input
stringlengths
2.65k
237k
output
stringclasses
1 value
descriptions) # print('self.ready: %r' % self.ready) # input('pause') return (titles,descriptions) def get_string_from_middle_children_1(self,node=None): '''Combine strings of tags into one string, excluding first heading tag and table tags.''' string = None if self.ready: if node: children = self.get_children(node=node) if children: # remove table tags from children children = [c for c in children if c.name != 'table'] # remove the first child if heading tag if children[0].name in self.heading_tag_names: children = children[1:] else: self.ready = False self.logger.error('Unable to get_string_from_middle_children_1. ' + 'first tag not in self.heading_tag_names. ' + 'children: {}. '.format(children)) if self.ready: string = '\n\n'.join([self.get_string(node=child) for child in children]) else: self.ready = False self.logger.error('Unable to get_string_from_middle_children_1. ' + 'children: {}.'.format(children) ) else: self.ready = False self.logger.error('Unable to get_string_from_middle_children_1. ' + 'node: {}.'.format(node) ) return string def check_found_hdus(self,title=str(),description=str()): '''Check if the title and description indicates the hdus have been found.''' found_hdus = False if title or description: split_title = set([s.lower() for s in title.split()]) description_title = set([s.lower() for s in description.split()]) string_set = split_title | description_title if ({'required','keywords'}.issubset(string_set) or {'required','column'}.issubset(string_set) ): found_hdus = True else: self.ready = False self.logger.error('Unable to check_found_hdus. ' + 'title: {}, '.format(title) + 'description: {}.'.format(description) ) return found_hdus def get_hdu_number_and_hdu_title_from_heading_tag(self,node=None): '''Get hdu_number and hdu_title from first heading tag in BeautifulSoup node.''' (hdu_number,hdu_title) = (None,None) if self.ready: if node: child_names = self.get_child_names(node=node) if node else None heading_tag_names = [name for name in child_names if name in self.heading_tag_names] if child_names else None heading_tag_name = heading_tag_names[0] if heading_tag_names else None heading_tag = node.find(heading_tag_name) if heading_tag_name else None heading = self.get_string(node=heading_tag).strip() if heading_tag else None if heading_tag and heading: # hdu_number # hdu_number from node['id'] node_id = (node.attrs['id'] if node.attrs and 'id' in node.attrs else str()) regex = '(?i)hdu\s*\d+' matches1 = self.get_matches(regex=regex,string=node_id) if node_id else list() match1 = matches1[0] if matches1 else str() regex = '\d+' matches2 = self.get_matches(regex=regex,string=match1) if match1 else None node_id_hdu_number = int(matches2[0]) if matches2 else None # hdu_number from heading_tag['id'] heading_id = (heading_tag.attrs['id'] if heading_tag.attrs and 'id' in heading_tag.attrs else str()) regex = '(?i)hdu\s*\d+' matches3 = self.get_matches(regex=regex,string=heading_id) if heading_id else list() match2 = matches3[0] if matches3 else str() regex = '\d+' matches4 = self.get_matches(regex=regex,string=match2) if match2 else None heading_id_hdu_number = int(matches4[0]) if matches4 else None # hdu_number from hdu_title regex = '(?i)hdu\s*\d+' matches5 = (self.get_matches(regex=regex,string=heading) if heading else list()) heading_hdu_N = matches5[0] if matches5 else str() regex = '\d+' matches6 = (self.get_matches(regex=regex,string=heading_hdu_N) if heading_hdu_N else list()) heading_hdu_number = int(matches6[0]) if matches6 else None if heading_hdu_number is None: regex = '(?i)primary' heading_hdu_number = ('0' if self.check_match(regex=regex,string=heading) else None) # put hdu_number together hdu_number = (node_id_hdu_number if node_id_hdu_number is not None else heading_id_hdu_number if heading_id_hdu_number is not None else heading_hdu_number if heading_hdu_number is not None else None) # put hdu_title together hdu_title = heading.strip() # print('\nnode_id: %r' % node_id) # print('matches1: %r' % matches1) # print('match1: %r' % match1) # print('matches2: %r' % matches2) # print('node_id_hdu_number: %r' % node_id_hdu_number) # # print('\nheading_id: %r' % heading_id) # print('matches3: %r' % matches3) # print('match2: %r' % match2) # print('matches4: %r' % matches4) # print('heading_id_hdu_number: %r' % heading_id_hdu_number) # # print('\nheading: %r' % heading) # print('matches5: %r' % matches5) # print('heading_hdu_N: %r' % heading_hdu_N) # print('matches6: %r' % matches6) # print('heading_hdu_number: %r' % heading_hdu_number) # # print('\nhdu_number: %r' % hdu_number) # print('hdu_title: %r' % hdu_title) # input('pause') else: self.ready = False self.logger.error('Unable to get_hdu_number_and_hdu_title_from_heading_tag from first heading. ' + 'heading_tag: {}, '.format(heading_tag) + 'heading: {}.'.format(heading) ) if (hdu_number,hdu_title) == (None,None): self.ready = False self.logger.error('Unable to get_hdu_number_and_hdu_title_from_heading_tag. ' + 'hdu_number: {}, '.format(hdu_number) + 'hdu_title: {}'.format(hdu_title) ) else: self.ready = False self.logger.error('Unable to get_hdu_number_and_hdu_title_from_heading_tag. ' + 'node: {} '.format(node) ) return (hdu_number,hdu_title) def get_hdu_number_and_hdu_title_from_p_tags_1(self,node=None): '''Get hdu_number and hdu_title from first heading tag in BeautifulSoup node.''' (hdu_number,hdu_title) = (None,None) if self.ready: if node: hdu_numbers = list() for p in node.find_all('p'): (title,description) = self.get_title_and_description_from_p(p=p) if title: regex1 = self.get_table_title_regex_1() regex2 = '(?i)hdu\s*\d+' match1 = (self.check_match(regex=regex1,string=title) if title else None) matches2 = (self.get_matches(regex=regex2,string=title) if title else None) match2 = matches2[0] if matches2 else None if match1: if not match2: hdu_numbers.append(0) else: regex3 = '\d+' matches3 = (self.get_matches(regex=regex3,string=title) if title else None) match3 = matches3[0] if matches3 else None if match3: hdu_numbers.append(match3) if len(set(hdu_numbers)) == 1: # if all entries in hdu_numbers are the same hdu_number = hdu_numbers[0] hdu_title = 'HDU' + str(hdu_number) if (hdu_number,hdu_title) == (None,None): self.ready = False self.logger.error('Unable to get_hdu_number_and_hdu_title_from_p_tags_1. ' + 'hdu_number: {}, '.format(hdu_number) + 'hdu_title: {}'.format(hdu_title) ) else: self.ready = False self.logger.error('Unable to get_hdu_number_and_hdu_title_from_p_tags_1. ' + 'node: {} '.format(node) ) return (hdu_number,hdu_title) def get_single_digit(self,string=None): '''Get single digit 0-9 from the given string.''' digit = None if self.ready: if string: digits = list(filter(str.isdigit, string)) if len(digits) == 1: digit = int(digits[0]) else: self.ready = False self.logger.error('Unable to get_single_digit. ' + 'len(digits) > 1. ' + 'digits: {}, '.format(digits) + 'string: {}'.format(string)) else: self.ready = False self.logger.error('Unable to get_single_digit. ' + 'string: {0}'.format(string)) return digit def get_hdu_divs(self,node=None): '''Get a list of divs with id containing 'hdu', from the given node.''' hdu_divs = list() if self.ready: if node: divs = node.find_all('div') for div in [div for div in divs if not self.get_string(node=div).isspace()]: div_id = (div.attrs['id'] if div.attrs and 'id' in div.attrs else None) if div_id and div_id.lower().startswith('hdu'): hdu_divs.append(div) else: self.ready = False self.logger.error('Unable to get_hdu_divs. ' + 'node: {}'.format(node)) return hdu_divs def get_intro_div(self,node=None): '''Get a list of divs with id containing 'intro', from the given node.''' intro_divs = list() if self.ready: if node: # create intro_divs list divs = node.find_all('div') for div in [div for div in divs if not self.get_string(node=div).isspace()]: div_id = (div.attrs['id'] if div.attrs and 'id' in div.attrs else None) if div_id and div_id.startswith('intro'): intro_divs.append(div) # check one and only one intro div if not intro_divs: self.ready = False self.logger.error("Unable to get_intro_divs. " + "Not found: 'intro' in div['id']. " + "intro_divs: {}".format(intro_divs) ) if len(intro_divs) > 1: self.ready = False self.logger.error("Unable to get_intro_divs. " + "len(intro_divs) > 1. " + "intro_divs: {}".format(intro_divs) ) else: self.ready = False self.logger.error('Unable to get_intro_div. ' + 'node: {}'.format(node)) return intro_divs[0] if self.ready else None def get_heading_tag_sibling_names(self,node=None): '''Get a list of heading tags, which are siblings of the given node.''' heading_tags = list() if self.ready: if node: siblings = set(self.get_sibling_names(node=node)) heading_tags = list(set(self.heading_tag_names) & siblings) else: self.ready = False self.logger.error('Unable to get_heading_tag_sibling_names. ' + 'node: {0}'.format(node)) return heading_tags def get_heading_tag_child_names(self,node=None): '''Get a list of heading tags, which are children of the given node.''' heading_tag_names = list() if self.ready: if node: children = self.get_child_names(node=node) heading_tag_names = [child for child in children if child in self.heading_tag_names] else: self.ready = False self.logger.error('Unable to get_heading_tag_child_names. ' + 'node: {0}'.format(node)) return heading_tag_names def get_heading_tag_children(self,node=None): '''Get a list of heading tags, which are children of the given node.''' heading_tags = list() if self.ready: if node: heading_tags = [c for c in node.children if c.name and c.name in self.heading_tag_names] else: self.ready = False self.logger.error('Unable to get_heading_tag_child_names. ' + 'node: {0}'.format(node)) return heading_tags def get_all_strings(self,node=None): '''Get all strings from the given BeautifulSoup node.''' all_strings = list() if self.ready: if node: for string in [str(s) for s in node.strings if not s.isspace()]: all_strings.append(str(string)) else: self.ready = False self.logger.error('Unable to get_all_strings. ' + 'node: {0}'.format(node)) return all_strings def get_datatype_and_hdu_size(self,node=None): '''Get datatype and hdu_size from the given BeautifulSoup node.''' (datatype,hdu_size) = (None,None) if self.ready: if node: all_strings = self.get_all_strings(node=node) if self.check_match(regex='(?i)hdu type',string=all_strings[0]): datatype = all_strings[1].strip().strip(punctuation).strip() if self.check_match(regex='(?i)hdu size',string=all_strings[2]): hdu_size = all_strings[3].strip().strip(punctuation).strip() else: self.ready = False self.logger.error('Unable to get_datatype_and_hdu_size. ' + 'node: {0}'.format(node)) if (datatype,hdu_size) == (None,None): self.ready = False self.logger.error('Unable to get_datatype_and_hdu_size. ' + 'datatype: {0}. '.format(datatype) + 'hdu_size: {0}. '.format(hdu_size) ) return (datatype,hdu_size) def get_datatype_and_hdu_size_from_dl(self,dl=None): '''Get datatype and hdu_size from the given BeautifulSoup dl tag.''' (datatype,hdu_size)=(None,None) if self.ready: if dl: (definitions,descriptions) = self.get_dts_and_dds_from_dl(dl=dl) for (definition,description) in list(zip(definitions,descriptions)): if 'hdu type' in definition.lower(): datatype = description if 'hdu size' in definition.lower(): hdu_size = description else: self.ready = False self.logger.error('Unable to get_datatype_and_hdu_size_from_dl. ' + 'dl: {0}'.format(dl)) return (datatype,hdu_size) def get_children(self,node=None,names=list()): '''Get the children from the BeautifulSoup node, excluding line endings.''' children = None if self.ready: if node: # children = ([child for child
def string_wrapping(self): import textwrap print(textwrap.wrap("HelloWorld", 5)) #Hello #World def string_stripping(self): "00005".lstrip("0") # 5 "50000".rstrip("0") # 5 def string_numerical_values____kwds_unicode(self): ord('a') # 97 # return unicode value. #ascii being subset of unicode. chr(97) # 'a' input: [0 ... 255] chr(97) #u'a' input: [0 ... 65535] anki-done ( # ref: https://www.geeksforgeeks.org/ord-function-python/ # prob: https://www.hac5535kerrank.com/challenges/most-commons/problem def string_substring_counting(self): # Count substring ":-| ^_^ :-) -_- :-) *_* :-)".count(":-)") #3 "aaaa".count("a", 1, 3) # 2 [start]/[end] def string_index_of_a_letter(self): "abcd".index("b") # 1 def every_substring(s): # e.g abba -> ['a', 'b'...,'bba', 'abba'] ss = [] for l in range(1, len(s) + 1): # l = 1..4 for i in range(0, len(s) - l + 1): # l=1 -> i=(0, 4-1+1-1=3) ss.append(s[i:i + l]) # e.g 0:1 > a 0:2 -> ab # for generator: yield s[i:i+l] return ss print(every_substring("abba")) # ['a', 'b', 'b', 'a', 'ab', 'bb', 'ba', 'abb', 'bba', 'abba'] n = len("abba") substring_count = (n * (n + 1)) // 2 def List_(): L = [1, 4, 2, 1, 2, "A"] # [] for empty list. # Append: L.append(99) L += ["abc"] # Note, += <Iterable>. if you += "abc" you get ["a","b","c"] rather than ["abc]. # Note1: += [i] is 2x slower than .append() # Insert: L.insert(0, 5) # insert 5 at start of list. # Index: L[0] # first element L[-1] # last element L[-3] # 3rd last. # Remove L.remove(5) # Pop (read & remove from right). L.pop() # Ref: https://www.geeksforgeeks.org/python-list/ # List has .count() function to count # of items inside it: [1, 1, 5].count(1) #2 # Empty list is False. 1+ is True. L = [] if not L: print("List is empty.") # Useful if you want to set default value in functions if function did not do anything with list. # L2 = L or ["default] def multi_dimensional_lists(): # List of lists.. L = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] L[0][1] #2 def deduplicating_list(): uniquearr = list(dict.fromkeys(L)) #anki-todo uniquearr.sort(reverse=True) print(uniquearr) def list_comprehension(): # Single level nums = [1, 2, 3, 4, 5, 6] double_evens = [n * 2 for n in nums if n % 2 == 0] print("Single level ", double_evens) # [4, 8, 12] # Nested first_list = [2, 4, 6] second_list = [1, 2, 3] product_first_second = [a * b for a in first_list for b in second_list] # "if a EXPR b" filter possible. print("Nested", product_first_second) # [2, 4, 6, 4, 8, 12, 6, 12, 18] # First loop, 2nd 3rd indent_list_a = [1, 2, 3] indent_list_b = [10, 20, 30] added_list = [a + b for a in indent_list_a for b in indent_list_b if a % 2 != 0] # [11, 21, 31, 13, 23, 33] print("Multi-Line", added_list) # Practice Problem: https://www.hackerrank.com/challenges/list-comprehensions/problem # Reference: https://hackernoon.com/list-comprehension-in-python-8895a785550b def mapping_func_to_iter(): # map (func, iter1 [, iter 2]) # function has 1 arg per iter. numbers = (1, 2, 3, 4) result = [x + x for x in numbers] # apply function (or lamdba) to an iterable item. RETURN: list print((list(result))) # src: https://www.geeksforgeeks.org/python-map-function/ # See src for multi-arg, string looping etc.. def bisect_insert_sorted(): # TAG__List TAG__Insertion TAG__Sorted binary insert # Useful to insert an element such that list stays sorted. # Bisect is O(log n), but insertion is O(n). from bisect import insort L = [1, 3] insort(L, 2) #L == [1, 2, 3] def bisect_bisect(): from bisect import bisect # Bisect gives position of where to insert item. (i+1) L = [1, 3, 5, 7] to_ins = 4 L.insert(bisect(L, to_ins), to_ins) # [1, 3, 4, 5, 7] def generator_expressions(): # Create generator to iterate over. (yieling_func) gen = (i * 2 for i in range(10)) for i in gen: print(i) # 1 2 3 .. # src: https://dbader.org/blog/python-generator-expressions L = list(range(10)) L_iter = (-L[i] for i in range(len(L))) for i in L_iter: print(i) # 0, -1, -2, -3 .... def sorting(): # 828a4bad40234324ba24bd02f6595334 -> CheatSheet. L = [2, 1, 3] # Opt 1) In-Place: # myList.sort([key=lambda x: EXPR][, reverse=False]): L.sort() # Prob: https://www.hackerrank.com/challenges/python-sort-sort/problem # Opt 2) Return a new sorted list: # sorted(<Iterable>, [key=lambda x: EXPR], [reverse=False]) # new_sorted_list = sorted([obj1,obj2,obj3], [key=lambda x: x.attribute], reverse=True) # Dealing with situation where you need to sort an on index L = [[2,"a"], [1, "b"]] L.sort(key=lambda x:x[0]) # -> [[1, 'b'], [2, 'a']] # sort by number at index 0. L.sort(key=lambda x:x[1]) # -> [[2, 'a'], [1, 'b']] # sort by number at index 1 # ref: https://docs.python.org/2/library/functions.html#sorted # Note: in-place sort can't sort string. sorted(s) can. To sort a string: "".join(sorted("bac")) # anki-todo def dict_examples(): mydic = {'jack': 999, 'jennie': 111} mydic['leo'] = 123 mydic['bob'] = 234 mydic['leo'] # accessing mydic.pop('bob') # deleting print(mydic) # src: https://www.geeksforgeeks.org/python-dictionary/ # See also OrderedDict in collections. def set_examples(): L = [1,2,3] B = [2,3,4] # set is an undordered collection of items. # To modify an item, remove(item) & add(item). myset = set() # ref: https://www.geeksforgeeks.org/python-sets/ myset = set([1,2,3]) myset = {8,9} myset.add(1) myset.add(2) myset.add(3) myset.update([1,2,3]) # #like add for a list. myset.intersection_update(set()) # Modifies myset. myset.difference_update(set()) myset.symmetric_difference_update(set()) myset.discard(999) # works even if e not in set. myset.remove(2) # Raises KeyError if e doesn't exist. myset.pop() # Raises KeyError if e doesn't exist. if 2 in myset: print("2 is in set!") len(myset) # Return new sets: # Set Theory: setA, setB = set(), set() setA.union(setB) #(A | B) -> returns new set... setA.intersection(setB) # (A & B) # ref: https://www.programiz.com/python-programming/set setA.difference(setB) # (A - B) # values that exist in A but not in B. setA.symmetric_difference(setB) # (A ^ B) # in either a or b, but not both. # Diagrams: https://www.hackerrank.com/challenges/py-set-symmetric-difference-operation/problem # setA.issubset(t) s <= b # setA.issuperset(t) s >= b # ref: https://docs.python.org/2/library/sets.html def heaps_with_heapq(): # 1ed485d0f6614735afbf9a7efc834caf # Methods that take an Array as arguments: from heapq import heapify, heappush, heappop, heapreplace heap = [] heapify(list) # augments the list. O(n) heappush(heap, int) # O(log n) heappop(int) # O(log n) heap[0] # peak. # heapq is a min heap. # For max heap, negate input & output "heappush(h, -val)" "-heappop(h)" # Small classes to wrap min/max heaps are good/clean way to deal with heaps. class maxheap: def __init__(self): self.h = [] self.push = lambda x: heappush(self.h, -x) self.pop = lambda: -heappop(self.h) self.peak = lambda: -self.h[0] self.len = lambda: len(self.h) class minhheap: def __init__(self): self.h = [] self.push = lambda x: heappush(self.h, x) self.pop = lambda: heappop(self.h) self.peak = lambda: self.h[0] self.len = lambda: len(self.h) def kth_min_max(): from heapq import nsmallest, nlargest # kTh smallest : Keep a min heap of size k. O(n log k) h, k = [], 3 for i in [5, 2, 1, 7, 4, 2, 8, 10, 2]: if len(h) < k: heappush(h, i) else: if i > k: heapreplace(h, k) print("3rd smallest: ", h[0]) # Ex: 65fdd808fcad43b2b2726062aeaa108d # Build in support for k-min/max in O(n log k) time: L = [1,2,3,2,5,6,8] nsmallest(2, L) # ,key=lambda x:x) -> ] nlargest(2, L) # ,key=lambda x:x) -> [8, 6] # Performance wise, you get O(n log k) as expected compared to sort: # L = rand_list(10000000) # timeit(lambda: sorted(L)[0:6], number=50) # 44.241248495000036 # timeit(lambda: heapq.nsmallest(6, L), number=50) # 14.27249390999998 # Time complexity, indirect uses nlargest ref: https://stackoverflow.com/questions/29240807/python-collections-counter-most-common-complexity/29240949 def heapq_with_classes(): # In general, import heapq class Person: def __init__(self, name, age, height): self.name = name self.age = age self.height = height def __lt__(self, other): return self.age < other.age # set to > for max heap. def __repr__(self): return "{} {} {}".format(self.name, self.age, self.height) people = [ Person("Leo", 31, 168), Person("Valarie", 19, 157), Person("Jane", 20, 150), Person("Bob", 40, 170), Person("M.Jordon", 45, 210) ] print(heapq.nlargest(2, people, key=lambda x: x.height)[1].name) # bob. heapq.heapify(people) while people: print(heapq.heappop(people)) # Bob # Valarie 19 157 # Jane 20 150 # Leo 31 168 # Bob 40 170 # M.Jordon 45 210 def runtime_complexities_O(n): # Ref: Text # https://www.ics.uci.edu/~pattis/ICS-33/lectures/complexitypython.txt #
#!/usr/bin/env python3 import json import logging import sys from itertools import groupby from random import randint from time import sleep from typing import Dict, Iterator, List import requests from bs4 import BeautifulSoup, PageElement assert sys.version_info >= (3, 6), 'Install Python 3.6 or higher' log = logging.getLogger('philly') log.setLevel(logging.DEBUG) fh = logging.FileHandler('./philly.log', 'w', 'utf-8') ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', '%Y-%m-%d %H:%M:%S') fh.setFormatter(formatter) ch.setFormatter(formatter) log.addHandler(fh) log.addHandler(ch) class PhillyScraper(): ''' Scrapes all available concerts and films from "The Digital Concert Hall" and writes the results as json files. This was possible in March 2020 during the corona outbreak when every concert and film was accessible for free. ''' MIN_DELAY = 2 MAX_DELAY = 5 def __init__(self, user_token: str, concert_ids_path: str = None, film_ids_path: str = None): self.__data = [] self.__concert_id_list = [] if concert_ids_path: with open(concert_ids_path, 'r') as infile: self.__concert_id_list = infile.read().splitlines() self.__film_id_list = [] if film_ids_path: with open(film_ids_path, 'r') as infile: self.__film_id_list = infile.read().splitlines() self.__sess = requests.Session() self.__sess.headers.update({ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Safari/605.1.15' }) self.__sess.cookies.update(dict(hasBeenLoggedIn='1', dch_user_token=user_token)) def __write_output(self, out_name: str = 'all'): ''' Helper to create the final json file ''' with open(f'{out_name}.json', 'w') as out: json.dump(self.__data, out) def __get_seasons(self) -> List[Dict]: ''' Returns a list of dicts containing information about each season ''' log.debug('Getting seasons...') try: r = self.__sess.get('https://www.digitalconcerthall.com/json_cacheable_services/get_seasons?language=en') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get seasons failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get seasons failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error('Get seasons timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get seasons failed with request error: {err}') sys.exit(-1) try: seasons_dict = r.json() except ValueError: log.error(f'Get seasons returned non-json data: {r.text}') sys.exit(-1) if len(seasons_dict['items']) != seasons_dict['count']: log.warning(f'API returned a season count of {seasons_dict["count"]}, but {len(seasons_dict["items"])} were found!') return seasons_dict['items'] def __extract_text(self, page_element: PageElement) -> str: ''' Helper to extract the text content from a bs4 page element. Whitespace between words is trimmed ''' try: return ' '.join(page_element.text.split()) except AttributeError: return ' '.join(page_element.split()) def __make_dict(self, groups: Iterator) -> Dict[str, str]: ''' Helper to create a dict from a itertoolsgroup ''' ret = dict(role='KEINE ROLLE', player='KEINER') for tag in groups: if tag.name == 'strong': ret['player'] = tag.text.strip() elif tag.name == 'em': ret['role'] = tag.text.strip() return ret def __extract_metadata(self, concert_id: str, soup: BeautifulSoup) -> Dict: ''' Extracts all available metadata for a concert and returns it as a dict ''' log.debug(f'Extracting metadata for concert with ID {concert_id}...') streams = self.__get_streams(concert_id) metaDict = dict(concertId=concert_id) concertTitleTag = soup.select_one('h1[itemprop="name"]') if concertTitleTag: metaDict['concertTitle'] = concertTitleTag.text.replace(u'\u2019', "'").strip() concertProgrammeTag = soup.select_one('div[itemprop="description"]') if concertProgrammeTag: metaDict['concertProgramme'] = concertProgrammeTag.text.replace(u'\u2019', "'").strip() programmeGuideTag = soup.select_one('div#tabs-1') if programmeGuideTag: metaDict['concertProgrammeGuide'] = programmeGuideTag.text.replace(u'\u2019', "'").strip() concertMetaTag = soup.select_one('p.concertMeta') metaElms = concertMetaTag.contents metaDict['concertDate'] = metaElms[0].replace(u'\u2013', '-').strip() if len(metaElms) == 3: metaDict['concertMeta'] = ' '.join(metaElms[2].split()).replace(u'\u2019', "'") mainArtistTag = soup.select_one('p.mainArtist') mainElms = mainArtistTag.contents try: metaDict['mainArtist'] = mainElms[0].strip() except TypeError: metaDict['mainArtist'] = mainElms[0].text.strip() except IndexError: pass if len(mainElms) == 3: metaDict['conductor'] = ' '.join(mainElms[2].text.split()) starArtists = soup.select('p.starArtist span[itemprop="name"]') if len(starArtists): metaDict['starArtists'] = [' '.join(spanTag.text.split()) for spanTag in starArtists] supportTag = soup.select_one('div#concert-support') if supportTag: metaDict['support'] = supportTag.text.strip() metaDict['pieces'] = [] for piece in soup.select('ul.list-lines > li'): concert_piece_id = piece.select_one('div.jsConcertWork')['id'] pieceDict = dict(pieceId=concert_piece_id) if concert_piece_id in streams: pieceDict['streamUrl'] = streams[concert_piece_id] else: log.warning(f'No stream url found for concert piece with ID {concert_piece_id}') pieceDict['streamUrl'] = 'not-found' headers = piece.find('h2').contents for idx, tag in enumerate(headers): if tag.name == 'strong': pieceDict['composer'] = tag.text.strip() elif tag.name == 'br': pieceDict['description'] = ''.join(map(self.__extract_text, headers[idx + 1:])).strip() break if 'composer' not in pieceDict and 'description' not in pieceDict: pieceDict['description'] = ''.join(map(self.__extract_text, headers)).strip() artists = piece.find('p') if not artists: metaDict['pieces'].append(pieceDict) continue artistList = [ self.__make_dict(g[1]) for g in groupby(artists.contents, key=lambda x: str(x).strip() != ',') if g[0] ] if len(artistList) != 1 or artistList[0]['role'] != 'KEINE ROLLE' or artistList[0]['player'] != 'KEINER': temp = dict() for d in artistList: role = d['role'] if role in temp: temp[role].append(d['player']) else: temp[role] = [d['player']] pieceArtists = [ dict(role=k, names=v) for k,v in temp.items() ] if len(pieceArtists): pieceDict['artists'] = pieceArtists metaDict['pieces'].append(pieceDict) return metaDict def __get_streams(self, content_id: str) -> Dict[str, str]: ''' Returns all available stream links for a content id as a dict ''' log.debug(f'Getting streams for content with ID {content_id}...') try: r = self.__sess.get(f'https://www.digitalconcerthall.com/json_services/get_stream_urls?id={content_id}&language=en') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get streams for content with ID {content_id} failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get streams for content with ID {content_id} failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error(f'Get streams for content with ID {content_id} timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get streams for content with ID {content_id} failed with request error: {err}') sys.exit(-1) try: urls_dict = r.json() except ValueError: log.error(f'Get streams for content with ID {content_id} returned non-json data: {r.text}') sys.exit(-1) if not urls_dict['success']: log.error(f'Get streams failed with message: {urls_dict["message"]}') sys.exit(-1) manifest_dict = { k:v[0]['url'] for k, v in urls_dict['urls'].items() } log.debug(f'Extracted {len(manifest_dict)} streams for content with ID {content_id}') return manifest_dict def __handle_concert(self, concert_id: str) -> Dict: if concert_id not in self.__concert_id_list: log.debug(f'Scraping concert with ID {concert_id}...') try: r = self.__sess.get(f'https://www.digitalconcerthall.com/en/concert/{concert_id}') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get concert with ID {concert_id} failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get concert with ID {concert_id} failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error(f'Get concert with ID {concert_id} timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get concert with ID {concert_id} failed with request error: {err}') sys.exit(-1) soup = BeautifulSoup(r.content, 'lxml') return self.__extract_metadata(concert_id, soup) else: log.debug(f'Skipping concert with ID {concert_id} because it already exists') return None def __handle_season(self, season: Dict): season_id = season['id'] log.debug(f'Scraping season {season["label"]} with ID {season_id}...') try: r = self.__sess.get(f'https://www.digitalconcerthall.com/en/concerts/season_{season_id}') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get season with ID {season_id} failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get season with ID {season_id} failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error(f'Get season with ID {season_id} timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get season with ID {season_id} failed with request error: {err}') sys.exit(-1) soup = BeautifulSoup(r.content, 'lxml') concerts = soup.select('li.archive') season_dict = dict(seasonId=season_id, season=season["label"].replace(u'\u2013', '-'), concerts=[]) for concert in concerts: concert_dict = self.__handle_concert(concert['id'][8:]) # if none, concert already existed if concert_dict: season_dict['concerts'].append(concert_dict) sleep(randint(self.MIN_DELAY, self.MAX_DELAY)) self.__data.append(season_dict) def scrape_seasons(self): ''' Scrapes all concerts for all seasons ''' self.__data = [] all_seasons = self.__get_seasons() for season in all_seasons: self.__handle_season(season) sleep(randint(self.MIN_DELAY, self.MAX_DELAY)) log.info('Writing to file...') self.__write_output('seasons') log.info('Done') def __extract_film_data(self, tag: PageElement) -> Dict[str, str]: link = tag.select_one('a') film_id = link['href'].split('/')[-1] return dict(film_id=film_id, title=link['title']) def __get_films(self) -> Iterator[Dict]: ''' Returns a list of dicts containing information about each film ''' log.debug('Getting films...') try: r = self.__sess.get('https://www.digitalconcerthall.com/en/films') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get films failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get films failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error('Get films timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get films failed with request error: {err}') sys.exit(-1) soup = BeautifulSoup(r.content, 'lxml') films = soup.select('li.item') log.debug(f'Found {len(films)} films') return map(self.__extract_film_data, films) def __handle_film(self, film_dict: Dict[str, str]): film_id = film_dict['film_id'] if film_id not in self.__film_id_list: log.debug(f'Scraping film with ID {film_id}...') try: r = self.__sess.get(f'https://www.digitalconcerthall.com/en/film/{film_id}') r.raise_for_status() except requests.HTTPError as httpe: log.error(f'Get film with ID {film_id} failed with http error: {httpe}') sys.exit(-1) except requests.exceptions.ConnectionError as cerr: log.error(f'Get film with ID {film_id} failed with network problems: {cerr}') sys.exit(-1) except requests.exceptions.Timeout: log.error(f'Get film with ID {film_id} timed out!') sys.exit(-1) except requests.exceptions.RequestException as err: log.error(f'Get film with ID {film_id} failed with request error: {err}') sys.exit(-1) soup = BeautifulSoup(r.content, 'lxml') streams = self.__get_streams(film_id) if film_id in streams: film_dict['streamUrl'] = streams[film_id] else: log.warning(f'No stream url found for film with ID {film_id}') film_dict['streamUrl'] = 'not-found' subTitleTag = soup.select_one('div.margin-15 p') if subTitleTag: film_dict['subtitle'] = subTitleTag.text.strip() actorsTag = soup.select('div.box-50 strong') if len(actorsTag): film_dict['actors'] = [actor.text.strip() for actor in actorsTag] descTag = soup.select_one('div#tabs-0') if descTag: film_dict['description'] = descTag.text.strip() creditsTag = soup.select_one('div#tabs-2') if creditsTag: film_dict['credits'] = creditsTag.text.strip() self.__data.append(film_dict) else: log.debug(f'Skipping film with ID {film_id} because it already exists') def scrape_films(self): ''' Scrapes all films ''' self.__data = [] all_films = self.__get_films() for film in all_films: self.__handle_film(film) sleep(randint(self.MIN_DELAY, self.MAX_DELAY)) log.info('Writing to
import requests as _requests from goldsberry._apiFunc import * class demographics: def __init__(self, playerid): self._url = 'http://stats.nba.com/stats/commonplayerinfo?' self._api_param = {'PlayerID':playerid} self._pull = _requests.get(self._url, params=self._api_param) def player_info(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def headline_stats(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class career_stats: def __init__(self, playerid, league='NBA',permode=1): self._url = "http://stats.nba.com/stats/playerprofilev2?" self._api_param = {'PlayerID':playerid, 'LeagueID':_nbaLeague(league), 'PerMode':_PerModeSmall36(permode)} self._pull = _requests.get(self._url, params = self._api_param) def season_totals_regular(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def career_totals_regular(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_totals_post(self): _headers = self._pull.json()['resultSets'][2]['headers'] _values = self._pull.json()['resultSets'][2]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def career_totals_post(self): _headers = self._pull.json()['resultSets'][3]['headers'] _values = self._pull.json()['resultSets'][3]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_totals_allstar(self): _headers = self._pull.json()['resultSets'][4]['headers'] _values = self._pull.json()['resultSets'][4]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def career_totals_allstar(self): _headers = self._pull.json()['resultSets'][5]['headers'] _values = self._pull.json()['resultSets'][5]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_totals_college(self): _headers = self._pull.json()['resultSets'][6]['headers'] _values = self._pull.json()['resultSets'][6]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def career_totals_college(self): _headers = self._pull.json()['resultSets'][7]['headers'] _values = self._pull.json()['resultSets'][7]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_rankings_regular(self): _headers = self._pull.json()['resultSets'][8]['headers'] _values = self._pull.json()['resultSets'][8]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_rankings_post(self): _headers = self._pull.json()['resultSets'][9]['headers'] _values = self._pull.json()['resultSets'][9]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def season_high(self): _headers = self._pull.json()['resultSets'][10]['headers'] _values = self._pull.json()['resultSets'][10]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def career_high(self): _headers = self._pull.json()['resultSets'][11]['headers'] _values = self._pull.json()['resultSets'][11]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def next_game(self): _headers = self._pull.json()['resultSets'][12]['headers'] _values = self._pull.json()['resultSets'][12]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class general_splits: def __init__(self, playerid, season='2015',seasontype=1, league='NBA', dateto='', datefrom='', gamesegment=1, lastngames=0, location=1, measuretype=1, month=0, opponentteamid=0, outcome=1, paceadjust=1, permode=1, period=0, plusminus=1, rank=1, seasonsegment=1, vsconf=1, vsdiv=1): self._url = "http://stats.nba.com/stats/playerdashboardbygeneralsplits?" self._api_param = {'PlayerID':playerid, 'SeasonType': _SeasonType(seasontype), 'Season': _nbaSeason(season), 'LeagueID': _nbaLeague(league), 'DateTo':_valiDate(dateto), 'DateFrom':_valiDate(datefrom), 'GameSegment':_GameSegment(gamesegment), 'LastNGames':lastngames, 'Location':_Location(location), 'MeasureType':_measureType(measuretype), 'Month':month, 'OpponentTeamID':opponentteamid, 'Outcome':_Outcome(outcome), 'PaceAdjust':_PaceAdjust(paceadjust), 'PerMode':_PerModeLarge(permode), 'Period':period, 'PlusMinus':_PlusMinus(plusminus), 'Rank':_Rank(rank), 'SeasonSegment':_SeasonSegment(seasonsegment), 'VsConference':_VsConference(vsconf), 'VsDivision':_VsDivision(vsdiv)} self._pull = _requests.get(self._url, params = self._api_param) def overall(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def location(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def wins_losses(self): _headers = self._pull.json()['resultSets'][2]['headers'] _values = self._pull.json()['resultSets'][2]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def month(self): _headers = self._pull.json()['resultSets'][3]['headers'] _values = self._pull.json()['resultSets'][3]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def pre_post_allstar(self): _headers = self._pull.json()['resultSets'][4]['headers'] _values = self._pull.json()['resultSets'][4]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def starting_position(self): _headers = self._pull.json()['resultSets'][5]['headers'] _values = self._pull.json()['resultSets'][5]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def days_rest(self): _headers = self._pull.json()['resultSets'][6]['headers'] _values = self._pull.json()['resultSets'][6]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class game_logs: def __init__(self, playerid, season='2015',seasontype=1, league='NBA'): self._url = "http://stats.nba.com/stats/playergamelog?" self._api_param = {'PlayerID':playerid, 'SeasonType': _SeasonType(seasontype), 'Season': _nbaSeason(season), } self._pull = _requests.get(self._url, params=self._api_param) def logs(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class shot_dashboard: def __init__(self,playerid,league='NBA',season='2015', seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0, permode=1): self._url = "http://stats.nba.com/stats/playerdashptshots?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames, 'PerMode' : _PerModeMini(permode) } self._pull = _requests.get(self._url, params=self._api_param) def overall(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def general(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def shot_clock(self): _headers = self._pull.json()['resultSets'][2]['headers'] _values = self._pull.json()['resultSets'][2]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def dribble(self): _headers = self._pull.json()['resultSets'][3]['headers'] _values = self._pull.json()['resultSets'][3]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def closest_defender(self): _headers = self._pull.json()['resultSets'][4]['headers'] _values = self._pull.json()['resultSets'][4]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def closest_defender_10ft(self): _headers = self._pull.json()['resultSets'][5]['headers'] _values = self._pull.json()['resultSets'][5]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def touch_time(self): _headers = self._pull.json()['resultSets'][6]['headers'] _values = self._pull.json()['resultSets'][6]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class rebound_dashboard: def __init__(self,playerid,league='NBA',season='2015', seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0,permode=1): self._url = "http://stats.nba.com/stats/playerdashptreb?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames, 'PerMode' : _PerModeMini(permode) } self._pull = _requests.get(self._url, params=self._api_param) def overall(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def shot_type(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def contesting_rebounders(self): _headers = self._pull.json()['resultSets'][2]['headers'] _values = self._pull.json()['resultSets'][2]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def shot_distance(self): _headers = self._pull.json()['resultSets'][3]['headers'] _values = self._pull.json()['resultSets'][3]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def rebound_distance(self): _headers = self._pull.json()['resultSets'][4]['headers'] _values = self._pull.json()['resultSets'][4]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class passing_dashboard: def __init__(self,playerid,league='NBA',season='2015', seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0,permode=1): self._url = "http://stats.nba.com/stats/playerdashptpass?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames, 'PerMode' : _PerModeMini(permode) } self._pull = _requests.get(self._url, params=self._api_param) def passes_made(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def passes_received(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class defense_dashboard: def __init__(self,playerid,league='NBA',season='2015', seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0,permode=1): self._url = "http://stats.nba.com/stats/playerdashptreb?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames, 'PerMode' : _PerModeMini(permode) } self._pull = _requests.get(self._url, params=self._api_param) def defending_shot(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class shot_log: def __init__(self,playerid,league='NBA',season='2015',seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0): self._url = "http://stats.nba.com/stats/playerdashptshotlog?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames } self._pull = _requests.get(self._url, params=self._api_param) def log(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class rebound_log: def __init__(self,playerid,league='NBA',season='2015',seasontype=1,teamid=0, outcome=1,location=1,month=0,seasonsegment=1,datefrom='', dateto='',opponentteamid=0,vsconf=1,vsdiv=1,gamesegment=1, period=0,lastngames=0): self._url = "http://stats.nba.com/stats/playerdashptreboundlogs?" self._api_param = {'PlayerID' : playerid, 'LeagueID': _nbaLeague(league), 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames } self._pull = _requests.get(self._url, params=self._api_param) def log(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] class shot_chart: def __init__(self,playerid,leagueid='',season='2015', seasontype=1,teamid=0, gameid='',outcome=1,location=1,month=0,seasonsegment=1, datefrom='',dateto='',opponentteamid=0,vsconf=1,vsdiv=1, position=1,period=0,lastngames=0,aheadbehind=1, contextmeasure=1,clutchtime=7,rookieyear='', contextfilter='',startperiod='1',endperiod='10',startrange='0', endrange='28800', gamesegment=1, rangetype='2'): if not rookieyear == '': rookieyear = _nbaSeason(rookieyear) self._url = "http://stats.nba.com/stats/shotchartdetail?" self._api_param = {'LeagueID': leagueid, 'Season' : _nbaSeason(season), 'SeasonType' : _SeasonType(seasontype), 'TeamID' : teamid, 'PlayerID' : playerid, 'GameID' : gameid, 'Outcome' : _Outcome(outcome), 'Location' : _Location(location), 'Month' : month, 'SeasonSegment' : _SeasonSegment(seasonsegment), 'DateFrom' : _valiDate(datefrom), 'DateTo' : _valiDate(dateto), 'OpponentTeamID' : opponentteamid, 'VsConference' : _VsConference(vsconf), 'VsDivision' : _VsDivision(vsdiv), 'Position' : _Position(position), 'GameSegment' : _GameSegment(gamesegment), 'Period' : period, 'LastNGames' : lastngames, 'AheadBehind' : _AheadBehind(aheadbehind), 'ContextMeasure' : _ContextMeasure(contextmeasure), 'ClutchTime' : _ClutchTime(clutchtime), 'RookieYear' : rookieyear, 'ContextFilter':contextfilter, 'StartPeriod':startperiod, 'EndPeriod':endperiod, 'StartRange':startrange, 'EndRange':endrange, 'RangeType':rangetype, } print(self._api_param) self._pull = _requests.get(self._url, params=self._api_param) def chart(self): _headers = self._pull.json()['resultSets'][0]['headers'] _values = self._pull.json()['resultSets'][0]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def leagueaverage(self): _headers = self._pull.json()['resultSets'][1]['headers'] _values = self._pull.json()['resultSets'][1]['rowSet'] return [dict(zip(_headers, value)) for value in _values] def PlayerList(season='2015', AllTime=False, league='NBA'): if AllTime: _url = "http://stats.nba.com/stats/commonallplayers?" _api_param = {'IsOnlyCurrentSeason':"0",
<filename>dependencies/quex-0.34.1/quex/core_engine/generator/transition_block.py import sys import quex.core_engine.generator.transition as transition from quex.input.setup import setup as Setup LanguageDB = Setup.language_db __DEBUG_CHECK_ACTIVE_F = False # Use this flag to double check that intervals are adjacent class __info: def __init__(self, StateIdx, IsInitStateF, DSM): assert DSM == None or DSM.__class__.__name__ == "StateMachineDecorator" self.state_index = StateIdx self.is_init_state_f = IsInitStateF self.dsm = DSM def do(TriggerMap, StateIdx, InitStateF, DSM): assert type(TriggerMap) == list assert DSM == None or DSM.__class__.__name__ == "StateMachineDecorator" # If a state has no transitions, no new input needs to be eaten => no reload. # # NOTE: The only case where the buffer reload is not required are empty states, # AND states during backward input position detection! # Empty states do not exist any longer, the backward input position is # essential though for pseudo ambiguous post contexts. assert TriggerMap != [] # states with empty trigger maps are 'dead end states'. those # # are not to be coded at this place. info = __info(StateIdx=StateIdx, IsInitStateF=InitStateF, DSM=DSM) if len(TriggerMap) > 1: return __get_code(TriggerMap, info) + "\n" else: # We can actually be sure, that the Buffer Limit Code is filtered # out, since this is the task of the regular expression parser. # In case of backward lexing in pseudo-ambiguous post conditions, # it makes absolutely sense that there is only one interval that # covers all characters (see the discussion there). assert TriggerMap[0][0].begin == -sys.maxint assert TriggerMap[0][0].end == sys.maxint return " " + transition.do(StateIdx, TriggerMap[0][0], TriggerMap[0][1], DSM) + "\n" def __get_code(TriggerMap, info): """Creates code for state transitions from this state. This function is very similar to the function creating code for a 'NumberSet' condition (see 'interval_handling'). Writes code that does a mapping according to 'binary search' by means of if-else-blocks. """ TriggerSetN = len(TriggerMap) if TriggerSetN > 1 and __DEBUG_CHECK_ACTIVE_F: # -- check that the trigger map consist of sorted adjacent intervals # This assumption is critical because it is assumed that for any isolated # interval the bordering intervals have bracketed the remaining cases! previous_interval = TriggerMap[0][0] for trigger_interval, target_state_index in TriggerMap[1:]: assert trigger_interval.begin == previous_interval.end, \ "non-adjacent intervals in TriggerMap\n" + \ "TriggerMap = " + repr(TriggerMap) assert trigger_interval.end > previous_interval.begin, \ "unsorted intervals in TriggerMap\n" + \ "TriggerMap = " + repr(TriggerMap) previous_interval = deepcopy(trigger_interval) #________________________________________________________________________________ txt = " " if TriggerSetN == 1 : # (*) Only one interval # (all boundaring cases must have been dealt with already => case is clear) # If the input falls into this interval the target trigger is identified! txt += __create_transition_code(TriggerMap[0], info) else: simple_txt = __try_very_simplest_case(TriggerMap, info) if simple_txt != None: txt += simple_txt else: # two or more intervals => cut in the middle MiddleTrigger_Idx = int(TriggerSetN / 2) middle = TriggerMap[MiddleTrigger_Idx] # input < 0 is impossible, since unicode codepoints start at 0! if middle[0].begin == 0: txt += __get_code(TriggerMap[MiddleTrigger_Idx:], info) elif TriggerSetN == 2: txt += __bracket_two_intervals(TriggerMap, info) elif TriggerSetN == 3: txt += __bracket_three_intervals(TriggerMap, info) else: txt += __bracket_normally(MiddleTrigger_Idx, TriggerMap, info) # (*) indent by four spaces (nested blocks are correctly indented) # delete the last newline, to prevent additional indentation if txt[-1] == "\n": txt = txt[:-1] txt = txt.replace("\n", "\n ") + "\n" return txt def __create_transition_code(TriggerMapEntry, info, IndentF=False): """Creates the transition code to a given target based on the information in the trigger map entry. """ interval = TriggerMapEntry[0] target_state_index = TriggerMapEntry[1] # target state != None, then the machine is still eating # => transition to subsequent state. # # target state == None, drop into a terminal state (defined by origins). # # for details about $transition, see the __transition() function of the # respective language module. # txt = " " + transition.do(info.state_index, interval, target_state_index, info.dsm) if interval != None: txt += " " + LanguageDB["$comment"](interval.get_utf8_string()) + "\n" else: txt += "\n" if IndentF: txt = txt[:-1].replace("\n", "\n ") + "\n" # don't replace last '\n' return txt def __try_very_simplest_case(TriggerMap, info): """Assume the following setup: if( input == Char1 ) goto X; if( input == Char2 ) goto X; ... if( input == CharN ) goto X; If the input is equally distributed over the characters 1 to N then the average number of comparisons for N = 3 will be 2,333. For N = 4, the everage number of comparisons will be 2,75. Binary bracketing requires ld(N), so for N = 4 the number of comparisons is 2. Thus until N = 3 it is advantegous to compare step by step. Also, for N = 1 a simple comparison is, most likely, more efficient that an 'or' operation over a list of length '1'. This function is trying to identify the case where there are only two or three characters that trigger to the same target state. RETURNS: 'None' if the very simple implementation does not make sense. A string if it could be implemented that way """ # return None character_list = [] common_target_state_index = -1 for trigger in TriggerMap: interval = trigger[0] target_state_index = trigger[1] if target_state_index == None: continue assert target_state_index != -1 # All must have the same target state if common_target_state_index == -1: common_target_state_index = target_state_index elif common_target_state_index != target_state_index: return None # Because of memory reasons, it is not wise to try to extend sys.maxint number # of characters. Since, we do not allow for more than three characters, let's # do a little sanity pre-check: if interval.size() > 3: return None character_list.extend(range(interval.begin, interval.end)) # More than three characters does not make sense if len(character_list) > 3: return None if len(character_list) < 2: return None assert common_target_state_index != -1 txt = LanguageDB["$if in-set"](character_list) # TriggerInfo = [None, TargetStateIndex] because the interval does not matter. txt += __create_transition_code([None, common_target_state_index], info, IndentF=True) txt += LanguageDB["$endif-else"] txt += __create_transition_code([None, None], info, IndentF=True) txt += LanguageDB["$end-else"] return txt def __bracket_two_intervals(TriggerMap, info): assert len(TriggerMap) == 2 first = TriggerMap[0] second = TriggerMap[1] # If the first interval causes a 'drop out' then make it the second. ## If the second interval is a 'drop out' the 'goto drop out' can be spared, ## since it lands there anyway. ## if second[0] < 0: # target state index < 0 ==> drop out ## tmp = first; first = second; second = tmp # find interval of size '1' first_interval = first[0] second_interval = second[0] # We only need one comparison at the border between the two intervals if first_interval.size() == 1: txt = LanguageDB["$if =="](repr(first_interval.begin)) elif second_interval.size() == 1: txt = LanguageDB["$if !="](repr(second_interval.begin)) else: txt = LanguageDB["$if <"](repr(second_interval.begin)) txt += __create_transition_code(first, info, IndentF=True) txt += LanguageDB["$endif-else"] txt += __create_transition_code(second, info, IndentF=True) txt += LanguageDB["$end-else"] return txt def __bracket_three_intervals(TriggerMap, info): assert len(TriggerMap) == 3 # does one interval have the size '1'? size_one_map = [False, False, False] # size_on_map[i] == True if interval 'i' has size '1' for i in range(len(TriggerMap)): interval = TriggerMap[i][0] if interval.size() == 1: size_one_map[i] = True target_state_0 = TriggerMap[0][1] target_state_2 = TriggerMap[2][1] if target_state_0 == target_state_2: if TriggerMap[1][0].size() == 1: # (1) Special Trick I only holds for one single case: # -- the interval in the middle has size 1 # -- the outer two intervals trigger to the same target state # if inner character is matched: goto its target # else: goto alternative target txt = LanguageDB["$if =="](repr(TriggerMap[1][0].begin)) else: # (2) Special Trick II only holds for: # -- the outer two intervals trigger to the same target state # if character in inner interval: goto its target # else: goto alternative target txt = LanguageDB["$if in-interval"](TriggerMap[1][0]) txt += __create_transition_code(TriggerMap[1], info, IndentF=True) txt += LanguageDB["$endif-else"] # TODO: Add somehow a mechanism to report that here the intervals 0
or B contained in the other, keep only contained. if a_in_b and not b_in_a: del TSs[i] elif b_in_a and not a_in_b: del TSs[j] elif a_in_b and b_in_a: # Keep most complex if cx_a < cx_b: del TSs[i] elif cx_b < cx_a: del TSs[j] else: # they are equal, delete either one del TSs[i] if verbose: print('>>> TWO-SYMBOLS (simplified):') for i, (tss) in TSs.items(): print("F''-%d: %s | Perms: %s | CX: %s" % (i, tss['tss'], tss['perms'], tss['cx'])) # Final List (from simplified) TSf = [(tss['tss'][0], tss['perms'], []) for tss in TSs.values()] # Check if all PI are being covered. If not, include the PI on the TS list if verbose: print('>>> Check all PI are accounted for in the TS') for i, pi in enumerate(pi_matrix, start=0): if not any([_check_schema_within_schema([pi.tolist()], tss['xl'], dir='a', verbose=verbose)[0] for tss in TSs.values()]): if verbose: print("PI-%d '%s' Not in list, ADDING." % (i, pi.tolist())) TSf.append((pi.tolist(), [], [])) else: if verbose: print("PI-%d '%s' OK." % (i, pi.tolist())) if verbose: print('>>> Check for Same-Symbol permutables') # NEW: Step to include same-symbol permutables for ts, perms, sames in TSf: # Indices of permutables inputs idxs = list(set([idx for idxs in perms for idx in idxs])) # Makes the F'' into a Collum Array so it can be used by '_count_cols_symbols_vX' ts_matrix = np.array([ts]).T # Remove Inputs (columns) that already have permutable symbols. Only if there are permutables if len(idxs): rmask = np.array(idxs) ts_matrix_left = ts_matrix[~rmask, :] else: ts_matrix_left = ts_matrix if verbose and verbose_level > 10: print("> F'' Original:") print(ts_matrix) print("> Permutables: %s" % (perms)) print("> F'' without permutables:") print(ts_matrix_left) counts_matrix = _count_cols_symbols_v2(pi_matrix=ts_matrix_left.T, verbose=False, verbose_level=verbose_level) perm_groups = _check_identical_cols_count_symbols_v2(counts_matrix=counts_matrix, verbose=verbose, verbose_level=verbose_level) sames.extend(perm_groups) # Step to convert the pi list to string for i, (ts, perms, sames) in enumerate(TSf, start=0): ts = ''.join(map(str, ts)) TSf[i] = (ts, perms, sames) # Final list after all PI were accounted for if verbose: print('>>> TS (final list):') for i, tss, sms in TSf: print("TS: '%s' | Perm Idx: %s | Sms Idx: %s" % (i, tss, sms)) return TSf def _calc_ts_complexity(tss, pers): """ Calculates the complexity of a TS schema Complexity = (Number of Schemas + Number of Permutable Symbols + Lenght of each Permutable Symbol) """ return len(tss) + sum([len(per) for ts, per in zip(tss, pers)]) def _check_schema_within_schema(la, lb, dir=None, verbose=False): """ Check is a Two-Symbol schemata is covered by another. This is used to simplify the number of TS schematas returned. The arguments for this function are generated by `_expand_ts_logic`. Args: tsa (list) : A list of :math:`F'` schematas that a Two-Symbol :math:`F''` schemata can cover. tsb (list) : A list of :math:`F'` schematas that a Two-Symbol :math:`F''` schemata can cover. dir (string) : The direction to check, either ``a`` or ``b`` is in the other. Defaults to both directions. """ a_in_b, b_in_a = None, None # if dir != 'b': a_in_b = all([(xa in lb) for xa in la]) if verbose: print('%s in %s : %s' % (la, lb, a_in_b)) if dir != 'a': b_in_a = all([(xb in la) for xb in lb]) if verbose: print('%s in %s : %s' % (lb, la, b_in_a)) # return a_in_b, b_in_a def _expand_ts_logic(two_symbols, permut_indexes): """ Expands the Two-Symbol logic to all possible prime-implicants variations being covered. Args: two_symbols (list) : Two-Symbol schematas list-of-lists. Returns: (list) : a list of :math:`F'` covered by this Two-Symbol. """ # If receiving a binary string, convert to list of lists if isinstance(two_symbols, str): two_symbols = [list(two_symbols)] # Queue Q = deque() Q.extend(two_symbols) logics = [] # while Q: implicant = np.array(Q.pop()) for idxs in permut_indexes: # Permutation of all possible combinations of the values that are permutable. for vals in itertools.permutations(implicant[idxs], len(idxs)): # Generate a new schema _implicant = copy.copy(implicant) _implicant[idxs] = vals # Insert to list of logics if not already there if not(_implicant.tolist() in logics): logics.append(_implicant.tolist()) Q.append(_implicant.tolist()) return logics def _check_schemata_permutations_v2(schematas, perm_groups, verbose=False, verbose_level=0): """ Checks if the permutations are possible Note: Not sure if this is really needed. """ if verbose and verbose_level > 20: print("-- Check Schemata Permutations (v2) : g(H',L) --") allowed_perm_groups = [] all_indices = set([i_index for x_group in perm_groups for i_index in x_group]) for x_group in perm_groups: sofar = [] for i_index in range(len(x_group) - 1): x_index = x_group[i_index] small_group = [x_index] if not (x_index in sofar): sofar.append(x_index) for y_index in x_group[(i_index + 1)::]: if (not(y_index in sofar)) and _can_swap_v2(schematas[:, [x_index, y_index]], verbose=verbose, verbose_level=verbose_level): small_group.append(y_index) sofar.append(y_index) if len(small_group) > 1: allowed_perm_groups.append(small_group) if verbose and verbose_level > 30: print('> allowed_perm_groups', allowed_perm_groups) if set([i_index for x_group in allowed_perm_groups for i_index in x_group]) == all_indices: return allowed_perm_groups return None def _can_swap_v2(schemata_subset, verbose=False, verbose_level=0): """Determines if two schemata subsets can be swapped""" if verbose and verbose_level > 40: print('> Can Swap?:',) can_switch = 1 for row in schemata_subset[:, [1, 0]]: can_switch *= np.any(np.all(schemata_subset == row, axis=1)) if verbose and verbose_level > 40: print(can_switch) return can_switch def _check_col_counts_v3(counts_matrix, verbose=False, verbose_level=0): """ This function is used to find permutable symbols. Args: counts_matrix (numpy.ndarray) : a matrix where rows are inputs and columns are possible input types (0,1 or #) Returns: perm_groups (list) : a list of the indexes that can be permuted. """ if verbose and verbose_level > 30: print('-- Check Col Counts (v3) --') counts = {} # Multi Counts perm_groups = [] # A list of groups of Permutable Indexes for i, row in enumerate(counts_matrix, start=0): # a tuple (hashable) version of the row counts row_tuple = tuple(row) if row_tuple in counts: # we have seen this one before, so add it to the permutation group counts[row_tuple].append(i) elif np.count_nonzero(row) >= 2: # we have not seen this count before, it is not a fixed variable, so create a new entry for it counts[row_tuple] = [i] else: # we will skip fixed variables pass # Append non-constants that have permutable positions for col, idxs in counts.items(): if verbose and verbose_level > 40: print(col, ':', idxs) if len(idxs) == 1: return -1 elif len(idxs) >= 1: perm_groups.append(idxs) if verbose and verbose_level > 40: print('counts:', counts) print('perm_groups:', perm_groups) if len(perm_groups): return perm_groups else: return -1 def _check_identical_cols_count_symbols_v2(counts_matrix, verbose=False, verbose_level=0): """ This function is used to find same symbol permutables. In practice it is a variance of `_check_cols_symbols_vX` Args: counts_matrix (numpy.ndarray) : a matrix where rows are inputs and columns are possible input types (0,1 or #) Returns: perm_groups (list) : a list of the indexes that can be permuted """ if verbose and verbose_level > 20: print('-- Check Identical Col Counts (v2) --') counts = {} # Multi Counts perm_groups = [] # A list of groups of Permutable Indexes for i, row in enumerate(counts_matrix, start=0): # a tuple (hashable) version of the row counts row = row.tolist() row_tuple = tuple(row) if verbose and verbose_level > 30: print('RC: %s : %s' % (i, row_tuple)) if row_tuple in counts: # we have seen this one before, so add it to the permutation group counts[row_tuple].append(i) else: # we have not seen this count before, so create a new entry for it counts[row_tuple] = [i] # Append non-constants that have permutable positions for col, idxs in counts.items(): if verbose and verbose_level > 30: print(col, ':', idxs) if len(idxs) >= 2: perm_groups.append(idxs) if verbose and verbose_level > 30: print('counts:', counts) print('sames_groups:', perm_groups) if len(perm_groups): return perm_groups else: return [] def _count_cols_symbols_v2(pi_matrix=None, verbose=False, verbose_level=0): """ Given a matrix, where each row is a prime implicant, counts how many 0's, 1's and 2's are found in each column. Args: pi_matrix (numpy.ndarray) : a matrix ``n \times k`` of ``n`` prime implicants. Returns: counts (numpy.ndarray) : a matrix ``n \times 3`` where the entries are counts. """ if verbose and verbose_level > 20: print(' -- Count Cols (v2) --') # How many PI? n = pi_matrix.shape[1] # Instanciate count matrix counts = np.zeros((n, 3), dtype=int) for i, col in enumerate(pi_matrix.T): # Count how many values
# Copyright (c) 2019 Horizon Robotics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Some basic layers.""" import gin import copy import numpy as np import torch import torch.nn as nn from alf.initializers import variance_scaling_init from alf.nest.utils import get_outer_rank from alf.tensor_specs import TensorSpec from alf.utils import common from alf.utils.math_ops import identity def normalize_along_batch_dims(x, mean, variance, variance_epsilon): """Normalizes a tensor by ``mean`` and ``variance``, which are expected to have the same tensor spec with the inner dims of ``x``. Args: x (Tensor): a tensor of (``[D1, D2, ..] + shape``), where ``D1``, ``D2``, .. are arbitrary leading batch dims (can be empty). mean (Tensor): a tensor of ``shape`` variance (Tensor): a tensor of ``shape`` variance_epsilon (float): A small float number to avoid dividing by 0. Returns: Normalized tensor. """ spec = TensorSpec.from_tensor(mean) assert spec == TensorSpec.from_tensor(variance), \ "The specs of mean and variance must be equal!" bs = BatchSquash(get_outer_rank(x, spec)) x = bs.flatten(x) variance_epsilon = torch.as_tensor(variance_epsilon).to(variance.dtype) inv = torch.rsqrt(variance + variance_epsilon) x = (x - mean.to(x.dtype)) * inv.to(x.dtype) x = bs.unflatten(x) return x class BatchSquash(object): """Facilitates flattening and unflattening batch dims of a tensor. Copied from `tf_agents`. Exposes a pair of matched flatten and unflatten methods. After flattening only 1 batch dimension will be left. This facilitates evaluating networks that expect inputs to have only 1 batch dimension. """ def __init__(self, batch_dims): """Create two tied ops to flatten and unflatten the front dimensions. Args: batch_dims (int): Number of batch dimensions the flatten/unflatten ops should handle. Raises: ValueError: if batch dims is negative. """ if batch_dims < 0: raise ValueError('Batch dims must be non-negative.') self._batch_dims = batch_dims self._original_tensor_shape = None def flatten(self, tensor): """Flattens and caches the tensor's batch_dims.""" if self._batch_dims == 1: return tensor self._original_tensor_shape = tensor.shape return torch.reshape(tensor, (-1, ) + tuple(tensor.shape[self._batch_dims:])) def unflatten(self, tensor): """Unflattens the tensor's batch_dims using the cached shape.""" if self._batch_dims == 1: return tensor if self._original_tensor_shape is None: raise ValueError('Please call flatten before unflatten.') return torch.reshape( tensor, (tuple(self._original_tensor_shape[:self._batch_dims]) + tuple(tensor.shape[1:]))) @gin.configurable class OneHot(nn.Module): def __init__(self, num_classes): super().__init__() self._num_classes = num_classes def forward(self, input): return nn.functional.one_hot( input, num_classes=self._num_classes).to(torch.float32) @gin.configurable class FixedDecodingLayer(nn.Module): def __init__(self, input_size, output_size, basis_type="rbf", sigma=1., tau=0.5): """A layer that uses a set of fixed basis for decoding the inputs. Args: input_size (int): the size of input to be decoded, representing the number of representation coefficients output_size (int): the size of the decoded output basis_type (str): the type of basis to be used for decoding - "poly": polynomial basis using Vandermonde matrix - "cheb": polynomial basis using Chebyshev polynomials - "rbf": radial basis functions - "haar": Haar wavelet basis sigma (float): the bandwidth parameter used for RBF basis. If None, a default value of 1. will be used. tau (float): a factor for weighting the basis exponentially according to the order (``n``) of the basis, i.e., ``tau**n``` """ # get the argument list with vals self._kwargs = copy.deepcopy(locals()) self._kwargs.pop('self') self._kwargs.pop('__class__') super(FixedDecodingLayer, self).__init__() assert input_size > 0, "input_size should be at least one" assert basis_type in {"poly", "cheb", "rbf", "haar" }, ("the specified method " "{} is not supported".format(basis_type)) self._B = nn.Linear(input_size, output_size, bias=False) def _polyvander_matrix(n, D, tau=tau): # non-square matrix [n, D + 1] x = torch.linspace(-1, 1, n) B = torch.as_tensor(np.polynomial.polynomial.polyvander(x, D)) # weight for encoding the preference to low-frequency basis exp_factor = torch.arange(D + 1).float() basis_weight = tau**exp_factor return B * basis_weight def _chebvander_matrix(n, D, tau=tau): # non-square matrix [n, D + 1] x = np.linspace(-1, 1, n) B = torch.as_tensor(np.polynomial.chebyshev.chebvander(x, D)) # weight for encoding the preference to low-frequency basis exp_factor = torch.arange(D + 1).float() basis_weight = tau**exp_factor return B * basis_weight def _rbf_matrix(n, sigma=1.0): # square matrix [n, n] x = torch.linspace(-1, 1, n) B = torch.empty(n, n) for d in range(n): B[:, d] = torch.exp(-(x - x[d])**2 / sigma) return B def _haar_matrix(n, tau=tau): # square matrix [n, n] def _is_power_of_two(x): return (x & (x - 1)) == 0 # allow only size n to be the power of 2 assert _is_power_of_two(n), "n is required to be the power of 2" def _get_haar_matrix(n): if n > 2: h = _get_haar_matrix(n // 2) else: return torch.Tensor([[1, 1], [1, -1]]) def _kron(A, B): return torch.einsum("ab,cd->acbd", A, B).view( A.size(0) * B.size(0), A.size(1) * B.size(1)) # calculate upper haar part h_n = _kron(h, torch.Tensor([[1], [1]])) # calculate lower haar part h_i = torch.sqrt(torch.Tensor([n / 2])) * _kron( torch.eye(len(h)), torch.Tensor([[1], [-1]])) # combine both parts h = torch.cat((h_n, h_i), dim=1) return h B = _get_haar_matrix(n) / torch.sqrt(torch.Tensor([n])) # weight for encoding the preference to low-frequency basis exp_factor = torch.ceil(torch.log2(torch.arange(n).float() + 1)) basis_weight = tau**exp_factor return B * basis_weight if basis_type == "poly": B = _polyvander_matrix(output_size, input_size - 1) elif basis_type == "cheb": B = _chebvander_matrix(output_size, input_size - 1) elif basis_type == "rbf": assert input_size == output_size B = _rbf_matrix(input_size, sigma=sigma) elif basis_type == "haar": assert input_size == output_size B = _haar_matrix(input_size) # assign the constructed transformation matrix and set it to be non-trainable self._B.weight.requires_grad = False self._B.weight.copy_(B) def forward(self, inputs): return self._B(inputs) @property def weight(self): return self._B.weight @gin.configurable class FC(nn.Module): def __init__(self, input_size, output_size, activation=identity, use_bias=True, kernel_initializer=None, kernel_init_gain=1.0, bias_init_value=0.0): """A fully connected layer that's also responsible for activation and customized weights initialization. An auto gain calculation might depend on the activation following the linear layer. Suggest using this wrapper module instead of ``nn.Linear`` if you really care about weight std after init. Args: input_size (int): input size output_size (int): output size activation (torch.nn.functional): use_bias (bool): whether use bias kernel_initializer (Callable): initializer for the FC layer kernel. If none is provided a ``variance_scaling_initializer`` with gain as ``kernel_init_gain`` will be used. kernel_init_gain (float): a scaling factor (gain) applied to the std of kernel init distribution. It will be ignored if ``kernel_initializer`` is not None. bias_init_value (float): a constant """ # get the argument list with vals self._kwargs = copy.deepcopy(locals()) self._kwargs.pop('self') self._kwargs.pop('__class__') super(FC, self).__init__() self._activation = activation self._linear = nn.Linear(input_size, output_size, bias=use_bias) self._kernel_initializer = kernel_initializer self._kernel_init_gain = kernel_init_gain self._bias_init_value = bias_init_value self._use_bias = use_bias self.reset_parameters() def reset_parameters(self): if self._kernel_initializer is None: variance_scaling_init( self._linear.weight.data, gain=self._kernel_init_gain, nonlinearity=self._activation) else: self._kernel_initializer(self._linear.weight.data) if self._use_bias: nn.init.constant_(self._linear.bias.data, self._bias_init_value) def forward(self, inputs): return self._activation(self._linear(inputs)) @property def weight(self): return self._linear.weight @property def bias(self): return self._linear.bias def make_parallel(self, n): """Create a ``ParallelFC`` using ``n`` replicas of ``self``. The initialized layer parameters will be different. """ return ParallelFC(n=n, **self._kwargs) @gin.configurable class ParallelFC(nn.Module): def __init__(self, input_size, output_size, n, activation=identity, use_bias=True, kernel_initializer=None, kernel_init_gain=1.0, bias_init_value=0.0): """Parallel FC layer. It is equivalent to ``n`` separate FC layers with the same ``input_size`` and ``output_size``. Args: input_size (int): input size output_size (int): output size n (int): n independent ``FC`` layers activation (torch.nn.functional): use_bias (bool): whether use bias kernel_initializer (Callable): initializer for the FC layer kernel. If none is provided a ``variance_scaling_initializer`` with gain as ``kernel_init_gain`` will be used. kernel_init_gain (float): a scaling factor (gain) applied to the std of kernel init distribution. It will be ignored if ``kernel_initializer`` is not None. bias_init_value (float): a constant """ super().__init__() self._activation = activation self._weight = nn.Parameter(torch.Tensor(n, output_size, input_size)) if use_bias: self._bias = nn.Parameter(torch.Tensor(n, output_size)) else: self._bias = None for i in range(n): if kernel_initializer is None: variance_scaling_init( self._weight.data[i], gain=kernel_init_gain, nonlinearity=self._activation) else: kernel_initializer(self._weight.data[i]) if use_bias: nn.init.constant_(self._bias.data, bias_init_value) def forward(self, inputs): """Forward Args: inputs (torch.Tensor): with shape ``[B, n, input_size]`` or ``[B, input_size]`` Returns: torch.Tensor with shape ``[B, n, output_size]`` """ n, k, l = self._weight.shape if inputs.ndim == 2: assert inputs.shape[1] == l, ( "inputs has wrong shape %s. Expecting (B, %d)" % (inputs.shape, l)) inputs = inputs.unsqueeze(0).expand(n, *inputs.shape) elif inputs.ndim == 3: assert (inputs.shape[1] == n
ValueError("Define dictionary parameter: hierarchy") for identifier, dictionary in hierarchy.items(): # - check: try: dictionary["path"] = self.file_path.path + dictionary["path"] except: raise ValueError("Invalid hierarchy item [{} : {}]. Specify the [path].".format(identifier, "?")) try: dictionary["permission"] except KeyError: dictionary["permission"] = None try: dictionary["owner"] except KeyError: dictionary["owner"] = None try: dictionary["group"] except KeyError: dictionary["group"] = None try: dictionary["directory"] except KeyError: dictionary["directory"] = False try: dictionary["sudo"] except KeyError: dictionary["sudo"] = False try: dictionary["default_data"] except KeyError: dictionary["default_data"] = None try: dictionary["default"] except KeyError: dictionary["default"] = None try: dictionary["recursive"] except KeyError: dictionary["recursive"] = False # - directory: if dictionary["directory"]: file_path = Formats.FilePath(dictionary["path"]) if file_path.exists(sudo=dictionary["sudo"]) == False: file_path.create( directory=True, permission=dictionary["permission"], group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"],) else: file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file_path.ownership.group = _group_ file_path.ownership.owner = _owner_ #if 'back_up_requests/requests' in file_path.path: # print("file: {}, owner: {}, group: {}, permission: {}".format(file_path.path, file_path.ownership.owner, file_path.ownership.group, file_path.permission.permission)) checkPermissionOwnership(file_path, dictionary, silent=silent, recursive=dictionary["recursive"]) # - file: elif dictionary["default_data"] != None: file = Files.File(path=dictionary["path"]) if file.file_path.exists(sudo=dictionary["sudo"]) == False: file.file_path.create( data=dictionary["default_data"], permission=dictionary["permission"], group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"]) else: file.file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file.file_path.ownership.group = _group_ file.file_path.ownership.owner = _owner_ checkPermissionOwnership(file.file_path, dictionary, silent=silent) # - dictionary: elif dictionary["default"] != None: file = Files.Dictionary(path=dictionary["path"]) if file.file_path.exists(sudo=dictionary["sudo"]) == False: file.save(dictionary["default"]) file.file_path.permission.check( permission=dictionary["permission"], sudo=dictionary["sudo"]) file.file_path.ownership.check( group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"]) else: file.file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file.file_path.ownership.group = _group_ file.file_path.ownership.owner = _owner_ checkPermissionOwnership(file.file_path, dictionary, silent=silent) file.check(default=default, save=True) else: raise ValueError("Invalid hierarchy item [{} : {}]. Either [directory] must be enabled, or [default_data / default] must be specified.".format(identifier, dictionary["path"])) # # load & save sub paths. def load(self, path=None, format=str, default=None, sudo=False): return Files.load(path=self.fullpath(path), format=format, sudo=sudo) def save(self, path=None, data=None, format=str, sudo=False): return Files.save(path=self.fullpath(path), data=data, format=format, sudo=sudo) # returnable functions. def paths(self, # get recursively (bool). recursive=False, # get files only (bool). files_only=False, # get firs only (bool). dirs_only=False, # also get empty dirs (bool). empty_dirs=True, # the banned full paths (list). banned=[], # the banned names (list). banned_names=[".DS_Store"], # the banend base names (list). banned_basenames=["__pycache__"], # the allowed extensions (list). extensions=["*"], # the path (leave None to use self.path) (str, FilePath). path=None, ): if dirs_only and files_only: raise ValueError("Both parameters dirs_only & piles_only are True.") if path == None: path = self.file_path.path path = str(path) if not Files.exists(path): return [] if isinstance(extensions, str): extensions = [extensions] if len(banned) > 0: l_banned = [] for i in banned: l_banned.append(gfp.clean(f"{path}/{i}")) banned = l_banned paths = [] if recursive: # does only work with recursive. for root, dirs, files in os.walk(path): if not dirs_only: for name in files: if name not in banned_names and ("*" in extensions or gfp.extension(name=name) in extensions ): l_path = gfp.clean(path=f"{root}/{name}") l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if not files_only: for name in dirs: if name not in banned_names and (dirs_only or "*" in extensions or "dir" in extensions ): l_path = gfp.clean(path=f"{root}/{name}/") l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if recursive: paths += self.paths(recursive=recursive, path=l_path, dirs_only=dirs_only, files_only=files_only, banned=banned, banned_names=banned_names, empty_dirs=empty_dirs) else: for name in os.listdir(path): l_path = gfp.clean(path=f"{path}/{name}") if not dirs_only and not Files.directory(l_path): if name not in banned_names and ("*" in extensions or gfp.extension(name=name) in extensions ): l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if not files_only and Files.directory(l_path): l_path += "/" if name not in banned_names and (dirs_only or "*" in extensions or "dir" in extensions ): l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) return paths def names(self, # get recursively (bool). recursive=False, # get files only (bool). files_only=False, # get firs only (bool). dirs_only=False, # also get empty dirs (bool). empty_dirs=True, # remove the extension names (bool). remove_extensions=False, # the banned full paths (list). banned=[], # the banned names (list). banned_names=[".DS_Store"], # the banend base names (list). banned_basenames=["__pycache__"], # the allowed extensions (list). extensions=["*"], # the path (leave None to use self.path) (str, FilePath). path=None, ): names = [] for _path_ in self.paths(dirs_only=dirs_only, files_only=files_only, empty_dirs=empty_dirs, recursive=recursive, path=path, banned=banned, banned_names=banned_names, extensions=extensions): if remove_extensions: name = gfp.name(path=_path_) names.append(name[:-len(gfp.extension(name=name))]) else: names.append(gfp.name(path=_path_)) return names def oldest(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return min(files, key=os.path.getctime) # oldest is min (this is not a code error) def newest(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return max(files, key=os.path.getctime) # newest is max (this is not a code error) def random(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return files[random.randrange(0, len(files))] def generate(self, length=24, type="/"): path, paths = None, self.paths() for x in range(1000): path = self.join(utils.generate.shell_string(length=length), type) if path not in paths: break if path == None: __error__("Failed to generate a new random path inside directory [{}].".format(self.file_path.path)) return path def structured_join(self, name, type="", structure="alphabetical", create_base=False, sudo=False, owner=None, group=None, permission=None): if type not in ["/", ""]: type = "."+type if structure == "alphabetical": alphabetical = None try: alphabetical = name[0].upper() except: alphabetical = "SPECIAL" if str(alphabetical) not in ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Z","0","1","2","3","4","5","6","7","8","9"]: aplhabetical = "SPECIAL" base = self.file_path.path + "/" + alphabetical + "/" if create_base and os.path.exists(base) == False: self.create(path=base, sudo=sudo, owner=owner, group=group, permission=permission) alph_dir = base + name + type return alph_dir else: raise ValueError("Invalid usage, parameter structure [{}], valid options: {}".format(structure, ["alphabetical"])) def contains(self, name=None, type="/", recursive=False): return self.join(name, type) in self.paths(recursive=recursive) # def subpath(self, fullpath): return self.fp.clean(path=fullpath.replace(self.fp.path, ""), remove_double_slash=True) def fullpath(self, subpath): return self.fp.clean(path=f"{self.fp.path}/{subpath}", remove_double_slash=True) # set the icon. def set_icon(self, # the path to the .png / .jpg icon. icon=None, # the directory path (leave None to use self.fp.path). path=None, ): if icon == None: raise Exceptions.InvalidUsage("Define parameter: icon.") if path == None: path = self.fp.path if OS in ["osx", "macos"]: utils.__execute_script__(f""" #!/bin/bash # settings. icon="{icon}" dest="{path}" # check inputs if [ ! -f $icon ]; then echo "ERROR: File $1 does not exists" exit 1 elif [[ ! $icon =~ .*\.(png|PNG|jpg|JPG) ]]; then echo "ERROR: Icon must be a .png|.jpg file" exit 1 elif [ -f $dest ]; then folder=false elif [ -d $dest ]; then folder=true else echo 'ERROR: File|Folder destination does not exists' exit 1 fi # create icns icon sips -i $icon > /dev/null DeRez -only icns $icon > /tmp/tmpicns.rsrc # set icon if [ "$folder" = true ]; then Rez -append /tmp/tmpicns.rsrc -o $dest$'/Icon\r' SetFile -a C $dest SetFile -a V $dest$'/Icon\r' else Rez -append /tmp/tmpicns.rsrc -o $dest SetFile -a C $dest fi # clean up rm /tmp/tmpicns.rsrc exit 0 """) else: raise OSError("Unsupported operating system.") # index the content. def index(self, # the wanted options. metrics=[], options=["size", "mtime", "content", "name", "basename", "extension", "mount", "directory"], # optional path (leave None to use self.path). path=None, ): def process(path): info = {} if "mtime" in metrics: info["mtime"] = gfp.mtime(path=path, format="seconds") if "size" in metrics: info["size"] = gfp.size(path=path, format=int) directory = None if "directory" in metcics: directory = info["directory"] = Files.directory(str(path)) if "content" in metrics: if directory == None: raise Exceptions.InvalidUsage("Metric [directory] is required when obtaining metric [content].") if not directory: info["content"] = Files.load(path) else: info["content"] = None if "mount" in metrics: info["mount"] = os.path.ismount(str(path)) if "name" in metrics: info["name"] = gfp.name(path=path) if "extension" in metrics: info["name"] = gfp.extension(path=path) if "basename" in metrics: info["basename"] = gfp.basename(path=path) return info # if path == None: path = self.path if metrics == []: raise Exceptions.InvalidUsage(f'No metrics are specified, metric options: [{Array(options).string(joiner=" ")}].') for i in metrics: if i not in options: raise Exceptions.InvalidUsage(f'Metric [{i}] is not a valid metric option, options: [{Array(options).string(joiner=" ")}].') indexed, dir, ids = Dictionary(path=False, dictionary={}), Files.Directory(path=path), [] for _path_ in dir.paths(recursive=True, files_only=True, banned=[gfp.clean(f"{path}/Icon\r")], banned_names=[".DS_Store", "__pycache__"]): if _path_ not in ids and "/__pycache__/" not in _path_ and "/.DS_Store" not in _path_: indexed[_path_] = process(_path_) ids.append(_path_) for _path_ in dir.paths(recursive=True, dirs_only=True, banned=[gfp.clean(f"{path}/Icon\r")], banned_names=[".DS_Store", "__pycache__"]): if _path_ not in ids and "/__pycache__/" not in _path_ and "/.DS_Store" not in _path_: indexed[_path_] = process(_path_) ids.append(_path_) return indexed.sort(alphabetical=True) # open for desktop. def open(self, path=None, sudo=False): if path == None: path = self.fp.path if sudo: sudo = "sudo " else: sudo = "" if OS in ["macos"]: os.system(f"{sudo}open {path}") elif OS in ["linux"]: os.system(f"{sudo}nautulis {path}") else: raise Exceptions.InvalidOperatingSystem(f"Unsupported operating system [{OS}].") # return references of each file that includes one of the matches. def find(self, matches:list, path=None, recursive=False, log_level=0): if path == None: path = self.path gfp = Formats.FilePath("") c, references = 0, {} for string in matches: if not os.path.exists(path): raise ValueError(f"Path {path} does not exist.") elif not Files.directory(path): raise ValueError(f"Path {path} is not a directory.") for i_path in self.paths(recursive=recursive, files_only=True, banned_names=[".DS_Store", ".git"], path=path): data = None try: data = Files.load(i_path) except: try: data = f"{Files.load(i_path, format=bytes)}" except: data = None if data != None and string in data: if log_level >= 0: print("") print(f"{i_path}:") lines, linecount = data.split("\n"), 0 for _ in lines: if string in lines[linecount]: try: before = lines[linecount-1] except: before = None try: after = lines[linecount+1] except: after = None if log_level >= 0: if before != None: print(" * "+before) print(" * "+lines[linecount]) if after != None: print(" * "+after) references[i_path] = lines[linecount] linecount += 1 c += 1 if log_level >= 0 and c > 0: print("") return references # replace str within all files. def replace(self, replacements:list, path=None, recursive=False, log_level=0): if path == None: path = self.path gfp = Formats.FilePath("") c, updates = 0, [] for from_, to in replacements: if not os.path.exists(path): raise ValueError(f"Path {path} does not exist.") elif not Files.directory(path): raise ValueError(f"Path {path} is not a directory.") for path in self.paths(recursive=recursive,
<reponame>mw-root/rswt """A library to control a RobertSonics WavTrigger through a serial port """ from __future__ import absolute_import, division, print_function try: from os import errno except ImportError: import errno import serial import struct __version__ = '0.1.2' __author__ = '<NAME>' __license__ = 'MIT' __copyright__ = 'Copyright 2015 <NAME>' #Constants for the commands a wavtrigger understands # Reading data back from a WavTrigger # Firmware version _WT_GET_VERSION = bytearray([0xF0,0xAA,0x05,0x01,0x55]) # Number of polyphonic voices and number of tracks on sd-card _WT_GET_SYS_INFO = bytearray([0xF0,0xAA,0x05,0x02,0x55]) # List of currently playing tracks _WT_GET_STATUS = bytearray([0xF0,0xAA,0x05,0x07,0x55]) # Timeout when waiting for the data from the Get-Status command _WT_GET_STATUS_TIMEOUT = 0.25 # Playing individual tracks _WT_TRACK_SOLO = bytearray([0xF0,0xAA,0x08,0x03,0x00,0x00,0x00,0x55]) _WT_TRACK_PLAY = bytearray([0xF0,0xAA,0x08,0x03,0x01,0x00,0x00,0x55]) _WT_TRACK_PAUSE = bytearray([0xF0,0xAA,0x08,0x03,0x02,0x00,0x00,0x55]) _WT_TRACK_RESUME = bytearray([0xF0,0xAA,0x08,0x03,0x03,0x00,0x00,0x55]) _WT_TRACK_STOP = bytearray([0xF0,0xAA,0x08,0x03,0x04,0x00,0x00,0x55]) _WT_TRACK_LOOP_ON = bytearray([0xF0,0xAA,0x08,0x03,0x05,0x00,0x00,0x55]) _WT_TRACK_LOOP_OFF = bytearray([0xF0,0xAA,0x08,0x03,0x06,0x00,0x00,0x55]) _WT_TRACK_LOAD = bytearray([0xF0,0xAA,0x08,0x03,0x07,0x00,0x00,0x55]) # Stopping and resuming several tracks at once _WT_STOP_ALL = bytearray([0xF0,0xAA,0x05,0x04,0x55]) _WT_RESUME_ALL = bytearray([0xF0,0xAA,0x05,0x0B,0x55]) # Mixer settings and fader _WT_VOLUME = bytearray([0xF0,0xAA,0x07,0x05,0x00,0x00,0x55]) _WT_TRACK_VOLUME = bytearray([0xF0,0xAA,0x09,0x08,0x00,0x00,0x00,0x00,0x55]) _WT_FADE = bytearray([0xF0,0xAA,0x0C,0x0A,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x55]) # Pitch bending _WT_SAMPLERATE = bytearray([0xF0,0xAA,0x07,0x0C,0x00,0x00,0x55]) # Switching the Power amp on or off (not implemented!) _WT_AMP_POWER = bytearray([0xF0,0xAA,0x06,0x09,0x00,0x55]) class WavTrigger(object): """A controller for a RobertSonics WavTrigger """ def __init__(self,device, baud=57600, timeout=5.0): """Open a serial port to the device and read the hardware version and info from the WavTrigger. :param device: The serial port where the WavTrigger is listening. :type device: str :param baud: The baudrate to be used on the port. The value must match the baudrate set in the init file of the WavTrigger. The default value (57600) seems to be fast enough for all purposes :type baud: int :param timeout: A timeout for reading and writing on the port. The default (5.0 seconds) is plenty. If this limit is reached you can be quite sure to have lost the connection. :type timeout: float """ self._wt=serial.Serial(port=device, baudrate=baud) self._wt.timeout=timeout if self._wt.isOpen(): self._version=self._getVersion() self._voices,self._tracks=self._getSysInfo() def close(self): """Closes the port to the WavTrigger. Does not stop playing tracks. """ self._wt.close() def isOpen(self): """Test if a serial connection to the WavTrigger is established. :returns: bool -- True if the device is open, False otherwise """ return self._wt.isOpen() @property def version(self): """Get the version string of the WavTrigger firmeware :returns: str -- A string with the firmware version that runs on the WavTrigger """ return self._version @property def voices(self): """Get the number of polyphonic voices the WavTrigger can play simultanously. :returns: int -- The number of voices that can be played simultanously """ return self._voices @property def tracks(self): """Get the number of tracks stored on SD-Card of the WavTrigger. :returns: int -- The total number of tracks the WavTrigger found on the SD-Card. """ return self._tracks def play(self,track): """Play a track :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_PLAY,track) self._wt.write(t) def solo(self,track): """Play a track solo. Stops all currently playing tracks and starts the solo track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_SOLO,track) self._wt.write(t) def stop(self,track): """Stop a playing track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_STOP,track) self._wt.write(t) def pause(self,track): """Pause a track. Stops a playing track until 'resume' is called for the track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_PAUSE,track) self._wt.write(t) def resume(self,track): """Resume playing a track that has been paused previously. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_RESUME,track) self._wt.write(t) def load(self,track): """Load a track into the memory of the WavTrigger and pause it. The track can than be played using the :meth:`resume` or :meth:`resumeAll` commands :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_LOAD,track) self._wt.write(t) def loop(self,track): """Set loop flag for a track. When the track is started it is played in a loop until it is stopped. But stopping it does not clear the loop flag. If the track is started again, it will still loop. Use :meth:`unLoop` to clear the loop flag :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): self._wt.write(self._setTrackForCommand(_WT_TRACK_LOOP_ON,track)) def unLoop(self,track): """Clear the loop flag for a track. see :meth:`loop` :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): self._wt.write(self._setTrackForCommand(_WT_TRACK_LOOP_OFF,track)) def stopAll(self): """Stop all playing tracks. """ self._wt.write(_WT_STOP_ALL) def resumeAll(self): """Restart all resumed tracks. """ self._wt.write(_WT_RESUME_ALL) def masterGain(self,gain): """ Sets the gain for the WavTrigger output. :param gain: Gain for the WavTrigger output. The valid range for the gain argument is -70..+10 :type gain: int """ if gain<-70 or gain>10: raise ValueError('Gain argument range is from -70 to +10') g=_WT_VOLUME g[4],g[5]=self._intToLsb(gain) self._wt.write(g) def trackGain(self, track, gain): """ Set the gain for a specific track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param gain: Gain for the WavTrigger output. The valid range for the gain argument is -70..+10 :type gain: int """ if gain<-70 or gain>10: raise ValueError('Gain argument range is from -70 to +10') g=_WT_TRACK_VOLUME g[4],g[5]=self._intToLsb(track) g[6],g[7]=self._intToLsb(gain) self._wt.write(g) def masterVolume(self,volume): """Set the volume for the WavTrigger output. This method never amplifies the signal as the :meth:`masterGain` does when called with gain values > 0. This prevents distorsion in the output signal. Also most people are used to volume ranges from zero to 100 rather then a gain value in dB. :param volume: Volume for the WavTrigger output. The valid range for the volume argument is 0..100 :type gain: int """ vol=_WT_VOLUME vol[4],vol[5]=self._intToLsb(self._volumeToDb(volume)) self._wt.write(vol) def trackVolume(self,track,volume): """Set the volume for a track. This method never amplifies the track signal as the :meth:`trackGain` does when called with gain values > 0. This prevents distorsion in the output signal. Also most people are used to volume ranges from zero to 100 rather then a gain value in dB. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param volume: Volume for the track. The valid range for the volume argument is 0..100 :type gain: int """ tvol=_WT_TRACK_VOLUME tvol[4],tvol[5]=self._intToLsb(track) tvol[6],tvol[7]=self._intToLsb(self._volumeToDb(volume)) self._wt.write(tvol) def pitch(self,offset): """Set an offset for the samplerate that the WavTrigger uses. A negative offset lowers the tone, a positive offset raises the tone value. :param offset: Offset to the samplerate. The range of valid offset agrument values is -32767..+32767 :type offset: int """ if offset>32767 : offset=32767 if offset < -32767: ofset = -32767 pitch=_WT_SAMPLERATE pitch[4],pitch[5]=self._intToLsb(offset) self._wt.write(pitch) def fade(self,track,volume,time): """Fade the track volume from the current volume level to a lower or higer volume :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param volume: The target volume for the track. The valid range for the volume argument is 0..100 :type volume: int :param time: The time in milliseconds for the fade from the current to the target level :type time: int """ f=_WT_FADE f[4],f[5]=self._intToLsb(track) f[6],f[7]=self._intToLsb(self._volumeToDb(volume)) f[8],f[9]=self._intToLsb(time) f[10]=0x00 self._wt.write(f) def fadeOut(self,track, time): """Fade the track volume from the current volume level to zero, than stop the track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param time: The time in milliseconds for the fade out from the current to silence :type time: int """ f=_WT_FADE f[4],f[5]=self._intToLsb(track) f[6],f[7]=self._intToLsb(self._volumeToDb(0)) f[8],f[9]=self._intToLsb(time) f[10]=0x01 self._wt.write(f) def playing(self): """ Get a list of the currently playing tracks on the WavTrigger. :returns: list -- A list with the track numbers currently playing. If no tracks are playing the empty list is returned. If there is a problem reading the return value from
= {mention_b[ID]} try: mention_b[self.INCOMPATIBLES].add(mention_a[ID]) except KeyError: mention_b[self.INCOMPATIBLES] = {mention_a[ID]} def _merge(self, entity_a, entity_b): """ Merge two entities into new one. :param entity_a: a entity to merge :param entity_b: a entity to merge """ # Add the new mentions to first cluster entity = list(sorted( entity_a + entity_b, key=lambda x: x[SPAN],)) incompatibles = set() for mention in entity: incompatibles.update(mention.get(self.INCOMPATIBLES, set())) idx = entity[0][SPAN] for mention in entity: mention["entity"] = (idx, entity) mention[self.INCOMPATIBLES] = incompatibles return idx, entity @staticmethod def entity_representative_mention(entity): """ Get the most representative mention of the entity. :param entity: The entity of which representative mention is fetched. """ for mention in entity: if mention.get(MENTION) == PROPER_MENTION: return mention for mention in entity: if mention.get(MENTION) == NOMINAL_MENTION: return mention for mention in entity: if mention.get(MENTION) == PRONOUN_MENTION: return mention return entity[0] def entity_property(self, entity, property_name): """ Get a combined property of the values of all mentions of the entity :param property_name: The name of the property to fetch. :param entity: The entity of which property is fetched. """ combined_property = set( (mention.get(property_name, UNKNOWN) for mention in entity)) if len(combined_property) > 1: combined_property = combined_property.difference( self.UNKNOWN_VALUES) if len(combined_property) == 0: combined_property.add(UNKNOWN) return combined_property @staticmethod def entity_ne(entity): """ Get a combined NE of the values of all mentions of the entity. Other and no NER tags are cleared. If no NE tag is found None is returned. :param entity: The entity of which NE is fetched. """ combined_property = set( (mention.get(NER, None) for mention in entity)) combined_property = list(filter( lambda x: ner_tags.mention_ner(x), combined_property)) if len(combined_property) == 0: return set() return set(combined_property) def narrative_you(self, mention): """The mention is second person(YOU) or the narrator(PER0) in an article. :param mention: The mention to check. """ return \ mention[self.graph_builder.doc_type] == \ self.graph_builder.doc_article and\ mention.get(SPEAKER, False) == "PER0" and \ mention.get(PERSON) == SECOND_PERSON @staticmethod def is_pronoun(mention): """ The mentions is a pronoun mention? :param mention: The mention to check. """ return (mention.get(MENTION) == PRONOUN_MENTION) or pronouns.all(mention[FORM]) @staticmethod def is_undefined(mention): """ The mentions is an undefined mention? :param mention: The mention to check. """ return mention[STARTED_BY_INDEFINITE_PRONOUN] or mention[STARTED_BY_INDEFINITE_ARTICLE] @staticmethod def is_location(mention): """ The mentions is a location? :param mention: The mention to check. """ return ner_tags.location(mention.get(NER)) def agree_attributes(self, entity, candidate_entity): """ All attributes are compatible. Its mean the attributes of each are a subset one of the another. :param entity: Entity of the mention :param candidate_entity: Entity of the candidate :return: True or False """ candidate_gender = self.entity_property(candidate_entity, GENDER) entity_gender = self.entity_property(entity, GENDER) if not (self.UNKNOWN_VALUES.intersection(entity_gender) or self.UNKNOWN_VALUES.intersection(candidate_gender)): if candidate_gender.difference(entity_gender) \ and entity_gender.difference(candidate_gender): self.logger.debug( "Gender disagree %s %s", entity_gender, candidate_gender) return False candidate_number = self.entity_property(candidate_entity, NUMBER) entity_number = self.entity_property(entity, NUMBER) if not(self.UNKNOWN_VALUES.intersection(entity_number) or self.UNKNOWN_VALUES.intersection(candidate_number)): if candidate_number.difference(entity_number) \ and entity_number.difference(candidate_number): self.logger.debug( "Number disagree %s %s", entity_number, candidate_number) return False candidate_animacy = self.entity_property(candidate_entity, ANIMACY) entity_animacy = self.entity_property(entity, ANIMACY) if not(self.UNKNOWN_VALUES.intersection(entity_animacy) or self.UNKNOWN_VALUES.intersection(candidate_animacy)): if candidate_animacy.difference(entity_animacy) \ and entity_animacy.difference(candidate_animacy): self.logger.debug( "Animacy disagree %s %s", entity_animacy, candidate_animacy) return False candidate_ner = self.entity_ne(candidate_entity) entity_ner = self.entity_ne(entity) if not(entity_ner is None or candidate_ner is None): if candidate_ner.difference(entity_ner) and \ entity_ner.difference(candidate_ner): self.logger.debug( "NER disagree %s %s", entity_ner, candidate_ner) return False return True def subject_object(self, entity_a, entity_b): """ Check if entities are linked by any subject-object relation. :param entity_a: An entity to check :param entity_b: An entity to check :return: True or False """ if entity_a[0]["doc_type"] != "article": return False for mention_a in entity_a: for mention_b in entity_b: if self.graph_builder.sentence_distance( mention_a, mention_b) > 0: continue if mention_a.get("subject", False) and \ mention_b.get("object", False) and \ mention_a["subject"] == mention_b["object"]: return True if mention_b.get("subject", False) and \ mention_a.get("object", False) and \ mention_b["subject"] == mention_a["object"]: return True pass return False def i_within_i(self, mention_a, mention_b): """ Check if the mention and candidate are in a i-within-i construction. :param mention_a: a mention :param mention_b: another mention """ if not self.graph_builder.same_sentence(mention_a, mention_b): return False # Aren't appositive if mention_a.get(APPOSITIVE, False) and mention_b.get(APPOSITIVE, False): return False # Aren't Relative pronouns if rules.is_relative_pronoun(self.graph_builder, mention_b, mention_a) or \ rules.is_relative_pronoun(self.graph_builder, mention_a, mention_b): return False # One is included in the other if self.graph_builder.is_inside(mention_a[SPAN], mention_b[SPAN]) \ or self.graph_builder.is_inside( mention_b[SPAN], mention_a[SPAN]): return True return False def relaxed_form_word(self, mention): """ Return the words of the mention without the words after the head word. :param mention: The mention where the words are extracted. :return: a list of words. """ mention_words = self.graph_builder.get_words(mention) mention_head = self.graph_builder.get_head_word(mention) head = False for index, word in enumerate(mention_words): word_pos = word[POS] if word[ID] == mention_head[ID]: head = True if head and pos_tags.relative_pronoun(word_pos): return [word for word in mention_words[:index]] # TODO CHANGE TO CLAUSE CONNECTORS if head and word[FORM] == ",": return [word for word in mention_words[:index]] return [word for word in mention_words] def relaxed_form(self, mention): """ Return the form of the mention without the words after the head word. The form is lowered and all words are space separated. :param mention: The mention where the words are extracted. :return: a string of word forms separated by spaces. """ return " ".join(word[FORM] for word in self.relaxed_form_word(mention=mention)).lower() def same_speaker(self, mention_a, mention_b): """ Check if mention refer to the same speaker. :param mention_a: a mention :param mention_b: another mention :return type: Bool """ speaker_a = mention_a.get(SPEAKER, False) speaker_b = mention_b.get(SPEAKER, False) if not(speaker_a and speaker_b): return False if speaker_a == speaker_b: return True # Two speakers are the same string if type(speaker_a) == str and\ type(speaker_b) == str and \ speaker_a == speaker_b: return True # Speaker A is B head word if self._check_speaker(speaker_a, mention_b): return True # Speaker B is A head word if self._check_speaker(speaker_b, mention_a): return True return False def _check_speaker(self, speaker, mention): """ Is the mention a form of the speaker. :param speaker: :param mention: :return: """ # the speaker may be a string or another mention if not (type(speaker) is str): speaker = speaker[FORM] mention_head_form = self.graph_builder.get_head_word(mention)[FORM] if mention_head_form == speaker: return True for speaker_token in speaker.split(): if speaker_token == mention_head_form: return True return False def are_speaker_speech(self, speaker, speech): """ Tho mention are in a speaker speech relation? :param speaker: The mention that is a speaker :param speech: The mention that is inside a speech. :return: True or False """ speech_speaker = speech.get(SPEAKER, False) # TODO check this Only heads?? if type(speech_speaker) is dict: speaker_words_ids = [ word[ID] for word in self.graph_builder.get_words(speaker)] return speech_speaker[ID] in speaker_words_ids else: speaker_head_word = rules.get_head_word_form(self.graph_builder, speaker)\ .lower() for word in speech_speaker.split(" "): if word.lower() == speaker_head_word: return True return False def incompatible_discourse(self, entity_a, entity_b): """ Check if two entities have any incompatible mentions between them. :param entity_a: A entity :param entity_b: Another entity :return: Return True if the entities are incompatible. """ for mention_a in entity_a: doc_type = entity_b[0][self.graph_builder.doc_type] mention_a_person = mention_a.get(PERSON) for mention_b in entity_b: mention_b_person = mention_b.get(PERSON) if (self.are_speaker_speech( speaker=mention_a, speech=mention_b) or self.are_speaker_speech( speaker=mention_b, speech=mention_a) ) and not ( mention_a_person == FIRST_PERSON and mention_b_person == FIRST_PERSON): return True if doc_type == self.graph_builder.doc_article: continue distance = abs(mention_a[UTTERANCE] - mention_b[UTTERANCE]) if distance == 1 and \ not self.same_speaker(mention_a, mention_b): if mention_a_person != mention_b_person: if mention_b_person == FIRST_PERSON: return True if mention_b_person == SECOND_PERSON: return True return False def check_gold(self, mention, candidate): """ Check if the link is in the gold Standard. :param mention: The mention which link want to check. :param candidate: The candidate of the link. :return: True or False depends of the veracity """ clusters_m = set(m['gold_entity'] for m in self.graph_builder.get_gold_mention_by_span(mention[SPAN])) clusters_c = set(c['gold_entity'] for c in self.graph_builder.get_gold_mention_by_span(candidate[SPAN])) return bool(clusters_c and clusters_m and clusters_c.intersection(clusters_m)) def log_mention(self, mention): """ The function that log the mention and all useful info for this sieve coreference resolution :param mention: The mention to show """ self.logger.debug("MENTION -%s- %s", mention[FORM], mention[SPAN]) def log_candidate(self, candidate): """ The function that show the candidate of a link and all the relevant info for the linking process. :param candidate: """ self.logger.debug("CANDIDATE -%s- %s", candidate[FORM], candidate[SPAN]) def context(self, mention_entity, mention, candidate_entity, candidate): """ Return a Human readable and sieve specific
import numpy as np import pandas as pd class Scenario(object): """ Model scenario parameters """ def __init__(self, *initial_data, **kwargs): # Set default values # 16/4/2020 Adjust parameters so that day starts with FTE arrival # Proportion high priority self.high_priority = 0.25 # Work arrival self.samples_per_day = 18600 # List of sample arrival times (hours from start of day) self.delivery_schedule_name = 'Single' self.basic_batch_size = 93 # Day and run parameters # 16/4/2020 Model is designed to run primarily in single days self.day_duration = 1440 self.run_days = 2 self.warm_up_days = 2 # Breaks for people (high priority job, but does not interrupt work) # Times from start of FTE day (6am) self.tea_break_times = [2*60, 16*60, 18*60] self.meal_break_times = [6.5*60, 14*60, 22*60] # Spread start of break for people randomly after set start times self.break_start_spread = 60 # break duration is a uniform distribution between min and max self.tea_break_duration = [25, 35] self.meal_break_duration = [45, 60] # Audit parameters self.audit_interval = 15 # Resource numbers self.resource_numbers = { 'human_sample_preprocess_1': 10, 'human_sample_preprocess_2': 10, 'human_sample_preprocess_3': 0, 'human_sample_receipt_1': 1, 'human_sample_receipt_2': 1, 'human_sample_receipt_3': 1, 'human_sample_prep_1': 29, 'human_sample_prep_2': 29, 'human_sample_prep_3': 4, 'human_rna_prep_1': 4, 'human_rna_prep_2': 4, 'human_rna_prep_3': 3, 'human_pcr_1': 4, 'human_pcr_2': 4, 'human_pcr_3': 2, 'human_data_analysis': 10, 'sample_heat_incubator': 8, 'beckman_rna_extraction': 11, 'pcr_plate_stamper': 4, 'pcr_plate_reader': 8, 'sample_prep_automation': 0, 'transfer': 1 } self.workstation_capacity = { 'workstation_0': 9999, 'workstation_1a': 9, 'workstation_1b_man': 9, 'workstation_1b_auto': 0, 'workstation_1c': 8, 'workstation_2': 11, 'workstation_3': 4, 'workstation_4': 8, 'workstation_5': 999, 'workstation_6': 10, 'transfer': 99 } # Resource available hours (use hours) self.resource_shift_hours = { 'human_sample_preprocess_1': (0.00, 9.00), 'human_sample_preprocess_2': (9.01, 18.00), 'human_sample_preprocess_3': (17.0, 24.00), 'human_sample_receipt_1': (0.00, 9.00), 'human_sample_receipt_2': (9.01, 18.0), 'human_sample_receipt_3': (17.0, 24.0), 'human_sample_prep_1': (0.00, 9.00), 'human_sample_prep_2': (9.01, 18.0), 'human_sample_prep_3': (17, 24.0), 'human_rna_prep_1': (0.00, 9.00), 'human_rna_prep_2': (9.01, 18.0), 'human_rna_prep_3': (17.0, 24.0), 'human_pcr_1': (0.0, 9.00), 'human_pcr_2': (9.01, 18.0), 'human_pcr_3': (17.0, 24.0), 'human_data_analysis': (0.0, 24.0), 'sample_heat_incubator': (0.0, 24.0), 'beckman_rna_extraction': (0.0, 24.0), 'pcr_plate_stamper': (0.0, 24.0), 'pcr_plate_reader': (0.0, 24.0), 'sample_prep_automation': (0.0, 24.0), 'transfer': (0.0, 24.0), 'dummy': (0.0, 24.0) } # Resource unavailability on any whole day due to breakdown self.resource_breakdown_unavailability = { 'human_sample_preprocess_1': 0.1, 'human_sample_preprocess_2': 0.1, 'human_sample_preprocess_3': 0.1, 'human_sample_receipt_1': 0.1, 'human_sample_receipt_2': 0.1, 'human_sample_receipt_3': 0.1, 'human_sample_prep_1': 0.1, 'human_sample_prep_2': 0.1, 'human_rna_prep_1': 0, 'human_rna_prep_2': 0, 'human_pcr_1': 0, 'human_pcr_2': 0, 'human_data_analysis': 0, 'sample_heat_incubator': 0, 'beckman_rna_extraction': 0.04, 'pcr_plate_stamper': 0.08, 'pcr_plate_reader': 0.02, 'sample_prep_automation': 0.04, 'transfer': 0, 'dummy': 0 } # FTE resources (these will take breaks!) self.fte_resources = [ 'human_sample_preprocess_1', 'human_sample_preprocess_2', 'human_sample_preprocess_3', 'human_sample_receipt_1', 'human_sample_receipt_2', 'human_sample_prep_1', 'human_sample_prep_2', 'human_pcr_1', 'human_pcr_2', 'human_rna_prep_1', 'human_rna_prep_2', 'human_data_analysis', 'transfer' ] # Process duration. Tuple of fixed time, time per entity, and time per # item in entity. Multi-step automated processes have three sets of # times (set up, automated, clean down) self.process_duration = { 'batch_input': ([0, 0, 0],), 'sample_preprocess': ([10, 0, 0],), 'sample_receipt': ([22*1.3, 0, 0],), 'sample_prep_manual': ([22*1.3, 0, 0],), 'sample_prep_auto': ([2.5, 0, 0], [10, 0, 0], [2.5, 0, 0]), 'sample_heat': ([4, 0, 0], [20, 0, 0], [1, 0, 0]), 'pcr_prep': ([5, 0, 0], [3, 0, 0], [5, 0, 0]), 'pcr': ([6.5, 0, 0], [90, 0, 0], [1, 0, 0]), 'rna_extraction': ([5, 0, 0], [114, 0, 0], [2.5, 0, 0]), 'data_analysis': ([10, 0, 0],), 'transfer_1': ([6, 0, 0],) } # Allow manual sample prep (automated prep will be chosen first if free) self.allow_manual_sample_prep = True # Batch sizing for stages (collate for job then re-split) self.heat_batch_size = 3 self.rna_extraction_batch_size = 3 self.transfer_1_batch_size = 4 # Add a triangular distribution of extra time per process # Average extra time with be 1/4 of this # (e.g. 0.25 = 6.25% added length on average) self.additional_time_manual = 0.76 self.additional_time_auto = 0.10 # Range of times new jobs may start self.process_start_hours = { 'sample_preprocess': (0.0, 24.0), 'sample_receipt': (0.0, 24.0), 'sample_heat': (0.0, 24.0), 'sample_prep': (0.0, 24.0), 'rna_extraction': (0.0, 24.0), 'pcr_prep': (0.0, 24.0), 'pcr': (0.0, 24.0), 'data_analysis': (0.0, 24.0), 'transfer_1': (0.0, 24.0) } # Process priories (lower number -> higher priority) self.process_priorities = { 'sample_preprocess': 110, 'sample_receipt': 100, 'sample_prep_manual': 90, 'sample_prep_auto': 80, 'sample_heat': 70, 'rna_extraction': 60, 'pcr_prep': 50, 'pcr': 40, 'data_analysis': 30, 'transfer_1': 20 } # Process check intervals (if not 1 minute) # Must be integer multiple of 1 self.process_intervals = { 'transfer_1': 10 } # Process resources = tuple of different resources needed and lists of # alternatives. Remember to put , after a single list to maintain tuple # format! tuple of two or more elements will require resources from each # tuple element self.process_resources = { 'sample_preprocess': { 'process_type': 'manual', 'human_list': (['human_sample_preprocess_1', 'human_sample_preprocess_2', 'human_sample_preprocess_3'], ['tracker_all_jobs_fte'], ['tracker_sample_preprocess_jobs'], ['tracker_sample_preprocess_fte']), 'machine_list': ([],)}, 'sample_receipt': { 'process_type': 'manual', 'human_list': (['human_sample_receipt_1', 'human_sample_receipt_2', 'human_sample_receipt_3', 'human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['human_sample_receipt_1', 'human_sample_receipt_2', 'human_sample_receipt_3', 'human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['tracker_sample_receipt_fte'], ['tracker_all_jobs_fte'], ['tracker_sample_receipt_jobs']), 'machine_list': ([],)}, 'sample_prep_manual': { 'process_type': 'manual', 'human_list': (['human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['tracker_all_jobs_fte'], ['tracker_sample_prep_jobs'], ['tracker_sample_prep_fte']), 'machine_list': ([],)}, 'sample_prep_auto': { 'process_type': 'auto', 'human_list': (['human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['tracker_all_jobs_fte'], ['tracker_sample_prep_jobs'], ['tracker_sample_prep_fte']), 'machine_list': (['sample_prep_automation'], ['tracker_sample_prep_jobs'])}, 'sample_heat': { 'process_type': 'auto', 'human_list': (['human_sample_prep_1', 'human_sample_prep_2', 'human_sample_prep_3'], ['tracker_all_jobs_fte'], ['tracker_heat_fte']), 'machine_list': (['sample_heat_incubator'], ['tracker_heat_jobs'])}, 'rna_extraction': { 'process_type': 'auto', 'human_list': (['human_rna_prep_1', 'human_rna_prep_2', 'human_rna_prep_3'], ['tracker_all_jobs_fte'], ['tracker_rna_prep_fte']), 'machine_list': (['beckman_rna_extraction'], ['tracker_rna_prep_jobs'])}, 'pcr_prep': { 'process_type': 'auto', 'human_list': (['human_pcr_1', 'human_pcr_2', 'human_pcr_3'], ['tracker_all_jobs_fte'], ['tracker_pcr_prep_fte']), 'machine_list': (['pcr_plate_stamper'], ['tracker_pcr_prep_jobs'])}, 'pcr': { 'process_type': 'auto', 'human_list': (['human_pcr_1', 'human_pcr_2', 'human_pcr_3'], ['tracker_all_jobs_fte'], ['tracker_pcr_fte']), 'machine_list': (['pcr_plate_reader'], ['tracker_pcr_jobs'])}, 'data_analysis': { 'process_type': 'manual', 'human_list': (['human_data_analysis'], ['tracker_all_jobs_fte'], ['tracker_data_analysis_jobs'], ['tracker_data_analysis_fte']), 'machine_list': ([],)}, 'transfer_1': { 'process_type': 'manual', 'human_list': (['transfer'], ['tracker_all_jobs_fte'], ['tracker_transfer_fte'], ['tracker_transfer_jobs']), 'machine_list': ([],)}, } # Workstation (used to limit work in progress) self.process_workstations = { 'sample_preprocess': ['workstation_6'], 'data_analysis': ['workstation_0'], 'batch_input': ['workstation_0'], 'sample_receipt': ['workstation_1a'], 'sample_prep_manual': ['workstation_1b_man'], 'sample_prep_auto': ['workstation_1b_auto'], 'sample_heat': ['workstation_1c'], 'rna_extraction': ['workstation_2'], 'pcr_prep': ['workstation_3'], 'pcr': ['workstation_4'], 'data_analysis': ['workstation_5'], 'transfer_1': ['transfer'] } # kanban groups have start process, end process, max samples, # current samples self.kanban_groups = { 0: ['sample_receipt', 'pcr', 99999999] } # Overwrite default values for dictionary in initial_data: for key in dictionary: setattr(self, key, dictionary[key]) for key in kwargs: setattr(self, key, kwargs[key]) # Load delivery schedule, normalise to 1, and add to parameters df = pd.read_csv('deliveries.csv', index_col='Hour') for col in list(df): total = df[col].sum() values = df[col] / total df[col] = values self.delivery_schedule = df # Calculations # Add dummy resources self.resource_numbers['dummy'] = 9999 self.resource_shift_hours['dummy'] = (0, 24) self.resource_breakdown_unavailability['dummy'] = 0 # Set arrival batch size and round to nearest basic batch size self.delivery_times = list(range(24)) self.delivery_batch_sizes = ( self.delivery_schedule[self.delivery_schedule_name] * self.samples_per_day) self.delivery_batch_sizes = ( np.round(self.delivery_batch_sizes / self.basic_batch_size, 0) * self.basic_batch_size) self.delivery_batch_sizes = list(self.delivery_batch_sizes.values) # Set warm up and run length self.audit_warm_up = self.day_duration * self.warm_up_days self.run_length = self.run_days * self.day_duration + self.audit_warm_up # Sort priority dictionary by value self.process_priorities = {key: value for key, value in sorted( self.process_priorities.items(), key=lambda item: item[1])} # Set up kanban group counts and dictionaries for start.end self.kanban_group_counts = dict() self.kanban_group_max = dict() self.kanban_start = dict() self.kanban_end = dict() # Set up dictionaries based on process for key in self.process_duration.keys(): self.kanban_start[key] = [] self.kanban_end[key] = [] # Update dictionaries if kanban groups exist if len(self.kanban_groups) > 0: # Add process start and ends to dictionaries for key, value in self.kanban_groups.items(): self.kanban_start[value[0]].append(key) self.kanban_end[value[1]].append(key) # Set up kanban group counts for key, value in self.kanban_groups.items(): self.kanban_group_counts[key] = 0 self.kanban_group_max[key] = value[2] # Add tracker resources tracker_resource_numbers = { 'tracker_all_jobs_fte': 1000, 'tracker_data_analysis_fte': 1000, 'tracker_data_analysis_jobs': 1000, 'tracker_heat_fte': 1000, 'tracker_heat_jobs': 1000, 'tracker_pcr_prep_fte': 1000, 'tracker_pcr_prep_jobs': 1000, 'tracker_pcr_fte': 1000, 'tracker_pcr_jobs': 1000, 'tracker_rna_prep_fte': 1000, 'tracker_rna_prep_jobs': 1000, 'tracker_sample_preprocess_jobs': 1000, 'tracker_sample_preprocess_fte': 1000, 'tracker_sample_prep_jobs': 1000, 'tracker_sample_prep_fte': 1000, 'tracker_sample_receipt_fte': 1000, 'tracker_sample_receipt_jobs': 1000, 'tracker_transfer_fte': 1000, 'tracker_transfer_jobs': 1000 } self.resource_numbers.update(tracker_resource_numbers) tracker_shifts = { 'tracker_all_jobs_fte': (0.0, 24.0), 'tracker_data_analysis_fte': (0.0, 24.0), 'tracker_data_analysis_jobs': (0.0, 24.0), 'tracker_heat_fte': (0.0, 24.0), 'tracker_heat_jobs': (0.0, 24.0), 'tracker_pcr_prep_fte': (0.0, 24.0), 'tracker_pcr_prep_jobs': (0.0, 24.0), 'tracker_pcr_fte': (0.0, 24.0), 'tracker_pcr_jobs': (0.0, 24.0), 'tracker_rna_prep_fte': (0.0, 24.0), 'tracker_rna_prep_jobs': (0.0, 24.0), 'tracker_sample_preprocess_jobs': (0.0, 24.0), 'tracker_sample_preprocess_fte': (0.0, 24.0), 'tracker_sample_prep_fte': (0.0, 24.0), 'tracker_sample_prep_jobs': (0.0, 24.0), 'tracker_sample_receipt_fte': (0.0, 24.0), 'tracker_sample_receipt_jobs': (0.0, 24.0), 'tracker_transfer_fte': (0.0, 24.0), 'tracker_transfer_jobs': (0.0, 24.0) } self.resource_shift_hours.update(tracker_shifts) tracker_unavailability = { 'tracker_all_jobs_fte': 0, 'tracker_data_analysis_jobs': 0, 'tracker_data_analysis_fte': 0, 'tracker_heat_fte': 0, 'tracker_heat_jobs': 0, 'tracker_pcr_prep_fte': 0, 'tracker_pcr_prep_jobs': 0, 'tracker_pcr_fte': 0, 'tracker_pcr_jobs': 0, 'tracker_rna_prep_fte': 0, 'tracker_rna_prep_jobs': 0, 'tracker_sample_preprocess_jobs': 0, 'tracker_sample_preprocess_fte': 0, 'tracker_sample_prep_fte': 0, 'tracker_sample_prep_jobs': 0, 'tracker_sample_receipt_fte': 0, 'tracker_sample_receipt_jobs': 0, 'tracker_transfer_fte': 0, 'tracker_transfer_jobs':
# -*- coding:utf-8 -*- ####################################################################### # Copyright (C) 2016 <NAME> (<EMAIL>) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### from utils import barrier_warning import numpy as np from numpy import log, exp, sqrt from scipy import stats from typing import Tuple class BSMOptionValuation: """ Valuation of European call options in Black-Scholes-Merton Model (incl. dividend) Attributes ========== S0: float initial stock/index level K: float strike price T: float time to maturity (in year fractions) r: float constant risk-free short rate assume flat term structure sigma: float volatility factor in diffusion term div_yield: float dividend_yield, in percentage %, default = 0.0% """ def __init__(self, S0: float, K: float, T: float, r: float, sigma: float, div_yield: float = 0.0): assert sigma >= 0, 'volatility cannot be less than zero' assert S0 >= 0, 'initial stock price cannot be less than zero' assert T >= 0, 'time to maturity cannot be less than zero' assert div_yield >= 0, 'dividend yield cannot be less than zero' self.S0 = float(S0) self.K = float(K) self.T = float(T) self.r = float(r) self.sigma = float(sigma) self.div_yield = float(div_yield) self._d1, self._d2 = self._calculate_d1_d2() self._d3 = None self._d4 = None self._d5 = None self._d6 = None self._d7 = None self._d8 = None def _calculate_d1_d2(self): d1 = ((log(self.S0 / self.K) + (self.r - self.div_yield + 0.5 * self.sigma ** 2) * self.T) / ( self.sigma * sqrt(self.T))) d2 = d1 - self.sigma * sqrt(self.T) return d1, d2 def call_value(self, observed_put_price: float = None) -> float: """ :return: call option value """ if observed_put_price is None: call_value = (self.S0 * exp(-self.div_yield * self.T) * stats.norm.cdf(self._d1, 0.0, 1.0) - self.K * exp( -self.r * self.T) * stats.norm.cdf(self._d2, 0.0, 1.0)) else: call_value = observed_put_price + exp(-self.div_yield * self.T) * self.S0 - exp(-self.r * self.T) * self.K return call_value def delta(self) -> Tuple[float, float]: """ Delta measures the change in the option price for a $1 change in the stock price :return: delta of the option """ delta_call = exp(- self.div_yield * self.T) * stats.norm.cdf(self._d1, 0.0, 1.0) delta_put = -exp(- self.div_yield * self.T) * stats.norm.cdf(-self._d1, 0.0, 1.0) return delta_call, delta_put def gamma(self) -> float: """ Gamma measures the change in delta when the stock price changes :return: gamma of the option """ gamma = exp(-self.div_yield * self.T) * stats.norm.pdf(self._d1) / (self.S0 * self.sigma * sqrt(self.T)) return gamma def theta(self) -> Tuple[float, float]: """ Theta measures the change in the option price with respect to calendar time (t ), holding fixed time to expiration (T). If time to expiration is measured in years, theta will be the annualized change in the option value. To obtain a per-day theta, divide by 252. :return: theta of the option """ part1 = self.div_yield * self.S0 * exp(-self.div_yield * self.T) * stats.norm.cdf(self._d1) part2 = self.r * self.K * stats.norm.cdf(self._d2) part3 = (self.K * exp(-self.r * self.T) * stats.norm.pdf(self._d2) * self.sigma) / (2 * sqrt(self.T)) theta_call = part1 - part2 - part3 theta_put = theta_call + self.r * self.K * exp(-self.r * self.T) - self.div_yield * self.S0 * exp( -self.div_yield * self.T) return theta_call, theta_put def vega(self) -> float: """ Vega measures the change in the option price when volatility changes. Some writers also use the terms lambda or kappa to refer to this measure: It is common to report vega as the change in the option price per percentage point change in the volatility. This requires dividing the vega formula above by 100. :return: vega of option """ vega = self.S0 * exp(-self.div_yield * self.T) * stats.norm.pdf(self._d1, 0.0, 1.0) * sqrt(self.T) return vega def rho(self) -> Tuple[float, float]: """ Rho is the partial derivative of the option price with respect to the interest rate. These expressions for rho assume a change in r of 1.0. We are typically interested in evaluating the effect of a change of 0.01 (100 basis points) or 0.0001 (1 basis point). To report rho as a change per percentage point in the interest rate, divide this measure by 100. To interpret it as a change per basis point, divide by 10,000. :return: call_rho, put_rho """ call_rho = self.T * self.K * exp(-self.r * self.T) * stats.norm.cdf(self._d2) put_rho = -self.T * self.K * exp(-self.r * self.T) * stats.norm.cdf(-self._d2) return call_rho, put_rho def psi(self) -> Tuple[float, float]: """ Psi is the partial derivative of the option price with respect to the continuous dividend yield: To interpret psi as a price change per percentage point change in the dividend yield, divide by 100. :return: call_psi, put_psi """ call_psi = - self.T * self.S0 * exp(-self.div_yield * self.T) * stats.norm.cdf(self._d1) put_psi = self.T * self.S0 * exp(-self.div_yield * self.T) * stats.norm.cdf(-self._d1) return call_psi, put_psi def implied_vol(self, observed_call_price: float, num_iterations: int = 1000, tolerance: float = 1e-4) -> float: """ Newton-Raphson iterative approach, assuming black_scholes_merton model :param observed_call_price: call price from the market :param num_iterations: no. of iteration :param tolerance: allows to specify the tolerance level :return: implied volatility given the observed option price """ sigma_old = self.sigma for _ in range(num_iterations): self._d1, self._d2 = self._calculate_d1_d2() _cal_val = self.call_value() option_price_diff = _cal_val - observed_call_price _vega = self.vega() sigma_new = self.sigma - option_price_diff / (_vega + 1e-10) if abs(sigma_new - self.sigma) <= tolerance: break self.sigma = sigma_new implied_vol = self.sigma # restore back the status self.sigma = sigma_old self._d1, self._d2 = self._calculate_d1_d2() return implied_vol def put_value(self, observed_call_price: float = None) -> float: """ Use put call parity (incl. continuous dividend) to calculate the put option value :return: put option value """ if observed_call_price is None: put_value = self.call_value() + exp(-self.r * self.T) * self.K - exp(-self.div_yield * self.T) * self.S0 else: put_value = observed_call_price + exp(-self.r * self.T) * self.K - exp(-self.div_yield * self.T) * self.S0 return put_value def lookback_BSM(self, option_type: str, max_share_price: float, min_share_price: float) -> float: """ A European lookback call at maturity pays St - min(St). A European lookback put at maturity pays max(St) - St. min(St) is the minimum price over the life of the option max(St) is the maximum price over the life of the option <NAME>: Derivatives Markets (3rd. edition) Chapter 23: Exotic Option II Formula 23.47 (Exercise) :param option_type: call, put :param max_share_price: maximum share price :param min_share_price: minimum share price :return: value of lookback option """ assert option_type == "call" or option_type == "put" if option_type == "call": self.w = 1 self.s_bar = float(min_share_price) elif option_type == "put": self.w = -1 self.s_bar = float(max_share_price) self._d5 = (log(self.K / self.s_bar) + (self.r - self.div_yield + 0.5 * (self.sigma ** 2)) * self.T) / ( self.sigma * sqrt(self.T)) self._d6 = self._d5 - self.sigma * sqrt(self.T) self._d7 = (log(self.s_bar / self.K) + (self.r - self.div_yield + 0.5 * (self.sigma ** 2)) * self.T) / ( self.sigma * sqrt(self.T)) self._d8 = self._d7 - self.sigma * sqrt(self.T) # Lookback option pricing self.lb_first_part = self.w * self.K * exp(-self.div_yield * self.T) * ( stats.norm.cdf(self.w * self._d5) - (self.sigma ** 2) * stats.norm.cdf(-self.w * self._d5) / ( 2 * (self.r - self.div_yield))) self.lb_second_part = self.w * self.s_bar * exp(-self.r * self.T) * (stats.norm.cdf(self.w * self._d6) - ( (self.sigma ** 2) / (2 * (self.r - self.div_yield)) * (self.K / self.s_bar) ** ( 1 - 2 * (self.r - self.div_yield) / (self.sigma ** 2))) * stats.norm.cdf(self.w * self._d8)) return self.lb_first_part - self.lb_second_part def merton_jump_diffusion(self, option_type: str, avg_num_jumps: float, jump_size_mean: float, jump_size_std: float) -> float: """ Merton closed-form solution for European options with underlying asset jumps assuming jump size follows a log-normal distribution: ln(jump_size) ~ N(jump_size_mean, jump_size_std). Notice: the model is fine under a certain set of parameters. The model works properly for sigma_j smaller than a certain level dependent on lam. see: https://github.com/cantaro86/Financial-Models-Numerical-Methods/blob/master/3.1%20Merton%20jump-diffusion%2C%20PIDE%20method.ipynb Parameters ---------- option_type: (str) call or put avg_num_jumps: (float) how many jumps in T, can fractional jump_size_mean: (float) ln(jump_size) ~ N(jump_size_mean, jump_size_std) jump_size_std: (float) ln(jump_size) ~
self.data_finished_fut: try: await self.data_finished_fut logger.debug( "Websocket task finished. Closing the connection." ) except asyncio.CancelledError: # Cancelled error is called when data phase is cancelled # if an error occurred or the client closed the connection logger.debug( "Websocket handler cancelled. Closing the connection." ) # Cancel the keepalive ping task. if self.keepalive_ping_task: self.keepalive_ping_task.cancel() self.keepalive_ping_task = None # Half-close the TCP connection if possible (when there's no TLS). if ( self.io_proto and self.io_proto.transport and self.io_proto.transport.can_write_eof() ): logger.debug("Websocket half-closing TCP connection") self.io_proto.transport.write_eof() if self.connection_lost_waiter: if await self.wait_for_connection_lost(timeout=0): return except asyncio.CancelledError: ... finally: # The try/finally ensures that the transport never remains open, # even if this coroutine is cancelled (for example). if (not self.io_proto) or (not self.io_proto.transport): # we were never open, or done. Can't do any finalization. return elif ( self.connection_lost_waiter and self.connection_lost_waiter.done() ): # connection confirmed closed already, proceed to abort waiter ... elif self.io_proto.transport.is_closing(): # Connection is already closing (due to half-close above) # proceed to abort waiter ... else: self.io_proto.transport.close() if not self.connection_lost_waiter: # Our connection monitor task isn't running. try: await asyncio.sleep(self.close_timeout) except asyncio.CancelledError: ... if self.io_proto and self.io_proto.transport: self.io_proto.transport.abort() else: if await self.wait_for_connection_lost( timeout=self.close_timeout ): # Connection aborted before the timeout expired. return error_logger.warning( "Timeout waiting for TCP connection to close. Aborting" ) if self.io_proto and self.io_proto.transport: self.io_proto.transport.abort() def abort_pings(self) -> None: """ Raise ConnectionClosed in pending keepalive pings. They'll never receive a pong once the connection is closed. """ if self.connection.state is not CLOSED: raise ServerError( "Webscoket about_pings should only be called " "after connection state is changed to CLOSED" ) for ping in self.pings.values(): ping.set_exception(ConnectionClosedError(None, None)) # If the exception is never retrieved, it will be logged when ping # is garbage-collected. This is confusing for users. # Given that ping is done (with an exception), canceling it does # nothing, but it prevents logging the exception. ping.cancel() async def close(self, code: int = 1000, reason: str = "") -> None: """ Perform the closing handshake. This is a websocket-protocol level close. :meth:`close` waits for the other end to complete the handshake and for the TCP connection to terminate. :meth:`close` is idempotent: it doesn't do anything once the connection is closed. :param code: WebSocket close code :param reason: WebSocket close reason """ if code == 1006: self.fail_connection(code, reason) return async with self.conn_mutex: if self.connection.state is OPEN: self.connection.send_close(code, reason) data_to_send = self.connection.data_to_send() await self.send_data(data_to_send) async def recv(self, timeout: Optional[float] = None) -> Optional[Data]: """ Receive the next message. Return a :class:`str` for a text frame and :class:`bytes` for a binary frame. When the end of the message stream is reached, :meth:`recv` raises :exc:`~websockets.exceptions.ConnectionClosed`. Specifically, it raises :exc:`~websockets.exceptions.ConnectionClosedOK` after a normal connection closure and :exc:`~websockets.exceptions.ConnectionClosedError` after a protocol error or a network failure. If ``timeout`` is ``None``, block until a message is received. Else, if no message is received within ``timeout`` seconds, return ``None``. Set ``timeout`` to ``0`` to check if a message was already received. :raises ~websockets.exceptions.ConnectionClosed: when the connection is closed :raises asyncio.CancelledError: if the websocket closes while waiting :raises ServerError: if two tasks call :meth:`recv` or :meth:`recv_streaming` concurrently """ if self.recv_lock.locked(): raise ServerError( "cannot call recv while another task is " "already waiting for the next message" ) await self.recv_lock.acquire() if self.connection.state is CLOSED: self.recv_lock.release() raise WebsocketClosed( "Cannot receive from websocket interface after it is closed." ) try: self.recv_cancel = asyncio.Future() done, pending = await asyncio.wait( (self.recv_cancel, self.assembler.get(timeout)), return_when=asyncio.FIRST_COMPLETED, ) done_task = next(iter(done)) if done_task is self.recv_cancel: # recv was cancelled for p in pending: p.cancel() raise asyncio.CancelledError() else: self.recv_cancel.cancel() return done_task.result() finally: self.recv_cancel = None self.recv_lock.release() async def recv_burst(self, max_recv=256) -> Sequence[Data]: """ Receive the messages which have arrived since last checking. Return a :class:`list` containing :class:`str` for a text frame and :class:`bytes` for a binary frame. When the end of the message stream is reached, :meth:`recv_burst` raises :exc:`~websockets.exceptions.ConnectionClosed`. Specifically, it raises :exc:`~websockets.exceptions.ConnectionClosedOK` after a normal connection closure and :exc:`~websockets.exceptions.ConnectionClosedError` after a protocol error or a network failure. :raises ~websockets.exceptions.ConnectionClosed: when the connection is closed :raises ServerError: if two tasks call :meth:`recv_burst` or :meth:`recv_streaming` concurrently """ if self.recv_lock.locked(): raise ServerError( "cannot call recv_burst while another task is already waiting " "for the next message" ) await self.recv_lock.acquire() if self.connection.state is CLOSED: self.recv_lock.release() raise WebsocketClosed( "Cannot receive from websocket interface after it is closed." ) messages = [] try: # Prevent pausing the transport when we're # receiving a burst of messages self.can_pause = False self.recv_cancel = asyncio.Future() while True: done, pending = await asyncio.wait( (self.recv_cancel, self.assembler.get(timeout=0)), return_when=asyncio.FIRST_COMPLETED, ) done_task = next(iter(done)) if done_task is self.recv_cancel: # recv_burst was cancelled for p in pending: p.cancel() raise asyncio.CancelledError() m = done_task.result() if m is None: # None left in the burst. This is good! break messages.append(m) if len(messages) >= max_recv: # Too much data in the pipe. Hit our burst limit. break # Allow an eventloop iteration for the # next message to pass into the Assembler await asyncio.sleep(0) self.recv_cancel.cancel() finally: self.recv_cancel = None self.can_pause = True self.recv_lock.release() return messages async def recv_streaming(self) -> AsyncIterator[Data]: """ Receive the next message frame by frame. Return an iterator of :class:`str` for a text frame and :class:`bytes` for a binary frame. The iterator should be exhausted, or else the connection will become unusable. With the exception of the return value, :meth:`recv_streaming` behaves like :meth:`recv`. """ if self.recv_lock.locked(): raise ServerError( "Cannot call recv_streaming while another task " "is already waiting for the next message" ) await self.recv_lock.acquire() if self.connection.state is CLOSED: self.recv_lock.release() raise WebsocketClosed( "Cannot receive from websocket interface after it is closed." ) try: cancelled = False self.recv_cancel = asyncio.Future() self.can_pause = False async for m in self.assembler.get_iter(): if self.recv_cancel.done(): cancelled = True break yield m if cancelled: raise asyncio.CancelledError() finally: self.can_pause = True self.recv_cancel = None self.recv_lock.release() async def send(self, message: Union[Data, Iterable[Data]]) -> None: """ Send a message. A string (:class:`str`) is sent as a `Text frame`_. A bytestring or bytes-like object (:class:`bytes`, :class:`bytearray`, or :class:`memoryview`) is sent as a `Binary frame`_. .. _Text frame: https://tools.ietf.org/html/rfc6455#section-5.6 .. _Binary frame: https://tools.ietf.org/html/rfc6455#section-5.6 :meth:`send` also accepts an iterable of strings, bytestrings, or bytes-like objects. In that case the message is fragmented. Each item is treated as a message fragment and sent in its own frame. All items must be of the same type, or else :meth:`send` will raise a :exc:`TypeError` and the connection will be closed. :meth:`send` rejects dict-like objects because this is often an error. If you wish to send the keys of a dict-like object as fragments, call its :meth:`~dict.keys` method and pass the result to :meth:`send`. :raises TypeError: for unsupported inputs """ async with self.conn_mutex: if self.connection.state in (CLOSED, CLOSING): raise WebsocketClosed( "Cannot write to websocket interface after it is closed." ) if (not self.data_finished_fut) or self.data_finished_fut.done(): raise ServerError( "Cannot write to websocket interface after it is finished." ) # Unfragmented message -- this case must be handled first because # strings and bytes-like objects are iterable. if isinstance(message, str): self.connection.send_text(message.encode("utf-8")) await self.send_data(self.connection.data_to_send()) elif isinstance(message, (bytes, bytearray, memoryview)): self.connection.send_binary(message) await self.send_data(self.connection.data_to_send()) elif isinstance(message, Mapping): # Catch a common mistake -- passing a dict to send(). raise TypeError("data is a dict-like object") elif isinstance(message, Iterable): # Fragmented message -- regular iterator. raise NotImplementedError( "Fragmented websocket messages are not supported." ) else: raise TypeError("Websocket data must be bytes, str.") async def ping(self, data: Optional[Data] = None) -> asyncio.Future: """ Send a ping. Return an :class:`~asyncio.Future` that will be resolved when the corresponding pong is received. You can ignore it if you don't intend to wait. A ping may serve as a keepalive or as a check that the remote endpoint received all messages up to this point:: await pong_event = ws.ping() await pong_event # only if you want to wait for the pong By default, the ping contains four random bytes. This payload may be overridden with the
