input
stringlengths
2.65k
237k
output
stringclasses
1 value
trackSort = cms.string('sip2dSig'), useCategories = cms.bool(True), useTrackWeights = cms.bool(True), vertexFlip = cms.bool(False) ), tagInfos = cms.VInputTag(cms.InputTag("pfImpactParameterTagInfos"), cms.InputTag("pfInclusiveSecondaryVertexFinderCvsLTagInfos"), cms.InputTag("softPFMuonsTagInfos"), cms.InputTag("softPFElectronsTagInfos")), useAdaBoost = cms.bool(False), useCondDB = cms.bool(False), useGBRForest = cms.bool(True), variables = cms.VPSet( cms.PSet( default = cms.double(-1), name = cms.string('vertexLeptonCategory'), taggingVarName = cms.string('vertexLeptonCategory') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip2dSig_0'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip2dSig_1'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip3dSig_0'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip3dSig_1'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPtRel_0'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPtRel_1'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPPar_0'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPPar_1'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackEtaRel_0'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackEtaRel_1'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDeltaR_0'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDeltaR_1'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackPtRatio_0'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackPtRatio_1'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(0), name = cms.string('trackPParRatio_0'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(1), name = cms.string('trackPParRatio_1'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackJetDist_0'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackJetDist_1'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDecayLenVal_0'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDecayLenVal_1'), taggingVarName = cms.string('trackDecayLenVal') ), cms.PSet( default = cms.double(0), name = cms.string('jetNSecondaryVertices'), taggingVarName = cms.string('jetNSecondaryVertices') ), cms.PSet( default = cms.double(-0.1), name = cms.string('jetNTracks'), taggingVarName = cms.string('jetNTracks') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetEtRatio'), taggingVarName = cms.string('trackSumJetEtRatio') ), cms.PSet( default = cms.double(-0.1), name = cms.string('trackSumJetDeltaR'), taggingVarName = cms.string('trackSumJetDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexMass_0'), taggingVarName = cms.string('vertexMass') ), cms.PSet( default = cms.double(-10), idx = cms.int32(0), name = cms.string('vertexEnergyRatio_0'), taggingVarName = cms.string('vertexEnergyRatio') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip2dSigAboveCharm_0'), taggingVarName = cms.string('trackSip2dSigAboveCharm') ), cms.PSet( default = cms.double(-999), idx = cms.int32(0), name = cms.string('trackSip3dSigAboveCharm_0'), taggingVarName = cms.string('trackSip3dSigAboveCharm') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance2dSig_0'), taggingVarName = cms.string('flightDistance2dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('flightDistance3dSig_0'), taggingVarName = cms.string('flightDistance3dSig') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexJetDeltaR_0'), taggingVarName = cms.string('vertexJetDeltaR') ), cms.PSet( default = cms.double(0), idx = cms.int32(0), name = cms.string('vertexNTracks_0'), taggingVarName = cms.string('vertexNTracks') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('massVertexEnergyFraction_0'), taggingVarName = cms.string('massVertexEnergyFraction') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('vertexBoostOverSqrtJetPt_0'), taggingVarName = cms.string('vertexBoostOverSqrtJetPt') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonPtRel_0'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonPtRel_1'), taggingVarName = cms.string('leptonPtRel') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(0), name = cms.string('leptonSip3d_0'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-10000), idx = cms.int32(1), name = cms.string('leptonSip3d_1'), taggingVarName = cms.string('leptonSip3d') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonDeltaR_0'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonDeltaR_1'), taggingVarName = cms.string('leptonDeltaR') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatioRel_0'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatioRel_1'), taggingVarName = cms.string('leptonRatioRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonEtaRel_0'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonEtaRel_1'), taggingVarName = cms.string('leptonEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('leptonRatio_0'), taggingVarName = cms.string('leptonRatio') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('leptonRatio_1'), taggingVarName = cms.string('leptonRatio') ) ), weightFile = cms.FileInPath('RecoBTag/CTagging/data/c_vs_udsg_sklearn.weight.xml') ) charmTagsNegativeComputerCvsB = cms.ESProducer("CharmTaggerESProducer", computer = cms.ESInputTag("combinedSecondaryVertexSoftLeptonComputer:"), #cmssw_11_0 defaultValueNoTracks = cms.bool(False), gbrForestLabel = cms.string(''), mvaName = cms.string('BDT'), slComputerCfg = cms.PSet( SoftLeptonFlip = cms.bool(True), calibrationRecords = cms.vstring( 'CombinedSVRecoVertexNoSoftLepton', 'CombinedSVPseudoVertexNoSoftLepton', 'CombinedSVNoVertexNoSoftLepton', 'CombinedSVRecoVertexSoftMuon', 'CombinedSVPseudoVertexSoftMuon', 'CombinedSVNoVertexSoftMuon', 'CombinedSVRecoVertexSoftElectron', 'CombinedSVPseudoVertexSoftElectron', 'CombinedSVNoVertexSoftElectron' ), categoryVariableName = cms.string('vertexLeptonCategory'), charmCut = cms.double(1.5), correctVertexMass = cms.bool(False), minimumTrackWeight = cms.double(0.5), pseudoMultiplicityMin = cms.uint32(2), pseudoVertexV0Filter = cms.PSet( k0sMassWindow = cms.double(0.05) ), recordLabel = cms.string(''), trackFlip = cms.bool(True), trackMultiplicityMin = cms.uint32(2), trackPairV0Filter = cms.PSet( k0sMassWindow = cms.double(0.03) ), trackPseudoSelection = cms.PSet( a_dR = cms.double(-0.001053), a_pT = cms.double(0.005263), b_dR = cms.double(0.6263), b_pT = cms.double(0.3684), jetDeltaRMax = cms.double(0.3), maxDecayLen = cms.double(5), maxDistToAxis = cms.double(0.07), max_pT = cms.double(500), max_pT_dRcut = cms.double(0.1), max_pT_trackPTcut = cms.double(3), min_pT = cms.double(120), min_pT_dRcut = cms.double(0.5), normChi2Max = cms.double(99999.9), pixelHitsMin = cms.uint32(0), ptMin = cms.double(0.0), qualityClass = cms.string('any'), sip2dSigMax = cms.double(-2.0), sip2dSigMin = cms.double(-99999.9), sip2dValMax = cms.double(99999.9), sip2dValMin = cms.double(-99999.9), sip3dSigMax = cms.double(0), sip3dSigMin = cms.double(-99999.9), sip3dValMax = cms.double(99999.9), sip3dValMin = cms.double(-99999.9), totalHitsMin = cms.uint32(0), useVariableJTA = cms.bool(False) ), trackSelection = cms.PSet( a_dR = cms.double(-0.001053), a_pT = cms.double(0.005263), b_dR = cms.double(0.6263), b_pT = cms.double(0.3684), jetDeltaRMax = cms.double(0.3), maxDecayLen = cms.double(5), maxDistToAxis = cms.double(0.07), max_pT = cms.double(500), max_pT_dRcut = cms.double(0.1), max_pT_trackPTcut = cms.double(3), min_pT = cms.double(120), min_pT_dRcut = cms.double(0.5), normChi2Max = cms.double(99999.9), pixelHitsMin = cms.uint32(0), ptMin = cms.double(0.0), qualityClass = cms.string('any'), sip2dSigMax = cms.double(99999.9), sip2dSigMin = cms.double(-99999.9), sip2dValMax = cms.double(99999.9), sip2dValMin = cms.double(-99999.9), sip3dSigMax = cms.double(0), sip3dSigMin = cms.double(-99999.9), sip3dValMax = cms.double(99999.9), sip3dValMin = cms.double(-99999.9), totalHitsMin = cms.uint32(0), useVariableJTA = cms.bool(False) ), trackSort = cms.string('sip2dSig'), useCategories = cms.bool(True), useTrackWeights = cms.bool(True), vertexFlip = cms.bool(True) ), tagInfos = cms.VInputTag(cms.InputTag("pfImpactParameterTagInfos"), cms.InputTag("pfInclusiveSecondaryVertexFinderCvsLTagInfos"), cms.InputTag("softPFMuonsTagInfos"), cms.InputTag("softPFElectronsTagInfos")), useAdaBoost = cms.bool(False), useCondDB = cms.bool(False), useGBRForest = cms.bool(True), variables = cms.VPSet( cms.PSet( default = cms.double(-1), name = cms.string('vertexLeptonCategory'), taggingVarName = cms.string('vertexLeptonCategory') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip2dSig_0'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip2dSig_1'), taggingVarName = cms.string('trackSip2dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(0), name = cms.string('trackSip3dSig_0'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-100), idx = cms.int32(1), name = cms.string('trackSip3dSig_1'), taggingVarName = cms.string('trackSip3dSig') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPtRel_0'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPtRel_1'), taggingVarName = cms.string('trackPtRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackPPar_0'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackPPar_1'), taggingVarName = cms.string('trackPPar') ), cms.PSet( default = cms.double(-1), idx = cms.int32(0), name = cms.string('trackEtaRel_0'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-1), idx = cms.int32(1), name = cms.string('trackEtaRel_1'), taggingVarName = cms.string('trackEtaRel') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackDeltaR_0'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackDeltaR_1'), taggingVarName = cms.string('trackDeltaR') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackPtRatio_0'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackPtRatio_1'), taggingVarName = cms.string('trackPtRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(0), name = cms.string('trackPParRatio_0'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(1.1), idx = cms.int32(1), name = cms.string('trackPParRatio_1'), taggingVarName = cms.string('trackPParRatio') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(0), name = cms.string('trackJetDist_0'), taggingVarName = cms.string('trackJetDist') ), cms.PSet( default = cms.double(-0.1), idx = cms.int32(1), name = cms.string('trackJetDist_1'), taggingVarName = cms.string('trackJetDist') ),
import pydotplus as pdp import networkx as nx from copy import deepcopy import itertools as it from ..utilities.util import Util from IPython.display import Image from IPython import get_ipython import logging logger = logging.getLogger('cegpy.chain_event_graph') class ChainEventGraph(nx.MultiDiGraph): """ Class: Chain Event Graph Input: Staged tree object (StagedTree) Output: Chain event graphs """ def __init__(self, staged_tree=None, **attr): super().__init__(staged_tree, **attr) self.sink_suffix = '&infin;' self.node_prefix = 'w' if staged_tree is not None: try: self.ahc_output = deepcopy(staged_tree.ahc_output) except AttributeError: self.ahc_output = {} else: logger.info("Class called with no incoming graph.") self.evidence = Evidence(self) @property def node_prefix(self): return self._node_prefix @node_prefix.setter def node_prefix(self, value): self._node_prefix = str(value) @property def sink_suffix(self): return self._sink_suffix @sink_suffix.setter def sink_suffix(self, value): self._sink_suffix = str(value) @property def sink_node(self): return "%s%s" % (self.node_prefix, self.sink_suffix) @property def root_node(self): return ("%s0" % self.node_prefix) @property def certain_evidence(self): return self._certain_evidence @certain_evidence.setter def certain_evidence(self, value): self._certain_evidence = value @property def uncertain_evidence(self): return self._uncertain_evidence @uncertain_evidence.setter def uncertain_evidence(self, value): self._uncertain_evidence = value @property def path_list(self): return self.__path_list @path_list.setter def path_list(self, value): self.__path_list = value @property def reduced(self): return self.evidence.reduced_graph @property def stages(self): self.__stages = {} node_stages = dict(self.nodes(data='stage', default=None)) for k, v in node_stages.items(): try: self.__stages[v].append(k) except KeyError: self.__stages[v] = [k] return self.__stages def clear_evidence(self): self.evidence = Evidence(self) def generate(self): ''' This function takes the output of the AHC algorithm and identifies the positions i.e. the vertices of the CEG and the edges of the CEG along with their edge labels and edge counts. Here we use the algorithm in our paper with the optimal stopping time. ''' def check_vertices_can_be_merged(v1, v2) -> bool: has_same_successor_nodes = \ set(self.adj[v1].keys()) == set(self.adj[v2].keys()) if has_same_successor_nodes: has_same_outgoing_edges = True v1_adj = self.succ[v1] for succ_node in list(v1_adj.keys()): v1_edges = self.succ[v1][succ_node] v2_edges = self.succ[v2][succ_node] if v1_edges is None or v2_edges is None: has_same_outgoing_edges &= False break v2_edge_labels = \ [label for label in v2_edges.keys()] for label in v1_edges.keys(): if label not in v2_edge_labels: has_same_outgoing_edges &= False break else: has_same_outgoing_edges &= True else: has_same_outgoing_edges = False try: in_same_stage = \ self.nodes[v1]['stage'] == self.nodes[v2]['stage'] except KeyError: in_same_stage = False return in_same_stage and \ has_same_successor_nodes and has_same_outgoing_edges def merge_nodes(nodes_to_merge): """nodes to merge should be a set of 2 element tuples""" temp_1 = 'temp_1' temp_2 = 'temp_2' while nodes_to_merge != set(): nodes = nodes_to_merge.pop() new_node = nodes[0] # Copy nodes to temp nodes node_map = { nodes[0]: temp_1, nodes[1]: temp_2 } nx.relabel_nodes(self, node_map, copy=False) ebunch_to_remove = [] # List of edges to remove self.add_node(new_node) for succ, t1_edge_dict in self.succ[temp_1].items(): edge_labels = list(t1_edge_dict.keys()) while edge_labels != []: new_edge_data = {} label = edge_labels.pop(0) t1_edge = t1_edge_dict[label] t2_edge = self.succ[temp_2][succ][label] new_edge_data['count'] = \ t1_edge['count'] + t2_edge['count'] new_edge_data['prior'] = \ t1_edge['prior'] + t2_edge['prior'] new_edge_data['posterior'] = \ t1_edge['posterior'] + t2_edge['posterior'] try: new_edge_data['probability'] = \ t1_edge['probability'] self.add_edge( u_for_edge=new_node, v_for_edge=succ, key=label, count=new_edge_data['count'], prior=new_edge_data['prior'], posterior=new_edge_data['posterior'], probability=new_edge_data['probability'] ) except KeyError: self.add_edge( u_for_edge=new_node, v_for_edge=succ, key=label, count=new_edge_data['count'], prior=new_edge_data['prior'], posterior=new_edge_data['posterior'] ) ebunch_to_remove.append((temp_1, succ, label)) ebunch_to_remove.append((temp_2, succ, label)) self.remove_edges_from(ebunch_to_remove) nx.relabel_nodes( G=self, mapping={temp_1: new_node, temp_2: new_node}, copy=False ) # Some nodes have been removed, we need to update the # mergeable list to point to new nodes if required temp_list = list(nodes_to_merge) for pair in temp_list: if nodes[1] in pair: new_pair = ( # the other node of the pair pair[pair.index(nodes[1]) - 1], # the new node it will be merged to new_node ) nodes_to_merge.remove(pair) if new_pair[0] != new_pair[1]: nodes_to_merge.add(new_pair) pass def relabel_nodes(base_nodes, renamed_nodes=[]): next_level = [] # first, relabel the successors of this node for node in base_nodes: node_mapping = {} for succ in self.succ[node].keys(): if succ != self.sink_node and succ not in renamed_nodes: node_mapping[succ] = self.__get_next_node_name() next_level.append(node_mapping[succ]) renamed_nodes.append(node_mapping[succ]) if node_mapping != {}: nx.relabel_nodes( self, node_mapping, copy=False ) if next_level != []: relabel_nodes(next_level, renamed_nodes) if self.ahc_output == {}: raise ValueError("Run staged tree AHC transitions first.") # rename root node: nx.relabel_nodes(self, {'s0': self.root_node}, copy=False) self.__update_probabilities() self.__trim_leaves_from_graph() self.__update_distances_of_nodes_to_sink_node() src_node_gen = self.__gen_nodes_with_increasing_distance( start=1 ) next_set_of_nodes = next(src_node_gen) while next_set_of_nodes != [self.root_node]: nodes_to_merge = set() while len(next_set_of_nodes) > 1: node_1 = next_set_of_nodes.pop(0) for node_2 in next_set_of_nodes: mergeable = check_vertices_can_be_merged(node_1, node_2) if mergeable: nodes_to_merge.add((node_1, node_2)) merge_nodes(nodes_to_merge) try: next_set_of_nodes = next(src_node_gen) except StopIteration: next_set_of_nodes = [] relabel_nodes([self.root_node]) self.__update_path_list() @property def dot_graph(self): return self._generate_dot_graph() def _generate_dot_graph(self): graph = pdp.Dot(graph_type='digraph', rankdir='LR') edge_probabilities = list( self.edges(data='probability', default=1, keys=True) ) for (u, v, k, p) in edge_probabilities: full_label = "{}\n{:.2f}".format(k, p) graph.add_edge( pdp.Edge( src=u, dst=v, label=full_label, labelfontcolor='#009933', fontsize='10.0', color='black' ) ) nodes = list(nx.topological_sort(self)) for node in nodes: try: fill_colour = self.nodes[node]['colour'] except KeyError: fill_colour = 'white' label = "<" + node[0] + "<SUB>" + node[1:] + "</SUB>" + ">" graph.add_node( pdp.Node( name=node, label=label, style='filled', fillcolor=fill_colour ) ) return graph def create_figure(self, filename): """ Draws the chain event graph representation of the stage tree, and saves it to "<filename>.filetype". Supports any filetype that graphviz supports. e.g: "event_tree.png" or "event_tree.svg" etc. """ filename, filetype = Util.generate_filename_and_mkdir(filename) graph = self.dot_graph graph.write(str(filename), format=filetype) if get_ipython() is None: return None else: return Image(graph.create_png()) def __update_probabilities(self): count_total_lbl = 'count_total' edge_counts = list(self.edges(data='count', keys=True, default=0)) for stage, stage_nodes in self.stages.items(): count_total = 0 stage_edges = {} if stage is not None: for (u, _, k, c) in edge_counts: if u in stage_nodes: count_total += c try: stage_edges[k] += c except KeyError: stage_edges[k] = c for node in stage_nodes: self.nodes[node][count_total_lbl] = count_total for (u, v, k, _) in edge_counts: if u in stage_nodes: self.edges[u, v, k]['probability'] =\ stage_edges[k] / count_total else: for node in stage_nodes: count_total = 0 stage_edges = {} for (u, _, k, c) in edge_counts: if u == node: count_total += c try: stage_edges[k] += c except KeyError: stage_edges[k] = c self.nodes[node][count_total_lbl] = count_total for (u, v, k, _) in edge_counts: if u == node: self.edges[u, v, k]['probability'] =\ stage_edges[k] / count_total def __update_path_list(self) -> None: path_generator = nx.all_simple_edge_paths( self, self.root_node, self.sink_node ) path_list = [] while True: try: path_list.append(next(path_generator)) except StopIteration: self.path_list = path_list break def __update_distances_of_nodes_to_sink_node(self) -> None: """ Iterates through the graph until it finds the root node. For each node, it determines the maximum number of edges from that node to the sink node. """ max_dist = 'max_dist_to_sink' self.nodes[self.sink_node][max_dist] = 0 node_queue = [self.sink_node] while node_queue != [self.root_node]: node = node_queue.pop(0) for pred in self.predecessors(node): max_dist_to_sink = set() for succ in self.successors(pred): try: max_dist_to_sink.add( self.nodes[succ][max_dist] ) self.nodes[pred][max_dist] = max(max_dist_to_sink) + 1 except KeyError: break if pred not in node_queue: node_queue.append(pred) def __gen_nodes_with_increasing_distance(self, start=0) -> list: max_dists = nx.get_node_attributes(self, 'max_dist_to_sink') distance_dict = {} for key, value in max_dists.items(): distance_dict.setdefault(value, []).append(key) for dist in range(len(distance_dict)): if dist >= start: yield distance_dict[dist] def __get_next_node_name(self): try: num = str(next(self._num_iter)) except AttributeError: self._num_iter = it.count(1, 1) num = str(next(self._num_iter)) return str(self.node_prefix) + num def __trim_leaves_from_graph(self): # Create new CEG sink node self.add_node(self.sink_node, colour='lightgrey') outgoing_edges = deepcopy(self.succ).items() # Check to see if any nodes have no outgoing edges. for node, outgoing_edges in outgoing_edges: if outgoing_edges == {} and node != self.sink_node: incoming_edges = deepcopy(self.pred[node]).items() # When node is identified as a leaf check the # predessesor nodes that have edges that enter this node. for pred_node, edges in incoming_edges: for edge_label, edge in edges.items(): # Create new edge that points to the sink node, # with all the same data as the edge we will delete. try: prob = edge['probability'] except KeyError: prob = 1 self.add_edge( pred_node, self.sink_node, key=edge_label, count=edge['count'], prior=edge['prior'], posterior=edge['posterior'], probability=prob ) self.remove_node(node) class Evidence: CERTAIN = True UNCERTAIN = False def __init__(self, graph): self.__graph = graph self.certain_edges = [] self.uncertain_edges = [] self.certain_vertices = set() self.uncertain_vertices = set() @property def reduced_graph(self): return self.__create_reduced_graph() @property def path_list(self): return self._path_list @path_list.setter def path_list(self, value): self._path_list = value @property def edges(self): return list(self._edges) @edges.setter def edges(self, value): self._edges = value @property def vertices(self): return list(self._vertices) @vertices.setter def vertices(self, value): self._vertices = value def add_edge(self, u, v, label, certain): edge = (u, v, label) if certain: self.certain_edges.append(edge) else: self.uncertain_edges.append(edge) def add_edges_from(self, edges, certain): for (u, v, k) in edges: self.add_edge(u, v, k, certain) def remove_edge(self, u, v, label, certain): if certain: self.certain_edges.remove((u, v, label)) else: self.uncertain_edges.remove((u, v, label)) def remove_edges_from(self, edges, certain): for
""" GP + transit example for Kepler 1627 / exoplanet case-studies docs. """ import exoplanet as xo xo.utils.docs_setup() print(f"exoplanet.__version__ = '{xo.__version__}'") ########################################## import lightkurve as lk import numpy as np, matplotlib.pyplot as plt # Get long cadence light curves for all quarters. Median normalize all # quarters, remove nans, and run a 5-sigma outlier clipping. lcf = lk.search_lightcurve( "6184894", mission="Kepler", author="Kepler", cadence="long" ).download_all() lc = lcf.stitch().remove_nans().remove_outliers() # Require non-zero quality flags, since we have an abundance of data. lc = lc[lc.quality == 0] # Make sure that the data type is consistent x = np.ascontiguousarray(lc.time.value, dtype=np.float64) y = np.ascontiguousarray(lc.flux, dtype=np.float64) yerr = np.ascontiguousarray(lc.flux_err, dtype=np.float64) texp = np.median(np.diff(x)) # Normalize around zero for GP fitting. Keep in units of relative flux, rather # than say ppt. mu = np.nanmedian(y) y = (y / mu - 1) yerr = yerr / mu # Visualize the data. # Plot #0: the full dataset # Plot #1: a 100 day slice # Plot #2: center it on the known Kepler ephemeris. plt.plot(x, y, "k") plt.xlim(x.min(), x.max()) plt.xlabel("time [days]") plt.ylabel("relative flux [ppt]") plt.title("Kepler 1627") plt.savefig("temp0.png", bbox_inches='tight') plt.plot(x, y, "k") plt.xlabel("time [days]") plt.ylabel("relative flux [ppt]") plt.xlim([550,650]) plt.title("Kepler 1627") plt.savefig("temp1.png", bbox_inches='tight') plt.plot(x, y, "k") plt.xlabel("time [days]") plt.ylabel("relative flux") plt.xlim([120.6,121]) # transit is here plt.ylim([-30e-3,-5e-3]) plt.title("Kepler 1627 b") plt.savefig("temp2.png", bbox_inches='tight') ########################################## # # Begin main block # import pymc3 as pm import pymc3_ext as pmx import aesara_theano_fallback.tensor as tt from celerite2.theano import terms, GaussianProcess from astropy import units as units, constants as const def build_model(mask=None, start=None): if mask is None: mask = np.ones(len(x), dtype=bool) with pm.Model() as model: # Shared parameters mean = pm.Normal("mean", mu=0, sd=1, testval=0) # Stellar parameters. These are usually determined from spectroscopy # and/or isochrone fits. We set a bound on the R_star prior simply to # show how one might do this. logg_star = pm.Normal("logg_star", mu=4.53, sd=0.05) r_star = pm.Normal("r_star", mu=1.0, sd=0.018) # Here "factor" is defined s.t. factor * 10**logg / r_star = rho factor = 5.141596357654149e-05 rho_star = pm.Deterministic( "rho_star", factor*10**logg_star / r_star ) # Limb-darkening: adopt Kipping 2013. u_star = xo.QuadLimbDark("u_star") star = xo.LimbDarkLightCurve(u_star) # To get Rp/R*, fit for log(depth). This requires an impact parameter # prior from 0 to 1, because otherwise there's a sqrt(1-b^2) in the # conversion that doesn't make sense. See # https://github.com/exoplanet-dev/exoplanet/blob/e99d1bd68654f21efbbf8400a83889a470d2baf7/src/exoplanet/light_curves/limb_dark.py#L73 b = pm.Uniform("b", lower=0, upper=1) log_depth = pm.Normal("log_depth", mu=np.log(1.8e-3), sigma=1) depth = pm.Deterministic("depth", tt.exp(log_depth)) ror = pm.Deterministic( "ror", star.get_ror_from_approx_transit_depth(depth, b), ) r_pl = pm.Deterministic( "r_pl", ror*r_star ) # Orbital parameters for the planet. Use mean values from Holczer+16. t0 = pm.Normal("t0", mu=120.790531, sd=0.02, testval=120.790531) period = pm.Normal("period", mu=7.202806, sd=0.01, testval=7.202806) # Let eccentricity float, for funsies. nplanets = 1 ecs = pmx.UnitDisk( "ecs", shape=(2, nplanets), testval=0.01 * np.ones((2, nplanets)) ) ecc = pm.Deterministic( "ecc", tt.sum(ecs ** 2, axis=0) ) omega = pm.Deterministic( "omega", tt.arctan2(ecs[1], ecs[0]) ) xo.eccentricity.vaneylen19( "ecc_prior", multi=False, shape=nplanets, fixed=True, observed=ecc ) # Define the orbit model. orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, b=b, rho_star=rho_star, r_star=r_star, ecc=ecc, omega=omega ) transit_model = ( mean + tt.sum( star.get_light_curve( orbit=orbit, r=r_pl, t=x, texp=texp), axis=-1 ) ) # Convenience function for plotting. pm.Deterministic( 'transit_pred', star.get_light_curve( orbit=orbit, r=r_pl, t=x[mask], texp=texp ) ) # Use the GP model from the stellar variability tutorial at # https://gallery.exoplanet.codes/en/latest/tutorials/stellar-variability/ # A jitter term describing excess white noise log_jitter = pm.Normal("log_jitter", mu=np.log(np.mean(yerr)), sd=2) # The parameters of the RotationTerm kernel sigma_rot = pm.InverseGamma( "sigma_rot", **pmx.estimate_inverse_gamma_parameters(1, 5) ) # Rotation period is 2.6 days, from Lomb Scargle log_prot = pm.Normal( "log_prot", mu=np.log(2.606418), sd=0.02 ) prot = pm.Deterministic("prot", tt.exp(log_prot)) log_Q0 = pm.Normal( "log_Q0", mu=0, sd=2 ) log_dQ = pm.Normal( "log_dQ", mu=0, sd=2 ) f = pm.Uniform( "f", lower=0.01, upper=1 ) # Set up the Gaussian Process model. See # https://celerite2.readthedocs.io/en/latest/tutorials/first/ for an # introduction. Here, we have a quasiperiodic term: kernel = terms.RotationTerm( sigma=sigma_rot, period=prot, Q0=tt.exp(log_Q0), dQ=tt.exp(log_dQ), f=f, ) # # Note mean of the GP is defined here to be zero. # gp = GaussianProcess( kernel, t=x[mask], diag=yerr[mask]**2 + tt.exp(2 * log_jitter), quiet=True, ) # Compute the Gaussian Process likelihood and add it into the # the PyMC3 model as a "potential" gp.marginal("transit_obs", observed=y[mask]-transit_model) # Compute the GP model prediction for plotting purposes pm.Deterministic( "gp_pred", gp.predict(y[mask]-transit_model) ) # Track planet radius in Jovian radii r_planet = pm.Deterministic( "r_planet", (ror*r_star)*( 1*units.Rsun/(1*units.Rjup) ).cgs.value ) # Optimize the MAP solution. if start is None: start = model.test_point map_soln = start map_soln = pmx.optimize( start=map_soln, vars=[sigma_rot, f, prot, log_Q0, log_dQ] ) map_soln = pmx.optimize( start=map_soln, vars=[log_depth, b, ecc, omega, t0, period, r_star, logg_star, u_star, mean] ) map_soln = pmx.optimize(start=map_soln) return model, map_soln model, map_estimate = build_model() ########################################## import matplotlib as mpl from copy import deepcopy # NOTE: maybe lightkurve has some analog of this function from astrobase? See # https://github.com/waqasbhatti/astrobase; you might need to # ! pip install astrobase from astrobase.lcmath import phase_bin_magseries ########################################## def plot_light_curve(x, y, soln, mask=None): if mask is None: mask = np.ones(len(x), dtype=bool) plt.close("all") fig, axes = plt.subplots(4, 1, figsize=(10, 10), sharex=True) ax = axes[0] if len(x[mask]) > int(2e4): # see https://github.com/matplotlib/matplotlib/issues/5907 mpl.rcParams["agg.path.chunksize"] = 10000 ax.scatter(x[mask], y[mask], c="k", s=0.5, rasterized=True, label="data", linewidths=0, zorder=42) gp_mod = soln["gp_pred"] + soln["mean"] ax.plot(x[mask], gp_mod, color="C2", label="MAP gp model", zorder=41, lw=0.5) ax.legend(fontsize=10) ax.set_ylabel("$f$") ax = axes[1] ax.plot(x[mask], y[mask] - gp_mod, "k", label="data - MAPgp") for i, l in enumerate("b"): mod = soln["transit_pred"][:, i] ax.plot( x[mask], mod, label="planet {0} [model under]".format(l), zorder=-10 ) ax.legend(fontsize=10, loc=3) ax.set_ylabel("$f_\mathrm{dtr}$") ax = axes[2] ax.plot(x[mask], y[mask] - gp_mod, "k", label="data - MAPgp") for i, l in enumerate("b"): mod = soln["transit_pred"][:, i] ax.plot( x[mask], mod, label="planet {0} [model over]".format(l) ) ax.legend(fontsize=10, loc=3) ax.set_ylabel("$f_\mathrm{dtr}$ [zoom]") ymin = np.min(mod)-0.05*abs(np.min(mod)) ymax = abs(ymin) ax.set_ylim([ymin, ymax]) ax = axes[3] mod = gp_mod + np.sum(soln["transit_pred"], axis=-1) ax.plot(x[mask], y[mask] - mod, "k") ax.axhline(0, color="#aaaaaa", lw=1) ax.set_ylabel("residuals") ax.set_xlim(x[mask].min(), x[mask].max()) ax.set_xlabel("time [days]") fig.tight_layout() def doublemedian(x): return np.median(np.median(x, axis=0), axis=0) def doublemean(x): return np.nanmean(np.nanmean(x, axis=0), axis=0) def doublepctile(x, SIGMA=[2.5,97.5]): # [16, 84] for 1-sigma # flatten/merge cores and chains. then percentile over both. return np.percentile( np.reshape( np.array(x), (x.shape[0]*x.shape[1], x.shape[2]) ), SIGMA, axis=0 ) def get_ylimguess(y): ylow = np.nanpercentile(y, 0.1) yhigh = np.nanpercentile(y, 99.9) ydiff = (yhigh-ylow) ymin = ylow - 0.35*ydiff ymax = yhigh + 0.35*ydiff return [ymin,ymax] def plot_phased_light_curve( x, y, yerr, soln, mask=None, from_trace=False, ylimd=None, binsize_minutes=20, map_estimate=None, fullxlim=False, BINMS=3, show_rms_err=True, hlines=None ): """ Plot a phased light curve using either a MAP solution, or using the full MCMC posterior. (Or both). Overkill for a minimum-working-example, but this is what I had already cooked up. Args: soln (az.data.inference_data.InferenceData): Can be MAP solution from PyMC3. Can also be the posterior's trace itself (model.trace.posterior). If the posterior is passed, bands showing the 2-sigma uncertainty interval will be drawn. from_trace (bool): set to be True if using model.trace.posterior as your `soln`. ylimd (dict): dictionary the sets the ylimits of the plot, e.g., `{"A": [-2.2,0.5], "B": [-0.1,0.1]}`. binsize_minutes (float): how many minutes per bin? map_estimate: if passed, this is used as the "best fit" line (useful when doing uncertainty bands from the full MCMC posterior). Otherwise, the nanmean is used. This is most useful when drawing uncertainty bands with `soln` being `model.trace.posterior`. fullxlim (bool): if True, the xlimits of the plot will be the full orbit. Otherwise, it'll be a ~20 hour window centered on the transit. BINMS (float): marker size for binned data points. show_rms_err (bool): if True, a representative error will be drawn for the binned points using the scatter of the out of transit points. hlines (list): if passed, horizontal lines will be drawn. """ if not fullxlim: scale_x = lambda x: x*24 else: scale_x = lambda x: x if mask is None: mask = np.ones(len(x), dtype=bool) plt.close("all") fig = plt.figure(figsize=(8,6)) axd = fig.subplot_mosaic( """ A B """, gridspec_kw={ "height_ratios": [1,1] } ) if from_trace==True: _t0 = np.nanmean(soln["t0"]) _per = np.nanmean(soln["period"]) if len(soln["gp_pred"].shape)==3: # ncores X nchains X time medfunc = doublemean pctfunc = doublepctile elif len(soln["gp_pred"].shape)==2: medfunc = lambda x: np.mean(x, axis=0) pctfunc = lambda x: np.percentile(x, [2.5,97.5], axis=0) else: raise NotImplementedError gp_mod = ( medfunc(soln["gp_pred"]) + medfunc(soln["mean"]) ) lc_mod = ( medfunc(np.sum(soln["transit_pred"], axis=-1)) ) lc_mod_band = ( pctfunc(np.sum(soln["transit_pred"], axis=-1)) ) _yerr = ( np.sqrt(yerr[mask] ** 2 + np.exp(2 * medfunc(soln["log_jitter"]))) ) med_error = np.nanmedian(yerr[mask]) med_jitter = np.nanmedian(np.exp(medfunc(soln["log_jitter"]))) print(42*"-") print(f"WRN! Median σ_f = {med_error:.2e}. " f"Median jitter = {med_jitter:.2e}") print(42*"-") if (from_trace == False) or (map_estimate is
isinstance(hsg_thing, np.ndarray): self.parameters = parameter_dict.copy() # Probably shouldn't shoehorn this in this way self.addenda = [] self.subtrahenda = [] self.ccd_data = np.array(hsg_thing) self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] # This data won't have an error column, so attached a column of ones self.ccd_data = np.column_stack((self.ccd_data, np.ones_like(self.ccd_data[:,1]))) self.ccd_data = np.flipud(self.ccd_data) # Because turning into eV switches direction self.fname = "Live Data" else: raise Exception("I don't know what this file type is {}, type: {}".format( hsg_thing, type(hsg_thing) )) self.proc_data = np.array(self.ccd_data) # proc_data is now a 1600 long array with [frequency (eV), signal (counts / FEL pulse), S.E. of signal mean] # self.parameters["nir_freq"] = 1239.84 / float(self.parameters["nir_lambda"]) self.parameters["nir_freq"] = 1239.84 / float(self.parameters.get("nir_lambda", -1)) # self.parameters["thz_freq"] = 0.000123984 * float(self.parameters["fel_lambda"]) self.parameters["thz_freq"] = 0.000123984 * float(self.parameters.get("fel_lambda", -1)) # self.parameters["nir_power"] = float(self.parameters["nir_power"]) self.parameters["nir_power"] = float(self.parameters.get("nir_power", -1)) try: # This is the new way of doing things. Also, now it's power self.parameters["thz_energy"] = float(self.parameters["pulseEnergies"]["mean"]) self.parameters["thz_energy_std"] = float(self.parameters["pulseEnergies"]["std"]) except: # This is the old way TODO: DEPRECATE THIS self.parameters["thz_energy"] = float(self.parameters.get("fel_power", -1)) # things used in fitting/guessing self.sb_list = np.array([]) self.sb_index = np.array([]) self.sb_dict = {} self.sb_results = np.array([]) self.full_dict = {} def __add__(self, other): """ Add together the image data from self.proc_data, or add a constant to that np.array. It will then combine the addenda and subtrahenda lists, as well as add the fel_pulses together. If type(other) is a CCD object, then it will add the errors as well. Input: self = CCD-like object other = int, float or CCD object Internal: ret.proc_data = the self.proc_data + other(.proc_data) ret.addenda = combination of two input addenda lists This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be added, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Add a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] + other ret.addenda[0] = ret.addenda[0] + other # or add the data of two hsg_spectra together else: if np.isclose(ret.parameters['center_lambda'], other.parameters['center_lambda']): ret.proc_data[:, 1] = self.proc_data[:, 1] + other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.addenda[0] = ret.addenda[0] + other.addenda[0] ret.addenda.extend(other.addenda[1:]) ret.subtrahenda.extend(other.subtrahenda) ret.parameters['fel_pulses'] += other.parameters['fel_pulses'] else: raise Exception('Source: Spectrum.__add__:\nThese are not from the same grating settings') return ret def __sub__(self, other): """ This subtracts constants or other data sets between self.proc_data. I think it even keeps track of what data sets are in the file and how they got there. See how __add__ works for more information. This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be subtracted, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Subtract a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] - other # Need to choose a name ret.addenda[0] = ret.addenda[0] - other # Subtract the data of two hsg_spectra from each other else: if np.isclose(ret.proc_data[0, 0], other.proc_data[0, 0]): ret.proc_data[:, 1] = self.proc_data[:, 1] - other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.subtrahenda.extend(other.addenda[1:]) ret.addenda.extend(other.subtrahenda) else: raise Exception('Source: Spectrum.__sub__:\nThese are not from the same grating settings') return ret def __repr__(self): base = """ fname: {}, Series: {series}, spec_step: {spec_step}, fel_lambda: {fel_lambda}, nir_lambda: {nir_lambda}""".format(os.path.basename(self.fname),**self.parameters) return base __str__ = __repr__ def calc_approx_sb_order(self, test_nir_freq): """ This simple method will simply return a float approximating the order of the frequency input. We need this because the CCD wavelength calibration is not even close to perfect. And it shifts by half a nm sometimes. :param test_nir_freq: the frequency guess of the nth sideband :type test_nir_freq: float :return: The approximate order of the sideband in question :rtype: float """ nir_freq = self.parameters['nir_freq'] thz_freq = self.parameters['thz_freq'] # If thz = 0, prevent error if not thz_freq: thz_freq = 1 approx_order = (test_nir_freq - nir_freq) / thz_freq return approx_order def guess_sidebands(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ Update 05/24/18: Hunter had two different loops for negative order sidebands, then positive order sidebands. They're done pretty much identically, so I've finally merged them into one. Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) try: error = np.array(self.proc_data[:, 2]) except IndexError: # Happens on old data where spectra weren't calculated in the live # software. error = np.ones_like(x_axis) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more.
from django.test import TestCase, Client from django.urls import reverse from django.test.utils import setup_test_environment from bs4 import BeautifulSoup import re import time from projects.models import * from projects.forms import * client = Client() # length of base template, used to test for empty pages LEN_BASE = 2600 class BaseWebsiteTestCase(TestCase): def setUp(self): super() def test_homepage_load(self): url = reverse("projects:home") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_homepage_not_empty(self): url = reverse("projects:home") response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) def test_project_list_load(self): url = reverse("projects:projects_list") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_project_list_not_empty(self): url = reverse("projects:projects_list") response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) def test_project_students_load(self): url = reverse("projects:students") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_project_students_not_empty(self): url = reverse("projects:students") response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) def test_project_educators_load(self): url = reverse("projects:educators") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_project_educators_not_empty(self): url = reverse("projects:educators") response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) def test_project_leaders_load(self): url = reverse("projects:leaders") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_project_leaders_not_empty(self): url = reverse("projects:leaders") response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) VERBOSE = False class TraverseLinksTest(TestCase): def setUp(self): # By default, login as superuser um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD", password="<PASSWORD>") self.client = Client() self.superuser = User.objects.get(username="tom") self.client.login(username="tom", password="<PASSWORD>") @classmethod def setUpTestData(cls): pm = OpenSUTDProjectManager() um = OpenSUTDUserManager() pm.create_project(project_uid="ACAD_00001", title="OpenSUTD Web Platform", caption="Sample project 1", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") um.create_user("dick", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2019, pillar="ISTD") um.create_user("jane", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2021, pillar="ESD") pm.create_project(project_uid="ACAD_00002", title="RandomZZZZZ", caption="Sample project 2", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") pm.set_project_status("ACAD_00001", "ACCEPT") pm.add_user_to_project("ACAD_00001", "dick") pm.add_user_to_project("ACAD_00001", "jane") pm.add_tag_to_project( "ACAD_00001", "rand1,rand2,education,student,policy") pm.add_user_to_project("ACAD_00002", "jane") pm.add_tag_to_project( "ACAD_00002", "rand1,rand2,education,student,policy") def test_traverse_urls(self): # Fill these lists as needed with your site specific URLs to check and to avoid to_traverse_list = ["/", "/projects/", "/students/", "/educators/", "/leaders/"] to_avoid_list = ["javascript:history\.back()", "https://*", "javascript:history\.go\(-1\)", "^mailto:.*"] done_list = [] error_list = [] source_of_link = dict() for link in to_traverse_list: source_of_link[link] = "initial" (to_traverse_list, to_avoid_list, done_list, error_list, source_of_link) = \ self.recurse_into_path( to_traverse_list, to_avoid_list, done_list, error_list, source_of_link) print("END REACHED\nStats:") if VERBOSE: print("\nto_traverse_list = " + str(to_traverse_list)) if VERBOSE: print("\nto_avoid_list = " + str(to_avoid_list)) if VERBOSE: print("\nsource_of_link = " + str(source_of_link)) if VERBOSE: print("\ndone_list = " + str(done_list)) print("Followed " + str(len(done_list)) + " links successfully") print("Avoided " + str(len(to_avoid_list)) + " links") if error_list: print("!! " + str(len(error_list)) + " error(s) : ") for error in error_list: print(str(error) + " found in page " + source_of_link[error[0]]) print("Errors found traversing links") assert False else: print("No errors") def recurse_into_path(self, to_traverse_list, to_avoid_list, done_list, error_list, source_of_link): """ Dives into first item of to_traverse_list Returns: (to_traverse_list, to_avoid_list, done_list, source_of_link) """ if to_traverse_list: url = to_traverse_list.pop() if not match_any(url, to_avoid_list): print("\nSurfing to " + str(url) + ", discovered in " + str(source_of_link[url])) response = self.client.get(url, follow=True) if response.status_code == 200: soup = BeautifulSoup(response.content, "html.parser") text = soup.get_text() for link in soup.find_all("a"): new_link = link.get("href") if VERBOSE: print(" Found link: " + str(new_link)) if match_any(new_link, to_avoid_list): if VERBOSE: print(" Avoiding it") elif new_link in done_list: if VERBOSE: print(" Already done, ignoring") elif new_link in to_traverse_list: if VERBOSE: print(" Already in to traverse list, ignoring") else: if VERBOSE: print( " New, unknown link: Storing it to traverse later") source_of_link[new_link] = url to_traverse_list.append(new_link) done_list.append(url) if VERBOSE: print("Done") else: error_list.append((url, response.status_code)) to_avoid_list.append(url) if VERBOSE: print("Diving into next level") return self.recurse_into_path(to_traverse_list, to_avoid_list, done_list, error_list, source_of_link) else: # Nothing to traverse if VERBOSE: print("Returning to upper level") return to_traverse_list, to_avoid_list, done_list, error_list, source_of_link def match_any(my_string, regexp_list): if my_string: combined = "(" + ")|(".join(regexp_list) + ")" return re.match(combined, my_string) else: # "None" as string always matches return True class SecuredPageTestCase(TestCase): def setUp(self): pm = OpenSUTDProjectManager() pm.create_project(project_uid="ACAD_00001", title="OpenSUTD Web Platform", caption="Sample project 1", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD") def test_auth_approval_view(self): url = reverse("projects:approval") response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_submit_view(self): url = reverse("projects:submit_new") response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_submit_reject(self): url = reverse("projects:reject", args=("ACAD_00001",)) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_submit_approve(self): url = reverse("projects:approve", args=("ACAD_00001",)) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_user_edit(self): url = reverse("projects:user_edit", args=("tom",)) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_project_edit(self): url = reverse("projects:project_edit", args=("ACAD_00001",)) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_auth_project_bypass(self): url = reverse("projects:project_page_bypass", args=("ACAD_00001",)) response = self.client.get(url) # actually a custom 404 page self.assertEqual(response.status_code, 200) class SubmissionFormTest(TestCase): def setUp(self): self.client = Client() um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD", password="<PASSWORD>") self.client.login(username="tom", password="<PASSWORD>") def test_submission_form_entry(self): response = self.client.get(reverse("projects:submit_new")) self.assertEqual(response.status_code, 200) # test submission mechanism form = SubmissionForm({"project_name": "test", "caption": "test caption", "category": "ACAD", "featured_image": "http://pluspng.com/img-png/user-png-icon-male-user-icon-512.png", "github_url": "https://github.com/OpenSUTD/web-platform-prototype", "poster_url": "http://pluspng.com/img-png/user-png-icon-male-user-icon-512.png"}) self.assertEqual(form.is_valid(), True) def test_submission_form_entry_invalid(self): response = self.client.get(reverse("projects:submit_new")) self.assertEqual(response.status_code, 200) # test submission mechanism form = SubmissionForm({"project_name": "", "caption": "", "category": "", "featured_image": "", "github_url": "", "poster_url": ""}) self.assertEqual(form.is_valid(), False) def test_submission_form_entry_not_github(self): response = self.client.get(reverse("projects:submit_new")) self.assertEqual(response.status_code, 200) # test submission mechanism form = SubmissionForm({"project_name": "test", "caption": "test caption", "category": "ACAD", "featured_image": "http://pluspng.com/img-png/user-png-icon-male-user-icon-512.png", "github_url": "https://lolcats.com/OpenSUTD/web-platform-prototype", "poster_url": "http://pluspng.com/img-png/user-png-icon-male-user-icon-512.png"}) self.assertEqual(form.is_valid(), False) class UserProfileFormTest(TestCase): def setUp(self): self.client = Client() um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD", password="<PASSWORD>") self.client.login(username="tom", password="<PASSWORD>") def test_submission_form_entry(self): # test user can actually get to the page response = self.client.get( reverse("projects:user_edit", args=("tom",))) self.assertEqual(response.status_code, 200) # test submission mechanism form = UserProfileForm({"display_name": "tom2", "display_picture": "http://pluspng.com/img-png/user-png-icon-male-user-icon-512.png", "graduation_year": 2019, "pillar": "ISTD", "bio": "Hi I am Tom", "contact_email": "<EMAIL>", "personal_links": "tlkh.design"}) self.assertEqual(form.is_valid(), True) def test_submission_form_entry_invalid(self): # test user can actually get to the page response = self.client.get( reverse("projects:user_edit", args=("tom",))) self.assertEqual(response.status_code, 200) # test submission mechanism form = UserProfileForm({"display_name": "", "display_picture": "", "graduation_year": 2019, "pillar": "", "bio": "", "contact_email": "", "personal_links": ""}) self.assertEqual(form.is_valid(), False) class ProjectEditFormTest(TestCase): def setUp(self): self.client = Client() um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD", password="<PASSWORD>") pm = OpenSUTDProjectManager() pm.create_project(project_uid="ACAD_00001", title="OpenSUTD Web Platform", caption="Sample project 1", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") pm.set_project_status("ACAD_00001", "ACCEPT") self.client.login(username="tom", password="<PASSWORD>") def test_submission_form_entry_invalid(self): # test user can actually get to the page response = self.client.get( reverse("projects:project_edit", args=("ACAD_00001",))) self.assertEqual(response.status_code, 200) # test submission mechanism form = ProjectEditForm({"title": "", "caption": "", "featured_image": "", "url": "", "poster_url": ""}) self.assertEqual(form.is_valid(), False) def test_submission_form_entry(self): # test user can actually get to the page response = self.client.get( reverse("projects:project_edit", args=("ACAD_00001",))) self.assertEqual(response.status_code, 200) # test submission mechanism form = ProjectEditForm({"title": "lalalal", "caption": "lalalal", "featured_image": "lalalal.com", "url": "https://github.com/OpenSUTD/web-platform-prototype", "poster_url": "lalalal.com"}) self.assertEqual(form.is_valid(), True) class LogintoSecuredPageTestCase(TestCase): def setUp(self): self.client = Client() um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD", password="<PASSWORD>") pm = OpenSUTDProjectManager() pm.create_project(project_uid="ACAD_00001", title="OpenSUTD Web Platform", caption="Sample project 1", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") self.client.login(username="tom", password="<PASSWORD>") def test_login_approval_view(self): response = self.client.get(reverse("projects:approval")) self.assertEqual(response.status_code, 200) def test_login_submission_view(self): response = self.client.get(reverse("projects:submit_new")) self.assertEqual(response.status_code, 200) def test_login_user_edit(self): url = reverse("projects:user_edit", args=("tom",)) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_login_project_edit(self): pm = OpenSUTDProjectManager() pm.set_project_status("ACAD_00001", "ACCEPT") url = reverse("projects:project_edit", args=("ACAD_00001",)) response = self.client.get(url) self.assertEqual(response.status_code, 200) class UserTestCase(TestCase): def setUp(self): um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD") um.create_user("jane", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2021, pillar="ESD") def test_user_get_name(self): tom = User.objects.get(username="tom") self.assertEqual(tom.display_name, "<NAME>") jane = User.objects.get(username="jane") self.assertEqual(jane.display_name, "<NAME>") def test_user_get_year(self): tom = User.objects.get(username="tom") self.assertEqual(tom.graduation_year, 2018) jane = User.objects.get(username="jane") self.assertEqual(jane.graduation_year, 2021) def test_user_get_pillar(self): tom = User.objects.get(username="tom") self.assertEqual(tom.pillar, "ISTD") jane = User.objects.get(username="jane") self.assertEqual(jane.pillar, "ESD") # test user profile page contents def test_user_page_load(self): url = reverse("projects:user", args=("tom",)) response = self.client.get(url) self.assertEqual(response.status_code, 200) url = reverse("projects:user", args=("jane",)) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_user_page_not_empty(self): url = reverse("projects:user", args=("tom",)) response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) url = reverse("projects:user", args=("jane",)) response = self.client.get(url) self.assertGreater(len(response.content), LEN_BASE) def test_user_page_name(self): url = reverse("projects:user", args=("tom",)) response = str(self.client.get(url).content) self.assertEqual("<NAME>" in response, True) url = reverse("projects:user", args=("jane",)) response = str(self.client.get(url).content) self.assertEqual("<NAME>" in response, True) def test_user_page_year(self): url = reverse("projects:user", args=("tom",)) response = str(self.client.get(url).content) self.assertEqual("2018" in response, True) url = reverse("projects:user", args=("jane",)) response = str(self.client.get(url).content) self.assertEqual("2021" in response, True) def test_user_page_pillar(self): url = reverse("projects:user", args=("tom",)) response = str(self.client.get(url).content) self.assertEqual("ISTD" in response, True) url = reverse("projects:user", args=("jane",)) response = str(self.client.get(url).content) self.assertEqual("ESD" in response, True) def test_user_page_performance(self): start = time.time() for i in range(10): url = reverse("projects:user", args=("tom",)) response = self.client.get(url) url = reverse("projects:user", args=("jane",)) response = self.client.get(url) duration = time.time() - start self.assertLess(duration, 1.5) class ProjectShowcaseTestCase(TestCase): def setUp(self): pm = OpenSUTDProjectManager() pm.create_project(project_uid="ACAD_00001", title="OpenSUTD Web Platform", caption="Sample project 1", category="ACAD", url="https://github.com/OpenSUTD/web-platform-prototype", poster_url="https://via.placeholder.com/150", featured_image="https://via.placeholder.com/150") um = OpenSUTDUserManager() um.create_user("tom", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2018, pillar="ISTD") um.create_user("jane", display_name="<NAME>", display_picture="https://via.placeholder.com/150", graduation_year=2021, pillar="ESD") def test_project_properties(self): proj = Project.objects.get(project_uid="ACAD_00001") self.assertEqual(proj.title, "OpenSUTD Web Platform") def test_add_user_project(self): pm = OpenSUTDProjectManager() pm.add_user_to_project("ACAD_00001", "tom") proj = Project.objects.get(project_uid="ACAD_00001") self.assertEqual(len(proj.users.all()), 1) pm.add_user_to_project("ACAD_00001", "jane") self.assertEqual(len(proj.users.all()), 2) def test_add_tag_project(self): pm =
<gh_stars>10-100 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'ApplicationCSVMappingParametersArgs', 'ApplicationCatalogConfigurationArgs', 'ApplicationCheckpointConfigurationArgs', 'ApplicationCloudWatchLoggingOptionCloudWatchLoggingOptionArgs', 'ApplicationCodeConfigurationArgs', 'ApplicationCodeContentArgs', 'ApplicationConfigurationArgs', 'ApplicationCustomArtifactConfigurationArgs', 'ApplicationDeployAsApplicationConfigurationArgs', 'ApplicationEnvironmentPropertiesArgs', 'ApplicationFlinkApplicationConfigurationArgs', 'ApplicationGlueDataCatalogConfigurationArgs', 'ApplicationInputLambdaProcessorArgs', 'ApplicationInputParallelismArgs', 'ApplicationInputProcessingConfigurationArgs', 'ApplicationInputSchemaArgs', 'ApplicationInputArgs', 'ApplicationJSONMappingParametersArgs', 'ApplicationKinesisFirehoseInputArgs', 'ApplicationKinesisStreamsInputArgs', 'ApplicationMappingParametersArgs', 'ApplicationMavenReferenceArgs', 'ApplicationMonitoringConfigurationArgs', 'ApplicationOutputResourceDestinationSchemaArgs', 'ApplicationOutputResourceKinesisFirehoseOutputArgs', 'ApplicationOutputResourceKinesisStreamsOutputArgs', 'ApplicationOutputResourceLambdaOutputArgs', 'ApplicationOutputResourceOutputArgs', 'ApplicationParallelismConfigurationArgs', 'ApplicationPropertyGroupArgs', 'ApplicationRecordColumnArgs', 'ApplicationRecordFormatArgs', 'ApplicationReferenceDataSourceCSVMappingParametersArgs', 'ApplicationReferenceDataSourceJSONMappingParametersArgs', 'ApplicationReferenceDataSourceMappingParametersArgs', 'ApplicationReferenceDataSourceRecordColumnArgs', 'ApplicationReferenceDataSourceRecordFormatArgs', 'ApplicationReferenceDataSourceReferenceDataSourceArgs', 'ApplicationReferenceDataSourceReferenceSchemaArgs', 'ApplicationReferenceDataSourceS3ReferenceDataSourceArgs', 'ApplicationS3ContentBaseLocationArgs', 'ApplicationS3ContentLocationArgs', 'ApplicationSnapshotConfigurationArgs', 'ApplicationSqlApplicationConfigurationArgs', 'ApplicationTagArgs', 'ApplicationZeppelinApplicationConfigurationArgs', 'ApplicationZeppelinMonitoringConfigurationArgs', ] @pulumi.input_type class ApplicationCSVMappingParametersArgs: def __init__(__self__, *, record_column_delimiter: pulumi.Input[str], record_row_delimiter: pulumi.Input[str]): pulumi.set(__self__, "record_column_delimiter", record_column_delimiter) pulumi.set(__self__, "record_row_delimiter", record_row_delimiter) @property @pulumi.getter(name="recordColumnDelimiter") def record_column_delimiter(self) -> pulumi.Input[str]: return pulumi.get(self, "record_column_delimiter") @record_column_delimiter.setter def record_column_delimiter(self, value: pulumi.Input[str]): pulumi.set(self, "record_column_delimiter", value) @property @pulumi.getter(name="recordRowDelimiter") def record_row_delimiter(self) -> pulumi.Input[str]: return pulumi.get(self, "record_row_delimiter") @record_row_delimiter.setter def record_row_delimiter(self, value: pulumi.Input[str]): pulumi.set(self, "record_row_delimiter", value) @pulumi.input_type class ApplicationCatalogConfigurationArgs: def __init__(__self__, *, glue_data_catalog_configuration: Optional[pulumi.Input['ApplicationGlueDataCatalogConfigurationArgs']] = None): if glue_data_catalog_configuration is not None: pulumi.set(__self__, "glue_data_catalog_configuration", glue_data_catalog_configuration) @property @pulumi.getter(name="glueDataCatalogConfiguration") def glue_data_catalog_configuration(self) -> Optional[pulumi.Input['ApplicationGlueDataCatalogConfigurationArgs']]: return pulumi.get(self, "glue_data_catalog_configuration") @glue_data_catalog_configuration.setter def glue_data_catalog_configuration(self, value: Optional[pulumi.Input['ApplicationGlueDataCatalogConfigurationArgs']]): pulumi.set(self, "glue_data_catalog_configuration", value) @pulumi.input_type class ApplicationCheckpointConfigurationArgs: def __init__(__self__, *, configuration_type: pulumi.Input[str], checkpoint_interval: Optional[pulumi.Input[int]] = None, checkpointing_enabled: Optional[pulumi.Input[bool]] = None, min_pause_between_checkpoints: Optional[pulumi.Input[int]] = None): pulumi.set(__self__, "configuration_type", configuration_type) if checkpoint_interval is not None: pulumi.set(__self__, "checkpoint_interval", checkpoint_interval) if checkpointing_enabled is not None: pulumi.set(__self__, "checkpointing_enabled", checkpointing_enabled) if min_pause_between_checkpoints is not None: pulumi.set(__self__, "min_pause_between_checkpoints", min_pause_between_checkpoints) @property @pulumi.getter(name="configurationType") def configuration_type(self) -> pulumi.Input[str]: return pulumi.get(self, "configuration_type") @configuration_type.setter def configuration_type(self, value: pulumi.Input[str]): pulumi.set(self, "configuration_type", value) @property @pulumi.getter(name="checkpointInterval") def checkpoint_interval(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "checkpoint_interval") @checkpoint_interval.setter def checkpoint_interval(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "checkpoint_interval", value) @property @pulumi.getter(name="checkpointingEnabled") def checkpointing_enabled(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "checkpointing_enabled") @checkpointing_enabled.setter def checkpointing_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "checkpointing_enabled", value) @property @pulumi.getter(name="minPauseBetweenCheckpoints") def min_pause_between_checkpoints(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "min_pause_between_checkpoints") @min_pause_between_checkpoints.setter def min_pause_between_checkpoints(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "min_pause_between_checkpoints", value) @pulumi.input_type class ApplicationCloudWatchLoggingOptionCloudWatchLoggingOptionArgs: def __init__(__self__, *, log_stream_arn: pulumi.Input[str]): pulumi.set(__self__, "log_stream_arn", log_stream_arn) @property @pulumi.getter(name="logStreamARN") def log_stream_arn(self) -> pulumi.Input[str]: return pulumi.get(self, "log_stream_arn") @log_stream_arn.setter def log_stream_arn(self, value: pulumi.Input[str]): pulumi.set(self, "log_stream_arn", value) @pulumi.input_type class ApplicationCodeConfigurationArgs: def __init__(__self__, *, code_content: pulumi.Input['ApplicationCodeContentArgs'], code_content_type: pulumi.Input[str]): pulumi.set(__self__, "code_content", code_content) pulumi.set(__self__, "code_content_type", code_content_type) @property @pulumi.getter(name="codeContent") def code_content(self) -> pulumi.Input['ApplicationCodeContentArgs']: return pulumi.get(self, "code_content") @code_content.setter def code_content(self, value: pulumi.Input['ApplicationCodeContentArgs']): pulumi.set(self, "code_content", value) @property @pulumi.getter(name="codeContentType") def code_content_type(self) -> pulumi.Input[str]: return pulumi.get(self, "code_content_type") @code_content_type.setter def code_content_type(self, value: pulumi.Input[str]): pulumi.set(self, "code_content_type", value) @pulumi.input_type class ApplicationCodeContentArgs: def __init__(__self__, *, s3_content_location: Optional[pulumi.Input['ApplicationS3ContentLocationArgs']] = None, text_content: Optional[pulumi.Input[str]] = None, zip_file_content: Optional[pulumi.Input[str]] = None): if s3_content_location is not None: pulumi.set(__self__, "s3_content_location", s3_content_location) if text_content is not None: pulumi.set(__self__, "text_content", text_content) if zip_file_content is not None: pulumi.set(__self__, "zip_file_content", zip_file_content) @property @pulumi.getter(name="s3ContentLocation") def s3_content_location(self) -> Optional[pulumi.Input['ApplicationS3ContentLocationArgs']]: return pulumi.get(self, "s3_content_location") @s3_content_location.setter def s3_content_location(self, value: Optional[pulumi.Input['ApplicationS3ContentLocationArgs']]): pulumi.set(self, "s3_content_location", value) @property @pulumi.getter(name="textContent") def text_content(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "text_content") @text_content.setter def text_content(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "text_content", value) @property @pulumi.getter(name="zipFileContent") def zip_file_content(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "zip_file_content") @zip_file_content.setter def zip_file_content(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "zip_file_content", value) @pulumi.input_type class ApplicationConfigurationArgs: def __init__(__self__, *, application_code_configuration: Optional[pulumi.Input['ApplicationCodeConfigurationArgs']] = None, application_snapshot_configuration: Optional[pulumi.Input['ApplicationSnapshotConfigurationArgs']] = None, environment_properties: Optional[pulumi.Input['ApplicationEnvironmentPropertiesArgs']] = None, flink_application_configuration: Optional[pulumi.Input['ApplicationFlinkApplicationConfigurationArgs']] = None, sql_application_configuration: Optional[pulumi.Input['ApplicationSqlApplicationConfigurationArgs']] = None, zeppelin_application_configuration: Optional[pulumi.Input['ApplicationZeppelinApplicationConfigurationArgs']] = None): if application_code_configuration is not None: pulumi.set(__self__, "application_code_configuration", application_code_configuration) if application_snapshot_configuration is not None: pulumi.set(__self__, "application_snapshot_configuration", application_snapshot_configuration) if environment_properties is not None: pulumi.set(__self__, "environment_properties", environment_properties) if flink_application_configuration is not None: pulumi.set(__self__, "flink_application_configuration", flink_application_configuration) if sql_application_configuration is not None: pulumi.set(__self__, "sql_application_configuration", sql_application_configuration) if zeppelin_application_configuration is not None: pulumi.set(__self__, "zeppelin_application_configuration", zeppelin_application_configuration) @property @pulumi.getter(name="applicationCodeConfiguration") def application_code_configuration(self) -> Optional[pulumi.Input['ApplicationCodeConfigurationArgs']]: return pulumi.get(self, "application_code_configuration") @application_code_configuration.setter def application_code_configuration(self, value: Optional[pulumi.Input['ApplicationCodeConfigurationArgs']]): pulumi.set(self, "application_code_configuration", value) @property @pulumi.getter(name="applicationSnapshotConfiguration") def application_snapshot_configuration(self) -> Optional[pulumi.Input['ApplicationSnapshotConfigurationArgs']]: return pulumi.get(self, "application_snapshot_configuration") @application_snapshot_configuration.setter def application_snapshot_configuration(self, value: Optional[pulumi.Input['ApplicationSnapshotConfigurationArgs']]): pulumi.set(self, "application_snapshot_configuration", value) @property @pulumi.getter(name="environmentProperties") def environment_properties(self) -> Optional[pulumi.Input['ApplicationEnvironmentPropertiesArgs']]: return pulumi.get(self, "environment_properties") @environment_properties.setter def environment_properties(self, value: Optional[pulumi.Input['ApplicationEnvironmentPropertiesArgs']]): pulumi.set(self, "environment_properties", value) @property @pulumi.getter(name="flinkApplicationConfiguration") def flink_application_configuration(self) -> Optional[pulumi.Input['ApplicationFlinkApplicationConfigurationArgs']]: return pulumi.get(self, "flink_application_configuration") @flink_application_configuration.setter def flink_application_configuration(self, value: Optional[pulumi.Input['ApplicationFlinkApplicationConfigurationArgs']]): pulumi.set(self, "flink_application_configuration", value) @property @pulumi.getter(name="sqlApplicationConfiguration") def sql_application_configuration(self) -> Optional[pulumi.Input['ApplicationSqlApplicationConfigurationArgs']]: return pulumi.get(self, "sql_application_configuration") @sql_application_configuration.setter def sql_application_configuration(self, value: Optional[pulumi.Input['ApplicationSqlApplicationConfigurationArgs']]): pulumi.set(self, "sql_application_configuration", value) @property @pulumi.getter(name="zeppelinApplicationConfiguration") def zeppelin_application_configuration(self) -> Optional[pulumi.Input['ApplicationZeppelinApplicationConfigurationArgs']]: return pulumi.get(self, "zeppelin_application_configuration") @zeppelin_application_configuration.setter def zeppelin_application_configuration(self, value: Optional[pulumi.Input['ApplicationZeppelinApplicationConfigurationArgs']]): pulumi.set(self, "zeppelin_application_configuration", value) @pulumi.input_type class ApplicationCustomArtifactConfigurationArgs: def __init__(__self__, *, artifact_type: pulumi.Input[str], maven_reference: Optional[pulumi.Input['ApplicationMavenReferenceArgs']] = None, s3_content_location: Optional[pulumi.Input['ApplicationS3ContentLocationArgs']] = None): pulumi.set(__self__, "artifact_type", artifact_type) if maven_reference is not None: pulumi.set(__self__, "maven_reference", maven_reference) if s3_content_location is not None: pulumi.set(__self__, "s3_content_location", s3_content_location) @property @pulumi.getter(name="artifactType") def artifact_type(self) -> pulumi.Input[str]: return pulumi.get(self, "artifact_type") @artifact_type.setter def artifact_type(self, value: pulumi.Input[str]): pulumi.set(self, "artifact_type", value) @property @pulumi.getter(name="mavenReference") def maven_reference(self) -> Optional[pulumi.Input['ApplicationMavenReferenceArgs']]: return pulumi.get(self, "maven_reference") @maven_reference.setter def maven_reference(self, value: Optional[pulumi.Input['ApplicationMavenReferenceArgs']]): pulumi.set(self, "maven_reference", value) @property @pulumi.getter(name="s3ContentLocation") def s3_content_location(self) -> Optional[pulumi.Input['ApplicationS3ContentLocationArgs']]: return pulumi.get(self, "s3_content_location") @s3_content_location.setter def s3_content_location(self, value: Optional[pulumi.Input['ApplicationS3ContentLocationArgs']]): pulumi.set(self, "s3_content_location", value) @pulumi.input_type class ApplicationDeployAsApplicationConfigurationArgs: def __init__(__self__, *, s3_content_location: pulumi.Input['ApplicationS3ContentBaseLocationArgs']): pulumi.set(__self__, "s3_content_location", s3_content_location) @property @pulumi.getter(name="s3ContentLocation") def s3_content_location(self) -> pulumi.Input['ApplicationS3ContentBaseLocationArgs']: return pulumi.get(self, "s3_content_location") @s3_content_location.setter def s3_content_location(self, value: pulumi.Input['ApplicationS3ContentBaseLocationArgs']): pulumi.set(self, "s3_content_location", value) @pulumi.input_type class ApplicationEnvironmentPropertiesArgs: def __init__(__self__, *, property_groups: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationPropertyGroupArgs']]]] = None): if property_groups is not None: pulumi.set(__self__, "property_groups", property_groups) @property @pulumi.getter(name="propertyGroups") def property_groups(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationPropertyGroupArgs']]]]: return pulumi.get(self, "property_groups") @property_groups.setter def property_groups(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationPropertyGroupArgs']]]]): pulumi.set(self, "property_groups", value) @pulumi.input_type class ApplicationFlinkApplicationConfigurationArgs: def __init__(__self__, *, checkpoint_configuration: Optional[pulumi.Input['ApplicationCheckpointConfigurationArgs']] = None, monitoring_configuration: Optional[pulumi.Input['ApplicationMonitoringConfigurationArgs']] = None, parallelism_configuration: Optional[pulumi.Input['ApplicationParallelismConfigurationArgs']] = None): if checkpoint_configuration is not None: pulumi.set(__self__, "checkpoint_configuration", checkpoint_configuration) if monitoring_configuration is not None: pulumi.set(__self__, "monitoring_configuration", monitoring_configuration) if parallelism_configuration is not None: pulumi.set(__self__, "parallelism_configuration", parallelism_configuration) @property @pulumi.getter(name="checkpointConfiguration") def checkpoint_configuration(self) -> Optional[pulumi.Input['ApplicationCheckpointConfigurationArgs']]: return pulumi.get(self, "checkpoint_configuration") @checkpoint_configuration.setter def checkpoint_configuration(self, value: Optional[pulumi.Input['ApplicationCheckpointConfigurationArgs']]): pulumi.set(self, "checkpoint_configuration", value) @property @pulumi.getter(name="monitoringConfiguration") def monitoring_configuration(self) -> Optional[pulumi.Input['ApplicationMonitoringConfigurationArgs']]: return pulumi.get(self, "monitoring_configuration") @monitoring_configuration.setter def monitoring_configuration(self, value: Optional[pulumi.Input['ApplicationMonitoringConfigurationArgs']]): pulumi.set(self, "monitoring_configuration", value) @property @pulumi.getter(name="parallelismConfiguration") def parallelism_configuration(self) -> Optional[pulumi.Input['ApplicationParallelismConfigurationArgs']]: return pulumi.get(self, "parallelism_configuration") @parallelism_configuration.setter def parallelism_configuration(self, value: Optional[pulumi.Input['ApplicationParallelismConfigurationArgs']]): pulumi.set(self, "parallelism_configuration", value) @pulumi.input_type class ApplicationGlueDataCatalogConfigurationArgs: def __init__(__self__, *, database_arn: Optional[pulumi.Input[str]] = None): if database_arn is not None: pulumi.set(__self__, "database_arn", database_arn) @property @pulumi.getter(name="databaseARN") def database_arn(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "database_arn") @database_arn.setter def database_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "database_arn", value) @pulumi.input_type class ApplicationInputLambdaProcessorArgs: def __init__(__self__, *, resource_arn: pulumi.Input[str]): pulumi.set(__self__, "resource_arn", resource_arn) @property @pulumi.getter(name="resourceARN") def resource_arn(self) -> pulumi.Input[str]: return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self, "resource_arn", value) @pulumi.input_type class ApplicationInputParallelismArgs: def __init__(__self__, *, count: Optional[pulumi.Input[int]] = None): if count is not None: pulumi.set(__self__, "count", count) @property @pulumi.getter def count(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "count") @count.setter def count(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "count", value) @pulumi.input_type class ApplicationInputProcessingConfigurationArgs: def __init__(__self__, *, input_lambda_processor: Optional[pulumi.Input['ApplicationInputLambdaProcessorArgs']] = None): if input_lambda_processor is not None: pulumi.set(__self__, "input_lambda_processor", input_lambda_processor) @property @pulumi.getter(name="inputLambdaProcessor") def input_lambda_processor(self) -> Optional[pulumi.Input['ApplicationInputLambdaProcessorArgs']]: return pulumi.get(self, "input_lambda_processor") @input_lambda_processor.setter def input_lambda_processor(self, value: Optional[pulumi.Input['ApplicationInputLambdaProcessorArgs']]): pulumi.set(self, "input_lambda_processor", value) @pulumi.input_type class ApplicationInputSchemaArgs: def __init__(__self__, *, record_columns: pulumi.Input[Sequence[pulumi.Input['ApplicationRecordColumnArgs']]], record_format: pulumi.Input['ApplicationRecordFormatArgs'], record_encoding: Optional[pulumi.Input[str]] = None): pulumi.set(__self__, "record_columns", record_columns) pulumi.set(__self__, "record_format", record_format) if record_encoding is not None: pulumi.set(__self__, "record_encoding", record_encoding) @property @pulumi.getter(name="recordColumns") def record_columns(self) -> pulumi.Input[Sequence[pulumi.Input['ApplicationRecordColumnArgs']]]: return pulumi.get(self, "record_columns") @record_columns.setter def record_columns(self, value: pulumi.Input[Sequence[pulumi.Input['ApplicationRecordColumnArgs']]]): pulumi.set(self, "record_columns", value) @property @pulumi.getter(name="recordFormat") def record_format(self) -> pulumi.Input['ApplicationRecordFormatArgs']: return pulumi.get(self, "record_format") @record_format.setter def record_format(self, value: pulumi.Input['ApplicationRecordFormatArgs']): pulumi.set(self, "record_format", value) @property @pulumi.getter(name="recordEncoding") def record_encoding(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "record_encoding") @record_encoding.setter def record_encoding(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "record_encoding", value) @pulumi.input_type class ApplicationInputArgs: def __init__(__self__, *, input_schema: pulumi.Input['ApplicationInputSchemaArgs'], name_prefix: pulumi.Input[str], input_parallelism: Optional[pulumi.Input['ApplicationInputParallelismArgs']] = None, input_processing_configuration: Optional[pulumi.Input['ApplicationInputProcessingConfigurationArgs']] = None, kinesis_firehose_input: Optional[pulumi.Input['ApplicationKinesisFirehoseInputArgs']] = None, kinesis_streams_input: Optional[pulumi.Input['ApplicationKinesisStreamsInputArgs']] = None): pulumi.set(__self__, "input_schema", input_schema) pulumi.set(__self__, "name_prefix", name_prefix) if input_parallelism is not None: pulumi.set(__self__, "input_parallelism", input_parallelism) if input_processing_configuration is not None: pulumi.set(__self__, "input_processing_configuration", input_processing_configuration) if kinesis_firehose_input is not None: pulumi.set(__self__, "kinesis_firehose_input", kinesis_firehose_input) if kinesis_streams_input is not None: pulumi.set(__self__, "kinesis_streams_input", kinesis_streams_input) @property @pulumi.getter(name="inputSchema") def input_schema(self) -> pulumi.Input['ApplicationInputSchemaArgs']: return pulumi.get(self, "input_schema") @input_schema.setter def input_schema(self, value: pulumi.Input['ApplicationInputSchemaArgs']): pulumi.set(self, "input_schema", value) @property @pulumi.getter(name="namePrefix") def name_prefix(self) -> pulumi.Input[str]: return pulumi.get(self, "name_prefix") @name_prefix.setter def name_prefix(self, value: pulumi.Input[str]): pulumi.set(self, "name_prefix", value) @property @pulumi.getter(name="inputParallelism") def input_parallelism(self) -> Optional[pulumi.Input['ApplicationInputParallelismArgs']]: return pulumi.get(self, "input_parallelism") @input_parallelism.setter def input_parallelism(self, value: Optional[pulumi.Input['ApplicationInputParallelismArgs']]): pulumi.set(self, "input_parallelism", value) @property @pulumi.getter(name="inputProcessingConfiguration") def input_processing_configuration(self) -> Optional[pulumi.Input['ApplicationInputProcessingConfigurationArgs']]: return pulumi.get(self, "input_processing_configuration") @input_processing_configuration.setter def input_processing_configuration(self, value: Optional[pulumi.Input['ApplicationInputProcessingConfigurationArgs']]): pulumi.set(self, "input_processing_configuration", value) @property @pulumi.getter(name="kinesisFirehoseInput") def kinesis_firehose_input(self) -> Optional[pulumi.Input['ApplicationKinesisFirehoseInputArgs']]: return pulumi.get(self, "kinesis_firehose_input") @kinesis_firehose_input.setter def kinesis_firehose_input(self, value: Optional[pulumi.Input['ApplicationKinesisFirehoseInputArgs']]): pulumi.set(self, "kinesis_firehose_input", value) @property @pulumi.getter(name="kinesisStreamsInput") def kinesis_streams_input(self) -> Optional[pulumi.Input['ApplicationKinesisStreamsInputArgs']]: return pulumi.get(self, "kinesis_streams_input") @kinesis_streams_input.setter def kinesis_streams_input(self, value: Optional[pulumi.Input['ApplicationKinesisStreamsInputArgs']]): pulumi.set(self, "kinesis_streams_input", value) @pulumi.input_type class ApplicationJSONMappingParametersArgs: def __init__(__self__, *, record_row_path: pulumi.Input[str]): pulumi.set(__self__, "record_row_path", record_row_path) @property @pulumi.getter(name="recordRowPath") def record_row_path(self) -> pulumi.Input[str]: return pulumi.get(self, "record_row_path") @record_row_path.setter def record_row_path(self, value: pulumi.Input[str]): pulumi.set(self, "record_row_path", value) @pulumi.input_type class ApplicationKinesisFirehoseInputArgs: def __init__(__self__, *, resource_arn: pulumi.Input[str]): pulumi.set(__self__, "resource_arn", resource_arn) @property @pulumi.getter(name="resourceARN") def resource_arn(self) -> pulumi.Input[str]: return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self,
from __future__ import division import logging import sys import os import math from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import xml.etree.ElementTree as ET from collections import OrderedDict import numpy as NP from scipy.constants import mu_0 from scipy.io import savemat from scipy.interpolate import CubicSpline from ..signal.spectrum import nextpow2 from ..mag.iaga2002 import parse from ..util.nan import nan_interp from ..util.date import toJ2000 def calc_e_3d(Bx, By, Zxx_function, Zxy_function, Zyx_function, Zyy_function, interval): """ Calculate the electric field induced by the magnetic field (*Bx*, eastward oriented magnetic field intensity, and *By*, northward oriented magnetic field intensity). *Zxx_function*, *Z_xy_function*, *Z_yx_function*, and *Z_yy_function* are the surface impedance functions (input is angular frequency [rad] and output is impedance [Ohms]). Return the tuple *Ex*, *Ey* (same orientation as the magnetic field). Units: (input) Bx, By: [T] (input) Zxx_function: [rad] -> [Ohm] (input) Zxy_function: [rad] -> [Ohm] (input) Zyx_function: [rad] -> [Ohm] (input) Zyy_function: [rad] -> [Ohm] (output) Ex, Ey: [V/m] """ # This function is the reimplementation of Prof. Zhu's matlab code # which is based on the algorithm detailed in the NERC Application # Guide, Dec. 2013. Note that the NERC Guide contains a sign error # that has been corrected in the code below. # function global variables lp = 60 # length at beginning and end of time series to fit # detrend parameters p = 60 # length at beginning and end of time series for # frequency domain window # get the FFT size assert len(Bx) == len(By) N = len(Bx) Nfft = nextpow2(N) # zero-mean and remove linear trend from the magnetic time series # data ax = NP.mean(Bx[:lp]) bx = NP.mean(Bx[-lp-1:]) N_range = NP.arange(1, N+1) cx = ax * (N - N_range) / N + bx * N_range / N Bx0 = Bx - cx ay = NP.mean(By[:lp]) by = NP.mean(By[-lp-1:]) cy = ay * (N - N_range) / N + by * N_range / N By0 = By - cy # window the magnetic data time series wp = NP.hstack((0.5 * (1 - NP.cos(2 * math.pi * NP.arange(0, p/2) / p)), NP.ones(N - p), 0.5 * (1 - NP.cos(2 * math.pi * NP.arange(p/2 - 1, -1, -1) / p)))) Bx1 = Bx0 * wp By1 = By0 * wp # compute FFT Sbx = NP.fft.fft(Bx1, n=Nfft) / N Sby = NP.fft.fft(By1, n=Nfft) / N freq = NP.arange(0, Nfft) / Nfft / interval omega = 2 * math.pi * freq Zxx_positive = Zxx_function(omega[1:]) Zxx = NP.hstack(([0], Zxx_positive)) Zxx2 = NP.hstack((Zxx[:(int(Nfft/2)+1)], NP.conj(Zxx[1:int(Nfft/2)])[::-1])) Zxy_positive = Zxy_function(omega[1:]) Zxy = NP.hstack(([0], Zxy_positive)) Zxy2 = NP.hstack((Zxy[:(int(Nfft/2)+1)], NP.conj(Zxy[1:int(Nfft/2)])[::-1])) Zyx_positive = Zyx_function(omega[1:]) Zyx = NP.hstack(([0], Zyx_positive)) Zyx2 = NP.hstack((Zyx[:(int(Nfft/2)+1)], NP.conj(Zyx[1:int(Nfft/2)])[::-1])) Zyy_positive = Zyy_function(omega[1:]) Zyy = NP.hstack(([0], Zyy_positive)) Zyy2 = NP.hstack((Zyy[:(int(Nfft/2)+1)], NP.conj(Zyy[1:int(Nfft/2)])[::-1])) Se_x = [] Se_y = [] for Zxx_i, Zxy_i, Zyx_i, Zyy_i, Sbx_i, Sby_i in zip(Zxx2, Zxy2, Zyx2, Zyy2, Sbx, Sby): Z = NP.array([[Zxx_i, Zxy_i], [Zyx_i, Zyy_i]]) Sb_i = NP.array([[Sbx_i / mu_0], [Sby_i / mu_0]]) Se_i = NP.dot(Z, Sb_i) Se_x.append(Se_i[0, 0]) Se_y.append(Se_i[1, 0]) Ex = NP.real(NP.fft.ifft(Se_x, Nfft) * N) Ey = NP.real(NP.fft.ifft(Se_y, Nfft) * N) return (Ex[:N], Ey[:N]) def parse_xml(xml_fname): """ Parse the E-M transfer function file *xml_fname* returning a mapping between period keys (in [s]) and the 2x2 matrices containing the associated Zxx, Zxy, Zyx, and Zyy parameters (in [mV / km] / [nT]). These files are available at http://ds.iris.edu/spud/emtf. """ tree = ET.parse(xml_fname) root = tree.getroot() data_list = root.findall('Data') assert len(data_list) == 1 data = data_list[0] Z_map = OrderedDict() for period in data.findall('Period'): Z_list = period.findall('Z') assert len(Z_list) == 1 Z = Z_list[0] values = [] for value, name in zip(Z, ['Zxx', 'Zxy', 'Zyx', 'Zyy']): if value.attrib['name'] != name and value.attrib['name'] != name.upper(): raise ValueError('name mismatch ({} != {})'.format(value.attrib['name'], name)) values.append(complex(*map(float, value.text.split()))) Z_array = NP.array(values) Z_array.shape = 2, 2 Z_map[float(period.attrib['value'])] = Z_array return Z_map def parse_xml_header(xml_fname): """ Parse the E-M transfer function file *xml_fname* returning a mapping of site specific information, such as location and data quality. """ header_map = {} tree = ET.parse(xml_fname) root = tree.getroot() copyright_list = root.findall('Copyright') assert len(copyright_list) == 1 copyright_ = copyright_list[0] for copyright_node in copyright_: if copyright_node.tag == 'Acknowledgement': header_map['acknowledgement'] = copyright_node.text site_list = root.findall('Site') assert len(site_list) == 1 site = site_list[0] for site_node in site: if site_node.tag == 'Id': header_map['id'] = site_node.text elif site_node.tag == 'Location': for child in site_node: if child.tag == 'Latitude': header_map['lat'] = float(child.text) elif child.tag == 'Longitude': header_map['lon'] = float(child.text) elif child.tag == 'Elevation': assert child.attrib['units'] == 'meters' header_map['el'] = float(child.text) elif site_node.tag == 'DataQualityNotes': for child in site_node: if child.tag == 'Rating': header_map['rating'] = int(child.text) elif child.tag == 'GoodFromPeriod': header_map['good_from'] = float(child.text) try: header_map['good_to_mHz'] = 1/float(child.text) * 1e3 except ZeroDivisionError: header_map['good_to_mHz'] = float('inf') elif child.tag == 'GoodToPeriod': header_map['good_to'] = float(child.text) try: header_map['good_from_mHz'] = 1/float(child.text) * 1e3 except ZeroDivisionError: header_map['good_from_mHz'] = float('inf') elif child.tag == 'Comments': header_map['data_quality_comments'] = child.text elif site_node.tag == 'DataQualityWarnings': for child in site_node: if child.tag == 'Flag': header_map['data_quality_flag'] = int(child.text) elif child.tag == 'Comments': header_map['data_quality_warning_comments'] = child.text elif site_node.tag == 'Acknowledgment': header_map['acknowledgment'] = site_node.text return header_map class Zw_interpolator(object): def __init__(self, Z_map, extrapolate0=False): """ Construct a cubic-spline 3-D E-M transfer function interpolater using the information in *Z_map* returned from :func:`parse_xml` as the function samples. If *extrapolate0*, then 0s are inserted in the transfer function response where extrapolation would occur (this happens when transfer function response is requested at frequencies outside the range provided in the .XML file record). """ self.Z_map = Z_map periods = Z_map.keys() self.f = NP.array([1/x for x in periods[::-1]]) self.omega = 2 * math.pi * self.f self.Zxx_interp = CubicSpline(self.omega, [x[0, 0] for x in Z_map.values()[::-1]], extrapolate=False) self.Zxy_interp = CubicSpline(self.omega, [x[0, 1] for x in Z_map.values()[::-1]], extrapolate=False) self.Zyx_interp = CubicSpline(self.omega, [x[1, 0] for x in Z_map.values()[::-1]], extrapolate=False) self.Zyy_interp = CubicSpline(self.omega, [x[1, 1] for x in Z_map.values()[::-1]], extrapolate=False) self.key_map = {'xx': self.Zxx_interp, 'xy': self.Zxy_interp, 'yx': self.Zyx_interp, 'yy': self.Zyy_interp} self.extrapolate0 = extrapolate0 def __call__(self, omega, key): """ Return the interpolated value of the transfer function (*key* is xx, xy, yx, or yy) at angular frequency *omega*. The units of *omega* and the output are the same as *Z_map* ([rad] and [mV/km]/[nT] by default). """ if self.extrapolate0: y = NP.zeros_like(omega, dtype=NP.complex128) I = NP.where((omega >= self.omega[0]) & (omega <= self.omega[-1])) y[I] = self.key_map[key](NP.asarray(omega)[I]) return y return self.key_map[key](omega) def apply_transfer_function(Bx, By, interval, xml_fname, extrapolate0=False): """ Filter *Bx* and *By* (in [T]) with 3-D transfer function where *interval* is the sample period (in [s]). Uses the 3-D transfer function model given in *xml_fname*. Return Ex and Ey (in [V/m]). If *extrapolate0*, use 0s in the transfer function response at frequencies outside the range provided in *xml_fname*. """ # setup surface impedance function Z_map = parse_xml(xml_fname) interp = Zw_interpolator(Z_map, extrapolate0=extrapolate0) # mu_0 * 1e3 converts from [mv / km] / [nT] to [Ohm] Zxx_function = lambda omega: interp(omega, 'xx') * mu_0 * 1e3 Zxy_function = lambda omega: interp(omega, 'xy') * mu_0 * 1e3 Zyx_function = lambda omega: interp(omega, 'yx') * mu_0 * 1e3 Zyy_function = lambda omega: interp(omega, 'yy') * mu_0 * 1e3 # calculate E field Ex, Ey = calc_e_3d(nan_interp(Bx), nan_interp(By), Zxx_function, Zxy_function, Zyx_function, Zyy_function, interval) return Ex, Ey def process(output_mat_fname, input_iaga2002_fname, xml_fname, save_B=False): """ End-to-end processing of an IAGA2002 magnetometer data record *input_iaga2002_fname* to the output file *output_mat_fname* containing the calculated E-field (units are [V/m]). Use the 3-D transfer function model given in *xml_fname.* Also save the B-field information if *save_B*. """ # gather Bx and By magnetometer measurements _, data_map = parse(input_iaga2002_fname) interval = int((data_map.keys()[1] - data_map.keys()[0]).total_seconds()) Bx = nan_interp([record.x * 1e-9 for record in data_map.itervalues()]) By = nan_interp([record.y * 1e-9 for record in data_map.itervalues()]) # filter with transfer function Ex, Ey = apply_transfer_function(Bx, By, interval, xml_fname) # save E field stn_name = os.path.basename(input_iaga2002_fname)[:3] j2000 = map(toJ2000, data_map.iterkeys()) mdict = {'Ex': Ex, 'Ey': Ey, 'j2000': j2000, 'input_fname': os.path.abspath(input_iaga2002_fname), 'xml_fname': os.path.abspath(xml_fname)} if save_B: mdict['Bx'] = Bx mdict['By'] = By mdict['Bx_raw'] = [x.x * 1e-9 for x in data_map.itervalues()] mdict['By_raw'] = [x.y * 1e-9 for x in data_map.itervalues()] savemat(output_mat_fname, mdict) return output_mat_fname def main(argv=None): if argv is None: argv = sys.argv
""" A ProblemSet contains one or more (related) Problems. Each Problem has one or more Instances corresponding a to a different input. A "simple" problem like (lambda x: x + "world" == "Hello world") that has no inputs has just one instance, It is important that different ProblemSets do not overlap, in terms of duplicates or answers should not be given away, like if one had a weighted shortest path problem in one problem set and an unweighted shortest path in another, they should be combined into a single ProblemSet. This us useful for tests which involve giving away some solutions but not others. """ import inspect import json from typing import List, Dict, Callable, Set, Tuple import random import os import sys import traceback import time import utils # The seed used for randomness is important because if a solver has access to this seed it can cheat and # reverse-engineer the solutions to some puzzles. Don't share the seed with AI puzzle solvers :-) _AI_SEED = 12389484322359235125123212243523534510980967133563 DEFAULT_TIMEOUT = 1.0 # seconds PATH = os.path.join(utils.my_path, "problems/") class InterpreterError(Exception): pass def my_exec(cmd, globals=None, locals=None, description='source string'): """ https://stackoverflow.com/questions/28836078/how-to-get-the-line-number-of-an-error-from-exec-or-execfile-in-python """ try: exec(cmd, globals, locals) except SyntaxError as err: error_class = err.__class__.__name__ detail = err.args[0] if err.args else "" line_number = err.lineno except Exception as err: error_class = err.__class__.__name__ detail = err.args[0] if err.args else "" cl, exc, tb = sys.exc_info() line_number = traceback.extract_tb(tb)[-1][1] else: return cmd_str = "\n".join([f"{i + 1}: {x}" for i, x in enumerate(cmd.split("\n"))]) raise InterpreterError("%s at line %d of %s: %s\n%s" % (error_class, line_number, description, detail, cmd_str)) def type_str(ty: type) -> str: """ Convert type ty to string. :param ty: str, typing.List[int] , typing.List[typing.List[bool]], etc. :return: string form of type, "str", "List[int]" , "List[List[bool]]", etc. """ type_str = str(ty).replace("typing.", "") return type_str[8:-2] if type_str.startswith("<class '") else type_str def gen_dump_code(var_name: str, ty: type) -> str: """ create code to output an object of type ty as a string :param var_name: The variable name, like "x" :param ty: str, typing.List[int] , typing.List[typing.List[bool]], etc. :return: code that writes the variable to standard out as a json object """ tys = type_str(ty) if tys.startswith("Set["): return "print(json.dumps({k : 1 for k in " + var_name + "})) # write sets as dictionaries\n" return f"print(json.dumps({var_name}))\n" def gen_type_assertion(var_name: str, ty: type) -> str: """ create code to assert type of var_name is ty :param var_name: The variable name, like "x" :param ty: str, List[int] , List[List[bool]], etc. :return: code that asserts that var_name is of type ty """ tys = type_str(ty) vars = [c for c in 'abcdefghijklmnop' if c != var_name][::-1] def helper(var_name, tys): tys = tys.strip() pre_bracket = tys.split("[")[0].lower() # part before [ (or the entire string if no bracket ans = f"type({var_name}) is {pre_bracket}" if "[" in tys: inside = tys[tys.index("[") + 1:-1] new_var = vars.pop() if pre_bracket == "list" or pre_bracket == "set": inside_check = helper(new_var, inside) # if " and " in inside_check: # inside_check = "(" + inside_check + ")" ans += f" and all({inside_check} for {new_var} in {var_name})" elif pre_bracket == "dict": depth = 0 for i, c in enumerate(inside): if c == "[": depth += 1 elif c == "]": depth -= 1 elif c == "," and depth == 0: break assert depth == 0 and c == ",", "Dict[(expecting comma inside)]" key_var = vars.pop() key_check = helper(key_var, tys[:i]) val_check = helper(new_var, tys[i + 1:]) ans += f" and all({key_check} and {val_check} for {key_var}, {new_var} in {var_name}.items())" else: assert False, f"Unknown type `{tys}`" return ans return f"assert {helper(var_name, tys)}, '{var_name} must be of type {tys}'" def gen_load_code(var_name: str, ty: type) -> str: """ create code to load an object of type ty as a string :param var_name: The variable name, like "x" :param ty: str, typing.List[int] , typing.List[typing.List[bool]], etc. :return: code that reads the variable from stdin as a json object """ tys = type_str(ty) if tys.startswith("Set["): assert tys.endswith("]") inside = tys[4:-1] ans = f"{var_name} = set(json.load(sys.stdin))) # convert set (stored as json dictionary)" assertions = [f"all(isinstance(x, {inside}) for x in {var_name})"] else: ans = f"{var_name} = json.load(sys.stdin)" num_lists = tys.count("List[") assert tys.startswith("List[" * num_lists) and tys.endswith("]" * num_lists) inside = tys[5 * num_lists: len(tys) - num_lists] if num_lists == 0: assertions = [f"isinstance({var_name}, {inside})"] else: assertions = [f"isinstance({var_name}, list)"] if num_lists == 1: assertions.append(f"all(isinstance(x, {inside}) for x in {var_name})") else: assertions.append(f"all(isinstance(x, list) for x in {var_name})") if num_lists == 2: assertions.append(f"all(isinstance(y, {inside}) for x in {var_name} for y in x)") elif num_lists == 3: assertions += [f"all(isinstance(y, list) for x in {var_name} for y in x)", f"all(isinstance(z, {inside}) for x in {var_name} for y in x for z in y)"] else: assert False, f'Unknown type {tys}' assert inside in ["int", "float", "bool", "str"], f'Unknown type {tys}' return ans + "\n\n" + "\n".join(f"assert {a}, 'Type error: expecting `{tys}`'" for a in assertions) def add_preamble(src): preamble = [] types = [] if "List[" in src: types.append("List") if "Set[" in src: types.append("Set") if types: preamble.append(f"from typing import {','.join(types)}") if "json." in src: preamble.append("import json") if "sys." in src: preamble.append("import sys") return "\n".join(preamble) + "\n" * 3 + src if preamble else src def gen_prob_code(var_name: str, var_type: type, prob_src: str, inputs: str): s = f"""{prob_src} {gen_load_code(var_name, var_type)} inputs = {inputs} assert problem({var_name}, **inputs) print("Success!") """ # import inspect # print(inspect.getsource(problem)) return add_preamble(s) def gen_sol_code(var_name: str, var_type: type, sol_src: str, inputs: str): s = f"""{sol_src} inputs = {inputs} {var_name} = solution(**inputs) {gen_dump_code(var_name, var_type)} """ return add_preamble(s) class BuilderRandom(random.Random): """Adds extra random functions useful for building instances.""" def __init__(self, seed=None): self._init_seed = seed super().__init__(seed) def reseed(self): self.seed(self._init_seed) def pseudo_word(self, min_len=1, max_len=20): w = "".join(self.choice(["text", "th", "ch", "qu", *"bcdfghjklmnprstvwxz"]) + self.choice("aeiyou") for _ in range(1 + max_len // 2)) return w[:self.randrange(min_len, max_len + 1)] def heavy_tail_float(self, lower=-1000.0, upper=1000.0, median_dev=1.0): # heavy tailed distribution mean = (lower + upper) / 2.0 trunc = (upper - lower) / 2.0 while True: r = (self.random() ** (-2) - 1) / 3 if self.randrange(2): r = -r x = mean - median_dev * r if abs(x - mean) <= trunc: return x def char(self, chars="0123456789abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ!"): return self.choice(chars) class ProblemSet: def __init__(self, name, summary=None, path=PATH): self.problems = [] # Problem's self.summary = summary self.name = name self.path = PATH self._already_tested = None # self.np_random = np.random.default_rng([ord(c) for c in seed]) def add(self, problem): self.problems.append(problem) def get_filename(self): return self.path and (os.path.join(self.path, self.name.split(".")[-1]) + ".json") def get_already_tested(self): if self._already_tested is None: try: js = utils.load_json(self.get_filename()) except: js = [] self._already_tested = {j["sat"]: {sol for sol in j["sols"]} for j in js} return self._already_tested def save(self): obj = [] for p in self.problems: for i in p.instances: z = {"name": i.name, "sat": i.src, "sols": i.sol_srcs} if p.timeout is not None and p.timeout != 1: z["timeout"] = p.timeout obj.append(z) filename = self.get_filename() if not filename: json.dumps(obj) # for debugging, just to make sure that it can be converted to json utils.warning(f"No path, not saving. {[len(p.instances) for p in self.problems]}") else: try: os.makedirs(self.path, exist_ok=True) with open(filename, "w") as f: json.dump(obj, f, indent=2) solved = sum((1 if i.sol_srcs else 0) for p in self.problems for i in p.instances) dur = sum(p.build_time for p in self.problems) utils.info(f"Solved {solved:5,}/{sum([len(p.instances) for p in self.problems]):5,} instances of " f"{len(self.problems):3,} probs in {dur:.2f}s => {filename}") except FileNotFoundError: utils.error(f"***Could not save {filename}, perhaps a path problem?") return # for e in self.problems[0].instances[:10]: # utils.debug(str(e)[:100]) def get_problems(globs: dict): seen = {Problem} # don't add abstract class Problem ans = [] for v in globs.values(): try: if v in seen: continue else: seen.add(v) except TypeError: continue try: is_prob = isinstance(v, Problem) except TypeError: is_prob = False if is_prob: ans.append(v) else: try: is_prob_class = issubclass(v, Problem) except TypeError: is_prob_class = False if is_prob_class: ans.append(v()) return ans def deep_copy(obj): t = type(obj) if t in {tuple, list, set}: return t(deep_copy(x) for x in obj) if t == dict: return {k: deep_copy(v) for k, v in obj.items()} return obj def get_type(obj, ignore_errors=False): # better than type(x) because it can do things like List[int], etc. try: t = type(obj) if t in {int, float, bool, complex, range, str}:
row_number = row_count - (sheet_count * row_limit) if sheet_count > 0: row_number += 1 return sheets[sheet_count], sheets[sheet_count].row(row_number) # Write the table contents subheading = None odd_style = styles["odd"] even_style = styles["even"] subheader_style = styles["subheader"] for row in rows: # Current row row_index += 1 current_sheet, current_row = get_current_row(row_index, row_limit) style = even_style if row_index % 2 == 0 else odd_style # Group headers if report_groupby: represent = s3_strip_markup(s3_str(row[report_groupby])) if subheading != represent: # Start of new group - write group header subheading = represent current_sheet.write_merge(row_index, row_index, 0, total_cols, subheading, subheader_style, ) # Move on to next row row_index += 1 current_sheet, current_row = get_current_row(row_index, row_limit) style = even_style if row_index % 2 == 0 else odd_style col_index = 0 remaining_fields = lfields # Custom row style? row_style = None if "_style" in row: stylename = row["_style"] if stylename in styles: row_style = styles[stylename] # Group header/footer row? if "_group" in row: group_info = row["_group"] label = group_info.get("label") totals = group_info.get("totals") if label: label = s3_strip_markup(s3_str(label)) style = row_style or subheader_style span = group_info.get("span") if span == 0: current_sheet.write_merge(row_index, row_index, 0, total_cols - 1, label, style, ) if totals: # Write totals into the next row row_index += 1 current_sheet, current_row = \ get_current_row(row_index, row_limit) else: current_sheet.write_merge(row_index, row_index, 0, span - 1, label, style, ) col_index = span remaining_fields = lfields[span:] if not totals: continue for field in remaining_fields: label = headers[field] if label == groupby_label: continue if label == "Id": # Skip the ID column from XLS exports col_index += 1 continue if field not in row: represent = "" else: represent = s3_strip_markup(s3_str(row[field])) coltype = types[col_index] if coltype == "sort": continue if len(represent) > MAX_CELL_SIZE: represent = represent[:MAX_CELL_SIZE] value = represent if coltype == "date": try: cell_datetime = datetime.datetime.strptime(value, date_format_str) date_tuple = (cell_datetime.year, cell_datetime.month, cell_datetime.day) value = xldate_from_date_tuple(date_tuple, 0) style.num_format_str = date_format except: pass elif coltype == "datetime": try: cell_datetime = datetime.datetime.strptime(value, date_format_str) date_tuple = (cell_datetime.year, cell_datetime.month, cell_datetime.day, cell_datetime.hour, cell_datetime.minute, cell_datetime.second) value = xldate_from_datetime_tuple(date_tuple, 0) style.num_format_str = datetime_format except: pass elif coltype == "time": try: cell_datetime = datetime.datetime.strptime(value, date_format_str) date_tuple = (cell_datetime.hour, cell_datetime.minute, cell_datetime.second) value = xldate_from_time_tuple(date_tuple) style.num_format_str = time_format except: pass elif coltype == "integer": try: value = int(value) style.num_format_str = "0" except: pass elif coltype == "double": try: value = float(value) style.num_format_str = "0.00" except: pass if has_id: # Adjust for the skipped column write_col_index = col_index - 1 else: write_col_index = col_index current_row.write(write_col_index, value, style) width = len(represent) * COL_WIDTH_MULTIPLIER if width > column_widths[col_index]: column_widths[col_index] = width current_sheet.col(write_col_index).width = width col_index += 1 # Additional sheet settings for sheet in sheets: sheet.panes_frozen = True sheet.horz_split_pos = 1 # Write output output = BytesIO() book.save(output) output.seek(0) if attr_get("as_stream", False): return output # Response headers filename = "%s_%s.xls" % (request.env.server_name, title) disposition = "attachment; filename=\"%s\"" % filename response = current.response response.headers["Content-Type"] = contenttype(".xls") response.headers["Content-disposition"] = disposition return output.read() # ------------------------------------------------------------------------- @staticmethod def expand_hierarchy(rfield, num_levels, rows): """ Expand a hierarchical foreign key column into one column per hierarchy level @param rfield: the column (S3ResourceField) @param num_levels: the number of levels (from root) @param rows: the Rows from S3ResourceData @returns: list of keys (column names) for the inserted columns """ field = rfield.field if not field or rfield.ftype[:9] != "reference": return [] # Get the look-up table ktablename = s3_get_foreign_key(field, m2m=False)[0] if not ktablename: return [] colname = rfield.colname represent = field.represent # Get the hierarchy from ..s3hierarchy import S3Hierarchy h = S3Hierarchy(ktablename) if not h.config: return [] # Collect the values from rows values = set() for row in rows: value = row["_row"][colname] if type(value) is list: value = value[0] values.add(value) # Generate the expanded values expanded = h.repr_expand(values, levels = num_levels, represent = represent, ) # ...and add them into the rows colnames = ["%s__%s" % (colname, l) for l in range(num_levels)] for row in rows: value = row["_row"][colname] if type(value) is list: value = value[0] hcols = expanded.get(value) for level in range(num_levels): row[colnames[level]] = hcols[level] if hcols else None return colnames # ------------------------------------------------------------------------- @staticmethod def encode_pt(pt, title): """ Encode a S3PivotTable as XLS sheet @param pt: the S3PivotTable @param title: the title for the report @returns: the XLS file as stream """ output = BytesIO() book = S3PivotTableXLS(pt).encode(title) book.save(output) output.seek(0) return output # ------------------------------------------------------------------------- @staticmethod def dt_format_translate(pyfmt): """ Translate a Python datetime format string into an Excel datetime format string @param pyfmt: the Python format string """ translate = {"%a": "ddd", "%A": "dddd", "%b": "mmm", "%B": "mmmm", "%c": "", "%d": "dd", "%f": "", "%H": "hh", "%I": "hh", "%j": "", "%m": "mm", "%M": "mm", "%p": "AM/PM", "%S": "ss", "%U": "", "%w": "", "%W": "", "%x": "", "%X": "", "%y": "yy", "%Y": "yyyy", "%z": "", "%Z": "", } PERCENT = "__percent__" xlfmt = str(pyfmt).replace("%%", PERCENT) for tag, translation in translate.items(): xlfmt = xlfmt.replace(tag, translation) return xlfmt.replace(PERCENT, "%") # ------------------------------------------------------------------------- @classmethod def _styles(cls, use_colour = False, evenodd = True, datetime_format = None, ): """ XLS encoder standard cell styles @param use_colour: use background colour in cells @param evenodd: render different background colours for even/odd rows ("stripes") @param datetime_format: the date/time format """ import xlwt if datetime_format is None: # Support easier usage from external functions datetime_format = cls.dt_format_translate(current.deployment_settings.get_L10n_datetime_format()) # Styles large_header = xlwt.XFStyle() large_header.font.bold = True large_header.font.height = 400 if use_colour: SOLID_PATTERN = large_header.pattern.SOLID_PATTERN large_header.alignment.horz = large_header.alignment.HORZ_CENTER large_header.pattern.pattern = SOLID_PATTERN large_header.pattern.pattern_fore_colour = cls.LARGE_HEADER_COLOUR notes = xlwt.XFStyle() notes.font.italic = True notes.font.height = 160 # 160 Twips = 8 point notes.num_format_str = datetime_format header = xlwt.XFStyle() header.font.bold = True header.num_format_str = datetime_format if use_colour: header.pattern.pattern = SOLID_PATTERN header.pattern.pattern_fore_colour = cls.HEADER_COLOUR subheader = xlwt.XFStyle() subheader.font.bold = True if use_colour: subheader.pattern.pattern = SOLID_PATTERN subheader.pattern.pattern_fore_colour = cls.SUB_HEADER_COLOUR subtotals = xlwt.XFStyle() subtotals.font.bold = True if use_colour: subtotals.pattern.pattern = SOLID_PATTERN subtotals.pattern.pattern_fore_colour = cls.SUB_TOTALS_COLOUR totals = xlwt.XFStyle() totals.font.bold = True if use_colour: totals.pattern.pattern = SOLID_PATTERN totals.pattern.pattern_fore_colour = cls.TOTALS_COLOUR odd = xlwt.XFStyle() if use_colour and evenodd: odd.pattern.pattern = SOLID_PATTERN odd.pattern.pattern_fore_colour = cls.ROW_ALTERNATING_COLOURS[0] even = xlwt.XFStyle() if use_colour and evenodd: even.pattern.pattern = SOLID_PATTERN even.pattern.pattern_fore_colour = cls.ROW_ALTERNATING_COLOURS[1] return {"large_header": large_header, "notes": notes, "header": header, "subheader": subheader, "subtotals": subtotals, "totals": totals, "odd": odd, "even": even, } # ============================================================================= class S3PivotTableXLS(object): """ XLS encoder for S3PivotTables @todo: merge+DRY with S3XLS? @todo: support multiple layers (=write multiple sheets) @todo: handle huge pivot tables (=exceeding XLS rows/cols limits) """ def __init__(self, pt): """ Constructor @param pt: the S3PivotTable to encode """ self.pt = pt # Initialize properties self._styles = None self._formats = None self.lookup = {} self.valuemap = {} # ------------------------------------------------------------------------- def encode(self, title): """ Convert this pivot table into an XLS file @param title: the title of the report @returns: the XLS workbook """ try: import xlwt except ImportError: error = S3XLS.ERROR.XLWT_ERROR current.log.error(error) raise HTTP(503, body=error) T = current.T TOTAL = s3_str(s3_str(T("Total")).upper()) pt = self.pt # Get report options report_options = pt.resource.get_config("report_options", {}) # Report dimensions fact = pt.facts[0] layer = fact.layer rows_dim = pt.rows cols_dim = pt.cols numrows = pt.numrows numcols = pt.numcols # Resource fields for dimensions rfields = pt.rfields fact_rfield = rfields[fact.selector] rows_rfield = rfields[rows_dim] if rows_dim else None cols_rfield = rfields[cols_dim] if cols_dim else None # Dimension labels get_label = fact._get_field_label if rows_dim: # Get row axis label rows_label = s3_str(get_label(rows_rfield, report_options.get("rows"), )) else: rows_label = "" if cols_dim: cols_label = s3_str(get_label(cols_rfield, report_options.get("cols"), )) else: cols_label = "" fact_label = s3_str(fact.get_label(fact_rfield, report_options.get("fact"), )) # Index of the column for row totals total_column = (numcols + 1) if cols_dim else 1 # Sort+represent rows and columns rows, cols = self.sortrepr() # Create workbook and sheet book = xlwt.Workbook(encoding = "utf-8") sheet = book.add_sheet(s3_str(title)) write = self.write # Write header title_row = current.deployment_settings.get_xls_title_row() if callable(title_row): # Custom header (returns number of header rows) title_length = title_row(sheet) elif title_row: # Default header title_length = 2 # Report title write(sheet, 0, 0, s3_str(title), colspan = numcols + 2, style = "title", ) # Current date/time (in
""" aspen.configuration +++++++++++++++++++ Define configuration objects. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import errno import mimetypes import os import sys import traceback import pkg_resources from collections import defaultdict import aspen import aspen.logging from aspen.configuration import parse from aspen.configuration.exceptions import ConfigurationError from aspen.configuration.options import OptionParser, DEFAULT from aspen.utils import ascii_dammit from aspen.typecasting import defaults as default_typecasters import aspen.body_parsers # Defaults # ======== # The from_unicode callable converts from unicode to whatever format is # required by the variable, raising ValueError appropriately. Note that # name is supposed to match the options in our optparser. I like it wet. KNOBS = \ { 'configuration_scripts': (lambda: [], parse.list_) , 'project_root': (None, parse.identity) , 'logging_threshold': (0, int) , 'www_root': (None, parse.identity) # Extended Options # 'name': (default, from_unicode) , 'changes_reload': (False, parse.yes_no) , 'charset_dynamic': ('UTF-8', parse.charset) , 'charset_static': (None, parse.charset) , 'indices': ( lambda: ['index.html', 'index.json', 'index'] + ['index.html.spt', 'index.json.spt', 'index.spt'] , parse.list_ ) , 'list_directories': (False, parse.yes_no) , 'media_type_default': ('text/plain', parse.media_type) , 'media_type_json': ('application/json', parse.media_type) , 'renderer_default': ('stdlib_percent', parse.renderer) , 'show_tracebacks': (False, parse.yes_no) } DEFAULT_CONFIG_FILE = 'configure-aspen.py' # Configurable # ============ # Designed as a singleton. class Configurable(object): """Mixin object for aggregating configuration from several sources. """ protected = False # Set to True to require authentication for all # requests. @classmethod def from_argv(cls, argv): """return a Configurable based on the passed-in arguments list """ configurable = cls() configurable.configure(argv) return configurable def _set(self, name, hydrated, flat, context, name_in_context): """Set value at self.name, calling value if it's callable. """ if aspen.is_callable(hydrated): hydrated = hydrated() # Call it if we can. setattr(self, name, hydrated) if name_in_context: assert isinstance(flat, unicode) # sanity check name_in_context = " %s=%s" % (name_in_context, flat) out = " %-22s %-30s %-24s" return out % (name, hydrated, context + name_in_context) def set(self, name, raw, from_unicode, context, name_in_context): error = None try: value = raw if isinstance(value, str): value = raw.decode('US-ASCII') hydrated = from_unicode(value) except UnicodeDecodeError, error: value = ascii_dammit(value) error_detail = "Configuration values must be US-ASCII." except ValueError, error: error_detail = error.args[0] if error is not None: msg = "Got a bad value '%s' for %s %s:" msg %= (value, context, name_in_context) if error_detail: msg += " " + error_detail + "." raise ConfigurationError(msg) # special-case lists, so we can layer them if from_unicode is parse.list_: extend, new_value = hydrated if extend: old_value = getattr(self, name) hydrated = old_value + new_value else: hydrated = new_value args = (name, hydrated, value, context, name_in_context) return self._set(*args) def configure(self, argv): """Takes an argv list, and gives it straight to optparser.parse_args. The argv list should not include the executable name. """ # Do some base-line configuration. # ================================ # We want to do the following configuration of our Python environment # regardless of the user's configuration preferences # mimetypes aspens_mimetypes = os.path.join(os.path.dirname(__file__), 'mime.types') mimetypes.knownfiles += [aspens_mimetypes] # mimetypes.init is called below after the user has a turn. # XXX register codecs here self.typecasters = default_typecasters # Parse argv. # =========== opts, args = OptionParser().parse_args(argv) # Configure from defaults, environment, and command line. # ======================================================= msgs = ["Reading configuration from defaults, environment, and " "command line."] # can't actually log until configured for name, (default, func) in sorted(KNOBS.items()): # set the default value for this variable msgs.append(self._set(name, default, None, "default", '')) # set from the environment envvar = 'ASPEN_' + name.upper() value = os.environ.get(envvar, '').strip() if value: msgs.append(self.set( name , value , func , "environment variable" , envvar )) # set from the command line value = getattr(opts, name) if value is not DEFAULT: msgs.append(self.set( name , value , func , "command line option" , "--"+name )) # Set some attributes. # ==================== def safe_getcwd(errorstr): try: # If the working directory no longer exists, then the following # will raise OSError: [Errno 2] No such file or directory. I # swear I've seen this under supervisor, though I don't have # steps to reproduce. :-( To get around this you specify a # www_root explicitly, or you can use supervisor's cwd # facility. return os.getcwd() except OSError, err: if err.errno != errno.ENOENT: raise raise ConfigurationError(errorstr) # LOGGING_THRESHOLD # ----------------- # This is initially set to -1 and not 0 so that we can tell if the user # changed it programmatically directly before we got here. I do this in # the testing module, that's really what this is about. if aspen.logging.LOGGING_THRESHOLD == -1: aspen.logging.LOGGING_THRESHOLD = self.logging_threshold # Now that we know the user's desires, we can log appropriately. aspen.log_dammit(os.linesep.join(msgs)) # project root if self.project_root is None: aspen.log_dammit("project_root not configured (no template bases, " "etc.).") else: # canonicalize it if not os.path.isabs(self.project_root): aspen.log_dammit("project_root is relative to CWD: '%s'." % self.project_root) cwd = safe_getcwd("Could not get a current working " "directory. You can specify " "ASPEN_PROJECT_ROOT in the environment, " "or --project_root on the command line.") self.project_root = os.path.join(cwd, self.project_root) self.project_root = os.path.realpath(self.project_root) aspen.log_dammit("project_root set to %s." % self.project_root) # mime.types users_mimetypes = os.path.join(self.project_root, 'mime.types') mimetypes.knownfiles += [users_mimetypes] # configure-aspen.py configure_aspen_py = os.path.join( self.project_root , DEFAULT_CONFIG_FILE ) self.configuration_scripts.append(configure_aspen_py) # last word # PYTHONPATH sys.path.insert(0, self.project_root) # www_root if self.www_root is None: self.www_root = safe_getcwd("Could not get a current working " "directory. You can specify " "ASPEN_WWW_ROOT in the environment, " "or --www_root on the command line.") self.www_root = os.path.realpath(self.www_root) # load bodyparsers self.body_parsers = { "application/x-www-form-urlencoded": aspen.body_parsers.formdata, "multipart/form-data": aspen.body_parsers.formdata, self.media_type_json: aspen.body_parsers.jsondata } # load renderers self.renderer_factories = {} for name in aspen.BUILTIN_RENDERERS: # Pre-populate renderers so we can report on ImportErrors early try: capture = {} python_syntax = 'from aspen.renderers.%s import Factory' exec python_syntax % name in capture make_renderer = capture['Factory'](self) except ImportError, err: make_renderer = err err.info = sys.exc_info() self.renderer_factories[name] = make_renderer for entrypoint in pkg_resources.iter_entry_points(group='aspen.renderers'): render_module = entrypoint.load() self.renderer_factories[entrypoint.name] = render_module.Factory(self) aspen.log_dammit("Found plugin for renderer '%s'" % entrypoint.name) self.default_renderers_by_media_type = defaultdict(lambda: self.renderer_default) self.default_renderers_by_media_type[self.media_type_json] = 'json_dump' # mime.types # ========== # It turns out that init'ing mimetypes is somewhat expensive. This is # significant in testing, though in dev/production you wouldn't notice. # In any case this means that if a devuser inits mimetypes themselves # then we won't do so again here, which is fine. Right? if not mimetypes.inited: mimetypes.init() self.run_config_scripts() self.show_renderers() def show_renderers(self): aspen.log_dammit("Renderers (*ed are unavailable, CAPS is default):") width = max(map(len, self.renderer_factories)) for name, factory in self.renderer_factories.items(): star = " " if isinstance(factory, ImportError): star = "*" error = "ImportError: " + factory.args[0] else: error = "" if name == self.renderer_default: name = name.upper() name = name.ljust(width + 2) aspen.log_dammit(" %s%s%s" % (star, name, error)) default_renderer = self.renderer_factories[self.renderer_default] if isinstance(default_renderer, ImportError): msg = "\033[1;31mImportError loading the default renderer, %s:\033[0m" aspen.log_dammit(msg % self.renderer_default) sys.excepthook(*default_renderer.info) raise default_renderer def run_config_scripts(self): # Finally, exec any configuration scripts. # ======================================== # The user gets self as 'website' inside their configuration scripts. default_cfg_filename = None if self.project_root is not None: default_cfg_filename = os.path.join(self.project_root, DEFAULT_CONFIG_FILE) for filepath in self.configuration_scripts: if not filepath.startswith(os.sep): if self.project_root is None: raise ConfigurationError("You must set project_root in " "order to specify a configuratio" "n_script relatively.") filepath = os.path.join(self.project_root, filepath) filepath = os.path.realpath(filepath) try: execfile(filepath, {'website': self}) except IOError, err: # Re-raise the error if it happened inside the script. if err.filename != filepath: raise # I was checking os.path.isfile for these, but then we have a # race condition that smells to me like a potential security # vulnerability. ## determine if it's a default configscript or a specified one cfgtype = "configuration" if filepath == default_cfg_filename: cfgtype = "default " + cfgtype ## pick the right error mesage if err.errno == errno.ENOENT: msg = ("The %s script %s doesn't seem to exist.") elif err.errno == errno.EACCES: msg = ("It appears that you don't have permission to read " "the %s script %s.") else: msg = ("There was a problem reading the %s script %s:") msg += os.sep + traceback.format_exc() ## do message-string substitutions msg = msg % (cfgtype, filepath) ## output the message if not "default" in cfgtype: # if you specify a config file, it's an
"""Defines metrics used to evaluate uncertainty.""" import numpy as np from scipy.stats import norm from utils.util import to_one_hot def gaussian_nll(y, mu, var): """Calculates the negative log likelihood of Gaussian distribution. Args: y: numpy array, shape [batch_size], the true labels. mu: numpy array, shape [batch_size], the predicted means. var: numpy array, shape [batch_size], the predicted variances. Returns: nll: float, the resulting negative log likelihood """ y, mu, var = y.squeeze(), mu.squeeze(), var.squeeze() nll = -np.mean(norm.logpdf(y, loc=mu, scale=np.sqrt(var))) return float(nll) def rmse(y_pred, y): """Calculates the root mean squared error. Args: y_pred: numpy array, shape [batch_size], the predictions. y: numpy array, shape [batch_size], the corresponding labels. Returns: rmse: float, the resulting root mean squared error. """ y_pred, y = y_pred.squeeze(), y.squeeze() rmse = np.sqrt(np.mean((y - y_pred) ** 2)) return float(rmse) def compute_regression_calibration(pred_mean, pred_var, target, num_bins=10): """Compute the regression calibration. Note that we assume that the probabilistic forecase taking the form of Gaussian. References: [1] https://arxiv.org/abs/1807.00263 Args: pred_mean: numpy array, shape [num_data, ], the predicted mean. pred_var: numpy array, shape [num_data, ], the predicted variance. target: numpy array, shape [num_data, ], the ground truths. num_bins: number of bins. Returns: cal: a dictionary {reliability_diag: realibility diagram calibration_error: calibration error, sharpness: sharpness } """ # Make sure the inputs have valid shape pred_mean = pred_mean.flatten() pred_var = pred_var.flatten() target = target.flatten() # Compute the predicted CDF predicted_cdf = norm.cdf(target, loc=pred_mean, scale=np.sqrt(pred_var)) # Compute the empirical CDF # empirical_cdf = np.zeros(len(predicted_cdf)) # for i, p in enumerate(predicted_cdf): # empirical_cdf[i] = np.mean(predicted_cdf <= p) # Initialize the expected confidence levels according to the number of bins expected_conf_levels = np.linspace(0, 1, num_bins+1)[1:] # Compute the observed confidence levels, Eq (8) in [1]. observed_conf_levels = np.zeros_like(expected_conf_levels) for i, p in enumerate(expected_conf_levels): observed_conf_levels[i] = np.mean(predicted_cdf < p) # Compute the calibration error, Eq (9) in [1]. calibration_error = float(np.sum((expected_conf_levels - observed_conf_levels)**2)) # Compute the sharpness of the predictions, Eq (10) in [1]. sharpness = np.mean(pred_var) # Repliability diagram reliability_diag = { "expected_conf_levels": expected_conf_levels, "observed_conf_levels": observed_conf_levels } # Saving cal = { 'reliability_diag': reliability_diag, 'calibration_error': calibration_error, 'sharpness': sharpness } return cal def filter_top_k(probabilities, labels, top_k): """Extract top k predicted probabilities and corresponding ground truths""" labels_one_hot = np.zeros(probabilities.shape) labels_one_hot[np.arange(probabilities.shape[0]), labels] = 1 if top_k is None: return probabilities, labels_one_hot negative_prob = -1. * probabilities ind = np.argpartition(negative_prob, top_k-1, axis=-1) top_k_ind = ind[:, :top_k] rows = np.expand_dims(np.arange(probabilities.shape[0]), axis=1) lowest_k_negative_probs = negative_prob[rows, top_k_ind] output_probs = -1. * lowest_k_negative_probs labels_one_hot_k = labels_one_hot[rows, top_k_ind] return output_probs, labels_one_hot_k def get_multiclass_predictions_and_correctness(probabilities, labels, top_k=1): """Returns predicted class, correctness boolean vector.""" if top_k == 1: class_predictions = np.argmax(probabilities, -1) top_k_probs = probabilities[np.arange(len(labels)), class_predictions] is_correct = np.equal(class_predictions, labels) else: top_k_probs, is_correct = filter_top_k(probabilities, labels, top_k) return top_k_probs, is_correct def nll(probabilities, labels): """Computes the negative log-likelihood for classification problem (cross-entropy). Args: probabilities: Array of probabilities of shape [num_samples, num_classes]. labels: Integer array labels of shape [num_samples]. Returns: float: computed NLL. """ score = -np.log(probabilities)[range(labels.shape[0]), labels].mean() return score def brier_score(probabilities, labels): """Computes the Brier score. Args: probabilities: Array of probabilities of shape [num_samples, num_classes]. labels: Integer array labels of shape [num_samples]. Returns: float: computed Brier score. """ num_classes = probabilities.shape[1] targets_one_hot = np.zeros_like(probabilities) targets_one_hot[np.arange(labels.shape[0]), labels] = 1. squared_diff = (targets_one_hot - probabilities) ** 2 score = np.mean(np.sum(squared_diff, axis=1) / num_classes) return score def accuracy(probabilities, labels): """Computes the top-1 accuracy of predictions. Args: probabilities: Array of probabilities of shape [num_samples, num_classes]. labels: Integer array labels of shape [num_samples]. Returns: float: Top-1 accuracy of predictions. """ return accuracy_top_k(probabilities, labels, 1) def accuracy_top_k(probabilities, labels, top_k): """Computes the top-k accuracy of predictions. Args: probabilities: Array of probabilities of shape [num_samples, num_classes]. labels: Integer array labels of shape [num_samples]. top_k: Integer. Number of highest-probability classes to consider. Returns: float: Top-k accuracy of predictions. """ _, ground_truth = filter_top_k(probabilities, labels, top_k) return ground_truth.any(axis=-1).mean() def bin_predictions_and_accuracies(probabilities, ground_truth, bins=10): """Computes histograms of probabilities into bins. Args: probabilities: A numpy vector of N probabilities assigned to each prediction ground_truth: A numpy vector of N ground truth labels in {0,1, True, False} bins: Number of equal width bins to bin predictions into in [0, 1], or an array representing bin edges. Returns: bin_edges: Numpy vector of floats containing the edges of the bins (including leftmost and rightmost). accuracies: Numpy vector of floats for the average accuracy of the predictions in each bin. counts: Numpy vector of ints containing the number of examples per bin. """ if isinstance(bins, int): num_bins = bins else: num_bins = bins.size - 1 probabilities = np.where(probabilities == 0, 1e-8, probabilities) counts, bin_edges = np.histogram(probabilities, bins=bins, range=[0., 1.]) indices = np.digitize(probabilities, bin_edges, right=True) accuracies = np.array([np.mean(ground_truth[indices == i]) for i in range(1, num_bins + 1)]) return bin_edges, accuracies, counts def bin_centers_of_mass(probabilities, bin_edges): probabilities = np.where(probabilities == 0, 1e-8, probabilities) indices = np.digitize(probabilities, bin_edges, right=True) return np.array([np.mean(probabilities[indices == i]) for i in range(1, len(bin_edges))]) def ece(probabilities, ground_truth, bins=10): """Compute the expected calibration error of a set of preditions in [0, 1]. Args: probabilities: A numpy vector of N probabilities assigned to each prediction ground_truth: A numpy vector of N ground truth labels in {0,1, True, False} bins: Number of equal width bins to bin predictions into in [0, 1], or an array representing bin edges. Returns: float: the expected calibration error. """ bin_edges, accuracies, counts = bin_predictions_and_accuracies( probabilities, ground_truth, bins) bin_centers = bin_centers_of_mass(probabilities, bin_edges) num_examples = np.sum(counts) ece = np.sum([(counts[i] / float(num_examples)) * np.sum( np.abs(bin_centers[i] - accuracies[i])) for i in range(bin_centers.size) if counts[i] > 0]) return ece def ece_multiclass(probabilities, labels, bins=10, top_k=1): """Computes expected calibration error from Guo et al. 2017. Args: probabilities: Array of probabilities of shape [num_samples, num_classes]. labels: Integer array labels of shape [num_samples]. bins: Number of equal width bins to bin predictions into in [0, 1], or an array representing bin edges. top_k: Integer or None. If integer, use the top k predicted probabilities in ECE calculation (can be informative for problems with many classes and lower top-1 accuracy). If None, use all classes. Returns: float: Expected calibration error. """ top_k_probs, is_correct = get_multiclass_predictions_and_correctness( probabilities, labels, top_k) top_k_probs = top_k_probs.flatten() is_correct = is_correct.flatten() return ece(top_k_probs, is_correct, bins) def compute_accuracies_at_confidences(labels, probs, thresholds): """Compute accuracy of samples above each confidence threshold. Args: labels: Array of integer categorical labels. probs: Array of categorical probabilities. thresholds: Array of floating point probability thresholds in [0, 1). Returns: accuracies: Array of accuracies over examples with confidence > T for each T in thresholds. counts: Count of examples with confidence > T for each T in thresholds. """ assert probs.shape[:-1] == labels.shape predict_class = probs.argmax(-1) predict_confidence = probs.max(-1) shape = (len(thresholds),) + probs.shape[:-2] accuracies = np.zeros(shape) counts = np.zeros(shape) eq = np.equal(predict_class, labels) for i, thresh in enumerate(thresholds): mask = predict_confidence >= thresh counts[i] = mask.sum(-1) accuracies[i] = np.ma.masked_array(eq, mask=~mask).mean(-1) return accuracies, counts def compute_calibration(y, p_mean, num_bins=10): """Compute the calibration. References: https://arxiv.org/abs/1706.04599 https://arxiv.org/abs/1807.00263 Args: y: numpy array, shape [num_classes], the true labels. p_mean: numpy array, size (?, num_classes) containing the mean output predicted probabilities num_bins: number of bins Returns: cal: a dictionary {reliability_diag: realibility diagram ece: Expected Calibration Error mce: Maximum Calibration Error } """ # Compute for every test sample x, the predicted class. class_pred = np.argmax(p_mean, axis=1) # Convert labels to one-hot encoding y = to_one_hot(y) # Compute the confidence (probability) associated with it. conf = np.max(p_mean, axis=1) # Convert y from one-hot encoding to the number of the class y = np.argmax(y, axis=1) # Storage acc_tab = np.zeros(num_bins) # empirical (true) confidence mean_conf = np.zeros(num_bins) # predicted confidence nb_items_bin = np.zeros(num_bins) # number of items in the bins tau_tab = np.linspace(0, 1, num_bins+1) # confidence bins for i in np.arange(num_bins): # iterate over the bins # Select the items where the predicted max probability falls in the bin sec = (tau_tab[i + 1] > conf) & (conf >= tau_tab[i]) nb_items_bin[i] = np.sum(sec) # Number of items in the bin # Select the predicted classes, and the true classes class_pred_sec, y_sec = class_pred[sec],
(Edges)" "dim" value: 2 "single" value: - Type: Group of Faces Number: 1 Name: "AllSubShapes (Faces)" "dim" value: 3 "single" value: - Type: Group of Solids Number: 1 Name: "AllSubShapes (Solids)" Conditions of use: - """ if dim not in [0, 1, 2, 3]: print "[X] There is no shape to return corresponding to the given dimension."; return # Get the input shape(s) shape = GetGUISelection(shape) shape = GetObject(shape) #- # Make this function recursive if isinstance(shape, list): return_list = [] for sub_object in shape: return_list.append(PutAllSubShapesInAGroup(dim, sub_object, add, infa)) return return_list #- # Check the input shape existence if "error" in [shape] or None in [shape]: return #- # Set father object father = None if infa == True: father = shape #- if False: pass else:# All checks done # Get the group type if dim == 0: group_type = geompy.ShapeType["VERTEX"] if dim == 1: group_type = geompy.ShapeType["EDGE"] if dim == 2: group_type = geompy.ShapeType["FACE"] if dim == 3: group_type = geompy.ShapeType["SOLID"] #- # Create the group group = geompy.CreateGroup(shape, group_type) #- # Get the sub - shape IDs sub_shape_ids = geompy.SubShapeAllIDs(shape, group_type) #- # Add the sub-shapes in the group for sub_shape_id in sub_shape_ids: geompy.AddObject(group, sub_shape_id) #- # Publish the group if add == True: if dim == 0: geompy.addToStudyInFather(father, group, "AllSubShapes (Vertexes)") if dim == 1: geompy.addToStudyInFather(father, group, "AllSubShapes (Edges)") if dim == 2: geompy.addToStudyInFather(father, group, "AllSubShapes (Faces)") if dim == 3: geompy.addToStudyInFather(father, group, "AllSubShapes (Solids)") # Update the study tree salome.sg.updateObjBrowser(1) #- return group #- passiag = PutAllSubShapesInAGroup def SetRandomColors( ): """ Description: Applies random colors on selected shapes in the Geometry module's 3D windows. On mesh groups and sub-meshes, the coloration takes effect only if the input objects were not displayed yet. Else, the mesh has to be cleared and computed again. Arguments: # - Description: - Type: - GUI selection: - Selection by name: - Recursive: - Default value: - Returned Values: "dim" value: - "single" value: - Type: - Number: - Name: - Conditions of use: This functions works only when used from the GUI. """ gg = salome.ImportComponentGUI("GEOM") # Get selected objects selected_object_ids = salome.sg.getAllSelected() nb_selected_objects = len(selected_object_ids) selected_objects = [] for selected_object_id in selected_object_ids: selected_objects.append(salome.myStudy.FindObjectID(selected_object_id).GetObject()) #- # Define colors colors = [\ [255, 0, 0], \ [0, 0, 255], \ [0, 255, 0], \ [0, 255, 255], \ [255, 0, 128], \ [255, 128, 0], \ [255, 255, 0], \ [235, 235, 235], \ [20, 20, 20], \ [255, 0, 255], \ [255, 128, 128], \ [128, 255, 128], \ [0, 128, 255], \ [255, 255, 128], \ [255, 128, 255], \ [128, 255, 255], \ [128, 0, 255], \ [0, 255, 128], \ [128, 128, 255], \ [128, 255, 0], \ [128, 128, 128], \ ] nb_colors = len(colors) #- # Define random colors if necessary for i in range(nb_selected_objects - nb_colors): color = [] for i in range(3): color.append(int(random.random() * 255)) colors.append(color) #- colors.reverse() #random.shuffle(colors) # Set color of selected objects for i in range(nb_selected_objects): color = colors.pop() selected_object = selected_objects[i] if "<SMESH." in str(selected_object): try: selected_object.SetColor(SALOMEDS.Color(color[0] / 255.0, color[1] / 255.0, color[2] / 255.0)) except: pass if "<GEOM." in str(selected_object): gg.setColor(selected_object_ids[i], color[0], color[1], color[2]) #- src = SetRandomColors def ExportCSVFile( compound = None, file = None, head = True ): """ Description: Exports a 3D vertex compound into a CSV file. Arguments: # compound Description: The vertex compound to export. Type: Compound of Vertexes GUI selection: yes Selection by name: yes Recursive: - Default value: None # file Description: The name of the file to write. Type: String GUI selection: - Selection by name: - Recursive: - Default value: None # head Description: Defines if the function has to write a header to the file. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: True Returned Values: "dim" value: - "single" value: - Type: - Number: - Name: - Conditions of use: - """ input_shape = compound # Get the input shape(s) input_shape = GetGUISelection(input_shape) input_shape = GetObject(input_shape) #- # Check the input shape existence if "error" in [input_shape] or None in [input_shape]: return #- compound = input_shape if False: pass else:# All checks done # Get vertexes vertexes = GetSubShapes(compound)[0] #- # Get the file name if file == None: file = compound.GetName() #- # Export them in the CSV file with open(file, "wb") as csvfile: writer = csv.writer(csvfile, quoting = csv.QUOTE_NONNUMERIC) if head == True: writer.writerow(["X","Y","Z"]) for vertex in vertexes: writer.writerow(geompy.PointCoordinates(vertex)) #- ecf = ExportCSVFile def ImportCSVFile( file, single = True, add = True ): """ Description: Imports a CSV file describing a 3D set of vertexes. Arguments: # file Description: The name of the file to read. Type: String GUI selection: - Selection by name: - Recursive: yes Default value: - # single Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: True # add Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: True Returned Values: "dim" value: - "single" value: False Type: Vertex Number: n Name: "VertexFromCSVFile" "dim" value: - "single" value: True Type: Compound of Vertexes Number: 1 Name: "VertexesFromCSVFile" Conditions of use: - """ # Make this function recursive if isinstance(file, list): return_list = [] for sub_object in file: return_list.append(ImportCSVFile(sub_object, single, add)) return return_list #- if False: pass else:# All checks done # Put the CSV file into a list of lines file_line_list = [] with open(file, "r") as opened_file: for line in opened_file: if not line.isspace(): file_line_list.append(line) #- # Get the separator separator_list = [",", ";", "\t", "|", "^"] right_separator = "" right_nb_columns = 0 # for separator in separator_list: # # separator_found = True # # nb_columns = 0 # # this_was_first_line = True # for line in file_line_list: # # split_line = line.split(separator) # if not this_was_first_line: # if len(split_line) != nb_columns or len(split_line) <= 1: # separator_found = False # break # # nb_columns = len(split_line) # # this_was_first_line = False # # # if separator_found: # # right_separator = separator # right_nb_columns = nb_columns # # if right_separator == "": # # print "[X] The CSV file separator could not be determined. Please, use one of these separator characters: , ; | ^ tab" # return # # else: # # separator = right_separator # nb_columns = right_nb_columns # # # #- # # # Check the number of columns # # if nb_columns not in [2, 3]: # print "[X] The CSV file should contain a number of columns between two and three." # return # # #- # Import the vertexes from the CSV file vertex_list = [] for line in file_line_list: split_line = line.split(",") try: x = float(split_line[0]) except: continue try: y = float(split_line[1]) except: continue if len(split_line) == 3: try: z = float(split_line[2]) except: continue else: z = 0.0 vertex = geompy.MakeVertex(x, y, z) vertex_list.append(vertex) #- to_return = vertex_list to_return_name = "VertexFromCSVFile" if single == True: compound = geompy.MakeCompound(vertex_list) to_return = compound to_return_name = "VertexesFromCSVFile" # Add and return the resulting shape(s) if add == True: slow_add = False if not isinstance(to_return, list) or single == True: slow_add = True AddToStudy(to_return, to_return_name, suffix = slow_add, refresh = slow_add) if slow_add == False: if salome.sg.hasDesktop(): salome.sg.updateObjBrowser(1) return to_return #- icf = ImportCSVFile def MakeVirtualOffsetEdgeSubmeshes( thick_and_size, group_and_mesh = [None], np = 40, curv = True, rev = False, add = True, infa = False, dim = -1 ): """ Description: Creates submeshes on an edge group so as to prepare it for automatic viscous layer meshing. Arguments: # thick_and_size Description: The desired viscous layer thickness and the desired cell size along the edge. Type: List of 2 Floats GUI selection: - Selection by name: - Recursive: - Default value: - # group_and_mesh Description: The input group and the mesh in which to create sub-meshes. Type: List of1 Group of Edges + 1 Mesh GUI selection: yes Selection by name: yes Recursive: - Default value: [None] # np Description: See here. Type: Integer GUI selection: - Selection by name: - Recursive: - Default value: 40 # curv Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: True # rev Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: False # add Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: True # infa Description: See here. Type: Boolean GUI selection: - Selection by name: - Recursive: - Default value: False # dim Description: See here. Type: Integer GUI selection: - Selection by name: - Recursive: - Default value: -1 Returned Values: "dim" value: 1 "single" value: - Type: Compound of Edges Number: 1 Name: "VirtualOffset" "dim" value: -1 "single" value: - Type: - Number: - Name: - Conditions of use: - """ if dim not in [-1, 0, 1]: print "[X] There is no shape to return corresponding to the given dimension."; return if not isinstance(thick_and_size, list): print "[X] The first argument (thick_and_size) should be an array."; return if not isinstance(group_and_mesh, list): print "[X] The second argument (group_and_mesh) should be an array."; return if len(thick_and_size) != 2: print "[X] The first argument (thick_and_size) should have exactly two elements."; return input_shapes = group_and_mesh # Get the input shape(s) input_shapes = GetGUISelection(input_shapes) input_shapes = GetObject(input_shapes, "GEOM", silent = True) + GetObject(input_shapes, "SMESH", silent = True) #- # Distinguish input shapes group = None mesh = None for object in input_shapes: if "GEOM_Object instance" in str(object): group = object if "SMESH_Mesh instance" in str(object) or "meshProxy instance" in str(object) or "Mesh object" in str(object): mesh = object if None
