input
stringlengths
2.65k
237k
output
stringclasses
1 value
#!/usr/bin/python # -*- coding: UTF-8 -*- # # Methods comonly shared by the tool scripts # import codecs import operator # only for sortedDict() import sys # only for raw_encoded_input() import locale # only for raw_encoded_input() import json # for loadJsonConfig def loadJsonConfig(filename='config.json'): ''' Load and return json config file as a dict. Looks in local directory first. If file isn't there then looks in user directory. If file is in neither location then error is raised ''' try: f = open(filename, 'r') config = json.load(f) f.close() except IOError, e: if e.errno == 2: # file not found import os path = os.getenv("HOME") f = open(os.path.join(path, filename), 'r') config = json.load(f) f.close() else: raise return config def openFile(filename): '''opens a given file (utf-8) and returns the lines''' fin = codecs.open(filename, 'r', 'utf8') txt = fin.read() fin.close() lines = txt.split('\n') lines.pop() return lines def sortedDict(ddict): '''turns a dict into a sorted list''' sorted_ddict = sorted(ddict.iteritems(), key=operator.itemgetter(1), reverse=True) return sorted_ddict def is_number(s): try: float(s) return True except (ValueError, TypeError): return False def is_int(s): try: int(s) return True except (ValueError, TypeError): return False def is_iso_date(s): ''' Checks if a string is a valid YYYY-MM-DD date NOTE: Does not validate if length of month is < 31 ''' if not isinstance(s, (str, unicode)): return False if not len(s) == len('YYYY-MM-DD'): return False if not s[4:5] == '-' and s[7:8] == '-': return False y, m, d = s[:4], s[5:7], s[8:] if not is_int(y): return False if not (is_int(m) and int(m) in range(1, 12 + 1)): return False if not (is_int(d) and int(d) in range(1, 31 + 1)): return False return True def raw_encoded_input(txt): '''query for input and deal with the encoding, whatever it is''' return raw_input(txt).decode(sys.stdin.encoding or locale.getpreferredencoding(True)) def list_diff(a, b): '''subtract list 2 from list 1''' b = set(b) return [aa for aa in a if aa not in b] def extractName(entry): ''' If field includes square brackets then this ignores any part of name field which lies outside If field contains semicolons then treats these as separate objects ''' if u'[' in entry: pos1 = entry.find(u'[') pos2 = entry.find(u']') entry = entry[pos1 + 1:pos2] return entry.split(u';') def extractNameParts(name): '''Tries to separate a name into first and second name.''' # Algorithm. If one "," in names then asume lName, fName. # Else asume last name is the last word of the name. # Plain name returned if all else fails if u',' in name: parts = name.split(u',') if len(parts) == 2: return u'%s;%s' % (parts[1].strip(), parts[0].strip()) if u' ' in name: parts = name.split(u' ') lName = parts[-1].strip() fName = name[:-len(lName)].strip() return u'%s;%s' % (fName, lName) return name def findUnit(contents, start, end, brackets=None): ''' Method for isolating an object in a string. Will not work with either start or end using the ¤ symbol @input: * content: the string to look at * start: the substring indicateing the start of the object * end: the substring indicating the end of the object if end is not found then the rest of the string is returned if explicitly set to None then it is assumed that start-string also marks the end of an object. In this case the end-string is returned as part of the remainder * brackets: a dict of brackets used which must match within the object @output: the-object, the-remainder-of-the-string, lead-in-to-object OR None,None if an error OR '','' if no object is found ''' if start in contents: # If end is left blank if end is None: noEnd = True end = start else: noEnd = False uStart = contents.find(start) + len(start) uEnd = contents.find(end, uStart) if uEnd < 0: # process till end of string uEnd = None if brackets: for bStart, bEnd in brackets.iteritems(): dummy = u'¤' * len(bEnd) diff = contents[uStart:uEnd].count(bStart) - contents[uStart:uEnd].count(bEnd) if diff < 0: print 'Negative bracket missmatch for: %s <--> %s' % (bStart, bEnd) return None, None, None # two cases either end is one of these brackets or not if end in bEnd: # end is part of endBracket i = 0 while(diff > 0): i += 1 uEnd = contents.replace(bEnd, dummy, i).find(end, uStart) if uEnd < 0: print 'Positive (final) bracket missmatch for: %s <--> %s' % (bStart, bEnd) return None, None, None diff = contents[uStart:uEnd].count(bStart) - contents[uStart:uEnd].count(bEnd) else: # end is different from endBracket (e.g. a '|') i = 0 while(diff > 0): i += 1 uEnd = contents.find(end, uEnd + len(end)) if uEnd < 0: diff = contents[uStart:].count(bStart) - contents[uStart:].count(bEnd) if diff > 0: print 'Positive (final) bracket missmatch for: %s <--> %s' % (bStart, bEnd) return None, None, None else: diff = contents[uStart:uEnd].count(bStart) - contents[uStart:uEnd].count(bEnd) unit = contents[uStart:uEnd] lead_in = contents[:uStart - len(start)] if uEnd: # i.e. if not until end of string if noEnd: remainder = contents[uEnd:] else: remainder = contents[uEnd + len(end):] else: remainder = '' return (unit, remainder, lead_in) else: return '', '', '' def extractLink(text, kill_tags=False): ''' Given wikitiext this checks for the first wikilink Limitations: Only identifies the first wikilink kill_tags also strips out (but doesn't keep) and tags (i.e. <bla> something </bla>) @output: (plain_text, link) ''' if kill_tags: while '<' in text and '>' in text: tag, dummy, dummy = findUnit(text, u'<', u'>') endtag = u'</' + tag + u'>' tag = u'<' + tag + u'>' if endtag in text: dummy, remainder, lead_in = findUnit(text, tag, endtag) else: dummy, remainder, lead_in = findUnit(text, u'<', u'>') text = lead_in.strip() + ' ' + remainder.strip() if u'[[' not in text: return (text.strip(), '') interior, dummy, dummy = findUnit(text, u'[[', u']]') wikilink = u'[[' + interior + u']]' pos = text.find(wikilink) pre = text[:pos] post = text[pos + len(wikilink):] center = '' link = '' # determine which type of link we are dealing with see meta:Help:Links#Wikilinks for details if u'|' not in interior: # [[ab]] -> ('ab', 'ab') center = interior link = interior.strip() else: pos = interior.find(u'|') link = interior[:pos] center = interior[pos + 1:] if len(link) == 0: # [[|ab]] -> ('ab', 'ab') link = center elif len(center) > 0: # [[a|b]] -> ('b', 'a') pass else: center = link if u':' in center: # [[a:b|]] -> ('b', 'a:b') center = center[center.find(u':') + 1:] if u', ' in center: # [[a, b|]] -> ('a', 'a, b') center = center.split(u', ')[0] if u'(' in center: # [[a (b)|]] -> ('a', 'a (b)') pos = center.find(u'(') if u')' in center[pos:]: center = center[:pos] if center.endswith(' '): # the first space separating text and bracket is ignored center = center[:-1] return ((pre + center + post).strip(), link.strip()) def extractAllLinks(text, kill_tags=False): ''' Given wikitext this checks for any wikilinks @output: (plain_text, list of link) ''' wikilinks = [] text, link = extractLink(text, kill_tags=kill_tags) while link: wikilinks.append(link) text, link = extractLink(text, kill_tags=kill_tags) return text, wikilinks def latLonFromCoord(coord): ''' returns lat, lon as decimals based on string using the Coord-template Does not deal with {{coord|12.123|12.123|...}} @output (lat,lon) as float ''' prefixes = (u'{{coord|', u'{{coord |', u'{{coor|', u'{{coor |', u'{{location|', u'{{location |') if not coord.lower().startswith(prefixes): print 'incorrectly formated coordinate (prefix): %s' % coord return None p = coord.split('|') if is_number(p[1]): # try: if is_number(p[2].rstrip('}')): # if len(p) == 3: # {{coord|12.123|12.123}} implicitly N, E lat = float(p[1].strip()) lon = float(p[2].strip().rstrip('}')) lat_sign = u'N' lon_sign = u'E' elif is_number(p[3]): # {{coord|12|12|12.123|N|12|12|12.123|E|...}} lat_d, lat_m, lat_s, lat_sign = float(p[1].strip()), float(p[2].strip()), float(p[3].strip()), p[4].strip().rstrip('}') lon_d, lon_m, lon_s, lon_sign = float(p[5].strip()), float(p[6].strip()), float(p[7].strip()), p[8].strip().rstrip('}') lat = lat_d + lat_m / 60 + lat_s / 3600 lon = lon_d + lon_m / 60 + lon_s / 3600 else: # {{coord|12|12.123|N|12|12.123|E|...}} lat_d, lat_m, lat_sign = float(p[1].strip()), float(p[2].strip()), p[3].strip().rstrip('}') lon_d, lon_m, lon_sign = float(p[4].strip()), float(p[5].strip()), p[6].strip().rstrip('}') lat = lat_d + lat_m / 60 lon = lon_d + lon_m / 60 else: # {{coord|12.123|N|12.123|E|...}} lat, lat_sign = float(p[1].strip()), p[2].strip().rstrip('}') lon, lon_sign = float(p[3].strip()), p[4].strip().rstrip('}') if lat_sign == u'N': lat_sign = 1 elif lat_sign == u'S': lat_sign = -1 else: print 'incorrectly formated
= 1269 _strings['device name'] = 1271 _strings['use password protection'] = 1272 _strings['airplay'] = 1273 _strings['airtunes'] = 1274 _strings['filter %s'] = 1275 _strings['custom audio device'] = 1300 _strings['custom passthrough device'] = 1301 _strings['temperature'] = 1375 _strings['pressure'] = 1376 _strings['proximity'] = 1377 _strings['intensity'] = 1378 _strings['ragged'] = 1379 _strings['very'] = 1380 _strings['extreme'] = 1381 _strings['whirls'] = 1382 _strings['broken'] = 1384 _strings['tornado'] = 1385 _strings['tropical'] = 1386 _strings['hurricane'] = 1387 _strings['cold'] = 1388 _strings['windy'] = 1389 _strings['settings'] = 1390 _strings['breeze'] = 1391 _strings['gentle'] = 1392 _strings['high wind, near gale'] = 1393 _strings['severe'] = 1394 _strings['violent'] = 1395 _strings['drifting'] = 1396 _strings['and'] = 1397 _strings['freezing'] = 1398 _strings['late'] = 1399 _strings['isolated'] = 1400 _strings['thundershowers'] = 1401 _strings['thunder'] = 1402 _strings['sun'] = 1403 _strings['heavy'] = 1404 _strings['in'] = 1405 _strings['the'] = 1406 _strings['vicinity'] = 1407 _strings['ice'] = 1408 _strings['crystals'] = 1409 _strings['calm'] = 1410 _strings['with'] = 1411 _strings['windy'] = 1412 _strings['patches'] = 1413 _strings['thunderstorm'] = 1414 _strings['drizzle'] = 1415 _strings['foggy'] = 1416 _strings['grains'] = 1417 _strings['thunderstorms'] = 1418 _strings['shallow'] = 1419 _strings['moderate'] = 1420 _strings['windy'] = 1422 _strings['mist'] = 1423 _strings['overcast'] = 1424 _strings['pellets'] = 1425 _strings['hail'] = 1426 _strings['smoke'] = 1427 _strings['volcanic'] = 1428 _strings['ash'] = 1429 _strings['widespread'] = 1430 _strings['dust'] = 1431 _strings['sand'] = 1432 _strings['spray'] = 1433 _strings['whirls'] = 1434 _strings['sandstorm'] = 1435 _strings['blowing'] = 1436 _strings['pellet'] = 1437 _strings['small'] = 1438 _strings['and'] = 1439 _strings['sleet'] = 1440 _strings['with'] = 1441 _strings['chance'] = 1442 _strings['of'] = 1443 _strings['funnel'] = 1444 _strings['cloud'] = 1445 _strings['unknown'] = 1446 _strings['precipitation'] = 1448 _strings['partial'] = 1449 _strings['put display to sleep when idle'] = 1450 _strings['runtime'] = 2050 _strings['empty list'] = 2080 _strings['went back to parent list because the active list has been emptied'] = 2081 _strings['home'] = 10000 _strings['programs'] = 10001 _strings['pictures'] = 10002 _strings['file manager'] = 10003 _strings['settings'] = 10004 _strings['music'] = 10005 _strings['videos'] = 10006 _strings['system information'] = 10007 _strings['settings - general'] = 10008 _strings['settings - screen'] = 10009 _strings['settings - pictures'] = 10012 _strings['settings - programs'] = 10013 _strings['settings - weather'] = 10014 _strings['settings - music'] = 10015 _strings['settings - system'] = 10016 _strings['settings - videos'] = 10017 _strings['settings - network'] = 10018 _strings['settings - appearance'] = 10019 _strings['scripts'] = 10020 _strings['videos'] = 10025 _strings['login screen'] = 10029 _strings['settings - profiles'] = 10034 _strings['reset'] = 10035 _strings['basic'] = 10036 _strings['standard'] = 10037 _strings['advanced'] = 10038 _strings['expert'] = 10039 _strings['add-on browser'] = 10040 _strings['reset above settings to default'] = 10041 _strings['are you sure you want to reset the settings in this category?'] = 10042 _strings['help'] = 10043 _strings['no help available'] = 10044 _strings['resets all the visible settings to their default values.'] = 10045 _strings['no categories available'] = 10046 _strings['try changing the setting level to see additional categories and settings.'] = 10047 _strings['progress dialogue'] = 10101 _strings['file browser'] = 10126 _strings['network setup'] = 10128 _strings['media source'] = 10129 _strings['profile settings'] = 10130 _strings['lock settings'] = 10131 _strings['content settings'] = 10132 _strings['favourites'] = 10134 _strings['smart playlist editor'] = 10136 _strings['smart playlist rule editor'] = 10137 _strings['add-on settings'] = 10140 _strings['looking for subtitles...'] = 10210 _strings['looking for or caching subtitles...'] = 10211 _strings['terminating'] = 10212 _strings['buffering'] = 10213 _strings['opening stream'] = 10214 _strings['playlist editor'] = 10503 _strings['top 100 songs'] = 10504 _strings['top 100 albums'] = 10505 _strings['programs'] = 10506 _strings['configuration'] = 10507 _strings['weather forecast'] = 10508 _strings['network gaming'] = 10509 _strings['extensions'] = 10510 _strings['system info'] = 10511 _strings['music - library'] = 10516 _strings['select dialogue'] = 12000 _strings['dialogue ok'] = 12002 _strings['fullscreen video'] = 12005 _strings['audio visualisation'] = 12006 _strings['file stacking dialogue'] = 12008 _strings['rebuild index...'] = 12009 _strings['return to music window'] = 12010 _strings['return to videos window'] = 12011 _strings['resume from %s'] = 12022 _strings['0'] = 12310 _strings['1'] = 12311 _strings['2'] = 12312 _strings['3'] = 12313 _strings['4'] = 12314 _strings['5'] = 12315 _strings['6'] = 12316 _strings['7'] = 12317 _strings['8'] = 12318 _strings['9'] = 12319 _strings['c'] = 12320 _strings['*'] = 12322 _strings['locked! enter code...'] = 12325 _strings['enter password'] = <PASSWORD> _strings['enter master code'] = 12327 _strings['enter unlock code'] = 12328 _strings['enter gamepad button combo and'] = 12330 _strings['set lock'] = 12332 _strings['unlock'] = 12333 _strings['reset lock'] = 12334 _strings['remove lock'] = 12335 _strings['numeric password'] = <PASSWORD> _strings['gamepad button combo'] = 12338 _strings['full-text password'] = <PASSWORD> _strings['enter new password'] = <PASSWORD> _strings['incorrect password,'] = <PASSWORD> _strings['retries left '] = 12343 _strings['passwords entered did not match.'] = 12344 _strings['access denied'] = 12345 _strings['password retry limit exceeded.'] = 12346 _strings['the system will now power down.'] = 12347 _strings['item locked'] = 12348 _strings['reactivate lock'] = 12353 _strings['change lock'] = 12356 _strings['source lock'] = 12357 _strings['password entry was blank. try again.'] = 12358 _strings['master lock'] = 12360 _strings['settings & file manager'] = 12373 _strings['amount of time to display each image'] = 12378 _strings['use pan and zoom effects'] = 12379 _strings['system uptime'] = 12390 _strings['minutes'] = 12391 _strings['hours'] = 12392 _strings['days'] = 12393 _strings['total uptime'] = 12394 _strings['battery level'] = 12395 _strings['weather'] = 12600 _strings['screensaver'] = 12900 _strings['fullscreen osd'] = 12901 _strings['system'] = 13000 _strings['video only'] = 13002 _strings['- delay'] = 13003 _strings['- minimum file duration'] = 13004 _strings['shutdown'] = 13005 _strings['shutdown function'] = 13008 _strings['quit'] = 13009 _strings['hibernate'] = 13010 _strings['suspend'] = 13011 _strings['exit'] = 13012 _strings['reboot'] = 13013 _strings['minimise'] = 13014 _strings['power button action'] = 13015 _strings['inhibit idle shutdown'] = 13017 _strings['allow idle shutdown'] = 13018 _strings['is another session active, perhaps over ssh?'] = 13020 _strings['joystick plugged'] = 13024 _strings['joystick unplugged'] = 13025 _strings['waiting for network to connect...'] = 13028 _strings['waiting for server to wake up...'] = 13030 _strings['extended wait for server to wake up...'] = 13031 _strings['waiting for services to launch...'] = 13032 _strings['updated for %s'] = 13034 _strings['found for %s'] = 13035 _strings['failed for %s'] = 13036 _strings['running low on battery'] = 13050 _strings['flicker filter'] = 13100 _strings['let driver choose (requires restart)'] = 13101 _strings['disabled'] = 13106 _strings['enabled during video playback'] = 13107 _strings['always enabled'] = 13108 _strings['would you like to keep this change?'] = 13111 _strings['high quality upscaling'] = 13112 _strings['disabled'] = 13113 _strings['enabled for sd content'] = 13114 _strings['always enabled'] = 13115 _strings['upscaling method'] = 13116 _strings['bicubic'] = 13117 _strings['lanczos'] = 13118 _strings['sinc'] = 13119 _strings['vdpau'] = 13120 _strings['keep skin?'] = 13123 _strings['blank other displays'] = 13130 _strings['disabled'] = 13131 _strings['blank displays'] = 13132 _strings['active connections detected!'] = 13140 _strings['change apple remote mode?'] = 13144 _strings['subnet mask'] = 13159 _strings['gateway'] = 13160 _strings['primary dns'] = 13161 _strings['initialise failed'] = 13162 _strings['never'] = 13170 _strings['immediately'] = 13171 _strings['after %i secs'] = 13172 _strings['hdd install date:'] = 13173 _strings['hdd power cycle count:'] = 13174 _strings['profiles'] = 13200 _strings['delete profile "%s"?'] = 13201 _strings['last loaded profile:'] = 13204 _strings['unknown'] = 13205 _strings['overwrite'] = 13206 _strings['alarm clock'] = 13208 _strings['alarm clock interval (in minutes)'] = 13209 _strings['started, alarm in %im'] = 13210 _strings['alarm!'] = 13211 _strings['cancelled with %im%is left'] = 13212 _strings['%2.0fm'] = 13213 _strings['%2.0fs'] = 13214 _strings['search for subtitles in rars'] = 13249 _strings['browse for subtitle...'] = 13250 _strings['move item'] = 13251 _strings['move item here'] = 13252 _strings['cancel move'] = 13253 _strings['hardware:'] = 13270 _strings['connected, but no dns is available.'] = 13274 _strings['dvd-rom'] = 13276 _strings['storage'] = 13277 _strings['default'] = 13278 _strings['network'] = 13279 _strings['video'] = 13280 _strings['hardware'] = 13281 _strings['operating system:'] = 13283 _strings['cpu speed:'] = 13284 _strings['video encoder:'] = 13286 _strings['screen resolution:'] = 13287 _strings['a/v cable:'] = 13292 _strings['dvd region:'] = 13294 _strings['internet:'] = 13295 _strings['connected'] = 13296 _strings['not connected. check network settings.'] = 13297 _strings['target temperature'] = 13299 _strings['fan speed'] = 13300 _strings['auto temperature control'] = 13301 _strings['fan speed override'] = 13302 _strings['fonts'] = 13303 _strings['enable flipping bi-directional strings'] = 13304 _strings['show rss news feeds'] = 13305 _strings['show parent folder items'] = 13306 _strings['track naming template'] = 13307 _strings['zoom effect'] = 13310 _strings['float effect'] = 13311 _strings['black bar reduction'] = 13312 _strings['restart'] = 13313 _strings['crossfade between songs'] = 13314 _strings['regenerate thumbnails'] = 13315 _strings['recursive thumbnails'] = 13316 _strings['view slideshow'] = 13317 _strings['recursive slideshow'] = 13318 _strings['randomise'] = 13319 _strings['stereo'] = 13320 _strings['left only'] = 13321 _strings['right only'] = 13322 _strings['background transparency'] = 13324 _strings['foreground transparency'] = 13325 _strings['a/v delay'] = 13326 _strings['%s not found'] = 13328 _strings['error opening %s'] = 13329 _strings['unable to load %s'] = 13330 _strings['error: out of memory'] = 13331 _strings['move up'] = 13332 _strings['move down'] = 13333 _strings['edit label'] = 13334 _strings['make default'] = 13335 _strings['remove button'] = 13336 _strings['leave as is'] = 13340 _strings['green'] = 13341 _strings['orange'] = 13342 _strings['red'] = 13343 _strings['cycle'] = 13344 _strings['switch led off on playback'] = 13345 _strings['movie information'] = 13346 _strings['queue item'] = 13347 _strings['search imdb...'] = 13348 _strings['scan for new content'] = 13349 _strings['current playlist'] = 13350 _strings['album information'] = 13351 _strings['scan item to library'] = 13352 _strings['stop scanning'] = 13353 _strings['render method'] = 13354 _strings['low quality pixel shader'] = 13355 _strings['hardware overlays'] = 13356 _strings['high quality pixel shader'] = 13357 _strings['play item'] = 13358 _strings['set artist thumb'] = 13359 _strings['automatically generate thumbnails'] = 13360 _strings['enable voice'] = 13361 _strings['enable device'] = 13375 _strings['volume'] = 13376 _strings['default view mode'] = 13377 _strings['default brightness'] = 13378 _strings['default contrast'] = 13379 _strings['default gamma'] = 13380 _strings['resume video'] = 13381 _strings['voice mask - port 1'] = 13382 _strings['voice mask - port 2'] = 13383 _strings['voice mask - port 3'] = 13384 _strings['voice mask - port 4'] = 13385 _strings['use time based seeking'] = 13386 _strings['track naming template - right'] = 13387 _strings['preset'] = 13388 _strings['there are no presets available\nfor this visualisation'] = 13389 _strings['there are no settings available\nfor this visualisation'] = 13390 _strings['use visualisation if playing audio'] = 13392 _strings['calculate size'] = 13393 _strings['calculating folder size'] = 13394 _strings['video settings'] = 13395 _strings['audio and subtitle settings'] = 13396 _strings['enable subtitles'] = 13397 _strings['shortcuts'] = 13398 _strings['crossfade between songs on the same album'] = 13400 _strings['browse for %s'] = 13401 _strings['show track position'] = 13402 _strings['clear default'] = 13403 _strings['resume'] = 13404 _strings['get thumb'] = 13405 _strings['picture information'] = 13406 _strings['%s presets'] = 13407 _strings['(imdb user rating)'] = 13408 _strings['top 250'] = 13409 _strings['tune in on last.fm'] = 13410 _strings['minimum fan speed'] = 13411 _strings['play from here'] = 13412 _strings['downloading'] = 13413 _strings['render method'] = 13415 _strings['auto detect'] = 13416 _strings['basic shaders (arb)'] = 13417 _strings['advanced shaders (glsl)'] = 13418 _strings['software'] = 13419 _strings['remove safely'] = 13420 _strings['vdpau'] = 13421 _strings['start slideshow here']
import os from os.path import join as pjoin import scipy.io as sio from itertools import permutations, product from torch.utils.data import DataLoader, IterableDataset from helpers.preprocessing import * import itertools class AudioDataset(IterableDataset): def __init__(self, data_dir, rir_path, is_train=True, train_ratio=0.8, perm_skip=100, seg_len=100, seed=2021): super(AudioDataset).__init__() self.is_train = is_train self.seg_len = seg_len self.rng = np.random.default_rng(seed) self.perm_skip = perm_skip # Find wavs and load rirs self.wav_list = [pjoin(root, file) for root, dirs, files in os.walk(data_dir) for file in files if file.endswith('.wav')] rirs_mat = sio.loadmat(rir_path) self.H = rirs_mat['H'] self.zone_dict = rirs_mat['zone_dict'] # Split train and validation train_len = int(np.ceil(train_ratio * len(self.wav_list))) self.wav_list = self.wav_list[:train_len] if is_train else self.wav_list[train_len:] train_len = int(np.ceil(train_ratio * self.H.shape[3])) self.H = self.H[:, :, :, :train_len] if is_train else self.H[:, :, :, train_len:] self.zone_dict = self.zone_dict[:train_len, :] if is_train else self.zone_dict[train_len:, :] # Generate Permutations self.perm = permutations(list(range(len(self.wav_list))), self.H.shape[2]) # Initialize generator self.mini_batch_gen = TrainMiniBatchGenerator(self.wav_list, self.perm, self.H, self.zone_dict, self.rng, self.perm_skip, self.seg_len) def __iter__(self): return iter(self.mini_batch_gen) class TrainMiniBatchGenerator: def __init__(self, wav_list, perm, H, zone_dict, rng, perm_skip=100, seg_len=100): self.wav_list = wav_list self.perm = iter(perm) self.H = H self.zone_dict = zone_dict self.seg_len = seg_len self.rng = rng self.perm_skip = perm_skip self.data = 0 self.tags = 0 def __iter__(self): self.next_file() self.seg_idx = 0 self.seg_num = self.data.shape[1] // self.seg_len return self def __next__(self): """ return data, tag fixed data\tag size! cycle the end of data from the start """ if self.seg_idx >= self.seg_num: self.next_file() self.seg_idx = 0 self.seg_num = self.data.shape[1] // self.seg_len seg_start = self.seg_idx * self.seg_len seg_end = (self.seg_idx + 1) * self.seg_len self.seg_idx += 1 return (np.moveaxis(self.data[:, seg_start:seg_end, :], -1, 0), self.tags[:, seg_start:seg_end]) def next_file(self): # choose files and rirs rand_next(self.perm, self.perm_skip, self.rng) cur_sample_idx = next(self.perm) rir_idx = self.rng.integers(low=0, high=self.H.shape[3]) # load files speakers = load_example(cur_sample_idx, self.wav_list, self.H, rir_idx) # create tags and data self.tags = create_tags(speakers, self.zone_dict[rir_idx, :]) self.data = create_example(awgn(speakers)) # loop back to fill seg len remainder = self.data.shape[1] % self.seg_len if remainder > 0: cycle_len = self.seg_len - remainder self.data = np.concatenate((self.data, self.data[:, :cycle_len, :]), axis=1) self.tags = np.concatenate((self.tags, self.tags[:, :cycle_len]), axis=1) class TestAudioDataset(IterableDataset): def __init__(self, data_dir, rir_path, perm_skip=100, seg_len=100, seed=2022): super(TestAudioDataset).__init__() self.seg_len = seg_len self.rng = np.random.default_rng(seed) self.perm_skip = perm_skip self.wav_list = [pjoin(root, file) for root, dirs, files in os.walk(data_dir) for file in files if file.endswith('.wav')] self.file_names = [os.path.basename(file) for file in self.wav_list] rirs_mat = sio.loadmat(rir_path) self.H = rirs_mat['H'] self.zone_dict = rirs_mat['zone_dict'] self.perm = permutations(list(range(len(self.wav_list))), self.H.shape[2]) self.mini_batch_gen = TestMiniBatchGenerator(self.wav_list, self.file_names, self.perm, self.H, self.zone_dict, self.rng, self.perm_skip, self.seg_len) def __iter__(self): return iter(self.mini_batch_gen) class TestMiniBatchGenerator: """ return data, file_name, EOF, and use with batch_size = 1 or None (whatever work) this way the data can vary in length """ def __init__(self, wav_list, file_names, perm, H, zone_dict, rng, perm_skip=100, seg_len=100): self.wav_list = wav_list self.file_names = file_names self.perm = iter(perm) self.H = H self.zone_dict = zone_dict self.seg_len = seg_len self.rng = rng self.perm_skip = perm_skip self.current_files = {'file_names': [], 'zone_dict': [], 'speakers': []} self.data = 0 def __iter__(self): self.next_file() self.seg_idx = 0 self.seg_num = int(np.ceil(self.data.shape[1] / self.seg_len)) self.EOF = False return self def __next__(self): if self.seg_idx >= self.seg_num: self.next_file() self.seg_idx = 0 self.seg_num = int(np.ceil(self.data.shape[1] / self.seg_len)) self.EOF = False seg_start = self.seg_idx * self.seg_len seg_end = (self.seg_idx + 1) * self.seg_len self.seg_idx += 1 data_seg = np.moveaxis(self.data[:, seg_start:seg_end, :], -1, 0) if seg_end >= self.data.shape[1]: data_seg = np.moveaxis(self.data[:, seg_start:, :], -1, 0) self.EOF = True return data_seg, self.current_files, self.EOF def next_file(self): # choose files and rirs rand_next(self.perm, self.perm_skip, self.rng) cur_sample_idx = next(self.perm) rir_idx = self.rng.integers(low=0, high=self.H.shape[3]) self.current_files['file_names'] = [self.file_names[i] for i in cur_sample_idx] self.current_files['zone_dict'] = self.zone_dict[rir_idx, :] # load files speakers = load_example(cur_sample_idx, self.wav_list, self.H, rir_idx) speakers = awgn(speakers) self.current_files['speakers'] = [speakers[i][0] for i in range(len(speakers))] # create data self.data = create_example(speakers) # pad to fill seg len remainder = self.data.shape[1] % self.seg_len if remainder > 0: pad_len = self.seg_len - remainder self.data = np.pad(self.data, ((0, 0), (0, pad_len), (0, 0)), 'constant') class RealAudioDataset(IterableDataset): def __init__(self, data_dir, zone_num, sp_num, is_train=True, train_ratio=0.8, perm_skip=0, seg_len=100, seed=2021): super(RealAudioDataset).__init__() self.is_train = is_train self.seg_len = seg_len self.rng = np.random.default_rng(seed) self.perm_skip = perm_skip # Find wavs and load rirs # Train/Zone1/Sentence1/mic1.wav self.wav_list = [[[pjoin(data_dir, zone, sentence, mic) for mic in os.listdir(pjoin(data_dir, zone, sentence))] for sentence in os.listdir(pjoin(data_dir, zone))] for zone in os.listdir(data_dir)] # Sort the Files so Mic9 is first and then Mic1,2,3..,8 for zone in self.wav_list: for s_id, sentence in enumerate(zone): zone[s_id].sort() zone[s_id].append(zone[s_id].pop(0)) # Split train and validation for zone_idx, zone in enumerate(self.wav_list): train_len = int(np.ceil(train_ratio * len(zone))) if is_train: self.wav_list[zone_idx] = self.wav_list[zone_idx][:train_len] else: self.wav_list[zone_idx] = self.wav_list[zone_idx][train_len:] # Generate Permutations max_len = max([len(zone) for zone in self.wav_list]) self.perm = product(range(max_len), repeat=sp_num) # Initialize generator self.mini_batch_gen = RealTrainMiniBatchGenerator(self.wav_list, self.perm, sp_num, zone_num, self.rng, self.perm_skip, self.seg_len) def __iter__(self): return iter(self.mini_batch_gen) class RealTrainMiniBatchGenerator: def __init__(self, wav_list, perm, sp_num, zone_num, rng, perm_skip=0, seg_len=100): self.wav_list = wav_list self.perm = iter(perm) self.seg_len = seg_len self.zone_num = zone_num self.sp_num = sp_num self.rng = rng self.perm_skip = perm_skip self.data = 0 self.tags = 0 def __iter__(self): self.next_file() self.seg_idx = 0 self.seg_num = self.data.shape[1] // self.seg_len return self def __next__(self): """ return data, tag fixed data\tag size! cycle the end of data from the start """ if self.seg_idx >= self.seg_num: self.next_file() self.seg_idx = 0 self.seg_num = self.data.shape[1] // self.seg_len seg_start = self.seg_idx * self.seg_len seg_end = (self.seg_idx + 1) * self.seg_len self.seg_idx += 1 return (np.moveaxis(self.data[:, seg_start:seg_end, :], -1, 0), self.tags[:, seg_start:seg_end]) def next_file(self): # choose files and rirs cur_sample_idx = next(self.perm) rand_next(self.perm, self.perm_skip, self.rng) zone_dict = self.rng.choice(self.zone_num, size=self.sp_num, replace=False) # load files speakers = load_example(cur_sample_idx, self.wav_list, zone_dict=zone_dict) # create tags and data self.tags = create_tags(speakers, zone_dict) self.data = create_example(awgn(rand_sir(speakers, 3))) # loop back to fill seg len remainder = self.data.shape[1] % self.seg_len if remainder > 0: cycle_len = self.seg_len - remainder self.data = np.concatenate((self.data, self.data[:, :cycle_len, :]), axis=1) self.tags = np.concatenate((self.tags, self.tags[:, :cycle_len]), axis=1) class RealTestAudioDataset(IterableDataset): def __init__(self, data_dir, zone_num, sp_num, perm_skip=0, seg_len=100, seed=2022): super(RealTestAudioDataset).__init__() self.seg_len = seg_len self.rng = np.random.default_rng(seed) self.perm_skip = perm_skip self.wav_list = [[[pjoin(data_dir, zone, sentence, mic) for mic in os.listdir(pjoin(data_dir, zone, sentence))] for sentence in os.listdir(pjoin(data_dir, zone))] for zone in os.listdir(data_dir)] # Sort the Files so Mic9 is first and then Mic1,2,3..,8 for zone in self.wav_list: for s_id, sentence in enumerate(zone): zone[s_id].sort() zone[s_id].append(zone[s_id].pop(0)) self.file_names = [[sentence[0].split(os.sep)[-2] for sentence in zone] for zone in self.wav_list] max_len = max([len(zone) for zone in self.wav_list]) self.perm = product(range(max_len), repeat=sp_num) self.mini_batch_gen = RealTestMiniBatchGenerator(self.wav_list, self.file_names, self.perm, sp_num, zone_num, self.rng, self.perm_skip, self.seg_len) def __iter__(self): return iter(self.mini_batch_gen) class RealTestMiniBatchGenerator: """ return data, file_name, EOF, and use with batch_size = 1 or None (whatever work) this way the data can vary in length """ def __init__(self, wav_list, file_names, perm, sp_num, zone_num, rng, perm_skip=0, seg_len=100): self.wav_list = wav_list self.file_names = file_names self.perm = iter(perm) self.zone_num = zone_num self.sp_num = sp_num self.seg_len = seg_len self.rng = rng self.perm_skip = perm_skip self.current_files = {'file_names': [], 'zone_dict': [], 'speakers': []} self.data = 0 def __iter__(self): self.next_file() self.seg_idx = 0 self.seg_num = int(np.ceil(self.data.shape[1] / self.seg_len)) self.EOF = False return self def __next__(self): if self.seg_idx >= self.seg_num: self.next_file() self.seg_idx = 0 self.seg_num = int(np.ceil(self.data.shape[1] / self.seg_len)) self.EOF = False seg_start = self.seg_idx * self.seg_len seg_end = (self.seg_idx + 1) * self.seg_len self.seg_idx += 1 data_seg = np.moveaxis(self.data[:, seg_start:seg_end, :], -1, 0) if seg_end >= self.data.shape[1]: data_seg = np.moveaxis(self.data[:, seg_start:, :], -1, 0) self.EOF = True return data_seg, self.current_files, self.EOF def next_file(self): # choose files and rirs cur_sample_idx = next(self.perm) rand_next(self.perm, self.perm_skip, self.rng) zone_dict = self.rng.choice(self.zone_num, size=self.sp_num, replace=False) pick_sentences = lambda z, s: self.file_names[zone_dict[z]][s % len(self.file_names[zone_dict[z]])] self.current_files['file_names'] = [pick_sentences(zone_id, sentence_id) for zone_id, sentence_id in enumerate(cur_sample_idx)] self.current_files['zone_dict'] = zone_dict # load files speakers = load_example(cur_sample_idx, self.wav_list, zone_dict=zone_dict) speakers = rand_sir(speakers, 4) self.current_files['speakers'] = [speakers[i][0] for i in range(len(speakers))] # create data self.data = create_example(speakers) # pad to fill seg len remainder = self.data.shape[1] % self.seg_len if remainder > 0: pad_len = self.seg_len - remainder self.data = np.pad(self.data, ((0, 0), (0, pad_len), (0, 0)), 'constant') def rand_next(iterator, avg_next_num, rng): if avg_next_num > 0: n = rng.integers(low=0, high=avg_next_num) + avg_next_num // 2 next(itertools.islice(iterator, n, n), None) if __name__ == '__main__': DIR =
all plugin devices.") for dev in indigo.devices.itervalues("self"): try: dev.updateStateImageOnServer(indigo.kStateImageSel.SensorOff) indigo.device.enable(dev, value=False) except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"Exception when trying to kill all comms. Error: {s}. See plugin log for more " u"information.".format(s=sub_error)) # ============================================================================= def commsUnkillAll(self): """ Establish communication for all disabled plugin devices commsUnkillAll() sets the enabled status of all plugin devices to true. ----- """ self.logger.info(u"Starting communication with all plugin devices.") for dev in indigo.devices.itervalues("self"): try: indigo.device.enable(dev, value=True) except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"Exception when trying to kill all comms. Error: {s}. See plugin log for more " u"information.".format(s=sub_error)) # ============================================================================= def csv_check_unique(self): """ :return: """ self.logger.debug(u"Checking CSV references.") titles = {} # Iterate through CSV Engine devices for dev in indigo.devices.iter(filter='self'): if dev.deviceTypeId == 'csvEngine': # Get the list of CSV file titles column_dict = ast.literal_eval(dev.pluginProps['columnDict']) # Build a dictionary where the file title is the key and the value is a list of # devices that point to that title for a source. for key in column_dict.keys(): title = column_dict[key][0] if title not in titles.keys(): titles[title] = [dev.name] else: titles[title].append(dev.name) # Iterate through the dict of titles for title_name in titles.keys(): if len(titles[title_name]) > 1: self.logger.warning(u"Audit CSV data files: CSV filename [{tname}] referenced by more than one CSV " u"Engine device: {tnum}".format(tname=title_name, tnum=titles[title_name])) # ============================================================================= def csv_item_add(self, values_dict=None, type_id="", dev_id=0): """ Add new item to CSV engine The csv_item_add() method is called when the user clicks on the 'Add Item' button in the CSV Engine config dialog. ----- :param class 'indigo.Dict' values_dict: :param unicode type_id: :param int dev_id: """ dev = indigo.devices[int(dev_id)] self.logger.threaddebug(u"[{dn}] csv item add values_dict: {vd}".format(dn=dev.name, vd=dict(values_dict))) error_msg_dict = indigo.Dict() try: # Convert column_dict from a string to a literal dict column_dict = ast.literal_eval(values_dict['columnDict']) lister = [0] num_lister = [] # ================================ Validation ================================= # Add data item validation. Will not allow add until all three conditions are # met. if values_dict['addValue'] == "": error_msg_dict['addValue'] = u"Please enter a title value for your CSV data element." error_msg_dict['showAlertText'] = u"Title Error.\n\nA title is required for each CSV data element." return values_dict, error_msg_dict if values_dict['addSource'] == "": error_msg_dict['addSource'] = u"Please select a device or variable as a source for your CSV data " \ u"element." error_msg_dict['showAlertText'] = u"ID Error.\n\nA source is required for each CSV data element." return values_dict, error_msg_dict if values_dict['addState'] == "": error_msg_dict['addState'] = u"Please select a value source for your CSV data element." error_msg_dict['showAlertText'] = u"Data Error.\n\nA data value is required for each CSV data element." return values_dict, error_msg_dict # Create a list of existing keys with the 'k' lopped off [lister.append(key.lstrip('k')) for key in sorted(column_dict.keys())] # Change each value to an integer for evaluation [num_lister.append(int(item)) for item in lister] # Generate the next key next_key = u'k{nk}'.format(nk=int(max(num_lister)) + 1) # Save the tuple of properties column_dict[next_key] = (values_dict['addValue'], values_dict['addSource'], values_dict['addState']) # Remove any empty entries as they're not going to do any good anyway. new_dict = {} for k, v in column_dict.iteritems(): if v != (u"", u"", u"") and v != ('None', 'None', 'None'): new_dict[k] = v else: self.logger.info(u"Pruning CSV Engine.") # Convert column_dict back to a string and prepare it for storage. values_dict['columnDict'] = str(new_dict) except AttributeError, sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"[{name}] Error adding CSV item: {s}. See plugin log for more " u"information.".format(name=dev.name, s=sub_error)) # If the appropriate CSV file doesn't exist, create it and write the header line. file_name = values_dict['addValue'] full_path = "{path}{fn}.csv".format(path=self.pluginPrefs['dataPath'], fn=file_name.encode("utf-8")) if not os.path.isfile(full_path): with open(full_path, 'w') as outfile: outfile.write(u"{t},{fn}\n".format(t='Timestamp', fn=file_name).encode("utf-8")) # Wipe the field values clean for the next element to be added. for key in ('addSourceFilter', 'editSourceFilter'): values_dict[key] = "A" for key in ('addValue', 'addSource', 'addState'): values_dict[key] = u"" return values_dict, error_msg_dict # ============================================================================= def csv_item_delete(self, values_dict=None, type_id="", dev_id=0): """ Deletes items from the CSV Engine configuration dialog The csv_item_delete() method is called when the user clicks on the "Delete Item" button in the CSV Engine config dialog. ----- :param class 'indigo.Dict' values_dict: :param unicode type_id: :param int dev_id: """ dev = indigo.devices[int(dev_id)] self.logger.threaddebug(u"[{name}] csv item delete " u"values_dict: {vd}".format(name=dev.name, vd=dict(values_dict))) # Convert column_dict from a string to a literal dict. column_dict = ast.literal_eval(values_dict['columnDict']) try: values_dict["editKey"] = values_dict["csv_item_list"] del column_dict[values_dict['editKey']] except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"[{name}] Error deleting CSV item: {s}. See plugin log for more " u"information.".format(name=dev.name, s=sub_error)) values_dict['csv_item_list'] = "" values_dict['editKey'] = "" values_dict['editSource'] = "" values_dict['editState'] = "" values_dict['editValue'] = "" values_dict['previousKey'] = "" values_dict['columnDict'] = str(column_dict) # Convert column_dict back to a string for storage. return values_dict # ============================================================================= def csv_item_list(self, filter="", values_dict=None, type_id="", target_id=0): """ Construct the list of CSV items The csv_item_list() method generates the list of Item Key : Item Value pairs that will be presented in the CVS Engine device config dialog. It's called at open and routinely as changes are made in the dialog. ----- :param unicode filter: :param class 'indigo.Dict' values_dict: :param unicode type_id: :param int target_id: """ dev = indigo.devices[int(target_id)] try: # Returning an empty dict seems to work and may solve the 'None' issue values_dict['columnDict'] = values_dict.get('columnDict', '{}') # Convert column_dict from a string to a literal dict. column_dict = ast.literal_eval(values_dict['columnDict']) prop_list = [(key, "{n}".format(n=value[0].encode("utf-8"))) for key, value in column_dict.items()] except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"[{name}] Error generating CSV item list: {s}. See plugin log for more " u"information.".format(name=dev.name, s=sub_error)) prop_list = [] # Return a list sorted by the value and not the key. Case insensitive sort. result = sorted(prop_list, key=lambda tup: tup[1].lower()) return result # ============================================================================= def csv_item_update(self, values_dict=None, type_id="", dev_id=0): """ Updates items from the CSV Engine configuration dialog When the user selects the 'Update Item' button, update the dict of CSV engine items. ----- :param class 'indigo.Dict' values_dict: :param unicode type_id: :param int dev_id: """ dev = indigo.devices[dev_id] self.logger.threaddebug(u"[{name}] csv item update " u"values_dict: {vd}".format(name=dev.name, vd=dict(values_dict))) error_msg_dict = indigo.Dict() # Convert column_dict from a string to a literal dict. column_dict = ast.literal_eval(values_dict['columnDict']) try: key = values_dict['editKey'] previous_key = values_dict['previousKey'] if key != previous_key: if key in column_dict: error_msg_dict['editKey'] = u"New key ({k}) already exists in the global properties, please " \ u"use a different key value".format(k=key) values_dict['editKey'] = previous_key else: del column_dict[previous_key] else: column_dict[key] = (values_dict['editValue'], values_dict['editSource'], values_dict['editState'] ) values_dict['csv_item_list'] = "" values_dict['editKey'] = "" values_dict['editSource'] = "" values_dict['editState'] = "" values_dict['editValue'] = "" if not len(error_msg_dict): values_dict['previousKey'] = key except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"[{name}] Error updating CSV item: {s}. See plugin log for more " u"information.".format(name=dev.name, s=sub_error)) # Remove any empty entries as they're not going to do any good anyway. new_dict = {} for k, v in column_dict.iteritems(): if v != ('', '', ''): new_dict[k] = v column_dict = new_dict # Convert column_dict back to a string for storage. values_dict['columnDict'] = str(column_dict) return values_dict, error_msg_dict # ============================================================================= def csv_item_select(self, values_dict=None, type_id="", dev_id=0): """ Populates CSV engine controls for updates and deletions The csv_item_select() method is called when the user actually selects something within the CSV engine Item List dropdown menu. When the user selects an item from the Item List, we populate the Title, ID, and Data controls with the relevant Item properties. ----- :param class 'indigo.Dict' values_dict: :param unicode type_id: :param int dev_id: """ dev = indigo.devices[int(dev_id)] self.logger.threaddebug(u"[{name}] csv item select " u"values_dict: {vd}".format(name=dev.name, vd=dict(values_dict))) try: column_dict = ast.literal_eval(values_dict['columnDict']) values_dict['editKey'] = values_dict['csv_item_list'] values_dict['editSource'] = column_dict[values_dict['csv_item_list']][1] values_dict['editState'] = column_dict[values_dict['csv_item_list']][2] values_dict['editValue'] = column_dict[values_dict['csv_item_list']][0] values_dict['isColumnSelected'] = True values_dict['previousKey'] = values_dict['csv_item_list'] except Exception as sub_error: self.plugin_error_handler(sub_error=traceback.format_exc()) self.logger.error(u"[{name}] There was an error establishing a connection with the item you chose: {s}. " u"See plugin log for more information.".format(name=dev.name, s=sub_error)) return values_dict # ============================================================================= def csv_refresh(self): """ Refreshes data for all CSV custom devices The csv_refresh() method manages CSV files through CSV Engine custom devices. ----- """ if not self.pluginIsShuttingDown: for dev in indigo.devices.itervalues("self"): if dev.deviceTypeId == 'csvEngine' and dev.enabled: refresh_interval = int(dev.pluginProps['refreshInterval']) try: last_updated = date_parse(dev.states['csvLastUpdated']) except ValueError: last_updated = date_parse('1970-01-01 00:00') diff = dt.datetime.now() - last_updated refresh_needed = diff
<reponame>xkmato/py77<filename>pylib/zeus/runner.py #!/usr/bin/env python """Handles run.""" __author__ = '<EMAIL> (<NAME>)' __copyright__ = 'Copyright 2012 Room77, Inc.' import itertools import json import os import re import sys import time from pylib.base.flags import Flags from pylib.base.exec_utils import ExecUtils from pylib.base.term_color import TermColor from pylib.file.file_utils import FileUtils from pylib.util.mail.mailer import Mailer from pylib.zeus.pipeline_cmd_base import PipelineCmdBase from pylib.zeus.pipeline_config import PipelineConfig from pylib.zeus.pipeline_utils import PipelineUtils class Runner(PipelineCmdBase): """Class to handle run.""" # The different exit codes that can be returned after running a task. EXITCODE = { '_LOWEST':-1, # Internal use. 'SUCCESS': 0, 'ALLOW_FAIL': 1, 'FAILURE': 2, 'ABORT_FAIL': 3, } EXITCODE_DESCRIPTION = { 0: 'SUCCESS', 1: 'ALLOW_FAIL', 2: 'FAILURE', 3: 'ABORT_FAIL', } EXITCODE_FILE = { 0: 'SUCCESS', 1: 'SUCCESS', 2: 'FAILURE', 3: 'ABORT', } TASK_OPTIONS = { # Default option. Task will run regardless of if earlier tasks in the directory # were successful or not. Task will not run if any task across the pipeline was # marked as `abort_fail`. 'NORMAL': 0, # If this step fails, prevent any subsequent steps across the entire pipeline from # running. The pipeline will be aborted. All currently running tasks will finish, # but no further tasks will be run. To enable this option, add `.abort_fail` to the # task name. 'ABORT_FAIL': 1, # If this step fails, do not mark the out directory as failed. Mark it as successful # if all other tasks at this level have succeeded. This will allow publishing of a # task directory even if the only steps that failed were marked as `allow_fail`. To # enable this option, add `.allow_fail` to the task name. 'ALLOW_FAIL': 2, # If any earlier tasks located in the same directory as this task failed, prevent # this task from running. This task will also be marked as failed. To enable this # option, add `.require_dir_success` to the task name. 'REQUIRE_DIR_SUCCESS': 3, } @classmethod def Init(cls, parser): super(Runner, cls).Init(parser) parser.add_argument('-t', '--timeout', type=float, default=86400, help='Timeout for each task in seconds.') parser.add_argument('--pool_size', type=int, default=0, help='The pool size for parallelization.') parser.add_argument('--detailed_success_mail', action='store_true', default=False, help='Sends a detailed mail even on success. Useful for debugging.') parser.add_argument('--success_mail', type=str, default='', help='The mail to use to send info in case of success.') parser.add_argument('--failure_mail', type=str, default='', help='The mail to use to send info in case of success.') parser.add_argument('--mail_domain', type=str, default='corp.room77.com', help='The domain to use when sending automated ' 'pipeline mail.') @classmethod def WorkHorse(cls, tasks): """Runs the workhorse for the command. Args: tasks: OrderedDict {int, set(string)}: Dict from priority to set of tasks to execute at the priority. Note: the dict is ordered by priority. Return: (list, list): Returns a tuple of list in the form (successful_tasks, failed_tasks) specifying tasks that succeeded and ones that failed. """ # All our binaries assume they will be run from the source root. start = time.time() os.chdir(FileUtils.GetSrcRoot()) cls._CreateDirsForTasks(tasks) successful_run = []; failed_run = [] aborted_task = None # NOTE(stephen): Storing task dir status and task out dir status separately since # pipelines do not always have an out dir defined. dirs_status = {} out_dirs_status = {} for set_tasks in tasks.values(): if aborted_task: failed_run += set_tasks continue tasks_to_run = [] for task in set_tasks: task_options = cls.__GetTaskOptions(task) # Check if this task requires all previous tasks in the same directory to be # successful. if task_options[Runner.TASK_OPTIONS['REQUIRE_DIR_SUCCESS']]: task_dir = PipelineUtils.TaskDirName(task) cur_dir_status = dirs_status.get(task_dir) # If any previous tasks have been run in this directory, check to ensure all # of them were successful. if cur_dir_status and cur_dir_status != Runner.EXITCODE['SUCCESS']: failed_run += [task] task_display_name = PipelineUtils.TaskDisplayName(task) TermColor.Info('Skipped %s' % task_display_name) TermColor.Failure( 'Skipped Task: %s due to earlier failures in task dir' % task_display_name ) continue tasks_to_run.append(task) # It is possible for all steps at this priority level to be skipped due to the # task options selected. if set_tasks and not tasks_to_run: continue # Run all the tasks at the same priority in parallel. args = zip(itertools.repeat(cls), itertools.repeat('_RunSingeTask'), tasks_to_run) task_res = ExecUtils.ExecuteParallel(args, Flags.ARGS.pool_size) # task_res = [] # for task in tasks_to_run: task_res += [cls._RunSingeTask(task)] if not task_res: TermColor.Error('Could not process: %s' % tasks_to_run) failed_run += tasks_to_run continue for (res, task) in task_res: if res == Runner.EXITCODE['SUCCESS']: successful_run += [task] elif res == Runner.EXITCODE['FAILURE']: failed_run += [task] elif res == Runner.EXITCODE['ALLOW_FAIL']: failed_run += [task] elif res == Runner.EXITCODE['ABORT_FAIL']: failed_run += [task] aborted_task = task else: TermColor.Fatal('Invalid return %d code for %s' % (res, task)) # Update the current status of all tasks in the same directory. task_dir = PipelineUtils.TaskDirName(task) dirs_status[task_dir] = max( dirs_status.get(task_dir, Runner.EXITCODE['_LOWEST']), res, ) # Update the out dir status. out_dir = PipelineUtils.GetOutDirForTask(task) if out_dir: out_dirs_status[out_dir] = max( out_dirs_status.get(out_dir, Runner.EXITCODE['_LOWEST']), res, ) # Write the status files to the dirs. cls._WriteOutDirsStatus(out_dirs_status) # Send the final status mail. time_taken = time.time() - start cls._SendFinalStatusMail(successful_run, failed_run, aborted_task, time_taken) if aborted_task: TermColor.Failure('Aborted by task: %s' % aborted_task) return (successful_run, failed_run) @classmethod def _CreateDirsForTasks(cls, tasks): """Creates the relevant dirs for tasks. Args: tasks: OrderedDict {int, set(string)}: Dict from priority to set of tasks to execute at the priority. Note: the dict is ordered by priority. """ for set_tasks in tasks.values(): for task in set_tasks: rel_path = PipelineUtils.GetTaskOutputRelativeDir(task) PipelineConfig.Instance().CreateAllSubDirsForPath(rel_path) @classmethod def _RunSingeTask(cls, task): """Runs a Single Task. Args: task: string: The task to run. Return: (EXITCODE, string): Returns a tuple of the result status and the task. """ TermColor.Info('Executing %s' % PipelineUtils.TaskDisplayName(task)) task_vars = cls.__GetEnvVarsForTask(task) TermColor.VInfo(4, 'VARS: \n%s' % task_vars) task_cmd = task pipe_output = True log_file = PipelineUtils.GetLogFileForTask(task) if log_file: task_cmd += ' > ' + PipelineUtils.GetLogFileForTask(task) + ' 2>&1' pipe_output = False timeout = cls.__GetTimeOutForTask(task) start = time.time() (status, out) = ExecUtils.RunCmd(task_cmd, timeout, pipe_output, task_vars) time_taken = time.time() - start TermColor.Info('Executed %s. Took %.2fs' % (PipelineUtils.TaskDisplayName(task), time_taken)) if status: TermColor.Failure('Failed Task: %s' % PipelineUtils.TaskDisplayName(task)) if task_vars.get('PIPELINE_TASK_ABORT_FAIL', None): status_code = Runner.EXITCODE['ABORT_FAIL'] elif task_vars.get('PIPELINE_TASK_ALLOW_FAIL', None): status_code = Runner.EXITCODE['ALLOW_FAIL'] else: status_code = Runner.EXITCODE['FAILURE'] else: status_code = Runner.EXITCODE['SUCCESS'] cls._SendMailForTask(task, status_code, time_taken, log_file, out) # Everything done. Mark the task as successful. return (status_code, task) @classmethod def __GetEnvVarsForTask(cls, task): """Returns the env vars for the task. Args: task: string: The task for which the envvar should be prepared. Returns: dict {string, string}: The dictionary of IDS to values. """ rel_path = PipelineUtils.GetTaskOutputRelativeDir(task) vars = {} for k, v in PipelineConfig.Instance().GetAllSubDirsForPath(rel_path).items(): vars[k] = v prev_dir = FileUtils.GetPreviousDatedDir(v) if not prev_dir: prev_dir = v vars[k + '_PREV'] = prev_dir vars.update(PipelineConfig.Instance().GetAllENVVars()) # Check if the task is critical or not. task_options = cls.__GetTaskOptions(task) if task_options[Runner.TASK_OPTIONS['ABORT_FAIL']]: vars['PIPELINE_TASK_ABORT_FAIL'] = '1' if task_options[Runner.TASK_OPTIONS['ALLOW_FAIL']]: vars['PIPELINE_TASK_ALLOW_FAIL'] = '1' return vars @classmethod def __GetTimeOutForTask(cls, task): """Returns the timeout for the task. Args: task: string: The task for which the timeout should be prepared. Returns: int: The timeout in seconds. """ timeout = FileUtils.FileContents(task + '.timeout') if not timeout: timeout = FileUtils.FileContents(os.path.join(PipelineUtils.TaskDirName(task), 'timeout')) if not timeout: return Flags.ARGS.timeout timeout = re.sub('\s*', '', timeout) timeout_parts = re.split('(\d+)', timeout) if len(timeout_parts) < 3: TermColor.Warning('Ignoring invalid timeout [%s] for task: %s' % (timeout, task)) return Flags.ARGS.timeout timeout = float(timeout_parts[1]) annotation = timeout_parts[2] if not annotation: return timeout elif annotation == 'd': timeout *= 86400 elif annotation == 'h': timeout *= 3600 elif annotation == 'm': timeout *= 60 elif annotation == 'ms': timeout *= 0.001 elif annotation == 'us': timeout *= 0.000001 return timeout @classmethod def __GetTaskOptions(cls, task): rel_task = PipelineUtils.TaskRelativeName(task) options = { v: False for v in Runner.TASK_OPTIONS.values() } if '.abort_fail' in rel_task: options[Runner.TASK_OPTIONS['ABORT_FAIL']] = True if '.allow_fail' in rel_task: options[Runner.TASK_OPTIONS['ALLOW_FAIL']] = True if '.require_dir_success' in rel_task: options[Runner.TASK_OPTIONS['REQUIRE_DIR_SUCCESS']] = True if not options: options[Runner.TASK_OPTIONS['NORMAL']] = True return options @classmethod def _SendMailForTask(cls, task, status_code, time_taken, log_file, msg): """Sends the mail if required for the task. Args: task: string: The task for which the envvar should be prepared. status_code: EXITCODE: The exit code for the task. time_taken: float: Time taken in seconds. log_file: string: The log file containing the output of the task. msg: string: The output message piped directly. Note only one of msg or log_file will be present at any time. Returns: dict {string, string}: The dictionary of
import heterocl as hcl import numpy as np import time import user_definer_3D_Q as UD import os ###################################### USER-DEFINED FUNCTIONS ###################################### # Given state and action, return successor states and their probabilities # sVals: the coordinates of state # bounds: the lower and upper limits of the state space in each dimension # trans: holds each successor state and the probability of reaching that state def transition(sVals, action, bounds, trans, goal): dx = hcl.scalar(0, "dx") dy = hcl.scalar(0, "dy") mag = hcl.scalar(0, "mag") # Check if moving from a goal state dx[0] = sVals[0] - goal[0,0] dy[0] = sVals[1] - goal[0,1] mag[0] = hcl.sqrt((dx[0] * dx[0]) + (dy[0] * dy[0])) with hcl.if_(hcl.and_(mag[0] <= 1.0, sVals[2] <= goal[1,1], sVals[2] >= goal[1,0])): trans[0, 0] = 0 # Check if moving from an obstacle with hcl.elif_(hcl.or_(sVals[0] < bounds[0,0] + 0.2, sVals[0] > bounds[0,1] - 0.2)): trans[0, 0] = 0 with hcl.elif_(hcl.or_(sVals[1] < bounds[1,0] + 0.2, sVals[1] > bounds[1,1] - 0.2)): trans[0, 0] = 0 # Standard move with hcl.else_(): trans[0, 0] = 1.0 trans[0, 1] = sVals[0] + (0.6 * action[0] * hcl.cos(sVals[2])) trans[0, 2] = sVals[1] + (0.6 * action[0] * hcl.sin(sVals[2])) trans[0, 3] = sVals[2] + (0.6 * action[1]) # Adjust for periodic dimension with hcl.while_(trans[0, 3] > 3.141592653589793): trans[0, 3] -= 6.283185307179586 with hcl.while_(trans[0, 3] < -3.141592653589793): trans[0, 3] += 6.283185307179586 # Return the reward for taking action from state def reward(sVals, action, bounds, goal, trans): dx = hcl.scalar(0, "dx") dy = hcl.scalar(0, "dy") mag = hcl.scalar(0, "mag") rwd = hcl.scalar(0, "rwd") # Check if moving from a collision state, if so, assign a penalty with hcl.if_(hcl.or_(sVals[0] < bounds[0,0] + 0.2, sVals[0] > bounds[0,1] - 0.2)): rwd[0] = -400 with hcl.elif_(hcl.or_(sVals[1] < bounds[1,0] + 0.2, sVals[1] > bounds[1,1] - 0.2)): rwd[0] = -400 with hcl.else_(): # Check if moving from a goal state dx[0] = sVals[0] - goal[0,0] dy[0] = sVals[1] - goal[0,1] mag[0] = hcl.sqrt((dx[0] * dx[0]) + (dy[0] * dy[0])) with hcl.if_(hcl.and_(mag[0] <= 1.0, sVals[2] <= goal[1,1], sVals[2] >= goal[1,0])): rwd[0] = 1000 # Standard move with hcl.else_(): rwd[0] = 0 return rwd[0] ######################################### HELPER FUNCTIONS ######################################### # Update the value function at position (i,j,k) def updateQopt(i, j, k, a, iVals, sVals, Qopt, actions, intermeds, trans, interpV, gamma, bounds, goal, ptsEachDim, useNN, fillVal): r = hcl.scalar(0, "r") p = hcl.scalar(0, "p") # set iVals equal to (i,j,k) and sVals equal to the corresponding state values at (i,j,k) updateStateVals(i, j, k, iVals, sVals, bounds, ptsEachDim) # call the transition function to obtain the outcome(s) of action a from state (si,sj,sk) transition(sVals, actions[a], bounds, trans, goal) # initialize Qopt[i,j,k,a] with the immediate reward r[0] = reward(sVals, actions[a], bounds, goal, trans) Qopt[i,j,k,a] = r[0] # maximize over successor Q-values with hcl.for_(0, trans.shape[0], name="si") as si: p[0] = trans[si,0] sVals[0] = trans[si,1] sVals[1] = trans[si,2] sVals[2] = trans[si,3] # Nearest neighbour with hcl.if_(useNN[0] == 1): # obtain the nearest neighbour successor state stateToIndex(sVals, iVals, bounds, ptsEachDim) # maximize over successor state Q-values with hcl.if_(hcl.and_(iVals[0] < Qopt.shape[0], iVals[1] < Qopt.shape[1], iVals[2] < Qopt.shape[2])): with hcl.if_(hcl.and_(iVals[0] >= 0, iVals[1] >= 0, iVals[2] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_((r[0] + (gamma[0] * (p[0] * Qopt[iVals[0],iVals[1],iVals[2],a_]))) > Qopt[i,j,k,a]): Qopt[i,j,k,a] = r[0] + (gamma[0] * (p[0] * Qopt[iVals[0],iVals[1],iVals[2],a_])) # Linear interpolation with hcl.if_(useNN[0] == 0): with hcl.if_(hcl.and_(sVals[0] <= bounds[0,1], sVals[1] <= bounds[1,1], sVals[2] <= bounds[2,1])): with hcl.if_(hcl.and_(sVals[0] >= bounds[0,0], sVals[1] >= bounds[1,0], sVals[2] >= bounds[2,0])): stateToIndexInterpolants(Qopt, sVals, actions, bounds, ptsEachDim, interpV, fillVal) Qopt[i,j,k,a] += (gamma[0] * (p[0] * interpV[0])) r[0] += Qopt[i,j,k,a] # Returns 0 if convergence has been reached def evaluateConvergence(newQ, oldQ, epsilon, reSweep): delta = hcl.scalar(0, "delta") # Calculate the difference, if it's negative, make it positive delta[0] = newQ[0] - oldQ[0] with hcl.if_(delta[0] < 0): delta[0] = delta[0] * -1 with hcl.if_(delta[0] > epsilon[0]): reSweep[0] = 1 # convert state values into indeces using nearest neighbour # NOTE: have to modify this to work with modular values def stateToIndex(sVals, iVals, bounds, ptsEachDim): iVals[0] = ((sVals[0] - bounds[0,0]) / (bounds[0,1] - bounds[0,0])) * (ptsEachDim[0] - 1) iVals[1] = ((sVals[1] - bounds[1,0]) / (bounds[1,1] - bounds[1,0])) * (ptsEachDim[1] - 1) iVals[2] = ((sVals[2] - bounds[2,0]) / (bounds[2,1] - bounds[2,0])) * (ptsEachDim[2] - 1) # NOTE: add 0.5 to simulate rounding iVals[0] = hcl.cast(hcl.Int(), iVals[0] + 0.5) iVals[1] = hcl.cast(hcl.Int(), iVals[1] + 0.5) iVals[2] = hcl.cast(hcl.Int(), iVals[2] + 0.5) # convert indices into state values def indexToState(iVals, sVals, bounds, ptsEachDim): sVals[0] = bounds[0,0] + ( (bounds[0,1] - bounds[0,0]) * (iVals[0] / (ptsEachDim[0]-1)) ) sVals[1] = bounds[1,0] + ( (bounds[1,1] - bounds[1,0]) * (iVals[1] / (ptsEachDim[1]-1)) ) sVals[2] = bounds[2,0] + ( (bounds[2,1] - bounds[2,0]) * (iVals[2] / (ptsEachDim[2]-1)) ) # set iVals equal to (i,j,k) and sVals equal to the corresponding state values at (i,j,k) def updateStateVals(i, j, k, iVals, sVals, bounds, ptsEachDim): iVals[0] = i iVals[1] = j iVals[2] = k indexToState(iVals, sVals, bounds, ptsEachDim) # given state values sVals, obtain the 8 possible successor states and their corresponding weight def stateToIndexInterpolants(Qopt, sVals, actions, bounds, ptsEachDim, interpV, fillVal): iMin = hcl.scalar(0, "iMin") jMin = hcl.scalar(0, "jMin") kMin = hcl.scalar(0, "kMin") iMax = hcl.scalar(0, "iMax") jMax = hcl.scalar(0, "jMax") kMax = hcl.scalar(0, "kMax") c000 = hcl.scalar(fillVal[0], "c000") c001 = hcl.scalar(fillVal[0], "c001") c010 = hcl.scalar(fillVal[0], "c010") c011 = hcl.scalar(fillVal[0], "c011") c100 = hcl.scalar(fillVal[0], "c100") c101 = hcl.scalar(fillVal[0], "c101") c110 = hcl.scalar(fillVal[0], "c110") c111 = hcl.scalar(fillVal[0], "c111") c00 = hcl.scalar(0, "c00") c01 = hcl.scalar(0, "c01") c10 = hcl.scalar(0, "c10") c11 = hcl.scalar(0, "c11") c0 = hcl.scalar(0, "c0") c1 = hcl.scalar(0, "c1") ia = hcl.scalar(0, "ia") ja = hcl.scalar(0, "ja") ka = hcl.scalar(0, "ka") di = hcl.scalar(0, "di") dj = hcl.scalar(0, "dj") dk = hcl.scalar(0, "dk") # obtain unrounded index values ia[0] = ((sVals[0] - bounds[0,0]) / (bounds[0,1] - bounds[0,0])) * (ptsEachDim[0] - 1) ja[0] = ((sVals[1] - bounds[1,0]) / (bounds[1,1] - bounds[1,0])) * (ptsEachDim[1] - 1) ka[0] = ((sVals[2] - bounds[2,0]) / (bounds[2,1] - bounds[2,0])) * (ptsEachDim[2] - 1) # obtain neighbouring state indeces in each direction with hcl.if_(ia[0] < 0): iMin[0] = hcl.cast(hcl.Int(), ia[0] - 1.0) iMax[0] = hcl.cast(hcl.Int(), ia[0]) with hcl.else_(): iMin[0] = hcl.cast(hcl.Int(), ia[0]) iMax[0] = hcl.cast(hcl.Int(), ia[0] + 1.0) with hcl.if_(ja[0] < 0): jMin[0] = hcl.cast(hcl.Int(), ja[0] - 1.0) jMax[0] = hcl.cast(hcl.Int(), ja[0]) with hcl.else_(): jMin[0] = hcl.cast(hcl.Int(), ja[0]) jMax[0] = hcl.cast(hcl.Int(), ja[0] + 1.0) with hcl.if_(ka[0] < 0): kMin[0] = hcl.cast(hcl.Int(), ka[0] - 1.0) kMax[0] = hcl.cast(hcl.Int(), ka[0]) with hcl.else_(): kMin[0] = hcl.cast(hcl.Int(), ka[0]) kMax[0] = hcl.cast(hcl.Int(), ka[0] + 1.0) # obtain weights in each direction di[0] = ia[0] - iMin[0] dj[0] = ja[0] - jMin[0] dk[0] = ka[0] - kMin[0] # Obtain value of each neighbour state # Qopt[iMin, jMin, kMin] with hcl.if_(hcl.and_(iMin[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1], kMin[0] < Qopt.shape[2])): with hcl.if_(hcl.and_(iMin[0] >= 0, jMin[0] >= 0, kMin[0] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_(c000[0] < Qopt[iMin[0], jMin[0], kMin[0], a_]): c000[0] = Qopt[iMin[0], jMin[0], kMin[0], a_] # Qopt[iMin, jMin, kMax] with hcl.if_(hcl.and_(iMin[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1], kMax[0] < Qopt.shape[2])): with hcl.if_(hcl.and_(iMin[0] >= 0, jMin[0] >= 0, kMax[0] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_(c001[0] < Qopt[iMin[0], jMin[0], kMax[0], a_]): c001[0] = Qopt[iMin[0], jMin[0], kMax[0], a_] # Qopt[iMin, jMax, kMin] with hcl.if_(hcl.and_(iMin[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1], kMin[0] < Qopt.shape[2])): with hcl.if_(hcl.and_(iMin[0] >= 0, jMax[0] >= 0, kMin[0] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_(c010[0] < Qopt[iMin[0], jMax[0], kMin[0], a_]): c010[0] = Qopt[iMin[0], jMax[0], kMin[0], a_] # Qopt[iMin, jMax, kMax] with hcl.if_(hcl.and_(iMin[0] < Qopt.shape[0], jMax[0] < Qopt.shape[1], kMax[0] < Qopt.shape[2])): with hcl.if_(hcl.and_(iMin[0] >= 0, jMax[0] >= 0, kMax[0] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_(c011[0] < Qopt[iMin[0], jMax[0], kMax[0], a_]): c011[0] = Qopt[iMin[0], jMax[0], kMax[0], a_] # Qopt[iMax, jMin, kMin] with hcl.if_(hcl.and_(iMax[0] < Qopt.shape[0], jMin[0] < Qopt.shape[1], kMin[0] < Qopt.shape[2])): with hcl.if_(hcl.and_(iMax[0] >= 0, jMin[0] >= 0, kMin[0] >= 0)): with hcl.for_(0, actions.shape[0], name="a_") as a_: with hcl.if_(c100[0] < Qopt[iMax[0], jMin[0],
def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'description', 'id', 'info', 'instrumentDataFile', 'instrumentModel', 'library', 'libraryLayout', 'molecule', 'name', 'platformUnit', 'recordCreateTime', 'recordUpdateTime', 'runTime', 'selection', 'sequencingCenter', 'strategy' ] def __init__(self, **kwargs): self.description = kwargs.get( 'description', None) self.id = kwargs.get( 'id', None) self.info = kwargs.get( 'info', {}) self.instrumentDataFile = kwargs.get( 'instrumentDataFile', None) self.instrumentModel = kwargs.get( 'instrumentModel', None) self.library = kwargs.get( 'library', None) self.libraryLayout = kwargs.get( 'libraryLayout', None) self.molecule = kwargs.get( 'molecule', None) self.name = kwargs.get( 'name', None) self.platformUnit = kwargs.get( 'platformUnit', None) self.recordCreateTime = kwargs.get( 'recordCreateTime', None) self.recordUpdateTime = kwargs.get( 'recordUpdateTime', None) self.runTime = kwargs.get( 'runTime', None) self.selection = kwargs.get( 'selection', None) self.sequencingCenter = kwargs.get( 'sequencingCenter', None) self.strategy = kwargs.get( 'strategy', None) class ExternalIdentifier(ProtocolElement): """ Identifier from a public database """ _schemaSource = """ {"type": "record", "name": "ExternalIdentifier", "namespace": "org.ga4gh.models", "doc": "", "fields": [{"name": "database", "type": "string", "doc": ""}, {"name": "identifier", "type": "string", "doc": ""}, {"name": "version", "type": "string", "doc": ""}]} """ schema = avro_parse(_schemaSource) requiredFields = { "database", "identifier", "version", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'database', 'identifier', 'version' ] def __init__(self, **kwargs): self.database = kwargs.get( 'database', None) self.identifier = kwargs.get( 'identifier', None) self.version = kwargs.get( 'version', None) class Fragment(ProtocolElement): """ A fragment represents a contiguous stretch of a DNA or RNA molecule. Reads can be associated with a fragment to specify they derive from the same molecule. """ _schemaSource = """ {"type": "record", "name": "Fragment", "namespace": "org.ga4gh.models", "doc": "", "fields": [{"name": "id", "type": "string", "doc": ""}]} """ schema = avro_parse(_schemaSource) requiredFields = { "id", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'id' ] def __init__(self, **kwargs): self.id = kwargs.get( 'id', None) class GAException(ProtocolElement): """ A general exception type. """ _schemaSource = """ {"type": "error", "name": "GAException", "namespace": "org.ga4gh.methods", "doc": "", "fields": [{"name": "message", "type": "string", "doc": ""}, {"name": "errorCode", "type": "int", "doc": "", "default": -1}]} """ schema = avro_parse(_schemaSource) requiredFields = { "message", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'errorCode', 'message' ] def __init__(self, **kwargs): self.errorCode = kwargs.get( 'errorCode', -1) self.message = kwargs.get( 'message', None) class LinearAlignment(ProtocolElement): """ A linear alignment can be represented by one CIGAR string. """ _schemaSource = """ {"type": "record", "name": "LinearAlignment", "namespace": "org.ga4gh.models", "doc": "", "fields": [{"name": "position", "type": {"type": "record", "name": "Position", "doc": "", "fields": [{"name": "referenceName", "type": "string", "doc": ""}, {"name": "position", "type": "long", "doc": ""}, {"name": "strand", "type": {"type": "enum", "name": "Strand", "doc": "", "symbols": ["NEG_STRAND", "POS_STRAND"]}, "doc": ""}]}, "doc": ""}, {"name": "mappingQuality", "type": ["null", "int"], "doc": "", "default": null}, {"name": "cigar", "type": {"type": "array", "items": {"type": "record", "name": "CigarUnit", "doc": "", "fields": [{"name": "operation", "type": {"type": "enum", "name": "CigarOperation", "doc": "", "symbols": ["ALIGNMENT_MATCH", "INSERT", "DELETE", "SKIP", "CLIP_SOFT", "CLIP_HARD", "PAD", "SEQUENCE_MATCH", "SEQUENCE_MISMATCH"]}, "doc": ""}, {"name": "operationLength", "type": "long", "doc": ""}, {"name": "referenceSequence", "type": ["null", "string"], "doc": "", "default": null}]}}, "doc": "", "default": []}]} """ schema = avro_parse(_schemaSource) requiredFields = { "position", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = { 'cigar': CigarUnit, 'position': Position, } return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = { 'cigar': CigarUnit, 'position': Position, } return embeddedTypes[fieldName] __slots__ = [ 'cigar', 'mappingQuality', 'position' ] def __init__(self, **kwargs): self.cigar = kwargs.get( 'cigar', []) self.mappingQuality = kwargs.get( 'mappingQuality', None) self.position = kwargs.get( 'position', Position()) class ListReferenceBasesRequest(ProtocolElement): """ The query parameters for a request to `GET /references/{id}/bases`, for example: `GET /references/{id}/bases?start=100&end=200` """ _schemaSource = """ {"type": "record", "name": "ListReferenceBasesRequest", "namespace": "org.ga4gh.methods", "doc": "", "fields": [{"name": "start", "type": "long", "doc": "", "default": 0}, {"name": "end", "type": ["null", "long"], "doc": "", "default": null}, {"name": "pageToken", "type": ["null", "string"], "doc": "", "default": null}]} """ schema = avro_parse(_schemaSource) requiredFields = {} @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'end', 'pageToken', 'start' ] def __init__(self, **kwargs): self.end = kwargs.get( 'end', None) self.pageToken = kwargs.get( 'pageToken', None) self.start = kwargs.get( 'start', 0) class ListReferenceBasesResponse(ProtocolElement): """ The response from `GET /references/{id}/bases` expressed as JSON. """ _schemaSource = """ {"type": "record", "name": "ListReferenceBasesResponse", "namespace": "org.ga4gh.methods", "doc": "", "fields": [{"name": "offset", "type": "long", "doc": "", "default": 0}, {"name": "sequence", "type": "string", "doc": ""}, {"name": "nextPageToken", "type": ["null", "string"], "doc": "", "default": null}]} """ schema = avro_parse(_schemaSource) requiredFields = { "sequence", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'nextPageToken', 'offset', 'sequence' ] def __init__(self, **kwargs): self.nextPageToken = kwargs.get( 'nextPageToken', None) self.offset = kwargs.get( 'offset', 0) self.sequence = kwargs.get( 'sequence', None) class Position(ProtocolElement): """ A `Position` is an unoriented base in some `Reference`. A `Position` is represented by a `Reference` name, and a base number on that `Reference` (0-based). """ _schemaSource = """ {"type": "record", "name": "Position", "namespace": "org.ga4gh.models", "doc": "", "fields": [{"name": "referenceName", "type": "string", "doc": ""}, {"name": "position", "type": "long", "doc": ""}, {"name": "strand", "type": {"type": "enum", "name": "Strand", "doc": "", "symbols": ["NEG_STRAND", "POS_STRAND"]}, "doc": ""}]} """ schema = avro_parse(_schemaSource) requiredFields = { "position", "referenceName", "strand", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'position', 'referenceName', 'strand' ] def __init__(self, **kwargs): self.position = kwargs.get( 'position', None) self.referenceName = kwargs.get( 'referenceName', None) self.strand = kwargs.get( 'strand', None) class Program(ProtocolElement): """ No documentation """ _schemaSource = """ {"type": "record", "name": "Program", "namespace": "org.ga4gh.models", "fields": [{"name": "commandLine", "type": ["null", "string"], "doc": "", "default": null}, {"name": "id", "type": ["null", "string"], "doc": "", "default": null}, {"name": "name", "type": ["null", "string"], "doc": "", "default": null}, {"name": "prevProgramId", "type": ["null", "string"], "doc": "", "default": null}, {"name": "version", "type": ["null", "string"], "doc": "", "default": null}]} """ schema = avro_parse(_schemaSource) requiredFields = {} @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = {} return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = {} return embeddedTypes[fieldName] __slots__ = [ 'commandLine', 'id', 'name', 'prevProgramId', 'version' ] def __init__(self, **kwargs): self.commandLine = kwargs.get( 'commandLine', None) self.id = kwargs.get( 'id', None) self.name = kwargs.get( 'name', None) self.prevProgramId = kwargs.get( 'prevProgramId', None) self.version = kwargs.get( 'version', None) class ReadAlignment(ProtocolElement): """ Each read alignment describes an alignment with additional information about the fragment and the read. A read alignment object is equivalent to a line in a SAM file. """ _schemaSource = """ {"type": "record", "name": "ReadAlignment", "namespace": "org.ga4gh.models", "doc": "", "fields": [{"name": "id", "type": ["null", "string"], "doc": ""}, {"name": "readGroupId", "type": "string", "doc": ""}, {"name": "fragmentId", "type": "string", "doc": ""}, {"name": "fragmentName", "type": "string", "doc": ""}, {"name": "properPlacement", "type": ["null", "boolean"], "doc": "", "default": null}, {"name": "duplicateFragment", "type": ["null", "boolean"], "doc": "", "default": null}, {"name": "numberReads", "type": ["null", "int"], "doc": "", "default": null}, {"name": "fragmentLength", "type": ["null", "int"], "doc": "", "default": null}, {"name": "readNumber", "type": ["null", "int"], "doc": "", "default": null}, {"name": "failedVendorQualityChecks", "type": ["null", "boolean"], "doc": "", "default": null}, {"name": "alignment", "type": ["null", {"type": "record", "name": "LinearAlignment", "doc": "", "fields": [{"name": "position", "type": {"type": "record", "name": "Position", "doc": "", "fields": [{"name": "referenceName", "type": "string", "doc": ""}, {"name": "position", "type": "long", "doc": ""}, {"name": "strand", "type": {"type": "enum", "name": "Strand", "doc": "", "symbols": ["NEG_STRAND", "POS_STRAND"]}, "doc": ""}]}, "doc": ""}, {"name": "mappingQuality", "type": ["null", "int"], "doc": "", "default": null}, {"name": "cigar", "type": {"type": "array", "items": {"type": "record", "name": "CigarUnit", "doc": "", "fields": [{"name": "operation", "type": {"type": "enum", "name": "CigarOperation", "doc": "", "symbols": ["ALIGNMENT_MATCH", "INSERT", "DELETE", "SKIP", "CLIP_SOFT", "CLIP_HARD", "PAD", "SEQUENCE_MATCH", "SEQUENCE_MISMATCH"]}, "doc": ""}, {"name": "operationLength", "type": "long", "doc": ""}, {"name": "referenceSequence", "type": ["null", "string"], "doc": "", "default": null}]}}, "doc": "", "default": []}]}], "doc": "", "default": null}, {"name": "secondaryAlignment", "type": ["null", "boolean"], "doc": "", "default": null}, {"name": "supplementaryAlignment", "type": ["null", "boolean"], "doc": "", "default": null}, {"name": "alignedSequence", "type": ["null", "string"], "doc": "", "default": null}, {"name": "alignedQuality", "type": {"type": "array", "items": "int"}, "doc": "", "default": []}, {"name": "nextMatePosition", "type": ["null", "Position"], "doc": "", "default": null}, {"name": "info", "type": {"type": "map", "values": {"type": "array", "items": "string"}}, "doc": "", "default": {}}]} """ schema = avro_parse(_schemaSource) requiredFields = { "fragmentId", "fragmentName", "id", "readGroupId", } @classmethod def isEmbeddedType(cls, fieldName): embeddedTypes = { 'alignment': LinearAlignment, 'nextMatePosition': Position, } return fieldName in embeddedTypes @classmethod def getEmbeddedType(cls, fieldName): embeddedTypes = { 'alignment':
no flattened fields. if not isinstance(request, certificate_manager.GetCertificateRequest): request = certificate_manager.GetCertificateRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_certificate] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def create_certificate( self, request: Union[certificate_manager.CreateCertificateRequest, dict] = None, *, parent: str = None, certificate: certificate_manager.Certificate = None, certificate_id: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation.Operation: r"""Creates a new Certificate in a given project and location. .. code-block:: python from google.cloud import certificate_manager_v1 def sample_create_certificate(): # Create a client client = certificate_manager_v1.CertificateManagerClient() # Initialize request argument(s) request = certificate_manager_v1.CreateCertificateRequest( parent="parent_value", certificate_id="certificate_id_value", ) # Make the request operation = client.create_certificate(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.certificate_manager_v1.types.CreateCertificateRequest, dict]): The request object. Request for the `CreateCertificate` method. parent (str): Required. The parent resource of the certificate. Must be in the format ``projects/*/locations/*``. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. certificate (google.cloud.certificate_manager_v1.types.Certificate): Required. A definition of the certificate to create. This corresponds to the ``certificate`` field on the ``request`` instance; if ``request`` is provided, this should not be set. certificate_id (str): Required. A user-provided name of the certificate. This corresponds to the ``certificate_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.certificate_manager_v1.types.Certificate` Defines TLS certificate. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, certificate, certificate_id]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a certificate_manager.CreateCertificateRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, certificate_manager.CreateCertificateRequest): request = certificate_manager.CreateCertificateRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if certificate is not None: request.certificate = certificate if certificate_id is not None: request.certificate_id = certificate_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.create_certificate] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation.from_gapic( response, self._transport.operations_client, certificate_manager.Certificate, metadata_type=certificate_manager.OperationMetadata, ) # Done; return the response. return response def update_certificate( self, request: Union[certificate_manager.UpdateCertificateRequest, dict] = None, *, certificate: certificate_manager.Certificate = None, update_mask: field_mask_pb2.FieldMask = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation.Operation: r"""Updates a Certificate. .. code-block:: python from google.cloud import certificate_manager_v1 def sample_update_certificate(): # Create a client client = certificate_manager_v1.CertificateManagerClient() # Initialize request argument(s) request = certificate_manager_v1.UpdateCertificateRequest( ) # Make the request operation = client.update_certificate(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.certificate_manager_v1.types.UpdateCertificateRequest, dict]): The request object. Request for the `UpdateCertificate` method. certificate (google.cloud.certificate_manager_v1.types.Certificate): Required. A definition of the certificate to update. This corresponds to the ``certificate`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The update mask applies to the resource. For the ``FieldMask`` definition, see https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#fieldmask. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.certificate_manager_v1.types.Certificate` Defines TLS certificate. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([certificate, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a certificate_manager.UpdateCertificateRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, certificate_manager.UpdateCertificateRequest): request = certificate_manager.UpdateCertificateRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if certificate is not None: request.certificate = certificate if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.update_certificate] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("certificate.name", request.certificate.name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation.from_gapic( response, self._transport.operations_client, certificate_manager.Certificate, metadata_type=certificate_manager.OperationMetadata, ) # Done; return the response. return response def delete_certificate( self, request: Union[certificate_manager.DeleteCertificateRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation.Operation: r"""Deletes a single Certificate. .. code-block:: python from google.cloud import certificate_manager_v1 def sample_delete_certificate(): # Create a client client = certificate_manager_v1.CertificateManagerClient() # Initialize request argument(s) request = certificate_manager_v1.DeleteCertificateRequest( name="name_value", ) # Make the request operation = client.delete_certificate(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.certificate_manager_v1.types.DeleteCertificateRequest, dict]): The request object. Request for the `DeleteCertificate` method. name (str): Required. A name of the certificate to delete. Must be in the format ``projects/*/locations/*/certificates/*``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a
# Positions at first time step time0 = min(dpos_data[:, 0]) id_t0 = numpy.where(dpos_data[:, 0] == time0) pos_t0 = pos_data[id_t0, 0:9] except ValueError: # this is for the case simulation hass not been ran and # time does not exists time0 = 0 id_t0 = None pos_t0 = numpy.array([ numpy.hstack(([0., io.instances()[k].attrs['id']] ,io.instances()[k].attrs['translation'] ,io.instances()[k].attrs['orientation'])) for k in io.instances() if io.instances()[k].attrs['id'] >= 0]) if numpy.shape(spos_data)[0] > 0: set_position(spos_data) print(spos_data.shape) # static objects are always visible for instance, actors in static_actors.items(): for actor in actors: actor.VisibilityOn() set_position(*pos_t0) set_dynamic_actors_visibility(time0) renderer_window.AddRenderer(renderer) interactor_renderer.SetRenderWindow(renderer_window) interactor_renderer.GetInteractorStyle( ).SetCurrentStyleToTrackballCamera() # http://www.itk.org/Wiki/VTK/Depth_Peeling ? # Use a render window with alpha bits (as initial value is 0 (false) ): renderer_window.SetAlphaBitPlanes(1) # Force to not pick a framebuffer with a multisample buffer ( as initial # value is 8): renderer_window.SetMultiSamples(0) # Choose to use depth peeling (if supported) (initial value is 0 # (false) ) renderer.SetUseDepthPeeling(1) # Set depth peeling parameters. renderer.SetMaximumNumberOfPeels(100) # Set the occlusion ratio (initial value is 0.0, exact image) renderer.SetOcclusionRatio(0.1) # Set the initial camera position and orientation if specified if initial_camera[0] is not None: renderer.GetActiveCamera().SetPosition(*initial_camera[0]) if initial_camera[1] is not None: renderer.GetActiveCamera().SetFocalPoint(*initial_camera[1]) if initial_camera[2] is not None: renderer.GetActiveCamera().SetViewUp(*initial_camera[2]) if initial_camera[3] is not None: renderer.GetActiveCamera().ParallelProjectionOn() renderer.GetActiveCamera().SetParallelScale(initial_camera[3]) # callback maker for scale manipulation def make_scale_observer(glyphs): def scale_observer(obj, event): slider_repres = obj.GetRepresentation() scale_at_pos = slider_repres.GetValue() for glyph in glyphs: for k in glyph: glyph[k].SetScaleFactor( scale_at_pos * glyph[k]._scale_fact) return scale_observer # callback maker for time scale manipulation def make_time_scale_observer(time_slider_repres, time_observer): delta_time = max_time - min_time def time_scale_observer(obj, event): slider_repres = obj.GetRepresentation() time_scale_at_pos = 1. - slider_repres.GetValue() current_time = time_observer._time shift = (current_time - min_time) / delta_time xmin_time = min_time + time_scale_at_pos / 2. * delta_time xmax_time = max_time - time_scale_at_pos / 2. * delta_time xdelta_time = xmax_time - xmin_time new_mintime = max(min_time, current_time - xdelta_time) new_maxtime = min(max_time, current_time + xdelta_time) time_slider_repres.SetMinimumValue(new_mintime) time_slider_repres.SetMaximumValue(new_maxtime) return time_scale_observer # make a slider widget and its representation def make_slider(title, observer, interactor, startvalue, minvalue, maxvalue, cx1, cy1, cx2, cy2): slider_repres = vtk.vtkSliderRepresentation2D() slider_repres.SetMinimumValue( minvalue - (maxvalue - minvalue) / 100) slider_repres.SetMaximumValue( maxvalue + (maxvalue - minvalue) / 100) slider_repres.SetValue(startvalue) slider_repres.SetTitleText(title) slider_repres.GetPoint1Coordinate().\ SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint1Coordinate().SetValue(cx1, cy1) slider_repres.GetPoint2Coordinate().\ SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint2Coordinate().SetValue(cx2, cy2) slider_repres.SetSliderLength(0.02) slider_repres.SetSliderWidth(0.03) slider_repres.SetEndCapLength(0.01) slider_repres.SetEndCapWidth(0.03) slider_repres.SetTubeWidth(0.005) slider_repres.SetLabelFormat('%f') slider_repres.SetTitleHeight(0.02) slider_repres.SetLabelHeight(0.02) slider_widget = vtk.vtkSliderWidget() slider_widget.SetInteractor(interactor) slider_widget.SetRepresentation(slider_repres) slider_widget.KeyPressActivationOff() slider_widget.SetAnimationModeToAnimate() slider_widget.SetEnabled(True) slider_widget.AddObserver('InteractionEvent', observer) return slider_widget, slider_repres image_maker = vtk.vtkWindowToImageFilter() image_maker.SetInput(renderer_window) recorder = vtk.vtkOggTheoraWriter() recorder.SetQuality(2) recorder.SetRate(frames_per_second) recorder.SetFileName(os.path.splitext(io_filename)[0]+'.avi') recorder.SetInputConnection(image_maker.GetOutputPort()) writer = vtk.vtkPNGWriter() writer.SetInputConnection(image_maker.GetOutputPort()) class InputObserver(): def __init__(self, times=None, slider_repres=None): self._opacity = 1.0 self._current_id = vtk.vtkIdTypeArray() self._renderer = renderer self._renderer_window = renderer_window self._image_counter = 0 self._view_cycle = -1 self._recording = False self._times = None if times is None or len(times)==0: return self._times = times self._stimes = set(times) self._time_step = (max(self._stimes) - min(self._stimes)) \ / len(self._stimes) self._time = min(times) if slider_repres is None: return self._slider_repres = slider_repres def update(self): global cf_prov if self._times is None: renderer_window.Render() return index = bisect.bisect_left(self._times, self._time) index = max(0, index) index = min(index, len(self._times) - 1) if cf_prov is not None: cf_prov._time = self._times[index] cf_prov.xmethod() # contact_posa.Update() # contact_posb.Update() # contact_pos_force.Update() # arrow_glyph.Update() # gmapper.Update() # set_positionv(spos_data[:, 1:9]) set_dynamic_actors_visibility(self._times[index]) id_t = numpy.where(pos_data[:, 0] == self._times[index]) set_position(*pos_data[id_t, :]) self._slider_repres.SetValue(self._time) self._current_id.SetNumberOfValues(1) self._current_id.SetValue(0, index) self._iter_plot.SetSelection(self._current_id) self._prec_plot.SetSelection(self._current_id) renderer_window.Render() def object_pos(self, id_): index = bisect.bisect_left(self._times, self._time) index = max(0, index) index = min(index, len(self._times) - 1) id_t = numpy.where(pos_data[:, 0] == self._times[index]) return (pos_data[id_t[0][id_], 2], pos_data[id_t[0][id_], 3], pos_data[id_t[0][id_], 4]) def set_opacity(self): for instance, actors in dynamic_actors.items(): for actor in actors: actor.GetProperty().SetOpacity(self._opacity) def key(self, obj, event): global cf_prov key = obj.GetKeySym() print('key', key) if key == 'r': spos_data, dpos_data, dom_data, cf_data, solv_data = load() if not cf_disable: cf_prov = CFprov(cf_data, dom_data) times = list(set(dpos_data[:, 0])) times.sort() if len(spos_data) > 0: instances = set(dpos_data[:, 1]).union( set(spos_data[:, 1])) else: instances = set(dpos_data[:, 1]) if cf_prov is not None: cf_prov._time = min(times[:]) cf_prov.xmethod() for mu in cf_prov._mu_coefs: contact_posa[mu].SetInputData(cf_prov._output) contact_posa[mu].Update() contact_posb[mu].SetInputData(cf_prov._output) contact_posb[mu].Update() contact_pos_force[mu].Update() contact_pos_norm[mu].Update() id_t0 = numpy.where( dpos_data[:, 0] == time0) pos_data = dpos_data[:] min_time = times[0] set_dynamic_actors_visibility(time0) max_time = times[len(times) - 1] self._slider_repres.SetMinimumValue(min_time) self._slider_repres.SetMaximumValue(max_time) self.update() if key == 'p': self._image_counter += 1 image_maker.Update() writer.SetFileName( 'vview-{0}.png'.format(self._image_counter)) writer.Write() if key == 'Up': self._time_step = self._time_step * 2. self._time += self._time_step if key == 'Down': self._time_step = self._time_step / 2. self._time -= self._time_step if key == 'Left': self._time -= self._time_step if key == 'Right': self._time += self._time_step if key == 't': self._opacity -= .1 self.set_opacity() if key == 'T': self._opacity += .1 self.set_opacity() if key == 'c': print('camera position:', self._renderer.GetActiveCamera().GetPosition()) print('camera focal point', self._renderer.GetActiveCamera().GetFocalPoint()) print('camera clipping plane', self._renderer.GetActiveCamera().GetClippingRange()) print('camera up vector', self._renderer.GetActiveCamera().GetViewUp()) if self._renderer.GetActiveCamera().GetParallelProjection() != 0: print('camera parallel scale', self._renderer.GetActiveCamera().GetParallelScale()) if key == 'o': self._renderer.GetActiveCamera().SetParallelProjection( 1 - self._renderer.GetActiveCamera().GetParallelProjection()) if key == 'v': # Cycle through some useful views dist = norm(self._renderer.GetActiveCamera().GetPosition()) # dist2 = norm([numpy.sqrt(dist**2)/3]*2) d3 = norm([numpy.sqrt(dist**2) / 3] * 3) self._view_cycle += 1 if self._view_cycle == 0: print('Left') self._renderer.GetActiveCamera().SetPosition( dist, 0, 0) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(0, 0, 1) elif self._view_cycle == 1: print('Right') self._renderer.GetActiveCamera().SetPosition( 0, dist, 0) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(0, 0, 1) elif self._view_cycle == 2: print('Top') self._renderer.GetActiveCamera().SetPosition( 0, 0, dist) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(1, 0, 0) else: # Corner print('Corner') self._renderer.GetActiveCamera().SetPosition( d3, d3, d3) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp( -1, -1, 1) self._view_cycle = -1 self._renderer.ResetCameraClippingRange() if key == 's': if not self._recording: recorder.Start() self._recording = True if key == 'e': if self._recording: self._recording = False recorder.End() if key == 'C': this_view.action(self) self.update() def time(self, obj, event): slider_repres = obj.GetRepresentation() self._time = slider_repres.GetValue() self.update() # observer on 2D chart def iter_plot_observer(self, obj, event): if self._iter_plot.GetSelection() is not None: # just one selection at the moment! if self._iter_plot.GetSelection().GetMaxId() >= 0: self._time = self._times[ self._iter_plot.GetSelection().GetValue(0)] # -> recompute index ... self.update() def prec_plot_observer(self, obj, event): if self._prec_plot.GetSelection() is not None: # just one selection at the moment! if self._prec_plot.GetSelection().GetMaxId() >= 0: self._time = self._times[ self._prec_plot.GetSelection().GetValue(0)] # -> recompute index ... self.update() def recorder_observer(self, obj, event): if self._recording: if advance_by_time is not None: self._time += advance_by_time slwsc.SetEnabled(False) # Scale slider xslwsc.SetEnabled(False) # Time scale slider # slider_widget.SetEnabled(False) # Time slider # widget.SetEnabled(False) # Axis widget self.update() image_maker.Modified() recorder.Write() if advance_by_time is not None: slwsc.SetEnabled(True) xslwsc.SetEnabled(True) # slider_widget.SetEnabled(True) # widget.SetEnabled(True) # Axis widget if self._time >= max(self._times): self._recording = False recorder.End() if len(times) > 0: slider_repres = vtk.vtkSliderRepresentation2D() if min_time is None: min_time = times[0] if max_time is None: max_time = times[len(times) - 1] slider_repres.SetMinimumValue(min_time) slider_repres.SetMaximumValue(max_time) slider_repres.SetValue(min_time) slider_repres.SetTitleText("time") slider_repres.GetPoint1Coordinate( ).SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint1Coordinate().SetValue(0.4, 0.9) slider_repres.GetPoint2Coordinate( ).SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint2Coordinate().SetValue(0.9, 0.9) slider_repres.SetSliderLength(0.02) slider_repres.SetSliderWidth(0.03) slider_repres.SetEndCapLength(0.01) slider_repres.SetEndCapWidth(0.03) slider_repres.SetTubeWidth(0.005) slider_repres.SetLabelFormat("%3.4lf") slider_repres.SetTitleHeight(0.02) slider_repres.SetLabelHeight(0.02) slider_widget = vtk.vtkSliderWidget() slider_widget.SetInteractor(interactor_renderer) slider_widget.SetRepresentation(slider_repres) slider_widget.KeyPressActivationOff() slider_widget.SetAnimationModeToAnimate() slider_widget.SetEnabled(True) input_observer = InputObserver(times, slider_repres) slider_widget.AddObserver("InteractionEvent", input_observer.time) else: input_observer = InputObserver() interactor_renderer.AddObserver('KeyPressEvent', input_observer.key) # Create a vtkLight, and set the light parameters. light = vtk.vtkLight() light.SetFocalPoint(0, 0, 0) light.SetPosition(0, 0, 500) # light.SetLightTypeToHeadlight() renderer.AddLight(light) hlight = vtk.vtkLight() hlight.SetFocalPoint(0, 0, 0) # hlight.SetPosition(0, 0, 500) hlight.SetLightTypeToHeadlight() renderer.AddLight(hlight) # Warning! numpy support offer a view on numpy array # the numpy array must not be garbage collected! nxtime = solv_data[:, 0] nxiters = solv_data[:, 1] nprecs = solv_data[:, 2] xtime = numpy_support.numpy_to_vtk(nxtime) xiters = numpy_support.numpy_to_vtk(nxiters) xprecs = numpy_support.numpy_to_vtk(nprecs) xtime.SetName('time') xiters.SetName('iterations') xprecs.SetName('precisions') table = vtk.vtkTable() table.AddColumn(xtime) table.AddColumn(xiters) table.AddColumn(xprecs) # table.Dump() tview_iter = vtk.vtkContextView() tview_prec = vtk.vtkContextView() chart_iter = vtk.vtkChartXY() chart_prec = vtk.vtkChartXY() tview_iter.GetScene().AddItem(chart_iter) tview_prec.GetScene().AddItem(chart_prec) iter_plot = chart_iter.AddPlot(vtk.vtkChart.LINE) iter_plot.SetLabel('Solver iterations') iter_plot.GetXAxis().SetTitle('time') iter_plot.GetYAxis().SetTitle('iterations') prec_plot = chart_prec.AddPlot(vtk.vtkChart.LINE) prec_plot.SetLabel('Solver precisions') prec_plot.GetXAxis().SetTitle('time') prec_plot.GetYAxis().SetTitle('precisions') add_compatiblity_methods(iter_plot) add_compatiblity_methods(prec_plot) iter_plot.SetInputData(table, 'time', 'iterations') prec_plot.SetInputData(table, 'time', 'precisions') iter_plot.SetWidth(5.0) prec_plot.SetWidth(5.0) iter_plot.SetColor(0, 255, 0, 255) prec_plot.SetColor(0, 255, 0, 255) input_observer._iter_plot = iter_plot input_observer._prec_plot = prec_plot input_observer._iter_plot_view = tview_iter input_observer._prec_plot_view = tview_prec tview_iter.GetInteractor().AddObserver('RightButtonReleaseEvent', input_observer.iter_plot_observer) tview_prec.GetInteractor().AddObserver('RightButtonReleaseEvent', input_observer.prec_plot_observer) # screen_size = renderer_window.GetScreenSize() renderer_window.SetSize(*config['window_size']) renderer_window.SetWindowName('vview: ' + io_filename) tview_iter.GetRenderer().GetRenderWindow().SetSize(600, 200) tview_prec.GetRenderer().GetRenderWindow().SetSize(600, 200) tview_iter.GetInteractor().Initialize() # tview_iter.GetInteractor().Start() tview_iter.GetRenderer().SetBackground(.9, .9, .9) tview_iter.GetRenderer().Render() tview_prec.GetInteractor().Initialize() # tview_prec.GetInteractor().Start() tview_prec.GetRenderer().SetBackground(.9, .9, .9) tview_prec.GetRenderer().Render() if io.contact_forces_data().shape[0] > 0: slwsc, slrepsc = make_slider('Scale', make_scale_observer([cone_glyph, cylinder_glyph, sphere_glypha, sphere_glyphb, arrow_glyph] ), interactor_renderer, cf_scale_factor, cf_scale_factor - cf_scale_factor / 2, cf_scale_factor + cf_scale_factor / 2, 0.01, 0.01, 0.01, 0.7) if len(times) > 0: xslwsc, xslrepsc = make_slider('Time scale', make_time_scale_observer( slider_repres, input_observer), interactor_renderer, time_scale_factor, time_scale_factor - time_scale_factor / 2, time_scale_factor +
code.append(indent(1) + var_prefix + 'bus_t' + str(idx) + '* ' + res_name + ',\n') # idx += 1 # code.append(indent(1) + 'bool init,\n') # code.append(indent(1) + 'unsigned int FILTER_S\n') # code.append('){\n') code.append('#pragma HLS DATAFLOW\n\n') code.append(indent(1) + '// FIFOs\n') idx = 0 for op_name in desp['OP_NAME']: for sa_rows in range(desp['SA_ROWS'] + 1): for sa_cols in range(desp['SA_COLS'] + 1): code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'PEChannelType> fifo' + str(idx) + \ '_feed' + str(sa_rows) + '_' + str(sa_cols) + ';\n') # depth = max(2, desp['FC_GROUP_FACTOR'][idx] + 1) if desp['APP_NAME'] == 'nw': depth = max(2, desp['FC_GROUP_FACTOR'][idx] * 6 + 1) else: depth = max(2, desp['FC_GROUP_FACTOR'][idx] * 1 + 1) code.append('#pragma HLS STREAM variable=fifo' + str(idx) + '_feed' + str(sa_rows) + '_' + str(sa_cols) + ' depth=' + str(depth) + '\n') idx += 1 for res_name in desp['RES_NAME']: for sa_rows in range(desp['SA_ROWS'] + 1): for sa_cols in range(desp['SA_COLS'] + 1): code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'PEChannelType> fifo' + str(idx) + \ '_collect' + str(sa_rows) + '_' + str(sa_cols) + ';\n') if desp['APP_NAME'] == 'nw': depth = max(2, desp['FC_GROUP_FACTOR'][idx] * 6 + 1) else: depth = max(2, desp['FC_GROUP_FACTOR'][idx] * 1 + 1) code.append('#pragma HLS STREAM variable=fifo' + str(idx) + '_collect' + str(sa_rows) + '_' + str(sa_cols) + \ ' depth=' + str(depth) + '\n') idx += 1 idx = 0 for op_name in desp['OP_NAME']: feed_num = desp['OP_ENGINE_NUM'][idx] + 1 for feed_id in range(feed_num): code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'TransferChannelType> fifo' + str(idx) + \ '_transfer' + str(feed_id) + ';\n') code.append('#pragma HLS STREAM variable=fifo' + str(idx) + '_transfer' + str(feed_id) + ' depth=' + str(desp['CHANNEL_DEPTH']) + '\n') idx += 1 for res_name in desp['RES_NAME']: feed_num = desp['RES_ENGINE_NUM'][idx - len(desp['OP_NAME'])] + 1 for feed_id in range(feed_num): code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'TransferChannelType> fifo' + str(idx) + '_transfer' + str(feed_id) + ';\n') code.append('#pragma HLS STREAM variable=fifo' + str(idx) + '_transfer' + str(feed_id) + ' depth=' + str(desp['CHANNEL_DEPTH']) + '\n') idx += 1 # shim fifos idx = 0 for op_name in desp['OP_NAME']: code.append(indent(1) + 'stream<ap_uint<%sDATA%d_WIDTH * %sDATA%d_FC_SIMD_FACTOR> > fifo%d_shim;\n' % (var_prefix, idx, var_prefix, idx, idx)) code.append('#pragma HLS STREAM variable=fifo%d_shim depth=2\n' % (idx)) idx += 1 for res_name in desp['RES_NAME']: code.append(indent(1) + 'stream<ap_uint<%sDATA%d_WIDTH * %sDATA%d_FC_SIMD_FACTOR> > fifo%d_shim;\n' % (var_prefix, idx, var_prefix, idx, idx)) code.append('#pragma HLS STREAM variable=fifo%d_shim depth=2\n\n' % (idx)) idx += 1 # config fifos code.append(indent(1) + 'stream<uint> fifo_DataFeed0Head_config_out0;\n') code.append('#pragma HLS STREAM variable=fifo_DataFeed0Head_config_out0 depth=16\n') code.append(indent(1) + 'stream<uint> fifo_DataFeed0Head_config_out1;\n') code.append('#pragma HLS STREAM variable=fifo_DataFeed0Head_config_out1 depth=16\n') code.append(indent(1) + 'stream<uint> fifo_DataFeed1Head_config_out0;\n') code.append('#pragma HLS STREAM variable=fifo_DataFeed1Head_config_out0 depth=16\n\n') idx = 0 for op_name in desp['OP_NAME']: feed_num = desp['OP_ENGINE_NUM'][idx] if idx == 0: for feed_id in range(feed_num): if feed_id < feed_num - 1: code.append(indent(1) + 'stream<uint> fifo_DataFeed%dEngine%d_config_out0;\n' % (idx, feed_id)) code.append(indent(1) + 'stream<uint> fifo_DataFeed%dEngine%d_config_out1;\n' % (idx, feed_id)) code.append('#pragma HLS STREAM variable=fifo_DataFeed%dEngine%d_config_out0 depth=16\n' % (idx, feed_id)) code.append('#pragma HLS STREAM variable=fifo_DataFeed%dEngine%d_config_out1 depth=16\n' % (idx, feed_id)) else: code.append(indent(1) + 'stream<uint> fifo_DataFeed%dEngine%d_config_out1;\n' % (idx, feed_id)) code.append('#pragma HLS STREAM variable=fifo_DataFeed%dEngine%d_config_out1 depth=16\n\n' % (idx, feed_id)) elif idx == 1: for feed_id in range(feed_num): if feed_id < feed_num - 1: code.append(indent(1) + 'stream<uint> fifo_DataFeed%dEngine%d_config_out0;\n' % (idx, feed_id)) code.append('#pragma HLS STREAM variable=fifo_DataFeed%dEngine%d_config_out0 depth=16\n' % (idx, feed_id)) idx += 1 code.append('\n') for res_name in desp['RES_NAME']: feed_num = desp['RES_ENGINE_NUM'][idx - len(desp['OP_NAME'])] for feed_id in range(feed_num): code.append(indent(1) + 'stream<uint> fifo_DataCollect%dEngine%d_config_out;\n' % (idx, feed_id)) code.append('#pragma HLS STREAM variable=fifo_DataCollect%dEngine%d_config_out depth=16\n' % (idx, feed_id)) idx += 1 code.append('\n') for row in range(desp['SA_ROWS']): for col in range(desp['SA_COLS']): code.append(indent(1) + 'stream<uint> fifo_PE%d_%d_op0_config_out;\n' % (row, col)) code.append(indent(1) + 'stream<uint> fifo_PE%d_%d_op1_config_out;\n' % (row, col)) code.append(indent(1) + 'stream<uint> fifo_PE%d_%d_compute_config_out;\n' % (row, col)) code.append(indent(1) + 'stream<uint> fifo_PE%d_%d_res_config_out;\n' % (row, col)) code.append('#pragma HLS STREAM variable=fifo_PE%d_%d_op0_config_out depth=2\n' % (row, col)) code.append('#pragma HLS STREAM variable=fifo_PE%d_%d_op1_config_out depth=2\n' % (row, col)) code.append('#pragma HLS STREAM variable=fifo_PE%d_%d_compute_config_out depth=2\n' % (row, col)) code.append('#pragma HLS STREAM variable=fifo_PE%d_%d_res_config_out depth=2\n' % (row, col)) code.append('\n') for row in range(desp['SA_ROWS']): for col in range(desp['SA_COLS']): idx = 0 for op_name in desp['OP_NAME']: code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'PEChannelType> PE' + \ str(row) + '_' + str(col) + '_fifo' + str(idx) + '_local;\n') code.append('#pragma HLS STREAM variable=PE' + str(row) + '_' + str(col) + '_fifo' + str(idx) + \ '_local depth=' + str(desp['CHANNEL_DEPTH']) + '\n') idx += 1 for res_name in desp['RES_NAME']: code.append(indent(1) + 'stream<' + var_prefix + 'Data' + str(idx) + 'PEChannelType> PE' + \ str(row) + '_' + str(col) + '_fifo' + str(idx) + '_local;\n') code.append('#pragma HLS STREAM variable=PE' + str(row) + '_' + str(col) + '_fifo' + str(idx) + \ '_local depth=' + str(desp['CHANNEL_DEPTH']) + '\n') idx += 1 if desp['APP_NAME'] == 'nw': inter_idx = 0 for inter_name in desp['INTER_NAME']: code.append(indent(1) + 'stream<' + desp['INTER_DATA_TYPE'][inter_idx] + '> PE' + str(row) + '_' + \ str(col) + '_fifo_' + inter_name + '_local;\n') code.append('#pragma HLS STREAM variable=PE' + str(row) + '_' + str(col) + '_fifo_' + inter_name + \ '_local depth=' + str(desp['CHANNEL_DEPTH']) + '\n') inter_idx += 1 code.append('\n') # code.append(indent(1) + 'stream<%sConfigInst> fifo_kernel_config_in;\n' % (var_prefix)) # code.append('#pragma HLS STREAM variable=fifo_kernel_config_in depth=2\n') # code.append(indent(1) + 'stream<%sConfigInst> fifo_kernel_config_out;\n' % (var_prefix)) # code.append('#pragma HLS STREAM variable=fifo_kernel_config_out depth=2\n\n') code.append(indent(1) + '// modules\n') idx = 0 for op_name in desp['OP_NAME']: # feed_shim # code.append(indent(1) + var_prefix + 'DataFeed' + str(idx) + 'Head_Shim(\n') # code.append(indent(2) + op_name + ', fifo' + str(idx) + '_shim,\n') # if idx == 0: # code.append(indent(2) + '%sIN_NUM, %sOUT_NUM, %sIN_NUM_T, %sOUT_NUM_T, %sIN_IMG_H, %sIN_IMG_W, %sOUT_IMG_H, %sOUT_IMG_W, %sOUT_IMG_H_T, %sOUT_IMG_W_T, FILTER_S, %sSTRIDE, %sLAYER_BATCH,\n' % (var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix)) # code.append(indent(2) + 'fifo_kernel_config_in\n') # else: # code.append(indent(2) + '%sIN_NUM, %sOUT_NUM, %sIN_NUM_T, %sOUT_NUM_T, %sIN_IMG_H, %sIN_IMG_W, %sOUT_IMG_H, %sOUT_IMG_W, %sOUT_IMG_H_T, %sOUT_IMG_W_T, FILTER_S, %sSTRIDE, %sLAYER_BATCH\n' % (var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix)) # code.append(indent(1) + ');\n\n') # feed_head feed_num = desp['OP_ENGINE_NUM'][idx] code.append(indent(1) + var_prefix + 'DataFeed' + str(idx) + 'Head(\n') # code.append(indent(2) + 'fifo%d_shim,\n' % (idx)) if idx == 0: code.append(indent(2) + 'fifo_cin,\n') else: code.append(indent(2) + 'fifo_weight,\n') for feed_group in range(desp['FC_SPLIT_FACTOR'][idx]): feed_id = feed_group * (desp['OP_ENGINE_NUM'][idx] / desp['FC_SPLIT_FACTOR'][idx]) feed_id = int(feed_id) if feed_group < desp['FC_SPLIT_FACTOR'][idx] - 1: code.append(indent(2) + 'fifo' + str(idx) + '_transfer' + str(feed_id) + ',\n') else: code.append(indent(2) + 'fifo' + str(idx) + '_transfer' + str(feed_id) + ',\n') if idx == 0: # code.append(indent(2) + '%sIN_NUM, %sOUT_NUM, %sIN_IMG_H, %sIN_IMG_W, %sOUT_IMG_H, %sOUT_IMG_W, FILTER_S,\n' % (var_prefix, var_prefix, var_prefix, var_prefix, var_prefix, var_prefix)) code.append(indent(2) + 'fifo_kernel_config_in,\n') code.append(indent(2) + 'fifo_kernel_config_out,\n') if idx == 0: code.append(indent(2) + 'fifo_DataFeed%dHead_config_out0, fifo_DataFeed%dHead_config_out1\n' % (idx, idx)) else: code.append(indent(2) + 'fifo_DataFeed0Head_config_out1, fifo_DataFeed1Head_config_out0\n') code.append(indent(1) + ');\n\n') # feed engine for feed_group in range(desp['FC_SPLIT_FACTOR'][idx]): for local_feed_id in range(int(feed_num / desp['FC_SPLIT_FACTOR'][idx])): feed_id = local_feed_id + feed_group * (feed_num / desp['FC_SPLIT_FACTOR'][idx]) feed_id_nxt = feed_id + 1 feed_id = int(feed_id) feed_id_nxt = int(feed_id_nxt) if local_feed_id < feed_num / desp['FC_SPLIT_FACTOR'][idx] - 1: code.append(indent(1) + var_prefix + 'DataFeed' + str(idx) + 'Engine0_wrapper(\n') code.append(indent(2) + 'fifo' + str(idx) + '_transfer' + str(feed_id) + ',\n') code.append(indent(2) + 'fifo' + str(idx) + '_transfer' + str(feed_id_nxt) + ',\n') for gs in range(desp['FC_GROUP_FACTOR'][idx]): feed_pe_id = feed_id * desp['FC_GROUP_FACTOR'][idx] + gs feed_pe_id = int(feed_pe_id) ch_dir = desp['OP_CHANNEL_DIR'][idx] if ch_dir == 'D': code.append(indent(2) + 'fifo' + str(idx) + '_feed0_' + str(feed_pe_id) + ',\n') elif ch_dir == 'U': row_idx = desp['SA_ROWS'] - 1 code.append(indent(2) + 'fifo' + str(idx) + '_feed' + str(row_idx) + '_' + str(feed_pe_id) + ',\n') elif ch_dir == 'R': code.append(indent(2) + 'fifo' + str(idx) + '_feed' + str(feed_pe_id) + '_0,\n') elif ch_dir == 'L': col_idx = desp['SA_COLS'] - 1 code.append(indent(2) + 'fifo' + str(idx) + '_feed' + str(feed_pe_id) + '_' + str(col_idx) + ',\n') code.append(indent(2) + str(local_feed_id) + ',\n') if idx == 0: if feed_id == 0: code.append(indent(2) + 'fifo_DataFeed%dHead_config_out0,\n' % (idx)) code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out0,\n' % (idx, feed_id)) code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out1\n' % (idx, feed_id)) else: code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out0,\n' % (idx, feed_id - 1)) code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out0,\n' % (idx, feed_id)) code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out1\n' % (idx, feed_id)) elif idx == 1: if feed_id == 0: code.append(indent(2) + 'fifo_DataFeed1Head_config_out0,\n') code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out0\n' % (idx, feed_id)) else: code.append(indent(2) + 'fifo_DataFeed%dEngine%d_config_out0,\n' % (idx,