# Copyright(c) 2017-2021 CloudNetEngine. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines keywords for virtual switch operations.""" import os import re from robot.api import logger from robot.libraries.BuiltIn import BuiltIn from resources.libraries.python.constants import Constants from resources.libraries.python.ssh import exec_cmd, kill_process from resources.libraries.python.vif import TapInterface __all__ = [ u"VirtualSwitch", u"OvsDpdk", u"OvsNative", u"Uplink", u"TunnelPort", ] class Uplink(): """Contains uplink configuration. """ def __init__(self, pci_addr): self.pci_addr = pci_addr self.name = None # Uplink's name is populated during start_vswitch self.ofp = None # uplink's ofp is populated when it's added to a bridge self.n_queue_pair = None self.n_rxq_desc = None self.n_txq_desc = None class TunnelPort(): """Contains tunnel port configuration. """ def __init__(self, name, rip, vni, ofp): self.name = name self.rip = rip self.vni = vni self.ofp = ofp class IDAllocator(): """Allocator for managing IDs. """ def __init__(self, name, min_id, max_id): self.name = name self.ids = list(range(min_id, max_id+1)) def get(self): """Get an ID from the allocator. returns: An ID. rtype: int """ get_id = self.ids.pop(0) return get_id def put(self, put_id): """Put an ID back to the allocator. param put_id: ID to put back. type put_id: int """ self.ids.append(put_id) class Bridge(): """Contains bridge configuration. """ def __init__(self, name): self.name = name self.vifs = list() self.vnis = dict() self.uplinks = list() self.tnl_ports = list() self.with_md = False self.ofp_ids_uplink = IDAllocator(f"{name} uplink", Constants.OFP_UPLINK_BASE, Constants.OFP_VHOST_BASE) self.ofp_ids_vif = IDAllocator(f"{name} vif", Constants.OFP_VHOST_BASE, Constants.OFP_TUNNEL_BASE) self.ofp_ids_tunnel = IDAllocator(f"{name} tunnel", Constants.OFP_TUNNEL_BASE, Constants.OFP_TUNNEL_BASE+100) def _bridge_add_vni(br, vif): if not vif.vni in br.vnis: br.vnis[vif.vni] = list() br.vnis[vif.vni].append(vif) def _bridge_add_vif(br, vif): br.vifs.append(vif) _bridge_add_vni(br, vif) class VirtualSwitch(): """Defines basic methods and attirbutes of a virtual switch.""" def __init__(self, ssh_info, uplinks_spec, tep_addr, ovs_bin_dir, dpdk_devbind_dir): self.bridges = list() self.ssh_info = ssh_info self.tep_addr = tep_addr # Sorted uplink interface based on interface pseudo name in config file self.uplinks = list() self.bound_uplinks = list() iface_keys = sorted(uplinks_spec.keys()) for iface in iface_keys: iface_spec = uplinks_spec[iface] uplink = Uplink(iface_spec['pci_address']) if iface_spec.get("n_queue_pair"): uplink.n_queue_pair = iface_spec.get("n_queue_pair") if iface_spec.get("n_rxq_desc"): uplink.n_rxq_desc = iface_spec.get("n_rxq_desc") if iface_spec.get("n_txq_desc"): uplink.n_txq_desc = iface_spec.get("n_txq_desc") self.uplinks.append(uplink) self._ovs_bin_dir = ovs_bin_dir self._dpdk_devbind_full_cmd = os.path.join(dpdk_devbind_dir, "dpdk-devbind.py") def execute(self, cmd, timeout=30): """Execute an OVS command. :param cmd: OVS command. :param timeout: Timeout value in seconds. :type cmd: str :type timeout: int :returns: ret_code, stdout, stderr :rtype: tuple(int, str, str) """ ret_code, stdout, stderr = \ exec_cmd(self.ssh_info, f"{self._ovs_bin_dir}/{cmd}", timeout, sudo=True) logger.trace(stdout) if ret_code is None or int(ret_code) != 0: raise RuntimeError(f"Execute OVS cmd failed on {self.ssh_info['host']} : {cmd}") return (ret_code, stdout, stderr) def execute_batch(self, cmds, timeout=30): """Execute a batch of OVS commands. :param cmds: OVS commands. :param timeout: Timeout value in seconds. :type cmds: list(str) :type timeout: int """ for cmd in cmds: self.execute(cmd, timeout) def execute_host(self, cmd, timeout=30, exp_fail=False): """Execute a command on a host which the vswitch resides. :param cmd: Command. :param timeout: Timeout value in seconds. :param exp_fail: Expect the command failure or success. Default: False. None means don't care about the command result. :type cmd: str :type timeout: int :type exp_fail: bool :returns: ret_code, stdout, stderr :rtype: tuple(int, str, str) """ ret_code, stdout, stderr = \ exec_cmd(self.ssh_info, cmd, timeout, sudo=True) logger.trace(stdout) if ret_code is None or int(ret_code) != 0: # 'None' for exp_fail means don't care the result if exp_fail is not None and not exp_fail: raise RuntimeError(f"Execute host cmd failed on {self.ssh_info['host']} : {cmd}") return (ret_code, stdout, stderr) def execute_host_batch(self, cmds, timeout=30): """Execute a batch of commands on a host which the vswitch resides. :param cmds: Commands. :param timeout: Timeout value in seconds. :type cmds: list(str) :type timeout: int """ for cmd in cmds: self.execute_host(cmd, timeout) def kill_process(self, proc_name): """Kill a process on a host which the vswitch resides. :param proc_name: Process name. :type proc_name: str """ kill_process(self.ssh_info, proc_name) def get_bridge(self, br_name): """Get a Bridge object by a bridge name. :param br_name: Bridge name. :type br_name: str :returns: Bridge object. :rtype: Bridge obj """ for br in self.bridges: if br.name == br_name: return br return None def _create_bridge_impl(self, br): """Get a Bridge object by a bridge name. :param br_name: Bridge name. :type br_name: str :returns: Bridge object. :rtype: Bridge obj """ def create_bridge(self, br_name): """Create an OVS bridge. :param br_name: Bridge name. :type br_name: str :returns: Bridge object. :rtype: Bridge obj """ # There might be stale tap interface left on the host if the previous # run is not gracefully exit, just try to delete it. self.execute_host(f"ip link del {br_name}", exp_fail=None) br = Bridge(br_name) self._create_bridge_impl(br) self.bridges.append(br) tap = TapInterface(br_name, Constants.OFP_LOCAL) _bridge_add_vif(br, tap) return br def delete_bridge(self, br_name): """Delete an OVS bridge. :param br_name: Bridge name. :type name: str """ self.execute('ovs-vsctl del-br {}'.format(br_name)) br = self.get_bridge(br_name) self.bridges.remove(br) def refresh_bridge_vnis(self): """Refresh vni -> vif maps of all bridges on the virtual switch. """ for br in self.bridges: br.vnis = dict() for vif in br.vifs: _bridge_add_vni(br, vif) def create_tunnel_port(self, br_name, tnl_type, rip, vni): """Create a tunnel port on a bridge. :param br_name: Bridge name. :param tnl_type: Tunnel type. :param rip: Tunnel remote ip. :param vni: Virtual network identifier. :type br_name: str :type tnl_type: str :type rip: IPv4Address or IPv6Address or 'flow' :type vni: int or 'flow' :returns: Tunnel port. :rtype: TunnelPort obj """ br = self.get_bridge(br_name) tnl_ofp = br.ofp_ids_tunnel.get() tnl_name = '{0}{1}'.format(tnl_type, tnl_ofp) self.execute(f"ovs-vsctl add-port {br_name} {tnl_name} " f"-- set Interface {tnl_name} type={tnl_type} " f"options:remote_ip={rip} " f"options:key={vni} ofport_request={tnl_ofp} ") tnl_port = TunnelPort(tnl_name, rip, vni, tnl_ofp) br = self.get_bridge(br_name) br.tnl_ports.append(tnl_port) return tnl_port def delete_tunnel_port(self, br_name, tnl_port): """Delete a tunnel port from a bridge. :param br_name: Bridge name. :param tnl_port: Tunnel port. :type br_name: str :type tnl_port: TunnelPort obj """ br = self.get_bridge(br_name) self.delete_interface(br_name, tnl_port.name) br.ofp_ids_tunnel.put(tnl_port.ofp) br.tnl_ports.remove(tnl_port) def _create_vhost_user_interface_impl(self, br_name, vif): """Create a vhost user interface on a bridge. :param br_name: Bridge name. :param vif: Virtual interface. :type br_name: str :type vif: VirtualInterface obj """ def _create_uplink_interface_impl(self, br_name, uplink): """Create an uplink interface on a bridge. :param node: Node to create interface on. :param br_name: Bridge name. :param if_name: Interface name. :type node: dict :type br_name: str :type if_name: str """ def delete_interface(self, br_name, if_name): """Delete an interface on CNE vSwitch. :param node: Node to create interface on. :param br_name: Bridge name. :param if_name: Interface name. :type node: dict :type br_name: str :type if_name: str :return: Operation status. :rtype: int """ self.execute(f"ovs-vsctl del-port {br_name} {if_name}") def set_port_vlan(self, if_name, vlan_id): """Delete an interface on CNE vSwitch. :param node: Node to create interface on. :param br_name: Bridge name. :param if_name: Interface name. :type node: dict :type br_name: str :type if_name: str :return: Operation status. :rtype: int """ self.execute(f"ovs-vsctl set port {if_name} tag={vlan_id}") def set_vlan_limit(self, limit): """Set VLAN limit of a virtual switch. :param limit: VLAN limitation. :type limit: int """ self.execute(f"ovs-vsctl set Open_vSwitch . other_config:vlan-limit={limit}") def set_uplink_mtu(self, mtu=1600): """Set uplink MTU. :param mtu: Request MTU. :type mtu: int """ for br in self.bridges: for uplink in br.uplinks: self.execute(f"ovs-vsctl set Interface {uplink.name} mtu_request={mtu}") def create_vhost_user_interface(self, br_name, vif): """Create a vhost user interface on a bridge. :param node: Node to create interface on. :param br_name: Bridge name. :param if_name: Interface name. :type node: dict :type br_name: str :type vif: dict """ self._create_vhost_user_interface_impl(br_name, vif) br = self.get_bridge(br_name) _bridge_add_vif(br, vif) def _create_uplink_bond_impl(self, br): pass def create_uplink_bridge(self, br_name, bond=False): """Create an OVS bridge with uplinks. It will also bind tep network configuration on the bridge local port. :param br_name: Bridge name. :param bond: Configure bond or not. :type br_name: str :type bond: bool """ br = self.create_bridge(br_name) ipv4_str = self.tep_addr.ipv4_str_with_prefix() ipv6_str = self.tep_addr.ipv6_str_with_prefix() cmds = [f"ip -4 addr add {ipv4_str} dev {br_name}", f"ip -6 addr add {ipv6_str} dev {br_name}", f"ip link set {br_name} up", f"ip -4 route flush {self.tep_addr.ipv4_network}", f"ip -6 route flush
<reponame>klokan/googlecrisismap<gh_stars>1-10 #!/usr/bin/python # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at: http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distrib- # uted under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. See the License for # specific language governing permissions and limitations under the License. """Displays a card containing a list of nearby features for a given topic.""" import cgi import datetime import json import logging import math import re import urllib import urlparse import base_handler import cache import config import kmlify import maproot import model import utils from google.appengine.api import urlfetch from google.appengine.ext import ndb # just for GeoPt # A cache of Feature list representing points from XML, keyed by # [url, map_id, map_version_id, layer_id] XML_FEATURES_CACHE = cache.Cache('card_features.xml', 300) # Fetched strings of Google Places API JSON results, keyed by request URL. JSON_PLACES_API_CACHE = cache.Cache('card.places', 300) # Lists of Feature objects, keyed by [map_id, map_version_id, topic_id, # geolocation_rounded_to_10m, radius, max_count]. FILTERED_FEATURES_CACHE = cache.Cache('card.filtered_features', 60) # Key: [map_id, map_version_id, topic_id, geolocation_rounded_to_10m, radius]. # Value: 3-tuple of (latest_answers, answer_times, report_dicts) where # - latest_answers is a dictionary {qid: latest_answer_to_that_question} # - answer_times is a dictionary {qid: effective_time_of_latest_answer} # - report_dicts contains the last REPORTS_PER_FEATURE reports, as a list # of dicts [{qid: answer, '_effective': time, '_id': report_id}] REPORT_CACHE = cache.Cache('card.reports', 15) # Number of crowd reports to cache and return per feature. REPORTS_PER_FEATURE = 5 MAX_ANSWER_AGE = datetime.timedelta(days=7) # ignore answers older than 7 days GOOGLE_SPREADSHEET_CSV_URL = ( 'https://docs.google.com/spreadsheet/pub?key=$key&output=csv') DEGREES = 3.14159265358979/180 DEADLINE = 10 PLACES_API_SEARCH_URL = ( 'https://maps.googleapis.com/maps/api/place/nearbysearch/json?') PLACES_API_DETAILS_URL = ( 'https://maps.googleapis.com/maps/api/place/details/json?') def RoundGeoPt(point): return '%.4f,%.4f' % (point.lat, point.lon) # 10-m resolution class Feature(object): """A feature (map item) from a source data layer.""" def __init__(self, name, description_html, location, layer_id=None, layer_type=None, gplace_id=None, html_attrs=None): self.name = name self.layer_id = layer_id self.location = location # should be an ndb.GeoPt self.description_html = description_html self.html_attrs = html_attrs or [] self.layer_type = layer_type self.gplace_id = gplace_id # Google Places place_id self.distance = None self.status_color = None self.answer_text = '' self.answer_time = '' self.answer_source = '' self.answers = {} self.reports = [] def __lt__(self, other): return self.distance < other.distance def __eq__(self, other): return self.__dict__ == other.__dict__ distance_km = property(lambda self: self.distance and self.distance/1000.0) distance_mi = property(lambda self: self.distance and self.distance/1609.344) def EarthDistance(a, b): """Great circle distance in metres between two points on the Earth.""" lat1, lon1 = a.lat*DEGREES, a.lon*DEGREES lat2, lon2 = b.lat*DEGREES, b.lon*DEGREES dlon = lon2 - lon1 atan2, cos, sin, sqrt = math.atan2, math.cos, math.sin, math.sqrt y = sqrt(pow(cos(lat2)*sin(dlon), 2) + pow(cos(lat1)*sin(lat2) - sin(lat1)*cos(lat2)*cos(dlon), 2)) x = sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2)*cos(dlon) return 6378000*atan2(y, x) def GetText(element): return (element is not None) and element.text or '' def GetFeaturesFromXml(xml_content, layer_id=None): """Extracts a list of Feature objects from KML, GeoRSS, or Atom content.""" root = kmlify.ParseXml(xml_content) for element in root.getiterator(): element.tag = element.tag.split('}')[-1] # remove XML namespaces features = [] for item in (root.findall('.//Placemark') + root.findall('.//entry') + root.findall('.//item')): location = GetLocationFromXmlItem(item) if not location: continue texts = {child.tag: GetText(child) for child in item.getchildren()} # For now strip description of all the html tags to prevent XSS # vulnerabilities except some basic text formatting tags # TODO(user): sanitization should move closer to render time # (revisit this once iframed version goes away) - b/17374443 description_html = (texts.get('description') or texts.get('content') or texts.get('summary') or '') description_escaped = utils.StripHtmlTags( description_html, tag_whitelist=['b', 'u', 'i', 'br']) features.append(Feature(texts.get('title') or texts.get('name'), description_escaped, location, layer_id)) return features def GetLocationFromXmlItem(item): lat = lon = '' try: if item.find('.//coordinates') is not None: lon, lat = GetText(item.find('.//coordinates')).split(',')[:2] if item.find('.//point') is not None: lat, lon = GetText(item.find('.//point')).split()[:2] location = ndb.GeoPt(float(lat), float(lon)) return location except ValueError: return None def GetKmlUrl(root_url, layer): """Forms the URL that gets the KML for a given KML-powered layer.""" layer_type = layer.get('type') if layer_type not in [maproot.LayerType.KML, maproot.LayerType.GEORSS, maproot.LayerType.GOOGLE_SPREADSHEET, maproot.LayerType.GEOJSON, maproot.LayerType.CSV]: return None source = (layer.get('source', {}).values() or [{}])[0] url = source.get('url') if layer_type in [maproot.LayerType.KML, maproot.LayerType.GEORSS]: return url or None if layer_type == maproot.LayerType.GOOGLE_SPREADSHEET: match = re.search(r'spreadsheet/.*[?&]key=(\w+)', url) url = match and GOOGLE_SPREADSHEET_CSV_URL.replace('$key', match.group(1)) # See http://goto.google.com/kmlify for details on kmlify's query params. if url: params = [('url', url)] if layer_type == maproot.LayerType.GEOJSON: params += [('type', 'geojson')] else: lat, lon = source.get('latitude_field'), source.get('longitude_field') if not (lat and lon): return None params += [('type', 'csv'), ('loc', lat == lon and lat or lat + ',' + lon), ('icon', source.get('icon_url_template')), ('color', source.get('color_template')), ('hotspot', source.get('hotspot_template'))] params += [('name', source.get('title_template')), ('desc', source.get('description_template')), ('cond', source.get('condition0')), ('cond', source.get('condition1')), ('cond', source.get('condition2'))] return (root_url + '/.kmlify?' + urllib.urlencode([(k, v) for k, v in params if v])) def GetGeoPt(place): """Returns a geo location of a given place. Args: place: Google Places API place Returns: GeoPt corresponding to the place location """ location = place['geometry']['location'] return ndb.GeoPt(location['lat'], location['lng']) def GetFeaturesFromPlacesLayer(layer, location): """Builds a list of Feature objects for the Places layer near given location. Args: layer: Places layer that defines the criteria for places query location: db.GeoPt around which to retrieve places Returns: A list of Feature objects representing Google Places. """ # Fetch JSON from the Places API nearby search places_layer = layer.get('source').get('google_places') request_params = [ ('location', location), ('rankby', 'distance'), ('keyword', places_layer.get('keyword')), ('name', places_layer.get('name')), ('types', places_layer.get('types'))] place_results = GetPlacesApiResults(PLACES_API_SEARCH_URL, request_params, 'results') # Convert Places API results to Feature objects features = [] for place in place_results: # Delay building description_html until after features list was trimmed. # Otherwise, we'd be doing wasteful calls to Places API # to get address/phone number that will never get displayed. features.append(Feature(place['name'], None, GetGeoPt(place), layer.get('id'), layer_type=layer.get('type'), gplace_id=place['place_id'])) return features def GetGooglePlaceDetails(place_id): return GetPlacesApiResults(PLACES_API_DETAILS_URL, [('placeid', place_id)]) def GetGooglePlaceDescriptionHtml(place_details): # TODO(user): build a shorter address format (will require i18n) result = place_details.get('result') return ('<div>%s</div><div>%s</div>' % (result.get('formatted_address', ''), result.get('formatted_phone_number', ''))) def GetGooglePlaceHtmlAttributions(place_details): return place_details.get('html_attributions', []) def GetPlacesApiResults(base_url, request_params, result_key_name=None): """Fetches results from Places API given base_url and request params. Args: base_url: URL prefix to use before the request params request_params: An array of key and value pairs for the request result_key_name: Name of the results field in the Places API response or None if the whole response should be returned Returns: Value for the result_key_name in the Places API response or all of the response if result_key_name is None """ google_api_server_key = config.Get('google_api_server_key') if not google_api_server_key: raise base_handler.Error( 500, 'google_api_server_key is not set in the config') request_params += [('key', google_api_server_key)] url = base_url + urllib.urlencode([(k, v) for k, v in request_params if v]) # Call Places API if cache doesn't have a corresponding entry for the url response = JSON_PLACES_API_CACHE.Get( url, lambda: urlfetch.fetch(url=url, deadline=DEADLINE)) # Parse JSON results response_content = json.loads(response.content) status = response_content.get('status') if status != 'OK' and status != 'ZERO_RESULTS': # Something went wrong with the request, log the error logging.error('Places API request [%s] failed with error %s', url, status) return [] return (response_content.get(result_key_name) if result_key_name else response_content) def GetTopic(root, topic_id): return {topic['id']: topic for topic in root['topics']}.get(topic_id) def GetLayer(root, layer_id): return {layer['id']: layer for layer in root['layers']}.get(layer_id) def GetFeatures(map_root, map_version_id, topic_id, request, location_center): """Gets a list of Feature objects for a given topic. Args: map_root: A dictionary with all the topics and layers information map_version_id: ID of the map version topic_id: ID of the crowd report topic; features are retrieved from the layers associated with this topic request: Original card request location_center: db.GeoPt around which to retrieve features. So far only Places layer uses this to narrow results according to the distance from this location. All other layers ignore this for now and just return all features. Note that Places layer doesn't have a set radius around location_center, it just tries to find features as close as possible to location_center. Returns: A list of Feature objects associated with layers of a given topic in a given map. """ topic = GetTopic(map_root, topic_id) or {} features = [] for layer_id in topic.get('layer_ids', []): layer = GetLayer(map_root, layer_id) if layer.get('type') == maproot.LayerType.GOOGLE_PLACES: features += GetFeaturesFromPlacesLayer(layer, location_center) else: url = GetKmlUrl(request.root_url, layer or {}) if url: try: def GetXmlFeatures(): content = kmlify.FetchData(url, request.host) return GetFeaturesFromXml(content, layer_id) features += XML_FEATURES_CACHE.Get( [url,
<gh_stars>0 """ Classes that represent a collection of points/structures that will define a labelmap or similar for image analysis purposes. Currently the parent object is GeometryTopologyData, that can contain objects of type Point and/or BoundingBox. The structure of the object is defined in the GeometryTopologyData.xsd schema. Created on Apr 6, 2015 @author: <NAME> """ import xml.etree.ElementTree as et import os import platform import time class GeometryTopologyData: # Coordinate System Constants UNKNOWN = 0 IJK = 1 RAS = 2 LPS = 3 __num_dimensions__ = 0 @property def num_dimensions(self): """ Number of dimensions (generally 3)""" if self.__num_dimensions__ == 0: # Try to get the number of dimensions from the first point or bounding box if len(self.points) > 0: self.__num_dimensions__ = len(self.points[0].coordinate) elif len(self.bounding_boxes) > 0: self.__num_dimensions__ = len(self.bounding_boxes[0].start) return self.__num_dimensions__ @num_dimensions.setter def num_dimensions(self, value): self.__num_dimensions__ = value @property def lps_to_ijk_transformation_matrix_array(self): """ LPS_IJK transformation matrix in a numpy format """ if self.lps_to_ijk_transformation_matrix is None: return None if self.__lps_to_ijk_transformation_matrix_array__ is None: import numpy as np self.__lps_to_ijk_transformation_matrix_array__ = np.array(self.lps_to_ijk_transformation_matrix, dtype=np.float) return self.__lps_to_ijk_transformation_matrix_array__ def __init__(self): self.__num_dimensions__ = 0 self.coordinate_system = self.UNKNOWN self.lps_to_ijk_transformation_matrix = None # Transformation matrix to go from LPS to IJK (in the shape of a 4x4 list) self.__lps_to_ijk_transformation_matrix_array__ = None # Same matrix in a numpy array self.points = [] # List of Point objects self.bounding_boxes = [] # List of BoundingBox objects self.id_seed = 0 # Seed. The structures added with "add_point", etc. will have an id = id_seed + 1 def add_point(self, point, fill_auto_fields=True, timestamp=None): """ Add a new Point to the structure :param point: Point object :param fill_auto_fields: fill automatically UserName, MachineName, etc. :param timestamp: optional timestamp to be set in the object """ self.points.append(point) if fill_auto_fields: self.fill_auto_fields(point) if timestamp: point.timestamp = timestamp def add_bounding_box(self, bounding_box, fill_auto_fields=True, timestamp=None): """ Add a new BoundingBox to the structure :param bounding_box: BoundingBox object :param fill_auto_fields: fill automatically UserName, MachineName, etc. :param timestamp: optional timestamp to be set in the object """ self.bounding_boxes.append(bounding_box) if fill_auto_fields: self.fill_auto_fields(bounding_box) if timestamp: bounding_box.timestamp = timestamp def fill_auto_fields(self, structure): """ Fill "auto" fields like timestamp, username, etc, unless there is already a specified value The id will be id_seed + 1 @param structure: object whose fields will be filled """ if structure.__id__ == 0: structure.__id__ = self.id_seed + 1 self.id_seed += 1 if not structure.timestamp: structure.timestamp = GeometryTopologyData.get_timestamp() if not structure.user_name: structure.user_name = os.path.split(os.path.expanduser('~'))[-1] if not structure.machine_name: structure.machine_name = platform.node() @staticmethod def get_timestamp(): """ Get a timestamp of the current date in the preferred format @return: """ return time.strftime('%Y-%m-%d %H:%M:%S') def to_xml(self): """ Generate the XML string representation of this object. It doesn't use any special python module to keep compatibility with Slicer """ output = '<?xml version="1.0" encoding="utf8"?><GeometryTopologyData>' if self.num_dimensions != 0: output += ('<NumDimensions>%i</NumDimensions>' % self.num_dimensions) output += ('<CoordinateSystem>%s</CoordinateSystem>' % self.__coordinate_system_to_str__(self.coordinate_system)) if self.lps_to_ijk_transformation_matrix is not None: output += self.__write_transformation_matrix__(self.lps_to_ijk_transformation_matrix) # Concatenate points points = "".join(map(lambda i:i.to_xml(), self.points)) # Concatenate bounding boxes bounding_boxes = "".join(map(lambda i:i.to_xml(), self.bounding_boxes)) return output + points + bounding_boxes + "</GeometryTopologyData>" def to_xml_file(self, xml_file_path): """ Save this object to an xml file :param: xml_file_path: file path """ s = self.to_xml() with open(xml_file_path, "w+b") as f: f.write(s) @staticmethod def from_xml_file(xml_file_path): """ Get a GeometryTopologyObject from a file @param xml_file_path: file path @return: GeometryTopologyData object """ with open(xml_file_path, 'r+b') as f: xml = f.read() return GeometryTopologyData.from_xml(xml) @staticmethod def from_xml(xml): """ Build a GeometryTopologyData object from a xml string. All the coordinates will be float. remark: Use the ElementTree instead of lxml module to be compatible with Slicer :param xml: xml string :return: new GeometryTopologyData object """ root = et.fromstring(xml) geometry_topology = GeometryTopologyData() # NumDimensions s = root.find("NumDimensions") if s is not None: geometry_topology.__num_dimensions__ = int(s.text) # Coordinate System s = root.find("CoordinateSystem") if s is not None: geometry_topology.coordinate_system = geometry_topology.__coordinate_system_from_str__(s.text) geometry_topology.lps_to_ijk_transformation_matrix = geometry_topology.__read_transformation_matrix__(root) seed = 0 # Points for xml_point_node in root.findall("Point"): point = Point.from_xml_node(xml_point_node) geometry_topology.add_point(point, fill_auto_fields=False) if point.id > seed: seed = point.id # BoundingBoxes for xml_bb_node in root.findall("BoundingBox"): bb = BoundingBox.from_xml_node(xml_bb_node) geometry_topology.add_point(bb, fill_auto_fields=False) geometry_topology.add_bounding_box(BoundingBox.from_xml_node(xml_bb_node), fill_auto_fields=False) if bb.id > seed: seed = bb.id # Set the new seed so that every point (or bounding box) added with "add_point" has a bigger id geometry_topology.id_seed = seed return geometry_topology def get_hashtable(self): """ Return a "hashtable" that will be a dictionary of hash:structure for every point or bounding box present in the structure @return: """ hash = {} for p in self.points: hash[p.get_hash()] = p for bb in self.bounding_boxes: hash[bb.get_hash()] = bb return hash @staticmethod def __to_xml_vector__(array, format_="%f"): """ Get the xml representation of a vector of coordinates (<value>elem1</value>, <value>elem2</value>...) :param array: vector of values :return: xml representation of the vector (<value>elem1</value>, <value>elem2</value>...) """ output = '' for i in array: output = ("%s<value>" + format_ + "</value>") % (output, i) return output @staticmethod def __coordinate_system_from_str__(value_str): """ Get one of the possible coordinate systems allowed from its string representation :param value_str: "IJK", "RAS", "LPS"... :return: one the allowed coordinates systems """ if value_str is not None: if value_str == "IJK": return GeometryTopologyData.IJK elif value_str == "RAS": return GeometryTopologyData.RAS elif value_str == "LPS": return GeometryTopologyData.LPS else: return GeometryTopologyData.UNKNOWN else: return GeometryTopologyData.UNKNOWN @staticmethod def __coordinate_system_to_str__(value_int): """ Get the string representation of one of the coordinates systems :param value_int: GeometryTopologyData.IJK, GeometryTopologyData.RAS, GeometryTopologyData.LPS... :return: string representing the coordinate system ("IJK", "RAS", "LPS"...) """ if value_int == GeometryTopologyData.IJK: return "IJK" elif value_int == GeometryTopologyData.RAS: return "RAS" elif value_int == GeometryTopologyData.LPS: return "LPS" return "UNKNOWN" def __read_transformation_matrix__(self, root_xml): """ Read a 16 elems vector in the xml and return a 4x4 list (or None if node not found) :param root_xml: xml root node :return: 4x4 list or None """ # Try to find the node first node = root_xml.find("LPStoIJKTransformationMatrix") if node is None: return None m = [] temp = [] for coord in node.findall("value"): temp.append(float(coord.text)) # Convert to a 4x4 list for i in range (4): m.append([temp[i*4], temp[i*4+1], temp[i*4+2], temp[i*4+3]]) return m def __write_transformation_matrix__(self, matrix): """ Generate an xml text for a 4x4 transformation matrix :param matrix: 4x4 list :return: xml string (LPStoIJKTransformationMatrix complete node) """ # Flatten the list s = "" for item in (item for sublist in matrix for item in sublist): s += ("<value>%f</value>" % item) return "<LPStoIJKTransformationMatrix>%s</LPStoIJKTransformationMatrix>" % s class Structure(object): def __init__(self, chest_region, chest_type, feature_type, description=None, format_="%f", timestamp=None, user_name=None, machine_name=None): """ :param chest_region: chestRegion Id :param chest_type: chestType Id :param feature_type: feature type Id (artifacts and others) :param description: optional description of the content the element :param format_: Default format to print the xml output coordinate values (also acceptable: %i for integers or customized) :param timestamp: datetime in format "YYYY/MM/dd HH:mm:ss" :param user_name: logged username :param machine_name: name of the current machine """ self.__id__ = 0 self.chest_region = chest_region self.chest_type = chest_type self.feature_type = feature_type self.description = description self.format = format_ self.timestamp = timestamp self.user_name = user_name self.machine_name = machine_name @property def id(self): return self.__id__ def get_hash(self): """ Get a unique identifier for this structure (string encoding all the fields) @return: """ return "%03d_%03d_%03d" % (self.chest_region, self.chest_type, self.feature_type) @staticmethod def from_xml_node(xml_node): """ Return a new instance of a Point object from xml "Point" element :param xml_node: xml Point element coming from a "find" instruction :return: new instance of the structure """ id = int(xml_node.find("Id").text) chest_region = int(xml_node.find("ChestRegion").text) chest_type = int(xml_node.find("ChestType").text) featureNode = xml_node.find("ImageFeature") if featureNode is None: feature_type = 0 else: feature_type = int(featureNode.text) # Description desc = xml_node.find("Description") if desc is not None: desc = desc.text # Timestamp and user info timestamp = xml_node.find("Timestamp") if timestamp is not None: timestamp = timestamp.text user_name = xml_node.find("Username") if user_name is not None: user_name = user_name.text machine_name = xml_node.find("MachineName") if machine_name is not None: machine_name = machine_name.text structure = Structure(chest_region, chest_type, feature_type, description=desc, timestamp=timestamp, user_name=user_name, machine_name=machine_name) structure.__id__ = id return structure def to_xml(self): """ Get the xml string representation of the structure that can be appended to a concrete structure (Point, BoundingBox, etc) :return: xml string representation of the point """ description
target_variant = row['target_variant'] mutation_type = row['mutation_type'] is_cds = row['is_cds'] aa_name = 'N/A' ref_state = row['ref_state'] alt_state = row['alt_state'] aa_start = row['aa_start'] aa_end = row['aa_end'] if mutation_type == 'snp': mutation_key = "{}_{}".format(mutation_type,row['unalign_variant_start']) if state == 'alt': dna_name = "{}{}{}".format(ref_variant,row['unalign_variant_start'],target_variant) else: dna_name = "{}{}{}".format(ref_variant, row['unalign_variant_start'], ref_variant) if is_cds: aa_name = "{}{}{}".format(ref_state,aa_start,ref_state) if state == 'alt': aa_name = "{}{}{}".format(ref_state,aa_start,alt_state) elif mutation_type == 'del': mutation_key = "{}_{}_{}".format(mutation_type,row['unalign_variant_start'],row['unalign_variant_end']) dna_name = "{}_{}_{}_{}".format(mutation_type,row['unalign_variant_start'],row['unalign_variant_end'],ref_variant ) if state == 'alt': dna_name = "{}_{}_{}".format(mutation_type, row['unalign_variant_start'], row['unalign_variant_end']) if is_cds: aa_name = "{}_{}_{}_{}".format(mutation_type, aa_start, aa_end, ref_state) if state == 'alt': aa_name = "{}_{}_{}".format(mutation_type, aa_start, aa_end) else: mutation_key = "{}_{}_{}".format(mutation_type, row['unalign_variant_start'],row['unalign_variant_end']) if state == 'alt': dna_name = "{}_{}_{}_{}".format(mutation_type,row['unalign_variant_start'],row['unalign_variant_end'],target_variant ) else: dna_name = "{}_{}_{}".format(mutation_type, row['unalign_variant_start'], row['unalign_variant_end']) if is_cds: if state == 'alt': aa_name = "{}_{}_{}_{}".format(mutation_type, aa_start, aa_end, alt_state) else: aa_name = "{}_{}_{}".format(mutation_type, aa_start, aa_end) row['mutation_key'] = mutation_key row['dna_name'] = dna_name row['aa_name'] = aa_name return scheme def identify_shared_kmers(genotype_mapping,scheme,min_thresh=0.5,max_thresh=1): ''' :param genotype_mapping: :type genotype_mapping: :param kmer_profile: :type kmer_profile: :param min_thresh: :type min_thresh: :param max_thresh: :type max_thresh: :return: :rtype: ''' all_seq_ids = list(genotype_mapping.keys()) #Get counts of each genotype genotype_sample_counts = {} for sample_id in genotype_mapping: genotype = genotype_mapping[sample_id] if not genotype in genotype_sample_counts: genotype_sample_counts[genotype] = 0 genotype_sample_counts[genotype]+=1 genotype_shared_kmers = {} for genotype in genotype_sample_counts: genotype_shared_kmers[genotype] = [] #Process each kmer and determine if it meets the thresholds for mutation_key in scheme: for state in scheme[mutation_key]: for kmer_entry in scheme[mutation_key][state]: uid = kmer_entry['key'] seq_ids = kmer_entry['seq_ids'] genotypes = [] for sample_id in seq_ids: genotype = genotype_mapping[sample_id] genotypes.append(genotype) gCounts = Counter(genotypes) for genotype in gCounts: count = gCounts[genotype] perc = count / genotype_sample_counts[genotype] if perc >= min_thresh and perc <= max_thresh: genotype_shared_kmers[genotype].append(uid) return genotype_shared_kmers def identify_shared_mutations(genotype_mapping,scheme,min_thresh=0.5,max_thresh=1): ''' :param genotype_mapping: :type genotype_mapping: :param kmer_profile: :type kmer_profile: :param min_thresh: :type min_thresh: :param max_thresh: :type max_thresh: :return: :rtype: ''' #Get counts of each genotype genotype_sample_counts = {} shared_mutations = {} for sample_id in genotype_mapping: genotype = genotype_mapping[sample_id] if not genotype in genotype_sample_counts: genotype_sample_counts[genotype] = 0 shared_mutations[genotype] = [] genotype_sample_counts[genotype]+=1 #get counts of genotypes by mutation mutation_geno_counts = {} for mutation_key in scheme: for state in scheme[mutation_key]: for row in scheme[mutation_key][state]: dna_name = row['dna_name'] if not dna_name in mutation_geno_counts: mutation_geno_counts[dna_name] = {} seq_ids = row['seq_ids'] for sid in seq_ids: genotype = genotype_mapping[sid] if not genotype in mutation_geno_counts[dna_name]: mutation_geno_counts[dna_name][genotype]= 0 mutation_geno_counts[dna_name][genotype] += 1 for mutation in mutation_geno_counts: for genotype in mutation_geno_counts[mutation]: perc = mutation_geno_counts[mutation][genotype] / genotype_sample_counts[genotype] if perc >= min_thresh and perc <= max_thresh: shared_mutations[genotype].append(mutation) return shared_mutations def qa_genotype_kmers(genotype_mapping,kmer_geno_assoc,uid_map): report = {} # Get counts of each genotype genotype_sample_counts = {} for sample_id in genotype_mapping: genotype = genotype_mapping[sample_id] if not genotype in genotype_sample_counts: genotype_sample_counts[genotype] = 0 report[genotype] = { 'name': genotype, 'num_members': 0, 'num_shared_kmers': 0, 'num_diagnostic_kmers': 0, 'shared_kmers': [], 'diagnostic_kmers': [], 'qc_message': '' } genotype_sample_counts[genotype] += 1 report[genotype]['num_members'] += 1 for uid in kmer_geno_assoc: shared_genotypes = kmer_geno_assoc[uid]['shared'] for genotype in shared_genotypes: n = uid_map[uid] report[genotype]['shared_kmers'].append(n) diagnostic_genotypes = kmer_geno_assoc[uid]['diagnostic'] for genotype in diagnostic_genotypes: n = uid_map[uid] report[genotype]['diagnostic_kmers'].append(n) for genotype in report: report[genotype]['num_shared_kmers'] = len(report[genotype]['shared_kmers']) report[genotype]['num_diagnostic_kmers'] = len(report[genotype]['diagnostic_kmers']) report[genotype]['shared_kmers'].sort() report[genotype]['shared_kmers'] = ';'.join(report[genotype]['shared_kmers'] ) report[genotype]['diagnostic_kmers'].sort() report[genotype]['diagnostic_kmers'] = ';'.join(report[genotype]['diagnostic_kmers']) qc_message = [] if report[genotype]['num_shared_kmers'] == 0: qc_message.append( 'FAIL: No shared kmers' ) if report[genotype]['diagnostic_kmers'] == 0: qc_message.append( 'WARNING: No diagnostic kmers' ) report[genotype]['qc_message'] = ';'.join(qc_message) return report def qa_genotype_mutations(genotype_mapping,mutation_geno_association): report = {} # Get counts of each genotype genotype_sample_counts = {} for sample_id in genotype_mapping: genotype = genotype_mapping[sample_id] if not genotype in genotype_sample_counts: genotype_sample_counts[genotype] = 0 report[genotype] = { 'name': genotype, 'num_members': 0, 'num_shared_mutations': 0, 'num_diagnostic_mutations': 0, 'shared_mutations': [], 'diagnostic_mutations': [], 'qc_message': '' } genotype_sample_counts[genotype] += 1 report[genotype]['num_members'] += 1 for mkey in mutation_geno_association: shared_genotypes = mutation_geno_association[mkey]['shared'] for genotype in shared_genotypes: report[genotype]['shared_mutations'].append(mkey) diagnostic_genotypes = mutation_geno_association[mkey]['diagnostic'] for genotype in diagnostic_genotypes: report[genotype]['diagnostic_mutations'].append(mkey) for genotype in report: report[genotype]['num_shared_mutations'] = len(report[genotype]['shared_mutations']) report[genotype]['num_diagnostic_mutations'] = len(report[genotype]['diagnostic_mutations']) report[genotype]['shared_mutations'].sort() report[genotype]['shared_mutations'] = ';'.join(report[genotype]['shared_mutations'] ) report[genotype]['diagnostic_mutations'].sort() report[genotype]['diagnostic_mutations'] = ';'.join(report[genotype]['diagnostic_mutations']) qc_message = [] if report[genotype]['num_shared_mutations'] == 0: qc_message.append( 'FAIL: No shared mutations' ) if report[genotype]['diagnostic_mutations'] == 0: qc_message.append( 'WARNING: No diagnostic mutations' ) report[genotype]['qc_message'] = ';'.join(qc_message) return report def print_scheme(scheme,file,header): """ Takes the kmer dictionary and writes it to a file :param scheme: dict of kmer info :param file: file path :return: """ fh = open(file,'w') fh.write("\t".join(header) + "\n") for mutation_key in scheme: for state in scheme[mutation_key]: for data in scheme[mutation_key][state]: row = [] for field in header: if field in data: row.append(data[field]) else: row.append('') fh.write("{}\n".format("\t".join([str(x) for x in row]))) fh.close() def run(): #get arguments cmd_args = parse_args() logger = init_console_logger(2) #input parameters input_msa = cmd_args.input_msa input_meta = cmd_args.input_meta prefix = cmd_args.prefix ref_id = cmd_args.ref_id ref_gbk = cmd_args.ref_gbk outdir = cmd_args.outdir min_len = cmd_args.min_len max_len = cmd_args.max_len max_ambig = cmd_args.max_ambig min_complexity = cmd_args.min_complexity max_missing = cmd_args.max_missing n_threads = cmd_args.n_threads impute_min_frac = cmd_args.iFrac # initialize analysis directory if not os.path.isdir(outdir): logger.info("Creating analysis results directory {}".format(outdir)) os.mkdir(outdir, 0o755) else: logger.info("Results directory {} already exits, will overwrite any results files here".format(outdir)) #output files scheme_file = os.path.join(outdir,"{}-scheme.txt".format(prefix)) genotypes_mut_file = os.path.join(outdir,"{}-mutation.associations.txt".format(prefix)) genotypes_kmers_file = os.path.join(outdir, "{}-kmers.associations.txt".format(prefix)) genotype_dendrogram = os.path.join(outdir, "{}-dendropgram.html".format(prefix)) #Get the Gene features from the reference sequence ref_features = parse_reference_sequence(ref_gbk) #Read the input MSA and calculate the consensus sequence logger.info("Reading input alignment {}".format(input_msa)) input_alignment = read_fasta(input_msa) if ref_id not in input_alignment: logger.error("Reference id specified '{}' is not found in alignment, make sure it is present and retry".format(ref_id)) sys.exit() if cmd_args.impute: logger.info("Imputing ambiguous bases enabled with fraction of {}".format(impute_min_frac)) input_alignment = impute_ambiguous_bases(input_alignment, ref_id, min_frac=impute_min_frac) else: logger.info("Imputing ambiguous bases not enabled") min_members = len(input_alignment) - len(input_alignment)*max_missing logger.info("Found {} sequences in msa".format(len(input_alignment))) consensus_bases = calc_consensus(input_alignment) consensus_seq = generate_consensus_seq(consensus_bases) #read the metadata associations logger.info("Reading genotype associations from {}".format(input_meta)) metadata_df = read_tsv(input_meta) logger.info("Found {} lines in {}".format(len(metadata_df),input_meta)) metadata_df['genotype'] = metadata_df['genotype'].astype(str) genotype_mapping = get_genotype_mapping(metadata_df) #Remove pseudo sequences generated by parsityper if applicable logger.info("Filtering samples from genotype map which are not also in the alignment") missing_samples = list(set(list(genotype_mapping.keys())) - set(list(input_alignment.keys())) ) samples_to_mask = ['pseudo_A','pseudo_T','pseudo_C','pseudo_G','consensus'] + missing_samples logger.info("Masking {} samples".format(len(missing_samples))) for sample in samples_to_mask: if sample in genotype_mapping: logger.info("Removing sample {} from analysis due to no sequence in alignment".format(sample)) del(genotype_mapping[sample]) #Identify variable positions within the alignment logger.info("Scanning alignment for SNPs") snp_positions = find_snp_positions(consensus_seq) logger.info("Found {} variable sites".format(len(snp_positions))) sequence_deletions = {} logger.info("Scanning alignment for indels") for seq_id in input_alignment: sequence_deletions[seq_id] = find_internal_gaps(input_alignment[seq_id]) variant_positions = [] for pos in snp_positions: variant_positions.append([pos,pos]) unique_indels = {} for sid in sequence_deletions: for i in sequence_deletions[sid]: unique_indels[i] = '' logger.info("Found {} potential indels".format(len(unique_indels))) for indel in unique_indels: (start,end) = indel.split(':') variant_positions.append([int(start),int(end)]) logger.info("Creating scheme based on identified SNPs and indels") scheme = construct_scheme(variant_positions, ref_id, input_alignment, min_len, max_len,n_threads) logger.info("Performing QA on selected k-mers") scheme = qa_scheme(scheme, input_alignment, ref_id, genotype_mapping,min_len=min_len, max_len=max_len,min_complexity=min_complexity) logger.info("Adding gene annotations") scheme = add_gene_inference(scheme, ref_id, ref_features, input_alignment) #remove samples where genotype mapping info is missing valid_samples = set(list(genotype_mapping.keys())) unique_index = 0 for mutation_key in scheme: for state in scheme[mutation_key]: for record in scheme[mutation_key][state]: record['seq_ids'] = list( set(record['seq_ids']) & valid_samples ) record['key'] = unique_index unique_index+=1 scheme = format_scheme_human_readable(scheme, ref_id, input_alignment) #get the kmer profile for each sample logger.info("Building genotype kmer profiles") kmer_profile = build_kmer_profiles(list(genotype_mapping.keys()),scheme) # create a plot of sample similarity for a multi-sample run if len(kmer_profile ) > 1: logger.info("Plotting Sample dendrogram") labels = [] for sample in kmer_profile: if sample in genotype_mapping: genotype = genotype_mapping[sample] else: genotype = 'n/a' labels.append("{} | {}".format(sample,genotype)) d = dendrogram_visualization() kmer_content_profile_df = pd.DataFrame.from_dict(kmer_profile,orient='index') d.build_dendrogram(labels, kmer_content_profile_df, genotype_dendrogram) #identify genotype shared kmers logger.info("Identifying shared kmers by genotype") shared_kmers = identify_shared_kmers(genotype_mapping,scheme,min_thresh=0.5,max_thresh=1) positive_kmers = identify_shared_kmers(genotype_mapping,scheme,min_thresh=0.95,max_thresh=1) partial_positive_kmers = identify_shared_kmers(genotype_mapping, scheme, min_thresh=0.01, max_thresh=0.94999) #identify shared mutations shared_mutations = identify_shared_mutations(genotype_mapping, scheme, min_thresh=0.5, max_thresh=1) positive_mutations = identify_shared_mutations(genotype_mapping, scheme, min_thresh=0.95,max_thresh=1) partial_positive_mutations = identify_shared_mutations(genotype_mapping, scheme, min_thresh=0.01, max_thresh=0.94999) #reorder datastructure to add diagnostic information to the scheme kmer_geno_assoc = {} for genotype in shared_kmers: for uid in shared_kmers[genotype]: if not uid in kmer_geno_assoc: kmer_geno_assoc[uid] = {'positive':[],'partial':[],'shared':[],'diagnostic':[]} kmer_geno_assoc[uid]['shared'].append(genotype) for uid in positive_kmers[genotype]: if not uid in kmer_geno_assoc: kmer_geno_assoc[uid] = {'positive':[],'partial':[],'shared':[],'diagnostic':[]} kmer_geno_assoc[uid]['positive'].append(genotype) for uid in partial_positive_kmers[genotype]: if not uid in kmer_geno_assoc: kmer_geno_assoc[uid] = {'positive':[],'partial':[],'shared':[],'diagnostic':[]} kmer_geno_assoc[uid]['partial'].append(genotype) uid_index = {} #Add positive and partial groupings to scheme for mutation_key in scheme: for state in scheme[mutation_key]: for row in scheme[mutation_key][state]: uid = row['key'] uid_index[uid]
self.silver_name, "typeclass": "typeclasses.dropped_silver.Dropped_Silver", "aliases": ["money", "coins"], "desc": "Silver sovereigns have the likeness of a mighty lion engraved upon their surface on one side and the Tower of Corinth on the other.", "location": caller.location, "coins_value": self.silver_amount_int} if self.silver_amount: if caller.db.silver_carried < self.silver_amount_int: caller.msg("You aren't carrying that much silver.") return else: string = "You drop {:,} silver.".format(self.silver_amount_int) caller.msg(string) string = "{} drops {:,} silver.".format(caller.name, self.silver_amount_int) caller.location.msg_contents(string, exclude=caller) caller.db.silver_carried = caller.db.silver_carried - self.silver_amount_int new_object = spawn(dropped_silver, location=caller.location) return obj = caller.search(self.args, location=caller, nofound_string="You aren't carrying %s." % self.args, multimatch_string="You carry more than one %s:" % self.args) if not obj: caller.msg("Drop what?") return if obj in caller.db.wielding: caller.msg("You have to stop wielding it before you can drop it.") return if obj in caller.db.clothes_objects: caller.msg("You have to remove it before you can drop it!") return if obj in caller.db.girdle: caller.msg("You have to detach it from your girdle before you can drop it.") return if obj.db.birth_time: if obj.db.birth_time + obj.db.duration < time.time(): caller.msg("%s crumbles to dust when you touch it! Just how old was that thing?" % str.capitalize(str(obj.name))) obj.delete() return obj.move_to(caller.location, quiet=True) caller.msg("You drop %s." % (obj.name,)) caller.location.msg_contents("%s drops %s." % (caller.name, obj.name), exclude=caller) # Call the object script's at_drop() method. obj.at_drop(caller) class CmdGive(COMMAND_DEFAULT_CLASS): """ Give an item or some silver to someone. Usage: give <item> to <target> give <#> silver to <target> """ key = "give" aliases = ["lend"] locks = "cmd:all()" arg_regex = r"\s|$" def parse(self): "Not-so-trivial parser!" raw = self.args args = raw.strip() switches = [] silver_amount = False if args and len(args) > 1 and args[0] == "/": # we have a switch, or a set of switches. These end with a space. switches = args[1:].split(None, 1) if len(switches) > 1: switches, args = switches switches = switches.split('/') else: args = "" switches = switches[0].split('/') arglist = [arg.strip() for arg in args.split()] # check for arg1, arg2, ... = argA, argB, ... constructs lhs, rhs = args, None lhslist, rhslist = [arg.strip() for arg in args.split(',')], [] if args and ' silver to ' in args: lhs, rhs = [arg.strip() for arg in args.split(' to ', 1)] lhslist = [arg.strip() for arg in lhs.split(',')] rhslist = [arg.strip() for arg in rhs.split(',')] silver_amount = 10 elif args and ' to ' in args: lhs, rhs = [arg.strip() for arg in args.split(' to ', 1)] lhslist = [arg.strip() for arg in lhs.split(',')] rhslist = [arg.strip() for arg in rhs.split(',')] # save to object properties: self.raw = raw self.switches = switches self.args = args.strip() self.arglist = arglist self.lhs = lhs self.lhslist = lhslist self.rhs = rhs self.rhslist = rhslist self.silver_amount = silver_amount def func(self): """Implement give""" caller = self.caller if self.silver_amount: if not self.args or not self.rhs: caller.msg("Usage: give <item> to <target>") return target = caller.search(self.rhs) if not target: caller.msg("Give how much silver to who?") return if target == caller: caller.msg("You decide not to give away your silver after all.") return # Start extra silver parsing here! lhs1 = self.lhs[:-7] lhs2 = "silver" silver_amount = int(lhs1) if caller.db.silver_carried < silver_amount: caller.msg("You are not carrying that much silver.") return elif not utils.inherits_from(target, "typeclasses.characters.Character"): caller.msg("You can't give silver to that.") return else: #string = "You are carrying {:,} silver sovereigns.".format(caller.db.silver_carried) string = "You give {:,} silver to {}.".format(silver_amount, target.name) caller.msg(string) string = "{} gives you {:,} silver sovereigns.".format(caller.name, silver_amount) target.msg(string) emit_string = ("%s gives %s some silver sovereigns." % (caller.name, target.name)) caller.location.msg_contents(emit_string, exclude=(caller, target), from_obj=caller) caller.db.silver_carried = caller.db.silver_carried - silver_amount target.db.silver_carried = target.db.silver_carried + silver_amount return if not self.args or not self.rhs: caller.msg("Usage: give <item> to <target>") return to_give = caller.search(self.lhs, location=caller, nofound_string="You aren't carrying %s." % self.lhs, multimatch_string="You carry more than one %s:" % self.lhs) target = caller.search(self.rhs) if not (to_give and target): caller.msg("Give what to who?") return if target == caller: caller.msg("You keep %s to yourself." % to_give.key) return if not to_give.location == caller: caller.msg("You are not holding %s." % to_give.key) return if to_give in caller.db.wielding: caller.msg("You have to stop wielding it before you can give it away.") return if to_give in caller.db.clothes_objects: caller.msg("You have to remove it before you can give it away!") return if to_give in caller.db.girdle: caller.msg("You have to detach it from your girdle before you can give it away.") return if utils.inherits_from(target, "typeclasses.npcs.Combat_Merchant_Mob"): caller.msg("%s hands %s back to you.\n|c%s says, \"I trade in %s. If you have any you'd like to |wsell|c to me, I'm interested.\"" % (target.name, to_give, target.name, target.db.trade_item)) return if not utils.inherits_from(target, "typeclasses.characters.Character"): caller.msg("You can't give %s to that." % to_give) return # give object caller.msg("You give %s to %s." % (to_give.key, target.key)) to_give.move_to(target, quiet=True) target.msg("%s gives you %s." % (caller.key, to_give.key)) emit_string = ("%s gives %s %s." % (caller.name, target.name, to_give.key)) caller.location.msg_contents(emit_string, exclude=(caller, target), from_obj=caller) # Call the object script's at_give() method. to_give.at_give(caller, target) class CmdDesc(COMMAND_DEFAULT_CLASS): """ describe yourself Usage: desc <description> Add a description to yourself. This will be visible to people when they look at you. """ key = "desc" locks = "cmd:all()" arg_regex = r"\s|$" def func(self): """add the description""" if not self.args: self.caller.msg("You must add a description.") return self.caller.db.desc = self.args.strip() self.caller.msg("You set your description.") class CmdSay(COMMAND_DEFAULT_CLASS): """ Speak as your character. Usage: say message \"Great! """ key = "say" aliases = ['"', "'"] locks = "cmd:all()" def func(self): """Run the say command""" caller = self.caller if not self.args: caller.msg("Say what?") return #WHN: Cleaning up the presentation. speech = self.args speech = speech.lstrip() speech = speech[0].upper() + speech[1:] speech_type = "say" if not speech.endswith(".") and not speech.endswith("!") and not speech.endswith("?"): speech = speech + "." if speech.endswith("!"): speech_type = "exclaim" elif speech.endswith("?"): speech_type = "ask" # calling the speech hook on the location speech = caller.location.at_say(caller, speech) # Feedback for the object doing the talking. caller.msg('|cYou %s, "%s|c"|n' % (speech_type, speech)) # Build the string to emit to neighbors. emit_string = '|c%s %ss, "%s|c"|n' % (caller.name, speech_type, speech) caller.location.msg_contents(emit_string, exclude=caller, from_obj=caller) class CmdWhisper(COMMAND_DEFAULT_CLASS): """ Speak privately as your character to another Usage: whisper <player> = <message> Talk privately to those in your current location, without others being informed. """ key = "whisper" locks = "cmd:all()" def func(self): """Run the whisper command""" caller = self.caller if not self.lhs or not self.rhs: caller.msg("Usage: whisper <player> = <message>") return receiver = caller.search(self.lhs) if not receiver: return if caller == receiver: caller.msg("You can't whisper to yourself.") return speech = self.rhs speech = speech.lstrip() speech = speech[0].upper() + speech[1:] if not speech.endswith(".") and not speech.endswith("!") and not speech.endswith("?"): speech = speech + "." # Feedback for the object doing the talking. caller.msg('You whisper to %s, "%s|n"' % (receiver.key, speech)) # Build the string to emit to receiver. emit_string = '%s whispers, "%s|n"' % (caller.name, speech) receiver.msg(text=(emit_string, {"type": "whisper"}), from_obj=caller) class CmdPose(COMMAND_DEFAULT_CLASS): """ strike a pose Usage: pose <pose text> pose's <pose text> Example: pose is standing by the wall, smiling. -> others will see: Tom is standing by the wall, smiling. Describe an action being taken. The pose text will automatically begin with your name. """ key = "pose" aliases = [":", "emote"] locks = "cmd:all()" def parse(self): """ Custom parse the cases where the emote starts with some special letter, such as 's, at which we don't want to separate the caller's name and the emote with a space. """ args = self.args if args and not args[0] in ["'", ",", ":"]: args = " %s" % args.strip() self.args = args def func(self): """Hook function""" if not self.args: msg = "What do you want to do?" self.caller.msg(msg) else: msg = "%s%s" % (self.caller.name, self.args) self.caller.location.msg_contents(text=(msg, {"type": "pose"}), from_obj=self.caller) class CmdAccess(COMMAND_DEFAULT_CLASS): """ show your current game access Usage: access This command shows you the permission hierarchy and which permission groups you are a member of. """ key = "access" aliases = ["groups", "hierarchy"] locks = "cmd:pperm(PlayerHelpers)" arg_regex = r"$" def func(self): """Load the permission groups""" caller = self.caller hierarchy_full = settings.PERMISSION_HIERARCHY string = "\n|wPermission
import csv import json import pickle from difflib import SequenceMatcher as SeqMat import django_rq import pandas as pd import tablib from django import db from django.conf import settings from django.core.management import call_command from django.http import HttpResponse, JsonResponse from django.shortcuts import render, redirect from django_tables2.views import RequestConfig from simple_salesforce import Salesforce from dedupper.forms import UploadFileForm from dedupper.tables import SFContactTable, RepContactTable from dedupper.utils import * tablib.formats.json.json = json sf_prog =rep_prog=progress_num = 0 keys = list() store=name_sort=address_sort=email_sort=crd_sort=phone_sort=average_sort=key_sort=True db_job=rep_df = None UPLOAD_JOB_ID = '79243664' DUPLIFY_JOB_ID = '36647924' dedupe_q = django_rq.get_queue('high', autocommit=True, is_async=True) def display(request): print('render datatables from dataframes') reps_df = get_contacts('reps') new_flag = reps_df.Id == '' manual_flag = reps_df.Id == 'manual' news = reps_df[new_flag] manuals = reps_df[manual_flag] # dupes = reps_df[not (new_flag or manual_flag)] dupes = 'dupe' print(f'news: {len(news)}\nmanuals: {len(manuals)}\ndupes: {len(dupes)}') print(f'news: {type(news)}\nmanuals: {type(manuals)}\ndupes: {type(dupes)}') # now I have return render(request, 'dedupper/data-table.html') def closest(request): #function gets the SFContactTable for each of the closest matches if request.method == 'GET': id = request.GET.get('id') close_id1 = request.GET.get('close1') close_id2 = request.GET.get('close2') close_id3 = request.GET.get('close3') html_table1=html_table2=html_table3='' #check if id exists, if so: render html table of the contact if close_id1 != '': table1 = SFContactTable( sfcontact.objects.filter(pk=close_id1)) html_table1 = table1.as_html(request) if close_id2 != '': table2 = SFContactTable( sfcontact.objects.filter(pk=close_id2)) html_table2 = table2.as_html(request) if close_id3 != '': table3 = SFContactTable( sfcontact.objects.filter(pk=close_id3)) html_table3 = table3.as_html(request) return JsonResponse({ 'table1': html_table1, 'table2':html_table2, 'table3': html_table3}, safe=False) # return JsonResponse({'rep-table': 'tits'}) def turn_table(request): #create a new RepContactTable #function that returns a table of contact types sorted by a user input field if request.method == 'GET': type = request.GET.get('type') sort = request.GET.get('sorting') #switch statement on sort field if sort =='name': #booleans for each sorting field to toggle between ascending and descending if globals()['name_sort']: globals()['name_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('lastName', 'firstName')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-lastName', '-firstName')) elif sort =='email': if globals()['email_sort']: globals()['email_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('workEmail')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-workEmail')) elif sort =='phone': if globals()['name_sort']: globals()['name_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('Phone')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-Phone')) elif sort =='address': if globals()['name_sort']: globals()['name_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('mailingStateProvince', 'mailingCity')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-mailingStateProvince', '-mailingCity')) elif sort =='average': if globals()['name_sort']: globals()['name_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('average')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-average')) elif sort =='keySortedBy': if globals()['name_sort']: globals()['name_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('keySortedBy')) else: globals()['name_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-keySortedBy')) elif sort =='CRD': if globals()['crd_sort']: globals()['crd_sort'] = False table = RepContactTable(repContact.objects.filter(type=type).order_by('CRD')) else: globals()['crd_sort'] = True table = RepContactTable(repContact.objects.filter(type=type).order_by('-CRD')) else: table = RepContactTable(repContact.objects.filter(type=type)) config = RequestConfig(request, paginate={'per_page': 250}) config.configure(table) print('sending table') return JsonResponse({ 'table': table.as_html(request) }, safe=False) def download(request,type): #csv headers fields = ('id','CRD', 'First', 'Last', 'Street', 'City', 'State', 'Zip', 'Phone', 'Home Phone', 'Mobile Phone', 'Other Phone', 'Work Email', 'Personal Email', 'Other Email', 'Match Score', 'Key' ) #flag to remove contactIDs from new records no_id = None #name of uploaded rep list if 'repCSV_name' in request.session: repCSV_name = request.session['repCSV_name'].replace('.csv','') #name the csv if(type == "Duplicate"): filename = f'filename="{repCSV_name} (Duplicates).csv"' elif(type == "NewRecord"): filename = f'filename= "{repCSV_name} (New Records).csv"' type = 'New Record' no_id = '.' elif(type == "ManualCheck"): filename = f'filename="{repCSV_name} (Manual Checks).csv"' type = 'Manual Check' else: filename = f'filename="{repCSV_name} (Undecided Records).csv"' rep_resource = RepContactResource() users = repContact.objects.filter(type = type) dataset = rep_resource.export(users) db_df = pd.read_json(dataset.json) #parse the misc field back into their respective fields misc_df = db_df['misc'].astype(str).str.split('-!-', expand=True) db_df=db_df.drop('misc', axis=1) f = list(db_df[['average', 'keySortedBy', 'closest1_contactID']]) with open(settings.REP_CSV, 'rb') as file: pd_rep_csv = pickle.load(file) print('pickle load reps') fields = f + list(pd_rep_csv) fields[fields.index('closest1_contactID')] = 'ContactID' frames=[db_df[['average', 'keySortedBy', 'closest1_contactID']], misc_df] export = pd.concat(frames, axis=1) export.columns = fields if no_id: del export['ContactID'] fields.remove('ContactID') export.replace('nan', '', inplace=True) dataset.csv = export.to_csv(index=False) #create response response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; '+filename #create csv writer for the response and write the writer = csv.writer(response) writer.writerow(fields) for line in dataset: writer.writerow(line) return response def download_times(request,type): if(type == "DD"): filename = 'filename="Dedup Times.csv"' times = dedupTime.objects.all().values_list() export_headers = [i.name for i in dedupTime._meta.local_concrete_fields] elif(type == "D"): filename = 'filename="Duplify Times.csv"' times = duplifyTime.objects.all().values_list() export_headers = [i.name for i in duplifyTime._meta.local_concrete_fields] elif(type == "A"): if 'repCSV_name' in request.session: repCSV_name = request.session['repCSV_name'] else: repCSV_name = 'a Rep list' if 'sfCSV_name' in request.session: sfCSV_name = request.session['sfCSV_name'] else: sfCSV_name = 'a Salesforce Channel' total_reps = repContact.objects.all().count() total_sf = sfcontact.objects.all().count() total_dups = repContact.objects.filter(type='Duplicate').count() percent_dups = round((total_dups/total_reps)*100,1) total_news = repContact.objects.filter(type='New Record').count() percent_news = round((total_news/total_reps)*100,1) time_hours = round(((duplifyTime.objects.get(pk=1).seconds/60)/60),2) audit_info = [] audit_info.append([f"Duplify Audit of {repCSV_name} duped against {sfCSV_name}"]) audit_info.append([""]) audit_info.append([f"Number of Records in Rep List: {total_reps} \t Number of Records in {sfCSV_name[2:]}: " + f"{total_sf}"]) audit_info.append([f"Number of Duplicate Records in the Rep List: {total_dups}({percent_dups}%)"]) audit_info.append([f"Number of New Records in the Rep List: {total_news}({percent_news}%)"]) audit_info.append([f"Time: {time_hours} hours"]) audit_info.append([""]) audit_info.append(["Thank you for using Duplify!"]) filename = 'filename="Audit.txt"' response = HttpResponse(content_type='text/text') response['Content-Disposition'] = 'attachment; ' + filename writer = csv.writer(response, delimiter='\n') writer.writerows(audit_info) return response else: filename = 'filename="Upload Times.csv"' times = uploadTime.objects.all().values_list() export_headers = [i.name for i in uploadTime._meta.local_concrete_fields] response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; '+filename writer = csv.writer(response) writer.writerow(export_headers) for time in times: writer.writerow(time) return response def flush_db(request): call_command('flush', interactive=False) return redirect('/map') def import_csv(request): global db_job, progress_num channel = request.GET.get('channel') # sf channel to pull from db rep_header_map = request.GET.get('rep_map') # the JSON of csv headers mapped to db fields rep_header_map = json.loads(rep_header_map) # JSON -> dict() print(rep_header_map) request.session['prog_num']= progress.objects.all().count() request.session['sf_channel'] = f'the {channel} channel' # for printing request.session['fields'] = list(rep_header_map.values()) request.session['channel'] = channel request.session['map'] = rep_header_map request.session['misc'] = list(rep_header_map.keys()) # the csv headers are stored to be used for exporting # get_channel queries the channel and loads the rep list and sf contacts # newest = dedupe_q.enqueue(get_channel, db_data, job_id=UPLOAD_JOB_ID, timeout='1h', result_ttl='1h') # request.session['rq_job'] = UPLOAD_JOB_ID return JsonResponse({'msg': 'success!'}, safe=False) def index(request): return render(request, 'dedupper/login.html') def upload_page(request): return render(request, 'dedupper/rep_list_upload.html') def key_gen(request): if 'fields' in request.session: fields = request.session['fields'] else: fields = ['ERROR: Reset and Upload Reps'] return render(request, 'dedupper/key_generator.html', {'keys': fields}) def login(request): u = request.GET.get('username') p = request.GET.get('password') try: sf = Salesforce(password='<PASSWORD>', username='<EMAIL>', security_token='<PASSWORD>') msg= 'success' #store u & p in session, create function called login_check that makes sure a username is in the session # else, redirect to / except: msg = 'failure' return JsonResponse({'msg': msg}, safe=False) def map(request): return render(request, 'dedupper/field_mapping.html', ) def merge(request, id): obj = repContact.objects.values().get(id=id) ids = [obj['closest1_contactID'], obj['closest2_contactID'], obj['closest3_contactID']] objs = sfcontact.objects.values().filter(ContactID__in=ids) fields = [i.name for i in repContact._meta.local_fields] mergers = list() for i in range(len(objs)): if objs[i]['ContactID'] == obj['closest1_contactID']: del objs[i]['closest_rep_id'], objs[i]['dupFlag'], objs[i]['ContactID'] mergers.insert(0, list(objs[i].values())) elif objs[i]['ContactID'] == obj['closest2_contactID']: del objs[i]['closest_rep_id'], objs[i]['dupFlag'], objs[i]['ContactID'] mergers.insert(len(mergers), list(objs[i].values())) else: del objs[i]['closest_rep_id'], objs[i]['dupFlag'], objs[i]['ContactID'] mergers.insert(-1, list(objs[i].values())) del obj['closest1_id'], obj['closest2_id'], obj['closest3_id'], obj['closest1_contactID'], obj['closest2_contactID'], obj['closest3_contactID'], obj['type'], obj['dupFlag'], obj['average'] obj = list(obj.values()) if len(mergers) == 3: obj_map = {i:j for i,j in zip(fields, list(zip(obj,mergers[0],mergers[1],mergers[2])) ) } elif len(mergers) == 2: obj_map = {i:j for i,j in zip(fields, list(zip(obj,mergers[0],mergers[1])) ) } elif len(mergers) == 1: obj_map = {i:j for i,j in zip(fields, list(zip(obj,mergers[0])) ) } return render(request, 'dedupper/sort_view.html', {'objs' : obj_map}) def dup_progress(request): if request.method == 'GET': print(f'ENTER dup_progress: {progress.objects.latest().completed_keys}') if progress.objects.latest().completed_keys > 0: return JsonResponse({'done': 0.1, 'esti': 10}, safe=False) else: print('DEDUPING DONE') return JsonResponse({'done': 1000, 'esti': 10}, safe=False) def resort(request): if request.method == 'GET': print('resorting') set_sorting_algorithm(int(request.GET.get('upper_thres')), int(request.GET.get('lower_thres'))) return JsonResponse({'msg': 'success!'}, safe=False) def contact_sort(request): if request.method == 'GET': data = request.GET.getlist("data[]") rep = repContact.objects.get(pk=data[1]) if data[0] == 'Duplicate': print(f"old order: {rep.closest1}, {rep.closest2}, {rep.closest3}") rep.type = 'Duplicate' if rep.closest3 and int(data[2]) == rep.closest3.id: print('moving 3rd closest to 1st') rep.closest1, rep.closest2, rep.closest3 = rep.closest3, rep.closest1, rep.closest2 rep.closest1_contactID, rep.closest2_contactID, rep.closest3_contactID = rep.closest3_contactID, rep.closest1_contactID, rep.closest2_contactID elif rep.closest2 and int(data[2]) == rep.closest2.id: print('moving 2nd closest to 1st') rep.closest1, rep.closest2 = rep.closest2, rep.closest1 rep.closest1_contactID, rep.closest2_contactID =rep.closest2_contactID, rep.closest1_contactID print(f"new order: {rep.closest1}, {rep.closest2}, {rep.closest3}") elif data[0] == 'New Record': rep.type = 'New Record' rep.closest1_contactID = '' rep.save() return JsonResponse({'msg': 'success!'}, safe=False) def run(request): global keys if request.method == 'GET': db.connections.close_all() keylist = request.GET.get('keys') #channel = request.GET.get('channel') keylist = keylist.split("~") partslist = [i.split('-') for i in keylist[:-1]] keys=partslist p = progress.objects.latest() p.total_keys = len(partslist) request.session['indicator'] = len(partslist) p.save() db.connections.close_all() data= { 'channel': request.session['channel'], 'map': request.session['map'], 'keys' : partslist, 'reps': pd.read_pickle(settings.REP_CSV), } newest = dedupe_q.enqueue(key_generator, data, job_id=DUPLIFY_JOB_ID, timeout='1h', result_ttl='1h') return JsonResponse({'msg': 'success!'}, safe=False) def upload(request): global export_headers, keys, pd_df print('uploading file') form = UploadFileForm(request.POST, request.FILES) repCSV
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Generates C++ source files from a mojom.Module.""" import datetime import mojom import mojom_generator import mojom_pack import os import re import sys from string import Template # mojom_cpp_generator provides a way to generate c++ code from a mojom.Module. # cpp = mojom_cpp_generator.CPPGenerator(module) # cpp.GenerateFiles("/tmp/g") class Lines(object): """Helper class to maintain list of template expanded lines.""" def __init__(self, template, indent = None): self.template = template self.indent = indent self.lines = [] def Add(self, map = {}, **substitutions): if len(substitutions) > 0: map = map.copy() map.update(substitutions) self.lines.append(self.template.substitute(map)) def __repr__(self): if self.indent is not None: prefix = "".ljust(self.indent, ' ') repr = '\n'.join(self.lines) self.lines = map(lambda l: prefix + l, repr.splitlines()) return '\n'.join(self.lines) class CPPGenerator(mojom_generator.Generator): struct_serialization_compute_template = \ Template(" +\n mojo::internal::ComputeSizeOf($NAME->$FIELD())") struct_serialization_clone_template = Template( " clone->set_$FIELD(mojo::internal::Clone($NAME->$FIELD(), buf));") struct_serialization_handle_release_template = Template( " mojo::internal::ResetIfNonNull($NAME->$FIELD());") struct_serialization_encode_template = Template( " Encode(&$NAME->${FIELD}_, handles);") struct_serialization_encode_handle_template = Template( " EncodeHandle(&$NAME->${FIELD}_, handles);") struct_serialization_decode_template = Template( " if (!Decode(&$NAME->${FIELD}_, message))\n" " return false;") struct_serialization_decode_handle_template = Template( " if (!DecodeHandle(&$NAME->${FIELD}_, &message->handles))\n" " return false;") struct_destructor_body_template = Template( "(void) mojo::MakePassable(data->$FIELD()).Pass();") close_handles_template = Template( " mojo::internal::CloseHandles($NAME->${FIELD}_.ptr);") param_set_template = Template( " params->set_$NAME($NAME);") param_handle_set_template = Template( " params->set_$NAME($NAME.release());") param_struct_set_template = Template( " params->set_$NAME(\n" " mojo::internal::Clone(mojo::internal::Unwrap($NAME),\n" " builder.buffer()));") param_struct_compute_template = Template( " payload_size += mojo::internal::ComputeSizeOf(\n" " mojo::internal::Unwrap($NAME));") field_template = Template(" $TYPE ${FIELD}_;") bool_field_template = Template(" uint8_t ${FIELD}_ : 1;") handle_field_template = Template(" mutable $TYPE ${FIELD}_;") setter_template = \ Template(" void set_$FIELD($TYPE $FIELD) { ${FIELD}_ = $FIELD; }") ptr_setter_template = \ Template(" void set_$FIELD($TYPE $FIELD) { ${FIELD}_.ptr = $FIELD; }") getter_template = \ Template(" $TYPE $FIELD() const { return ${FIELD}_; }") ptr_getter_template = \ Template(" const $TYPE $FIELD() const { return ${FIELD}_.ptr; }") handle_getter_template = \ Template(" $TYPE* $FIELD() const { return &${FIELD}_; }") enum_field_template = Template(" $NAME$EQUALS$VALUE,") wrapper_setter_template = \ Template(" void set_$FIELD($TYPE $FIELD) { " \ "data_->set_$FIELD($FIELD); }") wrapper_obj_setter_template = \ Template(" void set_$FIELD($TYPE $FIELD) { " \ "data_->set_$FIELD(mojo::internal::Unwrap($FIELD)); }") wrapper_handle_setter_template = \ Template(" void set_$FIELD($TYPE $FIELD) { " \ "data_->set_$FIELD($FIELD.release()); }") wrapper_getter_template = \ Template(" $TYPE $FIELD() const { return data_->$FIELD(); }") wrapper_obj_getter_template = \ Template(" const $TYPE $FIELD() const { " \ "return mojo::internal::Wrap(data_->$FIELD()); }") wrapper_handle_getter_template = \ Template(" $TYPE $FIELD() const { " \ "return mojo::MakePassable(data_->$FIELD()); }") pad_template = Template(" uint8_t _pad${COUNT}_[$PAD];") templates = {} HEADER_SIZE = 8 kind_to_type = { mojom.BOOL: "bool", mojom.INT8: "int8_t", mojom.UINT8: "uint8_t", mojom.INT16: "int16_t", mojom.UINT16: "uint16_t", mojom.INT32: "int32_t", mojom.UINT32: "uint32_t", mojom.FLOAT: "float", mojom.HANDLE: "mojo::Handle", mojom.MSGPIPE: "mojo::MessagePipeHandle", mojom.INT64: "int64_t", mojom.UINT64: "uint64_t", mojom.DOUBLE: "double", } @classmethod def GetTemplate(cls, template_name): if template_name not in cls.templates: dir = os.path.dirname(__file__) filename = os.path.join(dir, 'cpp_templates', template_name) filename = filename.replace('.h', '.h-template') filename = filename.replace('.cc', '.cc-template') with open(filename, 'r') as file: template = Template(file.read()) cls.templates[template_name] = template return cls.templates[template_name] @classmethod def GetType(cls, kind): if isinstance(kind, mojom.Struct): return "%s_Data*" % kind.name if isinstance(kind, mojom.Array): return "mojo::internal::Array_Data<%s>*" % cls.GetType(kind.kind) if kind.spec == 's': return "mojo::internal::String_Data*" return cls.kind_to_type[kind] @classmethod def GetConstType(cls, kind): if isinstance(kind, mojom.Struct): return "const %s_Data*" % kind.name if isinstance(kind, mojom.Array): return "const mojo::internal::Array_Data<%s>*" % \ cls.GetConstType(kind.kind) if kind.spec == 's': return "const mojo::internal::String_Data*" return cls.kind_to_type[kind] @classmethod def GetGetterLine(cls, field): subs = {'FIELD': field.name, 'TYPE': cls.GetType(field.kind)} if mojom_generator.IsObjectKind(field.kind): return cls.ptr_getter_template.substitute(subs) elif mojom_generator.IsHandleKind(field.kind): return cls.handle_getter_template.substitute(subs) else: return cls.getter_template.substitute(subs) @classmethod def GetSetterLine(cls, field): subs = {'FIELD': field.name, 'TYPE': cls.GetType(field.kind)} if mojom_generator.IsObjectKind(field.kind): return cls.ptr_setter_template.substitute(subs) else: return cls.setter_template.substitute(subs) @classmethod def GetWrapperType(cls, kind): if isinstance(kind, mojom.Struct): return "%s" % kind.name if isinstance(kind, mojom.Array): return "mojo::Array<%s >" % cls.GetWrapperType(kind.kind) if kind.spec == 's': return "mojo::String" if kind.spec == 'h': return "mojo::Passable<mojo::Handle>" if kind.spec == 'h:m': return "mojo::Passable<mojo::MessagePipeHandle>" return cls.kind_to_type[kind] @classmethod def GetConstWrapperType(cls, kind): if isinstance(kind, mojom.Struct): return "const %s&" % kind.name if isinstance(kind, mojom.Array): return "const mojo::Array<%s >&" % cls.GetWrapperType(kind.kind) if kind.spec == 's': return "const mojo::String&" if kind.spec == 'h': return "mojo::ScopedHandle" if kind.spec == 'h:m': return "mojo::ScopedMessagePipeHandle" return cls.kind_to_type[kind] @classmethod def GetWrapperGetterLine(cls, field): subs = {'FIELD': field.name, 'TYPE': cls.GetWrapperType(field.kind)} if mojom_generator.IsObjectKind(field.kind): return cls.wrapper_obj_getter_template.substitute(subs) elif mojom_generator.IsHandleKind(field.kind): return cls.wrapper_handle_getter_template.substitute(subs) else: return cls.wrapper_getter_template.substitute(subs) @classmethod def GetWrapperSetterLine(cls, field): subs = {'FIELD': field.name, 'TYPE': cls.GetConstWrapperType(field.kind)} if mojom_generator.IsObjectKind(field.kind): return cls.wrapper_obj_setter_template.substitute(subs) elif mojom_generator.IsHandleKind(field.kind): return cls.wrapper_handle_setter_template.substitute(subs) else: return cls.wrapper_setter_template.substitute(subs) @classmethod def GetFieldLine(cls, field): kind = field.kind if kind.spec == 'b': return cls.bool_field_template.substitute(FIELD=field.name) if mojom_generator.IsHandleKind(kind): return cls.handle_field_template.substitute(FIELD=field.name, TYPE=cls.kind_to_type[kind]) itype = None if isinstance(kind, mojom.Struct): itype = "mojo::internal::StructPointer<%s_Data>" % kind.name elif isinstance(kind, mojom.Array): itype = "mojo::internal::ArrayPointer<%s>" % cls.GetType(kind.kind) elif kind.spec == 's': itype = "mojo::internal::StringPointer" else: itype = cls.kind_to_type[kind] return cls.field_template.substitute(FIELD=field.name, TYPE=itype) @classmethod def GetParamLine(cls, name, kind): line = None if mojom_generator.IsObjectKind(kind): line = "mojo::internal::Wrap(params->%s())" % (name) elif mojom_generator.IsHandleKind(kind): line = "mojo::MakePassable(params->%s()).Pass()" % (name) else: line = "params->%s()" % name return line @classmethod def GetCaseLine(cls, interface, method): params = map( lambda param: cls.GetParamLine( param.name, param.kind), method.parameters) method_call = "%s(%s);" % (method.name, ", ".join(params)) return cls.GetTemplate("interface_stub_case").substitute( CLASS = interface.name, METHOD = method.name, METHOD_CALL = method_call); @classmethod def GetSerializedFields(cls, ps): fields = [] for pf in ps.packed_fields: if mojom_generator.IsObjectKind(pf.field.kind): fields.append(pf.field) return fields @classmethod def GetHandleFields(cls, ps): fields = [] for pf in ps.packed_fields: if mojom_generator.IsHandleKind(pf.field.kind): fields.append(pf.field) return fields @classmethod def IsStructWithHandles(cls, struct): for field in struct.fields: if mojom_generator.IsHandleKind(field.kind): return True return False @classmethod def GetStructsWithHandles(cls, structs): result = [] for struct in structs: if cls.IsStructWithHandles(struct): result.append(struct) return result def GetHeaderGuard(self, name): return "MOJO_GENERATED_BINDINGS_%s_%s_H_" % \ (self.module.name.upper(), name.upper()) def GetHeaderFile(self, *components): components = map(mojom_generator.CamelToUnderscores, components) component_string = '_'.join(components) return os.path.join(self.header_dir, "%s.h" % component_string) def WriteTemplateToFile(self, template_name, **substitutions): template = self.GetTemplate(template_name) filename = template_name.replace("module", self.module.name) substitutions['YEAR'] = datetime.date.today().year substitutions['NAMESPACE'] = self.module.namespace if self.output_dir is None: file = sys.stdout else: file = open(os.path.join(self.output_dir, filename), "w+") try: file.write(template.substitute(substitutions)) finally: if self.output_dir is not None: file.close() def GetStructDeclaration(self, name, ps, template, subs = {}): fields = [] setters = [] getters = [] pad_count = 0 num_fields = len(ps.packed_fields) for i in xrange(num_fields): pf = ps.packed_fields[i] field = pf.field fields.append(self.GetFieldLine(field)) if i < (num_fields - 1): next_pf = ps.packed_fields[i+1] pad = next_pf.offset - (pf.offset + pf.size) if pad > 0: fields.append(self.pad_template.substitute(COUNT=pad_count, PAD=pad)) pad_count += 1 setters.append(self.GetSetterLine(field)) getters.append(self.GetGetterLine(field)) if num_fields > 0: last_field = ps.packed_fields[num_fields - 1] offset = last_field.offset + last_field.size pad = mojom_pack.GetPad(offset, 8) if pad > 0: fields.append(self.pad_template.substitute(COUNT=pad_count, PAD=pad)) pad_count += 1 subs.update( CLASS = name + '_Data', WRAPPER = name, SETTERS = '\n'.join(setters), GETTERS = '\n'.join(getters), FIELDS = '\n'.join(fields), SIZE = ps.GetTotalSize() + self.HEADER_SIZE) return template.substitute(subs) def GetStructSerialization( self, class_name, param_name, ps, template, indent = None): struct = ps.struct closes = Lines(self.close_handles_template, indent) encodes = Lines(self.struct_serialization_encode_template, indent) encode_handles = \ Lines(self.struct_serialization_encode_handle_template, indent) decodes = Lines(self.struct_serialization_decode_template, indent) decode_handles = \ Lines(self.struct_serialization_decode_handle_template, indent) fields = self.GetSerializedFields(ps) handle_fields = self.GetHandleFields(ps) for field in fields: substitutions = {'NAME': param_name, 'FIELD': field.name} encodes.Add(substitutions) decodes.Add(substitutions) closes.Add(substitutions) for field in handle_fields: substitutions = {'NAME': param_name, 'FIELD': field.name} encode_handles.Add(substitutions) decode_handles.Add(substitutions) return template.substitute( CLASS = \ "%s::internal::%s" % (self.module.namespace, class_name + '_Data'), NAME = param_name, CLOSES = closes, ENCODES = encodes, DECODES = decodes, ENCODE_HANDLES = encode_handles, DECODE_HANDLES = decode_handles) def GetStructClassDeclarations(self): struct_decls = map( lambda s: self.GetStructDeclaration( s.name, mojom_pack.PackedStruct(s), self.GetTemplate("struct_declaration"), {}), self.module.structs) return '\n'.join(struct_decls) def GetEnumFields(self, enum): fields = Lines(self.enum_field_template) for field in enum.fields: if field.value: fields.Add(NAME=field.name, EQUALS = " = ", VALUE = field.value) else: fields.Add(NAME=field.name, EQUALS = "", VALUE = "") return fields def GetEnumDeclarations(self): decls = Lines(self.GetTemplate("enum_declaration")) for enum in self.module.enums: decls.Add(NAME = enum.name, ENUM_FIELDS = self.GetEnumFields(enum)) return decls def GetWrapperDeclaration(self, name, ps, template, subs = {}): setters = [] getters = [] num_fields = len(ps.packed_fields) for i in xrange(num_fields): field = ps.packed_fields[i].field setters.append(self.GetWrapperSetterLine(field)) getters.append(self.GetWrapperGetterLine(field)) subs.update( CLASS = name, SETTERS = '\n'.join(setters), GETTERS = '\n'.join(getters)) return template.substitute(subs) def GetWrapperClassDeclarations(self): wrapper_decls = map( lambda s: self.GetWrapperDeclaration( s.name, mojom_pack.PackedStruct(s), self.GetTemplate("wrapper_class_declaration"), {}), self.module.structs) return '\n'.join(wrapper_decls) def GetWrapperForwardDeclarations(self): wrapper_fwds = map(lambda s: "class " + s.name + ";", self.module.structs) return '\n'.join(wrapper_fwds) def GetInterfaceClassDeclaration(self, interface, template, method_postfix): methods = [] for method in interface.methods: params = [] for param in method.parameters: params.append("%s %s" % (self.GetConstWrapperType(param.kind), param.name)) methods.append( " virtual void %s(%s) %s;" % (method.name, ", ".join(params), method_postfix)) return template.substitute( CLASS=interface.name, PEER=interface.peer, METHODS='\n'.join(methods)) def
dataset = [ { "tweet_id": 1346604540049690624, "text": "@LLinWood @realDonaldTrump @VP @Mike_Pence We are about to witness a legislative attempt at a coup d'etat.", "timestamp": "2021-01-05T23:48:35.707000+00:00", "user_id": 1241662805713059840, "user_verified": False, "user_name": "Chris 20", "hash_tags": [], "followers": 1805, "following": 2320, "tweets_by_user": 9071, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346554035688644608, }, { "tweet_id": 1346604540045324288, "text": "something to try this year starting NOW! get an empty jar and every Friday add a note with a good thing that happened that week so by next New Year\u2019s Eve you can read them and look back on those good days!", "timestamp": "2021-01-05T23:48:35.706000+00:00", "user_id": 1004773858350518272, "user_verified": False, "user_name": "Johnny", "hash_tags": [], "followers": 52, "following": 49, "tweets_by_user": 7314, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346603365195599872, }, { "tweet_id": 1346604540112453632, "text": "If you own more than 0.01 #btc you're a millionaire!!!\nA satoshi millionaire \ud83d\ude0e", "timestamp": "2021-01-05T23:48:35.722000+00:00", "user_id": 1013259590, "user_verified": False, "user_name": "\u20b3lessandro Grunwald \ud83d\ude80\ud83c\udf11", "hash_tags": ["btc"], "followers": 26, "following": 52, "tweets_by_user": 279, "is_quoting": None, "is_reply_to": None, "is_retweeting": None, }, { "tweet_id": 1346604540058021889, "text": "I will be speaking at the SAVE AMERICA RALLY tomorrow on the Ellipse at 11AM Eastern. Arrive early \u2014 doors open at 7AM Eastern. BIG CROWDS! https://t.co/k4blXESc0c", "timestamp": "2021-01-05T23:48:35.709000+00:00", "user_id": 733756682, "user_verified": False, "user_name": "President-Elect \u2600\ufe0fHapified\u2600\ufe0f", "hash_tags": [], "followers": 4247, "following": 5000, "tweets_by_user": 22866, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346588064026685443, }, { "tweet_id": 1346604540007751680, "text": "Pa. GOP senators refused to seat a Democrat and removed Lt. Gov. Fetterman from presiding https://t.co/ucX1m1cC6E", "timestamp": "2021-01-05T23:48:35.697000+00:00", "user_id": 789124945393569792, "user_verified": False, "user_name": "Ecoxx", "hash_tags": [], "followers": 111, "following": 98, "tweets_by_user": 22162, "is_quoting": None, "is_reply_to": None, "is_retweeting": None, }, { "tweet_id": 1346604540070686722, "text": "tell me now \ni love you \n well everybody loves me https://t.co/ktIxfGsSlo", "timestamp": "2021-01-05T23:48:35.712000+00:00", "user_id": 1020819041273950208, "user_verified": False, "user_name": "carola", "hash_tags": [], "followers": 2302, "following": 2365, "tweets_by_user": 4920, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346544949614026761, }, { "tweet_id": 1346604539902791680, "text": "Come on, GEORGIA! @charliekirk11 and all of us are counting on you. Read Charlie's quote below. Only YOU can make a difference for America. STAY IN LINE to vote, and God love you; we do.", "timestamp": "2021-01-05T23:48:35.672000+00:00", "user_id": 98479091, "user_verified": False, "user_name": "Tiffany Cat", "hash_tags": [], "followers": 292, "following": 822, "tweets_by_user": 3156, "is_quoting": 1346597239716683776, "is_reply_to": None, "is_retweeting": None, }, { "tweet_id": 1346604540066459650, "text": "@korysdaphne I am exactly the opposite. \u2620\nThese two are my least favorite, while I love Infinity War and the first Avengers.", "timestamp": "2021-01-05T23:48:35.711000+00:00", "user_id": 3131714800, "user_verified": False, "user_name": "\ud835\udc81\u0334\ud835\udc68\u0334\ud835\udc70\u0334\ud835\udc72\u0334\ud835\udc76\u0334", "hash_tags": [], "followers": 229, "following": 906, "tweets_by_user": 43851, "is_quoting": None, "is_reply_to": 1346603311978455041, "is_retweeting": None, }, { "tweet_id": 1346604540062281730, "text": "@startrekcbs Nog getting a vessel named after him is just the sweetest thing.", "timestamp": "2021-01-05T23:48:35.710000+00:00", "user_id": 1152336213543706629, "user_verified": False, "user_name": "<NAME>.", "hash_tags": [], "followers": 5, "following": 234, "tweets_by_user": 6581, "is_quoting": None, "is_reply_to": 1346562112580067328, "is_retweeting": None, }, { "tweet_id": 1346604539927908352, "text": "@thekoolklj i played it for a bit when it came out and then i got bored of it, like i do with pretty much all mobiel games (also u can just dm me instead of asking in a tweet)", "timestamp": "2021-01-05T23:48:35.678000+00:00", "user_id": 1171926157014364160, "user_verified": False, "user_name": "Adelaide \u2728", "hash_tags": [], "followers": 221, "following": 241, "tweets_by_user": 11526, "is_quoting": None, "is_reply_to": 1346578258431766528, "is_retweeting": None, }, { "tweet_id": 1346604540091637760, "text": "Never allow love to be spoiled by making it about possession, control or a desire to try and fulfill a sense of your own lack of completeness. \n\nAllow it to be an incentive to rise to the highest state of being. Use whatever arises to bring you back to the source of love itself.", "timestamp": "2021-01-05T23:48:35.717000+00:00", "user_id": 2147860407, "user_verified": False, "user_name": "\ud83e\udda5\ud<PASSWORD>", "hash_tags": [], "followers": 123, "following": 328, "tweets_by_user": 4737, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346457239821852677, }, { "tweet_id": 1346604544042676230, "text": "@IanAMartin Well! I never!", "timestamp": "2021-01-05T23:48:36.659000+00:00", "user_id": 10722592, "user_verified": False, "user_name": "Herne", "hash_tags": [], "followers": 794, "following": 460, "tweets_by_user": 133513, "is_quoting": None, "is_reply_to": 1346603771845959683, "is_retweeting": None, }, { "tweet_id": 1346604544021688320, "text": "@ifeeltheneed_ @Talisker111 @DavidScullion @sugarkane_12 With that response, I\u2019m clearly out my depth here Boris!! Lol", "timestamp": "2021-01-05T23:48:36.654000+00:00", "user_id": 1264557464239964161, "user_verified": False, "user_name": "Ian Thomson", "hash_tags": [], "followers": 175, "following": 292, "tweets_by_user": 1282, "is_quoting": None, "is_reply_to": 1346603365489373184, "is_retweeting": None, }, { "tweet_id": 1346604544009101312, "text": "@UnofficialCiel am i supposed to understand or- \ud83d\ude00", "timestamp": "2021-01-05T23:48:36.651000+00:00", "user_id": 1225233272420130816, "user_verified": False, "user_name": "butler nezuko || is ciel's fave", "hash_tags": [], "followers": 607, "following": 771, "tweets_by_user": 2520, "is_quoting": None, "is_reply_to": 1346603386456555521, "is_retweeting": None, }, { "tweet_id": 1346604544046882817, "text": "Antifa is a Terrorist Organization, stay out of Washington. Law enforcement is watching you very closely! @DeptofDefense @TheJusticeDept @DHSgov @DHS_Wolf @SecBernhardt @SecretService @FBI", "timestamp": "2021-01-05T23:48:36.660000+00:00", "user_id": 1325430409413451778, "user_verified": False, "user_name": "Lumpenproletar", "hash_tags": [], "followers": 3, "following": 29, "tweets_by_user": 299, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346583537256976385, }, { "tweet_id": 1346604543983767552, "text": "Make sure when blinks drag bts you clapback and defend them not just watching it\ud83e\udd70", "timestamp": "2021-01-05T23:48:36.645000+00:00", "user_id": 1255772393672331265, "user_verified": False, "user_name": "<NAME>", "hash_tags": [], "followers": 323, "following": 426, "tweets_by_user": 10035, "is_quoting": 1346559529601945605, "is_reply_to": None, "is_retweeting": None, }, { "tweet_id": 1346604543916691457, "text": "@jaredlholt @mnxmoosi He needs to get some proper boots. I mean skinheads used to use steal-caps - these guys are amateurs cosplayers. Nice hat.", "timestamp": "2021-01-05T23:48:36.629000+00:00", "user_id": 14977459, "user_verified": False, "user_name": "antipattern", "hash_tags": [], "followers": 367, "following": 351, "tweets_by_user": 14779, "is_quoting": None, "is_reply_to": 1346575085369520132, "is_retweeting": None, }, { "tweet_id": 1346604544042688515, "text": "Can you ever accept that you\u2019ve made a mistake or that you were wrong? When you do recognize it, do you still stand your ground? If you do, you probably have toxic traits. You like to pick on people\u2019s faults too. You need to work on yourself &amp; your heart where it all starts!", "timestamp": "2021-01-05T23:48:36.659000+00:00", "user_id": 1187800623519019010, "user_verified": False, "user_name": "Adey<NAME>", "hash_tags": [], "followers": 86, "following": 72, "tweets_by_user": 412, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346466795843014658, }, { "tweet_id": 1346604544093020162, "text": "I came out the house looking crazy to get food now I actually got to get out \ud83d\ude12", "timestamp": "2021-01-05T23:48:36.671000+00:00", "user_id": 545914508, "user_verified": False, "user_name": "Mamacita", "hash_tags": [], "followers": 482, "following": 1600, "tweets_by_user": 36277, "is_quoting": None, "is_reply_to": None, "is_retweeting": None, }, { "tweet_id": 1346604544017510402, "text": 'This idea that art is meant to "push you out of your comfort zone" is subversive bullshit. Real art is meant to inspire you, awe you, and give you a glimpse of something more transcendent than the mundane world. "Art" that offers nothing but degenerate shock value is not art.', "timestamp": "2021-01-05T23:48:36.653000+00:00", "user_id": 1932684434, "user_verified": False, "user_name": "Another person", "hash_tags": [], "followers": 152, "following": 92, "tweets_by_user": 116989, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346374437755518976, }, { "tweet_id": 1346604544042569728, "text": "I know i called you bro but im kinda in love with you", "timestamp": "2021-01-05T23:48:36.659000+00:00", "user_id": 1279709685222797313, "user_verified": False, "user_name": "lildickkgirll", "hash_tags": [], "followers": 113, "following": 84, "tweets_by_user": 3635, "is_quoting": None, "is_reply_to": None, "is_retweeting": 1346527857556787203, }, { "tweet_id": 1346604544050999296, "text": "@gyucentric @PRODSOOB1N No u cute :(", "timestamp": "2021-01-05T23:48:36.661000+00:00", "user_id": 1436231089, "user_verified": False, "user_name": "brian\u2077", "hash_tags": [], "followers": 15033, "following": 2115, "tweets_by_user": 93121, "is_quoting": None, "is_reply_to": 1346604093419245568, "is_retweeting": None, }, { "tweet_id": 1346604544093024256, "text": "@bethwatt27 Am I able to like it myself?", "timestamp": "2021-01-05T23:48:36.671000+00:00", "user_id": 1244681714330406913, "user_verified": False, "user_name": "Slaps", "hash_tags": [], "followers": 238, "following": 225, "tweets_by_user": 1425, "is_quoting": None, "is_reply_to": 1346604157684297731, "is_retweeting": None, }, { "tweet_id": 1346604544051060739, "text": "The fact that I cut my hair by myself is funny how nice it turned out", "timestamp": "2021-01-05T23:48:36.661000+00:00", "user_id": 3344404108, "user_verified": False, "user_name": "K\u00fcr", "hash_tags": [], "followers": 8268, "following": 4758, "tweets_by_user": 19515, "is_quoting": None, "is_reply_to": 1346603824245563394, "is_retweeting": None, }, { "tweet_id": 1346604543996383232, "text": "Re-upping this funded PhD posting as the review of applications will commence soon. People from outside of Canada are welcome to apply (NSERC eligibility is handy but not critical). Email me if you have questions.\n\nWork here: Live here: https://t.co/qJWla39Tta", "timestamp": "2021-01-05T23:48:36.648000+00:00", "user_id": 951523130513633280, "user_verified": False, "user_name": "<NAME>oney", "hash_tags": [], "followers": 248, "following": 795, "tweets_by_user": 412, "is_quoting": 1334108049833943040, "is_reply_to": None, "is_retweeting": 1346099565540216832, }, { "tweet_id": 1346604544113987585, "text": "@80SKEEF i just wish
m.x4547 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4080 = Constraint(expr= m.x4148 - m.x4548 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4081 = Constraint(expr= m.x4149 - m.x4549 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4082 = Constraint(expr= m.x4150 - m.x4550 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4083 = Constraint(expr= m.x4151 - m.x4551 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4084 = Constraint(expr= m.x4152 - m.x4552 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4085 = Constraint(expr= m.x4153 - m.x4553 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4086 = Constraint(expr= m.x4154 - m.x4554 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4087 = Constraint(expr= m.x4155 - m.x4555 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4088 = Constraint(expr= m.x4156 - m.x4556 - m.x6291 - m.x6491 - m.x6611 == 0) m.c4089 = Constraint(expr= m.x4157 - m.x4557 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4090 = Constraint(expr= m.x4158 - m.x4558 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4091 = Constraint(expr= m.x4159 - m.x4559 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4092 = Constraint(expr= m.x4160 - m.x4560 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4093 = Constraint(expr= m.x4161 - m.x4561 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4094 = Constraint(expr= m.x4162 - m.x4562 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4095 = Constraint(expr= m.x4163 - m.x4563 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4096 = Constraint(expr= m.x4164 - m.x4564 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4097 = Constraint(expr= m.x4165 - m.x4565 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4098 = Constraint(expr= m.x4166 - m.x4566 - m.x6292 - m.x6492 - m.x6612 == 0) m.c4099 = Constraint(expr= m.x4167 - m.x4567 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4100 = Constraint(expr= m.x4168 - m.x4568 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4101 = Constraint(expr= m.x4169 - m.x4569 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4102 = Constraint(expr= m.x4170 - m.x4570 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4103 = Constraint(expr= m.x4171 - m.x4571 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4104 = Constraint(expr= m.x4172 - m.x4572 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4105 = Constraint(expr= m.x4173 - m.x4573 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4106 = Constraint(expr= m.x4174 - m.x4574 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4107 = Constraint(expr= m.x4175 - m.x4575 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4108 = Constraint(expr= m.x4176 - m.x4576 - m.x6293 - m.x6493 - m.x6613 == 0) m.c4109 = Constraint(expr= m.x4177 - m.x4577 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4110 = Constraint(expr= m.x4178 - m.x4578 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4111 = Constraint(expr= m.x4179 - m.x4579 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4112 = Constraint(expr= m.x4180 - m.x4580 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4113 = Constraint(expr= m.x4181 - m.x4581 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4114 = Constraint(expr= m.x4182 - m.x4582 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4115 = Constraint(expr= m.x4183 - m.x4583 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4116 = Constraint(expr= m.x4184 - m.x4584 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4117 = Constraint(expr= m.x4185 - m.x4585 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4118 = Constraint(expr= m.x4186 - m.x4586 - m.x6294 - m.x6494 - m.x6614 == 0) m.c4119 = Constraint(expr= m.x4187 - m.x4587 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4120 = Constraint(expr= m.x4188 - m.x4588 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4121 = Constraint(expr= m.x4189 - m.x4589 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4122 = Constraint(expr= m.x4190 - m.x4590 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4123 = Constraint(expr= m.x4191 - m.x4591 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4124 = Constraint(expr= m.x4192 - m.x4592 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4125 = Constraint(expr= m.x4193 - m.x4593 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4126 = Constraint(expr= m.x4194 - m.x4594 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4127 = Constraint(expr= m.x4195 - m.x4595 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4128 = Constraint(expr= m.x4196 - m.x4596 - m.x6295 - m.x6495 - m.x6615 == 0) m.c4129 = Constraint(expr= m.x4197 - m.x4597 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4130 = Constraint(expr= m.x4198 - m.x4598 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4131 = Constraint(expr= m.x4199 - m.x4599 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4132 = Constraint(expr= m.x4200 - m.x4600 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4133 = Constraint(expr= m.x4201 - m.x4601 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4134 = Constraint(expr= m.x4202 - m.x4602 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4135 = Constraint(expr= m.x4203 - m.x4603 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4136 = Constraint(expr= m.x4204 - m.x4604 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4137 = Constraint(expr= m.x4205 - m.x4605 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4138 = Constraint(expr= m.x4206 - m.x4606 - m.x6296 - m.x6496 - m.x6616 == 0) m.c4139 = Constraint(expr= m.x4207 - m.x4607 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4140 = Constraint(expr= m.x4208 - m.x4608 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4141 = Constraint(expr= m.x4209 - m.x4609 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4142 = Constraint(expr= m.x4210 - m.x4610 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4143 = Constraint(expr= m.x4211 - m.x4611 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4144 = Constraint(expr= m.x4212 - m.x4612 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4145 = Constraint(expr= m.x4213 - m.x4613 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4146 = Constraint(expr= m.x4214 - m.x4614 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4147 = Constraint(expr= m.x4215 - m.x4615 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4148 = Constraint(expr= m.x4216 - m.x4616 - m.x6297 - m.x6497 - m.x6617 == 0) m.c4149 = Constraint(expr= m.b6778 + m.b6898 + m.b7018 <= 1) m.c4150 = Constraint(expr= m.b6779 + m.b6899 + m.b7019 <= 1) m.c4151 = Constraint(expr= m.b6780 + m.b6900 + m.b7020 <= 1) m.c4152 = Constraint(expr= m.b6781 + m.b6901 + m.b7021 <= 1) m.c4153 = Constraint(expr= m.b6782 + m.b6902 + m.b7022 <= 1) m.c4154 = Constraint(expr= m.b6783 + m.b6903 + m.b7023 <= 1) m.c4155 = Constraint(expr= m.b6784 + m.b6904 + m.b7024 <= 1) m.c4156 = Constraint(expr= m.b6785 + m.b6905 + m.b7025 <= 1) m.c4157 = Constraint(expr= m.b6786 + m.b6906 + m.b7026 <= 1) m.c4158 = Constraint(expr= m.b6787 + m.b6907 + m.b7027 <= 1) m.c4159 = Constraint(expr= m.b6788 + m.b6908 + m.b7028 <= 1) m.c4160 = Constraint(expr= m.b6789 + m.b6909 + m.b7029 <= 1) m.c4161 = Constraint(expr= m.b6790 + m.b6910 + m.b7030 <= 1) m.c4162 = Constraint(expr= m.b6791 + m.b6911 + m.b7031 <= 1) m.c4163 = Constraint(expr= m.b6792 + m.b6912 + m.b7032 <= 1) m.c4164 = Constraint(expr= m.b6793 + m.b6913 + m.b7033 <= 1) m.c4165 = Constraint(expr= m.b6794 + m.b6914 + m.b7034 <= 1) m.c4166 = Constraint(expr= m.b6795 + m.b6915 + m.b7035 <= 1) m.c4167 = Constraint(expr= m.b6796 + m.b6916 + m.b7036 <= 1) m.c4168 = Constraint(expr= m.b6797 + m.b6917 + m.b7037 <= 1) m.c4169 = Constraint(expr= m.b6798 + m.b6918 + m.b7038 <= 1) m.c4170 = Constraint(expr= m.b6799 + m.b6919 + m.b7039 <= 1) m.c4171 = Constraint(expr= m.b6800 + m.b6920 + m.b7040 <= 1) m.c4172 = Constraint(expr= m.b6801 + m.b6921 + m.b7041 <= 1) m.c4173 = Constraint(expr= m.b6802 + m.b6922 + m.b7042 <= 1) m.c4174 = Constraint(expr= m.b6803 + m.b6923 + m.b7043 <= 1) m.c4175 = Constraint(expr= m.b6804 + m.b6924 + m.b7044 <= 1) m.c4176 = Constraint(expr= m.b6805 + m.b6925 + m.b7045 <= 1) m.c4177 = Constraint(expr= m.b6806 + m.b6926 + m.b7046 <= 1) m.c4178 = Constraint(expr= m.b6807 + m.b6927 + m.b7047 <= 1) m.c4179 = Constraint(expr= m.b6808 + m.b6928 + m.b7048 <= 1) m.c4180 = Constraint(expr= m.b6809 + m.b6929 + m.b7049 <= 1) m.c4181 = Constraint(expr= m.b6810 + m.b6930 + m.b7050 <= 1) m.c4182 = Constraint(expr= m.b6811 + m.b6931 + m.b7051 <= 1) m.c4183 = Constraint(expr= m.b6812 + m.b6932 + m.b7052 <= 1) m.c4184 = Constraint(expr= m.b6813 + m.b6933 + m.b7053 <= 1) m.c4185 = Constraint(expr= m.b6814 + m.b6934 + m.b7054 <= 1) m.c4186 = Constraint(expr= m.b6815 + m.b6935 + m.b7055 <= 1) m.c4187 = Constraint(expr= m.b6816 + m.b6936 + m.b7056 <= 1) m.c4188 = Constraint(expr= m.b6817 + m.b6937 + m.b7057 <= 1) m.c4189 = Constraint(expr= m.x6138 - 1.85*m.x6298 - 1.45*m.x6299 == 0) m.c4190 = Constraint(expr= m.x6141 - 1.85*m.x6300
<filename>src/swiftpath/swiftpath.py """A module for interacting with **Openstack Swift** using the standard :mod:`pathlib.Path` interface. """ import atexit import base64 import contextlib import datetime import io import logging import os import pathlib import posix import re import sys import tempfile import urllib.parse from pathlib import PurePath from re import L from typing import ( IO, Any, AnyStr, Dict, Generator, Iterable, List, Optional, Protocol, Type, TypeVar, Union, ) import attr from requests.exceptions import StreamConsumedError try: import keystoneauth1 import keystoneauth1.exceptions.catalog import keystoneauth1.session import keystoneauth1.identity import swiftclient.client import swiftclient.exceptions except ImportError: keystoneauth1 = None swiftclient = None try: import filelock except ImportError: filelock = None IOTYPES = Union[Type["SwiftKeyReadableFileObject"], Type["SwiftKeyWritableFileObject"]] TStrTypes = TypeVar("TStrTypes", str, bytes) # See https://stackoverflow.com/a/8571649 for explanation BASE64_RE = re.compile(b"^([A-Za-z0-9+/]{4})*([A-Za-z0-9+/]{3}=|[A-Za-z0-9+/]{2}==)?$") _SUPPORTED_OPEN_MODES = {"r", "br", "rb", "tr", "rt", "w", "wb", "bw", "wt", "tw"} logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler()) def log(message, level="info"): getattr(logger, level.lower())(message) class AttrProto(Protocol): def __init__(self, *args: Any, **kwargs: Any) -> None: ... def fromisoformat(dt: str) -> datetime.datetime: result: datetime.datetime try: result = datetime.datetime.fromisoformat(dt) # type: ignore except AttributeError: result = datetime.datetime.strptime(dt, "%Y-%m-%dT%H:%M:%S.%f") return result @attr.s(frozen=True) class ObjectPath(AttrProto): #: The name of the container container = attr.ib(type=str) #: The optional path to the target object key = attr.ib(type=Optional[str]) def __str__(self): if not self.key: return f"/{self.container}/" return f"/{self.container}/{self.key}" def as_path(self) -> "SwiftPath": return SwiftPath(str(self)) @classmethod def from_path(cls, path: "SwiftPath") -> "ObjectPath": container = str(path.container) if path.container else None if not container: if path.root == str(path): container = "" else: raise ValueError( f"Absolute path required to parse container, got {path!s}" ) container = container.strip(path._flavour.sep) key = str(path.key) if path.key else None if key is not None: key = key.lstrip(path._flavour.sep) return cls(container=container, key=key) class _Backend: def __init__( self, username: Optional[str] = None, project: Optional[str] = None, password: Optional[str] = None, auth_url: Optional[str] = None, domain: Optional[str] = None, object_storage_url: Optional[str] = None, project_id: Optional[str] = None, user_id: Optional[str] = None, project_domain: Optional[str] = None, region: Optional[str] = None, ) -> None: swift_credentials = { "user_domain_name": domain or os.environ.get("OS_USER_DOMAIN_NAME", "default"), "project_domain_name": project_domain or os.environ.get("OS_PROJECT_DOMAIN_NAME", "default"), "password": password or os.environ.get("OS_PASSWORD"), } os_options = {} user_id = user_id or os.environ.get("OS_USER_ID", None) username = username or os.environ.get("OS_USERNAME", None) project = project or os.environ.get( "OS_PROJECT_NAME", os.environ.get("OS_TENANT_NAME") ) if not auth_url: auth_url = os.environ.get( "OS_AUTH_URL", os.environ.get("OS_AUTHENTICATION_URL") ) object_storage_url = object_storage_url or os.environ.get("OS_STORAGE_URL") region = region or os.environ.get("OS_REGION_NAME") project_id = project_id or os.environ.get("OS_PROJECT_ID") if username: swift_credentials["username"] = username elif user_id: swift_credentials["user_id"] = user_id if project: swift_credentials["project_name"] = project os_options["project_name"] = project if object_storage_url: os_options["object_storage_url"] = object_storage_url if region: os_options["region_name"] = region if project_id: os_options["project_id"] = project_id if auth_url: swift_credentials["auth_url"] = auth_url self.os_options = os_options self.auth = keystoneauth1.identity.v3.Password(**swift_credentials) self.swift = self._get_connection() def _get_session(self) -> keystoneauth1.session.Session: return keystoneauth1.session.Session(auth=self.auth) def _get_connection(self) -> swiftclient.client.Connection: return swiftclient.client.Connection( session=self._get_session(), os_options=self.os_options ) @contextlib.contextmanager def connection(self) -> Generator[swiftclient.client.Connection, None, None]: with contextlib.closing(self._get_connection()) as swift_conn: yield swift_conn class _SwiftFlavour(pathlib._PosixFlavour): # type: ignore is_supported = bool(keystoneauth1) def make_uri(self, path): uri = super().make_uri(path) return uri.replace("file:///", "swift://") class _SwiftScandir: def __init__(self, *, swift_accessor, path): self._swift_accessor = swift_accessor self._path = path def __enter__(self): return self def __exit__(self, exc_typ, exc_val, exc_tb): return def __iter__(self): try: parsed_path = ObjectPath.from_path(self._path) except ValueError: parsed_path = None if not parsed_path.container: path_prefix = "/" else: path_prefix = f"/{parsed_path.container}/" with self._swift_accessor.Backend.connection() as conn: if not parsed_path or not parsed_path.container: _, containers = conn.get_account() for container in containers: yield SwiftDirEntry(container["name"], is_dir=True) return path = parsed_path.key if parsed_path.key else "" if path and not path.endswith(self._path._flavour.sep): path = f"{path}{self._path._flavour.sep}" headers, paths = conn.get_container( parsed_path.container, prefix=path, delimiter=self._path._flavour.sep ) for p in paths: if "subdir" in p: sub_path = type(self._path)(f"{path_prefix}{p['subdir']}") name = str(sub_path.relative_to(self._path)) yield SwiftDirEntry(name, is_dir=True) else: is_symlink = p.get("content_type", "") == "application/symlink" sub_path = type(self._path)(f"{path_prefix}{p['name']}") name = str(sub_path.relative_to(self._path)) yield SwiftDirEntry( name, is_dir=False, size=p["bytes"], last_modified=p["last_modified"], is_symlink=is_symlink, ) class _SwiftAccessor: Backend: _Backend = _Backend() @staticmethod def stat(target: "SwiftPath") -> "StatResult": parsed_path = ObjectPath.from_path(target) with _SwiftAccessor.Backend.connection() as conn: headers = {} try: headers = conn.head_object(parsed_path.container, parsed_path.key) except swiftclient.exceptions.ClientException: try: result = conn.get_container( parsed_path.container, prefix=parsed_path.key ) except (swiftclient.exceptions.ClientException, TypeError): raise FileNotFoundError(str(target)) else: if result is not None: headers, _ = result if "x-object-meta-mtime" in headers: last_modified = float(headers["x-object-meta-mtime"]) elif "x-timestamp" in headers: try: last_modified = fromisoformat(headers["x-timestamp"]).timestamp() except ValueError: last_modified = float(headers["x-timestamp"]) else: last_modified = 0 return StatResult( size=headers["content-length"], last_modified=last_modified, ) @staticmethod def lstat(target: "SwiftPath") -> None: raise NotImplementedError("lstat() not available on this system") @staticmethod def open( path, *, mode="r", buffering=-1, encoding=None, errors=None, newline=None ) -> IO: file_object: IOTYPES = ( SwiftKeyReadableFileObject if "r" in mode else SwiftKeyWritableFileObject ) result = file_object( path, mode=mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) return result @staticmethod def listdir(target: "SwiftPath") -> List[str]: results: List[str] = [] parsed_path = ObjectPath.from_path(target) target_path = parsed_path.key paths: List[Dict[str, str]] = [] if target_path and not target_path.endswith(target._flavour.sep): target_path = f"{target_path}{target._flavour.sep}" with _SwiftAccessor.Backend.connection() as conn: if not parsed_path.container: acct_results = conn.get_account() if acct_results is not None: _, paths = acct_results for container in paths: results.append(container["name"]) else: try: container_results = conn.get_container( parsed_path.container, prefix=target_path, delimiter=target._flavour.sep, ) except swiftclient.exceptions.ClientException: raise FileNotFoundError(str(target)) else: if container_results is not None: _, paths = container_results for p in paths: if "subdir" in p: results.append(str(p["subdir"]).strip(target._flavour.sep)) else: results.append(str(p["name"]).strip(target._flavour.sep)) results = [os.path.basename(str(r)) for r in results] return results @staticmethod def scandir(path: "SwiftPath") -> _SwiftScandir: return _SwiftScandir(swift_accessor=_SwiftAccessor, path=path) @staticmethod def chmod(target: "SwiftPath") -> None: raise NotImplementedError("chmod() is not available on this platform") def lchmod(self, pathobj: "SwiftPath", mode: int) -> None: raise NotImplementedError("lchmod() not available on this system") @staticmethod def mkdir(path: "SwiftPath", exist_ok: bool = False, parents: bool = False) -> None: """Create the provided directory. This operation is a no-op on swift. """ parsed_path = ObjectPath.from_path(path) if path.exists() or path.joinpath(".swiftkeep").exists(): if not exist_ok: raise FileExistsError(str(path)) if path.key: path.joinpath(".swiftkeep").touch() return None with _SwiftAccessor.Backend.connection() as conn: try: conn.put_container(parsed_path.container) except swiftclient.exceptions.ClientException: raise FileExistsError(parsed_path.container) return None @staticmethod def unlink(path: "SwiftPath", missing_ok: bool) -> None: parsed_path = ObjectPath.from_path(path) with _SwiftAccessor.Backend.connection() as conn: try: conn.delete_object(parsed_path.container, parsed_path.key) except swiftclient.exceptions.ClientException: if not missing_ok: raise FileNotFoundError(str(path)) return None @staticmethod def link_to( src: "SwiftPath", link_name: Union[str, "SwiftPath"], *, src_dir_fd: Optional[int] = None, dst_dir_fd: Optional[int] = None, follow_symlinks: bool = True, ) -> None: if not isinstance(link_name, SwiftPath): target_path = SwiftPath(str(link_name)) else: target_path = link_name parsed_path = ObjectPath.from_path(src) if not target_path.is_absolute(): target_path = SwiftPath(f"/{parsed_path.container!s}/{target_path!s}") with _SwiftAccessor.Backend.connection() as conn: conn.copy_object(parsed_path.container, parsed_path.key, str(target_path)) @staticmethod def rmdir(path: "SwiftPath", *args: Any, **kwargs: Any) -> None: # force = kwargs.pop("force", False) # if not force: # contents = list(path.iterdir(include_swiftkeep=True, recurse=True)) # for p in contents: # p.unlink() # # else: # # raise OSError( # # "Object container directories are auto-destroyed when they are emptied" # # ) # # if contents and all(p.name == ".swiftkeep" for p in contents): # # for p in contents: # # if p.name == ".swiftkeep": # # p.unlink() # return with _SwiftAccessor.Backend.connection() as conn: try: for item in path.iterdir(): if item.is_dir(): item.rmdir() else: parsed_path = ObjectPath.from_path(item) conn.delete_object(parsed_path.container, parsed_path.key) except FileNotFoundError: return None return None @staticmethod def rename(path: "SwiftPath", target: Union[pathlib.PurePath, str]) -> None: caller_name = "[_SwiftAccessor.rename]" if not isinstance(target, SwiftPath): target_path = SwiftPath(str(target)) else: target_path = target parsed_path = ObjectPath.from_path(path) if not target_path.is_absolute(): target_path = SwiftPath(f"/{parsed_path.container!s}/{target!s}") log( f"{caller_name} Added {path.container!s} to target: {target!s}", level="debug", ) with _SwiftAccessor.Backend.connection() as conn: if path.is_dir(): for entry in path.iterdir(): sub_target = target_path.joinpath(entry.relative_to(path)) entry.rename(sub_target) path.rmdir() else: parsed_path = ObjectPath.from_path(path) container = parsed_path.container key = parsed_path.key log( f"{caller_name} Renaming key: {key} from {container!s} to {target_path!s}", level="debug", ) conn.copy_object(container, key, str(target_path)) path.unlink() @staticmethod def replace(path: "SwiftPath", target: "SwiftPath") -> None: return _SwiftAccessor.rename(path, target) @staticmethod def symlink( a: "SwiftPath", b: "SwiftPath", target_is_directory: bool = False, src_account: Optional[str] = None, ) -> None: if not a.exists(): raise FileNotFoundError(a) if b.exists(): raise FileExistsError(b) with _SwiftAccessor.Backend.connection() as conn: parsed_dest = ObjectPath.from_path(b) headers = { "X-Symlink-Target": str(a), } if src_account is not None: headers["X-Symlink-Target-Account"] = src_account conn.put_object( parsed_dest.container, parsed_dest.key, b"", content_length=0, content_type="application/symlink", headers=headers, ) @staticmethod def utime(target: "SwiftPath") -> None: if not target.exists(): raise FileNotFoundError(str(target)) parsed_path = ObjectPath.from_path(target) with _SwiftAccessor.Backend.connection() as conn: conn.post_object( parsed_path.container, parsed_path.key, {"x-timestamp": str(datetime.datetime.now().timestamp())}, ) # Helper for resolve() def readlink(self, path: "SwiftPath") -> "SwiftPath": return path @property def backend(self): return self.Backend _swift_flavour = _SwiftFlavour() class PureSwiftPath(pathlib.PurePath): """Swift PurePath implementation for Openstack.""" _flavour = _swift_flavour __slots__ = () @classmethod def _parse_uri(cls, uri: str) -> urllib.parse.ParseResult: result = urllib.parse.urlparse(uri) # swift://container/path puts container in 'netloc' # we want
#!/usr/bin/env python # # Copyright (c) 2018 SAP SE # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from __future__ import absolute_import import argparse import logging import re import time from datetime import datetime from http.server import BaseHTTPRequestHandler from threading import Lock import requests from prometheus_client import Counter, Gauge from sqlalchemy import Table, and_, select, update from manilananny import ManilaNanny, is_utcts_recent, response, update_records log = logging.getLogger('nanny-manila-share-sync') logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s') ONEGB = 1073741824 TASK_SHARE_SIZE = '1' TASK_MISSING_VOLUME = '2' TASK_OFFLINE_VOLUME = '3' TASK_ORPHAN_VOLUME = '4' class MyHandler(BaseHTTPRequestHandler): ''' http server handler ''' def do_GET(self): if self.path == '/orphan_volumes': status_code, header, data = self.server.get_orphan_volumes() elif self.path == '/offline_volumes': status_code, header, data = self.server.get_offline_volumes() elif self.path == '/missing_volume_shares': status_code, header, data = self.server.get_missing_volume_shares() else: status_code, header, data = self.server.undefined_route(self.path) self.send_response(status_code) self.send_header(*header) self.end_headers() self.wfile.write(data.encode('utf-8')) class ManilaShareSyncNanny(ManilaNanny): def __init__(self, config_file, prom_host, interval, tasks, dry_run_tasks, prom_port, http_port, handler): super(ManilaShareSyncNanny, self).__init__(config_file, interval, prom_port=prom_port, http_port=http_port, handler=handler) self.prom_host = prom_host + "/api/v1/query" self.MANILA_NANNY_SHARE_SYNC_FAILURE = Counter('manila_nanny_share_sync_failure', '') self.MANILA_SYNC_SHARE_SIZE_COUNTER = Counter('manila_nanny_sync_share_size', 'manila nanny sync share size') self.MANILA_RESET_SHARE_ERROR_COUNTER = Counter('manila_nanny_reset_share_error', 'manila nanny reset share status to error') self.manila_missing_volume_shares_gauge = Gauge('manila_nanny_share_missing_volume', 'Manila Share missing backend volume', ['share_id', 'instance_id', 'share_name', 'share_status']) self.manila_orphan_volumes_gauge = Gauge('manila_nanny_orphan_volumes', 'Orphan backend volumes of Manila service', ['share_id', 'share_status', 'filer', 'vserver', 'volume']) self.manila_offline_volumes_gauge = Gauge('manila_nanny_offline_volumes', 'Offline volumes of Manila service', ['share_id', 'share_status', 'filer', 'vserver', 'volume']) self._tasks = tasks self._dry_run_tasks = dry_run_tasks if not any(tasks.values()): raise Exception('All tasks are disabled') self.orphan_volumes_lock = Lock() self.orphan_volumes = {} self.missing_volumes_lock = Lock() self.missing_volumes = {} self.offline_volumes_lock = Lock() self.offline_volumes = {} def _run(self): # Need to recreate manila client each run, because of session timeout # self.renew_manila_client() # fetch data try: if self._tasks[TASK_SHARE_SIZE] or self._tasks[TASK_MISSING_VOLUME]\ or self._tasks[TASK_ORPHAN_VOLUME]: _share_list = self._query_shares() _volume_list = self._get_netapp_volumes() _shares, _orphan_volumes = self._merge_share_and_volumes(_share_list, _volume_list) if self._tasks[TASK_OFFLINE_VOLUME]: _offline_volume_list = self._get_netapp_volumes('offline') except Exception as e: log.warning(e) self.MANILA_NANNY_SHARE_SYNC_FAILURE.inc() return if self._tasks[TASK_SHARE_SIZE]: dry_run = self._dry_run_tasks[TASK_SHARE_SIZE] self.sync_share_size(_shares, dry_run) if self._tasks[TASK_MISSING_VOLUME]: dry_run = self._dry_run_tasks[TASK_MISSING_VOLUME] self.process_missing_volume(_shares, dry_run) if self._tasks[TASK_ORPHAN_VOLUME]: dry_run = self._dry_run_tasks[TASK_ORPHAN_VOLUME] self.process_orphan_volumes(_orphan_volumes, dry_run) if self._tasks[TASK_OFFLINE_VOLUME]: dry_run = self._dry_run_tasks[TASK_OFFLINE_VOLUME] self.process_offline_volumes(_offline_volume_list, dry_run) def sync_share_size(self, shares, dry_run=True): """ Backend volume exists, but share size does not match """ msg = "share %s: share size != netapp volume size (%d != %d)" msg_dry_run = "Dry run: " + msg for (share_id, _), share in shares.items(): if 'volume' not in share: continue size, vsize = share['size'], share['volume']['size'] # volume size can not be zero, could be in offline state if vsize == 0: continue if share['updated_at'] is not None: if is_utcts_recent(share['updated_at'], 3600): continue if size != vsize: if dry_run: log.info(msg_dry_run, share_id, size, vsize) else: log.info(msg, share_id, size, vsize) self.set_share_size(share_id, vsize) self.MANILA_SYNC_SHARE_SIZE_COUNTER.inc() def process_missing_volume(self, shares, dry_run=True): """ Set share state to error when backend volume is missing Ignore shares that are created/updated within 6 hours. """ missing_volumes = {} for (share_id, instance_id), share in shares.items(): if 'volume' not in share: # check if shares are created/updated recently if is_utcts_recent(share['updated_at'] or share['created_at'], 6*3600): continue share_name = share['name'] share_status = share['status'] msg = f'ManilaShareMissingVolume: share={share_id}, '\ f'instance={instance_id}, status={share_status}' if not dry_run: if share_status == 'available': self._reset_share_state(share_id, 'error') share_status = 'error' msg = f'ManilaShareMissingVolume: Set share {share_id} to error' else: msg = 'Dry run: ' + msg log.info(msg) self.manila_missing_volume_shares_gauge.labels( share_id=share_id, instance_id=instance_id, share_name=share_name, share_status=share_status, ).set(1) missing_volumes[(share_id, instance_id)] = { 'share_id': share_id, 'instance_id': instance_id, 'share_name': share_name, 'share_status': share_status, } for (share_id, instance_id) in self.missing_volumes: s = self.missing_volumes[(share_id, instance_id)] share_name, share_status = s['share_name'], s['share_status'] if (share_id, instance_id) not in shares: self.manila_missing_volume_shares_gauge.remove(share_id, instance_id, share_name, share_status) with self.missing_volumes_lock: self.missing_volumes = update_records(self.missing_volumes, missing_volumes) def process_offline_volumes(self, offline_volume_list, dry_run=True): """ offline volume @params offline_volumes: List[Volume] Volume: Dict[Keys['volume', 'vserver', 'filer'], Any] """ _offline_volumes = {} for vol in offline_volume_list: if vol['volume'].startswith('share'): instance_id = vol['volume'][6:].replace('_', '-') _offline_volumes[instance_id] = vol # find associated share for offline volumes _shares = self._query_shares_by_instance_ids(list(_offline_volumes.keys())) for s in _shares: instance_id = s['instance_id'] if instance_id in _offline_volumes: _offline_volumes[instance_id].update({'share': s}) # ignore the shares that are updated/deleted recently _offline_volume_keys = list(_offline_volumes.keys()) for vol_key, vol in _offline_volumes.items(): share = vol.get('share') if share is not None: if share['deleted_at'] or share['updated_at']: if is_utcts_recent(share['deleted_at'] or share['updated_at'], 6*3600): _offline_volume_keys.remove(vol_key) # process remaining volume offline_volumes = {} for vol_key in _offline_volume_keys: vol = _offline_volumes[vol_key] name, filer, vserver = vol['volume'], vol['filer'], vol['vserver'] share = vol.get('share') if share is not None: share_id, status = share['share_id'], share['status'] else: share_id, status = '', '' self.manila_offline_volumes_gauge.labels( share_id=share_id, share_status=status, volume=name, vserver=vserver, filer=filer, ).set(1) offline_volumes[name] = { 'volume': name, 'filer': filer, 'vserver': vserver, 'share_id': share_id, 'status': status, } for volname, vol in self.offline_volumes.items(): if volname not in offline_volumes: self.manila_offline_volumes_gauge.remove(vol['share_id'], vol['status'], vol['filer'], vol['vserver'], vol['name']) with self.offline_volumes_lock: self.offline_volumes = update_records(self.offline_volumes, offline_volumes) def process_orphan_volumes(self, volumes, dry_run=True): """ orphan volumes Check if the corresponding manila shares are deleted recently (hard coded as 6 hours). @params volumes: Dict[(FilerName, InstanceId), Volume] """ # share instance id # volume key (extracted from volume name) is manila instance id vol_keys = list(volumes.keys()) # Shares: List[Share]) # Share.Keys: share_id, instance_id, deleted_at, status shares = self._query_shares_by_instance_ids([instance_id for (_, instance_id) in vol_keys]) # merge share into volume r = re.compile('^manila-share-netapp-(?P<filer>.+)@(?P=filer)#.*') for s in shares: m = r.match(s['host']) if m: filer = m.group('filer') else: continue if (filer, s['instance_id']) in volumes: volumes[(filer, s['instance_id'])].update({'share': s}) # loop over vol for (filer, instance_id), vol in volumes.items(): # double check if the manila shares are deleted recently if 'share' in vol: share = vol['share'] deleted_at = share.get('deleted_at', None) if deleted_at is not None: if (datetime.utcnow() - deleted_at).total_seconds() < 6*3600: vol_keys.remove((filer, instance_id)) orphan_volumes = {} for vol_key in vol_keys: vol = volumes[vol_key] volume, vserver, filer = vol['volume'], vol['vserver'], vol['filer'] if 'share' in vol: share_id = vol['share']['share_id'] share_deleted = vol['share']['deleted'] share_deleted_at = vol['share']['deleted_at'] instance_id = vol['share']['instance_id'] instance_status = vol['share']['status'] else: share_id, share_deleted, share_deleted_at, instance_id, instance_status = None, None, None, None, '' self.manila_orphan_volumes_gauge.labels( share_id=share_id, share_status=instance_status, filer=filer, vserver=vserver, volume=volume, ).set(1) orphan_volumes[vol_key] = { 'filer': filer, 'vserver': vserver, 'volume': volume, 'share_id': share_id, 'share_deleted': share_deleted, 'share_deleted_at': share_deleted_at, 'instance_id': instance_id, 'instance_status': instance_status, } for k, vol in self.orphan_volumes.items(): if k not in orphan_volumes: self.manila_orphan_volumes_gauge.remove(vol['share_id'], vol['instance_status'], vol['filer'], vol['vserver'], vol['volume']) with self.orphan_volumes_lock: self.orphan_volumes = update_records(self.orphan_volumes, orphan_volumes) def _get_netapp_volumes(self, status='online'): """ get netapp volumes from prometheus metrics return [<vol>, <vol>, ...] """ def _merge_dicts(dict_a, dict_b): dict_a.update(dict_b) return dict_a def _filter_labels(vol): return { 'volume': vol['volume'], 'vserver': vol['vserver'], 'filer': vol['filer'], } if status == 'online': query = "netapp_volume_total_bytes{app='netapp-capacity-exporter-manila'} + "\ "netapp_volume_snapshot_reserved_bytes" results = self._fetch_prom_metrics(query) return [ _merge_dicts(_filter_labels(vol['metric']), {'size': int(vol['value'][1]) / ONEGB}) for vol in results ] if status == 'offline': query = "netapp_volume_state{app='netapp-capacity-exporter-manila'}==3" results = self._fetch_prom_metrics(query) return [ _filter_labels(vol['metric']) for vol in results ] def _fetch_prom_metrics(self, query): try: r = requests.get(self.prom_host, params={'query': query, 'time': time.time()}) except Exception as e: raise type(e)(f'_fetch_prom_metrics(query=\"{query}\"): {e}') if r.status_code != 200: return None return r.json()['data']['result'] def _query_shares_by_instance_ids(self, instance_ids): """ @return List[Share] Share: Dict[Keys['share_id', 'instance_id', 'created_at', 'updated_at', 'deleted_at', 'deleted', 'status', 'host'], Any] """ shares_t = Table('shares', self.db_metadata, autoload=True) instances_t = Table('share_instances', self.db_metadata, autoload=True) q = select([shares_t.c.id.label('share_id'), shares_t.c.created_at, shares_t.c.updated_at, shares_t.c.deleted_at, shares_t.c.deleted, instances_t.c.status, instances_t.c.id.label('instance_id'), instances_t.c.host, ])\ .where(shares_t.c.id == instances_t.c.share_id)\ .where(instances_t.c.id.in_(instance_ids)) r = q.execute() return [dict(zip(r.keys(), x)) for x in r.fetchall()] def _query_shares(self): """ Get shares that are not deleted """ shares = Table('shares', self.db_metadata, autoload=True) instances = Table('share_instances', self.db_metadata, autoload=True) stmt = select([shares.c.id, shares.c.display_name, shares.c.size, shares.c.created_at, shares.c.updated_at, instances.c.id, instances.c.status, instances.c.host, ])\ .select_from( shares.join(instances, shares.c.id == instances.c.share_id))\ .where(shares.c.deleted == 'False') shares = [] for (sid, name, size, ctime, utime, siid, status, host) in stmt.execute(): shares.append({ 'id': sid, 'name': name, 'size': size, 'created_at': ctime, 'updated_at': utime, 'instance_id': siid, 'status': status, 'host': host, }) return shares def _merge_share_and_volumes(self, shares, volumes): """ Merge shares and volumes by share id and volume name Assuming the volume name is `share_[share_instance_id]`. Update the share object with the volume fields ("filer", "vserver", "volume", "volume_size"). Args: shares: List[] volumes: List[] Return: (shares, volumes):
class AbstractStemmer: pass class PorterStemmer(AbstractStemmer): """ A Stemmer class tutorial from: https://medium.com/analytics-vidhya/building-a-stemmer-492e9a128e84 """ consonants = "bcdfghjklmnpqrstwxz" special_case = "y" vowels = "aeiou" def _divide_into_groups(self, word): """ Divides each word according to vowel and consonents eg. tree -> [t,r,ee] """ groups = [] preceding = "" for index,letter in enumerate(word.lower()): if preceding == "": preceding = letter else: if self._compare_same_class(preceding,letter): preceding += letter else: groups.append(preceding) preceding = letter if index == len(word)-1: groups.append(letter) return groups def _compare_same_class(self,letter1, letter2): if letter1 in self.consonants and letter2 in self.consonants: return True elif letter1 in self.vowels and letter2 in self.vowels: return True else: return False return False def _determine_class(self,letter): if letter[0] in self.consonants: return 'C' return 'V' def _encode_word(self,word): divided_list = self._divide_into_groups(word) classified = [self._determine_class(letter) for letter in divided_list] return classified print(dict(zip(divided_list, classified))) def _determine_m(self, word): """ [C] VC * {m} [V] ie. m is the numbers of VC. """ class_list = self._encode_word(word) if len(class_list) < 2: return 0 if class_list[0] == 'C': # if first elment is C remove it class_list = class_list[1:] if class_list[-1] == 'V': # if last elment is V remove it class_list = class_list[:len(class_list) - 1] m = len(class_list) // 2 if (len(class_list) / 2) >= 1 else 0 return m def _check_endswith(self, stem, letters): """ *v --> stem ends with letters sucn as S,L,T """ for letter in letters: if stem.endswith(letter): return True return False def _check_vowel(self, stem): """ *v* --> stem contains a vowel in between """ for letter in stem: if letter in self.vowels: return True return False def _check_double_consonant(self, stem): """ *d — stem ends with a double consonant of any type. """ if stem[-1] in self.consonants and stem[-2] in self.consonants: return True return False def _check_o(self, stem): """ *o — stem ends with cvc (consonant followed by vowel followed by consonant) where second consonant is not W, X or Y (see, weird y again!). """ if len(stem) <= 3: return False if stem[-3] in self.consonants and stem[-2] in self.vowels and stem[-1] in self.consonants: return True return False #PorterStemming Starts def _porter_step_1(self, word): """ Deals with plurals and past participles """ stem = word step2b = False #step1a # SSES -> SS caresses -> caress # IES -> I ponies -> poni # ties -> ti # SS -> SS caress -> caress # S -> epsolon cats -> cat if stem.endswith('sses'): stem = stem[:-2] elif stem.endswith('ies'): stem = stem[:-2] elif not stem.endswith('ss') and stem.endswith('s'): stem = stem[:-1] # Step 1b, # (m>0) EED -> EE feed -> feed # agreed -> agree # (*v*) ED -> plastered -> plaster # bled -> bled # (*v*) ING -> motoring -> motor # sing -> sing # if steps 2 or 3 of 1b passes, another (sub)sub step has to be done # — this step will add letters. # Why? To be able to generalize better in further steps. if len(stem) > 4: if stem.endswith('eed') and self._determine_m(stem) > 0: stem = stem[:-1] elif stem.endswith('ed'): stem = stem[:-2] if not self._check_vowel(stem): stem = word else: step2b = True elif stem.endswith('ing'): stem = stem[:-3] if not self._check_vowel(stem): stem = word else: step2b = True # Step 1b,2 # (if step 1b is true) # AT -> ATE conflat(ed) -> conflate # BL -> BLE troubl(ed) -> trouble # IZ -> IZE siz(ed) -> size # (*d and not (*L or *S or *Z)) # -> single letter # hopp(ing) -> hop # tann(ed) -> tan # fall(ing) -> fall # hiss(ing) -> hiss # fizz(ed) -> fizz # m=1 and *o) -> E fail(ing) -> fail # fil(ing) -> file if step2b: if stem.endswith('at') or stem.endswith('bl') or stem.endswith('iz'): stem += "e" elif self._check_double_consonant(stem) and not self._check_endswith(stem, "lsz"): stem = stem[:-1] elif self._determine_m(stem) == 1 and self._check_o(stem): stem += "e" # Step 1c # (*v*) Y -> I happy -> happi # sky -> sky if self._check_vowel(stem) and stem.endswith('y'): stem = stem[:-1] + "i" return stem def _porter_step_2(self, stem): # Step 2 # (m>0) ATIONAL -> ATE relational -> relate # (m>0) TIONAL -> TION conditional -> condition # rational -> rational # (m>0) ENCI -> ENCE valenci -> valence # (m>0) ANCI -> ANCE hesitanci -> hesitance # (m>0) IZER -> IZE digitizer -> digitize # (m>0) ABLI -> ABLE conformabli -> conformable # (m>0) ALLI -> AL radicalli -> radical # (m>0) ENTLI -> ENT differentli -> different # (m>0) ELI -> E vileli - > vile # (m>0) OUSLI -> OUS analogousli -> analogous # (m>0) IZATION -> IZE vietnamization -> vietnamize # (m>0) ATION -> ATE predication -> predicate # (m>0) ATOR -> ATE operator -> operate # (m>0) ALISM -> AL feudalism -> feudal # (m>0) IVENESS -> IVE decisiveness -> decisive # (m>0) FULNESS -> FUL hopefulness -> hopeful # (m>0) OUSNESS -> OUS callousness -> callous # (m>0) ALITI -> AL formaliti -> formal # (m>0) IVITI -> IVE sensitiviti -> sensitiv pair_tests = [('ational','ate'), ('tional','tion'), ('enci','ence'), ('anci','ance'), ('izer', 'ize'), ('abli','able'), ('alli','al'), ('entli', 'ent'), ('eli', 'e'), ('ousli', 'ous'), ('ization', 'ize'), ('ation', 'ate'), ('ator', 'ate'), ('alism', 'al'), ('iveness', 'ive'), ('fulness', 'ful'), ('ousness', 'ous'), ('aliti','al'), ('ivit', 'ive'), ('biliti','ble')] if self._determine_m(stem) > 0: for termination, substitute in pair_tests: if stem.endswith(termination): stem = stem[: -len(termination)] + substitute break return stem def _porter_step_3(self, stem): # Step 3 # (m>0) ICATE -> IC triplicate -> triplic # (m>0) ATIVE -> formative -> form # (m>0) ALIZE -> AL formalize -> formal # (m>0) ICITI -> IC electriciti -> electric # (m>0) ICAL -> IC electrical -> electric # (m>0) FUL -> hopeful -> hope # (m>0) NESS -> goodness -> good pair_tests = [('icate','ic'),('ative',''),('alize','al'),('iciti','ic'),('ical','ic'),('ful',''),('ness','')] if self._determine_m(stem) > 0: for termination, substitute in pair_tests: if stem.endswith(termination): stem = stem[: -len(termination)] + substitute break return stem def _porter_step_4(self, stem): """ Remove suffixes """ # Step 4 # (m>1) AL -> revival -> reviv # (m>1) ANCE -> allowance -> allow # (m>1) ENCE -> inference -> infer # (m>1) ER -> airliner -> airlin # (m>1) IC -> gyroscopic -> gyroscop # (m>1) ABLE -> adjustable -> adjust # (m>1) IBLE -> defensible -> defens # (m>1) ANT -> irritant -> irrit # (m>1) EMENT -> replacement -> replac # (m>1) MENT -> adjustment -> adjust # (m>1) ENT -> dependent -> depend # (m>1 and (*S or *T)) ION -> adoption -> adopt # (m>1) OU -> homologou -> homolog # (m>1) ISM -> communism -> commun # (m>1) ATE -> activate -> activ # (m>1) ITI -> angulariti -> angular # (m>1) OUS -> homologous -> homolog # (m>1) IVE -> effective -> effect # (m>1) IZE -> bowdlerize -> bowdler suffixes_1 = ['al','ance','ence','er','ic','able','ible','ant','ement','ment','ent'] special_case = 'ion' suffixes_2 = ['ou','ism','ate','iti','ous','ive','ize'] if self._determine_m(stem) > 1: for suffix in suffixes_1: if stem.endswith(suffix): return stem[: -len(suffix)] if stem.endswith(special_case): temp = stem[: -len(special_case)] if self._check_endswith(temp, "st"): return temp for suffix in suffixes_2: if stem.endswith(suffix): return stem[: -len(suffix)] return stem def _porter_step_5(self, stem): # Step 5a # (m>1) E -> probate -> probat # rate -> rate # (m=1 and not *o) E -> cease -> ceas # Step 5b # (m > 1 and *d and *L) -> single letter # controll -> control # roll -> roll #step 5a if self._determine_m(stem) > 1 and stem.endswith('e') and len(stem) > 4: stem = stem[:-1] elif self._determine_m(stem) == 1 and not self._check_o(stem) and stem.endswith('e') and len(stem) > 4: stem = stem[:-1] #step5b if self._determine_m(stem) > 1 and self._check_endswith(stem, "dl") and len(stem) > 4: stem = stem[:-1] return stem def stem_now(self, sentence): """ input: A string sentence """ stem_words = [] for stem in sentence.split(): stem = self._porter_step_1(stem) stem = self._porter_step_2(stem) stem = self._porter_step_3(stem) stem = self._porter_step_4(stem) stem = self._porter_step_5(stem) stem_words.append(stem) return " ".join(stem_words) p = PorterStemmer() # print(p.stem_now("This is