""" Copyright (c) 2019, 2020, Oracle Corporation and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. Utility CLS methods shared by multiple tools. """ import os from java.io import File from java.io import IOException from java.lang import IllegalArgumentException from java.lang import String from oracle.weblogic.deploy.util import FileUtils from oracle.weblogic.deploy.util import TranslateException from oracle.weblogic.deploy.util import VariableException from oracle.weblogic.deploy.validate import ValidateException import oracle.weblogic.deploy.util.PyOrderedDict as OrderedDict from wlsdeploy.aliases.wlst_modes import WlstModes from wlsdeploy.exception import exception_helper from wlsdeploy.logging.platform_logger import PlatformLogger from wlsdeploy.tool.util import filter_helper from wlsdeploy.tool.util.archive_helper import ArchiveHelper from wlsdeploy.tool.validate.validator import Validator from wlsdeploy.util import cla_utils from wlsdeploy.util import getcreds from wlsdeploy.util import model_helper from wlsdeploy.util import model_translator from wlsdeploy.util import path_utils from wlsdeploy.util import tool_exit from wlsdeploy.util import variables from wlsdeploy.util.cla_utils import CommandLineArgUtil from wlsdeploy.util.model_translator import FileToPython __logger = PlatformLogger('wlsdeploy.util') _class_name = 'cla_helper' _store_environment_variable = '__WLSDEPLOY_STORE_MODEL__' __tmp_model_dir = None def validate_optional_archive(program_name, optional_arg_map): """ If the archive file was specified on the command line, verify that it exists. :param program_name: the name of the calling program, for logging :param optional_arg_map: the optional arguments from the command line :raises CLAException: if the archive was specified and does not exist """ _method_name = 'validate_optional_archive' if CommandLineArgUtil.ARCHIVE_FILE_SWITCH in optional_arg_map: archive_file_name = optional_arg_map[CommandLineArgUtil.ARCHIVE_FILE_SWITCH] archive_files = cla_utils.get_archive_files(archive_file_name) for archive_file in archive_files: try: FileUtils.validateExistingFile(archive_file) except IllegalArgumentException, iae: ex = exception_helper.create_cla_exception('WLSDPLY-20014', program_name, archive_file_name, iae.getLocalizedMessage(), error=iae) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex def validate_model_present(program_name, optional_arg_map): """ Determine if the model file was passed separately or requires extraction from the archive. If the model is in the archive, extract it to the temporary model location, and set that file as the MODEL_FILE_SWITCH argument. The MODEL_FILE_SWITCH value may be specified as multiple comma-separated models. The ARCHIVE_FILE_SWITCH value may be specified as multiple comma-separated archives. :param program_name: the name of the calling program, for logging :param optional_arg_map: the optional arguments from the command line :raises CLAException: if the specified model is not an existing file, or the model is not found in the archive, or the model is not found from either argument """ _method_name = 'validate_model_present' global __tmp_model_dir if CommandLineArgUtil.MODEL_FILE_SWITCH in optional_arg_map: model_file_value = optional_arg_map[CommandLineArgUtil.MODEL_FILE_SWITCH] model_files = cla_utils.get_model_files(model_file_value) for model_file in model_files: try: FileUtils.validateExistingFile(model_file) except IllegalArgumentException, iae: ex = exception_helper.create_cla_exception('WLSDPLY-20006', program_name, model_file, iae.getLocalizedMessage(), error=iae) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex elif CommandLineArgUtil.ARCHIVE_FILE_SWITCH in optional_arg_map: archive_file = optional_arg_map[CommandLineArgUtil.ARCHIVE_FILE_SWITCH] archive_helper = ArchiveHelper(archive_file, None, __logger, exception_helper.ExceptionType.CLA) if archive_helper.contains_model(): tmp_model_dir, tmp_model_file = archive_helper.extract_model(program_name) model_file_name = FileUtils.fixupFileSeparatorsForJython(tmp_model_file.getAbsolutePath()) optional_arg_map[CommandLineArgUtil.MODEL_FILE_SWITCH] = model_file_name else: ex = exception_helper.create_cla_exception('WLSDPLY-20026', program_name, archive_file, CommandLineArgUtil.MODEL_FILE_SWITCH) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex else: ex = exception_helper.create_cla_exception('WLSDPLY-20015', program_name, CommandLineArgUtil.MODEL_FILE_SWITCH, CommandLineArgUtil.ARCHIVE_FILE_SWITCH) ex.setExitCode(CommandLineArgUtil.USAGE_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex return def validate_variable_file_exists(program_name, argument_map): """ Validate that the variable file(s) exist. Assume that the caller allows multiple variables files. :param program_name: the name of the tool :param argument_map: the program arguments """ method_name = 'validate_variable_file_exists' if CommandLineArgUtil.VARIABLE_FILE_SWITCH in argument_map: result_files = [] # type: list value = argument_map[CommandLineArgUtil.VARIABLE_FILE_SWITCH] files = value.split(CommandLineArgUtil.MODEL_FILES_SEPARATOR) for file in files: try: variable_file = FileUtils.validateExistingFile(file) result_files.append(variable_file.getAbsolutePath()) except IllegalArgumentException, iae: ex = exception_helper.create_cla_exception('WLSDPLY-20031', program_name, file, iae.getLocalizedMessage(), error=iae) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=method_name) raise ex argument_map[CommandLineArgUtil.VARIABLE_FILE_SWITCH] = ",".join(result_files) return def process_encryption_args(optional_arg_map): """ If the user is using model encryption, get the passphrase from stdin, and put it in the argument map. If the passphrase switch was specified in the arg map, just use it directly. :param optional_arg_map: the optional arguments map :raises CLAException: if an error occurs reading the passphrase input from the user """ _method_name = '__process_encryption_args' if CommandLineArgUtil.USE_ENCRYPTION_SWITCH in optional_arg_map and \ CommandLineArgUtil.PASSPHRASE_SWITCH not in optional_arg_map: try: passphrase = getcreds.getpass('<PASSWORD>') except IOException, ioe: ex = exception_helper.create_cla_exception('WLSDPLY-20003', ioe.getLocalizedMessage(), error=ioe) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex optional_arg_map[CommandLineArgUtil.PASSPHRASE_SWITCH] = String(passphrase) return def validate_model(program_name, model_dictionary, model_context, aliases, wlst_mode): """ Validate the model dictionary based on the specified model context and aliases. The tool will exit if exceptions are encountered, or the validation returns a STOP code. :param program_name: the program name, for logging :param model_dictionary: the model dictionary :param model_context: the model context :param aliases: the aliases :param wlst_mode: offline or online :return: """ _method_name = 'validate_model' try: validator = Validator(model_context, aliases, wlst_mode=wlst_mode) # no need to pass the variable file for processing, substitution has already been performed return_code = validator.validate_in_tool_mode(model_dictionary, variables_file_name=None, archive_file_name=model_context.get_archive_file_name()) except ValidateException, ex: __logger.severe('WLSDPLY-20000', program_name, ex.getLocalizedMessage(), error=ex, class_name=_class_name, method_name=_method_name) clean_up_temp_files() tool_exit.end(model_context, CommandLineArgUtil.PROG_ERROR_EXIT_CODE) if return_code == Validator.ReturnCode.STOP: __logger.severe('WLSDPLY-20001', program_name, class_name=_class_name, method_name=_method_name) clean_up_temp_files() tool_exit.end(model_context, CommandLineArgUtil.PROG_ERROR_EXIT_CODE) def load_model(program_name, model_context, aliases, filter_type, wlst_mode): """ Load the model based on the arguments in the model context. Apply the variable substitution, if specified, and validate the model. Apply any model filters of the specified type that are configured, and re-validate if necessary The tool will exit if exceptions are encountered. :param program_name: the program name, for logging :param model_context: the model context :param aliases: the alias configuration :param filter_type: the type of any filters to be applied :param wlst_mode: offline or online :return: the resulting model dictionary """ _method_name = 'load_model' variable_map = {} try: if model_context.get_variable_file(): # callers of this method allow multiple variable files variable_map = variables.load_variables(model_context.get_variable_file(), allow_multiple_files=True) except VariableException, ex: __logger.severe('WLSDPLY-20004', program_name, ex.getLocalizedMessage(), error=ex, class_name=_class_name, method_name=_method_name) clean_up_temp_files() tool_exit.end(model_context, CommandLineArgUtil.PROG_ERROR_EXIT_CODE) model_file_value = model_context.get_model_file() try: model_dictionary = merge_model_files(model_file_value, variable_map) except TranslateException, te: __logger.severe('WLSDPLY-09014', program_name, model_file_value, te.getLocalizedMessage(), error=te, class_name=_class_name, method_name=_method_name) clean_up_temp_files() tool_exit.end(model_context, CommandLineArgUtil.PROG_ERROR_EXIT_CODE) try: variables.substitute(model_dictionary, variable_map, model_context) except VariableException, ex: __logger.severe('WLSDPLY-20004', program_name, ex.getLocalizedMessage(), error=ex, class_name=_class_name, method_name=_method_name) clean_up_temp_files() tool_exit.end(model_context, CommandLineArgUtil.PROG_ERROR_EXIT_CODE) persist_model(model_context, model_dictionary) validate_model(program_name, model_dictionary, model_context, aliases, wlst_mode) if filter_helper.apply_filters(model_dictionary, filter_type): # if any filters were applied, re-validate the model validate_model(program_name, model_dictionary, model_context, aliases, wlst_mode) return model_dictionary def process_online_args(optional_arg_map): """ Determine if we are executing in online mode and if so, validate/prompt for the necessary parameters. :param optional_arg_map: the optional arguments map :return: the WLST mode :raises CLAException: if an error occurs reading input from the user """ _method_name = 'process_online_args' mode = WlstModes.OFFLINE if CommandLineArgUtil.ADMIN_URL_SWITCH in optional_arg_map: if CommandLineArgUtil.ADMIN_USER_SWITCH not in optional_arg_map: try: username = getcreds.getuser('WLSDPLY-09001') except IOException, ioe: ex = exception_helper.create_cla_exception('WLSDPLY-09002', ioe.getLocalizedMessage(), error=ioe) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex optional_arg_map[CommandLineArgUtil.ADMIN_USER_SWITCH] = username if CommandLineArgUtil.ADMIN_PASS_SWITCH not in optional_arg_map: try: password = <PASSWORD>creds.<PASSWORD>pass('<PASSWORD>') except IOException, ioe: ex = exception_helper.create_cla_exception('WLSDPLY-09004', ioe.getLocalizedMessage(), error=ioe) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex optional_arg_map[CommandLineArgUtil.ADMIN_PASS_SWITCH] = String(password) mode = WlstModes.ONLINE optional_arg_map[CommandLineArgUtil.TARGET_MODE_SWITCH] = 'online' return mode def clean_up_temp_files(): """ If a temporary directory was created to extract the model from the archive, delete the directory and its contents. """ global __tmp_model_dir if __tmp_model_dir is not None: FileUtils.deleteDirectory(__tmp_model_dir) __tmp_model_dir = None def merge_model_files(model_file_value, variable_map=None): """ Merge the model files specified by the model file value. It may be a single file, or a comma-separated list of files. :param variable_map: variables to be used for name resolution, or None :param model_file_value: the value specified as a command argument :return: the merge model dictionary """ merged_model = OrderedDict() model_files = cla_utils.get_model_files(model_file_value) for model_file in model_files: model = FileToPython(model_file, True).parse() merge_model_dictionaries(merged_model, model, variable_map) return merged_model def merge_model_dictionaries(dictionary, new_dictionary, variable_map): """ Merge the values from the new dictionary to the existing one. Use variables to resolve keys. :param dictionary: the existing dictionary :param new_dictionary: the new dictionary to be merged :param variable_map: variables to be used for name resolution, or None """ for new_key in new_dictionary: new_value = new_dictionary[new_key] dictionary_key, replace_key = _find_dictionary_merge_key(dictionary, new_key, variable_map) # the key is not in the original dictionary, just add it if dictionary_key is None: dictionary[new_key] = new_value # the new key should replace the existing one - delete the existing key and add the new one elif replace_key: del dictionary[dictionary_key] if not model_helper.is_delete_name(new_key): dictionary[new_key] = new_value # the key is in both dictionaries - merge if the values are dictionaries, otherwise replace the value else: value = dictionary[dictionary_key] if isinstance(value, dict) and isinstance(new_value, dict): merge_model_dictionaries(value, new_value, variable_map) else: dictionary[new_key] = new_value def _find_dictionary_merge_key(dictionary, new_key, variable_map): """ Find the key corresponding to new_key in the specified dictionary. Determine if the new_key should completely replace the value in the dictionary. If no direct match is found, and a variable map is specified, perform check with variable substitution. If keys have the same name, but one has delete notation (!server), that is a match, and replace is true. :param dictionary: the dictionary to be searched :param new_key: the
from typing import Tuple import numpy as np import pandas as pd from pvrpm.core.enums import ConfigKeys as ck from pvrpm.core.case import SamCase from pvrpm.core.utils import summarize_dc_energy from pvrpm.core.logger import logger from pvrpm.core.modules import failure, monitor, repair class Components: """ Data container for each component in the simulation, as well as component and simulation level data """ def __init__(self, case: SamCase): self.case = case self.comps = {} self.fails = {c: [] for c in ck.component_keys if self.case.config.get(c, None)} self.monitors = {c: [] for c in ck.component_keys if self.case.config.get(c, None)} self.repairs = {c: [] for c in ck.component_keys if self.case.config.get(c, None)} self.costs = {} # keep track of total days spent on monitoring and repairs self.total_repair_time = {} self.total_monitor_time = {} lifetime = self.case.config[ck.LIFETIME_YRS] # additional aggreate data to track during simulation self.module_degradation_factor = np.zeros(lifetime * 365) self.dc_power_availability = np.zeros(lifetime * 365) self.ac_power_availability = np.zeros(lifetime * 365) # static monitoring setup # if theres no static monitoring defined, an exception is raised try: self.indep_monitor = monitor.IndepMonitor(self.case, self.comps, self.costs, self.dc_power_availability) except AttributeError: self.indep_monitor = None # every component level will contain a dataframe containing the data for all the components in that level for c in ck.component_keys: if self.case.config.get(c, None): self.total_repair_time[c] = 0 self.total_monitor_time[c] = 0 self.costs[c] = np.zeros(lifetime * 365) df, fails, monitors, repairs = self.initialize_components(c) self.comps[c] = df self.fails[c] += fails self.monitors[c] += monitors self.repairs[c] += repairs # Data from simulation at end of realization self.timeseries_dc_power = None self.timeseries_ac_power = None self.lcoe = None self.npv = None self.annual_energy = None self.tax_cash_flow = None self.losses = {} if case.config[ck.TRACKING]: self.tracker_power_loss_factor = np.zeros(lifetime * 365) self.tracker_availability = np.zeros(lifetime * 365) @staticmethod def compound_failures(function: str, parameters: dict, num_fails: int): """ Compounds the failures using the provided function and it's parameters to calculate the number of days to reduce the time to detection by Possible functions and their parameters are: - step: Failures follow a step function, each step reducing the detection time by a static amount - threshold (float): fraction 0 <= threshold <= 1 that signifies the amount of modules that must fail before next step is reached. So if this is 0.2, every 0.2 * total_components components that fail will reduce detection time by step - step (int): The amount of days to reduce detection time for every step. So 2 steps reduces detection time by 2 * step - exponential: Failures compound on an exponential function - base (float): The base for the exponential function > 0 - log: Failures compound on a logorithmic function - base (float): The base for the log function > 0 - linear: Failures compound linearly - slope (float): Slope of the linear function > 0 - constant: Each failure reduces the time to detection by a static fraction constant - constant (float): fraction 0 <= frac <= 1 that specifies how much of the overall time each failure reduces. So if fraction is 0.1, a failure will reduce time to detection by "time_to_detection * 0.1" """ pass def summarize_failures(self, component_level: str): """ Returns the number of failures per day for every failure defined Args: component_level (str): The configuration key for this component level Returns: :obj:`dict`: Dictionary containing the failure mode mapped to an np array of fails per each day """ fails = {} for f in self.fails[component_level]: fails.update(f.fails_per_day) return fails def update_labor_rates(self, new_labor: float): """ Update labor rates for a all levels for all types of repairs Args: new_labor (float): The new labor rate """ if self.indep_monitor: self.indep_monitor.update_labor_rate(new_labor) for c in ck.component_keys: if self.case.config.get(c, None): for r in self.repairs[c]: r.update_labor_rate(new_labor) def initialize_components(self, component_level: str) -> pd.DataFrame: """ Initalizes all components for the first time Args: component_level (str): The configuration key for this component level Returns: :obj:`pd.DataFrame`: A dataframe containing the initalized values for this component level Note: Individual components have these columns: - state (bool): Operational (True) or failed (False) - defective (bool): Whehter component has a defect. True means the component is also eligible for the defective failure mode - time_to_failure (float): Number of days until component fails - failure_type (str): The name of the failure type time_to_failure represents - time_to_repair (float): Number of days from failure until compoent is repaired - time_to_detection (float): Number of days until the component failure is detected and repairs start - repair_times (float): the total repair time for this repair - monitor_times (float): the total monitoring time before repairs start - time_left_on_warranty (int): Number of days left on warranty (if applicable) - cumulative_failures (int): Total number of failures for that component - cumulative_oow_failures (int): Total number of out of warranty failures (if applicable) - failure_by_type_n (int): Each failure will have its own column with the number of failures of this type - defective (bool): Whether this component is defective or not (for defective failures) - defective_failures (int): Total number of defective failures - avail_downtime (int): How many hours this component was available - degradation_factor (float): 1 - percentage component has degraded at this time (module only) - days_of_degradation (int): Time that the module has been degrading for """ component_info = self.case.config[component_level] component_ind = np.arange(component_info[ck.NUM_COMPONENT]) df = pd.DataFrame(index=component_ind) # operational df["state"] = 1 # degradation gets reset to zero if component_info.get(ck.DEGRADE, None): df["days_of_degradation"] = 0 df["degradation_factor"] = 1 if component_info.get(ck.WARRANTY, None): df["time_left_on_warranty"] = component_info[ck.WARRANTY][ck.DAYS] else: df["time_left_on_warranty"] = 0 df["cumulative_failures"] = 0 df["cumulative_oow_failures"] = 0 df["avail_downtime"] = 0 # if component can't fail, nothing else needs to be initalized if not component_info[ck.CAN_FAIL]: return (df, [], [], []) if component_info.get(ck.FAILURE, None): fails = [failure.TotalFailure(component_level, df, self.case, self.indep_monitor)] else: fails = [] partial_failures = component_info.get(ck.PARTIAL_FAIL, {}) partial_fails = [] for mode in partial_failures.keys(): partial_fails.append(failure.PartialFailure(component_level, df, self.case, mode, self.indep_monitor)) # monitoring times, these will be added to the repair time for each component # basically, the time until each failure is detected monitors = [] # for independent monitoring, may not be used if none is defined df["indep_monitor"] = False if component_info[ck.CAN_REPAIR]: if component_info[ck.CAN_MONITOR]: monitors.append(monitor.LevelMonitor(component_level, df, self.case)) # monitoring across levels, only applies if properly defined and monitoring at the component level can_monitor is false elif component_info.get(ck.COMP_MONITOR, None): monitors.append(monitor.CrossLevelMonitor(component_level, df, self.case)) # only static detection available elif component_info.get(ck.INDEP_MONITOR, None): # the proper detection time with only static monitoring is the difference between the static monitoring that occurs after the failure # this will be set when a component fails for simplicity sake, since multiple static monitoring schemes can be defined, # and the time to detection would be the the time from the component fails to the next static monitoring occurance # so, set these to None and assume they will be properly updated in the simulation df["monitor_times"] = None df["time_to_detection"] = None # time to replacement/repair in case of failure if not component_info[ck.CAN_REPAIR]: repairs = [] df["time_to_repair"] = 1 # just initalize to 1 if no repair modes, means components cannot be repaired elif component_info.get(ck.REPAIR, None): repairs = [] repairs.append( repair.TotalRepair( component_level, df, self.case, self.costs[component_level], fails, repairs, monitors, self.indep_monitor, ) ) else: repairs = [] df["time_to_repair"] = 1 partial_repairs = component_info.get(ck.PARTIAL_REPAIR, {}) if len(partial_repairs) == 1: repair_mode = list(component_info[ck.PARTIAL_REPAIR].keys())[0] for i, fail_mode in enumerate(partial_failures.keys()): repairs.append( repair.PartialRepair( component_level, df, self.case, self.costs[component_level], partial_fails[i], fail_mode, repair_mode, self.indep_monitor, ) ) else: for i, (fail_mode, repair_mode) in enumerate(zip(partial_failures.keys(), partial_repairs.keys())): repairs.append( repair.PartialRepair( component_level, df, self.case, self.costs[component_level], partial_fails[i], fail_mode, repair_mode, self.indep_monitor, ) ) fails += partial_fails return (df, fails, monitors, repairs) def tracker_power_loss(self, day: int) -> Tuple[float, float]: """ Calculates the current loss factor due to failed trackers Args: day (int): Current day in the simulation Returns: Tuple[float, float]: The fraction of trackers operational and the loss factor for failed trackers """ df = self.comps[ck.TRACKER] day = day % 365 operational_trackers = len(df[df["state"] == 1]) fraction = operational_trackers / len(df) adjusted_factor = 1 if self.case.config[ck.TRACKER][ck.CAN_FAIL]: adjusted_factor = min( 1, self.case.daily_tracker_coeffs[day] + fraction * (1 - self.case.daily_tracker_coeffs[day]) ) return fraction, adjusted_factor def current_degradation(self) -> float: """ Calculates
+ len(name), 0x1206) + name.encode( "ascii" ) if ( (self.rotation is not None) or (self.magnification is not None) or self.x_reflection ): word = 0 values = b"" if self.x_reflection: word += 0x8000 if not (self.magnification is None): # This flag indicates that the magnification is absolute, not # relative (not supported). # word += 0x0004 values += struct.pack(">2H", 12, 0x1B05) + _eight_byte_real( self.magnification ) if not (self.rotation is None): # This flag indicates that the rotation is absolute, not # relative (not supported). # word += 0x0002 values += struct.pack(">2H", 12, 0x1C05) + _eight_byte_real( self.rotation ) data += struct.pack(">3H", 6, 0x1A01, word) + values return data + struct.pack( ">2H2l2H", 12, 0x1003, int(round(self.origin[0] * multiplier)), int(round(self.origin[1] * multiplier)), 4, 0x1100, ) def area(self, by_spec=False): """ Calculate the total area of the referenced cell with the magnification factor included. Parameters ---------- by_spec : bool If True, the return value is a dictionary with the areas of each individual pair (layer, datatype). Returns ------- out : number, dictionary Area of this cell. """ if not isinstance(self.ref_cell, Cell): return dict() if by_spec else 0 if self.magnification is None: return self.ref_cell.area(by_spec) else: if by_spec: factor = self.magnification ** 2 cell_area = self.ref_cell.area(True) for kk in cell_area.keys(): cell_area[kk] *= factor return cell_area else: return self.ref_cell.area() * self.magnification ** 2 def get_polygons(self, by_spec=False, depth=None): """ Return the list of polygons created by this reference. Parameters ---------- by_spec : bool If True, the return value is a dictionary with the polygons of each individual pair (layer, datatype). depth : integer or None If not None, defines from how many reference levels to retrieve polygons. References below this level will result in a bounding box. If `by_spec` is True the key will be the name of the referenced cell. Returns ------- out : list of array-like[N][2] or dictionary List containing the coordinates of the vertices of each polygon, or dictionary with the list of polygons (if `by_spec` is True). Note ---- Instances of `FlexPath` and `RobustPath` are also included in the result by computing their polygonal boundary. """ if not isinstance(self.ref_cell, Cell): return dict() if by_spec else [] if self.rotation is not None: ct = numpy.cos(self.rotation * numpy.pi / 180.0) st = numpy.sin(self.rotation * numpy.pi / 180.0) * _mpone if self.x_reflection: xrefl = _pmone_int if self.magnification is not None: mag = self.magnification * _one if self.origin is not None: orgn = numpy.array(self.origin) if by_spec: polygons = self.ref_cell.get_polygons(True, depth) for kk in polygons.keys(): for ii in range(len(polygons[kk])): if self.x_reflection: polygons[kk][ii] = polygons[kk][ii] * xrefl if self.magnification is not None: polygons[kk][ii] = polygons[kk][ii] * mag if self.rotation is not None: polygons[kk][ii] = ( polygons[kk][ii] * ct + polygons[kk][ii][:, ::-1] * st ) if self.origin is not None: polygons[kk][ii] = polygons[kk][ii] + orgn else: polygons = self.ref_cell.get_polygons(depth=depth) for ii in range(len(polygons)): if self.x_reflection: polygons[ii] = polygons[ii] * xrefl if self.magnification is not None: polygons[ii] = polygons[ii] * mag if self.rotation is not None: polygons[ii] = polygons[ii] * ct + polygons[ii][:, ::-1] * st if self.origin is not None: polygons[ii] = polygons[ii] + orgn return polygons def get_polygonsets(self, depth=None): """ Return the list of polygons created by this reference. Parameters ---------- depth : integer or None If not None, defines from how many reference levels to retrieve polygons from. Returns ------- out : list of `PolygonSet` List containing the polygons in this cell and its references. """ if not isinstance(self.ref_cell, Cell): return [] if self.rotation is not None: ct = numpy.cos(self.rotation * numpy.pi / 180.0) st = numpy.sin(self.rotation * numpy.pi / 180.0) * _mpone if self.x_reflection: xrefl = _pmone_int if self.magnification is not None: mag = self.magnification * _one if self.origin is not None: orgn = numpy.array(self.origin) polygonsets = self.ref_cell.get_polygonsets(depth=depth) for ps in polygonsets: for ii in range(len(ps.polygons)): if self.x_reflection: ps.polygons[ii] = ps.polygons[ii] * xrefl if self.magnification is not None: ps.polygons[ii] = ps.polygons[ii] * mag if self.rotation is not None: ps.polygons[ii] = ( ps.polygons[ii] * ct + ps.polygons[ii][:, ::-1] * st ) if self.origin is not None: ps.polygons[ii] = ps.polygons[ii] + orgn return polygonsets def get_paths(self, depth=None): """ Return the list of paths created by this reference. Parameters ---------- depth : integer or None If not None, defines from how many reference levels to retrieve paths from. Returns ------- out : list of `FlexPath` or `RobustPath` List containing the paths in this cell and its references. """ if not isinstance(self.ref_cell, Cell): return [] if self.origin is not None: trans = numpy.array(self.origin) else: trans = None if self.rotation is not None: rot = self.rotation * numpy.pi / 180.0 else: rot = None return [ p.transform(trans, rot, self.magnification, self.x_reflection) for p in self.ref_cell.get_paths(depth=depth) ] def get_labels(self, depth=None): """ Return the list of labels created by this reference. Parameters ---------- depth : integer or None If not None, defines from how many reference levels to retrieve labels from. Returns ------- out : list of `Label` List containing the labels in this cell and its references. """ if not isinstance(self.ref_cell, Cell): return [] if self.rotation is not None: ct = numpy.cos(self.rotation * numpy.pi / 180.0) st = numpy.sin(self.rotation * numpy.pi / 180.0) * _mpone if self.x_reflection: xrefl = _pmone_int if self.magnification is not None: mag = self.magnification * _one if self.origin is not None: orgn = numpy.array(self.origin) labels = self.ref_cell.get_labels(depth=depth) for lbl in labels: if self.x_reflection: lbl.position = lbl.position * xrefl if self.magnification is not None: lbl.position = lbl.position * mag if self.rotation is not None: lbl.position = lbl.position * ct + lbl.position[::-1] * st if self.origin is not None: lbl.position = lbl.position + orgn return labels def get_bounding_box(self): """ Calculate the bounding box for this reference. Returns ------- out : Numpy array[2, 2] or None Bounding box of this cell [[x_min, y_min], [x_max, y_max]], or None if the cell is empty. """ if not isinstance(self.ref_cell, Cell): return None if ( self.rotation is None and self.magnification is None and self.x_reflection is None ): key = self else: key = (self.ref_cell, self.rotation, self.magnification, self.x_reflection) deps = self.ref_cell.get_dependencies(True) if not ( self.ref_cell._bb_valid and all(ref._bb_valid for ref in deps) and key in _bounding_boxes ): for ref in deps: ref.get_bounding_box() self.ref_cell.get_bounding_box() tmp = self.origin self.origin = None polygons = self.get_polygons() self.origin = tmp if len(polygons) == 0: bb = None else: all_points = numpy.concatenate(polygons).transpose() bb = numpy.array( ( (all_points[0].min(), all_points[1].min()), (all_points[0].max(), all_points[1].max()), ) ) _bounding_boxes[key] = bb else: bb = _bounding_boxes[key] if self.origin is None or bb is None: return bb else: return bb + numpy.array( ((self.origin[0], self.origin[1]), (self.origin[0], self.origin[1])) ) def translate(self, dx, dy): """ Translate this reference. Parameters ---------- dx : number Distance to move in the x-direction. dy : number Distance to move in the y-direction. Returns ------- out : `CellReference` This object. """ self.origin = (self.origin[0] + dx, self.origin[1] + dy) return self class CellArray(object): """ Multiple references to an existing cell in an array format. Parameters ---------- ref_cell : `Cell` or string The referenced cell or its name. columns : positive integer Number of columns in the array. rows : positive integer Number of columns in the array. spacing : array-like[2] distances between adjacent columns and adjacent rows. origin : array-like[2] Position where the cell is inserted. rotation : number Angle of rotation of the reference (in *degrees*). magnification : number Magnification factor for the reference. x_reflection : bool If True, the reference is reflected parallel to the x direction before being rotated. ignore_missing : bool If False a warning is issued when the referenced cell is not found. """ __slots__ = ( "ref_cell", "origin", "rotation", "magnification", "x_reflection", "columns", "rows", "spacing", ) def __init__( self, ref_cell, columns, rows, spacing, origin=(0, 0), rotation=None, magnification=None, x_reflection=False, ignore_missing=False, ): self.columns = columns self.rows = rows self.spacing = spacing self.origin = origin self.ref_cell = current_library.cell_dict.get(ref_cell, ref_cell) self.rotation = rotation self.magnification = magnification self.x_reflection = x_reflection if not isinstance(self.ref_cell, Cell) and not
import time from random import randint import board import simpleio import busio import terminalio import neopixel from digitalio import DigitalInOut, Direction, Pull from analogio import AnalogIn import displayio import adafruit_imageload from adafruit_display_text import label import adafruit_displayio_ssd1306 # uncomment if using USB MIDI # import usb_midi from adafruit_display_shapes.rect import Rect import adafruit_midi from adafruit_midi.note_on import NoteOn from adafruit_midi.note_off import NoteOff from adafruit_midi.control_change import ControlChange displayio.release_displays() oled_reset = board.D9 #turn off on-board neopixel pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0) pixel.fill((0, 0, 0)) # Use for I2C for STEMMA OLED i2c = board.I2C() display_bus = displayio.I2CDisplay(i2c, device_address=0x3D, reset=oled_reset) # STEMMA OLED dimensions. can have height of 64, but 32 makes text larger WIDTH = 128 HEIGHT = 32 BORDER = 0 # blinka sprite indexes EMPTY = 0 BLINKA_1 = 1 BLINKA_2 = 2 # setup for STEMMA OLED display = adafruit_displayio_ssd1306.SSD1306(display_bus, width=WIDTH, height=HEIGHT) # create the displayio object splash = displayio.Group(max_size=40) display.show(splash) # text for BPM bpm_text = "BPM: " bpm_text_area = label.Label( terminalio.FONT, text=bpm_text, color=0xFFFFFF, x=4, y=6 ) splash.append(bpm_text_area) bpm_rect = Rect(0, 0, 50, 16, fill=None, outline=0xFFFFFF) splash.append(bpm_rect) # text for key key_text = "Key: " key_text_area = label.Label( terminalio.FONT, text=key_text, color=0xFFFFFF, x=4, y=21 ) splash.append(key_text_area) key_rect = Rect(0, 15, 50, 16, fill=None, outline=0xFFFFFF) splash.append(key_rect) # text for mode mode_text = "Mode: " mode_text_area = label.Label( terminalio.FONT, text=mode_text, color=0xFFFFFF, x=54, y=21 ) splash.append(mode_text_area) mode_rect = Rect(50, 15, 78, 16, fill=None, outline=0xFFFFFF) splash.append(mode_rect) # text for beat division beat_text = "Div: " beat_text_area = label.Label( terminalio.FONT, text=beat_text, color=0xFFFFFF, x=54, y=6 ) splash.append(beat_text_area) beat_rect = Rect(50, 0, 78, 16, fill=None, outline=0xFFFFFF) splash.append(beat_rect) # Blinka sprite setup blinka, blinka_pal = adafruit_imageload.load("/spritesWhite.bmp", bitmap=displayio.Bitmap, palette=displayio.Palette) # creates a transparent background for Blinka blinka_pal.make_transparent(7) blinka_grid = displayio.TileGrid(blinka, pixel_shader=blinka_pal, width=1, height=1, tile_height=16, tile_width=16, default_tile=EMPTY) blinka_grid.x = 112 blinka_grid.y = 0 splash.append(blinka_grid) # imports MIDI # USB MIDI: # midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=0) # UART MIDI: midi = adafruit_midi.MIDI(midi_out=busio.UART(board.TX, board.RX, baudrate=31250), out_channel=0) # potentiometer pin setup key_pot = AnalogIn(board.A1) mode_pot = AnalogIn(board.A2) beat_pot = AnalogIn(board.A3) bpm_slider = AnalogIn(board.A4) mod_pot = AnalogIn(board.A5) # run switch setup run_switch = DigitalInOut(board.D5) run_switch.direction = Direction.INPUT run_switch.pull = Pull.UP # arrays of notes in each key key_of_C = [60, 62, 64, 65, 67, 69, 71, 72] key_of_Csharp = [61, 63, 65, 66, 68, 70, 72, 73] key_of_D = [62, 64, 66, 67, 69, 71, 73, 74] key_of_Dsharp = [63, 65, 67, 68, 70, 72, 74, 75] key_of_E = [64, 66, 68, 69, 71, 73, 75, 76] key_of_F = [65, 67, 69, 70, 72, 74, 76, 77] key_of_Fsharp = [66, 68, 70, 71, 73, 75, 77, 78] key_of_G = [67, 69, 71, 72, 74, 76, 78, 79] key_of_Gsharp = [68, 70, 72, 73, 75, 77, 79, 80] key_of_A = [69, 71, 73, 74, 76, 78, 80, 81] key_of_Asharp = [70, 72, 74, 75, 77, 79, 81, 82] key_of_B = [71, 73, 75, 76, 78, 80, 82, 83] # array of keys keys = [key_of_C, key_of_Csharp, key_of_D, key_of_Dsharp, key_of_E, key_of_F, key_of_Fsharp, key_of_G, key_of_Gsharp, key_of_A, key_of_Asharp, key_of_B] # array of note indexes for modes fifths = [0, 4, 3, 7, 2, 6, 4, 7] major = [4, 2, 0, 3, 5, 7, 6, 4] minor = [5, 7, 2, 4, 6, 5, 1, 3] pedal = [5, 5, 5, 6, 5, 5, 5, 7] # defining variables for key name strings C_name = "C" Csharp_name = "C#" D_name = "D" Dsharp_name = "D#" E_name = "E" F_name = "F" Fsharp_name = "F#" G_name = "G" Gsharp_name = "G#" A_name = "A" Asharp_name = "A#" B_name = "B" # array of strings for key names for use with the display key_names = [C_name, Csharp_name, D_name, Dsharp_name, E_name, F_name, Fsharp_name, G_name, Gsharp_name, A_name, Asharp_name, B_name] # function for reading analog inputs def val(voltage): return voltage.value # comparitors for pots' values mod_val2 = 0 beat_val2 = 0 bpm_val2 = 120 key_val2 = 0 mode_val2 = 0 # time.monotonic for running the modes run = 0 # state for being on/off run_state = False # indexes for modes r = 0 b = 0 f = 0 p = 0 maj = 0 mi = 0 random = 0 # mode states play_pedal = False play_fifths = False play_maj = False play_min = False play_rando = False play_scale = True # state for random beat division rando = False # comparitors for states last_r = 0 last_f = 0 last_maj = 0 last_min = 0 last_p = 0 last_random = 0 # index for random beat division hit = 0 # default tempo tempo = 60 # beat division sixteenth = 15 / tempo eighth = 30 / tempo quarter = 60 / tempo half = 120 / tempo whole = 240 / tempo # time.monotonic for blinka animation slither = 0 # blinka animation sprite index g = 1 # array for random beat division values rando_div = [240, 120, 60, 30, 15] # array of beat division values beat_division = [whole, half, quarter, eighth, sixteenth] # strings for beat division names beat_division_name = ["1", "1/2", "1/4", "1/8", "1/16", "Random"] while True: # mapping analog pot values to the different parameters # MIDI modulation 0-127 mod_val1 = round(simpleio.map_range(val(mod_pot), 0, 65535, 0, 127)) # BPM range 60-220 bpm_val1 = simpleio.map_range(val(bpm_slider), 0, 65535, 60, 220) # 6 options for beat division beat_val1 = round(simpleio.map_range(val(beat_pot), 0, 65535, 0, 5)) # 12 options for key selection key_val1 = round(simpleio.map_range(val(key_pot), 0, 65535, 0, 11)) # 6 options for mode selection mode_val1 = round(simpleio.map_range(val(mode_pot), 0, 65535, 0, 5)) # sending MIDI modulation if abs(mod_val1 - mod_val2) > 2: # updates previous value to hold current value mod_val2 = mod_val1 # MIDI data has to be sent as an integer # this converts the pot data into an int modulation = int(mod_val2) # int is stored as a CC message modWheel = ControlChange(1, modulation) # CC message is sent midi.send(modWheel) print(modWheel) # delay to settle MIDI data time.sleep(0.001) # sets beat division if abs(beat_val1 - beat_val2) > 0: # updates previous value to hold current value beat_val2 = beat_val1 print("beat div is", beat_val2) # updates display beat_text_area.text = "Div:%s" % beat_division_name[beat_val2] # sets random beat division state if beat_val2 == 5: rando = True else: rando = False time.sleep(0.001) # mode selection if abs(mode_val1 - mode_val2) > 0: # updates previous value to hold current value mode_val2 = mode_val1 # scale mode if mode_val2 == 0: play_scale = True play_maj = False play_min = False play_fifths = False play_pedal = False play_rando = False # updates display mode_text_area.text = "Mode:Scale" print("scale") # major triads mode if mode_val2 == 1: play_scale = False play_maj = True play_min = False play_fifths = False play_pedal = False play_rando = False print("major chords") # updates display mode_text_area.text = "Mode:MajorTriads" # minor triads mode if mode_val2 == 2: play_scale = False play_maj = False play_min = True play_fifths = False play_pedal = False play_rando = False print("minor") # updates display mode_text_area.text = "Mode:MinorTriads" # fifths mode if mode_val2 == 3: play_scale = False play_maj = False play_min = False play_fifths = True play_pedal = False play_rando = False print("fifths") # updates display mode_text_area.text = "Mode:Fifths" # pedal tone mode if mode_val2 == 4: play_scale = False play_maj = False play_min = False play_fifths = False play_pedal = True play_rando = False print("play random") # updates display mode_text_area.text = 'Mode:Pedal' # random mode if mode_val2 == 5: play_scale = False play_maj = False play_min = False play_fifths = False play_pedal = False play_rando = True print("play random") # updates display mode_text_area.text = 'Mode:Random' time.sleep(0.001) # key selection if abs(key_val1 - key_val2) > 0: # updates previous value to hold current value key_val2 = key_val1 # indexes the notes in each key array for k in keys: o = keys.index(k) octave = keys[o] # updates display key_text_area.text = 'Key:%s' % key_names[key_val2] print("o is", o) time.sleep(0.001) # BPM adjustment if abs(bpm_val1 - bpm_val2) > 1: # updates previous value to hold current value bpm_val2 = bpm_val1 # updates tempo tempo = int(bpm_val2) # updates calculations for beat division sixteenth = 15 / tempo eighth = 30 / tempo quarter = 60 / tempo half = 120 / tempo whole = 240 / tempo # updates array of beat divisions beat_division = [whole, half, quarter, eighth, sixteenth] # updates display bpm_text_area.text = "BPM:%d" % tempo print("tempo is", tempo) time.sleep(0.05) # if the run switch is pressed: if run_switch.value: run_state = True # if random beat division, then beat_division index is randomized with index hit if rando: divide = beat_division[hit] # if not random, then beat_division is the value of the pot else: divide = beat_division[beat_val2] # blinka animation in time with BPM and beat division # she will slither every time a note is played if (time.monotonic() - slither) >= divide: blinka_grid[0] = g g += 1 slither = time.monotonic() if g > 2: g = 1 # holds key
self.comp_ids = dataset['comp_ids'] except KeyError: pass if 'centered' in dataset.keys(): self.centered = dataset['centered'][()] def load(self, dataset_path): """Read data set. Parameters ---------- dataset_path : :obj:`str` Path to NumPy ``npz`` file. """ dataset_npz = np.load(dataset_path, allow_pickle=True) npz_type = str(dataset_npz.f.type[()]) if npz_type != 'd': raise ValueError(f'{npz_type} is not a data set.') else: self._update(dict(dataset_npz)) def _get_Rset_id( self, data, selected_rset_id=None ): """Determines the numerical Rset ID for this data set. Parameters ---------- Rset : :obj:`mbgdml.data` A loaded :obj:`mbgdml.data.structureSet` or :obj:`mbgdml.data.dataSet` object. selected_rset_id : obj:`int`, optional Currently dset sampling can only be done for one rset_id at a time. This specifies which rset structures in the data set to sample from. Defaults to ``None``. Returns ------- :obj:`int` Numerical ID for the Rset. """ # Attempts to match any previous sampling to this structure set. # If not, adds this structure set to the Rset_md5 information. Rset_id = None if self.Rset_md5 != {}: if data.type == 's': md5 = data.md5 elif data.type == 'd': md5 = data.Rset_md5[selected_rset_id] new_k = 0 # New key should be one more than the last key. for k,v in self.Rset_md5.items(): if v == md5: Rset_id = k break new_k += 1 # If no matches. if Rset_id is None: Rset_id = new_k else: Rset_id = 0 return Rset_id def _check_entity_comp_ids( self, entity_ids, comp_ids, data_entity_ids, data_comp_ids, sampled_entity_ids_split ): """ Parameters ---------- entity_ids : :obj:`numpy.ndarray` Already sampled entity_ids of the data set. Could be an empty array. comp_ids : :obj:`numpy.ndarray` Already sampled comp_ids of the data set. Could be an empty array. data_entity_ids :obj:`numpy.ndarray` entity_ids of a data or structure set being sampled. data_comp_ids :obj:`numpy.ndarray` comp_ids of a data or structure set being sampled. sampled_entity_ids_split : :obj:`list` [:obj:`numpy.ndarray`] The unique data entity_ids of each new entity for this data set. For example, all the data entity_ids (from a structure set) that are included as entity_id = 0 in this data set. Returns ------- :obj:`numpy.ndarray` The correct entity_ids of this data set. :obj:`numpy.ndarray` The correct comp_ids of this data set. """ if len(entity_ids) == 0 and comp_ids.shape == (1, 0): # If there is no previous sampling. # Just need to check that the new entities are self compatible. entity_ids = [] # Start a new entity id list. comp_ids = [] # Start a new component id list. # Loops through every column/entity that we sampled. for entity_id in range(len(sampled_entity_ids_split)): # Gets the size of the entity in the first structure. ref_entity_size = np.count_nonzero( data_entity_ids == entity_id ) # Adds the entity_ids of this entity entity_ids.extend([entity_id for _ in range(ref_entity_size)]) # Adds comp_id comp_id = data_comp_ids[entity_id][1] comp_ids.append( [str(entity_id), comp_id] ) # We should not have to check the entities because we already # check z. entity_ids = np.array(entity_ids) comp_ids = np.array(comp_ids) else: # If there was previous sampling # Need to also check if compatible with the data set. # We should not have to check the entities because we already # check z. pass return entity_ids, comp_ids def _generate_structure_samples( self, quantity, size, data_ids, structure_idxs, max_sample_entity_ids ): """ Parameters ---------- sample_type : :obj:`str` ``'num'`` or ``'all'`` depending on ``quantity``. size : :obj:`str` data_ids : :obj:`numpy.ndarray` structure_idxs : :obj:`numpy.ndarray` All structure indices that we could sample from. max_sample_entity_ids : :obj:`int` The largest ``entity_id`` from the data or structure set we are sampling from. """ if isinstance(quantity, int) or str(quantity).isdigit(): while True: struct_num_selection = randrange(len(structure_idxs)) data_id = choice(data_ids) comp_selection = sorted(sample(range(max_sample_entity_ids + 1), size)) Rset_selection = [data_id, struct_num_selection] + comp_selection yield Rset_selection elif quantity == 'all': comb_list = list(itertools.combinations(range(max_sample_entity_ids + 1), size)) for struct_i in structure_idxs: for comb in comb_list: for data_id in data_ids: data_selection = [data_id, struct_i] + list(comb) yield data_selection def _sample( self, z, R, E, F, sample_data, quantity, data_ids, Rset_id, Rset_info, size, criteria=None, z_slice=[], cutoff=[], sampling_updates=False, copy_EF=True ): """Selects all Rset structures for data set. Generally organized by adding all structures of a single entity_id one at a time. For example, if we were adding all monomers from a cluster with two water molecules, we would select the first molecule (``0``), add all of its information, then add the second molecule (``1``). This method was chosen due to a previous methodology used to calculate energy and gradients of partitions. Parameters ---------- z : :obj:`numpy.ndarray` Atomic numbers of the atoms in every structure prior to sampling. R : :obj:`numpy.ndarray` Cartesian atomic coordinates of data set structures prior to sampling. E : :obj:`numpy.ndarray` Energies of data set structures prior to sampling. F : :obj:`numpy.ndarray` Atomic forces of data set structures prior to sampling. sample_data : :obj:`mbgdml.data` A loaded structure or data set object. quantity : :obj:`str` Number of structures to sample from the structure set. For example, ``'100'``, ``'452'``, or even ``'all'``. data_ids : :obj:`numpy.ndarray` Array of :obj:`int` of the structure set used to sampled data from. For example, if you are sampling from a data set this would be the ``Rset_id`` in that data set not the new ``Rset_id`` for this current data set. Rset_id : :obj:`int` The :obj:`int` that specifies the Rset (key in ``self.Rset_md5``) in this current data set. Rset_info : :obj:`int` An array specifying where each structure in R originates from. size : :obj:`int` Desired number of molecules in each selection. criteria : :obj:`mbgdml.sample.sampleCritera`, optional Structure criteria during the sampling procedure. Defaults to ``None`` if no criteria should be used. z_slice : :obj:`numpy.ndarray`, optional Indices of the atoms to be used for the cutoff calculation. Defaults to ``[]`` is no criteria is selected or if it is not required for the selected criteria. cutoff : :obj:`list`, optional Distance cutoff between the atoms selected by ``z_slice``. Must be in the same units (e.g., Angstrom) as ``R``. Defaults to ``[]`` if no criteria is selected or a cutoff is not desired. sampling_updates : :obj:`bool`, optional Will print something for every 100 successfully sampled structures. Defaults to ``False``. Returns ------- :obj:`numpy.ndarray` An array specifying where each structure in R originates from. :obj:`numpy.ndarray` Atomic coordinates of structure(s). :obj:`numpy.ndarray` The energies of structure(s). All are NaN. :obj:`numpy.ndarray` Atomic forces of atoms in structure(s). All are NaN. """ sample_data_type = sample_data.type sample_data_z = sample_data.z sample_data_R = sample_data.R sample_entity_ids = sample_data.entity_ids max_sample_entity_ids = max(sample_entity_ids) if sample_data_type == 'd': sample_data_Rset_info = sample_data.Rset_info sample_data_E = sample_data.E sample_data_F = sample_data.F structure_idxs = np.array([], dtype=np.int64) for data_id in data_ids: structure_idxs = np.concatenate( ( structure_idxs, np.where(sample_data_Rset_info[:,0] == data_id)[0] ), axis=0 ) elif sample_data_type == 's': structure_idxs = np.arange(0, len(sample_data_R)) num_accepted_r = 0 for data_selection in self._generate_structure_samples( quantity, size, data_ids, structure_idxs, max_sample_entity_ids ): # Ends sampling for number quantities. # The generator does not stop. if isinstance(quantity, int) or str(quantity).isdigit(): if num_accepted_r == quantity: break # Sampling updates if sampling_updates: if isinstance(quantity, int) or str(quantity).isdigit(): if num_accepted_r%500 == 0: print(f'Successfully found {num_accepted_r} structures') elif quantity == 'all': if (num_accepted_r+1)%500 == 0: print( f'Successfully sampled {num_accepted_r+1} clusters' ) i_r_sample = data_selection[1] # Gets Rset_selection instead of data_selection if sample_data_type == 'd': i_r_rset = sample_data_Rset_info[i_r_sample][1] i_r_rset_entity_ids = sample_data_Rset_info[i_r_sample][2:][data_selection[2:]] Rset_selection = [Rset_id, i_r_rset] + list(i_r_rset_entity_ids) elif sample_data_type == 's': Rset_selection = data_selection # Checks if Rset_info is already present. if Rset_info.shape[1] == 0: # No previous Rset_info. Rset_axis = 1 else: Rset_axis = 0 # Checks to see if combination is already in data set. if (Rset_info[...]==Rset_selection).all(1).any(): # Does not add the combination. continue # Gets atomic indices from entity_ids in the Rset. atom_idx = [] for entity_id in data_selection[2:]: atom_idx.extend( [i for i,x in enumerate(sample_entity_ids) if x == entity_id] ) # Checks compatibility with atoms. if len(z) == 0: z = sample_data_z[atom_idx] else: if not np.all([z, sample_data_z[atom_idx]]): print(f'z of data set: {z}') print(f'Rset_info of selection: {Rset_selection}') print(f'z of selection: {sample_data_z[atom_idx]}') raise ValueError(f'z of the selection is incompatible.') # Checks any structure criteria. r_selection = np.array([sample_data_R[i_r_sample, atom_idx, :]])
"evap"), ("/staff/semester/1/import", "evap"), ("/staff/questionnaire/create", "evap"), ("/staff/user/create", "evap"), ] for form in forms: response = self.get_submit_assert_200(form[0], form[1]) self.assertIn("is required", response) forms = [ ("/student/vote/5", "lazy.student"), ("/staff/semester/1/course/1/email", "evap"), ] for form in forms: response = self.get_submit_assert_200(form[0], form[1]) self.assertIn("alert-danger", response) def test_failing_questionnaire_copy(self): """ Tests whether copying and submitting a questionnaire form wihtout entering a new name fails. """ response = self.get_submit_assert_200("/staff/questionnaire/2/copy", "evap") self.assertIn("already exists", response) """ The following tests test whether forms that succeed when submitting them without entering any data actually do that. They are in individual methods because most of them change the database. """ def test_staff_semester_x_edit__nodata_success(self): self.get_submit_assert_302("/staff/semester/1/edit", "evap") def test_staff_semester_x_delete__nodata_success(self): self.get_submit_assert_302("/staff/semester/2/delete", "evap") def test_staff_semester_x_assign__nodata_success(self): self.get_submit_assert_302("/staff/semester/1/assign", "evap") def test_staff_semester_x_lottery__nodata_success(self): self.get_submit_assert_200("/staff/semester/1/lottery", "evap") def test_staff_semester_x_course_y_edit__nodata_success(self): self.get_submit_assert_302("/staff/semester/1/course/1/edit", "evap", name="operation", value="save") def test_staff_semester_x_course_y_delete__nodata_success(self): self.get_submit_assert_302("/staff/semester/1/course/1/delete", "evap"), def test_staff_questionnaire_x_edit__nodata_success(self): self.get_submit_assert_302("/staff/questionnaire/3/edit", "evap") def test_staff_questionnaire_x_delete__nodata_success(self): self.get_submit_assert_302("/staff/questionnaire/3/delete", "evap"), def test_staff_user_x_delete__nodata_success(self): self.get_submit_assert_302("/staff/user/4/delete", "evap"), def test_staff_user_x_edit__nodata_success(self): self.get_submit_assert_302("/staff/user/4/edit", "evap") def test_staff_template_x__nodata_success(self): self.get_submit_assert_200("/staff/template/1", "evap") def test_staff_faq__nodata_success(self): self.get_submit_assert_302("/staff/faq/", "evap") def test_staff_faq_x__nodata_success(self): self.get_submit_assert_302("/staff/faq/1", "evap") def test_contributor_settings(self): self.get_submit_assert_302("/contributor/settings", "responsible") def test_course_email_form(self): """ Tests the CourseEmailForm with one valid and one invalid input dataset. """ course = Course.objects.get(pk="1") data = {"body": "wat", "subject": "some subject", "recipients": ["due_participants"]} form = CourseEmailForm(instance=course, data=data) self.assertTrue(form.is_valid()) self.assertTrue(form.missing_email_addresses() == 0) form.send() data = {"body": "wat", "subject": "some subject"} form = CourseEmailForm(instance=course, data=data) self.assertFalse(form.is_valid()) def test_user_form(self): """ Tests the UserForm with one valid and one invalid input dataset. """ user = UserProfile.objects.get(pk=1) another_user = UserProfile.objects.get(pk=2) data = {"username": "mklqoep50x2", "email": "<EMAIL>"} form = UserForm(instance=user, data=data) self.assertTrue(form.is_valid()) data = {"username": another_user.username, "email": "[email protected]"} form = UserForm(instance=user, data=data) self.assertFalse(form.is_valid()) def test_contributor_form_set(self): """ Tests the ContributionFormset with various input data sets. """ course = mommy.make(Course) ContributionFormset = inlineformset_factory(Course, Contribution, formset=ContributionFormSet, form=ContributionForm, extra=0) data = { 'contributions-TOTAL_FORMS': 1, 'contributions-INITIAL_FORMS': 0, 'contributions-MAX_NUM_FORMS': 5, 'contributions-0-course': course.pk, 'contributions-0-questionnaires': [1], 'contributions-0-order': 0, 'contributions-0-responsibility': "RESPONSIBLE", 'contributions-0-comment_visibility': "ALL", } # no contributor and no responsible self.assertFalse(ContributionFormset(instance=course, form_kwargs={'course': course}, data=data.copy()).is_valid()) # valid data['contributions-0-contributor'] = 1 self.assertTrue(ContributionFormset(instance=course, form_kwargs={'course': course}, data=data.copy()).is_valid()) # duplicate contributor data['contributions-TOTAL_FORMS'] = 2 data['contributions-1-contributor'] = 1 data['contributions-1-course'] = course.pk data['contributions-1-questionnaires'] = [1] data['contributions-1-order'] = 1 self.assertFalse(ContributionFormset(instance=course, form_kwargs={'course': course}, data=data).is_valid()) # two responsibles data['contributions-1-contributor'] = 2 data['contributions-1-responsibility'] = "RESPONSIBLE" self.assertFalse(ContributionFormset(instance=course, form_kwargs={'course': course}, data=data).is_valid()) def test_semester_deletion(self): """ Tries to delete two semesters via the respective view, only the second attempt should succeed. """ self.assertFalse(Semester.objects.get(pk=1).can_staff_delete) self.client.login(username='evap', password='<PASSWORD>') response = self.client.get("/staff/semester/1/delete", follow=True) self.assertIn("cannot be deleted", list(response.context['messages'])[0].message) self.assertTrue(Semester.objects.filter(pk=1).exists()) self.assertTrue(Semester.objects.get(pk=2).can_staff_delete) self.get_submit_assert_302("/staff/semester/2/delete", "evap") self.assertFalse(Semester.objects.filter(pk=2).exists()) def helper_semester_state_views(self, course_ids, old_state, new_state, operation): page = self.app.get("/staff/semester/1", user="evap") form = page.forms["form_" + old_state] for course_id in course_ids: self.assertIn(Course.objects.get(pk=course_id).state, old_state) form['course'] = course_ids response = form.submit('operation', value=operation) form = lastform(response) response = form.submit() self.assertIn("Successfully", str(response)) for course_id in course_ids: self.assertEqual(Course.objects.get(pk=course_id).state, new_state) """ The following tests make sure the course state transitions are triggerable via the UI. """ def test_semester_publish(self): self.helper_semester_state_views([7], "reviewed", "published", "publish") def test_semester_reset(self): self.helper_semester_state_views([2], "prepared", "new", "revertToNew") def test_semester_approve_1(self): self.helper_semester_state_views([1], "new", "approved", "approve") def test_semester_approve_2(self): self.helper_semester_state_views([2], "prepared", "approved", "approve") def test_semester_approve_3(self): self.helper_semester_state_views([3], "editorApproved", "approved", "approve") def test_semester_contributor_ready_1(self): self.helper_semester_state_views([1, 10], "new", "prepared", "prepare") def test_semester_contributor_ready_2(self): self.helper_semester_state_views([3], "editorApproved", "prepared", "reenableEditorReview") def test_semester_unpublish(self): self.helper_semester_state_views([8], "published", "reviewed", "unpublish") def test_course_create(self): """ Tests the course creation view with one valid and one invalid input dataset. """ data = dict(name_de="asdf", name_en="asdf", type="asdf", degrees=["1"], vote_start_date="02/1/2014", vote_end_date="02/1/2099", general_questions=["2"]) response = self.get_assert_200("/staff/semester/1/course/create", "evap") form = lastform(response) form["name_de"] = "lfo9e7bmxp1xi" form["name_en"] = "asdf" form["type"] = "a type" form["degrees"] = ["1"] form["vote_start_date"] = "02/1/2099" form["vote_end_date"] = "02/1/2014" # wrong order to get the validation error form["general_questions"] = ["2"] form['contributions-TOTAL_FORMS'] = 1 form['contributions-INITIAL_FORMS'] = 0 form['contributions-MAX_NUM_FORMS'] = 5 form['contributions-0-course'] = '' form['contributions-0-contributor'] = 6 form['contributions-0-questionnaires'] = [1] form['contributions-0-order'] = 0 form['contributions-0-responsibility'] = "RESPONSIBLE" form['contributions-0-comment_visibility'] = "ALL" form.submit() self.assertNotEqual(Course.objects.order_by("pk").last().name_de, "lfo9e7bmxp1xi") form["vote_start_date"] = "02/1/2014" form["vote_end_date"] = "02/1/2099" # now do it right form.submit() self.assertEqual(Course.objects.order_by("pk").last().name_de, "lfo9e7bmxp1xi") def test_single_result_create(self): """ Tests the single result creation view with one valid and one invalid input dataset. """ response = self.get_assert_200("/staff/semester/1/singleresult/create", "evap") form = lastform(response) form["name_de"] = "qwertz" form["name_en"] = "qwertz" form["type"] = "a type" form["degrees"] = ["1"] form["event_date"] = "02/1/2014" form["answer_1"] = 6 form["answer_3"] = 2 # missing responsible to get a validation error form.submit() self.assertNotEqual(Course.objects.order_by("pk").last().name_de, "qwertz") form["responsible"] = 2 # now do it right form.submit() self.assertEqual(Course.objects.order_by("pk").last().name_de, "qwertz") def test_course_email(self): """ Tests whether the course email view actually sends emails. """ page = self.get_assert_200("/staff/semester/1/course/5/email", user="evap") form = lastform(page) form.get("recipients", index=0).checked = True # send to all participants form["subject"] = "asdf" form["body"] = "asdf" form.submit() self.assertEqual(len(mail.outbox), 2) def test_questionnaire_deletion(self): """ Tries to delete two questionnaires via the respective view, only the second attempt should succeed. """ self.assertFalse(Questionnaire.objects.get(pk=2).can_staff_delete) self.client.login(username='evap', password='<PASSWORD>') page = self.client.get("/staff/questionnaire/2/delete", follow=True) self.assertIn("cannot be deleted", list(page.context['messages'])[0].message) self.assertTrue(Questionnaire.objects.filter(pk=2).exists()) self.assertTrue(Questionnaire.objects.get(pk=3).can_staff_delete) self.get_submit_assert_302("/staff/questionnaire/3/delete", "evap") self.assertFalse(Questionnaire.objects.filter(pk=3).exists()) def test_create_user(self): """ Tests whether the user creation view actually creates a user. """ page = self.get_assert_200("/staff/user/create", "evap") form = lastform(page) form["username"] = "mflkd862xmnbo5" form["first_name"] = "asd" form["last_name"] = "asd" form["email"] = "[email protected]" form.submit() self.assertEqual(UserProfile.objects.order_by("pk").last().username, "mflkd862xmnbo5") def test_emailtemplate(self): """ Tests the emailtemplate view with one valid and one invalid input datasets. """ page = self.get_assert_200("/staff/template/1", "evap") form = lastform(page) form["subject"] = "subject: mflkd862xmnbo5" form["body"] = "body: mflkd862xmnbo5" response = form.submit() self.assertEqual(EmailTemplate.objects.get(pk=1).body, "body: mflkd862xmnbo5") form["body"] = " invalid tag: {{}}" response = form.submit() self.assertEqual(EmailTemplate.objects.get(pk=1).body, "body: mflkd862xmnbo5") def test_contributor_course_edit(self): """ Tests whether the "save" button in the contributor's course edit view does not change the course's state, and that the "approve" button does that. """ page = self.get_assert_200("/contributor/course/2/edit", user="responsible") form = lastform(page) form["vote_start_date"] = "02/1/2098" form["vote_end_date"] = "02/1/2099" form.submit(name="operation", value="save") self.assertEqual(Course.objects.get(pk=2).state, "prepared") form.submit(name="operation", value="approve") self.assertEqual(Course.objects.get(pk=2).state, "editorApproved") # test what happens if the operation is not specified correctly response = form.submit(expect_errors=True) self.assertEqual(response.status_code, 403) def test_student_vote(self): """ Submits a student vote for coverage, verifies that an error message is displayed if not all rating questions have been answered and that all given answers stay selected/filled and that the student cannot vote on the course a second time. """ page = self.get_assert_200("/student/vote/5", user="lazy.student") form = lastform(page) form["question_17_2_3"] = "some text" form["question_17_2_4"] = 1 form["question_17_2_5"] = 6 form["question_18_1_1"] = "some other text" form["question_18_1_2"] = 1 form["question_19_1_1"] = "some more text" form["question_19_1_2"] = 1 form["question_20_1_1"] = "and the last text" response = form.submit() self.assertIn("vote for all rating questions", response) form = lastform(page) self.assertEqual(form["question_17_2_3"].value, "some text") self.assertEqual(form["question_17_2_4"].value, "1") self.assertEqual(form["question_17_2_5"].value, "6") self.assertEqual(form["question_18_1_1"].value, "some other text") self.assertEqual(form["question_18_1_2"].value, "1") self.assertEqual(form["question_19_1_1"].value, "some more text") self.assertEqual(form["question_19_1_2"].value, "1") self.assertEqual(form["question_20_1_1"].value, "and the last text") form["question_20_1_2"] = 1 # give missing answer response = form.submit() self.get_assert_403("/student/vote/5", user="lazy.student") class CourseFormTests(TestCase): def helper_test_course_form_same_name(self, CourseFormClass): courses = Course.objects.all() form_data = get_form_data_from_instance(CourseForm, courses[0]) form_data["vote_start_date"] = "02/1/2098" # needed to fix the form form_data["vote_end_date"] = "02/1/2099" # needed to fix the form form = CourseForm(form_data, instance=courses[0]) self.assertTrue(form.is_valid()) form_data['name_de'] = courses[1].name_de form = CourseForm(form_data, instance=courses[0]) self.assertFalse(form.is_valid()) def test_course_form_same_name(self): """ Test whether giving a course the same name as another course in the same semester in the course edit form is invalid. """ courses = mommy.make(Course, semester=mommy.make(Semester), degrees=[mommy.make(Degree)], _quantity=2) courses[0].general_contribution.questionnaires = [mommy.make(Questionnaire)] courses[1].general_contribution.questionnaires = [mommy.make(Questionnaire)] self.helper_test_course_form_same_name(CourseForm) self.helper_test_course_form_same_name(ContributorCourseForm) def helper_date_validation(self, CourseFormClass, start_date, end_date, expected_result): course = Course.objects.get() form_data = get_form_data_from_instance(CourseFormClass, course) form_data["vote_start_date"] = start_date form_data["vote_end_date"] = end_date form = CourseFormClass(form_data, instance=course) self.assertEqual(form.is_valid(), expected_result) def test_contributor_course_form_date_validation(self): """ Tests validity of various start/end date combinations in the two course edit forms. """ course = mommy.make(Course, degrees=[mommy.make(Degree)]) course.general_contribution.questionnaires = [mommy.make(Questionnaire)] # contributors: start date must be in the future self.helper_date_validation(ContributorCourseForm, "02/1/1999", "02/1/2099", False) # contributors: end date must be in the future self.helper_date_validation(ContributorCourseForm, "02/1/2099", "02/1/1999", False) # contributors: start date must be < end date self.helper_date_validation(ContributorCourseForm, "02/1/2099", "02/1/2098", False) # contributors: valid data self.helper_date_validation(ContributorCourseForm, "02/1/2098", "02/1/2099", True) # staff: neither end nor start date must be in the future self.helper_date_validation(CourseForm, "02/1/1998", "02/1/1999", True) # staff: valid data in the future self.helper_date_validation(CourseForm, "02/1/2098", "02/1/2099", True) # staff: but start date must be < end date self.helper_date_validation(CourseForm, "02/1/1999", "02/1/1998", False) class ContributionFormsetTests(TestCase): def test_dont_validate_deleted_contributions(self): """ Tests whether contributions marked for deletion are validated. Regression test for #415 and #244 """ course = mommy.make(Course) user1 = mommy.make(UserProfile) user2 = mommy.make(UserProfile) user3 = mommy.make(UserProfile) questionnaire = mommy.make(Questionnaire, is_for_contributors=True) ContributionFormset = inlineformset_factory(Course, Contribution, formset=ContributionFormSet, form=ContributionForm, extra=0) # here we have two responsibles (one of
<gh_stars>0 from __future__ import annotations import os import sys import numpy as np import openpyxl import pandas as pd import printj from ortools.sat.python import cp_model from printj import ColorText as ct # from typing import Union class TimeVar: def __init__(self, hours: int, minutes: int): while minutes > 60: minutes -= 60 hours += 1 self.hours = hours self.minutes = minutes self.time_str = f'{hours}:{minutes}' def __str__(self): return self.time_str def __add__(self, added_time: TimeVar): return TimeVar(self.hours + added_time.hours, self.minutes + added_time.minutes) @classmethod def by_string(cls, time: str): time_split_hour_min = time.split(":") hours = int(time_split_hour_min[0]) minutes = int(time_split_hour_min[1]) return cls(hours, minutes) # # function to get unique values # def unique(list1): # # insert the list to the set # list_set = set(list1) # # convert the set to the list # unique_list = (list(list_set)) # # for x in unique_list: # # print x, # return unique_list class Scheduler: def __init__(self) -> None: # pass self.input_data_package = None self.input_data_worker = None self.input_data_location = None self.time_shifts = None self.num_vehicles = None def __call__(self, input_data_package, input_data_worker, input_data_location, time_shifts, num_vehicles: int = 4, ): self.input_data_package = input_data_package self.input_data_worker = input_data_worker self.input_data_location = input_data_location self.time_shifts = time_shifts self.num_vehicles = num_vehicles self.input_data_package.dropna(subset = ["package"], inplace=True) self.input_data_package.dropna(axis=1, how='all') self.input_data_package_orig, self.input_data_worker_orig, self.input_data_location_orig = self.input_data_package.copy( ), self.input_data_worker.copy(), self.input_data_location.copy() def solution_printer(self): alphabets = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" """ data = [] for p in range(num_packages): # print('Package %i' % p) data_i = [] for s in range(num_shifts): s_val = ct.white('0 ') for w in range(num_workers): is_working = False for v in range(num_vehicles): if solver.Value(self.shifts[(w, p, v, s)]) == 1: is_working = True # print(' Worker %i works shift %i' % (w, s)) text_worker = ct.green( f'Worker {alphabets[w]}') # text_shift = ct.purple(f'shift {["9:00", "10:00", "11:00", "12:00", ][s]}') text_shift = ct.purple(f'shift {time_shifts[s]}') # text_shift = ct.purple(f'shift {s}') text_package = ct.cyan(f'package-{p}') text_vehicle = ct.yellow( f'vehicle {v+1}') # text_keiro = ct.yellow( # f'keiro {["Main2", "Main1", "SUB", ][v]}') # if p in [2, 4]: # print( # f' {text_worker} at {text_shift} moves {text_package} using {text_vehicle}') s_val = ct.green(f'{alphabets[w]}{v+1} ') data_i.append(s_val) data.append(data_i) # data = pd.DataFrame(data, columns=time_shifts) data = pd.DataFrame(data, columns=[ct.yellow(f' {s}') for s in time_shifts]) """ data = [] data_moved = [] for p in range(self.num_packages): # print('Package %i' % p) num_packages_moved = 0 data_i = [] for s in range(self.num_shifts): s_val = '0 ' for w in range(self.num_workers): is_working = False for v in range(self.num_vehicles): # print("self.solver.Value(self.shifts[(w, p, v, s)])", self.solver.Value(self.shifts[(w, p, v, s)])) if self.solver.Value(self.shifts[(w, p, v, s)]) == 1: # is_working = True # # print(' Worker %i works shift %i' % (w, s)) # text_worker = f'Worker {alphabets[w]}' # # text_shift = ct.purple(f'shift {["9:00", "10:00", "11:00", "12:00", ][s]}') # text_shift = f'shift {self.time_shifts[s]}' # # text_shift = ct.purple(f'shift {s}') # text_package = f'package-{p}' # text_vehicle = f'vehicle {v+1}' # # text_keiro = ct.yellow( # # f'keiro {["Main2", "Main1", "SUB", ][v]}') # # if p in [2, 4]: # # print( # # f' {text_worker} at {text_shift} moves {text_package} using {text_vehicle}') s_val = f'{alphabets[w]}{v+1} ' num_packages_moved += 1 data_i.append(s_val) data.append(data_i) data_moved.append([ num_packages_moved, self.input_data_package.quantity[p] - num_packages_moved, self.input_data_package.yesterday[p] + num_packages_moved - self.input_data_package.decay[p]*self.num_shifts]) # data = pd.DataFrame(data, columns=time_shifts) data = pd.DataFrame(data, columns=[f' {s}' for s in self.time_shifts]) data_moved = pd.DataFrame(data_moved, columns=['moved', 'not_moved', 'q_at_destination']) # print(data_moved) self.input_data_package_orig = pd.concat([ self.input_data_package_orig[['package', 'quantity', 'decay', 'location', 'vehicle', 'next', 'yesterday']], data, data_moved], axis=1).copy() # data.index = [f'Package-{p}' for p in range(self.num_packages)] # self.data = self.data.reset_index(drop=True) # self.data.dropna(axis=1, how='any') self.data = self.input_data_package_orig.copy() # print() print(self.data) return self.data def solution_writer(self): output_path = 'test/xl.xlsx' print() print(self.input_data_package_orig) # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(output_path, engine='xlsxwriter') # Write each dataframe to a different worksheet. self.input_data_package_orig.to_excel( writer, sheet_name='Sheet_package', index=False) self.input_data_worker_orig.to_excel(writer, sheet_name='Sheet_worker', index=False) self.input_data_location_orig.to_excel( writer, sheet_name='Sheet_location', index=False) # output_data.to_excel(writer, sheet_name='Sheet_schedule') writer.save() def run(self): # Data. # package_to_table = [ # [1, 0, 0, 0, 0, 0], # [1, 1, 0, 0, 0, 0], # [0, 0, 1, 1, 0, 0], # [0, 0, 0, 0, 1, 0], # [0, 0, 0, 1, 0, 1], # [1, 1, 1, 1, 1, 1], # ] # workers_to_table = [ # [1, 1, 1, 1, 0, 1], # [1, 1, 1, 1, 1, 0], # [1, 1, 1, 1, 0, 1], # [1, 1, 1, 1, 1, 0], # ] printj.yellow('::::::::::::::::::: preprocess :::::::::::::::::::') print(self.input_data_package) print(self.input_data_package.dtypes) if isinstance(self.input_data_package.vehicle[0], str): self.input_data_package.vehicle = [ [int(i) for i in v.split(",")] for v in self.input_data_package.vehicle] self.input_data_package.next = [v if isinstance( v, int) else None for v in self.input_data_package.next] if isinstance(self.input_data_worker.location[0], str): self.input_data_worker.location = [ [int(i) for i in v.split(",")] for v in self.input_data_worker.location] self.input_data_worker.vehicle = [ [int(i) for i in v.split(",")] for v in self.input_data_worker.vehicle] self.num_locations = len(self.input_data_location.location) # package_to_location = pd.crosstab( # index=self.input_data_package['package'], columns=self.input_data_package['location']).to_numpy() package_to_location = pd.DataFrame({p: [1 if l in [location_list] else 0 for l in range(self.num_locations)] for p, location_list in enumerate(self.input_data_package.location)}).T.to_numpy() # num_location package_to_vehicle = pd.DataFrame({p: [1 if (v+1) in vehicles_list else 0 for v in range(self.num_vehicles)] for p, vehicles_list in enumerate(self.input_data_package.vehicle)}).T.to_numpy() # num_vehicle = 4 worker_to_vehicle = pd.DataFrame({p: [1 if (v+1) in vehicles_list else 0 for v in range(self.num_vehicles)] for p, vehicles_list in enumerate(self.input_data_worker.vehicle)}).T.to_numpy() # num_vehicle = 4 location_to_worker = pd.DataFrame({p: [1 if v in worker_list else 0 for v in range( self.num_locations)] for p, worker_list in enumerate(self.input_data_worker.location)}).to_numpy() # num_keiro = 6 package_orders = [[i, int(next_i)] for (i, next_i) in zip( self.input_data_package.package, self.input_data_package.next) if pd.notna(next_i)] print("package_to_vehicle\n", package_to_vehicle) print("worker_to_vehicle\n", worker_to_vehicle) print("package_to_location\n", package_to_location) print("location_to_worker\n", location_to_worker) print("package_orders\n", package_orders) print() print() # print(package_to_location.to_numpy()) # sys.exit() # package_orders = [[0, 1], [1, 2], ] # main2, main1, sub # package_to_vehicle = np.array([ # [1, 1, 1, 1], # [1, 0, 0, 0], # [1, 0, 0, 0], # [0, 1, 1, 0], # [0, 0, 1, 1], # [0, 0, 1, 1], # ]) # package_to_location = np.array([ # [1, 0, 0], # [1, 0, 0], # [1, 0, 0], # [0, 1, 0], # [1, 0, 0], # [0, 0, 1], # ]) # workers_to_keiro = np.array([ # [1, 0, 1], # [1, 1, 0], # [1, 0, 1], # [1, 1, 0], # ]) self.num_workers = len(self.input_data_worker.worker) # 4 self.num_packages = len(self.input_data_package.package) # 5 self.num_shifts = len(self.time_shifts) # num_tables = 6 all_workers = range(self.num_workers) all_packages = range(self.num_packages) all_shifts = range(self.num_shifts) all_vehicles = range(self.num_vehicles) all_locations = range(self.num_locations) # print(all_vehicles) print( f'\nNo. of package {self.num_packages}, No. of workers {self.num_workers}') alphabets = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" """ available_workers_per_package = [] for i, item in enumerate(package_to_vehicle): available_workers_list = [] for j, table in enumerate(item): if table == 1: available_workers_list += [k for k in range(len(workers_to_keiro)) if workers_to_keiro[k][j]==1] available_workers_list = unique(available_workers_list) print(f'Package-{i} can be moved by workers {"".join(alphabets[l] for l in available_workers_list)}') available_workers_per_package.append(available_workers_list) print(available_workers_per_package) print(np.array(available_workers_per_package)) """ # package_to_worker = np.matmul(package_to_location, workers_to_keiro.T) # print(package_to_location.shape, location_to_worker.shape) package_to_worker = np.matmul(package_to_location, location_to_worker) available_workers_per_package = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_worker] available_vehicles_per_package = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_vehicle] available_packages_per_location = [ [i for i, ll in enumerate(l) if ll == 1] for l in package_to_location.T] available_vehicles_per_worker = [ [i for i, ll in enumerate(l) if ll == 1] for l in worker_to_vehicle] # print() # for p, item in enumerate(available_workers_per_package): # text_worker = ct.green( # f'workers {"".join(alphabets[l] for l in item)}') # text_package = ct.cyan(f'Package-{p}') # print(f'{text_package} can be moved by {text_worker}') print() for w, item in enumerate(available_vehicles_per_worker): text_vehicle = ct.green( f'vehicle {", ".join(f"{l+1}" for l in item)}') text_worker = ct.cyan(f'worker {alphabets[w]}') print(f'{text_worker} can use {text_vehicle}') print() # for p, item in enumerate(available_vehicles_per_package): # text_vehicle = ct.yellow( # f'vehicle {" ".join(["Main2", "Main1", "SUB", ][l] for l in item)}') # text_package = ct.cyan(f'Package-{p}') # print(f'{text_package} can be moved to {text_vehicle}') # print() for p, (workers, vehicles) in enumerate(zip(available_workers_per_package, available_vehicles_per_package)): text_worker = ct.green( f'workers {", ".join(alphabets[l] for l in workers)}') text_vehicle = ct.yellow( f'vehicle {", ".join(str(v) for v in vehicles)}') text_package = ct.cyan(f'Package-{p}') print(f'{text_package} can be moved by \t{text_worker}\tusing {text_vehicle}') print() for l, item in enumerate(available_packages_per_location): text_package = ct.cyan(f'package {", ".join(f"{i}" for i in item)}')
province in Canada. Notes - Creating geolocation and geolocation alias resource record sets in private hosted zones is not supported. - If you create separate resource record sets for overlapping geographic regions (for example, one resource record set for a continent and one for a country on the same continent), priority goes to the smallest geographic region. This allows you to route most queries for a continent to one resource and to route queries for a country on that continent to a different resource. - You can't create two geolocation resource record sets that specify the same geographic location. - The value * in the CountryCode element matches all geographic locations that aren't specified in other geolocation resource record sets that have the same values for the Name and Type elements. - Geolocation works by mapping IP addresses to locations. However, some IP addresses aren't mapped to geographic locations, so even if you create geolocation resource record sets that cover all seven continents, Amazon Route 53 will receive some DNS queries from locations that it can't identify. We recommend that you create a resource record set for which the value of CountryCode is *, which handles both queries that come from locations for which you haven't created geolocation resource record sets and queries from IP addresses that aren't mapped to a location. If you don't create a * resource record set, Amazon Route 53 returns a "no answer" response for queries from those locations. - You can't create non-geolocation resource record sets that have the same values for the Name and Type elements as geolocation resource record sets. TTL The resource record cache time to live (TTL), in seconds. Note the following: - If you're creating an alias resource record set, omit TTL. Amazon Route 53 uses the value of TTL for the alias target. - If you're associating this resource record set with a health check (if you're adding a HealthCheckId element), we recommend that you specify a TTL of 60 seconds or less so clients respond quickly to changes in health status. - All of the resource record sets in a group of weighted, latency, geolocation, or failover resource record sets must have the same value for TTL. - If a group of weighted resource record sets includes one or more weighted alias resource record sets for which the alias target is an ELB load balancer, we recommend that you specify a TTL of 60 seconds for all of the non-alias weighted resource record sets that have the same name and type. Values other than 60 seconds (the TTL for load balancers) will change the effect of the values that you specify for Weight. ResourceRecords A list, containing one or more values for the resource record. No single value can exceed 4,000 characters. For details on how to format values for different record types, see `Supported DNS Resource Record Types`__ in the Amazon Route 53 Developer Guide. .. __: http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html Note: You can specify more than one value for all record types except CNAME and SOA. It is also possible to pass "magic" strings as resource record values. This functionality can easily be extended, but for the moment supports the following: 'magic:ec2_instance_tag:some_tag_name:some_string:some_instance_attr' This tells salt to lookup an EC2 instance with a tag 'some_tag_name' which has the value 'some_string' and substitute the 'some_instance_attr' attribute of that instance as the resource record value being evaluated. This should work generally for any EC2 instance tags, as long as the instance attribute being fetched is available to getattr(instance, 'attribute') as seen in the code below. Anything else will most likely require this function to be extended to handle it. The canonical use-case for this (at least at our site) is to query the Name tag (which we always populate with the host's FQDN) to lookup the public or private IPs bound to the instance, so we can then automgically create Route 53 records for them. AliasTarget The rules governing how to define an AliasTarget for the various supported use-cases are obtuse beyond reason and attempting to paraphrase them (or even worse, cut-and-paste them in their entirety) would be silly and counterproductive. If you need this feature, then Read The Fine Materials at the `Boto 3 Route 53 page`__ and/or the `AWS Route 53 docs`__ and suss them for yourself - I sure won't claim to understand them partcularly well. .. __: http://boto3.readthedocs.io/en/latest/reference/services/route53.html#Route53.Client.change_resource_record_sets .. __: http://docs.aws.amazon.com/Route53/latest/APIReference/API_AliasTarget.html region The region to connect to. key Secret key to be used. keyid Access key to be used. profile Dict, or pillar key pointing to a dict, containing AWS region/key/keyid. ''' Name = Name if Name else name Name = _to_aws_encoding(Name) if Type is None: raise SaltInvocationError("'Type' is a required parameter when adding or updating" "resource records.") ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} args = {'Id': HostedZoneId, 'Name': DomainName, 'PrivateZone': PrivateZone, 'region': region, 'key': key, 'keyid': keyid, 'profile': profile} zone = __salt__['boto3_route53.find_hosted_zone'](**args) if not zone: ret['comment'] = 'Route 53 {} hosted zone {} not found'.format('private' if PrivateZone else 'public', DomainName) log.info(ret['comment']) return ret zone = zone[0] HostedZoneId = zone['HostedZone']['Id'] # Convert any magic RR values to something AWS will understand, and otherwise clean them up. fixed_rrs = [] for rr in ResourceRecords: if rr.startswith('magic:'): fields = rr.split(':') if fields[1] == 'ec2_instance_tag': if len(fields) != 5: log.warning("Invalid magic RR value seen: '{}'. Passing as-is.".format(rr)) fixed_rrs += [rr] continue tag_name = fields[2] tag_value = fields[3] instance_attr = fields[4] good_states = ('pending', 'rebooting', 'running', 'stopping', 'stopped') r = __salt__['boto_ec2.find_instances']( tags={tag_name: tag_value}, return_objs=True, in_states=good_states, region=region, key=key, keyid=keyid, profile=profile) if len(r) < 1: ret['comment'] = 'No EC2 instance with tag {} == {} found'.format(tag_name, tag_value) log.error(ret['comment']) ret['result'] = False return ret if len(r) > 1: ret['comment'] = 'Multiple EC2 instances with tag {} == {} found'.format( tag_name, tag_value) log.error(ret['comment']) ret['result'] = False return ret instance = r[0] res = getattr(instance, instance_attr, None) if res: log.debug('Found {} {} for instance {}'.format(instance_attr, res, instance.id)) fixed_rrs += [_to_aws_encoding(res)] else: ret['comment'] = 'Attribute {} not found on instance {}'.format(instance_attr, instance.id) log.error(ret['comment']) ret['result'] = False return ret else: ret['comment'] = ('Unknown RR magic value seen: {}. Please extend the ' 'boto3_route53 state module to add support for your preferred ' 'incantation.'.format(fields[1])) log.error(ret['comment']) ret['result'] = False return ret else: fixed_rrs += [rr] ResourceRecords = [{'Value': rr} for rr in sorted(fixed_rrs)] recordsets = __salt__['boto3_route53.get_resource_records'](HostedZoneId=HostedZoneId, StartRecordName=Name, StartRecordType=Type, region=region, key=key, keyid=keyid, profile=profile) if SetIdentifier and recordsets: log.debug('Filter recordsets {} by SetIdentifier {}.'.format(recordsets, SetIdentifier)) recordsets = [r for r in recordsets if r.get('SetIdentifier') == SetIdentifier] log.debug('Resulted in recordsets {}.'.format(recordsets)) create = False update = False updatable = ['SetIdentifier', 'Weight', 'Region', 'GeoLocation', 'Failover', 'TTL', 'AliasTarget', 'HealthCheckId', 'TrafficPolicyInstanceId'] if not recordsets: create = True if __opts__['test']: ret['comment'] = 'Route 53 resource record {} with type {} would be added.'.format( Name, Type) ret['result'] = None return ret elif len(recordsets) > 1: ret['comment'] = 'Given criteria matched more than one ResourceRecordSet.' log.error(ret['comment']) ret['result'] = False return ret else: rrset = recordsets[0] for u in updatable: if locals().get(u) != rrset.get(u): update = True break if ResourceRecords != sorted(rrset.get('ResourceRecords'), key=lambda x: x['Value']): update = True if not create and not update: ret['comment'] = ('Route 53 resource record {} with type {} is already in the desired state.' ''.format(Name, Type)) log.info(ret['comment']) return ret else: if __opts__['test']: ret['comment'] = 'Route 53 resource record {} with type {} would be updated.'.format( Name, Type) ret['result'] = None return ret ResourceRecordSet = { 'Name': Name, 'Type': Type, 'ResourceRecords': ResourceRecords } for u in updatable: ResourceRecordSet.update({u: locals().get(u)}) if locals().get(u) else None ChangeBatch = { 'Changes': [ { 'Action': 'UPSERT', 'ResourceRecordSet': ResourceRecordSet, } ] } if __salt__['boto3_route53.change_resource_record_sets'](HostedZoneId=HostedZoneId, ChangeBatch=ChangeBatch, region=region, key=key, keyid=keyid, profile=profile): ret['comment'] = 'Route 53 resource record {} with type {} {}.'.format(Name, Type, 'created' if create else 'updated') log.info(ret['comment'])
# -*- coding: utf-8 -*- import os import re import traceback import shutil import urllib import xml.etree.ElementTree as ET import xbmc import xbmcvfs import xbmcaddon # Import the common settings from settings import Settings from settings import log from settings import os_path_join from settings import os_path_split from settings import dir_exists import epub from mobi import Mobi from kiehinen.ebook import Book as KMobi from kindleunpack import kindleunpack from cStringIO import StringIO from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfparser import PDFParser from pdfminer.pdftypes import resolve1 from pdfminer.pdfpage import PDFPage from pdfminer.psparser import PSLiteral from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams ADDON = xbmcaddon.Addon(id='script.ebooks') FANART = ADDON.getAddonInfo('fanart') CWD = ADDON.getAddonInfo('path').decode("utf-8") RES_DIR = xbmc.translatePath(os.path.join(CWD, 'resources').encode("utf-8")).decode("utf-8") MEDIA_DIR = xbmc.translatePath(os.path.join(RES_DIR, 'media').encode("utf-8")).decode("utf-8") # Generic class for handling EBook details class EBookBase(): def __init__(self, eBookFilePath, removeFileWhenComplete=False): log("EBookBase: Loading book %s" % eBookFilePath) self.filePath = eBookFilePath self.fileName = os_path_split(eBookFilePath)[-1] self.isTempBookFile = removeFileWhenComplete try: self.filePath = self.filePath.decode("utf-8") except: pass @staticmethod def createEBookObject(filePath): localFilePath = filePath removeWhenComplete = False if filePath.startswith('smb://') or filePath.startswith('nfs://'): try: # Copy the file to the local disk justFileName = os_path_split(filePath)[-1] copiedFile = os_path_join(Settings.getTempLocation(), justFileName) copy = xbmcvfs.copy(filePath, copiedFile) if copy: log("EBookBase: copy successful for %s" % copiedFile) localFilePath = copiedFile removeWhenComplete = True else: log("EBookBase: copy failed from %s to %s" % (filePath, copiedFile)) except: log("EBookBase: Failed to copy file %s to local directory" % filePath) elif filePath.startswith('http://') or filePath.startswith('https://'): log("EBookBase: Book source is %s" % filePath) try: justFileName = 'opds.epub' if '/mobi/' in filePath: justFileName = 'opds.mobi' elif '/pdf/' in filePath: justFileName = 'opds.pdf' copiedFile = os_path_join(Settings.getTempLocation(), justFileName) fp, h = urllib.urlretrieve(filePath, copiedFile) log(h) localFilePath = copiedFile removeWhenComplete = True except: log("EBookBase: Failed to download file %s to local directory" % filePath) bookType = None # Check which type of EBook it is if localFilePath.lower().endswith('.epub'): bookType = EPubEBook(localFilePath, removeWhenComplete) elif localFilePath.lower().endswith('.mobi'): bookType = MobiEBook(localFilePath, removeWhenComplete) elif localFilePath.lower().endswith('.pdf'): bookType = PdfEBook(localFilePath, removeWhenComplete) else: log("EBookBase: Unknown book type for %s (%s)" % (filePath, localFilePath)) return bookType @staticmethod def getCoverImage(filePath, eBookFileName): # Check if there is a cached version coverTargetName = None fullpathLocalImage, bookExt = os.path.splitext(filePath) fullpathLocalImage = "%s.jpg" % fullpathLocalImage if xbmcvfs.exists(fullpathLocalImage): log("EBookBase: Found local cached image %s" % fullpathLocalImage) return fullpathLocalImage # Check for a cached cover coverTargetName = EBookBase.getCachedCover(eBookFileName) # If we reach here, then there was no cached cover image, so we need to extract one if coverTargetName in [None, ""]: ebook = EBookBase.createEBookObject(filePath) coverTargetName = ebook.extractCoverImage() ebook.tidyUp() del ebook # If there is still no cover image, check for folder.jpg in the same directory if coverTargetName in [None, ""]: baseDirectory = (os_path_split(filePath))[0] subdirs, filesInDir = xbmcvfs.listdir(baseDirectory) for fileInDir in filesInDir: if fileInDir.lower() in ['folder.jpg', 'cover.jpg', 'folder.png', 'cover.png']: coverTargetName = os_path_join(baseDirectory, fileInDir) return coverTargetName @staticmethod def getFanArt(filePath): # Check if there is a cached version fullpathLocalImage, bookExt = os.path.splitext(filePath) fullpathLocalImage = "%s-fanart.jpg" % fullpathLocalImage if xbmcvfs.exists(fullpathLocalImage): log("EBookBase: Found book fanart image %s" % fullpathLocalImage) return fullpathLocalImage # Now check if there is a default fanart file fanartImage = FANART baseDirectory = (os_path_split(filePath))[0] subdirs, filesInDir = xbmcvfs.listdir(baseDirectory) for fileInDir in filesInDir: if fileInDir.lower() in ['fanart.jpg', 'fanart.png']: fanartImage = os_path_join(baseDirectory, fileInDir) return fanartImage def tidyUp(self): # If we had to copy the file locally, make sure we delete it if self.isTempBookFile: if xbmcvfs.exists(self.filePath): xbmcvfs.delete(self.filePath) def getTitle(self): return "" def getAuthor(self): return "" def getDescription(self): return "" # Checks the cache to see if there is a cover for this ebook @staticmethod def getCachedCover(fileName): cachedCover = None # check if the directory exists before searching dirs, files = xbmcvfs.listdir(Settings.getCoverCacheLocation()) for aFile in files: # Get the filename without extension coverSrc, ext = os.path.splitext(aFile) # Get the name that the cached cover will have been stored as targetSrc, bookExt = os.path.splitext(fileName) if targetSrc == coverSrc: cachedCover = os_path_join(Settings.getCoverCacheLocation(), aFile) log("EBookBase: Cached cover found: %s" % cachedCover) # There is a special case for PDF files that we have a default image if (cachedCover is None) and fileName.endswith('.pdf'): cachedCover = os.path.join(MEDIA_DIR, 'pdf_icon.png') return cachedCover # Extracts the cover image from the ebook to the supplied location def extractCoverImage(self): return None def getChapterDetails(self): return [] def getChapterContents(self, chapterLink): return "" # Get the text for a given chapter def convertHtmlIntoKodiText(self, htmlText): # Remove the header section of the page regexHeader = re.compile("<head>.*?</head>", re.IGNORECASE | re.DOTALL) plainText = regexHeader.sub("", htmlText) # Remove random spaces in epub files plainText = re.sub('\s+', ' ', plainText) # Replace the bold tags plainText = plainText.replace('<br></br><br></br>', '<p></p>') plainText = plainText.replace('<b>', '[B]<b>') plainText = plainText.replace('<b class=', '[B]<b class=') plainText = plainText.replace('</b>', '</b>[/B]') plainText = plainText.replace('<B>', '[B]<B>') plainText = plainText.replace('</B>', '</B>[/B]') # Replace italic tags plainText = plainText.replace('<i>', '[I]<i>') plainText = plainText.replace('</i>', '</i>[/I]') plainText = plainText.replace('<I>', '[I]<I>') plainText = plainText.replace('</I>', '</I>[/I]') # Add an extra line for paragraphs plainText = plainText.replace('</p>', '</p>\n') plainText = plainText.replace('<p>', '\n<p>') plainText = plainText.replace('<p ', '\n<p ') # The html &nbsp; is not handle s well by ElementTree, so replace # it with a space before we start plainText = plainText.replace('&nbsp;', ' ') # Replace headers <h2> etc plainText = plainText.replace('<h1', '[B]<h1') plainText = plainText.replace('</h1>', '</h1>[/B]') plainText = plainText.replace('<h2', '[B]<h2') plainText = plainText.replace('</h2>', '</h2>[/B]') plainText = plainText.replace('<h3', '[B]<h3') plainText = plainText.replace('</h3>', '</h3>[/B]') plainText = plainText.replace('<h4', '[I][B]<h4') plainText = plainText.replace('</h4>', '</h4>[/B][/I]') try: plainText = ''.join(ET.fromstring(plainText).itertext()) except: log("EBookBase: Failed to strip html text with ElementTree, error: %s" % traceback.format_exc()) log("EBookBase: Using regex for content handling") plainText = re.sub(r'<[^>]+>', '', plainText) # Replace any quotes or other escape characters plainText = plainText.replace('&quote;', '"') plainText = plainText.replace('&nbsp;', ' ') # Need to remove double tags as they are not handled very well when # displayed, they do not get nested, so the first end will close all # instances of this tag plainText = plainText.replace('[B][B]', '[B]') plainText = plainText.replace('[/B][/B]', '[/B]') plainText = plainText.replace('[I][I]', '[I]') plainText = plainText.replace('[/I][/I]', '[/I]') # Remove empty space between tags, where there is no content plainText = re.sub("\[B]\s*\[/B]", "", plainText) plainText = re.sub("\[I\]\s*\[/I\]", "", plainText) # Remove blank lines at the start of the chapter plainText = plainText.lstrip('\n') return plainText def getFallbackTitle(self): # Remove anything after the final dot sections = self.fileName.split('.') sections.pop() # Replace the dots with spaces return ' '.join(sections) # Class to process the mobi formatted books class MobiEBook(EBookBase): def __init__(self, filePath, removeFileWhenComplete=False): EBookBase.__init__(self, filePath, removeFileWhenComplete) self.book = None self.bookFallback = None try: self.book = KMobi(self.filePath) except: log("MobiEBook: Failed to process eBook %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) # A secondary Mobi reader, if the first can not handle the given file def _getFallbackReader(self): if self.bookFallback is None: try: self.bookFallback = Mobi(str(self.filePath)) # Need to parse all the header data in the book self.bookFallback.parse() except: log("MobiEBook: Expected exception for secondary reader, book %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) return self.bookFallback def getTitle(self): # Default the title to the filename - this should be overwritten title = None if self.book is not None: try: title = self.book.title except: log("MobiEBook: Failed to get title for mobi %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) # If we failed to get the title, use the fallback Mobi reader if title in [None, ""]: fallback = self._getFallbackReader() if fallback is not None: try: title = fallback.title() except: log("MobiEBook: Failed to get title using fallback mobi %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) if title in [None, ""]: title = self.getFallbackTitle() try: log("MobiEBook: Title is %s for book %s" % (title.decode('utf-8', 'ignore'), self.filePath)) except: pass return title def getAuthor(self): author = "" if self.book is not None: try: author = self.book.author except: log("MobiEBook: Failed to get author for mobi %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) # If we failed to get the author, use the fallback Mobi reader if author in [None, ""]: fallback = self._getFallbackReader() if fallback is not None: try: author = fallback.author() except: log("MobiEBook: Failed to get author using fallback mobi %s with error: %s" % (self.filePath, traceback.format_exc()), xbmc.LOGERROR) try: log("MobiEBook: Author is %s for book %s" % (author.decode('utf-8', 'ignore'), self.filePath)) except: pass return author def getDescription(self): description = "" if self.book is not None: try: description
SGTE Data for Pure Elements, NPL Report DMA(A)195, Rev. August 1990' REF78 DUP-ALNI '<NAME>, J Alloy and Compounds, (1997); Al-Ni' 87GU3 87Gui3 '<NAME>, Z Metallkde, Vol 78 (1987) p 639-647 TRITA-MAC 324B (1986); CO-NI' 87GU4 87Gui4 '<NAME>, Int. J of Thermophys vol 8 (1987) p 481-510, TRITA-MAC 308 (1986); CO' 90DIN1 89Din '<NAME>, SGTE Data for Pure Elements, NPL Report DMA(A)195, September 1989' 88GUI 88Gui2 '<NAME>, Z. Metallkde. Vol 79(1988) p.524-536, TRITA-MAC 362 (1988); C-CO-NI AND C-CO-FE-NI' 93SAU NIG-ALCU 'Nigel Saunders, COST 507 round 1, (1993); Al-Cu' 91SAU NIG-ALTI 'Nigel Saunders, COST 507 round 1, (1991); Al-Ti' 88GUS1 '<NAME>, CALPHAD 12 (1988) 277-292; Cr-W, Cr-Ni-W, Modified by <NAME>, NIST, Gaithersburg, MD, USA ' 98DUP '<NAME>, <NAME>, Thermodynamic Assessment of the System Al-Co, Revue de Metallurgie, 95(9), 1121-1129 (1998); Al-Co' 97KUS '<NAME>, <NAME>, A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr Systems, Calphad, 21(3), 321-333 (1997); Co-Cr' 15LIU '<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr-Ni system (2015); X.L. Liu Ph.D. Thesis' ! """ ISSUE43_TDB = """ $ Database file written 2016- 5-19 $ From database: TTNI5 ELEMENT /- ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT AL FCC_A1 2.6982E+01 4.5400E+03 2.8300E+01! ELEMENT CR BCC_A2 5.1996E+01 4.0500E+03 2.3543E+01! ELEMENT NI FCC_A1 5.8690E+01 4.7870E+03 2.9796E+01! FUNCTION GHSERAL 298.14 -7976.15+137.093038*T-24.3671976*T*LN(T) -.001884662*T**2-8.77664E-07*T**3+74092*T**(-1); 700 Y -11276.24+223.048446*T-38.5844296*T*LN(T)+.018531982*T**2 -5.764227E-06*T**3+74092*T**(-1); 933.47 Y -11278.378+188.684153*T-31.748192*T*LN(T)-1.231E+28*T**(-9); 2900 N ! FUNCTION ZERO 298.15 +0.0; 6000 N ! FUNCTION GFCCCR 298.15 +7284+.163*T+GHSERCR#; 6000 N ! FUNCTION GHSERNI 298.14 -5179.159+117.854*T-22.096*T*LN(T)-.0048407*T**2; 1728 Y -27840.655+279.135*T-43.1*T*LN(T)+1.12754E+31*T**(-9); 3000 N ! FUNCTION GHSERCR 298.14 -8856.94+157.48*T-26.908*T*LN(T)+.00189435*T**2 -1.47721E-06*T**3+139250*T**(-1); 2180 Y -34869.344+344.18*T-50*T*LN(T)-2.88526E+32*T**(-9); 6000 N ! FUNCTION UN_ASS 298.15 +0; 300 N ! TYPE_DEFINITION % SEQ *! DEFINE_SYSTEM_DEFAULT ELEMENT 2 ! DEFAULT_COMMAND DEF_SYS_ELEMENT VA /- ! TYPE_DEFINITION & GES A_P_D FCC_A1 MAGNETIC -3.0 2.80000E-01 ! PHASE FCC_A1 %& 2 1 1! CONSTITUENT FCC_A1 :AL,CR,NI% :VA: ! PARAMETER G(FCC_A1,AL:VA;0) 298.15 +GHSERAL#; 6000 N REF0 ! PARAMETER TC(FCC_A1,AL:VA;0) 298.15 +ZERO#; 6000 N REF0 ! PARAMETER BMAGN(FCC_A1,AL:VA;0) 298.15 +ZERO#; 6000 N REF0 ! PARAMETER G(FCC_A1,CR:VA;0) 298.15 +GFCCCR#; 6000 N REF0 ! PARAMETER TC(FCC_A1,CR:VA;0) 298.15 -1109; 6000 N REF0 ! PARAMETER BMAGN(FCC_A1,CR:VA;0) 298.15 -2.46; 6000 N REF0 ! PARAMETER G(FCC_A1,NI:VA;0) 298.15 +GHSERNI#; 6000 N REF0 ! PARAMETER TC(FCC_A1,NI:VA;0) 298.15 +633; 6000 N REF0 ! PARAMETER BMAGN(FCC_A1,NI:VA;0) 298.15 +.52; 6000 N REF0 ! PARAMETER G(FCC_A1,AL,CR:VA;0) 298.15 -45900+6*T; 6000 N REF0 ! PARAMETER G(FCC_A1,AL,CR,NI:VA;0) 298.15 +30500-5*T; 6000 N REF0 ! PARAMETER G(FCC_A1,AL,NI:VA;0) 298.15 -173950+19.35*T; 6000 N REF0 ! PARAMETER G(FCC_A1,AL,NI:VA;1) 298.15 +28500; 6000 N REF0 ! PARAMETER G(FCC_A1,AL,NI:VA;2) 298.15 +47000; 6000 N REF0 ! PARAMETER G(FCC_A1,CR,NI:VA;0) 298.15 +8030-12.8801*T; 6000 N REF0 ! PARAMETER G(FCC_A1,CR,NI:VA;1) 298.15 +33080-16.0362*T; 6000 N REF0 ! PARAMETER TC(FCC_A1,CR,NI:VA;0) 298.15 -3605; 6000 N REF0 ! PARAMETER BMAGN(FCC_A1,CR,NI:VA;0) 298.15 -1.91; 6000 N REF0 ! TYPE_DEFINITION ' GES A_P_D GAMMA_PRIME MAGNETIC -3.0 2.80000E-01 ! PHASE GAMMA_PRIME %' 2 .75 .25 ! CONSTITUENT GAMMA_PRIME :AL,CR,NI% : AL%,CR,NI : ! PARAMETER G(GAMMA_PRIME,AL:AL;0) 298.15 +GHSERAL#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR:AL;0) 298.15 -8606+1.125*T+.75*GFCCCR# +.25*GHSERAL#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:AL;0) 298.15 -39860+3.175*T+.75*GHSERNI# +.25*GHSERAL#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL:CR;0) 298.15 -8606+1.125*T+.75*GHSERAL# +.25*GFCCCR#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR:CR;0) 298.15 +GFCCCR#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:CR;0) 298.15 -1915-.91*T+.75*GHSERNI# +.25*GFCCCR#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL:NI;0) 298.15 -35000+5*T+.75*GHSERAL# +.25*GHSERNI#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR:NI;0) 298.15 +10000-3.92*T+.75*GFCCCR# +.25*GHSERNI#; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:NI;0) 298.15 +GHSERNI#; 6000 N REF0 ! PARAMETER TC(GAMMA_PRIME,NI:NI;0) 298.15 +633; 6000 N REF0 ! PARAMETER BMAGN(GAMMA_PRIME,NI:NI;0) 298.15 +.52; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL,NI:AL;0) 298.15 -59500+20*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL,NI:AL;1) 298.15 +53350; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL:AL,NI;0) 298.15 +10000; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL:AL,CR;0) 298.15 -2869+.375*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR:AL,NI;0) 298.15 +10000; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR:AL,CR;0) 298.15 -2869+.375*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:AL,NI;0) 298.15 +9100-1.5*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:AL,NI;1) 298.15 -5400; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,NI:AL,CR;0) 298.15 -6250+T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL,NI:CR;0) 298.15 -60000+20*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL,NI:NI;0) 298.15 -50000; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,AL,CR:*;0) 298.15 -25819+3.375*T; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,*:CR,NI;0) 298.15 +3000; 6000 N REF0 ! PARAMETER G(GAMMA_PRIME,CR,NI:*;0) 298.15 -1500; 6000 N REF0 ! LIST_OF_REFERENCES NUMBER SOURCE ! """ FEMN_TDB = """ $ FOR TESTING PURPOSES ONLY -- NOT FOR RESEARCH $ NO INTERACTION PARAMETERS ELEMENT /- ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00! ELEMENT FE BCC_A2 5.5847E+01 4.4890E+03 2.7280E+01! ELEMENT MN CBCC_A12 5.4938E+01 4.9960E+03 3.2008E+01! FUNCTION TEMP 0.99 +T**(-1); 6000 N ! FUNCTION RTEMP 0.99 +R#**(-1)*TEMP#; 6000 N ! FUNCTION ZERO 0.99 +0.0; 6000 N ! FUNCTION INTR 0.99 +1000; 6000 N ! FUNCTION INFINITE 0.99 +1000000; 6000 N ! FUNCTION G2STFCC1 0.99 +9023.52375-2.4952226*T; 6000 N ! FUNCTION G2STFCC2 0.99 -G2STFCC1#*RTEMP#; 6000 N ! FUNCTION G2STFCC3 0.99 +1+1*EXP(G2STFCC2#); 6000 N ! FUNCTION G2STFCC4 0.99 +1*LN(G2STFCC3#); 6000 N ! FUNCTION G2STFCC 0.99 -R#*T*G2STFCC4#; 6000 N ! FUNCTION GGBCCL 0.99 -8410.26596-.0032390815*T**2-3.3191338E-14*T**5; 6000 N ! FUNCTION GGBCCH 0.99 -33208.4173+165.40504*T-21.0474823*T*LN(T) -2.781828E+18*T**(-5)+4.2811788E+37*T**(-11); 6000 N ! FUNCTION GEIN309 0.99 +0.0; 6000 N ! FUNCTION GGFCCL 0.99 -2615.00904-.0027933375*T**2-2.1239087E-14*T**5 +G2STFCC#; 6000 N ! FUNCTION GGFCCH 0.99 -32389.5438+168.31394*T-20.9834791*T*LN(T) +9.2444598E+18*T**(-5)-1.4750509E+37*T**(-11)+G2STFCC#; 6000 N ! FUNCTION GHSERFE 0.99 +GGBCCL#+8927.2831-9.7228331*T; 1811 Y +GGBCCH#+8927.2831-9.7228331*T; 6000 N ! FUNCTION GGHCPL 0.99 -3307.07993-.00431797569*T**2-2.1239086E-14*T**5; 6000 N ! FUNCTION GGHCPH 0.99 -24924.6659+161.764208*T-21.0325858*T*LN(T) -4.71013343E+18*T**(-5); 6000 N ! FUNCTION TECBCCMN 0.99 +287.60608; 6000 N ! FUNCTION TECUBMN 0.99 +247.87895; 6000 N ! FUNCTION TEFCCMN 0.99 +257.58049; 6000 N ! FUNCTION TEBCCMN 0.99 +265.03333; 6000 N ! FUNCTION TELIQMN 0.99 +119.579259; 6000 N ! FUNCTION TEHCPMN 0.99 +438.579784; 6000 N ! FUNCTION BETA1 0.99 +1.22; 6000 N ! FUNCTION BETA2 0.99 +1.62; 6000 N ! FUNCTION BETA3 0.99 +1.27; 6000 N ! FUNCTION MNCBCCB 0.99 +1*LN(BETA1#); 6000 N ! FUNCTION MNFCCB 0.99 +1*LN(BETA2#); 6000 N ! FUNCTION MNBCCB 0.99 +1*LN(BETA3#); 6000 N ! FUNCTION GGMNCBCL 0.99 -8621.707-.0054695069*T**2+3.6645644E-08*T**3 -2.588845E-14*T**5; 6000 N ! FUNCTION GGMNCBCH 0.99 -25954.328+130.73341*T+20.178863*T -20.178863*T*LN(T)-7.4173873E+17*T**(-5)+3.5722E+36*T**(-11); 6000 N ! FUNCTION GGMNCUBL 0.99 -6181.4708-.0057218755*T**2+8.9632678E-12*T**3 -1.9360399E-14*T**5; 6000 N ! FUNCTION GGMNCUBH 0.99 -24465.161+136.70198*T+21.095719*T -21.095719*T*LN(T)-3.967E+17*T**(-5)+2.9953E+36*T**(-11); 6000 N ! FUNCTION GGMNFCCL 0.99 -5356.328-.0044627084*T**2-3.7906096E-10*T**4 +8.1018765E-14*T**5; 6000 N ! FUNCTION GGMNFCCH 0.99 -22440.434+135.25456*T+20.797951*T -20.797951*T*LN(T)-1.8964E+18*T**(-5)+5.208E+36*T**(-11); 6000 N ! FUNCTION GGMNBCCL 0.99 -4692.6774-.006846492*T**2-3.2311349E-15*T**5; 6000 N ! FUNCTION GGMNBCCH 0.99 -18620.432+127.31728*T+20.301009*T -20.301009*T*LN(T)-2.2035E+18*T**(-5)+5.1886E+36*T**(-11); 6000 N ! FUNCTION GGMNHCPL 0.99 -9755.88935-.00699764166*T**2+4.12888434E-15*T**5; 6000 N ! FUNCTION GGMNHCPH 0.99 -25379.581+133.19315*T+21.0957581*T -21.0957581*T*LN(T)-1.1043E+18*T**(-5)+3.3993E+36*T**(-11); 6000 N ! FUNCTION UN_ASS 0.99 +0.0; 300 N ! TYPE_DEFINITION % SEQ *! DEFINE_SYSTEM_DEFAULT ELEMENT 2 ! DEFAULT_COMMAND DEF_SYS_ELEMENT VA /- ! TYPE_DEFINITION * GES A_P_D LIQUID MAGNETIC 0.0 0.25 ! PHASE LIQUID %* 2 1 1 ! CONSTITUENT LIQUID :FE,MN : VA : ! PARAMETER G(LIQUID,FE:VA;0) 0.99 +7103.20801 -.0019730116*T**2+1392.1182-8.2584018*T; 6000 N REF0 ! PARAMETER TC(LIQUID,FE:VA;0) 0.99 +200; 6000 N REF0 ! PARAMETER NT(LIQUID,FE:VA;0) 0.99 -200; 6000 N REF0 ! PARAMETER BMAGN(LIQUID,FE:VA;0) 0.99 +1.7; 6000 N REF0 ! PARAMETER THETA(LIQUID,FE:VA;0) 0.99 +1*LN(245); 6000 N REF0 ! PARAMETER GD(LIQUID,FE:VA;0) 0.99 +42754.9478-7.624*T -1.08230446*T*LN(T); 6000 N REF0 ! PARAMETER G(LIQUID,MN:VA;0) 0.99 +13256.8283 -.0017557494*T**2; 6000 N REF0 ! PARAMETER THETA(LIQUID,MN:VA;0) 0.99 +1*LN(TELIQMN#); 6000 N REF0 ! PARAMETER GD(LIQUID,MN:VA;0) 0.99 +50493.6966-8.314*T -1.07778322*T*LN(T); 6000 N REF0 ! LIST_OF_REFERENCES NUMBER SOURCE ! """ ALNI_TOUGH_CHEMPOT_TDB = """ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ Date: 2016-12-14 15:39 $ Components: AL, NI, VA $ Phases: AL3NI1, AL3NI2, AL3NI5, BCC_B2, FCC_L12, LIQUID $ Generated by rotis (pycalphad 0.4.2+61.g2a7ce13.dirty) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ ELEMENT AL BLANK 0 0 0 ! ELEMENT NI BLANK 0 0 0 ! ELEMENT VA BLANK 0 0 0 ! FUNCTION GBCCAL 298.15 -4.813*T + GHSERAL# + 10083; 2900.0 N ! FUNCTION GBCCNI 298.15 -3.556*T + GHSERNI# + 8715.084; 3000.0 N ! FUNCTION GFCCAL 298.15 GHSERAL#; 2900.0 N ! FUNCTION GFCCNI 298.15 GHSERNI#; 3000.0 N ! FUNCTION GHSERAL 298.15 -8.77664E-7*T**3 - 0.001884662*T**2 - 24.3671976*T*LN(T) + 137.093038*T - 7976.15 + 74092*T**(-1); 700.0 Y -5.764227E-6*T**3 + 0.018531982*T**2 - 38.5844296*T*LN(T) + 223.048446*T - 11276.24 + 74092*T**(-1); 933.47 Y -31.748192*T*LN(T) + 188.684153*T - 11278.378 - 1.230524E+28*T**(-9); 2900.0 N ! FUNCTION GHSERNI 298.15 -0.0048407*T**2 - 22.096*T*LN(T) + 117.854*T - 5179.159; 1728.0 Y -43.1*T*LN(T) + 279.135*T - 27840.655 + 1.12754E+31*T**(-9); 3000.0 N ! FUNCTION GHSERVA 1 0; 10000 N ! FUNCTION GLIQAL 298.15 7.9337E-20*T**7 - 11.841867*T + GHSERAL# + 11005.029; 700.0 Y
# import mysql.connector as mysql import datetime from types import resolve_bases from dotenv import load_dotenv import os from flaskext.mysql import MySQL import pymysql from datetime import date load_dotenv() SQL_HOST = os.getenv("SQL_HOST") SQL_USER = os.getenv('SQL_USER') SQL_PASSWORD = os.getenv('SQL_PASSWORD') class DB: def __init__(self, app): # app.config['MYSQL-HOST'] = SQL_HOST # app.config['MYSQL_USER'] = SQL_USER # app.config['MYSQL_PASSWORD'] = SQL_PASSWORD # app.config['MYSQL_DB'] = "sli_database" # app.config['MYSQL_AUTOCOMMIT'] = True # app.config['MYSQL_AUTH_PLUGIN'] = "mysql_native_password" # self.mysql = MySQL(app, host = SQL_HOST, user = SQL_USER, password = <PASSWORD>, db = "sli_database", autocommit = True) # self.db = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) # # self.mysql.init_app(app) # # self.db = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>_PASSWORD, database='sli_database', autocommit=True) # print(self.db) # print(self.db.ping(reconnect=False)) # self.cursor = self.db.cursor() # self.cursor.close() """ def create_connection(self): return pymysql.connect( host=SQL_HOST, db='sli_database', user=SQL_USER, password=<PASSWORD>, cursorclass=pymysql.cursors.DictCursor ) """ # Gets login information to verify password based on username input if username is present in database. # # Parameters: # username: user's username # Returns: # results: list of singular entry retrieved from database in the form [username, password, role] def getLogin(self, username): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() # print(username) cursor.execute("SELECT username, password, role, fname FROM `User` WHERE username LIKE \"%" + str(username) + "\"") result = cursor.fetchall() connection.close() # print("get login done") return result '''def getTeacherLogin(self, email): self.cursor = self.db.cursor() sql = "SELECT id, email, password FROM teacher WHERE email = %s" get_email = (str(email), ) self.cursor.execute(sql, get_email) result = self.cursor.fetchall() self.cursor.close() return result''' # Gets user's first name to display in welcome message on dashboard. # # Parameters: # username: user's username # # Returns: # results: list of singular tuple entry retrieved from database in the form (fname) def getUserInfo(self, username): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT fname FROM `User` WHERE username = %s" get_teacher_info = (str(username), ) cursor.execute(sql, get_teacher_info) result = cursor.fetchall() connection.close() return result def getUserToken(self, token): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() # print("entered sql") sql = "SELECT `user`, token_val FROM Token WHERE token_val = '{}'".format(token) # print("wrote sql script") #get_token = (str(token), ) # print("got token") ################################################# try: #self.cursor.execute(sql, get_token) cursor.execute(sql) except Exception as e: # print(e) return e # print("printing") result = cursor.fetchall() # print(result) connection.close() return result def insertToken(self, username, token): # print("ADB") connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() deleted_old_token = "DELETE FROM Token WHERE `user`=%s" del_input = (username, ) cursor.execute("""DELETE FROM Token WHERE `user`=%s""", (username,)) connection.commit() result = cursor.fetchall() # print(result) #print("insert new token") connection.close() connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() # print("insert new token") sql = "INSERT INTO Token VALUES (%s, %s)" input = (str(username), str(token)) cursor.execute(sql, input) connection.close() return "ok" def createNewClass(self, teacher, class_name): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() insert_sql = "INSERT INTO Class VALUES (%s, %s)" insert_input = (str(teacher), str(class_name)) cursor.execute(insert_sql, insert_input) # print("created new class successful") connection.close() def deleteToken(self, username): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() # print("deleting...") sql = "DELETE FROM Token WHERE `user` = %s" del_input = (str(username), ) cursor.execute(sql, del_input) # print("deleted!") connection.close() def createAccount(self, username, password, role, fname=None, lname=None): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "INSERT INTO `User` VALUES (%s, %s, %s, %s, %s)" inputs = (str(username), str(password), str(role), str(fname), str(lname)) cursor.execute(sql, inputs) connection.close() return "success" def getClasses(self, teacher): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT name FROM Class WHERE teacher = %s" get_id = (str(teacher), ) cursor.execute(sql, get_id) result = cursor.fetchall() connection.close() return result def getStudentsOfClass(self, teacher, class_name): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() # print("here") # print(teacher, class_name) sql = "SELECT student FROM InClass WHERE teacher LIKE %s AND class LIKE %s ORDER BY student ASC" input_sql = (str(teacher), str(class_name)) # print("good") cursor.execute(sql, input_sql) # print("haha") result = cursor.fetchall() # print(type(result)) connection.close() return result def addStudentToClass(self, teacher, class_name, student): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "INSERT INTO InClass VALUES (%s, %s, %s)" value = (str(teacher), str(class_name), str(student)) cursor.execute(sql, value) connection.close() def logWork(self, username, project, sdg, date, hours, description): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "INSERT INTO `Work` (user, project, SDG, date, hours, description) VALUES (%s, %s, %s, %s, %s, %s)" inputs = (str(username), str(project), str(sdg), str(date), int(hours), str(description)) # print(inputs) cursor.execute(sql, inputs) connection.close() ''' Gets all campagins for the class that the given student is in. Parameters: student: username of student who's campaigns we want Returns: results: list of tuple entries retrieved from database in the form (campaign name, total_hours, start_date, due_date) in ascending order of due date ''' def studentGetCampaigns(self, student): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT name, total_hours, start_date, due_date FROM Campaign WHERE (teacher, class) in (SELECT teacher, class FROM InClass WHERE student LIKE %s) ORDER BY due_date desc" inputs = (str(student), ) cursor.execute(sql, inputs) results = cursor.fetchall() connection.close() return results def getGoal(self, student): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT total_hours, target_date FROM Goal WHERE user like %s" inputs = (str(student), ) cursor.execute(sql, inputs) results = cursor.fetchall() connection.close() return (results[0][0], str(results[0][1])) def createCampaign(self, teacher, class_name, name, total_hours, start_date, due_date): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "INSERT INTO Campaign VALUES (%s, %s, %s, %s, %s, %s)" inputs = (str(teacher), str(class_name), str(name), str(total_hours), str(start_date), str(due_date)) cursor.execute(sql, inputs) connection.close() def createGoal(self, student, total_hours, target_date): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "DELETE FROM Goal WHERE user LIKE %s" inputs = (str(student), ) cursor.execute(sql, inputs) sql = "INSERT INTO Goal VALUES (%s, %s, %s)" inputs = (str(student), str(total_hours), str(target_date)) cursor.execute(sql, inputs) connection.close() def createPasswordLink(self, email, link): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "DELETE FROM ResetLink WHERE user LIKE %s" inputs = (str(email), ) cursor.execute(sql, inputs) sql = "INSERT INTO ResetLink VALUES (%s, %s)" inputs = (str(email), link) cursor.execute(sql, inputs) connection.close() def getPasswordLink(self, link): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT user, link FROM ResetLink WHERE link LIKE %s" inputs = (link, ) cursor.execute(sql, inputs) results = cursor.fetchall() connection.close() return results def resetPassword(self, username, password): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "UPDATE User SET password = %s WHERE username LIKE %s" inputs = (str(password), str(username)) cursor.execute(sql, inputs) sql = "DELETE FROM ResetLink WHERE user LIKE %s" inputs = (str(username), ) cursor.execute(sql, inputs) connection.close() # Gets all campaigns for a given class that a teacher owns to be displayed on the teacher's dashboard. # # Parameters: # username: teacher's username # className: name of teacher's class # # Returns: # results: list of tuple entries retrieved from database in the form (campaign name, total_hours, start_date, due_date) # in ascending order of due date def teacherGetCampaigns(self, username, className): connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT name, total_hours, start_date, due_date FROM Campaign WHERE teacher LIKE %s AND class LIKE %s ORDER BY due_date desc" inputs = (str(username), str(className)) cursor.execute(sql, inputs) results = cursor.fetchall() connection.close() return results # Gets total hours of logged work between the given start and due dates for a specific user. # # Parameters: # start_date: earliest date threshold # due_date: latest date threshold # username: user whose total hours we want to retrieve # # Returns: # results: list of tuple entries retrieved from database in the form (user, total_hours) def getStudentProgress(self, username, start_date, due_date): if not start_date: start_date = "1900-01-01" if not due_date: due_date = str(date.today()) connection = pymysql.connect(host=SQL_HOST, user=SQL_USER, password=<PASSWORD>, database='sli_database', autocommit=True) cursor = connection.cursor() sql = "SELECT user, sum(hours) FROM Work WHERE date BETWEEN %s AND %s AND user LIKE %s GROUP BY user;" inputs = (str(start_date), str(due_date), str(username)) cursor.execute(sql, inputs)
for reduction if post_reduction: stage += 1 stage_type = "red_out" placeholders.add("ops%d" % stage) post_reduction = False stage_map[arg_i] = (stage,stage_type) for i in range(2): operand_i, operand = stack.pop() if operand[0] is ng.GPUTensor: stage_map[operand_i] = (stage,stage_type) elif arg_type in _float_ops: # For each tensor argument asign the stage that it belongs to. for i in range(_float_ops[arg_type][0]): operand_i, operand = stack.pop() if operand[0] is ng.GPUTensor: # If we are in post reduction and see a tensor we need to # switch stages to an ew loop. if post_reduction: stage += 1 stage_type = "loop" placeholders.add("loads%d" % stage) placeholders.add("ops%d" % stage) post_reduction = False stage_map[operand_i] = (stage,stage_type) # just append the temp float as a placeholder stack.append((-1,(float,))) # Tie this operation to a stage stage_map[arg_i] = (stage,stage_type) # Each time we do a reduction we need to setup a new elementwise loop elif arg_type in _reduction_ops: # It's possible to have back to back reductions. # If so start a new ew loop stage. if post_reduction: stage += 1 stage_type = "loop" placeholders.add("loads%d" % stage) placeholders.add("ops%d" % stage) # Tie this operation to a stage stage_map[arg_i] = (stage,stage_type) # Tie a tensor to the stage if one precedes the reduction. operand_i, operand = stack.pop() if operand[0] is ng.GPUTensor: stage_map[operand_i] = (stage,stage_type) # just append the temp float as a placeholder stack.append((-1,(float,))) # generate a unique signature for this reduction op red_sig = [] for i, a in enumerate(type_args): # find everything tied to this stage if i in stage_map and stage_map[i][0] == stage: # for operations, just append the name if type(a[0]) is str: red_sig.append(a[0]) # For tensor or constant, append type and id. # Note that constants have unique ids and will prevent # duplicate detection. Need to know diff between contants that # can change or are actually static... save for another day. # TODO: this has implications for cached execution plans. else: red_sig.append(tuple(a[0:2])) red_sig = tuple(red_sig) # Look for duplicate reductions if red_sig in dup_reduction: # remove duplicate placeholders placeholders.remove("loads%d" % stage) placeholders.remove("ops%d" % stage) # print "dup: ", stage, arg[1], red_sig, dup_reduction[red_sig] # link the dup stage with the original dup_reduction[stage] = dup_reduction[red_sig] else: # tie each reduction signature to its stage dup_reduction[red_sig] = stage # finish building the reduction stage placeholders.add("reduction%d" % stage) # The ops section begins a new stage # We could try and find the longest common op string and reuse these ops # along with the reduction but it's not worth the complication. stage += 1 stage_type = "red_ops" placeholders.add("ops%d" % stage) post_reduction = True else: # build the stack with the operands stack.append((arg_i, arg)) # print "\n".join(str(stage_map[i]) + " " + str(s) for i,s in enumerate(type_args)) # print "\n" # print "\n".join(str(s) for s in placeholders) # exit() sig = "P" # first param for rand_state stack = [] array_ids = set() fp16In = False rand_init = False rand_func = False current_stage = None stack = [] red_regsiters = {} template = _ew_template template_vals = { "name" : "kernel_" } for key in placeholders: template_vals[key] = [] for arg_i, arg in enumerate(type_args): arg_type, arg_id = arg[0:2] stage, stage_type = stage_map[arg_i] # build out the template as we process operations (strings) if type(arg_type) is str: # don't build duplicate stages if stage not in dup_reduction: # build the template as the stage and stage_type combination changes if current_stage != stage_map[arg_i]: current_stage = stage_map[arg_i] template += _stage_template[stage_type].format(stage) # the reduction op shares the stage with its loop # so append that separately here. if arg_type in _reduction_ops: template += _stage_template["red"].format(stage) else: current_stage = stage_map[arg_i] # Array operands if arg_type is ng.GPUTensor: dtype = arg[2] #TODO: need to be able to handle more than 26 params.. template_vals["name"] += dtype + chr(ord("A") + arg_id) if stage not in dup_reduction: # first arg is output array, don't put on stack if arg_i > 0: stack.append("a%d" % arg_id) else: out_dtype = dtype # 0: arg_id, 1: stage, 2: type, 3: cvt ew_dtype = _ew_types[dtype] fmt = (arg_id, stage, ew_dtype["type"], ew_dtype["cvt"]) # First time we see a tensor initialize everything if arg_id not in array_ids: array_ids.add(arg_id) array_ids.add((arg_id,stage)) sig += "Pii" # input tensors if arg_i > 0: ew_in = _ew_strings["in"] loads = "loads%d" % stage template_vals["arguments"].append(ew_in["arguments"].format(*fmt)) template_vals["inits" ].append(ew_in["inits" ].format(*fmt)) template_vals[loads ].append(ew_in["loads" ].format(*fmt)) # output tensor else: for key in ("arguments","inits"): template_vals[key].append(_ew_strings["out"][key].format(*fmt)) if dtype == 'f2' and not fp16In: template_vals["common"].append(_common_fp16_to_fp32) fp16In = True # Subsequent times we see a tensor just initialize inits and loads # But only for arrays of diferent non-dup stages elif (arg_id,stage) not in array_ids: array_ids.add((arg_id,stage)) ew_in = _ew_strings["in"] loads = "loads%d" % stage template_vals["inits"].append(ew_in["inits"].format(*fmt)) template_vals[loads ].append(ew_in["loads"].format(*fmt)) # Constant operands elif arg_type is float: sig += "f" template_vals["name"] += "f4" + chr(ord("a") + arg_id) if stage not in dup_reduction: stack.append("c%d" % arg_id) ew_const = _ew_strings["const"] template_vals["arguments"].append(ew_const["arguments"].format(arg_id)) # Operations (arg_type = op_name) else: template_vals["name"] += "_%s_" % arg_type if arg_type == "assign": rounding = arg[2] ops = "ops%d" % stage # loop end condition for last stage sig += "i" template_vals["arguments"].append("int n%d" % stage) out_val = stack.pop() # rounding if out_dtype != "f4": round_val = "r%d" % arg_id ew_round = _ew_strings["round"] if out_dtype == "f2": # random rounding if rounding > 0: if not rand_init: rand_init = _init_rand(template_vals) template_vals["common"].append(_common_random_round) template_vals["name"] += "rr" template_vals[ops].append(ew_round["random"].format(round_val, out_val)) # nearest rounding (unbiased) else: template_vals["common"].append(_common_fp32_to_fp16) template_vals["name"] += "rn" template_vals[ops].append(ew_round["nearest"].format(round_val, out_val)) # int8 and uint8: else: if out_dtype == "i1": template_vals["common"].append(_common_fp32_to_i1) else: template_vals["common"].append(_common_fp32_to_u1) template_vals[ops].append(ew_round[out_dtype].format(round_val, out_val)) out_val = round_val template_vals[ops].append(_float_ops[arg_type][1].format(out_val)) elif arg_type in _float_ops: if stage not in dup_reduction: ops = "ops%d" % stage (num_ops, op_code) = _float_ops[arg_type] if arg_type == "rand": if not rand_init: rand_init = _init_rand(template_vals) if not rand_func: template_vals["common"].append(_common_frand) rand_func = True op_list = [ "r%d" % arg_id ] #build the operands from the stack for i in range(num_ops): op_list.append(stack.pop()) template_vals[ops].append(op_code.format(*op_list)) stack.append(op_list[0]) elif arg_type in _reduction_ops: # loop end condition for current stage # add regardless of duplicate reduction stage sig += "i" template_vals["arguments"].append("int n%d" % stage) # if this is a duplicate reduction just push the previous # result back onto the stack. if stage in dup_reduction: stack.append(red_regsiters[dup_reduction[stage]]) # Otherwise fill out the reduction template else: ops = "ops%d" % stage red = "reduction%d" % stage red_arg = "r%d" % arg_id red_strings = _reduction_ops[arg_type] stack_arg = stack.pop() template_vals["inits"].append(red_strings["inits" ].format(red_arg)) template_vals[ops ].append(red_strings["ops" ].format(red_arg, stack_arg)) template_vals[red ].append(red_strings["reduction"].format(red_arg)) stack.append(red_arg) # remember this register in case a duplicate needs it. red_regsiters[stage] = red_arg else: raise ValueError("Bad op type.") template += _fin_template # convert lists to strings template_vals["common"] = "\n".join(template_vals["common"]) template_vals["arguments"] = ",\n ".join(template_vals["arguments"]) template_vals["inits"] = "\n ".join(template_vals["inits"]) template_vals["finish"] = "\n".join(template_vals["finish"]) for key in ("common","arguments","inits","finish"): placeholders.remove(key) # add the dynamic placeholders: loads#, ops#, reduction# for key in placeholders: template_vals[key] = "\n ".join(template_vals[key]) module = _get_module(template, template_vals) kernel = module.get_function(template_vals["name"]) kernel.prepare(sig) return kernel # TODO: build a program wide DAG and only call this once at startup per assignment. # TODO: allow multiple shape compatible assignments. def call_compound_kernel(rand_state, *args): """ Pass in a list of GPUTensor objects, constants and operators in postfix notation.. C += 2.5 * A * B + 1 call_compound_ew_kernel(C, 2.5, A, "mul", B, "mul", 1, "add", C, "add", "assign") """ out = None arg_cnt = 0 op_cnt = 0 array_ids = {} kernel_args = [ rand_state, ] type_args = [] shape_stack = [] # Apply reduction constraints and determine thread axis # Blocks will be allocated counter to this axis reduction = False axis = 1 for arg in args: if type(arg) is dict: if arg["op"] in _reduction_ops: # To reduce a whole tensor (axis=None) reduce along each axis in succession. if arg.get("axis",None) not in (0,1): raise ValueError("Only reduction along an axis currently supported") # Keep axis values consistent within the same kernel if reduction is True: if arg["axis"] != axis: raise ValueError("Reduction only allowed along one
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import unittest import frappe, erpnext import frappe.model from erpnext.accounts.doctype.payment_entry.payment_entry import get_payment_entry from frappe.utils import cint, flt, today, nowdate, add_days, getdate import frappe.defaults from erpnext.stock.doctype.purchase_receipt.test_purchase_receipt import make_purchase_receipt, get_taxes from erpnext.controllers.accounts_controller import get_payment_terms from erpnext.exceptions import InvalidCurrency from erpnext.stock.doctype.stock_entry.test_stock_entry import get_qty_after_transaction from erpnext.projects.doctype.project.test_project import make_project from erpnext.accounts.doctype.account.test_account import get_inventory_account, create_account from erpnext.stock.doctype.item.test_item import create_item test_dependencies = ["Item", "Cost Center", "Payment Term", "Payment Terms Template"] test_ignore = ["Serial No"] class TestPurchaseInvoice(unittest.TestCase): @classmethod def setUpClass(self): unlink_payment_on_cancel_of_invoice() frappe.db.set_value("Buying Settings", None, "allow_multiple_items", 1) @classmethod def tearDownClass(self): unlink_payment_on_cancel_of_invoice(0) def test_gl_entries_without_perpetual_inventory(self): frappe.db.set_value("Company", "_Test Company", "round_off_account", "Round Off - _TC") pi = frappe.copy_doc(test_records[0]) self.assertTrue(not cint(erpnext.is_perpetual_inventory_enabled(pi.company))) pi.insert() pi.submit() expected_gl_entries = { "_Test Payable - _TC": [0, 1512.0], "_Test Account Cost for Goods Sold - _TC": [1250, 0], "_Test Account Shipping Charges - _TC": [100, 0], "_Test Account Excise Duty - _TC": [140, 0], "_Test Account Education Cess - _TC": [2.8, 0], "_Test Account S&H Education Cess - _TC": [1.4, 0], "_Test Account CST - _TC": [29.88, 0], "_Test Account VAT - _TC": [156.25, 0], "_Test Account Discount - _TC": [0, 168.03], "Round Off - _TC": [0, 0.3] } gl_entries = frappe.db.sql("""select account, debit, credit from `tabGL Entry` where voucher_type = 'Purchase Invoice' and voucher_no = %s""", pi.name, as_dict=1) for d in gl_entries: self.assertEqual([d.debit, d.credit], expected_gl_entries.get(d.account)) def test_gl_entries_with_perpetual_inventory(self): pi = make_purchase_invoice(company="_Test Company with perpetual inventory", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1", get_taxes_and_charges=True, qty=10) self.assertTrue(cint(erpnext.is_perpetual_inventory_enabled(pi.company)), 1) self.check_gle_for_pi(pi.name) def test_terms_added_after_save(self): pi = frappe.copy_doc(test_records[1]) pi.insert() self.assertTrue(pi.payment_schedule) self.assertEqual(pi.payment_schedule[0].due_date, pi.due_date) def test_payment_entry_unlink_against_purchase_invoice(self): from erpnext.accounts.doctype.payment_entry.test_payment_entry import get_payment_entry unlink_payment_on_cancel_of_invoice(0) pi_doc = make_purchase_invoice() pe = get_payment_entry("Purchase Invoice", pi_doc.name, bank_account="_Test Bank - _TC") pe.reference_no = "1" pe.reference_date = nowdate() pe.paid_from_account_currency = pi_doc.currency pe.paid_to_account_currency = pi_doc.currency pe.source_exchange_rate = 1 pe.target_exchange_rate = 1 pe.paid_amount = pi_doc.grand_total pe.save(ignore_permissions=True) pe.submit() pi_doc = frappe.get_doc('Purchase Invoice', pi_doc.name) pi_doc.load_from_db() self.assertTrue(pi_doc.status, "Paid") self.assertRaises(frappe.LinkExistsError, pi_doc.cancel) unlink_payment_on_cancel_of_invoice() def test_purchase_invoice_for_blocked_supplier(self): supplier = frappe.get_doc('Supplier', '_Test Supplier') supplier.on_hold = 1 supplier.save() self.assertRaises(frappe.ValidationError, make_purchase_invoice) supplier.on_hold = 0 supplier.save() def test_purchase_invoice_for_blocked_supplier_invoice(self): supplier = frappe.get_doc('Supplier', '_Test Supplier') supplier.on_hold = 1 supplier.hold_type = 'Invoices' supplier.save() self.assertRaises(frappe.ValidationError, make_purchase_invoice) supplier.on_hold = 0 supplier.save() def test_purchase_invoice_for_blocked_supplier_payment(self): supplier = frappe.get_doc('Supplier', '_Test Supplier') supplier.on_hold = 1 supplier.hold_type = 'Payments' supplier.save() pi = make_purchase_invoice() self.assertRaises( frappe.ValidationError, get_payment_entry, dt='Purchase Invoice', dn=pi.name, bank_account="_Test Bank - _TC") supplier.on_hold = 0 supplier.save() def test_purchase_invoice_for_blocked_supplier_payment_today_date(self): supplier = frappe.get_doc('Supplier', '_Test Supplier') supplier.on_hold = 1 supplier.hold_type = 'Payments' supplier.release_date = nowdate() supplier.save() pi = make_purchase_invoice() self.assertRaises( frappe.ValidationError, get_payment_entry, dt='Purchase Invoice', dn=pi.name, bank_account="_Test Bank - _TC") supplier.on_hold = 0 supplier.save() def test_purchase_invoice_for_blocked_supplier_payment_past_date(self): # this test is meant to fail only if something fails in the try block with self.assertRaises(Exception): try: supplier = frappe.get_doc('Supplier', '_Test Supplier') supplier.on_hold = 1 supplier.hold_type = 'Payments' supplier.release_date = '2018-03-01' supplier.save() pi = make_purchase_invoice() get_payment_entry('Purchase Invoice', dn=pi.name, bank_account="_Test Bank - _TC") supplier.on_hold = 0 supplier.save() except: pass else: raise Exception def test_purchase_invoice_blocked_invoice_must_be_in_future(self): pi = make_purchase_invoice(do_not_save=True) pi.release_date = nowdate() self.assertRaises(frappe.ValidationError, pi.save) pi.release_date = '' pi.save() def test_purchase_invoice_temporary_blocked(self): pi = make_purchase_invoice(do_not_save=True) pi.release_date = add_days(nowdate(), 10) pi.save() pi.submit() pe = get_payment_entry('Purchase Invoice', dn=pi.name, bank_account="_Test Bank - _TC") self.assertRaises(frappe.ValidationError, pe.save) def test_purchase_invoice_explicit_block(self): pi = make_purchase_invoice() pi.block_invoice() self.assertEqual(pi.on_hold, 1) pi.unblock_invoice() self.assertEqual(pi.on_hold, 0) def test_gl_entries_with_perpetual_inventory_against_pr(self): pr = make_purchase_receipt(company="_Test Company with perpetual inventory", supplier_warehouse="Work In Progress - TCP1", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", get_taxes_and_charges=True,) pi = make_purchase_invoice(company="_Test Company with perpetual inventory", supplier_warehouse="Work In Progress - TCP1", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1", get_taxes_and_charges=True, qty=10,do_not_save= "True") for d in pi.items: d.purchase_receipt = pr.name pi.insert() pi.submit() pi.load_from_db() self.assertTrue(pi.status, "Unpaid") self.check_gle_for_pi(pi.name) def check_gle_for_pi(self, pi): gl_entries = frappe.db.sql("""select account, sum(debit) as debit, sum(credit) as credit from `tabGL Entry` where voucher_type='Purchase Invoice' and voucher_no=%s group by account""", pi, as_dict=1) self.assertTrue(gl_entries) expected_values = dict((d[0], d) for d in [ ["Creditors - TCP1", 0, 720], ["Stock Received But Not Billed - TCP1", 500.0, 0], ["_Test Account Shipping Charges - TCP1", 100.0, 0.0], ["_Test Account VAT - TCP1", 120.0, 0] ]) for i, gle in enumerate(gl_entries): self.assertEqual(expected_values[gle.account][0], gle.account) self.assertEqual(expected_values[gle.account][1], gle.debit) self.assertEqual(expected_values[gle.account][2], gle.credit) def test_purchase_invoice_change_naming_series(self): pi = frappe.copy_doc(test_records[1]) pi.insert() pi.naming_series = 'TEST-' self.assertRaises(frappe.CannotChangeConstantError, pi.save) pi = frappe.copy_doc(test_records[0]) pi.insert() pi.load_from_db() self.assertTrue(pi.status, "Draft") pi.naming_series = 'TEST-' self.assertRaises(frappe.CannotChangeConstantError, pi.save) def test_gl_entries_for_non_stock_items_with_perpetual_inventory(self): pi = make_purchase_invoice(item_code = "_Test Non Stock Item", company = "_Test Company with perpetual inventory", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1") self.assertTrue(pi.status, "Unpaid") gl_entries = frappe.db.sql("""select account, debit, credit from `tabGL Entry` where voucher_type='Purchase Invoice' and voucher_no=%s order by account asc""", pi.name, as_dict=1) self.assertTrue(gl_entries) expected_values = [ ["_Test Account Cost for Goods Sold - TCP1", 250.0, 0], ["Creditors - TCP1", 0, 250] ] for i, gle in enumerate(gl_entries): self.assertEqual(expected_values[i][0], gle.account) self.assertEqual(expected_values[i][1], gle.debit) self.assertEqual(expected_values[i][2], gle.credit) def test_purchase_invoice_calculation(self): pi = frappe.copy_doc(test_records[0]) pi.insert() pi.load_from_db() expected_values = [ ["_Test Item Home Desktop 100", 90, 59], ["_Test Item Home Desktop 200", 135, 177] ] for i, item in enumerate(pi.get("items")): self.assertEqual(item.item_code, expected_values[i][0]) self.assertEqual(item.item_tax_amount, expected_values[i][1]) self.assertEqual(item.valuation_rate, expected_values[i][2]) self.assertEqual(pi.base_net_total, 1250) # tax amounts expected_values = [ ["_Test Account Shipping Charges - _TC", 100, 1350], ["_Test Account Customs Duty - _TC", 125, 1350], ["_Test Account Excise Duty - _TC", 140, 1490], ["_Test Account Education Cess - _TC", 2.8, 1492.8], ["_Test Account S&H Education Cess - _TC", 1.4, 1494.2], ["_Test Account CST - _TC", 29.88, 1524.08], ["_Test Account VAT - _TC", 156.25, 1680.33], ["_Test Account Discount - _TC", 168.03, 1512.30], ] for i, tax in enumerate(pi.get("taxes")): self.assertEqual(tax.account_head, expected_values[i][0]) self.assertEqual(tax.tax_amount, expected_values[i][1]) self.assertEqual(tax.total, expected_values[i][2]) def test_purchase_invoice_with_subcontracted_item(self): wrapper = frappe.copy_doc(test_records[0]) wrapper.get("items")[0].item_code = "_Test FG Item" wrapper.insert() wrapper.load_from_db() expected_values = [ ["_Test FG Item", 90, 59], ["_Test Item Home Desktop 200", 135, 177] ] for i, item in enumerate(wrapper.get("items")): self.assertEqual(item.item_code, expected_values[i][0]) self.assertEqual(item.item_tax_amount, expected_values[i][1]) self.assertEqual(item.valuation_rate, expected_values[i][2]) self.assertEqual(wrapper.base_net_total, 1250) # tax amounts expected_values = [ ["_Test Account Shipping Charges - _TC", 100, 1350], ["_Test Account Customs Duty - _TC", 125, 1350], ["_Test Account Excise Duty - _TC", 140, 1490], ["_Test Account Education Cess - _TC", 2.8, 1492.8], ["_Test Account S&H Education Cess - _TC", 1.4, 1494.2], ["_Test Account CST - _TC", 29.88, 1524.08], ["_Test Account VAT - _TC", 156.25, 1680.33], ["_Test Account Discount - _TC", 168.03, 1512.30], ] for i, tax in enumerate(wrapper.get("taxes")): self.assertEqual(tax.account_head, expected_values[i][0]) self.assertEqual(tax.tax_amount, expected_values[i][1]) self.assertEqual(tax.total, expected_values[i][2]) def test_purchase_invoice_with_advance(self): from erpnext.accounts.doctype.journal_entry.test_journal_entry \ import test_records as jv_test_records jv = frappe.copy_doc(jv_test_records[1]) jv.insert() jv.submit() pi = frappe.copy_doc(test_records[0]) pi.disable_rounded_total = 1 pi.allocate_advances_automatically = 0 pi.append("advances", { "reference_type": "Journal Entry", "reference_name": jv.name, "reference_row": jv.get("accounts")[0].name, "advance_amount": 400, "allocated_amount": 300, "remarks": jv.remark }) pi.insert() self.assertEqual(pi.outstanding_amount, 1212.30) pi.disable_rounded_total = 0 pi.get("payment_schedule")[0].payment_amount = 1512.0 pi.save() self.assertEqual(pi.outstanding_amount, 1212.0) pi.submit() pi.load_from_db() self.assertTrue(frappe.db.sql("""select name from `tabJournal Entry Account` where reference_type='Purchase Invoice' and reference_name=%s and debit_in_account_currency=300""", pi.name)) pi.cancel() self.assertFalse(frappe.db.sql("""select name from `tabJournal Entry Account` where reference_type='Purchase Invoice' and reference_name=%s""", pi.name)) def test_invoice_with_advance_and_multi_payment_terms(self): from erpnext.accounts.doctype.journal_entry.test_journal_entry \ import test_records as jv_test_records jv = frappe.copy_doc(jv_test_records[1]) jv.insert() jv.submit() pi = frappe.copy_doc(test_records[0]) pi.disable_rounded_total = 1 pi.allocate_advances_automatically = 0 pi.append("advances", { "reference_type": "Journal Entry", "reference_name": jv.name, "reference_row": jv.get("accounts")[0].name, "advance_amount": 400, "allocated_amount": 300, "remarks": jv.remark }) pi.insert() pi.update({ "payment_schedule": get_payment_terms("_Test Payment Term Template", pi.posting_date, pi.grand_total) }) pi.save() pi.submit() self.assertEqual(pi.payment_schedule[0].payment_amount, 606.15) self.assertEqual(pi.payment_schedule[0].due_date, pi.posting_date) self.assertEqual(pi.payment_schedule[1].payment_amount, 606.15) self.assertEqual(pi.payment_schedule[1].due_date, add_days(pi.posting_date, 30)) pi.load_from_db() self.assertTrue( frappe.db.sql( "select name from `tabJournal Entry Account` where reference_type='Purchase Invoice' and " "reference_name=%s and debit_in_account_currency=300", pi.name) ) self.assertEqual(pi.outstanding_amount, 1212.30) pi.cancel() self.assertFalse( frappe.db.sql( "select name from `tabJournal Entry Account` where reference_type='Purchase Invoice' and " "reference_name=%s", pi.name) ) def test_total_purchase_cost_for_project(self): if not frappe.db.exists("Project", {"project_name": "_Test Project for Purchase"}): project = make_project({'project_name':'_Test Project for Purchase'}) else: project = frappe.get_doc("Project", {"project_name": "_Test Project for Purchase"}) existing_purchase_cost = frappe.db.sql("""select sum(base_net_amount) from `tabPurchase Invoice Item` where project = '{0}' and docstatus=1""".format(project.name)) existing_purchase_cost = existing_purchase_cost and existing_purchase_cost[0][0] or 0 pi = make_purchase_invoice(currency="USD", conversion_rate=60, project=project.name) self.assertEqual(frappe.db.get_value("Project", project.name, "total_purchase_cost"), existing_purchase_cost + 15000) pi1 = make_purchase_invoice(qty=10, project=project.name) self.assertEqual(frappe.db.get_value("Project", project.name, "total_purchase_cost"), existing_purchase_cost + 15500) pi1.cancel() self.assertEqual(frappe.db.get_value("Project", project.name, "total_purchase_cost"), existing_purchase_cost + 15000) pi.cancel() self.assertEqual(frappe.db.get_value("Project", project.name, "total_purchase_cost"), existing_purchase_cost) def test_return_purchase_invoice_with_perpetual_inventory(self): pi = make_purchase_invoice(company = "_Test Company with perpetual inventory", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1") return_pi = make_purchase_invoice(is_return=1, return_against=pi.name, qty=-2, company = "_Test Company with perpetual inventory", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1") # check gl entries for return gl_entries = frappe.db.sql("""select account, debit, credit from `tabGL Entry` where voucher_type=%s and voucher_no=%s order by account desc""", ("Purchase Invoice", return_pi.name), as_dict=1) self.assertTrue(gl_entries) expected_values = { "Creditors - TCP1": [100.0, 0.0], "Stock Received But Not Billed - TCP1": [0.0, 100.0], } for gle in gl_entries: self.assertEqual(expected_values[gle.account][0], gle.debit) self.assertEqual(expected_values[gle.account][1], gle.credit) def test_multi_currency_gle(self): pi = make_purchase_invoice(supplier="_Test Supplier USD", credit_to="_Test Payable USD - _TC", currency="USD", conversion_rate=50) gl_entries = frappe.db.sql("""select account, account_currency, debit, credit, debit_in_account_currency, credit_in_account_currency from `tabGL Entry` where voucher_type='Purchase Invoice' and voucher_no=%s order by account asc""", pi.name, as_dict=1) self.assertTrue(gl_entries) expected_values = { "_Test Payable USD - _TC": { "account_currency": "USD", "debit": 0, "debit_in_account_currency": 0, "credit": 12500, "credit_in_account_currency": 250 }, "_Test Account Cost for Goods Sold - _TC": { "account_currency": "INR", "debit": 12500, "debit_in_account_currency": 12500, "credit": 0, "credit_in_account_currency": 0 } } for field in ("account_currency", "debit", "debit_in_account_currency", "credit", "credit_in_account_currency"): for i, gle in enumerate(gl_entries): self.assertEqual(expected_values[gle.account][field], gle[field]) # Check for valid currency pi1 = make_purchase_invoice(supplier="_Test Supplier USD", credit_to="_Test Payable USD - _TC", do_not_save=True) self.assertRaises(InvalidCurrency, pi1.save) # cancel pi.cancel() gle = frappe.db.sql("""select name from `tabGL Entry` where voucher_type='Sales Invoice' and voucher_no=%s""", pi.name) self.assertFalse(gle) def test_purchase_invoice_update_stock_gl_entry_with_perpetual_inventory(self): pi = make_purchase_invoice(update_stock=1, posting_date=frappe.utils.nowdate(), posting_time=frappe.utils.nowtime(), cash_bank_account="Cash - TCP1", company="_Test Company with perpetual inventory", supplier_warehouse="Work In Progress - TCP1", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1") gl_entries = frappe.db.sql("""select account, account_currency, debit, credit, debit_in_account_currency, credit_in_account_currency from `tabGL Entry` where voucher_type='Purchase Invoice' and voucher_no=%s order by account asc""", pi.name, as_dict=1) self.assertTrue(gl_entries) stock_in_hand_account = get_inventory_account(pi.company, pi.get("items")[0].warehouse) expected_gl_entries = dict((d[0], d) for d in [ [pi.credit_to, 0.0, 250.0], [stock_in_hand_account, 250.0, 0.0] ]) for i, gle in enumerate(gl_entries): self.assertEqual(expected_gl_entries[gle.account][0], gle.account) self.assertEqual(expected_gl_entries[gle.account][1], gle.debit) self.assertEqual(expected_gl_entries[gle.account][2], gle.credit) def test_purchase_invoice_for_is_paid_and_update_stock_gl_entry_with_perpetual_inventory(self): pi = make_purchase_invoice(update_stock=1, posting_date=frappe.utils.nowdate(), posting_time=frappe.utils.nowtime(), cash_bank_account="Cash - TCP1", is_paid=1, company="_Test Company with perpetual inventory", supplier_warehouse="Work In Progress - TCP1", warehouse= "Stores - TCP1", cost_center = "Main - TCP1", expense_account ="_Test Account Cost for Goods Sold - TCP1") gl_entries = frappe.db.sql("""select account, account_currency, sum(debit) as debit, sum(credit) as credit, debit_in_account_currency, credit_in_account_currency from `tabGL Entry` where voucher_type='Purchase Invoice' and voucher_no=%s group by account, voucher_no order by account asc;""", pi.name, as_dict=1) stock_in_hand_account = get_inventory_account(pi.company, pi.get("items")[0].warehouse) self.assertTrue(gl_entries) expected_gl_entries = dict((d[0], d) for d in [ [pi.credit_to, 250.0, 250.0], [stock_in_hand_account, 250.0, 0.0], ["Cash - TCP1", 0.0, 250.0] ]) for i, gle in enumerate(gl_entries): self.assertEqual(expected_gl_entries[gle.account][0], gle.account) self.assertEqual(expected_gl_entries[gle.account][1], gle.debit) self.assertEqual(expected_gl_entries[gle.account][2], gle.credit) def test_auto_batch(self): item_code = frappe.db.get_value('Item', {'has_batch_no': 1,