#!/usr/bin/env python import sys, os, time, json, socket, select, random, subprocess, string, hashlib, bisect, atexit VERSION = "0.6" REPLICA_PROG = './3700kvstore' NUM_CLIENTS = 8 ####################################################################################################### # Parses and validates config files for simulations class Config: def __init__(self, filename): # load the json conf = json.loads(open(filename).read()) # check for required fields if 'lifetime' not in conf or 'replicas' not in conf or 'requests' not in conf: raise AttributeError("Required field is missing from the config file") # load the required fields and sanity check them self.lifetime = int(conf['lifetime']) if self.lifetime < 5: raise ValueError("Simulation lifetime must be at least 5 seconds") self.replicas = int(conf['replicas']) if self.replicas < 3 or self.replicas > 21: raise ValueError("Number of replicas must be at least 3 and at most 21") self.requests = int(conf['requests']) if self.requests < 0: raise ValueError("Number of requests cannot be negative") # initialize the random number generator if 'seed' in conf: self.seed = conf['seed'] else: self.seed = None random.seed(self.seed) # load the default variables self.mix = self.__get_default__(conf, 'mix', 0, 1, 0.8, "Read/Write mix must be between 0 and 1") self.start_wait = self.__get_default__(conf, 'start_wait', 0, self.lifetime, 2.0, "Start wait must be between 0 and %s" % (self.lifetime)) self.end_wait = self.__get_default__(conf, 'end_wait', 0, self.lifetime, 2.0, "End wait must be between 0 and %s" % (self.lifetime)) self.drops = self.__get_default__(conf, 'drops', 0, 1, 0.0, "Drops must be between 0 and 1") self.max_packets = self.__get_default__(conf, 'max_packets', self.requests, 900000, 20000, "max_packets must be between %i and %i" % (self.requests, 900000)) if 'events' in conf: self.events = conf['events'] else: self.events = [] # sanity check the events for event in self.events: if event['type'] not in ['kill_leader', 'kill_non_leader', 'part_easy', 'part_hard', 'part_end']: raise ValueError("Unknown event type: %s" % (event['type'])) if event['time'] < 0 or event['time'] > self.lifetime: raise ValueError("Event time must be between 0 and %s" % (self.lifetime)) def __get_default__(self, conf, field, low, high, default, exception): if field in conf: temp = float(conf[field]) if temp < low or temp > high: raise ValueError(exception) else: temp = default return temp def dump(self): print ('%8s %s\n' * 9) % ('Lifetime', self.lifetime, 'Replicas', self.replicas, 'Requests', self.requests, 'Seed', self.seed, 'Mix', self.mix, 'Start Wait', self.start_wait, 'End Wait', self.end_wait, 'Drops', self.drops, 'Max Packets', self.max_packets), for event in self.events: print '%8s %15s %s' % ('Event', event['type'], event['time']) ####################################################################################################### class Stats: def __init__(self): self.total_msgs = 0 self.total_drops = 0 self.total_get = 0 self.total_put = 0 self.failed_get = 0 self.failed_put = 0 self.incorrect = 0 self.duplicates = 0 self.unanswered_get = 0 self.unanswered_put = 0 self.redirects = 0 self.latencies = [] self.died = 0 self.killed = 0 self.mean_latency = 0.0 self.median_latency = 0.0 self.leaders = [] def add_leader(self, ldr): if len(self.leaders) == 0 or self.leaders[-1] != ldr: self.leaders.append(ldr) def finalize(self): if len(self.latencies) > 0: self.latencies.sort() self.mean_latency = float(sum(self.latencies))/len(self.latencies) self.median_latency = self.latencies[len(self.latencies)/2] def dump(self): print 'Simulation finished.' print 'Leaders:', ' '.join(self.leaders) print 'Replicas that died/were killed: %i/%i' % (self.died, self.killed) print 'Total messages sent:', self.total_msgs print 'Total messages dropped:', self.total_drops print 'Total client get()/put() requests: %i/%i' % (self.total_get, self.total_put) print 'Total duplicate responses:', self.duplicates print 'Total unanswered get()/put() requests: %i/%i' % (self.unanswered_get, self.unanswered_put) print 'Total redirects:', self.redirects print 'Total get()/put() failures: %i/%i' % (self.failed_get, self.failed_put) print 'Total get() with incorrect response:', self.incorrect if len(self.latencies) > 0: print 'Mean/Median query latency: %fsec/%fsec' % (float(sum(self.latencies))/len(self.latencies), self.latencies[len(self.latencies)/2]) ####################################################################################################### class Client: class Request: def __init__(self, get, key, val=None): self.get = get self.key = key self.val = val self.ts = time.time() def __init__(self, simulator, cid): self.reqs = {} self.items = {} self.completed = set() self.sim = simulator self.cid = cid self.leader = 'FFFF' def forget(self): self.leader = 'FFFF' def __get_rand_str__(self, size=16, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def __get_destination__(self): if self.leader == 'FFFF' or self.leader not in self.sim.living_rids: self.leader = 'FFFF' return random.choice(list(self.sim.living_rids)) return self.leader def __create_get__(self, key): self.sim.stats.total_get += 1 mid = self.__get_rand_str__() self.reqs[mid] = self.Request(True, key) dst = self.__get_destination__() return {'src': self.cid, 'dst': dst, 'leader': self.leader, 'type': 'get', 'MID': mid, 'key': key} def __create_put__(self, key, value): self.sim.stats.total_put += 1 mid = self.__get_rand_str__() self.reqs[mid] = self.Request(False, key, value) dst = self.__get_destination__() return {'src': self.cid, 'dst': dst, 'leader': self.leader, 'type': 'put', 'MID': mid, 'key': key, 'value': value} def finalize(self): for req in self.reqs.itervalues(): if req.get: self.sim.stats.unanswered_get += 1 else: self.sim.stats.unanswered_put += 1 def create_req(self, get=True): # create a get message, if possible if get and len(self.items) > 0: return self.__create_get__(random.choice(self.items.keys())) # decide to add a new key, or update an existing key if len(self.items) == 0 or random.random() > 0.5: k = self.__get_rand_str__(size=32) v = hashlib.md5(k).hexdigest() else: k = random.choice(self.items.keys()) v = hashlib.md5(self.items[k]).hexdigest() return self.__create_put__(k, v) def deliver(self, raw_msg, msg): # validate the message if 'MID' not in msg: print "*** Simulator Error - Message missing mid field: %s" % (raw_msg) self.sim.stats.incorrect += 1 return None if msg['type'] not in ['ok', 'fail', 'redirect']: print "*** Simulator Error - Unknown message type sent to client: %s" % (raw_msg) self.sim.stats.incorrect += 1 return None mid = msg['MID'] # is this a duplicate? if mid in self.completed: self.sim.stats.duplicates += 1 return None # is this a message that I'm expecting? try: req = self.reqs[mid] except: print "*** Simulator Error - client received an unexpected MID: %s" % (raw_msg) self.sim.stats.incorrect += 1 return None del self.reqs[mid] self.leader = msg['leader'] self.sim.stats.latencies.append(time.time() - req.ts) # if this is a redirect or a fail, try again if msg['type'] in ['redirect', 'fail']: if req.get: if msg['type'] == 'fail': self.sim.stats.failed_get += 1 self.sim.stats.redirects += 1 return self.__create_get__(req.key) if msg['type'] == 'fail': self.sim.stats.failed_put += 1 self.sim.stats.redirects += 1 return self.__create_put__(req.key, req.val) # msg type must be ok, mark it as completed self.completed.add(mid) if req.get: if 'value' not in msg: print "*** Simulator Error - get() response missing the value of the key: %s" % (raw_msg) self.sim.stats.incorrect += 1 if self.items[req.key] != msg['value']: print "*** Simulator Error - client received an incorrect value for a key: %s" % (raw_msg) self.sim.stats.incorrect += 1 else: self.items[req.key] = req.val return None ####################################################################################################### # Represents a replica, the associated process, and it's sockets class Replica: def __init__(self, rid): self.rid = rid self.client_sock = None self.alive = False # try and delete the old domain socket, just in case try: os.unlink(rid) except: pass # create the listen socket for this replica self.listen_sock = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET) self.listen_sock.bind(rid) self.listen_sock.listen(1) def run(self, rids): args = [REPLICA_PROG, self.rid] args.extend(rids - set([self.rid])) self.proc = subprocess.Popen(args) self.alive = True def shutdown(self): if self.alive: self.alive = False if self.client_sock: self.client_sock.close() self.listen_sock.close() self.listen_sock = None self.client_sock = None self.proc.kill() self.proc.wait() os.unlink(self.rid) def deliver(self, raw_msg): if self.alive: try: self.client_sock.send(raw_msg) return True except: print '*** Simulator Error - Unable to send to replica' self.shutdown() return False ####################################################################################################### # Represents and executes the entire simulation class Simulation: def __init__(self, filename): self.leader = 'FFFF' self.events = [] # stats tracking self.stats = Stats() # virtual network partitions self.partition = None # Load the config file self.conf = Config(filename) #self.conf.dump() # Create the clients self.cids = set() self.clients = {} for i in xrange(self.conf.replicas + 16, self.conf.replicas + 16 + NUM_CLIENTS): cid = ('%04x' % (i)).upper() self.cids.add(cid) self.clients[cid] = Client(self, cid) # Create the sockets and the replicas self.rids = set() self.replicas = {} for i in xrange(self.conf.replicas): rid = ('%04x' % (i)).upper() self.rids.add(rid) self.replicas[rid] = Replica(rid) self.living_rids = self.rids.copy() def run(self): for r in self.replicas.itervalues(): r.run(self.rids) # initialize the clock and create all the get(), put(), and kill() events clock = start = time.time() self.__populate_event_queue__(clock) # the main event loop while clock - start < self.conf.lifetime and self.stats.total_msgs < self.conf.max_packets: # populate the list of living sockets sockets = [] listen_socks = set() for r in self.replicas.itervalues(): if r.listen_sock: sockets.append(r.listen_sock) listen_socks.add(r.listen_sock) if r.client_sock: sockets.append(r.client_sock) ready = select.select(sockets, [], [], 0.1)[0] for sock in ready: # if this is a listen sock, accept the connection and map it
<filename>edacom.py #!/usr/bin/env python """ Runs on one Raspberry Pi inside each of the beamformer control boxes, to send pointing commands to the eight beamformers connected to that box. On startup, it: -Checks that the hostname (as reported by 'hostname -A') is either 'eda1com or 'eda2com', and exits if not. -Uses the integer (1 or 2) in the hostname to determine whether this box is connected to the first eight beamformers (0-8), or the second eight beamformers (9-F). -Starts a Pyro4 daemon on port 19987 to listen for (and execute) remote procedure calls over the network. On exit (eg, with a control-C or a 'kill' command), it: -Stops the Pyro4 daemon -Exits. """ import atexit import logging from logging import handlers import optparse import signal import subprocess import sys import threading import time # noinspection PyUnresolvedReferences import RPi.GPIO as GPIO import astropy import astropy.time import astropy.units from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation if sys.version_info.major == 2: # noinspection PyUnresolvedReferences STR_CLASS = basestring else: STR_CLASS = str # set up the logging LOGLEVEL_CONSOLE = logging.DEBUG # Logging level for console messages (INFO, DEBUG, ERROR, CRITICAL, etc) LOGLEVEL_LOGFILE = logging.DEBUG # Logging level for logfile LOGLEVEL_REMOTE = logging.INFO LOGFILE = "/tmp/edacom.log" class MWALogFormatter(logging.Formatter): def format(self, record): return "%s: time %10.6f - %s" % (record.levelname, time.time(), record.getMessage()) mwalf = MWALogFormatter() logger = logging.getLogger() logger.setLevel(logging.DEBUG) fh = handlers.RotatingFileHandler(LOGFILE, maxBytes=1000000000, backupCount=5) # 1 Gb per file, max of five old log files fh.setLevel(LOGLEVEL_LOGFILE) fh.setFormatter(mwalf) ch = logging.StreamHandler() ch.setLevel(LOGLEVEL_CONSOLE) ch.setFormatter(mwalf) # rh = handlers.SysLogHandler(address=('mw-gw', 514)) # rh.setLevel(LOGLEVEL_REMOTE) # rh.setFormatter(mwalf) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) # logger.addHandler(rh) import Pyro4 # noinspection PyUnresolvedReferences sys.excepthook = Pyro4.util.excepthook Pyro4.config.DETAILED_TRACEBACK = True Pyro4.config.SERIALIZERS_ACCEPTED.add('pickle') import pyslave import pointing TILEID = 99 # MWA tile ID for the EDA station SLAVEPORT = 19987 STRICT = False ONLYBFs = None # ONLYBFs = ['E'] CPOS = (0.0, 0.0, 0.0) # Offset from geometric centre, in metres, to use as delay centre for pointing calculations # IO pin allocations as (txdata, txclock, rxdata) for each of the 8 RxDOC cards in this box, numbered 1-8 IOPINS = {1:(29, 16, 40), 2:(26, 15, 38), 3:(24, 13, 37), 4:(23, 12, 36), 5:(22, 11, 35), 6:(21, 10, 33), 7:(19, 8, 32), 8:(18, 7, 31)} # Timeout for PyController comms to the PointingSlave instance PS_TIMEOUT = 60 SIGNAL_HANDLERS = {} CLEANUP_FUNCTION = None MWAPOS = EarthLocation.from_geodetic(lon="116:40:14.93", lat="-26:42:11.95", height=377.8) def init(): """Initialise IO pins for pointing comms with all 8 beamformers """ GPIO.setmode(GPIO.BOARD) # Use board connector pin numbers to specify I/O pins GPIO.setwarnings(False) for i in range(1, 9): txdata, txclock, rxdata = IOPINS[i] GPIO.setup(rxdata, GPIO.IN) GPIO.setup(txdata, GPIO.OUT) GPIO.setup(txclock, GPIO.OUT) def get_hostname(): """Returns the hostname, with domain stripped off. Used to work out whether this Raspberry Pi controls MWA beamformers 0-8 (eda1com.mwa128t.org) or beamformers 9-F (eda2com.mwa128t.org). """ if sys.version_info.major == 2: fqdn = subprocess.check_output(['hostname', '-A'], shell=False) else: fqdn = subprocess.check_output(['hostname', '-A'], shell=False).decode('UTF-8') return fqdn.split('.')[0] def point(starttime=0, bfnum=0, outstring='', results=None, resultlock=None): """ Called with the start time of the next observation (a unix timestamp), the beamformer number to point, and the string containing the delay bits to write. Waits until the specified time, then sends the bit string to the beamformer. The results are written to the given dictionary, using the lock supplied - this is because 'point' is called in parallel for all eight beamformers, using the same results dictionary, so that all eight beamformers are pointed at the same instant. :param starttime: start time in seconds past the unix epoch, :param bfnum: beamformer output number (1-8), :param outstring: bit-string to send, :param results: dictionary to store (temp, flag) returned from the beamformer, :param resultlock: lock object to avoid conflicts writing to the results dict :return: """ now = time.time() if now < starttime: logger.debug("bf %d is sleeping for %5.2f seconds" % (bfnum, starttime - now)) time.sleep(starttime - now) temp, flags = send_bitstring(bfnum=bfnum, outstring=outstring) with resultlock: results[bfnum] = (temp, flags) logger.info("bf %d bitstring sent." % bfnum) def calc_azel(ra=0.0, dec=0.0, calctime=None): """ Takes RA and DEC in degrees, and calculates Az/El of target at the specified time :param ra: Right Ascension (J2000) in degrees :param dec: Declination (J2000) in degrees :param calctime: Time (as a unix time stamp) for the conversion, or None to calculate for the current time. :return: A tuple of (azimuth, elevation) in degrees """ # noinspection PyUnresolvedReferences coords = SkyCoord(ra=ra, dec=dec, equinox='J2000', unit=(astropy.units.deg, astropy.units.deg)) if calctime is None: azeltime = Time.now() else: azeltime = Time(calctime, format='unix', scale='utc') coords.location = MWAPOS coords.obstime = azeltime cpos = coords.transform_to('altaz') return cpos.az.deg, cpos.alt.deg class PointingSlave(pyslave.Slave): """Subclass the pycontroller slave class so we can override the notify() method to point the EDA. Any methods decorated with '@Pyro4.expose' are called remotely over the network, from the control computer. """ def __init__(self, edanum=0, tileid=0, clientid=None, port=None): """ :param edanum: Either 1 or 2, used to determine which set of 8 beamformers we are pointing. :param tileid: Which MWA tile number we are (used to ignore notify() calls not meant for us) :param clientid: Pyro4 service name - eg eda1com :param port: network port to listen on """ self.tileid = tileid self.orig_tileid = tileid # Save the 'real' tile ID here, so we can change the 'current' one self.edanum = edanum self.offsets = pointing.getOffsets() self.lastpointing = (None, None, None, None, None, None, None, None, None) pyslave.Slave.__init__(self, clientid=clientid, rclass='pointing', port=port) @Pyro4.expose def stop_tracking(self): """Change the tileid that we recognise for notify() calls, so that we ignore any notify() calls from pycontroller in response to MWA observations. EDA client code calls to notify() use a tileid of 0, and are always recognised. """ self.tileid = -1 logger.info('Tracking disable, current tile ID set to None') return True @Pyro4.expose def start_tracking(self): """Change the tileid that we recognise for notify() calls, so that we react to any notify() calls from pycontroller in response to MWA observations. EDA client code calls to notify() use a tileid of 0, and are always recognised. """ self.tileid = self.orig_tileid logger.info('Tracking enabled, current tile ID restored to %d' % self.tileid) return True @Pyro4.expose def onlybfs(self, bfids=None): """If called with bfids=None, enables all dipoles on all MWA beamformers. If bfids is a list of single hex digits, or a string of hex digits, enable all dipoles on those beamformers, and disable them on all others. The state is saved in a global variable, and lasts until the next call to onlybfs(). :param bfids: A list of hex digits (eg ['0', '4', 'A']), or a string of hex digits (eg '04A') :return: False if there was an error parsing the bfids argument, True if successful. """ global ONLYBFs if bfids is None: logger.info('Enabling all channels') ONLYBFs = None elif (type(bfids) == list) or (isinstance(bfids, STR_CLASS)): onlybfs = [] for bfid in bfids: if (isinstance(bfid, STR_CLASS)) and (len(bfid) == 1): if bfid.upper() in pointing.HEXD: onlybfs.append(bfid.upper()) else: logger.critical("Invalid BFID code: %s" % bfid) return False else: logger.critical("Invalid BFID: %s" % bfid) return False logger.info("Enabling only beamformers %s" % onlybfs) ONLYBFs = onlybfs @Pyro4.expose def set_cpos(self, cpos=None): """Sets the position of the EDA centre used for delay calculations, relative to the geometric centre. If cpos is not None, it must be a tuple of three floats, used as an offset from the geometrical EDA centre (0,0,0) in the units used in the locations file), in metres. The state is saved in a global variable, and lasts until the next call to set_cpos(). :param cpos: A tuple of three floats (offsets E/W, N/S and up/down), or None. :return: False if there was an error parsing the cpos argument, True if successful. """ global CPOS if cpos is None: CPOS = (0.0, 0.0, 0.0) else: if (type(cpos) == tuple) and (len(cpos) == 3): ok = True for element in cpos: if (type(element) != float) and (type(element) != int): ok = False if ok: CPOS = cpos return True else: logger.error('Invalid item in argument for set_cpos(%s) call' % cpos) return False else: logger.error('Invalid argument to set_cpos(%s)' % cpos) return False @Pyro4.expose def is_tracking(self): """Returns True if we are tracking MWA observations, False otherwise.""" return self.tileid == self.orig_tileid @Pyro4.expose def get_status(self): """Returns a status object. This is a tuple of: istracking (True or False), ONLYBFs (global variable, None for all
""" Smart Virtual Thermostat FOR trv python plugin for Domoticz Author: Erwanweb, adapted from the SVT By Logread V0.4.4 and Anthor, see: https://github.com/999LV/SmartVirtualThermostat http://www.antor.fr/apps/smart-virtual-thermostat-eng-2/?lang=en https://github.com/AntorFr/SmartVT Version: 0.0.1: alpha 0.0.2: beta 0.1.1: correction for reducted temp if no presence 0.1.2: correction for control of TRV setpoint 0.1.3: correction for control of TRV setpoint when off """ """ <plugin key="SVT3" name="AC Smart Virtual Thermostat for TRV" author="Erwanweb" version="0.1.3" externallink="https://github.com/Erwanweb/SVT3.git"> <description> <h2>Smart Virtual Thermostat for TRV</h2><br/> V.0.1.3<br/> Easily implement in Domoticz an advanced virtual thermostat using TRV<br/> <h3>Set-up and Configuration</h3> </description> <params> <param field="Address" label="Domoticz IP Address" width="200px" required="true" default="127.0.0.1"/> <param field="Port" label="Port" width="40px" required="true" default="8080"/> <param field="Username" label="Username" width="200px" required="false" default=""/> <param field="Password" label="Password" width="200px" required="false" default=""/> <param field="Mode1" label="Inside Temperature Sensors (csv list of idx)" width="100px" required="true" default="0"/> <param field="Mode2" label="TRV Temperature Sensors (csv list of idx)" width="100px" required="false" default=""/> <param field="Mode3" label="TRV (csv list of idx)" width="100px" required="true" default="0"/> <param field="Mode4" label="Presence Sensors (csv list of idx)" width="100px" required="false" default=""/> <param field="Mode5" label="Pause On delay, Pause Off delay, Forced mode duration, Presence on delay, Presence off delay(all in minutes) reduc jour, reduc nuit (both in tenth of degre)" width="200px" required="true" default="2,1,60,1,60,10,20"/> <param field="Mode6" label="Logging Level" width="200px"> <options> <option label="Normal" value="Normal" default="true"/> <option label="Verbose" value="Verbose"/> <option label="Debug - Python Only" value="2"/> <option label="Debug - Basic" value="62"/> <option label="Debug - Basic+Messages" value="126"/> <option label="Debug - Connections Only" value="16"/> <option label="Debug - Connections+Queue" value="144"/> <option label="Debug - All" value="-1"/> </options> </param> </params> </plugin> """ import Domoticz import json import urllib.parse as parse import urllib.request as request from datetime import datetime, timedelta import time import base64 import itertools class deviceparam: def __init__(self, unit, nvalue, svalue): self.unit = unit self.nvalue = nvalue self.svalue = svalue class BasePlugin: def __init__(self): self.debug = False self.pauseondelay = 2 # time between pause sensor actuation and actual pause self.pauseoffdelay = 1 # time between end of pause sensor actuation and end of actual pause self.forcedduration = 60 # time in minutes for the forced mode self.ActiveSensors = {} self.InTempSensors = [] self.TRVTempSensors = [] self.OutTempSensors = [] self.switchHeat = False self.Heaters = [] self.heat = False self.pause = False self.pauserequested = False self.pauserequestchangedtime = datetime.now() self.forced = False self.intemp = 20.0 self.intemperror = False self.TRVtemp = 20.0 self.outtemp = 20.0 self.setpoint = 20.0 self.TRVsetpoint = 20.0 self.endheat = datetime.now() self.nexttemps = datetime.now() self.temptimeout = datetime.now() self.DTpresence = [] self.Presencemode = False self.Presence = False self.PresenceTH = False self.presencechangedtime = datetime.now() self.PresenceDetected = False self.DTtempo = datetime.now() self.presenceondelay = 1 # time between first detection and last detection before turning presence ON self.presenceoffdelay = 60 # time between last detection before turning presence OFF self.reducjour = 10 # reduction de la temp par rapport a la consigne self.reducnuit = 20 # reduction de la temp par rapport a la consigne self.learn = True return def onStart(self): # setup the appropriate logging level try: debuglevel = int(Parameters["Mode6"]) except ValueError: debuglevel = 0 self.loglevel = Parameters["Mode6"] if debuglevel != 0: self.debug = True Domoticz.Debugging(debuglevel) DumpConfigToLog() self.loglevel = "Verbose" else: self.debug = False Domoticz.Debugging(0) # create the child devices if these do not exist yet devicecreated = [] if 1 not in Devices: Options = {"LevelActions": "||", "LevelNames": "Off|Auto|Forced", "LevelOffHidden": "false", "SelectorStyle": "0"} Domoticz.Device(Name="Thermostat Control", Unit=1, TypeName="Selector Switch", Switchtype=18, Image=15, Options=Options, Used=1).Create() devicecreated.append(deviceparam(1, 0, "0")) # default is Off state if 2 not in Devices: Options = {"LevelActions": "||", "LevelNames": "Off|Normal|Economy|Vacation", "LevelOffHidden": "true", "SelectorStyle": "0"} Domoticz.Device(Name="Thermostat Mode", Unit=2, TypeName="Selector Switch", Switchtype=18, Image=15, Options=Options, Used=1).Create() devicecreated.append(deviceparam(2, 0, "10")) # default is normal confort mode if 3 not in Devices: Domoticz.Device(Name="Thermostat Pause", Unit=3, TypeName="Switch", Image=9, Used=1).Create() devicecreated.append(deviceparam(3, 0, "")) # default is Off if 4 not in Devices: Domoticz.Device(Name="Setpoint Normal", Unit=4, Type=242, Subtype=1, Used=1).Create() devicecreated.append(deviceparam(4, 0, "20")) # default is 20 degrees if 5 not in Devices: Domoticz.Device(Name="Setpoint Economy", Unit=5, Type=242, Subtype=1).Create() devicecreated.append(deviceparam(5 ,0, "18")) # default is 18 degrees if 6 not in Devices: Domoticz.Device(Name="Thermostat temp", Unit=6, TypeName="Temperature", Used=1).Create() devicecreated.append(deviceparam(6, 0, "20")) # default is 20 degrees if 7 not in Devices: Domoticz.Device(Name="Heating Request", Unit=7, TypeName="Switch", Image=9, Used=1).Create() devicecreated.append(deviceparam(7, 0, "")) # default is Off if 8 not in Devices: Domoticz.Device(Name="Presence sensor", Unit=8, TypeName="Switch", Image=9).Create() devicecreated.append(deviceparam(8, 0, "")) # default is Off # if any device has been created in onStart(), now is time to update its defaults for device in devicecreated: Devices[device.unit].Update(nValue=device.nvalue, sValue=device.svalue) # build lists of sensors and switches self.InTempSensors = parseCSV(Parameters["Mode1"]) Domoticz.Debug("Inside Temperature sensors = {}".format(self.InTempSensors)) self.TRVTempSensors = parseCSV(Parameters["Mode2"]) Domoticz.Debug("TRV Temperature sensors = {}".format(self.TRVTempSensors)) self.Heaters = parseCSV(Parameters["Mode3"]) Domoticz.Debug("Heaters = {}".format(self.Heaters)) self.DTpresence = parseCSV(Parameters["Mode4"]) Domoticz.Debug("DTpresence = {}".format(self.DTpresence)) # build dict of status of all temp sensors to be used when handling timeouts for sensor in itertools.chain(self.InTempSensors, self.TRVTempSensors): self.ActiveSensors[sensor] = True # splits additional parameters params = parseCSV(Parameters["Mode5"]) if len(params) == 7: self.pauseondelay = CheckParam("Pause On Delay", params[0], 2) self.pauseoffdelay = CheckParam("Pause Off Delay", params[1], 0) self.forcedduration = CheckParam("Forced Mode Duration", params[2], 60) if self.forcedduration < 30: Domoticz.Error("Invalid forced mode duration parameter. Using minimum of 30 minutes !") self.calculate_period = 30 self.presenceondelay = CheckParam("Presence On Delay", params[3], 1) self.presenceoffdelay = CheckParam("Presence Off Delay",params[4],30) self.reducjour = CheckParam("reduit jour",params[5],10) self.reducnuit = CheckParam("reduit nuit",params[6],20) else: Domoticz.Error("Error reading Mode5 parameters") # if mode = off then make sure actual heating is off just in case if was manually set to on if Devices[1].sValue == "0": self.switchHeat = False # update temp self.readTemps() def onStop(self): Domoticz.Debugging(0) def onCommand(self, Unit, Command, Level, Color): Domoticz.Debug("onCommand called for Unit {}: Command '{}', Level: {}".format(Unit, Command, Level)) if Unit == 3: # pause switch self.pauserequestchangedtime = datetime.now() svalue = "" if str(Command) == "On": nvalue = 1 self.pauserequested = True else: nvalue = 0 self.pauserequested = False else: nvalue = 1 if Level > 0 else 0 svalue = str(Level) Devices[Unit].Update(nValue=nvalue, sValue=svalue) if Unit in (1, 2, 4, 5): # truc self.onHeartbeat() def onHeartbeat(self): self.PresenceDetection() now = datetime.now() # fool proof checking.... based on users feedback if not all(device in Devices for device in (1,2,3,4,5,6,7,8)): Domoticz.Error("one or more devices required by the plugin is/are missing, please check domoticz device creation settings and restart !") return if Devices[1].sValue == "0": # Thermostat is off Domoticz.Log("Thermostat is OFF") Domoticz.Debug("TRV Calculded setpoint is : 7 because of thermostat off") self.TRVsetpoint = 7 if not Devices[7].nValue == 0: Devices[7].Update(nValue=0, sValue=Devices[7].sValue) if self.forced or self.switchHeat: # thermostat setting was just changed so we kill the heating self.forced = False self.switchHeat = False Domoticz.Debug("Switching heat Off !") elif Devices[1].sValue == "20": # Thermostat is in forced mode Domoticz.Log("Thermostat is in FORCED mode") if self.forced: if self.endheat <= now: self.forced = False self.endheat = now Domoticz.Debug("Forced mode Off after timer !") Devices[1].Update(nValue=1, sValue="10") # set thermostat to normal mode self.switchHeat = False self.TRVsetpoint = self.setpoint - (self.intemp - self.TRVtemp) # correction of TRV setpoint using difference between real indoor temp and mesured trv temp. Domoticz.Debug("TRV Calculded setpoint is : " + str(self.TRVsetpoint)) if not Devices[7].nValue == 0: Devices[7].Update(nValue = 0,sValue = Devices[7].sValue) else: self.forced = True self.endheat = now + timedelta(minutes=self.forcedduration) Domoticz.Debug("Forced mode On !") self.switchHeat = True Domoticz.Debug("TRV Calculded setpoint is : 28") self.TRVsetpoint = 28 if Devices[7].nValue == 0: Devices[7].Update(nValue = 1,sValue = Devices[7].sValue) else: # Thermostat is in mode auto Domoticz.Debug("Thermostat is in AUTO mode") if self.forced: # thermostat setting was just changed from "forced" so we kill the forced mode Domoticz.Debug("Forced mode Off !") self.forced = False self.switchHeat = True self.TRVsetpoint = self.setpoint - (self.intemp - self.TRVtemp) # correction of TRV setpoint using difference between real indoor temp and mesured trv temp. Domoticz.Debug("TRV Calculded setpoint is : " + str(self.TRVsetpoint)) if not Devices[7].nValue == 0: Devices[7].Update(nValue = 0,sValue = Devices[7].sValue) elif self.pause and not self.pauserequested: # we are in pause and the pause switch is now off if self.pauserequestchangedtime + timedelta(minutes=self.pauseoffdelay) <= now: Domoticz.Debug("Pause is now Off") self.pause = False self.switchHeat = True self.TRVsetpoint = self.setpoint - (self.intemp - self.TRVtemp) # correction of TRV setpoint using difference between real indoor temp and
#------------------------------------------------------------------------------- # $Id$ # # Project: EOxServer <http://eoxserver.org> # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # #------------------------------------------------------------------------------- # Copyright (C) 2013 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- from optparse import make_option from itertools import chain from django.core.exceptions import ValidationError from django.core.management import call_command from django.core.management.base import CommandError, BaseCommand from django.utils.dateparse import parse_datetime from django.contrib.gis import geos from eoxserver.core import env from eoxserver.contrib import gdal, osr from eoxserver.backends import models as backends from eoxserver.backends.component import BackendComponent from eoxserver.backends.cache import CacheContext from eoxserver.backends.access import connect from eoxserver.resources.coverages import models from eoxserver.resources.coverages.metadata.component import MetadataComponent from eoxserver.resources.coverages.management.commands import ( CommandOutputMixIn, _variable_args_cb, nested_commit_on_success ) def _variable_args_cb_list(option, opt_str, value, parser): """ Helper function for optparse module. Allows variable number of option values when used as a callback. """ args = [] for arg in parser.rargs: if not arg.startswith('-'): args.append(arg) else: del parser.rargs[:len(args)] break if not getattr(parser.values, option.dest): setattr(parser.values, option.dest, []) getattr(parser.values, option.dest).append(args) class Command(CommandOutputMixIn, BaseCommand): option_list = BaseCommand.option_list + ( make_option("-i", "--identifier", "--coverage-id", dest="identifier", action="store", default=None, help=("Override identifier.") ), make_option("-d", "--data", dest="data", action="callback", callback=_variable_args_cb_list, default=[], help=("Add a data item to the dataset. Format is: " "[storage_type:url] [package_type:location]* format:location" ) ), make_option("-s", "--semantic", dest="semantics", action="callback", callback=_variable_args_cb, default=None, help=("Optional band semantics. If given, one band " "semantics 'band[*]' must be present for each '--data' " "option.") ), make_option("-m", "--meta-data", dest="metadata", action="callback", callback=_variable_args_cb_list, default=[], help=("Optional. [storage_type:url] [package_type:location]* " "format:location") ), make_option("-r", "--range-type", dest="range_type_name", help=("Mandatory. Name of the stored range type. ") ), make_option("-e", "--extent", dest="extent", action="store", default=None, help=("Override extent. Comma separated list of " "<minx>,<miny>,<maxx>,<maxy>.") ), make_option("--size", dest="size", action="store", default=None, help=("Override size. Comma separated list of <size-x>,<size-y>.") ), make_option("--srid", dest="srid", action="store", default=None, help=("Override SRID. Integer number.") ), make_option("-p", "--projection", dest="projection", action="store", default=None, help=("Override projection.") ), make_option("-f", "--footprint", dest="footprint", action="store", default=None, help=("Override footprint. Must be supplied as WKT Polygons or " "MultiPolygons.") ), make_option("--begin-time", dest="begin_time", action="store", default=None, help=("Override begin time. Format is ISO8601 datetime strings.") ), make_option("--end-time", dest="end_time", action="store", default=None, help=("Override end time. Format is ISO8601 datetime strings.") ), make_option("--coverage-type", dest="coverage_type", action="store", default=None, help=("The actual coverage type.") ), make_option("--visible", dest="visible", action="store_true", default=False, help=("Set the coverage to be 'visible', which means it is " "advertised in GetCapabilities responses.") ), make_option("--collection", dest="collection_ids", action='callback', callback=_variable_args_cb, default=None, help=("Optional. Link to one or more collection(s).") ), make_option('--ignore-missing-collection', dest='ignore_missing_collection', action="store_true", default=False, help=("Optional. Proceed even if the linked collection " "does not exist. By defualt, a missing collection " "will result in an error.") ) ) args = ( "-d [<storage>:][<package>:]<location> [-d ... ] " "-r <range-type-name> " "[-m [<storage>:][<package>:]<location> [-m ... ]] " "[-s <semantic> [-s <semantic>]] " "[--identifier <identifier>] " "[-e <minx>,<miny>,<maxx>,<maxy>] " "[--size <size-x> <size-y>] " "[--srid <srid> | --projection <projection-def>] " "[--footprint <footprint-wkt>] " "[--begin-time <begin-time>] [--end-time <end-time>] " "[--coverage-type <coverage-type-name>] " "[--visible] [--collection <collection-id> [--collection ... ]] " "[--ignore-missing-collection]" ) help = """ Registers a Dataset. A dataset is a collection of data and metadata items. When beeing registered, as much metadata as possible is extracted from the supplied (meta-)data items. If some metadata is still missing, it needs to be supplied via the specific override options. By default, datasets are not "visible" which means that they are not advertised in the GetCapabilities sections of the various services. This needs to be overruled via the `--visible` switch. The registered dataset can optionally be directly inserted one or more collections. """ @nested_commit_on_success def handle(self, *args, **kwargs): with CacheContext() as cache: self.handle_with_cache(cache, *args, **kwargs) def handle_with_cache(self, cache, *args, **kwargs): metadata_component = MetadataComponent(env) datas = kwargs["data"] semantics = kwargs.get("semantics") metadatas = kwargs["metadata"] range_type_name = kwargs["range_type_name"] if range_type_name is None: raise CommandError("No range type name specified.") range_type = models.RangeType.objects.get(name=range_type_name) metadata_keys = set(( "identifier", "extent", "size", "projection", "footprint", "begin_time", "end_time", "coverage_type", )) all_data_items = [] retrieved_metadata = {} retrieved_metadata.update( self._get_overrides(**kwargs) ) for metadata in metadatas: storage, package, format, location = self._get_location_chain( metadata ) data_item = backends.DataItem( location=location, format=format or "", semantic="metadata", storage=storage, package=package, ) data_item.full_clean() data_item.save() all_data_items.append(data_item) with open(connect(data_item, cache)) as f: content = f.read() reader = metadata_component.get_reader_by_test(content) if reader: values = reader.read(content) format = values.pop("format", None) if format: data_item.format = format data_item.full_clean() data_item.save() for key, value in values.items(): if key in metadata_keys: retrieved_metadata.setdefault(key, value) if len(datas) < 1: raise CommandError("No data files specified.") if semantics is None: # TODO: check corner cases. # e.g: only one data item given but multiple bands in range type # --> bands[1:<bandnum>] if len(datas) == 1: if len(range_type) == 1: semantics = ["bands[1]"] else: semantics = ["bands[1:%d]" % len(range_type)] else: semantics = ["bands[%d]" % i for i in range(len(datas))] for data, semantic in zip(datas, semantics): storage, package, format, location = self._get_location_chain(data) data_item = backends.DataItem( location=location, format=format or "", semantic=semantic, storage=storage, package=package, ) data_item.full_clean() data_item.save() all_data_items.append(data_item) # TODO: other opening methods than GDAL ds = gdal.Open(connect(data_item, cache)) reader = metadata_component.get_reader_by_test(ds) if reader: values = reader.read(ds) format = values.pop("format", None) if format: data_item.format = format data_item.full_clean() data_item.save() for key, value in values.items(): if key in metadata_keys: retrieved_metadata.setdefault(key, value) ds = None if len(metadata_keys - set(retrieved_metadata.keys())): raise CommandError( "Missing metadata keys %s." % ", ".join(metadata_keys - set(retrieved_metadata.keys())) ) try: # TODO: allow types of different apps CoverageType = getattr(models, retrieved_metadata["coverage_type"]) except AttributeError: raise CommandError( "Type '%s' is not supported." % kwargs["coverage_type"] ) try: coverage = CoverageType() coverage.range_type = range_type proj = retrieved_metadata.pop("projection") if isinstance(proj, int): retrieved_metadata["srid"] = proj else: definition, format = proj # Try to identify the SRID from the given input try: sr = osr.SpatialReference(definition, format) retrieved_metadata["srid"] = sr.srid except Exception, e: prj = models.Projection.objects.get( format=format, definition=definition ) retrieved_metadata["projection"] = prj # TODO: bug in models for some coverages for key, value in retrieved_metadata.items(): setattr(coverage, key, value) coverage.visible = kwargs["visible"] coverage.full_clean() coverage.save() for data_item in all_data_items: data_item.dataset = coverage data_item.full_clean() data_item.save() # link with collection(s) if kwargs["collection_ids"]: ignore_missing_collection = kwargs["ignore_missing_collection"] call_command("eoxs_collection_link", collection_ids=kwargs["collection_ids"], add_ids=[coverage.identifier], ignore_missing_collection=ignore_missing_collection ) except Exception as e: self.print_traceback(e, kwargs) raise CommandError("Dataset registration failed: %s" % e) self.print_msg( "Dataset with ID '%s' registered sucessfully." % coverage.identifier ) def _get_overrides(self, identifier=None, size=None, extent=None, begin_time=None, end_time=None, footprint=None, projection=None, coverage_type=None, **kwargs): overrides = {} if coverage_type: overrides["coverage_type"] = coverage_type if identifier: overrides["identifier"] = identifier if extent: overrides["extent"] = map(float, extent.split(",")) if size: overrides["size"] = map(int, size.split(",")) if begin_time: overrides["begin_time"] = parse_datetime(begin_time) if end_time: overrides["end_time"] = parse_datetime(end_time) if footprint: footprint = geos.GEOSGeometry(footprint) if footprint.hasz : raise CommandError( "Invalid footprint geometry! 3D geometry is not supported!" ) if footprint.geom_type == "MultiPolygon" : overrides["footprint"] = footprint elif footprint.geom_type == "Polygon" : overrides["footprint"] = geos.MultiPolygon(footprint) else : raise CommandError( "Invalid footprint geometry type '%s'!" % (footprint.geom_type) ) if projection: try: overrides["projection"] = int(projection) except ValueError: overrides["projection"] = projection return overrides def _get_location_chain(self, items): """ Returns the tuple """ component = BackendComponent(env) storage = None package = None storage_type, url = self._split_location(items[0]) if storage_type: storage_component = component.get_storage_component(storage_type) else: storage_component = None if storage_component: storage, _ = backends.Storage.objects.get_or_create( url=url, storage_type=storage_type ) # packages for item in items[1 if storage
prev_vert2 and \ not circle_full: # force quads, otherwise won't make it to end of loop2 tri, quad = 1, 0 else: # calculate if tri or quad gives shortest edge tri, quad = [(mesh.vertices[loop1[i+1]].co - mesh.vertices[loop2[j]].co).length for j in range(prev_vert2, prev_vert2+2)] # triangle if tri < quad: lines.append([loop1[i+1], loop2[prev_vert2]]) if circle_full == 2: circle_full = False # quad elif not circle_full: lines.append([loop1[i+1], loop2[prev_vert2+1]]) prev_vert2 += 1 # quad to first vertex of loop2 else: lines.append([loop1[i+1], loop2[0]]) prev_vert2 = 0 circle_full = True # final face for circular loops if loop1_circular and loop2_circular: lines.append([loop1[0], loop2[0]]) return(lines) # calculate number of segments needed def bridge_calculate_segments(mesh, lines, loops, segments): # return if amount of segments is set by user if segments != 0: return segments # edge lengths average_edge_length = [(mesh.vertices[vertex].co - \ mesh.vertices[loop[0][i+1]].co).length for loop in loops for \ i, vertex in enumerate(loop[0][:-1])] # closing edges of circular loops average_edge_length += [(mesh.vertices[loop[0][-1]].co - \ mesh.vertices[loop[0][0]].co).length for loop in loops if loop[1]] # average lengths average_edge_length = sum(average_edge_length) / len(average_edge_length) average_bridge_length = sum([(mesh.vertices[v1].co - \ mesh.vertices[v2].co).length for v1, v2 in lines]) / len(lines) segments = max(1, round(average_bridge_length / average_edge_length)) return(segments) # return dictionary with vertex index as key, and the normal vector as value def bridge_calculate_virtual_vertex_normals(mesh, lines, loops, edge_faces, edgekey_to_edge): if not edge_faces: # interpolation isn't set to cubic return False # pity reduce() isn't one of the basic functions in python anymore def average_vector_dictionary(dic): for key, vectors in dic.items(): #if type(vectors) == type([]) and len(vectors) > 1: if len(vectors) > 1: average = mathutils.Vector() for vector in vectors: average += vector average /= len(vectors) dic[key] = [average] return dic # get all edges of the loop edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i], loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \ j in [0,1]] edges = edges[0] + edges[1] for j in [0, 1]: if loops[j][1]: # circular edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0], loops[j][0][-1]]))]) """ calculation based on face topology (assign edge-normals to vertices) edge_normal = face_normal x edge_vector vertex_normal = average(edge_normals) """ vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]]) for edge in edges: faces = edge_faces[edge.key] # valid faces connected to edge if faces: # get edge coordinates v1, v2 = [mesh.vertices[edge.key[i]].co for i in [0,1]] edge_vector = v1 - v2 if edge_vector.length < 1e-4: # zero-length edge, vertices at same location continue edge_center = (v1 + v2) / 2 # average face coordinates, if connected to more than 1 valid face if len(faces) > 1: face_normal = mathutils.Vector() face_center = mathutils.Vector() for face in faces: face_normal += face.normal face_center += face.center face_normal /= len(faces) face_center /= len(faces) else: face_normal = faces[0].normal face_center = faces[0].center if face_normal.length < 1e-4: # faces with a surface of 0 have no face normal continue # calculate virtual edge normal edge_normal = edge_vector.cross(face_normal) edge_normal.length = 0.01 if (face_center - (edge_center + edge_normal)).length > \ (face_center - (edge_center - edge_normal)).length: # make normal face the correct way edge_normal.negate() edge_normal.normalize() # add virtual edge normal as entry for both vertices it connects for vertex in edge.key: vertex_normals[vertex].append(edge_normal) """ calculation based on connection with other loop (vertex focused method) - used for vertices that aren't connected to any valid faces plane_normal = edge_vector x connection_vector vertex_normal = plane_normal x edge_vector """ vertices = [vertex for vertex, normal in vertex_normals.items() if not \ normal] if vertices: # edge vectors connected to vertices edge_vectors = dict([[vertex, []] for vertex in vertices]) for edge in edges: for v in edge.key: if v in edge_vectors: edge_vector = mesh.vertices[edge.key[0]].co - \ mesh.vertices[edge.key[1]].co if edge_vector.length < 1e-4: # zero-length edge, vertices at same location continue edge_vectors[v].append(edge_vector) # connection vectors between vertices of both loops connection_vectors = dict([[vertex, []] for vertex in vertices]) connections = dict([[vertex, []] for vertex in vertices]) for v1, v2 in lines: if v1 in connection_vectors or v2 in connection_vectors: new_vector = mesh.vertices[v1].co - mesh.vertices[v2].co if new_vector.length < 1e-4: # zero-length connection vector, # vertices in different loops at same location continue if v1 in connection_vectors: connection_vectors[v1].append(new_vector) connections[v1].append(v2) if v2 in connection_vectors: connection_vectors[v2].append(new_vector) connections[v2].append(v1) connection_vectors = average_vector_dictionary(connection_vectors) connection_vectors = dict([[vertex, vector[0]] if vector else \ [vertex, []] for vertex, vector in connection_vectors.items()]) for vertex, values in edge_vectors.items(): # vertex normal doesn't matter, just assign a random vector to it if not connection_vectors[vertex]: vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))] continue # calculate to what location the vertex is connected, # used to determine what way to flip the normal connected_center = mathutils.Vector() for v in connections[vertex]: connected_center += mesh.vertices[v].co if len(connections[vertex]) > 1: connected_center /= len(connections[vertex]) if len(connections[vertex]) == 0: # shouldn't be possible, but better safe than sorry vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))] continue # can't do proper calculations, because of zero-length vector if not values: if (connected_center - (mesh.vertices[vertex].co + \ connection_vectors[vertex])).length < (connected_center - \ (mesh.vertices[vertex].co - connection_vectors[vertex])).\ length: connection_vectors[vertex].negate() vertex_normals[vertex] = [connection_vectors[vertex].\ normalized()] continue # calculate vertex normals using edge-vectors, # connection-vectors and the derived plane normal for edge_vector in values: plane_normal = edge_vector.cross(connection_vectors[vertex]) vertex_normal = edge_vector.cross(plane_normal) vertex_normal.length = 0.1 if (connected_center - (mesh.vertices[vertex].co + \ vertex_normal)).length < (connected_center - \ (mesh.vertices[vertex].co - vertex_normal)).length: # make normal face the correct way vertex_normal.negate() vertex_normal.normalize() vertex_normals[vertex].append(vertex_normal) # average virtual vertex normals, based on all edges it's connected to vertex_normals = average_vector_dictionary(vertex_normals) vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \ vertex_normals.items()]) return(vertex_normals) # add vertices to mesh def bridge_create_vertices(mesh, vertices): start_index = len(mesh.vertices) mesh.vertices.add(len(vertices)) for i in range(len(vertices)): mesh.vertices[start_index + i].co = vertices[i] # add faces to mesh def bridge_create_faces(mesh, faces, twist): # have the normal point the correct way if twist < 0: [face.reverse() for face in faces] faces = [face[2:]+face[:2] if face[0]==face[1] else face for \ face in faces] # eekadoodle prevention for i in range(len(faces)): if not faces[i][-1]: if faces[i][0] == faces[i][-1]: faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]] else: faces[i] = [faces[i][-1]] + faces[i][:-1] start_faces = len(mesh.faces) mesh.faces.add(len(faces)) for i in range(len(faces)): mesh.faces[start_faces + i].vertices_raw = faces[i] mesh.update(calc_edges = True) # calc_edges prevents memory-corruption # calculate input loops def bridge_get_input(mesh): # create list of internal edges, which should be skipped eks_of_selected_faces = [item for sublist in [face.edge_keys for face \ in mesh.faces if face.select and not face.hide] for item in sublist] edge_count = {} for ek in eks_of_selected_faces: if ek in edge_count: edge_count[ek] += 1 else: edge_count[ek] = 1 internal_edges = [ek for ek in edge_count if edge_count[ek] > 1] # sort correct edges into loops selected_edges = [edge.key for edge in mesh.edges if edge.select \ and not edge.hide and edge.key not in internal_edges] loops = get_connected_selections(selected_edges) return(loops) # return values needed by the bridge operator def bridge_initialise(mesh, interpolation): if interpolation == 'cubic': # dict with edge-key as key and list of connected valid faces as value face_blacklist = [face.index for face in mesh.faces if face.select or \ face.hide] edge_faces = dict([[edge.key, []] for edge in mesh.edges if not \ edge.hide]) for face in mesh.faces: if face.index in face_blacklist: continue for key in face.edge_keys: edge_faces[key].append(face) # dictionary with the edge-key as key and edge as value edgekey_to_edge = dict([[edge.key, edge] for edge in mesh.edges if \ edge.select and not edge.hide]) else: edge_faces = False edgekey_to_edge = False # selected faces input old_selected_faces = [face.index for face in mesh.faces if face.select \ and not face.hide] # find out if faces created by bridging should be smoothed smooth = False if mesh.faces: if sum([face.use_smooth for face in mesh.faces])/len(mesh.faces) \ >= 0.5: smooth = True return(edge_faces, edgekey_to_edge, old_selected_faces, smooth) # return a string with the input method def bridge_input_method(loft, loft_loop): method = "" if loft: if loft_loop: method = "Loft loop" else: method = "Loft no-loop" else: method = "Bridge" return(method) # match up loops in pairs, used for multi-input bridging def bridge_match_loops(mesh, loops): # calculate average loop normals
<gh_stars>0 # Copyright 2015 Open Platform for NFV Project, Inc. and its contributors # This software is distributed under the terms and conditions of the 'Apache-2.0' # license which can be found in the file 'LICENSE' in this package distribution # or at 'http://www.apache.org/licenses/LICENSE-2.0'. import copy import re import os import types import requests import time from functools import wraps from flask import request import logging from moon_utilities import exceptions from moon_utilities import configuration LOG = logging.getLogger("moon.utilities." + __name__) keystone_config = configuration.get_configuration("openstack/keystone")["openstack/keystone"] # slave = configuration.get_configuration(configuration.SLAVE)["slave"] __targets = {} def filter_input(func_or_str): def __filter(string): if string and type(string) is str: return "".join(re.findall("[\w\- +]*", string)) return string def __filter_dict(arg): result = dict() for key in arg.keys(): if key == "email": result["email"] = __filter_email(arg[key]) elif key == "password": result["password"] = arg['password'] else: result[key] = __filter(arg[key]) return result def __filter_email(string): if string and type(string) is str: return "".join(re.findall("[\w@\._\- +]*", string)) return string def wrapped(*args, **kwargs): _args = [] for arg in args: if isinstance(arg, str): arg = __filter(arg) elif isinstance(arg, list): arg = [__filter(item) for item in arg] elif isinstance(arg, tuple): arg = (__filter(item) for item in arg) elif isinstance(arg, dict): arg = __filter_dict(arg) _args.append(arg) for arg in kwargs: if type(kwargs[arg]) is str: kwargs[arg] = __filter(kwargs[arg]) if isinstance(kwargs[arg], str): kwargs[arg] = __filter(kwargs[arg]) elif isinstance(kwargs[arg], list): kwargs[arg] = [__filter(item) for item in kwargs[arg]] elif isinstance(kwargs[arg], tuple): kwargs[arg] = (__filter(item) for item in kwargs[arg]) elif isinstance(kwargs[arg], dict): kwargs[arg] = __filter_dict(kwargs[arg]) return func_or_str(*_args, **kwargs) if isinstance(func_or_str, str): return __filter(func_or_str) if isinstance(func_or_str, list): return [__filter(item) for item in func_or_str] if isinstance(func_or_str, tuple): return (__filter(item) for item in func_or_str) if isinstance(func_or_str, dict): return __filter_dict(func_or_str) if isinstance(func_or_str, types.FunctionType): return wrapped return None def enforce(action_names, object_name, **extra): """Fake version of the enforce decorator""" def wrapper_func(func): def wrapper_args(*args, **kwargs): # LOG.info("kwargs={}".format(kwargs)) # kwargs['user_id'] = kwargs.pop('user_id', "admin") # LOG.info("Calling enforce on {} with args={} kwargs={}".format(func.__name__, args, kwargs)) return func(*args, **kwargs) return wrapper_args return wrapper_func def login(user=None, password=None, domain=None, project=None, url=None): if not user: user = keystone_config['user'] if not password: password = keystone_config['password'] if not domain: domain = keystone_config['domain'] if not project: project = keystone_config['project'] if not url: url = keystone_config['url'] headers = { "Content-Type": "application/json" } data_auth = { "auth": { "identity": { "methods": [ "password" ], "password": { "user": { "domain": { "id": domain }, "name": user, "password": password } } }, "scope": { "project": { "domain": { "id": domain }, "name": project } } } } req = requests.post("{}/auth/tokens".format(url), json=data_auth, headers=headers, verify=keystone_config['certificate']) if req.status_code in (200, 201, 204): headers['X-Auth-Token'] = req.headers['X-Subject-Token'] return headers LOG.error(req.text) raise exceptions.KeystoneError def logout(headers, url=None): if not url: url = keystone_config['url'] headers['X-Subject-Token'] = headers['X-Auth-Token'] req = requests.delete("{}/auth/tokens".format(url), headers=headers, verify=keystone_config['certificate']) if req.status_code in (200, 201, 204): return LOG.error(req.text) raise exceptions.KeystoneError class Context: def __init__(self, init_context, cache): self.cache = cache self.__keystone_project_id = init_context.get("project_id") self.__pdp_id = None self.__pdp_value = None for _pdp_key, _pdp_value in self.cache.pdp.items(): if _pdp_value["keystone_project_id"] == self.__keystone_project_id: self.__pdp_id = _pdp_key self.__pdp_value = copy.deepcopy(_pdp_value) break if not self.__pdp_value: raise exceptions.AuthzException( "Cannot create context for authz " "with Keystone project ID {}".format( self.__keystone_project_id )) self.__subject = init_context.get("subject_name") self.__object = init_context.get("object_name") self.__action = init_context.get("action_name") self.__current_request = None self.__request_id = init_context.get("req_id") self.__cookie = init_context.get("cookie") self.__manager_url = init_context.get("manager_url") self.__interface_name = init_context.get("interface_name") self.__index = -1 # self.__init_initial_request() self.__headers = [] policies = self.cache.policies models = self.cache.models for policy_id in self.__pdp_value["security_pipeline"]: model_id = policies[policy_id]["model_id"] for meta_rule in models[model_id]["meta_rules"]: self.__headers.append(meta_rule) self.__meta_rules = self.cache.meta_rules self.__pdp_set = {} # self.__init_pdp_set() def delete_cache(self): self.cache = {} def set_cache(self, cache): self.cache = cache def increment_index(self): self.__index += 1 self.__init_current_request() self.__init_pdp_set() @property def current_state(self): return self.__pdp_set[self.__headers[self.__index]]['effect'] @current_state.setter def current_state(self, state): if state not in ("grant", "deny", "passed"): state = "passed" self.__pdp_set[self.__headers[self.__index]]['effect'] = state @current_state.deleter def current_state(self): self.__pdp_set[self.__headers[self.__index]]['effect'] = "unset" @property def current_policy_id(self): return self.__pdp_value["security_pipeline"][self.__index] @current_policy_id.setter def current_policy_id(self, value): pass @current_policy_id.deleter def current_policy_id(self): pass def __init_current_request(self): self.__subject = self.cache.get_subject( self.__pdp_value["security_pipeline"][self.__index], self.__subject) self.__object = self.cache.get_object( self.__pdp_value["security_pipeline"][self.__index], self.__object) self.__action = self.cache.get_action( self.__pdp_value["security_pipeline"][self.__index], self.__action) self.__current_request = dict(self.initial_request) def __init_pdp_set(self): for header in self.__headers: self.__pdp_set[header] = dict() self.__pdp_set[header]["meta_rules"] = self.__meta_rules[header] self.__pdp_set[header]["target"] = self.__add_target(header) self.__pdp_set[header]["effect"] = "unset" self.__pdp_set["effect"] = "deny" # def update_target(self, context): # # result = dict() # current_request = context['current_request'] # _subject = current_request.get("subject") # _object = current_request.get("object") # _action = current_request.get("action") # meta_rule_id = context['headers'][context['index']] # policy_id = self.cache.get_policy_from_meta_rules(meta_rule_id) # meta_rules = self.cache.meta_rules() # # for meta_rule_id in meta_rules: # for sub_cat in meta_rules[meta_rule_id]['subject_categories']: # if sub_cat not in context["pdp_set"][meta_rule_id]["target"]: # context["pdp_set"][meta_rule_id]["target"][sub_cat] = [] # for assign in self.cache.get_subject_assignments(policy_id, _subject, sub_cat).values(): # for assign in assign["assignments"]: # if assign not in context["pdp_set"][meta_rule_id]["target"][sub_cat]: # context["pdp_set"][meta_rule_id]["target"][sub_cat].append(assign) # for obj_cat in meta_rules[meta_rule_id]['object_categories']: # if obj_cat not in context["pdp_set"][meta_rule_id]["target"]: # context["pdp_set"][meta_rule_id]["target"][obj_cat] = [] # for assign in self.cache.get_object_assignments(policy_id, _object, obj_cat).values(): # for assign in assign["assignments"]: # if assign not in context["pdp_set"][meta_rule_id]["target"][obj_cat]: # context["pdp_set"][meta_rule_id]["target"][obj_cat].append(assign) # for act_cat in meta_rules[meta_rule_id]['action_categories']: # if act_cat not in context["pdp_set"][meta_rule_id]["target"]: # context["pdp_set"][meta_rule_id]["target"][act_cat] = [] # for assign in self.cache.get_action_assignments(policy_id, _action, act_cat).values(): # for assign in assign["assignments"]: # if assign not in context["pdp_set"][meta_rule_id]["target"][act_cat]: # context["pdp_set"][meta_rule_id]["target"][act_cat].append(assign) # # context["pdp_set"][meta_rule_id]["target"].update(result) def __add_target(self, meta_rule_id): result = dict() _subject = self.__current_request["subject"] _object = self.__current_request["object"] _action = self.__current_request["action"] meta_rules = self.cache.meta_rules policy_id = self.cache.get_policy_from_meta_rules(meta_rule_id) for sub_cat in meta_rules[meta_rule_id]['subject_categories']: if sub_cat not in result: result[sub_cat] = [] result[sub_cat].extend( self.cache.get_subject_assignments(policy_id, _subject, sub_cat)) for obj_cat in meta_rules[meta_rule_id]['object_categories']: if obj_cat not in result: result[obj_cat] = [] result[obj_cat].extend( self.cache.get_object_assignments(policy_id, _object, obj_cat)) for act_cat in meta_rules[meta_rule_id]['action_categories']: if act_cat not in result: result[act_cat] = [] result[act_cat].extend( self.cache.get_action_assignments(policy_id, _action, act_cat)) return result def __repr__(self): return """PDP ID: {id} current_request: {current_request} request_id: {request_id} index: {index} headers: {headers} pdp_set: {pdp_set} """.format( id=self.__pdp_id, current_request=self.__current_request, request_id=self.__request_id, headers=self.__headers, pdp_set=self.__pdp_set, index=self.__index ) def to_dict(self): return { "initial_request": copy.deepcopy(self.initial_request), "current_request": copy.deepcopy(self.__current_request), "headers": copy.deepcopy(self.__headers), "index": copy.deepcopy(self.__index), "pdp_set": copy.deepcopy(self.__pdp_set), "request_id": copy.deepcopy(self.__request_id), "manager_url": copy.deepcopy(self.__manager_url), "interface_name": copy.deepcopy(self.__interface_name), } @property def request_id(self): return self.__request_id @request_id.setter def request_id(self, value): raise Exception("You cannot update the request_id") @request_id.deleter def request_id(self): raise Exception("You cannot update the request_id") @property def manager_url(self): return self.__manager_url @manager_url.setter def manager_url(self, value): raise Exception("You cannot update the manager_url") @manager_url.deleter def manager_url(self): raise Exception("You cannot update the manager_url") @property def interface_name(self): return self.__interface_name @interface_name.setter def interface_name(self, value): raise Exception("You cannot update the interface_name") @interface_name.deleter def interface_name(self): raise Exception("You cannot update the interface_name") @property def cookie(self): return self.__cookie @cookie.setter def cookie(self, value): raise Exception("You cannot update the cookie") @cookie.deleter def cookie(self): raise Exception("You cannot delete the cookie") @property def initial_request(self): return { "subject": self.__subject, "object": self.__object, "action": self.__action, } @initial_request.setter def initial_request(self, value): raise Exception("You are not allowed to update the initial_request") @initial_request.deleter def initial_request(self): raise Exception("You are not allowed to delete the initial_request") @property def current_request(self): if not self.__current_request: self.__current_request = copy.deepcopy(self.initial_request) return self.__current_request @current_request.setter def current_request(self, value): self.__current_request = copy.deepcopy(value) # Note (asteroide): if the current request is modified, we must update the PDP Set. self.__init_pdp_set() @current_request.deleter def current_request(self): self.__current_request = {} self.__pdp_set = {} @property def headers(self): return self.__headers @headers.setter def headers(self, headers): self.__headers = headers @headers.deleter def headers(self): self.__headers = list() @property def index(self): return self.__index @index.setter def index(self, index): self.__index += 1 @index.deleter def index(self): self.__index = -1 @property def pdp_set(self): return self.__pdp_set @pdp_set.setter def pdp_set(self, value): raise Exception("You are not allowed to modify the pdp_set") @pdp_set.deleter def pdp_set(self): self.__pdp_set = {} TOKENS = {} def check_token(token, url=None): _verify = False if keystone_config['certificate']: _verify = keystone_config['certificate'] try: os.environ.pop("http_proxy") os.environ.pop("https_proxy") except KeyError: pass if not url: url = keystone_config['url'] headers = { "Content-Type": "application/json", 'X-Subject-Token': token, 'X-Auth-Token': token, } if not keystone_config['check_token']: # TODO (asteroide): must send the admin id return "admin" if not token else token elif keystone_config['check_token'].lower() in ("false", "no", "n"): # TODO (asteroide): must send the admin id return "admin" if not token else token if keystone_config['check_token'].lower() in ("yes", "y", "true"): if token in TOKENS: delta = time.mktime(TOKENS[token]["expires_at"]) - time.mktime(time.gmtime()) if delta > 0: return TOKENS[token]["user"] raise exceptions.KeystoneError else: req = requests.get("{}/auth/tokens".format(url), headers=headers, verify=_verify) if req.status_code in (200, 201): # Note (asteroide): the time stamps is not in ISO 8601, so it is necessary to delete # characters after the dot token_time = req.json().get("token").get("expires_at").split(".") TOKENS[token] = dict() TOKENS[token]["expires_at"] = time.strptime(token_time[0], "%Y-%m-%dT%H:%M:%S") TOKENS[token]["user"] = req.json().get("token").get("user").get("id") return TOKENS[token]["user"] LOG.error("{} - {}".format(req.status_code, req.text)) raise exceptions.KeystoneError elif keystone_config['check_token'].lower() ==
# Copyright (c) <NAME> # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np from decoding_algorithms.ctc_decoder_base import CTCDecoderBase class CTCScopeSearchLengthControlDecoder(CTCDecoderBase): """ An equivalent implementation of the CTC Beam Search with Length Control (BSLC). Comparing with naive BSLC, this implementation can generalize toward brute force search by increasing the scope. """ def __init__(self, dictionary, decoder_parameters): super().__init__(dictionary, decoder_parameters) # Sample temporary variable self.sample_desired_length = None self.id_to_index_dict_list = None self.index_to_id_dict_list = None self.ctc_sequence_length = None self.prob_sequence = None self.prev_max_row_index = None self.scope_lprob_table = None self.transition_tracker_table = None self.single_prefix_index_table = None # Decoder configuration parameters self.force_length = decoder_parameters["force_length"] self.use_length_ratio = decoder_parameters["use_length_ratio"] self.k = decoder_parameters["k"] # dummy variable self.beam_size = decoder_parameters["beam_size"] self.scope = decoder_parameters["scope"] self.margin_criteria = decoder_parameters["marg_criteria"] self.blank_index = dictionary.blank() self.replacing_value = float("-inf") self.device = None self.dtype = None # Assertions on decoder parameters assert self.scope > 1, "The scope must be positive integer" assert self.beam_size > 0, "Beam size are required to be positive" assert self.desired_length > 0, "The desired length should be greater than 0" # assert self.beam_size % 2 == 0, "The beam size must be even number" # Initialize reusable variables self.special_element_tuple_list = [list(range(self.k)), [0] * self.k] def top_k_filtering(self, column, lprob): """ Get the top-k most probable token and their corresponding probabilities logits (tensor): the logits returned by the model at the current time step Return: values (tensor of size k): the probability of the most probable tokens, with the first one set to be the blank token index_to_id_dict (dict of size k): a dictionary mapping from the element index of the values vector to their real id repeated_element_index_list (list): a list of the index (row, column) indicating the repeating index """ top_k_id_tensor = torch.zeros(self.k, dtype=torch.long, device=self.device) # word id top_k_lprob_tensor = torch.zeros(self.k, dtype=self.dtype, device=self.device) # Record the blank token id, no matter whether it's in top k top_k_id_tensor[0] = self.blank_index top_k_lprob_tensor[0] = lprob[self.blank_index] # Find the k most probable words and their indexes naive_top_k_lprob, naive_top_k_id = lprob.topk(self.k) # Fill in the remaining slot of the top_k_id_tensor and top_k_lprob_tensor top_k_id_tensor[1:] = naive_top_k_id[naive_top_k_id != self.blank_index][:self.k - 1] top_k_lprob_tensor[1:] = naive_top_k_lprob[naive_top_k_id != self.blank_index][:self.k - 1] # create dictionaries mapping between index and ids index_to_id_dict = {k: v.item() for k, v in enumerate(top_k_id_tensor)} id_to_index_dict = {v.item(): k for k, v in enumerate(top_k_id_tensor)} # Record the dictionary self.index_to_id_dict_list[column] = index_to_id_dict self.id_to_index_dict_list[column] = id_to_index_dict if column == 0: # For the first column, there is no repeated element repeated_or_special_element_index_list = self.special_element_tuple_list else: prev_id_to_index_dict = self.id_to_index_dict_list[column - 1] prev_index_to_id_dict = self.index_to_id_dict_list[column - 1] # Find the overlapping words except blank token in the current top_k words and previous top_k words repeated_element_list = set(prev_id_to_index_dict.keys()).intersection(set(top_k_id_tensor[1:].tolist())) repeated_element_tuple_index_list = [[prev_id_to_index_dict[element] for element in repeated_element_list], [id_to_index_dict[element] for element in repeated_element_list]] repeated_or_special_element_index_list = repeated_element_tuple_index_list repeated_or_special_element_index_list[0] += self.special_element_tuple_list[0] repeated_or_special_element_index_list[1] += self.special_element_tuple_list[1] repeated_or_special_element_index_list[0] = tuple(repeated_or_special_element_index_list[0]) repeated_or_special_element_index_list[1] = tuple(repeated_or_special_element_index_list[1]) return top_k_lprob_tensor, repeated_or_special_element_index_list def get_blank_token_prob(self, current_filtered_log_prob): only_special_cloned_prob = current_filtered_log_prob.clone() only_special_cloned_prob[1:] = self.replacing_value return only_special_cloned_prob def get_non_blank_token_prob(self, current_filtered_log_prob): only_non_special_cloned_prob = current_filtered_log_prob.clone() only_non_special_cloned_prob[0] = self.replacing_value return only_non_special_cloned_prob def scope_search_row_inference(self, column, reshaping_index, only_blank_prob, only_non_blank_prob, blank_or_repeated_transition_matrix, non_blank_non_repeated_transition_matrix, repeated_or_blank_transition_mask): """ Perform actual table filling for each rows. """ repeated_or_blank_transition_mask = repeated_or_blank_transition_mask[reshaping_index] repeated_or_blank_transition_mask = \ repeated_or_blank_transition_mask.repeat( 2 * [1] + (repeated_or_blank_transition_mask.dim() - 2) * [self.beam_size]) # Initialization if column == 0: # Add the blank token probability to all dimensions of the first row of scope table self.scope_lprob_table[0] += only_blank_prob[reshaping_index] # Add the non-blank token probability to all dimensions of the second row of the scope table self.scope_lprob_table[1] += only_non_blank_prob[reshaping_index] # No other operation is needed for the first column return # Recursion # We first update the expansion row, then middle rows and the first row to avoid undesired in-place update # Expansion row if column + 1 < self.sample_desired_length: # Calculate the probability of each word in the pure transition. self.scope_lprob_table[column + 1] = self.scope_lprob_table[self.prev_max_row_index] \ + non_blank_non_repeated_transition_matrix[reshaping_index] # Record the previous row of these transitions. self.transition_tracker_table[column + 1, ..., ~repeated_or_blank_transition_mask, :] = \ self.transition_tracker_table[self.prev_max_row_index, ..., ~repeated_or_blank_transition_mask, :] self.transition_tracker_table[column + 1, ..., ~repeated_or_blank_transition_mask, [column - 1]] \ = self.prev_max_row_index # Middle rows # Transition probability from diagonal neighbours diagonal_transition_lprob \ = self.scope_lprob_table[0:self.prev_max_row_index] + non_blank_non_repeated_transition_matrix[ reshaping_index] # Transition probability from row neighbours row_transition_lprob \ = self.scope_lprob_table[1:self.prev_max_row_index + 1] + blank_or_repeated_transition_matrix[ reshaping_index] # Combine the two types of transitions into one Tensor sum_transition_lprob = diagonal_transition_lprob sum_transition_lprob[..., repeated_or_blank_transition_mask] \ = row_transition_lprob[..., repeated_or_blank_transition_mask] self.scope_lprob_table[1:self.prev_max_row_index + 1] = sum_transition_lprob # Record the previous rows for each of the current row current_tracker_dim = self.transition_tracker_table[1:self.prev_max_row_index + 1, ..., ~repeated_or_blank_transition_mask, [column - 1]].dim() - 1 # Copy the transition history diagonal_transition_history = self.transition_tracker_table[0:self.prev_max_row_index].clone() diagonal_transition_history[..., ~repeated_or_blank_transition_mask, [column - 1]] += \ torch.arange(0, self.prev_max_row_index, device=self.device)[(...,) + (None,) * current_tracker_dim] + 1 row_transition_history = self.transition_tracker_table[1:self.prev_max_row_index + 1].clone() row_transition_history[..., repeated_or_blank_transition_mask, [column - 1]] += \ torch.arange(1, self.prev_max_row_index + 1, device=self.device)[(...,) + (None,) * current_tracker_dim] + 1 # Record the current chosen index self.transition_tracker_table[1:self.prev_max_row_index + 1, ..., ~repeated_or_blank_transition_mask, :] \ = diagonal_transition_history[..., ~repeated_or_blank_transition_mask, :] self.transition_tracker_table[1:self.prev_max_row_index + 1, ..., repeated_or_blank_transition_mask, :] \ = row_transition_history[..., repeated_or_blank_transition_mask, :] # First row # Add the blank token probability to all dimensions of the first row of scope table self.scope_lprob_table[0] = self.scope_lprob_table[0] + only_blank_prob[reshaping_index] # Set the previous row of the current first row to 0 transition_index = torch.zeros(self.beam_size, device=self.device, dtype=torch.int8) - 1 transition_index[0] = 1 # add 1 to encounter -1 in the initialization of the transition table self.transition_tracker_table[0, ..., column - 1] += transition_index[reshaping_index] def scope_search_column_inference(self, column): """ Perform table (prob table and prefix table) filling for a single column """ # Calculate some temporal variables remaining_scope = self.scope - column # Remaining dimensions before filling in the current column self.prev_max_row_index = min(column, self.sample_desired_length - 1) # Notice it's an index # Find the top_k probability current_step_lprob = self.prob_sequence[column].log() filtered_lprob, repeated_or_special_element_index_list = self.top_k_filtering(column, current_step_lprob) only_blank_cloned_prob = self.get_blank_token_prob(filtered_lprob) only_non_blank_cloned_prob = self.get_non_blank_token_prob(filtered_lprob) # Create a mask for non_blank_non_repeat_transitions repeated_or_blank_transition_mask = torch.zeros([self.k, self.k], dtype=torch.bool, device=self.device) repeated_or_blank_transition_mask[repeated_or_special_element_index_list] = True # Mask out the blank and repeated transitions non_blank_non_repeated_transition_matrix = filtered_lprob.expand(self.k, self.k).clone() non_blank_non_repeated_transition_matrix[repeated_or_blank_transition_mask] = self.replacing_value # Mask out the non-blank and non-repeated transitions blank_or_repeated_transition_matrix = filtered_lprob.expand(self.k, self.k).clone() blank_or_repeated_transition_matrix[~repeated_or_blank_transition_mask] = self.replacing_value # Find the appropriate reshaping index and marginalize the lprob matrix if needed. if remaining_scope > 0: reshaping_index = tuple((...,) + (None,) * (remaining_scope - 1)) else: most_probable_word_index = self.margin_over_prob_table() reshaping_index = tuple((...,) + (None,) * (1 - 1)) self.single_prefix_index_table[0:self.prev_max_row_index + 1, column - 1] = most_probable_word_index self.scope_search_row_inference(column, reshaping_index, only_blank_cloned_prob, only_non_blank_cloned_prob, blank_or_repeated_transition_matrix, non_blank_non_repeated_transition_matrix, repeated_or_blank_transition_mask) def margin_over_prob_table(self): """ Marginalize over the first dimension of the table """ remaining_axis = tuple(range(2, self.scope + 1)) # A tuple of the remaining axis after marginalization if self.margin_criteria == "mean": sum_old_prob_along_remaining_axis = torch.logsumexp(self.scope_lprob_table[:self.prev_max_row_index + 1], dim=remaining_axis) most_probable_word_index = torch.argmax(sum_old_prob_along_remaining_axis, dim=1) elif self.margin_criteria == "filtered_mean": # Select token based on its average non-inf probability sum_lprob_along_remaining_axis \ = torch.logsumexp(self.scope_lprob_table[:self.prev_max_row_index + 1], dim=remaining_axis) non_inf_sum = (self.scope_lprob_table[:self.prev_max_row_index + 1] != float("-inf")).long().sum( remaining_axis) sum_lprob_along_remaining_axis -= non_inf_sum.log() # take the average sum_lprob_along_remaining_axis = torch.nan_to_num(sum_lprob_along_remaining_axis, float("-inf")) most_probable_word_index = torch.argmax(sum_lprob_along_remaining_axis, dim=1) elif self.margin_criteria == "max": # If we are using max as the select criteria, we select the token in the first axis that can lead to the # sub-sequence with the maximum probability max_old_prob_along_remaining_axis = torch.amax(self.scope_lprob_table[:self.prev_max_row_index + 1], dim=remaining_axis) most_probable_word_index = torch.argmax(max_old_prob_along_remaining_axis, dim=1) else: raise NotImplementedError("Haven't designed other evaluation criteria") # Marginalize the lprob scope table based on the chosen words. repeat_index = tuple([1] + (self.scope - 1) * [1] + [self.beam_size]) row_axis = torch.arange(0, self.prev_max_row_index + 1) self.scope_lprob_table[0:self.prev_max_row_index + 1] \ = self.scope_lprob_table[row_axis, most_probable_word_index].unsqueeze(-1).repeat(repeat_index) # Marginalize the transition scope table based on the chosen words. repeat_index = tuple([1] + (self.scope - 1) * [1] + [self.beam_size] + [1]) self.transition_tracker_table[0:self.prev_max_row_index + 1] \ = self.transition_tracker_table[row_axis, most_probable_word_index].unsqueeze(-2).repeat(repeat_index) return most_probable_word_index def ctc_scope_search_length_control_initialization(self, logits): """ Initialize some temporary variables """ self.prob_sequence = logits.softmax(dim=-1) # Get the log probability from logits self.ctc_sequence_length = len(self.prob_sequence) # The length of the ctc output sequence. assert self.scope
#!/usr/bin/python import matplotlib.pyplot as plt import numpy as np import sys import optparse import os import subprocess import test_results import stats import graph_utilities def calc_sums(epochs): sum_list = [] sum_list.append(epochs[0][1]) #num_epochs sum_list.append(epochs[0][1]) #epoch_number #each of the values for i in range(2, len(epochs[0])): sum = 0 #each of the items for index in range(len(epochs)): sum += epochs[index][i] sum_list.append(sum) return sum_list def get_stats_type(data, index): means = [] stddevs = [] curr_epochs_values = [] curr_num_epochs = -1 for epoch in data: if epoch[1] != curr_num_epochs: curr_num_epochs = epoch[1] if curr_num_epochs != 1: means.append(np.mean(np.array(curr_epochs_values))) stddevs.append(np.std(np.array(curr_epochs_values))) del curr_epochs_values[:] curr_epochs_values.append(float(epoch[index])) means.append(np.mean(np.array(curr_epochs_values))) stddevs.append(np.std(np.array(curr_epochs_values))) return means, stddevs def get_results_list(input_dir): files = os.listdir(input_dir) sorted_files = sorted(files, key=lambda x: (int(x.split('.')[0]), int(x.split('stats-')[-1]), x.split('.')[-1])) time_list = [] curr_list = [] curr_total = [] curr_compute = [] curr_aggregation = [] total_list = [] compute_list = [] aggregation_list = [] max_list = [] epochs_list = [] curr_num_epochs = -1 headings = [] for f in sorted_files: if "stream-stats" in f: continue num_epochs = int(f.split('.')[0]) if num_epochs != curr_num_epochs: if len(curr_list) > 0: time_list.append(curr_list) max_list.append(curr_list[0]) epochs_list.append(curr_num_epochs) total_list.append(curr_total) #add in a new empty list compute_list.append(curr_compute) aggregation_list.append(curr_aggregation) curr_list = [] curr_total = [] curr_compute = [] curr_aggregation = [] curr_num_epochs = num_epochs test = test_results.Test_Results() string = open(input_dir + "/" + f).readlines() test.parse_lines(string) num = f.split(".")[-1][len("taint-stats-"):] stream_name = f.split(".")[:-1] stream_name.append("stream-stats-" + str(num)) stream_filename = ".".join(stream_name) string = open(input_dir + "/" + stream_filename).readlines() test.parse_lines(string) test.fix_dift_stats() test.combine_stats() curr_list.append(test.get_values()) curr_total.append(test.get_total_time()) curr_compute.append(test.get_compute_time()) curr_aggregation.append(test.get_aggregation_time()) # test.print_compute_times() if test.get_compute_time() < 0: print "whoops 1, negative compute time!?!",f test.print_compute_times() headings = test.get_titles() time_list.append(curr_list) max_list.append(curr_list[0]) epochs_list.append(curr_num_epochs) total_list.append(curr_total) compute_list.append(curr_compute) aggregation_list.append(curr_aggregation) if test.get_compute_time() < 0: print "whoops, negative compute time!?!",f print test.print_compute_times() return headings, epochs_list,time_list, max_list, total_list, compute_list, aggregation_list def parse_stats(input_dir,output_dir): currd = os.getcwd() for t in os.listdir(input_dir): d = output_dir + "/" + t subprocess.call(["/bin/cp", "-r",input_dir + "/" + t, d]) for d in os.listdir(output_dir): os.chdir(output_dir + "/" + d) #untar all of the tars, move them all to their final resting place for tar in os.listdir("."): print tar num_epochs = tar.split(".")[0] #the num_epochs is the first value subprocess.call(["/bin/tar","-xf", tar]) subprocess.call(["/bin/rm",tar]) for stats_file in os.listdir("tmp"): subprocess.call(["/bin/mv", "tmp/" + stats_file, str(num_epochs) + "." + stats_file]) subprocess.call(["/bin/rm","-r","tmp"]) os.chdir(currd) os.chdir(currd) def create_stats_files(input_dir, nepochs, output_dir): in_base = input_dir + "/" + str(nepochs) + "." with open(output_dir + str(nepochs) + ".stats.txt", "w+") as outf: stats.get_stats(nepochs, in_base, outf) def get_aves(at): averages = [] #array index by num_epochs -> array of aves for n in at: count = len(n) #number of epochs averages.append([]) for i in range(len(n[0])): averages[-1].append(0.0) # print "num_epochs",count,"num_stats",len(averages[-1]) for example in n: for i in range(len(example)): averages[-1][i] += example[i] for i in range(len(averages[-1])): averages[-1][i] /= count; return averages def get_tots(at): tots = [] #array index by num_epochs -> array of aves for n in at: count = len(n) #number of epochs tots.append([]) for i in range(len(n[0])): tots[-1].append(0.0) print "num_epochs",count,"num_stats",len(tots[-1]) for example in n: for i in range(len(example)): tots[-1][i] += example[i] return tots def get_maxes(t): tots = [] #array index by num_epochs -> array of tots for n in t: tots.append(n[0]) #the first epoch is always the max return tots def get_sum(t): sums = [] for n in t: #array indexed by num_epochs -> array of sums of compute time sum = 0 for example in n: sum += example sums.append([sum]) return sums def print_aves(aves): for r in aves: print "next round!" for n in r: for i in n: print i, print "" def build_samples(aves, es): samples = [] #array from num_epochs -> sample print "in build_samples" epochs = {} print len(aves), len(es) for a,e in zip(aves,es): #for each epoch size print "epoch",e,a,"\t" for epoch,epoch_size in zip(a,e): if epoch_size in epochs: epochs[epoch_size].append(epoch) else: epochs[epoch_size] = [epoch] print for eps in sorted(epochs.keys()): print "found",eps,"epochs",epochs[eps] npl = np.array(epochs[eps]) s = test_results.Sample(len(epochs[eps]), np.mean(npl), np.std(npl)) samples.append(s) for s in samples: print s return samples def normalize_speedup_and_flip(samples, epochs): if epochs[0] != 1 or len(epochs) == 1: normal = samples[0] #we always normalize against the first size else: normal = samples[1] ydata = [] yerr = [] for i in range(len(normal)): cdata = [] cerr = [] for s in samples: d = normal[i] / s[i] #normalize this value #our measurements can't handle 0 time averages.. not sure what to do: if d.mean == 0.0: print "oh no.. what do I do when it takes 0 seconds?" cdata.append(1.0) cerr.append(0.0) else: cdata.append(d.mean) cerr.append(d.ci) ydata.append(cdata) yerr.append(cerr) return ydata, yerr def normalize(samples, nsample): rsamples = [] for s in samples: d = nsample / s #normalize this value rsamples.append(d) return rsamples def normalize_time_and_flip(samples, epochs): if epochs[0] != 1 or len(epochs) == 1: normal = samples[0] #we always normalize against the first size else: normal = samples[1] ydata = [] yerr = [] for i in range(len(normal)): cdata = [] cerr = [] for s in samples: d = s[i] / normal[i] #normalize this value #our measurements can't handle 0 time averages.. not sure what to do: if d.mean == 0.0: print "oh no.. what do I do when it takes 0 seconds?" cdata.append(1.0) cerr.append(0.0) else: cdata.append(d.mean) cerr.append(d.ci) ydata.append(cdata) yerr.append(cerr) return ydata, yerr def parse_replay_time(f, odir): subprocess.call(["/bin/cp",f,odir+"/replay_time"]) def build_replay_time(d): rp_times = [] with open(d + "/replay_time") as ifile: for w in ifile: print w rp_times.append(float(w.strip())) nprt = np.array(rp_times) return test_results.Sample(len(rp_times), np.mean(nprt),np.std(nprt)) def main(): parser = optparse.OptionParser() parser.add_option("-i", "--input-dir", dest="input_dir", help="where the stats files are saved currently", metavar="INPUT-DIR") parser.add_option("-o", "--output-dir", dest="output_dir", help="the dir where we want to save the output files", metavar="OUTPUT-Dir") parser.add_option("-r", "--replay_time", dest="replay_time_file") parser.add_option("-n", "--bm_name", dest="bm_name") (options, args) = parser.parse_args() if options.output_dir == None or options.output_dir == "": print "must provide me with an output dir" return -1 if not os.path.isdir(options.output_dir): os.makedirs(options.output_dir) if not os.path.isdir(options.output_dir + "/graphs_and_stats"): os.makedirs(options.output_dir + "/graphs_and_stats") #untar all of the stuff from the input_dir if options.input_dir != None and options.input_dir != "": parse_stats(options.input_dir,options.output_dir) print "parsing input stats...?" if options.replay_time_file: parse_replay_time(options.replay_time_file, options.output_dir) ave_times = [] max_times = [] tot_times = [] comp_times = [] agg_times = [] max_e = [] dift_times = [] epoch_times = [] files = os.listdir(options.output_dir) for j in files: if not os.path.isdir(options.output_dir + "/" + str(j)) or "graph" in j: continue print j headings,epochs,times,max_list, total_list,compute_list,agg_list = get_results_list(options.output_dir + "/" + str(j)) if len(epochs) > len(max_e): max_e = epochs for i in range(len(times)): curr_times = times[i] num_epochs = epochs[i] curr_arange = np.arange(len(curr_times)) graph_utilities.make_stacked_chart(curr_times,headings,curr_arange,options.output_dir +"/graphs_and_stats/"+ str(j) + "." + str(num_epochs), i * (int(j)+1)) create_stats_files(options.output_dir + "/" + str(j), num_epochs, options.output_dir + "/graphs_and_stats/" + str(j) + ".") ttimes = get_tots(times) dt = [] for t in ttimes: dt.append(t[1] + t[2]) dift_times.append(dt) epoch_times.append(epochs) ave_times.append(get_aves(times)) tot_times.append(get_tots(times)) max_times.append(get_maxes(total_list)) comp_times.append(get_sum(compute_list)) agg_times.append(get_maxes(agg_list)) #do I want the max? I'm acutally not sure.. print "dift_stats" samples = build_samples(dift_times, epoch_times) with open(options.output_dir + "/dift.stats","w+") as stat_file: for num,s in zip(max_e,samples): print >> stat_file, num,",",s.mean,",",s.ci # print num,",",s.mean,",",s.ci print "latency_stats" samples = build_samples(max_times, epoch_times) #we'll normalize the samples if we can if max_e[0] == 1: samples = normalize(samples,samples[0]) data = [] errs = [] es = [] cur_val = 1 with open(options.output_dir + "/latency.stats","w+") as stat_file: for num,s in zip(max_e,samples): print >> stat_file, num,",",s.mean,",",s.ci print num,",",s.mean,",",s.ci while cur_val != num: data.append(0) errs.append(0) es.append(cur_val) cur_val *=2 # replay_time = build_replay_time(options.output_dir) # print data # print errs # print es # graph_utilities.make_scale_chart(data, errs,replay_time.mean,replay_time.ci,es,options.output_dir + "/scalability_graph", 19, title=options.bm_name + " Querry Latency", xaxis="Number of Cores",yaxis="Total Time (ms)") #hmm print "latency_stats...raw!" #output raw latency stats for further processing samples = build_samples(max_times, epoch_times) with open(options.output_dir + "/latency.raw.stats","w+") as stat_file: for num,s in zip(max_e,samples): print >> stat_file, num,",",s.mean,",",s.ci print num,",",s.mean,",",s.ci samples = build_samples(agg_times, epoch_times) #we'll normalize the samples if we can if max_e[0] == 1: samples = normalize(samples,samples[0]) data = [] errs = [] es = [] cur_val = 1 with open(options.output_dir + "/aggregation.stats","w+") as stat_file: for num,s in zip(max_e,samples): print >> stat_file, num,",",s.mean,",",s.ci print num,",",s.mean,",",s.ci samples = build_samples(agg_times, epoch_times) data = [] errs = [] es =
URLBase.schemas(garbage) assert isinstance(schemas, set) is True assert len(schemas) == 0 def test_apprise_notify_formats(tmpdir): """ API: Apprise() Input Formats tests """ # Caling load matix a second time which is an internal function causes it # to skip over content already loaded into our matrix and thefore accesses # other if/else parts of the code that aren't otherwise called __load_matrix() a = Apprise() # no items assert len(a) == 0 class TextNotification(NotifyBase): # set our default notification format notify_format = NotifyFormat.TEXT def __init__(self, **kwargs): super(TextNotification, self).__init__() def notify(self, **kwargs): # Pretend everything is okay return True def url(self): # Support URL return '' class HtmlNotification(NotifyBase): # set our default notification format notify_format = NotifyFormat.HTML def __init__(self, **kwargs): super(HtmlNotification, self).__init__() def notify(self, **kwargs): # Pretend everything is okay return True def url(self): # Support URL return '' class MarkDownNotification(NotifyBase): # set our default notification format notify_format = NotifyFormat.MARKDOWN def __init__(self, **kwargs): super(MarkDownNotification, self).__init__() def notify(self, **kwargs): # Pretend everything is okay return True def url(self): # Support URL return '' # Store our notifications into our schema map SCHEMA_MAP['text'] = TextNotification SCHEMA_MAP['html'] = HtmlNotification SCHEMA_MAP['markdown'] = MarkDownNotification # Test Markdown; the above calls the markdown because our good:// # defined plugin above was defined to default to HTML which triggers # a markdown to take place if the body_format specified on the notify # call assert a.add('html://localhost') is True assert a.add('html://another.server') is True assert a.add('html://and.another') is True assert a.add('text://localhost') is True assert a.add('text://another.server') is True assert a.add('text://and.another') is True assert a.add('markdown://localhost') is True assert a.add('markdown://another.server') is True assert a.add('markdown://and.another') is True assert len(a) == 9 assert a.notify( title="markdown", body="## Testing Markdown", body_format=NotifyFormat.MARKDOWN) is True assert a.notify( title="text", body="Testing Text", body_format=NotifyFormat.TEXT) is True assert a.notify( title="html", body="<b>HTML</b>", body_format=NotifyFormat.HTML) is True def test_apprise_asset(tmpdir): """ API: AppriseAsset() object """ a = AppriseAsset(theme='light') # Default theme assert a.theme == 'light' # Invalid kw handling with pytest.raises(AttributeError): AppriseAsset(invalid_kw='value') a = AppriseAsset( theme='dark', image_path_mask='/{THEME}/{TYPE}-{XY}{EXTENSION}', image_url_mask='http://localhost/{THEME}/{TYPE}-{XY}{EXTENSION}', ) a.default_html_color = '#abcabc' assert a.color('invalid', tuple) == (171, 202, 188) assert a.color(NotifyType.INFO, tuple) == (58, 163, 227) assert a.color('invalid', int) == 11258556 assert a.color(NotifyType.INFO, int) == 3843043 assert a.color('invalid', None) == '#abcabc' assert a.color(NotifyType.INFO, None) == '#3AA3E3' # None is the default assert a.color(NotifyType.INFO) == '#3AA3E3' # Invalid Type with pytest.raises(ValueError): # The exception we expect since dict is not supported a.color(NotifyType.INFO, dict) assert a.image_url(NotifyType.INFO, NotifyImageSize.XY_256) == \ 'http://localhost/dark/info-256x256.png' assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_256, must_exist=False) == '/dark/info-256x256.png' # This path doesn't exist so image_raw will fail (since we just # randompyl picked it for testing) assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is None assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_256, must_exist=True) is None # Create a new object (with our default settings) a = AppriseAsset() # Our default configuration can access our file assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_256, must_exist=True) is not None assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is not None # Create a temporary directory sub = tmpdir.mkdir("great.theme") # Write a file sub.join("{0}-{1}.png".format( NotifyType.INFO, NotifyImageSize.XY_256, )).write("the content doesn't matter for testing.") # Create an asset that will reference our file we just created a = AppriseAsset( theme='great.theme', image_path_mask='%s/{THEME}/{TYPE}-{XY}.png' % dirname(sub.strpath), ) # We'll be able to read file we just created assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is not None # We can retrieve the filename at this point even with must_exist set # to True assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_256, must_exist=True) is not None # Test case where we can't access the image file if sys.version_info.major <= 2: # Python v2.x with mock.patch('__builtin__.open', side_effect=OSError()): assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is None # Our content is retrivable again assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is not None else: # Python >= v3.x with mock.patch('builtins.open', side_effect=OSError()): assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is None # Our content is retrivable again assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is not None # Disable all image references a = AppriseAsset(image_path_mask=False, image_url_mask=False) # We always return none in these calls now assert a.image_raw(NotifyType.INFO, NotifyImageSize.XY_256) is None assert a.image_url(NotifyType.INFO, NotifyImageSize.XY_256) is None assert a.image_path(NotifyType.INFO, NotifyImageSize.XY_256, must_exist=False) is None assert a.image_path(NotifyType.INFO, NotifyImageSize.XY_256, must_exist=True) is None # Test our default extension out a = AppriseAsset( image_path_mask='/{THEME}/{TYPE}-{XY}{EXTENSION}', image_url_mask='http://localhost/{THEME}/{TYPE}-{XY}{EXTENSION}', default_extension='.jpeg', ) assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_256, must_exist=False) == '/default/info-256x256.jpeg' assert a.image_url( NotifyType.INFO, NotifyImageSize.XY_256) == \ 'http://localhost/default/info-256x256.jpeg' # extension support assert a.image_path( NotifyType.INFO, NotifyImageSize.XY_128, must_exist=False, extension='.ico') == '/default/info-128x128.ico' assert a.image_url( NotifyType.INFO, NotifyImageSize.XY_256, extension='.test') == \ 'http://localhost/default/info-256x256.test' def test_apprise_details(): """ API: Apprise() Details """ # Reset our matrix __reset_matrix() # This is a made up class that is just used to verify class TestDetailNotification(NotifyBase): """ This class is used to test various configurations supported """ # Minimum requirements for a plugin to produce details service_name = 'Detail Testing' # The default simple (insecure) protocol (used by NotifyMail) protocol = 'details' # Set test_bool flag always_true = True always_false = False # Define object templates templates = ( '{schema}://{host}', '{schema}://{host}:{port}', '{schema}://{user}@{host}:{port}', '{schema}://{user}:{pass}@{host}:{port}', ) # Define our tokens; these are the minimum tokens required required to # be passed into this function (as arguments). The syntax appends any # previously defined in the base package and builds onto them template_tokens = dict(NotifyBase.template_tokens, **{ 'notype': { # Nothing defined is still valid }, 'regex_test01': { 'name': _('RegexTest'), 'type': 'string', 'regex': r'[A-Z0-9]', }, 'regex_test02': { 'name': _('RegexTest'), # Support regex options too 'regex': (r'[A-Z0-9]', 'i'), }, 'regex_test03': { 'name': _('RegexTest'), # Support regex option without a second option 'regex': (r'[A-Z0-9]'), }, 'regex_test04': { # this entry would just end up getting removed 'regex': None, }, # List without delimiters (causes defaults to kick in) 'mylistA': { 'name': 'fruit', 'type': 'list:string', }, # A list with a delimiter list 'mylistB': { 'name': 'softdrinks', 'type': 'list:string', 'delim': ['|', '-'], }, }) template_args = dict(NotifyBase.template_args, **{ # Test _exist_if logic 'test_exists_if_01': { 'name': 'Always False', 'type': 'bool', # Provide a default 'default': False, # Base the existance of this key/value entry on the lookup # of this class value at runtime. Hence: # if not NotifyObject.always_false # del this_entry # '_exists_if': 'always_false', }, # Test _exist_if logic 'test_exists_if_02': { 'name': 'Always True', 'type': 'bool', # Provide a default 'default': False, # Base the existance of this key/value entry on the lookup # of this class value at runtime. Hence: # if not NotifyObject.always_true # del this_entry # '_exists_if': 'always_true', }, # alias_of testing 'test_alias_of': { 'alias_of': 'mylistB', 'delim': ('-', ' ') } }) def url(self): # Support URL return '' def notify(self, **kwargs): # Pretend everything is okay (so we don't break other tests) return True # Store our good detail notification in our schema map SCHEMA_MAP['details'] = TestDetailNotification # Create our Apprise instance a = Apprise() # Dictionary response assert isinstance(a.details(), dict) # Reset our matrix __reset_matrix() __load_matrix() def test_apprise_details_plugin_verification(): """ API: Apprise() Details Plugin Verification """ # Reset our matrix __reset_matrix() __load_matrix() a = Apprise() # Details object details = a.details() # Dictionary response assert isinstance(details, dict) # Details object with language defined: details = a.details(lang='en') # Dictionary response assert isinstance(details, dict) # Details object with unsupported language: details = a.details(lang='xx') # Dictionary response assert isinstance(details, dict) # Apprise version assert 'version' in details assert details.get('version') == __version__ # Defined schemas identify each plugin assert 'schemas' in details assert isinstance(details.get('schemas'), list) # We have an entry per defined plugin assert 'asset' in details assert isinstance(details.get('asset'), dict) assert 'app_id' in details['asset'] assert 'app_desc' in details['asset'] assert 'default_extension' in details['asset'] assert 'theme' in details['asset'] assert 'image_path_mask' in details['asset'] assert 'image_url_mask' in details['asset'] assert 'image_url_logo' in details['asset'] # Valid Type Regular Expression Checker # Case Sensitive and MUST match the following: is_valid_type_re = re.compile( r'((choice|list):)?(string|bool|int|float)') # match tokens found in templates so we can cross reference them back # to see if they have a matching argument template_token_re = re.compile(r'{([^}]+)}[^{]*?(?=$|{)') # Define acceptable map_to arguments that can be tied in with the # kwargs function definitions. valid_kwargs = set([ # General Parameters 'user', 'password', 'port', 'host', 'schema', 'fullpath', # NotifyBase parameters: 'format', 'overflow', # URLBase parameters: 'verify', 'cto', 'rto', ]) # Valid Schema
'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'disk_id', ], 'required': [ 'project_id', 'location_id', 'disk_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'disk_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'disk_id': 'diskId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'disk_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__storage_project_disk_get ) def __storage_project_disk_list( self, project_id, location_id, **kwargs ): """List storage/disk # noqa: E501 List disk # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.storage_project_disk_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] vm (str): Filter by vm. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Disk] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.storage_project_disk_list = _Endpoint( settings={ 'response_type': ([Disk],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/storage/{locationId}/project/{projectId}/disk', 'operation_id': 'storage_project_disk_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'vm', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'vm': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'vm': 'vm', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'vm': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__storage_project_disk_list ) def __storage_project_disk_metric_get( self, project_id, location_id, disk_id, metric_id, **kwargs ): """Get storage/disk.metric # noqa: E501 Get storage/disk.metric # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.storage_project_disk_metric_get(project_id, location_id, disk_id, metric_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id disk_id (str): Disk Id metric_id (str): metricId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Metric If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['disk_id'] = \ disk_id kwargs['metric_id'] = \ metric_id return self.call_with_http_info(**kwargs) self.storage_project_disk_metric_get = _Endpoint( settings={ 'response_type': (Metric,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/storage/{locationId}/project/{projectId}/disk/{diskId}/metric/{metricId}', 'operation_id': 'storage_project_disk_metric_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'disk_id', 'metric_id', ], 'required': [ 'project_id', 'location_id', 'disk_id', 'metric_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'disk_id': (str,), 'metric_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'disk_id': 'diskId', 'metric_id': 'metricId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'disk_id': 'path', 'metric_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__storage_project_disk_metric_get ) def __storage_project_disk_metric_list( self, project_id, location_id, disk_id, **kwargs ): """List storage/disk.metric # noqa: E501 List storage/disk.metric # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.storage_project_disk_metric_list(project_id, location_id, disk_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id disk_id (str): Disk Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Metric] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['disk_id'] = \ disk_id return self.call_with_http_info(**kwargs) self.storage_project_disk_metric_list = _Endpoint( settings={ 'response_type': ([Metric],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/storage/{locationId}/project/{projectId}/disk/{diskId}/metric', 'operation_id': 'storage_project_disk_metric_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'disk_id', ], 'required': [ 'project_id', 'location_id', 'disk_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'disk_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'disk_id': 'diskId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'disk_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__storage_project_disk_metric_list ) def __storage_project_disk_metric_point_list( self, project_id, location_id, disk_id, metric_id, **kwargs ): """List storage/disk.point # noqa: E501 List storage/disk.point # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.storage_project_disk_metric_point_list(project_id, location_id, disk_id, metric_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id disk_id (str): Disk Id metric_id (str): metricId Keyword Args: interval (str): interval. [optional] timespan (str): timespan. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a
<filename>pyshgp/push/instruction.py<gh_stars>10-100 """Concrete implementations of the Instruction Atom type.""" from abc import ABC, abstractmethod from typing import Callable, Set, Sequence from pyshgp.push.atoms import InstructionMeta from pyshgp.push.config import PushConfig from pyshgp.push.type_library import RESERVED_PSEUDO_STACKS from pyshgp.push.state import PushState from pyshgp.utils import Token class Instruction(ABC): """A function in the Push language used to modify the PushState. The Instruction class is the abstract base class for specific implementations that are configured differently. For example, see SimpleInstruction verses TakesStateInstruction. Parameters ---------- name : str, A unique name for the instruction. code_blocks : int The number of CodeBlocks to open following the instruction in a Genome. docstring : str, optional A string describing in the behavior of the Instruction. Attributes ---------- name : str, A unique name for the instruction. code_blocks : int The number of CodeBlocks to open following the instruction in a Genome. docstring : str, optional A string describing in the behavior of the Instruction. """ __slots__ = ["name", "code_block", "docstring"] def __init__(self, name: str, code_blocks: int, docstring="Write me!"): self.name = name self.code_blocks = code_blocks self.docstring = docstring @abstractmethod def evaluate(self, push_state: PushState, push_config: PushConfig = None) -> PushState: """Evaluate the instruction on the given PushState. Parameters ---------- push_state: pyshgp.push.state.PushState The PushState to run the instruction on. push_config: pyshgp.push.interpreter.PushConfig The configuration of the Push language. Returns ------- pyshgp.push.state.PushState Return the given state, possibly modified by the Instruction. """ pass @abstractmethod def required_stacks(self) -> Set[str]: """Return a list of PushType names relevant to the instruction.""" pass def meta(self) -> InstructionMeta: """Create an ``InstructionMeta`` from the instruction object.""" return InstructionMeta(name=self.name, code_blocks=self.code_blocks) def __eq__(self, other): if type(self) == type(other): return self.name == other.name return False def __hash__(self): return self.name.__hash__() def __repr__(self): return "Instruction<{n}>".format(n=self.name) def _check_is_seq(x, source): if not isinstance(x, Sequence): raise ValueError("Instruction result must be a sequence. {i} gave {t}.".format( i=source, t=type(x) )) class SimpleInstruction(Instruction): """A simple instruction implementation. A SimpleInstruction uses a standardized way of manipulating PushStates. In other words, it handles popping its own function arguments and pushing the function return values. The first step of evaluating a SimpleInstruction is to pop the arguments from the stacks corresponding the instruction's ``input_stacks`` list. If multiple occurrences of the same type are in ``input_stacks``, items are taken from progressively deeper in that stack. If the stacks of the PushState do not contain a sufficient number of items, the instruction does not modify the PushState. The popped arguments are then passed to the instruction's function to produce a tuple of outputs. It is crucial that the instruction's function produce a tuple of outputs, even if it only contains a single element. The elements of the tuple are then routed to the corresponding stacks specified in the instruction's ``output_stacks``. Parameters ---------- name : str, A unique name for the instruction. f : Callable A function whose signature matches input_stacks and output_stacks. input_stacks : Sequence[str] A list of PushType names to use when popping arguments from the PushState. output_stacks : Sequence[str] A list of PushType names to use when pushing function results to the PushState. code_blocks : int The number of CodeBlocks to open following the instruction in a Genome. docstring : str, optional A string describing in the behavior of the Instruction. """ __slots__ = ["name", "f", "input_stacks", "output_stacks", "code_blocks", "docstring"] def __init__(self, name: str, f: Callable, input_stacks: Sequence[str], output_stacks: Sequence[str], code_blocks: int, docstring="Write me!"): super().__init__(name, code_blocks, docstring) self.f = f self.input_stacks = input_stacks self.output_stacks = output_stacks def evaluate(self, push_state: PushState, push_config: PushConfig = None) -> PushState: """Evaluate the instruction on the given PushState. Return mutated State. A SimpleInstruction infers which values to pop and push from the stack based on its `input_stacks` and `output_stacks`. Parameters ---------- push_state : PushState Push state to modify with the Instruction. push_config : pyshgp.push.interpreter.PushConfig Configuration of the interpreter. Used to get various limits. Returns ------- PushState Return the given state, possibly modified by the Instruction. """ # Pull args, if present. args = push_state.observe_stacks(self.input_stacks) if Token.no_stack_item in args: return push_state # Compute result, return if revert or response too big. result = self.f(*args) if result is Token.revert: return push_state _check_is_seq(result, self) # Remove arguments, push results. push_state.pop_from_stacks(self.input_stacks) push_state.push_to_stacks(result, self.output_stacks) return push_state def required_stacks(self) -> Set[str]: """Return a list of PushType names relevant to the instruction. Based on the the instructions input and output types. """ return set(self.input_stacks + self.output_stacks) - RESERVED_PSEUDO_STACKS class StateToStateInstruction(Instruction): """Instruction that takes entire PushState and returns entire PushState.""" __slots__ = ["name", "f", "stacks_used", "code_blocks", "docstring"] def __init__(self, name: str, f: Callable, stacks_used: Sequence[str], code_blocks: int, docstring="Write me!"): super().__init__(name, code_blocks, docstring) self.f = f self.stacks_used = set(stacks_used) def evaluate(self, push_state: PushState, push_config: PushConfig = None) -> PushState: """Evaluate the instruction on the given PushState. Return mutated State. A SimpleInstruction infers which values to pop and push from the stack based on its `input_stacks` and `output_stacks`. Parameters ---------- push_state : PushState Push state to modify with the Instruction. push_config : PushConfig Configuration of the interpreter. Used to get various limits. Returns ------- PushState Return the given state, possibly modified by the Instruction. """ result = self.f(push_state) if result == Token.revert: return push_state else: return result def required_stacks(self) -> Set[str]: """Return a list of PushType names relevant to the instruction.""" return self.stacks_used - RESERVED_PSEUDO_STACKS class TakesStateInstruction(Instruction): """Instruction that takes entire PushState and returns particular values. The function of a TakesStateInstruction accepts an entire PushState as input and produces either a ``Token.revert`` or a tuple of outputs values. It is crucial that the instruction's function produce a tuple of outputs, even if it only contains a single element. The elements of the tuple are then routed to the corresponding stacks specified in the instruction's ``output_stacks``. Additional PushTypes utilized by the instruction are denoted in ``other_stacks``. Parameters ---------- name : str, A unique name for the instruction. f : Callable A function that takes a PushState as input and produces values corresponding to ``output_stacks.`` output_stacks : Sequence[str] A list of PushType names to use when pushing function results to the PushState. other_stacks : Sequence[str] A list of additional PushType names used by the Instruction's function. code_blocks : int The number of CodeBlocks to open following the instruction in a Genome. docstring : str, optional A string describing in the behavior of the Instruction. """ __slots__ = ["name", "f", "output_stacks", "other_stacks", "code_blocks", "docstring"] def __init__(self, name: str, f: Callable, output_stacks: Sequence[str], other_stacks: Sequence[str], code_blocks: int, docstring="Write me!"): super().__init__(name, code_blocks, docstring) self.f = f self.output_stacks = output_stacks self.other_stacks = other_stacks def evaluate(self, push_state: PushState, push_config: PushConfig = None) -> PushState: """Evaluate the instruction on the given PushState. Return mutated State. A SimpleInstruction infers which values to pop and push from the stack based on its `input_stacks` and `output_stacks`. Parameters ---------- push_state : PushState Push state to modify with the Instruction. push_config : PushConfig Configuration of the interpreter. Used to get various limits. Returns ------- PushState Return the given state, possibly modified by the Instruction. """ # Compute result. State should be modified in place during function. result = self.f(push_state) # Return if revert. if result is Token.revert: return push_state _check_is_seq(result, self) # Push results. push_state.push_to_stacks(result, self.output_stacks) return push_state def required_stacks(self) -> Set[str]: """Return a list of PushType names relevant to the instruction.""" return set(self.other_stacks + self.output_stacks) - RESERVED_PSEUDO_STACKS class ProducesManyOfTypeInstruction(Instruction): """Instruction that produces arbitrarily many values of a given PushType. ProducesManyOfTypeInstructions pop their arguments in the same was as SimpleInstructions. Items are popped from the stacks corresponding the types denoted in the ``input_stacks`` list. If multiple occurrences of the same type are in ``input_stacks``, items are taken from progressively deeper in that stack. If the stacks of the PushState do not contain a sufficient number of items, the instruction does not modify the PushState. The popped arguments are then passed to the instruction's function to produce a tuple of outputs. It is crucial that the instruction's function produce a tuple of outputs, even if it only contains a single element.