session tracks the reference to the TeleApi object sess = dmon.sessions[list(dmon.sessions.keys())[0]] self.isinstance(sess.getSessItem(None), TeleApi) # And that data is available from the session helper API snfo = await dmon.getSessInfo() self.len(1, snfo) self.eq(snfo[0].get('items'), {None: 'synapse.tests.test_telepath.TeleApi'}) self.eq(10, await proxy.getFooBar(20, 10)) # check a custom share works obj = await proxy.customshare() self.eq(999, await obj.boo(999)) # Ensure the Share object is placed into the # session for the daemon. self.len(2, sess.items) key = [k for k in sess.items.keys() if k][0] self.isinstance(sess.getSessItem(key), CustomShare) # make another customshare reference which will be # tracked by the Sess object evt = asyncio.Event() async with await proxy.customshare(): self.len(3, sess.items) _key = [k for k in sess.items.keys() if k and k != key][0] _cshare = sess.getSessItem(_key) self.isinstance(_cshare, CustomShare) _cshare.onfini(evt.set) # and that item is removed from the sess on the # _share fini by the client self.true(await asyncio.wait_for(evt.wait(), 6)) self.len(2, sess.items) self.nn(sess.getSessItem(key)) # ensure that the share is represented in the session info via # the helper APIs as well snfo = await dmon.getSessInfo() self.len(1, snfo) self.eq(snfo[0].get('items'), {None: 'synapse.tests.test_telepath.TeleApi', key: 'synapse.tests.test_telepath.CustomShare'}) # and we can still use the first obj we made ret = await alist(obj.custgenr(3)) self.eq(ret, [0, 1, 2]) # check that a dynamic share works async with await self.getTestProxy(dmon, 'woke/up') as proxy: self.eq('up: beep', await proxy.beep()) async def test_telepath_auth(self): item = TeleAuth() async with self.getTestDmon() as dmon: dmon.share('auth', item) host, port = dmon.addr url = 'tcp://localhost/auth' await self.asyncraises(s_exc.AuthDeny, s_telepath.openurl(url, port=port)) url = 'tcp://visi@localhost/auth' await self.asyncraises(s_exc.AuthDeny, s_telepath.openurl(url, port=port)) url = 'tcp://visi:secretsauce@localhost/auth' async with await s_telepath.openurl(url, port=port) as proxy: self.eq(17, await proxy.getFooBar(10, 7)) async def test_telepath_server_badvers(self): async with self.getTestDmon() as dmon: dmon.televers = (0, 0) host, port = await dmon.listen('tcp://127.0.0.1:0/') await self.asyncraises(s_exc.BadMesgVers, s_telepath.openurl('tcp://127.0.0.1/', port=port)) async def test_alias(self): item = TeleAware() name = 'item' async with self.getTestDmon() as dmon: host, port = dmon.addr dmon.share(name, item) with self.getTestDir() as dirn: url = f'tcp://{host}:{port}/{name}' beepbeep_alias = url + '/beepbeep' aliases = {name: url, f'{name}/borp': beepbeep_alias} with self.setSynDir(dirn): fp = s_common.getSynPath('aliases.yaml') s_common.yamlsave(aliases, fp) # None existent aliases return None self.none(s_telepath.alias('newp')) self.none(s_telepath.alias('newp/path')) # An exact match wins self.eq(s_telepath.alias(name), url) self.eq(s_telepath.alias(f'{name}/borp'), beepbeep_alias) # Dynamic aliases are valid. self.eq(s_telepath.alias(f'{name}/beepbeep'), beepbeep_alias) async with await s_telepath.openurl(name) as prox: self.eq(10, await prox.getFooBar(20, 10)) # Check to see that we can connect to an aliased name # with a dynamic share attached to it. async with await s_telepath.openurl(f'{name}/bar') as prox: self.eq('bar: beep', await prox.beep()) async def test_default_name(self): async with self.getTestDmon() as dmon: host, port = dmon.addr dmon.share('*', Foo()) async with await s_telepath.openurl(f'tcp://{host}:{port}/') as prox: self.eq('hiya', await prox.echo('hiya')) async def test_url_cell(self): with self.getTestDir(chdir=True) as dirn: path = os.path.join(dirn, 'cell') sockpath = os.path.join(path, 'sock') async with await s_cell.Cell.anit(path) as cell: # test a relative cell:// url async with await s_telepath.openurl('cell://cell') as prox: self.eq('cell', await prox.getCellType()) # unix path information is available from the session information. snfo = await cell.dmon.getSessInfo() self.eq(snfo[0].get('conninfo'), {'family': 'unix', 'addr': sockpath}) # test an absolute cell:// url async with await s_telepath.openurl(f'cell://{path}') as prox: self.eq('cell', await prox.getCellType()) # unix path information is available from the session information. snfo = await cell.dmon.getSessInfo() self.eq(snfo[0].get('conninfo'), {'family': 'unix', 'addr': sockpath}) async def test_ipv6(self): foo = Foo() async with self.getTestDmon() as dmon: dmon.share('foo', foo) try: addr = await dmon.listen('tcp://[::1]:0/') except asyncio.CancelledError: raise except OSError: if os.getenv('CIRCLECI', False): # Circleci container tests do not support IPV6 (but osx does) # https://circleci.com/docs/2.0/faq/#can-i-use-ipv6-in-my-tests self.skip('ipv6 is not supported in circleci') else: raise host, port = addr[0], addr[1] async with await s_telepath.openurl(f'tcp://{host}/foo', port=port) as prox: # Ensure that ipv6 is returned via session info snfo = await dmon.getSessInfo() conninfo = snfo[0].get('conninfo') self.eq(conninfo, {'family': 'tcp', 'ipver': 'ipv6', 'addr': prox.link.sock.getsockname()}) # check a standard return value self.eq(30, await prox.bar(10, 20)) async def test_telepath_client_redir(self): class TestRedir(s_telepath.Aware): def __init__(self, valu, redir=None): self.valu = valu self.redir = redir def getTeleApi(self, link, mesg, path): if self.redir is not None: raise s_exc.TeleRedir(url=self.redir) return self async def dostuff(self, x): if self.redir: raise s_exc.TeleRedir(url=self.redir) return x + self.valu dmon0 = await s_daemon.Daemon.anit() dmon1 = await s_daemon.Daemon.anit() addr0 = await dmon0.listen('tcp://127.0.0.1:0/') addr1 = await dmon1.listen('tcp://127.0.0.1:0/') url0 = f'tcp://127.0.0.1:{addr0[1]}/foo' url1 = f'tcp://127.0.0.1:{addr1[1]}/foo' rdir0 = TestRedir(10) rdir1 = TestRedir(20, redir=url0) dmon0.share('foo', rdir0) dmon1.share('foo', rdir1) async with await s_telepath.Client.anit(url0) as targ: with self.raises(s_exc.NotReady): targ.dostuff(100) await targ.waitready() proxy = await targ.proxy() self.eq(proxy._getSynVers(), s_version.version) # Client implements some base helpers the proxy does self.eq(targ._getSynVers(), s_version.version) self.eq(targ._getClasses(), ('synapse.tests.test_telepath.TestRedir', 'synapse.telepath.Aware')) # client works as a passthrough to the proxy self.eq(110, await targ.dostuff(100)) # this should get redirected to url0... async with await s_telepath.Client.anit(url1) as targ: await targ.waitready() self.eq(110, await targ.dostuff(100)) # fake out the redirect to connect, then redirect on call... rdir1.redir = None async with await s_telepath.Client.anit(url1) as targ: await targ.waitready() self.eq(120, await targ.dostuff(100)) rdir1.redir = url0 self.eq(110, await targ.dostuff(100)) await dmon0.fini() await dmon1.fini() async def test_telepath_client_failover(self): class TestFail: def __init__(self): self.count = 0 async def dostuff(self, x): self.count += 1 return x + 10 dmon0 = await s_daemon.Daemon.anit() dmon1 = await s_daemon.Daemon.anit() addr0 = await dmon0.listen('tcp://127.0.0.1:0/') addr1 = await dmon1.listen('tcp://127.0.0.1:0/') url0 = f'tcp://user:[email protected]:{addr0[1]}/foo' url1 = f'tcp://127.0.0.1:{addr1[1]}/foo' fail0 = TestFail() fail1 = TestFail() dmon0.share('foo', fail0) dmon1.share('foo', fail1) urls = (url0, url1) async with await s_telepath.Client.anit(urls) as targ: await targ.waitready() self.eq(110, await targ.dostuff(100)) self.eq(1, fail0.count) self.eq(0, fail1.count) await dmon0.fini() self.eq(110, await targ.dostuff(100)) self.eq(1, fail0.count) self.eq(1, fail1.count) async with await s_telepath.Client.anit(urls) as targ: with self.getAsyncLoggerStream('synapse.telepath', 'Connect call failed') as stream: await targ.waitready() # Verify the password doesn't leak into the log self.true(await stream.wait(2)) stream.seek(0) mesgs = stream.read() self.notin('password', mesgs) self.eq(110, await targ.dostuff(100)) self.eq(1, fail0.count) self.eq(2, fail1.count) await dmon1.fini() async def test_telepath_poolsize(self): # While test_telepath_sync_genr_break also touches the link pool, # it doesn't validate the pool size or automatic link teardown # behavior when a extra link is placed into the pool. foo = Foo() async with self.getTestDmon() as dmon: dmon.share('foo', foo) url = f'tcp://127.0.0.1:{dmon.addr[1]}/foo' # Validate the Proxy behavior then the client override prox = await s_telepath.openurl(url) # type: Foo prox._link_poolsize = 2 # Start with no links self.len(0, prox.links) self.eq(await prox.echo(1), 1) # We now have one link - spin up a generator to grab it self.len(1, prox.links) l0 = prox.links[0] genr = await prox.genr() # type: s_coro.GenrHelp self.eq(await genr.genr.__anext__(), 10) # The link is being used by the genr self.len(0, prox.links) # and upon exhuastion, that link is put back self.eq(await genr.list(), (20, 30)) self.len(1, prox.links) self.true(prox.links[0] is l0) # Grab the existing link, then do two more calls genr0 = await prox.genr() # contains l0 genr1 = await prox.genr() genr2 = await prox.genr() self.len(0, prox.links) # Consume two of the three generators self.eq(await genr2.list(), (10, 20, 30)) self.len(1, prox.links) self.eq(await genr1.list(), (10, 20, 30)) self.len(2, prox.links) # Exhausting the lsat generator results in his # link not being placed back into the pool self.eq(await genr0.list(), (10, 20, 30)) self.len(2, prox.links) links = set(lnk for lnk in prox.links) self.notin(l0, links) # And that link l0 has been fini'd self.true(l0.isfini) # Tear down a link by hand and place it back # into the pool - that will fail b/c the link # has been down down. l1 = await prox.getPoolLink() self.len(1, prox.links) await l1.fini() await prox._putPoolLink(l1) self.len(1, prox.links) # And all our links are torn down on fini await prox.fini() self.len(1, prox.links) for link in prox.links: self.true(link.isfini) # The telepath Client passes through this value as a configuration parameter conf = {'link_poolsize': 2, 'timeout': 2} async with await s_telepath.Client.anit(url, conf=conf) as client: await client.waitready() self.true(client._t_proxy._link_poolsize, 2) async def test_link_fini_breaking_tasks(self): foo = Foo() async with self.getTestDmon() as dmon: dmon.share('foo', foo) url = f'tcp://127.0.0.1:{dmon.addr[1]}/foo' prox = await s_telepath.openurl(url) # type: Foo # Fire up an async generator which will yield a message then # wait for a while async for mesg in prox.sleepg(t=60): self.eq(mesg, ('init', {})) break # Ensure that tearing down the client prompty tears down # taskv2init coro due to the link being fini'd by the server. # It is important that we validate these items BEFORE we # teardown the proxy, since the previous (<0.1.32) behaviour
<gh_stars>0 # USDA_CoA_Cropland.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 import json import numpy as np import pandas as pd from flowsa.common import * from flowsa.flowbyfunctions import assign_fips_location_system, sector_disaggregation def CoA_Cropland_URL_helper(build_url, config, args): """This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for coa cropland data that requires parts of the url text string to be replaced with info specific to the usda nass quickstats API. This function does not parse the data, only modifies the urls from which data is obtained. """ # initiate url list for coa cropland data urls = [] # call on state acronyms from common.py (and remove entry for DC) state_abbrevs = abbrev_us_state state_abbrevs = {k: v for (k, v) in state_abbrevs.items() if k != "DC"} # replace "__aggLevel__" in build_url to create three urls for x in config['agg_levels']: for y in config['sector_levels']: # at national level, remove the text string calling for state acronyms if x == 'NATIONAL': url = build_url url = url.replace("__aggLevel__", x) url = url.replace("__secLevel__", y) url = url.replace("&state_alpha=__stateAlpha__", "") if y == "ECONOMICS": url = url.replace( "AREA HARVESTED&statisticcat_desc=AREA IN PRODUCTION&statisticcat_desc=TOTAL&statisticcat_desc=AREA BEARING %26 NON-BEARING", "AREA&statisticcat_desc=AREA OPERATED") else: url = url.replace("&commodity_desc=AG LAND&commodity_desc=FARM OPERATIONS", "") url = url.replace(" ", "%20") urls.append(url) else: # substitute in state acronyms for state and county url calls for z in state_abbrevs: url = build_url url = url.replace("__aggLevel__", x) url = url.replace("__secLevel__", y) url = url.replace("__stateAlpha__", z) if y == "ECONOMICS": url = url.replace( "AREA HARVESTED&statisticcat_desc=AREA IN PRODUCTION&statisticcat_desc=TOTAL&statisticcat_desc=AREA BEARING %26 NON-BEARING", "AREA&statisticcat_desc=AREA OPERATED") else: url = url.replace("&commodity_desc=AG LAND&commodity_desc=FARM OPERATIONS", "") url = url.replace(" ", "%20") urls.append(url) return urls def coa_cropland_call(url, coa_response, args): cropland_json = json.loads(coa_response.text) df_cropland = pd.DataFrame(data=cropland_json["data"]) return df_cropland def coa_cropland_parse(dataframe_list, args): """Modify the imported data so it meets the flowbyactivity criteria and only includes data on harvested acreage (irrigated and total). """ df = pd.concat(dataframe_list, sort=False) # specify desired data based on domain_desc df = df[~df['domain_desc'].isin(['ECONOMIC CLASS', 'FARM SALES', 'IRRIGATION STATUS', 'CONCENTRATION', 'ORGANIC STATUS', 'NAICS CLASSIFICATION', 'PRODUCERS'])] df = df[df['statisticcat_desc'].isin(['AREA HARVESTED', 'AREA IN PRODUCTION', 'AREA BEARING & NON-BEARING', 'AREA', 'AREA OPERATED'])] # drop rows that subset data into farm sizes (ex. 'area harvested: (1,000 to 1,999 acres) df = df[~df['domaincat_desc'].str.contains(' ACRES')].reset_index(drop=True) # drop Descriptions that contain certain phrases, as these data are included in other categories df = df[~df['short_desc'].str.contains('FRESH MARKET|PROCESSING|ENTIRE CROP|NONE OF CROP|PART OF CROP')] # drop Descriptions that contain certain phrases - only occur in AG LAND data df = df[~df['short_desc'].str.contains('INSURANCE|OWNED|RENTED|FAILED|FALLOW|IDLE')].reset_index(drop=True) # Many crops are listed as their own commodities as well as grouped within a broader category (for example, orange # trees are also part of orchards). As this dta is not needed, takes up space, and can lead to double counting if # included, want to drop these unused columns # subset dataframe into the 5 crop types and land in farms and drop rows # crop totals: drop all data # field crops: don't want certain commodities and don't want detailed types of wheat, cotton, or sunflower df_fc = df[df['group_desc'] == 'FIELD CROPS'] df_fc = df_fc[~df_fc['commodity_desc'].isin(['GRASSES', 'GRASSES & LEGUMES, OTHER', 'LEGUMES', 'HAY', 'HAYLAGE'])] df_fc = df_fc[~df_fc['class_desc'].str.contains('SPRING|WINTER|TRADITIONAL|OIL|PIMA|UPLAND', regex=True)] # fruit and tree nuts: only want a few commodities df_ftn = df[df['group_desc'] == 'FRUIT & TREE NUTS'] df_ftn = df_ftn[df_ftn['commodity_desc'].isin(['BERRY TOTALS', 'ORCHARDS'])] df_ftn = df_ftn[df_ftn['class_desc'].isin(['ALL CLASSES'])] # horticulture: only want a few commodities df_h = df[df['group_desc'] == 'HORTICULTURE'] df_h = df_h[df_h['commodity_desc'].isin(['CUT CHRISTMAS TREES', 'SHORT TERM WOODY CROPS'])] # vegetables: only want a few commodities df_v = df[df['group_desc'] == 'VEGETABLES'] df_v = df_v[df_v['commodity_desc'].isin(['VEGETABLE TOTALS'])] # only want ag land and farm operations in farms & land & assets df_fla = df[df['group_desc'] == 'FARMS & LAND & ASSETS'] df_fla = df_fla[df_fla['short_desc'].str.contains("AG LAND|FARM OPERATIONS")] # drop the irrigated acreage in farms (want the irrigated harvested acres) df_fla = df_fla[((df_fla['domaincat_desc'] == 'AREA CROPLAND, HARVESTED:(ANY)') & (df_fla['domain_desc'] == 'AREA CROPLAND, HARVESTED ') & (df_fla['short_desc'] == 'AG LAND, IRRIGATED - ACRES'))] # concat data frames df = pd.concat([df_fc, df_ftn, df_h, df_v, df_fla], sort=False).reset_index(drop=True) # drop unused columns df = df.drop(columns=['agg_level_desc', 'location_desc', 'state_alpha', 'sector_desc', 'country_code', 'begin_code', 'watershed_code', 'reference_period_desc', 'asd_desc', 'county_name', 'source_desc', 'congr_district_code', 'asd_code', 'week_ending', 'freq_desc', 'load_time', 'zip_5', 'watershed_desc', 'region_desc', 'state_ansi', 'state_name', 'country_name', 'county_ansi', 'end_code', 'group_desc']) # create FIPS column by combining existing columns df.loc[df['county_code'] == '', 'county_code'] = '000' # add county fips when missing df['Location'] = df['state_fips_code'] + df['county_code'] df.loc[df['Location'] == '99000', 'Location'] = US_FIPS # modify national level fips # address non-NAICS classification data # use info from other columns to determine flow name df.loc[:, 'FlowName'] = df['statisticcat_desc'] + ', ' + df['prodn_practice_desc'] df.loc[:, 'FlowName'] = df['FlowName'].str.replace(", ALL PRODUCTION PRACTICES", "", regex=True) df.loc[:, 'FlowName'] = df['FlowName'].str.replace(", IN THE OPEN", "", regex=True) # combine column information to create activity information, and create two new columns for activities df['Activity'] = df['commodity_desc'] + ', ' + df['class_desc'] + ', ' + df['util_practice_desc'] # drop this column later df['Activity'] = df['Activity'].str.replace(", ALL CLASSES", "", regex=True) # not interested in all data from class_desc df['Activity'] = df['Activity'].str.replace(", ALL UTILIZATION PRACTICES", "", regex=True) # not interested in all data from class_desc df['ActivityProducedBy'] = np.where(df["unit_desc"] == 'OPERATIONS', df["Activity"], None) df['ActivityConsumedBy'] = np.where(df["unit_desc"] == 'ACRES', df["Activity"], None) # rename columns to match flowbyactivity format df = df.rename(columns={"Value": "FlowAmount", "unit_desc": "Unit", "year": "Year", "CV (%)": "Spread", "short_desc": "Description"}) # drop remaining unused columns df = df.drop(columns=['Activity', 'class_desc', 'commodity_desc', 'domain_desc', 'state_fips_code', 'county_code', 'statisticcat_desc', 'prodn_practice_desc', 'domaincat_desc', 'util_practice_desc']) # modify contents of units column df.loc[df['Unit'] == 'OPERATIONS', 'Unit'] = 'p' # modify contents of flowamount column, "D" is supressed data, "z" means less than half the unit is shown df['FlowAmount'] = df['FlowAmount'].str.strip() # trim whitespace df.loc[df['FlowAmount'] == "(D)", 'FlowAmount'] = withdrawn_keyword df.loc[df['FlowAmount'] == "(Z)", 'FlowAmount'] = withdrawn_keyword df['FlowAmount'] = df['FlowAmount'].str.replace(",", "", regex=True) # USDA CoA 2017 states that (H) means CV >= 99.95, therefore replacing with 99.95 so can convert column to int # (L) is a CV of <= 0.05 df['Spread'] = df['Spread'].str.strip() # trim whitespace df.loc[df['Spread'] == "(H)", 'Spread'] = 99.95 df.loc[df['Spread'] == "(L)", 'Spread'] = 0.05 df.loc[df['Spread'] == "", 'Spread'] = None # for instances where data is missing df.loc[df['Spread'] == "(D)", 'Spread'] = withdrawn_keyword # add location system based on year of data df = assign_fips_location_system(df, args['year']) # Add hardcoded data df['Class'] = np.where(df["Unit"] == 'ACRES', "Land", "Other") df['SourceName'] = "USDA_CoA_Cropland" df['MeasureofSpread'] = "RSD" df['DataReliability'] = None df['DataCollection'] = 2 return df def coa_irrigated_cropland_fba_cleanup(fba): """ When using irrigated cropland, aggregate sectors to cropland and total ag land. Doing this because published values for irrigated harvested cropland do not include the water use for vegetables, woody crops, berries. :param fba: :return: """ fba = fba[~fba['ActivityConsumedBy'].isin(['AG LAND', 'AG LAND, CROPLAND, HARVESTED'])] return fba def disaggregate_coa_cropland_to_6_digit_naics(fba_w_sector, attr): """ Disaggregate usda coa cropland to naics 6 :param fba_w_sector: :param attr: :return: """ # use ratios of usda 'land in farms' to determine animal use of pasturelands at 6 digit naics fba_w_sector = disaggregate_pastureland(fba_w_sector, attr) # use ratios of usda 'harvested cropland' to determine missing 6 digit naics fba_w_sector = disaggregate_cropland(fba_w_sector, attr) return fba_w_sector def disaggregate_pastureland(fba_w_sector, attr): """ The USDA CoA Cropland irrigated pastureland data only links to the 3 digit NAICS '112'. This function uses state level CoA 'Land in Farms' to allocate the county level acreage data to 6 digit NAICS. :param fba_w_sector: The CoA Cropland dataframe after linked to sectors :return: The CoA cropland dataframe with disaggregated pastureland data """ import flowsa from flowsa.flowbyfunctions import allocate_by_sector, clean_df, flow_by_activity_fields, \ fba_fill_na_dict # subset the coa data so only pastureland p = fba_w_sector.loc[fba_w_sector['Sector'] == '112'] # add temp loc column for state fips p.loc[:, 'Location_tmp'] = p['Location'].apply(lambda x: str(x[0:2])) # load usda coa cropland naics df_f = flowsa.getFlowByActivity(flowclass=['Land'], years=[attr['allocation_source_year']], datasource='USDA_CoA_Cropland_NAICS') df_f = clean_df(df_f, flow_by_activity_fields, fba_fill_na_dict) # subset to land in farms data df_f = df_f[df_f['FlowName'] == 'FARM OPERATIONS'] # subset to rows related to pastureland df_f = df_f.loc[df_f['ActivityConsumedBy'].apply(lambda x: str(x[0:3])) == '112'] # drop rows with "&' df_f = df_f[~df_f['ActivityConsumedBy'].str.contains('&')] # create sector column df_f.loc[:, 'Sector'] = df_f['ActivityConsumedBy'] # create
- Chapter 4.4 """ fsim = np.zeros((ns, nsim)) fsim = fsim.astype(int) Tpow = matrix_power(T, 100) fprior = np.zeros((1,T.shape[1])) fprior[0,:] = Tpow[0,:] for j in range(nsim): fsim[0, j] = RandDisc(fprior) for i in range(1,ns): fcond = np.zeros((1,T.shape[1])) fcond[0,:] = T[fsim[i-1,j], :] fsim[i, j] = RandDisc(fcond) return fsim def RadialCorrLength(lmin, lmax, azim, theta): """ RADIAL CORR LENGTH Computes the radial correlation length. Written by <NAME> (August 2020) Parameters ---------- lmin : float Minimum correlation length. lmax : float Maximum correlation length. azim : float Azimuth. theta : float Radial coordinate. Returns ------- l : float Radial correlation length. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 3.2 """ # covariance function l = np.sqrt((lmin ** 2 * lmax ** 2) / (lmax ** 2 * (np.sin(azim - theta)) ** 2 + lmin ** 2 * (np.cos(azim - theta)) ** 2)) return l def SpatialCovariance1D(h, l, krigtype): """ SPATIAL COVARIANCE 1D Computes the 1D spatial covariance function. Written by <NAME> (August 2020) Parameters ---------- l : float Correlation length. h : float Distance. krigtype : str Function type ('exp', 'gau', 'sph'). Returns ------- C : array_like Covariance. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 3.2 """ # covariance function if krigtype == 'exp': C = ExpCov(h, l) elif krigtype == 'gau': C = GauCov(h, l) elif krigtype == 'sph': C = SphCov(h, l) else: print('error') return C def SpatialCovariance2D(lmin, lmax, azim, theta, h, krigtype): """ SPATIAL COVARIANCE 2D Computes the 2D anisotropic spatial covariance function. Written by <NAME> (August 2020) Parameters ---------- lmin : float Minimum correlation length. lmax : float Maximum correlation length. azim : float Azimuth. theta : float Radial coordinate. h : float Distance. krigtype : str Function type ('exp', 'gau', 'sph'). Returns ------- C : array_like Covariance. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 3.2 """ # covariance function if krigtype == 'exp': C = ExpCov(h, RadialCorrLength(lmin, lmax, azim, theta)) elif krigtype == 'gau': C = GauCov(h, RadialCorrLength(lmin, lmax, azim, theta)) elif krigtype == 'sph': C = SphCov(h, RadialCorrLength(lmin, lmax, azim, theta)) else: print('error') return C def SeqGaussianSimulation(xcoords, dcoords, dvalues, xmean, xvar, l, krigtype, krig): """ SEQ GAUSSIAN SIMULATION Generates a realization of the random variable conditioned on the available measurements using Sequential Gaussian Simulation. Written by <NAME> (August 2020) Parameters ---------- xcoord : array_like Coordinates of the location for the estimation (np, ndim). dcoords : array_like Coordinates of the measurements (nd, ndim). dvalues : array_like Values of the measurements (nd, 1). xmean : float or array (for local variable mean) Prior mean. xvar : float Prior variance. l : float Correlation length. krigtype : str Function type ('exp', 'gau', 'sph'). krig : int Kriging type (0=simple, 1=ordinary). Returns ------- sgsim : array_like Realization. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 3.5 """ # initial parameters n = xcoords.shape[0] nd = dcoords.shape[0] # maximum number of conditioning data nmax = 12 # Data assignment to the simulation grid (-999 or measurements) sgsim = -999 * np.ones((n, 1)) for i in range(nd): ind = np.argmin(np.sum((xcoords - dcoords[i, :]) ** 2, axis=1)) sgsim[ind] = dvalues[i] # random path of locations npl = n - nd nonsimcoords = xcoords[sgsim[:,0] == -999, :] pathind = np.random.permutation(range(npl)) pathcoords = nonsimcoords[pathind, :] simval = np.zeros((npl, 1)) # if the xmean is a single value, transform to an array if type(xmean) == float: xmean = xmean*np.ones((n, 1)) # sequential simulation for i in range(npl): if dcoords.shape[0] < nmax: dc = dcoords dz = dvalues else: # conditioning data selection dv = [] dv = np.sqrt(np.sum((dcoords - pathcoords[i, :]) ** 2, axis=1)) ind = np.argsort(dv) dc = dcoords[ind[0:nmax-1],:] dz = dvalues[ind[0:nmax-1]] # kriging if krig == 0: krigmean, krigvar = SimpleKriging(pathcoords[i,:], dc, dz, xmean[pathind[i]], xvar, l, krigtype) else: krigmean, krigvar = OrdinaryKriging(pathcoords[i,:], dc, dz, xvar, l, krigtype) # realization simval[pathind[i],0] = krigmean + np.sqrt(krigvar) * np.random.randn(1) # Adding simulated value the vector of conditioning data dcoords = np.vstack((dcoords, pathcoords[i, :])) dvalues = np.vstack((dvalues, simval[pathind[i]])) # Assigning the sampled values to the simulation grid sgsim[sgsim[:,0] == -999, 0] = simval[:,0] return sgsim def SeqIndicatorSimulation(xcoords, dcoords, dvalues, nf, pprior, l, krigtype): """ SEQ INDICATOR SIMULATION Generates a realization of the discrete random variable conditioned on the available measurements using Sequential Indicator Simulation. Written by <NAME> (August 2020) Parameters ---------- xcoord : array_like Coordinates of the location for the estimation (np, ndim). dcoords : array_like Coordinates of the measurements (nd, ndim). dvalues : array_like Values of the measurements (ns, 1). nf : int Number of possible outcomes (e.g. number of facies). pprior : array_like Prior probability (1, nf). l : float or array_like Correlation range, for different range for each facies (array with nf components). krigtype : str Function type ('exp', 'gau', 'sph') for different type for each facies, (array with nf components). Returns ------- sgsim : array_like Realization. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 4.2 """ # initial parameters n = xcoords.shape[0] nd = dcoords.shape[0] # maximum number of conditioning data nmax = 12 # Data assignment to the simulation grid (-999 or measurements) sgsim = -999 * np.ones((n, 1)) for i in range(nd): ind = np.argmin(np.sum((xcoords - dcoords[i, :]) ** 2, axis=1)) sgsim[ind] = dvalues[i] # random path of locations npl = n - nd nonsimcoords = xcoords[sgsim[:,0] == -999, :] pathind = np.random.permutation(range(npl)) pathcoords = nonsimcoords[pathind, :] simval = np.zeros((npl, 1)) # sequential simulation for i in range(npl): if dcoords.shape[0] < nmax: dc = dcoords dz = dvalues else: # conditioning data selection dv = [] dv = np.sqrt(np.sum((dcoords - pathcoords[i, :]) ** 2, axis=1)) ind = np.argsort(dv) dc = dcoords[ind[0:nmax-1],:] dz = dvalues[ind[0:nmax-1]] dz = dz.astype(int) ikprob, ikmap = IndicatorKriging(pathcoords[i,:], dc, dz, nf, pprior, l, krigtype) # realization simval[pathind[i]] = RandDisc(ikprob) # Adding simulated value the vector of conditioning data dcoords = np.vstack((dcoords, pathcoords[i, :])) dvalues = np.vstack((dvalues, simval[pathind[i]])) # Assigning the sampled values to the simulation grid sgsim[sgsim[:,0] == -999, 0] = simval[:,0] return sgsim def RandDisc(p): """ RANDDISC Samples a discrete random variable with a given probability mass function. Written by <NAME> (August 2020) Parameters ---------- p : array_like Probabilities. Returns ------- index : array_like Sampled value. References: Grana, Mukerji, Doyen, 2021, Seismic Reservoir Modeling: Wiley - Chapter 4.4 """ u = np.random.rand(1) index = 0 s = p[0,0] while ((u > s) and (index < p.shape[1])): index = index + 1 s = s + p[0,index] return index def NonParametricToUniform(data2transform, reference_variables, gridsize=0.05): """ STEPWISE CONDITIONAL TRANSFORMATION (non-par to uniform) Tranform a non-parametric distributed variables to a uniformly distributed variables following the stepwise transformation approach REFRERENCE: Direct Multivariate Simulation - A stepwise conditional transformation for multivariate geostatistical simulation de Figueiredo et al., 2020 Written by <NAME> (May 2021) Parameters ---------- data2transform : array_like Non-parametric distributed variables to be transformed to a uniform distribution, each line is a simulation value and each column is a different variable. reference_variables : array_like Non-parametric distributed variables to be used as the reference distribution, each line is a simulation value/point and each column is a different variable.. gridsize : float Grid size for conditioning. Low values may cause not enought points to compute the conditional distribution. High values may cause a non accurate transformation. Returns ------- variable_uniform : array_like Uniformly distributed variables related to data2transform. """ # Treatment to ensure that the method works with inputs arrays of shape (n,) or (n,n_variables) n_points = data2transform.shape[0] n_variables = int(data2transform.ravel().shape[0]/data2transform.shape[0]) if n_variables == 1: data2transform = data2transform.reshape( ( data2transform.shape[0], n_variables) ) reference_variables = reference_variables.reshape( ( reference_variables.shape[0], n_variables) ) # Normalize the input variables min2norm = reference_variables.min(axis=0) reference_variables = reference_variables - np.tile(min2norm, (reference_variables.shape[0], 1))
import csv import glob import math import os import torch from astropy.io import fits from six.moves import urllib import torch is_torchvision_installed = True try: import torchvision except: is_torchvision_installed = False import torch.utils.data import random import itertools import numpy as np def load_GG2_images2(images): """ Normalizes images and upscales them """ images = [fits.open(file, memmap=False)[0].data for file in images] images = [torch.from_numpy(x.byteswap().newbyteorder()) for x in images] #Normailze normalize = [3.5239e+10, 1.5327e+09, 1.8903e+09, 1.2963e+09] #normalizations for 4 images images = [x.mul(n) for x, n in zip(images, normalize)] #Upscale 66*66 Images othersv = torch.stack(images[1:]) upsample = torch.nn.Upsample(size=(200, 200), mode='bilinear', align_corners=True) others_upsampled = torch.squeeze(upsample(othersv.unsqueeze(0))) return torch.cat((images[0].unsqueeze(0), others_upsampled),dim=0) def load_GG2_imagesTransfer(images): """ Normalizes images and does NOT upscales them and returns only visible part """ images = [fits.open(file, memmap=False)[0].data for file in images] images = [torch.from_numpy(x.byteswap().newbyteorder()) for x in images] #Normailze normalize = [3.5239e+10, 1.5327e+09, 1.8903e+09, 1.2963e+09] #normalizations for 4 images images = [x.mul(n) for x, n in zip(images, normalize)] visible = torch.stack(images[1:]) return visible def label_tansform_basic(labels): return (int(labels['n_sources']))*2.0 -1.0 def load_GG2_images(images): """ Normalizes images and upscales them """ images = [fits.open(file, memmap=False)[0].data for file in images] images = [torch.from_numpy(x.byteswap().newbyteorder()) for x in images] #Normailze normalize = [3.5239e+10, 1.5327e+09, 1.8903e+09, 1.2963e+09] #normalizations for 4 images images = [x.mul(n) for x, n in zip(images, normalize)] return images[0].unsqueeze(0), torch.stack(images[1:]) class GG2(torch.utils.data.Dataset): url_train = 'http://metcalf1.difa.unibo.it/DATA3/datapack2.0train.tar.gz' url_train_log = 'http://metcalf1.difa.unibo.it/DATA3/image_catalog2.0train.csv' def __init__(self, root, data_augmentation=False, transform=load_GG2_imagesTransfer,target_transform = label_tansform_basic): #Upscale """ Initializes the dataset with images and labels using the root path given. The images are transformed using the transfomation given in the second argument. """ self.root = os.path.expanduser(root) self.files = None self.data = None #self.tar = None self.download() self.transform = transform self.target_transform= target_transform self.data_augmentation=data_augmentation def __getitem__(self, index): images = self.files[index] #files = [self.tar.extractfile(self.tar.getmember(x)) for x in images] ID = int(images[0].split('-')[-1].split('.')[0]) if self.transform: #files = self.transform(files) images = self.transform(images) if self.data_augmentation: transform = {1: flip_horizontal , 2: flip_vertical, 3: flip_on_diagonal_that_goes_down, 4: flip_on_diagonal_that_goes_up, 5: identity, 6: rotate_by_90_deg, 7: rotate_by_180_deg, 8: rotate_by_270_deg} num_possible_transf=len(transform) which_transformation=np.random.randint(1, high=num_possible_transf+1) images= transform[which_transformation](images) labels = self.data[ID] if self.target_transform: labels = self.target_transform(labels) return images, labels def __len__(self): return len(self.files) def get_labels(self): return torch.tensor( [self.data[i]['n_sources']*2.0-1.0 for i in self.data ]) def download(self): if not os.path.isdir(self.root): os.makedirs(self.root) log_path = os.path.join(self.root, "train.csv") if not os.path.isfile(log_path): print("Download log...", flush=True) data = urllib.request.urlopen(self.url_train_log) with open(log_path, 'wb') as f: f.write(data.read()) keys = [ '', 'ID', 'x_crit', 'y_crit', 'source_ID', 'z_source', 'z_lens', 'mag_source', 'ein_area', 'n_crit', 'r_source', 'crit_area', 'n_pix_source', 'source_flux', 'n_pix_lens', 'lens_flux', 'n_source_im', 'mag_eff', 'sb_contrast', 'color_diff', 'n_gal_3', 'n_gal_5', 'n_gal_10', 'halo_mass', 'star_mass', 'mag_lens', 'n_sources' ] assert len(keys) == 27 with open(log_path, 'rt') as csvfile: reader = csv.reader(csvfile, delimiter=',') data = [x for x in reader if len(x) == 27 and not 'ID' in x] data = [{k: float(x) if x else math.nan for k, x in zip(keys, xs)} for xs in data] self.data = {x['ID']: x for x in data} gz_path = os.path.join(self.root, "datapack2.0train.tar.gz") if not os.path.isfile(gz_path): print("Download...", flush=True) data = urllib.request.urlopen(self.url_train) with open(gz_path, 'wb') as f: f.write(data.read()) tar_path = os.path.join(self.root, "datapack2.0train.tar") if not os.path.isfile(tar_path): print("Decompress...", flush=True) import gzip import shutil with gzip.open(gz_path, 'rb') as f_in: with open(tar_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) dir_path = os.path.join(self.root, "datapack2.0train") if not os.path.isdir(dir_path): print("Extract...", flush=True) import tarfile tar = tarfile.open(tar_path) tar.extractall(dir_path) tar.close() # print("Open tar...", flush=True) # import tarfile # self.tar = tarfile.open(tar_path) self.files = list(zip(*( sorted(glob.glob(os.path.join(dir_path, "Public/{}/*.fits".format(band)))) for band in ("EUC_VIS", "EUC_J", "EUC_Y", "EUC_H") ))) assert all(len({x.split('-')[-1] for x in fs}) == 1 for fs in self.files) def inf_shuffle(xs): while xs: random.shuffle(xs) for x in xs: yield x class BalancedBatchSampler(torch.utils.data.sampler.Sampler): def __init__(self, dataset, labels=None): self.labels = labels self.dataset = dict() self.balanced_max = 0 # Save all the indices for all the classes for idx in range(0, len(dataset)): label = self._get_label(dataset, idx) if label not in self.dataset: self.dataset[label] = list() self.dataset[label].append(idx) self.balanced_max = len(self.dataset[label]) \ if len(self.dataset[label]) > self.balanced_max else self.balanced_max # Oversample the classes with fewer elements than the max for label in self.dataset: while len(self.dataset[label]) < self.balanced_max: self.dataset[label].append(random.choice(self.dataset[label])) self.keys = list(self.dataset.keys()) self.currentkey = 0 self.indices = [-1]*len(self.keys) def __iter__(self): while self.indices[self.currentkey] < self.balanced_max - 1: self.indices[self.currentkey] += 1 yield self.dataset[self.keys[self.currentkey]][self.indices[self.currentkey]] self.currentkey = (self.currentkey + 1) % len(self.keys) self.indices = [-1]*len(self.keys) def _get_label(self, dataset, idx, labels = None): if self.labels is not None: return self.labels[idx].item() else: raise Exception("You should pass the tensor of labels to the constructor as second argument") def __len__(self): return self.balanced_max*len(self.keys) class BalancedBatchSampler2(torch.utils.data.sampler.Sampler): def __init__(self, dataset): from collections import defaultdict if hasattr(dataset, 'dataset'): transform = dataset.dataset.transform dataset.dataset.transform = None # trick to avoid useless computations indices = defaultdict(list) for subset_index, full_data_index in enumerate(dataset.indices): _, label = dataset.dataset[full_data_index] indices[label].append(subset_index) dataset.dataset.transform = transform else: transform = dataset.transform dataset.transform = None # trick to avoid useless computations indices = defaultdict(list) for i in range(0, len(dataset)): _, label = dataset[i] indices[label].append(i) dataset.transform = transform self.indices = list(indices.values()) self.n = max(len(ids) for ids in self.indices) * len(self.indices) def __iter__(self): m = 0 for xs in zip(*(inf_shuffle(xs) for xs in self.indices)): for i in xs: # yield one index of each label yield i m += 1 if m >= self.n: return def __len__(self): return self.n def random_splitY(dataset, lengths): r""" Randomly split a dataset into non-overlapping new datasets of given lengths. Arguments: dataset (Dataset): Dataset to be split lengths (sequence): lengths of splits to be produced """ if sum(lengths) != len(dataset): raise ValueError("Sum of input lengths does not equal the length of the input dataset!") indices = torch.randperm(sum(lengths)).tolist() return indices, [torch.utils.data.Subset(dataset, indices[offset - length:offset]) for offset, length in zip(itertools.accumulate(lengths), lengths)] def accuracy(net, loader,device="cpu"): r""" Calculates a net's accuracy for a given testset using its dataloader. Arguments: loader (Dataloader): Dataloader for the testset net (pytorch nn): neuralnet used for predictions """ correct = 0.0 total = 0.0 with torch.no_grad(): for data in loader: images, labels = data[0].to(device), data[1].to(device) predicted = net(images) #print(predicted.squeeze()) predicted = torch.sign(predicted) #print(predicted.squeeze()) #print(labels.squeeze()) total += labels.size(0) correct += (predicted.squeeze() == labels.squeeze()).long().sum().item() return correct/total #----------------------transforms for data augmentation----------------------- def flip_horizontal(tensor): return tensor.flip(1) def flip_vertical(tensor): return tensor.flip(2) def rotate_by_90_deg(tensor): return tensor.transpose(1,2).flip(1) def rotate_by_270_deg(tensor): return tensor.transpose(1,2).flip(2) def rotate_by_180_deg(tensor): return rotate_by_90_deg(rotate_by_90_deg(tensor)) def identity(tensor): return tensor def flip_on_diagonal_that_goes_down(tensor): return tensor.transpose(1,2) def flip_on_diagonal_that_goes_up(tensor): return rotate_by_270_deg(flip_on_diagonal_that_goes_down(rotate_by_90_deg(tensor))) #----------------------------------------------------- #----------------------Functions for main----------------------- def MakingDatasets(datapath,transfer_learning, PathDataset,data_augmentation,batch_sizev,test_batch_size,proportion_traindata): r""" Imports test and training datasets and downloads and creates them if necessary. Arguments: datapath (string): path to dataset transfer_learning (boolean): Whether to use transfer learning with freezing or not PathDataset (string): path for creating or loading the dataset data_augmentation (boolean): whether or not to use data augmentation batch_sizev (int): batch size for the testing dataloader test_batch_size (int): batch size for the test dataloader proportion_traindata (float): proportion of training data in the whole dataset """ if transfer_learning: transform=load_GG2_imagesTransfer else: transform=load_GG2_images2 import os if os.path.isfile(PathDataset): if os.stat(PathDataset).st_size > 0: import pickle with open(PathDataset, 'rb') as pickle_file: [full_dataset,trainset,testset] = pickle.load(pickle_file) full_dataset.transform=transform trainset.transform=transform testset.transform=transform print("Loading datasets...") else: full_dataset = GG2(datapath,data_augmentation=False,transform=transform) # To split the full_dataset train_size = int(proportion_traindata * len(full_dataset)) test_size = len(full_dataset) - train_size indices, sets = random_splitY(full_dataset, [train_size, test_size]) [trainset, testset]=sets import pickle with open(PathDataset, 'wb') as pickle_file: pickle.dump([full_dataset,trainset,testset],pickle_file) print("Creating and pickling datasets...") # Data augmentation if data_augmentation: full_dataset.data_augmentation=True trainset.data_augmentation=True testset.data_augmentation=True print(len(trainset)) # Dataloaders batch_sizev=8 test_batch_size = 8 samplerv= BalancedBatchSampler2(trainset) samplertest = BalancedBatchSampler2(testset) trainloader = torch.utils.data.DataLoader(trainset, sampler=samplerv, shuffle=False, batch_size= batch_sizev) testloader = torch.utils.data.DataLoader(testset, sampler=None, shuffle =True, batch_size= test_batch_size) ROCloader = torch.utils.data.DataLoader(testset,batch_size=1) return trainloader, testloader, ROCloader # Replace all batch normalization layers by Instance def convert_batch_to_instance(model): r""" Replace all batch normalization layers by Instance Arguments: Model : The model to which this is applied """ import torch.nn as nn for child_name, child in model.named_children(): if isinstance(child, nn.BatchNorm2d): num_features= child.num_features setattr(model, child_name, nn.InstanceNorm2d(num_features=num_features)) else: convert_batch_to_instance(child) # For initializing the batch normalization layers def init_batchnorm(model): r""" Reinitialises all batch normalization layers Arguments: Model : The model to which this is applied """ import torch.nn as nn for child_name, child in model.named_children(): if isinstance(child, nn.BatchNorm2d): num_features= child.num_features setattr(model, child_name, nn.BatchNorm2d(num_features=num_features)) else: convert_batch_to_instance(child) def output(testloader,device,net): r""" Plots ROC, calculates AUROC, outputs all predictions and labels for the testset to a local csv file Arguments: testloader : The dataloader for the testset """ predictions = [] labels = [] for k, testset_partial in enumerate(testloader): if k
""" @Time : 08.12.2021 22:42 @Author : Subvael @File : DueTime_test.py """ import unittest from airignis import DueTime from datetime import datetime, time, date, timedelta from airignis.exceptions import * from dateutil import tz import pytz class DueTimeTest(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.test_due_time_1 = DueTime(-2, 'day') self.test_due_time_2 = DueTime(0, 'day') self.test_due_time_3: DueTime = None self.test_due_time_4 = DueTime(3, 'week', time(0, 0, 0, 0), date(2000, 1, 1)) self.test_due_time_5 = DueTime(1, 'month', time(15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin'))) self.test_due_time_6 = DueTime(2, 'year', time(15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin')), date(2018, 12, 18)) def test_read_sufficiently_configured_due_time(self): self.assertEqual(self.test_due_time_4.date_time, datetime.combine(date(2000, 1, 1), time(0, 0, 0, 0, tz.tzutc()))) def create_due_time_with_undefined_unit(self): self.test_due_time_3 = DueTime(1, 'undefined_unit') def test_raise_if_undefined_unit(self): self.assertRaises(UndefinedRateUnitError, self.create_due_time_with_undefined_unit) def print_date_time_property(self): print(self.test_due_time_2.date_time) def test_date_time_not_configured(self): self.assertRaises(DateNotConfiguredError, self.print_date_time_property) def test_negative_rate_input_handling(self): self.assertEqual(self.test_due_time_1.rate, 2) def test_null_rate_input_handling(self): self.assertEqual(self.test_due_time_2.rate, 1) def test_print_due_time_object_properly(self): self.assertEqual(str(self.test_due_time_1), 'DueTime: Every 2 days at [Time: 00:00:00+00:00, Timezone: tzutc()]') pass def test_month_days(self): self.assertEqual(DueTime.month_days(12), 31) self.assertEqual(DueTime.month_days(4, 2022), 30) self.assertEqual(DueTime.month_days(6, 2022), 30) self.assertEqual(DueTime.month_days(1, 1050), 31) self.assertEqual(DueTime.month_days(9, 1050), 30) self.assertEqual(DueTime.month_days(2, 1050), 28) self.assertEqual(DueTime.month_days(2, 1061), 28) self.assertEqual(DueTime.month_days(5, 1061), 31) self.assertEqual(DueTime.month_days(8, 1185), 31) self.assertEqual(DueTime.month_days(11, 1185), 30) def test_months_diff(self): self.assertEqual(DueTime.months_diff(datetime(2000, 1, 1), datetime(2010, 1, 1)), 120) self.assertEqual(DueTime.months_diff(datetime(2000, 1, 1), datetime(2110, 6, 2)), 1325) self.assertEqual(DueTime.months_diff(datetime(2026, 2, 1), datetime(2026, 1, 12)), 1) self.assertEqual(DueTime.months_diff(datetime(2000, 1, 1), datetime(2010, 3, 27)), 122) def test_months_diff_order_insensitivity(self): self.assertEqual(DueTime.months_diff(datetime(2000, 1, 1), datetime(2010, 5, 1)), 124) self.assertEqual(DueTime.months_diff(datetime(2010, 5, 1), datetime(2000, 1, 1)), 124) def test_round_down(self): self.assertEqual(DueTime.round_down(26.669, 2), 26.66) self.assertEqual(DueTime.round_down(60, 2), 60) self.assertEqual(DueTime.round_down(999999999.66552336699859, 13), 999999999.6655233669985) def call_round_down_with_string_value(self): DueTime.round_down('cat', 2) def test_round_down_invalid_value(self): self.assertRaises(ValueError, self.call_round_down_with_string_value) def call_round_down_with_float_decimals(self): DueTime.round_down(24.5563, 2.3) def test_round_down_invalid_decimals(self): self.assertRaises(ValueError, self.call_round_down_with_float_decimals) def test_add_months(self): self.assertEqual(DueTime.add_months(datetime(2021, 12, 18), 3), datetime(2022, 3, 18)) def test_add_months_time_consistency(self): self.assertEqual(DueTime.add_months(datetime(2021, 12, 18, 17, 30, 10, 600), 3), datetime(2022, 3, 18, 17, 30, 10, 600)) def test_add_months_timezone_consistency(self): self.assertEqual(DueTime.add_months(datetime(2021, 12, 18, 0, 0, 0, 0, tz.gettz("US/Mountain")), 3), datetime(2022, 3, 18, 0, 0, 0, 0, tz.gettz("US/Mountain"))) def test_add_months_days_robustness(self): self.assertEqual(DueTime.add_months(datetime(2021, 12, 31, 0, 0, 0, 0, tz.gettz("US/Mountain")), 2), datetime(2022, 2, 28, 0, 0, 0, 0, tz.gettz("US/Mountain"))) def test_add_months_negative_value(self): self.assertEqual(DueTime.add_months(datetime(2021, 12, 31, 0, 0, 0, 0, tz.gettz("GMT")), -2), datetime(2021, 10, 31, 0, 0, 0, 0, tz.gettz("GMT"))) def test_add_months_negative_value_at_jan(self): self.assertEqual(DueTime.add_months(datetime(2021, 1, 1, 0, 0, 0, 0, tz.gettz("GMT")), -2), datetime(2020, 11, 1, 0, 0, 0, 0, tz.gettz("GMT"))) def test_next_due_year_not_skipped(self): now = datetime.now(tz=tz.gettz('Navajo')) rate = 2 test_due = DueTime(rate, 'year', time(15, 10, 30, 800, tzinfo=tz.gettz('Navajo')), date(now.year - int(rate/2), 12, 18)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(now.year - int(rate/2), 12, 18, 15, 10, 30, 800, tzinfo=tz.gettz('Navajo'))) self.assertEqual(test_due.next_due, datetime(now.year + int(rate/2), 12, 18, 15, 10, 30, 800, tzinfo=tz.gettz('Navajo'))) self.assertEqual(test_due.skipped_dues, 0) def test_next_due_year_skipped_not_due_year(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) rate = 2 test_due = DueTime(rate, 'year', time(15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin')), date(now.year - rate - 1, 12, 18)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(now.year - rate - 1, 12, 18, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.next_due, datetime(now.year + 1, 12, 18, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.skipped_dues, 1) def test_next_due_year_skipped_due__due_before_date(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) test_date = now - timedelta(hours=1) rate = 3 test_due = DueTime(rate, 'year', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin')), date(test_date.year - rate * 2, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year - rate * 2, test_date.month, test_date.day, test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.next_due, datetime(test_date.year + rate, test_date.month, test_date.day, test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_year_skipped_due__due_after_date(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) test_date = now + timedelta(hours=1) rate = 3 test_due = DueTime(rate, 'year', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin')), date(test_date.year - rate * 2, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year - rate * 2, test_date.month, test_date.day, test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.skipped_dues, 1) def test_next_due_month_not_skipped(self): now = datetime.now(tz=tz.gettz('Japan')) test_date = now + timedelta(hours=1) rate = 2 test_date = DueTime.add_months(test_date, -int(rate / 2)) test_due = DueTime(rate, 'month', time(15, 10, 30, 800, tzinfo=tz.gettz('Japan')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Japan'))) self.assertEqual(test_due.next_due, DueTime.add_months(datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Japan')), rate)) self.assertEqual(test_due.skipped_dues, 0) def test_next_due_month_skipped__not_due_month(self): now = datetime.now(tz=tz.tzutc()) test_date = now + timedelta(hours=1) rate = 3 test_date = DueTime.add_months(test_date, -rate*2 - 1) test_due = DueTime(rate, 'month', time(15, 10, 30, 800), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.tzutc())) self.assertEqual(test_due.next_due, DueTime.add_months(datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.tzutc()), rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_month_skipped__due_month_before_date(self): now = datetime.now(tz=tz.tzutc()) test_date = now - timedelta(hours=1) rate = 3 test_date = DueTime.add_months(test_date, -rate*2) test_due = DueTime(rate, 'month', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, DueTime.add_months(test_date, rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_month_skipped__due_month_after_date(self): now = datetime.now(tz=tz.tzutc()) test_date = now + timedelta(hours=1) rate = 3 test_date = DueTime.add_months(test_date, -rate*2) test_due = DueTime(rate, 'month', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, DueTime.add_months(test_date, rate*2)) self.assertEqual(test_due.skipped_dues, 1) def test_next_due_day_not_skipped(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) rate = 2 test_date = now - timedelta(days=int(rate / 2)) test_due = DueTime(rate, 'day', time(15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin'))) self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Berlin')) + timedelta(days=rate)) self.assertEqual(test_due.skipped_dues, 0) def test_next_due_day_skipped__not_due_day(self): now = datetime.now(tz=tz.gettz('Europe/Zurich')) rate = 3 test_date = now - timedelta(days=int(rate*2 + 1)) test_due = DueTime(rate, 'day', time(15, 10, 30, 800, tzinfo=tz.gettz('Europe/Zurich')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Zurich'))) self.assertEqual(test_due.next_due, datetime(test_date.year, test_date.month, test_date.day, 15, 10, 30, 800, tzinfo=tz.gettz('Europe/Zurich')) + timedelta(days=rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_day_skipped__due_day_before_date(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) rate = 3 test_date = now - timedelta(days=int(rate*2), hours=2) test_due = DueTime(rate, 'day', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(days=rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_day_skipped__due_day_after_date(self): now = datetime.now(tz=tz.gettz('Asia/Hong_Kong')) rate = 3 test_date = now - timedelta(days=int(rate*2), hours=-2) test_due = DueTime(rate, 'day', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Asia/Hong_Kong')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(days=rate*2)) self.assertEqual(test_due.skipped_dues, 1) def test_next_due_hour_not_skipped(self): now = datetime.now(tz=tz.gettz('Mexico/General')) rate = 2 test_date = now - timedelta(hours=int(rate / 2)) test_due = DueTime(rate, 'hour', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Mexico/General')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(hours=rate)) self.assertEqual(test_due.skipped_dues, 0) def test_next_due_hour_skipped__not_due_hour(self): now = datetime.now(tz=tz.gettz('Asia/Kolkata')) rate = 2 test_date = now - timedelta(hours=int(rate*2 + 1)) test_due = DueTime(rate, 'hour', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Asia/Kolkata')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(hours=rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_hour_skipped__due_hour_before_date(self): now = datetime.now(tz=tz.gettz('Asia/Singapore')) rate = 2 test_date = now - timedelta(hours=int(rate*2)) test_due = DueTime(rate, 'hour', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Asia/Singapore')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(hours=rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_hour_skipped__due_hour_after_date(self): now = datetime.now(tz=tz.gettz('Europe/Berlin')) rate = 2 test_date = now - timedelta(hours=int(rate*2)) test_due = DueTime(rate, 'hour', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Europe/Berlin')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more due times than just the next one test_due.set_test_mode() self.assertEqual(test_due.next_due, test_date) self.assertEqual(test_due.next_due, test_date + timedelta(hours=rate*3)) self.assertEqual(test_due.skipped_dues, 2) def test_next_due_minute_not_skipped(self): now = datetime.now(tz=tz.gettz('Africa/Johannesburg')) rate = 2 test_date = now - timedelta(minutes=int(rate / 2)) test_due = DueTime(rate, 'minute', time(test_date.hour, test_date.minute, test_date.second, test_date.microsecond, tzinfo=tz.gettz('Africa/Johannesburg')), date(test_date.year, test_date.month, test_date.day)) # Allowing the object to compute more
<filename>regreg/atoms/cones.py from copy import copy import warnings from scipy import sparse import numpy as np from ..problems.composite import nonsmooth, smooth_conjugate from ..affine import linear_transform, identity as identity_transform from ..identity_quadratic import identity_quadratic from ..smooth import affine_smooth from ..atoms import _work_out_conjugate, atom, affine_atom from ..objdoctemplates import objective_doc_templater from ..doctemplates import (doc_template_user, doc_template_provider) from .projl1_cython import projl1_epigraph @objective_doc_templater() class cone(atom): """ A class that defines the API for cone constraints. """ objective_template = r'\|%(var)s\|' objective_vars = {'var': r'\beta', 'shape':'p', 'linear':'D', 'offset':r'\alpha', 'coneklass':'nonnegative', 'dualconeklass':'nonpositive', 'initargs':'(30,)', # args need to construct penalty } tol = 1.0e-05 def __eq__(self, other): if self.__class__ == other.__class__: return self.shape == other.shape return False def __copy__(self): return self.__class__(copy(self.shape), offset=copy(self.offset), initial=copy(self.coefs), quadratic=copy(self.quadratic)) def __repr__(self): if self.quadratic.iszero: return "%s(%s, offset=%s)" % \ (self.__class__.__name__, repr(self.shape), repr(self.offset)) else: return "%s(%s, offset=%s, quadratic=%s)" % \ (self.__class__.__name__, repr(self.shape), repr(self.offset), repr(self.quadratic)) @doc_template_user @doc_template_provider def get_conjugate(self): """ Return the conjugate of an given atom. >>> import regreg.api as rr >>> penalty = rr.%(coneklass)s(%(initargs)s) >>> penalty.get_conjugate() # doctest: +SKIP %(dualconeklass)s(%(initargs)s, offset=None) """ if self.quadratic.coef == 0: offset, outq = _work_out_conjugate(self.offset, self.quadratic) cls = conjugate_cone_pairs[self.__class__] atom = cls(self.shape, offset=offset, quadratic=outq) else: atom = smooth_conjugate(self) self._conjugate = atom self._conjugate._conjugate = self return self._conjugate conjugate = property(get_conjugate) @doc_template_user @doc_template_provider def get_dual(self): r""" Return the dual of an atom. This dual is formed by making the substitution $v=Ax$ where $A$ is the `self.linear_transform`. >>> import regreg.api as rr >>> penalty = rr.%(coneklass)s(%(initargs)s) >>> penalty # doctest: +SKIP %(coneklass)s(%(initargs)s, offset=None) >>> penalty.dual # doctest: +SKIP (<regreg.affine.identity object at 0x...>, %(dualconeklass)s(%(initargs)s, offset=None)) If there is a linear part to the penalty, the linear_transform may not be identity: >>> D = (np.identity(4) + np.diag(-np.ones(3),1))[:-1] >>> D array([[ 1., -1., 0., 0.], [ 0., 1., -1., 0.], [ 0., 0., 1., -1.]]) >>> linear_atom = rr.nonnegative.linear(D) >>> linear_atom # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE affine_cone(nonnegative((3,), offset=None), array([[ 1., -1., 0., 0.], [ 0., 1., -1., 0.], [ 0., 0., 1., -1.]])) >>> linear_atom.dual # doctest: +ELLIPSIS (<regreg.affine.linear_transform object at 0x...>, nonpositive((3,), offset=None)) """ return self.linear_transform, self.conjugate @property def linear_transform(self): if not hasattr(self, "_linear_transform"): self._linear_transform = identity_transform(self.shape) return self._linear_transform @doc_template_user @doc_template_provider def constraint(self, x): """ The constraint .. math:: %(objective)s """ raise NotImplementedError @doc_template_user @doc_template_provider def nonsmooth_objective(self, x, check_feasibility=False): ''' >>> import regreg.api as rr >>> cone = rr.nonnegative(4) >>> cone.nonsmooth_objective([3, 4, 5, 9]) 0.0 ''' arg = np.asarray(x) x_offset = self.apply_offset(x) if check_feasibility: v = self.constraint(x_offset) else: v = 0 v += self.quadratic.objective(arg, 'func') return v @doc_template_user @doc_template_provider def proximal(self, quadratic, prox_control=None): r""" The proximal operator. .. math:: v^{\lambda}(x) = \text{argmin}_{v \in \mathbb{R}^{%(shape)s}} \frac{L}{2} \|x-\alpha - v\|^2_2 + %(objective)s + \langle v, \eta \rangle where :math:`\alpha` is `self.offset`, :math:`\eta` is `quadratic.linear_term`. >>> import regreg.api as rr >>> cone = rr.nonnegative((4,)) >>> Q = rr.identity_quadratic(1.5, [3, -4, -1, 1], 0, 0) >>> np.allclose(cone.proximal(Q), [3, 0, 0, 1]) # doctest: +NORMALIZE_WHITESPACE True Parameters ---------- quadratic : `regreg.identity_quadratic.identity_quadratic` A quadratic added to the atom before minimizing. prox_control : `[None, dict]` This argument is ignored for seminorms, but otherwise is passed to `regreg.algorithms.FISTA` if the atom needs to be solved iteratively. Returns ------- Z : `np.ndarray(np.float)` The proximal map of the implied center of `quadratic`. """ offset, totalq = (self.quadratic + quadratic).recenter(self.offset) if totalq.coef == 0: raise ValueError('lipschitz + quadratic coef must be positive') prox_arg = -totalq.linear_term / totalq.coef eta = self.cone_prox(prox_arg) if offset is None: return eta else: return eta + offset @doc_template_user @doc_template_provider def cone_prox(self, x): r""" Return (unique) minimizer .. math:: %(var)s^{\lambda}(u) = \text{argmin}_{%(var)s \in \mathbb{R}^%(shape)s} \frac{1}{2} \|%(var)s-u\|^2_2 + %(objective)s """ raise NotImplementedError # the minus signs below for offset is there until affine transforms SUBTRACT # their offset until add. # for atoms, the offset is really the "center" @classmethod @doc_template_provider def linear(cls, linear_operator, diag=False, offset=None, quadratic=None): """ Composition of a cone constraint and a linear transform. """ if not isinstance(linear_operator, linear_transform): l = linear_transform(linear_operator, diag=diag) else: l = linear_operator if offset is None: offset = 0 cone = cls(l.output_shape, offset=-offset, quadratic=quadratic) return affine_cone(cone, l) @classmethod @doc_template_provider def affine(cls, linear_operator, offset, diag=False, quadratic=None): """ Composition of a cone constraint and a linear transform. """ if not isinstance(linear_operator, linear_transform): l = linear_transform(linear_operator, diag=diag) else: l = linear_operator if offset is None: offset = 0 cone = cls(l.output_shape, offset=-offset, quadratic=quadratic) return affine_cone(cone, l) @staticmethod def check_subgradient(atom, prox_center): r""" For a given seminorm, verify the KKT condition for the problem for the proximal problem .. math:: \text{minimize}_u \frac{1}{2} \|u-z\|^2_2 + h(z) where $z$ is the `prox_center` and $h$ is `atom`. This should return two values that are 0, one is the inner product of the minimizer and the residual, the other is just 0. Parameters ---------- atom : `cone` A cone instance with a `proximal` method. prox_center : np.ndarray(np.float) Center for the proximal map. Returns ------- v1, v2 : float Two values that should be equal if the proximal map is correct. """ atom = copy(atom) atom.quadratic = identity_quadratic(0,0,0,0) atom.offset = None q = identity_quadratic(1, prox_center, 0, 0) U = atom.proximal(q) return ((prox_center - U) * U).sum(), 0 @objective_doc_templater() class affine_cone(affine_atom): def __repr__(self): return "affine_cone(%s, %s)" % (repr(self.atom), repr(self.linear_transform.linear_operator)) @objective_doc_templater() class nonnegative(cone): """ The non-negative cone constraint (which is the support function of the non-positive cone constraint). """ objective_template = r"""I^{\infty}(%(var)s \succeq 0)""" objective_vars = cone.objective_vars.copy() objective_vars['coneklass'] = 'nonnegative' objective_vars['dualconeklass'] = 'nonpositive' @doc_template_user def constraint(self, x): tol_lim = np.fabs(x).max() * self.tol incone = np.all(np.greater_equal(x, -tol_lim)) if incone: return 0 return np.inf @doc_template_user def cone_prox(self, x): return np.maximum(x, 0) @doc_template_user def proximal(self, quadratic, prox_control=None): return cone.proximal(self, quadratic, prox_control) @doc_template_user def get_conjugate(self): return cone.get_conjugate(self) @doc_template_user def get_dual(self): return cone.dual(self) @objective_doc_templater() class nonpositive(nonnegative): """ The non-positive cone constraint (which is the support function of the non-negative cone constraint). """ objective_template = r"""I^{\infty}(%(var)s \preceq 0)""" objective_vars = cone.objective_vars.copy() objective_vars['dualconeklass'] = 'nonnegative' objective_vars['coneklass'] = 'nonpositive' @doc_template_user def constraint(self, x): tol_lim = np.fabs(x).max() * self.tol incone = np.all(np.less_equal(x, tol_lim)) if incone: return 0 return np.inf @doc_template_user def cone_prox(self, x): return np.minimum(x, 0) @doc_template_user def proximal(self, quadratic, prox_control=None): return cone.proximal(self, quadratic, prox_control) @doc_template_user def get_conjugate(self): return cone.get_conjugate(self) @doc_template_user def get_dual(self): return cone.dual(self) @objective_doc_templater() class zero(cone): """ The zero seminorm, support function of :math:\{0\} """ objective_template = r"""{\cal Z}(%(var)s)""" objective_vars = cone.objective_vars.copy() objective_vars['coneklass'] = 'zero' objective_vars['dualconeklass'] = 'zero_constraint' @doc_template_user def constraint(self, x): return 0. @doc_template_user def cone_prox(self, x): return np.asarray(x) @doc_template_user def proximal(self, quadratic, prox_control=None): return cone.proximal(self, quadratic, prox_control) @doc_template_user def get_conjugate(self): return cone.get_conjugate(self) @doc_template_user def get_dual(self): return cone.dual(self) @objective_doc_templater() class zero_constraint(cone): """ The zero constraint, support function of :math:`\mathbb{R}`^p """ objective_template = r"""I^{\infty}(%(var)s = 0)""" objective_vars = cone.objective_vars.copy() objective_vars['coneklass'] = 'zero_constraint' objective_vars['dualconeklass'] = 'zero' @doc_template_user def constraint(self, x): if not np.linalg.norm(x) <= self.tol: return np.inf return 0. @doc_template_user def cone_prox(self, x): return np.zeros(np.asarray(x).shape) @doc_template_user def proximal(self, quadratic, prox_control=None): return cone.proximal(self, quadratic, prox_control) @doc_template_user def get_conjugate(self): return cone.get_conjugate(self) @doc_template_user def get_dual(self): return cone.dual(self) @objective_doc_templater() class l2_epigraph(cone): """ The l2_epigraph constraint. """ objective_template = r"""I^{\infty}(\|%(var)s[:-1]\|_2 \leq %(var)s[-1])""" objective_vars = cone.objective_vars.copy() objective_vars['coneklass'] = 'l2_epigraph' objective_vars['dualconeklass'] = 'l2_epigraph_polar' @doc_template_user def constraint(self, x): incone = np.linalg.norm(x[:-1]) <= (1 + self.tol) * x[-1] if incone: return 0 return np.inf @doc_template_user def cone_prox(self, x): norm = x[-1] coef = x[:-1] norm_coef = np.linalg.norm(coef) thold = (norm_coef - norm) / 2. result = np.zeros_like(x) result[:-1] = coef / norm_coef * max(norm_coef - thold, 0) result[-1] = max(norm + thold, 0) return result @doc_template_user def proximal(self, quadratic, prox_control=None): return cone.proximal(self, quadratic, prox_control) @doc_template_user def get_conjugate(self): return cone.get_conjugate(self) @doc_template_user def get_dual(self): return cone.dual(self) @objective_doc_templater() class l2_epigraph_polar(cone): """ The polar of the l2_epigraph constraint, which is the negative of the l2 epigraph.. """ objective_template = r"""I^{\infty}(\|%(var)s[:-1]\|_2 \in -%(var)s[-1])""" objective_vars = cone.objective_vars.copy() objective_vars['dualconeklass'] = 'l2_epigraph' objective_vars['coneklass'] = 'l2_epigraph_polar' @doc_template_user def constraint(self, x): incone = np.linalg.norm(x[:-1]) <= (1 + self.tol) * (-x[-1]) if incone: return 0 return np.inf @doc_template_user def cone_prox(self, arg): arg = -arg norm = arg[-1] coef = arg[:-1] norm_coef = np.linalg.norm(coef) thold = (norm_coef - norm) / 2. result = np.zeros_like(arg) result[:-1] = coef / norm_coef * max(norm_coef
<reponame>ilona-asa/SpamDetect<filename>tutorial.py import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.datasets import load_iris import os import email.parser import re from email.parser import Parser # from email.Utils import parseaddr from email.Header import decode_header iris = load_iris() # store the feature matrix (X) and response vector (y) X = iris.data y = iris.target # ## Part 3: Reading a text-based dataset into pandas # In[38]: atom_rfc2822 = r"[a-zA-Z0-9_!#\$\%&'*+/=?\^`{}~|\-]+" atom_posfix_restricted = r"[a-zA-Z0-9_#\$&'*+/=?\^`{}~|\-]+" # without '!' and '%' atom = atom_rfc2822 dot_atom = atom + r"(?:\." + atom + ")*" quoted = r'"(?:\\[^\r\n]|[^\\"])*"' local = "(?:" + dot_atom + "|" + quoted + ")" domain_lit = r"\[(?:\\\S|[\x21-\x5a\x5e-\x7e])*\]" domain = "(?:" + dot_atom + "|" + domain_lit + ")" addr_spec = local + "\@" + domain email_address_re = re.compile('^' + addr_spec + '$') def getmailaddresses(msg, name): """retrieve From:, To: and Cc: addresses""" addrs = email.utils.getaddresses(msg.get_all(name, [])) for i, (name, addr) in enumerate(addrs): if not name and addr: # only one string! Is it the address or is it the name ? # use the same for both and see later name = addr try: # address must be ascii only addr = addr.encode('ascii') except UnicodeError: addr = '' else: # address must match adress regex if not email_address_re.match(addr): addr = '' addrs[i] = (getmailheader(name), addr) return addrs def getmailheader(header_text, default="ascii"): """Decode header_text if needed""" try: headers = decode_header(header_text) except email.Errors.HeaderParseError: # This already append in email.base64mime.decode() # instead return a sanitized ascii string return header_text.encode('ascii', 'replace').decode('ascii') else: for i, (text, charset) in enumerate(headers): try: headers[i] = unicode(text, charset or default, errors='replace') except LookupError: # if the charset is unknown, force default headers[i] = unicode(text, default, errors='replace') return u"".join(headers) # read file into pandas using a relative path # path = 'data/sms.tsv' # path = 'data/0006.2003-12-18.GP.spam.txt' parser = Parser() rootdir = '/root/Desktop/Machine_Learning/Project-SpamDetection/' # rootdir = '/root/Desktop/Machine_Learning/Project-SpamDetection/' listtexts = [] labels = [] for subdirs, dir, files in os.walk(rootdir): for file in files: path = os.path.join(subdirs, file) if '.idea' in path: continue elif 'py' in path: continue else: f = open(path, 'r').read() msg = email.message_from_string(f) subject = getmailheader(msg.get('Subject', '')) # print(subject) from_ = getmailaddresses(msg, 'from') from_ = ('', '') if not from_ else from_[0] print(from_) if msg.is_multipart(): for payload in msg.get_payload(): Text = str(payload.get_payload()) Text = re.sub(r'[^\x00-\x7F]+',' ', Text) else: Text = str(msg.get_payload()) Text = re.sub(r'[^\x00-\x7F]+', ' ', Text) cleanbr = re.compile('<br>|<BR>') cleanr = re.compile('<.*?>') # cleannline = re.compile('\n') Text = re.sub('\s+', ' ', Text) # Text = Text.translate(" ", '\t\n ') Text = re.sub(cleanbr, ' ', Text) Text = re.sub(cleanr, '', Text) '''email = f.read() em = email.splitlines() Text = "" flag = 0 for e in em: if 'X-FileName:' in e: flag = 1 continue if flag == 1: Text = Text + e''' listtexts.append(Text) if 'BG' in path or 'GP' in path or 'SH' in path: labels.append('Spam') else: labels.append('Not Spam') print listtexts # print labels # sms = pd.read_table(path, header=None, names=['label', 'message']) # In[ ]: # alternative: read file into pandas from a URL # url = 'https://raw.githubusercontent.com/justmarkham/pycon-2016-tutorial/master/data/sms.tsv' # sms = pd.read_table(url, header=None, names=['label', 'message']) # In[39]: # examine the shape # sms.shape # email # In[41]: # print ("test") # print (em) # In[33]: # type(em) # In[34]: vect = CountVectorizer(stop_words='english') # learn the 'vocabulary' of the training data (occurs in-place) vect.fit(listtexts) # In[35]: # examine the fitted vocabulary vect.get_feature_names() # In[36]: # transform training data into a 'document-term matrix' simple_train_dtm = vect.transform(listtexts) simple_train_dtm # In[37]: # convert sparse matrix to a dense matrix simple_train_dtm.toarray() # In[ ]: # examine the first 10 rows # sms.head(10) # In[ ]: # examine the class distribution # sms.label.value_counts() # In[ ]: # convert label to a numerical variable # sms['label_num'] = sms.label.map({'ham':0, 'spam':1}) # In[ ]: # check that the conversion worked # sms.head(10) # In[ ]: # how to define X and y (from the iris data) for use with a MODEL # X = iris.data # y = iris.target # print(X.shape) # print(y.shape) # In[ ]: # how to define X and y (from the SMS data) for use with COUNTVECTORIZER # X = sms.message # y = sms.label_num # print(X.shape) # print(y.shape) # In[ ]: # split X and y into training and testing sets ''' from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) # ## Part 4: Vectorizing our dataset # In[ ]: # instantiate the vectorizer vect = CountVectorizer() # In[ ]: # learn training data vocabulary, then use it to create a document-term matrix vect.fit(X_train) X_train_dtm = vect.transform(X_train) # In[ ]: # equivalently: combine fit and transform into a single step X_train_dtm = vect.fit_transform(X_train) # In[ ]: # examine the document-term matrix X_train_dtm # In[ ]: # transform testing data (using fitted vocabulary) into a document-term matrix X_test_dtm = vect.transform(X_test) X_test_dtm # ## Part 5: Building and evaluating a model # # We will use [multinomial Naive Bayes](http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html): # # > The multinomial Naive Bayes classifier is suitable for classification with **discrete features** (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. # In[ ]: # import and instantiate a Multinomial Naive Bayes model from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() # In[ ]: # train the model using X_train_dtm (timing it with an IPython "magic command") get_ipython().magic(u'time nb.fit(X_train_dtm, y_train)') # In[ ]: # make class predictions for X_test_dtm y_pred_class = nb.predict(X_test_dtm) # In[ ]: # calculate accuracy of class predictions from sklearn import metrics metrics.accuracy_score(y_test, y_pred_class) # In[ ]: # print the confusion matrix metrics.confusion_matrix(y_test, y_pred_class) # In[ ]: # print message text for the false positives (ham incorrectly classified as spam) # In[ ]: # print message text for the false negatives (spam incorrectly classified as ham) # In[ ]: # example false negative X_test[3132] # In[ ]: # calculate predicted probabilities for X_test_dtm (poorly calibrated) y_pred_prob = nb.predict_proba(X_test_dtm)[:, 1] y_pred_prob # In[ ]: # calculate AUC metrics.roc_auc_score(y_test, y_pred_prob) # ## Part 6: Comparing models # # We will compare multinomial Naive Bayes with [logistic regression](http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression): # # > Logistic regression, despite its name, is a **linear model for classification** rather than regression. Logistic regression is also known in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier. In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function. # In[ ]: # import and instantiate a logistic regression model from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() # In[ ]: # train the model using X_train_dtm get_ipython().magic(u'time logreg.fit(X_train_dtm, y_train)') # In[ ]: # make class predictions for X_test_dtm y_pred_class = logreg.predict(X_test_dtm) # In[ ]: # calculate predicted probabilities for X_test_dtm (well calibrated) y_pred_prob = logreg.predict_proba(X_test_dtm)[:, 1] y_pred_prob # In[ ]: # calculate accuracy metrics.accuracy_score(y_test, y_pred_class) # In[ ]: # calculate AUC metrics.roc_auc_score(y_test, y_pred_prob) # ## Part 7: Examining a model for further insight # # We will examine the our **trained Naive Bayes model** to calculate the approximate **"spamminess" of each token**. # In[ ]: # store the vocabulary of X_train X_train_tokens = vect.get_feature_names() len(X_train_tokens) # In[ ]: # examine the first 50 tokens print(X_train_tokens[0:50]) # In[ ]: # examine the last 50 tokens print(X_train_tokens[-50:]) # In[ ]: # Naive Bayes counts the number of times each token appears in each class nb.feature_count_ # In[ ]: # rows represent classes, columns represent tokens nb.feature_count_.shape # In[ ]: # number of times each token appears across all HAM messages ham_token_count = nb.feature_count_[0, :] ham_token_count # In[ ]: # number of times each token appears across all SPAM messages spam_token_count = nb.feature_count_[1, :] spam_token_count # In[ ]: # create a DataFrame of tokens with their separate ham and spam counts tokens = pd.DataFrame({'token':X_train_tokens, 'ham':ham_token_count, 'spam':spam_token_count}).set_index('token') tokens.head() # In[ ]: # examine 5 random DataFrame rows tokens.sample(5, random_state=6) # In[ ]: # Naive Bayes counts the number of observations in each class nb.class_count_ # Before we can calculate the "spamminess" of each token, we need to avoid **dividing by zero** and account for the **class imbalance**. # In[ ]: # add 1 to ham and spam counts to avoid dividing by 0 tokens['ham'] = tokens.ham + 1 tokens['spam'] = tokens.spam + 1 tokens.sample(5, random_state=6) # In[ ]: # convert the ham and spam counts into frequencies tokens['ham'] = tokens.ham / nb.class_count_[0] tokens['spam'] = tokens.spam / nb.class_count_[1] tokens.sample(5, random_state=6) # In[ ]: # calculate the ratio of spam-to-ham for each token tokens['spam_ratio'] = tokens.spam / tokens.ham tokens.sample(5, random_state=6) # In[ ]: # examine the DataFrame sorted by spam_ratio # note: use sort() instead of sort_values() for pandas 0.16.2 and earlier tokens.sort_values('spam_ratio', ascending=False) # In[ ]: # look up the spam_ratio for a given token tokens.loc['dating', 'spam_ratio'] # ## Part 8: Practicing this workflow on another dataset # # Please open the **`exercise.ipynb`** notebook (or the **`exercise.py`** script). # ## Part 9: Tuning the vectorizer (discussion) # # Thus far, we have been using the default parameters of [CountVectorizer](http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html): # In[ ]: # show default parameters for CountVectorizer vect # However, the vectorizer is worth tuning, just like a model is worth tuning! Here are a few parameters that you might want to tune: # # - **stop_words:**
# credits to slimakoi for amino.py base import json import base64 import requests from uuid import UUID from os import urandom from time import timezone from typing import BinaryIO, Union from binascii import hexlify from time import time as timestamp from json_minify import json_minify from . import client from .utils import exceptions, headers, device, entities, signature from torpy.http.requests import TorRequests device = device.deviceGenerator() headers.sid = client.Client().sid class VCHeaders: def __init__(self, data = None): vc_headers = { "Accept-Language": "en-US", "Content-Type": "application/json", "User-Agent": "Amino/45725 CFNetwork/1126 Darwin/19.5.0", # Closest server (this one for me) "Host": "rt.applovin.com", "Accept-Encoding": "gzip, deflate, br", "Connection": "Keep-Alive", "Accept": "*/*" } if data: vc_headers["Content-Length"] = str(len(data)) self.vc_headers = vc_headers class SubClient(client.Client): def __init__(self, comId: str = None, aminoId: str = None, *, profile: entities.UserProfile): client.Client.__init__(self) self.vc_connect = False if comId is not None: self.comId = comId self.community: entities.Community = self.get_community_info(comId) if aminoId is not None: self.comId = client.Client().search_community(aminoId).comId[0] self.community: entities.Community = client.Client().get_community_info(self.comId) if comId is None and aminoId is None: raise exceptions.NoCommunity() try: self.profile: entities.UserProfile = self.get_user_info(userId=profile.userId) except AttributeError: raise exceptions.FailedLogin() except exceptions.UserUnavailable: pass def parse_headers(self, data: str = None): if data is not None: return headers.ApisHeaders(deviceId=self.device_id, data=data).headers else: return headers.ApisHeaders(deviceId=self.device_id).headers def check_in(self, tz: int = -timezone // 1000): data = json.dumps({ "timezone": tz, "timestamp": int(timestamp() * 1000) }) response = requests.post(f"{self.api}/x{self.comId}/s/check-in", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def lottery(self, tz: int = -timezone // 1000): data = json.dumps({ "timezone": tz, "timestamp": int(timestamp() * 1000) }) response = requests.post(f"{self.api}/x{self.comId}/s/check-in/lottery", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return entities.LotteryLog(json.loads(response.text)["lotteryLog"]).LotteryLog def edit_profile(self, nickname: str = None, content: str = None, icon: BinaryIO = None, chatRequestPrivilege: str = None, imageList: list = None, captionList: list = None, backgroundImage: str = None, backgroundColor: str = None, titles: list = None, colors: list = None, defaultBubbleId: str = None): mediaList = [] data = {"timestamp": int(timestamp() * 1000)} if captionList is not None: for image, caption in zip(imageList, captionList): mediaList.append([100, self.upload_media(image, "image"), caption]) else: if imageList is not None: for image in imageList: mediaList.append([100, self.upload_media(image, "image"), None]) if imageList is not None or captionList is not None: data["mediaList"] = mediaList if nickname: data["nickname"] = nickname if icon: data["icon"] = self.upload_media(icon, "image") if content: data["content"] = content if chatRequestPrivilege: data["extensions"] = {"privilegeOfChatInviteRequest": chatRequestPrivilege} if backgroundImage: data["extensions"] = {"style": {"backgroundMediaList": [[100, backgroundImage, None, None, None]]}} if backgroundColor: data["extensions"] = {"style": {"backgroundColor": backgroundColor}} if defaultBubbleId: data["extensions"] = {"defaultBubbleId": defaultBubbleId} if titles or colors: tlt = [] for titles, colors in zip(titles, colors): tlt.append({"title": titles, "color": colors}) data["extensions"] = {"customTitles": tlt} data = json.dumps(data) response = requests.post(f"{self.api}/x{self.comId}/s/user-profile/{self.profile.userId}", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def like_blog(self, blogId: Union[str, list] = None, wikiId: str = None): """ Like a Blog, Multiple Blogs or a Wiki. **Parameters** - **blogId** : ID of the Blog or List of IDs of the Blogs. (for Blogs) - **wikiId** : ID of the Wiki. (for Wikis) **Returns** - **Success** : 200 (int) - **Fail** : :meth:`Exceptions <amino.lib.util.exceptions>` """ data = { "value": 4, "timestamp": int(timestamp() * 1000) } if blogId: if isinstance(blogId, str): data["eventSource"] = "UserProfileView" data = json.dumps(data) response = requests.post(f"{self.api}/x{self.comId}/s/blog/{blogId}/vote?cv=1.2", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) elif isinstance(blogId, list): data["targetIdList"] = blogId data = json.dumps(data) response = requests.post(f"{self.api}/x{self.comId}/s/feed/vote", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) else: raise exceptions.WrongType elif wikiId: data["eventSource"] = "PostDetailView" data = json.dumps(data) response = requests.post(f"{self.api}/x{self. comId}/s/item/{wikiId}/vote?cv=1.2", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) else: raise exceptions.SpecifyType() if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def send_active_obj(self, startTime: int = None, endTime: int = None, optInAdsFlags: int = 2147483647, tz: int = -timezone // 1000, timers: list = None, timestamp: int = int(timestamp() * 1000)): data = {"userActiveTimeChunkList": [{"start": startTime, "end": endTime}], "timestamp": timestamp, "optInAdsFlags": optInAdsFlags, "timezone": tz} if timers: data["userActiveTimeChunkList"] = timers data = json_minify(json.dumps(data)) with TorRequests() as client: with client.get_session() as session: response = requests.post(f"{self.api}/x{self.comId}/s/community/stats/user-active-time", headers=headers.ApisHeaders(data=data, deviceId=self.device_id).headers, data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def activity_status(self, status: str): if "on" in status.lower(): status = 1 elif "off" in status.lower(): status = 2 else: raise exceptions.WrongType(status) data = json.dumps({ "onlineStatus": status, "duration": 86400, "timestamp": int(timestamp() * 1000) }) response = requests.post(f"{self.api}/x{self.comId}/s/user-profile/{self.profile.userId}/online-status", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def watch_ad(self): response = requests.post(f"{self.api}/g/s/wallet/ads/video/start", headers=self.parse_headers(), proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def start_chat(self, userId: Union[str, list], message: str, title: str = None, content: str = None, isGlobal: bool = False, publishToGlobal: bool = False): if isinstance(userId, str): userIds = [userId] elif isinstance(userId, list): userIds = userId else: raise exceptions.WrongType(type(userId)) data = { "title": title, "inviteeUids": userIds, "initialMessageContent": message, "content": content, "timestamp": int(timestamp() * 1000) } if isGlobal is True: data["type"] = 2; data["eventSource"] = "GlobalComposeMenu" else: data["type"] = 0 if publishToGlobal is True: data["publishToGlobal"] = 1 else: data["publishToGlobal"] = 0 data = json.dumps(data) response = requests.post(f"{self.api}/x{self.comId}/s/chat/thread", data=data, headers=self.parse_headers(data=data), proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def invite_to_chat(self, userId: Union[str, list], chatId: str): if isinstance(userId, str): userIds = [userId] elif isinstance(userId, list): userIds = userId else: raise exceptions.WrongType(type(userId)) data = json.dumps({ "uids": userIds, "timestamp": int(timestamp() * 1000) }) response = requests.post(f"{self.api}/x{self.comId}/s/chat/thread/{chatId}/member/invite", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def send_coins(self, coins: int, blogId: str = None, chatId: str = None, objectId: str = None, transactionId: str = None): url = None if transactionId is None: transactionId = str(UUID(hexlify(urandom(16)).decode('ascii'))) data = { "coins": coins, "tippingContext": {"transactionId": transactionId}, "timestamp": int(timestamp() * 1000) } if blogId is not None: url = f"{self.api}/x{self.comId}/s/blog/{blogId}/tipping" if chatId is not None: url = f"{self.api}/x{self.comId}/s/chat/thread/{chatId}/tipping" if objectId is not None: data["objectId"] = objectId data["objectType"] = 2 url = f"{self.api}/x{self.comId}/s/tipping" if url is None: raise exceptions.SpecifyType() data = json.dumps(data) response = requests.post(url, headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def thank_tip(self, chatId: str, userId: str): response = requests.post(f"{self.api}/x{self.comId}/s/chat/thread/{chatId}/tipping/tipped-users/{userId}/thank", headers=self.parse_headers(), proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def follow(self, userId: Union[str, list]): """ Follow an User or Multiple Users. **Parameters** - **userId** : ID of the User or List of IDs of the Users. **Returns** - **Success** : 200 (int) - **Fail** : :meth:`Exceptions <amino.lib.util.exceptions>` """ if isinstance(userId, str): response = requests.post(f"{self.api}/x{self.comId}/s/user-profile/{userId}/member", headers=self.parse_headers(), proxies=self.proxies, verify=self.certificatePath) elif isinstance(userId, list): data = json.dumps({"targetUidList": userId, "timestamp": int(timestamp() * 1000)}) response = requests.post(f"{self.api}/x{self.comId}/s/user-profile/{self.profile.userId}/joined", headers=self.parse_headers(data=data), data=data, proxies=self.proxies, verify=self.certificatePath) else: raise exceptions.WrongType(type(userId)) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def unfollow(self, userId: str): """ Unfollow an User. **Parameters** - **userId** : ID of the User. **Returns** - **Success** : 200 (int) - **Fail** : :meth:`Exceptions <amino.lib.util.exceptions>` """ response = requests.delete(f"{self.api}/x{self.comId}/s/user-profile/{self.profile.userId}/joined/{userId}", headers=self.parse_headers(), proxies=self.proxies, verify=self.certificatePath) if response.status_code != 200: return exceptions.CheckException(json.loads(response.text)) else: return response.status_code def send_message(self, chatId: str, message: str = None, messageType: int = 0, file: BinaryIO = None, fileType: str = None, replyTo: str = None, mentionUserIds: list = None, stickerId: str = None, embedId: str = None, embedType: int = None, embedLink: str = None, embedTitle: str = None, embedContent: str = None, embedImage: BinaryIO = None): """ Send a Message to a Chat. **Parameters** - **message** : Message to be sent - **chatId** : ID of the Chat. - **file** : File to be sent. - **fileType** : Type of the file. - ``audio``, ``image``, ``gif`` - **messageType** : Type of the Message. - **mentionUserIds** : List of User IDS to mention. '@' needed in the Message. - **replyTo** : Message ID to reply to. - **stickerId** : Sticker ID to be sent. - **embedTitle** : Title of the Embed. - **embedContent** : Content of the Embed. - **embedLink** : Link of the Embed. - **embedImage** : Image of the Embed. - **embedId** : ID of the Embed. **Returns** - **Success** : 200 (int) - **Fail**
<reponame>ezequieljsosa/sndg-bio """ https://ask.pathwaytools.com/question/17972/access-pathologic-via-api/ So I defined organism-params.dat and genetic-elements.dat in a folder called dir_with_files, included the annotation file test.gbk and started pathwatools: pwt -patho dir_with_files organism-params.dat ID test NAME <NAME> STORAGE File NCBI-TAXON-ID 244566 DOMAIN TAX-2 genetic-elements.dat ID TEST-CHROM-1 TYPE :CHRSM CIRCULAR? Y ANNOT-FILE test.gbk export PROXY=proxy.fcen.uba.ar:8080 pathway-tools -no-cel-overview -no-web-cel-overview -patho /data/organismos/LHelv/annotation/pathways """ import logging from tqdm import tqdm from glob import glob from goatools.obo_parser import GODag import Bio.SeqIO as bpio from Bio.Seq import Seq from Bio.SeqFeature import SeqFeature, FeatureLocation from Bio.SeqRecord import SeqRecord from SNDG import execute, mkdir # from Bio.Alphabet import NucleotideAlphabet from SNDG.BioMongo.Model.SeqCollection import SeqCollection _log = logging.getLogger(__name__) class PathwayTools: def __init__(self, workdir, go_db="/data/databases/go/go.obo", assembly_level="CHRSM"): """ :param workdir: :param assembly_level: "CHRSM", "PLASMID", "MT" (mitochondrial chromosome),"PT" (chloroplast chromosome), or "CONTIG" """ self.workdir = workdir self.assembly_level = assembly_level self.gb_file = workdir + "/pwtools.gb" self.go_dag = GODag(go_db, load_obsolete=True) self.default_mappings = { "CDS": { "type": "CDS", "qualifiers": { "gene_symbol": "gene", "locus_tag": "locus_tag", "description": "product", "Note": "note", "EC": ("EC_number", lambda x: x.split(":")[1] if len(x.split(":")) > 1 else x), "EC_number": "EC_number", "x": "product_comment", "x": "gene_comment", "x": "pseudo", "x": "alt_name", "x": "db_xref", "GO": {"go_component": self.process_go_cc, "go_function": self.process_go_mf, "go_process": self.process_go_bp} }}, "gene.mRNA": { "type": "CDS", "qualifiers": { "gene_symbol": "gene", "locus_tag": "locus_tag", "description": "product", "Note": "note", "EC": ("EC_number", lambda x: x.split(":")[1] if len(x.split(":")) > 1 else x), "EC_number": "EC_number", "x": "product_comment", "x": "gene_comment", "x": "pseudo", "x": "alt_name", "x": "db_xref", "GO": {"go_component": self.process_go_cc, "go_function": self.process_go_mf, "go_process": self.process_go_bp} }} } def process_go_db(self, db, go_code): go = self.go_dag[go_code] if go.namespace == db and go.level > 0: return "|".join([go.name.strip().replace("\n", ""), go_code.split(":")[1], "1", "ISS"]) else: return None def process_go_cc(self, go_code): """ GO term name, GO term ID, citation PubMed ID, and evidence code, separated by vertical bars. Example: antimicrobial humoral response|0019730|16163390|IMP http://geneontology.org/page/guide-go-evidence-codes --> Inferred from Sequence or structural Similarity (ISS) = default """ return self.process_go_db("cellular_component", go_code) def process_go_mf(self, go_code): return self.process_go_db("molecular_function", go_code) def process_go_bp(self, go_code): return self.process_go_db("biological_process", go_code) def create_genetic_elements(self): """ ;;========================================================================== ;; Sample genetic-elements.dat file, created 2/13/2001 by <NAME>. ;; PathoLogic v. 1.8 ;; ;; This file contains a set of records, one for each genetic element ;; (chromosome, plasmid, etc.) or contig in the organism. Each genetic ;; element can be described either with a single annotation file or as a set ;; of contigs (but not both). Contigs are each described with a single ;; annotation file. Records are ended by a single line containing only the ;; string "//". Each record contains a set of attribute-value pairs, one ;; per line, separated by the tab character. Lines beginning with ; are ;; comment lines. Valid attributes are: ;; ;; ID -- Required. Unique identifier for the genetic element. The identifer ;; must be unique with respect to all other identifiers used in the ;; PGDB, such as gene and protein identifiers. The ID should start ;; with an alphabetic character, and contain no spaces or special ;; characters. Case insensitive. ;; NAME -- Optional. Descriptive name for the genetic element ;; TYPE -- Optional. One of :CHRSM, :PLASMID, :MT (mitochondrial chromosome), ;; :PT (chloroplast chromosome), or :CONTIG. Defaults to :CHRSM. ;; CIRCULAR? -- Required (except for contigs). Is the genetic element ;; circular? Valid options are Y or N. ;; CODON-TABLE -- Optional, defaults to the codon table specified in the ;; organism.dat file, or to the standard codon-table if not ;; supplied. This should be a number between 1 and 15. ;; ANNOT-FILE -- Required, unless the CONTIG attribute is supplied. Filename ;; for the annotations file for this genetic element. The file ;; must be in either pathologic format (.pf) or genbank ;; format (.gbk). If the file is in the orgcyc/version/input/ ;; directory, then only the filename is required, otherwise a ;; full pathname must be supplied. ;; SEQ-FILE -- Optional. Filename for the sequence file for this ;; genetic element. The file must be in FASTA format ;; (.fna or .fsa). If the file is in the orgcyc/version/input/ ;; directory, then only the filename is required, otherwise a full ;; pathname must be supplied. ;; CONTIG -- Optional (for all types other than :CONTIG. This field is not ;; permitted in records of type :CONTIG.) ID for a contig that ;; forms part of this genetic element. A genetic element may have ;; multiple CONTIG lines. This field should not be supplied if the ;; ANNOT-FILE attribute is supplied. ;; ;; Note that the "//" is required after the final genetic element, also. ;;=========================================================================== ID TEST-CHROM-1 NAME Chromosome 1 TYPE :CHRSM CIRCULAR? N ANNOT-FILE chrom1.pf SEQ-FILE chrom1.fsa // ID TEST-CHROM-2 NAME Chromosome 2 CIRCULAR? N ANNOT-FILE /mydata/chrom2.gbk SEQ-FILE /mydata/chrom2.fna // ID TEST-CHROM-3 NAME Chromosome 3 TYPE :CHRSM CIRCULAR? N CONTIG CONTIG-1 CONTIG CONTIG-2 // ID TEST-MIT-CHROM NAME Mitochondrial chromosome TYPE :MT CIRCULAR? Y CODON-TABLE 2 ANNOT-FILE mit-chrom.pf // ID CONTIG-1 NAME Contig 1 of Chromosome 3 TYPE :CONTIG ANNOT-FILE chrom3-contig1.pf SEQ-FILE chrom3-contig1.fsa // ID CONTIG-2 NAME Contig 2 of Chromosome 3 TYPE :CONTIG ANNOT-FILE chrom3-contig2.pf SEQ-FILE chrom3-contig2.fsa // """ mkdir(self.workdir + "/") with open(self.workdir + "/genetic-elements.dat", "w") as genetic_elements: for seq_record in bpio.parse(self.gb_file, "genbank"): new_gb = open(self.workdir + "/%s.gbk" % seq_record.id, "w") bpio.write(seq_record, new_gb, "genbank") genetic_elements.write("ID\t" + seq_record.id + "\n") genetic_elements.write("TYPE\t:" + self.assembly_level + "\n") genetic_elements.write("CIRCULAR?\tN" + "\n") genetic_elements.write("ANNOT-FILE\t" + seq_record.id + ".gbk" + "\n") genetic_elements.write("//" + "\n") def create_pseudo_scaffold(self, gbks_dir, outdir): pos = 0 features = [] seq = "" for gb in tqdm(glob(gbks_dir + "/*.gb") + glob(gbks_dir + "/*.gbk")): for c in bpio.parse(gb, "gb"): for f in c.features: start = f.location.start + pos end = f.location.end + pos feature = SeqFeature(type=f.type, qualifiers=f.qualifiers, location=FeatureLocation(start=start, end=end, strand=f.strand)) features.append(feature) pos += len(c.seq) seq += "NNNNN" + str(c.seq) seqrecord = SeqRecord(id="pseudo", name="", description="", features=features, seq=Seq(seq),annotations={"molecule_type":"DNA"}) #alphabet = NucleotideAlphabet() with open(outdir + "/genome.gbk", "w") as h: bpio.write(seqrecord, h, "gb") with open(outdir + "/genetic-elements.dat", "w") as genetic_elements: genetic_elements.write("ID\t" + seqrecord.id + "\n") genetic_elements.write("TYPE\t:CONTIG\n") genetic_elements.write("CIRCULAR?\tN" + "\n") genetic_elements.write("ANNOT-FILE\t" + outdir + "/genome.gbk\n") genetic_elements.write("//" + "\n") def create_organism_params(self, name, organism, tax, domain): """ :param name: Name of the collection in pwtools :param organism: Description of the organism :param tax: taxid :param domain: "TAX-2" (Bacteria), "TAX-2759" (Eukaryota), and "TAX-2157" (Archaea). :return: """ template = """ID\t{name} NAME\t{organism} STORAGE\tFile NCBI-TAXON-ID\t{tax} DOMAIN\t{domain}""" with open(self.workdir + "organism-params.dat", "w") as h: h.write(template.format(name=name, organism=organism, tax=tax, domain=domain)) def create_genebank(self, contig_iterator, mappings=None): if not mappings: mappings = self.default_mappings def dbfeature2seqfeature(org_feature): seqf = SeqFeature( FeatureLocation(org_feature.location.start, org_feature.location.end, org_feature.location.strand), org_feature.type, id=org_feature.id) self.map_atributes(mappings, org_feature, seqf) return seqf def process_contig(contig): record = SeqRecord(id=contig.id, seq=Seq(str(contig.seq))) # , alphabet=Alphabet.DNAAlphabet() for f in contig.features: if f.type.lower() in ["gene","cds"]: seqfeature = dbfeature2seqfeature(f) elif f.type.lower() in ["rrna", "trna", "ncrna"]: note = f.qualifiers["Note"] if "Note" in f.qualifiers else "" desc = f.qualifiers["description"] if "description" in f.qualifiers else "" seqfeature = SeqFeature(f.location, f.type.replace("ncrna", "misc_RNA"), id=f.id, qualifiers={"locus_tag": f.id, "note": note , "description": desc , "gene": note , "alt name": desc , "product": desc}) elif f.type.lower() in ["contig", "exon", "cdsvi"]: seqfeature = None else: _log.warning("unknow feature " + f.type) seqfeature = None if seqfeature: record.features.append(seqfeature) return record with open(self.gb_file, "w") as h: with tqdm(contig_iterator) as pbar: for contig in pbar: pbar.set_description(contig.id) if contig.features: new_contig = process_contig(contig) new_contig.annotations["molecule_type"] = "DNA" if new_contig.features: try: bpio.write(new_contig, h, "gb") except: raise def execute(self, pwtools_path="pathway-tools", proxy="PROXY=proxy.fcen.uba.ar:8080"): """ :param pwtools_path: complete path to pathway-tools binary. by default assumes that it is in the PATH """ cmd = self.cmd_pwtools(pwtools_path, proxy) execute(cmd) def cmd_pwtools(self, pwtools_path, proxy): return proxy + ' ' + pwtools_path + ' -no-cel-overview -no-web-cel-overview -patho ' + self.workdir def copy_qualifiers(self, mapping, f_in, f_out): for k, v in mapping.items(): if k in f_in.qualifiers: if isinstance(v, dict): for key, fn in v.items(): value = [y for y in [fn(x) for x in f_in.qualifiers[k]] if y] if value: f_out.qualifiers[key] = value elif isinstance(v, tuple): dst = v[0] value = [y for y in [v[1](x) for x in f_in.qualifiers[k]] if y] if value: f_out.qualifiers[dst] = value else: dst = v if f_in.qualifiers and (k in f_in.qualifiers): value = [x for x in f_in.qualifiers[k]] if value: f_out.qualifiers[dst] = value def map_atributes(self, mapping, f_in, f_out): """ "gene.mRna" : { "type" : "CDS", "qualifiers": { "gene_symbol" : "gene", "locus tag": "locus_tag", "x" : "db xref", "GO" : ("go_component", process_go_cc ), """ for ftype, type_map in mapping.items(): types = ftype.split(".") if f_in.type != types[0]: continue#,(ftype,f_in,f_out) f_in1 = f_in if len(types) > 1 and hasattr(f_in, "sub_features") and f_in.sub_features: for subtype in types[1:]: f_in1 = [x for x in f_in1.sub_features if x.type == subtype] if f_in1: f_in1 = f_in1[0] else: print (f_in) continue if f_in1: for k, v in type_map.items(): if k == "qualifiers": self.copy_qualifiers(v, f_in1, f_out) else: setattr(f_out, k, getattr(f_in, v) if v.startswith("$") else v) if __name__ == "__main__": """ Example from Genebank python SNDG/Network/PathwayTools.py -o /tmp/pepe2 -n "Saureus" -desc "Saureus" -ann /home/eze/Downloads/ncbi_BIA_1.gff3 -s /home/eze/Downloads/ncbi_BIA_1.gbf -dn TAX-2 -t 158879 Example from Mongo python SNDG/Network/PathwayTools.py -o /tmp
import os import time from rlib import jit from rlib.string_stream import encode_to_bytes from rlib.exit import Exit from rlib.osext import path_split from rlib import rgc from som.vm.symbols import symbol_for, sym_false, sym_true, sym_nil from som.vmobjects.array import Array from som.vmobjects.block_bc import block_evaluation_primitive from som.vmobjects.clazz import Class from som.vmobjects.object_without_fields import ObjectWithoutFields from som.vmobjects.object_with_layout import Object from som.vmobjects.string import String from som.vm.globals import nilObject, trueObject, falseObject from som.vm.shell import Shell from som.compiler.sourcecode_compiler import ( compile_class_from_file, compile_class_from_string, ) class Assoc(object): _immutable_fields_ = ["global_name", "value?"] def __init__(self, global_name, value): self.global_name = global_name self.value = value def __str__(self): return "(%s => %s)" % (self.global_name, self.value) class Universe(object): _immutable_fields_ = [ "object_class", "class_class", "metaclass_class", "nil_class", "integer_class", "integer_layout?", "array_class", "array_layout?", "method_class", "method_layout?", "symbol_class", "symbol_layout?", "primitive_class", "primitive_layout?", "system_class", "block_class", "block_classes[*]", "block_layouts?[*]", "string_class", "string_layout?", "double_class", "double_layout?", "_globals", "start_time", "_object_system_initialized", ] def __init__(self, avoid_exit=False): self._globals = {} self.object_class = None self.class_class = None self.metaclass_class = None self.nil_class = None self.integer_class = None self.integer_layout = None self.array_class = None self.array_layout = None self.method_class = None self.method_layout = None self.symbol_class = None self.symbol_layout = None self.primitive_class = None self.primitive_layout = None self.system_class = None self.block_class = None self.block_classes = None self.block_layouts = None self.string_class = None self.string_layout = None self.double_class = None self.double_layout = None self._last_exit_code = 0 self._avoid_exit = avoid_exit self._dump_bytecodes = False self.classpath = None self.start_time = time.time() # a float of the time in seconds self._object_system_initialized = False def reset(self, avoid_exit): self.__init__(avoid_exit) def exit(self, error_code): if self._avoid_exit: self._last_exit_code = error_code else: raise Exit(error_code) def last_exit_code(self): return self._last_exit_code def execute_method(self, class_name, selector): self._initialize_object_system() clazz = self.load_class(symbol_for(class_name)) if clazz is None: raise Exception("Class " + class_name + " could not be loaded.") # Lookup the invokable on class invokable = clazz.get_class(self).lookup_invokable(symbol_for(selector)) if invokable is None: raise Exception("Lookup of " + selector + " failed in class " + class_name) return invokable.invoke_1(clazz) def interpret(self, arguments): # Check for command line switches arguments = self.handle_arguments(arguments) # Initialize the known universe system_object = self._initialize_object_system() # Start the shell if no filename is given if len(arguments) == 0: shell = Shell(self) return shell.start() arguments_array = self.new_array_with_strings(arguments) initialize = self.system_class.lookup_invokable(symbol_for("initialize:")) return initialize.invoke_2(system_object, arguments_array) def handle_arguments(self, arguments): got_classpath = False remaining_args = [] saw_others = False i = 0 while i < len(arguments): if arguments[i] == "-cp" and not saw_others: if i + 1 >= len(arguments): self._print_usage_and_exit() self.setup_classpath(arguments[i + 1]) i += 1 # skip class path got_classpath = True elif arguments[i] == "-d" and not saw_others: self._dump_bytecodes = True elif arguments[i] in ["-h", "--help", "-?"] and not saw_others: self._print_usage_and_exit() elif arguments[i] == "--no-gc" and not saw_others: rgc.disable() if rgc.isenabled() == 0: print("GC successfully disabled.") else: print("GC still enabled.") else: saw_others = True remaining_args.append(arguments[i]) i += 1 if not got_classpath: # Get the default class path of the appropriate size self.classpath = self._default_classpath() # check remaining args for class paths, and strip file extension if remaining_args: split = self._get_path_class_ext(remaining_args[0]) if split[0] != "": # there was a path self.classpath.insert(0, split[0]) remaining_args[0] = split[1] return remaining_args def setup_classpath(self, class_path): self.classpath = class_path.split(os.pathsep) @staticmethod def _default_classpath(): return ["."] # take argument of the form "../foo/Test.som" and return # "../foo", "Test", "som" @staticmethod def _get_path_class_ext(path): return path_split(path) def _print_usage_and_exit(self): # Print the usage std_println("Usage: som [-options] [args...] ") std_println(" ") std_println("where options include: ") std_println(" -cp <directories separated by " + os.pathsep + ">") std_println(" set search path for application classes") std_println(" -d enable disassembling") std_println(" -h print this help") std_println("") std_println(" --no-gc disable garbage collection") # Exit self.exit(0) def _initialize_object_system(self): # Allocate the Metaclass classes self.metaclass_class = self.new_metaclass_class() # Allocate the rest of the system classes self.object_class = self.new_system_class() self.nil_class = self.new_system_class() self.class_class = self.new_system_class() self.array_class = self.new_system_class() self.array_layout = self.array_class.get_layout_for_instances() self.symbol_class = self.new_system_class() self.symbol_layout = self.symbol_class.get_layout_for_instances() self.method_class = self.new_system_class() self.method_layout = self.method_class.get_layout_for_instances() self.integer_class = self.new_system_class() self.integer_layout = self.integer_class.get_layout_for_instances() self.primitive_class = self.new_system_class() self.primitive_layout = self.primitive_class.get_layout_for_instances() self.string_class = self.new_system_class() self.string_layout = self.string_class.get_layout_for_instances() self.double_class = self.new_system_class() self.double_layout = self.double_class.get_layout_for_instances() # Setup the class reference for the nil object nilObject.set_class(self.nil_class) # Initialize the system classes self._initialize_system_class(self.object_class, None, "Object") self._initialize_system_class(self.class_class, self.object_class, "Class") self._initialize_system_class( self.metaclass_class, self.class_class, "Metaclass" ) self._initialize_system_class(self.nil_class, self.object_class, "Nil") self._initialize_system_class(self.array_class, self.object_class, "Array") self._initialize_system_class(self.method_class, self.object_class, "Method") self._initialize_system_class(self.integer_class, self.object_class, "Integer") self._initialize_system_class( self.primitive_class, self.object_class, "Primitive" ) self._initialize_system_class(self.string_class, self.object_class, "String") self._initialize_system_class(self.symbol_class, self.string_class, "Symbol") self._initialize_system_class(self.double_class, self.object_class, "Double") # Load methods and fields into the system classes self._load_system_class(self.object_class) self._load_system_class(self.class_class) self._load_system_class(self.metaclass_class) self._load_system_class(self.nil_class) self._load_system_class(self.array_class) self._load_system_class(self.method_class) self._load_system_class(self.string_class) self._load_system_class(self.symbol_class) self._load_system_class(self.integer_class) self._load_system_class(self.primitive_class) self._load_system_class(self.double_class) # Load the generic block class self.block_class = self.load_class(symbol_for("Block")) # Setup the true and false objects true_class_name = symbol_for("True") true_class = self.load_class(true_class_name) true_class.load_primitives(False, self) trueObject.set_class(true_class) false_class_name = symbol_for("False") false_class = self.load_class(false_class_name) false_class.load_primitives(False, self) falseObject.set_class(false_class) # Load the system class and create an instance of it self.system_class = self.load_class(symbol_for("System")) system_object = self.new_instance(self.system_class) # Put special objects and classes into the dictionary of globals self.set_global(sym_nil, nilObject) self.set_global(sym_true, trueObject) self.set_global(sym_false, falseObject) self.set_global(symbol_for("system"), system_object) self.set_global(symbol_for("System"), self.system_class) self.set_global(symbol_for("Block"), self.block_class) self.set_global(symbol_for("Nil"), self.nil_class) self.set_global(true_class_name, true_class) self.set_global(false_class_name, false_class) self.block_classes = [self.block_class] + [ self._make_block_class(i) for i in [1, 2, 3] ] self.block_layouts = [c.get_layout_for_instances() for c in self.block_classes] self._object_system_initialized = True return system_object def is_object_system_initialized(self): return self._object_system_initialized @staticmethod def new_array_with_strings(strings): values = [String(s) for s in strings] return Array.from_objects(values) @staticmethod def new_instance(instance_class): layout = instance_class.get_layout_for_instances() num_fields = layout.get_number_of_fields() if num_fields == 0: return ObjectWithoutFields(layout) return Object(layout) def new_metaclass_class(self): # Allocate the metaclass classes class_class = Class(0, None) result = Class(0, class_class) # Setup the metaclass hierarchy result.get_class(self).set_class(result) return result def new_system_class(self): # Allocate the new system class system_class_class = Class(0, None) system_class = Class(0, system_class_class) # Setup the metaclass hierarchy system_class.get_class(self).set_class(self.metaclass_class) return system_class def _initialize_system_class(self, system_class, super_class, name): # Initialize the superclass hierarchy if super_class: system_class.set_super_class(super_class) system_class.get_class(self).set_super_class(super_class.get_class(self)) else: system_class.get_class(self).set_super_class(self.class_class) # Initialize the array of instance fields system_class.set_instance_fields(Array.from_size(0)) system_class.get_class(self).set_instance_fields(Array.from_size(0)) # Initialize the name of the system class system_class.set_name(symbol_for(name)) system_class.get_class(self).set_name(symbol_for(name + " class")) # Insert the system class into the dictionary of globals self.set_global(system_class.get_name(), system_class) def get_global(self, name): # Return the global with the given name if it's in the dictionary of globals # if not, return None jit.promote(self) assoc = self._get_global(name) if assoc: return assoc.value return None @jit.elidable def _get_global(self, name): return self._globals.get(name, None) def set_global(self, name, value): self.get_globals_association(name).value = value @jit.elidable_promote("all") def has_global(self, name): return name in self._globals @jit.elidable_promote("all") def get_globals_association(self, name): assoc = self._globals.get(name, None) if assoc is None: assoc = Assoc(name, nilObject) self._globals[name] = assoc return assoc def get_globals_association_or_none(self, name): return self._globals.get(name, None) def _make_block_class(self, number_of_arguments): # Compute the name of the block class with the given number of # arguments name = symbol_for("Block" + str(number_of_arguments)) # Get the block class for blocks with the given number of arguments result = self._load_class(name, None) # Add the appropriate value primitive to the block class result.add_primitive(block_evaluation_primitive(number_of_arguments), True) # Insert the block class into the dictionary of globals self.set_global(name, result) # Return the loaded block class return result def load_class(self, name): # Check if the requested class is already in the dictionary of globals result = self.get_global(name) if result is not None: return result # Load the class result = self._load_class(name, None) self._load_primitives(result, False) self.set_global(name, result) return result def _load_primitives(self, clazz, is_system_class): if not clazz: return if clazz.needs_primitives() or is_system_class: clazz.load_primitives(not is_system_class, self) def _load_system_class(self, system_class): # Load the system class result = self._load_class(system_class.get_name(), system_class) if not result: error_println( system_class.get_name().get_embedded_string() + " class could not be loaded. It is likely that the" + " class path has not been initialized properly." + " Please make sure that the '-cp' parameter is given on the command-line." ) self.exit(200) self._load_primitives(result, True) def _load_class(self, name, system_class): # Try loading the class from all different paths for cp_entry in self.classpath: try: # Load the class from a file and return the loaded class result = compile_class_from_file( cp_entry, name.get_embedded_string(), system_class, self ) if self._dump_bytecodes: from som.compiler.disassembler import dump dump(result.get_class(self)) dump(result) return result except IOError: # Continue trying different paths pass # The class could not be found. return None def load_shell_class(self, stmt): # Load the class from a stream and return the loaded class result = compile_class_from_string(stmt, None, self) if self._dump_bytecodes: from som.compiler.disassembler import dump dump(result)
<filename>sdk/python/pulumi_spotinst/azure/elastigroup.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Elastigroup(pulumi.CustomResource): custom_data: pulumi.Output[str] desired_capacity: pulumi.Output[float] """ The desired number of instances the group should have at any time. """ health_check: pulumi.Output[dict] images: pulumi.Output[list] integration_kubernetes: pulumi.Output[dict] integration_multai_runtime: pulumi.Output[dict] load_balancers: pulumi.Output[list] login: pulumi.Output[dict] low_priority_sizes: pulumi.Output[list] """ Available Low-Priority sizes. """ managed_service_identities: pulumi.Output[list] max_size: pulumi.Output[float] """ The maximum number of instances the group should have at any time. """ min_size: pulumi.Output[float] """ The minimum number of instances the group should have at any time. """ name: pulumi.Output[str] """ The name of the managed identity. """ network: pulumi.Output[dict] od_sizes: pulumi.Output[list] """ Available On-Demand sizes """ product: pulumi.Output[str] """ Operation system type. Valid values: `"Linux"`, `"Windows"`. """ region: pulumi.Output[str] """ The region your Azure group will be created in. """ resource_group_name: pulumi.Output[str] """ The Resource Group that the user-assigned managed identity resides in. """ scaling_down_policies: pulumi.Output[list] scaling_up_policies: pulumi.Output[list] scheduled_tasks: pulumi.Output[list] shutdown_script: pulumi.Output[str] """ Shutdown script for the group. Value should be passed as a string encoded at Base64 only. """ strategy: pulumi.Output[dict] """ Describes the deployment strategy. * `draining_timeout` (`float`) - Time (seconds) to allow the instance to be drained from incoming TCP connections and detached from MLB before terminating it during a scale-down operation. * `lowPriorityPercentage` (`float`) - Percentage of Low Priority instances to maintain. Required if `od_count` is not specified. * `odCount` (`float`) - Number of On-Demand instances to maintain. Required if low_priority_percentage is not specified. """ update_policy: pulumi.Output[dict] user_data: pulumi.Output[str] """ Base64-encoded MIME user data to make available to the instances. """ def __init__(__self__, resource_name, opts=None, custom_data=None, desired_capacity=None, health_check=None, images=None, integration_kubernetes=None, integration_multai_runtime=None, load_balancers=None, login=None, low_priority_sizes=None, managed_service_identities=None, max_size=None, min_size=None, name=None, network=None, od_sizes=None, product=None, region=None, resource_group_name=None, scaling_down_policies=None, scaling_up_policies=None, scheduled_tasks=None, shutdown_script=None, strategy=None, update_policy=None, user_data=None, __props__=None, __name__=None, __opts__=None): """ Provides a Spotinst elastigroup Azure resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[float] desired_capacity: The desired number of instances the group should have at any time. :param pulumi.Input[list] low_priority_sizes: Available Low-Priority sizes. :param pulumi.Input[float] max_size: The maximum number of instances the group should have at any time. :param pulumi.Input[float] min_size: The minimum number of instances the group should have at any time. :param pulumi.Input[str] name: The name of the managed identity. :param pulumi.Input[list] od_sizes: Available On-Demand sizes :param pulumi.Input[str] product: Operation system type. Valid values: `"Linux"`, `"Windows"`. :param pulumi.Input[str] region: The region your Azure group will be created in. :param pulumi.Input[str] resource_group_name: The Resource Group that the user-assigned managed identity resides in. :param pulumi.Input[str] shutdown_script: Shutdown script for the group. Value should be passed as a string encoded at Base64 only. :param pulumi.Input[dict] strategy: Describes the deployment strategy. :param pulumi.Input[str] user_data: Base64-encoded MIME user data to make available to the instances. The **health_check** object supports the following: * `autoHealing` (`pulumi.Input[bool]`) * `gracePeriod` (`pulumi.Input[float]`) * `health_check_type` (`pulumi.Input[str]`) The **images** object supports the following: * `customs` (`pulumi.Input[list]`) * `imageName` (`pulumi.Input[str]`) * `resource_group_name` (`pulumi.Input[str]`) - The Resource Group that the user-assigned managed identity resides in. * `marketplaces` (`pulumi.Input[list]`) * `offer` (`pulumi.Input[str]`) * `publisher` (`pulumi.Input[str]`) * `sku` (`pulumi.Input[str]`) The **integration_kubernetes** object supports the following: * `clusterIdentifier` (`pulumi.Input[str]`) The **integration_multai_runtime** object supports the following: * `deploymentId` (`pulumi.Input[str]`) The **load_balancers** object supports the following: * `autoWeight` (`pulumi.Input[bool]`) * `balancerId` (`pulumi.Input[str]`) * `targetSetId` (`pulumi.Input[str]`) * `type` (`pulumi.Input[str]`) The **login** object supports the following: * `password` (`pulumi.Input[str]`) * `sshPublicKey` (`pulumi.Input[str]`) * `userName` (`pulumi.Input[str]`) The **managed_service_identities** object supports the following: * `name` (`pulumi.Input[str]`) - The name of the managed identity. * `resource_group_name` (`pulumi.Input[str]`) - The Resource Group that the user-assigned managed identity resides in. The **network** object supports the following: * `additionalIpConfigs` (`pulumi.Input[list]`) * `name` (`pulumi.Input[str]`) - The name of the managed identity. * `privateIpVersion` (`pulumi.Input[str]`) * `assignPublicIp` (`pulumi.Input[bool]`) * `resource_group_name` (`pulumi.Input[str]`) - The Resource Group that the user-assigned managed identity resides in. * `subnetName` (`pulumi.Input[str]`) * `virtualNetworkName` (`pulumi.Input[str]`) The **scaling_down_policies** object supports the following: * `actionType` (`pulumi.Input[str]`) * `adjustment` (`pulumi.Input[str]`) * `cooldown` (`pulumi.Input[float]`) * `dimensions` (`pulumi.Input[list]`) * `name` (`pulumi.Input[str]`) - The name of the managed identity. * `value` (`pulumi.Input[str]`) * `evaluationPeriods` (`pulumi.Input[float]`) * `maxTargetCapacity` (`pulumi.Input[str]`) * `maximum` (`pulumi.Input[str]`) * `metricName` (`pulumi.Input[str]`) * `minTargetCapacity` (`pulumi.Input[str]`) * `minimum` (`pulumi.Input[str]`) * `namespace` (`pulumi.Input[str]`) * `operator` (`pulumi.Input[str]`) * `period` (`pulumi.Input[float]`) * `policyName` (`pulumi.Input[str]`) * `statistic` (`pulumi.Input[str]`) * `target` (`pulumi.Input[str]`) * `threshold` (`pulumi.Input[float]`) * `unit` (`pulumi.Input[str]`) The **scaling_up_policies** object supports the following: * `actionType` (`pulumi.Input[str]`) * `adjustment` (`pulumi.Input[str]`) * `cooldown` (`pulumi.Input[float]`) * `dimensions` (`pulumi.Input[list]`) * `name` (`pulumi.Input[str]`) - The name of the managed identity. * `value` (`pulumi.Input[str]`) * `evaluationPeriods` (`pulumi.Input[float]`) * `maxTargetCapacity` (`pulumi.Input[str]`) * `maximum` (`pulumi.Input[str]`) * `metricName` (`pulumi.Input[str]`) * `minTargetCapacity` (`pulumi.Input[str]`) * `minimum` (`pulumi.Input[str]`) * `namespace` (`pulumi.Input[str]`) * `operator` (`pulumi.Input[str]`) * `period` (`pulumi.Input[float]`) * `policyName` (`pulumi.Input[str]`) * `statistic` (`pulumi.Input[str]`) * `target` (`pulumi.Input[str]`) * `threshold` (`pulumi.Input[float]`) * `unit` (`pulumi.Input[str]`) The **scheduled_tasks** object supports the following: * `adjustment` (`pulumi.Input[str]`) * `adjustmentPercentage` (`pulumi.Input[str]`) * `batchSizePercentage` (`pulumi.Input[str]`) * `cronExpression` (`pulumi.Input[str]`) * `gracePeriod` (`pulumi.Input[str]`) * `isEnabled` (`pulumi.Input[bool]`) * `scaleMaxCapacity` (`pulumi.Input[str]`) * `scaleMinCapacity` (`pulumi.Input[str]`) * `scaleTargetCapacity` (`pulumi.Input[str]`) * `taskType` (`pulumi.Input[str]`) The **strategy** object supports the following: * `draining_timeout` (`pulumi.Input[float]`) - Time (seconds) to allow the instance to be drained from incoming TCP connections and detached from MLB before terminating it during a scale-down operation. * `lowPriorityPercentage` (`pulumi.Input[float]`) - Percentage of Low Priority instances to maintain. Required if `od_count` is not specified. * `odCount` (`pulumi.Input[float]`) - Number of On-Demand instances to maintain. Required if low_priority_percentage is not specified. The **update_policy** object supports the following: * `rollConfig` (`pulumi.Input[dict]`) * `batchSizePercentage` (`pulumi.Input[float]`) * `gracePeriod` (`pulumi.Input[float]`) * `health_check_type` (`pulumi.Input[str]`) * `shouldRoll` (`pulumi.Input[bool]`) > This content is derived from https://github.com/terraform-providers/terraform-provider-spotinst/blob/master/website/docs/r/elastigroup_azure.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['custom_data'] = custom_data __props__['desired_capacity'] = desired_capacity __props__['health_check'] = health_check __props__['images'] = images __props__['integration_kubernetes'] = integration_kubernetes __props__['integration_multai_runtime'] = integration_multai_runtime __props__['load_balancers'] = load_balancers __props__['login'] = login if low_priority_sizes is None: raise TypeError("Missing required property 'low_priority_sizes'") __props__['low_priority_sizes'] = low_priority_sizes __props__['managed_service_identities'] = managed_service_identities __props__['max_size'] = max_size __props__['min_size'] = min_size __props__['name'] = name if network is None: raise TypeError("Missing required property 'network'") __props__['network'] = network if od_sizes is None: raise TypeError("Missing required property 'od_sizes'") __props__['od_sizes'] = od_sizes if product is None: raise TypeError("Missing required property 'product'") __props__['product'] = product if region is None: raise TypeError("Missing required property 'region'") __props__['region'] = region if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['scaling_down_policies'] = scaling_down_policies __props__['scaling_up_policies'] = scaling_up_policies __props__['scheduled_tasks'] = scheduled_tasks __props__['shutdown_script'] = shutdown_script if strategy is None: raise TypeError("Missing required property 'strategy'") __props__['strategy'] = strategy __props__['update_policy'] = update_policy __props__['user_data'] = user_data super(Elastigroup, __self__).__init__( 'spotinst:azure/elastigroup:Elastigroup', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, custom_data=None, desired_capacity=None, health_check=None, images=None, integration_kubernetes=None, integration_multai_runtime=None, load_balancers=None, login=None, low_priority_sizes=None, managed_service_identities=None, max_size=None, min_size=None, name=None, network=None, od_sizes=None, product=None, region=None, resource_group_name=None, scaling_down_policies=None, scaling_up_policies=None, scheduled_tasks=None, shutdown_script=None, strategy=None, update_policy=None, user_data=None): """ Get an existing Elastigroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to
from __future__ import print_function import sys sys.path.insert(0, '.') import torch from torch.autograd import Variable import torch.optim as optim from torch.nn.parallel import DataParallel import time import os.path as osp from tensorboardX import SummaryWriter import numpy as np import argparse import scipy.io from bpm.dataset import create_dataset #from bpm.model.PCBModel import PCBModel as Model #from bpm.model.PCB_TripletModel import PCBModel as Model from bpm.model.PCB_TripletModel_record import PCBModel as Model # from bpm.model.PCB_ColModel import PCBModel as Model from bpm.utils.utils import time_str,save_mat from bpm.utils.utils import str2bool from bpm.utils.utils import may_set_mode from bpm.utils.utils import load_state_dict from bpm.utils.utils import load_ckpt from bpm.utils.utils import save_ckpt from bpm.utils.utils import set_devices from bpm.utils.utils import AverageMeter from bpm.utils.utils import to_scalar from bpm.utils.utils import ReDirectSTD from bpm.utils.utils import set_seed from bpm.utils.utils import adjust_lr_staircase class Config(object): def __init__(self): parser = argparse.ArgumentParser() parser.add_argument('-d', '--sys_device_ids', type=eval, default=(0,)) parser.add_argument('-r', '--run', type=int, default=1) parser.add_argument('--set_seed', type=str2bool, default=False) parser.add_argument('--dataset', type=str, default='market1501', choices=['mars_oldmask_retain','mars','mars20','mars22','mars23','mars30','mars32','mars33','market',\ 'cuhk20','cuhk22','cuhk23','cuhk20_retain','cuhk22_retain','cuhk23_retain','cuhk30','cuhk32','cuhk33',\ 'cuhk30_retain','cuhk32_retain','cuhk33_retain','cuhk40','cuhk42','cuhk43','cuhk40_retain','cuhk42_retain',\ 'cuhk43_retain','market1501','market_combined','market23','market22', 'market20','market20_retain','market22_retain',\ 'market23_retain', 'market30','market32','market33','market30_retain','market32_retain','market33_retain',\ 'market40','market42','market43','market40_retain','market42_retain','market43_retain','market_oldmask',\ 'market_oldmask_retain','market_trans','market_png','market30_retain_pixel3']) parser.add_argument('--trainset_part', type=str, default='trainval', choices=['trainval', 'train']) parser.add_argument('--resize_h_w', type=eval, default=(384, 128)) # These several only for training set parser.add_argument('--crop_prob', type=float, default=0) parser.add_argument('--crop_ratio', type=float, default=1) parser.add_argument('--mirror', type=str2bool, default=True) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--log_to_file', type=str2bool, default=True) parser.add_argument('--steps_per_log', type=int, default=20) parser.add_argument('--epochs_per_val', type=int, default=1) parser.add_argument('--last_conv_stride', type=int, default=1, choices=[1, 2]) # When the stride is changed to 1, we can compensate for the receptive field # using dilated convolution. However, experiments show dilated convolution is useless. parser.add_argument('--last_conv_dilation', type=int, default=1, choices=[1, 2]) parser.add_argument('--num_stripes', type=int, default=6) parser.add_argument('--local_conv_out_channels', type=int, default=256) parser.add_argument('--only_test', type=str2bool, default=False) parser.add_argument('--only_record', type=str2bool, default=False) parser.add_argument('--resume', type=str2bool, default=False) parser.add_argument('--exp_dir', type=str, default='') parser.add_argument('--model_weight_file', type=str, default='') parser.add_argument('--new_params_lr', type=float, default=0.1) parser.add_argument('--finetuned_params_lr', type=float, default=0.01) parser.add_argument('--staircase_decay_at_epochs', type=eval, default=(41,)) parser.add_argument('--staircase_decay_multiply_factor', type=float, default=0.1) parser.add_argument('--total_epochs', type=int, default=60) args = parser.parse_args() # gpu ids self.sys_device_ids = args.sys_device_ids # If you want to make your results exactly reproducible, you have # to fix a random seed. if args.set_seed: self.seed = 1 else: self.seed = None # The experiments can be run for several times and performances be averaged. # `run` starts from `1`, not `0`. self.run = args.run ########### # Dataset # ########### # If you want to make your results exactly reproducible, you have # to also set num of threads to 1 during training. if self.seed is not None: self.prefetch_threads = 1 else: self.prefetch_threads = 2 self.dataset = args.dataset self.trainset_part = args.trainset_part # Image Processing # Just for training set self.crop_prob = args.crop_prob self.crop_ratio = args.crop_ratio self.resize_h_w = args.resize_h_w # Whether to scale by 1/255 self.scale_im = True self.im_mean = None #four channels self.im_std = None self.train_mirror_type = 'random' if args.mirror else None self.train_batch_size = args.batch_size self.train_final_batch = True self.train_shuffle = True self.test_mirror_type = None self.test_batch_size = 32 self.test_final_batch = True self.test_shuffle = False dataset_kwargs = dict( name=self.dataset, resize_h_w=self.resize_h_w, scale=self.scale_im, im_mean=self.im_mean, im_std=self.im_std, batch_dims='NCHW', num_prefetch_threads=self.prefetch_threads) prng = np.random if self.seed is not None: prng = np.random.RandomState(self.seed) self.train_set_kwargs = dict( part=self.trainset_part, batch_size=self.train_batch_size, final_batch=self.train_final_batch, shuffle=self.train_shuffle, crop_prob=self.crop_prob, crop_ratio=self.crop_ratio, mirror_type=self.train_mirror_type, prng=prng) self.train_set_kwargs.update(dataset_kwargs) prng = np.random if self.seed is not None: prng = np.random.RandomState(self.seed) self.val_set_kwargs = dict( part='val', batch_size=self.test_batch_size, final_batch=self.test_final_batch, shuffle=self.test_shuffle, mirror_type=self.test_mirror_type, prng=prng) self.val_set_kwargs.update(dataset_kwargs) prng = np.random if self.seed is not None: prng = np.random.RandomState(self.seed) self.test_set_kwargs = dict( part='test', batch_size=self.test_batch_size, final_batch=self.test_final_batch, shuffle=self.test_shuffle, mirror_type=self.test_mirror_type, prng=prng) self.test_set_kwargs.update(dataset_kwargs) ############### # ReID Model # ############### # The last block of ResNet has stride 2. We can set the stride to 1 so that # the spatial resolution before global pooling is doubled. self.last_conv_stride = args.last_conv_stride # When the stride is changed to 1, we can compensate for the receptive field # using dilated convolution. However, experiments show dilated convolution is useless. self.last_conv_dilation = args.last_conv_dilation # Number of stripes (parts) self.num_stripes = args.num_stripes # Output channel of 1x1 conv self.local_conv_out_channels = args.local_conv_out_channels ############# # Training # ############# self.momentum = 0.9 self.weight_decay = 0.0005 # Initial learning rate self.new_params_lr = args.new_params_lr self.finetuned_params_lr = args.finetuned_params_lr self.staircase_decay_at_epochs = args.staircase_decay_at_epochs self.staircase_decay_multiply_factor = args.staircase_decay_multiply_factor # Number of epochs to train self.total_epochs = args.total_epochs # How often (in epochs) to test on val set. self.epochs_per_val = args.epochs_per_val # How often (in batches) to log. If only need to log the average # information for each epoch, set this to a large value, e.g. 1e10. self.steps_per_log = args.steps_per_log # Only test and without training. self.only_test = args.only_test #record the features self.only_record = args.only_record self.resume = args.resume ####### # Log # ####### # If True, # 1) stdout and stderr will be redirected to file, # 2) training loss etc will be written to tensorboard, # 3) checkpoint will be saved self.log_to_file = args.log_to_file # The root dir of logs. if args.exp_dir == '': self.exp_dir = osp.join( 'exp/train', '{}'.format(self.dataset), 'run{}'.format(self.run), ) else: self.exp_dir = args.exp_dir self.stdout_file = osp.join( self.exp_dir, 'stdout_{}.txt'.format(time_str())) self.stderr_file = osp.join( self.exp_dir, 'stderr_{}.txt'.format(time_str())) # Saving model weights and optimizer states, for resuming. self.ckpt_file = osp.join(self.exp_dir, 'ckpt.pth') self.record_file = osp.join(self.exp_dir,'feat.mat') # Just for loading a pretrained model; no optimizer states is needed. self.model_weight_file = args.model_weight_file class ExtractFeature(object): """A function to be called in the val/test set, to extract features. Args: TVT: A callable to transfer images to specific device. """ def __init__(self, model, TVT): self.model = model self.TVT = TVT def __call__(self, ims): old_train_eval_model = self.model.training # Set eval mode. # Force all BN layers to use global mean and variance, also disable # dropout. self.model.eval() ims = Variable(self.TVT(torch.from_numpy(ims).float())) try: local_feat_list, logits_list = self.model(ims) except: local_feat_list = self.model(ims) feat = [lf.data.cpu().numpy() for lf in local_feat_list] feat = np.concatenate(feat, axis=1) # Restore the model to its old train/eval mode. self.model.train(old_train_eval_model) return feat class ExtractTFeature(object): def __init__(self, model, TVT): self.model = model self.TVT = TVT def __call__(self, ims): old_train_eval_model = self.model.training # Set eval mode. # Force all BN layers to use global mean and variance, also disable # dropout. self.model.eval() ims = Variable(self.TVT(torch.from_numpy(ims).float())) try: feat, g_list, h_list = self.model(ims) except: local_feat_list = self.model(ims) # Restore the model to its old train/eval mode. self.model.train(old_train_eval_model) return feat,g_list,h_list def main(): cfg = Config() # Redirect logs to both console and file. if cfg.log_to_file: ReDirectSTD(cfg.stdout_file, 'stdout', False) ReDirectSTD(cfg.stderr_file, 'stderr', False) # Lazily create SummaryWriter writer = None TVT, TMO = set_devices(cfg.sys_device_ids) if cfg.seed is not None: set_seed(cfg.seed) # Dump the configurations to log. import pprint print('-' * 60) print('cfg.__dict__') pprint.pprint(cfg.__dict__) print('-' * 60) ########### # Dataset # ########### train_set = create_dataset(**cfg.train_set_kwargs) print('train_set shape:{}'.format(len(train_set.im_names))) num_classes = len(train_set.ids2labels) # The combined dataset does not provide val set currently. val_set = None if cfg.dataset == 'combined' else create_dataset(**cfg.val_set_kwargs) test_sets = [] test_set_names = [] if cfg.dataset == 'combined': for name in ['market1501', 'cuhk03', 'duke']: cfg.test_set_kwargs['name'] = name test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(name) else: test_sets.append(create_dataset(**cfg.test_set_kwargs)) test_set_names.append(cfg.dataset) ########### # Models # ########### model = Model( last_conv_stride=cfg.last_conv_stride, num_stripes=cfg.num_stripes, local_conv_out_channels=cfg.local_conv_out_channels, num_classes=num_classes ) # Model wrapper model_w = DataParallel(model) ############################# # Criteria and Optimizers # ############################# criterion = torch.nn.CrossEntropyLoss() # To finetune from ImageNet weights finetuned_params = list(model.base.parameters()) # To train from scratch new_params = [p for n, p in model.named_parameters() if not n.startswith('base.')] param_groups = [{'params': finetuned_params, 'lr': cfg.finetuned_params_lr}, {'params': new_params, 'lr': cfg.new_params_lr}] optimizer = optim.SGD( param_groups, momentum=cfg.momentum, weight_decay=cfg.weight_decay) # Bind them together just to save some codes in the following usage. modules_optims = [model, optimizer] ################################ # May Resume Models and Optims # ################################ if cfg.resume: resume_ep, scores = load_ckpt(modules_optims, cfg.ckpt_file) # May Transfer Models and Optims to Specified Device. Transferring optimizer # is to cope with the case when you load the checkpoint to a new device. TMO(modules_optims) ######## # Test # ######## def test(load_model_weight=False): if load_model_weight: if cfg.model_weight_file != '': map_location = (lambda storage, loc: storage) sd = torch.load(cfg.model_weight_file, map_location=map_location) load_state_dict(model, sd['state_dicts'][0]) print('Loaded model weights from {}'.format(cfg.model_weight_file)) else: load_ckpt(modules_optims, cfg.ckpt_file) for test_set, name in zip(test_sets, test_set_names): test_set.set_feat_func(ExtractFeature(model_w, TVT)) print('\n=========> Test on dataset: {} <=========\n'.format(name)) test_set.eval( normalize_feat=True, verbose=True) def test_record(load_model_weight=False): if load_model_weight: if cfg.model_weight_file != '': map_location = (lambda storage, loc: storage) sd = torch.load(cfg.model_weight_file, map_location=map_location) load_state_dict(model, sd['state_dicts'][0]) print('Loaded model weights from {}'.format(cfg.model_weight_file)) else: load_ckpt(modules_optims, cfg.ckpt_file) #record trainval feat epoch_done = False print('\n=========> Record on Trainval: <=========\n') i = 0 feat_list = [] h_list = [] im_names_list = [] while not epoch_done: ims, im_names, labels, mirrored, epoch_done = train_set.next_batch() # print('the size of ims:{}'.format(ims.size())) print(ims.shape) ims_var = Variable(TVT(torch.from_numpy(ims).float())) print(ims_var.shape) feat,_,h,_ = model(ims_var) h = [lf.cpu().data.numpy() for lf in h] h