<filename>python/cm/tests_upgrade.py # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.test import TestCase import cm.api import cm.job from cm.models import Cluster, Host, ClusterObject, ServiceComponent, HostComponent from cm.models import Bundle, Upgrade, Prototype, PrototypeConfig, ConfigLog from cm.errors import AdcmEx from cm import adcm_config class TestUpgradeVersion(TestCase): def cook_cluster(self): b = Bundle(name="ADH", version="1.0") proto = Prototype(type="cluster", name="ADH", bundle=b) return Cluster(prototype=proto, issue={}) def cook_upgrade(self): return Upgrade( min_version="1.0", max_version="2.0", min_strict=False, max_strict=False, state_available='any', ) def check_upgrade(self, obj, upgrade, result): ok, msg = cm.upgrade.check_upgrade(obj, upgrade) if not ok: print("check_upgrade msg: ", msg) self.assertEqual(ok, result) def test_version(self): obj = self.cook_cluster() upgrade = self.cook_upgrade() obj.prototype.version = "1.5" self.check_upgrade(obj, upgrade, True) obj.prototype.version = "2.5" self.check_upgrade(obj, upgrade, False) obj.prototype.version = "2.0" self.check_upgrade(obj, upgrade, True) obj.prototype.version = "1.0" self.check_upgrade(obj, upgrade, True) def test_strict_version(self): obj = self.cook_cluster() upgrade = self.cook_upgrade() upgrade.min_strict = True upgrade.max_strict = True obj.prototype.version = "1.5" self.check_upgrade(obj, upgrade, True) obj.prototype.version = "2.5" self.check_upgrade(obj, upgrade, False) obj.prototype.version = "1.0" self.check_upgrade(obj, upgrade, False) obj.prototype.version = "2.0" self.check_upgrade(obj, upgrade, False) def test_state(self): obj = self.cook_cluster() upgrade = self.cook_upgrade() upgrade.state_available = ["installed", "any"] obj.prototype.version = "1.5" obj.state = "created" self.check_upgrade(obj, upgrade, False) obj.state = "installed" self.check_upgrade(obj, upgrade, True) def test_issue(self): obj = self.cook_cluster() obj.issue = {"config": False} upgrade = self.cook_upgrade() self.check_upgrade(obj, upgrade, False) class SetUp: def cook_cluster_bundle(self, ver): b = Bundle.objects.create(name='ADH', version=ver) b.save() Prototype.objects.create(type="cluster", name="ADH", version=ver, bundle=b) sp2 = Prototype.objects.create(type="service", name="hive", bundle=b) Prototype.objects.create(parent=sp2, type='component', name='server', bundle=b) sp1 = Prototype.objects.create(type="service", name="hadoop", version=ver, bundle=b) Prototype.objects.create(parent=sp1, type='component', name='server', bundle=b) Prototype.objects.create(parent=sp1, type='component', name='node', bundle=b) return b def cook_provider_bundle(self, ver): b = Bundle.objects.create(name='DF', version=ver) b.save() Prototype.objects.create(type="provider", name="DF", version=ver, bundle=b) Prototype.objects.create(type="host", name="DfHost", version=ver, bundle=b) return b def cook_provider(self, bundle, name): pp = Prototype.objects.get(type="provider", bundle=bundle) provider = cm.api.add_host_provider(pp, name) host_proto = Prototype.objects.get(bundle=provider.prototype.bundle, type='host') cm.api.add_host(host_proto, provider, 'server02.inter.net') cm.api.add_host(host_proto, provider, 'server01.inter.net') return provider def cook_cluster(self, bundle, name): cp = Prototype.objects.get(type="cluster", bundle=bundle) cluster = cm.api.add_cluster(cp, name) sp2 = Prototype.objects.get(type="service", name="hive", bundle=bundle) cm.api.add_service_to_cluster(cluster, sp2) sp1 = Prototype.objects.get(type="service", name="hadoop", bundle=bundle) cm.api.add_service_to_cluster(cluster, sp1) return cluster def cook_upgrade(self, bundle): return Upgrade.objects.create( bundle=bundle, min_version="1.0", max_version="2.0", state_available=['created'] ) def get_config(obj): attr = {} cl = ConfigLog.objects.get(obj_ref=obj.config, id=obj.config.current) if cl.attr: attr = cl.attr return cl.config, attr class TestConfigUpgrade(TestCase): add_conf = PrototypeConfig.objects.create def cook_proto(self): b = Bundle.objects.create(name='AD1', version='1.0') proto1 = Prototype.objects.create(type="cluster", name="AD1", version="1.0", bundle=b) proto2 = Prototype.objects.create(type="cluster", name="AD1", version="2.0", bundle=b) return (proto1, proto2) def test_empty_config(self): (proto1, proto2) = self.cook_proto() cluster = cm.api.add_cluster(proto1, 'Cluster1') self.assertEqual(cluster.config, None) cm.adcm_config.switch_config(cluster, proto2, proto1) self.assertEqual(cluster.config, None) def test_empty_first_config(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto2, name='port', type='integer', default=42) cluster = cm.api.add_cluster(proto1, 'Cluster1') self.assertEqual(cluster.config, None) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config['port'], 42) def test_adding_parameter(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='port', type='integer', default=42) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'host': 'arenadata.com'}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config, {'host': 'arenadata.com', 'port': 42}) def test_deleting_parameter(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='port', type='integer', default=42) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'host': 'arenadata.com'}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config, {'port': 42}) def test_default(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='port', type='integer', default=42) self.add_conf(prototype=proto2, name='port', type='integer', default=43) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'port': 42}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config, {'port': 43}) def test_non_default(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='port', type='integer', default=42) self.add_conf(prototype=proto2, name='port', type='integer', default=43) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) old_conf['port'] = 100500 cm.adcm_config.save_obj_config(cluster.config, old_conf, {}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config, {'port': 100500}) def test_add_group(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='advance', type='group') self.add_conf(prototype=proto2, name='advance', subname='port', type='integer', default=42) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'host': 'arenadata.com'}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, _ = get_config(cluster) self.assertEqual(new_config, {'host': 'arenadata.com', 'advance': {'port': 42}}) def test_add_non_active_group(self): (proto1, proto2) = self.cook_proto() # Old config with one key "host" self.add_conf(prototype=proto1, name='host', type='string', default='arenadata.com') # New config with key "host" and activatable group "advance" self.add_conf(prototype=proto2, name='host', type='string', default='arenadata.com') limits = {"activatable": True, "active": False} self.add_conf(prototype=proto2, name='advance', type='group', limits=limits) self.add_conf(prototype=proto2, name='advance', subname='port', type='integer', default=42) # Create cluster with old config cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'host': 'arenadata.com'}) # Upgrade cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, new_attr = get_config(cluster) # Check that new activatable but inactive group default values are added to new config self.assertEqual(new_config, {'host': 'arenadata.com', 'advance': {'port': 42}}) self.assertEqual(new_attr, {'advance': {'active': False}}) def test_add_active_group(self): (proto1, proto2) = self.cook_proto() self.add_conf(prototype=proto1, name='host', type='string', default='arenadata.com') self.add_conf(prototype=proto2, name='host', type='string', default='arenadata.com') limits = {"activatable": True, "active": True} self.add_conf(prototype=proto2, name='advance', type='group', limits=limits) self.add_conf(prototype=proto2, name='advance', subname='port', type='integer', default=42) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, _ = get_config(cluster) self.assertEqual(old_conf, {'host': 'arenadata.com'}) cm.adcm_config.switch_config(cluster, proto2, proto1) new_config, new_attr = get_config(cluster) self.assertEqual(new_config, {'host': 'arenadata.com', 'advance': {'port': 42}}) self.assertEqual(new_attr, {'advance': {'active': True}}) def test_from_active_group_to_not_active_group(self): """Scenario: * Create prototype1 with activatable group, active=False * Create prototype2 with activatable group, active=False * Create cluster from prototype1 * Update cluster config, activate group, set value * Update cluster config from prototype2 * Expect that the cluster configuration has not changed """ proto1, proto2 = self.cook_proto() self.add_conf( prototype=proto1, name='advance', type='group', limits={"activatable": True, "active": False}, ) self.add_conf(prototype=proto1, name='advance', subname='port', type='integer', default=11) self.add_conf( prototype=proto2, name='advance', type='group', limits={"activatable": True, "active": False}, ) self.add_conf(prototype=proto2, name='advance', subname='port', type='integer', default=22) cluster = cm.api.add_cluster(proto1, 'Cluster1') cm.api.update_obj_config( cluster.config, {'advance': {'port': 33}}, {'advance': {'active': True}} ) old_conf, old_attr = get_config(cluster) self.assertEqual(old_conf, {'advance': {'port': 33}}) self.assertEqual(old_attr, {'advance': {'active': True}}) adcm_config.switch_config(cluster, proto2, proto1) new_conf, new_attr = get_config(cluster) self.assertEqual(new_conf, {'advance': {'port': 33}}) self.assertEqual(new_attr, {'advance': {'active': True}}) def test_non_active_group(self): proto1, proto2 = self.cook_proto() # Old config with activatable group "advance" self.add_conf( prototype=proto1, name='advance', type='group', limits={"activatable": True, "active": False}, ) self.add_conf(prototype=proto1, name='advance', subname='port', type='integer', default=11) # New config with the same activatable group "advance" self.add_conf( prototype=proto2, name='advance', type='group', limits={"activatable": True, "active": False}, ) self.add_conf(prototype=proto2, name='advance', subname='port', type='integer', default=11) cluster = cm.api.add_cluster(proto1, 'Cluster1') old_conf, old_attr = get_config(cluster) self.assertEqual(old_conf, {'advance': {'port': 11}}) self.assertEqual(old_attr, {'advance': {'active': False}}) # Ugrade adcm_config.switch_config(cluster, proto2, proto1) new_conf, new_attr = get_config(cluster) # Check that activatable but not active group does not disappear from new config self.assertEqual(new_conf, {'advance': {'port': 11}}) self.assertEqual(new_attr, {'advance': {'active': False}}) class TestUpgrade(TestCase): def test_cluster_upgrade(self): setup = SetUp() b1 = setup.cook_cluster_bundle('1.0') b2 = setup.cook_cluster_bundle('2.0') setup.cook_cluster(b1, 'Test0') cluster = setup.cook_cluster(b1, 'Test1') upgrade = setup.cook_upgrade(b2) co1 = ClusterObject.objects.get(cluster=cluster, prototype__name='hadoop') try: r = cm.upgrade.do_upgrade(co1, upgrade) self.assertEqual(r, 'ok') except AdcmEx as e: self.assertEqual(e.code, 'UPGRADE_ERROR') self.assertEqual(e.msg, 'can upgrade only cluster or host provider') old_proto = Prototype.objects.get(type="service", name="hadoop", bundle=b1) new_proto = Prototype.objects.get(type="service", name="hadoop", bundle=b2) self.assertEqual(co1.prototype.id, old_proto.id) cm.upgrade.do_upgrade(cluster, upgrade) co2 = ClusterObject.objects.get(cluster=cluster, prototype__name='hadoop') self.assertEqual(co1.id, co2.id) self.assertEqual(co2.prototype.id, new_proto.id) def test_hc(self): # pylint: disable=too-many-locals setup = SetUp() b1 = setup.cook_cluster_bundle('1.0') b2 = setup.cook_cluster_bundle('2.0') b3 = setup.cook_provider_bundle('1.0') cluster = setup.cook_cluster(b1, 'Test1') provider = setup.cook_provider(b3, "DF01") co = ClusterObject.objects.get(cluster=cluster, prototype__name='hadoop') sc1 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='server') sc2 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='node') h1 = Host.objects.get(provider=provider, fqdn='server01.inter.net') h2 = Host.objects.get(provider=provider, fqdn='server02.inter.net') cm.api.add_host_to_cluster(cluster, h1) cm.api.add_host_to_cluster(cluster, h2) hc = [ {'service_id': co.id, 'host_id': h1.id, 'component_id': sc1.id}, {'service_id': co.id, 'host_id': h2.id, 'component_id': sc2.id}, ] cm.api.add_hc(cluster, hc) hc1 = HostComponent.objects.get(cluster=cluster, service=co, component=sc2) self.assertEqual(hc1.component.id, sc2.id) new_co_proto = Prototype.objects.get(type="service", name="hadoop", bundle=b2) new_comp_node = Prototype.objects.get(name='node', type='component', parent=new_co_proto) new_comp_node.delete() upgrade = setup.cook_upgrade(b2) cm.upgrade.do_upgrade(cluster, upgrade) hc2 = HostComponent.objects.get(cluster=cluster, service=co, component=sc1) self.assertEqual(hc2.component.id, sc1.id) r = HostComponent.objects.filter(cluster=cluster, service=co, component=sc2) self.assertEqual(len(r), 0) def test_component(self): # pylint: disable=too-many-locals setup = SetUp() b1 = setup.cook_cluster_bundle('1.0') b2 = setup.cook_cluster_bundle('2.0') sp = Prototype.objects.get(bundle=b2, type="service", name="hadoop") Prototype.objects.create(parent=sp, type='component', name='data', bundle=b2) setup.cook_cluster(b1, 'Test0') cluster = setup.cook_cluster(b1, 'Test1') co = ClusterObject.objects.get(cluster=cluster, prototype__name='hadoop') sc11 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='server') self.assertEqual(sc11.prototype.parent, co.prototype) sc12 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='node') self.assertEqual(sc12.prototype.parent, co.prototype) new_co_proto = Prototype.objects.get(type="service", name="hadoop", bundle=b2) cm.upgrade.switch_components(cluster, co, new_co_proto) new_comp1 = Prototype.objects.get(name='server', type='component', parent=new_co_proto) sc21 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='server') self.assertEqual(sc11.id, sc21.id) self.assertEqual(sc21.prototype, new_comp1) new_comp2 = Prototype.objects.get(name='node', type='component', parent=new_co_proto) sc22 = ServiceComponent.objects.get(cluster=cluster, service=co, prototype__name='node') self.assertEqual(sc12.id, sc22.id)
<reponame>IBM/networking-services-python-sdk # coding: utf-8 # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This document describes CIS WAF Rule Groups API. """ from enum import Enum from typing import Dict, List import json from ibm_cloud_sdk_core import BaseService, DetailedResponse from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment from .common import get_sdk_headers ############################################################################## # Service ############################################################################## class WafRuleGroupsApiV1(BaseService): """The WAF Rule Groups API V1 service.""" DEFAULT_SERVICE_URL = 'https://api.cis.cloud.ibm.com' DEFAULT_SERVICE_NAME = 'waf_rule_groups_api' @classmethod def new_instance(cls, crn: str, zone_id: str, service_name: str = DEFAULT_SERVICE_NAME, ) -> 'WafRuleGroupsApiV1': """ Return a new client for the WAF Rule Groups API service using the specified parameters and external configuration. :param str crn: cloud resource name. :param str zone_id: Zone ID. """ if crn is None: raise ValueError('crn must be provided') if zone_id is None: raise ValueError('zone_id must be provided') authenticator = get_authenticator_from_environment(service_name) service = cls( crn, zone_id, authenticator ) service.configure_service(service_name) return service def __init__(self, crn: str, zone_id: str, authenticator: Authenticator = None, ) -> None: """ Construct a new client for the WAF Rule Groups API service. :param str crn: cloud resource name. :param str zone_id: Zone ID. :param Authenticator authenticator: The authenticator specifies the authentication mechanism. Get up to date information from https://github.com/IBM/python-sdk-core/blob/master/README.md about initializing the authenticator of your choice. """ if crn is None: raise ValueError('crn must be provided') if zone_id is None: raise ValueError('zone_id must be provided') BaseService.__init__(self, service_url=self.DEFAULT_SERVICE_URL, authenticator=authenticator) self.crn = crn self.zone_id = zone_id ######################### # WAF Rule Groups ######################### def list_waf_rule_groups(self, pkg_id: str, *, name: str = None, mode: str = None, rules_count: str = None, page: int = None, per_page: int = None, order: str = None, direction: str = None, match: str = None, **kwargs ) -> DetailedResponse: """ List all WAF rule groups. List all WAF rule groups contained within a package. :param str pkg_id: Package ID. :param str name: (optional) Name of the firewall package. :param str mode: (optional) Whether or not the rules contained within this group are configurable/usable. :param str rules_count: (optional) How many rules are contained within this group. :param int page: (optional) Page number of paginated results. :param int per_page: (optional) Number of packages per page. :param str order: (optional) Field to order packages by. :param str direction: (optional) Direction to order packages. :param str match: (optional) Whether to match all search requirements or at least one (any). :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `WafGroupsResponse` object """ if pkg_id is None: raise ValueError('pkg_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='list_waf_rule_groups') headers.update(sdk_headers) params = { 'name': name, 'mode': mode, 'rules_count': rules_count, 'page': page, 'per_page': per_page, 'order': order, 'direction': direction, 'match': match } if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/waf/packages/{2}/groups'.format( *self.encode_path_vars(self.crn, self.zone_id, pkg_id)) request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def get_waf_rule_group(self, pkg_id: str, group_id: str, **kwargs ) -> DetailedResponse: """ Get WAF rule group. Get a single WAF rule group. :param str pkg_id: Package ID. :param str group_id: Group ID. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `WafGroupResponse` object """ if pkg_id is None: raise ValueError('pkg_id must be provided') if group_id is None: raise ValueError('group_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_waf_rule_group') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/waf/packages/{2}/groups/{3}'.format( *self.encode_path_vars(self.crn, self.zone_id, pkg_id, group_id)) request = self.prepare_request(method='GET', url=url, headers=headers) response = self.send(request) return response def update_waf_rule_group(self, pkg_id: str, group_id: str, *, mode: str = None, **kwargs ) -> DetailedResponse: """ Update WAF rule group. Update the state of a WAF rule group. :param str pkg_id: Package ID. :param str group_id: Group ID. :param str mode: (optional) Whether or not the rules contained within this group are configurable/usable. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `WafGroupResponse` object """ if pkg_id is None: raise ValueError('pkg_id must be provided') if group_id is None: raise ValueError('group_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='update_waf_rule_group') headers.update(sdk_headers) data = { 'mode': mode } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) url = '/v1/{0}/zones/{1}/firewall/waf/packages/{2}/groups/{3}'.format( *self.encode_path_vars(self.crn, self.zone_id, pkg_id, group_id)) request = self.prepare_request(method='PATCH', url=url, headers=headers, data=data) response = self.send(request) return response class ListWafRuleGroupsEnums: """ Enums for list_waf_rule_groups parameters. """ class Mode(str, Enum): """ Whether or not the rules contained within this group are configurable/usable. """ ON = 'on' OFF = 'off' class Direction(str, Enum): """ Direction to order packages. """ DESC = 'desc' ASC = 'asc' class Match(str, Enum): """ Whether to match all search requirements or at least one (any). """ ALL = 'all' ANY = 'any' ############################################################################## # Models ############################################################################## class WafGroupResponseResultInfo(): """ Statistics of results. :attr int page: Page number. :attr int per_page: Number of results per page. :attr int count: Number of results. :attr int total_count: Total number of results. """ def __init__(self, page: int, per_page: int, count: int, total_count: int) -> None: """ Initialize a WafGroupResponseResultInfo object. :param int page: Page number. :param int per_page: Number of results per page. :param int count: Number of results. :param int total_count: Total number of results. """ self.page = page self.per_page = per_page self.count = count self.total_count = total_count @classmethod def from_dict(cls, _dict: Dict) -> 'WafGroupResponseResultInfo': """Initialize a WafGroupResponseResultInfo object from a json dictionary.""" args = {} if 'page' in _dict: args['page'] = _dict.get('page') else: raise ValueError('Required property \'page\' not present in WafGroupResponseResultInfo JSON') if 'per_page' in _dict: args['per_page'] = _dict.get('per_page') else: raise ValueError('Required property \'per_page\' not present in WafGroupResponseResultInfo JSON') if 'count' in _dict: args['count'] = _dict.get('count') else: raise ValueError('Required property \'count\' not present in WafGroupResponseResultInfo JSON') if 'total_count' in _dict: args['total_count'] = _dict.get('total_count') else: raise ValueError('Required property \'total_count\' not present in WafGroupResponseResultInfo JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a WafGroupResponseResultInfo object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'page') and self.page is not None: _dict['page'] = self.page if hasattr(self, 'per_page') and self.per_page is not None: _dict['per_page'] = self.per_page if hasattr(self, 'count') and self.count is not None: _dict['count'] = self.count if hasattr(self, 'total_count') and self.total_count is not None: _dict['total_count'] = self.total_count return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this WafGroupResponseResultInfo object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'WafGroupResponseResultInfo') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'WafGroupResponseResultInfo') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class WafGroupsResponseResultInfo(): """ Statistics of results. :attr int page: Page number. :attr int per_page: Number of results per page. :attr int count: Number of results. :attr int total_count: Total number of results. """ def __init__(self, page: int, per_page: int, count: int, total_count: int) -> None: """ Initialize a WafGroupsResponseResultInfo object. :param int page: Page number. :param int per_page: Number of results per page. :param int count: Number of results. :param int total_count: Total number of results. """ self.page = page self.per_page = per_page self.count = count
"""pywizlight integration.""" import asyncio import json import logging import socket from time import time from typing import Any, Dict, Tuple, Optional, Union, List from asyncio_dgram.aio import connect as connect_dgram, DatagramStream from pywizlight.bulblibrary import BulbClass, BulbType from pywizlight.exceptions import ( WizLightConnectionError, WizLightMethodNotFound, WizLightTimeOutError, ) from pywizlight.rgbcw import hs2rgbcw, rgb2rgbcw from pywizlight.scenes import SCENES from pywizlight.utils import hex_to_percent, percent_to_hex from pywizlight.vec import Vector _LOGGER = logging.getLogger(__name__) TW_SCENES = [6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 29, 30, 31, 32] DW_SCENES = [9, 10, 13, 14, 29, 30, 31, 32] BulbResponse = Dict[str, Any] class PilotBuilder: """Get information from the bulb.""" def __init__( self, warm_white: Optional[int] = None, cold_white: Optional[int] = None, speed: Optional[int] = None, scene: Optional[int] = None, rgb: Optional[Tuple[float, float, float]] = None, hucolor: Optional[Tuple[float, float]] = None, brightness: Optional[int] = None, colortemp: Optional[int] = None, state: bool = True, ) -> None: """Set the parameter.""" self.pilot_params: Dict[str, Any] = {"state": state} if warm_white is not None: self._set_warm_white(warm_white) if cold_white is not None: self._set_cold_white(cold_white) if speed is not None: self._set_speed(speed) if scene is not None: self._set_scene(scene) if rgb is not None: self._set_rgb(rgb) if brightness is not None: self._set_brightness(brightness) if colortemp is not None: self._set_colortemp(colortemp) if hucolor is not None: self._set_hs_color(hucolor) def set_pilot_message(self) -> str: """Return the pilot message.""" return json.dumps({"method": "setPilot", "params": self.pilot_params}) def set_state_message(self, state: bool) -> str: """Return the setState message. It doesn't change the current status of the light.""" self.pilot_params["state"] = state return json.dumps({"method": "setState", "params": self.pilot_params}) def _set_warm_white(self, value: int) -> None: """Set the value of the warm white led.""" if 0 <= value < 256: self.pilot_params["w"] = value else: raise ValueError("Value must be between 0 and 255") def _set_cold_white(self, value: int) -> None: """Set the value of the cold white led.""" if 0 <= value < 256: self.pilot_params["c"] = value else: raise ValueError("Value must be between 0 and 255") def _set_speed(self, value: int) -> None: """Set the color changing speed in precent (0-100).""" # This applies only to changing effects. if 0 < value < 101: self.pilot_params["speed"] = value else: raise ValueError("Value must be between 0 and 100") def _set_scene(self, scene_id: int) -> None: """Set the scene by id.""" if scene_id in SCENES: self.pilot_params["sceneId"] = scene_id else: # id not in SCENES ! raise ValueError("Scene is not available. Only 0 to 32 are supported") def _set_rgb(self, values: Tuple[float, float, float]) -> None: """Set the RGB color state of the bulb.""" # Setup the tuples for the RGB values red, green, blue = values if 0 <= red < 256: self.pilot_params["r"] = red else: raise ValueError("Red is not in range between 0-255.") if 0 <= green < 256: self.pilot_params["g"] = green else: raise ValueError("Green is not in range between 0-255.") if 0 <= blue < 256: self.pilot_params["b"] = blue else: raise ValueError("Blue is not in range between 0-255.") # Get CW from RAW rgb_out, cw = rgb2rgbcw(values) # No CW because of full RGB color if cw is not None: # Use the existing set_warm_white function to set the CW values self._set_warm_white(cw) # Use the existing set_cold_white function to set the CW values self._set_cold_white(cw) def _set_hs_color(self, values: Tuple[float, float]) -> None: """Set the HS color state of the bulb.""" # Transform the HS values to RGB+CW values rgb, cw = hs2rgbcw(values) red, green, blue = rgb if 0 <= red < 256: self.pilot_params["r"] = red else: raise ValueError("Red is not in range between 0-255.") if 0 <= green < 256: self.pilot_params["g"] = green else: raise ValueError("Green is not in range between 0-255.") if 0 <= blue < 256: self.pilot_params["b"] = blue else: raise ValueError("Blue is not in range between 0-255.") if cw is not None: # Use the existing set_warm_white function to set the CW values self._set_warm_white(cw) # Use the existing set_cold_white function to set the CW values self._set_cold_white(cw) def _set_brightness(self, value: int) -> None: """Set the value of the brightness 0-255.""" percent = hex_to_percent(value) # hardware limitation - values less than 10% are not supported if percent < 10: percent = 10 if percent > 101: raise ValueError("Max value can be 100% with 255.") self.pilot_params["dimming"] = percent def _set_colortemp(self, kelvin: int) -> None: """Set the color temperature for the white led in the bulb.""" # normalize the kelvin values - should be removed if kelvin < 1000: kelvin = 1000 if kelvin > 10000: kelvin = 10000 self.pilot_params["temp"] = kelvin class PilotParser: """Interpret the message from the bulb.""" def __init__(self, pilotResult: BulbResponse) -> None: """Init the class.""" self.pilotResult = pilotResult def get_state(self) -> Optional[bool]: """Return the state of the bulb.""" if "state" in self.pilotResult: return bool(self.pilotResult["state"]) else: return None def get_mac(self) -> Optional[str]: """Return MAC from the bulb.""" if "mac" in self.pilotResult: return str(self.pilotResult["mac"]) else: return None def get_warm_white(self) -> Optional[int]: """Get the value of the warm white led.""" if "w" in self.pilotResult: return int(self.pilotResult["w"]) else: return None def get_white_range(self) -> Optional[List[float]]: """Get the value of the whiteRange property.""" if "whiteRange" in self.pilotResult: return [float(x) for x in self.pilotResult["whiteRange"]] else: return None def get_extended_white_range(self) -> Optional[List[float]]: """Get the value of the extended whiteRange property.""" if "extRange" in self.pilotResult: return [float(x) for x in self.pilotResult["extRange"]] # New after v1.22 FW - "cctRange":[2200,2700,6500,6500] elif "cctRange" in self.pilotResult: return [float(x) for x in self.pilotResult["cctRange"]] else: return None def get_speed(self) -> Optional[int]: """Get the color changing speed.""" if "speed" in self.pilotResult: return int(self.pilotResult["speed"]) else: return None def get_scene(self) -> Optional[str]: """Get the current scene name.""" if "schdPsetId" in self.pilotResult: # rhythm return SCENES[1000] scene_id = self.pilotResult["sceneId"] if scene_id in SCENES: return SCENES[scene_id] else: return None def get_cold_white(self) -> Optional[int]: """Get the value of the cold white led.""" if "c" in self.pilotResult: return int(self.pilotResult["c"]) else: return None def get_rgb(self) -> Union[Tuple[None, None, None], Vector]: """Get the RGB color state of the bulb and turns it on.""" if ( "r" in self.pilotResult and "g" in self.pilotResult and "b" in self.pilotResult ): r = self.pilotResult["r"] g = self.pilotResult["g"] b = self.pilotResult["b"] return float(r), float(g), float(b) else: # no RGB color value was set return None, None, None def get_brightness(self) -> Optional[int]: """Get the value of the brightness 0-255.""" if "dimming" in self.pilotResult: return percent_to_hex(self.pilotResult["dimming"]) return None def get_colortemp(self) -> Optional[int]: """Get the color temperature from the bulb.""" if "temp" in self.pilotResult: return int(self.pilotResult["temp"]) else: return None async def receiveUDPwithTimeout(stream: DatagramStream, timeout: float) -> bytes: """Get message with timeout value.""" data, remote_addr = await asyncio.wait_for(stream.recv(), timeout) return data class wizlight: """Create an instance of a WiZ Light Bulb.""" # default port for WiZ lights - 38899 def __init__( self, ip: str, connect_on_init: bool = False, port: int = 38899, mac: Optional[str] = None, ) -> None: """Create instance with the IP address of the bulb.""" self.ip = ip self.port = port self.state: Optional[PilotParser] = None self.mac = mac self.bulbtype: Optional[BulbType] = None self.whiteRange: Optional[List[float]] = None self.extwhiteRange: Optional[List[float]] = None # check the state on init if connect_on_init: self._check_connection() @property def status(self) -> Optional[bool]: """Return the status of the bulb: true = on, false = off.""" if self.state is None: return None return self.state.get_state() # ------------------ Non properties -------------- # def _check_connection(self) -> None: """Check the connection to the bulb.""" message = r'{"method":"getPilot","params":{}}' sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.settimeout(2) try: # send a udp package sock.sendto(bytes(message, "utf-8"), (self.ip, self.port)) # get response data data, addr = sock.recvfrom(1024) if data: return except socket.timeout: raise WizLightTimeOutError( "No connection was established by initialization." ) async def get_bulbtype(self) -> BulbType: """Return the bulb type as BulbType object.""" if self.bulbtype is not None: return self.bulbtype bulb_config = await self.getBulbConfig() if "moduleName" not in bulb_config["result"]: raise ValueError("Unable to determine bulb type.") white_range = await self.getExtendedWhiteRange() module_name = bulb_config["result"]["moduleName"] self.bulbtype = BulbType.from_data(module_name, white_range) return self.bulbtype async def getWhiteRange(self) -> Optional[List[float]]: """Read the white range from the bulb.""" if self.whiteRange is not None: return self.whiteRange resp = await self.getUserConfig() if resp is not None and "result" in resp: self.whiteRange = PilotParser(resp["result"]).get_white_range() return self.whiteRange async def getExtendedWhiteRange(self) -> Optional[List[float]]: """Read extended withe
the object's current state. If # any object in the transaction does not fit that rule, refuse # to undo. In theory this means arbitrary transactions can be # undone (because we actually match the MD5 of the state); in practice it # means that it must be the most recent transaction those # objects were involved in. # (Note that this prevents conflict-resolving undo as described # by ZODB.tests.ConflictResolution.ConflictResolvingTransUndoStorage. # Do people need that? If so, we can probably support it, but it # will require additional code.) stmt = """ SELECT prev_os.zoid, current_object.tid FROM object_state prev_os INNER JOIN object_state cur_os ON (prev_os.zoid = cur_os.zoid) INNER JOIN current_object ON (cur_os.zoid = current_object.zoid AND cur_os.tid = current_object.tid) WHERE prev_os.tid = %(undo_tid)s AND cur_os.md5 != prev_os.md5 ORDER BY prev_os.zoid """ self.runner.run_script_stmt(cursor, stmt, {'undo_tid': undo_tid}) if cursor.fetchmany(): raise UndoError( "Some data were modified by a later transaction") # Rule: don't allow the creation of the root object to # be undone. It's hard to get it back. stmt = """ SELECT 1 FROM object_state WHERE tid = %(undo_tid)s AND zoid = 0 AND prev_tid = 0 """ self.runner.run_script_stmt(cursor, stmt, {'undo_tid': undo_tid}) if cursor.fetchall(): raise UndoError("Can't undo the creation of the root object") @metricmethod def undo(self, cursor, undo_tid, self_tid): """Undo a transaction. Parameters: "undo_tid", the integer tid of the transaction to undo, and "self_tid", the integer tid of the current transaction. Returns the states copied forward by the undo operation as a list of (oid, old_tid). """ stmt = self._script_create_temp_undo if stmt: self.runner.run_script(cursor, stmt) stmt = """ DELETE FROM temp_undo; -- Put into temp_undo the list of objects to be undone and -- the tid of the transaction that has the undone state. INSERT INTO temp_undo (zoid, prev_tid) SELECT zoid, prev_tid FROM object_state WHERE tid = %(undo_tid)s ORDER BY zoid; -- Override previous undo operations within this transaction -- by resetting the current_object pointer and deleting -- copied states from object_state. UPDATE current_object SET tid = ( SELECT prev_tid FROM object_state WHERE zoid = current_object.zoid AND tid = %(self_tid)s ) WHERE zoid IN (SELECT zoid FROM temp_undo ORDER BY zoid) AND tid = %(self_tid)s; DELETE FROM object_state WHERE zoid IN (SELECT zoid FROM temp_undo ORDER BY zoid) AND tid = %(self_tid)s; -- Copy old states forward. INSERT INTO object_state (zoid, tid, prev_tid, md5, state_size, state) SELECT temp_undo.zoid, %(self_tid)s, current_object.tid, md5, COALESCE(state_size, 0), state FROM temp_undo INNER JOIN current_object ON (temp_undo.zoid = current_object.zoid) LEFT OUTER JOIN object_state ON (object_state.zoid = temp_undo.zoid AND object_state.tid = temp_undo.prev_tid) ORDER BY current_object.zoid; -- Copy old blob chunks forward. INSERT INTO blob_chunk (zoid, tid, chunk_num, chunk) SELECT temp_undo.zoid, %(self_tid)s, chunk_num, chunk FROM temp_undo JOIN blob_chunk ON (blob_chunk.zoid = temp_undo.zoid AND blob_chunk.tid = temp_undo.prev_tid); -- List the copied states. SELECT zoid, prev_tid FROM temp_undo; """ self.runner.run_script(cursor, stmt, {'undo_tid': undo_tid, 'self_tid': self_tid}) res = list(cursor) stmt = self._script_reset_temp_undo if stmt: self.runner.run_script(cursor, stmt) return res def on_filling_object_refs(self): """Test injection point""" def fill_object_refs(self, conn, cursor, get_references): """Update the object_refs table by analyzing new transactions.""" stmt = """ SELECT transaction.tid FROM transaction LEFT OUTER JOIN object_refs_added ON (transaction.tid = object_refs_added.tid) WHERE object_refs_added.tid IS NULL ORDER BY transaction.tid """ self.runner.run_script_stmt(cursor, stmt) tids = [tid for (tid,) in cursor] log_at = time.time() + 60 tid_count = len(tids) txns_done = 0 if tids: self.on_filling_object_refs() log.info( "pre_pack: analyzing references from objects in %d new " "transaction(s)", tid_count) for tid in tids: self._add_refs_for_tid(cursor, tid, get_references) txns_done += 1 now = time.time() if now >= log_at: # save the work done so far self.connmanager.commit(conn, cursor) log_at = now + 60 log.info( "pre_pack: transactions analyzed: %d/%d", txns_done, tid_count) self.connmanager.commit(conn, cursor) log.info("pre_pack: transactions analyzed: %d/%d", txns_done, tid_count) def _add_refs_for_tid(self, cursor, tid, get_references): """Fill object_refs with all states for a transaction. Returns the number of references added. """ log.debug("pre_pack: transaction %d: computing references ", tid) from_count = 0 stmt = """ SELECT zoid, state FROM object_state WHERE tid = %(tid)s ORDER BY zoid """ self.runner.run_script_stmt(cursor, stmt, {'tid': tid}) add_rows = [] # [(from_oid, tid, to_oid)] for from_oid, state in self._fetchmany(cursor): state = self.driver.binary_column_as_state_type(state) if state: assert isinstance(state, self.driver.state_types), type(state) from_count += 1 try: to_oids = get_references(state) except: log.error( "pre_pack: can't unpickle " "object %d in transaction %d; state length = %d", from_oid, tid, len(state)) raise for to_oid in to_oids: add_rows.append((from_oid, tid, to_oid)) # A previous pre-pack may have been interrupted. Delete rows # from the interrupted attempt. stmt = "DELETE FROM object_ref WHERE tid = %(tid)s" self.runner.run_script_stmt(cursor, stmt, {'tid': tid}) # Add the new references. # TODO: Use RowBatcher stmt = """ INSERT INTO object_ref (zoid, tid, to_zoid) VALUES (%s, %s, %s) """ self.runner.run_many(cursor, stmt, add_rows) # The references have been computed for this transaction. stmt = """ INSERT INTO object_refs_added (tid) VALUES (%(tid)s) """ self.runner.run_script_stmt(cursor, stmt, {'tid': tid}) to_count = len(add_rows) log.debug("pre_pack: transaction %d: has %d reference(s) " "from %d object(s)", tid, to_count, from_count) return to_count @metricmethod def pre_pack(self, pack_tid, get_references): """Decide what to pack. pack_tid specifies the most recent transaction to pack. get_references is a function that accepts a pickled state and returns a set of OIDs that state refers to. The self.options.pack_gc flag indicates whether to run garbage collection. If pack_gc is false, at least one revision of every object is kept, even if nothing refers to it. Packing with pack_gc disabled can be much faster. """ conn, cursor = self.connmanager.open_for_pre_pack() try: # The pre-pack functions are responsible for managing # their own commits; when they return, the transaction # should be committed. # # ``pack_object`` should be populated, # essentially with the distinct list of all objects and their # maximum (newest) transaction ids. if self.options.pack_gc: log.info("pre_pack: start with gc enabled") self._pre_pack_with_gc( conn, cursor, pack_tid, get_references) else: log.info("pre_pack: start without gc") self._pre_pack_without_gc( conn, cursor, pack_tid) log.info("pre_pack: enumerating states to pack") stmt = "%(TRUNCATE)s pack_state" self.runner.run_script_stmt(cursor, stmt) to_remove = 0 if self.options.pack_gc: # Mark all objects we said not to keep as something # we should discard. stmt = """ INSERT INTO pack_state (tid, zoid) SELECT tid, zoid FROM object_state INNER JOIN pack_object USING (zoid) WHERE keep = %(FALSE)s AND tid > 0 AND tid <= %(pack_tid)s ORDER BY zoid """ self.runner.run_script_stmt( cursor, stmt, {'pack_tid': pack_tid}) to_remove += cursor.rowcount else: # Support for IExternalGC. Also remove deleted objects. stmt = """ INSERT INTO pack_state (tid, zoid) SELECT t.tid, t.zoid FROM ( SELECT zoid, tid FROM object_state WHERE state IS NULL AND tid = ( SELECT MAX(i.tid) FROM object_state i WHERE i.zoid = object_state.zoid ) ) t """ self.runner.run_script_stmt(cursor, stmt) to_remove += cursor.rowcount # Pack object states with the keep flag set to true, # excluding their current TID. stmt = """ INSERT INTO pack_state (tid, zoid) SELECT tid, zoid FROM object_state INNER JOIN pack_object USING (zoid) WHERE keep = %(TRUE)s AND tid > 0 AND tid != keep_tid AND tid <= %(pack_tid)s ORDER BY zoid """ self.runner.run_script_stmt( cursor, stmt, {'pack_tid': pack_tid}) to_remove += cursor.rowcount # Make a simple summary of the transactions to examine. log.info("pre_pack: enumerating transactions to pack") stmt = "%(TRUNCATE)s pack_state_tid" self.runner.run_script_stmt(cursor, stmt) stmt = """ INSERT INTO pack_state_tid (tid) SELECT DISTINCT tid FROM pack_state """ cursor.execute(stmt) log.info("pre_pack: will remove %d object state(s)", to_remove) log.info("pre_pack: finished successfully") self.connmanager.commit(conn, cursor) except: self.connmanager.rollback_quietly(conn, cursor) conn, cursor = None, None raise finally: self.connmanager.close(conn, cursor) def __initial_populate_pack_object(self, conn, cursor, pack_tid, keep): """ Put all objects into ``pack_object`` that have revisions equal to or below *pack_tid*, setting their initial ``keep`` status to *keep*. Commits the transaction to release locks. """ # Access the tables that are used by online transactions # in a short transaction and immediately commit to release any # locks. # TRUNCATE may or may not cause implicit commits. (MySQL: Yes, # PostgreSQL: No) self.runner.run_script(cursor, "%(TRUNCATE)s pack_object;") affected_objects = """ SELECT zoid, tid FROM object_state WHERE tid > 0 AND tid <= %(pack_tid)s ORDER BY zoid """ # Take the
't_3'), ('v_6', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('v_5', 't_2'), ('t_3', 'v_9'), ('t_4', 'v_8'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_3', 'v_6'), ('v_10', 't_2'), ('t_2', 'v_10'), ('v_7', 't_4'), ('v_9', 't_3'), ('t_4', 'v_7'), ('c_1', 't_3'), ('v_8', 't_4'), ('v_6', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('t_3', 'v_8'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_8', 't_3'), ('v_7', 't_3'), ('c_1', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('v_9', 't_4'), ('t_3', 'v_8'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_8', 't_3'), ('v_7', 't_3'), ('c_1', 't_3'), ('t_4', 'v_9')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('v_9', 't_4'), ('t_3', 'v_8'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('v_8', 't_3'), ('v_7', 't_3'), ('c_1', 't_3'), ('t_4', 'v_9')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('v_5', 't_2'), ('t_3', 'v_9'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_9', 't_3'), ('v_7', 't_3'), ('c_1', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('v_5', 't_2'), ('t_3', 'v_9'), ('t_4', 'v_8'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_9', 't_3'), ('v_7', 't_3'), ('c_1', 't_3'), ('v_8', 't_4')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_7'), ('v_5', 't_2'), ('t_3', 'v_9'), ('t_4', 'v_8'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('v_9', 't_3'), ('v_7', 't_3'), ('c_1', 't_3'), ('v_8', 't_4')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_8', 't_3'), ('v_9', 't_3'), ('c_1', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('v_9', 't_3'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_7', 't_4'), ('v_8', 't_3'), ('t_4', 'v_7'), ('c_1', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_4', 'c_1'), ('t_3', 'c_1'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('v_5', 't_2'), ('c_1', 't_2'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_4', 'v_6'), ('v_6', 't_4'), ('v_10', 't_2'), ('t_2', 'v_10'), ('v_7', 't_4'), ('v_8', 't_3'), ('v_9', 't_3'), ('t_4', 'v_7'), ('c_1', 't_3')}, '>': {('c_1', 'v_5'), ('t_3', 'v_8'), ('t_3', 'v_9'), ('c_1', 't_4'), ('t_2', 'v_5'), ('t_2', 'v_6'), ('t_3', 'v_10'), ('t_2', 'v_7'), ('c_1', 'v_7'), ('t_4', 'v_8'), ('c_1', 'v_6'), ('t_4', 'v_10'), ('c_1', 't_3'), ('t_2', 'v_9'), ('c_1', 'v_8'), ('c_1', 't_2'), ('c_1', 'v_9'), ('t_4', 'v_5'), ('t_4', 'v_6'), ('t_4', 'v_7'), ('t_3', 'v_5'), ('t_3', 'v_7'), ('t_2', 'v_8'), ('t_3', 'v_6'), ('t_2', 'v_10'), ('t_4', 'v_9'), ('c_1', 'v_10')}}, {'DOMAIN': {'v_5', 't_3', 'v_6', 'v_7', 't_4', 't_2', 'v_9', 'v_8', 'c_1', 'v_10'}, 'City': {'c_1'}, 'Town': {'t_3', 't_4', 't_2'}, 'Village': {'v_5', 'v_6', 'v_7', 'v_9', 'v_8', 'v_10'}, 'Road': {('t_2', 'c_1'), ('t_3', 'v_5'), ('t_3', 'c_1'), ('t_4', 'c_1'), ('c_1', 't_2'), ('c_1', 't_4'), ('v_10', 't_3'), ('t_2', 'v_6'), ('v_6', 't_2'), ('t_3', 'v_10'), ('v_10', 't_2'), ('t_2', 'v_10'), ('t_4', 'v_10'), ('v_10', 't_4'), ('v_7', 't_4'), ('v_5', 't_3'), ('t_4', 'v_7'), ('c_1', 't_3')}, '>':
<gh_stars>0 import time import tkinter as tk from tkinter import ttk, messagebox import socket import chat_utils as utils import threading import json import sys class Main_GUI(tk.Tk): def __init__(self): super(Main_GUI, self).__init__() self.client = Client(self) self.client.init_chat() self.LOGIN_IMG = tk.PhotoImage(file='res/login.png') self.POEM_IMG = tk.PhotoImage(file='res/poem.png') self.TIME_IMG = tk.PhotoImage(file='res/time.png') self.LOGOUT_IMG = tk.PhotoImage(file='res/logout.png') self.SEARCH_IMG = tk.PhotoImage(file='res/search.png') self.ADD_GROUP_IMG = tk.PhotoImage(file='res/join_group.png') self.font_normal = ["Comic Sans MS", 10] def exit(self): answer = messagebox.askquestion(title="Exit?", message="Are you sure you want to exit?") if answer == "yes": # first logout, then exit if utils.VERBOSE: print(self.chat_frame.cache) self.client.exit() sys.exit() def app(self): """ Put root in Main_GUI.app(), and configure other frames """ self.title("ICS Chatroom") self.geometry("530x400") self.config(bg=utils.DEEPGREY) self.func_frame = Func_frame(self) self.func_frame.config(bg=utils.DEEPGREY) self.func_frame.grid(row=0, column=0, sticky='n') self.group_frame = Group_frame(self) self.group_frame.config(bg=utils.GREY) self.group_frame.grid(row=0, column=1, sticky="nswe") self.chat_frame = Chat_frame(self) self.chat_frame.config(bg=utils.WHITE) self.chat_frame.grid(row=0, column=2, sticky="nswe") self.status_frame = Status_frame(self) self.status_frame.config(bg=utils.WHITE) self.status_frame.grid(row=0, column=0, columnspan=2, sticky="nswe") self.rowconfigure(0, weight=1) self.columnconfigure(2, weight=1) self.group_frame.rowconfigure(0, weight=1) self.group_frame.rowconfigure(1, weight=1) self.group_frame.columnconfigure(0, weight=1) self.group_frame.columnconfigure(1, weight=1) self.chat_frame.rowconfigure(1, weight=1) self.chat_frame.columnconfigure(0, weight=3) self.leave_group_btn = Leave_group_button(self) self.leave_group_btn.grid(row=0, column=2, sticky="nswe", padx=10, pady=6) self.status_frame.columnconfigure(0, weight=1) self.status_frame.columnconfigure(1, weight=1) # an easter egg :) self.bind("<|><t><h>", lambda e: f"{self.chat_frame.chat_box.config(state=tk.NORMAL)}" f"{self.chat_frame.chat_box.insert('end', 'ᗜˬᗜ ')}" f"{self.chat_frame.chat_box.config(state=tk.DISABLED)}") self.protocol("WM_DELETE_WINDOW", self.exit) self.chat_frame.switch_to(utils.SYS_GRP_ID) class Client: def __init__(self, root: Main_GUI): self.state = utils.S_OFFLINE self.name = None self.root = root self.group_count = 0 def init_chat(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) svr = utils.SERVER self.socket.connect(svr) new_thread = threading.Thread(target=self.receive_msg_in_new_thread) new_thread.start() def login(self, name, password): if self.state == utils.S_OFFLINE: if name.isspace() or password.isspace(): # if name or password is empty self.root.chat_frame.new_msg.set(new_content="[SYSTEM] Login fail: Username and password can't be empty!", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() else: msg_to_server = json.dumps({"action": "login", "username": name, "password": password}) utils.mysend(self.socket, msg_to_server) if utils.VERBOSE: print("message send in login") print(msg_to_server) else: self.root.chat_frame.new_msg.set(new_content=f"[SYSTEM] You have already logged in as: {self.name}", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() def register(self, name, password): if self.state != utils.S_OFFLINE: # if user has already logged in self.root.chat_frame.new_msg.set(new_content="[SYSTEM] You have already logged in as: {self.name}", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() else: if name.isspace() or password.isspace(): # if name is empty self.root.chat_frame.new_msg.set(new_content="[SYSTEM] Register fail: Username and password can't be empty!", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() else: msg = json.dumps({"action": "register", "username": name, "password": password}) utils.mysend(self.socket, msg) if utils.VERBOSE: print(f"message send in Client.register():\n{msg}") def load_history(self): if self.state == utils.S_LOGGEDIN: msg = json.dumps({ "action": "load_history", "send_from": self.name }) utils.mysend(self.socket, msg) def clear_history(self): # clear history of previous user self.group_count = 0 self.root.group_frame.clear_history() # clear groups cache except for system group self.root.chat_frame.cache = { utils.SYS_GRP_ID: self.root.chat_frame.cache[utils.SYS_GRP_ID] } def logout(self): if self.state != utils.S_OFFLINE: msg = json.dumps({"action": "logout", "send_from": self.name}) utils.mysend(self.socket, msg) def exit(self): msg = json.dumps({"action": "exit", "send_from": self.name}) utils.mysend(self.socket, msg) def get_time(self): msg_json = json.dumps({"action": "time", "send_from": self.name}) utils.mysend(self.socket, msg_json) def get_peom(self, poem_idx): try: if int(poem_idx) > 0: msg_json = json.dumps({"action": "poem", "send_from": self.name, "index": poem_idx}) utils.mysend(self.socket, msg_json) else: self.root.chat_frame.new_msg.set(new_content="[SYSTEM] Poem index must be a positive integer!", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() except ValueError: self.root.chat_frame.new_msg.set(new_content="[SYSTEM] Poem index must be a positive integer!", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() def join_group(self, group_name): msg_json = json.dumps({ "action": "join_group", "send_from": self.name, "group_name": group_name}) utils.mysend(self.socket, msg_json) def create_group(self, group_name): msg_json = json.dumps({ "action": "create_group", "group_name": group_name}) utils.mysend(self.socket, msg_json) def chat(self, message, group_id): msg_json = json.dumps({"action": "send_chat", "send_from": self.name, "send_to": group_id, "message": message}) utils.mysend(self.socket, msg_json) if utils.VERBOSE: print("chat message send to server.") def search_chat_history(self, term: str): msg_json = json.dumps({"action": "search_chat_history", "send_from": self.name, "term": term}) utils.mysend(self.socket, msg_json) def leave_group(self, group_name: str): msg_json = json.dumps({"action": "leave_group", "send_from": self.name, "group_name": group_name}) utils.mysend(self.socket, msg_json) # a typical application is: # send_msg(msg) # result = receive_msg() def receive_msg_in_new_thread(self): while True: msg_json = utils.myrecv(self.socket) if not msg_json: # if msg_json is empty print("Disconnected") break msg_from_server = json.loads(msg_json) if utils.VERBOSE: print('msg_from_server: ' + str(msg_from_server)) if msg_from_server["action"] == "login": if msg_from_server["status"] == True: # login successfully self.state = utils.S_LOGGEDIN self.name = msg_from_server["username"] self.root.status_frame.client_state = self.root.client.state self.root.status_frame.client_name = self.root.client.name self.root.func_frame.popup_login_frame.destroy() self.load_history() # if login succeed, load user's history else: self.root.func_frame.username_ety.delete(0, "end") self.root.func_frame.password_ety.delete(0, "end") self.root.func_frame.username_ety.focus() msg = msg_from_server["message"] self.root.chat_frame.new_msg.set(new_content="[SYSTEM] " + msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() elif msg_from_server["action"] == "register": msg = msg_from_server["message"] self.root.chat_frame.new_msg.set(new_content="[SYSTEM] " + msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() if msg_from_server["status"] is True: # if register succeed, login name = msg_from_server["username"] password = msg_from_server["password"] self.login(name, password) elif msg_from_server["action"] == "load_history": no_error = msg_from_server["status"] if no_error: result = msg_from_server["result"] self.root.group_frame.load_history(result) else: msg = msg_from_server["message"] self.root.chat_frame.new_msg.set(new_content='[SYSTEM] ' + msg, group_id=utils.SYS_GRP_ID) elif msg_from_server["action"] == "time": cur_time = msg_from_server["result"] self.root.chat_frame.new_msg.set(new_content=f"[SYSTEM] The current server time is {cur_time}.", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() self.root.chat_frame.switch_to(utils.SYS_GRP_ID) elif msg_from_server["action"] == "poem": no_error = msg_from_server["status"] poem_idx = msg_from_server["index"] if no_error: self.root.chat_frame.new_msg.set(new_content=f"[SYSTEM] Poem #{poem_idx} retrieved successfully.", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() poem = msg_from_server["result"] self.root.func_frame.popup_show_poem(poem) else: self.root.chat_frame.new_msg.set(new_content=f"[SYSTEM] Poem #{poem_idx} not found in the sonnet database..", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() self.root.chat_frame.switch_to(utils.SYS_GRP_ID) elif msg_from_server["action"] == "recv_chat": send_from = msg_from_server["send_from"] group_id = msg_from_server["send_to"] new_msg = msg_from_server['message'] self.root.chat_frame.new_msg.set(new_content=new_msg, group_id=group_id, send_from=send_from) self.root.chat_frame.put_up_new_msg() elif msg_from_server["action"] == "create_group": no_error = msg_from_server["status"] group_name = msg_from_server["group_name"] msg = '[SYSTEM] ' + msg_from_server["message"] self.root.chat_frame.new_msg.set(new_content=msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() if no_error: self.join_group(group_name) elif msg_from_server["action"] == "join_group": no_error = msg_from_server["status"] msg = f"[SYSTEM] {msg_from_server['message']}" group_id = msg_from_server["group_id"] group_name = msg_from_server["group_name"] self.root.chat_frame.new_msg.set(new_content=msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() if no_error: self.root.group_frame.put_up_group(group_id, group_name) self.root.group_frame.popup_join_group_frame.destroy() elif msg_from_server["action"] == "search_chat_history": no_error = msg_from_server["status"] msg = "[SYSTEM] " + msg_from_server["message"] self.root.chat_frame.new_msg.set(new_content=msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() if no_error: term = msg_from_server["term"] result = msg_from_server["result"] self.root.group_frame.popup_search_result(term, result) elif msg_from_server["action"] == "leave_group": no_error = msg_from_server["status"] group_name = msg_from_server["group_name"] msg = '[SYSTEM] ' + msg_from_server["message"] if no_error: group_id = self.root.group_frame.group_name2id[group_name] self.root.chat_frame.switch_to(utils.SYS_GRP_ID) self.root.group_frame.group_list_dict[group_name].destroy() self.root.group_frame.group_list_dict.pop(group_name) self.root.group_frame.group_name2id.pop(group_name) self.root.group_frame.group_id2name.pop(group_id) self.root.chat_frame.new_msg.set(new_content=msg, group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() elif msg_from_server["action"] == "logout": if msg_from_server["status"]: self.state = utils.S_OFFLINE self.name = None self.root.status_frame.client_state = utils.S_OFFLINE self.root.status_frame.client_name = " " self.root.chat_frame.chat_box.delete(0, 'end') self.clear_history() self.root.chat_frame.new_msg.set(new_content="[SYSTEM] " + msg_from_server["message"], group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() elif msg_from_server["action"] == "exit": return None, None else: return False, "" time.sleep(utils.CHAT_WAIT) class New_message: # the newest message to be displayed on the screen """ The idea is that there is always one and only one piece of new message, and it always directly comes from the SYSTEM (even if you are chatting with other users). So, we can implement different functinolity by **updating New_message** accordingly, with different other responses. """ def __init__(self): self.__content = "NULL" self.__group_id = utils.SYS_GRP_ID self.__send_from = "NULL" def get(self): return self.__content, self.__group_id, self.__send_from def set(self, new_content, group_id=utils.SYS_GRP_ID, send_from=None): # None is msg send from system self.__content = new_content self.__group_id = group_id self.__send_from = send_from def clear(self): self.__content = "NULL" self.__group_id = utils.SYS_GRP_ID self.__send_from = "NULL" class Leave_group_button(tk.Button): def __init__(self, root: Main_GUI): self.root = root super(Leave_group_button, self).__init__( self.root.chat_frame, text='leave', width=5, height=1, bg=utils.WHITE, relief='flat', font=utils.FONT_LARGE ) print("BUTTON LOADED") self.set_command() def set_command(self): if self.root.chat_frame.cur_group_id == utils.SYS_GRP_ID or self.root.chat_frame.cur_group_id == -1: # you can't leave the system group self.config(command=lambda: "", # do nothing fg=utils.WHITE, bg=utils.WHITE, relief='flat') else: self.config(state=tk.NORMAL) # suspicious self.config(command=self.leave_group, fg=utils.DEEPGREY, bg=utils.WHITE, relief='raised') if utils.VERBOSE: print(f"Inside leave_group_btn: leave group name: {self.root.group_frame.group_id2name[self.root.chat_frame.cur_group_id]}") def leave_group(self): group_name = self.root.group_frame.group_id2name[self.root.chat_frame.cur_group_id] answer = messagebox.askquestion(title="Exit?", message=f"Are you sure you want to leave group: '{group_name}'?" f"\n(All the messages you sent in this group will be deleted)") if answer == "yes": self.root.chat_frame.leave_group(group_name) class Group_button(tk.Button): def __init__(self, root: Main_GUI, group_id: int, group_name: str, chat_frame): if not isinstance(group_id, int): raise TypeError(f"group_id of Group_Button must be int (not {type(group_id)})") if not isinstance(group_name, str): raise TypeError(f"group_name of Group_Button must be str (not {type(group_name)})") self.root = root self.group_id = group_id # reformat group_name self.group_name = "" for i in range(len(group_name)): if i % 20 or i == 0: self.group_name += group_name[i] else: self.group_name += '\n' text=f"#{str(group_id)}\n{group_name}" super(Group_button, self).__init__(self.root.group_frame.group_list_frame, text=text, command=lambda:f"{self.root.chat_frame.switch_to(group_id=group_id)}", bg=utils.GREY, fg=utils.WHITE, font=utils.FONT_LARGE, relief="flat" ) class Group_frame(tk.Frame): def __init__(self, root: Main_GUI): super(Group_frame, self).__init__(root) self.root = root self.group_list_frame = tk.Frame(self, bg=utils.GREY) self.group_list_frame.grid(row=0, column=0, columnspan=2, sticky="n") self.group_list = [] self.group_list_dict = {} # name2btn self.group_id2name = {} self.group_name2id = {} # system info tk.Button(self.group_list_frame, text="System", command=lambda: self.root.chat_frame.switch_to(utils.SYS_GRP_ID), bg=utils.GREY, fg=utils.WHITE, font=utils.FONT_LARGE, relief="flat").grid(row=0, column=0, sticky="new") search_btn = tk.Button(self, image=self.root.SEARCH_IMG, bg=utils.WHITE, command=self.popup_search_chat) search_btn.grid(row=1, column=0, padx=2, pady=4, ipadx=2, ipady=2, sticky="swe") join_group_btn = tk.Button(self, image=self.root.ADD_GROUP_IMG, bg=utils.WHITE, command=self.popup_join_group) join_group_btn.grid(row=1, column=1, padx=2, pady=4, ipadx=2, ipady=2, sticky="swe") self.group_list_frame.columnconfigure(0, weight=1) def load_history(self, history): if utils.VERBOSE: print(f"history: {history}") for h in history: self.put_up_group(group_id=h[0], group_name=h[1]) if utils.VERBOSE: print("All history are loaded") def put_up_group(self, group_id, group_name): if self.root.client.group_count > utils.MAX_GROUP_NUM: self.root.chat_frame.new_msg.set(new_content="[SYSTEM] You can only join at most 10 groups!", group_id=utils.SYS_GRP_ID) self.root.chat_frame.put_up_new_msg() else: self.root.chat_frame.cache[group_id] = f"Group #{group_id}: {group_name}" btn = Group_button(root=self.root, group_id=group_id, group_name=group_name, chat_frame=self.root.chat_frame) btn.grid(row=1+self.root.client.group_count, column=0, sticky="nwe") self.group_list.append(btn) if utils.VERBOSE: print(self.group_list_dict, self.group_id2name, self.group_name2id) if group_name not in self.group_list_dict: self.group_list_dict[group_name] = btn self.group_id2name[group_id] =
<reponame>mogorman/openpilot-1 from selfdrive.car import apply_toyota_steer_torque_limits from selfdrive.car.chrysler.chryslercan import create_lkas_hud, create_lkas_command, \ create_wheel_buttons_command, create_lkas_heartbit, \ acc_command, acc_command_v2, acc_log from selfdrive.car.chrysler.values import CAR, CarControllerParams from opendbc.can.packer import CANPacker from selfdrive.config import Conversions as CV from selfdrive.controls.lib.drive_helpers import V_CRUISE_MIN, V_CRUISE_MIN_IMPERIAL from common.cached_params import CachedParams from common.op_params import opParams from common.params import Params from cereal import car import math from random import randrange ButtonType = car.CarState.ButtonEvent.Type LongCtrlState = car.CarControl.Actuators.LongControlState V_CRUISE_MIN_IMPERIAL_MS = V_CRUISE_MIN_IMPERIAL * CV.KPH_TO_MS V_CRUISE_MIN_MS = V_CRUISE_MIN * CV.KPH_TO_MS AUTO_FOLLOW_LOCK_MS = 3 * CV.MPH_TO_MS ACC_BRAKE_THRESHOLD = 2 * CV.MPH_TO_MS class CarController(): def __init__(self, dbc_name, CP, VM): self.apply_steer_last = 0 self.prev_frame = -1 self.lkas_frame = -1 self.prev_lkas_counter = -1 self.hud_count = 0 self.car_fingerprint = CP.carFingerprint self.torq_enabled = False self.steer_rate_limited = False self.last_button_counter = -1 self.button_frame = -1 self.last_acc_2_counter = 0 self.last_brake = None self.last_torque = 0. self.accel_steady = 0. self.last_aTarget = 0. self.packer = CANPacker(dbc_name) self.params = Params() self.cachedParams = CachedParams() self.opParams = opParams() self.auto_resume = self.params.get_bool('jvePilot.settings.autoResume') self.minAccSetting = V_CRUISE_MIN_MS if self.params.get_bool("IsMetric") else V_CRUISE_MIN_IMPERIAL_MS self.round_to_unit = CV.MS_TO_KPH if self.params.get_bool("IsMetric") else CV.MS_TO_MPH self.autoFollowDistanceLock = None self.moving_fast = False self.min_steer_check = self.opParams.get("steer.checkMinimum") self.moneyPlaneOpLong = (self.cachedParams.get('moneyPlane.settings.opLong', 5000) == "1") self.gone_fast_yet = False def update(self, enabled, CS, actuators, pcm_cancel_cmd, hud_alert, gas_resume_speed, c): if CS.button_pressed(ButtonType.lkasToggle, False): c.jvePilotState.carControl.useLaneLines = not c.jvePilotState.carControl.useLaneLines self.params.put("EndToEndToggle", "1" if self.moneyPlaneOpLong else "0") c.jvePilotState.notifyUi = True #*** control msgs *** can_sends = [] self.lkas_control(CS, actuators, can_sends, enabled, hud_alert, c.jvePilotState) self.wheel_button_control(CS, can_sends, enabled, gas_resume_speed, c.jvePilotState, pcm_cancel_cmd) self.acc(CS, actuators, can_sends, enabled, c.jvePilotState) return can_sends # T = (mass x accel x velocity x 1000)/(.105 x Engine rpm) def acc(self, CS, actuators, can_sends, enabled, jvepilot_state): if CS.hybrid: ACCEL_TORQ_MIN = CS.hybridAxle["AXLE_TORQ_MIN"] ACCEL_TORQ_MAX = CS.hybridAxle["AXLE_TORQ_MAX"] else: ACCEL_TORQ_MIN = 20 ACCEL_TORQ_MAX = self.cachedParams.get_float('jvePilot.settings.longControl.maxAccelTorq', 500) VEHICLE_MASS = self.cachedParams.get_float('jvePilot.settings.longControl.vehicleMass', 500) ACCEL_TORQ_START = self.cachedParams.get_float('jvePilot.settings.longControl.torqStart', 500) acc_2_counter = CS.acc_2['COUNTER'] if acc_2_counter == self.last_acc_2_counter: return self.last_acc_2_counter = acc_2_counter if not enabled or not self.moneyPlaneOpLong: self.last_brake = None self.last_torque = ACCEL_TORQ_START self.last_aTarget = CS.aEgoRaw if CS.acc_2['ACC_DECEL_REQ'] == 1: self.last_brake = round(CS.acc_2['ACC_DECEL'], 2) # start here since ACC was already active return vTarget = jvepilot_state.carControl.vTargetFuture # ECO aTarget, self.accel_steady = self.accel_hysteresis(actuators.accel, self.accel_steady) COAST_WINDOW = CV.MPH_TO_MS * 3 LOW_WINDOW = CV.MPH_TO_MS * 3 brake_press = False brake_target = 0 torque = 0 long_starting = actuators.longControlState == LongCtrlState.starting go_req = long_starting and CS.out.standstill long_stopping = actuators.longControlState == LongCtrlState.stopping stop_req = long_stopping or (CS.out.standstill and aTarget == 0 and not go_req) speed_to_far_off = CS.out.vEgo - vTarget > COAST_WINDOW # speed gap is large, start braking not_slowing_fast_enough = speed_to_far_off and vTarget < CS.out.vEgo + CS.aEgoRaw # not going to get there, start braking slow_speed_brake = aTarget <= 0 and CS.out.vEgo < LOW_WINDOW already_braking = aTarget <= 0 and self.last_brake is not None spoof_brake = long_stopping or already_braking or slow_speed_brake or not_slowing_fast_enough if CS.acc_2['ACC_DECEL_REQ'] == 1 and (CS.acc_2['ACC_DECEL'] < aTarget or not spoof_brake): brake_press = True brake_target = CS.acc_2['ACC_DECEL'] elif spoof_brake or stop_req: brake_press = True if stop_req and CS.out.standstill: brake_target = -2. else: brake_target = max(-4., round(aTarget, 2)) if CS.acc_2['ACC_DECEL_REQ'] == 1: acc = CS.acc_2['ACC_DECEL'] brake_target = min(brake_target, acc) if self.last_brake is None: self.last_brake = acc # start here since ACC was already active else: vSmoothTarget = (vTarget + CS.out.vEgo) / 2 accelerating = vTarget - COAST_WINDOW * CV.MS_TO_MPH > CS.out.vEgo and aTarget > 0 and CS.aEgoRaw > 0 and CS.aEgoRaw > self.last_aTarget if accelerating: aSmoothTarget = (aTarget + CS.aEgoRaw) / 2 else: aSmoothTarget = aTarget rpm = (VEHICLE_MASS * CS.aEgoRaw * CS.out.vEgo) / (.105 * CS.hybridAxle["AXLE_TORQ"]) if CS.hybrid else CS.gasRpm if CS.out.vEgo < LOW_WINDOW: cruise = (VEHICLE_MASS * aSmoothTarget * vSmoothTarget) / (.105 * rpm) if aTarget > 0.5: cruise = max(cruise, ACCEL_TORQ_START) # give it some oomph elif CS.out.vEgo < 20 * CV.MPH_TO_MS: cruise = (VEHICLE_MASS * aTarget * vTarget) / (.105 * rpm) else: cruise = (VEHICLE_MASS * aSmoothTarget * vSmoothTarget) / (.105 * rpm) self.last_torque = max(ACCEL_TORQ_MIN, min(ACCEL_TORQ_MAX, cruise)) torque = math.floor(self.last_torque * 100) / 100 if cruise > ACCEL_TORQ_MIN else 0. print(f"torq={self.last_torque}, rpm={rpm}. aEgoRaw={CS.aEgoRaw}, aTarget={aTarget}, aSmoothTarget={aSmoothTarget}, vEgo={CS.out.vEgo}, vTarget={vTarget}") if brake_press: self.last_torque = None if self.last_brake is None: self.last_brake = min(0., brake_target / 2) else: lBrake = self.last_brake tBrake = brake_target if tBrake < lBrake: self.last_brake = max(self.last_brake - 0.2, tBrake) elif tBrake > lBrake: self.last_brake = min(self.last_brake + 0.2, tBrake) print(f"last_brake={self.last_brake}, brake_target={brake_target}") else: self.last_brake = None brake = math.floor(self.last_brake * 100) / 100 if self.last_brake is not None else 4 if CS.out.gasPressed or CS.out.brakePressed: # stop sending ACC requests torque = 0 brake = 4 self.last_aTarget = CS.aEgoRaw can_sends.append(acc_log(self.packer, actuators.accel, vTarget, long_starting, long_stopping)) can_sends.append(acc_command(self.packer, acc_2_counter + 1, go_req, torque, stop_req, brake, CS.acc_2)) can_sends.append(acc_command_v2(self.packer, acc_2_counter + 1, torque, CS.acc_1)) def lkas_control(self, CS, actuators, can_sends, enabled, hud_alert, jvepilot_state): if self.prev_frame == CS.frame: return self.prev_frame = CS.frame self.lkas_frame += 1 lkas_counter = CS.lkas_counter if self.prev_lkas_counter == lkas_counter: lkas_counter = (self.prev_lkas_counter + 1) % 16 # Predict the next frame self.prev_lkas_counter = lkas_counter # *** compute control surfaces *** # steer torque new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX)) apply_steer = apply_toyota_steer_torque_limits(new_steer, self.apply_steer_last, CS.out.steeringTorqueEps, CarControllerParams) self.steer_rate_limited = new_steer != apply_steer if self.car_fingerprint in (CAR.JEEP_CHEROKEE, CAR.PACIFICA_2017_HYBRID, CAR.PACIFICA_2018, CAR.PACIFICA_2018_HYBRID): self.gone_fast_yet = self.gone_fast_yet or CS.torq_status > 1 low_steer_models = self.car_fingerprint in (CAR.JEEP_CHEROKEE, CAR.PACIFICA_2017_HYBRID, CAR.PACIFICA_2018, CAR.PACIFICA_2018_HYBRID) if not self.min_steer_check: self.moving_fast = True self.torq_enabled = enabled or low_steer_models elif low_steer_models: self.moving_fast = not CS.out.steerError and CS.lkas_active self.torq_enabled = self.torq_enabled or CS.torq_status > 1 else: self.moving_fast = CS.out.vEgo > CS.CP.minSteerSpeed # for status message if CS.out.vEgo > (CS.CP.minSteerSpeed - 0.5): # for command high bit self.gone_fast_yet = True self.torq_enabled = True elif CS.out.vEgo < (CS.CP.minSteerSpeed - 3.0): self.gone_fast_yet = False self.torq_enabled = False # < 14.5m/s stock turns off this bit, but fine down to 13.5 lkas_active = self.moving_fast and enabled if not lkas_active: apply_steer = 0 self.apply_steer_last = apply_steer if self.lkas_frame % 10 == 0: # 0.1s period new_msg = create_lkas_heartbit(self.packer, 0 if jvepilot_state.carControl.useLaneLines else 1, CS.lkasHeartbit) can_sends.append(new_msg) if self.lkas_frame % 25 == 0: # 0.25s period if CS.lkas_car_model != -1: new_msg = create_lkas_hud( self.packer, CS.out.gearShifter, lkas_active, hud_alert, self.hud_count, CS.lkas_car_model) can_sends.append(new_msg) self.hud_count += 1 wp_mod_enabled = (self.cachedParams.get('moneyPlane.settings.pandaModEnabled', 5000) == "1") moving_fast_check = (self.gone_fast_yet and enabled) if wp_mod_enabled else self.gone_fast_yet new_msg = create_lkas_command(self.packer, int(apply_steer), moving_fast_check, lkas_counter) can_sends.append(new_msg) def wheel_button_control(self, CS, can_sends, enabled, gas_resume_speed, jvepilot_state, pcm_cancel_cmd): button_counter = jvepilot_state.carState.buttonCounter if button_counter == self.last_button_counter: return self.last_button_counter = button_counter self.button_frame += 1 button_counter_offset = 1 buttons_to_press = [] if pcm_cancel_cmd: buttons_to_press = ['ACC_CANCEL'] elif not CS.button_pressed(ButtonType.cancel): follow_inc_button = CS.button_pressed(ButtonType.followInc) follow_dec_button = CS.button_pressed(ButtonType.followDec) if jvepilot_state.carControl.autoFollow: follow_inc_button = CS.button_pressed(ButtonType.followInc, False) follow_dec_button = CS.button_pressed(ButtonType.followDec, False) if (follow_inc_button and follow_inc_button.pressedFrames < 50) or \ (follow_dec_button and follow_dec_button.pressedFrames < 50): jvepilot_state.carControl.autoFollow = False jvepilot_state.notifyUi = True elif (follow_inc_button and follow_inc_button.pressedFrames >= 50) or \ (follow_dec_button and follow_dec_button.pressedFrames >= 50): jvepilot_state.carControl.autoFollow = True jvepilot_state.notifyUi = True if enabled and not CS.out.brakePressed: button_counter_offset = [1, 1, 0, None][self.button_frame % 4] if button_counter_offset is not None: if (not CS.out.cruiseState.enabled) or CS.out.standstill: # Stopped and waiting to resume buttons_to_press = [self.auto_resume_button(CS, gas_resume_speed)] elif CS.out.cruiseState.enabled: # Control ACC buttons_to_press = [self.auto_follow_button(CS, jvepilot_state), self.hybrid_acc_button(CS, jvepilot_state)] buttons_to_press = list(filter(None, buttons_to_press)) if buttons_to_press is not None and len(buttons_to_press) > 0: new_msg = create_wheel_buttons_command(self.packer, button_counter + button_counter_offset, buttons_to_press) can_sends.append(new_msg) def auto_resume_button(self, CS, gas_resume_speed): if self.auto_resume and CS.out.vEgo <= gas_resume_speed: # Keep trying while under gas_resume_speed return 'ACC_RESUME' def hybrid_acc_button(self, CS, jvepilot_state): if not self.moneyPlaneOpLong: target = jvepilot_state.carControl.vTargetFuture + 3 * CV.MPH_TO_MS # add extra speed so ACC does the limiting # Move the adaptive curse control to the target speed eco_limit = None if jvepilot_state.carControl.accEco == 1: # if eco mode eco_limit = self.cachedParams.get_float('jvePilot.settings.accEco.speedAheadLevel1', 1000) elif jvepilot_state.carControl.accEco == 2: # if eco mode eco_limit = self.cachedParams.get_float('jvePilot.settings.accEco.speedAheadLevel2', 1000) if eco_limit: target = min(target, CS.out.vEgo + (eco_limit * CV.MPH_TO_MS)) else: target = jvepilot_state.carControl.vMaxCruise # ACC Braking diff = CS.out.vEgo - target if diff > ACC_BRAKE_THRESHOLD and abs(target - jvepilot_state.carControl.vMaxCruise) > ACC_BRAKE_THRESHOLD: # ignore change in max cruise speed target -= diff # round to nearest unit target = round(min(jvepilot_state.carControl.vMaxCruise, target) * self.round_to_unit) current = round(CS.out.cruiseState.speed * self.round_to_unit) if target < current and current > self.minAccSetting: return 'ACC_SPEED_DEC' elif target > current: return 'ACC_SPEED_INC' def auto_follow_button(self, CS, jvepilot_state): if
number of satisfied requests self.n_satisfied_interval = 0.0 self.n_sat_cloud_interval = 0 self.n_instantiations_interval = 0 # Cache and storage self.cache_hits = 0 self.storage_hits = 0 self.cache_misses = 0 self.storage_misses = 0 self.serv_hits = 0 self.flow_start = {} # flow_id to start time self.flow_cloud = {} # True if flow reched cloud self.flow_service = {} # flow id to service self.flow_deadline = {} # flow id to deadline self.flow_labels = {} # flow id to service-associated labels self.flow_feedback = {} # flow id to service-associated labels self.service_requests = {} # number of requests per service self.service_satisfied = {} # number of satisfied requests per service # Time series for various metrics self.satrate_times = {} self.latency_times = {} self.idle_times = {} self.node_idle_times = {} self.deadline_metric_times = {} self.cloud_sat_times = {} self.instantiations_times = {} # Log-specific paths TODO: Maybe set up in the same way that the result output is set up. # self.logs_path = logs_path # if LOGGING_PARAMETERS: # self.logs_path = LOGGING_PARAMETERS['logs_path'] # self.sampling_size = LOGGING_PARAMETERS['sampling_interval'] if cdf: self.latency_data = collections.deque() self.css = self.view.service_nodes() # self.n_services = self.css.items()[0][1].numOfVMs @inheritdoc(DataCollector) def execute_service(self, flow_id, service, node, timestamp, is_cloud): if is_cloud: self.flow_cloud[flow_id] = True else: self.flow_cloud[flow_id] = False @inheritdoc(DataCollector) def reassign_vm(self, node, serviceToReplace, serviceToAdd): self.n_instantiations_interval += 1 @inheritdoc(DataCollector) def replacement_interval_over(self, replacement_interval, timestamp): if self.interval_sess_count == 0: self.satrate_times[timestamp] = 0.0 else: self.satrate_times[timestamp] = self.n_satisfied_interval / self.interval_sess_count print ("Number of requests in interval: " + repr(self.interval_sess_count)) self.instantiations_times[timestamp] = self.n_instantiations_interval self.n_instantiations_interval = 0 total_idle_time = 0.0 total_cores = 0 #  total number of cores in the network for node, cs in self.css.items(): if cs.is_cloud: continue idle_time = cs.getIdleTime(timestamp) idle_time /= cs.numOfCores total_idle_time += idle_time total_cores += cs.numOfCores if node not in self.node_idle_times.keys(): self.node_idle_times[node] = [] self.node_idle_times[node].append(idle_time) # self.idle_times[timestamp] = total_idle_time self.idle_times[timestamp] = total_idle_time / (total_cores * replacement_interval) if self.n_satisfied_interval == 0: self.latency_times[timestamp] = 0.0 self.deadline_metric_times[timestamp] = 0.0 self.cloud_sat_times[timestamp] = 0.0 else: self.latency_times[timestamp] = self.latency_interval / self.n_satisfied_interval self.deadline_metric_times[timestamp] = self.deadline_metric_interval / self.n_satisfied_interval self.cloud_sat_times[timestamp] = (1.0 * self.n_sat_cloud_interval) / self.n_satisfied_interval # self.per_service_idle_times[timestamp] = [avg_idle_times[x]/replacement_interval for x in range(0, self.n_services)] # Initialise interval counts self.n_sat_cloud_interval = 0 self.interval_sess_count = 0 self.n_satisfied_interval = 0 self.latency_interval = 0.0 self.deadline_metric_interval = 0.0 @inheritdoc(DataCollector) def start_session(self, timestamp, receiver, content, labels, flow_id=0, deadline=0): self.sess_count += 1 self.sess_latency = 0.0 self.flow_start[flow_id] = timestamp self.flow_deadline[flow_id] = deadline self.flow_service[flow_id] = content self.flow_cloud[flow_id] = False self.interval_sess_count += 1 self.flow_labels[flow_id] = labels @inheritdoc(DataCollector) def cache_hit(self, node): self.cache_hits += 1 @inheritdoc(DataCollector) def storage_hit(self, node): self.storage_hits += 1 @inheritdoc(DataCollector) def cache_miss(self, node): self.session['cache_misses'].append(node) @inheritdoc(DataCollector) def storage_miss(self, node): self.session['storage_misses'].append(node) @inheritdoc(DataCollector) def request_hop(self, u, v, main_path=True): if main_path: self.sess_latency += self.view.link_delay(u, v) @inheritdoc(DataCollector) def content_hop(self, u, v, main_path=True): if main_path: self.sess_latency += self.view.link_delay(u, v) @inheritdoc(DataCollector) def end_session(self, success=True, timestamp=0, flow_id=0): sat = False if flow_id in self.flow_deadline: if not success: return if self.cdf: self.latency_data.append(self.sess_latency) if self.flow_deadline[flow_id] >= timestamp: # Request is satisfied if self.flow_cloud[flow_id]: self.n_sat_cloud_interval += 1 self.n_satisfied += 1 # print "Request satisfied" self.n_satisfied_interval += 1 sat = True self.latency_interval += timestamp - self.flow_start[flow_id] self.deadline_metric_interval += self.flow_deadline[flow_id] - timestamp service = self.flow_service[flow_id] if service['content'] not in self.service_requests.keys(): self.service_requests[service['content']] = 1 self.service_satisfied[service['content']] = 0 else: self.service_requests[service['content']] += 1 if sat: if service['content'] in self.service_satisfied.keys(): self.service_satisfied[service['content']] += 1 else: self.service_satisfied[service['content']] = 1 del self.flow_deadline[flow_id] del self.flow_start[flow_id] del self.flow_service[flow_id] del self.flow_cloud[flow_id] else: pass @inheritdoc(DataCollector) def results(self): # TODO: Maybe revise the below and make it even more customisable if self.view.model.strategy == 'HYBRID': res_file = "/hybrid.txt" overhead_file = "/hybrid_overheads.txt" elif self.view.model.strategy == 'HYBRIDS_REPO_APP': res_file = "/hybrid_repo.txt" r_replicas_file = "/gen_r_replicas.txt" s_replicas_file = "/gen_s_replicas.txt" r_labels_dist_file = "/gen_r_labels.txt" s_labels_dist_file = "/gen_s_labels.txt" overhead_file = "/gen_overheads.txt" elif self.view.model.strategy == 'HYBRIDS_PRO_REPO_APP': res_file = "/hybrid_pro_repo.txt" r_replicas_file = "/pro_r_replicas.txt" s_replicas_file = "/pro_s_replicas.txt" r_labels_dist_file = "/pro_r_labels.txt" s_labels_dist_file = "/pro_s_labels.txt" overhead_file = "/pro_overheads.txt" elif self.view.model.strategy == 'HYBRIDS_RE_REPO_APP': res_file = "/hybrid_repo.txt" r_replicas_file = "/re_r_replicas.txt" s_replicas_file = "/re_s_replicas.txt" r_labels_dist_file = "/re_r_labels.txt" s_labels_dist_file = "/re_s_labels.txt" overhead_file = "/re_overheads.txt" elif self.view.model.strategy == 'HYBRIDS_SPEC_REPO_APP': res_file = "/hybrid_repo.txt" r_replicas_file = "/spec_r_replicas.txt" s_replicas_file = "/spec_s_replicas.txt" r_labels_dist_file = "/spec_r_labels.txt" s_labels_dist_file = "/spec_s_labels.txt" overhead_file = "/spec_overheads.txt" if self.view.model.strategy == 'HYBRID': res = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid.txt", 'a') overhead = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid_overheads.txt", 'a') elif self.view.model.strategy == 'HYBRIDS_REPO_APP': res = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid_repo.txt", 'a') r_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/gen_r_replicas.txt", 'a') s_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/gen_s_replicas.txt", 'a') r_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/gen_r_labels.txt", 'a') s_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/gen_s_labels.txt", 'a') overhead = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/gen_overheads.txt", 'a') elif self.view.model.strategy == 'HYBRIDS_PRO_REPO_APP': res = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid_pro_repo.txt", 'a') r_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/pro_r_replicas.txt", 'a') s_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/pro_s_replicas.txt", 'a') r_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/pro_r_labels.txt", 'a') s_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/pro_s_labels.txt", 'a') overhead = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/pro_overheads.txt", 'a') elif self.view.model.strategy == 'HYBRIDS_RE_REPO_APP': res = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid_re_repo.txt", 'a') r_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/re_r_replicas.txt", 'a') s_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/re_s_replicas.txt", 'a') r_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/re_r_labels.txt", 'a') s_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/re_s_labels.txt", 'a') overhead = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/re_overheads.txt", 'a') elif self.view.model.strategy == 'HYBRIDS_SPEC_REPO_APP': res = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/hybrid_spec_repo.txt", 'a') r_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/spec_r_replicas.txt", 'a') s_replicas = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/spec_s_replicas.txt", 'a') r_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/spec_r_labels.txt", 'a') s_labels_dist = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/spec_s_labels.txt", 'a') overhead = open("/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt/spec_overheads.txt", 'a') if self.cdf: self.results['CDF'] = cdf(self.latency_data) results = Tree({'SATISFACTION': 1.0 * self.n_satisfied / self.sess_count}) # TODO: Possibly create another file, specifically for tracking repo/service-specific performance!!!!!!!!!!!!!!! per_service_sats = {} per_node_r_replicas_requested = {} per_node_s_replicas_stored = {} per_label_node_storage = {} per_label_node_requests = {} # res.write(str(100*self.n_satisfied/self.sess_count) + " " + str(self.n_satisfied) + " " + str(self.sess_count) + ": \n") for service in self.service_requests.keys(): per_service_sats[service] = 1.0 * self.service_satisfied[service] / self.service_requests[service] res.write(str(100 * self.service_satisfied[service] / self.service_requests[service]) + ", ") res.write("\n") for content in range(0, 1000): # overhead.write(str(content) + ": ") msg = dict() msg['content'] = content msg['msg_size'] = 1000000 for node in self.view.model.storageSize: if self.view.storage_nodes()[node].hasMessage(content, []): msg = self.view.storage_nodes()[node].hasMessage(content, []) break if msg['content'] in self.view.model.replication_overheads: self.view.model.replication_overheads[msg['content']] = self.view.model.replication_overheads[ msg['content']] + \ self.view.model.replication_hops[ msg['content']] * msg['msg_size'] else: self.view.model.replication_overheads[msg['content']] = self.view.model.replication_hops[ msg['content']] * msg['msg_size'] overhead.write(str(self.view.replication_overhead(content)) + ", ") self.view.model.replication_hops[msg['content']] = 0 overhead.write("\n") if self.view.model.strategy != 'HYBRID': for node in self.view.model.storageSize: per_node_r_replicas_requested[node] = self.view.replications_requests(node) r_replicas.write(str(per_node_r_replicas_requested[node]) + ", ") self.view.model.replications_from[node] = 0 r_replicas.write("\n") for node in self.view.model.storageSize: per_node_s_replicas_stored[node] = self.view.replications_destination(node) s_replicas.write(str(per_node_s_replicas_stored[node]) + ", ") self.view.model.replications_to[node] = 0 s_replicas.write("\n") # TODO: Modify the following, to include ALL NODES, no matter what!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! for label in self.view.model.labels_sources: # r_labels_dist.write(label + ": ") if label in self.view.model.request_labels_nodes: for node in self.view.model.request_labels_nodes[label]: per_label_node_requests[node] = self.view.model.request_labels_nodes[label][node] r_labels_dist.write(str(per_label_node_requests[node]) + ", ") r_labels_dist.write("\n ") # r_labels_dist.write("r\n") for label in self.view.model.labels_sources: # s_labels_dist.write(label + ": ") for node in self.view.labels_sources([label]): per_label_node_storage[node] = self.view.labels_sources([label])[node] s_labels_dist.write(str(per_label_node_storage[node]) + ", ") s_labels_dist.write("\n ") results['PER_SERVICE_SATISFACTION'] = per_service_sats results['PER_SERVICE_REQUESTS'] = self.service_requests results['PER_SERVICE_SAT_REQUESTS'] = self.service_satisfied results['SAT_TIMES'] = self.satrate_times results['IDLE_TIMES'] = self.idle_times results['NODE_IDLE_TIMES'] = self.node_idle_times results['LATENCY'] = self.latency_times results['DEADLINE_METRIC'] = self.deadline_metric_times results['CLOUD_SAT_TIMES'] = self.cloud_sat_times results['INSTANTIATION_OVERHEAD'] = self.instantiations_times print "Printing Sat. rate times:" for key in sorted(self.satrate_times): print (repr(key) + " " + repr(self.satrate_times[key])) print "Printing Idle times:" for key in sorted(self.idle_times): print (repr(key) + " " + repr(self.idle_times[key])) # results['VMS_PER_SERVICE'] = self.vms_per_service res.close() return results # @register_log_writer('REPO_STORAGE') @register_data_collector('REPO_STATS_W_LATENCY') class RepoStatsLatencyCollector(DataCollector): """Data collector measuring latency, i.e. the delay taken to delivery a content. """ def __init__(self, view, logs_path='/home/chrisys/Icarus-repos/IcarusEdgeSim/examples/repos-mgmt', sampling_interval=500, cdf=False): """Constructor Parameters ---------- view : NetworkView The network view instance cdf : bool, optional If *True*, also collects a cdf of the latency """ self.cdf = cdf self.view = view self.sess_count = 0 self.interval_sess_count = 0 self.latency_interval = 0.0 self.deadline_metric_interval = 0.0 self.n_satisfied = 0.0 # number of satisfied requests self.n_satisfied_interval = 0.0 self.n_sat_cloud_interval = 0 self.n_instantiations_interval = 0 # Cache and storage self.cache_hits = 0 self.storage_hits = 0 self.cache_misses = 0 self.storage_misses = 0 self.serv_hits = 0 self.flow_start = {} # flow_id to start time self.flow_cloud = {} # True if flow reched cloud self.flow_service = {} # flow id to service self.flow_deadline = {} # flow id to deadline self.flow_labels = {} # flow id to service-associated labels self.flow_feedback = {} # flow id to service-associated labels self.service_requests = {} # number of requests per service self.service_satisfied = {} # number of satisfied requests per service # Time series for various metrics self.satrate_times = {} self.latency_times = {} self.idle_times = {} self.node_idle_times = {} self.deadline_metric_times = {} self.cloud_sat_times = {} self.instantiations_times = {} # Log-specific variables TODO: Maybe set up in the same way that the result output is set up. # self.logs_path = self.view.get_logs_path # self.sampling_size =
snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>SnapshotType<span class="pl-pds">&#39;</span></span>] <span class="pl-k">==</span> <span class="pl-s"><span class="pl-pds">&#39;</span>shared<span class="pl-pds">&#39;</span></span> <span class="pl-k">and</span> pattern <span class="pl-k">==</span> <span class="pl-s"><span class="pl-pds">&#39;</span>ALL_SNAPSHOTS<span class="pl-pds">&#39;</span></span> <span class="pl-k">and</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>Engine<span class="pl-pds">&#39;</span></span>] <span class="pl-k">in</span> <span class="pl-c1">_SUPPORTED_ENGINES</span>:</td> </tr> <tr> <td id="L175" class="blob-num js-line-number" data-line-number="175"></td> <td id="LC175" class="blob-code blob-code-inner js-file-line"> filtered[get_snapshot_identifier(snapshot)] <span class="pl-k">=</span> {</td> </tr> <tr> <td id="L176" class="blob-num js-line-number" data-line-number="176"></td> <td id="LC176" class="blob-code blob-code-inner js-file-line"> <span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>]}</td> </tr> <tr> <td id="L177" class="blob-num js-line-number" data-line-number="177"></td> <td id="LC177" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>] <span class="pl-k">is</span> <span class="pl-c1">True</span>:</td> </tr> <tr> <td id="L178" class="blob-num js-line-number" data-line-number="178"></td> <td id="LC178" class="blob-code blob-code-inner js-file-line"> filtered[get_snapshot_identifier(</td> </tr> <tr> <td id="L179" class="blob-num js-line-number" data-line-number="179"></td> <td id="LC179" class="blob-code blob-code-inner js-file-line"> snapshot)][<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>] <span class="pl-k">=</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>]</td> </tr> <tr> <td id="L180" class="blob-num js-line-number" data-line-number="180"></td> <td id="LC180" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">return</span> filtered</td> </tr> <tr> <td id="L181" class="blob-num js-line-number" data-line-number="181"></td> <td id="LC181" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L182" class="blob-num js-line-number" data-line-number="182"></td> <td id="LC182" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L183" class="blob-num js-line-number" data-line-number="183"></td> <td id="LC183" class="blob-code blob-code-inner js-file-line"><span class="pl-k">def</span> <span class="pl-en">get_own_snapshots_dest</span>(<span class="pl-smi">pattern</span>, <span class="pl-smi">response</span>):</td> </tr> <tr> <td id="L184" class="blob-num js-line-number" data-line-number="184"></td> <td id="LC184" class="blob-code blob-code-inner js-file-line"> <span class="pl-c"><span class="pl-c">#</span> Returns a dict with local snapshots, filtered by pattern, with DBClusterSnapshotIdentifier as key and Arn, Status as attributes</span></td> </tr> <tr> <td id="L185" class="blob-num js-line-number" data-line-number="185"></td> <td id="LC185" class="blob-code blob-code-inner js-file-line"> filtered <span class="pl-k">=</span> {}</td> </tr> <tr> <td id="L186" class="blob-num js-line-number" data-line-number="186"></td> <td id="LC186" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">for</span> snapshot <span class="pl-k">in</span> response[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshots<span class="pl-pds">&#39;</span></span>]:</td> </tr> <tr> <td id="L187" class="blob-num js-line-number" data-line-number="187"></td> <td id="LC187" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L188" class="blob-num js-line-number" data-line-number="188"></td> <td id="LC188" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>SnapshotType<span class="pl-pds">&#39;</span></span>] <span class="pl-k">==</span> <span class="pl-s"><span class="pl-pds">&#39;</span>manual<span class="pl-pds">&#39;</span></span> <span class="pl-k">and</span> re.search(pattern, snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>]) <span class="pl-k">and</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>Engine<span class="pl-pds">&#39;</span></span>] <span class="pl-k">in</span> <span class="pl-c1">_SUPPORTED_ENGINES</span>:</td> </tr> <tr> <td id="L189" class="blob-num js-line-number" data-line-number="189"></td> <td id="LC189" class="blob-code blob-code-inner js-file-line"> filtered[snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>]] <span class="pl-k">=</span> {</td> </tr> <tr> <td id="L190" class="blob-num js-line-number" data-line-number="190"></td> <td id="LC190" class="blob-code blob-code-inner js-file-line"> <span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotArn<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>Status<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>Status<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>]}</td> </tr> <tr> <td id="L191" class="blob-num js-line-number" data-line-number="191"></td> <td id="LC191" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L192" class="blob-num js-line-number" data-line-number="192"></td> <td id="LC192" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>] <span class="pl-k">is</span> <span class="pl-c1">True</span>:</td> </tr> <tr> <td id="L193" class="blob-num js-line-number" data-line-number="193"></td> <td id="LC193" class="blob-code blob-code-inner js-file-line"> filtered[snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>]</td> </tr> <tr> <td id="L194" class="blob-num js-line-number" data-line-number="194"></td> <td id="LC194" class="blob-code blob-code-inner js-file-line"> ][<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>] <span class="pl-k">=</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>]</td> </tr> <tr> <td id="L195" class="blob-num js-line-number" data-line-number="195"></td> <td id="LC195" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L196" class="blob-num js-line-number" data-line-number="196"></td> <td id="LC196" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">elif</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>SnapshotType<span class="pl-pds">&#39;</span></span>] <span class="pl-k">==</span> <span class="pl-s"><span class="pl-pds">&#39;</span>manual<span class="pl-pds">&#39;</span></span> <span class="pl-k">and</span> pattern <span class="pl-k">==</span> <span class="pl-s"><span class="pl-pds">&#39;</span>ALL_SNAPSHOTS<span class="pl-pds">&#39;</span></span> <span class="pl-k">and</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>Engine<span class="pl-pds">&#39;</span></span>] <span class="pl-k">in</span> <span class="pl-c1">_SUPPORTED_ENGINES</span>:</td> </tr> <tr> <td id="L197" class="blob-num js-line-number" data-line-number="197"></td> <td id="LC197" class="blob-code blob-code-inner js-file-line"> filtered[snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>]] <span class="pl-k">=</span> {</td> </tr> <tr> <td id="L198" class="blob-num js-line-number" data-line-number="198"></td> <td id="LC198" class="blob-code blob-code-inner js-file-line"> <span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotArn<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>Status<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>Status<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>], <span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>: snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterIdentifier<span class="pl-pds">&#39;</span></span>]}</td> </tr> <tr> <td id="L199" class="blob-num js-line-number" data-line-number="199"></td> <td id="LC199" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L200" class="blob-num js-line-number" data-line-number="200"></td> <td id="LC200" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>] <span class="pl-k">is</span> <span class="pl-c1">True</span>:</td> </tr> <tr> <td id="L201" class="blob-num js-line-number" data-line-number="201"></td> <td id="LC201" class="blob-code blob-code-inner js-file-line"> filtered[snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>DBClusterSnapshotIdentifier<span class="pl-pds">&#39;</span></span>]</td> </tr> <tr> <td id="L202" class="blob-num js-line-number" data-line-number="202"></td> <td id="LC202" class="blob-code blob-code-inner js-file-line"> ][<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>] <span class="pl-k">=</span> snapshot[<span class="pl-s"><span class="pl-pds">&#39;</span>KmsKeyId<span class="pl-pds">&#39;</span></span>]</td> </tr> <tr> <td id="L203" class="blob-num js-line-number" data-line-number="203"></td> <td id="LC203" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L204" class="blob-num js-line-number" data-line-number="204"></td> <td id="LC204" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">return</span> filtered</td> </tr> <tr> <td id="L205" class="blob-num js-line-number" data-line-number="205"></td> <td id="LC205" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L206" class="blob-num js-line-number" data-line-number="206"></td> <td id="LC206" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L207" class="blob-num js-line-number" data-line-number="207"></td> <td id="LC207" class="blob-code blob-code-inner js-file-line"><span class="pl-k">def</span> <span class="pl-en">copy_local</span>(<span class="pl-smi">snapshot_identifier</span>, <span class="pl-smi">snapshot_object</span>):</td> </tr> <tr> <td id="L208" class="blob-num js-line-number" data-line-number="208"></td> <td id="LC208" class="blob-code blob-code-inner js-file-line"> client <span class="pl-k">=</span> boto3.client(<span class="pl-s"><span class="pl-pds">&#39;</span>rds<span class="pl-pds">&#39;</span></span>, <span class="pl-v">region_name</span><span class="pl-k">=</span><span class="pl-c1">_REGION</span>)</td> </tr> <tr> <td id="L209" class="blob-num js-line-number" data-line-number="209"></td> <td id="LC209" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L210" class="blob-num js-line-number" data-line-number="210"></td> <td id="LC210" class="blob-code blob-code-inner js-file-line"> tags <span class="pl-k">=</span> [{</td> </tr> <tr> <td id="L211" class="blob-num js-line-number" data-line-number="211"></td> <td id="LC211" class="blob-code blob-code-inner js-file-line"> <span class="pl-s"><span class="pl-pds">&#39;</span>Key<span class="pl-pds">&#39;</span></span>: <span class="pl-s"><span class="pl-pds">&#39;</span>CopiedBy<span class="pl-pds">&#39;</span></span>,</td> </tr> <tr> <td id="L212" class="blob-num js-line-number" data-line-number="212"></td> <td id="LC212" class="blob-code blob-code-inner js-file-line"> <span class="pl-s"><span class="pl-pds">&#39;</span>Value<span class="pl-pds">&#39;</span></span>: <span class="pl-s"><span class="pl-pds">&#39;</span>Snapshot Tool for Aurora<span class="pl-pds">&#39;</span></span></td> </tr> <tr> <td id="L213" class="blob-num js-line-number" data-line-number="213"></td> <td id="LC213" class="blob-code blob-code-inner js-file-line"> }]</td> </tr> <tr> <td id="L214" class="blob-num js-line-number" data-line-number="214"></td> <td id="LC214" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L215" class="blob-num js-line-number" data-line-number="215"></td> <td id="LC215" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot_object[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>]:</td> </tr> <tr> <td id="L216" class="blob-num js-line-number" data-line-number="216"></td> <td id="LC216" class="blob-code blob-code-inner js-file-line"> logger.info(<span class="pl-s"><span class="pl-pds">&#39;</span>Copying encrypted snapshot <span class="pl-c1">%s</span> locally<span class="pl-pds">&#39;</span></span> <span class="pl-k">%</span></td> </tr> <tr> <td id="L217" class="blob-num js-line-number" data-line-number="217"></td> <td id="LC217" class="blob-code blob-code-inner js-file-line"> snapshot_identifier)</td> </tr> <tr> <td id="L218" class="blob-num js-line-number" data-line-number="218"></td> <td id="LC218" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L219" class="blob-num js-line-number" data-line-number="219"></td> <td id="LC219" class="blob-code blob-code-inner js-file-line"> response <span class="pl-k">=</span> client.copy_db_cluster_snapshot(</td> </tr> <tr> <td id="L220" class="blob-num js-line-number" data-line-number="220"></td> <td id="LC220" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">SourceDBClusterSnapshotIdentifier</span><span class="pl-k">=</span>snapshot_object[<span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>],</td> </tr> <tr> <td id="L221" class="blob-num js-line-number" data-line-number="221"></td> <td id="LC221" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">TargetDBClusterSnapshotIdentifier</span><span class="pl-k">=</span>snapshot_identifier,</td> </tr> <tr> <td id="L222" class="blob-num js-line-number" data-line-number="222"></td> <td id="LC222" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">KmsKeyId</span><span class="pl-k">=</span><span class="pl-c1">_KMS_KEY_SOURCE_REGION</span>,</td> </tr> <tr> <td id="L223" class="blob-num js-line-number" data-line-number="223"></td> <td id="LC223" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">Tags</span><span class="pl-k">=</span>tags)</td> </tr> <tr> <td id="L224" class="blob-num js-line-number" data-line-number="224"></td> <td id="LC224" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L225" class="blob-num js-line-number" data-line-number="225"></td> <td id="LC225" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">else</span>:</td> </tr> <tr> <td id="L226" class="blob-num js-line-number" data-line-number="226"></td> <td id="LC226" class="blob-code blob-code-inner js-file-line"> logger.info(<span class="pl-s"><span class="pl-pds">&#39;</span>Copying snapshot <span class="pl-c1">%s</span> locally<span class="pl-pds">&#39;</span></span> <span class="pl-k">%</span> snapshot_identifier)</td> </tr> <tr> <td id="L227" class="blob-num js-line-number" data-line-number="227"></td> <td id="LC227" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L228" class="blob-num js-line-number" data-line-number="228"></td> <td id="LC228" class="blob-code blob-code-inner js-file-line"> response <span class="pl-k">=</span> client.copy_db_cluster_snapshot(</td> </tr> <tr> <td id="L229" class="blob-num js-line-number" data-line-number="229"></td> <td id="LC229" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">SourceDBClusterSnapshotIdentifier</span><span class="pl-k">=</span>snapshot_object[<span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>],</td> </tr> <tr> <td id="L230" class="blob-num js-line-number" data-line-number="230"></td> <td id="LC230" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">TargetDBClusterSnapshotIdentifier</span><span class="pl-k">=</span>snapshot_identifier,</td> </tr> <tr> <td id="L231" class="blob-num js-line-number" data-line-number="231"></td> <td id="LC231" class="blob-code blob-code-inner js-file-line"> <span class="pl-v">Tags</span><span class="pl-k">=</span>tags)</td> </tr> <tr> <td id="L232" class="blob-num js-line-number" data-line-number="232"></td> <td id="LC232" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L233" class="blob-num js-line-number" data-line-number="233"></td> <td id="LC233" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">return</span> response</td> </tr> <tr> <td id="L234" class="blob-num js-line-number" data-line-number="234"></td> <td id="LC234" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L235" class="blob-num js-line-number" data-line-number="235"></td> <td id="LC235" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L236" class="blob-num js-line-number" data-line-number="236"></td> <td id="LC236" class="blob-code blob-code-inner js-file-line"><span class="pl-k">def</span> <span class="pl-en">copy_remote</span>(<span class="pl-smi">snapshot_identifier</span>, <span class="pl-smi">snapshot_object</span>):</td> </tr> <tr> <td id="L237" class="blob-num js-line-number" data-line-number="237"></td> <td id="LC237" class="blob-code blob-code-inner js-file-line"> client <span class="pl-k">=</span> boto3.client(<span class="pl-s"><span class="pl-pds">&#39;</span>rds<span class="pl-pds">&#39;</span></span>, <span class="pl-v">region_name</span><span class="pl-k">=</span><span class="pl-c1">_DESTINATION_REGION</span>)</td> </tr> <tr> <td id="L238" class="blob-num js-line-number" data-line-number="238"></td> <td id="LC238" class="blob-code blob-code-inner js-file-line"> </td> </tr> <tr> <td id="L239" class="blob-num js-line-number" data-line-number="239"></td> <td id="LC239" class="blob-code blob-code-inner js-file-line"> <span class="pl-k">if</span> snapshot_object[<span class="pl-s"><span class="pl-pds">&#39;</span>StorageEncrypted<span class="pl-pds">&#39;</span></span>]:</td> </tr> <tr> <td id="L240" class="blob-num js-line-number" data-line-number="240"></td> <td id="LC240" class="blob-code blob-code-inner js-file-line"> logger.info(<span class="pl-s"><span class="pl-pds">&#39;</span>Copying encrypted snapshot <span class="pl-c1">%s</span> to remote region <span class="pl-c1">%s</span><span class="pl-pds">&#39;</span></span> <span class="pl-k">%</span></td> </tr> <tr> <td id="L241" class="blob-num js-line-number" data-line-number="241"></td> <td id="LC241" class="blob-code blob-code-inner js-file-line"> (snapshot_object[<span class="pl-s"><span class="pl-pds">&#39;</span>Arn<span class="pl-pds">&#39;</span></span>], <span class="pl-c1">_DESTINATION_REGION</span>))</td> </tr> <tr> <td id="L242" class="blob-num js-line-number" data-line-number="242"></td> <td id="LC242" class="blob-code blob-code-inner
timestep=timestep, lower=lower, upper=upper, minsize=conf_idfy["minsize"], maxsize=conf_idfy["maxsize"], split_levels=conf_split["levels"], split_seed_minsize=conf_split["seed_minsize"], split_seed_minstrength=conf_split["seed_minstrength"], topo_filter_apply=conf_topo["filter_apply"], topo_filter_mode=conf_topo["filter_mode"], topo_filter_threshold=conf_topo["filter_threshold"], topo_filter_min_overlap=conf_topo["filter_min_overlap"], topo_fld=conf_topo["fld"], silent=silent, grid=grid, ) if timings_measure: timings["core_lst"] = [timer() - timings.pop("core_start")] if not silent: log.info("identified {} '{}' features".format(len(new_features), name)) if timings_measure: timings["core_start"] = timer() postproc_features(new_features, flds_named, infile, lon, lat, conf_in) if conf_idfy["grow_features_n"]: const = default_constants(nx=conf_in["nx"], ny=conf_in["ny"]) features_grow( conf_idfy["grow_features_n"], new_features, const, inplace=True, retain_orig=True, ) if timings_measure: timings["core_lst"] = [timer() - timings.pop("core_start")] return new_features, timings def get_infile(conf_in, timestep): for timesteps in conf_in["infiles_tss"]: if timestep in timesteps: infile = conf_in["infiles_tss"][timesteps] break else: err = "no infile found for timestep {}:\n{}".format( timestep, pformat(conf_in["infiles_tss"]) ) raise Exception(err) return infile def import_fields(infile, lon, lat, conf_in, conf_preproc): """Read a field from disk (netCDF, npz) and preprocess it.""" # Fetch some arguments informat = conf_in["input_format"] fld_name = conf_in["varname"] transpose = conf_in["infield_transpose"] fld_mirror = conf_in["infield_mirror"] level = conf_in["infield_lvl"] reduce_stride = conf_in["reduce_grid_stride"] reduce_mode = conf_in["reduce_grid_mode"] # Read field (or compute raw fields in special cases) fld = read_field( infile, fld_name, level, transpose, fld_mirror, informat, reduce_stride, reduce_mode, lon, lat, ) flds_named = {fld_name: fld} # Masking mask_name = conf_preproc["mask_varname"] if mask_name: fld_mask = read_field( infile, mask_name, level, transpose, conf_preproc["mask_mirror"], informat, reduce_stride, reduce_mode, lon, lat, ) mask_field( fld, fld_mask, conf_preproc["mask_threshold_gt"], conf_preproc["mask_threshold_lt"], ) # Boundary filter trim_boundaries(fld, conf_preproc["trim_boundaries_n"]) # Add refval if conf_preproc["add_refval"]: fld += conf_preproc["refval"] replace_varname = conf_in["replace_varname"] if replace_varname: # Read field used to replace feature values in the end informat = conf_in["input_format"] fld_name = conf_in["replace_varname"] level = conf_in["infield_lvl"] transpose = conf_in["infield_transpose"] mirror = False fld_repl = read_field( infile, replace_varname, level, transpose, mirror, informat, reduce_stride, reduce_mode, lon, lat, ) flds_named[replace_varname] = fld_repl return flds_named def compute_front_fields(infile, conf_in, conf_preproc, conf_comp_fronts): """Read a field from disk (netCDF, npz) and preprocess it.""" # Fetch some input arguments fld_name = conf_in["varname"] informat = conf_in["input_format"] level = conf_in["infield_lvl"] name_lon, name_lat = conf_in["lonlat_names"] reduce_mode = conf_in["reduce_grid_mode"] reduce_stride = conf_in["reduce_grid_stride"] # Fetch some preprocessing arguments add_refval = conf_preproc["add_refval"] mask_mirror = conf_preproc["mask_mirror"] mask_name = conf_preproc["mask_varname"] mask_threshold_gt = conf_preproc["mask_threshold_gt"] mask_threshold_lt = conf_preproc["mask_threshold_lt"] refval = conf_preproc["refval"] trim_boundaries_n = conf_preproc["trim_boundaries_n"] if informat != "field": err = ("input format must be 'field' to compute fronts, not '{}'").format( informat ) raise ValueError(err) # Read raw input fields iflds = fronts_read_raw_fields( infile, level, name_lon=name_lon, name_lat=name_lat, name_p=conf_comp_fronts["var_name_p"], name_t=conf_comp_fronts["var_name_t"], name_qv=conf_comp_fronts["var_name_qv"], name_u=conf_comp_fronts["var_name_u"], name_v=conf_comp_fronts["var_name_v"], uv_stag=conf_comp_fronts["var_uv_stag"], ) if reduce_stride > 1: # Reduce grid resolution by striding for name, fld in iflds.items(): iflds[name] = reduce_grid_resolution(fld, reduce_stride, reduce_mode) # Compute front fields kwas = dict(iflds) # SR_TMP < TODO cleaner solution # kwas.update(conf_comp_fronts) kwas.update( { k: v for k, v in conf_comp_fronts.items() if not k.startswith("var_name_") and k != "var_uv_stag" # SR_TMP } ) # SR_TMP > # kwas["print_prefix"] = "" # kwas["verbose"] = False oflds = identify_fronts(**kwas) _fmt = lambda s: "{}_{}".format(s, conf_comp_fronts["tvar"]) oflds = {_fmt(k): v for k, v in oflds.items()} fld = oflds[fld_name] # Masking if mask_name: fld_mask = oflds[mask_name] if mask_mirror: fld_mask = -fld_mask mask_field(fld, fld_mask, mask_threshold_gt, mask_threshold_lt) # Add reference value if add_refval: fld += refval # Boundary filter trim_boundaries(fld, trim_boundaries_n) return oflds def read_field( infile, varname, level, transpose, mirror, input_format="field", reduce_stride=1, reduce_mode="mean", lon=None, lat=None, ): # Read field if "field" in input_format: fld = read_field__field(infile, varname, level) if reduce_stride > 1: fld = reduce_grid_resolution(fld, reduce_stride, reduce_mode) elif "list" in input_format: if lon is None or lat is None: err = "must pass lon, lat to read list input" raise ValueError(err) # SR_TMP< if reduce_stride > 1: # Note: original lon, lat not available raise NotImplementedError("reduce stride for list input") # SR_TMP> fld = read_field__list(infile, varname, lon, lat) else: err = "invalid input format '{}'".format(input_format) raise ValueError(err) # Transpose if necessary if transpose: fld = fld.T # Mirror if necessary if mirror: fld = -fld return fld def read_field__field(infile, varname, level): """Read normal 2D field.""" # Read field ... if infile.endswith(".npz"): # ...from numpy archive with np.load(infile) as fi: fld = fi[varname] elif infile.endswith(".h5"): # ...from hdf5 archive with h5py.File(infile, "r") as fi: fld = fi[varname][:] else: # ... from netcdf file try: with nc4.Dataset(infile, "r") as fi: vi = fi.variables[varname] fld = vi[:] if vi.dimensions[0] == "time": fld = fld[0] except Exception as e: err = ("error reading field '{}' from file '{}':\n{}({})").format( varname, infile, e.__class__.__name__, e ) raise Exception(err) if np.ma.is_masked(fld): fld = fld.filled() # Check dimensions if len(fld.shape) != 2: if len(fld.shape) == 3: if level is None: err = "must pass level for 3d input field: {}".format(varname) raise ValueError(err) fld = fld[level, :, :] else: err = "wrong number of dimensions: {} != 2 {}".format( len(fld.shape), fld.shape ) raise Exception(err) return fld def read_field__list(infile, varname, lon, lat): """Read point list and initialize field.""" # Read field ... if infile.endswith(".npz"): # ... from numpy archive with np.load(infile) as fi: pts_lon, pts_lat, pts_fld = fi["lon"], fi["lat"], fi[varname] fld = point_list_to_field(pts_lon, pts_lat, pts_fld, lon, lat) elif infile.endswith(".h5"): # .. from hdf5 file with h5py.File(infile, "r") as fi: pts_lon, pts_lat, pts_fld = fi["lon"], fi["lat"], fi[varname] fld = point_list_to_field(pts_lon, pts_lat, pts_fld, lon, lat) else: # ... from netcdf file fld = nc_read_var_list(infile, varname, lon, lat) return fld def mask_field(fld, fld_mask, lower, upper): if upper is None: mask = fld_mask > lower elif lower is None: mask = fld_mask < upper else: mask = (fld_mask > lower) & (fld_mask < upper) fld[~mask] = 0 def trim_boundaries(fld, n): if n > 0: fld[:n, :] = 0 fld[:, :n] = 0 fld[-n:, :] = 0 fld[:, -n:] = 0 def postproc_features(features, flds_named, infile, lon, lat, conf_in): # If field is mirrored, reverse values if conf_in["infield_mirror"]: for feature in features: feature.mirror_values() if conf_in["replace_varname"]: # Replace feature values fld = flds_named[conf_in["replace_varname"]] for feature in features: feature.replace_values(fld) if conf_in["minsize_km2"] and conf_in["minsize_km2"] > 1: for feature in [f for f in features]: if feature.area_lonlat(lon, lat, "km2") < conf_in["minsize_km2"]: features.remove(feature) if conf_in["maxsize_km2"] and conf_in["maxsize_km2"] > 0: for feature in [f for f in features]: if feature.area_lonlat(lon, lat, "km2") > conf_in["maxsize_km2"]: features.remove(feature) def identify_cyclones( infile, name, conf_in, conf_preproc, timestep, anti=False ): fld_name = conf_in["varname"] inifile = conf_in["cycl_inifile"] if inifile is None: raise Exception("must pass cyclones inifile") # SR_TMP< TODO use command line arguments fact = 0.01 # convert Pa to hPa or geopotential to gpdm # SR_TMP> # Set up config: merge inifile config into default config conf_def = cycl_cfg.get_config_default() conf_ini = cycl_cfg.get_config_inifile(inifile) conf = cycl_cfg.merge_configs([conf_def, conf_ini]) conf["IDENTIFY"]["timings-identify"] = None conf["IDENTIFY"]["datetime"] = timestep def read_topo(file, var): with nc4.Dataset(file) as fi: fld = fi.variables[var][:] lon = fi.variables[conf_in["lonlat_names"][0]][:] lat = fi.variables[conf_in["lonlat_names"][1]][:] if len(fld.shape) == 3: if fld.shape[0] == 1: fld = fld[0] else: raise Exception(f"topo field {var} has unexpected shape: {fld.shape}") if len(lon.shape) == 1: topo_lonlat_shape = (lon.size, lat.size) else: topo_lonlat_shape = lon.shape if fld.shape == topo_lonlat_shape[::-1]: fld = fld.T return Field2D(fld, lon=lon, lat=lat, name=var) if conf["IDENTIFY"]["topo-cutoff-level"] < 0: topo = None else: topo = read_topo( f"{conf['GENERAL']['topofile-path'] or '.'}/{conf['GENERAL']['topofile']}", conf["GENERAL"]["topo-field-name"], ) # Fetch some config values level = conf_in["infield_lvl"] if level is None: level = conf["GENERAL"]["input-field-level"] fld_name = conf_in["varname"] if fld_name is None: fld_name = conf["GENERAL"]["input-field-name"] # Read pressure or height field fld = read_input_field_lonlat( infile, fld_name, level, conf_in, conv_fact=fact, crop=conf_preproc["crop_domain_n"], ) refval = conf_preproc["refval"] # if refval is not None: # refval *= fact if conf_preproc["add_refval"]: fld += refval if anti: # Mirror field around reference value (e.g., 1015 hPa for SLP) if refval is None: err = ( "must provide reference value to identify anticyclones " "('refval' in conf_preproc)" ) raise Exception(err) _m = ~np.isnan(fld) fld[_m] = -1 * (fld[_m] - refval) + refval # SR_TMP< if conf_preproc["trim_boundaries_n"] > 0: err = "cyclones: --trim-boundaries; consider --shrink-domain" raise NotImplementedError(err) if conf_preproc["crop_domain_n"] > 0: pass # SR_TMP> # Identify cyclone features _r = identify_cyclones_core(fld, topo, conf["IDENTIFY"]) cyclones = _r["cyclones"] depressions = _r["depressions"] # Add type code to cyclone features tcode = DEFAULT_TYPE_CODES[name] for cyclone in cyclones: assert str(cyclone._id).startswith(str(timestep)) _core = str(cyclone._id)[len(str(timestep)) :] cyclone._id = int(str(timestep) + str(tcode) + _core) # Plot cyclones, depressions, and/or extrema if conf["GENERAL"]["make-plots"]: plot_cyclones_depressions_extrema(infile, cyclones, depressions, fld, conf) if anti: # Mirror field around reference value (e.g., 1015 hPa for SLP) _m = ~np.isnan(fld) fld[_m]
following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`pressure_residual` - :meth:`stress_tensor` Returns: list: Nearest neighbors bond lengths of the relaxed structure per ordered set of species Ai,Aj greater than or equal to i. Examples: You can expect the *content* of the result to be something like: `nbondxx=1.2599,1.0911,1.0911,1.7818,1.2599,1.7818` """ return self._lazy_load("nbondxx") @property def node_CPU_Cores(self): """available CPU cores (`optional`). Units: ``. Returns: float: Information about the number of cores in the node/cluster where the calculation was performed. Examples: You can expect the *content* of the result to be something like: `node_CPU_Cores=12` """ return self._lazy_load("node_CPU_Cores") @property def node_CPU_MHz(self): """CPU rate (`optional`). Units: `Megahertz`. Returns: float: Information about the CPU speed in the node/cluster where the calculation was performed. Examples: You can expect the *content* of the result to be something like: `node_CPU_MHz=12` """ return self._lazy_load("node_CPU_MHz") @property def node_CPU_Model(self): """CPU model (`optional`). Units: ``. Returns: str: Information about the CPU model in the node/cluster where the calculation was performed. Examples: You can expect the *content* of the result to be something like: `node_CPU_Model=12` """ return self._lazy_load("node_CPU_Model") @property def node_RAM_GB(self): """available RAM (`optional`). Units: `Gigabytes`. Returns: float: Information about the RAM in the node/cluster where the calculation was performed. Examples: You can expect the *content* of the result to be something like: `node_RAM_GB=12` """ return self._lazy_load("node_RAM_GB") @property def nspecies(self): """species count (`mandatory`). Units: ``. Returns: float: Returns the number of species in the system (e.g., binary = 2, ternary = 3, etc.). Examples: You can expect the *content* of the result to be something like: `nspecies=3` """ return self._lazy_load("nspecies") @property def positions_cartesian(self): """relaxed absolute positions (`mandatory`). Units: `&Aring;`. .. warning:: This keyword is still listed as development level. Use it knowing that it is subject to change or removal. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`pressure_residual` - :meth:`stress_tensor` Returns: numpy.ndarray: Final Cartesian positions (xi,xj,xk) in the notation of the code. Examples: You can expect the *content* of the result to be something like: `positions_cartesian=0,0,0;18.18438,0,2.85027;...` """ return self._lazy_load("positions_cartesian") @property def positions_fractional(self): """relaxed relative positions (`mandatory`). Units: ``. .. warning:: This keyword is still listed as development level. Use it knowing that it is subject to change or removal. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`pressure_residual` - :meth:`stress_tensor` Returns: numpy.ndarray: Final fractional positions (xi,xj,xk) with respect to the unit cell as specified in $geometry. Examples: You can expect the *content* of the result to be something like: `positions_fractional=0,0,0;0.25,0.25,0.25;...` """ return self._lazy_load("positions_fractional") @property def pressure(self): """external pressure (`mandatory`). Units: `kbar`. Returns: float: Returns the target pressure selected for the simulation. Examples: You can expect the *content* of the result to be something like: `pressure=10.0` """ return self._lazy_load("pressure") @property def pressure_residual(self): """residual pressure (`mandatory`). Units: `kbar`. .. warning:: This keyword is still listed as development level. Use it knowing that it is subject to change or removal. Returns: float: Returns the external pressure achieved by the simulation. Examples: You can expect the *content* of the result to be something like: `pressure_residual=10.0` """ return self._lazy_load("pressure_residual") @property def prototype(self): """original prototype (`mandatory`). Units: ``. Returns: str: Returns the AFLOW unrelaxed prototype which was used for the calculation. Examples: You can expect the *content* of the result to be something like: `prototype=T0001.A2BC` """ return self._lazy_load("prototype") @property def scintillation_attenuation_length(self): """attenuation length (`mandatory`). Units: `cm`. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`kpoints` Returns: float: Returns the scintillation attenuation length of the compound in cm. Examples: You can expect the *content* of the result to be something like: `scintillation_attenuation_length=2.21895` """ return self._lazy_load("scintillation_attenuation_length") @property def sg(self): """space group of compound (`mandatory`). Units: ``. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`stress_tensor` Returns: list: Evolution of the space group of the compound. The first, second and third string represent space group name/number before the first, after the first, and after the last relaxation of the calculation. Examples: You can expect the *content* of the result to be something like: `sg=Fm-3m#225,Fm-3m#225,Fm-3m#225` """ return self._lazy_load("sg") @property def sg2(self): """refined space group of compound (`mandatory`). Units: ``. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`stress_tensor` Returns: list: Evolution of the space group of the compound. The first, second and third string represent space group name/number before the first, after the first, and after the last relaxation of the calculation. Examples: You can expect the *content* of the result to be something like: `sg2=Fm-3m#225,Fm-3m#225,Fm-3m#225` """ return self._lazy_load("sg2") @property def spacegroup_orig(self): """original space group number (`mandatory`). Units: ``. Returns: float: Returns the spacegroup number of the original-unrelaxed structure before the calculation. Examples: You can expect the *content* of the result to be something like: `spacegroup_orig=225` """ return self._lazy_load("spacegroup_orig") @property def spacegroup_relax(self): """relaxed space group number (`mandatory`). Units: ``. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`forces` - :meth:`kpoints` - :meth:`stress_tensor` Returns: float: Returns the spacegroup number of the relaxed structure after the calculation. Examples: You can expect the *content* of the result to be something like: `spacegroup_relax=225` """ return self._lazy_load("spacegroup_relax") @property def species(self): """atomic species (`mandatory`). Units: ``. Returns: list: Species of the atoms in this material. Examples: You can expect the *content* of the result to be something like: `species=Y,Zn,Zr` """ return self._lazy_load("species") @property def species_pp(self): """pseudopotential of chemical speciess (`mandatory`). Units: ``. Returns: list: Pseudopotentials of the atomic species. Examples: You can expect the *content* of the result to be something like: `species_pp=Y,Zn,Zr` """ return self._lazy_load("species_pp") @property def species_pp_ZVAL(self): """valence atoms per species (`optional`). Units: `electrons`. Returns: list: Returns the number of valence electrons of the atomic species. Examples: You can expect the *content* of the result to be something like: `species_pp_ZVAL=3` """ return self._lazy_load("species_pp_ZVAL") @property def species_pp_version(self): """pseudopotential version and species (`mandatory`). Units: ``. Returns: list: Species of the atoms, pseudopotentials species, and pseudopotential versions. Examples: You can expect the *content* of the result to be something like: `species_pp_version=Y,Zn,Zr` """ return self._lazy_load("species_pp_version") @property def spinD(self): """spin decomposition over unit cell (`mandatory`). Units: `&mu;<sub>B</sub>`. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`kpoints` Returns: list: For spin polarized calculations, the spin decomposition over the atoms of the cell. Examples: You can expect the *content* of the result to be something like: `spinD=0.236,0.236,-0.023,1.005` """ return self._lazy_load("spinD") @property def spinF(self): """magnetization of unit cell at Fermi level (`mandatory`). Units: `&mu;<sub>B</sub>`. .. note:: The following verifications are available for this keyword. They are exposed as additional methods on this object. - :meth:`energy_cutoff` - :meth:`kpoints` Returns: float: For spin polarized calculations, the magnetization
pipeline is not None else self.pipeline kvy = kvy if kvy is not None else self.kvy tvy = tvy if tvy is not None else self.tvy exc = exc if exc is not None else self.exc rvy = rvy if rvy is not None else self.rvy while True: # continuous stream processing never stop try: done = yield from self.msgParsator(ims=ims, framed=framed, pipeline=pipeline, kvy=kvy, tvy=tvy, exc=exc, rvy=rvy) except kering.SizedGroupError as ex: # error inside sized group # processOneIter already flushed group so do not flush stream if logger.isEnabledFor(logging.DEBUG): logger.exception("Parser msg extraction error: %s\n", ex.args[0]) else: logger.error("Parser msg extraction error: %s\n", ex.args[0]) except (kering.ColdStartError, kering.ExtractionError) as ex: # some extraction error if logger.isEnabledFor(logging.DEBUG): logger.exception("Parser msg extraction error: %s\n", ex.args[0]) else: logger.error("Parser msg extraction error: %s\n", ex.args[0]) del ims[:] # delete rest of stream to force cold restart except (kering.ValidationError, Exception) as ex: # non Extraction Error # Non extraction errors happen after successfully extracted from stream # so we don't flush rest of stream just resume if logger.isEnabledFor(logging.DEBUG): logger.exception("Parser msg non-extraction error: %s\n", ex.args[0]) else: logger.error("Parser msg non-extraction error: %s\n", ex.args[0]) yield return True # should never return def msgParsator(self, ims=None, framed=True, pipeline=False, kvy=None, tvy=None, exc=None, rvy=None, vry=None): """ Returns generator that upon each iteration extracts and parses msg with attached crypto material (signature etc) from incoming message stream, ims, and dispatches processing of message with attachments. Uses .ims when ims is not provided. Iterator yields when not enough bytes in ims to finish one msg plus attachments. Returns (which raises StopIteration) when finished. Parameters: ims (bytearray) of serialized incoming message stream. May contain one or more sets each of a serialized message with attached cryptographic material such as signatures or receipts. framed (bool) True means ims contains only one frame of msg plus counted attachments instead of stream with multiple messages pipeline (bool) True means use pipeline processor to process ims msgs when stream includes pipelined count codes. kvy (Kevery) route KERI KEL message types to this instance tvy (Tevery) route TEL message types to this instance exc (Exchanger) route EXN message types to this instance rvy (Revery): reply (RPY) message handler vry (Verifier) ACDC credential processor Logic: Currently only support couters on attachments not on combined or on message Attachments must all have counters so know if txt or bny format for attachments. So even when framed==True must still have counter. Do While loop sniff to set up first extraction raise exception and flush full tream if stream start is counter must be message extract message sniff for counter if group counter extract and discard but keep track of count so if error while processing attachments then only need to flush attachment count not full stream. """ if ims is None: ims = self.ims while not ims: yield cold = self.sniff(ims) # check for spurious counters at front of stream if cold in (Colds.txt, Colds.bny): # not message error out to flush stream # replace with pipelining here once CESR message format supported. raise kering.ColdStartError("Expecting message counter tritet={}" "".format(cold)) # Otherwise its a message cold start while True: # extract and deserialize message from ims try: sadder = Sadder(raw=ims) except kering.ShortageError as ex: # need more bytes yield else: # extracted successfully del ims[:sadder.size] # strip off event from front of ims break sigers = [] # list of Siger instances of attached indexed controller signatures wigers = [] # list of Siger instance of attached indexed witness signatures cigars = [] # List of cigars to hold nontrans rct couplets # List of tuples from extracted transferable receipt (vrc) quadruples trqs = [] # each converted quadruple is (prefixer, seqner, diger, siger) # List of tuples from extracted transferable indexed sig groups tsgs = [] # each converted group is tuple of (i,s,d) triple plus list of sigs # List of tuples from extracted signer seals sig groups ssgs = [] # each converted group is the identifier prefix plus list of sigs # List of tuples from extracted first seen replay couples frcs = [] # each converted couple is (seqner, dater) # List of tuples from extracted source seal couples (delegator or issuer) sscs = [] # each converted couple is (seqner, diger) for delegating/issuing event # List of tuples from extracted SAD path sig groups from transferable identifiers sadsigs = [] # each converted group is tuple of (path, i, s, d) quad plus list of sigs # List of tuples from extracted SAD path sig groups from non-trans identifiers sadcigs = [] # each converted group is path plus list of non-trans sigs pipelined = False # all attachments in one big pipeline counted group # extract and deserialize attachments try: # catch errors here to flush only counted part of stream # extract attachments must start with counter so know if txt or bny. while not ims: yield cold = self.sniff(ims) # expect counter at front of attachments if cold != Colds.msg: # not new message so process attachments ctr = yield from self._extractor(ims=ims, klas=Counter, cold=cold) if ctr.code == CtrDex.AttachedMaterialQuadlets: # pipeline ctr? pipelined = True # compute pipelined attached group size based on txt or bny pags = ctr.count * 4 if cold == Colds.txt else ctr.count * 3 while len(ims) < pags: # wait until rx full pipelned group yield pims = ims[:pags] # copy out substream pipeline group del ims[:pags] # strip off from ims ims = pims # now just process substream as one counted frame if pipeline: pass # pass extracted ims to pipeline processor return ctr = yield from self._extractor(ims=ims, klas=Counter, cold=cold, abort=pipelined) # iteratively process attachment counters (all non pipelined) while True: # do while already extracted first counter is ctr if ctr.code == CtrDex.ControllerIdxSigs: for i in range(ctr.count): # extract each attached signature siger = yield from self._extractor(ims=ims, klas=Siger, cold=cold, abort=pipelined) sigers.append(siger) elif ctr.code == CtrDex.WitnessIdxSigs: for i in range(ctr.count): # extract each attached signature wiger = yield from self._extractor(ims=ims, klas=Siger, cold=cold, abort=pipelined) wigers.append(wiger) elif ctr.code == CtrDex.NonTransReceiptCouples: # extract attached rct couplets into list of sigvers # verfer property of cigar is the identifier prefix # cigar itself has the attached signature for cigar in self._nonTransReceiptCouples(ctr=ctr, ims=ims, cold=cold, pipelined=pipelined): cigars.append(cigar) elif ctr.code == CtrDex.TransReceiptQuadruples: # extract attaced trans receipt vrc quadruple # spre+ssnu+sdig+sig # spre is pre of signer of vrc # ssnu is sn of signer's est evt when signed # sdig is dig of signer's est event when signed # sig is indexed signature of signer on this event msg for i in range(ctr.count): # extract each attached quadruple prefixer = yield from self._extractor(ims, klas=Prefixer, cold=cold, abort=pipelined) seqner = yield from self._extractor(ims, klas=Seqner, cold=cold, abort=pipelined) saider = yield from self._extractor(ims, klas=Saider, cold=cold, abort=pipelined) siger = yield from self._extractor(ims=ims, klas=Siger, cold=cold, abort=pipelined) trqs.append((prefixer, seqner, saider, siger)) elif ctr.code == CtrDex.TransIdxSigGroups: # extract attaced trans indexed sig groups each made of # triple pre+snu+dig plus indexed sig group # pre is pre of signer (endorser) of msg # snu is sn of signer's est evt when signed # dig is dig of signer's est event when signed # followed by counter for ControllerIdxSigs with attached # indexed sigs from trans signer (endorser). for (prefixer, seqner, saider, isigers) in self._transIdxSigGroups(ctr, ims, cold=cold, pipelined=pipelined): tsgs.append((prefixer, seqner, saider, isigers)) elif ctr.code == CtrDex.TransLastIdxSigGroups: # extract attaced signer seal indexed sig groups each made of # identifier pre plus indexed sig group # pre is pre of signer (endorser) of msg # followed by counter for ControllerIdxSigs with attached # indexed sigs from trans signer (endorser). for i in range(ctr.count): # extract each attached groups prefixer = yield from self._extractor(ims, klas=Prefixer, cold=cold, abort=pipelined) ictr = ctr = yield from self._extractor(ims=ims, klas=Counter, cold=cold, abort=pipelined) if ctr.code != CtrDex.ControllerIdxSigs: raise kering.UnexpectedCountCodeError("Wrong