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2019-2021 Terbau Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json import asyncio import aioxmpp import re import functools import datetime from typing import (TYPE_CHECKING, Optional, Any, List, Dict, Union, Tuple, Awaitable, Type) from collections import OrderedDict from .enums import Enum from .errors import PartyError, Forbidden, HTTPException, NotFound from .user import User from .friend import Friend from .enums import (PartyPrivacy, PartyDiscoverability, PartyJoinability, DefaultCharactersChapter2, Region, ReadyState, Platform) from .utils import MaybeLock if TYPE_CHECKING: from .client import Client class EditEntry: def __init__(self, func: Awaitable, *args: Any, name: Optional[str] = None, **kwargs: Any) -> None: if not asyncio.iscoroutinefunction(func): raise TypeError('EditEntry function must be coroutine') self.func = func self.name = name or func.__qualname__ self.args = args self.keywords = kwargs def __repr__(self) -> str: return ('<EditEntry func={0.func!r} name={0.name!r} ' 'args={0.args!r} ' 'kwargs={0.keywords!r}>'.format(self)) def __call__(self) -> Awaitable: return self.func(*self.args, **self.keywords) class SquadAssignment: """Represents a party members squad assignment. A squad assignment is basically a piece of information about which position a member has in the party, which is directly related to party teams. Parameters ---------- position: Optional[:class:`int`] The position a member should have in the party. If no position is passed, a position will be automatically given according to the position priorities set. hidden: :class:`bool` Whether or not the member should be hidden in the party. .. warning:: Being hidden is not a native fortnite feature so be careful when using this. It might lead to undesirable results. """ __slots__ = ('position', 'hidden') def __init__(self, *, position: Optional[int] = None, hidden: bool = False) -> None: self.position = position self.hidden = hidden def __repr__(self): return ('<SquadAssignment position={0.position!r} ' 'hidden={0.hidden!r}>'.format(self)) @classmethod def copy(cls, assignment): self = cls.__new__(cls) self.position = assignment.position self.hidden = assignment.hidden return self class DefaultPartyConfig: """Data class for the default party configuration used when a new party is created. Parameters ---------- privacy: Optional[:class:`PartyPrivacy`] | The party privacy that should be used. | Defaults to: :attr:`PartyPrivacy.PUBLIC` max_size: Optional[:class:`int`] | The maximun party size. Valid party sizes must use a value between 1 and 16. | Defaults to ``16`` chat_enabled: Optional[:class:`bool`] | Wether or not the party chat should be enabled for the party. | Defaults to ``True``. team_change_allowed: :class:`bool` | Whether or not players should be able to manually swap party team with another player. This setting only works if the client is the leader of the party. | Defaults to ``True`` default_squad_assignment: :class:`SquadAssignment` | The default squad assignment to use for new members. Squad assignments holds information about a party member's current position and visibility. Please note that setting a position in the default squad assignment doesnt actually do anything and it will just be overridden. | Defaults to ``SquadAssignment(hidden=False)``. position_priorities: List[int] | A list of exactly 16 ints all ranging from 0-15. When a new member joins the party or a member is not defined in a squad assignment request, it will automatically give the first available position in this list. | Defaults to a list of 0-15 in order. reassign_positions_on_size_change: :class:`bool` | Whether or not positions should be automatically reassigned if the party size changes. Set this to ``False`` if you want members to keep their positions unless manually changed. The reassignment is done according to the position priorities. | Defaults to ``True``. joinability: Optional[:class:`PartyJoinability`] | The joinability configuration that should be used. | Defaults to :attr:`PartyJoinability.OPEN` discoverability: Optional[:class:`PartyDiscoverability`] | The discoverability configuration that should be used. | Defaults to :attr:`PartyDiscoverability.ALL` invite_ttl: Optional[:class:`int`] | How many seconds the invite should be valid for before automatically becoming invalid. | Defaults to ``14400`` sub_type: Optional[:class:`str`] | The sub type the party should use. | Defaults to ``'default'`` party_type: Optional[:class:`str`] | The type of the party. | Defaults to ``'DEFAULT'`` cls: Type[:class:`ClientParty`] | The default party object to use for the client's party. Here you can specify all class objects that inherits from :class:`ClientParty`. meta: List[:class:`functools.partial`] A list of coroutines in the form of partials. This config will be automatically equipped by the party when a new party is created by the client. .. code-block:: python3 from fortnitepy import ClientParty from functools import partial [ partial(ClientParty.set_custom_key, 'myawesomekey'), partial(ClientParty.set_playlist, 'Playlist_PlaygroundV2', region=fortnitepy.Region.EUROPE) ] Attributes ---------- team_change_allowed: :class:`bool` Whether or not players are able to manually swap party team with another player. This setting only works if the client is the leader of the party. default_squad_assignment: :class:`SquadAssignment` The default squad assignment to use for new members and members not specified in manual squad assignments requests. position_priorities: List[:class:`int`] A list containing exactly 16 integers ranging from 0-16 with no duplicates. This is used for position assignments. reassign_positions_on_size_change: :class:`bool` Whether or not positions will be automatically reassigned when the party size changes. cls: Type[:class:`ClientParty`] The default party object used to represent the client's party. """ # noqa def __init__(self, **kwargs: Any) -> None: self.cls = kwargs.pop('cls', ClientParty) self._client = None self.team_change_allowed = kwargs.pop('team_change_allowed', True) self.default_squad_assignment = kwargs.pop( 'default_squad_assignment', SquadAssignment(hidden=False), ) value = kwargs.pop('position_priorities', None) if value is None: self._position_priorities = list(range(16)) else: self.position_priorities = value self.reassign_positions_on_size_change = kwargs.pop( 'reassign_positions_on_size_change', True ) self.meta = kwargs.pop('meta', []) self._config = {} self.update(kwargs) @property def position_priorities(self): return self._position_priorities @position_priorities.setter def position_priorities(self, value): def error(): raise ValueError( 'position priorities must include exactly 16 integers ' 'ranging from 0-16.' ) if len(value) != 16: error() for i in range(16): if i not in value: error() self._position_priorities = value def _inject_client(self, client: 'Client') -> None: self._client = client @property def config(self) -> Dict[str, Any]: self._client._check_party_confirmation() return self._config def update(self, config: Dict[str, Any]) -> None: default = { 'privacy': PartyPrivacy.PUBLIC.value, 'joinability': PartyJoinability.OPEN.value, 'discoverability': PartyDiscoverability.ALL.value, 'max_size': 16, 'invite_ttl_seconds': 14400, 'chat_enabled': True, 'join_confirmation': False, 'sub_type': 'default', 'type': 'DEFAULT', } to_update = {} for key, value in config.items(): if isinstance(value, Enum): to_update[key] = value.value default_config = {**default, **self._config} self._config = {**default_config, **config, **to_update} def _update_privacy(self, args: list) -> None: for arg in args: if isinstance(arg, PartyPrivacy): if arg.value['partyType'] == 'Private': include = { 'discoverability': PartyDiscoverability.INVITED_ONLY.value, # noqa 'joinability': PartyJoinability.INVITE_AND_FORMER.value, # noqa } else: include = { 'discoverability': PartyDiscoverability.ALL.value, 'joinability': PartyJoinability.OPEN.value, } self.update({'privacy': arg, **include}) break def update_meta(self, meta: List[functools.partial]) -> None: names = [] results = [] unfiltered = [*meta[::-1], *self.meta[::-1]] for elem in unfiltered: coro = elem.func if coro.__qualname__ not in names: # Very hacky solution but its needed to update the privacy # in .config since updating privacy doesnt work as expected # when updating with an "all patch" strategy like other props. if coro.__qualname__ == 'ClientParty.set_privacy': self._update_privacy(elem.args) names.append(coro.__qualname__) results.append(elem) if not (asyncio.iscoroutine(coro) or asyncio.iscoroutinefunction(coro)): raise TypeError('meta must be list containing partials ' 'of coroutines') self.meta = results class DefaultPartyMemberConfig: """Data class for the default party member configuration used when the client joins a party. Parameters ---------- cls: Type[:class:`ClientPartyMember`] The default party member object to use to represent the client as a party member. Here you can specify all classes that inherits from :class:`ClientPartyMember`. The library has two out of the box objects that you can use: - :class:`ClientPartyMember` *(Default)* - :class:`JustChattingClientPartyMember` yield_leadership: :class:`bool`: Wether or not the client should promote another member automatically whenever there is a chance to. Defaults to
or the main thread. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4208") # # ------------ wait-for-cycle ------------ # def wait_for_cycle_command(obj, cycle): if conf.python.iface.python.in_main_branch(): SIM_command_has_problem() print ("The wait-for-cycle command is only allowed " "in script branches.") else: try: wait_for_obj_hap("Core_Cycle_Count", obj, cycle) except SimExc_Break: print "Command '%s.wait-for-cycle' interrupted." % obj.name SIM_command_has_problem() new_command("wait-for-cycle", wait_for_cycle_command, [arg(int_t, 'cycle')], namespace = "processor", short = "wait until reaching cycle", see_also = ["script-branch", "wait-for-variable", "wait-for-hap", "<text-console>.wait-for-string", "<processor>.wait-for-step"], doc = """ Postpones execution of a script branch until the processor reaches the specified cycle in the simulation. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4237") # # ------------ wait-for-step ------------ # def wait_for_step_command(obj, step): if conf.python.iface.python.in_main_branch(): SIM_command_has_problem() print ("The wait-for-step command is only allowed " "in script branches.") else: try: wait_for_obj_hap("Core_Step_Count", obj, step) except SimExc_Break: print "Command '%s.wait-for-step' interrupted." % obj.name SIM_command_has_problem() new_command("wait-for-step", wait_for_step_command, [arg(int_t, 'step')], namespace = "processor", short = "wait until reaching step", see_also = ["script-branch", "wait-for-variable", "wait-for-hap", "<text-console>.wait-for-string", "<processor>.wait-for-cycle"], doc = """ Postpones execution of a script branch until the processor reaches the specified step in the simulation. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4267") # # ------------ wait-for-hap ------------ # def wait_for_hap_command(hap, obj, idx0, idx1, ret): if conf.python.iface.python.in_main_branch(): SIM_command_has_problem() print "The wait-for-hap command is only allowed in script branches." else: try: r = wait_for_obj_hap(hap, obj, idx0, idx1) except SimExc_Break: print "Command 'wait-for-hap' interrupted." SIM_command_has_problem() if ret: for i in range(len(r)): if type(r[i]) == type(conf.sim): r[i] = r[i].name simenv.set_variable_value_idx(ret, r[i], 1, i) new_command("wait-for-hap", wait_for_hap_command, [arg(str_t, 'hap', '', expander = hap_expander), arg(obj_t('object'), "object", '?', None), arg(int_t, 'idx0', '?', -1), arg(int_t, 'idx1', '?', -1), arg(str_t, 'ret', '?')], short = "wait until hap occurs", see_also = ["script-branch", "wait-for-variable", "<text-console>.wait-for-string", "<processor>.wait-for-cycle", "<processor>.wait-for-step"], doc = """ Postpones execution of a script branch until <arg>hap</arg> occurs. The optional argument <arg>obj</arg> limits the haps to a specific object, and <arg>idx0</arg>, <arg>idx1</arg> can be used for indexed and range haps. The data associated with the hap can be saved into the named variable specified by <arg>ret</arg>. This variable will be indexed, with local scope. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4301") def list_script_branch_command(): print "ID Object Hap Hap-ID Function" for sb in conf.python.script_branches: if sb[3]: name = sb[3].name else: name = "None" print "%-3d %-15s %-20s %3d %s" % (sb[0], name, sb[1], sb[2], sb[4]) new_command("list-script-branches", list_script_branch_command, see_also = ["script-branch", "interrupt-script-branch"], doc = """ List all currently active script branches. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4330") def interrupt_script_branch_command(id): try: conf.python.iface.python.interrupt_branch(id) print "Script branch %d interrupted." % id except Exception, msg: print "Failed interrupting script branch: %s" % msg SIM_command_has_problem() new_command("interrupt-script-branch", interrupt_script_branch_command, [arg(int_t, 'id')], see_also = ["script-branch", "list-script-branches"], doc = """ Send a interrupt exception to a scripts branch. The argument is the script branch ID, that is returned by the <cmd>script-branch</cmd> command, and that is also listed by the <cmd>list-script-branches</cmd> command. The branch will wakeup and exit when it receives the exception. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4344") all_tee_objs = [] def tee_handler(file, buf, count): file.write(buf) file.flush() def tee(filename): global all_tee_objs try: file_obj=open(filename, "w") except: print "Failed to open '%s' for writing" % filename SIM_command_has_problem() return all_tee_objs.append((filename, file_obj)) SIM_add_output_handler(tee_handler, file_obj) def remove_tee(filename): for i in range(len(all_tee_objs)): (name, obj) = all_tee_objs[i] if filename == None or name == filename: SIM_remove_output_handler(tee_handler, obj) obj.close() del(all_tee_objs[i]) if filename: return if filename: print "Output not enabled to file '%s'" % filename SIM_command_has_problem() new_command("output-file-start", tee, [ arg(filename_t(), "filename") ], type = ["Files and Directories"], short = "send output to file", see_also = ['output-file-stop'], doc = """ Send output to <i>filename</i>. Any output displayed in the Simics console that goes through the output handler API will be written to the file.""", filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4384") new_command("output-file-stop", remove_tee, [ arg(filename_t(), "filename", "?", None) ], type = ["Files and Directories"], short = "stop sending output to file", see_also = ['output-file-start'], doc = """ Stop sending output to file. If no filename is given, then the command will disable all file output.""", filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4392") def add_module_path_cmd(path): VT_add_module_dir(path) SIM_module_list_refresh() new_command("add-module-directory", add_module_path_cmd, [arg(filename_t(dirs = 1), "path")], type = ["Simics Search Path", "Configuration", "Files and Directories", "Modules"], short = "add a directory to the module search path", doc = """ Adds a directory to the Simics module search path. This path is used to look for additional modules, that can be used to extend the functionality of Simics. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4405") def signed_cmd(size, value): return (value & ((1 << size) - 1)) - ((value << 1) & (1 << size)) new_command("signed", lambda x : signed_cmd(64, x), [arg(int_t, "int")], type = ["Command-Line Interface", "Output"], short = "interpret unsigned integer as signed", doc = """ Interpret an integer, <param>int</param>, as a signed value of a specific bit width. For example <cmd>signed16 0xffff</cmd> will return -1. The <cmd>signed</cmd> command assumes a 64 bit width. """, filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4418") def _signed_cmd(s): return lambda x : signed_cmd(s, x) for i in (8, 16, 32, 64): new_command("signed%d" % i, _signed_cmd(i), [arg(int_t, "int")], type = ["Command-Line Interface", "Output"], short = "interpret unsigned integer as signed", doc_with = "signed", filename="/mp/simics-3.0/src/core/common/generic_commands.py", linenumber="4432") import sim_commands # asserts that Simics is stopped def assert_stopped(): assert_cpu() if SIM_simics_is_running(): raise CliError, "Simics is already running." # internal for commands def list_processors(): limit = SIM_number_processors() print "Current status:" for i in range(limit): cpu = SIM_get_processor(i) print "Processor", cpu.name, iff(SIM_processor_enabled(cpu), "enabled.", "disabled.") def conf_object_expander(string): return get_completions(string, conf.all_object_names); # # -------------- simics-path commands ---------------- # def add_directory_cmd(path, prepend): SIM_add_directory(path, prepend) new_command("add-directory", add_directory_cmd, [arg(filename_t(dirs = 1, keep_simics_ref = 1), "path"), arg(flag_t, "-prepend")], type = ["Simics Search Path", "Configuration", "Files and Directories"], short = "add a directory to the Simics search path", doc = """ Adds a directory to the Simics search path. The Simics search path is a list of directories where Simics searches for additional files when loading a configuration or executing a command like <cmd>load-file</cmd>. The value of <arg>path</arg> is normally appended at the end of the list. If the <i>-prepend</i> flag is given, the path will be added as first in the list. """, filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="27") def print_directories_cmd(): dirs = SIM_get_directories() print "The current Simics search path is:" for dir in dirs: print dir new_command("list-directories", print_directories_cmd, [], type = ["Simics Search Path", "Files and Directories"], short = "list directories in Simics search path", doc = """ Print a list of all directories in the Simics search path. """, filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="48") new_command("print-directories", print_directories_cmd, [], short = "print the directory Simics search path", type = "deprecated commands", deprecated = "list-directories", filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="56") def clear_directories_cmd(): SIM_clear_directories() print "Simics search path is now empty." new_command("clear-directories", clear_directories_cmd, [], type = ["Simics Search Path", "Files and Directories"], short = "clear the Simics search path", doc = """ Empty the Simics search path. """, filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="66") def resolve_file_cmd(filename): file = SIM_lookup_file(filename) if not file: print "Not in search path:", filename else: return file new_command("resolve-file", resolve_file_cmd, [arg(str_t, "filename")], type = ["Simics Search Path", "Files and Directories"], short = "resolve a filename", alias = "lookup-file", doc = """\ Looks for the file <arg>filename</arg> in the Simics search path. If it is found, its complete path is returned. """, filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="82") def native_path_cmd(filename): return SIM_native_path(filename) new_command("native-path", native_path_cmd, [arg(str_t, "filename")], type = ["Files and Directories"], short = "convert a filename to host native form", doc = """\ Converts a path to its host native form. On Unix, this command returns <arg>filename</arg> unchanged. On Windows, it translates Cygwin-style paths to native Windows paths. Refer to the documentation <b>SIM_native_path()</b>, for a detailed description of the conversions made. This command can be used for portability when opening files residing on the host filesystem. """, filename="/mp/simics-3.0/src/core/common/commands.py", linenumber="95") # Print a table (list of rows, each a list of strings). # The alignments list specifies how each column should be aligned, # each entry being "r" or "l". The string 'spacing' is put between columns. def print_table(table, alignments, spacing): widths = [max(len(table[row][col]) for row in xrange(len(table))) for col in xrange(len(table[0]))] print "\n".join(spacing.join({'l': "%-*s", 'r': "%*s"}[a] % (w, s) for (s, w, a) in zip(trow, widths, alignments)) for trow in table) def print_time_cmd(cpu, steps = False, cycles = False, all = False): if all: if steps or cycles: print "The -s and -c flags cannot be used with -all." SIM_command_has_problem() return cpus = [] next = SIM_next_queue(None) while next: cpus.append(next) next = SIM_next_queue(next) elif cpu: cpus = [cpu] else: cpus = [current_processor()] if steps and cycles: print "The -s and -c flags cannot be used at the same time." SIM_command_has_problem() return elif steps: return SIM_step_count(cpus[0]) elif cycles: return SIM_cycle_count(cpus[0]) print_table([["processor", "steps", "cycles", "time [s]"]] + [[cpu.name, number_str(SIM_step_count(cpu), 10), number_str(SIM_cycle_count(cpu), 10), "%.3f" % SIM_time(cpu)] for cpu in cpus], ["l", "r", "r", "r"], "
('', 'Other (type below)'), ) travel_reimbursement = models.CharField( max_length=STR_MED, verbose_name='How will instructors\' travel and accommodations be ' 'managed?', choices=TRAVEL_REIMBURSEMENT_CHOICES, blank=True, default='', ) travel_reimbursement_other = models.CharField( max_length=STR_LONG, verbose_name='Other propositions for managing instructors\' travel and' ' accommodations', blank=True, ) comment = models.TextField( help_text='What else do you want us to know about your workshop? About' ' your attendees? About you?', verbose_name='Anything else?', blank=True, ) def get_absolute_url(self): return reverse('eventrequest_details', args=[self.pk]) def __str__(self): return "{name} (from {affiliation}, {type} workshop)".format( name=self.name, affiliation=self.affiliation, type=self.workshop_type, ) class EventSubmission(AssignmentMixin, ActiveMixin, CreatedUpdatedMixin, models.Model): url = models.URLField( null=False, blank=False, verbose_name='Link to the workshop\'s website') contact_name = models.CharField( null=False, blank=False, max_length=STR_LONG, verbose_name='Your name') contact_email = models.EmailField( null=False, blank=False, verbose_name='Your email', help_text='We may need to contact you regarding workshop details.') self_organized = models.BooleanField( null=False, default=False, verbose_name='Was the workshop self-organized?') notes = models.TextField( null=False, blank=True, default='') def __str__(self): return 'Event submission <{}>'.format(self.url) def get_absolute_url(self): return reverse('eventsubmission_details', args=[self.pk]) class DCSelfOrganizedEventRequest(AssignmentMixin, ActiveMixin, CreatedUpdatedMixin, models.Model): """Should someone want to run a self-organized Data Carpentry event, they have to fill this specific form first. See https://github.com/swcarpentry/amy/issues/761""" name = models.CharField( max_length=STR_LONGEST, ) email = models.EmailField() organization = models.CharField( max_length=STR_LONGEST, verbose_name='University or organization affiliation', ) INSTRUCTOR_CHOICES = [ ('', 'None'), ('incomplete', 'Have gone through instructor training, but haven\'t ' 'yet completed checkout'), ('dc', 'Certified Data Carpentry instructor'), ('swc', 'Certified Software Carpentry instructor'), ('both', 'Certified Software and Data Carpentry instructor'), ] instructor_status = models.CharField( max_length=STR_MED, choices=INSTRUCTOR_CHOICES, verbose_name='Your Software and Data Carpentry instructor status', blank=True, ) PARTNER_CHOICES = [ ('y', 'Yes'), ('n', 'No'), ('u', 'Unsure'), ('', 'Other (enter below)'), ] is_partner = models.CharField( max_length=1, choices=PARTNER_CHOICES, blank=True, verbose_name='Is your organization a Data Carpentry or Software ' 'Carpentry Partner' ) is_partner_other = models.CharField( max_length=STR_LONG, default='', blank=True, verbose_name='Other (is your organization a Partner?)', ) location = models.CharField( max_length=STR_LONGEST, verbose_name='Location', help_text='City, Province or State', ) country = CountryField() associated_conference = models.CharField( max_length=STR_LONG, default='', blank=True, verbose_name='Associated conference', help_text='If the workshop is to be associated with a conference or ' 'meeting, which one?', ) dates = models.CharField( max_length=STR_LONGEST, verbose_name='Planned workshop dates', help_text='Preferably in YYYY-MM-DD to YYYY-MM-DD format', ) # workshop domain(s) domains = models.ManyToManyField( 'DCWorkshopDomain', blank=False, verbose_name='Domain for the workshop', help_text='Set of lessons you\'re going to teach', ) domains_other = models.CharField( max_length=STR_LONGEST, blank=True, default='', verbose_name='Other domains for the workshop', help_text='If none of the fields above works for you.', ) # Lesson topics to be taught during the workshop topics = models.ManyToManyField( 'DCWorkshopTopic', blank=False, verbose_name='Topics to be taught', help_text='A Data Carpentry workshop must include a Data Carpentry ' 'lesson on data organization and three other modules in the ' 'same domain from the Data Carpentry curriculum (see <a ' 'href="http://www.datacarpentry.org/workshops/">http://www.' 'datacarpentry.org/workshops/</a>). If you do want to ' 'include materials not in our curriculum, please note that ' 'below and we\'ll get in touch.' ) topics_other = models.CharField( max_length=STR_LONGEST, blank=True, default='', verbose_name='Other topics to be taught', help_text='If none of the fields above works for you.', ) # questions about attendees' experience levels attendee_academic_levels = models.ManyToManyField( 'AcademicLevel', help_text='If you know the academic level(s) of your attendees, ' 'indicate them here.', verbose_name='Attendees\' academic level', ) attendee_data_analysis_level = models.ManyToManyField( 'DataAnalysisLevel', help_text='If you know, indicate learner\'s general level of data ' 'analysis experience', verbose_name='Attendees\' level of data analysis experience', ) # payments PAYMENT_CHOICES = [ ('per_participant', 'I will contribute $25/participant through ' 'registration fees'), ('invoice', 'I will contribute $500 via an invoice'), ('credit_card', 'I will contribute $500 via a credit card payment'), ('fee_waiver', 'I would like to request a fee waiver'), ] payment = models.CharField( max_length=STR_MED, blank=False, choices=PAYMENT_CHOICES, default='per_participant', verbose_name='Payment choice', help_text='Self-organized workshops for non-Partner organizations are ' '$500 or $25/participant for a workshop licensing fee (<a ' 'href="http://www.datacarpentry.org/self-organized-workshops' '/">http://www.datacarpentry.org/self-organized-workshops/' '</a>). Fee waivers are available and generally granted upon' ' request.', ) fee_waiver_reason = models.CharField( max_length=STR_LONGEST, default='', blank=True, verbose_name='Reason for requesting a fee waiver', ) # confirmations handle_registration = models.BooleanField( default=False, blank=False, verbose_name='I confirm that I will handle registration for this' ' workshop', ) distribute_surveys = models.BooleanField( default=False, blank=False, verbose_name='I confirm that I will distribute the Data Carpentry ' 'surveys to workshop participants', ) follow_code_of_conduct = models.BooleanField( default=False, blank=False, verbose_name='I confirm that I will follow the Data Carpentry Code of' ' Conduct', ) def get_absolute_url(self): return reverse('dcselforganizedeventrequest_details', args=[self.pk]) class AcademicLevel(models.Model): name = models.CharField(max_length=STR_MED, null=False, blank=False) def __str__(self): return self.name class ComputingExperienceLevel(models.Model): # it's a long field because we need to store reasoning too, for example: # "Novice (uses a spreadsheet for data analysis rather than writing code)" name = models.CharField(max_length=STR_LONGEST, null=False, blank=False) def __str__(self): return self.name class DataAnalysisLevel(models.Model): # ComputingExperienceLevel's sibling name = models.CharField(max_length=STR_LONGEST, null=False, blank=False) def __str__(self): return self.name class DCWorkshopTopic(models.Model): """Single lesson topic used in a workshop.""" name = models.CharField(max_length=STR_LONGEST, null=False, blank=False) def __str__(self): return self.name class DCWorkshopDomain(models.Model): """Single domain used in a workshop (it corresponds to a set of lessons Data Carpentry prepared).""" name = models.CharField(max_length=STR_LONGEST, null=False, blank=False) def __str__(self): return self.name #------------------------------------------------------------ class Role(models.Model): '''Enumerate roles in workshops.''' name = models.CharField(max_length=STR_MED) verbose_name = models.CharField(max_length=STR_LONG, null=False, blank=True, default='') def __str__(self): return self.verbose_name #------------------------------------------------------------ class TaskManager(models.Manager): def instructors(self): """Fetch tasks with role 'instructor'.""" return self.get_queryset().filter(role__name="instructor") def learners(self): """Fetch tasks with role 'learner'.""" return self.get_queryset().filter(role__name="learner") def helpers(self): """Fetch tasks with role 'helper'.""" return self.get_queryset().filter(role__name="helper") @reversion.register class Task(models.Model): '''Represent who did what at events.''' event = models.ForeignKey(Event) person = models.ForeignKey(Person) role = models.ForeignKey(Role) title = models.CharField(max_length=STR_LONG, blank=True) url = models.URLField(blank=True) objects = TaskManager() class Meta: unique_together = ('event', 'person', 'role', 'url') ordering = ("role__name", "event") def __str__(self): if self.title: return self.title return '{0}/{1}={2}'.format(self.event, self.person, self.role) def get_absolute_url(self): return reverse('task_details', kwargs={'task_id': self.id}) def save(self, *args, **kwargs): super().save(*args, **kwargs) # Trigger an update of the attendance field self.event.save() #------------------------------------------------------------ class Lesson(models.Model): '''Represent a lesson someone might teach.''' name = models.CharField(max_length=STR_MED) def __str__(self): return self.name class Meta: ordering = ['name'] #------------------------------------------------------------ class Qualification(models.Model): '''What is someone qualified to teach?''' person = models.ForeignKey(Person) lesson = models.ForeignKey(Lesson) def __str__(self): return '{0}/{1}'.format(self.person, self.lesson) #------------------------------------------------------------ class BadgeQuerySet(models.query.QuerySet): """Custom QuerySet that provides easy way to get instructor badges (we use that a lot).""" INSTRUCTOR_BADGES = ('dc-instructor', 'swc-instructor') def instructor_badges(self): """Filter for instructor badges only.""" return self.filter(name__in=self.INSTRUCTOR_BADGES) class Badge(models.Model): '''Represent a badge we award.''' name = models.CharField(max_length=STR_MED, unique=True) title = models.CharField(max_length=STR_MED) criteria = models.CharField(max_length=STR_LONG) objects = BadgeQuerySet.as_manager() def __str__(self): return self.title def get_absolute_url(self): return reverse('badge_details', args=[self.name]) #------------------------------------------------------------ class Award(models.Model): '''Represent a particular badge earned by a person.''' person = models.ForeignKey(Person) badge = models.ForeignKey(Badge) awarded = models.DateField(default=datetime.date.today) event = models.ForeignKey(Event, null=True, blank=True, on_delete=models.PROTECT) awarded_by = models.ForeignKey( Person, null=True, blank=True, on_delete=models.PROTECT, related_name='awarded_set') class Meta: unique_together = ("person", "badge", ) def __str__(self): return '{0}/{1}/{2}/{3}'.format(self.person, self.badge, self.awarded, self.event) #------------------------------------------------------------ class KnowledgeDomain(models.Model): """Represent a knowledge domain a person is engaged in.""" name = models.CharField(max_length=STR_LONG) def __str__(self): return self.name class Meta: ordering = ['name'] # ------------------------------------------------------------ class TodoItemQuerySet(models.query.QuerySet): @staticmethod def current_week_dates(today=None): if not today: today = datetime.date.today() start = today - datetime.timedelta(days=today.weekday()) end = start + datetime.timedelta(days=7) return start, end @staticmethod def next_week_dates(today=None): if not today: today = datetime.date.today() start = today + datetime.timedelta(days=(7 - today.weekday())) end = start + datetime.timedelta(days=7) return start, end def user(self, person): """Return TODOs only for specific person.""" return self.filter(event__assigned_to=person) def current_week(self, today=None): """Select TODOs for the current week.""" start, end = TodoItemQuerySet.current_week_dates(today) return self.filter(due__gte=start, due__lt=end) def next_week(self, today=None): """Select TODOs for the next week.""" start, end = TodoItemQuerySet.next_week_dates(today) return self.filter(due__gte=start, due__lt=end) def incomplete(self): """Select TODOs that aren't marked as completed.""" return self.filter(completed=False) def current(self, today=None): """A shortcut for getting TODOs from this and upcoming week.""" return ((self.current_week(today) | self.next_week(today)) & self.incomplete()) class TodoItem(models.Model): """Model representing to-do items for events.""" event = models.ForeignKey(Event, null=False, blank=False) completed = models.BooleanField(default=False) title = models.CharField(max_length=STR_LONG, default='', blank=False) due = models.DateField(blank=True, null=True) additional = models.CharField(max_length=STR_LONGEST, default='', blank=True) objects = TodoItemQuerySet.as_manager() class Meta: ordering = ["due", "title"] def __str__(self): from .util import universal_date_format if self.due: return "{title} due {due}".format( title=self.title, due=universal_date_format(self.due), ) else: return self.title # ------------------------------------------------------------ @reversion.register class InvoiceRequest(models.Model): STATUS_CHOICES = ( ('not-invoiced', 'Invoice not requested'), ('sent', 'Sent out'), ('paid', 'Paid'), ) status = models.CharField( max_length=STR_MED, null=False, blank=False, default='not-invoiced', choices=STATUS_CHOICES, verbose_name='Invoice status') sent_date = models.DateField( null=True, blank=True, verbose_name='Date invoice was sent out', help_text='YYYY-MM-DD') paid_date = models.DateField( null=True, blank=True, verbose_name='Date invoice was paid', help_text='YYYY-MM-DD') organization = models.ForeignKey( Organization, on_delete=models.PROTECT, verbose_name='Organization
% ( alpha, cutoff, len(self.scored_filters)) NUM_FILTERS_TO_SHOW = 10 def evaluate(self, *args, **kwargs): verbosity = kwargs.get('verbosity', 0) if not self.scored_filters: if verbosity >= 0: print (' %s ' % self.name).center(75, '=') print ' (No filters!)' return 0 else: cm_score = ConfidenceMetric.evaluate(self, *args, **kwargs) if verbosity >= 0 and self.NUM_FILTERS_TO_SHOW>0: print ' Filters:' for filter, score in self.scored_filters[:self.NUM_FILTERS_TO_SHOW]: print textwrap.fill('%8.3f %s' % (score, filter.name), initial_indent=' '*2, subsequent_indent=' '*10) if len(self.scored_filters) > self.NUM_FILTERS_TO_SHOW: print ' ... %d more filters...' % ( len(self.scored_filters) - self.NUM_FILTERS_TO_SHOW) return cm_score def score(self, serif_rel): return sum(filter_score for (filter, filter_score) in self.scored_filters if filter.check(serif_rel)) class ScoredFilterConfidenceMetric2(ScoredFilterConfidenceMetric): """ This version picks filters one at a time, and then applies them to the dev set. That way, the scores assigned to subsequent filters are appropriately adjusted. """ SCORE='fscore' def __init__(self, apf_relations, serif_relations, filters, alpha=0.9, num_filters=5, cutoff=0.1): apf_relmention_dict = make_apf_relmention_dict(apf_relations) base_p, base_r, base_f = evaluate(serif_relations, apf_relmention_dict) self.scored_filters = [] for i in range(num_filters): # Score the filters: def score_filter(f): return evaluate(serif_relations, apf_relmention_dict, alpha, f) scored_filters = [(f, 100.*(score_filter(f)[2]-base_f)) for f in filters] # Pick the best one: scored_filters.sort(key=lambda fs:-fs[1]) filter, score = scored_filters[0] if score <= 0: continue self.scored_filters.append(scored_filters[0]) # Apply the filter: serif_relations = [r for r in serif_relations if filter.check(r)] self.scored_filters.sort(key=lambda fs:-fs[1]) self.name = 'FilterMetric2(alpha=%s; cutoff=%s%%; %d filters)' % ( alpha, cutoff, len(self.scored_filters)) class MaxentConfidenceMetric(ConfidenceMetric): name = 'Maxent' def score(self, serif_rel): return maxent_score(serif_rel) class SerifConfidenceMetric(ConfidenceMetric): name = "SERIF" def score(self, serif_rel): return float(serif_rel.confidence) ###################################################################### # Helper Functions ###################################################################### def columns(*blocks, **kwargs): align = kwargs.pop('align', 'top') if kwargs: raise TypeError('Unexpected kwarg %s' % kwargs.keys()[0]) s = '' blocks = [block.split('\n') for block in blocks] colwidths = [max(len(line)+1 for line in block) for block in blocks] if align == 'bottom': height = max(len(block) for block in blocks) blocks = [['']*(height-len(block))+block for block in blocks] for lines in map(None, *blocks): for colwidth, line in zip(colwidths, lines): s += (line or '').ljust(colwidth) + ' ' s += '\n' return s def running_avg(xy_pairs, window=50, debug=False): result = [] for i in range(window/2): result.append( (avg([x for (x,y) in xy_pairs[:i+window/2]]), avg([y for (x,y) in xy_pairs[:i+window/2]])) ) if debug: print '%3d [%3d:%3d] (%5.2f,%5.2f) -> (%5.2f, %5.2f)' % ( i, 0, i+window/2, xy_pairs[i][0], xy_pairs[i][1], result[-1][0], result[-1][1]) for i in range(window/2, len(xy_pairs)-window/2): start = max(0, i-window/2) stop = min(len(xy_pairs)-1, i+window/2) result.append((avg([x for (x,y) in xy_pairs[start:stop]]), avg([y for (x,y) in xy_pairs[start:stop]]))) if debug: print '%3d [%3d:%3d] (%5.2f,%5.2f) -> (%5.2f, %5.2f)' % ( i, start, stop, xy_pairs[i][0], xy_pairs[i][1], result[-1][0], result[-1][1]) for i in range(len(xy_pairs)-window/2, len(xy_pairs)): result.append( (avg([x for (x,y) in xy_pairs[i:]]), avg([y for (x,y) in xy_pairs[i:]])) ) if debug: print '%3d [%3d:%3d] (%5.2f,%5.2f) -> (%5.2f, %5.2f)' % ( i, i, len(xy_pairs), xy_pairs[i][0], xy_pairs[i][1], result[-1][0], result[-1][1]) return result ###################################################################### # Data Loading ###################################################################### def _filter_by_docid(relations, docids, name): result = [r for r in relations if r.docid in docids] print '%s: %d->%d' % (name, len(relations), len(result)) print ' (%f%%)' % (100.*len(result)/len(relations)) return result def load_data(serif_root, apf_roots, docid_filter_file=None): print 'Loading serif output...' serif_relation_decisions = load_serif_relations(serif_root) print 'Loading APF (eval) data...' apf_data = apf.read_apf(APF_ROOTS) apf_relations = sum([r.relmentions for r in apf_data.values() if hasattr(r, 'relmentions')], []) # If requested, then filter out any relations that aren't in the # given list of docids. if docid_filter_file is not None: train_docids = set(open(docid_filter_file).read().split()) serif_relation_decisions = _filter_by_docid(serif_relation_decisions, train_docids, 'Serif') apf_relations = _filter_by_docid(apf_relations, train_docids, 'Apf') # If there are any files that we have serif output for, but do not # have any apf output for, then discard that serif output -- # otherwise, it will show up as a false positive. Similarly, if # we have any files that we have apf output for but no serif # output, then discard them. apf_docids = set(v.docid for v in apf_data.values()) serif_docids = set(r.docid for r in serif_relation_decisions) serif_extras = serif_docids-apf_docids if serif_extras: print ('Discarding unmatched serif output for %d/%d docs' % (len(serif_extras), len(serif_docids))) serif_relation_decisions = [r for r in serif_relation_decisions if r.docid not in serif_extras] apf_extras = apf_docids-serif_docids if apf_extras: print ('Discarding unmatched apf output for %d/%d docs' % (len(apf_extras), len(apf_docids))) apf_relations = [r for r in apf_relations if r.docid not in apf_extras] return serif_relation_decisions, apf_relations # Pick some heldout documents for later evaluation. def split_data(serif_relations, apf_relations): all_docids = list(set(r.docid for r in serif_relations)) random.shuffle(all_docids) N = len(all_docids)/5 dev_docids = set(all_docids[N:]) heldout_docids = set(all_docids[:N]) print 'Selecting dev set and heldout set' print '%6d dev docs' % len(dev_docids) print '%6d heldout docs' % len(heldout_docids) heldout_serif_relations = [r for r in serif_relations if r.docid in heldout_docids] serif_relations = [r for r in serif_relations if r.docid not in heldout_docids] heldout_apf_relations = [r for r in apf_relations if r.docid in heldout_docids] apf_relations = [r for r in apf_relations if r.docid not in heldout_docids] return ((serif_relations, apf_relations), (heldout_serif_relations, heldout_apf_relations)) ###################################################################### # Decide Which Filters to Use ###################################################################### def choose_filter_candidates(apf_relations, serif_relations): filter_makers = [ # Filters based on entity types & mention types DiscreteFilterMaker('lhs_entity_type', (lambda r: r.lhs_entity_type)), DiscreteFilterMaker('lhs_entity_subtype', (lambda r: r.lhs_entity_subtype)), DiscreteFilterMaker('rhs_entity_type', (lambda r: r.rhs_entity_type)), DiscreteFilterMaker('rhs_entity_subtype', (lambda r: r.rhs_entity_subtype)), DiscreteFilterMaker('entity_types', entity_types), DiscreteFilterMaker('lhs_mention_type', (lambda r: r.lhs_mention_type)), DiscreteFilterMaker('rhs_mention_type', (lambda r: r.rhs_mention_type)), DiscreteFilterMaker('mention_types', mention_types), # Filters based on the maxent model CutoffFilterMaker('maxent_score', maxent_score, slices=100), CutoffFilterMaker('max_pro_rel_feature', max_pro_rel_feature), CutoffFilterMaker('max_anti_rel_feature', max_anti_rel_feature), # Other features DiscreteFilterMaker('overlap', overlap_type), CutoffFilterMaker('arglen', arglen, slices=30), DiscreteFilterMaker('nested_args', nested_args), CutoffFilterMaker('argdist', argdist, slices=30), # Check for the presence of features used by maxent/p1 models FeatureFilterMaker(), # Check some characterstics of how we assembled the answer: BinaryFilterMaker('use_p1_answer', lambda r:r.use_p1_answer), BinaryFilterMaker('use_cvec_answer', lambda r:r.use_cvec_answer), BinaryFilterMaker('secondary_selected', lambda r:r.secondary_selected), BinaryFilterMaker('use_p1_answer_vec_tree', lambda r:r.use_p1_answer_vec_tree), DiscreteFilterMaker('ethnic_heuristic', lambda r:r.ethnic_heuristic), CutoffFilterMaker('reversed', (lambda r:r.reversed-r.not_reversed)), ] filters = [] # Explore lots of different alpha's. filters += choose_filters_2(apf_relations, serif_relations, filter_makers, nbest=10, alphas=[0.01*n for n in range(30, 100)], display_alphas=[0.99, 0.95, 0.9, 0.5]) # Find some very-high-precision filters filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=1, width=20, narrowing_factor=1./20, alpha=0.999) filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=1, width=20, narrowing_factor=1./20, alpha=0.99) # Find some good filters, emphasizing precision filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=50, width=1, alpha=0.9) # Find some good filters, emphasizing precision a little less filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=50, width=1, alpha=0.8) # See what we find if we maximize F(0.5): filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=50, width=1, alpha=0.5) filters += choose_filters(apf_relations, serif_relations, filter_makers, depth=5, width=5, alpha=0.5) # Remove any duplicate filters (assume names are unique): filters = dict((f.name, f) for f in filters).values() return filters ###################################################################### # Decide Which Metrics to Use ###################################################################### def choose_metrics(dev_apf_relations, dev_serif_relations, heldout_apf_relations, heldout_serif_relations, filters, num_metrics=5, verbose=True): #NUM_FILTERS = [5, 10, 20, 30, 40, 50, 1000] #NUM_FILTERS = [5, 10, 20, 30, 40, 50] NUM_FILTERS = [10, 11, 12, 13, 14, 15] ALPHA = [0.5, 0.8, 0.9, 0.95, 0.98, 0.99, 0.999, 0.9999] #NUM_FILTERS = [5, 30] #ALPHA = [0.8, 0.9] metrics = [] # Try out various meta-parameters: for num_filters in NUM_FILTERS: for alpha in ALPHA: for metrictype in [ScoredFilterConfidenceMetric, ScoredFilterConfidenceMetric2 ]: cm = metrictype( dev_apf_relations, dev_serif_relations, filters, alpha=alpha, num_filters=num_filters) cm_score = cm.evaluate(heldout_apf_relations, heldout_serif_relations, verbosity=-1) print '[%.3f] %s' % (cm_score, cm.name) metrics.append( (cm_score, cm) ) metrics.sort() metrics = [cm for (cm_score,cm) in metrics[-num_metrics:]] if verbose: display_metrics(metrics, heldout_apf_relations, heldout_serif_relations) return metrics def display_metrics(metrics, heldout_apf_relations, heldout_serif_relations): for cm in metrics: cm.__class__ = globals()[type(cm).__name__] cm.evaluate(heldout_apf_relations, heldout_serif_relations) ###################################################################### # Main Script: ###################################################################### # We do all this in the global namespace to make it easier to # experiment with interactively (using emacs python-mode). All # the "if 1:" or "if 0:" statements are so I can repeatedly send # this buffer to a python interactive shell and not repeat steps # I've already done (when experimenting with other steps). If # you're running this from scratch, then all the "if 0"'s should # probably be changed to "if 1". SERIF_ROOT = r'//traid07/u16/eloper/runjobs/expts/relation-confidence/' APF_ROOTS = [r'//traid01/speed/Ace/data-2005-v4.0/English', (r'//traid01/speed/Training-Data/English/'+ r'bbn-ace2005-relation-training/fixed-apf')] DOCID_FILTER_FILE = (r'//titan3/u70/users/eloper/code/relation-confidence/' r'lib/train_docids') # Disable this block if you want to skip data loading. if 0: print 'Loading data...' serif_relation_decisions, apf_relations = load_data(SERIF_ROOT, APF_ROOTS) serif_relations = [r for r in serif_relation_decisions if r.answer != 'NONE'] if 0: print 'Max recall (over all data): %.1f%%' % (100*max_recall( serif_relation_decisions, apf_relations)) # Split the data into a dev set and a heldout set. if 0: ((dev_serif_relations, dev_apf_relations), (heldout_serif_relations, heldout_apf_relations)) = split_data( serif_relations, apf_relations) if 0: print '\nChoosing filter candidates...' filters = choose_filter_candidates(dev_apf_relations, dev_serif_relations) # Display the performance of individual filters: if
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'AnalyticsApplicationCloudwatchLoggingOptionsArgs', 'AnalyticsApplicationInputsArgs', 'AnalyticsApplicationInputsKinesisFirehoseArgs', 'AnalyticsApplicationInputsKinesisStreamArgs', 'AnalyticsApplicationInputsParallelismArgs', 'AnalyticsApplicationInputsProcessingConfigurationArgs', 'AnalyticsApplicationInputsProcessingConfigurationLambdaArgs', 'AnalyticsApplicationInputsSchemaArgs', 'AnalyticsApplicationInputsSchemaRecordColumnArgs', 'AnalyticsApplicationInputsSchemaRecordFormatArgs', 'AnalyticsApplicationInputsSchemaRecordFormatMappingParametersArgs', 'AnalyticsApplicationInputsSchemaRecordFormatMappingParametersCsvArgs', 'AnalyticsApplicationInputsSchemaRecordFormatMappingParametersJsonArgs', 'AnalyticsApplicationInputsStartingPositionConfigurationArgs', 'AnalyticsApplicationOutputArgs', 'AnalyticsApplicationOutputKinesisFirehoseArgs', 'AnalyticsApplicationOutputKinesisStreamArgs', 'AnalyticsApplicationOutputLambdaArgs', 'AnalyticsApplicationOutputSchemaArgs', 'AnalyticsApplicationReferenceDataSourcesArgs', 'AnalyticsApplicationReferenceDataSourcesS3Args', 'AnalyticsApplicationReferenceDataSourcesSchemaArgs', 'AnalyticsApplicationReferenceDataSourcesSchemaRecordColumnArgs', 'AnalyticsApplicationReferenceDataSourcesSchemaRecordFormatArgs', 'AnalyticsApplicationReferenceDataSourcesSchemaRecordFormatMappingParametersArgs', 'AnalyticsApplicationReferenceDataSourcesSchemaRecordFormatMappingParametersCsvArgs', 'AnalyticsApplicationReferenceDataSourcesSchemaRecordFormatMappingParametersJsonArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationProcessingConfigurationArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationProcessingConfigurationProcessorArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationProcessingConfigurationProcessorParameterArgs', 'FirehoseDeliveryStreamElasticsearchConfigurationVpcConfigArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationInputFormatConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationInputFormatConfigurationDeserializerArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationInputFormatConfigurationDeserializerHiveJsonSerDeArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationInputFormatConfigurationDeserializerOpenXJsonSerDeArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationOutputFormatConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationOutputFormatConfigurationSerializerArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationOutputFormatConfigurationSerializerOrcSerDeArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationOutputFormatConfigurationSerializerParquetSerDeArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDataFormatConversionConfigurationSchemaConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationDynamicPartitioningConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationProcessingConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationProcessingConfigurationProcessorArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationProcessingConfigurationProcessorParameterArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationS3BackupConfigurationArgs', 'FirehoseDeliveryStreamExtendedS3ConfigurationS3BackupConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationProcessingConfigurationArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationProcessingConfigurationProcessorArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationProcessingConfigurationProcessorParameterArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationRequestConfigurationArgs', 'FirehoseDeliveryStreamHttpEndpointConfigurationRequestConfigurationCommonAttributeArgs', 'FirehoseDeliveryStreamKinesisSourceConfigurationArgs', 'FirehoseDeliveryStreamRedshiftConfigurationArgs', 'FirehoseDeliveryStreamRedshiftConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamRedshiftConfigurationProcessingConfigurationArgs', 'FirehoseDeliveryStreamRedshiftConfigurationProcessingConfigurationProcessorArgs', 'FirehoseDeliveryStreamRedshiftConfigurationProcessingConfigurationProcessorParameterArgs', 'FirehoseDeliveryStreamRedshiftConfigurationS3BackupConfigurationArgs', 'FirehoseDeliveryStreamRedshiftConfigurationS3BackupConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamS3ConfigurationArgs', 'FirehoseDeliveryStreamS3ConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamServerSideEncryptionArgs', 'FirehoseDeliveryStreamSplunkConfigurationArgs', 'FirehoseDeliveryStreamSplunkConfigurationCloudwatchLoggingOptionsArgs', 'FirehoseDeliveryStreamSplunkConfigurationProcessingConfigurationArgs', 'FirehoseDeliveryStreamSplunkConfigurationProcessingConfigurationProcessorArgs', 'FirehoseDeliveryStreamSplunkConfigurationProcessingConfigurationProcessorParameterArgs', 'StreamStreamModeDetailsArgs', ] @pulumi.input_type class AnalyticsApplicationCloudwatchLoggingOptionsArgs: def __init__(__self__, *, log_stream_arn: pulumi.Input[str], role_arn: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] log_stream_arn: The ARN of the CloudWatch Log Stream. :param pulumi.Input[str] role_arn: The ARN of the IAM Role used to send application messages. :param pulumi.Input[str] id: The ARN of the Kinesis Analytics Application. """ pulumi.set(__self__, "log_stream_arn", log_stream_arn) pulumi.set(__self__, "role_arn", role_arn) if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter(name="logStreamArn") def log_stream_arn(self) -> pulumi.Input[str]: """ The ARN of the CloudWatch Log Stream. """ return pulumi.get(self, "log_stream_arn") @log_stream_arn.setter def log_stream_arn(self, value: pulumi.Input[str]): pulumi.set(self, "log_stream_arn", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM Role used to send application messages. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ The ARN of the Kinesis Analytics Application. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @pulumi.input_type class AnalyticsApplicationInputsArgs: def __init__(__self__, *, name_prefix: pulumi.Input[str], schema: pulumi.Input['AnalyticsApplicationInputsSchemaArgs'], id: Optional[pulumi.Input[str]] = None, kinesis_firehose: Optional[pulumi.Input['AnalyticsApplicationInputsKinesisFirehoseArgs']] = None, kinesis_stream: Optional[pulumi.Input['AnalyticsApplicationInputsKinesisStreamArgs']] = None, parallelism: Optional[pulumi.Input['AnalyticsApplicationInputsParallelismArgs']] = None, processing_configuration: Optional[pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationArgs']] = None, starting_position_configurations: Optional[pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsStartingPositionConfigurationArgs']]]] = None, stream_names: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ :param pulumi.Input[str] name_prefix: The Name Prefix to use when creating an in-application stream. :param pulumi.Input['AnalyticsApplicationInputsSchemaArgs'] schema: The Schema format of the data in the streaming source. See Source Schema below for more details. :param pulumi.Input[str] id: The ARN of the Kinesis Analytics Application. :param pulumi.Input['AnalyticsApplicationInputsKinesisFirehoseArgs'] kinesis_firehose: The Kinesis Firehose configuration for the streaming source. Conflicts with `kinesis_stream`. See Kinesis Firehose below for more details. :param pulumi.Input['AnalyticsApplicationInputsKinesisStreamArgs'] kinesis_stream: The Kinesis Stream configuration for the streaming source. Conflicts with `kinesis_firehose`. See Kinesis Stream below for more details. :param pulumi.Input['AnalyticsApplicationInputsParallelismArgs'] parallelism: The number of Parallel in-application streams to create. See Parallelism below for more details. :param pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationArgs'] processing_configuration: The Processing Configuration to transform records as they are received from the stream. See Processing Configuration below for more details. :param pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsStartingPositionConfigurationArgs']]] starting_position_configurations: The point at which the application starts processing records from the streaming source. See Starting Position Configuration below for more details. """ pulumi.set(__self__, "name_prefix", name_prefix) pulumi.set(__self__, "schema", schema) if id is not None: pulumi.set(__self__, "id", id) if kinesis_firehose is not None: pulumi.set(__self__, "kinesis_firehose", kinesis_firehose) if kinesis_stream is not None: pulumi.set(__self__, "kinesis_stream", kinesis_stream) if parallelism is not None: pulumi.set(__self__, "parallelism", parallelism) if processing_configuration is not None: pulumi.set(__self__, "processing_configuration", processing_configuration) if starting_position_configurations is not None: pulumi.set(__self__, "starting_position_configurations", starting_position_configurations) if stream_names is not None: pulumi.set(__self__, "stream_names", stream_names) @property @pulumi.getter(name="namePrefix") def name_prefix(self) -> pulumi.Input[str]: """ The Name Prefix to use when creating an in-application stream. """ return pulumi.get(self, "name_prefix") @name_prefix.setter def name_prefix(self, value: pulumi.Input[str]): pulumi.set(self, "name_prefix", value) @property @pulumi.getter def schema(self) -> pulumi.Input['AnalyticsApplicationInputsSchemaArgs']: """ The Schema format of the data in the streaming source. See Source Schema below for more details. """ return pulumi.get(self, "schema") @schema.setter def schema(self, value: pulumi.Input['AnalyticsApplicationInputsSchemaArgs']): pulumi.set(self, "schema", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ The ARN of the Kinesis Analytics Application. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter(name="kinesisFirehose") def kinesis_firehose(self) -> Optional[pulumi.Input['AnalyticsApplicationInputsKinesisFirehoseArgs']]: """ The Kinesis Firehose configuration for the streaming source. Conflicts with `kinesis_stream`. See Kinesis Firehose below for more details. """ return pulumi.get(self, "kinesis_firehose") @kinesis_firehose.setter def kinesis_firehose(self, value: Optional[pulumi.Input['AnalyticsApplicationInputsKinesisFirehoseArgs']]): pulumi.set(self, "kinesis_firehose", value) @property @pulumi.getter(name="kinesisStream") def kinesis_stream(self) -> Optional[pulumi.Input['AnalyticsApplicationInputsKinesisStreamArgs']]: """ The Kinesis Stream configuration for the streaming source. Conflicts with `kinesis_firehose`. See Kinesis Stream below for more details. """ return pulumi.get(self, "kinesis_stream") @kinesis_stream.setter def kinesis_stream(self, value: Optional[pulumi.Input['AnalyticsApplicationInputsKinesisStreamArgs']]): pulumi.set(self, "kinesis_stream", value) @property @pulumi.getter def parallelism(self) -> Optional[pulumi.Input['AnalyticsApplicationInputsParallelismArgs']]: """ The number of Parallel in-application streams to create. See Parallelism below for more details. """ return pulumi.get(self, "parallelism") @parallelism.setter def parallelism(self, value: Optional[pulumi.Input['AnalyticsApplicationInputsParallelismArgs']]): pulumi.set(self, "parallelism", value) @property @pulumi.getter(name="processingConfiguration") def processing_configuration(self) -> Optional[pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationArgs']]: """ The Processing Configuration to transform records as they are received from the stream. See Processing Configuration below for more details. """ return pulumi.get(self, "processing_configuration") @processing_configuration.setter def processing_configuration(self, value: Optional[pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationArgs']]): pulumi.set(self, "processing_configuration", value) @property @pulumi.getter(name="startingPositionConfigurations") def starting_position_configurations(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsStartingPositionConfigurationArgs']]]]: """ The point at which the application starts processing records from the streaming source. See Starting Position Configuration below for more details. """ return pulumi.get(self, "starting_position_configurations") @starting_position_configurations.setter def starting_position_configurations(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsStartingPositionConfigurationArgs']]]]): pulumi.set(self, "starting_position_configurations", value) @property @pulumi.getter(name="streamNames") def stream_names(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "stream_names") @stream_names.setter def stream_names(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "stream_names", value) @pulumi.input_type class AnalyticsApplicationInputsKinesisFirehoseArgs: def __init__(__self__, *, resource_arn: pulumi.Input[str], role_arn: pulumi.Input[str]): """ :param pulumi.Input[str] resource_arn: The ARN of the Kinesis Firehose delivery stream. :param pulumi.Input[str] role_arn: The ARN of the IAM Role used to access the stream. """ pulumi.set(__self__, "resource_arn", resource_arn) pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> pulumi.Input[str]: """ The ARN of the Kinesis Firehose delivery stream. """ return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self, "resource_arn", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM Role used to access the stream. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @pulumi.input_type class AnalyticsApplicationInputsKinesisStreamArgs: def __init__(__self__, *, resource_arn: pulumi.Input[str], role_arn: pulumi.Input[str]): """ :param pulumi.Input[str] resource_arn: The ARN of the Kinesis Stream. :param pulumi.Input[str] role_arn: The ARN of the IAM Role used to access the stream. """ pulumi.set(__self__, "resource_arn", resource_arn) pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> pulumi.Input[str]: """ The ARN of the Kinesis Stream. """ return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self, "resource_arn", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM Role used to access the stream. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @pulumi.input_type class AnalyticsApplicationInputsParallelismArgs: def __init__(__self__, *, count: Optional[pulumi.Input[int]] = None): """ :param pulumi.Input[int] count: The Count of streams. """ if count is not None: pulumi.set(__self__, "count", count) @property @pulumi.getter def count(self) -> Optional[pulumi.Input[int]]: """ The Count of streams. """ return pulumi.get(self, "count") @count.setter def count(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "count", value) @pulumi.input_type class AnalyticsApplicationInputsProcessingConfigurationArgs: def __init__(__self__, *, lambda_: pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationLambdaArgs']): """ :param pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationLambdaArgs'] lambda_: The Lambda function configuration. See Lambda below for more details. """ pulumi.set(__self__, "lambda_", lambda_) @property @pulumi.getter(name="lambda") def lambda_(self) -> pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationLambdaArgs']: """ The Lambda function configuration. See Lambda below for more details. """ return pulumi.get(self, "lambda_") @lambda_.setter def lambda_(self, value: pulumi.Input['AnalyticsApplicationInputsProcessingConfigurationLambdaArgs']): pulumi.set(self, "lambda_", value) @pulumi.input_type class AnalyticsApplicationInputsProcessingConfigurationLambdaArgs: def __init__(__self__, *, resource_arn: pulumi.Input[str], role_arn: pulumi.Input[str]): """ :param pulumi.Input[str] resource_arn: The ARN of the Lambda function. :param pulumi.Input[str] role_arn: The ARN of the IAM Role used to access the Lambda function. """ pulumi.set(__self__, "resource_arn", resource_arn) pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> pulumi.Input[str]: """ The ARN of the Lambda function. """ return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self, "resource_arn", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM Role used to access the Lambda function. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @pulumi.input_type class AnalyticsApplicationInputsSchemaArgs: def __init__(__self__, *, record_columns: pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsSchemaRecordColumnArgs']]], record_format: pulumi.Input['AnalyticsApplicationInputsSchemaRecordFormatArgs'], record_encoding: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[Sequence[pulumi.Input['AnalyticsApplicationInputsSchemaRecordColumnArgs']]] record_columns: The Record Column mapping for the streaming source data element. See Record Columns below for more details. :param pulumi.Input['AnalyticsApplicationInputsSchemaRecordFormatArgs'] record_format: The Record Format and mapping information to schematize a record. See Record Format below for more details. :param pulumi.Input[str] record_encoding: The Encoding of the record in the streaming source. """ pulumi.set(__self__, "record_columns", record_columns) pulumi.set(__self__, "record_format", record_format) if record_encoding is not None: pulumi.set(__self__, "record_encoding", record_encoding) @property
# Copyright 2019 <NAME>. All rights reserved. # Use of this source code is governed by the GNU-GPL # license that can be found in the LICENSE file. # Date created: July 21, 2019 import json import os import platform import random import shutil import subprocess import time import _thread import threading from os.path import abspath, dirname, isfile, join import flask import markdown from markdown.extensions import Extension from markdown.inlinepatterns import Pattern __all__ = [ 'Cache', 'CsvReader', 'CsvWriter', 'Logger', 'Singleton', 'clear', 'cur_dir', 'get_json', 'parse_csv', 'ran_num', 'read_file', 'render_markdown', 'render_markdown_from_file', 'render_markdown_for_flask', 'render_markdown_from_file_for_flask', 'timestamp', 'save_json', 'write_csv', 'write_file' ] EMOJI_RE = r'(:)(.*?):' def read_file(file): """ Reads a file. Parameters: file: Path to the file. Returns: The content of the file. """ with open(file, 'r') as f: return f.read() def write_file(file, data): """ Writes data to a file at once. Parameters: file: Path to the file. data: Data to write. """ with open(file, 'w') as f: f.write(data) def clear(): """ Clears the console platform-specific. """ p = platform.system() if p == 'Windows': subprocess.call('cls', shell=False) elif p in ['Linux', 'Darwin']: subprocess.call('clear', shell=False) def cur_dir(file): """ Gets the current directory of a file. Arguments: file: File to get the directory from. Returns: The directory. """ return dirname(os.path.realpath(file)) def ran_num(length=1): """ Random string number generator. This function generates a string with a custom length that contains random digits and characters from a-f. Parameters: length: Number of places the number should have. Returns: A string with random digits and characters. """ number = '' for z in range(length): r = random.randint(0, 15) if 0 <= r <= 9: number += str(r) elif r == 10: number += 'a' elif r == 11: number += 'b' elif r == 12: number += 'c' elif r == 13: number += 'd' elif random == 14: number += 'e' elif r == 15: number += 'f' return number def timestamp(): """ Creates the local time as a string of the format <YYYY-MM-DD:HH-mm-SS>. Returns: The local time as a string. """ t = time.localtime() return '{}-{}-{}:{}-{}-{}'.format(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec) def get_json(file, path=''): """ Reads and parses a JSON file. Parameters: file: The name of the JSON file to read. path: The path to the JSON file, if it is not in the working directory. Returns: A dict containing the JSON file's content. """ with open(os.path.join(path, file), 'r', encoding='UTF-8') as j: return json.load(j) def save_json(file, data, path=''): """ Writes data to a JSON file. Parameters: file: The name of the JSON file to write to. data: The object to write. path: The path to the JSON file, if it is not in the working directory. """ if not os.path.exists(path): os.mkdir(path) with open(os.path.join(path, file), 'w', encoding='UTF-8') as j: json.dump(data, j, indent=4) class EmojiExtension(Extension): """ Original version can be found here: https://github.com/bytefish/MarkdownEmojiExtension. """ def __init__(self, **kwargs): self.config = { 'emojis': [[], 'List of Emojis.'] } self.as_dictionary = lambda emojis: dict((emoji['key'], emoji['value']) for emoji in emojis) super(EmojiExtension, self).__init__(**kwargs) def extendMarkdown(self, md): emojis = self.as_dictionary(self.getConfig('emojis')) pattern = EmojiInlinePattern(EMOJI_RE, emojis) md.inlinePatterns.add('emoji', pattern, '<not_strong') @staticmethod def create_from_json(): return EmojiExtension(emojis=get_json('emojis.json', path=abspath(__file__).replace('__init__.py', ''))) class EmojiInlinePattern(Pattern): def __init__(self, pattern, emojis): super(EmojiInlinePattern, self).__init__(pattern) self.emojis = emojis def handleMatch(self, m): emoji_key = m.group(3) return self.emojis.get(emoji_key, '') def render_markdown(markdown_string=''): """ Renders a string containing markdown to an HTML string. Parameters: markdown_string: A string containing markdown. Returns: The rendered HTML. """ return markdown.markdown(markdown_string, extensions=[EmojiExtension.create_from_json()]) def render_markdown_for_flask(markdown_string=''): """ Renders a string containing markdown to an HTML string and formats it for Flask. Parameters: markdown_string: A string containing markdown. Returns: The rendered HTML for Flask. """ return flask.Markup(render_markdown(markdown_string)) def render_markdown_from_file(file): """ Renders a file containing markdown to an HTML string and formats it for Flask. Parameters: file: A file containing markdown. Returns: The rendered HTML for Flask. """ with open(file, 'r', encoding='UTF-8') as f: return render_markdown_for_flask(f.read()) def render_markdown_from_file_for_flask(file): """ Renders a file containing markdown to an HTML string. Parameters: file: A file containing markdown. Returns: The rendered HTML. """ with open(file, 'r', encoding='UTF-8') as f: return render_markdown(f.read()) def parse_csv(input_file, separator=','): """ Parses a CSV-File and stores it at once in a list. Parameters: input_file: CSV-File to read from. separator: Separator of each element; Default: ','. """ r = CsvReader(input_file, separator) data = [] while r.has_next(): data.append(r.pull()) return data def write_csv(output_file, data, separator=','): """ Writes a CSV-File from a list. Parameters: output_file: CSV-File to write to. data: The list of lines to write. separator: Separator of each element; Default: ',' """ w = CsvWriter(output_file, separator) for line in data: w.push(line) class CsvReader: """ Dynamic CSV-Reader. File is read line by line. """ def __init__(self, input_file, separator=','): """ Initialize a new CsvReader. Parameters: input_file: CSV-File to read from. separator: Separator of each element; Default: ','. """ self.file = open(input_file, 'r') self.separator = separator self._line = '' self._input_file = input_file def __del__(self): """ Make sure the file is closed. """ self.file.close() def __str__(self): return '<CSV-File: {}>'.format(self._input_file) def __repr__(self): return '<CSV-File: {}>'.format(self._input_file) def has_next(self): """ Checks if there is a next line in the file. Returns: True, if there is a next line, otherwise False. """ self._line = self.file.readline().strip() return self._line != '' def pull(self): """ Reads the next line. Returns: A list with all elements from that line. """ line_list = [] line_string = '' in_quote = False index = 1 for char in self._line: if char == self.separator and not in_quote: line_list.append(line_string.strip()) line_string = '' elif char == '"': in_quote = not in_quote else: line_string += char index += 1 line_list.append(line_string.strip()) return line_list class CsvWriter: """ Dynamic CSV-Writer. File is written line by line. """ def __init__(self, output_file, separator=','): """ Initialize a new CsvWriter. Parameters: output_file: CSV-File to write to. separator: Separator of each element; Default: ','. """ self.file = open(output_file, 'w') self.separator = separator self._line = '' self._output_file = output_file def __del__(self): """ Make sure the file is closed. """ self.file.close() def __str__(self): return '<CSV-File: {}>'.format(self._output_file) def __repr__(self): return '<CSV-File: {}>'.format(self._output_file) def push(self, line): string = '' for s in line: string += '"' + s + '"' + self.separator self.file.write(string[:len(string) - 1] + '\n') class TangoIcon: """ Represents an icon from the Icon-Set Tango. """ def __init__(self, image, static=''): """ Initializes an icon. Arguments: image: The name of the image to display. static: If set to <True>, the image gets copied to <static_path>. static: If <static> is set to <True>, the image gets copied to this path. """ self._image = image if static != '': self.make_static(static) def make_static(self, path): """ Copies the image to a certain destination. Some applications need static files in a special directory (e.g. Flask). Arguments: path: The absolute path, the image should be copied to. """ img = join(path, self.image) if not isfile(img): shutil.copyfile(self.path, img) @property def image(self): """ Returns: The name of the image. """ return self._image @property def path(self): """ Returns: The absolute path to the requested icon. """ return os.path.join(abspath(__file__).replace('__init__.py', ''), 'resources/{}'.format(self.image)) class Singleton(type): """ When this class is the metaclass of another class, this would be a singleton. """ _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class Cache(metaclass=Singleton): """ Implements a simple, thread-safe cache by using a dict. """ def __init__(self, ttl=0): self.__data = {} self.__lock = threading.Lock() _log.info('Initialized cache with ttl {}.'.format(ttl)) _thread.start_new_thread(_ttl_master, (ttl,)) def __del__(self): with self.__lock: self.__data = {} def __setitem__(self, key, value): with self.__lock: self.__data[key] = value def __getitem__(self, item): with self.__lock: return self.__data[item] def __contains__(self, item): with self.__lock: return item in self.__data def pop(self, key, default=None): try: with self.__lock: item = self.__data[key] del self.__data[key] return item except KeyError: return default def get(self, key, default=None): try: with self.__lock: return self.__data[key] except KeyError: return default def keys(self): with self.__lock: return [key for key in self.__data] def values(self): with self.__lock: return [self.__data[key] for key in self.__data] def clear(self): self.__del__() def __str__(self): return str(self.__data) def __repr__(self): return str(self.__data) def __hash__(self): return hash(self.__data) def __eq__(self, other): return self.__data == other def _ttl_master(ttl): if ttl == 0: return time.sleep(ttl) c = Cache() c.clear() _log.info('Deleted cache.') class Logger: """ Implements a simple logger that can print to the terminal or write into a
<gh_stars>0 # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Service for handling the user deletion process.""" from __future__ import absolute_import from __future__ import unicode_literals import datetime import itertools import logging import re from core.domain import auth_services from core.domain import collection_services from core.domain import email_manager from core.domain import exp_fetchers from core.domain import exp_services from core.domain import rights_domain from core.domain import rights_manager from core.domain import taskqueue_services from core.domain import topic_services from core.domain import user_services from core.domain import wipeout_domain from core.platform import models import feconf import python_utils import utils ( app_feedback_report_models, base_models, blog_models, collection_models, config_models, exp_models, feedback_models, question_models, skill_models, story_models, subtopic_models, suggestion_models, topic_models, user_models ) = models.Registry.import_models([ models.NAMES.app_feedback_report, models.NAMES.base_model, models.NAMES.blog, models.NAMES.collection, models.NAMES.config, models.NAMES.exploration, models.NAMES.feedback, models.NAMES.question, models.NAMES.skill, models.NAMES.story, models.NAMES.subtopic, models.NAMES.suggestion, models.NAMES.topic, models.NAMES.user, ]) datastore_services = models.Registry.import_datastore_services() transaction_services = models.Registry.import_transaction_services() bulk_email_services = models.Registry.import_bulk_email_services() WIPEOUT_LOGS_PREFIX = '[WIPEOUT]' PERIOD_AFTER_WHICH_USERNAME_CANNOT_BE_REUSED = datetime.timedelta(weeks=1) def get_pending_deletion_request(user_id): """Return the pending deletion request. Args: user_id: str. The unique ID of the user. Returns: PendingDeletionRequest. The pending deletion request domain object. """ pending_deletion_request_model = ( user_models.PendingDeletionRequestModel.get_by_id(user_id)) return wipeout_domain.PendingDeletionRequest( pending_deletion_request_model.id, pending_deletion_request_model.email, pending_deletion_request_model.normalized_long_term_username, pending_deletion_request_model.deletion_complete, pending_deletion_request_model.pseudonymizable_entity_mappings ) def get_number_of_pending_deletion_requests(): """Get number of pending deletion request. Returns: int. The number of pending deletion requests. """ return user_models.PendingDeletionRequestModel.query().count() def save_pending_deletion_requests(pending_deletion_requests): """Save a list of pending deletion request domain objects as PendingDeletionRequestModel entities in the datastore. Args: pending_deletion_requests: list(PendingDeletionRequest). List of pending deletion request objects to be saved in the datastore. """ user_ids = [request.user_id for request in pending_deletion_requests] pending_deletion_request_models = ( user_models.PendingDeletionRequestModel.get_multi( user_ids, include_deleted=True) ) final_pending_deletion_request_models = [] for deletion_request_model, deletion_request in python_utils.ZIP( pending_deletion_request_models, pending_deletion_requests): deletion_request.validate() deletion_request_dict = { 'email': deletion_request.email, 'normalized_long_term_username': ( deletion_request.normalized_long_term_username), 'deletion_complete': deletion_request.deletion_complete, 'pseudonymizable_entity_mappings': ( deletion_request.pseudonymizable_entity_mappings) } if deletion_request_model is not None: deletion_request_model.populate(**deletion_request_dict) else: deletion_request_dict['id'] = deletion_request.user_id deletion_request_model = user_models.PendingDeletionRequestModel( **deletion_request_dict ) final_pending_deletion_request_models.append(deletion_request_model) user_models.PendingDeletionRequestModel.update_timestamps_multi( final_pending_deletion_request_models) user_models.PendingDeletionRequestModel.put_multi( final_pending_deletion_request_models) def pre_delete_user(user_id): """Prepare user for the full deletion. 1. Mark all the activities that are private and solely owned by the user being deleted as deleted. 2. Disable all the email preferences. 3. Mark the user as to be deleted. 4. Create PendingDeletionRequestModel for the user. Args: user_id: str. The id of the user to be deleted. If the user_id corresponds to a profile user then only that profile is deleted. For a full user, all of its associated profile users are deleted too. """ pending_deletion_requests = [] user_settings = user_services.get_user_settings(user_id, strict=True) linked_profile_user_ids = [ user.user_id for user in user_services.get_all_profiles_auth_details_by_parent_user_id(user_id) ] profile_users_settings_list = user_services.get_users_settings( linked_profile_user_ids) for profile_user_settings in profile_users_settings_list: profile_id = profile_user_settings.user_id user_services.mark_user_for_deletion(profile_id) pending_deletion_requests.append( wipeout_domain.PendingDeletionRequest.create_default( profile_id, profile_user_settings.email ) ) if feconf.ROLE_ID_MOBILE_LEARNER not in user_settings.roles: taskqueue_services.defer( taskqueue_services.FUNCTION_ID_REMOVE_USER_FROM_RIGHTS_MODELS, taskqueue_services.QUEUE_NAME_ONE_OFF_JOBS, user_id, ) # Set all the user's email preferences to False in order to disable all # ordinary emails that could be sent to the users. user_services.update_email_preferences( user_id, False, False, False, False) bulk_email_services.permanently_delete_user_from_list( user_settings.email) date_now = datetime.datetime.utcnow() date_before_which_username_should_be_saved = ( date_now - PERIOD_AFTER_WHICH_USERNAME_CANNOT_BE_REUSED) user_services.mark_user_for_deletion(user_id) normalized_long_term_username = ( user_settings.normalized_username if user_settings.created_on < date_before_which_username_should_be_saved else None ) pending_deletion_requests.append( wipeout_domain.PendingDeletionRequest.create_default( user_id, user_settings.email, normalized_long_term_username=normalized_long_term_username ) ) save_pending_deletion_requests(pending_deletion_requests) def delete_users_pending_to_be_deleted(): """Taskqueue service method for deleting users that are pending to be deleted. Once these users are deleted, the job results will be mailed to the admin. """ pending_deletion_request_models = ( user_models.PendingDeletionRequestModel.query().fetch()) email_message = 'Results of the User Deletion Cron Job' for request_model in pending_deletion_request_models: pending_deletion_request = get_pending_deletion_request( request_model.id) # The final status of the deletion. Either 'SUCCESS' or 'ALREADY DONE'. deletion_status = run_user_deletion(pending_deletion_request) email_message += '\n-----------------------------------\n' email_message += ( 'PendingDeletionRequestModel ID: %s\n' 'User ID: %s\n' 'Deletion status: %s\n' ) % ( request_model.id, pending_deletion_request.user_id, deletion_status ) email_subject = 'User Deletion job result' if feconf.CAN_SEND_EMAILS: email_manager.send_mail_to_admin(email_subject, email_message) def check_completion_of_user_deletion(): """Taskqueue service method for checking the completion of user deletion. It checks if all models do not contain the user ID of the deleted user in their fields. If any field contains the user ID of the deleted user, the deletion_complete is set to False, so that later the delete_users_pending_to_be_deleted will be run on that user again. If all the fields do not contain the user ID of the deleted user, the final email announcing that the deletion was completed is sent, and the deletion request is deleted. """ pending_deletion_request_models = ( user_models.PendingDeletionRequestModel.query().fetch()) email_message = 'Results of the Completion of User Deletion Cron Job' for request_model in pending_deletion_request_models: pending_deletion_request = get_pending_deletion_request( request_model.id) # The final status of the completion. Either 'NOT DELETED', 'SUCCESS', # or 'FAILURE'. completion_status = run_user_deletion_completion( pending_deletion_request) if feconf.CAN_SEND_EMAILS: email_message += '\n-----------------------------------\n' email_message += ( 'PendingDeletionRequestModel ID: %s\n' 'User ID: %s\n' 'Completion status: %s\n' ) % ( request_model.id, pending_deletion_request.user_id, completion_status ) email_subject = 'Completion of User Deletion job result' email_manager.send_mail_to_admin(email_subject, email_message) def run_user_deletion(pending_deletion_request): """Run the user deletion. Args: pending_deletion_request: PendingDeletionRequest. The domain object for the user being deleted. Returns: str. The outcome of the deletion. """ if pending_deletion_request.deletion_complete: return wipeout_domain.USER_DELETION_ALREADY_DONE else: delete_user(pending_deletion_request) pending_deletion_request.deletion_complete = True save_pending_deletion_requests([pending_deletion_request]) return wipeout_domain.USER_DELETION_SUCCESS def run_user_deletion_completion(pending_deletion_request): """Run the user deletion verification. Args: pending_deletion_request: PendingDeletionRequest. The domain object for the user being verified. Returns: str. The outcome of the verification. """ # If deletion_complete is False the delete_users_pending_to_be_deleted # wasn't yet run for the user. The verification will be done in the next # run of check_completion_of_user_deletion. if not pending_deletion_request.deletion_complete: return wipeout_domain.USER_VERIFICATION_NOT_DELETED elif verify_user_deleted(pending_deletion_request.user_id): _delete_models_with_delete_at_end_policy( pending_deletion_request.user_id) user_models.DeletedUserModel( id=pending_deletion_request.user_id ).put() if pending_deletion_request.normalized_long_term_username is not None: user_services.save_deleted_username( pending_deletion_request.normalized_long_term_username) if feconf.CAN_SEND_EMAILS: email_manager.send_account_deleted_email( pending_deletion_request.user_id, pending_deletion_request.email ) return wipeout_domain.USER_VERIFICATION_SUCCESS else: if feconf.CAN_SEND_EMAILS: email_manager.send_account_deletion_failed_email( pending_deletion_request.user_id, pending_deletion_request.email ) pending_deletion_request.deletion_complete = False save_pending_deletion_requests([pending_deletion_request]) return wipeout_domain.USER_VERIFICATION_FAILURE def _delete_models_with_delete_at_end_policy(user_id): """Delete auth and user models with deletion policy 'DELETE_AT_END'. Args: user_id: str. The unique ID of the user that is being deleted. """ for model_class in models.Registry.get_storage_model_classes( [models.NAMES.auth, models.NAMES.user]): policy = model_class.get_deletion_policy() if policy == base_models.DELETION_POLICY.DELETE_AT_END: model_class.apply_deletion_policy(user_id) def delete_user(pending_deletion_request): """Delete all the models for user specified in pending_deletion_request on the basis of the user role. Args: pending_deletion_request: PendingDeletionRequest. The pending deletion request object for which to delete or pseudonymize all the models. """ user_id = pending_deletion_request.user_id user_roles = user_models.UserSettingsModel.get_by_id(user_id).roles auth_services.delete_external_auth_associations(user_id) _delete_models(user_id, models.NAMES.auth) _delete_models(user_id, models.NAMES.user) _pseudonymize_config_models(pending_deletion_request) _delete_models(user_id, models.NAMES.feedback) _delete_models(user_id, models.NAMES.improvements) if feconf.ROLE_ID_MOBILE_LEARNER not in user_roles: remove_user_from_activities_with_associated_rights_models( pending_deletion_request.user_id) _pseudonymize_app_feedback_report_models(pending_deletion_request) _pseudonymize_feedback_models(pending_deletion_request) _pseudonymize_suggestion_models(pending_deletion_request) _pseudonymize_activity_models_without_associated_rights_models( pending_deletion_request, models.NAMES.question, question_models.QuestionSnapshotMetadataModel, question_models.QuestionCommitLogEntryModel, 'question_id') _pseudonymize_activity_models_without_associated_rights_models( pending_deletion_request, models.NAMES.skill, skill_models.SkillSnapshotMetadataModel, skill_models.SkillCommitLogEntryModel, 'skill_id') _pseudonymize_activity_models_without_associated_rights_models( pending_deletion_request, models.NAMES.story, story_models.StorySnapshotMetadataModel, story_models.StoryCommitLogEntryModel, 'story_id') _pseudonymize_activity_models_without_associated_rights_models( pending_deletion_request, models.NAMES.subtopic, subtopic_models.SubtopicPageSnapshotMetadataModel, subtopic_models.SubtopicPageCommitLogEntryModel, 'subtopic_page_id') _pseudonymize_activity_models_with_associated_rights_models( pending_deletion_request, models.NAMES.exploration, exp_models.ExplorationSnapshotMetadataModel, exp_models.ExplorationRightsSnapshotMetadataModel, exp_models.ExplorationRightsSnapshotContentModel, exp_models.ExplorationCommitLogEntryModel, 'exploration_id', feconf.EXPLORATION_RIGHTS_CHANGE_ALLOWED_COMMANDS, ('owner_ids', 'editor_ids', 'voice_artist_ids', 'viewer_ids')) _remove_user_id_from_contributors_in_summary_models( user_id, exp_models.ExpSummaryModel) _pseudonymize_activity_models_with_associated_rights_models( pending_deletion_request, models.NAMES.collection, collection_models.CollectionSnapshotMetadataModel, collection_models.CollectionRightsSnapshotMetadataModel, collection_models.CollectionRightsSnapshotContentModel, collection_models.CollectionCommitLogEntryModel, 'collection_id', feconf.COLLECTION_RIGHTS_CHANGE_ALLOWED_COMMANDS, ('owner_ids', 'editor_ids', 'voice_artist_ids', 'viewer_ids')) _remove_user_id_from_contributors_in_summary_models( user_id, collection_models.CollectionSummaryModel) _pseudonymize_activity_models_with_associated_rights_models( pending_deletion_request, models.NAMES.topic, topic_models.TopicSnapshotMetadataModel, topic_models.TopicRightsSnapshotMetadataModel, topic_models.TopicRightsSnapshotContentModel, topic_models.TopicCommitLogEntryModel, 'topic_id', feconf.TOPIC_RIGHTS_CHANGE_ALLOWED_COMMANDS, ('manager_ids',)) _pseudonymize_blog_post_models(pending_deletion_request) _delete_models(user_id, models.NAMES.email) def verify_user_deleted(user_id, include_delete_at_end_models=False): """Verify that all the models for user specified in pending_deletion_request are deleted. Args: user_id: str. The ID of the user whose deletion should be verified. include_delete_at_end_models: bool. Whether to skip models that have deletion policy equal to 'DELETE_AT_END'. Returns: bool. True if all the models were correctly deleted, False otherwise. """ if not auth_services.verify_external_auth_associations_are_deleted(user_id): return False policies_not_to_verify = [ base_models.DELETION_POLICY.KEEP, base_models.DELETION_POLICY.NOT_APPLICABLE ] if not include_delete_at_end_models: policies_not_to_verify.append( base_models.DELETION_POLICY.DELETE_AT_END) user_is_verified = True for model_class in models.Registry.get_all_storage_model_classes(): if ( model_class.get_deletion_policy() not in policies_not_to_verify and model_class.has_reference_to_user_id(user_id) ): logging.error( '%s %s is not deleted for user with ID %s' % ( WIPEOUT_LOGS_PREFIX, model_class.__name__, user_id)) user_is_verified = False return user_is_verified def remove_user_from_activities_with_associated_rights_models(user_id): """Remove the user from exploration, collection, and topic models. Args: user_id: str. The ID of the user for which to remove the user from explorations, collections, and topics. """ subscribed_exploration_summaries = ( exp_fetchers.get_exploration_summaries_where_user_has_role(user_id)) explorations_to_be_deleted_ids = [ exp_summary.id for exp_summary in subscribed_exploration_summaries if exp_summary.is_private() and exp_summary.is_solely_owned_by_user(user_id) ] exp_services.delete_explorations( user_id, explorations_to_be_deleted_ids, force_deletion=True) # Release ownership of explorations that are public and are solely owned # by the to-be-deleted user. explorations_to_release_ownership_ids = [ exp_summary.id for exp_summary in subscribed_exploration_summaries if not exp_summary.is_private() and exp_summary.is_solely_owned_by_user(user_id) and not exp_summary.community_owned ] for exp_id in explorations_to_release_ownership_ids: rights_manager.release_ownership_of_exploration( user_services.get_system_user(), exp_id) explorations_to_remove_user_from_ids = [ exp_summary.id for exp_summary in subscribed_exploration_summaries if not exp_summary.is_solely_owned_by_user(user_id)
0, (1, 1))/3 + sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled( 0, 0, (1, 1))/3 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 - sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (1, 1)) # j1=3/2, j2=1/2 assert couple(TensorProduct(JzKet(S(3)/2, S(3)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(2, 2, (S(3)/2, S(1)/2)) assert couple(TensorProduct(JzKet(S(3)/2, S(3)/2), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(3)*JzKetCoupled( 1, 1, (S(3)/2, S(1)/2))/2 + JzKetCoupled(2, 1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -JzKetCoupled(1, 1, (S( 3)/2, S(1)/2))/2 + sqrt(3)*JzKetCoupled(2, 1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(2, 0, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(2, 0, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(1, -1, (S( 3)/2, S(1)/2))/2 + sqrt(3)*JzKetCoupled(2, -1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(3)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(3)*JzKetCoupled(1, -1, (S(3)/2, S(1)/2))/2 + \ JzKetCoupled(2, -1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(3)/2), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(2, -2, (S(3)/2, S(1)/2)) def test_couple_3_states_numerical(): # Default coupling # j1=1/2,j2=1/2,j3=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(S(3)/2, S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ JzKetCoupled(S(3)/2, -S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2)) ) # j1=S(1)/2, j2=S(1)/2, j3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) ) # j1=S(1)/2, j2=1, j3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled( S(5)/2, S(5)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 2*sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1,
<reponame>NECOTIS/CRITICAL # Copyright (c) 2018, NECOTIS # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Authors: <NAME>, <NAME> (advisor) # Date: April 18th, 2019 # Organization: Groupe de recherche en Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), # Université de Sherbrooke, Canada import logging import random import unittest import numpy as np import matplotlib.pyplot as plt from brian2.units.stdunits import ms, Hz from brian2.units.allunits import second from brian2.input.poissongroup import PoissonGroup from brian2.synapses.synapses import Synapses from brian2.monitors.statemonitor import StateMonitor from brian2.core.clocks import defaultclock from brian2.core.network import Network, scheduling_summary from brian2.monitors.spikemonitor import SpikeMonitor from critical.microcircuit import Microcircuit, createNeuronGroup, createCriticalSynapses from brian2.core.preferences import prefs prefs.codegen.target = 'numpy' # use the Python fallback logger = logging.getLogger(__name__) class TestMicrocircuit(unittest.TestCase): def test_init(self): for connectivity in ['small-world', 'random']: microcircuit = Microcircuit( connectivity, minicolumnShape=[2, 2, 2]) microcircuit.printConnectivityStats() fig = microcircuit.draw3D(showAxisLabels=True) plt.ion() plt.show() plt.draw() plt.pause(1.0) plt.close(fig) def test_neural_dynamic(self): G = createNeuronGroup(N=1, refractory=15 * ms, tau=50 * ms, vti=0.1) # Input to the network P = PoissonGroup(1, 40 * Hz) S = Synapses(P, G, on_pre='v += 0.2') S.connect() M = StateMonitor(G, variables=True, record=True) defaultclock.dt = 0.5 * ms net = Network(G, S, P, M) net.run(1400 * ms) fig = plt.figure() plt.subplot(311) plt.plot(M.t / ms, M.v.T) plt.ylabel('V') plt.xlabel('Time [ms]') plt.subplot(312) plt.plot(M.t / ms, M.vt.T) plt.ylabel('Threshold') plt.xlabel('Time [ms]') plt.subplot(313) plt.plot(M.t / ms, 1.0 - M.not_refractory.T) plt.ylabel('Refractoriness') plt.yticks([0.0, 1.0]) plt.xlabel('Time [ms]') plt.tight_layout() plt.ion() plt.show() plt.draw() plt.pause(100.0) plt.close(fig) def test_synapse_dynamic_single(self): G = createNeuronGroup(N=2) G.c_out_ref = 1.0 S = createCriticalSynapses(G) S.connect(i=0, j=1) S.w = 0.5 S.alpha = 0.1 # Input to the network P = PoissonGroup(1, 40 * Hz) Si = Synapses(P, G, model='w : 1', on_pre='''v_post += w * int(not_refractory_post) c_in_tot_post += w * int(not_refractory_post)''') Si.connect(i=0, j=0) Si.w = 1.0 M = SpikeMonitor(G) Mg = StateMonitor(G, variables=True, record=True, when='synapses', order=4) Ms = StateMonitor(S, variables=True, record=True, when='synapses', order=4) defaultclock.dt = 1 * ms net = Network(G, S, P, Si, M, Ms, Mg) logger.info(scheduling_summary(net)) duration = 10 * second net.run(duration) plt.figure() plt.subplot(221) plt.plot(M.t / ms, M.i, '.') plt.ylabel('Neurons') plt.yticks([0, 1], ['pre', 'post']) plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.ylim([-0.1, 1.1]) plt.subplot(222) plt.plot(Mg.t / ms, Mg[0].v.T, label='pre') plt.plot(Mg.t / ms, Mg[1].v.T, label='post') plt.ylabel('v') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(223) plt.plot(Ms.t / ms, Ms.w.T) plt.ylabel('w') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.subplot(224) plt.plot(Mg.t / ms, Mg[0].cbf.T, label='pre') plt.ylabel('cbf') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() fig = plt.figure() plt.subplot(211) plt.plot(Mg.t / ms, Mg[1].c_in_tot.T, label='post') plt.ylabel('c_in_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(212) plt.plot(Mg.t / ms, Mg[0].c_out_tot.T, label='pre') plt.ylabel('c_out_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() plt.ion() plt.show() plt.draw() plt.pause(100.0) plt.close(fig) def test_synapse_dynamic_dual(self): G = createNeuronGroup(N=3) G.c_out_ref = 1.0 S = createCriticalSynapses(G) S.connect(i=[0, 1], j=[2, 2]) S.w = 0.5 S.alpha = 0.1 # Input to the network P = PoissonGroup(2, [20 * Hz, 40 * Hz]) Si = Synapses(P, G, model='w : 1', on_pre='''v_post += w * int(not_refractory_post) c_in_tot_post += w * int(not_refractory_post)''') Si.connect(i=[0, 1], j=[0, 1]) Si.w = 0.5 M = SpikeMonitor(G) Mg = StateMonitor(G, variables=True, record=True, when='synapses', order=4) Ms = StateMonitor(S, variables=True, record=True, when='synapses', order=4) defaultclock.dt = 1 * ms net = Network(G, S, P, Si, M, Ms, Mg) logger.info(scheduling_summary(net)) duration = 30 * second net.run(duration) plt.figure() plt.subplot(221) plt.plot(M.t / ms, M.i, '.') plt.ylabel('Neurons') plt.yticks([0, 1, 2], ['pre1', 'pre2', 'post']) plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.ylim([-0.1, 2.1]) plt.subplot(222) plt.plot(Mg.t / ms, Mg[0].v.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].v.T, label='pre2') plt.plot(Mg.t / ms, Mg[2].v.T, label='post') plt.ylabel('v') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(223) plt.plot(Ms.t / ms, Ms.w.T) plt.ylabel('w') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.subplot(224) plt.plot(Mg.t / ms, Mg[0].cbf.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].cbf.T, label='pre2') plt.ylabel('cbf') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() fig = plt.figure() plt.subplot(211) plt.plot(Mg.t / ms, Mg[2].c_in_tot.T, label='post') plt.ylabel('c_in_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(212) plt.plot(Mg.t / ms, Mg[0].c_out_tot.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].c_out_tot.T, label='pre2') plt.ylabel('c_out_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() plt.ion() plt.show() plt.draw() plt.pause(100.0) plt.close(fig) def test_synapse_dynamic_multi(self): G = createNeuronGroup(N=4) G.c_out_ref = 1.0 S = createCriticalSynapses(G) S.connect(i=[0, 1, 0, 1], j=[2, 2, 3, 3]) S.w = 0.5 S.alpha = 0.1 # Input to the network P = PoissonGroup(2, [40 * Hz, 40 * Hz]) Si = Synapses(P, G, model='w : 1', on_pre='''v_post += w * int(not_refractory_post) c_in_tot_post += w * int(not_refractory_post)''') Si.connect(i=[0, 1], j=[0, 1]) Si.w = 0.5 M = SpikeMonitor(G) Mg = StateMonitor(G, variables=True, record=True, when='synapses', order=4) Ms = StateMonitor(S, variables=True, record=True, when='synapses', order=4) defaultclock.dt = 1 * ms net = Network(G, S, P, Si, M, Ms, Mg) logger.info(scheduling_summary(net)) duration = 30 * second net.run(duration) plt.figure() plt.subplot(221) plt.plot(M.t / ms, M.i, '.') plt.ylabel('Neurons') plt.yticks([0, 1, 2, 3], ['pre1', 'pre2', 'post1', 'post2']) plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.ylim([-0.1, 3.1]) plt.subplot(222) plt.plot(Mg.t / ms, Mg[0].v.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].v.T, label='pre2') plt.plot(Mg.t / ms, Mg[2].v.T, label='post1') plt.plot(Mg.t / ms, Mg[3].v.T, label='post2') plt.ylabel('v') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(223) plt.plot(Ms.t / ms, Ms.w.T) plt.ylabel('w') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.subplot(224) plt.plot(Mg.t / ms, Mg[0].cbf.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].cbf.T, label='pre2') plt.ylabel('cbf') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() fig = plt.figure() plt.subplot(211) plt.plot(Mg.t / ms, Mg[2].c_in_tot.T, label='post1') plt.plot(Mg.t / ms, Mg[3].c_in_tot.T, label='post2') plt.ylabel('c_in_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.subplot(212) plt.plot(Mg.t / ms, Mg[0].c_out_tot.T, label='pre1') plt.plot(Mg.t / ms, Mg[1].c_out_tot.T, label='pre2') plt.ylabel('c_out_tot') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.legend() plt.tight_layout() plt.ion() plt.show() plt.draw() plt.pause(100.0) plt.close(fig) def test_synapse_dynamic_complex(self): # NOTE: spontaneous activity is necessary if the weights are small at the beginning of the simulation. # Otherwise, the learning rule has no opportunity to update the # weights. G = createNeuronGroup(N=64, srate=1 * Hz) G.c_out_ref = 0.5 S = createCriticalSynapses(G) S.connect(condition='i != j', p=0.1) S.w = 0.1 + 0.5 * np.random.uniform(size=len(S)) S.alpha = 0.1 # Input to the network nbInputs = 8 P = PoissonGroup(nbInputs, np.random.uniform( low=20.0, high=50.0, size=(nbInputs,)) * Hz) Si = Synapses(P, G, model='w : 1', on_pre='''v_post += w * int(not_refractory_post) c_in_tot_post += w * int(not_refractory_post)''') Si.connect(i=np.arange(nbInputs), j=np.random.permutation( np.arange(len(G)))[:nbInputs]) Si.w = 0.5 M = SpikeMonitor(G) Mg = StateMonitor(G, variables=True, record=True, when='synapses', order=4) Ms = StateMonitor(S, variables=True, record=True, when='synapses', order=4) defaultclock.dt = 1 * ms net = Network(G, S, P, Si, M, Ms, Mg) logger.info(scheduling_summary(net)) duration = 120 * second net.run(duration) plt.figure() plt.subplot(211) plt.plot(M.t / ms, M.i, '.') plt.ylabel('Neurons') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.subplot(212) plt.plot(Ms.t / ms, Ms.w.T) plt.ylabel('Weight') plt.xlabel('Time [ms]') plt.xlim([0.0, duration / ms]) plt.tight_layout() fig = plt.figure() meanCbf = np.mean(Mg.cbf.T, axis=-1) stdCbf = np.std(Mg.cbf.T, axis=-1) plt.plot(Mg.t / ms, meanCbf, color='#1B2ACC') plt.fill_between(Mg.t / ms, meanCbf - stdCbf, meanCbf + stdCbf, alpha=0.5, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True) plt.ylabel('cbf') plt.xlabel('Time [ms]') plt.ion() plt.show() plt.draw() plt.pause(100.0) plt.close(fig) def test_microcircuit(self): # Create the microcircuit # NOTE: p_max is chosen so to have an out-degree of N=16 m = Microcircuit(connectivity='small-world', macrocolumnShape=[ 2, 2, 2],
allowed. Scalar (=non-array) properties may have a value of NULL (= `None`), any primitive CIM type, reference type, and string type with embedded instance or embedded object. Array properties may be Null or may have elements with a value of NULL, any primitive CIM type, and string type with embedded instance or embedded object. Reference types are not allowed in property arrays in CIM, as per DMTF DSP0004. :Ivariables: ... All parameters of `__init__` are set as instance variables. """ def __init__(self, name, value, _type=None, class_origin=None, array_size=None, propagated=None, is_array=None, reference_class=None, qualifiers=None, embedded_object=None): """ Initialize the `CIMProperty` object. This function infers optional arguments that are not specified (for example, it infers `type` from the Python type of `value` and other information). If the specified arguments are inconsistent, an exception is raised. If an optional argument is needed for some reason, an exception is raised. :Parameters: name : `unicode` or UTF-8 encoded `str` Name of the property. Must not be `None`. value Value of the property (interpreted as actual value when the property object is used in an instance, and as default value when it is used in a class). For valid types for CIM values, see `cim_types`. type : string Name of the CIM type of the property (e.g. `'uint8'`). `None` means that the argument is unspecified, causing the corresponding instance variable to be inferred. An exception is raised if it cannot be inferred. class_origin : `unicode` or UTF-8 encoded `str` The CIM class origin of the property (the name of the most derived class that defines or overrides the property in the class hierarchy of the class owning the property). `None` means that class origin information is not available. array_size : `int` The size of the array property, for fixed-size arrays. `None` means that the array property has variable size. propagated : `unicode` or UTF-8 encoded `str` The CIM *propagated* attribute of the property (the effective value of the `Propagated` qualifier of the property, which is a string that specifies the name of the source property from which the property value should be propagated). `None` means that propagation information is not available. is_array : `bool` A boolean indicating whether the property is an array (`True`) or a scalar (`False`). `None` means that the argument is unspecified, causing the corresponding instance variable to be inferred from the `value` parameter, and if that is `None` it defaults to `False` (scalar). reference_class : `unicode` or UTF-8 encoded `str` The name of the referenced class, for reference properties. `None` means that the argument is unspecified, causing the corresponding instance variable to be inferred. An exception is raised if it cannot be inferred. qualifiers : `dict` or `NocaseDict` A dictionary specifying CIM qualifier values. The dictionary keys must be the qualifier names. The dictionary values must be `CIMQualifier` objects specifying the qualifier values. `None` means that there are no qualifier values. In all cases, the `qualifiers` instance variable will be a `NocaseDict` object. embedded_object : string A string value indicating the kind of embedded object represented by the property value. The following values are defined for this argument: `'instance'`: The property is declared with the `EmbeddedInstance` qualifier, indicating that the property value is an embedded instance of a known class name (or Null). `'object'`: The property is declared with the `EmbeddedObject` qualifier, indicating that the property value is an embedded object (instance or class) of which the class name is not known (or Null). `None` means that the argument is unspecified, causing the corresponding instance variable to be inferred. An exception is raised if it cannot be inferred. Examples: * `CIMProperty("MyString", "abc")` -> a string property * `CIMProperty("MyNum", 42, "uint8")` -> a uint8 property * `CIMProperty("MyNum", Uint8(42))` -> a uint8 property * `CIMProperty("MyNumArray", [1,2,3], "uint8")` -> a uint8 array property * `CIMProperty("MyRef", CIMInstanceName(...))` -> a reference property * `CIMProperty("MyEmbObj", CIMClass(...))` -> an embedded object property containing a class * `CIMProperty("MyEmbObj", CIMInstance(...), embedded_object='object')` -> an embedded object property containing an instance * `CIMProperty("MyEmbInst", CIMInstance(...))` -> an embedded instance property * `CIMProperty("MyString", None, "string")` -> a string property that is Null * `CIMProperty("MyNum", None, "uint8")` -> a uint8 property that is Null * `CIMProperty("MyRef", None, reference_class="MyClass")` -> a reference property that is Null * `CIMProperty("MyEmbObj", None, embedded_object='object')` -> an embedded object property that is Null * `CIMProperty("MyEmbInst", None, embedded_object='instance')` -> an embedded instance property that is Null :Raises: :raise TypeError: :raise ValueError: """ # Check `name` if name is None: raise ValueError('Property must have a name') # General checks: if embedded_object not in (None, 'instance', 'object'): raise ValueError('Property %r specifies an invalid ' \ 'embedded_object=%r' % (name, embedded_object)) if is_array not in (None, True, False): raise ValueError('Property %r specifies an invalid ' \ 'is_array=%r' % (name, is_array)) # Set up is_array if isinstance(value, (list, tuple)): is_array = _intended_value(True, None, is_array, 'is_array', 'Property {} has a value that is an array ({})' .format(name, type(value))) elif value is not None: # Scalar value is_array = _intended_value(False, None, is_array, 'is_array', 'Property {} has a value that is a scalar ({})' .format(name, type(value))) else: # Null value if is_array is None: is_array = False # For compatibility with old default if not is_array and array_size is not None: raise ValueError('Scalar property %r specifies array_size=%r ' \ '(must be None)' % (name, array_size)) # Determine type, embedded_object, and reference_class attributes. # Make sure value is CIM-typed. if is_array: # Array property if reference_class is not None: raise ValueError( 'Array property %r cannot specify reference_class' % name) elif value is None or len(value) == 0 or value[0] is None: # Cannot infer from value, look at embedded_object and type if embedded_object == 'instance': msg = 'Array property %r contains embedded instances' % name _type = _intended_value('string', None, _type, 'type', msg) elif embedded_object == 'object': msg = 'Array property %r contains embedded objects' % name _type = _intended_value('string', None, _type, 'type', msg) elif _type is not None: # Leave type as specified, but check it for validity # no need to check type because length is 0 # dummy_type_obj = cim_types.type_from_name(type) pass else: raise ValueError( 'Cannot infer type of array property %r that is ' \ 'Null, empty, or has Null as its first element' % \ name) elif isinstance(value[0], CIMInstance): msg = 'Array property %r contains CIMInstance values' % name # do not check type here # type value could be different class names. embedded_object = _intended_value(('instance', 'object'), None, embedded_object, 'embedded_object', msg) elif isinstance(value[0], CIMClass): msg = 'Array property %r contains CIMClass values' % name _type = _intended_value('string', None, _type, 'type', msg) embedded_object = _intended_value('object', None, embedded_object, 'embedded_object', msg) elif isinstance(value[0], (datetime, timedelta)): value = [cim_types.CIMDateTime(val) if val is not None else val for val in value] msg = 'Array property %r contains datetime or timedelta ' \ 'values' % name _type = _intended_value('datetime', None, _type, 'type', msg) embedded_object = _intended_value(None, None, embedded_object, 'embedded_object', msg) elif _type == 'datetime': value = [cim_types.CIMDateTime(val) if val is not None and not isinstance(val, cim_types.CIMDateTime) else val for val in value] msg = 'Array property %r specifies CIM type %r' % (name, _type) embedded_object = _intended_value(None, None, embedded_object, 'embedded_object', msg) elif _type is None: # Determine simple type from (non-Null) value _type = cim_types.cimtype(value[0]) msg = 'Array property %r contains simple typed values ' \ 'with no CIM type specified' % name embedded_object = _intended_value(None, None, embedded_object, 'embedded_object', msg) else: # type is specified and value (= entire array) is not Null # Make sure the array elements are of the corresponding Python # type. value = [ cim_types.type_from_name(_type)(val) if val is not None else val for val in value] msg = 'Array property %r contains simple typed values ' \ 'and specifies CIM type %r' % (name, _type) embedded_object = _intended_value(None, None, embedded_object, 'embedded_object', msg) else:
Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model wrench_norm_thresh : float threshold to use to determine equivalence of target wrenches wrench_regularizer : float small float to make quadratic program positive semidefinite params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model Returns ------- int : 1 if in partial closure, 0 otherwise """ force_limit = None if params is None: return 0 force_limit = params.force_limits target_wrench = params.target_wrench if 'wrench_norm_thresh' in list(params.keys()): wrench_norm_thresh = params.wrench_norm_thresh if 'wrench_regularizer' in list(params.keys()): wrench_regularizer = params.wrench_regularizer # reorganize the grasp matrix for easier constraint enforcement in optimization num_fingers = normals.shape[1] num_wrenches_per_finger = forces.shape[1] / num_fingers G = np.zeros([6, 0]) for i in range(num_fingers): start_i = num_wrenches_per_finger * i end_i = num_wrenches_per_finger * (i + 1) G_i = PointGraspMetrics3D.grasp_matrix(forces[:, start_i:end_i], torques[:, start_i:end_i], normals[:, i:i + 1], soft_fingers, params=params) G = np.c_[G, G_i] wrench_resisted, _ = PointGraspMetrics3D.wrench_in_positive_span(G, target_wrench, force_limit, num_fingers, wrench_norm_thresh=wrench_norm_thresh, wrench_regularizer=wrench_regularizer) return 1 * wrench_resisted @staticmethod def wrench_resistance(forces, torques, normals, soft_fingers=False, wrench_norm_thresh=1e-3, wrench_regularizer=1e-10, finger_force_eps=1e-9, params=None): """ Evalutes wrench resistance: the inverse norm of the contact forces required to resist a target wrench Estimates resistance by sollving a quadratic program (min normal contact forces to produce a wrench). Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model wrench_norm_thresh : float threshold to use to determine equivalence of target wrenches wrench_regularizer : float small float to make quadratic program positive semidefinite finger_force_eps : float small float to prevent numeric issues in wrench resistance metric params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model Returns ------- float : value of wrench resistance metric """ force_limit = None if params is None: return 0 force_limit = params.force_limits target_wrench = params.target_wrench if 'wrench_norm_thresh' in list(params.keys()): wrench_norm_thresh = params.wrench_norm_thresh if 'wrench_regularizer' in list(params.keys()): wrench_regularizer = params.wrench_regularizer if 'finger_force_eps' in list(params.keys()): finger_force_eps = params.finger_force_eps # reorganize the grasp matrix for easier constraint enforcement in optimization num_fingers = normals.shape[1] num_wrenches_per_finger = forces.shape[1] / num_fingers G = np.zeros([6, 0]) for i in range(num_fingers): start_i = num_wrenches_per_finger * i end_i = num_wrenches_per_finger * (i + 1) G_i = PointGraspMetrics3D.grasp_matrix(forces[:, start_i:end_i], torques[:, start_i:end_i], normals[:, i:i + 1], soft_fingers, params=params) G = np.c_[G, G_i] # compute metric from finger force norm Q = 0 wrench_resisted, finger_force_norm = PointGraspMetrics3D.wrench_in_positive_span(G, target_wrench, force_limit, num_fingers, wrench_norm_thresh=wrench_norm_thresh, wrench_regularizer=wrench_regularizer) if wrench_resisted: Q = 1.0 / (finger_force_norm + finger_force_eps) - 1.0 / (2 * force_limit) return Q @staticmethod def min_singular(forces, torques, normals, soft_fingers=False, params=None): """ Min singular value of grasp matrix - measure of wrench that grasp is "weakest" at resisting. Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model Returns ------- float : value of smallest singular value """ G = PointGraspMetrics3D.grasp_matrix(forces, torques, normals, soft_fingers) _, S, _ = np.linalg.svd(G) min_sig = S[5] return min_sig @staticmethod def wrench_volume(forces, torques, normals, soft_fingers=False, params=None): """ Volume of grasp matrix singular values - score of all wrenches that the grasp can resist. Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model Returns ------- float : value of wrench volume """ k = 1 if params is not None and 'k' in list(params.keys()): k = params.k G = PointGraspMetrics3D.grasp_matrix(forces, torques, normals, soft_fingers) _, S, _ = np.linalg.svd(G) sig = S return k * np.sqrt(np.prod(sig)) @staticmethod def grasp_isotropy(forces, torques, normals, soft_fingers=False, params=None): """ Condition number of grasp matrix - ratio of "weakest" wrench that the grasp can exert to the "strongest" one. Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model Returns ------- float : value of grasp isotropy metric """ G = PointGraspMetrics3D.grasp_matrix(forces, torques, normals, soft_fingers) _, S, _ = np.linalg.svd(G) max_sig = S[0] min_sig = S[5] isotropy = min_sig / max_sig if np.isnan(isotropy) or np.isinf(isotropy): return 0 return isotropy @staticmethod def ferrari_canny_L1(forces, torques, normals, soft_fingers=False, params=None, wrench_norm_thresh=1e-3, wrench_regularizer=1e-10): """ Ferrari & Canny's L1 metric. Also known as the epsilon metric. Parameters ---------- forces : 3xN :obj:`numpy.ndarray` set of forces on object in object basis torques : 3xN :obj:`numpy.ndarray` set of torques on object in object basis normals : 3xN :obj:`numpy.ndarray` surface normals at the contact points soft_fingers : bool whether or not to use the soft finger contact model params : :obj:`GraspQualityConfig` set of parameters for grasp matrix and contact model wrench_norm_thresh : float threshold to use to determine equivalence of target wrenches wrench_regularizer : float small float to make quadratic program positive semidefinite Returns ------- float : value of metric """ if params is not None and 'wrench_norm_thresh' in list(params.keys()): wrench_norm_thresh = params.wrench_norm_thresh if params is not None and 'wrench_regularizer' in list(params.keys()): wrench_regularizer = params.wrench_regularizer # create grasp matrix G = PointGraspMetrics3D.grasp_matrix(forces, torques, normals, soft_fingers, params=params) s = time.time() # center grasp matrix for better convex hull comp hull = cvh.ConvexHull(G.T) # TODO: suppress ridiculous amount of output for perfectly valid input to qhull e = time.time() logging.debug('CVH took %.3f sec' % (e - s)) debug = False if debug: fig = plt.figure() torques = G[3:, :].T ax = Axes3D(fig) ax.scatter(torques[:, 0], torques[:, 1], torques[:, 2], c='b', s=50) ax.scatter(0, 0, 0, c='k', s=80) ax.set_xlim3d(-1.5, 1.5) ax.set_ylim3d(-1.5, 1.5) ax.set_zlim3d(-1.5, 1.5) ax.set_xlabel('tx') ax.set_ylabel('ty') ax.set_zlabel('tz') plt.show() if len(hull.vertices) == 0: logging.warning('Convex hull could not be computed') return 0.0 # determine whether or not zero is in the convex hull s = time.time() min_norm_in_hull, v = PointGraspMetrics3D.min_norm_vector_in_facet(G, wrench_regularizer=wrench_regularizer) e = time.time() logging.debug('Min norm took %.3f sec' % (e - s)) # print("shunang",min_norm_in_hull) # if norm is greater than 0 then forces are outside of hull if min_norm_in_hull > wrench_norm_thresh: logging.debug('Zero not in convex hull') return 0.0 # if there are fewer nonzeros than D-1 (dim of space minus one) # then zero is on the boundary and therefore we do not have # force closure if np.sum(v > 1e-4) <= G.shape[0] - 1: logging.warning('Zero not in interior of convex hull') return 0.0 # find minimum norm vector across all facets of convex hull s = time.time() min_dist = sys.float_info.max closest_facet = None # print("shunang",G) for v in hull.vertices: if np.max(np.array(v)) < G.shape[1]: # because of some occasional odd behavior from pyhull facet = G[:, v] # print("shunang1",facet) dist, _ = PointGraspMetrics3D.min_norm_vector_in_facet(facet, wrench_regularizer=wrench_regularizer) if dist < min_dist: min_dist = dist closest_facet = v e = time.time() logging.debug('Min dist took %.3f sec for %d vertices' % (e - s, len(hull.vertices))) return min_dist @staticmethod def ferrari_canny_L1_force_only(forces, torques, normals, soft_fingers=False, params=None, wrench_norm_thresh=1e-3, wrench_regularizer=1e-10): """ Ferrari & Canny's L1 metric with force only. Also known as the epsilon metric. Parameters ---------- forces
<reponame>dbirman/cs375 from __future__ import division, print_function, absolute_import import os, sys import numpy as np import tensorflow as tf import cPickle from tfutils import base, data, optimizer import json import copy import argparse from utils import * from data_provider import * sys.path.append('../normal_pred/') import normal_encoder_asymmetric_with_bypass import combinet_builder host = os.uname()[1] BATCH_SIZE = 32 IMAGE_SIZE_CROP = 224 NUM_CHANNELS = 3 def get_parser(): parser = argparse.ArgumentParser(description='The script to train the combine net') # General settings parser.add_argument('--nport', default = 27017, type = int, action = 'store', help = 'Port number of mongodb') parser.add_argument('--expId', default = "combinet_test", type = str, action = 'store', help = 'Name of experiment id') parser.add_argument('--loadexpId', default = None, type = str, action = 'store', help = 'Name of experiment id') parser.add_argument('--cacheDirPrefix', default = "/mnt/fs1/chengxuz", type = str, action = 'store', help = 'Prefix of cache directory') parser.add_argument('--innerargs', default = [], type = str, action = 'append', help = 'Arguments for every network') parser.add_argument('--with_rep', default = 0, type = int, action = 'store', help = 'Whether reporting other losses every batch') parser.add_argument('--with_grad', default = 0, type = int, action = 'store', help = 'Whether with gradients reporting') parser.add_argument('--with_train', default = 0, type = int, action = 'store', help = 'Whether with training dataset') parser.add_argument('--with_recdata', default = 0, type = int, action = 'store', help = 'Whether with second database setting') parser.add_argument('--nport_rec', default = 27007, type = int, action = 'store', help = 'Port for second database') parser.add_argument('--valid_first', default = 0, type = int, action = 'store', help = 'Whether validating first') parser.add_argument('--loadport', default = None, type = int, action = 'store', help = 'Port number of mongodb for loading') parser.add_argument('--with_feat', default = 1, type = int, action = 'store', help = 'Whether adding the feat validation') parser.add_argument('--loadstep', default = None, type = int, action = 'store', help = 'Number of steps for loading') # Network related parser.add_argument('--pathconfig', default = "normals_config_fcnvgg16_withdepth.cfg", type = str, action = 'store', help = 'Path to config file') parser.add_argument('--dataconfig', default = "dataset_config.cfg", type = str, action = 'store', help = 'Path to config file for dataset') parser.add_argument('--valdconfig', default = None, type = str, action = 'store', help = 'Validation dataset config, default to be None, and will copy to other configs below') parser.add_argument('--topndconfig', default = None, type = str, action = 'store', help = 'Path to config file for dataset, for topn validation') parser.add_argument('--featdconfig', default = None, type = str, action = 'store', help = 'Path to config file for dataset, for feats validation') parser.add_argument('--modeldconfig', default = None, type = str, action = 'store', help = 'Path to config file for dataset, for model in validation') parser.add_argument('--seed', default = 0, type = int, action = 'store', help = 'Random seed for model') parser.add_argument('--namefunc', default = "combine_normal_tfutils_new", type = str, action = 'store', help = 'Name of function to build the network') parser.add_argument('--valinum', default = -1, type = int, action = 'store', help = 'Number of validation steps, default is -1, which means all the validation') parser.add_argument('--cache_filter', default = 0, type = int, action = 'store', help = 'Whether cache the pretrained weights as tf tensors') parser.add_argument('--fix_pretrain', default = 0, type = int, action = 'store', help = 'Whether fix the pretrained weights') parser.add_argument('--extra_feat', default = 0, type = int, action = 'store', help = 'Whether to add normal and depth outputs for ImageNet and PlaceNet, default is 0, which means no') # Loss related parser.add_argument('--whichloss', default = 0, type = int, action = 'store', help = 'Whether to use new loss') # Deprecated for now parser.add_argument('--depth_norm', default = 8000, type = int, action = 'store', help = 'Coefficient for depth loss') parser.add_argument('--label_norm', default = 20, type = float, action = 'store', help = 'Coefficient for label loss') parser.add_argument('--depthloss', default = 0, type = int, action = 'store', help = 'Whether to use new depth loss') parser.add_argument('--normalloss', default = 0, type = int, action = 'store', help = 'Whether to use new normal loss') parser.add_argument('--multtime', default = 1, type = int, action = 'store', help = '1 means original, larger than 1 means multiple time points') parser.add_argument('--trainable', default = 0, type = int, action = 'store', help = 'Whether use trainable weights') parser.add_argument('--nfromd', default = 0, type = int, action = 'store', help = 'Whether calculating the normals from depth') parser.add_argument('--ret_dict', default = 0, type = int, action = 'store', help = '1 means returning dict for loss_withcfg, default is 0') parser.add_argument('--combine_dict', default = 0, type = int, action = 'store', help = '1 means combining 5 datasets to 2, default is 0') parser.add_argument('--self_order', default = None, type = str, action = 'store', help = 'None means default, otherwise, it should be separated by ","') parser.add_argument('--print_loss', default = 0, type = int, action = 'store', help = '1 means printing loss us tf.Print, default is 0') # Training related parser.add_argument('--batchsize', default = None, type = int, action = 'store', help = 'Batch size') parser.add_argument('--valbatchsize', default = None, type = int, action = 'store', help = 'Validation Batch size') parser.add_argument('--queuecap', default = None, type = int, action = 'store', help = 'Queue capacity') parser.add_argument('--init_stddev', default = .01, type = float, action = 'store', help = 'Init stddev for convs') parser.add_argument('--init_type', default = 'xavier', type = str, action = 'store', help = 'Init type') parser.add_argument('--n_threads', default = 4, type = int, action = 'store', help = 'Number of threads') parser.add_argument('--val_n_threads', default = 1, type = int, action = 'store', help = 'Number of threads for validation') ## Learning rate, optimizers parser.add_argument('--init_lr', default = .01, type = float, action = 'store', help = 'Init learning rate') parser.add_argument('--whichopt', default = 0, type = int, action = 'store', help = 'Choice of the optimizer, 0 means momentum, 1 means Adam') parser.add_argument('--adameps', default = 0.1, type = float, action = 'store', help = 'Epsilon for adam, only used when whichopt is 1') parser.add_argument('--adambeta1', default = 0.9, type = float, action = 'store', help = 'Beta1 for adam, only used when whichopt is 1') parser.add_argument('--adambeta2', default = 0.999, type = float, action = 'store', help = 'Beta2 for adam, only used when whichopt is 1') parser.add_argument('--withclip', default = 1, type = int, action = 'store', help = 'Whether do clip') ## Saving metric parser.add_argument('--fre_valid', default = 10000, type = int, action = 'store', help = 'Frequency of the validation') parser.add_argument('--fre_metric', default = 1000, type = int, action = 'store', help = 'Frequency of the saving metrics') parser.add_argument('--fre_filter', default = 10000, type = int, action = 'store', help = 'Frequency of the saving filters') ## Dataset related parser.add_argument('--whichscenenet', default = 0, type = int, action = 'store', help = 'Choice of the scenenet, 0 means all, 1 means the compressed version, 2 means the new png version') parser.add_argument('--whichscannet', default = 0, type = int, action = 'store', help = 'Choice of the scannet, 0 means original, 1 means the smaller new version') parser.add_argument('--whichimagenet', default = 0, type = int, action = 'store', help = 'Choice of the imagenet, 0 means original, 1 means the smaller new version') parser.add_argument('--whichcoco', default = 0, type = int, action = 'store', help = 'Which coco dataset to use, 0 means original, 1 means the one without 0 instance') parser.add_argument('--as_list', default = 0, type = int, action = 'store', help = 'Whether handling init_ops as dicts or not, if as dicts, enqueue and dequeue will be done separately to each dict') parser.add_argument('--which_place', default = 0, type = int, action = 'store', help = 'Which place dataset to use, 1 means only part') ## Preprocessing related parser.add_argument('--twonormals', default = 0, type = int, action = 'store', help = 'Whether having two normal readouts, 0 means no') parser.add_argument('--depthnormal', default = 0, type = int, action = 'store', help = 'Whether to normalize the depth input') parser.add_argument('--ignorebname', default = 0, type = int, action = 'store', help = 'Whether ignore the batch name') parser.add_argument('--categorymulti', default = 1, type = int, action = 'store',
# -*- coding: utf-8 -*- # (C) Copyright 2020, 2021 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Base class for analog Modules.""" from typing import Any, Dict, List, Optional, Tuple, Union, TYPE_CHECKING from torch import device as torch_device from torch import Tensor from torch.nn import Module, Parameter from aihwkit.exceptions import ModuleError from aihwkit.simulator.configs import ( FloatingPointRPUConfig, InferenceRPUConfig, SingleRPUConfig, UnitCellRPUConfig ) from aihwkit.simulator.tiles import InferenceTile if TYPE_CHECKING: from aihwkit.simulator.tiles import BaseTile RPUConfigAlias = Union[FloatingPointRPUConfig, SingleRPUConfig, UnitCellRPUConfig, InferenceRPUConfig] class AnalogModuleBase(Module): """Base class for analog Modules. Base ``Module`` for analog layers that use analog tiles. When subclassing, please note: * the ``_setup_tile()`` method is expected to be called by the subclass constructor, and it does not only create a tile, but also sets some instance attributes that are needed by the analog features (optimizer and others). * the ``weight`` and ``bias`` Parameters are not guaranteed to be in sync with the tile weights and biases during the lifetime of the instance, for performance reasons. The canonical way of reading and writing weights is via the ``set_weights()`` and ``get_weights()`` as opposed to using the attributes directly. * the ``BaseTile`` subclass that is created is retrieved from the ``rpu_config.tile_class`` attribute. """ # pylint: disable=abstract-method _analog_tile_counter: int = 0 def register_analog_tile(self, tile: 'BaseTile') -> None: """Register the analog context of the tile. Note: Needs to be called at the end init to register the tile for the analog optimizers. Args: tile: tile to register """ self.register_parameter('analog_ctx_' + str(self._analog_tile_counter), tile.get_analog_ctx()) if tile.shared_weights is not None: if not isinstance(tile.shared_weights, Parameter): tile.shared_weights = Parameter(tile.shared_weights) self.register_parameter('analog_shared_weights_' + str(self._analog_tile_counter), tile.shared_weights) self._analog_tile_counter += 1 def unregister_parameter(self, param_name: str) -> None: """Unregister module parameter from parameters. Raises: ModuleError: In case parameter is not found """ param = getattr(self, param_name, None) if not isinstance(param, Parameter): raise ModuleError(f"Cannot find parameter {param_name} to unregister") param_data = param.detach().clone() delattr(self, param_name) setattr(self, param_name, param_data) def _setup_tile( self, in_features: int, out_features: int, bias: bool, rpu_config: Optional[RPUConfigAlias] = None, realistic_read_write: bool = False, weight_scaling_omega: float = 0.0 ) -> 'BaseTile': """Create an analog tile and setup this layer for using it. Create an analog tile to be used for the basis of this layer operations, and setup additional attributes of this instance that are needed for using the analog tile. If ``weight_scaling_omega`` is larger than 0, the weights are set in a scaled manner (assuming a digital output scale). See :meth:`~aihwkit.simulator.tiles.base.BaseTile.set_weights_scaled` for details. Note: This method also sets the following attributes, which are assumed to be set by the rest of the methods: * ``self.use_bias`` * ``self.realistic_read_write`` * ``self.weight_scaling_omega`` * ``self.in_features`` * ``self.out_features`` Args: in_features: input vector size (number of columns). out_features: output vector size (number of rows). rpu_config: resistive processing unit configuration. bias: whether to use a bias row on the analog tile or not. realistic_read_write: whether to enable realistic read/write for setting initial weights and read out of weights. weight_scaling_omega: the weight value where the max weight will be scaled to. If zero, no weight scaling will be performed Returns: An analog tile with the requested parameters. """ # pylint: disable=attribute-defined-outside-init, protected-access # Default to constant step device if not provided. if not rpu_config: rpu_config = SingleRPUConfig() # Setup the analog-related attributes of this instance. self.use_bias = bias self.realistic_read_write = realistic_read_write self.weight_scaling_omega = weight_scaling_omega self.in_features = in_features self.out_features = out_features # Create the tile. return rpu_config.tile_class(out_features, in_features, rpu_config, bias=bias) def set_weights( self, weight: Tensor, bias: Optional[Tensor] = None, force_exact: bool = False ) -> None: """Set the weight (and bias) with given Tensors. This uses an realistic write if the property ``realistic_read_write`` of the layer is set, unless it is overwritten by ``force_exact``. It uses a scaled write if ``weight_scaling_omega`` is positive (see :meth:`~aihwkit.simulator.tiles.base.BaseTile.set_weights_scaled`). Note: This is the recommended way for setting the weight/bias matrix of the analog tile, as it will correctly store the weights into the internal memory. Directly writing to ``self.weight`` and ``self.bias`` might yield wrong results as they are not always in sync with the analog tile Parameters, for performance reasons. Args: weight: weight matrix bias: bias vector force_exact: forces an exact write to the analog tiles """ shape = [self.out_features, self.in_features] weight = weight.clone().reshape(shape) realistic = self.realistic_read_write and not force_exact if self.weight_scaling_omega > 0.0: self.analog_tile.set_weights_scaled(weight, bias, realistic=realistic, omega=self.weight_scaling_omega) else: self.analog_tile.set_weights(weight, bias, realistic=realistic) self._sync_weights_from_tile() def get_weights( self, force_exact: bool = False ) -> Tuple[Tensor, Optional[Tensor]]: """Get the weight (and bias) tensors. This uses an realistic read if the property ``realistic_read_write`` of the layer is set, unless it is overwritten by ``force_exact``. It scales the analog weights by the digital alpha scale if ``weight_scaling_omega`` is positive (see :meth:`~aihwkit.simulator.tiles.base.BaseTile.get_weights_scaled`). Note: This is the recommended way for setting the weight/bias matrix from the analog tile, as it will correctly fetch the weights from the internal memory. Accessing ``self.weight`` and ``self.bias`` might yield wrong results as they are not always in sync with the analog tile library, for performance reasons. Args: force_exact: forces an exact read to the analog tiles Returns: tuple: weight matrix, bias vector """ realistic = self.realistic_read_write and not force_exact if self.weight_scaling_omega > 0.0: return self.analog_tile.get_weights_scaled(realistic=realistic) return self.analog_tile.get_weights(realistic=realistic) def _sync_weights_from_tile(self) -> None: """Update the layer weight and bias from the values on the analog tile. Update the ``self.weight`` and ``self.bias`` Parameters with an exact copy of the internal analog tile weights. """ tile_weight, tile_bias = self.get_weights(force_exact=True) self.weight.data[:] = tile_weight.reshape(self.weight.shape) if self.use_bias: self.bias.data[:] = tile_bias.reshape(self.bias.shape) # type: ignore def _sync_weights_to_tile(self) -> None: """Update the tile values from the layer weights and bias. Update the internal tile weights with an exact copy of the values of the ``self.weight`` and ``self.bias`` Parameters. """ self.set_weights(self.weight, self.bias, force_exact=True) def _load_from_state_dict( self, state_dict: Dict, prefix: str, local_metadata: Dict, strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str]) -> None: """Copy parameters and buffers from `state_dict` into only this module, but not its descendants. This method is a specialization of ``Module._load_from_state_dict`` that takes into account the extra ``analog_tile_state`` key used by analog layers. """ key = '{}analog_tile_state'.format(prefix) if key in state_dict: analog_state = state_dict.pop(key) self.analog_tile.__setstate__(analog_state) elif strict: missing_keys.append(key) # update the weight / bias (not saved explicitly) self._sync_weights_from_tile() super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def state_dict( self, destination: Any = None, prefix: str = '', keep_vars: bool = False ) -> Dict: """Return a dictionary containing a whole state of the module.""" self._sync_weights_from_tile() # TODO: this will also pickle the resistive device. Problematic? we # could also just save hidden_pars and weights. However, in any case the # state_dict will not reflect the model.parameters() any more, which # might get tricky. In any case, internal hidden weights need to be # saved to reconstruct a meaningful analog tile analog_state = self.analog_tile.__getstate__() current_state = super().state_dict(destination, prefix, keep_vars) current_state['{}analog_tile_state'.format(prefix)] = analog_state return current_state def cpu(self) -> 'AnalogModuleBase': """Move all model parameters, buffers and tiles to the CPU. Note: Please be aware that moving analog layers from GPU to CPU is currently not supported. Returns: This layer with its parameters, buffers and tiles in CPU. """ # pylint: disable=attribute-defined-outside-init super().cpu() self.analog_tile = self.analog_tile.cpu() # type: BaseTile self.set_weights(self.weight, self.bias) return self def cuda( self, device: Optional[Union[torch_device, str, int]] = None ) -> 'AnalogModuleBase': """Move all model parameters, buffers and tiles to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized. Arguments: device (int, optional): if specified, all parameters will be copied to that GPU device Returns: This layer with its parameters, buffers and tiles in GPU. """ #
<gh_stars>0 from typing import List from urllib import response import discord from discord import app_commands, TextStyle from discord.ext import commands, tasks from discord.ext.commands import Cog import sys sys.path.append('../') from main import config_load, increment_command_counter, ClanBankTransaction, Guild from datetime import datetime, timedelta, timezone import re import copy from bs4 import BeautifulSoup import math from utils import is_int, max_cash, get_coins_image_name, digits import traceback import io import imageio from skimage import img_as_uint config = config_load() yellow = [255, 255, 0, 255] white = [255, 255, 255, 255] green = [0, 255, 131, 255] red = [255, 50, 50, 255] char_index = {'K': 10, 'M': 11, '-': 12} def enlarge_digit(digit, factor): ''' Doubles the size of an image factor times ''' for f in range(factor-1): ldigit = [] for row in digit: lrow = [row[int(i/2)] for i in range(len(row)*2)] ldigit.append(lrow) ldigit.append(lrow) digit = ldigit return digit def draw_char(img, char, x, y, c, size): ''' Draws a character on an image at (x, y) ''' colour = c if img.shape[2] == 3 and len(c) > 3: colour = colour[:3] elif img.shape[2] == 4 and len(c) < 4: colour.append(255) digit = digits[int(char) if is_int(char) else char_index[char]] pixels = enlarge_digit(digit, size) x_0 = x for row in reversed(pixels): x = x_0 for value in reversed(row): if value == 1: img[y, x] = colour x -= 1 y -= 1 return (x-1, y) def draw_gp(img, amount): ''' Draw an amount over an image of RuneScape coins. ''' colour = green if amount >= 10000000 else white if amount >= 100000 else yellow if amount >= 0 else red amount = round(amount, -6) if abs(amount) >= 10000000 else round(amount, -3) if abs(amount) >= 100000 else amount amount_str = str(amount) if amount >= 10000000 or amount <= -10000000: amount_str = amount_str[::-1].replace('000000', 'M', 1)[::-1] elif amount >= 100000 or amount <= -100000: amount_str = amount_str[::-1].replace('000', 'K', 1)[::-1] size = 5 for i, char in enumerate(amount_str): draw_char(img, char, (int(5*(2**size)/2)-1)*(i+1)+i*(2**size), int(8*(2**size)/2)-1, colour, size) def get_coins_image(amount): ''' Get an image for the given amount of coins. ''' # Get base coins image coins = imageio.imread(f'images/{get_coins_image_name(amount)}.png') # Draw amount draw_gp(coins, amount) imageio.imwrite('images/coins.png', coins) with open('images/coins.png', 'rb') as f: coins_image = io.BytesIO(f.read()) coins_image = discord.File(coins_image, filename='coins.png') return coins_image async def get_transactions(guild_id: int): ''' Gets all ClanBankTransaction for a given guild. ''' return await ClanBankTransaction.query.where(ClanBankTransaction.guild_id == guild_id).gino.all() async def create_transaction(amount: int, description: str, guild_id: int, member_id: int): ''' Creates a ClanBankTransaction. ''' await ClanBankTransaction.create(amount=amount, description=description, guild_id=guild_id, member_id=member_id, time=datetime.utcnow()) class Dropdown(discord.ui.Select): def __init__(self, options): # The placeholder is what will be shown when no option is chosen # The min and max values indicate we can only pick one of the options # The options parameter defines the dropdown options. We defined this above super().__init__(placeholder='Choose a role...', min_values=1, max_values=1, options=options, custom_id='bank_role_select') async def callback(self, interaction: discord.Interaction): # Use the interaction object to update the guild bank_role_id. # The self object refers to the Select object, # and the values attribute gets a list of the user's # selected options. We only want the first one. role = interaction.guild.get_role(int(self.values[0])) guild = await Guild.get(interaction.guild.id) await guild.update(bank_role_id=role.id).apply() await interaction.response.send_message(f'The bank management role has been set to `{role.name}`', ephemeral=True) class SelectRoleView(discord.ui.View): def __init__(self, bot, guild): super().__init__() self.bot = bot # Get options for role dropdown options = [discord.SelectOption(label=role.name, value=str(role.id)) for role in sorted(guild.roles, reverse=True)] if len(options) > 25: options = options[:25] # Adds the dropdown to our view object. self.add_item(Dropdown(options)) class ConfirmView(discord.ui.View): def __init__(self, bot): super().__init__(timeout=None) self.bot = bot self.value = None @discord.ui.button(label='Cancel', style=discord.ButtonStyle.danger, custom_id='bank_tx_cancel_button') async def cancel(self, interaction: discord.Interaction, button: discord.ui.Button): # Validate permissions if not interaction.user.id == int(interaction.message.embeds[0].footer.text.replace('User ID: ', '')): await interaction.response.send_message('Only the creator of a transaction can cancel it', ephemeral=True) return # Update message embed = interaction.message.embeds[0] embed.set_footer(text=f'Cancelled by {interaction.user.display_name}', icon_url='https://emojipedia-us.s3.dualstack.us-west-1.amazonaws.com/thumbs/160/twitter/322/cross-mark_274c.png') await interaction.message.edit(embed=embed, view=None) await interaction.response.send_message('Transaction cancelled successfully.', ephemeral=True) self.value = False self.stop() @discord.ui.button(label='Confirm', style=discord.ButtonStyle.success, custom_id='bank_tx_confirm_button') async def confirm(self, interaction: discord.Interaction, button: discord.ui.Button): # Validate permissions if not interaction.user.id == int(interaction.message.embeds[0].footer.text.replace('User ID: ', '')): await interaction.response.send_message('Only the creator of a transaction can confirm it', ephemeral=True) return # Handle confirm status = await self.confirm_handler(interaction) if status != 'success': await interaction.response.send_message(status, ephemeral=True) return # Update message embed = interaction.message.embeds[0] embed.set_footer(text=f'Confirmed by {interaction.user.display_name}', icon_url='https://emojipedia-us.s3.dualstack.us-west-1.amazonaws.com/thumbs/160/twitter/322/check-mark-button_2705.png') await interaction.message.edit(attachments=interaction.message.attachments, embed=embed, view=None) await interaction.response.send_message('Transaction confirmed successfully.', ephemeral=True) self.value = True self.stop() async def confirm_handler(self, interaction: discord.Interaction) -> str: ''' Parses data from an addition / subtraction embed and processes the transaction. ''' user_id = int(interaction.message.embeds[0].footer.text.replace('User ID: ', '')) member = interaction.guild.get_member(user_id) if not member: member = await interaction.guild.fetch_member(user_id) if not member: return 'Error: member not found' # Parse message amount = int(interaction.message.embeds[0].fields[0].value) if 'subtraction' in interaction.message.embeds[0].title: amount = -amount description = interaction.message.embeds[0].fields[1].value await create_transaction(amount, description, interaction.guild.id, user_id) return 'success' async def on_error(self, interaction: discord.Interaction, error: Exception): await interaction.response.send_message('Error', ephemeral=True) print(error) traceback.print_tb(error.__traceback__) class AddTransactionModal(discord.ui.Modal, title='Clan bank addition'): def __init__(self, bot): super().__init__() self.bot = bot amount = discord.ui.TextInput(label='How much do you want to add?', placeholder="0", min_length=1, max_length=10, required=True, style=TextStyle.short) description = discord.ui.TextInput(label='Description (optional)', placeholder='Describe the reason for your addition here...', max_length=1000, required=False, style=TextStyle.paragraph) async def on_submit(self, interaction: discord.Interaction): # Validation amount = self.amount.value amount = amount.upper().replace('K', '000').replace('M', '000000').replace('B', '000000000') if not is_int(amount): await interaction.response.send_message(f'Error: invalid amount: `{amount}`', ephemeral=True) return amount = int(amount) if amount == 0: await interaction.response.send_message(f'Error: amount cannot be 0', ephemeral=True) return if amount > max_cash or amount < -max_cash: await interaction.response.send_message(f'Error: amount too great: `{amount}`', ephemeral=True) return # Get an image for the given amount of coins coins_image = get_coins_image(amount) # Create embed to show data embed = discord.Embed(title=f'**Clan bank addition**', colour=0x00e400) embed.add_field(name='Amount', value=str(amount), inline=False) embed.add_field(name='Description', value=self.description.value if self.description.value else 'N/A', inline=False) embed.set_author(name=interaction.user.display_name, icon_url=interaction.user.display_avatar.url) embed.set_footer(text=f'User ID: {interaction.user.id}') embed.set_thumbnail(url='attachment://coins.png') # Create a view to confirm / cancel view = ConfirmView(self.bot) msg = await interaction.response.send_message(files=[coins_image], embed=embed, view=view) await view.wait() async def on_error(self, interaction: discord.Interaction, error: Exception): await interaction.response.send_message('Error', ephemeral=True) print(error) traceback.print_tb(error.__traceback__) class SubtractTransactionModal(discord.ui.Modal, title='Clan bank subtraction'): def __init__(self, bot): super().__init__() self.bot = bot amount = discord.ui.TextInput(label='How much do you want to subtract?', placeholder="0", min_length=1, max_length=10, required=True, style=TextStyle.short) description = discord.ui.TextInput(label='Description (optional)', placeholder='Describe the reason for your subtraction here...', max_length=1000, required=False, style=TextStyle.paragraph) async def on_submit(self, interaction: discord.Interaction): # Validation amount = self.amount.value amount = amount.upper().replace('K', '000').replace('M', '000000').replace('B', '000000000') if not is_int(amount): await interaction.response.send_message(f'Error: invalid amount: `{amount}`', ephemeral=True) return amount = int(amount) if amount == 0: await interaction.response.send_message(f'Error: amount cannot be 0', ephemeral=True) return if amount > max_cash or amount < -max_cash: await interaction.response.send_message(f'Error: amount too great: `{amount}`', ephemeral=True) return # Get an image for the given amount of coins coins_image = get_coins_image(-amount) # Create embed to show data embed = discord.Embed(title=f'**Clan bank subtraction**', colour=0xff0000) embed.add_field(name='Amount', value=str(amount), inline=False) embed.add_field(name='Description', value=self.description.value if self.description.value else 'N/A', inline=False) embed.set_author(name=interaction.user.display_name, icon_url=interaction.user.display_avatar.url) embed.set_footer(text=f'User ID: {interaction.user.id}') embed.set_thumbnail(url='attachment://coins.png') # Create a view to confirm / cancel view = ConfirmView(self.bot) msg = await interaction.response.send_message(files=[coins_image], embed=embed, view=view) await view.wait() async def on_error(self, interaction: discord.Interaction, error: Exception): await interaction.response.send_message('Error', ephemeral=True) print(error) traceback.print_tb(error.__traceback__) class ClanBank(commands.Cog): def __init__(self, bot: commands.AutoShardedBot): self.bot = bot def cog_unload(self): pass @app_commands.command(name='bank') async def bank(self, interaction: discord.Interaction, action: str): ''' Manage the clan bank ''' if not interaction.user.guild_permissions.administrator and interaction.user.id != config['owner']: guild = await Guild.get(interaction.guild.id) bank_role = None if guild.bank_role_id: bank_role = interaction.guild.get_role(guild.bank_role_id) if bank_role is None or not interaction.user.top_role >= bank_role: await interaction.response.send_message(f'You do not have permission to use this command.', ephemeral=True) return # Validation if not action in ['view', 'add', 'subtract', 'history', 'role']: await interaction.response.send_message(f'Invalid action: {action}', ephemeral=True) return if action == 'add': await self.add(interaction) elif action == 'subtract': await self.subtract(interaction) elif action == 'history': await self.history(interaction) elif action =='role': await self.set_bank_role(interaction) else: await self.view(interaction) @bank.autocomplete('action') async def action_autocomplete( self, interaction: discord.Interaction, current: str, ) -> List[app_commands.Choice[str]]: actions = ['view', 'add', 'subtract', 'history'] admin_actions = ['role'] return [ app_commands.Choice(name=action, value=action) for action in actions if current.lower() in action.lower() ] + [ app_commands.Choice(name=action, value=action) for action in admin_actions if current.lower() in action.lower() and (interaction.user.guild_permissions.administrator or interaction.user.id == config['owner']) ] async def view(self, interaction: discord.Interaction): # Get the clan bank transactions tx = await get_transactions(interaction.guild.id) amount = sum([t.amount for t in tx]) embed = discord.Embed(title=f'**Clan bank**', description=f'Total amount: `{amount:,}`', colour=0x00b2ff) embed.set_author(name=interaction.user.display_name,
# -*- coding: utf-8 -*- """ Created on Fri Sep 25 16:29:19 2020 @author: muell018 """ from flask import Blueprint, session, render_template, url_for, flash, redirect, request, jsonify, json, current_app, send_from_directory from flask_login import login_required, current_user from ..io.cts import Cts import difflib from jinja2 import Template from pathlib import Path from datetime import datetime from collections import OrderedDict import csv from pprint import pprint compare_bp = Blueprint('compare', __name__) @compare_bp.route("/compare", methods = ['GET', 'POST']) @login_required def compare(): """ Eats two file names, returns a comparison of the two files. Both files must be csv files containing <a word>;<doc ID>;<pageNr>;<line ID>;<index of the word> They may also contain lines with additional HTML code (if the output format is html): <h3>Document 1</h3> """ if request.method == 'GET': return "html" elif request.method == 'POST': # Get the JSON payload of the request containing the two file names payload = request.get_json() if payload['format'] == "html": # Read input data, i.e. both input files (CSV) from disk: dumping_path = Path(current_app.config["CACHE_PATH"]) # \Dokumente\Synchronisation\Programmieren\Python\tutorial_flask_wsgi\instance\cache filename1 = Path(dumping_path, payload['files'][0]) filename2 = Path(dumping_path, payload['files'][1]) o = openfile(filename1) e = openfile(filename2) balance_tokens(o, e) data1 = prepare_for_diff(o) data2 = prepare_for_diff(e) # Use difflib to find the differences: print("ANALYZER: searching for differences (with difflib) ...") d = difflib.Differ() delta = d.compare(data1, data2) delta = [*delta] # convert generator to list pairs = prepare_output(delta, o,e) filtered = filter_false_positives(pairs) html = export_to_html(filtered, original_document=o[0]['document'], censored_document=e[0]['document']) dumping_path = Path(current_app.config["CACHE_PATH"]) timestamp = datetime.now().strftime('%Y-%m-%dT%H-%M-%S') filename = f"differences,{o[0]['document']}_vs_{e[0]['document']},{timestamp}.html" savename = Path(dumping_path, filename) try: with open(savename, "w", encoding="utf-8") as f: f.write(html) except: pass return html elif payload['format'] == "raw_diff": # Read input data, i.e. both input files (CSV) from disk: dumping_path = Path(current_app.config["CACHE_PATH"]) filename1 = Path(dumping_path, payload['files'][0]) filename2 = Path(dumping_path, payload['files'][1]) o = openfile(filename1) e = openfile(filename2) balance_tokens(o, e) data1 = prepare_for_diff(o) data2 = prepare_for_diff(e) # Use difflib to find the differences: print("ANALYZER: searching for differences (with difflib) ...") d = difflib.Differ() delta = d.compare(data1, data2) delta = [*delta] # convert generator to list pairs = prepare_output(delta, o,e) filtered = filter_false_positives(pairs) output = serialize_diff_pairs(filtered) output["original"]["docTitle"] = o[0]['document'] output["censored"]["docTitle"] = e[0]['document'] output["message"] = "Success! Use the censorship inspector to process the output." print("ANALYZER: Done! Sending JSON to client.") return jsonify(output) elif payload['format'] == "TRACER": """ The TRACER data is already formatted correctly in the TSV files. The only thing we have to do here is to replace the "XX" place holders at the beginning of every line with a two digit number representing the no. of the document. """ dumping_path = Path(current_app.config["CACHE_PATH"]) output = [] docs = [] docnr = 10 for file in payload['files']: infile = Path(dumping_path, file) with open(infile, "r", encoding="utf-8") as f: lines = f.readlines() for idx, line in enumerate(lines): output.append(f"{docnr}{line[2:]}") if idx == 0: # get the document identifier of the first line docs.append(line.split("\t")[-1].strip()) docnr += 1 timestamp = datetime.now().strftime('%Y-%m-%dT%H-%M-%S') filename = f"tracer_{','.join([str(x) for x in docs])}_{timestamp}.txt" savename = Path(dumping_path, filename) print(f"ANALYZER: Trying to write {savename}") try: print("ANALYZER: Sucess!") with open(savename, "w", encoding="utf-8") as f: f.writelines(output) return jsonify(message = f'Success! You can download the exported file under /download/{savename}', links = [{'href': f'/download/{savename}', 'rel': 'download', 'type': 'GET'}]), 200 except: print(f"ERROR: Analyzer: Could not write file {savename}") return jsonify(message = f"ERROR: Analyzer: Could not write file {savename}", links = [{'href': "error", 'rel': 'download', 'type': 'GET'}]), 500 def openfile(filename,separator=";"): """ Opens a csv file and returns a dict. """ output = [] fieldnames = ["word","document","coldoc","page","line","wordnr", "type"] with open(filename, newline='', encoding="utf-8") as csvfile: data = csv.DictReader(csvfile, fieldnames=fieldnames, delimiter=";", quotechar='"') for item in data: output.append(item) return output def balance_tokens(t1, t2): """ When the texts to be compared have different lengths, the rendering of the differences found in these texts will be difficult. Therefore, we add dummy lines to the shorter file. Returns two equally long lists of dicts. """ difference = len(t1) - len(t2) print("ANALYZER: Balancing different lengths:", len(t1), len(t2), len(t1) - len(t2)) if difference < 0: line = t1[-1]['line'] for element in range(1, (difference * -1) + 1): t1.append({'word': '', 'document': 'Dummy1977', 'coldoc': '0.0', 'page': '0', 'line': line, 'wordnr': '', # str(offset + element) 'type': 'dummy'}) elif difference > 0: line = t2[-1]['line'] for element in range(1, difference + 1): t2.append({'word': '', 'document': 'Dummy1977', 'coldoc': '0.0', 'page': '0', 'line': line, 'wordnr': '', # str(offset + element) 'type': 'dummy'}) print("ANALYZER: Balanced: ", len(t1), len(t2), len(t1) - len(t2)) def prepare_for_diff(data): """ Eats a list of dicts, extracts the words in lower case and returns them as a list. (We don't want capital letters to disturb our comparison.) """ prepared = [] for item in data: prepared.append(item['word'].lower()) return prepared def prepare_output(delta, o, e): """ Eats the delta produced by difflib and converted to a list, the original (o) and expurgated (e) data, and returns a list of lists containing the code (" "/"+"/"-"), the word in the original version, the word in the expurgated version, the type (word or punctuation) and the precise cts addresses in both versions. """ print("ANALYZER: preparing data for export ...") newline = [] pairs = [] position_d1 = 0 position_d2 = 0 for d in delta: if position_d1 + 1 > len(o) or position_d2 + 1 > len(e): break code = d[:1] data = d[2:] org = o[position_d1] exp = e[position_d2] if code == "?" or code == "": pass else: orgcts = Cts().from_string(f"tr:{org['coldoc']}:{org['page']}.{org['line']}@{org['wordnr']}") expcts = Cts().from_string(f"tr:{exp['coldoc']}:{exp['page']}.{exp['line']}@{exp['wordnr']}") if code == " ": pairs.append([" ", org['word'], orgcts, exp['word'], expcts, org['type']]) position_d1 += 1 position_d2 += 1 elif code == "+": pairs.append(["+", "", orgcts, exp['word'], expcts, exp['type']]) position_d2 += 1 elif code == "-": pairs.append(["-", org['word'], orgcts, "", expcts, org['type']]) position_d1 += 1 # with open("debug_prepare_output.txt", "w", encoding="utf-8") as f: # for pair in pairs: # f.write(str(pair)+"\n") # print("DEBUG: ANALYZER: debug file written.") return pairs def serialize_diff_pairs(pairs): """ Makes the list of pairs JSON serializable by converting the Cts objects and adding some metadata. """ output = {"original": {"colId": pairs[0][2].col, "docId": pairs[0][2].doc}, "censored": {"colId": pairs[0][4].col, "docId": pairs[0][4].doc}} pages = {} words = [] last_page = pairs[0][2].page last_line = pairs[0][2].rl for pair in pairs: this_page = pair[2].page this_line = pair[2].rl if this_page != last_page: pages[last_page] = {'words': words} words = [] last_page = this_page words.append([pair[0], pair[1], f"{pair[2].rl}@{pair[2].subreference}", pair[3], f"{pair[4].page}.{pair[4].rl}@{pair[4].subreference}", pair[5]]) pages[last_page] = {'words': words} output['pages'] = pages return output def filter_false_positives(pairs): ''' Use a sliding window (three items long) to search for patterns like: - ne - dum + nedum << + nobisipsis << - nobis - ipsis - it + ita << - a - etiamsi << + etiam + si If there is a match, keep the long word and drop the two shorter ones.''' print("ANALYZER: filtering false positives ...") output = [] countdown = 0 for i in range(len(pairs)-2): if countdown > 0: countdown -= 1 if countdown == 0: if pairs[i][0] == "+" or pairs[i][0] == "-": first = pairs[i][1] + pairs[i][3] second = pairs[i+1][1] + pairs[i+1][3] third = pairs[i+2][1] + pairs[i+2][3] if first.lower() + second.lower() == third.lower(): output.append([' ', third, pairs[i+2][2], third, pairs[i+2][4], pairs[i+2][5]]) countdown = 3 elif first.lower() + third.lower() == second.lower(): output.append([' ', second, pairs[i+1][2], second, pairs[i+1][4], pairs[i+1][5]]) countdown = 3 elif second.lower() + third.lower() == first.lower(): output.append([' ', first, pairs[i][2], first, pairs[i][4], pairs[i][5]]) countdown = 3 else: output.append(pairs[i]) countdown = 0 else: output.append(pairs[i]) return output def add_text(original, censored): """ This function preserves prossible lower/upper case differences between the two versions: """ html = "" template = Template('<span class="{{ classname }}">{{ text }}</span> ') if original != censored: if original == "": html += censored + " " elif censored == "": html += original + " " else: html += template.render(classname="original",
<reponame>Rancerle/Clarkson_Magenta # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A class for sampling, encoding, and decoding from trained MusicVAE models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import re import tarfile from backports import tempfile import numpy as np import tensorflow as tf class NoExtractedExamplesException(Exception): pass class MultipleExtractedExamplesException(Exception): pass class TrainedModel(object): """An interface to a trained model for encoding, decoding, and sampling. Args: config: The Config to build the model graph with. batch_size: The batch size to build the model graph with. checkpoint_dir_or_path: The directory containing checkpoints for the model, the most recent of which will be loaded, or a direct path to a specific checkpoint. var_name_substitutions: Optional list of string pairs containing regex patterns and substitution values for renaming model variables to match those in the checkpoint. Useful for backwards compatibility. session_target: Optional execution engine to connect to. Defaults to in-process. sample_kwargs: Additional, non-tensor keyword arguments to pass to sample call. """ def __init__(self, config, batch_size, checkpoint_dir_or_path=None, var_name_substitutions=None, session_target='', **sample_kwargs): checkpoint_path = (tf.train.latest_checkpoint(checkpoint_dir_or_path) if tf.gfile.IsDirectory(checkpoint_dir_or_path) else checkpoint_dir_or_path) self._config = copy.deepcopy(config) self._config.hparams.batch_size = batch_size with tf.Graph().as_default(): model = self._config.model model.build( self._config.hparams, self._config.data_converter.output_depth, is_training=False) # Input placeholders self._temperature = tf.placeholder(tf.float32, shape=()) self._z_input = ( tf.placeholder(tf.float32, shape=[batch_size, self._config.hparams.z_size]) if self._config.hparams.z_size else None) self._c_input = ( tf.placeholder( tf.float32, shape=[None, self._config.data_converter.control_depth]) if self._config.data_converter.control_depth > 0 else None) self._inputs = tf.placeholder( tf.float32, shape=[batch_size, None, self._config.data_converter.input_depth]) self._controls = tf.placeholder( tf.float32, shape=[batch_size, None, self._config.data_converter.control_depth]) self._inputs_length = tf.placeholder( tf.int32, shape=[batch_size] + list(self._config.data_converter.length_shape)) self._max_length = tf.placeholder(tf.int32, shape=()) # Outputs self._outputs, self._decoder_results = model.sample( batch_size, max_length=self._max_length, z=self._z_input, c_input=self._c_input, temperature=self._temperature, **sample_kwargs) if self._config.hparams.z_size: q_z = model.encode(self._inputs, self._inputs_length, self._controls) self._mu = q_z.loc self._sigma = q_z.scale.diag self._z = q_z.sample() var_map = None if var_name_substitutions is not None: var_map = {} for v in tf.global_variables(): var_name = v.name[:-2] # Strip ':0' suffix. for pattern, substitution in var_name_substitutions: var_name = re.sub(pattern, substitution, var_name) if var_name != v.name[:-2]: tf.logging.info('Renaming `%s` to `%s`.', v.name[:-2], var_name) var_map[var_name] = v # Restore graph self._sess = tf.Session(target=session_target) saver = tf.train.Saver(var_map) if (os.path.exists(checkpoint_path) and tarfile.is_tarfile(checkpoint_path)): tf.logging.info('Unbundling checkpoint.') with tempfile.TemporaryDirectory() as temp_dir: tar = tarfile.open(checkpoint_path) tar.extractall(temp_dir) # Assume only a single checkpoint is in the directory. for name in tar.getnames(): if name.endswith('.ckpt.index'): checkpoint_path = os.path.join(temp_dir, name[0:-6]) break saver.restore(self._sess, checkpoint_path) else: saver.restore(self._sess, checkpoint_path) def sample(self, n=None, length=None, temperature=1.0, same_z=False, c_input=None): """Generates random samples from the model. Args: n: The number of samples to return. A full batch will be returned if not specified. length: The maximum length of a sample in decoder iterations. Required if end tokens are not being used. temperature: The softmax temperature to use (if applicable). same_z: Whether to use the same latent vector for all samples in the batch (if applicable). c_input: A sequence of control inputs to use for all samples (if applicable). Returns: A list of samples as NoteSequence objects. Raises: ValueError: If `length` is not specified and an end token is not being used. """ batch_size = self._config.hparams.batch_size n = n or batch_size z_size = self._config.hparams.z_size if not length and self._config.data_converter.end_token is None: raise ValueError( 'A length must be specified when the end token is not used.') length = length or tf.int32.max feed_dict = { self._temperature: temperature, self._max_length: length } if self._z_input is not None and same_z: z = np.random.randn(z_size).astype(np.float32) z = np.tile(z, (batch_size, 1)) feed_dict[self._z_input] = z if self._c_input is not None: feed_dict[self._c_input] = c_input outputs = [] for _ in range(int(np.ceil(n / batch_size))): if self._z_input is not None and not same_z: feed_dict[self._z_input] = ( np.random.randn(batch_size, z_size).astype(np.float32)) outputs.append(self._sess.run(self._outputs, feed_dict)) samples = np.vstack(outputs)[:n] if self._c_input is not None: return self._config.data_converter.to_items( samples, np.tile(np.expand_dims(c_input, 0), [batch_size, 1, 1])) else: return self._config.data_converter.to_items(samples) def encode(self, note_sequences, assert_same_length=False): """Encodes a collection of NoteSequences into latent vectors. Args: note_sequences: A collection of NoteSequence objects to encode. assert_same_length: Whether to raise an AssertionError if all of the extracted sequences are not the same length. Returns: The encoded `z`, `mu`, and `sigma` values. Raises: RuntimeError: If called for a non-conditional model. NoExtractedExamplesException: If no examples were extracted. MultipleExtractedExamplesException: If multiple examples were extracted. AssertionError: If `assert_same_length` is True and any extracted sequences differ in length. """ if not self._config.hparams.z_size: raise RuntimeError('Cannot encode with a non-conditional model.') inputs = [] controls = [] lengths = [] for note_sequence in note_sequences: extracted_tensors = self._config.data_converter.to_tensors(note_sequence) if not extracted_tensors.inputs: raise NoExtractedExamplesException( 'No examples extracted from NoteSequence: %s' % note_sequence) if len(extracted_tensors.inputs) > 1: raise MultipleExtractedExamplesException( 'Multiple (%d) examples extracted from NoteSequence: %s' % (len(extracted_tensors.inputs), note_sequence)) inputs.append(extracted_tensors.inputs[0]) controls.append(extracted_tensors.controls[0]) lengths.append(extracted_tensors.lengths[0]) if assert_same_length and len(inputs[0]) != len(inputs[-1]): raise AssertionError( 'Sequences 0 and %d have different lengths: %d vs %d' % (len(inputs) - 1, len(inputs[0]), len(inputs[-1]))) return self.encode_tensors(inputs, lengths, controls) def encode_tensors(self, input_tensors, lengths, control_tensors=None): """Encodes a collection of input tensors into latent vectors. Args: input_tensors: Collection of input tensors to encode. lengths: Collection of lengths of input tensors. control_tensors: Collection of control tensors to encode. Returns: The encoded `z`, `mu`, and `sigma` values. Raises: RuntimeError: If called for a non-conditional model. """ if not self._config.hparams.z_size: raise RuntimeError('Cannot encode with a non-conditional model.') n = len(input_tensors) input_depth = self._config.data_converter.input_depth batch_size = self._config.hparams.batch_size batch_pad_amt = -n % batch_size if batch_pad_amt > 0: input_tensors += [np.zeros([0, input_depth])] * batch_pad_amt length_array = np.array(lengths, np.int32) length_array = np.pad( length_array, [(0, batch_pad_amt)] + [(0, 0)] * (length_array.ndim - 1), 'constant') max_length = max([len(t) for t in input_tensors]) inputs_array = np.zeros( [len(input_tensors), max_length, input_depth]) for i, t in enumerate(input_tensors): inputs_array[i, :len(t)] = t control_depth = self._config.data_converter.control_depth controls_array = np.zeros( [len(input_tensors), max_length, control_depth]) if control_tensors is not None: control_tensors += [np.zeros([0, control_depth])] * batch_pad_amt for i, t in enumerate(control_tensors): controls_array[i, :len(t)] = t outputs = [] for i in range(len(inputs_array) // batch_size): batch_begin = i * batch_size batch_end = (i+1) * batch_size feed_dict = {self._inputs: inputs_array[batch_begin:batch_end], self._controls: controls_array[batch_begin:batch_end], self._inputs_length: length_array[batch_begin:batch_end]} outputs.append( self._sess.run([self._z, self._mu, self._sigma], feed_dict)) assert outputs return tuple(np.vstack(v)[:n] for v in zip(*outputs)) def decode(self, z, length=None, temperature=1.0, c_input=None): """Decodes a collection of latent vectors into NoteSequences. Args: z: A collection of latent vectors to decode. length: The maximum length of a sample in decoder iterations. Required if end tokens are not being used. temperature: The softmax temperature to use (if applicable). c_input: Control sequence (if applicable). Returns: A list of decodings as NoteSequence objects. Raises: RuntimeError: If called for a non-conditional model. ValueError: If `length` is not specified and an end token is not being used. """ tensors = self.decode_to_tensors(z, length, temperature, c_input) if self._c_input is not None: return self._config.data_converter.to_items( tensors, np.tile(np.expand_dims(c_input, 0), [self._config.hparams.batch_size, 1, 1])) else: return self._config.data_converter.to_items(tensors) def decode_to_tensors(self, z, length=None, temperature=1.0, c_input=None, return_full_results=False): """Decodes a collection of latent vectors into output tensors. Args: z: A collection of latent vectors to decode. length: The maximum length of a sample in decoder iterations. Required if end tokens are not being used. temperature: The softmax temperature to use (if applicable). c_input: Control sequence (if applicable). return_full_results: If true will return the full decoder_results, otherwise it will return only the samples. Returns: If return_full_results is True, will return the full decoder_results list, otherwise it will return the samples from the decoder as a 2D numpy array. Raises: RuntimeError: If called for a non-conditional model. ValueError: If `length` is not specified and an end token is not being used. """ if not self._config.hparams.z_size: raise RuntimeError('Cannot decode with a non-conditional model.') if not length and self._config.data_converter.end_token is None: raise ValueError( 'A length must be specified when the end token is not used.') batch_size = self._config.hparams.batch_size n = len(z) length
<reponame>Princeton-CDH/ppa-django<filename>ppa/archive/forms.py import json from django import forms from django.core.cache import cache from django.core.exceptions import ValidationError from django.core.validators import RegexValidator from django.db.models import Max, Min from django.utils.html import conditional_escape from django.utils.safestring import mark_safe from ppa.archive.models import NO_COLLECTION_LABEL, Collection, DigitizedWork class SelectDisabledMixin(object): """ Mixin for :class:`django.forms.RadioSelect` or :class:`django.forms.CheckboxSelect` classes to set an option as disabled. To disable, the widget's choice label option should be passed in as a dictionary with `disabled` set to True:: {'label': 'option', 'disabled': True}. """ # Using a solution at https://djangosnippets.org/snippets/2453/ def create_option( self, name, value, label, selected, index, subindex=None, attrs=None ): disabled = None if isinstance(label, dict): label, disabled = label["label"], label.get("disabled", False) option_dict = super().create_option( name, value, label, selected, index, subindex=subindex, attrs=attrs ) if disabled: option_dict["attrs"].update({"disabled": "disabled"}) return option_dict class RadioSelectWithDisabled(SelectDisabledMixin, forms.RadioSelect): """ Subclass of :class:`django.forms.RadioSelect` with option to mark a choice as disabled. """ class SelectWithDisabled(SelectDisabledMixin, forms.Select): """ Subclass of :class:`django.forms.Select` with option to mark a choice as disabled. """ class CheckboxSelectMultipleWithDisabled( SelectDisabledMixin, forms.CheckboxSelectMultiple ): """ Subclass of :class:`django.forms.CheckboxSelectMultiple` with option to mark a choice as disabled. """ class FacetChoiceField(forms.MultipleChoiceField): """Add CheckboxSelectMultiple field with facets taken from solr query""" # Borrowed from https://github.com/Princeton-CDH/derrida-django/blob/develop/derrida/books/forms.py # customize multiple choice field for use with facets. # no other adaptations needed # - turn of choice validation (shouldn't fail if facets don't get loaded) # - default to not required # - use checkbox select multiple as default widget widget = forms.CheckboxSelectMultiple def __init__(self, *args, **kwargs): if "required" not in kwargs: kwargs["required"] = False super().__init__(*args, **kwargs) def valid_value(self, value): return True # RangeWidget and RangeField also borrowed from Derrida codebase class RangeWidget(forms.MultiWidget): """date range widget, for two numeric inputs""" #: separator string when splitting out values in decompress sep = "-" #: template to use to render range multiwidget # (based on multiwidget, but adds "to" between dates) template_name = "archive/widgets/rangewidget.html" def __init__(self, *args, **kwargs): widgets = [ forms.NumberInput(attrs={"aria-label": "Start"}), forms.NumberInput(attrs={"aria-label": "End"}), ] super().__init__(widgets, *args, **kwargs) def decompress(self, value): if value: return [int(val) for val in value.split(self.sep)] return [None, None] class RangeField(forms.MultiValueField): widget = RangeWidget def __init__(self, *args, **kwargs): fields = ( forms.IntegerField( error_messages={"invalid": "Enter a number"}, validators=[ RegexValidator(r"^[0-9]*$", "Enter a valid number."), ], required=False, ), forms.IntegerField( error_messages={"invalid": "Enter a number"}, validators=[ RegexValidator(r"^[0-9]*$", "Enter a valid number."), ], required=False, ), ) kwargs["fields"] = fields super().__init__(require_all_fields=False, *args, **kwargs) def compress(self, data_list): # if both values are set and the first is greater than the second, # raise a validation error if all(data_list) and len(data_list) == 2 and data_list[0] > data_list[1]: raise ValidationError( "Invalid range (%s - %s)" % (data_list[0], data_list[1]) ) return self.widget.sep.join(["%d" % val if val else "" for val in data_list]) class ModelMultipleChoiceFieldWithEmpty(forms.ModelMultipleChoiceField): """Extend :class:`django.forms.ModelMultipleChoiceField` to add an option for an unset or empty choice (i.e. no relationship in a many-to-many relationship such as collection membership). """ EMPTY_VALUE = NO_COLLECTION_LABEL EMPTY_ID = 0 def clean(self, value): """Extend clean to use default validation on all values but the empty id.""" try: pk_values = [val for val in value if val and int(val) != self.EMPTY_ID] except ValueError: # non-integer will raise value error raise ValidationError("Invalid collection") qs = super()._check_values(pk_values) if self.EMPTY_ID in value or str(self.EMPTY_ID) in value: return [self.EMPTY_VALUE] + list(qs) return qs class SearchForm(forms.Form): """Simple search form for digitized works.""" SORT_CHOICES = [ ("relevance", "Relevance"), ("pub_date_asc", "Year Oldest-Newest"), ("pub_date_desc", "Year Newest-Oldest"), ("title_asc", "Title A-Z"), ("title_desc", "Title Z-A"), ("author_asc", "Author A-Z"), ("author_desc", "Author Z-A"), ] #: help text to be shown with the form #: (appears when you hover over the question mark icon) QUESTION_POPUP_TEXT = """ Boolean search within a field is supported. Operators must be capitalized (AND, OR). """ # text inputs query = forms.CharField( label="Keyword or Phrase", required=False, widget=forms.TextInput( attrs={ "placeholder": "Search full text and metadata", "_icon": "search", "_align": "left", } ), ) title = forms.CharField( label="Title", required=False, widget=forms.TextInput( attrs={ "placeholder": "Search the archive by book title", "_icon": "search", "_align": "left", } ), ) author = forms.CharField( label="Author", required=False, widget=forms.TextInput( attrs={ "placeholder": "Search the archive by author", "_icon": "search", "_align": "left", } ), ) # facets # collections = FacetChoiceField(label='Collection') # NOTE: using model choice field to list all collections in the database, # even if they have no assocaited works in Solr collections = ModelMultipleChoiceFieldWithEmpty( queryset=Collection.objects.order_by("name"), label="Collection", widget=CheckboxSelectMultipleWithDisabled, required=False, ) pub_date = RangeField( label="Publication Date", required=False, widget=RangeWidget( attrs={"size": 4, "title": "publication date", "_inline": True} ), ) sort = forms.ChoiceField( widget=SelectWithDisabled, choices=SORT_CHOICES, required=False ) # booleans earliest_only = forms.BooleanField( label="Earliest Edition in Hathi", required=False, widget=forms.CheckboxInput(attrs={"disabled": True}), ) ace_only = forms.BooleanField( label="Authorized Critical Edition", required=False, widget=forms.CheckboxInput(attrs={"disabled": True}), ) dict_exclude = forms.BooleanField( label="Dictionaries", required=False, widget=forms.CheckboxInput(attrs={"disabled": True}), ) pg_exclude = forms.BooleanField( label="Pronunciation Guides", required=False, widget=forms.CheckboxInput(attrs={"disabled": True}), ) # fields to request a facet from solr facet_fields = ["collections_exact"] range_facets = ["pub_date"] # mapping of solr fields to form input solr_facet_fields = {"collections_exact": "collections"} @staticmethod def defaults(): """Default values when initializing the form. Sort by title, pre-select collections based exclude property.""" return { "sort": "title_asc", # always include uncategorized collections; no harm if not present "collections": [ModelMultipleChoiceFieldWithEmpty.EMPTY_ID] + list( Collection.objects.filter(exclude=False).values_list("id", flat=True) ), } def __init__(self, data=None, *args, **kwargs): """ Set choices dynamically based on form kwargs and presence of keywords. """ super().__init__(data=data, *args, **kwargs) pubdate_range = self.pub_date_minmax() self.pubdate_validation_msg = ( "Enter sequential years between {} and {}.".format( pubdate_range[0], pubdate_range[1] ) ) # because pubdate is a multifield/multiwidget, access the widgets # under the multiwidgets pubdate_widgets = self.fields["pub_date"].widget.widgets for idx, val in enumerate(pubdate_range): # don't set None as placeholder (only possible if db is empty) if val: # set max/min and initial values pubdate_widgets[idx].attrs.update( { "placeholder": pubdate_range[idx], "min": pubdate_range[0], "max": pubdate_range[1], } ) # relevance is disabled unless we have a keyword query present if not data or not self.has_keyword_query(data): self.fields["sort"].widget.choices[0] = ( "relevance", {"label": "Relevance", "disabled": True}, ) def has_keyword_query(self, data): """check if any of the keyword search fields have search terms""" return any( data.get(query_field, None) for query_field in ["query", "title", "author"] ) def get_solr_sort_field(self, sort=None): """ Set solr sort fields for the query based on sort and query strings. If sort field is not specified, will use sort in the the cleaned data in the current form. If sort is not specified and valid form data is not available, will raise an :class:`AttributeError`. :return: solr sort field """ solr_mapping = { "relevance": "-score", "pub_date_asc": "pub_date", "pub_date_desc": "-pub_date", "title_asc": "sort_title", "title_desc": "-sort_title", "author_asc": "author_exact", "author_desc": "-author_exact", } # if not specified, use sort value from current form data if sort is None: sort = self.cleaned_data.get("sort") # return solr field for requested sort option return solr_mapping.get(sort, None) def set_choices_from_facets(self, facets): """Set choices on field from a dictionary of facets""" # Also borrowed from Derrida module referenced for FacetChoiceField # Uses mapping of solr_facet_fields and facet_fields in class # definition but does not yet import full functionality of # derrida-django's ReferenceSearchForm # The primary adaptation involves use of a dictionary of dictionaries # for facets in SolrClient vs. the functionality of # django-haystack/pysolr. for key, facet_dict in facets.items(): formfield = self.solr_facet_fields.get(key, key) # special case: collections is no longer a facet choice field, # but options should be disabled if not present at all # (i.e. no works are associated with that collection in Solr) if formfield == "collections": new_choice = [] for choice in self.fields[formfield].widget.choices: # widget choice is tuple of id, name; check for name in facets if choice[1] not in facet_dict.keys(): new_choice.append( (choice[0], {"label": choice[1], "disabled": True}) ) else: new_choice.append(choice) # if there are items not in a collection, add an option # so they will be findable if NO_COLLECTION_LABEL in facet_dict: new_choice.append( ( ModelMultipleChoiceFieldWithEmpty.EMPTY_ID, {"label": NO_COLLECTION_LABEL}, ) ) # replace choices with new version self.fields[formfield].widget.choices = new_choice # normal facet field behavior: populate choices from facet # disabling for now, not currently in use # elif formfield in self.fields: # self.fields[formfield].choices = [ # (val, mark_safe('%s <span>%d</span>' % (val, count))) # for val, count in facet_dict.items()] PUBDATE_CACHE_KEY = "digitizedwork_pubdate_maxmin" def pub_date_minmax(self): """Get minimum and maximum values for :class:`~ppa.archive.models.DigitizedWork` publication
# -*- coding: utf-8 -*- # Copyright (C) 2009-2010 <NAME> (<EMAIL>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Samples visible locations of a target object and a sensor. .. image:: ../../images/databases/visibilitymodel.jpg :width: 640 `[source] <../_modules/openravepy/databases/visibilitymodel.html>`_ **Running the Generator** .. code-block:: bash openrave.py --database visibilitymodel --robot=robots/pa10schunk.robot.xml **Showing Visible Locations** .. code-block:: bash openrave.py --database visibilitymodel --robot=robots/pa10schunk.robot.xml --show Usage ----- Dynamically generate/load the visibility sampler for a manipulator/sensor/target combination: .. code-block:: python robot.SetActiveManipulator(...) ikmodel = openravepy.databases.visibilitymodel.VisibilityModel(robot,target,sensorname) if not vmodel.load(): vmodel.autogenerate() Description ----------- As long as a sensor is attached to a robot arm, can be applied to any robot to get immediate visibiliy configuration sampling: .. image:: ../../images/databases/visibilitymodel_extents.jpg :height: 250 The visibility database generator uses the :ref:`module-visualfeedback` for the underlying visibility computation. The higher level functions it provides are sampling configurations, computing all valid configurations with the manipulator, and display. Command-line ------------ .. shell-block:: openrave.py --database visibilitymodel --help Class Definitions ----------------- """ from __future__ import with_statement # for python 2.5 __author__ = '<NAME>' __copyright__ = 'Copyright (C) 2009-2010 <NAME> (<EMAIL>)' __license__ = 'Apache License, Version 2.0' import time import os.path if not __openravepy_build_doc__: from ..openravepy_int import * from ..openravepy_ext import * from numpy import * else: from numpy import array from . import DatabaseGenerator import inversekinematics, kinematicreachability from .. import interfaces import logging log = logging.getLogger('openravepy.'+__name__.split('.',2)[-1]) class VisibilityModel(DatabaseGenerator): class GripperVisibility: """Used to hide links not beloning to gripper. When 'entered' will hide all the non-gripper links in order to facilitate visiblity of the gripper """ def __init__(self,manip): self.manip = manip self.robot = self.manip.GetRobot() self.hiddengeoms = [] def __enter__(self): self.hiddengeoms = [] with self.robot.GetEnv(): # stop rendering the non-gripper links childlinkids = [link.GetIndex() for link in self.manip.GetChildLinks()] for link in self.robot.GetLinks(): if link.GetIndex() not in childlinkids: for geom in link.GetGeometries(): self.hiddengeoms.append((geom,geom.IsDraw())) geom.SetDraw(False) def __exit__(self,type,value,traceback): with self.robot.GetEnv(): for geom,isdraw in self.hiddengeoms: geom.SetDraw(isdraw) def __init__(self,robot,target,sensorrobot=None,sensorname=None,maxvelmult=None, ignoresensorcollision=None): """Starts a visibility model using a robot, a sensor, and a target The minimum needed to be specified is the robot and a sensorname. Supports sensors that do not belong to the current robot in the case that a robot is holding the target with its manipulator. Providing the target allows visibility information to be computed. """ DatabaseGenerator.__init__(self,robot=robot) self.sensorrobot = sensorrobot if sensorrobot is not None else robot self.target = target self.visualprob = interfaces.VisualFeedback(self.robot,maxvelmult=maxvelmult,ignoresensorcollision=ignoresensorcollision) self.basemanip = interfaces.BaseManipulation(self.robot,maxvelmult=maxvelmult) self.convexhull = None self.sensorname = sensorname if self.sensorname is None: possiblesensors = [s.GetName() for s in self.sensorrobot.GetAttachedSensors() if s.GetSensor() is not None and s.GetSensor().Supports(Sensor.Type.Camera)] if len(possiblesensors) > 0: self.sensorname = possiblesensors[0] self.manip = robot.GetActiveManipulator() self.manipname = None if self.manip is None else self.manip.GetName() self.visibilitytransforms = None self.rmodel = self.ikmodel = None self.preshapes = None self.preprocess() def clone(self,envother): clone = DatabaseGenerator.clone(self,envother) clone.rmodel = self.rmodel.clone(envother) if not self.rmodel is None else None clone.preshapes = array(self.preshapes) if not self.preshapes is None else None clone.ikmodel = self.ikmodel.clone(envother) if not self.ikmodel is None else None clone.visualprob = self.visualprob.clone(envother) clone.basemanip = self.basemanip.clone(envother) clone.preprocess() return clone def has(self): return self.visibilitytransforms is not None and len(self.visibilitytransforms) > 0 def getversion(self): return 2 def getfilename(self,read=False): return RaveFindDatabaseFile(os.path.join('robot.'+self.robot.GetKinematicsGeometryHash(), 'visibility.' + self.manip.GetStructureHash() + '.' + self.attachedsensor.GetStructureHash() + '.' + self.target.GetKinematicsGeometryHash()+'.pp'),read) def load(self): try: params = DatabaseGenerator.load(self) if params is None: return False self.visibilitytransforms,self.convexhull,self.KK,self.dims,self.preshapes = params self.preprocess() return self.has() except e: return False def save(self): DatabaseGenerator.save(self,(self.visibilitytransforms,self.convexhull,self.KK,self.dims,self.preshapes)) def preprocess(self): with self.env: manipname = self.visualprob.SetCameraAndTarget(sensorname=self.sensorname,sensorrobot=self.sensorrobot,manipname=self.manipname,target=self.target) assert(self.manipname is None or self.manipname==manipname) self.manip = self.robot.SetActiveManipulator(manipname) self.attachedsensor = [s for s in self.sensorrobot.GetAttachedSensors() if s.GetName() == self.sensorname][0] self.ikmodel = inversekinematics.InverseKinematicsModel(robot=self.robot,iktype=IkParameterization.Type.Transform6D) if not self.ikmodel.load(): self.ikmodel.autogenerate() if self.visibilitytransforms is not None: self.visualprob.SetCameraTransforms(transforms=self.visibilitytransforms) def autogenerate(self,options=None,gmodel=None): preshapes = None sphere =None conedirangles = None if options is not None: if options.preshapes is not None: preshapes = zeros((0,len(self.manip.GetGripperIndices()))) for preshape in options.preshapes: preshapes = r_[preshapes,[array([float(s) for s in preshape.split()])]] if options.sphere is not None: sphere = [float(s) for s in options.sphere.split()] if options.conedirangles is not None: conedirangles = [] for conediranglestring in options.conedirangles: conedirangles.append([float(s) for s in conediranglestring.split()]) if not gmodel is None: preshapes = array([gmodel.grasps[0][gmodel.graspindices['igrasppreshape']]]) if len(self.manip.GetGripperIndices()) > 0: if preshapes is None: with self.target: self.target.Enable(False) taskmanip = interfaces.TaskManipulation(self.robot) final,traj = taskmanip.ReleaseFingers(execute=False,outputfinal=True) preshapes = array([final]) else: preshapes = array(()) self.generate(preshapes=preshapes,sphere=sphere,conedirangles=conedirangles) self.save() def generate(self,preshapes,sphere=None,conedirangles=None,localtransforms=None): self.preshapes=preshapes self.preprocess() self.sensorname = self.attachedsensor.GetName() self.manipname = self.manip.GetName() bodies = [(b,b.IsEnabled()) for b in self.env.GetBodies() if b != self.robot and b != self.target] for b in bodies: b[0].Enable(False) try: with self.env: sensor = self.attachedsensor.GetSensor() if sensor is not None: # set power to 0? sensorgeom = sensor.GetSensorGeometry(Sensor.Type.Camera) sensordata = sensor.GetSensorData(Sensor.Type.Camera) self.KK = sensorgeom.KK.K self.dims = sensordata.imagedata.shape with RobotStateSaver(self.robot): # find better way of handling multiple grasps if len(self.preshapes) > 0: self.robot.SetDOFValues(self.preshapes[0],self.manip.GetGripperIndices()) extentsfile = os.path.join(RaveGetHomeDirectory(),'kinbody.'+self.target.GetKinematicsGeometryHash(),'visibility.txt') if sphere is None and os.path.isfile(extentsfile): self.visibilitytransforms = self.visualprob.ProcessVisibilityExtents(extents=loadtxt(extentsfile,float),conedirangles=conedirangles) elif localtransforms is not None: self.visibilitytransforms = self.visualprob.ProcessVisibilityExtents(transforms=localtransforms) else: if sphere is None: sphere = [3,0.1,0.15,0.2,0.25,0.3] self.visibilitytransforms = self.visualprob.ProcessVisibilityExtents(sphere=sphere,conedirangles=conedirangles) print 'total transforms: ',len(self.visibilitytransforms) self.visualprob.SetCameraTransforms(transforms=self.visibilitytransforms) finally: for b,enable in bodies: b.Enable(enable) def SetCameraTransforms(self,transforms): """Sets the camera transforms to the visual feedback problem""" self.visualprob.SetCameraTransforms(transforms=transforms) def showtransforms(self,options=None): if self.robot != self.sensorrobot: pts = poseMultArrayT(self.sensorrobot.GetTransformPose(), InvertPoses(self.visibilitytransforms))[:,4:7] else: pts = poseMultArrayT(self.target.GetTransformPose(), self.visibilitytransforms)[:,4:7] h=self.env.plot3(pts,5,colors=array([0.5,0.5,1,0.2])) try: with RobotStateSaver(self.robot): # disable all non-child links for link in self.robot.GetLinks(): link.Enable(link in self.manip.GetChildLinks()) with self.GripperVisibility(self.manip): for i,pose in enumerate(self.visibilitytransforms): with self.env: if len(self.preshapes) > 0: self.robot.SetDOFValues(self.preshapes[0],self.manip.GetGripperIndices()) if self.robot != self.sensorrobot: # sensor is not attached to robot # robot should be grabbing the targt assert(self.robot.IsGrabbing(self.target) is not None) relativepose = poseMult(poseMult(self.attachedsensor.GetTransformPose(),InvertPose(pose)), InvertPose(self.target.GetTransformPose())) for link in self.manip.GetChildLinks(): link.SetTransform(poseMult(relativepose, link.GetTransformPose())) else: # robot should not be grabbing the targt assert(self.robot.IsGrabbing(self.target) is None) relativepose = poseMult(InvertPose(self.attachedsensor.GetTransformPose()),self.manip.GetTransformPose()) globalCameraPose = poseMult(self.target.GetTransformPose(), pose) grasppose = poseMult(globalCameraPose,relativepose) deltapose = poseMult(grasppose,InvertPose(self.manip.GetTransformPose())) for link in self.manip.GetChildLinks(): link.SetTransform(poseMult(deltapose,link.GetTransformPose())) visibility = self.visualprob.ComputeVisibility() self.env.UpdatePublishedBodies() msg='%d/%d visibility=%d, press any key to continue: '%(i,len(self.visibilitytransforms),visibility) if options is not None and options.showimage: pilutil=__import__('scipy.misc',fromlist=['pilutil']) I=self.getCameraImage() print(msg) pilutil.imshow(I) else: raw_input(msg) finally: # have to destroy the plot handle h = None def ShowTransform(self, relativepose, options=None): """moves the robot links temporarily to show a transform """ if self.robot != self.sensorrobot: pts = poseMult(self.sensorrobot.GetTransformPose(), InvertPose(relativepose))[4:7] else: pts = poseMult(self.target.GetTransformPose(), relativepose)[4:7] h=self.env.plot3(pts,5,colors=array([0.5,0.5,1,0.2])) try: with RobotStateSaver(self.robot): # disable all non-child links for link in self.robot.GetLinks(): link.Enable(link in self.manip.GetChildLinks()) with self.GripperVisibility(self.manip): with self.env: if len(self.preshapes) > 0: self.robot.SetDOFValues(self.preshapes[0],self.manip.GetGripperIndices()) if self.robot != self.sensorrobot: # sensor is not attached to robot # robot should be grabbing the targt assert(self.robot.IsGrabbing(self.target) is not None) linkrelativepose = poseMult(poseMult(self.attachedsensor.GetTransformPose(),InvertPose(relativepose)), InvertPose(self.target.GetTransformPose())) for link in self.manip.GetChildLinks(): link.SetTransform(poseMult(linkrelativepose, link.GetTransformPose())) else: # robot should not be grabbing the targt assert(self.robot.IsGrabbing(self.target) is None) linkrelativepose = poseMult(InvertPose(self.attachedsensor.GetTransformPose()),self.manip.GetTransformPose()) globalCameraPose = poseMult(self.target.GetTransformPose(), relativepose) grasppose = poseMult(globalCameraPose, linkrelativepose) deltapose = poseMult(grasppose,InvertPose(self.manip.GetTransformPose())) for link in self.manip.GetChildLinks(): link.SetTransform(poseMult(deltapose,link.GetTransformPose())) visibility = self.visualprob.ComputeVisibility() self.env.UpdatePublishedBodies() msg='visibility=%d, press any key to continue: '%(visibility) if options is not None and options.showimage: pilutil=__import__('scipy.misc',fromlist=['pilutil']) I=self.getCameraImage() print(msg) pilutil.imshow(I) else: raw_input(msg) finally: # have to destroy the plot handle h = None def show(self,options=None): if self.env.GetViewer() is None: self.env.SetViewer('qtcoin') time.sleep(0.4) # give time for viewer to initialize self.attachedsensor.GetSensor().Configure(Sensor.ConfigureCommand.PowerOn) self.attachedsensor.GetSensor().Configure(Sensor.ConfigureCommand.RenderDataOn) return self.showtransforms(options) def moveToPreshape(self): """uses a planner to safely move the hand to the preshape and returns the trajectory""" if len(self.preshapes) > 0: preshape=self.preshapes[0] with self.robot: self.robot.SetActiveDOFs(self.manip.GetArmIndices()) self.basemanip.MoveUnsyncJoints(jointvalues=preshape,jointinds=self.manip.GetGripperIndices()) while not self.robot.GetController().IsDone(): # busy wait time.sleep(0.01) with self.robot: self.robot.SetActiveDOFs(self.manip.GetGripperIndices()) self.basemanip.MoveActiveJoints(goal=preshape) while not self.robot.GetController().IsDone(): # busy wait time.sleep(0.01) def computeValidTransform(self,returnall=False,checkcollision=True,computevisibility=True,randomize=False): with self.robot: if self.manip.CheckIndependentCollision(): raise planning_error('robot independent links are initiallly in collision') validjoints = [] if randomize: order = random.permutation(len(self.visibilitytransforms)) else: order = xrange(len(self.visibilitytransforms)) for i in order: pose = self.visibilitytransforms[i] Trelative = dot(linalg.inv(self.attachedsensor.GetTransform()),self.manip.GetEndEffectorTransform()) Tcamera = dot(self.target.GetTransform(),matrixFromPose(pose)) Tgrasp = dot(Tcamera,Trelative) s = self.manip.FindIKSolution(Tgrasp,checkcollision) if s is not None: self.robot.SetDOFValues(s,self.manip.GetArmIndices()) if computevisibility and not self.visualprob.ComputeVisibility(): continue validjoints.append((s,i)) if not returnall: return validjoints print 'found',len(validjoints) return validjoints def pruneTransformations(self,thresh=0.04,numminneighs=10,maxdist=None,translationonly=True): if self.rmodel is None: self.rmodel = kinematicreachability.ReachabilityModel(robot=self.robot) if not self.rmodel.load(): # do not autogenerate since that would force this model to depend on
<gh_stars>0 import pytest from labgrid import Environment from labgrid.consoleloggingreporter import ConsoleLoggingReporter from labgrid.protocol import CommandProtocol from labgrid.driver.exception import ExecutionError from autonx import NSHStrategy, SimConsoleDriver import os import re simple_pass = r".*(pass|PASS)" ltp_testdata = [ ("ltp_behavior_timers_1_1", simple_pass), ("ltp_behavior_timers_2_1", simple_pass), ("ltp_clock_settime_speculative_4_3", simple_pass), ("ltp_clock_settime_speculative_4_4", simple_pass), ("ltp_definitions_errno_h_3_2", simple_pass), ("ltp_definitions_errno_h_4_1", simple_pass), ("ltp_definitions_mqueue_h_1_1", simple_pass), ("ltp_definitions_sched_h_10_1", simple_pass), ("ltp_definitions_signal_h_26_1", simple_pass), ("ltp_functional_mqueues_send_rev_2", simple_pass), ("ltp_functional_semaphores_sem_conpro", simple_pass), ("ltp_functional_semaphores_sem_philosopher", simple_pass), ("ltp_functional_semaphores_sem_readerwriter", simple_pass), ("ltp_functional_semaphores_sem_sleepingbarber", simple_pass), ("ltp_interfaces_aio_suspend_5_1", simple_pass), ("ltp_interfaces_asctime_1_1", simple_pass), ("ltp_interfaces_clock_1_1", simple_pass), ("ltp_interfaces_clock_2_1", simple_pass), ("ltp_interfaces_clock_getres_1_1", simple_pass), ("ltp_interfaces_clock_getres_3_1", simple_pass), ("ltp_interfaces_clock_getres_5_1", simple_pass), ("ltp_interfaces_clock_getres_6_1", simple_pass), ("ltp_interfaces_clock_getres_6_2", simple_pass), ("ltp_interfaces_clock_gettime_1_1", simple_pass), ("ltp_interfaces_clock_gettime_1_2", simple_pass), ("ltp_interfaces_clock_gettime_2_1", simple_pass), ("ltp_interfaces_clock_gettime_3_1", simple_pass), ("ltp_interfaces_clock_gettime_7_1", simple_pass), ("ltp_interfaces_clock_gettime_8_1", simple_pass), ("ltp_interfaces_clock_gettime_8_2", simple_pass), ("ltp_interfaces_clock_nanosleep_11_1", simple_pass), ("ltp_interfaces_clock_nanosleep_1_1", simple_pass), ("ltp_interfaces_clock_nanosleep_13_1", simple_pass), ("ltp_interfaces_clock_nanosleep_2_1", simple_pass), ("ltp_interfaces_clock_nanosleep_3_1", simple_pass), ("ltp_interfaces_clock_settime_1_1", simple_pass), ("ltp_interfaces_clock_settime_17_1", simple_pass), ("ltp_interfaces_clock_settime_17_2", simple_pass), ("ltp_interfaces_clock_settime_19_1", simple_pass), ("ltp_interfaces_clock_settime_20_1", simple_pass), ("ltp_interfaces_clock_settime_4_1", simple_pass), ("ltp_interfaces_clock_settime_4_2", simple_pass), ("ltp_interfaces_clock_settime_5_1", simple_pass), ("ltp_interfaces_clock_settime_5_2", simple_pass), ("ltp_interfaces_clock_settime_6_1", simple_pass), ("ltp_interfaces_ctime_1_1", simple_pass), ("ltp_interfaces_difftime_1_1", simple_pass), ("ltp_interfaces_fsync_4_1", simple_pass), ("ltp_interfaces_fsync_5_1", simple_pass), ("ltp_interfaces_fsync_7_1", simple_pass), ("ltp_interfaces_gmtime_1_1", simple_pass), ("ltp_interfaces_gmtime_2_1", simple_pass), ("ltp_interfaces_kill_2_1", simple_pass), ("ltp_interfaces_kill_2_2", simple_pass), ("ltp_interfaces_kill_3_1", simple_pass), ("ltp_interfaces_localtime_1_1", simple_pass), ("ltp_interfaces_mktime_1_1", simple_pass), ("ltp_interfaces_mlock_10_1", simple_pass), ("ltp_interfaces_mlock_5_1", simple_pass), ("ltp_interfaces_mlock_8_1", simple_pass), ("ltp_interfaces_mlockall_13_1", simple_pass), ("ltp_interfaces_mlockall_13_2", simple_pass), ("ltp_interfaces_mlockall_3_6", simple_pass), ("ltp_interfaces_mlockall_3_7", simple_pass), ("ltp_interfaces_mlockall_8_1", simple_pass), ("ltp_interfaces_mmap_10_1", simple_pass), ("ltp_interfaces_mmap_11_1", simple_pass), ("ltp_interfaces_mmap_1_1", simple_pass), ("ltp_interfaces_mmap_12_1", simple_pass), ("ltp_interfaces_mmap_1_2", simple_pass), ("ltp_interfaces_mmap_14_1", simple_pass), ("ltp_interfaces_mmap_19_1", simple_pass), ("ltp_interfaces_mmap_21_1", simple_pass), ("ltp_interfaces_mmap_23_1", simple_pass), ("ltp_interfaces_mmap_24_1", simple_pass), ("ltp_interfaces_mmap_24_2", simple_pass), ("ltp_interfaces_mmap_27_1", simple_pass), ("ltp_interfaces_mmap_31_1", simple_pass), ("ltp_interfaces_mmap_3_1", simple_pass), ("ltp_interfaces_mmap_32_1", simple_pass), ("ltp_interfaces_mmap_5_1", simple_pass), ("ltp_interfaces_mmap_6_4", simple_pass), ("ltp_interfaces_mmap_6_5", simple_pass), ("ltp_interfaces_mmap_6_6", simple_pass), ("ltp_interfaces_mmap_7_1", simple_pass), ("ltp_interfaces_mmap_7_2", simple_pass), ("ltp_interfaces_mmap_9_1", simple_pass), ("ltp_interfaces_mq_close_1_1", simple_pass), ("ltp_interfaces_mq_close_3_1", simple_pass), ("ltp_interfaces_mq_close_3_2", simple_pass), ("ltp_interfaces_mq_close_3_3", simple_pass), ("ltp_interfaces_mq_close_4_1", simple_pass), ("ltp_interfaces_mq_getattr_2_1", simple_pass), ("ltp_interfaces_mq_getattr_2_2", simple_pass), ("ltp_interfaces_mq_getattr_3_1", simple_pass), ("ltp_interfaces_mq_getattr_4_1", simple_pass), ("ltp_interfaces_mq_notify_1_1", simple_pass), ("ltp_interfaces_mq_notify_3_1", simple_pass), ("ltp_interfaces_mq_notify_4_1", simple_pass), ("ltp_interfaces_mq_notify_8_1", simple_pass), ("ltp_interfaces_mq_open_11_1", simple_pass), ("ltp_interfaces_mq_open_1_1", simple_pass), ("ltp_interfaces_mq_open_12_1", simple_pass), ("ltp_interfaces_mq_open_13_1", simple_pass), ("ltp_interfaces_mq_open_15_1", simple_pass), ("ltp_interfaces_mq_open_18_1", simple_pass), ("ltp_interfaces_mq_open_19_1", simple_pass), ("ltp_interfaces_mq_open_20_1", simple_pass), ("ltp_interfaces_mq_open_21_1", simple_pass), ("ltp_interfaces_mq_open_23_1", simple_pass), ("ltp_interfaces_mq_open_25_2", simple_pass), ("ltp_interfaces_mq_open_27_1", simple_pass), ("ltp_interfaces_mq_open_27_2", simple_pass), ("ltp_interfaces_mq_open_29_1", simple_pass), ("ltp_interfaces_mq_open_3_1", simple_pass), ("ltp_interfaces_mq_open_7_1", simple_pass), ("ltp_interfaces_mq_open_7_3", simple_pass), ("ltp_interfaces_mq_open_8_1", simple_pass), ("ltp_interfaces_mq_open_9_1", simple_pass), ("ltp_interfaces_mq_receive_10_1", simple_pass), ("ltp_interfaces_mq_receive_11_1", simple_pass), ("ltp_interfaces_mq_receive_11_2", simple_pass), ("ltp_interfaces_mq_receive_1_1", simple_pass), ("ltp_interfaces_mq_receive_12_1", simple_pass), ("ltp_interfaces_mq_receive_2_1", simple_pass), ("ltp_interfaces_mq_receive_7_1", simple_pass), ("ltp_interfaces_mq_receive_8_1", simple_pass), ("ltp_interfaces_mq_send_10_1", simple_pass), ("ltp_interfaces_mq_send_11_1", simple_pass), ("ltp_interfaces_mq_send_11_2", simple_pass), ("ltp_interfaces_mq_send_1_1", simple_pass), ("ltp_interfaces_mq_send_13_1", simple_pass), ("ltp_interfaces_mq_send_14_1", simple_pass), ("ltp_interfaces_mq_send_2_1", simple_pass), ("ltp_interfaces_mq_send_3_1", simple_pass), ("ltp_interfaces_mq_send_3_2", simple_pass), ("ltp_interfaces_mq_send_4_1", simple_pass), ("ltp_interfaces_mq_send_4_2", simple_pass), ("ltp_interfaces_mq_send_4_3", simple_pass), ("ltp_interfaces_mq_send_7_1", simple_pass), ("ltp_interfaces_mq_send_8_1", simple_pass), ("ltp_interfaces_mq_send_9_1", simple_pass), ("ltp_interfaces_mq_setattr_1_1", simple_pass), ("ltp_interfaces_mq_setattr_1_2", simple_pass), ("ltp_interfaces_mq_setattr_2_1", simple_pass), ("ltp_interfaces_mq_setattr_5_1", simple_pass), ("ltp_interfaces_mq_timedreceive_10_1", simple_pass), ("ltp_interfaces_mq_timedreceive_10_2", simple_pass), ("ltp_interfaces_mq_timedreceive_11_1", simple_pass), ("ltp_interfaces_mq_timedreceive_1_1", simple_pass), ("ltp_interfaces_mq_timedreceive_13_1", simple_pass), ("ltp_interfaces_mq_timedreceive_14_1", simple_pass), ("ltp_interfaces_mq_timedreceive_15_1", simple_pass), ("ltp_interfaces_mq_timedreceive_17_1", simple_pass), ("ltp_interfaces_mq_timedreceive_17_2", simple_pass), ("ltp_interfaces_mq_timedreceive_17_3", simple_pass), ("ltp_interfaces_mq_timedreceive_2_1", simple_pass), ("ltp_interfaces_mq_timedreceive_7_1", simple_pass), ("ltp_interfaces_mq_timedsend_10_1", simple_pass), ("ltp_interfaces_mq_timedsend_11_1", simple_pass), ("ltp_interfaces_mq_timedsend_11_2", simple_pass), ("ltp_interfaces_mq_timedsend_1_1", simple_pass), ("ltp_interfaces_mq_timedsend_12_1", simple_pass), ("ltp_interfaces_mq_timedsend_13_1", simple_pass), ("ltp_interfaces_mq_timedsend_14_1", simple_pass), ("ltp_interfaces_mq_timedsend_15_1", simple_pass), ("ltp_interfaces_mq_timedsend_18_1", simple_pass), ("ltp_interfaces_mq_timedsend_19_1", simple_pass), ("ltp_interfaces_mq_timedsend_20_1", simple_pass), ("ltp_interfaces_mq_timedsend_2_1", simple_pass), ("ltp_interfaces_mq_timedsend_3_1", simple_pass), ("ltp_interfaces_mq_timedsend_3_2", simple_pass), ("ltp_interfaces_mq_timedsend_4_1", simple_pass), ("ltp_interfaces_mq_timedsend_4_2", simple_pass), ("ltp_interfaces_mq_timedsend_4_3", simple_pass), ("ltp_interfaces_mq_timedsend_7_1", simple_pass), ("ltp_interfaces_mq_timedsend_8_1", simple_pass), ("ltp_interfaces_mq_timedsend_9_1", simple_pass), ("ltp_interfaces_mq_unlink_1_1", simple_pass), ("ltp_interfaces_mq_unlink_7_1", simple_pass), ("ltp_interfaces_munlock_10_1", simple_pass), ("ltp_interfaces_munlock_11_1", simple_pass), ("ltp_interfaces_munlock_7_1", simple_pass), ("ltp_interfaces_munlockall_5_1", simple_pass), ("ltp_interfaces_munmap_2_1", simple_pass), ("ltp_interfaces_munmap_3_1", simple_pass), ("ltp_interfaces_munmap_4_1", simple_pass), ("ltp_interfaces_munmap_8_1", simple_pass), ("ltp_interfaces_munmap_9_1", simple_pass), ("ltp_interfaces_nanosleep_10000_1", simple_pass), ("ltp_interfaces_nanosleep_1_1", simple_pass), ("ltp_interfaces_nanosleep_2_1", simple_pass), ("ltp_interfaces_nanosleep_5_1", simple_pass), ("ltp_interfaces_nanosleep_6_1", simple_pass), ("ltp_interfaces_pthread_attr_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_attr_destroy_2_1", simple_pass), ("ltp_interfaces_pthread_attr_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_attr_getdetachstate_1_1", simple_pass), ("ltp_interfaces_pthread_attr_getdetachstate_1_2", simple_pass), ("ltp_interfaces_pthread_attr_getinheritsched_1_1", simple_pass), ("ltp_interfaces_pthread_attr_getschedparam_1_1", simple_pass), ("ltp_interfaces_pthread_attr_getschedpolicy_2_1", simple_pass), ("ltp_interfaces_pthread_attr_getstack_1_1", simple_pass), ("ltp_interfaces_pthread_attr_getstacksize_1_1", simple_pass), ("ltp_interfaces_pthread_attr_init_1_1", simple_pass), ("ltp_interfaces_pthread_attr_init_2_1", simple_pass), ("ltp_interfaces_pthread_attr_init_3_1", simple_pass), ("ltp_interfaces_pthread_attr_init_4_1", simple_pass), ("ltp_interfaces_pthread_attr_setdetachstate_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setdetachstate_1_2", simple_pass), ("ltp_interfaces_pthread_attr_setdetachstate_2_1", simple_pass), ("ltp_interfaces_pthread_attr_setdetachstate_4_1", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_2_1", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_2_2", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_2_3", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_2_4", simple_pass), ("ltp_interfaces_pthread_attr_setinheritsched_4_1", simple_pass), ("ltp_interfaces_pthread_attr_setschedparam_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setschedparam_1_2", simple_pass), ("ltp_interfaces_pthread_attr_setschedparam_1_3", simple_pass), ("ltp_interfaces_pthread_attr_setschedparam_1_4", simple_pass), ("ltp_interfaces_pthread_attr_setschedpolicy_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setschedpolicy_1_2", simple_pass), ("ltp_interfaces_pthread_attr_setschedpolicy_1_3", simple_pass), ("ltp_interfaces_pthread_attr_setschedpolicy_4_1", simple_pass), ("ltp_interfaces_pthread_attr_setschedpolicy_5_1", simple_pass), ("ltp_interfaces_pthread_attr_setstack_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setstack_4_1", simple_pass), ("ltp_interfaces_pthread_attr_setstack_6_1", simple_pass), ("ltp_interfaces_pthread_attr_setstack_7_1", simple_pass), ("ltp_interfaces_pthread_attr_setstacksize_1_1", simple_pass), ("ltp_interfaces_pthread_attr_setstacksize_4_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_getpshared_1_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_init_1_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_init_2_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_setpshared_1_1", simple_pass), ("ltp_interfaces_pthread_barrierattr_setpshared_2_1", simple_pass), ("ltp_interfaces_pthread_barrier_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_barrier_destroy_2_1", simple_pass), ("ltp_interfaces_pthread_barrier_init_1_1", simple_pass), ("ltp_interfaces_pthread_barrier_init_3_1", simple_pass), ("ltp_interfaces_pthread_barrier_init_4_1", simple_pass), ("ltp_interfaces_pthread_barrier_wait_1_1", simple_pass), ("ltp_interfaces_pthread_barrier_wait_2_1", simple_pass), ("ltp_interfaces_pthread_barrier_wait_3_1", simple_pass), ("ltp_interfaces_pthread_barrier_wait_3_2", simple_pass), ("ltp_interfaces_pthread_cancel_1_1", simple_pass), ("ltp_interfaces_pthread_cancel_1_2", simple_pass), ("ltp_interfaces_pthread_cancel_1_3", simple_pass), ("ltp_interfaces_pthread_cancel_2_1", simple_pass), ("ltp_interfaces_pthread_cancel_2_2", simple_pass), ("ltp_interfaces_pthread_cancel_2_3", simple_pass), ("ltp_interfaces_pthread_cancel_3_1", simple_pass), ("ltp_interfaces_pthread_cancel_4_1", simple_pass), ("ltp_interfaces_pthread_cancel_5_1", simple_pass), ("ltp_interfaces_pthread_cleanup_pop_1_1", simple_pass), ("ltp_interfaces_pthread_cleanup_pop_1_2", simple_pass), ("ltp_interfaces_pthread_cleanup_pop_1_3", simple_pass), ("ltp_interfaces_pthread_cleanup_push_1_1", simple_pass), ("ltp_interfaces_pthread_cleanup_push_1_2", simple_pass), ("ltp_interfaces_pthread_cleanup_push_1_3", simple_pass), ("ltp_interfaces_pthread_condattr_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_condattr_destroy_2_1", simple_pass), ("ltp_interfaces_pthread_condattr_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_condattr_destroy_4_1", simple_pass), ("ltp_interfaces_pthread_condattr_getclock_1_1", simple_pass), ("ltp_interfaces_pthread_condattr_getclock_1_2", simple_pass), ("ltp_interfaces_pthread_condattr_init_3_1", simple_pass), ("ltp_interfaces_pthread_condattr_setclock_1_1", simple_pass), ("ltp_interfaces_pthread_condattr_setclock_1_2", simple_pass), ("ltp_interfaces_pthread_condattr_setclock_2_1", simple_pass), ("ltp_interfaces_pthread_cond_broadcast_1_1", simple_pass), ("ltp_interfaces_pthread_cond_broadcast_2_1", simple_pass), ("ltp_interfaces_pthread_cond_broadcast_2_2", simple_pass), ("ltp_interfaces_pthread_cond_broadcast_4_1", simple_pass), ("ltp_interfaces_pthread_cond_broadcast_4_2", simple_pass), ("ltp_interfaces_pthread_cond_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_cond_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_cond_init_1_1", simple_pass), ("ltp_interfaces_pthread_cond_init_2_1", simple_pass), ("ltp_interfaces_pthread_cond_init_3_1", simple_pass), ("ltp_interfaces_pthread_cond_init_4_3", simple_pass), ("ltp_interfaces_pthread_cond_signal_1_1", simple_pass), ("ltp_interfaces_pthread_cond_signal_2_1", simple_pass), ("ltp_interfaces_pthread_cond_signal_2_2", simple_pass), ("ltp_interfaces_pthread_cond_signal_4_1", simple_pass), ("ltp_interfaces_pthread_cond_signal_4_2", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_1_1", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_2_1", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_2_2", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_2_3", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_3_1", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_4_1", simple_pass), ("ltp_interfaces_pthread_cond_timedwait_4_3", simple_pass), ("ltp_interfaces_pthread_cond_wait_1_1", simple_pass), ("ltp_interfaces_pthread_cond_wait_2_1", simple_pass), ("ltp_interfaces_pthread_cond_wait_3_1", simple_pass), ("ltp_interfaces_pthread_cond_wait_4_1", simple_pass), ("ltp_interfaces_pthread_create_1_1", simple_pass), ("ltp_interfaces_pthread_create_12_1", simple_pass), ("ltp_interfaces_pthread_create_1_2", simple_pass), ("ltp_interfaces_pthread_create_1_3", simple_pass), ("ltp_interfaces_pthread_create_2_1", simple_pass), ("ltp_interfaces_pthread_create_3_1", simple_pass), ("ltp_interfaces_pthread_create_4_1", simple_pass), ("ltp_interfaces_pthread_create_5_1", simple_pass), ("ltp_interfaces_pthread_create_8_1", simple_pass), ("ltp_interfaces_pthread_detach_1_1", simple_pass), ("ltp_interfaces_pthread_detach_2_1", simple_pass), ("ltp_interfaces_pthread_detach_3_1", simple_pass), ("ltp_interfaces_pthread_detach_4_1", simple_pass), ("ltp_interfaces_pthread_detach_4_2", simple_pass), ("ltp_interfaces_pthread_equal_1_1", simple_pass), ("ltp_interfaces_pthread_equal_1_2", simple_pass), ("ltp_interfaces_pthread_equal_2_1", simple_pass), ("ltp_interfaces_pthread_exit_1_1", simple_pass), ("ltp_interfaces_pthread_exit_2_1", simple_pass), ("ltp_interfaces_pthread_exit_3_1", simple_pass), ("ltp_interfaces_pthread_getschedparam_1_1", simple_pass), ("ltp_interfaces_pthread_getschedparam_1_2", simple_pass), ("ltp_interfaces_pthread_getschedparam_1_3", simple_pass), ("ltp_interfaces_pthread_getspecific_1_1", simple_pass), ("ltp_interfaces_pthread_getspecific_3_1", simple_pass), ("ltp_interfaces_pthread_join_1_1", simple_pass), ("ltp_interfaces_pthread_join_2_1", simple_pass), ("ltp_interfaces_pthread_join_3_1", simple_pass), ("ltp_interfaces_pthread_join_5_1", simple_pass), ("ltp_interfaces_pthread_join_6_2", simple_pass), ("ltp_interfaces_pthread_key_create_1_1", simple_pass), ("ltp_interfaces_pthread_key_create_1_2", simple_pass), ("ltp_interfaces_pthread_key_create_2_1", simple_pass), ("ltp_interfaces_pthread_key_create_3_1", simple_pass), ("ltp_interfaces_pthread_key_delete_1_1", simple_pass), ("ltp_interfaces_pthread_key_delete_1_2", simple_pass), ("ltp_interfaces_pthread_key_delete_2_1", simple_pass), ("ltp_interfaces_pthread_kill_1_2", simple_pass), ("ltp_interfaces_pthread_kill_2_1", simple_pass), ("ltp_interfaces_pthread_kill_3_1", simple_pass), ("ltp_interfaces_pthread_kill_6_1", simple_pass), ("ltp_interfaces_pthread_kill_7_1", simple_pass), ("ltp_interfaces_pthread_kill_8_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_destroy_2_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_destroy_4_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_getprotocol_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_getprotocol_1_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_getpshared_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_getpshared_1_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_getpshared_1_3", simple_pass), ("ltp_interfaces_pthread_mutexattr_getpshared_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_gettype_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_gettype_1_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_gettype_1_3", simple_pass), ("ltp_interfaces_pthread_mutexattr_gettype_1_4", simple_pass), ("ltp_interfaces_pthread_mutexattr_gettype_1_5", simple_pass), ("ltp_interfaces_pthread_mutexattr_init_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_init_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setprotocol_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setprotocol_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setprotocol_3_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_1_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_2_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_2_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_setpshared_3_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_1_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_2_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_3_1", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_3_2", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_3_3", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_3_4", simple_pass), ("ltp_interfaces_pthread_mutexattr_settype_7_1", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_2_1", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_2_2", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_5_1", simple_pass), ("ltp_interfaces_pthread_mutex_destroy_5_2", simple_pass), ("ltp_interfaces_pthread_mutex_init_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_init_1_2", simple_pass), ("ltp_interfaces_pthread_mutex_init_2_1", simple_pass), ("ltp_interfaces_pthread_mutex_init_3_1", simple_pass), ("ltp_interfaces_pthread_mutex_init_3_2", simple_pass), ("ltp_interfaces_pthread_mutex_init_4_1", simple_pass), ("ltp_interfaces_pthread_mutex_lock_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_lock_2_1", simple_pass), ("ltp_interfaces_pthread_mutex_lock_3_1", simple_pass), ("ltp_interfaces_pthread_mutex_lock_4_1", simple_pass), ("ltp_interfaces_pthread_mutex_lock_5_1", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_2_1", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_4_1", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_5_1", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_5_2", simple_pass), ("ltp_interfaces_pthread_mutex_timedlock_5_3", simple_pass), ("ltp_interfaces_pthread_mutex_trylock_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_trylock_3_1", simple_pass), ("ltp_interfaces_pthread_mutex_trylock_4_1", simple_pass), ("ltp_interfaces_pthread_mutex_trylock_4_3", simple_pass), ("ltp_interfaces_pthread_mutex_unlock_1_1", simple_pass), ("ltp_interfaces_pthread_mutex_unlock_2_1", simple_pass), ("ltp_interfaces_pthread_mutex_unlock_3_1", simple_pass), ("ltp_interfaces_pthread_mutex_unlock_5_1", simple_pass), ("ltp_interfaces_pthread_mutex_unlock_5_2", simple_pass), ("ltp_interfaces_pthread_once_1_1", simple_pass), ("ltp_interfaces_pthread_once_1_2", simple_pass), ("ltp_interfaces_pthread_once_1_3", simple_pass), ("ltp_interfaces_pthread_once_2_1", simple_pass), ("ltp_interfaces_pthread_once_3_1", simple_pass), ("ltp_interfaces_pthread_once_6_1", simple_pass), ("ltp_interfaces_pthread_rwlock_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_rwlock_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_rwlock_init_2_1", simple_pass), ("ltp_interfaces_pthread_rwlock_init_6_1", simple_pass), ("ltp_interfaces_pthread_rwlock_rdlock_4_1", simple_pass), ("ltp_interfaces_pthread_rwlock_timedrdlock_2_1", simple_pass), ("ltp_interfaces_pthread_rwlock_timedrdlock_6_1", simple_pass), ("ltp_interfaces_pthread_rwlock_timedrdlock_6_2", simple_pass), ("ltp_interfaces_pthread_rwlock_timedwrlock_6_1", simple_pass), ("ltp_interfaces_pthread_rwlock_timedwrlock_6_2", simple_pass), ("ltp_interfaces_pthread_rwlock_unlock_1_1", simple_pass), ("ltp_interfaces_pthread_rwlock_unlock_2_1", simple_pass), ("ltp_interfaces_pthread_rwlock_unlock_4_1", simple_pass), ("ltp_interfaces_pthread_rwlock_unlock_4_2", simple_pass), ("ltp_interfaces_pthread_rwlock_wrlock_2_1", simple_pass), ("ltp_interfaces_pthread_rwlock_wrlock_3_1", simple_pass), ("ltp_interfaces_pthread_self_1_1", simple_pass), ("ltp_interfaces_pthread_setcancelstate_1_1", simple_pass), ("ltp_interfaces_pthread_setcancelstate_1_2", simple_pass), ("ltp_interfaces_pthread_setcancelstate_2_1", simple_pass), ("ltp_interfaces_pthread_setcancelstate_3_1", simple_pass), ("ltp_interfaces_pthread_setcanceltype_1_1", simple_pass), ("ltp_interfaces_pthread_setcanceltype_1_2", simple_pass), ("ltp_interfaces_pthread_setcanceltype_2_1", simple_pass), ("ltp_interfaces_pthread_setschedparam_1_1", simple_pass), ("ltp_interfaces_pthread_setschedparam_1_2", simple_pass), ("ltp_interfaces_pthread_setschedparam_4_1", simple_pass), ("ltp_interfaces_pthread_setschedparam_5_1", simple_pass), ("ltp_interfaces_pthread_setschedprio_1_1", simple_pass), ("ltp_interfaces_pthread_setspecific_1_1", simple_pass), ("ltp_interfaces_pthread_setspecific_1_2", simple_pass), ("ltp_interfaces_pthread_sigmask_10_1", simple_pass), ("ltp_interfaces_pthread_spin_destroy_1_1", simple_pass), ("ltp_interfaces_pthread_spin_destroy_3_1", simple_pass), ("ltp_interfaces_pthread_spin_init_1_1", simple_pass), ("ltp_interfaces_pthread_spin_init_4_1", simple_pass), ("ltp_interfaces_pthread_spin_lock_1_1", simple_pass), ("ltp_interfaces_pthread_spin_lock_1_2", simple_pass), ("ltp_interfaces_pthread_spin_lock_3_1", simple_pass), ("ltp_interfaces_pthread_spin_lock_3_2", simple_pass), ("ltp_interfaces_pthread_spin_trylock_1_1", simple_pass), ("ltp_interfaces_pthread_spin_trylock_4_1", simple_pass), ("ltp_interfaces_pthread_spin_unlock_1_1", simple_pass), ("ltp_interfaces_pthread_spin_unlock_1_2", simple_pass), ("ltp_interfaces_pthread_spin_unlock_3_1", simple_pass), ("ltp_interfaces_pthread_testcancel_1_1", simple_pass), ("ltp_interfaces_pthread_testcancel_2_1", simple_pass), ("ltp_interfaces_raise_6_1", simple_pass), ("ltp_interfaces_raise_7_1", simple_pass), ("ltp_interfaces_sched_getparam_1_1", simple_pass), ("ltp_interfaces_sched_getparam_2_1", simple_pass), ("ltp_interfaces_sched_getparam_3_1", simple_pass), ("ltp_interfaces_sched_get_priority_max_1_1", simple_pass), ("ltp_interfaces_sched_get_priority_max_1_2", simple_pass), ("ltp_interfaces_sched_get_priority_max_1_3", simple_pass), ("ltp_interfaces_sched_get_priority_max_1_4", simple_pass), ("ltp_interfaces_sched_get_priority_max_2_1", simple_pass), ("ltp_interfaces_sched_get_priority_min_1_1", simple_pass), ("ltp_interfaces_sched_get_priority_min_1_2", simple_pass), ("ltp_interfaces_sched_get_priority_min_1_3", simple_pass), ("ltp_interfaces_sched_get_priority_min_1_4", simple_pass), ("ltp_interfaces_sched_get_priority_min_2_1", simple_pass), ("ltp_interfaces_sched_getscheduler_1_1", simple_pass), ("ltp_interfaces_sched_getscheduler_3_1", simple_pass), ("ltp_interfaces_sched_getscheduler_4_1", simple_pass), ("ltp_interfaces_sched_rr_get_interval_1_1", simple_pass), ("ltp_interfaces_sched_rr_get_interval_2_1", simple_pass), ("ltp_interfaces_sched_setparam_22_1", simple_pass), ("ltp_interfaces_sched_setparam_23_1", simple_pass), ("ltp_interfaces_sched_setparam_23_2", simple_pass), ("ltp_interfaces_sched_setparam_23_3", simple_pass), ("ltp_interfaces_sched_setparam_23_4", simple_pass), ("ltp_interfaces_sched_setparam_23_5", simple_pass), ("ltp_interfaces_sched_setparam_25_1", simple_pass), ("ltp_interfaces_sched_setparam_25_2", simple_pass), ("ltp_interfaces_sched_setparam_25_3", simple_pass), ("ltp_interfaces_sched_setparam_25_4", simple_pass), ("ltp_interfaces_sched_setparam_5_1", simple_pass), ("ltp_interfaces_sched_setscheduler_1_1", simple_pass), ("ltp_interfaces_sched_setscheduler_16_1", simple_pass), ("ltp_interfaces_sched_setscheduler_17_1", simple_pass), ("ltp_interfaces_sched_setscheduler_17_2", simple_pass), ("ltp_interfaces_sched_setscheduler_17_3", simple_pass), ("ltp_interfaces_sched_setscheduler_17_4", simple_pass), ("ltp_interfaces_sched_setscheduler_17_5", simple_pass), ("ltp_interfaces_sched_setscheduler_19_1", simple_pass), ("ltp_interfaces_sched_setscheduler_19_2", simple_pass), ("ltp_interfaces_sched_setscheduler_19_3", simple_pass), ("ltp_interfaces_sched_setscheduler_19_4", simple_pass), ("ltp_interfaces_sched_setscheduler_19_5", simple_pass), ("ltp_interfaces_sched_setscheduler_4_1", simple_pass), ("ltp_interfaces_sched_yield_2_1", simple_pass), ("ltp_interfaces_sem_close_1_1", simple_pass), ("ltp_interfaces_sem_close_2_1", simple_pass), ("ltp_interfaces_sem_close_3_1", simple_pass), ("ltp_interfaces_sem_close_3_2", simple_pass), ("ltp_interfaces_sem_destroy_3_1", simple_pass), ("ltp_interfaces_sem_destroy_4_1", simple_pass), ("ltp_interfaces_sem_getvalue_1_1", simple_pass), ("ltp_interfaces_sem_getvalue_2_1", simple_pass), ("ltp_interfaces_sem_getvalue_2_2", simple_pass), ("ltp_interfaces_sem_getvalue_4_1", simple_pass), ("ltp_interfaces_sem_getvalue_5_1", simple_pass), ("ltp_interfaces_sem_init_1_1", simple_pass), ("ltp_interfaces_sem_init_2_1", simple_pass), ("ltp_interfaces_sem_init_2_2", simple_pass), ("ltp_interfaces_sem_init_3_1", simple_pass), ("ltp_interfaces_sem_init_5_1", simple_pass), ("ltp_interfaces_sem_init_5_2", simple_pass), ("ltp_interfaces_sem_init_6_1", simple_pass), ("ltp_interfaces_sem_init_7_1", simple_pass), ("ltp_interfaces_sem_open_10_1", simple_pass), ("ltp_interfaces_sem_open_1_1", simple_pass), ("ltp_interfaces_sem_open_1_2", simple_pass), ("ltp_interfaces_sem_open_1_3", simple_pass), ("ltp_interfaces_sem_open_1_4", simple_pass), ("ltp_interfaces_sem_open_15_1", simple_pass), ("ltp_interfaces_sem_open_2_1", simple_pass), ("ltp_interfaces_sem_open_2_2", simple_pass), ("ltp_interfaces_sem_open_4_1", simple_pass), ("ltp_interfaces_sem_open_5_1", simple_pass), ("ltp_interfaces_sem_open_6_1", simple_pass), ("ltp_interfaces_sem_post_1_1", simple_pass), ("ltp_interfaces_sem_post_1_2", simple_pass), ("ltp_interfaces_sem_post_2_1", simple_pass), ("ltp_interfaces_sem_post_4_1", simple_pass), ("ltp_interfaces_sem_post_5_1", simple_pass), ("ltp_interfaces_sem_post_6_1", simple_pass), ("ltp_interfaces_sem_timedwait_10_1", simple_pass), ("ltp_interfaces_sem_timedwait_11_1", simple_pass), ("ltp_interfaces_sem_timedwait_1_1", simple_pass), ("ltp_interfaces_sem_timedwait_2_2", simple_pass), ("ltp_interfaces_sem_timedwait_3_1", simple_pass), ("ltp_interfaces_sem_timedwait_4_1", simple_pass), ("ltp_interfaces_sem_timedwait_6_1", simple_pass), ("ltp_interfaces_sem_timedwait_6_2", simple_pass), ("ltp_interfaces_sem_timedwait_7_1", simple_pass), ("ltp_interfaces_sem_unlink_1_1", simple_pass), ("ltp_interfaces_sem_unlink_2_1", simple_pass), ("ltp_interfaces_sem_unlink_4_1", simple_pass), ("ltp_interfaces_sem_unlink_4_2", simple_pass), ("ltp_interfaces_sem_unlink_5_1", simple_pass), ("ltp_interfaces_sem_unlink_6_1", simple_pass), ("ltp_interfaces_sem_unlink_7_1", simple_pass), ("ltp_interfaces_sem_unlink_9_1", simple_pass), ("ltp_interfaces_sem_wait_11_1", simple_pass), ("ltp_interfaces_sem_wait_1_1", simple_pass), ("ltp_interfaces_sem_wait_12_1", simple_pass), ("ltp_interfaces_sem_wait_1_2", simple_pass), ("ltp_interfaces_sem_wait_13_1", simple_pass), ("ltp_interfaces_sem_wait_3_1", simple_pass), ("ltp_interfaces_sem_wait_5_1", simple_pass), ("ltp_interfaces_shm_open_11_1", simple_pass), ("ltp_interfaces_shm_open_1_1", simple_pass), ("ltp_interfaces_shm_open_13_1", simple_pass), ("ltp_interfaces_shm_open_14_2", simple_pass), ("ltp_interfaces_shm_open_15_1", simple_pass), ("ltp_interfaces_shm_open_16_1", simple_pass), ("ltp_interfaces_shm_open_17_1", simple_pass), ("ltp_interfaces_shm_open_18_1", simple_pass), ("ltp_interfaces_shm_open_20_1", simple_pass), ("ltp_interfaces_shm_open_20_2", simple_pass), ("ltp_interfaces_shm_open_20_3", simple_pass), ("ltp_interfaces_shm_open_21_1", simple_pass), ("ltp_interfaces_shm_open_22_1", simple_pass), ("ltp_interfaces_shm_open_25_1", simple_pass), ("ltp_interfaces_shm_open_26_1", simple_pass), ("ltp_interfaces_shm_open_28_1", simple_pass), ("ltp_interfaces_shm_open_28_2", simple_pass), ("ltp_interfaces_shm_open_28_3", simple_pass), ("ltp_interfaces_shm_open_37_1", simple_pass), ("ltp_interfaces_shm_open_38_1", simple_pass), ("ltp_interfaces_shm_open_39_1", simple_pass), ("ltp_interfaces_shm_open_39_2", simple_pass), ("ltp_interfaces_shm_open_41_1", simple_pass), ("ltp_interfaces_shm_open_8_1", simple_pass), ("ltp_interfaces_shm_unlink_10_1", simple_pass), ("ltp_interfaces_shm_unlink_10_2", simple_pass), ("ltp_interfaces_shm_unlink_11_1", simple_pass), ("ltp_interfaces_shm_unlink_1_1", simple_pass), ("ltp_interfaces_shm_unlink_2_1", simple_pass), ("ltp_interfaces_shm_unlink_3_1", simple_pass), ("ltp_interfaces_shm_unlink_5_1", simple_pass), ("ltp_interfaces_shm_unlink_6_1", simple_pass), ("ltp_interfaces_sigaction_1_10", simple_pass), ("ltp_interfaces_sigaction_1_11", simple_pass), ("ltp_interfaces_sigaction_1_13", simple_pass), ("ltp_interfaces_sigaction_1_17", simple_pass), ("ltp_interfaces_sigaction_1_18", simple_pass), ("ltp_interfaces_sigaction_1_19", simple_pass), ("ltp_interfaces_sigaction_1_2", simple_pass), ("ltp_interfaces_sigaction_1_4", simple_pass), ("ltp_interfaces_sigaction_1_5", simple_pass), ("ltp_interfaces_sigaction_18_10", simple_pass), ("ltp_interfaces_sigaction_18_11", simple_pass), ("ltp_interfaces_sigaction_18_13", simple_pass), ("ltp_interfaces_sigaction_18_17", simple_pass), ("ltp_interfaces_sigaction_18_18", simple_pass), ("ltp_interfaces_sigaction_18_2", simple_pass), ("ltp_interfaces_sigaction_18_4", simple_pass), ("ltp_interfaces_sigaction_18_5", simple_pass), ("ltp_interfaces_sigaction_18_9", simple_pass), ("ltp_interfaces_sigaction_19_10", simple_pass), ("ltp_interfaces_sigaction_19_11", simple_pass), ("ltp_interfaces_sigaction_19_13", simple_pass), ("ltp_interfaces_sigaction_19_17", simple_pass), ("ltp_interfaces_sigaction_19_18", simple_pass), ("ltp_interfaces_sigaction_19_2", simple_pass), ("ltp_interfaces_sigaction_19_4", simple_pass), ("ltp_interfaces_sigaction_19_5", simple_pass), ("ltp_interfaces_sigaction_19_9", simple_pass), ("ltp_interfaces_sigaction_1_9", simple_pass), ("ltp_interfaces_sigaction_2_10", simple_pass), ("ltp_interfaces_sigaction_2_11", simple_pass),