""" ## In this module there is the botApi class, whose purpose is to send requests """ import requests import json from silbot import types, helper from silbot.response import BotAPIResponse from typing import Union class BotApi: """ Class to send requests to botAPI """ def __init__(self, token, default_parse_mode: str = None, default_disable_web_preview: bool = None, default_disable_notifications: bool = None): """Creates a botApi by the given token Using this class you can easily send requests to botApi and use the response - - - - - **Args**: - `token` (`str`): bot's API Token given by [@botfather](https://t.me/botfather) - `default_parse_mode` (`str`, *optional*): Can be None, Markdown or HTML, it is used in functions if parse_mode is not specified. Defaults to `None`. - `default_disable_web_preview` (`bool`, *optional*): It is used in functions if disable_web_page_preview is not specified. Defaults to `None`. - `default_disable_notifications` (`bool`, *optional*): It is used in functions if disable_notifications is not specified. Defaults to `None`. """ self.default_parse_mode = default_parse_mode self.default_disable_web_preview = default_disable_web_preview self.default_disable_notifications = default_disable_notifications self.token = token self.session = requests.Session() def sendRequest(self, method, arguments=None): """Sends a GET request to botAPI Using this function you can send custom requests to botAPI - - - - - **Args**: - `method` (`str`): request method, like sendMessage - `arguments` (`dict`, *optional*): A `dict` whose keys are request's parameters and the values are parameters values. Defaults to `{}`. **Returns** - `str` botAPI's string response """ if arguments is None: arguments = {} try: r = self.session.get("https://api.telegram.org/bot" + self.token + "/" + method, params=arguments, timeout=10) except Exception: return json.dumps({"ok": False, "connection_error": True}) else: return r.text @staticmethod def response(raw_json, func): """Creates a botAPIResponse object for the given JSON - - - - - **Args**: - `raw_json` (`str`): Result from botAPI - `func` (`silbot.types` class or builtin data value): Expected result from botAPI **Returns** - `tuple` containing the expected result as object as first argument and the `BotAPIResponse` object as second """ response = BotAPIResponse(raw_json, func) return response.getObject(), response def getUpdates(self, offset: int = None, limit: int = None, timeout: int = None, allowed_updates: list = None): """Use this method to receive incoming updates using long polling (wiki). An Array of Update objects is returned. [See Telegram API](https://core.telegram.org/bots/api#getupdates) - - - - - **Args**: - `offset` :`int` Identifier of the first update to be returned. Must be greater by one than the highest among the identifiers of previously received updates. By default, updates starting with the earliest unconfirmed update are returned. An update is considered confirmed as soon as getUpdates is called with an offset higher than its update_id. The negative offset can be specified to retrieve updates starting from -offset update from the end of the updates queue. All previous updates will forgotten. - `limit` :`int` Limits the number of updates to be retrieved. Values between 1-100 are accepted. Defaults to 100. - `timeout` :`int` Timeout in seconds for long polling. Defaults to 0, i.e. usual short polling. Should be positive, short polling should be used for testing purposes only. - `allowed_updates` :`list` A JSON-serialized list of the update types you want your bot to receive. For example, specify [“message”, “edited_channel_post”, “callback_query”] to only receive updates of these types. See Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member (default). If not specified, the previous setting will be used.Please note that this parameter doesn't affect updates created before the call to the getUpdates, so unwanted updates may be received for a short period of time. **Returns:** - A `tuple`, on success a `list` as first member and a botApiResponse object as second member """ data = { "offset": offset, "limit": limit, "timeout": timeout, "allowed_updates": allowed_updates, } return self.response(self.sendRequest("getUpdates", data), list) def setWebhook(self, url: str, certificate: types.InputFile = None, ip_address: str = None, max_connections: int = None, allowed_updates: list = None, drop_pending_updates: bool = None): """Use this method to specify a url and receive incoming updates via an outgoing webhook. Whenever there is an update for the bot, we will send an HTTPS POST request to the specified url, containing a JSON-serialized Update. In case of an unsuccessful request, we will give up after a reasonable amount of attempts. Returns True on success. If you'd like to make sure that the Webhook request comes from Telegram, we recommend using a secret path in the URL, e.g. https://www.example.com/<token>. Since nobody else knows your bot's token, you can be pretty sure it's us. [See Telegram API](https://core.telegram.org/bots/api#setwebhook) - - - - - **Args**: - `url` :`str` HTTPS url to send updates to. Use an empty string to remove webhook integration - `certificate` :`types.InputFile` Upload your public key certificate so that the root certificate in use can be checked. See our self-signed guide for details. - `ip_address` :`str` The fixed IP address which will be used to send webhook requests instead of the IP address resolved through DNS - `max_connections` :`int` Maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery, 1-100. Defaults to 40. Use lower values to limit the load on your bot's server, and higher values to increase your bot's throughput. - `allowed_updates` :`list` A JSON-serialized list of the update types you want your bot to receive. For example, specify [“message”, “edited_channel_post”, “callback_query”] to only receive updates of these types. See Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member (default). If not specified, the previous setting will be used.Please note that this parameter doesn't affect updates created before the call to the setWebhook, so unwanted updates may be received for a short period of time. - `drop_pending_updates` :`bool` Pass True to drop all pending updates **Returns:** - A `tuple`, on success a `bool` as first member and a botApiResponse object as second member """ data = { "url": url, "certificate": helper.toDict(certificate, True), "ip_address": ip_address, "max_connections": max_connections, "allowed_updates": allowed_updates, "drop_pending_updates": drop_pending_updates, } return self.response(self.sendRequest("setWebhook", data), bool) def deleteWebhook(self, drop_pending_updates: bool = None): """Use this method to remove webhook integration if you decide to switch back to getUpdates. Returns True on success. [See Telegram API](https://core.telegram.org/bots/api#deletewebhook) - - - - - **Args**: - `drop_pending_updates` :`bool` Pass True to drop all pending updates **Returns:** - A `tuple`, on success a `bool` as first member and a botApiResponse object as second member """ data = { "drop_pending_updates": drop_pending_updates, } return self.response(self.sendRequest("deleteWebhook", data), bool) def getWebhookInfo(self, ): """Use this method to get current webhook status. Requires no parameters. On success, returns a WebhookInfo object. If the bot is using getUpdates, will return an object with the url field empty. [See Telegram API](https://core.telegram.org/bots/api#getwebhookinfo) - - - - - **Args**: **Returns:** - A `tuple`, on success a `types.WebhookInfo` as first member and a botApiResponse object as second member """ data = { } return self.response(self.sendRequest("getWebhookInfo", data), types.WebhookInfo) def getMe(self, ): """A simple method for testing your bot's authentication token. Requires no parameters. Returns basic information about the bot in form of a User object. [See Telegram API](https://core.telegram.org/bots/api#getme) - - - - - **Args**: **Returns:** - A `tuple`, on success a `types.User` as first member and a botApiResponse object as second member """ data = { } return self.response(self.sendRequest("getMe", data), types.User) def logOut(self, ): """Use this method to log out from the cloud Bot API server before launching the bot locally. You must log out the bot before running it locally, otherwise there is no guarantee that the bot will receive updates. After a successful call, you can immediately log in on a local server, but will not be able to log in back to the cloud Bot API server for 10 minutes. Returns True on success. Requires no parameters. [See Telegram API](https://core.telegram.org/bots/api#logout) - - - - - **Args**: **Returns:** - A `tuple`, on success a `bool` as first member and a
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from fate_arch.common import EngineType from fate_arch.common import engine_utils from fate_arch.common.base_utils import json_dumps, current_timestamp from fate_arch.computing import ComputingEngine from fate_flow.controller.task_controller import TaskController from fate_flow.db.job_default_config import JobDefaultConfig from fate_flow.db.runtime_config import RuntimeConfig from fate_flow.entity import RunParameters from fate_flow.entity.run_status import JobStatus, EndStatus from fate_flow.entity.types import InputSearchType, WorkerName from fate_flow.manager.provider_manager import ProviderManager from fate_flow.manager.resource_manager import ResourceManager from fate_flow.manager.worker_manager import WorkerManager from fate_flow.operation.job_saver import JobSaver from fate_flow.operation.job_tracker import Tracker from fate_flow.protobuf.python import pipeline_pb2 from fate_flow.settings import USE_AUTHENTICATION, USE_DATA_AUTHENTICATION, ENGINES from fate_flow.utils import job_utils, schedule_utils, data_utils from fate_flow.utils.authentication_utils import authentication_check from fate_flow.utils.authentication_utils import data_authentication_check from fate_flow.utils.log_utils import schedule_logger class JobController(object): @classmethod def create_job(cls, job_id, role, party_id, job_info): # parse job configuration dsl = job_info['dsl'] runtime_conf = job_info['runtime_conf'] train_runtime_conf = job_info['train_runtime_conf'] if USE_AUTHENTICATION: authentication_check(src_role=job_info.get('src_role', None), src_party_id=job_info.get('src_party_id', None), dsl=dsl, runtime_conf=runtime_conf, role=role, party_id=party_id) dsl_parser = schedule_utils.get_job_dsl_parser(dsl=dsl, runtime_conf=runtime_conf, train_runtime_conf=train_runtime_conf) job_parameters = dsl_parser.get_job_parameters(runtime_conf) schedule_logger(job_id).info('job parameters:{}'.format(job_parameters)) dest_user = job_parameters.get(role, {}).get(party_id, {}).get('user', '') user = {} src_party_id = int(job_info['src_party_id']) if job_info.get('src_party_id') else 0 src_role = job_info.get('src_role', '') src_user = job_parameters.get(src_role, {}).get(src_party_id, {}).get('user', '') if src_role else '' for _role, party_id_item in job_parameters.items(): user[_role] = {} for _party_id, _parameters in party_id_item.items(): user[_role][_party_id] = _parameters.get("user", "") schedule_logger(job_id).info('job user:{}'.format(user)) if USE_DATA_AUTHENTICATION: job_args = dsl_parser.get_args_input() schedule_logger(job_id).info('job args:{}'.format(job_args)) dataset_dict = cls.get_dataset(False, role, party_id, runtime_conf.get("role"), job_args) dataset_list = [] if dataset_dict.get(role, {}).get(party_id): for k, v in dataset_dict[role][party_id].items(): dataset_list.append({"namespace": v.split('.')[0], "table_name": v.split('.')[1]}) data_authentication_check(src_role=job_info.get('src_role'), src_party_id=job_info.get('src_party_id'), src_user=src_user, dest_user=dest_user, dataset_list=dataset_list) job_parameters = RunParameters(**job_parameters.get(role, {}).get(party_id, {})) # save new job into db if role == job_info["initiator_role"] and party_id == job_info["initiator_party_id"]: is_initiator = True else: is_initiator = False job_info["status"] = JobStatus.READY job_info["user_id"] = dest_user job_info["src_user"] = src_user job_info["user"] = user # this party configuration job_info["role"] = role job_info["party_id"] = party_id job_info["is_initiator"] = is_initiator job_info["progress"] = 0 cls.create_job_parameters_on_party(role=role, party_id=party_id, job_parameters=job_parameters) # update job parameters on party job_info["runtime_conf_on_party"]["job_parameters"] = job_parameters.to_dict() JobSaver.create_job(job_info=job_info) initialized_result, provider_group = cls.initialize_tasks(job_id=job_id, role=role, party_id=party_id, run_on_this_party=True, initiator_role=job_info["initiator_role"], initiator_party_id=job_info["initiator_party_id"], job_parameters=job_parameters, dsl_parser=dsl_parser) for provider_key, group_info in provider_group.items(): for cpn in group_info["components"]: dsl["components"][cpn]["provider"] = provider_key roles = job_info['roles'] cls.initialize_job_tracker(job_id=job_id, role=role, party_id=party_id, job_parameters=job_parameters, roles=roles, is_initiator=is_initiator, dsl_parser=dsl_parser) job_utils.save_job_conf(job_id=job_id, role=role, party_id=party_id, dsl=dsl, runtime_conf=runtime_conf, runtime_conf_on_party=job_info["runtime_conf_on_party"], train_runtime_conf=train_runtime_conf, pipeline_dsl=None) return {"components": initialized_result} @classmethod def set_federated_mode(cls, job_parameters: RunParameters): if not job_parameters.federated_mode: job_parameters.federated_mode = ENGINES["federated_mode"] @classmethod def set_engines(cls, job_parameters: RunParameters, engine_type=None): engines = engine_utils.get_engines() if not engine_type: engine_type = {EngineType.COMPUTING, EngineType.FEDERATION, EngineType.STORAGE} for k in engine_type: setattr(job_parameters, f"{k}_engine", engines[k]) @classmethod def create_common_job_parameters(cls, job_id, initiator_role, common_job_parameters: RunParameters): JobController.set_federated_mode(job_parameters=common_job_parameters) JobController.set_engines(job_parameters=common_job_parameters, engine_type={EngineType.COMPUTING}) JobController.fill_default_job_parameters(job_id=job_id, job_parameters=common_job_parameters) JobController.adapt_job_parameters(role=initiator_role, job_parameters=common_job_parameters, create_initiator_baseline=True) @classmethod def create_job_parameters_on_party(cls, role, party_id, job_parameters: RunParameters): JobController.set_engines(job_parameters=job_parameters) cls.fill_party_specific_parameters(role=role, party_id=party_id, job_parameters=job_parameters) @classmethod def fill_party_specific_parameters(cls, role, party_id, job_parameters: RunParameters): cls.adapt_job_parameters(role=role, job_parameters=job_parameters) engines_info = cls.get_job_engines_address(job_parameters=job_parameters) cls.check_parameters(job_parameters=job_parameters, role=role, party_id=party_id, engines_info=engines_info) @classmethod def fill_default_job_parameters(cls, job_id, job_parameters: RunParameters): keys = {"task_parallelism", "auto_retries", "auto_retry_delay", "federated_status_collect_type"} for key in keys: if hasattr(job_parameters, key) and getattr(job_parameters, key) is None: if hasattr(JobDefaultConfig, key): setattr(job_parameters, key, getattr(JobDefaultConfig, key)) else: schedule_logger(job_id).warning(f"can not found {key} job parameter default value from job_default_settings") @classmethod def adapt_job_parameters(cls, role, job_parameters: RunParameters, create_initiator_baseline=False): ResourceManager.adapt_engine_parameters( role=role, job_parameters=job_parameters, create_initiator_baseline=create_initiator_baseline) if create_initiator_baseline: if job_parameters.task_parallelism is None: job_parameters.task_parallelism = JobDefaultConfig.task_parallelism if job_parameters.federated_status_collect_type is None: job_parameters.federated_status_collect_type = JobDefaultConfig.federated_status_collect_type if create_initiator_baseline and not job_parameters.computing_partitions: job_parameters.computing_partitions = job_parameters.adaptation_parameters[ "task_cores_per_node"] * job_parameters.adaptation_parameters["task_nodes"] @classmethod def get_job_engines_address(cls, job_parameters: RunParameters): engines_info = {} engine_list = [ (EngineType.COMPUTING, job_parameters.computing_engine), (EngineType.FEDERATION, job_parameters.federation_engine), (EngineType.STORAGE, job_parameters.storage_engine) ] for engine_type, engine_name in engine_list: engine_info = ResourceManager.get_engine_registration_info( engine_type=engine_type, engine_name=engine_name) job_parameters.engines_address[engine_type] = engine_info.f_engine_config if engine_info else {} engines_info[engine_type] = engine_info return engines_info @classmethod def check_parameters(cls, job_parameters: RunParameters, role, party_id, engines_info): status, cores_submit, max_cores_per_job = ResourceManager.check_resource_apply( job_parameters=job_parameters, role=role, party_id=party_id, engines_info=engines_info) if not status: msg = "" msg2 = "default value is fate_flow/settings.py#DEFAULT_TASK_CORES_PER_NODE, refer fate_flow/examples/simple/simple_job_conf.json" if job_parameters.computing_engine in {ComputingEngine.EGGROLL, ComputingEngine.STANDALONE}: msg = "please use task_cores job parameters to set request task cores or you can customize it with eggroll_run job parameters" elif job_parameters.computing_engine in {ComputingEngine.SPARK}: msg = "please use task_cores job parameters to set request task cores or you can customize it with spark_run job parameters" raise RuntimeError( f"max cores per job is {max_cores_per_job} base on (fate_flow/settings#MAX_CORES_PERCENT_PER_JOB * conf/service_conf.yaml#nodes * conf/service_conf.yaml#cores_per_node), expect {cores_submit} cores, {msg}, {msg2}") @classmethod def gen_updated_parameters(cls, job_id, initiator_role, initiator_party_id, input_job_parameters, input_component_parameters): # todo: check can not update job parameters job_configuration = job_utils.get_job_configuration(job_id=job_id, role=initiator_role, party_id=initiator_party_id) updated_job_parameters = job_configuration.runtime_conf["job_parameters"] updated_component_parameters = job_configuration.runtime_conf["component_parameters"] if input_job_parameters: if input_job_parameters.get("common"): common_job_parameters = RunParameters(**input_job_parameters["common"]) cls.create_common_job_parameters(job_id=job_id, initiator_role=initiator_role, common_job_parameters=common_job_parameters) for attr in {"model_id", "model_version"}: setattr(common_job_parameters, attr, updated_job_parameters["common"].get(attr)) updated_job_parameters["common"] = common_job_parameters.to_dict() # not support role updated_components = set() if input_component_parameters: cls.merge_update(input_component_parameters, updated_component_parameters) return updated_job_parameters, updated_component_parameters, list(updated_components) @classmethod def merge_update(cls, inputs: dict, results: dict): if not isinstance(inputs, dict) or not isinstance(results, dict): raise ValueError(f"must both dict, but {type(inputs)} inputs and {type(results)} results") for k, v in inputs.items(): if k not in results: results[k] = v elif isinstance(v, dict): cls.merge_update(v, results[k]) else: results[k] = v @classmethod def update_parameter(cls, job_id, role, party_id, updated_parameters: dict): job_configuration = job_utils.get_job_configuration(job_id=job_id, role=role, party_id=party_id) job_parameters = updated_parameters.get("job_parameters") component_parameters = updated_parameters.get("component_parameters") if job_parameters: job_configuration.runtime_conf["job_parameters"] = job_parameters job_parameters = RunParameters(**job_parameters["common"]) cls.create_job_parameters_on_party(role=role, party_id=party_id, job_parameters=job_parameters) job_configuration.runtime_conf_on_party["job_parameters"] = job_parameters.to_dict() if component_parameters: job_configuration.runtime_conf["component_parameters"] = component_parameters job_configuration.runtime_conf_on_party["component_parameters"] = component_parameters job_info = {} job_info["job_id"] = job_id job_info["role"] = role job_info["party_id"] = party_id job_info["runtime_conf"] = job_configuration.runtime_conf job_info["runtime_conf_on_party"] = job_configuration.runtime_conf_on_party JobSaver.update_job(job_info) @classmethod def initialize_task(cls, role, party_id, task_info: dict): task_info["role"] = role task_info["party_id"] = party_id initialized_result, provider_group = cls.initialize_tasks(components=[task_info["component_name"]], **task_info) return initialized_result @classmethod def initialize_tasks(cls, job_id, role, party_id, run_on_this_party, initiator_role, initiator_party_id, job_parameters: RunParameters = None, dsl_parser=None, components: list = None, **kwargs): common_task_info = {} common_task_info["job_id"] = job_id common_task_info["initiator_role"] = initiator_role common_task_info["initiator_party_id"] = initiator_party_id common_task_info["role"] = role common_task_info["party_id"] = party_id common_task_info["run_on_this_party"] = run_on_this_party common_task_info["federated_mode"] = kwargs.get("federated_mode", job_parameters.federated_mode if job_parameters else None) common_task_info["federated_status_collect_type"] = kwargs.get("federated_status_collect_type", job_parameters.federated_status_collect_type if job_parameters else None) common_task_info["auto_retries"] = kwargs.get("auto_retries", job_parameters.auto_retries if job_parameters else None) common_task_info["auto_retry_delay"] = kwargs.get("auto_retry_delay", job_parameters.auto_retry_delay if job_parameters else None) common_task_info["task_version"] = kwargs.get("task_version") if dsl_parser is None: dsl_parser = schedule_utils.get_job_dsl_parser_by_job_id(job_id) provider_group = ProviderManager.get_job_provider_group(dsl_parser=dsl_parser, components=components) initialized_result = {} for group_key, group_info in provider_group.items(): initialized_config = {} initialized_config.update(group_info) initialized_config["common_task_info"] = common_task_info if run_on_this_party: code, _result = WorkerManager.start_general_worker(worker_name=WorkerName.TASK_INITIALIZER, job_id=job_id, role=role, party_id=party_id, initialized_config=initialized_config, run_in_subprocess=False if initialized_config["if_default_provider"] else True) initialized_result.update(_result) else: cls.initialize_task_holder_for_scheduling(role=role, party_id=party_id, components=initialized_config["components"], common_task_info=common_task_info, provider_info=initialized_config["provider"]) return initialized_result, provider_group @classmethod def initialize_task_holder_for_scheduling(cls, role, party_id, components, common_task_info, provider_info): for component_name in components: task_info = {} task_info.update(common_task_info) task_info["component_name"] = component_name task_info["component_module"] = "" task_info["provider_info"] = provider_info task_info["component_parameters"] = {} TaskController.create_task(role=role, party_id=party_id, run_on_this_party=common_task_info["run_on_this_party"], task_info=task_info) @classmethod def initialize_job_tracker(cls, job_id, role, party_id, job_parameters: RunParameters, roles, is_initiator, dsl_parser): tracker = Tracker(job_id=job_id, role=role, party_id=party_id, model_id=job_parameters.model_id, model_version=job_parameters.model_version, job_parameters=job_parameters) if job_parameters.job_type != "predict": tracker.init_pipeline_model() partner = {} show_role = {} for _role, _role_party in roles.items(): if is_initiator or _role == role: show_role[_role] = show_role.get(_role, []) for _party_id in _role_party: if is_initiator or _party_id == party_id: show_role[_role].append(_party_id) if _role != role: partner[_role] = partner.get(_role, []) partner[_role].extend(_role_party) else: for _party_id in _role_party: if _party_id != party_id: partner[_role] = partner.get(_role, []) partner[_role].append(_party_id) job_args = dsl_parser.get_args_input() dataset = cls.get_dataset( is_initiator, role, party_id, roles, job_args) tracker.log_job_view( {'partner': partner, 'dataset': dataset, 'roles': show_role}) @classmethod def get_dataset(cls, is_initiator, role, party_id, roles, job_args): dataset = {} dsl_version = 1 if job_args.get('dsl_version'): if job_args.get('dsl_version') == 2: dsl_version = 2 for _role, _role_party_args in job_args.items(): if _role == "dsl_version": continue if is_initiator or _role == role: for _party_index in range(len(_role_party_args)): _party_id = roles[_role][_party_index] if is_initiator or _party_id == party_id: dataset[_role] = dataset.get(_role, {}) dataset[_role][_party_id] = dataset[_role].get( _party_id, {}) if dsl_version == 1: for _data_type, _data_location in _role_party_args[_party_index]['args']['data'].items(): dataset[_role][_party_id][_data_type] = '{}.{}'.format( _data_location['namespace'], _data_location['name']) else: for key in _role_party_args[_party_index].keys(): for _data_type, _data_location in _role_party_args[_party_index][key].items(): search_type = data_utils.get_input_search_type(parameters=_data_location) if search_type is InputSearchType.TABLE_INFO: dataset[_role][_party_id][key] = '{}.{}'.format(_data_location['namespace'], _data_location['name']) elif search_type is InputSearchType.JOB_COMPONENT_OUTPUT: dataset[_role][_party_id][key] = '{}.{}.{}'.format(_data_location['job_id'], _data_location['component_name'], _data_location['data_name']) else: dataset[_role][_party_id][key] = "unknown" return dataset @classmethod def query_job_input_args(cls, input_data, role, party_id): min_partition = data_utils.get_input_data_min_partitions( input_data, role, party_id) return {'min_input_data_partition': min_partition} @classmethod def start_job(cls, job_id, role, party_id, extra_info=None): schedule_logger(job_id).info( f"try to start job on {role} {party_id}") job_info = {
execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Component under namesapce (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.enable_project_ci_with_http_info(owner, name, **kwargs) # noqa: E501 def enable_project_ci_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Enable project CI # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.enable_project_ci_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Component under namesapce (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'owner', 'name' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method enable_project_ci" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `enable_project_ci`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `enable_project_ci`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['ApiKey'] # noqa: E501 return self.api_client.call_api( '/api/v1/{owner}/{name}/ci', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_project(self, owner, name, **kwargs): # noqa: E501 """Get project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project(owner, name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Component under namesapce (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1Project If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_project_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Component under namesapce (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1Project, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'owner', 'name' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `get_project`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `get_project`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['ApiKey'] # noqa: E501 return self.api_client.call_api( '/api/v1/{owner}/{name}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='V1Project', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_project_activities(self, owner, name, **kwargs): # noqa: E501 """Get project activities # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_activities(owner, name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Entity managing the resource (required) :param int offset: Pagination offset. :param int limit: Limit size. :param str sort: Sort to order the search. :param str query: Query filter the search. :param str mode: Mode of the search. :param bool no_page: No pagination. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: V1ListActivitiesResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_project_activities_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_activities_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get project activities # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_activities_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str owner: Owner of the namespace (required) :param str name: Entity managing the resource (required) :param int offset: Pagination offset. :param int limit: Limit size. :param str sort: Sort to order the search. :param str query: Query filter the search. :param str mode: Mode of the search. :param bool no_page: No pagination. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(V1ListActivitiesResponse, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'owner', 'name', 'offset', 'limit', 'sort', 'query', 'mode', 'no_page' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project_activities" % key ) local_var_params[key]
<filename>evaluation_tools/evaluation.py<gh_stars>0 import torch from function_tools import distribution_function, poincare_function from function_tools import euclidean_function as ef from clustering_tools.poincare_kmeans import PoincareKMeans from clustering_tools.poincare_em import PoincareEM from collections import Counter import numpy as np import math import tqdm import itertools # verified class EvaluationMetrics(object): # both must be matrix def __init__(self, prediction, ground_truth, nb_classes): self.TP = [] self.FP = [] self.TN = [] self.FN = [] for i in range(nb_classes): positive_gt = (ground_truth[:,i] == 1).float() positive_pr = (prediction[:,i] == 1).float() tp = (positive_gt * positive_pr).sum() fp = positive_gt.sum() - tp self.TP.append(tp) self.FP.append(fp) negative_gt = (ground_truth[:,i] == 0).float() negative_pr = (prediction[:,i] == 0).float() tn = (negative_gt * negative_pr).sum() fn = negative_gt.sum() - tn self.TN.append(tn) self.FN.append(fn) def micro_precision(self): return sum(self.TP, 0)/(sum(self.TP, 0) + sum(self.FP,0)) def micro_recall(self): return sum(self.TP, 0)/(sum(self.TP, 0) + sum(self.FN,0)) def micro_F(self): m_p, m_r = self.micro_precision(), self.micro_recall() return (2 * m_p * m_r) /(m_p + m_r) def macro_precision(self): precision_by_label = [tp/(tp+fp) for tp, fp in zip(self.TP, self.FP)] return sum(precision_by_label, 0)/(len(precision_by_label)) def macro_recall(self): recall_by_label = [tp/(tp+fn) for tp, fn in zip(self.TP, self.FN)] return sum(recall_by_label, 0)/(len(recall_by_label)) def macro_F(self): m_p, m_r = self.macro_precision(), self.macro_recall() return (2 * m_p * m_r) /(m_p + m_r) def score(self): return self.micro_F(), self.macro_F() def precision_at(prediction, ground_truth, at=5): prediction_value, prediction_index = (-prediction).sort(-1) trange = torch.arange(len(prediction)).unsqueeze(-1).expand(len(prediction), at).flatten() indexes = prediction_index[:,:at].flatten() score = ((ground_truth[trange, indexes]).float().view(len(prediction), at)).sum(-1)/at return score.mean().item() def mean_conductance(prediction, adjency_matrix): N = prediction.size(0) # the number of clusters K = prediction.size(-1) # print(K) I = {i for i in range(len(prediction))} score = 0 for c in range(K): # print(prediction[:, c].nonzero().flatten()) c_nodes = set(prediction[:, c].nonzero().flatten().tolist()) nc_nodes = I - c_nodes cut_score_a = 0 for i in c_nodes: cut_score_a += len(set(adjency_matrix[i]) - c_nodes) # for j in nc_nodes: # if(j in adjency_matrix[i]): # cut_score_a += 1 cut_score_b = 0 for i in c_nodes: cut_score_b += len(adjency_matrix[i]) cut_score_c = 0 for i in nc_nodes: cut_score_c += len(adjency_matrix[i]) if(cut_score_b==0 or cut_score_c ==0): score += 0 else: score += cut_score_a/(min(cut_score_b, cut_score_c)) return score/K def nmi(prediction, ground_truth): N = prediction.size(0) # the number of clusters K = prediction.size(-1) I = {i for i in range(len(prediction))} PN = [] GN = [] den = 0 for i in range(K): PN.append(set(prediction[:, i].nonzero().flatten().tolist())) GN.append(set(ground_truth[:, i].nonzero().flatten().tolist())) if(len(PN[-1]) != 0): den += len(PN[-1]) * math.log(len(PN[-1])/N) if(len(GN[-1]) != 0): den += len(GN[-1]) * math.log(len(GN[-1])/N) num = 0 for a in PN: for b in GN: N_ij = len(a.intersection(b)) if(N_ij != 0): num += N_ij * math.log((N_ij * N)/(len(a) *len(b) )) return -2 * (num/den) class PrecisionScore(object): def __init__(self, at=5): self.at = at def __call__(self, x, y): return precision_at(x, y, at=self.at) class CrossValEvaluation(object): def __init__(self, embeddings, ground_truth, nb_set=5, algs_object=PoincareEM): self.algs_object = algs_object self.z = embeddings self.gt = ground_truth self.nb_set = nb_set # split set subset_index = torch.randperm(len(self.z)) nb_value = len(self.z)//nb_set self.subset_indexer = [subset_index[nb_value *i:min(nb_value * (i+1), len(self.z))] for i in range(nb_set)] self.all_algs = [] pb = tqdm.trange(len(self.subset_indexer)) for i, test_index in zip(pb, self.subset_indexer): # create train dataset being concatenation of not current test set train_index = torch.cat([ subset for ci, subset in enumerate(self.subset_indexer) if(i!=ci)], 0) # get embeddings sets train_embeddings = self.z[train_index] test_embeddings = self.z[test_index] # get ground truth sets train_labels = self.gt[train_index] test_labels = self.gt[test_index] algs = self.algs_object(self.gt.size(-1)) algs.fit(train_embeddings, Y=train_labels) self.all_algs.append(algs) def get_score(self, scoring_function): scores = [] pb = tqdm.trange(len(self.subset_indexer)) for i, test_index in zip(pb, self.subset_indexer): # create train dataset being concatenation of not current test set train_index = torch.cat([ subset for ci, subset in enumerate(self.subset_indexer) if(i!=ci)], 0) # get embeddings sets train_embeddings = self.z[train_index] test_embeddings = self.z[test_index] # get ground truth sets train_labels = self.gt[train_index] test_labels = self.gt[test_index] # must give the matrix of scores # print(algs._w) prediction = self.all_algs[i].probs(test_embeddings) # print(prediction.mean(0)) # print("Pred size ", prediction.size()) # print("Test size ", test_labels.size()) set_score = scoring_function(prediction, test_labels) scores.append(set_score) return scores def accuracy(prediction, labels): return (prediction == labels).float().mean() ########################################### TO CLEAN ############################################## def predict(Z_train, Z_test, Y_train, Y_test, pi, mu, sigma): G_train = distribution_function.weighted_gmm_pdf(pi, Z_train, mu, sigma, poincare_function.distance) G_train = G_train.max(-1)[1]+1 # for each class we count predict_class = torch.zeros(len(mu), len(pi)) for j, v in enumerate(G_train): predict_class[v.item()-1][torch.LongTensor(Y_train[j])-1] +=1 sv, si = predict_class.sort(-1) g = torch.zeros(len(mu)) for k in range(len(pi)): clas = torch.argmax(predict_class,-1) gaus = predict_class[torch.arange(0,len(predict_class)),clas].argmax() clas = clas[gaus] predict_class[gaus] = -1 #predict_class[:,clas] = -1 g[gaus] = clas # predict G_test= distribution_function.weighted_gmm_pdf(pi, Z_test, mu, sigma, poincare_function.distance) G_test= G_test.max(-1)[1]+1 prediction = g[G_test-1].long() return prediction def accuracy_cross_validation_multi_disc(Z, Y, pi, mu, sigma, nb_set, verbose=True): subset_index = torch.randperm(len(Z[0])) nb_value = len(Z[0])//nb_set I_CV = [subset_index[nb_value *i:min(nb_value * (i+1), len(Z[0]))] for i in range(nb_set)] acc_total = 0. for i, test_index in enumerate(I_CV): # create train dataset train_index = torch.cat([ subset for ci, subset in enumerate(I_CV) if(i!=ci)],0) Y_train = [Y[ic.item()] for ic in train_index] #create test datase Y_test = [Y[ic.item()] for ic in test_index] if(verbose): print("Set "+str(i)+" :") print("\t train size -> "+str(len(Y_train))) print("\t test size -> "+str(len(Y_test))) print("Associate to each gaussian a class") predictions = [] for j in range(len(Z)): Z_train = Z[j][train_index] Z_test = Z[j][test_index] predictions.append(predict(Z_train, Z_test, Y_train, Y_test, pi[j], mu[j], sigma[j]).unsqueeze(-1)) predictions = torch.cat(predictions, -1) predictions = predictions.tolist() prediction = torch.LongTensor([Counter(l).most_common()[0][0] for l in predictions]) acc = accuracy(prediction, torch.LongTensor([i[0]-1 for i in Y_test])) acc_total += acc.item() return acc_total/(len(I_CV)) def accuracy_cross_validation(Z, Y, pi, mu, sigma, nb_set, verbose=True): subset_index = torch.randperm(len(Z)) nb_value = len(Z)//nb_set I_CV = [subset_index[nb_value *i:min(nb_value * (i+1), len(Z))] for i in range(nb_set)] acc_total = 0. for i, test_index in enumerate(I_CV): # create train dataset train_index = torch.cat([ subset for ci, subset in enumerate(I_CV) if(i!=ci)],0) Z_train = Z[train_index] Y_train = [Y[ic.item()] for ic in train_index] #create test datase Z_test = Z[test_index] Y_test = [Y[ic.item()] for ic in test_index] if(verbose): print("Set "+str(i)+" :") print("\t train size -> "+str(len(Z_train))) print("\t test size -> "+str(len(Z_test))) print("Associate to each gaussian a class") G_train = distribution_function.weighted_gmm_pdf(pi, Z_train, mu, sigma, poincare_function.distance) G_train = G_train.max(-1)[1]+1 # for each class we count predict_class = torch.zeros(len(mu), len(pi)) for j, v in enumerate(G_train): predict_class[v.item()-1][torch.LongTensor(Y_train[j])-1] +=1 sv, si = predict_class.sort(-1) g = torch.zeros(len(mu)) for k in range(len(pi)): clas = torch.argmax(predict_class,-1) gaus = predict_class[torch.arange(0,len(predict_class)),clas].argmax() clas = clas[gaus] predict_class[gaus] = -1 #predict_class[:,clas] = -1 g[gaus] = clas # predict G_test= distribution_function.weighted_gmm_pdf(pi, Z_test, mu, sigma, poincare_function.distance) G_test= G_test.max(-1)[1]+1 prediction = g[G_test-1].long() acc = accuracy(prediction, torch.LongTensor([i[0]-1 for i in Y_test])) acc_total += acc.item() return acc_total/(len(I_CV)) def evaluate_em_supervised(Z, Y, n_gaussian, nb_set=5, verbose=False): subset_index = torch.randperm(len(Z)) nb_value = len(Z)//nb_set I_CV = [subset_index[nb_value *i:min(nb_value * (i+1), len(Z))] for i in range(nb_set)] acc_total = 0. for i, test_index in enumerate(I_CV): # create train dataset train_index = torch.cat([ subset for ci, subset in enumerate(I_CV) if(i!=ci)],0) Z_train = Z[train_index] Y_train = [Y[ic.item()] for ic in train_index] #create test datase Z_test = Z[test_index] Y_test = [Y[ic.item()] for ic in test_index] if(verbose): print("Set "+str(i)+" :") print("\t train size -> "+str(len(Z_train))) print("\t test size -> "+str(len(Z_test))) print("Associate to each gaussian a class") em_alg = RiemannianEM(Z.size(-1), n_gaussian) g_mat = torch.Tensor([[ 1 if(y+1 in Y_train[i]) else 0 for y in range(n_gaussian)] for i in range(len(Z_train))]) em_alg.fit(Z_train, Y=g_mat) # predict prediction = em_alg.predict(Z_test) acc = accuracy(prediction, torch.LongTensor([i[0]-1 for i in Y_test])) acc_total += acc.item() return acc_total/(len(I_CV)) # in the following function we perform prediction using disc product # Z, Y, pi, mu, sigma are list of tensor with the size number of disc def accuracy_supervised(z, y, mu, nb_set=5, verbose=True): n_example = len(z) n_distrib = len(mu) subset_index = torch.randperm(n_example) nb_value = n_example//nb_set I_CV = [subset_index[nb_value *i:min(nb_value * (i+1), n_example)] for i in range(nb_set)] # print(I_CV) acc_total = 0. for i, test_index in enumerate(I_CV): # create train dataset train_index = torch.cat([ subset for ci, subset in enumerate(I_CV) if(i!=ci)],0) Z_train = z[train_index] Y_train = torch.LongTensor([y[ic.item()] for ic in train_index]) #create test datase Z_test = z[test_index] Y_test = torch.LongTensor([y[ic.item()] for ic in test_index]) if(verbose): print("Set "+str(i)+" :") print("\t train size -> "+str(len(Z_train))) print("\t test size -> "+str(len(Z_test))) print("Obtaining centroids for each classes") from function_tools import poincare_alg as pa min_label = Y_train.min().item() max_label = Y_train.max().item() centroids = [] for i in range(n_distrib): # print((Z_train[Y_train[:,0]== (min_label + i)]).size()) centroids.append(pa.barycenter(Z_train[Y_train[:,0]== (min_label + i)],
1) { # cannot approx with 1 value so: indexSplit[[sc]] = rep(g$index[1], nrow(s)); } else { g$pos = (g$begin + g$end) / 2; g = g[order(g$pos),]; # rule 2 means use values from extrema i = round(approx(g$pos, 1:nrow(g), xout = s$pos, rule=2)$y); i = pmax(1, pmin(nrow(g), i)); indexSplit[[sc]] = g$index[i]; } } unsplit(indexSplit, strains$scaffold); } """ def initialize_gene_fit_d(GeneFitResults, debug=False): """ We create the initial version of central variable 'gene_fit_d'. Where we essentially flip the column names and the set names of the dataframes, in the sense that we go from having a single setindex name pointing to a dataframe with columns indicating certain info, to the names of those columns pointing to a dataframe with that column's info over all the different set index names. Args: GeneFitResults: (dict) setnameIndex -> ret_d ret_d: gene_fit: DataFrame, contains cols: fit (float): (unnormalized fitNaive (float): fit1 (float): fit2 (float): fitnorm1 (float) fitnorm2 (float) fitRaw (float) locusId (str) n (int) nEff (float) pseudovar (float) sumsq (float): sd (float) sdNaive (float) se (float) Standard Error t: (float) t-statistic tot1 (int or nan) tot1_0 (int or nan) tot2 (int or nan) tot2_0 (int or nan) tot (int or nan) tot0 (int or nan) strain_fit: pandas Series (float) strain_se: pandas Series (float) Returns: gene_fit_d: (python dict) g (pandas Series (str)): pandas Series of locusIds lr (float): dataframe with one column per setindexname lrNaive (float): dataframe with one column per setindexname lr1 (float): dataframe with one column per setindexname lr2 (float): dataframe with one column per setindexname lrn1 (float): dataframe with one column per setindexname lrn2 (float): dataframe with one column per setindexname lrRaw (float): dataframe with one column per setindexname n (int): dataframe with one column per setindexname nEff (float): dataframe with one column per setindexname pseudovar (float): dataframe with one column per setindexname sumsq (float): dataframe with one column per setindexname sd (float): dataframe with one column per setindexname sdNaive (float): dataframe with one column per setindexname se (float) Standard Error dataframe with one column per setindexname t: (float) t-statistic dataframe with one column per setindexname tot1 (int or nan) dataframe with one column per setindexname tot1_0 (int or nan) dataframe with one column per setindexname tot2 (int or nan) dataframe with one column per setindexname tot2_0 (int or nan) dataframe with one column per setindexname tot (int or nan) dataframe with one column per setindexname tot0 (int or nan) dataframe with one column per setindexname version (str) """ all_ix_names = list(GeneFitResults.keys()) # This dict will just contain dataframes gene_fit fit_locusIds = GeneFitResults[all_ix_names[0]]['gene_fit']['locusId'] # Why do we replace the name locusId with 'g'? gene_fit_d = {'g': fit_locusIds} other_col_names = list(GeneFitResults[all_ix_names[0]]['gene_fit'].head()) # other_col_names should be: # fit, fitNaive, fit1, fit2, fitnorm1, fitnorm2, fitRaw # locusId, n, nEff, pseudovar, sumsq, sd, sdNaive, se, t, tot1 # tot1_0, tot2, tot2_0, tot, tot0 other_col_names.remove('locusId') if "Unnamed: 0" in other_col_names: other_col_names.remove("Unnamed: 0") print(other_col_names) st = time.time() for col_name in other_col_names: all_col_values_d = {ix_name: GeneFitResults[ix_name]['gene_fit'][col_name] for ix_name in GeneFitResults.keys()} gene_fit_d[col_name] = pd.DataFrame.from_dict(all_col_values_d) print(f"Time to create gene_fit_d: {time.time() - st}") new_gene_fit_d = {} for k in gene_fit_d.keys(): new_key = k.replace("fitnorm","lrn") new_key = new_key.replace("fit", "lr") new_gene_fit_d[new_key] = gene_fit_d[k].copy(deep=True) gene_fit_d = new_gene_fit_d if debug: print("Extracted fitness values") gene_fit_d["version"] = "1.1.1" return gene_fit_d def tmp_prep_wrap_up(all_pc_fp, genes_fp): dict_dtypes = {'locusId' : str, 'scaffoldId' : str, 'scaffold': str} all_df = pd.read_table(all_pc_fp, dtype=dict_dtypes, index_col=1) genes_df = pd.read_table(genes_fp,dtype=dict_dtypes) has_gene2 = [True if (0.1<=x<=0.9) else False for x in all_df['f']] return all_df, genes_df, has_gene2 def FitReadMetrics(all_df, qnames, has_gene2): """ Args: all_df (pandas DataFrame): qnames (pandas Series): list<str> (names of set_index_names) has_gene2 list<bool>: gene insertion between 0.1 and 0.9 fraction of length Returns: DataFrame with cols: nMapped nPastEnd nGenic Description: Compute read metrics -- nMapped, nPastEnd, nGenic, for the given data columns The final argument is used to define genic """ print(all_df.head()) frm_df = pd.DataFrame.from_dict({ "nMapped": all_df[qnames].sum(axis=0), "nPastEnd": all_df[all_df['scaffold']=="pastEnd"][qnames].sum(axis=0), "nGenic": all_df[has_gene2][qnames].sum(axis=0) }) frm_df.index = list(qnames) return frm_df def save_gene_fit_d(gene_fit_d, prnt_dbg=False): for k in gene_fit_d.keys(): if k != "version": gene_fit_d[k].to_csv("tmp/GENEFITD/pysave_" + k + ".tsv", sep="\t") def FitQuality(gene_fit_d, genes_df, prnt_dbg=False): """ Args: gene_fit_d: (python dict) g (pandas Series (str)): pandas Series of locusIds lr (float): dataframe with one column per setindexname lrNaive (float): dataframe with one column per setindexname lr1 (float): dataframe with one column per setindexname lr2 (float): dataframe with one column per setindexname lrn1 (float): dataframe with one column per setindexname lrn2 (float): dataframe with one column per setindexname fitRaw (float): dataframe with one column per setindexname n (int): dataframe with one column per setindexname nEff (float): dataframe with one column per setindexname pseudovar (float): dataframe with one column per setindexname sumsq (float): dataframe with one column per setindexname sd (float): dataframe with one column per setindexname sdNaive (float): dataframe with one column per setindexname se (float) Standard Error dataframe with one column per setindexname t: (float) t-statistic dataframe with one column per setindexname tot1 (int or nan) dataframe with one column per setindexname tot1_0 (int or nan) dataframe with one column per setindexname tot2 (int or nan) dataframe with one column per setindexname tot2_0 (int or nan) dataframe with one column per setindexname tot (int or nan) dataframe with one column per setindexname tot0 (int or nan) dataframe with one column per setindexname version (str) genes_df: Dataframe of genes.GC file prnt_dbg: boolean Created: crudeOpGenes: DataFrame with cols 'Sep', 'bOp' - list<bool>, 'begin1', 'end1', 'begin2', 'end2' Returns: fit_quality_df: Dataframe with cols: "nUsed": "gMed": "gMedt0": "gMean": "cor12": "mad12": "mad12c": "mad12c_t0": "opcor": "adjcor": "gccor": "maxFit": CrudeOpGenes: DataFrame with cols: Gene2, Gene1, sysName1, type1, scaffoldId1, begin1, end1, strand1, name1, desc1, GC1, nTA1, sysName2, type2, scaffoldId2, begin2, end2, strand2, name2, desc2, GC2, nTA2, Sep, bOp Description: Compute the quality metrics from fitness values, fitness values of halves of genes, or counts per gene (for genes or for halves of genes) """ # crudeOpGenes is a dataframe crudeOpGenes = CrudeOp(genes_df) if prnt_dbg: crudeOpGenes.to_csv("tmp/py_crudeOpGenes.tsv", sep="\t") # adj is a dataframe adj = AdjacentPairs(genes_df, dbg_prnt=True) adjDiff = adj[adj['strand1'] != adj['strand2']] lrn1 = gene_fit_d['lrn1'] lrn2 = gene_fit_d['lrn2'] print("-*-*-*" + "Gene fit D of 'g' then genes_df['locusId'] ") print(gene_fit_d['g']) print(genes_df['locusId']) match_list = py_match(list(gene_fit_d['g']), list(genes_df['locusId'])) print(match_list) print(len(match_list)) #GC Correlation is the correlation between the fitnorm values and the GC values GC_Corr = gene_fit_d['lrn'].corrwith(genes_df['GC'].iloc[match_list], method="pearson") """ adjDiff = adj[adj$strand1 != adj$strand2,]; data.frame( nUsed = colSums(fit$tot), gMed = apply(fit$tot, 2, median), gMedt0 = apply(fit$tot0, 2, median), gMean = apply(fit$tot, 2, mean), cor12 = mapply(function(x,y) cor(x,y,method="s",use="p"), fit$lrn1, fit$lrn2), mad12 = apply(abs(fit$lrn1-fit$lrn2), 2, median, na.rm=T), # consistency of log2 counts for 1st and 2nd half, for sample and for time0 mad12c = apply(abs(log2(1+fit$tot1) - log2(1+fit$tot2)), 2, median, na.rm=T), mad12c_t0 = apply(abs(log2(1+fit$tot1_0) - log2(1+fit$tot2_0)), 2, median, na.rm=T), opcor = apply(fit$lrn, 2, function(x) paircor(crudeOpGenes[crudeOpGenes$bOp,], fit$g, x, method="s")), adjcor = sapply(names(fit$lrn), function(x) paircor(adjDiff, fit$g, fit$lrn[[x]], method="s")), gccor = c( cor(fit$lrn, genes_df$GC[ match(fit$g, genes_df$locusId) ], use="p") ), maxFit = apply(fit$lrn,2,max,na.rm=T) ); } """ # Note axis=0 means we take values from each row fitQuality_df = pd.DataFrame.from_dict({ "nUsed": gene_fit_d['tot'].sum(axis=0), "gMed": gene_fit_d['tot'].median(axis=0), "gMedt0": gene_fit_d['tot0'].median(axis=0), "gMean": gene_fit_d['tot'].mean(axis=0), "cor12": [lrn1[col_name].corr(lrn2[col_name]) for col_name in lrn1.head()], "mad12": (lrn1-lrn2).abs().median(), "mad12c": (np.log2(1 + gene_fit_d['tot1']) - np.log2(1 + gene_fit_d['tot2'])).abs().median(), "mad12c_t0": (np.log2(1 + gene_fit_d['tot1_0']) - np.log2(1 + gene_fit_d['tot2_0'])).abs().median(), # Remember crudeOpGenes['bOp'] is a list of bools "opcor": [paircor(crudeOpGenes[crudeOpGenes['bOp']], gene_fit_d['g'], gene_fit_d['lrn'][colname], method="spearman", dbg_prnt=True) for colname in gene_fit_d['lrn']], "adjcor": [paircor(adjDiff, gene_fit_d['g'], gene_fit_d['lrn'][colname], method="spearman", dbg_prnt=True)\ for colname in gene_fit_d['lrn']], "gccor": GC_Corr, "maxFit": gene_fit_d['lrn'].max() }) if prnt_dbg: fitQuality_df.to_csv("tmp/py_fitQuality_df.tsv", sep="\t") return fitQuality_df, crudeOpGenes def paircor(pairs, locusIds, values, use="p", method="pearson", names=["Gene1","Gene2"], dbg_prnt=False): """ pairs (pandas DataFrame): dataframe with multiple cols (CrudeOp with TRUE cols from bOp) locusIds (pandas Series (str)): locusIds values (pandas Series): normalized fitness scores use: method: Correlation method ("pearson", "spearman") names (list<str>): "Gene1", "Gene2" dbg_prnt (bool) """ if dbg_prnt: print(f"Length of locusIds: {len(locusIds)}") if len(locusIds) > 10: print(f"First ten locusIds: {locusIds[:10]}") print(f"Length of values: {len(values)}") if len(values) > 10: print(f"First ten values: {values[:10]}") premrg1 = pd.DataFrame.from_dict({ "Gene1": list(locusIds), "value1":
"admin/user_edit.html" form_extra_fields = dict(is_superuser=BooleanField("Is Superuser")) form_excluded_columns = ( "roles", "created_at", "updated_at", "created_by", "updated_by", ) column_exclude_list = ( "password", "username", "first_name", "last_name", ) column_searchable_list = ( "name", "orcid", "email", "eppn", "organisation.name", ) form_overrides = dict(roles=BitmapMultipleValueField) form_ajax_refs = { "organisation": { "fields": (Organisation.name, "name") }, } can_export = True class OrganisationAdmin(AppModelView): """Organisation model view.""" column_formatters = { "logo": lambda v, c, m, p: Markup( '<img style="max-height: 100px; max-width: 100px;" src="' f"""{url_for('logo_image', token=m.logo.token)}" alt="the logo of {m.name}">""") if m.logo else '' } column_exclude_list = ( "orcid_client_id", "orcid_secret", "created_at", "updated_at", "created_by", "updated_by", "email_template", "email_template_enabled", ) form_excluded_columns = AppModelView.form_excluded_columns[:] form_excluded_columns.append("logo") column_searchable_list = ( "name", "tuakiri_name", "city", ) form_ajax_refs = { "tech_contact": { "fields": (User.name, User.email), "page_size": 5 }, } edit_template = "admin/organisation_edit.html" form_widget_args = AppModelView.form_widget_args form_widget_args["api_credentials_requested_at"] = {"readonly": True} form_widget_args["api_credentials_entered_at"] = {"readonly": True} def update_model(self, form, model): """Handle change of the technical contact.""" # Technical contact changed: if form.tech_contact.data and form.tech_contact.data.id != model.tech_contact_id: # Revoke the TECHNICAL role if thre is no org the user is tech.contact for. if model.tech_contact and model.tech_contact.has_role( Role.TECHNICAL) and not Organisation.select().where( Organisation.tech_contact_id == model.tech_contact_id, Organisation.id != model.id).exists(): app.logger.info(r"Revoked TECHNICAL from {model.tech_contact}") model.tech_contact.roles &= ~Role.TECHNICAL model.tech_contact.save() return super().update_model(form, model) class OrgInfoAdmin(AppModelView): """OrgInfo model view.""" can_export = True column_searchable_list = ( "name", "tuakiri_name", "city", "first_name", "last_name", "email", ) form_rules = [ rules.FieldSet(["name", "tuakiri_name"], "Naming"), rules.FieldSet(["title", "first_name", "last_name", "role", "email", "phone", "is_public"], "Technical Contact"), rules.FieldSet(["country", "city"], "Address"), rules.FieldSet(["disambiguated_id", "disambiguation_source"], "Disambiguation Data"), ] @action("invite", "Register Organisation", "Are you sure you want to register selected organisations?") def action_invite(self, ids): """Batch registration of organisations.""" count = 0 for oi in OrgInfo.select().where(OrgInfo.id.in_(ids)): try: register_org( org_name=oi.name, email=oi.email, tech_contact=True, via_orcid=(False if oi.tuakiri_name else True), first_name=oi.first_name, last_name=oi.last_name, city=oi.city, country=oi.country, course_or_role=oi.role, disambiguated_id=oi.disambiguated_id, disambiguation_source=oi.disambiguation_source) count += 1 except Exception as ex: flash(f"Failed to send an invitation to {oi.email}: {ex}") app.logger.exception(f"Failed to send registration invitation to {oi.email}.") flash("%d invitations were sent successfully." % count) class OrcidTokenAdmin(AppModelView): """ORCID token model view.""" column_searchable_list = ( "access_token", "user.name", "user.email", "org.name", ) can_export = True can_create = True form_ajax_refs = { "user": { "fields": (User.name, User.email), "page_size": 5 }, "org": { "fields": (Organisation.name, Organisation.tuakiri_name), "page_size": 5 }, } column_filters = ["scopes"] class OrcidApiCallAmin(AppModelView): """ORCID API calls.""" column_list = [ "method", "called_at", "url", "query_params", "body", "status", "put_code", "response", "response_time_ms" ] column_default_sort = ("id", True) can_export = True can_edit = False can_delete = False can_create = False can_view_details = True column_searchable_list = ( "url", "body", "response", "user.name", ) column_formatters = AppModelView.column_formatters column_formatters_detail = dict() @staticmethod def truncate_value(v, c, m, p): """Truncate very long strings.""" value = getattr(m, p) return value[:100] + " ..." if value and len(value) > 100 else value OrcidApiCallAmin.column_formatters.update(dict( body=OrcidApiCallAmin.truncate_value, response=OrcidApiCallAmin.truncate_value)) class UserInvitationAdmin(AppModelView): """User Invitations.""" can_export = True can_edit = False can_delete = False can_create = False column_searchable_list = ( "email", "organisation", "department", "first_name", "last_name", "token", "inviter.name", ) class OrgInvitationAdmin(AppModelView): """User Invitations.""" can_export = True can_edit = False can_delete = False can_create = False column_searchable_list = ( "email", "org.name", "token", "inviter.name", ) class UserOrgAmin(AppModelView): """User Organisations.""" column_searchable_list = ( "user.email", "org.name", ) class TaskAdmin(AppModelView): """Task model view.""" roles_required = Role.SUPERUSER | Role.ADMIN list_template = "view_tasks.html" can_edit = False can_create = False can_delete = True column_searchable_list = [ "filename", "created_by.email", "created_by.name", "created_by.first_name", "created_by.last_name", "org.name" ] column_list = [ "task_type", "filename", "created_at", "org", "completed_at", "created_by", "expires_at", "expiry_email_sent_at", "completed_count" ] # form_excluded_columns = [ # "is_deleted", "completed_at", "expires_at", "expiry_email_sent_at", "organisation" # ] column_filters = ( filters.DateBetweenFilter(column=Task.created_at, name="Uploaded Date"), filters.FilterEqual(column=Task.task_type, options=models.TaskType.options(), name="Task Type"), ) column_formatters = dict( task_type=lambda v, c, m, p: m.task_type.name.replace('_', ' ').title() if m.task_type else "N/A", completed_count=lambda v, c, m, p: ( '' if not m.record_count else f"{m.completed_count} / {m.record_count} ({m.completed_percent:.1f}%)"), ) @action("activate", "Activate for processing", """Are you sure you want to activate the selected tasks for batch processing? NB! By clicking "OK" you are affirming that the all selected task records to be written are, to the best of your knowledge, correct.""") def activate(self, ids): """Acitave or reset and enqueue all records of selected tasks.""" self.activate_or_reset(ids) @action("reset", "Reset for processing", """Are you sure you want to reset every record in selected task batch for processing? NB! By clicking "OK" you are affirming that all the records of seleced tasks to be written are, to the best of your knowledge, correct!""") def reset(self, ids): """Acitave or reset and enqueue all records of selected tasks.""" self.activate_or_reset(ids) def activate_or_reset(self, ids): """Acitave or reset and enqueue all records of selected tasks.""" count = 0 for t in Task.select().where(Task.id.in_(ids)): try: count += utils.activate_all_records(t) if request.form.get( "action") == "activate" else utils.reset_all_records(t) except Exception as ex: flash(f"Failed to activate the selected records: {ex}", "danger") else: flash(f"{count} records were activated for batch processing.", "info") class RecordModelView(AppModelView): """Task record model view.""" roles_required = Role.SUPERUSER | Role.ADMIN list_template = "record_list.html" column_exclude_list = ( "task", "organisation", ) form_excluded_columns = [ "task", "organisation", "processed_at", "status", ] column_export_exclude_list = ( "task", ) can_edit = True can_create = False can_delete = True can_view_details = True can_export = True form_widget_args = {"external_id": {"readonly": True}, "task": {"readonly": True}} def render(self, template, **kwargs): """Pass the task to the render function as an added argument.""" if template == self.list_template and "task" not in kwargs: task_id = request.args.get("task_id") if task_id: try: kwargs["task"] = Task.get(id=task_id) except Task.DoesNotExist: flash(f"The task with ID: {task_id} doesn't exist.", "danger") abort(404) else: return redirect(request.args.get("url") or url_for("task.index_view")) return super().render(template, **kwargs) def is_accessible(self): """Verify if the task view is accessible for the current user.""" if not super().is_accessible(): return False # Added the feature for superuser to access task related to all research organiastion if current_user.is_superuser: return True if request.method == "POST" and request.form.get("rowid"): # get the first ROWID: rowid = int(request.form.get("rowid")) task_id = self.model.get(id=rowid).task_id else: task_id = self.current_task_id if not task_id: _id = request.args.get("id") if not _id: flash("Cannot invoke the task view without task ID", "danger") flash("Missing or incorrect task ID value", "danger") return False else: task_id = self.model.get(id=_id).task_id try: task = Task.get(id=task_id) if task.org.id != current_user.organisation.id: flash("Access denied! You cannot access this task.", "danger") return False except Task.DoesNotExist: flash("The task doesn't exist.", "danger") abort(404) except ValueError as ex: flash(str(ex), "danger") return False return True def get_export_name(self, export_type='csv'): """Get export file name using the original imported file name. :return: The exported csv file name. """ task_id = request.args.get("task_id") if task_id: try: task = Task.get(id=task_id) filename = os.path.splitext(task.filename)[0] return "%s_%s.%s" % (filename, datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S"), export_type) except Task.DoesNotExist: flash("The batch task doesn't exist", "danger") abort(404) return super().get_export_name(export_type=export_type) @models.lazy_property def record_processing_func(self): """Record processing function.""" return getattr(utils, f"process_{self.model.underscore_name()}s") def enqueue_record(self, record_id): """Enqueue the specified record or all active and not yet processed ones.""" self.record_processing_func.queue(record_id=record_id) @action("activate", "Activate for processing", """Are you sure you want to activate the selected records for batch processing? By clicking "OK" you are affirming that the selected records to be written are, to the best of your knowledge, correct!""") def action_activate(self, ids): """Batch registraion of users.""" try: status = "The record was activated at " + datetime.now().isoformat(timespec="seconds") count = self.model.update(is_active=True, status=status).where( ((self.model.is_active.is_null()) | (self.model.is_active == False)), # noqa: E712 self.model.id.in_(ids)).execute() if self.model == AffiliationRecord: records = self.model.select().where(self.model.id.in_(ids)).order_by( self.model.email, self.model.orcid) for _, chunk in itertools.groupby(records, lambda r: (r.email, r.orcid, )): self.enqueue_record([r.id for r in chunk]) else: for record_id in ids: self.enqueue_record(record_id) except Exception as ex: flash(f"Failed to activate the selected records: {ex}") app.logger.exception("Failed to activate the selected records") else: flash(f"{count} records were activated for batch processing.") @action("reset", "Reset for processing", "Are you sure you want to reset the selected records for batch processing?") def action_reset(self, ids): """Reset batch task records.""" status = "The record was reset at " + datetime.utcnow().isoformat(timespec="seconds") task_id = None with db.atomic() as transaction: try: if request.method == "POST" and request.form.get("rowid"): # get the first ROWID: rowid = int(request.form.get("rowid")) task_id = self.model.get(id=rowid).task_id else: task_id = request.form.get('task_id') task = Task.get(id=task_id) count = self.model.update( processed_at=None, status=status).where(self.model.is_active, self.model.id.in_(ids)).execute() if task.is_raw: invitee_ids = [i.id for i in Invitee.select().join( RecordInvitee).join(MessageRecord).where(MessageRecord.id.in_(ids))] count = Invitee.update( processed_at=None, status=status).where(Invitee.id.in_(invitee_ids)).execute() emails = Invitee.select(Invitee.email).where(Invitee.id.in_(invitee_ids)) elif hasattr(self.model, "invitees"): im = self.model.invitees.rel_model count = im.update( processed_at=None, status=status).where(im.record.in_(ids)).execute() emails = im.select(im.email).where(im.record_id.in_(ids)) else: emails = self.model.select(self.model.email).where(self.model.id.in_(ids)) # Delete
self.manager.loans.sync() # This time, the feed contains entries. feed = feedparser.parse(response.data) entries = feed['entries'] overdrive_entry = [entry for entry in entries if entry['title'] == overdrive_book.title][0] bibliotheca_entry = [entry for entry in entries if entry['title'] == bibliotheca_book.title][0] eq_(overdrive_entry['opds_availability']['status'], 'available') eq_(bibliotheca_entry['opds_availability']['status'], 'ready') overdrive_links = overdrive_entry['links'] fulfill_link = [x for x in overdrive_links if x['rel'] == 'http://opds-spec.org/acquisition'][0]['href'] revoke_link = [x for x in overdrive_links if x['rel'] == OPDSFeed.REVOKE_LOAN_REL][0]['href'] bibliotheca_links = bibliotheca_entry['links'] borrow_link = [x for x in bibliotheca_links if x['rel'] == 'http://opds-spec.org/acquisition/borrow'][0]['href'] bibliotheca_revoke_links = [x for x in bibliotheca_links if x['rel'] == OPDSFeed.REVOKE_LOAN_REL] assert urllib.quote("%s/fulfill" % overdrive_pool.id) in fulfill_link assert urllib.quote("%s/revoke" % overdrive_pool.id) in revoke_link assert urllib.quote("%s/%s/borrow" % (bibliotheca_pool.identifier.type, bibliotheca_pool.identifier.identifier)) in borrow_link eq_(0, len(bibliotheca_revoke_links)) # Since we went out the the vendor APIs, # patron.last_loan_activity_sync was updated. assert patron.last_loan_activity_sync > new_sync_time class TestAnnotationController(CirculationControllerTest): def setup(self): super(TestAnnotationController, self).setup() self.pool = self.english_1.license_pools[0] self.edition = self.pool.presentation_edition self.identifier = self.edition.primary_identifier def test_get_empty_container(self): with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.loans.authenticated_patron_from_request() response = self.manager.annotations.container() eq_(200, response.status_code) # We've been given an annotation container with no items. container = json.loads(response.data) eq_([], container['first']['items']) eq_(0, container['total']) # The response has the appropriate headers. allow_header = response.headers['Allow'] for method in ['GET', 'HEAD', 'OPTIONS', 'POST']: assert method in allow_header eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Accept-Post']) eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Content-Type']) eq_('W/""', response.headers['ETag']) def test_get_container_with_item(self): self.pool.loan_to(self.default_patron) annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = True annotation.timestamp = datetime.datetime.now() with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() response = self.manager.annotations.container() eq_(200, response.status_code) # We've been given an annotation container with one item. container = json.loads(response.data) eq_(1, container['total']) item = container['first']['items'][0] eq_(annotation.motivation, item['motivation']) # The response has the appropriate headers. allow_header = response.headers['Allow'] for method in ['GET', 'HEAD', 'OPTIONS', 'POST']: assert method in allow_header eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Accept-Post']) eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Content-Type']) expected_etag = 'W/"%s"' % annotation.timestamp eq_(expected_etag, response.headers['ETag']) expected_time = format_date_time(mktime(annotation.timestamp.timetuple())) eq_(expected_time, response.headers['Last-Modified']) def test_get_container_for_work(self): self.pool.loan_to(self.default_patron) annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = True annotation.timestamp = datetime.datetime.now() other_annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self._identifier(), motivation=Annotation.IDLING, ) with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() response = self.manager.annotations.container_for_work(self.identifier.type, self.identifier.identifier) eq_(200, response.status_code) # We've been given an annotation container with one item. container = json.loads(response.data) eq_(1, container['total']) item = container['first']['items'][0] eq_(annotation.motivation, item['motivation']) # The response has the appropriate headers - POST is not allowed. allow_header = response.headers['Allow'] for method in ['GET', 'HEAD', 'OPTIONS']: assert method in allow_header assert 'Accept-Post' not in response.headers.keys() eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Content-Type']) expected_etag = 'W/"%s"' % annotation.timestamp eq_(expected_etag, response.headers['ETag']) expected_time = format_date_time(mktime(annotation.timestamp.timetuple())) eq_(expected_time, response.headers['Last-Modified']) def test_post_to_container(self): data = dict() data['@context'] = AnnotationWriter.JSONLD_CONTEXT data['type'] = "Annotation" data['motivation'] = Annotation.IDLING data['target'] = dict(source=self.identifier.urn, selector="epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)") with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth), method='POST', data=json.dumps(data)): patron = self.manager.annotations.authenticated_patron_from_request() patron.synchronize_annotations = True # The patron doesn't have any annotations yet. annotations = self._db.query(Annotation).filter(Annotation.patron==patron).all() eq_(0, len(annotations)) response = self.manager.annotations.container() # The patron doesn't have the pool on loan yet, so the request fails. eq_(400, response.status_code) annotations = self._db.query(Annotation).filter(Annotation.patron==patron).all() eq_(0, len(annotations)) # Give the patron a loan and try again, and the request creates an annotation. self.pool.loan_to(patron) response = self.manager.annotations.container() eq_(200, response.status_code) annotations = self._db.query(Annotation).filter(Annotation.patron==patron).all() eq_(1, len(annotations)) annotation = annotations[0] eq_(Annotation.IDLING, annotation.motivation) selector = json.loads(annotation.target).get("http://www.w3.org/ns/oa#hasSelector")[0].get('@id') eq_(data['target']['selector'], selector) # The response contains the annotation in the db. item = json.loads(response.data) assert str(annotation.id) in item['id'] eq_(annotation.motivation, item['motivation']) def test_detail(self): self.pool.loan_to(self.default_patron) annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = True with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() response = self.manager.annotations.detail(annotation.id) eq_(200, response.status_code) # We've been given a single annotation item. item = json.loads(response.data) assert str(annotation.id) in item['id'] eq_(annotation.motivation, item['motivation']) # The response has the appropriate headers. allow_header = response.headers['Allow'] for method in ['GET', 'HEAD', 'OPTIONS', 'DELETE']: assert method in allow_header eq_(AnnotationWriter.CONTENT_TYPE, response.headers['Content-Type']) def test_detail_for_other_patrons_annotation_returns_404(self): patron = self._patron() self.pool.loan_to(patron) annotation, ignore = create( self._db, Annotation, patron=patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = True with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() # The patron can't see that this annotation exists. response = self.manager.annotations.detail(annotation.id) eq_(404, response.status_code) def test_detail_for_missing_annotation_returns_404(self): with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() # This annotation does not exist. response = self.manager.annotations.detail(100) eq_(404, response.status_code) def test_detail_for_deleted_annotation_returns_404(self): self.pool.loan_to(self.default_patron) annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = False with self.request_context_with_library( "/", headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() response = self.manager.annotations.detail(annotation.id) eq_(404, response.status_code) def test_delete(self): self.pool.loan_to(self.default_patron) annotation, ignore = create( self._db, Annotation, patron=self.default_patron, identifier=self.identifier, motivation=Annotation.IDLING, ) annotation.active = True with self.request_context_with_library( "/", method='DELETE', headers=dict(Authorization=self.valid_auth)): self.manager.annotations.authenticated_patron_from_request() response = self.manager.annotations.detail(annotation.id) eq_(200, response.status_code) # The annotation has been marked inactive. eq_(False, annotation.active) class TestWorkController(CirculationControllerTest): def setup(self): super(TestWorkController, self).setup() [self.lp] = self.english_1.license_pools self.edition = self.lp.presentation_edition self.datasource = self.lp.data_source.name self.identifier = self.lp.identifier def test_contributor(self): m = self.manager.work_controller.contributor # Find a real Contributor put in the system through the setup # process. [contribution] = self.english_1.presentation_edition.contributions contributor = contribution.contributor # The contributor is created with both .sort_name and # .display_name, but we want to test what happens when both # pieces of data aren't avaiable, so unset .sort_name. contributor.sort_name = None # No contributor name -> ProblemDetail with self.request_context_with_library('/'): response = m('', None, None) eq_(404, response.status_code) eq_(NO_SUCH_LANE.uri, response.uri) eq_("No contributor provided", response.detail) # Unable to load ContributorData from contributor name -> # ProblemDetail with self.request_context_with_library('/'): response = m('Unknown Author', None, None) eq_(404, response.status_code) eq_(NO_SUCH_LANE.uri, response.uri) eq_("Unknown contributor: Unknown Author", response.detail) contributor = contributor.display_name # Search index misconfiguration -> Problem detail self.assert_bad_search_index_gives_problem_detail( lambda: self.manager.work_controller.series( contributor, None, None ) ) # Bad facet data -> ProblemDetail with self.request_context_with_library('/?order=nosuchorder'): response = m(contributor, None, None) eq_(400, response.status_code) eq_(INVALID_INPUT.uri, response.uri) # Bad pagination data -> ProblemDetail with self.request_context_with_library('/?size=abc'): response = m(contributor, None, None) eq_(400, response.status_code) eq_(INVALID_INPUT.uri, response.uri) # Test an end-to-end success (not including a test that the # search engine can actually find books by a given person -- # that's tested in core/tests/test_external_search.py). with self.request_context_with_library('/'): response = m(contributor, 'eng,spa', 'Children,Young Adult') eq_(200, response.status_code) eq_(OPDSFeed.ACQUISITION_FEED_TYPE, response.headers['Content-Type']) feed = feedparser.parse(response.data) # The feed is named after the person we looked up. eq_(contributor, feed['feed']['title']) # It's got one entry -- the book added to the search engine # during test setup. [entry] = feed['entries'] eq_(self.english_1.title, entry['title']) # The feed has facet links. links = feed['feed']['links'] facet_links = [link for link in links if link['rel'] == 'http://opds-spec.org/facet'] eq_(8, len(facet_links)) # The feed was cached. cached = self._db.query(CachedFeed).one() eq_(CachedFeed.CONTRIBUTOR_TYPE, cached.type) eq_( '<NAME>ull-eng,spa-Children,Young+Adult', cached.unique_key ) # At this point we don't want to generate real feeds anymore. # We can't do a real end-to-end test without setting up a real # search index, which is obnoxiously slow. # # Instead, we will mock AcquisitionFeed.page, and examine the objects # passed into it under different mock requests. # # Those objects, such as ContributorLane and # ContributorFacets, are tested elsewhere, in terms of their # effects on search objects such as Filter. Those search # objects are the things that are tested against a real search # index (in core). # # We know from the previous test that any results returned # from the search engine are converted into an OPDS feed. Now # we verify that an incoming request results in the objects # we'd expect to use to generate the feed for that request. class Mock(object): @classmethod def page(cls, **kwargs): self.called_with = kwargs return Response("An OPDS feed") # Test a basic request with custom faceting, pagination, and a # language and audience restriction. This will exercise nearly # all the functionality we need to check. languages = "some languages" audiences = "some audiences" sort_key = ["sort", "pagination", "key"] with self.request_context_with_library( "/?order=title&size=100&key=%s&entrypoint=Audio" % ( json.dumps(sort_key) ) ): response = m(contributor, languages, audiences, feed_class=Mock) # The Response served by Mock.page becomes the response to the # incoming request. eq_(200, response.status_code) eq_("An OPDS feed", response.data) # Now check all the keyword arguments that were passed into # page(). kwargs = self.called_with eq_(self._db, kwargs.pop('_db')) eq_(self.manager._external_search, kwargs.pop('search_engine')) # The feed is named after the contributor the request asked # about. eq_(contributor, kwargs.pop('title')) # Query string arguments were taken into account when # creating the Facets and Pagination objects. facets = kwargs.pop('facets') assert isinstance(facets, ContributorFacets) eq_(AudiobooksEntryPoint, facets.entrypoint) eq_('title', facets.order) pagination = kwargs.pop('pagination') assert isinstance(pagination, SortKeyPagination) eq_(sort_key, pagination.last_item_on_previous_page)
#!/bin/env python # -*- coding: utf-8 -*- """ run a batch of PDF generation keeps an amazon simple DB with an inventory of EAD files and last modified dates, this persists between runs check_url is a recursive modifier function (with side effects) that is a web crawler that adds all the new EAD to an array `files_to_generate` and updates the amazon simple db as needed If there are files_to_generate, a spot purchase of an 8 core 30G RAM is initiated, and fabric is used to install `pdfu` and run the batch in parallel using the -P option on xargs. Once the batch has run, the spot machine is terminated. The shadow file is regenerated even if there were no files to generate detected. July 1, 2013 is hardcoded as the epic for file changes, because a complete batch was run at this time. Epic reset to Dec 1, 2013 and simbledb domain re-set in order to regenerate some backfiles. Need to switch simble db to record what actually gets created; not what gets batched. Epic reset to October 5, 2014. --generate-all added to rebuild files Add --shadow-only command line paramater Epic reset to October 1, 2016 Epic reset to April 1, 2018 October 7, 2019 -- simple-db and epic concept removed -- `shadow()` gets ran twice """ import argparse from lxml.html import parse import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import os import sys import boto.utils import boto import datetime from time import sleep from fabric.api import env, run, sudo, put import paramiko import fabric import StringIO import socket import urlparse import tarfile import time import tempfile import shutil from collections import namedtuple from pprint import pprint as pp BATCH = datetime.datetime.now().isoformat() def main(argv=None): parser = argparse.ArgumentParser(description="run the PDF batch") parser.add_argument( 'eads', nargs=1, help="URL for crawler to start harvesting EAD XML " "won't follow redirects" ) parser.add_argument( 'bucket', nargs=1, help="s3://bucket[/optional/path] where the generated PDF files go" ) parser.add_argument( 'shadow', nargs=1, help=".tar.gz filename to store \"shadow\" file archive for XTF" ) parser.add_argument('--shadow-prefix', default='pdf-shadow', required=False, help="path the .tar.gz will unpack to") parser.add_argument('--launch-only', dest='launch_only', action='store_true', help='launch worker for manual batch',) parser.add_argument('--shadow-only', dest='shadow_only', action='store_true', help='just reshadow all',) parser.add_argument('--generate-all', dest='all', action='store_true', help='build all files',) parser.add_argument('--ondemand', dest='ondemand', action='store_true', help='use EC2 ondemand rather than EC2 spot market',) if argv is None: argv = parser.parse_args() if argv.launch_only: instance, hostname = launch_ec2(argv.ondemand) print "workhost launched |{0}| |{1}|".format(instance, hostname) poll_for_ssh(hostname) print "can contact host with ssh to {0}".format(hostname) remote_setup(hostname, instance) print("remote machine ready for manual control") exit(0) print BATCH print("checking PDF files on S3 to update shadow file and get list of current PDFs") current_pdfs = shadow(argv.bucket[0], argv.shadow[0], argv.shadow_prefix) last_modified_domain = current_pdfs files_to_generate = [] if not argv.shadow_only: print("checking EAD for PDF files to generate") with requests.Session() as session: # set up session and Retry for EAD crawling retry = Retry( #https://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html connect=3, backoff_factor=1, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) check_url( argv.eads[0], last_modified_domain, files_to_generate, generate_all=argv.all, session=session, ) if files_to_generate: ## will be false if in shadow_only mode print("there are files to generate") batch = generate_batch( files_to_generate, argv.eads[0], argv.bucket[0], ) print("batch generated") print(batch.getvalue()) instance, hostname = launch_ec2(argv.ondemand) print "workhost launched |{0}| |{1}|".format(instance, hostname) poll_for_ssh(hostname) print "can contact host with ssh to {0}".format(hostname) remote_setup(hostname, instance) remote_process_pdf(hostname, batch, instance) print "okay; done, terminate workhost" terminate_ec2(instance) print "updating shadow file for a second time" shadow(argv.bucket[0], argv.shadow[0], argv.shadow_prefix) def check_url(url, last_modified_domain, files_to_generate, generate_all=False, session=None): """check if a URL is an XML file or directory based on the string value """ dir, ext = os.path.splitext(url) # prime 2002 directory will have only .xml files or sub-directories if ext == '.xml': check_xml(url, last_modified_domain, files_to_generate, generate_all=generate_all, session=session) elif not ext: check_dir(url, last_modified_domain, files_to_generate, generate_all=generate_all, session=session) def check_dir(url, last_modified_domain, files_to_generate, generate_all=False, session=None): """scrape links from directory listing""" sys.stdout.write('•') doc = parse(url).getroot() doc.make_links_absolute() links = doc.xpath("//a[@href]/@href") for link in links: # skip links back to myself and don't go up directories if not link == url and link.startswith(url): check_url(link, last_modified_domain, files_to_generate, generate_all=generate_all, session=session) def check_xml(url, last_modified_domain, files_to_generate, generate_all=False, session=None): """compare last_modifed in head with PDFs on S3 this needs processing""" if generate_all: # force regeneration of all files (skip any expensive steps) add_to_list(url, False, files_to_generate, None) else: # expensive steps # do a HEAD request and check last modified time r = session.head(url) last_modified_on_oac_header = r.headers['last-modified'] r.close() last_modified_on_oac = boto.utils.parse_ts(last_modified_on_oac_header) # look up this URL in the simple DB domain new_key = url.replace('http://voro.cdlib.org/oac-ead/prime2002/', 'pdf/') new_key = new_key.replace('.xml', '.pdf') last_modified_item = last_modified_domain.get(new_key) # decide if this should get added to the list # if not last_modified_item: # the URL was not seen before add_to_list(url, last_modified_domain, files_to_generate, last_modified_on_oac_header) elif last_modified_on_oac > boto.utils.parse_ts( str(last_modified_item) ): # OR last-modified is later than the database; add_to_list(url, last_modified_domain, files_to_generate, last_modified_on_oac_header) # [pdfu]$ aws sdb delete-domain --domain-name ead_last_modified --region us-east-1 # [pdfu]$ aws sdb create-domain --domain-name ead_last_modified --region us-east-1 def add_to_list(url, last_modified_domain, files_to_generate, last_modified_on_oac_header): """modify the files_to_generate list and last_modified_domain""" # TODO the logic here could be better... need to keep a list of succussful # batches so failed batches can be re-tried # but then also need a way to detect and mark pathological cases print(url) files_to_generate.append(url) def shadow(bucketurl, archive, prefix): """create shadow artifact for XTF index (so XTF can know what files are in the bucket and the PDF sizes""" parts = urlparse.urlsplit(bucketurl) # SplitResult # (scheme='s3', netloc='test.pdf', path='/dkd', query='', fragment='') s3 = boto.connect_s3() bucket = s3.get_bucket(parts.netloc) tmp = tempfile.NamedTemporaryFile(delete=False) tar = tarfile.open(fileobj=tmp, mode="w:gz") current_pdfs = {} for key in bucket.list(): # look for pdfs that match the user supplied path if (key.name.endswith(u'.pdf') and not parts.path or key.name.startswith(parts.path[1:])): # write directly to a tar file # http://stackoverflow.com/a/740839/1763984 shadowfile = StringIO.StringIO() shadowfile.write(str(key.size)) shadowfile.seek(0) shadowname = os.path.join(prefix, os.path.splitext(key.name)[0]) info = tarfile.TarInfo(shadowname) info.size = len(shadowfile.buf) # boto last_modified to Datetime # http://stackoverflow.com/a/9688496/1763984 # Datetime to unixtime # http://stackoverflow.com/a/255053/1763984 info.mtime = time.mktime( boto.utils.parse_ts(key.last_modified).timetuple() ) tar.addfile(tarinfo=info, fileobj=shadowfile) current_pdfs[key.name] = key.last_modified shadowfile.close() tar.close() tmp.flush() os.chmod(tmp.name, 0664) # local('/bin/tar ztf {0}'.format(tmp.name), capture=False) if archive.startswith("s3://"): inner_parts = urlparse.urlsplit(archive) # SplitResult # (scheme='s3', netloc='test.pdf', path='/dkd', query='', fragment='') inner_bucket = s3.get_bucket(inner_parts.netloc) inner_key = inner_bucket.new_key(inner_parts.path) inner_key.set_contents_from_filename(tmp.name) inner_key.set_acl('public-read') else: shutil.move(tmp.name, archive) return current_pdfs def launch_ec2(ondemand=False): ami = "ami-0b69ea66ff7391e80" arn = ("arn:aws:iam::563907706919:" "instance-profile/s3-read-write") key_name = "majorTom-worker" # check http://aws.amazon.com/amazon-linux-ami/ for current AMI instance_type = 'm3.2xlarge' # 1.00/hr on demand 8vCPU 26 ECPU 30 G RAM # see "xargs" if ondemand: instance = launch_instance_ondemand(ami, arn, key_name, instance_type) else: instance = launch_instance_spot(ami, arn, key_name, instance_type) print('Waiting for instance to start...') pp(instance) status = instance.update() while status == 'pending': sleep(10) sys.stdout.write('·') status = instance.update() if status == 'running': instance.add_tag('Name', 'OAC_pdfu') instance.add_tag('project', 'OAC_pdfu') else: print('invalid instance status') exit(1) if not(instance.public_dns_name): print "needs hostname" while not(instance.public_dns_name): # TODO gets stuck in a loop right here sometimes sleep(20) sys.stdout.write('·') return instance.id, instance.public_dns_name def launch_instance_ondemand(ami, arn, key_name, instance_type): connection = boto.connect_ec2() print "connected, about to launch on demand instance" reservation = connection.run_instances( ami, instance_profile_arn=arn, instance_type=instance_type, key_name=key_name, ) return reservation.instances[0] def launch_instance_spot(ami, arn, key_name, instance_type): connection = boto.connect_ec2() print "connected, about to reserve on spot market" reservation = connection.request_spot_instances( "1.00", # bid at on-demand rate ami, instance_profile_arn=arn, instance_type=instance_type, key_name=key_name, # placement="us-east-1b", ) spot_id = str(reservation[0].id) print spot_id # make a dummy spot_reservation using namedtuple # to jumpstart the polling because # connection.get_all_spot_instance_requests(spot_id)[0] # was not setting spot_reservation.instance_id Resholder = namedtuple('Resholder', 'instance_id status') spot_reservation = Resholder(None, 'jumpstarting') # poll for spot instance to start up while spot_reservation.instance_id is None: pp(spot_reservation.status) sleep(20) spot_reservation = connection.get_all_spot_instance_requests( spot_id )[0] return connection.get_all_instances( spot_reservation.instance_id )[0].instances[0] def poll_for_ssh(host): # http://stackoverflow.com/a/2561727/1763984 # Set the timeout original_timeout = socket.getdefaulttimeout() new_timeout = 3 socket.setdefaulttimeout(new_timeout) host_status = False while not host_status: try: paramiko.Transport((host, 22)) host_status = True except Exception as e: pp(e) sleep(20) sys.stdout.write('⋅') socket.setdefaulttimeout(original_timeout) return host_status def terminate_ec2(instance): connection = boto.connect_ec2() return connection.get_all_instances(instance)[0].instances[0].terminate() def remote_setup(hostname, instance): """use fabric to run commands on the remote working node""" SETUP_SUDO = [ 'echo poweroff | at now + 12 hours', 'yum -y update', 'amazon-linux-extras install -y corretto8', 'yum -y groupinstall "Development Tools"', # 'yum -y install python27-devel python27-virtualenv', 'yum -y install git ncurses-devel openssl-devel libjpeg-devel freetype-devel libtiff-devel lcms-devel mercurial libxslt-devel libxml2-devel libX11-devel', ] SETUP_RUN = [ 'git clone https://github.com/tingletech/pdfu.git', './pdfu/init.sh', ] env.host_string = hostname env.user = 'ec2-user' # fabric docs say fabric could hang if a command fails and recommend # to use try/finally try: pp(SETUP_SUDO)
<gh_stars>1-10 #!/usr/bin/env python #-*- coding:utf-8 -*- ## ## satr.py ## ## Created on: Jan 9, 2018 ## Author: <NAME> ## E-mail: <EMAIL> ## # #============================================================================== from __future__ import print_function import collections import itertools from minds.rule import Rule import os from pysat.card import * from pysat.examples.lbx import LBX from pysat.examples.rc2 import RC2 from pysat.formula import CNF, WCNF from pysat.solvers import Solver import resource import socket import six from six.moves import range import sys # #============================================================================== class SATRules(object): """ Class implementing the new SAT-based approach. """ def __init__(self, data, options): """ Constructor. """ self.init_stime = resource.getrusage(resource.RUSAGE_SELF).ru_utime self.init_ctime = resource.getrusage(resource.RUSAGE_CHILDREN).ru_utime self.data = data self.options = options # init variable id pool self.reset_idpool() # samples divided into classes self.samps = {self.data.fvmap.dir[(self.data.names[-1], v)]: [] for v in sorted(self.data.feats[-1])} # covers by class self.covrs = {self.data.fvmap.dir[(self.data.names[-1], v)]: [] for v in sorted(self.data.feats[-1])} for i, s in enumerate(self.data.samps): self.samps[s[-1]].append(i) # binarize dataset if necessary self.binarize() # get missing values for each sample self.get_missing() self.cost = 0 def binarize(self): """ Do one-hot encoding. """ FFMap = collections.namedtuple('FFMap', ['dir', 'opp']) self.ffmap = FFMap(dir={}, opp={}) curr_id = 0 vfmap = {} # mapping from a feature id to a list of feature ids for r, (name, feats) in enumerate(zip(self.data.names[:-1], self.data.feats[:-1])): fgroup = [] if len(feats) != 2: vars_ = sorted([self.data.fvmap.dir[name, v] for v in feats]) for i, var in enumerate(vars_): vfmap[var] = [-v for v in vars_] vfmap[var][i] = var self.ffmap.opp[i + curr_id] = var fgroup.append(i + curr_id) curr_id += len(feats) else: var = self.data.fvmap.dir[name, sorted(feats)[0]] vfmap[var] = [var] vfmap[-var] = [-var] self.ffmap.opp[curr_id] = var fgroup.append(curr_id) curr_id += 1 self.ffmap.dir[r] = fgroup # rewriting samples for i in range(len(self.data.samps)): samp, out = self.data.samps[i][:-1], self.data.samps[i][-1] self.data.samps[i] = [] for l in samp: self.data.samps[i].extend(vfmap[l]) self.data.samps[i].append(out) self.nof_feats = curr_id def get_missing(self): """ Get a list of missing values for each sample. """ self.data.vmiss = [] for s in self.data.samps: missing = [] if len(s) < self.nof_feats + 1: r = i = 0 while i < len(s) - 1: if r in self.ffmap.dir[self.data.nm2id[self.data.fvmap.opp[abs(s[i])][0]]]: i += 1 else: missing.append(r) r += 1 # adding the rest of the features missing.extend(range(r, self.nof_feats)) # set is needed for testing inclusion self.data.vmiss.append(set(missing)) def reset_idpool(self): """ Reset the pool of variable ids. """ self.idpool = IDPool(start_from=1) def compute(self): """ Compute a decision set by minimizing the number of rules. """ self.cost = 0 # iterative over the number of terms nof_terms = 1 self.time = 0.0 # depending on this option, we compute either one class or all of them if self.options.to_compute == 'best': computed = len(self.data.feats[-1]) self.labels = sorted(self.samps.keys()) elif self.options.to_compute == 'all': computed = 0 self.labels = sorted(self.samps.keys()) else: to_compute = self.options.to_compute.split(',') computed = len(self.data.feats[-1]) - len(to_compute) self.labels = [self.data.fvmap.dir[self.data.names[-1], c] for c in to_compute] while True: for label in self.labels: if self.covrs[label]: continue # resetting the pool of ids self.reset_idpool() # the main part is encoding enc = self.encode(label, nof_terms=nof_terms) if self.options.verb: print('c1 # of terms: {0}; enc: {1}v, {2}c; (class = {3})'.format(nof_terms, enc.nv, len(enc.clauses), self.data.fvmap.opp[label][1])) if self.options.pdump: fname = 'formula.{0}@{1}.cnf'.format(os.getpid(), socket.gethostname()) enc.to_file(fname) with Solver(name=self.options.solver, bootstrap_with=enc.clauses) as s: res = s.solve() if res: model = s.get_model() if self.options.opt: model = self.optimize(enc) self.extract_cover(label, model) computed += 1 if computed >= len(self.data.feats[-1]): self.stime = resource.getrusage(resource.RUSAGE_SELF).ru_utime - self.init_stime self.ctime = resource.getrusage(resource.RUSAGE_CHILDREN).ru_utime - self.init_ctime self.time = self.stime + self.ctime return self.covrs else: nof_terms += 1 def encode(self, label, nof_terms=1): """ Encode the problem of computing a DS of size nof_terms. """ self.nof_terms = nof_terms enc = CNF() # constraint 6 for j in range(1, self.nof_terms + 1): enc.append([-self.svar(j, r) for r in range(1, self.nof_feats + 1)]) # constraint 7 for j in range(1, self.nof_terms + 1): for r in range(1, self.nof_feats + 1): d0 = self.dvar0(j, r) p0 = [-self.svar(j, r), self.lvar(j, r)] enc.append([d0, -p0[0], -p0[1]]) enc.append([-d0, p0[0]]) enc.append([-d0, p0[1]]) d1 = self.dvar1(j, r) p1 = [-self.svar(j, r), -self.lvar(j, r)] enc.append([d1, -p1[0], -p1[1]]) enc.append([-d1, p1[0]]) enc.append([-d1, p1[1]]) # constraint 8 if len(self.labels) == 1: # distinguish one class from all the others other_labels = set(self.samps.keys()) else: # distinguish the classes under question only other_labels = set(self.labels) other_labels.remove(label) other_labels = sorted(other_labels) for j in range(1, self.nof_terms + 1): for lb in other_labels: for q in self.samps[lb]: cl = [] shift = 0 for r in range(1, self.nof_feats + 1): if r - 1 in self.data.vmiss[q]: # this feature is missing in q'th sample cl.append(-self.svar(j, r)) shift += 1 elif self.data.samps[q][r - 1 - shift] > 0: cl.append(self.dvar1(j, r)) else: cl.append(self.dvar0(j, r)) enc.append(cl) # constraint 9 for j in range(1, self.nof_terms + 1): for q in self.samps[label]: cr = self.crvar(j, q + 1) cl = [] shift = 0 for r in range(1, self.nof_feats + 1): if r - 1 in self.data.vmiss[q]: # this feature is missing in q'th sample cl.append(-self.svar(j, r)) shift += 1 elif self.data.samps[q][r - 1 - shift] > 0: cl.append(self.dvar1(j, r)) else: cl.append(self.dvar0(j, r)) enc.append([cr] + cl) for l in cl: enc.append([-cr, -l]) # symmetry breaking constraints if self.options.bsymm: self.add_bsymm(enc) # constraint 10 if self.options.accuracy == 100.0: for q in self.samps[label]: enc.append([self.crvar(j, q + 1) for j in range(1, self.nof_terms + 1)]) else: for q in self.samps[label]: cv = self.cvvar(q + 1) enc.append([-cv] + [self.crvar(j, q + 1) for j in range(1, self.nof_terms + 1)]) for j in range(1, self.nof_terms + 1): enc.append([-self.crvar(j, q + 1), cv]) cnum = int(self.options.accuracy * len(self.samps[label]) / 100.0) al = CardEnc.atleast([self.cvvar(q + 1) for q in self.samps[label]], bound=cnum, top_id=enc.nv, encoding=self.options.enc) if al: enc.extend(al.clauses) # at most one value can be chosen for a feature for feats in six.itervalues(self.ffmap.dir): if len(feats) > 2: for j in range(1, self.nof_terms + 1): lits = [self.dvar0(j, r + 1) for r in feats] # atmost1 can be true onev = CardEnc.atmost(lits, top_id=enc.nv, encoding=self.options.enc) enc.extend(onev.clauses) # saving comments for j in range(1, self.nof_terms + 1): for r in range(1, self.nof_feats + 1): enc.comments.append('c s({0}, {1}) => v{2}'.format(j, r, self.svar(j, r))) enc.comments.append('c l({0}, {1}) => v{2}'.format(j, r, self.lvar(j, r))) enc.comments.append('c d0({0}, {1}) => v{2}'.format(j, r, self.dvar0(j, r))) enc.comments.append('c d1({0}, {1}) => v{2}'.format(j, r, self.dvar1(j, r))) for q in range(len(self.data.samps)): enc.comments.append('c cr({0}, {1}) => v{2}'.format(j, q + 1, self.crvar(j, q + 1))) for n, f in zip(self.data.names[:-1], self.data.feats[:-1]): for v in f: if self.data.fvmap.dir[(n, v)] > 0: enc.comments.append('c {0} = {1} => positive'.format(n, v)) else: enc.comments.append('c {0} = {1} => negative'.format(n, v)) return enc def add_bsymm(self, enc): """ Symmetry breaking constraints. """ for j in range(2, self.nof_terms + 1): enc.append([self.eqvar(j, 0)]) enc.append([-self.gtvar(j, 0)]) enc.append([self.gtvar(j, self.nof_feats)]) # enforcing SBPs for r in range(1, self.nof_feats + 1): # constraint 11 # # left-hand side lhs = -self.eqvar(j, r) # term1 enc.append([-self.teqvar(j, r, 1), self.svar(j - 1, r)]) enc.append([-self.teqvar(j, r, 1), -self.svar(j, r)]) enc.append([self.teqvar(j, r, 1), -self.svar(j - 1, r), self.svar(j, r)]) # term2 enc.append([-self.teqvar(j, r, 2), -self.svar(j - 1, r)]) enc.append([-self.teqvar(j, r, 2), self.svar(j, r)]) enc.append([self.teqvar(j, r, 2), self.svar(j - 1, r), -self.svar(j, r)]) # term3 enc.append([-self.teqvar(j, r, 3), self.dvar1(j - 1, r)]) enc.append([-self.teqvar(j, r, 3), self.dvar0(j, r)]) enc.append([self.teqvar(j, r, 3), -self.dvar1(j - 1, r), -self.dvar0(j, r)]) # term4 enc.append([-self.teqvar(j, r, 4), self.dvar0(j - 1, r)]) enc.append([-self.teqvar(j, r, 4), self.dvar1(j, r)]) enc.append([self.teqvar(j, r, 4), -self.dvar0(j - 1, r), -self.dvar1(j, r)]) # right-hand side cl = [-self.eqvar(j, r - 1), self.teqvar(j, r, 1), self.teqvar(j, r, 2), self.teqvar(j, r, 3), self.teqvar(j, r, 4)] # final clauses enc.append([-lhs] + cl) for l in cl: enc.append([-l, lhs]) # constraint 12 # # left-hand side lhs = self.gtvar(j, r) # term1 enc.append([-self.tgtvar(j, r, 1), self.eqvar(j, r - 1)]) enc.append([-self.tgtvar(j, r, 1), -self.svar(j - 1, r)]) enc.append([-self.tgtvar(j, r, 1), self.svar(j, r)]) enc.append([self.tgtvar(j, r, 1), -self.eqvar(j, r - 1), self.svar(j - 1, r), -self.svar(j, r)]) # term2 enc.append([-self.tgtvar(j, r, 2), self.eqvar(j, r - 1)]) enc.append([-self.tgtvar(j, r, 2), self.dvar1(j - 1, r)]) enc.append([-self.tgtvar(j, r, 2), self.dvar0(j, r)]) enc.append([self.tgtvar(j, r, 2), -self.eqvar(j, r - 1), -self.dvar1(j - 1, r), -self.dvar0(j, r)]) # right-hand side cl = [self.gtvar(j, r - 1), self.tgtvar(j, r, 1), self.tgtvar(j, r, 2)] # final clauses enc.append([-lhs] + cl) for l in cl: enc.append([-l, lhs])
""" Run random agent to test the 3D environment """ import numpy as np import gym import gym_pcgrl from pdb import set_trace as TT # from utils import make_vec_envs from gym_pcgrl.envs.helper_3D import calc_num_regions, debug_path, get_string_map,\ get_tile_locations, calc_longest_path, run_dijkstra import matplotlib.pyplot as plt ################################################################################ # test the helper functions tile_types = ["AIR", "DIRT"] ######## Test the path finding func and region counting func in stairing logic ######### # test_map_1: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 29 = 59 test_map_1 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 0] ], [ [0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 0] ] ] # test_map_2: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 27 = 57 test_map_2 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 1, 0, 0, 0] ] ] # test_map_3: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 27 = 57 # info: identical to test_map_2, except that some unnecessary tiles are removed (to test region number) test_map_3 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0] # diff: [0, 0, 0, 1, 0, 0, 0] in test_map_2 ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0] # diff: [0, 0, 1, 1, 0, 0, 0] in test_map_2 ] ] # test_map_4: # size: 3 * 6 * 6 # longest path length: 2 + 1 + 1 + 1 = 5 # info: small map for testing climbing stairs test_map_4 = [ [ [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ] ] ########### For testing the 3D plotting ########### # test_map_5: # size: 3 * 3 * 3 test_map_5 = [ [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0], ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ] ] ############ Test the path finding func in the jumping logic ############# # Note: In Minecraft jumping, the extra head room of the staring position and extra head room of the position 1 before # foothold needs to be garanteded # # |__ # O # 大_ __ # | | # | | # test_map_6: # size: 5 * 1 * 6 # This is the max jump distance in Minecraft (press double w + space to jump) # path length: 2 # region number: 1 # jump: 1 # jump distance: 3 test_map_6 = [ [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0]
GRAYSCALE BYTE SC IMAGE IOD': ['Image'], 'ENHANCED CT IMAGE IOD': ['Image'], 'ENHANCED PET IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'VL WHOLE SLIDE MICROSCOPY IOD': ['Image'], 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'X-RAY 3D CRANIOFACIAL IMAGE IOD': ['Image'], 'MR SPECTROSCOPY IOD': ['Equipment'], 'MULTI-FRAME GRAYSCALE WORD SC IMAGE IOD': ['Image'], 'BREAST TOMOSYNTHESIS IMAGE IOD': ['Image'], }, # XRayOutput 0x00400312L: { 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], None: ['Image'], }, # IntervalsAcquired 0x00181083L: { 'INTRAVASCULAR OCT IMAGE IOD': ['Image'], 'OPHTHALMIC TOMOGRAPHY IMAGE IOD': ['Image'], 'ENHANCED MR IMAGE IOD': ['Image'], None: ['Image', 'Equipment'], 'X-RAY 3D ANGIOGRAPHIC IMAGE IOD': ['Image'], 'ENHANCED ULTRASOUND VOLUME IOD': ['Image'], 'PET IMAGE IOD': ['Image'], 'MR IMAGE IOD': ['Image'], 'ENHANCED PET IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'MR SPECTROSCOPY IOD': ['Equipment'], 'ENHANCED CT IMAGE IOD': ['Image'], }, # HalfValueLayer 0x00400314L: { 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], None: ['Image'], }, # PresentationLUTShape 0x20500020L: { 'SC IMAGE IOD': ['Image'], 'MULTI-FRAME TRUE COLOR SC IMAGE IOD': ['Image'], None: ['Image', 'Presentation State', 'Dose', 'Segmentation'], 'SEGMENTATION IOD': ['Segmentation'], 'ENHANCED ULTRASOUND VOLUME IOD': ['Image'], 'OPHTHALMIC PHOTOGRAPHY 16 BIT IMAGE IOD': ['Image'], 'MULTI-FRAME GRAYSCALE BYTE SC IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'OPHTHALMIC PHOTOGRAPHY 8 BIT IMAGE IOD': ['Image'], 'MULTI-FRAME GRAYSCALE WORD SC IMAGE IOD': ['Image'], 'X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'INTRAVASCULAR OCT IMAGE IOD': ['Image'], 'ENHANCED MR IMAGE IOD': ['Image'], 'CT IMAGE IOD': ['Image'], 'OPHTHALMIC TOMOGRAPHY IMAGE IOD': ['Image'], 'NM IMAGE IOD': ['Image'], 'CR IMAGE IOD': ['Image'], 'US MULTI-FRAME IMAGE IOD': ['Image'], 'VIDEO ENDOSCOPIC IMAGE IOD': ['Image'], 'VL WHOLE SLIDE MICROSCOPY IOD': ['Image'], 'XA/XRF GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'X-RAY 3D ANGIOGRAPHIC IMAGE IOD': ['Image'], 'RT DOSE IOD': ['Dose'], 'VIDEO MICROSCOPIC IMAGE IOD': ['Image'], 'PET IMAGE IOD': ['Image'], 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'US IMAGE IOD': ['Image'], 'MR IMAGE IOD': ['Image'], 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'ENHANCED CT IMAGE IOD': ['Image'], 'XRF IMAGE IOD': ['Image'], 'GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'VL PHOTOGRAPHIC IMAGE IOD': ['Image'], 'VL SLIDE-COORDINATES MICROSCOPIC IMAGE IOD': ['Image'], 'VL MICROSCOPIC IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], 'ENHANCED PET IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'VIDEO PHOTOGRAPHIC IMAGE IOD': ['Image'], 'RT IMAGE IOD': ['Image'], 'X-RAY 3D CRANIOFACIAL IMAGE IOD': ['Image'], 'VL ENDOSCOPIC IMAGE IOD': ['Image'], 'BREAST TOMOSYNTHESIS IMAGE IOD': ['Image'], 'MULTI-FRAME SINGLE BIT SC IMAGE IOD': ['Image'], }, # OrganDose 0x00400316L: { 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], None: ['Image'], }, # VisualFieldTestReliabilityGlobalIndexSequence 0x00240317L: { 'OPHTHALMIC VISUAL FIELD STATIC PERIMETRY MEASUREMENTS IOD': ['Measurements'], None: ['Measurements'], }, # OrganExposed 0x00400318L: { 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], None: ['Image'], }, # ContentCreatorName 0x00700084L: { 'BASIC STRUCTURED DISPLAY IOD': ['Presentation State'], 'COLOR SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'XA/XRF GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], None: ['Presentation State', 'Color Palette', 'Spatial Registration', 'Spatial Fiducials', 'Surface', 'Deformable Registration', 'Segmentation', 'Real World Value Mapping'], 'BLENDING SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'SEGMENTATION IOD': ['Segmentation'], 'PSEUDO-COLOR SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'SPATIAL REGISTRATION IOD': ['Spatial Registration'], 'REAL WORLD VALUE MAPPING IOD': ['Real World Value Mapping'], 'DEFORMABLE SPATIAL REGISTRATION IOD': ['Deformable Registration'], 'SPATIAL FIDUCIALS IOD': ['Spatial Fiducials'], 'COLOR PALETTE IOD': ['Color Palette'], 'SURFACE SEGMENTATION IOD': ['Surface'], }, # FiducialUID 0x0070031AL: { 'SPECTACLE PRESCIPTION REPORT IOD': ['Document'], 'KEY OBJECT SELECTION DOCUMENT IOD': ['Document'], 'MAMMOGRAPHY CAD SR IOD': ['Document'], 'BASIC TEXT SR IOD': ['Document'], 'X-RAY RADIATION DOSE SR IOD': ['Document'], 'PROCEDURE LOG IOD': ['Document'], 'ENHANCED SR IOD': ['Document'], 'CHEST CAD SR IOD': ['Document'], 'MACULAR GRID THIICKNESS AND VOLUME REPORT IOD': ['Document'], None: ['Document'], 'IMPLANTATION PLAN SR DOCUMENT IOD': ['Document'], 'COMPREHENSIVE SR IOD': ['Document'], 'COLON CAD SR IOD': ['Document'], }, # ScanVelocity 0x00181300L: { 'NM IMAGE IOD': ['Image'], None: ['Image'], }, # FiducialSetSequence 0x0070031CL: { 'SPATIAL FIDUCIALS IOD': ['Spatial Fiducials'], None: ['Spatial Fiducials'], }, # CardiacSignalSource 0x00189085L: { 'INTRAVASCULAR OCT IMAGE IOD': ['Image'], 'OPHTHALMIC TOMOGRAPHY IMAGE IOD': ['Image'], 'ENHANCED MR IMAGE IOD': ['Image'], None: ['Image', 'Equipment'], 'X-RAY 3D ANGIOGRAPHIC IMAGE IOD': ['Image'], 'ENHANCED ULTRASOUND VOLUME IOD': ['Image'], 'ENHANCED PET IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'MR SPECTROSCOPY IOD': ['Equipment'], 'ENHANCED CT IMAGE IOD': ['Image'], }, # BillingProcedureStepSequence 0x00400320L: { 'MODALITY PERFORMED PROCEDURE STEP IOD': ['Modality Performed Procedure Step'], None: ['Modality Performed Procedure Step'], }, # FilmConsumptionSequence 0x00400321L: { 'MODALITY PERFORMED PROCEDURE STEP IOD': ['Modality Performed Procedure Step'], None: ['Modality Performed Procedure Step'], }, # DoseCalibrationFactor 0x00541322L: { 'PET IMAGE IOD': ['Image'], None: ['Image'], }, # ExposureModulationType 0x00189323L: { 'CT IMAGE IOD': ['Image'], None: ['Image'], }, # BillingSuppliesAndDevicesSequence 0x00400324L: { 'MODALITY PERFORMED PROCEDURE STEP IOD': ['Modality Performed Procedure Step'], None: ['Modality Performed Procedure Step'], }, # ContentCreatorIdentificationCodeSequence 0x00700086L: { 'BASIC STRUCTURED DISPLAY IOD': ['Presentation State'], 'COLOR SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'XA/XRF GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'GRAYSCALE SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], None: ['Presentation State', 'Color Palette', 'Spatial Registration', 'Spatial Fiducials', 'Surface', 'Deformable Registration', 'Segmentation', 'Real World Value Mapping'], 'BLENDING SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'SEGMENTATION IOD': ['Segmentation'], 'PSEUDO-COLOR SOFTCOPY PRESENTATION STATE IOD': ['Presentation State'], 'SPATIAL REGISTRATION IOD': ['Spatial Registration'], 'REAL WORLD VALUE MAPPING IOD': ['Real World Value Mapping'], 'DEFORMABLE SPATIAL REGISTRATION IOD': ['Deformable Registration'], 'SPATIAL FIDUCIALS IOD': ['Spatial Fiducials'], 'COLOR PALETTE IOD': ['Color Palette'], 'SURFACE SEGMENTATION IOD': ['Surface'], }, # GridSpacingMaterial 0x00187041L: { None: ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], }, # SUVType 0x00541006L: { 'PET IMAGE IOD': ['Series'], None: ['Series'], }, # ExposureTimeInms 0x00189328L: { 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], None: ['Image'], }, # EchoTrainLength 0x00180091L: { 'MR IMAGE IOD': ['Image'], None: ['Image'], }, # MagneticFieldStrength 0x00180087L: { 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'MR SPECTROSCOPY IOD': ['Equipment'], 'ENHANCED MR IMAGE IOD': ['Image'], 'MR IMAGE IOD': ['Image'], None: ['Image', 'Equipment'], }, # StimulusPresentationTime 0x00240028L: { 'OPHTHALMIC VISUAL FIELD STATIC PERIMETRY MEASUREMENTS IOD': ['Measurements'], None: ['Measurements'], }, # DateOfSecondaryCapture 0x00181012L: { 'SC IMAGE IOD': ['Image'], 'MULTI-FRAME TRUE COLOR SC IMAGE IOD': ['Image'], None: ['Image'], 'MULTI-FRAME GRAYSCALE BYTE SC IMAGE IOD': ['Image'], 'MULTI-FRAME GRAYSCALE WORD SC IMAGE IOD': ['Image'], 'MULTI-FRAME SINGLE BIT SC IMAGE IOD': ['Image'], }, # RefractiveStateSequence 0x0022001BL: { 'OPHTHALMIC PHOTOGRAPHY 8 BIT IMAGE IOD': ['Image'], 'OPHTHALMIC TOMOGRAPHY IMAGE IOD': ['Image'], 'OPHTHALMIC PHOTOGRAPHY 16 BIT IMAGE IOD': ['Image'], None: ['Image'], }, # SpacingBetweenSlices 0x00180088L: { 'NM IMAGE IOD': ['Image'], 'ENHANCED MR COLOR IMAGE IOD': ['Image'], 'ENHANCED MR IMAGE IOD': ['Image'], 'MR IMAGE IOD': ['Image'], None: ['Image'], }, # ExposureInmAs 0x00189332L: { 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], None: ['Image'], }, # ProjectionEponymousNameCodeSequence 0x00185104L: { 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], None: ['Image'], }, # EventTimerSequence 0x00082133L: { 'ENHANCED ULTRASOUND VOLUME IOD': ['Image'], None: ['Image'], }, # VisualFieldTestPointSequence 0x00240089L: { 'OPHTHALMIC VISUAL FIELD STATIC PERIMETRY MEASUREMENTS IOD': ['Measurements'], None: ['Measurements'], }, # ImplantTemplateGroupVersion 0x00780024L: { 'IMPLANT TEMPLATE GROUP IOD': ['Implant Template Group'], None: ['Implant Template Group'], }, # PerformedSeriesSequence 0x00400340L: { 'MODALITY PERFORMED PROCEDURE STEP IOD': ['Modality Performed Procedure Step'], None: ['Modality Performed Procedure Step'], }, # BarcodeValue 0x22000005L: { 'VL WHOLE SLIDE MICROSCOPY IOD': ['Image'], 'MEDIA CREATION MANAGEMENT IOD': ['Media Creation Management'], None: ['Image', 'Media Creation Management'], }, # GridThickness 0x00187042L: { None: ['Image'], 'DIGITAL INTRA-ORAL X-RAY IMAGE IOD': ['Image'], 'DIGITAL MAMMOGRAPHY X-RAY IMAGE IOD': ['Image'], 'ENHANCED X-RAY RF IMAGE IOD': ['Image'], 'ENHANCED X-RAY ANGIOGRAPHIC IMAGE IOD': ['Image'], 'DIGITAL X-RAY IMAGE IOD': ['Image'], }, # CTDIvol 0x00189345L: { 'CT IMAGE IOD': ['Image'], None: ['Image'], }, # CTDIPhantomTypeCodeSequence 0x00189346L: { 'CT IMAGE IOD': ['Image'], None: ['Image'], }, # TimeSliceVector 0x00540100L: { 'NM IMAGE IOD': ['Image'], None: ['Image'], }, # ServiceEpisodeID 0x00380060L: { 'BASIC STRUCTURED DISPLAY IOD': ['Study'], 'MULTI-FRAME TRUE COLOR SC IMAGE IOD': ['Study'], 'RT BRACHY TREATMENT RECORD IOD': ['Study'], 'RT STRUCTURE SET IOD': ['Study'], 'RT PLAN IOD': ['Study'], 'CR IMAGE IOD': ['Study'], 'RAW DATA IOD': ['Study'], 'MACULAR GRID THIICKNESS AND VOLUME REPORT IOD': ['Study'], 'ENHANCED MR IMAGE IOD': ['Study'], 'BASIC CARDIAC EP IOD':
<reponame>seiwailai/zulip<filename>zerver/lib/event_schema.py # This module is a collection of testing helpers for validating the # schema of "events" sent by Zulip's server-to-client push system. # # By policy, every event generated by Zulip's API should be validated # by a test in test_events.py with a schema checker here (which is # validated, in turn, against the OpenAPI documentation for GET # /events in zulip.yaml and the fixtures used by the Zulip webapp # frontend). # # See https://zulip.readthedocs.io/en/latest/subsystems/events-system.html # # The general paradigm here is that if you have an event with type foo_bar # then you declare foo_bar_event to be an instance of event_dict_type. And # then you make a checker function by saying: # # check_foo_bar = make_checker(foo_bar_event) # # And then the caller can use the checker as follows: # # check_foo_bar(var_name, event) # # For more complicated events, you may write custom checkers that check # aspects of the data that go beyond simply validating that the data # matches an event_dict_type based schema. This typically happens with # events where you either have a Union type or optional_keys. # # See check_delete_message and check_presence for examples of this # paradigm. from typing import Dict, List, Sequence, Set, Tuple, Union from zerver.lib.data_types import ( DictType, EnumType, Equals, ListType, NumberType, OptionalType, StringDictType, TupleType, UnionType, UrlType, check_data, event_dict_type, make_checker, ) from zerver.lib.topic import ORIG_TOPIC, TOPIC_LINKS, TOPIC_NAME from zerver.models import Realm, Stream, Subscription, UserProfile # These fields are used for "stream" events, and are included in the # larger "subscription" events that also contain personal settings. basic_stream_fields = [ ("description", str), ("first_message_id", OptionalType(int)), ("history_public_to_subscribers", bool), ("invite_only", bool), ("is_announcement_only", bool), ("is_web_public", bool), ("message_retention_days", OptionalType(int)), ("name", str), ("rendered_description", str), ("stream_id", int), ("stream_post_policy", int), ("date_created", int), ] subscription_fields: Sequence[Tuple[str, object]] = [ *basic_stream_fields, ("audible_notifications", OptionalType(bool)), ("color", str), ("desktop_notifications", OptionalType(bool)), ("email_address", str), ("email_notifications", OptionalType(bool)), ("in_home_view", bool), ("is_muted", bool), ("pin_to_top", bool), ("push_notifications", OptionalType(bool)), ("role", EnumType(Subscription.ROLE_TYPES)), ("stream_weekly_traffic", OptionalType(int)), # We may try to remove subscribers from some events in # the future for clients that don't want subscriber # info. ("subscribers", ListType(int)), ("wildcard_mentions_notify", OptionalType(bool)), ] equals_add_or_remove = UnionType( [ # force vertical Equals("add"), Equals("remove"), ] ) value_type = UnionType( [ # force vertical formatting bool, int, str, ] ) optional_value_type = UnionType( [ # force vertical formatting bool, int, str, Equals(None), ] ) alert_words_event = event_dict_type( required_keys=[ # force vertical formatting ("type", Equals("alert_words")), ("alert_words", ListType(str)), ] ) check_alert_words = make_checker(alert_words_event) attachment_message_type = DictType( required_keys=[ # force vertical ("id", int), ("date_sent", int), ] ) attachment_type = DictType( required_keys=[ ("id", int), ("name", str), ("size", int), ("path_id", str), ("create_time", int), ("messages", ListType(attachment_message_type)), ] ) attachment_add_event = event_dict_type( required_keys=[ ("type", Equals("attachment")), ("op", Equals("add")), ("attachment", attachment_type), ("upload_space_used", int), ] ) check_attachment_add = make_checker(attachment_add_event) attachment_remove_event = event_dict_type( required_keys=[ ("type", Equals("attachment")), ("op", Equals("remove")), ("attachment", DictType([("id", int)])), ("upload_space_used", int), ] ) check_attachment_remove = make_checker(attachment_remove_event) attachment_update_event = event_dict_type( required_keys=[ ("type", Equals("attachment")), ("op", Equals("update")), ("attachment", attachment_type), ("upload_space_used", int), ] ) check_attachment_update = make_checker(attachment_update_event) custom_profile_field_type = DictType( required_keys=[ ("id", int), ("type", int), ("name", str), ("hint", str), ("field_data", str), ("order", int), ], ) custom_profile_fields_event = event_dict_type( required_keys=[ ("type", Equals("custom_profile_fields")), ("fields", ListType(custom_profile_field_type)), ] ) check_custom_profile_fields = make_checker(custom_profile_fields_event) _check_stream_group = DictType( required_keys=[ ("name", str), ("id", int), ("description", str), ("streams", ListType(DictType(basic_stream_fields))), ] ) default_stream_groups_event = event_dict_type( required_keys=[ # force vertical ("type", Equals("default_stream_groups")), ("default_stream_groups", ListType(_check_stream_group)), ] ) check_default_stream_groups = make_checker(default_stream_groups_event) default_streams_event = event_dict_type( required_keys=[ ("type", Equals("default_streams")), ("default_streams", ListType(DictType(basic_stream_fields))), ] ) check_default_streams = make_checker(default_streams_event) # The event type has an unusual number of optional fields. The # message_id/message_ids fields are conditional on the # bulk_message_deletion client_capability, whereas the other fields # are conditional on private vs. stream messages. delete_message_event = event_dict_type( required_keys=[ # force vertical ("type", Equals("delete_message")), ("message_type", EnumType(["private", "stream"])), ], optional_keys=[ ("message_id", int), ("message_ids", ListType(int)), ("stream_id", int), ("topic", str), ("recipient_id", int), ("sender_id", int), ], ) _check_delete_message = make_checker(delete_message_event) def check_delete_message( var_name: str, event: Dict[str, object], message_type: str, num_message_ids: int, is_legacy: bool, ) -> None: _check_delete_message(var_name, event) keys = {"id", "type", "message_type"} assert event["message_type"] == message_type if message_type == "stream": keys |= {"stream_id", "topic"} elif message_type == "private": keys |= {"recipient_id", "sender_id"} else: raise AssertionError("unexpected message_type") if is_legacy: assert num_message_ids == 1 keys.add("message_id") else: assert isinstance(event["message_ids"], list) assert num_message_ids == len(event["message_ids"]) keys.add("message_ids") assert set(event.keys()) == keys has_zoom_token_event = event_dict_type( required_keys=[ # force vertical ("type", Equals("has_zoom_token")), ("value", bool), ] ) _check_has_zoom_token = make_checker(has_zoom_token_event) def check_has_zoom_token( # force vertical var_name: str, event: Dict[str, object], value: bool, ) -> None: _check_has_zoom_token(var_name, event) assert event["value"] == value _hotspot = DictType( required_keys=[ # force vertical ("name", str), ("title", str), ("description", str), ("delay", NumberType()), ] ) hotspots_event = event_dict_type( required_keys=[ # force vertical ("type", Equals("hotspots")), ( "hotspots", ListType(_hotspot), ), ] ) check_hotspots = make_checker(hotspots_event) invites_changed_event = event_dict_type( required_keys=[ # the most boring event...no metadata ("type", Equals("invites_changed")), ] ) check_invites_changed = make_checker(invites_changed_event) # This type, like other instances of TupleType, is a legacy feature of # a very old Zulip API; we plan to replace it with an object as those # are more extensible. muted_topic_type = TupleType( [ str, # stream name str, # topic name int, # timestamp ] ) muted_topics_event = event_dict_type( required_keys=[ ("type", Equals("muted_topics")), ("muted_topics", ListType(muted_topic_type)), ] ) check_muted_topics = make_checker(muted_topics_event) muted_user_type = DictType( required_keys=[ ("id", int), ("timestamp", int), ] ) muted_users_event = event_dict_type( required_keys=[ ("type", Equals("muted_users")), ("muted_users", ListType(muted_user_type)), ] ) check_muted_users = make_checker(muted_users_event) _check_topic_links = DictType( required_keys=[ ("text", str), ("url", str), ] ) message_fields = [ ("avatar_url", OptionalType(str)), ("client", str), ("content", str), ("content_type", Equals("text/html")), ("display_recipient", str), ("id", int), ("is_me_message", bool), ("reactions", ListType(dict)), ("recipient_id", int), ("sender_realm_str", str), ("sender_email", str), ("sender_full_name", str), ("sender_id", int), ("stream_id", int), (TOPIC_NAME, str), (TOPIC_LINKS, ListType(_check_topic_links)), ("submessages", ListType(dict)), ("timestamp", int), ("type", str), ] message_event = event_dict_type( required_keys=[ ("type", Equals("message")), ("flags", ListType(str)), ("message", DictType(message_fields)), ] ) check_message = make_checker(message_event) # This legacy presence structure is intended to be replaced by a more # sensible data structure. presence_type = DictType( required_keys=[ ("status", EnumType(["active", "idle"])), ("timestamp", int), ("client", str), ("pushable", bool), ] ) presence_event = event_dict_type( required_keys=[ ("type", Equals("presence")), ("user_id", int), ("server_timestamp", NumberType()), ("presence", StringDictType(presence_type)), ], optional_keys=[ # force vertical ("email", str), ], ) _check_presence = make_checker(presence_event) def check_presence( var_name: str, event: Dict[str, object], has_email: bool, presence_key: str, status: str, ) -> None: _check_presence(var_name, event) assert ("email" in event) == has_email assert isinstance(event["presence"], dict) # Our tests only have one presence value. assert len(event["presence"]) == 1 assert list(event["presence"].keys())[0] == presence_key assert list(event["presence"].values())[0]["status"] == status # Type for the legacy user field; the `user_id` field is intended to # replace this and we expect to remove this once clients have migrated # to support the modern API. reaction_legacy_user_type = DictType( required_keys=[ # force vertical ("email", str), ("full_name", str), ("user_id", int), ] # We should probably declare is_mirror_dummy as an optional field here. ) reaction_add_event = event_dict_type( required_keys=[ ("type", Equals("reaction")), ("op", Equals("add")), ("message_id", int), ("emoji_name", str), ("emoji_code", str), ("reaction_type", str), ("user_id", int), ("user", reaction_legacy_user_type), ] ) check_reaction_add = make_checker(reaction_add_event) reaction_remove_event = event_dict_type( required_keys=[ ("type", Equals("reaction")), ("op", Equals("remove")), ("message_id", int), ("emoji_name", str), ("emoji_code", str), ("reaction_type", str), ("user_id", int), ("user", reaction_legacy_user_type), ] ) check_reaction_remove = make_checker(reaction_remove_event) realm_deactivated_event = event_dict_type( required_keys=[ ("type", Equals("realm")), ("op", Equals("deactivated")), ("realm_id", int), ] ) check_realm_deactivated = make_checker(realm_deactivated_event) bot_services_outgoing_type = DictType( required_keys=[ # force vertical ("base_url", UrlType()), ("interface", int), ("token", str), ] ) config_data_schema = StringDictType(str) bot_services_embedded_type = DictType( required_keys=[ # force vertical ("service_name", str), ("config_data", config_data_schema), ] ) # Note that regular bots just get an empty list of services, # so the sub_validator for ListType won't matter for them. bot_services_type = ListType( UnionType( [ # force vertical bot_services_outgoing_type, bot_services_embedded_type, ] ), ) bot_type = DictType( required_keys=[ ("user_id", int), ("api_key", str), ("avatar_url", str), ("bot_type", int), ("default_all_public_streams", bool), ("default_events_register_stream", OptionalType(str)), ("default_sending_stream", OptionalType(str)), ("email", str), ("full_name", str), ("is_active", bool), ("owner_id", int), ("services", bot_services_type), ] ) realm_bot_add_event = event_dict_type( required_keys=[ # force vertical ("type", Equals("realm_bot")), ("op", Equals("add")), ("bot", bot_type), ] ) _check_realm_bot_add = make_checker(realm_bot_add_event) def check_realm_bot_add( var_name: str, event: Dict[str, object], ) -> None: _check_realm_bot_add(var_name, event) assert isinstance(event["bot"], dict) bot_type = event["bot"]["bot_type"] services_field = f"{var_name}['bot']['services']" services = event["bot"]["services"] if bot_type == UserProfile.DEFAULT_BOT: check_data(Equals([]), services_field, services) elif bot_type == UserProfile.OUTGOING_WEBHOOK_BOT: check_data(ListType(bot_services_outgoing_type, length=1), services_field, services) elif bot_type == UserProfile.EMBEDDED_BOT: check_data(ListType(bot_services_embedded_type, length=1), services_field, services) else: raise AssertionError(f"Unknown bot_type: {bot_type}") bot_type_for_delete = DictType( required_keys=[ # for legacy reasons we have a dict here # with only one key ("user_id", int), ] ) realm_bot_delete_event = event_dict_type( required_keys=[ ("type", Equals("realm_bot")), ("op", Equals("delete")), ("bot", bot_type_for_delete), ] ) check_realm_bot_delete = make_checker(realm_bot_delete_event) bot_type_for_remove = DictType( required_keys=[ # Why does remove have full_name but delete doesn't? # Why do we have both a remove and a delete event # for bots? I don't know the answer as I write this. ("full_name", str), ("user_id", int), ] ) realm_bot_remove_event = event_dict_type( required_keys=[ ("type", Equals("realm_bot")), ("op", Equals("remove")), ("bot", bot_type_for_remove), ] ) check_realm_bot_remove = make_checker(realm_bot_remove_event) bot_type_for_update = DictType( required_keys=[ # force vertical ("user_id", int), ], optional_keys=[ ("api_key", str), ("avatar_url", str), ("default_all_public_streams", bool), ("default_events_register_stream", OptionalType(str)), ("default_sending_stream", OptionalType(str)), ("full_name", str), ("owner_id", int), ("services", bot_services_type), ], ) realm_bot_update_event = event_dict_type( required_keys=[ ("type", Equals("realm_bot")), ("op",
True) # self.trans_fc = nn.Sequential( # nn.Linear(512,68*2),#20 # ) # def forward(self, f_landmark, trans_input, length_mots): # b, d, n_mel, l = trans_input.shape # trans_input = trans_input.reshape(b, d*n_mel, l) # # f_landmark = f_landmark.unsqueeze(-1).repeat(1, 1, l) # trans_input = torch.cat([trans_input,f_landmark], 1).permute(0,2,1).reshape(b*l, d*n_mel+512) # trans_input = self.extract_feature(trans_input).reshape(b, l, 512).permute(0, 2, 1).unsqueeze(2) # mask = torch.ones((b, l), dtype=torch.bool).to(trans_input.device) # for index, lm in enumerate(length_mots): # mask[index, :lm] = False # # print('trans mask: ', mask, mask.shape) # # assert(0) # pos_emb = self.position_embedding(trans_input, mask.unsqueeze(1)) # # print(pos_emb[0, 510, 0, :], pos_emb.shape) # # print(pos_emb[0, 251, 0, :], pos_emb.shape) # out = self.metrans(trans_input, mask, pos_emb) # # print('transformer out: ', out, out.shape) # fc_out = self.trans_fc(out.reshape(b*l, 512)).reshape(b, l, 68*2) # return fc_out class Generator(nn.Module): def __init__(self, dim_in=48, style_dim=48, max_conv_dim=48*8, w_hpf=1, F0_channel=0, audio=False): super().__init__() self.audio = audio self.stem = nn.Conv2d(1, dim_in, 3, 1, 1) self.encode = nn.ModuleList() self.decode = nn.ModuleList() self.to_out = nn.Sequential( nn.InstanceNorm2d(dim_in, affine=True), nn.LeakyReLU(0.2), nn.Conv2d(dim_in, 1, 1, 1, 0)) self.F0_channel = F0_channel # down/up-sampling blocks repeat_num = 4 #int(np.log2(img_size)) - 4 if w_hpf > 0: repeat_num += 1 for lid in range(repeat_num): if lid in [1, 3]: _downtype = 'timepreserve' else: _downtype = 'half' dim_out = min(dim_in*2, max_conv_dim) self.encode.append( ResBlk(dim_in, dim_out, normalize=True, downsample=_downtype)) self.decode.insert( 0, AdainResBlk(dim_out, dim_in, style_dim, w_hpf=w_hpf, upsample=_downtype)) # stack-like dim_in = dim_out # bottleneck blocks (encoder) for _ in range(2): self.encode.append( ResBlk(dim_out, dim_out, normalize=True)) # F0 blocks if F0_channel != 0: self.decode.insert( 0, AdainResBlk(dim_out + int(F0_channel / 2), dim_out, style_dim, w_hpf=w_hpf)) # bottleneck blocks (decoder) for _ in range(2): self.decode.insert( 0, AdainResBlk(dim_out + int(F0_channel / 2), dim_out + int(F0_channel / 2), style_dim, w_hpf=w_hpf)) if F0_channel != 0: self.F0_conv = nn.Sequential( ResBlk(F0_channel, int(F0_channel / 2), normalize=True, downsample="half"), ) if w_hpf > 0: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu') self.hpf = HighPass(w_hpf, device) def forward(self, x, s, masks=None, F0=None): x = self.stem(x) cache = {} for block in self.encode: if (masks is not None) and (x.size(2) in [32, 64, 128]): cache[x.size(2)] = x x = block(x) if F0 is not None: F0 = self.F0_conv(F0) F0 = F.adaptive_avg_pool2d(F0, [x.shape[-2], x.shape[-1]]) x = torch.cat([x, F0], axis=1) # print('model 230 x+F0 shape:', x.shape) # 5,74? for block in self.decode: x = block(x, s) if (masks is not None) and (x.size(2) in [32, 64, 128]): mask = masks[0] if x.size(2) in [32] else masks[1] mask = F.interpolate(mask, size=x.size(2), mode='bilinear') x = x + self.hpf(mask * cache[x.size(2)]) # print('model 303 generator output:', x.shape, self.to_out(x).shape) # model 237 generator output: torch.Size([b, 64(c), 80(numl), 296(length)]) torch.Size([1, 1, 80, 296]) if self.audio: return self.to_out(x) else: return self.to_out(x), x class MappingNetwork(nn.Module): def __init__(self, latent_dim=16, style_dim=48, num_domains=2, hidden_dim=384): super().__init__() layers = [] layers += [nn.Linear(latent_dim, hidden_dim)] layers += [nn.ReLU()] for _ in range(3): layers += [nn.Linear(hidden_dim, hidden_dim)] layers += [nn.ReLU()] self.shared = nn.Sequential(*layers) self.unshared = nn.ModuleList() for _ in range(num_domains): self.unshared += [nn.Sequential(nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, style_dim))] def forward(self, z, y): h = self.shared(z) out = [] for layer in self.unshared: out += [layer(h)] out = torch.stack(out, dim=1) # (batch, num_domains, style_dim) idx = torch.LongTensor(range(y.size(0))).to(y.device) s = out[idx, y] # (batch, style_dim) return s class StyleEncoder(nn.Module): def __init__(self, dim_in=48, style_dim=48, num_domains=2, max_conv_dim=384): super().__init__() blocks = [] blocks += [nn.Conv2d(1, dim_in, 3, 1, 1)] repeat_num = 4 for _ in range(repeat_num): dim_out = min(dim_in*2, max_conv_dim) blocks += [ResBlk(dim_in, dim_out, downsample='half')] dim_in = dim_out blocks += [nn.LeakyReLU(0.2)] blocks += [nn.Conv2d(dim_out, dim_out, 5, 1, 0)] blocks += [nn.AdaptiveAvgPool2d(1)] blocks += [nn.LeakyReLU(0.2)] self.shared = nn.Sequential(*blocks) self.unshared = nn.ModuleList() for _ in range(num_domains): self.unshared += [nn.Linear(dim_out, style_dim)] def forward(self, x, y): h = self.shared(x) h = h.view(h.size(0), -1) out = [] for layer in self.unshared: out += [layer(h)] out = torch.stack(out, dim=1) # (batch, num_domains, style_dim) idx = torch.LongTensor(range(y.size(0))).to(y.device) s = out[idx, y] # (batch, style_dim) return s class Discriminator(nn.Module): def __init__(self, dim_in=48, num_domains=2, max_conv_dim=384, repeat_num=4): super().__init__() # real/fake discriminator self.dis = Discriminator2d(dim_in=dim_in, num_domains=num_domains, max_conv_dim=max_conv_dim, repeat_num=repeat_num) # adversarial classifier self.cls = Discriminator2d(dim_in=dim_in, num_domains=num_domains, max_conv_dim=max_conv_dim, repeat_num=repeat_num) self.num_domains = num_domains def forward(self, x, y): return self.dis(x, y) def classifier(self, x): return self.cls.get_feature(x) class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class Discriminator2d(nn.Module): def __init__(self, dim_in=48, num_domains=2, max_conv_dim=384, repeat_num=4): super().__init__() blocks = [] blocks += [nn.Conv2d(1, dim_in, 3, 1, 1)] for lid in range(repeat_num): dim_out = min(dim_in*2, max_conv_dim) blocks += [ResBlk(dim_in, dim_out, downsample='half')] dim_in = dim_out blocks += [nn.LeakyReLU(0.2)] blocks += [nn.Conv2d(dim_out, dim_out, 5, 1, 0)] blocks += [nn.LeakyReLU(0.2)] blocks += [nn.AdaptiveAvgPool2d(1)] blocks += [nn.Conv2d(dim_out, num_domains, 1, 1, 0)] self.main = nn.Sequential(*blocks) def get_feature(self, x): out = self.main(x) out = out.view(out.size(0), -1) # (batch, num_domains) return out def forward(self, x, y): out = self.get_feature(x) idx = torch.LongTensor(range(y.size(0))).to(y.device) out = out[idx, y] # (batch) return out # LSTM version of DiscriminatorLmk class DiscriminatorLmk(nn.Module): def __init__(self, num_domains=2): super().__init__() self.num_domians = num_domains self.extract_feature = nn.Sequential( nn.Linear(68*2,256), nn.ReLU(True), nn.Linear(256,512), nn.ReLU(True), ) self.lstm = nn.LSTM(512,256,3,batch_first = True) # self.lstm_fc = nn.Sequential( # nn.Linear(256, num_domains), # nn.Tanh()) self.decision = nn.Sequential( nn.Linear(256,1), ) self.aggregator = nn.AdaptiveAvgPool1d(1) # self.activate = nn.Sigmoid() def get_feature(self, x): b, l, m, d = x.shape x = x.reshape(b, l, m*d).reshape(b*l, m*d) lstm_input = self.extract_feature(x) lstm_input = lstm_input.view(b, l, -1) # (batch, length, dims) hidden = (torch.autograd.Variable(torch.zeros(3, lstm_input.size(0), 256).cuda()),# torch.Size([3, 16, 256]) torch.autograd.Variable(torch.zeros(3, lstm_input.size(0), 256).cuda()))# torch.Size([3, 16, 256]) lstm_out, _ = self.lstm(lstm_input, hidden) #torch.Size([16, 16, 256]) decision = self.decision(lstm_out.reshape(b*l, 256)).reshape(b, l) return decision def forward(self, x, length): decision = self.get_feature(x) ds = [] for index, ll in enumerate(length): ds.append(self.aggregator(decision[index, :ll].reshape(1,1,ll))) decision = torch.cat(ds, 2).squeeze() return decision class DiscriminatorLmkTR(nn.Module): def __init__(self, num_domains=2): super().__init__() self.num_domians = num_domains self.extract_feature = nn.Sequential( nn.Linear(68*2,256), nn.ReLU(True), nn.Linear(256,512), nn.ReLU(True), ) self.position_embedding = PositionEmbeddingSine(512, normalize=True) self.metrans = MotEncoderTra(d_model=512, nhead=8, num_encoder_layers=3, dim_feedforward=1024, dropout=0.1, activation="relu", normalize_before=False) # self.trans_fc = nn.Sequential( # nn.Linear(256, num_domains), # nn.Tanh()) self.decision = nn.Sequential( nn.Linear(512,1), ) self.aggregator = nn.AdaptiveAvgPool1d(1) # self.activate = nn.Sigmoid() for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.xavier_uniform_(m.weight, gain=1) if isinstance(m, nn.Linear): # trunc_normal_(m.weight, std=.03) nn.init.xavier_uniform_(m.weight, gain=1) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def get_feature(self, x, length_mots): b, l, m, d = x.shape x = x.reshape(b, l, m*d).reshape(b*l, m*d) trans_input = self.extract_feature(x) trans_input = trans_input.view(b, l, -1).permute(0, 2, 1).unsqueeze(2) mask = torch.ones((b, l), dtype=torch.bool).to(trans_input.device) for index, lm in enumerate(length_mots): mask[index, :lm] = False pos_emb = self.position_embedding(trans_input, mask.unsqueeze(1)) out = self.metrans(trans_input, mask, pos_emb) decision = self.decision(out.reshape(b*l, 512)).reshape(b, l) return decision def forward(self, x, length_mots): decision = self.get_feature(x, length_mots) ds = [] for index, ll in enumerate(length_mots): ds.append(self.aggregator(decision[index, :ll].reshape(1,1,ll))) decision = torch.cat(ds, 2).squeeze() return decision class DiscriminatorLmkTR468(nn.Module): def __init__(self, num_domains=2): super().__init__() self.num_domians = num_domains self.extract_feature = nn.Sequential( nn.Linear(468*2,256), nn.ReLU(True), nn.Linear(256,512), nn.ReLU(True), ) self.position_embedding = PositionEmbeddingSine(512, normalize=True) self.metrans = MotEncoderTra(d_model=512, nhead=8, num_encoder_layers=3, dim_feedforward=1024, dropout=0.1, activation="relu", normalize_before=False) self.tran_fc = nn.Sequential( nn.Linear(512, num_domains), nn.Tanh()) self.aggregator = nn.AdaptiveAvgPool1d(1) # self.activate = nn.Sigmoid() for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.xavier_uniform_(m.weight, gain=1) if isinstance(m, nn.Linear): # trunc_normal_(m.weight, std=.03) nn.init.xavier_uniform_(m.weight, gain=1) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def get_feature(self, x, length_mots): b, l, m, d = x.shape x = x.reshape(b, l, m*d).reshape(b*l, m*d) trans_input = self.extract_feature(x) trans_input = trans_input.view(b, l, -1).permute(0, 2, 1).unsqueeze(2) mask = torch.ones((b, l), dtype=torch.bool).to(trans_input.device) for index, lm in enumerate(length_mots): mask[index, :lm] = False pos_emb = self.position_embedding(trans_input, mask.unsqueeze(1)) out = self.metrans(trans_input, mask, pos_emb) decision = self.tran_fc(out.reshape(b*l, 512)).reshape(b, l, -1) return decision def forward(self, x, y, length_mots): dec_out = self.get_feature(x, length_mots) # ds = [] # for index, ll in enumerate(length_mots): # ds.append(self.aggregator(decision[index, :ll].reshape(1,1,ll))) # decision = torch.cat(ds, 2).squeeze() outs = [] for index, ll in enumerate(length_mots): tmp = dec_out[index, :ll, :].permute(1,0) outs.append(self.aggregator(tmp.reshape(1, self.num_domians, ll))) out = torch.cat(outs, 0).squeeze() idx = torch.LongTensor(range(y.size(0))).to(y.device) out = out[idx, y] # (batch) return out # LSTM version of EmoClassifier class EmoClassifier(nn.Module): def __init__(self, num_domains=2): super().__init__() self.num_domians = num_domains self.extract_feature = nn.Sequential( nn.Linear(68*2,256), nn.ReLU(True), nn.Linear(256,512), nn.ReLU(True), ) self.lstm = nn.LSTM(512,256,3,batch_first = True) self.lstm_fc = nn.Sequential( nn.Linear(256, num_domains), nn.Tanh()) self.aggregator = nn.AdaptiveAvgPool1d(1) def get_feature(self, x): b,