the list. """ hl7V2Stores = _messages.MessageField('Hl7V2Store', 1, repeated=True) nextPageToken = _messages.StringField(2) class ListLocationsResponse(_messages.Message): r"""The response message for Locations.ListLocations. Fields: locations: A list of locations that matches the specified filter in the request. nextPageToken: The standard List next-page token. """ locations = _messages.MessageField('Location', 1, repeated=True) nextPageToken = _messages.StringField(2) class ListMessagesResponse(_messages.Message): r"""Lists the messages in the specified HL7v2 store. Fields: messages: The returned message names. Won't be more values than the value of page_size in the request. nextPageToken: Token to retrieve the next page of results or empty if there are no more results in the list. """ messages = _messages.StringField(1, repeated=True) nextPageToken = _messages.StringField(2) class ListOperationsResponse(_messages.Message): r"""The response message for Operations.ListOperations. Fields: nextPageToken: The standard List next-page token. operations: A list of operations that matches the specified filter in the request. """ nextPageToken = _messages.StringField(1) operations = _messages.MessageField('Operation', 2, repeated=True) class Location(_messages.Message): r"""A resource that represents Google Cloud Platform location. Messages: LabelsValue: Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} MetadataValue: Service-specific metadata. For example the available capacity at the given location. Fields: displayName: The friendly name for this location, typically a nearby city name. For example, "Tokyo". labels: Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} locationId: The canonical id for this location. For example: `"us-east1"`. metadata: Service-specific metadata. For example the available capacity at the given location. name: Resource name for the location, which may vary between implementations. For example: `"projects/example-project/locations/us- east1"` """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""Service-specific metadata. For example the available capacity at the given location. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a MetadataValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) displayName = _messages.StringField(1) labels = _messages.MessageField('LabelsValue', 2) locationId = _messages.StringField(3) metadata = _messages.MessageField('MetadataValue', 4) name = _messages.StringField(5) class Message(_messages.Message): r"""A complete HL7v2 message. See http://www.hl7.org/implement/standards/index.cfm?ref=common for details on the standard. Messages: LabelsValue: User-supplied key-value pairs used to organize HL7v2 stores. Label keys must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: \p{Ll}\p{Lo}{0,62} Label values are optional, must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: [\p{Ll}\p{Lo}\p{N}_-]{0,63} No more than 64 labels can be associated with a given store. Fields: createTime: The datetime when the message was created. Set by the server. data: Raw message bytes. labels: User-supplied key-value pairs used to organize HL7v2 stores. Label keys must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: \p{Ll}\p{Lo}{0,62} Label values are optional, must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: [\p{Ll}\p{Lo}\p{N}_-]{0,63} No more than 64 labels can be associated with a given store. messageType: The message type and trigger event for this message. MSH-9. name: Resource name of the Message, of the form `projects/{project_id}/dat asets/{dataset_id}/hl7V2Stores/{hl7_v2_store_id}/messages/{message_id}`. Assigned by the server. parsedData: The parsed version of the raw message data. patientIds: All patient IDs listed in the PID-2, PID-3, and PID-4 segments of this message. sendFacility: The hospital that this message came from. MSH-4. sendTime: The datetime the sending application sent this message. MSH-7. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""User-supplied key-value pairs used to organize HL7v2 stores. Label keys must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: \p{Ll}\p{Lo}{0,62} Label values are optional, must be between 1 and 63 characters long, have a UTF-8 encoding of maximum 128 bytes, and must conform to the following PCRE regular expression: [\p{Ll}\p{Lo}\p{N}_-]{0,63} No more than 64 labels can be associated with a given store. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) createTime = _messages.StringField(1) data = _messages.BytesField(2) labels = _messages.MessageField('LabelsValue', 3) messageType = _messages.StringField(4) name = _messages.StringField(5) parsedData = _messages.MessageField('ParsedData', 6) patientIds = _messages.MessageField('PatientId', 7, repeated=True) sendFacility = _messages.StringField(8) sendTime = _messages.StringField(9) class NotificationConfig(_messages.Message): r"""Specifies where notifications should be sent upon changes to a data store. Fields: pubsubTopic: The [Cloud Pub/Sub](https://cloud.google.com/pubsub/docs/) topic that notifications of changes are published on. Supplied by the client. PubsubMessage.Data will contain the resource name. PubsubMessage.MessageId is the ID of this message. It is guaranteed to be unique within the topic. PubsubMessage.PublishTime is the time at which the message was published. Notifications are only sent if the topic is non-empty. [Topic names](https://cloud.google.com/pubsub/docs/overview#names) must be scoped to a project. <EMAIL> must have publisher permissions on the given Cloud Pub/Sub topic. Not having adequate permissions will cause the calls that send notifications to fail. """ pubsubTopic = _messages.StringField(1) class Operation(_messages.Message): r"""This resource represents a long-running operation that is the result of a network API call. Messages: MetadataValue: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. ResponseValue: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. Fields: done: If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available. error: The error result of the operation in case of failure or cancellation. metadata: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. name: The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should have the format of `operations/some/unique/name`. response: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. """ @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Properties of the object. Contains field @type with
defaults tests.append(""" Sub MySub(x As Single, y, z As Boolean, a, Optional b = 10, Optional c="hello") a=10 n=20 c="hello" End Sub """) # simple sub with optional arguments and defaults tests.append(""" Sub MySub(x As Single, y, z As Boolean, a, Optional b = 10, Optional c As String = "hello") a=10 n=20 c="hello" End Sub """) # << Parsing tests >> (40 of 61) # ByVal, ByRef args tests.append(""" Sub MySub(ByVal a, ByRef y) a=10 n=20 c="hello" End Sub """) tests.append(""" Sub MySub(a, ByRef y) a=10 n=20 c="hello" End Sub """) tests.append(""" Sub MySub(ByVal a, y) a=10 n=20 c="hello" End Sub """) tests.append(""" Sub MySub(ByVal a As Single, y) a=10 n=20 c="hello" End Sub """) # << Parsing tests >> (41 of 61) # 852166 Sub X<spc>(a,b,c) fails to parse tests.append(""" Sub MySub (ByVal a, ByRef y) a=10 n=20 c="hello" End Sub """) # 880612 Continuation character inside call tests.append(""" Sub MySub _ (ByVal a, ByRef y) a=10 n=20 c="hello" End Sub """) # << Parsing tests >> (42 of 61) # simple fn tests.append(""" Function MyFn() a=10 n=20 c="hello" MyFn = 20 End Function """) # simple fn with exit tests.append(""" Function MyFn() a=10 n=20 MyFn = 20 Exit Function c="hello" End Function """) # simple sub with scope tests.extend([""" Private Function MyFn() a=10 n=20 c="hello" MyFn = 20 End Function""", """ Public Function MyFn() a=10 n=20 c="hello" MyFn = 20 End Function """, """ Friend Function MyFn() a=10 n=20 c="hello" MyFn = 20 End Function """, ]) # simple fn with gap in () tests.append(""" Function MyFn( ) a=10 n=20 c="hello" MyFn = 20 End Function """) # << Parsing tests >> (43 of 61) # simple sub tests.append(""" Function MySub(x, y, z, a, b, c) a=10 n=20 c="hello" End Function """) # simple sub with exit tests.append(""" Function MySub(x, y, z, a, b, c) a=10 n=20 Exit Sub c="hello" End Function """) # simple sub with scope tests.append(""" Private Function MySub(x, y, z, a, b, c) a=10 n=20 c="hello" End Function Public Function fn(x, y, z, a, b, c) a=10 n=20 c="hello" End Function """) # << Parsing tests >> (44 of 61) # simple sub tests.append(""" Function fn(x As Single, y, z As Boolean, a, b As Variant, c) As Single a=10 n=20 c="hello" End Function """) # simple sub with exit tests.append(""" Function fc(x As Single, y, z As Object, a, b As MyThing.Object, c) As Object.Obj a=10 n=20 Exit Function c="hello" End Function """) # simple sub with scope tests.append(""" Private Function MySub(x, y As Variant, z, a As Boolena, b, c As Long) As Variant a=10 n=20 c="hello" End Function Public Function MySub(x, y, z, a, b, c) As String a=10 n=20 c="hello" End Function """) # function returning an array tests.append(""" Function fn(x As Single, y, z As Boolean, a, b As Variant, c) As Single() a=10 n=20 c="hello" End Function """) # << Parsing tests >> (45 of 61) # simple sub tests.append(""" Function fn(x As Single, y, z As Boolean, a, Optional b As Variant, c) As Single a=10 n=20 c="hello" End Function """) # simple sub with exit tests.append(""" Function MySub(x() As Single, y, z As Object, Optional a, b As MyThing.Object, Optional c) As Integer a=10 n=20 Exit Function c="hello" End Function """) # simple sub with scope tests.append(""" Private Function MySub(x, Optional y As Variant, Optional z, a As Boolena, b, c As Long) As Long a=10 n=20 c="hello" End Function Public Function MySub(x, y, z, a, b, c) As Control.Buttons.BigButtons.ThisOne a=10 n=20 c="hello" End Function """) # simple fn with optional arguments and defaults tests.append(""" Function MySub(x As Single, y, z As Boolean, a, Optional b = 10, Optional c="hello") a=10 n=20 c="hello" End Function """) # simple fn with optional arguments and defaults tests.append(""" Function MySub(x As Single, y, z As Boolean, a, Optional b = 10, Optional c As String = "hello") a=10 n=20 c="hello" End Function """) # << Parsing tests >> (46 of 61) # ByVal, ByRef args tests.append(""" Function MySub(ByVal a, ByRef y) a=10 n=20 c="hello" End Function """) tests.append(""" Function MySub(a, ByRef y) a=10 n=20 c="hello" End Function """) tests.append(""" Function MySub(ByVal a, y) a=10 n=20 c="hello" End Function """) tests.append(""" Function MySub(ByVal a As Single, y) a=10 n=20 c="hello" End Function """) # << Parsing tests >> (47 of 61) # Simple property let/get/set tests.extend([""" Property Let MyProp(NewVal As String) a = NewVal Exit Property End Property """, """ Property Get MyProp() As Long MyProp = NewVal Exit Property End Property """, """ Property Set MyProp(NewObject As Object) Set MyProp = NewVal Exit Property End Property """ """ Public Property Let MyProp(NewVal As String) a = NewVal End Property """, """ Public Property Get MyProp() As Long MyProp = NewVal End Property """, """ Public Property Set MyProp(NewObject As Object) Set MyProp = NewVal End Property """, """ Public Property Get MyProp( ) As Long MyProp = NewVal End Property """, ]) # Simple property let/get/set with labels tests.extend([""" 1: Property Let MyProp(NewVal As String) 1: a = NewVal 1: End Property """, """ 1: Property Get MyProp() As Long 1: MyProp = NewVal 1: End Property """, """ 1: Property Set MyProp(NewObject As Object) 1: Set MyProp = NewVal 1: End Property """ ]) # Simple property let/get/set with labels and comment tests.extend([""" 1: Property Let MyProp(NewVal As String) ' comment 1: a = NewVal ' comment 1: End Property ' comment """, """ 1: Property Get MyProp() As Long ' comment 1: MyProp = NewVal ' comment 1: End Property ' comment """, """ 1: Property Set MyProp(NewObject As Object) ' comment 1: Set MyProp = NewVal ' comment 1: End Property ' comment """ ]) # << Parsing tests >> (48 of 61) # Simple case tests.append(""" Select Case x Case "one" y = 1 Case "two" y = 2 Case "three" z = 3 End Select """) # Simple case with else tests.append(""" Select Case x Case "one" y = 1 Case "two" y = 2 Case "three" z = 3 Case Else z = -1 End Select """) # Simple case with else and trailing colons tests.append(""" Select Case x Case "one": y = 1 Case "two": y = 2 Case "three": z = 3 Case Else: z = -1 End Select """) # Multiple case with else tests.append(""" Select Case x Case "one" y = 1 Case "two" y = 2 Case "three", "four", "five" z = 3 Case Else z = -1 End Select """) # Single line case with else tests.append(""" Select Case x Case "one": y = 1 Case "two": y = 2 Case "three", "four", "five": z = 3 Case Else: z = -1 End Select """) # Range case tests.append(""" Select Case x Case "a" To "m" z = 1 Case "n" To "z" z = 20 End Select """) # Range case with Is and Like tests.append(""" Select Case x Case Is < "?", "a" To "m" z = 1 Case "n" To "z", Is > 10, Is Like "*blah" z = 20 End Select """) # Multiple Range case tests.append(""" Select Case x Case "a" To "m", "A" To "G", "K" To "P" z = 1 Case "n" To "z", 10 To this.that(10,20) z = 20 End Select """) # Empty case tests.append(""" Select Case a Case 10 Case 20 End Select """) # Case with comments tests.append(""" Select Case x ' Here is a nasty comment Case "one" y = 1 Case "two" y = 2 Case "three" z = 3 End Select """) # << Parsing tests >> (49 of 61) # Simple for tests.append(""" For i = 0 To 1000 a = a + 1 Next i """) # Simple for tests.append(""" For i=0 To 1000 a = a + 1 Next i """) # Empty for tests.append(""" For i = 0 To 1000 Next i """) # Simple for with unnamed Next tests.append(""" For i = 0 To 1000 a = a + 1 Next """) # For with step tests.append(""" For i = 0 To 1000 Step 2 a = a + 1 Next i """) # For with exit tests.append(""" For i = 0 To 1000 a = a + 1 Exit For Next i """) # Nested for tests.append(""" For i = 0 To 1000 a = a + 1 For j = 1 To i b = b + j Next j Next i """) # Dotted names - what does this even mean? tests.append(""" For me.you = 0 To 1000 Step 2 a = a + 1 Next me.you """) # << Parsing tests >> (50 of 61) # Simple for tests.append(""" For Each i In coll a = a + 1 Next i """) # Empty for tests.append(""" For Each i In coll Next i """) # Simple for with unnamed Next tests.append(""" For Each i In coll a = a + 1 Next """) # For with exit tests.append(""" For Each i In coll a = a + 1 Exit For Next i """) # Nested for tests.append(""" For Each i In coll a = a + 1 For Each j In coll b = b + j Next j Next i """) # << Parsing tests >> (51 of 61) # Simple while wend tests.append(""" a = 0 While a < 10 g = 10 a = a + 1 Wend """) # Nested while wend tests.append(""" a = 0 While a < 10 g = 10 a = a + 1 While b < 40 doit Wend Wend """) # Simple while wend with line numbers tests.append(""" 1: a = 0 2: While a < 10 3: g = 10 4: a = a + 1 5: Wend """) # << Parsing tests >> (52 of 61) # Simple do while loop tests.append(""" a = 0 Do While a < 10 g = 10 a = a + 1 Loop """) # Simple do while with exit tests.append(""" a = 0 Do While a < 10 g = 10 a = a + 1 Exit Do Loop """) # Nested do while loop tests.append(""" a = 0 Do While a < 10 g = 10 a = a + 1 Do While b < 40 doit Loop Loop """) # << Parsing tests >> (53 of 61) # Simple do loop tests.append(""" a = 0 Do g = 10 a = a + 1 Loop """) # Simple do with exit tests.append(""" a = 0 Do g = 10 a = a + 1 Exit Do Loop """) # Nested do loop tests.append(""" a = 0 Do g = 10 a = a + 1 Do doit Loop Loop """) # <<
flavor = "variable-font" _attrs = ('filename', 'axisSubsets', 'lib') filename = posixpath_property("_filename") def __init__(self, *, name, filename=None, axisSubsets=None, lib=None): self.name: str = name """string, required. Name of this variable to identify it during the build process and from other parts of the document, and also as a filename in case the filename property is empty. VarLib. """ self.filename: str = filename """string, optional. Relative path to the variable font file, **as it is in the document**. The file may or may not exist. If not specified, the :attr:`name` will be used as a basename for the file. """ self.axisSubsets: List[Union[RangeAxisSubsetDescriptor, ValueAxisSubsetDescriptor]] = axisSubsets or [] """Axis subsets to include in this variable font. If an axis is not mentioned, assume that we only want the default location of that axis (same as a :class:`ValueAxisSubsetDescriptor`). """ self.lib: MutableMapping[str, Any] = lib or {} """Custom data associated with this variable font.""" class RangeAxisSubsetDescriptor(SimpleDescriptor): """Subset of a continuous axis to include in a variable font. .. versionadded:: 5.0 """ flavor = "axis-subset" _attrs = ('name', 'userMinimum', 'userDefault', 'userMaximum') def __init__(self, *, name, userMinimum=-math.inf, userDefault=None, userMaximum=math.inf): self.name: str = name """Name of the :class:`AxisDescriptor` to subset.""" self.userMinimum: float = userMinimum """New minimum value of the axis in the target variable font. If not specified, assume the same minimum value as the full axis. (default = ``-math.inf``) """ self.userDefault: Optional[float] = userDefault """New default value of the axis in the target variable font. If not specified, assume the same default value as the full axis. (default = ``None``) """ self.userMaximum: float = userMaximum """New maximum value of the axis in the target variable font. If not specified, assume the same maximum value as the full axis. (default = ``math.inf``) """ class ValueAxisSubsetDescriptor(SimpleDescriptor): """Single value of a discrete or continuous axis to use in a variable font. .. versionadded:: 5.0 """ flavor = "axis-subset" _attrs = ('name', 'userValue') def __init__(self, *, name, userValue): self.name: str = name """Name of the :class:`AxisDescriptor` or :class:`DiscreteAxisDescriptor` to "snapshot" or "freeze". """ self.userValue: float = userValue """Value in user coordinates at which to freeze the given axis.""" class BaseDocWriter(object): _whiteSpace = " " axisDescriptorClass = AxisDescriptor discreteAxisDescriptorClass = DiscreteAxisDescriptor axisLabelDescriptorClass = AxisLabelDescriptor locationLabelDescriptorClass = LocationLabelDescriptor ruleDescriptorClass = RuleDescriptor sourceDescriptorClass = SourceDescriptor variableFontDescriptorClass = VariableFontDescriptor valueAxisSubsetDescriptorClass = ValueAxisSubsetDescriptor rangeAxisSubsetDescriptorClass = RangeAxisSubsetDescriptor instanceDescriptorClass = InstanceDescriptor @classmethod def getAxisDecriptor(cls): return cls.axisDescriptorClass() @classmethod def getSourceDescriptor(cls): return cls.sourceDescriptorClass() @classmethod def getInstanceDescriptor(cls): return cls.instanceDescriptorClass() @classmethod def getRuleDescriptor(cls): return cls.ruleDescriptorClass() def __init__(self, documentPath, documentObject: DesignSpaceDocument): self.path = documentPath self.documentObject = documentObject self.effectiveFormatTuple = self._getEffectiveFormatTuple() self.root = ET.Element("designspace") def write(self, pretty=True, encoding="UTF-8", xml_declaration=True): self.root.attrib['format'] = ".".join(str(i) for i in self.effectiveFormatTuple) if self.documentObject.axes or self.documentObject.elidedFallbackName is not None: axesElement = ET.Element("axes") if self.documentObject.elidedFallbackName is not None: axesElement.attrib['elidedfallbackname'] = self.documentObject.elidedFallbackName self.root.append(axesElement) for axisObject in self.documentObject.axes: self._addAxis(axisObject) if self.documentObject.locationLabels: labelsElement = ET.Element("labels") for labelObject in self.documentObject.locationLabels: self._addLocationLabel(labelsElement, labelObject) self.root.append(labelsElement) if self.documentObject.rules: if getattr(self.documentObject, "rulesProcessingLast", False): attributes = {"processing": "last"} else: attributes = {} self.root.append(ET.Element("rules", attributes)) for ruleObject in self.documentObject.rules: self._addRule(ruleObject) if self.documentObject.sources: self.root.append(ET.Element("sources")) for sourceObject in self.documentObject.sources: self._addSource(sourceObject) if self.documentObject.variableFonts: variableFontsElement = ET.Element("variable-fonts") for variableFont in self.documentObject.variableFonts: self._addVariableFont(variableFontsElement, variableFont) self.root.append(variableFontsElement) if self.documentObject.instances: self.root.append(ET.Element("instances")) for instanceObject in self.documentObject.instances: self._addInstance(instanceObject) if self.documentObject.lib: self._addLib(self.root, self.documentObject.lib, 2) tree = ET.ElementTree(self.root) tree.write( self.path, encoding=encoding, method='xml', xml_declaration=xml_declaration, pretty_print=pretty, ) def _getEffectiveFormatTuple(self): """Try to use the version specified in the document, or a sufficiently recent version to be able to encode what the document contains. """ minVersion = self.documentObject.formatTuple if ( any( isinstance(axis, DiscreteAxisDescriptor) or axis.axisOrdering is not None or axis.axisLabels for axis in self.documentObject.axes ) or self.documentObject.locationLabels or any( source.localisedFamilyName for source in self.documentObject.sources ) or self.documentObject.variableFonts or any( instance.locationLabel or instance.userLocation for instance in self.documentObject.instances ) ): if minVersion < (5, 0): minVersion = (5, 0) return minVersion def _makeLocationElement(self, locationObject, name=None): """ Convert Location dict to a locationElement.""" locElement = ET.Element("location") if name is not None: locElement.attrib['name'] = name validatedLocation = self.documentObject.newDefaultLocation() for axisName, axisValue in locationObject.items(): if axisName in validatedLocation: # only accept values we know validatedLocation[axisName] = axisValue for dimensionName, dimensionValue in validatedLocation.items(): dimElement = ET.Element('dimension') dimElement.attrib['name'] = dimensionName if type(dimensionValue) == tuple: dimElement.attrib['xvalue'] = self.intOrFloat(dimensionValue[0]) dimElement.attrib['yvalue'] = self.intOrFloat(dimensionValue[1]) else: dimElement.attrib['xvalue'] = self.intOrFloat(dimensionValue) locElement.append(dimElement) return locElement, validatedLocation def intOrFloat(self, num): if int(num) == num: return "%d" % num return ("%f" % num).rstrip('0').rstrip('.') def _addRule(self, ruleObject): # if none of the conditions have minimum or maximum values, do not add the rule. ruleElement = ET.Element('rule') if ruleObject.name is not None: ruleElement.attrib['name'] = ruleObject.name for conditions in ruleObject.conditionSets: conditionsetElement = ET.Element('conditionset') for cond in conditions: if cond.get('minimum') is None and cond.get('maximum') is None: # neither is defined, don't add this condition continue conditionElement = ET.Element('condition') conditionElement.attrib['name'] = cond.get('name') if cond.get('minimum') is not None: conditionElement.attrib['minimum'] = self.intOrFloat(cond.get('minimum')) if cond.get('maximum') is not None: conditionElement.attrib['maximum'] = self.intOrFloat(cond.get('maximum')) conditionsetElement.append(conditionElement) if len(conditionsetElement): ruleElement.append(conditionsetElement) for sub in ruleObject.subs: subElement = ET.Element('sub') subElement.attrib['name'] = sub[0] subElement.attrib['with'] = sub[1] ruleElement.append(subElement) if len(ruleElement): self.root.findall('.rules')[0].append(ruleElement) def _addAxis(self, axisObject): axisElement = ET.Element('axis') axisElement.attrib['tag'] = axisObject.tag axisElement.attrib['name'] = axisObject.name self._addLabelNames(axisElement, axisObject.labelNames) if axisObject.map: for inputValue, outputValue in axisObject.map: mapElement = ET.Element('map') mapElement.attrib['input'] = self.intOrFloat(inputValue) mapElement.attrib['output'] = self.intOrFloat(outputValue) axisElement.append(mapElement) if axisObject.axisOrdering or axisObject.axisLabels: labelsElement = ET.Element('labels') if axisObject.axisOrdering is not None: labelsElement.attrib['ordering'] = str(axisObject.axisOrdering) for label in axisObject.axisLabels: self._addAxisLabel(labelsElement, label) axisElement.append(labelsElement) if isinstance(axisObject, AxisDescriptor): axisElement.attrib['minimum'] = self.intOrFloat(axisObject.minimum) axisElement.attrib['maximum'] = self.intOrFloat(axisObject.maximum) elif isinstance(axisObject, DiscreteAxisDescriptor): axisElement.attrib['values'] = " ".join(self.intOrFloat(v) for v in axisObject.values) axisElement.attrib['default'] = self.intOrFloat(axisObject.default) if axisObject.hidden: axisElement.attrib['hidden'] = "1" self.root.findall('.axes')[0].append(axisElement) def _addAxisLabel(self, axisElement: ET.Element, label: AxisLabelDescriptor) -> None: labelElement = ET.Element('label') labelElement.attrib['uservalue'] = self.intOrFloat(label.userValue) if label.userMinimum is not None: labelElement.attrib['userminimum'] = self.intOrFloat(label.userMinimum) if label.userMaximum is not None: labelElement.attrib['usermaximum'] = self.intOrFloat(label.userMaximum) labelElement.attrib['name'] = label.name if label.elidable: labelElement.attrib['elidable'] = "true" if label.olderSibling: labelElement.attrib['oldersibling'] = "true" if label.linkedUserValue is not None: labelElement.attrib['linkeduservalue'] = self.intOrFloat(label.linkedUserValue) self._addLabelNames(labelElement, label.labelNames) axisElement.append(labelElement) def _addLabelNames(self, parentElement, labelNames): for languageCode, labelName in sorted(labelNames.items()): languageElement = ET.Element('labelname') languageElement.attrib[XML_LANG] = languageCode languageElement.text = labelName parentElement.append(languageElement) def _addLocationLabel(self, parentElement: ET.Element, label: LocationLabelDescriptor) -> None: labelElement = ET.Element('label') labelElement.attrib['name'] = label.name if label.elidable: labelElement.attrib['elidable'] = "true" if label.olderSibling: labelElement.attrib['oldersibling'] = "true" self._addLabelNames(labelElement, label.labelNames) self._addLocationElement(labelElement, userLocation=label.userLocation) parentElement.append(labelElement) def _addLocationElement( self, parentElement, *, designLocation: AnisotropicLocationDict = None, userLocation: SimpleLocationDict = None ): locElement = ET.Element("location") for axis in self.documentObject.axes: if designLocation is not None and axis.name in designLocation: dimElement = ET.Element('dimension') dimElement.attrib['name'] = axis.name value = designLocation[axis.name] if isinstance(value, tuple): dimElement.attrib['xvalue'] = self.intOrFloat(value[0]) dimElement.attrib['yvalue'] = self.intOrFloat(value[1]) else: dimElement.attrib['xvalue'] = self.intOrFloat(value) locElement.append(dimElement) elif userLocation is not None and axis.name in userLocation: dimElement = ET.Element('dimension') dimElement.attrib['name'] = axis.name value = userLocation[axis.name] dimElement.attrib['uservalue'] = self.intOrFloat(value) locElement.append(dimElement) if len(locElement) > 0: parentElement.append(locElement) def _addInstance(self, instanceObject): instanceElement = ET.Element('instance') if instanceObject.name is not None: instanceElement.attrib['name'] = instanceObject.name if instanceObject.locationLabel is not None: instanceElement.attrib['location'] = instanceObject.locationLabel if instanceObject.familyName is not None: instanceElement.attrib['familyname'] = instanceObject.familyName if instanceObject.styleName is not None: instanceElement.attrib['stylename'] = instanceObject.styleName # add localisations if instanceObject.localisedStyleName: languageCodes = list(instanceObject.localisedStyleName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue # already stored in the element attribute localisedStyleNameElement = ET.Element('stylename') localisedStyleNameElement.attrib[XML_LANG] = code localisedStyleNameElement.text = instanceObject.getStyleName(code) instanceElement.append(localisedStyleNameElement) if instanceObject.localisedFamilyName: languageCodes = list(instanceObject.localisedFamilyName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue # already stored in the element attribute localisedFamilyNameElement = ET.Element('familyname') localisedFamilyNameElement.attrib[XML_LANG] = code localisedFamilyNameElement.text = instanceObject.getFamilyName(code) instanceElement.append(localisedFamilyNameElement) if instanceObject.localisedStyleMapStyleName: languageCodes = list(instanceObject.localisedStyleMapStyleName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue localisedStyleMapStyleNameElement = ET.Element('stylemapstylename') localisedStyleMapStyleNameElement.attrib[XML_LANG] = code localisedStyleMapStyleNameElement.text = instanceObject.getStyleMapStyleName(code) instanceElement.append(localisedStyleMapStyleNameElement) if instanceObject.localisedStyleMapFamilyName: languageCodes = list(instanceObject.localisedStyleMapFamilyName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue localisedStyleMapFamilyNameElement = ET.Element('stylemapfamilyname') localisedStyleMapFamilyNameElement.attrib[XML_LANG] = code localisedStyleMapFamilyNameElement.text = instanceObject.getStyleMapFamilyName(code) instanceElement.append(localisedStyleMapFamilyNameElement) if self.effectiveFormatTuple >= (5, 0): if instanceObject.locationLabel is None: self._addLocationElement( instanceElement, designLocation=instanceObject.designLocation, userLocation=instanceObject.userLocation ) else: # Pre-version 5.0 code was validating and filling in the location # dict while writing it out, as preserved below. if instanceObject.location is not None: locationElement, instanceObject.location = self._makeLocationElement(instanceObject.location) instanceElement.append(locationElement) if instanceObject.filename is not None: instanceElement.attrib['filename'] = instanceObject.filename if instanceObject.postScriptFontName is not None: instanceElement.attrib['postscriptfontname'] = instanceObject.postScriptFontName if instanceObject.styleMapFamilyName is not
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, <NAME>. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ import logging import os import json from utils import get_labels, write_file logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, id, words, start_labels, end_labels, event_type=None, role=None): """Constructs a InputExample. Args: id: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.id = id self.words = words self.event_type = event_type self.role = role self.start_labels = start_labels self.end_labels = end_labels class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, attention_mask, token_type_ids, start_label_ids, end_label_ids): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.start_label_ids = start_label_ids self.end_label_ids = end_label_ids ## ccks格式 def trigger_process_bin_ccks(input_file, schema_file, is_predict=False): event_type_list = [] rows = open(schema_file, encoding='utf-8').read().splitlines() for row in rows: row = json.loads(row) event_type = row['event_type'] event_type_list.append(event_type) rows = open(input_file, encoding='utf-8').read().splitlines() results = [] for row in rows: if len(row)==1: print(row) row = json.loads(row) start_labels = [0]*len(row["content"]) end_labels = [0]*len(row["content"]) if is_predict: results.append({"id":row["id"], "words":list(row["content"]), "start_labels":start_labels, "end_labels":end_labels, "event_type":None}) continue for gold_event_type in event_type_list: start_labels = [0]*len(row["content"]) end_labels = [0]*len(row["content"]) for event in row["events"]: event_type = event["type"] if event_type != gold_event_type: continue for mention in event["mentions"]: if mention["role"]=="trigger": trigger = mention["word"] trigger_start_index, trigger_end_index = mention["span"] trigger_end_index -= 1 start_labels[trigger_start_index]= 1 end_labels[trigger_end_index]= 1 break results.append({"id":row["id"], "words":list(row["content"]), "start_labels":start_labels, "end_labels":end_labels, "event_type":gold_event_type}) # write_file(results,output_file) return results ## lic格式 def trigger_process_bin_lic(input_file, schema_file, is_predict=False): event_type_list = [] rows = open(schema_file, encoding='utf-8').read().splitlines() for row in rows: row = json.loads(row) event_type = row['event_type'] event_type_list.append(event_type) rows = open(input_file, encoding='utf-8').read().splitlines() results = [] for row in rows: if len(row)==1: print(row) row = json.loads(row) start_labels = [0]*len(row["text"]) end_labels = [0]*len(row["text"]) if is_predict: results.append({"id":row["id"], "words":list(row["text"]), "start_labels":start_labels, "end_labels":end_labels, "event_type":None}) continue for gold_event_type in event_type_list: start_labels = [0]*len(row["content"]) end_labels = [0]*len(row["content"]) for event in row["event_list"]: trigger = event["trigger"] event_type = event["event_type"] if event_type != gold_event_type: continue trigger_start_index = event["trigger_start_index"] trigger_end_index = trigger_start_index + len(trigger) - 1 start_labels[trigger_start_index]= 1 end_labels[trigger_end_index]= 1 results.append({"id":row["id"], "words":list(row["text"]), "start_labels":start_labels, "end_labels":end_labels, "event_type":gold_event_type}) # write_file(results,output_file) return results ## ccks格式 def role_process_bin_ccks(input_file, schema_file, is_predict=False): role_dict = {} rows = open(schema_file, encoding='utf-8').read().splitlines() for row in rows: row = json.loads(row) event_type = row['event_type'] role_dict[event_type] = [] for role in row["role_list"]: role_dict[event_type].append(role["role"]) rows = open(input_file, encoding='utf-8').read().splitlines() results = [] count = 0 for row in rows: if len(row)==1: print(row) row = json.loads(row) count += 1 if "id" not in row: row["id"]=count # arguments = [] if is_predict: results.append({"id":row["id"], "words":list(row["content"]), "start_labels":start_labels, "end_labels":end_labels}) continue # for gold_event_type in role_dict.keys(): # for gold_role in role_dict[gold_event_type]: # for event in row["events"]: # start_labels = [0]*len(row["content"]) # end_labels = [0]*len(row["content"]) # event_type = event["type"] # if event_type != gold_event_type: continue # for arg in event["mentions"]: # role = arg['role'] # if role=="trigger": continue # if role!=gold_role: continue # argument_start_index, argument_end_index = arg["span"] # argument_end_index -= 1 # start_labels[argument_start_index] = 1 # end_labels[argument_end_index] = 1 # results.append({"id":row["id"], "words":list(row["content"]), "event_type":gold_event_type, "role":gold_role, \ # "start_labels":start_labels, "end_labels":end_labels}) # 假设事件类型全部是对的 for event in row["events"]: event_type = event["type"] for gold_role in role_dict[event_type]: start_labels = [0]*len(row["content"]) end_labels = [0]*len(row["content"]) for arg in event["mentions"]: role = arg['role'] if role=="trigger": continue if role!=gold_role: continue argument_start_index, argument_end_index = arg["span"] argument_end_index -= 1 start_labels[argument_start_index] = 1 end_labels[argument_end_index] = 1 results.append({"id":row["id"], "words":list(row["content"]), "event_type":event_type, "role":gold_role, \ "start_labels":start_labels, "end_labels":end_labels}) return results ## lic格式 def role_process_bin_lic(input_file, schema_file, is_predict=False): role_dict = {} rows = open(schema_file, encoding='utf-8').read().splitlines() for row in rows: row = json.loads(row) event_type = row['event_type'] role_dict[event_type] = [] for role in row["role_list"]: role_dict[event_type].append(role["role"]) rows = open(input_file, encoding='utf-8').read().splitlines() results = [] count = 0 for row in rows: if len(row)==1: print(row) row = json.loads(row) count += 1 if "id" not in row: row["id"]=count # arguments = [] if is_predict: results.append({"id":row["id"], "words":list(row["text"]), "start_labels":start_labels, "end_labels":end_labels}) continue # # 假设事件类型全部是对的 for event in row["event_list"]: event_type = event["event_type"] for gold_role in role_dict[event_type]: start_labels = [0]*len(row["text"]) end_labels = [0]*len(row["text"]) for arg in event["arguments"]: role = arg['role'] if role!=gold_role: continue argument = arg['argument'] argument_start_index = arg["argument_start_index"] argument_end_index = argument_start_index + len(argument) -1 start_labels[argument_start_index] = 1 end_labels[argument_end_index] = 1 results.append({"id":row["id"], "words":list(row["text"]), "event_type":event_type, "role":gold_role, \ "start_labels":start_labels, "end_labels":end_labels}) return results ## ace格式 def role_process_bin_ace(input_file, schema_file, is_predict=False): role_dict = {} rows = open(schema_file, encoding='utf-8').read().splitlines() for row in rows: row = json.loads(row) event_type = row['event_type'] role_dict[event_type] = [] for role in row["role_list"]: role_dict[event_type].append(role["role"]) results = [] count = 0 file = open(input_file,'r',encoding='utf-8') rows = json.load(file) for row in rows: count += 1 if "id" not in row: row["id"]=count # arguments = [] if is_predict: results.append({"id":row["id"], "words":list(row["words"]), "start_labels":start_labels, "end_labels":end_labels}) continue entities = row['entities'] # # 假设事件类型全部是对的 for event in row["event-mentions"]: event_type = event["event_type"] for gold_role in role_dict[event_type]: start_labels = [0]*len(row["words"]) end_labels = [0]*len(row["words"]) for i, role in enumerate(event["arguments"]): if role!=gold_role: continue entity = entities[i] # argument = entity['text'] # if entity['text'] != entity['head']["text"]: # print(entity['text'], '\n', entity['head']["text"]) # assert entity['text'] == entity['head']["text"] argument_start_index = entity['head']["start"] argument_end_index = entity['head']["end"] - 1 start_labels[argument_start_index] = 1 end_labels[argument_end_index] = 1 results.append({"id":row["id"], "words":list(row["words"]), "event_type":event_type, "role":gold_role, \ "start_labels":start_labels, "end_labels":end_labels}) return results def read_examples_from_file(data_dir, schema_file, mode, task, dataset="ccks"): file_path = os.path.join(data_dir, "{}.json".format(mode)) if dataset=="ccks": if task=='trigger': items = trigger_process_bin_ccks(file_path, schema_file,) if task=='role': items = role_process_bin_ccks(file_path, schema_file,) elif dataset=="lic": if task=='trigger': items = trigger_process_bin_lic(file_path, schema_file,) if task=='role': items = role_process_bin_lic(file_path, schema_file,) elif dataset=="ace": if task=='role': items = role_process_bin_ace(file_path, schema_file,) return [InputExample(**item) for item in items] def get_query_templates_trigger(dataset): query_file = "./query_template/trigger/"+dataset+".csv" query_templates = dict() with open(query_file, "r", encoding='utf-8') as f: next(f) for line in f: if dataset == "ccks": event_type, description = line.strip().split(",") elif dataset == 'lic': event_type, description = line.strip().split(",") if event_type not in query_templates: query_templates[event_type] = list() # 0 query_templates[event_type].append(event_type) # 1 query_templates[event_type].append(event_type + " "+ description) # 2 query_templates[event_type].append(event_type + "的触发词是什么?" + "(" + description + ")" ) # 3 query_templates[event_type].append(event_type + " " + description+ " "+ description) # query_templates[event_type][role].append(role + " in [trigger]") # query_templates[event_type][role].append(query[:-1] + " in [trigger]?") return query_templates def get_query_templates_role(dataset): """Load query templates""" query_file = "./query_template/role/"+dataset+".csv" query_templates = dict() with open(query_file, "r", encoding='utf-8') as f: next(f) for line in f: if dataset == "ccks": event_type, role, role_chinese, description, role_type = line.strip().split(",") elif dataset == 'lic': event_type, role = line.strip().split(",") role_chinese, description, role_type = role, "", "" if event_type not in query_templates: query_templates[event_type] = dict() if role not in query_templates[event_type]: query_templates[event_type][role] = list() # 0 query_templates[event_type][role].append(role_chinese) # 1 query_templates[event_type][role].append(event_type + " "+ role_chinese) # 2 query_templates[event_type][role].append(role_chinese+ " "+ description) # 3 query_templates[event_type][role].append(event_type + " " + role_chinese+ " "+ description) # 4 query_templates[event_type][role].append(event_type + "中的" + role_chinese+ " "+ description+ " 是什么?") # 5 query_templates[event_type][role].append(["[unused2]", "[unused3]"] +list(event_type) + ["[unused4]", "[unused5]"] + list(role_chinese)+ ["[unused6]", "[unused7]"]+ list(description) + ["[unused8]", "[unused9]"]) # query_templates[event_type][role].append(role + " in [trigger]") # query_templates[event_type][role].append(query[:-1] + " in [trigger]?") return query_templates def get_query_templates(dataset, task): if task=='role': return get_query_templates_role(dataset) elif task=="trigger": return get_query_templates_trigger(dataset) def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, sequence_b_segment_id=1, mask_padding_with_zero=True, nth_query=2, dataset='ccks', task='trigger' ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id
import database as d import numpy as np import random from transitions import Machine #Conversations are markov chains. Works as follows: a column vector for each CURRENT state j, a row vector for each TARGET state i. #Each entry i,j = the probability of moving to state i from state j. #target state D = end of conversation. We start in state D when initializing conversation. #row vectors sum to 1, internal lists are columns. #Conversation is a singleton. DO NOT CREATE NEW CONVERSATION OBJECTS. class Conversation(object): #a. stores, b.manufacturers, c.friends, d. myself, e.end conversation topicMatrix = [ [0.00,0.20,0.15,0.15,0.25], [0.20,0.00,0.15,0.15,0.25], [0.15,0.15,0.00,0.20,0.25], [0.15,0.15,0.20,0.00,0.25], [0.50,0.50,0.50,0.50,0.00] ] #a. different store, b. new topic, c. end convo, d. prices storeMatrix = [ [0.0,0.0,0.25,0.25], [0.0,0.0,0.25,0.25], [0.0,0.0,0.25,0.50], [1.0,1.0,0.25,0.00] ] #a. different manufacturer, b. new topic, c. end convo, d. prices manuMatrix = [ [0.0,0.0,0.25,0.25], [0.0,0.0,0.25,0.25], [0.0,0.0,0.25,0.50], [1.0,1.0,0.25,0.00] ] #a. different friend, b. new topic, c. end convo, d. family, e. job, /f. skills friendMatrix = [ [0.0,0.0,0.2,0.1,0.1], [0.0,0.0,0.2,0.2,0.2], [0.0,0.0,0.2,0.5,0.5], [0.5,0.5,0.2,0.0,0.2], [0.5,0.5,0.2,0.2,0.0] ] # friendMatrix = [ # [0.00,0.00,0.15,0.1,0.1,0.1], # [0.00,0.00,0.15,0.2,0.2,0.2], # [0.00,0.00,0.15,0.5,0.5,0.5], # [0.34,0.34,0.15,0.0,0.1,0.1], # [0.33,0.33,0.15,0.1,0.0,0.1], # [0.33,0.33,0.25,0.1,0.1,0.0] # ] #a. introduction, b. new topic, c. end convo, d. myfamily, e. myjob, /f. myskills myselfMatrix = [ [0.00,1,0.2,0.0,0.0], [0.25,0,0.2,0.2,0.2], [0.25,0,0.2,0.5,0.5], [0.25,0,0.2,0.0,0.3], [0.25,0,0.2,0.3,0.0] ] # myselfMatrix = [ # [0.0,1,0.15,0.00,0.00,0.00], # [0.2,0,0.15,0.20,0.20,0.20], # [0.2,0,0.15,0.50,0.50,0.50], # [0.2,0,0.15,0.00,0.15,0.15], # [0.2,0,0.15,0.15,0.00,0.15], # [0.2,0,0.15,0.15,0.15,0.00] # ] states = ['topic','store','manu','friend', 'myself', 'exit'] transitions = [ {'trigger' : 'toTopic', 'source' : '*', 'dest' : 'topic'}, {'trigger' : 'toStore', 'source' : 'topic', 'dest' : 'store'}, {'trigger' : 'toManu' , 'source' : 'topic', 'dest' : 'manu' }, {'trigger' : 'toFriend', 'source' : 'topic', 'dest' : 'friend' }, {'trigger' : 'toMyself', 'source' : 'topic', 'dest' : 'myself'}, {'trigger' : 'toExit', 'source' : '*', 'dest' : 'exit'} ] def __init__(self): self.isPlayer = False self.firstPerson = None self.secondPerson = None self.target = None self.machine = Machine(model=self, states=Conversation.states, transitions=Conversation.transitions, initial='exit') self.menuDict = { 'topic' : [self.toStore, self.toManu, self.toFriend, self.toMyself, self.toExit], 'store' : [self.different, self.toTopic, self.toExit, self.prices], 'manu' : [self.different, self.toTopic, self.toExit, self.prices], 'friend' : [self.different, self.toTopic, self.toExit, self.family, self.job], 'myself' : [self.introduction, self.toTopic, self.toExit, self.myfamily, self.myjob] } self.machine.on_enter_topic('topicHandler') self.machine.on_enter_store('storeHandler') self.machine.on_enter_manu('manuHandler') self.machine.on_enter_friend('friendHandler') self.machine.on_enter_myself('myselfHandler') self.machine.on_enter_exit('exitHandler') def beginConversation(self, firstPerson, secondPerson, isPlayer=False): self.isPlayer = isPlayer self.firstPerson = firstPerson self.secondPerson = secondPerson self.introduction() self.toTopic() def introduction(self): p2 = self.firstPerson.peopleManager(self.secondPerson) p1 = self.secondPerson.peopleManager(self.firstPerson) p2.name = self.secondPerson.name p1.name = self.firstPerson.name p2.updateOpinion(1) p1.updateOpinion(1) def different(self): if self.state == 'friend': testTarget = self.firstPerson.randomPerson(self.target) if testTarget is not None: self.target = testTarget.person else: self.target = None elif self.state == 'manu': testTarget = self.firstPerson.randomManu(self.target) if testTarget is not None: self.target = testTarget.store else: self.target = None elif self.state == 'store': testTarget = self.firstPerson.randomStore(self.target) if testTarget is not None: self.target = testTarget.store else: self.target = None def prices(self): if self.target is not None: firstProfile = self.firstPerson.unitManager(self.target, self.secondPerson) secondProfile = self.secondPerson.unitManager(self.target, self.firstPerson) firstPrices = firstProfile.getPricesWithDayNum() secondPrices = secondProfile.getPricesWithDayNum() firstDayNum = firstPrices[1] secondDayNum = secondPrices[1] if firstDayNum > secondDayNum: prices = firstPrices[0] secondProfile.updatePrices(prices, firstDayNum) #thoughts self.firstPerson.think("I told " + self.secondPerson.name + " about the prices at " + self.target.name + ".") self.secondPerson.think(self.firstPerson.name + " told me about the prices at " + self.target.name + ".") elif secondDayNum > firstDayNum: prices = secondPrices[0] firstProfile.updatePrices(prices, secondDayNum) #thoughts self.firstPerson.think(self.secondPerson.name + " told me about the prices at " + self.target.name + ".") self.secondPerson.think("I told " + self.firstPerson.name + " about the prices at " + self.target.name + ".") else: self.firstPerson.think(self.secondPerson.name + " and I talked about " + self.target.name + "'s prices.") self.secondPerson.think(self.firstPerson.name + " and I talked about " + self.target.name + "'s prices.") else: if self.state == 'store': self.firstPerson.think(self.secondPerson.name + " listened to me gripe about how I can't find anywhere to shop.") self.secondPerson.think(self.firstPerson.name + " told me that they can't find anywhere to shop.") elif self.state == 'manu': self.firstPerson.think("I mentioned to " + self.secondPerson.name + " that I don't know anything about the local industry.") self.secondPerson.think(self.firstPerson.name + " told me that they don't know much about the local industry.") else: self.firstPerson.think("There is a bug in conversation.prices. (not manu or store)") self.secondPerson.think("There is a bug in conversation.prices. (not manu or store)") def family(self): if self.target is not None: #info: family, people #profiles p1 = self.firstPerson.peopleManager(self.target) p2 = self.secondPerson.peopleManager(self.target) #variables f1 = p1.getFamily() f2 = p2.getFamily() ff = [] #update profiles for a, b in zip(f1, f2): if a[-1] >= b[-1]: ff.append(a) else: ff.append(b) p1.updateFamily(*ff) p2.updateFamily(*ff) #thoughts self.firstPerson.think(self.secondPerson.name + " and I gossipped about " + self.target.name + "'s family.") self.secondPerson.think(self.firstPerson.name + " and I gossipped about " + self.target.name + "'s family.") else: self.firstPerson.think("I don't really know anything about my friends' families.") self.secondPerson.think("I don't really know anything about my friends' families.") def job(self): if self.target is not None: #profiles firstProfile = self.firstPerson.peopleManager(self.target) secondProfile = self.secondPerson.peopleManager(self.target) #variables firstJob = firstProfile.getJob() secondJob = secondProfile.getJob() #update profiles if firstJob[1] > secondJob[1]: secondProfile.updateJob(*firstJob) self.firstPerson.think("I told " + self.secondPerson.name + " what " + self.target.name + " does for a living.") self.secondPerson.think(self.firstPerson.name + " told me what " + self.target.name + " does for a living.") elif secondJob[1] > firstJob[1]: firstProfile.updateJob(*secondJob) self.firstPerson.think(self.secondPerson.name + " told me what " + self.target.name + " does for a living.") self.secondPerson.think("I told " + self.firstPerson.name + " about " + self.target.name + " does for a living.") else: self.firstPerson.think(self.secondPerson.name + " and I talked about " + self.target.name + "'s job.") self.secondPerson.think(self.firstPerson.name + " and I talked about " + self.target.name + "'s job.") else: self.firstPerson.think("I don't know what any of my friends do for a living!") self.secondPerson.think("I don't know what any of my friends do for a living!") # def skills(self): # #info: skills # if self.target is not None: # #profiles # firstProfile = self.firstPerson.peopleManager(self.target) # secondProfile = self.secondPerson.peopleManager(self.target) # #variables # firstSkills = firstProfile.getSkills() # secondSkills = secondProfile.getSkills() # #update profiles # if firstSkills[1] > secondSkills[1]: # secondProfile.updateSkills(*firstSkills) # self.firstPerson.think("I told " + self.secondPerson.name + " about how good " + self.target.name + " is with their hands.") # self.secondPerson.think(self.firstPerson.name + " told me about how good " + self.target.name + " is with their hands.") # elif secondSkills[1] > firstSkills[1]: # firstProfile.updateSkills(*secondSkills) # self.firstPerson.think(self.secondPerson.name + " told me about how good " + self.target.name + " is with their hands.") # self.secondPerson.think("I told " + self.firstPerson.name + " about how good " + self.target.name + " is with their hands.") # else: # self.firstPerson.think(self.secondPerson.name + " and I talked about how good " + self.target.name + " is with their hands.") # self.secondPerson.think(self.firstPerson.name + " and I talked about how good " + self.target.name + " is with their hands.") # else: # self.firstPerson.think("I should spend more time doing things with my friends.") # self.secondPerson.think("I should spend more time doing things with my friends.") def myfamily(self): #info: family, people #profiles firstProfile = self.secondPerson.peopleManager(self.firstPerson) secondProfile = self.firstPerson.peopleManager(self.secondPerson) firstOwn = self.firstPerson.peopleManager(self.firstPerson) secondOwn = self.secondPerson.peopleManager(self.secondPerson) #update profiles firstProfile.updateFamily(firstOwn.getFather(), firstOwn.getMother(), firstOwn.getSpouse(), firstOwn.getSiblings(), firstOwn.getChildren()) secondProfile.updateFamily(secondOwn.getFather(), secondOwn.getMother(), secondOwn.getSpouse(), secondOwn.getSiblings(), secondOwn.getChildren()) #thoughts self.firstPerson.think(self.secondPerson.name + " caught me up on their family life.") self.secondPerson.think(self.firstPerson.name + " caught me up on their family life.") def myjob(self): #info: jobs, jobUnits, *salaries #profiles firstProfile = self.secondPerson.peopleManager(self.firstPerson) secondProfile = self.firstPerson.peopleManager(self.secondPerson) #variables firstJob = self.firstPerson.getJob() secondJob = self.secondPerson.getJob() dayNum = self.firstPerson.model.getDayNum() try: firstJobType = firstJob.getJobType() firstJobUnit = firstJob.getUnit() firstJobLoc = firstJobUnit.getName() firstSalary = firstJob.getSalary() except: firstJobType = "Jobhunter" firstJobUnit = None firstJobLoc = "home" firstSalary = 0 try: secondJobType = secondJob.getJobType() secondJobUnit = secondJob.getUnit() secondJobLoc = secondJobUnit.getName() secondSalary = secondJob.getSalary() except: secondJobType = "Jobhunter" secondJobUnit = None secondJobLoc = "home" secondSalary = 0 #update profiles if dayNum > firstProfile.getJob()[1]: firstProfile.updateJob(firstJob, dayNum) if dayNum > firstProfile.getSalary()[1]: firstProfile.updateSalary(firstSalary, dayNum) if dayNum > secondProfile.getJob()[1]: secondProfile.updateJob(secondJob, dayNum) if dayNum > secondProfile.getSalary()[1]: secondProfile.updateSalary(firstSalary, dayNum) if firstJobUnit is not None: self.secondPerson.unitManager(firstJobUnit, self.firstPerson) if secondJobUnit is not None: self.firstPerson.unitManager(secondJobUnit, self.secondPerson) #thoughts self.firstPerson.think(self.secondPerson.name + " told me about their job as a " + secondJobType + " at " + secondJobLoc + ".") self.secondPerson.think(self.firstPerson.name
from dataclasses import dataclass from datetime import date, datetime import mock from pdfminer.layout import LTChar, LTCurve, LTFigure, LTImage, LTTextBoxHorizontal, LTTextLineHorizontal from typing import List from rdr_service.services.consent import files from tests.helpers.unittest_base import BaseTestCase class ConsentFileParsingTest(BaseTestCase): def __init__(self, *args, **kwargs): super(ConsentFileParsingTest, self).__init__(*args, **kwargs) self.uses_database = False def test_vibrent_primary_consent(self): for consent_example in self._get_vibrent_primary_test_data(): consent_file = consent_example.file self.assertEqual(consent_example.expected_signature, consent_file.get_signature_on_file()) self.assertEqual(consent_example.expected_sign_date, consent_file.get_date_signed()) self.assertEqual(consent_example.expected_to_be_va_file, consent_file.get_is_va_consent()) def test_vibrent_cabor_consent(self): for consent_example in self._get_vibrent_cabor_test_data(): consent_file = consent_example.file self.assertEqual(consent_example.expected_signature, consent_file.get_signature_on_file()) self.assertEqual(consent_example.expected_sign_date, consent_file.get_date_signed()) def test_vibrent_ehr_consent(self): for consent_example in self._get_vibrent_ehr_test_data(): consent_file = consent_example.file self.assertEqual(consent_example.expected_signature, consent_file.get_signature_on_file()) self.assertEqual(consent_example.expected_sign_date, consent_file.get_date_signed()) self.assertEqual(consent_example.expected_to_be_va_file, consent_file.get_is_va_consent()) def test_vibrent_gror_consent(self): for consent_example in self._get_vibrent_gror_test_data(): consent_file = consent_example.file self.assertEqual(consent_example.expected_signature, consent_file.get_signature_on_file()) self.assertEqual(consent_example.expected_sign_date, consent_file.get_date_signed()) self.assertEqual(consent_example.has_yes_selected, consent_file.is_confirmation_selected()) def test_vibrent_primary_update_consent(self): for consent_example in self._get_vibrent_primary_update_test_data(): consent_file = consent_example.file self.assertEqual(consent_example.expected_signature, consent_file.get_signature_on_file()) self.assertEqual(consent_example.expected_sign_date, consent_file.get_date_signed()) self.assertEqual(consent_example.has_yes_selected, consent_file.is_agreement_selected()) self.assertEqual(consent_example.expected_to_be_va_file, consent_file.get_is_va_consent()) def _get_primary_consent_elements(self): return [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element( cls=LTTextLineHorizontal, text='understand the information in this form. All of my questions\n' ), self._build_pdf_element( cls=LTTextLineHorizontal, text='have been answered. I freely and willingly choose to take part in\n' ), self._build_pdf_element( cls=LTTextLineHorizontal, text='the All of Us Research Program.\n' ) ] ), self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element(cls=LTTextLineHorizontal, text='Sign Your Full Name: \n') ] ) ] def _get_vibrent_primary_test_data(self) -> List['PrimaryConsentTestData']: """ Builds a list of PDFs that represent the different layouts of Vibrent's primary consent that have been encountered. Add to this if the code incorrectly parses any Vibrent primary pdf """ test_data = [] # elements that usually appear on the signature page description_elements = self._get_primary_consent_elements() # Build basic file with signature of Test Name and signing date of August 17, 2019 pdf = self._build_pdf(pages=[ [ *description_elements, self._build_form_element(text='<NAME>', bbox=(116, 147, 517, 169)), self._build_form_element(text='Aug 17, 2019', bbox=(116, 97, 266, 119)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature='<NAME>', expected_sign_date=date(2019, 8, 17) ) ) # Build an older style of primary layout, with signature box higher up on the page pdf = self._build_pdf(pages=[ [ *description_elements, self._build_form_element(text='Nick', bbox=(116, 585, 517, 605)), self._build_form_element(text='Dec 25, 2017', bbox=(116, 565, 266, 585)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature='Nick', expected_sign_date=date(2017, 12, 25) ) ) # Build basic VA primary file pdf = self._build_pdf(pages=[ [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element(cls=LTTextLineHorizontal, text='you will get care at a VA facility') ] ) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature=None, expected_sign_date=None, expected_to_be_va_file=True ) ) # Build file with an empty text element instead of a signature and date pdf = self._build_pdf(pages=[ [ *description_elements, self._build_form_element(text='', bbox=(116, 147, 521, 171)), self._build_form_element(text='', bbox=(116, 97, 266, 119)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature=None, expected_sign_date=None ) ) # Build consent with an image instead of a typed signature pdf = self._build_pdf(pages=[ [ *description_elements, self._build_form_element( bbox=(200, 125, 400, 191), children=[ self._build_pdf_element(cls=LTImage, bbox=(200, 125, 400, 191)) ] ), self._build_form_element(text='December 7, 2018', bbox=(116, 97, 266, 119)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature=True, expected_sign_date=date(2018, 12, 7) ) ) # Build older style consent with different signature description formatting pdf = self._build_pdf(pages=[ [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element( cls=LTTextLineHorizontal, text='this form. All of my questions have been answered. I freely and\n' ), self._build_pdf_element( cls=LTTextLineHorizontal, text='willingly choose to take part in the All of Us Research Program.\n' ), ] ), self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element( cls=LTTextLineHorizontal, children=[ self._build_pdf_element(LTTextLineHorizontal, text='Sign Your \n'), self._build_pdf_element(LTTextLineHorizontal, text='Full Name: \n') ] ) ] ), self._build_form_element(text='2018 Participant', bbox=(116, 147, 521, 171)), self._build_form_element(text='Feb 19, 2018', bbox=(116, 96, 521, 120)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature='2018 Participant', expected_sign_date=date(2018, 2, 19) ) ) # Build Spanish version of the Primary file pdf = self._build_pdf(pages=[ [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element( cls=LTTextLineHorizontal, text='Decido participar libremente y por voluntad propia' ) ] ), self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element( cls=LTTextLineHorizontal, children=[ self._build_pdf_element(LTTextLineHorizontal, text='Firme con su nombre completo:') ] ) ] ), self._build_form_element(text='Spanish Participant', bbox=(116, 147, 517, 169)), self._build_form_element(text='Mar 3, 2021', bbox=(116, 97, 266, 119)) ] ]) test_data.append( PrimaryConsentTestData( file=files.VibrentPrimaryConsentFile(pdf=pdf, blob=mock.MagicMock()), expected_signature='Spanish Participant', expected_sign_date=date(2021, 3, 3) ) ) return test_data def _get_vibrent_cabor_test_data(self) -> List['ConsentTestData']: """Builds a list of PDFs that represent the different layouts of Vibrent's CaBOR consent""" basic_cabor_pdf = self._build_pdf(pages=[ [ self._build_form_element(text='Test cabor', bbox=(116, 100, 517, 140)), self._build_form_element(text='April 27, 2020', bbox=(500, 100, 600, 140)) ] ]) basic_cabor_case = ConsentTestData( file=files.VibrentCaborConsentFile(pdf=basic_cabor_pdf, blob=mock.MagicMock()), expected_signature='Test cabor', expected_sign_date=date(2020, 4, 27) ) older_cabor_pdf = self._build_pdf(pages=[ [ self._build_form_element(text='2017 Cabor', bbox=(150, 150, 350, 188)), self._build_form_element(text='Sep 8, 2017', bbox=(434, 153, 527, 182)) ] ]) older_cabor_case = ConsentTestData( file=files.VibrentCaborConsentFile(pdf=older_cabor_pdf, blob=mock.MagicMock()), expected_signature='2017 Cabor', expected_sign_date=date(2017, 9, 8) ) return [basic_cabor_case, older_cabor_case] def _get_vibrent_ehr_test_data(self) -> List['EhrConsentTestData']: six_empty_pages = [[], [], [], [], [], []] # The EHR signature is expected to be on the 7th page basic_ehr_pdf = self._build_pdf(pages=[ *six_empty_pages, [ self._build_form_element(text='Test ehr', bbox=(125, 150, 450, 180)), self._build_form_element(text='Dec 21, 2019', bbox=(125, 100, 450, 130)) ] ]) basic_ehr_case = EhrConsentTestData( file=files.VibrentEhrConsentFile(pdf=basic_ehr_pdf, blob=mock.MagicMock()), expected_signature='Test ehr', expected_sign_date=date(2019, 12, 21) ) va_ehr_pdf = self._build_pdf(pages=[ *six_empty_pages, [ self._build_pdf_element( cls=LTTextLineHorizontal, text='We may ask you to go to a local clinic to be measured' ), self._build_form_element(text='Test va ehr', bbox=(125, 150, 450, 180)), self._build_form_element(text='Oct 10, 2020', bbox=(125, 100, 450, 130)) ] ]) va_ehr_case = EhrConsentTestData( file=files.VibrentEhrConsentFile(pdf=va_ehr_pdf, blob=mock.MagicMock()), expected_signature='Test va ehr', expected_sign_date=date(2020, 10, 10), expected_to_be_va_file=True ) return [basic_ehr_case, va_ehr_case] def _get_vibrent_gror_test_data(self) -> List['GrorConsentTestData']: # The GROR signature is expected to be on the 10th page nine_empty_pages = [ [], [], [], [], [], [], [], [], [] ] basic_gror_pdf = self._build_pdf(pages=[ *nine_empty_pages, [ self._build_form_element( children=[self._build_pdf_element(LTCurve)], bbox=(65, 470, 75, 480) ), self._build_form_element(text='Test gror', bbox=(140, 150, 450, 180)), self._build_form_element(text='Jan 1st, 2021', bbox=(125, 100, 450, 130)) ] ]) basic_gror_case = GrorConsentTestData( file=files.VibrentGrorConsentFile(pdf=basic_gror_pdf, blob=mock.MagicMock()), expected_signature='Test gror', expected_sign_date=date(2021, 1, 1), has_yes_selected=True ) gror_missing_check = self._build_pdf(pages=[ *nine_empty_pages, [ self._build_form_element(text='no confirmation', bbox=(140, 150, 450, 180)), self._build_form_element(text='Feb 1st, 2021', bbox=(125, 100, 450, 130)) ] ]) no_confirmation_case = GrorConsentTestData( file=files.VibrentGrorConsentFile(pdf=gror_missing_check, blob=mock.MagicMock()), expected_signature='no confirmation', expected_sign_date=date(2021, 2, 1), has_yes_selected=False ) spanish_gror_pdf = self._build_pdf(pages=[ *nine_empty_pages, [ self._build_pdf_element( cls=LTTextLineHorizontal, text='¿Desea conocer alguno de sus resultados de ADN?' ), self._build_form_element( children=[self._build_pdf_element(LTCurve)], bbox=(30, 478, 40, 488) ), self._build_form_element(text='spanish gror', bbox=(140, 150, 450, 180)), self._build_form_element(text='May 1st, 2018', bbox=(125, 100, 450, 130)) ] ]) spanish_gror_case = GrorConsentTestData( file=files.VibrentGrorConsentFile(pdf=spanish_gror_pdf, blob=mock.MagicMock()), expected_signature='spanish gror', expected_sign_date=date(2018, 5, 1), has_yes_selected=True ) return [basic_gror_case, no_confirmation_case, spanish_gror_case] def _get_vibrent_primary_update_test_data(self) -> List['PrimaryUpdateConsentTestData']: basic_update_pdf = self._build_pdf(pages=[ [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element(cls=LTTextLineHorizontal, text='Do you agree to this updated consent?') ] ), self._build_form_element( children=[self._build_pdf_element(LTChar, text='4')], bbox=(34, 669, 45, 683) ), self._build_form_element(text='Test update', bbox=(116, 146, 521, 170)), self._build_form_element(text='Jan 1st, 2021', bbox=(116, 96, 521, 120)) ] ]) basic_update_case = PrimaryUpdateConsentTestData( file=files.VibrentPrimaryConsentUpdateFile( pdf=basic_update_pdf, blob=mock.MagicMock(), consent_date=datetime.now() ), expected_signature='Test update', expected_sign_date=date(2021, 1, 1), has_yes_selected=True, expected_to_be_va_file=False ) va_update_pdf = self._build_pdf(pages=[ [ self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element(cls=LTTextLineHorizontal, text='Do you agree to this updated consent?') ] ), self._build_pdf_element( cls=LTTextBoxHorizontal, children=[ self._build_pdf_element(cls=LTTextLineHorizontal, text='you will get care at a VA facility') ] ), self._build_form_element(text='Test update', bbox=(116, 146, 521, 170)), self._build_form_element(text='Jan 1st, 2021', bbox=(116, 96, 521, 120)) ] ]) va_update_case = PrimaryUpdateConsentTestData( file=files.VibrentPrimaryConsentUpdateFile( pdf=va_update_pdf, blob=mock.MagicMock(), consent_date=datetime.now() ), expected_signature='Test update', expected_sign_date=date(2021, 1, 1), has_yes_selected=False, expected_to_be_va_file=True ) # Build basic primary file for older version of PrimaryUpdate pdf = self._build_pdf(pages=[ [ *self._get_primary_consent_elements(), self._build_form_element(text='<NAME>', bbox=(116, 147, 517, 169)), self._build_form_element(text='Aug 9, 2020', bbox=(116, 97, 266, 119)) ] ]) older_update_case = PrimaryUpdateConsentTestData( file=files.VibrentPrimaryConsentUpdateFile( pdf=pdf, blob=mock.MagicMock(), consent_date=datetime(2020, 8, 9) ), expected_signature='Test Name', expected_sign_date=date(2020, 8, 9), has_yes_selected=True ) return [basic_update_case, va_update_case, older_update_case] @classmethod def _build_pdf(cls, pages) -> files.Pdf: """ Builds a consent_files.Pdf object :param pages A list where each item represents a page, and each item is a list of pdf elements for what should be on that page """ page_mocks = [] for page_elements in pages: page_mock = mock.MagicMock() page_mock.__iter__.return_value = page_elements page_mocks.append(page_mock) return files.Pdf(pages=page_mocks) def _build_pdf_element(self, cls, text: str = None, children: list = None, bbox=None): """Create a generic pdf element to add to the page""" element = mock.MagicMock(spec=cls) self._set_bbox(bbox, element) if children: element.__iter__.return_value = children if hasattr(element, 'get_text'): if text is None: get_text_result = ''.join([child.get_text() for child in children]) else: get_text_result = text element.get_text.return_value = get_text_result return element def _build_form_element(self, bbox, text: str = None, children: list = None): """ Form elements don't have a get_text method, and (at least with the Vibrent PDFs) any text within them is laid out character by character """ element = mock.MagicMock(spec=LTFigure) self._set_bbox(bbox, element) if children: element.__iter__.return_value = children else: char_list = [] for char_str in text: char_element = mock.MagicMock(spec=LTChar) char_element.get_text.return_value
from tool_shed.base.twilltestcase import ShedTwillTestCase, common, os import tool_shed.base.test_db_util as test_db_util emboss_datatypes_repository_name = 'emboss_datatypes_0050' emboss_datatypes_repository_description = "Datatypes for emboss" emboss_datatypes_repository_long_description = "Long description of Emboss' datatypes" emboss_repository_name = 'emboss_0050' emboss_repository_description = "Galaxy's emboss tool" emboss_repository_long_description = "Long description of Galaxy's emboss tool" filtering_repository_name = 'filtering_0050' filtering_repository_description = "Galaxy's filtering tool" filtering_repository_long_description = "Long description of Galaxy's filtering tool" freebayes_repository_name = 'freebayes_0050' freebayes_repository_description = "Galaxy's freebayes tool" freebayes_repository_long_description = "Long description of Galaxy's freebayes tool" column_repository_name = 'column_maker_0050' column_repository_description = "Add column" column_repository_long_description = "Compute an expression on every row" convert_repository_name = 'convert_chars_0050' convert_repository_description = "Convert delimiters" convert_repository_long_description = "Convert delimiters to tab" bismark_repository_name = 'bismark_0050' bismark_repository_description = "A flexible aligner." bismark_repository_long_description = "A flexible aligner and methylation caller for Bisulfite-Seq applications." category_name = 'Test 0050 Circular Dependencies 5 Levels' category_description = 'Test circular dependency features' running_standalone = False class TestInstallRepositoryCircularDependencies( ShedTwillTestCase ): '''Verify that the code correctly handles circular dependencies down to n levels.''' def test_0000_initiate_users( self ): """Create necessary user accounts.""" self.logout() self.login( email=common.test_user_1_email, username=common.test_user_1_name ) test_user_1 = test_db_util.get_user( common.test_user_1_email ) assert test_user_1 is not None, 'Problem retrieving user with email %s from the database' % test_user_1_email test_user_1_private_role = test_db_util.get_private_role( test_user_1 ) self.logout() self.login( email=common.admin_email, username=common.admin_username ) admin_user = test_db_util.get_user( common.admin_email ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % admin_email admin_user_private_role = test_db_util.get_private_role( admin_user ) def test_0005_create_convert_repository( self ): '''Create and populate convert_chars_0050.''' category = self.create_category( name=category_name, description=category_description ) global running_standalone self.logout() self.login( email=common.test_user_1_email, username=common.test_user_1_name ) repository = self.get_or_create_repository( name=convert_repository_name, description=convert_repository_description, long_description=convert_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): running_standalone = True self.upload_file( repository, 'convert_chars/convert_chars.tar', strings_displayed=[], commit_message='Uploaded convert_chars.tar.' ) def test_0010_create_column_repository( self ): '''Create and populate convert_chars_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=column_repository_name, description=column_repository_description, long_description=column_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'column_maker/column_maker.tar', strings_displayed=[], commit_message='Uploaded column_maker.tar.' ) def test_0015_create_emboss_datatypes_repository( self ): '''Create and populate emboss_datatypes_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=emboss_datatypes_repository_name, description=emboss_datatypes_repository_description, long_description=emboss_datatypes_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'emboss/datatypes/datatypes_conf.xml', strings_displayed=[], commit_message='Uploaded datatypes_conf.xml.' ) def test_0020_create_emboss_repository( self ): '''Create and populate emboss_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=emboss_repository_name, description=emboss_repository_description, long_description=emboss_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'emboss/emboss.tar', strings_displayed=[], commit_message='Uploaded tool tarball.' ) def test_0025_create_filtering_repository( self ): '''Create and populate filtering_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=filtering_repository_name, description=filtering_repository_description, long_description=filtering_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'filtering/filtering_1.1.0.tar', strings_displayed=[], commit_message='Uploaded filtering.tar.' ) def test_0030_create_freebayes_repository( self ): '''Create and populate freebayes_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=freebayes_repository_name, description=freebayes_repository_description, long_description=freebayes_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'freebayes/freebayes.tar', strings_displayed=[], commit_message='Uploaded freebayes.tar.' ) def test_0035_create_bismark_repository( self ): '''Create and populate bismark_0050.''' category = self.create_category( name=category_name, description=category_description ) repository = self.get_or_create_repository( name=bismark_repository_name, description=bismark_repository_description, long_description=bismark_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) if self.repository_is_new( repository ): self.upload_file( repository, 'bismark/bismark.tar', strings_displayed=[], valid_tools_only=False, commit_message='Uploaded bismark.tar.' ) def test_0040_create_and_upload_dependency_definitions( self ): '''Set up the dependency structure.''' global running_standalone if running_standalone: column_repository = test_db_util.get_repository_by_name_and_owner( column_repository_name, common.test_user_1_name ) convert_repository = test_db_util.get_repository_by_name_and_owner( convert_repository_name, common.test_user_1_name ) emboss_datatypes_repository = test_db_util.get_repository_by_name_and_owner( emboss_datatypes_repository_name, common.test_user_1_name ) emboss_repository = test_db_util.get_repository_by_name_and_owner( emboss_repository_name, common.test_user_1_name ) filtering_repository = test_db_util.get_repository_by_name_and_owner( filtering_repository_name, common.test_user_1_name ) freebayes_repository = test_db_util.get_repository_by_name_and_owner( freebayes_repository_name, common.test_user_1_name ) bismark_repository = test_db_util.get_repository_by_name_and_owner( bismark_repository_name, common.test_user_1_name ) dependency_xml_path = self.generate_temp_path( 'test_1050', additional_paths=[ 'dependencies' ] ) # convert_chars depends on column_maker # column_maker depends on convert_chars # emboss depends on emboss_datatypes # emboss_datatypes depends on bismark # freebayes depends on freebayes, emboss, emboss_datatypes, and column_maker # filtering depends on emboss self.create_repository_dependency( convert_repository, depends_on=[ column_repository ], filepath=dependency_xml_path ) self.create_repository_dependency( column_repository, depends_on=[ convert_repository ], filepath=dependency_xml_path ) self.create_repository_dependency( emboss_datatypes_repository, depends_on=[ bismark_repository ], filepath=dependency_xml_path ) self.create_repository_dependency( emboss_repository, depends_on=[ emboss_datatypes_repository ], filepath=dependency_xml_path ) self.create_repository_dependency( freebayes_repository, depends_on=[ freebayes_repository, emboss_datatypes_repository, emboss_repository, column_repository ], filepath=dependency_xml_path ) self.create_repository_dependency( filtering_repository, depends_on=[ emboss_repository ], filepath=dependency_xml_path ) def test_0045_verify_repository_dependencies( self ): '''Verify that the generated dependency circle does not cause an infinite loop. Expected structure: id: 2 key: http://toolshed.local:10001__ESEP__filtering__ESEP__test__ESEP__871602b4276b ['http://toolshed.local:10001', 'emboss_5', 'test', '8de5fe0d7b04'] id: 3 key: http://toolshed.local:10001__ESEP__emboss_datatypes__ESEP__test__ESEP__dbd4f68bf507 ['http://toolshed.local:10001', 'freebayes', 'test', 'f40028114098'] id: 4 key: http://toolshed.local:10001__ESEP__freebayes__ESEP__test__ESEP__f40028114098 ['http://toolshed.local:10001', 'emboss_datatypes', 'test', 'dbd4f68bf507'] ['http://toolshed.local:10001', 'emboss_5', 'test', '8de5fe0d7b04'] ['http://toolshed.local:10001', 'column_maker', 'test', '83e956bdbac0'] id: 5 key: http://toolshed.local:10001__ESEP__column_maker__ESEP__test__ESEP__83e956bdbac0 ['http://toolshed.local:10001', 'convert_chars', 'test', 'b28134220c8a'] id: 6 key: http://toolshed.local:10001__ESEP__convert_chars__ESEP__test__ESEP__b28134220c8a ['http://toolshed.local:10001', 'column_maker', 'test', '83e956bdbac0'] id: 7 key: http://toolshed.local:10001__ESEP__emboss_5__ESEP__test__ESEP__8de5fe0d7b04 ['http://toolshed.local:10001', 'emboss_datatypes', 'test', 'dbd4f68bf507'] ''' emboss_datatypes_repository = test_db_util.get_repository_by_name_and_owner( emboss_datatypes_repository_name, common.test_user_1_name ) emboss_repository = test_db_util.get_repository_by_name_and_owner( emboss_repository_name, common.test_user_1_name ) filtering_repository = test_db_util.get_repository_by_name_and_owner( filtering_repository_name, common.test_user_1_name ) freebayes_repository = test_db_util.get_repository_by_name_and_owner( freebayes_repository_name, common.test_user_1_name ) column_repository = test_db_util.get_repository_by_name_and_owner( column_repository_name, common.test_user_1_name ) convert_repository = test_db_util.get_repository_by_name_and_owner( convert_repository_name, common.test_user_1_name ) bismark_repository = test_db_util.get_repository_by_name_and_owner( bismark_repository_name, common.test_user_1_name ) self.check_repository_dependency( convert_repository, column_repository ) self.check_repository_dependency( column_repository, convert_repository ) self.check_repository_dependency( emboss_datatypes_repository, bismark_repository ) self.check_repository_dependency( emboss_repository, emboss_datatypes_repository ) self.check_repository_dependency( filtering_repository, emboss_repository ) for repository in [ emboss_datatypes_repository, emboss_repository, column_repository ]: self.check_repository_dependency( freebayes_repository, repository ) freebayes_dependencies = [ freebayes_repository, emboss_datatypes_repository, emboss_repository, column_repository ] strings_displayed = [ '%s depends on %s.' % ( freebayes_repository.name, ', '.join( repo.name for repo in freebayes_dependencies ) ) ] self.display_manage_repository_page( freebayes_repository, strings_displayed=strings_displayed ) def test_0050_verify_tool_dependencies( self ): '''Check that freebayes and emboss display tool dependencies.''' freebayes_repository = test_db_util.get_repository_by_name_and_owner( freebayes_repository_name, common.test_user_1_name ) emboss_repository = test_db_util.get_repository_by_name_and_owner( emboss_repository_name, common.test_user_1_name ) self.display_manage_repository_page( freebayes_repository, strings_displayed=[ 'freebayes', '0.9.4_9696d0ce8a9', 'samtools', '0.1.18', 'Tool dependencies' ] ) self.display_manage_repository_page( emboss_repository, strings_displayed=[ 'Tool dependencies', 'emboss', '5.0.0', 'package' ] ) def test_0055_install_column_repository( self ): '''Install column_maker with repository dependencies.''' self.galaxy_logout() self.galaxy_login( email=common.admin_email, username=common.admin_username ) self.install_repository( column_repository_name, common.test_user_1_name, category_name, install_tool_dependencies=False, install_repository_dependencies=True, new_tool_panel_section='column_maker' ) # This should result in column_maker and convert_chars being installed, and the rest never installed. installed_repositories = [ ( column_repository_name, common.test_user_1_name ), ( convert_repository_name, common.test_user_1_name ) ] uninstalled_repositories = [ ( emboss_datatypes_repository_name, common.test_user_1_name ), ( emboss_repository_name, common.test_user_1_name ), ( filtering_repository_name, common.test_user_1_name ), ( freebayes_repository_name, common.test_user_1_name ), ( bismark_repository_name, common.test_user_1_name ) ] self.verify_installed_uninstalled_repositories( installed_repositories=installed_repositories, uninstalled_repositories=uninstalled_repositories ) def test_0060_install_emboss_repository( self ): '''Install emboss_5 with repository dependencies.''' global running_standalone original_datatypes = self.get_datatypes_count() self.install_repository( emboss_repository_name, common.test_user_1_name, category_name, install_tool_dependencies=False, install_repository_dependencies=True, new_tool_panel_section='emboss_5_0050' ) if running_standalone: assert original_datatypes < self.get_datatypes_count(), 'Installing a repository that depends on emboss_datatypes did not add datatypes.' # Now we have emboss_datatypes, emboss, bismark, column_maker, and convert_chars installed, filtering and freebayes never installed. installed_repositories = [ ( emboss_datatypes_repository_name, common.test_user_1_name ), ( column_repository_name, common.test_user_1_name ), ( emboss_repository_name, common.test_user_1_name ), ( convert_repository_name, common.test_user_1_name ), ( bismark_repository_name, common.test_user_1_name ) ] uninstalled_repositories = [ ( filtering_repository_name, common.test_user_1_name ), ( freebayes_repository_name, common.test_user_1_name ) ] self.verify_installed_uninstalled_repositories( installed_repositories=installed_repositories, uninstalled_repositories=uninstalled_repositories ) def test_0065_deactivate_datatypes_repository( self ): '''Deactivate emboss_datatypes and verify that the datatypes count is reduced.''' original_datatypes = self.get_datatypes_count() repository = test_db_util.get_installed_repository_by_name_owner( emboss_datatypes_repository_name, common.test_user_1_name ) self.uninstall_repository( repository, remove_from_disk=False ) assert original_datatypes > self.get_datatypes_count(), 'Deactivating emboss_datatypes did not remove datatypes.' # Now we have emboss, bismark, column_maker, and convert_chars installed, filtering and freebayes never installed, and emboss_datatypes deactivated. installed_repositories = [ ( column_repository_name, common.test_user_1_name ), ( emboss_repository_name, common.test_user_1_name ), ( convert_repository_name, common.test_user_1_name ), ( bismark_repository_name, common.test_user_1_name ) ] uninstalled_repositories = [ ( emboss_datatypes_repository_name, common.test_user_1_name ), ( filtering_repository_name, common.test_user_1_name ), ( freebayes_repository_name, common.test_user_1_name ) ] self.verify_installed_uninstalled_repositories( installed_repositories=installed_repositories, uninstalled_repositories=uninstalled_repositories ) strings_not_displayed = [ repository.name, repository.installed_changeset_revision ] self.display_galaxy_browse_repositories_page( strings_not_displayed=strings_not_displayed ) def test_0070_uninstall_emboss_repository( self ): '''Uninstall the emboss_5 repository.''' repository = test_db_util.get_installed_repository_by_name_owner( emboss_repository_name, common.test_user_1_name ) self.uninstall_repository( repository, remove_from_disk=True ) strings_not_displayed = [ repository.name, repository.installed_changeset_revision ] self.display_galaxy_browse_repositories_page( strings_not_displayed=strings_not_displayed ) test_db_util.ga_refresh( repository ) self.check_galaxy_repository_tool_panel_section( repository, 'emboss_5_0050' ) # Now we have bismark, column_maker, and convert_chars installed, filtering and freebayes never installed, emboss_datatypes deactivated, # and emboss uninstalled. installed_repositories = [ ( column_repository_name, common.test_user_1_name ), ( convert_repository_name, common.test_user_1_name ), ( bismark_repository_name, common.test_user_1_name ) ] uninstalled_repositories = [ ( emboss_datatypes_repository_name, common.test_user_1_name ), ( emboss_repository_name, common.test_user_1_name ), ( filtering_repository_name, common.test_user_1_name ),
import hashlib import importlib import os import os.path as osp import pkg_resources import re import subprocess import tarfile import typing from collections import defaultdict from distutils.version import LooseVersion from pkg_resources import parse_version from typing import Any, List, Optional, Tuple, Union import click import requests from requests.exceptions import InvalidURL, RequestException, Timeout from requests.models import Response from .default import DEFAULT_URL, MMPACKAGE_PATH, PKG2MODULE, PKG2PROJECT def parse_url(url: str) -> Tuple[str, str]: """Parse username and repo from url. Args: url (str): Url for parsing username and repo name. Example: >>> parse_url('https://github.com/open-mmlab/mmcv.git') 'open-mmlab', 'mmcv' >>> parse_ulr('<EMAIL>:open-mmlab/mmcv.git') 'open-mmlab', 'mmcv' """ if url.startswith('git@'): res = url.split(':')[-1].split('/') elif 'git' in url: res = url.split('/')[-2:] else: raise ValueError(highlighted_error(f'{url} is invalid.')) username = res[0] repo = res[1].split('.')[0] return username, repo def get_github_url(package: str) -> str: """Get github url. Args: package (str): Name of package, like mmcls. Example: >>> get_github_url('mmcls') 'https://github.com/open-mmlab/mmclassification.git' """ for _package, _, _url in read_installation_records(): if _package == package and _url != 'local': github_url = _url break else: if package not in PKG2PROJECT: raise ValueError( highlighted_error(f'Failed to get url of {package}.')) github_url = f'{DEFAULT_URL}/{PKG2PROJECT[package]}.git' return github_url def get_content_from_url(url: str, timeout: int = 15, stream: bool = False) -> Response: """Get content from url. Args: url (str): Url for getting content. timeout (int): Set the socket timeout. Default: 15. """ try: response = requests.get(url, timeout=timeout, stream=stream) except InvalidURL as err: raise highlighted_error(err) # type: ignore except Timeout as err: raise highlighted_error(err) # type: ignore except RequestException as err: raise highlighted_error(err) # type: ignore except Exception as err: raise highlighted_error(err) # type: ignore return response @typing.no_type_check def download_from_file(url: str, dest_path: str, hash_prefix: Optional[str] = None) -> None: """Download object at the given URL to a local path. Args: url (str): URL of the object to download. dest_path (str): Path where object will be saved. hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with `hash_prefix`. Default: None. """ if hash_prefix is not None: sha256 = hashlib.sha256() response = get_content_from_url(url, stream=True) size = int(response.headers.get('content-length')) with open(dest_path, 'wb') as fw: content_iter = response.iter_content(chunk_size=1024) with click.progressbar(content_iter, length=size / 1024) as chunks: for chunk in chunks: if chunk: fw.write(chunk) fw.flush() if hash_prefix is not None: sha256.update(chunk) if hash_prefix is not None: digest = sha256.hexdigest() if digest[:len(hash_prefix)] != hash_prefix: raise RuntimeError( highlighted_error( f'invalid hash value, expected "{hash_prefix}", but got ' f'"{digest}"')) def split_package_version(package: str) -> Tuple[str, ...]: """Split the package which maybe contains version info. Args: package (str): Name of package to split. Example: >>> split_package_version('mmcls') 'mmcls', '' >>> split_package_version('mmcls=0.11.0') 'mmcls', '0.11.0' >>> split_package_version('mmcls==0.11.0') 'mmcls', '0.11.0' """ if '=' in package: return tuple(re.split(r'=+', package)) else: return package, '' def is_installed(package: str) -> Any: """Check package whether installed. Args: package (str): Name of package to be checked. """ module_name = PKG2MODULE.get(package, package) return importlib.util.find_spec(module_name) # type: ignore def get_package_version(repo_root: str) -> Tuple[str, str]: """Get package and version from local repo. Args: repo_root (str): Directory of repo. """ for file_name in os.listdir(repo_root): version_path = osp.join(repo_root, file_name, 'version.py') if osp.exists(version_path): with open(version_path, 'r', encoding='utf-8') as f: exec(compile(f.read(), version_path, 'exec')) return file_name, locals()['__version__'] return '', '' def get_installed_version(package: str) -> str: """Get the version of package from local environment. Args: package (str): Name of package. """ module_name = PKG2MODULE.get(package, package) if not is_installed(module_name): raise RuntimeError(highlighted_error(f'{package} is not installed.')) module = importlib.import_module(module_name) return module.__version__ # type: ignore def get_release_version(package: str, timeout: int = 15) -> List[str]: """Get release version from pypi. The return list of versions is sorted by ascending order. Args: package (str): Package to get version. timeout (int): Set the socket timeout. Default: 15. """ pkg_url = f'https://pypi.org/pypi/{package}/json' response = get_content_from_url(pkg_url, timeout) content = response.json() releases = content['releases'] return sorted(releases, key=parse_version) def get_latest_version(package: str, timeout: int = 15) -> str: """Get latest version of package. Args: package (str): Package to get latest version. timeout (int): Set the socket timeout. Default: 15. Example: >>> get_latest_version('mmcv-full') '0.11.0' """ release_version = get_release_version(package, timeout) return release_version[-1] def is_version_equal(version1: str, version2: str) -> bool: return LooseVersion(version1) == LooseVersion(version2) def get_installed_path(package: str) -> str: """Get installed path of package. Args: package (str): Name of package. Example: >>> get_installed_path('mmcls') >>> '.../lib/python3.7/site-packages/mmcls' """ module_name = PKG2MODULE.get(package, package) module = importlib.import_module(module_name) return module.__path__[0] # type: ignore def get_torch_cuda_version() -> Tuple[str, str]: """Get PyTorch version and CUDA version if it is available. Example: >>> get_torch_cuda_version() '1.8.0', '102' """ try: import torch except ImportError as err: raise err torch_v = torch.__version__ if '+' in torch_v: # 1.8.1+cu111 -> 1.8.1 torch_v = torch_v.split('+')[0] if torch.cuda.is_available(): # torch.version.cuda like 10.2 -> 102 cuda_v = ''.join(torch.version.cuda.split('.')) else: cuda_v = 'cpu' return torch_v, cuda_v def read_installation_records() -> list: """Read installed packages from mmpackage.txt.""" if not osp.isfile(MMPACKAGE_PATH): return [] seen = set() pkgs_info = [] with open(MMPACKAGE_PATH, 'r') as fr: for line in fr: line = line.strip() package, version, source = line.split(',') if not is_installed(package): continue pkgs_info.append((package, version, source)) seen.add(package) # handle two cases # 1. install mmrepos by other ways not mim, such as pip install mmcls # 2. existed mmrepos for pkg in pkg_resources.working_set: pkg_name = pkg.project_name if pkg_name not in seen and (pkg_name in PKG2PROJECT or pkg_name in PKG2MODULE): pkgs_info.append((pkg_name, pkg.version, '')) return pkgs_info def write_installation_records(package: str, version: str, source: str = '') -> None: """Write installed package to mmpackage.txt.""" pkgs_info = read_installation_records() with open(MMPACKAGE_PATH, 'w') as fw: if pkgs_info: for _package, _version, _source in pkgs_info: if _package != package: fw.write(f'{_package},{_version},{_source}\n') fw.write(f'{package},{version},{source}\n') def remove_installation_records(package: str) -> None: """Remove package from mmpackage.txt.""" pkgs_info = read_installation_records() if not pkgs_info: with open(MMPACKAGE_PATH, 'w') as fw: for _package, _version, _source in pkgs_info: if _package != package: fw.write(f'{_package},{_version},{_source}\n') def cast2lowercase(input: Union[list, tuple, str]) -> Any: """Cast input into lowercase. Example: >>> cast2lowercase('Hello World') 'hello world' >>> cast2lowercase(['Hello', 'World']) ['hello', 'world'] """ inputs = [] outputs = [] if isinstance(input, str): inputs = [input] else: inputs = input # type: ignore for _input in inputs: outputs.append(_input.lower()) if isinstance(input, str): return outputs[0] elif isinstance(input, tuple): return tuple(outputs) else: return outputs def recursively_find(root: str, base_name: str) -> list: """Recursive list a directory, return all files with a given base_name. Args: root (str): The root directory to list. base_name (str): The base_name. Return: Files with given base_name. """ results = list(os.walk(root)) files = [] for tup in results: root = tup[0] if base_name in tup[2]: files.append(osp.join(root, base_name)) return files def highlighted_error(msg: Union[str, Exception]) -> str: return click.style(msg, fg='red', bold=True) # type: ignore def color_echo(msg: str, color: str) -> None: click.echo(click.style(msg, fg=color)) # type: ignore def echo_error(msg: Union[str, Exception]) -> None: color_echo(msg=msg, color='red') # type: ignore def echo_warning(msg: Union[str, Exception]) -> None: color_echo(msg=msg, color='yellow') # type: ignore def echo_success(msg: str) -> None: color_echo(msg=msg, color='green') def exit_with_error(msg: Union[str, Exception]) -> None: echo_error(msg) exit(1) def call_command(cmd: list) -> None: try: subprocess.check_call(cmd) except Exception as e: raise highlighted_error(e) # type: ignore def string2args(text: str) -> dict: """Parse string to arguments. Args: text (str): The string to be parsed, which should be of the format: "--arg1 value1 value2 --arg2 value1 ... --argn value1". Using '=' is also OK, like "--argn=value1". It also support flag args like "--arg1". Return: A dictionary that contains parsed args. Note that the type of values will all be strings. Example: >>> text = '--arg1 value1 value2 --arg2 value3 --arg3 value4' >>> string2args(text) args = { 'arg1': [value1, value2], 'arg2': [value3], 'arg3': [value4] } """ ret: dict = defaultdict(list) name = None items = text.split() for item in items: if name is None: assert item.startswith('--') if item.startswith('--'): if name is not None and ret[name] == []: ret[name] = bool if '=' in item: name, value = item[2:].split('=') ret[name] = [value] name = None else: name = item[2:] else: ret[name].append(item) if name is not None and ret[name] == []: ret[name] = bool return ret def args2string(args: dict) -> str: """Convert args dictionary to a string. Args: args (dict): A dictionary that contains parsed args. Return: A converted string. Example: >>> args = { 'arg1': [value1, value2], 'arg2': [value3], 'arg3': [value4] } >>> args2string(args) '--arg1 value1 value2 --arg2 value3 --arg3 value4' """ text = [] for k in args: text.append(f'--{k}') if args[k] is not bool: text.extend([str(x) for x in args[k]]) return ' '.join(text) def get_config(cfg, name): """Given
from pxr import * import os, os.path import numpy import re import usdUtils import math import imp usdStageWithFbxLoaded = True try: imp.find_module('fbx') import fbx except ImportError: usdUtils.printError("Failed to import fbx module. Please install FBX Python bindings from http://www.autodesk.com/fbx and add path to FBX Python SDK to your PYTHONPATH") usdStageWithFbxLoaded = False class ConvertError(Exception): pass def printErrorAndExit(message): usdUtils.printError(message) raise ConvertError() def GfMatrix4dWithFbxMatrix(m): return Gf.Matrix4d( m[0][0], m[0][1], m[0][2], m[0][3], m[1][0], m[1][1], m[1][2], m[1][3], m[2][0], m[2][1], m[2][2], m[2][3], m[3][0], m[3][1], m[3][2], m[3][3]) def getFbxNodeTransforms(fbxNode): return GfMatrix4dWithFbxMatrix(fbxNode.EvaluateLocalTransform()) def getFbxNodeGeometricTransform(fbxNode): # geometry transform is an additional transform for geometry # it is relative to the node transform # this transform is not distributing to the children nodes in scene graph translation = fbxNode.GetGeometricTranslation(fbx.FbxNode.eSourcePivot) rotation = fbxNode.GetGeometricRotation(fbx.FbxNode.eSourcePivot) scale = fbxNode.GetGeometricScaling(fbx.FbxNode.eSourcePivot) return fbx.FbxAMatrix(translation, rotation, scale) def convertUVTransformFromFBX(translation, scale, rotation): # from FBX to Blender scale[0] = 1.0 / scale[0] scale[1] = 1.0 / scale[1] rotation = -rotation # Blender: Tuv = T * R * S # USD: Tuv = S * R * T scaleMatrix = Gf.Matrix4d(Gf.Vec4d(scale[0], scale[1], 1, 1)) inverseScaleMatrix = Gf.Matrix4d(Gf.Vec4d(1.0 / scale[0], 1.0 / scale[1], 1, 1)) rotationMatrix = Gf.Matrix4d( math.cos(rotation), math.sin(rotation), 0, 0, -math.sin(rotation), math.cos(rotation), 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) inverseRotationMatrix = rotationMatrix.GetTranspose() translateMatrix = Gf.Matrix4d(1) translateMatrix.SetTranslate(Gf.Vec3d(translation[0], translation[1], 0)) # translate matrix from Blender to USD transform = scaleMatrix * rotationMatrix * translateMatrix * inverseRotationMatrix * inverseScaleMatrix translation3d = transform.ExtractTranslation() translation[0] = translation3d[0] translation[1] = translation3d[1] return translation, scale, math.degrees(rotation) class FbxNodeManager(usdUtils.NodeManager): def __init__(self, value=None): usdUtils.NodeManager.__init__(self) def overrideGetName(self, fbxNode): return usdUtils.makeValidIdentifier(fbxNode.GetName().split(":")[-1]) def overrideGetChildren(self, fbxNode): children = [] for childIdx in xrange(fbxNode.GetChildCount()): children.append(fbxNode.GetChild(childIdx)) return children def overrideGetLocalTransformGfMatrix4d(self, fbxNode): return GfMatrix4dWithFbxMatrix(fbxNode.EvaluateLocalTransform()) def overrideGetWorldTransformGfMatrix4d(self, fbxNode): return GfMatrix4dWithFbxMatrix(fbxNode.EvaluateGlobalTransform()) def overrideGetParent(self, fbxNode): return fbxNode.GetParent() class AnimProperty: def __init__(self, fbxAnimLayer, fbxProperty, timeSpans): self.fbxAnimLayer = fbxAnimLayer self.fbxProperty = fbxProperty self.timeSpans = timeSpans class FbxConverter: def __init__(self, fbxPath, usdPath, legacyModifier, copyTextures, searchPaths, verbose): self.verbose = verbose self.legacyModifier = legacyModifier self.copyTextures = copyTextures self.searchPaths = searchPaths self.asset = usdUtils.Asset(usdPath) self.usdStage = None self.usdMaterials = {} self.nodeId = 0 self.nodePaths = {} self.fbxSkinToSkin = {} self.startAnimationTime = 0 self.stopAnimationTime = 0 self.skeletonByNode = {} # collect skinned mesh to construct later self.blendShapeByNode = {} # collect blend shapes to construct later self.copiedTextures = {} # avoid copying textures more then once self.extent = [[], []] self.fbxScene = None filenameFull = fbxPath.split('/')[-1] self.srcFolder = fbxPath[:len(fbxPath)-len(filenameFull)] filenameFull = usdPath.split('/')[-1] self.dstFolder = usdPath[:len(usdPath)-len(filenameFull)] self.loadFbxScene(fbxPath) self.fps = fbx.FbxTime.GetFrameRate(fbx.FbxTime.GetGlobalTimeMode()) self.asset.setFPS(self.fps) self.nodeManager = FbxNodeManager() self.skinning = usdUtils.Skinning(self.nodeManager) self.shapeBlending = usdUtils.ShapeBlending() def loadFbxScene(self, fbxPath): fbxManager = fbx.FbxManager.Create() if not fbxManager: printErrorAndExit("failed to create FBX manager object") self.fbxManager = fbxManager fbxIOSettings = fbx.FbxIOSettings.Create(fbxManager, fbx.IOSROOT) fbxManager.SetIOSettings(fbxIOSettings) fbxImporter = fbx.FbxImporter.Create(fbxManager, "") result = fbxImporter.Initialize(fbxPath, -1, fbxManager.GetIOSettings()) if not result: printErrorAndExit("failed to initialize FbxImporter object") if fbxImporter.IsFBX(): fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_MATERIAL, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_TEXTURE, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_EMBEDDED, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_SHAPE, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_GOBO, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_ANIMATION, True) fbxManager.GetIOSettings().SetBoolProp(fbx.EXP_FBX_GLOBAL_SETTINGS, True) self.fbxScene = fbx.FbxScene.Create(fbxManager, "") result = fbxImporter.Import(self.fbxScene) fbxImporter.Destroy() if not result: printErrorAndExit("failed to load FBX scene") def getTextureProperties(self, materialProperty): if materialProperty.GetSrcObjectCount(fbx.FbxCriteria.ObjectType(fbx.FbxFileTexture.ClassId)) > 0: fbxFileTexture = materialProperty.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxFileTexture.ClassId), 0) texCoordSet = 'st' if fbxFileTexture.UVSet is not None: texCoordSet = str(fbxFileTexture.UVSet.Get()) if texCoordSet == '' or texCoordSet == 'default': texCoordSet = 'st' else: texCoordSet = usdUtils.makeValidIdentifier(texCoordSet) wrapS = usdUtils.WrapMode.repeat wrapT = usdUtils.WrapMode.repeat if fbxFileTexture.GetWrapModeU() == fbx.FbxTexture.eClamp: wrapS = usdUtils.WrapMode.clamp if fbxFileTexture.GetWrapModeV() == fbx.FbxTexture.eClamp: wrapT = usdUtils.WrapMode.clamp # texture transform mapTransform = None translation = [fbxFileTexture.GetTranslationU(), fbxFileTexture.GetTranslationV()] scale = [fbxFileTexture.GetScaleU(), fbxFileTexture.GetScaleV()] rotation = fbxFileTexture.GetRotationW() if (translation[0] != 0 or translation[1] != 0 or scale[0] != 1 or scale[1] != 1 or rotation != 0): (translation, scale, rotation) = convertUVTransformFromFBX(translation, scale, rotation) mapTransform = usdUtils.MapTransform(translation, scale, rotation) return fbxFileTexture.GetFileName(), texCoordSet, wrapS, wrapT, mapTransform elif materialProperty.GetSrcObjectCount(fbx.FbxCriteria.ObjectType(fbx.FbxLayeredTexture.ClassId)) > 0: pass return '', 'st', usdUtils.WrapMode.repeat, usdUtils.WrapMode.repeat, None def processMaterialProperty(self, input, propertyName, property, factorProperty, channels, material, fbxMaterial): value = None factor = float(factorProperty.Get()) if factorProperty is not None else None if property is not None: if channels == 'rgb': value = [property.Get()[0], property.Get()[1], property.Get()[2]] else: if input == usdUtils.InputName.opacity: transparency = property.Get()[0] if factor is not None: transparency = transparency * factor factor = None value = 1.0 - transparency else: value = float(property.Get()[0]) srcTextureFilename = '' # source texture filename on drive textureFilename = '' # valid for USD materialProperty = fbxMaterial.FindProperty(propertyName) if materialProperty.IsValid(): srcTextureFilename, texCoordSet, wrapS, wrapT, mapTransform = self.getTextureProperties(materialProperty) srcTextureFilename = usdUtils.resolvePath(srcTextureFilename, self.srcFolder, self.searchPaths) textureFilename = usdUtils.makeValidPath(srcTextureFilename) if textureFilename != '' and (self.copyTextures or srcTextureFilename != textureFilename): if srcTextureFilename in self.copiedTextures: textureFilename = self.copiedTextures[srcTextureFilename] else: newTextureFilename = 'textures/' + os.path.basename(textureFilename) # do not rewrite the texture with same basename subfolderIdx = 0 while newTextureFilename in self.copiedTextures.values(): newTextureFilename = 'textures/' + str(subfolderIdx) + '/' + os.path.basename(textureFilename) subfolderIdx += 1 usdUtils.copy(srcTextureFilename, self.dstFolder + newTextureFilename, self.verbose) self.copiedTextures[srcTextureFilename] = newTextureFilename textureFilename = newTextureFilename if textureFilename != '': scale = None if factor is not None: if channels == 'rgb': scale = [factor, factor, factor] else: scale = factor material.inputs[input] = usdUtils.Map(channels, textureFilename, value, texCoordSet, wrapS, wrapT, scale, mapTransform) else: if value is not None: if factor is not None: if channels == 'rgb': material.inputs[input] = [value[0] * factor, value[1] * factor, value[2] * factor] else: material.inputs[input] = value * factor else: material.inputs[input] = value def processMaterials(self): for i in range(self.fbxScene.GetMaterialCount()): fbxMaterial = self.fbxScene.GetMaterial(i) material = usdUtils.Material(fbxMaterial.GetName().split(":")[-1]) normalMap = fbxMaterial.NormalMap if hasattr(fbxMaterial, 'NormalMap') else None self.processMaterialProperty(usdUtils.InputName.normal, fbx.FbxSurfaceMaterial.sNormalMap, normalMap, None, 'rgb', material, fbxMaterial) diffuse = fbxMaterial.Diffuse if hasattr(fbxMaterial, 'Diffuse') else None diffuseFactor = fbxMaterial.DiffuseFactor if hasattr(fbxMaterial, 'DiffuseFactor') else None self.processMaterialProperty(usdUtils.InputName.diffuseColor, fbx.FbxSurfaceMaterial.sDiffuse, diffuse, diffuseFactor, 'rgb', material, fbxMaterial) transparentColor = fbxMaterial.TransparentColor if hasattr(fbxMaterial, 'TransparentColor') else None transparencyFactor = fbxMaterial.TransparencyFactor if hasattr(fbxMaterial, 'TransparencyFactor') else None self.processMaterialProperty(usdUtils.InputName.opacity, fbx.FbxSurfaceMaterial.sTransparentColor, transparentColor, transparencyFactor, 'a', material, fbxMaterial) emissive = fbxMaterial.Emissive if hasattr(fbxMaterial, 'Emissive') else None emissiveFactor = fbxMaterial.EmissiveFactor if hasattr(fbxMaterial, 'EmissiveFactor') else None self.processMaterialProperty(usdUtils.InputName.emissiveColor, fbx.FbxSurfaceMaterial.sEmissive, emissive, emissiveFactor, 'rgb', material, fbxMaterial) ambient = fbxMaterial.Ambient if hasattr(fbxMaterial, 'Ambient') else None ambientFactor = fbxMaterial.AmbientFactor if hasattr(fbxMaterial, 'AmbientFactor') else None self.processMaterialProperty(usdUtils.InputName.occlusion, fbx.FbxSurfaceMaterial.sAmbient, ambient, ambientFactor, 'r', material, fbxMaterial) # 'metallic', 'roughness' ? usdMaterial = material.makeUsdMaterial(self.asset) if self.legacyModifier is not None: self.legacyModifier.opacityAndDiffuseOneTexture(material) self.usdMaterials[fbxMaterial.GetName()] = usdMaterial def prepareAnimations(self): animStacksCount = self.fbxScene.GetSrcObjectCount(fbx.FbxCriteria.ObjectType(fbx.FbxAnimStack.ClassId)) if animStacksCount < 1: if self.verbose: print 'No animation found' return fbxAnimStack = self.fbxScene.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimStack.ClassId), 0) timeSpan = fbxAnimStack.GetLocalTimeSpan() self.startAnimationTime = timeSpan.GetStart().GetSecondDouble() self.stopAnimationTime = timeSpan.GetStop().GetSecondDouble() self.asset.extentTime(self.startAnimationTime) self.asset.extentTime(self.stopAnimationTime) def processControlPoints(self, fbxMesh, usdMesh): points = [Gf.Vec3f(p[0], p[1], p[2]) for p in fbxMesh.GetControlPoints()] extent = Gf.Range3f() for point in points: extent.UnionWith(point) usdMesh.CreatePointsAttr(points) usdMesh.CreateExtentAttr([Gf.Vec3f(extent.GetMin()), Gf.Vec3f(extent.GetMax())]) if not any(self.extent): self.extent[0] = extent.GetMin() self.extent[1] = extent.GetMax() else: for i in range(3): self.extent[0][i] = min(self.extent[0][i], extent.GetMin()[i]) self.extent[1][i] = max(self.extent[1][i], extent.GetMax()[i]) def getVec3fArrayWithLayerElements(self, elements, fbxLayerElements): elementsArray = fbxLayerElements.GetDirectArray() for i in xrange(elementsArray.GetCount()): element = elementsArray.GetAt(i) elements.append(Gf.Vec3f(element[0], element[1], element[2])) def getIndicesWithLayerElements(self, fbxMesh, fbxLayerElements): mappingMode = fbxLayerElements.GetMappingMode() referenceMode = fbxLayerElements.GetReferenceMode() indexToDirect = ( referenceMode == fbx.FbxLayerElement.eIndexToDirect or referenceMode == fbx.FbxLayerElement.eIndex) indices = [] if mappingMode == fbx.FbxLayerElement.eByControlPoint: if indexToDirect: for contorlPointIdx in xrange(fbxMesh.GetControlPointsCount()): indices.append(fbxLayerElements.GetIndexArray().GetAt(contorlPointIdx)) elif mappingMode == fbx.FbxLayerElement.eByPolygonVertex: pointIdx = 0 for polygonIdx in xrange(fbxMesh.GetPolygonCount()): for vertexIdx in xrange(fbxMesh.GetPolygonSize(polygonIdx)): if indexToDirect: indices.append(fbxLayerElements.GetIndexArray().GetAt(pointIdx)) else: indices.append(pointIdx) pointIdx += 1 elif mappingMode == fbx.FbxLayerElement.eByPolygon: for polygonIdx in xrange(fbxMesh.GetPolygonCount()): if indexToDirect: indices.append(fbxLayerElements.GetIndexArray().GetAt(polygonIdx)) else: indices.append(polygonIdx) return indices def getInterpolationWithLayerElements(self, fbxLayerElements): mappingMode = fbxLayerElements.GetMappingMode() if mappingMode == fbx.FbxLayerElement.eByControlPoint: return UsdGeom.Tokens.vertex elif mappingMode == fbx.FbxLayerElement.eByPolygonVertex: return UsdGeom.Tokens.faceVarying elif mappingMode == fbx.FbxLayerElement.eByPolygon: return UsdGeom.Tokens.uniform elif mappingMode == fbx.FbxLayerElement.eAllSame: return UsdGeom.Tokens.constant elif mappingMode == fbx.FbxLayerElement.eByEdge: usdUtils.printWarning("Mapping mode eByEdge for layer elements is not supported.") return '' def processNormals(self, fbxMesh, usdMesh, vertexIndices): for layerIdx in xrange(fbxMesh.GetLayerCount()): fbxLayerNormals = fbxMesh.GetLayer(layerIdx).GetNormals() if fbxLayerNormals is None: continue normals = [] self.getVec3fArrayWithLayerElements(normals, fbxLayerNormals) if not any(normals): continue indices = self.getIndicesWithLayerElements(fbxMesh, fbxLayerNormals) interpolation = self.getInterpolationWithLayerElements(fbxLayerNormals) normalPrimvar = usdMesh.CreatePrimvar('normals', Sdf.ValueTypeNames.Normal3fArray, interpolation) normalPrimvar.Set(normals) if len(indices) != 0: normalPrimvar.SetIndices(Vt.IntArray(indices)) break # normals can be in one layer only def processUVs(self, fbxMesh, usdMesh, vertexIndices): for layerIdx in xrange(fbxMesh.GetLayerCount()): fbxLayerUVs = fbxMesh.GetLayer(layerIdx).GetUVs() # get diffuse texture uv-s if fbxLayerUVs is None: continue uvs = [] uvArray = fbxLayerUVs.GetDirectArray() for i in xrange(uvArray.GetCount()): uv = uvArray.GetAt(i) uvs.append(Gf.Vec2f(uv[0], uv[1])) if not any(uvs): continue indices = self.getIndicesWithLayerElements(fbxMesh, fbxLayerUVs) interpolation = self.getInterpolationWithLayerElements(fbxLayerUVs) texCoordSet = 'st' uvSets = fbxMesh.GetLayer(layerIdx).GetUVSets() if len(uvSets) > 0: fbxLayerElementUV = fbxMesh.GetLayer(layerIdx).GetUVSets()[0]
num_layers, dropout=0, **kwargs): super(Seq2SeqEncoder, self).__init__(**kwargs) self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout) def forward(self, X, *args): X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size) X = X.swapaxes(0, 1) # RNN needs first axes to be time state = self.rnn.begin_state(batch_size=X.shape[1], ctx=X.context) out, state = self.rnn(X, state) # The shape of out is (seq_len, batch_size, num_hiddens). # state contains the hidden state and the memory cell # of the last time step, the shape is (num_layers, batch_size, num_hiddens) return out, state # Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md class Seq2SeqDecoder(d2l.Decoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqDecoder, self).__init__(**kwargs) self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout) self.dense = nn.Dense(vocab_size, flatten=False) def init_state(self, enc_outputs, *args): return enc_outputs[1] def forward(self, X, state): X = self.embedding(X).swapaxes(0, 1) out, state = self.rnn(X, state) # Make the batch to be the first dimension to simplify loss computation. out = self.dense(out).swapaxes(0, 1) return out, state # Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss): # pred shape: (batch_size, seq_len, vocab_size) # label shape: (batch_size, seq_len) # valid_length shape: (batch_size, ) def forward(self, pred, label, valid_length): # the sample weights shape should be (batch_size, seq_len, 1) weights = nd.ones_like(label).expand_dims(axis=-1) weights = nd.SequenceMask(weights, valid_length, True, axis=1) return super(MaskedSoftmaxCELoss, self).forward(pred, label, weights) # Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md def train_s2s_ch8(model, data_iter, lr, num_epochs, ctx): model.initialize(init.Xavier(), force_reinit=True, ctx=ctx) trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': lr}) loss = MaskedSoftmaxCELoss() #tic = time.time() animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, num_epochs], ylim=[0, 0.25]) for epoch in range(1, num_epochs+1): timer = d2l.Timer() metric = d2l.Accumulator(2) # loss_sum, num_tokens for batch in data_iter: X, X_vlen, Y, Y_vlen = [x.as_in_context(ctx) for x in batch] Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1 with autograd.record(): Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen) l = loss(Y_hat, Y_label, Y_vlen) l.backward() d2l.grad_clipping(model, 1) num_tokens = Y_vlen.sum().asscalar() trainer.step(num_tokens) metric.add(l.sum().asscalar(), num_tokens) if epoch % 10 == 0: animator.add(epoch, metric[0]/metric[1]) print('loss %.3f, %d tokens/sec on %s ' % ( metric[0]/metric[1], metric[1]/timer.stop(), ctx)) # Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md def predict_s2s_ch8(model, src_sentence, src_vocab, tgt_vocab, num_steps, ctx): src_tokens = src_vocab[src_sentence.lower().split(' ')] enc_valid_length = nd.array([len(src_tokens)], ctx=ctx) src_tokens = d2l.trim_pad(src_tokens, num_steps, src_vocab.pad) enc_X = nd.array(src_tokens, ctx=ctx) # add the batch_size dimension. enc_outputs = model.encoder(enc_X.expand_dims(axis=0), enc_valid_length) dec_state = model.decoder.init_state(enc_outputs, enc_valid_length) dec_X = nd.array([tgt_vocab.bos], ctx=ctx).expand_dims(axis=0) predict_tokens = [] for _ in range(num_steps): Y, dec_state = model.decoder(dec_X, dec_state) # The token with highest score is used as the next time step input. dec_X = Y.argmax(axis=2) py = dec_X.squeeze(axis=0).astype('int32').asscalar() if py == tgt_vocab.eos: break predict_tokens.append(py) return ' '.join(tgt_vocab.to_tokens(predict_tokens)) # Defined in file: ./chapter_attention-mechanism/attention.md def masked_softmax(X, valid_length): # X: 3-D tensor, valid_length: 1-D or 2-D tensor if valid_length is None: return X.softmax() else: shape = X.shape if valid_length.ndim == 1: valid_length = valid_length.repeat(shape[1], axis=0) else: valid_length = valid_length.reshape((-1,)) # fill masked elements with a large negative, whose exp is 0 X = nd.SequenceMask(X.reshape((-1, shape[-1])), valid_length, True, axis=1, value=-1e6) return X.softmax().reshape(shape) # Defined in file: ./chapter_attention-mechanism/attention.md class DotProductAttention(nn.Block): def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) # query: (batch_size, #queries, d) # key: (batch_size, #kv_pairs, d) # value: (batch_size, #kv_pairs, dim_v) # valid_length: either (batch_size, ) or (batch_size, xx) def forward(self, query, key, value, valid_length=None): d = query.shape[-1] # set transpose_b=True to swap the last two dimensions of key scores = nd.batch_dot(query, key, transpose_b=True) / math.sqrt(d) attention_weights = self.dropout(masked_softmax(scores, valid_length)) return nd.batch_dot(attention_weights, value) # Defined in file: ./chapter_attention-mechanism/attention.md class MLPAttention(nn.Block): def __init__(self, units, dropout, **kwargs): super(MLPAttention, self).__init__(**kwargs) # Use flatten=True to keep query's and key's 3-D shapes. self.W_k = nn.Dense(units, activation='tanh', use_bias=False, flatten=False) self.W_q = nn.Dense(units, activation='tanh', use_bias=False, flatten=False) self.v = nn.Dense(1, use_bias=False, flatten=False) self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, valid_length): query, key = self.W_k(query), self.W_q(key) # expand query to (batch_size, #querys, 1, units), and key to # (batch_size, 1, #kv_pairs, units). Then plus them with broadcast. features = query.expand_dims(axis=2) + key.expand_dims(axis=1) scores = self.v(features).squeeze(axis=-1) attention_weights = self.dropout(masked_softmax(scores, valid_length)) return nd.batch_dot(attention_weights, value) # Defined in file: ./chapter_optimization/optimization-intro.md def annotate(text, xy, xytext): d2l.plt.gca().annotate(text, xy=xy, xytext=xytext, arrowprops=dict(arrowstyle='->')) # Defined in file: ./chapter_optimization/gd.md def train_2d(trainer): """Optimize a 2-dim objective function with a customized trainer.""" # s1 and s2 are internal state variables and will # be used later in the chapter x1, x2, s1, s2 = -5, -2, 0, 0 results = [(x1, x2)] for i in range(20): x1, x2, s1, s2 = trainer(x1, x2, s1, s2) results.append((x1, x2)) print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2)) return results # Defined in file: ./chapter_optimization/gd.md def show_trace_2d(f, results): """Show the trace of 2D variables during optimization.""" d2l.set_figsize((3.5, 2.5)) d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1)) d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4') d2l.plt.xlabel('x1') d2l.plt.ylabel('x2') # Defined in file: ./chapter_optimization/minibatch-sgd.md def get_data_ch10(batch_size=10, n=1500): data = np.genfromtxt('../data/airfoil_self_noise.dat', delimiter='\t') data = nd.array((data - data.mean(axis=0)) / data.std(axis=0)) data_iter = d2l.load_array((data[:n, :-1], data[:n, -1]), batch_size, is_train=True) return data_iter, data.shape[1]-1 # Defined in file: ./chapter_optimization/minibatch-sgd.md def train_ch10(trainer_fn, states, hyperparams, data_iter, feature_dim, num_epochs=2): # Initialization w = nd.random.normal(scale=0.01, shape=(feature_dim, 1)) b = nd.zeros(1) w.attach_grad() b.attach_grad() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss # Train animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.35]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: with autograd.record(): l = loss(net(X), y).mean() l.backward() trainer_fn([w, b], states, hyperparams) n += X.shape[0] if n % 200 == 0: timer.stop() animator.add(n/X.shape[0]/len(data_iter), d2l.evaluate_loss(net, data_iter, loss)) timer.start() print('loss: %.3f, %.3f sec/epoch'%(animator.Y[0][-1], timer.avg())) return timer.cumsum(), animator.Y[0] # Defined in file: ./chapter_optimization/minibatch-sgd.md def train_gluon_ch10(trainer_name, trainer_hyperparams, data_iter, num_epochs=2): # Initialization net = nn.Sequential() net.add(nn.Dense(1)) net.initialize(init.Normal(sigma=0.01)) trainer = gluon.Trainer( net.collect_params(), trainer_name, trainer_hyperparams) loss = gluon.loss.L2Loss() animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.35]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(X.shape[0]) n += X.shape[0] if n % 200 == 0: timer.stop() animator.add(n/X.shape[0]/len(data_iter), d2l.evaluate_loss(net, data_iter, loss)) timer.start() print('loss: %.3f, %.3f sec/epoch'%(animator.Y[0][-1], timer.avg())) # Defined in file: ./chapter_computational-performance/multiple-gpus.md def split_batch(X, y, ctx_list): """Split X and y into multiple devices specified by ctx""" assert X.shape[0] == y.shape[0] return (gluon.utils.split_and_load(X, ctx_list), gluon.utils.split_and_load(y, ctx_list)) # Defined in file: ./chapter_computational-performance/multiple-gpus-gluon.md def resnet18(num_classes): """A slightly modified ResNet-18 model""" def resnet_block(num_channels, num_residuals, first_block=False): blk = nn.Sequential() for i in range(num_residuals): if i == 0 and not first_block: blk.add(d2l.Residual( num_channels, use_1x1conv=True, strides=2)) else: blk.add(d2l.Residual(num_channels)) return blk net = nn.Sequential() # This model uses a smaller convolution kernel, stride, and padding and # removes the maximum pooling layer net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1), nn.BatchNorm(), nn.Activation('relu')) net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2), resnet_block(256, 2), resnet_block(512, 2)) net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes)) return net # Defined in file: ./chapter_computational-performance/multiple-gpus-gluon.md def evaluate_accuracy_gpus(net, data_iter): # Query the list of devices. ctx_list = list(net.collect_params().values())[0].list_ctx() metric = d2l.Accumulator(2) # num_corrected_examples, num_examples for features, labels in data_iter: Xs, ys = d2l.split_batch(features, labels, ctx_list) pys = [net(X) for X in Xs] # run in parallel metric.add(sum(d2l.accuracy(py, y) for py, y in zip(pys, ys)), labels.size) return metric[0]/metric[1] # Defined in file: ./chapter_computer-vision/image-augmentation.md def train_batch_ch12(net, features, labels, loss, trainer, ctx_list): Xs, ys = d2l.split_batch(features, labels, ctx_list) with autograd.record(): pys = [net(X) for X in Xs] ls = [loss(py, y) for py, y in zip(pys, ys)] for l in ls: l.backward() trainer.step(features.shape[0]) train_loss_sum = sum([l.sum().asscalar() for l in ls]) train_acc_sum = sum(d2l.accuracy(py, y) for py, y in zip(pys, ys)) return train_loss_sum, train_acc_sum # Defined in file: ./chapter_computer-vision/image-augmentation.md def train_ch12(net, train_iter, test_iter, loss, trainer, num_epochs, ctx_list=d2l.try_all_gpus()): num_batches, timer = len(train_iter), d2l.Timer() animator = d2l.Animator(xlabel='epoch', xlim=[0,num_epochs], ylim=[0,2], legend=['train loss','train acc','test acc']) for epoch in range(num_epochs): # store training_loss, training_accuracy, num_examples, num_features metric = d2l.Accumulator(4) for i, (features, labels) in enumerate(train_iter): timer.start() l, acc = train_batch_ch12( net, features, labels, loss, trainer, ctx_list) metric.add(l, acc, labels.shape[0], labels.size) timer.stop() if (i+1) % (num_batches // 5) == 0: animator.add(epoch+i/num_batches, (metric[0]/metric[2], metric[1]/metric[3], None)) test_acc = d2l.evaluate_accuracy_gpus(net, test_iter) animator.add(epoch+1, (None, None, test_acc)) print('loss %.3f, train acc %.3f, test acc %.3f' % ( metric[0]/metric[2], metric[1]/metric[3], test_acc)) print('%.1f exampes/sec on %s' % ( metric[2]*num_epochs/timer.sum(), ctx_list)) # Defined in file: ./chapter_computer-vision/bounding-box.md def bbox_to_rect(bbox, color): """Convert bounding box to matplotlib format.""" # Convert the bounding box (top-left x, top-left y, bottom-right x, # bottom-right y) format to matplotlib format: ((upper-left x, # upper-left y),
<reponame>dirtybrain/DAnTE_V2 #!usr/bin/env python3 __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020 Westwood Robotics" __date__ = "Jan 8, 2020" __version__ = "0.1.0" __status__ = "Beta" import time import os import sys from pathlib import Path from Play.motor_controller import MotorController from Play.dynamixel_controller import DynamixelController from Settings.Robot import * from Settings.Constants_DAnTE import * import math from collections import deque if EXTERNAL_ENC: # Only import the following when EXTERNAL_ENC is True as wiringpi and spidev are required. import Forward_Kinematics.forward_kin as FK from Play.MPS import MPS_Encoder_Cluster import pdb # PI0 is in Settings.Robot if PI0: print("Using Pi-ZERO, will not plot.") PLOTTING_OVERRIDE = False else: import matplotlib.pyplot as plt import matplotlib matplotlib.interactive(True) PLOTTING_OVERRIDE = True class RobotController(object): def __init__(self, robot=None, bypass_DXL=False, bypass_ext_enc=False): if robot is None: print("Robot set to DAnTE by default") robot = DAnTE self.robot = robot self.MC = MotorController(self.robot.BEAR_baudrate, self.robot.BEAR_port) # When debug, you might want to bypass Dynamixel self.bypass_DXL = bypass_DXL if self.bypass_DXL: self.DC = None else: self.DC = DynamixelController(self.robot.palm.motor_id, self.robot.DXL_port, self.robot.DXL_baudrate) if not EXTERNAL_ENC: # Force to bypass external encoders when EXTERNAL_ENC=None bypass_ext_enc = True # When debug, you might want to bypass external encoders self.bypass_ext_enc = bypass_ext_enc if self.bypass_ext_enc: self.ext_enc = None else: self.ext_enc = MPS_Encoder_Cluster("MA310", BUS, robot.encoders, MAX_SPI_SPEED, SPI_MODE) # self.robot.DXL_port) # self.gesture = None self.mode = None self.approach_speed = default_approach_speed self.approach_stiffness = None self.detect_current = None self.final_stiffness = default_final_stiffness self.preload = None self.max_iq = None self.contact_position = [0, 0, 0] # self.contact_iq = [0, 0, 0] self.balance_factor = [1, 1, 1] # Factor for force balance between fingers, update when change gesture self.welcome_msg() # self.start_robot() def welcome_msg(self): print("=========== DAnTE version 2.0.0 -- Last Updated 2020.06.24 ===") print("==============================================================") # ------------------------ # INITIALIZATION / CALIBRATION # ------------------------ # Functions for initialization of finger(s) # Read initials.txt and check settings # Move finger(s) through range of motion according to initials.txt and check for mobility and interference def start_robot(self): # Ping all actuators error = self.ping() # 4 bit respectively for INDEX, INDEX_M, THUMB, Dynamixel, 0b10000 for overall error. # Read initials, fact check and populate robot object init_data = self.read_initials() # init_data = [['FINGER', motor_id, homing_offset, travel, encoder_offset]...] if not init_data or (not self.bypass_DXL and len(init_data) < 4) or (self.bypass_DXL and len(init_data) < 3): print("Initialization data seems to be corrupted. Please run calibration_geometry() first.") error = 0b10000 return error for idx, f in enumerate(self.robot.fingerlist): if f.name != init_data[idx][0]: print("init_data.name does not match for %s." % f.name) error = error | (1 << idx) elif f.motor_id != init_data[idx][1]: print("init_data.motor_id does not match for %s." % f.name) error = error | (1 << idx) else: f.homing_offset = init_data[idx][2] f.travel = init_data[idx][3] if not self.bypass_ext_enc: f.encoder_offset = init_data[idx][4] if not self.bypass_DXL: if self.robot.palm.name != init_data[3][0]: print("init_data.name does not match for %s." % self.robot.palm.name) error = error | (1 << 3) elif self.robot.palm.motor_id != init_data[3][1]: print("init_data.motor_id does not match for %s." % self.robot.palm.name) error = error | (1 << 3) else: self.robot.palm.home = init_data[3][2] self.robot.palm.travel = init_data[3][3] if error: print("Failed to start robot.") sys.exit() else: # Set Current, Velocity and Position PID as well as safe iq_max and velocity_max, # and clear Direct Force PID. self.MC.init_driver_all() self.robot.booted = True print("Welcome aboard, Captain.") # return error def initialization(self): """Full hand initialization.""" # Check if booted if self.robot.booted: pass else: print("Run start_robot first.") return False abnormal = [0, 0, 0, 0] print("Starting initialization sequence...") # [Fingers, Palm] abnormal code: # 10000 External encoder offset discrepancy # 01000 Failed to travel to home # 00100 Failed to fully close # 00010 Position out of range # 00001 home_offset abnormal # 0. Check PALM first if not self.bypass_DXL: # Compare DXL homing_offset if self.DC.get_homing_offset() != 0: print("Palm actuator needs calibration.\nCalibrate it first, or run with bypass_DXL option.") abnormal[3] = 0b00001 return False else: # Check if position in range, home ~ home+pi/2 palm_pos = self.DC.get_present_position() if (self.robot.palm.home - 0.2) < palm_pos < (self.robot.palm.home + 1.77): pass else: print("Palm actuator needs calibration.\nCalibrate it first, or run with bypass_DXL option.") abnormal[3] = 0b00010 return False # bypass_DXL or PALM checked if self.bypass_DXL: input("Turn index fingers to parallel gesture then press enter.") else: print("Changing to Parallel gesture...") self.DC.torque_enable(1) self.DC.set_goal_position(self.robot.palm.home) time.sleep(0.5) self.robot.palm.angle = 0 self.MC.init_driver_all() # 1. Compare home_offset for i in range(3): if round(self.robot.fingerlist[i].homing_offset, 2) != round( self.MC.pbm.get_homing_offset(self.robot.finger_ids[i])[0][0][0], 2): abnormal[i] = abnormal[i] | 0b0001 print("%s home_offset abnormal." % self.robot.fingerlist[i].name) # 2. Current position with in range present_pos = self.MC.pbm.get_present_position(BEAR_INDEX, BEAR_INDEX_M, BEAR_THUMB) for i, pos in enumerate(present_pos): if self.robot.fingerlist[i].mirrored: if pos[0][0] < -0.1 or pos[0][0] > self.robot.fingerlist[i].travel + 0.1: abnormal[i] = abnormal[i] | 0b0010 print("%s present_pos out of range." % self.robot.fingerlist[i].name) print(pos[0]) else: if pos[0][0] > 0.1 or pos[0][0] < self.robot.fingerlist[i].travel - 0.1: abnormal[i] = abnormal[i] | 0b0010 print("%s present_pos out of range." % self.robot.fingerlist[i].name) print(pos[0]) # # 3. Check for position Limit # limit_min = self.MC.pbm.get_limit_position_min(m_id)[0] # limit_max = self.MC.pbm.get_limit_position_max(m_id)[0] # if limit_min != end_pos or limit_max != 0: # abnormal = True # print("Position limit abnoraml") # Ask user if abnormal if sum(abnormal): usr = input("Fingers seem to need calibration. Do you want to continue anyway?(y/n)") if usr == "n" or usr == "N": return False else: pass # Set motor mode and PID # Set mode and limits self.MC.set_mode_all('position') # 4. Move to End -> complete running = [True, True, True] self.MC.torque_enable_all(1) self.MC.pbm.set_goal_position((BEAR_INDEX, self.robot.fingerlist[0].travel), (BEAR_INDEX_M, self.robot.fingerlist[1].travel), (BEAR_THUMB, self.robot.fingerlist[0].travel)) start_time = time.time() while sum(running): try: status = self.MC.pbm.get_bulk_status((INDEX.motor_id, 'present_position', 'present_velocity'), (INDEX_M.motor_id, 'present_position', 'present_velocity'), (THUMB.motor_id, 'present_position', 'present_velocity')) err = [data[1] for data in status] position = [data[0][0] for data in status] # velocity = [data[0][1] for data in status] elapsed_time = time.time() - start_time if elapsed_time < TIMEOUT_INIT: for i in range(3): if running[i] and abs(position[i] - self.robot.fingerlist[i].travel) < 0.1: running[i] = False self.MC.damping_mode(self.robot.finger_ids[i]) print("%s end travel complete." % self.robot.fingerlist[i].name) else: self.MC.pbm.set_goal_position((self.robot.finger_ids[i], self.robot.fingerlist[i].travel)) if err[i] != 128 and err[i] != 144: print("%s error, code:" % self.robot.fingerlist[i].name, bin(err[i])) else: print("Timeout while moving to end. Is there something blocking the finger(s)?") print("Abnormal:") for i in range(3): if running[i]: abnormal[i] = abnormal[i] | 0b0100 print(self.robot.fingerlist[i].name) self.MC.damping_mode_all() running = [False, False, False] except KeyboardInterrupt: running = [0] print("User interrupted.") time.sleep(0.5) # 5. Move to Home -> complete print("Fingers resetting...") running = [True, True, True] # Enable torque and go to Home self.MC.damping_release_all() self.MC.torque_enable_all(1) self.MC.pbm.set_goal_position((THUMB.motor_id, 0), (INDEX.motor_id, 0), (INDEX_M.motor_id, 0)) time.sleep(2) start_time = time.time() while sum(running): try: status = self.MC.pbm.get_bulk_status((INDEX.motor_id, 'present_position', 'present_velocity'), (INDEX_M.motor_id, 'present_position', 'present_velocity'), (THUMB.motor_id, 'present_position', 'present_velocity')) err = [data[1] for data in status] position = [data[0][0] for data in status] # velocity = [data[0][1] for data in status] elapsed_time = time.time() - start_time if elapsed_time < TIMEOUT_INIT: for i in range(3): if abs(position[i]) < 0.1: running[i] = False self.MC.torque_enable(self.robot.finger_ids[i], 0) else: self.MC.pbm.set_goal_position((self.robot.finger_ids[i], 0)) if err[i] != 128: print("%s error, code:" % self.robot.fingerlist[i].name, bin(err[i])) else: print("Timeout while resetting. Is there something blocking the finger(s)?") print("Abnormal:") for i in range(3): if running[i]: abnormal[i] = abnormal[i] | 0b1000 print(self.robot.fingerlist[i].name) self.MC.torque_enable(self.robot.finger_ids[i], 0) running = [False, False, False] except KeyboardInterrupt: running = [0] print("User interrupted.") # 6. Check external encoder reading and offset if not self.bypass_ext_enc: self.ext_enc.connect() time.sleep(0.2) ext_reading = self.ext_enc.get_angle() self.ext_enc.release() for idx, finger in enumerate(self.robot.fingerlist): if 0.18 < abs(ext_reading[idx] - finger.encoder_offset) < 6.1: # External encoder reading differs from the record for too much abnormal[idx] = abnormal[idx] | 0b10000 print("%s external encoder abnormal." % finger.name) print("ext_reading: %f" % ext_reading[idx]) print("encoder_offset: %f" % finger.encoder_offset) # 7. Finger initialization complete # Disable and finish self.set_robot_enable(0) if sum(abnormal): print("Initialization failed.") for idx, code in enumerate(abnormal): if code: print("%s abnormal, error code: %d" % (self.robot.fingerlist[idx].name, code)) return False else: print("Initialization Complete.") for f in self.robot.fingerlist: f.initialized = True self.robot.palm.initialized = True self.robot.initialized = True # Get iq_compensation data iq_compensation = self.read_iq_compensation() if iq_compensation is None: # There is no iq compensation data print("WARNING: No iq_compensation found. Contact detection performance may be reduced.") usr = input("Do you want to run a quick calibration? (Y/n)") if usr == 'Y' or 'y': # Run iq_compensation calibration if self.calibration_iq_compensation(): self.robot.iq_compensation = self.read_iq_compensation() else: print("Iq compensation calibration failed.") else:
leads to a whole load of wrongdoings.", "vote_count": 7, "first_air_date": "2013-09-24", "backdrop_path": "/yVsEJ9Y4c50I5ZY5Fo7odcde2cd.jpg", "poster_path": "/wGpeMDbep7sn4m4OQbu3WQ1Bdwy.jpg", "genre_ids": [35], "name": "London Irish", "original_language": "en", "original_name": "London Irish", "popularity": 2.643, "character": "Steph", "credit_id": "6215e9180b5fd60069117146", "episode_count": 1, "media_type": "tv", }, ], "crew": [ { "vote_average": 8.0, "overview": "Fleabag may seem oversexed, emotionally unfiltered and self-obsessed, but that's just the tip of the iceberg. With family and friendships under strain and a guinea pig café struggling to keep afloat, Fleabag suddenly finds herself with nothing to lose.", "id": 620350, "adult": False, "backdrop_path": "/avdCATeTca285BpMhLxSARIiFLG.jpg", "vote_count": 23, "genre_ids": [35], "release_date": "2019-09-12", "original_language": "en", "original_title": "National Theatre Live: Fleabag", "poster_path": "/wBmmX79NxG6LOztS3PI7uvc5ZBh.jpg", "title": "National Theatre Live: Fleabag", "video": True, "popularity": 4.532, "credit_id": "5d4565332d1e40219bbdb1fb", "department": "Writing", "job": "Writer", "media_type": "movie", }, { "adult": False, "backdrop_path": "/r2GAjd4rNOHJh6i6Y0FntmYuPQW.jpg", "genre_ids": [12, 28, 53], "vote_count": 4212, "original_language": "en", "original_title": "No Time to Die", "poster_path": "/iUgygt3fscRoKWCV1d0C7FbM9TP.jpg", "title": "No Time to Die", "video": False, "vote_average": 7.5, "id": 370172, "overview": "Bond has left active service and is enjoying a tranquil life in Jamaica. His peace is short-lived when his old friend <NAME> from the CIA turns up asking for help. The mission to rescue a kidnapped scientist turns out to be far more treacherous than expected, leading Bond onto the trail of a mysterious villain armed with dangerous new technology.", "release_date": "2021-09-29", "popularity": 285.445, "credit_id": "5e56e686f48b34001577b646", "department": "Writing", "job": "Screenplay", "media_type": "movie", }, { "backdrop_path": "/ddkbWeVyqvLyJa3QdNRalj8kMQJ.jpg", "first_air_date": "2016-07-21", "genre_ids": [35, 18], "id": 67070, "name": "Fleabag", "origin_country": ["GB"], "original_language": "en", "original_name": "Fleabag", "overview": "A comedy series adapted from the award-winning play about a young woman trying to cope with life in London whilst coming to terms with a recent tragedy.", "poster_path": "/27vEYsRKa3eAniwmoccOoluEXQ1.jpg", "vote_average": 8.2, "vote_count": 660, "popularity": 23.924, "credit_id": "5783be1c9251417df60022ae", "department": "Writing", "episode_count": 12, "job": "Writer", "media_type": "tv", }, { "backdrop_path": "/2eR0H27Us1tvbjd95oW7WhiKioC.jpg", "first_air_date": "2018-04-08", "genre_ids": [80, 18], "id": 72750, "original_language": "en", "poster_path": "/4wKhTVw8aGq5AZMa0Q1spERdi7n.jpg", "vote_average": 8.1, "original_name": "<NAME>", "origin_country": ["US"], "vote_count": 888, "overview": "A security consultant hunts for a ruthless assassin. Equally obsessed with each other, they go head to head in an epic game of cat-and-mouse.", "name": "<NAME>", "popularity": 62.865, "credit_id": "5<PASSWORD>", "department": "Writing", "episode_count": 8, "job": "Writer", "media_type": "tv", }, { "original_language": "en", "id": 65251, "overview": "A comedy drama that crashes straight into the lives and loves of six twenty-something adults living together as Property Guardians in a disused hospital.", "vote_average": 7.3, "vote_count": 103, "original_name": "Crashing", "origin_country": ["GB"], "poster_path": "/7X09F4FWJa2OB62KVpYaFrX12ea.jpg", "first_air_date": "2016-01-11", "backdrop_path": "/5P6S91EXQMZJK5bHsm8RSQnkPMF.jpg", "genre_ids": [35], "name": "Crashing", "popularity": 10.402, "credit_id": "5b09d7bb9251414715007c32", "department": "Writing", "episode_count": 6, "job": "Writer", "media_type": "tv", }, { "backdrop_path": "/ddkbWeVyqvLyJa3QdNRalj8kMQJ.jpg", "first_air_date": "2016-07-21", "genre_ids": [35, 18], "id": 67070, "name": "Fleabag", "origin_country": ["GB"], "original_language": "en", "original_name": "Fleabag", "overview": "A comedy series adapted from the award-winning play about a young woman trying to cope with life in London whilst coming to terms with a recent tragedy.", "poster_path": "/27vEYsRKa3eAniwmoccOoluEXQ1.jpg", "vote_average": 8.2, "vote_count": 660, "popularity": 23.924, "credit_id": "5b2e61bd9251416e00005249", "department": "Production", "episode_count": 6, "job": "Executive Producer", "media_type": "tv", }, { "original_language": "en", "id": 65251, "overview": "A comedy drama that crashes straight into the lives and loves of six twenty-something adults living together as Property Guardians in a disused hospital.", "vote_average": 7.3, "vote_count": 103, "original_name": "Crashing", "origin_country": ["GB"], "poster_path": "/7X09F4FWJa2OB62KVpYaFrX12ea.jpg", "first_air_date": "2016-01-11", "backdrop_path": "/5P6S91EXQMZJK5bHsm8RSQnkPMF.jpg", "genre_ids": [35], "name": "Crashing", "popularity": 10.402, "credit_id": "5b2e61350e0a2657bf005fde", "department": "Production", "episode_count": 6, "job": "Associate Producer", "media_type": "tv", }, { "backdrop_path": "/2eR0H27Us1tvbjd95oW7WhiKioC.jpg", "first_air_date": "2018-04-08", "genre_ids": [80, 18], "id": 72750, "original_language": "en", "poster_path": "/4wKhTVw8aGq5AZMa0Q1spERdi7n.jpg", "vote_average": 8.1, "original_name": "<NAME>", "origin_country": ["US"], "vote_count": 888, "overview": "A security consultant hunts for a ruthless assassin. Equally obsessed with each other, they go head to head in an epic game of cat-and-mouse.", "name": "<NAME>", "popularity": 62.865, "credit_id": "5b723c080e0a267ef41a61e4", "department": "Production", "episode_count": 16, "job": "Executive Producer", "media_type": "tv", }, { "original_language": "en", "poster_path": "/rbYfDspa6vUTAxif5SZJABgB8pr.jpg", "id": 87393, "first_air_date": "2020-04-12", "name": "RUN", "vote_count": 138, "vote_average": 6.8, "overview": "Ruby is living a humdrum existence when one day she gets a text inviting her to fulfill a youthful pact, promising true love and self-reinvention, by stepping out of her life to take a journey with her oldest flame.", "backdrop_path": "/7aMoV1v6A8uwTRaGV8LHIBcVBuN.jpg", "original_name": "RUN", "origin_country": ["US"], "genre_ids": [35, 18], "popularity": 9.495, "credit_id": "5c80550a0e0a2643035d2944", "department": "Production", "episode_count": 7, "job": "Executive Producer", "media_type": "tv", }, { "backdrop_path": "/2eR0H27Us1tvbjd95oW7WhiKioC.jpg", "first_air_date": "2018-04-08", "genre_ids": [80, 18], "id": 72750, "original_language": "en", "poster_path": "/4wKhTVw8aGq5AZMa0Q1spERdi7n.jpg", "vote_average": 8.1, "original_name": "<NAME>", "origin_country": ["US"], "vote_count": 888, "overview": "A security consultant hunts for a ruthless assassin. Equally obsessed with each other, they go head to head in an epic game of cat-and-mouse.", "name": "<NAME>", "popularity": 62.865, "credit_id": "623961d1d29bdd00786ca6cf", "department": "Crew", "episode_count": 32, "job": "Creator", "media_type": "tv", }, { "backdrop_path": "/ddkbWeVyqvLyJa3QdNRalj8kMQJ.jpg", "first_air_date": "2016-07-21", "genre_ids": [35, 18], "id": 67070, "name": "Fleabag", "origin_country": ["GB"], "original_language": "en", "original_name": "Fleabag", "overview": "A comedy series adapted from the award-winning play about a young woman trying to cope with life in London whilst coming to terms with a recent tragedy.", "poster_path": "/27vEYsRKa3eAniwmoccOoluEXQ1.jpg", "vote_average": 8.2, "vote_count": 660, "popularity": 23.924, "credit_id": "5783be01c3a368424c00249b", "department": "Creator", "job": "Creator", "media_type": "tv", }, { "original_language": "en", "id": 65251, "overview": "A comedy drama that crashes straight into the lives and loves of six twenty-something adults living together as Property Guardians in a disused hospital.", "vote_average": 7.3, "vote_count": 103, "original_name": "Crashing", "origin_country": ["GB"], "poster_path": "/7X09F4FWJa2OB62KVpYaFrX12ea.jpg", "first_air_date": "2016-01-11", "backdrop_path": "/5P6S91EXQMZJK5bHsm8RSQnkPMF.jpg", "genre_ids": [35], "name": "Crashing", "popularity": 10.402, "credit_id": "5b09d82e0e0a267c27007e5e", "department": "Creator", "job": "Creator", "media_type": "tv", }, { "poster_path": None, "vote_average": 0.0, "overview": "Based on the 2005 film Mr. & Mrs. Smith.", "origin_country": ["US"], "id": 118642, "name": "Mr. & <NAME>", "backdrop_path": None, "vote_count": 0, "genre_ids": [], "original_name": "Mr. & <NAME>", "original_language": "en", "popularity": 1.4, "credit_id": "602734a2df857c003fde9e65", "department": "Creator", "job": "Creator", "media_type": "tv", }, ], "id": 1023483, } series = { "adult": False, "backdrop_path": "/t15KHp3iNfHVQBNIaqUGW12xQA4.jpg", "created_by": [ { "id": 24951, "credit_id": "52599cb3760ee34661b60d9a", "name": "<NAME>", "gender": 2, "profile_path": "/il6NSy05UnO7SV9SgzEqKHXioNl.jpg", }, { "id": 66633, "credit_id": "52599cb3760ee34661b60d94", "name": "<NAME>", "gender": 2, "profile_path": "/uFh3OrBvkwKSU3N5y0XnXOhqBJz.jpg", }, ], "episode_run_time": [45], "first_air_date": "2015-02-08", "genres": [{"id": 80, "name": "Crime"}, {"id": 18, "name": "Drama"}], "homepage": "https://www.amc.com/shows/better-call-saul--1002228", "id": 60059, "in_production": True, "languages": ["en"], "last_air_date": "2022-05-23", "last_episode_to_air": { "air_date": "2022-05-23", "episode_number": 7, "id": 3641946, "name": "<NAME>", "overview": "Jimmy and Kim deal with a last-minute snag. Howard's investigation finally yields results.", "production_code": "", "runtime": 50, "season_number": 6, "still_path": "/flVUI98wSTtLmYDCx81gowleQTe.jpg", "vote_average": 10.0, "vote_count": 5, }, "name": "<NAME>", "next_episode_to_air": { "air_date": "2022-07-11", "episode_number": 8, "id": 3641948, "name": "", "overview": "", "production_code": "", "runtime": None, "season_number": 6, "still_path": None, "vote_average": 0.0, "vote_count": 0, }, "networks": [ { "name": "AMC", "id": 174, "logo_path": "/pmvRmATOCaDykE6JrVoeYxlFHw3.png", "origin_country": "US", } ], "number_of_episodes": 63, "number_of_seasons": 6, "origin_country": ["US"], "original_language": "en", "original_name": "<NAME>", "overview": 'Six years before <NAME> meets Walter White. We meet him when the man who will become <NAME>man is known as <NAME>, a small-time lawyer searching for his destiny, and, more immediately, hustling to make ends meet. Working alongside, and, often, against Jimmy, is “fixer” <NAME>. The series tracks Jimmy’s transformation into Saul Goodman, the man who puts “criminal” in “criminal lawyer".', "popularity": 237.057, "poster_path": "/fC2HDm5t0kHl7mTm7jxMR31b7by.jpg", "production_companies": [ { "id": 11073, "logo_path": "/wHs44fktdoj6c378ZbSWfzKsM2Z.png", "name": "<NAME> Television Studios", "origin_country": "US", }, { "id": 23242, "logo_path": "/fOALFvgnO1ZdIaA9PNIAAuaDKWd.png", "name": "AMC Networks", "origin_country": "US", }, ], "production_countries": [ {"iso_3166_1": "US", "name": "United States of America"} ], "seasons": [ { "air_date": "2014-12-17", "episode_count": 5, "id": 64929, "name": "Specials", "overview": "", "poster_path": "/oaF4Fj0FafTEK2CX9aiIW42oABe.jpg", "season_number": 0, }, { "air_date": "2015-02-08", "episode_count": 10, "id": 60223, "name": "Season 1", "overview": "When we meet him, the man who will become <NAME> is known as <NAME>, a small-time lawyer searching for his destiny, and, more immediately, hustling to make ends meet. Working alongside, and often against, Jimmy is “fixer” <NAME>.", "poster_path": "/iwwHYFrVJF3mkHHMp77120gnYUq.jpg", "season_number": 1, }, { "air_date": "2016-02-15", "episode_count": 10, "id": 72040, "name": "Season 2", "overview": "Season one left Jimmy at the center of a large class-action lawsuit that led to a promising job opportunity at a prestigious firm in Santa Fe. Having arrived at a fork in the road, will Jimmy