# Copyright 2018 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Driver for common sequences for image management on switchable usb port.""" import glob import os import shutil import subprocess import tempfile import time import urllib import hw_driver import servo.utils.usb_hierarchy as usb_hierarchy import usb # If a hub is attached to the usual image usb storage slot, use this port on the # hub to search for the usb storage. STORAGE_ON_HUB_PORT = 1 class UsbImageManagerError(hw_driver.HwDriverError): """Error class for UsbImageManager errors.""" pass # pylint: disable=invalid-name # Servod driver discovery logic requires this naming convension class usbImageManager(hw_driver.HwDriver): """Driver to handle common tasks on the switchable usb port.""" # Polling rate to poll for image usb dev to appear if setting mux to # servo_sees_usbkey _POLLING_DELAY_S = 0.1 # Timeout to wait before giving up on hoping the image usb dev will enumerate _WAIT_TIMEOUT_S = 10 # Timeout to settle all pending tasks on the device before writing to it. _SETTLE_TIMEOUT_S = 60 # Control aliases to the image mux and power intended for image management _IMAGE_USB_MUX = 'image_usbkey_mux' _IMAGE_USB_PWR = 'image_usbkey_pwr' _IMAGE_DEV = 'image_usbkey_dev' _IMAGE_MUX_TO_SERVO = 'servo_sees_usbkey' _HTTP_PREFIX = 'http://' _DEFAULT_ERROR_MSG = 'No USB storage device found for image transfer.' def __init__(self, interface, params): """Initialize driver by initializing HwDriver.""" super(usbImageManager, self).__init__(interface, params) # This delay is required to safely switch the usb image mux direction self._poweroff_delay = params.get('usb_power_off_delay', 0) if self._poweroff_delay: self._poweroff_delay = float(self._poweroff_delay) # This is required to determine if the usbkey is connected to the host. # The |hub_ports| is a comma-seperated string of usb hub port numbers # that the image usbkey enumerates under for a given servo device. # NOTE: initialization here is shared among multiple controls, some of which # do not use the hub_ports logic. Do not raise error here if the param # is not available, but rather inside the controls that leverage it. self._image_usbkey_hub_ports = None if 'hub_ports' in params: self._image_usbkey_hub_ports = params.get('hub_ports').split(',') # Flag to indicate whether the usb port supports having a hub attached to # it. In that case, the image will be searched on the |STORAGE_ON_HUB_PORT| # of the hub. self._supports_hub_on_port = params.get('hub_on_port', False) self._error_msg = self._DEFAULT_ERROR_MSG if 'error_amendment' in params: self._error_msg += ' ' + params['error_amendment'] def _Get_image_usbkey_direction(self): """Return direction of image usbkey mux.""" return self._interface.get(self._IMAGE_USB_MUX) def _Set_image_usbkey_direction(self, mux_direction): """Connect USB flash stick to either servo or DUT. This function switches 'usb_mux_sel1' to provide electrical connection between the USB port J3 and either servo or DUT side. Args: mux_direction: map values of "servo_sees_usbkey" or "dut_sees_usbkey". """ self._SafelySwitchMux(mux_direction) if self._interface.get(self._IMAGE_USB_MUX) == self._IMAGE_MUX_TO_SERVO: # This will ensure that we make a best-effort attempt to only # return when the block device of the attached usb stick fully # enumerates. self._interface.get(self._IMAGE_DEV) def _SafelySwitchMux(self, mux_direction): """Helper to switch the usb mux. Switching the usb mux is accompanied by powercycling of the USB stick, because it sometimes gets wedged if the mux is switched while the stick power is on. Args: mux_direction: map values of "servo_sees_usbkey" or "dut_sees_usbkey". """ if self._interface.get(self._IMAGE_USB_MUX) != mux_direction: self._interface.set(self._IMAGE_USB_PWR, 'off') time.sleep(self._poweroff_delay) self._interface.set(self._IMAGE_USB_MUX, mux_direction) time.sleep(self._poweroff_delay) if self._interface.get(self._IMAGE_USB_PWR) != 'on': # Enforce that power is supplied. self._interface.set(self._IMAGE_USB_PWR, 'on') def _PathIsHub(self, usb_sysfs_path): """Return whether |usb_sysfs_path| is a usb hub.""" if not os.path.exists(usb_sysfs_path): return False with open(os.path.join(usb_sysfs_path, 'bDeviceClass'), 'r') as classf: return int(classf.read().strip(), 16) == usb.CLASS_HUB def _Get_image_usbkey_dev(self): """Probe the USB disk device plugged in the servo from the host side. Returns: USB disk path if one and only one USB disk path is found, otherwise an empty string. Raises: UsbImageManagerError: if 'hub_ports' was not defined in params """ if self._image_usbkey_hub_ports is None: raise UsbImageManagerError('hub_ports need to be defined in params.') servod = self._interface # When the user is requesting the usb_dev they most likely intend for the # usb to the facing the servo, and be powered. Enforce that. self._SafelySwitchMux(self._IMAGE_MUX_TO_SERVO) # Look for own servod usb device # pylint: disable=protected-access # Need servod information to find own servod instance. usb_id = (servod._vendor, servod._product, servod._serialnames['main']) self_usb = usb_hierarchy.Hierarchy.GetUsbDeviceSysfsPath(*usb_id) hub_on_servo = usb_hierarchy.Hierarchy.GetSysfsParentHubStub(self_usb) # Image usb is one of the hub ports |self._image_usbkey_hub_ports| image_location_candidates = ['%s.%s' % (hub_on_servo, p) for p in self._image_usbkey_hub_ports] hub_location_candidates = [] if self._supports_hub_on_port: # Here the config says that |image_usbkey_sysfs| might actually have a hub # and not storage attached to it. In that case, the |STORAGE_ON_HUB_PORT| # on that hub will house the storage. hub_location_candidates = ['%s.%d' % (path, STORAGE_ON_HUB_PORT) for path in image_location_candidates] image_location_candidates.extend(hub_location_candidates) self._logger.debug('usb image dev file candidates: %s', ', '.join(image_location_candidates)) # Let the device settle first before pushing out any data onto it. subprocess.call(['/bin/udevadm', 'settle', '-t', str(self._SETTLE_TIMEOUT_S)]) self._logger.debug('All udev events have settled.') end = time.time() + self._WAIT_TIMEOUT_S while image_location_candidates: active_storage_candidate = image_location_candidates.pop(0) if os.path.exists(active_storage_candidate): if self._PathIsHub(active_storage_candidate): # Do not check the hub, only devices. continue # Use /sys/block/ entries to see which block device is the |self_usb|. # Use sd* to avoid querying any non-external block devices. for candidate in glob.glob('/sys/block/sd*'): # |candidate| is a link to a sys hw device file devicepath = os.path.realpath(candidate) # |active_storage_candidate| is also a link to a sys hw device file if devicepath.startswith(os.path.realpath(active_storage_candidate)): devpath = '/dev/%s' % os.path.basename(candidate) if os.path.exists(devpath): return devpath # Enqueue the candidate again in hopes that it will eventually enumerate. image_location_candidates.append(active_storage_candidate) if time.time() >= end: break time.sleep(self._POLLING_DELAY_S) # Split and join to help with error message formatting from XML that might # introduce multiple white-spaces. self._logger.warn(' '.join(self._error_msg.split())) self._logger.warn('Stick should be at one of the usb image dev file ' 'candidates: %s', ', '.join(image_location_candidates)) if self._supports_hub_on_port: self._logger.warn('If using a hub on the image key port, please make ' 'sure to use port %d on the hub. This should be at ' 'one of: %s.', STORAGE_ON_HUB_PORT, ', '.join(hub_location_candidates)) return '' def _Get_download_to_usb_dev(self): """Improved error reporting for misuse.""" raise UsbImageManagerError('Download requires image path. Please use set ' 'version of the control to provide path.') def _Set_download_to_usb_dev(self, image_path): """Download image and save to the USB device found by host_usb_dev. If the image_path is a URL, it will download this url to the USB path; otherwise it will simply copy the image_path's contents to the USB path. Args: image_path: path or url to the recovery image. Raises: UsbImageManagerError: if download fails for any reason. """ # pylint: disable=broad-except # Ensure that any issue gets caught & reported as UsbImageError self._logger.debug('image_path(%s)', image_path) self._logger.debug('Detecting USB stick device...') usb_dev = self._interface.get(self._IMAGE_DEV) # |errormsg| is usd later to indicate the error errormsg = '' if not usb_dev: # No usb dev attached, skip straight to the end. errormsg = 'No usb device connected to servo' else: # There is a usb dev attached. Try to get the image. try: if image_path.startswith(self._HTTP_PREFIX): self._logger.debug('Image path is a URL, downloading image') urllib.urlretrieve(image_path, usb_dev) else: shutil.copyfile(image_path, usb_dev) # Ensure that after the download the usb-device is still attached, as # copyfile does not raise an error stick is removed mid-writing for # instance. if not self._interface.get('image_usbkey_dev'): raise UsbImageManagerError('Device file %s not found again after ' 'copy completed.' % usb_dev) except urllib.ContentTooShortError: errormsg = 'Failed to download URL: %s to USB device: %s' % (image_path, usb_dev) except (IOError, OSError) as e: errormsg = ('Failed to transfer image to USB device: %s ( %s ) ' % (e.strerror, e.errno)) except UsbImageManagerError as e: errormsg = 'Failed to transfer image to USB device: %s' % e.message except BaseException as e: errormsg = ('Unexpected exception downloading %s to %s: %s' % (image_path, usb_dev, str(e))) finally: # We just plastered the partition table for a block device. # Pass or fail, we mustn't go without telling the kernel about # the change, or it will punish us with sporadic, hard-to-debug # failures. subprocess.call(['sync']) subprocess.call(['blockdev', '--rereadpt', usb_dev]) if errormsg: self._logger.error(errormsg) raise UsbImageManagerError(errormsg) def _Set_make_image_noninteractive(self, usb_dev_partition): """Makes the recovery image noninteractive. A noninteractive image will reboot automatically after installation instead of waiting for the USB device
<filename>hvm/vm/base.py from __future__ import absolute_import from abc import ( ABCMeta, abstractmethod ) import contextlib import functools import logging from typing import ( # noqa: F401 List, Type, Tuple, Optional, Union, ) from hvm.constants import CREATE_CONTRACT_ADDRESS import time import rlp_cython as rlp from eth_bloom import ( BloomFilter, ) from eth_utils import ( to_tuple, encode_hex, to_int ) from eth_hash.auto import keccak from hvm.constants import ( GENESIS_PARENT_HASH, MAX_PREV_HEADER_DEPTH, MAX_UNCLES, ZERO_HASH32, BLANK_REWARD_HASH) from hvm.db.trie import make_trie_root_and_nodes from hvm.db.chain import BaseChainDB # noqa: F401 from hvm.exceptions import ( HeaderNotFound, ValidationError, IncorrectBlockType, IncorrectBlockHeaderType, BlockOnWrongChain, ParentNotFound, ReceivableTransactionNotFound, TransactionNotFound) from hvm.rlp.blocks import ( # noqa: F401 BaseBlock, BaseQueueBlock, BaseMicroBlock) from hvm.rlp.transactions import ( # noqa: F401 BaseTransaction, BaseReceiveTransaction ) from hvm.rlp.headers import ( BlockHeader, BaseBlockHeader) from hvm.rlp.receipts import Receipt # noqa: F401 from hvm.utils.datatypes import ( Configurable, ) from hvm.utils.db import ( get_parent_header, get_block_header_by_hash, ) from hvm.validation import ( validate_length_lte, validate_gas_limit, validate_private_key, ) from hvm.vm.message import ( Message, ) from hvm.vm.state import BaseState # noqa: F401 from eth_typing import ( Hash32, Address, ) from eth_keys.datatypes import( BaseKey, PublicKey, PrivateKey ) from hvm.utils.rlp import convert_rlp_to_correct_class from hvm.rlp.consensus import StakeRewardBundle from hvm.db.consensus import ConsensusDB from hvm.types import Timestamp from hvm.vm.computation import BaseComputation class BaseVM(Configurable, metaclass=ABCMeta): micro_block_class: Type[BaseMicroBlock] = None block_class: Type[BaseBlock] = None queue_block_class: Type[BaseQueueBlock] = None consensus_db_class: Type[ConsensusDB] = None fork: str = None chaindb: BaseChainDB = None consensus_db: ConsensusDB = None _state_class: Type[BaseState] = None state: BaseState = None block: BaseBlock = None queue_block: BaseQueueBlock = None network_id: int = 0 min_time_between_blocks: int = 0 @abstractmethod def __init__(self, header, chaindb): pass # # Logging # @property @abstractmethod def logger(self): raise NotImplementedError("VM classes must implement this method") # # Execution # @abstractmethod def apply_send_transaction(self, header: BlockHeader, transaction: BaseTransaction, caller_chain_address: Address, validate: bool = True) -> Tuple[BlockHeader, Receipt, BaseComputation]: raise NotImplementedError("VM classes must implement this method") @abstractmethod def apply_receive_transaction(self, header: BlockHeader, receive_transaction: BaseReceiveTransaction, caller_chain_address: Address, validate: bool = True) -> Tuple[Optional[BlockHeader], Optional[Receipt], BaseComputation, Optional[BaseReceiveTransaction]]: raise NotImplementedError("VM classes must implement this method") @abstractmethod def execute_bytecode(self, origin, gas_price, gas, to, sender, value, data, code, code_address=None): raise NotImplementedError("VM classes must implement this method") @abstractmethod def make_receipt(self, base_header: BaseBlockHeader, computation: BaseComputation, send_transaction: BaseTransaction, receive_transaction: BaseReceiveTransaction = None, refund_transaction: BaseReceiveTransaction = None, ) -> Receipt: """ Generate the receipt resulting from applying the transaction. :param base_header: the header of the block before the transaction was applied. :param transaction: the transaction used to generate the receipt :param computation: the result of running the transaction computation :param state: the resulting state, after executing the computation :return: receipt """ raise NotImplementedError("VM classes must implement this method") @abstractmethod def reverse_pending_transactions(self, block_header: BaseBlockHeader) -> None: raise NotImplementedError("VM classes must implement this method") # # Mining # @abstractmethod def import_block(self, block: Union[BaseBlock, BaseQueueBlock], validate: bool = True, private_key: PrivateKey = None) -> BaseBlock: raise NotImplementedError("VM classes must implement this method") # @abstractmethod # def set_block_transactions(self, base_block, new_header, transactions, receipts): # raise NotImplementedError("VM classes must implement this method") # # Finalization # # @abstractmethod # def finalize_block(self, block): # raise NotImplementedError("VM classes must implement this method") @abstractmethod def pack_block(self, block, *args, **kwargs): raise NotImplementedError("VM classes must implement this method") # # Headers # @abstractmethod def configure_header(self, **header_params): """ Setup the current header with the provided parameters. This can be used to set fields like the gas limit or timestamp to value different than their computed defaults. """ raise NotImplementedError("VM classes must implement this method") @classmethod @abstractmethod def create_header_from_parent(cls, parent_header, **header_params): """ Creates and initializes a new block header from the provided `parent_header`. """ raise NotImplementedError("VM classes must implement this method") # # Blocks # @classmethod @abstractmethod def get_block_class(cls) -> Type['BaseBlock']: raise NotImplementedError("VM classes must implement this method") # @classmethod # @abstractmethod # def get_prev_hashes(cls, last_block_hash, chaindb): # raise NotImplementedError("VM classes must implement this method") @classmethod @abstractmethod def convert_block_to_correct_class(self, block: BaseBlock) -> BaseBlock: raise NotImplementedError("VM classes must implement this method") # # Transactions # @abstractmethod def create_transaction(self, *args, **kwargs): raise NotImplementedError("VM classes must implement this method") @classmethod @abstractmethod def get_transaction_class(cls): raise NotImplementedError("VM classes must implement this method") @classmethod @abstractmethod def get_receive_transaction_class(cls): raise NotImplementedError("VM classes must implement this method") @abstractmethod def save_recievable_transactions(self, block_header_hash: Hash32, computations: List[BaseComputation]) -> None: raise NotImplementedError("VM classes must implement this method") # # Validate # @abstractmethod def validate_block(self, block): raise NotImplementedError("VM classes must implement this method") @abstractmethod def validate_transaction_against_header(self, base_header, send_transaction, receive_transaction): """ Validate that the given transaction is valid to apply to the given header. :param base_header: header before applying the transaction :param transaction: the transaction to validate :raises: ValidationError if the transaction is not valid to apply """ raise NotImplementedError("VM classes must implement this method") # # State # @classmethod @abstractmethod def get_state_class(cls): raise NotImplementedError("VM classes must implement this method") class VM(BaseVM): """ The :class:`~hvm.vm.base.BaseVM` class represents the Chain rules for a specific protocol definition such as the Frontier or Homestead network. .. note:: Each :class:`~hvm.vm.base.BaseVM` class must be configured with: - ``block_class``: The :class:`~hvm.rlp_templates.blocks.Block` class for blocks in this VM ruleset. - ``_state_class``: The :class:`~hvm.vm.state.State` class used by this VM for execution. """ header: BlockHeader = None _block: BaseBlock = None _queue_block: BaseQueueBlock = None _state: BaseState = None def __init__(self, header: BlockHeader, chaindb: BaseChainDB, network_id: int): self.chaindb = chaindb self.consensus_db = self.consensus_db_class(chaindb) self.network_id = network_id self.header = header def __repr__(self) -> str: return '<{class_name}>'.format( class_name=self.__class__.__name__ ) # # Logging # @property def logger(self): return logging.getLogger('hvm.vm.base.VM.{0}'.format(self.__class__.__name__)) @property def block(self) -> BaseBlock: if self._block is None: self._block = self.get_block_class().from_header(header=self.header, chaindb=self.chaindb) return self._block @block.setter def block(self, val): self._block = val @property def queue_block(self) -> BaseQueueBlock: if self._queue_block is None: self._queue_block = self.get_queue_block_class().from_header(header=self.header) return self._queue_block @queue_block.setter def queue_block(self, val): self._queue_block = val @property def state(self) -> BaseState: if self._state is None: self._state = self.get_state_class()(db=self.chaindb.db, execution_context=self.header.create_execution_context()) return self._state @state.setter def state(self, val): self._state = val def refresh_state(self) -> None: self.state = self.get_state_class()( db=self.chaindb.db, execution_context=self.header.create_execution_context() ) # # Execution # def apply_send_transaction(self, header: BlockHeader, transaction: BaseTransaction, caller_chain_address: Address, validate: bool = True) -> Tuple[BlockHeader, Receipt, BaseComputation]: """ Apply the transaction to the current block. This is a wrapper around :func:`~hvm.vm.state.State.apply_transaction` with some extra orchestration logic. :param header: header of the block before application :param transaction: to apply """ #caller_chain_address = header.sender #this is a send transaction send_transaction = transaction receive_transaction = None if validate: self.validate_transaction_against_header(header, send_transaction=send_transaction) computation, _ = self.state.apply_transaction(send_transaction = send_transaction, caller_chain_address = caller_chain_address, receive_transaction = receive_transaction, validate = validate) if validate: receipt = self.make_receipt(header, computation, send_transaction) new_header = header.copy( bloom=int(BloomFilter(header.bloom) | receipt.bloom), gas_used=receipt.gas_used, ) return new_header, receipt, computation else: return None, None, computation def apply_receive_transaction(self, header: BlockHeader, receive_transaction: BaseReceiveTransaction, caller_chain_address: Address, validate: bool = True) -> Tuple[Optional[BlockHeader], Optional[Receipt], BaseComputation, Optional[BaseReceiveTransaction]]: """ Apply the transaction to the current block. This is a wrapper around :func:`~hvm.vm.state.State.apply_transaction` with some extra orchestration logic. :param header: header of the block before application :param transaction: to apply """ # Lets make sure we have this receivable transaction in the account receivable_tx_key = self.state.account_db.get_receivable_transaction(caller_chain_address, receive_transaction.send_transaction_hash) # Very first thing, check to see if this transaction has been received before: try: block_hash, index, is_receive = self.chaindb.get_transaction_index(receive_transaction.hash) if self.chaindb.is_in_canonical_chain(block_hash): raise ValidationError( 'Tried to import a receive transaction that has already been received in the canonical chain') except TransactionNotFound: pass if receivable_tx_key is None: # There is no receivable transaction that matches this one. # now check to see if the block is in the canonical chain, but didnt have the transaction in it try: block_hash, index, is_receive = self.chaindb.get_transaction_index(receive_transaction.send_transaction_hash) if block_hash == receive_transaction.sender_block_hash: raise ValidationError( 'Receive transaction is invalid. We do have the send transaction and send block, but it has already been received.') else: raise ValidationError( 'Receive transaction is invalid. We have already imported this transaction, but it was from another block.') except TransactionNotFound: if self.chaindb.is_in_canonical_chain(receive_transaction.sender_block_hash): raise ValidationError( 'Receive transaction is invalid. We have the sender block, but it didn\'t contain the send transaction') if self.chaindb.exists(receive_transaction.send_transaction_hash): self.logger.debug("The missing receivable transaction exists in the db but not canonical chain.") if self.chaindb.is_in_canonical_chain(receive_transaction.sender_block_hash): self.logger.debug("The sender block of the missing receivable transaction is in the canonical chain. This must means the tx is in there, but wasnt saved to canonical transactions...") raise ReceivableTransactionNotFound("caller_chain_address = {}, send_transaction_hash = {}, sender_block_hash = {}".format( encode_hex(caller_chain_address), encode_hex(receive_transaction.send_transaction_hash), encode_hex(receive_transaction.sender_block_hash), )) else: #now lets
np.array([1,0,0,0,1,0,0,0,1,0,0,0]) import subprocess if 'win' in sys.platform[:3]: elastix_bin = os.path.join(elastix_dir,'elastix.exe') elif 'lin' in sys.platform[:3]: elastix_bin = os.path.join(elastix_dir,'bin/elastix') os.environ['LD_LIBRARY_PATH'] = os.path.join(elastix_dir,'lib') elif 'dar' in sys.platform[:3]: elastix_bin = os.path.join(elastix_dir,'bin/elastix') os.environ['DYLD_LIBRARY_PATH'] = os.path.join(elastix_dir,'lib') # temp_dir = tempfile.mkdtemp(prefix = '/data/malbert/tmp/tmp_') temp_dir_obj = tempfile.TemporaryDirectory() temp_dir = temp_dir_obj.name outdir = temp_dir # param_path_similarity = os.path.join(temp_dir,'elx_params_similarity.txt') param_strings = [params_translation,params_rotation,params_affine][:degree+1] # param_strings = [params_translation,params_rotation] # param_strings = [params_translation]#,params_rotation,params_affine] param_paths = [os.path.join(temp_dir,'elx_params_%s.txt' %i) for i in range(len(param_strings))] # param_path_affine = os.path.join(temp_dir,'elx_params_affine.txt') # choose scaling factors so that starting image has 10 pixel width # highest_factor = int(np.min(fixed.shape)/10) # factors = [highest_factor]*3 + [np.max([1,highest_factor/2.])]*3 + [np.max([1,highest_factor/4.])]*3 + [np.max([1,highest_factor/8.])]*3 # choose scaling factors so that highest factor is associated to an image with >10 pixels min shape factors = [] image_pyramid_line = "\n(ImagePyramidSchedule" number_of_iterations_line = "\n(MaximumNumberOfIterations" for i in range(1+int(np.trunc(np.log2(np.min(list(moving.shape)+list(fixed.shape))/20.))))[::-1]: f = int(2**i) factors.append(f) image_pyramid_line +=" %s %s %s" %(f,f,f) number_of_iterations_line +=" %s" %1000 image_pyramid_line += ")" number_of_iterations_line += ")" image_pyramid_line +="\n(NumberOfResolutions %s)" %len(factors) for i in range(len(param_strings))[:1]: param_strings[i] = param_strings[i] + image_pyramid_line + number_of_iterations_line # mod_params_similarity = params_similarity + image_pyramid_line # mod_params_affine = params_rotation + image_pyramid_line + number_of_iterations_line #################################### # choose scaling factors so that highest factor is associated to an image with >10 pixels min shape factors = [] image_pyramid_line = "\n(ImagePyramidSchedule" number_of_iterations_line = "\n(MaximumNumberOfIterations" for i in range(1+int(np.trunc(np.log2(np.min(list(moving.shape)+list(fixed.shape))/20.))))[::-1]: f = int(2**i) factors.append(f) image_pyramid_line +=" %s %s %s" %(f,f,f) number_of_iterations_line +=" %s" %1000 image_pyramid_line += ")" number_of_iterations_line += ")" image_pyramid_line +="\n(NumberOfResolutions %s)" %len(factors) for i in range(len(param_strings))[1:2]: param_strings[i] = param_strings[i] + image_pyramid_line + number_of_iterations_line # mod_params_similarity = params_similarity + image_pyramid_line # mod_params_affine = params_rotation + image_pyramid_line + number_of_iterations_line #################################### #################################### # choose scaling factors so that highest factor is associated to an image with >10 pixels min shape factors = [] image_pyramid_line = "\n(ImagePyramidSchedule" number_of_iterations_line = "\n(MaximumNumberOfIterations" for i in range(1+int(np.trunc(np.log2(np.min(list(moving.shape)+list(fixed.shape))/20.))))[::-1][-1:]: f = int(2**i) factors.append(f) image_pyramid_line +=" %s %s %s" %(f,f,f) number_of_iterations_line +=" %s" %1000 image_pyramid_line += ")" number_of_iterations_line += ")" image_pyramid_line +="\n(NumberOfResolutions %s)" %len(factors) for i in range(len(param_strings))[2:]: param_strings[i] = param_strings[i] + image_pyramid_line + number_of_iterations_line # mod_params_similarity = params_similarity + image_pyramid_line # mod_params_affine = params_rotation + image_pyramid_line + number_of_iterations_line #################################### if t0 is not None: t0 = np.array(t0) t0_inv = np.array(params_invert_coordinates(t0)) elx_initial_transform_path = os.path.join(temp_dir,'elx_initial_transform.txt') createInitialTransformFile(np.array(fixed_spacing), t0_inv, elx_initial_transform_template_string, elx_initial_transform_path) createParameterFile(np.array(fixed_spacing),elx_initial_transform_path, param_strings[0], param_paths[0]) for i in range(1,len(param_strings)): open(param_paths[i],'w').write(param_strings[i]) # open(param_path_similarity,'w').write(mod_params_similarity) # open(param_path_affine,'w').write(mod_params_affine) fixed_path = os.path.join(temp_dir,'fixed.mhd') moving_path = os.path.join(temp_dir,'moving.mhd') fixedsitk = sitk.GetImageFromArray(fixed) fixedsitk.SetSpacing(fixed_spacing) fixedsitk.SetOrigin(fixed_origin) movingsitk = sitk.GetImageFromArray(moving) movingsitk.SetSpacing(moving_spacing) movingsitk.SetOrigin(moving_origin) # set fixed mask fixed_mask_path = os.path.join(temp_dir,'fixed_mask.mhd') # fixed_clahe = clahe(fixed,40,clip_limit=0.02) if fixed_mask is None: fixed_clahe = clahe(fixed, 40, clip_limit=0.02) fixed_mask = get_mask_using_otsu(fixed_clahe) # print('warning: simple mask in elastix call') # fixed_mask = (np.array(fixed_clahe) > np.mean(fixed_clahe)).astype(np.uint16) fixed_mask_sitk = sitk.GetImageFromArray(fixed_mask) fixed_mask_sitk.SetSpacing(fixed_spacing) fixed_mask_sitk.SetOrigin(fixed_origin) sitk.WriteImage(fixed_mask_sitk,fixed_mask_path) sitk.WriteImage(fixedsitk,fixed_path) sitk.WriteImage(movingsitk,moving_path) # FNULL = open(os.devnull, 'w') # cmd = '%s -f %s -m %s -p %s -p %s -out %s -threads 1' %(elastix_bin,fixed_path,moving_path,param_path_similarity,param_path_affine,outdir) # cmd = '%s -f %s -m %s -t0 %s' %(elastix_bin,fixed_path,moving_path,elx_initial_transform_path) cmd = '%s -f %s -m %s -t0 %s' %(elastix_bin,fixed_path,moving_path,elx_initial_transform_path) for i in range(len(param_strings)): cmd += ' -p %s' %param_paths[i] cmd += ' -fMask %s' %fixed_mask_path cmd += ' -out %s' %outdir # cmd += ' -threads 1' %outdir cmd = cmd.split(' ') # subprocess.Popen(cmd,stdout=FNULL).wait() subprocess.Popen(cmd).wait() final_params = t0 for i in range(len(param_strings)): final_params = matrix_to_params(get_affine_parameters_from_elastix_output(os.path.join(temp_dir, 'TransformParameters.%s.txt' % i), t0=final_params)) print(outdir) return final_params @io_decorator def register_linear_elastix(fixed,moving,degree=2,elastix_dir=None, identifier_sample=None, identifier_fixed=None, identifier_moving=None, debug_dir=None): """ estimate t0 and crop images to intersection in y :param fixed: :param moving: :return: """ lower_y0 = fixed.origin[1] upper_y0 = fixed.origin[1] + fixed.shape[1]*fixed.spacing[1] lower_y1 = moving.origin[1] upper_y1 = moving.origin[1] + moving.shape[1]*moving.spacing[1] lower_overlap = np.max([lower_y0,lower_y1]) upper_overlap = np.min([upper_y0,upper_y1]) yl0 = int((lower_overlap - lower_y0) / (upper_y0-lower_y0) * fixed.shape[1]) yu0 = int((upper_overlap - lower_y0) / (upper_y0-lower_y0) * fixed.shape[1]) yl1 = int((lower_overlap - lower_y1) / (upper_y1-lower_y1) * moving.shape[1]) yu1 = int((upper_overlap - lower_y1) / (upper_y1-lower_y1) * moving.shape[1]) # images can have different overlaps because of rounding to integer origin_overlap0 = np.zeros(3) origin_overlap1 = np.zeros(3) origin_overlap0[:] = fixed.origin origin_overlap1[:] = moving.origin origin_overlap0[1] = lower_y0 + yl0 * fixed.spacing[1] origin_overlap1[1] = lower_y1 + yl1 * moving.spacing[1] # static = ImageArray(fixed[:,yl0:yu0,:],spacing=fixed.spacing,origin=origin_overlap0) # mov = ImageArray(moving[:,yl1:yu1,:],spacing=moving.spacing,origin=origin_overlap1) c0 = clahe(fixed,10,clip_limit=0.02) c1 = clahe(moving,10,clip_limit=0.02) # print('warning: not performing clahe') # c0 = fixed # c1 = moving static = ImageArray(c0[:,yl0:yu0,:],spacing=fixed.spacing,origin=origin_overlap0) mov = ImageArray(c1[:,yl1:yu1,:],spacing=moving.spacing,origin=origin_overlap1) static_mask = get_mask_using_otsu(static) static_mask = ImageArray(static_mask, spacing=fixed.spacing, origin=origin_overlap0) t00 = mv_utils.euler_matrix(0, + fixed.rotation - moving.rotation, 0) center_static = np.array(static.shape)/2.*static.spacing + static.origin center_mov = np.array(mov.shape)/2.*mov.spacing + mov.origin t00offset = center_mov - np.dot(t00[:3,:3],center_static) t00[:3,3] = t00offset t00 = matrix_to_params(t00) # reg_spacing = np.array([fixed.spacing[0]*4]*3) # print('WARNING: 20180614: changed fft registration spacing') reg_iso_spacing = np.min([np.array(im.spacing)*np.array(im.shape)/160. for im in [static,mov]]) reg_iso_spacing = np.max([[reg_iso_spacing]+list(static.spacing)+list(mov.spacing)]) reg_spacing = np.array([reg_iso_spacing]*3) stack_properties = calc_stack_properties_from_views_and_params([static.get_info(), mov.get_info()], [matrix_to_params(np.eye(4)), t00], spacing=reg_spacing, mode='union') static_t = transform_stack_sitk(static, matrix_to_params(np.eye(4)), out_shape=stack_properties['size'], out_origin=stack_properties['origin'], out_spacing=stack_properties['spacing'] ) mov_t = transform_stack_sitk(mov, t00, out_shape=stack_properties['size'], out_origin=stack_properties['origin'], out_spacing=stack_properties['spacing'] ) im0 = static_t im1 = mov_t offset = translation3d(im1,im0) # offset = np.array([-offset[2],0,offset[0]]) * reg_spacing # offset = np.array([offset[0],0,offset[2]]) * reg_spacing # print('WARNING: add complete FFT offset (also y component), 20181109') offset = np.array([offset[0],offset[1],offset[2]]) * reg_spacing t0 = np.copy(t00) t0[9:] += np.dot(t0[:9].reshape((3,3)),offset) # return t0 # use raw intensities for elastix static = ImageArray(fixed[:,yl0:yu0,:],spacing=fixed.spacing,origin=origin_overlap0) mov = ImageArray(moving[:,yl1:yu1,:],spacing=moving.spacing,origin=origin_overlap1) import tifffile if debug_dir is not None: movt0 = transform_stack_sitk(mov, t0, stack_properties=static.get_info()) tifffile.imsave(os.path.join(debug_dir, 'mv_reginfo_000_%03d_pair_%s_%s_view_%s.tif' % (identifier_sample, identifier_fixed, identifier_moving, identifier_fixed)), static) tifffile.imsave(os.path.join(debug_dir, 'mv_reginfo_000_%03d_pair_%s_%s_view_%s.tif' % (identifier_sample, identifier_fixed, identifier_moving, identifier_moving)), mov) tifffile.imsave(os.path.join(debug_dir, 'mv_reginfo_000_%03d_pair_%s_%s_view_%s_pretransformed.tif' % (identifier_sample, identifier_fixed, identifier_moving, identifier_moving)), movt0) if degree is None or degree < 0: return t0 try: parameters = register_linear_elastix_seq(static, mov, t0, degree=degree, elastix_dir=elastix_dir, fixed_mask=static_mask) if debug_dir is not None: movt = transform_stack_sitk(mov, parameters, stack_properties=static.get_info()) tifffile.imsave(os.path.join(debug_dir, 'mv_reginfo_000_%03d_pair_%s_%s_view_%s_transformed.tif' %(identifier_sample, identifier_fixed, identifier_moving, identifier_moving)), movt) except: raise(Exception('Could not register view pair (%s, %s)' %(identifier_fixed, identifier_moving))) return parameters from numpy.fft import fftn, ifftn def translation3d(im0, im1): """Return translation vector to register images.""" # fill zeros with noise im0_m = np.copy(im0) im1_m = np.copy(im1) # print('WARNING: ADDING NOISE IN FFT REGISTRATION (added 20181109)') print('stack size in FFT translation registration: %s' %list(im0.shape)) # n0 = [im0_m[im0_m>0].min(),np.percentile(im0_m[im0_m>0],5)] n0 = [0.05,0.15] # typical border values resulting from applying clahe to Z1 background im0_m[im0==0] = np.random.random(np.sum(im0==0))*(n0[1]-n0[0])+n0[0] # n1 = [im1_m[im1_m>0].min(),np.percentile(im1_m[im1_m>0],5)] n1 = [0.05,0.15] # typical border values resulting from applying clahe to Z1 background im1_m[im1==0] = np.random.random(np.sum(im1==0))*(n1[1]-n1[0])+n1[0] shape = im0.shape # f0 = fftn(im0) # f1 = fftn(im1) f0 = fftn(im0_m) f1 = fftn(im1_m) ir = abs(ifftn((f0 * f1.conjugate()) / (abs(f0) * abs(f1)))) # print('WARNING: FILTERING IN FFT REGISTRATION (added 20181109)') ir_gauss = ndimage.gaussian_filter(ir,1) # t0, t1, t2 = np.unravel_index(np.argmax(ir), shape) t0, t1, t2 = np.unravel_index(np.argmax(ir_gauss), shape) # if t0 > shape[0] // 2: # t0 -= shape[0] # if t1 > shape[1] // 2: # t1 -= shape[1] # if t2 > shape[2] // 2: # t2 -= shape[2] if t0 > shape[0] // 2: t0 -= shape[0] if t1 > shape[1] // 2: t1 -= shape[1] if t2 > shape[2] // 2: t2 -= shape[2] return [t0, t1, t2] # import transformations def get_affine_parameters_from_elastix_output(filepath_or_params,t0=None): if type(filepath_or_params) == str: raw_out_params = open(filepath_or_params).read() elx_out_params = raw_out_params.split('\n')[2][:-1].split(' ')[1:] elx_out_params = np.array([float(i) for i in elx_out_params]) # if len(elx_out_params) in [6, 7, 12]: if len(elx_out_params) in [6, 12]: outCenterOfRotation = raw_out_params.split('\n')[19][:-1].split(' ')[1:] outCenterOfRotation = np.array([float(i) for i in outCenterOfRotation]) else: elx_out_params = filepath_or_params # when input is given as parameters, set center of rotation zero. # affinelogstacktransform doesn't use it # neither EulerStackTransform outCenterOfRotation = np.zeros(3) if len(elx_out_params)==6: # tmp = transformations.euler_matrix(elx_out_params[0],elx_out_params[1],elx_out_params[2]) tmp = mv_utils.euler_matrix(elx_out_params[0], elx_out_params[1], elx_out_params[2]) elx_affine_params = np.zeros(12) elx_affine_params[:9] = tmp[:3,:3].flatten() elx_affine_params[-3:] = np.array([elx_out_params[3],elx_out_params[4],elx_out_params[5]]) # translation = elx_affine_params[-3:] - np.dot(elx_affine_params[:9].reshape((3,3)),outCenterOfRotation) + outCenterOfRotation # elx_affine_params = np.concatenate([elx_affine_params[:9],translation],0) if len(elx_out_params)==12: # affine case elx_affine_params = elx_out_params # elif len(elx_out_params)==7: # similarity transform # angles = transformations.euler_from_quaternion([np.sqrt(1-np.sum([np.power(elx_out_params[i],2) for i in range(3)])), # elx_out_params[0],elx_out_params[1],elx_out_params[2]]) # tmp = transformations.compose_matrix(angles=angles) # elx_affine_params = np.zeros(12) # elx_affine_params[:9] = tmp[:3,:3].flatten()*elx_out_params[6] # elx_affine_params[-3:] = np.array([elx_out_params[3],elx_out_params[4],elx_out_params[5]]) # translation = elx_affine_params[-3:] - np.dot(elx_affine_params[:9].reshape((3,3)),outCenterOfRotation) + outCenterOfRotation # elx_affine_params = np.concatenate([elx_affine_params[:9],translation],0) elif len(elx_out_params)==3: # translation transform elx_affine_params = np.array([1.,0,0,0,1,0,0,0,1,0,0,0]) elx_affine_params[9:] = elx_out_params if len(elx_out_params) in [6,12]: # if len(elx_out_params) in [6,7,12]: # outCenterOfRotation = np.dot(params_to_matrix(params_invert_coordinates(t0)),np.array(list(outCenterOfRotation)+[1]))[:3] translation =
np.sum(np.power(Actual[:,0] - Truth[:,0], 2.0)) print(t, '%10.4e' % sse) return sse if (False) : # optimize.brute ranges = (slice(0.18, 0.50, 0.05), slice(0.001, 0.01, 0.001), slice(2,4+1,1), slice(2,5+1,1)) # [0.43 0.007 2. 3. ] 1.225e+06 ranges = (slice(0.38, 0.48, 0.005), slice(0.006, 0.008, 0.0001), slice(2,3+1,1), slice(3,4+1,1)) result = brute( targetSSE, ranges, full_output=True, finish=None ) # print(result) minT = result[0] sse = targetSSE(minT) print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], sse)) # def tSSE(t): # return targetSSE([t[0], t[1], minT[2], minT[3]]) # # t = fmin( tSSE, minT[0:1], disp=True) # print(t) # minSSE = 1e100 # minT = [] # for sc in (2, ) : # range(1, 5) : # for rc in (5, ) : # range(sc, 6) : # passSSE = 1e100 # passT = [] # for st in arange(0.45, 0.55, 0.001) : #arange(0.25, 5.0, 0.25) : # arange(2.8, 3.0, 0.01) : # # for rt in arange(0.15, 0.25, 0.001) : # t = array([st, rt, sc, rc]) # sse = targetSSE(t) # if (sse < passSSE) : # passSSE = sse # passT = t # print('SSE %d, %d, %10.6f, %10.6f, %10.3e' % (sc, rc, t[0], t[1], sse)) # if (passSSE < minSSE) : # minSSE = passSSE # minT = passT # print('MINSSE %d, %d, %10.6f, %10.6f, %10.3e' % (minT[2], minT[3], minT[0], minT[1], minSSE)) sse = targetSSE(minT) print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], sse)) else : # minT = [0.425, 0.0079, 2, 4] # 0.606000, 0.160000, 2, 5 # minSSE = targetSSE(minT) # print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], minSSE)) # sse = minSSE # theta = minimize_scalar( targetTheta, [0.5, 0.99]) sse = targetTheta(theta) minT = [1.0, 1.0, 1, 1] if (False) : t = minimize( targetTheta, [theta], method='Nelder-Mead', options={'disp': True}) print(t) # sse = targetSSE(t.x) # print('minimize SSE %10.6f, %10.6f, %10.3e' % (t.x[0], t.x[1], sse)) # print('ACTUAL: ', A2S(f.getState())) # print('EXPECT: ', A2S(Truth[-1,:])) st = stats.f.sf(minT[0],1,1) rt = stats.f.sf(minT[1],1,1) title = 'AOPF S, %10.4g, %d, R, %10.4g, %d, SSE, %10.3e' % (st, int(minT[2]), rt, int(minT[3]), sse) ax = plt.subplot(3,1,1) plt.title( title ) ax.plot(Times[k:], Actual[k:,0], 'r.') ax.plot(Times[k:], Truth[k:,0], 'b-') ax = plt.subplot(3,1,2) err = (Truth[k:,0]-Actual[k:,0]) print('RESIDUALS', mean(err), var(err), min(err), max(err)) ax.plot(Times[k:], err, 'b-') # /Truth[:,0] ax = plt.subplot(3,1,3) ax.plot(Times[k:], Best[k:], 'k-') # Schedule = zeros([nS]) # at = array([0, 1, 2, 25, 30, 40, 50, 55, 60, 70, 80,100]) # ao = array([0, 1, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5]) # k = 0 # for i in range(0,nS) : # if (at[k] <= Times[i,0]) : # k += 1 # Schedule[i] = ao[k-1] # # ax.plot(Times, Schedule, 'm-') plt.show() def xstepVaryingOrder(self): iter = 1 random.seed(iter) np.random.seed(iter) print() testData = TestData() print() nS = 1000 Times = zeros([nS,1]) Truth = zeros([nS,5+1]) i = 0 with open(testData.testDataPath('varyingorder2.csv'), newline='') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') for row in reader : Times[i,0] = float(row[0]) for j in range(0,5+1) : Truth[i,j] = float(row[j+1]) i += 1 if (i >= Times.shape[0]) : break tau = 0.1 R = 10.0 theta = 0.6925 Observations = Truth[:,0:1] + R * randn(nS,1) Actual = zeros([nS,5+1]) Best = zeros([nS,1]) if (True) : # True for 5th order only f = PairedPolynomialFilter(5, tau, theta) k = 0 for j in range(0,nS) : Zstar = f.predict(Times[j,0]) e = Observations[j,0] - Zstar[0] f.update(Times[j,0], Zstar, e) if (f.getStatus() == FilterStatus.RUNNING) : Actual[j,:] = f.getState() else : Actual[j,:] = Truth[j,:] sse = np.sum(np.power(Actual[k:,0] - Truth[k:,0], 2.0)) print(k, '5th Order Only %10.3e' % sse) # ax = plt.subplot(3,1,1) # plt.title('5th order only; %10.3e' % sse) # ax.plot(Times, Actual[:,0], 'r.') # ax.plot(Times, Truth[:,0], 'b-') # ax = plt.subplot(3,1,2) err = (Truth[:,0]-Actual[:,0]) print('RESIDUALS', mean(err), var(err), min(err), max(err)) # ax.plot(Times, err, 'b-') # ax = plt.subplot(3,1,3) # Best[:,0] = 5 # ax.plot(Times, Best, 'k-') # plt.show() def targetTheta(theta : float): trace = open('AOPF.csv', 'w') f = AdaptiveOrderPolynomialFilter(5, tau, theta, trace=trace) for j in range(0,nS) : # trace.write('%10.3f T %15.9g %15.6g %15.6g %15.6g %15.6g %15.6g\n' % (Times[j,0], Truth[j,0], Truth[j,1], Truth[j,2], Truth[j,3], Truth[j,4], Truth[j,5])) Zstar = f.predict(Times[j,0]) e = Observations[j,0] - Zstar[0] f.update(Times[j,0], Zstar, e) Actual[j,:] = f.getState() Best[j,0] = f.getBest() f.close() sse = np.sum(np.power(Actual[:,0] - Truth[:,0], 2.0)) print(theta, '%10.4e' % sse) return sse def targetSSE(t : float): trace = open('AOPF.csv', 'w') f = AdaptiveOrderPolynomialFilter(5, tau, theta, trace=trace) for j in range(0,nS) : # trace.write('%10.3f T %15.9g %15.6g %15.6g %15.6g %15.6g %15.6g\n' % (Times[j,0], Truth[j,0], Truth[j,1], Truth[j,2], Truth[j,3], Truth[j,4], Truth[j,5])) Zstar = f.predict(Times[j,0]) e = Observations[j,0] - Zstar[0] f.update(Times[j,0], Zstar, e) Actual[j,:] = f.getState() Best[j,0] = f.getBest() f.close() sse = np.sum(np.power(Actual[:,0] - Truth[:,0], 2.0)) print(t, '%10.4e' % sse) return sse if (False) : # optimize.brute ranges = (slice(0.18, 0.50, 0.05), slice(0.001, 0.01, 0.001), slice(2,4+1,1), slice(2,5+1,1)) # [0.43 0.007 2. 3. ] 1.225e+06 ranges = (slice(0.38, 0.48, 0.005), slice(0.006, 0.008, 0.0001), slice(2,3+1,1), slice(3,4+1,1)) result = brute( targetSSE, ranges, full_output=True, finish=None ) # print(result) minT = result[0] sse = targetSSE(minT) print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], sse)) # def tSSE(t): # return targetSSE([t[0], t[1], minT[2], minT[3]]) # # t = fmin( tSSE, minT[0:1], disp=True) # print(t) # minSSE = 1e100 # minT = [] # for sc in (2, ) : # range(1, 5) : # for rc in (5, ) : # range(sc, 6) : # passSSE = 1e100 # passT = [] # for st in arange(0.45, 0.55, 0.001) : #arange(0.25, 5.0, 0.25) : # arange(2.8, 3.0, 0.01) : # # for rt in arange(0.15, 0.25, 0.001) : # t = array([st, rt, sc, rc]) # sse = targetSSE(t) # if (sse < passSSE) : # passSSE = sse # passT = t # print('SSE %d, %d, %10.6f, %10.6f, %10.3e' % (sc, rc, t[0], t[1], sse)) # if (passSSE < minSSE) : # minSSE = passSSE # minT = passT # print('MINSSE %d, %d, %10.6f, %10.6f, %10.3e' % (minT[2], minT[3], minT[0], minT[1], minSSE)) sse = targetSSE(minT) print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], sse)) else : # minT = [0.425, 0.0079, 2, 4] # 0.606000, 0.160000, 2, 5 # minSSE = targetSSE(minT) # print('SSE %10.6f, %10.6f, %10.3e' % (minT[0], minT[1], minSSE)) # sse = minSSE # theta = minimize_scalar( targetTheta, [0.5, 0.99]) sse = targetTheta(theta) minT = [1.0, 1.0, 1, 1] if (False) : t = minimize( targetTheta, [theta], method='Nelder-Mead', options={'disp': True}) print(t) # sse = targetSSE(t.x) # print('minimize SSE %10.6f, %10.6f, %10.3e' % (t.x[0], t.x[1], sse)) # print('ACTUAL: ', A2S(f.getState())) # print('EXPECT: ', A2S(Truth[-1,:])) st = stats.f.sf(minT[0],1,1) rt = stats.f.sf(minT[1],1,1) title = 'AOPF S, %10.4g, %d, R, %10.4g, %d, SSE, %10.3e' % (st, int(minT[2]), rt, int(minT[3]), sse) ax = plt.subplot(3,1,1) plt.title( title ) ax.plot(Times, Actual[:,0], 'r.') ax.plot(Times, Truth[:,0], 'b-') ax = plt.subplot(3,1,2) err = (Truth[:,0]-Actual[:,0]) print('RESIDUALS', mean(err), var(err), min(err), max(err)) ax.plot(Times, err, 'b-') # /Truth[:,0] ax = plt.subplot(3,1,3) ax.plot(Times, Best, 'k-') Schedule = zeros([nS]) at = array([0, 1, 2, 25, 30, 40, 50, 55, 60, 70, 80,100]) ao = array([0, 1, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5]) k = 0 for i in range(0,nS) : if (at[k] <= Times[i,0]) : k += 1 Schedule[i] = ao[k-1] ax.plot(Times, Schedule, 'm-') plt.show() # def generateVaryingOrder(self, iter : int): # random.seed(iter) # np.random.seed(iter) # print() # t0 = 0 # tau = 0.1 # R = 10.0 # nS = 1000 # theta = 0.95 # f = AdaptiveOrderPolynomialFilter(5, tau, theta) # Y0 = generateTestPolynomial( 5, nS, t0, tau ) # print(Y0) # Truth = zeros([nS, 5+1]) # Times = zeros([nS,1]) # Observations = zeros([nS,1]) # i = 0 # Truth[i,0] = Y0[0] # k = 100 # order = 0 # (times, truth, observations, noise) = generateTestData(order, k, 0.0, Truth[i,:], tau, sigma=R) # Times[i:i+k,0] = times[:,0] # Truth[i:i+k,0:order+1] = truth[:,0:order+1] # Observations[i:i+k,0] = observations[:,0] # i += k # # def addSegment(i : int, k : int, order1 : int, order2 : int, Times : array, Truth : array, Observations : array): # Times[i,:] = Times[i-1,:] # Truth[i,0:order2+1] = StateTransition.conformState(order2, Y0) # Truth[i,0:order1+1] = Truth[i-1,0:order1+1] # (times, truth, observations, noise) = generateTestData(order2, k, Times[i,0], Truth[i,0:order2+1], tau, sigma=R) # Times[i:i+k,0] = times[:,0] # Truth[i:i+k,0:order2+1] = truth[:,0:order2+1] # Observations[i:i+k,0] = observations[:,0] # # print(A2S(Truth[i-1:i+1,:])) # # print(A2S(Truth[i+k-1:i+k+1,:])) # return i + k # # i = addSegment(i, 500, 0, 5, Times, Truth, Observations) # i = addSegment(i, 100, 5, 2, Times, Truth, Observations) # i = addSegment(i, 100, 1, 2, Times, Truth, Observations) # nS = addSegment(i, 200, 2, 4, Times, Truth, Observations) # # trace = open('AOPF.csv', 'w') # f = AdaptiveOrderPolynomialFilter(5, tau, theta, trace=trace) # for j in range(0,nS) : # Zstar = f.predict(Times[j][0]) # e = Observations[j] - Zstar[0] # f.update(Times[j][0],
(size_a < size_b || (size_a == size_b && a['ob_digit'][size_a-1] < b['ob_digit'][size_b-1])) { // |a| < |b| pdiv['ob_size'] = 0; prem['ob_digit'] = a['ob_digit']['slice'](0); prem['ob_size'] = a['ob_size']; return 0; } if (size_b == 1) { rem = [0]; prem['ob_digit'] = [0]; prem['ob_size'] = 1; z = divrem1(a, b['ob_digit'][0], prem['ob_digit']); prem = long_normalize(prem); } else { z = @{{!x_divrem}}(a, b, prem); } if (z === null) { pdiv['ob_size'] = 0; } else { pdiv['ob_digit'] = z['ob_digit']['slice'](0); pdiv['ob_size'] = z['ob_size']; } if ((a['ob_size'] < 0) != (b['ob_size'] < 0)) pdiv['ob_size'] = -(pdiv['ob_size']); if (a['ob_size'] < 0 && prem['ob_size'] != 0) prem['ob_size'] = -prem['ob_size']; return 0; } function x_divrem(v1, w1, prem) { var size_w = w1['ob_size'] < 0 ? -w1['ob_size'] : w1['ob_size']; var d = Math['floor'](PyLong_BASE / (w1['ob_digit'][size_w-1] + 1)); var v = muladd1($x_divrem_v, v1, d, 0); var w = muladd1($x_divrem_w, w1, d, 0); var a, j, k; var size_v = v['ob_size'] < 0 ? -v['ob_size'] : v['ob_size']; k = size_v - size_w; a = new $long(0); a['ob_size'] = k + 1; for (j = size_v; k >= 0; --j, --k) { var vj = (j >= size_v) ? 0 : v['ob_digit'][j]; var carry = 0; var q, i; if (vj == w['ob_digit'][size_w-1]) q = PyLong_MASK; else q = Math['floor'](((vj << PyLong_SHIFT) + v['ob_digit'][j-1]) / w['ob_digit'][size_w-1]); while (w['ob_digit'][size_w-2]*q > (( (vj << PyLong_SHIFT) + v['ob_digit'][j-1] - q*w['ob_digit'][size_w-1] ) << PyLong_SHIFT) + v['ob_digit'][j-2]) --q; for (i = 0; i < size_w && i+k < size_v; ++i) { var z = w['ob_digit'][i] * q; var zz = z >>> PyLong_SHIFT; carry += v['ob_digit'][i+k] - z + (zz << PyLong_SHIFT); v['ob_digit'][i+k] = carry & PyLong_MASK; // carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE, carry, PyLong_SHIFT); carry >>= PyLong_SHIFT; carry -= zz; } if (i+k < size_v) { carry += v['ob_digit'][i+k]; v['ob_digit'][i+k] = 0; } if (carry == 0) a['ob_digit'][k] = q; else { a['ob_digit'][k] = q-1; carry = 0; for (i = 0; i < size_w && i+k < size_v; ++i) { carry += v['ob_digit'][i+k] + w['ob_digit'][i]; v['ob_digit'][i+k] = carry & PyLong_MASK; // carry = Py_ARITHMETIC_RIGHT_SHIFT( BASE_TWODIGITS_TYPE, carry, PyLong_SHIFT); carry >>= PyLong_SHIFT; } } } /* for j, k */ i = divrem1(v, d, prem); prem['ob_digit'] = i['ob_digit']['slice'](0); prem['ob_size'] = i['ob_size']; return long_normalize(a); } function x_add(a, b) { var size_a = a['ob_size'] < 0 ? -a['ob_size'] : a['ob_size']; var size_b = b['ob_size'] < 0 ? -b['ob_size'] : b['ob_size']; var z = new $long(0); var i; var carry = 0; if (size_a < size_b) { var temp = a; a = b; b = temp; temp = size_a; size_a = size_b; size_b = temp; } for (i = 0; i < size_b; ++i) { carry += a['ob_digit'][i] + b['ob_digit'][i]; z['ob_digit'][i] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; } for (; i < size_a; ++i) { carry += a['ob_digit'][i]; z['ob_digit'][i] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; } z['ob_digit'][i] = carry; z['ob_size'] = i+1; return long_normalize(z); } function x_sub(a, b) { var size_a = a['ob_size'] < 0 ? -a['ob_size'] : a['ob_size']; var size_b = b['ob_size'] < 0 ? -b['ob_size'] : b['ob_size']; var z = new $long(0); var i; var borrow = 0; var sign = 1; if (size_a < size_b) { var temp = a; a = b; b = temp; temp = size_a; size_a = size_b; size_b = temp; sign = -1; } else if (size_a == size_b) { i = size_a; while (--i >= 0 && a['ob_digit'][i] == b['ob_digit'][i]) ; if (i < 0) return z; if (a['ob_digit'][i] < b['ob_digit'][i]) { var temp = a; a = b; b = temp; temp = size_a; size_a = size_b; size_b = temp; sign = -1; } size_a = size_b = i+1; } for (i = 0; i < size_b; ++i) { borrow = a['ob_digit'][i] - b['ob_digit'][i] - borrow; z['ob_digit'][i] = borrow & PyLong_MASK; borrow >>>= PyLong_SHIFT; borrow &= 1; } for (; i < size_a; ++i) { borrow = a['ob_digit'][i] - borrow; z['ob_digit'][i] = borrow & PyLong_MASK; borrow >>>= PyLong_SHIFT; borrow &= 1; } z['ob_size'] = i; if (sign < 0) z['ob_size'] = -(z['ob_size']); return long_normalize(z); } function x_mul(a, b) { var size_a = a['ob_size'] < 0 ? -a['ob_size'] : a['ob_size']; var size_b = b['ob_size'] < 0 ? -b['ob_size'] : b['ob_size']; var z = new $long(0); var i, s; z['ob_size'] = size_a + size_b; for (i = 0; i < z['ob_size']; i++) { z['ob_digit'][i] = 0; } if (size_a == size_b && array_eq(a['ob_digit'], b['ob_digit'], size_a)) { // Efficient squaring per HAC, Algorithm 14['16']: for (i = 0; i < size_a; ++i) { var carry; var f = a['ob_digit'][i]; var pz = (i << 1); var pa = i + 1; var paend = size_a; carry = z['ob_digit'][pz] + f * f; z['ob_digit'][pz++] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; f <<= 1; while (pa < paend) { carry += z['ob_digit'][pz] + a['ob_digit'][pa++] * f; z['ob_digit'][pz++] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; } if (carry) { carry += z['ob_digit'][pz]; z['ob_digit'][pz++] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; } if (carry) { z['ob_digit'][pz] += carry & PyLong_MASK; } } } else { // a is not the same as b -- gradeschool long mult for (i = 0; i < size_a; ++i) { var carry = 0; var f = a['ob_digit'][i]; var pz = i; var pb = 0; var pbend = size_b; while (pb < pbend) { carry += z['ob_digit'][pz] + b['ob_digit'][pb++] * f; z['ob_digit'][pz++] = carry & PyLong_MASK; carry >>>= PyLong_SHIFT; } if (carry) { z['ob_digit'][pz] += carry & PyLong_MASK; } } } z['ob_size'] = z['ob_digit']['length']; return long_normalize(z); } function l_divmod(v, w, pdiv, pmod) { var div = $l_divmod_div, mod = $l_divmod_mod; if (long_divrem(v, w, div, mod) < 0) return -1; if (pdiv == null && pmod == null) return 0; if ((mod['ob_size'] < 0 && w['ob_size'] > 0) || (mod['ob_size'] > 0 && w['ob_size'] < 0)) { mod = mod['__add__'](w); div = div['__sub__']($const_long_1); } if (pdiv !== null) { pdiv['ob_digit'] = div['ob_digit']['slice'](0); pdiv['ob_size'] = div['ob_size']; } if (pmod !== null) { pmod['ob_digit'] = mod['ob_digit']['slice'](0); pmod['ob_size'] = mod['ob_size']; } return 0; } /* XXX do not convert to @{{long}} - this is correct */ var $long = pyjslib['long'] = function(value, radix) { var v, i; if (!radix || radix['valueOf']() == 0) { if (typeof value == 'undefined') { throw @{{TypeError}}("long() takes at least 1 argument"); } switch (value['__number__']) { case 0x01: value = value > 0 ? Math['floor'](value) : Math['ceil'](value); break; case 0x02: break; case 0x04: return value; } radix = null; } if (typeof this != 'object' || this['__number__'] != 0x04) return new $long(value, radix); v = value; this['ob_size'] = 0; this['ob_digit'] = new Array(); if (v['__number__']) { if (radix) { throw @{{TypeError}}("long() can't convert non-string with explicit base"); } if (v['__number__'] == 0x04) { var size = v['ob_size'] < 0 ? -v['ob_size']:v['ob_size']; for (var i = 0; i < size; i++) { this['ob_digit'][i] = v['ob_digit'][i]; } this['ob_size'] = v['ob_size']; return this; } if (v['__number__'] == 0x02) { var neg = false; var ndig = 0; v = v['valueOf'](); if (v < 0) { v = -v; neg = true; } // Count the number of Python digits. var t = v; while (t) { this['ob_digit'][ndig] = t & PyLong_MASK; t >>>= PyLong_SHIFT; ++ndig; } this['ob_size'] = neg ? -ndig : ndig; return this; } if (v['__number__'] == 0x01) { var ndig, frac, expo, bits; var neg = false; if (isNaN(v)) { throw @{{ValueError}}('cannot convert float NaN to integer'); } if (!isFinite(v)) { throw @{{OverflowError}}('cannot convert float infinity to integer'); } if (v == 0) { this['ob_digit'][0] = 0; this['ob_size'] = 0; return this; } if (v < 0) { v = -v; neg = true; } // frac = frexp(dval, &expo); // dval = frac*2**expo; 0.0 <= frac < 1.0 if (v == 0) { frac = 0; expo = 0;
None: imds = eom.make_imds() t1, t2 = imds.t1, imds.t2 t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nkpts, nocc_a, nvir_a = t1a.shape nkpts, nocc_b, nvir_b = t1b.shape kconserv = imds.kconserv Hr1a = -np.diag(imds.Foo[kshift]) Hr1b = -np.diag(imds.FOO[kshift]) Hr2aaa = np.zeros((nkpts,nkpts,nocc_a,nocc_a,nvir_a), dtype=t1[0].dtype) Hr2bbb = np.zeros((nkpts,nkpts,nocc_b,nocc_b,nvir_b), dtype=t1[0].dtype) Hr2abb = np.zeros((nkpts,nkpts,nocc_a,nocc_b,nvir_b), dtype=t1[0].dtype) Hr2baa = np.zeros((nkpts,nkpts,nocc_b,nocc_a,nvir_a), dtype=t1[0].dtype) if eom.partition == 'mp': raise Exception("MP diag is not tested") # remove this to use untested code #foo = eris.fock[0][:,:nocc_a,:nocc_a] #fOO = eris.fock[1][:,:nocc_b,:nocc_b] #fvv = eris.fock[0][:,:nvir_a,:nvir_a] #fVV = eris.fock[1][:,:nvir_b,:nvir_b] for ki in range(nkpts): for kj in range(nkpts): ka = kconserv[ki,kshift,kj] Hr2aaa[ki,kj] = imds.Fvv[ka].diagonal() Hr2aaa[ki,kj] -= imds.Foo[ki].diagonal()[:,None,None] Hr2aaa[ki,kj] -= imds.Foo[kj].diagonal()[None,:,None] Hr2bbb[ki,kj] = imds.FVV[ka].diagonal() Hr2bbb[ki,kj] -= imds.FOO[ki].diagonal()[:,None,None] Hr2bbb[ki,kj] -= imds.FOO[kj].diagonal()[None,:,None] Hr2aba[ki,kj] = imds.Fvv[ka].diagonal() Hr2aba[ki,kj] -= imds.Foo[ki].diagonal()[:,None,None] Hr2aba[ki,kj] -= imds.FOO[kj].diagonal()[None,:,None] Hr2bab[ki,kj] = imds.FVV[ka].diagonal() Hr2bab[ki,kj] -= imds.FOO[ki].diagonal()[:,None,None] Hr2bab[ki,kj] -= imds.Foo[kj].diagonal()[None,:,None] else: for ka in range(nkpts): for ki in range(nkpts): kj = kconserv[kshift,ki,ka] Hr2aaa[ki,kj] += imds.Fvv[ka].diagonal() Hr2abb[ki,kj] += imds.FVV[ka].diagonal() Hr2bbb[ki,kj] += imds.FVV[ka].diagonal() Hr2baa[ki,kj] += imds.Fvv[ka].diagonal() Hr2aaa[ki,kj] -= imds.Foo[ki].diagonal()[:,None,None] Hr2aaa[ki,kj] -= imds.Foo[kj].diagonal()[None,:,None] Hr2abb[ki,kj] -= imds.Foo[ki].diagonal()[:,None,None] Hr2abb[ki,kj] -= imds.FOO[kj].diagonal()[None,:,None] Hr2baa[ki,kj] -= imds.FOO[ki].diagonal()[:,None,None] Hr2baa[ki,kj] -= imds.Foo[kj].diagonal()[None,:,None] Hr2bbb[ki,kj] -= imds.FOO[ki].diagonal()[:,None,None] Hr2bbb[ki,kj] -= imds.FOO[kj].diagonal()[None,:,None] for ki, kj in itertools.product(range(nkpts), repeat=2): Hr2aaa[ki, kj] += lib.einsum('iijj->ij', imds.Woooo[ki, ki, kj])[:,:,None] Hr2abb[ki, kj] += lib.einsum('iiJJ->iJ', imds.WooOO[ki, ki, kj])[:,:,None] Hr2bbb[ki, kj] += lib.einsum('IIJJ->IJ', imds.WOOOO[ki, ki, kj])[:,:,None] Hr2baa[ki, kj] += lib.einsum('jjII->Ij', imds.WooOO[kj, kj, ki])[:,:,None] kb = kconserv[ki, kshift, kj] Hr2aaa[ki,kj] -= lib.einsum('iejb,jibe->ijb', imds.Wovov[ki,kshift,kj], t2aa[kj,ki,kb]) Hr2abb[ki,kj] -= lib.einsum('ieJB,iJeB->iJB', imds.WovOV[ki,kshift,kj], t2ab[ki,kj,kshift]) Hr2baa[ki,kj] -= lib.einsum('jbIE,jIbE->Ijb', imds.WovOV[kj,kb,ki], t2ab[kj,ki,kb]) Hr2bbb[ki,kj] -= lib.einsum('IEJB,JIBE->IJB', imds.WOVOV[ki,kshift,kj], t2bb[kj,ki,kb]) Hr2aaa[ki, kj] += lib.einsum('ibbi->ib', imds.Wovvo[ki, kb, kb])[:,None,:] Hr2aaa[ki, kj] += lib.einsum('jbbj->jb', imds.Wovvo[kj, kb, kb])[None,:,:] Hr2baa[ki, kj] += lib.einsum('jbbj->jb', imds.Wovvo[kj, kb, kb])[None,:,:] Hr2baa[ki, kj] -= lib.einsum('IIbb->Ib', imds.WOOvv[ki, ki, kb])[:,None,:] Hr2abb[ki, kj] += lib.einsum('JBBJ->JB', imds.WOVVO[kj, kb, kb])[None,:,:] Hr2abb[ki, kj] -= lib.einsum('iiBB->iB', imds.WooVV[ki, ki, kb])[:,None,:] Hr2bbb[ki, kj] += lib.einsum('IBBI->IB', imds.WOVVO[ki, kb, kb])[:,None,:] Hr2bbb[ki, kj] += lib.einsum('JBBJ->JB', imds.WOVVO[kj, kb, kb])[None,:,:] vector = amplitudes_to_vector_ip((Hr1a,Hr1b), (Hr2aaa,Hr2baa,Hr2abb,Hr2bbb), kshift, kconserv) return vector def mask_frozen_ip(eom, vector, kshift, const=LARGE_DENOM): '''Replaces all frozen orbital indices of `vector` with the value `const`.''' nkpts = eom.nkpts nocca, noccb = eom.nocc nmoa, nmob = eom.nmo kconserv = eom.kconserv r1, r2 = eom.vector_to_amplitudes(vector, kshift, nkpts, (nmoa, nmob), (nocca, noccb), kconserv) r1a, r1b = r1 r2aaa, r2baa, r2abb, r2bbb = r2 # Get location of padded elements in occupied and virtual space nonzero_opadding, nonzero_vpadding = eom.nonzero_opadding, eom.nonzero_vpadding nonzero_opadding_a, nonzero_opadding_b = nonzero_opadding nonzero_vpadding_a, nonzero_vpadding_b = nonzero_vpadding new_r1a = const * np.ones_like(r1a) new_r1b = const * np.ones_like(r1b) new_r2aaa = const * np.ones_like(r2aaa) new_r2baa = const * np.ones_like(r2baa) new_r2abb = const * np.ones_like(r2abb) new_r2bbb = const * np.ones_like(r2bbb) # r1a/b case new_r1a[nonzero_opadding_a[kshift]] = r1a[nonzero_opadding_a[kshift]] new_r1b[nonzero_opadding_b[kshift]] = r1b[nonzero_opadding_b[kshift]] # r2aaa case for ki in range(nkpts): for kj in range(nkpts): kb = kconserv[ki, kshift, kj] idx = np.ix_([ki], [kj], nonzero_opadding_a[ki], nonzero_opadding_a[kj], nonzero_vpadding_a[kb]) new_r2aaa[idx] = r2aaa[idx] # r2baa case for ki in range(nkpts): for kj in range(nkpts): kb = kconserv[ki, kshift, kj] idx = np.ix_([ki], [kj], nonzero_opadding_b[ki], nonzero_opadding_a[kj], nonzero_vpadding_a[kb]) new_r2baa[idx] = r2baa[idx] # r2abb case for ki in range(nkpts): for kj in range(nkpts): kb = kconserv[ki, kshift, kj] idx = np.ix_([ki], [kj], nonzero_opadding_a[ki], nonzero_opadding_b[kj], nonzero_vpadding_b[kb]) new_r2abb[idx] = r2abb[idx] # r2bbb case for ki in range(nkpts): for kj in range(nkpts): kb = kconserv[ki, kshift, kj] idx = np.ix_([ki], [kj], nonzero_opadding_b[ki], nonzero_opadding_b[kj], nonzero_vpadding_b[kb]) new_r2bbb[idx] = r2bbb[idx] return eom.amplitudes_to_vector((new_r1a,new_r1b), (new_r2aaa,new_r2baa,new_r2abb,new_r2bbb), kshift, kconserv) def get_padding_k_idx(eom, cc): # Get location of padded elements in occupied and virtual space nonzero_padding_alpha, nonzero_padding_beta = padding_k_idx(cc, kind="split") nonzero_opadding_alpha, nonzero_vpadding_alpha = nonzero_padding_alpha nonzero_opadding_beta, nonzero_vpadding_beta = nonzero_padding_beta return ((nonzero_opadding_alpha, nonzero_opadding_beta), (nonzero_vpadding_alpha, nonzero_vpadding_beta)) class EOMIP(eom_kgccsd.EOMIP): def __init__(self, cc): #if not isinstance(cc, kccsd.GCCSD): # raise TypeError self.kpts = cc.kpts eom_kgccsd.EOMIP.__init__(self, cc) get_diag = ipccsd_diag matvec = ipccsd_matvec get_padding_k_idx = get_padding_k_idx mask_frozen = mask_frozen_ip def get_init_guess(self, kshift, nroots=1, koopmans=False, diag=None): size = self.vector_size() dtype = getattr(diag, 'dtype', np.complex128) nroots = min(nroots, size) nocca, noccb = self.nocc guess = [] if koopmans: idx = np.zeros(nroots, dtype=int) tmp_oalpha, tmp_obeta = self.nonzero_opadding[kshift] tmp_oalpha = list(tmp_oalpha) tmp_obeta = list(tmp_obeta) if len(tmp_obeta) + len(tmp_oalpha) < nroots: raise ValueError("Max number of roots for k-point (idx=%3d) for koopmans " "is %3d.\nRequested %3d." % (kshift, len(tmp_obeta)+len(tmp_oalpha), nroots)) total_count = 0 while(total_count < nroots): if total_count % 2 == 0 and len(tmp_oalpha) > 0: idx[total_count] = tmp_oalpha.pop() else: # Careful! index depends on how we create vector # (here the first elements are r1a, then r1b) idx[total_count] = nocca + tmp_obeta.pop() total_count += 1 else: idx = diag.argsort() for i in idx[:nroots]: g = np.zeros(size, dtype) g[i] = 1.0 g = self.mask_frozen(g, kshift, const=0.0) guess.append(g) return guess def gen_matvec(self, kshift, imds=None, left=False, **kwargs): if imds is None: imds = self.make_imds() diag = self.get_diag(kshift, imds) if left: raise NotImplementedError matvec = lambda xs: [self.l_matvec(x, kshift, imds, diag) for x in xs] else: matvec = lambda xs: [self.matvec(x, kshift, imds, diag) for x in xs] return matvec, diag def vector_to_amplitudes(self, vector, kshift, nkpts=None, nmo=None, nocc=None, kconserv=None): if nmo is None: nmo = self.nmo if nocc is None: nocc = self.nocc if nkpts is None: nkpts = self.nkpts if kconserv is None: kconserv = self.kconserv return vector_to_amplitudes_ip(vector, kshift, nkpts, nmo, nocc, kconserv) def amplitudes_to_vector(self, r1, r2, kshift, kconserv=None): if kconserv is None: kconserv = self.kconserv return amplitudes_to_vector_ip(r1, r2, kshift, kconserv) def vector_size(self): nocca, noccb = self.nocc nmoa, nmob = self.nmo nvira, nvirb = nmoa - nocca, nmob - noccb nkpts = self.nkpts return (nocca + noccb + nkpts*nocca*(nkpts*nocca-1)*nvira//2 + nkpts**2*noccb*nocca*nvira + nkpts**2*nocca*noccb*nvirb + nkpts*noccb*(nkpts*noccb-1)*nvirb//2) def make_imds(self, eris=None, t1=None, t2=None): imds = _IMDS(self._cc, eris, t1, t2) imds.make_ip() return imds ######################################## # EOM-EA-CCSD ######################################## def amplitudes_to_vector_ea(r1, r2, kshift, kconserv): r1a, r1b = r1 r2a, r2aba, r2bab, r2b = r2 nkpts = r2a.shape[0] nocca, noccb = r2a.shape[2], r2b.shape[2] nvira, nvirb = r2a.shape[3], r2b.shape[3] # From symmetry for aaa and bbb terms, only store lower # triangular part (ka,a) < (kb,b) r2aaa = np.zeros((nocca*nkpts*nvira*(nkpts*nvira-1))//2, dtype=r2a.dtype) r2bbb = np.zeros((noccb*nkpts*nvirb*(nkpts*nvirb-1))//2, dtype=r2b.dtype) index = 0 for kj, ka in itertools.product(range(nkpts), repeat=2): kb = kconserv[kshift,ka,kj] if ka < kb: # Take diagonal part idxa, idya = np.tril_indices(nvira, 0) else: # Don't take diagonal (equal to zero) idxa, idya = np.tril_indices(nvira, -1) r2aaa[index:index + nocca*len(idya)] = r2a[kj,ka,:,idxa,idya].reshape(-1) index = index + nocca*len(idya) index = 0 for kj, ka in itertools.product(range(nkpts), repeat=2): kb = kconserv[kshift,ka,kj] if ka < kb: # Take diagonal part idxb, idyb = np.tril_indices(nvirb, 0) else: idxb, idyb = np.tril_indices(nvirb, -1) r2bbb[index:index + noccb*len(idyb)] = r2b[kj,ka,:,idxb,idyb].reshape(-1) index = index + noccb*len(idyb) return np.hstack((r1a, r1b, r2aaa.ravel(), r2aba.ravel(), r2bab.ravel(), r2bbb.ravel())) def vector_to_amplitudes_ea(vector, kshift, nkpts, nmo, nocc, kconserv): nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa-nocca, nmob-noccb sizes = (nvira, nvirb, nkpts*nocca*(nkpts*nvira-1)*nvira//2, nkpts**2*nocca*nvirb*nvira, nkpts**2*noccb*nvira*nvirb, nkpts*noccb*(nkpts*nvirb-1)*nvirb//2) sections = np.cumsum(sizes[:-1]) r1a, r1b, r2a, r2aba, r2bab, r2b = np.split(vector, sections) r2aaa = np.zeros((nkpts,nkpts,nocca,nvira,nvira), dtype=r2a.dtype) r2aba = r2aba.reshape(nkpts,nkpts,nocca,nvirb,nvira).copy() r2bab = r2bab.reshape(nkpts,nkpts,noccb,nvira,nvirb).copy() r2bbb = np.zeros((nkpts,nkpts,noccb,nvirb,nvirb), dtype=r2b.dtype) index = 0 for kj, ka in itertools.product(range(nkpts), repeat=2): kb = kconserv[kshift,ka,kj] if ka < kb: # Take diagonal part idxa, idya = np.tril_indices(nvira, 0) else: idxa, idya = np.tril_indices(nvira, -1) tmp = r2a[index:index + nocca*len(idya)].reshape(-1,nocca) r2aaa[kj,ka,:,idxa,idya] = tmp r2aaa[kj,kb,:,idya,idxa] = -tmp index = index + nocca*len(idya) index = 0 for kj, ka in itertools.product(range(nkpts), repeat=2): kb = kconserv[kshift,ka,kj] if ka < kb: # Take diagonal part idxb, idyb = np.tril_indices(nvirb, 0) else: idxb, idyb = np.tril_indices(nvirb, -1) tmp = r2b[index:index + noccb*len(idyb)].reshape(-1,noccb) r2bbb[kj,ka,:,idxb,idyb] = tmp r2bbb[kj,kb,:,idyb,idxb] = -tmp index = index + noccb*len(idyb) r1 = (r1a.copy(), r1b.copy()) r2 = (r2aaa, r2aba, r2bab, r2bbb) return r1, r2 def eaccsd_matvec(eom, vector, kshift, imds=None, diag=None): '''2ph operators are of the form s_{ j}^{ab}, i.e. 'jb' indices are coupled''' if imds is None: imds = eom.make_imds() t1, t2= imds.t1, imds.t2 t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape[3:] nmoa, nmob = nocca + nvira, noccb + nvirb kconserv = imds.kconserv nkpts = eom.nkpts r1, r2 = eom.vector_to_amplitudes(vector, kshift, nkpts, (nmoa, nmob), (nocca, noccb), kconserv) r1a, r1b = r1 r2aaa, r2aba, r2bab, r2bbb = r2 # BEGINNING OF MATVEC CONTRACTIONS: ref - Nooijen 1995 EOM-CC for EA # Fvv terms # (\bar{H}S)^a =
<reponame>DavidChoi76/hydrofunctions """ hydrofunctions.usgs_rdb ~~~~~~~~~~~~~~~~~~~~~~~ This module is for working with the various USGS dataservices that use the rdb text format. These include the statistics service, the field measurements service, the rating curve service, and the peak discharge service. """ import pandas as pd import requests from io import StringIO from IPython.core import display from . import exceptions class hydroRDB: """A class for holding the information from USGS rdb files. Args: header (str): A multi-line string from the header of the rdb file. The header often contain important metadata and user warnings. table (pandas dataframe): This is a dataframe made from the rdb file. columns (str): A string from the rdb file that lists the column names. dtypes (str): A string from the rdb file that gives the data type and length of each column. **Properties:** **header** (str): A multi-line string from the header of the rdb file. The header often contain important metadata and user warnings. **table** (pandas dataframe): This is a dataframe made from the rdb file. **columns** (str): A string from the rdb file that lists the column names. **dtypes** (str): A string from the rdb file that gives the data type and length of each column. You can also access the header and the dataframe as a named tuple:: hydroRDB(header=<a multi-line string>, table=<pandas dataframe>) Note: - The args to create this object are supplied by hf.read_rdb(). - The hydroRDB object is returned from several functions that request\ RDB files from a USGS data service, including: peaks(), field_meas(),\ rating_curve(), stats(), site_file(), and data_catalog(). - You can read more about the RDB format here: https://pubs.usgs.gov/of/2003/ofr03123/6.4rdb_format.pdf """ def __init__(self, header, table, columns, dtypes): self.header = header self.table = table self.columns = columns self.dtypes = dtypes def __iter__(self): return iter((self.header, self.table)) def __repr__(self): return f"hydroRDB(header={self.header},\ntable={self.table}" def _repr_html_(self): html_header = "<p>" + self.header.replace("\n", "<br />") + "</p>" # return html_header + self.df._repr_html_() return f"<p>hydroRDB(header=<br />{html_header}</p><p>table=<br />{self.table._repr_html_()})</p>" def get_usgs_RDB_service(url, headers=None, params=None): """Request data from a USGS dataservice and handle errors. Args: url (str): a string used by Requests as the base URL. header (dict): a dict of parameters used to request the data. params (dict): a dict of parameters used to modify the url of a REST service. Returns: A Requests response object. Raises: This function will raise an exception for any non-200 status code, and\ in cases where the USGS service returns anything that is not obviously\ an RDB file. If an exception is raised, then an attempt will be made to\ display the error page which the USGS sometimes sends back to the user. """ response = requests.get(url, headers=headers, params=params) if response.status_code == 200: if response.text[0] == "#": # Everything seems good; they apparently returned an RDB file. return response else: print( "The USGS has apparently not returned any data. Check the " "following message for further information for why this " "request failed. One possibility is that your site number " "is incorrect." ) display.display(display.HTML(response.text)) raise exceptions.HydroNoDataError( "The USGS did not return a valid RDB file " "for this request." ) else: # response.status_code != 200: print(f"The USGS has returned an error code of {response.status_code}") # If this code is being run inside of a notebook, the USGS error page # will be displayed. display.display(display.HTML(response.text)) # raise an exception response.raise_for_status() # or raise some sort of Hydro http error based on requests http error. return response def read_rdb(text): """Read strings that are in rdb format. Args: text (str): A long string containing the contents of a rdb file. A common way to obtain these would be from the .text property of a requests response, as in the example usage below. Returns: header (multi-line string): Every commented line at the top of the rdb file is marked with a '#' symbol. Each of these lines is stored in this output. outputDF (pandas.DataFrame): A dataframe containing the information in the rdb file. `site_no` and `parameter_cd` are interpreted as a string, but every other number is interpreted as a float or int; missing values as an np.nan; strings for everything else. columns (list of strings): The column names, taken from the rdb header row. dtypes (list of strings): The second header row from the rdb file. These mostly tell the column width, and typically record everything as string data ('s') type. The exception to this are dates, which are listed with a 'd'. """ try: headerlines = [] datalines = [] count = 0 for line in text.splitlines(): if line[0] == "#": headerlines.append(line) elif count == 0: columns = line.split() count = count + 1 elif count == 1: dtypes = line.split() count = count + 1 else: datalines.append(line) data = "\n".join(datalines) header = "\n".join(headerlines) outputDF = pd.read_csv( StringIO(data), sep="\t", comment="#", header=None, names=columns, dtype={"site_no": str, "parameter_cd": str}, ) except: print( "There appears to be an error processing the file that the USGS " "returned. This sometimes occurs if you entered the wrong site " "number. We were expecting an RDB file, but we received the " f"following instead:\n{text}" ) raise # outputDF.outputDF.filter(like='_cd').columns # TODO: code columns ('*._cd') should be interpreted as strings. return header, outputDF, columns, dtypes def site_file(site): """Load USGS site file into a Pandas dataframe. Args: site (str): The gauge ID number for the site. Returns: a hydroRDB object or tuple consisting of the header and a pandas dataframe. **Example:** >>> test = site_file('01542500') >>> test hydroRDB(header=<a multi-line string of the header>, table=<a Pandas dataframe>) You can also access the header, dataframe, column names, and data types through the associated properties `header`, `table`, `columns`, `dtypes`:: >>> test.table <a Pandas dataframe> """ url = ( "https://waterservices.usgs.gov/nwis/site/?format=rdb&sites=" + site + "&siteOutput=expanded&siteStatus=all" ) headers = {"Accept-encoding": "gzip"} print("Retrieving the site file for site #", site, " from ", url) response = get_usgs_RDB_service(url, headers) header, outputDF, columns, dtype, = read_rdb(response.text) output_obj = hydroRDB(header, outputDF, columns, dtype) return output_obj def data_catalog(site): """Load a history of the data collected at a site into a Pandas dataframe. Args: site (str): The gauge ID number for the site. Returns: a hydroRDB object or tuple consisting of the header and a pandas dataframe. **Example:** >>> test = data_catalog('01542500') >>> test hydroRDB(header=<a mulit-line string of the header>, table=<a Pandas dataframe>) You can also access the header, dataframe, column names, and data types through the associated properties `header`, `table`, `columns`, `dtypes`:: >>> test.table <a Pandas dataframe> """ url = ( "https://waterservices.usgs.gov/nwis/site/?format=rdb&sites=" + site + "&seriesCatalogOutput=true&siteStatus=all" ) headers = {"Accept-encoding": "gzip"} print("Retrieving the site file for site #", site, " from ", url) response = get_usgs_RDB_service(url, headers) header, outputDF, columns, dtype, = read_rdb(response.text) output_obj = hydroRDB(header, outputDF, columns, dtype) return output_obj def field_meas(site): """Load USGS field measurements of stream discharge into a Pandas dataframe. Args: site (str): The gauge ID number for the site. Returns: a hydroRDB object or tuple consisting of the header and a pandas dataframe. Each row of the table represents an observation on a given date of river conditions at the gauge by USGS personnel. Values are stored in columns, and include the measured stream discharge, channel width, channel area, depth, and velocity. **Example:** >>> test = field_meas('01542500') >>> test hydroRDB(header=<a mulit-line string of the header>, table=<a Pandas dataframe>) You can also access the header, dataframe, column names, and data types through the associated properties `header`, `table`, `columns`, `dtypes`:: >>> test.table <a Pandas dataframe> **Discussion:** The USGS operates over 8,000 stream gages around the United States and territories. Each of these sensors records the depth, or 'stage' of the water. In order to translate this stage data into stream discharge, the USGS staff creates an empirical relationship called a 'rating curve' between the river stage and stream discharge. To construct this curve, the USGS personnel visit all of the gage every one to eight weeks, and measure the stage and the discharge of the river manually. The ``field_meas()`` function returns all of the field-collected data for this
0 #aqui tenho que ver o caso dos novos registos, pois o index começa por 0 tambem #print('selected_ids', selected_ids) for rec_id in selected_ids: if str(rec_id[1]) == str(self.main_key): record_num = rec_id[0] #print('my record_num e', record_num) #print('4') #penso que podemos substituir esta merda aqui pelo index da lista, ver depois #for record_id in record_ids: # index[order_number] = str(record_id) # if str(record_id) == str(self.main_key): # record_num = order_number # order_number += 1 #print(index + self.main_key + bottle.SimpleTemplate.defaults['main_key']) try: first = selected_ids[0][1] except: first = 'None' try: last = selected_ids[-1][1] except: last = 'None' if record_num > 1: back = selected_ids[record_num-1][1] else: try: back = selected_ids[record_num][1] except: back = 'None' try: forward = selected_ids[record_num +1][1] except: forward = 'None'#selected_ids[record_num][1] #print('first, back, forward, last', first, back, forward, last) #print('5') #Caso seja chamado sem ser por onchange verifica os valores e define os atributos de acordo a eles #if self.dynamic_atrs == False: # os atributos dinamicos são ao nivel do campo e não do form por isso não entendi o que isto está a fazer aqui if record: values = record else: values = {} for field in get_model_fields(model): if hasattr(field[1], 'default') and field[1].default: #print('o default e:' + field[1].default) default = field[1].default if type(default) == str: if 'session' in default: default = eval('bottle.request.' + default) elif 'get_' in default: default = eval('model.' + default) else: default = str(default) else: default = str(default) #print('my default is ' + default) if field[1].__class__.__name__ == 'parent_field': #print('Im a parent field') options = eval('objs.{model_name}().get_options()'.format(model_name = field[1].model_name)) values[field[0]] = parent2HTML(value = default, options = options) #print ('values', values[field[0]]) else: values[field[0]] = default #print('values:' + values) #new_atrs = run_dyn_atrs_function(values = values, model = model, field_name = None) #print('6') #Verifica se tem tabs e se tiver preenche a lista de campos que pertencem a tabs tab_field_names = [] if hasattr(model, '__tabs__') and model.__tabs__ != []: for tab in model.__tabs__: for f in tab[1]: tab_field_names.append(f) #print('tab_field_names--------', tab_field_names) values_record = {}#dicionário utilizado para registar os valores dos campos do registo escolhido #print('7') #print (model) dynamic_atrs_result = {} dynamic_atrs_args = {} for field in get_model_fields(model): #caso tenha onchange ou dynamic_atrs nos argumentos deve passar a função para os kargs para que possa passar para o JS via HTML5, assim o JS poderá invocar a função que existe no objecto, receber o result que é um dicionário com campos e valores ou atributos html5 e mudar os valores ou atributos de acordo com o resultado da função, esta abordagem só funciona quando o utilizador muda o valor do campo e não quando o campo é mudado por um botão de workflow, temos também que assegurar que quando abrimos o form se as condições se manifestarem devem ser cumpridas onchange_function = '' dynamic_atrs_function = '' if field[1].dynamic_atrs in ['False', False]: del field[1].dynamic_atrs if field[1].onchange in ['False', False]: del field[1].onchange if hasattr(field[1], 'dynamic_atrs'): #print('Tenho dynamic_atrs', field[1].dynamic_atrs) dynamic_atrs_function = field[1].dynamic_atrs if hasattr(field[1], 'onchange'): onchange_function = field[1].onchange if hasattr(field[1], 'dynamic_atrs') or hasattr(field[1], 'onchange'): print('vou acrescentar os argumentos da função') dynamic_atrs_args[field[0]] = """ onChange="runEditOnchange('{key}', '{name}', '{onchange_function}', '{dynamic_atrs_function}')" """.format(key=self.main_key, name=self.name, onchange_function=onchange_function, dynamic_atrs_function=dynamic_atrs_function) # #print(field[1].args) # #vou correr a função definida para adaptar os atributos if hasattr(field[1], 'dynamic_atrs'): from ujson import loads # #print(dynamic_atrs_function) # #print(record) if record: rec_to_pass = record else: rec_to_pass = {} for sf in select_fields: rec_to_pass[sf] = '' dynamic_atrs_result = loads(eval("model.{function}(record={record}, internal=True)".format(function=dynamic_atrs_function, record=rec_to_pass))) #print('o resultado dos meus atributos dinamicos é vindos da função', dynamic_atrs_result) #print(type(dynamic_atrs_result)) # print('as funções onchange que vou acrescentar ao codigo ', dynamic_atrs_args) for field in get_model_fields(model): #print('8' + field[0]) kargs = {}#dicionário que guarda os dados necessários para passar para o template de cada campo (field) #print(str(edit_ok)) if field[1].__class__.__name__ in ['list_field', 'many2many']: if field[1].__class__.__name__ == 'list_field': field_model = eval("""objs.{model_name}()""".format(model_name=field[1].model_name)) print('before filter_expression') self.ctx_dict[field[0]] = {} #print('condition do list_field', get_condition(condition=field[1].condition, record=record)) self.ctx_dict[field[0]]['filter_expression'] = get_condition(condition=field[1].condition, record=record) self.ctx_dict[field[0]]['page'] = 0 self.ctx_dict[field[0]]['limit'] = 1000 self.ctx_dict[field[0]]['show_search'] = False self.ctx_dict[field[0]]['title'] = field[1].name set_context(self.window_id, self.ctx_dict) #print('window_status is {var1}'.format(var1 = self.ctx_dict['window_status'])) #print('filter_expression is {var1}'.format(var1 = self.ctx_dict[field[0]]['filter_expression'])) if hasattr(field[1], 'list_edit_mode'): self.ctx_dict[field[0]]['list_edit_mode'] = field[1].list_edit_mode else: self.ctx_dict[field[0]]['list_edit_mode'] = field_model.model.__list_edit_mode__ self.ctx_dict[field[0]]['list_field'] = True set_context(self.window_id, self.ctx_dict) print('antes de list_data') list_data = prepare_list_data(model=field_model, ctx_dict=self.ctx_dict, list_name=field[0]) if hasattr(field[1], 'size') and field[1].size > 10: size = field[1].size else: size = 300 cols = round(size / 25) if cols > 12: cols = 12 list_data['size'] = size list_data['cols'] = cols list_data['recalled'] = False # o recalled ´e utilizado para eu saber se estou a carregar a lista pela 1ª vez ou a rechama-la #print('depois de list_data') #print('after prepare_list_data') #print(str(list_data)) elif field[1].__class__.__name__ == 'many2many': #print('im a m2m') parent_ids = model.get_m2m_ids(field_name=field[0], record=record) #print('parent_ids is {var1}'.format(var1=str(parent_ids))) condition = "" if parent_ids: parent_ids_str = '(' for parent_id in parent_ids: parent_ids_str += "'" + str(parent_id) + "'," parent_ids_str = parent_ids_str[:-1] + ')' #print('a minha parent_ids_str do many2many é ', parent_ids_str) condition = 'where="id in {parent_ids}"'.format(parent_ids=str(parent_ids_str)) #print('before eval_model') field_model = eval("""objs.{model_name}({condition})""".format(model_name=field[1].model_name, condition=condition)) #print('after eval_model field_model is {var1}'.format(var1 = str(field_model))) field_fields = [] if hasattr(field[1], 'fields'): field_fields = field[1].fields list_data = prepare_m2m_data(model=field_model, ctx_dict=self.ctx_dict, fields=field_fields, parent_ids=parent_ids) self.ctx_dict[field[0]] = {} #print('8.1.1.2') #print('list_data {var1}'.format(var1=str(list_data))) self.ctx_dict[field[0]].update(list_data) set_context(self.window_id, self.ctx_dict) kargs.update(list_data) #print('kargs is {var1}'.format(var1=str(kargs))) #kargs['show_search'] = False #kargs['list_edit_mode'] = field_model.__list_edit_mode__ #print('8.1.2') #print('self.main_key, field[1].__class__.__name__' + self.main_key + field[1].__class__.__name__) if self.main_key not in ['None', None] and field[1].__class__.__name__ not in ['separator', 'newline', 'link','label','hrline']: field_values = get_field_value(record, field, model) #aqui se for popup tenho que procurar no request por popup_fieldname #print(field[0], '--------------------------------------------------------------------------------------------') #print(field_values['field_value'], type(field_values['field_value'])) if field_values['field_value']: #print('we do have field_value', kargs) #if isinstance(field_values['field_value'], Decimal): # kargs['value'] = field_values['field_value']#str(format_number(field_values['field_value'])) #else: # print('sou outro que não decimal') kargs['value'] = field_values['field_value'] #print(kargs['value']) #elif field[1].__class__.__name__ in ['separator', 'newline']: # pass else: if hasattr(field[1], 'default') and field[1].default: default = field[1].default if type(default) == str: if 'session' in default: default = default[7:] try: default = eval('self.ctx_dict{default}'.format(default = default, window_id = self.window_id)) except: default = 'ERROR' elif 'get_' in default: default = eval('model.' + default) else: default = str(default) if field[1].__class__.__name__ == 'parent_field': #print('im a parent_field') options = eval('objs.{model_name}().get_options()'.format(model_name = field[1].model_name)) #print('1') #kargs['parent_name'] = eval('objs.{model_name}().__name__'.format(model_name=field[1].model_name)) #options = model.options[field[0]] #print('2', kargs['parent_name']) kargs['value'] = parent2HTML(value = default, options = options) #print('3', kargs['value']) else: kargs['value'] = default #print('valor por defeito is {var1}'.format(var1=kargs['value'])) if field[1].__class__.__name__ == 'parent_field': kargs['parent_name'] = eval('objs.{model_name}().__name__'.format(model_name=field[1].model_name)) #print('8.1.3') if field[1].__class__.__name__ in ['combo_field', 'choice_field']: #print('sou combo ou choice ', field[0]) if isinstance(field[1].options, list): kargs['options'] = field[1].options else: kargs['options'] = eval(field[1].options) #print('validando as options do choice', kargs['options']) if field[1].__class__.__name__ in ['choice_field']: option_ids = [] for o in kargs['options']: option_ids.append(o[0]) option_ids = to_tuple(option_ids) #não podemos guardar a filter exprecion e outras variaveis no modelo pois podemos facilmente ter dois choice que se alimentam do mesmo modelo por isso mudamos para guardar com o nome do campo como key, claro que depois temos que ver como fazer relativamente à list_data dado que está a ir buscar ao ctx_dict com o modelo como key self.ctx_dict[field[0]] = {} self.ctx_dict[field[0]]['filter_expression'] = 'id ' + str(option_ids) self.ctx_dict[field[0]]['filter_expr_choice_restrict'] = 'id ' + str(option_ids) # esta entrada serve para garantir que nas choice_field quando carregamos no botão de filter jamais devolve valores que não constem desta lista. #print('modelo', field[1].model) #print ('my filter expression', self.ctx_dict[field[0]]['filter_expression']) self.ctx_dict[field[0]]['page'] = 0 self.ctx_dict[field[0]]['limit'] = 1000 self.ctx_dict[field[0]]['show_search'] = False set_context(self.window_id, self.ctx_dict) #print('8.1.4') if dynamic_atrs_result: #Significa que os args serão modificados pela dicionário alterando os atributos retornados pela função dynamic_atrs do campo, corremos o risco de fazer overwrite de atributos, depois temos que ver essa questão if field[0] in dynamic_atrs_result: print('estou no dynamic_atrs_result', field[0]) print(dynamic_atrs_result[field[0]]) for arg in dynamic_atrs_result[field[0]]: if arg == 'atrs': field[1].args = field[1].args + ' ' + dynamic_atrs_result[field[0]]['atrs'] else: exec("kargs['{arg}'] = dynamic_atrs_result['{field_name}']['{arg}']".format(arg=arg, field_name=field[0])) print('os argumentos a passar ao html são', field[1].args) if dynamic_atrs_args: #Significa que os args serão modificados pela dicionário acrescentando a função onchange aos campos que tem o atributo dynamic_atrs, só terá efeito se o utilizador mudar o valor mas se for através de um botão de workflow o próprio botão tem que chamar o onchange if field[0] in dynamic_atrs_args: field[1].args = field[1].args + dynamic_atrs_args[field[0]] if hasattr(field[1], 'size') and field[1].size > 10:
<reponame>espenhgn/SpikeSort #!/usr/bin/env python #coding=utf-8 import numpy as np from scipy import interpolate, signal import tables import tempfile import os from warnings import warn class ZeroPhaseFilter: """IIR Filter with zero phase delay""" def __init__(self, ftype, fband, tw=200., stop=20): self.gstop=stop self.gpass=1 self.fband = fband self.tw = tw self.ftype = ftype self._coefs_cache = {} def _design_filter(self, FS): if not FS in self._coefs_cache: wp = np.array(self.fband) ws = wp + np.array([-self.tw, self.tw]) wp, ws = wp*2./FS, ws*2./FS b,a = signal.iirdesign(wp=wp, ws=ws, gstop=self.gstop, gpass=self.gpass, ftype=self.ftype) self._coefs_cache[FS]=(b,a) else: b,a = self._coefs_cache[FS] return b, a def __call__(self, x, FS): b, a = self._design_filter(FS) return signal.filtfilt(b,a, x) class FilterFir: """FIR filter with zero phase delay Attributes ---------- f_pass : float normalised low-cutoff frequency f_stop : float normalised high-cutoff frequency order : int filter order """ def __init__(self, f_pass, f_stop, order): self._coefs_cache = {} self.fp = f_pass self.fs = f_stop self.order = order def _design_filter(self, FS): if not FS in self._coefs_cache: bands = [0, min(self.fs, self.fp), max(self.fs, self.fp), FS/2] gains = [int(self.fp < self.fs), int(self.fp > self.fs)] b, a = signal.remez(self.order, bands, gains, Hz=FS), [1] self._coefs_cache[FS]=(b, a) else: b,a = self._coefs_cache[FS] return b, a def __call__(self, x, FS): b, a = self._design_filter(FS) return signal.filtfilt(b, a, x) class Filter: def __init__(self, fpass, fstop, gpass=1, gstop=10, ftype='butter'): self.ftype = ftype self.fp = np.asarray(fpass) self.fs = np.asarray(fstop) self._coefs_cache = {} self.gstop = gstop self.gpass = gpass def _design_filter(self, FS): if not FS in self._coefs_cache: wp, ws = self.fp*2/FS, self.fs*2/FS b,a = signal.iirdesign(wp=wp, ws=ws, gstop=self.gstop, gpass=self.gpass, ftype=self.ftype) self._coefs_cache[FS]=(b,a) else: b,a = self._coefs_cache[FS] return b, a def __call__(self, x, FS): b, a = self._design_filter(FS) return signal.filtfilt(b,a, x) def filter_proxy(spikes, filter_obj, chunksize=1E6): """Proxy object to read filtered data Parameters ---------- spikes : dict unfiltered raw recording filter_object : object Filter to filter the data chunksize : int size of segments in which data is filtered Returns ------- sp_dict : dict filtered recordings """ data = spikes['data'] sp_dict = spikes.copy() if filter_obj is None: return spikes tmp_file = tempfile.NamedTemporaryFile(mode='w') filename = tmp_file.name atom = tables.Atom.from_dtype(np.dtype('float64')) shape = data.shape h5f = tables.openFile(filename,'w') carray = h5f.createCArray('/', "test", atom, shape) chunksize = int(chunksize) n_chunks = int(np.ceil(shape[1]*1./chunksize)) for i in range(shape[0]): for j in range(n_chunks): stop = int(np.min(((j+1)*chunksize, shape[1]))) carray[i,j*chunksize:stop] = filter_obj(data[i,j*chunksize:stop], sp_dict['FS']) sp_dict['data'] = carray return sp_dict def split_cells(spikes, idx, which='all'): """Return the spike features splitted into separate cells """ if which == 'all': classes = np.unique(idx) else: classes = which data = spikes['data'] time = spikes['time'] spikes_dict = dict([(cl, {'data': data[:,idx==cl, :], 'time': time}) for cl in classes]) return spikes_dict def remove_spikes(spt_dict, remove_dict, tolerance): """Remove spikes with given spike times from the spike time structure """ spt_data = spt_dict['data'] spt_remove = remove_dict['data'] min, max = tolerance for t in spt_remove: spt_data = spt_data[(spt_data>(t+max)) | (spt_data<(t+min))] spt_ret = spt_dict.copy() spt_ret['data'] = spt_data return spt_ret def detect_spikes(spike_data, thresh='auto', edge="rising", contact=0, filter=None): r"""Detects spikes in extracellular data using amplitude thresholding. Parameters ---------- spike_data : dict extracellular waveforms thresh : float or 'auto' threshold for detection. if thresh is 'auto' it will be estimated from the data. edge : {'rising', 'falling'} which edge to trigger on contact : int, optional index of tetrode contact to use for detection, defaults to first contact filter : object, optional filter used for spike detection; defaults to no filtering Returns ------- spt_dict : dict dictionary with 'data' key which contains detected threshold crossing in miliseconds """ sp_data = spike_data['data'][contact, :] n_contacts = spike_data['n_contacts'] if filter is not None: sp_data = filter(sp_data, spike_data['FS']) #if n_contacts>1: # sp_data = sp_data[:,contact] FS = spike_data['FS'] if type(thresh) is str or type(thresh) is unicode: if thresh=='auto': thresh_frac = 8 else: thresh_frac = float(thresh) thresh = thresh_frac*np.sqrt(float(np.var(sp_data[:int(10*FS)]))) if edge == 'falling' or edge =="min": thresh = -thresh if edge == "rising" or edge == "max": i, = np.where((sp_data[:-1]<thresh) & (sp_data[1:]>thresh)) elif edge == "falling" or edge == "min": i, = np.where((sp_data[:-1]>thresh) & (sp_data[1:]<thresh)) else: raise TypeError("Edge must be 'rising' or 'falling'") spt = i*1000./FS spt_dict = {'data': spt, 'thresh': thresh, 'contact': contact} return spt_dict def filter_spt(spike_data, spt_dict, sp_win): spt = spt_dict['data'] sp_data = spike_data['data'] FS = spike_data['FS'] try: n_pts = sp_data.shape[1] except IndexError: n_pts = len(sp_data) max_time = (n_pts)*1000./FS t_min = np.max((-sp_win[0],0)) t_max = np.min((max_time, max_time-sp_win[1])) idx, = np.nonzero((spt>=t_min) & (spt<=t_max)) return idx def extract_spikes(spike_data, spt_dict, sp_win, resample=1, contacts='all'): """Extract spikes from recording. Parameters ---------- spike_data : dict extracellular data (see :ref:`raw_recording`) spt : dict spike times structure (see :ref:`spike_times`) sp_win : list of int temporal extent of the wave shape Returns ------- wavedict : dict spike waveforms structure (see :ref:`spike_wave`) """ sp_data = spike_data['data'] n_contacts = spike_data['n_contacts'] if contacts == "all": contacts = np.arange(n_contacts) elif type(contacts) is int: contacts = np.array([contacts]) else: contacts = np.asarray(contacts) FS = spike_data['FS'] spt = spt_dict['data'] idx = np.arange(len(spt)) inner_idx = filter_spt(spike_data, spt_dict, sp_win) outer_idx = idx[np.in1d(idx, inner_idx) == False] indices = (spt/1000.*FS).astype(np.int32) win = (np.asarray(sp_win)/1000.*FS).astype(np.int32) time = np.arange(win[1]-win[0])*1000./FS+sp_win[0] n_contacts, n_pts = sp_data.shape #auxiliarly function to find a valid spike window within data range minmax = lambda x: np.max([np.min([n_pts, x]), 0]) spWave = np.zeros((len(time), len(spt), len(contacts)), dtype=np.float32) for i in inner_idx: sp = indices[i] spWave[:,i,:] = sp_data[contacts, sp+win[0]:sp+win[1]].T for i in outer_idx: sp = indices[i] l, r = map(minmax, sp+win) if l<>r: spWave[(l-sp)-win[0]:(r-sp)-win[0],i,:] = sp_data[contacts, l:r].T wavedict = {"data":spWave, "time": time, "FS": FS} if len(idx) != len(inner_idx): is_valid = np.zeros(len(spt), dtype=np.bool) is_valid[inner_idx] = True wavedict['is_valid'] = is_valid if resample<>1: warn("resample argument is deprecated." "Please update your code to use function" "resample_spikes", DeprecationWarning) wavedict = resample_spikes(wavedict, FS*resample) return wavedict def resample_spikes(spikes_dict, FS_new): """Upsample spike waveforms using spline interpolation""" sp_waves = spikes_dict['data'] time = spikes_dict['time'] FS = spikes_dict['FS'] resamp_time = np.arange(time[0], time[-1], 1000./FS_new) n_pts, n_spikes, n_contacts = sp_waves.shape spike_resamp = np.empty((len(resamp_time), n_spikes, n_contacts)) for i in range(n_spikes): for contact in range(n_contacts): tck = interpolate.splrep(time, sp_waves[:, i, contact],s=0) spike_resamp[:,i, contact] = interpolate.splev(resamp_time, tck, der=0) return {"data":spike_resamp, "time":resamp_time, "FS":FS} def align_spikes(spike_data, spt_dict, sp_win, type="max", resample=1, contact=0, remove=True): """Aligns spike waves and returns corrected spike times Parameters ---------- spike_data : dict spt_dict : dict sp_win : list of int type : {'max', 'min'}, optional resample : int, optional contact : int, optional remove : bool, optiona Returns ------- ret_dict : dict spike times of aligned spikes """ spt = spt_dict['data'].copy() idx_align = np.arange(len(spt)) #spt_align = {'data': spt} #go in a loop until all spikes are correctly aligned iter_id = 0 while len(idx_align) > 0: spt_align = {'data': spt[idx_align]} spt_inbound = filter_spt(spike_data, spt_align, sp_win) idx_align = idx_align[spt_inbound] #spt_align = {'data': spt[idx_align]} sp_waves_dict = extract_spikes(spike_data, spt_align, sp_win, resample=resample, contacts=contact) sp_waves = sp_waves_dict['data'][:,spt_inbound,0] #if sp_waves_dict.has_key('is_valid'): # sp_waves = sp_waves[:, sp_waves_dict['is_valid']] time = sp_waves_dict['time'] if type=="max": i = sp_waves.argmax(0) elif type=="min": i = sp_waves.argmin(0) #move spike markers shift = time[i] spt[idx_align]+=shift #if spike maximum/minimum was at the edge we have to extract it at the # new marker and repeat the alignment tol = 0.1 idx_align = idx_align[(shift<(sp_win[0]+tol)) | (shift>(sp_win[1]-tol))] iter_id +=1 #print "Align. iteration %d, remaining idx %d" % (iter_id, len(idx_align)) #print shift ret_dict = {'data':spt} if remove: #remove double spikes FS = spike_data['FS'] ret_dict = remove_doubles(ret_dict, 1000./FS) return ret_dict def remove_doubles(spt_dict,tol): new_dict = spt_dict.copy() spt = spt_dict['data'] if len(spt)>0: spt=spt[np.concatenate(([True],np.diff(spt)>tol))] new_dict['data']=spt return new_dict def merge_spikes(spike_waves1, spike_waves2): """Merges two sets of spike waves Parameters ---------- spike_waves1 : dict spike_waves2 : dict spike wavefroms to merge; both spike wave sets must be defined within the same time window and with the same sampling frequency Returns ------- spike_waves : dict merged spike waveshapes clust_idx : array labels denoting to which set the given spike originally belonged to """ sp_data1 = spike_waves1['data'] sp_data2 = spike_waves2['data'] sp_data = np.hstack((sp_data1, sp_data2)) spike_waves = spike_waves1.copy() spike_waves['data'] =