pymc3_random(pm.Normal, {'mu': R, 'sigma': Rplus}, ref_rand=ref_rand) def test_truncated_normal(self): def ref_rand(size, mu, sigma, lower, upper): return st.truncnorm.rvs((lower-mu)/sigma, (upper-mu)/sigma, size=size, loc=mu, scale=sigma) pymc3_random(pm.TruncatedNormal, {'mu': R, 'sigma': Rplusbig, 'lower':-Rplusbig, 'upper':Rplusbig}, ref_rand=ref_rand) def test_skew_normal(self): def ref_rand(size, alpha, mu, sigma): return st.skewnorm.rvs(size=size, a=alpha, loc=mu, scale=sigma) pymc3_random(pm.SkewNormal, {'mu': R, 'sigma': Rplus, 'alpha': R}, ref_rand=ref_rand) def test_half_normal(self): def ref_rand(size, tau): return st.halfnorm.rvs(size=size, loc=0, scale=tau ** -0.5) pymc3_random(pm.HalfNormal, {'tau': Rplus}, ref_rand=ref_rand) def test_wald(self): # Cannot do anything too exciting as scipy wald is a # location-scale model of the *standard* wald with mu=1 and lam=1 def ref_rand(size, mu, lam, alpha): return st.wald.rvs(size=size, loc=alpha) pymc3_random(pm.Wald, {'mu': Domain([1., 1., 1.]), 'lam': Domain( [1., 1., 1.]), 'alpha': Rplus}, ref_rand=ref_rand) def test_beta(self): def ref_rand(size, alpha, beta): return st.beta.rvs(a=alpha, b=beta, size=size) pymc3_random(pm.Beta, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand) def test_exponential(self): def ref_rand(size, lam): return nr.exponential(scale=1. / lam, size=size) pymc3_random(pm.Exponential, {'lam': Rplus}, ref_rand=ref_rand) def test_laplace(self): def ref_rand(size, mu, b): return st.laplace.rvs(mu, b, size=size) pymc3_random(pm.Laplace, {'mu': R, 'b': Rplus}, ref_rand=ref_rand) def test_lognormal(self): def ref_rand(size, mu, tau): return np.exp(mu + (tau ** -0.5) * st.norm.rvs(loc=0., scale=1., size=size)) pymc3_random(pm.Lognormal, {'mu': R, 'tau': Rplusbig}, ref_rand=ref_rand) def test_student_t(self): def ref_rand(size, nu, mu, lam): return st.t.rvs(nu, mu, lam**-.5, size=size) pymc3_random(pm.StudentT, {'nu': Rplus, 'mu': R, 'lam': Rplus}, ref_rand=ref_rand) def test_cauchy(self): def ref_rand(size, alpha, beta): return st.cauchy.rvs(alpha, beta, size=size) pymc3_random(pm.Cauchy, {'alpha': R, 'beta': Rplusbig}, ref_rand=ref_rand) def test_half_cauchy(self): def ref_rand(size, beta): return st.halfcauchy.rvs(scale=beta, size=size) pymc3_random(pm.HalfCauchy, {'beta': Rplusbig}, ref_rand=ref_rand) def test_gamma_alpha_beta(self): def ref_rand(size, alpha, beta): return st.gamma.rvs(alpha, scale=1. / beta, size=size) pymc3_random(pm.Gamma, {'alpha': Rplusbig, 'beta': Rplusbig}, ref_rand=ref_rand) def test_gamma_mu_sigma(self): def ref_rand(size, mu, sigma): return st.gamma.rvs(mu**2 / sigma**2, scale=sigma ** 2 / mu, size=size) pymc3_random(pm.Gamma, {'mu': Rplusbig, 'sigma': Rplusbig}, ref_rand=ref_rand) def test_inverse_gamma(self): def ref_rand(size, alpha, beta): return st.invgamma.rvs(a=alpha, scale=beta, size=size) pymc3_random(pm.InverseGamma, {'alpha': Rplus, 'beta': Rplus}, ref_rand=ref_rand) def test_pareto(self): def ref_rand(size, alpha, m): return st.pareto.rvs(alpha, scale=m, size=size) pymc3_random(pm.Pareto, {'alpha': Rplusbig, 'm': Rplusbig}, ref_rand=ref_rand) def test_ex_gaussian(self): def ref_rand(size, mu, sigma, nu): return nr.normal(mu, sigma, size=size) + nr.exponential(scale=nu, size=size) pymc3_random(pm.ExGaussian, {'mu': R, 'sigma': Rplus, 'nu': Rplus}, ref_rand=ref_rand) def test_vonmises(self): def ref_rand(size, mu, kappa): return st.vonmises.rvs(size=size, loc=mu, kappa=kappa) pymc3_random(pm.VonMises, {'mu': R, 'kappa': Rplus}, ref_rand=ref_rand) def test_triangular(self): def ref_rand(size, lower, upper, c): scale = upper - lower c_ = (c - lower) / scale return st.triang.rvs(size=size, loc=lower, scale=scale, c=c_) pymc3_random(pm.Triangular, {'lower': Runif, 'upper': Runif + 3, 'c': Runif + 1}, ref_rand=ref_rand) def test_flat(self): with pm.Model(): f = pm.Flat('f') with pytest.raises(ValueError): f.random(1) def test_half_flat(self): with pm.Model(): f = pm.HalfFlat('f') with pytest.raises(ValueError): f.random(1) def test_binomial(self): pymc3_random_discrete(pm.Binomial, {'n': Nat, 'p': Unit}, ref_rand=st.binom.rvs) def test_beta_binomial(self): pymc3_random_discrete(pm.BetaBinomial, {'n': Nat, 'alpha': Rplus, 'beta': Rplus}, ref_rand=self._beta_bin) def _beta_bin(self, n, alpha, beta, size=None): return st.binom.rvs(n, st.beta.rvs(a=alpha, b=beta, size=size)) def test_bernoulli(self): pymc3_random_discrete(pm.Bernoulli, {'p': Unit}, ref_rand=lambda size, p=None: st.bernoulli.rvs(p, size=size)) def test_poisson(self): pymc3_random_discrete(pm.Poisson, {'mu': Rplusbig}, size=500, ref_rand=st.poisson.rvs) def test_negative_binomial(self): def ref_rand(size, alpha, mu): return st.nbinom.rvs(alpha, alpha / (mu + alpha), size=size) pymc3_random_discrete(pm.NegativeBinomial, {'mu': Rplusbig, 'alpha': Rplusbig}, size=100, fails=50, ref_rand=ref_rand) def test_geometric(self): pymc3_random_discrete(pm.Geometric, {'p': Unit}, size=500, fails=50, ref_rand=nr.geometric) def test_discrete_uniform(self): def ref_rand(size, lower, upper): return st.randint.rvs(lower, upper + 1, size=size) pymc3_random_discrete(pm.DiscreteUniform, {'lower': -NatSmall, 'upper': NatSmall}, ref_rand=ref_rand) def test_discrete_weibull(self): def ref_rand(size, q, beta): u = np.random.uniform(size=size) return np.ceil(np.power(np.log(1 - u) / np.log(q), 1. / beta)) - 1 pymc3_random_discrete(pm.DiscreteWeibull, {'q': Unit, 'beta': Rplusdunif}, ref_rand=ref_rand) @pytest.mark.parametrize('s', [2, 3, 4]) def test_categorical_random(self, s): def ref_rand(size, p): return nr.choice(np.arange(p.shape[0]), p=p, size=size) pymc3_random_discrete(pm.Categorical, {'p': Simplex(s)}, ref_rand=ref_rand) def test_constant_dist(self): def ref_rand(size, c): return c * np.ones(size, dtype=int) pymc3_random_discrete(pm.Constant, {'c': I}, ref_rand=ref_rand) def test_mv_normal(self): def ref_rand(size, mu, cov): return st.multivariate_normal.rvs(mean=mu, cov=cov, size=size) def ref_rand_tau(size, mu, tau): return ref_rand(size, mu, linalg.inv(tau)) def ref_rand_chol(size, mu, chol): return ref_rand(size, mu, np.dot(chol, chol.T)) def ref_rand_uchol(size, mu, chol): return ref_rand(size, mu, np.dot(chol.T, chol)) for n in [2, 3]: pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'cov': PdMatrix(n)}, size=100, valuedomain=Vector(R, n), ref_rand=ref_rand) pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'tau': PdMatrix(n)}, size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_tau) pymc3_random(pm.MvNormal, {'mu': Vector(R, n), 'chol': PdMatrixChol(n)}, size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_chol) pymc3_random( pm.MvNormal, {'mu': Vector(R, n), 'chol': PdMatrixCholUpper(n)}, size=100, valuedomain=Vector(R, n), ref_rand=ref_rand_uchol, extra_args={'lower': False} ) def test_matrix_normal(self): def ref_rand(size, mu, rowcov, colcov): return st.matrix_normal.rvs(mean=mu, rowcov=rowcov, colcov=colcov, size=size) # def ref_rand_tau(size, mu, tau): # return ref_rand(size, mu, linalg.inv(tau)) def ref_rand_chol(size, mu, rowchol, colchol): return ref_rand(size, mu, rowcov=np.dot(rowchol, rowchol.T), colcov=np.dot(colchol, colchol.T)) def ref_rand_uchol(size, mu, rowchol, colchol): return ref_rand(size, mu, rowcov=np.dot(rowchol.T, rowchol), colcov=np.dot(colchol.T, colchol)) for n in [2, 3]: pymc3_random(pm.MatrixNormal, {'mu': RealMatrix(n, n), 'rowcov': PdMatrix(n), 'colcov': PdMatrix(n)}, size=n, valuedomain=RealMatrix(n, n), ref_rand=ref_rand) # pymc3_random(pm.MatrixNormal, {'mu': RealMatrix(n, n), 'tau': PdMatrix(n)}, # size=n, valuedomain=RealMatrix(n, n), ref_rand=ref_rand_tau) pymc3_random(pm.MatrixNormal, {'mu': RealMatrix(n, n), 'rowchol': PdMatrixChol(n), 'colchol': PdMatrixChol(n)}, size=n, valuedomain=RealMatrix(n, n), ref_rand=ref_rand_chol) # pymc3_random( # pm.MvNormal, # {'mu': RealMatrix(n, n), 'rowchol': PdMatrixCholUpper(n), 'colchol': PdMatrixCholUpper(n)}, # size=n, valuedomain=RealMatrix(n, n), ref_rand=ref_rand_uchol, # extra_args={'lower': False} # ) def test_kronecker_normal(self): def ref_rand(size, mu, covs, sigma): cov = pm.math.kronecker(covs[0], covs[1]).eval() cov += sigma**2 * np.identity(cov.shape[0]) return st.multivariate_normal.rvs(mean=mu, cov=cov, size=size) def ref_rand_chol(size, mu, chols, sigma): covs = [np.dot(chol, chol.T) for chol in chols] return ref_rand(size, mu, covs, sigma) def ref_rand_evd(size, mu, evds, sigma): covs = [] for eigs, Q in evds: covs.append(np.dot(Q, np.dot(np.diag(eigs), Q.T))) return ref_rand(size, mu, covs, sigma) sizes = [2, 3] sigmas = [0, 1] for n, sigma in zip(sizes, sigmas): N = n**2 covs = [RandomPdMatrix(n), RandomPdMatrix(n)] chols = list(map(np.linalg.cholesky, covs)) evds = list(map(np.linalg.eigh, covs)) dom = Domain([np.random.randn(N)*0.1], edges=(None, None), shape=N) mu = Domain([np.random.randn(N)*0.1], edges=(None, None), shape=N) std_args = {'mu': mu} cov_args = {'covs': covs} chol_args = {'chols': chols} evd_args = {'evds': evds} if sigma is not None and sigma != 0: std_args['sigma'] = Domain([sigma], edges=(None, None)) else: for args in [cov_args, chol_args, evd_args]: args['sigma'] = sigma pymc3_random( pm.KroneckerNormal, std_args, valuedomain=dom, ref_rand=ref_rand, extra_args=cov_args, model_args=cov_args) pymc3_random( pm.KroneckerNormal, std_args, valuedomain=dom, ref_rand=ref_rand_chol, extra_args=chol_args, model_args=chol_args) pymc3_random( pm.KroneckerNormal, std_args, valuedomain=dom, ref_rand=ref_rand_evd, extra_args=evd_args, model_args=evd_args) def test_mv_t(self): def ref_rand(size, nu, Sigma, mu): normal = st.multivariate_normal.rvs(cov=Sigma, size=size).T chi2 = st.chi2.rvs(df=nu, size=size) return mu + np.sqrt(nu) * (normal / chi2).T for n in [2, 3]: pymc3_random(pm.MvStudentT, {'nu': Domain([5, 10, 25, 50]), 'Sigma': PdMatrix( n), 'mu': Vector(R, n)}, size=100, valuedomain=Vector(R, n), ref_rand=ref_rand) def test_dirichlet(self): def ref_rand(size, a): return st.dirichlet.rvs(a, size=size) for n in [2, 3]: pymc3_random(pm.Dirichlet, {'a': Vector(Rplus, n)}, valuedomain=Simplex(n), size=100, ref_rand=ref_rand) def test_multinomial(self): def ref_rand(size, p, n): return nr.multinomial(pvals=p, n=n, size=size) for n in [2, 3]: pymc3_random_discrete(pm.Multinomial, {'p': Simplex(n), 'n': Nat}, valuedomain=Vector(Nat, n), size=100, ref_rand=ref_rand) def test_gumbel(self): def ref_rand(size, mu, beta): return st.gumbel_r.rvs(loc=mu, scale=beta, size=size) pymc3_random(pm.Gumbel, {'mu': R, 'beta': Rplus}, ref_rand=ref_rand) def test_logistic(self): def ref_rand(size, mu, s): return st.logistic.rvs(loc=mu, scale=s, size=size) pymc3_random(pm.Logistic, {'mu': R, 's': Rplus}, ref_rand=ref_rand) def test_logitnormal(self): def ref_rand(size, mu, sigma): return expit(st.norm.rvs(loc=mu, scale=sigma, size=size)) pymc3_random(pm.LogitNormal, {'mu': R, 'sigma': Rplus}, ref_rand=ref_rand) @pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32") def test_interpolated(self): for mu in R.vals: for sigma in Rplus.vals: #pylint: disable=cell-var-from-loop def ref_rand(size): return st.norm.rvs(loc=mu, scale=sigma, size=size) class TestedInterpolated (pm.Interpolated): def __init__(self, **kwargs): x_points = np.linspace(mu - 5 * sigma, mu + 5 * sigma, 100) pdf_points = st.norm.pdf(x_points, loc=mu, scale=sigma) super().__init__( x_points=x_points, pdf_points=pdf_points, **kwargs ) pymc3_random(TestedInterpolated, {}, ref_rand=ref_rand) @pytest.mark.skip('Wishart random sampling not implemented.\n' 'See https://github.com/pymc-devs/pymc3/issues/538') def test_wishart(self): # Wishart non current recommended for use: # https://github.com/pymc-devs/pymc3/issues/538 # for n in [2, 3]: # pymc3_random_discrete(Wisvaluedomainhart, # {'n': Domain([2, 3, 4, 2000]) , 'V': PdMatrix(n) }, # valuedomain=PdMatrix(n), # ref_rand=lambda n=None, V=None, size=None: \ # st.wishart(V, df=n, size=size)) pass def test_lkj(self): for n in [2, 10, 50]: #pylint: disable=cell-var-from-loop shape = n*(n-1)//2 def ref_rand(size, eta): beta = eta - 1 + n/2 return (st.beta.rvs(size=(size, shape), a=beta, b=beta)-.5)*2 class TestedLKJCorr (pm.LKJCorr): def __init__(self, **kwargs): kwargs.pop('shape', None) super().__init__(n=n, **kwargs) pymc3_random(TestedLKJCorr, {'eta': Domain([1., 10., 100.])}, size=10000//n, ref_rand=ref_rand) def test_normalmixture(self): def ref_rand(size, w, mu, sigma): component = np.random.choice(w.size, size=size, p=w) return np.random.normal(mu[component], sigma[component], size=size) pymc3_random(pm.NormalMixture, {'w': Simplex(2), 'mu': Domain([[.05, 2.5], [-5., 1.]], edges=(None, None)), 'sigma': Domain([[1, 1], [1.5, 2.]], edges=(None, None))}, extra_args={'comp_shape': 2}, size=1000, ref_rand=ref_rand) pymc3_random(pm.NormalMixture, {'w': Simplex(3), 'mu': Domain([[-5., 1., 2.5]], edges=(None, None)), 'sigma': Domain([[1.5, 2., 3.]], edges=(None, None))}, extra_args={'comp_shape': 3}, size=1000, ref_rand=ref_rand) def test_mixture_random_shape(): # test the shape broadcasting in mixture random y = np.concatenate([nr.poisson(5, size=10), nr.poisson(9, size=10)]) with pm.Model() as m: comp0 = pm.Poisson.dist(mu=np.ones(2)) w0 = pm.Dirichlet('w0', a=np.ones(2)) like0 = pm.Mixture('like0', w=w0, comp_dists=comp0, observed=y) comp1 = pm.Poisson.dist(mu=np.ones((20, 2)), shape=(20, 2)) w1 = pm.Dirichlet('w1',
fit_reg, mask_bad_pix, mask_emline, user_mask, mask_metal, cosmology, run_dir, verbose=verbose, plot=True) # non-SDSS spectrum elif (not sdss_spec): lam_gal,galaxy,noise,z,ebv,velscale,fwhm_gal,fit_mask = prepare_user_spec(fits_file, spec, wave, err, fwhm, z, ebv, fit_reg, mask_emline, user_mask, mask_metal, cosmology, run_dir, verbose=verbose, plot=True) binnum = spaxelx = spaxely = None # Write to Log write_log((fit_options,mcmc_options,comp_options,losvd_options,host_options,power_options,poly_options,opt_feii_options,uv_iron_options,balmer_options, plot_options,output_options),'fit_information',run_dir) #################################################################################################################################################################################### # Generate host-galaxy template if (fit_host==True) & (lam_gal[0]>1680.2): host_template = generate_host_template(lam_gal, host_options, fwhm_gal,fit_mask, velscale, verbose=verbose) elif (fit_host==True) & (lam_gal[0]<1680.2): host_template = None fit_host = False comp_options["fit_host"]=False if verbose: print('\n - Host galaxy SSP template disabled because template is outside of fitting region.') elif (fit_host==False): host_template = None # Load stellar templates if fit_losvd=True if (fit_losvd==True): stel_templates = prepare_stellar_templates(galaxy, lam_gal, fit_reg, velscale, fwhm_gal,fit_mask, losvd_options, run_dir) elif (fit_losvd==False): stel_templates = None # For the Optical FeII, UV Iron, and Balmer templates, we disable the templates if the fitting region # is entirely outside of the range of the templates. This saves resources. # Check conditions for and generate Optical FeII templates # Veron-Cetty et al. (2004) if (fit_opt_feii==True) & (opt_feii_options["opt_template"]["type"]=="VC04") & (lam_gal[-1]>=3400.0) & (lam_gal[0]<=7200.0): opt_feii_templates = initialize_opt_feii(lam_gal,opt_feii_options,fwhm_gal,fit_mask,velscale) elif (fit_opt_feii==True) & (opt_feii_options["opt_template"]["type"]=="VC04") & ((lam_gal[-1]<3400.0) | (lam_gal[0]>7200.0)): if verbose: print('\n - Optical FeII template disabled because template is outside of fitting region.') fit_opt_feii = False comp_options["fit_opt_feii"]=False opt_feii_templates = None write_log((),'update_opt_feii',run_dir) # Kovacevic et al. (2010) elif (fit_opt_feii==True) & (opt_feii_options["opt_template"]["type"]=="K10") & (lam_gal[-1]>=4400.0) & (lam_gal[0]<=5500.0): opt_feii_templates = initialize_opt_feii(lam_gal,opt_feii_options,fwhm_gal,fit_mask,velscale) elif (fit_opt_feii==True) & (opt_feii_options["opt_template"]["type"]=="K10") & ((lam_gal[-1]<4400.0) | (lam_gal[0]>5500.0)): if verbose: print('\n - Optical FeII template disabled because template is outside of fitting region.') opt_feii_templates = None fit_opt_feii = False comp_options["fit_opt_feii"]=False opt_feii_templates = None write_log((),'update_opt_feii',run_dir) elif (fit_opt_feii==False): opt_feii_templates = None # Generate UV Iron template - Vestergaard & Wilkes (2001) if (fit_uv_iron==True) & (lam_gal[-1]>=1074.0) & (lam_gal[0]<=3100.0): uv_iron_template = initialize_uv_iron(lam_gal,uv_iron_options,fwhm_gal,fit_mask,velscale) elif (fit_uv_iron==True) & ((lam_gal[-1]<1074.0) | (lam_gal[0]>3100.0)): if verbose: print('\n - UV Iron template disabled because template is outside of fitting region.') uv_iron_template = None fit_uv_iron = False comp_options["fit_uv_iron"]=False uv_iron_template = None write_log((),'update_uv_iron',run_dir) elif (fit_uv_iron==False): uv_iron_template = None # Generate Balmer continuum if (fit_balmer==True) & (lam_gal[0]<3500.0): balmer_template = initialize_balmer(lam_gal,balmer_options,fwhm_gal,fit_mask,velscale) elif (fit_balmer==True) & (lam_gal[0]>=3500.0): if verbose: print('\n - Balmer continuum disabled because template is outside of fitting region.') balmer_template = None fit_balmer = False comp_options["fit_balmer"]=False balmer_template = None write_log((),'update_balmer',run_dir) elif (fit_balmer==False): balmer_template = None #################################################################################################################################################################################### # Initialize maximum likelihood parameters if verbose: print('\n Initializing parameters for Maximum Likelihood Fitting.') print('----------------------------------------------------------------------------------------------------') param_dict, line_list, combined_line_list, soft_cons = initialize_pars(lam_gal,galaxy,noise,fit_reg,fwhm_gal,fit_mask,velscale, comp_options,user_lines,user_constraints,combined_lines,losvd_options,host_options,power_options,poly_options, opt_feii_options,uv_iron_options,balmer_options, run_dir,fit_type='init',fit_stat=fit_stat, fit_opt_feii=fit_opt_feii,fit_uv_iron=fit_uv_iron,fit_balmer=fit_balmer, fit_losvd=fit_losvd,fit_host=fit_host,fit_power=fit_power,fit_poly=fit_poly, fit_narrow=fit_narrow,fit_broad=fit_broad,fit_outflow=fit_outflow,fit_absorp=fit_absorp, tie_line_fwhm=tie_line_fwhm,tie_line_voff=tie_line_voff,verbose=verbose) # Output all free parameters of fit prior to fitting (useful for diagnostics) if output_pars and verbose: output_free_pars(line_list,param_dict,soft_cons) write_log((line_list,param_dict,soft_cons),'output_line_list',run_dir) return elif not output_pars and verbose: output_free_pars(line_list,param_dict,soft_cons) write_log((line_list,param_dict,soft_cons),'output_line_list',run_dir) elif not output_pars and not verbose: write_log((line_list,param_dict,soft_cons),'output_line_list',run_dir) #### Line Testing ################################################################################################################################################################################ if (test_line["bool"]==True): # If line test, check to make sure line is in line list if (isinstance(test_line["line"],str)) and (test_line["line"] not in line_list): shutil.rmtree(run_dir) print("\n Line to test not found in line list! Make sure line is within fitting region for test.\n") return elif (isinstance(test_line["line"],list)) and not (np.all([False if line not in line_list else True for line in test_line["line"]])): shutil.rmtree(run_dir) print("\n Line to test not found in line list! Make sure line is within fitting region for test.\n") return if verbose: print("\n Testing for %s" % (test_line["line"])) line_test(param_dict, line_list, combined_line_list, soft_cons, lam_gal, galaxy, noise, z, cosmology, fit_reg, user_lines, user_constraints, combined_lines, test_line, comp_options, losvd_options, host_options, power_options, poly_options, opt_feii_options, uv_iron_options, balmer_options, outflow_test_options, host_template, opt_feii_templates, uv_iron_template, balmer_template, stel_templates, fwhm_gal, fit_mask, velscale, run_dir, fit_type='init', fit_stat=fit_stat, output_model=False, test_outflows=False, n_basinhop=n_basinhop, max_like_niter=max_like_niter, verbose=verbose, binnum=binnum, spaxelx=spaxelx, spaxely=spaxely) # Exit BADASS print(' - Line testing complete for %s! \n' % fits_file.parent.name) return #################################################################################################################################################################################### #### Outflow Testing ################################################################################################################################################################################ if (test_outflows==True): # If test_outflow, check to make sure the line list has outflow lines in it if (len([line for line in line_list if line_list[line]["line_type"]=="out"])==0): shutil.rmtree(run_dir) print("\n There are no outflow lines in the line list to test! Make sure fit_outflow = True and are within fitting range.\n") return if verbose: print("\n Testing for outflows...") line_test(param_dict, line_list, combined_line_list, soft_cons, lam_gal, galaxy, noise, z, cosmology, fit_reg, user_lines, user_constraints, combined_lines, test_line, comp_options, losvd_options, host_options, power_options, poly_options, opt_feii_options, uv_iron_options, balmer_options, outflow_test_options, host_template, opt_feii_templates, uv_iron_template, balmer_template, stel_templates, fwhm_gal, fit_mask, velscale, run_dir, fit_type='init', fit_stat=fit_stat, output_model=False, test_outflows=True, n_basinhop=n_basinhop, max_like_niter=max_like_niter, verbose=verbose, binnum=binnum, spaxelx=spaxelx, spaxely=spaxely) # Exit BADASS print(' - Outflow testing complete for %s! \n' % fits_file.parent.name) return #################################################################################################################################################################################### # Peform maximum likelihood result_dict, comp_dict = max_likelihood(param_dict, line_list, combined_line_list, soft_cons, lam_gal, galaxy, noise, z, cosmology, comp_options, losvd_options, host_options, power_options, poly_options, opt_feii_options, uv_iron_options, balmer_options, outflow_test_options, host_template, opt_feii_templates, uv_iron_template, balmer_template, stel_templates, fwhm_gal, fit_mask, velscale, run_dir, fit_type='init', fit_stat=fit_stat, output_model=False, test_outflows=False, n_basinhop=n_basinhop, max_like_niter=max_like_niter, verbose=verbose) if (mcmc_fit==False): # If not performing MCMC fitting, terminate BADASS here and write # parameters, uncertainties, and components to a fits file # Write final parameters to file # Header information header_dict = {} header_dict["z_sdss"] = z header_dict["med_noise"] = np.median(noise) header_dict["velscale"] = velscale # write_max_like_results(result_dict,comp_dict,header_dict,fit_mask,run_dir,binnum,spaxelx,spaxely) # Make interactive HTML plot if plot_HTML: plotly_best_fit(fits_file.parent.name,line_list,fit_mask,run_dir) print(' - Done fitting %s! \n' % fits_file.parent.name) sys.stdout.flush() return ####################################################################################################### # Initialize parameters for emcee if verbose: print('\n Initializing parameters for MCMC.') print('----------------------------------------------------------------------------------------------------') param_dict, line_list, combined_line_list, soft_cons = initialize_pars(lam_gal,galaxy,noise,fit_reg,fwhm_gal,fit_mask,velscale, comp_options,user_lines,user_constraints,combined_lines,losvd_options,host_options,power_options,poly_options, opt_feii_options,uv_iron_options,balmer_options, run_dir,fit_type='final',fit_stat=fit_stat, fit_opt_feii=fit_opt_feii,fit_uv_iron=fit_uv_iron,fit_balmer=fit_balmer, fit_losvd=fit_losvd,fit_host=fit_host,fit_power=fit_power,fit_poly=fit_poly, fit_narrow=fit_narrow,fit_broad=fit_broad,fit_outflow=fit_outflow,fit_absorp=fit_absorp, tie_line_fwhm=tie_line_fwhm,tie_line_voff=tie_line_voff, remove_lines=False,verbose=verbose) # if verbose: output_free_pars(line_list,param_dict,soft_cons) # # Replace initial conditions with best fit max. likelihood parameters (the old switcharoo) for key in result_dict: if key in param_dict: param_dict[key]['init']=result_dict[key]['med'] # We make an exception for FeII temperature if Kovadevic et al. (2010) templates are used because # temperature is not every sensitive > 8,000 K. This causes temperature parameter to blow up # during the initial max. likelihood fitting, causing it to be initialized for MCMC at an # unreasonable value. We therefroe re-initializethe FeiI temp start value to 10,000 K. if 'feii_temp' in param_dict: param_dict['feii_temp']['init']=10000.0 ####################################################################################################### # Run emcee if verbose: print('\n Performing MCMC iterations...') print('----------------------------------------------------------------------------------------------------') # Extract relevant stuff from dicts param_names = [key for key in param_dict ] init_params = [param_dict[key]['init'] for key in param_dict ] bounds = [param_dict[key]['plim'] for key in param_dict ] # Check number of walkers # If number of walkers < 2*(# of params) (the minimum required), then set it to that if nwalkers<2*len(param_names): if verbose: print('\n Number of walkers < 2 x (# of parameters)! Setting nwalkers = %d' % (2.0*len(param_names))) nwalkers = int(2.0*len(param_names)) ndim, nwalkers = len(init_params), nwalkers # minimum walkers = 2*len(params) # initialize walker starting positions based on parameter estimation from Maximum Likelihood fitting pos = initialize_walkers(init_params,param_names,bounds,soft_cons,nwalkers,ndim) # Run emcee # args = arguments of lnprob (log-probability function) lnprob_args=(param_names, bounds, line_list, combined_line_list, soft_cons, lam_gal, galaxy, noise, comp_options, losvd_options, host_options, power_options, poly_options, opt_feii_options, uv_iron_options, balmer_options, outflow_test_options, host_template, opt_feii_templates, uv_iron_template, balmer_template, stel_templates, fwhm_gal, fit_mask, fit_stat, velscale, run_dir) emcee_data = run_emcee(pos,ndim,nwalkers,run_dir,lnprob_args,init_params,param_names, auto_stop,conv_type,min_samp,ncor_times,autocorr_tol,write_iter,write_thresh, burn_in,min_iter,max_iter,verbose=verbose) sampler_chain, burn_in, flux_blob, eqwidth_blob, cont_flux_blob, int_vel_disp_blob, log_like_blob = emcee_data # Add chains to each parameter in param dictionary for k,key in enumerate(param_names): if key in param_dict: param_dict[key]['chain']=sampler_chain[:,:,k] if verbose: print('\n > Fitting MCMC chains...') # These three functions produce parameter, flux, and luminosity histograms and chains from the MCMC sampling. # Free parameter values, uncertainties, and plots param_dict = param_plots(param_dict,burn_in,run_dir,plot_param_hist=plot_param_hist,verbose=verbose) # Add tied parameters param_dict = add_tied_parameters(param_dict, line_list) # Log Like Function values plots log_like_dict = log_like_plot(log_like_blob, burn_in, nwalkers, run_dir, plot_param_hist=plot_param_hist,verbose=verbose) # Flux values, uncertainties, and plots flux_dict = flux_plots(flux_blob, burn_in, nwalkers, run_dir, plot_flux_hist=plot_flux_hist,verbose=verbose) # Luminosity values, uncertainties, and plots lum_dict = lum_plots(flux_dict, burn_in, nwalkers, z, run_dir, H0=cosmology["H0"],Om0=cosmology["Om0"],plot_lum_hist=plot_lum_hist,verbose=verbose) # Continuum luminosity cont_lum_dict = cont_lum_plots(cont_flux_blob, burn_in, nwalkers, z, run_dir, H0=cosmology["H0"],Om0=cosmology["Om0"],plot_lum_hist=plot_lum_hist,verbose=verbose) # Equivalent widths, uncertainties, and plots eqwidth_dict = eqwidth_plots(eqwidth_blob, burn_in, nwalkers, run_dir, plot_eqwidth_hist=plot_eqwidth_hist, verbose=verbose) # Auxiliary Line Dict (Combined FWHMs and Fluxes of MgII and CIV) int_vel_disp_dict = int_vel_disp_plots(int_vel_disp_blob, burn_in, nwalkers, z, run_dir, H0=cosmology["H0"],Om0=cosmology["Om0"],plot_param_hist=plot_param_hist,verbose=verbose) # If stellar velocity is fit, estimate the systemic velocity of the galaxy; # SDSS redshifts are based on average emission line redshifts. extra_dict = {} extra_dict["LOG_LIKE"] = log_like_dict if ('stel_vel' in param_dict): if verbose: print('\n > Estimating systemic velocity of galaxy...') z_dict =
from __future__ import division, unicode_literals, absolute_import import numpy as np import signal import tracemalloc import os import logging logger = logging.getLogger(__name__) import dynesty from dynesty.utils import unitcheck from ..utils import estimate_nmcmc, list_2_dict from ...pipe import data_container, display_memory_usage def void(): pass def reflect(u): idxs_even = np.mod(u, 2) < 1 u[idxs_even] = np.mod(u[idxs_even], 1) u[~idxs_even] = 1 - np.mod(u[~idxs_even], 1) return u def initialize_proposals(maxmcmc, minmcmc, nact): # initialize proposals return BajesDynestyProposal(maxmcmc, walks=minmcmc, nact=nact) def resample(samples, weights): if abs(np.sum(weights) - 1.) > 1e-30: # Guarantee that the weights will sum to 1. weights = np.array(weights) / np.sum(weights) # Make N subdivisions and choose positions with a consistent random offset. nsamples = len(weights) positions = (np.random.random() + np.arange(nsamples)) / nsamples # Resample the data. idx = [] cumulative_sum = np.cumsum(weights) i, j = 0, 0 while i < nsamples: if positions[i] < cumulative_sum[j]: idx.append(j) i += 1 else: j += 1 idx = np.array(idx, dtype=np.int) return samples[idx] def get_prior_samples_dynesty(nlive, ndim, like_fn, ptform_fn): n = 0 u = [] v = [] logl = [] while n < nlive: _u = np.random.uniform(0,1,ndim) _v = ptform_fn(_u) _l = like_fn(_v) if not np.isinf(_l): u.append(_u) v.append(_v) logl.append(_l) n +=1 return [np.array(u), np.array(v), np.array(logl)] class SamplerNest(object): def __init__(self, posterior, nlive, tolerance=0.1, ncheckpoint=0, # bounding bound_method='multi', vol_check=8., vol_dec=0.5, # update bootstrap=0, enlarge=1.5, facc=0.5, update_interval=None, # proposal proposals=None, nact = 5., maxmcmc=4096, minmcmc=32, # first update first_min_ncall = None, first_min_eff = 10, # others nprocs=None, pool=None, use_slice=False, use_gw=False, outdir='./', resume='/resume.pkl', seed=None, **kwargs): self.resume = resume self.outdir = outdir # restore inference from existing container if os.path.exists(self.outdir + self.resume): self.restore_inference(pool) # initialize a new inference else: # initialize signal try: signal.signal(signal.SIGTERM, self.store_inference_and_exit) signal.signal(signal.SIGINT, self.store_inference_and_exit) signal.signal(signal.SIGALRM, self.store_inference_and_exit) except AttributeError: logger.warning("Impossible to set signal attributes.") # initialize nested parameters self.nlive = nlive self.tol = tolerance # auxiliary arguments self.names = posterior.prior.names self.ndim = len(self.names) self.log_prior_fn = posterior.log_prior if ncheckpoint == 0: # disable resume logger.info("Disabling checkpoint ...") self.ncheckpoint = 100 # print step self.store_flag = False else: # enable resume logger.info("Enabling checkpoint ...") self.ncheckpoint = ncheckpoint self.store_flag = True # initialize seed if seed == None: import time self.seed = int(time.time()) else: self.seed = seed np.random.seed(self.seed) if self.nlive < self.ndim*(self.ndim-1)//2: logger.warning("Given number of live points < Ndim*(Ndim-1)/2. This may generate problems in the exploration of the parameters space.") # set up periodic and reflective boundaries periodic_inds = np.concatenate(np.where(np.array(posterior.prior.periodics) == 1)) reflective_inds = np.concatenate(np.where(np.array(posterior.prior.periodics) == 0)) # initialize proposals if proposals == None: logger.info("Initializing proposal methods ...") proposals = initialize_proposals(maxmcmc, minmcmc, nact) if first_min_ncall == None: first_min_ncall = 2 * nlive if nprocs == None: nprocs = 1 # initialize keyword args for dynesty sampler_kwargs = { 'ndim': self.ndim, 'nlive': nlive, 'bound': bound_method, 'sample': 'rwalk', 'periodic': periodic_inds, 'reflective': reflective_inds, 'facc': facc, 'vol_check': vol_check, 'vol_dec': vol_dec, 'walks': minmcmc, 'enlarge': enlarge, 'bootstrap': bootstrap, 'pool': pool, 'queue_size': max(nprocs-1,1), 'update_interval': update_interval, 'first_update': {'min_ncall':first_min_ncall, 'min_eff': first_min_eff}, 'use_pool': {'prior_transform': True,'loglikelihood': True, 'propose_point': True,'update_bound': True} } like_fn = posterior.log_like ptform_fn = posterior.prior_transform self.sampler = self.initialize_sampler(like_fn, ptform_fn, sampler_kwargs) # clean up sampler del self.sampler.cite del self.sampler.kwargs['cite'] self.sampler.rstate = np.random # set proposal self.sampler.evolve_point = proposals.propose def __getstate__(self): self_dict = self.__dict__.copy() # if 'sampler' in list(self_dict.keys()): # self_dict['sampler'].pool = None # self_dict['sampler'].M = None # self_dict['sampler'].rstate = None return self_dict def initialize_sampler(self, like_fn, ptform_fn, kwargs): # extract prior samples, ensuring finite logL logger.info("Extracting prior samples ...") live_points = get_prior_samples_dynesty(kwargs['nlive'], kwargs['ndim'], like_fn, ptform_fn) kwargs['live_points'] = live_points # initialize dynesty sampler logger.info("Initializing nested sampler ...") sampler = dynesty.NestedSampler(loglikelihood=like_fn, prior_transform=ptform_fn, **kwargs) del sampler._PROPOSE del sampler._UPDATE return sampler def store_inference_and_exit(self, signum=None, frame=None): # exit function when signal is revealed logger.info("Run interrupted by signal {}, checkpoint and exit.".format(signum)) os._exit(signum) def restore_inference(self, pool): # extract container logger.info("Restoring inference from existing container ...") dc = data_container(self.outdir + self.resume) container = dc.load() # sampler check if container.tag != 'nest': logger.error("Container carries a {} inference, while NEST was requested.".format(container.tag.upper())) raise AttributeError("Container carries a {} inference, while NEST was requested.".format(container.tag.upper())) previous_inference = container.inference # extract previous variables and methods for kw in list(previous_inference.__dict__.keys()): self.__setattr__(kw, previous_inference.__dict__[kw]) # re-initialize pool self.sampler.pool = pool self.sampler.M = pool.map # re-initialize seed if self.seed == None: import time self.seed = int(time.time()) np.random.seed(self.seed) self.sampler.rstate = np.random # re-initialize signal try: signal.signal(signal.SIGTERM, self.store_inference_and_exit) signal.signal(signal.SIGINT, self.store_inference_and_exit) signal.signal(signal.SIGALRM, self.store_inference_and_exit) except AttributeError: logger.warning("Impossible to set signal attributes.") def store_inference(self): # save inference in pickle file dc = data_container(self.outdir+self.resume) dc.store('tag', 'nest') dc.store('inference', self) dc.save() def run(self): # run the sampler logger.info("Running {} live points ...".format(self.nlive)) for results in self.sampler.sample(dlogz=self.tol,save_samples=True,add_live=False): if self.sampler.it%self.ncheckpoint==0: (worst, ustar, vstar, loglstar, logvol, logwt, logz, logzvar, h, nc, worst_it, boundidx, bounditer, eff, delta_logz) = results self.update_sampler([eff/100.,nc,loglstar,logz,h,delta_logz]) if tracemalloc.is_tracing(): display_memory_usage(tracemalloc.take_snapshot()) tracemalloc.clear_traces() # add live points to nested samples logger.info("Adding live points in nested samples") self.sampler.add_final_live(print_progress=False) # final store inference self.store_inference() def update_sampler(self, args): acc, nc, logl, logz, h, d_logz = args # store inference if self.store_flag: self.store_inference() logger.info(" - it : {:d} - eff : {:.3f} - ncall : {:.0f} - logL : {:.3g} - logLmax : {:.3g} - logZ : {:.3g} - H : {:.3g} - dlogZ : {:.3g}".format(self.sampler.it,acc,nc,logl,np.max(self.sampler.live_logl),logz,h,d_logz)) def get_posterior(self): self.results = self.sampler.results self.nested_samples = self.results.samples logger.info(" - number of nested samples : {}".format(len(self.nested_samples))) # extract posteriors ns = [] wt = [] scale = np.array(self.sampler.saved_scale) for i in range(len(self.nested_samples)): # start appending from the first update # if scale[i] < 1. : this_params = list_2_dict(self.nested_samples[i], self.names) logpr = self.log_prior_fn(this_params) logl = np.float(self.results.logl[i]) ns.append(np.append(self.nested_samples[i], [logl, logpr])) wt.append(np.float(self.results.logwt[i]-self.results.logz[-1])) ns = np.array(ns) wt = np.exp(np.array(wt)) names = np.append(self.names , ['logL', 'logPrior']) # resample nested samples into posterior samples self.posterior_samples = resample(ns, wt) self.real_nout = len(self.posterior_samples) # extract evidence self.logZ = np.array(self.results.logz) self.logZerr = self.results.logzerr logger.info(" - number of posterior samples : {}".format(self.real_nout)) post_file = open(self.outdir + '/posterior.dat', 'w') post_file.write('#') for n in range(self.ndim+2): post_file.write('{}\t'.format(names[n])) post_file.write('\n') for i in range(self.real_nout): for j in range(self.ndim+2): post_file.write('{}\t'.format(self.posterior_samples[i][j])) post_file.write('\n') post_file.close() evidence_file = open(self.outdir + '/evidence.dat', 'w') evidence_file.write('#\tlogX\tlogZ\tlogZerr\n') for xi,zi,ei in zip(self.results.logvol,self.logZ,self.logZerr): evidence_file.write('{}\t{}\t{}\n'.format(xi,zi,ei)) evidence_file.close() def make_plots(self): try: import matplotlib.pyplot as plt except Exception: logger.warning("Impossible to produce standard plots. Cannot import matplotlib.") try: fig = plt.figure() plt.plot(self.results.logvol, self.results.logl) plt.xlim(( np.min(self.results.logvol),np.max(self.results.logvol) )) plt.ylim((0.,1.1*(np.max(self.results.logl)))) plt.ylabel('lnL - lnZnoise') plt.xlabel('lnX') plt.savefig(self.outdir+'/lnL_lnX.png', dpi=200) plt.close() fig = plt.figure() plt.fill_between(self.results.logvol, self.logBF-self.logZerr, self.logBF+self.logZerr, alpha=0.6, color='royalblue') plt.plot(self.results.logvol, self.logBF, color='navy', label='logBF') plt.plot(self.results.logvol, self.results.logl, color='slateblue', label='logL', ls='--') plt.xlim(( np.min(self.results.logvol),np.max(self.results.logvol) )) ylim_max = np.max([ np.max(self.logBF) ,np.max(self.results.logl)]) plt.ylim((0.,1.2*ylim_max)) plt.xlabel('logX') plt.savefig(self.outdir+'/lnBF_lnX.png', dpi=200) plt.close() except Exception: pass class SamplerDyNest(SamplerNest): def __init__(self, posterior, nbatch=512, **kwargs): # initialize dynamic nested parameters self.nbatch = nbatch self.init_flag = False # initialize dynesty inference super(SamplerDyNest, self).__init__(posterior, **kwargs) # extract prior samples, ensuring finite logL logger.info("Extracting prior samples ...") self.p0 = get_prior_samples_dynesty(kwargs['nlive'], self.ndim, self.sampler.loglikelihood, self.sampler.prior_transform) # set customized proposal dynesty.dynesty._SAMPLING["rwalk"] = self.sampler.evolve_point dynesty.nestedsamplers._SAMPLING["rwalk"] = self.sampler.evolve_point def __getstate__(self): # get __dict__ of parent class inher_dict = SamplerNest.__getstate__(self) # get __dict__ of this class self_dict = self.__dict__.copy() # merge them full_dict = {**inher_dict, **self_dict} # if 'sampler' in list(full_dict.keys()): # full_dict['sampler'].pool = None # full_dict['sampler'].M = None # full_dict['sampler'].rstate = None return full_dict def initialize_sampler(self, like_fn, ptform_fn, kwargs): logger.info("Initializing nested sampler ...") return dynesty.DynamicNestedSampler(like_fn, ptform_fn, **kwargs) def restore_inference(self, pool): # extract container logger.info("Restoring inference from existing container ...") dc = data_container(self.outdir + self.resume) container = dc.load() # sampler check if container.tag != 'dynest': logger.error("Container carries a {} inference, while DYNEST was requested.".format(container.tag.upper())) raise AttributeError("Container carries a {} inference, while DYNEST was requested.".format(container.tag.upper())) previous_inference = container.inference # extract previous variables and methods for kw in list(previous_inference.__dict__.keys()): self.__setattr__(kw, previous_inference.__dict__[kw]) # re-initialize pool self.sampler.pool = pool self.sampler.M = pool.map # re-initialize seed if self.seed == None: import time self.seed = int(time.time()) np.random.seed(self.seed) self.sampler.rstate = np.random # re-initialize signal try: signal.signal(signal.SIGTERM, self.store_inference_and_exit) signal.signal(signal.SIGINT, self.store_inference_and_exit) signal.signal(signal.SIGALRM, self.store_inference_and_exit) except AttributeError: logger.warning("Impossible to set signal attributes.") def store_inference(self): # save inference in pickle file dc = data_container(self.outdir+self.resume) dc.store('tag', 'dynest') dc.store('inference', self) dc.save() def update_sampler(self, args): acc,
fk, **kwargs): """ Find a related item by id for tags. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_fk_get_with_http_info(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for tags (required) :return: Tag If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'fk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_tags_fk_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_tags_fk_get`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_tags_fk_get`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_designs_nk_tags_fk_get`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/tags/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Tag', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_tags_fk_put(self, id, nk, fk, **kwargs): """ Update a related item by id for tags. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_fk_put(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for tags (required) :param Tag data: :return: Tag If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_tags_fk_put_with_http_info(id, nk, fk, **kwargs) else: (data) = self.portals_id_designs_nk_tags_fk_put_with_http_info(id, nk, fk, **kwargs) return data def portals_id_designs_nk_tags_fk_put_with_http_info(self, id, nk, fk, **kwargs): """ Update a related item by id for tags. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_fk_put_with_http_info(id, nk, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str fk: Foreign key for tags (required) :param Tag data: :return: Tag If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'fk', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_tags_fk_put" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_tags_fk_put`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_tags_fk_put`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_designs_nk_tags_fk_put`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/tags/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Tag', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_tags_get(self, id, nk, **kwargs): """ Queries tags of Design. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_get(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str filter: :return: list[Tag] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_tags_get_with_http_info(id, nk, **kwargs) else: (data) = self.portals_id_designs_nk_tags_get_with_http_info(id, nk, **kwargs) return data def portals_id_designs_nk_tags_get_with_http_info(self, id, nk, **kwargs): """ Queries tags of Design. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_get_with_http_info(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param str filter: :return: list[Tag] If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'nk', 'filter'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_designs_nk_tags_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_designs_nk_tags_get`") # verify the required parameter 'nk' is set if ('nk' not in params) or (params['nk'] is None): raise ValueError("Missing the required parameter `nk` when calling `portals_id_designs_nk_tags_get`") collection_formats = {} resource_path = '/Portals/{id}/designs/{nk}/tags'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'nk' in params: path_params['nk'] = params['nk'] query_params = {} if 'filter' in params: query_params['filter'] = params['filter'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Tag]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_designs_nk_tags_post(self, id, nk, **kwargs): """ Creates a new instance in tags of this model. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_designs_nk_tags_post(id, nk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str nk: Foreign key for designs. (required) :param Tag data: :return: Tag If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_designs_nk_tags_post_with_http_info(id, nk, **kwargs) else: (data) = self.portals_id_designs_nk_tags_post_with_http_info(id, nk, **kwargs) return data def portals_id_designs_nk_tags_post_with_http_info(self, id, nk, **kwargs): """ Creates a new instance in tags of this model. This method makes a synchronous HTTP request by
# # Unicode Mapping generated by uni2python.xsl # unicode_map = { 0x00100: r"\={A}", # LATIN CAPITAL LETTER A WITH MACRON 0x00101: r"\={a}", # LATIN SMALL LETTER A WITH MACRON 0x00102: r"\u{A}", # LATIN CAPITAL LETTER A WITH BREVE 0x00103: r"\u{a}", # LATIN SMALL LETTER A WITH BREVE 0x00104: r"\k{A}", # LATIN CAPITAL LETTER A WITH OGONEK 0x00105: r"\k{a}", # LATIN SMALL LETTER A WITH OGONEK 0x00106: r"\'{C}", # LATIN CAPITAL LETTER C WITH ACUTE 0x00107: r"\'{c}", # LATIN SMALL LETTER C WITH ACUTE 0x00108: r"\^{C}", # LATIN CAPITAL LETTER C WITH CIRCUMFLEX 0x00109: r"\^{c}", # LATIN SMALL LETTER C WITH CIRCUMFLEX 0x0010A: r"\.{C}", # LATIN CAPITAL LETTER C WITH DOT ABOVE 0x0010B: r"\.{c}", # LATIN SMALL LETTER C WITH DOT ABOVE 0x0010C: r"\v{C}", # LATIN CAPITAL LETTER C WITH CARON 0x0010D: r"\v{c}", # LATIN SMALL LETTER C WITH CARON 0x0010E: r"\v{D}", # LATIN CAPITAL LETTER D WITH CARON 0x0010F: r"\v{d}", # LATIN SMALL LETTER D WITH CARON 0x00110: r"\DJ{}", # LATIN CAPITAL LETTER D WITH STROKE 0x00111: r"\dj{}", # LATIN SMALL LETTER D WITH STROKE 0x00112: r"\={E}", # LATIN CAPITAL LETTER E WITH MACRON 0x00113: r"\={e}", # LATIN SMALL LETTER E WITH MACRON 0x00114: r"\u{E}", # LATIN CAPITAL LETTER E WITH BREVE 0x00115: r"\u{e}", # LATIN SMALL LETTER E WITH BREVE 0x00116: r"\.{E}", # LATIN CAPITAL LETTER E WITH DOT ABOVE 0x00117: r"\.{e}", # LATIN SMALL LETTER E WITH DOT ABOVE 0x00118: r"\k{E}", # LATIN CAPITAL LETTER E WITH OGONEK 0x00119: r"\k{e}", # LATIN SMALL LETTER E WITH OGONEK 0x0011A: r"\v{E}", # LATIN CAPITAL LETTER E WITH CARON 0x0011B: r"\v{e}", # LATIN SMALL LETTER E WITH CARON 0x0011C: r"\^{G}", # LATIN CAPITAL LETTER G WITH CIRCUMFLEX 0x0011D: r"\^{g}", # LATIN SMALL LETTER G WITH CIRCUMFLEX 0x0011E: r"\u{G}", # LATIN CAPITAL LETTER G WITH BREVE 0x0011F: r"\u{g}", # LATIN SMALL LETTER G WITH BREVE 0x00120: r"\.{G}", # LATIN CAPITAL LETTER G WITH DOT ABOVE 0x00121: r"\.{g}", # LATIN SMALL LETTER G WITH DOT ABOVE 0x00122: r"\c{G}", # LATIN CAPITAL LETTER G WITH CEDILLA 0x00123: r"\c{g}", # LATIN SMALL LETTER G WITH CEDILLA 0x00124: r"\^{H}", # LATIN CAPITAL LETTER H WITH CIRCUMFLEX 0x00125: r"\^{h}", # LATIN SMALL LETTER H WITH CIRCUMFLEX 0x00126: r"{\fontencoding{LELA}\selectfont\char40}", # LATIN CAPITAL LETTER H WITH STROKE 0x00128: r"\~{I}", # LATIN CAPITAL LETTER I WITH TILDE 0x00129: r"\~{\i}", # LATIN SMALL LETTER I WITH TILDE 0x0012A: r"\={I}", # LATIN CAPITAL LETTER I WITH MACRON 0x0012B: r"\={\i}", # LATIN SMALL LETTER I WITH MACRON 0x0012C: r"\u{I}", # LATIN CAPITAL LETTER I WITH BREVE 0x0012D: r"\u{\i}", # LATIN SMALL LETTER I WITH BREVE 0x0012E: r"\k{I}", # LATIN CAPITAL LETTER I WITH OGONEK 0x0012F: r"\k{i}", # LATIN SMALL LETTER I WITH OGONEK 0x00130: r"\.{I}", # LATIN CAPITAL LETTER I WITH DOT ABOVE 0x00131: r"\i{}", # LATIN SMALL LETTER DOTLESS I 0x00132: r"IJ", # LATIN CAPITAL LIGATURE IJ 0x00133: r"ij", # LATIN SMALL LIGATURE IJ 0x00134: r"\^{J}", # LATIN CAPITAL LETTER J WITH CIRCUMFLEX 0x00135: r"\^{\j}", # LATIN SMALL LETTER J WITH CIRCUMFLEX 0x00136: r"\c{K}", # LATIN CAPITAL LETTER K WITH CEDILLA 0x00137: r"\c{k}", # LATIN SMALL LETTER K WITH CEDILLA 0x00138: r"{\fontencoding{LELA}\selectfont\char91}", # LATIN SMALL LETTER KRA 0x00139: r"\'{L}", # LATIN CAPITAL LETTER L WITH ACUTE 0x0013A: r"\'{l}", # LATIN SMALL LETTER L WITH ACUTE 0x0013B: r"\c{L}", # LATIN CAPITAL LETTER L WITH CEDILLA 0x0013C: r"\c{l}", # LATIN SMALL LETTER L WITH CEDILLA 0x0013D: r"\v{L}", # LATIN CAPITAL LETTER L WITH CARON 0x0013E: r"\v{l}", # LATIN SMALL LETTER L WITH CARON 0x0013F: r"{\fontencoding{LELA}\selectfont\char201}", # LATIN CAPITAL LETTER L WITH MIDDLE DOT 0x00140: r"{\fontencoding{LELA}\selectfont\char202}", # LATIN SMALL LETTER L WITH MIDDLE DOT 0x00141: r"\L{}", # LATIN CAPITAL LETTER L WITH STROKE 0x00142: r"\l{}", # LATIN SMALL LETTER L WITH STROKE 0x00143: r"\'{N}", # LATIN CAPITAL LETTER N WITH ACUTE 0x00144: r"\'{n}", # LATIN SMALL LETTER N WITH ACUTE 0x00145: r"\c{N}", # LATIN CAPITAL LETTER N WITH CEDILLA 0x00146: r"\c{n}", # LATIN SMALL LETTER N WITH CEDILLA 0x00147: r"\v{N}", # LATIN CAPITAL LETTER N WITH CARON 0x00148: r"\v{n}", # LATIN SMALL LETTER N WITH CARON 0x00149: r"'n", # LATIN SMALL LETTER N PRECEDED BY APOSTROPHE 0x0014A: r"\NG{}", # LATIN CAPITAL LETTER ENG 0x0014B: r"\ng{}", # LATIN SMALL LETTER ENG 0x0014C: r"\={O}", # LATIN CAPITAL LETTER O WITH MACRON 0x0014D: r"\={o}", # LATIN SMALL LETTER O WITH MACRON 0x0014E: r"\u{O}", # LATIN CAPITAL LETTER O WITH BREVE 0x0014F: r"\u{o}", # LATIN SMALL LETTER O WITH BREVE 0x00150: r"\H{O}", # LATIN CAPITAL LETTER O WITH DOUBLE ACUTE 0x00151: r"\H{o}", # LATIN SMALL LETTER O WITH DOUBLE ACUTE 0x00152: r"\OE{}", # LATIN CAPITAL LIGATURE OE 0x00153: r"\oe{}", # LATIN SMALL LIGATURE OE 0x00154: r"\'{R}", # LATIN CAPITAL LETTER R WITH ACUTE 0x00155: r"\'{r}", # LATIN SMALL LETTER R WITH ACUTE 0x00156: r"\c{R}", # LATIN CAPITAL LETTER R WITH CEDILLA 0x00157: r"\c{r}", # LATIN SMALL LETTER R WITH CEDILLA 0x00158: r"\v{R}", # LATIN CAPITAL LETTER R WITH CARON 0x00159: r"\v{r}", # LATIN SMALL LETTER R WITH CARON 0x0015A: r"\'{S}", # LATIN CAPITAL LETTER S WITH ACUTE 0x0015B: r"\'{s}", # LATIN SMALL LETTER S WITH ACUTE 0x0015C: r"\^{S}", # LATIN CAPITAL LETTER S WITH CIRCUMFLEX 0x0015D: r"\^{s}", # LATIN SMALL LETTER S WITH CIRCUMFLEX 0x0015E: r"\c{S}", # LATIN CAPITAL LETTER S WITH CEDILLA 0x0015F: r"\c{s}", # LATIN SMALL LETTER S WITH CEDILLA 0x00160: r"\v{S}", # LATIN CAPITAL LETTER S WITH CARON 0x00161: r"\v{s}", # LATIN SMALL LETTER S WITH CARON 0x00162: r"\c{T}", # LATIN CAPITAL LETTER T WITH CEDILLA 0x00163: r"\c{t}", # LATIN SMALL LETTER T WITH CEDILLA 0x00164: r"\v{T}", # LATIN CAPITAL LETTER T WITH CARON 0x00165: r"\v{t}", # LATIN SMALL LETTER T WITH CARON 0x00166: r"{\fontencoding{LELA}\selectfont\char47}", # LATIN CAPITAL LETTER T WITH STROKE 0x00167: r"{\fontencoding{LELA}\selectfont\char63}", # LATIN SMALL LETTER T WITH STROKE 0x00168: r"\~{U}", # LATIN CAPITAL LETTER U WITH TILDE 0x00169: r"\~{u}", # LATIN SMALL LETTER U WITH TILDE 0x0016A: r"\={U}", # LATIN CAPITAL LETTER U WITH MACRON 0x0016B: r"\={u}", # LATIN SMALL LETTER U WITH MACRON 0x0016C: r"\u{U}", # LATIN CAPITAL LETTER U WITH BREVE 0x0016D: r"\u{u}", # LATIN SMALL LETTER U WITH BREVE 0x0016E: r"\r{U}", # LATIN CAPITAL LETTER U WITH RING ABOVE 0x0016F: r"\r{u}", # LATIN SMALL LETTER U WITH RING ABOVE 0x00170: r"\H{U}", # LATIN CAPITAL LETTER U WITH DOUBLE ACUTE 0x00171: r"\H{u}", # LATIN SMALL LETTER U WITH DOUBLE ACUTE 0x00172: r"\k{U}", # LATIN CAPITAL LETTER U WITH OGONEK 0x00173: r"\k{u}", # LATIN SMALL LETTER U WITH OGONEK 0x00174: r"\^{W}", # LATIN CAPITAL LETTER W WITH CIRCUMFLEX 0x00175: r"\^{w}", # LATIN SMALL LETTER W WITH CIRCUMFLEX 0x00176: r"\^{Y}", # LATIN CAPITAL LETTER Y WITH CIRCUMFLEX 0x00177: r"\^{y}", # LATIN SMALL LETTER Y WITH CIRCUMFLEX 0x00178: r'\"{Y}', # LATIN CAPITAL LETTER Y WITH DIAERESIS 0x00179: r"\'{Z}", # LATIN CAPITAL LETTER Z WITH ACUTE 0x0017A: r"\'{z}", # LATIN SMALL LETTER Z WITH ACUTE 0x0017B: r"\.{Z}", # LATIN CAPITAL LETTER Z WITH DOT ABOVE 0x0017C: r"\.{z}", # LATIN SMALL LETTER Z WITH DOT ABOVE 0x0017D: r"\v{Z}", # LATIN CAPITAL LETTER Z WITH CARON 0x0017E: r"\v{z}", # LATIN SMALL LETTER Z WITH CARON 0x00195: r"\texthvlig{}", # LATIN SMALL LETTER HV 0x0019E: r"\textnrleg{}", # LATIN SMALL LETTER N WITH LONG RIGHT LEG 0x001C2: r"\textdoublepipe{}", # LATIN LETTER ALVEOLAR CLICK 0x001F5: r"\'{g}", # LATIN SMALL LETTER G WITH ACUTE 0x00259: r"\ensuremath{\Elzschwa}", # LATIN SMALL LETTER SCHWA 0x00261: r"g", # LATIN SMALL LETTER SCRIPT G 0x00278: r"\textphi{}", # LATIN SMALL LETTER PHI 0x0029E: r"\textturnk{}", # LATIN SMALL LETTER TURNED K 0x002A4: r"\textdyoghlig{}", # LATIN SMALL LETTER DEZH DIGRAPH 0x0025B: r"\textvarepsilon{}", # LATIN SMALL LETTER OPEN E 0x002BC: r"'", # MODIFIER LETTER APOSTROPHE 0x002C7: r"\textasciicaron{}", # CARON 0x002C8: r"\ensuremath{\Elzverts}", # MODIFIER LETTER VERTICAL LINE 0x002D8: r"\textasciibreve{}", # BREVE 0x002D9: r"\textperiodcentered{}", # DOT ABOVE 0x002DA: r"\r{}", # RING ABOVE 0x002DB: r"\k{}", # OGONEK 0x002DC: r"\texttildelow{}", # SMALL TILDE 0x002DD: r"\H{}", # DOUBLE ACUTE ACCENT 0x002E5: r"\tone{55}", # MODIFIER LETTER EXTRA-HIGH TONE BAR 0x002E6: r"\tone{44}", # MODIFIER LETTER HIGH TONE BAR 0x002E7: r"\tone{33}", # MODIFIER LETTER MID TONE BAR 0x002E8: r"\tone{22}", # MODIFIER LETTER LOW TONE BAR 0x002E9: r"\tone{11}", # MODIFIER LETTER EXTRA-LOW TONE BAR 0x00300: r"\`", # COMBINING GRAVE ACCENT 0x00301: r"\'", # COMBINING ACUTE ACCENT 0x00302: r"\^", # COMBINING CIRCUMFLEX ACCENT 0x00303: r"\~", # COMBINING TILDE 0x00304: r"\=", # COMBINING MACRON 0x00306: r"\u", # COMBINING BREVE 0x00307: r"\.", # COMBINING DOT ABOVE 0x00308: r'\"', # COMBINING DIAERESIS 0x0030A: r"\r", # COMBINING RING ABOVE 0x0030B: r"\H", # COMBINING DOUBLE ACUTE ACCENT 0x0030C: r"\v", # COMBINING CARON 0x0030F: r"\cyrchar\C", # COMBINING DOUBLE GRAVE ACCENT 0x00327: r"\c", # COMBINING CEDILLA 0x00386: r"\'{A}", # GREEK CAPITAL LETTER ALPHA WITH TONOS 0x00388: r"\'{E}", # GREEK CAPITAL LETTER EPSILON WITH TONOS 0x00389: r"\'{H}", # GREEK CAPITAL LETTER ETA WITH TONOS 0x0038A: r"\'{}{I}", # GREEK CAPITAL LETTER IOTA WITH TONOS 0x0038C: r"\'{}O", # GREEK CAPITAL LETTER OMICRON WITH TONOS 0x00393: r"\ensuremath{\Gamma}", # GREEK CAPITAL LETTER GAMMA 0x00394: r"\ensuremath{\Delta}", # GREEK CAPITAL LETTER DELTA 0x00395: r"\ensuremath{\Epsilon}", # GREEK CAPITAL LETTER EPSILON 0x0039B:
self._changed_layout = self._ui.changed_layout self._changed_widget.hide() conn_str = self.BLACS_connection if self.remote_process_client is not None: conn_str += " via %s:%d" % (self.remote_process_client.host, self.remote_process_client.port) self._ui.device_name.setText( "<b>%s</b> [conn: %s]" % (str(self.device_name), conn_str) ) elide_label(self._ui.device_name, self._ui.horizontalLayout, Qt.ElideRight) elide_label(self._ui.state_label, self._ui.state_label_layout, Qt.ElideRight) # Insert an OutputBox into the splitter, initially hidden: self._output_box = OutputBox(self._ui.splitter) self._ui.splitter.setCollapsible(self._ui.splitter.count() - 2, True) self._output_box.output_textedit.hide() # connect signals self._ui.button_clear_smart_programming.clicked.connect(self.on_force_full_buffered_reprogram) self._ui.button_clear_smart_programming.setEnabled(False) self.force_full_buffered_reprogram = True self._ui.button_show_terminal.toggled.connect(self.set_terminal_visible) self._ui.button_close.clicked.connect(self.hide_error) self._ui.button_restart.clicked.connect(self.restart) self._update_error_and_tab_icon() self.supports_smart_programming(False) # Restore settings: self.restore_builtin_save_data(self.settings.get('saved_data', {})) # This should be done beofre the main_loop starts or else there is a race condition as to whether the # self._mode variable is even defined! # However it must be done after the UI is created! self.mode = MODE_MANUAL self.state = 'idle' # Setup the not responding timeout self._timeout = QTimer() self._timeout.timeout.connect(self.check_time) self._timeout.start(1000) # Launch the mainloop self._mainloop_thread = threading.Thread(target = self.mainloop) self._mainloop_thread.daemon = True self._mainloop_thread.start() # Add the tab to the notebook self.notebook.addTab(self._ui,self.device_name) self._ui.show() def _get_remote_configuration(self): # Create and return zprocess remote process client, if the device is configured # as a remote device, else None: PRIMARY_BLACS = '__PrimaryBLACS' table = self.settings['connection_table'] properties = table.find_by_name(self.device_name).properties if properties.get('gui', PRIMARY_BLACS) != PRIMARY_BLACS: msg = "Remote BLACS GUIs not yet supported by BLACS" raise NotImplementedError(msg) remote_server_name = properties.get('worker', PRIMARY_BLACS) if remote_server_name != PRIMARY_BLACS: remote_server_device = table.find_by_name(remote_server_name) if remote_server_device.parent.name != PRIMARY_BLACS: msg = "Multi-hop remote workers not yet supported by BLACS" raise NotImplementedError(msg) remote_host, remote_port = remote_server_device.parent_port.split(':') remote_port = int(remote_port) return RemoteProcessClient(remote_host, remote_port) return None def get_builtin_save_data(self): """Get builtin settings to be restored like whether the terminal is visible. Not to be overridden.""" return {'_terminal_visible': self._ui.button_show_terminal.isChecked(), '_splitter_sizes': self._ui.splitter.sizes()} def get_all_save_data(self): save_data = self.get_builtin_save_data() if hasattr(self, 'get_save_data'): tab_save_data = self.get_save_data() if isinstance(tab_save_data, dict): save_data.update(tab_save_data) else: self.logger.warning('Incorrect format for tab save data from the get_save_data() method. Data should be a dict. Data was: %s'%tab_save_data) return save_data def restore_builtin_save_data(self, data): """Restore builtin settings to be restored like whether the terminal is visible. Not to be overridden.""" self.set_terminal_visible(data.get('_terminal_visible', False)) if '_splitter_sizes' in data: self._ui.splitter.setSizes(data['_splitter_sizes']) def update_from_settings(self, settings): self.restore_builtin_save_data(settings['saved_data']) def supports_smart_programming(self,support): self._supports_smart_programming = bool(support) if self._supports_smart_programming: self._ui.button_clear_smart_programming.show() else: self._ui.button_clear_smart_programming.hide() def on_force_full_buffered_reprogram(self): self.force_full_buffered_reprogram = True @property def force_full_buffered_reprogram(self): return self._force_full_buffered_reprogram @force_full_buffered_reprogram.setter def force_full_buffered_reprogram(self,value): self._force_full_buffered_reprogram = bool(value) self._ui.button_clear_smart_programming.setEnabled(not bool(value)) @property @inmain_decorator(True) def error_message(self): return self._error @error_message.setter @inmain_decorator(True) def error_message(self,message): #print message #print self._error if message != self._error: self._error = message self._update_error_and_tab_icon() @inmain_decorator(True) def _update_error_and_tab_icon(self): """Udate and show the error message for the tab, and update the icon and text colour on the tab""" prefix = '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">\n<html><head><meta name="qrichtext" content="1" /><style type="text/css">\np, li { white-space: pre-wrap; }\n</style></head><body style=" font-family:"MS Shell Dlg 2"; font-size:7.8pt; font-weight:400; font-style:normal;">' suffix = '</body></html>' #print threading.current_thread().name self._ui.error_message.setHtml(prefix+self._not_responding_error_message+self._error+suffix) if self._error or self._not_responding_error_message: self._ui.notresponding.show() self._tab_text_colour = 'red' if self.error_message: if self.state == 'fatal error': self._tab_icon = self.ICON_FATAL_ERROR else: self._tab_icon = self.ICON_ERROR else: self._ui.notresponding.hide() self._tab_text_colour = 'black' if self.state == 'idle': self._tab_icon = self.ICON_OK else: self._tab_icon = self.ICON_BUSY self.set_tab_icon_and_colour() @inmain_decorator(True) def set_tab_icon_and_colour(self): """Set the tab icon and the colour of its text to the values of self._tab_icon and self._tab_text_colour respectively""" if self._ui.parentWidget() is None: return self.notebook = self._ui.parentWidget().parentWidget() if self.notebook is not None: currentpage = self.notebook.indexOf(self._ui) if currentpage == -1: # shutting down: return icon = QIcon(self._tab_icon) self.notebook.tabBar().setTabIcon(currentpage, icon) self.notebook.tabBar().setTabTextColor(currentpage, QColor(self._tab_text_colour)) def get_tab_layout(self): return self._layout @property def device_name(self): return self._device_name # sets the mode, switches between MANUAL, BUFFERED, TRANSITION_TO_BUFFERED and TRANSITION_TO_STATIC @property def mode(self): return self._mode @mode.setter def mode(self,mode): self._mode = mode self._update_state_label() @property def state(self): return self._state @state.setter def state(self,state): self._state = state self._time_of_last_state_change = time.time() self._update_state_label() self._update_error_and_tab_icon() @inmain_decorator(True) def _update_state_label(self): if self.mode == 1: mode = 'Manual' elif self.mode == 2: mode = 'Transitioning to buffered' elif self.mode == 4: mode = 'Transitioning to manual' elif self.mode == 8: mode = 'Buffered' else: raise RuntimeError('self.mode for device %s is invalid. It must be one of MODE_MANUAL, MODE_TRANSITION_TO_BUFFERED, MODE_TRANSITION_TO_MANUAL or MODE_BUFFERED'%(self.device_name)) self._ui.state_label.setText('<b>%s mode</b> - State: %s'%(mode,self.state)) # Todo: Update icon in tab def create_worker(self,name,WorkerClass,workerargs=None): """Set up a worker process. WorkerClass can either be a subclass of Worker, or a string containing a fully qualified import path to a worker. The latter is useful if the worker class is in a separate file with global imports or other import-time behaviour that is undesirable to have run in the main process, for example if the imports may not be available to the main process (as may be the case once remote worker processes are implemented and the worker may be on a separate computer). The worker process will not be started immediately, it will be started once the state machine mainloop begins running. This way errors in startup will be handled using the normal state machine machinery.""" if workerargs is None: workerargs = {} workerargs['is_remote'] = self.remote_process_client is not None if name in self.workers: raise Exception('There is already a worker process with name: %s'%name) if name == 'GUI': # This is here so that we can display "(GUI)" in the status bar and have the user confident this is actually happening in the GUI, # not in a worker process named GUI raise Exception('You cannot call a worker process "GUI". Why would you want to? Your worker process cannot interact with the BLACS GUI directly, so you are just trying to confuse yourself!') if isinstance(WorkerClass, type): worker = WorkerClass( process_tree, output_redirection_port=self._output_box.port, remote_process_client=self.remote_process_client, startup_timeout=30 ) elif isinstance(WorkerClass, str): # If we were passed a string for the WorkerClass, it is an import path # for where the Worker class can be found. Pass it to zprocess.Process, # which will do the import in the subprocess only. worker = Process( process_tree, output_redirection_port=self._output_box.port, remote_process_client=self.remote_process_client, startup_timeout=30, subclass_fullname=WorkerClass ) else: raise TypeError(WorkerClass) self.workers[name] = (worker,None,None) self.event_queue.put(MODE_MANUAL|MODE_BUFFERED|MODE_TRANSITION_TO_BUFFERED|MODE_TRANSITION_TO_MANUAL,True,False,[Tab._initialise_worker,[(name, workerargs),{}]], priority=-1) def _initialise_worker(self, worker_name, workerargs): yield (self.queue_work(worker_name, 'init', worker_name, self.device_name, workerargs)) if self.error_message: raise Exception('Device failed to initialise') @define_state(MODE_MANUAL|MODE_BUFFERED|MODE_TRANSITION_TO_BUFFERED|MODE_TRANSITION_TO_MANUAL,True) def _timeout_add(self,delay,execute_timeout): QTimer.singleShot(delay,execute_timeout) def statemachine_timeout_add(self,delay,statefunction,*args,**kwargs): # Add the timeout to our set of registered timeouts. Timeouts # can thus be removed by the user at ay time by calling # self.timeouts.remove(function) self._timeouts.add(statefunction) # Here's a function which executes the timeout once, then queues # itself up again after a delay: def execute_timeout(): # queue up the state function, but only if it hasn't been # removed from self.timeouts: if statefunction in self._timeouts and self._timeout_ids[statefunction] == unique_id: # Only queue up the state if we are in an allowed mode if statefunction._allowed_modes&self.mode: statefunction(*args, **kwargs) # queue up another call to this function (execute_timeout) # after the delay time: self._timeout_add(delay,execute_timeout) # Store a unique ID for this timeout so that we don't confuse # other timeouts for this one when checking to see that this # timeout hasn't been removed: unique_id = get_unique_id() self._timeout_ids[statefunction] = unique_id # queue the first run: #QTimer.singleShot(delay,execute_timeout) execute_timeout() # Returns True if the timeout was removed def statemachine_timeout_remove(self,statefunction): if statefunction in self._timeouts: self._timeouts.remove(statefunction) return True return False # returns True if at least one timeout was removed, else returns False def statemachine_timeout_remove_all(self): # As a consistency check, we overwrite self._timeouts to an empty set always # This must be done after the check to see if it is empty (if self._timeouts) so do not refactor this code! if self._timeouts: self._timeouts = set() return True else: self._timeouts = set() return False @define_state(MODE_MANUAL|MODE_BUFFERED|MODE_TRANSITION_TO_BUFFERED|MODE_TRANSITION_TO_MANUAL,True) def shutdown_workers(self): """Ask all workers to shutdown""" for worker_name in self.workers: yield(self.queue_work(worker_name, 'shutdown')) self.shutdown_workers_complete = True def close_tab(self, finalise=True): """Close the tab, terminate subprocesses and join the mainloop thread. If finalise=False, then do not terminate subprocesses or join the mainloop. In this case, callers must manually call finalise_close_tab() to perform these potentially blocking operations""" self.logger.info('close_tab called') self._timeout.stop() for worker, to_worker, from_worker in self.workers.values(): # If the worker is still
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys ###AWG sys.path.append('/home/pulseepr/Sources/AWG/Examples/python') ###sys.path.append('/home/anatoly/AWG/spcm_examples/python') ##sys.path.append('/home/anatoly/awg_files/python') #sys.path.append('C:/Users/User/Desktop/Examples/python') import numpy as np import atomize.device_modules.config.config_utils as cutil import atomize.general_modules.general_functions as general from pyspcm import * from spcm_tools import * class Spectrum_M4I_4450_X8: def __init__(self): #### Inizialization # setting path to *.ini file self.path_current_directory = os.path.dirname(__file__) self.path_config_file = os.path.join(self.path_current_directory, 'config','Spectrum_M4I_4450_X8_config.ini') # configuration data #config = cutil.read_conf_util(self.path_config_file) self.specific_parameters = cutil.read_specific_parameters(self.path_config_file) # Channel assignments #ch0 = self.specific_parameters['ch0'] # TRIGGER self.timebase_dict = {'ms': 1000000, 'us': 1000, 'ns': 1, } self.channel_dict = {'CH0': 0, 'CH1': 1, } self.coupling_dict = {'DC': 0, 'AC': 1, } self.impedance_dict = {'1 M': 0, '50': 1, } self.sample_rate_list = [1907, 3814, 7629, 15258, 30517, 61035, 122070, 244140, 488281, 976562, \ 1953125, 3906250, 7812500, 15625000, 31250000, 62500000, 125000000, \ 250000000, 500000000] self.hf_mode_range_list = [500, 1000, 2500, 5000] self.buffered_mode_range_list = [200, 500, 1000, 2000, 5000, 10000] # Limits and Ranges (depends on the exact model): #clock = float(self.specific_parameters['clock']) # Delays and restrictions # MaxDACValue corresponds to the amplitude of the output signal; MaxDACValue - Amplitude and so on # lMaxDACValue = int32 (0) # spcm_dwGetParam_i32 (hCard, SPC_MIINST_MAXADCVALUE, byref(lMaxDACValue)) # lMaxDACValue.value = lMaxDACValue.value - 1 #maxCAD = 8191 # MaxCADValue of the AWG card - 1 #minCAD = -8192 self.amplitude_max = 2500 # mV self.amplitude_min = 80 # mV self.sample_rate_max = 500 # MHz self.sample_rate_min = 0.001907 # MHz self.sample_ref_clock_max = 100 # MHz self.sample_ref_clock_min = 10 # MHz self.averages_max = 100000 self.delay_max = 8589934576 self.delay_min = 0 # Test run parameters # These values are returned by the modules in the test run if len(sys.argv) > 1: self.test_flag = sys.argv[1] else: self.test_flag = 'None' if self.test_flag != 'test': # Collect all parameters for digitizer settings self.sample_rate = 500 # MHz self.clock_mode = 1 # 1 is Internal; 32 is External self.reference_clock = 100 # MHz self.card_mode = 1 # 1 is Single; 2 is Average (Multi); self.trigger_ch = 2 # 1 is Software; 2 is External self.trigger_mode = 1 # 1 is Positive; 2 is Negative; 8 is High; 10 is Low self.aver = 2 # 0 is infinity self.delay = 0 # in sample rate; step is 32; rounded self.channel = 3 # 1 is CH0; 2 is CH1; 3 is CH0 + CH1 self.points = 128 # number of points self.posttrig_points = 64 # number of posttrigger points self.input_mode = 1 # 1 is HF mode; 0 is Buffered self.amplitude_0 = 500 # amlitude for CH0 in mV self.amplitude_1 = 500 # amlitude for CH1 in mV self.offset_0 = 0 # offset for CH0 in percentage self.offset_1 = 0 # offset for CH1 in percentage self.coupling_0 = 0 # coupling for CH0; AC is 1; DC is 0 self.coupling_1 = 0 # coupling for CH1 self.impedance_0 = 1 # impedance for CH0; 1 M is 0; 50 is 0 self.impedance_1 = 1 # impedance for CH1; # change of settings self.setting_change_count = 0 # state counter self.state = 0 self.read = 0 # integration window self.win_left = 0 self.win_right = 1 elif self.test_flag == 'test': self.test_sample_rate = '500 MHz' self.test_clock_mode = 'Internal' self.test_ref_clock = 100 self.test_card_mode = 'Single' self.test_trigger_ch = 'External' self.test_trigger_mode = 'Positive' self.test_averages = 10 self.test_delay = 0 self.test_channel = 'CH0' self.test_amplitude = 'CH0: 500 mV; CH1: 500 mV' self.test_num_segments = 1 self.test_points = 128 self.test_posttrig_points = 64 self.test_input_mode = 'HF' self.test_offset = 'CH0: 10' self.test_coupling = 'CH0: DC' self.test_impedance = 'CH0: 50' self.test_integral = 10**-9 # in V*s # Collect all parameters for digitizer settings self.sample_rate = 500 self.clock_mode = 1 self.reference_clock = 100 self.card_mode = 1 self.trigger_ch = 2 self.trigger_mode = 1 self.aver = 2 self.delay = 0 self.channel = 3 self.points = 128 self.posttrig_points = 64 self.input_mode = 1 self.amplitude_0 = 500 self.amplitude_1 = 500 self.offset_0 = 0 self.offset_1 = 0 self.coupling_0 = 0 self.coupling_1 = 0 self.impedance_0 = 1 self.impedance_1 = 1 # change of settings self.setting_change_count = 0 # state counter self.state = 0 self.read = 0 # integration window self.win_left = 0 self.win_right = 1 # Module functions def digitizer_name(self): answer = 'Spectrum M4I.4450-X8' return answer def digitizer_setup(self): """ Write settings to the digitizer. No argument; No output Everything except the buffer information will be write to the digitizer This function should be called after all functions that change settings are called """ if self.test_flag != 'test': if self.state == 0: # open card self.hCard = spcm_hOpen ( create_string_buffer (b'/dev/spcm1') ) self.state = 1 if self.hCard == None: general.message("No card found...") sys.exit() else: pass spcm_dwSetParam_i32 (self.hCard, SPC_TIMEOUT, 10000) # general parameters of the card; internal/external clock if self.clock_mode == 1: spcm_dwSetParam_i64 (self.hCard, SPC_SAMPLERATE, int( 1000000 * self.sample_rate )) elif self.clock_mode == 32: spcm_dwSetParam_i32 (self.hCard, SPC_CLOCKMODE, self.clock_mode) spcm_dwSetParam_i64 (self.hCard, SPC_REFERENCECLOCK, MEGA(self.reference_clock)) spcm_dwSetParam_i64 (self.hCard, SPC_SAMPLERATE, int( 1000000 * self.sample_rate ) ) # change card mode and memory if self.card_mode == 1: spcm_dwSetParam_i32(self.hCard, SPC_CARDMODE, self.card_mode) spcm_dwSetParam_i32(self.hCard, SPC_MEMSIZE, self.points) spcm_dwSetParam_i32(self.hCard, SPC_POSTTRIGGER, self.posttrig_points) elif self.card_mode == 2: spcm_dwSetParam_i32(self.hCard, SPC_CARDMODE, self.card_mode) spcm_dwSetParam_i32(self.hCard, SPC_MEMSIZE, int( self.points * self.aver ) ) # segment size should be multiple of memory size spcm_dwSetParam_i32(self.hCard, SPC_SEGMENTSIZE, self.points ) spcm_dwSetParam_i32(self.hCard, SPC_POSTTRIGGER, self.posttrig_points) # trigger spcm_dwSetParam_i32(self.hCard, SPC_TRIG_TERM, 1) # 50 Ohm trigger load spcm_dwSetParam_i32(self.hCard, SPC_TRIG_ORMASK, self.trigger_ch) # software / external if self.trigger_ch == 2: spcm_dwSetParam_i32(self.hCard, SPC_TRIG_EXT0_MODE, self.trigger_mode) # loop #spcm_dwSetParam_i32(self.hCard, SPC_LOOPS, self.loop) # trigger delay spcm_dwSetParam_i32( self.hCard, SPC_TRIG_DELAY, int(self.delay) ) # set the output channels spcm_dwSetParam_i32 (self.hCard, SPC_PATH0, self.input_mode) spcm_dwSetParam_i32 (self.hCard, SPC_PATH1, self.input_mode) spcm_dwSetParam_i32 (self.hCard, SPC_CHENABLE, self.channel) spcm_dwSetParam_i32 (self.hCard, SPC_AMP0, self.amplitude_0) spcm_dwSetParam_i32 (self.hCard, SPC_AMP1, self.amplitude_1) if ( self.amplitude_0 != 1000 or self.amplitude_0 != 10000 ) and self.input_mode == 0: spcm_dwSetParam_i32 (self.hCard, SPC_OFFS0, -self.offset_0 ) spcm_dwSetParam_i32 (self.hCard, SPC_OFFS1, -self.offset_1 ) elif self.input_mode == 1: spcm_dwSetParam_i32 (self.hCard, SPC_OFFS0, -self.offset_0 ) spcm_dwSetParam_i32 (self.hCard, SPC_OFFS1, -self.offset_1 ) spcm_dwSetParam_i32 (self.hCard, SPC_ACDC0, self.coupling_0) spcm_dwSetParam_i32 (self.hCard, SPC_ACDC1, self.coupling_1) # in HF mode impedance is fixed if self.input_mode == 0: spcm_dwSetParam_i32 (self.hCard, SPC_50OHM0, self.impedance_0 ) spcm_dwSetParam_i32 (self.hCard, SPC_50OHM1, self.impedance_1 ) # define the memory size / max amplitude #llMemSamples = int64 (self.memsize) #lBytesPerSample = int32(0) #spcm_dwGetParam_i32 (hCard, SPC_MIINST_BYTESPERSAMPLE, byref(lBytesPerSample)) #lSetChannels = int32 (0) #spcm_dwGetParam_i32 (hCard, SPC_CHCOUNT, byref (lSetChannels)) # The Spectrum driver also contains a register that holds the value of the decimal value of the full scale representation of the installed ADC. This # value should be used when converting ADC values (in LSB) into real-world voltage values, because this register also automatically takes any # specialities into account, such as slightly reduced ADC resolution with reserved codes for gain/offset compensation. self.lMaxDACValue = int32 (0) spcm_dwGetParam_i32 (self.hCard, SPC_MIINST_MAXADCVALUE, byref(self.lMaxDACValue)) #if lMaxDACValue.value == maxCAD: # pass #else: # general.message('maxCAD value does not equal to lMaxDACValue.value') # sys.exit() if self.channel == 1 or self.channel == 2: if self.card_mode == 1: self.qwBufferSize = uint64 (self.points * 2 * 1) # in bytes. samples with 2 bytes each, one channel active elif self.card_mode == 2: self.qwBufferSize = uint64 (int( self.points * self.aver ) * 2 * 1) elif self.channel == 3: if self.card_mode == 1: self.qwBufferSize = uint64 (self.points * 2 * 2) # in bytes. samples with 2 bytes each elif self.card_mode == 2: self.qwBufferSize = uint64 (int( self.points * self.aver ) * 2 * 2) self.lNotifySize = int32 (0) # driver should notify program after all data has been transfered spcm_dwSetParam_i32 (self.hCard, SPC_M2CMD, M2CMD_CARD_WRITESETUP) elif self.test_flag == 'test': # to run several important checks #if self.setting_change_count == 1: # if self.card_mode == 32768 and self.sequence_mode == 0: # self.buf = self.define_buffer_single()[0] # elif self.card_mode == 32768 and self.sequence_mode == 0: # self.buf = self.define_buffer_single_joined()[0] # elif self.card_mode == 512 and self.sequence_mode == 0: # self.buf = self.define_buffer_multi()[0] #else: pass def digitizer_get_curve(self, integral = False): """ Start digitizer. No argument; No output Default settings: Sample clock is 500 MHz; Clock mode is 'Internal'; Reference clock is 100 MHz; Card mode is 'Single'; Trigger channel is 'External'; Trigger mode is 'Positive'; Number of averages is
m.x118 >= 0) m.c220 = Constraint(expr= m.x119 >= 0) m.c221 = Constraint(expr= m.x120 >= 0) m.c222 = Constraint(expr= m.x121 >= 0) m.c223 = Constraint(expr= m.x122 >= 0) m.c224 = Constraint(expr= - 4*m.b59 + m.x123 >= 0) m.c225 = Constraint(expr= m.x124 >= 0) m.c226 = Constraint(expr= m.x125 >= 0) m.c227 = Constraint(expr= m.x126 >= 0) m.c228 = Constraint(expr= m.x127 >= 0) m.c229 = Constraint(expr= m.x128 >= 0) m.c230 = Constraint(expr= m.x129 >= 0) m.c231 = Constraint(expr= - 8*m.b2 + m.x194 <= 0) m.c232 = Constraint(expr= - 8*m.b3 + m.x195 <= 0) m.c233 = Constraint(expr= - 8*m.b4 + m.x196 <= 0) m.c234 = Constraint(expr= - 8*m.b5 + m.x197 <= 0) m.c235 = Constraint(expr= - 8*m.b6 + m.x198 <= 0) m.c236 = Constraint(expr= - 8*m.b7 + m.x199 <= 0) m.c237 = Constraint(expr= - 8*m.b8 + m.x200 <= 0) m.c238 = Constraint(expr= - 8*m.b9 + m.x201 <= 0) m.c239 = Constraint(expr= - 8*m.b10 + m.x202 <= 0) m.c240 = Constraint(expr= - 8*m.b11 + m.x203 <= 0) m.c241 = Constraint(expr= - 8*m.b12 + m.x204 <= 0) m.c242 = Constraint(expr= - 8*m.b13 + m.x205 <= 0) m.c243 = Constraint(expr= - 8*m.b14 + m.x206 <= 0) m.c244 = Constraint(expr= - 8*m.b15 + m.x207 <= 0) m.c245 = Constraint(expr= - 8*m.b16 + m.x208 <= 0) m.c246 = Constraint(expr= - 8*m.b17 + m.x209 <= 0) m.c247 = Constraint(expr= - 8*m.b18 + m.x210 <= 0) m.c248 = Constraint(expr= - 8*m.b19 + m.x211 <= 0) m.c249 = Constraint(expr= - 8*m.b20 + m.x212 <= 0) m.c250 = Constraint(expr= - 8*m.b21 + m.x213 <= 0) m.c251 = Constraint(expr= - 8*m.b22 + m.x214 <= 0) m.c252 = Constraint(expr= - 8*m.b23 + m.x215 <= 0) m.c253 = Constraint(expr= - 8*m.b24 + m.x216 <= 0) m.c254 = Constraint(expr= - 8*m.b25 + m.x217 <= 0) m.c255 = Constraint(expr= - 8*m.b26 + m.x218 <= 0) m.c256 = Constraint(expr= - 8*m.b27 + m.x219 <= 0) m.c257 = Constraint(expr= - 8*m.b28 + m.x220 <= 0) m.c258 = Constraint(expr= - 8*m.b29 + m.x221 <= 0) m.c259 = Constraint(expr= - 8*m.b30 + m.x222 <= 0) m.c260 = Constraint(expr= - 8*m.b31 + m.x223 <= 0) m.c261 = Constraint(expr= - 8*m.b32 + m.x224 <= 0) m.c262 = Constraint(expr= - 8*m.b33 + m.x225 <= 0) m.c263 = Constraint(expr= - 8*m.b34 + m.x226 <= 0) m.c264 = Constraint(expr= - 8*m.b35 + m.x227 <= 0) m.c265 = Constraint(expr= - 8*m.b36 + m.x228 <= 0) m.c266 = Constraint(expr= - 8*m.b37 + m.x229 <= 0) m.c267 = Constraint(expr= - 8*m.b38 + m.x230 <= 0) m.c268 = Constraint(expr= - 8*m.b39 + m.x231 <= 0) m.c269 = Constraint(expr= - 8*m.b40 + m.x232 <= 0) m.c270 = Constraint(expr= - 8*m.b41 + m.x233 <= 0) m.c271 = Constraint(expr= - 8*m.b42 + m.x234 <= 0) m.c272 = Constraint(expr= - 8*m.b43 + m.x235 <= 0) m.c273 = Constraint(expr= - 8*m.b44 + m.x236 <= 0) m.c274 = Constraint(expr= - 8*m.b45 + m.x237 <= 0) m.c275 = Constraint(expr= - 8*m.b46 + m.x238 <= 0) m.c276 = Constraint(expr= - 8*m.b47 + m.x239 <= 0) m.c277 = Constraint(expr= - 8*m.b48 + m.x240 <= 0) m.c278 = Constraint(expr= - 8*m.b49 + m.x241 <= 0) m.c279 = Constraint(expr= - 8*m.b50 + m.x242 <= 0) m.c280 = Constraint(expr= - 8*m.b51 + m.x243 <= 0) m.c281 = Constraint(expr= - 8*m.b52 + m.x244 <= 0) m.c282 = Constraint(expr= - 8*m.b53 + m.x245 <= 0) m.c283 = Constraint(expr= - 8*m.b54 + m.x246 <= 0) m.c284 = Constraint(expr= - 8*m.b55 + m.x247 <= 0) m.c285 = Constraint(expr= - 8*m.b56 + m.x248 <= 0) m.c286 = Constraint(expr= - 8*m.b57 + m.x249 <= 0) m.c287 = Constraint(expr= - 8*m.b58 + m.x250 <= 0) m.c288 = Constraint(expr= - 8*m.b59 + m.x251 <= 0) m.c289 = Constraint(expr= - 8*m.b60 + m.x252 <= 0) m.c290 = Constraint(expr= - 8*m.b61 + m.x253 <= 0) m.c291 = Constraint(expr= - 8*m.b62 + m.x254 <= 0) m.c292 = Constraint(expr= - 8*m.b63 + m.x255 <= 0) m.c293 = Constraint(expr= - 8*m.b64 + m.x256 <= 0) m.c294 = Constraint(expr= - 8*m.b65 + m.x257 <= 0) m.c295 = Constraint(expr= - 100*m.b2 + m.x258 >= 0) m.c296 = Constraint(expr= - 100*m.b3 + m.x259 >= 0) m.c297 = Constraint(expr= - 100*m.b10 + m.x266 >= 0) m.c298 = Constraint(expr= - 100*m.b11 + m.x267 >= 0) m.c299 = Constraint(expr= - 100*m.b18 + m.x274 >= 0) m.c300 = Constraint(expr= - 100*m.b19 + m.x275 >= 0) m.c301 = Constraint(expr= - 100*m.b26 + m.x282 >= 0) m.c302 = Constraint(expr= - 100*m.b27 + m.x283 >= 0) m.c303 = Constraint(expr= - 100*m.b34 + m.x290 >= 0) m.c304 = Constraint(expr= - 100*m.b35 + m.x291 >= 0) m.c305 = Constraint(expr= - 100*m.b42 + m.x298 >= 0) m.c306 = Constraint(expr= - 100*m.b43 + m.x299 >= 0) m.c307 = Constraint(expr= - 100*m.b50 + m.x306 >= 0) m.c308 = Constraint(expr= - 100*m.b51 + m.x307 >= 0) m.c309 = Constraint(expr= - 100*m.b58 + m.x314 >= 0) m.c310 = Constraint(expr= - 100*m.b59 + m.x315 >= 0) m.c311 = Constraint(expr= - 100*m.b2 + m.x258 <= 0) m.c312 = Constraint(expr= - 100*m.b3 + m.x259 <= 0) m.c313 = Constraint(expr= - 100*m.b4 + m.x260 <= 0) m.c314 = Constraint(expr= - 100*m.b5 + m.x261 <= 0) m.c315 = Constraint(expr= - 100*m.b6 + m.x262 <= 0) m.c316 = Constraint(expr= - 100*m.b7 + m.x263 <= 0) m.c317 = Constraint(expr= - 100*m.b8 + m.x264 <= 0) m.c318 = Constraint(expr= - 100*m.b9 + m.x265 <= 0) m.c319 = Constraint(expr= - 100*m.b10 + m.x266 <= 0) m.c320 = Constraint(expr= - 100*m.b11 + m.x267 <= 0) m.c321 = Constraint(expr= - 100*m.b12 + m.x268 <= 0) m.c322 = Constraint(expr= - 100*m.b13 + m.x269 <= 0) m.c323 = Constraint(expr= - 100*m.b14 + m.x270 <= 0) m.c324 = Constraint(expr= - 100*m.b15 + m.x271 <= 0) m.c325 = Constraint(expr= - 100*m.b16 + m.x272 <= 0) m.c326 = Constraint(expr= - 100*m.b17 + m.x273 <= 0) m.c327 = Constraint(expr= - 100*m.b18 + m.x274 <= 0) m.c328 = Constraint(expr= - 100*m.b19 + m.x275 <= 0) m.c329 = Constraint(expr= - 100*m.b20 + m.x276 <= 0) m.c330 = Constraint(expr= - 100*m.b21 + m.x277 <= 0) m.c331 = Constraint(expr= - 100*m.b22 + m.x278 <= 0) m.c332 = Constraint(expr= - 100*m.b23 + m.x279 <= 0) m.c333 = Constraint(expr= - 100*m.b24 + m.x280 <= 0) m.c334 = Constraint(expr= - 100*m.b25 + m.x281 <= 0) m.c335 = Constraint(expr= - 100*m.b26 + m.x282 <= 0) m.c336 = Constraint(expr= - 100*m.b27 + m.x283 <= 0) m.c337 = Constraint(expr= - 100*m.b28 + m.x284 <= 0) m.c338 = Constraint(expr= - 100*m.b29 + m.x285 <= 0) m.c339 = Constraint(expr= - 100*m.b30 + m.x286 <= 0) m.c340 = Constraint(expr= - 100*m.b31 + m.x287 <= 0) m.c341 = Constraint(expr= - 100*m.b32 + m.x288 <= 0) m.c342 = Constraint(expr= - 100*m.b33 + m.x289 <= 0) m.c343 = Constraint(expr= - 100*m.b34 + m.x290 <= 0) m.c344 = Constraint(expr= - 100*m.b35 + m.x291 <= 0) m.c345 = Constraint(expr= - 100*m.b36 + m.x292 <= 0) m.c346 = Constraint(expr= - 100*m.b37 + m.x293 <= 0) m.c347 = Constraint(expr= - 100*m.b38 + m.x294 <= 0) m.c348 = Constraint(expr= - 100*m.b39 + m.x295 <= 0) m.c349 = Constraint(expr= - 100*m.b40 + m.x296 <= 0) m.c350 = Constraint(expr= - 100*m.b41 + m.x297 <= 0) m.c351 = Constraint(expr= - 100*m.b42 + m.x298 <= 0) m.c352 = Constraint(expr= - 100*m.b43 + m.x299 <= 0) m.c353 = Constraint(expr= - 100*m.b44 + m.x300 <= 0) m.c354 = Constraint(expr= - 100*m.b45 + m.x301 <= 0) m.c355 = Constraint(expr= - 100*m.b46 + m.x302 <= 0) m.c356 = Constraint(expr= - 100*m.b47 + m.x303 <= 0) m.c357 = Constraint(expr= - 100*m.b48 + m.x304 <= 0) m.c358 = Constraint(expr= - 100*m.b49 + m.x305 <= 0) m.c359 = Constraint(expr= - 100*m.b50 + m.x306 <= 0) m.c360 = Constraint(expr= - 100*m.b51 + m.x307 <= 0) m.c361 = Constraint(expr= - 100*m.b52 + m.x308 <= 0) m.c362 = Constraint(expr= - 100*m.b53 + m.x309 <= 0) m.c363 = Constraint(expr= - 100*m.b54 + m.x310 <= 0) m.c364 = Constraint(expr= - 100*m.b55 + m.x311 <= 0) m.c365 = Constraint(expr= - 100*m.b56 + m.x312 <= 0) m.c366 = Constraint(expr= - 100*m.b57 + m.x313 <= 0) m.c367 = Constraint(expr= - 100*m.b58 + m.x314 <= 0) m.c368 = Constraint(expr= - 100*m.b59 + m.x315 <= 0) m.c369 = Constraint(expr= - 100*m.b60 + m.x316 <= 0) m.c370 = Constraint(expr= - 100*m.b61 + m.x317 <= 0) m.c371 = Constraint(expr= - 100*m.b62 + m.x318 <= 0) m.c372 = Constraint(expr= - 100*m.b63 + m.x319 <= 0) m.c373 = Constraint(expr= - 100*m.b64 + m.x320 <= 0) m.c374 = Constraint(expr= - 100*m.b65 + m.x321 <= 0) m.c375 = Constraint(expr= m.x258 - m.x322 - m.x323 - m.x324 - m.x325 == 0) m.c376 = Constraint(expr= m.x259 - m.x326 - m.x327 - m.x328 - m.x329 == 0) m.c377 = Constraint(expr= m.x260 - m.x330 - m.x331 - m.x332 - m.x333 == 0) m.c378 = Constraint(expr= m.x261 - m.x334 - m.x335 - m.x336 - m.x337 == 0) m.c379 = Constraint(expr= m.x262 - m.x338 - m.x339 - m.x340 - m.x341 == 0) m.c380 = Constraint(expr=
import sys from elegantrl.run import * '''custom env''' class PendulumEnv(gym.Wrapper): # [ElegantRL.2021.11.11] def __init__(self, gym_env_id='Pendulum-v1', target_return=-200): # Pendulum-v0 gym.__version__ == 0.17.0 # Pendulum-v1 gym.__version__ == 0.21.0 gym.logger.set_level(40) # Block warning super(PendulumEnv, self).__init__(env=gym.make(gym_env_id)) # from elegantrl.envs.Gym import get_gym_env_info # get_gym_env_info(env, if_print=True) # use this function to print the env information self.env_num = 1 # the env number of VectorEnv is greater than 1 self.env_name = gym_env_id # the name of this env. self.max_step = 200 # the max step of each episode self.state_dim = 3 # feature number of state self.action_dim = 1 # feature number of action self.if_discrete = False # discrete action or continuous action self.target_return = target_return # episode return is between (-1600, 0) def reset(self): return self.env.reset().astype(np.float32) def step(self, action: np.ndarray): # PendulumEnv set its action space as (-2, +2). It is bad. # https://github.com/openai/gym/wiki/Pendulum-v0 # I suggest to set action space as (-1, +1) when you design your own env. state, reward, done, info_dict = self.env.step(action * 2) # state, reward, done, info_dict return state.astype(np.float32), reward, done, info_dict '''demo''' def demo_continuous_action_off_policy_redq(): env_name = ['Pendulum-v0', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'BipedalWalker-v3', ][ENV_ID] agent = [AgentREDqSAC, AgentSyncREDqSAC][-1] gpu_id = GPU_ID # >=0 means GPU ID, -1 means CPU if env_name in {'Pendulum-v0', 'Pendulum-v1'}: """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 1 1.60e+03 -979.95 | -979.95 165.5 200 0 | -2.01 1.56 0.57 1.00 1 5.44e+04 -827.21 | -900.53 214.7 200 0 | -2.28 0.50 -50.04 0.81 1 6.72e+04 -242.52 | -242.52 155.3 200 0 | -0.79 1.10 -59.92 0.72 1 7.76e+04 -238.89 | -238.89 107.1 200 0 | -0.73 1.38 -66.98 0.66 1 8.72e+04 -238.53 | -238.53 98.6 200 0 | -0.83 1.22 -69.88 0.63 1 9.60e+04 -149.37 | -149.37 136.2 200 0 | -0.31 1.81 -69.55 0.64 | UsedTime: 798 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 1.60e+03-1199.01 |-1199.01 252.2 200 0 | -2.83 2.03 0.59 1.00 3 4.96e+04-1024.38 |-1024.38 172.7 200 0 | -2.32 0.39 -45.36 0.84 3 6.16e+04 -327.84 | -327.84 127.8 200 0 | -1.61 0.63 -58.63 0.76 3 7.20e+04 -198.66 | -198.66 82.0 200 0 | -0.86 0.92 -65.27 0.70 3 8.88e+04 -156.18 | -169.78 86.5 200 0 | -0.45 1.09 -70.35 0.62 3 1.03e+05 -139.14 | -139.14 74.5 200 0 | -0.46 1.29 -75.14 0.65 | UsedTime: 1070 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 3 1.60e+03-1391.83 |-1391.83 241.9 200 0 | -3.19 2.26 0.50 1.00 3 5.04e+04-1045.01 |-1104.32 85.4 200 0 | -2.66 0.90 -42.83 0.83 3 6.16e+04 -218.75 | -218.75 151.5 200 0 | -1.63 0.59 -53.07 0.76 3 7.12e+04 -201.54 | -201.54 134.3 200 0 | -0.88 0.83 -59.02 0.70 3 8.80e+04 -182.13 | -193.92 106.1 200 0 | -0.60 1.84 -63.65 0.65 3 9.52e+04 -167.25 | -167.25 84.2 200 0 | -0.31 0.86 -66.83 0.68 3 1.02e+05 -139.24 | -139.24 73.5 200 0 | -0.83 1.29 -61.21 0.72 | UsedTime: 1068 | """ env = PendulumEnv(env_name, target_return=-150) "TotalStep: 1e5, TargetReward: -200, UsedTime: 600s" args = Arguments(agent, env) args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0 args.gamma = 0.97 args.target_step = args.max_step * 2 args.eval_times = 2 ** 3 elif env_name == 'LunarLanderContinuous-v2': """ | Arguments Remove cwd: ./LunarLanderContinuous-v2_SyncREDqSAC_0 ################################################################################ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 0 4.22e+03 -254.23 | -254.23 120.0 134 54 | -0.57 0.78 0.10 0.15 0 6.40e+04 -100.91 | -100.91 54.9 976 56 | 0.00 0.24 0.50 0.16 0 8.87e+04 -55.83 | -55.83 87.8 813 280 | 0.00 0.30 2.94 0.18 0 1.10e+05 -43.72 | -43.72 96.1 478 313 | 0.01 0.36 4.41 0.19 0 1.26e+05 112.65 | 112.65 125.1 598 274 | -0.00 0.37 4.63 0.19 0 1.59e+05 147.64 | 101.66 97.5 826 143 | 0.02 0.37 7.11 0.18 0 2.29e+05 166.62 | 150.04 75.7 707 185 | 0.02 0.54 14.27 0.19 0 2.39e+05 187.70 | 187.70 76.0 591 175 | 0.01 0.59 12.77 0.19 0 2.84e+05 195.30 | 166.09 89.9 599 247 | 0.03 0.68 14.24 0.17 0 2.92e+05 195.30 | 166.12 82.5 586 252 | 0.03 0.55 12.08 0.17 0 3.00e+05 217.07 | 217.07 30.2 448 125 | 0.01 0.59 14.13 0.17 | UsedTime: 2852 | """ # env = gym.make('LunarLanderContinuous-v2') # get_gym_env_args(env=env, if_print=True) env_func = gym.make env_args = {'env_num': 1, 'env_name': 'LunarLanderContinuous-v2', 'max_step': 1000, 'state_dim': 8, 'action_dim': 2, 'if_discrete': False, 'target_return': 200, 'id': 'LunarLanderContinuous-v2'} args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.99 args.reward_scale = 2 ** -2 args.eval_times = 2 ** 5 elif env_name == 'BipedalWalker-v3': """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 0 7.28e+03 -111.85 | -111.85 0.2 109 3 | -0.26 0.69 0.04 0.02 0 1.24e+05 -96.80 | -103.65 0.2 50 0 | -0.42 0.19 -0.20 0.02 0 1.75e+05 -84.13 | -84.13 15.8 236 352 | -1.18 0.20 -2.09 0.02 0 1.96e+05 -53.51 | -53.51 10.9 1600 0 | -0.03 0.16 -4.75 0.03 0 2.30e+05 -34.98 | -37.49 3.0 1600 0 | -0.02 0.24 -5.33 0.03 0 2.89e+05 -26.53 | -26.53 12.0 1600 0 | -0.03 0.17 -4.17 0.05 0 3.03e+05 -24.50 | -24.50 18.1 1600 0 | -0.02 0.16 -1.19 0.05 0 3.18e+05 3.44 | 3.44 53.4 1299 466 | 0.00 0.16 -1.71 0.04 0 3.30e+05 29.50 | 29.50 75.0 1263 515 | 0.03 0.16 -1.08 0.04 0 3.40e+05 107.37 | 107.37 86.7 1365 412 | 0.05 0.16 0.24 0.04 0 3.59e+05 206.41 | 137.65 99.3 1540 233 | 0.08 0.14 0.62 0.03 0 3.89e+05 269.83 | 269.83 42.6 1581 74 | 0.16 0.10 -0.25 0.04 0 4.01e+05 281.13 | 281.13 76.3 1503 246 | 0.12 0.09 -0.27 0.04 0 4.12e+05 301.77 | 301.77 1.0 1467 28 | 0.17 0.09 0.28 0.04 | UsedTime: 3294 | ID Step maxR | avgR stdR avgS stdS | expR objC etc. 0 6.68e+03 -111.72 | -111.72 0.1 103 3 | -0.10 0.69 0.05 0.02 0 1.06e+05 -93.81 | -93.81 0.1 116 7 | -0.16 0.18 -0.09 0.02 0 1.31e+05 -58.96 | -58.96 25.0 1125 704 | -0.11 0.13 -1.04 0.02 0 1.74e+05 -32.93 | -91.37 0.4 113 2 | -0.15 0.11 -1.13 0.02 0 4.20e+05 -32.93 | -33.38 15.8 1600 0 | -0.01 0.04 -0.37 0.02 0 4.39e+05 16.15 | 16.15 26.3 1600 0 | 0.01 0.04 -1.40 0.02 0 4.52e+05 40.90 | 10.57 42.8 1600 0 | -0.02 0.04 -1.03 0.02 0 4.84e+05 63.49 | 63.49 40.0 1600 0 | 0.02 0.04 -0.72 0.02 0 4.90e+05 63.49 | 53.72 56.5 1490 294 | 0.03 0.04 -0.55 0.02 0 5.04e+05 71.35 | 43.56 50.1 1600 0 | 0.03 0.04 -1.07 0.02 0 5.23e+05 93.06 | 93.06 90.7 1535 253 | 0.03 0.03 0.21 0.02 0 5.36e+05 173.26 | 121.82 123.4 1279 557 | 0.10 0.03 -0.62 0.02 0 5.49e+05 253.63 | 253.63 43.9 1582 68 | 0.08 0.03 0.70 0.02 0 5.63e+05 266.36 | 163.69 154.3 1030 476 | 0.17 0.04 0.68 0.03 0 5.85e+05 302.20 | 302.20 0.9 1318 18 | 0.17 0.04 1.30 0.03 | UsedTime: 8100 | """ env_func = gym.make env_args = {'env_num': 1, 'env_name': 'BipedalWalker-v3', 'max_step': 1600, 'state_dim': 24, 'action_dim': 4, 'if_discrete': False, 'target_return': 300, 'id': 'BipedalWalker-v3', } args = Arguments(agent, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.98 args.eval_times = 2 ** 4 else: raise ValueError('env_name:', env_name) args.learner_gpus = gpu_id args.random_seed += gpu_id if_check = 0 if if_check: train_and_evaluate(args) else: train_and_evaluate_mp(args) def demo_continuous_action_off_policy(): env_name = ['Pendulum-v0', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'BipedalWalker-v3', ''][ENV_ID] gpu_id = GPU_ID # >=0 means GPU ID, -1 means CPU if env_name in {'Pendulum-v0', 'Pendulum-v1'}: env = PendulumEnv(env_name, target_return=-500) """ ID Step maxR | avgR stdR avgS stdS | expR objC etc. 2 1.60e+03-1147.49 |-1147.49 179.2 200 0 | -2.61 0.90 0.55 1.00 2 5.84e+04 -121.61 |
<reponame>mtakahiro/mirage #! /usr/bin/env python """ Create a mirage-format seed image from an input fits file. This fits file must contain a valid WCS, and be distortion-free. This code will extract a sub-image from the input fits file. The subimage is centered at the input RA and Dec (crop_center_ra, crop_center_dec) and its size is determined by the aperture input. The extracted sub-image is then blotted (resampled) onto the requested NIRCam detector's FOV, including the distortion model. The resulting image is then saved in such a format that it can be used as input in the obs_generator.py, image_simulator.py, or disperser code in the mirage package. Essentially this script is designed to take the place of catalog_seed_image.py in the case where the user has a distortion-free mosaic image that they wish to break up into NIRCam images. Another way to use this code would be for an input fits image of some extended object that the user wishes to distort according to the NIRCam distortion model. This distorted file can then be placed in an extended object catalog which will be used by the catalog_seed_image.py step. In this method, multiple extended objets could be distorted and added to the same frame. Inputs: mosaic_file: The name of the fits file containing the distortion-free image to be blotted. The code currently assumes that the mosaic_file is oriented north-up. From here, there are two ways to call fits_seed_image.py 1. parameter file: a yaml input file matching the format (optional) required by other steps of the nircam data simulator 2. Manual inputs: aperture - aperture name matching an entry in the subarray definition file (e.g. NRCB5_FULL) crop_center_ra, crop_center_dec - The RA and Dec at the center of the sub-image to crop from mosaic_file. This, in combination with the array size (determined from aperture) define the sub-image to use. blot_center_ra, blot_center_dec - The RA and Dec at the center of the blotted sub-image. If these are equal to crop_center_ra and dec, then the center of the cropped image will remain at the center of the blotted image. blot_pav3 - Position angle of the blotted image. flux_cal_file - Ascii file listing the zeropoints for all NIRCam filters. By setting this value equal to 'config', the code will use the flux calibration file that is packaged with the NIRCam data simulator. This information is used only to populate the PHOTFLAM, PHOTFNU, and PHOTPLAM header keywords. filter - The NIRCam filter to use. This is used to select the appropriate row from the flux calibration file. pupil - The NIRCam pupil value to use. This is used to select the appropriate row from the flux calibration file in the case where a filter that is located in the pupil wheel is used. If the pupil value does not start with 'F' (e.g. F405N), then it is ignored. grism_source_image - True/False. If you intend to send the seed image output to the disperser software, then set this value to True. The output image will then be made larger than the nominal aperture size by a factor of sqrt(2), in order for the disperser to keep track of sources just outside the nominal FOV, whose dispersed spectra may fall onto the detector. outfile - Name of the file to contain the output seed image. outdir - Directory in which to place outfile Outputs: self.seedimage, self.seed_segmap, self.seedinfo contain the seed (countrate) image, the associated segmentation map, and header information required by subsequent steps of the nircam data simulator. The segmentation map is only used in the case where the seed image is dispersed by a call to the disperser software. Example calls: See the Simulated_data_from_mosaic_image.ipynb notebook in the examples directory """ import argparse import copy import logging import os import pkg_resources import sys from astropy.io import fits, ascii import datetime from math import radians import numpy as np from photutils import detect_sources from photutils import TopHatWindow, TukeyWindow, CosineBellWindow, SplitCosineBellWindow, HanningWindow from photutils.centroids import centroid_2dg from photutils.psf import resize_psf from photutils.psf.matching import create_matching_kernel import pysiaf from scipy.ndimage import shift from scipy.signal import fftconvolve import yaml from . import crop_mosaic, blot_image from mirage.logging import logging_functions from mirage.psf.psf_selection import get_psf_wings from mirage.psf import tools from mirage.seed_image.save_seed import save from mirage.reference_files import crds_tools from mirage.utils.constants import EXPTYPES, LOG_CONFIG_FILENAME, STANDARD_LOGFILE_NAME from mirage.utils.flux_cal import fluxcal_info from mirage.utils.siaf_interface import get_siaf_information config_files = {'nircam': {'flux_cal': 'NIRCam_zeropoints.list'}, 'niriss': {'flux_cal': 'niriss_zeropoints.list'} } KNOWN_PSF_TELESCOPES = {"JWST", "HST", "SPITZER"} classpath = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) log_config_file = os.path.join(classpath, 'logging', LOG_CONFIG_FILENAME) logging_functions.create_logger(log_config_file, STANDARD_LOGFILE_NAME) class ImgSeed: def __init__(self, paramfile=None, mosaic_file=None, data_extension_number=0, wcs_extension_number=0, cropped_file='cropped_image.fits', outdir=None, blotted_file=None, psf_file=None, mosaic_fwhm=None, mosaic_fwhm_units='arcsec', gaussian_psf=True, save_intermediates=False): """Create a seed image from a distortionless input mosaic. The user can supply a PSF associated with the mosaic in the ``psf_file`` parameter. If ``psf_file`` is None and ``gaussian_psf`` is True, then astropy's Gaussian2D model will be used to construct a PSF for the mosaic. If ``psf_file`1` is None and ``gaussian_psf`` is False, and the mosaic comes from a "known" telescope, then a custom function will be used to construct the PSF. Currently the "known" telescopes include JWST, HST, and Spitzer IRAC. Note that this code cannot be used in cases where the mosaic's PSF FWHM is larger than the JWST PSF, as translating the mosaic to the JWST PSF would then be sharpening the image. Parameters ---------- paramfile : str Name of Mirage yaml input file used to supply instrument info mosaic_file : str Name of the fits file containing the mosaic file to use data_extension_number : int Extension number within the mosaic FITS file where the data array is located wcs_extension_number : int Extension number within the mosaic FITS file where the world coordinate system information is located cropped_file : str Name of the file to save the cropped image into. If None, the cropped image is not saved outdir : str Name of the output directory to save the output files into. If None, the output directory listed in ``paramfile`` will be used. blotted_file : str Name of FITS file to save resampled image into psf_file : str Name of FITS file containing a PSF corresponding to the mosaic data. This will be used to create a matching kernel to allow convolution of the mosaic data to match the JWST PSF. If None, a PSF will be created using an astropy Gaussian2D model or, in the case of a mosaic from JWST, a webbpsf-generated PSF will be read in. mosaic_fwhm : float FWHM of the PSF in the mosaic. Can be in pixels or arcseconds, as specified by the ``mosaic_fwhm_units`` keyword. If None, an astropy Gaussian2D model will be fit to the PSF to estimate the FWHM mosaic_fwhm_units : str Units of ``mosaic_fwhm``. Can be 'pixels' or 'arcsec' gaussian_psf : bool If ``psf_file`` is None and this is True, the mosaic PSF will be created using an astropy Gaussian2D model. save_intermediates : bool If True, intermediate outputs, including the PSFs and the matching PSF kernel, as well as the cropped image after convolution with the matching PSF kernel, will be saved. """ allowed_mosaic_fwhm_units = ['pixels', 'arcsec'] self.mosaic_file = mosaic_file self.data_extension_number = data_extension_number self.wcs_extension_number = wcs_extension_number self.crop_center_ra = 0. self.crop_center_dec = 0. self.channel = None self.detector = None self.blot_center_ra = 0. self.blot_center_dec = 0. self.blot_pav3 = 0. self.aperture = '' self.flux_cal_file = 'config' self.distortion_file = 'crds' self.filter = '' self.pupil = '' self.grism_source_image = False self.cropped_file = cropped_file self.blotted_file = blotted_file self.outdir = outdir self.grism_direct_factor = np.sqrt(2.) self.psf_file = psf_file self.gaussian_psf = gaussian_psf self.mosaic_fwhm = mosaic_fwhm if mosaic_fwhm_units not in allowed_mosaic_fwhm_units: raise ValueError(("ERROR: mosaic_fwhm_units must be one of: {}" .format(allowed_mosaic_fwhm_units))) self.mosaic_fwhm_units = mosaic_fwhm_units self.save_intermediates = save_intermediates # Locate the module files, so that we know where to look # for config subdirectory self.modpath = pkg_resources.resource_filename('mirage', '') # self.coords contains the factor by which the # nominal output array size needs to be increased # (used for WFSS mode), as well as the coordinate # offset between the nominal output array coordinates, # and those of the expanded array. These are needed # mostly for WFSS observations, where the nominal output # array will not sit centered in the expanded output image. self.coords = {'x': 1., 'xoffset': 0., 'y': 1., 'yoffset': 0.} # If a paramfile is provided, read in and # set params self.paramfile = paramfile if
% 4 == 0: elements.append(frame[i_][0]) if i % 4 == 1: coordinates.append(frame[i_]) if i % 4 == 2: velocities.append(frame[i_]) if i % 4 == 3: forces.append(frame[i_]) frame_data['atom_ids'] = np.array(elements) frame_data['coordinates'] = np.array(coordinates, dtype=float) if velocities: frame_data['velocities'] = np.array(velocities, dtype=float) if forces: frame_data['forces'] = np.array(forces, dtype=float) return frame_data def analysis( self, frames='all', ncpus=1, _ncpus=1, override=False, **kwargs ): """ Perform structural analysis on a frame/ set of frames. Depending on the passed parameters a frame, a list of particular frames, a range of frames (from, to), or all frames can be analysed with this function. The analysis is performed on each frame and each discrete molecule in that frame separately. The steps are as follows: 1. A frame is extracted and returned as a :class:`MolecularSystem`. 2. If `swap_atoms` is set the atom ids are swapped. 3. If `forcefield` is set the atom ids are deciphered. 4. If `rebuild` is set the molecules in the system are rebuild. 5. Each discrete molecule is extracted as :class:`Molecule` 6. Each molecule is analysed with :func:`Molecule.full_analysis()` 7. Analysis output populates the :attr:`analysis_output` dictionary. As the analysis of trajectories often have to be unique, many options are conditional. A side effect of this function is that the analysed frames are also returned to the :attr:`frames` mimicking the behaviour of the :func:`get_frames()`. Parameters ---------- frames : :class:`int` or :class:`list` or :class:`touple` or :class:`str` Specified frame (:class:`int`), or frames (:class:`list`), or range (:class:`touple`), or `all`/`everything` (:class:`str`). (default='all') override : :class:`bool` If True, an output already storred in :attr:`analysis_output` can be override. (default=False) swap_atoms : :class:`dict`, optional If this kwarg is passed with an appropriate dictionary a :func:`pywindow.molecular.MolecularSystem.swap_atom_keys()` will be applied to the extracted frame. forcefield : :class:`str`, optional If this kwarg is passed with appropriate forcefield keyword a :func:`pywindow.molecular.MolecularSystem.decipher_atom_keys()` will be applied to the extracted frame. modular : :class:`bool`, optional If this kwarg is passed a :func:`pywindow.molecular.MolecularSystem.make_modular()` will be applied to the extracted frame. (default=False) rebuild : :class:`bool`, optional If this kwarg is passed a `rebuild=True` is passed to :func:`pywindow.molecular.MolecularSystem.make_modular()` that will be applied to the extracted frame. (default=False) ncpus : :class:`int`, optional If ncpus > 1, then the analysis is performed in parallel for the specified number of parallel jobs. Otherwise, it runs in serial. (default=1) Returns ------- None : :class:`NoneType` The function returns `None`, the analysis output is returned to :attr:`analysis_output` dictionary. """ frames_for_analysis = [] # First populate the frames_for_analysis list. if isinstance(frames, int): frames_for_analysis.append(frames) if isinstance(frames, list): for frame in frames: if isinstance(frame, int): frames_for_analysis.append(frame) else: raise _FunctionError( "The list should be populated with integers only." ) if isinstance(frames, tuple): if isinstance(frames[0], int) and isinstance(frames[1], int): for frame in range(frames[0], frames[1]): frames_for_analysis.append(frame) else: raise _FunctionError( "The tuple should contain only two integers " "for the begining and the end of the frames range." ) if isinstance(frames, str): if frames in ['all', 'everything']: for frame in range(0, self.no_of_frames): frames_for_analysis.append(frame) else: raise _FunctionError( "Didn't recognise the keyword. (see manual)" ) # The override keyword by default is False. So we check if any of the # frames were already analysed and if so we delete them from the list. # However, if the override is set to True, then we just proceed. if override is False: frames_for_analysis_new = [] for frame in frames_for_analysis: if frame not in self.analysis_output.keys(): frames_for_analysis_new.append(frame) frames_for_analysis = frames_for_analysis_new if ncpus == 1: for frame in frames_for_analysis: analysed_frame = self._analysis_serial(frame, _ncpus, **kwargs) self.analysis_output[frame] = analysed_frame if ncpus > 1: self._analysis_parallel(frames_for_analysis, ncpus, **kwargs) def _analysis_serial(self, frame, _ncpus, **kwargs): settings = { 'rebuild': False, 'modular': False, } settings.update(kwargs) molecular_system = self._get_frame( self.trajectory_map[frame], frame, extract_data=True, **kwargs ) if settings['modular'] is True: molecular_system.make_modular(rebuild=settings['rebuild']) molecules = molecular_system.molecules else: molecules = {'0': molecular_system.system_to_molecule()} results = {} for molecule in molecules: mol = molecules[molecule] if 'molsize' in settings: molsize = settings['molsize'] if isinstance(molsize, int): if mol.no_of_atoms == molsize: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) if isinstance(molsize, tuple) and isinstance(molsize[0], str): if molsize[0] in ['bigger', 'greater', 'larger', 'more']: if mol.no_of_atoms > molsize[1]: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) if molsize[0] in ['smaller', 'less']: if mol.no_of_atoms > molsize[1]: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) if molsize[0] in ['not', 'isnot', 'notequal', 'different']: if mol.no_of_atoms != molsize[1]: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) if molsize[0] in ['is', 'equal', 'exactly']: if mol.no_of_atoms == molsize[1]: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) if molsize[0] in ['between', 'inbetween']: if molsize[1] < mol.no_of_atoms < molsize[2]: results[molecule] = mol.full_analysis( _ncpus=_ncpus, **kwargs) else: results[molecule] = mol.full_analysis(_ncpus=_ncpus, **kwargs) return results def _analysis_parallel_execute(self, frame, **kwargs): settings = { 'rebuild': False, 'modular': False, } settings.update(kwargs) molecular_system = self._get_frame( self.trajectory_map[frame], frame, extract_data=True, **kwargs ) if settings['modular'] is True: molecular_system.make_modular(rebuild=settings['rebuild']) molecules = molecular_system.molecules else: molecules = {'0': molecular_system.system_to_molecule()} results = {} for molecule in molecules: mol = molecules[molecule] if 'molsize' in settings: molsize = settings['molsize'] if isinstance(molsize, int): if mol.no_of_atoms == molsize: results[molecule] = mol.full_analysis(**kwargs) if isinstance(molsize, tuple) and isinstance(molsize[0], str): if molsize[0] in ['bigger', 'greater', 'larger', 'more']: if mol.no_of_atoms > molsize[1]: results[molecule] = mol.full_analysis(**kwargs) if molsize[0] in ['smaller', 'less']: if mol.no_of_atoms > molsize[1]: results[molecule] = mol.full_analysis(**kwargs) if molsize[0] in ['not', 'isnot', 'notequal', 'different']: if mol.no_of_atoms != molsize[1]: results[molecule] = mol.full_analysis(**kwargs) if molsize[0] in ['is', 'equal', 'exactly']: if mol.no_of_atoms == molsize[1]: results[molecule] = mol.full_analysis(**kwargs) if molsize[0] in ['between', 'inbetween']: if molsize[1] < mol.no_of_atoms < molsize[2]: results[molecule] = mol.full_analysis(**kwargs) else: results[molecule] = mol.full_analysis(**kwargs) return frame, results def _analysis_parallel(self, frames, ncpus, **kwargs): try: pool = Pool(processes=ncpus) parallel = [ pool.apply_async( self._analysis_parallel_execute, args=(frame, ), kwds=kwargs) for frame in frames ] results = [p.get() for p in parallel if p.get()] pool.terminate() for i in results: self.analysis_output[i[0]] = i[1] except TypeError: pool.terminate() raise _ParallelAnalysisError("Parallel analysis failed.") def _check_HISTORY(self): """ """ self.check_log = "" line = 0 binary_step = 0 timestep = 0 timestep_flag = 'timestep' progress = 0 warning_1 = "No comment line is present as the file header.\n" warning_2 = " ".join( ( "Second header line is missing from the file", "that contains information on the system's periodicity", "and the type of the trajectory file.\n" ) ) warning_3 = " ".join( ( "Comment line encountered in the middle of", "the trajectory file.\n" ) ) error_1 = "The trajectory is discontinous.\n" error_2 = "The file contains an empty line.\n" with open(self.filepath, 'r') as trajectory_file: # We open the HISTORY trajectory file with closing( mmap( trajectory_file.fileno(), 0, access=ACCESS_READ)) as file_binary_map: # We use this binary mapping feature that instead of loading # the full file into memory beforehand it only # maps the content. Especially useful with enormous files while binary_step < len(file_binary_map): line += 1 binary_line = file_binary_map.readline() binary_step = binary_step + len(binary_line) progress_old = progress progress = round(binary_step * 100 / len(file_binary_map), 0) string_line = binary_line.decode("utf-8").strip( '\n').split() # Warning 1 if line == 1: if string_line[0] != 'DLFIELD': self.check_log = " ".join( (self.check_log, "Line {0}:".format(line), warning_1) ) # Warning 2 if line == 2: if len(string_line) != 3: self.check_log = " ".join( (self.check_log, "Line {0}:".format(line), warning_2) ) # Error 1 if string_line: if string_line[0] == timestep_flag: old_timestep = timestep timestep = int(string_line[1]) if old_timestep > timestep: error = " ".join( "Line {0}:".format(line), error_1 ) raise _TrajectoryError(error) # Error 2 if len(string_line) == 0: error = " ".join( "Line {0}:".format(line), error_2 ) raise _TrajectoryError(error) def save_analysis(self, filepath=None, **kwargs): """ Dump the content of :attr:`analysis_output` as JSON dictionary. Parameters ---------- filepath : :class:`str` The filepath for the JSON file. Returns ------- None : :class:`NoneType` """ # We pass a copy of the analysis attribute dictionary. dict_obj = deepcopy(self.analysis_output) # If no filepath is provided we create one. if filepath is None: filepath = "_".join( (str(self.system_id), "pywindow_analysis") ) filepath = '/'.join((os.getcwd(), filepath)) # Dump the dictionary to json file. Output().dump2json(dict_obj, filepath, default=to_list, **kwargs) return def save_frames(self, frames, filepath=None, filetype='pdb', **kwargs): settings = { "pdb": Output()._save_pdb, "xyz": Output()._save_xyz, "decipher": True, "forcefield": None, } settings.update(kwargs) if filetype.lower() not in settings.keys(): raise _FormatError("The '{0}' file format is not supported".format( filetype)) frames_to_get =
import requests import json import sys import collections import jinja2 import ipaddress import time import re import urllib3 urllib3.disable_warnings() # Global options for debugging PRINT_PAYLOAD = True # flag variable to avoid pushing anything to APIC PUSH_TO_APIC = False PRINT_RESPONSE_TEXT_ALWAYS = False PRINT_RESPONSE_TEXT_ON_FAIL = True # Global path to main json directory json_path = 'C:/path_to_json_template_dir/jsondata/' # Global list of allowed statuses valid_status = ['created', 'created,modified', 'deleted'] # Exception Classes class InsufficientArgs(Exception): pass class InvalidArg(Exception): pass class LoginFailed(Exception): pass # Function to validate input for each method def process_kwargs(required_args, optional_args, **kwargs): # Validate all required kwargs passed if all(item in kwargs for item in required_args.keys()) is not True: raise InsufficientArgs('Insufficient required arguments.') # Load all required args values from kwargs for item in kwargs: if item in required_args.keys(): required_args[item] = kwargs[item] for item in kwargs: if item in optional_args.keys(): optional_args[item] = kwargs[item] # Combine option and required dicts for Jinja template render # the following syntax is supported from Python3.6, we replace # it with the manual copy. # templateVars = { **required_args, **optional_args } templateVars = required_args.copy() templateVars.update(optional_args) return(templateVars) # Function to execute HTTP Post def post(apic, payload, cookies, uri, section=''): if PRINT_PAYLOAD or not PUSH_TO_APIC: print('Adding to the object: "'+uri+'" the following json string:') print(payload) s = requests.Session() r = '' if PUSH_TO_APIC: while r == '': try: r = s.post('https://{}/api/node/{}.json'.format(apic, uri), data=payload, cookies=cookies, verify=False) status = r.status_code except requests.exceptions.ConnectionError as e: print("Connection error, pausing before retrying. Error: {}" .format(e)) time.sleep(5) except Exception as e: print("Method {} failed. Exception: {}".format(section[:-5], e)) status = 666 return(status) if PRINT_RESPONSE_TEXT_ALWAYS: print(r.text) if status != 200 and PRINT_RESPONSE_TEXT_ON_FAIL: print(r.text) else: return 200 return status # Class must be instantiated with APIC IP address, username, and password # the login method returns the APIC cookies. class FabLogin(object): def __init__(self, apic, user, pword): self.apic = apic self.user = user self.pword = pword def login(self): # Load login json payload payload = ''' {{ "aaaUser": {{ "attributes": {{ "name": "{user}", "pwd": <PASSWORD>}" }} }} }} '''.format(user=self.user, pword=self.pword) payload = json.loads(payload, object_pairs_hook=collections.OrderedDict) s = requests.Session() # Try the request, if exception, exit program w/ error try: # Verify is disabled as there are issues if it is enabled r = s.post('https://{}/api/mo/aaaLogin.json'.format(self.apic), data=json.dumps(payload), verify=False) # Capture HTTP status code from the request status = r.status_code # Capture the APIC cookie for all other future calls cookies = r.cookies # Log login status/time(?) somewhere if status == 400: print("Error 400 - Bad Request - ABORT!") print("Probably have a bad URL") sys.exit() if status == 401: print("Error 401 - Unauthorized - ABORT!") print("Probably have incorrect credentials") sys.exit() if status == 403: print("Error 403 - Forbidden - ABORT!") print("Server refuses to handle your request") sys.exit() if status == 404: print("Error 404 - Not Found - ABORT!") print("Seems like you're trying to POST to a page that doesn't" " exist.") sys.exit() except Exception as e: print("Something went wrong logging into the APIC - ABORT!") # Log exit reason somewhere raise LoginFailed(e) self.cookies = cookies return cookies # Class must be instantiated with APIC IP address and cookies class FabPodPol(object): def __init__(self, apic, cookies): self.apic = apic self.cookies = cookies self.templateLoader = jinja2.FileSystemLoader( searchpath=(json_path + 'FabPodPol/')) self.templateEnv = jinja2.Environment(loader=self.templateLoader) # Method must be called with the following kwargs. # name: Name of the node being deployed # id: ID of the node being deploeyd as an integer (i.e. 101) # serial: Serial number of device being deployed # descr: (Optional) Description of the node # fabric: (Optional) Default is 1 - will be relevant for xconnect # pod: (Optional) Default is 1 - will be relevant for multipod def comission_hw(self, **kwargs): # Dicts for required and optional args required_args = {'name': '', 'id': '', 'serial': ''} optional_args = {'descr': '', 'fabric': '1', 'pod': '1'} # Validate inputs, return dict of template vars templateVars = process_kwargs(required_args, optional_args, **kwargs) # Validate inputs if not int(templateVars['id']): raise InvalidArg('ID must be an integer') else: templateVars['id'] = int(templateVars['id']) if not int(templateVars['fabric']): raise InvalidArg('Fabric ID must be an integer') else: templateVars['fabric'] = int(templateVars['fabric']) if not int(templateVars['pod']): raise InvalidArg('Pod ID must be an integer') else: templateVars['pod'] = int(templateVars['pod']) # Locate template for method template_file = "comission_hw.json" template = self.templateEnv.get_template(template_file) # Render template w/ values from dicts payload = template.render(templateVars) # Handle request uri = 'mo/uni' status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the following kwargs. # address: Name/IP of the NTP server # status: created | created,modified | deleted def ntp(self, **kwargs): required_args = {'address': '', 'status': ''} optional_args = {} templateVars = process_kwargs(required_args, optional_args, **kwargs) if not ipaddress.ip_address(templateVars['address']): raise InvalidArg('Address must be a valid IPv4 address') if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "ntp.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni' status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the following kwargs. # name: Name of the node being deployed # address: IP of DNS Server # status: (Of the DNS Server) created | created,modified | deleted # domain: (Optional) DNS Domain # domain_status: (Optional) created | created,modified | deleted # preferred: (Optional) yes | no # domain_default: (Optional) yes | no def dns(self, **kwargs): required_args = {'address': '', 'status': ''} optional_args = {'domain': '', 'domain_status': 'deleted', 'preferred': 'no', 'domain_default': 'no'} templateVars = process_kwargs(required_args, optional_args, **kwargs) if not ipaddress.ip_address(templateVars['address']): raise InvalidArg('Address must be a valid IPv4 address') if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "dns.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/dnsp-default' status = post(self.apic, payload, self.cookies, uri, template_file) template_file = "dns_profile.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/dnsp-default/rsProfileToEpg' status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the following kwargs. # asn: Fabric BGP ASN as an integer # status: created | created,modified | deleted def fabric_bgp(self, **kwargs): required_args = {'asn': '', 'status': ''} optional_args = {} templateVars = process_kwargs(required_args, optional_args, **kwargs) if not (int(templateVars['asn']) in range(1, 65536)): raise InvalidArg('Invalid BGP ASN') else: templateVars['asn'] = int(templateVars['asn']) if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "fabric_bgp.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/bgpInstP-default/as' status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the following kwargs. # rr: ID of node to be route reflector # status: created | created,modified | deleted def fabric_rr(self, **kwargs): required_args = {'rr': '', 'status': ''} optional_args = {} templateVars = process_kwargs(required_args, optional_args, **kwargs) if not int(templateVars['rr']): raise InvalidArg('Route Reflector ID must be an integer') else: templateVars['rr'] = int(templateVars['rr']) if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "fabric_rr.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/bgpInstP-default/rr/node-{}'.format( templateVars['rr']) status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the following kwargs. # name: Name of pod-policy to be created # status: created | created,modified | deleted def pod_pol(self, **kwargs): required_args = {'name': '', 'status': ''} optional_args = {} templateVars = process_kwargs(required_args, optional_args, **kwargs) if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "pod_pol.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/funcprof'.format(templateVars['name']) status = post(self.apic, payload, self.cookies, uri, template_file) template_file = "pod_pol_assign.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/fabric/podprof-default/pods-default-typ-ALL/rspodPGrp' status = post(self.apic, payload, self.cookies, uri, template_file) return status # Class must be instantiated with APIC IP address and cookies class FabAccPol(object): def __init__(self, apic, cookies): self.apic = apic self.cookies = cookies self.templateLoader = jinja2.FileSystemLoader( searchpath=(json_path + 'FabAccPol/')) self.templateEnv = jinja2.Environment(loader=self.templateLoader) # Method must be called with the following kwargs. # name: The name of the CDP policy # state: enabled | disabled # status: created | created,modified | deleted def cdp(self, **kwargs): required_args = {'name': '', 'state': '', 'status': ''} optional_args = {} templateVars = process_kwargs(required_args, optional_args, **kwargs) if templateVars['status'] not in valid_status: raise InvalidArg('Status invalid') template_file = "cdp.json" template = self.templateEnv.get_template(template_file) payload = template.render(templateVars) uri = 'mo/uni/infra/cdpIfP-{}'.format(templateVars['name']) status = post(self.apic, payload, self.cookies, uri, template_file) return status # Method must be called with the
device configurations of listed OSPFv3 processes with provided configurations cisco.nxos.nxos_ospfv3: config: processes: - process_id: 102 router_id: 198.51.100.1 address_family: afi: ipv6 safi: unicast areas: - area_id: 0.0.0.100 filter_list: - route_map: rmap_8 direction: in ranges: - not_advertise: true prefix: 2001:db2::/32 redistribute: - protocol: eigrp id: 130 route_map: rmap_1 - protocol: direct route_map: ospf102-direct-connect vrfs: - vrf: zone1 router_id: 198.51.100.129 areas: - area_id: 0.0.0.102 nssa: default_information_originate: True no_summary: True state: replaced # Task output # ------------- # before: # processes: # - process_id: "100" # router_id: 203.0.113.20 # - address_family: # afi: ipv4 # safi: unicast # areas: # - area_id: 0.0.0.100 # filter_list: # - direction: out # route_map: rmap_2 # - direction: in # route_map: rmap_1 # ranges: # - not_advertise: true # prefix: 2001:db2::/32 # - cost: 120 # prefix: 2001:db3::/32 # redistribute: # - protocol: direct # route_map: ospf102-direct-connect # - id: "120" # protocol: eigrp # route_map: rmap_1 # process_id: "102" # router_id: 198.51.100.1 # vrfs: # - areas: # - area_id: 0.0.0.102 # nssa: # default_information_originate: true # no_summary: true # - area_id: 0.0.0.103 # nssa: # no_summary: true # translate: # type7: # always: true # router_id: 198.51.100.129 # vrf: zone1 # - auto_cost: # reference_bandwidth: 45 # unit: Gbps # vrf: zone2 # # commands: # - router ospf 102 # - address-family ipv6 unicast # - redistribute eigrp 130 route-map rmap_1 # - no redistribute eigrp 120 route-map rmap_1 # - area 0.0.0.100 filter-list route-map rmap_8 in # - no area 0.0.0.100 filter-list route-map rmap_2 out # - no area 0.0.0.100 range 2001:db3::/32 # - vrf zone1 # - no area 0.0.0.103 nssa # - no area 0.0.0.103 nssa translate type7 always # - no vrf zone2 # # after: # processes: # - process_id: "100" # router_id: 203.0.113.20 # - address_family: # afi: ipv6 # safi: unicast # areas: # - area_id: 0.0.0.100 # filter_list: # - direction: in # route_map: rmap_8 # ranges: # - not_advertise: true # prefix: 2001:db2::/32 # redistribute: # - protocol: direct # route_map: ospf102-direct-connect # - id: "130" # protocol: eigrp # route_map: rmap_1 # process_id: "102" # router_id: 198.51.100.1 # vrfs: # - areas: # - area_id: 0.0.0.102 # nssa: # default_information_originate: true # no_summary: true # router_id: 198.51.100.129 # vrf: zone1 # After state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # router ospfv3 100 # router-id 203.0.113.20 # router ospfv3 102 # router-id 198.51.100.1 # address-family ipv6 unicast # redistribute direct route-map ospf102-direct-connect # redistribute eigrp 130 route-map rmap_1 # area 0.0.0.100 filter-list route-map rmap_8 in # area 0.0.0.100 range 198.51.100.64/27 not-advertise # vrf zone1 # router-id 198.51.100.129 # area 0.0.0.102 nssa no-summary default-information-originate # Using overridden # Before state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # router ospfv3 100 # router-id 203.0.113.20 # router ospfv3 102 # router-id 198.51.100.1 # address-family ipv6 unicast # redistribute direct route-map ospf102-direct-connect # redistribute eigrp 120 route-map rmap_1 # area 0.0.0.100 filter-list route-map rmap_2 out # area 0.0.0.100 filter-list route-map rmap_1 in # area 0.0.0.100 range 2001:db2::/32 not-advertise # area 0.0.0.100 range 2001:db3::/32 cost 120 # vrf zone1 # router-id 198.51.100.129 # area 0.0.0.102 nssa no-summary default-information-originate # area 0.0.0.103 nssa no-summary # area 0.0.0.103 nssa translate type7 always # vrf zone2 # auto-cost reference-bandwidth 45 Gbps - name: Override all OSPFv3 configuration with provided configuration cisco.nxos.nxos_ospfv3: config: processes: - process_id: 104 router_id: 203.0.113.20 - process_id: 102 router_id: 198.51.100.1 shutdown: true state: overridden # Task output # ------------- # before: # processes: # - process_id: "100" # router_id: 203.0.113.20 # - address_family: # afi: ipv4 # safi: unicast # areas: # - area_id: 0.0.0.100 # filter_list: # - direction: out # route_map: rmap_2 # - direction: in # route_map: rmap_1 # ranges: # - not_advertise: true # prefix: 2001:db2::/32 # - cost: 120 # prefix: 2001:db3::/32 # redistribute: # - protocol: direct # route_map: ospf102-direct-connect # - id: "120" # protocol: eigrp # route_map: rmap_1 # process_id: "102" # router_id: 198.51.100.1 # vrfs: # - areas: # - area_id: 0.0.0.102 # nssa: # default_information_originate: true # no_summary: true # - area_id: 0.0.0.103 # nssa: # no_summary: true # translate: # type7: # always: true # router_id: 198.51.100.129 # vrf: zone1 # - auto_cost: # reference_bandwidth: 45 # unit: Gbps # vrf: zone2 # # commands: # - no router ospfv3 100 # - router ospfv3 104 # - router-id 203.0.113.20 # - router ospfv3 102 # - shutdown # - address-family ipv6 unicast # - no redistribute direct route-map ospf102-direct-connect # - no redistribute eigrp 120 route-map rmap_1 # - no area 0.0.0.100 filter-list route-map rmap_2 out # - no area 0.0.0.100 filter-list route-map rmap_1 in # - no area 0.0.0.100 range 2001:db2::/32 # - no area 0.0.0.100 range 2001:db3::/32 # - no vrf zone1 # - no vrf zone2 # # after: # processes: # - process_id: "102" # router_id: 198.51.100.1 # shutdown: true # address_family: # afi: ipv6 # safi: unicast # - process_id: "104" # router_id: 203.0.113.20 # After state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # router ospfv3 102 # router-id 198.51.100.1 # address-family ipv6 unicast # shutdown # router ospfv3 104 # router-id 203.0.113.20 # Using deleted to delete a single OSPF process # Before state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospf .*" # router ospfv3 100 # router-id 203.0.113.20 # router ospfv3 102 # router-id 198.51.100.1 # address-family ipv6 unicast # redistribute direct route-map ospf102-direct-connect # redistribute eigrp 120 route-map rmap_1 # area 0.0.0.100 filter-list route-map rmap_2 out # area 0.0.0.100 filter-list route-map rmap_1 in # area 0.0.0.100 range 2001:db2::/32 not-advertise # area 0.0.0.100 range 2001:db3::/32 cost 120 # vrf zone1 # router-id 198.51.100.129 # area 0.0.0.102 nssa no-summary default-information-originate # area 0.0.0.103 nssa no-summary # area 0.0.0.103 nssa translate type7 always # vrf zone2 # auto-cost reference-bandwidth 45 Gbps - name: Delete a single OSPFv3 process cisco.nxos.nxos_ospfv3: config: processes: - process_id: 102 state: deleted # Task output # ------------- # before: # processes: # - process_id: "100" # router_id: 203.0.113.20 # - address_family: # afi: ipv4 # safi: unicast # areas: # - area_id: 0.0.0.100 # filter_list: # - direction: out # route_map: rmap_2 # - direction: in # route_map: rmap_1 # ranges: # - not_advertise: true # prefix: 2001:db2::/32 # - cost: 120 # prefix: 2001:db3::/32 # redistribute: # - protocol: direct # route_map: ospf102-direct-connect # - id: "120" # protocol: eigrp # route_map: rmap_1 # process_id: "102" # router_id: 198.51.100.1 # vrfs: # - areas: # - area_id: 0.0.0.102 # nssa: # default_information_originate: true # no_summary: true # - area_id: 0.0.0.103 # nssa: # no_summary: true # translate: # type7: # always: true # router_id: 198.51.100.129 # vrf: zone1 # - auto_cost: # reference_bandwidth: 45 # unit: Gbps # vrf: zone2 # # commands: # - no router ospfv3 102 # # after: # processes: # - process_id: "100" # router_id: 203.0.113.20 # After state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # router ospfv3 100 # router-id 203.0.113.20 # Using deleted all OSPFv3 processes from the device # Before state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # router ospfv3 100 # router-id 203.0.113.20 # router ospfv3 102 # router-id 198.51.100.1 # address-family ipv6 unicast # redistribute direct route-map ospf102-direct-connect # redistribute eigrp 120 route-map rmap_1 # area 0.0.0.100 filter-list route-map rmap_2 out # area 0.0.0.100 filter-list route-map rmap_1 in # area 0.0.0.100 range 2001:db2::/32 not-advertise # area 0.0.0.100 range 2001:db3::/32 cost 120 # vrf zone1 # router-id 198.51.100.129 # area 0.0.0.102 nssa no-summary default-information-originate # area 0.0.0.103 nssa no-summary # area 0.0.0.103 nssa translate type7 always # vrf zone2 # auto-cost reference-bandwidth 45 Gbps - name: Delete all OSPFv3 processes from the device cisco.nxos.nxos_ospfv3: state: deleted # Task output # ------------- # before: # processes: # - process_id: "100" # router_id: 203.0.113.20 # - address_family: # afi: ipv4 # safi: unicast # areas: # - area_id: 0.0.0.100 # filter_list: # - direction: out # route_map: rmap_2 # - direction: in # route_map: rmap_1 # ranges: # - not_advertise: true # prefix: 2001:db2::/32 # - cost: 120 # prefix: 2001:db3::/32 # redistribute: # - protocol: direct # route_map: ospf102-direct-connect # - id: "120" # protocol: eigrp # route_map: rmap_1 # process_id: "102" # router_id: 198.51.100.1 # vrfs: # - areas: # - area_id: 0.0.0.102 # nssa: # default_information_originate: true # no_summary: true # - area_id: 0.0.0.103 # nssa: # no_summary: true # translate: # type7: # always: true # router_id: 198.51.100.129 # vrf: zone1 # - auto_cost: # reference_bandwidth: 45 # unit: Gbps # vrf: zone2 # # commands: # - no router ospfv3 100 # - no router ospfv3 102 # # after: {} # After state: # ------------ # nxos-9k-rdo# sh running-config | section "^router ospfv3" # nxos-9k-rdo# # Using rendered - name: Render platform specific configuration lines with state rendered (without connecting to the device) cisco.nxos.nxos_ospfv3: config: processes: - process_id: 100 router_id: 203.0.113.20 - process_id: 102 router_id: 198.51.100.1 address_family: afi: ipv6 safi: unicast areas: - area_id: 0.0.0.100 filter_list: - route_map: rmap_1 direction: in - route_map: rmap_2 direction: out ranges: - prefix: 2001:db2::/32 not_advertise: true - prefix: 2001:db3::/32 cost: 120 redistribute: - protocol: eigrp id: 120 route_map: rmap_1 - protocol: direct route_map: ospf102-direct-connect vrfs: - vrf: zone1 router_id: 198.51.100.129 areas: - area_id: 0.0.0.102 nssa: default_information_originate: true no_summary: true - area_id: 0.0.0.103 nssa: no_summary: true translate: type7: always: true - vrf: zone2 auto_cost: reference_bandwidth: 45 unit: Gbps state: rendered # Task Output (redacted) # ----------------------- # rendered: # - router ospfv3 100 # - router-id 203.0.113.20 # - router ospfv3 102 # - router-id 198.51.100.1 # - address-family ipv6 unicast # - redistribute eigrp 120 route-map rmap_1 # - redistribute direct route-map ospf102-direct-connect # - area 0.0.0.100 filter-list route-map rmap_1 in # - area 0.0.0.100 filter-list route-map rmap_2 out # - area 0.0.0.100 range 2001:db2::/32 not-advertise # - area 0.0.0.100 range 2001:db3::/32 cost 120 # - vrf zone1 # - router-id 198.51.100.129 # - area 0.0.0.102 nssa no-summary default-information-originate # - area 0.0.0.103 nssa no-summary # - area 0.0.0.103 nssa translate type7