fields for fc. If none specified, all fields are returned. Supports fields in list [] or comma separated string "field1,field2,.." where -- optional where clause params -- dictionary of parameters for query """ lyr = self.layer(layer_name) lyr.layer_to_kmz(flds, where, params, kmz=out_kmz) def createReplica(self, layers, replicaName, geometry='', geometryType='', inSR='', replicaSR='', dataFormat='json', returnReplicaObject=True, **kwargs): """query attachments, returns a JSON object Required: layers -- list of layers to create replicas for (valid inputs below) replicaName -- name of replica Optional: geometry -- optional geometry to query features, if none supplied, will grab all features geometryType -- type of geometry inSR -- input spatial reference for geometry replicaSR -- output spatial reference for replica data dataFormat -- output format for replica (sqlite|json) **kwargs -- optional keyword arguments for createReplica request Special Optional Args: returnReplicaObject -- option to return replica as an object (restapi.SQLiteReplica|restapi.JsonReplica) based on the dataFormat of the replica. If the data format is sqlite and this parameter is False, the data will need to be fetched quickly because the server will automatically clean out the directory. The default cleanup for a sqlite file is 10 minutes. This option is set to True by default. It is recommended to set this option to True if the output dataFormat is "sqlite". Documentation on Server Directory Cleaning: http://server.arcgis.com/en/server/latest/administer/linux/about-server-directories.htm """ if hasattr(self, SYNC_ENABLED) and not self.syncEnabled: raise NotImplementedError('FeatureService "{}" does not support Sync!'.format(self.url)) # validate layers if isinstance(layers, basestring): layers = [l.strip() for l in layers.split(',')] elif not isinstance(layers, (list, tuple)): layers = [layers] if all(map(lambda x: isinstance(x, int), layers)): layers = ','.join(map(str, layers)) elif all(map(lambda x: isinstance(x, basestring), layers)): layers = ','.join(map(str, filter(lambda x: x is not None, [s.id for s in self.layers if s.name.lower() in [l.lower() for l in layers]]))) if not geometry and not geometryType: ext = self.initialExtent inSR = self.initialExtent.spatialReference geometry= ','.join(map(str, [ext.xmin,ext.ymin,ext.xmax,ext.ymax])) geometryType = ESRI_ENVELOPE inSR = self.spatialReference useGeometry = False else: useGeometry = True geometry = Geometry(geometry) inSR = geometry.getSR() geometryType = geometry.geometryType if not replicaSR: replicaSR = self.spatialReference validated = layers.split(',') options = {REPLICA_NAME: replicaName, LAYERS: layers, LAYER_QUERIES: '', GEOMETRY: geometry, GEOMETRY_TYPE: geometryType, IN_SR: inSR, REPLICA_SR: replicaSR, TRANSPORT_TYPE: TRANSPORT_TYPE_URL, RETURN_ATTACHMENTS: TRUE, RETURN_ATTACHMENTS_DATA_BY_URL: TRUE, ASYNC: FALSE, F: PJSON, DATA_FORMAT: dataFormat, REPLICA_OPTIONS: '', } for k,v in kwargs.iteritems(): if k != SYNC_MODEL: if k == LAYER_QUERIES: if options[k]: if isinstance(options[k], basestring): options[k] = json.loads(options[k]) for key in options[k].keys(): options[k][key][USE_GEOMETRY] = useGeometry options[k] = json.dumps(options[k], ensure_ascii=False) else: options[k] = v if self.syncCapabilities.supportsPerReplicaSync: options[SYNC_MODEL] = PER_REPLICA else: options[SYNC_MODEL] = PER_LAYER if options[ASYNC] in (TRUE, True) and self.syncCapabilities.supportsAsync: st = self.request(self.url + '/createReplica', options, ) while STATUS_URL not in st: time.sleep(1) else: options[ASYNC] = 'false' st = self.request(self.url + '/createReplica', options) if returnReplicaObject: return self.fetchReplica(st) else: return st @staticmethod def fetchReplica(rep_url): """fetches a replica from a server resource. This can be a url or a dictionary/JSON object with a "URL" key. Based on the file name of the replica, this will return either a restapi.SQLiteReplica() or restapi.JsonReplica() object. The two valid file name extensions are ".json" (restapi.JsonReplica) or ".geodatabase" (restapi.SQLiteReplica). Required: rep_url -- url or JSON object that contains url to replica file on server If the file is sqlite, it is highly recommended to use a with statement to work with the restapi.SQLiteReplica object so the connection is automatically closed and the file is cleaned from disk. Example: >>> url = 'http://someserver.com/arcgis/rest/directories/TEST/SomeService_MapServer/_ags_data{B7893BA273C164D96B7BEE588627B3EBC}.geodatabase' >>> with FeatureService.fetchReplica(url) as replica: >>> # this is a restapi.SQLiteReplica() object >>> # list tables in database >>> print(replica.list_tables()) >>> # export to file geodatabase <- requires arcpy access >>> replica.exportToGDB(r'C\Temp\replica.gdb') """ if isinstance(rep_url, dict): rep_url = st.get(URL_UPPER) if rep_url.endswith('.geodatabase'): resp = requests.get(rep_url, stream=True, verify=False) fileName = rep_url.split('/')[-1] db = os.path.join(TEMP_DIR, fileName) with open(db, 'wb') as f: for chunk in resp.iter_content(1024 * 16): if chunk: f.write(chunk) return SQLiteReplica(db) elif rep_url.endswith('.json'): return JsonReplica(requests.get(self.url, verify=False).json()) return None def replicaInfo(self, replicaID): """get replica information Required: replicaID -- ID of replica """ query_url = self.url + '/replicas/{}'.format(replicaID) return namedTuple('ReplicaInfo', self.request(query_url)) def syncReplica(self, replicaID, **kwargs): """synchronize a replica. Must be called to sync edits before a fresh replica can be obtained next time createReplica is called. Replicas are snapshots in time of the first time the user creates a replica, and will not be reloaded until synchronization has occured. A new version is created for each subsequent replica, but it is cached data. It is also recommended to unregister a replica AFTER sync has occured. Alternatively, setting the "closeReplica" keyword argument to True will unregister the replica after sync. More info can be found here: http://server.arcgis.com/en/server/latest/publish-services/windows/prepare-data-for-offline-use.htm and here for key word argument parameters: http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#/Synchronize_Replica/02r3000000vv000000/ Required: replicaID -- ID of replica """ query_url = self.url + '/synchronizeReplica' params = {REPLICA_ID: replicaID} for k,v in kwargs.iteritems(): params[k] = v return self.request(query_url, params) def unRegisterReplica(self, replicaID): """unregisters a replica on the feature service Required: replicaID -- the ID of the replica registered with the service """ query_url = self.url + '/unRegisterReplica' params = {REPLICA_ID: replicaID} return self.request(query_url, params) class FeatureLayer(MapServiceLayer): def __init__(self, url='', usr='', pw='', token='', proxy=None, referer=None): """class to handle Feature Service Layer Required: url -- feature service layer url Optional (below params only required if security is enabled): usr -- username credentials for ArcGIS Server pw -- password credentials for ArcGIS Server token -- token to handle security (alternative to usr and pw) proxy -- option to use proxy page to handle security, need to provide full path to proxy url. referer -- option to add Referer Header if required by proxy, this parameter is ignored if no proxy is specified. """ super(FeatureLayer, self).__init__(url, usr, pw, token, proxy, referer) # store list of EditResult() objects to track changes self.editResults = [] def updateCursor(self, fields='*', where='1=1', add_params={}, records=None, exceed_limit=False, auto_save=True, useGlobalIds=False, **kwargs): """updates features in layer using a cursor, the applyEdits() method is automatically called when used in a "with" statement and auto_save is True. Optional: fields -- fields to return. Default is "*" to return all fields where -- where clause add_params -- extra parameters to add to query string passed as dict records -- number of records to return. Default is None to return all records within bounds of max record count unless exceed_limit is True exceed_limit -- option to get all records in layer. This option may be time consuming because the ArcGIS REST API uses default maxRecordCount of 1000, so queries must be performed in chunks to get all records. auto_save -- automatically apply edits when using with statement, if True, will apply edits on the __exit__ method. useGlobalIds -- (added at 10.4) Optional parameter which is false by default. Requires the layer's supportsApplyEditsWithGlobalIds property to be true. When set to true, the features and attachments in the adds, updates, deletes, and attachments parameters are identified by their globalIds. When true, the service adds the new features and attachments while preserving the globalIds submitted in the payload. If the globalId of a feature (or an attachment) collides with a pre-existing feature (or an attachment), that feature and/or attachment add fails. Other adds, updates, or deletes are attempted if rollbackOnFailure is false. If rollbackOnFailure is true, the whole operation fails and rolls back on any failure including a globalId collision. When useGlobalIds is true, updates and deletes are identified by each feature or attachment globalId rather than their objectId or attachmentId. kwargs -- any additional keyword arguments supported by the applyEdits method of the REST API, see http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#/Apply_Edits_Feature_Service_Layer/02r3000000r6000000/ """ layer = self class UpdateCursor(Cursor): def __init__(self, feature_set, fieldOrder=[], auto_save=auto_save, useGlobalIds=useGlobalIds, **kwargs): super(UpdateCursor, self).__init__(feature_set, fieldOrder) self.useGlobalIds = useGlobalIds self._deletes = [] self._updates = [] self._attachments = { ADDS: [], UPDATES: [], DELETES: [] } self._kwargs = {} for k,v in kwargs.iteritems(): if k not in('feature_set', 'fieldOrder', 'auto_save'): self._kwargs[k] = v for i, f in enumerate(self.features): ft = Feature(f) oid = self._get_oid(ft) self.features[i] = ft @property def has_oid(self): try: return hasattr(self,
np.cos(locs1[..., 1] - locs2[..., 1]) return 6367000 * np.arccos( cos_lat_d - cos_lat1 * cos_lat2 * (1 - cos_lon_d)) def isopoly_to_gdf(collec_poly, levels, field_name="levels"): """ Convert a collection of matplotlib.contour.QuadContourSet to a GeoDataFrame Set an attribute `field_name` on each feature, according to `levels` values (`levels` must have the same number of features as the collection of contours) Parameters ---------- collection_polygons : matplotlib.contour.QuadContourSet The result of a grid interpolation from matplotlib. levels : array-like The value to use as attributes for the constructed GeoDataFrame. field_name : str The name of the field to be fill by values contained in `levels` variable (default: "levels"). Returns ------- gdf_contours : GeoDataFrame The result as a GeoDataFrame. """ polygons, data = [], [] for i, polygon in enumerate(collec_poly.collections): mpoly = [] for path in polygon.get_paths(): path.should_simplify = False poly = path.to_polygons() exterior, holes = [], [] if len(poly) > 0 and len(poly[0]) > 3: exterior = poly[0] if len(poly) > 1: holes = [h for h in poly[1:] if len(h) > 3] mpoly.append(Polygon(exterior, holes)) if len(mpoly) > 1: mpoly = MultiPolygon(mpoly) polygons.append(mpoly) data.append(levels[i]) elif len(mpoly) == 1: polygons.append(mpoly[0]) data.append(levels[i]) return GeoDataFrame(geometry=polygons, data=data, columns=[field_name]) class BaseSmooth: def __repr__(self): return "\n".join([self.info, self.info2, self.info3]) def __str__(self): return "\n".join([self.info, self.info2, self.info3]) @property def properties(self): print("\n".join([self.info, self.info2, self.info3])) def open_mask(self, mask, input_layer): # Read the mask according to its format: if isinstance(mask, GeoDataFrame): self.mask = mask elif isinstance(mask, str) and isinstance(input_layer, str) \ and mask == input_layer: self.mask = self.gdf.copy() else: self.mask = GeoDataFrame.from_file(mask) self.check_mask() def check_mask(self): # Ensure the mask is made of Polygon/MultiPolygon: if len(set(self.mask.type) .intersection({"Polygon", "MultiPolygon"})) > 0: # Use the same projection for the mask as for the input layer: if self.mask.crs and self.mask.crs is not self.proj_to_use: self.use_mask = True self.mask.to_crs(self.proj_to_use, inplace=True) else: self.use_mask = True self.mask.crs = self.proj_to_use else: self.mask = None self.use_mask = False def filter_missing_values(self, variable_name, variable_name2): # Convert the first value field to a numeric field if not already, # and dont take into account features with no value / NaN value if not self.gdf[variable_name].dtype in (float, int): self.gdf.loc[:, variable_name] = \ self.gdf[variable_name].replace('', np.NaN) self.gdf.loc[:, variable_name] = self.gdf[variable_name].astype(float) self.gdf = self.gdf[self.gdf[variable_name].notnull()] # Convert the second value field to a numeric field if not already, # and dont take into account features with no value / NaN value if variable_name2: if not self.gdf[variable_name2].dtype in (float, int): self.gdf.loc[:, variable_name2] = \ self.gdf[variable_name2].replace('', np.NaN) self.gdf.loc[:, variable_name2] = \ self.gdf[variable_name2].astype(float) self.gdf = self.gdf[self.gdf[variable_name2].notnull()] # Provide a new index if entries have been removed : self.gdf.index = range(len(self.gdf)) def define_levels(self, nb_class, disc_func): zi = self.zi _min = np.nanmin(zi) if not nb_class: # nb_class = int(get_opt_nb_class(len(zi)) - 2) nb_class = 8 if not disc_func or "prog_geom" in disc_func: levels = [_min] + [ np.nanmax(zi) / i for i in range(1, nb_class + 1)][::-1] elif "equal_interval" in disc_func: _bin = np.nanmax(zi) / nb_class levels = [_min] + [_bin * i for i in range(1, nb_class+1)] elif "percentiles" in disc_func: levels = np.percentile( np.concatenate((zi[zi.nonzero()], np.array([_min]))), np.linspace(0.0, 100.0, nb_class+1)) elif "jenks" in disc_func: levels = list(jenks_breaks(np.concatenate( ([_min], zi[zi.nonzero()])), nb_class)) levels[0] = levels[0] - _min * 0.01 elif "head_tail" in disc_func: levels = head_tail_breaks(np.concatenate( ([_min], zi[zi.nonzero()]))) elif "maximal_breaks" in disc_func: levels = maximal_breaks(np.concatenate( ([_min], zi[zi.nonzero()])), nb_class) else: raise ValueError return levels def render(self, nb_class=8, disc_func=None, user_defined_breaks=None, output="GeoJSON", new_mask=False): """ Parameters ---------- nb_class : int, optionnal The number of class (default: 8). disc_func : str, optionnal The kind of data classification to be used (to be choosed in "equal_interval", "jenks", "percentiles, "head_tail_breaks" and "prog_geom"), default: None. user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (override `nb_class` and `disc_func` values if any) (default: None). output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). new_mask : str, optionnal Use a new mask by giving the path to the file (Polygons only) to use as clipping mask, can also be directly a GeoDataFrame (default: False). Returns ------- smoothed_result : bytes or GeoDataFrame The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. """ if disc_func and 'jenks' in disc_func and not jenks_breaks: raise ValueError( "Missing jenkspy package - could not use jenks breaks") zi = self.zi if isinstance(new_mask, (type(False), type(None))): if not self.use_mask: self.use_mask = False self.mask = None else: self.open_mask(new_mask, None) # We want levels with the first break value as the minimum of the # interpolated values and the last break value as the maximum of theses # values: if user_defined_breaks: levels = user_defined_breaks if levels[len(levels) - 1] < np.nanmax(zi): levels = levels + [np.nanmax(zi)] if levels[0] > np.nanmin(zi): levels = [np.nanmin(zi)] + levels else: levels = self.define_levels(nb_class, disc_func) # Ensure that the levels are unique/increasing # to avoid error from `contourf` : s_levels = set(levels) if len(s_levels) != len(levels): levels = list(s_levels) levels.sort() try: collec_poly = contourf( self.XI, self.YI, zi.reshape(tuple(reversed(self.shape))).T, levels, vmax=abs(np.nanmax(zi)), vmin=-abs(np.nanmin(zi))) # Retry without setting the levels : except ValueError: collec_poly = contourf( self.XI, self.YI, zi.reshape(tuple(reversed(self.shape))).T, vmax=abs(np.nanmax(zi)), vmin=-abs(np.nanmin(zi))) # Fetch the levels returned by contourf: levels = collec_poly.levels # Set the maximum value at the maximum value of the interpolated values: levels[-1] = np.nanmax(zi) # Transform contourf contours into a GeoDataFrame of (Multi)Polygons: res = isopoly_to_gdf(collec_poly, levels=levels[1:], field_name="max") if self.longlat: def f(x, y, z=None): return (x / 0.017453292519943295, y / 0.017453292519943295) res.geometry = [transform(f, g) for g in res.geometry] res.crs = self.proj_to_use # Set the min/max/center values of each class as properties # if this contour layer: res["min"] = [np.nanmin(zi)] + res["max"][0:len(res)-1].tolist() res["center"] = (res["min"] + res["max"]) / 2 # Compute the intersection between the contour layer and the mask layer: ix_max_ft = len(res) - 1 if self.use_mask: res.loc[0:ix_max_ft, "geometry"] = res.geometry.buffer( 0).intersection(unary_union(self.mask.geometry.buffer(0))) # res.loc[0:ix_max_ft, "geometry"] = res.geometry.buffer( # 0).intersection(self.poly_max_extend.buffer(-0.1)) # Repair geometries if necessary : if not all(t in ("MultiPolygon", "Polygon") for t in res.geom_type): res.loc[0:ix_max_ft, "geometry"] = \ [geom if geom.type in ("Polygon", "MultiPolygon") else MultiPolygon( [j for j in geom if j.type in ('Polygon', 'MultiPolygon')] ) for geom in res.geometry] if "geojson" in output.lower(): return res.to_crs({"init": "epsg:4326"}).to_json().encode() else: return res class SmoothStewart(BaseSmooth): """ Main object, allowing to create an instance with some required parameters (span, beta, etc.) then render the contour polygons according to various parameters (data classification, number of bins, output format, etc.) Parameters ---------- input_layer : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). span : int The span! beta : float The beta! typefct : str, optionnal The type of function in {"exponential", "pareto"} (default: "exponential"). resolution_pts: int, optionnal The resolution to use (in number of points). Can be overrided by the 'resolution' parameter if set. resolution : int, optionnal The resolution to use (in unit of the input file). mask : str, optionnal Path to the file (Polygons only) to use as clipping mask (default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) Attributes ---------- zi : numpy.ndarray The computed potential values for each `unknownpts`. Methods ------- render(nb_class=8, disc_func=None, user_defined_breaks=None, output="GeoJSON", new_mask=False) Render the contour polygon according to the choosen number of class and the choosen classification method (or according to `user_defined_breaks` which will overwrite these parameters) """ def __init__(self, input_layer, variable_name, span, beta, typefct='exponential', nb_pts=10000, resolution=None, variable_name2=None, mask=None, **kwargs): self.sizelimit = kwargs.get('sizelimit', float('infinity')) self.longlat = kwargs.get("distGeo", kwargs.get("longlat", True)) self.proj_to_use = {'init': 'epsg:4326'} if self.longlat \ else kwargs.get("projDistance", None) \ or ("""+proj=robin +lon_0=0 +x_0=0 +y_0=0 """ """+ellps=WGS84 +datum=WGS84 +units=m +no_defs""") self.gdf = input_layer.copy() if isinstance(input_layer, GeoDataFrame) \ else GeoDataFrame.from_file(input_layer) if self.gdf.crs and self.gdf.crs is not self.proj_to_use: self.gdf.to_crs(self.proj_to_use, inplace=True) else: self.gdf.crs = self.proj_to_use self.info = ( 'SmoothStewart - variable : {}{} ({}
if content_type is None: raise ValueError( "Missing the required parameter `content_type` " "when calling `get_account_attachment_by_file_name`" ) collection_formats = {} path_params = { "AccountID": account_id, "FileName": file_name, } query_params = [] header_params = { "xero-tenant-id": xero_tenant_id, "contentType": content_type, } local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/octet-stream"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url("/Accounts/{AccountID}/Attachments/{FileName}") try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="file", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception( error, self, "get_account_attachment_by_file_name" ) def get_account_attachment_by_id( self, xero_tenant_id, account_id, attachment_id, content_type, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves a specific attachment from a specific account using a unique attachment Id # noqa: E501 OAuth2 scope: accounting.attachments, accounting.attachments.read :param str xero_tenant_id: Xero identifier for Tenant (required) :param str account_id: Unique identifier for Account object (required) :param str attachment_id: Unique identifier for Attachment object (required) :param str content_type: The mime type of the attachment file you are retrieving i.e image/jpg, application/pdf (required) :param bool _return_http_data_only: return received data only :param bool _preload_content: load received data in models :param bool _request_timeout: maximum wait time for response :return: file """ # verify the required parameter 'xero_tenant_id' is set if xero_tenant_id is None: raise ValueError( "Missing the required parameter `xero_tenant_id` " "when calling `get_account_attachment_by_id`" ) # verify the required parameter 'account_id' is set if account_id is None: raise ValueError( "Missing the required parameter `account_id` " "when calling `get_account_attachment_by_id`" ) # verify the required parameter 'attachment_id' is set if attachment_id is None: raise ValueError( "Missing the required parameter `attachment_id` " "when calling `get_account_attachment_by_id`" ) # verify the required parameter 'content_type' is set if content_type is None: raise ValueError( "Missing the required parameter `content_type` " "when calling `get_account_attachment_by_id`" ) collection_formats = {} path_params = { "AccountID": account_id, "AttachmentID": attachment_id, } query_params = [] header_params = { "xero-tenant-id": xero_tenant_id, "contentType": content_type, } local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/octet-stream"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url("/Accounts/{AccountID}/Attachments/{AttachmentID}") try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="file", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception( error, self, "get_account_attachment_by_id" ) def get_account_attachments( self, xero_tenant_id, account_id, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves attachments for a specific accounts by using a unique account Id # noqa: E501 OAuth2 scope: accounting.attachments, accounting.attachments.read :param str xero_tenant_id: Xero identifier for Tenant (required) :param str account_id: Unique identifier for Account object (required) :param bool _return_http_data_only: return received data only :param bool _preload_content: load received data in models :param bool _request_timeout: maximum wait time for response :return: Attachments """ # verify the required parameter 'xero_tenant_id' is set if xero_tenant_id is None: raise ValueError( "Missing the required parameter `xero_tenant_id` " "when calling `get_account_attachments`" ) # verify the required parameter 'account_id' is set if account_id is None: raise ValueError( "Missing the required parameter `account_id` " "when calling `get_account_attachments`" ) collection_formats = {} path_params = { "AccountID": account_id, } query_params = [] header_params = { "xero-tenant-id": xero_tenant_id, } local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/json"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url("/Accounts/{AccountID}/Attachments") try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="Attachments", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception(error, self, "get_account_attachments") def get_accounts( self, xero_tenant_id, if_modified_since=empty, where=empty, order=empty, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves the full chart of accounts # noqa: E501 OAuth2 scope: accounting.settings, accounting.settings.read :param str xero_tenant_id: Xero identifier for Tenant (required) :param datetime if_modified_since: Only records created or modified since this timestamp will be returned :param str where: Filter by an any element :param str order: Order by an any element :param bool _return_http_data_only: return received data only :param bool _preload_content: load received data in models :param bool _request_timeout: maximum wait time for response :return: Accounts """ # verify the required parameter 'xero_tenant_id' is set if xero_tenant_id is None: raise ValueError( "Missing the required parameter `xero_tenant_id` " "when calling `get_accounts`" ) collection_formats = {} path_params = {} query_params = [] if where is not empty: query_params.append(("where", where)) if order is not empty: query_params.append(("order", order)) header_params = { "xero-tenant-id": xero_tenant_id, } if if_modified_since is not empty: header_params["If-Modified-Since"] = if_modified_since local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/json"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url("/Accounts") try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="Accounts", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception(error, self, "get_accounts") def get_bank_transaction( self, xero_tenant_id, bank_transaction_id, unitdp=empty, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves a single spent or received money transaction by using a unique bank transaction Id # noqa: E501 OAuth2 scope: accounting.transactions, accounting.transactions.read :param str xero_tenant_id: Xero identifier for Tenant (required) :param str bank_transaction_id: Xero generated unique identifier for a bank transaction (required) :param int unitdp: e.g. unitdp=4 – (Unit Decimal Places) You can opt in to use four decimal places for unit amounts :param bool _return_http_data_only: return received data only :param bool _preload_content: load received data in models :param bool _request_timeout: maximum wait time for response :return: BankTransactions """ # verify the required parameter 'xero_tenant_id' is set if xero_tenant_id is None: raise ValueError( "Missing the required parameter `xero_tenant_id` " "when calling `get_bank_transaction`" ) # verify the required parameter 'bank_transaction_id' is set if bank_transaction_id is None: raise ValueError( "Missing the required parameter `bank_transaction_id` " "when calling `get_bank_transaction`" ) collection_formats = {} path_params = { "BankTransactionID": bank_transaction_id, } query_params = [] if unitdp is not empty: query_params.append(("unitdp", unitdp)) header_params = { "xero-tenant-id": xero_tenant_id, } local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/json"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url("/BankTransactions/{BankTransactionID}") try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="BankTransactions", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception(error, self, "get_bank_transaction") def get_bank_transaction_attachment_by_file_name( self, xero_tenant_id, bank_transaction_id, file_name, content_type, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves a specific attachment from a specific bank transaction by filename # noqa: E501 OAuth2 scope: accounting.attachments, accounting.attachments.read :param str xero_tenant_id: Xero identifier for Tenant (required) :param str bank_transaction_id: Xero generated unique identifier for a bank transaction (required) :param str file_name: Name of the attachment (required) :param str content_type: The mime type of the attachment file you are retrieving i.e image/jpg, application/pdf (required) :param bool _return_http_data_only: return received data only :param bool _preload_content: load received data in models :param bool _request_timeout: maximum wait time for response :return: file """ # verify the required parameter 'xero_tenant_id' is set if xero_tenant_id is None: raise ValueError( "Missing the required parameter `xero_tenant_id` " "when calling `get_bank_transaction_attachment_by_file_name`" ) # verify the required parameter 'bank_transaction_id' is set if bank_transaction_id is None: raise ValueError( "Missing the required parameter `bank_transaction_id` " "when calling `get_bank_transaction_attachment_by_file_name`" ) # verify the required parameter 'file_name' is set if file_name is None: raise ValueError( "Missing the required parameter `file_name` " "when calling `get_bank_transaction_attachment_by_file_name`" ) # verify the required parameter 'content_type' is set if content_type is None: raise ValueError( "Missing the required parameter `content_type` " "when calling `get_bank_transaction_attachment_by_file_name`" ) collection_formats = {} path_params = { "BankTransactionID": bank_transaction_id, "FileName": file_name, } query_params = [] header_params = { "xero-tenant-id": xero_tenant_id, "contentType": content_type, } local_var_files = {} form_params = [] body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept( ["application/octet-stream"] ) # Authentication setting auth_settings = ["OAuth2"] url = self.get_resource_url( "/BankTransactions/{BankTransactionID}/Attachments/{FileName}" ) try: return self.api_client.call_api( url, "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="file", response_model_finder=self.get_model_finder(), auth_settings=auth_settings, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) except exceptions.HTTPStatusException as error: raise translate_status_exception( error, self, "get_bank_transaction_attachment_by_file_name" ) def get_bank_transaction_attachment_by_id( self, xero_tenant_id, bank_transaction_id, attachment_id, content_type, _return_http_data_only=True, _preload_content=True, _request_timeout=None, ): """Retrieves specific attachments from a
** 4 ) # calc kinematic viscosity from celsius temperature AND RETURN IT, VDI # Wärmeatlas 2013 table D2.1: @njit(nogil=GLOB_NOGIL, cache=True) def ny_water(T): # 4th degree: # Tclp = T.copy() # Tclp[Tclp > 100.] = 100. return ( 1.7764473380494155e-06 - 5.5640275781265404e-08 * T + 1.0243072887494426e-09 * T ** 2 - 9.7954460136981165e-12 * T ** 3 + 3.6460468745062724e-14 * T ** 4 ) # calc Prandtl number from celsius temperature: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_Pr_water(T, Pr): # 4th degree: # Pr[:] = (12.909891117064289 - 0.4207372206483363*T # + 7.4860282126284405e-03*T**2 - 6.854571430021334e-05*T**3 # + 2.4685760188512201e-07*T**4) # 3rd degree: # Tclp = T.copy() # Tclp[Tclp > 100.] = 100. Pr[:] = ( 12.5780108199379058 - 0.35124680571767508 * T + 4.3225480444706085e-03 * T ** 2 - 1.9174193923188898e-05 * T ** 3 ) # calc Prandtl number from celsius temperature AND RETURN IT # (alot faster for single values): @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def Pr_water_return(T): # 4th degree: # Pr[:] = (12.909891117064289 - 0.4207372206483363*T # + 7.4860282126284405e-03*T**2 - 6.854571430021334e-05*T**3 # + 2.4685760188512201e-07*T**4) # 3rd degree: # Tclp = T.copy() # Tclp[Tclp > 100.] = 100. return ( 12.5780108199379058 - 0.35124680571767508 * T + 4.3225480444706085e-03 * T ** 2 - 1.9174193923188898e-05 * T ** 3 ) # calc isobaric expansion coefficient in [1/K] from celsius temperature: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_beta_water(T, beta): # 3rd degree: # Tclp = T.copy() # Tclp[Tclp > 100.] = 100. beta[:] = ( -5.87985364766666e-05 + 1.5641955219950547e-05 * T - 1.3587684743777981e-07 * T ** 2 + 6.1220503308149086e-10 * T ** 3 ) # calc isobaric expansion coefficient in [1/K] from celsius temperature # AND RETURN IT: @nb.njit(nogil=GLOB_NOGIL, cache=True) def beta_water_return(T): # 3rd degree: # Tclp = T.copy() # Tclp[Tclp > 100.] = 100. return ( -5.87985364766666e-05 + 1.5641955219950547e-05 * T - 1.3587684743777981e-07 * T ** 2 + 6.1220503308149086e-10 * T ** 3 ) # calc Reynolds number @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_Re_water(v, L, ny, Re): Re[:] = np.abs(v) * L / ny # calc Reynolds number and RETURN the result @nb.njit(nogil=GLOB_NOGIL, cache=True) def Re_water_return(v, L, ny): return np.abs(v) * L / ny # ---> dry air: # calc density from celsius temperature: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_rho_dryair(T, rho): # 2nd degree rho[:] = ( 1.2767987012987012 - 0.0046968614718614701 * T + 1.4296536796536256e-05 * T ** 2 ) # calc heat conductivity from celsius temperature: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_lam_dryair(T, lam): # 2nd degree lam[:] = ( 0.024358670995670989 + 7.6533982683982561e-05 * T - 4.2099567099572201e-08 * T ** 2 ) # calc heat conductivity from celsius temperature and return it: @njit(nogil=GLOB_NOGIL, cache=True) def lam_dryair_return(T): # 2nd degree return ( 0.024358670995670989 + 7.6533982683982561e-05 * T - 4.2099567099572201e-08 * T ** 2 ) # calc kinematic viscosity from celsius temperature: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def get_ny_dryair(T, ny): # 2nd degree ny[:] = ( 1.3500069264069257e-05 + 8.8810389610389459e-08 * T + 1.0974025974025443e-10 * T ** 2 ) # calc kinematic viscosity from celsius temperature and return it: @njit(nogil=GLOB_NOGIL, cache=True) def ny_dryair_return(T): # 2nd degree return ( 1.3500069264069257e-05 + 8.8810389610389459e-08 * T + 1.0974025974025443e-10 * T ** 2 ) # ---> humid air: # saturation pressure in [Pa] of humid air for total pressures < 2MPa @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def humid_air_saturation_pressure(T): # 6th degree return ( +1.56927617e-09 * T ** 6 + 2.32760367e-06 * T ** 5 + 3.19028425e-04 * T ** 4 + 2.51824584e-02 * T ** 3 + 1.42489091e00 * T ** 2 + 4.55277840e01 * T ** 1 + 5.99770272e02 ) # 10th degree # return (- 1.30339138e-16*T**10 + 7.49527386e-14*T**9 - 1.59881730e-11*T**8 # + 1.54764869e-09*T**7 - 5.56609536e-08*T**6 + 1.46597641e-06*T**5 # + 4.21883898e-04*T**4 + 2.43290034e-02*T**3 + 1.38204573e+00*T**2 # + 4.58581434e+01*T + 6.02909924e+02) # mass of water in fully saturated air in [kg H2O / kg Air] for a pressure of # 0.1 MPa, only valid for -30 <= T <= 80 ! @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def humid_air_sat_water_mass(T): r""" Calculate the mass of water in fully saturated air (at 100% relative humidity) in :math:`[f]= \mathtt{kg_{H_2O}}/\mathtt{kg_{Luft}}`, valid for a pressure of :math:`0.1\mathtt{\,MPa}` and a temperature range of :math:`-30\mathtt{\,°C}\leq T \leq 80\mathtt{\,°C}`. """ # assert np.all(-30 <= T) and np.all(T <= 80) # 6th degree # return (1.56927617e-09*T**6 + 2.32760367e-06*T**5 + 3.19028425e-04*T**4 # + 2.51824584e-02*T**3 + 1.42489091e+00*T**2 + 4.55277840e+01*T # + 5.99770272e+02) # 10th degree return ( +3.47491188e-19 * T ** 10 - 6.50956001e-17 * T ** 9 + 3.68271647e-15 * T ** 8 + 2.06252891e-14 * T ** 7 - 7.11474217e-12 * T ** 6 + 1.29052920e-10 * T ** 5 + 6.62755505e-09 * T ** 4 + 8.79652019e-08 * T ** 3 + 8.16034548e-06 * T ** 2 + 2.98380899e-04 * T + 3.79413965e-03 ) # %% part shape specific calculations: def calc_flow_length(*, part_shape, vertical, **kwargs): """ Calculate the shape specific flow length of a part for the calculation of heat-transfer specific numbers, like the Rayleigh number. """ err_str = ( '`part_shape=' + str(part_shape) + '` was passed to ' '`calc_flow_length()`. The following shapes are supported:\n' '\'plane\', \'cylinder\', \'sphere\'.' ) assert part_shape in ['plane', 'cylinder', 'sphere'], err_str err_str = ( '`vertical=' + str(vertical) + '` was passed to ' '`calc_flow_length()`. `vertical` must be a bool value, ' 'depicting the orientation of the surface of which the flow ' 'length shall be calculated. For a sphere this argument will ' 'be ignored.' ) assert type(vertical) == bool, err_str err_str_len = ( 'The part shape specific length parameters to be passed to ' '`calc_flow_length()` depend on the part\'s shape and ' 'orientation. The following parameters are needed to calculate ' 'the flow length for each shape:\n' ' plane, vertical=True: `height=X`\n' ' plane, vertical=False (horizontal): `width=X`, `depth=Y`. ' 'Pass the diameter as value for width and depth for a circular ' 'disk.\n' ' cylinder, vertical=True: `height=X`\n' ' cylinder, vertical=False (horizontal): `diameter=X`\n' ' sphere: `diameter=X`' ) if part_shape in ('plane', 'cylinder') and vertical: assert 'height' in kwargs and isinstance( kwargs['height'], (int, float) ), err_str_len return kwargs['height'] # VDI Wärmeatlas 2013, F2.1 elif part_shape == 'plane' and not vertical: # VDI Wärmeatlas 2013, F2.3 assert 'width' in kwargs and isinstance( kwargs['width'], (int, float) ), err_str_len assert 'depth' in kwargs and isinstance( kwargs['depth'], (int, float) ), err_str_len return (kwargs['width'] * kwargs['depth']) / ( 2 * (kwargs['width'] + kwargs['depth']) ) elif part_shape == 'cylinder' and not vertical: assert 'diameter' in kwargs and isinstance( kwargs['diameter'], (int, float) ), err_str_len return kwargs['diameter'] * np.pi / 2 # VDI Wärmeatlas 2013, F2.4.1 else: assert 'diameter' in kwargs and isinstance( kwargs['diameter'], (int, float) ), err_str_len return kwargs['diameter'] # VDI Wärmeatlas 2013, F2.4.2 # caller to calculate Reynolds number for a round pipe/TES: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def pipe_get_Re(dm, rho, ny, A, d_i, Re): get_Re_water(dm / (rho * A), d_i, ny, Re) # manual inlining function to calculate Reynolds number for a round pipe/TES: @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def pipe_get_Re2(dm, rho, ny, A, d_i, Re): Re[:] = dm * d_i / (rho * A * ny) @nb.jit(nopython=True, nogil=GLOB_NOGIL, cache=True) def pipe_alpha_i(dm, T, rho, ny, lam_fld, A, d_i, x, alpha): """ Calculates the inner alpha value in [W/(m**2K)] between the fluid inside a pipe and the pipe wall for each cell of a round pipe or thermal energy storage of diameter `d_i` and length `Len`. In this case, the wall is considererd in the same row of the temperature array as the fluid and thus can't have temperatures different from the fluid temperature. Parameters: ----------- dm : np.ndarray, float, integer Massflow in the pipe/TES in [kg/s]. rho : np.ndarray Fluid density in [kg/m**3]. ny : np.ndarray Fluid kinematic viscosity in [m**2/s]. lam_fld : np.ndarray Fluid heat conductivity in [W/(mK)]. A : float, integer Inner pipe cross section in [m**2] for round pipes or hydraulic cross section for pipes of other shapes. d_i : float, integer Inner pipe diameter in [m] for round pipes or hydraulic diameter for pipes of other shapes. x : float, integer Distance of cell from start of the pipe [m]. If the massflow `dm` is negative, the inverse (the distance from the other end of the pipe) is taken. alpha : np.ndarray Array to save the resulting alpha value in [W/(m**2K)] for all cells of the pipe/TES. """ # save shape: shape = rho.shape # shape = (100,) # preallocate arrays: Re = np.zeros(shape) # Pr
self.window, self.theme.text_state[state], False, None, self, None, dst_x, dst_y, layout) cr.restore() return def __draw_part_bg(self, cr, part, w, h, state, shape, style, r, aw, shapes): # outer slight bevel or focal highlight shapes[shape](cr, 0, 0, w, h, r, aw) cr.set_source_rgba(0, 0, 0, 0.055) cr.fill() # colour scheme dicts bg = self.theme.bg_colors outer = self.theme.dark_line_colors inner = self.theme.light_line_colors # bg linear vertical gradient if state != gtk.STATE_PRELIGHT: color1, color2 = bg[state] else: if part != self.get_active(): color1, color2 = bg[self.theme.PRELIT_NORMAL] else: color1, color2 = bg[self.theme.PRELIT_ACTIVE] shapes[shape](cr, 1, 1, w-1, h-1, r, aw) lin = cairo.LinearGradient(0, 0, 0, h-1) lin.add_color_stop_rgb(0.0, *color1) lin.add_color_stop_rgb(1.0, *color2) cr.set_source(lin) cr.fill() cr.set_line_width(1.0) # strong outline shapes[shape](cr, 1.5, 1.5, w-1.5, h-1.5, r, aw) cr.set_source_rgb(*outer[state]) cr.stroke() # inner bevel/highlight if self.theme.light_line_colors[state]: shapes[shape](cr, 2.5, 2.5, w-2.5, h-2.5, r, aw) r, g, b = inner[state] cr.set_source_rgba(r, g, b, 0.6) cr.stroke() return def __shape_rect(self, cr, x, y, w, h, r, aw): global M_PI, PI_OVER_180 cr.new_sub_path() cr.arc(r+x, r+y, r, M_PI, 270*PI_OVER_180) cr.arc(w-r, r+y, r, 270*PI_OVER_180, 0) cr.arc(w-r, h-r, r, 0, 90*PI_OVER_180) cr.arc(r+x, h-r, r, 90*PI_OVER_180, M_PI) cr.close_path() return def __shape_start_arrow_ltr(self, cr, x, y, w, h, r, aw): global M_PI, PI_OVER_180 cr.new_sub_path() cr.arc(r+x, r+y, r, M_PI, 270*PI_OVER_180) # arrow head cr.line_to(w-aw+1, y) cr.line_to(w, (h+y)*0.5) cr.line_to(w-aw+1, h) cr.arc(r+x, h-r, r, 90*PI_OVER_180, M_PI) cr.close_path() return def __shape_mid_arrow_ltr(self, cr, x, y, w, h, r, aw): cr.move_to(-1, y) # arrow head cr.line_to(w-aw+1, y) cr.line_to(w, (h+y)*0.5) cr.line_to(w-aw+1, h) cr.line_to(-1, h) cr.close_path() return def __shape_end_cap_ltr(self, cr, x, y, w, h, r, aw): global M_PI, PI_OVER_180 cr.move_to(-1, y) cr.arc(w-r, r+y, r, 270*PI_OVER_180, 0) cr.arc(w-r, h-r, r, 0, 90*PI_OVER_180) cr.line_to(-1, h) cr.close_path() return def __shape_start_arrow_rtl(self, cr, x, y, w, h, r, aw): global M_PI, PI_OVER_180 cr.new_sub_path() cr.move_to(x, (h+y)*0.5) cr.line_to(aw-1, y) cr.arc(w-r, r+y, r, 270*PI_OVER_180, 0) cr.arc(w-r, h-r, r, 0, 90*PI_OVER_180) cr.line_to(aw-1, h) cr.close_path() return def __shape_mid_arrow_rtl(self, cr, x, y, w, h, r, aw): cr.move_to(x, (h+y)*0.5) cr.line_to(aw-1, y) cr.line_to(w+1, y) cr.line_to(w+1, h) cr.line_to(aw-1, h) cr.close_path() return def __shape_end_cap_rtl(self, cr, x, y, w, h, r, aw): global M_PI, PI_OVER_180 cr.arc(r+x, r+y, r, M_PI, 270*PI_OVER_180) cr.line_to(w+1, y) cr.line_to(w+1, h) cr.arc(r+x, h-r, r, 90*PI_OVER_180, M_PI) cr.close_path() return def __state(self, part): # returns the idle state of the part depending on # whether part is active or not. if part == self.__active_part: return gtk.STATE_ACTIVE return gtk.STATE_NORMAL def __tooltip_check(self, part): # only show a tooltip if part is truncated, i.e. not all label text is # visible. if part.is_truncated(): self.set_has_tooltip(False) gobject.timeout_add(50, self.__set_tooltip_cb, part.label) else: self.set_has_tooltip(False) return def __set_tooltip_cb(self, text): # callback allows the tooltip position to be updated as pointer moves # accross different parts self.set_has_tooltip(True) self.set_tooltip_markup(text) return False def __pick_theme(self, name=None): name = name or gtk.settings_get_default().get_property("gtk-theme-name") themes = PathBarThemes.DICT if themes.has_key(name): return themes[name]() #print "No styling hints for %s are available" % name return PathBarThemeHuman() def __init_drawing(self): if self.get_direction() != gtk.TEXT_DIR_RTL: self.__draw_part = self.__draw_part_ltr self.__shapes = { self.SHAPE_RECTANGLE : self.__shape_rect, self.SHAPE_START_ARROW : self.__shape_start_arrow_ltr, self.SHAPE_MID_ARROW : self.__shape_mid_arrow_ltr, self.SHAPE_END_CAP : self.__shape_end_cap_ltr} else: self.__draw_part = self.__draw_part_rtl self.__shapes = { self.SHAPE_RECTANGLE : self.__shape_rect, self.SHAPE_START_ARROW : self.__shape_start_arrow_rtl, self.SHAPE_MID_ARROW : self.__shape_mid_arrow_rtl, self.SHAPE_END_CAP : self.__shape_end_cap_rtl} return def __motion_notify_cb(self, widget, event): if self.__scroll_xO > 0: return part = self.__part_at_xy(event.x, event.y) prev_focal = self.__focal_part if self.__button_down: if prev_focal and part != prev_focal: prev_focal.set_state(self.__state(prev_focal)) self.queue_draw_area(*prev_focal.get_allocation_tuple()) return self.__button_down = False if part and part.state != gtk.STATE_PRELIGHT: self.__tooltip_check(part) part.set_state(gtk.STATE_PRELIGHT) if prev_focal: prev_focal.set_state(self.__state(prev_focal)) self.queue_draw_area(*prev_focal.get_allocation_tuple()) self.__focal_part = part self.queue_draw_area(*part.get_allocation_tuple()) elif not part and prev_focal != None: prev_focal.set_state(self.__state(prev_focal)) self.queue_draw_area(*prev_focal.get_allocation_tuple()) self.__focal_part = None return def __leave_notify_cb(self, widget, event): self.__button_down = False prev_focal = self.__focal_part if prev_focal: prev_focal.set_state(self.__state(prev_focal)) self.queue_draw_area(*prev_focal.get_allocation_tuple()) self.__focal_part = None return def __button_press_cb(self, widget, event): self.__button_down = True part = self.__part_at_xy(event.x, event.y) if part: part.set_state(gtk.STATE_SELECTED) self.queue_draw_area(*part.get_allocation_tuple()) return def __button_release_cb(self, widget, event): part = self.__part_at_xy(event.x, event.y) if self.__focal_part and self.__focal_part != part: pass elif part and self.__button_down: self.grab_focus() prev_active, redraw = self.__set_active(part) part.set_state(gtk.STATE_PRELIGHT) self.queue_draw_area(*part.get_allocation_tuple()) if redraw: self.queue_draw_area(*prev_active.get_allocation_tuple()) self.__button_down = False return # def __key_release_cb(self, widget, event): # part = None # # left key pressed # if event.keyval == 65363: # part = self.get_left_part() # # right key pressed # elif event.keyval == 65361: # part = self.get_right_part() # if not part: return # prev_active = self.set_active(part) # self.queue_draw_area(*part.allocation) # if prev_active: # self.queue_draw_area(*prev_active.allocation) # part.emit("clicked", event.copy()) # return def __realize_cb(self, widget): self.theme.load(widget.style) return def __expose_cb(self, widget, event): cr = widget.window.cairo_create() if self.theme.base_hack: cr.set_source_rgb(*self.theme.base_hack) cr.paint() if self.__scroll_xO: self.__draw_hscroll(cr) else: self.__draw_all(cr, event.area) del cr return def __style_change_cb(self, widget, old_style): # when alloc.width == 1, this is typical of an unallocated widget, # lets not break a sweat for nothing... if self.allocation.width == 1: return self.theme = self.__pick_theme() self.theme.load(widget.style) # set height to 0 so that if part height has been reduced the widget will # shrink to an appropriate new height based on new font size self.set_size_request(-1, 28) parts = self.__parts self.__parts = [] # recalc best fits, re-append then draw all for part in parts: if part.icon.pixbuf: part.icon.load_pixbuf() part.calc_size_requisition() self.__append(part) self.queue_draw() return def __allocation_change_cb(self, widget, allocation): if allocation.width == 1: return path_w = self.__draw_width() if path_w == allocation.width: return elif path_w > allocation.width: self.__shrink_check(allocation) else: self.__grow_check(allocation.width, allocation) self.queue_draw() return class PathPart: def __init__(self, id, label=None, callback=None, obj=None): self.__requisition = (0,0) self.__layout = None self.__pbar = None self.id = id self.allocation = [0, 0, 0, 0] self.state = gtk.STATE_NORMAL self.shape = PathBar.SHAPE_RECTANGLE self.callback = callback self.obj = obj self.set_label(label or "") self.icon = PathBarIcon() return def set_callback(self, cb): self.callback = cb return def set_label(self, label): # escape special characters label = gobject.markup_escape_text(label.strip()) # some hackery to preserve italics markup label = label.replace('&lt;i&gt;', '<i>').replace('&lt;/i&gt;', '</i>') self.label = label return def set_icon(self, stock_icon, size=gtk.ICON_SIZE_BUTTON): self.icon.specify(stock_icon, size) self.icon.load_pixbuf() return def set_state(self, gtk_state): self.state = gtk_state return def set_shape(self, shape): self.shape = shape return def set_x(self, x): self.allocation[0] = int(x) return def set_size(self, w, h): if w != -1: self.allocation[2] = int(w) if h != -1: self.allocation[3] = int(h) self.__calc_layout_width(self.__layout, self.shape, self.__pbar) return def set_pathbar(self, path_bar): self.__pbar = path_bar return def get_x(self): return self.allocation[0] def get_width(self): return self.allocation[2] def get_height(self): return self.allocation[3] def get_label(self): return self.label def get_allocation(self): return gtk.gdk.Rectangle(*self.get_allocation_tuple()) def get_allocation_tuple(self): if self.__pbar.get_direction() != gtk.TEXT_DIR_RTL: return self.allocation x, y, w, h = self.allocation x = self.__pbar.allocation[2]-x-w return x, y, w, h def get_size_requisition(self): return self.__requisition def get_layout(self): return self.__layout def activate(self): self.__pbar.set_active(self) return def calc_size_requisition(self): pbar = self.__pbar # determine widget size base on label width self.__layout = self.__layout_text(self.label, pbar.get_pango_context()) extents = self.__layout.get_pixel_extents() # calc text width + 2 * padding, text height + 2 * ypadding w = extents[1][2] + 2*pbar.theme.xpadding h = max(extents[1][3] + 2*pbar.theme.ypadding, pbar.get_size_request()[1]) # if has icon add some more pixels on if self.icon.pixbuf: w += self.icon.pixbuf.get_width() + pbar.theme.spacing h = max(self.icon.pixbuf.get_height() + 2*pbar.theme.ypadding, h) # extend width depending on part shape ... if self.shape == PathBar.SHAPE_START_ARROW or \ self.shape == PathBar.SHAPE_END_CAP: w += pbar.theme.arrow_width elif self.shape == PathBar.SHAPE_MID_ARROW: w += 2*pbar.theme.arrow_width # if height greater than current height request, # reset height request to higher value # i get the feeling this should be in set_size_request(), but meh if h > pbar.get_size_request()[1]: pbar.set_size_request(-1, h) self.__requisition = (w,h) return w, h def is_truncated(self): return self.__requisition[0] != self.allocation[2] def __layout_text(self, text, pango_context): layout = pango.Layout(pango_context) layout.set_markup('%s' % text) layout.set_ellipsize(pango.ELLIPSIZE_END) return layout def __calc_layout_width(self, layout, shape, pbar): # set layout width if self.icon.pixbuf: icon_w = self.icon.pixbuf.get_width() + pbar.theme.spacing else: icon_w = 0 w = self.allocation[2] if shape == PathBar.SHAPE_MID_ARROW: layout.set_width((w - 2*pbar.theme.arrow_width - 2*pbar.theme.xpadding - icon_w)*pango.SCALE) elif shape == PathBar.SHAPE_START_ARROW or \ shape == PathBar.SHAPE_END_CAP: layout.set_width((w - pbar.theme.arrow_width - 2*pbar.theme.xpadding - icon_w)*pango.SCALE) else: layout.set_width((w - 2*pbar.theme.xpadding - icon_w)*pango.SCALE) return class PathBarIcon: def __init__(self, name=None, size=None): self.name = name self.size = size self.pixbuf = None return def specify(self, name, size): self.name = name self.size = size return def load_pixbuf(self): if not self.name: print 'Error: No icon specified.' return if not self.size: print 'Note: No icon size specified.' def render_icon(icon_set, name, size): self.pixbuf = icon_set.render_icon( style, gtk.TEXT_DIR_NONE, gtk.STATE_NORMAL, self.size or gtk.ICON_SIZE_BUTTON, gtk.Image(), None) return style = gtk.Style() icon_set = style.lookup_icon_set(self.name) if not icon_set: t = gtk.icon_theme_get_default() self.pixbuf = t.lookup_icon(self.name, self.size, 0).load_icon() else: icon_set = style.lookup_icon_set(self.name) render_icon(icon_set, self.name, self.size)
""" Cadastre - Export method class This plugins helps users to import the french land registry ('cadastre') into a database. It is meant to ease the use of the data in QGIs by providing search tools and appropriate layer symbology. begin : 2013-06-11 copyright : (C) 2013, 2019 by 3liz email : <EMAIL> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ import os import re import tempfile from contextlib import contextmanager from pathlib import Path from typing import Callable, Generator from qgis.core import ( QgsExpression, QgsFeatureRequest, QgsFillSymbol, QgsLayoutExporter, QgsLayoutGridSettings, QgsLayoutItemLabel, QgsLayoutItemMap, QgsLayoutItemPage, QgsLayoutMeasurement, QgsLayoutPoint, QgsLayoutSize, QgsMapLayer, QgsMapSettings, QgsPrintLayout, QgsProject, QgsUnitTypes, QgsVectorLayer, ) from qgis.PyQt.QtCore import QRectF, QSettings, Qt from qgis.PyQt.QtGui import QFont import cadastre.cadastre_common_base as cadastre_common @contextmanager def _printProgress(self, nb: int) -> Generator[Callable[[int], None], None, None]: """ Define a dummy defaultprint progress """ yield (lambda step: None) class cadastreExport: def __init__(self, project: QgsProject, layer: QgsMapLayer, etype: str, comptecommunal: str, geo_parcelle: str = None, target_dir: str = None) -> None: self.plugin_dir = str(Path(__file__).resolve().parent) self.print_parcelle_page = False if not hasattr(self, 'mProgress'): self.mProgress = _printProgress # Store project from context self.mProject = project # Store an instance of QgsComposition self.currentComposition = None # Get instance needed for QgsComposition self.mInstance = self.getMapInstance() # type of export : proprietaire or parcelle self.etype = etype # id of the parcelle self.geo_parcelle = geo_parcelle # memory layer for redlining self.redlineLayer = None self.ccFilter = None if isinstance(comptecommunal, list): self.isMulti = True comptecommunal = list(set(comptecommunal)) if len(comptecommunal) == 1: self.isMulti = False comptecommunal = comptecommunal[0].strip(" '") else: self.isMulti = False self.comptecommunal = comptecommunal self.maxLineNumber = 15 # max number of line per main table self.numPages = 1 self.pageHeight = 210 self.pageWidth = 297 self.printResolution = 300 # target directory for saving s = QSettings() tempDir = s.value("cadastre/tempDir", '%s' % tempfile.gettempdir(), type=str) if not target_dir or not os.path.exists(target_dir): self.targetDir = tempfile.mkdtemp('', 'cad_export_', tempDir) else: self.targetDir = target_dir # label for header2 if self.etype == 'proprietaire': self.typeLabel = u'DE PROPRIÉTÉ' else: self.typeLabel = u'PARCELLAIRE' self.layer = layer self.connectionParams = cadastre_common.getConnectionParameterFromDbLayer(self.layer) self.connector = cadastre_common.getConnectorFromUri(self.connectionParams) self.dbType = self.connectionParams['dbType'] def getMapInstance(self) -> QgsMapSettings: """ Get instance of object needed to instantiate QgsComposition QgsMapRenderer or QgsMapSettings Different if context is server """ return QgsMapSettings() def setComposerTemplates(self, comptecommunal): """ Set parameters for given comptecommunal """ # List of templates comptecommunalAbrev = comptecommunal[9:] self.composerTemplates = { 'header1': { 'names': ['annee', 'ccodep', 'ccodir', 'ccocom', 'libcom'], 'position': [3.5, 2.5, 145, 7.5], 'align': [128, 4], 'keepContent': True, 'type': 'sql', 'filter': 'comptecommunal', 'and': { 'proprietaire': u" AND comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND comptecommunal = '%s'" % comptecommunal }, 'sticky': True }, 'header2': { 'names': ['type'], 'position': [153.5, 2.5, 60, 7.5], 'align': [128, 4], 'keepContent': True, 'type': 'properties', 'source': [self.typeLabel], 'sticky': True }, 'header3': { 'names': ['comptecommunal'], 'position': [218.5, 2.5, 75, 7.5], 'align': [128, 2], 'keepContent': True, 'type': 'properties', 'source': [comptecommunalAbrev], 'sticky': True }, 'proprietaires': { 'names': ['lines'], 'position': [3.5, 10, 290, 40], 'align': [32, 1], 'keepContent': False, 'type': 'parent', 'source': 'proprietaires_line' }, 'proprietes_baties': { 'names': ['lines'], 'position': [3.5, 50, 290, 65], 'align': [32, 1], 'keepContent': False, 'type': 'parent', 'source': 'proprietes_baties_line' }, 'proprietes_baties_sum': { 'names': ['revenucadastral', 'co_vlbaia', 'co_bipevla', 'gp_vlbaia', 'gp_bipevla', 'de_vlbaia', 'de_bipevla', 're_vlbaia', 're_bipevla'], 'position': [3.5, 115, 290, 15], 'align': [32, 1], 'type': 'sql', 'keepContent': True, 'filter': 'comptecommunal', 'and': { 'proprietaire': u" AND l10.comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND p.parcelle = '%s'" % self.geo_parcelle } }, 'proprietes_non_baties': { 'names': ['lines'], 'position': [3.5, 130, 290, 65], 'align': [32, 1], 'keepContent': False, 'type': 'parent', 'source': 'proprietes_non_baties_line' }, 'proprietes_non_baties_sum': { 'names': ['sum_ha_contenance', 'sum_a_contenance', 'sum_ca_contenance', 'sum_drcsuba'], 'position': [3.5, 195, 290, 13], 'align': [32, 1], 'type': 'sql', 'keepContent': True, 'filter': 'comptecommunal', 'and': { 'proprietaire': u" AND p.comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND p.parcelle = '%s'" % self.geo_parcelle }, 'bgcolor': Qt.transparent }, 'footer': { 'names': ['foot'], 'position': [3.5, 208, 288, 4], 'align': [128, 4], 'keepContent': True, 'type': 'properties', 'source': [u"Ce document est donné à titre indicatif - Il n'a pas de valeur légale"], 'bgcolor': Qt.white, 'htmlState': 0, 'font': QFont('sans-serif', 4, 1, True), 'sticky': True } } self.mainTables = { 'proprietaires_line': { 'names': ['mainprop', 'epousede', 'adrprop', 'nele'], 'type': 'sql', 'keepContent': True, 'filter': 'comptecommunal', 'and': { 'proprietaire': u" AND comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND comptecommunal = '%s'" % comptecommunal } }, 'proprietes_baties_line': { 'names': ['section', 'ndeplan', 'ndevoirie', 'adresse', 'coderivoli', 'bat', 'ent', 'niv', 'ndeporte', 'numeroinvar', 'star', 'meval', 'af', 'natloc', 'cat', 'revenucadastral', 'coll', 'natexo', 'anret', 'andeb', 'fractionrcexo', 'pourcentageexo', 'txom', 'coefreduc'], 'type': 'sql', 'filter': 'comptecommunal', 'and': { 'proprietaire': u" AND l10.comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND p.parcelle = '%s'" % self.geo_parcelle } }, 'proprietes_non_baties_line': { 'names': ['section', 'ndeplan', 'ndevoirie', 'adresse', 'coderivoli', 'nparcprim', 'fpdp', 'star', 'suf', 'grssgr', 'cl', 'natcult', 'ha_contenance', 'a_contenance', 'ca_contenance', 'revenucadastral', 'coll', 'natexo', 'anret', 'fractionrcexo', 'pourcentageexo', 'tc', 'lff'], 'type': 'sql', 'and': { 'proprietaire': u" AND p.comptecommunal = '%s'" % comptecommunal, 'parcelle': u" AND p.parcelle = '%s'" % self.geo_parcelle } } } # items for which to count number of lines self.lineCount = { 'proprietes_baties_line': {'count': 0, 'data': None}, 'proprietes_non_baties_line': {'count': 0, 'data': None} } # items for which not the run a query for each page # but only once and keep content for next pages self.contentKeeped = {} for key, item in list(self.composerTemplates.items()): if 'keepContent' in item and item['keepContent']: self.contentKeeped[key] = '' for key, item in list(self.mainTables.items()): if 'keepContent' in item and item['keepContent']: self.contentKeeped[key] = '' def getContentForGivenItem(self, key, item, page=None): """ Take content from template file corresponding to the key and assign data from item """ # First check previous stored content if 'keepContent' in item and item['keepContent'] \ and self.contentKeeped[key]: return self.contentKeeped[key] content = '' replaceDict = '' # Build template file path tplPath = os.path.join( self.plugin_dir, "templates", "%s.tpl" % key ) # Build replace dict depending on source type if item['type'] == 'sql': data = None # Load SQL query and get data # Get sql file sqlFile = tplPath + '.sql' fin = open(sqlFile, 'rt', encoding='utf-8') sql = fin.read() fin.close() # Add schema to search_path if postgis if self.dbType == 'postgis': sql = sql.replace('$schema', '"{}".'.format(self.connectionParams['schema'])) else: sql = sql.replace('$schema', '') # Add where clause depending on etype sql = sql.replace('$and', item['and'][self.etype]) # Limit results if asked if page and key in list(self.mainTables.keys()) \ and key in list(self.lineCount.keys()): offset = int((page - 1) * self.maxLineNumber) # ~ sql+= " LIMIT %s" % self.maxLineNumber # ~ sql+= " OFFSET %s" % offset # Get data from previous fetched full data data = self.lineCount[key]['data'][offset:self.maxLineNumber + offset] # Run SQL if self.dbType == 'spatialite': sql = cadastre_common.postgisToSpatialite(sql) # Run SQL only if data has not already been defined if data is None: # print(sql) [header, data, rowCount, ok] = cadastre_common.fetchDataFromSqlQuery(self.connector, sql) # Page no defined = means the query is here to # get line count and whole data for proprietes_baties & proprietes_non_baties if not page: if key in list(self.lineCount.keys()): # line count self.lineCount[key]['count'] = rowCount # keep data self.lineCount[key]['data'] = data if page: # Get content for each line of data for line in data: replaceDict = {} for i in range(len(item['names'])): replaceDict['$%s' % item['names'][i]] = u'%s' % line[i] content += self.getHtmlFromTemplate(tplPath, replaceDict) # fill empty data to have full size table if key in list(self.mainTables.keys()) \ and key not in list(self.contentKeeped.keys()) \ and len(data) < self.maxLineNumber: for _ in range(self.maxLineNumber - len(data)): replaceDict = {} for i in range(len(item['names'])): replaceDict['$%s' % item['names'][i]] = u'&nbsp;' content += self.getHtmlFromTemplate(tplPath, replaceDict) elif item['type'] == 'properties': # build replace dict from properties replaceDict = {} for i in range(len(item['names'])): replaceDict['$' + item['names'][i]] = item['source'][i] content = self.getHtmlFromTemplate(tplPath, replaceDict) elif item['type'] == 'parent': replaceDict = {} for i in range(len(item['names'])): replaceDict['$' + item['names'][i]] = self.mainTables[item['source']]['content'] content = self.getHtmlFromTemplate(tplPath, replaceDict) # Keep somme content globally if 'keepContent' in item and item['keepContent']: self.contentKeeped[key] = content # replace some unwanted content content = content.replace('None', '') return
""" FUNÇÕES UTEIS PARA PRÉ PROCESSAMENTO DA IMAGEM, ANTES DA APLICAÇÃO DO OCR. 1. A IMAGEM É LIDA EM ESCALA DE CINZA; 2. GAUSSIAN BLUR É EXECUTADO PARA REMOVER QUALQUER RUÍDO DISPONÍVEL; 3. O LIMIAR ADAPTATIVO É APLICADO À IMAGEM BORRADA; 4. APLICA-SE TRANSFORMAÇÕES MORFOLÓGICAS PARA DILATAÇÃO DA IMAGEM. 5. ENCONTRAMOS OS CONTORNOS CUJA ÁREA SÃO MAIORES QUE UMA MÍNIMA ÁREA DEFINIDA. 6. COM O CONTORNO ENCONTRADO NA ÚLTIMA ETAPA, CRIAMOS UMA MÁSCARA COM A ÁREA REPRESENTADA PELA MOLDURA; 7. USANDO ESTA MÁSCARA, PODEMOS ENCONTRAR OS QUATRO CANTOS DO DOCUMENTO DE IDENTIFICAÇÃO NA IMAGEM ORIGINAL; # Arguments object - Required : Imagem para aplicação do OCR (Base64 | Path | Numpy Array) # Returns output_table - Required : Textos dos campos da tabela após aplicação das técnicas de pré processamento, OCR e pós processamento (String) """ __version__ = "1.0" __author__ = """<NAME> (EMERVIN)""" __data_atualizacao__ = "16/10/2021" from inspect import stack import cv2 from dynaconf import settings from UTILS.generic_functions import get_date_time_now from UTILS.image_view import image_view_functions import execute_log class Image_Pre_Processing(object): def __init__(self, blur_ksize=settings.BLUR_KSIZE, std_dev_x_direction=settings.STD_DEV_X_DIRECTION, std_dev_y_direction=settings.STD_DEV_Y_DIRECTION, max_color_val=settings.MAX_COLOR_VAL, threshold_ksize=settings.THRESHOLD_KSIZE, subtract_from_mean=settings.SUBTRACT_FROM_MEAN, scale=settings.SCALE, min_table_area=settings.MIN_TABLE_AREA): # 1 - DEFININDO A PROPRIEDADE DE BLUR # (DESFOQUE DA IMAGEM COM O OBJETIVO DE REMOÇÃO DE RUÍDOS DA IMAGEM) self.blur_ksize = blur_ksize # 2 - DESVIO PADRÃO DO KERNEL AO LONGO DO EIXO X (DIREÇÃO HORIZONTAL) self.std_dev_x_direction = std_dev_x_direction # 3 - DESVIO PADRÃO DO KERNEL AO LONGO DO EIXO Y (DIREÇÃO VERTICAL) self.std_dev_y_direction = std_dev_y_direction # 4 - DEFININDO A PROPRIEDADE DE THRESHOLD (LIMIAR) # VALOR DE PIXEL QUE SERÁ CONVERTIDO, CASO O PIXEL ULTRAPASSE O LIMIAR self.max_color_val = max_color_val # 5 - TAMANHO DO KERNEL PARA THRESHOLD self.threshold_ksize = threshold_ksize # 6 - VARIÁVEL QUE REPRESENTA A CONSTANTE UTILIZADA NOS MÉTODOS (SUBTRAÍDA DA MÉDIA OU MÉDIA PONDERADA) self.subtract_from_mean = subtract_from_mean # 7 - REALIZANDO O PARÂMETRO DA ESCALA self.scale = scale # 8 - DEFININDO O TAMANHO MIN DE ÁREA DA TABELA self.min_table_area = min_table_area def smoothing_blurring(self, img): """ O DESFOQUE GAUSSIANO É SEMELHANTE AO DESFOQUE MÉDIO, MAS EM VEZ DE USAR UMA MÉDIA SIMPLES, ESTAMOS USANDO UMA MÉDIA PONDERADA, ONDE OS PIXELS DA VIZINHANÇA QUE ESTÃO MAIS PRÓXIMOS DO PIXEL CENTRAL CONTRIBUEM COM MAIS “PESO” PARA A MÉDIA. A SUAVIZAÇÃO GAUSSIANA É USADA PARA REMOVER O RUÍDO QUE SEGUE APROXIMADAMENTE UMA DISTRIBUIÇÃO GAUSSIANA. O RESULTADO FINAL É QUE NOSSA IMAGEM FICA MENOS DESFOCADA, PORÉM MAIS "DESFOCADA NATURALMENTE".. ALÉM DISSO, COM BASE NESSA PONDERAÇÃO, SEREMOS CAPAZES DE PRESERVAR MAIS AS BORDAS EM NOSSA IMAGEM EM COMPARAÇÃO COM A SUAVIZAÇÃO MÉDIA. # Arguments img - Required : Imagem para processamento (Array) # Returns validator - Required : Validador de execução da função (Boolean) blur - Required : Imagem após processamento do desfoque (Array) """ # INICIANDO O VALIDADOR DA FUNÇÃO validator = False # INICIANDO A VARIÁVEL DE RETORNO blur = None try: # APLICANDO A TÉCNICA DE BLUR GAUSSIANO blur = cv2.GaussianBlur(img, self.blur_ksize, self.std_dev_x_direction, self.std_dev_y_direction) execute_log.info("OCR TABLES - TÉCNICA DE DESFOQUE GAUSSIANO APLICADO COM SUCESSO - {}".format(get_date_time_now("%d/%m/%Y %H:%M:%S"))) validator = True except Exception as ex: execute_log.error("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return validator, blur def threshold_image(self, img): """ O LIMIAR ADAPTATIVO CONSIDERA UM PEQUENO CONJUNTO DE PIXELS VIZINHOS POR VEZ, CALCULA T PARA AQUELA REGIÃO LOCAL ESPECÍFICA E, EM SEGUIDA, REALIZA A SEGMENTAÇÃO. O SEGUNDO PARÂMETRO DA FUNÇÃO É O VALOR DO LIMITE DE SAÍDA, OU SEJA, PIXEL <= T TORNARA-SE ESSE VALOR DE PIXEL. EX: SE PIXEL <= T, o PIXEL TORNA-SE BRANCO (255) O TERCEIRO ARGUMENTO É O MÉTODO DE LIMIAR ADAPTATIVO. AQUI NÓS FORNECEMOS UM VALOR DE CV2.ADAPTIVE_THRESH_GAUSSIAN_C PARA INDICAR QUE ESTAMOS USANDO A MÉDIA GAUSSIANA DA VIZINHANÇA LOCAL DO PIXEL PARA CALCULAR NOSSO VALOR LIMITE DE T. O QUARTO VALOR É O MÉTODO DE LIMIAR, AQUI PASSAMOS UM VALOR DE CV2.THRESH_BINARY_INV PARA INDICAR QUE QUALQUER VALOR DE PIXEL QUE PASSE NO TESTE DE LIMITE TERÁ UM VALOR DE SAÍDA DE 0. CASO CONTRÁRIO, TERÁ UM VALOR DE 255. O QUINTO PARÂMETRO É O TAMANHO DE NOSSA VIZINHANÇA DE PIXEL, AQUI VOCÊ PODE VER QUE IREMOS CALCULAR O VALOR MÉDIO DA INTENSIDADE DO PIXEL EM TONS DE CINZA DE CADA SUB-REGIÃO 11 × 11 NA IMAGEM PARA CALCULAR NOSSO VALOR LIMITE. O ARGUMENTO FINAL PARA CV2.ADAPTIVETHRESHOLD É A CONSTANTE C QUE PERMITE SIMPLESMENTE AJUSTAR O VALOR LIMITE. # Arguments img - Required : Imagem para processamento (Array) # Returns validator - Required : Validador de execução da função (Boolean) thresh - Required : Imagem após processamento do limiar (Array) """ # INICIANDO O VALIDADOR DA FUNÇÃO validator = False # INICIANDO A VARIÁVEL DE RETORNO thresh = None try: thresh = cv2.adaptiveThreshold(img, self.max_color_val, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, self.threshold_ksize, self.subtract_from_mean) execute_log.info("OCR TABLES - TÉCNICA DE LIMIAR ADAPTATIVO APLICADO COM SUCESSO - {}".format(get_date_time_now("%d/%m/%Y %H:%M:%S"))) validator = True except Exception as ex: execute_log.error("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return validator, thresh def preprocess_blur_threshold_img(self, img): """ REALIZA A ORQUESTRAÇÃO DE DUAS TÉCNICAS DE PRÉ PROCESSAMENTO DA IMAGEM. 1) APLICA AS TÉCNICAS DE DESFOQUE (GAUSSIANBLUR) 2) APLICA LIMIAR DOS PLANOS DA IMAGEM (ADAPTIVETHRESHOLD) # Arguments img - Required : Imagem para processamento (Array) # Returns validator - Required : Validador de execução da função (Boolean) thresh - Required : Imagem após ambos processamentos (Array) """ # INICIANDO O VALIDADOR DA FUNÇÃO validator = False # INICIANDO A VARIÁVEL DE RETORNO thresh = None execute_log.info("OCR TABLES - INICIANDO O PRÉ PROCESSAMENTO DA IMAGEM - {}".format(get_date_time_now("%d/%m/%Y %H:%M:%S"))) try: # REALIZANDO O DESFOQUE GAUSSIANO validator, blur = Image_Pre_Processing.smoothing_blurring(self, img) if validator: # APLICANDO O LIMIAR PARA MELHOR SEPARAÇÃO DE PLANO PRINCIPAL E FUNDO validator, thresh = Image_Pre_Processing.threshold_image(self, blur) except Exception as ex: execute_log.error("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return validator, thresh def preprocess_morfo_transformations(self, image): """ APLICA TRANSFORMAÇÕES MORFOLÓGICAS NA IMAGEM. O OBJETIVO É ENFATIZAR A ÁREA DA TABELA PERMITINDO MAIOR SEPARAÇÃO TABELA/RESTO DA IMAGEM. # Arguments image - Required : Imagem para processamento (Array) # Returns validator - Required : Validador de execução da função (Boolean) horizontally_dilated - Required : Imagem dilatada horizontalmente (Array) vertically_dilated - Required : Imagem dilatada verticalmente (Array) """ # INICIANDO O VALIDADOR DA FUNÇÃO validator = False # INICIANDO A VARIÁVEL DE RETORNO horizontally_dilated = vertically_dilated = None execute_log.info("OCR TABLES - TÉCNICA DE TRANSFORMAÇÕES MORFOLÓGICAS - {}".format(get_date_time_now("%d/%m/%Y %H:%M:%S"))) try: # OBTENDO O COMPRIMENTO E AMPLITUDE DA IMAGEM image_width, image_height = image.shape # REALIZANDO AS OPERAÇÕES NA ESTRUTURA HORIZONTAL DA IMAGEM horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / self.scale), 1)) horizontally_opened = cv2.morphologyEx(image, cv2.MORPH_OPEN, horizontal_kernel) # REALIZANDO AS OPERAÇÕES NA ESTRUTURA VERTICAL DA IMAGEM vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / self.scale))) vertically_opened = cv2.morphologyEx(image, cv2.MORPH_OPEN, vertical_kernel) # REALIZANDO A OPERAÇÃO DE DILATAÇÃO horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1))) vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60))) validator = True except Exception as ex: execute_log.error("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return validator, horizontally_dilated, vertically_dilated def __get_max_contour(self, horizontally_dilated, vertifically_dilated): """ REALIZA A OBTENÇÃO DO CONTORNO DE MAIOR ÁREA DA FIGURA. O OBJETIVO É ENCONTRAR O MÁXIMO CONTORNO, PARA OBTER APENAS O DOCUMENTO DE IDENTIIFAÇÃO, RETIRANDO POSSÍVEIS OUTROS OBJETOS OU CASOS NO QUAL O DOCUMENTO POSSA ESTAR SCANEADO EM UMA FOLHA SULFITE. 1) OBTÉM TODOS OS CONTORNOS 2) OBTÉM O CONTORNO DE MÁXIMA ÁREA. # Arguments horizontally_dilated - Required : Imagem dilatada horizontalmente (Array) vertically_dilated - Required : Imagem dilatada verticalmente (Array) # Returns validator - Required : Validador de execução da função (Boolean) bounding_rects - Required : Contornos obtidos (Array) """ # INICIANDO A VARIAVEL QUE ARMAZENARÁ O VALOR DE MÁXIMA ÁREA DE CONTORNO bounding_rects = [] # INICIANDO O VALIDADOR DA FUNÇÃO validator = False execute_log.info("OCR TABLES - BUSCANDO O DOCUMENTO NA IMAGEM - {}".format(get_date_time_now("%d/%m/%Y %H:%M:%S"))) try: # OBTENDO A MÁSCARA E OBTENDO OS CONTORNOS mask = horizontally_dilated + vertifically_dilated contours, heirarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # OBTENDO OS CONTORNOS COM TAMANHO MAIOR QUE DA ÁREA MIN ESPERADA contours = [c for c in contours if cv2.contourArea(c) > self.min_table_area] # DESSES CONTORNOS, OBTENÇÃO
""" Unit cell stacker ================= This code can be used for stacking the unit cells of different content and dimension to a single cell. This is intended to be helpful for constructing complex super cell structures. The unit cells should be given in Gaussian format, where the lattice vectors are input in the same way as atomic coordinates, just the element symbol is set to 'Tv'. The way the cells are going to be stacked should be given in a YAML file, which is later termed the stacking file. Also it needs to be noted that the current code just works for cubic unit cells. The stacking YAML file contains a large nested list. The first level are entries corresponding to each layer in the Z direction of the super cell, given in the order from ground up. For each layer, a list of rows are given from small Y coordinate value to larger. And within each row list, a list of building blocks should be given from small x value to larger. So in summary, the nested structure goes as 1. Layer (Z direction) 2. Row (Y direction) 3. Block (X direction). And for all three levels, the order is consistently from smaller to larger coordinate values. Each block is going to be given as a dictionary, with the following keys, unit The base name of the file containing the unit cell of this building block. The actual file name should end with ``.gjf``. If the ``prefix`` parameter is set in the parameters, then the file name is going to be prepended with this, or it will be tried to be found in the current working directory. repetition A list giving the repetition of the unit cell. It can be omitted for no repetition, i.e. ``[1, 1, 1]``. The entries can be integers or string. If string is given, then the actual integral number is going to be resolved from the second document of the YAML file. If no symbol is used, the second document can just be omitted. When invoking the code, running parameters like the location of the stacking file should be given in a YAML file on the command line argument, where the ``stacking`` parameter is mandatory to given the name of the stacking file. Also a ``prefix`` parameter can be given to give the location of the stacking and the unit cell files when they are not in the current working directory. Its content is also going to be combined with the second document of the stacking file to give values of the parameters for the stacking. If just the plain atomic coordinates are desired, the file name of the output file can be given in the command line argument ``-o``. Or the command line parameter ``-t`` can also be used to give a list of `mustache <mustache.github.io>`_ template files to be initiated by the code. During the initialization, the tags ``atoms`` will be set, with fields ``symbol``, ``x``, ``y``, and ``z`` set for the atomic symbol and the Cartesian coordinates. Also set are the ``lattice`` tag, with ``x``, ``y``, and ``z`` fields for Cartesian components of the lattice vectors. Also in the dictionary are all the fields that is set in the parameter file. Note that multiple templates can be given. And the templates can also be given in the ``templates`` field of the parameter file. And the output is going to be written in the current working directory with the prefix about the directory and the possible ``.mustache`` suffix removed. """ from __future__ import print_function import re import collections import itertools import argparse import sys import numpy as np import yaml # # The Gaussian file reader # ------------------------ # def read_gaussian(file_name): """Reads a Gaussian input file Returns a list of atoms and the three lattice vectors in a pair. """ with open(file_name, 'r') as inp: # form the patterns symbol_pattern = r'^\s*(?P<symbol>\d{1,2}|[A-Z][a-z]?\d*)' float_pattern = r'[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?' coord_names = ['coord%d' % i for i in xrange(0, 3)] coord_patterns = ['(?P<%s>%s)' % (i, float_pattern) for i in coord_names] atm_pattern = re.compile( '\\s+'.join([symbol_pattern, ] + coord_patterns) ) # read the coordinates coords = [] for line in inp: match_res = atm_pattern.match(line) if match_res is not None: coords.append( ( match_res.group('symbol'), np.array(match_res.group(*coord_names), dtype=np.float64) ) ) continue # filter the atoms and the lattice vectors atms = [i for i in coords if i[0] != 'Tv'] latt_vecs = [i[1] for i in coords if i[0] == 'Tv'] if len(latt_vecs) != 3: raise ValueError('Wrong number of lattice vectors') return atms, latt_vecs # # Generate the stacking data structure # ------------------------------------ # # The YAML input file is tried to be read and parsed. In this process, the unit # cells are also read, and the symbolic repetition numbers are also resolved # based on the values that are given in the input file. Then the processed # blocks are put in the same nested list data structure as in the input file. # And this nested list structure is going to be termed a ``stacking``. # Block = collections.namedtuple('Block', [ 'atms', 'latt_dims', 'repetition' ]) # Note that since the code is just designed to work for square unit cells, the # lattice vectors, the lattice dimensions of the x, y, and z are stored instead # of the full lattice vectors here. def gen_stacking(main_inp, additional_params=None): """Generates a stacking based on the YAML input file name It will just return the same data structure as the input, with the unit cell and the symbolic repetition number resolved. Also the parameters used for resolving the symbols are also returned in a dictionary. :param main_inp: The primary input file. :param additional_params: The additional parameter dictionary, None for no additional parameters """ yaml_docs = list(yaml.load_all(main_inp)) raw_stacking = yaml_docs[0] if len(yaml_docs) < 2: params = {} else: params = yaml_docs[1] if additional_params is not None: params.update(additional_params) unit_cells = {} def process_raw_dict(raw_dict): """The closure for process a raw dictionary read for a block""" # resolve the unit cell unit_base_name = raw_dict['unit'] unit_prefix = params.get('prefix', '') unit_file_name = unit_prefix + unit_base_name + '.gjf' if unit_base_name in unit_cells: atms, latt_vecs = unit_cells[unit_base_name] else: atms, latt_vecs = read_gaussian(unit_file_name) unit_cells[unit_base_name] = (atms, latt_vecs) latt_dims = [latt_vecs[i][i] for i in xrange(0, 3)] # resolve the repetition dummy_glob = {} if 'repetition' in raw_dict: raw_repetition = raw_dict['repetition'] try: repetition = [ i if type(i) == int else eval(i, dummy_glob, params) for i in raw_repetition ] except IndexError: print('Symbolic repetition number cannot be resolved!', file=sys.stderr) raise else: repetition = [1, 1, 1] return Block(atms=atms, latt_dims=latt_dims, repetition=repetition) # return the three level nested list return ([ [ [ process_raw_dict(block_i) for block_i in row_i ] for row_i in layer_i ] for layer_i in raw_stacking ], params) # # Perform the actual stacking # --------------------------- # # After the stacking data structure has been generated, all the information # that is needed for obtaining the stacked super cell is ready. This is # achieved in the function :py:func`do_stacking`, which returns the atoms and # the lattice vectors of the stacked structure. # def translate(atms, vec): """Translate a list of atoms :param atms: The list of atoms, given as a pair of the symbol and the coordinate in numpy array. :param vec: A numpy array giving the translation vector. """ return [ (i[0], i[1] + vec) for i in atms ] def do_stacking(stacking): """Does the actual stacking The pair of atom list and the lattice vectors are going to be returned. """ # This function is going to be written in a pure imperative style. cur_begin = [0.0 for i in xrange(0, 3)] cur_end = [0.0 for i in xrange(0, 3)] atms = [] for layer_i in stacking: for row_i in layer_i: for block_i in row_i: # Add the atoms block_transl = np.array(cur_begin) for rep_i in itertools.product( *[xrange(0, i) for i in block_i.repetition] ): rep_transl = np.array( [i * j for i, j in itertools.izip(block_i.latt_dims, rep_i)] ) transl = block_transl + rep_transl new_atms = translate(block_i.atms, transl) atms.extend(new_atms) # Compute the end point and update the cur_end end_point = cur_begin + np.array( [i * j for i, j in itertools.izip(block_i.repetition, block_i.latt_dims)] ) cur_end = [ max(i, j) for i, j in itertools.izip(cur_end, end_point) ] # Update the beginning point for the
overwrite == True) and output.find('toaBr') == -1: print(image) #raw_input() try: convert(image, output, Format = out_format) except: print('Could not convert', image) else: print(os.path.basename(output), 'already exists') ######################################################################################################################## def make_vct_header(image, header_offset = '0', file_type = 'ENVI Standard', dt_dict = {'Byte': '1', 'UInt16': '12','Int16': '12'}, interleave = 'bsq', byte_order = '0', proj = 'UTM'): datum_dict = {'WGS84' : 'WGS-84', 'NAD83' : 'NAD-83'} info = raster_info(image) hl = ['ENVI\n', 'description = {\n', image + '}\n'] samples = str(info['width']) lines = str(info['height']) bands = str(info['band_count']) dt = str(dt_dict[info['dt']]) hl.append('samples = ' + samples + '\n') hl.append('lines = ' + lines + '\n') hl.append('bands = ' + bands + '\n') hl.append('header offset = ' + header_offset + '\n') hl.append('file type = ' + file_type + '\n') hl.append('data type = ' + dt + '\n') hl.append('interleave = ' + interleave + '\n') hl.append('byte order = ' + byte_order + '\n') coord1 = str(info['coords'][0]) coord2 = str(info['coords'][-1]) res = str(int(info['res'])) zone = str(int(info['zone'])) hemisphere = info['hemisphere'] datum = datum_dict[info['datum']] units = info['units'] map_info = 'map info = {' + proj + ', 1, 1, ' + coord1 + ', ' + coord2 + ', ' + res + ', ' + res + ', ' + zone + ', ' + hemisphere + ', ' + datum + ', units=' + units + '}\n' hl.append(map_info) hl.append('band names = {\n') band_count = info['band_count'] for band in range(band_count): band = str(band + 1) hl.append('Band ' + band + ', ') hl[-1] = hl[-1][:-2] + '}\n' header = os.path.splitext(image)[0] + '.hdr' print('Writing header:', header) open_file = open(header, 'w') open_file.writelines(hl) open_file.close() ######################################################################################################################## #Will reproject a shapefile using ogr2ogr #Can specify the crs manually as a string, only define the necessary parts of a UTM coordinate system, or define the proj = 'Albers' for albers def reproject_shapefile(shapefile = '', output = '', crs = '', proj = 'utm', zone = '', datum = 'nad83', gdal_dir = gdal_dir, guiable = True): if shapefile == '': shapefile = str(askopenfilename(title = 'Select shapefile to reproject',filetypes=[("Shapefile","*.shp")])) output = str(asksaveasfilename(title = 'Select output shapefile name',initialdir = cwd,filetypes=[("Shapefile","*.shp")])) proj = askstring('Projection', 'Please enter projection name (e.g. utm, or albers)') #if proj != 'albers' or proj == 'Albers' or proj == 'albers_conical' if proj == 'albers' or proj == 'Albers' or proj == 'albers_conical': #Use for USA Contiguous Albers Equal Area Conic USGS.prj #Same as in MTBS .prj file: #PROJCS["USA_Contiguous_Albers_Equal_Area_Conic_USGS_version",GEOGCS["GCS_North_American_1983", #DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0], #UNIT["Degree",0.0174532925199433]],PROJECTION["Albers"],PARAMETER["False_Easting",0.0], #PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-96.0],PARAMETER["Standard_Parallel_1",29.5], #PARAMETER["Standard_Parallel_2",45.5],PARAMETER["Latitude_Of_Origin",23.0],UNIT["Meter",1.0]] crs = '"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs +towgs84=0,0,0"' elif proj.upper() == 'GEOG': crs = '"'+web_mercator_crs+ '"' elif crs == '': crs = '"+proj=' + proj + ' +zone=' + str(zone) + ' +datum=' + datum + '"' elif crs != '': crs = '"' + crs + '"' statement = gdal_dir + 'ogr2ogr -f "ESRI Shapefile" -t_srs ' + crs + ' "' + output + '" "' + shapefile + '"' print(statement) call = subprocess.Popen(statement) call.wait() ##################################################################################################### def is_Geog(Input): if os.path.splitext(Input)[1] == '.shp': info = shape_info(Input) else: info = raster_info(Input) crs = info['proj4'] if crs in geog_crss: return True else: return False def get_geog(shp): if is_Geog(shp): print('It already is geographic') return shp else: print('Not geographic. Reprojecting',base(shp)) out_shp = os.path.splitext(shp)[0] + '_geog.shp' if os.path.exists(out_shp) == False: reproject_shapefile(shp,out_shp,'','geog') return out_shp ##################################################################### #Function to convert to geojson def to_geojson(shp): json_filename = os.path.splitext(shp)[0] + '.json' statement = gdal_dir + 'ogr2ogr -f "GeoJSON" -t_srs EPSG:4326 "' + json_filename+ '" "'+ shp + '"' if os.path.exists(json_filename) == False: print(statement) call = subprocess.Popen(statement) call.wait() ############################################################################ def select_by_location(shp_to_clip, output, clip_extent, gdal_dir = gdal_dir, overwrite = True): if overwrite or os.path.exists(output) == False: if os.path.exists(output): try: delete_shapefile(output) except: print('Could not delete', output) statement = gdal_dir + 'ogr2ogr -f "ESRI Shapefile" ' + output + ' ' + shp_to_clip if type(clip_extent) == list: statement += ' -clipsrc ' + coords_to_gdal(clip_extent) elif os.path.splitext(clip_extent)[1] == '.shp': statement += ' -clipsrc "' + clip_extent + '"' elif os.path.splitext(clip_extent)[1] in list(format_dict.keys()): print('Extracting clip coords from raster') cs =raster_info(clip_extent)['gdal_coords'] print(cs) statement += ' -clipsrc ' + cs print(statement) call = subprocess.Popen(statement) call.wait() else: print('Output already exists') ##################################################################################################### def utm_maker(shapefile, output, zone, datum): temp_folder = os.path.dirname(output) + '/temp/' if os.path.exists(temp_folder) == False: os.makedirs(temp_folder) proj_shp = temp_folder + os.path.basename(os.path.splitext(shapefile)[0]) + '_zone_' + str(zone) + '.shp' if os.path.exists(proj_shp) == False: reproject_shapefile(shapefile, proj_shp, zone = zone, datum = datum) proj_info = shape_info(proj_shp, False) shp_info = shape_info(shapefile, False) pc = proj_info['coords'] sc = shp_info['coords'] return proj_shp, sc, pc ######################################################################################################################## def xy_utm_zone_conversion(shapefile, zone, extension = '_convert', datum = 'WGS84', cleanup = False): zone = str(zone) output = os.path.splitext(shapefile)[0] + '_zone_' + zone + extension + '.shp' if os.path.exists(output) == False: reproject_shapefile(shapefile, output, datum = 'WGS84', zone = str(zone)) out = xy_coords(output, False) if cleanup == True: try: delete_shapefile(output) except: print('Could not delete', output) return out ######################################################################################################################## #Reprojects a raster using gdalwarp #Will produce lines with zero values if RMSE is high #Can specify the crs manually as a string, only define the necessary parts of a UTM coordinate system, or define the proj = 'Albers' for albers #resampling_method: near (default), bilinear, cubic, cubicspline, lanczos #clip_extent: 'xmin ymin xmax ymax' def reproject(Input, output, crs = '', proj = 'utm', zone = '', datum = 'nad83' , res = '',resampling_method = 'cubic', clip_extent = '', no_data = 'NODATA', src_no_data = '', dst_no_data = '', cutline = '',Format = 'HFA', source_crs = '',dt = '', wm = 40, gdal_dir = gdal_dir): Format = format_dict[os.path.splitext(output)[1]] if type(clip_extent) == list: clip_extent = coords_to_gdal(clip_extent) if type(Input) == list: temp = Input Input = '"' for t in temp: Input += t + '" "' Input = Input[:-2] if source_crs != '' and source_crs != None: s_crs = ' -s_srs "' + source_crs + '" ' else: s_crs = '' if crs == '': if proj == 'albers' or proj == 'Albers' or proj == 'albers_conical': #Use for USA Contiguous Albers Equal Area Conic USGS.prj #Same as in MTBS .prj file: #PROJCS["USA_Contiguous_Albers_Equal_Area_Conic_USGS_version",GEOGCS["GCS_North_American_1983", #DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0], #UNIT["Degree",0.0174532925199433]],PROJECTION["Albers"],PARAMETER["False_Easting",0.0], #PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-96.0],PARAMETER["Standard_Parallel_1",29.5], #PARAMETER["Standard_Parallel_2",45.5],PARAMETER["Latitude_Of_Origin",23.0],UNIT["Meter",1.0]] crs = '"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs +towgs84=0,0,0"' #lambert_list = elif proj in ['laea', 'lamberts', 'lambert']: crs = '"+proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +a=6370997 +b=6370997 +datum=NAD83 +ellps=GRS80 +units=m +no_defs"' if crs == '' and zone != '': crs = '"+proj=' + proj + ' +zone=' + str(zone) + ' +datum=' + str(datum) + '"' elif crs[0] != '"': crs = '"' + crs + '"' if crs != '': crs = ' -t_srs ' + crs if res != '': res = ' -tr ' + str(res) + ' ' + str(res) + ' ' if cutline != '': cutline = ' -cutline ' + cutline if src_no_data != '' and dst_no_data != '': no_data = ' -srcnodata ' + str(src_no_data) + ' -dstnodata '+ str(dst_no_data) elif src_no_data != '': no_data = ' -srcnodata ' + str(src_no_data) elif dst_no_data != '': no_data = ' -dstnodata ' + str(dst_no_data) elif no_data != '': no_data = ' -srcnodata ' + str(no_data) + ' -dstnodata '+ str(no_data) if clip_extent != '': clip_extent = ' -te ' + clip_extent if dt != '': dt = ' -ot ' + str(dt) + ' ' print('Reprojecting:' ,Input.split('/')[-1]) print() if Format != '': ot = ' -of ' + Format gdal_call = gdal_dir + 'gdalwarp -wm '+str(wm)+' -multi' + ot +s_crs + dt+ no_data +cutline + crs + res + clip_extent +' -r ' + resampling_method + ' "' + Input + '" "' + output + '"' print(gdal_call) print() call = subprocess.Popen(gdal_call) call.wait() def gdal_clip(Input, output,clip_file, gdal_dir = gdal_dir): bounds = shape_info(clip_file)['coords'] print(bounds) clip_extent = coords_to_gdal(bounds) print(clip_extent) Format = format_dict[os.path.splitext(output)[1]] ## gdal_call = gdal_dir + 'gdal_translate -projwin ' + str(bounds[0]) + ' ' + str(bounds[1]) + ' ' + str(bounds[2]) + ' ' + str(bounds[3]) + ' -of ' + Format + ' "' +Input + '" "' + output + '"' gdal_call = gdal_dir + 'gdalwarp -cutline ' + clip_file + ' -of ' + Format + ' "' +Input + '" "' + output + '"' print(gdal_call)
<reponame>djconly85/PPA2_0_code # -------------------------------- # Name: utils.py # Purpose: Provides general PPA functions that are used throughout various PPA scripts and are not specific to any one PPA script # NOTE: # This version, in the __init__ method of the Publish class, hard-codes in variables # that normally come from the params parameter script. This is because, for some reason # # when pulled from the params file, the values "stuck" between runs and the wrong output tabs # in the output Excel spreadsheet would be colored. # Author: <NAME> # Last Updated: 8/6/2020 # Updated by: <name> # Copyright: (c) SACOG # Python Version: 3.x # -------------------------------- import os # import pdb import sys import datetime as dt import time import gc import csv import math import shutil import openpyxl from openpyxl.drawing.image import Image import xlwings as xw import pandas as pd import arcpy import ppa_input_params as params def trace(): import traceback, inspect tb = sys.exc_info()[2] tbinfo = traceback.format_tb(tb)[0] # script name + line number line = tbinfo.split(", ")[1] filename = inspect.getfile(inspect.currentframe()) # Get Python syntax error synerror = traceback.format_exc().splitlines()[-1] return line, filename, synerror def remove_forbidden_chars(in_str): '''Replaces forbidden characters with acceptable characters''' repldict = {"&":'And','%':'pct','/':'-'} for old, new in repldict.items(): if old in in_str: out_str = in_str.replace(old, new) else: out_str = in_str return out_str def esri_field_exists(in_tbl, field_name): fields = [f.name for f in arcpy.ListFields(in_tbl)] if field_name in fields: return True else: return False def esri_object_to_df(in_esri_obj, esri_obj_fields, index_field=None): '''converts esri gdb table, feature class, feature layer, or SHP to pandas dataframe''' data_rows = [] with arcpy.da.SearchCursor(in_esri_obj, esri_obj_fields) as cur: for row in cur: out_row = list(row) data_rows.append(out_row) out_df = pd.DataFrame(data_rows, index=index_field, columns=esri_obj_fields) return out_df def return_perf_outcomes_options(project_type): xlsx = params.type_template_dict[project_type] xlsx_path = os.path.join(params.template_dir, xlsx) wb = openpyxl.load_workbook(xlsx_path) # openpyxl.load_workbook(xlsx_path, read_only=False, keep_vba=True) sheets = wb.sheetnames # values in this list will be the potential performance outcomes from which users can choose perf_outcomes = [s for s in sheets if s not in params.sheets_all_reports] return perf_outcomes def rename_dict_keys(dict_in, new_key_dict): '''if dict in = {0:1} and dict out supposed to be {'zero':1}, this function renames the key accordingly per the new_key_dict (which for this example would be {0:'zero'}''' dict_out = {} for k, v in new_key_dict.items(): if k in list(dict_in.keys()): dict_out[v] = dict_in[k] else: dict_out[v] = 0 return dict_out def join_xl_import_template(template_xlsx, template_sheet, in_df, joincolidx=0): '''takes in import tab of destination Excel sheet, then left joins to desired output dataframe to ensure that output CSV has same rows every time, even if data frame that you're joining doesn't have all records''' df_template = pd.read_excel(template_xlsx, template_sheet) df_template = pd.DataFrame(df_template[df_template.columns[joincolidx]]) # get rid of all columns except for data items column df_template = df_template.set_index(df_template.columns[joincolidx]) # set data items column to be the index df_out = df_template.join(in_df) # left join the df from import sheet template to the df with data based on index values return df_out def append_proj_to_master_fc(project_fc, proj_attributes_dict, master_fc): '''Takes project line and appends it to master line feature class with all lines users have entered''' arcpy.AddMessage("Archiving project line geometry...") #get geometry of user-drawn input line try: fld_shape = "SHAPE@" geoms = [] with arcpy.da.SearchCursor(project_fc, fld_shape) as cur: for row in cur: geoms.append(row[0]) #make row that will be inserted into master fc new_row = geoms + [v for k, v in proj_attributes_dict.items()] # use insert cursor to add in appropriate project name, etc. fields = [fld_shape] + list(proj_attributes_dict.keys()) inscur = arcpy.da.InsertCursor(master_fc, fields) inscur.insertRow(new_row) del inscur t_returns = (params.msg_ok,) except: msg = trace() t_returns = (msg,) return t_returns class Publish(object): def __init__(self, in_df, xl_template, import_tab, xl_out, project_fc, ptype, selecd_po_sheets=None, proj_name='UnnamedProject'): # params from input arguments self.in_df = in_df self.xl_template = xl_template self.import_tab = import_tab self.xl_out = xl_out self.selecd_po_sheets = selecd_po_sheets # 3 performance outcomes selected by user self.proj_name = proj_name self.project_fc = project_fc #remember, this is a feature set! #=====WORKAROUND - these are normally supposed to be imported from params.py file====== '''Root issue replication: 1 - run the tool, selecting any number of outcomes 2 - re-run the tool, but with different outcomes selected. Expected result = otuput Excel file has the tabs colored and moved for the outcomes selected for each run Actual result = output Excel for second run has tabs colored for the outcomes selected for both runs, e.g., tabs selected for run two have outcome tabs colored for outcomes selected in run 1 as well.''' ptype_fwy = 'Freeway' ptype_arterial = 'Arterial or Transit Expansion' ptype_sgr = 'Complete Street or State of Good Repair' ptype_commdesign = "Community Design" xlsx_disclaimer_sheet = '0BUsingThisReport' xlsx_titlepg_sheet = '0ATitlePg' xlsx_socequity_sheet = '8SocioEconEquity' # regardless of which perf outcomes user selects, these tabs will be printed to # every PDF report for the selected project type. sheets_all_reports_workarnd = {ptype_arterial: [xlsx_titlepg_sheet, xlsx_disclaimer_sheet, xlsx_socequity_sheet], ptype_sgr: [xlsx_titlepg_sheet, xlsx_disclaimer_sheet, xlsx_socequity_sheet], ptype_commdesign: [xlsx_titlepg_sheet, xlsx_disclaimer_sheet], ptype_fwy: [xlsx_titlepg_sheet, xlsx_disclaimer_sheet]} #===============END WORKAROUND PORTION================ # params that are derived or imported from ppa_input_params.py self.sheets_all_rpts = sheets_all_reports_workarnd[ptype] # params.sheets_all_reports[ptype] arcpy.AddMessage("This is a {} project".format(ptype)) arcpy.AddMessage("Sheets that always go in report for this proj type: {}" \ .format(self.sheets_all_rpts)) arcpy.AddMessage("Dict of sheets in all reports of this proj type, from params py file: {}" \ .format(params.sheets_all_reports[ptype])) self.mapimg_configs_csv = params.mapimg_configs_csv self.img_format = params.map_img_format # jpg, png, etc. self.map_placement_csv = params.map_placement_csv self.aprx_path = params.aprx_path self.proj_line_template_fc = os.path.join(params.fgdb, params.proj_line_template_fc) # other pre-defined class vars to use self.time_sufx = str(dt.datetime.now().strftime('%m%d%Y%H%M')) self.out_folder = arcpy.env.scratchFolder #xlsx related params self.xl_out_path = os.path.join(self.out_folder, self.xl_out) shutil.copyfile(xl_template, self.xl_out_path) self.xl_workbook = openpyxl.load_workbook(self.xl_out_path) #work off of a copy of the template, so template remains free. Important for multi-user reliability. def overwrite_df_to_xlsx(self, unused=0, start_row=0, start_col=0): # why does there need to be an argument? '''Writes pandas dataframe <in_df_ to <tab_name> sheet of <xlsx_template> excel workbook.''' in_df = self.in_df.reset_index() df_records = in_df.to_records(index=False) # get header row for output out_header_list = [list(in_df.columns)] # get header row for output out_data_list = [list(i) for i in df_records] # get output data rows comb_out_list = out_header_list + out_data_list ws = self.xl_workbook[self.import_tab] for i, row in enumerate(comb_out_list): for j, val in enumerate(row): cell = ws.cell(row=(start_row + (i + 1)), column=(start_col + (j + 1))) if (cell): cell.value = val def build_configs(self): in_csv = self.mapimg_configs_csv p_map = "MapName" # map that layout and image are derived from p_layout = "MapLayout" # layout that will be made into image p_where = "SQL" # background data layer (e.g. collision heat layer) p_projline = "ProjLineLayer" out_config_list = [] with open(in_csv, 'r') as f_in: reader = csv.DictReader(f_in) for row in reader: v_map = row[p_map] v_layout = row[p_layout] v_projline = row[p_projline] v_where = row[p_where] out_config_row = [v_map, v_layout, v_projline, v_where] out_config_list.append(out_config_row) return out_config_list class PrintConfig(object): '''each PrintConfig object has attributes: map frame, layer name, where clause''' def __init__(self, l_print_config, imgtyp): self.MapFrame = l_print_config[0] # map/mapframe name self.Layout = l_print_config[1] # layout name n_elements = len(l_print_config) if(n_elements>1): self.Layer = l_print_config[2] #..layerName used to for zoomto (control ext) else: self.Layer = "" if(n_elements>2): self.Where = l_print_config[3] #..where to get features in the layer. else: self.Where = "" self.OutputImageName = "{}.{}".format(self.MapFrame, imgtyp) def expandExtent2D(self, ext, ratio): '''Adjust zoom extent for map of project segment ext = input extent object ratio = how you want to change extent. Ratio > 1 zooms away from project line; <1 zooms in to project line ''' try: # spref = ext.spatialReference xmin = ext.XMin xmax = ext.XMax ymin = ext.YMin ymax = ext.YMax width = ext.width height = ext.height dx = (ratio-1.0)*width/2.0 # divided by two so that diff is split evenly between opposite sides, so featur is still center of the extent dy = (ratio-1.0)*height/2.0 xxmin = xmin - dx xxmax = xmax + dx yymin = ymin - dy yymax = ymax + dy new_ext = arcpy.Extent(xxmin, yymin, xxmax, yymax) except: new_ext = None return new_ext # generates image files from maps def exportMap(self): arcpy.AddMessage('Generating maps for report...') arcpy.env.overwriteOutput = True try: # create temporary copy of APRX to not
from collections import defaultdict import datetime from operator import itemgetter import re from uuid import getnode as getmac from gmusicapi import session from gmusicapi.clients.shared import _Base from gmusicapi.protocol import mobileclient from gmusicapi.utils import utils class Mobileclient(_Base): """Allows library management and streaming by posing as the googleapis.com mobile clients. Uploading is not supported by this client (use the :class:`Musicmanager` to upload). """ _session_class = session.Mobileclient FROM_MAC_ADDRESS = object() def __init__(self, debug_logging=True, validate=True, verify_ssl=True): super(Mobileclient, self).__init__(self.__class__.__name__, debug_logging, validate, verify_ssl) def login(self, email, password, android_id): """Authenticates the Mobileclient. Returns ``True`` on success, ``False`` on failure. :param email: eg ``'<EMAIL>'`` or just ``'test'``. :param password: password or app-specific password for 2-factor users. This is not stored locally, and is sent securely over SSL. :param android_id: 16 hex digits, eg ``'1234567890abcdef'``. Pass Mobileclient.FROM_MAC_ADDRESS instead to attempt to use this machine's MAC address as an android id. **Use this at your own risk**: the id will be a non-standard 12 characters, but appears to work fine in testing. If a valid MAC address cannot be determined on this machine (which is often the case when running on a VPS), raise OSError. #TODO 2fa """ if android_id is None: raise ValueError("android_id cannot be None.") if android_id is self.FROM_MAC_ADDRESS: mac_int = getmac() if (mac_int >> 40) % 2: raise OSError("a valid MAC could not be determined." " Provide an android_id (and be" " sure to provide the same one on future runs).") android_id = utils.create_mac_string(mac_int) android_id = android_id.replace(':', '') if not self.session.login(email, password, android_id): self.logger.info("failed to authenticate") return False self.android_id = android_id self.logger.info("authenticated") return True # TODO expose max/page-results, updated_after, etc for list operations def set_authtoken(self, authtoken): return self.session.set_authtoken(authtoken) def get_all_songs(self, incremental=False, include_deleted=False): """Returns a list of dictionaries that each represent a song. :param incremental: if True, return a generator that yields lists of at most 1000 tracks as they are retrieved from the server. This can be useful for presenting a loading bar to a user. :param include_deleted: if True, include tracks that have been deleted in the past. Here is an example song dictionary:: { 'comment':'', 'rating':'0', 'albumArtRef':[ { 'url': 'http://lh6.ggpht.com/...' } ], 'artistId':[ 'Aod62yyj3u3xsjtooghh2glwsdi' ], 'composer':'', 'year':2011, 'creationTimestamp':'1330879409467830', 'id':'5924d75a-931c-30ed-8790-f7fce8943c85', 'album':'Heritage ', 'totalDiscCount':0, 'title':'Haxprocess', 'recentTimestamp':'1372040508935000', 'albumArtist':'', 'trackNumber':6, 'discNumber':0, 'deleted':False, 'storeId':'Txsffypukmmeg3iwl3w5a5s3vzy', 'nid':'Txsffypukmmeg3iwl3w5a5s3vzy', 'totalTrackCount':10, 'estimatedSize':'17229205', 'albumId':'Bdkf6ywxmrhflvtasnayxlkgpcm', 'beatsPerMinute':0, 'genre':'Progressive Metal', 'playCount':7, 'artistArtRef':[ { 'url': 'http://lh3.ggpht.com/...' } ], 'kind':'sj#track', 'artist':'Opeth', 'lastModifiedTimestamp':'1330881158830924', 'clientId':'+eGFGTbiyMktbPuvB5MfsA', 'durationMillis':'418000' } """ tracks = self._get_all_items(mobileclient.ListTracks, incremental, include_deleted) return tracks @utils.accept_singleton(dict) @utils.empty_arg_shortcircuit def change_song_metadata(self, songs): """Changes the metadata of tracks. Returns a list of the song ids changed. :param songs: a list of song dictionaries or a single song dictionary. Currently, only the ``rating`` key can be changed. Set it to ``'0'`` (no thumb), ``'1'`` (down thumb), or ``'5'`` (up thumb) unless you're using the 5-star ratings lab. You can also use this to rate All Access tracks that aren't in your library, eg:: song = mc.get_track_info('<some store track id>') song['rating'] = '5' mc.change_song_metadata(song) """ mutate_call = mobileclient.BatchMutateTracks mutations = [{'update': s} for s in songs] self._make_call(mutate_call, mutations) # TODO # store tracks don't send back their id, so we're # forced to spoof this return [utils.id_or_nid(d) for d in songs] def increment_song_playcount(self, song_id, plays=1, playtime=None): """Increments a song's playcount and returns its song id. :params song_id: a song id. Providing the id of an AA track that has been added to the library will *not* increment the corresponding library song's playcount. To do this, use the 'id' field (which looks like a uuid and doesn't begin with 'T'), not the 'nid' field. :params plays: (optional) positive number of plays to increment by. The default is 1. :params playtime: (optional) a datetime.datetime of the time the song was played. It will default to the time of the call. """ if playtime is None: playtime = datetime.datetime.now() self._make_call(mobileclient.IncrementPlayCount, song_id, plays, playtime) return song_id @utils.enforce_id_param def add_aa_track(self, aa_song_id): """Adds an All Access track to the library, returning the library track id. :param aa_song_id: All Access song id """ # TODO is there a way to do this on multiple tracks at once? # problem is with gathering aa track info aa_track_info = self.get_track_info(aa_song_id) mutate_call = mobileclient.BatchMutateTracks add_mutation = mutate_call.build_track_add(aa_track_info) res = self._make_call(mutate_call, [add_mutation]) return res['mutate_response'][0]['id'] @utils.accept_singleton(basestring) @utils.enforce_ids_param @utils.empty_arg_shortcircuit def delete_songs(self, library_song_ids): """Deletes songs from the library. Returns a list of deleted song ids. :param song_ids: a list of song ids, or a single song id. """ mutate_call = mobileclient.BatchMutateTracks del_mutations = mutate_call.build_track_deletes(library_song_ids) res = self._make_call(mutate_call, del_mutations) return [d['id'] for d in res['mutate_response']] @utils.enforce_id_param def get_stream_url(self, song_id, device_id=None, quality='hi'): """Returns a url that will point to an mp3 file. :param song_id: a single song id :param device_id: (optional) defaults to ``android_id`` from login. Otherwise, provide a mobile device id as a string. Android device ids are 16 characters, while iOS ids are uuids with 'ios:' prepended. If you have already used Google Music on a mobile device, :func:`Mobileclient.get_registered_devices <gmusicapi.clients.Mobileclient.get_registered_devices>` will provide at least one working id. Omit ``'0x'`` from the start of the string if present. Registered computer ids (a MAC address) will not be accepted and will 403. Providing an unregistered mobile device id will register it to your account, subject to Google's `device limits <http://support.google.com/googleplay/bin/answer.py?hl=en&answer=1230356>`__. **Registering a device id that you do not own is likely a violation of the TOS.** :param quality: (optional) stream bits per second quality One of three possible values, hi: 320kbps, med: 160kbps, low: 128kbps. The default is hi When handling the resulting url, keep in mind that: * you will likely need to handle redirects * the url expires after a minute * only one IP can be streaming music at once. This can result in an http 403 with ``X-Rejected-Reason: ANOTHER_STREAM_BEING_PLAYED``. The file will not contain metadata. Use :func:`Webclient.get_song_download_info <gmusicapi.clients.Webclient.get_song_download_info>` or :func:`Musicmanager.download_song <gmusicapi.clients.Musicmanager.download_song>` to download files with metadata. """ if device_id is None: device_id = self.android_id if len(device_id) == 16 and re.match('^[a-z0-9]*$', device_id): # android device ids are now sent in base 10 device_id = str(int(device_id, 16)) return self._make_call(mobileclient.GetStreamUrl, song_id, device_id, quality) def get_all_playlists(self, incremental=False, include_deleted=False): """Returns a list of dictionaries that each represent a playlist. :param incremental: if True, return a generator that yields lists of at most 1000 playlists as they are retrieved from the server. This can be useful for presenting a loading bar to a user. :param include_deleted: if True, include playlists that have been deleted in the past. Here is an example playlist dictionary:: { # can also be SHARED (public/subscribed to), MAGIC or omitted 'type': 'USER_GENERATED', 'kind': 'sj#playlist', 'name': 'Something Mix', 'deleted': False, 'lastModifiedTimestamp': '1325458766483033', 'recentTimestamp': '1325458766479000', 'shareToken': '<long string>', 'ownerProfilePhotoUrl': 'http://lh3.googleusercontent.com/...', 'ownerName': '<NAME>', 'accessControlled': False, # has to do with shared playlists 'creationTimestamp': '1325285553626172', 'id': '3d72c9b5-baad-4ff7-815d-cdef717e5d61' } """ playlists = self._get_all_items(mobileclient.ListPlaylists, incremental, include_deleted) return playlists # these could trivially support multiple creation/edits/deletion, but # I chose to match the old webclient interface (at least for now). def create_playlist(self, name, description=None, public=False): """Creates a new empty playlist and returns its id. :param name: the desired title. Creating multiple playlists with the same name is allowed. :param description: (optional) the desired description :param public: if True, create a public All Access playlist. """ share_state = 'PUBLIC' if public else 'PRIVATE' mutate_call = mobileclient.BatchMutatePlaylists add_mutations = mutate_call.build_playlist_adds([{'name': name, 'description': description, 'public': share_state}]) res = self._make_call(mutate_call, add_mutations) return res['mutate_response'][0]['id'] @utils.enforce_id_param def edit_playlist(self, playlist_id, new_name=None, new_description=None, public=None): """Changes the name of a playlist and returns its id. :param playlist_id: the id of the playlist :param new_name: (optional) desired title :param new_description: (optional) desired description :param public: (optional) if True and the user has All Access, share playlist. """ if all(value is None for value in (new_name, new_description, public)): raise ValueError('new_name, new_description, or public must be provided') if public is None: share_state = public else: share_state = 'PUBLIC' if public else 'PRIVATE' mutate_call = mobileclient.BatchMutatePlaylists update_mutations = mutate_call.build_playlist_updates([ {'id': playlist_id, 'name': new_name, 'description': new_description, 'public': share_state} ]) res = self._make_call(mutate_call,
<filename>ludwig/combiners/combiners.py<gh_stars>1-10 #! /usr/bin/env python # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import logging from typing import List import tensorflow as tf from tensorflow.keras.layers import Dense from tensorflow.keras.layers import concatenate from ludwig.encoders.sequence_encoders import ParallelCNN from ludwig.encoders.sequence_encoders import StackedCNN from ludwig.encoders.sequence_encoders import StackedCNNRNN from ludwig.encoders.sequence_encoders import StackedParallelCNN from ludwig.encoders.sequence_encoders import StackedRNN from ludwig.modules.attention_modules import TransformerStack from ludwig.modules.fully_connected_modules import FCStack from ludwig.modules.reduction_modules import SequenceReducer from ludwig.modules.tabnet_modules import TabNet from ludwig.utils.misc_utils import get_from_registry from ludwig.utils.tf_utils import sequence_length_3D logger = logging.getLogger(__name__) class ConcatCombiner(tf.keras.Model): def __init__( self, input_features=None, fc_layers=None, num_fc_layers=None, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, activation='relu', dropout=0, flatten_inputs=False, residual=False, **kwargs ): super().__init__() logger.debug(' {}'.format(self.name)) self.flatten_inputs = flatten_inputs self.fc_stack = None # todo future: this may be redundant, check if fc_layers is None and \ num_fc_layers is not None: fc_layers = [] for i in range(num_fc_layers): fc_layers.append({'fc_size': fc_size}) if fc_layers is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=activation, default_dropout=dropout, residual=residual, ) if input_features and len(input_features) == 1 and fc_layers is None: self.supports_masking = True def call( self, inputs, # encoder outputs training=None, mask=None, **kwargs ): encoder_outputs = [inputs[k]['encoder_output'] for k in inputs] # ================ Flatten ================ if self.flatten_inputs: batch_size = tf.shape(encoder_outputs[0])[0] encoder_outputs = [ tf.reshape(eo, [batch_size, -1]) for eo in encoder_outputs ] # ================ Concat ================ if len(encoder_outputs) > 1: hidden = concatenate(encoder_outputs, -1) else: hidden = list(encoder_outputs)[0] # ================ Fully Connected ================ if self.fc_stack is not None: hidden = self.fc_stack( hidden, training=training, mask=mask ) return_data = {'combiner_output': hidden} if len(inputs) == 1: for key, value in [d for d in inputs.values()][0].items(): if key != 'encoder_output': return_data[key] = value return return_data class SequenceConcatCombiner(tf.keras.Model): def __init__( self, reduce_output=None, main_sequence_feature=None, **kwargs ): super().__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) if self.reduce_output is None: self.supports_masking = True self.main_sequence_feature = main_sequence_feature def __call__( self, inputs, # encoder outputs training=None, mask=None, **kwargs ): if (self.main_sequence_feature is None or self.main_sequence_feature not in inputs): for if_name, if_outputs in inputs.items(): # todo: when https://github.com/ludwig-ai/ludwig/issues/810 is closed # convert following test from using shape to use explicit # if_outputs[TYPE] values for sequence features if len(if_outputs['encoder_output'].shape) == 3: self.main_sequence_feature = if_name break if self.main_sequence_feature is None: raise Exception( 'No sequence feature available for sequence combiner' ) main_sequence_feature_encoding = inputs[self.main_sequence_feature] representation = main_sequence_feature_encoding['encoder_output'] representations = [representation] sequence_max_length = representation.shape[1] sequence_length = sequence_length_3D(representation) # ================ Concat ================ for if_name, if_outputs in inputs.items(): if if_name != self.main_sequence_feature: if_representation = if_outputs['encoder_output'] if len(if_representation.shape) == 3: # The following check makes sense when # both representations have a specified # sequence length dimension. If they do not, # then this check is simply checking if None == None # and will not catch discrepancies in the different # feature length dimension. Those errors will show up # at training time. Possible solutions to this is # to enforce a length second dimension in # sequential feature placeholders, but that # does not work with BucketedBatcher that requires # the second dimension to be undefined in order to be # able to trim the data points and speed up computation. # So for now we are keeping things like this, make sure # to write in the documentation that training time # dimensions mismatch may occur if the sequential # features have different lengths for some data points. if if_representation.shape[1] != representation.shape[1]: raise ValueError( 'The sequence length of the input feature {} ' 'is {} and is different from the sequence ' 'length of the main sequence feature {} which ' 'is {}.\n Shape of {}: {}, shape of {}: {}.\n' 'Sequence lengths of all sequential features ' 'must be the same in order to be concatenated ' 'by the sequence concat combiner. ' 'Try to impose the same max sequence length ' 'as a preprocessing parameter to both features ' 'or to reduce the output of {}.'.format( if_name, if_representation.shape[1], self.main_sequence_feature, representation.shape[1], if_name, if_representation.shape, if_name, representation.shape, if_name ) ) # this assumes all sequence representations have the # same sequence length, 2nd dimension representations.append(if_representation) elif len(if_representation.shape) == 2: multipliers = tf.constant([1, sequence_max_length, 1]) tiled_representation = tf.tile( tf.expand_dims(if_representation, 1), multipliers ) representations.append(tiled_representation) else: raise ValueError( 'The representation of {} has rank {} and cannot be' ' concatenated by a sequence concat combiner. ' 'Only rank 2 and rank 3 tensors are supported.'.format( if_outputs['name'], len(if_representation.shape) ) ) hidden = tf.concat(representations, 2) logger.debug(' concat_hidden: {0}'.format(hidden)) # ================ Mask ================ # todo future: maybe modify this with TF2 mask mechanics sequence_mask = tf.sequence_mask( sequence_length, sequence_max_length ) hidden = tf.multiply( hidden, tf.cast(tf.expand_dims(sequence_mask, -1), dtype=tf.float32) ) # ================ Reduce ================ hidden = self.reduce_sequence(hidden) return_data = {'combiner_output': hidden} if len(inputs) == 1: for key, value in [d for d in inputs.values()][0].items(): if key != 'encoder_output': return_data[key] = value return return_data class SequenceCombiner(tf.keras.Model): def __init__( self, reduce_output=None, main_sequence_feature=None, encoder=None, **kwargs ): super().__init__() logger.debug(' {}'.format(self.name)) self.combiner = SequenceConcatCombiner( reduce_output=None, main_sequence_feature=main_sequence_feature ) self.encoder_obj = get_from_registry( encoder, sequence_encoder_registry)( should_embed=False, reduce_output=reduce_output, **kwargs ) if (hasattr(self.encoder_obj, 'supports_masking') and self.encoder_obj.supports_masking): self.supports_masking = True def __call__( self, inputs, # encoder outputs training=None, mask=None, **kwargs ): # ================ Concat ================ hidden = self.combiner( inputs, # encoder outputs training=training, **kwargs ) # ================ Sequence encoding ================ hidden = self.encoder_obj( hidden['combiner_output'], training=training, **kwargs ) return_data = {'combiner_output': hidden['encoder_output']} for key, value in hidden.items(): if key != 'encoder_output': return_data[key] = value return return_data class TabNetCombiner(tf.keras.Model): def __init__( self, size: int, # N_a in the paper output_size: int, # N_d in the paper num_steps: int = 1, # N_steps in the paper num_total_blocks: int = 4, num_shared_blocks: int = 2, relaxation_factor: float = 1.5, # gamma in the paper bn_epsilon: float = 1e-3, bn_momentum: float = 0.7, # m_B in the paper bn_virtual_bs: int = None, # B_v from the paper sparsity: float = 1e-5, # lambda_sparse in the paper dropout=0, **kwargs ): super().__init__() logger.debug(' {}'.format(self.name)) self.tabnet = TabNet( size=size, output_size=output_size, num_steps=num_steps, num_total_blocks=num_total_blocks, num_shared_blocks=num_shared_blocks, relaxation_factor=relaxation_factor, bn_epsilon=bn_epsilon, bn_momentum=bn_momentum, bn_virtual_bs=bn_virtual_bs, sparsity=sparsity ) if dropout > 0: self.dropout = tf.keras.layers.Dropout(dropout) else: self.dropout = None def call( self, inputs, # encoder outputs training=None, mask=None, **kwargs ): encoder_outputs = [inputs[k]['encoder_output'] for k in inputs] # ================ Flatten ================ batch_size = tf.shape(encoder_outputs[0])[0] encoder_outputs = [ tf.reshape(eo, [batch_size, -1]) for eo in encoder_outputs ] # ================ Concat ================ if len(encoder_outputs) > 1: hidden = concatenate(encoder_outputs, 1) else: hidden = list(encoder_outputs)[0] # ================ TabNet ================ hidden, aggregated_mask, masks = self.tabnet( hidden, training=training, ) if self.dropout: hidden = self.dropout(hidden, training=training) return_data = {'combiner_output': hidden, 'aggregated_attention_masks': aggregated_mask, 'attention_masks': masks} if len(inputs) == 1: for key, value in [d for d in inputs.values()][0].items(): if key != 'encoder_output': return_data[key] = value return return_data class TransformerCombiner(tf.keras.Model): def __init__( self, input_features=None, num_layers=1, hidden_size=256, num_heads=8, transformer_fc_size=256, dropout=0.1, fc_layers=None, num_fc_layers=0, fc_size=256, use_bias=True, weights_initializer='glorot_uniform', bias_initializer='zeros', weights_regularizer=None, bias_regularizer=None, activity_regularizer=None, # weights_constraint=None, # bias_constraint=None, norm=None, norm_params=None, fc_activation='relu', fc_dropout=0, fc_residual=False, reduce_output='mean', **kwargs ): super().__init__() logger.debug(' {}'.format(self.name)) self.reduce_output = reduce_output self.reduce_sequence = SequenceReducer(reduce_mode=reduce_output) if self.reduce_output is None: self.supports_masking = True logger.debug(' Projectors') self.projectors = [Dense(hidden_size) for _ in input_features] logger.debug(' TransformerStack') self.transformer_stack = TransformerStack( hidden_size=hidden_size, num_heads=num_heads, fc_size=transformer_fc_size, num_layers=num_layers, dropout=dropout ) if self.reduce_output is not None: logger.debug(' FCStack') self.fc_stack = FCStack( layers=fc_layers, num_layers=num_fc_layers, default_fc_size=fc_size, default_use_bias=use_bias, default_weights_initializer=weights_initializer, default_bias_initializer=bias_initializer, default_weights_regularizer=weights_regularizer, default_bias_regularizer=bias_regularizer, default_activity_regularizer=activity_regularizer, # default_weights_constraint=weights_constraint, # default_bias_constraint=bias_constraint, default_norm=norm, default_norm_params=norm_params, default_activation=fc_activation, default_dropout=fc_dropout, fc_residual=fc_residual, ) def call( self, inputs, # encoder outputs training=None, mask=None, **kwargs ): encoder_outputs = [inputs[k]['encoder_output'] for k in inputs] # ================ Flatten ================ batch_size = tf.shape(encoder_outputs[0])[0] encoder_outputs = [ tf.reshape(eo, [batch_size, -1]) for eo in encoder_outputs ] # ================ Project & Concat ================ projected
<filename>examples/fixed_axis_tsne.py """ Copyright 2020 heucoder @ https://github.com/heucoder/dimensionality_reduction_alo_codes/blob/master/codes/T-SNE/TSNE.py Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Access date: Aug 2021 Changes made from the original code: 1. Translated the Chinese comments into English for developing convenience. 2. Added parameters and relative features (mainly among line 150 - 200) in tsne() to adapt the fixed axis technique. 3. Added functions which will be used by fixed axis technique (mainly among 208 - 290). 4. Changed the program running script into fixed axis technique example (mainly among 290 - 360). """ # coding:utf-8 import math from datetime import timedelta from timeit import default_timer as timer from typing import Optional, List, Tuple import numba import numpy as np import sklearn.datasets as datasets from sklearn.preprocessing import MinMaxScaler def cal_pairwise_dist(x): '''Calculate the distance of a pairwise, x is a matrix (a-b)^2 = a^2 + b^2 - 2*a*b ''' sum_x = np.sum(np.square(x), 1) dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x) return dist def cal_perplexity(dist, idx=0, beta=1.0): '''Calculate perplexity. D is distance vector idx is the distance between a point and itself, beta is Gaussian distribution parameter ''' prob = np.exp(-dist * beta) prob[idx] = 0 sum_prob = np.sum(prob) if sum_prob < 1e-12: prob = np.maximum(prob, 1e-12) perp = -12 else: perp = np.log(sum_prob) + beta * np.sum(dist * prob) / sum_prob prob /= sum_prob return perp, prob def seach_prob(x, tol=1e-5, perplexity=30.0): '''Using binary research to find beta, then calculate the prob of the pairwise ''' # initialize parameters print("Computing pairwise distances...") (n, d) = x.shape dist = cal_pairwise_dist(x) dist[dist < 0] = 0 pair_prob = np.zeros((n, n)) beta = np.ones((n, 1)) # Here use the log value to make the later calculation easier base_perp = np.log(perplexity) for i in range(n): if i % 500 == 0: print("Computing pair_prob for point %s of %s ..." % (i, n)) betamin = -np.inf betamax = np.inf perp, this_prob = cal_perplexity(dist[i], i, beta[i]) # Using binary research to find the prob under the best sigma perp_diff = perp - base_perp tries = 0 while np.abs(perp_diff) > tol and tries < 50: if perp_diff > 0: betamin = beta[i].copy() if betamax == np.inf or betamax == -np.inf: beta[i] = beta[i] * 2 else: beta[i] = (beta[i] + betamax) / 2 else: betamax = beta[i].copy() if betamin == np.inf or betamin == -np.inf: beta[i] = beta[i] / 2 else: beta[i] = (beta[i] + betamin) / 2 # update the value for perb and prob perp, this_prob = cal_perplexity(dist[i], i, beta[i]) perp_diff = perp - base_perp tries = tries + 1 # record the value for prob pair_prob[i,] = this_prob print("Mean value of sigma: ", np.mean(np.sqrt(1 / beta))) return pair_prob def tsne(x, no_dims=2, perplexity=30.0, max_iter=1000, fix_column_to_z_projection_axis: Optional[int] = None, drop_columns_from_dataset: Optional[List[int]] = None, scaler: Optional[Tuple[int, int]] = (0, 1)): """Runs t-SNE on the dataset in the NxD array x to reduce its dimensionality to no_dims dimensions. The syntaxis of the function is Y = tsne.tsne(x, no_dims, perplexity), where x is an NxD NumPy array. """ start = timer() # Check inputs if isinstance(no_dims, float): print("Error: array x should have type float.") return -1 if scaler is not None: x = scale_dataset(x, scaler) z_axis_fixed = x[:, fix_column_to_z_projection_axis] x = preprocess_data(data=x, drop_columns_from_dataset=drop_columns_from_dataset) (n, d) = x.shape # Momentum initial_momentum = 0.5 final_momentum = 0.8 eta = 500 min_gain = 0.01 # Randomly initiate y y = np.random.randn(n, no_dims) dy = np.zeros((n, no_dims)) iy = np.zeros((n, no_dims)) gains = np.ones((n, no_dims)) # Symmetrize P = seach_prob(x, 1e-5, perplexity) P = P + np.transpose(P) P = P / np.sum(P) # pij # early exaggeration P = P * 4 P = np.maximum(P, 1e-12) if fix_column_to_z_projection_axis is not None: force_projection_dimensions = np.arange(no_dims - 1) y[:, no_dims - 1] = z_axis_fixed else: force_projection_dimensions = np.arange(no_dims) # Run iterations for iter in range(max_iter): # Compute pairwise affinities sum_y = np.sum(np.square(y), 1) num = 1 / (1 + np.add(np.add(-2 * np.dot(y, y.T), sum_y).T, sum_y)) num[range(n), range(n)] = 0 Q = num / np.sum(num) # qij Q = np.maximum(Q, 1e-12) # Compute gradient # pij-qij PQ = P - Q for i in range(n): dy[i, :] = np.sum(np.tile(PQ[:, i] * num[:, i], (no_dims, 1)).T * (y[i, :] - y), 0) # Perform the update if iter < 20: momentum = initial_momentum else: momentum = final_momentum gains = (gains + 0.2) * ((dy > 0) != (iy > 0)) + (gains * 0.8) * ((dy > 0) == (iy > 0)) gains[gains < min_gain] = min_gain # iteration iy = momentum * iy - eta * (gains * dy) for inst in range(len(y)): for index in force_projection_dimensions: y[inst][index] = y[inst][index] + iy[inst][index] y[inst][index] = y[inst][index] - np.tile(np.mean(y, 0), (n, 1))[inst][index] # Compute current value of cost function\ if (iter + 1) % 100 == 0: C = np.sum(P * np.log(P / Q)) print("Iteration ", (iter + 1), ": error is ", C) if (iter+1) != 100: ratio = C/oldC print("ratio ", ratio) if ratio >= 0.95: break oldC = C # Stop lying about P-values if iter == 100: P = P / 4 end = timer() print(f'Time elapsed: {timedelta(seconds=end - start)}') return y # Below are the functions used during tsne processing def create_triangular_distance_matrix( data): distance_matrix = np.zeros(int((data.shape[0] + 1) * data.shape[0] / 2)) size = len(data) k = 0 for i in range(size): for j in range(i, size): distance_matrix[k] = euclidean(data[i], data[j]) k = k + 1 return distance_matrix def euclidean(x, y): """Standard euclidean distance. ..math:: D(x, y) = \sqrt{\sum_i (x_i - y_i)^2} """ result = 0.0 for i in range(x.shape[0]): result += (x[i] - y[i]) ** 2 return np.sqrt(result) def kruskal_stress(distance_matrix, projection): size = len(projection) total = len(distance_matrix) den = 0 num = 0 for i in numba.prange(size): for j in numba.prange(size): dr2 = euclidean(projection[i], projection[j]) r = (i + j - math.fabs(i - j)) / 2 # min(i,j) s = (i + j + math.fabs(i - j)) / 2 # max(i,j) drn = distance_matrix[int(total - ((size - r) * (size - r + 1) / 2) + (s - r))] num += (drn - dr2) * (drn - dr2) den += drn * drn return math.sqrt(num / den) def scale_dataset(data, feature_range): """ Helper function for scaling/normalizing """ scaler = MinMaxScaler(feature_range=feature_range) data = scaler.fit_transform(data) """ data_scalared = data scaler = StandardScaler() data = scaler.fit_transform(data, data_scalared) """ return data def preprocess_data(data, drop_columns_from_dataset=None): """ Helper function for preprocessing the data :param data: :param fixed_axis: :param drop_columns_from_dataset: :return: ndarray of shape (n_samples, 2) Starting configuration of the projection result. By default it is ignored, and the starting projection is randomized using starting_projection_mode and random_state. If specified, this must match n_samples. """ X = data if drop_columns_from_dataset is not None: X = np.delete(data, drop_columns_from_dataset, axis=1) return X if __name__ == "__main__": projection_n_dimensions = 3 # perplexity=85 works best for iris perplexity = 45.0 max_iter = 300 drop_columns_from_dataset = [-1] scaler = (0, 1) fix_column_to_z_projection_axis = -1 plot = True # data = np.loadtxt('./datasets/mammals.data', delimiter=",") # data = pd.read_csv('./datasets/whr2019.csv', delimiter=",").values # data = np.concatenate((datasets.load_iris().data.T, [datasets.load_iris().target.T])).T data = np.concatenate((datasets.load_breast_cancer().data.T,[datasets.load_breast_cancer().target.T])).T # data = np.concatenate((datasets.load_boston().data.T,[datasets.load_boston().target.T])).T # data = np.tile(data, (100, 1)) # use this make the dataset 100x larger for performance test ################ x = preprocess_data(data=data, drop_columns_from_dataset=drop_columns_from_dataset) dist_for_stress = create_triangular_distance_matrix(x) # normally perplexity should between 5-50, # but here for iris 85 let to smallest kruskal stress projection = tsne(data, no_dims=projection_n_dimensions, perplexity=perplexity, max_iter=max_iter, fix_column_to_z_projection_axis=fix_column_to_z_projection_axis, drop_columns_from_dataset=drop_columns_from_dataset, scaler=scaler) stress = kruskal_stress(dist_for_stress, projection) print("kruskal stress is: ", stress) if plot: if projection_n_dimensions == 2: # show projection import plotly.graph_objects as go import numpy