import copy import cmath import numpy import scipy.linalg from pauxy.estimators.thermal import greens_function, one_rdm_from_G, particle_number from pauxy.estimators.mixed import local_energy from pauxy.walkers.stack import PropagatorStack from pauxy.walkers.walker import Walker from pauxy.utils.linalg import regularise_matrix_inverse from pauxy.utils.misc import update_stack, get_numeric_names class ThermalWalker(Walker): def __init__(self, system, trial, walker_opts={}, verbose=False): Walker.__init__(self, system, trial, walker_opts=walker_opts) self.num_slices = trial.num_slices dtype = numpy.complex128 self.G = numpy.zeros(trial.dmat.shape, dtype=dtype) self.nbasis = trial.dmat[0].shape[0] self.stack_size = walker_opts.get('stack_size', None) max_diff_diag = numpy.linalg.norm((numpy.diag(trial.dmat[0].diagonal())-trial.dmat[0])) if max_diff_diag < 1e-10: self.diagonal_trial = True if verbose: print("# Trial density matrix is diagonal.") else: self.diagonal_trial = False if verbose: print("# Trial density matrix is not diagonal.") if self.stack_size == None: self.stack_size = trial.stack_size if (self.num_slices//self.stack_size)*self.stack_size != self.num_slices: if verbose: print("# Input stack size does not divide number of slices.") self.stack_size = update_stack(self.stack_size, self.num_slices, verbose) if self.stack_size > trial.stack_size: if verbose: print("# Walker stack size differs from that estimated from " "trial density matrix.") print("# Be careful. cond(BT)**stack_size: %10.3e." %(trial.cond**self.stack_size)) self.stack_length = self.num_slices // self.stack_size if verbose: print("# Walker stack size: {}".format(self.stack_size)) self.lowrank = walker_opts.get('low_rank', False) self.lowrank_thresh = walker_opts.get('low_rank_thresh', 1e-6) if verbose: print("# Using low rank trick: {}".format(self.lowrank)) self.stack = PropagatorStack(self.stack_size, trial.num_slices, trial.dmat.shape[-1], dtype, trial.dmat, trial.dmat_inv, diagonal=self.diagonal_trial, lowrank=self.lowrank, thresh=self.lowrank_thresh) # Initialise all propagators to the trial density matrix. self.stack.set_all(trial.dmat) self.greens_function_qr_strat(trial) self.stack.G = self.G self.M0 = numpy.array([scipy.linalg.det(self.G[0], check_finite=False), scipy.linalg.det(self.G[1], check_finite=False)]) self.stack.ovlp = numpy.array([1.0/self.M0[0], 1.0/self.M0[1]]) # # temporary storage for stacks... I = numpy.identity(system.nbasis, dtype=dtype) One = numpy.ones(system.nbasis, dtype=dtype) self.Tl = numpy.array([I, I]) self.Ql = numpy.array([I, I]) self.Dl = numpy.array([One, One]) self.Tr = numpy.array([I, I]) self.Qr = numpy.array([I, I]) self.Dr = numpy.array([One, One]) self.hybrid_energy = 0.0 if verbose: eloc = self.local_energy(system) P = one_rdm_from_G(self.G) nav = particle_number(P) print("# Initial walker energy: {} {} {}".format(*eloc)) print("# Initial walker electron number: {}".format(nav)) # self.buff_names = ['weight', 'G', 'unscaled_weight', 'phase', 'Tl', # 'Ql', 'Dl', 'Tr', 'Qr', 'Dr', 'M0'] self.buff_names, self.buff_size = get_numeric_names(self.__dict__) # self.buff_size = (self.G.size+3+self.Tl.size+2+ # self.Ql.size+self.Dl.size+self.Tr.size+self.Qr.size # +self.Dr.size) def greens_function(self, trial, slice_ix=None, inplace=True): if self.lowrank: return self.stack.G else: return self.greens_function_qr_strat(trial, slice_ix=slice_ix, inplace=inplace) def greens_function_svd(self, trial, slice_ix=None, inplace=True): if slice_ix == None: slice_ix = self.stack.time_slice bin_ix = slice_ix // self.stack.stack_size # For final time slice want first block to be the rightmost (for energy # evaluation). if bin_ix == self.stack.nbins: bin_ix = -1 if inplace: G = None else: G = numpy.zeros(self.G.shape, self.G.dtype) for spin in [0, 1]: # Need to construct the product A(l) = B_l B_{l-1}..B_L...B_{l+1} # in stable way. Iteratively construct SVD decompositions starting # from the rightmost (product of) propagator(s). B = self.stack.get((bin_ix+1)%self.stack.nbins) (U1, S1, V1) = scipy.linalg.svd(B[spin]) for i in range(2, self.stack.nbins+1): ix = (bin_ix + i) % self.stack.nbins B = self.stack.get(ix) T1 = numpy.dot(B[spin], U1) # todo optimise T2 = numpy.dot(T1, numpy.diag(S1)) (U1, S1, V) = scipy.linalg.svd(T2) V1 = numpy.dot(V, V1) A = numpy.dot(U1.dot(numpy.diag(S1)), V1) # Final SVD decomposition to construct G(l) = [I + A(l)]^{-1}. # Care needs to be taken when adding the identity matrix. T3 = numpy.dot(U1.conj().T, V1.conj().T) + numpy.diag(S1) (U2, S2, V2) = scipy.linalg.svd(T3) U3 = numpy.dot(U1, U2) D3 = numpy.diag(1.0/S2) V3 = numpy.dot(V2, V1) # G(l) = (U3 S2 V3)^{-1} # = V3^{\dagger} D3 U3^{\dagger} if inplace: # self.G[spin] = (V3inv).dot(U3.conj().T) self.G[spin] = (V3.conj().T).dot(D3).dot(U3.conj().T) else: # G[spin] = (V3inv).dot(U3.conj().T) G[spin] = (V3.conj().T).dot(D3).dot(U3.conj().T) return G def greens_function_qr(self, trial, slice_ix=None, inplace=True): if (slice_ix == None): slice_ix = self.stack.time_slice bin_ix = slice_ix // self.stack.stack_size # For final time slice want first block to be the rightmost (for energy # evaluation). if bin_ix == self.stack.nbins: bin_ix = -1 if not inplace: G = numpy.zeros(self.G.shape, self.G.dtype) else: G = None for spin in [0, 1]: # Need to construct the product A(l) = B_l B_{l-1}..B_L...B_{l+1} # in stable way. Iteratively construct SVD decompositions starting # from the rightmost (product of) propagator(s). B = self.stack.get((bin_ix+1)%self.stack.nbins) (U1, V1) = scipy.linalg.qr(B[spin], pivoting=False, check_finite=False) for i in range(2, self.stack.nbins+1): ix = (bin_ix + i) % self.stack.nbins B = self.stack.get(ix) T1 = numpy.dot(B[spin], U1) (U1, V) = scipy.linalg.qr(T1, pivoting=False, check_finite=False) V1 = numpy.dot(V, V1) # Final SVD decomposition to construct G(l) = [I + A(l)]^{-1}. # Care needs to be taken when adding the identity matrix. V1inv = scipy.linalg.solve_triangular(V1, numpy.identity(V1.shape[0])) T3 = numpy.dot(U1.conj().T, V1inv) + numpy.identity(V1.shape[0]) (U2, V2) = scipy.linalg.qr(T3, pivoting=False, check_finite=False) U3 = numpy.dot(U1, U2) V3 = numpy.dot(V2, V1) V3inv = scipy.linalg.solve_triangular(V3, numpy.identity(V3.shape[0])) # G(l) = (U3 S2 V3)^{-1} # = V3^{\dagger} D3 U3^{\dagger} if inplace: self.G[spin] = (V3inv).dot(U3.conj().T) else: G[spin] = (V3inv).dot(U3.conj().T) return G def compute_left_right(self, center_ix): # Use Stratification method (DOI 10.1109/IPDPS.2012.37) # B(L) .... B(1) for spin in [0, 1]: # right bit # B(right) ... B(1) if (center_ix > 0): # print ("center_ix > 0") B = self.stack.get(0) (self.Qr[spin], R1, P1) = scipy.linalg.qr(B[spin], pivoting=True, check_finite=False) # Form D matrices self.Dr[spin] = (R1.diagonal()) D1inv = (1.0/R1.diagonal()) self.Tr[spin] = numpy.einsum('i,ij->ij',D1inv, R1) # now permute them self.Tr[spin][:,P1] = self.Tr[spin] [:,range(self.nbasis)] for ix in range(1, center_ix): B = self.stack.get(ix) C2 = numpy.einsum('ij,j->ij', numpy.dot(B[spin], self.Qr[spin]), self.Dr[spin]) (self.Qr[spin], R1, P1) = scipy.linalg.qr(C2, pivoting=True, check_finite=False) # Compute D matrices D1inv = (1.0/R1.diagonal()) self.Dr[spin] = (R1.diagonal()) # smarter permutation # D^{-1} * R tmp = numpy.einsum('i,ij->ij',D1inv, R1) # D^{-1} * R * P^T tmp[:,P1] = tmp[:,range(self.nbasis)] # D^{-1} * R * P^T * T self.Tr[spin] = numpy.dot(tmp, self.Tr[spin]) # left bit # B(l) ... B(left) if (center_ix < self.stack.nbins-1): # print("center_ix < self.stack.nbins-1 first") # We will assume that B matrices are all diagonal for left.... B = self.stack.get(center_ix+1) self.Dl[spin] = (B[spin].diagonal()) D1inv = (1.0/B[spin].diagonal()) self.Ql[spin] = numpy.identity(B[spin].shape[0]) self.Tl[spin] = numpy.identity(B[spin].shape[0]) for ix in range(center_ix+2, self.stack.nbins): # print("center_ix < self.stack.nbins-1 first inner loop") B = self.stack.get(ix) C2 = (numpy.einsum('ii,i->i',B[spin],self.Dl[spin])) self.Dl[spin] = C2 def compute_right(self, center_ix): # Use Stratification method (DOI 10.1109/IPDPS.2012.37) # B(L) .... B(1) for spin in [0, 1]: # right bit # B(right) ... B(1) if (center_ix > 0): # print ("center_ix > 0") B = self.stack.get(0) (self.Qr[spin], R1, P1) = scipy.linalg.qr(B[spin], pivoting=True, check_finite=False) # Form D matrices self.Dr[spin] = (R1.diagonal()) D1inv = (1.0/R1.diagonal()) self.Tr[spin] = numpy.einsum('i,ij->ij',D1inv, R1) # now permute them self.Tr[spin][:,P1] = self.Tr[spin] [:,range(self.nbasis)] for ix in range(1, center_ix): B = self.stack.get(ix) C2 = numpy.einsum('ij,j->ij', numpy.dot(B[spin], self.Qr[spin]), self.Dr[spin]) (self.Qr[spin], R1, P1) = scipy.linalg.qr(C2, pivoting=True, check_finite=False) # Compute D matrices D1inv = (1.0/R1.diagonal()) self.Dr[spin] = (R1.diagonal()) # smarter permutation # D^{-1} * R tmp = numpy.einsum('i,ij->ij',D1inv, R1) # D^{-1} * R * P^T tmp[:,P1] = tmp[:,range(self.nbasis)] # D^{-1} * R * P^T * T self.Tr[spin] = numpy.dot(tmp, self.Tr[spin]) def compute_left(self, center_ix): # Use Stratification method (DOI 10.1109/IPDPS.2012.37) # B(L) .... B(1) for spin in [0, 1]: # left bit # B(l) ... B(left) if (center_ix < self.stack.nbins-1): # print("center_ix < self.stack.nbins-1 first") # We will assume that B matrices are all diagonal for left.... B = self.stack.get(center_ix+1) self.Dl[spin] = (B[spin].diagonal()) self.Ql[spin] = numpy.identity(B[spin].shape[0]) self.Tl[spin] = numpy.identity(B[spin].shape[0]) for ix in range(center_ix+2, self.stack.nbins): # print("center_ix < self.stack.nbins-1 first inner loop") B = self.stack.get(ix) C2 = (numpy.einsum('ii,i->i',B[spin],self.Dl[spin])) self.Dl[spin] = C2.diagonal() def greens_function_left_right(self, center_ix, inplace=False, thresh = 1e-6): assert(self.diagonal_trial) if not inplace: G = numpy.zeros(self.G.shape, self.G.dtype) else: G = None mL = self.G.shape[1] mR = self.G.shape[1] mT = self.G.shape[1] Bc = self.stack.get(center_ix) nbsf = Bc.shape[1] # It goes to right to left and we sample (I + L*B*R) in the end for spin in [0,1]: if (center_ix > 0): # there exists right bit mR = len(self.Dr[spin][numpy.abs(self.Dr[spin])>thresh]) Ccr = numpy.einsum('ij,j->ij', numpy.dot(Bc[spin],self.Qr[spin][:,:mR]), self.Dr[spin][:mR]) # N x mR (Qlcr, Rlcr, Plcr) = scipy.linalg.qr(Ccr, pivoting=True, check_finite=False) Dlcr = Rlcr[:mR,:mR].diagonal() # mR Dinv = 1.0/Dlcr # mR tmp = numpy.einsum('i,ij->ij',Dinv[:mR], Rlcr[:mR,:mR]) # mR, mR x mR -> mR x mR tmp[:,Plcr] = tmp[:,range(mR)] Tlcr = numpy.dot(tmp, self.Tr[spin][:mR,:]) # mR x N else: (Qlcr, Rlcr, Plcr) = scipy.linalg.qr(Bc[spin], pivoting=True, check_finite=False) # Form D matrices Dlcr = Rlcr.diagonal() mR = len(Dlcr[numpy.abs(Dlcr) > thresh]) Dinv = 1.0/Rlcr.diagonal() Tlcr = numpy.einsum('i,ij->ij',Dinv[:mR], Rlcr[:mR,:]) # mR x N Tlcr[:,Plcr] = Tlcr[:,range(self.nbasis)] # mR x N if (center_ix < self.stack.nbins-1): # there exists left bit # assume left stack is all diagonal (i.e., QDT = diagonal -> Q and T are
by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_escalation_chain_list_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str fields: :param int size: :param int offset: :param str filter: :return: EscalationChainPaginationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['fields', 'size', 'offset', 'filter'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_escalation_chain_list" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 if 'size' in params: query_params.append(('size', params['size'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'filter' in params: query_params.append(('filter', params['filter'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['LMv1'] # noqa: E501 return self.api_client.call_api( '/setting/alert/chains', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='EscalationChainPaginationResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_immediate_device_list_by_device_group_id(self, id, **kwargs): # noqa: E501 """get immediate devices under group # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_immediate_device_list_by_device_group_id(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param str fields: :param int size: :param int offset: :param str filter: :return: DevicePaginationResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_immediate_device_list_by_device_group_id_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_immediate_device_list_by_device_group_id_with_http_info(id, **kwargs) # noqa: E501 return data def get_immediate_device_list_by_device_group_id_with_http_info(self, id, **kwargs): # noqa: E501 """get immediate devices under group # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_immediate_device_list_by_device_group_id_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param str fields: :param int size: :param int offset: :param str filter: :return: DevicePaginationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'fields', 'size', 'offset', 'filter'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_immediate_device_list_by_device_group_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_immediate_device_list_by_device_group_id`") # noqa: E501 if 'id' in params and not re.search('\d+', params['id'] if type(params['id']) is str else str(params['id'])): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `get_immediate_device_list_by_device_group_id`, must conform to the pattern `/\d+/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 if 'size' in params: query_params.append(('size', params['size'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'filter' in params: query_params.append(('filter', params['filter'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['LMv1'] # noqa: E501 return self.api_client.call_api( '/device/groups/{id}/devices', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='DevicePaginationResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_immediate_website_list_by_website_group_id(self, id, **kwargs): # noqa: E501 """get a list of websites for a group # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_immediate_website_list_by_website_group_id(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param str fields: :param int size: :param int offset: :param str filter: :return: WebsitePaginationResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_immediate_website_list_by_website_group_id_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_immediate_website_list_by_website_group_id_with_http_info(id, **kwargs) # noqa: E501 return data def get_immediate_website_list_by_website_group_id_with_http_info(self, id, **kwargs): # noqa: E501 """get a list of websites for a group # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_immediate_website_list_by_website_group_id_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param str fields: :param int size: :param int offset: :param str filter: :return: WebsitePaginationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'fields', 'size', 'offset', 'filter'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_immediate_website_list_by_website_group_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_immediate_website_list_by_website_group_id`") # noqa: E501 if 'id' in params and not re.search('\d+', params['id'] if type(params['id']) is str else str(params['id'])): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `get_immediate_website_list_by_website_group_id`, must conform to the pattern `/\d+/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 if 'size' in params: query_params.append(('size', params['size'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'filter' in params: query_params.append(('filter', params['filter'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['LMv1'] # noqa: E501 return self.api_client.call_api( '/website/groups/{id}/websites', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='WebsitePaginationResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_netflow_endpoint_list(self, id, **kwargs): # noqa: E501 """get netflow endpoint list # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_netflow_endpoint_list(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param int start: :param int end: :param str netflow_filter: :param str port: :param str fields: :param int size: :param int offset: :param str filter: :return: EndpointPaginationResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_netflow_endpoint_list_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_netflow_endpoint_list_with_http_info(id, **kwargs) # noqa: E501 return data def get_netflow_endpoint_list_with_http_info(self, id, **kwargs): # noqa: E501 """get netflow endpoint list # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_netflow_endpoint_list_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: (required) :param int start: :param int end: :param str netflow_filter: :param str port: :param str fields: :param int size: :param int offset: :param str filter: :return: EndpointPaginationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'start', 'end', 'netflow_filter', 'port', 'fields', 'size', 'offset', 'filter'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_netflow_endpoint_list" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_netflow_endpoint_list`") # noqa: E501 if 'id' in params
from core.himesis_utils import graph_to_dot from util.decompose_graph import decompose_graph from core.himesis_utils import build_traceability from core.new_match_algo import NewHimesisMatcher from copy import deepcopy from collections import defaultdict class Slicer: def __init__(self, rules, transformation, superclasses_dict, overlapping_rules, subsumption, atomic_contracts): self.debug = False self.data = {} self.direct_links = {} self.backward_links = {} self.match_elements = {} self.isolated_match_elements = {} self.apply_elements = {} self.found_links = {} self.found_isolated_match_elements = {} self.rules = rules self.atomic_contracts = atomic_contracts self.required_rules = {} for rule in self.rules: self.rules[rule] = build_traceability(deepcopy(self.rules[rule])) self.transformation = transformation self.superclasses_dict = superclasses_dict self.overlapping_rules = overlapping_rules self.subsumption = subsumption for layer in transformation: for i, rule in enumerate(layer): rule_name = rule.name #make sure to update layer with traceability rules layer[i] = self.rules[rule_name] data = decompose_graph(self.rules[rule_name], get_isolated_match_elements = True) self.direct_links[rule_name] = data["direct_links"] self.backward_links[rule_name] = data["backward_links"] self.match_elements[rule_name] = data["match_elements"] self.isolated_match_elements[rule_name] = data["isolated_match_elements"] self.apply_elements[rule_name] = data["apply_elements"] self.data[rule_name] = data #if self.debug: #print("Drawing: " + rule.name) #graph_to_dot(rule.name, rule) for layer in transformation: for rule in layer: r_rules = self.find_required_rules(rule.name, [rule]) self.required_rules[rule.name] = r_rules r_rules_names = sorted([r for r,v in r_rules.items()]) print("Rule " + rule.name + " depends on: " + str(r_rules_names)) for layer in transformation: for rule in layer: self.check_for_missing_elements(rule, is_contract=False) for contract in atomic_contracts: contract_name, contract_list = self.decompose_contract(contract) required_rules = self.find_required_rules(contract_name, contract_list, True, verbosity = 0) self.required_rules[contract_name] = required_rules def get_contract(self, contract_num, atomic, if_then): contract = None num = contract_num if 0 <= contract_num < len(atomic): atomic = [atomic[contract_num]] if_then = [] contract = atomic[0] num -= len(atomic) if 0 <= num < len(if_then): atomic = [] if_then = [if_then[num]] contract = if_then[0] print("Slicing for contract number " + str(contract_num) + " : " + contract[0]) return contract, atomic, if_then def decompose_contract(self, contract): contract_list = contract[1].get_graph() contract_name = contract[1].to_string() #print("Slicing for: " + contract_name) self.direct_links[contract_name] = [] self.backward_links[contract_name] = [] self.match_elements[contract_name] = [] self.isolated_match_elements[contract_name] = [] self.apply_elements[contract_name] = [] for c in contract_list: data = decompose_graph(c, verbosity = 0, isolated_if_attached_backward=True, get_isolated_match_elements = True) self.direct_links[c.name] = data["direct_links"] self.backward_links[c.name] = data["backward_links"] self.match_elements[c.name] = data["match_elements"] self.isolated_match_elements[c.name] = data["isolated_match_elements"] self.apply_elements[c.name] = data["apply_elements"] self.data[c.name] = data return contract_name, contract_list def slice_transformation(self, contract): import time start_time = time.time() print("Number rules before: " + str(len(self.rules))) try: contract_name, contract_list = self.decompose_contract(contract) except KeyError: #this is actually a rule contract_name = contract.name contract_list = [contract] if self.debug: graph_to_dot(contract_name, contract_list[0]) for layer in self.transformation: for rule in layer: graph_to_dot(rule.name, rule) required_rules = self.find_required_rules(contract_name, contract_list, True, verbosity=0) self.required_rules[contract_name] = required_rules rr_names = [rule for rule, v in required_rules.items()] print("Required rules for contract " + contract_name + ": " + str(sorted(rr_names))) #this contract is a rule, so make sure it requires itself if contract_name in self.rules.keys(): required_rules[contract_name] = [] #raise Exception("Contract Required Rules") required_rules_stack = deepcopy(list(required_rules.keys())) required_rules = [] while required_rules_stack: rr = required_rules_stack[0] required_rules_stack = required_rules_stack[1:] if rr not in required_rules: required_rules.append(rr) rule = self.rules[rr] #print("Getting rrs for: " + rr) new_rrs = self.find_required_rules(rule.name, [rule], False, self.transformation) new_rrs = list(new_rrs.keys()) # add in the rules which might be needed for subsumption for key, values in self.overlapping_rules.items(): if rr == key: for val in values: new_rrs.append(val) for key, values in self.subsumption.items(): if rr == key: for val in values: new_rrs.append(val) if rr in values: new_rrs.append(key) for rr2 in new_rrs: if rr2 not in required_rules and rr2 not in required_rules_stack: required_rules_stack.append(rr2) print("Required rules for contract " + contract_name + " (recursive):\n" + str(sorted(required_rules))) #raise Exception() new_rules = {} for k in self.rules.keys(): if k in required_rules: new_rules[k] = self.rules[k] new_transformation = [] for layer in self.transformation: new_layer = [] for rule in layer: if rule.name in required_rules: new_layer.append(rule) new_transformation.append(new_layer) end_time = time.time() - start_time for contract in contract_list: self.check_for_missing_elements(contract, is_contract = True) print("Time taken for: -slicing- " + str(end_time) + " seconds") print("Number rules after: " + str(len(new_rules))) #raise Exception() return new_rules, new_transformation def find_required_rules(self, pattern_name, pattern_list, is_contract = False, verbosity = 0): if self.debug: print("\nLooking for required rules for pattern: " + pattern_name) required_rules = {} for layer in self.transformation: # don't look at the same layer that a rule is on if not is_contract: rule_names = [r.name for r in layer] if pattern_name in rule_names: break for rule in layer: if rule in required_rules: continue if is_contract: rule_me = self.match_elements[rule.name] rule_me = set([rule.vs[n]["mm__"] for n in rule_me]) else: rule_me = set() source_data = self.data[rule.name] source_mms = rule.vs["mm__"] for pattern in pattern_list: verbosity = 0 pattern_data = self.data[pattern.name] pattern_mms = pattern.vs["mm__"] #we care about backward links for both rules and contracts, #but only direct link for contracts if is_contract: real_backward_links = pattern_data["backward_links"] else: real_backward_links = [bl for bl in pattern_data["backward_links"] if pattern_mms[bl[2]] == "backward_link"] real_trace_links = [tl for tl in source_data["backward_links"] if source_mms[tl[2]] == "trace_link"] links = [ [real_backward_links, real_trace_links], ] if is_contract: links.append([pattern_data["direct_links"], source_data["direct_links"]]) graph_me = self.isolated_match_elements[pattern.name] graph_me = set([pattern.vs[n]["mm__"].replace("MT_pre__", "") for n in graph_me]) if len(graph_me.intersection(rule_me)) > 0: try: required_rules[rule.name].append(graph_me) except KeyError: required_rules[rule.name] = [graph_me] #continue self.match_links(required_rules, links, pattern, self.data[pattern.name], rule, self.data[rule.name], self.superclasses_dict, verbosity = verbosity) return required_rules def match_links(self, required_rules, links, pattern, pattern_data, graph, source_data, superclasses_dict, verbosity=0): matcher = NewHimesisMatcher(graph, pattern, pred1=source_data, pred2=pattern_data, superclasses_dict=superclasses_dict, skip_equations = True) pattern_mms = matcher.pattern_mms # source_mms = graph.vs["mm__"] does_match = False for iso_match_element in pattern_data["isolated_match_elements"]: iso_mm = pattern_mms[iso_match_element] patt_constraints = matcher.get_patt_node_constraints(iso_match_element) for node in range(len(graph.vs)): # print("Matching on: " + str(node)) nodes_match = matcher.match_nodes(node, iso_match_element, iso_mm, patt_constraints) if nodes_match: if pattern.name not in self.found_isolated_match_elements.keys(): self.found_isolated_match_elements[pattern.name] = [] self.found_isolated_match_elements[pattern.name].append(iso_match_element) try: required_rules[graph.name].append(iso_match_element) except KeyError: required_rules[graph.name] = [iso_match_element] does_match = True # copy these links, as we might need to remove some #print("Pattern: " + pattern.name) for patt_links, source_links in links: if verbosity > 1: print("\n===================\nPattern " + pattern.name + " nodes:") for patt0_n, patt1_n, patt_link_n in patt_links: matcher.print_link(pattern, patt0_n, patt1_n, patt_link_n) print("Pattern " + pattern.name + " nodes:\n===================\n") print("\n===================\nGraph " + graph.name + " nodes:") for graph_n0_n, graph_n1_n, graph_link_n in source_links: matcher.print_link(graph, graph_n0_n, graph_n1_n, graph_link_n) print("Graph " + graph.name + " nodes:\n===================\n") for patt0_n, patt1_n, patt_link_n in patt_links: patt_0_mm = pattern_mms[patt0_n] patt_1_mm = pattern_mms[patt1_n] patt_link_mm = pattern_mms[patt_link_n] patt_constraints_0 = matcher.get_patt_node_constraints(patt0_n) patt_constraints_1 = matcher.get_patt_node_constraints(patt1_n) patt_constraints_link = matcher.get_patt_node_constraints(patt_link_n) for graph_n0_n, graph_n1_n, graph_link_n in source_links: if pattern.vs[patt_link_n]["mm__"] in ["trace_link", "backward_link"]: if graph.vs[graph_link_n]["mm__"] == "trace_link": links_match = True else: links_match = False else: links_match = matcher.match_nodes(graph_link_n, patt_link_n, patt_link_mm, patt_constraints_link) if not links_match: #if verbosity > 1: # print("Links don't match") continue if verbosity > 1: print("\nChecking Pattern " + pattern.name + " nodes:") matcher.print_link(None, pattern, patt0_n, patt1_n, patt_link_n) nodes_match_1 = matcher.match_nodes(graph_n0_n, patt0_n, patt_0_mm, patt_constraints_0) nodes_match_2 = matcher.match_nodes(graph_n1_n, patt1_n, patt_1_mm, patt_constraints_1) #if nodes_match: # print("\nNodes found!") # if not nodes_match: # print("Failure matching on " + pc.vs[pc_n0_n]["mm__"] + " vs " + contract.vs[n0_n]["mm__"]) # if not nodes_match: # print("Failure matching on " + pc.vs[pc_n1_n]["mm__"] + " vs " + contract.vs[n1_n]["mm__"]) if nodes_match_1 and nodes_match_2: if verbosity > 1: print("\nFound the pattern link: ") matcher.print_link(None, pattern, patt0_n, patt1_n, patt_link_n) print("On:") matcher.print_link(None, graph, graph_n0_n, graph_n1_n, graph_link_n) if pattern.name not in self.found_links.keys(): self.found_links[pattern.name] = [] patt_mms = (pattern_mms[patt0_n], pattern_mms[patt1_n], pattern_mms[patt_link_n]) #print("Pattern link " + str(patt_mms) + " found in " + graph.name) self.found_links[pattern.name].append(patt_mms) try: required_rules[graph.name].append((patt0_n, patt1_n, patt_link_n)) except KeyError: required_rules[graph.name] = [(patt0_n, patt1_n, patt_link_n)] does_match = True #return True #pc_direct_links.remove([pc_n0_n, pc_n1_n, pc_link_n]) #break # else: # if verbosity > 1: # print("\nNot match on:") # print(graph.vs[graph_n0_n]["mm__"]) # print(graph.vs[graph_n1_n]["mm__"]) # # if graph_link_n: # print(graph.vs[graph_link_n]["mm__"]) # print() # if not found_match: # if verbosity > 1: # print("No direct link matches found") # print("Couldn't find:") # print(pattern.vs[patt0_n]["mm__"]) # print(pattern.vs[patt1_n]["mm__"]) # if patt_link_n: # print(pattern.vs[patt_link_n]["mm__"]) # print() # return False return does_match def check_for_missing_elements(self, graph, is_contract = False): original_mms = graph.vs["mm__"] mms = [mm.replace("MT_pre__", "") for mm in original_mms] direct_links = self.data[graph.name]["direct_links"] backward_links = self.data[graph.name]["backward_links"] #print("Check missing elements: " + graph.name) if not is_contract: backward_links = [bl for bl in backward_links if mms[bl[2]] == "backward_link"] try: found_links = self.found_links[graph.name] except KeyError: found_links = [] if is_contract: for dl in direct_links: dl_as_mm = (mms[dl[0]], mms[dl[1]], mms[dl[2]]) if dl_as_mm not in found_links: rwe = self.print_rules_with_element(original_mms[dl[0]], verbose = False) rwe2 = self.print_rules_with_element(original_mms[dl[1]], verbose = False) #check to
<reponame>benyaboy/sage-graphics ############################################################################ # # SAGE UI - A Graphical User Interface for SAGE # Copyright (C) 2005 Electronic Visualization Laboratory, # University of Illinois at Chicago # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the distribution. # * Neither the name of the University of Illinois at Chicago nor # the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Direct questions, comments etc about SAGE UI to www.evl.uic.edu/cavern/forum # # Author: <NAME> # ############################################################################ import os.path import os import time from math import ceil import string import wx from Mywx import MyBitmapButton from threading import Timer from globals import * # some global vars hashRecordingWords = {} #RJ 2005-04-07 hashRecordingWords[1001] = "exec" hashRecordingWords[1002] = "kill" hashRecordingWords[1003] = "move" hashRecordingWords[1004] = "resize" hashRecordingWords[1007] = "bg" hashRecordingWords[1008] = "depth" hashRecordingWords[1100] = "shutdown" ############################################################################ # # CLASS: SessionRecorder # # DESCRIPTION: A class for recording user actions to a file in a directory. # To use just create an instance of this class and call # RecordAction(code, data) to write a line to a file. "Code" is # the message code sent to SAGE and it gets mapped to a text string # according to a hash defined here. "Data" is whatever you want to # record in a file and it's code dependent. The last (optional) # parameter to RecordAction is a boolean signifying if you want # to insert a pause after an action. By default pauses are inserted # in the file with the value of the elapsed time since the last # recorded message. When done recording, just call Close() and # destroy the object. # # DATE: April, 2005 # ############################################################################ class SessionRecorder: def __init__(self, filename): #recDir = ConvertPath("./sessions/") # a dir to write session files to print "Session recording started. Session will be saved in ", filename self.file = open(filename, "w") self.prevTime = 0 def RecordAction(self, code, data, insertPause = True): # only record if the action is supported if hashRecordingWords.has_key( int(code) ): #record a pause, a session always starts with a 2 second pause! if self.prevTime == 0: pauseTime = 2 else: pauseTime = int( ceil( time.time() - self.prevTime ) ) self.prevTime = time.time() # finally, do the writing if insertPause: self.file.write("pause " + str(pauseTime) + "\n") self.file.write( hashRecordingWords[int(code)] +" "+ data+"\n" ) def Close(self): print "Session recording stopped" self.file.close() ############################################################################ # # CLASS: SessionReader # # DESCRIPTION: A class for reading user actions from a specified file. # To use, create an instance of this class and pass in a # filename to read from. Once created, keep calling ReadAction() # in order to read new lines from a file. It returns data in this # format: (code, data). It is your job to use this data then. # This class also has options to pause, stop, speed up and slow # down the playback of the session file. It does all that by # playing with the length of the pause (speed), repeatedly # returning pause (pausing) or returning a fake EOF (stopping # prematurely). # # # DATE: April, 2005 # ############################################################################ class SessionReader: def __init__(self, sessionFile): if os.path.isfile(sessionFile): self.file = open(sessionFile, "r") else: print "ERROR: Sessions file \"", sessionFile, "\" doesn't exist." # control variables self.speed = 1.0 self.stop = False self.paused = False def SetPause(self, doPause): self.paused = doPause # reads the file one line at a time # it returns a tuple in this format: (code, data) # code is: -1 (paused), 0 (EOF) or **** (message code) # data depends on the message def ReadAction(self): # this is how we stop session playback if self.stop: return (0, "EOF") # this is how we pause playback (pretend that we encountered a # pause in the file. Instead we are pausing the playback and # not reading any new lines from the file if self.paused: return (-1, "0.5") if not hasattr(self, "file"): return line = self.file.readline() line = string.strip(line) # remove the newline char # EOF case if line == "": self.file.close() return (0, "EOF") # split the line into action and data action, data = string.split(line, " ", 1) # send a pause separately if action == "pause": data = float(data) * self.speed return (-1, str(data)) # this is the actual message to be sent to SAGE code = -2 # any non-existent code for k, v in hashRecordingWords.iteritems(): if v == action: code = int(k) #extract the code return (code, data) def GoSlower(self): self.speed = self.speed * 2 if self.speed > 8: self.speed = 8 if self.speed > 1: return "1/" + str(int(self.speed)) elif self.speed == 1: return "1" elif self.speed < 1: return str(int((0.125 / self.speed) * 8)) def GoFaster(self): self.speed = float(self.speed) / 2 if self.speed < 0.125: self.speed = 0.125 if self.speed > 1: return "1/" + str(int(self.speed)) elif self.speed == 1: return "1" elif self.speed < 1: return str(int((0.125 / self.speed) * 8)) def Stop(self): self.stop = True def Close(self): if hasattr(self, "file"): self.file.close() ############################################################################ # # CLASS: PlaybackDialog # # DESCRIPTION: This class describes the dialog box that controls the session # playback. It's a modal dialog so the UI can't be interacted # with during the playback. However, you can speed up or slow # down the playback, pause it or quit it prematurely. # # NOTE: This dialog is not neccessary for the operation of playback # but it gives user more control over it. # # DATE: April, 2005 # ############################################################################ class PlaybackDialog(wx.Dialog): def __init__(self, parent, sessionReader): wx.Dialog.__init__(self, parent, -1, "Session Playback")#, style = wx.STATIC_BORDER) self.sessionReader = sessionReader self.SetSize((250, 120)) self.SetBackgroundColour(wx.Colour(0, 51, 52)) #003334 self.SetForegroundColour(wx.Colour(255, 255, 255)) self.CenterOnParent(wx.BOTH) self.SetFont(StandardFont()) wx.StaticText(self, -1, "Playback in progress...", (50, 20)) #self.CaptureMouse() self.pause = False # create the controls for the dialog self.pauseBtn = MyBitmapButton( self, (30, 50), (30, 30), "images/pause_up.jpg", "images/pause_down.jpg", "images/pause_over.jpg") self.stopBtn = MyBitmapButton( self, (70, 50), (30, 30), "images/stop_up.jpg", "images/stop_down.jpg", "images/stop_over.jpg") self.slowerBtn = MyBitmapButton( self, (135, 50), (30, 30), "images/slower_up.jpg", "images/slower_down.jpg", "images/slower_over.jpg") self.speedText = wx.StaticText( self, -1, "x 1", (172, 60), style = wx.ALIGN_CENTRE) self.fasterBtn = MyBitmapButton( self, (208, 50), (30, 30), "images/faster_up.jpg", "images/faster_down.jpg", "images/faster_over.jpg") # bind the events and event handlers for the buttons self.pauseBtn.Bind( wx.EVT_LEFT_UP, self.OnPause) self.stopBtn.Bind( wx.EVT_LEFT_UP, self.OnClose) self.fasterBtn.Bind( wx.EVT_LEFT_UP, self.OnFaster) self.slowerBtn.Bind( wx.EVT_LEFT_UP, self.OnSlower) self.Bind( wx.EVT_CLOSE, self.OnClose) self.Show() def OnPause(self, evt): if self.pause: self.pauseBtn.SetUpBitmap("images/pause_up.jpg") self.pauseBtn.SetDownBitmap("images/pause_down.jpg") self.pauseBtn.SetOverBitmap("images/pause_over.jpg") self.pause = False self.sessionReader.SetPause(False) else: self.pauseBtn.SetUpBitmap("images/play_up.jpg") self.pauseBtn.SetDownBitmap("images/play_down.jpg") self.pauseBtn.SetOverBitmap("images/play_over.jpg") self.pause = True self.sessionReader.SetPause(True) MyBitmapButton.OnLeftUp(evt.GetEventObject(), evt) # this just hides the window since sageGate will close it when it's done # it also tells the sessionReader to stop the playback def OnClose(self, evt): self.sessionReader.Stop() #self.Destroy() self.Show(False) # SAGEGate is the one that destroys the window so just hide it for now # sageGate calls this function when EOF has been reached def Close(self): #self.ReleaseMouse() self.Destroy() # this calls SessionReader and sets the speed of playback (basically it # changes the multiplier of the pauses) def OnFaster(self, evt): MyBitmapButton.OnLeftUp(evt.GetEventObject(), evt) newSpeed = self.sessionReader.GoFaster() self.speedText.SetLabel("x " + newSpeed) # this calls SessionReader and sets the speed
''' Stuff for driving MS office applications from Python using COM Currently just Excel but Word will come soon. ''' from win32com.client import Dispatch from types import * from string import uppercase class Excel: ''' Wrapper for MS Excel derived from that in Python Programming on Win32 ''' def __init__(self,filename=None): ''' Open a new Excel spreadsheet optionally associated with a file ''' self.xlApp = Dispatch("Excel.Application") if filename: self.filename = filename self.xlBook = self.xlApp.Workbooks.Open(filename) else: self.xlBook = self.xlApp.Workbooks.Add() self.filename = '' self.open = 1 def save(self, newfilename=None): ''' Save the workbook either to the default file, another file, or let Excel query the user where to save it. ''' if newfilename: self.filename = newfilename self.xlBook.SaveAs(newfilename) else: self.xlBook.Save() def close(self): self.xlBook.Close(SaveChanges=0) del self.xlApp self.open = 0 def getCell(self, row, col, sheet=1): ''' Returns the value in cell (row,col) or None if it is blank. ''' xlSheet = self.xlBook.Worksheets(sheet) return xlSheet.Cells(row,col).Value def getCellFormula(self, row, col, sheet=1): ''' Returns the formula in cell (row,col) or the value if there is no formula. If there is no value nor formula, None is returned. ''' xlSheet = self.xlBook.Worksheets(sheet) result = xlSheet.Cells(row,col).Formula if result == '': # A blank field seems to return a blank string result = None return result def setCell(self, value, row, col, sheet=1): ''' Sets the value in cell (row,col). ''' xlSheet = self.xlBook.Worksheets(sheet) xlSheet.Cells(row,col).Value = value def getRange(self, row1, col1, row2=None, col2=None, sheet=1): ''' Returns the data in the given range as a 2d array (i.e., as a tuple of tuples). If the bottom corner is not specified or is incompletely specified, assume a dimension of 1. ''' if not row2: row2 = row1 if not col2: col2 = col1 xlSheet = self.xlBook.Worksheets(sheet) cell1 = xlSheet.Cells(row1,col1) cell2 = xlSheet.Cells(row2,col2) return xlSheet.Range(cell1,cell2).Value def matrixDimensions(self, data): ''' Determine the dimemension of the matrix data which can be a scalar, vector, or 2-D matrix. Allows for string data, or for matrices in which the first row or column are strings labels for series ... so look at the last row to determine the length of a row (= number of columns). If the data is a vector then it is taken as a row-vector in order to be consistent with how the default extension happens when assigning a simple list or vector into a rectangular range in Excel. ''' last = None n = m = 1 try: n = len(data) last = data[-1] except TypeError: n = m = 1 # We have a scalar if last: if type(last) == StringType: m = n # Row-vector of strings n = 1 else: try: m = len(last) except TypeError: m = n # Row-vector of scalars n = 1 return (n,m) def setRange(self, data, row1=1, col1=1, row2=None, col2=None, sheet=1): ''' Set the range of cells to the given data. If both corners of the range are specified, the corresponding piece of data is copied into the range. If data is too small, then it is mystically extended to fill the range. E.g., you can fill a range from a scalar or a vector. Vectors are treated as row-vectors when filling a rectangular region. Optionally, you specify only the top-left corner of range in row1, cell1 and specify row2<=0 - the other coordinate is figured out from the dimension of the data. This can always be overridden by specifying the full range coordinates. If no coordinates are given, the data is put into the top left of the spreadsheet. Returns the range that was set. ''' (n,m) = self.matrixDimensions(data) if not row2: row2 = row1 + n - 1 if not col2: col2 = col1 + m - 1 xlSheet = self.xlBook.Worksheets(sheet) cell1 = xlSheet.Cells(row1,col1) cell2 = xlSheet.Cells(row2,col2) xlSheet.Range(cell1,cell2).Value = data return (row1, col1, row2, col2) def getContiguousRange(self, row1, col1, sheet=1): ''' Returns data in the range which forms a contiguous block with top-left corner in cell (row1,col1). Starting from the specified cell, scan down/across the first column/row and identify the range bordered by blank cells. Blanks within the region will be set to None. ''' xlSheet = self.xlBook.Worksheets(sheet) row2 = row1 while xlSheet.Cells(row2+1,col1).Value not in [None,'']: row2 = row2 + 1 col2 = col1 while xlSheet.Cells(row1,col2+1).Value not in [None,'']: col2 = col2 + 1 return self.getRange(row1, col1, row2, col2, sheet=sheet) def selectRange(self, row1, col1, row2=None, col2=None, sheet=1): ''' Select the range of cells on the specified sheet. It also has to select that sheet as the active worksheet. ''' if not row2: row2 = row1 if not col2: col2 = col1 xlSheet = self.xlBook.Worksheets(sheet) xlSheet.Select() cell1 = xlSheet.Cells(row1,col1) cell2 = xlSheet.Cells(row2,col2) xlSheet.Range(cell1,cell2).Select() def chartRange(self, row1, col1, row2, col2, sheet=1, **keys): ''' Chart the data in the specified range. Additional options are processed by chartSelectedRange. ''' self.selectRange(row1, col1, row2, col2, sheet=sheet) keys['sheet'] = sheet apply(self.chartSelectedRange, (), keys) def chartSelectedRange(self, title=None, xlabel=None, ylabel=None, plotby='columns', charttype='xy', sheet=1, xmin=None, xmax=None, ymin=None, ymax=None, xlog=0, ylog=0): ''' The interface to Excel charts. Just a few of the capabilities are exposed here. [The first of a set of options is the default] plotby = 'columns' ... data series run down columns . = 'rows' ... across rows charttype = 'xy' ... XY scatter plot with lines and points. . First series is X. Others are y1, y2, etc. . = 'surface' ... Surface plot of a scalar function of . two variables. Data should be a grid of the function. . = 'contour' or 'colorcontour' ... Contour plot of a scalar . function of two variables. Data should be a grid of . values. xmin and xmax = min/max values of the x or category axis . It defaults to autoscale by Excel. This only applies to . XY plots (since the surface/contor plots do not use . values for the category axes ... they use string labels) ymin and ymax = min/max values of the y or value axis . It defaults to auto by Excel. Applies to all charts. xlog = 0 ... use a linear for x or category axis. . = 1 ... use a log (values must be positive) . This only applies to XY plots. ylog = 0 ... use a linear for the value or Y axis . = 1 ... use a log . . Applies to all charts If the first element of each data series is a string, it is used to label the series. If this string is representable as a numerical value you must precede it with a single quote to force Excel to treat it as a string. Note that you must use strings. If you use numbers it will be interpreted as data and incorporated into the plot. For the 2-D plots (xy, surface, contour) you can border the actual data on left and on the top with strings to label axes. ''' charttypes = {'xy':74, 'surface':83, 'colorcontour':85, 'contour':56} try: charttype = charttypes[charttype] except KeyError: print('Excel.chartSelectedRange: Unknown charttype', charttype, ' defaulting to XY') charttype = charttypes['xy'] # Make the chart and set how the data will be interpreted # Taking a reference to the active chart does not seemt to work??? self.xlApp.Charts.Add() self.xlApp.ActiveChart.ChartType = charttype xlRows=1 xlColumns=2 if plotby == 'rows': self.xlApp.ActiveChart.PlotBy = xlRows elif plotby == 'columns': self.xlApp.ActiveChart.PlotBy = xlColumns else: print('Excel.chartSelectedRange: Unknown plotby', charttype, ' defaulting to columns') self.xlApp.ActiveChart.PlotBy = xlColumns # Set the title and axis labels if title: self.xlApp.ActiveChart.HasTitle = 1 self.xlApp.ActiveChart.ChartTitle.Characters.Text = title xlCategory=1 xlValue=2 #xlSeries=3 xlPrimary=1 #xlSecondary=2 if xlabel: self.xlApp.ActiveChart.Axes(xlCategory,xlPrimary).HasTitle = 1 self.xlApp.ActiveChart.Axes(xlCategory,xlPrimary).AxisTitle.Characters.Text = xlabel if ylabel: self.xlApp.ActiveChart.Axes(xlValue,xlPrimary).HasTitle = 1 self.xlApp.ActiveChart.Axes(xlValue,xlPrimary).AxisTitle.Characters.Text = ylabel # Set the axis scale and log options xlLinear = 0xffffefdc xlLogarithmic=0xffffefdb if ymin != None: self.xlApp.ActiveChart.Axes(xlValue).MinimumScale = ymin if ymax != None: self.xlApp.ActiveChart.Axes(xlValue).MaximumScale = ymax if ylog: self.xlApp.ActiveChart.Axes(xlValue).ScaleType = xlLogarithmic if charttype == charttypes['xy']: if xmin != None:
PROCEDURE {}(@sent_data nvarchar(max), @message_type smallint, @guild_id int, @message_mode smallint, @dm_reason nvarchar(max), @channels t_tmp_channel_log READONLY) AS /* Procedure that saves the log * This is done within sql instead of python for speed optimization */ BEGIN BEGIN TRY DECLARE @existing_data_id int = NULL; DECLARE @last_log_id int = NULL; SELECT @existing_data_id = id FROM DataHISTORY dh WHERE dh.content = @sent_data; IF @existing_data_id IS NULL BEGIN INSERT INTO DataHISTORY(content) VALUES(@sent_data); SELECT @existing_data_id = id FROM DataHISTORY dh WHERE dh.content = @sent_data; END INSERT INTO MessageLOG(sent_data, message_type, guild_id, message_mode, dm_reason, [timestamp]) VALUES( @existing_data_id, @message_type, @guild_id, @message_mode, @dm_reason, GETDATE() ); SET @last_log_id = SCOPE_IDENTITY(); DECLARE @existance tinyint; SELECT @existance = (CASE WHEN EXISTS(SELECT TOP(1) 1 FROM @channels) THEN 1 ELSE 0 END) IF @existance = 1 BEGIN INSERT INTO MessageChannelLOG (log_id, channel_id, reason) SELECT @last_log_id, ch.id, ch.reason FROM @channels ch --OPENJSON(@channels) WITH(id int, reason nvarchar(max)) ch; END COMMIT; BEGIN TRAN; END TRY BEGIN CATCH ROLLBACK; BEGIN TRAN; THROW; END CATCH END""" } ] with suppress(SQLAlchemyError, TimeoutError, PyTDSError): trace("[SQL]: Creating Views, Procedures & Functions...", TraceLEVELS.NORMAL) with self._sessionmaker.begin() as session: for statement in stms: session.execute(text("CREATE OR ALTER " + statement["stm"].format(statement["name"]) )) return True return False def generate_lookup_values(self) -> bool: """~ Method ~ @Info: Generates the lookup values for all the different classes the @register_type decorator was used on. """ session : Session with suppress(SQLAlchemyError, TimeoutError, PyTDSError): trace("[SQL]: Generating lookuptable values...", TraceLEVELS.NORMAL) with self._sessionmaker.begin() as session: for to_add in copy.deepcopy(GLOBALS.lt_types): # Deepcopied to prevent SQLAlchemy from deleting the data existing = session.query(type(to_add)).where(type(to_add).name == to_add.name).first() if existing is None: session.add(to_add) session.flush() existing = to_add self.add_to_cache(type(to_add), to_add.name, existing.id) return True return False def create_tables(self) -> bool: """~ Method ~ @Info: Creates tables from the SQLAlchemy's descriptor classes""" with suppress(SQLAlchemyError, TimeoutError, PyTDSError): trace("[SQL]: Creating tables...", TraceLEVELS.NORMAL) self.Base.metadata.create_all(bind=self.engine) return True return False def connect_cursor(self) -> bool: """ ~ Method ~ @Info: Creates a cursor for the database (for faster communication)""" with suppress(Exception): trace("[SQL]: Connecting the cursor...", TraceLEVELS.NORMAL) self.cursor = self.engine.raw_connection().cursor() return True return False def begin_engine(self) -> bool: """~ Method ~ @Info: Creates engine""" with suppress(SQLAlchemyError, TimeoutError, PyTDSError): self.engine = create_engine(f"mssql+pytds://{self.username}:{self.__password}@{self.server}/{self.database}", echo=False,future=True, pool_pre_ping=True, connect_args={"login_timeout" : SQL_CONNECTOR_TIMEOUT, "timeout" : SQL_CONNECTOR_TIMEOUT}) self._sessionmaker = sessionmaker(bind=self.engine) return True return False # def create_database(self) -> bool: # """ ~ Method ~ # @Info: Creates database if it doesn't exist""" # with suppress(SQLAlchemyError, TimeoutError, PyTDSError): # trace("[SQL]: Creating database...", TraceLEVELS.NORMAL) # if not database_exists(self.engine.url): # create_database(self.engine.url) # return True # return False def initialize(self) -> bool: """~ Method ~ @Info: This method initializes the connection to the database, creates the missing tables and fills the lookuptables with types defined by the register_type(lookup_table) function. @Param: void""" # Create engine for communicating with the SQL base if not self.begin_engine(): trace("[SQL]: Unable to start engine.", TraceLEVELS.ERROR) return False # if not self.create_database(): # trace("[SQL]: Unable to create database") # return False # Create tables and the session class bound to the engine if not self.create_tables(): trace("[SQL]: Unable to create all the tables.", TraceLEVELS.ERROR) return False # Insert the lookuptable values if not self.generate_lookup_values(): trace("[SQL]: Unable to create lookuptables' rows.", TraceLEVELS.ERROR) return False # Create datatypes if not self.create_data_types(): trace("[SQL]: Unable to data types", TraceLEVELS.ERROR) return False # Initialize views, procedures and functions if not self.create_analytic_objects(): trace("[SQL]: Unable to create views, procedures and functions.", TraceLEVELS.ERROR) return False # Connect the cursor for faster procedure calls if not self.connect_cursor(): trace("[SQL]: Unable to connect the cursor", TraceLEVELS.ERROR) return False return True def get_insert_guild(self, snowflake: int, name: str, _type: str) -> int: """~ Method ~ @Info: Inserts the guild into the db if it doesn't exist, adds it to cache and returns it's internal db id from cache.""" result = None if snowflake not in self.GuildUSER: with self._sessionmaker.begin() as session: session: Session result = session.query(GuildUSER.id).filter(GuildUSER.snowflake_id == snowflake).first() if result is not None: result = result[0] self.add_to_cache(GuildUSER, snowflake, result) else: guild_type = self.GuildTYPE[_type] result = GuildUSER(guild_type, snowflake, name) session.add(result) session.flush() result = result.id self.add_to_cache(GuildUSER, snowflake, result) else: result = self.GuildUSER[snowflake] return result def get_insert_channels(self, channels: List[dict], guild_id: int) -> List[dict]: """~ Method ~ @Info: - Adds missing channels to the database, where it then caches those added, to avoid unnecessary quaries if all channels exist and then returns a list of dicitonaries containing internal DB id and reason why sending failed. @Param: - channels: List[dict[id, name]] ~ List of dictionaries containing snowflake_id and name of the channel""" not_cached = [{"id": x["id"], "name": x["name"]} for x in channels if x["id"] not in self.CHANNEL] # Get snowflakes that are not cached not_cached_snow = [x["id"] for x in not_cached] if len(not_cached): with self._sessionmaker.begin() as session: session: Session result = session.query(CHANNEL.id, CHANNEL.snowflake_id).where(CHANNEL.snowflake_id.in_(not_cached_snow)).all() for internal_id, snowflake_id in result: self.add_to_cache(CHANNEL, snowflake_id, internal_id) to_add = [CHANNEL(x["id"], x["name"], guild_id) for x in not_cached if x["id"] not in self.CHANNEL] if len(to_add): session.add_all(to_add) session.flush() for channel in to_add: self.add_to_cache(CHANNEL, channel.snowflake_id, channel.id) ret = [(self.CHANNEL.get(d["id"],None), d.get("reason", None)) for d in channels] #For some reason pytds doesn't like when a row with a NULL column value is followed by a row with a non NULL column value for channel in ret.copy(): if channel[1] is None: ret.append(ret.pop(0)) else: break return ret def stop_engine(self): """~ Method ~ @Info: Closes the engine and the cursor""" self.cursor.close() self.engine.dispose() GLOBALS.enabled = False def handle_error(self, exception: int, message: str, loop: asyncio.AbstractEventLoop) -> bool: """~ function ~ @Info: Used to handle errors that happen in the save_log method. @Return: Returns BOOL indicating if logging to the base should be attempted again.""" res = False time.sleep(SQL_RECOVERY_TIME) # Handle the error if exception == 208: # Invalid object name (table deleted) if self.create_tables() and self.create_data_types() and self.create_analytic_objects(): res = True elif exception in {547, 515}: # Constraint conflict, NULL value r_table = re.search(r'(?<=table "dbo.).+(?=")', message) if r_table is not None: self.clear_cache(r_table.group(0)) # Clears only the affected table cache else: self.clear_cache() # Clears all caching tables res = self.generate_lookup_values() elif exception in {-1, 2, 53}: # Diconnect error, reconnect after period self.reconnect_after(SQL_RECONNECT_TIME, loop) elif exception == 2812: if self.create_data_types() and self.create_analytic_objects(): res = True elif exception == 2801: # Object was altered (via external source) after procedure was compiled res = True # Just retry elif exception == 1205: # Transaction deadlocked with suppress(SQLAlchemyError, TimeoutError, PyTDSError): with self._sessionmaker() as session: session.commit() # Just commit res = True # Could not handle the error, switch to file logging permanently if not res and exception not in {-1, 2, 53}: self.stop_engine() return res # Returns if the error was handled or not async def save_log(self, guild_context: dict, message_context: dict) -> bool: """~ Method ~ @Info: This method saves the log generated by the xGUILD object into the database @Param: guild_context: dict :: Context generated by the xGUILD object, see guild.xGUILD.generate_log() for more info. message_context: dict :: Context generated by the xMESSAGE object, see guild.xMESSAGE.generate_log_context() for more info. @Return: Returns bool value indicating success (True) or failure (False).""" # Parse the data sent_data = message_context.get("sent_data") guild_snowflake = guild_context.get("id") guild_name = guild_context.get("name") guild_type: str = guild_context.get("type") message_type: str = message_context.get("type") message_mode = message_context.get("mode", None) channels = message_context.get("channels", None) dm_success_info = message_context.get("success_info", None) dm_success_info_reason = None if dm_success_info is not None: if "reason" in dm_success_info: dm_success_info_reason = dm_success_info["reason"] _channels = pytds.default if channels is not None: channels = channels['successful'] + channels['failed'] # Prevent multiple tasks from attempting to do operations on the database at the same time # This is to avoid eg. procedures being called while they are being created, # handle error being called from different tasks, etc. async with self.lock: if not GLOBALS.enabled: # While current task was waiting for lock to be released, # some other task disabled the logging due to an unhandable error return False for tries in
<gh_stars>0 # # Mask R-CNN - Train on Shapes Dataset # # # This notebook shows how to train Mask R-CNN on your own dataset. To keep things simple we use a synthetic dataset of shapes (squares, triangles, and circles) which enables fast training. You'd still need a GPU, though, because the network backbone is a Resnet101, which would be too slow to train on a CPU. On a GPU, you can start to get okay-ish results in a few minutes, and good results in less than an hour. # # The code of the *Shapes* dataset is included below. It generates images on the fly, so it doesn't require downloading any data. And it can generate images of any size, so we pick a small image size to train faster. # In[1]: import os import sys import random import math import re import time import numpy as np #import cv2 import matplotlib import matplotlib.pyplot as plt # current datasets trainingdictionary = {'hcc':{'dbfile':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse/datalocation/trainingdata.csv','rootlocation':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse'}, 'hccnorm':{'dbfile':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse/datalocation/trainingnorm.csv','rootlocation':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse'}, 'hccvol':{'dbfile':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse/datalocation/tumordata.csv','rootlocation':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse'}, 'hccvolnorm':{'dbfile':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse/datalocation/tumornorm.csv','rootlocation':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse'}, 'hccroinorm':{'dbfile':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse/datalocation/tumorroi.csv','rootlocation':'/rsrch1/ip/dtfuentes/github/RandomForestHCCResponse'}, 'dbg':{'dbfile':'./debugdata.csv','rootlocation':'/rsrch1/ip/dtfuentes/objectdetection'}, 'comp':{'dbfile':'./comptrainingdata.csv','rootlocation':'/rsrch1/ip/dtfuentes/objectdetection' }} # ## Configurations # In[2]: # setup command line parser to control execution from optparse import OptionParser parser = OptionParser() parser.add_option( "--initialize", action="store_true", dest="initialize", default=False, help="build initial sql file ", metavar = "BOOL") parser.add_option( "--builddb", action="store_true", dest="builddb", default=False, help="load all training data into npy", metavar="FILE") parser.add_option( "--traintumor", action="store_true", dest="traintumor", default=False, help="train model for tumor segmentation", metavar="FILE") parser.add_option( "--setuptestset", action="store_true", dest="setuptestset", default=False, help="cross validate test set", metavar="FILE") parser.add_option( "--setupobjtestset", action="store_true", dest="setupobjtestset", default=False, help="cross validate test set", metavar="FILE") parser.add_option( "--debug", action="store_true", dest="debug", default=False, help="compare tutorial dtype", metavar="Bool") parser.add_option( "--ModelID", action="store", dest="modelid", default=None, help="model id", metavar="FILE") parser.add_option( "--outputModelBase", action="store", dest="outputModelBase", default=None, help="output location ", metavar="Path") parser.add_option( "--predictmodel", action="store", dest="predictmodel", default=None, help="apply model to image", metavar="Path") parser.add_option( "--predictimage", action="store", dest="predictimage", default=None, help="apply model to image", metavar="Path") parser.add_option( "--segmentation", action="store", dest="segmentation", default=None, help="model output ", metavar="Path") parser.add_option( "--modelpath", action="store", dest="modelpath", default=None, help="model location", metavar="Path") parser.add_option( "--anonymize", action="store", dest="anonymize", default=None, help="setup info", metavar="Path") parser.add_option( "--trainingmodel", action="store", dest="trainingmodel", default='full', help="setup info", metavar="string") parser.add_option( "--trainingloss", action="store", dest="trainingloss", default='dscimg', help="setup info", metavar="string") parser.add_option( "--trainingsolver", action="store", dest="trainingsolver", default='SGD', help="setup info", metavar="string") parser.add_option( "--backbone", action="store", dest="backbone", default='resnet50', help="setup info", metavar="string") parser.add_option( "--databaseid", action="store", dest="databaseid", default='comp', help="available data: hcc, crc, dbg", metavar="string") parser.add_option( "--root_dir", action="store", dest="root_dir", default=os.path.abspath("../../"), help="code directory", metavar="string") parser.add_option( "--kfolds", type="int", dest="kfolds", default=5, help="setup info", metavar="int") parser.add_option( "--idfold", type="int", dest="idfold", default=0, help="setup info", metavar="int") (options, args) = parser.parse_args() # Root directory of the project ROOT_DIR = options.root_dir # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log #get_ipython().run_line_magic('matplotlib', 'inline') # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) class TumorConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "tumor" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 8 # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + lesion # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 512 IMAGE_MAX_DIM = 512 # assume square image assert IMAGE_MAX_DIM == IMAGE_MIN_DIM IMAGE_CHANNEL_COUNT = 1 MEAN_PIXEL = 0 IMAGE_RESIZE_MODE = 'none' BACKBONE = options.backbone MYOPTIMIZER = options.trainingsolver # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 32 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 1 STEPS_PER_EPOCH = 100 # Loss weights for more precise optimization. # Can be used for R-CNN training setup. LOSS_WEIGHTS = { "rpn_class_loss": 1.0, "rpn_bbox_loss": 1., "mrcnn_class_loss": 1., "mrcnn_bbox_loss": 1., "mrcnn_mask_loss": 1. } # use small validation steps since the epoch is small VALIDATION_STEPS = 5 # raw dicom data is usually short int (2bytes) datatype # labels are usually uchar (1byte) IMG_DTYPE = np.int16 SEG_DTYPE = np.uint8 globaldirectorytemplate = '%s/%s/%s/%s/%d/%.2e%.2e%.2e%.2e%.2e/%03d%03d/%03d/%03d' config = TumorConfig() config.display() # options dependency options.dbfile = trainingdictionary[options.databaseid]['dbfile'] options.rootlocation = trainingdictionary[options.databaseid]['rootlocation'] options.sqlitefile = options.dbfile.replace('.csv','.sqlite' ) options.globalnpfile = options.dbfile.replace('.csv','%d.npy' % config.IMAGE_MAX_DIM) print('database file: %s sqlfile: %s dbfile: %s rootlocation: %s' % (options.globalnpfile,options.sqlitefile,options.dbfile, options.rootlocation ) ) # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs", config.globaldirectorytemplate % (options.databaseid,options.trainingloss,config.BACKBONE,options.trainingsolver,config.IMAGE_MAX_DIM,config.LOSS_WEIGHTS['rpn_class_loss'],config.LOSS_WEIGHTS['rpn_bbox_loss'],config.LOSS_WEIGHTS['mrcnn_class_loss'],config.LOSS_WEIGHTS['mrcnn_bbox_loss'],config.LOSS_WEIGHTS['mrcnn_mask_loss'],config.IMAGES_PER_GPU,config.VALIDATION_STEPS,options.kfolds,options.idfold) ) print (MODEL_DIR) # build data base from CSV file def GetDataDictionary(): import sqlite3 CSVDictionary = {} tagsconn = sqlite3.connect(options.sqlitefile) cursor = tagsconn.execute(' SELECT aq.* from trainingdata aq ;' ) names = [description[0] for description in cursor.description] sqlStudyList = [ dict(zip(names,xtmp)) for xtmp in cursor ] for row in sqlStudyList : CSVDictionary[int( row['dataid'])] = {'image':row['image'], 'label':row['label'], 'uid':"%s" %row['uid']} return CSVDictionary # setup kfolds def GetSetupKfolds(numfolds,idfold,dataidsfull ): from sklearn.model_selection import KFold if (numfolds < idfold or numfolds < 1): raise("data input error") # split in folds if (numfolds > 1): kf = KFold(n_splits=numfolds) allkfolds = [ (list(map(lambda iii: dataidsfull[iii], train_index)), list(map(lambda iii: dataidsfull[iii], test_index))) for train_index, test_index in kf.split(dataidsfull )] train_index = allkfolds[idfold][0] test_index = allkfolds[idfold][1] else: train_index = np.array(dataidsfull ) test_index = None return (train_index,test_index) ## Borrowed from ## $(SLICER_DIR)/CTK/Libs/DICOM/Core/Resources/dicom-schema.sql ## ## -- ## -- A simple SQLITE3 database schema for modelling locally stored DICOM files ## -- ## -- Note: the semicolon at the end is necessary for the simple parser to separate ## -- the statements since the SQlite driver does not handle multiple ## -- commands per QSqlQuery::exec call! ## -- ; ## TODO note that SQLite does not enforce the length of a VARCHAR. ## TODO (9) What is the maximum size of a VARCHAR in SQLite? ## ## TODO http://www.sqlite.org/faq.html#q9 ## ## TODO SQLite does not enforce the length of a VARCHAR. You can declare a VARCHAR(10) and SQLite will be happy to store a 500-million character string there. And it will keep all 500-million characters intact. Your content is never truncated. SQLite understands the column type of "VARCHAR(N)" to be the same as "TEXT", regardless of the value of N. initializedb = """ DROP TABLE IF EXISTS 'Images' ; DROP TABLE IF EXISTS 'Patients' ; DROP TABLE IF EXISTS 'Series' ; DROP TABLE IF EXISTS 'Studies' ; DROP TABLE IF EXISTS 'Directories' ; DROP TABLE IF EXISTS 'lstat' ; DROP TABLE IF EXISTS 'overlap' ; CREATE TABLE 'Images' ( 'SOPInstanceUID' VARCHAR(64) NOT NULL, 'Filename' VARCHAR(1024) NOT NULL , 'SeriesInstanceUID' VARCHAR(64) NOT NULL , 'InsertTimestamp' VARCHAR(20) NOT NULL , PRIMARY KEY ('SOPInstanceUID') ); CREATE TABLE 'Patients' ( 'PatientsUID' INT PRIMARY KEY NOT NULL , 'StdOut' varchar(1024) NULL , 'StdErr' varchar(1024) NULL , 'ReturnCode' INT NULL , 'FindStudiesCMD' VARCHAR(1024) NULL ); CREATE TABLE 'Series' ( 'SeriesInstanceUID' VARCHAR(64) NOT NULL , 'StudyInstanceUID' VARCHAR(64) NOT NULL , 'Modality' VARCHAR(64) NOT NULL , 'SeriesDescription' VARCHAR(255) NULL , 'StdOut' varchar(1024) NULL , 'StdErr' varchar(1024) NULL , 'ReturnCode' INT NULL , 'MoveSeriesCMD' VARCHAR(1024) NULL , PRIMARY KEY ('SeriesInstanceUID','StudyInstanceUID') ); CREATE TABLE 'Studies' ( 'StudyInstanceUID' VARCHAR(64) NOT NULL , 'PatientsUID' INT NOT NULL , 'StudyDate' DATE NULL , 'StudyTime' VARCHAR(20) NULL , 'AccessionNumber' INT NULL , 'StdOut' varchar(1024) NULL , 'StdErr' varchar(1024) NULL , 'ReturnCode' INT NULL , 'FindSeriesCMD' VARCHAR(1024) NULL , 'StudyDescription' VARCHAR(255) NULL , PRIMARY KEY ('StudyInstanceUID') ); CREATE TABLE 'Directories' ( 'Dirname' VARCHAR(1024) , PRIMARY KEY ('Dirname') ); CREATE TABLE lstat ( InstanceUID VARCHAR(255) NOT NULL, -- 'studyuid *OR* seriesUID' SegmentationID VARCHAR(80) NOT NULL, -- UID for segmentation file FeatureID VARCHAR(80) NOT NULL, -- UID for image feature LabelID INT NOT NULL, -- label id for LabelSOPUID statistics of FeatureSOPUID Mean REAL NULL, StdD REAL NULL, Max REAL NULL, Min REAL NULL, Count INT NULL, Volume REAL NULL, ExtentX INT NULL, ExtentY INT NULL, ExtentZ INT NULL, PRIMARY KEY (InstanceUID,SegmentationID,FeatureID,LabelID) ); -- expected csv format -- FirstImage,SecondImage,LabelID,InstanceUID,MatchingFirst,MatchingSecond,SizeOverlap,DiceSimilarity,IntersectionRatio CREATE TABLE overlap( FirstImage VARCHAR(80) NOT NULL, -- UID for FirstImage SecondImage VARCHAR(80) NOT NULL, -- UID for SecondImage LabelID INT NOT NULL, -- label id for LabelSOPUID statistics of FeatureSOPUID InstanceUID
<gh_stars>100-1000 #!/usr/bin/env python # coding=utf-8 # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs strace or dtrace on a test and processes the logs to extract the dependencies from the source tree. Automatically extracts directories where all the files are used to make the dependencies list more compact. """ import codecs import csv import logging import optparse import os import posixpath import re import subprocess import sys ## OS-specific imports if sys.platform == 'win32': from ctypes.wintypes import create_unicode_buffer from ctypes.wintypes import windll, FormatError # pylint: disable=E0611 from ctypes.wintypes import GetLastError # pylint: disable=E0611 elif sys.platform == 'darwin': import Carbon.File # pylint: disable=F0401 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(os.path.dirname(BASE_DIR)) KEY_TRACKED = 'isolate_dependency_tracked' KEY_UNTRACKED = 'isolate_dependency_untracked' ## OS-specific functions if sys.platform == 'win32': def QueryDosDevice(drive_letter): """Returns the Windows 'native' path for a DOS drive letter.""" assert re.match(r'^[a-zA-Z]:$', drive_letter), drive_letter # Guesswork. QueryDosDeviceW never returns the required number of bytes. chars = 1024 drive_letter = unicode(drive_letter) p = create_unicode_buffer(chars) if 0 == windll.kernel32.QueryDosDeviceW(drive_letter, p, chars): err = GetLastError() if err: # pylint: disable=E0602 raise WindowsError( err, 'QueryDosDevice(%s): %s (%d)' % ( str(drive_letter), FormatError(err), err)) return p.value def GetShortPathName(long_path): """Returns the Windows short path equivalent for a 'long' path.""" long_path = unicode(long_path) # Adds '\\\\?\\' when given an absolute path so the MAX_PATH (260) limit is # not enforced. if os.path.isabs(long_path) and not long_path.startswith('\\\\?\\'): long_path = '\\\\?\\' + long_path chars = windll.kernel32.GetShortPathNameW(long_path, None, 0) if chars: p = create_unicode_buffer(chars) if windll.kernel32.GetShortPathNameW(long_path, p, chars): return p.value err = GetLastError() if err: # pylint: disable=E0602 raise WindowsError( err, 'GetShortPathName(%s): %s (%d)' % ( str(long_path), FormatError(err), err)) def GetLongPathName(short_path): """Returns the Windows long path equivalent for a 'short' path.""" short_path = unicode(short_path) # Adds '\\\\?\\' when given an absolute path so the MAX_PATH (260) limit is # not enforced. if os.path.isabs(short_path) and not short_path.startswith('\\\\?\\'): short_path = '\\\\?\\' + short_path chars = windll.kernel32.GetLongPathNameW(short_path, None, 0) if chars: p = create_unicode_buffer(chars) if windll.kernel32.GetLongPathNameW(short_path, p, chars): return p.value err = GetLastError() if err: # pylint: disable=E0602 raise WindowsError( err, 'GetLongPathName(%s): %s (%d)' % ( str(short_path), FormatError(err), err)) def get_current_encoding(): """Returns the 'ANSI' code page associated to the process.""" return 'cp%d' % int(windll.kernel32.GetACP()) class DosDriveMap(object): """Maps \Device\HarddiskVolumeN to N: on Windows.""" # Keep one global cache. _MAPPING = {} def __init__(self): if not self._MAPPING: # This is related to UNC resolver on windows. Ignore that. self._MAPPING['\\Device\\Mup'] = None for letter in (chr(l) for l in xrange(ord('C'), ord('Z')+1)): try: letter = '%s:' % letter mapped = QueryDosDevice(letter) # It can happen. Assert until we see it happens in the wild. In # practice, prefer the lower drive letter. assert mapped not in self._MAPPING if mapped not in self._MAPPING: self._MAPPING[mapped] = letter except WindowsError: # pylint: disable=E0602 pass def to_dos(self, path): """Converts a native NT path to DOS path.""" m = re.match(r'(^\\Device\\[a-zA-Z0-9]+)(\\.*)?$', path) assert m, path if not m.group(1) in self._MAPPING: # Unmapped partitions may be accessed by windows for the # fun of it while the test is running. Discard these. return None drive = self._MAPPING[m.group(1)] if not drive or not m.group(2): return drive return drive + m.group(2) def get_native_path_case(root, relative_path): """Returns the native path case.""" if sys.platform == 'win32': # Windows used to have an option to turn on case sensitivity on non Win32 # subsystem but that's out of scope here and isn't supported anymore. # First process root. if root: root = GetLongPathName(GetShortPathName(root)) + os.path.sep path = os.path.join(root, relative_path) if root else relative_path # Go figure why GetShortPathName() is needed. return GetLongPathName(GetShortPathName(path))[len(root):] elif sys.platform == 'darwin': # Technically, it's only HFS+ on OSX that is case insensitive. It's # the default setting on HFS+ but can be changed. root_ref, _ = Carbon.File.FSPathMakeRef(root) rel_ref, _ = Carbon.File.FSPathMakeRef(os.path.join(root, relative_path)) return rel_ref.FSRefMakePath()[len(root_ref.FSRefMakePath())+1:] else: # Give up on cygwin, as GetLongPathName() can't be called. return relative_path def get_flavor(): """Returns the system default flavor. Copied from gyp/pylib/gyp/common.py.""" flavors = { 'cygwin': 'win', 'win32': 'win', 'darwin': 'mac', 'sunos5': 'solaris', 'freebsd7': 'freebsd', 'freebsd8': 'freebsd', } return flavors.get(sys.platform, 'linux') def isEnabledFor(level): return logging.getLogger().isEnabledFor(level) def fix_python_path(cmd): """Returns the fixed command line to call the right python executable.""" out = cmd[:] if out[0] == 'python': out[0] = sys.executable elif out[0].endswith('.py'): out.insert(0, sys.executable) return out def posix_relpath(path, root): """posix.relpath() that keeps trailing slash.""" out = posixpath.relpath(path, root) if path.endswith('/'): out += '/' return out class Strace(object): """strace implies linux.""" IGNORED = ( '/bin', '/dev', '/etc', '/lib', '/proc', '/sys', '/tmp', '/usr', '/var', ) class _Context(object): """Processes a strace log line and keeps the list of existent and non existent files accessed. Ignores directories. """ # This is the most common format. pid function(args) = result RE_HEADER = re.compile(r'^(\d+)\s+([^\(]+)\((.+?)\)\s+= (.+)$') # An interrupted function call, only grab the minimal header. RE_UNFINISHED = re.compile(r'^(\d+)\s+([^\(]+).*$') UNFINISHED = ' <unfinished ...>' # A resumed function call. RE_RESUMED = re.compile(r'^(\d+)\s+<\.\.\. ([^ ]+) resumed> (.+)$') # A process received a signal. RE_SIGNAL = re.compile(r'^\d+\s+--- SIG[A-Z]+ .+ ---') # A process didn't handle a signal. RE_KILLED = re.compile(r'^(\d+)\s+\+\+\+ killed by ([A-Z]+) \+\+\+$') # A call was canceled. RE_UNAVAILABLE = re.compile(r'\)\s+= \? <unavailable>$') # Arguments parsing. RE_CHDIR = re.compile(r'^\"(.+?)\"$') RE_EXECVE = re.compile(r'^\"(.+?)\", \[.+?\], \[.+?\]$') RE_OPEN2 = re.compile(r'^\"(.*?)\", ([A-Z\_\|]+)$') RE_OPEN3 = re.compile(r'^\"(.*?)\", ([A-Z\_\|]+), (\d+)$') RE_RENAME = re.compile(r'^\"(.+?)\", \"(.+?)\"$') def __init__(self, blacklist): self._cwd = {} self.blacklist = blacklist self.files = set() self.non_existent = set() # Key is a tuple(pid, function name) self._pending_calls = {} self._line_number = 0 @classmethod def traces(cls): prefix = 'handle_' return [i[len(prefix):] for i in dir(cls) if i.startswith(prefix)] def on_line(self, line): self._line_number += 1 line = line.strip() if self.RE_SIGNAL.match(line): # Ignore signals. return m = self.RE_KILLED.match(line) if m: self.handle_exit_group(int(m.group(1)), m.group(2), None, None) return if line.endswith(self.UNFINISHED): line = line[:-len(self.UNFINISHED)] m = self.RE_UNFINISHED.match(line) assert m, '%d: %s' % (self._line_number, line) self._pending_calls[(m.group(1), m.group(2))] = line return m = self.RE_UNAVAILABLE.match(line) if m: # This usually means a process was killed and a pending call was # canceled. # TODO(maruel): Look up the last exit_group() trace just above and make # sure any self._pending_calls[(pid, anything)] is properly flushed. return m = self.RE_RESUMED.match(line) if m: pending = self._pending_calls.pop((m.group(1), m.group(2))) # Reconstruct the line. line = pending + m.group(3) m = self.RE_HEADER.match(line) assert m, '%d: %s' % (self._line_number, line) return getattr(self, 'handle_%s' % m.group(2))( int(m.group(1)), m.group(2), m.group(3), m.group(4)) def handle_chdir(self, pid, _function, args, result): """Updates cwd.""" if result.startswith('0'): cwd = self.RE_CHDIR.match(args).group(1) if not cwd.startswith('/'): cwd2 = os.path.join(self._cwd[pid], cwd) logging.debug('handle_chdir(%d, %s) -> %s' % (pid, cwd, cwd2)) self._cwd[pid] = cwd2 else: logging.debug('handle_chdir(%d, %s)' % (pid, cwd)) self._cwd[pid] = cwd else: assert False, 'Unexecpected fail: %s' % result def handle_clone(self, pid, _function, _args, result): """Transfers cwd.""" if result == '? ERESTARTNOINTR (To be restarted)': return self._cwd[int(result)] = self._cwd[pid] def handle_execve(self, pid, _function, args, result): self._handle_file(pid, self.RE_EXECVE.match(args).group(1), result) def handle_exit_group(self, pid, _function, _args, _result): """Removes cwd.""" del self._cwd[pid] @staticmethod def handle_fork(_pid, _function, args, result): assert False, (args, result) def handle_open(self, pid, _function, args, result): args = (self.RE_OPEN3.match(args) or self.RE_OPEN2.match(args)).groups() if 'O_DIRECTORY' in args[1]: return self._handle_file(pid, args[0], result) def handle_rename(self, pid, _function, args, result): args = self.RE_RENAME.match(args).groups() self._handle_file(pid, args[0], result) self._handle_file(pid, args[1], result) @staticmethod def handle_stat64(_pid, _function, args, result): assert False, (args, result) @staticmethod def handle_vfork(_pid, _function, args, result): assert False, (args, result) def _handle_file(self, pid, filepath, result): if result.startswith('-1'): return old_filepath = filepath if not filepath.startswith('/'): filepath = os.path.join(self._cwd[pid], filepath) if self.blacklist(filepath): return if old_filepath != filepath: logging.debug( '_handle_file(%d, %s) -> %s' % (pid, old_filepath, filepath)) else: logging.debug('_handle_file(%d, %s)' % (pid, filepath)) if filepath not in self.files and filepath not in self.non_existent: if os.path.isfile(filepath): self.files.add(filepath) else: self.non_existent.add(filepath) @classmethod def gen_trace(cls, cmd, cwd, logname): """Runs strace on an executable.""" logging.info('gen_trace(%s, %s, %s)' % (cmd, cwd, logname)) silent = not isEnabledFor(logging.INFO) stdout = stderr = None if silent: stdout = stderr = subprocess.PIPE traces = ','.join(cls._Context.traces()) trace_cmd = ['strace', '-f', '-e', 'trace=%s' % traces, '-o', logname] child = subprocess.Popen( trace_cmd + cmd, cwd=cwd, stdout=stdout, stderr=stderr) out, err = child.communicate() # Once it's done, inject a chdir() call to cwd to be
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- """ @file py102-example2-zernike.py @brief Fitting a surface in Python example for Python 102 lecture @author <NAME> (<EMAIL>) @url http://python101.vanwerkhoven.org @date 20111012 Created by <NAME> (<EMAIL>) on 2011-10-12 Copyright (c) 2011 <NAME>. All rights reserved. This file is licensed under the Creative Commons Attribution-Share Alike license versions 3.0 or higher, see http://creativecommons.org/licenses/by-sa/3.0/ Objectified for easier calling and set-up by <EMAIL> 2015 AS: see http://www.staff.science.uu.nl/~werkh108/docs/teach/2011b_python/course/python102/python_102-print.pdf and http://www.vanwerkhoven.org/teaching.html esp. pyhon 102 Python 3-ized, print(), //, and xrange->range only <EMAIL> 2018 """ """ <EMAIL>:12 ./ZernikeFitter.py grid: [[[-1.000e+00 -1.000e+00 -1.000e+00 -1.000e+00] [-5.000e-01 -5.000e-01 -5.000e-01 -5.000e-01] [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00] [ 5.000e-01 5.000e-01 5.000e-01 5.000e-01]] [[-1.000e+00 -5.000e-01 0.000e+00 5.000e-01] [-1.000e+00 -5.000e-01 0.000e+00 5.000e-01] [-1.000e+00 -5.000e-01 0.000e+00 5.000e-01] [-1.000e+00 -5.000e-01 0.000e+00 5.000e-01]]] grid_rho [[ 1.414e+00 1.118e+00 1.000e+00 1.118e+00] [ 1.118e+00 7.071e-01 5.000e-01 7.071e-01] [ 1.000e+00 5.000e-01 0.000e+00 5.000e-01] [ 1.118e+00 7.071e-01 5.000e-01 7.071e-01]] <EMAIL>:13 ./ZernikeFitter.py grid: [[[-6.667e-01 -6.667e-01 -6.667e-01] [ 0.000e+00 0.000e+00 0.000e+00] [ 6.667e-01 6.667e-01 6.667e-01]] [[-6.667e-01 0.000e+00 6.667e-01] [-6.667e-01 0.000e+00 6.667e-01] [-6.667e-01 0.000e+00 6.667e-01]]] grid_rho [[ 9.428e-01 6.667e-01 9.428e-01] [ 6.667e-01 0.000e+00 6.667e-01] [ 9.428e-01 6.667e-01 9.428e-01]] """ ### Libraries import sys import astropy.io.fits as pyfits import numpy as N from scipy.misc import factorial as fac ### Init functions def zernike_rad(m, n, rho): """ Calculate the radial component of Zernike polynomial (m, n) given a grid of radial coordinates rho. >>> zernike_rad(3, 3, 0.333) 0.036926037000000009 >>> zernike_rad(1, 3, 0.333) -0.55522188900000002 >>> zernike_rad(3, 5, 0.12345) -0.007382104685237683 """ if (n < 0 or m < 0 or abs(m) > n): raise ValueError if ((n-m) % 2): return rho*0.0 pre_fac = lambda k: (-1.0)**k * fac(n-k) / ( fac(k) * fac( (n+m)/2.0 - k ) * fac( (n-m)/2.0 - k ) ) return sum(pre_fac(k) * rho**(n-2.0*k) for k in range((n-m)//2+1)) def zernike(m, n, rho, phi): """ Calculate Zernike polynomial (m, n) given a grid of radial coordinates rho and azimuthal coordinates phi. >>> zernike(3,5, 0.12345, 1.0) 0.0073082282475042991 >>> zernike(1, 3, 0.333, 5.0) -0.15749545445076085 """ if (m > 0): return zernike_rad(m, n, rho) * N.cos(m * phi) if (m < 0): return zernike_rad(-m, n, rho) * N.sin(-m * phi) return zernike_rad(0, n, rho) def zernikel(j, rho, phi): """ Calculate Zernike polynomial with Noll coordinate j given a grid of radial coordinates rho and azimuthal coordinates phi. >>> zernikel(0, 0.12345, 0.231) 1.0 >>> zernikel(1, 0.12345, 0.231) 0.028264010304937772 >>> zernikel(6, 0.12345, 0.231) 0.0012019069816780774 """ n = 0 while (j > n): n += 1 j -= n m = -n+2*j return zernike(m, n, rho, phi) def generate_testdata(nzern_, grid_rho_, grid_phi_): # hardcoded first 15 zernikes test_vec_ = N.random.random(nzern_) - 0.5 # fewer Z's in the test surface... test_vec_[15:] = 0.0 # 15 modes excited and rest zero... print("input Z coeffts:\n", test_vec_) test_surf_ = sum(val * zernikel(i, grid_rho_, grid_phi_) for (i, val) in enumerate(test_vec_)) return test_vec_, test_surf_ class ZernikeFitter: """ Does Zernikes on a circular disk fitting just inside your array of size narr, so if your pupil is undersized within the pupil array, snip off padding before sending its wavefront into this object be fit. Usage: import ZernikeFitter as ZF zf = ZF.ZernikeFitter(nzern=10, narr=200) zcoeffs, fittedsurface, residualsurface = zf.fit_zernikes_to_surface(yoursurface) Zernikes break naturally at nzern = 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 ... n*(n+1)/2 N.B. These are Noll-numbered Zernikes <EMAIL> 2015 """ def __init__(self, nzern=15, narr=200, SEEGRID=False, SEEVAR=False, extrasupportindex = None): """ Input: nzern: number of Noll Zernikes to use in the fit Input: narr: the live pupil array size you want to use Sets up list of poly's and grids & support grids Makes coordinate grid for rho and phi and circular support mask Calculates 'overlap integrals' (covariance matrix) of the Zernike polynomials on your grid and array size Calculates the inverse of this matrix, so it's 'ready to fit' your incoming array extrasupportindex is a 2D index array to define eg spider supports where the pupil is not live """ self.narr = narr self.nzern = nzern # tbd - allowed numbers from Pascal's Triangle sum(n) starting from n=1, viz. n(n+1)/2 self.grid = (N.indices((self.narr, self.narr), dtype=N.float) - self.narr//2) / (float(self.narr)*0.5) self.grid_rho = (self.grid**2.0).sum(0)**0.5 if SEEGRID: print("grid:") print(self.grid) print("grid_rho") print(self.grid_rho) sys.exit() self.grid_phi = N.arctan2(self.grid[0], self.grid[1]) self.grid_mask = self.grid_rho <= 1 self.grid_outside = self.grid_rho > 1 # Add a spider support sort of extra masking here such as: if extrasupportindex: # Add a 'spider support': self.grid_mask[extrasupportindex] = 0 self.grid_outside[extrasupportindex] = 1 # Compute list of explicit Zernike polynomials and keep them around for fitting self.zern_list = [zernikel(i, self.grid_rho, self.grid_phi)*self.grid_mask for i in range(self.nzern)] # Force zernikes to be unit standard deviation over circular mask for z, zfunc in enumerate(self.zern_list): if z>0: self.zern_list[z] = (zfunc/zfunc[self.grid_mask].std()) * self.grid_mask else: self.zern_list[0] = zfunc * self.grid_mask #stack = N.zeros((nzern,narr,narr)) #print "variance:" #nolli = 0 # To normalize all but piston to RMS 1 divide by this number self.sigma = [] for zfunc in self.zern_list: self.sigma.append(zfunc[self.grid_mask].std()) # Calculate covariance between all Zernike polynomials self.cov_mat = N.array([[N.sum(zerni * zernj) for zerni in self.zern_list] for zernj in self.zern_list]) # Invert covariance matrix using SVD self.cov_mat_in = N.linalg.pinv(self.cov_mat) def fit_zernikes_to_surface(self, surface): """ Input: surface: input surface to be fit (2D array) Output: zcoeffs: 1d vector of coefficients of the fit (self.nzern in length) Output: rec_wf: the 'recovered wavefront' - i.e. the fitted zernikes, in same array size as surface Output: res_wf: surface - rec_wf, i.e. the residual error in the fit """ # Calculate the inner product of each Zernike mode with the test surface wf_zern_inprod = N.array([N.sum(surface * zerni) for zerni in self.zern_list]) # Given the inner product vector of the test wavefront with Zernike basis, # calculate the Zernike polynomial coefficients zcoeffs = N.dot(self.cov_mat_in, wf_zern_inprod) print("First few recovered Zernike coeffts:", zcoeffs[:min(10, self.nzern)]) # Reconstruct (e.g. wavefront) surface from Zernike components rec_wf = sum(val * zernikel(i, self.grid_rho, self.grid_phi) for (i, val) in enumerate(zcoeffs)) rec_wf = rec_wf * self.grid_mask print( "Standard deviation of fit is {0:.3e}".format((surface*self.grid_mask - rec_wf)[self.grid_mask].std()) ) return zcoeffs, rec_wf, (surface*self.grid_mask - rec_wf) if __name__ == "__main__": # This will set up default printing of numpy to 3 dec places, scientific notation N.set_printoptions(precision=3, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter={'float': '{: 0.3e}'.format} ) #f = ZernikeFitter(nzern=6, narr=4, SEEGRID=True) #zf = ZernikeFitter(nzern=6, narr=3, SEEGRID=True) #sys.exit() #### early tests w/exits #zf = ZernikeFitter(nzern = 21, narr=201, SEEVAR=True) # Set up to use first 21 Zernikes, radial order 4 # above exits with sys.exit() GEN = True # generate test data GEN = False # read in a kolmog phase screen # initialize ZernikeFitter # two test cases are possible - # test data file or # test data created in-memory with only the first 15 Zernikes # if GEN is False: # read in 200 x 200 test data file from disk - adjust path by hand test_surf = pyfits.getdata("kol_D_5.00_ro_0.50_DoverR0_10.0l1no0001phase.fits")[:100,:100] print(test_surf.shape, "test input file found: {:s}".format("kol_D_5.00_ro_0.50_DoverR0_10.0l1no0001phase.fits")) zf = ZernikeFitter(nzern=300, narr=test_surf.shape[0]) # up to radial order 22 else: zf = ZernikeFitter(nzern = 21, narr=201) # Set up to use first 21 Zernikes, radial order 4 test_vec, test_surf = generate_testdata(zf.nzern, zf.grid_rho, zf.grid_phi) print(test_surf.shape, "test input data generated") if True: stack = N.zeros((zf.nzern,zf.narr,zf.narr)) for z, zfunc in enumerate(zf.zern_list): if z>0: stack[z,:,:] = (zfunc/zfunc[zf.grid_mask].std())*zf.grid_mask else: stack[z,:,:] = zfunc*zf.grid_mask pyfits.PrimaryHDU(data=stack).writeto("ZfunctionsUnitVar.fits", overwrite=True) # Fit the array with Zernikes: zcoeffs, rec_wf, res_wf = zf.fit_zernikes_to_surface(test_surf*zf.grid_mask) #test_surf[zf.grid_outside] = 0.0 #rec_wf[zf.grid_outside] = 0.0 #res_wf[zf.grid_outside] = 0.0 # Test reconstruction coeffts for in-memory case (i.e. the fit) if GEN: print("numpy.allclose(Input, reconstruction coeffs): ", N.allclose(test_vec, zcoeffs), "\n") ### Store data to disk from time import time, asctime, gmtime, localtime clist = [] clist.append(pyfits.Card('Program', 'ZernikeFitter.py') ) clist.append(pyfits.Card('Epoch', time()) ) clist.append(pyfits.Card('utctime', asctime(gmtime(time()))) ) clist.append(pyfits.Card('loctime', asctime(localtime(time()))) ) hdr = pyfits.Header(cards=clist+[pyfits.Card('Desc', 'Surface input')]) pyfits.writeto('FitZernikes_inputsurface.fits', test_surf, header=hdr, overwrite=True, checksum=True) hdr = pyfits.Header(cards=clist+[pyfits.Card('Desc', 'Reconstructed surface')]) #pyfits.writeto('FitZernikes_fittedsurface.fits', rec_wf*zf.grid_mask, header=hdr, overwrite=True, checksum=True) pyfits.writeto('FitZernikes_fittedsurface.fits', rec_wf, header=hdr, overwrite=True, checksum=True) if GEN is False: hdr = pyfits.Header(cards=clist+[pyfits.Card('Desc', 'Data - Zernfit')]) pyfits.writeto('FitZernikes_residual.fits', res_wf*zf.grid_mask, header=hdr, overwrite=True, checksum=True) ### Plot some results import pylab as plt #fig = plt.figure(1) #ax
first_pitch, "last_pitch_thrown": last_pitch, "since_game_start": since_start, "at_bat_duration": dur, "is_complete_at_bat": final_pbp_event["is_complete_at_bat"], "score": first_pbp_event["score"], "outs_before_play": first_pbp_event["outs_before_play"], "runners_on_base": first_pbp_event["runners_on_base"], "runs_outs_result": runs_outs_result, "play_description": final_pbp_event["play_description"], "pitch_sequence_description": pitch_sequence_description, "pbp_events": self.at_bat_event_groups[ab_id], "pitchfx": pfx_data, "removed_pitchfx": removed_pfx, } self.game_events_combined_data.append(combined_at_bat_data) self.save_removed_pfx(all_removed_pfx) self.save_invalid_pitchfx(at_bat_ids_invalid_pfx) return Result.Ok() def reconcile_at_bat_ids(self): at_bat_ids_from_box = list(set(self.at_bat_event_groups.keys())) at_bat_ids_from_box = self.order_at_bat_ids_by_time(at_bat_ids_from_box) at_bat_ids_from_pfx = [pfx.at_bat_id for pfx in self.all_pfx_data_for_game] at_bat_ids_invalid_pfx = list(set(at_bat_ids_from_pfx) - set(at_bat_ids_from_box)) return (at_bat_ids_from_box, at_bat_ids_invalid_pfx) def order_at_bat_ids_by_time(self, at_bat_ids): game_event_id_map = [ { "at_bat_id": ab_id, "pbp_table_row_number": self._get_first_table_row_num_for_at_bat(ab_id), } for ab_id in at_bat_ids ] game_event_id_map.sort(key=lambda x: x["pbp_table_row_number"]) return [id_map["at_bat_id"] for id_map in game_event_id_map] def _get_first_table_row_num_for_at_bat(self, at_bat_id): return min(game_event["pbp_table_row_number"] for game_event in self.at_bat_event_groups[at_bat_id]) def get_all_pbp_events_for_at_bat(self, at_bat_id): at_bat_events = [event for event in self.at_bat_event_groups[at_bat_id] if event["event_type"] == "AT_BAT"] at_bat_events.sort(key=lambda x: x["pbp_table_row_number"]) return at_bat_events def get_all_pfx_data_for_at_bat(self, at_bat_id): pfx_for_at_bat = [pfx for pfx in self.all_pfx_data_for_game if pfx.at_bat_id == at_bat_id] return self.convert_pfx_list_to_dict_list(pfx_for_at_bat) def convert_pfx_list_to_dict_list(self, pfx_list): pfx_dict_list = [] for pfx in pfx_list: pfx_dict = pfx.as_dict() pfx_dict.pop("__brooks_pitchfx_data__", None) pfx_dict["at_bat_id"] = pfx.at_bat_id pfx_dict["inning_id"] = pfx.inning_id pfx_dict["pitcher_id_bbref"] = pfx.pitcher_id_bbref pfx_dict["batter_id_bbref"] = pfx.batter_id_bbref pfx_dict["pitcher_id_db"] = pfx.db_pitcher_id pfx_dict["batter_id_db"] = pfx.db_batter_id pfx_dict["game_start_time"] = pfx.game_start_time pfx_dict["time_pitch_thrown"] = pfx.time_pitch_thrown pfx_dict["seconds_since_game_start"] = pfx.seconds_since_game_start pfx_dict_list.append(pfx_dict) pfx_dict_list.sort(key=lambda x: x["ab_count"]) return pfx_dict_list def get_total_pitches_in_sequence(self, pitch_sequence): total_pitches = 0 for abbrev in pitch_sequence: result = self.get_pitch_type(abbrev) if result.failure: return result pitch_type = result.value total_pitches += pitch_type["pitch_counts"] return Result.Ok(total_pitches) def get_pitch_type(self, abbrev): try: pitch_type = PPB_PITCH_LOG_DICT[abbrev] return Result.Ok(pitch_type) except KeyError as e: return Result.Fail(f"Invalid pitch abbreviation: {abbrev}\n{repr(e)}") def update_invalid_ibb_pfx(self, invalid_ibb_pfx): for pfx in invalid_ibb_pfx: pfx["is_invalid_ibb"] = True return deepcopy(sorted(invalid_ibb_pfx, key=lambda x: (x["ab_id"], x["ab_count"]))) def determine_pfx_sequence(self, at_bat_id, pfx_data, pitch_count): if pitch_count == 0: return Result.Ok(([], [], [])) prev_ab_id = self.get_prev_at_bat_id(at_bat_id) result = self.get_prev_pitch_thrown_time(prev_ab_id) if result.failure: return result prev_pitch_thrown = result.value valid_pfx = [] missing_pitch_numbers = [] possible_pfx = deepcopy(pfx_data) pitch_number_dict = self.get_pitch_number_dict(pfx_data) for pitch_num in range(1, pitch_count + 1): matches = pitch_number_dict.get(pitch_num, []) if not matches: missing_pitch_numbers.append(pitch_num) continue if len(matches) == 1: best_pfx = matches[0] else: result = self.find_best_pfx_for_pitch_number( ab_id=at_bat_id, prev_ab_id=prev_ab_id, pfx_data=matches, pitch_num=pitch_num, prev_pitch_thrown=prev_pitch_thrown, ) if result.failure: return result best_pfx = result.value valid_pfx.append(best_pfx) possible_pfx.remove(best_pfx) prev_pitch_thrown = best_pfx["time_pitch_thrown"] out_of_sequence_pfx = self.update_out_of_sequence_pfx(possible_pfx) return Result.Ok((valid_pfx, out_of_sequence_pfx, missing_pitch_numbers)) def get_prev_at_bat_id(self, at_bat_id): try: index = self.at_bat_ids.index(at_bat_id) if index == 0: return None return self.at_bat_ids[index - 1] except ValueError: return None def get_prev_pitch_thrown_time(self, at_bat_id): if not at_bat_id: return Result.Ok(self.game_start_time) result = self.get_game_event(at_bat_id) if result.failure: return result at_bat = result.value if not at_bat: return Result.Fail(f"No game event found with at bat id {at_bat_id}") if not self.pitchfx_data_is_complete(at_bat): return Result.Ok(self.game_start_time) last_pitch_thrown_str = at_bat["pitchfx"][-1]["time_pitch_thrown_str"] if not last_pitch_thrown_str: return Result.Ok(self.game_start_time) last_pitch_in_at_bat_thrown = datetime.strptime(last_pitch_thrown_str, DT_AWARE) return Result.Ok(last_pitch_in_at_bat_thrown) def get_pitch_number_dict(self, pfx_data): pitch_number_dict = defaultdict(list) for pfx in pfx_data: pitch_number_dict[pfx["ab_count"]].append(pfx) return pitch_number_dict def find_best_pfx_for_pitch_number(self, ab_id, prev_ab_id, pfx_data, pitch_num, prev_pitch_thrown): pitch_times = self.get_pitch_metrics_prev_at_bat(ab_id, prev_ab_id, pitch_num) possible_pfx = [] for pfx in pfx_data: pitch_delta = (pfx["time_pitch_thrown"] - prev_pitch_thrown).total_seconds() if pitch_delta < 0 or pitch_delta < int(pitch_times["min"]) or pitch_delta > int(pitch_times["max"]): continue possible_pfx.append(pfx) if not possible_pfx: pfx_data.sort(key=lambda x: (-x["has_zone_location"], x["seconds_since_game_start"])) return Result.Ok(pfx_data[0]) if len(possible_pfx) == 1: return Result.Ok(possible_pfx[0]) deltas = [ { "pfx": pfx, "has_zone_location": pfx["has_zone_location"], "delta": self.delta_avg_time_between_pitches( pitch_times["avg"], prev_pitch_thrown, pfx["time_pitch_thrown"] ), } for pfx in possible_pfx ] deltas.sort(key=lambda x: (-x["has_zone_location"], x["delta"])) return Result.Ok(deltas[0]["pfx"]) def get_pitch_metrics_prev_at_bat(self, at_bat_id, prev_ab_id, pitch_num): if not prev_ab_id: return { "avg": self.avg_pitch_times["time_between_pitches"]["avg"], "min": self.avg_pitch_times["time_between_pitches"]["min"], "max": self.avg_pitch_times["time_between_pitches"]["max"], } same_inning = self.at_bat_ids_are_in_same_inning([at_bat_id, prev_ab_id]) if pitch_num == 1 and same_inning: return { "avg": self.avg_pitch_times["time_between_at_bats"]["avg"], "min": self.avg_pitch_times["time_between_at_bats"]["min"], "max": self.avg_pitch_times["time_between_at_bats"]["max"], } if pitch_num == 1: return { "avg": self.avg_pitch_times["time_between_innings"]["avg"], "min": self.avg_pitch_times["time_between_innings"]["min"], "max": self.avg_pitch_times["time_between_innings"]["max"], } return { "avg": self.avg_pitch_times["time_between_pitches"]["avg"], "min": self.avg_pitch_times["time_between_pitches"]["min"], "max": self.avg_pitch_times["time_between_pitches"]["max"], } def delta_avg_time_between_pitches(self, avg, pitch1_thrown, pitch2_thrown): return abs(avg - (pitch2_thrown - pitch1_thrown).total_seconds()) def get_game_event(self, at_bat_id): matches = [event for event in self.game_events_combined_data if event["at_bat_id"] == at_bat_id] if not matches: return Result.Ok(None) if len(matches) > 1: return Result.Fail(f"Found {len(matches)} at bats with the same id: {at_bat_id}") return Result.Ok(matches[0]) def pitchfx_data_is_complete(self, game_event): pitchfx_audit = game_event["at_bat_pitchfx_audit"] return ( pitchfx_audit["pitch_count_pitchfx"] > 0 and pitchfx_audit["pitch_count_bbref"] == pitchfx_audit["pitch_count_pitchfx"] and not pitchfx_audit["pitchfx_error"] ) def at_bat_ids_are_in_same_inning(self, at_bat_ids): inning_list = {validate_at_bat_id(ab_id).value["inning_id"] for ab_id in at_bat_ids} return len(inning_list) == 1 def update_out_of_sequence_pfx(self, out_of_sequence_pfx): for pfx in out_of_sequence_pfx: pfx["is_out_of_sequence"] = True return deepcopy(sorted(out_of_sequence_pfx, key=lambda x: (x["ab_id"], x["ab_count"]))) def _update_at_bat_result_stats(self, final_pitch_of_ab, game_event): final_pitch_of_ab["is_final_pitch_of_ab"] = True at_bat_result = final_pitch_of_ab["des"].lower() if at_bat_result in AT_BAT_RESULTS_UNCLEAR: final_pitch_of_ab["ab_result_unclear"] = True final_pitch_of_ab["pbp_play_result"] = game_event["play_description"] final_pitch_of_ab["pbp_runs_outs_result"] = game_event["runs_outs_result"] if at_bat_result in AT_BAT_RESULTS_OUT: final_pitch_of_ab["ab_result_out"] = True if at_bat_result in AT_BAT_RESULTS_HIT: final_pitch_of_ab["ab_result_hit"] = True if at_bat_result == "single": final_pitch_of_ab["ab_result_single"] = True if at_bat_result == "double": final_pitch_of_ab["ab_result_double"] = True if at_bat_result == "triple": final_pitch_of_ab["ab_result_triple"] = True if at_bat_result == "home run": final_pitch_of_ab["ab_result_homerun"] = True if at_bat_result in AT_BAT_RESULTS_WALK: final_pitch_of_ab["ab_result_bb"] = True if at_bat_result == "intent walk": final_pitch_of_ab["ab_result_ibb"] = True if at_bat_result in AT_BAT_RESULTS_STRIKEOUT: final_pitch_of_ab["ab_result_k"] = True if at_bat_result in AT_BAT_RESULTS_HBP: final_pitch_of_ab["ab_result_hbp"] = True if at_bat_result in AT_BAT_RESULTS_ERROR: final_pitch_of_ab["ab_result_error"] = True if at_bat_result in AT_BAT_RESULTS_SAC_HIT: final_pitch_of_ab["ab_result_sac_hit"] = True if at_bat_result in AT_BAT_RESULTS_SAC_FLY: final_pitch_of_ab["ab_result_sac_fly"] = True def get_at_bat_duration(self, pfx_data): if not pfx_data: return (0, 0, None, None) since_game_start = pfx_data[0]["seconds_since_game_start"] first_pitch_thrown = pfx_data[0]["time_pitch_thrown"] last_pitch_thrown = pfx_data[-1]["time_pitch_thrown"] if not first_pitch_thrown or not last_pitch_thrown: return (since_game_start, 0, None, None) at_bat_duration = int((last_pitch_thrown - first_pitch_thrown).total_seconds()) first_pitch_thrown_str = first_pitch_thrown.strftime(DT_AWARE) last_pitch_thrown_str = last_pitch_thrown.strftime(DT_AWARE) return (since_game_start, at_bat_duration, first_pitch_thrown_str, last_pitch_thrown_str) def get_pitch_app_id_from_at_bat_id(self, at_bat_id): return validate_at_bat_id(at_bat_id).value["pitch_app_id"] def prepare_pfx_data_for_json_serialization(self, pfx_data): for pfx_dict in pfx_data: pfx_dict.pop("game_start_time", None) pfx_dict.pop("time_pitch_thrown", None) def describe_at_bat(self, at_bat_id, final_event_in_at_bat, pfx_data, missing_pitch_numbers): if missing_pitch_numbers: pfx_data = None pitch_sequence = final_event_in_at_bat["pitch_sequence"] result = self.get_total_pitches_in_sequence(pitch_sequence) if result.failure: return result total_pitches = result.value non_batter_events = self.get_all_other_events_for_at_bat(at_bat_id, final_event_in_at_bat) current_pitch = 0 next_pitch_blocked_by_c = False sequence_description = [] for abbrev in pitch_sequence: pitch_number = "" pfx_des = "" blocked_by_c = "" result = self.get_pitch_type(abbrev) if result.failure: return result pitch_type = result.value outcome = pitch_type["description"] if abbrev == "*": next_pitch_blocked_by_c = True continue if pitch_type["pitch_counts"]: current_pitch += 1 space_count = 1 if total_pitches < 10 or current_pitch >= 10 else 2 pitch_number = f"Pitch{' '*space_count}{current_pitch}/{total_pitches}" if pfx_data: pfx = pfx_data[current_pitch - 1] if abbrev == "X": outcome = pfx["pdes"] if "missing_pdes" not in pfx["pdes"] else pfx["des"] pitch_type = PitchType.from_abbrev(pfx["mlbam_pitch_name"]) pfx_des = f'{pfx["start_speed"]:02.0f}mph {pitch_type.print_name}' if next_pitch_blocked_by_c: blocked_by_c = "\n(pitch was blocked by catcher)" next_pitch_blocked_by_c = False sequence_description.append((pitch_number, f"{outcome}{blocked_by_c}", pfx_des)) continue if abbrev == ".": outcome = self.get_next_event_description(non_batter_events, outcome) sequence_description.append(("", outcome, "")) while any(not event_dict["processed"] for event_dict in non_batter_events.values()): outcome = self.get_next_event_description(non_batter_events) if outcome: sequence_description.append(("", outcome, "")) outcome = replace_char_with_newlines(final_event_in_at_bat["play_description"], ";") sequence_description.append(("Result", outcome, "")) return Result.Ok(sequence_description) def get_all_other_events_for_at_bat(self, at_bat_id, final_event_this_at_bat): all_other_events = list(self.at_bat_event_groups[at_bat_id]) all_other_events.sort(key=lambda x: x["pbp_table_row_number"]) all_other_events.remove(final_event_this_at_bat) if not all_other_events: return {} non_batter_events = OrderedDict() for num, event in enumerate(all_other_events, start=1): non_batter_events[num] = { "processed": False, "event": event, } return non_batter_events def get_next_event_description(self, non_batter_events, default_outcome=""): outcome = default_outcome for event_dict in non_batter_events.values(): if not event_dict["processed"]: event = event_dict["event"] outcome = ( f'({event["play_description"]})' if event["event_type"] == "AT_BAT" else f'({event["sub_description"]})' if event["event_type"] == "SUBSTITUTION" else f'({event["description"]})' ) event_dict["processed"] = True break return outcome.strip(".") def save_invalid_pitchfx(self, at_bat_ids_invalid_pfx): self.invalid_pitchfx = defaultdict(dict) for ab_id in self.order_at_bat_ids_by_park_sv_id(at_bat_ids_invalid_pfx): inning_id = get_inning_id_from_at_bat_id(ab_id) id_dict = db.PlayerId.get_player_ids_from_at_bat_id(self.db_session, ab_id) pfx_data = self.get_all_pfx_data_for_at_bat(ab_id) pfx_ab_id = 0 pfx_ab_id_list = list({pfx["ab_id"] for pfx in pfx_data}) if pfx_ab_id_list and len(pfx_ab_id_list) == 1: pfx_ab_id = pfx_ab_id_list[0] pitch_count = max(pfx["ab_total"] for pfx in pfx_data) out_of_sequence_pfx = [] missing_pitch_numbers = [] result = self.determine_pfx_sequence(ab_id, pfx_data, pitch_count) if result.success: (pfx_data, out_of_sequence_pfx, missing_pitch_numbers) = result.value self.prepare_pfx_data_for_json_serialization(pfx_data) if len(out_of_sequence_pfx) > 0: self.prepare_pfx_data_for_json_serialization(out_of_sequence_pfx) at_bat_data = { "at_bat_id": ab_id, "pfx_ab_id": pfx_ab_id, "inning_id": inning_id, "pitch_app_id": self.get_pitch_app_id_from_at_bat_id(ab_id), "pitcher_id_bbref": id_dict["pitcher_id_bbref"], "pitcher_id_mlb": id_dict["pitcher_id_mlb"], "pitcher_name": id_dict["pitcher_name"], "batter_id_bbref": id_dict["batter_id_bbref"], "batter_id_mlb": id_dict["batter_id_mlb"], "batter_name": id_dict["batter_name"], "at_bat_pitchfx_audit": { "pitch_count_bbref": 0, "pitch_count_pitchfx": len(pfx_data), "patched_pitchfx_count": len([pfx for pfx in pfx_data if pfx["is_patched"]]), "missing_pitchfx_count": len(missing_pitch_numbers), "removed_pitchfx_count": len(out_of_sequence_pfx), "missing_pitch_numbers": missing_pitch_numbers, "pitchfx_error": result.error if result.failure else None, "pitchfx_error_message": result.error, }, "pitchfx": pfx_data, "removed_pitchfx": out_of_sequence_pfx, } self.invalid_pitchfx[inning_id][ab_id] = at_bat_data def save_removed_pfx(self, removed_pfx_dict): self.all_removed_pfx = defaultdict(dict) for ab_id, removed_pfx in removed_pfx_dict.items(): inning_id = get_inning_id_from_at_bat_id(ab_id) id_dict = db.PlayerId.get_player_ids_from_at_bat_id(self.db_session, ab_id) self.prepare_pfx_data_for_json_serialization(removed_pfx) at_bat_data = { "at_bat_id": ab_id, "inning_id": inning_id, "pitch_app_id": self.get_pitch_app_id_from_at_bat_id(ab_id), "pitcher_id_bbref": id_dict["pitcher_id_bbref"], "pitcher_id_mlb": id_dict["pitcher_id_mlb"], "pitcher_name": id_dict["pitcher_name"], "batter_id_bbref": id_dict["batter_id_bbref"], "batter_id_mlb": id_dict["batter_id_mlb"], "batter_name": id_dict["batter_name"], "pitchfx": removed_pfx, } self.all_removed_pfx[inning_id][ab_id] = at_bat_data def update_boxscore_with_combined_data(self): updated_innings_list = [self.update_inning_with_combined_data(inning) for inning in self.boxscore.innings_list] (pitch_stats_away, pitch_stats_home) = self.update_all_pitch_stats() (bat_stats_away, bat_stats_home) = self.update_all_bat_stats() away_team_data = self.boxscore.away_team_data.as_dict() away_team_data.pop("__bbref_boxscore_team_data__", None) away_team_data.pop("batting_stats", None) away_team_data.pop("pitching_stats", None) away_team_data["batting_stats"] = bat_stats_away away_team_data["pitching_stats"] = pitch_stats_away home_team_data = self.boxscore.home_team_data.as_dict() home_team_data.pop("__bbref_boxscore_team_data__", None) home_team_data.pop("batting_stats", None)