else: l_discrete[current_bin].append(l) if len(l_discrete)==bins+1: l_discrete[bins-1].extend(l_discrete[bins]) del l_discrete[bins] del bin_scores[-1] bin_scores[-1]= bin_scores[-1]-cut/2.0 + \ (predictions[-1]-(bin_scores[-1]-cut/2.0))/2.0 except EmptyBinException: if bins>1: bins-=1 else: raise Exception("Could not discretize data!") else: return bin_scores, l_discrete def _empirical_probability(self, l_discrete): """ Return dictionary of empirical class probabilities for discretized label list.""" plot_emp_prob = {} len_list = {} for label in range(len(self.class_labels)): plot_emp_prob[label]=[] len_list[label]=[] for score_list in l_discrete.values(): len_list[label].append(len(score_list)) plot_emp_prob[label].append(score_list.count(label)/ \ float(len(score_list))) return len_list, plot_emp_prob def store_state(self, result_dir, index=None): """ Stores plots of score distribution and sigmoid fit or/and the calculated probabilities with the corresponding label. .. todo:: change plot calculations to upper if else syntax .. todo:: add the corresponding data point to the saved probabilities """ if self.store : # Create the directory for the stored results from pySPACE.tools.filesystem import create_directory import os node_dir = os.path.join(result_dir, self.__class__.__name__) create_directory(node_dir) # Safe the probabilities in a pickle file if( self.store_probabilities ): import pickle f_name=node_dir + "/probabilities_%d.pickle" % self.current_split pickle.dump(self.probabilities, open(f_name,'w')) if self.store_plots: # reliable plot of training (before sigmoid fit) sort_index = numpy.argsort(self.scores) labels = numpy.array(self.labels)[sort_index] predictions = numpy.array(self.scores)[sort_index] plot_scores_train,l_discrete_train=self._discretize(predictions, labels) len_list_train, plot_emp_prob_train = self._empirical_probability(l_discrete_train) # training data after sigmoid fit fApB = predictions * self.A + self.B new_predictions = [(int(fApB[i]<0)+int(fApB[i]>=0)*numpy.exp(-fApB[i]))/ \ (1.0+numpy.exp((-1)**int(fApB[i]>=0)*fApB[i])) \ for i in range(len(fApB))] plot_scores_train_fit, l_discrete_train_fit = \ self._discretize(new_predictions,labels) len_list_train_fit, plot_emp_prob_train_fit = \ self._empirical_probability(l_discrete_train_fit) # test data before sigmoid fit test_scores = [] test_labels = [] for data, label in self.input_node.request_data_for_testing(): test_scores.append(data.prediction) test_labels.append(self.class_labels.index(label)) sort_index = numpy.argsort(test_scores) labels = numpy.array(test_labels)[sort_index] predictions = numpy.array(test_scores)[sort_index] plot_scores_test,l_discrete_test = self._discretize(predictions, labels) len_list_test, plot_emp_prob_test = self._empirical_probability(l_discrete_test) # test data after sigmoid fit fApB = predictions * self.A + self.B new_predictions = [(int(fApB[i]<0)+int(fApB[i]>=0)*numpy.exp(-fApB[i]))/ \ (1.0+numpy.exp((-1)**int(fApB[i]>=0)*fApB[i])) \ for i in range(len(fApB))] plot_scores_test_fit, l_discrete_test_fit = \ self._discretize(new_predictions,labels) len_list_test_fit, plot_emp_prob_test_fit = \ self._empirical_probability(l_discrete_test_fit) import pylab from matplotlib.transforms import offset_copy pylab.close() fig = pylab.figure(figsize=(10,10)) ax = pylab.subplot(2,2,1) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x,y,s in zip(plot_scores_train,plot_emp_prob_train[1],len_list_train[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_train[0],plot_scores_train[-1]),(0,1),'-') x = numpy.arange(plot_scores_train[0],plot_scores_train[-1],.02) y = 1/(1+numpy.exp(self.A*x+self.B)) pylab.plot(x,y,'-') pylab.xlim(plot_scores_train[0],plot_scores_train[-1]) pylab.ylim(0,1) pylab.xlabel("SVM prediction Score (training data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,2) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x, y, s in zip(plot_scores_train_fit, plot_emp_prob_train_fit[1], len_list_train_fit[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_train_fit[0],plot_scores_train_fit[-1]),(0,1),'-') pylab.xlim(plot_scores_train_fit[0],plot_scores_train_fit[-1]) pylab.ylim(0,1) pylab.xlabel("SVM Probability (training data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,3) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x,y,s in zip(plot_scores_test,plot_emp_prob_test[1],len_list_test[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_test[0],plot_scores_test[-1]),(0,1),'-') x = numpy.arange(plot_scores_test[0],plot_scores_test[-1],.02) y = 1/(1+numpy.exp(self.A*x+self.B)) pylab.plot(x,y,'-') pylab.xlim(plot_scores_test[0],plot_scores_test[-1]) pylab.ylim(0,1) pylab.xlabel("SVM prediction Scores (test data)") pylab.ylabel("Empirical Probability") ax = pylab.subplot(2,2,4) transOffset=offset_copy(ax.transData,fig=fig,x=0.05,y=0.1,units='inches') for x, y, s in zip(plot_scores_test_fit, plot_emp_prob_test_fit[1], len_list_test_fit[1]): pylab.plot((x,),(y,),'ro') pylab.text(x,y,'%d' % s, transform=transOffset) pylab.plot((plot_scores_test_fit[0],plot_scores_test_fit[-1]),(0,1),'-') pylab.xlim(plot_scores_test_fit[0],plot_scores_test_fit[-1]) pylab.ylim(0,1) pylab.xlabel("SVM Probability (test data)") pylab.ylabel("Empirical Probability") pylab.savefig(node_dir + "/reliable_diagrams_%d.png" % self.current_split) class SigmoidTransformationNode(BaseNode): """ Transform score to interval [0,1] with a sigmoid function The new decision border will be at 0.5. .. warning:: This is NOT a probability mapping and parameters should be set for the function. This node is intended to be externally optimized, such that it generalizes the threshold optimization for soft metrics. The used sigmoid fit function is :math:`\\frac{1}{1+e^{Ax+B}}`. It is 0.5 at :math:`x = -\\frac{B}{A}`. **Parameters** :A: Scaling of prediction value. See above. (*optional, default: -1*) :B: Shifting of scaled prediction. See above. (*optional, default: 0*) :offset: Has the meaning of :math:`-\\frac{B}{A}` and replaces the parameter B if used. (*optional, default: None*) :class_labels: Determines the order of classes, i.e. the mapping of class labels onto integers. The first element of the list should be the negative class, the second should be the positive class. In the context positive should be the class mapped greater than 0.5 and the other class should be the negative one. If the original prediction value had the same orientation, *A* should be chosen negative. (*optional, default: ['Standard','Target']*) **Exemplary Call** .. code-block:: yaml - node : SigTrans parameters : class_labels : ['Standard','Target'] """ input_types=["PredictionVector"] def __init__(self, class_labels = ['Standard','Target'], A = -1, B = 0, offset = None, **kwargs): super(SigmoidTransformationNode, self).__init__(**kwargs) if not(offset is None): B = -A *offset self.set_permanent_attributes(class_labels = class_labels, A = A, B = B) def is_trainable(self): return False def is_supervised(self): return False def _execute(self, data): """ Evaluate each prediction with the sigmoid mapping learned. """ # code simply copied from PlattsSigmoidFitNode fur eventual future changes fApB = data.prediction * self.A + self.B if fApB<0: new_prediction=1/(1.0+numpy.exp(fApB)) else: new_prediction=numpy.exp(-fApB)/(numpy.exp(-fApB)+1.0) # enforce mapping to interval [0,1] new_prediction = max(0,min(1,new_prediction)) new_label = self.class_labels[0] if new_prediction <= 0.5 \ else self.class_labels[1] return PredictionVector(label=new_label, prediction=new_prediction, predictor=data.predictor) class LinearTransformationNode(BaseNode): """ Scaling and offset shift, and relabeling due to new decision boundary Having a prediction value x it is mapped to (x+*offset*)*scaling*. If the result is lower than the *decision boundary* it is mapped to the first class label for the negative class and otherwise to the second positive class. **Parameters** :class labels: This mandatory parameter defines the ordering of class labels for the mapping after the transformation. If this parameter is not specified, the label remains unchanged. This is for example feasible for regression mappings. .. note:: This parameter could be also used to change class label strings, but this would probably cause problems in the evaluation step. (*recommended, default: None*) :offset: Shift of the prediction value. (*optional, default: 0*) :scaling: Scaling factor applied after offset shift. (*optional, default: 1*) :decision_boundary: Everything lower this value is classified as class one and everything else as class two. By default no labels are changed. **Exemplary Call** .. code-block:: yaml - node : LinearTransformation parameters : class_labels : ['Standard', 'Target'] offset : 1 scaling : 42 decision_boundary : 3 """ def __init__(self, class_labels=None, offset=0, scaling=1, decision_boundary=None, **kwargs): super(LinearTransformationNode, self).__init__(**kwargs) if class_labels is None or decision_boundary is None: decision_boundary = None class_labels = None self.set_permanent_attributes(class_labels=class_labels, scaling=scaling, offset=offset, decision_boundary=decision_boundary, ) def _execute(self, x): """ (x+o)*s < d """ p = x.prediction prediction = (p+self.offset)*self.scaling if self.decision_boundary is None: label = x.label elif self.decision_boundary < prediction: label = self.class_labels[0] else: label = self.class_labels[1] return PredictionVector(prediction=prediction, label=label, predictor=x.predictor) class LinearFitNode(BaseNode): """ Linear mapping between score and [0,1] This node maps the unbounded SVM score linear to bound it between [0,1]. If the result can be interpreted as probability can be seen in the reliable diagrams. **Parameters** :class_labels: Determines the order of classes, i.e. the mapping of class labels onto integers. The first element of the list should be the negative class, the second should be the positive class. If this parameter is not specified, the order is determined based on the order of occurrence in the training data (which is more or less arbitrary). (*optional, default: []*) :store: If True 'reliable diagrams' of the training and test data are stored. A discretization of the scores is made to calculate empirical probabilities. The number of scores per bin is displayed on every data point in the figure and shows how accurate the estimate is (the higher the number the better). If the fit is reliable the empirical probabilities should scatter around the diagonal in the right plots. **Exemplary Call** .. code-block:: yaml - node : LinearFit parameters : class_labels : ['Standard','Target'] """ def __init__(self, class_labels = [], **kwargs): super(LinearFitNode, self).__init__(**kwargs) self.set_permanent_attributes(class_labels = class_labels, scores = [], labels = []) def is_trainable(self): return True def is_supervised(self): return True def _train(self, data, class_label): """ Collect SVM output and true labels. """ self._train_phase_started = True self.scores.append(data.prediction) if class_label not in self.class_labels: self.class_labels.append(class_label) self.labels.append(self.class_labels.index(class_label)) def _stop_training(self): """ Compute max range of the score according to the class.""" positive_inst = [score for score,label in \ zip(self.scores,self.labels) if label==1] negative_inst = [score for score,label in \ zip(self.scores,self.labels) if label==0] self.max_range = (abs(min(negative_inst)),max(positive_inst)) def _execute(self, x): """ Evaluate each prediction with the linear
self.functions.itervalues() } self._node_addresses = sorted(self.nodes.keys()) self._function_addresses = sorted(self.functions.keys()) self._stale_lookup = False #-------------------------------------------------------------------------- # Metadata Collection #-------------------------------------------------------------------------- @not_mainthread def _async_refresh(self, result_queue, function_addresses, progress_callback): """ The main routine for the asynchronous metadata refresh worker. TODO/FUTURE: this should be cleaned up / refactored """ # pause our rename listening hooks (more performant collection) if self._rename_hooks: self._rename_hooks.unhook() # # if the caller provided no function addresses to target for refresh, # we will perform a complete metadata refresh of all database defined # functions. let's retrieve that list from the disassembler now... # if not function_addresses: function_addresses = disassembler.execute_read( disassembler.get_function_addresses )() # refresh database properties that we wish to cache self._async_refresh_properties() # refresh the core database metadata asynchronously completed = self._async_collect_metadata( function_addresses, progress_callback ) # regenerate the instruction list from collected metadata self._refresh_instructions() # refresh the internal function/node fast lookup lists self._refresh_lookup() # # NOTE: # # creating the hooks inline like this is less than ideal, but they # they have been moved here (from the metadata constructor) to # accomodate shortcomings of the Binary Ninja API. # # TODO/FUTURE/V35: # # it would be nice to move these back to the constructor once the # Binary Ninja API allows us to detect BV / sessions as they are # created, and able to load plugins on such events. # #---------------------------------------------------------------------- # create the disassembler hooks to listen for rename events if not self._rename_hooks: self._rename_hooks = disassembler.create_rename_hooks() self._rename_hooks.renamed = self._name_changed self._rename_hooks.metadata = weakref.proxy(self) #---------------------------------------------------------------------- # reinstall the rename listener hooks now that the refresh is done self._rename_hooks.hook() # send the refresh result (good/bad) incase anyone is still listening if completed: self.cached = True result_queue.put(True) else: result_queue.put(False) # clean up our thread's reference as it is basically done/dead self._refresh_worker = None # thread exit... return @disassembler.execute_read def _async_refresh_properties(self): """ Refresh a selection of interesting database properties. """ self.filename = disassembler.get_root_filename() self.imagebase = disassembler.get_imagebase() @not_mainthread def _async_collect_metadata(self, function_addresses, progress_callback): """ Collect metadata from the underlying database (interruptable). """ CHUNK_SIZE = 150 completed = 0 start = time.time() #---------------------------------------------------------------------- for addresses_chunk in chunks(function_addresses, CHUNK_SIZE): # # collect function metadata from the open database in groups of # CHUNK_SIZE. collect_function_metadata() takes a list of function # addresses and collects their metadata in a thread-safe manner # fresh_metadata = collect_function_metadata(addresses_chunk) # update our database metadata cache with the new function metadata self._update_functions(fresh_metadata) # report incremental progress to an optional progress_callback if progress_callback: completed += len(addresses_chunk) progress_callback(completed, len(function_addresses)) # if the refresh was canceled, stop collecting metadata and bail if self._stop_threads: return False # sleep some so we don't choke the mainthread time.sleep(.0015) #---------------------------------------------------------------------- end = time.time() logger.debug("Metadata collection took %s seconds" % (end - start)) # refresh completed normally / was not interrupted return True def _update_functions(self, fresh_metadata): """ Update stored function metadata with the given fresh metadata. Returns a map of {address: function metadata} that has been updated. """ blank_function = FunctionMetadata(-1) # # the first step is to loop through the 'fresh' function metadata that # has been given to us, and identify what is truly new or different # from any existing metadata we hold. # for function_address, new_metadata in fresh_metadata.iteritems(): # extract the 'old' metadata from the database metadata cache old_metadata = self.functions.get(function_address, blank_function) # # if the fresh metadata for this function is identical to the # existing metadata we have collected for it, there's nothing # else for us to do -- just ignore it. # if old_metadata == new_metadata: continue # delete nodes that explicitly no longer exist old = old_metadata.nodes.viewkeys() - new_metadata.nodes.viewkeys() for node_address in old: del self.nodes[node_address] # # the newly collected metadata for a given function is empty, this # indicates that the function has been deleted. we go ahead and # remove its old function metadata from the db metadata entirely # if new_metadata.empty: del self.functions[function_address] continue # add or overwrite the new/updated basic blocks self.nodes.update(new_metadata.nodes) # save the new/updated function self.functions[function_address] = new_metadata # # since the node / function metadata cache has probably changed, we # will need to refresh the internal fast lookup lists. this flag is # only really used for debugging, and will probably be removed # in the TODO/FUTURE collection refactor (v0.9?) # self._stale_lookup = True #-------------------------------------------------------------------------- # Signal Handlers #-------------------------------------------------------------------------- @mainthread def _name_changed(self, address, new_name, local_name=None): """ Handler for rename event in IDA. TODO/FUTURE: refactor this to not be so IDA-specific """ # we should never care about local renames (eg, loc_40804b), ignore if local_name or new_name.startswith("loc_"): return 0 # get the function that this address falls within function = self.get_function(address) # if the address does not fall within a function (might happen?), ignore if not function: return 0 # # ensure the renamed address matches the function start before # renaming the function in our metadata cache. # # I am not sure when this would not be the case (globals? maybe) # but I'd rather not find out. # if address != function.address: return # if the name isn't actually changing (misfire?) nothing to do if new_name == function.name: return logger.debug("Name changing @ 0x%X" % address) logger.debug(" Old name: %s" % function.name) logger.debug(" New name: %s" % new_name) # rename the function, and notify metadata listeners #function.name = new_name function.refresh_name() self._notify_function_renamed() # necessary for IDP/IDB_Hooks return 0 #-------------------------------------------------------------------------- # Callbacks #-------------------------------------------------------------------------- def function_renamed(self, callback): """ Subscribe a callback for function rename events. """ register_callback(self._function_renamed_callbacks, callback) def _notify_function_renamed(self): """ Notify listeners of a function rename event. """ notify_callback(self._function_renamed_callbacks) #------------------------------------------------------------------------------ # Function Metadata #------------------------------------------------------------------------------ class FunctionMetadata(object): """ Function level metadata cache. """ def __init__(self, address): # function metadata self.address = address self.name = None # node metadata self.nodes = {} self.edges = collections.defaultdict(list) # fixed/baked/computed metrics self.size = 0 self.node_count = 0 self.edge_count = 0 self.instruction_count = 0 self.cyclomatic_complexity = 0 # collect metdata from the underlying database if address != -1: self._build_metadata() #-------------------------------------------------------------------------- # Properties #-------------------------------------------------------------------------- @property def instructions(self): """ Return the instruction addresses in this function. """ return set([ea for node in self.nodes.itervalues() for ea in node.instructions]) @property def empty(self): """ Return a bool indicating whether the object is populated. """ return len(self.nodes) == 0 #-------------------------------------------------------------------------- # Public #-------------------------------------------------------------------------- @disassembler.execute_read def refresh_name(self): """ Refresh the function name against the open database. """ self.name = disassembler.get_function_name_at(self.address) #-------------------------------------------------------------------------- # Metadata Population #-------------------------------------------------------------------------- def _build_metadata(self): """ Collect function metadata from the underlying database. """ self.name = disassembler.get_function_name_at(self.address) self._refresh_nodes() self._finalize() def _refresh_nodes(self): """ This will be replaced with a disassembler-specific function at runtime. NOTE: Read the 'MONKEY PATCHING' section at the end of this file. """ raise RuntimeError("This function should have been monkey patched...") def _ida_refresh_nodes(self): """ Refresh function node metadata against an open IDA database. """ function_metadata = self function_metadata.nodes = {} # get function & flowchart object from IDA database function = idaapi.get_func(self.address) flowchart = idaapi.qflow_chart_t("", function, idaapi.BADADDR, idaapi.BADADDR, 0) # # now we will walk the flowchart for this function, collecting # information on each of its nodes (basic blocks) and populating # the function & node metadata objects. # for node_id in xrange(flowchart.size()): node = flowchart[node_id] # NOTE/COMPAT if disassembler.USING_IDA7API: node_start = node.start_ea node_end = node.end_ea else: node_start = node.startEA node_end = node.endEA # # the node current node appears to have a size of zero. This means # that another flowchart / function owns this node so we can just # ignore it... # if node_start == node_end: continue # create a new metadata object for this node node_metadata = NodeMetadata(node_start, node_end, node_id) # # establish a relationship between this node (basic block) and # this function metadata (its parent) # node_metadata.function = function_metadata function_metadata.nodes[node_start] = node_metadata # compute all of the edges between nodes in the current function for node_metadata in function_metadata.nodes.itervalues(): edge_src = node_metadata.instructions[-1] for edge_dst in idautils.CodeRefsFrom(edge_src, True): if edge_dst in function_metadata.nodes: function_metadata.edges[edge_src].append(edge_dst) def _binja_refresh_nodes(self): """ Refresh function
""" Full CI based on determinants rather than on CSFs. The approach is the one introduced by Olsen J Chem Phys 89 2185 (1988) It is also described in the book Molecular electronic structure theory, by Helgaker, <NAME>. There it is called 'Minimal operator count (MOC) method' written by <NAME> Notation: Book of Helgaker. """ import itertools import numpy as np import scipy.sparse as spspa import scipy.sparse.linalg as spspalin import scipy.linalg as splin from scipy.special import binom try: from PyQuante.cints import ijkl2intindex except: print "cints import failed in CI.py" from PyQuante.pyints import ijkl2intindex from PyQuante.CI import TransformInts def single_excitations(n): singles = [] for p in xrange(n): for q in xrange(n): singles.append((p,q)) return singles def double_excitations(n): doubles = [] for p in xrange(n): for q in xrange(n): for r in xrange(n): for s in xrange(n): doubles.append((p,q,r,s)) return doubles def transform_one_ints(h,orbs): """ Transform the one-electron Hamilton matrix from basis function representation to MO basis, orbs is the coefficient matrix with rows indexing orbitals and colums indexing the basis function coefficients. See http://vergil.chemistry.gatech.edu/resources/programming/mp2-transform-project.pdf for details. For very large basis sizes, this might need to be calculated on the fly. """ return np.dot(orbs.T, np.dot(h,orbs)) def e_pq_on_string(p,q,string): """ apply the excitation operator a^+_p a_q on a string This gives new string and a phase factor. It must have been checked that q is in string and p is not! """ if q not in string: """ annihilate vacuum """ return 0,0 if p in string and p!=q: """ try to create already occupied orbital which was not destroyed """ return 0,0 # action of E_pq on string j gives new string e_pq_string: e_pq_string = list(string) # determine phase factor phase_q = (-1)**e_pq_string.index(q) # apply annihilator q e_pq_string.remove(q) # apply creator p e_pq_string.append(p) e_pq_string.sort() phase_p = (-1)**e_pq_string.index(p) return phase_p*phase_q, e_pq_string class FCISolver(object): """ Interface to the scipy.sparse.linalg.eigs eigenvalue solver""" def __init__(self, h, ERI, enuke, orbs, n_elec, multiplicity, m_s, k=4, sigma_eigs=None, which='SA', v0=None, maxiter=None, tol=0, return_eigenvectors=True ): """ Parameters: h : one-electron integrals over basis functions ERI : electron repulsion integrals over basis functions enuke : The nuclear attraction energy, Molecule.get_enuke() orbs : coefficient matrix from HF calculation giving the orbitals in rows and the bfs coeffs in columns n_elec : total number of electron multiplicity: 2*S+1 m_s : M_s component of total spin. keyword parameters passed to eigs solver (see scipy docs): k : number of eigenvalues computed sigma_eigs : number to which eigenvalues are close (should be set to increase performance) which : if set to 'SR' calculate k smalles real part egenvalues v0 : initial vector to start from perhaps HF vector (1,0,0...) maxiter : maximum number of Arnoldi updates allowed tol : tolerance in calculation of eigenvalues 0 means machine precision return_eigenvectors: return eigenvector in addition to eigenvalues if set to True """ self.enuke = enuke self.k = k self.sigma_eigs = sigma_eigs self.which = which self.v0 = None self.maxiter=maxiter self.tol=tol self.return_eigenvectors = return_eigenvectors # number of alpha electrons self.n_alpha = 0.5*n_elec + m_s # number of beta electrons self.n_beta = 0.5*n_elec - m_s # number of orbitals self.n_orbs = orbs.shape[0] # number of alpha strings self.len_alpha = int(binom(self.n_orbs,self.n_alpha)) # number of beta strings self.len_beta = int(binom(self.n_orbs,self.n_beta)) assert self.n_alpha +self.n_beta == n_elec # Instantiate Sigma class self.SigmaInst = Sigma(np.eye(self.len_alpha, self.len_beta), h, ERI, orbs, n_elec, multiplicity, m_s) # shape of the H matrix self.H_mat_shape = (self.len_alpha*self.len_beta , self.len_alpha*self.len_beta) # shape of the coefficient matrix in Sigma class self.c_mat_shape = (self.len_alpha , self.len_beta) # shape of the corresponding vector passed to eigs self.c_vec_shape = self.len_alpha*self.len_beta # Linear operator passed to eigensolver self.LinOp = spspalin.LinearOperator(self.H_mat_shape, self.matvec, dtype=np.float64) def matvec(self, vec): """ The reshaped matrix vector step needed for the iterations in eigs solver. The steps are: 1. reshape vec to matrix 2. get sigma 3. reshape back and return """ vec_mat = vec.reshape( self.c_mat_shape ) self.SigmaInst.c_mat = vec_mat new_vec_mat = self.SigmaInst.get_sigma() return new_vec_mat.reshape(self.c_vec_shape) def iterate(self): eva, eve = spspalin.eigsh(self.LinOp,k=self.k, sigma = self.sigma_eigs, which = self.which, v0 = self.v0, maxiter= self.maxiter, tol=self.tol, return_eigenvectors = self.return_eigenvectors) print "diagonalization sucessful" self.eva, self.eve = self.sort_and_add_enuke(eva,eve) return self.eva, self.eve def sort_and_add_enuke(self, eva, eve): """ sort the eva end eve and add the nuclear attraction energy to eva. """ # sort indx = eva.argsort() eva = eva[indx] eve = eve[:,indx] # add enuke eva += self.enuke return eva, eve class FCIExactSolver(object): """ In contrast to FCISolver, this method build the full CI Hamiltonian matrix explicitly, and then diagonalizes it exactly. It is only suitable for small CI spaces and is more intendend for debugging purposes. """ def __init__(self, h, ERI, enuke, orbs, n_elec, multiplicity, m_s): """ Parameters: h : one-electron integrals over basis functions ERI : electron repulsion integrals over basis functions orbs : coefficient matrix from HF calculation giving the orbitals in rows and the bfs coeffs in columns n_elec : total number of electron multiplicity: 2*S+1 m_s : M_s component of total spin. """ # Instantiate FCISolver class to access necessarry structures. self.FCISolverInst = FCISolver(h, ERI, enuke, orbs, n_elec, multiplicity, m_s) def get_H_mat(self): """ build the Hamiltonian matrix in the I_c = I_alpha I_beta space. The principle is as follows: With the Sigma class we have a (hopefully efficient) method to calculate priducts of the Hamiltonian matrix (tensor) with a coefficient vector (matrix). The, e.g., 1st column of a matrix A is obtained by the multiplication of A with the vector (1,0,0...,0). This principle is applied for each of the len_alpha*len_beta components of the coefficient vector. The reshaping of the coeffitient vector to an coefficient matrix is handled by the matvec method of FCISolver class. """ self.H_mat = np.zeros((self.FCISolverInst.len_alpha*self.FCISolverInst.len_beta,self.FCISolverInst.len_alpha*self.FCISolverInst.len_beta)) for col in xrange(self.FCISolverInst.len_alpha*self.FCISolverInst.len_beta): """ loop over c_mat vector """ vec = np.zeros((self.FCISolverInst.len_alpha*self.FCISolverInst.len_beta)) vec[col] = 1. self.H_mat[:,col] = self.FCISolverInst.matvec(vec) print "build of H_mat successful." def diagonalize(self): """ diagonalize the Hamiltonian matrix """ try: self.H_mat except: self.get_H_mat() eva, eve = splin.eigh(self.H_mat) self.eva, self.eve = self.FCISolverInst.sort_and_add_enuke(eva,eve) print "diagonalization successful""" return self.eva, self.eve class Graph(object): """ graph object determining vertex weights and arc weights in reverse lexical ordering. see Helgaker section 11.8.2 Different to Helgaker: Attention: orbital numbering starts with 0! Attention: address starts also with 0! """ def __init__(self, n_orbs, n_electron): """ n_orbs : number of orbitals n_electron : number of electrons """ self.n_orbs = n_orbs self.n_electron = n_electron self.get_vertex_weights() self.get_arc_weights() self.get_occupations() assert int(binom(self.n_orbs,self.n_electron)) == len(self.occupations) def get_vertex_weights(self): """ get the vertex weights vertices are indexed as a two-dimensional n_orbs+1 x n_electron+1 array: rows: orbitals columns: number of electrons """ self.vert_weights = np.zeros((self.n_orbs+1,self.n_electron+1), dtype=np.int32) self.vert_weights[0,0] = 1 for row in xrange(1,self.n_orbs+1): for column in xrange(self.n_electron+1): if column > row: """ upper triangle is left out """ continue if row > column+ self.n_orbs - self.n_electron: continue if column==0: """check if vertex is allowed""" self.vert_weights[row,column] = self.vert_weights[row-1,column] else: self.vert_weights[row,column] = self.vert_weights[row-1,column] + self.vert_weights[row-1,column-1] def get_arc_weights(self): """ get the arc weights arc weigths for vertical arcs. Represented as (n,N) array """ self.arc_weights = np.zeros((self.n_orbs, self.n_electron), dtype=np.int32) for row in xrange(self.n_orbs): for column in xrange(self.n_electron): if column > row: """ upper triangle is left out """ continue if row > column+ self.n_orbs - self.n_electron: """ lower part """ continue self.arc_weights[row,column] = self.vert_weights[row,column+1] def address(self, occupation): """ get the address of a string given its occupation as, e.g., (0,2,3) means string a^+_0 a^+_2 a^+_3 Attention: orbital numbering starts with 0! Attention: address starts also with 0! occupation : SORTED list of creation operators (integers) """ address = 0 for index in xrange(self.n_electron): address += self.arc_weights[occupation[index],index] return address def get_occupations(self): """ return a list of occupations (list of lists) in reverse lexical
#!/usr/bin/env python from __future__ import print_function r""" Runs the Sentieon Genomics Tools workflows using Google Pipelines API """ import yaml import json import argparse import os import sys import copy import time import ssl import warnings import logging import random import google.auth import googleapiclient.errors from apiclient.discovery import build from pprint import pformat from googleapiclient.errors import HttpError script_dir = os.path.dirname(os.path.realpath(__file__)) germline_yaml = script_dir + "/germline.yaml" somatic_yaml = script_dir + "/somatic.yaml" ccdg_yaml = script_dir + "/ccdg.yaml" default_json = script_dir + "/runner_default.json" target_url_base = ( "https://www.googleapis.com/compute/v1/projects/{project}/" "zones/{zone}/instances/{instance}" ) def cloud_storage_exists(client, gs_path, user_project=None): try: bucket, blob = gs_path[5:].split("/", 1) bucket = client.bucket(bucket, user_project=user_project) blob = bucket.blob(blob) res = blob.exists() except Exception as err: # Catch all exceptions print( "Error polling file in Google Cloud Storage: " + str(err), file=sys.stderr, ) raise ValueError( "Error: Could not find {gs_path} in Google Cloud " "Storage".format(**locals()) ) return res def _check_inputs_exist( job_vars, credentials, project=None, user_project=None ): from google.cloud import storage with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Your application has authenticated " "using end user credentials from Google Cloud " "SDK", ) client = storage.Client(project=project, credentials=credentials) # The DBSNP, BQSR and Realign sites files sites_files = [] sites_files += ( job_vars["BQSR_SITES"].split(",") if job_vars["BQSR_SITES"] else [] ) sites_files += ( job_vars["REALIGN_SITES"].split(",") if job_vars["REALIGN_SITES"] else [] ) sites_files += [job_vars["DBSNP"]] if job_vars["DBSNP"] else [] for sites_file in sites_files: if not cloud_storage_exists( client, sites_file, user_project=user_project ): logging.error("Could not find supplied file {}".format(sites_file)) sys.exit(-1) if sites_file.endswith("vcf.gz"): if not cloud_storage_exists( client, sites_file + ".tbi", user_project=user_project ): logging.error( "Could not find index for file {}".format(sites_file) ) sys.exit(-1) else: if not cloud_storage_exists( client, sites_file + ".idx", user_project=user_project ): logging.error( "Could not find index for file {}".format(sites_file) ) sys.exit(-1) # The data input files gs_split_files = ( job_vars["FQ1"], job_vars["TUMOR_FQ1"], job_vars["FQ2"], job_vars["TUMOR_FQ2"], job_vars["BAM"], job_vars["TUMOR_BAM"], ) gs_files = () for split_file in gs_split_files: if not split_file: continue for input_file in split_file.split(","): if not cloud_storage_exists( client, input_file, user_project=user_project ): logging.error( "Could not find the supplied file {}".format(input_file) ) sys.exit(-1) for input_file in gs_files: if not cloud_storage_exists( client, input_file, user_project=user_project ): logging.error( "Could not file the supplied file {}".format(input_file) ) sys.exit(-1) # All reference files ref = job_vars["REF"] ref_base = ref[:-3] if ref.endswith(".fa") else ref[:-6] if not cloud_storage_exists(client, ref, user_project=user_project): logging.error("Reference file not found") sys.exit(-1) if not cloud_storage_exists( client, ref + ".fai", user_project=user_project ): logging.error("Reference fai index not found") sys.exit(-1) if not cloud_storage_exists( client, ref + ".dict", user_project=user_project ) and not cloud_storage_exists( client, ref_base + ".dict", user_project=user_project ): logging.error("Reference dict index not found") sys.exit(-1) # FQ specific if job_vars["FQ1"] or job_vars["TUMOR_FQ1"]: for suffix in [".amb", ".ann", ".bwt", ".pac", ".sa"]: if not cloud_storage_exists( client, ref + suffix, user_project=user_project ) and not cloud_storage_exists( client, ref + ".64" + suffix, user_project=user_project ): logging.error( "Reference BWA index {} not found".format(suffix) ) sys.exit(-1) # BAM specific bam_vars = ("BAM", "TUMOR_BAM") for bam_type in bam_vars: if job_vars[bam_type]: for bam in job_vars[bam_type].split(","): if not cloud_storage_exists( client, bam + ".bai", user_project=user_project ) and not cloud_storage_exists( client, bam + "bai", user_project=user_project ): logging.error("BAM supplied but BAI not found") sys.exit(-1) def parse_args(vargs=None): parser = argparse.ArgumentParser() parser.add_argument( "pipeline_config", nargs="?", help="The json configuration file" ) parser.add_argument( "--verbose", "-v", action="count", help="Increase the runner verbosity" ) parser.add_argument( "--no_check_inputs_exist", action="store_true", help="Do not check that the input files exist before running the " "pipeline", ) parser.add_argument( "--polling_interval", type=float, default=30, help="Seconds between polling the running operation", ) parser.add_argument( "--requester_project", default=None, help="A project to charge for local 'requester pays' requests", ) return parser.parse_args(vargs) def setup_logging(verbosity=0): logging.getLogger("googleapiclient." "discovery_cache").setLevel( logging.ERROR ) log_format = "%(filename)s::%(funcName)s [%(levelname)s] %(message)s" if verbosity is None or verbosity < 1: log_level = logging.WARNING elif verbosity == 1: log_level = logging.INFO else: log_level = logging.DEBUG logging.basicConfig(level=log_level, format=log_format) def main( pipeline_config, polling_interval=30, check_inputs_exist=True, requester_project=None, ): # Grab input arguments from the json file try: job_vars = json.load(open(default_json)) except ValueError as e: logging.error("Error reading the default json file: " + default_json) raise e job_vars.update(pipeline_config) preemptible_tries = int(job_vars["PREEMPTIBLE_TRIES"]) if job_vars["NONPREEMPTIBLE_TRY"]: non_preemptible_tries = 1 preemptible = True if preemptible_tries > 0 else False with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Your application has authenticated " "using end user credentials from Google Cloud " "SDK", ) credentials, project_id = google.auth.default() # Warn with depreciated JSON keys if "MIN_RAM_GB" in job_vars or "MIN_CPU" in job_vars: logging.warning( "'MIN_RAM_GB' and 'MIN_CPU' are now ignored. " "Please use 'MACHINE_TYPE' to specify the instance " "type" ) # Grab the yaml for the workflow pipeline = job_vars["PIPELINE"] if pipeline == "GERMLINE": pipeline_yaml = germline_yaml elif pipeline == "SOMATIC": pipeline_yaml = somatic_yaml elif pipeline == "CCDG": pipeline_yaml = ccdg_yaml else: logging.error( "Pipeline '" + pipeline + "'. Valid " "values are 'GERMLINE' and 'SOMATIC'" ) sys.exit(-1) try: pipeline_dict = yaml.safe_load(open(pipeline_yaml)) except IOError: logging.error('No yaml "{}" found.'.format(pipeline_yaml)) sys.exit(-1) # Try not to create nearly empty directories while job_vars["OUTPUT_BUCKET"].endswith("/"): job_vars["OUTPUT_BUCKET"] = job_vars["OUTPUT_BUCKET"][:-1] # Some basic error checking to fail early if not job_vars["PROJECT_ID"]: logging.error("Please supply a PROJECT_ID") sys.exit(-1) project = job_vars["PROJECT_ID"] # Shared errors if job_vars["FQ1"] and job_vars["BAM"]: logging.error("Please supply either 'FQ1' or 'BAM' (not both)") sys.exit(-1) if job_vars["INTERVAL"] and job_vars["INTERVAL_FILE"]: logging.error("Please supply either 'INTERVAL' or 'INTERVAL_FILE'") sys.exit(-1) if (job_vars["FQ1"] and job_vars["READGROUP"]) and ( len(job_vars["FQ1"].split(",")) != len(job_vars["READGROUP"].split(",")) ): logging.error( "The number of fastq files must match the number of " "supplied readgroups" ) sys.exit(-1) # Pipeline specific errors if pipeline == "GERMLINE" or pipeline == "CCDG": if not job_vars["FQ1"] and not job_vars["BAM"]: logging.error("Please supply either 'FQ1' or 'BAM'") sys.exit(-1) if ( job_vars["NO_HAPLOTYPER"] and job_vars["NO_METRICS"] and job_vars["NO_BAM_OUTPUT"] ): logging.error("No output files requested") sys.exit(-1) if job_vars["RECALIBRATED_OUTPUT"] and job_vars["BQSR_SITES"] is None: logging.error( "Cannot output a recalibrated BAM file without " "running BQSR. Please supply 'BQSR_SITES'" ) sys.exit(-1) valid_algos = ("Haplotyper", "DNAscope") if job_vars["CALLING_ALGO"] not in valid_algos: logging.error( job_vars["CALLING_ALGO"] + "' is not a " "valid germline variant calling algo. Please set " "'CALLING_ALGO' to one of " + str(valid_algos) ) sys.exit(-1) # Additional CCDG checks if pipeline == "CCDG": if job_vars["BQSR_SITES"] is None: logging.error( "The CCDG pipeline requires known sites for " "BQSR. Please supply 'BQSR_SITES'" ) sys.exit(-1) elif pipeline == "SOMATIC": if job_vars["TUMOR_FQ1"] and job_vars["TUMOR_BAM"]: logging.error( "Please supply either 'TUMOR_FQ1' or 'TUMOR_BAM' " "(not both)" ) sys.exit(-1) if not job_vars["TUMOR_FQ1"] and not job_vars["TUMOR_BAM"]: logging.error("Please supply either 'TUMOR_FQ1' or 'TUMOR_BAM'") sys.exit(-1) if job_vars["RUN_TNSNV"] and not job_vars["REALIGN_SITES"]: logging.error( "TNsnv requires indel realignment. Please supply " "'REALIGN_SITES'" ) sys.exit(-1) if ( job_vars["NO_BAM_OUTPUT"] and job_vars["NO_VCF"] and job_vars["NO_METRICS"] ): logging.error("No output files requested") sys.exit(-1) if (job_vars["TUMOR_FQ1"] and job_vars["TUMOR_READGROUP"]) and ( len(job_vars["TUMOR_FQ1"].split(",")) != len(job_vars["TUMOR_READGROUP"].split(",")) ): logging.error( "The number of tumor fastq files must match the " "number of supplied readgroups" ) sys.exit(-1) valid_algos = ("TNhaplotyper", "TNhaplotyper2", "TNscope", "TNsnv") if job_vars["CALLING_ALGO"] not in valid_algos: logging.error( job_vars["CALLING_ALGO"] + "' is not a " "valid somatic variant calling algo. Please set " "'CALLING_ALGO' to one of " + str(valid_algos) ) sys.exit(-1) if check_inputs_exist: _check_inputs_exist( job_vars, credentials, project=project, user_project=requester_project, ) # Resources dict zones = job_vars["ZONES"].split(",") if job_vars["ZONES"] else [] if not zones: logging.error("Please supply at least one zone to run the pipeline") region = zones[0][:-2] disk = { "name": "local-disk", "type": "local-ssd", "sizeGb": int(job_vars["DISK_SIZE"]), } vm_dict = { "machineType": job_vars["MACHINE_TYPE"], "preemptible": preemptible, "disks": [disk], "serviceAccount": { "scopes": ["https://www.googleapis.com/auth/cloud-platform"] }, "cpuPlatform": job_vars["CPU_PLATFORM"], } resources_dict = {"zones": zones, "virtualMachine": vm_dict} # Environment env_dict = {} for input_var in pipeline_dict["inputParameters"]: env_dict[input_var["name"]] = job_vars[input_var["name"]] if env_dict[input_var["name"]] is None: env_dict[input_var["name"]] = "None" # Action if pipeline == "GERMLINE": _cmd = "/opt/sentieon/gc_germline.sh" elif pipeline == "SOMATIC": _cmd = "/opt/sentieon/gc_somatic.sh" elif pipeline == "CCDG": _cmd = "/opt/sentieon/gc_ccdg_germline.sh" else: logging.error("Error: Unknown pipeline " + pipeline) sys.exit(-1) run_action = { "containerName": "run-pipeline", "imageUri": job_vars["DOCKER_IMAGE"], "commands": ["/bin/bash", _cmd], "mounts": [ {"disk": "local-disk", "path": "/mnt/work", "readOnly": False} ], } cleanup_action = { "containerName": "cleanup", "imageUri": job_vars["DOCKER_IMAGE"], "commands": [ "/bin/bash", "-c", ( "gsutil cp /google/logs/action/1/stderr " '"{}/worker_logs/stderr.txt" && ' "gsutil cp /google/logs/action/1/stdout " '"{}/worker_logs/stdout.txt"' ).format(job_vars["OUTPUT_BUCKET"], job_vars["OUTPUT_BUCKET"]), ], "alwaysRun": True, } # Build the API services service = build("lifesciences", "v2beta", credentials=credentials) compute_service = build("compute", "v1", credentials=credentials) # Check the PIPELINE_REGION name = "projects/" + project locations = service.projects().locations().list(name=name).execute() service_parent = [] for _loc in locations.get("locations", []): if _loc["locationId"] == job_vars["PIPELINE_REGION"]: service_parent.append(_loc["name"]) if len(service_parent) != 1: possible_regions = ", ".join( [x["locationId"] for x in locations["locations"]] ) logging.error( "Unknown PIPELINE_REGION '{}'. Please choose from: " "{}".format(job_vars["PIPELINE_REGION"],
SHA3_224 = 0x0000000E SHA3_256 = 0x0000000F SHA3_384 = 0x00000010 SHA3_512 = 0x00000011 class InteropFunction(enum.Enum): # KMIP 2.0 BEGIN = 0x00000001 END = 0x00000002 RESET = 0x00000003 class ItemType(enum.Enum): # KMIP 2.0 STRUCTURE = 0x00000001 INTEGER = 0x00000002 LONG_INTEGER = 0x00000003 BIG_INTEGER = 0x00000004 ENUMERATION = 0x00000005 BOOLEAN = 0x00000006 TEXT_STRING = 0x00000007 BYTE_STRING = 0x00000008 DATE_TIME = 0x00000009 INTERVAL = 0x0000000A DATE_TIME_EXTENDED = 0x0000000B class KeyCompressionType(enum.Enum): # KMIP 1.0 EC_PUBLIC_KEY_TYPE_UNCOMPRESSED = 0x00000001 EC_PUBLIC_KEY_TYPE_X9_62_COMPRESSED_PRIME = 0x00000002 EC_PUBLIC_KEY_TYPE_X9_62_COMPRESSED_CHAR2 = 0x00000003 EC_PUBLIC_KEY_TYPE_X9_62_HYBRID = 0x00000004 class KeyFormatType(enum.Enum): # KMIP 1.0 RAW = 0x00000001 OPAQUE = 0x00000002 PKCS_1 = 0x00000003 PKCS_8 = 0x00000004 X_509 = 0x00000005 EC_PRIVATE_KEY = 0x00000006 TRANSPARENT_SYMMETRIC_KEY = 0x00000007 TRANSPARENT_DSA_PRIVATE_KEY = 0x00000008 TRANSPARENT_DSA_PUBLIC_KEY = 0x00000009 TRANSPARENT_RSA_PRIVATE_KEY = 0x0000000A TRANSPARENT_RSA_PUBLIC_KEY = 0x0000000B TRANSPARENT_DH_PRIVATE_KEY = 0x0000000C TRANSPARENT_DH_PUBLIC_KEY = 0x0000000D TRANSPARENT_ECDSA_PRIVATE_KEY = 0x0000000E # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 TRANSPARENT_ECDSA_PUBLIC_KEY = 0x0000000F # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 TRANSPARENT_ECDH_PRIVATE_KEY = 0x00000010 # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 TRANSPARENT_ECDH_PUBLIC_KEY = 0x00000011 # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 TRANSPARENT_ECMQV_PRIVATE_KEY = 0x00000012 # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 TRANSPARENT_ECMQV_PUBLIC_KEY = 0x00000013 # Deprecated in KMIP 1.4, designated '(Reserved)' in KMIP 2.0 # KMIP 1.3 TRANSPARENT_EC_PRIVATE_KEY = 0x00000014 TRANSPARENT_EC_PUBLIC_KEY = 0x00000015 # KMIP 1.4 PKCS_12 = 0x00000016 class KeyRoleType(enum.Enum): # KMIP 1.0 BDK = 0x00000001 CVK = 0x00000002 DEK = 0x00000003 MKAC = 0x00000004 MKSMC = 0x00000005 MKSMI = 0x00000006 MKDAC = 0x00000007 MKDN = 0x00000008 MKCP = 0x00000009 MKOTH = 0x0000000A KEK = 0x0000000B MAC_16609 = 0x0000000C MAC_97971 = 0x0000000D MAC_97972 = 0x0000000E MAC_97973 = 0x0000000F MAC_97974 = 0x00000010 MAC_97975 = 0x00000011 ZPK = 0x00000012 PVKIBM = 0x00000013 PVKPVV = 0x00000014 PVKOTH = 0x00000015 # KMIP 1.4 DUKPT = 0x00000016 IV = 0x00000017 TRKBK = 0x00000018 class KeyValueLocationType(enum.Enum): # KMIP 1.2 UNINTERPRETED_TEXT_STRING = 0x00000001 URI = 0x00000002 class KeyWrapType(enum.Enum): NOT_WRAPPED = 0x00000001 AS_REGISTERED = 0x00000002 class KMIPVersion(OrderedEnum): KMIP_1_0 = 1.0 KMIP_1_1 = 1.1 KMIP_1_2 = 1.2 KMIP_1_3 = 1.3 KMIP_1_4 = 1.4 KMIP_2_0 = 2.0 class LinkType(enum.Enum): # KMIP 1.0 CERTIFICATE_LINK = 0x00000101 PUBLIC_KEY_LINK = 0x00000102 PRIVATE_KEY_LINK = 0x00000103 DERIVATION_BASE_OBJECT_LINK = 0x00000104 DERIVED_KEY_LINK = 0x00000105 REPLACEMENT_OBJECT_LINK = 0x00000106 REPLACED_OBJECT_LINK = 0x00000107 # KMIP 1.2 PARENT_LINK = 0x00000108 CHILD_LINK = 0x00000109 PREVIOUS_LINK = 0x0000010A NEXT_LINK = 0x0000010B # KMIP 1.4 PKCS12_CERTIFICATE_LINK = 0x0000010C PKCS12_PASSWORD_LINK = 0x0000010D # KMIP 2.0 WRAPPING_KEY_LINK = 0x0000010E class MaskGenerator(enum.Enum): # KMIP 1.4 MGF1 = 0x00000001 class NameType(enum.Enum): # KMIP 1.0 UNINTERPRETED_TEXT_STRING = 0x00000001 URI = 0x00000002 class NISTKeyType(enum.Enum): # KMIP 2.0 PRIVATE_SIGNATURE_KEY = 0x00000001 PUBLIC_SIGNATURE_VERIFICATION_KEY = 0x00000002 SYMMETRIC_AUTHENTICATION_KEY = 0x00000003 PRIVATE_AUTHENTICATION_KEY = 0x00000004 PUBLIC_AUTHENTICATION_KEY = 0x00000005 SYMMETRIC_DATA_ENCRYPTION_KEY = 0x00000006 SYMMETRIC_KEY_WRAPPING_KEY = 0x00000007 SYMMETRIC_RANDOM_NUMBER_GENERATION_KEY = 0x00000008 SYMMETRIC_MASTER_KEY = 0x00000009 PRIVATE_KEY_TRANSPORT_KEY = 0x0000000A PUBLIC_KEY_TRANSPORT_KEY = 0x0000000B SYMMETRIC_KEY_AGREEMENT_KEY = 0x0000000C PRIVATE_STATIC_KEY_AGREEMENT_KEY = 0x0000000D PUBLIC_STATIC_KEY_AGREEMENT_KEY = 0x0000000E PRIVATE_EPHEMERAL_KEY_AGREEMENT_KEY = 0x0000000F PUBLIC_EPHEMERAL_KEY_AGREEMENT_KEY = 0x00000010 SYMMETRIC_AUTHORIZATION_KEY = 0x00000011 PRIVATE_AUTHORIZATION_KEY = 0x00000012 PUBLIC_AUTHORIZATION_KEY = 0x00000013 class ObjectGroupMember(enum.Enum): # KMIP 1.1 GROUP_MEMBER_FRESH = 0x00000001 GROUP_MEMBER_DEFAULT = 0x00000002 class ObjectType(enum.Enum): # KMIP 1.0 CERTIFICATE = 0x00000001 SYMMETRIC_KEY = 0x00000002 PUBLIC_KEY = 0x00000003 PRIVATE_KEY = 0x00000004 SPLIT_KEY = 0x00000005 TEMPLATE = 0x00000006 # Deprecated in KMIP 1.3, designated '(Reserved)' in KMIP 2.0 SECRET_DATA = 0x00000007 OPAQUE_DATA = 0x00000008 # KMIP 1.2 PGP_KEY = 0x00000009 # KMIP 2.0 CERTIFICATE_REQUEST = 0x0000000A class OpaqueDataType(enum.Enum): NONE = 0x80000000 # Not defined by the standard, but we need something. # The standard does say that values starting 0x8xxxxxx # are considered extensions class Operation(enum.Enum): # KMIP 1.0 CREATE = 0x00000001 CREATE_KEY_PAIR = 0x00000002 REGISTER = 0x00000003 REKEY = 0x00000004 DERIVE_KEY = 0x00000005 CERTIFY = 0x00000006 RECERTIFY = 0x00000007 LOCATE = 0x00000008 CHECK = 0x00000009 GET = 0x0000000A GET_ATTRIBUTES = 0x0000000B GET_ATTRIBUTE_LIST = 0x0000000C ADD_ATTRIBUTE = 0x0000000D MODIFY_ATTRIBUTE = 0x0000000E DELETE_ATTRIBUTE = 0x0000000F OBTAIN_LEASE = 0x00000010 GET_USAGE_ALLOCATION = 0x00000011 ACTIVATE = 0x00000012 REVOKE = 0x00000013 DESTROY = 0x00000014 ARCHIVE = 0x00000015 RECOVER = 0x00000016 VALIDATE = 0x00000017 QUERY = 0x00000018 CANCEL = 0x00000019 POLL = 0x0000001A NOTIFY = 0x0000001B PUT = 0x0000001C # KMIP 1.1 REKEY_KEY_PAIR = <KEY> DISCOVER_VERSIONS = 0x0000001E # KMIP 1.2 ENCRYPT = 0x0000001F DECRYPT = 0x00000020 SIGN = 0x00000021 SIGNATURE_VERIFY = 0x00000022 MAC = 0x00000023 MAC_VERIFY = 0x00000024 RNG_RETRIEVE = 0x00000025 RNG_SEED = 0x00000026 HASH = 0x00000027 CREATE_SPLIT_KEY = 0x00000028 JOIN_SPLIT_KEY = 0x00000029 # KMIP 1.4 IMPORT = 0x0000002A EXPORT = 0x0000002B # KMIP 2.0 LOG = 0x0000002C LOGIN = 0x0000002D LOGOUT = 0x0000002E DELEGATED_LOGIN = 0x0000002F ADJUST_ATTRIBUTE = 0x00000030 SET_ATTRIBUTE = 0x00000031 SET_ENDPOINT_ROLE = 0x00000032 PKCS_11 = 0x00000033 INTEROP = 0x00000034 REPROVISION = 0x00000035 class PaddingMethod(enum.Enum): # KMIP 1.0 NONE = 0x00000001 OAEP = 0x00000002 PKCS5 = 0x00000003 SSL3 = 0x00000004 ZEROS = 0x00000005 ANSI_X923 = 0x00000006 ISO_10126 = 0x00000007 PKCS1v15 = 0x00000008 X931 = 0x00000009 PSS = 0x0000000A class PKCS11Function(enum.Enum): # KMIP 2.0 # # These values are the 1-based offset count of the function in the # CK_FUNCTION_LIST_3_0 structure as specified in the OASIS PKCS#11 # Cryptographic Token Interface Base Specification Version 3.0 document. # # The above document is not currently available, so this set of # enumerations is intentionally left empty as a placeholder. It should # be filled in in a future update. PLACEHOLDER = 'Do not use this.' class PKCS11ReturnCode(enum.Enum): # KMIP 2.0 # # These values are specified in the CK_RV values in the OASIS PKCS#11 # Cryptographic Token Interface Base Specification Version 3.0 document. # # The above document is not currently available, so this set of # enumerations is intentionally left empty as a placeholder. It should # be filled in in a future update. PLACEHOLDER = 'Do not use this.' class Policy(enum.Enum): ALLOW_ALL = "Allow All" ALLOW_OWNER = "Allow Owner" DISALLOW_ALL = "Disallow All" class ProfileName(enum.Enum): # KMIP 1.3 BASELINE_SERVER_BASIC_KMIPv12 = 0x00000001 BASELINE_SERVER_TLSv12_KMIPv12 = 0x00000002 BASELINE_CLIENT_BASIC_KMIPv12 = 0x00000003 BASELINE_CLIENT_TLSv12_KMIPv12 = 0x00000004 COMPLETE_SERVER_BASIC_KMIPv12 = 0x00000005 COMPLETE_SERVER_TLSv12_KMIPv12 = 0x00000006 TAPE_LIBRARY_CLIENT_KMIPv10 = 0x00000007 TAPE_LIBRARY_CLIENT_KMIPv11 = 0x00000008 TAPE_LIBRARY_CLIENT_KMIPv12 = 0x00000009 TAPE_LIBRARY_SERVER_KMIPv10 = 0x0000000A TAPE_LIBRARY_SERVER_KMIPv11 = 0x0000000B TAPE_LIBRARY_SERVER_KMIPv12 = 0x0000000C SYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv10 = 0x0000000D SYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv11 = 0x0000000E SYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv12 = 0x0000000F SYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv10 = 0x00000010 SYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv11 = 0x00000011 SYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv12 = 0x00000012 ASYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv10 = 0x00000013 ASYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv11 = 0x00000014 ASYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv12 = 0x00000015 ASYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv10 = 0x00000016 ASYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv11 = 0x00000017 ASYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv12 = 0x00000018 BASIC_CRYPTOGRAPHIC_CLIENT_KMIPv12 = 0x00000019 BASIC_CRYPTOGRAPHIC_SERVER_KMIPv12 = 0x0000001A ADVANCED_CRYPTOGRAPHIC_CLIENT_KMIPv12 = 0x0000001B ADVANCED_CRYPTOGRAPHIC_SERVER_KMIPv12 = 0x0000001C RNG_CRYPTOGRAPHIC_CLIENT_KMIPv12 = 0x0000001D RNG_CRYPTOGRAPHIC_SERVER_KMIPv12 = 0x0000001E BASIC_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv10 = 0x0000001F INTERMEDIATE_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv10 = 0x00000020 ADVANCED_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv10 = 0x00000021 BASIC_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv11 = 0x00000022 INTERMEDIATE_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv11 = 0x00000023 ADVANCED_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv11 = 0x00000024 BASIC_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv12 = 0x00000025 INTERMEDIATE_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv12 = 0x00000026 ADVANCED_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv12 = 0x00000027 SYMMETRIC_KEY_FOUNDRY_SERVER_KMIPv10 = 0x00000028 SYMMETRIC_KEY_FOUNDRY_SERVER_KMIPv11 = 0x00000029 SYMMETRIC_KEY_FOUNDRY_SERVER_KMIPv12 = 0x0000002A OPAQUE_MANAGED_OBJECT_STORE_CLIENT_KMIPv10 = 0x0000002B OPAQUE_MANAGED_OBJECT_STORE_CLIENT_KMIPv11 = 0x0000002C OPAQUE_MANAGED_OBJECT_STORE_CLIENT_KMIPv12 = 0x0000002D OPAQUE_MANAGED_OBJECT_STORE_SERVER_KMIPv10 = 0x0000002E OPAQUE_MANAGED_OBJECT_STORE_SERVER_KMIPv11 = 0x0000002F OPAQUE_MANAGED_OBJECT_STORE_SERVER_KMIPv12 = 0x00000030 SUITE_B_MINLOS_128_CLIENT_KMIPv10 = 0x00000031 SUITE_B_MINLOS_128_CLIENT_KMIPv11 = 0x00000032 SUITE_B_MINLOS_128_CLIENT_KMIPv12 = 0x00000033 SUITE_B_MINLOS_128_SERVER_KMIPv10 = 0x00000034 SUITE_B_MINLOS_128_SERVER_KMIPv11 = 0x00000035 SUITE_B_MINLOS_128_SERVER_KMIPv12 = 0x00000036 SUITE_B_MINLOS_192_CLIENT_KMIPv10 = 0x00000037 SUITE_B_MINLOS_192_CLIENT_KMIPv11 = 0x00000038 SUITE_B_MINLOS_192_CLIENT_KMIPv12 = 0x00000039 SUITE_B_MINLOS_192_SERVER_KMIPv10 = 0x0000003A SUITE_B_MINLOS_192_SERVER_KMIPv11 = 0x0000003B SUITE_B_MINLOS_192_SERVER_KMIPv12 = 0x0000003C STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_CLIENT_KMIPv10 = 0x0000003D STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_CLIENT_KMIPv11 = 0x0000003E STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_CLIENT_KMIPv12 = 0x0000003F STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_SERVER_KMIPv10 = 0x00000040 STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_SERVER_KMIPv11 = 0x00000041 STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_SERVER_KMIPv12 = 0x00000042 HTTPS_CLIENT_KMIPv10 = 0x00000043 HTTPS_CLIENT_KMIPv11 = 0x00000044 HTTPS_CLIENT_KMIPv12 = 0x00000045 HTTPS_SERVER_KMIPv10 = 0x00000046 HTTPS_SERVER_KMIPv11 = 0x00000047 HTTPS_SERVER_KMIPv12 = 0x00000048 JSON_CLIENT_KMIPv10 = 0x00000049 JSON_CLIENT_KMIPv11 = 0x0000004A JSON_CLIENT_KMIPv12 = 0x0000004B JSON_SERVER_KMIPv10 = 0x0000004C JSON_SERVER_KMIPv11 = 0x0000004D JSON_SERVER_KMIPv12 = 0x0000004E XML_CLIENT_KMIPv10 = 0x0000004F XML_CLIENT_KMIPv11 = 0x00000050 XML_CLIENT_KMIPv12 = 0x00000051 XML_SERVER_KMIPv10 = 0x00000052 XML_SERVER_KMIPv11 = 0x00000053 XML_SERVER_KMIPv12 = 0x00000054 BASELINE_SERVER_BASIC_KMIPv13 = 0x00000055 BASELINE_SERVER_TLSv12_KMIPv13 = 0x00000056 BASELINE_CLIENT_BASIC_KMIPv13 = 0x00000057 BASELINE_CLIENT_TLSv12_KMIPv13 = 0x00000058 COMPLETE_SERVER_BASIC_KMIPv13 = 0x00000059 COMPLETE_SERVER_TLSv12_KMIPv13 = 0x0000005A TAPE_LIBRARY_CLIENT_KMIPv13 = 0x0000005B TAPE_LIBRARY_SERVER_KMIPv13 = 0x0000005C SYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv13 = 0x0000005D SYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv13 = 0x0000005E ASYMMETRIC_KEY_LIFECYCLE_CLIENT_KMIPv13 = 0x0000005F ASYMMETRIC_KEY_LIFECYCLE_SERVER_KMIPv13 = 0x00000060 BASIC_CRYPTOGRAPHIC_CLIENT_KMIPv13 = 0x00000061 BASIC_CRYPTOGRAPHIC_SERVER_KMIPv13 = 0x00000062 ADVANCED_CRYPTOGRAPHIC_CLIENT_KMIPv13 = 0x00000063 ADVANCED_CRYPTOGRAPHIC_SERVER_KMIPv13 = 0x00000064 RNG_CRYPTOGRAPHIC_CLIENT_KMIPv13 = 0x00000065 RNG_CRYPTOGRAPHIC_SERVER_KMIPv13 = 0x00000066 BASIC_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv13 = 0x00000067 INTERMEDIATE_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv13 = 0x00000068 ADVANCED_SYMMETRIC_KEY_FOUNDRY_CLIENT_KMIPv13 = 0x00000069 SYMMETRIC_KEY_FOUNDRY_SERVER_KMIPv13 = 0x0000006A OPAQUE_MANAGED_OBJECT_STORE_CLIENT_KMIPv13 = 0x0000006B OPAQUE_MANAGED_OBJECT_STORE_SERVER_KMIPv13 = 0x0000006C SUITE_B_MINLOS_128_CLIENT_KMIPv13 = 0x0000006D SUITE_B_MINLOS_128_SERVER_KMIPv13 = 0x0000006E SUITE_B_MINLOS_192_CLIENT_KMIPv13 = 0x0000006F SUITE_B_MINLOS_192_SERVER_KMIPv13 = 0x00000070 STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_CLIENT_KMIPv13 = 0x00000071 STORAGE_ARRAY_WITH_SELF_ENCRYPTING_DRIVE_SERVER_KMIPv13 = 0x00000072 HTTPS_CLIENT_KMIPv13 = 0x00000073 HTTPS_SERVER_KMIPv13 = 0x00000074 JSON_CLIENT_KMIPv13 = 0x00000075 JSON_SERVER_KMIPv13 = 0x00000076 XML_CLIENT_KMIPv13 = 0x00000077 XML_SERVER_KMIPv13 = 0x00000078 # KMIP 1.4 BASELINE_SERVER_BASIC_KMIPv14 = 0x00000079
<filename>python/src/cca/ebt/sourcecode_metrics_for_survey_cpp.py #!/usr/bin/env python3 ''' Source code metrics for C programs Copyright 2013-2018 RIKEN Copyright 2018-2020 Chiba Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' __author__ = '<NAME> <<EMAIL>>' import logging from .sourcecode_metrics_for_survey_base import (get_lver, get_proj_list, ftbl_list_to_orange, MetricsBase) from .metrics_queries_cpp import QUERY_TBL from cca.ccautil.virtuoso import VIRTUOSO_PW, VIRTUOSO_PORT from cca.factutil.entity import SourceCodeEntity logger = logging.getLogger() FOP_TBL = { # number of FP operations (for SPARC64 VIIIfx) 'nint': 2, 'jnint': 2, 'cos': 29, 'dcos': 31, 'exp': 19, 'dexp': 23, 'log': 19, 'alog': 19, 'dlog': 23, 'mod': 8, 'amod': 8, 'dmod': 8, 'sign': 2, 'dsign': 2, 'sin': 29, 'dsin': 31, 'sqrt': 11, 'dsqrt': 21, 'tan': 58, 'dtan': 64, } FOP_TBL_DBL_EXTRA = { 'cos': 2, 'exp': 4, 'log': 4, 'sin': 2, 'sqrt': 10, 'tan': 6, } FOP_TBL_VA = { 'max': (lambda n: n - 1), 'amax1': (lambda n: n - 1), 'dmax1': (lambda n: n - 1), 'min': (lambda n: n - 1), 'amin1': (lambda n: n - 1), 'dmin1': (lambda n: n - 1), } LINES_OF_CODE = 'lines_of_code' MAX_LOOP_DEPTH = 'max_loop_depth' MAX_FUSIBLE_LOOPS = 'max_fusible_loops' MAX_MERGEABLE_ARRAYS = 'max_mergeable_arrays' MAX_ARRAY_RANK = 'max_array_rank' MAX_LOOP_LEVEL = 'max_loop_level' N_BRANCHES = 'branches' N_STMTS = 'stmts' N_FP_OPS = 'fp_ops' N_OPS = 'ops' N_CALLS = 'calls' N_A_REFS = ['array_refs0', 'array_refs1', 'array_refs2'] N_IND_A_REFS = ['indirect_array_refs0', 'indirect_array_refs1', 'indirect_array_refs2'] N_DBL_A_REFS = ['dbl_array_refs0', 'dbl_array_refs1', 'dbl_array_refs2'] BF = ['bf0', 'bf1', 'bf2'] META_KEYS = ['proj', 'ver', 'path', 'sub', 'lnum', 'digest'] abbrv_tbl = { LINES_OF_CODE: 'LOC', MAX_LOOP_DEPTH: 'LpD', MAX_FUSIBLE_LOOPS: 'FLp', MAX_MERGEABLE_ARRAYS: 'MA', MAX_ARRAY_RANK: 'ARk', MAX_LOOP_LEVEL: 'LLv', N_BRANCHES: 'Br', N_STMTS: 'St', N_FP_OPS: 'FOp', N_OPS: 'Op', N_CALLS: 'Ca', N_A_REFS[0]: 'AR0', N_IND_A_REFS[0]: 'IAR0', N_DBL_A_REFS[0]: 'DAR0', N_A_REFS[1]: 'AR1', N_IND_A_REFS[1]: 'IAR1', N_DBL_A_REFS[1]: 'DAR1', N_A_REFS[2]: 'AR2', N_IND_A_REFS[2]: 'IAR2', N_DBL_A_REFS[2]: 'DAR2', BF[0]: 'BF0', BF[1]: 'BF1', BF[2]: 'BF2', } ### def count_aas(aas): c = 0 for aa in aas: if aa.startswith(','): c += 2 else: c += 1 return c def get_nfops(name, nargs, double=False): nfop = 1 try: nfop = FOP_TBL_VA[name](nargs) except KeyError: nfop = FOP_TBL.get(name, 1) if double: nfop += FOP_TBL_DBL_EXTRA.get(name, 0) prec = 's' if double: prec = 'd' logger.debug('%s{%s}(%d) --> %d' % (name, prec, nargs, nfop)) return nfop def make_feature_tbl(): v = { 'meta': { 'proj': '', 'ver': '', 'path': '', 'sub': '', 'lnum': '', }, BF[0]: 0.0, BF[1]: 0.0, BF[2]: 0.0, N_FP_OPS: 0, N_OPS: 0, N_A_REFS[0]: 0, N_IND_A_REFS[0]: 0, N_DBL_A_REFS[0]: 0, N_A_REFS[1]: 0, N_IND_A_REFS[1]: 0, N_DBL_A_REFS[1]: 0, N_A_REFS[2]: 0, N_IND_A_REFS[2]: 0, N_DBL_A_REFS[2]: 0, N_BRANCHES: 0, N_STMTS: 0, N_CALLS: 0, LINES_OF_CODE: 0, MAX_LOOP_LEVEL: 0, MAX_ARRAY_RANK: 0, MAX_LOOP_DEPTH: 0, MAX_FUSIBLE_LOOPS: 0, MAX_MERGEABLE_ARRAYS: 0, } return v def ftbl_to_string(ftbl): meta_str = '%(proj)s:%(ver)s:%(path)s:%(sub)s:%(lnum)s' % ftbl['meta'] cpy = ftbl.copy() cpy['meta'] = meta_str ks = ftbl.keys() ks.remove('meta') fmt = '%(meta)s (' fmt += ','.join(['%s:%%(%s)s' % (abbrv_tbl[k], k) for k in ks]) fmt += ')' s = fmt % cpy return s class Metrics(MetricsBase): def __init__(self, proj_id, method='odbc', pw=VIRTUOSO_PW, port=VIRTUOSO_PORT): super().__init__(proj_id, method, pw, port) def find_ftbl(self, key): md = self.get_metadata(key) fn = md['fn'] digest = md['digest'] (ver, path, lnum) = key ftbl = make_feature_tbl() ftbl['meta'] = { 'proj': self._proj_id, 'ver': ver, 'path': path, 'fn': fn, 'lnum': str(lnum), 'digest': digest, } fop = self.get_value(N_FP_OPS, key) if fop > 0: for lv in range(3): if BF[lv] in ftbl: aa = self.get_value(N_A_REFS[lv], key) daa = self.get_value(N_DBL_A_REFS[lv], key) saa = aa - daa bf = float(saa * 4 + daa * 8) / float(fop) # print('!!! {} -> fop={} aa[{}]={} daa[{}]={} bf[{}]={}'.format(key, fop, lv, aa, lv, daa, lv, bf)) ftbl[BF[lv]] = bf for item in ftbl.keys(): try: ftbl[item] = self._result_tbl[item][key] except KeyError: pass return ftbl def key_to_string(self, key): (ver, loc, fn, loop, vname) = key e = SourceCodeEntity(uri=loop) lnum = e.get_range().get_start_line() s = '%s:%s:%s:%s' % (ver, loc, fn, lnum) return s def set_metrics(self, name, _key, value, add=False): # print('!!! set_metrics: name={} key={} value={} add={}'.format(name, _key, value, add)) (ver, loc, fn, loop, vname) = _key ent = SourceCodeEntity(uri=loop) lnum = ent.get_range().get_start_line() key = (ver, loc, str(lnum)) key_str = '%s:%s:%s' % key logger.debug('%s(%s): %s -> %s' % (self.key_to_string(_key), key_str, name, value)) loop_d = self.get_loop_digest(_key) self._metadata_tbl[key] = {'fn': fn, 'digest': loop_d} try: tbl = self._result_tbl[name] except KeyError: tbl = {} self._result_tbl[name] = tbl if add: v = tbl.get(key, 0) tbl[key] = v + value else: tbl[key] = value def finalize_ipp(self): logger.info('finalizing call graph...') query = QUERY_TBL['fd_fd'] % {'proj': self._graph_uri} for qvs, row in self._sparql.query(query): callee = row['callee'] fd = row['fd'] self.ipp_add(callee, fd) query = QUERY_TBL['loop_fd'] % {'proj': self._graph_uri} for qvs, row in self._sparql.query(query): callee = row['callee'] loop = row['loop'] self.ipp_add(callee, loop, is_loop=True) def build_tree(self, f=None): query = QUERY_TBL['loop_loop'] % {'proj': self._graph_uri} children_tbl = {} parent_tbl = {} for qvs, row in self._sparql.query(query): ver = row['ver'] loc = row['loc'] fn = row.get('fn', '') loop = row['loop'] loop_d = row['loop_d'] vname = '' child_loop = row.get('child_loop', None) child_loop_d = row.get('child_loop_d', '') child_vname = '' lver = get_lver(ver) key = (lver, loc, fn, loop, vname) self.set_loop_digest(key, loop_d) if f: f(key, row) try: child_loops = children_tbl[key] except KeyError: child_loops = [] children_tbl[key] = child_loops if child_loop: child_key = (lver, loc, fn, child_loop, child_vname) self.set_loop_digest(child_key, child_loop_d) if child_key not in child_loops: child_loops.append(child_key) parent_tbl[child_key] = key self.ipp_add(child_loop, loop, is_loop=True) roots = [] for k in children_tbl.keys(): if k not in parent_tbl: roots.append(k) r = SourceCodeEntity(uri=self.get_loop_of_key(k)).get_range() lines = r.get_end_line() - r.get_start_line() + 1 self.set_metrics(LINES_OF_CODE, k, lines) logger.info('%d top loops found' % len(roots)) tree = {'children': children_tbl, 'parent': parent_tbl, 'roots': roots} self.set_tree(tree) return tree def get_key(self, row): ver = row['ver'] loc = row['loc'] fn = row.get('fn', '') loop = row['loop'] vname = '' lver = get_lver(ver) key = (lver, loc, fn, loop, vname) return key def calc_array_metrics(self): logger.info('calculating array metrics...') try: query = QUERY_TBL['arrays'] % {'proj': self._graph_uri} tbl = {} for qvs, row in self._sparql.query(query): key = self.get_key(row) array = row['dtor'] tyc = row['tyc'] rank = int(row['rank']) try: arrays = tbl[key] except KeyError: arrays = [] tbl[key] = arrays arrays.append((array, (tyc, rank))) def get(key): arrays = tbl.get(key, []) max_rank = 0 t = {} for (a, spec) in arrays: (tyc, rank) = spec if rank > max_rank: max_rank = rank try: t[spec] += 1 except KeyError: t[spec] = 1 max_mergeable_arrays = 0 for spec in t.keys(): if t[spec] > max_mergeable_arrays: max_mergeable_arrays = t[spec] return {'max_rank': max_rank, 'max_mergeable_arrays': max_mergeable_arrays} tree = self.get_tree() for key in tree['roots']: data = {'max_rank': 0, 'max_mergeable_arrays': 0} def f(k): d = get(k) if d['max_rank'] > data['max_rank']: data['max_rank'] = d['max_rank'] if d['max_mergeable_arrays'] > data['max_mergeable_arrays']: data['max_mergeable_arrays'] = d['max_mergeable_arrays'] self.iter_tree(tree, key, f) logger.debug('key=%s' % (self.key_to_string(key))) logger.debug('max_mergeable_arrays=%(max_mergeable_arrays)d max_rank=%(max_rank)d' % data) self.set_metrics(MAX_MERGEABLE_ARRAYS, key, data['max_mergeable_arrays']) self.set_metrics(MAX_ARRAY_RANK, key, data['max_rank']) except KeyError: pass logger.info('done.') def calc_in_loop_metrics(self): logger.info('calculating other in_loop metrics...') try: query = QUERY_TBL['in_loop'] % {'proj': self._graph_uri} def make_data(): return {'nbr': 0, 'nes': 0, 'nop': 0, 'nc': 0, } tbl = {} for qvs, row in self._sparql.query(query): key = self.get_key(row) data = make_data() data['nbr'] = int(row['nbr'] or '0') data['nes'] = int(row['nes'] or '0') data['nop'] = int(row['nop'] or '0') data['nc'] = int(row['nc'] or '0') tbl[key] = data fd = row['fd'] if fd: self.ipp_add(row['loop'], fd) tree = self.get_tree() for key in tree['roots']: data = make_data() def f(k): d = tbl.get(k, None) if d: data['nbr'] += d['nbr'] data['nes'] += d['nes'] data['nop'] += d['nop'] data['nc'] += d['nc'] self.iter_tree(tree, key, f) self.set_metrics(N_BRANCHES, key, data['nbr']) self.set_metrics(N_STMTS, key, data['nes']) self.set_metrics(N_OPS, key, data['nop']) self.set_metrics(N_CALLS, key, data['nc']) except KeyError: raise logger.info('done.') # end of calc_in_loop_metrics def calc_aref_in_loop_metrics(self, lv): # level: 0, 1, 2 logger.info('calculating other aref_in_loop metrics (lv=%d)...' % lv) try: if lv == 0: qtbl = QUERY_TBL['aref0_in_loop'] elif lv == 1 or lv == 2: qtbl = QUERY_TBL['aref12_in_loop'] else: logger.warning(f'illegal level: {lv}') return tbl = {} kinds = ['aa', 'iaa', 'daa'] def make_data(): d = {} for k in kinds: d[k] = set() return d for kind in kinds: query = qtbl[kind] % {'proj': self._graph_uri, 'level': lv} for qvs, row in self._sparql.query(query): key
<gh_stars>10-100 """The MIT License (MIT) Copyright (c) 2018 EvieePy Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import discord import asyncio import inspect from typing import Union import utils async def pager(entries, chunk: int): for x in range(0, len(entries), chunk): yield entries[x:x + chunk] class Paginator: __slots__ = () def __init__(self, **kwargs): self.entries = kwargs.get('entries', None) self.prepend_extras = kwargs.get('prepend_extras', None) self.append_extras = kwargs.get('append_extras', None) self.title = kwargs.get('title', None) self.colour = kwargs.get('colour', None) self.footer = kwargs.get('footer', None) self.length = kwargs.get('length', 10) self.prepend = kwargs.get('prepend', '') self.append = kwargs.get('append', '') self.format = kwargs.get('fmt', '') self.timeout = kwargs.get('timeout', 90) self.controller = None self.pages = [] self.names = [] self.base = None self.current = 0 self.previous = 0 self.eof = 0 self.controls = {'⏮': 'start', '◀': -1, '⏹': 'stop', '▶': +1, '⏭': 'end'} def chunker(self, entries: Union[list, tuple], chunk: int): """Create chunks of our entries for pagination.""" for x in range(0, len(entries), chunk): yield entries[x:x + chunk] def indexer(self, ctx, ctrl): pass async def reaction_controller(self, ctx): pass async def stop_controller(self, message): try: await message.delete() except discord.HTTPException: pass try: self.controller.cancel() except Exception: pass def formmater(self, chunk): return '\n'.join(f'{self.prepend}{self.fmt}{value}{self.fmt[::-1]}{self.append}' for value in chunk) async def paginate(self, ctx): if self.extras: self.pages = [p for p in self.extras if isinstance(p, discord.Embed)] if self.entries: chunks = [c async for c in pager(self.entries, self.length)] for index, chunk in enumerate(chunks): page = discord.Embed(title=f'{self.title} - {index + 1}/{len(chunks)}', color=self.colour) page.description = self.formmater(chunk) if self.footer: page.set_footer(text=self.footer) self.pages.append(page) if not self.pages: raise utils.EvieeBaseException('There must be enough data to create at least 1 page for pagination.') self.eof = float(len(self.pages) - 1) self.controls['⏭'] = self.eof self.controller = ctx.bot.loop.create_task(self.reaction_controller(ctx)) class SimplePaginator: __slots__ = ('entries', 'extras', 'title', 'description', 'colour', 'footer', 'length', 'prepend', 'append', 'fmt', 'timeout', 'ordered', 'controls', 'controller', 'pages', 'current', 'previous', 'eof', 'base', 'names') def __init__(self, **kwargs): self.entries = kwargs.get('entries', None) self.extras = kwargs.get('extras', None) self.title = kwargs.get('title', None) self.description = kwargs.get('description', None) self.colour = kwargs.get('colour', 0xffd4d4) self.footer = kwargs.get('footer', None) self.length = kwargs.get('length', 10) self.prepend = kwargs.get('prepend', '') self.append = kwargs.get('append', '') self.fmt = kwargs.get('fmt', '') self.timeout = kwargs.get('timeout', 90) self.ordered = kwargs.get('ordered', False) self.controller = None self.pages = [] self.names = [] self.base = None self.current = 0 self.previous = 0 self.eof = 0 self.controls = {'⏮': 0.0, '◀': -1, '⏹': 'stop', '▶': +1, '⏭': None} async def indexer(self, ctx, ctrl): if ctrl == 'stop': ctx.bot.loop.create_task(self.stop_controller(self.base)) elif isinstance(ctrl, int): self.current += ctrl if self.current > self.eof or self.current < 0: self.current -= ctrl else: self.current = int(ctrl) async def reaction_controller(self, ctx): bot = ctx.bot author = ctx.author self.base = await ctx.send(embed=self.pages[0]) if len(self.pages) == 1: await self.base.add_reaction('⏹') else: for reaction in self.controls: try: await self.base.add_reaction(reaction) except discord.HTTPException: return def check(r, u): if str(r) not in self.controls.keys(): return False elif u.id == bot.user.id or r.message.id != self.base.id: return False elif u.id != author.id: return False return True while True: try: react, user = await bot.wait_for('reaction_add', check=check, timeout=self.timeout) except asyncio.TimeoutError: return ctx.bot.loop.create_task(self.stop_controller(self.base)) control = self.controls.get(str(react)) try: await self.base.remove_reaction(react, user) except discord.HTTPException: pass self.previous = self.current await self.indexer(ctx, control) if self.previous == self.current: continue try: await self.base.edit(embed=self.pages[self.current]) except KeyError: pass async def stop_controller(self, message): try: await message.delete() except discord.HTTPException: pass try: self.controller.cancel() except Exception: pass def formmater(self, chunk): return '\n'.join(f'{self.prepend}{self.fmt}{value}{self.fmt[::-1]}{self.append}' for value in chunk) async def paginate(self, ctx): if self.extras: self.pages = [p for p in self.extras if isinstance(p, discord.Embed)] if self.entries: chunks = [c async for c in pager(self.entries, self.length)] for index, chunk in enumerate(chunks): page = discord.Embed(title=f'{self.title} - {index + 1}/{len(chunks)}', color=self.colour) page.description = self.formmater(chunk) if self.footer: page.set_footer(text=self.footer) self.pages.append(page) if not self.pages: raise utils.EvieeBaseException('There must be enough data to create at least 1 page for pagination.') self.eof = float(len(self.pages) - 1) self.controls['⏭'] = self.eof self.controller = ctx.bot.loop.create_task(self.reaction_controller(ctx)) class HelpPaginator(SimplePaginator): __slots__ = () def __init__(self, **kwargs): super().__init__(**kwargs) self.controls['🔢'] = 'selector' self.timeout = 180 @property def invalid_cogs(self): return 'AbstractorCommands' def get_embed(self, name, cog): embed = discord.Embed(title=f'{name} - Help', description=f'```ini\n{inspect.cleandoc(cog.__doc__ or "N/A")}\n```', colour=cog.colour) embed.set_thumbnail(url=cog.thumbnail) return embed def set_pages(self): length = len(self.pages) for index, embed in enumerate(self.pages): embed.set_footer(text=f'Page {index + 1}/{length} | Base commands are displayed in < >') for index, name in enumerate(self.names): self.names[index] = f'{index + 1} - `{name}`' async def del_msg(self, *args): for msg in args: try: await msg.delete() except discord.HTTPException: return async def wait_for(self, ctx): def check(m): return m.author == ctx.author msg = await ctx.send('What page would you like to goto?') while True: try: resp = await ctx.bot.wait_for('message', check=check, timeout=60) except asyncio.TimeoutError: return await self.del_msg(msg) try: index = int(resp.content) except ValueError: await ctx.send('Invalid number, please enter a valid page number.', delete_after=10) return await self.del_msg(resp) if index > len(self.pages) or index < 1: await ctx.send('Invalid number, please enter a valid page number.', delete_after=10) return await self.del_msg(resp) else: await self.del_msg(msg, resp) self.previous = self.current self.current = index - 1 try: return await self.base.edit(embed=self.pages[self.current]) except KeyError: pass async def indexer(self, ctx, ctrl): if ctrl == 'stop': ctx.bot.loop.create_task(self.stop_controller(self.base)) elif ctrl == 'selector': ctx.bot.loop.create_task(self.wait_for(ctx)) elif isinstance(ctrl, int): self.current += ctrl if self.current > self.eof or self.current < 0: self.current -= ctrl else: self.current = int(ctrl) async def command_formatter(self, ctx, _cog): cog = ctx.bot.get_cog(_cog) if not cog or cog.private: return embed = self.get_embed(_cog, cog) self.names.append(_cog) for index, command in enumerate(sorted(ctx.bot.get_cog_commands(_cog), key=lambda c: c.name)): if command.hidden: continue try: await command.can_run(ctx) except Exception: continue short = inspect.cleandoc(command.short_doc) if command.short_doc else 'No help!' if (index + 1) % 8 == 0: self.pages.append(embed) embed = self.get_embed(_cog, cog) self.names.append(_cog) if isinstance(command, utils.AbstractorGroup): abstractors = ', '.join(sorted(command.abstractors)) else: abstractors = None if isinstance(command, utils.EvieeCommandGroup): subs = '\n'.join([f' `{s}`' for s in sorted(command.commands, key=lambda _:_.name)]) embed.add_field(name=f'{command.name} - [Group]' f'{"<{}>".format(abstractors) if abstractors else ""}', value=f'{short}\n{subs}\n', inline=False) else: embed.add_field(name=command.name, value=short, inline=False) self.pages.append(embed) async def paginate(self, ctx): valid_cogs = [cog for cog in ctx.bot.cogs if ctx.bot.get_cog_commands(cog) and cog not in self.invalid_cogs] first = discord.Embed(title='Eviee - Help', description= 'For more help and resources visit:\n\n' '[Official Server](http://discord.gg/Hw7RTtr)\n' '[Vote for Eviee](https://discordbots.org/bot/319047630048985099/vote)\n', colour=0xffb2b2) howto = discord.Embed(title='Help - How-to', description='⏮ - `To beginning`:\n' '◀ - `Page left`:\n' '⏹ - `Close`:\n' '▶ - `Page right`:\n' '⏭ - `To End`:\n' '🔢 - `Page Selector`:\n\n', colour=0xffb2b2) howto.add_field(name='Additional Info:', value='For additional info on how to use a specific command,' ' use:\n\n' '`help <command>` (Without the `<>`).\n\n' 'This may be used on all commands or their sub commands.\n\n',) basecom = discord.Embed(title='Help - Base Commands', description='Eviee implements a command system which aims to be as human ' 'friendly as possible, called: `Base Commands`\n\n' 'Base Commands will show up in the help like this:\n\n' '**command - [Group]<base commands>**\n' 'For example:\n' '`prefix - [Group]<add, remove, reset>`\n\n' 'This for example allows prefix add to be used in the' ' following ways:\n\n' f'`{ctx.clean_prefix}prefix add ...` **or**\n' f'`{ctx.clean_prefix}add prefix ...`', colour=0xffb2b2) first.set_thumbnail(url=ctx.bot.user.avatar_url) basecom.set_thumbnail(url='https://i.imgur.com/E0ewLAN.png') howto.set_thumbnail(url='https://i.imgur.com/QwvPYWr.png') self.pages.extend((first, howto, basecom)) self.names.extend(('Intro', 'Howto', 'Base Commands')) for cog in sorted(valid_cogs): await self.command_formatter(ctx, cog) self.set_pages() cats = [c async for c in pager(self.names, int(len(self.names) / 2))] for n in cats: joined = '\n'.join(n) self.pages[0].add_field(name='\u200b', value=joined) self.pages[0].add_field(name='\u200b', value=f'Only commands which are valid for {ctx.author.mention} will be shown.\n') self.eof = float(len(self.pages) - 1) self.controls['⏭'] = self.eof self.controller = ctx.bot.loop.create_task(self.reaction_controller(ctx)) class ProfilePaginator(SimplePaginator): __slots__ = ('member', 'grabbed') def __init__(self, **kwargs): super().__init__(**kwargs) self.controls['📷'] = 'avatar' self.member = kwargs.get('member') self.grabbed = False async def
''' Character Class Character class for py-fighter game. Takes input of character data, screen, x position, and y position. Has functions to make move. - character_data takes the form of a Python dictionary with all key components and data for character. This is usually stored in a JSON. We have decided to implement like this as it allows us to add future characters or makesignificant changes to the characters without having to edit the python code. character_data follows the following structure: { "actions": ["running", "idle"], <-- These lines should not be edited "directions": ["left", "right"], <-- from the preset as changing them may cause the game to break "running": { "left": [[0, 0], [0, 1], [0, 2], [0, 3], [0, 0], [0, 4], [0, 5], [0, 6]], "right": [[2, 0], [2, 1], [2, 2], [2, 3], [2, 0], [2, 4], [2, 5], [2, 6]] }, "idle": { "left": [[0, 0], [1, 0]], "right": [[2, 0], [3, 0]] }, ^ These nested lists give the coordinates within the grid (in ^ order) of where the images that make up the given action can be found in the sprite sheet. There should be one dictionary for each action, containing a list for each direction "path": "graphics/spritesheets/basic-character.png", <-- File path of the "background": [0, 255, 0], <-- Background colour spritesheet "gridsize": [4, 9], <-- Grid size of sprite sheet (zero-indexed) "charsize": [32, 32], <-- Size of character in pixels "scaledsize": [128, 128], <-- Size to scale character to in pixels "speed": 1, <-- Speed of character in pixels per frame "gravity": 1, <-- Gravitationaly speed in pixels per frame "refresh": 10, <-- Number of frames between character refresh "initialstate": ["running", "right"] <-- State the character is initially spawned in (eg direction facing) } We get this from two different sources - the spritesheet JSON which gives a mapping between grid coordinates and the corresponding images on the spritesheet, and the character specific config which contains data about the specific character. The main source of inspiration for this class and its sub class was the website on producing a chess game: https://ehmatthes.github.io/pcc_2e/beyond_pcc/pygame_sprite_sheets/#a- simple-sprite-sheet This site shows how to blit images to a screen, and ways to split up a sprites sheet. I didn't take any inspiration for animating the sprite across frames I just assumed I could put the images in a data structure and iterate over them @author: Robert (Unless stated otherwise) ''' import pygame import json from classes.spritesheet import SpriteSheet from classes.weapon import * with open('json/spritesheet.JSON') as sprite_sheet_json: SPRITESHEET_JSON = json.load(sprite_sheet_json) class Character(pygame.sprite.Sprite): ''' Character Class - Used to display and animate sprites from sprite sheets on screen. Usually won't be initialised directly, rather its two child classes (Player and NPC) will be called. ''' def __init__(self, character_data, background, screen, x_position, y_position, arm_type = 'arms'): ''' Init Character Function takes and unpacks relevat information from the characters JSON dictionary ''' # Initi for sprite pygame.sprite.Sprite.__init__(self) # Assigning character data to self.charactar_data self.character_data = character_data self.addSpritesheetJSON() # Putting object to screen self.screen = screen ### Unpacking some important JSON dictionary into variables self.speed = character_data['speed'] self.gravity = character_data['gravity'] self.jump_speed = character_data['jump_speed'] self.state = character_data['initialstate'] self.refresh_rate = character_data['refresh'] ### Health and stats data self.alive = True self.__max_health = character_data['initial_health_points'] self.__health = self.__max_health self.strength = character_data['initial_strength'] # Character Position self.position = [x_position, y_position] # Load sprite sheet and extract frames to dictionary self.loadSpriteSheets(character_data) # Adding screen to object self.image = self.images[self.state[0]][self.state[1]] self.image_index = 0 self.plot_rect = self.image[self.image_index].get_rect() self.plot_rect.center = self.position self.rect = pygame.Rect((0, 0, self.width, self.height)) self.rect.center = self.plot_rect.center self.feet_rect = pygame.Rect((0, 0, self.width, self.height // 10)) self.feet_rect.bottomleft = self.rect.bottomleft # setup score self.score = 0 # Get Character Arms TODO MAY need updating to reflect some # enemies having own arms/other arms self.arms = WEAPON_TYPES[arm_type](self) self.healthbar = HealthBar(self) # Important move variables self.refresh_counter = 0 self.x_y_moving = False self.recoil_status = (False, 0) # Storing dimension variables to self self.screen_dims = (screen.get_width(), screen.get_height()) # Referencing important background variables self.changeMap(background) ##### TO GO TO JSON self.is_falling = False self.is_jumping = False self.attacking = False self.init_attacking = False self.jumps_in_action = 0 self.max_jumps_in_action = 2 self.attack_frame_counter = 0 self.thrown_projectiles = pygame.sprite.Group() def changeMap(self, background): ''' changeMap(background) - used to update to new map Function to update player with new background. Call this on player when new map produced, map refers to class containing sprite group of tiles, and map_matrix ''' self.background = background self.map_matrix = background.map_matrix self.tiles_group = background.map_group self.tile_rect = [] for tile in self.tiles_group: self.tile_rect.append(tile.rect) def addSpritesheetJSON(self): ''' addSpritesheetJSON Loads spritesheet interpretation data from SPRITESHEET_JSON ''' for key in SPRITESHEET_JSON.keys(): self.character_data[key] = SPRITESHEET_JSON[key] def loadSpriteSheets(self, character_data): ''' loadSpriteSheets(self, character_data) Procedure which loads spritesheet from path given, and extracts each frame of the sprite and stores to dictionary self.images These can then be updated depending on this instances state ''' self.spritesheet = SpriteSheet(character_data['path']) char_size = character_data['charsize'] scale_factor = character_data['scale_factor'] scaled_size = [char_size[0] * scale_factor, char_size[1] * scale_factor] self.scaled_size = scaled_size background_colour = character_data['background'] image_types = character_data['actions'] image_directions = character_data['directions'] graphic_dims = character_data['graphic_dims'] self.width = graphic_dims[0] * scale_factor self.height = graphic_dims[1] * scale_factor self.images = {} # Importing images into self.images dictionary # This interacts with spritesheet code from https://ehmatthes.gi # thub.io/pcc_2e/beyond_pcc/pygame_sprite_sheets/#a-simple-sprit # e-sheet # to load sprites into a dictinoary for image_type in image_types: self.images[image_type] = {} for image_direction in image_directions: self.images[image_type][image_direction] = [] for coords in character_data[image_type][image_direction]: specific_image = pygame.transform.scale( self.spritesheet.image_at(coords,char_size), scaled_size ) specific_image.set_colorkey(background_colour) self.images[image_type][image_direction] += \ [specific_image] def changeArms(self, arm_type): self.arms = WEAPON_TYPES[arm_type](self) def addTarget(self, target_group): ''' Adds group of enemies to player ''' self.target_group = target_group def spriteCollision(self, other): if pygame.sprite.collide_rect(self, other): print('COLLISION') else: print('NO COLLISION') def attack(self, target, type = 1): ''' Attack function - Attacks player assigned to it Causes player being attacked to recoil in opposite direction, and lose health. ''' if self.rect[0] < target.rect[0]: direction = 1 else: direction = -1 self.arms.attack(direction, target) def isFacingTarget(self, target): ''' Function to check whether self is facing a particular enemy ''' if self.state[1] == 'left' and \ (self.rect.centerx > target.rect.centerx): return True elif self.state[1] == 'right' and \ (self.rect.centerx < target.rect.centerx): return True return False def recoil(self, force, direction): ''' Recoil function - Loses health from attack and sets recoil counter Recoil counter processed in display function. Each frame pushes character back while recoiling. ''' self.health -= force self.score -= force // 5 self.recoil_status = (True, direction) self.recoil_counter = 5 def update(self): ''' Update function Updates position of characters subject to state. ''' # Check if attacking, if attacking change state to attacking for # one frame if (self.attacking) and (self.init_attacking == False): self.pre_attack_action, self.pre_action_direction = self.state self.updateState('attack', self.state[1]) self.init_attacking = True elif self.init_attacking: self.attack_frame_counter += 1 if self.attack_frame_counter == self.refresh_rate: self.attack_frame_counter = 0 self.attacking = False self.init_attacking = False self.updateState(self.pre_attack_action, self.state[1]) # Update verticle subject to jumping #if self.state[0] == 'jumping': if self.is_jumping: self.applyJump() else: if not self.collisionWithGround() : self.is_falling = True # Updating position subject to gravity if self.is_falling: self.applyGravity() # Updating subject to recoil. If character is recoiling, move # in recoil direction if self.recoil_status[0]: if self.recoil_counter == 0: self.recoil_status = (False, 0) self.moveX(15 * self.recoil_status[1]) self.recoil_counter = self.recoil_counter - 1 # Update x/y subject to status if self.x_y_moving: if self.state[1] == 'right': self.moveX(self.speed) if self.state[1] == 'left': move_speed = -1 * self.speed self.moveX(move_speed) def syncRects(self): self.feet_rect.bottomleft = self.rect.bottomleft self.plot_rect.center = self.rect.center def display(self): ''' Display function Updates image if required, and displays image(s) to screen ''' # Update state image TODO CHANGE image code self.image = self.images[self.state[0]][self.state[1]] # Updating counter, and if necessary incrementing image self.refresh_counter += 1 if self.refresh_counter == self.refresh_rate: self.incrementImage() # Catch frames changed mid refresh if self.image_index >= len(self.image): self.incrementImage() self.syncRects() # ################################################### # # TODO DELETE THE FOLLOWING CODE - FOR TESTING ONLY # surf = pygame.Surface((self.rect.width, self.rect.height)) # surf.fill((100, 100, 0)) # self.screen.blit(surf, self.rect) # surf
<reponame>ezgimercan/SlicerMorph import os import unittest import vtk, qt, ctk, slicer from slicer.ScriptedLoadableModule import * import logging import fnmatch import numpy as np import random import math import re import csv # # MeshDistanceMeasurement # class MeshDistanceMeasurement(ScriptedLoadableModule): """Uses ScriptedLoadableModule base class, available at: https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py """ def __init__(self, parent): ScriptedLoadableModule.__init__(self, parent) self.parent.title = "MeshDistanceMeasurement" # TODO make this more human readable by adding spaces self.parent.categories = ["SlicerMorph.SlicerMorph Labs"] self.parent.dependencies = [] self.parent.contributors = ["<NAME> (UW), <NAME> (UW)"] # replace with "Firstname Lastname (Organization)" self.parent.helpText = """ This module takes a semi-landmark file from a template image and transfers the semi-landmarks to a group of specimen using TPS and projection. """ self.parent.helpText += self.getDefaultModuleDocumentationLink() self.parent.acknowledgementText = """ This module was developed by <NAME> for SlicerMorph. SlicerMorph was originally supported by an NSF/DBI grant, "An Integrated Platform for Retrieval, Visualization and Analysis of 3D Morphology From Digital Biological Collections" awarded to <NAME> (1759883), <NAME> (1759637), and <NAME> (1759839). https://nsf.gov/awardsearch/showAward?AWD_ID=1759883&HistoricalAwards=false """ # replace with organization, grant and thanks. # Additional initialization step after application startup is complete slicer.app.connect("startupCompleted()", registerSampleData) # # Register sample data sets in Sample Data module # def registerSampleData(): """ Add data sets to Sample Data module. """ # It is always recommended to provide sample data for users to make it easy to try the module, # but if no sample data is available then this method (and associated startupCompeted signal connection) can be removed. import SampleData iconsPath = os.path.join(os.path.dirname(__file__), 'Resources/Icons') # To ensure that the source code repository remains small (can be downloaded and installed quickly) # it is recommended to store data sets that are larger than a few MB in a Github release. # TemplateKey1 SampleData.SampleDataLogic.registerCustomSampleDataSource( # Category and sample name displayed in Sample Data module category='TemplateKey', sampleName='TemplateKey1', # Thumbnail should have size of approximately 260x280 pixels and stored in Resources/Icons folder. # It can be created by Screen Capture module, "Capture all views" option enabled, "Number of images" set to "Single". thumbnailFileName=os.path.join(iconsPath, 'TemplateKey1.png'), # Download URL and target file name uris="https://github.com/Slicer/SlicerTestingData/releases/download/SHA256/998cb522173839c78657f4bc0ea907cea09fd04e44601f17c82ea27927937b95", fileNames='TemplateKey1.nrrd', # Checksum to ensure file integrity. Can be computed by this command: # import hashlib; print(hashlib.sha256(open(filename, "rb").read()).hexdigest()) checksums = 'SHA256:998cb522173839c78657f4bc0ea907cea09fd04e44601f17c82ea27927937b95', # This node name will be used when the data set is loaded nodeNames='TemplateKey1' ) # TemplateKey2 SampleData.SampleDataLogic.registerCustomSampleDataSource( # Category and sample name displayed in Sample Data module category='TemplateKey', sampleName='TemplateKey2', thumbnailFileName=os.path.join(iconsPath, 'TemplateKey2.png'), # Download URL and target file name uris="https://github.com/Slicer/SlicerTestingData/releases/download/SHA256/1a64f3f422eb3d1c9b093d1a18da354b13bcf307907c66317e2463ee530b7a97", fileNames='TemplateKey2.nrrd', checksums = 'SHA256:1a64f3f422eb3d1c9b093d1a18da354b13bcf307907c66317e2463ee530b7a97', # This node name will be used when the data set is loaded nodeNames='TemplateKey2' ) # # MeshDistanceMeasurementWidget # class MeshDistanceMeasurementWidget(ScriptedLoadableModuleWidget): """Uses ScriptedLoadableModuleWidget base class, available at: https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py """ def onSelect(self): self.applyButton.enabled = bool (self.meshDirectory.currentPath and self.landmarkDirectory.currentPath and self.modelSelector.currentNode() and self.baseLMSelect.currentNode()) and (bool(self.semilandmarkDirectory.currentPath)==bool(self.baseSLMSelect.currentNode())) def onSelectBaseSLM(self): self.semilandmarkDirectory.enabled = bool(self.baseSLMSelect.currentNode()) self.applyButton.enabled = bool (self.meshDirectory.currentPath and self.landmarkDirectory.currentPath and self.modelSelector.currentNode() and self.baseLMSelect.currentNode()) and (bool(self.semilandmarkDirectory.currentPath)==bool(self.baseSLMSelect.currentNode())) def setup(self): ScriptedLoadableModuleWidget.setup(self) # Instantiate and connect widgets ... # # Parameters Area # parametersCollapsibleButton = ctk.ctkCollapsibleButton() parametersCollapsibleButton.text = "Parameters" self.layout.addWidget(parametersCollapsibleButton) # Layout within the dummy collapsible button parametersFormLayout = qt.QFormLayout(parametersCollapsibleButton) # # Select base mesh # self.modelSelector = slicer.qMRMLNodeComboBox() self.modelSelector.nodeTypes = ( ("vtkMRMLModelNode"), "" ) self.modelSelector.selectNodeUponCreation = False self.modelSelector.addEnabled = False self.modelSelector.removeEnabled = False self.modelSelector.noneEnabled = True self.modelSelector.showHidden = False self.modelSelector.setMRMLScene( slicer.mrmlScene ) parametersFormLayout.addRow("Base mesh: ", self.modelSelector) # # Select base landmark file # #self.baseLMFile=ctk.ctkPathLineEdit() #self.baseLMFile.setToolTip( "Select file specifying base landmarks" ) #parametersFormLayout.addRow("Base landmark file: ", self.baseLMFile) self.baseLMSelect = slicer.qMRMLNodeComboBox() self.baseLMSelect.nodeTypes = ( ('vtkMRMLMarkupsFiducialNode'), "" ) self.baseLMSelect.selectNodeUponCreation = False self.baseLMSelect.addEnabled = False self.baseLMSelect.removeEnabled = False self.baseLMSelect.noneEnabled = True self.baseLMSelect.showHidden = False self.baseLMSelect.showChildNodeTypes = False self.baseLMSelect.setMRMLScene( slicer.mrmlScene ) parametersFormLayout.addRow("Base landmarks: ", self.baseLMSelect) # # Select base semi-landmark file # #self.baseLMFile=ctk.ctkPathLineEdit() #self.baseLMFile.setToolTip( "Select file specifying base landmarks" ) #parametersFormLayout.addRow("Base landmark file: ", self.baseLMFile) self.baseSLMSelect = slicer.qMRMLNodeComboBox() self.baseSLMSelect.nodeTypes = ( ('vtkMRMLMarkupsFiducialNode'), "" ) self.baseSLMSelect.selectNodeUponCreation = False self.baseSLMSelect.addEnabled = False self.baseSLMSelect.removeEnabled = False self.baseSLMSelect.noneEnabled = True self.baseSLMSelect.showHidden = False self.baseSLMSelect.showChildNodeTypes = False self.baseSLMSelect.setMRMLScene( slicer.mrmlScene ) parametersFormLayout.addRow("Base semi-landmarks: ", self.baseSLMSelect) # # Select meshes directory # self.meshDirectory=ctk.ctkPathLineEdit() self.meshDirectory.filters = ctk.ctkPathLineEdit.Dirs self.meshDirectory.setToolTip( "Select directory containing meshes" ) parametersFormLayout.addRow("Mesh directory: ", self.meshDirectory) # # Select landmarks directory # self.landmarkDirectory=ctk.ctkPathLineEdit() self.landmarkDirectory.filters = ctk.ctkPathLineEdit.Dirs self.landmarkDirectory.setToolTip( "Select directory containing landmarks" ) parametersFormLayout.addRow("Landmark directory: ", self.landmarkDirectory) # # Select semi-landmarks directory # self.semilandmarkDirectory=ctk.ctkPathLineEdit() self.semilandmarkDirectory.filters = ctk.ctkPathLineEdit.Dirs self.semilandmarkDirectory.setToolTip( "Select directory containing semi-landmarks" ) self.semilandmarkDirectory.enabled = False parametersFormLayout.addRow("Semi-landmark directory: ", self.semilandmarkDirectory) # # Select output directory # self.outputDirectory=ctk.ctkPathLineEdit() self.outputDirectory.filters = ctk.ctkPathLineEdit.Dirs self.outputDirectory.currentPath = slicer.app.temporaryPath self.outputDirectory.setToolTip( "Select directory to save output distance maps" ) parametersFormLayout.addRow("Output directory: ", self.outputDirectory) # # Select distance metric # self.unSignedDistanceOption=qt.QRadioButton() self.unSignedDistanceOption.setChecked(True) parametersFormLayout.addRow("Unsigned Distance: ", self.unSignedDistanceOption) self.signedDistanceOption=qt.QRadioButton() self.signedDistanceOption.setChecked(False) parametersFormLayout.addRow("Signed Distance: ", self.signedDistanceOption) # # Apply Button # self.applyButton = qt.QPushButton("Apply") self.applyButton.toolTip = "Generate MeshDistanceMeasurements." self.applyButton.enabled = False parametersFormLayout.addRow(self.applyButton) # connections self.modelSelector.connect('currentNodeChanged(vtkMRMLNode*)', self.onSelect) self.baseLMSelect.connect('currentNodeChanged(vtkMRMLNode*)', self.onSelect) self.meshDirectory.connect('validInputChanged(bool)', self.onSelect) self.baseSLMSelect.connect('currentNodeChanged(bool)', self.onSelectBaseSLM) self.semilandmarkDirectory.connect('validInputChanged(bool)', self.onSelect) self.applyButton.connect('clicked(bool)', self.onApplyButton) # Add vertical spacer self.layout.addStretch(1) def cleanup(self): pass def onApplyButton(self): logic = MeshDistanceMeasurementLogic() logic.run(self.modelSelector.currentNode(), self.baseLMSelect.currentNode(), self.baseSLMSelect.currentNode(), self.meshDirectory.currentPath, self.landmarkDirectory.currentPath, self.semilandmarkDirectory.currentPath, self.outputDirectory.currentPath, self.signedDistanceOption.checked) # # MeshDistanceMeasurementLogic # class MeshDistanceMeasurementLogic(ScriptedLoadableModuleLogic): """This class should implement all the actual computation done by your module. The interface should be such that other python code can import this class and make use of the functionality without requiring an instance of the Widget. Uses ScriptedLoadableModuleLogic base class, available at: https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py """ def mergeLandmarks(self, templateLM, templateSLM): landmarkPoint = [0,0,0] for landmarkIndex in range(templateLM.GetNumberOfMarkups()): templateLM.GetMarkupPoint(0,landmarkIndex,landmarkPoint) templateSLM.AddFiducialFromArray(landmarkPoint) return templateSLM def findCorrespondingFilePath(self, searchDirectory, templateFileName): fileList = os.listdir(searchDirectory) regex = re.compile(r'\d+') subjectID = [int(x) for x in regex.findall(templateFileName)][0] for filename in fileList: if str(subjectID) in filename: return os.path.join(searchDirectory, filename), subjectID def run(self, templateMesh, templateLM, templateSLM, meshDirectory, lmDirectory, slmDirectory, outDirectory, signedDistanceOption): if(bool(templateSLM) and bool(slmDirectory)): templateLMTotal = self.mergeLandmarks(templateLM, templateSLM) else: templateLMTotal = templateLM #get template points as vtk array templatePoints = vtk.vtkPoints() p=[0,0,0] for i in range(templateLMTotal.GetNumberOfMarkups()): templateLMTotal.GetMarkupPoint(0,i,p) templatePoints.InsertNextPoint(p) # write selected triangles to table tableNode = slicer.mrmlScene.AddNewNodeByClass('vtkMRMLTableNode', 'Mean Mesh Distances') col1=tableNode.AddColumn() col1.SetName('Subject ID') col2=tableNode.AddColumn() col2.SetName('Mesh RMSE') tableNode.SetColumnType('Subject ID',vtk.VTK_STRING) tableNode.SetColumnType('Mean Mesh Distance',vtk.VTK_STRING) subjectCount = 0 for meshFileName in os.listdir(meshDirectory): if(not meshFileName.startswith(".")): #get corresponding landmarks lmFilePath, subjectID = self.findCorrespondingFilePath(lmDirectory, meshFileName) if(lmFilePath): currentLMNode = slicer.util.loadMarkupsFiducialList(lmFilePath) if bool(slmDirectory): # add semi-landmarks if present slmFilePath, sID = self.findCorrespondingFilePath(slmDirectory, meshFileName) if(slmFilePath): currentSLMNode = slicer.util.loadMarkupsFiducialList(slmFilePath) currentLMTotal = self.mergeLandmarks(templateLM, currentSLMNode) else: print("problem with reading semi-landmarks") return False else: currentLMTotal = currentLMNode else: print("problem with reading landmarks") return False # if mesh and lm file with same subject id exist, load into scene meshFilePath = os.path.join(meshDirectory, meshFileName) currentMeshNode = slicer.util.loadModel(meshFilePath) #get subject points into vtk array subjectPoints = vtk.vtkPoints() p=[0,0,0] for i in range(currentLMTotal.GetNumberOfMarkups()): currentLMTotal.GetMarkupPoint(0,i,p) subjectPoints.InsertNextPoint(p) transform = vtk.vtkThinPlateSplineTransform() transform.SetSourceLandmarks( subjectPoints ) transform.SetTargetLandmarks( templatePoints ) transform.SetBasisToR() # for 3D transform transformNode=slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode","TPS") transformNode.SetAndObserveTransformToParent(transform) currentMeshNode.SetAndObserveTransformNodeID(transformNode.GetID()) slicer.vtkSlicerTransformLogic().hardenTransform(currentMeshNode) distanceFilter = vtk.vtkDistancePolyDataFilter() distanceFilter.SetInputData(0,templateMesh.GetPolyData()) distanceFilter.SetInputData(1,currentMeshNode.GetPolyData()) distanceFilter.SetSignedDistance(signedDistanceOption) distanceFilter.Update() distanceMap = distanceFilter.GetOutput() distanceArray = distanceMap.GetPointData().GetArray('Distance') #meanDistance = np.average(distanceArray) meanDistance = self.rmse(distanceArray) #save output distance map outputNode=slicer.mrmlScene.AddNewNodeByClass("vtkMRMLModelNode","ouputDistanceMap") outputNode.SetAndObservePolyData(distanceMap) outputFilename = os.path.join(outDirectory, str(subjectID) + '.vtp') slicer.util.saveNode(outputNode, outputFilename) #update table and subjectCount tableNode.AddEmptyRow() tableNode.SetCellText(subjectCount,0,str(subjectID)) tableNode.SetCellText(subjectCount,1,str(meanDistance)) subjectCount+=1 # clean up slicer.mrmlScene.RemoveNode(outputNode) slicer.mrmlScene.RemoveNode(transformNode) slicer.mrmlScene.RemoveNode(currentMeshNode) slicer.mrmlScene.RemoveNode(currentLMNode) def rmse(self, signedDistanceArray): return np.sqrt(np.square(signedDistanceArray).mean()) def takeScreenshot(self,name,description,type=-1): # show the message even if not taking a screen shot slicer.util.delayDisplay('Take screenshot: '+description+'.\nResult is available in the Annotations module.', 3000) lm = slicer.app.layoutManager() # switch on the type to get the requested window widget = 0 if type == slicer.qMRMLScreenShotDialog.FullLayout: # full layout widget = lm.viewport() elif type == slicer.qMRMLScreenShotDialog.ThreeD: # just the 3D window widget = lm.threeDWidget(0).threeDView() elif type == slicer.qMRMLScreenShotDialog.Red: # red slice window widget = lm.sliceWidget("Red") elif type == slicer.qMRMLScreenShotDialog.Yellow: # yellow slice window widget = lm.sliceWidget("Yellow") elif type == slicer.qMRMLScreenShotDialog.Green: # green slice window widget = lm.sliceWidget("Green") else: # default to using the full window widget = slicer.util.mainWindow() # reset the type so that the node is set correctly type = slicer.qMRMLScreenShotDialog.FullLayout # grab and convert to vtk image data qimage = ctk.ctkWidgetsUtils.grabWidget(widget) imageData = vtk.vtkImageData() slicer.qMRMLUtils().qImageToVtkImageData(qimage,imageData) annotationLogic = slicer.modules.annotations.logic() annotationLogic.CreateSnapShot(name, description, type, 1, imageData) def process(self, inputVolume, outputVolume, imageThreshold, invert=False, showResult=True): """ Run the processing algorithm. Can be used without GUI widget. :param inputVolume: volume to be thresholded :param outputVolume: thresholding result :param imageThreshold: values above/below this threshold will be set to 0 :param invert: if True then values above the threshold will
for field_name in fields: field = self._fields.get(field_name) if field is None: continue if field.type in ('many2many', 'one2many'): continue elif field.type == 'many2one': data[field_name] = _get_first_not_null_id(field_name, self) # take the first not null elif field.type == 'text': data[field_name] = '\n\n'.join(it for it in self.mapped(field_name) if it) else: data[field_name] = _get_first_not_null(field_name, self) # define the resulting type ('lead' or 'opportunity') data['type'] = self._merge_get_result_type() return data def _mail_body(self, fields): """ generate the message body with the changed values :param fields : list of fields to track :returns a list of message bodies for the corresponding leads """ bodies = [] for lead in self: title = "%s : %s\n" % (_('Merged opportunity') if lead.type == 'opportunity' else _('Merged lead'), lead.name) body = [title] _fields = self.env['ir.model.fields'].search([ ('name', 'in', fields or []), ('model_id.model', '=', lead._name), ]) for field in _fields: value = getattr(lead, field.name, False) if field.ttype == 'selection': selections = lead.fields_get()[field.name]['selection'] value = next((v[1] for v in selections if v[0] == value), value) elif field.ttype == 'many2one': if value: value = value.sudo().display_name elif field.ttype == 'many2many': if value: value = ','.join( val.display_name for val in value.sudo() ) body.append("%s: %s" % (field.field_description, value or '')) bodies.append("<br/>".join(body + ['<br/>'])) return bodies def _merge_notify(self, opportunities): """ Create a message gathering merged leads/opps informations. Using message_post, send a message explaining which fields has been merged and their new value. `self` is the resulting merge crm.lead record. :param opportunities : recordset of merged crm.lead :returns mail.message posted on resulting crm.lead """ # TODO JEM: mail template should be used instead of fix body, subject text self.ensure_one() # mail message's subject result_type = opportunities._merge_get_result_type() merge_message = _('Merged leads') if result_type == 'lead' else _('Merged opportunities') subject = merge_message + ": " + ", ".join(opportunities.mapped('name')) # message bodies message_bodies = opportunities._mail_body(list(CRM_LEAD_FIELDS_TO_MERGE)) message_body = "\n\n".join(message_bodies) return self.message_post(body=message_body, subject=subject) def _merge_opportunity_history(self, opportunities): """ Move mail.message from the given opportunities to the current one. `self` is the crm.lead record destination for message of `opportunities`. :param opportunities : recordset of crm.lead to move the messages """ self.ensure_one() for opportunity in opportunities: for message in opportunity.message_ids: message.write({ 'res_id': self.id, 'subject': _("From %s : %s") % (opportunity.name, message.subject) }) return True def _merge_opportunity_attachments(self, opportunities): """ Move attachments of given opportunities to the current one `self`, and rename the attachments having same name than native ones. :param opportunities : recordset of merged crm.lead """ self.ensure_one() # return attachments of opportunity def _get_attachments(opportunity_id): return self.env['ir.attachment'].search([('res_model', '=', self._name), ('res_id', '=', opportunity_id)]) first_attachments = _get_attachments(self.id) # counter of all attachments to move. Used to make sure the name is different for all attachments count = 1 for opportunity in opportunities: attachments = _get_attachments(opportunity.id) for attachment in attachments: values = {'res_id': self.id} for attachment_in_first in first_attachments: if attachment.name == attachment_in_first.name: values['name'] = "%s (%s)" % (attachment.name, count) count += 1 attachment.write(values) return True def merge_dependences(self, opportunities): """ Merge dependences (messages, attachments, ...). These dependences will be transfered to `self`, the most important lead. :param opportunities : recordset of opportunities to transfert. Does not include `self`. """ self.ensure_one() self._merge_notify(opportunities) self._merge_opportunity_history(opportunities) self._merge_opportunity_attachments(opportunities) def merge_opportunity(self, user_id=False, team_id=False): """ Merge opportunities in one. Different cases of merge: - merge leads together = 1 new lead - merge at least 1 opp with anything else (lead or opp) = 1 new opp The resulting lead/opportunity will be the most important one (based on its confidence level) updated with values from other opportunities to merge. :param user_id : the id of the saleperson. If not given, will be determined by `_merge_data`. :param team : the id of the Sales Team. If not given, will be determined by `_merge_data`. :return crm.lead record resulting of th merge """ if len(self.ids) <= 1: raise UserError(_('Please select more than one element (lead or opportunity) from the list view.')) if len(self.ids) > 5 and not self.env.is_superuser(): raise UserError(_("To prevent data loss, Leads and Opportunities can only be merged by groups of 5.")) opportunities = self._sort_by_confidence_level(reverse=True) # get SORTED recordset of head and tail, and complete list opportunities_head = opportunities[0] opportunities_tail = opportunities[1:] # merge all the sorted opportunity. This means the value of # the first (head opp) will be a priority. merged_data = opportunities._merge_data(list(CRM_LEAD_FIELDS_TO_MERGE)) # force value for saleperson and Sales Team if user_id: merged_data['user_id'] = user_id if team_id: merged_data['team_id'] = team_id # merge other data (mail.message, attachments, ...) from tail into head opportunities_head.merge_dependences(opportunities_tail) # check if the stage is in the stages of the Sales Team. If not, assign the stage with the lowest sequence if merged_data.get('team_id'): team_stage_ids = self.env['crm.stage'].search(['|', ('team_id', '=', merged_data['team_id']), ('team_id', '=', False)], order='sequence') if merged_data.get('stage_id') not in team_stage_ids.ids: merged_data['stage_id'] = team_stage_ids[0].id if team_stage_ids else False # write merged data into first opportunity opportunities_head.write(merged_data) # delete tail opportunities # we use the SUPERUSER to avoid access rights issues because as the user had the rights to see the records it should be safe to do so opportunities_tail.sudo().unlink() return opportunities_head def _sort_by_confidence_level(self, reverse=False): """ Sorting the leads/opps according to the confidence level of its stage, which relates to the probability of winning it The confidence level increases with the stage sequence An Opportunity always has higher confidence level than a lead """ def opps_key(opportunity): return opportunity.type == 'opportunity', opportunity.stage_id.sequence, -opportunity._origin.id return self.sorted(key=opps_key, reverse=reverse) def get_duplicated_leads(self, partner_id, include_lost=False): """ Search for opportunities that have the same partner and that arent done or cancelled :param partner_id : partner to search """ self.ensure_one() email = self.partner_id.email or self.email_from return self._get_duplicated_leads_by_emails(partner_id, email, include_lost=include_lost) @api.model def _get_duplicated_leads_by_emails(self, partner_id, email, include_lost=False): """ Search for opportunities that have the same partner and that arent done or cancelled """ if not email: return self.env['crm.lead'] partner_match_domain = [] for email in set(email_split(email) + [email]): partner_match_domain.append(('email_from', '=ilike', email)) if partner_id: partner_match_domain.append(('partner_id', '=', partner_id)) if not partner_match_domain: return self.env['crm.lead'] partner_match_domain = ['|'] * (len(partner_match_domain) - 1) + partner_match_domain if not include_lost: partner_match_domain += ['&', ('active', '=', True), ('probability', '<', 100)] else: partner_match_domain += ['|', '&', ('type', '=', 'lead'), ('active', '=', True), ('type', '=', 'opportunity')] return self.search(partner_match_domain) def _convert_opportunity_data(self, customer, team_id=False): """ Extract the data from a lead to create the opportunity :param customer : res.partner record :param team_id : identifier of the Sales Team to determine the stage """ if not team_id: team_id = self.team_id.id if self.team_id else False value = { 'planned_revenue': self.planned_revenue, 'probability': self.probability, 'name': self.name, 'partner_id': customer.id if customer else False, 'type': 'opportunity', 'date_open': fields.Datetime.now(), 'email_from': customer and customer.email or self.email_from, 'phone': customer and customer.phone or self.phone, 'date_conversion': fields.Datetime.now(), } if not self.stage_id: stage = self._stage_find(team_id=team_id) value['stage_id'] = stage.id return value def convert_opportunity(self, partner_id, user_ids=False, team_id=False): customer = False if partner_id: customer = self.env['res.partner'].browse(partner_id) for lead in self: if not lead.active or lead.probability == 100: continue vals = lead._convert_opportunity_data(customer, team_id) lead.write(vals) if user_ids or team_id: self.allocate_salesman(user_ids, team_id) return True def _create_lead_partner_data(self, name, is_company, parent_id=False): """ extract data from lead to create a partner :param name : furtur name of the partner :param is_company : True if the partner is a company :param parent_id : id of the parent partner (False if no parent) :returns res.partner record """ email_split = tools.email_split(self.email_from) res = { 'name': name, 'user_id': self.env.context.get('default_user_id') or self.user_id.id, 'comment': self.description, 'team_id': self.team_id.id, 'parent_id': parent_id, 'phone': self.phone, 'mobile': self.mobile, 'email': email_split[0] if email_split else False, 'title': self.title.id, 'function': self.function, 'street': self.street, 'street2': self.street2, 'zip': self.zip, 'city': self.city, 'country_id': self.country_id.id, 'state_id': self.state_id.id, 'website': self.website, 'is_company': is_company, 'type': 'contact' } if self.lang_id: res['lang'] = self.lang_id.code return res def _create_lead_partner(self): """ Create a partner from lead data :returns res.partner record """ Partner = self.env['res.partner'] contact_name = self.contact_name if not contact_name: contact_name = Partner._parse_partner_name(self.email_from)[0] if self.email_from else False if self.partner_name: partner_company = Partner.create(self._create_lead_partner_data(self.partner_name, True)) elif self.partner_id: partner_company = self.partner_id else: partner_company = None if contact_name: return Partner.create(self._create_lead_partner_data(contact_name, False, partner_company.id if partner_company else False)) if partner_company: return partner_company return Partner.create(self._create_lead_partner_data(self.name, False)) def handle_partner_assignation(self, action='create', partner_id=False): """ Handle partner assignation during a
i,k in enumerate(vegtype_mainlist)) inter = set(ind_dict).intersection(vegtype_str) indices = [ ind_dict[x] for x in inter ] return indices # Flexibly subset time(s) and/or vegetation type(s) from an xarray Dataset or DataArray. Keyword arguments like dimension=selection. Selections can be individual values or slice()s. Optimize memory usage by beginning keyword argument list with the selections that will result in the largest reduction of object size. def xr_flexsel(xr_object, patches1d_itype_veg=None, warn_about_seltype_interp=True, **kwargs): # Setup havewarned = False delimiter = "__" for key, selection in kwargs.items(): if key == "vegtype": # Convert to list, if needed if not isinstance(selection, list): selection = [selection] # Convert to indices, if needed if isinstance(selection[0], str): selection = vegtype_str2int(selection) # Get list of boolean(s) if isinstance(selection[0], int): if isinstance(patches1d_itype_veg, type(None)): patches1d_itype_veg = xr_object.patches1d_itype_veg.values elif isinstance(patches1d_itype_veg, xr.core.dataarray.DataArray): patches1d_itype_veg = patches1d_itype_veg.values is_vegtype = is_each_vegtype(patches1d_itype_veg, selection, "ok_exact") elif isinstance(selection[0], bool): if len(selection) != len(xr_object.patch): raise ValueError(f"If providing boolean 'vegtype' argument to xr_flexsel(), it must be the same length as xr_object.patch ({len(selection)} vs. {len(xr_object.patch)})") is_vegtype = selection else: raise TypeError(f"Not sure how to handle 'vegtype' of type {type(selection)}") xr_object = xr_object.isel(patch=[i for i, x in enumerate(is_vegtype) if x]) if "ivt" in xr_object: xr_object = xr_object.isel(ivt=is_each_vegtype(xr_object.ivt.values, selection, "ok_exact")) else: # Parse selection type, if provided if delimiter in key: key, selection_type = key.split(delimiter) # Check type of selection else: # Suggest suppressing selection type interpretation warnings if warn_about_seltype_interp and not havewarned: print("xr_flexsel(): Suppress all 'selection type interpretation' messages by specifying warn_about_seltype_interp=False") havewarned = False is_inefficient = False if isinstance(selection, slice): slice_members = [] if selection == slice(0): raise ValueError("slice(0) will be empty") if selection.start != None: slice_members = slice_members + [selection.start] if selection.stop != None: slice_members = slice_members + [selection.stop] if selection.step != None: slice_members = slice_members + [selection.step] if slice_members==[]: raise TypeError("slice is all None?") this_type = int for x in slice_members: if x < 0 or not isinstance(x, int): this_type = "values" break elif isinstance(selection, np.ndarray): if selection.dtype.kind in np.typecodes["AllInteger"]: this_type = int else: is_inefficient = True this_type = None for x in selection: if x < 0 or x%1 > 0: if isinstance(x, int): this_type = "values" else: this_type = type(x) break if this_type==None: this_type = int selection = selection.astype(int) else: this_type = type(selection) print(f"this_type: {this_type}") if this_type == int: selection_type = "indices" else: selection_type = "values" if warn_about_seltype_interp: if is_inefficient: extra = " This will also improve efficiency for large selections." else: extra = "" print(f"xr_flexsel(): Selecting {key} as {selection_type} because selection was interpreted as {this_type}. If not correct, specify selection type ('indices' or 'values') in keyword like '{key}{delimiter}SELECTIONTYPE=...' instead of '{key}=...'.{extra}") # Trim along relevant 1d axes if isinstance(xr_object, xr.Dataset) and key in ["lat","lon"]: if selection_type == "indices": inclCoords = xr_object[key].values[selection] elif selection_type == "values": if isinstance(selection, slice): inclCoords = xr_object.sel({key: selection}, drop=False)[key].values else: inclCoords = selection else: raise TypeError(f"selection_type {selection_type} not recognized") if key == "lat": thisXY = "jxy" elif key=="lon": thisXY = "ixy" else: raise KeyError(f"Key '{key}' not recognized: What 1d_ suffix should I use for variable name?") pattern = re.compile(f"1d_{thisXY}") matches = [x for x in list(xr_object.keys()) if pattern.search(x) != None] for thisVar in matches: if len(xr_object[thisVar].dims) != 1: raise RuntimeError(f"Expected {thisVar} to have 1 dimension, but it has {len(xr_object[thisVar].dims)}: {xr_object[thisVar].dims}") thisVar_dim = xr_object[thisVar].dims[0] # print(f"Variable {thisVar} has dimension {thisVar_dim}") thisVar_coords = xr_object[key].values[xr_object[thisVar].values.astype(int)-1] # print(f"{thisVar_dim} size before: {xr_object.sizes[thisVar_dim]}") ok_ind = [] new_1d_thisXY = [] for i, x in enumerate(thisVar_coords): if x in inclCoords: ok_ind = ok_ind + [i] new_1d_thisXY = new_1d_thisXY + [(inclCoords==x).nonzero()[0] + 1] xr_object = xr_object.isel({thisVar_dim: ok_ind}) new_1d_thisXY = np.array(new_1d_thisXY).squeeze() xr_object[thisVar].values = new_1d_thisXY # print(f"{thisVar_dim} size after: {xr_object.sizes[thisVar_dim]}") # Perform selection if selection_type == "indices": # Have to select like this instead of with index directly because otherwise assign_coords() will throw an error. Not sure why. if isinstance(selection, int): # Single integer? Turn it into a slice. selection = slice(selection,selection+1) elif isinstance(selection, np.ndarray) and not selection.dtype.kind in np.typecodes["AllInteger"]: selection = selection.astype(int) xr_object = xr_object.isel({key: selection}) elif selection_type == "values": xr_object = xr_object.sel({key: selection}) else: raise TypeError(f"selection_type {selection_type} not recognized") return xr_object # Get PFT of each patch, in both integer and string forms. def ivt_int_str(this_ds, this_pftlist): # First, get all the integer values; should be time*pft or pft*time. We will eventually just take the first timestep. vegtype_int = this_ds.patches1d_itype_veg vegtype_int.values = vegtype_int.values.astype(int) # Convert to strings. vegtype_str = list(np.array(this_pftlist)[vegtype_int.values]) # Return a dictionary with both results return {"int": vegtype_int, "str": vegtype_str, "all_str": this_pftlist} # Convert a list of strings with vegetation type names into a DataArray. Used to add vegetation type info in import_ds(). def get_vegtype_str_da(vegtype_str): nvt = len(vegtype_str) thisName = "vegtype_str" vegtype_str_da = xr.DataArray(\ vegtype_str, coords={"ivt": np.arange(0,nvt)}, dims=["ivt"], name = thisName) return vegtype_str_da # Function to drop unwanted variables in preprocessing of open_mfdataset(), making sure to NOT drop any unspecified variables that will be useful in gridding. Also adds vegetation type info in the form of a DataArray of strings. # Also renames "pft" dimension (and all like-named variables, e.g., pft1d_itype_veg_str) to be named like "patch". This can later be reversed, for compatibility with other code, using patch2pft(). def mfdataset_preproc(ds, vars_to_import, vegtypes_to_import): # Rename "pft" dimension and variables to "patch", if needed if "pft" in ds.dims: pattern = re.compile("pft.*1d") matches = [x for x in list(ds.keys()) if pattern.search(x) != None] pft2patch_dict = {"pft": "patch"} for m in matches: pft2patch_dict[m] = m.replace("pft","patch").replace("patchs","patches") ds = ds.rename(pft2patch_dict) if vars_to_import != None: # Get list of dimensions present in variables in vars_to_import. dimList = [] for thisVar in vars_to_import: # list(set(x)) returns a list of the unique items in x dimList = list(set(dimList + list(ds.variables[thisVar].dims))) # Get any _1d variables that are associated with those dimensions. These will be useful in gridding. Also, if any dimension is "pft", set up to rename it and all like-named variables to "patch" onedVars = [] for thisDim in dimList: pattern = re.compile(f"{thisDim}.*1d") matches = [x for x in list(ds.keys()) if pattern.search(x) != None] onedVars = list(set(onedVars + matches)) # Add dimensions and _1d variables to vars_to_import vars_to_import = list(set(vars_to_import \ + list(ds.dims) + onedVars)) # Get list of variables to drop varlist = list(ds.variables) vars_to_drop = list(np.setdiff1d(varlist, vars_to_import)) # Drop them ds = ds.drop_vars(vars_to_drop) # Add vegetation type info if "patches1d_itype_veg" in list(ds): this_pftlist = define_pftlist() ivt_int_str(ds, this_pftlist) # Includes check of whether vegtype changes over time anywhere vegtype_da = get_vegtype_str_da(this_pftlist) patches1d_itype_veg_str = vegtype_da.values[ds.isel(time=0).patches1d_itype_veg.values.astype(int)] npatch = len(patches1d_itype_veg_str) patches1d_itype_veg_str = xr.DataArray( \ patches1d_itype_veg_str, coords={"patch": np.arange(0,npatch)}, dims=["patch"], name = "patches1d_itype_veg_str") ds = xr.merge([ds, vegtype_da, patches1d_itype_veg_str]) # Restrict to veg. types of interest, if any if vegtypes_to_import != None: ds = xr_flexsel(ds, vegtype=vegtypes_to_import) # Finish import ds = xr.decode_cf(ds, decode_times = True) return ds # Rename "patch" dimension and any associated variables back to "pft". Uses a dictionary with the names of the dimensions and variables we want to rename. This allows us to do it all at once, which may be more efficient than one-by-one. def patch2pft(xr_object): # Rename "patch" dimension patch2pft_dict = {} for thisDim in xr_object.dims: if thisDim == "patch": patch2pft_dict["patch"] = "pft" break # Rename variables containing "patch" if isinstance(xr_object, xr.Dataset): pattern = re.compile("patch.*1d") matches = [x for x in list(xr_object.keys()) if pattern.search(x) != None] if len(matches) > 0: for m in matches: patch2pft_dict[m] = m.replace("patches","patchs").replace("patch","pft") # Do the rename if len(patch2pft_dict) > 0: xr_object = xr_object.rename(patch2pft_dict) return xr_object # Import a dataset that can be spread over multiple files, only including specified variables and/or vegetation types, concatenating by time. DOES actually read the dataset into memory, but only AFTER dropping unwanted variables and/or vegetation types. def import_ds(filelist, myVars=None, myVegtypes=None): # Convert myVegtypes here, if needed, to avoid repeating the process each time you read a file in xr.open_mfdataset(). if myVegtypes != None: if not isinstance(myVegtypes, list): myVegtypes = [myVegtypes] if isinstance(myVegtypes[0], str): myVegtypes = vegtype_str2int(myVegtypes) # The
logging during replication. :type log_storage_account_id: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'hv_host_vm_id': {'key': 'hvHostVmId', 'type': 'str'}, 'vm_name': {'key': 'vmName', 'type': 'str'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'v_hd_id': {'key': 'vHDId', 'type': 'str'}, 'storage_account_id': {'key': 'storageAccountId', 'type': 'str'}, 'log_storage_account_id': {'key': 'logStorageAccountId', 'type': 'str'}, } def __init__( self, *, hv_host_vm_id: Optional[str] = None, vm_name: Optional[str] = None, os_type: Optional[str] = None, v_hd_id: Optional[str] = None, storage_account_id: Optional[str] = None, log_storage_account_id: Optional[str] = None, **kwargs ): super(HyperVReplicaAzureReprotectInput, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaAzure' # type: str self.hv_host_vm_id = hv_host_vm_id self.vm_name = vm_name self.os_type = os_type self.v_hd_id = v_hd_id self.storage_account_id = storage_account_id self.log_storage_account_id = log_storage_account_id class HyperVReplicaAzureTestFailoverInput(TestFailoverProviderSpecificInput): """HvrA provider specific input for test failover. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The class type.Constant filled by server. :type instance_type: str :param primary_kek_certificate_pfx: Primary kek certificate pfx. :type primary_kek_certificate_pfx: str :param secondary_kek_certificate_pfx: Secondary kek certificate pfx. :type secondary_kek_certificate_pfx: str :param recovery_point_id: The recovery point id to be passed to test failover to a particular recovery point. In case of latest recovery point, null should be passed. :type recovery_point_id: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'primary_kek_certificate_pfx': {'key': 'primaryKekCertificatePfx', 'type': 'str'}, 'secondary_kek_certificate_pfx': {'key': 'secondaryKekCertificatePfx', 'type': 'str'}, 'recovery_point_id': {'key': 'recoveryPointId', 'type': 'str'}, } def __init__( self, *, primary_kek_certificate_pfx: Optional[str] = None, secondary_kek_certificate_pfx: Optional[str] = None, recovery_point_id: Optional[str] = None, **kwargs ): super(HyperVReplicaAzureTestFailoverInput, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaAzure' # type: str self.primary_kek_certificate_pfx = primary_kek_certificate_pfx self.secondary_kek_certificate_pfx = secondary_kek_certificate_pfx self.recovery_point_id = recovery_point_id class HyperVReplicaAzureUnplannedFailoverInput(UnplannedFailoverProviderSpecificInput): """HvrA provider specific input for unplanned failover. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The class type.Constant filled by server. :type instance_type: str :param primary_kek_certificate_pfx: Primary kek certificate pfx. :type primary_kek_certificate_pfx: str :param secondary_kek_certificate_pfx: Secondary kek certificate pfx. :type secondary_kek_certificate_pfx: str :param recovery_point_id: The recovery point id to be passed to failover to a particular recovery point. In case of latest recovery point, null should be passed. :type recovery_point_id: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'primary_kek_certificate_pfx': {'key': 'primaryKekCertificatePfx', 'type': 'str'}, 'secondary_kek_certificate_pfx': {'key': 'secondaryKekCertificatePfx', 'type': 'str'}, 'recovery_point_id': {'key': 'recoveryPointId', 'type': 'str'}, } def __init__( self, *, primary_kek_certificate_pfx: Optional[str] = None, secondary_kek_certificate_pfx: Optional[str] = None, recovery_point_id: Optional[str] = None, **kwargs ): super(HyperVReplicaAzureUnplannedFailoverInput, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaAzure' # type: str self.primary_kek_certificate_pfx = primary_kek_certificate_pfx self.secondary_kek_certificate_pfx = secondary_kek_certificate_pfx self.recovery_point_id = recovery_point_id class HyperVReplicaAzureUpdateReplicationProtectedItemInput(UpdateReplicationProtectedItemProviderInput): """HyperV replica Azure input to update replication protected item. All required parameters must be populated in order to send to Azure. :param instance_type: Required. The class type.Constant filled by server. :type instance_type: str :param recovery_azure_v1_resource_group_id: The recovery Azure resource group Id for classic deployment. :type recovery_azure_v1_resource_group_id: str :param recovery_azure_v2_resource_group_id: The recovery Azure resource group Id for resource manager deployment. :type recovery_azure_v2_resource_group_id: str :param use_managed_disks: A value indicating whether managed disks should be used during failover. :type use_managed_disks: str :param disk_id_to_disk_encryption_map: The dictionary of disk resource Id to disk encryption set ARM Id. :type disk_id_to_disk_encryption_map: dict[str, str] :param target_proximity_placement_group_id: The target proximity placement group Id. :type target_proximity_placement_group_id: str :param target_availability_zone: The target availability zone. :type target_availability_zone: str :param target_vm_tags: The target VM tags. :type target_vm_tags: dict[str, str] :param target_managed_disk_tags: The tags for the target managed disks. :type target_managed_disk_tags: dict[str, str] :param target_nic_tags: The tags for the target NICs. :type target_nic_tags: dict[str, str] :param sql_server_license_type: The SQL Server license type. Possible values include: "NotSpecified", "NoLicenseType", "PAYG", "AHUB". :type sql_server_license_type: str or ~azure.mgmt.recoveryservicessiterecovery.models.SqlServerLicenseType :param vm_disks: The list of disk update properties. :type vm_disks: list[~azure.mgmt.recoveryservicessiterecovery.models.UpdateDiskInput] """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'recovery_azure_v1_resource_group_id': {'key': 'recoveryAzureV1ResourceGroupId', 'type': 'str'}, 'recovery_azure_v2_resource_group_id': {'key': 'recoveryAzureV2ResourceGroupId', 'type': 'str'}, 'use_managed_disks': {'key': 'useManagedDisks', 'type': 'str'}, 'disk_id_to_disk_encryption_map': {'key': 'diskIdToDiskEncryptionMap', 'type': '{str}'}, 'target_proximity_placement_group_id': {'key': 'targetProximityPlacementGroupId', 'type': 'str'}, 'target_availability_zone': {'key': 'targetAvailabilityZone', 'type': 'str'}, 'target_vm_tags': {'key': 'targetVmTags', 'type': '{str}'}, 'target_managed_disk_tags': {'key': 'targetManagedDiskTags', 'type': '{str}'}, 'target_nic_tags': {'key': 'targetNicTags', 'type': '{str}'}, 'sql_server_license_type': {'key': 'sqlServerLicenseType', 'type': 'str'}, 'vm_disks': {'key': 'vmDisks', 'type': '[UpdateDiskInput]'}, } def __init__( self, *, recovery_azure_v1_resource_group_id: Optional[str] = None, recovery_azure_v2_resource_group_id: Optional[str] = None, use_managed_disks: Optional[str] = None, disk_id_to_disk_encryption_map: Optional[Dict[str, str]] = None, target_proximity_placement_group_id: Optional[str] = None, target_availability_zone: Optional[str] = None, target_vm_tags: Optional[Dict[str, str]] = None, target_managed_disk_tags: Optional[Dict[str, str]] = None, target_nic_tags: Optional[Dict[str, str]] = None, sql_server_license_type: Optional[Union[str, "SqlServerLicenseType"]] = None, vm_disks: Optional[List["UpdateDiskInput"]] = None, **kwargs ): super(HyperVReplicaAzureUpdateReplicationProtectedItemInput, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaAzure' # type: str self.recovery_azure_v1_resource_group_id = recovery_azure_v1_resource_group_id self.recovery_azure_v2_resource_group_id = recovery_azure_v2_resource_group_id self.use_managed_disks = use_managed_disks self.disk_id_to_disk_encryption_map = disk_id_to_disk_encryption_map self.target_proximity_placement_group_id = target_proximity_placement_group_id self.target_availability_zone = target_availability_zone self.target_vm_tags = target_vm_tags self.target_managed_disk_tags = target_managed_disk_tags self.target_nic_tags = target_nic_tags self.sql_server_license_type = sql_server_license_type self.vm_disks = vm_disks class HyperVReplicaBaseEventDetails(EventProviderSpecificDetails): """Abstract model class for event details of a HyperVReplica E2E event. All required parameters must be populated in order to send to Azure. :param instance_type: Required. Gets the class type. Overridden in derived classes.Constant filled by server. :type instance_type: str :param container_name: The container friendly name. :type container_name: str :param fabric_name: The fabric friendly name. :type fabric_name: str :param remote_container_name: The remote container name. :type remote_container_name: str :param remote_fabric_name: The remote fabric name. :type remote_fabric_name: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'container_name': {'key': 'containerName', 'type': 'str'}, 'fabric_name': {'key': 'fabricName', 'type': 'str'}, 'remote_container_name': {'key': 'remoteContainerName', 'type': 'str'}, 'remote_fabric_name': {'key': 'remoteFabricName', 'type': 'str'}, } def __init__( self, *, container_name: Optional[str] = None, fabric_name: Optional[str] = None, remote_container_name: Optional[str] = None, remote_fabric_name: Optional[str] = None, **kwargs ): super(HyperVReplicaBaseEventDetails, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaBaseEventDetails' # type: str self.container_name = container_name self.fabric_name = fabric_name self.remote_container_name = remote_container_name self.remote_fabric_name = remote_fabric_name class HyperVReplicaBasePolicyDetails(PolicyProviderSpecificDetails): """Base class for HyperVReplica policy details. All required parameters must be populated in order to send to Azure. :param instance_type: Required. Gets the class type. Overridden in derived classes.Constant filled by server. :type instance_type: str :param recovery_points: A value indicating the number of recovery points. :type recovery_points: int :param application_consistent_snapshot_frequency_in_hours: A value indicating the application consistent frequency. :type application_consistent_snapshot_frequency_in_hours: int :param compression: A value indicating whether compression has to be enabled. :type compression: str :param initial_replication_method: A value indicating whether IR is online. :type initial_replication_method: str :param online_replication_start_time: A value indicating the online IR start time. :type online_replication_start_time: str :param offline_replication_import_path: A value indicating the offline IR import path. :type offline_replication_import_path: str :param offline_replication_export_path: A value indicating the offline IR export path. :type offline_replication_export_path: str :param replication_port: A value indicating the recovery HTTPS port. :type replication_port: int :param allowed_authentication_type: A value indicating the authentication type. :type allowed_authentication_type: int :param replica_deletion_option: A value indicating whether the VM has to be auto deleted. Supported Values: String.Empty, None, OnRecoveryCloud. :type replica_deletion_option: str """ _validation = { 'instance_type': {'required': True}, } _attribute_map = { 'instance_type': {'key': 'instanceType', 'type': 'str'}, 'recovery_points': {'key': 'recoveryPoints', 'type': 'int'}, 'application_consistent_snapshot_frequency_in_hours': {'key': 'applicationConsistentSnapshotFrequencyInHours', 'type': 'int'}, 'compression': {'key': 'compression', 'type': 'str'}, 'initial_replication_method': {'key': 'initialReplicationMethod', 'type': 'str'}, 'online_replication_start_time': {'key': 'onlineReplicationStartTime', 'type': 'str'}, 'offline_replication_import_path': {'key': 'offlineReplicationImportPath', 'type': 'str'}, 'offline_replication_export_path': {'key': 'offlineReplicationExportPath', 'type': 'str'}, 'replication_port': {'key': 'replicationPort', 'type': 'int'}, 'allowed_authentication_type': {'key': 'allowedAuthenticationType', 'type': 'int'}, 'replica_deletion_option': {'key': 'replicaDeletionOption', 'type': 'str'}, } def __init__( self, *, recovery_points: Optional[int] = None, application_consistent_snapshot_frequency_in_hours: Optional[int] = None, compression: Optional[str] = None, initial_replication_method: Optional[str] = None, online_replication_start_time: Optional[str] = None, offline_replication_import_path: Optional[str] = None, offline_replication_export_path: Optional[str] = None, replication_port: Optional[int] = None, allowed_authentication_type: Optional[int] = None, replica_deletion_option: Optional[str] = None, **kwargs ): super(HyperVReplicaBasePolicyDetails, self).__init__(**kwargs) self.instance_type = 'HyperVReplicaBasePolicyDetails' # type: str self.recovery_points = recovery_points self.application_consistent_snapshot_frequency_in_hours = application_consistent_snapshot_frequency_in_hours self.compression = compression self.initial_replication_method = initial_replication_method self.online_replication_start_time = online_replication_start_time self.offline_replication_import_path = offline_replication_import_path self.offline_replication_export_path = offline_replication_export_path self.replication_port = replication_port self.allowed_authentication_type = allowed_authentication_type self.replica_deletion_option = replica_deletion_option class HyperVReplicaBaseReplicationDetails(ReplicationProviderSpecificSettings): """Hyper V replica provider specific settings base class. All required parameters must be populated in order to send to Azure. :param instance_type: Required. Gets the Instance type.Constant filled by server. :type instance_type: str :param last_replicated_time: The Last replication time. :type last_replicated_time: ~datetime.datetime :param vm_nics: The PE Network details. :type vm_nics:
''' Biblioteca para calculo de refrigeracao regenerativa em motores foguetes bi propelentes <NAME> https://github.com/jeffersonmsb/rocket-cooling-calculator ''' import csv import numpy as np import math import pyCEA from scipy import optimize import os import subprocess def geometry(data_in, data_out): with open(data_in['geometry_path']) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') data_out['geometry'] = list(csv_reader) data_out['size'] = len(data_out['geometry']) #Buscar geometria da garganta Rt = float(data_out['geometry'][0][1]) zt = float(data_out['geometry'][0][0]) for row in data_out['geometry']: if float(row[1]) < Rt: Rt = float(row[1]) zt = float(row[0]) data_out['Rt'] = Rt data_out['zt'] = zt data_out['At'] = np.pi*np.power(Rt,2) #Cálculo das razões de área data_out['r1'] = [] data_out['r2'] = [] data_out['r3'] = [] data_out['Ae'] = [] data_out['Ae/At'] = [] data_out['z'] = [] data_out['N'] = [] data_out['CCH'] = [] data_out['CCW'] = [] data_out['FT'] = [] n = 0 for row in data_out['geometry']: A = np.pi*np.power(float(row[1]),2) data_out['r1'].append(float(row[1])) r2 = float(row[1]) + data_in['IWT'] data_out['r2'].append(r2) data_out['r3'].append(float(row[1]) + data_in['IWT'] + data_in['CCH']) data_out['Ae'].append(A) data_out['Ae/At'].append(A/data_out['At']) data_out['z'].append(float(row[0])) if float(row[0]) > data_in['channel_number'][n][0]: n = n + 1 N = data_in['channel_number'][n][1] data_out['N'].append(N) data_out['CCH'].append(data_in['CCH']) if data_in['dim_constant'] == 'FT': data_out['FT'].append(data_in['FT']) aux = (2*np.pi*r2)/N - data_in['FT'] if aux <= 0: data_out['error_code'] = 1 return data_out['CCW'].append(aux) else: data_out['CCW'].append(data_in['CCW']) aux = (2*np.pi*r2)/N - data_in['CCW'] data_out['FT'].append(aux) data_out['L'] = [] for i in range(0, data_out['size']): if(i==0): A = 0.5*(data_out['z'][i+1]+data_out['z'][i]) - data_out['z'][i] B = 0.5*(data_out['r1'][i+1]+data_out['r1'][i]) - data_out['r1'][i] data_out['L'].append(math.sqrt(A**2 + B**2)) else: if(i!=(data_out['size']-1)): A = 0.5*(data_out['z'][i+1]+data_out['z'][i]) - 0.5*(data_out['z'][i]+data_out['z'][i-1]) B = 0.5*(data_out['r1'][i+1]+data_out['r1'][i]) - 0.5*(data_out['r1'][i]+data_out['r1'][i-1]) data_out['L'].append(math.sqrt(A**2 + B**2)) else: A = data_out['z'][i] - 0.5*(data_out['z'][i]+data_out['z'][i-1]) B = data_out['r1'][i] - 0.5*(data_out['r1'][i]+data_out['r1'][i-1]) data_out['L'].append(math.sqrt(A**2 + B**2)) data_out['error_code'] = 0 def coolant_prop(coolant_name, prop_name, temperature): if coolant_name == 'RP-1': if temperature > 800: temperature = 800 if temperature < 300: temperature = 300 if prop_name == 'ro': return 820 if prop_name == 'cp': return -2.82649e-3*temperature**2.0 + 6.77751e0*temperature - 2.45234e1 #BOYSAN if prop_name == 'k': return 9.64e-8*temperature**2-2.95e-4*temperature+0.261 #BOYSAN if prop_name == 'mi': return -1.46e-11*temperature**3+3.22e-8*temperature**2-2.39e-5*temperature+6E-3 #BOYSAN if coolant_name == 'C2H5OH(L)': if prop_name == 'ro': return 785.3 if prop_name == 'cp': return 2570 if prop_name == 'k': return 0.167 if prop_name == 'mi': return 1.36e-3 else: print('Coolant proprieties not found') return -1 def create_prop(data_in, data_out): data_out['Tc'] = data_out['size']*[data_in['Tc_primary']] data_out['Twg'] = data_out['size']*[data_in['Twg_primary']] data_out['Twc'] = data_out['size']*[data_in['Twc_primary']] data_out['Taw'] = data_out['size']*[data_in['Taw_primary']] data_out['cp_c'] = data_out['size']*[None] data_out['k_c'] = data_out['size']*[None] data_out['mi_c'] = data_out['size']*[None] data_out['Pr_c'] = data_out['size']*[None] data_out['gama'] = data_out['size']*[None] data_out['M'] = data_out['size']*[None] data_out['cp'] = data_out['size']*[None] data_out['R'] = data_out['size']*[None] data_out['h_g'] = data_out['size']*[None] data_out['Re_c'] = data_out['size']*[None] data_out['D_h'] = data_out['size']*[None] data_out['mi_s'] = data_out['size']*[None] data_out['h_c'] = data_out['size']*[None] data_out['Aa'] = data_out['size']*[None] data_out['Atotal'] = data_out['size']*[None] data_out['m'] = data_out['size']*[None] data_out['eta_f'] = data_out['size']*[None] data_out['eta_o'] = data_out['size']*[None] data_out['R_c'] = data_out['size']*[None] data_out['R_g'] = data_out['size']*[None] data_out['R_w'] = data_out['size']*[None] data_out['q'] = data_out['size']*[None] data_out['Q'] = data_out['size']*[None] data_out['f'] = data_out['size']*[None] data_out['ro'] = data_out['size']*[None] data_out['V_c'] = data_out['size']*[None] data_out['hl'] = data_out['size']*[None] data_out['deltap'] = data_out['size']*[None] data_out['T_static'] = data_out['size']*[None] data_out['p_static'] = data_out['size']*[6000000] def calc_prop(data_in, data_out): data_in['p0_pyCEA'] = data_in['p0']/1e5 #Conversão de [Pa] para [bar] pyCEA.calcPropStagnationCEA(data_in['p0_pyCEA'],data_in['fuel'], data_in['oxidizer'],data_in['of'], data_in['motor_name']) T0 = pyCEA.readPropStagnationCEA('t', data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) cp0 = pyCEA.readPropStagnationCEA('cp', data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) Pr0 = pyCEA.readPropStagnationCEA('pr', data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) mi0 = pyCEA.readPropStagnationCEA('mi', data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) Tc1 = data_in['Tc_primary'] IWT = data_in['IWT'] k_w = data_in['k_w'] mponto_c = data_in['m._c'] e = data_in['e'] p0 = data_in['p0'] Re_c = data_out['Re_c'] N = data_out['N'] mi_c = data_out['mi_c'] CCW = data_out['CCW'] FT = data_out['FT'] D_h = data_out['D_h'] mi_s = data_out['mi_s'] Tc = data_out['Tc'] Twg = data_out['Twg'] Twc = data_out['Twc'] Taw = data_out['Taw'] h_c = data_out['h_c'] k_c = data_out['k_c'] Pr_c = data_out['Pr_c'] Aa = data_out['Aa'] L = data_out['L'] r1 = data_out['r1'] r2 = data_out['r2'] r3 = data_out['r3'] Atotal = data_out['Atotal'] m = data_out['m'] eta_f = data_out['eta_f'] eta_o = data_out['eta_o'] R_c = data_out['R_c'] R_g = data_out['R_g'] R_w = data_out['R_w'] h_g = data_out['h_g'] q = data_out['q'] Q = data_out['Q'] cp_c = data_out['cp_c'] k_c = data_out['k_c'] f = data_out['f'] ro = data_out['ro'] V_c = data_out['V_c'] hl = data_out['hl'] deltap = data_out['deltap'] T_static = data_out['T_static'] p_static = data_out['p_static'] gama = data_out['gama'] M = data_out['M'] CCH = data_out['CCH'] data_out['p_drop'] = 0 def f_mach(M): A = 2/(data_out['gama'][i]+1) B = 1+(((data_out['gama'][i]-1)/2)*(M**2)) C = (data_out['gama'][i]+1)/(data_out['gama'][i]-1) D = (data_out['Ae/At'][i]*M)**2 return ( (A*B)**C-D ) def f_coolebrook(f): return (1/(-2*math.log(((e/D_h[i])/3.7)+(2.51/(Re_c[i]*f**0.5)), 10))**2-f) for i in reversed(range(0,data_out['size'])): cp_c[i] = coolant_prop(data_in['coolant'], 'cp', Tc[i]) k_c[i] = coolant_prop(data_in['coolant'], 'k', data_out['Tc'][i]) data_out['mi_c'][i] = coolant_prop(data_in['coolant'], 'mi', data_out['Tc'][i]) data_out['Pr_c'][i] = data_out['cp_c'][i]*data_out['mi_c'][i]/data_out['k_c'][i] pyCEA.calcPropCEA(data_out['Taw'][i] , data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) data_out['cp'][i] = pyCEA.readPropCEA('cp', data_out['Taw'][i], data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) #data_out['cp'][i] = -5.84399e-05*data_out['Taw'][i]**2.0 + 4.23454e-01*data_out['Taw'][i] + 1.29256e+03 data_out['gama'][i] = 1.23854e-8*data_out['Taw'][i]**2 - 8.09028e-5*data_out['Taw'][i] + 1.34563 #Gama para o L-75 #data_out['gama'][i] = pyCEA.readPropCEA('gama', data_out['Taw'][i], data_in['p0_pyCEA'], data_in['fuel'], data_in['oxidizer'], data_in['of'], data_in['motor_name']) data_out['R'][i] = (data_out['cp'][i]*(1 - 1/data_out['gama'][i])) mponto = data_in['p0']*data_out['At']*((data_out['gama'][i]/(data_out['R'][i]*T0))*(2/(data_out['gama'][i]+1))**((data_out['gama'][i]+1)/(data_out['gama'][i]-1)))**0.5 c = (data_in['p0']*data_out['At'])/mponto if(data_out['z'][i] > data_out['zt']): a = 1 b = 25 else: a = 0 b = 1 data_out['M'][i] = optimize.bisect(f_mach, a, b, rtol=8.881784197001252e-16) aux1 = 1 + ((data_out['gama'][i]-1)/2)*data_out['M'][i]**2 sigma = ((data_out['Twg'][i]/(2*T0))*aux1+0.5 )**-0.68 * aux1**-0.12 data_out['h_g'][i] = ( 0.026 * ((mi0/(2*data_out['Rt']))**0.2) * (cp0/(Pr0**0.6)) * (data_in['p0']/c)**0.8 * (data_out['At']/data_out['Ae'][i])**0.9 * sigma ) D_h[i] = (4*CCW[i]*CCH[i])/(2*(CCW[i]+CCH[i])) Re_c[i] = (4*mponto)/(N[i]*mi_c[i]*2*(CCW[i]+CCH[i])) mi_s[i] = coolant_prop(data_in['coolant'], 'mi', Twc[i]) h_c[i] = ((k_c[i]/D_h[i]) * 0.027 * Re_c[i]**0.8 * Pr_c[i]**(1/3) * (mi_c[i]/mi_s[i])**0.14 ) Aa[i] = (2*CCH[i]*L[i]) Atotal[i] = (N[i]*Aa[i] + L[i]*(2*math.pi*r2[i]-N[i]*FT[i])) m[i] = math.sqrt((2*h_c[i])/(k_c[i]*FT[i])) eta_f[i] = (math.tanh(m[i]*CCH[i])/(m[i]*CCH[i])) eta_o[i] = 1-((N[i]*Aa[i]*(1-eta_f[i])) / Atotal[i]) R_g[i] = (1/(2*math.pi*r1[i]*L[i]*h_g[i])) R_w[i] = (math.log(r2[i]/r1[i]) / (2*math.pi*L[i]*k_w)) R_c[i] = (1 / (eta_o[i]*h_c[i]*Atotal[i])) q[i] = ((Taw[i] - Tc[i]) / (R_g[i] + R_w[i] + R_c[i])) Q[i] = ( q[i]/(2*math.pi*r1[i]*L[i])/1000000 ) aux = 0.5*(data_out['gama'][i] - 1)*data_out['M'][i]**2 Taw[i] = (T0 * ((1 + Pr0**(1/3)*aux) / (1 + aux))) Twg[i] = -R_g[i]*q[i]+Taw[i] Twc[i] = -q[i]*(R_g[i]+R_w[i])+Taw[i] lista = reversed(range( i,data_out['size'])) Tc1 = 303 for j in lista: Tc2 = (q[j] / (mponto_c*cp_c[j])) + Tc1 Tc[j] = (Tc2+Tc1)/2 Tc1 = Tc2 p_static[i] = p0*(1+((gama[i]-1)/2)*M[i]**2)**-(gama[i]/(gama[i]-1)) #Cálculo da perda de carga f[i] = optimize.bisect(f_coolebrook, 0.00001, 2, rtol=8.881784197001252e-16) ro[i] = coolant_prop(data_in['coolant'], 'ro', Tc[i]) V_c[i] = mponto_c/(ro[i]*CCH[i]*CCW[i]*N[i]) hl[i] = f[i]*((L[i]/D_h[i])/(V_c[i]**2/2)) deltap[i] = ro[i]*hl[i]*N[i] data_out['p_drop'] += deltap[i] #Cálculo da temperatura estática e pressão estática T_static[i] = T0*(1+((gama[i]-1)/2)*M[i]**2)**-1 def iteration(data_in , data_out): geometry(data_in, data_out) if data_out['error_code'] != 0: print('CCW <= 0') return create_prop(data_in, data_out) for i in range(0,data_in['max_iterations']): print('Iteration {}'.format(i+1)) calc_prop(data_in, data_out) if i==0: Tc_0 = sum(data_out['Q']) Twg_0 = sum(data_out['Twg']) Twc_0 = sum(data_out['Twc']) Taw_0 = sum(data_out['Taw']) Tc_prev = Tc_0 Twg_prev = Twg_0 Twc_prev = Twc_0 Taw_prev = Taw_0 else: Tc = sum(data_out['Q']) Twg = sum(data_out['Twg']) Twc = sum(data_out['Twc']) Taw = sum(data_out['Taw']) Tc_L1 = abs(Tc-Tc_prev)/Tc_0 Twg_L1 = abs(Twg-Twg_prev)/Twg_0 Twc_L1 = abs(Twc-Twc_prev)/Twc_0 Taw_L1 = abs(Taw-Taw_prev)/Taw_0 Tc_prev = Tc Twg_prev = Twg Twc_prev = Twc Taw_prev = Taw if Tc_L1 <= data_in['tol'] and Twg_L1 <= data_in['tol'] and Twc_L1 <= data_in['tol'] and Taw_L1 <= data_in['tol']: break print('Total Iteration Temperature: ' + str(i+1)) def optimize_channel2(data_in, data_out): flag1 = False flag2 = False if data_in['dim_constant'] == 'FT': dim_const = 'FT' dim_var = 'CCW' else: dim_const = 'CCW' dim_var = 'FT' geometry(data_in, data_out) m = 0 for i in range(0, data_out['size']): if data_out['r2'][i] < data_out['r2'][m]: m = i dim_max = (2*np.pi*data_out['r2'][m])/data_out['N'][m] - data_in[dim_var + '_min'] if dim_max-data_in[dim_const + '_min'] <= 0: print('Maior dimensão geométrica é menor que dimensão mínima.') return dim = (dim_max+data_in[dim_const + '_min'])/2 x = np.array([data_in['CCH'] , dim]) data_in[dim_const] = dim iteration(data_in, data_out) Q = max(data_out['Q']) Q_prev = Q Q0 = Q w = data_in['w'] for opt in range(0,data_in['max_iterations_opt']): grad = np.gradient(x) xn = x - w*grad if xn[0] <= data_in['CCH_min'] and flag1 == False: flag1 = True print('CCH_min') if (xn[1] <= data_in[dim_const+'_min'] or xn[1] >= dim_max) and flag2 == False: flag2 = True print(dim_const+' min or max') if flag1 == True: xn[0] = x[0] if flag2 == True: xn[1] = x[1] data_in['CCH'] = xn[0] data_in[dim_const] = xn[1] iteration(data_in, data_out) Q = max(data_out['Q']) if Q-Q_prev < 0: w=w*-1 print(w) continue x = xn print('Opt #{} Q:{} CCH:{} {}:{}'.format(opt, Q, x[0], dim_const, x[1])) Q_diff = abs(Q-Q_prev)/Q0 Q_prev = Q if Q_diff <= data_in['tol_opt']: break def plot(data_out): data = [] for i in range(0,data_out['size']): data_row = [ data_out['z'][i], data_out['Q'][i], data_out['Taw'][i], data_out['Twg'][i], data_out['Twc'][i], data_out['Tc'][i]] data.append(data_row) with open('rcc_plot_data.csv', mode='w', encoding='utf-8') as data_file: csv_writer = csv.writer(data_file, delimiter=',') csv_writer.writerows(data) p = subprocess.Popen("gnuplot \'rcc_plot_config.gnu\'", shell = True) os.waitpid(p.pid, 0) '''p2 = subprocess.Popen("ristretto \'temps.png\'", shell = True) os.waitpid(p2.pid, 1)''' def calc_wall_thickness(p, path, sigmae, n=1): with open(path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',')
it!” “Your father doesn’t admit that——” “He must have been.” “<NAME>. These matters are not for you to judge. You know your father has done all he honestly could to be fully pardoned, or to discover the real criminal, and as he hasn’t succeeded, you must rest content with the knowledge that there was no stone left unturned.” “But, mother, suppose Mr. Appleby has something more up his sleeve. Suppose he comes down on dad with some unexpected, some unforeseen blow that——” “Maida, be quiet. Don’t make me sorry that we have let you into our confidence as far as we have. These are matters above your head. Should such a thing as you hint occur, your father can deal with it.” “But I want to help——” “And you can best do that by not trying to help! Your part is to divert your father, to love him and cheer him and entertain him. You know this, and you know for you to undertake to advise or suggest is not only ridiculous but disastrous.” “All right, mother, I’ll be good. I don’t mean to be silly.” “You are, when you assume ability you don’t possess.” Mrs. Wheeler’s loving smile robbed the words of any harsh effect. “Run along now, and see if dad won’t go for a walk with you; and don’t refer to anything unpleasant.” Maida went, and found Wheeler quite ready for a stroll “Which way?” he asked as they crossed the south veranda. “Round the park, and bring up under the tree, and have tea there,” dictated Maida, her heart already lighter as she obeyed her mother’s dictum to avoid unpleasant subjects. But as they walked on, and trivial talk seemed to pall, they naturally reverted to the discussion of their recent guests. “Mr. Appleby is an old curmudgeon,” Maida declared; “Mr. Keefe is nice and well-behaved; but the little Lane girl is a scream! I never saw any one so funny. Now she was quite a grand lady, and then she was a common little piece! But underneath it all she showed a lot of good sense and I’m sure in her work she has real ability.” “Appleby wouldn’t keep her if she didn’t have,” her father rejoined; “but why do you call him a curmudgeon? He’s very well-mannered.” “Oh, yes, he is. And to tell the truth, I’m not sure just what a curmudgeon is. But—he’s it, anyway.” “I gather you don’t especially admire my old friend.” “Friend! If he’s a friend—give me enemies!” “Fie, fie, Maida, what do you mean? Remember, he gave me my pardon.” “Yes, a high old pardon! Say, dad, tell me again exactly how he worded that letter about the tree.” “I’ve told you a dozen times! He didn’t mean anything anyhow. He only said, that when the big sycamore tree went into Massachusetts I could go.” “What a crazy thing to say, wasn’t it?” “It was because we had been talking about the play of _Macbeth_. You remember, ’Till <NAME> shall come to Dunsinane.” “Oh, yes, and then it did come—by a trick.” “Yes, the men came, carrying branches. We’d been talking about it, discussing some point, and then—it seemed clever, I suppose—to Appleby, and he wrote that about the sycamore.” “Meaning—never?” “Meaning never.” “But <NAME> did go.” “Only by a trick, and that would not work in this case. Why, are you thinking of carrying a branch of sycamore into Massachusetts?” Maida returned his smile as she answered: “I’d manage to carry the whole tree in, if it would do any good! But, I s’pose, old Puritan Father, you’re too conscientious to take advantage of a trick?” “Can’t say, till I know the details of the game. But I doubt Appleby’s being unable to see through your trick, and then—where are you?” “That wouldn’t matter. Trick or no trick, if the big sycamore went into Massachusetts, you could go. But I don’t see any good plan for getting it in. And, too, Sycamore Ridge wouldn’t be Sycamore Ridge without it. Don’t you love the old tree, dad?” “Of course, as I love every stick and stone about the place. It has been a real haven to me in my perturbed life.” “Suppose you had to leave it, daddy?” “I think I’d die, dear. Unless, that is, we could go back home.” “Isn’t this home?” “It’s the dearest spot on earth—outside my native state.” “There, there, dad, don’t let’s talk about it. We’re here for keeps——” “Heaven send we are, dearest! I couldn’t face the loss of this place. What made you think of such a thing?” “Oh, I’m thinking of all sorts of things to-day. But, father, while we’re talking of moving—couldn’t you—oh, couldn’t you, bring yourself, somehow, to do what Mr. Appleby wants you to do? I don’t know much about it—but father, darling, if you _only could_!” “Maida, my little girl, don’t think I haven’t tried. Don’t think I don’t realize what it means to you and Jeff. I know—oh, I _do_ know how it would simplify matters if I should go over to the Appleby side—and push Sam’s campaign—as I could do it. I know that it would mean my full pardon, my return to my old home, my reunion with old scenes and associations. And more than that, it would mean the happiness of my only child—my daughter—and her chosen husband. And yet, Maida, as God is my judge, I am honest in my assertion that I _can’t_ so betray my honor and spend my remaining years a living lie. I can’t do it, Maida—I _can’t_.” And the calm, sorrowful countenance he turned to the girl was more positive and final than any further protestation could have been. CHAPTER V THE BUGLE SOUNDED TAPS Although the portions of the house and grounds that were used by Wheeler included the most attractive spots, yet there were many forbidden places that were a real temptation to him. An especial one was the flower-covered arbor that had so charmed Genevieve and another was the broad and beautiful north veranda. To be sure, the south piazza was equally attractive, but it was galling to be compelled to avoid any part of his own domain. However, the passing years had made the conditions a matter of habit and it was only occasionally that Wheeler’s annoyance was poignant. In fact, he and his wife bore the cross better than did Maida. She had never become reconciled to the unjust and arbitrary dictum of the conditional pardon. She lived in a constant fear lest her father should some day inadvertently and unintentionally step on the forbidden ground, and it should be reported. Indeed, knowing her father’s quixotic honesty, she was by no means sure he wouldn’t report it himself. It had never occurred—probably never would occur, and yet, she often imagined some sudden emergency, such as a fire, or burglars, that might cause his impulsive invasion of the other side of the house. In her anxiety she had spoken of this to <NAME> when he was there. But he gave her no satisfaction. He merely replied: “A condition is a condition.” <NAME> had tried to help her cause, by saying: “Surely a case of danger would prove an exception to the rule,” but Appleby had only shaken his head in denial. Though care had been taken to have the larger part of the house on the Massachusetts side of the line, yet the rooms most used by the family were in Connecticut. Here was Mr. Wheeler’s den, and this had come to be the most used room in the whole house. Mrs. Wheeler’s sitting-room, which her husband never had entered, was also attractive, but both mother and daughter invaded the den, whenever leisure hours were to be enjoyed. The den contained a large south bay window, which was Maida’s favorite spot. It had a broad, comfortable window-seat, and here she spent much of her time, curled up among the cushions, reading. There were long curtains, which, half-drawn, hid her from view, and often she was there for hours, without her father’s knowing it. His own work was engrossing. Cut off from his established law business in Massachusetts, he had at first felt unable to start it anew in different surroundings. Then, owing to his wife’s large fortune, it was decided that he should give up all business for a time. And as the time went on, and there was no real necessity
<reponame>eubr-bigsea/limonero # -*- coding: utf-8 -*- import datetime import json from copy import deepcopy from marshmallow import Schema, fields, post_load, post_dump, EXCLUDE, INCLUDE from marshmallow.validate import OneOf from flask_babel import gettext from limonero.models import * def partial_schema_factory(schema_cls): schema = schema_cls(partial=True) for field_name, field in list(schema.fields.items()): if isinstance(field, fields.Nested): new_field = deepcopy(field) new_field.schema.partial = True schema.fields[field_name] = new_field return schema def translate_validation(validation_errors): for field, errors in list(validation_errors.items()): if isinstance(errors, dict): validation_errors[field] = translate_validation(errors) else: validation_errors[field] = [gettext(error) for error in errors] return validation_errors def load_json(str_value): try: return json.loads(str_value) except BaseException: return None # region Protected def generate_download_token(identifier, expires=None): from flask import current_app from cryptography.fernet import Fernet import time f = current_app.fernet if expires is None: f_expires = 0 else: f_expires = time.time() + expires return f.encrypt('{{"id": {}, "expires": {} }}'.format( identifier, f_expires).encode('utf8')).decode('utf8') # endregion class BaseSchema(Schema): @post_dump def remove_skip_values(self, data, **kwargs): return { key: value for key, value in data.items() if value is not None # Empty lists must be kept! } class AttributeListResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) description = fields.String(required=False, allow_none=True) type = fields.String(required=True, validate=[OneOf(list(DataType.__dict__.keys()))]) size = fields.Integer(required=False, allow_none=True) precision = fields.Integer(required=False, allow_none=True) scale = fields.Integer(required=False, allow_none=True) nullable = fields.Boolean( required=False, allow_none=True, missing=False, default=False) enumeration = fields.Boolean( required=False, allow_none=True, missing=False, default=False) missing_representation = fields.String(required=False, allow_none=True) feature = fields.Boolean( required=False, allow_none=True, missing=True, default=True) label = fields.Boolean( required=False, allow_none=True, missing=True, default=True) distinct_values = fields.Integer(required=False, allow_none=True) mean_value = fields.Float(required=False, allow_none=True) median_value = fields.String(required=False, allow_none=True) max_value = fields.String(required=False, allow_none=True) min_value = fields.String(required=False, allow_none=True) std_deviation = fields.Float(required=False, allow_none=True) missing_total = fields.String(required=False, allow_none=True) deciles = fields.String(required=False, allow_none=True) format = fields.String(required=False, allow_none=True) key = fields.Boolean( required=False, allow_none=True, missing=False, default=False) attribute_privacy = fields.Nested( 'limonero.schema.AttributePrivacyListResponseSchema', allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of Attribute""" return Attribute(**data) class Meta: ordered = True unknown = EXCLUDE class AttributeItemResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) description = fields.String(required=False, allow_none=True) type = fields.String(required=True, validate=[OneOf(list(DataType.__dict__.keys()))]) size = fields.Integer(required=False, allow_none=True) precision = fields.Integer(required=False, allow_none=True) scale = fields.Integer(required=False, allow_none=True) nullable = fields.Boolean( required=False, allow_none=True, missing=False, default=False) enumeration = fields.Boolean( required=False, allow_none=True, missing=False, default=False) missing_representation = fields.String(required=False, allow_none=True) feature = fields.Boolean( required=False, allow_none=True, missing=True, default=True) label = fields.Boolean( required=False, allow_none=True, missing=True, default=True) distinct_values = fields.Integer(required=False, allow_none=True) mean_value = fields.Float(required=False, allow_none=True) median_value = fields.String(required=False, allow_none=True) max_value = fields.String(required=False, allow_none=True) min_value = fields.String(required=False, allow_none=True) std_deviation = fields.Float(required=False, allow_none=True) missing_total = fields.String(required=False, allow_none=True) deciles = fields.String(required=False, allow_none=True) format = fields.String(required=False, allow_none=True) key = fields.Boolean( required=False, allow_none=True, missing=False, default=False) attribute_privacy = fields.Nested( 'limonero.schema.AttributePrivacyItemResponseSchema', allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of Attribute""" return Attribute(**data) class Meta: ordered = True unknown = EXCLUDE class AttributeCreateRequestSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(allow_none=True) name = fields.String(required=True) description = fields.String(required=False, allow_none=True) type = fields.String(required=True, validate=[OneOf(list(DataType.__dict__.keys()))]) size = fields.Integer(required=False, allow_none=True) precision = fields.Integer(required=False, allow_none=True) scale = fields.Integer(required=False, allow_none=True) nullable = fields.Boolean( required=False, allow_none=True, missing=False, default=False) enumeration = fields.Boolean( required=False, allow_none=True, missing=False, default=False) missing_representation = fields.String(required=False, allow_none=True) feature = fields.Boolean( required=False, allow_none=True, missing=True, default=True) label = fields.Boolean( required=False, allow_none=True, missing=True, default=True) distinct_values = fields.Integer(required=False, allow_none=True) mean_value = fields.Float(required=False, allow_none=True) median_value = fields.String(required=False, allow_none=True) max_value = fields.String(required=False, allow_none=True) min_value = fields.String(required=False, allow_none=True) std_deviation = fields.Float(required=False, allow_none=True) missing_total = fields.String(required=False, allow_none=True) deciles = fields.String(required=False, allow_none=True) format = fields.String(required=False, allow_none=True) key = fields.Boolean( required=False, allow_none=True, missing=False, default=False) attribute_privacy = fields.Nested( 'limonero.schema.AttributePrivacyCreateRequestSchema', allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of Attribute""" return Attribute(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) attribute_privacy = fields.Nested( 'limonero.schema.AttributePrivacyItemResponseSchema', allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of Attribute""" return Attribute(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyListResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) attribute_name = fields.String(required=True) data_type = fields.String(required=False, allow_none=True, validate=[OneOf(list(DataType.__dict__.keys()))]) privacy_type = fields.String(required=True, validate=[OneOf(list(PrivacyType.__dict__.keys()))]) category_technique = fields.String(required=False, allow_none=True) anonymization_technique = fields.String(required=True, validate=[OneOf(list(AnonymizationTechnique.__dict__.keys()))]) hierarchical_structure_type = fields.String( required=False, allow_none=True) privacy_model_technique = fields.String(required=False, allow_none=True) hierarchy = fields.String(required=False, allow_none=True) category_model = fields.String(required=False, allow_none=True) privacy_model = fields.String(required=False, allow_none=True) privacy_model_parameters = fields.String(required=False, allow_none=True) unlock_privacy_key = fields.String(required=False, allow_none=True) is_global_law = fields.Boolean( required=False, allow_none=True, missing=False, default=False) attribute_privacy_group = fields.Nested( 'limonero.schema.AttributePrivacyGroupListResponseSchema', allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacy""" return AttributePrivacy(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyItemResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) attribute_name = fields.String(required=True) data_type = fields.String(required=False, allow_none=True, validate=[OneOf(list(DataType.__dict__.keys()))]) privacy_type = fields.String(required=True, validate=[OneOf(list(PrivacyType.__dict__.keys()))]) category_technique = fields.String(required=False, allow_none=True) anonymization_technique = fields.String(required=True, validate=[OneOf(list(AnonymizationTechnique.__dict__.keys()))]) hierarchical_structure_type = fields.String( required=False, allow_none=True) privacy_model_technique = fields.String(required=False, allow_none=True) hierarchy = fields.String(required=False, allow_none=True) category_model = fields.String(required=False, allow_none=True) privacy_model = fields.String(required=False, allow_none=True) privacy_model_parameters = fields.String(required=False, allow_none=True) unlock_privacy_key = fields.String(required=False, allow_none=True) is_global_law = fields.Boolean( required=False, allow_none=True, missing=False, default=False) attribute_privacy_group_id = fields.Integer( required=False, allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacy""" return AttributePrivacy(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyCreateRequestSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(allow_none=True) attribute_name = fields.String(required=True) data_type = fields.String(required=False, allow_none=True, validate=[OneOf(list(DataType.__dict__.keys()))]) privacy_type = fields.String(required=True, validate=[OneOf(list(PrivacyType.__dict__.keys()))]) category_technique = fields.String(required=False, allow_none=True) anonymization_technique = fields.String(required=True, validate=[OneOf(list(AnonymizationTechnique.__dict__.keys()))]) hierarchical_structure_type = fields.String( required=False, allow_none=True) privacy_model_technique = fields.String(required=False, allow_none=True) hierarchy = fields.String(required=False, allow_none=True) category_model = fields.String(required=False, allow_none=True) privacy_model = fields.String(required=False, allow_none=True) privacy_model_parameters = fields.String(required=False, allow_none=True) unlock_privacy_key = fields.String(required=False, allow_none=True) attribute_id = fields.Integer(required=False, allow_none=True) attribute_privacy_group_id = fields.Integer( required=False, allow_none=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacy""" return AttributePrivacy(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyPrivacyResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) data_type = fields.String(required=False, allow_none=True, validate=[OneOf(list(DataType.__dict__.keys()))]) privacy_type = fields.String(required=True, validate=[OneOf(list(PrivacyType.__dict__.keys()))]) category_technique = fields.String(required=False, allow_none=True) anonymization_technique = fields.String(required=True, validate=[OneOf(list(AnonymizationTechnique.__dict__.keys()))]) hierarchical_structure_type = fields.String( required=False, allow_none=True) privacy_model_technique = fields.String(required=False, allow_none=True) hierarchy = fields.String(required=False, allow_none=True) category_model = fields.String(required=False, allow_none=True) privacy_model = fields.String(required=False, allow_none=True) privacy_model_parameters = fields.String(required=False, allow_none=True) unlock_privacy_key = fields.String(required=False, allow_none=True) is_global_law = fields.Boolean( required=False, allow_none=True, missing=False, default=False) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacy""" return AttributePrivacy(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyGroupListResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacyGroup""" return AttributePrivacyGroup(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyGroupItemResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacyGroup""" return AttributePrivacyGroup(**data) class Meta: ordered = True unknown = EXCLUDE class AttributePrivacyGroupCreateRequestSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(allow_none=True) name = fields.String(required=True) user_id = fields.Integer(required=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of AttributePrivacyGroup""" return AttributePrivacyGroup(**data) class Meta: ordered = True unknown = EXCLUDE class DataSourceExecuteRequestSchema(BaseSchema): """ JSON schema for executing tasks """ id = fields.Integer(required=True) name = fields.String(required=True) # noinspection PyUnresolvedReferences @post_load def make_object(self, data, **kwargs): """ Deserialize data into an instance of DataSource""" return DataSource(**data) class Meta: ordered = True unknown = EXCLUDE class DataSourceListResponseSchema(BaseSchema): """ JSON serialization schema """ id = fields.Integer(required=True) name = fields.String(required=True) description = fields.String(required=False, allow_none=True) enabled = fields.Boolean( required=False, allow_none=True, missing=True, default=True) statistics_process_counter = fields.Integer( required=False, allow_none=True, missing=0, default=0) read_only = fields.Boolean( required=False, allow_none=True, missing=True, default=True) privacy_aware = fields.Boolean( required=False, allow_none=True, missing=False, default=False) url = fields.String(required=True) created = fields.DateTime(required=False, allow_none=True) updated = fields.DateTime( required=False, allow_none=True, missing=datetime.datetime.utcnow, default=datetime.datetime.utcnow) format = fields.String(required=True, validate=[OneOf(list(DataSourceFormat.__dict__.keys()))]) initialization = fields.String(required=False, allow_none=True, missing=DataSourceInitialization.INITIALIZED, default=DataSourceInitialization.INITIALIZED, validate=[OneOf(list(DataSourceInitialization.__dict__.keys()))]) initialization_job_id = fields.String(required=False, allow_none=True) provenience = fields.String(required=False, allow_none=True) estimated_rows = fields.Integer( required=False, allow_none=True, missing=0, default=0) estimated_size_in_mega_bytes = fields.Decimal( required=False, allow_none=True) expiration = fields.String(required=False, allow_none=True) user_id = fields.Integer(required=False, allow_none=True) user_login = fields.String(required=False, allow_none=True) user_name = fields.String(required=False, allow_none=True) tags = fields.String(required=False, allow_none=True) temporary = fields.Boolean( required=False, allow_none=True, missing=False, default=False) workflow_id = fields.Integer(required=False, allow_none=True) task_id = fields.String(required=False, allow_none=True) attribute_delimiter = fields.String(required=False, allow_none=True) record_delimiter = fields.String(required=False, allow_none=True) text_delimiter = fields.String(required=False, allow_none=True) is_public = fields.Boolean( required=False, allow_none=True, missing=False, default=False) treat_as_missing = fields.String(required=False, allow_none=True)
detected in check special 'scene' subgroup." # " Stray metadata files are ignored for the purpose of flagging" # " higher-level check special groups as incomplete due to missing suffixes.") # warnings.showwarning = script_utils.showwarning_stderr # continue missing_suffixes = [s for s in src_suffixes_subgroup if not ends_one_of_coll(s, src_rasters_subgroup)] if missing_suffixes and args.get(ARGSTR_CHECK_SPECIAL) is not None: missing_suffixes_set = set(missing_suffixes) if args.get(ARGSTR_CHECK_SPECIAL) in ARGCHOGRP_CHECK_SPECIAL_SETSM_DEM_SCENELEVEL: if CHECK_SPECIAL_DEM_SUFFIX_SCENELEVEL_MATCHTAG_SET.issubset(missing_suffixes_set): missing_suffixes_set.difference_update(CHECK_SPECIAL_DEM_SUFFIX_SCENELEVEL_MATCHTAG_SET) missing_suffixes_set.difference_update(CHECK_SPECIAL_DEM_SUFFIX_OPTIONAL_SCENELEVEL_SET) if missing_suffixes_set and args.get(ARGSTR_CHECK_SPECIAL) in ARGCHOGRP_CHECK_SPECIAL_SETSM_DEM: if ( ( CHECK_SPECIAL_DEM_SUFFIX_ORTHO2 in missing_suffixes_set or CHECK_SPECIAL_DEM_SUFFIX_ORTHO2_10M in missing_suffixes_set) and ((not check_group_is_xtrack) or args.get(ARGSTR_ALLOW_MISSING_ORTHO2))): if CHECK_SPECIAL_DEM_SUFFIX_ORTHO2 in missing_suffixes_set: missing_suffixes_set.remove(CHECK_SPECIAL_DEM_SUFFIX_ORTHO2) if CHECK_SPECIAL_DEM_SUFFIX_ORTHO2_10M in missing_suffixes_set: missing_suffixes_set.remove(CHECK_SPECIAL_DEM_SUFFIX_ORTHO2_10M) if missing_suffixes_set and args.get(ARGSTR_CHECK_SPECIAL) in ARGCHOGRP_CHECK_SPECIAL_SETSM_DEM_STRIPLEVEL: missing_suffixes_set.difference_update(CHECK_SPECIAL_DEM_SUFFIX_OPTIONAL_STRIPLEVEL_SET) missing_suffixes = [s for s in missing_suffixes if s in missing_suffixes_set] if missing_suffixes: warnings.warn("Source file suffixes for a check group were not found") missing_suffix_errmsg = ( "Check {}group {}; missing the following source file suffixes: {}".format( "special '{}' sub".format(check_special_option)*(check_special_option is not None), checkfile_root_subgroup, missing_suffixes ) ) if args.get(ARGSTR_VERIFY_BY_PAIRNAME_DIR) and checkgroup_errfile is not None: if not args.get(ARGSTR_DRYRUN): with open(checkgroup_errfile, 'a') as checkgroup_errfile_fp: checkgroup_errfile_fp.write(missing_suffix_errmsg+'\n') if warn_missing_suffix: eprint(missing_suffix_errmsg) if type(missing_suffix_flag) is list and len(missing_suffix_flag) == 1: missing_suffix_flag[0] = True delete_files = (delete_files or args.get(ARGSTR_RMWHERE_MISSING_SUFFIX)) if missing_suffix_flag[0] and check_special_option is None: break src_raster_errfnames = [f+errfile_ext for f in src_rasters if os.path.isfile(os.path.join(checkfile_dir, f+errfile_ext))] if checkgroup_errfile is not None and os.path.isfile(checkgroup_errfile): src_raster_errfnames.append(checkgroup_errfile) if src_raster_errfnames: warnings.warn("Error files were found among source files for a check group") if warn_errfile_exists: eprint("Check group {}; {} error files were found among source selection:".format( checkfile_root, len(src_raster_errfnames))) for f in sorted(list(src_raster_errfnames)): eprint(f) if type(errfile_count) is list and len(errfile_count) == 1: errfile_count[0] = len(src_raster_errfnames) delete_files = (delete_files or args.get(ARGSTR_RMWHERE_ERRFILE_EXISTS)) delete_dryrun = (args.get(ARGSTR_DRYRUN) or not args.get(ARGSTR_DO_DELETE)) if ( (delete_files and checkfile_exists) and args.get(ARGSTR_REMOVE_TYPE) in [ARGCHO_REMOVE_TYPE_CHECKFILES, ARGCHO_REMOVE_TYPE_BOTH]): eprint("Removing checkfile"+" (dryrun)"*delete_dryrun) cmd = "rm {}".format(checkfile) if args.get(ARGSTR_DO_DELETE): eprint(cmd) if not delete_dryrun: os.remove(checkfile) if type(checkfile_removed_flag) is list and len(checkfile_removed_flag) == 1: checkfile_removed_flag[0] = True src_rasters_to_check = src_rasters if ( delete_files and args.get(ARGSTR_REMOVE_TYPE) in [ARGCHO_REMOVE_TYPE_SOURCEFILES, ARGCHO_REMOVE_TYPE_BOTH]): eprint("Removing source files"+" (dryrun)"*delete_dryrun) srcfnames_to_remove = list(src_rasters) + src_raster_errfnames for fn in srcfnames_to_remove: srcfile_to_remove = os.path.join(checkfile_dir, fn) cmd = "rm {}".format(srcfile_to_remove) if args.get(ARGSTR_DO_DELETE): eprint(cmd) if not delete_dryrun: os.remove(srcfile_to_remove) return -1 return list(src_rasters_to_check) if return_incomplete_src_rasters else bool(src_rasters_to_check) def main(): global LOGGER # Invoke argparse argument parsing. arg_parser = argparser_init() try: args = script_utils.ArgumentPasser(PYTHON_EXE, SCRIPT_FILE, arg_parser, sys.argv) except ScriptArgumentError as e: arg_parser.error(e) ## Further parse/adjust argument values. src = args.get(ARGSTR_SRC) search_depth = args.get(ARGSTR_DEPTH) verify_by_pairname_dir_depth = args.get(ARGSTR_VERIFY_BY_PAIRNAME_DIR_DEPTH) checkfile_ext = args.get(ARGSTR_CHECKFILE_EXT) errfile_ext = args.get(ARGSTR_ERRFILE_EXT) allow_missing_suffix = args.get(ARGSTR_ALLOW_MISSING_SUFFIX) retry_errors = args.get(ARGSTR_RETRY_ERRORS) warn_errfile_exists = (not args.get(ARGSTR_SUPPRESS_ERRFILE_EXISTS) or args.get(ARGSTR_RMWHERE_ERRFILE_EXISTS)) warn_missing_suffix = (not args.get(ARGSTR_SUPPRESS_MISSING_SUFFIX) or args.get(ARGSTR_RMWHERE_MISSING_SUFFIX)) warn_missing_checked = (not args.get(ARGSTR_SUPPRESS_MISSING_CHECKED) or args.get(ARGSTR_RMWHERE_MISSING_CHECKED)) warn_new_source = (not args.get(ARGSTR_SUPPRESS_NEW_SOURCE) or args.get(ARGSTR_RMWHERE_NEW_SOURCE)) try_removal = (True in args.get(ARGGRP_RMWHERE)) allow_remove_checkfiles = args.get(ARGSTR_REMOVE_TYPE) in [ARGCHO_REMOVE_TYPE_CHECKFILES, ARGCHO_REMOVE_TYPE_BOTH] allow_remove_sourcefiles = args.get(ARGSTR_REMOVE_TYPE) in [ARGCHO_REMOVE_TYPE_SOURCEFILES, ARGCHO_REMOVE_TYPE_BOTH] delete_dryrun = (args.get(ARGSTR_DRYRUN) or not args.get(ARGSTR_DO_DELETE)) if args.get(ARGSTR_DEBUG): LOGGER.setLevel(logging.DEBUG) verifying_strips = (args.get(ARGSTR_VERIFY_BY_PAIRNAME_DIR) and args.get(ARGSTR_CHECK_SPECIAL) == ARGCHO_CHECK_SPECIAL_STRIPS) if args.get(ARGSTR_SCHEDULER) is not None: if args.get(ARGSTR_JOBSCRIPT) is None: jobscript_default = os.path.join(JOBSCRIPT_DIR, 'head_{}.sh'.format(args.get(ARGSTR_SCHEDULER))) if not os.path.isfile(jobscript_default): arg_parser.error( "Default jobscript ({}) does not exist, ".format(jobscript_default) + "please specify one with {} argument".format(ARGSTR_JOBSCRIPT)) else: args.set(ARGSTR_JOBSCRIPT, jobscript_default) print("argument {} set automatically to: {}".format(ARGSTR_JOBSCRIPT, args.get(ARGSTR_JOBSCRIPT))) ## Validate argument values. argstr_mutexl_checkfile = [ ARGSTR_CHECKFILE, ARGSTR_CHECKFILE_ROOT, ARGSTR_CHECKFILE_ROOT_REGEX, ARGSTR_CHECK_SPECIAL ] argstr_incompat_sched = [ARGSTR_CHECKFILE, ARGSTR_CHECKFILE_ROOT] if args.get(argstr_mutexl_checkfile).count(None) < (len(argstr_mutexl_checkfile)-1): arg_parser.error("Only one of the following checkfile arguments may be provided: {}".format(argstr_mutexl_checkfile)) if args.get(ARGSTR_CHECK_SPECIAL) is not None: check_special_option = args.get(ARGSTR_CHECK_SPECIAL) for check_special_set_argstr, check_special_set_value in ARGCHOSET_CHECK_SPECIAL_SETTING_DICT[check_special_option]: if args.provided(check_special_set_argstr): continue if check_special_option in ARGCHOGRP_CHECK_SPECIAL_SETSM_DEM_SCENELEVEL and check_special_set_argstr == ARGSTR_SRC_SUFFIX: check_special_set_value = '/'.join([ ARGCHOSET_CHECK_SPECIAL_DEMTYPE_SUFFIX_DICT[args.get(ARGSTR_CHECK_SPECIAL_DEMTYPE)], check_special_set_value ]) args.set(check_special_set_argstr, check_special_set_value) print("via provided argument {}={}, argument {} set automatically to: '{}'".format( ARGSTR_CHECK_SPECIAL, args.get(ARGSTR_CHECK_SPECIAL), check_special_set_argstr, args.get(check_special_set_argstr))) if args.get(ARGSTR_INDEX_PAIRNAMES_TO_JSON): if not args.get(ARGSTR_VERIFY_BY_PAIRNAME_DIR): arg_parser.error("{} option can only be used in conjuction with {} option".format( ARGSTR_INDEX_PAIRNAMES_TO_JSON, ARGSTR_VERIFY_BY_PAIRNAME_DIR )) if args.get(ARGSTR_CHECK_SPECIAL) not in ARGCHOSET_CHECK_SPECIAL_INDEX_MODE_DICT: arg_parser.error("{} option requires {} must be set to one of {}".format( ARGSTR_INDEX_PAIRNAMES_TO_JSON, ARGSTR_CHECK_SPECIAL, sorted(ARGCHOSET_CHECK_SPECIAL_INDEX_MODE_DICT.keys()) )) if not os.path.isfile(INDEX_SETSM_SCRIPT): arg_parser.error( "{} option requires the 'pgcdemtools' repo to exist alongside this repo, " "but SETSM indexing script does not exist: {}".format( ARGSTR_INDEX_PAIRNAMES_TO_JSON, SCRIPT_DIR, INDEX_SETSM_SCRIPT) ) for removal_argstr in ARGGRP_REQUIRES_RMWHERE: if args.get(removal_argstr) and not try_removal: arg_parser.error("{} option can only be used in conjunction with one of the following " "removal arguments: {}".format(removal_argstr, ARGGRP_RMWHERE)) if args.get(ARGSTR_SCHEDULER) is not None and args.get(argstr_incompat_sched).count(None) < len(argstr_incompat_sched): arg_parser.error("{} option is incompatible with the following arguments: {}".format( ARGSTR_SCHEDULER, argstr_incompat_sched )) if args.get(ARGSTR_TASKS_PER_JOB) is not None and not args.get(ARGSTR_SCHEDULER): arg_parser.error("{} option requires {} option".format(ARGSTR_TASKS_PER_JOB, ARGSTR_SCHEDULER)) src_suffixes = [s.strip() for s in args.get(ARGSTR_SRC_SUFFIX).split('/')] if ( endswith_one_of_coll(SETSM_META_SUFFIX, src_suffixes, case_sensitive=False) and args.get(ARGSTR_CHECK_SPECIAL) not in ARGCHOGRP_CHECK_SPECIAL_SETSM): arg_parser.error("argument {} suffix '{}' that could match SETSM meta suffix '{}' " "may only be provided when argument {} is set to one of the following SETSM options: {}".format( ARGSTR_SRC_SUFFIX, endswith_one_of_coll(SETSM_META_SUFFIX, src_suffixes, case_sensitive=False, return_match=True), SETSM_META_SUFFIX, ARGSTR_CHECK_SPECIAL, ARGCHOGRP_CHECK_SPECIAL_SETSM )) checkfile_root_regex = (re.compile(args.get(ARGSTR_CHECKFILE_ROOT_REGEX)) if args.get(ARGSTR_CHECKFILE_ROOT_REGEX) is not None else None) if args.get(ARGSTR_VERIFY_QUICK_CHECK): ## Do quick verification check and exit print("\nDoing verification quick check...") if not os.path.isdir(args.get(ARGSTR_SRC)): arg_parser.error("{} must be a directory when {} option is provided".format( ARGSTR_SRC, ARGSTR_VERIFY_QUICK_CHECK )) srcdir = args.get(ARGSTR_SRC) pairname_dir_list = [] for root, dnames, fnames in walk.walk(srcdir, maxdepth=verify_by_pairname_dir_depth): for dn in dnames: if re.match(ARGCHOSET_CHECK_SPECIAL_DEM_REGEX_STRIPLEVEL, dn) is not None: pairname_dir = os.path.join(root, dn) pairname_dir_list.append(pairname_dir) pairname_dir_num_total = len(pairname_dir_list) if len(pairname_dir_list) == 0: eprint("ERROR: No pairname directories were found with {} and {}={}".format( ARGSTR_VERIFY_BY_PAIRNAME_DIR, ARGSTR_VERIFY_BY_PAIRNAME_DIR_DEPTH, verify_by_pairname_dir_depth )) sys.exit(1) else: print("Found {} pairname directories within {}".format(pairname_dir_num_total, srcdir)) print('') pairname_dir_not_done_list = [] pairname_dir_empty_list = [] for pairname_dir in pairname_dir_list: pairname_errfile = pairname_dir+errfile_ext pnamedir_checkfile = pairname_dir+checkfile_ext pnamedir_jsonfile = pairname_dir+'.json' pnamedir_errfile_exists = os.path.isfile(pairname_errfile) pnamedir_checkfile_exists = os.path.isfile(pnamedir_checkfile) pnamedir_jsonfile_exists = os.path.isfile(pnamedir_jsonfile) if pnamedir_errfile_exists or not (pnamedir_checkfile_exists and pnamedir_jsonfile_exists): for _, _, srcfname_list in walk.walk(pairname_dir, maxdepth=1): break if len(srcfname_list) == 0: print("WARNING: Pairname directory is empty: {}".format(pairname_dir)) pairname_dir_empty_list.append(pairname_dir) if pnamedir_checkfile_exists or pnamedir_jsonfile_exists: print("ERROR: Empty pairname directory has a checkfile or JSON file: {}".format(pairname_dir)) else: continue elif len(srcfname_list) == 1 and verifying_strips: single_strip_fname = srcfname_list[0] if single_strip_fname.endswith('.fin'): if pnamedir_jsonfile_exists: print("ERROR: Pairname directory with lone strip finfile has JSON file: {}".format(pnamedir_jsonfile)) elif not pnamedir_checkfile_exists: continue else: with open(pnamedir_checkfile, 'r') as check_strips_fin_fp: strip_finfname = check_strips_fin_fp.read().strip() if strip_finfname == single_strip_fname: continue else: print("ERROR: Solo strip finfile in pairname directory checkfile ({}) " "does not match existing lone strip finfile ({}): {}".format( strip_finfname, single_strip_fname, pnamedir_checkfile )) print("Pairname directory containing {} files, where {}, has not passed verification: {}".format( len(srcfname_list), "(errfile {}, checkfile {}, JSON {})".format( *['exists' if file_exists else 'DNE' for file_exists in [ pnamedir_errfile_exists, pnamedir_checkfile_exists, pnamedir_jsonfile_exists ]] ), pairname_errfile if pnamedir_errfile_exists else pairname_dir )) pairname_dir_not_done_list.append(pairname_dir) print('') if len(pairname_dir_not_done_list) == 0: print("All pairname directories have passed verification!") else: print("{} pairname directories have not yet passed verification:\n {}".format( len(pairname_dir_not_done_list), '\n '.join(pairname_dir_not_done_list) )) if len(pairname_dir_empty_list) != 0: print("{} pairname directories are empty:\n {}".format( len(pairname_dir_empty_list), '\n '.join(pairname_dir_empty_list) )) sys.exit(0) ## Scan source dir/file input to determine which source files should be checked. checkffileroot_srcfnamechecklist_dict = None srcffile_checklist = None num_srcfiles = 0 num_checkgroups = None srcfile_count = [None] errfile_count = [None] missing_suffix_flag = [False] checkfile_removed_flag = [False] print("-----") if not args.get(ARGSTR_CHECKFILE_OFF): print("Checkfile extension: {}".format(checkfile_ext)) print("Error file extension: {}".format(errfile_ext)) print("Accepted source file suffixes: {}".format(src_suffixes)) print("-----") print("Any check group warnings would appear here:") srcdir = None if os.path.isdir(src): srcdir = src if ( args.get(ARGSTR_CHECKFILE_ROOT_REGEX) is not None and args.get(ARGSTR_CHECK_SPECIAL) != ARGCHO_CHECK_SPECIAL_ALL_SEPARATE): checkffileroot_srcfnamechecklist_dict = dict() if args.get(ARGSTR_VERIFY_BY_PAIRNAME_DIR): pairname_dir_list = [] if re.match(ARGCHOSET_CHECK_SPECIAL_DEM_REGEX_STRIPLEVEL, os.path.basename(srcdir)) is not None: pairname_dir_list.append(srcdir) else: for root, dnames, fnames in walk.walk(srcdir, maxdepth=verify_by_pairname_dir_depth): for dn in dnames: if re.match(ARGCHOSET_CHECK_SPECIAL_DEM_REGEX_STRIPLEVEL, dn) is not None: pairname_dir = os.path.join(root, dn) pairname_dir_list.append(pairname_dir) if len(pairname_dir_list) == 0: eprint("No pairname directories were found with {} and {}={}".format( ARGSTR_VERIFY_BY_PAIRNAME_DIR, ARGSTR_VERIFY_BY_PAIRNAME_DIR_DEPTH, verify_by_pairname_dir_depth )) for pairname_dir in pairname_dir_list: srcfname_list = [] for _, _, srcfname_list in walk.walk(pairname_dir, maxdepth=1): break if len(srcfname_list) == 1 and verifying_strips: single_strip_fname = srcfname_list[0] if single_strip_fname.endswith('.fin'): strip_finfname = single_strip_fname with open(pairname_dir+'.check', 'w') as check_strips_fin_fp: check_strips_fin_fp.write(strip_finfname) continue for srcfname in srcfname_list: if endswith_one_of_coll(srcfname, src_suffixes): match = re.match(checkfile_root_regex, srcfname) if match is None: eprint("No regex match for filename matching suffix criteria in source directory: {}".format(srcfname)) else: if pairname_dir not in checkffileroot_srcfnamechecklist_dict: checkffileroot_srcfnamechecklist_dict[pairname_dir] = [] checkffileroot_srcfnamechecklist_dict[pairname_dir].append(srcfname) else: for root, dnames,
- :class:`~adorn.exception.type_check_error.MissingDependencyError`: ``typing.Literal`` requested state that wasn't specified in the local state Args: target_cls (Parameter): container parameter's state literal_dict (Dict[str, str]): dependency request args (Dict[str, Any]): local state Returns: Optional[TypeCheckError]: ``TypeCheckError`` if the dependency request can't be fulfilled by the local state, otherwise ``None`` """ missing_keys = literal_dict.keys() - args.keys() if missing_keys: return MissingDependencyError( target_cls=target_cls, missing_dependency={k: literal_dict[k] for k in missing_keys}, ) @classmethod def perfunctory_type_check( cls, target_cls: Parameter, orchestrator: "Orchestrator", obj: Dict[Any, Any], dependent_from_obj: bool = False, ) -> Optional[TypeCheckError]: """Ensure the Dependent type specified is well formed Exceptions: - see :class:`~adorn.unit.parameter_value.Dependent.check_args` - see :class:`~adorn.unit.complex.Complex.general_check` - see :class:`~adorn.unit.parameter_value.Dependent.check_literal_dict` Args: target_cls (Parameter): specification of the parameter and its associated state orchestrator (Orchestrator): container of types, used to check nested types obj (Dict[Any, Any]): the arguments to construct the parameter dependent_from_obj (bool): if ``True``, the request is grabbing instantiated values, otherwise configured values Returns: Optional[TypeCheckError]: ``TypeCheckError`` if there was an issue with the ``DependentType``, otherwise ``None`` """ check_arg_ouptut = cls.check_args( target_cls=target_cls, orchestrator=orchestrator ) if check_arg_ouptut is not None: return check_arg_ouptut # perform a Complex.general_check on the given wrapped type wrapped_cls = target_cls.args[0] cls_unit = orchestrator.get(wrapped_cls) wrapped_cls_general_check = cls_unit.general_check( wrapped_cls, orchestrator, obj ) if wrapped_cls_general_check is not None: return wrapped_cls_general_check # check that the literal dict is well specified check_literal_dict_output = cls.check_literal_dict( target_cls=target_cls, obj=obj, dependent_from_obj=dependent_from_obj ) if check_literal_dict_output is not None: return check_literal_dict_output @classmethod def _from_obj( cls, target_cls: Parameter, orchestrator: "Orchestrator", obj: Dict[Any, Any] ) -> Dict[Any, Any]: """Instantiate a parameter, using arguments and state from the :class:`~adorn.data.constructor.Constructor` Exceptions: - :class:`~adorn.exception.type_check_error.MalformedDependencyError`: the ``Dependent`` type didn't specify the appropriate number of arguments - :class:`~adorn.exception.type_check_error.MissingLiteralError`: the first argument, zero based counting, wasn't a ``typing.Literal`` - :class:`~adorn.exception.type_check_error.UnaryLiteralError`: ``typing.Literal`` specifies more than one argument - :class:`~adorn.exception.type_check_error.MalformedLiteralError`: ``typing.Literal`` wrapped a value that wasn't of type ``Dict[str, str]`` Args: target_cls (Parameter): the requested type and relevant state orchestrator (Orchestrator): container of all types, typically used to recurse down nested types obj (Any): an instance, containing the arguments for :attr:`~adorn.data.parameter.Parameter.cls` Returns: Any: An instance of :attr:`~adorn.data.parameter.Parameter.cls` """ # noqa: B950, DAR401, RST304 check_arg_ouptut = cls.check_args( target_cls=target_cls, orchestrator=orchestrator ) if check_arg_ouptut is not None: raise check_arg_ouptut literal_dict = target_cls.args[1].__args__[0] args = cls.get_args( target_cls=target_cls, literal_dict=literal_dict, dependent_from_obj=True ) # check all required state exists literal_dict_key_check = cls.check_literal_dict_keys( target_cls=target_cls, literal_dict=literal_dict, args=args ) if literal_dict_key_check is not None: raise literal_dict_key_check # enrich obj with dependent state for k, v in args.items(): if k not in obj: obj[k] = v subcls = target_cls.args[0].resolve_class_name(obj["type"]) return orchestrator.from_obj(subcls, obj) @ParameterValue.register("dependent_type_check") class DependentTypeCheck(Generic[_T, DictStrStr], Dependent): """Parameter that requires local state that is known before instantiation The first argument must be a :class:`~adorn.unit.complex.Complex`, that requires state, known before construction, from the constructor. The second argument is a ``typing.Literal[Dict[str, str]]`` where the keys specifies the names of the dependent parameters and the values are the state needed from the constructor. """ @classmethod def _contains(cls, obj: Parameter, orchestrator: "Orchestrator") -> bool: """Check if the ``obj`` is an instance of ``DependentTypeCheck`` Args: obj (Parameter): potentially an instance of ``DependentTypeCheck`` orchestrator (Orchestrator): container of all types, typically used to recurse nested types Returns: bool: if ``True``, ``obj`` is an instance of ``DependentTypeCheck`` """ # noqa: B950 if obj.origin != DependentTypeCheck: return False return (orchestrator.contains(obj.args[0])) and issubclass(obj.args[0], Complex) @classmethod def _type_check( cls, target_cls: Parameter, orchestrator: "Orchestrator", obj: Dict[Any, Any] ) -> Optional[TypeCheckError]: """Type check a parameter, using arguments and state from the :class:`~adorn.data.constructor.Constructor` Exceptions: - see :class:`~adorn.unit.parameter_value.Dependent.perfunctory_type_check` - :class:`~adorn.exception.type_check_error.KeyValueError`: errors for the argument(s) from ``obj`` and/or local state Args: target_cls (Parameter): the requested type and relevant state orchestrator (Orchestrator): container of all types, typically used to recurse down nested types obj (Any): an instance, containing the arguments for :attr:`~adorn.data.parameter.Parameter.cls` Returns: Optional[TypeCheckError]: ``TypeCheckError``, if the state and arguments can't generate an instance of :attr:`~adorn.data.parameter.Parameter.cls`, otherwise ``None`` """ # noqa: B950, RST304 perfunctory_type_check_output = cls.perfunctory_type_check( target_cls=target_cls, orchestrator=orchestrator, obj=obj ) if perfunctory_type_check_output is not None: return perfunctory_type_check_output literal_dict = target_cls.args[1].__args__[0] constructor = cls.get_constructor(target_cls=target_cls, obj=obj) # perform a Complex.general_check on the requested values # need to parse the correct Complex instance for the given # parameter's type args = Params(cls.get_args(target_cls=target_cls, literal_dict=literal_dict)) bad_args = dict() for k, v in args.items(): sub = constructor.parameters[k].annotation unit = orchestrator.get(sub) arg_type_check = None if getattr(sub, "__origin__", None) is None and isinstance(v, sub): # object is already instantiated, so we assume it is ok arg_type_check = None elif isinstance(unit, Complex): # we do a shallow check on complex types because may contain # their own dependencies. arg_type_check = unit.general_check( sub, orchestrator=orchestrator, obj=v ) else: arg_type_check = orchestrator.type_check(sub, v) if arg_type_check is not None: bad_args[k] = arg_type_check if bad_args: return KeyValueError(target_cls, bad_args, obj) # generate an instance of Constructor where the key's in the literal_dict # are removed from the parameters attribute for k in literal_dict: if k not in obj: constructor.parameters.pop(k) return orchestrator.type_check(constructor, obj) @ParameterValue.register("dependent_from_obj") class DependentFromObj(Generic[_T, DictStrStr], Dependent): """Parameter that requires local state that is known after instantiation The first argument must be a :class:`~adorn.unit.complex.Complex`, that requires state, known after construction, from the constructor. The second argument is a ``typing.Literal[Dict[str, str]]`` where the keys specifies the names of the dependent parameters and the values are the state needed from the constructor. """ @classmethod def _contains(cls, obj: Parameter, orchestrator: "Orchestrator") -> bool: """Check if the ``obj`` is an instance of ``DependentFromObj`` Args: obj (Parameter): potentially an instance of ``DependentFromObj`` orchestrator (Orchestrator): container of all types, typically used to recurse nested types Returns: bool: if ``True``, ``obj`` is an instance of ``DependentFromObj`` """ if obj.origin != DependentFromObj: return False return (orchestrator.contains(obj.args[0])) and issubclass(obj.args[0], Complex) @classmethod def _type_check( cls, target_cls: Parameter, orchestrator: "Orchestrator", obj: Dict[Any, Any] ) -> Optional[TypeCheckError]: """Type check a parameter, using arguments from ``obj`` Any local state that has been specified in the second argument to ``DependentFromObj`` will not be checked, because nothing has been instantiated, yet. Exceptions: - see :class:`~adorn.unit.parameter_value.Dependent.perfunctory_type_check` Args: target_cls (Parameter): the requested type and relevant state orchestrator (Orchestrator): container of all types, typically used to recurse down nested types obj (Any): an instance, containing the arguments for :attr:`~adorn.data.parameter.Parameter.cls` Returns: Optional[TypeCheckError]: ``TypeCheckError``, if the state and arguments can't generate an instance of :attr:`~adorn.data.parameter.Parameter.cls`, otherwise ``None`` """ # noqa: B950, RST30 perfunctory_type_check_output = cls.perfunctory_type_check( target_cls=target_cls, orchestrator=orchestrator, obj=obj, dependent_from_obj=True, ) if perfunctory_type_check_output is not None: return perfunctory_type_check_output literal_dict = target_cls.args[1].__args__[0] constructor = cls.get_constructor(target_cls=target_cls, obj=obj) # generate an instance of Constructor where the key's in the literal_dict # are removed from the parameters attribute for k in literal_dict: if k not in obj: constructor.parameters.pop(k) return orchestrator.type_check(constructor, obj) _DependentT = TypeVar("_DependentT", bound=Dependent) @ParameterValue.register("dependent_union") class DependentUnion(Generic[_DependentT, _T], Dependent): """Similar to ``typing.Union``, but only accepts two arguments, where the zeroth argument must be :class:`~adorn.unit.parameter_value.Dependent`""" # noqa: B950 @staticmethod def get_parameter_subtype(target_cls: Parameter, arg: Type) -> Parameter: """Generate an Parameter where we update the ``cls`` arg with a type option. Args: target_cls (Parameter): state and ``DependentUnion`` request arg (Type): a type option specified within ``DependentUnion`` Returns: Parameter: state with :attr:`~adorn.data.parameter.Parameter.cls` argument specifying a type option specified in ``DependentUnion`` """ # noqa: RST304 return Parameter( cls=arg, parent=target_cls.parent, local_state=target_cls.local_state, parameter_name=target_cls.parameter_name, ) @classmethod def _contains(cls, obj: Parameter, orchestrator: "Orchestrator") -> bool: """Check if the ``obj`` is an instance of ``DependentUnion`` Args: obj (Parameter): potentially an instance of ``DependentUnion`` orchestrator (Orchestrator): container of all types, typically used to recurse nested types Returns: bool: if ``True``, ``obj`` is an instance of ``DependentUnion`` """ if obj.origin != DependentUnion: return False origin = getattr(obj.args[0], "__origin__", None) if origin is None or not issubclass(origin, Dependent): return False return all( orchestrator.contains( cls.get_parameter_subtype(target_cls=obj, arg=obj.args[i]) ) for i in range(2) ) @classmethod def get_parameter( cls, target_cls: Parameter, orchestrator: "Orchestrator", obj: Dict[Any, Any] ) -> Union[Parameter, KeyValueError]: """Type Check the given ``obj`` against all potential types Args: target_cls (Parameter): state and list of potential types ``obj`` could be orchestrator (Orchestrator): container of all types, typically used to recurse nested types obj (Dict[Any, Any]): arguments for one of the listed types Returns: Union[Parameter, KeyValueError]: either a ``Parameter`` which wraps the
Hello, i'm <NAME>, studying MCA 2years at M.S.Ramaiah Institute Of Technology, Bangalore <eom> [14:30] <kushal> singh123, you spoke early [14:30] <kushal> next [14:30] <sayan> singh123: wait for your turn [14:30] <kushal> next [14:30] <fihae> Aligarh Muslim University ,Aligarh ,India [14:30] <kushal> fihae, Thanks, see, now we all know about your college. [14:30] <kushal> and University. [14:31] <kushal> next [14:31] <abhinavshirur[m]> Hello everyone, I am <NAME>, pursuing Information Technology in Walchand College of Engineering Sangli :) <eof> [14:31] <kushal> next. [14:31] <kushal> next [14:31] <kushal> next [14:31] <deepika> hello everyone , deepika upadhyay 2nd year student in jabalpur engineering college, (m.p.),a nebie in open source world ! <eof> [14:31] <avik> Hi! Iam Avik (as the nick says). [14:31] <avik> I'm from Kolkata, India! [14:31] <avik> I'm a student of CSE BTech course of Narula Institute Of Technology. [14:31] <avik> Its my 2nd year here! Last year I messed up mid-way! [14:31] <avik> This year, I am determined to complete all the way to commiting in my fist project! [14:31] <sitlanigaurav[m]> Hello #dgplug I'm <NAME> , Final year comp science student from SCOE, Pune and a FOSS enthusiast. Worked on projects using python with startups. [14:31] <avik> <eof> [14:32] <kushal> sitlanigaurav[m], Does your college syllabus says that you are studying comp science? It is a new branch it seems. [14:32] <bhawana> hii everyone!! I am bhawana, final year B.tech student at IP University, delhi. [14:32] <sayan> Don't wait for your turn to write the intro. Please write your intro now and just wait for your turn to press `Enter` [14:32] <kushal> Maybe about compressing technologies. [14:32] <kushal> like food items. [14:32] <bhargav> ! [14:32] <sitlanigaurav[m]> kushal: Computer Engineering [14:32] <wrik003> kushal: lol [14:32] <kushal> sitlanigaurav[m], yes, so type full. [14:32] <kushal> next [14:33] <dhairyya> Hello, I am <NAME>. I am 3rd year CSE undergraduate in Institute Of Engineering & Management, Kolkata<eof> [14:33] <kushal> next [14:33] <anuGupta> Myself anu <NAME>, 2nd year Computer science and engineering student at academy of technology, west bengal. I am learning Python nowadays<eof> [14:33] <kushal> dhairyya, you spoke early. [14:33] <dhairyya> I am sorry <eof> [14:33] <neer> ! [14:33] <sayan> next [14:33] <kushal> Hello everyone, I am <NAME>, part of dgplug, I will also learn along the way with all of you. [14:33] <RatanShreshtha> Hello, I am <NAME>, I am currently working in Reliance Jio <eof> [14:34] <kushal> I am also an admin in this channel. <eof> [14:34] <kushal> next [14:34] <kushal> RatanShreshtha, you also spoke early. [14:34] <kushal> next [14:34] <pr97> Hello everyone, I am Priyanka, second year CSE student, here to learn from you all. [14:34] <kushal> next [14:34] <iKshitij> Hello Everyone, I am Kshitij, Computer Science Undergrad 2nd year, Dr BC Roy Engineering College Durgapur. <eom> [14:35] <kushal> next [14:35] <kushal> next [14:35] <cran-cg> Hello everyone I am <NAME>, a recent graduate from Zakir Husain College Of Engineeering And Technology, Aligarh Muslim University. I am here to learn and thus contribute better to the open source society [14:35] <RatanShreshtha> I am sorry <eof> [14:35] <cran-cg> <eof> [14:35] <geekodour08> btech student, CSE 4th semester student from Girijananda Chowdhury College, Assam. I like learning new things. [14:35] <sayan> nextnext [14:35] <sayan> next [14:35] <kushal> RatanShreshtha, no problem for nowl. [14:35] <skarpy> Hello, I am <NAME>, 3rd year, ECE, D.r. BC Roy engineering college, I am from durgapur. :) <eof> [14:35] <kushal> * now [14:35] <bhavin192> geekodour08, name [14:35] <bhavin192> ? [14:35] <kushal> next [14:36] <shivamA1> I am <NAME>, last year BE (IT) student from NBN sinhgad institutes, vadgaon,pune, i am an active attendie of python pune meetup group . [14:36] <kushal> next [14:36] <geekodour08> bhavin192: <NAME> [14:36] <kushal> next [14:36] <santoshShaw[m]> <NAME> . a CSE 3rd year @Academy of technology. Have a lot of passion towards programming . C is my favorite and I early look forward to contribute to open source.<eof> [14:36] <kushal> next [14:36] <shankarj67> Hello Everyone, I have completed my BTech CSE from Asansol Engineering College and got placed in bangalore based startup name Skillspeed and I will be joining from 7th of july. [14:36] <kushal> shankarj67, Congratulations :) [14:36] <kushal> next [14:36] <RJ722> Hello, I am <NAME>! I am a freshman year Electronics Engineering Student at Zakir Hussain College of Engineering and Technology. [14:36] <RJ722> I have been selected with coala for Google Summer of Code this year <eof> [14:36] <saikat195> I am <NAME>, student, pusuing B.Tech CSE Freshman Year. Willing to learn, and contribute to FOSS. [14:37] <kushal> next [14:37] <kushal> next [14:37] <apoorv> Hi, I am <NAME>, I am a 2nd year btech student of computer science from Jaypee Institute of Information Technology noida sector 62<eof> [14:37] <kushal> saikat195, you also spoke early [14:37] <kushal> next [14:37] <ravindra> Hi,My name is Ravindra I have contributed to an FOSS accounting software GNUKhata as an intern also have some experience of customizing python based ERP system ERPNext.Want to contribute to more FOSS projects<EOF> [14:37] <anupamas> hello! i am <NAME>. I am 12th passed out from science stream and looking forward to pursue engineering.<eof> [14:37] <kushal> next [14:37] <shankarj67> kushal, thanks a lot. [14:37] <kushal> anupamas, you are early :) [14:37] <kushal> next [14:38] <meamitk> Hello Everyone, my self <NAME>, system administrator from Mumbai. :) [14:38] <kushal> next [14:38] <bhavin192> ravindra, GNUKhata is great :) [14:38] <vikram> Hey! I am <NAME> , B.tech 1st year Computer Engineering undergrad from Zakir Hussain College of Engineering and Technology, Aligarh Muslim University. [14:38] <sayan> next [14:38] <kushal> vikram, means we have at least 3 people from your colleg3e [14:38] <sayan> next [14:38] <kushal> * college [14:38] <kushal> next [14:38] <zebak_> Hey! I am <NAME>, a 1st year student of Electronics Engineering at Zakir Hussain College of Engineering and Technology, Aligarh Muslim University. <eof> [14:38] <mdbk_> Hello, I'm <NAME>, I started learning programming few months ago, learnt about dgplug from a friend [14:38] <sapahia> Hello Everyone,I am Rishav ,Computer Science-Senior Year, from Jaypee University Of Information Technology,Shimla.Greetings to Everyone from Shimla.<eom> [14:38] <kushal> zebak_, and you are the fourth. [14:38] <kushal> next [14:38] <niranjana> Hello, I am Niranjana, recently finished B.E, Computer Engineering student from Cummins College of Engineering, Pune. <eom> [14:38] <vikram> yeas! [14:39] <sayan> next [14:39] <messifc> hello everyone :) I am from Noida and a final year computer science student. I like to stay anonymous while doing something online, but always open to make new friends :) <eof> [14:39] <kushal> next [14:39] <sayan> next [14:39] <kushal> next [14:39] <ishank_g> Hi.. I am <NAME>,just completed my Btech(ECE) from Aligarh Muslim University, Aligarh,UP.<eof> [14:39] <jiteshpabla> Hi, I am <NAME> (i know my username is very creative /s), and I study computer science engineering at JIIT noida. Looking forward to working with this community, as I get very lazy when it comes to working alone without accountability. [14:39] <kushal> next [14:39] <Padfoot7> Hi I am <NAME>. I am a 1st year B.Tech student from Zakir Husain college of Engineering & Technology(ZHCET) ,Aligarh Muslim Unversity (AMU), Aligarh. [14:40] <kvy> ! [14:40] <kushal> Padfoot7, you guys are wining in the highest number of people from one college category this year :) [14:40] <kushal> next [14:40] <jasonbraganza> Howdy folks, I’m Jason, 38, devoted husband, newly balding, love reading, IT consultant to small businesses, from Mumbai, and looking to switch careers to programming <eom> [14:40] <kushal> next [14:40] <Padfoot7> True That:) [14:41] <kushal> next [14:41] <ndakota> I'm Abhiram, Senior Software Engineer at Blue Jeans Network and one of the organizers of BangPypers (Bangalore Python Meetup Chapter). I'm here to learn things and to help out in any topic I can :) . <eom> [14:41] <rimshakhan> Hello people! This is <NAME>. B.tech 1st year Computer Engineering undergrad from Zakir Hussain College of Engineering and Technology, Aligarh Muslim University. Aligarh. [14:41] <bhawana> hello everyone!! I m <NAME>,CSE final year student at IP university. [14:41] <kushal> next [14:41] <kushal> rimshakhan, you also spoke early :) [14:41] <kushal> next [14:41] <nisha_> hello everyone ,I am <NAME> a economics student.And completed my graduation this year. [14:41] <kushal> nisha_, welcome to #dgplug [14:42] <kushal> nisha_, we may get a Economics professor from Japan to teach us a few things here, so it will be fun. [14:42] <kushal> :) [14:42] <nisha_> Kushal,thank you [14:42] <kushal> * an [14:42] <kushal> next [14:42] <sayan> Hi, I am <NAME>. I work as a Fedora Infrastructure Engineer in the Fedora Engineering Team. I work on quite some open source projects. I did my dgplug training in the summers of 2010 and I've been stuck here since then learning stuffs from you people.
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import time from google.appengine.api import taskqueue from google.appengine.ext import ndb from common import constants from common.waterfall import buildbucket_client from common.waterfall import failure_type from common.waterfall import try_job_error from common.waterfall.buildbucket_client import BuildbucketBuild from gae_libs import appengine_util from gae_libs.http.http_client_appengine import HttpClientAppengine from gae_libs.pipeline_wrapper import BasePipeline from gae_libs.pipeline_wrapper import pipeline from libs import analysis_status from libs import time_util from model.flake.flake_try_job_data import FlakeTryJobData from model.wf_try_job_data import WfTryJobData from waterfall import buildbot from waterfall import monitoring from waterfall import swarming_util from waterfall import waterfall_config def _GetError(buildbucket_response, buildbucket_error, timed_out, no_report): """Determines whether or not a try job error occurred. Args: buildbucket_response: A dict of the json response from buildbucket. buildbucket_error: A BuildBucketError object returned from the call to buildbucket_client.GetTryJobs() timed_out: A bool whether or not Findit abandoned monitoring the try job. no_report: A bool whether we get result report. Returns: A tuple containing an error dict and number representing an error code, or (None, None) if no error was determined to have occurred. """ if buildbucket_error: return ( { 'message': buildbucket_error.message, 'reason': buildbucket_error.reason }, try_job_error.BUILDBUCKET_REQUEST_ERROR) if timed_out: return ( { 'message': 'Try job monitoring was abandoned.', 'reason': 'Timeout after %s hours' % ( waterfall_config.GetTryJobSettings().get('job_timeout_hours')) }, try_job_error.TIMEOUT) if buildbucket_response: # Check buildbucket_response. buildbucket_failure_reason = buildbucket_response.get('failure_reason') if buildbucket_failure_reason == 'BUILD_FAILURE': # Generic buildbucket-reported error which can occurr if an exception is # thrown, disk is full, compile fails during a test try job, etc. return ( { 'message': 'Buildbucket reported a general error.', 'reason': MonitorTryJobPipeline.UNKNOWN }, try_job_error.INFRA_FAILURE ) elif buildbucket_failure_reason == 'INFRA_FAILURE': return ( { 'message': ('Try job encountered an infra issue during ' 'execution.'), 'reason': MonitorTryJobPipeline.UNKNOWN }, try_job_error.INFRA_FAILURE ) elif buildbucket_failure_reason: return ( { 'message': buildbucket_failure_reason, 'reason': MonitorTryJobPipeline.UNKNOWN }, try_job_error.UNKNOWN ) # Check result_details_json for errors. result_details_json = json.loads( buildbucket_response.get('result_details_json', '{}')) or {} error = result_details_json.get('error', {}) if error: return ( { 'message': 'Buildbucket reported an error.', 'reason': error.get('message', MonitorTryJobPipeline.UNKNOWN) }, try_job_error.CI_REPORTED_ERROR) if no_report: return ( { 'message': 'No result report was found.', 'reason': MonitorTryJobPipeline.UNKNOWN }, try_job_error.UNKNOWN ) return None, None def _OnTryJobError(try_job_type, error_dict, master_name, builder_name): # pragma: no cover monitoring.try_job_errors.increment( { 'type': try_job_type, 'error': error_dict.get('message', 'unknown'), 'master_name': master_name, 'builder_name': builder_name }) def _UpdateTryJobMetadata(try_job_data, try_job_type, buildbucket_build, buildbucket_error, timed_out, report=None): buildbucket_response = {} if buildbucket_build: try_job_data.request_time = ( try_job_data.request_time or time_util.MicrosecondsToDatetime(buildbucket_build.request_time)) # If start_time hasn't been set, use request_time. try_job_data.start_time = try_job_data.start_time or ( try_job_data.request_time) try_job_data.end_time = time_util.MicrosecondsToDatetime( buildbucket_build.end_time) if try_job_type != failure_type.FLAKY_TEST: # pragma: no branch if report: try_job_data.number_of_commits_analyzed = len( report.get('result', {})) try_job_data.regression_range_size = report.get( 'metadata', {}).get('regression_range_size') else: try_job_data.number_of_commits_analyzed = 0 try_job_data.regression_range_size = None try_job_data.try_job_url = buildbucket_build.url buildbucket_response = buildbucket_build.response try_job_data.last_buildbucket_response = buildbucket_response # report should only be {} when error happens on getting report after try job # completed. If try job is still running, report will be set to None. error_dict, error_code = _GetError( buildbucket_response, buildbucket_error, timed_out, report == {}) if error_dict: try_job_data.error = error_dict try_job_data.error_code = error_code _OnTryJobError(try_job_type, error_dict, try_job_data.master_name, try_job_data.builder_name) try_job_data.put() def _DictsAreEqual(dict_1, dict_2, exclude_keys=None): if dict_1 == dict_2: return True if dict_1 is None or dict_2 is None: return False if exclude_keys is None: exclude_keys = [] for key, value in dict_1.iteritems(): if key not in exclude_keys and (key not in dict_2 or dict_2[key] != value): return False for key, value in dict_2.iteritems(): if key not in exclude_keys and (key not in dict_1 or dict_1[key] != value): return False return True def _UpdateLastBuildbucketResponse(try_job_data, build): if not build or not build.response: # pragma: no cover return if not _DictsAreEqual(try_job_data.last_buildbucket_response, build.response, exclude_keys=['utcnow_ts']): try_job_data.last_buildbucket_response = build.response try_job_data.put() class MonitorTryJobPipeline(BasePipeline): """A pipeline for monitoring a try job and recording results when it's done. The result will be stored to compile_results or test_results according to which type of build failure we are running try job for. """ async = True UNKNOWN = 'UNKNOWN' @ndb.transactional def _UpdateTryJobResult(self, urlsafe_try_job_key, try_job_type, try_job_id, try_job_url, status, result_content=None): """Updates try job result based on response try job status and result.""" result = { 'report': result_content, 'url': try_job_url, 'try_job_id': try_job_id, } try_job = ndb.Key(urlsafe=urlsafe_try_job_key).get() if try_job_type == failure_type.FLAKY_TEST: result_to_update = try_job.flake_results elif try_job_type == failure_type.COMPILE: result_to_update = try_job.compile_results else: result_to_update = try_job.test_results if result_to_update and result_to_update[-1]['try_job_id'] == try_job_id: result_to_update[-1].update(result) else: # pragma: no cover # Normally result for current try job should have been saved in # schedule_try_job_pipeline, so this branch shouldn't be reached. result_to_update.append(result) if status == BuildbucketBuild.STARTED: try_job.status = analysis_status.RUNNING try_job.put() return result_to_update def __init__(self, *args, **kwargs): super(MonitorTryJobPipeline, self).__init__(*args, **kwargs) # This dictionary needs to be serializable so that the tests can simulate # callbacks to this pipeline. self.last_params = {} # Arguments number differs from overridden method - pylint: disable=W0221 def run(self, urlsafe_try_job_key, try_job_type, try_job_id): """Monitors try job until it's complete. This method stores parameters in self so that the callback method can perform appropriate checks. callback(), defined below is expected to run when a pubsub notification from the buildbucket service is sent to this application indicating that the job has changed status. callback() is also run in two occassions separate from pubsub: - at the end of this run method (i.e. when creating this pipeline) - after timeout_hours have passed without the job completing. Args: urlsafe_try_job_key (str): The urlsafe key for the corresponding try job entity. try_job_type (str): The type of the try job. try_job_id (str): The try job id to query buildbucket with. """ if not try_job_id: self.complete() return if try_job_type == failure_type.FLAKY_TEST: try_job_kind = FlakeTryJobData else: try_job_kind = WfTryJobData try_job_data = try_job_kind.Get(try_job_id) if not try_job_data: logging.error('%(kind)s entity does not exist for id %(id)s: creating it', {'kind': try_job_kind, 'id': try_job_id}) try_job_data = try_job_kind.Create(try_job_id) try_job_data.try_job_key = ndb.Key(urlsafe=urlsafe_try_job_key) # Check if callback url is already registered with the TryJobData entity to # guarantee this run method is idempotent when called again with the same # params. if try_job_data.callback_url and ( self.pipeline_id in try_job_data.callback_url): return timeout_hours = waterfall_config.GetTryJobSettings().get( 'job_timeout_hours') default_pipeline_wait_seconds = waterfall_config.GetTryJobSettings( ).get( 'server_query_interval_seconds') max_error_times = waterfall_config.GetTryJobSettings().get( 'allowed_response_error_times') # TODO(chanli): Make sure total wait time equals to timeout_hours # regardless of retries. deadline = time.time() + timeout_hours * 60 * 60 already_set_started = False backoff_time = default_pipeline_wait_seconds error_count = 0 self.last_params = { 'try_job_id': try_job_id, 'try_job_type': try_job_type, 'urlsafe_try_job_key': urlsafe_try_job_key, 'deadline': deadline, 'already_set_started': already_set_started, 'error_count': error_count, 'max_error_times': max_error_times, 'default_pipeline_wait_seconds': default_pipeline_wait_seconds, 'timeout_hours': timeout_hours, 'backoff_time': backoff_time, } callback_url = self.get_callback_url(callback_params=json.dumps( self.last_params)) try_job_data.callback_url = callback_url try_job_data.callback_target = appengine_util.GetTargetNameForModule( constants.WATERFALL_BACKEND) try_job_data.put() # Guarantee one callback 10 minutes after the deadline to clean up even if # buildbucket fails to call us back. self.delay_callback( (timeout_hours * 60 + 10) * 60, self.last_params, name=try_job_id + '_cleanup_task') # Run immediately in case the job already went from scheduled to started. self.callback(callback_params=self.last_params) def finalized(self): try: try_job_id = self.kwargs.get('try_job_id') if not try_job_id and len(self.args) > 2: try_job_id = self.args[2] if try_job_id: taskqueue.Queue( constants.WATERFALL_ANALYSIS_QUEUE).delete_tasks_by_name([ try_job_id + '_cleanup_task']) else: logging.error('Did not receive a try_job_id at construction.') except taskqueue.BadTaskStateError, e: # pragma: no cover logging.debug('Could not delete cleanup task: %s', e.message) return super(MonitorTryJobPipeline, self).finalized() def delay_callback(self, countdown, callback_params, name=None): target = appengine_util.GetTargetNameForModule(constants.WATERFALL_BACKEND) task = self.get_callback_task( countdown=countdown, target=target, params={'callback_params': json.dumps(callback_params)}, name=name) task.add(queue_name=constants.WATERFALL_ANALYSIS_QUEUE) # Arguments number differs from overridden method - pylint: disable=W0221 def callback(self, *args, **kwargs): """Transitional callback. This temporary hack should accept callbacks in the old format as well as the new one. """ assert not args if 'callback_params' in kwargs: return self._callback(**kwargs) return self._callback(callback_params=kwargs) def _callback(self, callback_params, pipeline_id=None): """Updates the TryJobData entities with status from buildbucket.""" # callback_params may have been serialized if the callback was converted to # a URL. if isinstance(callback_params, basestring): callback_params = json.loads(callback_params) self.last_params = callback_params _ = pipeline_id # We do nothing with this id. try_job_id = callback_params['try_job_id'] assert try_job_id urlsafe_try_job_key = callback_params['urlsafe_try_job_key'] try_job_type = callback_params['try_job_type'] deadline = callback_params['deadline'] already_set_started = callback_params['already_set_started'] error_count = callback_params['error_count'] max_error_times = callback_params['max_error_times'] default_pipeline_wait_seconds = callback_params[ 'default_pipeline_wait_seconds'] timeout_hours = callback_params['timeout_hours'] backoff_time = callback_params['backoff_time'] if try_job_type == failure_type.FLAKY_TEST: try_job_data = FlakeTryJobData.Get(try_job_id) else: try_job_data = WfTryJobData.Get(try_job_id) error, build = buildbucket_client.GetTryJobs([try_job_id])[0] if error: if error_count < max_error_times: error_count += 1 self.delay_callback( backoff_time, callback_params={
seealso:: - `ISO 18431-4 Mechanical vibration and shock — Signal processing — Part 4: Shock-response spectrum analysis` Explicit implementations of digital filter coefficients for shock spectra. """ A = omega*T/(2.*Q) B = omega*T*np.sqrt(1. - 1/(4.*(Q**2.))) C = (T*omega) q = (1./(2.*(Q**2.)) - 1.)/(np.sqrt(1. - 1./(4.*(Q**2.)))) b = ( ((1 - np.exp(-A)*np.cos(B))/Q - q*np.exp(-A)*np.sin(B) - omega*T)/C, (2*np.exp(-A)*np.cos(B)*omega*T - (1 - np.exp(-2.*A))/Q + 2.*q*np.exp(-A)*np.sin(B))/C, (-np.exp(-2.*A)*(omega*T + 1./Q) + np.exp(-A)*np.cos(B)/Q - q*np.exp(-A)*np.sin(B))/C, ) a = ( 1., -2.*np.exp(-A)*np.cos(B), np.exp(-2.*A), ) return b, a def relative_displacement_static(accel: pd.DataFrame, omega: float, damp: float = 0.0) -> pd.DataFrame: """ Calculate the relative displacement expressed as equivalent static acceleration for a SDOF system. The relative displacement as static acceleration follows the transfer function: `H(s) = L{ω²z(t)}(s) / L{y"(t)}(s) = (ω²/s²)(Z(s)/Y(s))` for the PDE: `z" + (2ζω)z' + (ω²)z = -y"` :param accel: the absolute acceleration y" :param omega: the natural frequency ω of the SDOF system :param damp: the damping coefficient ζ of the SDOF system :return: the relative displacement of the SDOF system expressed as equivalent static acceleration .. seealso:: - `Pseudo Velocity Shock Spectrum Rules For Analysis Of Mechanical Shock, <NAME> <https://info.endaq.com/hubfs/pvsrs_rules.pdf>`_ - `SciPy transfer functions <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html>`_ Documentation for the transfer function class used to characterize the relative displacement calculation. - `SciPy biquad filter <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html>`__ Documentation for the biquad function used to implement the transfer function. - `ISO 18431-4 Mechanical vibration and shock — Signal processing — Part 4: Shock-response spectrum analysis` Explicit implementations of digital filter coefficients for shock spectra. """ T = utils.sample_spacing(accel) Q = 1./(2.*damp) return accel.apply( functools.partial( scipy.signal.lfilter, *_relative_displacement_static_coefficients(omega, Q, T), axis=0, ), raw=True, ) def shock_spectrum( accel: pd.DataFrame, freqs: np.ndarray, damp: float = 0.0, mode: typing.Literal["srs", "pvss"] = "srs", two_sided: bool = False, aggregate_axes: bool = False, ) -> pd.DataFrame: """ Calculate the shock spectrum of an acceleration signal. :param accel: the absolute acceleration `y"` :param freqs: the natural frequencies across which to calculate the spectrum :param damp: the damping coefficient `ζ`, related to the Q-factor by `ζ = 1/(2Q)`; defaults to 0 :param mode: the type of spectrum to calculate: - `'srs'` (default) specifies the Shock Response Spectrum (SRS) - `'pvss'` specifies the Pseudo-Velocity Shock Spectrum (PVSS) :param two_sided: whether to return for each frequency: both the maximum negative and positive shocks (`True`), or simply the maximum absolute shock (`False`; default) :param aggregate_axes: whether to calculate the column-wise resultant (`True`) or calculate spectra along each column independently (`False`; default) :return: the shock spectrum .. seealso:: - `Pseudo Velocity Shock Spectrum Rules For Analysis Of Mechanical Shock, <NAME> <https://info.endaq.com/hubfs/pvsrs_rules.pdf>`_ - `An Introduction To The Shock Response Spectrum, <NAME>, 9 July 2012 <http://www.vibrationdata.com/tutorials2/srs_intr.pdf>`_ - `SciPy transfer functions <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html>`_ Documentation for the transfer function class used to characterize the relative displacement calculation. - `SciPy biquad filter <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html>`__ Documentation for the biquad function used to implement the transfer function. """ if two_sided and aggregate_axes: raise ValueError("cannot enable both options `two_sided` and `aggregate_axes`") freqs = np.asarray(freqs) if freqs.ndim != 1: raise ValueError("target frequencies must be in a 1D-array") omega = 2 * np.pi * freqs if mode == "srs": make_coeffs = _absolute_acceleration_coefficients elif mode == "pvss": make_coeffs = _pseudo_velocity_coefficients else: raise ValueError(f"invalid spectrum mode {mode:r}") results = np.empty( (2,) + freqs.shape + ((1,) if aggregate_axes else accel.shape[1:]), dtype=np.float64, ) dt = utils.sample_spacing(accel) T_padding = 1 / ( freqs.min() * np.sqrt(1 - damp ** 2) ) # uses lowest damped frequency if not two_sided: T_padding /= 2 zi = np.zeros((2,) + accel.shape[1:]) zero_padding = np.zeros((int(T_padding // dt) + 1,) + accel.shape[1:]) Q = 1./(2.*damp) for i_nd in np.ndindex(freqs.shape[0]): rd, zf = scipy.signal.lfilter( *make_coeffs(omega[i_nd], Q, dt), accel.to_numpy(), zi=zi, axis=0, ) rd_padding, _ = scipy.signal.lfilter( *make_coeffs(omega[i_nd], Q, dt), zero_padding, zi=zf, axis=0 ) if aggregate_axes: rd = L2_norm(rd, axis=-1, keepdims=True) rd_padding = L2_norm(rd_padding, axis=-1, keepdims=True) results[(0,) + i_nd] = -np.minimum(rd.min(axis=0), rd_padding.min(axis=0)) results[(1,) + i_nd] = np.maximum(rd.max(axis=0), rd_padding.max(axis=0)) if aggregate_axes or not two_sided: return pd.DataFrame( np.maximum(results[0], results[1]), index=pd.Series(freqs, name="frequency (Hz)"), columns=(["resultant"] if aggregate_axes else accel.columns), ) return namedtuple("PseudoVelocityResults", "neg pos")( *( pd.DataFrame( r, index=pd.Series(freqs, name="frequency (Hz)"), columns=accel.columns ) for r in results ) ) @dataclass class HalfSineWavePulse: """ The output data type for :py:func:`enveloping_half_sine`. The significant data members are `amplitude` and `duration`, which can simply be unpacked as if from a plain tuple: .. testsetup:: import pandas as pd df_pvss = pd.DataFrame([1, 1], index=[200, 400]) from endaq.calc.shock import enveloping_half_sine .. testcode:: ampl, T = enveloping_half_sine(df_pvss) However, users can also elect to use the other methods of this class to generate other kinds of outputs. .. note:: This class is not intended to be instantiated manually. """ amplitude: pd.Series duration: pd.Series def __iter__(self): return iter((self.amplitude, self.duration)) def to_time_series( self, tstart: Optional[float] = None, tstop: Optional[float] = None, dt: Optional[float] = None, tpulse: Optional[float] = None, ) -> pd.DataFrame: """ Generate a time-series of the half-sine pulse. :param tstart: the starting time of the resulting waveform; if `None` (default), the range starts at `tpulse` :param tstop: the ending time of the resulting waveform; if `None` (default), the range ends at `tpulse + duration` :param dt: the sampling period of the resulting waveform; defaults to 1/20th of the pulse duration :param tpulse: the starting time of the pulse within the resulting waveform; if `None` (default), the pulse starts at either: - ``tstart``, if provided - ``tstop - self.duration.max())``, if `tstop` is provided - ``0.0`` otherwise :return: a time-series of the half-sine pulse """ if dt is None: dt = self.duration.min() / 20 if dt > self.duration.min() / 8: warnings.warn( f"the sampling period {dt} is large relative to the pulse duration" f" {self.duration.min()}; the waveform may not accurately represent" f" the half-sine pulse's shock intensity" ) default_start = 0.0 if tstop is not None: default_start = tstop - self.duration.max() if tpulse is None and tstart is None: tpulse = tstart = default_start elif tpulse is None: tpulse = tstart elif tstart is None: tstart = tpulse if tstop is None: tstop = tpulse + self.duration.max() if not (tstart <= tpulse <= tstop - self.duration.max()): warnings.warn( "half-sine pulse extends beyond the bounds of the time series" ) t = np.arange(tstart, tstop, dt) data = np.zeros((len(t), len(self.amplitude)), dtype=float) t_data, ampl_data, T_data = np.broadcast_arrays( t[..., None], self.amplitude.to_numpy(), self.duration.to_numpy() ) t_mask = np.nonzero((t_data >= tpulse) & (t_data < tpulse + T_data)) data[t_mask] = ampl_data[t_mask] * np.sin( np.pi * t_data[t_mask] / T_data[t_mask] ) return pd.DataFrame( data, index=pd.Series(t, name="timestamp"), columns=self.amplitude.index, ) # def widened_duration(self, new_duration: float): # pass # def pseudo_velocity(self): # pass def enveloping_half_sine( pvss: pd.DataFrame, damp: float = 0.0, ) -> HalfSineWavePulse: """ Characterize a half-sine pulse whose PVSS envelopes the input. :param pvss: the PVSS to envelope :param damp: the damping factor used to generate the input PVSS :return: a tuple of amplitudes and periods, each pair of which describes a half-sine pulse .. seealso:: `Pseudo Velocity Shock Spectrum Rules For Analysis Of Mechanical Shock, <NAME> <https://info.endaq.com/hubfs/pvsrs_rules.pdf>`_ """ def amp_factor(damp): """ Calculate the PVSS amplitude attenuation on a half-sine pulse from the damping coefficient. The PVSS of a half-sine pulse differs based on the damping coefficient used. While the high-frequency rolloff is relatively consistent, the flat low-frequency amplitude is attenuated at higher damping values. This function calculates this attenuation for a given damping coefficient. """ # This calculates the PVSS value as ω->0. However, since it necessarily # computes the maximum of a function *over time*, and ω is only found # therein in the multiplicative factor (ωt), it is mathematically # equivalent to compute this maximum for any arbitrary ω>0. Thus we # choose ω=1 for convenience, w/o loss of generality. a = np.exp(1j * np.arccos(-damp)) # = -damp + 1j * np.sqrt(1 - damp**2) # From WolframAlpha: https://www.wolframalpha.com/input/?i=D%5BPower%5Be%2C%5C%2840%29-d+*t%5C%2841%29%5D+sin%5C%2840%29Sqrt%5B1-Power%5Bd%2C2%5D%5D*t%5C%2841%29%2Ct%5D+%3D+0&assumption=%22ListOrTimes%22+-%3E+%22Times%22&assumption=%7B%22C%22%2C+%22e%22%7D+-%3E+%7B%22NamedConstant%22%7D&assumption=%7B%22C%22%2C+%22d%22%7D+-%3E+%7B%22Variable%22%7D&assumption=%22UnitClash%22+-%3E+%7B%22d%22%2C+%7B%22Days%22%7D%7D t_max = (2 / np.imag(a)) * np.arctan2(np.imag(a), 1 - np.real(a)) PVSS_max = (1 / np.imag(a)) * np.imag(np.exp(a * t_max)) return PVSS_max max_pvss = pvss.max() max_f_pvss = pvss.mul(pvss.index, axis=0).max() return HalfSineWavePulse( amplitude=2 * np.pi *
<gh_stars>0 from redbot.core.bot import Red from redbot.core import checks from discord.ext import commands import discord import os, sys import base64 import time import asyncio from io import BytesIO import datetime from PIL import Image import json from fuzzywuzzy import fuzz from fuzzywuzzy import process import math import pprint import re import random from concurrent.futures import ProcessPoolExecutor from concurrent.futures import ThreadPoolExecutor import sqlite3 def text_to_code(user_input): code = user_input if user_input.find(";") != -1: pos_start = user_input.find(";") + 1 end_bracket_pos = user_input.find("]") if end_bracket_pos != -1: code = user_input[pos_start:end_bracket_pos] else: code = user_input[pos_start:] template_name = user_input[1:pos_start-1] else: template_name = None return code, template_name def decode_base64(code): missing_padding = (4 - (len(code) % 4)) % 4 code += 'A'* (missing_padding) return base64.b64decode(code) def code_to_strflipped(code): bytes_obj = decode_base64(code) int_large = int.from_bytes(bytes_obj, byteorder='big') binary_str = "00" + bin(int_large)[2:] array = re.findall("......",binary_str) i = 0 for group in array: group = group[::-1] array[i] = group i += 1 strflipped = ''.join(array) return strflipped def strflipped_to_code(strflipped): strflipped = strflipped + "0"*(168 - len(strflipped)) array = re.findall("......",strflipped) i = 0 for group in array: group = group[::-1] array[i] = group i += 1 binary_str = "".join(array) binary_str = binary_str[2:] int_large = int(binary_str, 2) bytes_obj = int_large.to_bytes((int_large.bit_length() // 8) + 1, byteorder='big') base64_code = base64.b64encode(bytes_obj) code = str(base64_code)[2:-1] if code.endswith("AAAA"): code = code[:-4] return code def code_to_build(code, original_code=None): build = {} if original_code is None: original_code = code build["original_code"] = original_code strflipped = code_to_strflipped(code) build["code"] = code build["template type"] = int(strflipped[0:4][::-1],2) build["version number"] = int(strflipped[4:8][::-1],2) build["professions"] = {} build["professions"]["control"] = int(strflipped[8:10][::-1],2) # Number of encoded bits per profession code professions_code_size = build["professions"]["control"] * 2 + 4 xpos = 10 ypos = xpos + professions_code_size build["professions"]["primary"] = {} build["professions"]["primary"]["id"] = int(strflipped[xpos:ypos][::-1],2) build["professions"]["primary"]["name"] = prof_reference[str(build["professions"]["primary"]["id"])] xpos = ypos ypos = xpos + professions_code_size build["professions"]["secondary"] = {} build["professions"]["secondary"]["id"] = int(strflipped[xpos:ypos][::-1],2) build["professions"]["secondary"]["name"] = prof_reference[str(build["professions"]["secondary"]["id"])] build["attrbs"] = {} xpos = ypos ypos = xpos + 4 build["attrbs"]["count"] = int(strflipped[xpos:ypos][::-1],2) xpos = ypos ypos = xpos + 4 build["attrbs"]["control"] = int(strflipped[xpos:ypos][::-1],2) # Number of encoded bits per attribute id attributes_code_size = build["attrbs"]["control"] + 4 for i in range(1, build["attrbs"]["count"]+1): xpos = ypos ypos = xpos + attributes_code_size build["attrbs"][i] = {} build["attrbs"][i]["id"] = int(strflipped[xpos:ypos][::-1],2) build["attrbs"][i]["name"] = attrb_reference[str(build["attrbs"][i]["id"])] xpos = ypos ypos = xpos + 4 build["attrbs"][i]["points"] = int(strflipped[xpos:ypos][::-1],2) xpos = ypos ypos = xpos + 4 build["skills"] = {} build["skills"]["control"] = int(strflipped[xpos:ypos][::-1],2) # Number of encoded bits per skill id skills_code_size = build["skills"]["control"] + 8 for i in range(1, 8+1): xpos = ypos ypos = xpos + skills_code_size build["skills"][i] = {} build["skills"][i]["id"] = int(strflipped[xpos:ypos][::-1],2) build["skills"][i]["name"] = skill_reference[str(build["skills"][i]["id"])]["Name"] return build def pad_binary(input, req_length): length = len(input) output = "0" * (req_length - length) + input return output def int_to_binary_str(int_value, req_length): str_int = "{0:b}".format(int_value) str_int = str_int.replace("0b","") output = pad_binary((str_int), req_length) output = output[::-1] return output def build_to_code(build): # Update controls # Attributes count build["attrbs"]["count"] = len(build["attrbs"]) - 2 # Attributes control attrb_ids = [] for i in range(1, len(build["attrbs"]) - 1): attrb_ids.append(build["attrbs"][i]["id"]) if len(attrb_ids) > 0: max_attrb_id = int(max(attrb_ids)) else: max_attrb_id = 0 if max_attrb_id > 31: build["attrbs"]["control"] = 2 elif max_attrb_id > 15: build["attrbs"]["control"] = 1 else: build["attrbs"]["control"] = 0 # Skills control max_points = [255, 511, 1023, 2047] skill_ids = [] for i in range(1, 8+1): skill_ids.append(build["skills"][i]["id"]) i = 0 build["skills"]["control"] = 0 for max_point in max_points: if max(skill_ids) > max_point: build["skills"]["control"] = i + 1 i += 1 new_binary_str = "" # Template headers: type and version selection = build["template type"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) selection = build["version number"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) # Professions control selection = build["professions"]["control"] new_binary_str = new_binary_str + int_to_binary_str(selection, 2) # Professions professions_code_size = build["professions"]["control"] * 2 + 4 selection = build["professions"]["primary"]["id"] new_binary_str = new_binary_str + int_to_binary_str(selection, professions_code_size) selection = build["professions"]["secondary"]["id"] new_binary_str = new_binary_str + int_to_binary_str(selection, professions_code_size) # Attributes count and control selection = build["attrbs"]["count"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) selection = build["attrbs"]["control"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) attributes_code_size = build["attrbs"]["control"] + 4 # Attributes for i in range(1, build["attrbs"]["count"]+1): selection = build["attrbs"][i]["id"] new_binary_str = new_binary_str + int_to_binary_str(selection, attributes_code_size) selection = build["attrbs"][i]["points"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) # Skills control selection = build["skills"]["control"] new_binary_str = new_binary_str + int_to_binary_str(selection, 4) skills_code_size = build["skills"]["control"] + 8 largest_skill_id = 0 for i in range(1, 8+1): selection = build["skills"][i]["id"] new_binary_str = new_binary_str + int_to_binary_str(selection, skills_code_size) code = strflipped_to_code(new_binary_str) return code def flip_dict(original): flipped_dict = {} for key in original.keys(): flipped_dict[original[key]] = int(key) return flipped_dict start_phrase = " -- `" end_of_code_identifier = "` -- <:Template:384823463644233731>" end_of_attrb_identifier = " " skill_reactions_msg = "\nUse reactions for skill descriptions. :point_down:" adrenaline_emoji = "<:Adrenaline:388335958002630658>" energy_emoji = "<:Energy:384819524244865035>" activation_emoji = "<:Activation:384819522596765697>" recharge_emoji = "<:Recharge:384819522693103627>" overcast_emoji = "<:Overcast:384828799424004127>" path = os.path.dirname(os.path.abspath(__file__)) data_dir = path + "/data" with open("{}/skill_reference.json".format(data_dir)) as f: skill_reference = json.loads(f.read()) with open("{}/emoji_reference.json".format(data_dir)) as f: emoji_reference = json.loads(f.read()) with open("{}/attrb_reference.json".format(data_dir)) as f: attrb_reference = json.loads(f.read()) with open("{}/prof_reference.json".format(data_dir)) as f: prof_reference = json.loads(f.read()) with open("{}/skillslist_lower.json".format(data_dir)) as f: skillslist_lower = json.loads(f.read()) with open("{}/skillslist.json".format(data_dir)) as f: skillslist = json.loads(f.read()) with open("{}/skillsnumber.json".format(data_dir)) as f: skillsnumber = json.loads(f.read()) attrb_name_list = list(attrb_reference.values()) attrb_reverse_reference = flip_dict(attrb_reference) prof_name_list = list(prof_reference.values()) prof_reverse_reference = flip_dict(prof_reference) skillslist = tuple(skillslist) skillsnumber = tuple(skillsnumber) attrb_name_list = tuple(attrb_name_list) prof_name_list = tuple(prof_name_list) def build_to_message(build, skill_number=None): code = build["code"] pri_prof = build["professions"]["primary"]["name"] sec_prof = build["professions"]["secondary"]["name"] pri_emoji = "{}".format(emoji_reference[pri_prof]) sec_emoji = "{}".format(emoji_reference[sec_prof]) prof_msg = "{}**{}**/**{}**{}".format(pri_emoji, pri_prof, sec_prof, sec_emoji) attrb_msg = "" number_of_attributes = len(build["attrbs"])- 2 # Ignore "count" and "control" for i in range(1, number_of_attributes+1): attrb_name = build["attrbs"][i]["name"] attrb_points = build["attrbs"][i]["points"] attrb_msg += "{}: **{}**, ".format(attrb_name, attrb_points) attrb_msg = attrb_msg[:len(attrb_msg)-2] if skill_number is not None: skill_id = build["skills"][skill_number]["id"] skill_name = skill_reference[str(skill_id)]["Name"] skill_url = "https://wiki.guildwars.com/wiki/" + skill_name.replace(" ", "_") summary = skill_reference[str(skill_id)].get("Summary") fullstop_pos = summary.find(".") skill_summary = "*" + summary[:fullstop_pos+1] + "*" + summary[fullstop_pos+1:] skill_reactions_msg = "Skill {}: **{}** -- <{}>\n{}\n".format(skill_number, skill_name, skill_url, skill_summary) summary, attribute, activation, recharge, energy, profession, skill_type, overcast = "", "", "", "", "", "", "", "" attribute = skill_reference[str(skill_id)].get("Attribute") activation = skill_reference[str(skill_id)].get("Activation") recharge = skill_reference[str(skill_id)].get("Recharge") energy = skill_reference[str(skill_id)].get("Energy") adrenaline = skill_reference[str(skill_id)].get("Adrenaline") profession = skill_reference[str(skill_id)].get("Profession") skill_type = skill_reference[str(skill_id)].get("Skill Type") overcast = skill_reference[str(skill_id)].get("Overcast") if adrenaline is not None: skill_reactions_msg = "{} {}{}".format(skill_reactions_msg, adrenaline, adrenaline_emoji) if energy is not None: skill_reactions_msg = "{} {}{}".format(skill_reactions_msg, energy, energy_emoji) if activation is not None: skill_reactions_msg = "{} {}{}".format(skill_reactions_msg, activation, activation_emoji) if recharge is not None: skill_reactions_msg = "{} {}{}".format(skill_reactions_msg, recharge, recharge_emoji) if overcast is not None: skill_reactions_msg = "{} {}{}".format(skill_reactions_msg, overcast, overcast_emoji) if profession is not None: skill_reactions_msg = "{} Prof: **{}**.".format(skill_reactions_msg, profession) if attribute is not None: skill_reactions_msg = "{} Attrb: **{}**.".format(skill_reactions_msg, attribute) if skill_type is not None: skill_reactions_msg = "{} Type: **{}**.".format(skill_reactions_msg, skill_type) else: skill_reactions_msg = "Use reactions for skill descriptions. :point_down:" build_msg = "{} -- `{}{}\n{}{}\n\n{}".format(prof_msg, code, end_of_code_identifier, attrb_msg, end_of_attrb_identifier, skill_reactions_msg) return build_msg def build_to_img(build): result = Image.new("RGB", (512, 64)) for i in range(1, 9): skill_id = build["skills"][i]["id"] file_name = skillsnumber.index(skill_id) path = "{}/template/skills/".format(data_dir) + str(file_name) + ".jpg" img = Image.open(path) img.thumbnail((512, 64), Image.ANTIALIAS) x = (i-1) * 64 y = 0 w, h = img.size result.paste(img, (x, y, x + w, y + h)) output = BytesIO() result.save(output, format="JPEG") output.seek(0) result = output.read() bytesimage = BytesIO(result) code = build["code"] image = discord.File(bytesimage, str(code) + ".jpg") return image def prev_build_msg_to_code(original_content): end_phrase = end_of_code_identifier start_pos = original_content.find(start_phrase) end_pos = original_content.find(end_phrase) code = original_content[start_pos + len(start_phrase):end_pos] return code def rebuild_build(original_content): code = prev_build_msg_to_code(original_content) build = code_to_build(code) return build def convert_image_team(build, team_image, build_number): result = Image.new("RGB", (512, 64)) for i in range(1, 9): skill_id = build["skills"][i]["id"] file_name = skillsnumber.index(skill_id) path = "{}/template/skills/".format(data_dir) + str(file_name) + ".jpg" img = Image.open(path) img.thumbnail((512, 64), Image.ANTIALIAS) x = (i-1) * 64 y = 0 w, h = img.size result.paste(img, (x, y, x + w, y + h)) x = 0 y = build_number * 64 w = 512 h = 64 team_image.paste(result, (x, y, x + w, y + h)) return team_image def convert_to_bytes(team_image): output = BytesIO() team_image.save(output, format="JPEG") output.seek(0) team_image = output.read() bytesimage = BytesIO(team_image) return bytesimage def rebuild_build_attrbs(build, i): total_attrbs = len(build["attrbs"].keys()) - 2 del build["attrbs"][i] for x in range(i, total_attrbs): build["attrbs"][x] = build["attrbs"][x+1].copy() del build["attrbs"][x+1] return build async def submit_to_executor(executor, build): future_build_msg = executor.submit(build_to_message, build) future_image = executor.submit(build_to_img, build) await asyncio.sleep(0) return future_build_msg.result(), future_image.result() columns = ("name", "pri_prof", "sec_prof", "timestamp") def archive_read(): conn = sqlite3.connect("{}/archive.db".format(data_dir)) c = conn.cursor()
Temp. forcing tendency 103 |gS_Forc | 50 | |SMR MR|psu/s |Salinity forcing tendency 104 |AB_gT | 50 | |SMR MR|degC/s |Potential Temp. tendency from Adams-Bashforth 105 |AB_gS | 50 | |SMR MR|psu/s |Salinity tendency from Adams-Bashforth 106 |gTinAB | 50 | |SMR MR|degC/s |Potential Temp. tendency going in Adams-Bashforth 107 |gSinAB | 50 | |SMR MR|psu/s |Salinity tendency going in Adams-Bashforth 108 |AB_gU | 50 | 109 |UUR MR|m/s^2 |U momentum tendency from Adams-Bashforth 109 |AB_gV | 50 | 108 |VVR MR|m/s^2 |V momentum tendency from Adams-Bashforth 110 |ADVr_TH | 50 | |WM LR|degC.m^3/s |Vertical Advective Flux of Pot.Temperature 111 |ADVx_TH | 50 | 112 |UU MR|degC.m^3/s |Zonal Advective Flux of Pot.Temperature 112 |ADVy_TH | 50 | 111 |VV MR|degC.m^3/s |Meridional Advective Flux of Pot.Temperature 113 |DFrE_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part) 114 |DFxE_TH | 50 | 115 |UU MR|degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature 115 |DFyE_TH | 50 | 114 |VV MR|degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature 116 |DFrI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part) 117 |ADVr_SLT| 50 | |WM LR|psu.m^3/s |Vertical Advective Flux of Salinity 118 |ADVx_SLT| 50 | 119 |UU MR|psu.m^3/s |Zonal Advective Flux of Salinity 119 |ADVy_SLT| 50 | 118 |VV MR|psu.m^3/s |Meridional Advective Flux of Salinity 120 |DFrE_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part) 121 |DFxE_SLT| 50 | 122 |UU MR|psu.m^3/s |Zonal Diffusive Flux of Salinity 122 |DFyE_SLT| 50 | 121 |VV MR|psu.m^3/s |Meridional Diffusive Flux of Salinity 123 |DFrI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part) 124 |SALTFILL| 50 | |SM MR|psu.m^3/s |Filling of Negative Values of Salinity 125 |VISCAHZ | 50 | |SZ MR|m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt) 126 |VISCA4Z | 50 | |SZ MR|m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt) 127 |VISCAHD | 50 | |SM MR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt) 128 |VISCA4D | 50 | |SM MR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt) 129 |VISCAHW | 50 | |WM LR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (W Pt) 130 |VISCA4W | 50 | |WM LR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (W Pt) 131 |VAHZMAX | 50 | |SZ MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt) 132 |VA4ZMAX | 50 | |SZ MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt) 133 |VAHDMAX | 50 | |SM MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt) 134 |VA4DMAX | 50 | |SM MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt) 135 |VAHZMIN | 50 | |SZ MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt) 136 |VA4ZMIN | 50 | |SZ MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt) 137 |VAHDMIN | 50 | |SM MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt) 138 |VA4DMIN | 50 | |SM MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt) 139 |VAHZLTH | 50 | |SZ MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt) 140 |VA4ZLTH | 50 | |SZ MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt) 141 |VAHDLTH | 50 | |SM MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt) 142 |VA4DLTH | 50 | |SM MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt) 143 |VAHZLTHD| 50 | |SZ MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt) 144 |VA4ZLTHD| 50 | |SZ MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt) 145 |VAHDLTHD| 50 | |SM MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt) 146 |VA4DLTHD| 50 | |SM MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt) 147 |VAHZSMAG| 50 | |SZ MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt) 148 |VA4ZSMAG| 50 | |SZ MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt) 149 |VAHDSMAG| 50 | |SM MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt) 150 |VA4DSMAG| 50 | |SM MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt) 151 |momKE | 50 | |SMR MR|m^2/s^2 |Kinetic Energy (in momentum Eq.) 152 |momHDiv | 50 | |SMR MR|s^-1 |Horizontal Divergence (in momentum Eq.) 153 |momVort3| 50 | |SZR MR|s^-1 |3rd component (vertical) of Vorticity 154 |Strain | 50 | |SZR MR|s^-1 |Horizontal Strain of Horizontal Velocities 155 |Tension | 50 | |SMR MR|s^-1 |Horizontal Tension of Horizontal Velocities 156 |UBotDrag| 50 | 157 |UUR MR|m/s^2 |U momentum tendency from Bottom Drag 157 |VBotDrag| 50 | 156 |VVR MR|m/s^2 |V momentum tendency from Bottom Drag 158 |USidDrag| 50 | 159 |UUR MR|m/s^2 |U momentum tendency from Side Drag 159 |VSidDrag| 50 | 158 |VVR MR|m/s^2 |V momentum tendency from Side Drag 160 |Um_Diss | 50 | 161 |UUR MR|m/s^2 |U momentum tendency from Dissipation 161 |Vm_Diss | 50 | 160 |VVR MR|m/s^2 |V momentum tendency from Dissipation 162 |Um_Advec| 50 | 163 |UUR MR|m/s^2 |U momentum tendency from Advection terms 163 |Vm_Advec| 50 | 162 |VVR MR|m/s^2 |V momentum tendency from Advection terms 164 |Um_Cori | 50 | 165 |UUR MR|m/s^2 |U momentum tendency from Coriolis term 165 |Vm_Cori | 50 | 164 |VVR MR|m/s^2 |V momentum tendency from Coriolis term 166 |Um_dPHdx| 50 | 167 |UUR MR|m/s^2 |U momentum tendency from Hydrostatic Pressure grad 167 |Vm_dPHdy| 50 | 166 |VVR MR|m/s^2 |V momentum tendency from Hydrostatic Pressure grad 168 |Um_Ext | 50 | 169 |UUR MR|m/s^2 |U momentum tendency from external forcing 169 |Vm_Ext | 50 | 168 |VVR MR|m/s^2 |V momentum tendency from external forcing 170 |Um_AdvZ3| 50 | 171 |UUR MR|m/s^2 |U momentum tendency from Vorticity Advection 171 |Vm_AdvZ3| 50 | 170 |VVR MR|m/s^2 |V momentum tendency from Vorticity Advection 172 |Um_AdvRe| 50 | 173 |UUR MR|m/s^2 |U momentum tendency from vertical Advection (Explicit part) 173 |Vm_AdvRe| 50 | 172 |VVR MR|m/s^2 |V momentum tendency from vertical Advection (Explicit part) 174 |VISrI_Um| 50 | |WU LR|m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part) 175 |VISrI_Vm| 50 | |WV LR|m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part) 176 |EXFhs | 1 | |SM U1|W/m^2 |Sensible heat flux into ocean, >0 increases theta 177 |EXFhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta 178 |EXFlwnet| 1 | |SM U1|W/m^2 |Net upward longwave radiation, >0 decreases theta 179 |EXFswnet| 1 | |SM U1|W/m^2 |Net upward shortwave radiation, >0 decreases theta 180 |EXFlwdn | 1 | |SM U1|W/m^2 |Downward longwave radiation, >0 increases theta 181 |EXFswdn | 1 | |SM U1|W/m^2 |Downward shortwave radiation, >0 increases theta 182 |EXFqnet | 1 | |SM U1|W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta 183 |EXFtaux | 1 | |UM U1|N/m^2 |zonal surface wind stress, >0 increases uVel 184 |EXFtauy | 1 | |VM U1|N/m^2 |meridional surface wind stress, >0 increases vVel 185 |EXFuwind| 1 | |UM U1|m/s |zonal 10-m wind speed, >0 increases uVel 186 |EXFvwind| 1 | |VM U1|m/s |meridional 10-m wind speed, >0 increases uVel 187 |EXFwspee| 1 | |SM U1|m/s |10-m wind speed modulus ( >= 0 ) 188 |EXFatemp| 1 | |SM U1|degK |surface (2-m) air temperature 189 |EXFaqh | 1 | |SM U1|kg/kg |surface (2-m) specific humidity 190 |EXFevap | 1 | |SM U1|m/s |evaporation, > 0 increases salinity 191 |EXFpreci| 1 | |SM U1|m/s |precipitation, > 0 decreases salinity 192 |EXFsnow | 1 | |SM U1|m/s |snow precipitation, > 0 decreases salinity 193 |EXFempmr| 1 | |SM U1|m/s |net upward freshwater flux, > 0 increases salinity 194 |EXFpress| 1 | |SM U1|N/m^2 |atmospheric pressure field 195 |EXFroff | 1 | |SM U1|m/s |river runoff, > 0 decreases salinity 196 |EXFroft | 1 | |SM U1|deg C |river runoff temperature 197 |GGL90TKE| 50 | |SM LR|m^2/s^2 |GGL90 sub-grid turbulent kinetic energy 198 |GGL90Lmx| 50 | |SM LR|m |Mixing length scale 199 |GGL90Prl| 50 | |SM LR|1 |Prandtl number used in GGL90 ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 200 |GGL90ArU| 50 | |SM LR|m^2/s |GGL90 eddy viscosity at U-point 201 |GGL90ArV|
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2020 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA # # https://github.com/CNES/Pandora_pandora # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains functions allowing to check the configuration given to Pandora pipeline. """ import json from json_checker import Checker, And, Or import rasterio import numpy as np import sys from typing import Dict, List import logging import copy from collections.abc import Mapping from . import stereo from . import optimization from . import aggregation from . import filter from . import validation from . import refinement def gdal_can_open_mandatory(f: str) -> bool: """ Test if file f can be open by gdal :param f: File to test :type f: string :returns: True if rasterio can open file and False otherwise :rtype: bool """ try: rasterio.open(f) return True except Exception as e: logging.warning("Impossible to read file {}: {}".format(f, e)) return False def gdal_can_open(f: str) -> bool: """ Test if file f can be open by gdal :param f: File to test :type f: string :returns: True if rasterio can open file and False otherwise :rtype: bool """ if f == 'none' or f is None: return True else: return gdal_can_open_mandatory(f) def check_images(img_ref: str, img_sec: str, msk_ref: str, msk_sec: str) -> None: """ Check the images :param img_ref: path to the reference image :type img_ref: string :param img_sec: path to the secondary image :type img_sec: string :param msk_ref: path to the mask of the reference image :type msk_ref: string :param msk_sec: path to the mask of the secondary image :type msk_sec: string """ # verify that the images have 1 channel ref_ = rasterio.open(img_ref) if ref_.count != 1: logging.error('The input images must be 1-channel grayscale images') sys.exit(1) sec_ = rasterio.open(img_sec) if sec_.count != 1: logging.error('The input images must be 1-channel grayscale images') sys.exit(1) # verify that the images have the same size if (ref_.width != sec_.width) or \ (ref_.height != sec_.height): logging.error('Images must have the same size') sys.exit(1) # verify that image and mask have the same size if msk_ref is not None: msk_ = rasterio.open(msk_ref) if (ref_.width != msk_.width) or \ (ref_.height != msk_.height): logging.error('Image and masks must have the same size') sys.exit(1) # verify that image and mask have the same size if msk_sec is not None: msk_ = rasterio.open(msk_sec) # verify that the image and mask have the same size if (sec_.width != msk_.width) or \ (sec_.height != msk_.height): logging.error('Image and masks must have the same size') sys.exit(1) def check_disparity(disp_min: int, disp_max: int) -> None: """ Check the disparity :param disp_min: minimal disparity :type disp_min: int :param disp_max: maximal disparity :type disp_max: int """ # verify the disparity if abs(disp_min) + abs(disp_max) == 0: logging.error('Disparity range must be greater than 0') sys.exit(1) def get_config_pipeline(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Get the pipeline configuration :param user_cfg: user configuration :type user_cfg: dict :return cfg: partial configuration :rtype cfg: dict """ cfg = {} if 'invalid_disparity' in user_cfg: cfg['invalid_disparity'] = user_cfg['invalid_disparity'] if 'stereo' in user_cfg: cfg['stereo'] = user_cfg['stereo'] if 'aggregation' in user_cfg: cfg['aggregation'] = user_cfg['aggregation'] if 'optimization' in user_cfg: cfg['optimization'] = user_cfg['optimization'] if 'refinement' in user_cfg: cfg['refinement'] = user_cfg['refinement'] if 'filter' in user_cfg: cfg['filter'] = user_cfg['filter'] if 'validation' in user_cfg: cfg['validation'] = user_cfg['validation'] return cfg def get_config_input(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Get the input configuration :param user_cfg: user configuration :type user_cfg: dict :return cfg: partial configuration :rtype cfg: dict """ cfg = {} if 'input' in user_cfg: cfg['input'] = user_cfg['input'] return cfg def get_config_image(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Get the image configuration :param user_cfg: user configuration :type user_cfg: dict :return cfg: partial configuration :rtype cfg: dict """ cfg = {} if 'image' in user_cfg: cfg['image'] = user_cfg['image'] return cfg def check_pipeline_section(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Complete and check if the pipeline dictionary is correct :param user_cfg: user configuration :type user_cfg: dict :return cfg: global configuration :rtype cfg: dict """ # Add missing steps and inputs defaults values in user_cfg cfg = update_conf(default_short_configuration_pipeline, user_cfg) # Initialize the plugins stereo_ = stereo.AbstractStereo(**cfg["stereo"]) aggregation_ = aggregation.AbstractAggregation(**cfg["aggregation"]) optimization_ = optimization.AbstractOptimization(**cfg["optimization"]) refinement_ = refinement.AbstractRefinement(**cfg["refinement"]) filter_ = filter.AbstractFilter(**cfg["filter"]) validation_ = validation.AbstractValidation(**cfg["validation"]) # Load configuration steps cfg_stereo = {'stereo': stereo_.cfg} cfg_aggregation = {'aggregation': aggregation_.cfg} cfg_optimization = {'optimization': optimization_.cfg} cfg_refinement = {'refinement': refinement_.cfg} cfg_filter = {'filter': filter_.cfg} cfg_validation = {'validation': validation_.cfg} # Update the configuration with steps configuration cfg = update_conf(cfg, cfg_stereo) cfg = update_conf(cfg, cfg_aggregation) cfg = update_conf(cfg, cfg_optimization) cfg = update_conf(cfg, cfg_refinement) cfg = update_conf(cfg, cfg_filter) cfg = update_conf(cfg, cfg_validation) configuration_schema = { "invalid_disparity": Or(int, lambda x: np.isnan(x)), "stereo": dict, "aggregation": dict, "optimization": dict, "refinement": dict, "filter": dict, "validation": dict } checker = Checker(configuration_schema) checker.validate(cfg) return cfg def check_image_section(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Complete and check if the dictionary is correct :param user_cfg: user configuration :type user_cfg: dict :return cfg: global configuration :rtype cfg: dict """ # Add missing steps and inputs defaults values in user_cfg cfg = update_conf(default_short_configuration_image, user_cfg) # check schema configuration_schema = { "image": image_configuration_schema } checker = Checker(configuration_schema) checker.validate(cfg) return cfg def check_input_section(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Complete and check if the dictionary is correct :param user_cfg: user configuration :type user_cfg: dict :return cfg: global configuration :rtype cfg: dict """ # Add missing steps and inputs defaults values in user_cfg cfg = update_conf(default_short_configuration_input, user_cfg) # check schema configuration_schema = { "input": input_configuration_schema } checker = Checker(configuration_schema) checker.validate(cfg) # custom checking check_disparity(cfg['input']['disp_min'], cfg['input']['disp_max']) check_images(cfg['input']['img_ref'], cfg['input']['img_sec'], cfg['input']['ref_mask'], cfg['input']['sec_mask']) return cfg def check_conf(user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Complete and check if the dictionary is correct :param user_cfg: user configuration :type user_cfg: dict :return cfg: global configuration :rtype cfg: dict """ # check pipeline user_cfg_pipeline = get_config_pipeline(user_cfg) cfg_pipeline = check_pipeline_section(user_cfg_pipeline) # check image user_cfg_image = get_config_image(user_cfg) cfg_image = check_image_section(user_cfg_image) # check input user_cfg_input = get_config_input(user_cfg) cfg_input = check_input_section(user_cfg_input) # concatenate updated config cfg = concat_conf([cfg_image, cfg_input, cfg_pipeline]) return cfg def concat_conf(cfg_list: List[Dict[str, dict]]) -> Dict[str, dict]: """ Concatenate dictionaries :param cfg_list: list of configurations :type cfg_list: List of dict :return cfg: global configuration :rtype cfg: dict """ # concatenate updated config cfg = {} for c in cfg_list: cfg.update(c) return cfg input_configuration_schema = { "img_ref": And(str, gdal_can_open_mandatory), "img_sec": And(str, gdal_can_open_mandatory), "ref_mask": And(Or(str, lambda x: x is None), gdal_can_open), "sec_mask": And(Or(str, lambda x: x is None), gdal_can_open), "disp_min": int, "disp_max": int } image_configuration_schema = { "nodata1": Or(int, lambda x: np.isnan(x)), "nodata2": Or(int, lambda x: np.isnan(x)), "valid_pixels": int, "no_data": int } default_short_configuration_image = { "image": { "nodata1": 0, "nodata2": 0, "valid_pixels": 0, "no_data": 1 } } default_short_configuration_input = { "input": { "ref_mask": None, "sec_mask": None } } default_short_configuration_pipeline = { "invalid_disparity": -9999, "stereo": { "stereo_method": "ssd" }, "aggregation": { "aggregation_method": "none" }, "optimization": { "optimization_method": "none" }, "refinement": { "refinement_method": "none" }, "filter": { "filter_method": "none" }, "validation": { "validation_method": "none" } } default_short_configuration = concat_conf([default_short_configuration_image, default_short_configuration_input, default_short_configuration_pipeline]) def read_config_file(config_file: str) -> Dict[str, dict]: """ Read a json configuration file :param config_file: path to a json file containing the algorithm parameters :type config_file: string :return user_cfg: configuration dictionary :rtype: dict """ with open(config_file, 'r') as f: user_cfg = json.load(f) return user_cfg def update_conf(def_cfg: Dict[str, dict], user_cfg: Dict[str, dict]) -> Dict[str, dict]: """ Update the default configuration with the user configuration, :param def_cfg: default configuration :type def_cfg: dict :param user_cfg: user configuration :type user_cfg: dict :return: the user and default configuration :rtype: dict """ config = copy.deepcopy(def_cfg) for key, value in user_cfg.items(): if isinstance(value, Mapping): config[key] = update_conf(config.get(key, {}), value) else: if value == "np.nan": value = np.nan config[key] = value return config def is_method(s: str, methods: List[str]) -> bool: """ Test if s is a method in methods :param s: String to test
<gh_stars>0 # coding: utf-8 # /*########################################################################## # # Copyright (c) 2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """This module provides classes that describes :class:`.Plot` content. Instances of those classes are returned by :class:`.Plot` methods that give access to its content such as :meth:`.Plot.getCurve`, :meth:`.Plot.getImage`. """ __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "09/02/2017" from collections import Sequence from copy import deepcopy import logging import weakref import numpy from . import Colors from ...third_party.six import string_types from ...utils.decorators import deprecated _logger = logging.getLogger(__name__) class Item(object): """Description of an item of the plot""" _DEFAULT_Z_LAYER = 0 """Default layer for overlay rendering""" _DEFAULT_LEGEND = '' """Default legend of items""" _DEFAULT_SELECTABLE = False """Default selectable state of items""" def __init__(self): self._plotRef = None self._visible = True self._legend = self._DEFAULT_LEGEND self._selectable = self._DEFAULT_SELECTABLE self._z = self._DEFAULT_Z_LAYER self._info = None self._xlabel = None self._ylabel = None def getPlot(self): """Returns Plot this item belongs to. :rtype: Plot or None """ return None if self._plotRef is None else self._plotRef() def _setPlot(self, plot): """Set the plot this item belongs to. WARNING: This should only be called from the Plot. :param Plot plot: The Plot instance. """ if plot is not None and self._plotRef is not None: raise RuntimeError('Trying to add a node at two places.') # Alternative: remove it from previous children list self._plotRef = None if plot is None else weakref.ref(plot) def getBounds(self): # TODO return a Bounds object rather than a tuple """Returns the bounding box of this item in data coordinates :returns: (xmin, xmax, ymin, ymax) or None :rtype: 4-tuple of float or None """ return self._getBounds() def _getBounds(self): """:meth:`getBounds` implementation to override by sub-class""" return None def isVisible(self): """True if item is visible, False otherwise :rtype: bool """ return self._visible def _setVisible(self, visible): """Set visibility of item. :param bool visible: True to display it, False otherwise """ self._visible = bool(visible) def getLegend(self): """Returns the legend of this item (str)""" return self._legend def _setLegend(self, legend): legend = str(legend) if legend is not None else self._DEFAULT_LEGEND self._legend = legend def isSelectable(self): """Returns true if item is selectable (bool)""" return self._selectable def _setSelectable(self, selectable): self._selectable = bool(selectable) def getZValue(self): """Returns the layer on which to draw this item (int)""" return self._z def _setZValue(self, z): self._z = int(z) if z is not None else self._DEFAULT_Z_LAYER def getInfo(self, copy=True): """Returns the info associated to this item :param bool copy: True to get a deepcopy, False otherwise. """ return deepcopy(self._info) if copy else self._info def _setInfo(self, info, copy=True): if copy: info = deepcopy(info) self._info = info # Mix-in classes ############################################################## class LabelsMixIn(object): """Mix-in class for items with x and y labels""" def __init__(self): self._xlabel = None self._ylabel = None def getXLabel(self): """Return the X axis label associated to this curve :rtype: str or None """ return self._xlabel def _setXLabel(self, label): """Set the X axis label associated with this curve :param str label: The X axis label """ self._xlabel = str(label) def getYLabel(self): """Return the Y axis label associated to this curve :rtype: str or None """ return self._ylabel def _setYLabel(self, label): """Set the Y axis label associated with this curve :param str label: The Y axis label """ self._ylabel = str(label) class DraggableMixIn(object): """Mix-in class for draggable items""" def __init__(self): self._draggable = False def isDraggable(self): """Returns true if image is draggable :rtype: bool """ return self._draggable def _setDraggable(self, draggable): """Set if image is draggable or not. :param bool draggable: """ self._draggable = bool(draggable) class ColormapMixIn(object): """Mix-in class for items with colormap""" _DEFAULT_COLORMAP = {'name': 'gray', 'normalization': 'linear', 'autoscale': True, 'vmin': 0.0, 'vmax': 1.0} """Default colormap of the item""" def __init__(self): self._colormap = self._DEFAULT_COLORMAP def getColormap(self): """Return the used colormap""" return self._colormap.copy() def _setColormap(self, colormap): """Set the colormap of this image :param dict colormap: colormap description """ self._colormap = colormap.copy() class SymbolMixIn(object): """Mix-in class for items with symbol type""" _DEFAULT_SYMBOL = '' """Default marker of the item""" def __init__(self): self._symbol = self._DEFAULT_SYMBOL def getSymbol(self): """Return the point marker type. Marker type:: - 'o' circle - '.' point - ',' pixel - '+' cross - 'x' x-cross - 'd' diamond - 's' square :rtype: str """ return self._symbol def _setSymbol(self, symbol): """Set the marker type See :meth:`getSymbol`. :param str symbol: Marker type """ assert symbol in ('o', '.', ',', '+', 'x', 'd', 's', '', None) if symbol is None: symbol = self._DEFAULT_SYMBOL self._symbol = symbol class ColorMixIn(object): """Mix-in class for item with color""" _DEFAULT_COLOR = (0., 0., 0., 1.) """Default color of the item""" def __init__(self): self._color = self._DEFAULT_COLOR def getColor(self): """Returns the RGBA color of the item :rtype: 4-tuple of float in [0, 1] """ return self._color def _setColor(self, color, copy=True): """Set item color :param color: color(s) to be used :type color: str ("#RRGGBB") or (npoints, 4) unsigned byte array or one of the predefined color names defined in Colors.py :param bool copy: True (Default) to get a copy, False to use internal representation (do not modify!) """ if isinstance(color, string_types): self._color = Colors.rgba(color) else: color = numpy.array(color, copy=copy) # TODO more checks if color.ndim == 1: # Single RGBA color color = Colors.rgba(color) else: # Array of colors assert color.ndim == 2 self._color = color class YAxisMixIn(object): """Mix-in class for item with yaxis""" _DEFAULT_YAXIS = 'left' """Default Y axis the item belongs to""" def __init__(self): self._yaxis = self._DEFAULT_YAXIS def getYAxis(self): """Returns the Y axis this curve belongs to. Either 'left' or 'right'. :rtype: str """ return self._yaxis def _setYAxis(self, yaxis): """Set the Y axis this curve belongs to. :param str yaxis: 'left' or 'right' """ yaxis = str(yaxis) assert yaxis in ('left', 'right') self._yaxis = yaxis class FillMixIn(object): """Mix-in class for item with fill""" def __init__(self): self._fill = False def isFill(self): """Returns whether the item is filled or not. :rtype: bool """ return self._fill def _setFill(self, fill): """Set whether to fill the item or not. :param bool fill: """ self._fill = bool(fill) # Items ####################################################################### class Curve(Item, LabelsMixIn, SymbolMixIn, ColorMixIn, YAxisMixIn, FillMixIn): """Description of a curve""" _DEFAULT_Z_LAYER = 1 """Default overlay layer for curves""" _DEFAULT_SELECTABLE = True """Default selectable state for curves""" _DEFAULT_LINEWIDTH = 1. """Default line width of the curve""" _DEFAULT_LINESTYLE = '-' """Default line style of the curve""" _DEFAULT_HIGHLIGHT_COLOR = (0, 0, 0, 255) """Default highlight color of the item""" def __init__(self): Item.__init__(self) LabelsMixIn.__init__(self) SymbolMixIn.__init__(self) ColorMixIn.__init__(self) YAxisMixIn.__init__(self) FillMixIn.__init__(self) self._x = () self._y = () self._xerror = None self._yerror = None self._linewidth = self._DEFAULT_LINEWIDTH self._linestyle = self._DEFAULT_LINESTYLE self._histogram = None self._highlightColor = self._DEFAULT_HIGHLIGHT_COLOR self._highlighted = False # Store filtered data for x > 0 and/or y > 0 self._filteredCache = {} # Store bounds depending on axes filtering >0: # key is (isXPositiveFilter, isYPositiveFilter) self._boundsCache = {} @deprecated def __getitem__(self, item): """Compatibility with PyMca and silx <= 0.4.0""" if isinstance(item, slice): return [self[index] for index in range(*item.indices(5))] elif item == 0: return self.getXData(copy=False) elif item == 1: return self.getYData(copy=False) elif item == 2: return self.getLegend() elif item == 3: info = self.getInfo(copy=False) return {} if info is None else info elif item == 4: params = { 'info': self.getInfo(),
str the sorting order of the ranked results. Should be either "asc" (ascending) or "desc" (descending) Returns ------- list a list of the searched and matched model dictionaries containing metric and model_id, sorted by metric. """ ranked_models = [] matching_models = self.model_selector.find_matching_models_by_values(values=values, target_values_operator=target_values_operator, are_keys_also_matched=are_keys_also_matched, is_case_sensitive=is_case_sensitive) if len(matching_models) < 1: logging.warning( f'For your input, there were {len(matching_models)} matching models, while at least 1 is needed. ' f'Please adjust either your metric your search value inputs {values} to find at least one match.') else: matching_model_ids = [model.model_id for model in matching_models] logging.debug(f"matching_model_ids: {matching_model_ids}") ranked_models = self.model_selector.rank_models_by_performance(model_ids=matching_model_ids, metric=metric, order=order) if len(ranked_models) < 1: logging.warning( f'None ({len(ranked_models)}) of the {len(matching_model_ids)} found matching models, had a valid metric entry for {metric}. ' f'Please adjust your metric to enable ranking of the found models.') return ranked_models def find_models_rank_and_generate(self, values: list, target_values_operator: str = 'AND', are_keys_also_matched: bool = False, is_case_sensitive: bool = False, metric: str = 'SSIM', order: str = "asc", num_samples: int = 30, output_path: str = None, is_gen_function_returned: bool = False, **kwargs): """ Search for values (and keys) in model configs, rank results to generate samples with highest ranked model. Parameters ---------- values: list list of values used to search and find models corresponding to these `values` target_values_operator: str the operator indicating the relationship between `values` in the evaluation of model search results. Should be either "AND", "OR", or "XOR". are_keys_also_matched: bool flag indicating whether, apart from values, the keys in the model config should also be searchable is_case_sensitive: bool flag indicating whether the search for values (and) keys in the model config should be case-sensitive. metric: str The key in the selection dict that corresponds to the metric of interest order: str the sorting order of the ranked results. Should be either "asc" (ascending) or "desc" (descending) num_samples: int the number of samples that will be generated output_path: str the path as str to the output folder where the generated samples will be stored is_gen_function_returned: bool flag indicating whether, instead of generating samples, the sample generation function will be returned **kwargs arbitrary number of keyword arguments passed to the model's sample generation function Returns ------- None However, if `is_gen_function_returned` is True, it returns the internal generate function of the model. """ ranked_models = self.find_models_and_rank(values=values, target_values_operator=target_values_operator, are_keys_also_matched=are_keys_also_matched, is_case_sensitive=is_case_sensitive, metric=metric, order=order) assert ranked_models is not None and len(ranked_models) > 0, \ f'None of the models fulfilled both, the matching (values: {values}) AND ' \ f'ranking (metric: {metric}) criteria you provided.' # Get the ID of the highest ranking model to generate() with that model highest_ranking_model_id = ranked_models[0][MODEL_ID] # Let's generate with the best-ranked model logging.info(f'For your input, there were {len(ranked_models)} models found and ranked. ' f'The highest ranked model ({highest_ranking_model_id}) will now be used for generation: ' f'{ranked_models[0]}') return self.generate(model_id=highest_ranking_model_id, num_samples=num_samples, output_path=output_path, is_gen_function_returned=is_gen_function_returned, **kwargs) def find_model_and_generate(self, values: list, target_values_operator: str = 'AND', are_keys_also_matched: bool = False, is_case_sensitive: bool = False, num_samples: int = 30, output_path: str = None, is_gen_function_returned: bool = False, **kwargs): """ Search for values (and keys) in model configs to generate samples with the found model. Note that the number of found models should be ==1. Else no samples will be generated and a error is logged to console. Parameters ---------- values: list list of values used to search and find models corresponding to these `values` target_values_operator: str the operator indicating the relationship between `values` in the evaluation of model search results. Should be either "AND", "OR", or "XOR". are_keys_also_matched: bool flag indicating whether, apart from values, the keys in the model config should also be searchable is_case_sensitive: bool flag indicating whether the search for values (and) keys in the model config should be case-sensitive. num_samples: int the number of samples that will be generated output_path: str the path as str to the output folder where the generated samples will be stored is_gen_function_returned: bool flag indicating whether, instead of generating samples, the sample generation function will be returned **kwargs arbitrary number of keyword arguments passed to the model's sample generation function Returns ------- None However, if `is_gen_function_returned` is True, it returns the internal generate function of the model. """ matching_models: list = self.model_selector.find_matching_models_by_values(values=values, target_values_operator=target_values_operator, are_keys_also_matched=are_keys_also_matched, is_case_sensitive=is_case_sensitive) if len(matching_models) > 1: logging.error(f'For your input, there were more than 1 matching model ({len(matching_models)}). ' f'Please choose one of the models (see model_ids below) or use find_models_rank_and_generate() instead.' f'Alternatively, you may also further specify additional search values apart from the provided ones ' f'to find exactly one model: {values}. The matching models were the following: \n {matching_models}') elif len(matching_models) < 1: logging.error(f'For your input, there were {len(matching_models)} matching models, while 1 is needed. ' f'Please adjust your search value inputs {values} to find at least one match.') else: # Exactly one matching model. Let's generate with this model logging.info(f'For your input, there was {len(matching_models)} model matched. ' f'This model will now be used for generation: {matching_models}') matched_model_id = matching_models[0].model_id return self.generate(model_id=matched_model_id, num_samples=num_samples, output_path=output_path, is_gen_function_returned=is_gen_function_returned, **kwargs) ############################ MODEL EXECUTOR METHODS ############################ def add_all_model_executors(self): """ Add `ModelExecutor` class instances for all models available in the config. Returns ------- None """ for model_id in self.config_manager.model_ids: execution_config = self.config_manager.get_config_by_id(model_id=model_id, config_key=CONFIG_FILE_KEY_EXECUTION) self._add_model_executor(model_id=model_id, execution_config=execution_config) def add_model_executor(self, model_id: str): """ Add one `ModelExecutor` class instance corresponding to the specified `model_id`. Parameters ---------- model_id: str The generative model's unique id Returns ------- None """ if not self.is_model_executor_already_added(model_id): execution_config = self.config_manager.get_config_by_id(model_id=model_id, config_key=CONFIG_FILE_KEY_EXECUTION) self._add_model_executor(model_id=model_id, execution_config=execution_config) def _add_model_executor(self, model_id: str, execution_config: dict): """ Add one `ModelExecutor` class instance corresponding to the specified `model_id` and `execution_config`. Parameters ---------- model_id: str The generative model's unique id execution_config: dict The part of the config below the 'execution' key Returns ------- None """ if not self.is_model_executor_already_added(model_id): model_executor = ModelExecutor(model_id=model_id, execution_config=execution_config, download_package=True) self.model_executors.append(model_executor) def is_model_executor_already_added(self, model_id) -> bool: """ Check whether the `ModelExecutor` instance of this model_id is already in `self.model_executors` list. Parameters ---------- model_id: str The generative model's unique id Returns ------- bool indicating whether this `ModelExecutor` had been already previously added to `self.model_executors` """ if self.find_model_executor_by_id(model_id=model_id) is None: logging.debug(f"{model_id}: The model has not yet been added to the model_executor list.") return False return True def find_model_executor_by_id(self, model_id: str) -> ModelExecutor: """ Find and return the `ModelExecutor` instance of this model_id in the `self.model_executors` list. Parameters ---------- model_id: str The generative model's unique id Returns ------- ModelExecutor `ModelExecutor` class instance corresponding to the `model_id` """ for idx, model_executor in enumerate(self.model_executors): if model_executor.model_id == model_id: return model_executor return None def get_model_executor(self, model_id: str) -> ModelExecutor: """ Add and return the `ModelExecutor` instance of this model_id from the `self.model_executors` list. Relies on `self.add_model_executor` and `self.find_model_executor_by_id` functions. Parameters ---------- model_id: str The generative model's unique id Returns ------- ModelExecutor `ModelExecutor` class instance corresponding to the `model_id` """ try: self.add_model_executor(model_id=model_id) # only adds after checking that is not already added return self.find_model_executor_by_id(model_id=model_id) except Exception as e: logging.error(f"{model_id}: This model could not be added to model_executor list: {e}") raise e def generate(self, model_id: str, num_samples: int = 30, output_path: str = None, save_images: bool = True, is_gen_function_returned: bool = False, **kwargs): """ Generate samples with the model corresponding to the `model_id` or return the model's generate function. Parameters ---------- model_id: str The generative model's unique id num_samples: int the number of samples that will be generated output_path: str the path as str to the output folder where the generated samples will be stored save_images: bool flag indicating whether generated samples are returned (i.e. as list of numpy arrays) or rather stored in file system (i.e in `output_path`) is_gen_function_returned: bool flag indicating whether, instead of generating samples, the sample generation function will be returned **kwargs arbitrary number of keyword arguments passed to the model's sample generation function Returns ------- list Returns images as list of numpy arrays if `save_images` is False. However, if `is_gen_function_returned` is True, it returns the internal generate function of the model. """ model_executor