<gh_stars>0 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np #import os import sys sys.path.insert(0,'/home/joshi/fixed_point_edits') import os import absl from tensorflow.python.ops import parallel_for as pfor from FixedPointStore import * import tensorflow as tf import horovod.tensorflow as hvd #import cProfile # %tensorflow_version 1.x magic #import matplotlib.pyplot as plt import numpy.random as nrand np.random.seed(0) # import numpy as np import time from AdaptiveGradNormClip import AdaptiveGradNormClip from AdaptiveLearningRate import AdaptiveLearningRate class FixedPointSearch: def __init__(self, ctype, states, savepath, cell=None, sess=None, max_iters = 5000, max_n_unique = np.inf, tol_q = 1e-12, tol_dq = 1e-20, adaptive_learning_rate_hps = {}, grad_norm_clip_hps = {}, adam_optimizer_hps = {'epsilon': 0.01}, exclude_dis_outliers = True, outlier_distance_scale = 10.0, rerun_q_outliers = True, run_additional_iterations_on_outliers = True, outlier_q_scale = 10.0 ): self.max_iters = max_iters self.ctype = ctype self.dtype = np.float32 self.tol_q = tol_q self.savepath = savepath self.tol_dq = tol_dq self.adaptive_learning_rate_hps = adaptive_learning_rate_hps self.grad_norm_clip_hps =grad_norm_clip_hps self.adam_optimizer_hps = adam_optimizer_hps self.outlier_q_scale = outlier_q_scale self.outlier_distance_scale = outlier_distance_scale self.states = states self.bits = 3 self.max_n_unique = max_n_unique self.rerun_q_outliers = rerun_q_outliers self.sampled_states = 0 self.cell = cell self.is_root = False self.uniq_tol = 1e-3 self.decompose_jacobians = True self.compute_jacobians = True self.sess = sess self.exclude_dis_outliers = exclude_dis_outliers self.run_additional_iterations_on_outliers = run_additional_iterations_on_outliers def convert_from_lstm_tuples(self, lstm): c = lstm.c h = lstm.h # print(c.shape) rank = len(lstm.c.shape) axis = rank -1 if(tf.is_numeric_tensor(c)): return tf.concat((c,h),axis=axis) else: return np.concatenate((c,h),axis=axis) def convert_to_lstm_tuples(self, lstm): array = lstm rank = len(array.shape) dim = array.shape[rank-1] if dim%2 ==0: conc_dim = dim//2 else: raise ValueError("Dimentions are not even") if rank == 3: c = array[:,:,:conc_dim] h = array[:,:,conc_dim:] elif rank == 2: c = array[:,:conc_dim] h = array[:,conc_dim:] return tf.nn.rnn_cell.LSTMStateTuple(c=c,h=h) def build_vars(self, init_states): if self.ctype == 'LSTM': c_h_init = self.convert_from_lstm_tuples(init_states) x = tf.Variable(c_h_init,dtype=tf.float32) x_rnn_cell = self.convert_to_lstm_tuples(x) else: x = tf.Variable(init_states,dtype=tf.float32) x_rnn_cell = x return x,x_rnn_cell def maybe_convert(self, x_init): if self.ctype=='LSTM': return self.convert_from_lstm_tuples(x_init) else: return x_init def get_rnn(self, init_states, inputs): # print('inside get rnn') x, x_rnn = self.build_vars(init_states) inputs = tf.constant(inputs,dtype=tf.float32) # print('before cell') output, F_rnn = self.cell(inputs,x_rnn) # print('before cell') if self.ctype == 'LSTM': F = self.convert_from_lstm_tuples(F_rnn) else: F = F_rnn init = tf.variables_initializer(var_list=[x]) self.sess.run(init) return x, F def compute_input_jacobians(self, fps): def grab_RNN_for_dFdu(initial_states, inputs): x, x_rnn = self.build_vars(initial_states) inputs = tf.Variable(inputs,dtype=tf.float32) output, F_rnn = self.cell(inputs,x_rnn) if self.ctype == 'LSTM': F = self.convert_from_lstm_tuples(F_rnn) else: F = F_rnn init = tf.variables_initializer(var_list = [x, inputs]) self.sess.run(init) return inputs, F inputs_np = fps.inputs if self.ctype == 'LSTM': states_np = self.convert_to_lstm_tuples(fps.xstar) else: states_np = fps.xstar inputs, F_tf = grab_RNN_for_dFdu(states_np, inputs_np) try: J_tf = pfor.batch_jacobian(F_tf, inputs) except absl.flags._exceptions.UnparsedFlagAccessError: J_tf = pfor.batch_jacobian(F_tf, inputs_tf, use_pfor=False) J_np = self.sess.run(J_tf) return J_np, J_tf def compute_recurrent_jacobians(self, fps): inputs = fps.inputs if self.ctype == 'LSTM': # print('line2') states_np = self.convert_to_lstm_tuples(fps.xstar) # print('line3') else: # print('line4') states_np = fps.xstar # print('line6') x_tf,F_tf = self.get_rnn(states_np,inputs) # print('line5') try: if self.is_root: print('batch jacobians') J_tf = pfor.batch_jacobian(F_tf,x_tf) except absl.flags._exceptions.UnparsedFlagAccessError: J_tf = pfor.batch_jacobian(F_tf, x_tf, use_pfor=False) if self.is_root: print('running cells') J_np = self.sess.run(J_tf) if self.is_root: print('out of batch jacobians') return J_np, J_tf def sample_states(self, init_size, state_matrix,c_type, noise): if c_type =='LSTM': matrix = self.convert_from_lstm_tuples(state_matrix) else: matrix = state_matrix [n_batch, n_time, n_states] = matrix.shape valid_idx = np.ones((n_batch, n_time), dtype=np.bool) (trial_idx, time_idx) = np.nonzero(valid_idx) min_index = min(len(trial_idx),len(time_idx)) sample_indices = nrand.RandomState(200).randint(0, high = min_index, size = [init_size]) trial_idx = trial_idx[sample_indices] time_idx = time_idx[sample_indices] states = np.zeros([init_size, n_states]) for i in range(init_size): init_idx = trial_idx[i] t_idx = time_idx[i] states[i,:] = matrix[init_idx,t_idx,:] if noise>0.0: states = states + noise*np.random.randn(*states.shape) if c_type == 'LSTM': # print('this') self.sampled_states = self.convert_to_lstm_tuples(states) else: self.sampled_states = states def identify_distance_non_outliers(self, fps, initial_states, dist_thresh): if self.ctype == 'LSTM': initial_states = self.convert_from_lstm_tuples(initial_states) num_inits = initial_states.shape[0] n_fps = fps.num_inits # Centroid of initial_states, shape (n_states,) centroid = np.mean(initial_states, axis=0) # Distance of each initial state from the centroid, shape (n,) init_dists = np.linalg.norm(initial_states - centroid, axis=1) avg_init_dist = np.mean(init_dists) # Normalized distances of initial states to the centroid, shape: (n,) scaled_init_dists = np.true_divide(init_dists, avg_init_dist) # Distance of each FP from the initial_states centroid fps_dists = np.linalg.norm(fps.xstar - centroid, axis=1) # Normalized scaled_fps_dists = np.true_divide(fps_dists, avg_init_dist) init_non_outlier_idx = np.where(scaled_init_dists < dist_thresh)[0] n_init_non_outliers = init_non_outlier_idx.size if self.is_root: print('\t\tinitial_states: %d outliers detected (of %d).' % (num_inits - n_init_non_outliers, num_inits)) fps_non_outlier_idx = np.where(scaled_fps_dists < dist_thresh)[0] n_fps_non_outliers = fps_non_outlier_idx.size if self.is_root: print('\t\tfixed points: %d outliers detected (of %d).' % (n_fps - n_fps_non_outliers, n_fps)) return fps_non_outlier_idx def exclude_dis_outliers_(self, fps, initial_states): idx_keep = self.identify_distance_non_outliers(fps, initial_states, self.outlier_distance_scale) return fps[idx_keep] def identify_q_outliers(self, fps, q_thresh): return np.where(fps.qstar > q_thresh)[0] def _get_rnncell_compatible_states(self, states): if self.ctype == 'LSTM': return self.convert_to_lstm_tuples(states) else: return states def run_additional_iterations_on_outliers_(self, fps): def perform_outlier_optimization(fps, method): idx_outliers = self.identify_q_outliers(fps, outlier_min_q) n_outliers = len(idx_outliers) outlier_fps = fps[idx_outliers] n_prev_iters = outlier_fps.n_iters inputs = outlier_fps.inputs initial_states = self._get_rnncell_compatible_states( outlier_fps.xstar) if method == 'sequential': updated_outlier_fps = self.run_sequential_optimization( initial_states, inputs, q_prior=outlier_fps.qstar) elif method == 'joint': updated_outlier_fps = self.run_joint_optimization(initial_states, inputs) else: raise ValueError('Unsupported method: %s.' % method) updated_outlier_fps.n_iters += n_prev_iters fps[idx_outliers] = updated_outlier_fps return fps def outlier_update(fps): idx_outliers = self.identify_q_outliers(fps, outlier_min_q) n_outliers = len(idx_outliers) # self._print_if_verbose('\n\tDetected %d putative outliers ' # '(q>%.2e).' % (n_outliers, outlier_min_q)) return idx_outliers outlier_min_q = np.median(fps.qstar)*self.outlier_q_scale idx_outliers = outlier_update(fps) if len(idx_outliers) == 0: return fps fps = perform_outlier_optimization(fps, 'sequential') outlier_update(fps) # For print output only return fps def run_iteration_loops(self, states, inputs, init_array): def print_update(iter_count, q, dq, lr, is_final=False): t = time.time() t_elapsed = t - t_start avg_iter_time = t_elapsed / iter_count if is_final: delimiter = '\n\t\t' print('\t\t%d iters%s' % (iter_count, delimiter), end='') else: delimiter = ', ' print('\tIter: %d%s' % (iter_count, delimiter), end='') if q.size == 1: print('q = %.2e%sdq = %.2e%s' % (q, delimiter, dq, delimiter), end='') else: mean_q = np.mean(q) std_q = np.std(q) mean_dq = np.mean(dq) std_dq = np.std(dq) print('q = %.2e +/- %.2e%s' 'dq = %.2e +/- %.2e%s' % (mean_q, std_q, delimiter, mean_dq, std_dq, delimiter), end='') print('learning rate = %.2e%s' % (lr, delimiter), end='') print('avg iter time = %.2e sec' % avg_iter_time, end='') if is_final: print('') # Just for the endline else: print('.') x, F_cell = self.get_rnn(states, inputs) q = 0.5 * tf.reduce_sum(tf.square(F_cell - x )) q_scalar = tf.reduce_mean(q) grads = tf.gradients(q_scalar, [x]) q_prev_tf = tf.placeholder(tf.float32, shape=list(q.shape), name='q_prev') # when (q-q_prev) is negative, optimization is making progress dq = tf.abs(q - q_prev_tf) hps={} # Optimizer adaptive_learning_rate = AdaptiveLearningRate(**self.adaptive_learning_rate_hps) learning_rate = tf.placeholder(tf.float32, name='learning_rate') adaptive_grad_norm_clip = AdaptiveGradNormClip(**self.grad_norm_clip_hps) grad_norm_clip_val = tf.placeholder(tf.float32, name='grad_norm_clip_val') # Gradient clipping clipped_grads, grad_global_norm = tf.clip_by_global_norm(grads, grad_norm_clip_val) clipped_grad_global_norm = tf.global_norm(clipped_grads) clipped_grad_norm_diff = grad_global_norm - clipped_grad_global_norm grads_to_apply = clipped_grads # adam_hps = {'epsilon': 0.01} optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, **self.adam_optimizer_hps) optimizer = hvd.DistributedOptimizer(optimizer) train = optimizer.apply_gradients(zip(grads_to_apply, [x])) # Initialize x and AdamOptimizer's auxiliary variables uninitialized_vars = optimizer.variables() init = tf.variables_initializer(var_list=uninitialized_vars) self.sess.run(init) ops_to_eval = [train,x, F_cell, q_scalar, q, dq, grad_global_norm] iter_count = 1 t_start = time.time() q_prev = np.tile(np.nan, q.shape.as_list()) rnn_cell_feed_dict = {} while True: # print('inside run iter loops') iter_learning_rate = adaptive_learning_rate() iter_clip_val = adaptive_grad_norm_clip() feed_dict = {learning_rate: iter_learning_rate, grad_norm_clip_val: iter_clip_val, q_prev_tf: q_prev} feed_dict.update(rnn_cell_feed_dict) (ev_train, ev_x, ev_F, ev_q_scalar, ev_q, ev_dq, ev_grad_norm) = self.sess.run(ops_to_eval, feed_dict) # print('doing iter count') if iter_count > 1 and \ np.all(np.logical_or( ev_dq < self.tol_dq*iter_learning_rate, ev_q < self.tol_q)): if self.is_root: print('\tOptimization complete to desired tolerance.') break if iter_count + 1 > 5000: if self.is_root: print('\tMaximum iteration count reached. ' 'Terminating.') break q_prev = ev_q adaptive_learning_rate.update(ev_q_scalar) adaptive_grad_norm_clip.update(ev_grad_norm) iter_count += 1 # print_update(iter_count, # ev_q, ev_dq, # iter_learning_rate, # is_final=True) iter_count = np.tile(iter_count, ev_q.shape) fixed_point = FixedPointStore(xstar = ev_x, inputs = inputs, dtype = self.dtype, alloc_zeros = False, x_init = self.maybe_convert(states), F_xstar=ev_F, qstar= ev_q, dq=ev_dq, n_iters = iter_count ) return fixed_point def find_shape(self, states): if self.ctype == 'LSTM': return (states.c.shape[0], states.c.shape[1]*2) else: return states.shape[0],states.shape[1] def return_index(self, states, index): if self.ctype=='LSTM': c= states.c[index] h = states.h[index] return tf.nn.rnn_cell.LSTMStateTuple(c=c,h=h) else: return states[index] def run_joint_optimization(self, initial_states, inputs): def print_update(iter_count, q, dq, lr, is_final=False): t = time.time() t_elapsed = t - t_start avg_iter_time = t_elapsed / iter_count if is_final: delimiter = '\n\t\t' print('\t\t%d iters%s' % (iter_count, delimiter), end='') else: delimiter = ', ' print('\tIter: %d%s' % (iter_count, delimiter), end='') if q.size == 1: print('q = %.2e%sdq = %.2e%s' % (q, delimiter, dq, delimiter), end='')
<gh_stars>0 # Copyright (c) 2017-2019, <NAME> # Copyright (c) 2014-2018, iocage # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted providing that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """iocage release module.""" import typing import hashlib import os import urllib.request import urllib.error import urllib.parse import re import libzfs import libioc.ZFS import libioc.errors import libioc.helpers import libioc.helpers_object import libioc.events import libioc.LaunchableResource import libioc.ResourceSelector import libioc.Jail import libioc.SecureTarfile # MyPy import libioc.Resource import libioc.Host import libioc.Logger import libioc.Config.Host import libioc.Config.Jail.File.RCConf import libioc.Config.Jail.File.SysctlConf class ReleaseResource(libioc.LaunchableResource.LaunchableResource): """Resource that represents an iocage release.""" _release: typing.Optional['ReleaseGenerator'] _hashes: typing.Optional[typing.Dict[str, str]] host: libioc.Host.HostGenerator root_datasets_name: typing.Optional[str] def __init__( self, dataset: typing.Optional[libzfs.ZFSDataset]=None, dataset_name: typing.Optional[str]=None, config_type: str="auto", config_file: typing.Optional[str]=None, logger: typing.Optional['libioc.Logger.Logger']=None, zfs: typing.Optional[libioc.ZFS.ZFS]=None, host: typing.Optional['libioc.Host.HostGenerator']=None, release: typing.Optional['ReleaseGenerator']=None, root_datasets_name: typing.Optional[str]=None, ) -> None: self.host = libioc.helpers_object.init_host(self, host) self.root_datasets_name = root_datasets_name libioc.LaunchableResource.LaunchableResource.__init__( self, dataset=dataset, dataset_name=dataset_name, config_type=config_type, config_file=config_file, logger=logger, zfs=zfs ) self._release = release self._hashes = None @property def release(self) -> 'ReleaseGenerator': """ Return the release instance that belongs to the resource. Usually the resource becomes inherited from the Release itself. It can still be used linked to a foreign ReleaseGenerator by passing release as named attribute to the __init__ function """ if self._release is not None: return self._release elif isinstance(self, ReleaseGenerator): return self raise Exception( "Resource is not a valid release itself and has no linked release" ) @property def full_name(self) -> str: """ Return the full identifier of a jail. When more than one root dataset is managed by iocage, the full source and name are returned. Otherwise just the name. For example `mydataset/jailname` or just `jailname`. """ if len(self.host.datasets) > 1: return f"{self.source}/{self.name}" else: return str(self.name) @property def dataset_name(self) -> str: """ Return the name of the releases ZFS dataset. If the resource has no dataset or dataset_name assigned yet, the release id is used to find name the dataset """ try: return str(self._assigned_dataset_name) except AttributeError: pass return self._dataset_name_from_release_name @dataset_name.setter def dataset_name(self, value: str) -> None: """Set the releases dataset name.""" self._dataset_name = value @property def base_dataset(self) -> libzfs.ZFSDataset: """ Return the ZFS basejail dataset belonging to the release. base datasets are created from releases. They are required to start zfs-basejails. """ ds: libzfs.ZFSDataset = self.zfs.get_dataset(self.base_dataset_name) return ds @property def base_dataset_name(self) -> str: """Return the ZFS basejail datasets name belonging to the release.""" return f"{self._dataset_name_from_base_name}/root" @property def _dataset_name_from_release_name(self) -> str: return f"{self.source_dataset.releases.name}/{self.name}" @property def _dataset_name_from_base_name(self) -> str: return f"{self.source_dataset.base.name}/{self.name}" @property def source_dataset(self) -> 'libioc.Datasets.RootDatasets': """ Return the releases source root dataset. iocage can manage multiple source datasets (on different ZFS pools for instance). This property returns the RootDatasets instance that belongs to the release. """ try: assigned_name = str(self._assigned_dataset_name) return self.host.datasets.find_root_datasets(assigned_name) except AttributeError: pass if self.root_datasets_name is None: return self.host.datasets.main else: try: return self.host.datasets.__getitem__(self.root_datasets_name) except KeyError: raise libioc.errors.SourceNotFound(logger=self.logger) @property def source(self) -> str: """Return the name of the releases source root datasets.""" try: assigned_name = str(self._assigned_dataset_name) return str( self.host.datasets.find_root_datasets_name(assigned_name) ) except AttributeError: pass if self.root_datasets_name is None: return str(self.host.datasets.main_datasets_name) else: return str(self.root_datasets_name) class ReleaseGenerator(ReleaseResource): """Release with generator interfaces.""" DEFAULT_RC_CONF: typing.Dict[str, typing.Union[str, bool]] = { "netif_enable": False, "sendmail_enable": False, "sendmail_submit_enable": False, "sendmail_msp_queue_enable": False, "sendmail_outbound_enable": False, "daily_clean_hoststat_enable": False, "daily_status_mail_rejects_enable": False, "daily_status_include_submit_mailq": False, "daily_submit_queuerun": False, "cron_flags": "-m ''", "syslogd_flags": "-ss" } DEFAULT_SYSCTL_CONF: typing.Dict[str, int] = { "net.inet.ip.fw.enable": 0 } _name: str patchlevel: typing.Optional[int] check_eol: bool logger: 'libioc.Logger.Logger' zfs: libioc.ZFS.ZFS host: 'libioc.Host.HostGenerator' _resource: libioc.Resource.Resource _assets: typing.List[str] _mirror_url: typing.Optional[str] def __init__( self, name: str, dataset: typing.Optional[libzfs.ZFSDataset]=None, dataset_name: typing.Optional[str]=None, config_type: str="auto", config_file: typing.Optional[str]=None, root_datasets_name: typing.Optional[str]=None, host: typing.Optional['libioc.Host.HostGenerator']=None, zfs: typing.Optional[libioc.ZFS.ZFS]=None, logger: typing.Optional['libioc.Logger.Logger']=None, check_hashes: bool=True, check_eol: bool=True, ) -> None: self.logger = libioc.helpers_object.init_logger(self, logger) self.zfs = libioc.helpers_object.init_zfs(self, zfs) self.host = libioc.helpers_object.init_host(self, host) resource_selector = libioc.ResourceSelector.ResourceSelector( name, logger=self.logger ) if resource_selector.source_name is not None: is_different = resource_selector.source_name != root_datasets_name if (root_datasets_name is not None) and (is_different is True): # ToDo: omit root_datasets_name at all ? raise libioc.errors.ConflictingResourceSelection( source_a=resource_selector.source_name, source_b=root_datasets_name, logger=self.logger ) else: root_datasets_name = resource_selector.source_name if libioc.helpers.validate_name(resource_selector.name) is False: raise NameError(f"Invalid 'name' for Release: '{name}'") self.name = name self._hbsd_release_branch = None self._mirror_url = None self._hashes = None self.check_hashes = check_hashes is True self.check_eol = check_eol is True ReleaseResource.__init__( self, host=self.host, logger=self.logger, zfs=self.zfs, root_datasets_name=root_datasets_name, dataset_name=dataset_name, config_type=config_type, config_file=config_file, release=self ) self._assets = ["base"] if self.host.distribution.name != "HardenedBSD": self._assets.append("lib32") @property def name(self) -> str: """Return the releases identifier.""" return self._name @name.setter def name(self, value: str) -> None: """Set the releases identifier (optionally including patchlevel).""" match = re.match(( r"^(?:(?P<source_dataset_name>.*)/)?" r"(?P<release_name>.*?)" r"(?:-p(?P<patchlevel>[0-9]+))?$" ), value) if match is None: raise libioc.errors.InvalidReleaseName( name=value, logger=self.logger ) self._name = match.group("release_name") patchlevel = match.group("patchlevel") self.patchlevel = None if (patchlevel is None) else int(patchlevel) if match.group("source_dataset_name") is not None: self.root_datasets_name = match.group("source_dataset_name") @property def full_name(self) -> str: """Return the release name including the patchlevel.""" if self.patchlevel is None: return self._name return f"{self._name}-p{self.current_snapshot_patchlevel}" @property def resource(self) -> 'libioc.Resource.Resource': """Return the releases resource.""" return self._resource @resource.setter def resource(self, value: 'libioc.Resource.Resource') -> None: """Set the releases resource.""" if value is None: self._resource = ReleaseResource( release=self, host=self.host, logger=self.logger, zfs=self.zfs ) else: self._resource = value @property def releases_folder(self) -> str: """Return the mountpoint of the iocage/releases dataset.""" return str(self.source_dataset.releases.mountpoint) @property def download_directory(self) -> str: """Return the download directory.""" return str(self.dataset.mountpoint) @property def root_dir(self) -> str: """Return the main directory of the release.""" try: if self.root_dataset.mountpoint: return str(self.root_dataset.mountpoint) except AttributeError: pass return f"{self.releases_folder}/{self.name}/root" @property def assets(self) -> typing.List[str]: """Return a list of release assets.""" return self._assets @assets.setter def assets(self, value: typing.Union[typing.List[str], str]) -> None: """Set the list of release assets.""" value = [value] if isinstance(value, str) else value self._assets = list(map( lambda x: x if not x.endswith(".txz") else x[:-4], value )) @property def real_name(self) -> str: """Map the release name on HardenedBSD.""" if self.host.distribution.name == "HardenedBSD": return f"HardenedBSD-{self.name}-{self.host.processor}-LATEST" return self.name @property def annotated_name(self) -> str: """ Return the release name with annotations. Annotations inform whether a release is newer then the host or EOL. """ annotations = set() if self.eol is True: annotations.add("EOL") if self.newer_than_host is True: annotations.add("Newer than Host") if len(annotations) > 0: return f"{self.name} ({', '.join(annotations)})" return f"{self.name}" @property def eol(self) -> typing.Optional[bool]: """ Return whether the release is EOL or checks are disabled. When check_eol is disabled, None is returned, True when the release name was found in the distributions eol_list. """ if not self.check_eol: return None if self.host.distribution.name == "FreeBSD": return (self.name in self.host.distribution.eol_list) is True elif self.host.distribution.name == "HardenedBSD": if "STABLE" in self.name: # stable releases are explicitly in the EOL list or supported return (self.name in self.host.distribution.eol_list) is True return (self.version_number in map( lambda x: self._parse_release_version(x), self.host.distribution.eol_list )) is True return False @property def current_snapshot_patchlevel(self) -> int: """Return the currently chosen patchlevel number or the latest.""" current_snapshot_name = self.current_snapshot.snapshot_name return int(current_snapshot_name.lstrip('p')) @property def current_snapshot(self) -> libzfs.ZFSSnapshot: """Return the manually configured or the latest release snapshot.""" if self.patchlevel is not None: for snapshot in self.version_snapshots: if snapshot.snapshot_name == f"p{self.patchlevel}": return snapshot return self.latest_snapshot @property def latest_snapshot(self) -> libzfs.ZFSSnapshot: """ Return or create the latest version snapshot. When no snapshot was taken before `p0` is automatically created. """ version_snapshots = self.version_snapshots if len(version_snapshots) == 0: self.logger.verbose("No release snapshot found - using @p0") return self.snapshot("p0") else: return version_snapshots[0] @property
import os import fnmatch import logging import hashlib import json from collections import defaultdict, namedtuple from flask import url_for as flask_url_for from flask import current_app from boto.s3.connection import S3Connection from boto.s3 import connect_to_region from boto.exception import S3CreateError, S3ResponseError from boto.s3.key import Key logger = logging.getLogger('flask_s3') def get_path_components(path): """ http://stackoverflow.com/questions/3167154/how-to-split-a-dos-path-into-its-components-in-python """ folders = [] while True: path, folder = os.path.split(path) if folder != "": folders.append(folder) else: if path != "": folders.append(path) break folders.reverse() return folders def hash_file(filename): """ Generate a hash for the contents of a file """ hasher = hashlib.sha1() with open(filename, 'rb') as f: buf = f.read(65536) while len(buf) > 0: hasher.update(buf) buf = f.read(65536) return hasher.hexdigest() def url_for(folders, endpoint, **values): """ Generates a URL to the given endpoint. If the endpoint is for a static resource then an Amazon S3 URL is generated, otherwise the call is passed on to `flask.url_for`. Because this function is set as a jinja environment variable when `FlaskS3.init_app` is invoked, this function replaces `flask.url_for` in templates automatically. It is unlikely that this function will need to be directly called from within your application code, unless you need to refer to static assets outside of your templates. """ app = current_app if 'S3_BUCKET_NAME' not in app.config: raise ValueError("S3_BUCKET_NAME not found in app configuration.") my_endpoints = [f.endpoint for f in folders] ending_endpoint = endpoint.split('.')[-1] use_s3 = app.config.get('USE_S3') if app.debug: use_s3 = app.config.get('USE_S3_DEBUG') and app.config.get('USE_S3') if endpoint in my_endpoints or ending_endpoint == 'static' and use_s3: scheme = 'http' if app.config['S3_USE_HTTPS']: scheme = 'https' if app.config['S3_URL_STYLE'] == 'host': url_format = '%(bucket_name)s.%(bucket_domain)s' elif app.config['S3_URL_STYLE'] == 'path': url_format = '%(bucket_domain)s/%(bucket_name)s' else: raise ValueError('Invalid S3 URL style: "%s"' % app.config['S3_URL_STYLE']) bucket_path = url_format % { 'bucket_name': app.config['S3_BUCKET_NAME'], 'bucket_domain': app.config['S3_BUCKET_DOMAIN'], } if app.config['S3_CDN_DOMAIN']: bucket_path = '%s' % app.config['S3_CDN_DOMAIN'] urls = app.url_map.bind(bucket_path, url_scheme=scheme) return urls.build(endpoint, values=values, force_external=True) return flask_url_for(endpoint, **values) def _bp_static_url(app, blueprint): """ builds the absolute url path for a blueprint's static folder """ urls = app.url_map.bind('') u = urls.build("{}.static".format(blueprint.name), values={"filename":""}) print(u) return u def _get_static_folders(app): """ Gets static folders and returns in list of (folder, url) pairs""" dirs = [(unicode(app.static_folder), app.static_url_path)] if hasattr(app, 'blueprints'): blueprints = app.blueprints.values() bp_details = lambda x: (x.static_folder, _bp_static_url(app, x)) dirs.extend([bp_details(x) for x in blueprints if x.static_folder]) return dirs def _gather_files(folders, hidden): valid_files = defaultdict(list) for static_folder, static_url_loc in folders: if not os.path.isdir(static_folder): logger.warning("WARNING - [%s does not exist]" % static_folder) else: logger.debug("Checking static folder: %s" % static_folder) for root, _, files in os.walk(static_folder): files = [os.path.join(root, x) \ for x in files if hidden or x[0] != '.'] if files: valid_files[(static_folder, static_url_loc)].extend(files) return valid_files def _path_to_relative_url(path): """ Converts a folder and filename into a ralative url path """ return os.path.splitdrive(path)[1].replace('\\', '/') def _static_folder_path(static_url, static_folder, static_asset): """ Returns a path to a file based on the static folder, and not on the filesystem holding the file. Returns a path relative to static_url for static_asset """ # first get the asset path relative to the static folder. # static_asset is not simply a filename because it could be # sub-directory then file etc. if not static_asset.startswith(static_folder): raise ValueError("%s static asset must be under %s static folder" % (static_asset, static_folder)) rel_asset = static_asset[len(static_folder):] # Now bolt the static url path and the relative asset location together return u'%s/%s' % (static_url.rstrip('/'), rel_asset.lstrip('/')) def _write_files(app, static_url_loc, static_folder, files, bucket, ex_keys=None, hashes=None): """ Writes all the files inside a static folder to S3. """ new_hashes = [] static_folder_rel = _path_to_relative_url(static_folder) ignore_patterns = app.config.get('S3_IGNORE', []) for file_path in files: matches = [fnmatch.fnmatch(file_path, ignore_pattern) for ignore_pattern in ignore_patterns] if any(matches): print("ignoring file {}".format(file_path)) continue asset_loc = _path_to_relative_url(file_path) key_name = _static_folder_path(static_url_loc, static_folder_rel, asset_loc).strip('/') msg = "Uploading %s to %s as %s" % (file_path, bucket, key_name) logger.debug(msg) exclude = False if app.config.get('S3_ONLY_MODIFIED', False): file_hash = hash_file(file_path) new_hashes.append((key_name, file_hash)) if hashes and hashes.get(key_name, None) == file_hash: exclude = True if ex_keys and key_name in ex_keys or exclude: logger.debug("%s excluded from upload" % key_name) else: k = Key(bucket=bucket, name=key_name) # Set custom headers for header, value in app.config['S3_HEADERS'].iteritems(): k.set_metadata(header, value) k.set_contents_from_filename(file_path) k.make_public() print("pushing new file {}".format(key_name)) return new_hashes def _upload_files(app, files_, bucket, hashes=None): new_hashes = [] for (static_folder, static_url), names in files_.iteritems(): new_hashes.extend(_write_files(app, static_url, static_folder, names, bucket, hashes=hashes)) return new_hashes def get_bucket(app, user=None, password=None, bucket_name=None, location=None): user = user or app.config.get('AWS_ACCESS_KEY_ID') password = password or app.config.get('AWS_SECRET_ACCESS_KEY') bucket_name = bucket_name or app.config.get('S3_BUCKET_NAME') if not bucket_name: raise ValueError("No bucket name provided.") location = location or app.config.get('S3_REGION') # connect to s3 if not location: conn = S3Connection(user, password) # (default region) else: conn = connect_to_region(location, aws_access_key_id=user, aws_secret_access_key=password) # get_or_create bucket try: try: bucket = conn.create_bucket(bucket_name) except S3CreateError as e: if e.error_code == u'BucketAlreadyOwnedByYou': bucket = conn.get_bucket(bucket_name) else: raise e bucket.make_public(recursive=False) except S3CreateError as e: raise e return bucket def create_all(folders, app, include_hidden=False, **kwargs): """ Uploads of the static assets associated with a Flask application to Amazon S3. All static assets are identified on the local filesystem, including any static assets associated with *registered* blueprints. In turn, each asset is uploaded to the bucket described by `bucket_name`. If the bucket does not exist then it is created. Flask-S3 creates the same relative static asset folder structure on S3 as can be found within your Flask application. Many of the optional arguments to `create_all` can be specified instead in your application's configuration using the Flask-S3 `configuration`_ variables. :param app: a :class:`flask.Flask` application object. :param user: an AWS Access Key ID. You can find this key in the Security Credentials section of your AWS account. :type user: `basestring` or None :param password: an AWS Secret Access Key. You can find this key in the Security Credentials section of your AWS account. :type password: `basestring` or None :param bucket_name: the name of the bucket you wish to server your static assets from. **Note**: while a valid character, it is recommended that you do not include periods in bucket_name if you wish to serve over HTTPS. See Amazon's `bucket restrictions`_ for more details. :type bucket_name: `basestring` or None :param location: the AWS region to host the bucket in; an empty string indicates the default region should be used, which is the US Standard region. Possible location values include: `'DEFAULT'`, `'EU'`, `'USWest'`, `'APSoutheast'` :type location: `basestring` or None :param include_hidden: by default Flask-S3 will not upload hidden files. Set this to true to force the upload of hidden files. :type include_hidden: `bool` .. _bucket restrictions: http://docs.amazonwebservices.com/AmazonS3\ /latest/dev/BucketRestrictions.html """ bucket = get_bucket(app=app, **kwargs) # build list of files my_folders = [(f.folder, f.url) for f in folders] static_folders = _get_static_folders(app) all_folders = my_folders + static_folders all_files = _gather_files(all_folders, include_hidden) logger.debug("All valid files: %s" % all_files) if app.config['S3_ONLY_MODIFIED']: hashes = get_web_hashes(bucket) new_hashes = _upload_files(app, all_files, bucket, hashes=hashes) try: k = Key(bucket=bucket, name=".file-hashes") k.set_contents_from_string(json.dumps(dict(new_hashes))) except S3ResponseError as e: logger.warn("Unable to upload file hashes: %s" % e) else: _upload_files(app, all_files, bucket) def get_web_hashes(bucket): try: hashes = json.loads( Key(bucket=bucket, name=".file-hashes").get_contents_as_string()) return hashes except S3ResponseError as e: logger.warn("No file hashes found: %s" % e) def clean(app, **kwargs): bucket = get_bucket(app=app, **kwargs) hashes = get_web_hashes(bucket) if hashes is None: print("no hashes available. Bucket not cleaned") keys = set(hashes.keys()) bucket_list = bucket.list() for l in bucket_list: keyString = str(l.key) if keyString == '.file-hashes': continue if keyString not in keys: print("deleting {}".format(keyString)) l.delete() def clone(folders, app, **kwargs): bucket = get_bucket(app=app, **kwargs) hashes = get_web_hashes(bucket) my_folders = [(f.folder, f.url) for f in folders] static_folders = _get_static_folders(app) all_folders = my_folders + static_folders # TODO: use hash to see what needs to be updated bucket_list = bucket.list() for l in bucket_list: keyString = str(l.key) if keyString == '.file-hashes': continue if hashes is not None and keyString not in hashes: print("file {} has not been pushed (probably needs to be cleaned up) so won't be downloaded".format(keyString)) continue # find out which local folder to map to for folder_local, folder_url in all_folders: folder_comps = get_path_components(folder_url.strip('/')) key_comps = get_path_components(keyString.strip('/')) # make sure all components match for fc, kc in zip(folder_comps, key_comps): if fc != kc: break # some component does not match, continue to next else: # all components
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Main entry point into the Identity service.""" import functools import os from oslo.config import cfg from keystone import clean from keystone.common import controller from keystone.common import dependency from keystone.common import manager from keystone import config from keystone import exception from keystone import notifications from keystone.openstack.common import importutils from keystone.openstack.common import log as logging CONF = config.CONF LOG = logging.getLogger(__name__) def filter_user(user_ref): """Filter out private items in a user dict. 'password', 'tenants' and 'groups' are never returned. :returns: user_ref """ if user_ref: user_ref = user_ref.copy() user_ref.pop('password', None) user_ref.pop('tenants', None) user_ref.pop('groups', None) user_ref.pop('domains', None) try: user_ref['extra'].pop('password', None) user_ref['extra'].pop('tenants', None) except KeyError: pass return user_ref class DomainConfigs(dict): """Discover, store and provide access to domain specifc configs. The setup_domain_drives() call will be made via the wrapper from the first call to any driver function handled by this manager. This setup call it will scan the domain config directory for files of the form keystone.<domain_name>.conf For each file, the domain_name will be turned into a domain_id and then this class will: - Create a new config structure, adding in the specific additional options defined in this config file - Initialise a new instance of the required driver with this new config. """ configured = False driver = None def _load_driver(self, assignment_api, domain_id): domain_config = self[domain_id] domain_config['driver'] = ( importutils.import_object( domain_config['cfg'].identity.driver, domain_config['cfg'])) domain_config['driver'].assignment_api = assignment_api def _load_config(self, assignment_api, file_list, domain_name): try: domain_ref = assignment_api.get_domain_by_name(domain_name) except exception.DomainNotFound: msg = (_('Invalid domain name (%s) found in config file name') % domain_name) LOG.warning(msg) if domain_ref: # Create a new entry in the domain config dict, which contains # a new instance of both the conf environment and driver using # options defined in this set of config files. Later, when we # service calls via this Manager, we'll index via this domain # config dict to make sure we call the right driver domain = domain_ref['id'] self[domain] = {} self[domain]['cfg'] = cfg.ConfigOpts() config.configure(conf=self[domain]['cfg']) self[domain]['cfg'](args=[], project='keystone', default_config_files=file_list) self._load_driver(assignment_api, domain) def setup_domain_drivers(self, standard_driver, assignment_api): # This is called by the api call wrapper self.configured = True self.driver = standard_driver conf_dir = CONF.identity.domain_config_dir if not os.path.exists(conf_dir): msg = _('Unable to locate domain config directory: %s') % conf_dir LOG.warning(msg) return for r, d, f in os.walk(conf_dir): for file in f: if file.startswith('keystone.') and file.endswith('.conf'): names = file.split('.') if len(names) == 3: self._load_config(assignment_api, [os.path.join(r, file)], names[1]) else: msg = (_('Ignoring file (%s) while scanning domain ' 'config directory') % file) LOG.debug(msg) def get_domain_driver(self, domain_id): if domain_id in self: return self[domain_id]['driver'] def get_domain_conf(self, domain_id): if domain_id in self: return self[domain_id]['cfg'] def reload_domain_driver(self, assignment_api, domain_id): # Only used to support unit tests that want to set # new config values. This should only be called once # the domains have been configured, since it relies on # the fact that the configuration files have already been # read. if self.configured: if domain_id in self: self._load_driver(assignment_api, domain_id) else: # The standard driver self.driver = self.driver() self.driver.assignment_api = assignment_api def domains_configured(f): """Wraps API calls to lazy load domain configs after init. This is required since the assignment manager needs to be initialized before this manager, and yet this manager's init wants to be able to make assignment calls (to build the domain configs). So instead, we check if the domains have been initialized on entry to each call, and if requires load them, """ @functools.wraps(f) def wrapper(self, *args, **kwargs): if (not self.domain_configs.configured and CONF.identity.domain_specific_drivers_enabled): LOG.warning(_( 'Running an experimental and unsupported configuration ' '(domain_specific_drivers_enabled = True); ' 'this will result in known issues.')) self.domain_configs.setup_domain_drivers( self.driver, self.assignment_api) return f(self, *args, **kwargs) return wrapper @dependency.provider('identity_api') @dependency.requires('assignment_api') class Manager(manager.Manager): """Default pivot point for the Identity backend. See :mod:`keystone.common.manager.Manager` for more details on how this dynamically calls the backend. This class also handles the support of domain specific backends, by using the DomainConfigs class. The setup call for DomainConfigs is called from with the @domains_configured wrapper in a lazy loading fashion to get around the fact that we can't satisfy the assignment api it needs from within our __init__() function since the assignment driver is not itself yet intitalized. Each of the identity calls are pre-processed here to choose, based on domain, which of the drivers should be called. The non-domain-specific driver is still in place, and is used if there is no specific driver for the domain in question. """ def __init__(self): super(Manager, self).__init__(CONF.identity.driver) self.domain_configs = DomainConfigs() @staticmethod def v3_to_v2_user(ref): """Convert a user_ref from v3 to v2 compatible. * v2.0 users are not domain aware, and should have domain_id removed * v2.0 users expect the use of tenantId instead of default_project_id This method should only be applied to user_refs being returned from the v2.0 controller(s). If ref is a list type, we will iterate through each element and do the conversion. """ def _format_default_project_id(ref): """Convert default_project_id to tenantId for v2 calls.""" default_project_id = ref.pop('default_project_id', None) if default_project_id is not None: ref['tenantId'] = default_project_id elif 'tenantId' in ref: # NOTE(morganfainberg): To avoid v2.0 confusion if somehow a # tenantId property sneaks its way into the extra blob on the # user, we remove it here. If default_project_id is set, we # would override it in either case. del ref['tenantId'] def _normalize_and_filter_user_properties(ref): """Run through the various filter/normalization methods.""" _format_default_project_id(ref) controller.V2Controller.filter_domain_id(ref) return ref if isinstance(ref, dict): return _normalize_and_filter_user_properties(ref) elif isinstance(ref, list): return [_normalize_and_filter_user_properties(x) for x in ref] else: raise ValueError(_('Expected dict or list: %s') % type(ref)) # Domain ID normalization methods def _set_domain_id(self, ref, domain_id): if isinstance(ref, dict): ref = ref.copy() ref['domain_id'] = domain_id return ref elif isinstance(ref, list): return [self._set_domain_id(x, domain_id) for x in ref] else: raise ValueError(_('Expected dict or list: %s') % type(ref)) def _clear_domain_id(self, ref): # Clear the domain_id, and then check to ensure that if this # was not the default domain, it is being handled by its own # backend driver. ref = ref.copy() domain_id = ref.pop('domain_id', CONF.identity.default_domain_id) if (domain_id != CONF.identity.default_domain_id and domain_id not in self.domain_configs): raise exception.DomainNotFound(domain_id=domain_id) return ref def _normalize_scope(self, domain_scope): if domain_scope is None: return CONF.identity.default_domain_id else: return domain_scope def _select_identity_driver(self, domain_id): driver = self.domain_configs.get_domain_driver(domain_id) if driver: return driver else: self.get_domain(domain_id) return self.driver def _get_domain_conf(self, domain_id): conf = self.domain_configs.get_domain_conf(domain_id) if conf: return conf else: return CONF def _get_domain_id_and_driver(self, domain_scope): domain_id = self._normalize_scope(domain_scope) driver = self._select_identity_driver(domain_id) return (domain_id, driver) # The actual driver calls - these are pre/post processed here as # part of the Manager layer to make sure we: # # - select the right driver for this domain # - clear/set domain_ids for drivers that do not support domains @domains_configured def authenticate(self, user_id, password, domain_scope=None): domain_id, driver = self._get_domain_id_and_driver(domain_scope) ref = driver.authenticate(user_id, password) if not driver.is_domain_aware(): ref = self._set_domain_id(ref, domain_id) return ref @notifications.created('user') @domains_configured def create_user(self, user_id, user_ref): user = user_ref.copy() user['name'] = clean.user_name(user['name']) user.setdefault('enabled', True) user['enabled'] = clean.user_enabled(user['enabled']) # For creating a user, the domain is in the object itself domain_id = user_ref['domain_id'] driver = self._select_identity_driver(domain_id) if not driver.is_domain_aware(): user = self._clear_domain_id(user) ref = driver.create_user(user_id, user) if not driver.is_domain_aware(): ref = self._set_domain_id(ref, domain_id) return ref @domains_configured def get_user(self, user_id, domain_scope=None): domain_id, driver = self._get_domain_id_and_driver(domain_scope) ref = driver.get_user(user_id) if not driver.is_domain_aware(): ref = self._set_domain_id(ref, domain_id) return ref @domains_configured def get_user_by_name(self, user_name, domain_id): driver = self._select_identity_driver(domain_id) ref = driver.get_user_by_name(user_name, domain_id) if not driver.is_domain_aware(): ref = self._set_domain_id(ref, domain_id) return ref @domains_configured def list_users(self, domain_scope=None): domain_id, driver = self._get_domain_id_and_driver(domain_scope) user_list = driver.list_users() if not driver.is_domain_aware(): user_list = self._set_domain_id(user_list, domain_id) return user_list @notifications.updated('user') @domains_configured def update_user(self, user_id, user_ref, domain_scope=None): user = user_ref.copy()
``name`` property) does not affect equality. Parameters ---------- other : GeneticCode Genetic code to test for inequality against. Returns ------- bool Indicates whether the genetic code is not equal to `other`. """ return not (self == other) @stable(as_of="0.4.0") def translate(self, sequence, reading_frame=1, start='ignore', stop='ignore'): """Translate RNA sequence into protein sequence. Parameters ---------- sequence : RNA RNA sequence to translate. reading_frame : {1, 2, 3, -1, -2, -3} Reading frame to use in translation. 1, 2, and 3 are forward frames and -1, -2, and -3 are reverse frames. If reverse (negative), will reverse complement the sequence before translation. start : {'ignore', 'require', 'optional'} How to handle start codons: * "ignore": translation will start from the beginning of the reading frame, regardless of the presence of a start codon. * "require": translation will start at the first start codon in the reading frame, ignoring all prior positions. The first amino acid in the translated sequence will *always* be methionine (M character), even if an alternative start codon was used in translation. This behavior most closely matches the underlying biology since fMet doesn't have a corresponding IUPAC character. If a start codon does not exist, a ``ValueError`` is raised. * "optional": if a start codon exists in the reading frame, matches the behavior of "require". If a start codon does not exist, matches the behavior of "ignore". stop : {'ignore', 'require', 'optional'} How to handle stop codons: * "ignore": translation will ignore the presence of stop codons and translate to the end of the reading frame. * "require": translation will terminate at the first stop codon. The stop codon will not be included in the translated sequence. If a stop codon does not exist, a ``ValueError`` is raised. * "optional": if a stop codon exists in the reading frame, matches the behavior of "require". If a stop codon does not exist, matches the behavior of "ignore". Returns ------- Protein Translated sequence. See Also -------- translate_six_frames Notes ----- Input RNA sequence metadata are included in the translated protein sequence. Positional metadata are not included. Examples -------- Translate RNA into protein using NCBI's standard genetic code (table ID 1, the default genetic code in scikit-bio): >>> from skbio import RNA, GeneticCode >>> rna = RNA('AGUAUUCUGCCACUGUAAGAA') >>> sgc = GeneticCode.from_ncbi() >>> sgc.translate(rna) Protein -------------------------- Stats: length: 7 has gaps: False has degenerates: False has definites: True has stops: True -------------------------- 0 SILPL*E In this command, we used the default ``start`` behavior, which starts translation at the beginning of the reading frame, regardless of the presence of a start codon. If we specify "require", translation will start at the first start codon in the reading frame (in this example, CUG), ignoring all prior positions: >>> sgc.translate(rna, start='require') Protein -------------------------- Stats: length: 5 has gaps: False has degenerates: False has definites: True has stops: True -------------------------- 0 MPL*E Note that the codon coding for L (CUG) is an alternative start codon in this genetic code. Since we specified "require" mode, methionine (M) was used in place of the alternative start codon (L). This behavior most closely matches the underlying biology since fMet doesn't have a corresponding IUPAC character. Translate the same RNA sequence, also specifying that translation terminate at the first stop codon in the reading frame: >>> sgc.translate(rna, start='require', stop='require') Protein -------------------------- Stats: length: 3 has gaps: False has degenerates: False has definites: True has stops: False -------------------------- 0 MPL Passing "require" to both ``start`` and ``stop`` trims the translation to the CDS (and in fact requires that one is present in the reading frame). Changing the reading frame to 2 causes an exception to be raised because a start codon doesn't exist in the reading frame: >>> sgc.translate(rna, start='require', stop='require', ... reading_frame=2) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: ... """ self._validate_translate_inputs(sequence, reading_frame, start, stop) offset = abs(reading_frame) - 1 if reading_frame < 0: sequence = sequence.reverse_complement() # Translation strategy: # # 1. Obtain view of underlying sequence bytes from the beginning of # the reading frame. # 2. Convert bytes to offsets (0-3, base 4 since there are only 4 # characters allowed: UCAG). # 3. Reshape byte vector into (N, 3), where N is the number of codons # in the reading frame. Each row represents a codon in the # sequence. # 4. (Optional) Find start codon in the reading frame and trim to # this position. Replace start codon with M codon. # 5. Convert each codon (encoded as offsets) into an index # corresponding to an amino acid (0-63). # 6. Obtain translated sequence by indexing into the amino acids # vector (`amino_acids`) using the indices defined in step 5. # 7. (Optional) Find first stop codon and trim to this position. data = sequence.values[offset:].view(np.uint8) # since advanced indexing is used with an integer ndarray, a copy is # always returned. thus, the in-place modification made below # (replacing the start codon) is safe. data = self._offset_table[data] data = data[:data.size // 3 * 3].reshape((-1, 3)) if start in {'require', 'optional'}: start_codon_index = data.shape[0] for start_codon in self._start_codons: indices = np.all(data == start_codon, axis=1).nonzero()[0] if indices.size > 0: first_index = indices[0] if first_index < start_codon_index: start_codon_index = first_index if start_codon_index != data.shape[0]: data = data[start_codon_index:] data[0] = self._m_character_codon elif start == 'require': self._raise_require_error('start', reading_frame) indices = (data * self._radix_multiplier).sum(axis=1) translated = self._amino_acids.values[indices] if stop in {'require', 'optional'}: stop_codon_indices = (translated == b'*').nonzero()[0] if stop_codon_indices.size > 0: translated = translated[:stop_codon_indices[0]] elif stop == 'require': self._raise_require_error('stop', reading_frame) metadata = None if sequence.has_metadata(): metadata = sequence.metadata # turn off validation because `translated` is guaranteed to be valid return Protein(translated, metadata=metadata, validate=False) def _validate_translate_inputs(self, sequence, reading_frame, start, stop): if not isinstance(sequence, RNA): raise TypeError("Sequence to translate must be RNA, not %s" % type(sequence).__name__) if reading_frame not in self.reading_frames: raise ValueError("`reading_frame` must be one of %r, not %r" % (self.reading_frames, reading_frame)) for name, value in ('start', start), ('stop', stop): if value not in self._start_stop_options: raise ValueError("`%s` must be one of %r, not %r" % (name, self._start_stop_options, value)) if sequence.has_gaps(): raise ValueError("scikit-bio does not support translation of " "gapped sequences.") if sequence.has_degenerates(): raise NotImplementedError("scikit-bio does not currently support " "translation of degenerate sequences." "`RNA.expand_degenerates` can be used " "to obtain all definite versions " "of a degenerate sequence.") def _raise_require_error(self, name, reading_frame): raise ValueError( "Sequence does not contain a %s codon in the " "current reading frame (`reading_frame=%d`). Presence " "of a %s codon is required with `%s='require'`" % (name, reading_frame, name, name)) @stable(as_of="0.4.0") def translate_six_frames(self, sequence, start='ignore', stop='ignore'): """Translate RNA into protein using six possible reading frames. The six possible reading frames are: * 1 (forward) * 2 (forward) * 3 (forward) * -1 (reverse) * -2 (reverse) * -3 (reverse) Translated sequences are yielded in this order. Parameters ---------- sequence : RNA RNA sequence to translate. start : {'ignore', 'require', 'optional'} How to handle start codons. See ``GeneticCode.translate`` for details. stop : {'ignore', 'require', 'optional'} How to handle stop codons. See ``GeneticCode.translate`` for details. Yields ------ Protein Translated sequence in the current reading frame. See Also -------- translate Notes ----- This method is faster than (and equivalent to) performing six independent translations using, for example: ``(gc.translate(seq, reading_frame=rf) for rf in GeneticCode.reading_frames)`` Input RNA sequence metadata are included in each translated protein sequence. Positional metadata are not included. Examples -------- Translate RNA into protein using the six possible reading frames and NCBI's standard genetic code (table ID 1, the default genetic code in scikit-bio): >>> from skbio import RNA, GeneticCode >>> rna = RNA('AUGCCACUUUAA') >>> sgc = GeneticCode.from_ncbi() >>> for protein in sgc.translate_six_frames(rna): ... protein ... print('') Protein -------------------------- Stats: length: 4 has gaps: False has degenerates: False has definites: True has stops: True -------------------------- 0 MPL* <BLANKLINE> Protein -------------------------- Stats: length: 3
num_trees, feature_subset_strategy, seed, subsampling_rate, train, test): code = self.session_assertion() + textwrap.dedent(""" from pyspark.ml.classification import RandomForestClassifier from pyspark.ml.evaluation import MulticlassClassificationEvaluator import io, pandas as pd str_io = io.StringIO() (train_set, test_set) = """+table_name+""".randomSplit(["""+ train +""","""+ test +"""]) randomforest_""" + table_name + """ = RandomForestClassifier(featuresCol='"""+features_col+"""', \ labelCol='"""+label_col+"""', \ predictionCol='"""+prediction_col+"""', \ probabilityCol='"""+probability_col+"""', \ rawPredictionCol='"""+raw_prediction_col+"""', \ maxBins="""+max_bins+""",\ impurity='"""+impurity+"""', \ numTrees="""+num_trees+""") append_stage('randomforest_""" + table_name + """') model = randomforest_""" + table_name + """.fit(train_set) prediction = model.transform(test_set) evaluator = MulticlassClassificationEvaluator(predictionCol='"""+prediction_col+"""', labelCol='"""+label_col+"""') accuracy = evaluator.evaluate(prediction, {evaluator.metricName: "accuracy"})*100 recall = evaluator.evaluate(prediction, {evaluator.metricName: "weightedRecall"})*100 precision = evaluator.evaluate(prediction, {evaluator.metricName: "weightedPrecision"})*100 f1 = evaluator.evaluate(prediction, {evaluator.metricName: "f1"})*100 # prediction.select('"""+label_col+"""', '"""+prediction_col+"""').show() prediction.name = 'randomforest_"""+table_name+"""' print("<b>Dataframe name : "), prediction.name+"</b><br>" sdf_randomforest_"""+ table_name +""" = prediction sdf_randomforest_"""+ table_name +""".createOrReplaceTempView('sdf_randomforest_"""+ table_name +"""') print('<br><b>Number of rows: </b>') print('<b>'+str(sdf_randomforest_"""+table_name+""".count())+'</b><br>') print("<b>accuracy ="+str('%.3f'%(accuracy))+"</b><br>") print("<b>recall ="+str('%.3f'%(recall))+"</b><br>") print("<b>precision ="+str('%.3f'%(precision))+"</b><br>") print("<b>f1 ="+str('%.3f'%(f1))+"</b><br>") df_ = prediction.select('*').limit(100).toPandas() df_.to_html(buf=str_io, classes='table dataframe', index=False) html_str = str_io.getvalue() print(html_str) """) return code def fp_growth(self, table_name, splits, min_support, min_confidence, items_col, prediction_col, num_partitions): code = self.session_assertion() + textwrap.dedent(""" from pyspark.sql.functions import udf from pyspark.sql.types import ArrayType, StringType from pyspark.ml.fpm import FPGrowth import io, pandas as pd str_io = io.StringIO() def list_string(x): out_vec = [] y = x.split('"""+ splits +"""') for t in y: out_vec.append(t) return out_vec list_df = udf(lambda x: list(set(list_string(x))), ArrayType(StringType())) dataframe = """+table_name+""".withColumn('"""+items_col+"""', list_df('"""+items_col+"""')) fpgrowth = FPGrowth(minConfidence="""+min_confidence+""", minSupport="""+min_support+""", itemsCol='"""+items_col+"""') append_stage('fpgrowth') model = fpgrowth.fit(dataframe) association_rule = model.associationRules # association_rule.show() association_rule.name = 'sdf_fpgrowth_"""+table_name+"""' print("<b>Dataframe name : "), association_rule.name+"</b><br>" sdf_fpgrowth_"""+ table_name +""" = association_rule association_rule.createOrReplaceTempView('sdf_fpgrowth_"""+ table_name +"""') print('<br><b>Number of rows: </b>') print('<b>'+str(sdf_fpgrowth_"""+table_name+""".count())+'</b>') df_ = association_rule.limit(100).toPandas() df_.to_html(buf=str_io, classes='table dataframe', index=False) html_str = str_io.getvalue() print(html_str) """) return code def linear_svc(self, table_name, features_col, label_col, prediction_col, max_iter, reg_param, tol, raw_prediction_col, fit_intercept, standardization, threshold, weight_col, aggregation_depth, train, test): code = self.session_assertion() + textwrap.dedent(""" from pyspark.ml.classification import LinearSVC from pyspark.ml.evaluation import BinaryClassificationEvaluator import io, pandas as pd str_io = io.StringIO() (train_set, test_set) = """+table_name+""".randomSplit(["""+train+""","""+test+"""]) linearsvc_""" + table_name + """ = LinearSVC(featuresCol='"""+features_col+"""', labelCol='"""+label_col+"""', predictionCol='"""+prediction_col+"""',\ maxIter="""+max_iter+""", regParam="""+reg_param+""", tol="""+tol+""", rawPredictionCol='"""+raw_prediction_col+"""') append_stage('linearsvc_""" + table_name + """') svmmodel = linearsvc_""" + table_name + """.fit(train_set) prediction = svmmodel.transform(test_set) evaluator = BinaryClassificationEvaluator(rawPredictionCol='"""+raw_prediction_col+"""', labelCol='"""+label_col+"""') areaUnderROC = evaluator.evaluate(prediction, {evaluator.metricName: "areaUnderROC"})*100 areaUnderPR = evaluator.evaluate(prediction, {evaluator.metricName: "areaUnderPR"})*100 prediction.name = 'sdf_linearsvc_"""+table_name+"""' print("<b>Dataframe name : "), prediction.name+"</b><br>" sdf_linearsvc_"""+ table_name +""" = prediction prediction.createOrReplaceTempView('sdf_linearsvc_"""+ table_name +"""') print('<br><b>Number of rows: </b>') print('<b>'+str(sdf_linearsvc_"""+table_name+""".count())+'</b><br>') print("<b>areaUnderROC = "+str('%.3f'%(areaUnderROC))+"</b><br>") print("<b>areaUnderPR = "+str('%.3f'%(areaUnderPR))+"</b><br>") df_ = prediction.select('*').limit(100).toPandas() df_.to_html(buf=str_io, classes='table dataframe', index=False) html_str = str_io.getvalue() print(html_str) """) return code def arima(self, table_name, splits, numberofpredict, date_col, timeseries_col, start_p, d, start_q, max_p, max_d, max_q, start_P, D, start_Q, max_P, max_D, max_Q, max_order, m, seasonal, stationary, stepwise, solver, suppress_warnings, error_action, trace, scoring, business, by): code = self.session_assertion() + textwrap.dedent(""" import datetime from datetime import date from pyramid.arima import auto_arima from pandas.tseries.offsets import DateOffset from pandas.tseries.offsets import BDay import numpy as np import warnings import io, pandas as pd str_io = io.StringIO() warnings.filterwarnings('ignore') # def ARIMA("""+table_name+""", splits='"""+splits+"""', numberofpredict="""+numberofpredict+""", dateCol='"""+date_col+"""', timeseriesCol='"""+timeseries_col+"""'): # def to_isoformat(current_format): # year, month, day = current_format.split('"""+splits+"""') # # year, month, day = current_format.split('-') # dt = datetime.date(int(year), int(month), int(day)) # return dt.isoformat() # def clean(row): # dt, cols = row.split(",") # isodate = to_isoformat(dt.replace("''", '')) # return([isodate, float(cols)]) # spark_df = """+table_name+""".rdd.map(lambda x: x) # cols1 = ['"""+date_col +"""', '"""+ timeseries_col +"""'] # cols2 = [x for x in """+ table_name +""".columns if x in cols1] # rdd_airpass = spark_df.map(lambda x: x[cols2[0]]+","+str((x[cols2[1]]))) # data = rdd_airpass.map(clean) # dataFrame = spark.createDataFrame(data, ['"""+date_col+"""', '"""+timeseries_col+"""']) # dataFrame_pandas = dataFrame.toPandas() # dataFrame_pandas['"""+date_col+"""'] = pd.to_datetime(dataFrame_pandas['"""+date_col+"""']) # dataFrame_pandas = dataFrame_pandas.set_index('"""+date_col+"""') # future_dates = [dataFrame_pandas.index[-1] + DateOffset(days=x) for x in range(1, """+numberofpredict+""")] # future_df = pd.DataFrame(index=future_dates, columns=dataFrame_pandas.columns) # final_df = pd.concat([dataFrame_pandas, future_df]) # stepwise_model = auto_arima(dataFrame_pandas, start_p="""+start_p+""", start_q="""+start_q+""", # test = "adf", # trend = "ct", # max_p="""+max_p+""", max_q="""+max_q+""", max_d="""+max_d+""", # m="""+m+""", # d="""+d+""", # seasonal="""+seasonal+""", # start_P="""+start_P+""", # D="""+D+""", # start_Q="""+start_Q+""", # max_P="""+max_P+""", # max_D="""+max_D+""", # max_Q="""+max_Q+""", # max_order="""+max_order+""", # stationary="""+stationary+""", # solver='"""+solver+"""', # trace="""+trace+""", # error_action='"""+error_action+"""', # suppress_warnings="""+suppress_warnings+""", # scoring='"""+scoring+"""', # stepwise="""+stepwise+""") # stepwise_model.fit(dataFrame_pandas) # final_df["forecast"] = stepwise_model.predict_in_sample(start=1, end=len(final_df)) # final_df = final_df.reset_index().rename(columns = {"index":'"""+date_col+"""'}) # final_df.fillna(np.nan, inplace=True) # final_df['date']=final_df['date'].astype(str) # arima_"""+ table_name +""" = spark.createDataFrame(final_df) # arima_"""+ table_name +""".createOrReplaceTempView('arima_"""+ table_name +"""') # final_df.name = 'arima_"""+table_name+"""' # print("<b>Dataframe name : "), final_df.name+"</b><br>" # # arima_"""+ table_name +""".show() # df_ = arima_"""+ table_name +""".limit(100).toPandas() # df_.to_html(buf=str_io, classes='table dataframe', index=False) # html_str = str_io.getvalue() business = """+business+""" def to_isoformat(current_format): year, month, day = current_format.split('"""+splits+"""') dt = datetime.date(int(year), int(month), int(day)) return dt.isoformat() #memisahkan kolom mana yang akan digunakan dengan format (tanggal(date series), kolom yang ingin di forecast) def clean(row): dt, passenger = row.split(",") isodate = to_isoformat(dt.replace("''", '')) return [isodate, float(passenger)] #membuat rdd dengan menggunakan dua fungsi diatas spark_df = """+table_name+""".rdd.map(lambda x: x) cols1 = ['"""+date_col +"""', '"""+ timeseries_col +"""'] cols2 = [x for x in """+ table_name +""".columns if x in cols1] rdd_airpass = spark_df.map(lambda x: x[cols2[0]]+","+str(x[cols2[1]])) data = rdd_airpass.map(clean) #membuat rdd menjadi spark dataframe dataFrame = spark.createDataFrame(data, ['"""+date_col+"""', '"""+timeseries_col+"""']) #membuat dataframe menjadi pandas dataframe dataFrame_pandas = dataFrame.toPandas() xlen = len(dataFrame_pandas) #mengubah kolom dateCol menjadi timestamp dataFrame_pandas['"""+date_col+"""'] = pd.to_datetime(dataFrame_pandas['"""+date_col+"""']) #mengubah kolom dateCol menjadi index dari pandas dataframe dataFrame_pandas = dataFrame_pandas.set_index('"""+date_col+"""') #membuat dataframe yang akan di forecast, dengan waktu yang akan ditentukan melalui parameter diatas future_dates = [dataFrame_pandas.index[-1] + DateOffset(**{'"""+by+"""':x}) for x in range(1, """+numberofpredict+""")] future_df = pd.DataFrame(index=future_dates, columns=dataFrame_pandas.columns) #Apabila analisis timeseries hanya ingin mengambil weekday saja dan mengabaikan weekend if business: #mapping tanggal-tanggal mana saja yang merupakan weekday, dan menghilangkan tanggal-tanggal yang terduplikasi future_df.index = future_df.index.map(lambda x: x + BDay()) future_df = future_df.loc[~future_df.index.duplicated(keep='first')] #menggabungkan dataframe forecast dengan dataframe pandas final_df = pd.concat([dataFrame_pandas, future_df]) #memisahkan train, dan test untuk prediksi model train, test = final_df[:xlen], final_df[xlen:] #Setting Parameter untuk model auto_arima stepwise_model = auto_arima(dataFrame_pandas, start_p="""+start_p+""", start_q="""+start_q+""", test = "adf", trend = "ct", max_p="""+max_p+""", max_q="""+max_q+""", max_d="""+max_d+""", m="""+m+""", d="""+d+""", seasonal="""+seasonal+""", start_P="""+start_P+""", D="""+D+""", start_Q="""+start_Q+""", max_P="""+max_P+""", max_D="""+max_D+""", max_Q="""+max_Q+""", max_order="""+max_order+""", stationary="""+stationary+""", solver='"""+solver+"""', trace="""+trace+""", error_action='"""+error_action+"""', suppress_warnings="""+suppress_warnings+""", scoring='"""+scoring+"""', stepwise="""+stepwise+""") #fitting model arima dengan menggunakan dataframe train stepwise_model.fit(train) #mengekstrak nilai prediksi, confidence interval untuk hasil dari model yang akan diprediksi preds, conf_int = stepwise_model.predict(n_periods=test.shape[0], return_conf_int=True) #memasukan hasil forecast ke dalam dataframe final_df final_df["forecast"] = stepwise_model.predict_in_sample(start=1, end=len(final_df)) #membuat dataframe untuk interval konfidensi dari prediksi arima yang telah buat max_min = pd.DataFrame(conf_int, columns=["std-", 'std+'], index=future_df.index) #menggabungkan dataframe final_df dengan dataframe max_min final_df = pd.concat([final_df, max_min], axis=1) final_df = final_df.reset_index().rename(columns = {"index":'"""+date_col+"""'}) final_df['"""+date_col+"""'] = final_df['"""+date_col+"""'].astype('str') final_df.fillna(np.nan, inplace=True) # df_sparkfinal = spark.createDataFrame(final_df) # return df_sparkfinal #Apabila analisis timeseries parameter buisness False else: #menggabungkan dataframe forecast dengan dataframe pandas final_df = pd.concat([dataFrame_pandas, future_df]) #memisahkan train, dan test untuk prediksi model train, test = final_df[:xlen], final_df[xlen:] #Setting Parameter untuk model auto_arima stepwise_model = auto_arima(dataFrame_pandas, start_p="""+start_p+""", start_q="""+start_q+""", test = "adf", trend = "ct", max_p="""+max_p+""", max_q="""+max_q+""", max_d="""+max_d+""", m="""+m+""", d="""+d+""", seasonal="""+seasonal+""", start_P="""+start_P+""", D="""+D+""", start_Q="""+start_Q+""", max_P="""+max_P+""", max_D="""+max_D+""", max_Q="""+max_Q+""", max_order="""+max_order+""", stationary="""+stationary+""", solver='"""+solver+"""', trace="""+trace+""", error_action='"""+error_action+"""', suppress_warnings="""+suppress_warnings+""", scoring='"""+scoring+"""', stepwise="""+stepwise+""") #fitting model arima dengan menggunakan dataframe train stepwise_model.fit(train) #mengekstrak nilai prediksi, confidence interval untuk hasil dari model yang akan diprediksi preds, conf_int = stepwise_model.predict(n_periods=test.shape[0], return_conf_int=True) #memasukan hasil forecast ke dalam dataframe final_df final_df["forecast"] = stepwise_model.predict_in_sample(start=1, end=len(final_df)) #membuat dataframe untuk interval konfidensi dari prediksi arima yang telah buat max_min = pd.DataFrame(conf_int, columns=["std-", 'std+'], index=future_df.index) #menggabungkan dataframe final_df dengan dataframe max_min final_df = pd.concat([final_df, max_min], axis=1) final_df = final_df.reset_index().rename(columns = {"index":'"""+date_col+"""'}) final_df['"""+date_col+"""'] = final_df['"""+date_col+"""'].astype('str') final_df.fillna(np.nan, inplace=True) # df_sparkfinal = spark.createDataFrame(final_df) # return df_sparkfinal arima_"""+ table_name +""" = spark.createDataFrame(final_df) arima_"""+ table_name +""".createOrReplaceTempView('arima_"""+ table_name +"""') final_df.name = 'arima_"""+table_name+"""' print("<b>Dataframe name : "), final_df.name+"</b><br>" print('<br><b>Number of rows: </b>') print('<b>'+str(arima_"""+table_name+""".count())+'</b>') # arima_"""+ table_name +""".show() df_ = arima_"""+ table_name +""".limit(100).toPandas() df_.to_html(buf=str_io, classes='table dataframe', index=False) html_str = str_io.getvalue() print(html_str) # import sys # print(sys.version) # dt = datetime.date(int(2010), int(5), int(25)) # print(dt.isoformat()) # data.take(5) # df_sparkfinal.show() """) return code def line_chart_visual(self, table_name, x, y): y_str = ",".join(y) code = textwrap.dedent(""" import json import io, pandas as pd str_io = io.StringIO() dataFrame_pandas = """+table_name+""".toPandas() dfx = dataFrame_pandas['"""+x+"""'].tolist() # # dfx = dfx.index() # # new_dfx
<reponame>anthok/overwatch-api<filename>overwatch_api/core.py import asyncio import aiohttp import async_timeout from overwatch_api.constants import * from overwatch_api.exceptions import * """The async interface to the OWAPI (https://github.com/SunDwarf/OWAPI) api.""" # TODO Handle being ratelimited, asyncio.sleep? class AsyncOWAPI(object): """The async client objeWct to use when you want to use the OWAPI api. All requests throw ConnectionError if they can't connect or similar problem. Other exceptions should be reported as bugs if they're raised.""" def __init__(self, default_platform: str = PC, server_url: str = "https://owapi.net", *, handle_ratelimit: bool = True, max_tries: int = 3, request_timeout: float = 5): """Creates and sets up the client object. default_platform is one of PC, PLAYSTATION, or XBOX, from constants.py. It specifies what platform the api should default to search on if no platform parameter is supplied to a method. server_url is the url (or aiohttp compatible address) to the OWAPI server. handle_ratelimit specifies whether the api should retry when a request gets ratelimited. max_tries is the maximum number of tries to retry when a request gets ratelimited, only applicable if handle_ratelimit is True. request_timeout is the timeout to use for each individual request to the API in seconds. """ # Stuff the user should have control over self.server_url = server_url self.default_platform = default_platform # Optional client parameters # If ratelimiting should be handled self.default_handle_ratelimit = handle_ratelimit # The max number of tries to do until a Ratelimit exception is raised self.default_max_tries = max_tries # The timeout to use on each request self.default_request_timeout = request_timeout # If you're an advanced user you maybe, sometime, idk, probably, might want to control these self._api_version = 3 self._api_urlpath = "/api/v{0}/u/".format(self._api_version) def _uses_aiohttp_session(func): """This is a decorator that creates an async with statement around a function, and makes sure that a _session argument is always passed. Only usable on async functions of course. The _session argument is (supposed to be) an aiohttp.ClientSession instance in all functions that this decorator has been used on. This is used to make sure that all session objects are properly entered and exited, or that they are passed into a function properly. This adds an session keyword argument to the method signature, and that session will be used as _session if it is not None.""" # The function the decorator returns async def decorated_func(*args, session=None, **kwargs): if session is not None: # There is a session passed return await func(*args, _session=session, **kwargs) else: # The session argument wasn't passed, so we create our own async with aiohttp.ClientSession() as new_session: return await func(*args, _session=new_session, **kwargs) # We return the decorated func return decorated_func def _add_request_parameters(func): """Adds the ratelimit and request timeout parameters to a function.""" # The function the decorator returns async def decorated_func(*args, handle_ratelimit=None, max_tries=None, request_timeout=None, **kwargs): return await func(*args, handle_ratelimit=handle_ratelimit, max_tries=max_tries, request_timeout=request_timeout, **kwargs) # We return the decorated func return decorated_func @_uses_aiohttp_session @_add_request_parameters async def get_profile(self, battletag: str, regions=(EUROPE, KOREA, AMERICAS, CHINA, JAPAN, ANY), platform=None, _session=None, handle_ratelimit=None, max_tries=None, request_timeout=None): """Returns a dictionary where the keys are the regions that there exists an account for, with corresponding values (stats, achievement, heroes). The regions argument is an iterable of the regions (see constants.py) that the user wants results for (default all regions). If no matching accounts are found for the platform and regions, this returns an empty dict. The platforms argument is one of the three platforms in constants.py, and only results from that platforms will be returned, the default is the default of the API instance (see __init__).""" if platform is None: platform = self.default_platform try: blob_dict = await self._base_request(battletag, "blob", _session, platform=platform, handle_ratelimit=handle_ratelimit, max_tries=max_tries, request_timeout=request_timeout) except ProfileNotFoundError as e: # The battletag doesn't exist blob_dict = {} existing_regions = {key: val for key, val in blob_dict.items() if ((val is not None) and (key != "_request"))} return {key: val for key, val in existing_regions.items() if key in regions} @_uses_aiohttp_session @_add_request_parameters async def get_stats(self, battletag: str, regions=(EUROPE, KOREA, AMERICAS, CHINA, JAPAN, ANY), platform=None, _session=None, handle_ratelimit=None, max_tries=None, request_timeout=None): """Returns the stats for the profiles on the specified regions and platform. The format for regions without a matching user, the format is the same as get_profile. The stats are returned in a dictionary with a similar format to what https://github.com/SunDwarf/OWAPI/blob/master/api.md#get-apiv3ubattletagstats specifies.""" if platform is None: platform = self.default_platform try: blob_dict = await self._base_request(battletag, "stats", _session, platform=platform, handle_ratelimit=handle_ratelimit, max_tries=max_tries, request_timeout=request_timeout) except ProfileNotFoundError as e: # The battletag doesn't exist blob_dict = {} existing_regions = {key: val for key, val in blob_dict.items() if ((val is not None) and (key != "_request"))} return {key: [inner_val for inner_key, inner_val in val.items() if inner_key == "stats"][0] for key, val in existing_regions.items() if key in regions} @_uses_aiohttp_session @_add_request_parameters async def get_achievements(self, battletag: str, regions=(EUROPE, KOREA, AMERICAS, CHINA, JAPAN, ANY), platform=None, _session=None, handle_ratelimit=None, max_tries=None, request_timeout=None): """Returns the achievements for the profiles on the specified regions and platform. Does not return keys for regions that don't have a matching user, the format is the same as get_profile. The achievements are returned in a dictionary with a similar format to what https://github.com/SunDwarf/OWAPI/blob/master/api.md#get-apiv3ubattletagachievements specifies.""" if platform is None: platform = self.default_platform try: blob_dict = await self._base_request(battletag, "achievements", _session, platform=platform, handle_ratelimit=handle_ratelimit, max_tries=max_tries, request_timeout=request_timeout) except ProfileNotFoundError as e: # The battletag doesn't exist blob_dict = {} existing_regions = {key: val for key, val in blob_dict.items() if ((val is not None) and (key != "_request"))} return {key: [inner_val for inner_key, inner_val in val.items() if inner_key == "achievements"][0] for key, val in existing_regions.items() if key in regions} @_uses_aiohttp_session @_add_request_parameters async def get_hero_stats(self, battletag: str, regions=(EUROPE, KOREA, AMERICAS, CHINA, JAPAN, ANY), platform=None, _session=None, handle_ratelimit=None, max_tries=None, request_timeout=None): """Returns the hero stats for the profiles on the specified regions and platform. Does not return keys for regions that don't have a matching user, the format is the same as get_profile. The hero stats are returned in a dictionary with a similar format to what https://github.com/SunDwarf/OWAPI/blob/master/api.md#get-apiv3ubattletagheroes specifies.""" if platform is None: platform = self.default_platform try: blob_dict = await self._base_request(battletag, "heroes", _session, platform=platform, handle_ratelimit=handle_ratelimit, max_tries=max_tries, request_timeout=request_timeout) except ProfileNotFoundError as e: # The battletag doesn't exist blob_dict = {} existing_regions = {key: val for key, val in blob_dict.items() if ((val is not None) and (key != "_request"))} return {key: [inner_val for inner_key, inner_val in val.items() if inner_key == "heroes"][0] for key, val in existing_regions.items() if key in regions} @staticmethod def sanitize_battletag(battle_tag: str) -> str: """In the api, battletags' #:s are replaced with dashes, this method does that.""" if "#" in battle_tag: battle_tag = battle_tag.replace("#", "-") return battle_tag async def _base_request(self, battle_tag: str, endpoint_name: str, session: aiohttp.ClientSession, *, platform=None, handle_ratelimit=None, max_tries=None, request_timeout=None): """Does a request to some endpoint. This is also where ratelimit logic is handled.""" # We check the different optional arguments, and if they're not passed (are none) we set them to the default for the client object if platform is None: platform = self.default_platform if handle_ratelimit is None: handle_ratelimit = self.default_handle_ratelimit if max_tries is None: max_tries = self.default_max_tries if request_timeout is None: request_timeout = self.default_request_timeout # The battletag with #s removed san_battle_tag = self.sanitize_battletag(battle_tag) # The ratelimit logic for _ in range(max_tries): # We execute a request try: resp_json, status = await self._async_get( session, self.server_url + self._api_urlpath + "{battle_tag}/{endpoint}".format( battle_tag=san_battle_tag, endpoint=endpoint_name ), params={"platform": platform}, # Passed to _async_get and indicates what platform we're searching on headers={"User-Agent": "overwatch_python_api"}, # According to https://github.com/SunDwarf/OWAPI/blob/master/owapi/v3/v3_util.py#L18 we have to customise our User-Agent, so we do _async_timeout_seconds=request_timeout ) if status == 429 and resp_json["msg"] == "you are being ratelimited": raise RatelimitError except RatelimitError as e: # This excepts both RatelimitErrors and TimeoutErrors, ratelimiterrors for server returning a ratelimit, timeouterrors for the connection not being done in with in the timeout # We are ratelimited, so we check if we handle ratelimiting logic # If so, we wait and then execute the next iteration of the loop if handle_ratelimit: # We wait to remedy ratelimiting, and we wait a bit more than the response says we should await
<gh_stars>0 import cv2 import numpy as np from numpy import linalg as npla import scipy as sp def color_transfer_sot(src,trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0): """ Color Transform via Sliced Optimal Transfer ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer src - any float range any channel image dst - any float range any channel image, same shape as src steps - number of solver steps batch_size - solver batch size reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0 reg_sigmaV - sigmaV of filter return value - clip it manually """ if not np.issubdtype(src.dtype, np.floating): raise ValueError("src value must be float") if not np.issubdtype(trg.dtype, np.floating): raise ValueError("trg value must be float") if len(src.shape) != 3: raise ValueError("src shape must have rank 3 (h,w,c)") if src.shape != trg.shape: raise ValueError("src and trg shapes must be equal") src_dtype = src.dtype h,w,c = src.shape new_src = src.copy() advect = np.empty ( (h*w,c), dtype=src_dtype ) for step in range (steps): advect.fill(0) for batch in range (batch_size): dir = np.random.normal(size=c).astype(src_dtype) dir /= npla.norm(dir) projsource = np.sum( new_src*dir, axis=-1).reshape ((h*w)) projtarget = np.sum( trg*dir, axis=-1).reshape ((h*w)) idSource = np.argsort (projsource) idTarget = np.argsort (projtarget) a = projtarget[idTarget]-projsource[idSource] for i_c in range(c): advect[idSource,i_c] += a * dir[i_c] new_src += advect.reshape( (h,w,c) ) / batch_size if reg_sigmaXY != 0.0: src_diff = new_src-src src_diff_filt = cv2.bilateralFilter (src_diff, 0, reg_sigmaV, reg_sigmaXY ) if len(src_diff_filt.shape) == 2: src_diff_filt = src_diff_filt[...,None] new_src = src + src_diff_filt return new_src def color_transfer_mkl(x0, x1): eps = np.finfo(float).eps h,w,c = x0.shape h1,w1,c1 = x1.shape x0 = x0.reshape ( (h*w,c) ) x1 = x1.reshape ( (h1*w1,c1) ) a = np.cov(x0.T) b = np.cov(x1.T) Da2, Ua = np.linalg.eig(a) Da = np.diag(np.sqrt(Da2.clip(eps, None))) C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da) Dc2, Uc = np.linalg.eig(C) Dc = np.diag(np.sqrt(Dc2.clip(eps, None))) Da_inv = np.diag(1./(np.diag(Da))) t = np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T) mx0 = np.mean(x0, axis=0) mx1 = np.mean(x1, axis=0) result = np.dot(x0-mx0, t) + mx1 return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1) def color_transfer_idt(i0, i1, bins=256, n_rot=20): import scipy.stats relaxation = 1 / n_rot h,w,c = i0.shape h1,w1,c1 = i1.shape i0 = i0.reshape ( (h*w,c) ) i1 = i1.reshape ( (h1*w1,c1) ) n_dims = c d0 = i0.T d1 = i1.T for i in range(n_rot): r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32) d0r = np.dot(r, d0) d1r = np.dot(r, d1) d_r = np.empty_like(d0) for j in range(n_dims): lo = min(d0r[j].min(), d1r[j].min()) hi = max(d0r[j].max(), d1r[j].max()) p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi]) p1r, _ = np.histogram(d1r[j], bins=bins, range=[lo, hi]) cp0r = p0r.cumsum().astype(np.float32) cp0r /= cp0r[-1] cp1r = p1r.cumsum().astype(np.float32) cp1r /= cp1r[-1] f = np.interp(cp0r, cp1r, edges[1:]) d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins) d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0 return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1) def reinhard_color_transfer(target, source, clip=False, preserve_paper=False, source_mask=None, target_mask=None): """ Transfers the color distribution from the source to the target image using the mean and standard deviations of the L*a*b* color space. This implementation is (loosely) based on to the "Color Transfer between Images" paper by <NAME>., 2001. Parameters: ------- source: NumPy array OpenCV image in BGR color space (the source image) target: NumPy array OpenCV image in BGR color space (the target image) clip: Should components of L*a*b* image be scaled by np.clip before converting back to BGR color space? If False then components will be min-max scaled appropriately. Clipping will keep target image brightness truer to the input. Scaling will adjust image brightness to avoid washed out portions in the resulting color transfer that can be caused by clipping. preserve_paper: Should color transfer strictly follow methodology layed out in original paper? The method does not always produce aesthetically pleasing results. If False then L*a*b* components will scaled using the reciprocal of the scaling factor proposed in the paper. This method seems to produce more consistently aesthetically pleasing results Returns: ------- transfer: NumPy array OpenCV image (w, h, 3) NumPy array (uint8) """ # convert the images from the RGB to L*ab* color space, being # sure to utilizing the floating point data type (note: OpenCV # expects floats to be 32-bit, so use that instead of 64-bit) source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype(np.float32) target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype(np.float32) # compute color statistics for the source and target images src_input = source if source_mask is None else source*source_mask tgt_input = target if target_mask is None else target*target_mask (lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = lab_image_stats(src_input) (lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = lab_image_stats(tgt_input) # subtract the means from the target image (l, a, b) = cv2.split(target) l -= lMeanTar a -= aMeanTar b -= bMeanTar if preserve_paper: # scale by the standard deviations using paper proposed factor l = (lStdTar / lStdSrc) * l a = (aStdTar / aStdSrc) * a b = (bStdTar / bStdSrc) * b else: # scale by the standard deviations using reciprocal of paper proposed factor l = (lStdSrc / lStdTar) * l a = (aStdSrc / aStdTar) * a b = (bStdSrc / bStdTar) * b # add in the source mean l += lMeanSrc a += aMeanSrc b += bMeanSrc # clip/scale the pixel intensities to [0, 255] if they fall # outside this range l = _scale_array(l, clip=clip) a = _scale_array(a, clip=clip) b = _scale_array(b, clip=clip) # merge the channels together and convert back to the RGB color # space, being sure to utilize the 8-bit unsigned integer data # type transfer = cv2.merge([l, a, b]) transfer = cv2.cvtColor(transfer.astype(np.uint8), cv2.COLOR_LAB2BGR) # return the color transferred image return transfer def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5): ''' Matches the colour distribution of the target image to that of the source image using a linear transform. Images are expected to be of form (w,h,c) and float in [0,1]. Modes are chol, pca or sym for different choices of basis. ''' mu_t = target_img.mean(0).mean(0) t = target_img - mu_t t = t.transpose(2,0,1).reshape( t.shape[-1],-1) Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0]) mu_s = source_img.mean(0).mean(0) s = source_img - mu_s s = s.transpose(2,0,1).reshape( s.shape[-1],-1) Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0]) if mode == 'chol': chol_t = np.linalg.cholesky(Ct) chol_s = np.linalg.cholesky(Cs) ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t) if mode == 'pca': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) eva_s, eve_s = np.linalg.eigh(Cs) Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T) ts = Qs.dot(np.linalg.inv(Qt)).dot(t) if mode == 'sym': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) Qt_Cs_Qt = Qt.dot(Cs).dot(Qt) eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt) QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T) ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t) matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0) matched_img += mu_s matched_img[matched_img>1] = 1 matched_img[matched_img<0] = 0 return np.clip(matched_img.astype(source_img.dtype), 0, 1) def lab_image_stats(image): # compute the mean and standard deviation of each channel (l, a, b) = cv2.split(image) (lMean, lStd) = (l.mean(), l.std()) (aMean, aStd) = (a.mean(), a.std()) (bMean, bStd) = (b.mean(), b.std()) # return the color statistics return (lMean, lStd, aMean, aStd, bMean, bStd) def _scale_array(arr, clip=True): if clip: return np.clip(arr, 0, 255) mn = arr.min() mx = arr.max() scale_range = (max([mn, 0]), min([mx, 255])) if mn < scale_range[0] or mx > scale_range[1]: return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0] return arr def channel_hist_match(source, template, hist_match_threshold=255, mask=None): # Code borrowed from: # https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x masked_source = source masked_template = template if mask is not None: masked_source = source * mask masked_template = template * mask oldshape = source.shape source = source.ravel() template = template.ravel() masked_source = masked_source.ravel() masked_template = masked_template.ravel() s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles = 255 * t_quantiles / t_quantiles[-1] interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) def color_hist_match(src_im, tar_im, hist_match_threshold=255): h,w,c = src_im.shape matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], hist_match_threshold, None) matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], hist_match_threshold, None) matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], hist_match_threshold, None) to_stack = (matched_R, matched_G, matched_B) for i in range(3, c): to_stack += ( src_im[:,:,i],) matched = np.stack(to_stack, axis=-1).astype(src_im.dtype) return matched def color_transfer_mix(img_src,img_trg): img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8) img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8) img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB) img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB) rct_light = np.clip ( linear_color_transfer(img_src_lab[...,0:1].astype(np.float32)/255.0, img_trg_lab[...,0:1].astype(np.float32)/255.0 )[...,0]*255.0, 0, 255).astype(np.uint8) img_src_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8) img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR) img_trg_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8) img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR) img_rct = color_transfer_sot( img_src_lab.astype(np.float32), img_trg_lab.astype(np.float32) ) img_rct = np.clip(img_rct, 0, 255).astype(np.uint8) img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB) img_rct[...,0] = rct_light img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR) return (img_rct / 255.0).astype(np.float32) def color_transfer(ct_mode, img_src, img_trg): """ color transfer
abc('st;dc2') abc('w %s_temp_initial.aig'%f_name) ni = n_pis() + n_latches() res = 1 abc('st;if -a -K %d'%k) # to get plain direct map if n_nodes() > n_initial: abc('r %s_temp_initial.blif'%f_name) res = 1 #plain n_plain = n_nodes() ## print nl() abc('write_blif %s_temp_plain.blif'%f_name) ## print 'wrote blif' #clp print nl() n_clp_lut = n_clp = 1000000 ## if n_nodes() < 250: if True: ## run_command('st;clp -B 10000') run_command('st;clp') nn = n_nodes() run_command('st') if not nn == n_nodes(): #st did not work run_command('if -a -K %d'%k) print nl() abc('write_blif %s_temp_clp.blif'%f_name) n_clp = n_nodes() abc('r %s_temp_initial.blif'%f_name) ## print 'read blif' ## if n_nodes() < 250: if True: ## run_command('st;clp -B 10000') run_commnd('st;clp') nn = n_nodes() run_command('st') if not nn == n_nodes(): #st did not work run_command('lutmin -K %d'%k) ## print nl() abc('write_blif %s_temp_clp.blif'%f_name) ## n_clp = n_nodes() print nl() ## print nl() if n_plain <= min(n_clp,n_clp_lut): abc('r %s_temp_plain.blif'%f_name) res = 1 elif n_clp < n_clp_lut: abc('r %s_temp_clp.blif'%f_name) res = 1 else: abc('r %s_temp_clp_lut.blif'%f_name) res = 1 ## print nl() assert check_blif(),'inequivalence' return res def snap_bestk(k): abc('write_blif %s_temp.blif'%f_name) unsave_bestk(k) snap() abc('read_blif %s_temp.blif'%f_name) def cec_it(): """ done because &r changes the names. Can't use -n because rfraig_store reorders pis and pos.""" abc('write_blif %s_temp.blif'%f_name) abc('&r -s %s.aig;&put'%f_name) run_command('cec %s_temp.blif'%f_name) abc('r %s_temp.blif'%f_name) def save_bestk(current_best,k): ## if os.access('%s_best%d.blif'%(f_name,k),os.R_OK): ## res = get_bestk_value(k) ## else: """ saves the best, returns bestk and if not best, leaves blif unchanged""" res = current_best if n_nodes() < res: res = n_nodes() abc('write_blif %s_best%d.blif'%(f_name,k)) print '\n*** best%d for %s *** = %d\n'%(k,f_name,res) assert check_blif(),'inequivalence' return res ## unsave_bestk(k) def unsave_bestk(k): run_command('read_blif %s_best%d.blif'%(f_name,k)) return n_nodes() def snap(): ## abc('fraig;fraig_store') run_command('&get;&st;&put;fraig_store') def fxch_store(k=6): run_command('fraig_store;sop;fxch;eliminate;fraig_store;eliminate -V 5;fraig_store;fraig_restore;if -a -K %d'%k) ## ps() run_command('&get;&if -a -K %d;&satlut;&put'%k) ## ps() def fx_iter(k=6): best = n_nodes() run_command('write_blif %s_best.blif'%f_name) n=0 while True: fxch_store(k) ## print 'done', print n_nodes() ## abc('if -am -K %d'%k) if n_nodes()< best: assert check_blif(),'inequivalence' best = n_nodes() n = 0 abc('write_blif %s_best.blif'%f_name) assert check_blif(),'inequivalence' continue else: n = n+1 if n>2: break abc('r %s_best.blif'%f_name) def unsnap(k=6): ## snap() ## abc('fraig_restore') ## map_lut_dch(k) ## assert check_blif(),'inequivalence-1' print 'starting fraig_restore' run_command('fraig_restore') ## run_command('ps') abc('if -a -F 2 -C 11 -K %d'%k) check_blif() ## run_command('ps') ## assert check_blif(),'inequivalence-1' ## print nl() abc('mfs2 -a ') print nl() ## assert check_blif(),'inequivalence-2' abc('lutpack ') print nl() def map_until_conv(k=6,prep=1): global pairs ## pairs = [] kk = 2*k ## kk = k + 1 # make sure that no residual results are left over. if True: if os.access('%s_best%d.blif'%(f_name,k),os.R_OK): os.remove('%s_best%d.blif'%(f_name,k)) if os.access('%s_best%d.blif'%(f_name,kk),os.R_OK): os.remove('%s_best%d.blif'%(f_name,kk)) pairs = [] tt = time.time() if not prep: map_lut_dch(k) ## ps() if_a_iter(k) ## ps() ## map_lut_synch(k) bestk = save_bestk(100000,k) print 'first map_lut_dch yields: ', print nl() else: print 'preprocess entered' res = preprocess(k=k,ifprep = prep) #get best of initial, clp, and lutmin versions print nl() print 'preprocess done' bestk = save_bestk(100000,k) print 'starting mapping iteration with %d-LUTs'%k ## map_lut_dch_iter(k,1,0,1) #initialize with mapping with kk input LUTs ## map_lut_synch_iter(kk) PUT IN QUICKER TERMINATTOR if_synch_iter(k) bestk = save_bestk(bestk,k) print nl(), k, kk abc('r %s_bestk%d.blif'%(f_name,k)) print 'iterating map' map_iter(k) #1 bestk = save_bestk(bestk,k) bestkk = 1000000 while True: print '\nPerturbing with %d-Lut'%kk ## map_lut_dch_iter(kk,1,0,1) ## if_synch_iter(k) map_lut_synch_iter(kk) bestkk_old = bestkk bestkk = save_bestk(bestkk,kk) if bestkk >= bestkk_old: break snap() #puts bestkk in fraig store unsave_bestk(k) snap() unsnap(k) #fraig restore and maps into k-luts bestk_old = bestk map_iter(k) bestk = save_bestk(bestk,k) if bestk >= bestk_old: break continue abc('fraig_restore') #dump what is left in fraig_store unsave_bestk(k) ## if_a_iter(k) if_synch_iter(k) ## run_command('&get;&satlut;&put') ## satlut(k) bestk = save_bestk(bestk,k) unsave_bestk(k) print '\nFinal size = ', print nl() print 'time for %s = %.02f'%(f_name,(time.time()-tt)) ## cec_it() def get_bestk_value(k=6): abc('write_blif %s_temp.blif'%f_name) unsave_bestk(k) res = n_nodes() abc('read_blif %s_temp.blif'%f_name) return res def map_iter(k=6): tt = time.time() ## bestk = get_bestk_value(k) n=0 bestk = unsave_bestk(k) ## bestk = n_nodes() while True: print 'perturbing' abc('if -a -K %d'%(k+2)) snap() perturb(k) # snap() perturb(k) snap() old_bestk = bestk unsnap(k) abc('if -a -K %d'%k) ## map_lut(k) bestk = save_bestk(bestk,k) ## print 'iterating map_lut_dch' ## if_a_iter(k) ## if_synch_iter(k) ## print '#nodes after if_synch_iter = %d'%n_nodes() #### print '#nodes after if_a_iter = %d'%n_nodes() #### if n_nodes() > 1.2*bestk: rkb-temp if n_nodes() > 2*bestk: print 'perturbation too big' break map_lut_dch_iter(k) if n_nodes() > 1.5*bestk: print 'not enough progress' break bestk = save_bestk(bestk,k) ## print bestk if bestk < old_bestk: n=0 # keep it up continue elif n == 2: #perturb break else: print 'trying fx_iter' fx_iter(k) if n_nodes() > 1.5*bestk: print 'not enough progress' break bestk = save_bestk(bestk,k) ## print bestk if bestk < old_bestk: n=0 # keep it up continue n = n+1 print '%d-perturb'%n unsave_bestk(k) def check_star(name='adder'): run_command('read_blif %s_best_star.blif'%name) run_command('st;&get') run_command('&cec %s.aig'%(name)) def check_blif(): return True #disabling ## print 'Checking: ', abc('write_blif %s_bb.blif'%f_name) abc('read_blif %s_best_star.blif'%f_name) abc('st;&get') run_command('&cec -n %s.aig'%f_name) ## run_command('cec %s_bb.blif %s.aig'%(f_name,f_name)) res = True if is_sat(): res = False print '*** NOT OK ***' ## else: ## print'OK', abc('read_blif %s_bb.blif'%f_name) return res def satlut(k=6): if k <= 6: run_command('&get;&st;&if -a -K %d;&satlut;&put'%k) else: run_command('&get;&st;&if -a -K %d;&put'%k) ## ps() def map_star(k=6): global pairs pairs = [] tt = time.time() print '\n**************Starting first map_until_conv**: \n' map_until_conv(k,1) #1 means do preprocess abc('write_blif %s_best_star.blif'%f_name) assert check_blif(),'inequivalence' best = n_nodes() while True: jog(2*k) print '\n*************Starting next map_until_conv**: \n' map_until_conv(k,0) if n_nodes() >= best: break else: best = n_nodes() abc('write_blif %s_best_star.blif'%f_name) assert check_blif(),'inequivalence' abc('r %s_best_star.blif'%f_name) print '\n\n*** SIZE = %d, TIME = %.2f for %s ***'%(n_nodes(),(time.time() - tt),f_name) def decomp_444(): abc('st; dch; if -K 10 -S 444') abc('write_blif -S 444 %s_temp.blif; r %s_temp.blif'%(f_name,f_name)) def dmitri(k=8): ## abc('w t.aig') ## dc2_iter() ## print 'first iter done: %d'%n_ands() ## abc('dc2rs') #### dc2_iter() ## print 'second iter done: %d'%n_ands() ## sop_balance(k) ## abc('w t_before.aig') ## run_command('cec -n t.aig') ## speedup_iter(k) ## print 'n_levels after speedup = %d'%n_levels() ## abc('write_blif %s_save.blif'%f_name) ## nn=n_levels() abc('st;dch; if -g -K %d'%(k)) ## print 'n_levels after sop balance = %d'%n_levels() ## if n_levels() > nn: ## run_command('r %s_save.blif'%f_name) ## print 'n_levels = %d'%n_levels() ## print 'final n_levels = %d'%n_levels() ## print 'sop_balance done: ', ## print nl() ## run_command('st;w t_after.aig') ## run_command('cec -n t.aig') abc('if -G %d '%k) ## print 'after if -G %d: '%k, ## print nl() ## run_command('cec -n t.aig') abc('cubes') ## print 'after cubes: ', ## print nl() ## run_command('cec -n t.aig') abc('addbuffs -v') ## print 'after addbuffs: ', print nl(), ## run_command('cec -n t.aig') def lut(): dc2_iter() abc('extract -a') print nl() dc2_iter() ## ps() sop_balance(6) map_lut_dch() map_lut() print nl() ## run_command('ps') ################################## gate level abstraction """ Code for using for abstraction """ def bip_abs(t=100): """ t is ignored here""" set_globals() time = max(1,.1*G_T) abc('&get;,bmc -vt=%f'%time) set_max_bmc(get_bmc_depth(False)) c = 2*G_C f = max(2*max_bmc,20) b = min(max(10,max_bmc),200) t1 = x_factor*max(1,2*G_T) t = max(t1,t) s = min(max(3,c/30000),10) # stability between 3 and 10 ## cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d -dwr=vabs'%(b,s,t,t,f) cmd = '&get;,abs -timeout=%d -vt=%d -dwr=%s_vabs'%(t,t,f_name) print 'Running %s'%cmd ## abc(cmd) run_command(cmd) ## get_bmc_depth() abc('&w %s_greg.aig'%f_name) return max_bmc def check_frames(): abc('read_status vta.status') return n_bmc_frames() def vta_abs(t): """ Do gate-level abstraction for F frames """ r = 100 *(1 - abs_ratio) ## abc('orpos; &get;&vta -dv -A %s_vabs.aig -P 2 -T %d -R %d; &vta_gla;&w %s_gla.aig;&gla_derive; &put; w %s_gabs.aig'%(f_name,t,r,f_name,f_name)) abc('orpos; &get;&vta -dv -A %s_vabs.aig -P 2 -T %d -R %d; &vta_gla;&w %s_gla.aig'%(f_name,t,r,f_name)) ## write_file('abs') def sizeof(): return [n_pis(),n_pos(),n_latches(),n_ands()] def abstract(ifb=2): global abs_ratio, abs_time ## print 'ifb = %d'%ifb if ifb == 0: #new way using vta_abs and no bip add_trace('abstracta') return abstracta(False) elif ifb == 1: #old way using ,abs assert ifb == ifbip, 'call to abstract has ifb not = global ifbip' add_trace('abstractb') return abstractb() else: #new way using ,abs -dwr -- (bip_abs) add_trace('abstracta') return abstracta(True) def abstracta(if_bip=True): """ if_bip = 0 it uses a new abstraction based on &vta (gate level abstraction) and no bip operations Right now, if we do not prove it with abstraction in the time allowed, we abandon abstraction and go on with speculation if_bip = 1, we use ,abs -dwr """ global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims global latches_before_abs, ands_before_abs, pis_before_abs, abs_ratio, abs_time ## n_vabs = 0 latches_before_abs = n_latches() ands_before_abs = n_ands() pis_before_abs = n_real_inputs() tt = time.time() print 'using abstracta, ', ## print 'if_bip = %d'%if_bip ## latch_ratio = abs_ratio ## t = 100 t = 1000 #temporary t = abs_time if if_bip == 0: t = 1000 #timeout on vta t = abs_time tt = time.time() ## if n_pos() > 1 and if_bip == 0: ## abc('orpos') ## print 'POs ORed together, ', initial_size = sizeof() abc('w %s_before_abs.aig'%f_name) # 25 below means that it will quit if #FF+#ANDS > 75% of original ## funcs =
<reponame>piotrmirowski/arnheim<filename>arnheim_3/src/main.py # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Arnheim 3 - Collage # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME> # DeepMind, 2021-2022 # Command-line version of the Google Colab code available at: # https://github.com/deepmind/arnheim/blob/main/arnheim_3.ipynb import configargparse from datetime import datetime import glob import os import pathlib import subprocess import sys import yaml import numpy as np import torch import clip import collage import patches import video_utils # Specify (and override) the config. ap = configargparse.ArgumentParser(default_config_files=["configs/config.yaml"]) ap.add_argument("-c", "--config", required=True, is_config_file=True, help="Config file") # Use CUDA? ap.add_argument("--cuda", dest="cuda", action="store_true") ap.add_argument("--no-cuda", dest="cuda", action="store_false") ap.set_defaults(cuda=True) # Output directory. ap.add_argument("--output_dir", type=str, default="", help="Output directory") # Clean-up? ap.add_argument("--clean_up", dest='clean_up', help="Remove all working files", action='store_true') ap.add_argument("--no-clean_up", dest='clean_up', help="Remove all working files", action='store_false') ap.set_defaults(clean_up=False) # GUI? ap.add_argument('--gui', dest='gui', action='store_true') ap.add_argument('--no-gui', dest='gui', action='store_false') ap.set_defaults(gui=False) # Video and tracing. ap.add_argument("--video_steps", type=int, default=0, help="Number of steps between two video frames") ap.add_argument("--trace_every", type=int, default=50, help="Number of steps between two logging traces") ap.add_argument('--population_video', dest='population_video', action='store_true', help='Write the video of population?') ap.add_argument('--no_population_video', dest='population_video', action='store_false', help='Write the video of population?') ap.set_defaults(population_video=False) # Canvas size. ap.add_argument("--canvas_width", type=int, default=224, help="Image width for CLIP optimization") ap.add_argument("--canvas_height", type=int, default=224, help="Image height for CLIP optimization") # Render methods. ap.add_argument("--render_method", type=str, default="transparency", help="opacity patches overlay each other using combinations of " "alpha and depth, transparency _adds_ patch colours (black " "therefore appearing transparent), masked_transparency " "blends patches using the alpha channel") ap.add_argument("--num_patches", type=int, default=100, help="Number of patches") ap.add_argument("--colour_transformations", type=str, default="RGB space", help="Can be none, RGB space or HHSV space") ap.add_argument("--invert_colours", dest="invert_colours", action='store_true', help="Invert image colours to have a white background?") ap.add_argument("--no_invert_colours", dest="invert_colours", action='store_false', help="Invert image colours to have a white background?") ap.set_defaults(invert_colours=False) ap.add_argument("--high_res_multiplier", type=int, default=4, help="Ratio between large canvas and CLIP-optimized canvas") ap.add_argument('--save_all_arrays', dest='save_all_arrays', action='store_true', help='Save the optimised patch arrays as an npy file?') ap.add_argument('--no_save_all_arrays', dest='save_all_arrays', action='store_false', help='Save the optimised patch arrays as an npy file?') ap.set_defaults(save_all_arrays=False) # Affine transform settings. ap.add_argument("--min_trans", type=float, default=-1., help="Translation min for X and Y") ap.add_argument("--max_trans", type=float, default=1., help="Translation max for X and Y") ap.add_argument("--min_scale", type=float, default=1., help="Scale min (> 1 means zoom out and < 1 means zoom in)") ap.add_argument("--max_scale", type=float, default=2., help="Scale max (> 1 means zoom out and < 1 means zoom in)") ap.add_argument("--min_squeeze", type=float, default=0.5, help="Min ratio between X and Y scale") ap.add_argument("--max_squeeze", type=float, default=2., help="Max ratio between X and Y scale") ap.add_argument("--min_shear", type=float, default=-0.2, help="Min shear deformation") ap.add_argument("--max_shear", type=float, default=0.2, help="Max shear deformation") ap.add_argument("--min_rot_deg", type=float, default=-180, help="Min rotation") ap.add_argument("--max_rot_deg", type=float, default=180, help="Max rotation") # Colour transform settings. ap.add_argument("--min_rgb", type=float, default=-0.2, help="Min RGB between -1 and 1") ap.add_argument("--max_rgb", type=float, default=1.0, help="Max RGB between -1 and 1") ap.add_argument("--initial_min_rgb", type=float, default=0.5, help="Initial min RGB between -1 and 1") ap.add_argument("--initial_max_rgb", type=float, default=1., help="Initial max RGB between -1 and 1") ap.add_argument("--min_hue_deg", type=float, default=0., help="Min hue between 0 and 360") ap.add_argument("--max_hue_deg", type=float, default=360, help="Max hue (in degrees) between 0 and 360") ap.add_argument("--min_sat", type=float, default=0, help="Min saturation between 0 and 1") ap.add_argument("--max_sat", type=float, default=1, help="Max saturation between 0 and 1") ap.add_argument("--min_val", type=float, default=0, help="Min value between 0 and 1") ap.add_argument("--max_val", type=float, default=1, help="Max value between 0 and 1") # Training settings. ap.add_argument("--clip_model", type=str, default="ViT-B/32", help="CLIP model") ap.add_argument("--optim_steps", type=int, default=10000, help="Number of training steps (between 0 and 20000)") ap.add_argument("--learning_rate", type=float, default=0.1, help="Learning rate, typically between 0.05 and 0.3") ap.add_argument("--use_image_augmentations", dest="use_image_augmentations", action='store_true', help="User image augmentations for CLIP evaluation?") ap.add_argument("--no_use_image_augmentations", dest="use_image_augmentations", action='store_false', help="User image augmentations for CLIP evaluation?") ap.set_defaults(use_image_augmentations=True) ap.add_argument("--num_augs", type=int, default=4, help="Number of image augmentations to use in CLIP evaluation") ap.add_argument("--use_normalized_clip", dest="use_normalized_clip", action='store_true', help="Normalize colours for CLIP, generally leave this as True") ap.add_argument("--no_use_normalized_clip", dest="use_normalized_clip", action='store_false', help="Normalize colours for CLIP, generally leave this as True") ap.set_defaults(use_normalized_clip=False) ap.add_argument("--gradient_clipping", type=float, default=10.0, help="Gradient clipping during optimisation") ap.add_argument("--initial_search_size", type=int, default=1, help="Initial random search size (1 means no search)") # Evolution settings. ap.add_argument("--pop_size", type=int, default=2, help="For evolution set this to greater than 1") ap.add_argument("--evolution_frequency", type=int, default= 100, help="Number of gradient steps between two evolution mutations") ap.add_argument("--ga_method", type=str, default="Microbial", help="Microbial: loser of randomly selected pair is replaced " "by mutated winner. A low selection pressure. Evolutionary " "Strategies: mutantions of the best individual replace the " "rest of the population. Much higher selection pressure than " "Microbial GA") # Mutation levels. ap.add_argument("--pos_and_rot_mutation_scale", type=float, default=0.02, help="Probability of position and rotation mutations") ap.add_argument("--scale_mutation_scale", type=float, default=0.02, help="Probability of scale mutations") ap.add_argument("--distort_mutation_scale", type=float, default=0.02, help="Probability of distortion mutations") ap.add_argument("--colour_mutation_scale", type=float, default=0.02, help="Probability of colour mutations") ap.add_argument("--patch_mutation_probability", type=float, default=1, help="Probability of patch mutations") # Visualisation. ap.add_argument("--max_multiple_visualizations", type=int, default=5, help="Limit the number of individuals shown during training") # Load segmented patches. ap.add_argument("--patch_set", type=str, default="animals.npy", help="Name of Numpy file with patches") ap.add_argument("--patch_repo_root", type=str, default="https://github.com/deepmind/arnheim/raw/main", help="URL to patches") ap.add_argument("--url_to_patch_file", type=str, default="", help="URL to a patch file") # Resize image patches to low- and high-res. ap.add_argument("--fixed_scale_patches", dest="fixed_scale_patches", action='store_true', help="Use fixed scale patches?") ap.add_argument("--no_fixed_scale_patches", dest="fixed_scale_patches", action='store_false', help="Use fixed scale patches?") ap.set_defaults(fixed_scale_patches=True) ap.add_argument("--fixed_scale_coeff", type=float, default=0.7, help="Scale coeff for fixed scale patches") ap.add_argument("--normalize_patch_brightness", dest="normalize_patch_brightness", action='store_true', help="Normalize the brightness of patches?") ap.add_argument("--no_normalize_patch_brightness", dest="normalize_patch_brightness", action='store_false', help="Normalize the brightness of patches?") ap.set_defaults(normalize_patch_brightness=False) ap.add_argument("--patch_max_proportion", type=int, default= 5, help="Max proportion of patches, between 2 and 8") ap.add_argument("--patch_width_min", type=int, default=16, help="Min width of patches") ap.add_argument("--patch_height_min", type=int, default=16, help="Min height of patches") # Configure a background, e.g. uploaded picture or solid colour. ap.add_argument("--background_use", type=str, default="Global", help="Global: use image across whole image, " "or Local: reuse same image for every tile") ap.add_argument("--background_url", type=str, default="", help="URL for background image") ap.add_argument("--background_red", type=int, default=0, help="Red solid colour background (0 to 255)") ap.add_argument("--background_green", type=int, default=0, help="Green solid colour background (0 to 255)") ap.add_argument("--background_blue", type=int, default=0, help="Blue solid colour background (0 to 255)") # Configure image prompt and content. ap.add_argument("--global_prompt", type=str, default="Roman mosaic of an unswept floor", help="Global description of the image") # Tile prompts and tiling settings. ap.add_argument("--tile_images", action='store_true', dest="tile_images", help="Tile images?") ap.add_argument("--no_tile_images", action='store_false', dest="tile_images", help="Tile images?") ap.set_defaults(tile_images=False) ap.add_argument("--tiles_wide", type=int, default=1, help="Number of width tiles") ap.add_argument("--tiles_high", type=int, default=1, help="Number of height tiles") ap.add_argument("--global_tile_prompt", dest="global_tile_prompt", action='store_true', help="Global tile prompt uses global_prompt (previous cell) " "for *all* tiles (e.g. Roman mosaic of an unswept floor)") ap.add_argument("--no_global_tile_prompt", dest="global_tile_prompt", action='store_false', help="Global tile prompt uses global_prompt (previous cell) " "for *all* tiles (e.g. Roman mosaic of an unswept floor)") ap.set_defaults(store_false=False) ap.add_argument("--tile_prompt_string", type=str, default="", help="Otherwise, specify multiple tile prompts with columns " "separated by | and / to delineate new row. E.g. multiple " "prompts for a 3x2 'landscape' image: " "'sun | clouds | sky / fields | fields | trees'") # Composition prompts. ap.add_argument("--compositional_image", dest="compositional_image", action="store_true", help="Use additional prompts for different regions") ap.add_argument("--no_compositional_image", dest="compositional_image", action="store_false", help="Do not use additional prompts for different regions") ap.set_defaults(compositional_image=False) # Single image (i.e. no tiling) composition prompts: # specify 3x3 prompts for each composition region. ap.add_argument("--prompt_x0_y0", type=str, default="a photorealistic sky with sun", help="Top left prompt") ap.add_argument("--prompt_x1_y0", type=str, default="a photorealistic sky", help="Top centre prompt") ap.add_argument("--prompt_x2_y0", type=str, default="a photorealistic sky with moon", help="Top right prompt") ap.add_argument("--prompt_x0_y1", type=str, default="a photorealistic tree", help="Middle left prompt") ap.add_argument("--prompt_x1_y1", type=str, default="a photorealistic tree", help="Centre prompt") ap.add_argument("--prompt_x2_y1", type=str, default="a photorealistic tree", help="Middle right prompt") ap.add_argument("--prompt_x0_y2", type=str, default="a photorealistic field", help="Bottom left prompt") ap.add_argument("--prompt_x1_y2", type=str, default="a photorealistic field", help="Bottom centre prompt") ap.add_argument("--prompt_x2_y2", type=str, default="a photorealistic chicken", help="Bottom right prompt") # Tile composition prompts. ap.add_argument("--tile_prompt_formating", type=str, default="close-up of {}", help="This string is formated to autogenerate region prompts " "from tile prompt. e.g. close-up of {}") # Get the config. config = vars(ap.parse_args()) # Adjust config for compositional image. if config["compositional_image"] == True: print("Generating compositional image") config['canvas_width'] *= 2 config['canvas_height'] *= 2 config['high_res_multiplier'] = int(config['high_res_multiplier'] / 2) print("Using one image augmentations for compositional image creation.") config["use_image_augmentations"] = True config["num_augs"] = 1 # Turn off tiling if either boolean is set or width/height set to 1. if (not config["tile_images"] or (config["tiles_wide"] == 1 and config["tiles_high"] == 1)): print("No tiling.") config["tiles_wide"] = 1 config["tiles_high"] = 1 config["tile_images"] = False # Default output dir. if len(config["output_dir"]) == 0: config["output_dir"] = "output_" config["output_dir"] += datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S') config["output_dir"] += '/' # Print the config. print("\n") yaml.dump(config, sys.stdout, default_flow_style=False, allow_unicode=True) print("\n\n") # Configure CUDA. print("Torch version:", torch.__version__) if config["cuda"]: cuda_version = [s for s in subprocess.check_output( ["nvcc", "--version"]).decode("UTF-8").split(", ") if s.startswith("release")][0].split(" ")[-1] print("CUDA version:", cuda_version) torch_device = "cuda" else: torch_device = "cpu" config["torch_device"] = torch_device device = torch.device(torch_device) # Configure ffmpeg. os.environ["FFMPEG_BINARY"] = "ffmpeg" # Initialise and load CLIP model. print(f"Downloading CLIP model {config['clip_model']}...") clip_model, _ = clip.load(config["clip_model"], device, jit=False) # Make output dir. output_dir = config["output_dir"] print(f"Storing results in {output_dir}\n") pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True) # Save the config. config_filename = config["output_dir"] + "config.yaml" with open(config_filename, "w") as f: yaml.dump(config, f, default_flow_style=False, allow_unicode=True) # Images patches. segmented_data, segmented_data_high_res = patches.get_segmented_data(config) # Tiling. if not config["tile_images"] or config["global_tile_prompt"]: tile_prompts = ( [config["global_prompt"]] * config["tiles_high"] * config["tiles_wide"]) else: tile_prompts = [] count_y = 0 count_x = 0 for row in config["tile_prompt_string"].split("/"):
<filename>src/firebolt/async_db/cursor.py from __future__ import annotations import logging import re import time from enum import Enum from functools import wraps from inspect import cleandoc from types import TracebackType from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Optional, Sequence, Tuple, ) from aiorwlock import RWLock from httpx import Response, codes from firebolt.async_db._types import ( ColType, Column, ParameterType, RawColType, parse_type, parse_value, split_format_sql, ) from firebolt.async_db.util import is_db_available, is_engine_running from firebolt.client import AsyncClient from firebolt.common.exception import ( CursorClosedError, DataError, EngineNotRunningError, FireboltDatabaseError, OperationalError, ProgrammingError, QueryNotRunError, ) if TYPE_CHECKING: from firebolt.async_db.connection import Connection logger = logging.getLogger(__name__) JSON_OUTPUT_FORMAT = "JSONCompact" class CursorState(Enum): NONE = 1 ERROR = 2 DONE = 3 CLOSED = 4 def check_not_closed(func: Callable) -> Callable: """(Decorator) ensure cursor is not closed before calling method.""" @wraps(func) def inner(self: Cursor, *args: Any, **kwargs: Any) -> Any: if self.closed: raise CursorClosedError(method_name=func.__name__) return func(self, *args, **kwargs) return inner def check_query_executed(func: Callable) -> Callable: cleandoc( """ (Decorator) ensure that some query has been executed before calling cursor method. """ ) @wraps(func) def inner(self: Cursor, *args: Any, **kwargs: Any) -> Any: if self._state == CursorState.NONE: raise QueryNotRunError(method_name=func.__name__) return func(self, *args, **kwargs) return inner class BaseCursor: __slots__ = ( "connection", "_arraysize", "_client", "_state", "_descriptions", "_rowcount", "_rows", "_idx", "_idx_lock", "_row_sets", "_next_set_idx", ) default_arraysize = 1 def __init__(self, client: AsyncClient, connection: Connection): self.connection = connection self._client = client self._arraysize = self.default_arraysize # These fields initialized here for type annotations purpose self._rows: Optional[List[List[RawColType]]] = None self._descriptions: Optional[List[Column]] = None self._row_sets: List[ Tuple[int, Optional[List[Column]], Optional[List[List[RawColType]]]] ] = [] self._rowcount = -1 self._idx = 0 self._next_set_idx = 0 self._reset() def __del__(self) -> None: self.close() @property # type: ignore @check_not_closed def description(self) -> Optional[List[Column]]: """ Provides information about a single result row of a query Attributes: * ``name`` * ``type_code`` * ``display_size`` * ``internal_size`` * ``precision`` * ``scale`` * ``null_ok`` """ return self._descriptions @property # type: ignore @check_not_closed def rowcount(self) -> int: """The number of rows produced by last query.""" return self._rowcount @property def arraysize(self) -> int: """Default number of rows returned by fetchmany.""" return self._arraysize @arraysize.setter def arraysize(self, value: int) -> None: if not isinstance(value, int): raise TypeError( "Invalid arraysize value type, expected int," f" got {type(value).__name__}" ) self._arraysize = value @property def closed(self) -> bool: """True if connection is closed, False otherwise.""" return self._state == CursorState.CLOSED def close(self) -> None: """Terminate an ongoing query (if any) and mark connection as closed.""" self._state = CursorState.CLOSED # remove typecheck skip after connection is implemented self.connection._remove_cursor(self) # type: ignore def _append_query_data(self, response: Response) -> None: """Store information about executed query from httpx response.""" row_set: Tuple[ int, Optional[List[Column]], Optional[List[List[RawColType]]] ] = (-1, None, None) # Empty response is returned for insert query if response.headers.get("content-length", "") != "0": try: query_data = response.json() rowcount = int(query_data["rows"]) descriptions = [ Column( d["name"], parse_type(d["type"]), None, None, None, None, None ) for d in query_data["meta"] ] # Parse data during fetch rows = query_data["data"] row_set = (rowcount, descriptions, rows) except (KeyError, ValueError) as err: raise DataError(f"Invalid query data format: {str(err)}") self._row_sets.append(row_set) if self._next_set_idx == 0: # Populate values for first set self._pop_next_set() @check_not_closed @check_query_executed def nextset(self) -> Optional[bool]: """ Skip to the next available set, discarding any remaining rows from the current set. Returns True if operation was successful, None if there are no more sets to retrive """ return self._pop_next_set() def _pop_next_set(self) -> Optional[bool]: """ Same functionality as .nextset, but doesn't check that query has been executed. """ if self._next_set_idx >= len(self._row_sets): return None self._rowcount, self._descriptions, self._rows = self._row_sets[ self._next_set_idx ] self._idx = 0 self._next_set_idx += 1 return True async def _raise_if_error(self, resp: Response) -> None: """Raise a proper error if any""" if resp.status_code == codes.INTERNAL_SERVER_ERROR: raise OperationalError( f"Error executing query:\n{resp.read().decode('utf-8')}" ) if resp.status_code == codes.FORBIDDEN: if not await is_db_available(self.connection, self.connection.database): raise FireboltDatabaseError( f"Database {self.connection.database} does not exist" ) raise ProgrammingError(resp.read().decode("utf-8")) if ( resp.status_code == codes.SERVICE_UNAVAILABLE or resp.status_code == codes.NOT_FOUND ): if not await is_engine_running(self.connection, self.connection.engine_url): raise EngineNotRunningError( f"Firebolt engine {self.connection.engine_url} " "needs to be running to run queries against it." ) resp.raise_for_status() def _reset(self) -> None: """Clear all data stored from previous query.""" self._state = CursorState.NONE self._rows = None self._descriptions = None self._rowcount = -1 self._idx = 0 self._row_sets = [] self._next_set_idx = 0 async def _do_execute_request( self, query: str, parameters: Sequence[Sequence[ParameterType]], set_parameters: Optional[Dict] = None, ) -> None: self._reset() try: queries = split_format_sql(query, parameters) for query in queries: start_time = time.time() # our CREATE EXTERNAL TABLE queries currently require credentials, # so we will skip logging those queries. # https://docs.firebolt.io/sql-reference/commands/ddl-commands#create-external-table if not re.search("aws_key_id|credentials", query, flags=re.IGNORECASE): logger.debug(f"Running query: {query}") resp = await self._client.request( url="/", method="POST", params={ "database": self.connection.database, "output_format": JSON_OUTPUT_FORMAT, **(set_parameters or dict()), }, content=query, ) await self._raise_if_error(resp) self._append_query_data(resp) logger.info( f"Query fetched {self.rowcount} rows in" f" {time.time() - start_time} seconds" ) self._state = CursorState.DONE except Exception: self._state = CursorState.ERROR raise @check_not_closed async def execute( self, query: str, parameters: Optional[Sequence[ParameterType]] = None, set_parameters: Optional[Dict] = None, ) -> int: """Prepare and execute a database query. Return row count.""" params_list = [parameters] if parameters else [] await self._do_execute_request(query, params_list, set_parameters) return self.rowcount @check_not_closed async def executemany( self, query: str, parameters_seq: Sequence[Sequence[ParameterType]] ) -> int: """ Prepare and execute a database query against all parameter sequences provided. Return last query row count. """ await self._do_execute_request(query, parameters_seq) return self.rowcount def _parse_row(self, row: List[RawColType]) -> List[ColType]: """Parse a single data row based on query column types""" assert len(row) == len(self.description) return [ parse_value(col, self.description[i].type_code) for i, col in enumerate(row) ] def _get_next_range(self, size: int) -> Tuple[int, int]: cleandoc( """ Return range of next rows of size (if possible), and update _idx to point to the end of this range """ ) if self._rows is None: # No elements to take raise DataError("no rows to fetch") left = self._idx right = min(self._idx + size, len(self._rows)) self._idx = right return left, right @check_not_closed @check_query_executed def fetchone(self) -> Optional[List[ColType]]: """Fetch the next row of a query result set.""" left, right = self._get_next_range(1) if left == right: # We are out of elements return None assert self._rows is not None return self._parse_row(self._rows[left]) @check_not_closed @check_query_executed def fetchmany(self, size: Optional[int] = None) -> List[List[ColType]]: """ Fetch the next set of rows of a query result, cursor.arraysize is default size. """ size = size if size is not None else self.arraysize left, right = self._get_next_range(size) assert self._rows is not None rows = self._rows[left:right] return [self._parse_row(row) for row in rows] @check_not_closed @check_query_executed def fetchall(self) -> List[List[ColType]]: """Fetch all remaining rows of a query result.""" left, right = self._get_next_range(self.rowcount) assert self._rows is not None rows = self._rows[left:right] return [self._parse_row(row) for row in rows] @check_not_closed def setinputsizes(self, sizes: List[int]) -> None: """Predefine memory areas for query parameters (does nothing).""" @check_not_closed def setoutputsize(self, size: int, column: Optional[int] = None) -> None: """Set a column buffer size for fetches of large columns (does nothing).""" # Context manager support @check_not_closed def __enter__(self) -> BaseCursor: return self def __exit__( self, exc_type: type, exc_val: Exception, exc_tb: TracebackType ) -> None: self.close() class Cursor(BaseCursor): """ Class, responsible for executing asyncio queries to Firebolt Database. Should not be created directly, use :py:func:`connection.cursor <firebolt.async_db.connection.Connection>` Args: description: information about a single result row rowcount: the number of rows produced by last query closed: True if connection is closed, False otherwise arraysize: Read/Write, specifies the number of rows to fetch at a time with the :py:func:`fetchmany` method """ __slots__ = BaseCursor.__slots__ + ("_async_query_lock",) def __init__(self, *args: Any, **kwargs: Any) -> None: self._async_query_lock = RWLock() super().__init__(*args, **kwargs) @wraps(BaseCursor.execute) async def execute( self, query: str, parameters: Optional[Sequence[ParameterType]] = None, set_parameters: Optional[Dict] = None, ) -> int: async with self._async_query_lock.writer: return await super().execute(query, parameters, set_parameters) """Prepare and execute a database query""" @wraps(BaseCursor.executemany) async def executemany( self, query: str, parameters_seq: Sequence[Sequence[ParameterType]] ) -> int: async with self._async_query_lock.writer: return await super().executemany(query, parameters_seq) """ Prepare and execute a database query against all parameter sequences provided """ @wraps(BaseCursor.fetchone) async def fetchone(self) -> Optional[List[ColType]]: async with self._async_query_lock.reader: return super().fetchone() """Fetch the next row of a query result set""" @wraps(BaseCursor.fetchmany) async def fetchmany(self, size: Optional[int] = None) -> List[List[ColType]]: async
<filename>google/cloud/aiplatform_v1beta1/services/job_service/transports/grpc.py # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Callable, Dict from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials # type: ignore import grpc # type: ignore from google.cloud.aiplatform_v1beta1.types import batch_prediction_job from google.cloud.aiplatform_v1beta1.types import ( batch_prediction_job as gca_batch_prediction_job, ) from google.cloud.aiplatform_v1beta1.types import custom_job from google.cloud.aiplatform_v1beta1.types import custom_job as gca_custom_job from google.cloud.aiplatform_v1beta1.types import data_labeling_job from google.cloud.aiplatform_v1beta1.types import ( data_labeling_job as gca_data_labeling_job, ) from google.cloud.aiplatform_v1beta1.types import hyperparameter_tuning_job from google.cloud.aiplatform_v1beta1.types import ( hyperparameter_tuning_job as gca_hyperparameter_tuning_job, ) from google.cloud.aiplatform_v1beta1.types import job_service from google.longrunning import operations_pb2 as operations # type: ignore from google.protobuf import empty_pb2 as empty # type: ignore from .base import JobServiceTransport class JobServiceGrpcTransport(JobServiceTransport): """gRPC backend transport for JobService. A service for creating and managing AI Platform's jobs. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "aiplatform.googleapis.com", credentials: credentials.Credentials = None, channel: grpc.Channel = None ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. """ # Sanity check: Ensure that channel and credentials are not both # provided. if channel: credentials = False # Run the base constructor. super().__init__(host=host, credentials=credentials) self._stubs = {} # type: Dict[str, Callable] # If a channel was explicitly provided, set it. if channel: self._grpc_channel = channel @classmethod def create_channel( cls, host: str = "aiplatform.googleapis.com", credentials: credentials.Credentials = None, **kwargs ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=cls.AUTH_SCOPES, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Sanity check: Only create a new channel if we do not already # have one. if not hasattr(self, "_grpc_channel"): self._grpc_channel = self.create_channel( self._host, credentials=self._credentials, ) # Return the channel from cache. return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if "operations_client" not in self.__dict__: self.__dict__["operations_client"] = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self.__dict__["operations_client"] @property def create_custom_job( self, ) -> Callable[[job_service.CreateCustomJobRequest], gca_custom_job.CustomJob]: r"""Return a callable for the create custom job method over gRPC. Creates a CustomJob. A created CustomJob right away will be attempted to be run. Returns: Callable[[~.CreateCustomJobRequest], ~.CustomJob]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_custom_job" not in self._stubs: self._stubs["create_custom_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/CreateCustomJob", request_serializer=job_service.CreateCustomJobRequest.serialize, response_deserializer=gca_custom_job.CustomJob.deserialize, ) return self._stubs["create_custom_job"] @property def get_custom_job( self, ) -> Callable[[job_service.GetCustomJobRequest], custom_job.CustomJob]: r"""Return a callable for the get custom job method over gRPC. Gets a CustomJob. Returns: Callable[[~.GetCustomJobRequest], ~.CustomJob]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_custom_job" not in self._stubs: self._stubs["get_custom_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/GetCustomJob", request_serializer=job_service.GetCustomJobRequest.serialize, response_deserializer=custom_job.CustomJob.deserialize, ) return self._stubs["get_custom_job"] @property def list_custom_jobs( self, ) -> Callable[ [job_service.ListCustomJobsRequest], job_service.ListCustomJobsResponse ]: r"""Return a callable for the list custom jobs method over gRPC. Lists CustomJobs in a Location. Returns: Callable[[~.ListCustomJobsRequest], ~.ListCustomJobsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_custom_jobs" not in self._stubs: self._stubs["list_custom_jobs"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/ListCustomJobs", request_serializer=job_service.ListCustomJobsRequest.serialize, response_deserializer=job_service.ListCustomJobsResponse.deserialize, ) return self._stubs["list_custom_jobs"] @property def delete_custom_job( self, ) -> Callable[[job_service.DeleteCustomJobRequest], operations.Operation]: r"""Return a callable for the delete custom job method over gRPC. Deletes a CustomJob. Returns: Callable[[~.DeleteCustomJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_custom_job" not in self._stubs: self._stubs["delete_custom_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/DeleteCustomJob", request_serializer=job_service.DeleteCustomJobRequest.serialize, response_deserializer=operations.Operation.FromString, ) return self._stubs["delete_custom_job"] @property def cancel_custom_job( self, ) -> Callable[[job_service.CancelCustomJobRequest], empty.Empty]: r"""Return a callable for the cancel custom job method over gRPC. Cancels a CustomJob. Starts asynchronous cancellation on the CustomJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use ``JobService.GetCustomJob`` or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the CustomJob is not deleted; instead it becomes a job with a ``CustomJob.error`` value with a ``google.rpc.Status.code`` of 1, corresponding to ``Code.CANCELLED``, and ``CustomJob.state`` is set to ``CANCELLED``. Returns: Callable[[~.CancelCustomJobRequest], ~.Empty]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "cancel_custom_job" not in self._stubs: self._stubs["cancel_custom_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/CancelCustomJob", request_serializer=job_service.CancelCustomJobRequest.serialize, response_deserializer=empty.Empty.FromString, ) return self._stubs["cancel_custom_job"] @property def create_data_labeling_job( self, ) -> Callable[ [job_service.CreateDataLabelingJobRequest], gca_data_labeling_job.DataLabelingJob, ]: r"""Return a callable for the create data labeling job method over gRPC. Creates a DataLabelingJob. Returns: Callable[[~.CreateDataLabelingJobRequest], ~.DataLabelingJob]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_data_labeling_job" not in self._stubs: self._stubs["create_data_labeling_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/CreateDataLabelingJob", request_serializer=job_service.CreateDataLabelingJobRequest.serialize, response_deserializer=gca_data_labeling_job.DataLabelingJob.deserialize, ) return self._stubs["create_data_labeling_job"] @property def get_data_labeling_job( self, ) -> Callable[ [job_service.GetDataLabelingJobRequest], data_labeling_job.DataLabelingJob ]: r"""Return a callable for the get data labeling job method over gRPC. Gets a DataLabelingJob. Returns: Callable[[~.GetDataLabelingJobRequest], ~.DataLabelingJob]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_data_labeling_job" not in self._stubs: self._stubs["get_data_labeling_job"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.JobService/GetDataLabelingJob", request_serializer=job_service.GetDataLabelingJobRequest.serialize, response_deserializer=data_labeling_job.DataLabelingJob.deserialize, ) return self._stubs["get_data_labeling_job"] @property def list_data_labeling_jobs( self, ) -> Callable[ [job_service.ListDataLabelingJobsRequest], job_service.ListDataLabelingJobsResponse, ]: r"""Return a callable for the list data labeling jobs method over gRPC. Lists DataLabelingJobs in a Location. Returns: Callable[[~.ListDataLabelingJobsRequest], ~.ListDataLabelingJobsResponse]: A
#!/usr/bin/env python3.7 # -*- coding: utf-8 -*- import argparse import asyncio import configparser import os from collections import namedtuple from dataclasses import dataclass, field from datetime import datetime, date, timedelta from typing import List, Tuple, Dict import aiohttp import keyring import pytz @dataclass(order=True) class Time(object): seconds: float = field(compare=True, default=0.0) @classmethod def from_string(cls, string): seconds = float(string[:2]) * 3600.0 + float(string[3:]) * 60.0 return Time(seconds) @classmethod def from_params(cls, hours=0, minutes=0, seconds=0): seconds = hours * 3600 + minutes * 60 + seconds return Time(seconds) def __format__(self, t_format=None): if not t_format: t_format = '''{sign}{day}{hour:02}:{minute:02}''' negative = self.seconds < 0 total_seconds = round(abs(self.seconds)) m_sec = 60 h_sec = 60 * m_sec d_sec = 24 * h_sec day = total_seconds // d_sec total_seconds -= day * d_sec hour = total_seconds // h_sec total_seconds -= hour * h_sec minute = total_seconds // m_sec total_seconds -= minute * m_sec second = total_seconds repr_str = t_format.format(sign='-' if negative else '', day=f'{day} day ' if day > 0 else '', hour=hour, minute=minute, second=second) return repr_str def ceil(self, seconds): tmp = self if tmp.seconds % seconds != 0: tmp.seconds = tmp.seconds // seconds * seconds tmp.seconds += seconds return tmp def __repr__(self): return self.__format__('''{sign}{day}{hour:02}:{minute:02}''') def __add__(self, other): if other == 0: return self return Time(self.seconds + other.seconds) def __radd__(self, other): if type(other) is int: return self else: return self.__add__(other) def __sub__(self, other): return self.__add__(Time(-other.seconds)) def colored(text, color): colors = {'black': '\033[30m', 'red': '\033[31m', 'green': '\033[32m', 'yellow': '\033[33m', 'blue': '\033[34m', 'magenta': '\033[35m', 'cyan': '\033[36m', 'white': '\033[37m', 'reset': '\033[39m', 'normal': '\033[39m'} if text: return colors[color] + text + colors['reset'] else: return text @dataclass class Entry(object): id: int billable: bool spent: Time note: str = '' @dataclass class TicketingSystem: config: configparser.RawConfigParser report_date: datetime = datetime.today() json: Dict = None entries: List[Entry] = field(default_factory=list) auth: Tuple[str] = field(init=False) params: Dict[str, str] = field(init=False) url: str = field(init=False) api_url: str = field(init=False) entry_url: str = field(init=False) max_retries: int = field(init=False, default=5) timeout: int = field(init=False, default=5) def __str__(self): res = [] for entry in self.entries: res.append( f'''{self.entry_url}{entry.id}''' f'''\n\t{'Bill' if entry.billable else 'Free'}: {entry.spent} {entry.note}''') return '\n'.join(res) def __repr__(self): return __name__ + self.__str__() async def get_json(self): async with aiohttp.ClientSession() as session: try: async with session.get(self.api_url, params=self.params, timeout=self.timeout, auth=self.auth) as resp: return await resp.json() except asyncio.TimeoutError: print(f'Got timeout while getting {self.__class__.__name__}') async def get_entries(self): raise NotImplementedError def get_bill(self): time = Time(sum(i.spent.seconds for i in self.entries if i.billable)) return time def get_free(self): time = Time(sum(i.spent.seconds for i in self.entries if not i.billable)) return time def get_total(self): return self.get_bill() + self.get_free() def print_if_not_empty(self): if self.entries: print(self) @dataclass class Freshdesk(TicketingSystem): # FIXME someday in must become async and include self.json = self.get.json() initialisation def __post_init__(self): local = pytz.timezone(self.config.get('global', 'timezone')) local_dt = local.localize(self.report_date) utc_dt = local_dt.astimezone(pytz.utc) self.report_date = utc_dt - timedelta(seconds=1) self.agent_id = self.config.get('freshdesk', 'agent_id') self.auth = aiohttp.BasicAuth(keyring.get_password('freshdesk', self.agent_id), 'X') self.params = {'agent_id': self.agent_id, 'executed_after': self.report_date.strftime('%Y-%m-%dT%H:%M:%SZ'), 'executed_before': (self.report_date + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%SZ')} self.url = self.config.get('freshdesk', 'url') self.api_url = self.url + '/api/v2/time_entries' self.entry_url = self.url + '/a/tickets/' self.free_tags = self.config.get('freshdesk', 'free_tags').split() def __parse_json__(self): if self.json: data = sorted(self.json, key=lambda k: (k.get('ticket_id'), k.get('updated_at'))) self.entries = [Entry(id=i.get('ticket_id'), billable=i.get('billable'), spent=Time.from_string(i.get('time_spent')), note=i.get('note')) for i in data] if self.free_tags: for entry in self.entries: if entry.billable: if any(tag in entry.note for tag in self.free_tags): entry.note += colored(' Warn! Billable entry with free tag!', 'red') else: if all(tag not in entry.note for tag in self.free_tags): entry.note += colored(' Warn! Free entry without free tag!', 'red') async def get_entries(self): self.json = await self.get_json() self.__parse_json__() return self async def get_ticket(self, ticket_num): self.api_url = f'''{self.config.get('freshdesk', 'url')}/api/v2/tickets/{ticket_num}/time_entries''' self.params = None self.json = await self.get_json() self.__parse_json__() return (f'''Time records for ticket {ticket_num}: Total: {self.get_total()} Bill: {self.get_bill()} Free: {self.get_free()} ''') @dataclass class TeamWork(TicketingSystem): def __post_init__(self): self.agent_id = self.config.get('teamwork', 'agent_id') self.auth = aiohttp.BasicAuth(keyring.get_password('teamwork', self.agent_id), 'x') self.url = self.config.get('teamwork', 'url') self.api_url = self.url + '/time_entries.json' self.entry_url = self.url + '/#tasks/' self.params = { 'userId': self.config.get('teamwork', 'agent_id'), 'fromdate': self.report_date.strftime('%Y%m%d'), 'todate': self.report_date.strftime('%Y%m%d') } async def get_entries(self): self.json = await self.get_json() if self.json: data = sorted(self.json.get('time-entries'), key=lambda k: (k.get('date'))) self.entries = [Entry(id=i.get('todo-item-id'), spent=(Time(int(i.get('hours')) * 3600 + int(i.get('minutes')) * 60)), billable=(i.get('isbillable') == 1), note=i.get('project-name')) for i in data] return self @dataclass class Jira(TicketingSystem): def __post_init__(self): self.login = self.config.get('jira', 'login') self.auth = aiohttp.BasicAuth(self.login, keyring.get_password('jira', self.login)) self.url = self.config.get('jira', 'url') self.api_url = self.url + '/rest/api/2/search' self.entry_url = self.url + '/browse/' self.params = { 'jql': f'''worklogAuthor=currentUser() and worklogDate={self.report_date.strftime('%Y-%m-%d')}''', 'maxResults': 1000, 'fields': 'id'} async def get_entries(self): async def get_issue(url, issue_id): async with aiohttp.ClientSession() as session: try: async with session.get(url, timeout=self.timeout, auth=self.auth, compress=True) as resp: result = await resp.json() for worklog in result['worklogs']: if (worklog['author']['name'] == self.config.get('jira', 'login') and worklog['started'].split('T')[0] == self.report_date.strftime('%Y-%m-%d')): time_spent = int(worklog.get('timeSpentSeconds')) self.entries.append(Entry(id=issue_id, billable=False, spent=Time(time_spent), note=worklog.get('comment'))) except asyncio.TimeoutError: print(f'Got timeout while getting {url}') self.json = await self.get_json() if self.json: for issue in self.json.get('issues'): await get_issue(issue.get('self') + '/worklog', issue.get('key')) return self def calc_stats(total_bill_time, total_free_time, time_now, report_date, config, ceil_seconds=5 * 60): workday_begin = Time.from_string(config.get('global', 'workday_begin')) workday_end = Time.from_string(config.get('global', 'workday_end')) launch_begin = Time.from_string(config.get('global', 'launch_begin')) launch_end = Time.from_string(config.get('global', 'launch_end')) launch_duration = launch_end - launch_begin workday_duration = workday_end - workday_begin - launch_duration total_tracked_time = total_bill_time + total_free_time report_is_now = report_date.date() == date.today() and workday_begin <= time_now <= workday_end if report_is_now: if time_now < launch_begin: time_from_wd_begin = time_now - workday_begin elif launch_begin <= time_now <= launch_end: time_from_wd_begin = launch_begin - workday_begin else: time_from_wd_begin = time_now - workday_begin - launch_duration untracked_time = time_from_wd_begin - total_tracked_time till_end_of_work_time = workday_duration - time_from_wd_begin else: untracked_time = workday_duration - total_tracked_time till_end_of_work_time = Time(0) # Ceil to 5 minutes untracked_time = untracked_time.ceil(ceil_seconds) stats = namedtuple('Stats', ['total_tracked_time', 'total_bill_time', 'total_free_time', 'untracked_time', 'till_end_of_work_time', 'workday_duration', ]) return stats(total_tracked_time, total_bill_time, total_free_time, untracked_time, till_end_of_work_time, workday_duration) def get_stats_str(pool, stats): res = [f'Total tracked time: {stats.total_tracked_time}'] for ts in pool: ts_name = ts.__class__.__name__ ts_bill = ts.get_bill() if ts_bill.seconds > 0: res.append(f' {ts_name:<8} bill: {ts_bill}') ts_free = ts.get_free() if ts_free.seconds > 0: res.append(f' {ts_name:<8} free: {ts_free}') return '\n'.join(res) def get_ratio_str(stats, terminal_width_chr: int = 48) -> str: total = max(stats.total_tracked_time, stats.workday_duration) width = total.seconds / terminal_width_chr if stats.untracked_time.seconds > 0: untracked_time = stats.untracked_time else: untracked_time = Time(0) if stats.total_tracked_time > stats.workday_duration: rest_time = Time(0) else: rest_time = stats.workday_duration - stats.total_tracked_time - untracked_time bill_part = colored('#' * round(stats.total_bill_time.seconds / width), 'green') free_part = colored('#' * round(stats.total_free_time.seconds / width), 'normal') none_part = colored('#' * round(untracked_time.seconds / width), 'red') rest_part = '_' * round(rest_time.seconds / width) return f'Progress: [{bill_part + free_part + none_part + rest_part}]' def setup_wizard(config, config_path): def get_option(prompt, default=''): if default: res = input(prompt + f' [{default}]?: ') else: res = input(prompt + ': ') if not res: res = default return res print(f'''Cannot find config at {config_path}. Let's create it!''') config.add_section('global') config.set('global', 'workday_begin', get_option('Workday begins at', '10:00')) config.set('global', 'workday_end', get_option('Workday ends at', '19:00')) config.set('global', 'launch_begin', get_option('Launch begins at', '13:00')) config.set('global', 'launch_end', get_option('Launch ends at', '14:00')) config.set('global', 'timezone', get_option('Timezone is', 'Europe/Moscow')) config.set('global', 'date_format', get_option('Date format is', '%d.%m.%Y')) if 'y' in get_option('Add Freshdesk details', 'Y/n').lower(): config.add_section('freshdesk') config.set('freshdesk', 'url', 'https://' + get_option('Company name').lower() + '.freshdesk.com') config.set('freshdesk', 'agent_id', get_option('Agent ID')) keyring.set_password('<PASSWORD>', config.get('freshdesk', 'agent_id'), get_option('API key')) config.set('freshdesk', 'free_tags', get_option('Tags with non-billable time', 'DEVBUG SUPBUG STUDY HELP CONTR COM ORG OTHER UPDATE')) if 'y' in get_option('Add Jira details', 'Y/n').lower(): config.add_section('jira') config.set('jira', 'url', get_option('Jira URL')) config.set('jira', 'login', get_option('Login')) keyring.set_password('<PASSWORD>', config.get('jira', 'login'), get_option('Password')) if 'y' in get_option('Add TeamWork details', 'Y/n').lower(): config.add_section('teamwork') config.set('teamwork', 'url', get_option('TeamWork URL', 'latera')) config.set('teamwork', 'agent_id', get_option('Agent ID')) keyring.set_password('<PASSWORD>', config.get('teamwork', 'agent_id'), get_option('API key')) with open(config_path, mode='w') as f: config.write(f) async def main(): parser = argparse.ArgumentParser(description='Simple time tracker for Freshdesk, TeamWork and Jira') parser.add_argument('offset', default='0', type=str, nargs='?', help='Offset in days from today or date in format dd-mm-yyyy') parser.add_argument('-c', '--config', default='~/timer.conf', type=str, nargs='?', help='Path to config') parser.add_argument('-t', '--ticket', type=int, nargs='?', help='Freshdesk ticker number. If provided, return spent time for the ticket') args = parser.parse_args() config = configparser.RawConfigParser() config_path = os.path.expanduser(args.config) if not os.path.exists(config_path): setup_wizard(config, config_path) config.read(os.path.expanduser(args.config)) if args.ticket: fd = Freshdesk(config) result = await fd.get_ticket(args.ticket) print(result) else: if args.offset.isdigit(): report_date = datetime.combine(date.today(), datetime.min.time()) - timedelta(days=int(args.offset)) else: try: report_date = datetime.strptime(args.offset, config.get('global', 'date_format')) except ValueError: print( f'{args.offset} is neither an integer nor matches format {config.get("global", "date_format")}.') print(f'Try to run script with -h to get help') raise SystemExit(1) # Highlight date if report date if