len(x) - 1: break update_1 = False update_2 = False update_3 = False change_1_0 = max(0, status_1[0] - 1) change_1_1 = max(0, status_1[1] - 1) change_2_0 = max(0, status_2[0] - 1 if status_1[1] != 0 else status_2[0]) change_2_1 = max(0, status_2[1] - 1 if status_1[1] != 0 else status_2[1]) change_3_0 = max(0, status_3[0] - 1 if status_2[1] != 0 else status_3[0]) change_3_1 = max(0, status_3[1] - 1 if status_2[1] != 0 else status_3[1]) status_1[0] = change_1_0 status_1[1] = change_1_1 status_2[0] = change_2_0 status_2[1] = change_2_1 status_3[0] = change_3_0 status_3[1] = change_3_1 idx += 1 if status_1 == [0, 0]: update_1 = True if status_2 == [0, 0] and (status_1[1] != 0 or update_1): update_2 = True if status_3 == [0, 0] and (status_1[1] != 0 or update_1) and (status_2[1] != 0 or update_2): update_3 = True if update_1: block_pattern[0].append(x[idx][0]) status_1 = [x[idx][0] + 1, 1 if x[idx][0] == 0 else x[idx][0]] if update_2: block_pattern[1].append(x[idx][1]) status_2 = [x[idx][1] + 1, 1 if x[idx][1] == 0 else x[idx][1]] if update_3: block_pattern[2].append(x[idx][2]) status_3 = [x[idx][2] + 1, 1 if x[idx][2] == 0 else x[idx][2]] return block_pattern def block_pattern_to_seq(block_pattern): x = [] idx_1 = 0 idx_2 = 0 idx_3 = 0 matching = [0] matching_counter = 0 status_1 = [block_pattern[0][idx_1] + 1, 1 if block_pattern[0] [idx_1] == 0 else block_pattern[0][idx_1]] status_2 = [block_pattern[1][idx_2] + 1, 1 if block_pattern[1] [idx_2] == 0 else block_pattern[1][idx_2]] status_3 = [block_pattern[2][idx_3] + 1, 1 if block_pattern[2] [idx_3] == 0 else block_pattern[2][idx_3]] while True: x.append([block_pattern[0][idx_1], block_pattern[1] [idx_2], block_pattern[2][idx_3]]) if idx_3 == len(block_pattern[2]) - 1: break matching_counter += 1 update_1 = False update_2 = False update_3 = False change_1_0 = max(0, status_1[0] - 1) change_1_1 = max(0, status_1[1] - 1) change_2_0 = max(0, status_2[0] - 1 if status_1[1] != 0 else status_2[0]) change_2_1 = max(0, status_2[1] - 1 if status_1[1] != 0 else status_2[1]) change_3_0 = max(0, status_3[0] - 1 if status_2[1] != 0 else status_3[0]) change_3_1 = max(0, status_3[1] - 1 if status_2[1] != 0 else status_3[1]) status_1[0] = change_1_0 status_1[1] = change_1_1 status_2[0] = change_2_0 status_2[1] = change_2_1 status_3[0] = change_3_0 status_3[1] = change_3_1 if status_1 == [0, 0]: idx_1 += 1 update_1 = True if status_2 == [0, 0] and (status_1[1] != 0 or update_1): idx_2 += 1 update_2 = True if status_3 == [0, 0] and (status_1[1] != 0 or update_1) and (status_2[1] != 0 or update_2): idx_3 += 1 update_3 = True matching.append(matching_counter) if update_1: status_1 = [block_pattern[0][idx_1] + 1, 1 if block_pattern[0] [idx_1] == 0 else block_pattern[0][idx_1]] if update_2: status_2 = [block_pattern[1][idx_2] + 1, 1 if block_pattern[1] [idx_2] == 0 else block_pattern[1][idx_2]] if update_3: status_3 = [block_pattern[2][idx_3] + 1, 1 if block_pattern[2] [idx_3] == 0 else block_pattern[2][idx_3]] return x, matching def signals_to_bp(signals, n_Rwaves): limit = np.where(np.array(signals[0]) == 1)[0][-1] + 1 candidate1 = [] candidate2 = [] candidate3 = [] counter = 0 sub1 = [] for i in range(limit): if signals[0][i] == 1: counter += 1 if i == limit - 1: sub1.append(counter) if signals[0][i] == 0: sub1.append(counter) counter = 0 if max(sub1) <= 7 and min(sub1) >= 1: candidate1.append(sub1) sub2 = [] for i in range(limit): if i == limit - 1: sub2.append(1) break if signals[0][i] == 1 and signals[0][i+1] == 0: sub2.append(1) if signals[0][i] == 1 and signals[0][i+1] == 1: sub2.append(0) if sub2 not in candidate1: candidate1.append(sub2) sub3 = copy.deepcopy(sub2) sub3[-1] = 0 if sub3 not in candidate1: candidate1.append(sub3) idx_1 = np.where(np.array(signals[0]) == 1)[0] counter = 0 sub1 = [] vary = False for i in range(len(idx_1)): if signals[1][idx_1[i]] == 1: counter += 1 if i == len(idx_1) - 1: sub1.append(counter) vary = True if signals[1][idx_1[i]] == 0: sub1.append(counter) counter = 0 if not vary: if max(sub1) <= 7 and min(sub1) >= 1: candidate2.append(sub1) if vary: if len(sub1) > 1 and max(sub1) <= 7 and min(sub1) >= 1: low_limit = np.amax([1, sub1[-2] - 3]) up_limit = np.amin([7, sub1[-2] + 3]) valid_range = np.linspace( low_limit, up_limit, up_limit - low_limit + 1, dtype='int16') for val in valid_range: if val >= sub1[-1]: sub_alt = copy.deepcopy(sub1[:-1]) sub_alt += [val] candidate2.append(sub_alt) if len(sub1) == 1 and max(sub1) <= 7 and min(sub1) >= 1: low_limit = sub1[0] up_limit = 7 valid_range = np.linspace( low_limit, up_limit, up_limit - low_limit + 1, dtype='int16') for val in valid_range: sub_alt = copy.deepcopy(sub1[:-1]) sub_alt += [val] candidate2.append(sub_alt) sub2 = [] alt = True for i in range(len(idx_1)): if i == len(idx_1) - 1 and signals[1][idx_1[i]] == 1: sub2.append(1) break if i == len(idx_1) - 1 and signals[1][idx_1[i]] == 0: alt = False break if signals[1][idx_1[i]] == 1 and signals[1][idx_1[i+1]] == 0: sub2.append(1) if signals[1][idx_1[i]] == 1 and signals[1][idx_1[i+1]] == 1: sub2.append(0) if sub2 not in candidate2: candidate2.append(sub2) if alt: sub3 = copy.deepcopy(sub2) sub3[-1] = 0 if sub3 not in candidate2: candidate2.append(sub3) idx_2 = np.where(np.array(signals[1]) == 1)[0] sub2 = [] alt = True for i in range(len(idx_2)): if i == len(idx_2) - 1 and signals[2][idx_2[i]] == 1: sub2.append(1) break if i == len(idx_2) - 1 and signals[2][idx_2[i]] == 0: alt = False break if signals[2][idx_2[i]] == 1 and signals[2][idx_2[i+1]] == 0: sub2.append(1) if signals[2][idx_2[i]] == 1 and signals[2][idx_2[i+1]] == 1: sub2.append(0) if sub2 not in candidate3: candidate3.append(sub2) if alt: sub3 = copy.deepcopy(sub2) sub3[-1] = 0 if sub3 not in candidate3: candidate3.append(sub3) res = [] for i in range(len(candidate1)): for j in range(len(candidate2)): for k in range(len(candidate3)): bp, bp_type = check_block_pattern_alt( [candidate1[i], candidate2[j], candidate3[k]], n_Rwaves) if len(bp) != 0: res.append((bp, bp_type)) return res def correct_bp(bp, bp_type, n_Rwaves): bp_res = copy.deepcopy(bp) if bp_type == "1": if sum(bp_res[1]) > n_Rwaves: bp_res[1][-1] -= abs(sum(bp_res[1]) - n_Rwaves) if bp_type == "2a": if sum(bp_res[1]) > n_Rwaves: bp_res[1][-1] -= abs(sum(bp_res[1]) - n_Rwaves) if bp_type == "2b": if sum(bp_res[1]) == 2 * n_Rwaves and len(bp_res[0]) == 2 * n_Rwaves - 1 + len(bp_res[1]) - 1: bp_res[1][-1] -= 1 return bp_res if sum(bp_res[1]) > 2 * n_Rwaves: if sum(bp_res[1]) - bp_res[1][-1] < 2 * n_Rwaves - 1: if len(bp_res[0]) == 2 * n_Rwaves + len(bp_res[1]) - 1: bp_res[1][-1] -= abs(sum(bp_res[1]) - 2 * n_Rwaves) return bp_res if len(bp_res[0]) == 2 * n_Rwaves - 1 + len(bp_res[1]) - 1: bp_res[1][-1] -= abs(sum(bp_res[1]) - (2 * n_Rwaves - 1)) return bp_res if sum(bp_res[1]) - bp_res[1][-1] == 2 * n_Rwaves - 1: bp_res[1][-1] -= abs(sum(bp_res[1]) - 2 * n_Rwaves) return bp_res def bp_to_signals(bp, bp_type, n_Rwaves, fill=True): if bp_type == "1": lvl1 = [] for b in bp[0]: lvl1 += [1] lvl2 = [] for b in bp[1]: lvl2 += [1 for i in range(b)] + [0] lvl3 = [] for b in bp[2]: lvl3 += [1] idx = np.where(np.array(lvl2) == 0)[0] for idx_i in idx: lvl3.insert(idx_i, 0) if bp_type == "2a": lvl1 = [] for b in bp[0]: lvl1 += [1 for i in range(b)] + [0] lvl2 = [] for b in bp[1]: lvl2 += [1 for i in range(b)] + [0] idx = np.where(np.array(lvl1) == 0)[0] for idx_i in idx: lvl2.insert(idx_i, 0) lvl3 = [] for b in bp[2]: lvl3 += [1] idx = np.where(np.array(lvl2) == 0)[0] for idx_i in idx: lvl3.insert(idx_i, 0) if bp_type == "2b": lvl1 = [] for b in bp[0]: lvl1 += [1] lvl2 = [] for b in bp[1]: lvl2 += [1 for i in range(b)] + [0] lvl3 = [] for b in bp[2]: lvl3 += [1 for i in range(b)] + [0] idx = np.where(np.array(lvl2) == 0)[0] for idx_i in idx: lvl3.insert(idx_i, 0) if bp_type == "2c": lvl1 = [] for b in bp[0]: lvl1 += [1 for i in range(b)] + [0] lvl2 = [] for b in bp[1]: if b == 0: lvl2 += [1] else: lvl2 += [1 for i in range(b)] + [0] idx = np.where(np.array(lvl1) == 0)[0] for idx_i in idx: lvl2.insert(idx_i, 0) lvl3 = [] for b in bp[2]: lvl3 += [1] idx = np.where(np.array(lvl2) == 0)[0] for idx_i in idx: lvl3.insert(idx_i, 0) if bp_type ==
<gh_stars>0 import discord from discord.ext import commands from discord.ext.commands import cooldown,BucketType from aiohttp import request from discord.ext.commands import MemberConverter import aiohttp import asyncio import wikipedia from howdoi import howdoi import base64 import urllib.parse from cogs.usefullTools.dbIntegration import * from googletrans import Translator from platform import python_version import psutil from psutil import Process, virtual_memory from datetime import datetime, timedelta from time import time class GeneralCog(commands.Cog): def __init__(self, bot): self.bot = bot # Avatar fetcher @commands.command(aliases=['av']) @cooldown(1, 5, BucketType.channel) async def avatar(self, ctx, member, override=None): if member[0] == '<' and member[1] == '@': converter = MemberConverter() member = await converter.convert(ctx, member) elif member.isdigit(): member = int(member) else: pass members = await ctx.guild.fetch_members().flatten() multiple_member_array = [] if isinstance(member, discord.Member): for members_list in members: if member.name.lower() in members_list.name.lower(): multiple_member_array.append(members_list) else: pass elif isinstance(member, int): for member_list in members: if member_list.id == member: multiple_member_array.append(member_list) else: pass else: for members_list in members: if member.lower() in members_list.name.lower(): multiple_member_array.append(members_list) else: pass if member is discord.Member: if member.isdigit() and member.lower() == 'me' and override == 'override': embed = discord.Embed(colour=0x0000ff) embed.set_image(url=f'{ctx.author.avatar_url}') await ctx.send(embed=embed) elif len(multiple_member_array) == 1: if multiple_member_array[0].name == multiple_member_array[0].display_name: embed = discord.Embed(title=f'{multiple_member_array[0]}',colour=0x0000ff) elif multiple_member_array[0].name != multiple_member_array[0].display_name: embed = discord.Embed(title=f'{multiple_member_array[0]}({multiple_member_array[0].display_name})',colour=0x0000ff) embed.set_image(url=f'{multiple_member_array[0].avatar_url}') await ctx.send(embed=embed) elif len(multiple_member_array) > 1: multiple_member_array_duplicate_array = [] for multiple_member_array_duplicate in multiple_member_array: if len(multiple_member_array_duplicate_array) < 10: multiple_member_array_duplicate_array.append(multiple_member_array_duplicate.name) else: break embed = discord.Embed( title=f'Search for {member}\nFound multiple results (Max 10)', description=f'\n'.join(multiple_member_array_duplicate_array), colour=0x808080 ) await ctx.send(embed=embed) else: await ctx.send(f'The member `{member}` does not exist!') # Avatar fetcher: Error handling @avatar.error async def avatar_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): embed = discord.Embed(colour=0x0000ff) embed.set_image(url=f'{ctx.author.avatar_url}') await ctx.send(embed=embed) elif isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Userinfo @commands.command(aliases=['ui']) @cooldown(1, 5, BucketType.channel) async def userinfo(self, ctx, member): if member[0] == '<' and member[1] == '@': converter = MemberConverter() member = await converter.convert(ctx, member) elif member.isdigit(): member = int(member) members = await ctx.guild.fetch_members().flatten() multiple_member_array = [] if isinstance(member, discord.Member): for members_list in members: if member.name.lower() in members_list.name.lower(): multiple_member_array.append(members_list) else: pass elif isinstance(member, int): for member_list in members: if member_list.id == member: multiple_member_array.append(member_list) else: pass else: for members_list in members: if member.lower() in members_list.name.lower(): multiple_member_array.append(members_list) else: pass if len(multiple_member_array) == 1: roles = [] for role in multiple_member_array[0].roles: roles.append(role) embed = discord.Embed( colour = 0x0000ff, ) embed.set_author(name=f'User Info - {multiple_member_array[0]}') embed.set_thumbnail(url=multiple_member_array[0].avatar_url) embed.set_footer(text='made by CABREX with ❤') embed.add_field(name='ID:', value=multiple_member_array[0].id) embed.add_field(name='Member Name:', value=multiple_member_array[0]) embed.add_field(name='Member Nickname:', value=multiple_member_array[0].display_name) embed.add_field(name='Created at: ', value=multiple_member_array[0].created_at.strftime('%a, %#d %B %Y, %I:%M %p UTC')) embed.add_field(name='Joined at:', value=multiple_member_array[0].joined_at.strftime('%a, %#d %B %Y, %I:%M %p UTC')) if len(roles) == 1: embed.add_field(name=f'Roles ({len(roles) - 1})', value='**NIL**') else: embed.add_field(name=f'Roles ({len(roles) - 1})', value=' '.join([role.mention for role in roles if role.name != '@everyone'])) embed.add_field(name='Bot?', value=multiple_member_array[0].bot) await ctx.send(embed=embed) elif len(multiple_member_array) > 1: multiple_member_array_duplicate_array = [] for multiple_member_array_duplicate in multiple_member_array: if len(multiple_member_array_duplicate_array) < 10: multiple_member_array_duplicate_array.append(multiple_member_array_duplicate.name) else: break embed = discord.Embed( title=f'Search for {member}\nFound multiple results (Max 10)', description=f'\n'.join(multiple_member_array_duplicate_array), colour=0x808080 ) await ctx.send(embed=embed) else: await ctx.send(f'The member `{member}` does not exist!') # Userinfo: Error handling @userinfo.error async def userinfo_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send('```\n$userinfo {member_name}\n ^^^^^^^^^^^^^\nMissing Required Argument member_name\n```') elif isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, discord.errors.Forbidden): await ctx.send('I am Forbidden from doing this command, please check if `server members intent` is enabled') else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check the console for traceback') raise error # Server info @commands.command(aliases=['si']) @cooldown(1, 4, BucketType.channel) async def serverinfo(self, ctx): count = 0 members = await ctx.guild.fetch_members().flatten() for people in members: if people.bot: count = count + 1 else: pass embed = discord.Embed( title = f'{ctx.guild.name} info', colour = 0x0000ff ) embed.set_thumbnail(url=ctx.guild.icon_url) embed.add_field(name='Owner name:', value=f'<@{ctx.guild.owner_id}>') embed.add_field(name='Server ID:', value=ctx.guild.id) embed.add_field(name='Server region:', value=ctx.guild.region) embed.add_field(name='Members:', value=ctx.guild.member_count) embed.add_field(name='bots:', value=count) embed.add_field(name='Humans:', value=ctx.guild.member_count - count) embed.add_field(name='Number of roles:', value=len(ctx.guild.roles)) embed.add_field(name='Number of boosts:', value=ctx.guild.premium_subscription_count) embed.add_field(name='Text Channels:', value=len(ctx.guild.text_channels)) embed.add_field(name='Voice Channels:', value=len(ctx.guild.voice_channels)) embed.add_field(name='Categories:', value=len(ctx.guild.categories)) embed.add_field(name='Created On:', value=ctx.guild.created_at.strftime('%a, %#d %B %Y, %I:%M %p UTC')) await ctx.send(embed=embed) # Serverinfo: Error handling @serverinfo.error async def serverinfo_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) raise error else: await ctx.send(f"An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX.") raise error # Servercount @commands.command(name='servercount', aliases=['sc']) @cooldown(1, 1, BucketType.channel) async def servercount(self, ctx): member_count = 0 for guild in self.bot.guilds: member_count += guild.member_count await ctx.send(f'Present in `{len(self.bot.guilds)}` servers, moderating `{member_count}` members') # Servercount: cooldown @servercount.error async def sc_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Wikipedia support @commands.command(name='wikipedia', aliases=['whatis', 'wiki']) @cooldown(1, 2,BucketType.channel) async def wiki(self, ctx, *, query=None): if query is not None: r = wikipedia.page(query) embed = discord.Embed( title = r.title, description = r.summary[0 : 2000], colour = 0x808080 ) async with ctx.typing(): await asyncio.sleep(2) await ctx.send(embed=embed) else: await ctx.send(f"Your query is empty {ctx.author.mention}!\nEnter something!") # Wikipedia: Error handling @wiki.error async def wiki_error(self, ctx, error): if isinstance(error, wikipedia.exceptions.DisambiguationError): await ctx.send(f'There are many articles that match your query, please be more specific {ctx.author.mention}') elif isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error has occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Howdoi stackoverflow API @commands.command(name='howdoi') @cooldown(1, 2, BucketType.channel) async def howdoi(self, ctx, *, query=None): if query is not None: parser = howdoi.get_parser() arguments = vars(parser.parse_args(query.split(' '))) embed = discord.Embed( title = f'how to {query}', description = howdoi.howdoi(arguments) ) async with ctx.typing(): await asyncio.sleep(2) await ctx.channel.send(embed=embed) else: await ctx.send(f'Your query is empty, please ask a question {ctx.author.mention}') # Howdoi: Error Handling @howdoi.error async def howdoi_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check the console for traceback') raise error # Morse code cypher @commands.command(name='cypher', aliases=['morse']) @cooldown(1, 2, BucketType.channel) async def cypher(self, ctx, *, message): MORSE_DICT = { 'A':'.-', 'B':'-...', 'C':'-.-.', 'D':'-..', 'E':'.', 'F':'..-.', 'G':'--.', 'H':'....', 'I':'..', 'J':'.---', 'K':'-.-', 'L':'.-..', 'M':'--', 'N':'-.', 'O':'---', 'P':'.--.', 'Q':'--.-', 'R':'.-.', 'S':'...', 'T':'-', 'U':'..-', 'V':'...-', 'W':'.--', 'X':'-..-', 'Y':'-.--', 'Z':'--..', '1':'.----', '2':'..---', '3':'...--', '4':'....-', '5':'.....', '6':'-....', '7':'--...', '8':'---..', '9':'----.', '0':'-----', ', ':'--..--', '.':'.-.-.-', '?':'..--..', '/':'-..-.', '-':'-....-', '(':'-.--.', ')':'-.--.-'} cipher = '' for letter in message.upper(): if letter != ' ': cipher += MORSE_DICT[letter] + ' ' else: cipher += ' ' await ctx.send(f'Here is your cyphered text:\n```\n{cipher}\n```') # Morse code cypher: Error handling @cypher.error async def cypher_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, commands.BadArgument): await ctx.send('What do you want to cypher?') else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Base64 encoding @commands.command(name='base64') @cooldown(1, 2, BucketType.channel) async def base64(self, ctx, message, iterations=1): if iterations <= 20: message_bytecode = message.encode('ascii') for i in range(iterations): message_bytecode = base64.b64encode(message_bytecode) base64_message = message_bytecode.decode('ascii') await ctx.send(f'Here is the base64 encoded version encoded {iterations} time(s):\n```\n{base64_message}\n```') else: await ctx.send(f"Maximum number of iterations possible are 20, **{iterations}** number of ierations not allowed") # Base64 encoding: Error handling @base64.error async def base64_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, commands.MissingRequiredArgument): await ctx.send('What are the arguments') elif isinstance(error, commands.BadArgument): await ctx.send("Please enter your text to be encode in quotes") elif isinstance(error, base64.binascii.Error): await ctx.send("Please enter a valid base64 encoded message to decrypt {ctx.author.display_name}") elif isinstance(error, commands.ExpectedClosingQuoteError): await ctx.send("You didnt close the quotes!") elif isinstance(error, commands.InvalidEndOfQuotedStringError): await ctx.send("Too many quotes!") elif isinstance(error, commands.UnexpectedQuoteError): await ctx.send("Unexpected quote in non-quoted string") else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Base64 decoding @commands.command(name='dbase64') @cooldown(1, 2, BucketType.channel) async def base64_decode(self, ctx, message): message_bytecode = message.encode('ascii') decode_bytecode = base64.b64decode(message_bytecode) base64_message = decode_bytecode.decode('ascii') await ctx.send(f'Here is the base64 decoded version:\n```\n{base64_message}\n```') # Base64 decoding: Error handling @base64_decode.error async def base64_decode_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, commands.MissingRequiredArgument): await ctx.send('What are the arguments') elif isinstance(error, commands.BadArgument): await ctx.send("Please enter your text to be encode in quotes") elif isinstance(error, base64.binascii.Error) or isinstance(error, binascii.Error): await ctx.send("Please enter a valid base64 encoded message to decrypt {ctx.author.display_name}") elif isinstance(error, UnicodeDecodeError): await ctx.send("Please enter a valid base64 encoded message to decrypt {ctx.author.display_name}") elif isinstance(error, commands.ExpectedClosingQuoteError): await ctx.send("You didnt close the quotes!") elif isinstance(error, commands.InvalidEndOfQuotedStringError): await ctx.send("Too many quotes!") elif isinstance(error, commands.UnexpectedQuoteError): await ctx.send("Unexpected quote in non-quoted string") else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # QR Code generator @commands.command(name='qrcode') @cooldown(1, 5, BucketType.channel) async def qr_code_generator(self, ctx, *, message=None): if message is not None: embed = discord.Embed( title = 'Here is your encoded text', colour = 0x01a901 ) query = urllib.parse.quote(message, safe='') url = f'http://api.qrserver.com/v1/create-qr-code/?data={query}' embed.set_image(url=url) await ctx.send(embed=embed) else: await ctx.send("Please enter a message to qrcode encode it") # QR Code generator: Error handling @qr_code_generator.error async def qr_code_generator_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # QR Code reader @commands.command(name='qrdecode') @cooldown(1, 5, BucketType.channel) async def qr_code_decode(self, ctx, message): encoded_url = urllib.parse.quote(message, safe='') url = f'http://api.qrserver.com/v1/read-qr-code/?fileurl={encoded_url}&format=json' async with request("GET", url, headers={}) as response: if response.status == 200: data = await response.json() symbol = data[0]["symbol"] if symbol[0]["data"] is not None: await ctx.send(f'Here is the decoded qr code:\n```\n{symbol[0]["data"]}\n```') else: await ctx.send(f'An error occured: **{symbol[0]["error"]}**') # QR Code reader: Error handling @qr_code_generator.error async def qr_code_generator_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Translator @commands.command(name='translate') @cooldown(1, 5, BucketType.channel) async def translator(self, ctx, source_language: str = 'en', destination_language: str = 'en', *, message): translator = Translator() translation = translator.translate( message, dest=destination_language, src=source_language ) embed = discord.Embed( title="Translation", description=f"Sentence : **{message}**\n\nTranslation : **{translation.text}**\n\nType : **{translation.src} > {translation.dest}**", color=0x008000, ) await ctx.send(embed=embed) # Translator: Error handling @translator.error async def translator_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, commands.MissingRequiredArgument): await ctx.send("What do you want to translate?") else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Prefix changer @commands.command(name='prefix') @cooldown(1, 5, BucketType.guild) @commands.has_permissions(administrator=True) async def prefix(self, ctx, prefix: str): if len(prefix) <= 4: if not any(c.isdigit() for c in prefix): insert_prefix(ctx.guild.id, prefix) await ctx.send(f"Prefix of this server has been changed to **{prefix}** successfully!") else: await ctx.send("Integers are not allowed in prefixes") else: await ctx.send(f"A prefix must have only 4 or lesser charecters, **{len(prefix)}** is not allowed") # Prefix changer Error handling @prefix.error async def prefix_error(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send(error) elif isinstance(error, commands.CheckFailure): await ctx.send(f"Only administrators can use this command, {ctx.author.mention}") elif isinstance(error, commands.MissingRequiredArgument): prefix = fetch_prefix(ctx.guild.id)["prefix"] await ctx.send(f"```\n{prefix}prefix <prefix>\n\nMissing required argument prefix\n```") else: await ctx.send(f'An error occured \n```\n{error}\n```\nPlease check console for traceback, or raise an issue to CABREX') raise error # Overwrite all guilds with r$ as prefix @commands.command(name='overrideprefix') @commands.has_permissions(administrator=True) @cooldown(1, 10, BucketType.guild) async def
<reponame>ibobak/shap import pandas as pd import numpy as np import scipy as sp import sys import warnings import copy import operator import sklearn from slicer import Slicer, Alias, Obj # from ._order import Order from .utils._general import OpChain # slicer confuses pylint... # pylint: disable=no-member op_chain_root = OpChain("shap.Explanation") class MetaExplanation(type): """ This metaclass exposes the Explanation object's methods for creating template op chains. """ def __getitem__(cls, item): return op_chain_root.__getitem__(item) @property def abs(cls): """ Element-wize absolute value op. """ return op_chain_root.abs @property def identity(cls): """ A no-op. """ return op_chain_root.identity @property def argsort(cls): """ Numpy style argsort. """ return op_chain_root.argsort @property def sum(cls): """ Numpy style sum. """ return op_chain_root.sum @property def max(cls): """ Numpy style max. """ return op_chain_root.max @property def min(cls): """ Numpy style min. """ return op_chain_root.min @property def mean(cls): """ Numpy style mean. """ return op_chain_root.mean @property def sample(cls): """ Numpy style sample. """ return op_chain_root.sample @property def hclust(cls): """ Hierarchial clustering op. """ return op_chain_root.hclust class Explanation(metaclass=MetaExplanation): """ A slicable set of parallel arrays representing a SHAP explanation. """ def __init__( # pylint: disable=too-many-arguments self, values, base_values=None, data=None, display_data=None, instance_names=None, feature_names=None, output_names=None, output_indexes=None, lower_bounds=None, upper_bounds=None, error_std=None, main_effects=None, hierarchical_values=None, clustering=None, compute_time=None ): self.op_history = [] self.compute_time = compute_time # cloning. TODOsomeday: better cloning :) if issubclass(type(values), Explanation): e = values values = e.values base_values = e.base_values data = e.data self.output_dims = compute_output_dims(values, base_values, data, output_names) values_shape = _compute_shape(values) if output_names is None and len(self.output_dims) == 1: output_names = [f"Output {i}" for i in range(values_shape[self.output_dims[0]])] if len(_compute_shape(feature_names)) == 1: # TODOsomeday: should always be an alias once slicer supports per-row aliases if len(values_shape) >= 1 and len(feature_names) == values_shape[0]: feature_names = Alias(list(feature_names), 0) elif len(values_shape) >= 2 and len(feature_names) == values_shape[1]: feature_names = Alias(list(feature_names), 1) if len(_compute_shape(output_names)) == 1: # TODOsomeday: should always be an alias once slicer supports per-row aliases output_names = Alias(list(output_names), self.output_dims[0]) # if len(values_shape) >= 1 and len(output_names) == values_shape[0]: # output_names = Alias(list(output_names), 0) # elif len(values_shape) >= 2 and len(output_names) == values_shape[1]: # output_names = Alias(list(output_names), 1) if output_names is not None and not isinstance(output_names, Alias): l = len(_compute_shape(output_names)) if l == 0: pass elif l == 1: output_names = Obj(output_names, self.output_dims) elif l == 2: output_names = Obj(output_names, [0] + list(self.output_dims)) else: raise ValueError("shap.Explanation does not yet support output_names of order greater than 3!") self._s = Slicer( values=values, base_values=base_values if hasattr(base_values, "__len__") else Obj(base_values, [0] + list(self.output_dims)), data=list_wrap(data), display_data=list_wrap(display_data), instance_names=None if instance_names is None else Alias(instance_names, 0), feature_names=feature_names, output_names=output_names, output_indexes=None if output_indexes is None else (self.output_dims, output_indexes), lower_bounds=list_wrap(lower_bounds), upper_bounds=list_wrap(upper_bounds), error_std=list_wrap(error_std), main_effects=list_wrap(main_effects), hierarchical_values=list_wrap(hierarchical_values), clustering=None if clustering is None else Obj(clustering, [0]) ) @property def shape(self): """ Compute the shape over potentially complex data nesting. """ return _compute_shape(self._s.values) @property def values(self): """ Pass-through from the underlying slicer object. """ return self._s.values @values.setter def values(self, new_values): self._s.values = new_values @property def base_values(self): """ Pass-through from the underlying slicer object. """ return self._s.base_values @base_values.setter def base_values(self, new_base_values): self._s.base_values = new_base_values @property def data(self): """ Pass-through from the underlying slicer object. """ return self._s.data @data.setter def data(self, new_data): self._s.data = new_data @property def display_data(self): """ Pass-through from the underlying slicer object. """ return self._s.display_data @display_data.setter def display_data(self, new_display_data): if issubclass(type(new_display_data), pd.DataFrame): new_display_data = new_display_data.values self._s.display_data = new_display_data @property def instance_names(self): """ Pass-through from the underlying slicer object. """ return self._s.instance_names @property def output_names(self): """ Pass-through from the underlying slicer object. """ return self._s.output_names @output_names.setter def output_names(self, new_output_names): self._s.output_names = new_output_names @property def output_indexes(self): """ Pass-through from the underlying slicer object. """ return self._s.output_indexes @property def feature_names(self): """ Pass-through from the underlying slicer object. """ return self._s.feature_names @feature_names.setter def feature_names(self, new_feature_names): self._s.feature_names = new_feature_names @property def lower_bounds(self): """ Pass-through from the underlying slicer object. """ return self._s.lower_bounds @property def upper_bounds(self): """ Pass-through from the underlying slicer object. """ return self._s.upper_bounds @property def error_std(self): """ Pass-through from the underlying slicer object. """ return self._s.error_std @property def main_effects(self): """ Pass-through from the underlying slicer object. """ return self._s.main_effects @main_effects.setter def main_effects(self, new_main_effects): self._s.main_effects = new_main_effects @property def hierarchical_values(self): """ Pass-through from the underlying slicer object. """ return self._s.hierarchical_values @hierarchical_values.setter def hierarchical_values(self, new_hierarchical_values): self._s.hierarchical_values = new_hierarchical_values @property def clustering(self): """ Pass-through from the underlying slicer object. """ return self._s.clustering @clustering.setter def clustering(self, new_clustering): self._s.clustering = new_clustering def cohorts(self, cohorts): """ Split this explanation into several cohorts. Parameters ---------- cohorts : int or array If this is an integer then we auto build that many cohorts using a decision tree. If this is an array then we treat that as an array of cohort names/ids for each instance. """ if isinstance(cohorts, int): return _auto_cohorts(self, max_cohorts=cohorts) if isinstance(cohorts, (list, tuple, np.ndarray)): cohorts = np.array(cohorts) return Cohorts(**{name: self[cohorts == name] for name in np.unique(cohorts)}) raise Exception("The given set of cohort indicators is not recognized! Please give an array or int.") def __repr__(self): """ Display some basic printable info, but not everything. """ out = ".values =\n"+self.values.__repr__() if self.base_values is not None: out += "\n\n.base_values =\n"+self.base_values.__repr__() if self.data is not None: out += "\n\n.data =\n"+self.data.__repr__() return out def __getitem__(self, item): """ This adds support for OpChain indexing. """ if not isinstance(item, tuple): item = (item,) # convert any OpChains or magic strings for pos, t in enumerate(item): # pylint: disable=too-many-nested-blocks orig_t = t if issubclass(type(t), OpChain): t = t.apply(self) if issubclass(type(t), (np.int64, np.int32)): # because slicer does not like numpy indexes t = int(t) elif issubclass(type(t), np.ndarray): t = [int(v) for v in t] # slicer wants lists not numpy arrays for indexing elif issubclass(type(t), Explanation): t = t.values elif isinstance(t, str): # work around for 2D output_names since they are not yet slicer supported output_names_dims = [] if "output_names" in self._s._objects: output_names_dims = self._s._objects["output_names"].dim if pos != 0 and pos in output_names_dims and len(output_names_dims) == 2: new_values = [] new_base_values = [] new_data = [] new_self = copy.deepcopy(self) for i, v in enumerate(self.values): for j, s in enumerate(self.output_names[i]): if s == t: new_values.append(np.array(v[:,j])) new_data.append(np.array(self.data[i])) new_base_values.append(self.base_values[i][j]) new_self = copy.deepcopy(self) new_self.values = np.array(new_values) new_self.base_values = np.array(new_base_values) new_self.data = np.array(new_data) new_self.output_names = t new_self.feature_names = np.array(new_data) new_self.clustering = None # work around for 2D feature_names since they are not yet slicer supported feature_names_dims = [] if "feature_names" in self._s._objects: feature_names_dims = self._s._objects["feature_names"].dim if pos != 0 and pos in feature_names_dims and len(feature_names_dims) == 2: new_values = [] new_data = [] for i, val_i in enumerate(self.values): for s,v,d in zip(self.feature_names[i], val_i, self.data[i]): if s == t: new_values.append(v) new_data.append(d) new_self = copy.deepcopy(self) new_self.values = new_values new_self.data = new_data new_self.feature_names = t new_self.clustering = None return new_self if issubclass(type(t), (np.int8, np.int16, np.int32, np.int64)): t = int(t) if t is not orig_t: tmp = list(item) tmp[pos] = t item = tuple(tmp) # call slicer for the real work new_self = copy.copy(self) new_self._s = self._s.__getitem__(item) new_self.op_history.append({ "name": "__getitem__", "args": (item,), "prev_shape": self.shape }) return new_self def __len__(self): return self.shape[0] def __copy__(self): new_exp = Explanation( self.values, self.base_values, self.data, self.display_data, self.instance_names, self.feature_names, self.output_names, self.output_indexes, self.lower_bounds, self.upper_bounds, self.error_std, self.main_effects, self.hierarchical_values, self.clustering ) new_exp.op_history = copy.copy(self.op_history) return new_exp def _apply_binary_operator(self, other, binary_op, op_name): new_exp = self.__copy__() new_exp.op_history = copy.copy(self.op_history) new_exp.op_history.append({ "name": op_name, "args": (other,), "prev_shape": self.shape }) if isinstance(other, Explanation): new_exp.values = binary_op(new_exp.values, other.values) if new_exp.data is not None: new_exp.data = binary_op(new_exp.data, other.data) if new_exp.base_values is not None: new_exp.base_values = binary_op(new_exp.base_values, other.base_values) else: new_exp.values = binary_op(new_exp.values, other) if new_exp.data is not None: new_exp.data = binary_op(new_exp.data, other) if new_exp.base_values is not None: new_exp.base_values = binary_op(new_exp.base_values, other) return new_exp def __add__(self, other): return self._apply_binary_operator(other, operator.add, "__add__") def __radd__(self, other): return self._apply_binary_operator(other, operator.add, "__add__") def __sub__(self, other): return self._apply_binary_operator(other, operator.sub, "__sub__") def __rsub__(self, other): return self._apply_binary_operator(other, operator.sub, "__sub__") def __mul__(self, other): return self._apply_binary_operator(other, operator.mul, "__mul__") def __rmul__(self, other): return self._apply_binary_operator(other, operator.mul, "__mul__") def __truediv__(self, other): return self._apply_binary_operator(other, operator.truediv, "__truediv__") # @property # def abs(self): # """ Element-size absolute value operator. # """ # new_self = copy.copy(self) # new_self.values = np.abs(new_self.values) # new_self.op_history.append({ # "name": "abs", # "prev_shape": self.shape # }) # return new_self def
#!/usr/bin/env python #=============================================================================== # Copyright (c) 2014 Geoscience Australia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither Geoscience Australia nor the names of its contributors may be # used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== """dbutil.py - PostgreSQL database utilities for testing. This module provides easy access to the test database server, and provides a way to create, load, save and drop databases from this server. It also provides wrapper classes for psycopg2 database connections that implement utility queries as methods. """ from __future__ import absolute_import import os import sys import logging import random import subprocess import re import psycopg2 # # Root directory for test resources. # TEST_RESOURCES_ROOT = '/g/data1/v10/test_resources' # # Setup information for the test server. This might be better off loaded # from a config file, but this will do for now. The password is kept # in a .pgpass file to avoid saving it in versioned files. This is likely # a better solution than recording the password either here or in a config # file. # TESTSERVER_PARAMS = { 'name': 'test_server', 'host': '172.16.58.3', 'port': '6432', 'user': 'cube_tester', 'superuser': 'cube_admin' } # # Database connection constants. These would be better off being defaults # for items that can be overridden by a configuration file. # CONNECT_TIMEOUT = 60 MAINTENANCE_DB = 'postgres' TEMPLATE_DB = 'template0' USE_PGBOUNCER = True PGBOUNCER_DB = 'pgbouncer' # # Random string constants. These set the parameters for random strings # appended to database names by the random_name utility function. The intent # is to make temporary database names (most likely) unique to avoid clashes. # The current format is 9 decimal digits. # RANDOM_STR_MIN = 1 RANDOM_STR_MAX = 999999999 RANDOM_STR_FORMAT = "%09d" # # Server class # class Server(object): """Abstraction of a database server. Gathers all the parameters that describe a server or how to work with it, and provides services that use this information.""" def __init__(self, params): self.name = params['name'] self.host = params['host'] self.port = params['port'] self.user = params['user'] self.superuser = params['superuser'] def connect(self, dbname, superuser=False, autocommit=True): """Create a pscopg2 connection to a database and return it. dbname: The database to connect to. superuser: Set to True to connect as the superuser, otherwise connect as the user. autocommit: Set to False to turn off autocommit, otherwise autocommit will be turned on.""" user = (self.superuser if superuser else self.user) dsn = ("dbname=%s host=%s port=%s user=%s connect_timeout=%s" % (dbname, self.host, self.port, user, CONNECT_TIMEOUT)) conn = psycopg2.connect(dsn) conn.autocommit = autocommit return conn def exists(self, dbname): """Returns True if the named database exists on the server.""" maint_conn = MaintenanceWrapper( self.connect(MAINTENANCE_DB, superuser=True)) try: result = maint_conn.exists(dbname) finally: maint_conn.close() return result def dblist(self): """Returns a list of the databases on the server.""" maint_conn = MaintenanceWrapper( self.connect(MAINTENANCE_DB, superuser=True)) try: result = maint_conn.dblist() finally: maint_conn.close() return result def load(self, dbname, save_dir, save_file): """Load the contents of a database from a file. The database should be empty, and based off template0 or equivalent. This method calls the psql command to do the load.""" save_path = os.path.join(save_dir, save_file) load_cmd = ["psql", "--dbname=%s" % dbname, "--username=%s" % self.superuser, "--host=%s" % self.host, "--port=%s" % self.port, "--file=%s" % save_path] try: subprocess.check_output(load_cmd, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as err: # Make sure error output is in the error message. message = ("%s: problem calling %s:\n%s" % (__name__, err.cmd[0], err.output)) for k in range(len(load_cmd)): message = message + load_cmd[k] raise AssertionError(message) def save(self, dbname, save_dir, save_file, table=None): """Save the contents of a database to a file. This method calls the pg_dump command to do the save. This dump is in sql script format so use psql to reload.""" save_path = os.path.join(save_dir, save_file) save_cmd = ["pg_dump", "--dbname=%s" % dbname, "--username=%s" % self.superuser, "--host=%s" % self.host, "--port=%s" % self.port, "--file=%s" % save_path] if table: save_cmd.append("--table=%s" % table) try: subprocess.check_output(save_cmd, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as err: #Make sure error output is in the error message. message = ("%s: problem calling %s:\n%s" % (__name__, err.cmd[0], err.output)) raise AssertionError(message) def copy_table_between_databases(self, dbname1, dbname2, table_name): """Copy a table from one database to another on the same server. This method pipes the output of pg_dump to psql.""" dump_cmd = ["pg_dump", "--dbname=%s" % dbname1, "--username=%s" % self.superuser, "--host=%s" % self.host, "--port=%s" % self.port, "--table=%s" % table_name] load_cmd = ["psql", "--dbname=%s" % dbname2, "--username=%s" % self.superuser, "--host=%s" % self.host, "--port=%s" % self.port ] try: ps_dump = subprocess.Popen(dump_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) subprocess.check_output(load_cmd, stdin=ps_dump.stdout, stderr=subprocess.STDOUT) ps_dump.wait() except subprocess.CalledProcessError as err: #Make sure error output is in the error message. message = ("%s: problem calling %s:\n%s" % (__name__, err.cmd[0], err.output)) raise AssertionError(message) def drop(self, dbname): """Drop the named database. Connections are closed explicitly with try/finally blocks, since they do not seem to be closed automatically in the case of exceptions and this causes problems. If pgbouncer is in use a pgbouncer pause command needs to be issued before dropping the database. This will wait until active transactions are complete.""" maint_conn = MaintenanceWrapper( self.connect(MAINTENANCE_DB, superuser=True)) try: if maint_conn.exists(dbname): if USE_PGBOUNCER: bouncer_conn = BouncerWrapper( self.connect(PGBOUNCER_DB, superuser=True)) try: bouncer_conn.pause(dbname) maint_conn.drop(dbname) finally: bouncer_conn.close() else: maint_conn.drop(dbname) finally: maint_conn.close() def create(self, dbname, save_dir=None, save_file=None, template_db=TEMPLATE_DB): """Creates and loads a database from a file. This method does a clean create and load of the named database from the file 'savefile'. It drops an old database of the same name if neccessary. It uses template_db as the template database, which is copied to create the new database. If save_dir or save_file are None (or not specified), no save file is loaded. Connections are closed explicitly with try/finally blocks, since they do not seem to be closed automatically in the case of exceptions and this causes problems. If pgbouncer is in use a pgbouncer pause command needs to be issued before dropping the database. This will wait until active transactions are complete. The pgbouncer resume command is issued once the database is (re)created. This is needed to prevent connection attempts to the new database from hanging or returning errors if pgbouncer had pools set up on the old database.""" maint_conn = MaintenanceWrapper( self.connect(MAINTENANCE_DB, superuser=True)) try: # Create the database, dropping it first if needed. if USE_PGBOUNCER: bouncer_conn = BouncerWrapper( self.connect(PGBOUNCER_DB, superuser=True)) try: if maint_conn.exists(dbname): bouncer_conn.pause(dbname) maint_conn.drop(dbname) # To be used as a template, template_db must have # no current connections. bouncer_conn.kill(template_db) maint_conn.create(dbname, template_db) bouncer_conn.resume(dbname) finally: bouncer_conn.close() else: if maint_conn.exists(dbname): maint_conn.drop(dbname) maint_conn.create(dbname, template_db) # Load the new database from the save file if necessary if save_file is not None or save_dir is not None: self.load(dbname, save_dir, save_file) # Run ANALYSE on the newly loaded database db_conn = ConnectionWrapper(self.connect(dbname, superuser=True)) try: db_conn.analyse() finally: db_conn.close() # All done finally: maint_conn.close() # # Connection wrappers. # class ConnectionWrapper(object): """Generic connection wrapper, inherited by the specific wrappers. This is a wrapper for a psycopg2 database connection. It passes on unknown attribute references to the wrapped connection using __getattr__. The specific wrappers that inherit from this implement queries and operations on the connection (self.conn) as methods. Some utility methods are implemented here. database_name is useful for testing and error messages. analyse is
# Variable names start with ## variable_name variable_text, format # The format is integer, number, text, boolean, integer choice, text choice, rfile # Then some help text starting with "# " # Then a list of possible value#explain with the default first # Then a blank line to end. self.format4name = {} self.format4name['hardware_file_type'] = 'text' re_AeqB = re.compile("^#?(\w+)\s*=\s*([^#]+)#*(.*)") # item values "a = b" section = None data_name = None fp = open("quisk_conf_defaults.py", "rb") for line in fp: line = line.strip() if not line: data_name = None continue if line[0:27] == '################ Receivers ': section = 'Receivers' args = line[27:].split(',', 1) rxname = args[0].strip() section_data = [] self.receiver_data.append((rxname, section_data)) elif line[0:17] == '################ ': args = line[17:].split(None, 2) section = args[0] if section in ('Keys', 'Colors', 'Obsolete'): section = None continue rxname = None section_data = [] self.sections.append((section, section_data)) if not section: continue if line[0:3] == '## ': # item_name item_text, format args = line[3:].split(None, 1) data_name = args[0] args = args[1].split(',', 1) dspl = args[0].strip() fmt = args[1].strip() value_list = [] if self.format4name.has_key(data_name): if self.format4name[data_name] != fmt: print ("Inconsistent format for", data_name, self.format4name[data_name], fmt) else: self.format4name[data_name] = fmt section_data.append([data_name, dspl, fmt, '', value_list]) if not data_name: continue mo = re_AeqB.match(line) if mo: if data_name != mo.group(1): print ("Parse error for", data_name) continue value = mo.group(2).strip() expln = mo.group(3).strip() if value[0] in ('"', "'"): value = value[1:-1] elif value == '{': # item is a dictionary value = getattr(conf, data_name) elif value == '[': # item is a list value = getattr(conf, data_name) if expln: value_list.append("%s # %s" % (value, expln)) else: value_list.append(value) elif line[0:2] == '# ': section_data[-1][3] = section_data[-1][3] + line[2:] + ' ' fp.close() class ConfigHelp(wx.html.HtmlWindow): # The "Help with Radios" first-level page """Create the help screen for the configuration tabs.""" def __init__(self, parent): wx.html.HtmlWindow.__init__(self, parent, -1, size=(win_width, 100)) if "gtk2" in wx.PlatformInfo: self.SetStandardFonts() self.SetFonts("", "", [10, 12, 14, 16, 18, 20, 22]) # read in text from file help_conf.html in the directory of this module self.LoadFile('help_conf.html') class RadioNotebook(wx.Notebook): # The second-level notebook for each radio name def __init__(self, parent, radio_name): wx.Notebook.__init__(self, parent) font = wx.Font(conf.config_font_size, wx.FONTFAMILY_SWISS, wx.NORMAL, wx.FONTWEIGHT_NORMAL, face=conf.quisk_typeface) self.SetFont(font) self.radio_name = radio_name self.pages = [] def MakePages(self): if self.pages: return radio_name = self.radio_name page = RadioHardware(self, radio_name) self.AddPage(page, "Hardware") self.pages.append(page) page = RadioSound(self, radio_name) self.AddPage(page, "Sound") self.pages.append(page) for section, names in local_conf.sections: if section in ('Sound', 'Bands'): # There is a special page for these sections continue page = RadioSection(self, radio_name, section, names) self.AddPage(page, section) self.pages.append(page) page = RadioBands(self, radio_name) self.AddPage(page, "Bands") self.pages.append(page) def NewName(self, new_name): self.radio_name = new_name for page in self.pages: page.radio_name = new_name class ComboCtrl(wx.combo.ComboCtrl): def __init__(self, parent, value, choices, no_edit=False): self.value = value self.choices = choices[:] self.handler = None self.height = parent.quisk_height if no_edit: wx.combo.ComboCtrl.__init__(self, parent, -1, style=wx.CB_READONLY) else: wx.combo.ComboCtrl.__init__(self, parent, -1, style=wx.TE_PROCESS_ENTER) self.GetTextCtrl().Bind(wx.EVT_KILL_FOCUS, self.OnKillFocus) self.Bind(wx.EVT_TEXT_ENTER, self.OnTextEnter) self.ctrl = ListBoxComboPopup(choices, parent.font) self.SetPopupControl(self.ctrl) self.SetText(value) self.SetSizes() def SetItems(self, lst): self.ctrl.SetItems(lst) self.choices = lst[:] self.SetSizes() def SetSizes(self): charx = self.GetCharWidth() wm = charx w, h = self.GetTextExtent(self.value) if wm < w: wm = w for ch in self.choices: w, h = self.GetTextExtent(ch) if wm < w: wm = w wm += charx * 5 self.SetSizeHints(wm, self.height, 9999, self.height) def SetSelection(self, n): try: text = self.choices[n] except IndexError: self.SetText('') self.value = '' else: self.ctrl.SetSelection(n) self.SetText(text) self.value = text def OnTextEnter(self, event=None): if event: event.Skip() if self.value != self.GetValue(): self.value = self.GetValue() if self.handler: ok = self.handler(self) def OnKillFocus(self, event): event.Skip() self.OnTextEnter(event) def OnListbox(self): self.OnTextEnter() class ListBoxComboPopup(wx.ListBox, wx.combo.ComboPopup): def __init__(self, choices, font): wx.combo.ComboPopup.__init__(self) self.choices = choices self.font = font self.lbox = None def Create(self, parent): self.lbox = wx.ListBox(parent, choices=self.choices, style=wx.LB_SINGLE) self.lbox.SetFont(self.font) self.lbox.Bind(wx.EVT_MOTION, self.OnMotion) self.lbox.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) return True def SetItems(self, lst): self.choices = lst[:] self.lbox.Set(self.choices) def SetSelection(self, n): self.lbox.SetSelection(n) def GetStringValue(self): try: return self.choices[self.lbox.GetSelection()] except IndexError: pass return '' def GetAdjustedSize(self, minWidth, prefHeight, maxHeight): chary = self.lbox.GetCharHeight() return (minWidth, chary * len(self.choices) * 15 / 10 + chary) def OnLeftDown(self, event): event.Skip() self.Dismiss() self.GetCombo().OnListbox() def OnMotion(self, event): event.Skip() item = self.lbox.HitTest(event.GetPosition()) if item >= 0: self.lbox.SetSelection(item) def GetControl(self): return self.lbox class BaseWindow(ScrolledPanel): def __init__(self, parent): ScrolledPanel.__init__(self, parent) self.font = wx.Font(conf.config_font_size, wx.FONTFAMILY_SWISS, wx.NORMAL, wx.FONTWEIGHT_NORMAL, face=conf.quisk_typeface) self.SetFont(self.font) self.row = 1 self.charx = self.GetCharWidth() self.chary = self.GetCharHeight() self.quisk_height = self.chary * 14 / 10 # GBS self.gbs = wx.GridBagSizer(2, 2) self.gbs.SetEmptyCellSize((self.charx, self.charx)) self.SetSizer(self.gbs) self.gbs.Add((self.charx, self.charx), (0, 0)) def MarkCols(self): for col in range(1, self.num_cols): c = wx.StaticText(self, -1, str(col % 10)) self.gbs.Add(c, (self.row, col)) self.row += 1 def NextRow(self, row=None): if row is None: self.row += 1 else: self.row = row def AddTextL(self, col, text, span=None): c = wx.StaticText(self, -1, text) if col < 0: pass elif span is None: self.gbs.Add(c, (self.row, col), flag=wx.ALIGN_CENTER_VERTICAL) else: self.gbs.Add(c, (self.row, col), span=(1, span), flag=wx.ALIGN_CENTER_VERTICAL) return c def AddTextCHelp(self, col, text, help_text, span=None): bsizer = wx.BoxSizer(wx.HORIZONTAL) txt = wx.StaticText(self, -1, text) bsizer.Add(txt, flag=wx.ALIGN_CENTER_VERTICAL) btn = wx.Button(self, -1, "..") btn.quisk_help_text = help_text btn.quisk_caption = text h = self.quisk_height + 2 btn.SetSizeHints(h, h, h, h) btn.Bind(wx.EVT_BUTTON, self._BTnHelp) bsizer.Add(btn, flag=wx.ALIGN_CENTER_VERTICAL|wx.LEFT, border=self.charx) if col < 0: pass elif span is None: self.gbs.Add(bsizer, (self.row, col), flag = wx.ALIGN_CENTER) else: self.gbs.Add(bsizer, (self.row, col), span=(1, span), flag = wx.ALIGN_CENTER) return bsizer def AddBoxSizer(self, col, span): bsizer = wx.BoxSizer(wx.HORIZONTAL) self.gbs.Add(bsizer, (self.row, col), span=(1, span)) return bsizer def AddColSpacer(self, col, width): # add a width spacer to row 0 self.gbs.Add((width * self.charx, 1), (0, col)) # width is in characters def AddRadioButton(self, col, text, span=None, start=False): if start: c = wx.RadioButton(self, -1, text, style=wx.RB_GROUP) else: c = wx.RadioButton(self, -1, text) if col < 0: pass elif span is None: self.gbs.Add(c, (self.row, col), flag=wx.ALIGN_CENTER_VERTICAL) else: self.gbs.Add(c, (self.row, col), span=(1, span), flag=wx.ALIGN_CENTER_VERTICAL) return c def AddCheckBox(self, col, text, handler=None): btn = wx.CheckBox(self, -1, text) h = self.quisk_height + 2 btn.SetSizeHints(-1, h, -1, h) if col >= 0: self.gbs.Add(btn, (self.row, col)) if self.radio_name == "ConfigFileRadio": btn.Enable(False) noname_enable.append(btn) if handler: btn.Bind(wx.EVT_CHECKBOX, handler) return btn def AddPushButton(self, col, text, border=0): #btn = wx.Button(self, -1, text, style=wx.BU_EXACTFIT) btn = wx.lib.buttons.GenButton(self, -1, text) btn.SetBezelWidth(2) btn.SetUseFocusIndicator(False) h = self.quisk_height + 2 btn.SetSizeHints(-1, h, -1, h) if col >= 0: self.gbs.Add(btn, (self.row, col), flag=wx.RIGHT|wx.LEFT, border=border*self.charx) if self.radio_name == "ConfigFileRadio": btn.Enable(False) noname_enable.append(btn) return btn def AddPushButtonR(self, col, text, border=0): btn = self.AddPushButton(-1, text, border=0) if col >= 0: self.gbs.Add(btn, (self.row, col), flag=wx.ALIGN_RIGHT|wx.RIGHT|wx.LEFT, border=border*self.charx) return btn def AddComboCtrl(self, col, value, choices, right=False, no_edit=False, span=None, border=1): cb = ComboCtrl(self, value, choices, no_edit) if col < 0: pass elif span is None: self.gbs.Add(cb, (self.row, col), flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL|wx.EXPAND|wx.RIGHT|wx.LEFT, border=border*self.charx) else: self.gbs.Add(cb, (self.row, col), span=(1, span), flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL|wx.EXPAND|wx.RIGHT|wx.LEFT, border=border*self.charx) if self.radio_name == "ConfigFileRadio": cb.Enable(False) noname_enable.append(cb) return cb def AddComboCtrlTx(self, col, text, value, choices, right=False, no_edit=False): c = wx.StaticText(self, -1, text) if col >= 0: self.gbs.Add(c, (self.row, col)) cb = self.AddComboCtrl(col + 1, value, choices, right, no_edit) else: cb = self.AddComboCtrl(col, value, choices, right, no_edit) return c, cb def AddTextComboHelp(self, col, text, value, choices, help_text, no_edit=False, border=2, span_text=1, span_combo=1): txt = wx.StaticText(self, -1, text) self.gbs.Add(txt, (self.row, col), span=(1, span_text), flag=wx.ALIGN_CENTER_VERTICAL|wx.RIGHT, border=self.charx) col += span_text cb = self.AddComboCtrl(-1, value, choices, False, no_edit) if no_edit: l = len(value) for i in range(len(choices)): if value == choices[i][0:l]: cb.SetSelection(i) break else: print ("Failure to set value for", text, value, choices) self.gbs.Add(cb, (self.row, col), span=(1, span_combo), flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL|wx.EXPAND|wx.RIGHT, border=self.charx*2/10) col += span_combo btn = wx.Button(self, -1, "..") btn.quisk_help_text = help_text btn.quisk_caption = text h = self.quisk_height + 2 btn.SetSizeHints(h, h, h, h) self.gbs.Add(btn, (self.row, col), flag=wx.ALIGN_CENTER_VERTICAL|wx.RIGHT, border=self.charx*border) btn.Bind(wx.EVT_BUTTON, self._BTnHelp) return txt, cb, btn def _BTnHelp(self, event): btn = event.GetEventObject() dlg = wx.MessageDialog(self, btn.quisk_help_text, btn.quisk_caption, style=wx.OK|wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def OnChange(self, ctrl): value = ctrl.GetValue() self.OnChange2(ctrl, value) def OnChange2(self, ctrl, value): name = ctrl.quisk_data_name fmt4 = local_conf.format4name[name][0:4] if self.FormatOK(value, fmt4): radio_dict = local_conf.GetRadioDict(self.radio_name) radio_dict[name] = value local_conf.settings_changed = True def FormatOK(self, value, fmt4): # Check formats integer and number i1 = value.find('#') try: if fmt4 == 'inte': if i1 > 0: v = int(value[0:i1], base=0) else: v = int(value, base=0) elif fmt4 == 'numb': if i1 > 0: v = float(value[0:i1]) else: v =
burstraw = np.zeros_like(tarr) f_default = self.default_frequency for segment in self._burst: t0, t1 = segment[0] if start <= t0 and t1 <= end: t_shift = self.time_global(t0)-t0 amp, phase, freq, env = segment[1] envarr = np.zeros_like(tarr) if env == "rec": freq += f_default envarr[np.argmin(np.abs(tarr-t0)):np.argmin(np.abs(tarr-t1))+1] = amp burstraw += envarr*np.cos(2.*np.pi*freq*(tarr+t_shift) + phase) elif env in ("gauss", "deriv-gauss"): freq += f_default sig, center = (t1-t0)/4., (t1+t0)/2. if env == "gauss": envarr=amp*np.exp(-(tarr-center)**2./(2.*sig**2.)) elif env == "deriv-gauss": envarr=amp*(-(tarr-center)/(sig))*np.exp(-(tarr-center)**2./(2.*sig**2.)) envarr[:np.argmin(np.abs((tarr-center)+2*sig))] = 0. envarr[np.argmin(np.abs((tarr-center)-2.*sig))+1:] = 0. burstraw += envarr*np.cos(2.*np.pi*freq*(tarr+t_shift) + phase) elif env == "chirp": t = tarr[np.argmin(np.abs(tarr-t0)):np.argmin(np.abs(tarr-t1))] osc = amp*chirp(t = t-t[0], t1 = t[-1]-t[0], f0 = f_default - 0.5*freq, f1 = f_default + 0.5*freq, phi = 180.*phase/np.pi) pre, tail =np.zeros_like(tarr[:np.argmin(np.abs(tarr-t0))]), np.zeros_like(tarr[np.argmin(np.abs(tarr-t1)):]) burstraw += np.concatenate((pre, osc, tail)) elif not (t1 <= start or end <= t0): raise Exception('Individual bursts have to be in a single waveform.') return tarr, pulseraw + burstraw def _check_inputs(self, **kwargs): pos_inputs, burst_inputs = [], [] if kwargs['duration'] < 0: raise Exception("Duration cannot be negative.") for pos_key in ['at', 'in', 'to', '_from']: if pos_key in kwargs: if hasattr(kwargs[pos_key], '__iter__'): raise Exception("More than one values are given to specify the single-ch output.") pos_inputs.append(kwargs[pos_key]) if len(pos_inputs) > 1: raise Exception("Unable to interpret multiply specified positions.") for burst_key in ['amp', 'phase', 'freq', 'env']: if burst_key in kwargs: if hasattr(kwargs[burst_key], '__iter__'): raise Exception("More than one values are given to specify the single-ch output.") burst_inputs.append(kwargs[burst_key]) else: burst_inputs.append({'env':'rec', 'phase' :0}.get(burst_key, np.nan)) return kwargs['duration'], pos_inputs, burst_inputs def send_wfms(self, **kwargs): self.instr.send_wfms(ch_id = self.ch_id, **kwargs) def load_seq(self, **kwargs): self.instr.load_seq(ch_id = self.ch_id, **kwargs) def t_arr_concat(self): return np.arange(0, self.pulse_time, self.t_sample)+0.5*self.t_sample def make_iterable(inputs, repeat_len = 1): return inputs if hasattr(inputs, '__iter__') else [inputs]*repeat_len def reshape(params): sorted_params = sorted([(k, np.asarray(param)) for k, param in enumerate(params)], key = lambda p: len(p[1].shape), reverse = True) reshaped = [None]*len(params) if len(params) > 2: j = -1 for k, param in sorted_params: reshaped[k] = param if j == -1 else reshape((reshaped[j], param))[1] j = k elif len(params) == 2: k_large, param_large = sorted_params[0] k_small, param_small = sorted_params[1] reshaped[k_large] = param_large dim_delta = len(param_large.shape) - len(param_small.shape) if dim_delta: extra = ((1,) if len(param_small.shape) > 0 else ()) reshaped[k_small] = np.tile(param_small, param_large.shape[:dim_delta] + extra) else: reshaped[k_small] = param_small if not reshaped[0].shape == reshaped[1].shape: print reshaped[k_large].shape, reshaped[k_small].shape raise Exception('Too complicated to reshape properly') return reshaped def auto_division(num, minimum = 1000): num = int(round(num,0)) unit, _num = 1, num while _num%2 == 0 and unit < minimum: unit, _num = unit*2, _num/2 if unit < minimum: _num, _minimum = int(round(num/unit,0)), int(ceil(float(minimum)/float(unit))) for n in range(_minimum, _num +1): if _num%n == 0: unit = n*unit break if unit < minimum: unit = num return unit, num/unit class waveform(object): def __init__(self, ch_list): self.ch_list = [ch for elem in ch_list for ch in elem.ch_list] for i, ch in enumerate(self.ch_list): if ch in self.ch_list[i+1:]: raise Exception("{Ch} is multiply used.".format(Ch = ch.name)) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.section(new = False) @property def t_sample(self): return [ch.t_sample for ch in self.ch_list] @t_sample.setter def t_sample(self, newval): for ch, val in zip(self.ch_list, make_iterable(newval, repeat_len = len(self.ch_list))): ch.t_sample = val @property def default_value(self): return [ch.default_value for ch in self.ch_list] @default_value.setter def default_value(self, newval): for ch, val in zip(self.ch_list, make_iterable(newval, repeat_len = len(self.ch_list))): ch.default_value = val @property def default_frequency(self): return [ch.default_frequency for ch in self.ch_list] @default_frequency.setter def default_frequency(self, newval): for ch, val in zip(self.ch_list, make_iterable(newval, repeat_len = len(self.ch_list))): ch.default_frequency = val def dwell(self, duration, **kwargs): for i, ch in enumerate(self.ch_list): ch.dwell(duration = duration, **self._ch_kwargs(i, **kwargs)) def ramp(self, duration, **kwargs): for i, ch in enumerate(self.ch_list): ch.ramp(duration = duration, **self._ch_kwargs(i, **kwargs)) def excurse(self, duration, **kwargs): for i, ch in enumerate(self.ch_list): ch.excurse(duration = duration, **self._ch_kwargs(i, **kwargs)) def compensate(self, duration, **kwargs): return [ch.compensate(duration = duration, **self._ch_kwargs(i, **kwargs)) for i, ch in enumerate(self.ch_list)] def burst(self, duration, **kwargs): for i, ch in enumerate(self.ch_list): ch.burst(duration = duration, **self._ch_kwargs(i, **kwargs)) def sync(self): latest = max([ch.time_global() for ch in self.ch_list]) for ch in self.ch_list: ch.keep_up(time = latest) def section(self, **kwargs): self.sync() div = [kwargs.get('division', True), kwargs.get('repeat',1) == 1] + [ch.dividable() for ch in self.ch_list] kwargs['division'] = min(div) #True only if all conditions are met for ch in self.ch_list: ch.section(**kwargs) def refresh(self): for ch in self.ch_list: ch.refresh() def compose(self): self.section(new = False) for ch in self.ch_list: ch.compose() #compose each ch first length_list = [ch.time_global() for ch in self.ch_list] if max(length_list) != min(length_list): print length_list raise Exception("Waveform lengths are different.") def send_wfms(self, **kwargs): for ch in self.ch_list: kwargs['id_list'] = [c2.ch_id for c2 in self.ch_list if c2.instr == ch.instr] ch.send_wfms(**kwargs) def load_seq(self, **kwargs): for ch in self.ch_list: kwargs['id_list'] = [c2.ch_id for c2 in self.ch_list if c2.instr == ch.instr] ch.load_seq(**kwargs) def _ch_kwargs(self, ch_num, **kwargs): ch_kw = kwargs for key in kwargs: if key == 'duration': if kwargs['duration'] < 0.: raise Exception("Duration cannot be negative.") else: kwargs[key] = make_iterable(kwargs[key], repeat_len = len(self.ch_list)) if len(kwargs[key]) != len(self.ch_list): raise Exception("%s must contain %d points."%(key,len(self.ch_list))) ch_kw[key] = kwargs[key][ch_num] return ch_kw def show(self, **kwargs): fig, axarr = plt.subplots(len(self.ch_list), sharex=True, figsize = kwargs.get('figsize', None)) axarr = [axarr,] if len(self.ch_list) == 1 else axarr mode = 'stack' if not kwargs.get('flatten', False) else 'flatten' for i, ch in enumerate(self.ch_list): wfm_list = ch.scaled_waveform_list if kwargs.get('scaled', True) else ch.waveform_list ymax = max([max(wfm) for wfm in wfm_list]) ymin = min([min(wfm) for wfm in wfm_list]) ypos = ymax + 0.1* (ymax - ymin) if mode == 'stack': for tarr, wfm, seq_dict in zip(ch.t_array_list, wfm_list, ch.seq.data): t = np.insert(tarr, [0, len(tarr)], [tarr[0]-0.5*ch.t_sample, tarr[-1]+0.5*ch.t_sample]) w = np.insert(wfm, [0, len(wfm)], [wfm[0], wfm[-1]]) axarr[i].step(t, w, where = 'mid') axarr[i].axvline(x = t[-1], color = 'k', alpha = 1. if np.isinf(seq_dict['repeat']) else 0.5) exp = 'x {repeat}'.format(**seq_dict) axarr[i].text(x = (t[0] + t[-1])/2., y = ypos, s = exp, ha = 'center', va = 'top' ) if mode == 'flatten': tarr_flatten, wfm_flatten = ch.flatten_waves(scaled = kwargs.get('scaled', False)) axarr[i].step(tarr_flatten, wfm_flatten) time_global = 0. for seq_dict in ch.seq.data: for j in range(int(seq_dict['repeat_1'])): duration = seq_dict['end'] - seq_dict['start'] axarr[i].axvline(x = time_global, color = 'k', alpha = 0.5) time_global += duration if not ymax == ymin: axarr[i].set_ylim([ymin - 0.1* (ymax - ymin), ymax + 0.1* (ymax - ymin)]) axarr[i].set_ylabel(ch.name) try: fig.patch.set_alpha(1.0);fig.patch.set_facecolor('w');plt.tight_layout() except: pass def format_MAGIC1000(self): #Tektronix AWGs main = major_channel(self.ch_list) ch, mk1, mk2 = self.ch_list defaults = ch.default_value, mk1.default_value, mk2.default_value magic_file_list, len_list, name_list = [], [], [] for n, main_wfm in enumerate(main.waveform_list): ch_wfm = ch.waveform_list[n] if len(ch.waveform_list) > n else np.zeros(0) mk1_wfm = mk1.waveform_list[n] if len(mk1.waveform_list) > n else np.zeros(0) mk2_wfm = mk2.waveform_list[n] if len(mk2.waveform_list) > n else np.zeros(0) ch_wfm = np.append(ch_wfm, defaults[0]*np.ones(len(main_wfm)-len(ch_wfm))) mk1_wfm = np.clip(np.append(mk1_wfm, defaults[1]*np.ones(len(main_wfm)-len(mk1_wfm))), 0., 1.) mk2_wfm = np.clip(np.append(mk2_wfm, defaults[2]*np.ones(len(main_wfm)-len(mk2_wfm))), 0., 1.) if min(ch_wfm) < -1. or 1. < max(ch_wfm): raise Exception('Output out of range.') trailer = ('CLOCK %13.10e\n' % (1e+9/main.t_sample)).replace("+","") data = '' for p in range(len(ch_wfm)): w, m1, m2 = ch_wfm[p], mk1_wfm[p], mk2_wfm[p] data += pack('<fB', w, int(round(m1+2*m2,0))) magic_file_list.append('MAGIC 1000\n' + IEEE_block_format(data) + trailer) len_list.append(len(main_wfm)) name_list.append(main.seq.data[n]['name']) return magic_file_list, len_list, name_list def format_TekWFM(self, format = 'real'): #Tektronix AWGs 5000 and 7000 series main = major_channel(self.ch_list) ch, mk1, mk2 = self.ch_list defaults = ch.default_value, mk1.default_value, mk2.default_value file_list, len_list, name_list = [], [], [] for n, main_wfm in enumerate(main.waveform_list): ch_wfm = ch.waveform_list[n] if len(ch.waveform_list) > n else np.zeros(0) mk1_wfm = mk1.waveform_list[n] if len(mk1.waveform_list) > n else np.zeros(0) mk2_wfm = mk2.waveform_list[n] if len(mk2.waveform_list) > n else np.zeros(0) ch_wfm = np.append(ch_wfm, defaults[0]*np.ones(len(main_wfm)-len(ch_wfm))) mk1_wfm = np.clip(np.append(mk1_wfm, defaults[1]*np.ones(len(main_wfm)-len(mk1_wfm))), 0., 1.) mk2_wfm = np.clip(np.append(mk2_wfm, defaults[2]*np.ones(len(main_wfm)-len(mk2_wfm))), 0., 1.) if min(ch_wfm) < -1. or 1. < max(ch_wfm): raise Exception('Output out of range.') data = '' wvmk = np.clip((ch_wfm+1.)*(2**13)-1., 0, 2**14-1)+ (mk1_wfm+2*mk2_wfm)*(2**14) for p in wvmk: data += pack('<h', p) file_list.append(IEEE_block_format(data)) len_list.append(len(main_wfm)) name_list.append(main.seq.data[n]['name']) return file_list, len_list, name_list class AWG_instr(container): def __setattr__(self, name, value): if isinstance(value, waveform_channel) and not value.name: value.name = self.name + '.' + name if self.name else name super(container, self).__setattr__(name, value) def
<gh_stars>1-10 import copy class Space: def __init__(self, schema = {}, name = "myspace"): """ schema must contain the names of the dimensions in the space as keys furthermore, we need type_checkers, and class instantiators for each dimension it should suffice form the values to be dtype objects """ self.name = name self.dimensions = [] self.metrics = [] # self.dimensions = list(schema.keys()) for key in schema.keys(): try: dtype = schema[key] dim = Dimension(key, dtype, lambda arg: dtype(arg) ) setattr(self, key, dim) self.dimensions.append(key) except: print(Warning("One or more dimensions in schema underspecified")) def point(self, args): return Point(self,args) def set_name(self, name): self.name = name def append_dimension(self, key, dtype, init=None): if init==None: init=dtype if key in self.dimensions: Warning(key+" dimension already in this space") else: self.dimensions.append(key) dim = Dimension(key,dtype,init) setattr(self, key, dim) def append_metric(self, key, metric): if type(metric)==Metric: metric.set_space(self) else: metric = Metric(metric, self, description="autogenerated metric object") if key in self.metrics: Warning(key+" metric already in this space") else: self.metrics.append(key) setattr(self, key, metric) def cartersian(space1,space2): dims1 = space1.dimensions dims2 = space2.dimensions #dims = dims1+dims2 #print(dims) name1 = space1.name name2 = space2.name name = name1+str(" X ")+name2 metrics1 = space1.metrics metrics2 = space2.metrics #metrics = metrics1 + metrics2 #print(metrics) space = Space(name=name) for dim in dims1: d = getattr(space1,dim) space.append_dimension(dim,d.dtype,d.init) for met in metrics1: m = getattr(space1,met) space.append_metric(met,m) for dim in dims2: d = getattr(space2,dim) space.append_dimension(dim,d.dtype,d.init) for met in metrics2: m = getattr(space2,met) space.append_metric(met,m) return space def spacewise_cartesian(spaces): base = Space(name="cartesian produce of spaces "+str(spaces)) for space in spaces: base = cartersian(base, space) return base def pointwise_cartesian(points): #combine spaces of points then make a new point in the new space spaces = [p.space for p in points] space = spacewise_cartesian(spaces) spaces = [] args = {} for p in points: spaces.append(p.space) for d in p.state.dimensions: args[d] = getattr(p,d) space = spacewise_cartesian(spaces) point = Point(space,args) return point def space_from_point(point): return copy.deepcopy(point.space) class Dimension: def __init__(self, name, dtype, init): self.name = name self.dtype = dtype self.init = init class Point: def __init__(self, space, args_dict): self.space = space for key in space.dimensions: dim = getattr(space,key) init = dim.init args = args_dict[key] if type(args)==dict: value = init(**args) elif type(args)==tuple: #print(*args) value = init(*args) else: value = init(args) setattr(self, key, value) def set_space(self, space): self.space= space def copy(self): #first make a clean deep copy point = copy.deepcopy(self) #then make sure to set the space back to same parent space point.set_space(self.space) return point class Trajectory: def __init__(self, point, dynamics = None, params = None): """ A Trajectory is an ordered sequence of points in a space input point must be of class Point """ self.space = point.space self.points= [point] self.params = params if dynamics == None: self.dynamics = Dynamics(self.space, Block(self.space, self.space, lambda point: point)) else: self.dynamics = dynamics self.length = 1 def set_params(self, params): self.params=params def append_point(self,point): if point.space == self.space: self.points.append(point) self.length +=1 else: Warning("input point not in the right space") def append_points(self,points): for point in points: self.append_point(point) def set_dynamics(self, dynamics): self.dynamics = dynamics def apply_dynamics(self, iterations=1): step = self.dynamics.step for _ in range(iterations): p = self.points[-1].copy() if self.params ==None: point = step(p) else: point = step(p,self.params) self.append_point(point) class Dynamics: """ Dynamics is a map from a space to itself initized as an identity map """ def __init__(self, space, block=None): if block == None: block = Block(space, space, lambda point: point) block.set_description('This Block encodes dynamics for statespace '+str(space)) self.block = block self.space = space self.step = self.block.map def set_step(self, func): self.block.set_func(func) self.step = self.block.map class Metric: def __init__(self, func, space=None ,description = "my metric"): self.description = description self.eval = func self.space = space def set_func(self, func): self.eval = func def set_space(self, space): self.space = space def set_description(self, description): self.description = description class Block: """ the point of these Blocks is to take an input in the domain and map it to an output in the codomain usage: point_in_codomain = block.map(point_in_domain) """ def __init__(self,domain,codomain, func, paramspace = Space(), description=None): self.paramspace = paramspace self.params = paramspace.point({}) self.description = description if type(domain)==Space: self.domain = domain else: Warning("domain must be a Space") if type(codomain)==Space: self.codomain = codomain else: Warning("codomain must be a Space") self.map = func def set_params(self, point, override = False): if override: self.paramspace = point.space self.params = point else: if self.paramspace == point.space: self.params = point else: args = {} for d in self.paramspace.dimensions: args[d] = getattr(point, d) self.params = self.paramspace.point(args) def set_domain(self,space): if type(space)==Space: self.domain = space else: Warning("domain must be a Space") def set_codomain(self,space): if type(space)==Space: self.codomain = space else: Warning("codomain must be a Space") def set_func(self, func): self.map = func def set_description(self, description): self.description= description def compose(self, block): """ pt_in_codomain_of_self = self.map(block.map(pt_in_domain_of_block)) """ func = lambda point: self.map(block.map(point)) description = "made by composition; collapsed space is called '"+str(self.domain.name)+"'" return Block(block.domain, self.codomain, func, description=description ) def copy(self): domain = self.domain codomain = self.codomain func = self.map description = "copy of block: "+str(self) return Block(domain,codomain,func, description=description) def parallel(blocks): # | ->[ ] -->| # -->| ->[ ] -->| x | --> # | ->[ ] -->| N = len(blocks) check = 1 for n in range(N-1): check *= int(blocks[n].domain==blocks[n+1].domain) if check: domain = blocks[0].domain codomain = spacewise_cartesian([b.codomain for b in blocks]) def func(point): # assumes point in domain points = [] for b in blocks: output = b.map(point) points.append(output) return pointwise_cartesian(points) block = Block(domain,codomain, func) return block else: print(Warning("domains of parallel blocks do not match")) def chain(blocks): # runs left to right # domain->[ ] -> [ ] -> [ ]->codomain # domain = blocks[0].domain # codomain = blocks[-1].codomain # revese the order of the list since composition works in the opposite direction N = len(blocks) block = blocks[N-1] for n in range(N-2,-1,-1): new = blocks[n] # getting the compositions to chain in reverse # was a huge pain, edit with care #print(n) #print(new.codomain == block.domain) #print("") block = block.compose(new) description = "chain compose of "+str(blocks) block.set_description(description) return block #class Stage: ### work in progress below # systems will be composed of multistage dynamics # from here we can work out way back to # simulations # and eventually # experiments class System(): def __init__(self, statespace, paramspace): """ this is a generalized dynamical system statespace is a space paramspace is a space stages is a list of dynamics if you have a system you can more easily make instances of dynamics by composing policies and mechanism """ self.statespace = statespace self.paramspace = paramspace self.stages = [] def set_statespace(self,space): self.statespace = space def set_paramspace(self,space): self.paramspace = space def append_stage(self,dynamics): self.stages.append(dynamics) def insert_stage(self, dynamics, index): self.stages.insert(index, dynamics) ### plan to have Systems generate "trajectories of trajectories" ### where the inner lists loops through substeps or stages (each of which are dynamics) ### where the outer list contains the ordering of timesteps ### stages seems like a better term than substep class Stage(Dynamics): def __init__(self, system, policies=[], mechanisms=[], block=None): self.policies = policies self.mechanisms = mechanisms self.inputSpace = spacewise_cartesian([m.domain for m in mechanisms]) super().__init__(system.statespace, block=block) def update_inputSpace(self): self.inputSpace = spacewise_cartesian([m.domain for m in self.mechanisms]) def append_policy(self, policy): self.update_inputSpace() policy.set_codomain(self.inputSpace) policy.set_domain(self.system.statespace) for obs in policy.observables: if obs in self.system.statespace: pass else: print(Warning('observable not in system statespace')) self.polices.append(policy) def append_mechanism(self, mechanism): mechanism.set_codomain(self.system.statespace) if mechanism.dimension in self.system.statesoace: pass else: print(Warning('output dimension not in system statespace')) self.mechanisms.append(mechanism) self.update_inputSpace() def update_step(self, updateDescription=False): inputMap = parallel(self.policies) # inputMap.codomain == self.inputSpace stateUpdateMap = parallel(self.mechanisms) stateUpdateMap.set_domain(inputMap.codomain) if updateDescription: inputs = [d for d in inputMap.codomain.dimensions] states_updated = [d for d in stateUpdateMap.codomain.dimensions] stateUpdateMap.set_description("inputs = "+str(inputs)+" and states updated = "+str(states_updated)) block = stateUpdateMap.compose(inputMap) # combine policies # combine mechanisms # combines policies with mechanisms # results in a statespace->statespace map ### self.set_step(block) class Mechanism(Block): def __init__(self, domain, codomain, dimension, func, description=None): super().__init__(domain, codomain, func, description=description) self.dimension = dimension class Policy(Block): def __init__(self, domain, codomain, func, description=None, observables =[]): super().__init__(domain, codomain, func, description=description) self.observables = observables def set_observables(self, observables):
their rotten smoke?", "Tis not enough that through the cloud thou break,", "To dry the rain on my storm-beaten face,", "For no man well of such a salve can speak,", "That heals the wound, and cures not the disgrace:", "Nor can thy shame give physic to my grief;", "Though thou repent, yet I have still the loss:", "The offender's sorrow lends but weak relief", "To him that bears the strong offence's cross.", "Ah! but those tears are pearl which thy love sheds,", "And they are rich and ransom all ill deeds."), ("Sonnet 35", "No more be grieved atthat which thou hast done:", "Roses have thorns, and silver fountains mud:", "Clouds and eclipses stain both moon and sun,", "And loathsome canker lives in sweetest bud.", "All men make faults, and even I in this,", "Authorizing thy trespass with compare,", "Myself corrupting, salving thy amiss,", "Excusing thy sins more than thy sins are;", "For to thy sensual fault I bring in sense,", "Thy adverse party is thy advocate,", "And 'gainst myself a lawful plea commence:", "Such civil war is in my love and hate,", "That I an accessary needs must be,", "To that sweet thief which sourly robs from me."), ("Sonnet 36", "Let me confess that we two must be twain,", "Although our undivided loves are one:", "So shall those blots that do with me remain,", "Without thy help, by me be borne alone.", "In our two loves there is but one respect,", "Though in our lives a separable spite,", "Which though it alter not love's sole effect,", "Yet doth it steal sweet hours from love's delight.", "I may not evermore acknowledge thee,", "Lest my bewailed guilt should do thee shame,", "Nor thou with public kindness honour me,", "Unless thou take that honour from thy name:", "But do not so, I love thee in such sort,", "As thou being mine, mine is thy good report."), ("Sonnet 37", "As a decrepit father takes delight", "To see his active child do deeds of youth,", "So I, made lame by Fortune's dearest spite,", "Take all my comfort of thy worth and truth;", "For whether beauty, birth, or wealth, or wit,", "Or any of these all, or all, or more,", "Entitled in thy parts, do crowned sit,", "I make my love engrafted to this store:", "So then I am not lame, poor, nor despised,", "Whilst that this shadow doth such substance give", "That I in thy abundance am sufficed,", "And by a part of all thy glory live.", "Look what is best, that best I wish in thee:", "This wish I have; then ten times happy me!"), ("Sonnet 38", "How can my muse want subject to invent,", "While thou dost breathe, that pour'st into my verse", "Thine own sweet argument, too excellent", "For every vulgar paper to rehearse?", "O! give thy self the thanks, if aught in me", "Worthy perusal stand against thy sight;", "For who's so dumb that cannot write to thee,", "When thou thy self dost give invention light?", "Be thou the tenth Muse, ten times more in worth", "Than those old nine which rhymers invocate;", "And he that calls on thee, let him bring forth", "Eternal numbers to outlive long date.", "If my slight muse do please these curious days,", "The pain be mine, but thine shall be the praise."), ("Sonnet 39", "O! how thy worth with manners may I sing,", "When thou art all the better part of me?", "What can mine own praise to mine own self bring?", "And what is't but mine own when I praise thee?", "Even for this, let us divided live,", "And our dear love lose name of single one,", "That by this separation I may give", "That due to thee which thou deserv'st alone.", "O absence! what a torment wouldst thou prove,", "Were it not thy sour leisure gave sweet leave,", "To entertain the time with thoughts of love,", "Which time and thoughts so sweetly doth deceive,", "And that thou teachest how to make one twain,", "By praising him here who doth hence remain."), ("Sonnet 40", "Take all my loves, my love, yea take them all;", "What hast thou then more than thou hadst before?", "No love, my love, that thou mayst true love call;", "All mine was thine, before thou hadst this more.", "Then, if for my love, thou my love receivest,", "I cannot blame thee, for my love thou usest;", "But yet be blam'd, if thou thy self deceivest", "By wilful taste of what thyself refusest.", "I do forgive thy robbery, gentle thief,", "Although thou steal thee all my poverty:", "And yet, love knows it is a greater grief", "To bear love's wrong, than hate's known injury.", "Lascivious grace, in whom all ill well shows,", "Kill me with spites yet we must not be foes."), ("Sonnet 41", "Those pretty wrongs that liberty commits,", "When I am sometime absent from thy heart,", "Thy beauty, and thy years full well befits,", "For still temptation follows where thou art.", "Gentle thou art, and therefore to be won,", "Beauteous thou art, therefore to be assailed;", "And when a woman woos, what woman's son", "Will sourly leave her till he have prevailed?", "Ay me! but yet thou mightst my seat forbear,", "And chide thy beauty and thy straying youth,", "Who lead thee in their riot even there", "Where thou art forced to break a twofold truth:", " Hers by thy beauty tempting her to thee,", " Thine by thy beauty being false to me."), ("Sonnet 42", "That thou hast her it is not all my grief,", "And yet it may be said I loved her dearly;", "That she hath thee is of my wailing chief,", "A loss in love that touches me more nearly.", "Loving offenders thus I will excuse ye:", "Thou dost love her, because thou know'st I love her;", "And for my sake even so doth she abuse me,", "Suffering my friend for my sake to approve her.", "If I lose thee, my loss is my love's gain,", "And losing her, my friend hath found that loss;", "Both find each other, and I lose both twain,", "And both for my sake lay on me this cross:", "But here's the joy; my friend and I are one;", "Sweet flattery! then she loves but me alone."), ("Sonnet 43", "When most I wink, then do mine eyes best see,", "For all the day they view things unrespected;", "But when I sleep, in dreams they look on thee,", "And darkly bright, are bright in dark directed.", "Then thou, whose shadow shadows doth make bright,", "How would thy shadow's form form happy show", "To the clear day with thy much clearer light,", "When to unseeing eyes thy shade shines so!", "How would, I say, mine eyes be blessed made", "By looking on thee in the living day,", "When in dead night thy fair imperfect shade", "Through heavy sleep on sightless eyes doth stay!", "All days are nights to see till I see thee,", "And nights bright days when dreams do show thee me."), ("Sonnet 44", "If the dull substance of my flesh were thought,", "Injurious distance should not stop my way;", "For then despite of space I would be brought,", "From limits far remote, where thou dost stay.", "No matter then although my foot did stand", "Upon the farthest earth removed from thee;", "For nimble thought can jump both sea and land", "As soon as think the place where he would be.", "But ah! thought kills me that I am not thought,", "To leap large lengths of miles when thou art gone,", "But that, so much of earth and water wrought,", "I must attend time's leisure with my moan,", "Receiving nought by elements so slow", "But heavy tears, badges of either's woe."),
DEBUG = False import sys import re import threading import os import time if True: from tkinter import * import tkinter.filedialog as tkFileDialog import tkinter.messagebox as tkMessageBox import tkinter.font as tkFont _next_method_name = '__next__' import Pmw from pymol.wizard import cleanup from pmg_tk.Setting import Setting from pmg_tk.SetEditor import SetEditor from pmg_tk.ColorEditor import ColorEditor from pmg_tk.skins import PMGSkin from .builder import Builder import pymol._gui import traceback root = None def encode(s): # obsolete since removal of py2 return s def split_tk_file_list(pattern): filenames = [] while True: pattern = pattern.strip() if not pattern: break sep = None if pattern[0] == '{': pattern = pattern[1:] sep = '}' a = pattern.split(sep, 1) filenames.append(a[0]) pattern = a[1] if len(a) == 2 else '' return filenames def asksaveasfilename(*args, **kwargs): filename = tkFileDialog.asksaveasfilename(*args, **kwargs) return encode(filename) def askopenfilename(*args, **kwargs): filename = tkFileDialog.askopenfilename(*args, **kwargs) if not filename: return filename multiple = kwargs.get('multiple', 0) if not multiple: filename = [filename] elif not isinstance(filename, (list, tuple)): filename = split_tk_file_list(filename) filename = map(os.path.normpath, filename) filename = map(encode, filename) filename = list(filename) if not multiple: return filename[0] return filename def _darwin_browser_open(url): os.popen("open "+url,'r').read() def darwin_browser_open(url): t = threading.Thread(target=_darwin_browser_open,args=(url,)) t.setDaemon(1) t.start() def _doAsync(self_cmd,cmmd,dirty=0): self_cmd.do(cmmd) # force strict ordering of commands if dirty: self_cmd.dirty() def _def_ext(ext): # platform-specific default extension handling if sys.platform != 'win32': ext = None # default extensions don't work right under X11/Tcl/Tk return ext class Normal(PMGSkin, pymol._gui.PyMOLDesktopGUI): pad = ' ' # extra space in menus appname = 'The PyMOL Molecular Graphics System' appversion = '0.0.0.0' # will be set in __init__ copyright = ('Copyright (C) 2003-%d\n' % (time.localtime().tm_year,) + 'Schrodinger LLC.\n'+ 'All rights reserved.') contactweb = 'http://www.pymol.org' contactemail = '<EMAIL>' # responsible for setup and takedown of the normal skin def _inc_fontsize(self, delta, font): size = font.cget('size') sign = -1 if size < 0 else 1 size = max(5, abs(size) + delta) font.configure(size=size * sign) def inc_fontsize(self, delta=1): for name in tkFont.names(): self._inc_fontsize(delta, tkFont.nametofont(name)) def inc_fontsize_dialog(self): dialog = Toplevel(self.root) grid = dialog kw = {'row': 0, 'sticky': 'w', 'padx': 5, 'pady': 5} col = getattr(iter(range(5)), _next_method_name) Button(grid, text=' - ', command=lambda: self.inc_fontsize(-1)).grid(column=col(), **kw) Button(grid, text=' + ', command=lambda: self.inc_fontsize( 1)).grid(column=col(), **kw) Label(grid, text='All GUI Font Sizes').grid(column=col(), **kw) kw['row'] = 1 col = getattr(iter(range(5)), _next_method_name) Button(grid, text=' - ', command=lambda: self._inc_fontsize(-1, self.fixedfont)).grid(column=col(), **kw) Button(grid, text=' + ', command=lambda: self._inc_fontsize( 1, self.fixedfont)).grid(column=col(), **kw) Label(grid, text='Output Font Size').grid(column=col(), **kw) dialog.title('GUI Font Size') @property def initialdir(self): ''' Be in sync with cd/pwd on the console until the first file has been browsed, then remember the last directory. ''' return self._initialdir or os.getcwd() @initialdir.setter def initialdir(self, value): self._initialdir = value def cd_dialog(self): self.cmd.cd(encode(tkFileDialog.askdirectory( title="Change Working Directory", initialdir=self.initialdir)) or '.', quiet=0) def createDataArea(self): # Create data area where data entry widgets are placed. self.dataArea = self.app.createcomponent('dataarea', (), None, Frame, (self.app._hull,), relief=SUNKEN, bd=1) self.dataArea.pack(side=LEFT, fill=BOTH, expand=YES, padx=1, pady=1) def destroyDataArea(self): self.app.destroycomponent('dataarea') def createCommandArea(self): # Create a command area for application-wide buttons. self.commandFrame = self.app.createcomponent('commandframe', (), None, Frame,(self.app._hull,),relief=SUNKEN,bd=1) self.commandFrame.place(width=500) self.commandFrame.pack(side=TOP, expand=NO, fill=BOTH, padx=1, pady=1) def destroyCommandArea(self): self.app.destroycomponent('commandframe') def createMessageBar(self): self.messageBar = Pmw.MessageBar(self.commandFrame, entry_width = 25, entry_relief='sunken', entry_borderwidth=1) #, labelpos = 'w') self.abortButton=Button(self.commandFrame, text='Abort',highlightthickness=0, command=lambda s=self:self.abort(),padx=0,pady=0) self.abortButton.pack(side=RIGHT,fill=BOTH,expand=YES) self.abortButton=Button(self.commandFrame, text='Rebuild',highlightthickness=0, # state=DISABLED, command=lambda s=self:self.rebuild(),padx=0,pady=0) self.abortButton.pack(side=RIGHT,fill=BOTH,expand=YES) self.messageBar.pack(side=BOTTOM, anchor=W, fill=X, expand=1) self.balloon.configure(statuscommand = self.messageBar.helpmessage) def destroyMessageBar(self): self.messageBar.destroy() def get_current_session_file(self): session_file = self.cmd.get_setting_text("session_file") session_file = session_file.replace("\\","/") # always use unix-like path separators return session_file def set_current_session_file(self, session_file): session_file = session_file.replace("\\","/") # always use unix-like path separators self.cmd.set("session_file",session_file) def confirm_quit(self,e=None): if self.cmd.get_setting_boolean("session_changed"): session_file = self.get_current_session_file() if session_file != '': message = "Save the current session '%s'?"%os.path.split(session_file)[1] else: message = "Save the current session?" check = tkMessageBox._show("Save Session", message, tkMessageBox.QUESTION, tkMessageBox.YESNOCANCEL) if check==tkMessageBox.YES: if self.session_save(): self.quit_app() elif check==tkMessageBox.NO: self.quit_app() else: self.quit_app() def quit_app(self): self.cmd.log_close() self.cmd.quit() # avoid logging this - it is inconvenient... def buttonAdd(self,frame,text,cmmd): newBtn=Button(frame, text=text,highlightthickness=0, command=cmmd,padx=0,pady=0) newBtn.pack(side=LEFT,fill=BOTH,expand=YES) return newBtn def get_view(self): self.cmd.get_view(2, quiet=0) try: str = self.cmd.get_view(3,quiet=1) self.root.clipboard_clear() self.root.clipboard_append(str) self.last_view = str self.app.selection_clear() self.app.selection_own() self.app.selection_handle(lambda a,b,s=self:s.last_view) print(" PyMOL: Viewing matrix copied to clipboard.") except: traceback.print_exc() def createButtons(self): self.buttonArea = Frame(self.root) self.buttonArea.pack(side=TOP, anchor=W) row1 = self.app.createcomponent('row1', (), None, Frame,self.commandFrame,bd=0) row1.pack(side=TOP,fill=BOTH,expand=YES) btn_reset = self.buttonAdd(row1,'Reset',lambda s=self: s.cmd.do("_ reset")) btn_reset = self.buttonAdd(row1,'Zoom',lambda s=self: s.cmd.do("_ zoom animate=-1")) btn_orient = self.buttonAdd(row1,'Orient',lambda s=self: s.cmd.do("_ orient animate=1")) btn_rtrace = self.buttonAdd(row1,'Draw',lambda s=self: s.cmd.do("_ draw")) btn_rtrace = self.buttonAdd(row1,'Ray',lambda s=self: s.cmd.do("_ ray async=1")) row2 = self.app.createcomponent('row2', (), None, Frame,self.commandFrame,bd=0) row2.pack(side=TOP,fill=BOTH,expand=YES) btn_unpick = self.buttonAdd(row2,'Unpick',lambda s=self: s.cmd.do("_ unpick")) btn_hidesele = self.buttonAdd(row2,'Deselect', lambda: self.cmd.do("_ deselect")) btn_reset = self.buttonAdd(row2,'Rock',lambda s=self: s.cmd.do("_ rock")) btn_getview = self.buttonAdd(row2,'Get View',lambda s=self: s.get_view()) # doesn't get logged row3 = self.app.createcomponent('row3', (), None, Frame,self.commandFrame,bd=0) row3.pack(side=TOP,fill=BOTH,expand=YES) btn_rewind = self.buttonAdd(row3,'|<',lambda s=self: s.cmd.do("_ rewind")) btn_back = self.buttonAdd(row3,'<',lambda s=self: s.cmd.do("_ backward")) btn_stop = self.buttonAdd(row3,'Stop',lambda s=self: s.cmd.do("_ mstop")) btn_play = self.buttonAdd(row3,'Play',lambda s=self: s.cmd.do("_ mplay")) btn_forward = self.buttonAdd(row3,'>',lambda s=self: s.cmd.do("_ forward")) btn_last = self.buttonAdd(row3,'>|',lambda s=self: s.cmd.do("_ ending")) btn_ccache = self.buttonAdd(row3,'MClear',lambda s=self: s.cmd.do("_ mclear")) row4 = self.app.createcomponent('row4', (), None, Frame,self.commandFrame,bd=0) row4.pack(side=TOP,fill=BOTH,expand=YES) self.cmdB = self.buttonAdd(row4,'Command', lambda s=self: s.toggleFrame(s.cmdFrame)) self.buildB = self.buttonAdd(row4,'Builder', lambda s=self: s.toggleFrame(s.buildFrame)) self.volB = self.buttonAdd(row4, 'Volume', self.newVolumeFrame) # initialize disabled # self.volB.config(state=DISABLED) def newVolumeFrame(self): volumes = self.cmd.get_names_of_type("object:volume", public=1) if not volumes: return if len(volumes) == 1: self.cmd.volume_panel(volumes[0]) return def callback(): sels = listbox.getcurselection() if sels: self.cmd.volume_panel(sels[0]) window.destroy() title = 'Select a volume object' window = Toplevel(self.app.root) window.title(title) listbox = Pmw.ScrolledListBox(window, labelpos='nw', label_text=title, items=volumes, selectioncommand=callback) listbox.pack(padx=5, pady=5) x, y = window.winfo_pointerxy() window.geometry('+%d+%d' % (x - 20, y - 20)) def destroyButtonArea(self): self.app.destroycomponent('row1') self.app.destroycomponent('row2') self.app.destroycomponent('row3') self.app.destroycomponent('row4') self.buttonArea.destroy() def my_show(self,win,center=1): win.show() def my_withdraw(self,win): if sys.platform!='linux2': win.withdraw() else: win.destroy() def my_activate(self,win,center=1,focus=None): if sys.platform!='linux2': win.activate() else: # autocenter, deiconify, and run mainloop # this is a workaround for a bug in the # interaction between Tcl/Tk and common Linux # window managers (namely KDE/Gnome) which causes # an annoying 1-2 second delay in opening windows! if center: tw = win.winfo_reqwidth()+100 th = win.winfo_reqheight()+100 vw = win.winfo_vrootwidth() vh = win.winfo_vrootheight() x = max(0,(vw-tw)/2) y = max(0,(vh-tw)/2) win.geometry(newGeometry="+%d+%d"%(x,y)) win.deiconify() if focus!=None: focus.focus_set() win.mainloop() def my_deactivate(self,win): if sys.platform!='linux2': win.deactivate() else: # autocenter, deiconify, and run mainloop win.destroy() def doAsync(self,cmmd): t = threading.Thread(target=_doAsync,args=(self.cmd,cmmd)) t.setDaemon(1) t.start() def command_get(self): return self.command.get() def command_set(self, v): return self.command.set(v) def command_set_cursor(self, i): self.entry.icursor(i) def dump(self,event): print(dir(event)) print(event.keysym, event.keycode) def createConsole(self): self.command = StringVar() self.lineCount = 0 self._setup_history() self.cmdFrame = Frame(self.dataArea) self.buildFrame = Builder(self.app, self.dataArea) self.toggleFrame(self.cmdFrame,startup=1) self.entryFrame = Frame(self.cmdFrame) self.entryFrame.pack(side=BOTTOM,expand=NO,fill=X) self.entry_label = Label(self.entryFrame, text="PyMOL>", padx=1, pady=1, justify=RIGHT) self.entry_label.pack(side=LEFT,expand=NO,fill=X) self.entry = Entry(self.entryFrame, justify=LEFT, width=70, textvariable=self.command) self.entry.pack(side=LEFT,expand=YES,fill=X) self.output = Pmw.ScrolledText(self.cmdFrame) self.output.pack(side=TOP, fill=BOTH, expand=YES) self.entry.bind('<Return>', lambda e, s=self: (s.doTypedCommand(s.command.get()), s.command.set(''))) self.entry.bind('<Tab>', lambda e, s=self: s.complete(e)) self.entry.bind('<Up>', lambda e, s=self: s.back()) self.entry.bind('<Down>', lambda e, s=self: s.forward()) self.entry.bind('<Control-Up>', lambda e: self.back_search()) self.root.protocol("WM_DELETE_WINDOW", lambda s=self: s.confirm_quit()) self.log_file = "log.pml" # self.entry = self.app.createcomponent('entry', (), None, # Entry, # (self.dataArea,), # justify=LEFT, # width=50, ### textvariable=self.command) text = self.output.component('text') self.text = text if sys.platform.startswith('win'): self.font = 'lucida console' # only available on windows self.my_fw_font=(self.font,8) self.fixedfont.configure(family=self.font, size=self.my_fw_font[1]) else: text.tk.call('tk','scaling',1) self.font = 'fixed' # should be available on any X11-based platform self.my_fw_font=(self.font,10) if sys.platform == 'darwin': self.fixedfont.configure(size=11) text.configure(width=74) self.balloon.bind(self.entry, '''Command Input Area Get the list of commands by hitting <TAB> Get the list of arguments for one command with a question mark: PyMOL> color ? Read the online help for a command with "help": PyMOL> help color Get autocompletion for many arguments by hitting <TAB> PyMOL> color ye<TAB> (will autocomplete "yellow") ''') if self.app.allow_after: self.output.after(100,self.update_feedback) self.output.after(100,self.update_menus) self.output.pack(side=BOTTOM,expand=YES,fill=BOTH) self.app.bind(self.entry, 'Command Input Area') self.app.bind_all('<F1>',lambda e,s=self: s.cmd.do("cmd._special(1,0,0)")) self.app.bind_all('<F2>',lambda e,s=self: s.cmd.do("cmd._special(2,0,0)")) self.app.bind_all('<F3>',lambda e,s=self: s.cmd.do("cmd._special(3,0,0)")) self.app.bind_all('<F4>',lambda e,s=self: s.cmd.do("cmd._special(4,0,0)")) self.app.bind_all('<F5>',lambda e,s=self: s.cmd.do("cmd._special(5,0,0)")) self.app.bind_all('<F6>',lambda e,s=self: s.cmd.do("cmd._special(6,0,0)")) self.app.bind_all('<F7>',lambda e,s=self: s.cmd.do("cmd._special(7,0,0)")) self.app.bind_all('<F8>',lambda e,s=self: s.cmd.do("cmd._special(8,0,0)")) self.app.bind_all('<F9>',lambda e,s=self: s.cmd.do("cmd._special(9,0,0)")) self.app.bind_all('<F10>',lambda e,s=self: s.cmd.do("cmd._special(10,0,0)")) self.app.bind_all('<F11>',lambda e,s=self: s.cmd.do("cmd._special(11,0,0)")) self.app.bind_all('<F12>',lambda e,s=self: s.cmd.do("cmd._special(12,0,0)")) self.app.bind_all('<Control-F1>',lambda e,s=self: s.cmd.do("cmd._special(1,0,0,2)")) self.app.bind_all('<Control-F2>',lambda e,s=self: s.cmd.do("cmd._special(2,0,0,2)")) self.app.bind_all('<Control-F3>',lambda e,s=self: s.cmd.do("cmd._special(3,0,0,2)")) self.app.bind_all('<Control-F4>',lambda e,s=self: s.cmd.do("cmd._special(4,0,0,2)")) self.app.bind_all('<Control-F5>',lambda e,s=self: s.cmd.do("cmd._special(5,0,0,2)")) self.app.bind_all('<Control-F6>',lambda e,s=self: s.cmd.do("cmd._special(6,0,0,2)")) self.app.bind_all('<Control-F7>',lambda e,s=self: s.cmd.do("cmd._special(7,0,0,2)")) self.app.bind_all('<Control-F8>',lambda e,s=self: s.cmd.do("cmd._special(8,0,0,2)")) self.app.bind_all('<Control-F9>',lambda e,s=self: s.cmd.do("cmd._special(9,0,0,2)")) self.app.bind_all('<Control-F10>',lambda e,s=self: s.cmd.do("cmd._special(10,0,0,2)")) self.app.bind_all('<Control-F11>',lambda e,s=self: s.cmd.do("cmd._special(11,0,0,2)")) self.app.bind_all('<Control-F12>',lambda e,s=self: s.cmd.do("cmd._special(12,0,0,2)")) self.entry.bind('<Prior>',lambda e,s=self: s.cmd.do("cmd._special(104,0,0)")) self.entry.bind('<Next>',lambda e,s=self: s.cmd.do("cmd._special(105,0,0)")) self.entry.bind('<Control-Prior>',lambda e,s=self: s.cmd.do("cmd._special(104,0,0,2)")) self.entry.bind('<Control-Next>',lambda e,s=self: s.cmd.do("cmd._special(105,0,0,2)")) self.entry.bind('<Home>',lambda e,s=self: s.cmd.do("cmd._special(106,0,0)")) self.entry.bind('<End>',lambda e,s=self: s.cmd.do("cmd._special(107,0,0)")) def update_feedback(self): feedback = self.cmd._get_feedback(self.cmd) if feedback!=None: self.text.configure(state='normal') for a in feedback: self.output.insert(END,"\n") self.output.insert(END,a) self.output.see(END) self.lineCount =
