) config_rowid = {self}.get_{leaf}_config_rowid(config2_=config2_) andwhere_colnames = ({PARENT}_ROWID, CONFIG_ROWID,) params_iter = (({parent}_rowid, config_rowid,) for {parent}_rowid in {parent}_rowid_list) {leaf}_rowid_list = {self}.{dbself}.get_where2( {LEAF_TABLE}, colnames, params_iter, andwhere_colnames, eager=eager, nInput=nInput) return {leaf}_rowid_list # ENDBLOCK ''') # PL GETTER ROWID WITH ENSURE Tgetter_pl_dependant_rowids = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{parent}_{leaf}_rowid({self}, {parent}_rowid_list, config2_=None, ensure=True, eager=True, nInput=None, recompute=False): r""" {leaf}_rowid_list <- {parent}.{leaf}.rowids[{parent}_rowid_list] get {leaf} rowids of {parent} under the current state configuration if ensure is True, this function is equivalent to add_{parent}_{leaf}s Args: {parent}_rowid_list (list): iterable of rowids ensure (bool): if True, computes nonexisting information (default=False) config2_ (QueryParams): configuration for requested property recompute (bool): if True, recomputed all requested information. (default=False) eager (bool): experimental - if False return a generator (default=True) nInput (int): experimental - size hint for input generator (default=None) Returns: list: {leaf}_rowid_list TemplateInfo: Tgetter_pl_dependant_rowids parent = {parent} leaf = {leaf} python -m ibeis.templates.template_generator --key {leaf} --funcname-filter '\<get_{parent}_{leaf}_rowid\>' --modfname={autogen_modname} Timeit: >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> # Test to see if there is any overhead to injected vs native functions >>> %timeit get_{parent}_{leaf}_rowid({self}, {parent}_rowid_list) >>> %timeit {self}.get_{parent}_{leaf}_rowid({parent}_rowid_list) Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {parent}_rowid_list = {self}._get_all_{parent}_rowids() >>> ensure = False >>> {leaf}_rowid_list = {self}.get_{parent}_{leaf}_rowid({parent}_rowid_list, config2_, ensure) >>> assert len({leaf}_rowid_list) == len({parent}_rowid_list) """ if recompute: # get existing rowids, delete them, recompute the request {leaf}_rowid_list = get_{parent}_{leaf}_rowids_( {self}, {parent}_rowid_list, config2_=config2_, eager=eager, nInput=nInput) delete_{leaf}({self}, {leaf}_rowid_list, config2_=config2_) {leaf}_rowid_list = add_{parent}_{leaf}({self}, {parent}_rowid_list, config2_=config2_) elif ensure: {leaf}_rowid_list = add_{parent}_{leaf}({self}, {parent}_rowid_list, config2_=config2_) else: {leaf}_rowid_list = get_{parent}_{leaf}_rowids_( {self}, {parent}_rowid_list, config2_=config2_, eager=eager, nInput=nInput) return {leaf}_rowid_list # ENDBLOCK ''') # NATIVE FROMSUPERKEY ROWID GETTER #id_iter = (({tbl}_rowid,) for {tbl}_rowid in {tbl}_rowid_list) Tgetter_native_rowid_from_superkey = ut.codeblock( r''' # STARTBLOCK # REM @getter def get_{tbl}_rowid_from_superkey({self}, {superkey_args}, eager=True, nInput=None): r""" {tbl}_rowid_list <- {tbl}[{superkey_args}] Args: superkey lists: {superkey_args} Returns: {tbl}_rowid_list TemplateInfo: Tgetter_native_rowid_from_superkey tbl = {tbl} """ colnames = ({TBL}_ROWID,) # FIXME: col_rowid is not correct params_iter = zip({superkey_args}) andwhere_colnames = [{superkey_COLNAMES}] {tbl}_rowid_list = {self}.{dbself}.get_where2( {TABLE}, colnames, params_iter, andwhere_colnames, eager=eager, nInput=nInput) return {tbl}_rowid_list # ENDBLOCK ''') # # #----------------- # --- SETTERS --- #----------------- # NATIVE COL SETTER Tsetter_native_column = ut.codeblock( r''' # STARTBLOCK # REM @setter def set_{tbl}_{col}({self}, {tbl}_rowid_list, {col}_list, duplicate_behavior='error'): r""" {col}_list -> {tbl}.{col}[{tbl}_rowid_list] Args: {tbl}_rowid_list {col}_list TemplateInfo: Tsetter_native_column tbl = {tbl} col = {col} """ id_iter = {tbl}_rowid_list colnames = ({COLNAME},) {self}.{dbself}.set({TABLE}, colnames, {col}_list, id_iter, duplicate_behavior=duplicate_behavior) # ENDBLOCK ''') Tsetter_native_multicolumn = ut.codeblock( r''' # STARTBLOCK def set_{tbl}_{multicol}({self}, {tbl}_rowid_list, {multicol}_list, duplicate_behavior='error'): r""" {multicol}_list -> {tbl}.{multicol}[{tbl}_rowid_list] Tsetter_native_multicolumn Args: {tbl}_rowid_list (list): Example: >>> # ENABLE_DOCTEST >>> from {autogen_modname} import * # NOQA >>> {self}, config2_ = testdata_{autogen_key}() >>> {multicol}_list = get_{tbl}_{multicol}({self}, {tbl}_rowid_list) """ id_iter = {tbl}_rowid_list colnames = {MULTICOLNAMES} {self}.{dbself}.set({TABLE}, colnames, {multicol}_list, id_iter, duplicate_behavior=duplicate_behavior) # ENDBLOCK ''') # # #------------------------------- # --- UNFINISHED AND DEFERRED --- #------------------------------- Tdeleter_table1_relation = ut.codeblock( r''' # STARTBLOCK # REM @deleter def delete_{tbl1}_{relation_tbl}_relation({self}, {tbl1}_rowid_list): r""" Deletes the relationship between an {tbl1} and {tbl2} TemplateInfo: Tdeleter_relationship tbl = {relation_tbl} """ {relation_tbl}_rowids_list = {self}.get_{tbl1}_{relation_tbl}_rowid({tbl1}_rowid_list) {relation_tbl}_rowid_list = ut.flatten({relation_tbl}_rowids_list) {self}.{dbself}.delete_rowids({RELATION_TABLE}, {relation_tbl}_rowid_list) # ENDBLOCK ''' ) Tgetter_table1_rowids = ut.codeblock( r''' # STARTBLOCK # REM @deleter def get_{tbl1}_{relation_tbl}_rowid({self}, {tbl1}_rowid_list): r"""