""" Downloading NeuroImaging datasets: atlas datasets """ import os import warnings import xml.etree.ElementTree from tempfile import mkdtemp import json import shutil import nibabel as nb import numpy as np from numpy.lib import recfunctions from sklearn.utils import Bunch from .utils import _get_dataset_dir, _fetch_files, _get_dataset_descr from .._utils import check_niimg from .._utils.compat import _basestring from ..image import new_img_like, get_data _TALAIRACH_LEVELS = ['hemisphere', 'lobe', 'gyrus', 'tissue', 'ba'] def fetch_atlas_craddock_2012(data_dir=None, url=None, resume=True, verbose=1): """Download and return file names for the Craddock 2012 parcellation The provided images are in MNI152 space. Parameters ---------- data_dir: string directory where data should be downloaded and unpacked. url: string url of file to download. resume: bool whether to resumed download of a partly-downloaded file. verbose: int verbosity level (0 means no message). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: scorr_mean, tcorr_mean, scorr_2level, tcorr_2level, random References ---------- Licence: Creative Commons Attribution Non-commercial Share Alike http://creativecommons.org/licenses/by-nc-sa/2.5/ Craddock, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. "A Whole Brain fMRI Atlas Generated via Spatially Constrained Spectral Clustering". Human Brain Mapping 33, no 8 (2012): 1914-1928. doi:10.1002/hbm.21333. See http://www.nitrc.org/projects/cluster_roi/ for more information on this parcellation. """ if url is None: url = "ftp://www.nitrc.org/home/groups/cluster_roi/htdocs" \ "/Parcellations/craddock_2011_parcellations.tar.gz" opts = {'uncompress': True} dataset_name = "craddock_2012" keys = ("scorr_mean", "tcorr_mean", "scorr_2level", "tcorr_2level", "random") filenames = [ ("scorr05_mean_all.nii.gz", url, opts), ("tcorr05_mean_all.nii.gz", url, opts), ("scorr05_2level_all.nii.gz", url, opts), ("tcorr05_2level_all.nii.gz", url, opts), ("random_all.nii.gz", url, opts) ] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) sub_files = _fetch_files(data_dir, filenames, resume=resume, verbose=verbose) fdescr = _get_dataset_descr(dataset_name) params = dict([('description', fdescr)] + list(zip(keys, sub_files))) return Bunch(**params) def fetch_atlas_destrieux_2009(lateralized=True, data_dir=None, url=None, resume=True, verbose=1): """Download and load the Destrieux cortical atlas (dated 2009) Parameters ---------- lateralized: boolean, optional If True, returns an atlas with distinct regions for right and left hemispheres. data_dir: string, optional Path of the data directory. Use to forec data storage in a non- standard location. Default: None (meaning: default) url: string, optional Download URL of the dataset. Overwrite the default URL. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - Cortical ROIs, lateralized or not (maps) - Labels of the ROIs (labels) References ---------- <NAME>, et al. "Automatically parcellating the human cerebral cortex." Cerebral cortex 14.1 (2004): 11-22. <NAME>., et al. "A sulcal depth-based anatomical parcellation of the cerebral cortex." NeuroImage 47 (2009): S151. """ if url is None: url = "https://www.nitrc.org/frs/download.php/7739/" url += "destrieux2009.tgz" opts = {'uncompress': True} lat = '_lateralized' if lateralized else '' files = [ ('destrieux2009_rois_labels' + lat + '.csv', url, opts), ('destrieux2009_rois' + lat + '.nii.gz', url, opts), ('destrieux2009.rst', url, opts) ] dataset_name = 'destrieux_2009' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files_ = _fetch_files(data_dir, files, resume=resume, verbose=verbose) params = dict(maps=files_[1], labels=np.recfromcsv(files_[0])) with open(files_[2], 'r') as rst_file: params['description'] = rst_file.read() return Bunch(**params) def fetch_atlas_harvard_oxford(atlas_name, data_dir=None, symmetric_split=False, resume=True, verbose=1): """Load Harvard-Oxford parcellations from FSL. This function downloads Harvard Oxford atlas packaged from FSL 5.0 and stores atlases in NILEARN_DATA folder in home directory. This function can also load Harvard Oxford atlas from your local directory specified by your FSL installed path given in `data_dir` argument. See documentation for details. Parameters ---------- atlas_name: string Name of atlas to load. Can be: cort-maxprob-thr0-1mm, cort-maxprob-thr0-2mm, cort-maxprob-thr25-1mm, cort-maxprob-thr25-2mm, cort-maxprob-thr50-1mm, cort-maxprob-thr50-2mm, sub-maxprob-thr0-1mm, sub-maxprob-thr0-2mm, sub-maxprob-thr25-1mm, sub-maxprob-thr25-2mm, sub-maxprob-thr50-1mm, sub-maxprob-thr50-2mm, cort-prob-1mm, cort-prob-2mm, sub-prob-1mm, sub-prob-2mm data_dir: string, optional Path of data directory where data will be stored. Optionally, it can also be a FSL installation directory (which is dependent on your installation). Example, if FSL is installed in /usr/share/fsl/ then specifying as '/usr/share/' can get you Harvard Oxford atlas from your installed directory. Since we mimic same root directory as FSL to load it easily from your installation. symmetric_split: bool, optional, (default False). If True, lateralized atlases of cort or sub with maxprob will be returned. For subcortical types (sub-maxprob), we split every symmetric region in left and right parts. Effectively doubles the number of regions. NOTE Not implemented for full probabilistic atlas (*-prob-* atlases). Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, keys are: - "maps": nibabel.Nifti1Image, 4D maps if a probabilistic atlas is requested and 3D labels if a maximum probabilistic atlas was requested. - "labels": string list, labels of the regions in the atlas. """ atlas_items = ("cort-maxprob-thr0-1mm", "cort-maxprob-thr0-2mm", "cort-maxprob-thr25-1mm", "cort-maxprob-thr25-2mm", "cort-maxprob-thr50-1mm", "cort-maxprob-thr50-2mm", "sub-maxprob-thr0-1mm", "sub-maxprob-thr0-2mm", "sub-maxprob-thr25-1mm", "sub-maxprob-thr25-2mm", "sub-maxprob-thr50-1mm", "sub-maxprob-thr50-2mm", "cort-prob-1mm", "cort-prob-2mm", "sub-prob-1mm", "sub-prob-2mm") if atlas_name not in atlas_items: raise ValueError("Invalid atlas name: {0}. Please chose an atlas " "among:\n{1}".format( atlas_name, '\n'.join(atlas_items))) url = 'http://www.nitrc.org/frs/download.php/9902/HarvardOxford.tgz' # For practical reasons, we mimic the FSL data directory here. dataset_name = 'fsl' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) opts = {'uncompress': True} root = os.path.join('data', 'atlases') if atlas_name[0] == 'c': if 'cort-maxprob' in atlas_name and symmetric_split: split_name = atlas_name.split('cort') atlas_name = 'cortl' + split_name[1] label_file = 'HarvardOxford-Cortical-Lateralized.xml' lateralized = True else: label_file = 'HarvardOxford-Cortical.xml' lateralized = False else: label_file = 'HarvardOxford-Subcortical.xml' lateralized = False label_file = os.path.join(root, label_file) atlas_file = os.path.join(root, 'HarvardOxford', 'HarvardOxford-' + atlas_name + '.nii.gz') atlas_img, label_file = _fetch_files( data_dir, [(atlas_file, url, opts), (label_file, url, opts)], resume=resume, verbose=verbose) names = {} from xml.etree import ElementTree names[0] = 'Background' for label in ElementTree.parse(label_file).findall('.//label'): names[int(label.get('index')) + 1] = label.text names = list(names.values()) if not symmetric_split: return Bunch(maps=atlas_img, labels=names) if atlas_name in ("cort-prob-1mm", "cort-prob-2mm", "sub-prob-1mm", "sub-prob-2mm"): raise ValueError("Region splitting not supported for probabilistic " "atlases") atlas_img = check_niimg(atlas_img) if lateralized: return Bunch(maps=atlas_img, labels=names) atlas = get_data(atlas_img) labels = np.unique(atlas) # Build a mask of both halves of the brain middle_ind = (atlas.shape[0] - 1) // 2 # Put zeros on the median plane atlas[middle_ind, ...] = 0 # Split every zone crossing the median plane into two parts. left_atlas = atlas.copy() left_atlas[middle_ind:, ...] = 0 right_atlas = atlas.copy() right_atlas[:middle_ind, ...] = 0 new_label = 0 new_atlas = atlas.copy() # Assumes that the background label is zero. new_names = [names[0]] for label, name in zip(labels[1:], names[1:]): new_label += 1 left_elements = (left_atlas == label).sum() right_elements = (right_atlas == label).sum() n_elements = float(left_elements + right_elements) if (left_elements / n_elements < 0.05 or right_elements / n_elements < 0.05): new_atlas[atlas == label] = new_label new_names.append(name) continue new_atlas[right_atlas == label] = new_label new_names.append(name + ', left part') new_label += 1 new_atlas[left_atlas == label] = new_label new_names.append(name + ', right part') atlas_img = new_img_like(atlas_img, new_atlas, atlas_img.affine) return Bunch(maps=atlas_img, labels=new_names) def fetch_atlas_msdl(data_dir=None, url=None, resume=True, verbose=1): """Download and load the MSDL brain atlas. Parameters ---------- data_dir: string, optional Path of the data directory. Used to force data storage in a specified location. Default: None url: string, optional Override download URL. Used for test only (or if you setup a mirror of the data). Returns ------- data: sklearn.datasets.base.Bunch Dictionary-like object, the interest attributes are : - 'maps': str, path to nifti file containing regions definition. - 'labels': string list containing the labels of the regions. - 'region_coords': tuple list (x, y, z) containing coordinates of each region in MNI space. - 'networks': string list containing names of the networks. - 'description': description about the atlas. References ---------- :Download: https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip :Paper to cite: `Multi-subject dictionary learning to segment an atlas of brain spontaneous activity <http://hal.inria.fr/inria-00588898/en>`_ <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Information Processing in Medical Imaging, 2011, pp. 562-573, Lecture Notes in Computer Science. :Other references: `Learning and comparing functional connectomes across subjects <http://hal.inria.fr/hal-00812911/en>`_. <NAME>, <NAME> NeuroImage, 2013. """ url = 'https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip' opts = {'uncompress': True} dataset_name = "msdl_atlas" files = [(os.path.join('MSDL_rois', 'msdl_rois_labels.csv'), url, opts), (os.path.join('MSDL_rois', 'msdl_rois.nii'), url, opts)] data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) files = _fetch_files(data_dir, files, resume=resume, verbose=verbose) csv_data = np.recfromcsv(files[0]) labels = [name.strip() for name in csv_data['name'].tolist()] labels = [label.decode("utf-8") for label in labels] with warnings.catch_warnings(): warnings.filterwarnings('ignore', module='numpy', category=FutureWarning) region_coords = csv_data[['x', 'y', 'z']].tolist() net_names = [net_name.strip() for net_name in csv_data['net_name'].tolist()] fdescr = _get_dataset_descr(dataset_name) return Bunch(maps=files[1], labels=labels, region_coords=region_coords, networks=net_names, description=fdescr) def fetch_coords_power_2011(): """Download and load the Power et al. brain atlas composed of 264 ROIs. Returns ------- data: sklearn.datasets.base.Bunch dictionary-like object, contains: - "rois": coordinates of 264 ROIs in MNI space References ---------- Power, <NAME>., et al. "Functional network organization of the human brain." Neuron 72.4 (2011): 665-678. """ dataset_name = 'power_2011' fdescr = _get_dataset_descr(dataset_name) package_directory = os.path.dirname(os.path.abspath(__file__)) csv = os.path.join(package_directory,
<reponame>bugface/transformers # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib import logging import random import string import unittest from abc import abstractmethod from functools import lru_cache from unittest import skipIf from transformers import ( FEATURE_EXTRACTOR_MAPPING, TOKENIZER_MAPPING, AutoFeatureExtractor, AutoTokenizer, DistilBertForSequenceClassification, IBertConfig, RobertaConfig, TextClassificationPipeline, pipeline, ) from transformers.pipelines import get_task from transformers.pipelines.base import _pad from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch logger = logging.getLogger(__name__) def get_checkpoint_from_architecture(architecture): try: module = importlib.import_module(architecture.__module__) except ImportError: logger.error(f"Ignoring architecture {architecture}") return if hasattr(module, "_CHECKPOINT_FOR_DOC"): return module._CHECKPOINT_FOR_DOC else: logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}") def get_tiny_config_from_class(configuration_class): if "OpenAIGPT" in configuration_class.__name__: # This is the only file that is inconsistent with the naming scheme. # Will rename this file if we decide this is the way to go return model_type = configuration_class.model_type camel_case_model_name = configuration_class.__name__.split("Config")[0] try: model_slug = model_type.replace("-", "_") module = importlib.import_module(f".test_modeling_{model_slug}", package=f"tests.models.{model_slug}") model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None) except (ImportError, AttributeError): logger.error(f"No model tester class for {configuration_class.__name__}") return if model_tester_class is None: logger.warning(f"No model tester class for {configuration_class.__name__}") return model_tester = model_tester_class(parent=None) if hasattr(model_tester, "get_pipeline_config"): config = model_tester.get_pipeline_config() elif hasattr(model_tester, "get_config"): config = model_tester.get_config() else: config = None logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.") return config @lru_cache(maxsize=100) def get_tiny_tokenizer_from_checkpoint(checkpoint): tokenizer = AutoTokenizer.from_pretrained(checkpoint) if tokenizer.vocab_size < 300: # Wav2Vec2ForCTC for instance # ByT5Tokenizer # all are already small enough and have no Fast version that can # be retrained return tokenizer logger.info("Training new from iterator ...") vocabulary = string.ascii_letters + string.digits + " " tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False) logger.info("Trained.") return tokenizer def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config, feature_extractor_class): try: feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint) except Exception: try: if feature_extractor_class is not None: feature_extractor = feature_extractor_class() else: feature_extractor = None except Exception: feature_extractor = None if hasattr(tiny_config, "image_size") and feature_extractor: feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size) # Speech2TextModel specific. if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor: feature_extractor = feature_extractor.__class__( feature_size=tiny_config.input_feat_per_channel, num_mel_bins=tiny_config.input_feat_per_channel ) return feature_extractor class ANY: def __init__(self, *_types): self._types = _types def __eq__(self, other): return isinstance(other, self._types) def __repr__(self): return f"ANY({', '.join(_type.__name__ for _type in self._types)})" class PipelineTestCaseMeta(type): def __new__(mcs, name, bases, dct): def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class): @skipIf(tiny_config is None, "TinyConfig does not exist") @skipIf(checkpoint is None, "checkpoint does not exist") def test(self): if ModelClass.__name__.endswith("ForCausalLM"): tiny_config.is_encoder_decoder = False if hasattr(tiny_config, "encoder_no_repeat_ngram_size"): # specific for blenderbot which supports both decoder-only # encoder/decoder but the test config only reflects # encoder/decoder arch tiny_config.encoder_no_repeat_ngram_size = 0 if ModelClass.__name__.endswith("WithLMHead"): tiny_config.is_decoder = True try: model = ModelClass(tiny_config) except ImportError as e: self.skipTest( f"Cannot run with {tiny_config} as the model requires a library that isn't installed: {e}" ) if hasattr(model, "eval"): model = model.eval() if tokenizer_class is not None: try: tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint) # XLNet actually defines it as -1. if isinstance(model.config, (RobertaConfig, IBertConfig)): tokenizer.model_max_length = model.config.max_position_embeddings - 2 elif ( hasattr(model.config, "max_position_embeddings") and model.config.max_position_embeddings > 0 ): tokenizer.model_max_length = model.config.max_position_embeddings # Rust Panic exception are NOT Exception subclass # Some test tokenizer contain broken vocabs or custom PreTokenizer, so we # provide some default tokenizer and hope for the best. except: # noqa: E722 self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer") else: tokenizer = None feature_extractor = get_tiny_feature_extractor_from_checkpoint( checkpoint, tiny_config, feature_extractor_class ) if tokenizer is None and feature_extractor is None: self.skipTest( f"Ignoring {ModelClass}, cannot create a tokenizer or feature_extractor (PerceiverConfig with" " no FastTokenizer ?)" ) pipeline, examples = self.get_test_pipeline(model, tokenizer, feature_extractor) if pipeline is None: # The test can disable itself, but it should be very marginal # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist) return self.run_pipeline_test(pipeline, examples) def run_batch_test(pipeline, examples): # Need to copy because `Conversation` are stateful if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None: return # No batching for this and it's OK # 10 examples with batch size 4 means there needs to be a unfinished batch # which is important for the unbatcher def data(n): for _ in range(n): # Need to copy because Conversation object is mutated yield copy.deepcopy(random.choice(examples)) out = [] for item in pipeline(data(10), batch_size=4): out.append(item) self.assertEqual(len(out), 10) run_batch_test(pipeline, examples) return test for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]: mapping = dct.get(key, {}) if mapping: for configuration, model_architectures in mapping.items(): if not isinstance(model_architectures, tuple): model_architectures = (model_architectures,) for model_architecture in model_architectures: checkpoint = get_checkpoint_from_architecture(model_architecture) tiny_config = get_tiny_config_from_class(configuration) tokenizer_classes = TOKENIZER_MAPPING.get(configuration, []) feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None) feature_extractor_name = ( feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor" ) if not tokenizer_classes: # We need to test even if there are no tokenizers. tokenizer_classes = [None] else: # Remove the non defined tokenizers # ByT5 and Perceiver are bytes-level and don't define # FastTokenizer, we can just ignore those. tokenizer_classes = [ tokenizer_class for tokenizer_class in tokenizer_classes if tokenizer_class is not None ] for tokenizer_class in tokenizer_classes: if tokenizer_class is not None: tokenizer_name = tokenizer_class.__name__ else: tokenizer_name = "notokenizer" test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}" if tokenizer_class is not None or feature_extractor_class is not None: dct[test_name] = gen_test( model_architecture, checkpoint, tiny_config, tokenizer_class, feature_extractor_class, ) @abstractmethod def inner(self): raise NotImplementedError("Not implemented test") # Force these 2 methods to exist dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner) dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner) return type.__new__(mcs, name, bases, dct) @is_pipeline_test class CommonPipelineTest(unittest.TestCase): @require_torch def test_pipeline_iteration(self): from torch.utils.data import Dataset class MyDataset(Dataset): data = [ "This is a test", "This restaurant is great", "This restaurant is awful", ] def __len__(self): return 3 def __getitem__(self, i): return self.data[i] text_classifier = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" ) dataset = MyDataset() for output in text_classifier(dataset): self.assertEqual(output, {"label": ANY(str), "score": ANY(float)}) @require_torch def test_check_task_auto_inference(self): pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") self.assertIsInstance(pipe, TextClassificationPipeline) @require_torch def test_pipeline_batch_size_global(self): pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") self.assertEqual(pipe._batch_size, None) self.assertEqual(pipe._num_workers, None) pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1) self.assertEqual(pipe._batch_size, 2) self.assertEqual(pipe._num_workers, 1) @require_torch def test_pipeline_override(self): class MyPipeline(TextClassificationPipeline): pass text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline) self.assertIsInstance(text_classifier, MyPipeline) def test_check_task(self): task = get_task("gpt2") self.assertEqual(task, "text-generation") with self.assertRaises(RuntimeError): # Wrong framework get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best") @require_torch def test_iterator_data(self): def data(n: int): for _ in range(n): yield "This is a test" pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert") results = [] for out in pipe(data(10)): self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) results.append(out) self.assertEqual(len(results), 10) # When using multiple workers on streamable data it should still work # This will force using `num_workers=1` with a warning for now. results = [] for out in pipe(data(10), num_workers=2): self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) results.append(out) self.assertEqual(len(results), 10) @require_tf def test_iterator_data_tf(self): def data(n: int): for _ in range(n): yield "This is a test" pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf") out = pipe("This is a test") results = [] for out in pipe(data(10)): self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504}) results.append(out) self.assertEqual(len(results), 10) @require_torch def test_unbatch_attentions_hidden_states(self): model = DistilBertForSequenceClassification.from_pretrained( "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert") text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) # Used to throw an error because `hidden_states` are a tuple of tensors # instead of the expected tensor. outputs = text_classifier(["This is great !"] * 20, batch_size=32) self.assertEqual(len(outputs), 20) @is_pipeline_test class PipelinePadTest(unittest.TestCase): @require_torch def test_pipeline_padding(self): import torch items = [ { "label": "label1", "input_ids": torch.LongTensor([[1, 23, 24, 2]]), "attention_mask": torch.LongTensor([[0, 1, 1, 0]]), }, { "label": "label2", "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]), "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]), }, ] self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"]) self.assertTrue( torch.allclose( _pad(items, "input_ids", 10, "right"), torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]), ) ) self.assertTrue( torch.allclose( _pad(items, "input_ids", 10, "left"), torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]), ) ) self.assertTrue( torch.allclose( _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]]) ) ) @require_torch def test_pipeline_image_padding(self): import torch items = [ { "label": "label1", "pixel_values": torch.zeros((1, 3, 10, 10)), }, { "label": "label2", "pixel_values": torch.zeros((1, 3, 10, 10)), }, ] self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"]) self.assertTrue(
config] ##------------------------------------------------------------------------------------ ## Old Shapes TESTING ##------------------------------------------------------------------------------------ def prep_oldshapes_test(init_with = None, FCN_layers = False, batch_sz = 5, epoch_steps = 4, training_folder= "mrcnn_oldshape_test_logs"): import mrcnn.shapes as shapes MODEL_DIR = os.path.join(DIR_TRAINING, training_folder) # MODEL_DIR = os.path.join(DIR_TRAINING, "mrcnn_development_logs") # Build configuration object ----------------------------------------------- config = shapes.ShapesConfig() config.BATCH_SIZE = batch_sz # Batch size is 2 (# GPUs * images/GPU). config.IMAGES_PER_GPU = batch_sz # Must match BATCH_SIZE config.STEPS_PER_EPOCH = epoch_steps config.FCN_INPUT_SHAPE = config.IMAGE_SHAPE[0:2] # Build shape dataset ----------------------------------------------- dataset_test = shapes.ShapesDataset(config) dataset_test.load_shapes(500) dataset_test.prepare() # Recreate the model in inference mode try : del model print('delete model is successful') gc.collect() except: pass KB.clear_session() model = modellib.MaskRCNN(mode="inference", config=config, model_dir=MODEL_DIR, FCN_layers = FCN_layers ) print(' COCO Model Path : ', COCO_DIR_TRAINING) print(' Checkpoint folder Path: ', MODEL_DIR) print(' Model Parent Path : ', DIR_TRAINING) print(' Resent Model Path : ', RESNET_DIR_TRAINING) model.load_model_weights(init_with = init_with) test_generator = data_generator(dataset_test, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment = False) model.config.display() return [model, dataset_test, test_generator, config] """ ##------------------------------------------------------------------------------------ ## Old Shapes DEVELOPMENT ##------------------------------------------------------------------------------------ def prep_oldshapes_dev(init_with = None, FCN_layers = False, batch_sz = 5): import mrcnn.shapes as shapes MODEL_DIR = os.path.join(DIR_TRAINING, "mrcnn_oldshape_dev_logs") config = build_config(batch_sz = batch_sz) dataset_train = shapes.ShapesDataset() dataset_train.load_shapes(150, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1]) dataset_train.prepare() try : del model print('delete model is successful') gc.collect() except: pass KB.clear_session() model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR, FCN_layers = FCN_layers) print(' COCO Model Path : ', COCO_DIR_TRAINING) print(' Checkpoint folder Path: ', MODEL_DIR) print(' Model Parent Path : ', DIR_TRAINING) print(' Resent Model Path : ', RESNET_DIR_TRAINING) load_model(model, init_with = init_with) train_generator = data_generator(dataset_train, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment = False) model.config.display() return [model, dataset_train, train_generator, config] """ ##------------------------------------------------------------------------------------ ## New Shapes DEVELOPMENT ##------------------------------------------------------------------------------------ def prep_newshapes_dev(init_with = "last", FCN_layers= False, batch_sz = 5): import mrcnn.new_shapes as new_shapes MODEL_DIR = os.path.join(DIR_TRAINING, "mrcnn_newshape_dev_logs") config = build_config(batch_sz = batch_sz, newshapes=True) # Build shape dataset ----------------------------------------------- # Training dataset dataset_train = new_shapes.NewShapesDataset() dataset_train.load_shapes(3000, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1]) dataset_train.prepare() # Validation dataset dataset_val = new_shapes.NewShapesDataset() dataset_val.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1]) dataset_val.prepare() try : del model, train_generator, val_generator, mm gc.collect() except: pass KB.clear_session() model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR,FCN_layers = FCN_layers) print('DIR_TRAINING : ', DIR_TRAINING) print('COCO_DIR_TRAINING : ', COCO_DIR_TRAINING) print('RESNET_DIR_TRAINING : ', RESNET_DIR_TRAINING) print('MODEL_DIR : ', MODEL_DIR) print('Last Saved Model : ', model.find_last()) load_model(model, init_with = 'last') train_generator = data_generator(dataset_train, model.config, shuffle=True, batch_size=model.config.BATCH_SIZE, augment = False) config.display() return [model, dataset_train, train_generator, config] """ # def prep_newshapes_train(init_with = "last", FCN_layers= False, batch_sz =5, epoch_steps = 4, training_folder= None): import mrcnn.new_shapes as new_shapes # config.CHECKPOINT_FOLDER = os.path.join(DIR_TRAINING, config.CHECKPOINT_FOLDER) # MODEL_DIR = os.path.join(DIR_TRAINING, training_folder) # Build configuration object ----------------------------------------------- config = new_shapes.NewShapesConfig() config.TRAINING_PATH = os.path.join(DIR_TRAINING, training_folder) # config.BATCH_SIZE = batch_sz # Batch size is 2 (# GPUs * images/GPU). # config.IMAGES_PER_GPU = batch_sz # Must match BATCH_SIZE # config.STEPS_PER_EPOCH = epoch_steps # config.FCN_INPUT_SHAPE = config.IMAGE_SHAPE[0:2] # Build shape dataset ----------------------------------------------- # Training dataset dataset_train = new_shapes.NewShapesDataset(config) dataset_train.load_shapes(10000) dataset_train.prepare() # Validation dataset dataset_val = new_shapes.NewShapesDataset(config) dataset_val.load_shapes(2500) dataset_val.prepare() # print('DIR_TRAINING : ', DIR_TRAINING) # print('COCO_DIR_TRAINING : ', COCO_DIR_TRAINING) # print('RESNET_DIR_TRAINING : ', RESNET_DIR_TRAINING) # print('MODEL_DIR : ', MODEL_DIR) # print('Last Saved Model : ', model.find_last()) # exclude_layers = \ # ['fcn_block1_conv1' # ,'fcn_block1_conv2' # ,'fcn_block1_pool' # ,'fcn_block2_conv1' # ,'fcn_block2_conv2' # ,'fcn_block2_pool' # ,'fcn_block3_conv1' # ,'fcn_block3_conv2' # ,'fcn_block3_conv3' # ,'fcn_block3_pool' # ,'fcn_block4_conv1' # ,'fcn_block4_conv2' # ,'fcn_block4_conv3' # ,'fcn_block4_pool' # ,'fcn_block5_conv1' # ,'fcn_block5_conv2' # ,'fcn_block5_conv3' # ,'fcn_block5_pool' # ,'fcn_fc1' # ,'dropout_1' # ,'fcn_fc2' # ,'dropout_2' # ,'fcn_classify' # ,'fcn_bilinear' # ,'fcn_heatmap_norm' # ,'fcn_scoring' # ,'fcn_heatmap' # ,'fcn_norm_loss'] # load_model(model, init_with = 'last', exclude = exclude_layers) # model.load_model_weights(init_with = init_with) # print('=====================================') # print(" Load second weight file ?? ") # model.keras_model.load_weights('E:/Models/vgg16_weights_tf_dim_ordering_tf_kernels.h5', by_name= True) dataset_train, train_generator = newshapes_dataset("train", mrcnn_config, image_count = 10000) dataset_val , val_generator = newshapes_dataset("val" , mrcnn_config, image_count = 2500) config.display() return [model, dataset_train, dataset_val, train_generator, val_generator, config] """ ##------------------------------------------------------------------------------------ ## build_trainfcn_pipeline() ##------------------------------------------------------------------------------------ def build_trainfcn_pipeline( fcn_weight_file = 'last', batch_size = 2): start_time = datetime.now().strftime("%m-%d-%Y @ %H:%M:%S") print() print('--> Execution started at:', start_time) print(" Tensorflow Version: {} Keras Version : {} ".format(tf.__version__,keras.__version__)) # Parse command line arguments #------------------------------------------------------------------------------------ parser = command_line_parser() input_parms = "--epochs 2 --steps_in_epoch 32 --last_epoch 0 " input_parms +="--batch_size "+str(batch_size)+ " --lr 0.00001 --val_steps 8 " # input_parms +="--mrcnn_logs_dir train_mrcnn_newshapes " # input_parms +="--fcn_logs_dir train_fcn8_newshapes " input_parms +="--mrcnn_logs_dir train_mrcnn_coco " input_parms +="--fcn_logs_dir train_fcn8_coco_adam " input_parms +="--mrcnn_model last " input_parms +="--fcn_model init " input_parms +="--opt adagrad " input_parms +="--fcn_arch fcn8 " input_parms +="--fcn_layers all " input_parms +="--sysout screen " input_parms +="--new_log_folder " # input_parms +="--fcn_model /home/kbardool/models/train_fcn_adagrad/shapes20180709T1732/fcn_shapes_1167.h5" print(input_parms) args = parser.parse_args(input_parms.split()) # args = parser.parse_args() # if debug is true set stdout destination to stringIO #---------------------------------------------------------------------------------------------- # debug = False if args.sysout == 'FILE': sys.stdout = io.StringIO() # print(" Dataset : ", args.dataset) # print(" Logs : ", args.logs) # print(" Limit : ", args.limit) print(" MRCNN Model : ", args.mrcnn_model) print(" FCN Model : ", args.fcn_model) print(" MRCNN Log Dir : ", args.mrcnn_logs_dir) print(" FCN Log Dir : ", args.fcn_logs_dir) print(" FCN Arch : ", args.fcn_arch) print(" FCN Log Dir : ", args.fcn_layers) print(" Last Epoch : ", args.last_epoch) print(" Epochs to run : ", args.epochs) print(" Steps in each epoch: ", args.steps_in_epoch) print(" Validation steps : ", args.val_steps) print(" Batch Size : ", args.batch_size) print(" Optimizer : ", args.opt) print(" sysout : ", args.sysout) # setup project directories #--------------------------------------------------------------------------------- paths = Paths(fcn_training_folder = args.fcn_logs_dir, mrcnn_training_folder = args.mrcnn_logs_dir) paths.display() # Build configuration object #------------------------------------------------------------------------------------ mrcnn_config = CocoConfig() # import mrcnn.new_shapes as new_shapes # mrcnn_config = new_shapes.NewShapesConfig() mrcnn_config.NAME = 'mrcnn' mrcnn_config.TRAINING_PATH = paths.MRCNN_TRAINING_PATH mrcnn_config.COCO_DATASET_PATH = paths.COCO_DATASET_PATH mrcnn_config.COCO_MODEL_PATH = paths.COCO_MODEL_PATH mrcnn_config.RESNET_MODEL_PATH = paths.RESNET_MODEL_PATH mrcnn_config.VGG16_MODEL_PATH = paths.VGG16_MODEL_PATH mrcnn_config.COCO_CLASSES = None mrcnn_config.DETECTION_PER_CLASS = 200 mrcnn_config.HEATMAP_SCALE_FACTOR = 4 mrcnn_config.BATCH_SIZE = int(args.batch_size) # Batch size is 2 (# GPUs * images/GPU). mrcnn_config.IMAGES_PER_GPU = int(args.batch_size) # Must match BATCH_SIZE mrcnn_config.STEPS_PER_EPOCH = int(args.steps_in_epoch) mrcnn_config.LEARNING_RATE = float(args.lr) mrcnn_config.EPOCHS_TO_RUN = int(args.epochs) mrcnn_config.FCN_INPUT_SHAPE = mrcnn_config.IMAGE_SHAPE[0:2] mrcnn_config.LAST_EPOCH_RAN = int(args.last_epoch) mrcnn_config.NEW_LOG_FOLDER = True mrcnn_config.SYSOUT = args.sysout # mrcnn_config.WEIGHT_DECAY = 2.0e-4 # mrcnn_config.VALIDATION_STEPS = int(args.val_steps) # mrcnn_config.REDUCE_LR_FACTOR = 0.5 # mrcnn_config.REDUCE_LR_COOLDOWN = 30 # mrcnn_config.REDUCE_LR_PATIENCE = 40 # mrcnn_config.EARLY_STOP_PATIENCE= 80 # mrcnn_config.EARLY_STOP_MIN_DELTA = 1.0e-4 # mrcnn_config.MIN_LR = 1.0e-10 # mrcnn_config.OPTIMIZER = args.opt.upper() # mrcnn_config.display() # Build MRCNN Model #------------------------------------------------------------------------------------ from mrcnn.prep_notebook import mrcnn_coco_train mrcnn_model, mrcnn_config = mrcnn_coco_train(mode = 'trainfcn', mrcnn_config = mrcnn_config) # Build configuration for FCN model #------------------------------------------------------------------------------------ fcn_config = CocoConfig() fcn_config.COCO_DATASET_PATH = paths.COCO_DATASET_PATH fcn_config.COCO_HEATMAP_PATH = paths.COCO_HEATMAP_PATH # mrcnn_config.COCO_MODEL_PATH = COCO_MODEL_PATH # mrcnn_config.RESNET_MODEL_PATH = RESNET_MODEL_PATH fcn_config.NAME = 'fcn' fcn_config.TRAINING_PATH = paths.FCN_TRAINING_PATH fcn_config.VGG16_MODEL_PATH = paths.FCN_VGG16_MODEL_PATH fcn_config.HEATMAP_SCALE_FACTOR = 4 fcn_config.FCN_INPUT_SHAPE = fcn_config.IMAGE_SHAPE[0:2] // fcn_config.HEATMAP_SCALE_FACTOR fcn_config.BATCH_SIZE = int(args.batch_size) # Batch size is 2 (# GPUs * images/GPU). fcn_config.IMAGES_PER_GPU = int(args.batch_size) # Must match BATCH_SIZE fcn_config.EPOCHS_TO_RUN = int(args.epochs) fcn_config.STEPS_PER_EPOCH = int(args.steps_in_epoch) fcn_config.LAST_EPOCH_RAN = int(args.last_epoch) fcn_config.LEARNING_RATE = float(args.lr) fcn_config.VALIDATION_STEPS = int(args.val_steps) fcn_config.BATCH_MOMENTUM = 0.9 fcn_config.WEIGHT_DECAY = 2.0e-4 fcn_config.REDUCE_LR_FACTOR = 0.5 fcn_config.REDUCE_LR_COOLDOWN = 5 fcn_config.REDUCE_LR_PATIENCE = 5 fcn_config.EARLY_STOP_PATIENCE = 15 fcn_config.EARLY_STOP_MIN_DELTA = 1.0e-4 fcn_config.MIN_LR = 1.0e-10 fcn_config.NEW_LOG_FOLDER = args.new_log_folder fcn_config.OPTIMIZER = args.opt fcn_config.SYSOUT = args.sysout fcn_config.display() # Build FCN Model in Training Mode #------------------------------------------------------------------------------------ try : del fcn_model gc.collect() except: pass fcn_model = fcn_modellib.FCN(mode="training", arch = 'FCN8', config=fcn_config) #### Display FCN model info # fcn_model.config.display() fcn_model.layer_info() # exclude=["mrcnn_class_logits"] # ,"mrcnn_bbox_fc"] #, "mrcnn_bbox", "mrcnn_mask"]) mrcnn_model.load_model_weights(init_with = 'last', exclude = None) # Load FCN Model weights #------------------------------------------------------------------------------------ fcn_model.load_model_weights(init_with = fcn_weight_file) return mrcnn_model, fcn_model ##------------------------------------------------------------------------------------ ## build_inference_pipeline() ##------------------------------------------------------------------------------------ def build_inference_pipeline( fcn_weight_file = 'last', batch_size = 2): start_time = datetime.now().strftime("%m-%d-%Y @ %H:%M:%S") print() print('--> Execution started at:', start_time) print(" Tensorflow Version: {} Keras Version : {} ".format(tf.__version__,keras.__version__)) # Parse command line arguments #------------------------------------------------------------------------------------ parser = command_line_parser() input_parms = "--batch_size "+str(batch_size)+ " " input_parms +="--mrcnn_logs_dir train_mrcnn_coco " input_parms +="--fcn_logs_dir train_fcn8_coco_adam " input_parms +="--mrcnn_model last
from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from numpy import linalg as LA from matplotlib.animation import FuncAnimation from matplotlib.ticker import FormatStrFormatter from mpl_toolkits.mplot3d import Axes3D from operator import itemgetter, attrgetter, truediv import statistics as stat from scipy import signal from scipy.optimize import minimize import math import matplotlib.image as mpimg #from scipy import signal import librosa import librosa.display import wave import sys import soundfile as sf import os import pyaudio import threading import pickle np.seterr(divide='ignore', invalid='ignore') import params WINDOW = params.WINDOW BINS_PER_OCTAVE = params.BINS_PER_OCTAVE BINS_PER_OCTAVE_ONSETS = params.BINS_PER_OCTAVE_ONSETS FILTER_SCALE = params.FILTER_SCALE STEP = 512 α = params.α ω = params.ω H = params.H T = params.T T_att = params.T_att cmap = params.cmap ϵ = sys.float_info.epsilon class AudioFile: chunk = 1024 def __init__(self, file): """ Init audio stream """ self.file = file self.wf = wave.open(file, 'rb') self.p = pyaudio.PyAudio() self.stream = self.p.open( format = self.p.get_format_from_width(self.wf.getsampwidth()), channels = self.wf.getnchannels(), rate = self.wf.getframerate(), output = True ) def __truePlay(self): data = self.wf.readframes(self.chunk) while data != '': self.stream.write(data) data = self.wf.readframes(self.chunk) def play(self): """ Play entire file """ x = threading.Thread(target=self.__truePlay, args=()) x.start() def close(self): """ Graceful shutdown """ self.stream.close() self.p.terminate() class SignalSepare: """ Prend en entrée en signal et le signal des pistes audio séparées. """ def __init__(self, signal, sr, pistes, Notemin = 'D3', Notemax = 'D9', onset_frames = [], delOnsets = [], addOnsets = [], score = [], instrument = ''): self.y = signal self.pistes = pistes self.sr = sr self.n_pistes = len(pistes) self.Notemin = Notemin self.Notemax = Notemax self.delOnsets = delOnsets self.addOnsets = addOnsets self.score = score self.instrument = instrument self.n_bins_ONSETS = 0 self.n_bins = 0 self.N = 0 self.fmin = 0 self.fmax = 0 self.n_bins = 0 self.n_att = 0 self.n_frames = 0 self.N_sample = [] self.Dev = [] self.Seuil = [] self.times = [] self.Onset_given = True self.onset_times = [] self.onset_times_graph = [] self.onset_frames = onset_frames self.Percu = [] self.Chrom_ONSETS = [] self.ChromDB_ONSETS = [] self.ChromSync_ONSETS = [] self.ChromPistesSync_ONSETS = [] self.ChromDB_reloc = [] self.Chrom = [] self.chromSync = [] self.chromSyncDB = [] self.chromPistesSync = [] self.chromSyncSimpl = [] self.chromPistesSyncSimpl = [] self.ChromNoHpss = [] self.energy = [] self.energyPistes = [] self.activation = [] self.n_notes = [] self.chrom_concordance = [] self.concordance = [] self.chrom_concordanceTot = [] self.concordanceTot = [] self.chrom_concordance3 = [] self.concordance3 = [] self.tension = [] self.roughness = [] self.chrom_harmonicity = [] self.liste_partials = [] self.tensionSignal = [] self.chrom_roughness = [] self.roughnessSignal = [] self.chrom_harmonicChange = [] self.harmonicChange = [] self.chrom_crossConcordance = [] self.crossConcordance = [] self.chrom_crossConcordanceTot = [] self.crossConcordanceTot = [] self.chrom_diffConcordance = [] self.diffRoughness = [] self.chrom_diffRoughness = [] self.diffConcordance = [] self.harmonicity = [] self.virtualPitch = [] self.context = [] self.contextSimpl = [] self.energyContext = [] self.chrom_harmonicNovelty = [] self.harmonicNovelty = [] self.harmonicityContext = [] self.virtualPitchContext = [] self.roughnessContext = [] self.chrom_roughnessContext = [] self.diffConcordanceContext = [] self.chrom_diffConcordanceContext = [] self.diffRoughnessContext = [] self.chrom_diffRoughnessContext = [] def DetectionOnsets(self): self.fmin = librosa.note_to_hz(self.Notemin) self.fmax = librosa.note_to_hz(self.Notemax) #Nmin = int((sr/(fmax*(2**(1/BINS_PER_OCTAVE)-1)))) #Nmax = int((sr/(fmin*(2**(1/BINS_PER_OCTAVE)-1)))) self.n_bins_ONSETS = int((librosa.note_to_midi(self.Notemax) - librosa.note_to_midi(self.Notemin))*BINS_PER_OCTAVE_ONSETS/12) self.Chrom_ONSETS = np.abs(librosa.cqt(y=self.y, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE_ONSETS, n_bins=self.n_bins_ONSETS, window=WINDOW)) self.ChromDB_ONSETS = librosa.amplitude_to_db(self.Chrom_ONSETS, ref=np.max) self.N = len(self.ChromDB_ONSETS[0]) self.times = librosa.frames_to_time(np.arange(self.N), sr=self.sr, hop_length=STEP) # CALCUL DES ONSETS (pour onset précalculé, le rentrer dans self.onset_frames à l'initialisation) if len(self.onset_frames) == 0: self.Onset_given = False Diff = np.zeros((self.n_bins_ONSETS,self.N)) self.Dev = np.zeros(self.N) for j in range(1,self.N): for i in range(self.n_bins_ONSETS): Diff[i,j] = np.abs(self.ChromDB_ONSETS[i,j]-self.ChromDB_ONSETS[i,j-1]) self.Dev[j] = sum(Diff[:,j]) # FONCTION DE SEUIL # Ajout de zéros en queue et en tête l = [] Onsets = [] for k in range(int(H/2)): l.append(0) for val in self.Dev: l.append(val) for k in range(int(H/2)): l.append(0) #Calcul de la médiane for i in range(self.N): self.Seuil.append(α + ω*stat.median(l[i:i+H])) if self.Dev[i] > self.Seuil[i]: Onsets.append(i) # FONCTION DE TRI SUR LES ONSETS # Onsets espacés d'au moins T i=0 while i<(len(Onsets)-1): while (i<(len(Onsets)-1)) and (self.times[Onsets[i+1]]< self.times[Onsets[i]]+T): if (self.Dev[Onsets[i+1]]-self.Seuil[Onsets[i+1]]) < (self.Dev[Onsets[i]]-self.Seuil[Onsets[i]]): del Onsets[i+1] #if (Dev[Onsets[i+1]]) < (Dev[Onsets[i]]): del Onsets[i+1] else: del Onsets[i] i=i+1 # Suppression manuelle des onsets en trop (cela nécessite d'avoir affiché les onsets jusqu'ici détectés) if isinstance(self.delOnsets, str): Onsets = [] else: self.delOnsets.sort(reverse = True) for o in self.delOnsets: Onsets.pop(o-1) #Ajout manuel des onsets for t in self.addOnsets: Onsets.append(librosa.time_to_frames(t, sr=self.sr, hop_length=STEP)) Onsets.sort() self.onset_frames = librosa.util.fix_frames(Onsets, x_min=0, x_max=self.ChromDB_ONSETS.shape[1]-1) self.onset_frames = librosa.util.fix_frames(self.onset_frames, x_min=0, x_max=self.ChromDB_ONSETS.shape[1]-1) self.onset_times = librosa.frames_to_time(self.onset_frames, sr=self.sr, hop_length = STEP) self.n_frames = len(self.onset_frames)-1 self.n_notes = np.ones(self.n_frames) # TRANSFORMÉE avec la précision due pour l'analyse self.n_bins = int((librosa.note_to_midi(self.Notemax) - librosa.note_to_midi(self.Notemin))*BINS_PER_OCTAVE/12) self.Chrom = np.abs(librosa.cqt(y=self.y, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins, window=WINDOW, filter_scale = FILTER_SCALE)) # self.Chrom[np.isnan(self.Chrom)] = 0 # Relocalisation if params.spectral_reloc: freq_analyse = [self.fmin*2**(k/BINS_PER_OCTAVE) for k in range(self.n_bins)] N = [round(self.sr * params.FILTER_SCALE/(f*(2**(1/BINS_PER_OCTAVE)-1))) for f in freq_analyse] self.N_sample = [round(n/STEP) for n in N] Chrom_copy = np.copy(self.Chrom) for k in range(self.n_bins): for n in reversed(range(self.N)): if n <= self.N_sample[k]: self.Chrom[k,n] = Chrom_copy[k,n] else: self.Chrom[k,n] = Chrom_copy[k,n-int(self.N_sample[k]/2)] # Décomposition partie harmonique / partie percussive if params.decompo_hpss: self.ChromNoHpss = np.copy(self.Chrom) self.Chrom = librosa.decompose.hpss(self.Chrom, margin=params.margin)[0] self.ChromDB = librosa.amplitude_to_db(self.Chrom, ref=np.max) #Synchronisation sur les onsets, en enlevant le début et la fin des longues frames self.chromSync = np.zeros((self.n_bins,self.n_frames)) self.n_att = int(librosa.time_to_frames(T_att, sr=self.sr, hop_length = STEP)) # for j in range(self.n_frames): # if j==0: # for i in range(self.n_bins): # self.chromSync[i,j] = np.median(self.Chrom[i][self.onset_frames[j]:self.onset_frames[j+1]]) # else: # for i in range(self.n_bins): # self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j]+self.n_att):(self.onset_frames[j+1])]) Δmin = 0.1 # en secondes for i in range(self.n_bins): f = self.fmin*2**(i/BINS_PER_OCTAVE) T_ret = 1.5 / (f * (2**(1.0/(12*4)) - 1)) for j in range(self.n_frames): if j==0: self.chromSync[i,j] = np.median(self.Chrom[i][self.onset_frames[j]:self.onset_frames[j+1]]) else: if T_ret < (self.onset_times[j+1] - self.onset_times[j+1]) - Δmin: self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j]+int(librosa.time_to_frames(T_ret, sr=self.sr, hop_length = STEP))):(self.onset_frames[j+1])]) else: self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j+1]-int(librosa.time_to_frames(Δmin, sr=self.sr, hop_length = STEP))):(self.onset_frames[j+1])]) self.chromSync[np.isnan(self.chromSync)] = 0 self.chromSync[:,0] = np.zeros(self.n_bins) self.chromSync[:,-1] = np.zeros(self.n_bins) self.chromSyncDB = librosa.amplitude_to_db(self.chromSync, ref=np.max) #Calcul de l'énergie for t in range(self.n_frames): self.energy.append(LA.norm(self.chromSync[:,t])**2) def Clustering(self): """ Découpe et synchronise les pistes séparées sur les ONSETS, stoque le spectrogramme synchronisé en construisant self.chromPistesSync""" if len(self.pistes) != 0: # Construction de chromPistesSync ChromPistes = [] for k, voice in enumerate(self.pistes): if params.decompo_hpss: ChromPistes.append(np.nan_to_num(librosa.decompose.hpss(np.abs(librosa.cqt(y=voice, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins)), margin=params.margin)[0],False)) else: ChromPistes.append(np.nan_to_num(np.abs(librosa.cqt(y=voice, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins)),False)) for k, voice in enumerate(self.pistes): # if params.spectral_reloc: # ChromPistesCopy = np.copy(ChromPistes) # for f in range(self.n_bins): # for n in reversed(range(self.N)): # if n <= self.N_sample[f]: ChromPistes[k][f,n] = ChromPistesCopy[k][f,n] # else: ChromPistes[k][f,n] = ChromPistesCopy[k][f,n-int(self.N_sample[f]/2)] self.chromPistesSync.append(np.zeros((self.n_bins,self.n_frames))) for j in range(self.n_frames): if j==0: for i in range(self.n_bins): self.chromPistesSync[k][i,j] = np.median(ChromPistes[k][i][self.onset_frames[j]:self.onset_frames[j+1]]) else: for i in range(self.n_bins): self.chromPistesSync[k][i,j] = np.median(ChromPistes[k][i][(self.onset_frames[j]+self.n_att):(self.onset_frames[j+1]-self.n_att)]) # Calcul de l'énergie des pistes self.energyPistes = np.zeros((self.n_pistes, self.n_frames)) for t in range(self.n_frames): for k in range(self.n_pistes): self.energyPistes[k,t] = np.sum(np.multiply(self.chromPistesSync[k][:,t], self.chromPistesSync[k][:,t])) # Calcul de la matrice d'activation (pour savoir quelles voix contiennent des notes à quel moment) + mise à zéro des pistes sans note # Par défaut, tout est à 1, ie dans chaque frame chaque piste joue une note self.activation = np.ones((self.n_pistes, self.n_frames)) if title in params.list_calcul_nombre_notes: max_energy = np.amax(self.energyPistes, axis = 1) for k in range(self.n_pistes): for t in range(self.n_frames): if (self.energyPistes[k,t] < params.seuil_activation * max_energy[k]): self.activation[k,t] = 0 self.chromPistesSync[k][:,t] = 0 self.activation[:,0] = 0 self.activation[:,self.n_frames-1] = 0 elif title in params.list_3_voix: self.activation[-1] = np.zeros(self.n_frames) # Calcul du nombre de notes self.n_notes = np.sum(self.activation, axis=0) self.n_notes[0] = 0 self.n_notes[-1] = 0 def Context(self, type = params.memory_type, size = params.memory_size - 1, decr = params.memory_decr_ponderation): #Construction du context harmonique self.context = np.zeros((self.n_bins,self.n_frames)) self.context[:,0] = self.chromSync[:,0] # Memory = "full" if isinstance(size,str): if type == 'max': for t in range(1,self.n_frames): self.context[:,t] = np.fmax(self.context[:,t-1],self.chromSync[:,t]) elif type == 'mean': #Construction du vecteur de pondération weights = [(1/i**decr) for i in range(1,self.n_frames+2)] #Moyennage for t in range(1,self.n_frames): self.context[:,t] = np.average(self.chromSync[:,:(t+1)], axis=1, weights=[weights[t-i] for i in range(t+1)]) # Memory = int elif isinstance(size,int): if type == 'max': for t in range(1,size+1): self.context[:,t] = np.fmax(self.chromSync[:,t], self.context[:,t-1]) for t in range(size+1,self.n_frames): self.context[:,t] = np.amax(self.chromSync[:,(t-size):(t+1)], axis = 1) elif type == 'mean': #Construction du vecteur de pondération weights = [(1/i**decr) for i in range(1,size+2)] #Moyennage for t in range(1,size+1): self.context[:,t] = np.average(self.chromSync[:,1:(t+1)], axis=1, weights=[weights[t-i] for i in range(1,t+1)]) for t in range(size+1,self.n_frames): self.context[:,t] = np.average(self.chromSync[:,(t-size):(t+1)], axis=1, weights=[weights[size-i] for i
## ## Instructions: ## 1) Install python-protobuf for your IDAPython installation. This probably means ## downloading it from https://protobuf.googlecode.com/files/protobuf-2.5.0.tar.gz ## and manually running setup.py ## 2) This script should be run via IDA's batch mode. See the output ## of --help for more details on the command line options. ## import idautils import idaapi import idc import sys from os import path import os import argparse import struct #hack for IDAPython to see google protobuf lib sys.path.append('/usr/lib/python2.7/dist-packages') import CFG_pb2 _DEBUG = False EXTERNALS = set() DATA_SEGMENTS = [] RECOVERED_EAS = set() ACCESSED_VIA_JMP = set() EMAP = {} EMAP_DATA = {} SPECIAL_REP_HANDLING = [ [0xC3], ] TRAPS = [ idaapi.NN_int3, idaapi.NN_icebp, ] CALLS = [ idaapi.NN_call, idaapi.NN_callfi, idaapi.NN_callni] RETS = [ idaapi.NN_retf, idaapi.NN_retfd, idaapi.NN_retfq, idaapi.NN_retfw, idaapi.NN_retn, idaapi.NN_retnd, idaapi.NN_retnq, idaapi.NN_retnw] COND_BRANCHES = [\ idaapi.NN_ja,\ idaapi.NN_jae,\ idaapi.NN_jb,\ idaapi.NN_jbe,\ idaapi.NN_jc,\ idaapi.NN_jcxz,\ idaapi.NN_je,\ idaapi.NN_jecxz,\ idaapi.NN_jg,\ idaapi.NN_jge,\ idaapi.NN_jl,\ idaapi.NN_jle,\ idaapi.NN_jna,\ idaapi.NN_jnae,\ idaapi.NN_jnb,\ idaapi.NN_jnbe,\ idaapi.NN_jnc,\ idaapi.NN_jne,\ idaapi.NN_jng,\ idaapi.NN_jnge,\ idaapi.NN_jnl,\ idaapi.NN_jnle,\ idaapi.NN_jno,\ idaapi.NN_jnp,\ idaapi.NN_jns,\ idaapi.NN_jnz,\ idaapi.NN_jo,\ idaapi.NN_jp,\ idaapi.NN_jpe,\ idaapi.NN_jpo,\ idaapi.NN_jrcxz,\ idaapi.NN_js,\ idaapi.NN_jz,] UCOND_BRANCHES = [\ idaapi.NN_jmp,\ idaapi.NN_jmpfi,\ idaapi.NN_jmpni,\ idaapi.NN_jmpshort] def DEBUG(s): if _DEBUG: sys.stdout.write(s) def readDword(ea): bytestr = readBytesSlowly(ea, ea+4); dword = struct.unpack("<L", bytestr)[0] return dword def isLinkedElf(): return idc.GetLongPrm(INF_FILETYPE) == idc.FT_ELF and \ idc.BeginEA() !=0xffffffffL def fixExternalName(fn): if fn in EMAP: return fn if fn in EMAP_DATA: return fn if not isLinkedElf() and fn[0] == '_': return fn[1:] if fn.endswith("_0"): newfn = fn[:-2] if newfn in EMAP: return newfn return fn def nameInMap(themap, fn): return fixExternalName(fn) in themap def getFromEMAP(fname): fixname = fixExternalName(fname) return EMAP[fixname] def doesNotReturn(fname): try: args, conv, ret, sign = getFromEMAP(fname) if ret == "Y": return True except KeyError, ke: raise Exception("Unknown external: " + fname) return False def isHlt(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in [idaapi.NN_hlt] def isJmpTable(ea): insn_t = idautils.DecodeInstruction(ea) is_jmp = insn_t.itype in [idaapi.NN_jmp, idaapi.NN_jmpfi, idaapi.NN_jmpni] if not is_jmp: return False if idaapi.get_switch_info_ex(ea): return True return False def addFunction(M, ep): F = M.internal_funcs.add() F.entry_address = ep return F def entryPointHandler(M, ep, name, args_from_stddef=False): EP = M.entries.add() EP.entry_name = name EP.entry_address = ep have_edata = False # should we get argument count # calling ocnvention, and return type from std_defs? if args_from_stddef: try: (argc, conv, ret, sign) = getFromEMAP(name) have_edata = True except KeyError as ke: pass if not have_edata: (argc, conv, ret) = getExportType(name, ep) EP.entry_extra.entry_argc = argc EP.entry_extra.entry_cconv = conv if ret == 'Y': EP.entry_extra.does_return = False else: EP.entry_extra.does_return = True F = addFunction(M, ep) DEBUG("At EP {0}:{1:x}\n".format(name,ep)) return F def basicBlockHandler(F, block, blockset, processed_blocks): B = F.blocks.add() B.base_address = block.startEA DEBUG("BB: {0:x}\n".format(block.startEA)) B.block_follows.extend(block.succs) if _DEBUG: str_l = ["{0:x}".format(i) for i in block.succs] if len(str_l) > 0: DEBUG("Successors: {0}\n".format(", ".join(str_l))) return B def readInstructionBytes(inst): insn_t = idautils.DecodeInstruction(inst) return [idc.Byte(b) for b in xrange(inst, inst+insn_t.size)] def isInternalCode(ea): pf = idc.GetFlags(ea) return idc.isCode(pf) and not idc.isData(pf) def isNotCode(ea): pf = idc.GetFlags(ea) return not idc.isCode(pf) def isExternalReference(ea): # see if this is in an internal or external code ref DEBUG("Testing {0:x} for externality\n".format(ea)) ext_types = [idc.SEG_XTRN] seg = idc.SegStart(ea) if seg == idc.BADADDR: DEBUG("WARNING: Could not get segment addr for: {0:x}\n".format(ea)) return False segtype = idc.GetSegmentAttr(seg, idc.SEGATTR_TYPE) if segtype in ext_types: return True return False def getFunctionName(ea): return idc.GetTrueNameEx(ea,ea) def addInst(block, addr, inst_bytes, true_target=None, false_target=None): # check if there is a lock prefix: insn_t = idautils.DecodeInstruction(addr) if insn_t is not None and (insn_t.auxpref & 0x1) == 0x1: # has LOCK i_lock = block.insts.add() i_lock.inst_addr = addr i_lock.inst_bytes = chr(inst_bytes[0]) i_lock.inst_len = 1 addr += 1 inst_bytes = inst_bytes[1:] if insn_t is not None and (insn_t.auxpref & 0x3) == 0x2: DEBUG("REP Prefix at: 0x{0:x}\n".format(addr)) # special handling of certain REP pairs rest_bytes = inst_bytes[1:] if rest_bytes in SPECIAL_REP_HANDLING: # generate a separate REP_PREFIX instruction i_rep = block.insts.add() i_rep.inst_addr = addr i_rep.inst_bytes = chr(inst_bytes[0]) i_rep.inst_len = 1 addr += 1 inst_bytes = inst_bytes[1:] inst = block.insts.add() inst.inst_addr = addr str_val = "".join([chr(b) for b in inst_bytes]) inst.inst_bytes = str_val inst.inst_len = len(inst_bytes) if true_target != None: inst.true_target = true_target if false_target != None: inst.false_target = false_target return inst def isConditionalJump(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in COND_BRANCHES def isUnconditionalJump(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in UCOND_BRANCHES def isCall(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in CALLS def isRet(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in RETS def isTrap(ea): insn_t = idautils.DecodeInstruction(ea) return insn_t.itype in TRAPS def findRelocOffset(ea, size): for i in xrange(ea,ea+size): if idc.GetFixupTgtOff(i) != -1: return i-ea return -1 def handleExternalRef(fn): # Don't mangle symbols for fully linked ELFs... yet in_a_map = fn in EMAP or fn in EMAP_DATA if not isLinkedElf(): if fn.startswith("__imp_"): fn = fn[6:] if fn.endswith("_0"): fn = fn[:-2] if fn.startswith("_") and not in_a_map: fn = fn[1:] if fn.startswith("@") and not in_a_map: fn = fn[1:] if '@' in fn: fn = fn[:fn.find('@')] fixfn = fixExternalName(fn) EXTERNALS.add(fixfn) return fixfn def isInData(start_ea, end_ea): for (start,end) in DATA_SEGMENTS: if start_ea >= start and start_ea < end: DEBUG("Data Range: {0:x} <= {1:x} < {2:x}\n".format(start, start_ea, end)) DEBUG("Data Range: {:x} - {:x}\n".format(start_ea, end_ea)) if end_ea <= end: return True else: DEBUG("{0:x} NOT <= {1:x}\n".format(end_ea, end)) DEBUG("{0:x}-{1:x} overlaps with: {2:x}-{3:x}\n".format(start_ea, end_ea, start, end)) raise Exception("Overlapping data segments!") else: if end_ea > start and end_ea <= end: DEBUG("Overlaps with: {0:x}-{1:x}\n".format(start, end)) raise Exception("Overlapping data segments!") return False def isExternalData(fn): indata = fn in EMAP_DATA incode = fn in EMAP if indata and not incode: return True elif indata and incode: raise Exception("Symbol "+fn+" defined as both code and data!") else: return False def handleJmpTable(I, inst, new_eas): si = idaapi.get_switch_info_ex(inst) jsize = si.get_jtable_element_size() jstart = si.jumps # only handle size 4 cases if jsize != 4: raise Exception("Jump table size not 4!") return DEBUG("\tJMPTable Start: {0:x}\n".format(jstart)) seg_start = idc.SegStart(jstart) if seg_start != idc.BADADDR: I.jump_table.offset_from_data = jstart - seg_start DEBUG("\tJMPTable offset from data: {:x}\n".format(I.jump_table.offset_from_data)) I.jump_table.zero_offset = 0 i = 0 entries = si.get_jtable_size() for i in xrange(entries): je = readDword(jstart+i*jsize) I.jump_table.table_entries.append(je) if je not in RECOVERED_EAS and isStartOfFunction(je): new_eas.add(je) DEBUG("\t\tAdding JMPTable {0}: {1:x}\n".format(i, je)) #je = idc.GetFixupTgtOff(jstart+i*jsize) #while je != -1: # I.jump_table.table_entries.append(je) # if je not in RECOVERED_EAS: # new_eas.add(je) # DEBUG("\t\tAdding JMPTable {0}: {1:x}\n".format( i, je)) # i += 1 # je = idc.GetFixupTgtOff(jstart+i*jsize) def isElfThunk(ea): if not isLinkedElf(): return False, None if isUnconditionalJump(ea): have_ext_ref = False for cref in idautils.CodeRefsFrom(ea, 0): if isExternalReference(cref): have_ext_ref = True break if have_ext_ref: fn = getFunctionName(cref) return True, fn return False, None def addDataReference(M, I, inst, dref, new_eas): if inValidSegment(dref): if isExternalReference(dref): fn = getFunctionName(dref) fn = handleExternalRef(fn) if isExternalData(fn): I.ext_data_name = fn sys.stdout.write("EXTERNAL DATA REF FROM {0:x} to {1}\n".format(inst, fn)) else: I.ext_call_name = fn sys.stdout.write("EXTERNAL CODE REF FROM {0:x} to {1}\n".format(inst, fn)) elif isInternalCode(dref): I.call_target = dref if dref not in RECOVERED_EAS: new_eas.add(dref) else: dref_size = idc.ItemSize(dref) DEBUG("\t\tData Ref: {0:x}, size: {1}\n".format( dref, dref_size)) I.data_offset = handleDataRelocation(M, dref, new_eas) else: DEBUG("WARNING: Data not in valid segment {0:x}\n".format(dref)) def instructionHandler(M, B, inst, new_eas): insn_t = idautils.DecodeInstruction(inst) if not insn_t: # handle jumps after noreturn functions if idc.Byte(inst) == 0xCC: I = addInst(B, inst, [0xCC]) return I, True else: raise Exception("Cannot read instruction at: {0:x}".format(inst)) # skip HLTs -- they are privileged, and are used in ELFs after a noreturn call if isHlt(inst): return None, False DEBUG("\t\tinst: {0}\n".format(idc.GetDisasm(inst))) inst_bytes = readInstructionBytes(inst) DEBUG("\t\tBytes: {0}\n".format(inst_bytes)) I = addInst(B, inst, inst_bytes) if isJmpTable(inst): handleJmpTable(I, inst, new_eas) return I, False crefs_from_here = idautils.CodeRefsFrom(inst, 0) #check for code refs from here crefs = [] # pull code refs from generator into a list for cref_i in crefs_from_here: crefs.append(cref_i) is_call = isCall(inst) isize = insn_t.size next_ea = inst+isize had_refs = False # this is a call $+5, needs special handling if len(crefs) == 0 and is_call and isize == 5: selfCallEA = next_ea DEBUG("INTERNAL CALL $+5: {0:x}\n".format(selfCallEA)) sys.stdout.write("LOCAL NORETURN CALL!\n") I.local_noreturn = True if selfCallEA not in RECOVERED_EAS: DEBUG("Adding new EA: {0:x}\n".format(selfCallEA)) new_eas.add(selfCallEA) I.call_target = selfCallEA return I, True for cref in crefs: had_refs = True fn = getFunctionName(cref) if is_call: elfy, fn_replace = isElfThunk(cref) if elfy: fn = fn_replace if isExternalReference(cref) or elfy: fn = handleExternalRef(fn) I.ext_call_name = fn DEBUG("EXTERNAL CALL: {0}\n".format(fn)) if doesNotReturn(fn): return I, True else: I.call_target = cref if cref not in RECOVERED_EAS: new_eas.add(cref) DEBUG("INTERNAL CALL: {0}\n".format(fn))
standard supervised training error_metrics = train_super(basic_setting['epochs'], model, optimizer, train_loader, test_loader, basic_setting['b']) super_results[str(k)] = error_metrics # semi-supervised training using pseudo-labels # error_metrics = train_semisuper(basic_setting['epochs'], model, optimizer, train_loader, unlabeled_loader, test_loader, basic_setting['b']) # save list to pickle file with open(file_name, 'w') as f: json.dump(super_results, f) """### Experiment 2 - Epoch-wise DD vs. n_samples""" basic_setting = { 'k': 64, 'epochs': 300, 'label_noise': 0.2, 'n_batch': 128, 'n_classes': 10, 'lr': 1e-4, 'b': 0.15, 'n_labeled': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] 'augmentation': True } super_results = {} semisuper_results = {} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') file_name = '/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/super_epoch_n_samples.json' open_file = open(file_name, "ab") # define transformations for training and test set if basic_setting['augmentation']: transform_cifar = transforms.Compose([transforms.ToTensor(),transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]) else: transform_cifar = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose([transforms.ToTensor()]) print(basic_setting) n_labeled, n_unlabeled = basic_setting['n_labeled'] for ratio in basic_setting['n_labeled']: train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_cifar) test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) total_samples = len(train) # assign random labels to (label_noise)% of the training set (needed for semi-supervised learning) rands = np.random.choice(total_samples, int(basic_setting['label_noise']*total_samples), replace=False) for rand in rands: train.targets[rand] = torch.randint(high=10, size=(1,1)).item() # split training data into labeled and unlabeled train, val = random_split(train, [n_labeled, n_unlabeled]) print("number of labeled: {}, number of unlabeled: {}\n".format(len(train), len(val))) train_loader = DataLoader(train, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) test_loader = DataLoader(test, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) model = CIFARResNet(basic_setting['n_classes'], basic_setting['k']) # define model with the number of parameter model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=basic_setting['lr']) # optimizer = torch.optim.SGD(model.parameters(), lr=lr) # standard supervised training error_metrics = train_super(basic_setting['epochs'], model, optimizer, train_loader, test_loader, basic_setting['b']) super_results[str(ratio)] = error_metrics # save list to pickle file with open(file_name, 'w') as f: json.dump(super_results, f) """### Experiment 3 - Epoch-wise DD vs. flooding (Finished!)""" basic_setting = { 'k': 64, 'epochs': 200, 'label_noise': 0.2, 'n_batch': 128, 'n_classes': 10, 'lr': 1e-4, 'b': [0.1, 0.15, 0.2], 'n_labeled': (50000, 0), 'augmentation': True } super_results = {} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') file_name = '/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/Supervised Experiments/super_epoch_flooding.json' open_file = open(file_name, "ab") # define transformations for training and test set if basic_setting['augmentation']: transform_cifar = transforms.Compose([transforms.ToTensor(),transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]) else: transform_cifar = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose([transforms.ToTensor()]) print(basic_setting) train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_cifar) test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) total_samples = len(train) # assign random labels to (label_noise)% of the training set (needed for semi-supervised learning) rands = np.random.choice(total_samples, int(basic_setting['label_noise']*total_samples), replace=False) for rand in rands: train.targets[rand] = torch.randint(high=10, size=(1,1)).item() # split training data into labeled and unlabeled n_labeled, n_unlabeled = basic_setting['n_labeled'] train, val = random_split(train, [n_labeled, n_unlabeled]) print("number of labeled: {}, number of unlabeled: {}\n".format(len(train), len(val))) train_loader = DataLoader(train, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) test_loader = DataLoader(test, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) for flood in basic_setting['b']: model = CIFARResNet(basic_setting['n_classes'], basic_setting['k']) # define model with the number of parameter model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=basic_setting['lr']) # optimizer = torch.optim.SGD(model.parameters(), lr=lr) # standard supervised training error_metrics = train_super(basic_setting['epochs'], model, optimizer, train_loader, test_loader, flood) super_results[str(flood)] = error_metrics # save list to pickle file with open(file_name, 'w') as f: json.dump(super_results, f) """### Experiment 4 - Epoch-wise DD vs. label noise (Finished!)""" basic_setting = { 'k': 64, 'epochs': 200, 'noise': [0.1, 0.15, 0.2], 'n_batch': 128, 'n_classes': 10, 'lr': 1e-4, 'b': 0.1, 'n_labeled': (20000, 30000), 'augmentation': True } super_results = {} semisuper_results = {} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') file_name = '/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/Supervised Experiments/super_epoch_label_noise.json' open_file = open(file_name, "ab") # define transformations for training and test set if basic_setting['augmentation']: transform_cifar = transforms.Compose([transforms.ToTensor(),transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]) else: transform_cifar = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose([transforms.ToTensor()]) print(basic_setting) n_labeled, n_unlabeled = basic_setting['n_labeled'] for noise in basic_setting['noise']: # train = datasets.MNIST(root='./data', train=True, download=True, transform=transform_cifar) # test = datasets.MNIST(root='./data', train=False, download=True, transform=transform_test) train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_cifar) test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) total_samples = len(train) # assign random labels to (label_noise)% of the training set (needed for semi-supervised learning) rands = np.random.choice(total_samples, int(noise*total_samples), replace=False) for rand in rands: train.targets[rand] = torch.randint(high=10, size=(1,1)).item() # split training data into labeled and unlabeled train, val = random_split(train, [n_labeled, n_unlabeled]) print("number of labeled: {}, number of unlabeled: {}\n".format(len(train), len(val))) train_loader = DataLoader(train, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) test_loader = DataLoader(test, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) model = CIFARResNet(basic_setting['n_classes'], basic_setting['k']) # define model with the number of parameter model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=basic_setting['lr']) # optimizer = torch.optim.SGD(model.parameters(), lr=lr) # standard supervised training error_metrics = train_super(basic_setting['epochs'], model, optimizer, train_loader, test_loader, basic_setting['b']) super_results[str(noise)] = error_metrics # save list to pickle file with open(file_name, 'w') as f: json.dump(super_results, f) """# Semi-Supervised Experiments ### Experiment 1 - Epoch-wise DD vs. labeled ratio """ basic_setting = { 'k': 64, 'epochs': 200, 'n_batch': 128, 'n_classes': 10, 'lr': 1e-4, 'b': 0.1, 'n_labeled': [(20000, 30000),(10000, 40000)], 'augmentation': True } # We observe all forms of double descent most strongly in settings with label noise in the train set (as is often the case when collecting train data in the real-world). # lr = (n_unlabeled)**(-0.5) # SGD learning rate print(basic_setting) semisuper_results = {} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') file_name = '/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/Semi-supervised Experiments/semisuper_epoch_ratio.json' open_file = open(file_name, "ab") # define transformations for training and test set if basic_setting['augmentation']: transform_cifar = transforms.Compose([transforms.ToTensor(),transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]) else: transform_cifar = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose([transforms.ToTensor()]) # load either MNIST or CIFAR-10 # train = datasets.MNIST(root='./data', train=True, download=True, transform=transform_mnist) # test = datasets.MNIST(root='./data', train=False, download=True, transform=transform_mnist) for n_labeled, n_unlabeled in basic_setting['n_labeled']: train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_cifar) test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) train, val = random_split(train, [n_labeled, n_unlabeled]) print("number of labeled: {}, number of unlabeled: {}\n".format(len(train), len(val))) train_loader = DataLoader(train, batch_size=int(len(train)/basic_setting['n_batch']), shuffle=True, num_workers=2) unlabeled_loader = DataLoader(val, batch_size=int(len(val)/basic_setting['n_batch']), shuffle=True, num_workers=2) test_loader = DataLoader(test, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) model = CIFARResNet(basic_setting['n_classes'], basic_setting['k']) # define model with the number of parameter model.to(device) # total_params = sum(p.numel() for p in model.parameters()) # print("number of model parameters = {} when k={}".format(total_params, basic_setting['k'])) optimizer = torch.optim.Adam(model.parameters(), lr=basic_setting['lr']) # optimizer = torch.optim.SGD(model.parameters(), lr=0.1) # semi-supervised training using pseudo-labels error_metrics = train_semisuper(basic_setting['epochs'], model, optimizer, train_loader, unlabeled_loader, test_loader, basic_setting['b']) semisuper_results = {} semisuper_results[str(n_labeled)] = error_metrics # save list to pickle file with open(file_name, 'w') as f: json.dump(semisuper_results, f) """### Experiment 2 - Model-wise DD""" basic_setting = { 'k': 64, 'epochs': 300, 'n_batch': 128, 'n_classes': 10, 'lr': 1e-4, 'b': 0.15, 'n_labeled': [0.6, 0.4, 0.2], 'augmentation': True } # We observe all forms of double descent most strongly in settings with label noise in the train set (as is often the case when collecting train data in the real-world). # lr = (n_unlabeled)**(-0.5) # SGD learning rate print(basic_setting) semisuper_results = {} device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') file_name = '/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/semisuper_epoch.json' open_file = open(file_name, "ab") # define transformations for training and test set if basic_setting['augmentation']: transform_cifar = transforms.Compose([transforms.ToTensor(),transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]) else: transform_cifar = transforms.Compose([transforms.ToTensor()]) transform_test = transforms.Compose([transforms.ToTensor()]) # load either MNIST or CIFAR-10 # train = datasets.MNIST(root='./data', train=True, download=True, transform=transform_mnist) # test = datasets.MNIST(root='./data', train=False, download=True, transform=transform_mnist) for ratio in basic_setting['n_labeled']: train = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_cifar) test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) # split training data into labeled and unlabeled n_labeled = int(total_samples*ratio) n_unlabeled = int(total_samples*(1-ratio)) train, val = random_split(train, [n_labeled, n_unlabeled]) print("number of labeled: {}, number of unlabeled: {}\n".format(len(train), len(val))) train_loader = DataLoader(train, batch_size=int(len(train)/basic_setting['n_batch']), shuffle=True, num_workers=2) unlabeled_loader = DataLoader(val, batch_size=int(len(val)/basic_setting['n_batch']), shuffle=True, num_workers=2) test_loader = DataLoader(test, batch_size=basic_setting['n_batch'], shuffle=True, num_workers=2) model = CIFARResNet(basic_setting['n_classes'], basic_setting['k']) # define model with the number of parameter model.to(device) # total_params = sum(p.numel() for p in model.parameters()) # print("number of model parameters = {} when k={}".format(total_params, basic_setting['k'])) optimizer = torch.optim.Adam(model.parameters(), lr=basic_setting['lr']) # optimizer = torch.optim.SGD(model.parameters(), lr=lr) # semi-supervised training using pseudo-labels error_metrics = train_semisuper(basic_setting['epochs'], model, optimizer, train_loader, unlabeled_loader, test_loader, basic_setting['b']) semi_super_results[str(ratio)] = error_metrics # save list to pickle file with open(file_name, 'w') as f: json.dump(semi_super_results, f) """# Plotting""" # matplotlib.rcParams.update({'font.size': 25}) def plot_modelwise(results, fname): titles = ['error', 'loss'] colors = ['blue', 'lime'] labels = ['train', 'test'] k = [] # fixed x-axis metrics =. [] exp_type = fname.split('/')[-2] exp_name = fname.split('/')[-1].split('.')[0] # extract model size and metrics into separate lists for model_size, metric in results.items(): k.append(int(model_size)) metrics.append(metric[-1]) metrics = np.array(metrics) # test/train error and loss for i, title in enumerate(titles): fig, axes = plt.subplots(figsize=(8, 6), dpi=300) axes.grid() axes.plot(k, metrics[:, 2*i], label=labels[0], color=colors[0]) # train axes.plot(k, metrics[:, 2*i+1], label=labels[1], color=colors[1]) # test axes.set_xlabel('resnet width=k') axes.set_ylabel(title) axes.set_title("model width vs. {}".format(title)) axes.legend(loc='upper right', prop={'size': 15}) fig.savefig('/gdrive/My Drive/CMSC 828W Research/Code (Won & Amartya)/{}/{}_{}.png'.format(exp_type, exp_name, title), dpi=300) def plot_epochwise(results, fname): titles = ['error', 'loss'] colors = ['red', 'lime', 'blue'] labels =
# -*- coding: utf-8 -*- """ Source: http://www.turingfinance.com/random-walks-down-wall-street-stochastic-processes-in-python/ https://github.com/StuartGordonReid/Python-Notebooks/blob/master/Stochastic%20Process%20Algorithms.ipynb Processes that can be simulated in this module are: - Brownian Motion - Geometric Brownian Motion - The Merton Jump Diffusion Model - The Heston Stochastic Volatility Model - <NAME> - <NAME> """ import math import os from pathlib import Path from typing import Tuple import numpy as np import numpy.random as nrand import plotly.graph_objs as go from plotly.offline import plot from openseries.load_plotly import load_plotly_dict class ModelParameters(object): """ Encapsulates model parameters """ def __init__( self, all_s0: float, all_time: int, all_delta: float, all_sigma: float, gbm_mu: float, jumps_lamda: float = 0.0, jumps_sigma: float = 0.0, jumps_mu: float = 0.0, cir_a: float = 0.0, cir_mu: float = 0.0, all_r0: float = 0.0, cir_rho: float = 0.0, ou_a: float = 0.0, ou_mu: float = 0.0, heston_a: float = 0.0, heston_mu: float = 0.0, heston_vol0: float = 0.0, ): """ :param all_s0: This is the starting asset value :param all_time: This is the amount of time to simulate for :param all_delta: This is the delta, the rate of time e.g. 1/252 = daily, 1/12 = monthly :param all_sigma: This is the volatility of the stochastic processes :param all_r0: This is the starting interest rate value :param gbm_mu: This is the annual drift factor for geometric brownian motion :param jumps_lamda: This is the probability of a jump happening at each point in time :param jumps_sigma: This is the volatility of the jump size :param jumps_mu: This is the average jump size :param cir_a: This is the rate of mean reversion for Cox Ingersoll Ross :param cir_mu: This is the long run average interest rate for Cox Ingersoll Ross :param cir_rho: This is the correlation between the wiener processes of the Heston model :param ou_a: This is the rate of mean reversion for Ornstein Uhlenbeck :param ou_mu: This is the long run average interest rate for Ornstein Uhlenbeck :param heston_a: This is the rate of mean reversion for volatility in the Heston model :param heston_mu: This is the long run average volatility for the Heston model :param heston_vol0: This is the starting volatility value for the Heston model """ self.all_s0 = all_s0 self.all_time = all_time self.all_delta = all_delta self.all_sigma = all_sigma self.gbm_mu = gbm_mu self.lamda = jumps_lamda self.jumps_sigma = jumps_sigma self.jumps_mu = jumps_mu self.cir_a = cir_a self.cir_mu = cir_mu self.all_r0 = all_r0 self.cir_rho = cir_rho self.ou_a = ou_a self.ou_mu = ou_mu self.heston_a = heston_a self.heston_mu = heston_mu self.heston_vol0 = heston_vol0 def convert_to_returns(log_returns: np.ndarray) -> np.ndarray: """ This method exponentiates a sequence of log returns to get daily returns. :param log_returns: the log returns to exponentiated :return: the exponentiated returns """ return np.exp(log_returns) def convert_to_prices( param: ModelParameters, log_returns: np.ndarray ) -> np.ndarray: """ This method converts a sequence of log returns into normal returns (exponentiation) and then computes a price sequence given a starting price, param.all_s0. :param param: the model parameters object :param log_returns: the log returns to exponentiated :return: """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" returns = convert_to_returns(log_returns) # A sequence of prices starting with param.all_s0 price_sequence: list = [param.all_s0] for n in range(1, len(returns)): # Add the price at t-1 * return at t price_sequence.append(price_sequence[n - 1] * returns[n - 1]) return np.array(price_sequence) def plot_stochastic_processes( processes: list, title: str = None ) -> (go.Figure, str): """ This method plots a list of stochastic processes with a specified title :param processes: :param title: """ file_name = ( title.replace("/", "").replace("#", "").replace(" ", "").upper() ) plotfile = os.path.join( os.path.abspath(str(Path.home())), "Documents", f"{file_name}.html" ) fig, logo = load_plotly_dict() figure = go.Figure(fig) x_axis = np.arange(0, len(processes[0]), 1) for n in range(len(processes)): figure.add_trace( go.Scatter( x=x_axis, y=processes[n], mode="lines", hovertemplate="%{y}<br>%{x}", line=dict(width=2.5, dash="solid"), ) ) figure.update_layout( title=dict(text=title), xaxis_title="Time, t", yaxis_title="simulated asset price", showlegend=False, yaxis=dict(tickformat=None), ) figure.add_layout_image(logo) plot( figure, filename=plotfile, auto_open=True, link_text="", include_plotlyjs="cdn", ) return figure, plotfile def brownian_motion_log_returns( param: ModelParameters, seed: int = None ) -> np.ndarray: """ This method returns a Wiener process. The Wiener process is also called Brownian motion. For more information about the Wiener process check out the Wikipedia page: http://en.wikipedia.org/wiki/Wiener_process :param param: the model parameters object :param seed: :return: brownian motion log returns """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" if seed is not None: nrand.seed(seed) sqrt_delta_sigma = math.sqrt(param.all_delta) * param.all_sigma return nrand.normal(loc=0, scale=sqrt_delta_sigma, size=param.all_time) def brownian_motion_levels( param: ModelParameters, seed: int = None ) -> np.ndarray: """ Returns a price sequence whose returns evolve according to a brownian motion :param param: model parameters object :param seed: :return: returns a price sequence which follows a brownian motion """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" return convert_to_prices( param, brownian_motion_log_returns(param, seed=seed) ) def geometric_brownian_motion_log_returns( param: ModelParameters, seed: int = None ) -> np.ndarray: """ This method constructs a sequence of log returns which, when exponentiated, produce a random Geometric Brownian Motion (GBM). GBM is the stochastic process underlying the Black Scholes options pricing formula. :param param: model parameters object :param seed: :return: returns the log returns of a geometric brownian motion process """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" wiener_process = np.array(brownian_motion_log_returns(param, seed=seed)) sigma_pow_mu_delta = ( param.gbm_mu - 0.5 * math.pow(param.all_sigma, 2.0) ) * param.all_delta return wiener_process + sigma_pow_mu_delta def geometric_brownian_motion_levels( param: ModelParameters, seed: int = None ) -> np.ndarray: """ Returns a sequence of price levels for an asset which evolves according to a geometric brownian motion :param param: model parameters object :param seed: :return: the price levels for the asset """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" return convert_to_prices( param, geometric_brownian_motion_log_returns(param, seed=seed) ) def jump_diffusion_process(param: ModelParameters, seed: int = None) -> list: """ This method produces a sequence of Jump Sizes which represent a jump diffusion process. These jumps are combined with a geometric brownian motion (log returns) to produce the Merton model. :param param: the model parameters object :param seed: :return: jump sizes for each point in time (mostly zeroes if jumps are infrequent) """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" if seed is not None: nrand.seed(seed) s_n = time = 0 small_lamda = -(1.0 / param.lamda) jump_sizes = [] for k in range(0, param.all_time): jump_sizes.append(0.0) while s_n < param.all_time: s_n += small_lamda * math.log(nrand.uniform(0, 1)) for j in range(0, param.all_time): if ( time * param.all_delta <= s_n * param.all_delta <= (j + 1) * param.all_delta ): jump_sizes[j] += nrand.normal( param.jumps_mu, param.jumps_sigma ) break time += 1 return jump_sizes def geometric_brownian_motion_jump_diffusion_log_returns( param: ModelParameters, seed: int = None ) -> np.ndarray: """ This method constructs combines a geometric brownian motion process (log returns) with a jump diffusion process (log returns) to produce a sequence of gbm jump returns. :param param: model parameters object :param seed: :return: returns a GBM process with jumps in it """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" jump_diffusion = jump_diffusion_process(param, seed=seed) geometric_brownian_motion = geometric_brownian_motion_log_returns( param, seed=seed ) return np.add(jump_diffusion, geometric_brownian_motion) def geometric_brownian_motion_jump_diffusion_levels( param: ModelParameters, seed: int = None ) -> np.ndarray: """ This method converts a sequence of gbm jmp returns into a price sequence which evolves according to a geometric brownian motion but can contain jumps at any point in time. :param param: model parameters object :param seed: :return: the price levels """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" return convert_to_prices( param, geometric_brownian_motion_jump_diffusion_log_returns(param, seed=seed), ) def heston_construct_correlated_path( param: ModelParameters, brownian_motion_one: np.ndarray, seed: int = None ) -> Tuple[np.ndarray, np.ndarray]: """ This method is a simplified version of the Cholesky decomposition method for just two assets. It does not make use of matrix algebra and is therefore quite easy to implement. :param param: model parameters object :param brownian_motion_one: A first path to correlate against :param seed: :return: a correlated brownian motion path """ assert isinstance( param, ModelParameters ), "param must be an object of Class ModelParameters" if seed is not None: nrand.seed(seed) # We do not multiply by sigma here, we do that in
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Dict, Union import cirq import numpy as np from . import qsim # List of parameter names that appear in valid Cirq protos. GATE_PARAMS = [ "exponent", "phase_exponent", "global_shift", "x_exponent", "z_exponent", "axis_phase_exponent", "phi", "theta", ] def _cirq_gate_kind(gate: cirq.ops.Gate): if isinstance(gate, cirq.ops.ControlledGate): return _cirq_gate_kind(gate.sub_gate) if isinstance(gate, cirq.ops.identity.IdentityGate): # Identity gates will decompose to no-ops. pass if isinstance(gate, cirq.ops.XPowGate): # cirq.rx also uses this path. if gate.exponent == 1 and gate.global_shift == 0: return qsim.kX return qsim.kXPowGate if isinstance(gate, cirq.ops.YPowGate): # cirq.ry also uses this path. if gate.exponent == 1 and gate.global_shift == 0: return qsim.kY return qsim.kYPowGate if isinstance(gate, cirq.ops.ZPowGate): # cirq.rz also uses this path. if gate.global_shift == 0: if gate.exponent == 1: return qsim.kZ if gate.exponent == 0.5: return qsim.kS if gate.exponent == 0.25: return qsim.kT return qsim.kZPowGate if isinstance(gate, cirq.ops.HPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kH return qsim.kHPowGate if isinstance(gate, cirq.ops.CZPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kCZ return qsim.kCZPowGate if isinstance(gate, cirq.ops.CXPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kCX return qsim.kCXPowGate if isinstance(gate, cirq.ops.PhasedXPowGate): return qsim.kPhasedXPowGate if isinstance(gate, cirq.ops.PhasedXZGate): return qsim.kPhasedXZGate if isinstance(gate, cirq.ops.XXPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kXX return qsim.kXXPowGate if isinstance(gate, cirq.ops.YYPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kYY return qsim.kYYPowGate if isinstance(gate, cirq.ops.ZZPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kZZ return qsim.kZZPowGate if isinstance(gate, cirq.ops.SwapPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kSWAP return qsim.kSwapPowGate if isinstance(gate, cirq.ops.ISwapPowGate): # cirq.riswap also uses this path. if gate.exponent == 1 and gate.global_shift == 0: return qsim.kISWAP return qsim.kISwapPowGate if isinstance(gate, cirq.ops.PhasedISwapPowGate): # cirq.givens also uses this path. return qsim.kPhasedISwapPowGate if isinstance(gate, cirq.ops.FSimGate): return qsim.kFSimGate if isinstance(gate, cirq.ops.TwoQubitDiagonalGate): return qsim.kTwoQubitDiagonalGate if isinstance(gate, cirq.ops.ThreeQubitDiagonalGate): return qsim.kThreeQubitDiagonalGate if isinstance(gate, cirq.ops.CCZPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kCCZ return qsim.kCCZPowGate if isinstance(gate, cirq.ops.CCXPowGate): if gate.exponent == 1 and gate.global_shift == 0: return qsim.kCCX return qsim.kCCXPowGate if isinstance(gate, cirq.ops.CSwapGate): return qsim.kCSwapGate if isinstance(gate, cirq.ops.MatrixGate): if gate.num_qubits() <= 6: return qsim.kMatrixGate raise NotImplementedError( f"Received matrix on {gate.num_qubits()} qubits; " + "only up to 6-qubit gates are supported." ) if isinstance(gate, cirq.ops.MeasurementGate): # needed to inherit SimulatesSamples in sims return qsim.kMeasurement # Unrecognized gates will be decomposed. return None def _control_details(gate: cirq.ops.ControlledGate, qubits): control_qubits = [] control_values = [] # TODO: support qudit control for i, cvs in enumerate(gate.control_values): if 0 in cvs and 1 in cvs: # This qubit does not affect control. continue elif 0 not in cvs and 1 not in cvs: # This gate will never trigger. warnings.warn(f"Gate has no valid control value: {gate}", RuntimeWarning) return (None, None) # Either 0 or 1 is in cvs, but not both. control_qubits.append(qubits[i]) if 0 in cvs: control_values.append(0) elif 1 in cvs: control_values.append(1) return (control_qubits, control_values) def add_op_to_opstring( qsim_op: cirq.GateOperation, qubit_to_index_dict: Dict[cirq.Qid, int], opstring: qsim.OpString, ): """Adds an operation to an opstring (observable). Raises: ValueError if qsim_op is not a single-qubit Pauli (I, X, Y, or Z). """ qsim_gate = qsim_op.gate gate_kind = _cirq_gate_kind(qsim_gate) if gate_kind not in {qsim.kX, qsim.kY, qsim.kZ, qsim.kI1}: raise ValueError(f"OpString should only have Paulis; got {gate_kind}") if len(qsim_op.qubits) != 1: raise ValueError(f"OpString ops should have 1 qubit; got {len(qsim_op.qubits)}") is_controlled = isinstance(qsim_gate, cirq.ops.ControlledGate) if is_controlled: raise ValueError(f"OpString ops should not be controlled.") qubits = [qubit_to_index_dict[q] for q in qsim_op.qubits] qsim.add_gate_to_opstring(gate_kind, qubits, opstring) def add_op_to_circuit( qsim_op: cirq.GateOperation, time: int, qubit_to_index_dict: Dict[cirq.Qid, int], circuit: Union[qsim.Circuit, qsim.NoisyCircuit], ): """Adds an operation to a noisy or noiseless circuit.""" qsim_gate = qsim_op.gate gate_kind = _cirq_gate_kind(qsim_gate) qubits = [qubit_to_index_dict[q] for q in qsim_op.qubits] qsim_qubits = qubits is_controlled = isinstance(qsim_gate, cirq.ops.ControlledGate) if is_controlled: control_qubits, control_values = _control_details(qsim_gate, qubits) if control_qubits is None: # This gate has no valid control, and will be omitted. return num_targets = qsim_gate.num_qubits() - qsim_gate.num_controls() if num_targets > 4: raise NotImplementedError( f"Received control gate on {num_targets} target qubits; " + "only up to 4-qubit gates are supported." ) qsim_qubits = qubits[qsim_gate.num_controls() :] qsim_gate = qsim_gate.sub_gate if ( gate_kind == qsim.kTwoQubitDiagonalGate or gate_kind == qsim.kThreeQubitDiagonalGate ): if isinstance(circuit, qsim.Circuit): qsim.add_diagonal_gate( time, qsim_qubits, qsim_gate._diag_angles_radians, circuit ) else: qsim.add_diagonal_gate_channel( time, qsim_qubits, qsim_gate._diag_angles_radians, circuit ) elif gate_kind == qsim.kMatrixGate: m = [ val for i in list(cirq.unitary(qsim_gate).flat) for val in [i.real, i.imag] ] if isinstance(circuit, qsim.Circuit): qsim.add_matrix_gate(time, qsim_qubits, m, circuit) else: qsim.add_matrix_gate_channel(time, qsim_qubits, m, circuit) else: params = {} for p, val in vars(qsim_gate).items(): key = p.strip("_") if key not in GATE_PARAMS: continue if isinstance(val, (int, float, np.integer, np.floating)): params[key] = val else: raise ValueError("Parameters must be numeric.") if isinstance(circuit, qsim.Circuit): qsim.add_gate(gate_kind, time, qsim_qubits, params, circuit) else: qsim.add_gate_channel(gate_kind, time, qsim_qubits, params, circuit) if is_controlled: if isinstance(circuit, qsim.Circuit): qsim.control_last_gate(control_qubits, control_values, circuit) else: qsim.control_last_gate_channel(control_qubits, control_values, circuit) class QSimCircuit(cirq.Circuit): def __init__( self, cirq_circuit: cirq.Circuit, device: cirq.devices = cirq.devices.UNCONSTRAINED_DEVICE, allow_decomposition: bool = False, ): if allow_decomposition: super().__init__([], device=device) for moment in cirq_circuit: for op in moment: # This should call decompose on the gates self.append(op) else: super().__init__(cirq_circuit, device=device) def __eq__(self, other): if not isinstance(other, QSimCircuit): return False # equality is tested, for the moment, for cirq.Circuit return super().__eq__(other) def _resolve_parameters_( self, param_resolver: cirq.study.ParamResolver, recursive: bool = True ): return QSimCircuit( cirq.resolve_parameters(super(), param_resolver, recursive), device=self.device, ) def translate_cirq_to_qsim( self, qubit_order: cirq.ops.QubitOrderOrList = cirq.ops.QubitOrder.DEFAULT ) -> qsim.Circuit: """ Translates this Cirq circuit to the qsim representation. :qubit_order: Ordering of qubits :return: a tuple of (C++ qsim Circuit object, moment boundary gate indices) """ qsim_circuit = qsim.Circuit() ordered_qubits = cirq.ops.QubitOrder.as_qubit_order(qubit_order).order_for( self.all_qubits() ) qsim_circuit.num_qubits = len(ordered_qubits) # qsim numbers qubits in reverse order from cirq ordered_qubits = list(reversed(ordered_qubits)) def has_qsim_kind(op: cirq.ops.GateOperation): return _cirq_gate_kind(op.gate) != None def to_matrix(op: cirq.ops.GateOperation): mat = cirq.unitary(op.gate, None) if mat is None: return NotImplemented return cirq.ops.MatrixGate(mat).on(*op.qubits) qubit_to_index_dict = {q: i for i, q in enumerate(ordered_qubits)} time_offset = 0 gate_count = 0 moment_indices = [] for moment in self: ops_by_gate = [ cirq.decompose(op, fallback_decomposer=to_matrix, keep=has_qsim_kind) for op in moment ] moment_length = max((len(gate_ops) for gate_ops in ops_by_gate), default=0) # Gates must be added in time order. for gi in range(moment_length): for gate_ops in ops_by_gate: if gi >= len(gate_ops): continue qsim_op = gate_ops[gi] time = time_offset + gi add_op_to_circuit(qsim_op, time, qubit_to_index_dict, qsim_circuit) gate_count += 1 time_offset += moment_length moment_indices.append(gate_count) return qsim_circuit, moment_indices def translate_cirq_to_qtrajectory( self, qubit_order: cirq.ops.QubitOrderOrList = cirq.ops.QubitOrder.DEFAULT ) -> qsim.NoisyCircuit: """ Translates this noisy Cirq circuit to the qsim representation. :qubit_order: Ordering of qubits :return: a tuple of (C++ qsim NoisyCircuit object, moment boundary gate indices) """ qsim_ncircuit = qsim.NoisyCircuit() ordered_qubits = cirq.ops.QubitOrder.as_qubit_order(qubit_order).order_for( self.all_qubits() ) # qsim numbers qubits in reverse order from cirq ordered_qubits = list(reversed(ordered_qubits)) qsim_ncircuit.num_qubits = len(ordered_qubits) def has_qsim_kind(op: cirq.ops.GateOperation): return _cirq_gate_kind(op.gate) != None def to_matrix(op: cirq.ops.GateOperation): mat = cirq.unitary(op.gate, None) if mat is None: return NotImplemented return cirq.ops.MatrixGate(mat).on(*op.qubits) qubit_to_index_dict = {q: i for i, q in enumerate(ordered_qubits)} time_offset = 0 gate_count = 0 moment_indices = [] for moment in self: moment_length = 0 ops_by_gate = [] ops_by_mix = [] ops_by_channel = [] # Capture ops of each type in the appropriate list. for qsim_op in moment: if cirq.has_unitary(qsim_op) or cirq.is_measurement(qsim_op): oplist = cirq.decompose( qsim_op, fallback_decomposer=to_matrix, keep=has_qsim_kind ) ops_by_gate.append(oplist) moment_length = max(moment_length, len(oplist)) pass elif cirq.has_mixture(qsim_op): ops_by_mix.append(qsim_op) moment_length = max(moment_length, 1) pass elif cirq.has_kraus(qsim_op): ops_by_channel.append(qsim_op) moment_length = max(moment_length, 1) pass else: raise ValueError(f"Encountered unparseable op: {qsim_op}") # Gates must be added in time order. for gi in range(moment_length): # Handle gate output. for gate_ops in ops_by_gate: if gi >= len(gate_ops): continue qsim_op = gate_ops[gi]
#!/usr/bin/env python #%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%# #%!%!% ----------------------------- FPTE_Result_Stress_2nd ----------------------------- %!%!%# #%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%# # # AUTHORs: # <NAME> # <EMAIL> # # <NAME> # <EMAIL> # # DATE: # July 01 00:00:00 2018 # # SYNTAX: # python FPTE_Result_Stress_2nd.py # FPTE_Result_Stress_2nd # # EXPLANATION: # #__________________________________________________________________________________________________ from sys import stdin # from numpy import * import numpy as np import subprocess import os.path import shutil import math import time import sys import os def fpte_results(): #%!%!%--- Dictionaries ---%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!% head = {\ 'CI':'\ for, space group-number between 207 and 230, Cubic I structure. \n\n\ C11 C12 C12 0 0 0 \n\ C12 C11 C12 0 0 0 \n\ C12 C12 C11 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ 0 0 0 0 0 C44 \n',\ 'CII':'\ for, space group-number between 195 and 206, Cubic II structure. \n\n\ C11 C12 C12 0 0 0 \n\ C12 C11 C12 0 0 0 \n\ C12 C12 C11 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ 0 0 0 0 0 C44 \n',\ 'HI':'\ for, space group-number between 177 and 194, Hexagonal I structure. \n\n\ C11 C12 C13 0 0 0 \n\ C12 C11 C13 0 0 0 \n\ C13 C13 C33 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ 0 0 0 0 0 (C11-C12)/2 \n',\ 'HII':'\ for, space group-number between 168 and 176, Hexagonal II structure. \n\n\ C11 C12 C13 0 0 0 \n\ C12 C11 C13 0 0 0 \n\ C13 C13 C33 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ 0 0 0 0 0 (C11-C12)/2 \n',\ 'RI':'\ for, space group-number between 149 and 167, Rhombohedral I structure. \n\n\ C11 C12 C13 C14 0 0 \n\ C12 C11 C13 -C14 0 0 \n\ C13 C13 C33 0 0 0 \n\ C14 -C14 0 C44 0 0 \n\ 0 0 0 0 C44 C14 \n\ 0 0 0 0 C14 (C11-C12)/2 \n',\ 'RII':'\ for, space group-number between 143 and 148, Rhombohedral II structure.\n\n\ C11 C12 C13 C14 C15 0 \n\ C12 C11 C13 -C14 -C15 0 \n\ C13 C13 C33 0 0 0 \n\ C14 -C14 0 C44 0 -C15 \n\ C15 -C15 0 0 C44 C14 \n\ 0 0 0 -C15 C14 (C11-C12)/2 \n',\ 'TI':'\ for, space group-number between 89 and 142, Tetragonal I structure. \n\n\ C11 C12 C13 0 0 0 \n\ C12 C11 C13 0 0 0 \n\ C13 C13 C33 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ 0 0 0 0 0 C66 \n',\ 'TII':'\ for, space group-number between 75 and 88, Tetragonal II structure. \n\n\ C11 C12 C13 0 0 C16 \n\ C12 C11 C13 0 0 -C16 \n\ C13 C13 C33 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C44 0 \n\ C16 -C16 0 0 0 C66 \n',\ 'O':'\ for, space group-number between 16 and 74, Orthorhombic structure. \n\n\ C11 C12 C13 0 0 0 \n\ C12 C22 C23 0 0 0 \n\ C13 C23 C33 0 0 0 \n\ 0 0 0 C44 0 0 \n\ 0 0 0 0 C55 0 \n\ 0 0 0 0 0 C66 \n',\ 'M':'\ for, space group-number between 3 and 15, Monoclinic structure. \n\n\ C11 C12 C13 0 0 C16 \n\ C12 C22 C23 0 0 C26 \n\ C13 C23 C33 0 0 C36 \n\ 0 0 0 C44 C45 0 \n\ 0 0 0 C45 C55 0 \n\ C16 C26 C36 0 0 C66 \n',\ 'N':'\ for, space group-number between 1 and 2, Triclinic structure. \n\n\ C11 C12 C13 C14 C15 C16 \n\ C12 C22 C23 C24 C25 C26 \n\ C13 C23 C33 C34 C35 C36 \n\ C14 C24 C34 C44 C45 C46 \n\ C15 C25 C35 C45 C55 C56 \n\ C16 C26 C36 C46 C56 C66 \n'} #-------------------------------------------------------------------------------------------------- #%!%!%--- Reading the "INFO_FPTE" file ---%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%! INFO=open('INFO_FPTE', 'r') l1 = INFO.readline() ordr= int(l1.split()[-1]) if (ordr != 2 and ordr != 3): sys.exit('\n.... Oops ERROR: The order of the elastic constant is NOT clear !?!?!?'\ '\n Something is WRONG in the "INFO_FPTE" file.\n') l2 = INFO.readline() mthd= l2.split()[-1] if (mthd != 'Stress' and mthd != 'Energy'): sys.exit('\n.... Oops ERROR: The method of the calculation is NOT clear !?!?!?'\ '\n Something is WRONG in the "INFO_FPTE" file.\n') l3 = INFO.readline() cod = l3.split()[-1] if (cod != 'WIEN2k' and cod != 'exciting' and cod != 'ESPRESSO' and cod != 'VASP'): sys.exit('\n.... Oops ERROR: The DFT code is NOT clear !?!?!?'\ '\n Something is WRONG in the "INFO_FPTE" file.\n') #l5 = INFO.readline() #V0 = float(l5.split()[-2]) l6 = INFO.readline() mdr = float(l6.split()[-1]) l7 = INFO.readline() NoP = int(l7.split()[-1]) l4 = INFO.readline() SGN = int(l4.split()[-1]) INFO.close() #-------------------------------------------------------------------------------------------------- #%%%--- Calculating the Space-Group Number and classifying it ---%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%! # NoD = Number of Deformation if (1 <= SGN and SGN <= 2): # Triclinic LC = 'N' NoD= 6 elif(3 <= SGN and SGN <= 15): # Monoclinic LC = 'M' NoD= 5 elif(16 <= SGN and SGN <= 74): # Orthorhombic LC = 'O' NoD= 3 elif(75 <= SGN and SGN <= 88): # Tetragonal II LC = 'TII' NoD= 2 elif(89 <= SGN and SGN <= 142): # Tetragonal I LC = 'TI' NoD= 2 elif(143 <= SGN and SGN <= 148): # Rhombohedral II LC = 'RII' NoD= 2 elif(149 <= SGN and SGN <= 167): # Rhombohedral I LC = 'RI' NoD= 2 elif(168 <= SGN and SGN <= 176): # Hexagonal II LC = 'HII' NoD= 2 elif(177 <= SGN and SGN <= 194): # Hexagonal I LC = 'HI' NoD= 2 elif(195 <= SGN and SGN <= 206): # Cubic II LC = 'CII' NoD= 1 elif(207 <= SGN and SGN <= 230): # Cubic I LC = 'CI' NoD= 1 else: sys.exit('\n.... Oops ERROR: WRONG Space-Group Number !?!?!? \n') #-------------------------------------------------------------------------------------------------- lineseparator=' ' for i in range(0,79): lineseparator=lineseparator+'%' #%%%--- Making the Matrix ---%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!%!% if (LC == 'CI' or \ LC == 'CII'): Matrix = np.mat([[1.0, 5.0, 0.0], [2.0, 4.0, 0.0], [3.0, 3.0, 0.0], [0.0, 0.0, 4.0], [0.0, 0.0, 5.0], [0.0, 0.0, 6.0]]) if (LC == 'HI' or \ LC == 'HII'): Matrix = np.mat([[ 1, 2, 3, 0, 0], [ 2, 1, 3, 0, 0], [ 0, 0, 3, 3, 0], [ 0, 0, 0, 0, 4], [ 0, 0, 0, 0, 5], [ 3,-3, 0, 0, 0], [ 3,-5,-1, 0, 0], [-5, 3,-1, 0, 0], [ 0, 0,-2,-1, 0], [ 0, 0, 0, 0, 6], [ 0, 0, 0, 0, 2], [-2, 2, 0, 0, 0]]) if (LC == 'RI'): Matrix = np.mat([[ 1, 2, 3, 4, 0, 0], [ 2, 1, 3,-4, 0, 0], [ 0, 0, 3, 0, 3, 0], [ 0, 0, 0,-1, 0, 4], [ 0, 0, 0, 6, 0, 5], [ 3,-3, 0, 5, 0, 0], [ 3,-5,-1, 6, 0, 0], [-5, 3,-1,-6, 0, 0], [ 0, 0,-2, 0,-1, 0], [ 0, 0, 0, 8, 0, 6], [ 0, 0, 0,-4, 0, 2], [-2, 2, 0, 2, 0, 0]]) if (LC == 'RII'): Matrix = np.mat([[ 1, 2, 3, 4, 5, 0, 0], [ 2, 1, 3,-4,-5, 0, 0], [ 0, 0, 3, 0, 0, 3, 0], [ 0, 0, 0,-1,-6, 0, 4], [ 0, 0, 0, 6,-1, 0, 5], [ 3,-3, 0, 5,-4, 0, 0], [ 3,-5,-1, 6, 2, 0, 0], [-5, 3,-1,-6,-2, 0, 0], [ 0, 0,-2, 0, 0,-1, 0], [ 0, 0, 0, 8, 4, 0, 6], [ 0, 0, 0,-4, 8, 0, 2], [-2, 2, 0, 2,-6, 0, 0]]) if (LC == 'TI'): Matrix = np.mat([[ 1, 2, 3, 0, 0, 0], [ 2, 1, 3, 0, 0, 0], [ 0, 0, 3, 3, 0, 0], [ 0, 0, 0, 0, 4, 0],
council to deal only with the important and necessary matters, we should not only refuse to obey you, but consider you insane or criminals.", "Even Lucifer was not guilty of so great a sacrilege in heaven, for he only presumed to be God's equal. God help us!", "You condemned the holy gospel and replaced it with the teaching of the dragon from hell.", "Your words are un-Christian, antichristian, and spoken by the inspiration of the evil spirit.", "What happened to the house built on sand in Matthewwill also happen to you.", "Must we believe your nightmares?", "Look how this great heretic speaks brazenly and sacrilegiously.", "You run against God with the horns of your pride up in the air and thus plunge into the abyss of hell. Woe unto you, Antichrist!", "You are the devil's most dangerous tool!", "It seems I must have liars and villains for opponents. I am not worthy in the sight of God that a godly and honorable person should discuss these matters with me in a Christian way. This is my greatest lament.May the Lord Jesus protect me and all devout souls from your contagion and your company!", "This venom - the mere smell of which kills a man!", "You are a Baal-zebub - that is, a man of flies.", "You are full of poisonous refuse and insane foolishness.", "You are ignorant, stupid, godless blasphemers.", "You moderate enforcer and eulogizer of moderation. You are one of those bloody and deceitful people who affect modesty in words and appearance, but who meanwhile breathe out threats and blood.", "We leave you to your own devices, for nothing properly suits you except hypocrisy, flattery, and lies.", "In lying fashion you ignore what even children know.", "The reward of such flattery is what your crass stupidity deserves. Therefore, we shall turn from you, a sevenfold stupid and blasphemous wise person.", "People of your sort are hirelings, dumb dogs unable to bark, who see the wolf coming and flee or, rather, join up with the wolf.", "You are a wolf and apostle of Satan.", "You are the ultimate scourges of the world, the Antichrist together with your sophists and bishops.", "You cowardly slave, you corrupt sycophant, with your sickening advice!", "You are idiots and swine.", "Every letter of yours breathes Moabitish pride. So much can a single bull inflate a single bubble that you practically make distinguished asses into gods.", "You sophistic worms, grasshoppers, locusts, frogs and lice!", "You completely close your mind and do nothing but shout, 'Anathema, anathema, anathema!' so that by your own voice you are judged mad.", "Let this generation of vipers prepare itself for unquenchable fire!", "You rush forward as an ass under the pelt of a lion.", "In appearance and words you simulate modesty, but you are so swollen with haughtiness, arrogance, pride, malice, villainy, rashness, superciliousness, ignorance, and stupidity that there is nothing to surpass you.", "Blind moles!", "We despise your whorish impudence.", "You arsonists, enemies of languages and truth!", "Before God and men I accuse all of you as arsonists, blasphemers, murderers, and ravagers of Christian piety.", "My soul, like Ezekiel's, is nauseated at eating your bread covered with human dung. Do you know what this means?", "You pant after the garlic and melons of Egypt and have already long suffered from perverted tastes.", "You people are more stupid than a block of wood.", "You foster in your heart a Lucian, or some other pig from Epicurus' sty.", "You reek of nothing but Lucian, and you breathe out on me the vast drunken folly of Epicurus.", "You find things irreverent, inquisitive, and vain just as all ungodly men do, or rather, as the demons and the damned find things hateful and detestable.", "You seem to be wrangling about goat's wool, like the man who watched the play in an empty theater.", "You are dumber than Seriphian frogs and fishes.", "You conduct yourself like one drunk or asleep, belching out between your snores, 'Yes, No.'", "How is it, then, that you drivel like people in their second childhood?", "Just as in a picture or dream you might see the king of the flies with his lances of straw and shields of hay arrayed against a real and regular army of seasoned human troops, that is how you go to war.", "Proteus is no Proteus compared with you.", "You do nothing with all your profusion of words but fight a fire with dry straw.", "Perhaps you want me to die of unrelieved boredom while you keep on talking.", "Are you ignorant of what it means to be ignorant?", "You speak and act only as an ungodly person does.", "I would not smell the foul odor of your name.", "Are you not making an elephant out of a fly? What wonder workers!", "You worship a Dagon and a god of your stomachs.", "You have a priesthood of Satan.", "As for the signs of your peculiar priesthood, we are willing to let you boast of these mean things, for we know it would be quite easy to shave, anoint, and clothe in a long robe even a pig or a block of wood.", "In your hiding place you use the most fearless language as though you were full of three holy spirits. Such unseemly boasting reveals clearly what kind of a spirit you are.", "Truly, I never imagined, and at the same time was shocked, to see how deeply you still cling to your errors.", "You are a coarse devil who hurts me but little.", "Such loose, lame, empty talk, set forth on the basis of your own reason and idiosyncrasy, would lead me to believe first of all that your opinions amount to nothing.", "Get out in the name of a thousand devils, and break your neck before you are out of the city.", "You have a perverted spirit that thinks only of murdering the conscience.", "You teach the disorderly masses to break into this field in disorder like pigs.", "Phooey on you, you servant of idols!", "You are a toad eater and a fawner.", "Take care, you evil and wrathful spirits. God may ordain that in swallowing you may choke to death.", "Perhaps you like to hear yourself talk, as the stork its own clattering.", "You are the cousins of the Antichrist.", "You are the sin-master and soul-murdered.", "Just as the devil is disorderly and jumbles things together, so your writings and head are equally disordered and mixed up, so that it is exceedingly annoying to read and difficult to remember what you write.", "Do you not see here the devil, the enemy of God's order?", "Who ever does not know the devil might be misled by these many splendid words to think that five holy spirits were in possession of you. Whoever differs from you is a papist twice over who crucifies or murders Christ; indeed, those who differ from you are Scribes. Whoever agrees with you, however, is up to their boots in the spirit and is a learned light. O wonderful saints! What do you think of yourselves? Do you fully grasp what kind of a spirit you have?", "You plunge in like a sow to devour pearls, and like a dog tearing holy things to pieces.", "In devil's fashion you go out where God would enter and enter where God goes out. It ought surprise no one that I call you a devil.", "Listen, murdered of souls and sinful spirit!", "Stupid spirit.", "What light can there be in heads that hold such tangible darkness?", "We may confidently suppose and be sure that your spirit will produce evidence and proof when the devil becomes God.", "The devil rides you.", "You have
the layer's input: all the outputs of the previous layers, resulting in [x_0, ..., x_l-1, x_l]. Returns the layer's output, as well as the input of its conv2d. Args: _input: tensor, the operation's input; layer: `int`, identifier number for this layer (within a block); growth_rate: `int`, number of new convolutions per dense layer. """ with tf.variable_scope("layer_%d" % layer): # use the composite function H_l (3x3 kernel conv) if not self.bc_mode: comp_out, filter_ref, kernels, in_cv = self.composite_function( _input, out_features=growth_rate, kernel_size=3) # in DenseNet-BC mode, add a bottleneck layer before H_l (1x1 conv) elif self.bc_mode: bottleneck_out, filter_ref = self.bottleneck( _input, out_features=growth_rate) if self.ft_filters or self.should_self_construct: self.filter_ref_list[-1].append(filter_ref) comp_out, filter_ref, kernels, in_cv = self.composite_function( bottleneck_out, out_features=growth_rate, kernel_size=3) # save a reference to the composite function's filter if self.ft_filters or self.should_self_construct: self.filter_ref_list[-1].append(filter_ref) if self.ft_kernels or self.should_self_construct: self.kernel_name_counter = growth_rate-1 self.kernels_ref_list[-1].append(kernels) # concatenate output of H_l with layer input (all previous outputs) if TF_VERSION[0] >= 1 and TF_VERSION[1] >= 0: output = tf.concat(axis=3, values=(_input, comp_out)) else: output = tf.concat(3, (_input, comp_out)) # If self-constructing at kernel level, keep track of kernel CS. if self.has_micro_algo: self.kCS_FIFO = [ deque(maxlen=self.dkCS_softening) for i in range(growth_rate)] self.dkCS_FIFO = [ deque(maxlen=self.dkCS_std_window) for i in range(growth_rate)] return output, in_cv def add_block(self, _input, block, growth_rate, layers_in_block, is_last): """ Adds a new block containing several convolutional (dense) layers. These are connected together following a DenseNet architecture, as defined in the paper. Returns the block's output, as well as the inputs to the last layer and to its conv2d. Args: _input: tensor, the operation's input; block: `int`, identifier number for this block; growth_rate: `int`, number of new convolutions per dense layer; layers_in_block: `int`, number of dense layers in this block; is_last: `bool`, is this the last block in the network or not. """ if self.ft_filters or self.should_self_construct: self.filter_ref_list.append([]) if self.ft_kernels or self.should_self_construct: self.kernels_ref_list.append([]) if is_last: self.cross_entropy = [] with tf.variable_scope("Block_%d" % block) as self.current_block: output = _input for layer in range(layers_in_block): # The inputs of the last layer and its conv2d must be saved # (useful for self-construction kernel by kernel) input_lt_lay = output output, input_lt_cnv = self.add_internal_layer( input_lt_lay, layer, growth_rate) if self.ft_cross_entropies and is_last: # Save the cross-entropy for all layers except the last one # (it is always saved as part of the end-graph operations) if layer != layers_in_block-1: _, cross_entropy = self.cross_entropy_loss( output, self.labels, block, layer, preserve_transition=self.preserve_transition_l) self.cross_entropy.append(cross_entropy) return output, input_lt_lay, input_lt_cnv # TRANSITION LAYERS ------------------------------------------------------- # ------------------------------------------------------------------------- def transition_layer(self, _input, block): """ Adds a new transition layer after a block. This layer's inputs are the concatenated feature maps of each layer in the block. The layer first runs the composite function with kernel size 1: - In DenseNet mode, it produces as many feature maps as the input had. - In DenseNet-BC mode, it produces reduction (theta) times as many, compressing the output. Afterwards, an average pooling operation (of size 2) is carried to change the output's size. Args: _input: tensor, the operation's input; block: `int`, identifier number for the previous block. """ with tf.variable_scope("Transition_after_block_%d" % block): # add feature map compression in DenseNet-BC mode out_features = int(int(_input.get_shape()[-1]) * self.reduction) # use the composite function H_l (1x1 kernel conv) output, filter_ref, kernels, in_cv = self.composite_function( _input, out_features=out_features, kernel_size=1) # save a reference to the composite function's filter if self.ft_filters or self.should_self_construct: self.filter_ref_list[-1].append(filter_ref) if self.ft_kernels or self.should_self_construct: self.kernels_ref_list[-1].append(kernels) # use average pooling to reduce feature map size output = self.avg_pool(output, k=2) return output def transition_layer_to_classes(self, _input, block, layer): """ Adds the transition layer after the last block. This layer outputs the estimated probabilities by classes. It performs: - batch normalisation, - ReLU activation function, - wider-than-normal average pooling, - reshaping the output into a 1d tensor, - fully-connected layer (matrix multiplication, weights and biases). Args: _input: tensor, the operation's input; block: `int`, identifier number for the last block; layer: `int`, identifier number for the last layer in that block. """ self.features_total = int(_input.get_shape()[-1]) var_scope = "Transition_to_FC_block_%d" % block FC_name = "FC_block_%d" % block if not self.preserve_transition_l: var_scope += "_layer_%d" % layer FC_name += "_layer_%d" % layer with tf.variable_scope(var_scope, reuse=tf.AUTO_REUSE): # Batch normalisation. self.batch_norm_counter = 0 output = self.batch_norm( _input, scope='BatchNorm_'+str(self.batch_norm_counter)) # ReLU activation function. output = tf.nn.relu(output) # Wide average pooling. last_pool_kernel = int(output.get_shape()[-2]) output = self.avg_pool(output, k=last_pool_kernel) # Reshaping the output into 1d. output = tf.reshape(output, [-1, self.features_total]) # FC (fully-connected) layer. self.FC_W = [] for i in range(self.features_total): self.FC_W.append(self.weight_variable_xavier( [self.n_classes], name=FC_name+("_W%d" % i))) self.FC_W_counter = self.features_total-1 self.FC_bias = self.bias_variable( [self.n_classes], name=FC_name+"_bias") stacked_FC_W = tf.stack(self.FC_W, axis=0) logits = tf.matmul(output, stacked_FC_W) + self.FC_bias return logits def reconstruct_transition_to_classes(self, _input, block, layer): """ Reconstruct the transition layer to classes after adding a new kernel or layer in the last block (in such a case, the transition layer must remain mostly unchanged except for the new weights). Args: _input: tensor, the operation's input; block: `int`, identifier number for the last block; layer: `int`, identifier number for the last layer in that block. """ new_features_total = int(_input.get_shape()[-1]) var_scope = "Transition_to_FC_block_%d" % block FC_name = "FC_block_%d" % block if not self.preserve_transition_l: var_scope += "_layer_%d" % layer FC_name += "_layer_%d" % layer with tf.variable_scope(var_scope, reuse=tf.AUTO_REUSE): # The batch norm contains beta and gamma params for each kernel, # we first copy the param values from old kernels. beta_values = self.sess.run(tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/beta", [self.features_total])) gamma_values = self.sess.run(tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/gamma", [self.features_total])) # Then we create a new batch norm and initialize its params. self.batch_norm_counter += 1 output = self.batch_norm( _input, scope='BatchNorm_'+str(self.batch_norm_counter)) new_beta = tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/beta", [new_features_total]) new_gamma = tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/gamma", [new_features_total]) self.sess.run(tf.variables_initializer([new_beta, new_gamma])) # For these params, we copy the old param values, and leave # the remaining new values for the new kernels. new_beta_values = self.sess.run(new_beta) new_gamma_values = self.sess.run(new_gamma) difference = new_features_total-self.features_total new_beta_values[:-difference] = beta_values new_gamma_values[:-difference] = gamma_values # Then we assign the modified values to reconstruct the batch norm. self.sess.run(new_beta.assign(new_beta_values)) self.sess.run(new_gamma.assign(new_gamma_values)) self.features_total = new_features_total # ReLU, average pooling, and reshaping into 1d # these do not contain any trainable params, so they are rewritten. output = tf.nn.relu(output) last_pool_kernel = int(output.get_shape()[-2]) output = self.avg_pool(output, k=last_pool_kernel) features_total = int(output.get_shape()[-1]) output = tf.reshape(output, [-1, features_total]) # For the FC layer: add new weights, keep biases and old weights. for i in range(len(self.FC_W), features_total): self.FC_W_counter += 1 self.FC_W.append(self.weight_variable_xavier( [self.n_classes], name=FC_name+("_W%d" % self.FC_W_counter))) stacked_FC_W = tf.stack(self.FC_W, axis=0) logits = tf.matmul(output, stacked_FC_W) + self.FC_bias return logits def reconstruct_transition_to_classes_post_pruning(self, _input, block, layer, kernels_to_prune): """ Reconstruct the transition layer to classes after pruning kernels in the last layer of the last block (in such a case, the transition layer must remain mostly unchanged and unused weights must be removed). Args: _input: tensor, the operation's input; block: `int`, identifier number for the last block; layer: `int`, identifier number for the last layer in that block; kernels_to_prune: `list` of `int`, gives the specific kernels that were pruned in the last layer. """ new_features_total = int(_input.get_shape()[-1]) var_scope = "Transition_to_FC_block_%d" % block if not self.preserve_transition_l: var_scope += "_layer_%d" % layer with tf.variable_scope(var_scope, reuse=tf.AUTO_REUSE): # Copy the batch norm beta and gamma param values from old kernels. beta_values = self.sess.run(tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/beta", [self.features_total])) gamma_values = self.sess.run(tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/gamma", [self.features_total])) # Create a new batch norm and get its param variables. self.batch_norm_counter += 1 output = self.batch_norm( _input, scope='BatchNorm_'+str(self.batch_norm_counter)) new_beta = tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/beta", [new_features_total]) new_gamma = tf.get_variable( "BatchNorm_"+str(self.batch_norm_counter)+"/gamma", [new_features_total]) # self.sess.run(tf.variables_initializer([new_beta, new_gamma])) # Copy the param values corresponding to the remaining kernels. prepruning_kernel_count = len(self.kernels_ref_list[block][-1]) prepruning_kernel_count += len(kernels_to_prune) difference = self.features_total - prepruning_kernel_count new_beta_values = beta_values[:difference] new_gamma_values = gamma_values[:difference] for k in range(prepruning_kernel_count): if k not in kernels_to_prune: new_beta_values = np.append( new_beta_values, beta_values[k+difference]) new_gamma_values = np.append( new_gamma_values, gamma_values[k+difference]) print(new_features_total) print(len(new_beta_values)) print("%d (difference) = %d (new_features_total) - %d (current_kernel_count)" % ( difference, new_features_total, prepruning_kernel_count-len(kernels_to_prune))) print("%d (old difference) = %d (features_total) - %d (prepruning_kernel_count)" % ( difference, self.features_total, prepruning_kernel_count)) # Assign those param values to reconstruct the batch norm. self.sess.run(new_beta.assign(new_beta_values)) self.sess.run(new_gamma.assign(new_gamma_values)) self.features_total = new_features_total # Rewrite: ReLU, average
sage: x.is_gamma0_equiv(y, 3, 'matrix') (False, None) sage: Cusp(1/2).is_gamma0_equiv(1/3,11,'corner') (True, 19) sage: Cusp(1,0) Infinity sage: z = Cusp(1,0) sage: x.is_gamma0_equiv(z, 3, 'matrix') ( [-1 1] True, [-3 2] ) ALGORITHM: See Proposition 2.2.3 of Cremona's book 'Algorithms for Modular Elliptic Curves', or Prop 2.27 of Stein's Ph.D. thesis. """ if transformation not in [False, True, "matrix", None, "corner"]: raise ValueError("Value %s of the optional argument transformation is not valid.") if not isinstance(other, Cusp): other = Cusp(other) N = ZZ(N) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b zero = ZZ.zero() one = ZZ.one() if transformation == "matrix": from sage.matrix.constructor import matrix if v1 == v2 and u1 == u2: if not transformation: return True elif transformation == "matrix": return True, matrix(ZZ, [[1, 0], [0, 1]]) else: return True, one # a necessary, but not sufficient condition unless N is square-free if v1.gcd(N) != v2.gcd(N): if not transformation: return False else: return False, None if (u1, v1) != (zero, one): if v1 in [zero, one]: s1 = one else: s1 = u1.inverse_mod(v1) else: s1 = 0 if (u2, v2) != (zero, one): if v2 in [zero, one]: s2 = one else: s2 = u2.inverse_mod(v2) else: s2 = zero g = (v1 * v2).gcd(N) a = s1 * v2 - s2 * v1 if a % g != 0: if not transformation: return False else: return False, None if not transformation: return True # Now we know the cusps are equivalent. Use the proof of Prop 2.2.3 # of Cremona to find a matrix in Gamma_0(N) relating them. if v1 == 0: # the first is oo if v2 == 0: # both are oo if transformation == "matrix": return (True, matrix(ZZ, [[1, 0], [0, 1]])) else: return (True, one) else: dum, s2, r2 = u2.xgcd(-v2) assert dum.is_one() if transformation == "matrix": return (True, matrix(ZZ, [[u2, r2], [v2, s2]])) else: return (True, u2) elif v2 == 0: # the second is oo dum, s1, r1 = u1.xgcd(-v1) assert dum.is_one() if transformation == "matrix": return (True, matrix(ZZ, [[s1, -r1], [-v1, u1]])) else: return (True, s1) dum, s2, r2 = u2.xgcd(-v2) assert dum.is_one() dum, s1, r1 = u1.xgcd(-v1) assert dum.is_one() a = s1 * v2 - s2 * v1 assert (a % g).is_zero() # solve x*v1*v2 + a = 0 (mod N). d, x0, y0 = (v1 * v2).xgcd(N) # x0*v1*v2 + y0*N = d = g. # so x0*v1*v2 - g = 0 (mod N) x = -x0 * ZZ(a / g) # now x*v1*v2 + a = 0 (mod N) # the rest is all added in trac #10926 s1p = s1 + x * v1 M = N // g if transformation == "matrix": C = s1p * v2 - s2 * v1 if C % (M * v1 * v2) == 0: k = - C // (M * v1 * v2) else: k = - (C / (M * v1 * v2)).round() s1pp = s1p + k * M * v1 # C += k*M*v1*v2 # is now the smallest in absolute value C = s1pp * v2 - s2 * v1 A = u2 * s1pp - r2 * v1 r1pp = r1 + (x + k * M) * u1 B = r2 * u1 - r1pp * u2 D = s2 * u1 - r1pp * v2 ga = matrix(ZZ, [[A, B], [C, D]]) assert ga.det() == 1 assert C % N == 0 assert (A * u1 + B * v1) / (C * u1 + D * v1) == u2 / v2 return (True, ga) else: # mainly for backwards compatibility and # for how it is used in modular symbols A = (u2 * s1p - r2 * v1) if u2 != 0 and v1 != 0: A = A % (u2 * v1 * M) return (True, A) def is_gamma1_equiv(self, other, N): """ Return whether self and other are equivalent modulo the action of Gamma_1(N) via linear fractional transformations. INPUT: - ``other`` - Cusp - ``N`` - an integer (specifies the group Gamma_1(N)) OUTPUT: - ``bool`` - True if self and other are equivalent - ``int`` - 0, 1 or -1, gives further information about the equivalence: If the two cusps are u1/v1 and u2/v2, then they are equivalent if and only if v1 = v2 (mod N) and u1 = u2 (mod gcd(v1,N)) or v1 = -v2 (mod N) and u1 = -u2 (mod gcd(v1,N)) The sign is +1 for the first and -1 for the second. If the two cusps are not equivalent then 0 is returned. EXAMPLES:: sage: x = Cusp(2,3) sage: y = Cusp(4,5) sage: x.is_gamma1_equiv(y,2) (True, 1) sage: x.is_gamma1_equiv(y,3) (False, 0) sage: z = Cusp(QQ(x) + 10) sage: x.is_gamma1_equiv(z,10) (True, 1) sage: z = Cusp(1,0) sage: x.is_gamma1_equiv(z, 3) (True, -1) sage: Cusp(0).is_gamma1_equiv(oo, 1) (True, 1) sage: Cusp(0).is_gamma1_equiv(oo, 3) (False, 0) """ if not isinstance(other, Cusp): other = Cusp(other) N = ZZ(N) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b g = v1.gcd(N) if ((v2 - v1) % N == 0 and (u2 - u1) % g == 0): return True, 1 elif ((v2 + v1) % N == 0 and (u2 + u1) % g == 0): return True, -1 return False, 0 def is_gamma_h_equiv(self, other, G): r""" Return a pair (b, t), where b is True or False as self and other are equivalent under the action of G, and t is 1 or -1, as described below. Two cusps `u1/v1` and `u2/v2` are equivalent modulo Gamma_H(N) if and only if `v1 = h*v2 (\mathrm{mod} N)` and `u1 = h^{(-1)}*u2 (\mathrm{mod} gcd(v1,N))` or `v1 = -h*v2 (mod N)` and `u1 = -h^{(-1)}*u2 (\mathrm{mod} gcd(v1,N))` for some `h \in H`. Then t is 1 or -1 as c and c' fall into the first or second case, respectively. INPUT: - ``other`` - Cusp - ``G`` - a congruence subgroup Gamma_H(N) OUTPUT: - ``bool`` - True if self and other are equivalent - ``int`` - -1, 0, 1; extra info EXAMPLES:: sage: x = Cusp(2,3) sage: y = Cusp(4,5) sage: x.is_gamma_h_equiv(y,GammaH(13,[2])) (True, 1) sage: x.is_gamma_h_equiv(y,GammaH(13,[5])) (False, 0) sage: x.is_gamma_h_equiv(y,GammaH(5,[])) (False, 0) sage: x.is_gamma_h_equiv(y,GammaH(23,[4])) (True, -1) Enumerating the cusps for a space of modular symbols uses this function. :: sage: G = GammaH(25,[6]) ; M = G.modular_symbols() ; M Modular Symbols space of dimension 11 for Congruence Subgroup Gamma_H(25) with H generated by [6] of weight 2 with sign 0 over Rational Field sage: M.cusps() [8/25, 1/3, 6/25, 1/4, 1/15, -7/15, 7/15, 4/15, 1/20, 3/20, 7/20, 9/20] sage: len(M.cusps()) 12 This is always one more than the associated space of weight 2 Eisenstein series. :: sage: G.dimension_eis(2) 11 sage: M.cuspidal_subspace() Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 11 for Congruence Subgroup Gamma_H(25) with H generated by [6] of weight 2 with sign 0 over Rational Field sage: G.dimension_cusp_forms(2) 0 """ from sage.modular.arithgroup.all import is_GammaH if not isinstance(other, Cusp): other = Cusp(other) if not is_GammaH(G): raise TypeError("G must be a group GammaH(N).") H = G._list_of_elements_in_H() N = ZZ(G.level()) u1 = self.__a v1 = self.__b u2 = other.__a v2 = other.__b g = v1.gcd(N) for h in H: v_tmp = (h * v1) % N u_tmp = (h * u2) % N if (v_tmp - v2) % N == 0 and (u_tmp - u1) % g == 0: return True, 1 if (v_tmp + v2) % N == 0 and (u_tmp + u1) % g == 0: return True, -1 return False, 0 def _acted_upon_(self, g, self_on_left): r""" Implement the left action of `SL_2(\ZZ)` on self. EXAMPLES:: sage: g = matrix(ZZ, 2, [1,1,0,1]); g [1 1] [0 1] sage: g * Cusp(2,5) 7/5 sage: Cusp(2,5) * g Traceback (most
import cv2 import math import numpy as np import random import torch from scipy import special from scipy.stats import multivariate_normal from torchvision.transforms.functional_tensor import rgb_to_grayscale # -------------------------------------------------------------------- # # --------------------------- blur kernels --------------------------- # # -------------------------------------------------------------------- # # --------------------------- util functions --------------------------- # def sigma_matrix2(sig_x, sig_y, theta): """Calculate the rotated sigma matrix (two dimensional matrix). Args: sig_x (float): sig_y (float): theta (float): Radian measurement. Returns: ndarray: Rotated sigma matrix. """ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) def mesh_grid(kernel_size): """Generate the mesh grid, centering at zero. Args: kernel_size (int): Returns: xy (ndarray): with the shape (kernel_size, kernel_size, 2) xx (ndarray): with the shape (kernel_size, kernel_size) yy (ndarray): with the shape (kernel_size, kernel_size) """ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) xx, yy = np.meshgrid(ax, ax) xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, 1))).reshape(kernel_size, kernel_size, 2) return xy, xx, yy def pdf2(sigma_matrix, grid): """Calculate PDF of the bivariate Gaussian distribution. Args: sigma_matrix (ndarray): with the shape (2, 2) grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: kernel (ndarrray): un-normalized kernel. """ inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) return kernel def cdf2(d_matrix, grid): """Calculate the CDF of the standard bivariate Gaussian distribution. Used in skewed Gaussian distribution. Args: d_matrix (ndarrasy): skew matrix. grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: cdf (ndarray): skewed cdf. """ rv = multivariate_normal([0, 0], [[1, 0], [0, 1]]) grid = np.dot(grid, d_matrix) cdf = rv.cdf(grid) return cdf def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): """Generate a bivariate isotropic or anisotropic Gaussian kernel. In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None isotropic (bool): Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True): """Generate a bivariate generalized Gaussian kernel. Described in `Parameter Estimation For Multivariate Generalized Gaussian Distributions`_ by Pascal et. al (2013). In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. beta (float): shape parameter, beta = 1 is the normal distribution. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None Returns: kernel (ndarray): normalized kernel. .. _Parameter Estimation For Multivariate Generalized Gaussian Distributions: https://arxiv.org/abs/1302.6498 """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta)) kernel = kernel / np.sum(kernel) return kernel def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True): """Generate a plateau-like anisotropic kernel. 1 / (1+x^(beta)) Ref: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. beta (float): shape parameter, beta = 1 is the normal distribution. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) kernel = kernel / np.sum(kernel) return kernel def random_bivariate_Gaussian(kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=None, isotropic=True): """Randomly generate bivariate isotropic or anisotropic Gaussian kernels. In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. Args: kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) if isotropic is False: assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) rotation = np.random.uniform(rotation_range[0], rotation_range[1]) else: sigma_y = sigma_x rotation = 0 kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) return kernel def random_bivariate_generalized_Gaussian(kernel_size, sigma_x_range, sigma_y_range, rotation_range, beta_range, noise_range=None, isotropic=True): """Randomly generate bivariate generalized Gaussian kernels. In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. Args: kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] beta_range (tuple): [0.5, 8] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) if isotropic is False: assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) rotation = np.random.uniform(rotation_range[0], rotation_range[1]) else: sigma_y = sigma_x rotation = 0 # assume beta_range[0] < 1 < beta_range[1] if np.random.uniform() < 0.5: beta = np.random.uniform(beta_range[0], 1) else: beta = np.random.uniform(1, beta_range[1]) kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) return kernel def random_bivariate_plateau(kernel_size, sigma_x_range, sigma_y_range, rotation_range, beta_range, noise_range=None, isotropic=True): """Randomly generate bivariate plateau kernels. In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. Args: kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi/2, math.pi/2] beta_range (tuple): [1, 4] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) if isotropic is False: assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) rotation = np.random.uniform(rotation_range[0], rotation_range[1]) else: sigma_y = sigma_x rotation = 0 # TODO: this may be not proper if np.random.uniform() < 0.5: beta = np.random.uniform(beta_range[0], 1) else: beta = np.random.uniform(1, beta_range[1]) kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) return kernel def random_mixed_kernels(kernel_list, kernel_prob, kernel_size=21, sigma_x_range=(0.6, 5), sigma_y_range=(0.6, 5), rotation_range=(-math.pi, math.pi), betag_range=(0.5, 8), betap_range=(0.5, 8), noise_range=None): """Randomly generate mixed kernels. Args: kernel_list (tuple): a list name of kernel types, support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', 'plateau_aniso'] kernel_prob (tuple): corresponding kernel probability for each kernel type kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] beta_range (tuple): [0.5, 8] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ kernel_type = random.choices(kernel_list, kernel_prob)[0] if kernel_type == 'iso': kernel = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True) elif kernel_type == 'aniso': kernel = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False) elif kernel_type == 'generalized_iso': kernel = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=True) elif kernel_type == 'generalized_aniso': kernel = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=False) elif kernel_type == 'plateau_iso': kernel = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True) elif kernel_type == 'plateau_aniso': kernel = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False) return kernel np.seterr(divide='ignore', invalid='ignore') def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0): """2D sinc filter, ref:
<reponame>queueit/KnownUser.V3.Python<filename>SDK/test_integration_config_helpers.py<gh_stars>1-10 import unittest from queueit_knownuserv3.integration_config_helpers import * from queueit_knownuserv3.http_context_providers import HttpContextProvider class HttpContextProviderMock(HttpContextProvider): def __init__(self): self.headers = {} self.cookies = {} self.body = "" def getHeader(self, header_name): if header_name not in self.headers: return None return self.headers[header_name] def getCookie(self, cookie_name): if cookie_name not in self.cookies: return None return self.cookies[cookie_name] def getRequestBodyAsString(self): return self.body class TestIntegrationEvaluator(unittest.TestCase): def test_getMatchedIntegrationConfig_oneTrigger_and_notMatched(self): integrationConfig = { "Integrations": [{ "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": False, "IsNegative": False }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, HttpContextProviderMock()) assert (matchedConfig == None) def test_getMatchedIntegrationConfig_oneTrigger_and_matched(self): integrationConfig = { "Integrations": [{ "Name": "integration1", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": True, "IsNegative": False }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig["Name"] == "integration1") def test_getMatchedIntegrationConfig_oneTrigger_and_notmatched_UserAgent( self): integrationConfig = { "Integrations": [{ "Name": "integration1", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": True, "IsNegative": False }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }, { "ValidatorType": "userAgentValidator", "ValueToCompare": "Googlebot", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": True }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.headers = {"user-agent": "bot.html google.com googlebot test"} hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig == None) def test_getMatchedIntegrationConfig_oneTrigger_or_notMatched(self): integrationConfig = { "Integrations": [{ "Name": "integration1", "Triggers": [{ "LogicalOperator": "Or", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": True, "IsNegative": True }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Equals", "IsIgnoreCase": False, "IsNegative": False }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig == None) def test_getMatchedIntegrationConfig_oneTrigger_or_matched(self): integrationConfig = { "Integrations": [{ "Name": "integration1", "Triggers": [{ "LogicalOperator": "Or", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": True, "IsNegative": True }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Equals", "IsIgnoreCase": False, "IsNegative": True }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig["Name"] == "integration1") def test_getMatchedIntegrationConfig_twoTriggers_matched(self): integrationConfig = { "Integrations": [{ "Name": "integration1", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": True, "IsNegative": True }] }, { "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "Operator": "Equals", "ValueToCompare": "Value1", "ValidatorType": "CookieValidator", "IsIgnoreCase": False, "IsNegative": False }, { "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig["Name"] == "integration1") def test_getMatchedIntegrationConfig_threeIntegrationsInOrder_secondMatched( self): integrationConfig = { "Integrations": [{ "Name": "integration0", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "Test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }] }] }, { "Name": "integration1", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "UrlPart": "PageUrl", "ValidatorType": "UrlValidator", "ValueToCompare": "test", "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False }] }] }, { "Name": "integration2", "Triggers": [{ "LogicalOperator": "And", "TriggerParts": [{ "CookieName": "c1", "ValidatorType": "CookieValidator", "ValueToCompare": "c1", "Operator": "Equals", "IsIgnoreCase": True, "IsNegative": False }] }] }] } url = "http://test.testdomain.com:8080/test?q=2" hcpMock = HttpContextProviderMock() hcpMock.cookies = {"c2": "ddd", "c1": "Value1"} testObject = IntegrationEvaluator() matchedConfig = testObject.getMatchedIntegrationConfig( integrationConfig, url, hcpMock) assert (matchedConfig["Name"] == "integration1") class TestUrlValidatorHelper(unittest.TestCase): def test_evaluate(self): assert (not UrlValidatorHelper.evaluate(None, "notimportant")) assert (not UrlValidatorHelper.evaluate({}, "notimportant")) triggerPart = { "UrlPart": "PageUrl", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "http://test.testdomain.com:8080/test?q=1" } assert (not UrlValidatorHelper.evaluate( triggerPart, "http://test.testdomain.com:8080/test?q=2")) triggerPart = { "UrlPart": "PagePath", "Operator": "Equals", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "/Test/t1" } assert (UrlValidatorHelper.evaluate( triggerPart, "http://test.testdomain.com:8080/test/t1?q=2&y02")) triggerPart = { "UrlPart": "HostName", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "test.testdomain.com" } assert (UrlValidatorHelper.evaluate( triggerPart, "http://m.test.testdomain.com:8080/test?q=2")) triggerPart = { "UrlPart": "HostName", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": True, "ValueToCompare": "test.testdomain.com" } assert (not UrlValidatorHelper.evaluate( triggerPart, "http://m.test.testdomain.com:8080/test?q=2")) class TestCookieValidatorHelper(unittest.TestCase): def test_evaluate(self): hcpMock = HttpContextProviderMock() assert (not CookieValidatorHelper.evaluate(None, hcpMock)) assert (not CookieValidatorHelper.evaluate({}, hcpMock)) triggerPart = { "CookieName": "c1", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "1" } hcpMock.cookies = {"c1": "hhh"} assert (not CookieValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "CookieName": "c1", "Operator": "Contains", "ValueToCompare": "1" } hcpMock.cookies = {"c2": "ddd", "c1": "3"} assert (not CookieValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "CookieName": "c1", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "1" } hcpMock.cookies = {"c2": "ddd", "c1": "1"} assert (CookieValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "CookieName": "c1", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": True, "ValueToCompare": "1" } hcpMock.cookies = {"c2": "ddd", "c1": "1"} assert (not CookieValidatorHelper.evaluate(triggerPart, hcpMock)) class TestUserAgentValidatorHelper(unittest.TestCase): def test_evaluate(self): hcpMock = HttpContextProviderMock() assert (not UserAgentValidatorHelper.evaluate(None, hcpMock)) assert (not UserAgentValidatorHelper.evaluate({}, hcpMock)) triggerPart = { "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": False, "ValueToCompare": "googlebot" } hcpMock.headers = {"user-agent": "Googlebot sample useraagent"} assert (not UserAgentValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "Operator": "Equals", "IsIgnoreCase": True, "IsNegative": True, "ValueToCompare": "googlebot" } hcpMock.headers = {"user-agent": "ooglebot sample useraagent"} assert (UserAgentValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "Operator": "Contains", "IsIgnoreCase": False, "IsNegative": True, "ValueToCompare": "googlebot" } hcpMock.headers = {"user-agent": "googlebot"} assert (not UserAgentValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "googlebot" } hcpMock.headers = {"user-agent": "Googlebot"} assert (UserAgentValidatorHelper.evaluate(triggerPart, hcpMock)) class TestHttpHeaderValidatorHelper(unittest.TestCase): def test_evaluate(self): hcpMock = HttpContextProviderMock() assert (not HttpHeaderValidatorHelper.evaluate(None, hcpMock)) assert (not HttpHeaderValidatorHelper.evaluate({}, hcpMock)) triggerPart = { "HttpHeaderName": "a-header", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "value" } hcpMock.headers = {'a-header': "VaLuE"} assert (HttpHeaderValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "HttpHeaderName": "a-header", "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "value" } hcpMock.headers = {'a-header': "not"} assert (not HttpHeaderValidatorHelper.evaluate(triggerPart, hcpMock)) triggerPart = { "HttpHeaderName": "a-header", "Operator": "Contains", "IsNegative": True, "IsIgnoreCase": False, "ValueToCompare": "value" } hcpMock.headers = {'a-header': "not"} assert (HttpHeaderValidatorHelper.evaluate(triggerPart, hcpMock)) class TestComparisonOperatorHelper(unittest.TestCase): def test_evaluate_equals_operator(self): assert (ComparisonOperatorHelper.evaluate("Equals", False, False, None, None, None)) assert (ComparisonOperatorHelper.evaluate("Equals", False, False, "test1", "test1", None)) assert (not ComparisonOperatorHelper.evaluate("Equals", False, False, "test1", "Test1", None)) assert (ComparisonOperatorHelper.evaluate("Equals", False, True, "test1", "Test1", None)) assert (ComparisonOperatorHelper.evaluate("Equals", True, False, "test1", "Test1", None)) assert (not ComparisonOperatorHelper.evaluate("Equals", True, False, "test1", "test1", None)) assert (not ComparisonOperatorHelper.evaluate("Equals", True, True, "test1", "Test1", None)) def test_evaluate_contains_operator(self): assert (ComparisonOperatorHelper.evaluate("Contains", False, False, None, None, None)) assert (ComparisonOperatorHelper.evaluate( "Contains", False, False, "test_test1_test", "test1", None)) assert (not ComparisonOperatorHelper.evaluate( "Contains", False, False, "test_test1_test", "Test1", None)) assert (ComparisonOperatorHelper.evaluate( "Contains", False, True, "test_test1_test", "Test1", None)) assert (ComparisonOperatorHelper.evaluate( "Contains", True, False, "test_test1_test", "Test1", None)) assert (not ComparisonOperatorHelper.evaluate( "Contains", True, True, "test_test1", "Test1", None)) assert (not ComparisonOperatorHelper.evaluate( "Contains", True, False, "test_test1", "test1", None)) assert (ComparisonOperatorHelper.evaluate( "Contains", False, False, "test_dsdsdsdtest1", "*", None)) assert (not ComparisonOperatorHelper.evaluate( "Contains", False, False, "", "*", None)) def test_evaluate_equalsAny_operator(self): assert (ComparisonOperatorHelper.evaluate("EqualsAny", False, False, "test1", None, ["test1"])) assert (not ComparisonOperatorHelper.evaluate( "EqualsAny", False, False, "test1", None, ["Test1"])) assert (ComparisonOperatorHelper.evaluate("EqualsAny", False, True, "test1", None, ["Test1"])) assert (ComparisonOperatorHelper.evaluate("EqualsAny", True, False, "test1", None, ["Test1"])) assert (not ComparisonOperatorHelper.evaluate( "EqualsAny", True, False, "test1", None, ["test1"])) assert (not ComparisonOperatorHelper.evaluate( "EqualsAny", True, True, "test1", None, ["Test1"])) def test_evaluate_containsAny_operator(self): assert (ComparisonOperatorHelper.evaluate( "ContainsAny", False, False, "test_test1_test", None, ["test1"])) assert (not ComparisonOperatorHelper.evaluate( "ContainsAny", False, False, "test_test1_test", None, ["Test1"])) assert (ComparisonOperatorHelper.evaluate( "ContainsAny", False, True, "test_test1_test", None, ["Test1"])) assert (ComparisonOperatorHelper.evaluate( "ContainsAny", True, False, "test_test1_test", None, ["Test1"])) assert (not ComparisonOperatorHelper.evaluate( "ContainsAny", True, True, "test_test1", None, ["Test1"])) assert (not ComparisonOperatorHelper.evaluate( "ContainsAny", True, False, "test_test1", None, ["test1"])) assert (ComparisonOperatorHelper.evaluate( "ContainsAny", False, False, "test_dsdsdsdtest1", None, ["*"])) def test_evaluate_unsupported_operator(self): assert (not ComparisonOperatorHelper.evaluate("-not-supported-", False, False, None, None, None)) class TestRequestBodyValidatorHelper(unittest.TestCase): def test_evaluate(self): hcp_mock = HttpContextProviderMock() assert (not RequestBodyValidatorHelper.evaluate(None, hcp_mock)) assert (not RequestBodyValidatorHelper.evaluate({}, hcp_mock)) trigger_part = { "Operator": "Contains", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "test body" } assert (not RequestBodyValidatorHelper.evaluate(trigger_part, hcp_mock)) hcp_mock.body = "my test body is here" assert (RequestBodyValidatorHelper.evaluate(trigger_part, hcp_mock)) trigger_part = { "Operator": "Equals", "IsIgnoreCase": True, "IsNegative": False, "ValueToCompare": "Test" } assert (not RequestBodyValidatorHelper.evaluate(trigger_part, hcp_mock)) trigger_part = { "Operator": "Contains", "IsIgnoreCase":
from __future__ import division from __future__ import print_function from __future__ import absolute_import import sys import os import os.path import numpy as np from collections import namedtuple from collections import OrderedDict import json import deeplift import tensorflow as tf NEAR_ZERO_THRESHOLD = 10**(-7) _SESS = None def get_session(): try: #use the keras session if there is one import keras.backend as K return K.get_session() except: #Warning: I haven't really tested this behaviour out... global _SESS if _SESS is None: print("MAKING A SESSION") _SESS = tf.Session() _SESS.run(tf.global_variables_initializer()) return _SESS def compile_func(inputs, outputs): if (isinstance(inputs, list)==False): print("Wrapping the inputs in a list...") inputs = [inputs] assert isinstance(inputs, list) def func_to_return(inp): if len(inp) > len(inputs) and len(inputs)==1: print("Wrapping the inputs in a list...") inp = [inp] assert len(inp)==len(inputs),\ ("length of provided list should be " +str(len(inputs))+" for tensors "+str(inputs) +" but got input of length "+str(len(inp))) feed_dict = {} for input_tensor, input_val in zip(inputs, inp): feed_dict[input_tensor] = input_val sess = get_session() return sess.run(outputs, feed_dict=feed_dict) return func_to_return def enum(**enums): class Enum(object): pass to_return = Enum; for key,val in enums.items(): if hasattr(val, '__call__'): setattr(to_return, key, staticmethod(val)) else: setattr(to_return,key,val); to_return.vals = [x for x in enums.values()]; to_return.the_dict = enums return to_return; def assert_is_type(instance, the_class, instance_var_name): return assert_type(instance, the_class, instance_var_name, True) def assert_is_not_type(instance, the_class, instance_var_name): return assert_type(instance, the_class, instance_var_name, False) def assert_type(instance, the_class, instance_var_name, is_type_result): assert (is_type(instance, the_class) == is_type_result),\ instance_var_name+" should be an instance of "\ +the_class.__name__+" but is "+str(instance.__class__) return True def is_type(instance, the_class): return superclass_in_base_classes(instance.__class__.__bases__, the_class) def superclass_in_base_classes(base_classes, the_class): """ recursively determine if the_class is among or is a superclass of one of the classes in base_classes. The comparison is done by name so that even if reload is called on a module, this still works. """ for base_class in base_classes: if base_class.__name__ == the_class.__name__: return True else: #if the base class in turn has base classes of its own if len(base_class.__bases__)!=1 or\ base_class.__bases__[0].__name__ != 'object': #check them. If there's a hit, return True if (superclass_in_base_classes( base_classes=base_class.__bases__, the_class=the_class)): return True #if 'True' was not returned in the code above, that means we don't #have a superclass return False def run_function_in_batches(func, input_data_list, learning_phase=None, batch_size=10, progress_update=1000, multimodal_output=False): #func has a return value such that the first index is the #batch. This function will run func in batches on the inputData #and will extend the result into one big list. #if multimodal_output=True, func has a return value such that first #index is the mode and second index is the batch assert isinstance(input_data_list, list), "input_data_list must be a list" #input_datas is an array of the different input_data modes. to_return = []; i = 0; while i < len(input_data_list[0]): if (progress_update is not None): if (i%progress_update == 0): print("Done",i) func_output = func(([x[i:i+batch_size] for x in input_data_list] +([] if learning_phase is None else [learning_phase]) )) if (multimodal_output): assert isinstance(func_output, list),\ "multimodal_output=True yet function return value is not a list" if (len(to_return)==0): to_return = [[] for x in func_output] for to_extend, batch_results in zip(to_return, func_output): to_extend.extend(batch_results) else: to_return.extend(func_output) i += batch_size; return to_return def mean_normalise_weights_for_sequence_convolution(weights, bias, axis_of_normalisation, dim_ordering): print("Normalising weights for one-hot encoded sequence convolution") print("axis of normalisation is: "+str(axis_of_normalisation)) print("Weight shape on that axis is: " +str(weights.shape[axis_of_normalisation])) mean_weights_at_positions=np.mean(weights,axis=axis_of_normalisation) if (dim_ordering=='th'): print("Theano dimension ordering; output channel axis is first one " "which has a length of "+str(weights.shape[0])) #sum across remaining dimensions except output channel which is first new_bias = bias + np.sum(np.sum(mean_weights_at_positions, axis=1),axis=1) elif (dim_ordering=='tf'): print("Tensorflow dimension ordering; output channel axis is last one " "which has a length of "+str(weights.shape[-1])) #sum across remaining dimensions except output channel which is last new_bias = bias + np.sum(np.sum(mean_weights_at_positions, axis=0),axis=0) else: raise RuntimeError("Unsupported dim ordering "+str(dim_ordering)) mean_weights_at_positions = np.expand_dims( mean_weights_at_positions, axis_of_normalisation) renormalised_weights=weights-mean_weights_at_positions return renormalised_weights, new_bias def load_yaml_data_from_file(file_name): file_handle = get_file_handle(file_name) data = yaml.load(file_handle) file_handle.close() return data def get_file_handle(file_name, mode='r'): use_gzip_open = False #if want to read from file, check that is gzipped and set #use_gzip_open to True if it is if (mode=="r" or mode=="rb"): if (is_gzipped(file_name)): mode="rb" use_gzip_open = True #Also check if gz or gzip is in the name, and use gzip open #if writing to the file. if (re.search('.gz$',filename) or re.search('.gzip',filename)): #check for the case where the file name implies the file #is gzipped, but the file is not actually detected as gzipped, #and warn the user accordingly if (mode=="r" or mode=="rb"): if (use_gzip_open==False): print("Warning: file has gz or gzip in name, but was not" " detected as gzipped") if (mode=="w"): use_gzip_open = True #I think write will actually append if the file already #exists...so you want to remove it if it exists if os.path.isfile(file_name): os.remove(file_name) if (use_gzip_open): return gzip.open(file_name,mode) else: return open(file_name,mode) def is_gzipped(file_name): file_handle = open(file_name, 'rb') magic_number = file_handle.read(2) file_handle.close() is_gzipped = (magic_number == b'\x1f\x8b' ) return is_gzipped def connect_list_of_layers(deeplift_layers): if (len(deeplift_layers) > 1): #string the layers together so that subsequent layers take the previous #layer as input last_layer_processed = deeplift_layers[0] for layer in deeplift_layers[1:]: layer.set_inputs(last_layer_processed) last_layer_processed = layer return deeplift_layers def get_integrated_gradients_function(gradient_computation_function, num_intervals): def compute_integrated_gradients( task_idx, input_data_list, input_references_list, batch_size, progress_update=None): outputs = [] #remember, input_data_list and input_references_list are #a list with one entry per mode input_references_list =\ [np.ones_like(np.array(input_data)) *input_reference for input_data, input_reference in zip(input_data_list, input_references_list)] #will flesh out multimodal case later... assert len(input_data_list)==1 assert len(input_references_list)==1 vectors = [] interpolated_inputs = [] interpolated_inputs_references = [] for an_input, a_reference in zip(input_data_list[0], input_references_list[0]): #interpolate between reference and input with num_intervals vector = an_input - a_reference vectors.append(vector) step = vector/float(num_intervals) #prepare the array that has the inputs at different steps for i in range(num_intervals): interpolated_inputs.append( a_reference + step*(i+0.5)) interpolated_inputs_references.append(a_reference) #find the gradients at different steps for all the inputs interpolated_gradients =\ np.array(gradient_computation_function( task_idx=task_idx, input_data_list=[interpolated_inputs], input_references_list=[interpolated_inputs_references], batch_size=batch_size, progress_update=progress_update)) #reshape for taking the mean over all the steps #the first dim is the sample idx, second dim is the step #I've checked this is the appropriate axis ordering for the reshape interpolated_gradients = np.reshape( interpolated_gradients, [input_data_list[0].shape[0], num_intervals] +list(input_data_list[0].shape[1:])) #take the mean gradient over all the steps, multiply by vector #equivalent to the stepwise integral mean_gradient = np.mean(interpolated_gradients,axis=1) contribs = mean_gradient*np.array(vectors) return contribs return compute_integrated_gradients def get_hypothetical_contribs_func_onehot(multipliers_function): """ Meant for models with one-hot encoded sequence input. Inputs: multipliers_function: a function (usually produced by model.get_target_multipliers_func) that takes task_idx, input_data_list, input_references_list, batch_size and progress_update as inputs and returns the multipliers on one-hot encoded sequence input. The first entry of input_data_list is assumed to be a 3-dimensional array where the first dimension is the example index, the second dimension is length and the last dimension is the one-hot encoded channel axis. Returns: a function that takes the same arguments as multipliers_func and returns an estimate of what the contributions would be for each of the one-hot encoding possibilities. The calculation is as follows: At each position, we iterate over the one-hot encoding possibilities (eg: for genomic sequence, this is ACGT i.e. 1000, 0100, 0010 and 0001) and compute the hypothetical difference-from-reference in each case. We then multiply the hypothetical differences-from-reference with the multipliers to get the hypothetical contributions. For each of the one-hot encoding possibilities, the hypothetical contributions are summed across the channel axis to estimate the total hypothetical contribution at each position. The reason this is only an estimate is that the multipliers were computed using the actual input and not the hypothetical inputs. """ def hypothetical_contribs_func(task_idx, input_data_list, input_references_list, batch_size, progress_update): assert len(input_data_list[0].shape)==3, input_data_list[0].shape assert len(input_data_list[0].shape)==3, input_data_list[0].shape multipliers = multipliers_function( task_idx=task_idx, input_data_list=input_data_list, input_references_list=input_references_list, batch_size=batch_size, progress_update=progress_update) to_return = np.zeros_like(input_data_list[0]).astype("float") for i in range(input_data_list[0].shape[-1]): hypothetical_input = np.zeros_like(input_data_list[0])\ .astype("float") hypothetical_input[:,:,i] = 1.0 difference_from_reference =\ (hypothetical_input-np.array(input_references_list[0])) hypothetical_contribs = difference_from_reference*multipliers to_return[:,:,i] = np.sum(hypothetical_contribs,axis=-1) return to_return return hypothetical_contribs_func def get_shuffle_seq_ref_function(score_computation_function, shuffle_func, one_hot_func=None): def compute_scores_with_shuffle_seq_refs( task_idx, input_data_sequences, num_refs_per_seq, batch_size, seed=1, progress_update=None): import numpy as np np.random.seed(seed) import random random.seed(seed) to_run_input_data_seqs = [] to_run_input_data_refs = [] references_generated = 0 for seq in input_data_sequences: for i in range(num_refs_per_seq): references_generated += 1 if (progress_update is not None and references_generated%progress_update==0): print(str(references_generated) +" reference seqs generated") if isinstance(seq,np.ndarray): seq=seq.squeeze() to_run_input_data_seqs.append(seq) to_run_input_data_refs.append(shuffle_func(seq)) if one_hot_func is not None: if (progress_update is not None):
<gh_stars>1-10 import os, json, sys import os.path as osp import argparse import warnings from tqdm import tqdm import cv2 import numpy as np from skimage.io import imsave from skimage.util import img_as_ubyte from skimage.transform import resize from skimage.color import label2rgb import shutil from PIL import Image from torchvision.utils import save_image import torch import torch.nn.functional as F import torchvision from models.get_model import get_arch from utils.get_loaders import get_test_dataset from utils.model_saving_loading import load_model from skimage import filters, measure import skimage import pandas as pd from skimage.morphology import skeletonize,remove_small_objects # argument parsing parser = argparse.ArgumentParser() required_named = parser.add_argument_group('required arguments') parser.add_argument('--experiment_path', help='experiments/subfolder where checkpoint is', default=None) parser.add_argument('--config_file', type=str, default=None, help='experiments/name_of_config_file, overrides everything') # in case no config file is passed parser.add_argument('--im_size', help='delimited list input, could be 600,400', type=str, default='512') parser.add_argument('--device', type=str, default='cuda:0', help='where to run the training code (e.g. "cpu" or "cuda:0") [default: %(default)s]') parser.add_argument('--results_path', type=str, default='results', help='path to save predictions (defaults to results') def intersection(mask,vessel_, it_x, it_y): """ Remove the intersection in case the whole vessel is too long """ x_less = max(0, it_x - 1) y_less = max(0, it_y - 1) x_more = min(vessel_.shape[0] - 1, it_x + 1) y_more = min(vessel_.shape[1] - 1, it_y + 1) active_neighbours = (vessel_[x_less, y_less]>0).astype('float')+ \ (vessel_[x_less, it_y]>0).astype('float')+ \ (vessel_[x_less, y_more]>0).astype('float')+ \ (vessel_[it_x, y_less]>0).astype('float')+ \ (vessel_[it_x, y_more]>0).astype('float')+ \ (vessel_[x_more, y_less]>0).astype('float')+ \ (vessel_[x_more, it_y]>0).astype('float')+ \ (vessel_[x_more, y_more]>0).astype('float') if active_neighbours > 2: cv2.circle(mask,(it_y,it_x),radius=1,color=(0,0,0),thickness=-1) return mask,active_neighbours def optic_disc_centre(result_path, binary_vessel_path, artery_vein_path): if os.path.exists(result_path+'.ipynb_checkpoints'): shutil.rmtree(result_path+'.ipynb_checkpoints') optic_binary_result_path = '../Results/M3/Disc_centred/' macular_binary_result_path = '../Results/M3/Macular_centred/' B_optic_process_binary_vessel_path = binary_vessel_path + 'Zone_B_disc_centred_binary_process/' B_optic_process_artery_path = artery_vein_path + 'Zone_B_disc_centred_artery_process/' B_optic_process_vein_path = artery_vein_path + 'Zone_B_disc_centred_vein_process/' B_optic_skeleton_binary_vessel_path = binary_vessel_path + 'Zone_B_disc_centred_binary_skeleton/' B_optic_skeleton_artery_path = artery_vein_path + 'Zone_B_disc_centred_artery_skeleton/' B_optic_skeleton_vein_path = artery_vein_path + 'Zone_B_disc_centred_vein_skeleton/' C_optic_process_binary_vessel_path = binary_vessel_path + 'Zone_C_disc_centred_binary_process/' C_optic_process_artery_path = artery_vein_path + 'Zone_C_disc_centred_artery_process/' C_optic_process_vein_path = artery_vein_path + 'Zone_C_disc_centred_vein_process/' C_optic_skeleton_binary_vessel_path = binary_vessel_path + 'Zone_C_disc_centred_binary_skeleton/' C_optic_skeleton_artery_path = artery_vein_path + 'Zone_C_disc_centred_artery_skeleton/' C_optic_skeleton_vein_path = artery_vein_path + 'Zone_C_disc_centred_vein_skeleton/' macular_process_binary_vessel_path = binary_vessel_path + 'macular_centred_binary_process/' macular_process_artery_path = artery_vein_path + 'macular_centred_artery_process/' macular_process_vein_path = artery_vein_path + 'macular_centred_vein_process/' macular_skeleton_binary_vessel_path = binary_vessel_path + 'macular_centred_binary_skeleton/' macular_skeleton_artery_path = artery_vein_path + 'macular_centred_artery_skeleton/' macular_skeleton_vein_path = artery_vein_path + 'macular_centred_vein_skeleton/' #2021/11/2 zone_b_macular_process_binary_vessel_path = binary_vessel_path + 'macular_Zone_B_centred_binary_process/' zone_b_macular_process_artery_path = artery_vein_path + 'macular_Zone_B_centred_artery_process/' zone_b_macular_process_vein_path = artery_vein_path + 'macular_Zone_B_centred_vein_process/' zone_b_macular_skeleton_binary_vessel_path = binary_vessel_path + 'macular_Zone_B_centred_binary_skeleton/' zone_b_macular_skeleton_artery_path = artery_vein_path + 'macular_Zone_B_centred_artery_skeleton/' zone_b_macular_skeleton_vein_path = artery_vein_path + 'macular_Zone_B_centred_vein_skeleton/' #2021/11/2 zone_c_macular_process_binary_vessel_path = binary_vessel_path + 'macular_Zone_C_centred_binary_process/' zone_c_macular_process_artery_path = artery_vein_path + 'macular_Zone_C_centred_artery_process/' zone_c_macular_process_vein_path = artery_vein_path + 'macular_Zone_C_centred_vein_process/' zone_c_macular_skeleton_binary_vessel_path = binary_vessel_path + 'macular_Zone_C_centred_binary_skeleton/' zone_c_macular_skeleton_artery_path = artery_vein_path + 'macular_Zone_C_centred_artery_skeleton/' zone_c_macular_skeleton_vein_path = artery_vein_path + 'macular_Zone_C_centred_vein_skeleton/' if not os.path.exists(optic_binary_result_path): os.makedirs(optic_binary_result_path) if not os.path.exists(macular_binary_result_path): os.makedirs(macular_binary_result_path) if not os.path.exists(B_optic_process_binary_vessel_path): os.makedirs(B_optic_process_binary_vessel_path) if not os.path.exists(B_optic_process_artery_path): os.makedirs(B_optic_process_artery_path) if not os.path.exists(B_optic_process_vein_path): os.makedirs(B_optic_process_vein_path) if not os.path.exists(B_optic_skeleton_binary_vessel_path): os.makedirs(B_optic_skeleton_binary_vessel_path) if not os.path.exists(B_optic_skeleton_artery_path): os.makedirs(B_optic_skeleton_artery_path) if not os.path.exists(B_optic_skeleton_vein_path): os.makedirs(B_optic_skeleton_vein_path) if not os.path.exists(C_optic_process_binary_vessel_path): os.makedirs(C_optic_process_binary_vessel_path) if not os.path.exists(C_optic_process_artery_path): os.makedirs(C_optic_process_artery_path) if not os.path.exists(C_optic_process_vein_path): os.makedirs(C_optic_process_vein_path) if not os.path.exists(C_optic_skeleton_binary_vessel_path): os.makedirs(C_optic_skeleton_binary_vessel_path) if not os.path.exists(C_optic_skeleton_artery_path): os.makedirs(C_optic_skeleton_artery_path) if not os.path.exists(C_optic_skeleton_vein_path): os.makedirs(C_optic_skeleton_vein_path) if not os.path.exists(macular_process_binary_vessel_path): os.makedirs(macular_process_binary_vessel_path) if not os.path.exists(macular_process_artery_path): os.makedirs(macular_process_artery_path) if not os.path.exists(macular_process_vein_path): os.makedirs(macular_process_vein_path) if not os.path.exists(macular_skeleton_binary_vessel_path): os.makedirs(macular_skeleton_binary_vessel_path) if not os.path.exists(macular_skeleton_artery_path): os.makedirs(macular_skeleton_artery_path) if not os.path.exists(macular_skeleton_vein_path): os.makedirs(macular_skeleton_vein_path) if not os.path.exists(zone_b_macular_process_binary_vessel_path): os.makedirs(zone_b_macular_process_binary_vessel_path) if not os.path.exists(zone_b_macular_process_artery_path): os.makedirs(zone_b_macular_process_artery_path) if not os.path.exists(zone_b_macular_process_vein_path): os.makedirs(zone_b_macular_process_vein_path) if not os.path.exists(zone_b_macular_skeleton_binary_vessel_path): os.makedirs(zone_b_macular_skeleton_binary_vessel_path) if not os.path.exists(zone_b_macular_skeleton_artery_path): os.makedirs(zone_b_macular_skeleton_artery_path) if not os.path.exists(zone_b_macular_skeleton_vein_path): os.makedirs(zone_b_macular_skeleton_vein_path) if not os.path.exists(zone_c_macular_process_binary_vessel_path): os.makedirs(zone_c_macular_process_binary_vessel_path) if not os.path.exists(zone_c_macular_process_artery_path): os.makedirs(zone_c_macular_process_artery_path) if not os.path.exists(zone_c_macular_process_vein_path): os.makedirs(zone_c_macular_process_vein_path) if not os.path.exists(zone_c_macular_skeleton_binary_vessel_path): os.makedirs(zone_c_macular_skeleton_binary_vessel_path) if not os.path.exists(zone_c_macular_skeleton_artery_path): os.makedirs(zone_c_macular_skeleton_artery_path) if not os.path.exists(zone_c_macular_skeleton_vein_path): os.makedirs(zone_c_macular_skeleton_vein_path) optic_vertical_CDR,optic_vertical_disc,optic_vertical_cup = [],[],[] optic_horizontal_CDR,optic_horizontal_disc,optic_horizontal_cup = [],[],[] macular_vertical_CDR,macular_vertical_disc,macular_vertical_cup = [],[],[] macular_horizontal_CDR,macular_horizontal_disc,macular_horizontal_cup = [],[],[] optic_centre_list = [] macular_centre_list = [] disc_cup_list = sorted(os.listdir(result_path)) for i in disc_cup_list: path_ = result_path+i disc_cup_ = cv2.imread(path_) disc_cup_912 = cv2.resize(disc_cup_,(912,912),interpolation = cv2.INTER_NEAREST) #image_ = cv2.imread('../Results/M1/Good_quality/'+i) #IMAGE_912 = cv2.resize(image_,(912,912),interpolation = cv2.INTER_AREA) #disc_cup_912 = disc_cup_ try: disc_ = disc_cup_912[...,2] cup_ = disc_cup_912[...,0] ## judgement the optic disc/cup segmentation disc_mask = measure.label(disc_) regions = measure.regionprops(disc_mask) regions.sort(key=lambda x: x.area, reverse=True) if len(regions) > 1: for rg in regions[2:]: disc_mask[rg.coords[:,0], rg.coords[:,1]] = 0 disc_[disc_mask!=0] = 255 cup_mask = measure.label(cup_) regions = measure.regionprops(cup_mask) regions.sort(key=lambda x: x.area, reverse=True) if len(regions) > 1: for rg in regions[2:]: cup_mask[rg.coords[:,0], rg.coords[:,1]] = 0 cup_[cup_mask!=0] = 255 disc_index = np.where(disc_>0) disc_index_width = disc_index[1] disc_index_height = disc_index[0] disc_horizontal_width = np.max(disc_index_width)-np.min(disc_index_width) disc_vertical_height = np.max(disc_index_height)-np.min(disc_index_height) cup_index = np.where(cup_>0) cup_index_width = cup_index[1] cup_index_height = cup_index[0] cup_horizontal_width = np.max(cup_index_width)-np.min(cup_index_width) cup_vertical_height = np.max(cup_index_height)-np.min(cup_index_height) cup_width_centre = np.mean(cup_index_width) cup_height_centre = np.mean(cup_index_height) if disc_horizontal_width<(disc_.shape[0]/3) and disc_vertical_height<(disc_.shape[1]/3) and cup_width_centre<=np.max(disc_index_width) and cup_width_centre>=np.min(disc_index_width) and cup_height_centre<=np.max(disc_index_height) and cup_height_centre>=np.min(disc_index_height) and cup_vertical_height<disc_vertical_height and cup_horizontal_width<disc_horizontal_width: whole_index = np.where(disc_cup_912>0) whole_index_width = whole_index[1] whole_index_height = whole_index[0] horizontal_distance = np.absolute(np.mean(whole_index_height)-disc_cup_912.shape[1]/2) vertical_distance = np.absolute(np.mean(whole_index_width)-disc_cup_912.shape[0]/2) distance_ = np.sqrt(np.square(horizontal_distance)+np.square(vertical_distance)) binary_process_ = cv2.imread(binary_vessel_path+'binary_process/'+i)[...,0] artery_process_ = cv2.imread(artery_vein_path+'artery_binary_process/'+i)[...,0] vein_process_ = cv2.imread(artery_vein_path+'vein_binary_process/'+i)[...,0] binary_skeleton_ = cv2.imread(binary_vessel_path+'binary_skeleton/'+i)[...,0] artery_skeleton_ = cv2.imread(artery_vein_path+'artery_binary_skeleton/'+i)[...,0] vein_skeleton_ = cv2.imread(artery_vein_path+'vein_binary_skeleton/'+i)[...,0] # remove the intersection of binary_skeleton_ ignored_pixels = 1 mask_ = np.ones((binary_skeleton_.shape)) for it_x in range(ignored_pixels, mask_.shape[0] - ignored_pixels): for it_y in range(ignored_pixels, mask_.shape[1] - ignored_pixels): if binary_skeleton_[it_x, it_y] > 0: mask,active_neighbours = intersection(mask_,binary_skeleton_, it_x, it_y) binary_skeleton_ = binary_skeleton_ * mask # remove the intersection of artery_skeleton_ mask_ = np.ones((artery_skeleton_.shape)) for it_x in range(ignored_pixels, mask_.shape[0] - ignored_pixels): for it_y in range(ignored_pixels, mask_.shape[1] - ignored_pixels): if artery_skeleton_[it_x, it_y] > 0: mask,active_neighbours = intersection(mask_,artery_skeleton_, it_x, it_y) artery_skeleton_ = artery_skeleton_ * mask # remove the intersection of vein_skeleton_ mask_ = np.ones((vein_skeleton_.shape)) for it_x in range(ignored_pixels, mask_.shape[0] - ignored_pixels): for it_y in range(ignored_pixels, mask_.shape[1] - ignored_pixels): if vein_skeleton_[it_x, it_y] > 0: mask,active_neighbours = intersection(mask_,vein_skeleton_, it_x, it_y) vein_skeleton_ = vein_skeleton_ * mask zone_mask_B = np.zeros(binary_process_.shape) zone_mask_C = np.zeros(binary_process_.shape) zone_centre = (int(np.mean(whole_index_width)), int(np.mean(whole_index_height))) radius = max(int(disc_horizontal_width/2),int(disc_vertical_height/2)) cv2.circle(zone_mask_B,zone_centre,radius=3*radius,color=(255,255,255),thickness=-1) cv2.circle(zone_mask_B,zone_centre,radius=2*radius,color=(0,0,0),thickness=-1) zone_mask_B = zone_mask_B/255 binary_process_B = binary_process_*zone_mask_B artery_process_B = artery_process_*zone_mask_B vein_process_B = vein_process_*zone_mask_B binary_skeleton_B = binary_skeleton_*zone_mask_B artery_skeleton_B = artery_skeleton_*zone_mask_B vein_skeleton_B = vein_skeleton_*zone_mask_B cv2.circle(zone_mask_C,zone_centre,radius=5*radius,color=(255,255,255),thickness=-1) cv2.circle(zone_mask_C,zone_centre,radius=2*radius,color=(0,0,0),thickness=-1) zone_mask_C = zone_mask_C/255 binary_process_C = binary_process_*zone_mask_C artery_process_C = artery_process_*zone_mask_C vein_process_C = vein_process_*zone_mask_C binary_skeleton_C = binary_skeleton_*zone_mask_C artery_skeleton_C = artery_skeleton_*zone_mask_C vein_skeleton_C = vein_skeleton_*zone_mask_C if (distance_/disc_cup_912.shape[1])<0.1: optic_centre_list.append(i) cv2.imwrite(B_optic_process_binary_vessel_path+i,binary_process_B) cv2.imwrite(B_optic_process_artery_path+i,artery_process_B) cv2.imwrite(B_optic_process_vein_path+i,vein_process_B) cv2.imwrite(B_optic_skeleton_binary_vessel_path+i,binary_skeleton_B) cv2.imwrite(B_optic_skeleton_artery_path+i,artery_skeleton_B) cv2.imwrite(B_optic_skeleton_vein_path+i,vein_skeleton_B) cv2.imwrite(C_optic_process_binary_vessel_path+i,binary_process_C) cv2.imwrite(C_optic_process_artery_path+i,artery_process_C) cv2.imwrite(C_optic_process_vein_path+i,vein_process_C) cv2.imwrite(C_optic_skeleton_binary_vessel_path+i,binary_skeleton_C) cv2.imwrite(C_optic_skeleton_artery_path+i,artery_skeleton_C) cv2.imwrite(C_optic_skeleton_vein_path+i,vein_skeleton_C) optic_vertical_disc.append(disc_vertical_height) optic_horizontal_disc.append(disc_horizontal_width) optic_vertical_cup.append(cup_vertical_height) optic_horizontal_cup.append(cup_horizontal_width) optic_vertical_CDR.append(cup_vertical_height/disc_vertical_height) optic_horizontal_CDR.append(cup_horizontal_width/disc_horizontal_width) else: macular_centre_list.append(i) cv2.imwrite(zone_b_macular_process_binary_vessel_path+i,binary_process_B) cv2.imwrite(zone_b_macular_process_artery_path+i,artery_process_B) cv2.imwrite(zone_b_macular_process_vein_path+i,vein_process_B) cv2.imwrite(zone_b_macular_skeleton_binary_vessel_path+i,binary_skeleton_B) cv2.imwrite(zone_b_macular_skeleton_artery_path+i,artery_skeleton_B) cv2.imwrite(zone_b_macular_skeleton_vein_path+i,vein_skeleton_B) cv2.imwrite(zone_c_macular_process_binary_vessel_path+i,binary_process_C) cv2.imwrite(zone_c_macular_process_artery_path+i,artery_process_C) cv2.imwrite(zone_c_macular_process_vein_path+i,vein_process_C) cv2.imwrite(zone_c_macular_skeleton_binary_vessel_path+i,binary_skeleton_C) cv2.imwrite(zone_c_macular_skeleton_artery_path+i,artery_skeleton_C) cv2.imwrite(zone_c_macular_skeleton_vein_path+i,vein_skeleton_C) shutil.copy(binary_vessel_path+'binary_process/'+i,macular_process_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_process/'+i,macular_process_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_process/'+i,macular_process_vein_path+i) shutil.copy(binary_vessel_path+'binary_skeleton/'+i,macular_skeleton_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_skeleton/'+i,macular_skeleton_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_skeleton/'+i,macular_skeleton_vein_path+i) macular_vertical_disc.append(disc_vertical_height) macular_horizontal_disc.append(disc_horizontal_width) macular_vertical_cup.append(cup_vertical_height) macular_horizontal_cup.append(cup_horizontal_width) macular_vertical_CDR.append(cup_vertical_height/disc_vertical_height) macular_horizontal_CDR.append(cup_horizontal_width/disc_horizontal_width) else: macular_centre_list.append(i) shutil.copy(binary_vessel_path+'binary_process/'+i,macular_process_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_process/'+i,macular_process_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_process/'+i,macular_process_vein_path+i) shutil.copy(binary_vessel_path+'binary_skeleton/'+i,macular_skeleton_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_skeleton/'+i,macular_skeleton_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_skeleton/'+i,macular_skeleton_vein_path+i) macular_vertical_disc.append(-1) macular_horizontal_disc.append(-1) macular_vertical_cup.append(-1) macular_horizontal_cup.append(-1) macular_vertical_CDR.append(-1) macular_horizontal_CDR.append(-1) except: macular_centre_list.append(i) shutil.copy(binary_vessel_path+'binary_process/'+i,macular_process_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_process/'+i,macular_process_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_process/'+i,macular_process_vein_path+i) shutil.copy(binary_vessel_path+'binary_skeleton/'+i,macular_skeleton_binary_vessel_path+i) shutil.copy(artery_vein_path+'artery_binary_skeleton/'+i,macular_skeleton_artery_path+i) shutil.copy(artery_vein_path+'vein_binary_skeleton/'+i,macular_skeleton_vein_path+i) macular_vertical_disc.append(-1) macular_horizontal_disc.append(-1) macular_vertical_cup.append(-1) macular_horizontal_cup.append(-1) macular_vertical_CDR.append(-1) macular_horizontal_CDR.append(-1) Pd_optic_centre = pd.DataFrame({'Name':optic_centre_list, 'Disc_height':optic_vertical_disc, 'Disc_width':optic_horizontal_disc, 'Cup_height': optic_vertical_cup, 'Cup_width': optic_horizontal_cup, 'CDR_vertical': optic_vertical_CDR, 'CDR_horizontal': optic_horizontal_CDR}) Pd_optic_centre.to_csv(optic_binary_result_path + 'Disc_cup_results.csv', index = None, encoding='utf8') Pd_macular_centre = pd.DataFrame({'Name':macular_centre_list, 'Disc_height':macular_vertical_disc, 'Disc_width':macular_horizontal_disc, 'Cup_height': macular_vertical_cup, 'Cup_width': macular_horizontal_cup, 'CDR_vertical': macular_vertical_CDR, 'CDR_horizontal': macular_horizontal_CDR}) Pd_macular_centre.to_csv(macular_binary_result_path + 'Disc_cup_results.csv', index = None, encoding='utf8') def misc_measures(true_vessel_arr, pred_vessel_arr): cm=confusion_matrix(true_vessel_arr, pred_vessel_arr) mse = mean_squared_error(true_vessel_arr, pred_vessel_arr) try: acc=1.*(cm[0,0]+cm[1,1])/np.sum(cm) sensitivity=1.*cm[1,1]/(cm[1,0]+cm[1,1]) specificity=1.*cm[0,0]/(cm[0,1]+cm[0,0]) precision=1.*cm[1,1]/(cm[1,1]+cm[0,1]) G = np.sqrt(sensitivity*specificity) F1_score = 2*precision*sensitivity/(precision+sensitivity) iou = 1.*cm[1,1]/(cm[1,0]+cm[0,1]+cm[1,1]) return acc, sensitivity, specificity, precision, G, F1_score, mse, iou except: return 0,0,0,0,0,0,0,0 def evaluate_disc(results_path, label_path): if os.path.exists(results_path+'.ipynb_checkpoints'): shutil.rmtree(results_path+'.ipynb_checkpoints') if not os.path.exists(results_path): os.makedirs(results_path) seg_list = os.listdir(results_path) tot=[] sent=[] spet=[] pret=[] G_t=[] F1t=[] mset=[] iout=[] n_val = len(seg_list) for i in seg_list: label_name = i.split('.')[0] + '_OD.png' label_ = cv2.imread(label_path+label_name)/255 label_=label_[...,0] seg_ = cv2.imread(results_path + i) seg_ = (seg_<255).astype('float')[...,0] acc, sensitivity, specificity, precision, G, F1_score, mse, iou = misc_measures(label_.flatten(), seg_.flatten()) tot.append(acc) sent.append(sensitivity) spet.append(specificity) pret.append(precision) G_t.append(G) F1t.append(F1_score) mset.append(mse) iout.append(iou) Data4stage2 = pd.DataFrame({'ACC':tot, 'Sensitivity':sent, 'Specificity':spet, 'Precision': pret, 'G_value': G_t, \ 'F1-score': F1t, 'MSE': mset, 'IOU': iout}) Data4stage2.to_csv('./results/IDRID_optic/performance.csv', index = None, encoding='utf8') #return tot / n_val, sent / n_val, spet / n_val, pret / n_val, G_t / n_val, F1t / n_val, auc_roct / n_val, auc_prt / n_val, iout/n_val, mset/n_val def prediction_eval(model_1,model_2,model_3,model_4,model_5,model_6,model_7,model_8, test_loader): n_val = len(test_loader) seg_results_small_path = '../Results/M2/optic_disc_cup/resized/' seg_results_raw_path = '../Results/M2/optic_disc_cup/raw/' if not os.path.isdir(seg_results_small_path): os.makedirs(seg_results_small_path) if not os.path.isdir(seg_results_raw_path): os.makedirs(seg_results_raw_path) seg_uncertainty_small_path = '../Results/M2/optic_disc_cup/resize_uncertainty/' if not os.path.isdir(seg_uncertainty_small_path): os.makedirs(seg_uncertainty_small_path) seg_uncertainty_raw_path = '../Results/M2/optic_disc_cup/raw_uncertainty/' if not os.path.isdir(seg_uncertainty_raw_path): os.makedirs(seg_uncertainty_raw_path) with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar: for batch in test_loader: imgs = batch['image'] img_name = batch['name'] ori_width=batch['original_sz'][0] ori_height=batch['original_sz'][1] mask_pred_tensor_small_all = 0 imgs = imgs.to(device=device, dtype=torch.float32) with torch.no_grad(): _,mask_pred = model_1(imgs) mask_pred_tensor_small = mask_pred.clone().detach() mask_pred_tensor_small_1 = F.softmax(mask_pred_tensor_small,dim=1) mask_pred_tensor_small_all+=mask_pred_tensor_small_1.type(torch.FloatTensor) _,mask_pred= model_2(imgs) mask_pred_tensor_small = mask_pred.clone().detach() mask_pred_tensor_small_2 = F.softmax(mask_pred_tensor_small,dim=1) mask_pred_tensor_small_all+=mask_pred_tensor_small_2.type(torch.FloatTensor) _,mask_pred = model_3(imgs) mask_pred_tensor_small
# coding: utf-8 # Welcome to the fourth Lab session of the "Advanced algorithmics and graph theory with Python" MOOC. In this exercise you will learn how to find solutions to the Traveling Salesman Problem. # # The main objective of this exercise is to: # * Describe the classic traveling salesman problem and use it as a reduction for other problems. # * Write functions to solve a problem NP-complete using backtracking. # # Based on what we learned in the previous exercices, we will define advanced functions and use them to define the Traveling Salesman algorithm. # ## List manipulation # # Before starting this session we will do a quick recap on list manipulation with python. # # We would like to point out a major difference between the '+' operator that concatenate two lists and the append function. As a matter of fact, using '+' operator creates a new list that is the concatenation of the two given lists and therefore does not modify the input list, whereas the append function modifies the initial list. # # Let us illustrate: # In[3]: import matplotlib.pyplot as plt import time import pyrat from imports import maze input_list = [3, 5, 4, 1, 0, 7] # add a new element to the list using both methods print("We first use '+' to generate a new list containing the new element and the input list") output_list = input_list+[8] print("the output list is: ") print(output_list) print("input list is: ") print(input_list) print("The element was added only to the output_list not to the input list") input_list = [3, 5, 4, 1, 0, 7] print("Now we use append function to add an element to the list") input_list.append(8) print("input list is: ") print(input_list) print("The element was added to input_list") # ## Exercise A (1pt) # # We will first define our metagraph. To do this the first thing we need to define are the vertices of our metagraph. These vertices are the positions of the cheeses in the maze and the player position. # # The function we are going to define is create_vertices_meta_graph. This function takes two inputs, a list of vertices 'pieces_of_cheese', which contains the positions of cheeses in the maze, and a vertex 'player_position' which contains the position of the player in the maze. # # This function returns a list containing 'piece_of_cheese' elements and 'player_position', but does not modify the list 'piece_of_cheese'. # In[4]: def create_vertices_meta_graph(piece_of_cheese, player_location): # # YOUR CODE HERE # meta = sorted(piece_of_cheese+[player_location]) return meta # In[5]: # # AUTOGRADER TEST - DO NOT REMOVE # piece_of_cheese = [(3, 4), (1, 2), (5, 4), (0, 3), (8, 9)] player_position = (0, 1) vertices_meta_graph = create_vertices_meta_graph( piece_of_cheese, player_position) print("Positions of pieces of cheese are:") # we add sorted in order to always get the same result. print(sorted(piece_of_cheese)) print("Player position is:") print(player_position) print("The vertices of the meta graph are:") # The player position can be add at any position in the list, so we add sorted in order to always get the same result. print(sorted(vertices_meta_graph)) # The obtained result after executing the cell above should be: # ``` # Positions of pieces of cheese are: # [(0, 3), (1, 2), (3, 4), (5, 4), (8, 9)] # Player position is: # (0, 1) # The vertices of the meta graph are: # [(0, 1), (0, 3), (1, 2), (3, 4), (5, 4), (8, 9)] # ``` # ## Exercice B (1pt) # # With the vertices defined we now need to connect them with weighted edges. To do this we are going to define the create_edge_weight_maze_graph function. # # This function has two inputs, 'maze_graph' and 'vertices', and returns an adjacency matrix containing distances between each pair of vertices in the meta graph. Note that for the moment we are only interested in the shortest distance, but we disregard the corresponding shortest path. # # Tip: You don't need to recode the Dijkstra function or to copy the code from Lab 3. The Dijkstra functions is already defined in the utils package and can be called as follows: # # utils.Dijkstra(maze_graph,initial_vertex). # # This function returns an array containing three elements: # # 1. an array containing the explored vertices in the order that they were explored # 2. the parent dictionary containing the source vertex for each one of the vertices of the maze. # 3. a dictionary where each key is a vertex on the maze graph and each value is the distance from the initial vertex to the given vertex # In[103]: def create_edge_weight_maze_graph(maze_graph, vertices): import utils adjacency_matrix = {} for initial_vertex in vertices: explored_vertices, _, distances = utils.Dijkstra( maze_graph, initial_vertex) adjacency_matrix[initial_vertex] = {} for vertex in vertices: if vertex != initial_vertex: adjacency_matrix[initial_vertex][vertex] = distances[vertex] return adjacency_matrix # In[104]: # # AUTOGRADER TEST - DO NOT REMOVE # width = 3 height = 3 number_of_cheeses = 3 _, _, _, maze_graph = maze.generate_maze( width, height, 0, True, False, 0.5, 5, "", 0) pieces_of_cheese, player1_location, _ = maze.generate_pieces_of_cheese( number_of_cheeses, width, height, False, None, None, False) vertices = create_vertices_meta_graph(pieces_of_cheese, player1_location) adjacency_matrix = create_edge_weight_maze_graph(maze_graph, vertices) print("the adjacency matrix is:") for key, value in sorted(adjacency_matrix.items()): print("{}:{}".format(key, value)) # After coding create_edge_weight_maze_graph and runing the test code, the result should be: # # ``` # the adjacency matrix is: # (0, 0):{(0, 1): 3, (2, 0): 2, (2, 1): 3} # (0, 1):{(2, 0): 3, (0, 0): 3, (2, 1): 3} # (2, 0):{(0, 1): 3, (0, 0): 2, (2, 1): 1} # (2, 1):{(0, 1): 3, (2, 0): 1, (0, 0): 3} # ``` # ## Exercice C (1pt) # # With the metagraph in hand you are now ready to program a bruteforce search for the Traveling Salesman Problem (TSP). # # You will define the bruteforceTSP function which uses bruteforce search to find the shortest walk going through all vertices. Note that these are the vertices from the metagraph, which represent positions of the player and cheeses in the maze. # # To implement this algorithm, you will be using a recursive function as introduced in the lessons. The function bruteforceTSP defines all the variables needed, computes the metagraph and then execute a recursive function called auxbf to find the shortest walk through vertices. # # The auxbf function is responsible for searching the shortest walk possible in a recursive way given an already started, but preliminary, walk. # In[98]: def auxbf(current_walk, best_walk, adjacency_matrix, vertices, current_distance, best_distance): # if length of current walk is larger than the order of the graph: # if moreover the current distance is shorter than the best distance obtained so far: # update the value of the best distance # update the corresponding best walk # otherwise: # for any vertex in the graph: # if the vertex is not in the current walk: # obtain potential values for best walk and best distance by recursively calling auxbf() with updated current walk and current distance # if potential distance is shorter than best distance: # update the value of the best distance # update the corresponding best walk # if(len(current_walk) == len(vertices)): if(current_distance < best_distance): best_distance = current_distance best_walk = current_walk else: for next_vertex in vertices: if not(next_vertex in current_walk): current_walk_temp = current_walk+[next_vertex] current_distance_temp = current_distance + \ adjacency_matrix[current_walk[-1]][next_vertex] best_walk_temp, best_distance_temp = auxbf( current_walk_temp, best_walk, adjacency_matrix, vertices, current_distance_temp, best_distance) if best_distance_temp < best_distance: best_distance = best_distance_temp best_walk = best_walk_temp return best_walk, best_distance def bruteforceTSP(maze_graph, pieces_of_cheese, player_location): # first we compute the vertices of the meta_graph: vertices = create_vertices_meta_graph(pieces_of_cheese, player_location) # then we create the adjacency matrix of the meta graph adjacency_matrix = create_edge_weight_maze_graph(maze_graph, vertices) # now we can start defining our variables # current_distance is the length of the walk for the current exploration branch current_distance = 0 # current_walk is a container for the current exploration branch current_walk = [player_location] # best_distance is an indicator of the shortest walk found so far best_distance = float('inf') # best_walk is a container for the corresponding walk best_walk = [] # we start the exploration: best_walk, best_distance = auxbf( current_walk, best_walk, adjacency_matrix, vertices, current_distance, best_distance) return best_walk, best_distance # In[99]: # # AUTOGRADER TEST - DO NOT REMOVE # width = 3 height = 3 number_of_cheeses = 3 _, _, _, maze_graph = maze.generate_maze( width, height, 0, True, False, 0.5, 5, "", 0) pieces_of_cheese, player1_location, _ = maze.generate_pieces_of_cheese( number_of_cheeses, width, height, False, None, None, False) best_walk, best_distance = bruteforceTSP( maze_graph, pieces_of_cheese, player1_location) print("one best walk is: {}".format(best_walk)) print("the best distance is: {}".format(best_distance)) # The result of test cell
import numpy as np import scipy.interpolate as interpolate import h5py as h5 import os from lxml import objectify, etree import sharpy.utils.generator_interface as generator_interface import sharpy.utils.settings as settings import sharpy.utils.cout_utils as cout @generator_interface.generator class TurbVelocityField(generator_interface.BaseGenerator): r""" Turbulent Velocity Field Generator ``TurbVelocitityField`` is a class inherited from ``BaseGenerator`` The ``TurbVelocitityField`` class generates a velocity field based on the input from an [XDMF](http://www.xdmf.org) file. It supports time-dependant fields as well as frozen turbulence. To call this generator, the ``generator_id = TurbVelocityField`` shall be used. This is parsed as the value for the ``velocity_field_generator`` key in the desired aerodynamic solver's settings. Supported files: - `field_id.xdmf`: Steady or Unsteady XDMF file This generator also performs time interpolation between two different time steps. For now, only linear interpolation is possible. Space interpolation is done through `scipy.interpolate` trilinear interpolation. However, turbulent fields are read directly from the binary file and not copied into memory. This is performed using `np.memmap`. The overhead of this procedure is ~18% for the interpolation stage, however, initially reading the binary velocity field (which will be much more common with time-domain simulations) is faster by a factor of 1e4. Also, memory savings are quite substantial: from 6Gb for a typical field to a handful of megabytes for the whole program. Args: in_dict (dict): Input data in the form of dictionary. See acceptable entries below: Attributes: See Also: .. py:class:: sharpy.utils.generator_interface.BaseGenerator """ generator_id = 'TurbVelocityField' generator_classification = 'velocity-field' settings_types = dict() settings_default = dict() settings_description = dict() settings_types['print_info'] = 'bool' settings_default['print_info'] = True settings_description['print_info'] = 'Output solver-specific information in runtime.' settings_types['turbulent_field'] = 'str' settings_default['turbulent_field'] = None settings_description['turbulent_field'] = 'XDMF file path of the velocity field' settings_types['offset'] = 'list(float)' settings_default['offset'] = np.zeros((3,)) settings_description['offset'] = 'Spatial offset in the 3 dimensions' settings_types['centre_y'] = 'bool' settings_default['centre_y'] = True settings_description['centre_y'] = 'Flat for changing the domain to [``-y_max/2``, ``y_max/2``]' settings_types['periodicity'] = 'str' settings_default['periodicity'] = 'xy' settings_description['periodicity'] = 'Axes in which periodicity is enforced' settings_types['frozen'] = 'bool' settings_default['frozen'] = True settings_description['frozen'] = 'If ``True``, the turbulent field will not be updated in time' settings_types['store_field'] = 'bool' settings_default['store_field'] = False settings_description['store_field'] = 'If ``True``, the xdmf snapshots are stored in memory. Only two at a time for the linear interpolation' settings_table = settings.SettingsTable() __doc__ += settings_table.generate(settings_types, settings_default, settings_description) def __init__(self): self.in_dict = dict() self.settings = dict() self.file = None self.extension = None self.grid_data = dict() self.interpolator = 3*[None] self.x_periodicity = False self.y_periodicity = False # variables for interpolator wrapper self._t0 = -1 self._t1 = -1 self._it0 = -1 self._it1 = -1 self._interpolator0 = None self._interpolator1 = None self.coeff = 0. self.double_initialisation = True self.vel_holder0 = 3*[None] self.vel_holder1 = 3*[None] def initialise(self, in_dict): self.in_dict = in_dict settings.to_custom_types(self.in_dict, self.settings_types, self.settings_default) self.settings = self.in_dict _, self.extension = os.path.splitext(self.settings['turbulent_field']) if self.extension is '.h5': self.read_btl(self.settings['turbulent_field']) if self.extension in '.xdmf': self.read_xdmf(self.settings['turbulent_field']) if 'z' in self.settings['periodicity']: raise ValueError('Periodicitiy setting in TurbVelocityField cannot be z.\n A turbulent boundary layer is not periodic in the z direction!') if 'x' in self.settings['periodicity']: self.x_periodicity = True if 'y' in self.settings['periodicity']: self.y_periodicity = True # ADC: VERY VERY UGLY. NEED A BETTER WAY def interpolator_wrapper0(self, coords, i_dim=0): coeff = self.get_coeff() return (1.0 - self.coeff)*self._interpolator0[i_dim](coords) + self.coeff*self._interpolator1[i_dim](coords) def interpolator_wrapper1(self, coords, i_dim=1): coeff = self.get_coeff() return (1.0 - self.coeff)*self._interpolator0[i_dim](coords) + self.coeff*self._interpolator1[i_dim](coords) def interpolator_wrapper2(self, coords, i_dim=2): coeff = self.get_coeff() return (1.0 - self.coeff)*self._interpolator0[i_dim](coords) + self.coeff*self._interpolator1[i_dim](coords) def get_coeff(self): return self.coeff def init_interpolator(self): if self.settings['frozen']: self.interpolator = self._interpolator0 return # continuing the ugliness self.interpolator[0] = self.interpolator_wrapper0 self.interpolator[1] = self.interpolator_wrapper1 self.interpolator[2] = self.interpolator_wrapper2 # these functions need to define the interpolators def read_btl(self, in_file): """ Legacy function, not using the custom format based on HDF5 anymore. """ raise NotImplementedError('The BTL reader is not up to date!') def read_xdmf(self, in_file): """ Reads the xml file `<case_name>.xdmf`. Writes the self.grid_data data structure with all the information necessary. Note: this function does not load any turbulence data (such as ux000, ...), it only reads the header information contained in the xdmf file. """ # store route of file for the other files self.route = os.path.dirname(os.path.abspath(in_file)) # file to string with open(in_file, 'r') as self.file: data = self.file.read().replace('\n', '') # parse data # this next line is necessary to avoid problems with parsing in the Time part: # <!--Start.... # 0.0, 1.0 ... # see https://stackoverflow.com/a/18313932 parser = objectify.makeparser(remove_comments=True) tree = objectify.fromstring(data, parser=parser) # mesh dimensions self.grid_data['dimensions'] = np.fromstring(tree.Domain.Topology.attrib['Dimensions'], sep=' ', count=3, dtype=int) # origin self.grid_data['origin'] = np.fromstring(tree.Domain.Geometry.DataItem[0].text, sep=' ', count=int(tree.Domain.Geometry.DataItem[0].attrib['Dimensions']), dtype=float) # dxdydz # because of how XDMF does it, it is actually dzdydx self.grid_data['dxdydz'] = ( np.fromstring(tree.Domain.Geometry.DataItem[1].text, sep=' ', count=int(tree.Domain.Geometry.DataItem[1].attrib['Dimensions']), dtype=float)) # now onto the grid # time information # [0] is start, [1] is stride self.grid_data['time'] = np.fromstring(tree.Domain.Grid.Time.DataItem.text, sep=' ', count=2, dtype=float) self.grid_data['n_grid'] = len(tree.Domain.Grid.Grid) # self.grid_data['grid'] = [dict()]*self.grid_data['n_grid'] self.grid_data['grid'] = [] for i, i_grid in enumerate(tree.Domain.Grid.Grid): self.grid_data['grid'].append(dict()) # cycle through attributes for k_attrib, v_attrib in i_grid.attrib.items(): self.grid_data['grid'][i][k_attrib] = v_attrib # get Attributes (upper case A is not a mistake) for i_attrib, attrib in enumerate(i_grid.Attribute): self.grid_data['grid'][i][attrib.attrib['Name']] = dict() self.grid_data['grid'][i][attrib.attrib['Name']]['file'] = ( attrib.DataItem.text.replace(' ', '')) if attrib.DataItem.attrib['Precision'].strip() == '4': self.grid_data['grid'][i][attrib.attrib['Name']]['Precision'] = np.float32 elif attrib.DataItem.attrib['Precision'].strip() == '8': self.grid_data['grid'][i][attrib.attrib['Name']]['Precision'] = np.float64 # now we have the file names and the dimensions self.grid_data['initial_x_grid'] = np.array(np.arange(0, self.grid_data['dimensions'][2]))*self.grid_data['dxdydz'][2] # z in the file is -y for us in sharpy (y_sharpy = right) self.grid_data['initial_y_grid'] = np.array(np.arange(0, self.grid_data['dimensions'][1]))*self.grid_data['dxdydz'][1] # y in the file is z for us in sharpy (up) self.grid_data['initial_z_grid'] = np.array(np.arange(0, self.grid_data['dimensions'][0]))*self.grid_data['dxdydz'][0] # the domain now goes: # x \in [0, dimensions[0]*dx] # y \in [-dimensions[2]*dz, 0] # z \in [0, dimensions[1]*dy] centre_z_offset = 0. if self.settings['centre_y']: centre_z_offset = -0.5*(self.grid_data['initial_z_grid'][-1] - self.grid_data['initial_z_grid'][0]) self.grid_data['initial_x_grid'] += self.settings['offset'][0] + self.grid_data['origin'][0] self.grid_data['initial_x_grid'] -= np.max(self.grid_data['initial_x_grid']) self.grid_data['initial_y_grid'] += self.settings['offset'][1] + self.grid_data['origin'][1] self.grid_data['initial_z_grid'] += self.settings['offset'][2] + self.grid_data['origin'][2] + centre_z_offset self.bbox = self.get_field_bbox(self.grid_data['initial_x_grid'], self.grid_data['initial_y_grid'], self.grid_data['initial_z_grid'], frame='G') if self.settings['print_info']: cout.cout_wrap('The domain bbox is:', 1) cout.cout_wrap(' x = [' + str(self.bbox[0, 0]) + ', ' + str(self.bbox[0, 1]) + ']', 1) cout.cout_wrap(' y = [' + str(self.bbox[1, 0]) + ', ' + str(self.bbox[1, 1]) + ']', 1) cout.cout_wrap(' z = [' + str(self.bbox[2, 0]) + ', ' + str(self.bbox[2, 1]) + ']', 1) def generate(self, params, uext): zeta = params['zeta'] for_pos = params['for_pos'] t = params['t'] self.update_cache(t) self.update_coeff(t) self.init_interpolator() self.interpolate_zeta(zeta, for_pos, uext) def update_cache(self, t): self.double_initialisation = False if self.settings['frozen']: if self._interpolator0 is None: self._t0 = self.timestep_2_time(0) self._it0 = 0 self._interpolator0 = self.read_grid(self._it0, i_cache=0) return # most common case: t already in the [t0, t1] interval if self._t0 <= t <= self._t1: return # t < t0, something weird (time going backwards) if t < self._t0: raise ValueError('Please make sure everything is ok. Your time is going backwards.') # t > t1, need initialisation if t > self._t1: new_it = self.time_2_timestep(t) # new timestep requires initialising the two of them (not likely at all) # this means that the simulation timestep > LES timestep if new_it > self._it1: self.double_initialisation = True else: # t1 goes to t0 self._t0 = self._t1 self._it0 = self._it1 self._interpolator0 = self._interpolator1.copy() # t1 updates to the next (new_it + 1) self._it1 = new_it + 1 self._t1 = self.timestep_2_time(self._it1) self._interpolator1 = self.read_grid(self._it1, i_cache=1) return # last case, both interp need to be initialised if (self._t0 is None or self.double_initialisation): self._t0 = self.timestep_2_time(new_it) self._it0 = new_it self._interpolator0 = self.read_grid(self._it0, i_cache=0) self._it1 = new_it + 1 self._t1 = self.timestep_2_time(self._it1) self._interpolator1 = self.read_grid(self._it1, i_cache=1) def update_coeff(self, t): if self.settings['frozen']: self.coeff = 0.0 return self.coeff = self.linear_coeff([self._t0, self._t1], t) return def time_2_timestep(self, t): return int(max(0, np.floor((t - self.grid_data['time'][0])/self.grid_data['time'][1]))) def timestep_2_time(self, it): return it*self.grid_data['time'][1] + self.grid_data['time'][0] def get_field_bbox(self, x_grid, y_grid, z_grid, frame='G'): bbox = np.zeros((3, 2)) bbox[0, :] = [np.min(x_grid), np.max(x_grid)] bbox[1, :] = [np.min(y_grid), np.max(y_grid)] bbox[2, :] = [np.min(z_grid), np.max(z_grid)] if frame == 'G': bbox[:, 0] = self.gstar_2_g(bbox[:, 0]) bbox[:, 1] = self.gstar_2_g(bbox[:, 1]) return bbox def create_interpolator(self, data, x_grid, y_grid, z_grid, i_dim): interpolator = interpolate.RegularGridInterpolator((x_grid, y_grid, z_grid), data, bounds_error=False, fill_value=0.0) return interpolator def interpolate_zeta(self, zeta, for_pos, u_ext, interpolator=None, offset=np.zeros((3))): if interpolator is None:
logger.info("HA Deployment set to DISABLED") HA_DEPLOYMENT = False if write_flag == 0: # reload odim-controller conf with haDeployment param yaml.SafeDumper.org_represent_str = yaml.SafeDumper.represent_str yaml.add_representer(str, represent_yaml_multline_str, Dumper=yaml.SafeDumper) with open(CONTROLLER_CONF_FILE, 'w') as f: yaml.safe_dump(CONTROLLER_CONF_DATA, f, default_flow_style=False) # operation_odimra is used for deploying/removing ODIMRA # in the nodes provided in odim-controller conf based on the operation input def operation_odimra(operation): cur_dir = os.getcwd() os.chdir(ODIMRA_SRC_PATH) host_file = os.path.join(KUBESPRAY_SRC_PATH, DEPLOYMENT_SRC_DIR, 'hosts.yaml') if not os.path.exists(host_file): logger.error("Host file not found for deployment id %s" %(DEPLOYMENT_ID)) exit(1) if not DRY_RUN_SET: load_password_from_vault(cur_dir) # set options based on the operation type helm_config_file = "" odimra_config_file = "" if operation == "install": helm_config_file = os.path.join(ODIMRA_SRC_PATH, 'roles/pre-install/files/helmcharts/helm_config_values.yaml') odimra_config_file = os.path.join(ODIMRA_SRC_PATH, 'roles/odimra-copy-image/files/odimra_config_values.yaml') perform_odimra_deploy_prereqs() elif operation == "uninstall": helm_config_file = os.path.join(ODIMRA_SRC_PATH, 'roles/post-uninstall/files/odim_controller_config.yaml') odimra_config_file = os.path.join(ODIMRA_SRC_PATH, 'roles/odimra-delete-image/files/odimra_config_values.yaml') shutil.copyfile(CONTROLLER_CONF_FILE, helm_config_file) shutil.copyfile(CONTROLLER_CONF_FILE, odimra_config_file) # as rollback of failed operation is not handled yet # will try on first master node and exit on failure master_node = list(K8S_INVENTORY_DATA['all']['children']['kube-master']['hosts'].keys())[0] logger.info("Starting odimra %s on master node %s", operation, master_node) odimra_deploy_cmd = 'ansible-playbook -i {host_conf_file} --become --become-user=root \ --extra-vars "host={master_node} helm_config_file={helm_config_file} ignore_err={ignore_err}" \ {operation_conf_file}.yaml'.format(host_conf_file=host_file, master_node=master_node, helm_config_file=CONTROLLER_CONF_FILE, \ operation_conf_file=operation,ignore_err=IGNORE_ERRORS_SET) ret = exec(odimra_deploy_cmd, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) # remove copy of controller config file created os.remove(helm_config_file) os.remove(odimra_config_file) if ret != 0: logger.critical("ODIMRA %s failed on master node %s", operation, master_node) os.chdir(cur_dir) exit(1) if operation == "uninstall" and os.path.exists(os.path.join(CONTROLLER_CONF_DATA['odimCertsPath'], '.gen_odimra_certs.ok')): logger.info("Cleaning up certificates generated for the deployment") shutil.rmtree(CONTROLLER_CONF_DATA['odimCertsPath']) logger.info("Completed ODIMRA %s operation", operation) os.chdir(cur_dir) def cleanUp(): if DEPLOYMENT_SRC_DIR != "": path = os.path.join(KUBESPRAY_SRC_PATH, DEPLOYMENT_SRC_DIR) logger.info("Cleaning up temp directory : %s", path) shutil.rmtree(path) # install_k8s is for performing all the necessary steps # for deploying k8s cluster def install_k8s(): logger.info("Installing kubernetes") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # Check for HA deployment perform_check_ha_deploy() # Initiate k8s deployment deploy_k8s() exit(0) # reset_k8s is for performing all the necessary steps # for removing k8s from the deployed nodes def reset_k8s(): logger.info("Resetting kubernetes") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks(skip_opt_param_check=True) # Remove k8s from the deployed nodes remove_k8s() exit(0) # install_odimra is for performing all the necessary steps for installing ODIMRA def install_odimra(): logger.info("Installing ODIMRA") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() # Initiate ODIMRA deployment operation_odimra("install") exit(0) # uninstall_odimra is used for performing all the necessary steps for uninstalling ODIMRA def uninstall_odimra(): logger.info("Uninstalling ODIMRA") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() # Initiate ODIMRA removal operation_odimra("uninstall") exit(0) # add_k8s_node is for performing all the necessary steps # for adding a new node to existing k8s cluster def add_k8s_node(): logger.info("Adding new node to existing kubernetes cluster") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() # Initiate k8s deployment on new nodes scale_out_k8s() exit(0) # rm_k8s_node is for performing all the necessary steps # for removing a node from the existing k8s cluster def rm_k8s_node(): logger.info("Removing a node from the existing kubernetes cluster") # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() # Initiate node removal from k8s deployment scale_in_k8s() exit(0) # generateRandomAlphaNum geneartes generates a random # string of requested length containing alphanumeric and # special characters from the defined set def generateRandomAlphaNum(length): random_char_set = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_-{}<>+[]$?@:;()%,' return ''.join((random.choice(random_char_set) for i in range(length))) # store_vault_key checks if vault password file exists, # if not creates the file by asking user for the password # else returns without performing any action. def store_vault_key(): global ODIMRA_VAULT_KEY_FILE user_home = os.getenv("HOME") odimra_vault_dir = os.path.join(user_home, '.odimra') if not os.path.exists(odimra_vault_dir): os.mkdir(odimra_vault_dir, mode = 0o700) ODIMRA_VAULT_KEY_FILE = os.path.join(odimra_vault_dir, '.key_dnd.dat') if not os.path.exists(ODIMRA_VAULT_KEY_FILE): print("\nProvide password for vault") pw_from_prompt = lambda: (getpass.getpass('Enter Password: '), getpass.getpass('Confirm Password: ')) first_pw, second_pw = pw_from_prompt() if first_pw != second_pw: logger.critical("Passwords provided do not match") exit(1) fd = open(ODIMRA_VAULT_KEY_FILE, "wb") fd.write(first_pw.encode('utf-8')) fd.close() encode_cmd = '{vault_bin} -encode {key_file}'.format(vault_bin=ODIMRA_VAULT_BIN, key_file=ODIMRA_VAULT_KEY_FILE) ret = exec(encode_cmd, {}) if ret != 0: logger.critical("storing vault key failed") exit(1) return # store_password_in_vault stores the nodes sudo # password securely by encrypting using odimra vault def store_password_in_vault(): global ANSIBLE_BECOME_PASS print("\nProvide sudo password of the nodes") pw_from_prompt = lambda: (getpass.getpass('Enter Password: '), getpass.getpass('Confirm Password: ')) first_pw, second_pw = pw_from_prompt() if first_pw != second_pw: logger.critical("Passwords provided do not match") exit(1) fd = open(ANSIBLE_SUDO_PW_FILE, "wb") fd.write(first_pw.encode('utf-8')) fd.close() encrypt_cmd = '{vault_bin} -key {key_file} -encrypt {data_file}'.format(vault_bin=ODIMRA_VAULT_BIN, key_file=ODIMRA_VAULT_KEY_FILE, data_file=ANSIBLE_SUDO_PW_FILE) ret = exec(encrypt_cmd, {}) if ret != 0: logger.critical("storing node password failed") exit(1) ANSIBLE_BECOME_PASS = <PASSWORD> # load_password_from_vault loads the sudo password of nodes # of present cluster securely stored usign ansible vault def load_password_from_vault(cur_dir): global ANSIBLE_BECOME_PASS decrypt_cmd = '{vault_bin} -key {key_file} -decrypt {data_file}'.format(vault_bin=ODIMRA_VAULT_BIN, key_file=ODIMRA_VAULT_KEY_FILE, data_file=ANSIBLE_SUDO_PW_FILE) execHdlr = subprocess.Popen(decrypt_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, universal_newlines=True) try: std_out, std_err = execHdlr.communicate() except TimeoutExpired: execHdlr.kill() if execHdlr.returncode != 0 or std_out == "": print(std_out.strip()) logger.critical("failed to read node password") os.chdir(cur_dir) exit(1) ANSIBLE_BECOME_PASS = std_out.rstrip('\n') # check_extract_kubespray_src is used for invoking # a script, after checking and if not exists, to extract # kubespary source bundle def check_extract_kubespray_src(): if not os.path.isdir(os.path.join(KUBESPRAY_SRC_PATH, "inventory")): kubespray_extract_tool = os.path.join(KUBESPRAY_SRC_PATH, 'configure-kubespray.sh') kubespray_extract_cmd = '/bin/bash {kubespray_extract_tool} {kubespray_src_path}'.format( \ kubespray_extract_tool=kubespray_extract_tool, kubespray_src_path=KUBESPRAY_SRC_PATH) ret = exec(kubespray_extract_cmd, {}) if ret != 0: logger.critical("Extracting and configuring kubespray failed") exit(1) def read_groupvar(): global GROUP_VAR_DATA group_var_file = ODIMRA_SRC_PATH+'/group_vars/all' if not os.path.isfile(group_var_file): logger.critical("invalid group_var file %s passed, exiting!!!", group_var_file) exit(1) logger.debug("Reading group_var file %s", group_var_file) with open(group_var_file) as f: GROUP_VAR_DATA = yaml.load(f, Loader=yaml.FullLoader) # upgrade_config_map update the config maps def upgrade_config_map(config_map_name): logger.info("Upgrading config map"+config_map_name) # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() #loading the group_all yaml and finding helm chart full name read_groupvar() helm_chart_list=config_map_name.split(",") for data in helm_chart_list: if data == "all": odiraConfigHelmChartData= GROUP_VAR_DATA["odim_pv_pvc_secrets_helmcharts"] for helm_chart_name in odiraConfigHelmChartData: if 'pv-pvc' in helm_chart_name: continue update_helm_charts(helm_chart_name) odimHelmChartData= GROUP_VAR_DATA["odim_svc_helmcharts"] for helm_chart_name in odimHelmChartData: update_helm_charts(helm_chart_name) thirdPartyHelmCharts=GROUP_VAR_DATA["odim_third_party_helmcharts"] for helm_chart_name in thirdPartyHelmCharts: update_helm_charts(helm_chart_name) deploy_plugin('all') elif data == "odimra": odiraConfigHelmChartData= GROUP_VAR_DATA["odim_pv_pvc_secrets_helmcharts"] for helm_chart_name in odiraConfigHelmChartData: if 'pv-pvc' in helm_chart_name: continue update_helm_charts(helm_chart_name) odimHelmChartData= GROUP_VAR_DATA["odim_svc_helmcharts"] for helm_chart_name in odimHelmChartData: update_helm_charts(helm_chart_name) deploy_plugin('all') elif data == 'thirdparty': thirdPartyHelmCharts=GROUP_VAR_DATA["odim_third_party_helmcharts"] for helm_chart_name in thirdPartyHelmCharts: update_helm_charts(helm_chart_name) else: update_helm_charts(data) # update_helm_charts is for upgrading the deployed # helm releases def update_helm_charts(config_map_name): optionHelmChartInfo = { "odimra-config":"odim_pv_pvc_secrets_helmcharts", "odimra-platformconfig":"odim_pv_pvc_secrets_helmcharts", "odimra-secret":"odim_pv_pvc_secrets_helmcharts", "kafka-secret":"odim_pv_pvc_secrets_helmcharts", "zookeeper-secret":"odim_pv_pvc_secrets_helmcharts", "configure-hosts":"odim_pv_pvc_secrets_helmcharts", "odimra-k8s-access-config":"odim_pv_pvc_secrets_helmcharts", "account-session":"odim_svc_helmcharts", "aggregation":"odim_svc_helmcharts", "api":"odim_svc_helmcharts", "events":"odim_svc_helmcharts", "fabrics":"odim_svc_helmcharts", "telemetry":"odim_svc_helmcharts", "managers":"odim_svc_helmcharts", "systems":"odim_svc_helmcharts", "task":"odim_svc_helmcharts", "update":"odim_svc_helmcharts", "kafka":"odim_third_party_helmcharts", "zookeeper":"odim_third_party_helmcharts", "redis":"odim_third_party_helmcharts", "etcd":"odim_third_party_helmcharts" } operationHelmChartInfo={ "odimra-config":"upgrade-config", "odimra-platformconfig":"upgrade-config", "odimra-secret":"upgrade-config", "kafka-secret":"upgrade-config", "zookeeper-secret":"upgrade-config", "configure-hosts":"upgrade-config", "odimra-k8s-access-config":"upgrade-config", "account-session":"upgrade-config", "aggregation":"upgrade-config", "api":"upgrade-config", "events":"upgrade-config", "fabrics":"upgrade-config", "telemetry":"upgrade-config", "managers":"upgrade-config", "systems":"upgrade-config", "task":"upgrade-config", "update":"upgrade-config", "kafka":"upgrade_thirdparty", "zookeeper":"upgrade_thirdparty", "redis":"upgrade_thirdparty", "etcd":"upgrade_thirdparty" } if config_map_name not in optionHelmChartInfo: logger.critical("%s upgrade is not supported!!!", config_map_name) exit(1) helmCharatGroupName=optionHelmChartInfo[config_map_name] if 'haDeploymentEnabled' in CONTROLLER_CONF_DATA['odimra'] and \ CONTROLLER_CONF_DATA['odimra']['haDeploymentEnabled'] and \ helmCharatGroupName == 'odim_third_party_helmcharts': helmCharatGroupName = 'odim_third_party_ha_helmcharts' operationName=operationHelmChartInfo[config_map_name] helmchartData=GROUP_VAR_DATA[helmCharatGroupName] fullHelmChartName = helmchartData[config_map_name] if fullHelmChartName=='': logger.critical("%s upgrade is not supported!!!", config_map_name) exit(1) logger.info('Full helm chart name %s',fullHelmChartName) cur_dir = os.getcwd() os.chdir(ODIMRA_SRC_PATH) host_file = os.path.join(KUBESPRAY_SRC_PATH, DEPLOYMENT_SRC_DIR, 'hosts.yaml') if not os.path.exists(host_file): logger.error("Host file not found for deployment id %s" %(DEPLOYMENT_ID)) exit(1) if not DRY_RUN_SET: load_password_from_vault(cur_dir) # check if certs needs to be generated or loaded again if 'secret' in config_map_name: reload_odimra_certs() upgrade_flag = False if "third_party" in helmCharatGroupName or helmCharatGroupName =='odim_svc_helmcharts': if ODIMRA_IMAGE_PATH == "": logger.warning("odimra image source path not configured, expecting user to copy & load all the required odimra docker images on cluster nodes !!!") else: nodes_list = "" for node, attrs in K8S_INVENTORY_DATA['all']['hosts'].items(): nodes_list += '{hostname},'.format(hostname=node) nodes_list = nodes_list.rstrip(',') dockerImageName=GROUP_VAR_DATA['odim_docker_images'][config_map_name] logger.info("Start copying of docker images for %s",config_map_name) docker_copy_image_command= 'ansible-playbook -i {host_conf_file} --become --become-user=root \ --extra-vars "docker_image_name={docker_image_name} helm_config_file={helm_config_file} host={nodes} ignore_err={ignore_err}" pre_upgrade.yaml'.format(\ host_conf_file=host_file,docker_image_name=dockerImageName,\ helm_config_file=CONTROLLER_CONF_FILE,\ nodes=nodes_list,\ ignore_err=IGNORE_ERRORS_SET) ret = exec(docker_copy_image_command, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) if ret != 0: logger.critical("ODIMRA %s failed to copy docker image %s", operationName, dockerImageName) os.chdir(cur_dir) exit(1) else: logger.info("ODIMRA %s success copy docker image %s", operationName, dockerImageName) for master_node in K8S_INVENTORY_DATA['all']['children']['kube-master']['hosts'].items(): logger.info("Starting upgrade of %s on master node %s", fullHelmChartName, master_node[0]) odimra_upgrade_cmd = 'ansible-playbook -i {host_conf_file} --become --become-user=root \ --extra-vars "host={master_node} helm_chart_name={helm_chart_name} helm_chart_name_version={helm_chart_name_version} helm_config_file={helm_config_file} ignore_err={ignore_err}" {operation_conf_file}.yaml'.format( \ host_conf_file=host_file, master_node=master_node[0], \ helm_chart_name=config_map_name, \ helm_chart_name_version=fullHelmChartName, \ helm_config_file=CONTROLLER_CONF_FILE, \ operation_conf_file=operationName,ignore_err=IGNORE_ERRORS_SET) ret = exec(odimra_upgrade_cmd, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) if ret != 0: logger.critical("ODIMRA %s failed when tried on master node %s", operationName, master_node[0]) else: logger.info("ODIMRA %s success on master node %s", operationName, master_node[0]) upgrade_flag=True break if upgrade_flag: logger.info("Completed ODIMRA %s operation", operationName) else: logger.info("Could not %s ODIMRA on any master nodes", operationName) os.chdir(cur_dir) exit(1) os.chdir(cur_dir) # list_deployments is for listing the # helm deployed releases def list_deployments(): # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() if 'namespace' not in CONTROLLER_CONF_DATA['odimra'] or \ CONTROLLER_CONF_DATA['odimra']['namespace'] == None or \ CONTROLLER_CONF_DATA['odimra']['namespace'] == "": logger.critical("namespace not configured, exiting!!!") exit(1) # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() list_flag = False for master_node in K8S_INVENTORY_DATA['all']['children']['kube-master']['hosts'].items(): ip = K8S_INVENTORY_DATA['all']['hosts'][master_node[0]]['ip'] list_deps_cmd = '/usr/bin/ssh {ip} helm list -n {namespace}'.format( \ namespace=CONTROLLER_CONF_DATA['odimra']['namespace'], ip=ip) ret = exec(list_deps_cmd, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) if ret == 0: list_flag = True break if not list_flag: exit(1) # list_deployment_history is for listing the # details of a particular helm deployed release def list_deployment_history(depName): # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() if 'namespace' not in CONTROLLER_CONF_DATA['odimra'] or \ CONTROLLER_CONF_DATA['odimra']['namespace'] == None or \ CONTROLLER_CONF_DATA['odimra']['namespace'] == "": logger.critical("namespace not configured, exiting!!!") exit(1) # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() list_flag = False for master_node in K8S_INVENTORY_DATA['all']['children']['kube-master']['hosts'].items(): ip = K8S_INVENTORY_DATA['all']['hosts'][master_node[0]]['ip'] list_history_cmd = '/usr/bin/ssh {ip} helm history {deployment} -n {namespace}'.format( \ ip=ip, deployment=depName, \ namespace=CONTROLLER_CONF_DATA['odimra']['namespace']) ret = exec(list_history_cmd, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) if ret == 0: list_flag = True break if not list_flag: exit(1) # rollback_deployment is for doing rollback of a # particular helm deployed release def rollback_deployment(depName, revision): logger.info("rollback %s deployment to revision %d", depName, revision) # Parse the conf file passed read_conf() # Validate conf parameters passed perform_checks() # load existing hosts.yaml created for the deployment_id load_k8s_host_conf() cur_dir = os.getcwd() if not DRY_RUN_SET: os.chdir(ODIMRA_SRC_PATH) load_password_from_vault(cur_dir) rollback_flag = False host_file = os.path.join(KUBESPRAY_SRC_PATH, DEPLOYMENT_SRC_DIR, 'hosts.yaml') for master_node in K8S_INVENTORY_DATA['all']['children']['kube-master']['hosts'].items(): logger.info("Starting rollback of %s deployment on master node %s", depName, master_node[0]) rollback_dep_cmd = 'ansible-playbook -i {host_conf_file} --become --become-user=root \ --extra-vars "host={master_node} release={depName} revision={revision}" rollback.yaml'.format( \ host_conf_file=host_file, master_node=master_node[0], \ depName=depName, revision=revision) ret = exec(rollback_dep_cmd, {'ANSIBLE_BECOME_PASS': ANSIBLE_BECOME_PASS}) if ret != 0: logger.critical("rollback of %s deployment failed on master node %s", depName, master_node[0]) else: rollback_flag=True break if rollback_flag: logger.info("rollback of %s deployment to revision %d was successful", depName, revision) else: logger.info("rollback of %s deployment to revision %d failed", depName, revision) os.chdir(cur_dir) exit(1) os.chdir(cur_dir) # scale_plugin is for scaling the helm deployed # plugin release def scale_plugin(plugin_name, replica_count): logger.info("scaling plugin %s deployment to replicas %d", plugin_name, replica_count) # Parse the conf file
# -*- coding: utf-8 -*- # $Id: itgTableDaa.py $ """ DAA (instruction) result table. """ __copyright__ = \ """ Copyright (C) 2012-2015 Oracle Corporation This file is part of VirtualBox Open Source Edition (OSE), as available from http://www.virtualbox.org. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation, in version 2 as it comes in the "COPYING" file of the VirtualBox OSE distribution. VirtualBox OSE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. """ __version__ = "$Revision: 100868 $"; ## The 32-bit GCC (C99) program that produced the table below. g_sItgCProgramDaa = \ """ #include <stdio.h> int main() { for (unsigned uInputAL = 0; uInputAL < 256; uInputAL++) for (unsigned fAux = 0; fAux < 2; fAux++) for (unsigned fCarry = 0; fCarry < 2; fCarry++) { unsigned uInputEFlags = fCarry | (fAux << 4); unsigned uResultAL; unsigned uResultEFlags; __asm__ __volatile__("pushl %1\\n" "popfl\\n" "daa\\n" "pushf\\n" "pop %1\\n" : "=a" (uResultAL), "=r" (uResultEFlags) : "0" (uInputAL), "1" (uInputEFlags) : "memory" ); printf(" ( 0x%02x, 0x%02x ), # AL=0x%02x, AF=%u CF=%u\\n", uResultAL, uResultEFlags & 0xd5, uInputAL, fAux, fCarry); /* 0xd5 = CF, PF, AF, ZF, SF */ } return 0; } """; # # Compile and run the above program if requested to do so. # if __name__ == '__main__': import sys; if len(sys.argv) > 1 and sys.argv[1] == 'gen': import subprocess; oProc = subprocess.Popen(['gcc', '-x', 'c', '-std=gnu99', '-m32', '-o', './itgTableDaa', '-'], stdin = subprocess.PIPE); oProc.communicate(g_sItgCProgramDaa); oProc.wait(); oProc = subprocess.Popen(['./itgTableDaa',]).wait(); sys.exit(0); ## # The DAA results. # # The index / input relation is: index = (AL << 2) | (CF << 1) | AF # g_aItgDaaResults = \ [ ( 0x00, 0x44 ), # AL=0x00, AF=0 CF=0 ( 0x60, 0x05 ), # AL=0x00, AF=0 CF=1 ( 0x06, 0x14 ), # AL=0x00, AF=1 CF=0 ( 0x66, 0x15 ), # AL=0x00, AF=1 CF=1 ( 0x01, 0x00 ), # AL=0x01, AF=0 CF=0 ( 0x61, 0x01 ), # AL=0x01, AF=0 CF=1 ( 0x07, 0x10 ), # AL=0x01, AF=1 CF=0 ( 0x67, 0x11 ), # AL=0x01, AF=1 CF=1 ( 0x02, 0x00 ), # AL=0x02, AF=0 CF=0 ( 0x62, 0x01 ), # AL=0x02, AF=0 CF=1 ( 0x08, 0x10 ), # AL=0x02, AF=1 CF=0 ( 0x68, 0x11 ), # AL=0x02, AF=1 CF=1 ( 0x03, 0x04 ), # AL=0x03, AF=0 CF=0 ( 0x63, 0x05 ), # AL=0x03, AF=0 CF=1 ( 0x09, 0x14 ), # AL=0x03, AF=1 CF=0 ( 0x69, 0x15 ), # AL=0x03, AF=1 CF=1 ( 0x04, 0x00 ), # AL=0x04, AF=0 CF=0 ( 0x64, 0x01 ), # AL=0x04, AF=0 CF=1 ( 0x0a, 0x14 ), # AL=0x04, AF=1 CF=0 ( 0x6a, 0x15 ), # AL=0x04, AF=1 CF=1 ( 0x05, 0x04 ), # AL=0x05, AF=0 CF=0 ( 0x65, 0x05 ), # AL=0x05, AF=0 CF=1 ( 0x0b, 0x10 ), # AL=0x05, AF=1 CF=0 ( 0x6b, 0x11 ), # AL=0x05, AF=1 CF=1 ( 0x06, 0x04 ), # AL=0x06, AF=0 CF=0 ( 0x66, 0x05 ), # AL=0x06, AF=0 CF=1 ( 0x0c, 0x14 ), # AL=0x06, AF=1 CF=0 ( 0x6c, 0x15 ), # AL=0x06, AF=1 CF=1 ( 0x07, 0x00 ), # AL=0x07, AF=0 CF=0 ( 0x67, 0x01 ), # AL=0x07, AF=0 CF=1 ( 0x0d, 0x10 ), # AL=0x07, AF=1 CF=0 ( 0x6d, 0x11 ), # AL=0x07, AF=1 CF=1 ( 0x08, 0x00 ), # AL=0x08, AF=0 CF=0 ( 0x68, 0x01 ), # AL=0x08, AF=0 CF=1 ( 0x0e, 0x10 ), # AL=0x08, AF=1 CF=0 ( 0x6e, 0x11 ), # AL=0x08, AF=1 CF=1 ( 0x09, 0x04 ), # AL=0x09, AF=0 CF=0 ( 0x69, 0x05 ), # AL=0x09, AF=0 CF=1 ( 0x0f, 0x14 ), # AL=0x09, AF=1 CF=0 ( 0x6f, 0x15 ), # AL=0x09, AF=1 CF=1 ( 0x10, 0x10 ), # AL=0x0a, AF=0 CF=0 ( 0x70, 0x11 ), # AL=0x0a, AF=0 CF=1 ( 0x10, 0x10 ), # AL=0x0a, AF=1 CF=0 ( 0x70, 0x11 ), # AL=0x0a, AF=1 CF=1 ( 0x11, 0x14 ), # AL=0x0b, AF=0 CF=0 ( 0x71, 0x15 ), # AL=0x0b, AF=0 CF=1 ( 0x11, 0x14 ), # AL=0x0b, AF=1 CF=0 ( 0x71, 0x15 ), # AL=0x0b, AF=1 CF=1 ( 0x12, 0x14 ), # AL=0x0c, AF=0 CF=0 ( 0x72, 0x15 ), # AL=0x0c, AF=0 CF=1 ( 0x12, 0x14 ), # AL=0x0c, AF=1 CF=0 ( 0x72, 0x15 ), # AL=0x0c, AF=1 CF=1 ( 0x13, 0x10 ), # AL=0x0d, AF=0 CF=0 ( 0x73, 0x11 ), # AL=0x0d, AF=0 CF=1 ( 0x13, 0x10 ), # AL=0x0d, AF=1 CF=0 ( 0x73, 0x11 ), # AL=0x0d, AF=1 CF=1 ( 0x14, 0x14 ), # AL=0x0e, AF=0 CF=0 ( 0x74, 0x15 ), # AL=0x0e, AF=0 CF=1 ( 0x14, 0x14 ), # AL=0x0e, AF=1 CF=0 ( 0x74, 0x15 ), # AL=0x0e, AF=1 CF=1 ( 0x15, 0x10 ), # AL=0x0f, AF=0 CF=0 ( 0x75, 0x11 ), # AL=0x0f, AF=0 CF=1 ( 0x15, 0x10 ), # AL=0x0f, AF=1 CF=0 ( 0x75, 0x11 ), # AL=0x0f, AF=1 CF=1 ( 0x10, 0x00 ), # AL=0x10, AF=0 CF=0 ( 0x70, 0x01 ), # AL=0x10, AF=0 CF=1 ( 0x16, 0x10 ), # AL=0x10, AF=1 CF=0 ( 0x76, 0x11 ), # AL=0x10, AF=1 CF=1 ( 0x11, 0x04 ), # AL=0x11, AF=0 CF=0 ( 0x71, 0x05 ), # AL=0x11, AF=0 CF=1 ( 0x17, 0x14 ), # AL=0x11, AF=1 CF=0 ( 0x77, 0x15 ), # AL=0x11, AF=1 CF=1 ( 0x12, 0x04 ), # AL=0x12, AF=0 CF=0 ( 0x72, 0x05 ), # AL=0x12, AF=0 CF=1 ( 0x18, 0x14 ), # AL=0x12, AF=1 CF=0 ( 0x78, 0x15 ), # AL=0x12, AF=1 CF=1 ( 0x13, 0x00 ), # AL=0x13, AF=0 CF=0 ( 0x73, 0x01 ), # AL=0x13, AF=0 CF=1 ( 0x19, 0x10 ), # AL=0x13, AF=1 CF=0 ( 0x79, 0x11 ), # AL=0x13, AF=1 CF=1 ( 0x14, 0x04 ), # AL=0x14, AF=0 CF=0 ( 0x74, 0x05 ), # AL=0x14, AF=0 CF=1 ( 0x1a, 0x10 ), # AL=0x14, AF=1 CF=0 ( 0x7a, 0x11 ), # AL=0x14, AF=1 CF=1 ( 0x15, 0x00 ), # AL=0x15, AF=0 CF=0 ( 0x75, 0x01 ), # AL=0x15, AF=0 CF=1 ( 0x1b, 0x14 ), # AL=0x15, AF=1 CF=0 ( 0x7b, 0x15 ), # AL=0x15, AF=1 CF=1 ( 0x16, 0x00 ), # AL=0x16, AF=0 CF=0 ( 0x76, 0x01 ), # AL=0x16, AF=0 CF=1 ( 0x1c, 0x10 ), # AL=0x16, AF=1 CF=0 ( 0x7c, 0x11 ), # AL=0x16, AF=1 CF=1 ( 0x17, 0x04 ), # AL=0x17, AF=0 CF=0 ( 0x77, 0x05 ), # AL=0x17, AF=0 CF=1 ( 0x1d, 0x14 ), # AL=0x17, AF=1 CF=0 ( 0x7d, 0x15 ), # AL=0x17, AF=1 CF=1 ( 0x18, 0x04 ), # AL=0x18, AF=0 CF=0 ( 0x78, 0x05 ), # AL=0x18, AF=0 CF=1 ( 0x1e, 0x14 ), # AL=0x18, AF=1 CF=0 ( 0x7e, 0x15 ), # AL=0x18, AF=1 CF=1 ( 0x19, 0x00 ), # AL=0x19, AF=0 CF=0 ( 0x79, 0x01 ), # AL=0x19, AF=0 CF=1 ( 0x1f, 0x10 ), # AL=0x19, AF=1 CF=0 ( 0x7f, 0x11 ), # AL=0x19, AF=1 CF=1 ( 0x20, 0x10 ), # AL=0x1a, AF=0 CF=0 ( 0x80, 0x91 ), # AL=0x1a, AF=0 CF=1 ( 0x20, 0x10 ), # AL=0x1a, AF=1 CF=0 ( 0x80, 0x91 ), # AL=0x1a, AF=1 CF=1 ( 0x21, 0x14 ), # AL=0x1b, AF=0 CF=0 ( 0x81, 0x95 ), # AL=0x1b, AF=0 CF=1 ( 0x21, 0x14 ), # AL=0x1b, AF=1 CF=0 ( 0x81, 0x95 ), # AL=0x1b, AF=1 CF=1 ( 0x22, 0x14 ), # AL=0x1c, AF=0 CF=0 ( 0x82, 0x95 ), # AL=0x1c, AF=0 CF=1 ( 0x22, 0x14 ), # AL=0x1c, AF=1 CF=0 ( 0x82, 0x95 ), # AL=0x1c, AF=1 CF=1 ( 0x23, 0x10 ), # AL=0x1d, AF=0 CF=0 ( 0x83, 0x91 ), # AL=0x1d, AF=0 CF=1 ( 0x23, 0x10 ), # AL=0x1d, AF=1 CF=0 ( 0x83, 0x91 ), # AL=0x1d, AF=1 CF=1 ( 0x24, 0x14 ), # AL=0x1e, AF=0 CF=0 ( 0x84, 0x95 ), # AL=0x1e, AF=0 CF=1 ( 0x24, 0x14 ), # AL=0x1e, AF=1 CF=0 ( 0x84, 0x95 ), # AL=0x1e, AF=1 CF=1 ( 0x25, 0x10 ), # AL=0x1f, AF=0 CF=0 ( 0x85, 0x91 ), # AL=0x1f, AF=0 CF=1 ( 0x25, 0x10 ), # AL=0x1f, AF=1 CF=0 ( 0x85, 0x91
# coding: utf-8 # <NAME> (<EMAIL>, twitter @hirax) # This code is based on Brun0oO's work(MIT License) # https://github.com/Brun0oO/Pythonista/blob/master/arkit/main.py # and Char<NAME>'s work. # https://github.com/scj643/objc_tools/blob/master/objc_tools/scenekit/sk_scene.py # Following thread will be heplful for understanding how Pythonista can call ARKit. # https://forum.omz-software.com/topic/4362/solved-first-attempt-to-integrate-arkit-and-first-questions/29 import ui, os, sys, time, math #from math import * from enum import IntFlag from objc_util import * from objc_tools.scenekit.util import SUPPORTED_FORMATS, LightType, ShadowMode, DebugOptions, RenderingAPI, LightingModel from objc_tools.scenekit.structures import Vector3, Vector4, Matrix4 from objc_tools.ui.editorview import TabView, tabVC load_framework('SceneKit') load_framework('ARKit') load_framework('SpriteKit') SCNNode = ObjCClass('SCNNode') SCNLight = ObjCClass('SCNLight') SCNSphere = ObjCClass('SCNSphere') SCNBox = ObjCClass('SCNBox') SCNCone = ObjCClass('SCNCone') SCNCapsule = ObjCClass('SCNCapsule') SCNCylinder = ObjCClass('SCNCylinder') SCNScene = ObjCClass('SCNScene') SCNNode = ObjCClass('SCNNode') SCNLight = ObjCClass('SCNLight') SCNView = ObjCClass('SCNView') SCNCamera = ObjCClass('SCNCamera') UIViewController = ObjCClass('UIViewController') SCNMaterial = ObjCClass('SCNMaterial') # ------------ SeneKit View ----------------- class SKView (object): '''SKView This object is used for subclassing ''' def __init__(self): self._create_objc() self.attach() def _create_objc(self): self._scene_objc = SCNView.alloc().initWithFrame_options_(((0, 0),(100, 100)), ns({'SCNViewOptionPreferredRenderingAPI': 1})).autorelease() self._scene_objc.setAutoresizingMask_(18) # Fill superview self._scene_objc.setNeedsDisplayOnBoundsChange_(True) # fill on change self._scene_ref = None self._pointOfView_ref = Node(self._scene_objc.pointOfView()) def attach(self): '''attach This function is called after __init__ ''' pass @property def showsStatistics(self): return self._scene_objc.showsStatistics() @showsStatistics.setter def showsStatistics(self, state): if type(state) == bool: self._scene_objc.setShowsStatistics_(state) else: raise TypeError('Must be a bool') @property def preferredFramesPerSecond(self): return self._scene_objc.preferredFramesPerSecond() @preferredFramesPerSecond.setter def preferredFramesPerSecond(self, value): self._scene_objc.setPreferredFramesPerSecond_(value) @property def allowsCameraControl(self): return self._scene_objc.allowsCameraControl() @allowsCameraControl.setter def allowsCameraControl(self, state): if type(state) == bool: self._scene_objc.setAllowsCameraControl_(state) else: raise TypeError('Must be a bool') @property def scene(self): if self._scene_ref: return self._scene_ref elif self._scene_objc.scene(): raise Warning('The scene does not have a reference') return Scene(self._scene_objc.scene()) else: return None @scene.setter def scene(self, value): if isinstance(value, (Scene)): self._scene_ref = value self._scene_objc.setScene_(value._objc) elif isinstance(value, (ObjCInstance)): self._scene_ref = Scene(value) self._scene_objc.setScene_(value) else: raise TypeError("Not able to set scene") @property def debugOptions(self): return DebugOptions(self._scene_objc.debugOptions()) @debugOptions.setter def debugOptions(self, value): if isinstance(value, (DebugOptions)): self._scene_objc.setDebugOptions_(value.value) else: self._scene_objc.setDebugOptions_(int(value)) @property def pointOfView(self): if self._scene_objc.pointOfView().ptr != self._pointOfView_ref._objc.ptr: self._pointOfView_ref = Node(self._scene_objc.pointOfView()) return self._pointOfView_ref def setPointOfView(self, value, animate = True): if isinstance(value, (ObjCInstance)): self._pointOfView_ref = Node(value) self._scene_objc.setPointOfView_animate_(value, animate) if isinstance(value, (Node)): self._pointOfView_ref = value self._scene_objc.setPointOfView_animate_(value._objc, animate) def stop(self): self._scene_objc.stop_(None) def pause(self): self._scene_objc.pause_(None) def play(self): self._scene_objc.play_(None) #--------Scene View--------- class SceneView (SKView): def attach(self): self.uiView = ui.View() self.present = self.uiView.present ObjCInstance(self.uiView).addSubview_(self._scene_objc) #--------Scene Tab--------- class SceneTab (SceneView, TabView): def __init__(self): SceneView.__init__(self) TabView.__init__(self) @on_main_thread def makeSelf(self): self.name = "SceneKit" @on_main_thread def customVC(self): return create_objc_class( "CustomViewController", UIViewController, methods = [], protocols = ["OMTabContent"], ).new() @on_main_thread def show(self): self.newVC.View = ObjCInstance(self.uiView) self.newVC.title = self.name self.newVC.navigationItem().rightBarButtonItems = self.right_button_items tabVC.addTabWithViewController_(self.newVC) #--------Scene--------- class Scene (object): def __init__(self, scene = None): if scene: self._objc = objc else: self._objc = SCNScene.scene() self._node_ref = Node(self._objc.root()) @property def playbackSpeed(self): return self._objc.playbackSpeed() @playbackSpeed.setter def playbackSpeed(self, value): self._objc.setPlaybackSpeed_(value) @property def framerate(self): return self._objc.frameRate() @framerate.setter def framerate(self, value): self._objc.setFrameRate_(value) @property def fogDensityExponent(self): ''' Controls the attenuation between the start and end fog distances. 0 means a constant fog, 1 a linear fog and 2 a quadratic fog, but any positive value will work. ''' return self._objc.fogDensityExponent() @fogDensityExponent.setter def fogDensityExponent(self, value): self._objc.setFogDensityExponent_(value) @property def fogStartDistance(self): return self._objc.fogStartDistance() @fogStartDistance.setter def fogStartDistance(self, value): self._objc.setFogStartDistance_(value) @property def fogEndDistance(self): return self._objc.fogEndDistance() @fogEndDistance.setter def fogEndDistance(self, value): self._objc.setFogEndDistance_(value) @property def paused(self): return self._objc.isPaused() @paused.setter def paused(self, value): self._objc.setPaused_(value) @property def node(self): if self._node_ref._objc.ptr == self._objc.root().ptr: # checks so we domt use more memory return self._node_ref else: self._node_ref = Node(self._objc.root()) return self._node_ref def removeAllParticleSystems(self): self._objc.removeAllParticleSystems() def save_to_file(self, file_name): if SUPPORTED_FORMATS.match(path.rsplit('.', 1)[-1]): options = ns({'SCNSceneExportDestinationURL': nsurl(path)}) file = nsurl(file_name) return self._objc.writeToURL_options_(url, options) else: raise TypeError('Not a supported export type') def __repr__(self): return '<Scene <Framerate: {}, node: {}>>'.format(self.framerate, self.node) # ------ Node ---------- class Node (object): def __init__(self, objc = None): self._light = None self._geometry = None self._camera = None self._child_ref = [] if objc: self._objc = objc if self._objc.light(): self._light = Light(objc=self._objc.light()) if self._objc.geometry(): self._geometry = Geometry(self._objc.geometry()) if self._objc.camera(): self._camera = Camera(self._objc.camera()) else: self._objc = SCNNode.node() @property def childNodes(self): return self._child_ref @property def name(self): if self._objc.name(): return str(self._objc.name()) else: return None @name.setter def name(self, value): self._objc.setName_(value) @property def scale(self): return self._objc.scale() @scale.setter def scale(self, value): self._objc.setScale_(value) @property def transform(self): '''transfrom Note: with this you can not set properties directly ''' return self._objc.transform(argtypes = [], restype = Matrix4) @transform.setter def transform(self, value): self._objc.setTransform_(value, argtypes = [Matrix4], restype = None) @property def position(self): return self._objc.position(argtypes = [], restype = Vector3) @position.setter def position(self, value): self._objc.setPosition_(value, argtypes = [Vector3], restype = None) @property def rotation(self): return self._objc.rotation() @rotation.setter def rotation(self, value): self._objc.setRotation_(value) @property def light(self): return self._light @light.setter def light(self, value): if isinstance(value, (ObjCInstance)): self._objc.setLight_(value) self._light = Light(value) if isinstance(value, (Light)): self._objc.setLight_(value._objc) self._light = value if value == None: self._objc.setLight_(value) self._light = value @property def geometry(self): return self._geometry @geometry.setter def geometry(self, value): if isinstance(value, (ObjCInstance)): self._objc.setGeometry_(value) self._geometry = Geometry(value) if isinstance(value, (Geometry)): self._objc.setGeometry_(value._objc) self._light = value if value == None: self._objc.setGeometry_(value) self._light = value @property def camera(self): return self._camera @camera.setter def camera(self, value): if isinstance(value, (ObjCInstance)): self._objc.setCamera_(value) self._camera = Camera(value) if isinstance(value, (Camera)): self._objc.setCamera_(value._objc) self._camera = value if value == None: self._objc.setCamera_(value) self._camera = value def clone(self): '''clone The copy is recursive: every child node will be cloned, too. The copied nodes will share their attached objects (light, geometry, camera, ...) with the original instances ''' clone = self._objc.clone() return Node(clone) def flattenedClone(self): '''flattenedCLone A copy of the node with all geometry combined ''' clone = self._objc.flattenedClone() return Node(clone) def addChild(self, value): if isinstance(value, (ObjCInstance)): if self._objc.canAddChildNode_(value): self._objc.addChildNode_(value) self._child_ref += [Node(value)] if isinstance(value, (Node)): if self._objc.canAddChildNode_(value._objc) and value not in self._child_ref: self._objc.addChildNode_(value._objc) self._child_ref += [value] #--------- Light ------------ class Light (object): def __init__(self, kind = LightType.Omni, casts_shadow = True, shadow_sample_count = 1000, objc = None): if objc: self._objc = objc else: self._objc = SCNLight.light() self.type = kind self.castsShadow = casts_shadow self.shadowSampleCount = shadow_sample_count @property def type(self): return self._objc.type() @type.setter def type(self, kind): self._objc.setType_(kind) @property def castsShadow(self): return self._objc.castsShadow() @castsShadow.setter def castsShadow(self, value): self._objc.setCastsShadow_(value) @property def intensity(self): return self._objc.intensity() @intensity.setter def intensity(self, value): self._objc.setIntensity_(value) @property def shadowSampleCount(self): return self._objc.shadowSampleCount() @shadowSampleCount.setter def shadowSampleCount(self, value): self._objc.setShadowSampleCount_(value) @property def name(self): if self._objc.name(): return str(self._objc.name()) else: return None @name.setter def name(self, value): self._objc.setName_(value) @property def color(self): return self._objc.color() @color.setter def color(self, value): self._objc.setColor_(value) @property def shadowColor(self): return self._objc.color() @shadowColor.setter def shadowColor(self, value): self._objc.setShadowColor_(value) @property def shadowRadius(self): return self._objc.shadowRadius() @shadowRadius.setter def shadowRadius(self, value): self._objc.setShadowRadius(value) @property def shadowMapSize(self): return self._objc.shadowMapSize() @shadowMapSize.setter def shadowMapSize(self, value): self._objc.setShadowMapSize(value) #--------- Camera ------------ class Camera (object): def __init__(self, objc = None): if objc: self._objc = objc else: self._objc = SCNCamera.camera() @property def name(self): if self._objc.name(): return str(self._objc.name()) else: return None @name.setter def name(self, value): self._objc.setName_(value) @property def xFov(self): '''Setting to 0 resets it to normal''' return self._objc.xFov() @xFov.setter def xFov(self, value): self._objc.setXFov_(value) @property def yFov(self): '''Setting to 0 resets it to normal''' return self._objc.yFov() @yFov.setter def yFov(self, value): self._objc.setYFov_(value) # ---------- geometry ---------------- class Geometry (object): def __init__(self, objc = None): self._objc = objc @property def name(self): if self._objc.name(): return str(self._objc.name()) else: return None @name.setter def name(self, value): self._objc.setName_(value) @property def material(self): return Material(self._objc.material()) # --------- Material ------------ class Material (object): def __init__(self, objc = None): self._objc = objc @property def lightingModel(self): return str(self._objc.lightingModelName()) @lightingModel.setter def lightingModel(self, value): if type(value) == str: self._objc.setLightingModelName_(value) else: print('not a valid type') def load_scene(file): url = ns(file) s = SCNScene.sceneWithURL_options_(url, ns({})) return Scene(s) #--------------- # Some 'constants' used by ARkit class ARWorldAlignment(IntFlag): ARWorldAlignmentGravity = 0 ARWorldAlignmentGravityAndHeading = 1 ARWorldAlignmentCamera = 2 class ARPlaneDetection(IntFlag): ARPlaneDetectionNone = 0 ARPlaneDetectionHorizontal = 1 << 0 ARPlaneDetectionVertical = 1 << 1 # Work In Progress here, I(Brun0oO's)'m deciphering the ARKit constants... #class ARSCNDebugOption(IntFlag): # ARSCNDebugOptionNone = 0 # ARSCNDebugOptionShowWorldOrigin = int("ffffffff80000000", 16) # ARSCNDebugOptionShowFeaturePoints = int("ffffffff40000000", 16) class ARSessionRunOptions(IntFlag): ARSessionRunOptionsNone = 0 ARSessionRunOptionResetTracking = 1 << 0 ARSessionRunOptionRemoveExistingAnchors = 1 << 1 NSError = ObjCClass('NSError') SCNScene = ObjCClass('SCNScene') ARSCNView = ObjCClass('ARSCNView') ARWorldTrackingConfiguration = ObjCClass('ARWorldTrackingConfiguration') ARSession = ObjCClass('ARSession') UIViewController = ObjCClass('UIViewController') ARPlaneAnchor = ObjCClass('ARPlaneAnchor') sceneview = None #========= setup an initial scene =================== def createSampleScene(): global scene global root_node global cube_node scene = SCNScene.scene() root_node = scene.rootNode()
import sys import datetime import reportconfig import projectmetrics import os import numpy as np import matplotlib import matplotlib.dates as mdates # check for headless executions if "DISPLAY" not in os.environ: if os.system('python -c "import matplotlib.pyplot as plt; plt.figure()"') != 0: print("INFO: Lack of display should generate an expected ImportError. Changing MatPlotLib backend.") matplotlib.use('Agg') import matplotlib.pyplot as plt else: import matplotlib.pyplot as plt # import constants for the days of the week from matplotlib.dates import MO, TU, WE, TH, FR, SA plt.style.use('ggplot') # plt.style.use('fivethirtyeight') # plt.style.use('classic') # plt.style.use('seaborn') YEARS = mdates.YearLocator() # every year MONTHS = mdates.MonthLocator() # every month WEEKDAYS = mdates.WeekdayLocator(byweekday=(MO, TU, WE, TH, FR)) # every weekday WEEKFINISH = mdates.WeekdayLocator(byweekday=SA) # every week start YEARS_FORMAT = mdates.DateFormatter('%Y') MONTHS_FORMAT = mdates.DateFormatter('%b %Y') # DEFAULT_CMAP = "Set2" # DEFAULT_CMAP = "Set3" # DEFAULT_CMAP = "prism" DEFAULT_CMAP = "tab10" SECONDARY_CMAP = "gist_ncar" DEFAULT_TREND_RANGE = [60, 30, 14, 7] DEFAULT_SLOC_TYPES = ["HAND", "AC", "XML"] DEFAULT_COMP_TYPES = ["Channels", "Commands", "Events", "Parameters", "Total Ports"] DEFAULT_ISSUE_LABELS = ["Bug", "Req. Change", "Enhancement", "Process", "Issue"] DEFAULT_BAR_WIDTH = 0.8 I = 'issues' S = 'sloc' C = 'comp' class GitHubMetricsReport: def __init__(self, args): if "--config" in args: config_file = args[args.index("--config") + 1] else: config_file = args[2] self.config_opts = reportconfig.ReportConfiguration(config_file) if "--username" in args: self.config_opts.username = args[args.index("--username") + 1] if "--git-api-key" in args: self.config_opts.git_api_key = args[args.index("--git-api-key") + 1] if "--zen-api-key" in args: self.config_opts.zen_api_key = args[args.index("--zen-api-key") + 1] if "--show" in args: self.show = True else: self.show = False self.metrics = projectmetrics.ProjectMetrics(None, config_opts=self.config_opts) def create_graph_colors_list(data_types): if len(data_types) > 20: cmap = plt.get_cmap(SECONDARY_CMAP) colors_list = cmap(np.linspace(0., 1., len(data_types))) else: cmap = plt.get_cmap(DEFAULT_CMAP) colors_list = cmap(np.arange(len(data_types))) return colors_list def format_label_chart(fig, axs, x_data): try: for ax in axs: ax.legend() ax.set_xticks(np.array(list(range(len(x_data))))) ax.set_xticklabels(x_data, rotation=90) x_lim = ax.get_xlim() ax.set_xlim(-1, len(x_data)) y_lim = ax.get_ylim() ax.set_ylim(y_lim[0], 1.05 * y_lim[1]) except TypeError: axs.legend() axs.set_xticks(np.array(list(range(len(x_data))))) axs.set_xticklabels(x_data, rotation=90) x_lim = axs.get_xlim() axs.set_xlim(-1, len(x_data)) y_lim = axs.get_ylim() axs.set_ylim(y_lim[0], 1.05*y_lim[1]) fig.tight_layout() return fig def format_date_chart(fig, axs, x_data): try: for ax in axs: ax.xaxis_date() ax.legend() ax.xaxis.set_major_locator(MONTHS) ax.xaxis.set_major_formatter(MONTHS_FORMAT) y_lim = ax.get_ylim() ax.set_ylim(y_lim[0], 1.05 * y_lim[1]) # if len(data_x) <= 120: # ax.xaxis.set_minor_locator(WEEKDAYS) # else: # ax.xaxis.set_minor_locator(WEEKFINISH) except TypeError: axs.xaxis_date() axs.legend() axs.xaxis.set_major_locator(MONTHS) axs.xaxis.set_major_formatter(MONTHS_FORMAT) y_lim = axs.get_ylim() axs.set_ylim(y_lim[0], 1.05*y_lim[1]) # if len(data_x) <= 120: # axs.xaxis.set_minor_locator(WEEKDAYS) # else: # axs.xaxis.set_minor_locator(WEEKFINISH) fig.autofmt_xdate() fig.tight_layout() return fig def finalize_figure(fig, title, directory=None, show=False): if show: plt.show() plt.close(fig) return if directory is not None: output_file = directory + title + ".png" output_file = output_file.replace(" ", "_") plt.savefig(output_file) plt.close(fig) return output_file def generate_table(table_columns, data, title="", directory=None, show=False): fig, ax = plt.subplots(1, 1, figsize=(10, (len(data) + 2) / 4 + 1)) # fig.patch.set_visible(False) ax.axis('off') table = ax.table(cellText=data, colLabels=table_columns, loc='center') for index, header in enumerate(table_columns): table.auto_set_column_width(index) table.auto_set_font_size(True) ax.set_title(title) fig.tight_layout() output_file = finalize_figure(fig, title, directory, show) return output_file def generate_line_plot(x_data, y_data, filled=None, data_labels=None, title="", directory=None, show=False, date_plot=False, stacked=False): if data_labels is None: data_labels = list(y_data.keys()) if date_plot: x_index = x_data else: x_index = np.array(list(range(len(x_data)))) y_offset = np.zeros((len(x_index),)) colors = create_graph_colors_list(data_labels) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) for index, label in enumerate(data_labels): if isinstance(x_data, dict): if stacked: raise ValueError("Stacked line charts require shared x_data basis.") x = x_data[label] y_offset = np.zeros((len(x),)) else: x = x_index y = y_data[label] if stacked: y += y_offset if date_plot: ax.plot_date(x, y, '-', color=colors[index], label=label) else: ax.plot(x, y, '-', color=colors[index], label=label) if filled and label in filled: ax.fill_between(x, y, y_offset, color=colors[index], alpha=0.4) if stacked: y_offset += y ax.set_title(title) # format the ticks if date_plot: format_date_chart(fig, ax, x_data) else: format_label_chart(fig, ax, x_data) # handles, labels = _sort_legend(ax) # ax.legend(handles, labels) output_file = finalize_figure(fig, title, directory, show) return output_file def _generate_complicated_bar_plot(x_data, y_data, data_labels=None, title="", directory=None, show=False, date_plot=False, split=False, adjacent=False, stacked=False): if data_labels is None: data_labels = list(y_data.keys()) bar_width = DEFAULT_BAR_WIDTH colors = create_graph_colors_list(data_labels) if date_plot: # TODO consider re-enabling; expand chart when range > 60 days # sorted_x_data = sorted(x_data) # fig_x = max(10., ((sorted_x_data[-1] - sorted_x_data[0]).days + 1) / 6.) fig_x = 10 else: # expand chart when components > 25 fig_x = max(10., len(x_data) / 2.5) if split and len(data_labels) > 1: fig, axs = plt.subplots(len(data_labels), 1, figsize=(fig_x, 5 * len(data_labels))) ax = axs[0] else: axs = [] fig, ax = plt.subplots(1, 1, figsize=(fig_x, 10)) if date_plot: x = x_data else: x = np.array(list(range(len(x_data)))) if adjacent: bar_width /= len(data_labels) x = x - (len(data_labels) - 1) * bar_width / 2 y_offset = np.zeros((len(x),)) for index, label in enumerate(data_labels): if isinstance(x_data, dict): if stacked: raise ValueError("Stacked line charts require shared x_data basis.") x = x_data[label] y_offset = np.zeros((len(x),)) if split and len(data_labels) > 1: ax = axs[index] y = y_data[label] bars = ax.bar(x, y, width=bar_width, bottom=y_offset, color=colors[index], label=label) if not date_plot: if adjacent: x = x + bar_width for position, bar in enumerate(bars): height = bar.get_height() if height != 0: ax.text(bar.get_x() + bar.get_width() / 2., height + y_offset[position], " {} ".format(height), ha='center', va='bottom') # ha='center', va='bottom', rotation=90) if stacked: y_offset = y_offset + y_data[label] if index == 0: ax.set_title(title) if split: ax = axs if date_plot: format_date_chart(fig, ax, x_data) else: format_label_chart(fig, ax, x_data) output_file = finalize_figure(fig, title, directory, show) return output_file def generate_stacked_bar_plot(x_data, y_data, data_labels=None, title="", directory=None, show=False, date_plot=False): return _generate_complicated_bar_plot(x_data, y_data, data_labels, title, directory, show, date_plot, stacked=True) def generate_split_bar_plot(x_data, y_data, data_labels=None, title="", directory=None, show=False, date_plot=False): return _generate_complicated_bar_plot(x_data, y_data, data_labels, title, directory, show, date_plot, split=True) def generate_adjacent_bar_plot(x_data, y_data, data_labels=None, title="", directory=None, show=False, date_plot=False): return _generate_complicated_bar_plot(x_data, y_data, data_labels, title, directory, show, date_plot, adjacent=True) def generate_pie_plot(): raise NotImplementedError() def generate_stacked_pie_plot(): raise NotImplementedError() def table_project_summary(reporter, categories=None, period=None, show=False, directory=None, title="Project Summary"): metrics = reporter.metrics table_columns = [""] + ["Current Value"] table_data = [] # TODO evaluate issue label filter approach # issue label counts, starting with overall if categories[I]: total = metrics.issue_totals[metrics.OV][metrics.NEW][-1] - metrics.issue_totals[metrics.OV][metrics.DONE][-1] table_data.append([metrics.OV + " issues", total]) for key in categories[I]: if key == metrics.OV: continue total = metrics.issue_totals[key][metrics.NEW][-1] - metrics.issue_totals[key][metrics.DONE][-1] table_data.append([key + " issues", total]) # sloc for category in categories[S]: total = 0 for key in (list(metrics.sloc_data.keys())): total += metrics.sloc_data[key].get(category) \ if metrics.sloc_data[key].get(category) is not None else 0 table_data.append([category, total]) # component counts for comp in categories[C]: total = 0 for key in list(metrics.comp_data.keys()): total += metrics.comp_data[key].get(comp) \ if metrics.comp_data[key].get(comp) is not None else 0 table_data.append([comp, total]) output_file = generate_table(table_columns, table_data, title, directory, show) return output_file def table_issue_label_summary(reporter, categories=None, period=None, show=False, directory=None, title="Issue Label Summary"): categories = {I: categories[I], S: [], C: []} return table_project_summary(reporter, categories=categories, period=period, show=show, directory=directory, title=title) def table_sloc_summary(reporter, categories=None, period=None, show=False, directory=None, title="Component SLOC Summary"): categories = {I: [], S: categories[S], C: []} return table_project_summary(reporter, categories=categories, period=period, show=show, directory=directory, title=title) def table_comp_summary(reporter, categories=None, period=None, show=False, directory=None, title="Component Structure Summary"): categories = {I: [], S: [], C: categories[C]} return table_project_summary(reporter, categories=categories, period=period, show=show, directory=directory, title=title) def table_project_diffs(reporter, categories=None, period=None, show=False, directory=None, title="Project Changes"): metrics = reporter.metrics table_columns = [""] + ["%d Day Change" % x for x in period] table_data = [] # issue label diffs, starting with overall if categories[I]: # TODO evaluate issue label filter approach label_totals = metrics.issue_totals[metrics.OV] table_data += [[metrics.OV] + ["+" + str(label_totals[metrics.NEW][-1] - label_totals[metrics.NEW][-x]) + " / -" + str(label_totals[metrics.DONE][-1] - label_totals[metrics.DONE][-x]) if x <= len(metrics.issue_dates) else "" for x in period]] for key in categories[I]: if key == metrics.OV: continue label_totals = metrics.issue_totals[key] row = [key] + ["+" + str(label_totals[metrics.NEW][-1] - label_totals[metrics.NEW][-x]) + " / -" + str(label_totals[metrics.DONE][-1] - label_totals[metrics.DONE][-x]) if x <= len(metrics.issue_dates) else "" for x in period] table_data.append(row) # manual sloc diffs if categories[S]: dates = metrics.sloc_totals[metrics.DATE] for key in categories[S]: if key == metrics.DATE: continue label_totals = metrics.sloc_totals.get(key) if label_totals is None: continue row = [key] + [str(label_totals[-1] - label_totals[-x]) if x <= len(dates) else "" for x in period] for index, value in enumerate(row): if index == 0: continue if value and int(value) >= 0: row[index] = '+' + value table_data.append(row) # component counts if categories[C]: dates = metrics.comp_totals[metrics.DATE] for key in categories[C]: if key == metrics.DATE: continue label_totals = metrics.comp_totals.get(key) if label_totals is None: continue row = [key] + [str(label_totals[-1] - label_totals[-x]) if x <= len(dates) else "" for x in period] for index, value in enumerate(row): if index == 0: continue if value and int(value) >= 0: row[index] = '+' + value table_data.append(row) output_file = generate_table(table_columns, table_data, title, directory, show) return output_file def table_issue_label_diffs(reporter, categories=None, period=None, show=False, directory=None,
"Q25228": { "description": "British Overseas Territory in the Caribbean", "label": "Anguilla" }, "Q25279": { "description": "island country in the Caribbean, part of the Kingdom of the Netherlands", "label": "Curaçao" }, "Q25305": { "description": "British overseas territory in the Caribbean", "label": "British Virgin Islands" }, "Q258": { "description": "sovereign state in Southern Africa", "label": "South Africa" }, "Q262": { "description": "sovereign country in North Africa", "label": "Algeria" }, "Q26273": { "description": "country on the Caribbean island of Saint Martin, part of the Kingdom of the Netherlands", "label": "Sint Maarten" }, "Q265": { "description": "sovereign state in Central Asia", "label": "Uzbekistan" }, "Q26988": { "description": "state in the South Pacific Ocean", "label": "Cook Islands" }, "Q27": { "description": "sovereign state in northwestern Europe covering five-sixths of the island of Ireland", "label": "Ireland" }, "Q27275": { "description": "core region of the Asian continent", "label": "Central Asia" }, "Q28": { "description": "country in Central Europe", "label": "Hungary" }, "Q29": { "description": "country in southwestern Europe", "label": "Spain" }, "Q298": { "description": "sovereign state in South America", "label": "Chile" }, "Q29999": { "description": "sovereign state, constitutional monarchy", "label": "Kingdom of the Netherlands" }, "Q30": { "description": "sovereign state in North America", "label": "United States of America" }, "Q30971": { "description": "French overseas country in the Southern Pacific ocean", "label": "French Polynesia" }, "Q31": { "description": "country in western Europe", "label": "Belgium" }, "Q3111454": { "description": "Vietnamese monarchs that ruled from 1226 to 1400.", "label": "Tran dynasty" }, "Q32": { "description": "country in Western Europe", "label": "Luxembourg" }, "Q33": { "description": "country in northern Europe", "label": "Finland" }, "Q334": { "description": "sovereign city-state in Southeast Asia", "label": "Singapore" }, "Q33788": { "description": "special collectivity of France in the southwest Pacific Ocean", "label": "New Caledonia" }, "Q33946": { "description": "sovereign state in Central Europe (1918-1992)", "label": "Czechoslovakia" }, "Q34": { "description": "sovereign state in northern Europe", "label": "Sweden" }, "Q34020": { "description": "island country in the South Pacific Ocean", "label": "Niue" }, "Q347": { "description": "country in Central Europe", "label": "Liechtenstein" }, "Q35": { "description": "country in northern Europe", "label": "Denmark" }, "Q36": { "description": "country in Central Europe", "label": "Poland" }, "Q37": { "description": "sovereign state in northeastern Europe", "label": "Lithuania" }, "Q3769": { "description": "overseas French department in the Guianas region", "label": "French Guiana" }, "Q38": { "description": "country in Southern Europe", "label": "Italy" }, "Q39": { "description": "federal state in Western Europe", "label": "Switzerland" }, "Q392770": { "description": "inter-governmental organization", "label": "Organisation of Eastern Caribbean States" }, "Q398": { "description": "sovereign state in Southwest Asia", "label": "Bahrain" }, "Q399": { "description": "sovereign state in the South Caucasus region of Eurasia", "label": "Armenia" }, "Q40": { "description": "country in Central Europe", "label": "Austria" }, "Q403": { "description": "country in southeastern Europe", "label": "Serbia" }, "Q407199": { "description": "West Bank, excluding East Jerusalem annexed to the State of Israel, in the status of belligerent occupation, supported by international public law and the High Court of Justice of Israel", "label": "Palestinian territories" }, "Q408": { "description": "country in the Southern Hemisphere", "label": "Australia" }, "Q41": { "description": "country in southeastern Europe", "label": "Greece" }, "Q414": { "description": "sovereign state in South America", "label": "Argentina" }, "Q419": { "description": "sovereign state in South America", "label": "Peru" }, "Q423": { "description": "sovereign state in East Asia", "label": "North Korea" }, "Q42314": { "description": "archipelago in the English Channel", "label": "Channel Islands" }, "Q424": { "description": "sovereign state in Southeast Asia", "label": "Cambodia" }, "Q43": { "description": "sovereign state straddling Southeastern Europe and Western Asia", "label": "Turkey" }, "Q45": { "description": "country in southwestern Europe", "label": "Portugal" }, "Q458": { "description": "economic and political union of 27 states mostly located in Europe", "label": "European Union" }, "Q4628": { "description": "autonomous constituent country of the Kingdom of Denmark", "label": "Faroe Islands" }, "Q49": { "description": "continent on the Earth's northwestern quadrant", "label": "North America" }, "Q574": { "description": "sovereign state situated on several islands in Southeast Asia", "label": "East Timor" }, "Q5785": { "description": "British Overseas Territory in the Caribbean", "label": "Cayman Islands" }, "Q657": { "description": "sovereign state in central Africa", "label": "Chad" }, "Q664": { "description": "sovereign state in Oceania, situated on two main and around 600 smaller islands in the southwestern Pacific Ocean", "label": "New Zealand" }, "Q664609": { "description": "region to the center-east of America composed of many islands / coastal regions surrounding the Caribbean Sea", "label": "Caribbean" }, "Q668": { "description": "sovereign state in South Asia", "label": "India" }, "Q672": { "description": "island sovereign state in Oceania", "label": "Tuvalu" }, "Q678": { "description": "sovereign state in Oceania, situated on an archipelago", "label": "Tonga" }, "Q683": { "description": "sovereign state made up of six islands in the Pacific Ocean", "label": "Samoa" }, "Q685": { "description": "island sovereign state in Oceania", "label": "Solomon Islands" }, "Q686": { "description": "sovereign state situated on an archipelago in the South Pacific Ocean", "label": "Vanuatu" }, "Q691": { "description": "island sovereign state in Oceania", "label": "Papua New Guinea" }, "Q695": { "description": "island sovereign state in Oceania", "label": "Palau" }, "Q697": { "description": "island sovereign state in Oceania", "label": "Nauru" }, "Q702": { "description": "island sovereign state in Oceania", "label": "Federated States of Micronesia" }, "Q709": { "description": "island sovereign state in Oceania", "label": "Marshall Islands" }, "Q710": { "description": "island sovereign state in the central Pacific Ocean", "label": "Kiribati" }, "Q711": { "description": "sovereign state in East Asia", "label": "Mongolia" }, "Q712": { "description": "island sovereign state in Oceania", "label": "Fiji" }, "Q717": { "description": "sovereign state in northern South America", "label": "Venezuela" }, "Q7184": { "description": "intergovernmental military alliance of Western states", "label": "NATO" }, "Q730": { "description": "sovereign state in South America", "label": "Suriname" }, "Q733": { "description": "sovereign state in South America", "label": "Paraguay" }, "Q734": { "description": "sovereign state in South America", "label": "Guyana" }, "Q736": { "description": "sovereign state in South America", "label": "Ecuador" }, "Q739": { "description": "sovereign state in South America", "label": "Colombia" }, "Q750": { "description": "sovereign state in South America", "label": "Bolivia" }, "Q752401": { "description": "list of countries that exhibits the lowest indicators of socioeconomic development", "label": "Least Developed Countries" }, "Q754": { "description": "island sovereign state in the Caribbean Sea", "label": "Trinidad and Tobago" }, "Q756617": { "description": "Denmark proper and its two autonomous territories: the Faroe Islands and Greenland", "label": "Danish Realm" }, "Q757": { "description": "island sovereign state in the Caribbean Sea", "label": "Saint Vincent and the Grenadines" }, "Q760": { "description": "island sovereign state in the Caribbean Sea", "label": "Saint Lucia" }, "Q763": { "description": "island sovereign state in the Caribbean Sea", "label": "Saint Kitts and Nevis" }, "Q766": { "description": "island sovereign state in the Caribbean Sea", "label": "Jamaica" }, "Q769": { "description": "island sovereign state in the Caribbean Sea", "label": "Grenada" }, "Q77": { "description": "sovereign state in South America", "label": "Uruguay" }, "Q771405": { "description": "southern region of Asia", "label": "South Asia" }, "Q774": { "description": "sovereign state in Central America", "label": "Guatemala" }, "Q778": { "description": "island sovereign state in the West Indies", "label": "The Bahamas" }, "Q781": { "description": "island sovereign state in the Caribbean Sea", "label": "Antigua and Barbuda" }, "Q783": { "description": "sovereign state in Central America", "label": "Honduras" }, "Q784": { "description": "island sovereign state in the Caribbean Sea", "label": "Dominica" }, "Q785": { "description": "British Crown dependency in the Channel Islands", "label": "Jersey" }, "Q786": { "description": "island sovereign state in the Caribbean Sea", "label": "Dominican Republic" }, "Q79": { "description": "sovereign state in North Africa and Asia", "label": "Egypt" }, "Q790": { "description": "island sovereign state in the Caribbean Sea", "label": "Haiti" }, "Q792": { "description": "sovereign state in Central America", "label": "El Salvador" }, "Q794": {
self.m_dist2SL, self.m_dh, self.m_dt) else: return '(%f, %f)' % (self.m_dh, self.m_dt) def loadTide(self, dt, dh, data, dataDir, dilution): self.m_dt = dt self.m_dh = dh self.m_tideDta = {} for i, j, a, in data: self.m_tideDta.setdefault(i, []) self.m_tideDta[i].append( (j,a) ) self.m_dataDir = dataDir self.m_dilution = dilution LOGGER.trace('OverflowPointOneTide.loadTide: dt=%s dh=%s self=%s' % (self.m_dt, self.m_dh, self)) def loadPath(self, dt, dh, data, pathDir, dilution): assert self.m_dt == dt assert self.m_dh == dh self.m_pathDta = {} for i, j, md5, dd in data: self.m_pathDta.setdefault(i, []) self.m_pathDta[i].append( (j,md5,bool(dd)) ) self.m_pathDirs = [pathDir] self.m_dilution = dilution LOGGER.trace('OverflowPointOneTide.loadPath: dt=%s dh=%s self=%s' % (self.m_dt, self.m_dh, self)) def checkPathFiles(self): """ Debug code: Check that all the path files exist """ for ix,dta in self.m_pathDta.items(): for iy,md5,dd in dta: fname = 'path-%s.pkl' % (md5) found = False for p in self.m_pathDirs: fullPath = os.path.join(p, fname) if os.path.isfile(fullPath): found = True if not found: LOGGER.warning('Path file "%s" not found in:', fname) for p in self.m_pathDirs: LOGGER.warning(' %s', p) def checkInclusion(self, other): """ Debug code: Check that other is included in self. """ LOGGER.info('OverflowPointOneTide.checkInclusion: %s', (self.m_dt, self.m_dh)) LOGGER.trace('OverflowPointOneTide.checkInclusion: %s vs %s', self, other) if self.m_dt != other.m_dt: raise ValueError('OverflowPointOneTide: Incoherent tide: %s vs %s' % (self.m_dh, other.m_dh)) if self.m_dh != other.m_dh: raise ValueError('OverflowPointOneTide: Incoherent tide: %s vs %s' % (self.m_dh, other.m_dh)) for ix, ovals in other.m_tideDta.items(): try: svals = self.m_tideDta[ix] except KeyError: raise for oitem in ovals: if oitem not in svals: missing = True for iy, a in svals: if iy == oitem[0]: LOGGER.error(' Bad dilution: (%d, %d): %.2e %.2e' % (ix, iy, a, oitem[1])) missing = False break if missing: LOGGER.error(' Missing item: %d: %s' % (ix, oitem)) #raise ValueError('%d: %s' % (ix, oitem)) class OverflowPoint: """ OverflowPoint Container of OverflowPointOneTide All times are UTC """ def __init__(self, name='', river=None, dist=0.0): self.m_name = name self.m_river = river self.m_dist2SL = dist self.m_poly = () self.m_parent = None self.m_root = None # The target as OPoint self.m_tideRsp = [] def __str__(self): pstr = None if self.m_parent: if isinstance(self.m_parent, str): pstr = 'unlinked - %s' % self.m_parent else: pstr = self.m_parent.m_name return 'Point: %s; River: %s, Dist=%f, Parent point: %s' % \ (self.m_name, self.m_river.name if self.m_river else None, self.m_dist2SL, pstr) def __getitem__(self, i): return self.m_tideRsp[i] def __iter__(self): return self.m_tideRsp.__iter__() def __reduceHits(self, t2bdg, t2bds): """ Reduce (max) t2bds in t2bdg """ # LOGGER.trace('OverflowPoint.__reduceHits') rv = t2bds[0] if len(t2bdg) <= 0: t2bdg = [ [] for _ in range(len(t2bds)) ] assert len(t2bdg) == len(t2bds) for ov,rv in zip(t2bds, t2bdg): if len(ov) > len(rv): rv.extend( [None]*(len(ov)-len(rv)) ) for j in range(len(ov)): if rv[j]: if ov[j]: rv[j] = max(rv[j], ov[j]) else: rv[j] = ov[j] return t2bdg def getHitsForSpillWindow(self, t_start, t_end, dt, tide_tbl, tide_cycles=[], merge_transit_times=False): """ For t in [t_start, t_end] with step dt, compute the hits for all required tide cycles id. Times are UTC Returns: [ # for each river transit time [ # for each exposure window part [h0, ... hj] hj is Hit for time index j ] ] """ LOGGER.trace('OverflowPoint.getHitsForSpillWindow') LOGGER.trace(' from %s', str(t_start)) LOGGER.trace(' to %s', str(t_end)) if not tide_cycles: cycles = self.m_tideRsp else: # Cython chokes at a single expression # Rewrite as 2 expressions cycles = [ self.getTideResponse(ii) for ii in tide_cycles ] cycles = [ r for r in cycles if r ] LOGGER.trace('OverFlowPoint.getHitsForSpillWindow(): cycles[%d]', len(cycles)) for tideRsp in cycles: LOGGER.trace(' %s', tideRsp) # --- Loop on OverflowTideResponses - result in normalized timedelta t2bdg = [] for tideRsp in cycles: if tideRsp: try: t2bds = tideRsp.getHitsForSpillWindow(t_start, t_end, dt, tide_tbl, merge_transit_times) t2bdg = self.__reduceHits(t2bdg, t2bds) except Exception as e: LOGGER.exception(e) LOGGER.warning('OverflowPoint.getHitsForSpillWindow: Skipping cycle %s', tideRsp) else: LOGGER.warning('OverflowPoint.getHitsForSpillWindow: Skipping cycle %s', tideRsp) LOGGER.trace('OverflowPoint.getHitsForSpillWindow: reduced data') LOGGER.trace(' %s', [ 1 if h else 0 for h in t2bdg[0] ] if t2bdg else []) return t2bdg def doPlumes(self, t_start, t_end, dt, tide_tbl, tide_cycles=[]): """ For t in [t_start, t_end] with step dt, returns the particule paths as a list of Plume objects. . Times are UTC Returns: [ plume1, ... ] """ LOGGER.trace('OverflowPoint.doPlumes from %s to %s', t_start, t_end) hitss = self.getHitsForSpillWindow(t_start, t_end, dt, tide_tbl, tide_cycles, merge_transit_times=True) assert len(hitss) in [0, 1] # --- md5s = [] res = [] try: res.append( ASPlume(name=self.m_root.m_name, poly=self.m_root.m_poly) ) except Exception as e: pass for hits in hitss: for hit in hits: if hit and hit.md5 not in md5s: md5s.append(hit.md5) ptd = hit.pnt ptdTideData = ptd.getTideData() kwargs = {} kwargs['dilution'] = ptdTideData[-1] kwargs['name'] = self.m_name kwargs['parent'] = self.m_parent.m_name if self.m_parent else self.m_name kwargs['poly'] = self.m_parent.m_poly if self.m_parent else self.m_poly kwargs['tide'] = ptdTideData[:2] kwargs['t0'] = hit.t0 kwargs['tc'] = hit.tc #kwargs['dt'] = -1.0 kwargs['isDirect']= hit.dd kwargs['plume'] = ptd.getPath(hit.ix, hit.iy) res.append( ASPlume(**kwargs) ) LOGGER.trace('OverflowPoint.doPlumes done') return res def doOverflow(self, t_start, t_end, dt, tide_tbl, tide_cycles=[], merge_transit_times=False): """ For t in [t_start, t_end] with step dt, compute the exposure time window to overflow for all required tide cycles id. Times are UTC Returns: [ # for each river transit time [ # for each exposure window part [(t0, t1, dil), ...] time_start, time_end, dilution ] ] """ LOGGER.trace('OverflowPoint.doOverflow from %s to %s', t_start, t_end) hitss = self.getHitsForSpillWindow(t_start, t_end, dt, tide_tbl, tide_cycles, merge_transit_times) # --- Compact - back to time res_new = [] for hits in hitss: ihit = 0 lhits = len(hits) ps = [] while ihit < lhits: while ihit < lhits and not hits[ihit]: ihit += 1 # get first Hit p = [] while ihit < lhits and (hits[ihit] or (ihit+1 < lhits and hits[ihit+1])): # interpolate simple hole d = hits[ihit].a if hits[ihit] else (hits[ihit+1].a+hits[ihit-1].a)/2.0 t0 = t_start + ihit*DTA_DELTAT t1 = t0 + DTA_DELTAT p.append( (t0, t1, d) ) ihit += 1 if p: ps.append(p) res_new.append(ps) LOGGER.trace('OverflowPoint.doOverflow done') return res_new def dump(self): if self.m_river: return '%s; %s; %f' % (self.m_name, self.m_river.name, self.m_dist2SL) else: return '%s' % (self.m_name) def __decodeRiver(self, data, rivers): #LOGGER.trace('OverflowPoint.__decodeRiver: %s (%s)' % (data, self)) tks = data.split(';') if len(tks) == 1: self.m_name = tks[0].strip() self.m_river = None self.m_dist2SL = 0.0 elif len(tks) == 3: self.m_name = tks[0].strip() self.m_river = rivers[ tks[1].strip() ] self.m_dist2SL = float( tks[2] ) elif len(tks) == 4: self.m_name = tks[0].strip() self.m_river = rivers[ tks[1].strip() ] self.m_dist2SL = float( tks[2] ) self.m_parent = tks[3].strip() else: raise ValueError def __decodeTide(self, data, dataDir, dilution): LOGGER.trace('OverflowPoint.__decodeTide: %s (%s)' % (self.m_name, self)) self.m_tideRsp = [] for item in data: tk_dt_dh, tk_tide = item.split(';')[1:3] dt_dh = list(eval(tk_dt_dh)) tid = list(eval(tk_tide)) o = OverflowPointOneTide(self.m_river, self.m_dist2SL) o.loadTide(dt_dh[0], dt_dh[1], tid, dataDir, dilution) self.m_tideRsp.append(o) def __decodePath(self, data, pathDir, dilution): LOGGER.trace('OverflowPoint.__decodePath: %s (%s)' % (self.m_name, self)) for item in data: tk_dt_dh, tk_path = item.split(';')[1:3] dt_dh = list(eval(tk_dt_dh)) pth = eval(tk_path) o = self.__getTideResponse(dt_dh[0], dt_dh[1]) o.loadPath(dt_dh[0], dt_dh[1], pth, pathDir, dilution) def __decodePoly(self, data, pathDir, dilution): LOGGER.trace('OverflowPoint.__decodePoly: %s (%s)' % (self.m_name, self)) for item in data: tk_poly = item.split(';')[1] poly = list(eval(tk_poly)) self.m_poly = poly def load(self, data, rivers, dataDir, dilution, root=None): LOGGER.trace('OverflowPoint.load: %s' % (self)) self.__decodeRiver(data[0], rivers) subDir = self.m_name pathDir = os.path.join(dataDir, subDir) if data[1]: self.__decodeTide(data[1], dataDir, dilution) if data[2]: self.__decodePath(data[2], pathDir, dilution) if data[3]: self.__decodePoly(data[3], pathDir, dilution) if root: self.m_root = root def resolveLinks(self, points): """ Translate parent name to object Copy OverflowPointOneTide from parent """ if self.m_parent: self.m_parent = points[self.m_parent] for m in self.m_parent.m_tideRsp: o = OverflowPointOneTide(self.m_river, self.m_dist2SL) o.setTideData( *m.getTideData() ) if o in self.m_tideRsp: i = self.m_tideRsp.index(o) self.m_tideRsp[i].mergeTideData(o) self.m_tideRsp[i].mergePathData(o) else: self.m_tideRsp.append(o) def checkInclusion(self, other): """ Debug Code Check that other is included in self. """ LOGGER.info ('OverflowPoints.checkInclusion: %s', self.m_name) LOGGER.trace('OverflowPoints: %s vs %s', self, other) if self.m_name != other.m_name: raise ValueError('OverflowPoint: Incoherent name') if ((self.m_river is not None or other.m_river is not None) and (self.m_river.name != other.m_river.name)): raise ValueError('OverflowPoint: Incoherent river') for oitem in other.m_tideRsp: i = self.m_tideRsp.index(oitem) sitem = self.m_tideRsp[i] sitem.checkInclusion(oitem) def checkPathFiles(self): """ Debug Code Check the presence of the path files """ for m in self.m_tideRsp: m.checkPathFiles() # try: # self.m_parent.m_name # except AttributeError: # for m in self.m_tideRsp: # m.checkPathFiles() def __getTideResponse(self, td, th): """ Returns the tide
<reponame>Adiapohon/BROCANTO /* MIT License * Copyright (c) 2018 <NAME> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ import itertools import csv import random # Wortwiederholungsfehler, bei denen die Wortklasse wiederholt wird (major violations) #D, M, N, v, v, N #d, N, v, v, N #D, M, N, v, v, M, N #d, N, v, m, v, M, N #d, N, v, m, m, M, N #D, M, N, v, N, N #D, M, N, v, m, N, N #D, M, N, v, m, m, N #D, M, N, v, N, M, N #d, N, v, N, M, N #Zuordnungsfehler von Artikel, Adektiv und Verb (agreement violations) #D, M, N, v, d, M, N #d, M, N, v #d, M, N, v, d, N #d, N, v, d, M, N #D, M, N, v, D, N #D, N, v, D, M, N #D, N, v, m #d, N, v, m, D, N #Falsche Abfolge von Nominal- und Verbalphrase (phrase level violation) #d, N, d, N, v #d, N, d, N, v, m #D, M, N, d, N, v #D, M, N, d, N, v, m #d, N, D, M, N, v #d, N, D, M, N, v, m #D, M, N, D, M, N, v #D, M, N, D, M, N, v, m x = 1 # Anzahl der zufällig ausgewählten Sätze N = ['tok', 'plox', 'gum', 'trul'] v = ['prez', 'pel', 'glif', 'rix'] M = ['füne', 'böke'] m = ['rüfi', 'nöri'] d = ['aaf'] D = ['aak'] c = ['caf'] data01 = [] data02 = [] data03 = [] data04 = [] data05 = [] data06 = [] data07 = [] data08 = [] data09 = [] data10 = [] data11 = [] data12 = [] data13 = [] data14 = [] data15 = [] data16 = [] data17 = [] data18 = [] data19 = [] data20 = [] data21 = [] data22 = [] data23 = [] data24 = [] data25 = [] data26 = [] print ("Wortwiederholungsfehler") prod = itertools.product(D, M, N, v, v, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data01.append (tmp) print (tmp) prod = itertools.product(d, N, v, v, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data02.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, v, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data03.append (tmp) print (tmp) prod = itertools.product(d, N, v, m, v, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data04.append (tmp) print (tmp) prod = itertools.product(d, N, v, m, d, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data05.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, N, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data06.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, m, N, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data07.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, m, m, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data08.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, N, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data09.append (tmp) print (tmp) prod = itertools.product(d, N, v, N, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data10.append (tmp) print (tmp) print ("Zuordnungsfehler") prod = itertools.product(D, M, N, v, d, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data11.append (tmp) print (tmp) prod = itertools.product(d, M, N, v) for p in prod: tmp = '' for a in p: tmp += a + ' ' data12.append (tmp) print (tmp) prod = itertools.product(d, M, N, v, d, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data13.append (tmp) print (tmp) prod = itertools.product(d, N, v, d, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data14.append (tmp) print (tmp) prod = itertools.product(D, M, N, v, D, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data15.append (tmp) print (tmp) prod = itertools.product(D, N, v, D, M, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data16.append (tmp) print (tmp) prod = itertools.product(D, N, v, m) for p in prod: tmp = '' for a in p: tmp += a + ' ' data17.append (tmp) print (tmp) prod = itertools.product(d, N, v, m, D, N) for p in prod: tmp = '' for a in p: tmp += a + ' ' data18.append (tmp) print (tmp) print ("Falsche Abfolge von Nominal- und Verbalphrase") prod = itertools.product(d, N, d, N, v) for p in prod: tmp = '' for a in p: tmp += a + ' ' data19.append (tmp) print (tmp) prod = itertools.product(d, N, d, N, v, m) for p in prod: tmp = '' for a in p: tmp += a + ' ' data20.append (tmp) print (tmp) prod = itertools.product(D, M, N, d, N, v) for p in prod: tmp = '' for a in p: tmp += a + ' ' data21.append (tmp) print (tmp) prod = itertools.product(D, M, N, d, N, v, m) for p in prod: tmp = '' for a in p: tmp += a + ' ' data22.append (tmp) print (tmp) prod = itertools.product(d, N, D, M, N, v) for p in prod: tmp = '' for a in p: tmp += a + ' ' data23.append (tmp) print (tmp) prod = itertools.product(d, N, D, M, N, v, m) for p in prod: tmp = '' for a in p: tmp += a + ' ' data24.append (tmp) print (tmp) prod = itertools.product(D, M, N, D, M, N, v) for p in prod: tmp = '' for a in p: tmp += a + ' ' data25.append (tmp) print (tmp) prod = itertools.product(D, M, N, D, M, N, v, m) for p in prod: tmp = '' for a in p: tmp += a + ' ' data26.append (tmp) print (tmp) #for x in data: # print (x) selec = random.sample (data01, x) selec = selec + random.sample (data02, x) selec = selec + random.sample (data03, x) selec = selec + random.sample (data04, x) selec = selec + random.sample (data05, x) selec = selec + random.sample (data06, x) selec = selec + random.sample (data07, x) selec = selec + random.sample (data08, x) selec = selec + random.sample (data09, x) selec = selec + random.sample (data10, x) selec = selec + random.sample (data11, x) selec = selec + random.sample (data12, x) selec = selec + random.sample (data13, x) selec = selec + random.sample (data14, x) selec = selec + random.sample (data15, x) selec = selec + random.sample (data16, x) selec = selec + random.sample (data17, 2) selec