#!/usr/bin/env python3 def get_bs_vs_tn(in_file_name, out_file_name, best_config_list): ''' Note: best case for dense int8 new log is: batch_size data_parallel model_parallel thread_num 16 4 1 8 batch size: 1 2 4 8 16 32 64 128 256 512 1024 data parallel: 1 2 4 8 16 32 model parallel: 1 2 4 8 16 32 thread num: 1 2 4 8 16 32 64 128 for 'batch size' vs 'thread num': 11 x 8 ''' best_bs, best_dp, best_mp, best_tn = best_config_list[0], best_config_list[1], best_config_list[2], best_config_list[3] #batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8, 256:9, 512:10, 1024:11} #thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8} batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} data_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} model_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} file_reader = open(in_file_name, 'r') file_writer = open(out_file_name, 'w') res_list = [None for _ in range(len(batch_size_index_dict)*len(thread_num_index_dict))] try: text_lines = file_reader.readlines() for line in text_lines: line = line.rstrip('\n') line = line.split('\t') batch_size, data_parallel, model_parallel, thread_num, fifo_size, end2end_fps = int(line[0]), int(line[1]), int(line[2]), int(line[3]), int(line[4]), float(line[5]) if model_parallel == best_mp and data_parallel == best_dp: index = (batch_size_index_dict[batch_size] - 1) * len(thread_num_index_dict) + thread_num_index_dict[thread_num] - 1 res_list[index] = end2end_fps print(len(res_list), res_list) for i in range(len(batch_size_index_dict)): res_str = '' for j in range(len(thread_num_index_dict)): if j == len(thread_num_index_dict) - 1: if res_list[i * len(thread_num_index_dict) + j] == None: res_str += '\n' else: res_str += str(res_list[i * len(thread_num_index_dict) + j]) + '\n' else: if res_list[i * len(thread_num_index_dict) + j] == None: res_str += ',' else: res_str += str(res_list[i * len(thread_num_index_dict) + j]) + ',' print(res_str) file_writer.write(res_str) finally: if file_reader: file_reader.close() file_writer.close() def get_dp_vs_mp(in_file_name, out_file_name, best_config_list): ''' Note: best case for dense int8 new log is: batch_size data_parallel model_parallel thread_num 16 4 1 8 batch size: 1 2 4 8 16 32 64 128 256 512 1024 data parallel: 1 2 4 8 16 32 model parallel: 1 2 4 8 16 32 thread num: 1 2 4 8 16 32 64 128 for 'batch size' vs 'thread num': 11 x 8 ''' best_bs, best_dp, best_mp, best_tn = best_config_list[0], best_config_list[1], best_config_list[2], best_config_list[3] #batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8, 256:9, 512:10, 1024:11} #thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8} batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} data_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} model_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} file_reader = open(in_file_name, 'r') file_writer = open(out_file_name, 'w') res_list = [None for _ in range(len(data_parallel_index_dict)*len(model_parallel_index_dict))] try: text_lines = file_reader.readlines() for line in text_lines: line = line.rstrip('\n') line = line.split('\t') batch_size, data_parallel, model_parallel, thread_num, fifo_size, end2end_fps = int(line[0]), int(line[1]), int(line[2]), int(line[3]), int(line[4]), float(line[5]) if batch_size == best_bs and thread_num == best_tn: index = (data_parallel_index_dict[data_parallel] - 1) * len(model_parallel_index_dict) + model_parallel_index_dict[model_parallel] - 1 res_list[index] = end2end_fps print(len(res_list), res_list) for i in range(len(data_parallel_index_dict)): res_str = '' for j in range(len(model_parallel_index_dict)): if j == len(model_parallel_index_dict) - 1: if res_list[i * len(model_parallel_index_dict) + j] == None: res_str += '\n' else: res_str += str(res_list[i * len(model_parallel_index_dict) + j]) + '\n' else: if res_list[i * len(model_parallel_index_dict) + j] == None: res_str += ',' else: res_str += str(res_list[i * len(model_parallel_index_dict) + j]) + ',' print(res_str) file_writer.write(res_str) finally: if file_reader: file_reader.close() file_writer.close() def get_heat_map_data(in_file_name, out_file_name, column_opt_dict, row_opt_dict, column_line_map, row_line_map, best_colum, best_row, remain_opt_first, remain_opt_second, best_config_list): ''' Note: best case for dense int8 new log is: batch_size data_parallel model_parallel thread_num 16 4 1 8 batch size: 1 2 4 8 16 32 64 128 256 512 1024 data parallel: 1 2 4 8 16 32 model parallel: 1 2 4 8 16 32 thread num: 1 2 4 8 16 32 64 128 for 'batch size' vs 'thread num': 11 x 8 ''' best_bs, best_dp, best_mp, best_tn = 16, 4, 1, 8 best_bs, best_dp, best_mp, best_tn = best_config_list[0], best_config_list[1], best_config_list[2], best_config_list[3] #batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8, 256:9, 512:10, 1024:11} #thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8} batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} data_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} model_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} file_reader = open(in_file_name, 'r') file_writer = open(out_file_name, 'w') res_list = [None for _ in range(len(column_opt_dict)*len(row_opt_dict))] try: text_lines = file_reader.readlines() for line in text_lines: line = line.rstrip('\n') line = line.split('\t') batch_size, data_parallel, model_parallel, thread_num, fifo_size, end2end_fps = int(line[0]), int(line[1]), int(line[2]), int(line[3]), int(line[4]), float(line[5]) row_key = int(line[column_line_map]) column_key = int(line[row_line_map]) if row_key == best_column and column_key == best_row: index = (data_parallel_index_dict[data_parallel] - 1) * len(model_parallel_index_dict) + model_parallel_index_dict[model_parallel] - 1 res_list[index] = end2end_fps print(len(res_list), res_list) for i in range(len(data_parallel_index_dict)): res_str = '' for j in range(len(model_parallel_index_dict)): if j == len(batch_size_index_dict) - 1: if res_list[i * len(model_parallel_index_dict) + j] == None: res_str += '\n' else: res_str += str(res_list[i * len(model_parallel_index_dict) + j]) + '\n' else: if res_list[i * len(model_parallel_index_dict) + j] == None: res_str += ',' else: res_str += str(res_list[i * len(model_parallel_index_dict) + j]) + ',' print(res_str) file_writer.write(res_str + '\n') finally: if file_reader: file_reader.close() file_writer.close() def get_bs_vs_dp(in_file_name, out_file_name, best_config_list): ''' Note: best case for dense int8 new log is: batch_size data_parallel model_parallel thread_num 16 4 1 8 batch size: 1 2 4 8 16 32 64 128 256 512 1024 data parallel: 1 2 4 8 16 32 model parallel: 1 2 4 8 16 32 thread num: 1 2 4 8 16 32 64 128 for 'batch size' vs 'thread num': 11 x 8 ''' best_bs, best_dp, best_mp, best_tn = 16, 4, 1, 8 best_bs, best_dp, best_mp, best_tn = best_config_list[0], best_config_list[1], best_config_list[2], best_config_list[3] #batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8, 256:9, 512:10, 1024:11} #thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8} batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} data_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} model_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} file_reader = open(in_file_name, 'r') file_writer = open(out_file_name, 'w') res_list = [None for _ in range(len(batch_size_index_dict)*len(data_parallel_index_dict))] try: text_lines = file_reader.readlines() for line in text_lines: line = line.rstrip('\n') line = line.split('\t') batch_size, data_parallel, model_parallel, thread_num, fifo_size, end2end_fps = int(line[0]), int(line[1]), int(line[2]), int(line[3]), int(line[4]), float(line[5]) if model_parallel == best_mp and thread_num == best_tn: index = (batch_size_index_dict[batch_size] - 1) * len(data_parallel_index_dict) + data_parallel_index_dict[data_parallel] - 1 res_list[index] = end2end_fps print(len(res_list), res_list) for i in range(len(batch_size_index_dict)): res_str = '' for j in range(len(data_parallel_index_dict)): index = i * len(data_parallel_index_dict) + j if j == len(data_parallel_index_dict) - 1: if res_list[index] == None: res_str += '\n' else: res_str += str(res_list[index]) + '\n' else: if res_list[index] == None: res_str += ',' else: res_str += str(res_list[index]) + ',' print(res_str) file_writer.write(res_str) finally: if file_reader: file_reader.close() file_writer.close() def get_bs_vs_mp(in_file_name, out_file_name, best_config_list): ''' Note: best case for dense int8 new log is: batch_size data_parallel model_parallel thread_num 16 4 1 8 batch size: 1 2 4 8 16 32 64 128 256 512 1024 data parallel: 1 2 4 8 16 32 model parallel: 1 2 4 8 16 32 thread num: 1 2 4 8 16 32 64 128 for 'batch size' vs 'thread num': 11 x 8 ''' best_bs, best_dp, best_mp, best_tn = 16, 4, 1, 8 best_bs, best_dp, best_mp, best_tn = best_config_list[0], best_config_list[1], best_config_list[2], best_config_list[3] #batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8, 256:9, 512:10, 1024:11} #thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7, 128:8} batch_size_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} thread_num_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6, 64:7} data_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} model_parallel_index_dict={1:1, 2:2, 4:3, 8:4, 16:5, 32:6} file_reader = open(in_file_name, 'r') file_writer = open(out_file_name, 'w') res_list = [None for _ in range(len(batch_size_index_dict)*len(model_parallel_index_dict))] try: text_lines = file_reader.readlines() for line in text_lines: line = line.rstrip('\n') line = line.split('\t') batch_size, data_parallel, model_parallel, thread_num, fifo_size, end2end_fps = int(line[0]), int(line[1]), int(line[2]), int(line[3]), int(line[4]), float(line[5]) if data_parallel == best_dp and thread_num == best_tn: index = (batch_size_index_dict[batch_size] - 1) * len(model_parallel_index_dict) + model_parallel_index_dict[model_parallel] - 1 res_list[index] = end2end_fps print(len(res_list), res_list) for i in range(len(batch_size_index_dict)): res_str = '' for j in range(len(model_parallel_index_dict)): index = i * len(model_parallel_index_dict) + j if j == len(model_parallel_index_dict) - 1: if res_list[index] == None: res_str += '\n' else: res_str += str(res_list[index]) + '\n' else: if res_list[index] ==
<filename>rrlfd/residual/train.py # coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Train a residual policy on top of a learned agent. Usage: Use case --> flags to set 1) Use base agent a) Use feats from base agent --> network && bc_ckpt_to_load b) Learn new feats --> network && bc_ckpt_to_load && rl_observation_network c) Init feats from base agent but finetune --> network && bc_ckpt_to_load && rl_observation_network && init_feats_from_bc && predict_residual 2) Use RL only a) Learn new feats --> rl_observation_network (if input type is visual) b) Init feats & policy from base agent but finetune --> network && bc_ckpt_to_load && rl_observation_network && init_from_bc c) Init feats from base agent but finetune --> network && bc_ckpt_to_load && rl_observation_network && init_feats_from_bc 3) Use base controller + rl observation net from scratch --> base_controller && rl_observation_network """ import os from absl import app from absl import flags from acme import specs import numpy as np import tensorflow as tf from rrlfd.residual import agents from rrlfd.residual import eval_utils from rrlfd.residual import setup from tensorflow.io import gfile flags.DEFINE_string('domain', None, 'Domain from which to load task.') flags.DEFINE_string('task', None, 'Task to solve.') flags.DEFINE_enum('input_type', 'depth', ['depth', 'rgb', 'rgbd', 'full_state'], 'Input modality.') flags.DEFINE_integer('num_episodes', 10000, 'Number of episodes to run for.') flags.DEFINE_integer('seed', 2, 'Experiment seed.') flags.DEFINE_integer('eval_seed', 1, 'Environtment seed for evaluation.') flags.DEFINE_boolean('increment_eval_seed', False, 'If True, increment eval seed after each eval episode.') flags.DEFINE_integer('num_eval_episodes', 100, 'Number of episodes to evaluate.') flags.DEFINE_boolean('collapse_in_eval', True, 'If True, collapse RL policy to its mean in evaluation.') flags.DEFINE_boolean('stop_if_stuck', False, 'If True, end episode if observations and actions are ' 'stuck.') flags.DEFINE_boolean('end_on_success', False, 'If True, end episode early if success criteria is met.') flags.DEFINE_integer('eval_freq', 100_000, 'Frequency (in environment training steps) with which to ' 'evaluate policy.') flags.DEFINE_boolean('eval_only', False, 'If True, evaluate policy ckpts of trained policy.') # Flags for BC agent. flags.DEFINE_boolean('binary_grip_action', True, 'If True, use open/close action space for gripper. Else ' 'use gripper velocity.') flags.DEFINE_enum('action_norm', 'unit', ['unit', 'zeromean_unitvar'], 'Which normalization to apply to actions.') flags.DEFINE_enum('residual_action_norm', 'unit', ['none', 'unit', 'zeromean_unitvar', 'centered'], 'Which normalization to apply to residual actions.') flags.DEFINE_float('residual_action_norm_scale', 1.0, 'Factor by which to scale residual actions. Applied to raw ' 'predictions in none, unit and centered normalisation, and ' 'to standard deviation in the case of zeromean_unitvar.') flags.DEFINE_enum('signals_norm', 'none', ['none', 'unit', 'zeromean_unitvar'], 'Which normalization to apply to scalar observations.') flags.DEFINE_string('original_demos_file', None, 'Dataset used to compute stats for action normalization.') flags.DEFINE_integer('max_demos_to_load', None, 'Maximum number of demos from demos_file (in order) to ' 'use to compute action stats.') flags.DEFINE_integer('max_demo_length', None, 'If set, trim demonstrations to this length.') flags.DEFINE_float('val_size', 0.05, 'Amount of data to exlude from action normalisation stats. ' 'If < 1, the fraction of total loaded data points. Else the ' 'number of data points.') flags.DEFINE_boolean('val_full_episodes', True, 'If True, split data into train and validation on an ' 'episode basis. Else split by individual time steps.') flags.DEFINE_string('last_activation', None, 'Activation function to apply to network output, if any.') flags.DEFINE_list('fc_layer_sizes', [], 'Sizes of fully connected layers to add on top of bottleneck ' 'layer, if any.') flags.DEFINE_integer('num_input_frames', 3, 'Number of frames to condition base policy on.') flags.DEFINE_integer('image_size', None, 'Size of rendered images.') flags.DEFINE_integer('crop_margin_size', 16, 'If crop_frames is True, the number of pixels to crop ' 'from each dimension.') flags.DEFINE_boolean('crop_frames', True, 'If True, crop input frames by 16 pixels in H and W.') flags.DEFINE_list('target_offsets', [0, 10, 20, 30], 'Offsets in time for actions to predict in behavioral ' 'cloning.') flags.DEFINE_enum('network', None, ['resnet18', 'resnet18_narrow32', 'resnet50', 'simple_cnn', 'hand_vil'], 'Policy network of base policy.') flags.DEFINE_boolean('bn_before_concat', False, 'If True, add a batch norm layer before concatenating ' 'scalar featuses to visual features.') flags.DEFINE_float('weight_decay', 5e-4, 'Weight decay for training.') flags.DEFINE_boolean('predict_residual', True, 'If True, train a residual agent. Else train RL from ' 'scratch without base agent.') flags.DEFINE_enum('rl_observation_network', None, ['resnet18', 'resnet18_narrow32', 'resnet50', 'simple_cnn', 'hand_vil'], 'Observation network of residual policy. If None, ' 'observation network of base agent is reused.') flags.DEFINE_boolean('late_fusion', False, 'If True, fuse stacked frames after convolutional layers. ' 'If False, fuse at network input.') flags.DEFINE_string('policy_init_path', None, 'If set, initialize network weights from a pickle file at ' 'this path.') flags.DEFINE_string('rl_observation_network_ckpt', None, 'If set, checkpoint from which to load observation network ' 'weights.') flags.DEFINE_string('base_controller', None, 'If set, a black-box controller to use for base actions.') flags.DEFINE_string('bc_ckpt_to_load', None, 'If set, checkpoint from which to load base policy.') flags.DEFINE_string('rl_ckpt_to_load', None, 'If set, checkpoint from which to load residual policy.') flags.DEFINE_string('original_demos_path', None, 'If set, path to the original demonstration dataset (to ' 'restore normalization statistics). If not set, inferred ' 'from BC checkpoint path.') flags.DEFINE_boolean('init_from_bc', False, 'If True, use BC agent loaded from bc_ckpt_to_load as ' 'initialization for RL observation and policy nets.') flags.DEFINE_boolean('init_feats_from_bc', False, 'If True, initialize RL observation network with BC.') flags.DEFINE_string('logdir', None, 'Location to log results to.') flags.DEFINE_boolean('load_saved', False, 'If True, load saved model from checkpoint. Else train ' 'from scratch.') flags.DEFINE_string('base_visible_state', 'robot', 'State features on which to condition the base policy.') flags.DEFINE_string('residual_visible_state', 'robot', 'State features on which to condition the residual policy. ' 'If using full state, the BC net features are replaced ' 'with these true state features in input to RL policy.') flags.DEFINE_float('bernoulli_rate', 0., 'Fraction of time to use bernoulli exploration for gripper ' 'action.') flags.DEFINE_float('sticky_rate', 0., 'Stickiness rate of bernoulli exploration for gripper ' 'action.') flags.DEFINE_string('job_id', None, 'Subdirectory to add to logdir to identify run. Set ' 'automatically to XM id or datetime if None.') flags.DEFINE_integer('base_policy_success', None, 'No-op flag used to identify base policy.') flags.DEFINE_boolean('freeze_rl_observation_network', False, 'If True, do not update acme observation network weights. ' 'Else train critic and observation net jointly.') FLAGS = flags.FLAGS def train_residual( env_loop, num_episodes, logdir, eval_freq, num_eval_episodes, collapse_in_eval, eval_seed, increment_eval_seed, stop_if_stuck): """Train residual for num_episodes episodes.""" # TODO(minttu): Should bernoulli rate and sticky rate be defined here instead? total_steps = env_loop.run( num_episodes=num_episodes, out_dir=logdir, ckpt_freq=min(50_000, eval_freq), eval_freq=eval_freq, num_eval_episodes=num_eval_episodes, collapse_in_eval=collapse_in_eval, eval_seed=eval_seed, increment_eval_seed=increment_eval_seed, stop_if_stuck=stop_if_stuck) if logdir is not None: setup.save_acme_agent(env_loop.actor, logdir) return total_steps def main(_): np.random.seed(FLAGS.seed) tf.random.set_seed(FLAGS.seed) counter = setup.setup_counting() logdir, env_logger, agent_logger, summary_writer, _ = setup.setup_logging( FLAGS.logdir) base_state = setup.set_visible_features( FLAGS.domain, FLAGS.task, FLAGS.base_visible_state) residual_state = setup.set_visible_features( FLAGS.domain, FLAGS.task, FLAGS.residual_visible_state) print('Base policy state features', base_state) print('Residual policy state features', residual_state) image_size = FLAGS.image_size if image_size is None: # Default sizes. image_size = { 'adroit': 128, 'mime': 240, }[FLAGS.domain] # Whether BCAgent's network is used for visual features (expects frames in a # certain shape). use_base_agent_image_shape = ( FLAGS.predict_residual or FLAGS.freeze_rl_observation_network) visible_state = ( list(set(base_state + residual_state)) if FLAGS.predict_residual else residual_state) env_loop = setup.make_environment_loop( domain=FLAGS.domain, task=FLAGS.task, seed=FLAGS.seed, input_type=FLAGS.input_type, num_input_frames=FLAGS.num_input_frames, visible_state=visible_state, image_size=image_size, use_base_agent_image_shape=use_base_agent_image_shape, late_fusion=FLAGS.late_fusion, max_train_episode_steps=FLAGS.max_episode_steps, agent=None, counter=counter, env_logger=env_logger, summary_writer=summary_writer) env = env_loop._environment # pylint: disable=protected-access environment_spec = specs.make_environment_spec(env) print('Environment spec', environment_spec) base_agent = None # Create BC agent. In residual RL, it is used as the base agent, and in # standalone RL it may be used for action and observation space normalization. if FLAGS.bc_ckpt_to_load or FLAGS.original_demos_file: base_agent = setup.load_saved_bc_agent( ckpt_to_load=FLAGS.bc_ckpt_to_load, network_type=FLAGS.network, late_fusion=FLAGS.late_fusion, input_type=FLAGS.input_type, domain=FLAGS.domain, binary_grip_action=FLAGS.binary_grip_action, num_input_frames=FLAGS.num_input_frames, crop_frames=FLAGS.crop_frames, full_image_size=image_size, crop_margin_size=FLAGS.crop_margin_size, target_offsets=[int(t) for t in FLAGS.target_offsets], visible_state_features=base_state, action_norm=FLAGS.action_norm, signals_norm=FLAGS.signals_norm, last_activation=FLAGS.last_activation, fc_layer_sizes=[int(i) for i in FLAGS.fc_layer_sizes], weight_decay=FLAGS.weight_decay, max_demos_to_load=FLAGS.max_demos_to_load, max_demo_length=FLAGS.max_demo_length, val_size=FLAGS.val_size, val_full_episodes=FLAGS.val_full_episodes, split_seed=FLAGS.split_seed, env=env, task=FLAGS.task) print('action normalization mean\n', base_agent.action_space.mean) print('action normalization std\n', base_agent.action_space.std) obs_network_type = None include_base_feats = True if ((FLAGS.bc_ckpt_to_load is None and FLAGS.policy_init_path is None) or (FLAGS.init_from_bc and not FLAGS.freeze_rl_observation_network) or FLAGS.init_feats_from_bc): obs_network_type = FLAGS.rl_observation_network include_base_feats = False if FLAGS.residual_visible_state == 'full': include_base_feats = False include_base_action = FLAGS.predict_residual residual_spec = setup.define_residual_spec( residual_state, env, base_agent, action_norm=FLAGS.residual_action_norm, action_norm_scale=FLAGS.residual_action_norm_scale, include_base_action=include_base_action, include_base_feats=include_base_feats, base_network=FLAGS.network) binary_grip_action = FLAGS.init_from_bc and FLAGS.binary_grip_action residual_agent, eval_policy = setup.make_acme_agent( environment_spec=environment_spec, residual_spec=residual_spec, obs_network_type=obs_network_type, crop_frames=FLAGS.crop_frames, full_image_size=image_size, crop_margin_size=FLAGS.crop_margin_size, late_fusion=FLAGS.late_fusion, binary_grip_action=binary_grip_action, input_type=FLAGS.input_type, counter=counter, logdir=logdir, agent_logger=agent_logger) if FLAGS.init_from_bc: setup.init_policy_networks(base_agent.network, residual_agent) if not FLAGS.freeze_rl_observation_network: setup.init_observation_networks(base_agent.network, residual_agent) if FLAGS.init_feats_from_bc: setup.init_observation_networks(base_agent.network, residual_agent) # agent_class = ( # agents.ResidualAgent if FLAGS.predict_residual else agents.RLAgent) if FLAGS.predict_residual: agent_class = agents.ResidualAgent else: if FLAGS.freeze_rl_observation_network: agent_class = agents.FixedObservationAgent else: agent_class = agents.RLAgent agent = agent_class( base_agent=base_agent, rl_agent=residual_agent, action_space='tool_lin' if FLAGS.domain == 'mime' else FLAGS.task, action_norm=FLAGS.residual_action_norm, action_norm_scale=FLAGS.residual_action_norm_scale, signals_norm=FLAGS.signals_norm, rl_eval_policy=eval_policy, feats_spec=residual_spec.observations, state_keys=residual_state, bernoulli_rate=FLAGS.bernoulli_rate, sticky_rate=FLAGS.sticky_rate, rl_observation_network_type=FLAGS.rl_observation_network, rl_input_type=FLAGS.input_type, rl_num_input_frames=FLAGS.num_input_frames, base_controller=FLAGS.base_controller, env=env)
{1}").format(name, response.reason) e = exception.CephFailure(reason=msg) LOG.error(e) raise e # TODO(CephPoolsDecouple): remove def create_or_resize_osd_pool(self, pool_name, pg_num, pgp_num, size, min_size): """Create or resize an osd pool as needed :param pool_name: pool name :param pg_num: number of placement groups :param pgp_num: number of placement groups for placement :param size: number of replicas for objects in the pool :param min_size: minimum number of replicas required for I/O """ # ruleset 0: is the default ruleset if no crushmap is loaded or # the ruleset for the backing tier if loaded: # Name: storage_tier_ruleset ruleset = 0 # Create the pool if not present self._pool_create(pool_name, pg_num, pgp_num, ruleset, size, min_size) def delete_osd_pool(self, pool_name): """Delete an osd pool :param pool_name: pool name """ response, body = self._ceph_api.osd_pool_delete( pool_name, pool_name, sure='--yes-i-really-really-mean-it', body='json') if response.ok: LOG.info(_("Deleted OSD pool {}").format(pool_name)) else: e = exception.CephPoolDeleteFailure( name=pool_name, reason=response.reason) LOG.warn(e) raise e def list_osd_pools(self): """List all osd pools """ resp, pools = self._ceph_api.osd_pool_ls(body='json') if not resp.ok: e = exception.CephPoolListFailure( reason=resp.reason) LOG.error(e) raise e else: return pools['output'] def get_ceph_object_pool_name(self): response, body = self._ceph_api.osd_pool_get( constants.CEPH_POOL_OBJECT_GATEWAY_NAME_JEWEL, "pg_num", body='json') if response.ok: return constants.CEPH_POOL_OBJECT_GATEWAY_NAME_JEWEL response, body = self._ceph_api.osd_pool_get( constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER, "pg_num", body='json') if response.ok: return constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER return None def update_ceph_object_pool_name(self, pool): """ Check whether JEWEL or HAMMER pool should be used """ if pool['pool_name'] == constants.CEPH_POOL_OBJECT_GATEWAY_NAME_JEWEL: # Check if Hammer version pool exists. If it does, it means it is an # upgrade from R3; otherwise, it is a fresh R4+ installation response, body = self._ceph_api.osd_pool_get( constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER, "pg_num", body='json') if response.ok: # Now check if Swift was enabled in R3. If it was, the Hammer pool # will be kept; otherwise, the Hammer pool will be deleted and a # Jewel pool will be created. storage_ceph = self._db_api.storage_ceph_get_list()[0] if storage_ceph['object_gateway'] is True: # Make sure Swift/Radosgw is really enabled response, body = self._ceph_api.osd_pool_get( constants.CEPH_POOL_OBJECT_GATEWAY_ROOT_NAME, "pg_num", body='json') if response.ok: LOG.info("Hammer-->Jewel upgrade: keep Hammer object data pool %s", constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER) pool['pool_name'] = constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER else: if body['status'].find("unrecognized pool") != -1: LOG.warn("Swift is enabled but pool %s does not exist.", constants.CEPH_POOL_OBJECT_GATEWAY_ROOT_NAME) LOG.info("Hammer-->Jewel upgrade: delete inactive Hammer object data pool %s", constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER) self.delete_osd_pool(constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER) else: LOG.warn("Failed to query pool %s ", constants.CEPH_POOL_OBJECT_GATEWAY_ROOT_NAME) else: LOG.info("Hammer-->Jewel upgrade: delete inactive Hammer object data pool %s", constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER) self.delete_osd_pool(constants.CEPH_POOL_OBJECT_GATEWAY_NAME_HAMMER) def _configure_pool_key(self, pool_name): """Get CEPH key for a certain pool.""" response, body = ("", "") caps_dict = {'mon': 'allow r', 'osd': 'allow rwx pool=%s' % pool_name} entity = "client.%s" % pool_name try: response, body = ("", "") response, body = self._ceph_api.auth_get_or_create( entity, caps_dict, body='json', timeout=10) auth_result = body['output'] rc = auth_result[0].get('key') except Exception as e: rc = None LOG.info("CEPH auth exception: %s response: %s body: %s" % (str(e), str(response), str(body))) return rc # TODO(CephPoolsDecouple): remove def _configure_secondary_tier_pools(self, tier_obj, size, min_size): """Configure the service pools that are allowed for additional ceph tiers. """ # Get the backend object if there is one attached. backend = None if tier_obj.forbackendid: backend = self._db_api.storage_ceph_get(tier_obj.forbackendid) # Make sure OSD exist for this tier before creating ceph pools LOG.info("Calling _configure_secondary_tier_pools " "to create/update ceph pools for tier: %s" % tier_obj.name) for p in constants.SB_TIER_CEPH_POOLS: # If we have a backend for the tier, then set the quota if backend: # if the quota is not set, set the default value quota_gib_value = backend.get(p['be_quota_attr'], None) if quota_gib_value is None: self._db_api.storage_ceph_update(backend.uuid, {p['be_quota_attr']: p['quota_default']}) quota_gib_value = p['quota_default'] # get the pool name pool_name = "%s-%s" % (p['pool_name'], tier_obj.name) rule_name = "{0}{1}{2}".format( tier_obj.name, constants.CEPH_CRUSH_TIER_SUFFIX, "-ruleset").replace('-', '_') # get the rule for the tier, if present then create the pool if # required. response, body = self._ceph_api.osd_crush_rule_dump(name=rule_name, body='json') if response.ok: ruleset = body['output']['ruleset'] # create/update the pool self._pool_create(pool_name, p['pg_num'], p['pgp_num'], ruleset, size, min_size) else: e = exception.CephPoolRulesetFailure( name=rule_name, reason=body['status']) raise e def _update_db_capabilities(self, bk, new_storceph): # Avoid updating DB for all capabilities in new_storceph as we # don't manage them. Leave the callers deal with it. if (not new_storceph or (new_storceph and bk['name'] != new_storceph['name'])): self._db_api.storage_backend_update( bk['id'], {'capabilities': bk['capabilities']} ) def get_osd_tree(self): """Get OSD tree info return: list of nodes and a list of stray osds e.g.: [{u'type_id': 10, u'type': u'root', u'id': -6, u'name': u'gold-tier', u'children': [-7]}, {u'type_id': 2, u'type': u'chassis', u'id': -7, u'name': u'group-0-gold', u'children': [-9, -8]}, {u'status': u'up', u'name': u'osd.2', u'exists': 1, u'type_id': 0, u'reweight': 1.0, u'crush_weight': 0.008789, u'primary_affinity': 1.0, u'depth': 3, u'type': u'osd', u'id': 2}, ...] [{u'status': u'up', u'name': u'osd.1', u'exists': 1, u'reweight': 1.0, u'type_id': 0, u'crush_weight': 0.0, u'primary_affinity': 1.0, u'depth': 0, u'type': u'osd', u'id': 1}, ...] """ resp, body = self._ceph_api.osd_tree(body='json') if not resp.ok: LOG.error("Failed to get OSD tree info") return resp, None, None else: return resp, body['output']['nodes'], body['output']['stray'] def set_osd_down(self, osdid): """Set an osd to down state :param osdid: OSD id """ response, body = self._ceph_api.osd_down( osdid, body='json') if response.ok: LOG.info("Set OSD %d to down state.", osdid) else: LOG.error("Set OSD down failed for OSD %d: %s", osdid, response.reason) response.raise_for_status() def mark_osd_down(self, osdid): """Mark the object store device down :param osdid: object based storage id """ to_mark_osd_down = False resp, nodes, stray = self.get_osd_tree() if not resp.ok: # We would still try to mark the osd down to_mark_osd_down = True else: osdid_str = "osd." + str(osdid) for entry in nodes + stray: if entry['name'] == osdid_str: if entry['status'] == 'up': LOG.info("OSD %s is still up. Mark it down.", osdid_str) to_mark_osd_down = True break if to_mark_osd_down: self.set_osd_down(osdid) def osd_remove_crush_auth(self, osdid): """ Remove the object store device from ceph osdid: object based storage id :param osdid: """ osdid_str = "osd." + str(osdid) # Remove the OSD from the crush map response, body = self._ceph_api.osd_crush_remove( osdid_str, body='json') if not response.ok: LOG.error("OSD crush remove failed for OSD %s: %s", osdid_str, response.reason) response.raise_for_status() # Remove the OSD authentication key response, body = self._ceph_api.auth_del( osdid_str, body='json') if not response.ok: LOG.error("Auth delete failed for OSD %s: %s", osdid_str, response.reason) response.raise_for_status() def osd_remove(self, *args, **kwargs): return self._ceph_api.osd_remove(*args, **kwargs) def get_cluster_df_stats(self, timeout=10): """Get the usage information for the ceph cluster. :param timeout: """ resp, body = self._ceph_api.df(body='json', timeout=timeout) if not resp.ok: e = exception.CephGetClusterUsageFailure(reason=resp.reason) LOG.error(e) raise e else: return body["output"]["stats"] def get_pools_df_stats(self, timeout=10): resp, body = self._ceph_api.df(body='json', timeout=timeout) if not resp.ok: e = exception.CephGetPoolsUsageFailure(reason=resp.reason) LOG.error(e) raise e else: return body["output"]["pools"] # TODO(CephPoolsDecouple): remove # This function is only called from audit_osd_quotas_for_tier() which # will be removed by CephPoolsDecouple. def get_osd_stats(self, timeout=30): try: resp, body = self._ceph_api.osd_stat(body='json', timeout=timeout) except ReadTimeout: resp = type('Response', (), dict(ok=False, reason=('Ceph API osd_stat() timeout ' 'after {} seconds').format(timeout))) if not resp.ok: e = exception.CephGetOsdStatsFailure(reason=resp.reason) LOG.error(e) raise e else: return body["output"] def have_ceph_monitor_access(self, timeout=5): """ Verify that ceph monitor access will not timeout. :param timeout: Time in seconds to wait for the REST API request to respond. """ available_mons = 0 monitors = self._db_api.ceph_mon_get_list() for m in monitors: try: ihost = self._db_api.ihost_get_by_hostname(m.hostname) except exception.NodeNotFound: LOG.error("Monitor host %s not found" % m.hostname) continue if (ihost['administrative'] == constants.ADMIN_UNLOCKED and ihost['operational'] == constants.OPERATIONAL_ENABLED): available_mons += 1 # Avoid calling the ceph rest_api until we have a minimum configuration check_access = False if cutils.is_aio_system(self._db_api) and available_mons > 0: # one monitor: need it available check_access = True elif available_mons > 1: # three monitors: need two available check_access = True LOG.debug("Checking ceph monitors. Available: %s. Check cluster: " "access %s" % (available_mons, check_access)) if check_access: return True if self._get_fsid(timeout) else False return False def get_ceph_cluster_info_availability(self): # TODO(CephPoolsDecouple): rework # Check if the ceph cluster is ready to return statistics storage_hosts = self._db_api.ihost_get_by_personality( constants.STORAGE) is_aio = tsc.system_type == constants.TIS_AIO_BUILD if not storage_hosts and is_aio: storage_hosts = self._db_api.ihost_get_by_personality( constants.CONTROLLER) # If there is no storage node present, ceph usage # information is not relevant if not storage_hosts: return False # At least one storage node must be in available state for host in storage_hosts: if host['availability'] == constants.AVAILABILITY_AVAILABLE: break else: # No storage node is available return False return True # TODO(CephPoolsDecouple): rework - determine the existing pools def get_pools_config(self): for pool in CEPH_POOLS: # Here it is okay for
<gh_stars>1-10 import os import sys import glob import argparse import pandas as pd import numpy as np from astropy.wcs import WCS from astropy.io import fits, ascii from astropy.visualization import ImageNormalize, ZScaleInterval import matplotlib.pyplot as plt import time from tqdm import tqdm from spacekit.analyzer.track import stopwatch class DrawMosaics: """Class for generating machine-learning image inputs from drizzled total detection fits files and their associated catalog files. Primarily used for creating multiple images at once (batch) with capability for single images/single dataset also available.""" def __init__( self, input_path, output_path=None, fname=None, visit=None, pattern="", gen=3, size=(24, 24), crpt=0, ): """Initializes a DrawMosaics class object. Parameters ---------- input_path : str (path) path to dataset subdirectories containing total or filter fits files output_path : [type], optional where to save the pngs (path), by default None (will create and save in relative dir path named "img" ) fname : str (path), optional csv (dataframe) fname for generating specific list of datasets, by default None visit : [type], optional name of specific subdirectory (typically ipppssoot or visit name) containing .fits and .ecsv files, by default None pattern : str, optional glob search pattern (to restrict image generator to look for only certain visit names, e.g. 'ia*', by default '' gen : int, optional generator method to use: 0=generate original only; 1=point-segment, 2=gaia; 3=original, point-segment, and gaia (3 separate images), by default 3 size : tuple, optional size to make the figures i.e. figsize=(size,size), by default (24, 24) crpt : int, optional modifies the input search pattern as well as output png file naming convention (so that a non-corrupt visit of the same name is not overwritten), by default 0 """ self.input_path = input_path self.output_path = output_path self.check_output() self.fname = fname self.visit = visit self.pattern = pattern self.gen = gen self.size = size self.crpt = crpt self.rgx = self.check_format() self.status = {"new": [], "skip": [], "err": []} self.datasets = self.get_datasets() self.clip = True self.manual = None def check_output(self): """check if a custom output_path is set, otherwise create a subdirectory "img" in the current working directory and set as the output_path attribute. Returns ------- str (path) path to subdirectory for saving png images. """ if self.output_path is None: self.output_path = os.path.join(os.getcwd(), "img") # TODO if permission error, write to /tmp os.makedirs(self.output_path, exist_ok=True) return self.output_path def check_format(self, dname=None): if dname is None: dname = "??????" if self.crpt == 1: return f"{dname}_*_???_st??" else: return dname def get_hapfiles(self, dataset): if self.pattern: subdir = f"{self.input_path}/{self.pattern}/{dataset}" else: subdir = f"{self.input_path}/{dataset}" dname = dataset.split("_")[0] hfiles = glob.glob(f"{subdir}/*total_{dname}_dr?.fits") return subdir, hfiles def get_datasets(self): """Locate inputs (fits file directories) to use for drawing the images. Search method used is based on parameters set when the DrawMosaics class object is instantiated. If multiple parameters are passed in, the order of search priority is 1) `fname`: only look for visits found in the csv file/dataframe (uses `load_from_file` method); 2) `visit` only look for subdirectories matching this specific visit name; 3) `local_search`: glob-based search for any visit subdirectories matching the pattern set in `pattern` attribute. (if crpt) Returns ------- list list of datasets/visits found according to search method used """ if self.fname: return self.load_from_file() elif self.visit: return [self.visit] else: return self.local_search() def load_from_file(self): """only look for visits found in the csv file/dataframe. Returns ------- list restricted list of inputs (visits) for which images will be drawn """ if not self.fname.endswith("csv"): self.fname += ".csv" df = pd.read_csv(self.fname, index_col="index") idx = list(df.index) self.datasets = [] skip = [] for i in idx: impath = os.path.join(self.output_path, i) visit = i.split("_")[6] if not self.crpt else "_".join(i.split("_")[6:]) if os.path.exists(impath): num = len(glob.glob(f"{impath}/*")) if num < 3: self.datasets.append(visit) else: skip.append(visit) else: self.datasets.append(visit) if len(skip) > 0: self.status["skip"] = list(set(skip)) print("Skipping found images: ", len(self.status["skip"])) print(f"\nFound {len(self.datasets)} new datasets.") return list(set(self.datasets)) def local_search(self): """only look for visit names matching a glob-based search pattern. Returns ------- list list of inputs (visits) for which images will be drawn """ search = self.pattern if self.pattern else self.rgx inputs = glob.glob(f"{self.input_path}/{search}") if len(inputs) == 0: # try one more directory down print("None found - Checking subdirectories") inputs = glob.glob(f"{self.input_path}/*/{search}") if len(inputs) == 0: # fall back to wildcard print("None found - using fallback (wildcard)") inputs = glob.glob(f"{self.input_path}/*{self.rgx}") try: self.datasets = [i.split("/")[-1] for i in inputs] print(f"\nFound {len(self.datasets)} datasets.") return self.datasets except Exception as e: print(e) print("No datasets found. Exiting.") sys.exit(1) def point_flag_color(self, x): """determines whether or not to draw a small red (or green) circle on top of the original image data depending on the value found in point source catalog. More info on the values associated with the "flag" color can be found in the Drizzlepac handbook at drizzlepac.readthedocs.io (Drizzlepac.catalog_generation api) Parameters ---------- x : int value pulled from point catalog file Returns ------- str "red", "green" or None depending on input value """ if x <= 1: return "red", "Flag <= 1" elif x <= 5: return "green", "2 <= Flag <= 5" else: return None, None # 'yellow', 'Flag > 5' def segment_flag_color(self, x): """draw a small blue circle on top of the original image data depending on the value found in segment source catalog. Parameters ---------- x : int value pulled from segment catalog file Returns ------- str "blue", "green" or None depending on input value """ if x <= 1: return "blue", "Flag <= 1" elif x <= 5: return "green", "2 <= Flag <= 5" else: return None, None # 'yellow', 'Flag > 5' def draw_catalogs(self, cfile, catalog): """Open and read .escv catalog file associated with the visit (if available) and map the appropriate values and coordinates to draw as an overlay on the original image. Credit: based in part on code by <NAME> Parameters ---------- cfile : str (path) path to source catalog file catalog : str "point", "segment" or "gaia" Returns ------- Pandas dataframe, lists of flag colors table of catalog values and associated flag colors. """ cat, fcolor_, fcolor = None, None, None if os.path.exists(cfile): # cat = Table.read(catfile, format='ascii.ecsv') cat = ascii.read(cfile).to_pandas() else: cat = "" if len(cat) > 0: if "Flags" in cat.columns: flagcols = cat["Flags"] else: flagcols = [c for c in cat.columns if "Flags" in c] if len(flagcols) > 0: flags = ( cat.loc[:, flagcols] .fillna(100, axis=0, inplace=False) .apply(min, axis=1) ) if catalog == "point": fcolor_ = flags.apply(self.point_flag_color) elif catalog == "segment": fcolor_ = flags.apply(self.segment_flag_color) fcolor = fcolor_.apply(lambda x: x[0]).values return cat, fcolor_, fcolor def create_image_name(self, name, dataset, P=0, S=0, G=0, fgroup=None): """Determines which suffix to append to the output png file based on which catalog(s) are used (if any). Parameters ---------- name : str visit name dataset : [type] visit name (used to adjust `name` if crpt=1) P : int, optional draw point catalog overlay (if available), by default 0 S : int, optional draw segment catalog overlay (if available), by default 0 G : int, optional draw Gaia catalog overlay (if eDR3 or GSC242 available), by default 0 Returns ------- str path to png output for this image. """ if P == 1 and S == 1: catstr = "_source" elif P == 1 and S == 0: catstr = "_point" elif P == 0 and S == 1: catstr = "_segment" elif G == 1: catstr = "_gaia" else: catstr = "" if self.crpt: sfx = "_".join(dataset.split("_")[1:]) name = f"{name}_{sfx}" if fgroup: # rel filter images share same parent dir img_out = fgroup else: img_out = f"{self.output_path}/{name}" os.makedirs(img_out, exist_ok=True) imgpath = os.path.join(img_out, f"{name}{catstr}") return imgpath def generate_total_images(self): """Batch image generation method for multiple datasets (and multiple catalog types)""" base = os.path.dirname(os.path.abspath(self.output_path)) start = time.time() stopwatch("DRAWING IMAGES", t0=start, out=base) if self.datasets is None: print("No datasets available. Exiting") sys.exit(1) print(f"Generating images for {len(self.datasets)} datasets.") for dataset in tqdm(self.datasets): if self.gen == 3: # original, point-segment, and GAIA self.draw_total_images(dataset) self.draw_total_images(dataset, P=1, S=1) self.draw_total_images(dataset, G=1) elif self.gen == 2: # GAIA self.draw_total_images(dataset, G=1) elif self.gen == 1: # point-segment self.draw_total_images(dataset, P=1, S=1) else: # original
import shutil, atexit, os, tempfile, logging import numpy as np import cv2 from scipy import ndimage import ray from src.focus_stack.utilities import Utilities import src.focus_stack.RayFunctions as RayFunctions # Setup logging log = logging.getLogger(__name__) class ImageHandler: image_storage = {} image_shape = () temp_dir_path = None rgb_images_temp_files = {} def __init__(self): # Initialize algorithms self.LaplacianPixelAlgorithm = LaplacianPixelAlgorithm(self) self.PyramidAlgorithm = PyramidAlgorithm(self) # Create tempdirectory (for storing all image data) self.temp_dir_path = tempfile.mkdtemp(prefix="python_focus_stacking_") # Remove folder on program exit atexit.register(self.deleteTempFolder) # Load a list of images in parallel def loadImages(self, image_paths, update_func): # Clear image_storage self.image_storage = {} # Start image loading in parallel data = [ RayFunctions.loadImage.remote(path, self.temp_dir_path) for path in image_paths ] # Run update loop (wait for one item to finish and send update back to UI) finished = [] while True: ready_ref, remaining_refs = ray.wait(data, num_returns=1, timeout=None) data = remaining_refs ready_ref = ray.get(ready_ref) # Get value finished.append(ready_ref[0]) # Add finished image to table update_func(ready_ref[0][0]) # Send loaded image path to UI if not data: break # All images have been loaded # Extract data and place references to files inside image_storage image_paths = [] for info_table in finished: image_path = info_table[0] image_shape = info_table[1] rgb_file_name = info_table[2] grayscale_file_name = info_table[3] image_paths.append(image_path) self.rgb_images_temp_files[image_path] = rgb_file_name self.image_storage[image_path] = { "image_shape": image_shape, "rgb_source": rgb_file_name, "grayscale_source": grayscale_file_name, } del finished return image_paths # Return loaded images to UI # Align a list of images in parallel def alignImages(self, image_paths, parameters, update_func): data = [ RayFunctions.alignImage.remote( path, parameters, self.image_storage, self.temp_dir_path ) for path in image_paths ] # Run update loop (wait for one item to finish and send update back to UI) finished = [] while True: ready_ref, remaining_refs = ray.wait(data, num_returns=1, timeout=None) data = remaining_refs ready_ref = ray.get(ready_ref) # Get value finished.append(ready_ref[0]) # Add finished image to table update_func(ready_ref[0][0]) # Send loaded image path to UI if not data: break # All images have been aligned # Extract data and place references to files inside image_storage image_paths = [] for info_table in finished: image_path = info_table[0] image_paths.append(image_path) # Append to image storage ditionary self.image_storage[image_path]["rgb_aligned"] = info_table[1] self.image_storage[image_path]["grayscale_aligned"] = info_table[2] return image_paths # Return image shape def getImageShape(self): return self.image_shape # Export image to path def exportImage(self, path): if "stacked_image" in self.image_storage: output = self.getImageFromPath(None, "stacked") rgb = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) cv2.imwrite(path, rgb) del output return True else: return False # No stacked image # Get image (specified type aka. RGB, grayscale, aligned, ...) from storage def getImageFromPath(self, path, im_type): if path in self.image_storage: im_root = self.image_storage[path] if im_type == "rgb_source" and im_type in im_root: return np.memmap( im_root[im_type], mode="r", shape=im_root["image_shape"] ) elif im_type == "rgb_aligned" and im_type in im_root: return np.memmap( im_root[im_type], mode="r", shape=im_root["image_shape"] ) elif im_type == "grayscale_gaussian" and im_type in im_root: return np.memmap( im_root[im_type], mode="r", shape=im_root["image_shape"] ) elif im_type == "grayscale_laplacian" and im_type in im_root: return np.memmap( im_root[im_type], mode="r", shape=im_root["image_shape"], dtype="float64", ) elif im_type == "stacked" and "stacked_image" in self.image_storage: im = self.image_storage["stacked_image"] return np.memmap(im["file"], mode="r", shape=im["image_shape"]) # Downscale an image def downscaleImage(self, image, scale_percent): new_dim = ( round(image.shape[1] * scale_percent / 100), round(image.shape[0] * scale_percent / 100), ) # New width and height return cv2.resize(image, new_dim, interpolation=cv2.INTER_AREA) def deleteTempFolder(self): log.info("Removing tempfile directory") shutil.rmtree(self.temp_dir_path) def clearImages(self): log.info("Clearing loaded images and their files") self.image_storage = {} # Remove all tempfiles inside directory folder = self.temp_dir_path for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: log.error("Failed to delete %s. Reason: %s" % (file_path, e)) def rgbOrAligned(self, path, im_type): if path in self.image_storage: im = self.image_storage[path] # Get image shape based on im_type if im_type == "grayscale": shape = (im["image_shape"][0], im["image_shape"][1]) else: shape = im["image_shape"] if im_type + "_aligned" in im: return im[im_type + "_aligned"], shape # Return aligned image elif im_type + "_source" in im: return im[im_type + "_source"], shape # Return source image class LaplacianPixelAlgorithm: """ Class that handles image stacking using a gaussian / laplacian pyramid. Uses images from the "ImageHandler" class. """ def __init__(self, parent): self.Parent = parent log.info("Initialized Laplacian pixel algorithm.") # Compute the laplacian edges of an image @ray.remote def computeLaplacianEdges(self, image_path, parameters): if not self.Parent.image_storage[image_path]: return elif not self.Parent.image_storage[image_path]["grayscale_source"]: return if self.Parent.image_storage[image_path]["grayscale_aligned"]: grayscale_image = self.Parent.image_storage[image_path]["grayscale_aligned"] else: grayscale_image = self.Parent.image_storage[image_path]["grayscale_source"] blurred = grayscale_image if parameters["GaussianBlur"] != 0: # Blur image blurred = cv2.GaussianBlur( grayscale_image, (parameters["GaussianBlur"], parameters["GaussianBlur"]), 0, ) laplacian = cv2.Laplacian( blurred, cv2.CV_64F, ksize=parameters["LaplacianKernel"] ) del grayscale_image # Save gaussian blurred grayscale memmapped_blur = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=(self.Parent.image_shape[0], self.Parent.image_shape[1]), dtype=blurred.dtype, ) memmapped_blur[:] = blurred self.Parent.image_storage[image_path]["grayscale_gaussian"] = memmapped_blur # Save laplacian grayscale memmapped_laplacian = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=(self.Parent.image_shape[0], self.Parent.image_shape[1]), dtype=blurred.dtype, ) memmapped_laplacian[:] = laplacian self.Parent.image_storage[image_path][ "grayscale_laplacian" ] = memmapped_laplacian return True # Calculate output image (final stacking) @ray.remote def stackImages(self, image_paths): """ Load rgb images and laplacian gradients Try using aligned RGB images (if there), or use source RGB images """ rgb_images = [] laplacian_images = [] for im_path in image_paths: if "rgb_aligned" in self.Parent.image_storage[im_path]: rgb_image = self.Parent.image_storage[im_path]["rgb_aligned"] else: rgb_image = self.Parent.image_storage[im_path]["rgb_source"] rgb_images.append( np.memmap( rgb_image, mode="r", shape=self.Parent.image_shape, ) ) if "grayscale_aligned" in self.Parent.image_storage[im_path]: grayscale_image = self.Parent.image_storage[im_path][ "grayscale_aligned" ] else: grayscale_image = self.Parent.image_storage[im_path]["grayscale_source"] laplacian_images.append( np.memmap( grayscale_image, mode="r", shape=(self.Parent.image_shape[0], self.Parent.image_shape[1]), dtype="float64", ) ) """ Calculate output image """ # Create memmap (same size as rgb input) stacked_memmap = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=self.Parent.image_shape, dtype=rgb_images[0].dtype, ) for y in range(rgb_images[0].shape[0]): # Loop through vertical pixels (rows) # Create holder for whole row holder = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=[1, stacked_memmap.shape[1], stacked_memmap.shape[2]], dtype=stacked_memmap.dtype, ) for x in range( rgb_images[0].shape[1] ): # Loop through horizontal pixels (columns) def get_abs(): values = [] for arr in laplacian_images: # noqa: F821 values.append( abs(arr[y, x]) ) # Insert (absolute) values of this pixel for each image return np.asarray(values, dtype=np.uint8) abs_val = get_abs() # Get absolute value of this pixel from every image index = (np.where(abs_val == max(abs_val)))[0][ 0 ] # Get image that has highest value for this pixel holder[0, x] = rgb_images[index][ y, x ] # Write pixel from "best image" to holder stacked_memmap[y] = holder[ 0 ] # Write entire focused row to output (holder has only one row) yield y # Send progress back to UI (every row) yield rgb_images[0].shape[0] # Finished # Store stacked image self.Parent.image_storage["stacked image"] = stacked_memmap class PyramidAlgorithm: """ Class that handles image stacking using a gaussian / laplacian pyramid. Uses inherited images from the "ImageHandler" class. """ def __init__(self, parent): self.Parent = parent from src.focus_stack.RayFunctions import reduceLayer self.reduceLayer = reduceLayer def generating_kernel(a): kernel = np.array([0.25 - a / 2.0, 0.25, a, 0.25, 0.25 - a / 2.0]) return np.outer(kernel, kernel) def convolve(self, image, kernel=generating_kernel(0.4)): return ndimage.convolve(image.astype(np.float64), kernel, mode="mirror") def expand_layer(self, layer, kernel=generating_kernel(0.4)): if len(layer.shape) == 2: expand = next_layer = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=(2 * layer.shape[0], 2 * layer.shape[1]), dtype=np.float64, ) expand[::2, ::2] = layer convolution = self.convolve(expand, kernel) return 4.0 * convolution ch_layer = self.expand_layer(layer[:, :, 0]) next_layer = np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=tuple(list(ch_layer.shape) + [layer.shape[2]]), dtype=ch_layer.dtype, ) next_layer[:, :, 0] = ch_layer for channel in range(1, layer.shape[2]): next_layer[:, :, channel] = self.expand_layer(layer[:, :, channel]) return next_layer def gaussian_pyramid(self, images, levels): log.info("Started calculation of Gaussian pyramid.") # Convert images to float64 for image in images: image = image.astype(np.float64, copy=False) pyramid = [images] while levels > 0: log.info("Start processing of level {}.".format(levels)) next_layer = ray.get(self.reduceLayer.remote(pyramid[-1][0])) next_layer_size = [len(images)] + list(next_layer.shape) pyramid.append( np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=tuple(next_layer_size), dtype=next_layer.dtype, ) ) pyramid[-1][0] = next_layer for image_index in range(1, len(images)): print("Start processing of image {}.".format(image_index)) pyramid[-1][image_index] = ray.get( self.reduceLayer.remote(pyramid[-2][image_index]) ) levels -= 1 return pyramid def laplacian_pyramid(self, images, gaussian): log.info("Started calculation of Laplacian pyramid.") pyramid = [gaussian[-1]] for level in range(len(gaussian) - 1, 0, -1): log.info("Start processing of level {}.".format(level)) gauss = gaussian[level - 1] d = gauss[0].shape pyramid.append( np.memmap( tempfile.NamedTemporaryFile(), mode="w+", shape=(len(images), d[0], d[1], d[2]), dtype=np.float64, ) ) for image_index in range(len(images)): print("Start processing of image {}.".format(image_index)) gauss_layer = gauss[image_index] expanded = self.expand_layer(gaussian[level][image_index]) if expanded.shape != gauss_layer.shape: expanded = expanded[: gauss_layer.shape[0], : gauss_layer.shape[1]] pyramid[-1][image_index] = gauss_layer - expanded
dataf_spec.destroy() self.updateTable() return dataf_spec=Toplevel() dataf_spec.title('Specify type of data field') top=self.master.winfo_toplevel() rootx=top.winfo_rootx() rooty=top.winfo_rooty() dataf_spec.geometry('+%d+%d' %(rootx+100,rooty+100)) dataf_spec.transient(self.master) dataf_spec.grab_set() # Grab all input # Get the name exclude=['Ekintype'] self.column_types=['text']+self.table.peatactions.keys()+self.table.ekin_actions.keys() self.column_types.remove('Ekintype') name_var=entry_field(dataf_spec,row=1,column=0,name='Name',ftype='text') type_var=entry_field(dataf_spec, row=2, column=0, name='Data field type', ftype='menu', items=self.column_types, default_item='text') self.default_var=entry_field(dataf_spec,row=3,column=0,name='Default value',ftype='text') Button(dataf_spec, command=add, text='Add data field',fg='red').grid(row=5,column=0,columnspan=1, padx=2,pady=2,sticky='news') Button(dataf_spec, command=close, text='Cancel',fg='green').grid(row=5,column=1,columnspan=1, padx=2,pady=2,sticky='news') def addField(self): """Add a new data field to the database""" return def deleteColumn(self): """Delete selected field""" col = self.table.getSelectedColumn() colname = self.tablemodel.getColumnName(col) if colname in self.DB.meta.staticfields: tkMessageBox.showinfo('Cannot delete', "This field can't be removed.\n" 'You may mark it as hidden.', parent=self.master) return ans = tkMessageBox.askyesno("Delete", "Delete This Column?") if ans: #if self.DB.length() > 20: from Dialogs import PEATDialog pb=PEATDialog(self.master, option='progressbar', message='Deleting this field for all records..') pb.update_progress(0) callback = pb.update_progress self.DB.deleteField(colname, callback=callback) self.DB.data._p_jar.cacheGC() self.updateTable() self.updateStatusPane() if pb: pb.close() return def undo(self): """Undo all changes since last commit to DB""" if self.DB == None or self.DB.isChanged() == False: return self.DB.abort() self.updateTable() return def showChanged(self): """Show list of changed records""" if self.DB == None: return cframe = self.createChildFrame() #we should make sidepane a class def close(): cframe.destroy() self.resetSidePane(width=20) return def update(): items = self.DB.getChanged() try: self.chgeditemswin.destroy() except: pass self.chgeditemswin = Pmw.ScrolledText(cframe, labelpos = 'nw', label_text='Changed Items Since last Save', usehullsize = 1, hull_width=self.MAIN_width, hull_height=200) self.chgeditemswin.pack(fill=BOTH, side=BOTTOM, padx=2,pady=2) for i in items: self.chgeditemswin.insert(END, i+'\n') return Button(cframe,text='Update',command=update).pack(fill=BOTH, side=BOTTOM, padx=2,pady=2) Button(cframe,text='Close',command=close).pack(fill=BOTH, side=BOTTOM, padx=2,pady=2) update() return def showUndoLog(self): """Show db commit log""" if self.DB == None: return from datetime import datetime self.changelogframe = self.createChildFrame() cframe = self.changelogframe def close(): cframe.destroy() self.changelogframe = None self.resetSidePane(width=20) return def errormessage(): tkMessageBox.showwarning("Undo Error", 'Could not undo this transaction.\n' 'Later commits probably altered the same data.') def tryUndo(): i = self.ltable.get_selectedRecordNames()[0] undoid = self.ulogs[i]['id'] comment = tkSimpleDialog.askstring('Log comment', 'Enter a comment for the log', initialvalue='', parent=self.main) self.DB.undo(id=undoid, user=self.username, note=comment, callback=errormessage) self.updateTable() self.recordEvent('Undid transaction %s' %undoid) self.updateChangelog() if self.DB.supportsUndo(): Button(cframe,text='Update',command=self.updateChangelog).grid(row=3,column=0,columnspan=3, sticky='news') Button(cframe,text='Undo Selected',command=tryUndo).grid(row=4,column=0,columnspan=3, sticky='news') Button(cframe,text='Close',command=close).grid(row=5,column=0,columnspan=3, sticky='news') w='Use the undo feature carefully.\nYou should be aware of what data changes\n' w+='are being undone. Provide a comment\nwith the undo to indicate what you reverted.' Label(cframe,text=w,bg='lightyellow').grid(row=6,column=0,columnspan=3,sticky='news') self.updateChangelog() return def updateChangelog(self): if not hasattr(self, 'changelogframe') or self.changelogframe == None: return try: self.changelog.destroy() except: pass #show logs in a table from Tables import TableCanvas self.ulogs={}; l=self.DB.undoLog() i=0 for r in range(len(l)-1,-1,-1): l[r]['time'] = self.formatTime(l[r]['time']) l[r]['user_name'] = l[r]['user_name'].strip('/ ') self.ulogs[i] = l[r]; i+=1 self.ltable = TableCanvas(self.changelogframe, newdict=self.ulogs, namefield='rev', cellwidth=50, cellbackgr='#E3F6CE', thefont="Arial 10",rowheight=16, editable=False, rowselectedcolor='yellow',reverseorder=1) self.ltable.createTableFrame() return def formatTime(self, s): x = datetime.fromtimestamp(s).strftime("%d-%m-%Y %H:%M:%S") return x def updateView(self): """Update the table if no changes pending""" if self.DB==None: return if self.DB.isChanged() == True: tkMessageBox.showinfo('Pending changes', 'You have pending changes and should save these first.', parent=self.master) return self.DB.connection.sync() self.updateTable() self.updateStatusPane() self.updateChangelog() return def get_field_label(self, field): """Return the field label""" model = self.table.getModel() return model.columnlabels[field] def updateTable(self, protein=None, field_name=None): """To be called whenever a change to DB needs to be reflected in table. """ if self.DB == None: return DB=self.DB if hasattr(self, 'table') and self.table != None: #Update the table model to reflect changes in DB and redraw the table model = self.tablemodel if self.table.rows < 10000: sortcol = self.table.sortcol else: sortcol = None model.update_reclist(DB.data.keys(), self.table.sortcol) model.update_columnNames() model.update_colors() self.table.redrawTable() return def removeTable(self): """Remove the main table""" self.closeSidePane() if hasattr(self.table, 'filterframe') and self.filterframe != None: self.table.filterframe.destroy() self.table = None try: if self.tableframe != None: self.tableframe.destroy() self.tableframe = None except: print 'no tableframe' return def createTableView(self): """Create a new table view""" if self.DB == None or not hasattr(self, 'table'): return DB=self.DB newframe = Toplevel() tableframe = Frame(newframe, bd=1,relief=RAISED) tableframe.pack(fill=BOTH,expand=1) table = PEATTable(tableframe, self.tablemodel, parentapp=self) table.loadPrefs(self.preferences) table.createTableFrame() if self.preferences.get('thumbsize') == '': self.preferences.set('thumbsize',200) table.thumbsize = int(self.preferences.get('thumbsize')) return def pageView(self, event=None): if self.pageviewvar.get() == False: self.table.paging = 0 else: self.table.paging = 1 self.table.redrawTable() return def resize(self,event): """Update the scrollbars""" if event.widget==self.master: if event.width>100 and event.height>100: self.masterframe.configure(hull_width=event.width, hull_height=event.height) try: self.tableframe.configure(width=event.width-50) self.tableframe.configure(height=event.height-100) except: pass try: self.cv.configure(width=event.width-50) self.cv.configure(height=event.height-100) self.cv.configure(scrollregion=(0,0,self.canvas_x,self.canvas_y)) except: pass return def showBlankCanvas(self, frame, row): """Create a blank canvas for introduction""" width=900 height=750 cv=Canvas(frame, width=self.canvas_x_size-self.canvas_border_x, height=self.canvas_y-self.canvas_border_y, scrollregion=(0,0,self.canvas_x_size,self.canvas_y), bd=0, relief=GROOVE, bg='#9999CC', highlightthickness=0) cv.grid(row=row,column=0,columnspan=10,rowspan=1, sticky='news', pady=3,ipady=2) #frame.add(cv) cv.configure(width=width-50) cv.configure(height=height-300) return cv def removeBlankCanvas(self): self.cv.destroy() return def welcomeLogo(self): """Show the welcome logo and text""" self.removeLogo() self.logo=None import tkFont try: logo = PEAT_images.logo_large_mono() self.cv.create_image(self.canvas_x_size/2,self.canvas_y_size/2,image=logo) self.cv.image=logo except: import tkFont font=tkFont.Font(family='Arial',size=38) self.cv.create_text(self.canvas_x_size/2,self.canvas_y_size/2-50, text='P E A T', font=font,anchor='n', fill='black', tag='logo') text=['Welcome to Protein Engineering and Analysis Tool (PEAT)', 'Authors: <NAME>, <NAME> and <NAME>', 'Copyright <NAME>, University College Dublin 2003-, All rights reserved'] self.y=20 self.x=380 ifont=tkFont.Font(family='Arial',size=12) for line in text: self.cv.create_text(self.x,self.y,text=line,fill='white',font=ifont, tag='logo') self.y=self.y+15 # Remove the logo after some time #self.wait=self.after(4000, self.show_startinstructions) return def removeLogo(self,event=None): """Remove the logo and welcome message.""" if self.cv == None: return self.cv.delete('logo') self.cv.image=None self.master.unbind('<KeyPress>') self.master.unbind('<Button-1>') try: self.after_cancel(self.wait) except: pass return def onlineDocumentation(self,event=None): """Open the online documentation""" import webbrowser link='http://enzyme.ucd.ie/main/index.php/PEAT_DB' webbrowser.open(link,autoraise=1) return def gotoBugzilla(self, event=None): """Open bugzilla site""" import webbrowser link='http://peat.ucd.ie/bugzilla/' webbrowser.open(link,autoraise=1) return def aboutPEAT(self): self.ab_win=Toplevel() self.ab_win.geometry('+100+350') self.ab_win.title('About PEAT') logo = PEAT_images.logo() label = Label(self.ab_win,image=logo) label.image = logo label.grid(row=0,column=0,sticky='news',padx=4,pady=4) text=['P E A T ','Protein Engineering and Analysis Tool', 'Version 2 ','A database tool for analysing the effect of point mutations', 'on the catalytic and structural characteristics of proteins and enzymes', 'Authors: <NAME>, <NAME> and <NAME>', 'University College Dublin','(C) Copyright 2003- <NAME> All rights reserved'] row=1 for line in text: tmp=Label(self.ab_win,text=line) tmp.grid(row=row,column=0,sticky='news',padx=4) row=row+1 return def recordEvent(self,message='Timestamp'): """Display a message in the eventlog""" import time tid=time.strftime('%H:%M:%S %d/%m',time.localtime(time.time())) self.eventlog.insert('0.0','%s: %s\n' %(tid,message)) self.master.update_idletasks() return def findValue(self): self.currenttable.findValue() return def dofindText(self, event=None): """Find the text in the table""" if not hasattr(self,'currenttable'): return import string if string.strip(self.findtext.get())=='': return searchstring=self.findtext.get() if self.currenttable!=None: self.currenttable.findValue(searchstring) return def dofindAgain(self, event=None): """Find again""" if not hasattr(self,'currenttable'): return searchstring=self.findtext.get() if self.currenttable!=None: self.currenttable.findValue(searchstring, findagain=1) return def loginSetup(self): """Login setttings for authentication to ZEO""" mpDlg = MultipleValDialog(title='Login settings', initialvalues=(self.username, self.password), labels=('user name','password'), types=('string','password'), parent=self.main) if mpDlg.result == True: self.username = mpDlg.results[0] self.password = mpDlg.results[1] self.preferences.set('username',self.username) self.preferences.set('password',<PASSWORD>) else: return return def showSettings(self): """Settings dialog""" import Prefs if self.showDialogsinSidePane == True and self.DB!=None: self.resetSidePane(width=320) X=Prefs.preferences_dialog(parent=self,parentframe=self.sidepane, subset='PEAT',callback=self.getPrefs) else: X=Prefs.preferences_dialog(parent=self,subset='PEAT',callback=self.getPrefs) return def hideFieldsDialog(self): """Allow fields to be hidden""" fr=Toplevel() fr.geometry('300x350+300+200') fr.title('Show/hide fields') fr.grab_set() fr.transient() userfields = self.DB.meta.userfields def apply(): show=list(checkbuttons.getcurselection()) for f in userfields: if '_' in f: n=f.replace('_',' ') else: n=f print f,n, show if n not in show: self.DB.showField(f, False) else: self.DB.showField(f) self.updateTable() return def close(): fr.destroy() Button(fr, text='Apply', command=apply).grid(row=0,column=0,padx=2,pady=2) Button(fr, text='Close', command=close).grid(row=1,column=0,padx=2,pady=2) cbfr = Pmw.ScrolledFrame(fr) cbfr.grid(row=2,column=0,padx=2,pady=2) checkbuttons = Pmw.RadioSelect(cbfr.interior(), buttontype = 'checkbutton', orient = 'vertical', labelpos = 'n', label_text = 'Deselect fields to hide them:') for f in userfields: if '_' in f: n=f.replace('_',' ') else: n=f checkbuttons.add(n) if userfields[f]['show'] == True: checkbuttons.invoke(n) checkbuttons.pack(fill=BOTH,expand=1,padx=2,pady=2) fr.columnconfigure(0,weight=1) fr.rowconfigure(2,weight=1) return def quit(self,event=None): """Close DB and quit""" answer = self.closeDB() if answer == 'cancel': return #check is plugin running? #if hasattr(self,'runningplugin'): # print self.runningplugin self.closeSidePane() self.main.destroy() self.preferences.save_prefs() if not self.parent: sys.exit() return def showtablePrefs(self): if self.table: self.table.showtablePrefs() return # #move these to an actions class..? #calls to updateTable could be replaced with an updateCell function # def importCSV(self): """Import CSV files dialog""" if self.DB == None: return from PEATDB.IO import Importer IM = Importer() result = IM.getLines() if result==None: return IM.showimportDialog() self.wait_window(IM.ask_csv) #also get field for unique key keys = IM.data[0].keys() mpDlg = MultipleValDialog(title='Import Helper', initialvalues=([keys]), labels=(['Choose key field:']), types=(['list']), parent=self.main) if mpDlg.result == True: key = mpDlg.results[0] else: return self.DB.importDict(importdata=IM.data, namefield=key) self.updateTable() return def importSequences(self): """Import AA sequences""" return def importMutants(self): """Specialised import method for adding mutant data from a csv file. Requires a wt structure to create mutant AA sequences""" def getpdb(): return def doimport(): #self.DB.importDict(importdata=IM.data, namefield='name') #use mutations field to derive aa seq.. return fr=Frame() win=Toplevel() Label(win, text='This dialog allows you to import a set of mutant data\n' 'along with some associated experimental values. You will\n' 'need to provide the the structure for creating an AA\n' 'sequence for each mutant. Mutation codes should be of\n' 'the form chain:residuenumber:code',bg='#ccFFFF').pack(fill=BOTH,expand=1) Button(win,text='Set a wt PDB',command=getpdb).pack(fill=BOTH,expand=1) fr=Frame(win); fr.pack(fill=X,expand=1) self.useref = IntVar() Label(fr,text='Use current reference protein').pack(side=LEFT) Checkbutton(fr,variable=self.useref).pack(side=LEFT) self.set_centered_geometry(self.main,win) Button(win,text='Continue',command=doimport).pack(fill=BOTH,expand=1) return def importFileset(self): """Use filehandler class to import a set of external files""" if self.DB == None: return fh = FileHandler(parent=self) if
or when the upstream device is performing a RSS for connection based distribution. type: str dnsprofilename: description: - >- Name of the DNS profile to be associated with the VServer. DNS profile properties will be applied to transactions processed by a VServer. This parameter is valid only for DNS and DNS-TCP VServers. - "Minimum length = 1" - "Maximum length = 127" type: str lbprofilename: description: - "Name of the LB profile which is associated to the vserver." type: str redirectfromport: description: - "Port number for the virtual server, from which we absorb the traffic for http redirect." - "Minimum value = C(1)" - "Range 1 - 65535" - "* in CLI is represented as 65535 in NITRO API" type: int httpsredirecturl: description: - "URL to which to redirect traffic if the traffic is recieved from redirect port." type: str retainconnectionsoncluster: description: - >- This option enables you to retain existing connections on a node joining a Cluster system or when a is being configured for passive timeout. By default, this option is disabled. type: bool adfsproxyprofile: description: - "Name of the adfsProxy profile to be used to support ADFSPIP protocol for ADFS servers." type: str weight: description: - "Weight to assign to the specified service." - "Minimum value = C(1)" - "Maximum value = C(100)" type: str servicename: description: - "Service to bind to the virtual server." - "Minimum length = 1" type: str redirurlflags: description: - "The redirect URL to be unset." type: bool disabled: description: - When set to C(true) the server state will be set to C(disabled). - When set to C(false) the server state will be set to C(enabled). type: bool default: false ssl_certkey: type: str description: - The name of the ssl certificate that is bound to this service. - The ssl certificate must already exist. - Creating the certificate can be done with the M(citrix_adc_ssl_certkey) module. - This option is only applicable only when C(servicetype) is C(SSL). servicebindings: type: list elements: dict description: - List of services along with the weights that are load balanced. - The following suboptions are available. suboptions: servicename: description: - "Service to bind to the virtual server." - "Minimum length = 1" type: str weight: description: - "Weight to assign to the specified service." - "Minimum value = C(1)" - "Maximum value = C(100)" type: str servicegroupbindings: type: list elements: dict description: - List of services along with the weights that are load balanced. - The following suboptions are available. suboptions: servicegroupname: description: - "The service group name bound to the selected load balancing virtual server." type: str weight: description: - >- Integer specifying the weight of the service. A larger number specifies a greater weight. Defines the of the service relative to the other services in the load balancing configuration. Determines the given to the service in load balancing decisions. - "Minimum value = C(1)" - "Maximum value = C(100)" type: str appfw_policybindings: type: list elements: dict description: - List of services along with the weights that are load balanced. - The following suboptions are available. suboptions: policyname: description: - "Name of the policy bound to the LB vserver." type: str priority: description: - "Priority." type: str gotopriorityexpression: description: - >- Expression specifying the priority of the next policy which will get evaluated if the current policy evaluates to TRUE. type: str bindpoint: choices: - 'REQUEST' - 'RESPONSE' description: - "The bindpoint to which the policy is bound." type: str invoke: description: - "Invoke policies bound to a virtual server or policy label." type: bool labeltype: choices: - 'reqvserver' - 'resvserver' - 'policylabel' description: - "The invocation type." type: str labelname: description: - "Name of the label invoked." type: str extends_documentation_fragment: citrix.adc.citrixadc ''' EXAMPLES = ''' # Citrix ADC services service-http-1, service-http-2 must have been already created with the citrix_adc_service module - name: Create a load balancing vserver bound to services delegate_to: localhost citrix_adc_lb_vserver: nsip: 172.18.0.2 nitro_user: nsroot nitro_pass: nsroot validate_certs: no state: present name: lb_vserver_1 servicetype: HTTP timeout: 12 ipv46: 172.16.17.32 port: 80 servicebindings: - servicename: service-http-1 weight: 80 - servicename: service-http-2 weight: 20 # Service group service-group-1 must have been already created with the citrix_adc_servicegroup module - name: Create load balancing vserver bound to servicegroup delegate_to: localhost citrix_adc_lb_vserver: nsip: 172.18.0.2 nitro_user: nsroot nitro_pass: <PASSWORD> validate_certs: no state: present name: lb_vserver_2 servicetype: HTTP ipv46: 172.16.31.10 port: 80 timeout: 10 servicegroupbindings: - servicegroupname: service-group-1 ''' RETURN = ''' loglines: description: list of logged messages by the module returned: always type: list sample: ['message 1', 'message 2'] msg: description: Message detailing the failure reason returned: failure type: str sample: "Action does not exist" diff: description: List of differences between the actual configured object and the configuration specified in the module returned: failure type: dict sample: { 'clttimeout': 'difference. ours: (float) 10.0 other: (float) 20.0' } ''' import copy from ansible.module_utils.basic import AnsibleModule from ansible_collections.citrix.adc.plugins.module_utils.citrix_adc import ( NitroResourceConfig, NitroException, netscaler_common_arguments, log, loglines, NitroAPIFetcher ) class ModuleExecutor(object): def __init__(self, module): self.module = module self.fetcher = NitroAPIFetcher(self.module) self.main_nitro_class = 'lbvserver' # Dictionary containing attribute information # for each NITRO object utilized by this module self.attribute_config = { 'lbvserver': { 'attributes_list': [ 'name', 'servicetype', 'ipv46', 'ippattern', 'ipmask', 'port', 'ipset', 'range', 'persistencetype', 'timeout', 'persistencebackup', 'backuppersistencetimeout', 'lbmethod', 'hashlength', 'netmask', 'v6netmasklen', 'backuplbmethod', 'cookiename', 'rule', 'listenpolicy', 'listenpriority', 'resrule', 'persistmask', 'v6persistmasklen', 'pq', 'sc', 'rtspnat', 'm', 'tosid', 'datalength', 'dataoffset', 'sessionless', 'trofspersistence', 'connfailover', 'redirurl', 'cacheable', 'clttimeout', 'somethod', 'sopersistence', 'sopersistencetimeout', 'healththreshold', 'sothreshold', 'sobackupaction', 'redirectportrewrite', 'downstateflush', 'backupvserver', 'disableprimaryondown', 'insertvserveripport', 'vipheader', 'authenticationhost', 'authentication', 'authn401', 'authnvsname', 'push', 'pushvserver', 'pushlabel', 'pushmulticlients', 'tcpprofilename', 'httpprofilename', 'dbprofilename', 'comment', 'l2conn', 'oracleserverversion', 'mssqlserverversion', 'mysqlprotocolversion', 'mysqlserverversion', 'mysqlcharacterset', 'mysqlservercapabilities', 'appflowlog', 'netprofile', 'icmpvsrresponse', 'rhistate', 'newservicerequest', 'newservicerequestunit', 'newservicerequestincrementinterval', 'minautoscalemembers', 'maxautoscalemembers', 'persistavpno', 'skippersistency', 'td', 'authnprofile', 'macmoderetainvlan', 'dbslb', 'dns64', 'bypassaaaa', 'recursionavailable', 'processlocal', 'dnsprofilename', 'lbprofilename', 'redirectfromport', 'httpsredirecturl', 'retainconnectionsoncluster', 'adfsproxyprofile', 'weight', 'servicename', 'redirurlflags', ], 'transforms': { 'pq': lambda v: 'ON' if v else 'OFF', 'sc': lambda v: 'ON' if v else 'OFF', 'rtspnat': lambda v: 'ON' if v else 'OFF', 'sessionless': lambda v: v.upper(), 'trofspersistence': lambda v: v.upper(), 'cacheable': lambda v: 'YES' if v else 'NO', 'sopersistence': lambda v: v.upper(), 'redirectportrewrite': lambda v: v.upper(), 'downstateflush': lambda v: v.upper(), 'disableprimaryondown': lambda v: v.upper(), 'authentication': lambda v: 'ON' if v else 'OFF', 'authn401': lambda v: 'ON' if v else 'OFF', 'push': lambda v: v.upper(), 'pushmulticlients': lambda v: 'YES' if v else 'NO', 'l2conn': lambda v: 'ON' if v else 'OFF', 'appflowlog': lambda v: v.upper(), 'macmoderetainvlan': lambda v: v.upper(), 'dbslb': lambda v: v.upper(), 'dns64': lambda v: v.upper(), 'bypassaaaa': lambda v: 'YES' if v else 'NO', 'recursionavailable': lambda v: 'YES' if v else 'NO', 'processlocal': lambda v: v.upper(), 'retainconnectionsoncluster': lambda v: 'YES' if v else 'NO', 'clttimeout': str, }, 'get_id_attributes': [ 'name', ], 'delete_id_attributes': [ 'name', ], 'non_updateable_attributes': [ 'servicetype', 'port', 'range', 'state', 'td', 'redirurlflags', 'newname', ], }, 'servicebindings': { 'attributes_list': [ 'servicename', 'weight', ], 'transforms': { }, 'get_id_attributes': [ 'name', ], 'delete_id_attributes': [ 'servicename', ] }, 'servicegroupbindings': { 'attributes_list': [ 'servicegroupname', 'weight', ], 'transforms': { }, 'get_id_attributes': [ 'name', ], 'delete_id_attributes': [ 'servicegroupname', ] }, 'appfw_policybindings': { 'attributes_list': [ 'policyname', 'priority', 'gotopriorityexpression', 'bindpoint', 'invoke', 'labeltype', 'labelname', ], 'transforms': { }, 'get_id_attributes': [ 'name', ], 'delete_id_attributes': [ 'policyname', 'priority', 'bindpoint', 'name', ] }, } self.module_result = dict( changed=False, failed=False, loglines=loglines, ) self.prepared_list = [] # Calculate functions will apply transforms to values read from playbook self.calculate_configured_lbvserver() self.calculate_configured_service_bindings() self.calculate_configured_servicegroup_bindings() self.calculate_configured_appfwpolicy_bindings() def calculate_configured_lbvserver(self): log('ModuleExecutor.calculate_configured_lbvserver()') self.configured_lbvserver = {} for attribute in self.attribute_config['lbvserver']['attributes_list']: value = self.module.params.get(attribute) # Skip null values if value is None: continue transform = self.attribute_config['lbvserver']['transforms'].get(attribute) if transform is not None: value = transform(value) self.configured_lbvserver[attribute] = value log('calculated configured lbvserver %s' % self.configured_lbvserver) def calculate_configured_service_bindings(self): log('ModuleExecutor.calculate_configured_service_bindings()') self.configured_service_bindings = [] if self.module.params.get('servicebindings') is None: return for service in self.module.params['servicebindings']: binding = {} binding['name'] = self.module.params['name'] for attribute in self.attribute_config['servicebindings']['attributes_list']: # Disregard null values value = service.get(attribute) if value is None: continue transform = self.attribute_config['servicebindings']['transforms'].get(attribute) if transform is not None: value = transform(value) binding[attribute] = value self.configured_service_bindings.append(binding) log('calculated configured service bindings %s' %
import asyncio, logging from ..Exceptions import ClientExceptions logger = logging.getLogger("Decorator") class BASE_DECORATOR(object): def __init__(self, parent:object, *args, **kwargs): self.parent = parent self.args = args self.kwargs = kwargs def __call__(self, func): self.func = func if self.validate(): setattr(self.parent, str(self), func) logger.info("%s created on parent(server) is on %s" %(self, self.parent)) else: logger.warning("%s is not valid so it hasn't added!" %self) def validate(self) -> bool: """ [:validator:] checks that the given function is coroutine """ return asyncio.iscoroutinefunction(self.func) def __str__(self): return self.__class__.__name__ class DecoratorUtils: async def call(self, name:str, *args, **kwargs) -> None: """ [:Decorator util:] the correct way to call decorated functions (not Requests) [:params:] name - decorator name like ('ready', 'close', etc...) *args - parse args to the function **kwargs - parse keyword arguments to the function """ logger.debug("Calling decorated function %s" %name) if hasattr(self, name): f = getattr(self, name) if self.is_okay_function(f): return (await f(*args, **kwargs)) logger.warning("Failed calling %s" %name) return -1 # means there is no such decorated function def is_okay_function(self, func) -> bool: """ [:Decorator util:] called by the call util function to valid the function [:params:] func - function to valid """ try: return asyncio.iscoroutinefunction(func) except: return False # may raise error because most of the time # the parameter is a class and the "iscoroutinefunction" checks for functions only class ServerDecorators(DecoratorUtils): """ [:decorator(s):] server decorators that you can access with the server object do not import this file and start using it!! [:to recv params:] server - the running server object [:example:] @Server.ready() async def foo(server): print("Server is ready and running on (ip %s | port %d)" %(server.ip, server.port)) [:NOTE:] do not import this file and start using in it wont work the server object is a subclass of this class and make sure your mathod gets a server as the first parameter """ @classmethod class ready(BASE_DECORATOR): """ [:decorated:] called when servers is started running [:params:] server - server object """ @classmethod class Event(BASE_DECORATOR): """ [:decorator:] if you want a function to appear every x time use event decorator [:to recv params:] *args/**kwargs - all you enter in **kwargs and *args should be recved in your function event [:params:] timer - when to appear after given time *args - args to parse to your event **kwargs - keyword args to parse to your event [:example:] @Server.Event(3, name="Daniel") async def foo(name): print("got name %s" %name) """ def __init__(self, parent:object, timer:int, *args, **kwargs): super().__init__(parent, *args, **kwargs) self.timer = self.Timer(timer, *self.args, **self.kwargs) self.loop = asyncio.get_event_loop() self.future = None self._create_future() # just getting the running event and creating future logger.info('Event %s created' ) def _create_and_run(self, *args, **kwargs): """ [:Event func safe:] creates a future and run it after this called when first created future finished and needs to create himself again """ _ = self._create_future() if _ == 0: return self.loop.create_task(self.start()) def _create_future(self, *args, **kwargs): """ [:Event func safe:] this creates a new future and adds him a callback and updating the Timer future """ if self.future is not None: if self.future.cancelled(): # if you cancelled it wont come back logger.info("%s cancelled aborting..." %self.timer) return 0 self.future = self.loop.create_future() self.future.add_done_callback(self._create_and_run) self.timer.future = self.future # the future refreshing himself logger.debug("%s created future for the Event via callback" %self) def __call__(self, func): self.func = func if self.validate(): self.timer.func = self.func self.parent.events[str(self)] = self async def start(self): await self def __await__(self): # awating the appended event starting it return self.timer.start().__await__() def __str__(self): return 'undefine' if not(hasattr(self, 'func')) else self.func.__name__ class Timer(object): """ [:Event obj safe:] (!not to use directliy!) this is sort of proxy to await for the given time and activate the function after awaited [:params:] time - timer *args - args to parse to the function **kwargs - keyword args to parse to the function """ def __init__(self, time:int, *args, **kwargs): self.time = time self.future = None # added manually self.args = args self.kwargs = kwargs async def start(self): """ [:Timer func:] starting the sleep time and when finished returnning the requested function """ await asyncio.sleep(self.time) await self.func(*self.args, **self.kwargs) self.future.set_result(1) logger.debug("Event %s finished after waitng %ds" %(self.func.__name__, self.time)) @classmethod class Request(object): """ [:decorator:] to add methods for your server use this decorator every added function appended to the server as a Func object make sure your function get server and client as paramters [:to recv params:] server - the running server object client - client who requested the added request custom - get what you want to get for this function look at the second example [:params:] superuser(default:False) - if True the request be allowed only for superusers allowed_groups(default:['*']) - list of group names the '*' mean everyone, only the client in the group will be allowed to use the request [:example:] 1.================================ @Server.Request() async def foo(server, client): print("method foo called from %d" %client.id) 2.================================ if you want the function to get parameters the client need to enter them just add this normaly @Server.Request() async def foo(server, client, foo, oof=False): print("foo called (foo=%s, oof=%s)" %(foo, oof)) 2.1================================ catch you requests error use @Server.Request.foo.error async def oof(foo, client, error): print("my %s method raised %s" %(foo, error)) # the foo parameter is the Func object of the current function """ def __init__(self, parent:object, *, name=None, superuser:bool=False, allowed_groups:list=['*']): self.server = parent self.name = name self.for_super = superuser self.allowed_groups = allowed_groups # this request be allowed to users in the given group name def __call__(self, func): self.func = self.Func( name=self.name, func=func, superusers=self.for_super, allowed_groups=self.allowed_groups ) if self.func.valid(): setattr(self.__class__, str(self.func), self.func) logger.info("%s added to the parent(server) object" %self.func) else: logger.warning("Failed adding %s to the parent(server)" %self.func) @classmethod async def remove(cls, func_name:str) -> None: """ [:Request classmethod func:] deletes the given function name [:params:] func_name - function name to delete [:example:] await Server.Request.remove('foo') """ if hasattr(cls, func_name): delattr(cls, func_name) logger.warning("Request %s deleted from the parent(server)" %func_name) class Func(object): """ [:Request obj:] for every added request the Request decorator build a new class from here to check validation everytime and more [:params:] name - request custome name (if none given the decorated function will be the name) func - the added func as request superusers - parsed from the Request object allowed_groups - parsed from the Request object """ def __init__(self, name, func, superusers:bool, allowed_groups:list): self.func = func self.for_super = superusers self.allowed_groups = allowed_groups self.name = self.get_name(name) self.server = None self.client = None self.args = () self.kwargs = {} @property def __doc__(self): return self.func.__doc__ def get_name(self, name): """ [:validator/func:] getting the given name if None (as default) the request name will be the decorated function name [:param:] name - passed name to the Request decorator """ if name == None: return self.func.__name__ ls = name.split(' ') return '_'.join(ls) # removing the spaces def valid(self): return asyncio.iscoroutinefunction(self.func) def check_permissions(self, client:object) -> bool: """ [:validator:] checks if the function caller has access to call this function [:params:] client - client to check if he has access """ if client.is_superuser: return True # superusers have access to everything in the server if "*" not in self.allowed_groups: return any(str(group) in self.allowed_groups for group in client.groups) if self.for_super: return client.is_superuser return True def __call__(self, server:object, client:object, **kwargs): self.server = server self.client = client self.kwargs = kwargs client_has_access = self.check_permissions(self.client) if client_has_access: return self logger.warning("Client %s id: %d tried to use method with no permissions to use it" %(client.addr, client.id)) return (self._call_error())(server=self.server, client=self.client, error=ClientExceptions.ClientDoesNotHasAccess) def __await__(self): try: return self.func( server=self.server, client=self.client, *self.args, **self.kwargs ).__await__() except Exception as e: return self._call_error()( server=self.server, client=self.client, error=e ).__await__() def __str__(self): return self.name def _call_error(self): """ [:Request Func func:] checks if error_fetcher added (error_fetcher - added via @Server.Request.foo.error) """ if hasattr(self, 'error_fetcher'): return getattr(self, 'error_fetcher') logger.warning('%s tried to call the error_fetcher but not found any' %self) return self._anon async def _anon(self): pass
'>' + 'ALIGNMENT COVERAGE (HIT SEQ)' + '</font></td>'] html_report_lines += ['<td style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'GENE ID' + '</font></td>'] html_report_lines += ['<td style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'FUNCTION' + '</font></td>'] html_report_lines += ['<td style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'GENOME' + '</font></td>'] # html_report_lines += ['<td align=center style="border-right:solid 2px '+border_head_color+'; border-bottom:solid 2px '+border_head_color+'"><font color="'+text_color+'" size='+text_fontsize+'>'+'IDENT'+'%</font></td>'] html_report_lines += ['<td align=center style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'ALN_LEN' + '</font></td>'] html_report_lines += ['<td align=center style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'E-VALUE' + '</font></td>'] html_report_lines += ['<td align=center style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + 'BIT SCORE' + '</font></td>'] html_report_lines += ['<td align=center style="border-right:solid 2px ' + border_head_color + '; border-bottom:solid 2px ' + border_head_color + '"><font color="' + text_color + '" size=' + text_fontsize + '>' + '<nobr>H_BEG-H_END</nobr>' + '</font></td>'] # html_report_lines += ['<td align=center style="border-right:solid 2px '+border_head_color+'; border-bottom:solid 2px '+border_head_color+'"><font color="'+text_color+'" size='+text_fontsize+'>'+'MIS MATCH'+'</font></td>'] # html_report_lines += ['<td align=center style="border-right:solid 2px '+border_head_color+'; border-bottom:solid 2px '+border_head_color+'"><font color="'+text_color+'" size='+text_fontsize+'>'+'GAP OPEN'+'</font></td>'] html_report_lines += ['</tr>'] for hmm_i, hmm_id in enumerate(input_HMM_ids[hmm_group]): html_report_lines += ['<tr><td colspan=table_col_width>Hits to <b>' + str(hmm_id) + '</b></td></tr>'] if total_hit_cnts[hmm_id] == 0 or html_report_chunks[hmm_i] == None or html_report_chunks[hmm_i] == '': html_report_lines += ['<tr><td colspan=table_col_width><blockquote><i>no hits found</i></td></tr>'] else: #html_report_lines.extend(html_report_chunks[hmm_i]) html_report_lines += [html_report_chunks[hmm_i]] html_report_lines += ['<tr><td colspan=table_col_width>' + sp + '</td></tr>'] html_report_lines += ['</table>'] html_report_lines += ['</body>'] html_report_lines += ['</html>'] # write html to file html_path = html_search_path html_report_str = "\n".join(html_report_lines) with open(html_path, 'w', 0) as html_handle: html_handle.write(html_report_str) #### Build Profile output report ## self.log(console, "BUILDING PROFILE REPORT ") # DEBUG if len(invalid_msgs) == 0 and many_type_name == 'GenomeSet': # calculate table # cats = all_HMM_ids_order table_data = dict() INSANE_VALUE = 10000000000000000 overall_low_val = INSANE_VALUE overall_high_val = -INSANE_VALUE cat_seen = dict() for cat in cats: cat_seen[cat] = False # count raw for genome_ref in genome_refs: if genome_ref not in table_data: table_data[genome_ref] = dict() for cat in cats: table_data[genome_ref][cat] = 0 if genome_ref not in hit_cnt_by_genome_and_model: continue for cat in cats: if cat in hit_cnt_by_genome_and_model[genome_ref] and \ hit_cnt_by_genome_and_model[genome_ref][cat] != 0: table_data[genome_ref][cat] = hit_cnt_by_genome_and_model[genome_ref][cat] cat_seen[cat] = True # determine high and low val for genome_ref in genome_refs: for cat in cats: val = table_data[genome_ref][cat] if val == 0: continue #self.log (console, "HIGH VAL SCAN CAT: '"+cat+"' VAL: '"+str(val)+"'") # DEBUG if val > overall_high_val: overall_high_val = val if val < overall_low_val: overall_low_val = val if overall_high_val == -INSANE_VALUE: raise ValueError("unable to find any counts") # build html report sp = '&nbsp;' text_color = "#606060" text_color_2 = "#606060" head_color_1 = "#eeeeee" head_color_2 = "#eeeeee" border_color = "#cccccc" border_cat_color = "#ffccff" #graph_color = "lightblue" #graph_width = 100 #graph_char = "." graph_char = sp #color_list = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e'] color_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd'] max_color = len(color_list) - 1 cat_disp_trunc_len = 40 cell_width = '10px' if len(genome_refs) > 20: graph_gen_fontsize = "1" # elif len(genome_refs) > 10: # graph_gen_fontsize = "2" else: # graph_gen_fontsize = "3" graph_gen_fontsize = "2" if len(cats) > 20: graph_cat_fontsize = "1" # elif len(cats) > 5: # graph_cat_fontsize = "2" else: # graph_cat_fontsize = "3" graph_cat_fontsize = "2" if int(graph_cat_fontsize) < int(graph_gen_fontsize): cell_fontsize = graph_gen_fontsize = graph_cat_fontsize else: cell_fontsize = graph_cat_fontsize = graph_gen_fontsize graph_padding = "5" graph_spacing = "3" #border = "1" border = "0" #row_spacing = "-2" num_rows = len(genome_refs) show_groups = False show_blanks = False if 'show_blanks' in params and int(params['show_blanks']) == 1: show_blanks = True # build html buffer html_report_lines = [] html_report_lines += ['<html>'] html_report_lines += ['<head>'] html_report_lines += ['<title>KBase HMMER Custom Model Profile</title>'] html_report_lines += ['<style>'] html_report_lines += [ ".vertical-text {\ndisplay: inline-block;\noverflow: hidden;\nwidth: 0.65em;\n}\n.vertical-text__inner {\ndisplay: inline-block;\nwhite-space: nowrap;\nline-height: 1.1;\ntransform: translate(0,100%) rotate(-90deg);\ntransform-origin: 0 0;\n}\n.vertical-text__inner:after {\ncontent: \"\";\ndisplay: block;\nmargin: 0.0em 0 100%;\n}"] html_report_lines += [ ".vertical-text_title {\ndisplay: inline-block;\noverflow: hidden;\nwidth: 1.0em;\n}\n.vertical-text__inner_title {\ndisplay: inline-block;\nwhite-space: nowrap;\nline-height: 1.0;\ntransform: translate(0,100%) rotate(-90deg);\ntransform-origin: 0 0;\n}\n.vertical-text__inner_title:after {\ncontent: \"\";\ndisplay: block;\nmargin: 0.0em 0 100%;\n}"] html_report_lines += ['</style>'] html_report_lines += ['</head>'] html_report_lines += ['<body bgcolor="white">'] html_report_lines += ['<font color="' + header_tab_color + '" size=' + header_tab_fontsize + '><b>TABULAR PROFILE</b></font> | '] for this_hmm_group_i, this_hmm_group in enumerate(hmm_groups_used): disp_hmm_group = this_hmm_group[0].upper() + this_hmm_group[1:] this_html_search_file = search_tool_name + '_Search-' + \ str(this_hmm_group_i) + '-' + str(this_hmm_group) + '.html' html_report_lines += [' <a href="' + this_html_search_file + '"><font color="' + header_tab_color + '" size=' + header_tab_fontsize + '>' + str(disp_hmm_group) + ' HITS</font></a> '] if this_hmm_group_i < len(hmm_groups_used) - 1: html_report_lines += [' | '] html_report_lines += ['<p>'] # genomes as rows if 'vertical' in params and int(params['vertical']) == 1: # table header html_report_lines += ['<table cellpadding=' + graph_padding + ' cellspacing=' + graph_spacing + ' border=' + border + '>'] corner_rowspan = "1" label = '' html_report_lines += ['<tr>'] html_report_lines += ['<td valign=bottom align=right rowspan=' + corner_rowspan + '><div class="vertical-text_title"><div class="vertical-text__inner_title"><font color="' + text_color + '">' + label + '</font></div></div></td>'] # column headers for cat_i, cat in enumerate(cats): if not cat_seen[cat] and not show_blanks: continue cat_disp = cat cell_title = input_HMM_descs[cat] if len(cat_disp) > cat_disp_trunc_len + 1: cat_disp = cat_disp[0:cat_disp_trunc_len] + '*' html_report_lines += ['<td style="border-right:solid 2px ' + border_cat_color + '; border-bottom:solid 2px ' + border_cat_color + '" bgcolor="' + head_color_2 + '"title="' + cell_title + '" valign=bottom align=center>'] html_report_lines += ['<div class="vertical-text"><div class="vertical-text__inner">'] html_report_lines += ['<font color="' + text_color_2 + '" size=' + graph_cat_fontsize + '><b>'] #for c_i,c in enumerate(cat_disp): # if c_i < len(cat_disp)-1: # html_report_lines += [c+'<br>'] # else: # html_report_lines += [c] html_report_lines += [cat_disp] html_report_lines += ['</b></font>'] html_report_lines += ['</div></div>'] html_report_lines += ['</td>'] html_report_lines += ['</tr>'] # rest of rows for genome_ref in genome_refs: genome_sci_name = genome_ref_to_sci_name[genome_ref] html_report_lines += ['<tr>'] html_report_lines += ['<td align=right><font color="' + text_color + '" size=' + graph_gen_fontsize + '><b><nobr>' + genome_sci_name + '</nobr></b></font></td>'] for cat in cats: if not cat_seen[cat] and not show_blanks: continue val = table_data[genome_ref][cat] if val == 0: cell_color = 'white' else: cell_color_i = max_color - \ int(round(max_color * (val - overall_low_val) / float(overall_high_val - overall_low_val))) c = color_list[cell_color_i] cell_color = '#' + c + c + c + c + 'FF' cell_val = str(table_data[genome_ref][cat]) # the key line if 'heatmap' in params and params['heatmap'] == '1': if table_data[genome_ref][cat] == 0: this_text_color = text_color #this_graph_char = "0" this_graph_char = sp else: this_text_color = cell_color this_graph_char = graph_char html_report_lines += ['<td align=center valign=middle title="' + cell_val + '" style="width:' + cell_width + '" bgcolor="' + cell_color + '"><font color="' + this_text_color + '" size=' + cell_fontsize + '>' + this_graph_char + '</font></td>'] else: html_report_lines += ['<td align=center valign=middle style="' + cell_width + '; border-right:solid 2px ' + border_color + '; border-bottom:solid 2px ' + border_color + '"><font color="' + text_color + '" size=' + cell_fontsize + '>' + cell_val + '</font></td>'] html_report_lines += ['</tr>'] html_report_lines += ['</table>'] # genomes as columns else: raise ValueError("Do not yet support Genomes as columns") # key table CAZy_server_addr = 'www.cazy.org' html_report_lines += ['<p>'] html_report_lines += ['<table cellpadding=3 cellspacing=2 border=' + border + '>'] html_report_lines += ['<tr><td valign=middle align=left colspan=2 style="border-bottom:solid 4px ' + border_color + '"><font color="' + text_color + '"><b>KEY</b></font></td></tr>'] for cat_i, cat in enumerate(cats): cell_color = 'white' if not cat_seen[cat] and not show_blanks: cell_color = "#eeeeee" desc = input_HMM_descs[cat] cat_disp = cat if len(cat_disp) > cat_disp_trunc_len + 1: cat_disp = cat_disp[0:cat_disp_trunc_len] + '*' if cat == 'GT2_Cellulose_synt':
# A utility script to clean up the tables and set annotations after running remap_vocab.py to remapping from 'data_commons' to 'ermrest_model' vocabulary tables. # # Example usage: # # # $ python facebase_post_remap_vocab.py dev.facebase.org 11 'vocab' '.*$' -v --annotations --cleanup # The command above would run this script on the facebase catalog 11 over the vocab schema and all tables table import argparse import re from deriva.core import DerivaServer, get_credential from deriva.core.ermrest_model import builtin_types, Table, Column, ForeignKey import sys import traceback import json from deriva.core import ErmrestCatalog, AttrDict from deriva.core.ermrest_model import builtin_types, Table, Column, Key, ForeignKey description = """ A utility script to clean up the tables and set annotations after running remap_vocab.py to remapping from 'data_commons' to 'ermrest_model' vocabulary tables. """ class ReplacementPatternAction(argparse.Action): """Custom action for subheader.""" def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(ReplacementPatternAction, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): replacement = values.split('=') if len(replacement) != 2: parser.error("Invalid replacement pattern '{values}' for '{arg}'. The pattern must be 'old=new'.".format( values=values, arg=self.dest )) setattr(namespace, self.dest, {'old': replacement[0], 'new': replacement[1]}) # Argument parser parser = argparse.ArgumentParser(description=description) parser.add_argument('hostname') parser.add_argument('catalog', type=int, help='Catalog number') parser.add_argument('schema_regex', help='A regular expression to filter the schemas') parser.add_argument('exclude_table_regex', help='A regular expression to exclude the tables matching that pattern') parser.add_argument('-n', '--dryrun', action='store_true', help='Dry run. No changes to the catalog.') parser.add_argument('-v', '--verbose', action="count", default=0, help='Increase verbosity of output.') parser.add_argument('--cleanup', action='store_true', help='Cleanup. Drop old tables w/ names ending in _terms, _relationship_types and _paths.') parser.add_argument('--annotations', action='store_true', help='Annotations. Add basic level annotations to tables in selected schema') args = parser.parse_args() # Compile regex patterns schema_pattern = re.compile(args.schema_regex) table_pattern = re.compile(args.exclude_table_regex) # Create/connect catalog and get various interfaces credential = get_credential(args.hostname) server = DerivaServer('https', args.hostname, credential) catalog = server.connect_ermrest(args.catalog) model = catalog.getCatalogModel() config = catalog.getCatalogConfig() def verbose(message): """Print message for verbose output""" if args.verbose: print(message) def vverbose(message): """Print message for very verbose output""" if args.verbose > 1: print(message) def clean_term(term): """Cleans up the term by monkey patching and returning it.""" # Use dbxref in curie if it does not match the blacklist if not curie_blacklist_pattern.match(term['dbxref']): term['id'] = term['dbxref'][:term['dbxref'].rindex(':')] # strip the trailing ':###' else: term['id'] = None # Similarly, clean up the alternative_dbxrefs if args.altids: term['alternate_ids'] = [] if term['alternate_dbxrefs']: for old_alt_dbxref in term['alternate_dbxrefs']: if old_alt_dbxref.startswith('URL:'): old_alt_dbxref = old_alt_dbxref[len('URL:'):old_alt_dbxref.rindex(':')] # strip 'URL:' prefix and the trailing ':###' else: old_alt_dbxref = old_alt_dbxref[:old_alt_dbxref.rindex(':')] # strip the trailing ':###' term['alternate_ids'].append(old_alt_dbxref) del term['alternate_dbxrefs'] # Description must be non-null but many existing terms have none if not term['description']: term['description'] = 'No description' return term def cleanup_old_vocab_tables(): """Drop all _terms, _paths, _relationship_types tables in the vocabulary schema""" verbose('Cleaning old tables ending on _terms, _relationship_types, _paths ....') p1 = re.compile('.+_terms$') p2 = re.compile('.+_relationship_types$') p3 = re.compile('.+_paths$') for schema_name in list(model.schemas): if schema_pattern.match(schema_name): schema = model.schemas[schema_name] verbose('Schema "{sname}" matched "{pattern}"'.format(sname=schema_name, pattern=args.schema_regex)) for table_name in list(model.schemas[schema_name].tables): #verbose('Processing table "{tname}" for deletion.....'.format(tname=table_name)) if p3.match(table_name): #verbose(' --->Table "{tname}" matches delete pattern....'.format(tname=table_name)) if not args.dryrun: verbose('Deleting Table="{tname}" ...'.format(tname=table_name)) schema.tables[table_name].delete(catalog, schema) else: verbose("Found {tname} but skipping delete in dry-run mode...".format(tname=table_name)) for table_name in list(model.schemas[schema_name].tables): #verbose('Processing table "{tname}" for deletion.....'.format(tname=table_name)) if p2.match(table_name): #verbose(' --->Table "{tname}" matches delete pattern....'.format(tname=table_name)) if not args.dryrun: verbose('Deleting Table="{tname}" ...'.format(tname=table_name)) schema.tables[table_name].delete(catalog, schema) else: verbose("Found {tname} but skipping delete in dry-run mode...".format(tname=table_name)) for table_name in list(model.schemas[schema_name].tables): #verbose('Processing table "{tname}" for deletion.....'.format(tname=table_name)) if p1.match(table_name): #verbose(' --->Table "{tname}" matches delete pattern....'.format(tname=table_name)) if not args.dryrun: verbose('Deleting Table="{tname}" ...'.format(tname=table_name)) schema.tables[table_name].delete(catalog, schema) else: verbose("Found {tname} but skipping delete in dry-run mode...".format(tname=table_name)) def update_annotations_vocab_tables(goal): for schema_name in list(model.schemas): if schema_pattern.match(schema_name): schema = model.schemas[schema_name] for table_name in list(model.schemas[schema_name].tables): if not table_pattern.match(table_name): verbose('Setting up annotations for table "{tname}" ...'.format(tname=table_name)) if not args.dryrun: update_annotations_vocab_table(schema_name,table_name,goal) verbose(' Done setting up annotations for table "{tname}" ...'.format(tname=table_name)) else: verbose(" Found {tname} but skipping setting up annotations in dry-run mode...".format(tname=table_name)) def update_annotations_vocab_table(schema_name,table_name,goal): verbose('Setting up annotations for table "{tname}" ...'.format(tname=table_name)) row_order = [{"column": "name"}] if table_name == 'stage': row_order = [{"column": "sort_key"}, {"column": "name"}] if table_name != 'file_extension' and table_name != 'gene_summary': goal.column('%s' % schema_name, '%s' % table_name, 'id').display.update({'name': 'ID'}) goal.column('%s' % schema_name, '%s' % table_name, 'uri').display.update({'name': 'URI'}) goal.table( '%s' % schema_name, '%s' % table_name ).table_display.update({ "row_name": {"row_markdown_pattern": "{{name}}"}, "*": {"row_order": row_order} }) goal.column( '%s' % schema_name, '%s' % table_name, 'uri' ).column_display.update({ "detailed": { "markdown_pattern": "[{{uri}}]({{uri}})" } }) goal.column( '%s' % schema_name, '%s' % table_name, 'id' ).column_display.update({ "detailed": { "markdown_pattern": "[{{id}}]({{uri}})" } }) goal.table( '%s' % schema_name, '%s' % table_name ).visible_columns.update({ "filter": {"and": [{"source": "name"}, {"source": "id"}, {"source": "description"}, {"source": "synonyms"}, {"source": "alternate_ids"} ] }, "entry": [ "id","name","uri","description" ], "detailed": [["vocab","%s_RIDkey1" % table_name], "id", "name", "uri", "description", "synonyms", "alternate_ids" ], "compact": [["vocab","%s_RIDkey1" % table_name], "id", "name", "description", "synonyms", "alternate_ids" ] }) if table_name == 'gene_summary': goal.table( '%s' % schema_name, '%s' % table_name ).visible_columns.update({ "filter": {"and": [ {"source":[{"outbound": ["vocab", "gene_summary_gene_fkey"]},"id"],"entity": True}, {"source":[{"outbound": ["vocab", "gene_summary_species_fkey"]}, "id"],"entity": True} ] }, "entry": [ ["vocab", "gene_summary_gene_fkey"],["vocab", "gene_summary_species_fkey"],["vocab","gene_summary_contributed_by_fkey"],"summary" ], "detailed": [["vocab", "gene_summary_gene_fkey"], ["vocab", "gene_summary_species_fkey"], ["vocab","gene_summary_contributed_by_fkey"], "summary" ], "compact": [["vocab", "gene_summary_gene_fkey"], ["vocab", "gene_summary_species_fkey"], ["vocab","gene_summary_contributed_by_fkey"], "summary" ] }) if table_name == 'file_extension': goal.table( '%s' % schema_name, '%s' % table_name ).visible_columns.update({ "filter": {"and": [ {"source": "extension"}, {"source":[{"outbound": ["vocab", "file_extension_file_format_fkey"]},"id"],"entity": True} ] }, "entry": [ "extension",["vocab", "file_extension_file_format_fkey"] ], "detailed": [ ["vocab","file_extension_rid_key"], "extension", ["vocab", "file_extension_file_format_fkey"] ], "compact": [ ["vocab", "file_extension_rid_key"], "extension", ["vocab", "file_extension_file_format_fkey"] ] }) if table_name == 'phenotype': goal.table( '%s' % schema_name, '%s' % table_name ).visible_foreign_keys.update({ "*": [{"source": [{"inbound": ["isa", "dataset_%s_%s_fkey" % (table_name, table_name)]}, {"outbound": ["isa", "dataset_%s_dataset_fkey" % table_name]}, "id"]}] }) elif table_name == 'species': goal.table( '%s' % schema_name, '%s' % table_name ).visible_foreign_keys.update({ "*": [{"source": [{"inbound": ["isa", "dataset_organism_organism_fkey"]}, {"outbound": ["isa", "dataset_organism_dataset_id_fkey"]}, "id"]}] }) else: goal.table( '%s' % schema_name, '%s' % table_name ).visible_foreign_keys.update({ "*": [{"source": [{"inbound": ["isa", "dataset_%s_%s_fkey" % (table_name, table_name)]}, {"outbound": ["isa", "dataset_%s_dataset_id_fkey" % table_name]}, "id"]}] }) def update_annotations_dataset_table(goal): verbose('Setting up viz cols for Dataset') goal.table('isa', 'dataset').visible_columns.update({ "filter": { "and": [ {"source": [{"inbound": ["isa", "dataset_organism_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_organism_organism_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_experiment_type_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_experiment_type_experiment_type_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_data_type_data_type_fkey"]}, {"outbound": ["isa", "dataset_data_type_dataset_id_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_gene_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_gene_gene_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_stage_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_stage_stage_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_anatomy_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_anatomy_anatomy_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_genotype_dataset_id_fkey"]}, {"outbound": ["isa", "dataset_genotype_genotype_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_phenotype_dataset_fkey"]}, {"outbound": ["isa", "dataset_phenotype_phenotype_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "dataset_chromosome_dataset_id_fkey"]}, "chromosome"], "entity": True, "open": False, "markdown_name": "Chromosome"}, {"source": [{"inbound": ["isa", "publication_dataset_fkey"]}, "pmid"], "entity": True, "open": False,"markdown_name": "Pubmed ID"}, {"source": [{"outbound": ["isa", "dataset_project_fkey"]},{"inbound": ["isa", "project_investigator_project_id_fkey"]},{"outbound": ["isa", "project_investigator_person_fkey"]},"RID"], "entity": True, "open": False,"markdown_name": "Project Investigator"}, {"source": "accession", "entity": False, "open": False}, {"source": "title", "entity": False, "open": False}, {"source": [{"outbound": ["isa", "dataset_project_fkey"]}, "id"], "entity": True, "open": False}, {"source": "release_date", "entity": False, "open": False}, {"source": [{"outbound": ["isa", "dataset_status_fkey"]}, "name"], "entity": True, "open": False} ] }, "compact": [["isa","dataset_RID_key"],["isa","accession_unique"],"title",["isa","dataset_project_fkey"],"status","release_date"], "entry": ["accession","title",["isa","dataset_project_fkey"],"description","study_design","released","release_date", "show_in_jbrowse"], "detailed": [["isa","dataset_RID_key"],"accession","description","study_design",["isa","dataset_project_fkey"],["isa","dataset_status_fkey"],"funding","release_date","show_in_jbrowse", ["isa","publication_dataset_fkey"], ["isa","dataset_experiment_type_dataset_id_fkey"], ["isa","dataset_data_type_dataset_id_fkey"], ["isa","dataset_phenotype_dataset_fkey"], ["isa","dataset_organism_dataset_id_fkey"], ["isa","dataset_gene_dataset_id_fkey"], ["isa","dataset_stage_dataset_id_fkey"], ["isa","dataset_anatomy_dataset_id_fkey"], ["isa","dataset_mutation_dataset_id_fkey"], ["isa","dataset_enhancer_dataset_id_fkey"], ["isa","dataset_mouse_genetic_background_dataset_id_fkey"], ["isa","dataset_gender_dataset_id_fkey"], ["isa","dataset_genotype_dataset_id_fkey"], ["isa","dataset_instrument_dataset_id_fkey"], ["isa","dataset_geo_dataset_id_fkey"], ["isa","dataset_chromosome_dataset_id_fkey"] ] }) def update_annotations_ebr(goal): """ Experiment """ verbose('Setting up viz cols for Experiment') goal.table('isa', 'experiment').visible_columns.update({ "filter": { "and": [ {"source": [{"outbound": ["isa", "experiment_experiment_type_fkey"]}, "id"], "entity": True,"open": True}, {"source": [{"outbound": ["isa", "experiment_dataset_fkey"]}, "RID"], "entity": True,"open": False}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"outbound": ["isa", "replicate_biosample_fkey"]}, {"outbound": ["isa", "biosample_species_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"outbound": ["isa", "replicate_biosample_fkey"]}, {"outbound": ["isa", "biosample_stage_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"outbound": ["isa", "replicate_biosample_fkey"]}, {"outbound": ["isa", "biosample_anatomy_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"outbound": ["isa", "replicate_biosample_fkey"]}, {"outbound": ["isa", "biosample_genotype_fkey"]}, "id"], "entity": True, "open": False}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"inbound": ["isa", "track_data_replicate_fkey"]}, {"outbound": ["isa", "track_data_mapping_assembly_fkey"]},"id"], "entity": True, "open": False,"markdown_name": "Mapping Assembly"}, {"source": [{"inbound": ["isa", "replicate_experiment_fkey"]}, {"inbound": ["isa", "track_data_replicate_fkey"]},"RID"], "entity": True,"open": False, "markdown_name": "Track Data"} ] }, "detailed": [["isa", "experiment_pkey"], ["isa", "experiment_dataset_fkey"], "local_identifier", ["isa", "experiment_experiment_type_fkey"], "biosample_summary", ["isa", "experiment_molecule_type_fkey"], ["isa", "experiment_strandedness_fkey"], ["isa", "experiment_rnaseq_selection_fkey"], ["isa", "experiment_target_of_assay_fkey"], ["isa", "experiment_chromatin_modifier_fkey"], ["isa", "experiment_transcription_factor_fkey"], ["isa", "experiment_histone_modification_fkey"], ["isa", "experiment_control_assay_fkey"], ["isa", "experiment_protocol_fkey"] ], "compact": [["isa", "experiment_pkey"], ["isa", "experiment_dataset_fkey"], ["isa", "experiment_experiment_type_fkey"], "biosample_summary", ["isa", "experiment_protocol_fkey"], "local_identifier"], "entry": [["isa", "experiment_dataset_fkey"], "local_identifier", "biosample_summary", ["isa", "experiment_experiment_type_fkey"], ["isa", "experiment_molecule_type_fkey"], ["isa", "experiment_strandedness_fkey"], ["isa", "experiment_rnaseq_selection_fkey"], ["isa", "experiment_target_of_assay_fkey"], ["isa", "experiment_chromatin_modifier_fkey"], ["isa", "experiment_transcription_factor_fkey"], ["isa", "experiment_histone_modification_fkey"], ["isa", "experiment_control_assay_fkey"], ["isa", "experiment_protocol_fkey"]] }) """ Biosample """ verbose('Setting up viz cols for Biosample') goal.table('isa', 'biosample').visible_columns.update({ "filter":
from backend import * from basement import * from pausable import * from kittyaccesscontrol import * from kittybase import KittyBase from erc721 import ERC721 from erc721metadata import ERC721Metadata # @title The facet of the CryptoKitties core contract that manages ownership, ERC-721 (draft) compliant. # @author <NAME> (https://www.axiomzen.co) # @dev Ref: https://github.com/ethereum/EIPs/issues/721 # See the KittyCore contract documentation to understand how the various contract facets are arranged. class KittyOwnership(KittyBase, ERC721): def __init__(self): KittyBase.__init__(self) ERC721.__init__(self) # @notice Name and symbol of the non fungible token, as defined in ERC721. #string public constant name = "CryptoKitties"; #string public constant symbol = "CK"; self.name = "CryptoKitties" self.symbol = "CK" # The contract that will return kitty metadata #ERC721Metadata public erc721Metadata; self.erc721Metadata = ERC721Metadata() self.InterfaceSignature_ERC165 = bytes4(keccak256('supportsInterface(bytes4)')); self.InterfaceSignature_ERC721 = bytes4(keccak256('InterfaceSignature_ERC721(bytes4)')); '''FIXME bytes4 constant InterfaceSignature_ERC721 = bytes4(keccak256('name()')) ^ bytes4(keccak256('symbol()')) ^ bytes4(keccak256('totalSupply()')) ^ bytes4(keccak256('balanceOf(address)')) ^ bytes4(keccak256('ownerOf(uint256)')) ^ bytes4(keccak256('approve(address,uint256)')) ^ bytes4(keccak256('transfer(address,uint256)')) ^ bytes4(keccak256('transferFrom(address,address,uint256)')) ^ bytes4(keccak256('tokensOfOwner(address)')) ^ bytes4(keccak256('tokenMetadata(uint256,string)')); ''' # @notice Introspection interface as per ERC-165 (https://github.com/ethereum/EIPs/issues/165). # Returns true for any standardized interfaces implemented by this contract. We implement # ERC-165 (obviously!) and ERC-721. def supportsInterface(self, _interfaceID: bytes) -> bool: # DEBUG ONLY #require((InterfaceSignature_ERC165 == 0x01ffc9a7) && (InterfaceSignature_ERC721 == 0x9a20483d)); return (_interfaceID == self.InterfaceSignature_ERC165) or (_interfaceID == self.InterfaceSignature_ERC721) # @dev Set the address of the sibling contract that tracks metadata. # CEO only. @onlyCEO def setMetadataAddress(self, _contractAddress: address): self.erc721Metadata = ERC721Metadata(_contractAddress) # Internal utility functions: These functions all assume that their input arguments # are valid. We leave it to public methods to sanitize their inputs and follow # the required logic. # @dev Checks if a given address is the current owner of a particular Kitty. # @param _claimant the address we are validating against. # @param _tokenId kitten id, only valid when > 0 def _owns(self, _claimant: address, _tokenId: uint256) -> bool: return self.kittyIndexToOwner[_tokenId] == _claimant # @dev Checks if a given address currently has transferApproval for a particular Kitty. # @param _claimant the address we are confirming kitten is approved for. # @param _tokenId kitten id, only valid when > 0 def _approvedFor(self, _claimant: address, _tokenId: uint256) -> bool: return self.kittyIndexToApproved[_tokenId] == _claimant # @dev Marks an address as being approved for transferFrom(), overwriting any previous # approval. Setting _approved to address(0) clears all transfer approval. # NOTE: _approve() does NOT send the Approval event. This is intentional because # _approve() and transferFrom() are used together for putting Kitties on auction, and # there is no value in spamming the log with Approval events in that case. def _approve(self, _tokenId: uint256, _approved: address): self.kittyIndexToApproved[_tokenId] = _approved # @notice Returns the number of Kitties owned by a specific address. # @param _owner The owner address to check. # @dev Required for ERC-721 compliance def balanceOf(self, _owner: address) -> uint256: return self.ownershipTokenCount[_owner] # @notice Transfers a Kitty to another address. If transferring to a smart # contract be VERY CAREFUL to ensure that it is aware of ERC-721 (or # CryptoKitties specifically) or your Kitty may be lost forever. Seriously. # @param _to The address of the recipient, can be a user or contract. # @param _tokenId The ID of the Kitty to transfer. # @dev Required for ERC-721 compliance. def transfer(self, _to: address, _tokenId: uint256): self.whenNotPaused() # Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)) # Disallow transfers to this contract to prevent accidental misuse. # The contract should never own any kitties (except very briefly # after a gen0 cat is created and before it goes on auction). require(_to != address(this)) # Disallow transfers to the auction contracts to prevent accidental # misuse. Auction contracts should only take ownership of kitties # through the allow + transferFrom flow. require(_to != address(self.saleAuction)) require(_to != address(self.siringAuction)) # You can only send your own cat. require(self._owns(msg.sender, _tokenId)) # Reassign ownership, clear pending approvals, emit Transfer event. self._transfer(msg.sender, _to, _tokenId) # @notice Grant another address the right to transfer a specific Kitty via # transferFrom(). This is the preferred flow for transfering NFTs to contracts. # @param _to The address to be granted transfer approval. Pass address(0) to # clear all approvals. # @param _tokenId The ID of the Kitty that can be transferred if this call succeeds. # @dev Required for ERC-721 compliance. @whenNotPaused def approve(self, _to: address, _tokenId: uint256): # Only an owner can grant transfer approval. require(self._owns(msg.sender, _tokenId)) # Register the approval (replacing any previous approval). self._approve(_tokenId, _to) # Emit approval event. self.Approval(msg.sender, _to, _tokenId) # @notice Transfer a Kitty owned by another address, for which the calling address # has previously been granted transfer approval by the owner. # @param _from The address that owns the Kitty to be transfered. # @param _to The address that should take ownership of the Kitty. Can be any address, # including the caller. # @param _tokenId The ID of the Kitty to be transferred. # @dev Required for ERC-721 compliance. @whenNotPaused def transferFrom(self, _from: address, _to: address, _tokenId: uint256): # Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)) # Disallow transfers to this contract to prevent accidental misuse. # The contract should never own any kitties (except very briefly # after a gen0 cat is created and before it goes on auction). require(_to != address(this)) # Check for approval and valid ownership require(self._approvedFor(msg.sender, _tokenId)) require(self._owns(_from, _tokenId)) # Reassign ownership (also clears pending approvals and emits Transfer event). self._transfer(_from, _to, _tokenId) # @notice Returns the total number of Kitties currently in existence. # @dev Required for ERC-721 compliance. def totalSupply(self) -> uint: return self.kitties.length - 1 # @notice Returns the address currently assigned ownership of a given Kitty. # @dev Required for ERC-721 compliance. def ownerOf(self, _tokenId: uint256) -> address: owner = self.kittyIndexToOwner[_tokenId] require(owner != address(0)) return owner # @notice Returns a list of all Kitty IDs assigned to an address. # @param _owner The owner whose Kitties we are interested in. # @dev This method MUST NEVER be called by smart contract code. First, it's fairly # expensive (it walks the entire Kitty array looking for cats belonging to owner), # but it also returns a dynamic array, which is only supported for web3 calls, and # not contract-to-contract calls. def tokensOfOwner(self, _owner: address) -> List: tokenCount = self.balanceOf(_owner) result = List([],uint256) if tokenCount == 0: # Return an empty array return result else: #FIXME memory type # uint256[] memory result = new uint256[](tokenCount); # uint256 totalCats = self.totalSupply(); # uint256 resultIndex = 0; result = List(size = tokenCount, value_type=uint256) totalCats = self.totalSupply() resultIndex = 0 # We count on the fact that all cats have IDs starting at 1 and increasing # sequentially up to the totalCat count. # uint256 catId; for catId in range(1, totalCats+1): if self.kittyIndexToOwner[catId] == _owner: result[resultIndex] = catId resultIndex+=1 return result # @dev Adapted from memcpy() by @arachnid (<NAME> <<EMAIL>>) # This method is licenced under the Apache License. # Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol def _memcpy(self, _dest: uint, _src: uint, _len: uint): pass ''' def _memcpy(uint _dest, uint _src, uint _len) private view { # Copy word-length chunks while possible for(; _len >= 32; _len -= 32) { assembly { mstore(_dest, mload(_src)) } _dest += 32; _src += 32; } # Copy remaining bytes uint256 mask = 256 ** (32 - _len) - 1; assembly { let srcpart := and(mload(_src), not(mask)) let destpart := and(mload(_dest), mask) mstore(_dest, or(destpart, srcpart)) } } ''' # @dev Adapted from toString(slice) by @arachnid (<NAME> <<EMAIL>>) # This method is licenced under the Apache License. # Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol #FIXME def _toString(self, _rawBytes, _stringLength) -> str: assert False ''' def _toString(bytes32[4] _rawBytes, uint256 _stringLength) private view returns (string) { var outputString = new string(_stringLength); uint256 outputPtr; uint256 bytesPtr; assembly { outputPtr := add(outputString, 32) bytesPtr := _rawBytes } _memcpy(outputPtr, bytesPtr, _stringLength); return outputString; ''' # @notice Returns a URI pointing to a metadata package for
#!/usr/bin/env python __author__ = "<EMAIL>" import shutil import sys from collections import OrderedDict, defaultdict from csv import DictReader, DictWriter from enum import Enum from multiprocessing import Process from pathlib import Path from typing import Dict, List, Optional, Tuple, Union import typer from Bio import SeqIO from bx.intervals.cluster import ClusterTree from cupcake import version_callback from cupcake import cupcake_logger as logger from cupcake.sequence import GFF from cupcake.tofu.counting import combine_abundance_across_samples as sp # from BCBio import GFF as bGFF app = typer.Typer(name="cupcake.tofu.counting.chain_samples") class fl_fields(str, Enum): norm_fl = "norm_fl" count_fl = "count_fl" def sample_sanity_check( group_filename, gff_filename, count_filename, fastq_filename=None ) -> None: """ Double check that the formats are expected and all PBIDs are concordant across the files :return: raise Exception if sanity check failed """ logger.info( f"Sanity checking. Retrieving PBIDs from {group_filename},{gff_filename},{count_filename}..." ) ids1 = [line.strip().split()[0] for line in open(group_filename)] ids2 = [r.seqid for r in GFF.collapseGFFReader(gff_filename)] f = open(count_filename) while True: # advance through the headers which start with # cur = f.tell() if ( not f.readline().startswith("#") or f.tell() == cur ): # first non-# seen or EOF f.seek(cur) break ids3 = [r["pbid"] for r in DictReader(f, delimiter="\t")] if len(set(ids2).difference(ids1)) > 0 or len(set(ids2).difference(ids3)) > 0: raise Exception( f"Sanity check failed! Please make sure the PBIDs listed in {gff_filename} are also in {group_filename} and {count_filename}" ) if fastq_filename is not None: ids4 = [r.id.split("|")[0] for r in SeqIO.parse(open(fastq_filename), "fastq")] if len(set(ids2).difference(ids4)) > 0: raise Exception( f"Sanity check failed! Please make sure the PBIDs listed in {gff_filename} are also in {fastq_filename}" ) def read_config( filename: Union[str, Path] ) -> Tuple[Dict[str, Path], List[str], str, str, str, str]: # Okay, why is this a thing? Why not just pass arguments? """ tmpSAMPLE=<name>;<path> SAMPLE=<name>;<path> must also have GROUP_FILENAME= GFF_FILENAME= COUNT_FILENAME= optional: FASTQ_FILENAME= """ sample_dirs = {} sample_names = [] group_filename, gff_filename, count_filename = None, None, None fastq_filename = None no_more_tmp = False with open(filename) as f: for line in f: if line.startswith("tmpSAMPLE="): if no_more_tmp: logger.error( "Cannot have tmp_ samples after non-tmp_ samples! Abort!" ) sys.exit(-1) name, path = line.strip()[len("tmpSAMPLE=") :].split(";") if name.startswith("tmp_"): logger.error( f"Sample names are not allowed to start with tmp_! " f"Please change {name} to something else." ) sys.exit(-1) sample_dirs[name] = Path(path).resolve() sample_names.append(f"tmp_{name}") elif line.startswith("SAMPLE="): no_more_tmp = True name, path = line.strip()[len("SAMPLE=") :].split(";") if name.startswith("tmp_"): logger.error( f"Sample names are not allowed to start with tmp_! " f"Please change {name} to something else." ) sys.exit(-1) sample_dirs[name] = Path(path).resolve() sample_names.append(name) elif line.startswith("GROUP_FILENAME="): group_filename = line.strip()[len("GROUP_FILENAME=") :] elif line.startswith("GFF_FILENAME="): gff_filename = line.strip()[len("GFF_FILENAME=") :] elif line.startswith("COUNT_FILENAME="): count_filename = line.strip()[len("COUNT_FILENAME=") :] elif line.startswith("FASTQ_FILENAME="): fastq_filename = line.strip()[len("FASTQ_FILENAME=") :] if group_filename is None: raise FileNotFoundError( f"Expected GROUP_FILENAME= but not in config file {filename}! Abort." ) if count_filename is None: raise FileNotFoundError( f"Expected COUNT_FILENAME= but not in config file {filename}! Abort." ) if gff_filename is None: raise FileNotFoundError( f"Expected GFF_FILENAME= but not in config file {filename}! Abort." ) if len(sample_names) == 0: logger.error("No samples given. Exit.") sys.exit(-1) # return signature is: # sample_dirs = Dict[sample_name, Path(sample_path)] # sample_names = List[sample_name] # group_filename = str # gff_filename = str # count_filename = str # fastq_filename = str # so, for the test data, we get: # sample_dirs = { # 'A': Path('tests/test_data/chaining/A'), # 'B': Path('tests/test_data/chaining/B') # } # sample_names = ["A", "B"] # group_filename = touse.group.txt # gff_filename = touse.gff # count_filename = touse.count.txt # fastq_filename = touse.rep.fq return ( sample_dirs, sample_names, group_filename, gff_filename, count_filename, fastq_filename, ) def read_count_info( count_filename: Union[str, Path], dirs: List[Union[str, Path]], field_to_use: str ) -> Dict[Tuple[str, str], int]: count_info = {} # key: (sample, PB.1.1) --> count count_header = "" for name, d in dirs.items(): with Path(d, count_filename).open() as f: while True: cur = f.tell() line = f.readline().strip() if not line.startswith("#"): break count_header += line f.seek(cur) for r in DictReader(f, delimiter="\t"): count_info[name, r["pbid"]] = r[field_to_use] # count_info = { # (sample_name, pbid): count, # (sample_name, pbid): count, # ... # } return count_info def chain_split_file( ref_gff: Path, ref_group: Path, ref_name: str, addon_gff: Path, addon_group: Path, addon_name: str, fuzzy_junction: int, allow_5merge: bool, max_3_diff: int, n_chunks: int, ) -> Tuple[List[str], List[str]]: """ Organize entries in both a gff and transcript group file and split both such that the original two files are split into chunks where gff.chunk.n covers the same entries as group.chunk.n """ # read in the group_file as a dictionary in the form of # { # 'PB.1.1': ["transcript/1"], # 'PB.1.2': ["transcript/2", "transcript/3"] # } addon_group_info = sp.MegaPBTree.read_group(addon_group, None) # with addon_group.open('r') as ag: # addon_group_info = {_.split('\t')[0]: _.split('\t')[1].split(",") for _ in ag.readlines()} recs = [] tree = OrderedDict() i = 0 # for r in HTSeq.GFF_Reader(addon_gff): # if r.iv.chrom not in tree2: # tree[r.iv.chrom] = {"+": ClusterTree(0, 0), "-": ClusterTree(0, 0)} # tree[r.iv.chrom][r.iv.strand].insert(r.iv.start, r.iv.end, i) # recs.append(r) # i += 1 # This should build a structure in the form of: # {"chrN": # { # "+" : bx.intervals.cluster.clusterTree, # "-" : bx.intervals.cluster.clusterTree, # }, # "chrN+1": # { # "+" : bx.intervals.cluster.clusterTree, # "-" : bx.intervals.cluster.clusterTree, # }, # } # CusterTree objects have the form # [(x,y,[z]), (a,b,[c]), (m,n,[o])] # where each tuple is a range and a list of ids that lie within that range # e.g. (from the bx-python docs): # tree = ClusterTree(0, 0) Insert (6, 7, 1), (1, 2, 3), (9, 10, 2), (3, 4, 0), (3, 8, 4) # tree.getregions() returns [(1, 2, [3]), (3, 8, [0, 1, 4]), (9, 10, [2])] # NOTE: GFF.collapseGFFReader is a specialized GFF reader that in the attributes # field stores a list of bx.intervals.intersection.Interval objects # describing the exons for r in GFF.collapseGFFReader(addon_gff): if r.chr not in tree: tree[r.chr] = {"+": ClusterTree(0, 0), "-": ClusterTree(0, 0)} tree[r.chr][r.strand].insert(r.start, r.end, i) recs.append(r) i += 1 n = len(recs) chunk_size = (n // n_chunks) + (n % n_chunks > 0) split_files = [] i = 0 counter = 0 f_gff = open(f"{addon_gff}.split{str(i)}", "w") f_group = open(f"{addon_group}.split{str(i)}", "w") # this loop is going to reorder everything # so that we have a GFF with a transcript followed by all the exons that # made up that transcript and a separate file with the matching # transcript_id transcript/read_group# # (see the sp.MegaPBTree above) for v1 in tree.values(): for strand in ("+", "-"): v2 = v1[strand] for *_, _indices in v2.getregions(): for cur in _indices: GFF.write_collapseGFF_format(f_gff, recs[cur]) f_group.write( f"{recs[cur].seqid}\t{','.join(addon_group_info[recs[cur].seqid])}\n" ) counter += 1 if counter >= (i + 1) * chunk_size: i += 1 n = f_gff.tell() f_gff.close() f_group.close() if n == 0: # didn't write any records, delete these Path(f_gff.name).unlink() Path(f_group.name).unlink() else: split_files.append((f_gff.name, f_group.name)) if i >= n_chunks or counter >= len(recs): break f_gff = open(f"{addon_gff}.split{str(i)}", "w") f_group = open(f"{addon_group}.split{str(i)}", "w") if not f_gff.closed: n = f_gff.tell() f_gff.close() f_group.close() if n == 0: # didn't write any records, delete these Path(f_gff.name).unlink() Path(f_group.name).unlink() else: split_files.append((f_gff.name, f_group.name)) result_prefixes = [] pools = [] for i, (split_gff, split_group) in enumerate(split_files): p = Process( target=chain_helper, args=( ref_gff, ref_group, split_gff, split_group, ref_name, f"{addon_name}.{str(i)}", fuzzy_junction, allow_5merge, max_3_diff, ), ) p.start() pools.append(p) result_prefixes.append((ref_name, f"{addon_name}.{str(i)}")) for p in pools: p.join() return result_prefixes, split_files def chain_helper( ref_gff: Union[str, Path], ref_group: Union[str, Path], addon_gff: Union[str, Path], addon_group: Union[str, Path], name1: str, name2: str, fuzzy_junction: int, allow_5merge: bool, max_3_diff: int, ) -> None: o = sp.MegaPBTree( gff_filename=ref_gff, group_filename=ref_group, self_prefix=name1, internal_fuzzy_max_dist=fuzzy_junction, allow_5merge=allow_5merge, max_3_diff=max_3_diff, fastq_filename=None, ) o.add_sample( gff_filename=addon_gff, group_filename=addon_group, sample_prefix=name2, output_prefix=f"tmp_{name2}", fastq_filename=None, ) def combine_split_chained_results( output_prefixes, final_prefix, ref_gff, ref_group, ref_name, ref_fq, addon_gff, addon_group, addon_name, addon_fq, ): """ Each <output_prefix> will have .gff, .group.txt, .mega_info.txt. There should be NO overlap between the split files, so clean merge should be possible! 1. read the .gff files, record the group and mega (id-map) info 2. sort the total records so can properly put on a unified superPBID 3. write out the unified result 4. delete the split files """ # sanity check files are all there split_files = [] # tuple of (gff, group, mega) for ref_name, o in output_prefixes: gff_file = Path(f"tmp_{o}.gff") mega_file = Path(f"tmp_{o}.mega_info.txt") group_file = Path(f"tmp_{o}.group.txt") if not gff_file.exists() or not mega_file.exists() or not group_file.exists(): raise RuntimeError( f"Expects to see {gff_file},{mega_file},{group_file} but one or