about three or more feauture comparision ? For this purpose we can use pair grid plot. Also it seems very cool :) # And we discover one more thing **radius_worst**, **perimeter_worst** and **area_worst** are correlated as it can be seen pair grid plot. We definetely use these discoveries for feature selection. # %% _cell_guid="3bda33fe-daf9-4f74-acbc-d9d3c8fc83d9" _execution_state="idle" _uuid="381ecb55ced22383c96320ced2299f5da37ce4b6" sns.set(style="white") df = x.loc[:, ['radius_worst', 'perimeter_worst', 'area_worst']] g = sns.PairGrid(df, diag_sharey=False) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(plt.scatter) g.map_diag(sns.kdeplot, lw=3) # %% [markdown] _cell_guid="c9ef0921-19bc-4d40-aa72-0bc2333bd4b4" _execution_state="idle" _uuid="f8355f83ac16e414e3b88e67b77d33ef31c3574d" # Up to this point, we make some comments and discoveries on data already. If you like what we did, I am sure swarm plot will open the pub's door :) # %% [markdown] _cell_guid="03abd05a-d67a-4bfc-b951-6394de8c6fc9" _execution_state="idle" _uuid="c3807ef7f6e17b33ae383349bdee7ebfced2a847" # In swarm plot, I will do three part like violin plot not to make plot very complex appearance # %% _cell_guid="ef378d49-8aed-4b9e-96e8-e7d2458fdd89" _execution_state="idle" _uuid="85a2413b70c1b3d69f26a2c122c22d55f930e774" sns.set(style="whitegrid", palette="muted") data_dia = y data = x data_n_2 = (data - data.mean()) / (data.std()) # standardization data = pd.concat([y, data_n_2.iloc[:, 0:10]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name='value') plt.figure(figsize=(10, 10)) tic = time.time() sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) # %% _cell_guid="428c75b6-b5d0-47e3-a568-17b5d1896c0c" _execution_state="idle" _uuid="75dfd5e9e50adceb1d42dd000ce779e79b069cce" data = pd.concat([y, data_n_2.iloc[:, 10:20]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name='value') plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) plt.xticks(rotation=90) # %% _cell_guid="ee64bbc8-0431-482a-b08f-cdca43e41390" _execution_state="idle" _uuid="209e9e9120d6e889696d2d1190e663b5c1885a82" data = pd.concat([y, data_n_2.iloc[:, 20:31]], axis=1) data = pd.melt(data, id_vars="diagnosis", var_name="features", value_name='value') plt.figure(figsize=(10, 10)) sns.swarmplot(x="features", y="value", hue="diagnosis", data=data) toc = time.time() plt.xticks(rotation=90) print("swarm plot time: ", toc - tic, " s") # %% [markdown] _cell_guid="5c9efa5e-4938-477e-ab9a-4b084cc0b870" _execution_state="idle" _uuid="d23e2f9b040a92feb0d7ceb8e01e74c758f5dbc3" # They looks cool right. And you can see variance more clear. Let me ask you a question, **in these three plots which feature looks like more clear in terms of classification.** In my opinion **area_worst** in last swarm plot looks like malignant and benign are seprated not totaly but mostly. Hovewer, **smoothness_se** in swarm plot 2 looks like malignant and benign are mixed so it is hard to classfy while using this feature. # %% [markdown] _cell_guid="c4c68f34-e876-4e5a-a4a7-09c07381425a" _execution_state="idle" _uuid="b46f98eb7ca8d36dc7bf1516895599524bab694d" # **What if we want to observe all correlation between features?** Yes, you are right. The answer is heatmap that is old but powerful plot method. # %% _cell_guid="9e1e7d8a-bbf2-4aab-90e7-78d4c4ccf416" _execution_state="idle" _uuid="0eeb70ddffc8ac332ee076f2f6b2833a6ffddd2d" #correlation map f, ax = plt.subplots(figsize=(18, 18)) sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt='.1f', ax=ax) # %% [markdown] _cell_guid="8ee2e02b-9fc6-42f7-8a83-f6dd77df6c11" _execution_state="idle" _uuid="b4e3afecb204a8262330d22e4539554b2af7975a" # Well, finaly we are in the pub and lets choose our drinks at feature selection part while using heatmap(correlation matrix). # %% [markdown] _cell_guid="6786734a-40a9-46b6-a13a-97ee9c569636" _execution_state="idle" _uuid="84b145dd0c13a3a0d4dd4f9b9fd1bd782e11fcf8" # <a id='5'></a> # ## Feature Selection and Random Forest Classification # Today our purpuse is to try new cocktails. For example, we are finaly in the pub and we want to drink different tastes. Therefore, we need to compare ingredients of drinks. If one of them includes lemon, after drinking it we need to eliminate other drinks which includes lemon so as to experience very different tastes. # %% [markdown] _cell_guid="c7b2df4e-270e-4c94-8789-177f5e90ac46" _execution_state="idle" _uuid="a042df90ef7138d6f101463e93936119176bdc0d" # In this part we will select feature with different methods that are feature selection with correlation, univariate feature selection, recursive feature elimination (RFE), recursive feature elimination with cross validation (RFECV) and tree based feature selection. We will use random forest classification in order to train our model and predict. # %% [markdown] _cell_guid="94d217e3-b2b3-4016-b72e-f8d521d17af7" _execution_state="idle" _uuid="39003c7b75f265bf0826f407433e65923c4dd017" # <a id='6'></a> # ### 1) Feature selection with correlation and random forest classification # %% [markdown] _cell_guid="785bd27a-30d9-4e08-a864-cde7e5630aad" _execution_state="idle" _uuid="1e6ef08c98cb4bf0dedf275e4c08fae743bb3801" # As it can be seen in map heat figure **radius_mean, perimeter_mean and area_mean** are correlated with each other so we will use only **area_mean**. If you ask how i choose **area_mean** as a feature to use, well actually there is no correct answer, I just look at swarm plots and **area_mean** looks like clear for me but we cannot make exact separation among other correlated features without trying. So lets find other correlated features and look accuracy with random forest classifier. # %% [markdown] _cell_guid="eea2971b-b703-4e1b-b048-128501506f33" _execution_state="idle" _uuid="acde9c0b406d72122473f8292d641a9fcb8a8682" # **Compactness_mean, concavity_mean and concave points_mean** are correlated with each other.Therefore I only choose **concavity_mean**. Apart from these, **radius_se, perimeter_se and area_se** are correlated and I only use **area_se**. **radius_worst, perimeter_worst and area_worst** are correlated so I use **area_worst**. **Compactness_worst, concavity_worst and concave points_worst** so I use **concavity_worst**. **Compactness_se, concavity_se and concave points_se** so I use **concavity_se**. **texture_mean and texture_worst are correlated** and I use **texture_mean**. **area_worst and area_mean** are correlated, I use **area_mean**. # # # # %% _cell_guid="ef8d06df-bfcc-4e9a-a3ba-5016ec0c5bd5" _execution_state="idle" _uuid="117f3e858e806f3f26a68dadf3fc89d471010156" drop_list1 = [ 'perimeter_mean', 'radius_mean', 'compactness_mean', 'concave points_mean', 'radius_se', 'perimeter_se', 'radius_worst', 'perimeter_worst', 'compactness_worst', 'concave points_worst', 'compactness_se', 'concave points_se', 'texture_worst', 'area_worst' ] x_1 = x.drop(drop_list1, axis=1) # do not modify x, we will use it later x_1.head() # %% [markdown] _cell_guid="6de99062-7a5a-4b70-879c-54d6c8a4a7e2" _execution_state="idle" _uuid="1ab3852ed7fbeba8718e6722e8a40521033bdf29" # After drop correlated features, as it can be seen in below correlation matrix, there are no more correlated features. Actually, I know and you see there is correlation value 0.9 but lets see together what happen if we do not drop it. # %% _cell_guid="733f0784-4a3f-410c-a220-f98591825f2e" _execution_state="idle" _uuid="eec5424039036e1af43ba0795b76393805308f97" #correlation map f, ax = plt.subplots(figsize=(14, 14)) sns.heatmap(x_1.corr(), annot=True, linewidths=.5, fmt='.1f', ax=ax) # %% [markdown] _cell_guid="f6551fe9-f3a8-4738-ace3-b0427be4aeb4" _execution_state="idle" _uuid="0eaf4ae8e33c2d6352a862953c1fe5eecf46ed27" # Well, we choose our features but **did we choose correctly ?** Lets use random forest and find accuracy according to chosen features. # %% _cell_guid="111af932-96f8-4105-8deb-ba1172edd203" _execution_state="idle" _uuid="c7a6af60a44959f81593d788934a49c9259d8b43" from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, confusion_matrix from sklearn.metrics import accuracy_score # split data train 70 % and test 30 % x_train, x_test, y_train, y_test = train_test_split(x_1, y, test_size=0.3, random_state=42) #random forest classifier with n_estimators=10 (default) clf_rf = RandomForestClassifier(random_state=43) clr_rf = clf_rf.fit(x_train, y_train) ac = accuracy_score(y_test, clf_rf.predict(x_test)) print('Accuracy is: ', ac) cm = confusion_matrix(y_test, clf_rf.predict(x_test)) sns.heatmap(cm, annot=True, fmt="d") # %% [markdown] _cell_guid="1503384d-ca2b-4b52-82b5-f1131b014269" _execution_state="idle" _uuid="21cda299619940f7b22acc9a804ee56bff71d3e7" # Accuracy is almost 95% and as it can be seen in confusion matrix, we make few wrong prediction. # Now lets see other feature selection methods to find better results. # %% [markdown] _cell_guid="3eed9ac3-e601-4e16-85bc-26a1a6fff850" _execution_state="idle" _uuid="decd86422aee506b061c905e8573abb3612734e4" # <a id='7'></a> # ### 2) Univariate feature selection and random forest classification # In univariate feature selection, we will use SelectKBest that removes all but the k highest scoring features. # <http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest> # %% [markdown] _cell_guid="f053659d-9dfe-4858-a220-ef327df3bc36" _execution_state="idle" _uuid="f681583a7b20e4fb86e557b910021a263573cf18" # In this method we need to choose how many features we will use. For example, will k (number of features) be 5 or 10 or 15? The answer is only trying or intuitively. I do not try all combinations but I only choose k = 5 and find best 5 features. # %% _cell_guid="4f43c8bd-48f7-4ed9-aa2d-6aa8a29c0c58" _execution_state="idle" _uuid="8159f9efb106f1219dc4e8c2a340399b88f224d8" jupyter={"outputs_hidden": true} from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # find best scored 5 features select_feature = SelectKBest(chi2, k=5).fit(x_train, y_train) # %% _cell_guid="c9684618-06fe-4b0a-835f-ceea46da397c" _execution_state="idle" _uuid="d9dcd1495cbf33c190a0d1211df4bac5e79bc4e5" print('Score list:', select_feature.scores_) print('Feature list:', x_train.columns) # %% [markdown] _cell_guid="b0c426ef-3072-4f6e-bf24-b5d927a98316" _execution_state="idle" _uuid="0f46ea1a9b1282a377549406d1c5e093380954b6" # Best 5 feature to classify is that **area_mean, area_se, texture_mean, concavity_worst and concavity_mean**. So lets se what happens if we use only these best scored 5 feature. # %% _cell_guid="efc70e04-bc9c-4f93-bcd3-b1d7160d0d5c" _execution_state="idle" _uuid="9a2bd21537f7c600f3c9baaf833c001084d6ba00" x_train_2 = select_feature.transform(x_train) x_test_2 = select_feature.transform(x_test) #random forest classifier with n_estimators=10 (default) clf_rf_2 = RandomForestClassifier() clr_rf_2 = clf_rf_2.fit(x_train_2, y_train) ac_2 = accuracy_score(y_test, clf_rf_2.predict(x_test_2)) print('Accuracy is: ', ac_2) cm_2 = confusion_matrix(y_test, clf_rf_2.predict(x_test_2)) sns.heatmap(cm_2, annot=True, fmt="d") # %% [markdown] _cell_guid="d8888dc1-b50b-46b4-b202-4e33c2630406" _execution_state="idle" _uuid="575005da62c41d12bbb3999b3e26148e12930ce3" # Accuracy is almost 96% and as it can be seen in confusion matrix, we make few wrong prediction. What we did up to now is that we choose features according to correlation matrix and according to selectkBest method. Although we use 5 features in selectkBest method accuracies look similar. # Now lets see other feature selection methods to find better results. # %% [markdown] _cell_guid="702ad2b3-5b12-4d15-93b1-e7d62dfd1040" _execution_state="idle" _uuid="7a3c3050dd9d694e52962c7c712b1ea16aab6fdf" # <a id='8'></a> # ### 3) Recursive feature elimination (RFE) with random forest # <http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html> # Basically, it uses one of the classification methods (random forest in our example), assign weights to each of features. Whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features # %% [markdown] _cell_guid="8a34a801-c568-4598-8a07-85fc20ad0386" _execution_state="idle" _uuid="3ea45c46bb231c767160fe13ad3b21a70f0d0375" # Like previous method, we will use 5 features. However, which 5 features will we use ? We will choose them with RFE method. # %% _cell_guid="8df88bb5-8003-4696-9efe-63ebf8d609a5" _execution_state="idle" _uuid="c384a5240d1c1e9e2a6750e5d218dadaf24d2035" from sklearn.feature_selection import RFE # Create the RFE object and rank each pixel clf_rf_3 = RandomForestClassifier() rfe = RFE(estimator=clf_rf_3, n_features_to_select=5, step=1) rfe = rfe.fit(x_train, y_train) # %% _cell_guid="51d63d0b-4e00-4dc1-816c-809287b60806" _execution_state="idle" _uuid="29ba35a98954d0ae686ce46295179d1f1a27b74c" print('Chosen best 5 feature by rfe:', x_train.columns[rfe.support_]) # %% [markdown] _cell_guid="92aa6013-3e16-4005-ab1b-b7ce53e78bd3" _execution_state="idle" _uuid="ce670f778a661e8ddc3b7b21a43ccb48a551581a" # Chosen 5 best features by rfe is **texture_mean, area_mean, concavity_mean, area_se, concavity_worst**. They are exactly similar with previous (selectkBest) method. Therefore we do not need to calculate accuracy again. Shortly, we can say that we make good feature selection with
test_result: phone_disabled_tooltip = phone_test.tooltip msg = create_pie_menu_message(sim, None, reference_id, None, failure_tooltip=phone_disabled_tooltip(sim)) break if msg is None: shift_held = bool(shift) context = client.create_interaction_context(sim, shift_held=shift_held) can_queue_interactions = sim.queue is None or sim.queue.can_queue_visible_interaction() if can_queue_interactions: pie_menu_action = PieMenuActions.SHOW_PIE_MENU choice_menu = ChoiceMenu(sim) choice_menu.add_potential_aops(None, context, sim.potential_phone_interactions(context)) client.set_choices(choice_menu) else: pie_menu_action = PieMenuActions.INTERACTION_QUEUE_FULL_TOOLTIP choice_menu = None msg = create_pie_menu_message(sim, choice_menu, reference_id, pie_menu_action) distributor = Distributor.instance() distributor.add_event(Consts_pb2.MSG_PHONE_MENU_CREATE, msg, True) with telemetry_helper.begin_hook(writer, TELEMETRY_HOOK_CREATE_PIE_MENU, sim=sim) as hook: hook.write_int('piid', reference_id) hook.write_string('kind', 'phone') return len(msg.items) def create_pie_menu_message(sim, choice_menu, reference_id, pie_menu_action, target=None, failure_tooltip=None, suppress_front_page=False): msg = interaction_protocol.PieMenuCreate() msg.sim = sim.id if sim is not None else 0 msg.client_reference_id = reference_id msg.server_reference_id = 0 msg.supress_social_front_page = suppress_front_page if failure_tooltip is not None: msg.disabled_tooltip = failure_tooltip return msg if not choice_menu: fire_service = services.get_fire_service() if fire_service.fire_is_active: msg.disabled_tooltip = fire_service.INTERACTION_UNAVAILABLE_DUE_TO_FIRE_TOOLTIP() return msg if pie_menu_action == PieMenuActions.INTERACTION_QUEUE_FULL_TOOLTIP: msg.disabled_tooltip = PieMenuActions.INTERACTION_QUEUE_FULL_STR(sim) return msg create_tokens(msg.category_tokens, sim, target, None if target is None else target.get_stored_sim_info()) if choice_menu: resolver = InteractionResolver(None, None, target, next(iter(choice_menu))[1].context) else: resolver = SingleActorAndObjectResolver(sim, target, source='create_pie_menu_message') if sim is not None: (icon_override, parent_override, blacklist_icon_tags, blacklist_parent_tags) = sim.get_actor_new_pie_menu_icon_and_parent_name(None, resolver) else: icon_override = None parent_override = None blacklist_icon_tags = set() blacklist_parent_tags = set() if choice_menu is not None: msg.server_reference_id = choice_menu.revision club_service = services.get_club_service() tutorial_service = services.get_tutorial_service() for (option_id, item) in choice_menu: aop = item.aop aop_affordance = aop.affordance if tutorial_service is not None and not tutorial_service.is_affordance_visible(aop_affordance): continue if sim is None: modifier_tooltip = None else: (modifier_visibility, modifier_tooltip) = sim.test_pie_menu_modifiers(aop_affordance) if not modifier_visibility: continue with ProtocolBufferRollback(msg.items) as item_msg: item_msg.id = aop.aop_id context = item.context allow_global_icon_overrides = not blacklist_icon_tags & aop_affordance.interaction_category_tags allow_global_parent_overrides = not blacklist_parent_tags & aop_affordance.interaction_category_tags logger.debug('%3d: %s' % (option_id, aop)) name = aop_affordance.get_name(aop.target, context, **aop.interaction_parameters) (name_override_tunable, name_override_result) = aop_affordance.get_name_override_tunable_and_result(target=aop.target, context=context) if parent_override is not None: if allow_global_parent_overrides: name = parent_override(sim, name) pie_menu_icon = aop_affordance.get_pie_menu_icon_info(context=context, **aop.interaction_parameters) if icon_override is None else None category_key = item.category_key ignore_pie_menu_icon_override = aop_affordance.is_rally_interaction and pie_menu_icon is not None if name_override_tunable is not None: if name_override_tunable.new_pie_menu_icon is not None: if not ignore_pie_menu_icon_override: pie_menu_icon = name_override_tunable.new_pie_menu_icon(resolver) if name_override_tunable.new_pie_menu_category is not None: category_key = name_override_tunable.new_pie_menu_category.guid64 if name_override_tunable.parent_name is not None: if not (parent_override is None or not allow_global_parent_overrides): name = name_override_tunable.parent_name(sim, name) if _show_interaction_tuning_name: affordance_tuning_name = str(aop_affordance.__name__) name = InteractionCommandsTuning.INTERACTION_TUNING_NAME(name, affordance_tuning_name) item_msg.score = aop.content_score if aop.content_score is not None else 0 if _show_front_page_score: name = InteractionCommandsTuning.INTERACTION_FRONT_PAGE_SCORING(name, str(item_msg.score)) item_msg.loc_string = name tooltip = modifier_tooltip or item.result.tooltip if tooltip is not None: tooltip = aop_affordance.create_localized_string(tooltip, context=context, target=aop.target, **aop.interaction_parameters) item_msg.disabled_text = tooltip else: if tutorial_service is not None: tooltip = tutorial_service.get_disabled_affordance_tooltip(aop_affordance) if tooltip is not None: tooltip = aop_affordance.create_localized_string(tooltip, context=context, target=aop.target, **aop.interaction_parameters) item_msg.disabled_text = tooltip else: success_tooltip = aop_affordance.get_display_tooltip(override=name_override_tunable, context=context, target=aop.target, **aop.interaction_parameters) if success_tooltip is not None: item_msg.success_tooltip = success_tooltip if icon_override is not None and allow_global_icon_overrides: item_msg.icon_infos.append(create_icon_info_msg(IconInfoData(icon_resource=icon_override))) elif pie_menu_icon is not None: item_msg.icon_infos.append(create_icon_info_msg(pie_menu_icon)) if category_key is not None: item_msg.category_key = category_key if item.result.icon is not None: item_msg.icon_infos.append(create_icon_info_msg(IconInfoData(icon_resource=item.result.icon))) if aop.show_posture_incompatible_icon: item_msg.icon_infos.append(create_icon_info_msg(IconInfoData(icon_resource=PieMenuActions.POSTURE_INCOMPATIBLE_ICON))) if club_service is not None and sim is not None: (encouragement, _) = club_service.get_interaction_encouragement_status_and_rules_for_sim_info(sim.sim_info, aop) if encouragement == ClubRuleEncouragementStatus.ENCOURAGED: item_msg.icon_infos.append(create_icon_info_msg(IconInfoData(icon_resource=club_tuning.ClubTunables.PIE_MENU_INTERACTION_ENCOURAGED_ICON))) elif encouragement == ClubRuleEncouragementStatus.DISCOURAGED: item_msg.icon_infos.append(create_icon_info_msg(IconInfoData(icon_resource=club_tuning.ClubTunables.PIE_MENU_INTERACTION_DISCOURAGED_ICON))) handle_pie_menu_item_coloring(item_msg, item, sim, aop, name_override_result) for visual_target in aop_affordance.visual_targets_gen(aop.target, context, **aop.interaction_parameters): if visual_target is not None: item_msg.target_ids.append(visual_target.id) item_msg.pie_menu_priority = aop_affordance.pie_menu_priority return msg def handle_pie_menu_item_coloring(item_msg, item, sim, choice, name_override_result): mood_result = None mood_intensity_result = None away_action = choice.interaction_parameters.get('away_action') away_action_sim_info = choice.interaction_parameters.get('away_action_sim_info') if away_action is not None: away_action_sim_current_mood = away_action_sim_info.get_mood() if away_action_sim_current_mood in away_action.mood_list: mood_result = away_action_sim_current_mood mood_intensity_result = away_action_sim_info.get_mood_intensity() elif item.result.influence_by_active_mood or name_override_result.influence_by_active_mood: mood_result = sim.get_mood() mood_intensity_result = sim.get_mood_intensity() if mood_result is not None: item_msg.mood = mood_result.guid64 item_msg.mood_intensity = mood_intensity_result @sims4.commands.Command('interactions.select', command_type=sims4.commands.CommandType.Live) def select_choice(choice_id:int, reference_id:int=0, _connection=None): client = services.client_manager().get(_connection) return client.select_interaction(choice_id, reference_id) @sims4.commands.Command('interactions.queue') def display_queue(sim_id:int=None, _connection=None): output = Output(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('Invalid Sim id {0:08x}'.format(sim_id)) return False output('Super Interaction State: (num = {0})'.format(len(sim.si_state))) for si in sim.si_state.sis_actor_gen(): output(' * {}'.format(str(si))) for subi in si.queued_sub_interactions_gen(): output(' - {}'.format(str(subi))) output('Interaction Queue State: (num = {0})'.format(len(sim.queue))) for si in sim.queue: output(' * {}'.format(str(si))) output('Running: %s' % sim.queue.running) @sims4.commands.Command('qa.interactions.list', command_type=sims4.commands.CommandType.Automation) def display_queue_automation(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('SimInteractionData; SimId:None') return False if sim.queue.running is None: output('SimInteractionData; SimId:%d, SICount:%d, RunningId:None' % (sim.id, len(sim.si_state))) else: output('SimInteractionData; SimId:%d, SICount:%d, RunningId:%d, RunningClass:%s' % (sim.id, len(sim.si_state), sim.queue.running.id, sim.queue.running.__class__.__name__)) for si in sim.si_state.sis_actor_gen(): output('SimSuperInteractionData; Id:%d, Class:%s' % (si.id, si.__class__.__name__)) @sims4.commands.Command('interactions.reevaluate_head') def reevaluate_head(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance() if sim_info is not None else None if sim is None: output('SimInteractionData; SimId:None') return False for interaction in sim.queue: if interaction.is_super: interaction.transition = None sim.queue._get_head() @sims4.commands.Command('qa.interactions.enable_sim_interaction_logging', command_type=sims4.commands.CommandType.Automation) def enable_sim_interaction_logging(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('SimInteractionToggleOn; SimId:None') return False sim.interaction_logging = True output('[AreaInstanceInteraction] SimInteractionToggleOn; SimId:%d, Logging:%d' % (sim.id, sim.interaction_logging)) @sims4.commands.Command('qa.interactions.disable_sim_interaction_logging', command_type=sims4.commands.CommandType.Automation) def disable_sim_interaction_logging(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('SimInteractionToggleOff; SimId:None') return False sim.interaction_logging = False output('[AreaInstanceInteraction] SimInteractionToggleOff; SimId:%d, Logging:%d' % (sim.id, sim.interaction_logging)) @sims4.commands.Command('qa.interactions.enable_sim_transition_path_logging', command_type=sims4.commands.CommandType.Automation) def enable_sim_transition_path_logging(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('SimTransitionPathToggleOn; SimId:None') return False sim.transition_path_logging = True output('[AreaInstanceInteraction] SimTransitionPathToggleOn; SimId:%d, Logging:%d' % (sim.id, sim.interaction_logging)) @sims4.commands.Command('qa.interactions.disable_sim_transition_path_logging', command_type=sims4.commands.CommandType.Automation) def disable_sim_transition_path_logging(sim_id:int=None, _connection=None): output = sims4.commands.AutomationOutput(_connection) if sim_id is None: client = services.client_manager().get(_connection) sim = _active_sim(client) else: sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance(allow_hidden_flags=ALL_HIDDEN_REASONS) if sim_info is not None else None if sim is None: output('SimTransitionPathToggleOff; SimId:None') return False sim.transition_path_logging = False output('[AreaInstanceInteraction] SimTransitionPathToggleOff; SimId:%d, Logging:%d' % (sim.id, sim.interaction_logging)) @sims4.commands.Command('interactions.display_outcomes') def display_outcomes(sim_id:int=None, _connection=None): sim_info = services.sim_info_manager().get(sim_id) sim = sim_info.get_sim_instance() if sim_info is not None else None client = services.client_manager().get(_connection) if sim is None: sim = _active_sim(client) for si in sim.si_state.sis_actor_gen(): sims4.commands.output('Outcome for {} = {}'.format(si.affordance, si.global_outcome_result), _connection) def send_reject_response(client, sim, context_handle, cancel_reason): reject_msg = protocols.ServerResponseFailed() reject_msg.handle = context_handle reject_msg.reason = cancel_reason distributor = Distributor.instance() distributor.add_op_with_no_owner(GenericProtocolBufferOp(Operation.SIM_SERVER_RESPONSE_FAILED, reject_msg)) logger.debug(' sending reject msg') def cancel_common(interaction_id:int, context_handle:int=None, _connection=None, user_canceled=False): client = services.client_manager().get(_connection) sim = _active_sim(client) interaction = sim.find_interaction_by_id(interaction_id) if interaction is None: continuation = sim.find_continuation_by_id(interaction_id) if continuation is not None: continuation.cancel_user(cancel_reason_msg='User canceled the interaction.') return True if interaction.cancel_user(cancel_reason_msg='Command interactions.cancel_si'): return True if context_handle is not None: send_reject_response(client, sim, context_handle, protocols.ServerResponseFailed.REJECT_CLIENT_CANCEL_SUPERINTERACTION) return False @sims4.commands.Command('interactions.force_inertial', command_type=sims4.commands.CommandType.Automation) def interaction_force_inertial(opt_target:OptionalTargetParam=None, _connection=None): sim = get_optional_target(opt_target, _connection) if sim is None: return False for si in sim.si_state: si.force_inertial = True @sims4.commands.Command('interactions.cancel', command_type=sims4.commands.CommandType.Live) def cancel_mixer_interaction(interaction_id:int, mixer_id:int, server_ref:int, context_handle:int=None, _connection=None): logger.debug('cancel_sub_interaction {0}', interaction_id) client = services.client_manager().get(_connection) sim = _active_sim(client) interaction = sim.find_sub_interaction_by_aop_id(interaction_id, mixer_id) if interaction is not None and sim.queue.running != interaction: return interaction.cancel_user(cancel_reason_msg='Command interactions.cancel') return False @sims4.commands.Command('interactions.cancel_si', command_type=sims4.commands.CommandType.Live) def cancel_super_interaction(super_interaction_id:int, context_handle:int=None, _connection=None): logger.debug('cancel_super_interaction {0}', super_interaction_id) if False and _mixer_lock: return False return cancel_common(super_interaction_id, context_handle, _connection, user_canceled=True) @sims4.commands.Command('interactions.run_first') def first_interaction(target_id:int=None, _connection=None): target = None if target_id is not None: target = services.object_manager().get(target_id) client = services.client_manager().get(_connection) sim = _active_sim(client) if target is None: target = sim context = client.create_interaction_context(sim) affordances = list(target.potential_interactions(context)) if affordances: logger.debug('Running affordance: {0}', affordances[0]) return affordances[0].test_and_execute(context) return False @sims4.commands.Command('interactions.push', command_type=sims4.commands.CommandType.Live) def push_interaction(affordance:TunableInstanceParam(sims4.resources.Types.INTERACTION), opt_target:RequiredTargetParam=None, opt_sim:OptionalTargetParam=None, priority=Priority.High, _connection=None): target = opt_target.get_target() if opt_target is not None else None sim = get_optional_target(opt_sim, _connection) client = services.client_manager().get(_connection) priority = Priority(priority) if not sim.queue.can_queue_visible_interaction(): sims4.commands.output('Interaction queue is full, cannot add anymore interactions.', _connection) return False else: context = InteractionContext(sim, InteractionContext.SOURCE_PIE_MENU, priority, client=client, pick=None) result = sim.push_super_affordance(affordance, target, context) if not result: output = sims4.commands.Output(_connection) output('Failed to push: {}'.format(result)) return False return True @sims4.commands.Command('interactions.push_all_sims') def push_interaction_on_all_sims(affordance:TunableInstanceParam(sims4.resources.Types.INTERACTION), opt_target:RequiredTargetParam=None, _connection=None): target = opt_target.get_target() if opt_target is not None else None client = services.client_manager().get(_connection) for sim_info in client.selectable_sims: sim = sim_info.get_sim_instance() if sim is not None: context = InteractionContext(sim, InteractionContext.SOURCE_PIE_MENU, Priority.High, client=client, pick=None) sim.push_super_affordance(affordance, target, context)
objs_dict['float'].transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_full_ks(data_full_ks): objs_dict, X, X_expected = data_full_ks X_new = objs_dict['object'].transform(X) X_new = objs_dict['int'].transform(X_new) X_new = objs_dict['float'].transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_full_pd_np(data_full): objs_dict, X, X_expected = data_full X_new = objs_dict['object'].transform_numpy(X.to_numpy()) X_new = objs_dict['int'].transform_numpy(X_new) X_new = objs_dict['float'].transform_numpy(X_new) X_new = pd.DataFrame(X_new, columns=['A', 'B', 'C', 'D', 'E', 'F']) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_full_ks_np(data_full_ks): objs_dict, X, X_expected = data_full_ks X_new = objs_dict['object'].transform_numpy(X.to_numpy()) X_new = objs_dict['int'].transform_numpy(X_new) X_new = objs_dict['float'].transform_numpy(X_new) X_new = pd.DataFrame(X_new, columns=['A', 'B', 'C', 'D', 'E', 'F']) assert_frame_equal(X_new, X_expected.astype(object)) def test_imputers_columns_pd(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform(X) X_new = obj_int_B.transform(X_new) X_new = obj_float_C.transform(X_new) X_new = obj_float_D.transform(X_new) X_new = obj_object_E.transform(X_new) X_new = obj_object_F.transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_imputers_columns_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform(X) X_new = obj_int_B.transform(X_new) X_new = obj_float_C.transform(X_new) X_new = obj_float_D.transform(X_new) X_new = obj_object_E.transform(X_new) X_new = obj_object_F.transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_imputers_columns_pd_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform_numpy(X.to_numpy()) X_new = obj_int_B.transform_numpy(X_new) X_new = obj_float_C.transform_numpy(X_new) X_new = obj_float_D.transform_numpy(X_new) X_new = obj_object_E.transform_numpy(X_new) X_new = obj_object_F.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) @pytest.mark.koalas def test_imputers_columns_ks_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform_numpy(X.to_numpy()) X_new = obj_int_B.transform_numpy(X_new) X_new = obj_float_C.transform_numpy(X_new) X_new = obj_float_D.transform_numpy(X_new) X_new = obj_object_E.transform_numpy(X_new) X_new = obj_object_F.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) def test_imputers_num_pd(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform(X) X_new = obj_object.transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_imputers_num_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform(X) X_new = obj_object.transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_imputers_num_pd_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform_numpy(X.to_numpy()) X_new = obj_object.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) @pytest.mark.koalas def test_imputers_num_ks_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform_numpy(X.to_numpy()) X_new = obj_object.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) def test_num_np(): X = pd.DataFrame({'A': [0, 1, np.nan]}) obj = NumericsImputer(strategy='mean').fit(X) assert obj.transform_numpy(X.to_numpy()).tolist() == [[0.0], [1.0], [0.5]] def test_imputers_stategy(): X = pd.DataFrame([]) with pytest.raises(TypeError): _ = FloatImputer(strategy=0) with pytest.raises(TypeError): _ = NumericsImputer(strategy=0) with pytest.raises(TypeError): _ = IntImputer(strategy='constant', value='a').fit(X) with pytest.raises(TypeError): _ = FloatImputer(strategy='constant', value='a').fit(X) with pytest.raises(TypeError): _ = NumericsImputer(strategy='constant', value='a').fit(X) with pytest.raises(TypeError): _ = ObjectImputer(strategy='constant', value=1).fit(X) with pytest.raises(ValueError): _ = IntImputer(strategy='').fit(X) with pytest.raises(ValueError): _ = FloatImputer(strategy='').fit(X) with pytest.raises(ValueError): _ = NumericsImputer(strategy='').fit(X) with pytest.raises(ValueError): _ = ObjectImputer(strategy='').fit(X) with pytest.raises(ValueError): _ = FloatImputer(strategy='most_frequent').fit(X) with pytest.raises(ValueError): _ = NumericsImputer(strategy='most_frequent').fit(X) with pytest.raises(ValueError): _ = ObjectImputer(strategy='mean').fit(X) with pytest.raises(ValueError): _ = ObjectImputer(strategy='median').fit(X) with pytest.raises(ValueError): _ = ObjectImputer(strategy='constant').fit(X) with pytest.raises(ValueError): _ = FloatImputer(strategy='constant').fit(X) with pytest.raises(ValueError): _ = NumericsImputer(strategy='constant').fit(X) with pytest.raises(ValueError): _ = IntImputer(strategy='constant').fit(X) with pytest.raises(ValueError): _ = ObjectImputer(strategy='abc').fit(X) def test_compute_stategy(): with pytest.raises(ValueError): X = pd.DataFrame( np.arange(9).reshape(3, 3) + .1, columns=list('qwe')) X.iloc[:, 0] = np.nan _ = FloatImputer(strategy='mean').fit(X) def test_imputers_input_data(): with pytest.raises(TypeError): _ = FloatImputer(strategy='mean').fit(np.array([[]])) with pytest.raises(TypeError): _ = IntImputer(strategy='most_frequent').fit(np.array([[]])) with pytest.raises(TypeError): _ = ObjectImputer(strategy='most_frequent').fit(np.array([[]])) with pytest.raises(TypeError): _ = ObjectImputer(strategy='most_frequent', columns='a') def test_imputers_transform_input_data(): with pytest.raises(TypeError): _ = FloatImputer(strategy='mean').fit_transform(np.array([])) with pytest.raises(TypeError): _ = IntImputer(strategy='most_frequent').fit( np.array([])).transform(np.array([])) with pytest.raises(TypeError): _ = ObjectImputer(strategy='most_frequent').transform(np.array([])) def test_warnings_empty_columns(data): objs_dict, X_dict, X_expected_dict = data with pytest.warns(Warning): obj = FloatImputer(strategy='mean') obj.fit(X_dict['int']) with pytest.warns(Warning): obj = IntImputer(strategy='mean') obj.fit(X_dict['float']) with pytest.warns(Warning): obj = ObjectImputer(strategy='most_frequent') obj.fit(X_dict['int']) with pytest.warns(Warning): obj = NumericsImputer(strategy='mean') obj.fit(X_dict['object']) def test_empty_columns_float(): X = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) obj = FloatImputer(strategy='mean') _ = obj.fit(X) assert_frame_equal(obj.transform(X.copy()), X) assert np.allclose(obj.transform_numpy(X.to_numpy()), X.to_numpy(), equal_nan=True) def test_empty_columns_int(): X = pd.DataFrame({'A': [0.1, 1, 1, np.nan], 'B': [3.1, 4, 4, np.nan]}) obj = IntImputer(strategy='mean') _ = obj.fit(X) assert_frame_equal(obj.transform(X.copy()), X) assert np.allclose(obj.transform_numpy(X.to_numpy()), X.to_numpy(), equal_nan=True) def test_empty_columns_object(): X = pd.DataFrame({'A':
<filename>gpyrn/covfunc.py """ Covariance functions to use on the GPRN """ from gpyrn.meanfunc import array_input import numpy as np class covFunction(): """ A base class for covariance functions (kernels) used for nodes and weights in the GPRN. """ def __init__(self, *args): """ Puts all kernel arguments in an array pars """ self.pars = np.array(args, dtype=float) # self.pars[self.pars > 1e50] = 1e50 def __call__(self, r, t1=None, t2=None): """ r = t - t' Not sure if this is a good approach since will make our life harder when defining certain non-stationary kernels, e.g linear kernel. """ raise NotImplementedError def __repr__(self): """ Representation of each kernel instance """ if hasattr(self, '_param_names'): pars = ', '.join( [f'{p}={v}' for p, v in zip(self._param_names, self.pars)]) else: pars = ', '.join(map(str, self.pars)) return f"{self.__class__.__name__}({pars})" def get_parameters(self): return self.pars @array_input def set_parameters(self, p): msg = f'too few parameters for kernel {self.__class__.__name__}' assert len(p) >= self.pars.size, msg if len(p) > self.pars.size: p = list(p) self.pars = np.array(p[:self.pars.size], dtype=float) for _ in range(self.pars.size): p.pop(0) return np.array(p) else: self.pars = p def __add__(self, b): return Sum(self, b) def __radd__(self, b): return self.__add__(b) def __mul__(self, b): return Multiplication(self, b) def __rmul__(self, b): return self.__mul__(b) class _operator(covFunction): """ To allow operations between two kernels """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 self.kerneltype = 'complex' self.pars = np.r_[self.k1.pars, self.k2.pars] class Sum(_operator): """ To allow the sum of kernels """ def __call__(self, r): return self.k1(r) + self.k2(r) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Multiplication(_operator): """ To allow the multiplication of kernels """ def __call__(self, r): return self.k1(r) * self.k2(r) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) ##### Constant ################################################################# class Constant(covFunction): """ This kernel returns the square of its constant argument c Parameters ---------- c: float Constant """ _param_names = 'c', _tag = 'C' def __init__(self, c): super(Constant, self).__init__(c) def __call__(self, r): c = self.pars[0] return np.full_like(r, c**2) ##### White Noise ############################################################## class WhiteNoise(covFunction): """ Definition of the white noise kernel. Parameters ---------- wn: float White noise amplitude """ _param_names = 'wn', _tag = 'WN' def __init__(self, wn): super(WhiteNoise, self).__init__(wn) def __call__(self, r): wn = self.pars[0] if r.ndim == 2 and r[0, :].shape == r[:, 0].shape: return wn**2 * np.diag(np.diag(np.ones_like(r))) return np.full_like(r, wn**2) ##### Squared exponential ###################################################### class SquaredExponential(covFunction): """ Squared Exponential kernel, also known as radial basis function or RBF kernel in other works. Parameters ---------- theta: float Amplitude ell: float Length-scale """ _param_names = 'theta', 'ell' _tag = 'SE' def __init__(self, theta, ell): super(SquaredExponential, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-0.5 * r**2 / self.pars[1]**2) ##### Periodic ################################################################# class Periodic(covFunction): """ Definition of the periodic kernel. Parameters ---------- theta: float Amplitude P: float Period lp: float Lenght scale """ _param_names = 'theta', 'P', 'lp' _tag = 'P' def __init__(self, theta, P, lp): super(Periodic, self).__init__(theta, P, lp) def __call__(self, r): θ, P, lp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / lp**2) ##### Quasi Periodic ########################################################### class QuasiPeriodic(covFunction): """ This kernel is the product between the exponential sine squared kernel and the squared exponential kernel, commonly known as the quasi-periodic kernel Parameters ---------- theta: float Amplitude le: float Evolutionary time scale P: float Kernel periodicity lp: float Length scale of the periodic component """ _param_names = 'theta', 'le', 'P', 'lp' _tag = 'QP' def __init__(self, theta, le, P, lp): super(QuasiPeriodic, self).__init__(theta, le, P, lp) def __call__(self, r): θ, le, P, lp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / lp**2 - \ r**2 / (2 * le**2)) ##### Rational Quadratic ####################################################### class RationalQuadratic(covFunction): """ Definition of the rational quadratic kernel. Parameters ---------- theta: float Amplitude of the kernel alpha: float Amplitude of large and small scale variations ell: float Characteristic lenght scale to define the kernel "smoothness" """ _param_names = 'theta', 'alpha', 'ell' _tag = 'RQ' def __init__(self, amplitude, alpha, ell): super(RationalQuadratic, self).__init__(theta, alpha, ell) def __call__(self, r): θ, α, ell = self.pars return θ**2 * (1 + 0.5 * r**2 / (α * ell**2))**(-α) ##### RQP kernel ############################################################### class RQP(covFunction): """ Definition of the product between the exponential sine squared kernel and the rational quadratic kernel that we called RQP kernel. If I am thinking this correctly then this kernel should tend to the QuasiPeriodic kernel as alpha increases, although I am not sure if we can say that it tends to the QuasiPeriodic kernel as alpha tends to infinity. Parameters ---------- theta: float Amplitude alpha: float Alpha of the rational quadratic kernel ell_e: float Aperiodic length scale P: float Periodic repetitions of the kernel ell_p: float Periodic length scale """ _param_names = 'theta', 'alpha', 'ell_e', 'ell_p', 'P' _tag = 'RQP' def __init__(self, theta, alpha, ell_e, P, ell_p): super(RQP, self).__init__(theta, alpha, ell_e, P, ell_p) def __call__(self, r): θ, α, ℓe, P, ℓp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / ℓp**2) * (1 + r**2 / (2 * α * ℓe**2))**(-α) ##### Cosine ################################################################### class COSINE(covFunction): """ Definition of the cosine kernel Parameters ---------- theta: float Amplitude P: float Period """ _param_names = 'theta', 'P' _tag = 'COS' def __init__(self, theta, P): super(COSINE, self).__init__(theta, P) def __call__(self, r): return self.pars[0]**2 * np.cos(2 * np.pi * np.abs(r) / self.pars[1]) ##### Laplacian ############################################################## class Laplacian(covFunction): """ Definition of the Laplacian kernel Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'LAP' def __init__(self, theta, ell): super(Laplacian, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-np.abs(r) / self.pars[1]) ##### Exponential ############################################################## class Exponential(covFunction): """ Definition of the exponential kernel Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'EXP' def __init__(self, theta, ell): super(Exponential, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-np.abs(r) / self.pars[1]) ##### Matern 3/2 ############################################################### class Matern32(covFunction): """ Definition of the Matern 3/2 kernel. This kernel arise when setting v=3/2 in the matern family of kernels Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'M32' def __init__(self, theta, ell): super(Matern32, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * ( 1.0 + np.sqrt(3.0) * np.abs(r) / self.pars[1]) * np.exp( -np.sqrt(3.0) * np.abs(r) / self.pars[1]) #### Matern 5/2 ################################################################ class Matern52(covFunction): """ Definition of the Matern 5/2 kernel. This kernel arise when setting v=5/2 in the matern family of kernels Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'M52' def __init__(self, theta, ell): super(Matern52, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * ( 1.0 + (3 * np.sqrt(5) * self.pars[1] * np.abs(r) + 5 * np.abs(r)**2) / (3 * self.pars[1]**2)) * np.exp( -np.sqrt(5.0) * np.abs(r) / self.pars[1]) #### Linear #################################################################### class Linear(covFunction): """ Definition of the Linear kernel Parameters ---------- theta: float Amplitude (should we even have an amplitude???) c: float Constant """ def __init__(self, theta, c): super(Linear, self).__init__(theta, c) self.tag = 'LIN' self.theta = theta self.c = c def __call__(self, r, t1, t2): return (t1 - self.pars[1]) * (t2 - self.pars[1]) ##### Gamma-exponential ######################################################## class GammaExp(covFunction): """ Definition of the gamma-exponential kernel Parameters ---------- theta: float Amplitude gamma: float Shape parameter ( 0 < gamma <= 2) l: float Lenght scale Returns ------- """ def __init__(self, theta, gamma, l): super(GammaExp, self).__init__(theta, gamma, l) self.tag = 'GammaExp' self.theta = theta self.gamma = gamma self.l = l def __call__(self, r): return self.pars[0]**2 *np.exp(-(np.abs(r)/self.pars[2])**self.pars[1]) ##### Polynomial ############################################################### class Polynomial(covFunction): """ Definition of the polynomial kernel Parameters ---------- theta: float Amplitude ??? a: float Real value > 0 b: foat Real value >= 0 c: int Integer value wn: float White noise amplitude Returns ------- """ def __init__(self, theta, a, b, c): super(Polynomial, self).__init__(theta, a, b, c) self.tag = 'POLY' self.theta = theta self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return (self.pars[1] * t1 * t2 + self.pars[2])**self.pars[3] ##### Piecewise ################################################################ class Piecewise(covFunction): """ WARNING: EXPERIMENTAL KERNEL Parameters ---------- """ def __init__(self, eta): super(Piecewise, self).__init__(eta) self.eta = eta self.type = 'unknown' def __call__(self,
return self.copy() else: result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbz(1, other, result) __radd__ = __add__ def __sub__(self, other): """Substract an array from an array or a scalar from an array.""" if isinstance(other, GPUArray): result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbyz(1, other, -1, result) else: if other == 0: return self.copy() else: # create a new array for the result result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbz(1, -other, result) def __rsub__(self, other): """Substracts an array by a scalar or an array:: x = n - self """ # other must be a scalar result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbz(-1, other, result) def __iadd__(self, other): if isinstance(other, GPUArray): return self._axpbyz(1, other, 1, self) else: return self._axpbz(1, other, self) def __isub__(self, other): if isinstance(other, GPUArray): return self._axpbyz(1, other, -1, self) else: return self._axpbz(1, -other, self) def __neg__(self): result = self._new_like_me() return self._axpbz(-1, 0, result) def __mul__(self, other): if isinstance(other, GPUArray): result = self._new_like_me(_get_common_dtype(self, other)) return self._elwise_multiply(other, result) else: result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbz(other, 0, result) def __rmul__(self, scalar): result = self._new_like_me(_get_common_dtype(self, scalar)) return self._axpbz(scalar, 0, result) def __imul__(self, other): if isinstance(other, GPUArray): return self._elwise_multiply(other, self) else: return self._axpbz(other, 0, self) def __div__(self, other): """Divides an array by an array or a scalar:: x = self / n """ if isinstance(other, GPUArray): result = self._new_like_me(_get_common_dtype(self, other)) return self._div(other, result) else: if other == 1: return self.copy() else: # create a new array for the result result = self._new_like_me(_get_common_dtype(self, other)) return self._axpbz(1/other, 0, result) __truediv__ = __div__ def __rdiv__(self, other): """Divides an array by a scalar or an array:: x = n / self """ # create a new array for the result result = self._new_like_me(_get_common_dtype(self, other)) return self._rdiv_scalar(other, result) __rtruediv__ = __rdiv__ def __idiv__(self, other): """Divides an array by an array or a scalar:: x /= n """ if isinstance(other, GPUArray): return self._div(other, self) else: if other == 1: return self else: return self._axpbz(1/other, 0, self) __itruediv__ = __idiv__ def fill(self, value, stream=None): """fills the array with the specified value""" func = elementwise.get_fill_kernel(self.dtype) func.prepared_async_call(self._grid, self._block, stream, value, self.gpudata, self.mem_size) return self def bind_to_texref(self, texref, allow_offset=False): return texref.set_address(self.gpudata, self.nbytes, allow_offset=allow_offset) / self.dtype.itemsize def bind_to_texref_ext(self, texref, channels=1, allow_double_hack=False, allow_complex_hack=False, allow_offset=False): if not self.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") if self.dtype == np.float64 and allow_double_hack: if channels != 1: raise ValueError( "'fake' double precision textures can " "only have one channel") channels = 2 fmt = drv.array_format.SIGNED_INT32 read_as_int = True elif self.dtype == np.complex64 and allow_complex_hack: if channels != 1: raise ValueError( "'fake' complex64 textures can " "only have one channel") channels = 2 fmt = drv.array_format.UNSIGNED_INT32 read_as_int = True elif self.dtype == np.complex128 and allow_complex_hack: if channels != 1: raise ValueError( "'fake' complex128 textures can " "only have one channel") channels = 4 fmt = drv.array_format.SIGNED_INT32 read_as_int = True else: fmt = drv.dtype_to_array_format(self.dtype) read_as_int = np.integer in self.dtype.type.__mro__ offset = texref.set_address(self.gpudata, self.nbytes, allow_offset=allow_offset) texref.set_format(fmt, channels) if read_as_int: texref.set_flags(texref.get_flags() | drv.TRSF_READ_AS_INTEGER) return offset/self.dtype.itemsize def __len__(self): """Return the size of the leading dimension of self.""" if len(self.shape): return self.shape[0] else: return TypeError("scalar has no len()") def __abs__(self): """Return a `GPUArray` of the absolute values of the elements of `self`. """ result = self._new_like_me() if self.dtype == np.float32: fname = "fabsf" elif self.dtype == np.float64: fname = "fabs" else: fname = "abs" if issubclass(self.dtype.type, np.complexfloating): from pytools import match_precision out_dtype = match_precision(np.dtype(np.float64), self.dtype) result = self._new_like_me(out_dtype) else: out_dtype = self.dtype func = elementwise.get_unary_func_kernel(fname, self.dtype, out_dtype=out_dtype) func.prepared_async_call(self._grid, self._block, None, self.gpudata, result.gpudata, self.mem_size) return result def _pow(self, other, new): """ Do the pow operator. with new, the user can choose between ipow or just pow """ if isinstance(other, GPUArray): if not self.flags.forc or not other.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") assert self.shape == other.shape if new: result = self._new_like_me(_get_common_dtype(self, other)) else: result = self func = elementwise.get_pow_array_kernel( self.dtype, other.dtype, result.dtype) func.prepared_async_call(self._grid, self._block, None, self.gpudata, other.gpudata, result.gpudata, self.mem_size) return result else: if not self.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") if new: result = self._new_like_me() else: result = self func = elementwise.get_pow_kernel(self.dtype) func.prepared_async_call(self._grid, self._block, None, other, self.gpudata, result.gpudata, self.mem_size) return result def __pow__(self, other): """pow function:: example: array = pow(array) array = pow(array,4) array = pow(array,array) """ return self._pow(other,new=True) def __ipow__(self, other): """ipow function:: example: array **= 4 array **= array """ return self._pow(other,new=False) def reverse(self, stream=None): """Return this array in reversed order. The array is treated as one-dimensional. """ if not self.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") result = self._new_like_me() func = elementwise.get_reverse_kernel(self.dtype) func.prepared_async_call(self._grid, self._block, stream, self.gpudata, result.gpudata, self.mem_size) return result def astype(self, dtype, stream=None): if not self.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") if dtype == self.dtype: return self.copy() result = self._new_like_me(dtype=dtype) func = elementwise.get_copy_kernel(dtype, self.dtype) func.prepared_async_call(self._grid, self._block, stream, result.gpudata, self.gpudata, self.mem_size) return result def reshape(self, *shape, **kwargs): """Gives a new shape to an array without changing its data.""" # Python 2.x compatibility: use kwargs instead of named 'order' keyword order = kwargs.pop("order", "C") # TODO: add more error-checking, perhaps if not self.flags.forc: raise RuntimeError("only contiguous arrays may " "be used as arguments to this operation") if isinstance(shape[0], tuple) or isinstance(shape[0], list): shape = tuple(shape[0]) same_contiguity = ((order == "C" and self.flags.c_contiguous) or (order == "F" and self.flags.f_contiguous)) if shape == self.shape and same_contiguity: return self if -1 in shape: shape = list(shape) idx = shape.index(-1) size = -reduce(lambda x, y: x * y, shape, 1) shape[idx] = self.size // size if -1 in shape[idx:]: raise ValueError("can only specify one unknown dimension") shape = tuple(shape) size = reduce(lambda x, y: x * y, shape, 1) if size != self.size: raise ValueError("total size of new array must be unchanged") return GPUArray( shape=shape, dtype=self.dtype, allocator=self.allocator, base=self, gpudata=int(self.gpudata), order=order) def ravel(self): return self.reshape(self.size) def view(self, dtype=None): if dtype is None: dtype = self.dtype old_itemsize = self.dtype.itemsize itemsize = np.dtype(dtype).itemsize from pytools import argmin2 min_stride_axis = argmin2( (axis, abs(stride)) for axis, stride in enumerate(self.strides)) if self.shape[min_stride_axis] * old_itemsize % itemsize != 0: raise ValueError("new type not compatible with array") new_shape = ( self.shape[:min_stride_axis] + (self.shape[min_stride_axis] * old_itemsize // itemsize,) + self.shape[min_stride_axis+1:]) new_strides = ( self.strides[:min_stride_axis] + (self.strides[min_stride_axis] * itemsize // old_itemsize,) + self.strides[min_stride_axis+1:]) return GPUArray( shape=new_shape, dtype=dtype, allocator=self.allocator, strides=new_strides, base=self, gpudata=int(self.gpudata)) def squeeze(self): """ Returns a view of the array with dimensions of length 1 removed. """ new_shape = tuple([dim for dim in self.shape if dim > 1]) new_strides = tuple([self.strides[i] for i, dim in enumerate(self.shape) if dim > 1]) return GPUArray( shape=new_shape, dtype=self.dtype, allocator=self.allocator, strides=new_strides, base=self, gpudata=int(self.gpudata)) def transpose(self, axes=None): """Permute the dimensions of an array. :arg axes: list of ints, optional. By default, reverse the dimensions, otherwise permute the axes according to the values given. :returns: :class:`GPUArray` A view of the array with its axes permuted. .. versionadded:: 2015.2 """ if axes is None: axes = range(self.ndim-1, -1, -1) if len(axes) != len(self.shape): raise ValueError("axes don't match array") new_shape = [self.shape[axes[i]] for i in range(len(axes))] new_strides = [self.strides[axes[i]] for i in range(len(axes))] return GPUArray(shape=tuple(new_shape), dtype=self.dtype, allocator=self.allocator, base=self.base or self, gpudata=self.gpudata, strides=tuple(new_strides)) @property def T(self): # noqa """ .. versionadded:: 2015.2 """ return self.transpose() # {{{ slicing def __getitem__(self, index): """ .. versionadded:: 2013.1 """ if not isinstance(index, tuple): index = (index,) new_shape = [] new_offset = 0 new_strides = [] seen_ellipsis = False index_axis = 0 array_axis = 0 while index_axis < len(index): index_entry = index[index_axis] if array_axis > len(self.shape): raise IndexError("too many axes in index") if isinstance(index_entry, slice): start, stop, idx_stride = index_entry.indices( self.shape[array_axis]) array_stride = self.strides[array_axis] new_shape.append((abs(stop-start)-1)//abs(idx_stride)+1) new_strides.append(idx_stride*array_stride) new_offset += array_stride*start index_axis += 1 array_axis += 1 elif isinstance(index_entry, (int, np.integer)): array_shape = self.shape[array_axis] if index_entry < 0: index_entry += array_shape if not (0 <= index_entry < array_shape): raise IndexError( "subindex in axis %d
<filename>tf_agents/networks/network.py # coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base extension to Keras network to simplify copy operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tensorflow.keras import layers # pylint: disable=unused-import from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step from tf_agents.utils import common from tf_agents.utils import object_identity # pylint:disable=g-direct-tensorflow-import from tensorflow.python.keras.utils import layer_utils # TF internal from tensorflow.python.training.tracking import base # TF internal from tensorflow.python.util import tf_decorator # TF internal from tensorflow.python.util import tf_inspect # TF internal # pylint:enable=g-direct-tensorflow-import class _NetworkMeta(abc.ABCMeta): """Meta class for Network object. We mainly use this class to capture all args to `__init__` of all `Network` instances, and store them in `instance._saved_kwargs`. This in turn is used by the `instance.copy` method. """ def __new__(mcs, classname, baseclasses, attrs): """Control the creation of subclasses of the Network class. Args: classname: The name of the subclass being created. baseclasses: A tuple of parent classes. attrs: A dict mapping new attributes to their values. Returns: The class object. Raises: RuntimeError: if the class __init__ has *args in its signature. """ if baseclasses[0] == tf.keras.layers.Layer: # This is just Network below. Return early. return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) init = attrs.get("__init__", None) if not init: # This wrapper class does not define an __init__. When someone creates # the object, the __init__ of its parent class will be called. We will # call that __init__ instead separately since the parent class is also a # subclass of Network. Here just create the class and return. return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) arg_spec = tf_inspect.getargspec(init) if arg_spec.varargs is not None: raise RuntimeError( "%s.__init__ function accepts *args. This is not allowed." % classname) def _capture_init(self, *args, **kwargs): """Captures init args and kwargs and stores them into `_saved_kwargs`.""" if len(args) > len(arg_spec.args) + 1: # Error case: more inputs than args. Call init so that the appropriate # error can be raised to the user. init(self, *args, **kwargs) # Convert to a canonical kwarg format. kwargs = tf_inspect.getcallargs(init, self, *args, **kwargs) kwargs.pop("self") init(self, **kwargs) # Avoid auto tracking which prevents keras from tracking layers that are # passed as kwargs to the Network. with base.no_automatic_dependency_tracking_scope(self): setattr(self, "_saved_kwargs", kwargs) attrs["__init__"] = tf_decorator.make_decorator(init, _capture_init) return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) @six.add_metaclass(_NetworkMeta) class Network(tf.keras.layers.Layer): """Base extension to Keras network to simplify copy operations.""" def __init__(self, input_tensor_spec, state_spec, name=None): """Creates an instance of `Network`. Args: input_tensor_spec: A nest of `tensor_spec.TensorSpec` representing the input observations. state_spec: A nest of `tensor_spec.TensorSpec` representing the state needed by the network. Use () if none. name: (Optional.) A string representing the name of the network. """ super(Network, self).__init__(name=name) common.check_tf1_allowed() # Required for summary() to work. self._is_graph_network = False self._input_tensor_spec = input_tensor_spec self._state_spec = state_spec @property def state_spec(self): return self._state_spec @property def input_tensor_spec(self): """Returns the spec of the input to the network of type InputSpec.""" return self._input_tensor_spec def create_variables(self, **kwargs): if not self.built: random_input = tensor_spec.sample_spec_nest( self.input_tensor_spec, outer_dims=(1,)) random_state = tensor_spec.sample_spec_nest( self.state_spec, outer_dims=(1,)) step_type = tf.fill((1,), time_step.StepType.FIRST) self.__call__( random_input, step_type=step_type, network_state=random_state, **kwargs) @property def variables(self): if not self.built: raise ValueError( "Network has not been built, unable to access variables. " "Please call `create_variables` or apply the network first.") return super(Network, self).variables @property def trainable_variables(self): if not self.built: raise ValueError( "Network has not been built, unable to access variables. " "Please call `create_variables` or apply the network first.") return super(Network, self).trainable_variables @property def layers(self): """Get the list of all (nested) sub-layers used in this Network.""" return list(_filter_empty_layer_containers(self._layers)) def get_layer(self, name=None, index=None): """Retrieves a layer based on either its name (unique) or index. If `name` and `index` are both provided, `index` will take precedence. Indices are based on order of horizontal graph traversal (bottom-up). Arguments: name: String, name of layer. index: Integer, index of layer. Returns: A layer instance. Raises: ValueError: In case of invalid layer name or index. """ if index is not None and name is not None: raise ValueError("Provide only a layer name or a layer index.") if index is not None: if len(self.layers) <= index: raise ValueError("Was asked to retrieve layer at index " + str(index) + " but model only has " + str(len(self.layers)) + " layers.") else: return self.layers[index] if name is not None: for layer in self.layers: if layer.name == name: return layer raise ValueError("No such layer: " + name + ".") def summary(self, line_length=None, positions=None, print_fn=None): """Prints a string summary of the network. Args: line_length: Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes). positions: Relative or absolute positions of log elements in each line. If not provided, defaults to `[.33, .55, .67, 1.]`. print_fn: Print function to use. Defaults to `print`. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary. Raises: ValueError: if `summary()` is called before the model is built. """ if not self.built: raise ValueError("This model has not yet been built. " "Build the model first by calling `build()` or " "`__call__()` with some data, or `create_variables()`.") layer_utils.print_summary(self, line_length=line_length, positions=positions, print_fn=print_fn) def copy(self, **kwargs): """Create a shallow copy of this network. **NOTE** Network layer weights are *never* copied. This method recreates the `Network` instance with the same arguments it was initialized with (excepting any new kwargs). Args: **kwargs: Args to override when recreating this network. Commonly overridden args include 'name'. Returns: A shallow copy of this network. """ return type(self)(**dict(self._saved_kwargs, **kwargs)) def __call__(self, inputs, *args, **kwargs): """A wrapper around `Network.call`. A typical `call` method in a class subclassing `Network` looks like this: ```python def call(self, observation, step_type=None, network_state=(), training=False): ... return outputs, new_network_state ``` In this case, we will validate the first argument (`observation`) against `self.input_tensor_spec`. If a `network_state` kwarg is given it is also validated against `self.state_spec`. Similarly, the return value of the `call` method is expected to be a tuple/list with 2 values: `(output, new_state)`; we validate `new_state` against `self.state_spec`. Args: inputs: The inputs to `self.call`, matching `self.input_state_spec`. *args: Additional arguments to `self.call`. **kwargs: Additional keyword arguments to `self.call`. Returns: A tuple `(outputs, new_network_state)`. """ tf.nest.assert_same_structure(inputs, self.input_tensor_spec) network_state = kwargs.get("network_state", None) if network_state is not None: tf.nest.assert_same_structure(network_state, self.state_spec) outputs, new_state = super(Network, self).__call__(inputs, *args, **kwargs) tf.nest.assert_same_structure(new_state, self.state_spec) return outputs, new_state def _check_trainable_weights_consistency(self): """Check trainable weights count consistency. This method makes up for the missing method (b/143631010) of the same name in `keras.Network`, which is needed when calling `Network.summary()`. This method is a no op. If a Network wants to check the consistency of trainable weights, see `keras.Model._check_trainable_weights_consistency` as a reference. """ # TODO(b/143631010): If recognized and fixed, remove this entire method. return def get_initial_state(self, batch_size=None): """Returns an initial state usable by the network. Args: batch_size: Tensor or constant: size of the batch dimension. Can be None in which case not dimensions gets added. Returns: A nested object of type `self.state_spec` containing properly initialized Tensors. """ return self._get_initial_state(batch_size) def _get_initial_state(self, batch_size): """Returns the initial state of the policy network. Args: batch_size: A constant or Tensor holding the batch size. Can be None, in which case the state will not have a batch dimension added. Returns: A nest of zero tensors matching the spec of the policy network state. """ return tensor_spec.zero_spec_nest( self._state_spec, outer_dims=None if batch_size is None else [batch_size]) class DistributionNetwork(Network): """Base class for networks which generate Distributions as their output.""" def __init__(self, input_tensor_spec, state_spec, output_spec, name): super(DistributionNetwork, self).__init__( input_tensor_spec=input_tensor_spec, state_spec=state_spec,
'http://www.die-boersenformel.com/', # Why: #2649 in Alexa global 'http://www.watchcartoononline.com/', # Why: #2650 in Alexa global 'http://www.abclocal.go.com/', # Why: #2651 in Alexa global 'http://www.techrepublic.com/', # Why: #2652 in Alexa global 'http://www.just-fuck.com/', # Why: #2653 in Alexa global 'http://www.camster.com/', # Why: #2654 in Alexa global 'http://www.akairan.com/', # Why: #2655 in Alexa global 'http://www.yeslibertin.com/', # Why: #2656 in Alexa global 'http://www.abc.go.com/', # Why: #2657 in Alexa global 'http://www.searchtherightwords.com/', # Why: #2658 in Alexa global 'http://www.scotiabank.com/', # Why: #2659 in Alexa global 'http://www.justclick.ru/', # Why: #2660 in Alexa global 'http://www.douguo.com/', # Why: #2661 in Alexa global 'http://www.discover.com/', # Why: #2662 in Alexa global 'http://www.britishairways.com/', # Why: #2663 in Alexa global 'http://www.mobafire.com/', # Why: #2664 in Alexa global 'http://www.gi-akademie.ning.com/', # Why: #2666 in Alexa global 'http://www.desirulez.net/', # Why: #2667 in Alexa global 'http://www.qiushibaike.com/', # Why: #2668 in Alexa global 'http://www.moonbasa.com/', # Why: #2669 in Alexa global 'http://www.all.biz/', # Why: #2670 in Alexa global 'http://www.tbs.co.jp/', # Why: #2671 in Alexa global 'http://www.springer.com/', # Why: #2672 in Alexa global 'http://www.emai.com/', # Why: #2673 in Alexa global 'http://www.deadspin.com/', # Why: #2674 in Alexa global 'http://www.hulkshare.com/', # Why: #2675 in Alexa global 'http://www.fast-torrent.ru/', # Why: #2676 in Alexa global 'http://www.oriflame.com/', # Why: #2677 in Alexa global 'http://www.imgchili.net/', # Why: #2678 in Alexa global 'http://www.mega-juegos.mx/', # Why: #2679 in Alexa global 'http://www.gyazo.com/', # Why: #2680 in Alexa global 'http://www.persianv.com/', # Why: #2681 in Alexa global 'http://www.adk2.com/', # Why: #2682 in Alexa global 'http://www.ingbank.pl/', # Why: #2683 in Alexa global 'http://www.nationalconsumercenter.com/', # Why: #2684 in Alexa global 'http://www.xxxkinky.com/', # Why: #2685 in Alexa global 'http://www.mywot.com/', # Why: #2686 in Alexa global 'http://www.gaymaletube.com/', # Why: #2687 in Alexa global 'http://www.1tv.ru/', # Why: #2688 in Alexa global 'http://www.manutd.com/', # Why: #2689 in Alexa global 'http://www.merchantcircle.com/', # Why: #2691 in Alexa global 'http://www.canalblog.com/', # Why: #2692 in Alexa global 'http://www.capitalone360.com/', # Why: #2693 in Alexa global 'http://www.tlbb8.com/', # Why: #2694 in Alexa global 'http://www.softonic.fr/', # Why: #2695 in Alexa global 'http://www.ccavenue.com/', # Why: #2696 in Alexa global 'http://www.vector.co.jp/', # Why: #2697 in Alexa global 'http://www.tyroodr.com/', # Why: #2698 in Alexa global 'http://exam8.com/', # Why: #2699 in Alexa global 'http://www.allmusic.com/', # Why: #2700 in Alexa global 'http://www.stubhub.com/', # Why: #2701 in Alexa global 'http://www.arcor.de/', # Why: #2702 in Alexa global 'http://www.yolasite.com/', # Why: #2703 in Alexa global 'http://www.haraj.com.sa/', # Why: #2704 in Alexa global 'http://www.mypopup.ir/', # Why: #2705 in Alexa global 'http://www.memurlar.net/', # Why: #2706 in Alexa global 'http://www.smugmug.com/', # Why: #2707 in Alexa global 'http://www.filefactory.com/', # Why: #2708 in Alexa global 'http://www.fantasti.cc/', # Why: #2709 in Alexa global 'http://www.bokra.net/', # Why: #2710 in Alexa global 'http://www.goarticles.com/', # Why: #2711 in Alexa global 'http://www.empowernetwork.com/2Se8w/', # Why: #2712 in Alexa global 'http://www.moneysavingexpert.com/', # Why: #2713 in Alexa global 'http://www.donga.com/', # Why: #2714 in Alexa global 'http://www.lastminute.com/', # Why: #2715 in Alexa global 'http://www.xkcd.com/', # Why: #2716 in Alexa global 'http://www.sou300.com/', # Why: #2717 in Alexa global 'http://www.magnovideo.com/', # Why: #2718 in Alexa global 'http://www.inquirer.net/', # Why: #2719 in Alexa global 'http://www.phoenix.edu/', # Why: #2721 in Alexa global 'http://www.videogenesis.com/', # Why: #2722 in Alexa global 'http://www.thestar.com/', # Why: #2723 in Alexa global 'http://www.tripadvisor.es/', # Why: #2724 in Alexa global 'http://www.blankrefer.com/', # Why: #2725 in Alexa global 'http://www.yle.fi/', # Why: #2726 in Alexa global 'http://www.beamtele.com/', # Why: #2727 in Alexa global 'http://www.oanda.com/', # Why: #2728 in Alexa global 'http://www.yaplog.jp/', # Why: #2729 in Alexa global 'http://www.iheart.com/', # Why: #2730 in Alexa global 'http://www.google.co.tz/', # Why: #2731 in Alexa global 'http://www.stargazete.com/', # Why: #2732 in Alexa global 'http://www.bossip.com/', # Why: #2733 in Alexa global 'http://www.defaultsear.ch/', # Why: #2734 in Alexa global 'http://www.thaiseoboard.com/', # Why: #2735 in Alexa global 'http://www.qinbei.com/', # Why: #2736 in Alexa global 'http://www.ninisite.com/', # Why: #2737 in Alexa global 'http://www.j.gs/', # Why: #2738 in Alexa global 'http://www.xinmin.cn/', # Why: #2739 in Alexa global 'http://www.nos.nl/', # Why: #2740 in Alexa global 'http://www.qualtrics.com/', # Why: #2741 in Alexa global 'http://www.kommersant.ru/', # Why: #2743 in Alexa global 'http://www.urban-rivals.com/', # Why: #2744 in Alexa global 'http://www.computerbild.de/', # Why: #2745 in Alexa global 'http://www.fararu.com/', # Why: #2746 in Alexa global 'http://www.menshealth.com/', # Why: #2747 in Alexa global 'http://www.jobstreet.com/', # Why: #2749 in Alexa global 'http://www.rbcroyalbank.com/', # Why: #2750 in Alexa global 'http://www.inmotionhosting.com/', # Why: #2751 in Alexa global 'http://www.surveyrouter.com/', # Why: #2752 in Alexa global 'http://www.kankanews.com/', # Why: #2753 in Alexa global 'http://www.aol.de/', # Why: #2754 in Alexa global 'http://www.bol.com/', # Why: #2755 in Alexa global 'http://www.datpiff.com/', # Why: #2757 in Alexa global 'http://mplife.com/', # Why: #2758 in Alexa global 'http://www.sale-fire.com/', # Why: #2759 in Alexa global 'http://www.inbox.lv/', # Why: #2760 in Alexa global 'http://www.offeratum.com/', # Why: #2761 in Alexa global 'http://www.pandora.tv/', # Why: #2762 in Alexa global 'http://www.eltiempo.com/', # Why: #2763 in Alexa global 'http://www.indiarailinfo.com/', # Why: #2764 in Alexa global 'http://www.solidtrustpay.com/', # Why: #2765 in Alexa global 'http://www.warthunder.ru/', # Why: #2766 in Alexa global 'http://www.kuronekoyamato.co.jp/', # Why: #2767 in Alexa global 'http://www.novamov.com/', # Why: #2768 in Alexa global 'http://www.folkd.com/', # Why: #2769 in Alexa global 'http://www.envato.com/', # Why: #2770 in Alexa global 'http://www.wetpaint.com/', # Why: #2771 in Alexa global 'http://www.tempo.co/', # Why: #2772 in Alexa global 'http://www.howtogeek.com/', # Why: #2773 in Alexa global 'http://www.foundationapi.com/', # Why: #2774 in Alexa global 'http://www.zjol.com.cn/', # Why: #2775 in Alexa global 'http://www.care2.com/', # Why: #2776 in Alexa global 'http://www.bendibao.com/', # Why: #2777 in Alexa global 'http://www.mazika2day.com/', # Why: #2779 in Alexa global 'http://www.asda.com/', # Why: #2780 in Alexa global 'http://www.nowvideo.ch/', # Why: #2781 in Alexa global 'http://www.hiapk.com/', # Why: #2782 in Alexa global 'http://17u.com/', # Why: #2783 in Alexa global 'http://www.tutu.ru/', # Why: #2784 in Alexa global 'http://www.ncdownloader.com/', # Why: #2785 in Alexa global 'http://www.warez-bb.org/', # Why: #2786 in Alexa global 'http://www.jsoftj.com/', # Why: #2787 in Alexa global 'http://www.batepapo.uol.com.br/', # Why: #2788 in Alexa global 'http://www.xmarks.com/', # Why: #2789 in Alexa global 'http://www.36kr.com/', # Why: #2790 in Alexa global 'http://www.runetki.com/', # Why: #2791 in Alexa global 'http://www.quoka.de/', # Why: #2792 in Alexa global 'http://www.heureka.cz/', # Why: #2793 in Alexa global 'http://www.sbisec.co.jp/', # Why: #2794 in Alexa global 'http://www.monografias.com/', # Why: #2796 in Alexa global 'http://www.zhenai.com/', # Why: #2797 in Alexa global 'http://www.4porn.com/', # Why: #2798 in Alexa global 'http://www.antena3.com/', # Why: #2799 in Alexa global 'http://lintas.me/', # Why: #2800 in Alexa global 'http://www.seroundtable.com/', # Why: #2802 in Alexa global 'http://www.e1.ru/', # Why: #2803 in Alexa global 'http://www.berkeley.edu/', # Why: #2804 in Alexa global 'http://www.officedepot.com/', # Why: #2805 in Alexa global 'http://www.myflorida.com/', # Why: #2806 in Alexa global 'http://www.parispornmovies.com/', # Why: #2807 in Alexa global 'http://www.uniqlo.com/', # Why: #2808 in Alexa global 'http://www.topky.sk/', # Why: #2809 in Alexa global 'http://www.lumovies.com/', # Why: #2810 in Alexa global 'http://www.buysellads.com/', # Why: #2811 in Alexa global 'http://www.stirileprotv.ro/', # Why: #2812 in Alexa global 'http://www.scottrade.com/', # Why: #2813 in Alexa global 'http://www.tiboo.cn/', # Why: #2814 in Alexa global 'http://www.mmtrends.net/', # Why: #2815 in Alexa global 'http://www.wholesale-dress.net/', # Why: #2816 in Alexa global 'http://www.metacritic.com/', # Why: #2817 in Alexa global 'http://www.pichunter.com/', # Why: #2818 in Alexa global 'http://www.moneybookers.com/', # Why: #2819 in Alexa global 'http://www.idealista.com/', # Why: #2820 in Alexa global 'http://www.buzzle.com/', # Why: #2821 in Alexa global 'http://www.rcom.co.in/', # Why: #2822 in Alexa global 'http://www.weightwatchers.com/', # Why: #2823 in Alexa global 'http://www.itv.com/', # Why: #2824 in Alexa global 'http://www.inilah.com/', # Why: #2825 in Alexa global 'http://www.vic.gov.au/', # Why: #2826 in Alexa global 'http://www.prom.ua/', # Why: #2827 in Alexa global 'http://www.with2.net/', # Why: #2828 in Alexa global 'http://www.suumo.jp/', # Why: #2830 in Alexa global 'http://www.doodle.com/', # Why: #2831 in Alexa global 'http://www.trafficbroker.com/', # Why: #2832 in Alexa global 'http://www.h33t.com/', # Why: #2833 in Alexa global 'http://www.avaaz.org/', # Why: #2834 in Alexa global 'http://www.maultalk.com/', # Why: #2835 in Alexa global 'http://www.bmo.com/', # Why: #2836 in Alexa global 'http://www.nerdbux.com/', # Why: #2837 in Alexa global 'http://www.abnamro.nl/', # Why: #2838 in Alexa global 'http://www.didigames.com/', # Why: #2839 in Alexa global 'http://www.pornorama.com/', # Why: #2840 in Alexa global 'http://www.forumotion.com/', # Why: #2841 in Alexa
<gh_stars>0 #! /usr/bin/python3 # -*- coding: utf-8 -*- #-------------------------------------------------------------------------------------------------- # Python client library of Tkrzw-RPC # # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under the # License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. #-------------------------------------------------------------------------------------------------- import grpc import pathlib import sys import threading import time sys.path.append(str(pathlib.Path(__file__).parent)) from . import tkrzw_rpc_pb2 from . import tkrzw_rpc_pb2_grpc def _StrGRPCError(error): code_name = str(error.code()) delim_pos = code_name.find(".") if delim_pos >= 0: code_name = code_name[delim_pos + 1:] details = error.details() if details: return code_name + ": " + details return code_name def _MakeStatusFromProto(proto_status): return Status(proto_status.code, proto_status.message) def _SetStatusFromProto(status, proto_status): status.Set(proto_status.code, proto_status.message) def _MakeBytes(obj): if isinstance(obj, bytes): return obj if not isinstance(obj, str): obj = str(obj) return obj.encode('utf-8') class Status: """ Status of operations. """ SUCCESS = 0 """Success.""" UNKNOWN_ERROR = 1 """Generic error whose cause is unknown.""" SYSTEM_ERROR = 2 """Generic error from underlying systems.""" NOT_IMPLEMENTED_ERROR = 3 """Error that the feature is not implemented.""" PRECONDITION_ERROR = 4 """Error that a precondition is not met.""" INVALID_ARGUMENT_ERROR = 5 """Error that a given argument is invalid.""" CANCELED_ERROR = 6 """Error that the operation is canceled.""" NOT_FOUND_ERROR = 7 """Error that a specific resource is not found.""" PERMISSION_ERROR = 8 """Error that the operation is not permitted.""" INFEASIBLE_ERROR = 9 """Error that the operation is infeasible.""" DUPLICATION_ERROR = 10 """Error that a specific resource is duplicated.""" BROKEN_DATA_ERROR = 11 """Error that internal data are broken.""" NETWORK_ERROR = 12 """Error caused by networking failure.""" APPLICATION_ERROR = 13 """Generic error caused by the application logic.""" def __init__(self, code=SUCCESS, message=""): """ Sets the code and the message. :param code: The status code. This can be omitted and then SUCCESS is set. :param message: An arbitrary status message. This can be omitted and the an empty string is set. """ self.code = code self.message = message def __repr__(self): """ Returns a string representation of the object. :return: The string representation of the object. """ if self.message: return "<tkrzw_rpc.Status: " + self.CodeName(self.code) + ": " + self.message + ">" return "<tkrzw_rpc.Status: " + self.CodeName(self.code) + ">" def __str__(self): """ Returns a string representation of the content. :return: The string representation of the content. """ if self.message: return self.CodeName(self.code) + ": " + self.message return self.CodeName(self.code) def __eq__(self, rhs): """ Returns true if the given object is equivalent to this object. :return: True if the given object is equivalent to this object. This supports comparison between a status object and a status code number. """ if isinstance(rhs, type(self)): return self.code == rhs.code if isinstance(rhs, int): return self.code == rhs return False def Set(self, code=SUCCESS, message=""): """ Sets the code and the message. :param code: The status code. This can be omitted and then SUCCESS is set. :param message: An arbitrary status message. This can be omitted and the an empty string is set. """ self.code = code self.message = message def Join(self, rht): """ Assigns the internal state from another status object only if the current state is success. :param rhs: The status object. """ if self.code == self.SUCCESS: self.code = rht.code self.message = rht.message def GetCode(self): """ Gets the status code. :return: The status code. """ return self.code def GetMessage(self): """ Gets the status message. :return: The status message. """ return self.message def IsOK(self): """ Returns true if the status is success. :return: True if the status is success, or False on failure. """ return self.code == self.SUCCESS def OrDie(self): """ Raises an exception if the status is not success. :raise StatusException: An exception containing the status object. """ if self.code != self.SUCCESS: raise StatusException(self) @classmethod def CodeName(cls, code): """ Gets the string name of a status code. :param: code The status code. :return: The name of the status code. """ if code == cls.SUCCESS: return "SUCCESS" if code == cls.UNKNOWN_ERROR: return "UNKNOWN_ERROR" if code == cls.SYSTEM_ERROR: return "SYSTEM_ERROR" if code == cls.NOT_IMPLEMENTED_ERROR: return "NOT_IMPLEMENTED_ERROR" if code == cls.PRECONDITION_ERROR: return "PRECONDITION_ERROR" if code == cls.INVALID_ARGUMENT_ERROR: return "INVALID_ARGUMENT_ERROR" if code == cls.CANCELED_ERROR: return "CANCELED_ERROR" if code == cls.NOT_FOUND_ERROR: return "NOT_FOUND_ERROR" if code == cls.PERMISSION_ERROR: return "PERMISSION_ERROR" if code == cls.INFEASIBLE_ERROR: return "INFEASIBLE_ERROR" if code == cls.DUPLICATION_ERROR: return "DUPLICATION_ERROR" if code == cls.BROKEN_DATA_ERROR: return "BROKEN_DATA_ERROR" if code == cls.NETWORK_ERROR: return "NETWORK_ERROR" if code == cls.APPLICATION_ERROR: return "APPLICATION_ERROR" return "unknown" class StatusException(RuntimeError): """ Exception to convey the status of operations. """ def __init__(self, status): """ Sets the status. :param status: The status object. """ self.status = status def __repr__(self): """ Returns A string representation of the object. :return: The string representation of the object. """ return "<tkrzw_rpc.StatusException: " + str(self.status) + ">" def __str__(self): """ Returns A string representation of the content. :return: The string representation of the content. """ return str(self.status) def GetStatus(self): """ Gets the status object :return: The status object. """ return self.status class RemoteDBM: """ Remote database manager. All operations are thread-safe; Multiple threads can access the same database concurrently. The SetDBMIndex affects all threads so it should be called before the object is shared. This class implements the iterable protocol so an instance is usable with "for-in" loop. """ ANY_DATA = b"\x00[ANY]\x00" """The special bytes value for no-operation or any data.""" def __init__(self): """ Does nothing especially. """ self.channel = None self.stub = None self.timeout = None self.dbm_index = 0 def __repr__(self): """ Returns A string representation of the object. :return: The string representation of the object. """ expr = "connected" if self.channel else "not connected" return "<tkrzw_rpc.RemoteDBM: " + hex(id(self)) + ": " + expr + ">" def __str__(self): """ Returns A string representation of the content. :return: The string representation of the content. """ expr = "connected" if self.channel else "not connected" return "RemoteDBM: " + hex(id(self)) + ": " + expr def __len__(self): """ Gets the number of records, to enable the len operator. :return: The number of records on success, or 0 on failure. """ if not self.channel: return 0 request = tkrzw_rpc_pb2.CountRequest() request.dbm_index = self.dbm_index try: response = self.stub.Count(request, timeout=self.timeout) except grpc.RpcError as error: return 0 return response.count def __contains__(self, key): """ Checks if a record exists or not, to enable the in operator. :param key: The key of the record. :return: True if the record exists, or False if not. No exception is raised for missing records. """ if not self.channel: raise StatusException(Status(Status.PRECONDITION_ERROR, "not opened connection")) request = tkrzw_rpc_pb2.GetRequest() request.dbm_index = self.dbm_index request.key = _MakeBytes(key) request.omit_value = True try: response = self.stub.Get(request, timeout=self.timeout) except grpc.RpcError as error: raise StatusException(Status(Status.NETWORK_ERROR, _StrGRPCError(error))) return response.status.code == Status.SUCCESS def __getitem__(self, key): """ Gets the value of a record, to enable the [] operator. :param key: The key of the record. :return: The value of the matching record. An exception is raised for missing records. If the given key is a string, the returned value is also a string. Otherwise, the return value is bytes. :raise StatusException: An exception containing the status object. """ if not self.channel: raise StatusException(Status(Status.PRECONDITION_ERROR, "not opened connection")) request = tkrzw_rpc_pb2.GetRequest() request.dbm_index = self.dbm_index request.key = _MakeBytes(key) try: response = self.stub.Get(request, timeout=self.timeout) except grpc.RpcError as error: raise StatusException(Status(Status.NETWORK_ERROR, _StrGRPCError(error))) if response.status.code != Status.SUCCESS: raise StatusException(_MakeStatusFromProto(response.status)) if isinstance(key, str): return response.value.decode("utf-8", "replace") return response.value def __setitem__(self, key, value): """ Sets a record of a key and a value, to enable the []= operator. :param key: The key of the record. :param value: The value of the record. :raise StatusException: An exception containing the status object. """ if not self.channel: raise StatusException(Status(Status.PRECONDITION_ERROR, "not opened connection")) request = tkrzw_rpc_pb2.SetRequest() request.dbm_index = self.dbm_index request.key = _MakeBytes(key) request.value = _MakeBytes(value) request.overwrite = True try: response = self.stub.Set(request,
coefficient (visible) expfac = F.expression( 'sqrt(ameanv) * akb * F', {'ameanv': ameanv, 'akb': akb, 'F': F}) xnum = F.expression( '(rbcpyv * rbcpyv - 1.0) * exp(-expfac)', {'rbcpyv': rbcpyv, 'expfac': expfac}) xden = F.expression( '(rbcpyv * rsoilv - 1.0) + ' 'rbcpyv * (rbcpyv - rsoilv) * exp(-2.0 * expfac)', {'rbcpyv': rbcpyv, 'rsoilv': rsoilv, 'expfac': expfac}) # Eq 15.11 taubtv = F.expression('xnum / xden', {'xnum': xnum, 'xden': xden}) # print('\nexpfac: {:>20.14f}'.format(utils.image_value(expfac).values()[0])) # print('rbcpyv: {:>20.14f}'.format(utils.image_value(rbcpyv).values()[0])) # print('rsoilv: {:>20.14f}'.format(utils.image_value(rsoilv).values()[0])) # print('xnum: {:>20.14f}'.format(utils.image_value(xnum).values()[0])) # print('xden: {:>20.14f}'.format(utils.image_value(xden).values()[0])) # print('taubtv: {:>20.14f}'.format(utils.image_value(taubtv).values()[0])) # Direct beam+scattered canopy transmission coefficient (NIR) expfac = F.expression( 'sqrt(ameann) * akb * F', {'ameann': ameann, 'akb': akb, 'F': F}) xnum = F.expression( '(rbcpyn * rbcpyn - 1.0) * exp(-expfac)', {'rbcpyn': rbcpyn, 'expfac': expfac}) xden = F.expression( '(rbcpyn * rsoiln - 1.0) + ' 'rbcpyn * (rbcpyn - rsoiln) * exp(-2.0 * expfac)', {'rbcpyn': rbcpyn, 'rsoiln': rsoiln, 'expfac': expfac}) # Eq 15.11 taubtn = F.expression('xnum / xden', {'xnum': xnum, 'xden': xden}) # print('\nexpfac: {:>20.14f}'.format(utils.image_value(expfac).values()[0])) # print('rbcpyn: {:>20.14f}'.format(utils.image_value(rbcpyn).values()[0])) # print('rsoiln: {:>20.14f}'.format(utils.image_value(rsoiln).values()[0])) # print('xnum: {:>20.14f}'.format(utils.image_value(xnum).values()[0])) # print('xden: {:>20.14f}'.format(utils.image_value(xden).values()[0])) # print('taubtn: {:>20.14f}'.format(utils.image_value(taubtn).values()[0])) # Shortwave radiation components tausolar = F.expression( 'fvis * (difvis * taudv + dirvis * taubtv) + ' 'fnir * (difnir * taudn + dirnir * taubtn)', {'difnir': difnir, 'difvis': difvis, 'dirnir': dirnir, 'dirvis': dirvis, 'fnir': fnir, 'fvis': fvis, 'taubtn': taubtn, 'taubtv': taubtv, 'taudn': taudn, 'taudv': taudv}) # print('tausolar: {}'.format(utils.image_value(tausolar).values()[0])) # print('Rs_1: {}'.format(utils.image_value(Rs_1).values()[0])) Rs_c = Rs_1.expression( 'Rs_1 * (1.0 - tausolar)', {'Rs_1': Rs_1, 'tausolar': tausolar}) Rs_s = Rs_1.expression( 'Rs_1 * tausolar', {'Rs_1': Rs_1, 'tausolar': tausolar}) # print('\nRs_c: {:>20.14f}'.format(utils.image_value(Rs_c).values()[0])) # print('Rs_s: {:>20.14f}'.format(utils.image_value(Rs_s).values()[0])) # print('albedo_c: {:>20.14f}'.format(utils.image_value(albedo_c).values()[0])) # print('albedo_s: {:>20.14f}'.format(utils.image_value(albedo_s).values()[0])) return Rs_c, Rs_s, albedo_c, albedo_s def compute_G0(Rn, Rn_s, albedo, ndvi, t_rise, t_end, time, EF_s): """ Parameters ---------- Rn : ee.Image Rn_s : ee.Image albedo : ee.Image ndvi : ee.Image t_rise : ee.Image t_end : ee.Image time : EF_s : Returns ------- G0 : ee.Image """ w = EF_s.expression('1 / (1 + (EF_s / 0.5) ** 8.0)', {'EF_s': EF_s}) # Maximum fraction of Rn,s that become G0 # (0.35 for dry soil and 0.31 for wet soil) c_g = w.expression('(w * 0.35) + ((1 - w) * 0.31)', {'w': w}) t_g = w.expression('(w * 100000.0) + ((1 - w) * 74000.0)', {'w': w}) t_noon = t_rise.expression( '0.5 * (t_rise + t_end)', {'t_rise': t_rise, 't_end': t_end}) t_g0 = t_noon.expression( '(time - t_noon) * 3600.0', {'time': time, 't_noon': t_noon}) G0 = Rn_s.expression( 'c_g * cos(2 * pi * (t_g0 + 10800.0) / t_g) * Rn_s', {'c_g': c_g, 'pi': math.pi, 'Rn_s': Rn_s, 't_g': t_g, 't_g0': t_g0}) water_mask = ndvi.lte(0).And(albedo.lte(0.05)) G0 = G0.where(water_mask, Rn.multiply(0.5)) return G0 def compute_resistance(u, T_s, T_c, hc, F, d0, z0m, z0h, z_u, z_t, xl, leaf, leaf_s, leaf_c, fm, fh, fm_h): """ Parameters ---------- u : ee.Image T_s : ee.Image T_c : ee.Image hc : ee.Image F : ee.Image Input is LAI? d0 z0m z0h z_u z_t xl leaf leaf_s leaf_c fm fh fm_h Returns ------- r_ah r_s r_x u_attr """ # Free convective velocity constant for r_s modelling c_a = 0.004 # Empirical constant for r_s modelling c_b = 0.012 # Empirical constant for r_s modelling # (new formulation Kustas and Norman, 1999) c_c = 0.0025 # Parameter for canopy boundary-layer resistance # (C=90 Grace '81, C=175 Cheubouni 2001, 144 Li '98) C = 175. # Computation of friction velocity and aerodynamic resistance u_attr = u \ .expression( '0.41 * u / ((log((z_u - d0) / z0m)) - fm)', {'d0': d0, 'fm': fm, 'u': u, 'z0m': z0m, 'z_u': z_u}) u_attr = u_attr.where(u_attr.eq(0), 10) u_attr = u_attr.where(u_attr.lte(0), 0.01) r_ah = u.expression( '((log((z_t - d0) / z0h)) - fh) / u_attr / 0.41', {'d0': d0, 'fh': fh, 'u_attr': u_attr, 'z0h': z0h, 'z_t': z_t}) # CGM - The second conditional will overwrite the first one? r_ah = r_ah.where(r_ah.eq(0), 500) r_ah = r_ah.where(r_ah.lte(1.0), 1.0) # DEADBEEF # r_ah[r_ah == 0] = 500. # r_ah[r_ah <= 1.] = 1. # Computation of the resistance of the air between soil and canopy space u_c = u.expression( 'u_attr / 0.41 * ((log((hc - d0) / z0m)) - fm_h)', {'d0': d0, 'fm_h': fm_h, 'hc': hc, 'u_attr': u_attr, 'z0m': z0m}) u_c = u_c.where(u_c.lte(0), 0.1) u_s = u.expression( 'u_c * exp(-leaf * (1 - (0.05 / hc)))', {'hc': hc, 'leaf': leaf, 'u_c': u_c}) r_ss = u.expression( '1.0 / (c_a + (c_b * (u_c * exp(-leaf_s * (1.0 - (0.05 / hc))))))', {'c_a': c_a, 'c_b': c_b, 'hc': hc, 'leaf_s': leaf_s, 'u_c': u_c}) r_s1 = T_s.expression( '1.0 / ((((abs(T_s - T_c)) ** (1.0 / 3.0)) * c_c) + (c_b * u_s))', {'c_b': c_b, 'c_c': c_c, 'T_c': T_c, 'T_s': T_s, 'u_s': u_s}) r_s2 = u.expression( '1.0 / (c_a + (c_b * u_s))', {'c_a': c_a, 'c_b': c_b, 'u_s': u_s}) r_s = u.expression( '(((r_ss - 1.0) / 0.09 * (F - 0.01)) + 1.0)', {'F': F, 'r_ss': r_ss}) # Linear function between 0 (bare soil) and the value at F=0.1 r_s = r_s.where(F.gt(0.1), r_s1) r_s = r_s.where(T_s.subtract(T_c).abs().lt(1), r_s2) # Use "new" formula only for high DT values # Use "new" formula only for partial coverage (lai<3) r_s = r_s.where(F.gt(3), r_s2) # Computation of the canopy boundary layer resistance u_d = u.expression( 'u_c * exp(-leaf_c * (1 - ((d0 + z0m) / hc)))', {'d0': d0, 'hc': hc, 'leaf_c': leaf_c, 'u_c': u_c, 'z0m': z0m}) u_d = u_d.where(u_d.lte(0), 100) r_x = u.expression( 'C / F * ((xl / u_d) ** 0.5)', {'C': C, 'F': F, 'u_d': u_d, 'xl': xl}) r_x = r_x.where(u_d.eq(100), 0.1) return r_ah, r_s, r_x, u_attr def compute_u_attr(u, d0, z0m, z_u, fm): """Friction Velocity Parameters ---------- u : ee.Image d0 z0m z_u fm Returns ------- u_attr """ u_attr = u.expression( '0.41 * u / ((log((z_u - d0) / z0m)) - fm)', {'d0': d0, 'fm': fm, 'u': u, 'z0m': z0m, 'z_u': z_u}) u_attr = u_attr.where(u_attr.eq(0), 10) u_attr = u_attr.where(u_attr.lte(0), 0.01) return u_attr def compute_r_ah(u_attr, d0, z0h, z_t, fh): """ Parameters ---------- u_attr : ee.Image d0 z0h z_t fh Returns ------- r_ah """ r_ah = u_attr.expression( '((log((z_t - d0) / z0h)) - fh) / u_attr / 0.41', {'d0': d0, 'fh': fh, 'u_attr': u_attr, 'z0h': z0h, 'z_t': z_t}) # CGM - The second conditional will overwrite the first one? r_ah = r_ah.where(r_ah.eq(0), 500) r_ah = r_ah.where(r_ah.lte(1.0), 1.0) return r_ah def compute_r_s(u_attr, T_s, T_c, hc, F, d0, z0m, leaf, leaf_s, fm_h): """ Parameters ---------- u_attr : ee.Image T_s : ee.Image Soil temperature (Kelvin). T_c : ee.Image Canopy temperature (Kelvin). hc : ee.Image F : ee.Image Input is LAI? d0 z0m leaf leaf_s fm_h Returns ------- r_s """ # Free convective velocity constant for r_s modelling c_a = 0.004 # Empirical constant for r_s modelling c_b = 0.012 # Empirical constant for r_s modelling # (new formulation Kustas and Norman, 1999) c_c = 0.0025 # Computation of the resistance of the air between soil and canopy space u_c = u_attr.expression( 'u_attr / 0.41 * ((log((hc - d0) / z0m)) - fm_h)', {'d0': d0, 'fm_h': fm_h, 'hc': hc, 'u_attr': u_attr, 'z0m': z0m}) u_c = u_c.where(u_c.lte(0), 0.1) u_s = u_attr.expression( 'u_c * exp(-leaf * (1 - (0.05 / hc)))', {'hc': hc, 'leaf': leaf, 'u_c': u_c}) r_ss = u_attr.expression( '1.0 / (c_a + (c_b * (u_c * exp(-leaf_s * (1.0 - (0.05 / hc))))))', {'c_a': c_a, 'c_b': c_b, 'hc': hc, 'leaf_s': leaf_s, 'u_c': u_c}) r_s1 = T_s.expression( '1.0 / ((((abs(T_s - T_c)) ** (1.0 / 3.0)) * c_c) + (c_b * Us))', {'c_b': c_b, 'c_c': c_c, 'T_c': T_c, 'T_s': T_s, 'Us': u_s}) r_s2 = u_attr.expression( '1.0 / (c_a + (c_b * Us))', {'c_a': c_a, 'c_b': c_b, 'Us': u_s}) r_s = u_attr.expression( '(((r_ss - 1.0) / 0.09 * (F - 0.01)) + 1.0)', {'F': F, 'r_ss': r_ss}) # Linear function between 0 (bare soil) and the value at F=0.1 r_s = r_s.where(F.gt(0.1), r_s1) r_s = r_s.where(T_s.subtract(T_c).abs().lt(1), r_s2) # Use "new" formula only for high DT values # Use "new" formula only for partial coverage (lai<3)
<reponame>delfick/delfick_project # coding: spec from delfick_project.app import CliParser, Ignore, BadOption from delfick_project.errors_pytest import assertRaises from contextlib import contextmanager from itertools import combinations from unittest import mock import sys import re import os describe "CliParser": @contextmanager def swapped_env(self, **swapped): originals = {} try: for name, val in swapped.items(): originals[name] = os.environ.get(name, Ignore) os.environ[name] = val yield finally: for name in swapped: original = originals[name] if original is Ignore and name in os.environ: del os.environ[name] elif original is not Ignore: os.environ[name] = original it "takes in description, positional_replacements and environment_defaults": description = mock.Mock(name="description") environment_defaults = mock.Mock(name="environment_defaults") positional_replacements = mock.Mock(name="positional_replacements") parser = CliParser( description, environment_defaults=environment_defaults, positional_replacements=positional_replacements, ) assert parser.description is description assert parser.environment_defaults is environment_defaults assert parser.positional_replacements is positional_replacements it "defaults positional_replacements to an empty array": assert CliParser(None).positional_replacements == [] it "defaults environment_defaults to an empty dictionary": assert CliParser(None).environment_defaults == {} describe "parse_args": it "splits, makes, parses and checks the args": argv = mock.Mock(name="argv") args_obj = mock.Mock(name="args_obj") other_args = mock.Mock(name="other_args") defaults = mock.Mock(name="defaults") positional_replacements = mock.Mock(name="positional_replacements") parser = mock.Mock(name="parser") parsed = mock.Mock(name="parsed") parser.parse_args.return_value = parsed split_args = mock.Mock(name="split_args", return_value=(args_obj, other_args, defaults)) make_parser = mock.Mock(name="make_parser", return_value=parser) check_args = mock.Mock(name="check_args") cli_parser = CliParser("", positional_replacements) with mock.patch.multiple( cli_parser, split_args=split_args, make_parser=make_parser, check_args=check_args ): assert cli_parser.parse_args(argv) == (parsed, other_args) make_parser.assert_called_once_with(defaults) parser.parse_args.assert_called_once_with(args_obj) check_args.assert_called_once_with(argv, defaults, positional_replacements) it "works": class Parser(CliParser): def specify_other_args(slf, parser, defaults): parser.add_argument("--task", help="specify the task", **defaults["--task"]) parser.add_argument("--blah", help="I don't know", **defaults["--blah"]) parser.add_argument("--meh", help="I don't know") parser = Parser("", [("--task", "list_tasks"), "--blah"], {}) parsed, other_args = parser.parse_args( ["whatever", "tree", "--meh", "bus", "--", "--blah", "fire"] ) assert other_args == "--blah fire" assert parsed.task == "whatever" assert parsed.blah == "tree" assert parsed.meh == "bus" it "works in the error case": class Parser(CliParser): def specify_other_args(slf, parser, defaults): parser.add_argument("--task", help="specify the task", **defaults["--task"]) parser = Parser("", ["--task"], {}) with assertRaises( BadOption, "Please don't specify an option as a positional argument and as a --flag", argument="--task", position=1, ): parsed, other_args = parser.parse_args( ["whatever", "--task", "whatever", "--", "--task", "fire"] ) describe "check_args": it "complains if it finds something both has a default and is in args and positional_replacements": positional_replacements = ["--task", "--env"] defaults = {"--task": {}, "--env": {"default": "prod"}} parser = CliParser("") parser.check_args([], defaults, positional_replacements) assert True, "That definitely should not have failed" with assertRaises( BadOption, "Please don't specify an option as a positional argument and as a --flag", argument="--env", position=2, ): parser.check_args( ["list_tasks", "dev", "--env", "staging"], defaults, positional_replacements ) describe "interpret_args": it "can categorize based on categories and names of args": class Parser(CliParser): def specify_other_args(slf, parser, defaults): parser.add_argument("--one", dest="my_app_one") parser.add_argument("--two", dest="my_app_two") parser.add_argument("--other") parser = Parser("") args_obj, args_dict, extra = parser.interpret_args( [ "--one", "1", "--two", "2", "--other", "3", "--logging-program", "my-app", "--syslog-address", "/dev/log", ], ["my_app"], ) assert extra == "" assert args_obj.my_app_one == "1" assert args_obj.my_app_two == "2" assert args_obj.other == "3" assert args_obj.logging_program == "my-app" assert args_dict == { "my_app": {"one": "1", "two": "2"}, "other": "3", "silent": False, "debug": False, "verbose": False, "version": False, "logging_program": "my-app", "syslog_address": "/dev/log", "json_console_logs": False, "tcp_logging_address": "", "udp_logging_address": "", "logging_handler_file": None, } it "Doesn't complain about flagged values in positional placement": class Parser(CliParser): def specify_other_args(slf, parser, defaults): parser.add_argument("--one", **defaults["--one"]) parser.add_argument("--two", **defaults["--two"]) parser.add_argument("--three", **defaults["--three"]) parser = Parser("", ["--one", "--two", ("--three", "dflt")], {}) parsed, args_dict, extra = parser.interpret_args( ["whatever", "--three", "whatever2", "--two", "stuff"] ) assert parsed.one == "whatever" assert parsed.two == "stuff" assert parsed.three == "whatever2" it "does complain about flagged values combined with positional placement": class Parser(CliParser): def specify_other_args(slf, parser, defaults): parser.add_argument("--one", **defaults["--one"]) parser.add_argument("--two", **defaults["--two"]) parser.add_argument("--three", **defaults["--three"]) parser = Parser("", ["--one", "--two", ("--three", "dflt")], {}) with assertRaises( BadOption, "Please don't specify an option as a positional argument and as a --flag", argument="--two", position=2, ): parser.interpret_args(["whatever", "trees", "whatever2", "--two", "stuff"]) describe "make_defaults": it "has no defaults if there are no positional_replacements or environment_defaults": parser = CliParser("") defaults = parser.make_defaults([], [], {}) assert defaults == {} argv = ["one", "two", "--three"] defaults = parser.make_defaults(argv, [], {}) assert defaults == {} assert argv == ["one", "two", "--three"] it "maps argv positionals to positional_replacements and takes those from argv": argv = ["one", "two", "three"] positional_replacements = ["--task", "--env", "--stack"] parser = CliParser("") defaults = parser.make_defaults(argv, positional_replacements, {}) assert argv == [] assert defaults == { "--task": {"default": "one"}, "--env": {"default": "two"}, "--stack": {"default": "three"}, } it "ignores positional_replacements after a -flag": argv = ["one", "two", "-three"] positional_replacements = ["--task", "--env", "--stack"] parser = CliParser("") defaults = parser.make_defaults(argv, positional_replacements, {}) assert argv == ["-three"] assert defaults == { "--task": {"default": "one"}, "--env": {"default": "two"}, "--stack": {}, } it "finds environment variables from environment_defaults as defaults": argv = [] environment_defaults = {"CONFIG_LOCATION": "--config"} parser = CliParser("") somewhere = "/some/nice/config.yml" with self.swapped_env(CONFIG_LOCATION=somewhere): defaults = parser.make_defaults(argv, [], environment_defaults) assert argv == [] assert defaults == {"--config": {"default": somewhere}} it "uses default from environment if flag in positional_replacements": argv = [] environment_defaults = {"CONFIG_LOCATION": "--config"} positional_replacements = ["--config"] parser = CliParser("") somewhere = "/some/nice/config.yml" with self.swapped_env(CONFIG_LOCATION=somewhere): defaults = parser.make_defaults(argv, positional_replacements, environment_defaults) assert argv == [] assert defaults == {"--config": {"default": somewhere}} it "overrides default from environment_defaults with value from argv if in positional_replacements": argv = ["a/better/place.yml"] environment_defaults = {"CONFIG_LOCATION": "--config"} positional_replacements = ["--config"] parser = CliParser("") somewhere = "/some/nice/config.yml" with self.swapped_env(CONFIG_LOCATION=somewhere): defaults = parser.make_defaults(argv, positional_replacements, environment_defaults) assert argv == [] assert defaults == {"--config": {"default": "a/better/place.yml"}} it "environment_defaults overrides positional_replacements default": argv = [] environment_defaults = {"CONFIG_LOCATION": "--config"} positional_replacements = [("--config", "a/nicer/place.yml")] parser = CliParser("") somewhere = "/some/nice/config.yml" with self.swapped_env(CONFIG_LOCATION=somewhere): defaults = parser.make_defaults(argv, positional_replacements, environment_defaults) assert argv == [] assert defaults == {"--config": {"default": somewhere}} it "environment_defaults default value overrides positional_replacements default": argv = [] environment_defaults = {"CONFIG_LOCATION": ("--config", "the/best/place.yml")} positional_replacements = [("--config", "a/nicer/place.yml")] parser = CliParser("") defaults = parser.make_defaults(argv, positional_replacements, environment_defaults) assert argv == [] assert defaults == {"--config": {"default": "the/best/place.yml"}} it "can have defaults for positional_replacements": argv = [] positional_replacements = [("--task", "list_tasks")] parser = CliParser("") defaults = parser.make_defaults(argv, positional_replacements, {}) assert argv == [] assert defaults == {"--task": {"default": "list_tasks"}} it "can have defaults for environment_defaults": argv = [] environment_defaults = {"SOMETHING": ("--something", "something")} parser = CliParser("") defaults = parser.make_defaults(argv, [], environment_defaults) assert argv == [] assert defaults == {"--something": {"default": "something"}} describe "split_args": it "returns args before and after -- and calls make_defaults": dflts = mock.Mock(name="dflts") make_defaults = mock.Mock(name="make_defaults", return_value=dflts) description = mock.Mock(name="description") environment_defaults = mock.Mock(name="environment_defaults") positional_replacements = mock.Mock(name="positional_replacements") parser = CliParser(description, positional_replacements, environment_defaults) with mock.patch.object(parser, "make_defaults", make_defaults): args, other_args, defaults = parser.split_args(["a", "b", "c", "--", "d", "e", "f"]) assert args == ["a", "b", "c"] assert other_args == "d e f" assert defaults is dflts make_defaults.assert_called_once_with( ["a", "b", "c"], positional_replacements, environment_defaults ) it "returns other_args as empty if there is no --": args, other_args, defaults = CliParser("").split_args(["a", "b", "c"]) assert args == ["a", "b", "c"] assert other_args == "" assert defaults == {} it "sets args as an empty list if args is just from --": args, other_args, defaults = CliParser("").split_args(["--", "a", "b", "c"]) assert args == [] assert other_args == "a b c" assert defaults == {} it "works": argv = ["dev", "--blah", "1", "--", "and", "stuff"] args, other_args, defaults = CliParser( "", ["--env", ("--task", "list_tasks")], {"CONFIG_LOCATION": ("--config", "somewhere")}, ).split_args(argv) assert args == ["--blah", "1"] assert other_args == "and stuff" assert defaults == { "--env": {"default": "dev"}, "--task": {"default": "list_tasks"}, "--config": {"default": "somewhere"}, } describe "make_parser": it "calls specify_other_args with the parser": parser = mock.Mock(name="parser") defaults = {"--silent": {"default": False}} description = mock.Mock(name="description") FakeArgumentParser = mock.Mock(name="ArgumentParser", return_value=parser) called = [] class Parser(CliParser): def specify_other_args(slf, parser, defaults): called.append((parser, defaults)) with mock.patch("argparse.ArgumentParser", FakeArgumentParser): assert Parser(description).make_parser(defaults) is parser assert called == [(parser, defaults)] FakeArgumentParser.assert_called_once_with(description=description) it "specifies verbose, silent and debug": parser = CliParser("").make_parser({}) args_obj = parser.parse_args([]) assert args_obj.verbose is False assert args_obj.silent is False assert args_obj.debug is False args_obj = parser.parse_args(["--verbose"]) assert args_obj.verbose is True assert args_obj.silent is False assert args_obj.debug is False args_obj = parser.parse_args(["--silent"]) assert args_obj.verbose is False assert args_obj.silent is True assert args_obj.debug is False args_obj = parser.parse_args(["--debug"]) assert args_obj.verbose is False assert args_obj.silent is False assert args_obj.debug is True it "can have silent
'C', (2,3),'AN'], ['CIV13', 'C', 35,'AN'], ['CIV14', 'C', (3,3),'AN'], ['CIV15', 'C', (2,3),'AN'], ['CIV16', 'C', 35,'AN'], ['CIV17', 'C', 80,'AN'], ], 'CL': [ ['BOTSID', 'M', 3,'AN'], ['CL01', 'M', (2,5),'AN'], ], 'CL1': [ ['BOTSID', 'M', 3,'AN'], ['CL101', 'C', 1,'AN'], ['CL102', 'C', 1,'AN'], ['CL103', 'C', 2,'AN'], ['CL104', 'C', 1,'AN'], ], 'CLD': [ ['BOTSID', 'M', 3,'AN'], ['CLD01', 'M', 5,'R'], ['CLD02', 'M', 10,'R'], ['CLD03', 'C', (5,5),'AN'], ['CLD04', 'C', 8,'R'], ['CLD05', 'C', (2,2),'AN'], ], 'CLI': [ ['BOTSID', 'M', 3,'AN'], ['CLI01', 'C', (2,2),'AN'], ['CLI02', 'C', (2,2),'AN'], ['CLI03', 'C', 11,'AN'], ['CLI04', 'C', 45,'AN'], ['CLI05', 'C', 2,'AN'], ['CLI06', 'C', (2,2),'AN'], ], 'CLM': [ ['BOTSID', 'M', 3,'AN'], ['CLM01', 'M', 38,'AN'], ['CLM02', 'C', 15,'R'], ['CLM03', 'C', 2,'AN'], ['CLM04', 'C', 2,'AN'], ['CLM05', 'C', 2,'AN'], ['CLM06', 'C', 2,'AN'], ['CLM07', 'C', 1,'AN'], ['CLM08', 'C', 1,'AN'], ['CLM09', 'C', 1,'AN'], ['CLM10', 'C', 1,'AN'], ['CLM11', 'C', 1,'AN'], ['CLM12', 'C', 1,'AN'], ['CLM13', 'C', (2,3),'AN'], ['CLM14', 'C', (2,3),'AN'], ['CLM15', 'C', (2,3),'AN'], ['CLM16', 'C', (2,2),'AN'], ['CLM17', 'C', (2,3),'AN'], ['CLM18', 'C', (2,3),'AN'], ['CLM19', 'C', 1,'AN'], ['CLM20', 'C', 3,'AN'], ['CLM21', 'C', 1,'AN'], ['CLM22', 'C', 1,'AN'], ['CLM23', 'C', 2,'AN'], ['CLM24', 'C', 1,'AN'], ['CLM25', 'C', (2,2),'AN'], ], 'CLP': [ ['BOTSID', 'M', 3,'AN'], ['CLP01', 'M', 38,'AN'], ['CLP02', 'M', 2,'AN'], ['CLP03', 'M', 15,'R'], ['CLP04', 'M', 15,'R'], ['CLP05', 'C', 15,'R'], ['CLP06', 'C', 2,'AN'], ['CLP07', 'C', 30,'AN'], ['CLP08', 'C', 2,'AN'], ['CLP09', 'C', 1,'AN'], ['CLP10', 'C', 2,'AN'], ['CLP11', 'C', 4,'AN'], ], 'CM': [ ['BOTSID', 'M', 3,'AN'], ['CM01', 'M', (2,10),'AN'], ['CM02', 'M', 1,'AN'], ['CM03', 'M', (2,24),'AN'], ['CM04', 'C', (6,6),'DT'], ['CM05', 'C', 17,'AN'], ['CM06', 'C', (2,4),'AN'], ['CM07', 'C', (2,4),'AN'], ['CM08', 'C', (6,6),'DT'], ['CM09', 'C', (2,28),'AN'], ['CM10', 'C', 4,'AN'], ['CM11', 'C', (2,14),'AN'], ['CM12', 'C', (2,30),'AN'], ['CM13', 'C', (2,2),'AN'], ['CM14', 'C', (2,3),'AN'], ], 'CMA': [ ['BOTSID', 'M', 3,'AN'], ['CMA01', 'M', (2,2),'AN'], ['CMA02', 'M', (2,2),'AN'], ['CMA03', 'M', 30,'AN'], ['CMA04', 'M', (6,6),'DT'], ['CMA05', 'M', 2,'R'], ['CMA06', 'C', 3,'AN'], ['CMA07', 'C', 12,'AN'], ['CMA08', 'C', (3,3),'AN'], ['CMA09', 'C', 8,'AN'], ['CMA10', 'C', 30,'AN'], ['CMA11', 'C', (2,2),'AN'], ], 'CN1': [ ['BOTSID', 'M', 3,'AN'], ['CN101', 'M', (2,2),'AN'], ['CN102', 'C', 15,'R'], ['CN103', 'C', 6,'R'], ['CN104', 'C', 30,'AN'], ['CN105', 'C', 6,'R'], ['CN106', 'C', 30,'AN'], ], 'COB': [ ['BOTSID', 'M', 3,'AN'], ['COB01', 'C', 1,'AN'], ['COB02', 'C', 30,'AN'], ['COB03', 'C', 1,'AN'], ], 'CON': [ ['BOTSID', 'M', 3,'AN'], ['CON01', 'M', (2,2),'AN'], ['CON02', 'M', 30,'AN'], ['CON03', 'M', (2,2),'AN'], ], 'CPR': [ ['BOTSID', 'M', 3,'AN'], ['CPR01', 'M', (3,3),'AN'], ['CPR02', 'M', (6,6),'DT'], ['CPR03', 'M', 14,'R'], ['CPR04', 'M', (2,2),'AN'], ['CPR05', 'C', 1,'AN'], ], 'CR1': [ ['BOTSID', 'M', 3,'AN'], ['CR101', 'C', (2,2),'AN'], ['CR102', 'C', 10,'R'], ['CR103', 'C', 1,'AN'], ['CR104', 'C', 1,'AN'], ['CR105', 'C', (2,2),'AN'], ['CR106', 'C', 15,'R'], ['CR107', 'C', 35,'AN'], ['CR108', 'C', 35,'AN'], ['CR109', 'C', 80,'AN'], ['CR110', 'C', 80,'AN'], ], 'CR2': [ ['BOTSID', 'M', 3,'AN'], ['CR201', 'C', 9,'R'], ['CR202', 'C', 15,'R'], ['CR203', 'C', (2,3),'AN'], ['CR204', 'C', (2,3),'AN'], ['CR205', 'C', (2,2),'AN'], ['CR206', 'C', 15,'R'], ['CR207', 'C', 15,'R'], ['CR208', 'C', 1,'AN'], ['CR209', 'C', 1,'AN'], ['CR210', 'C', 80,'AN'], ['CR211', 'C', 80,'AN'], ], 'CR3': [ ['BOTSID', 'M', 3,'AN'], ['CR301', 'C', 1,'AN'], ['CR302', 'C', (2,2),'AN'], ['CR303', 'C', 15,'R'], ['CR304', 'C', 1,'AN'], ['CR305', 'C', 80,'AN'], ], 'CR4': [ ['BOTSID', 'M', 3,'AN'], ['CR401', 'M', 1,'AN'], ['CR402', 'C', 1,'AN'], ['CR403', 'C', (2,2),'AN'], ['CR404', 'C', 15,'R'], ['CR405', 'C', (2,2),'AN'], ['CR406', 'C', 15,'R'], ['CR407', 'C', 1,'AN'], ['CR408', 'C', (2,2),'AN'], ['CR409', 'C', 15,'R'], ['CR410', 'C', (2,2),'AN'], ['CR411', 'C', 8,'R'], ['CR412', 'C', (2,2),'AN'], ['CR413', 'C', 10,'R'], ['CR414', 'C', 15,'R'], ['CR415', 'C', 80,'AN'], ['CR416', 'C', 1,'AN'], ['CR417', 'C', 1,'AN'], ['CR418', 'C', 15,'R'], ['CR419', 'C', 15,'R'], ['CR420', 'C', 80,'AN'], ['CR421', 'C', 15,'R'], ['CR422', 'C', 10,'R'], ['CR423', 'C', 15,'R'], ['CR424', 'C', 15,'R'], ['CR425', 'C', 10,'R'], ['CR426', 'C', 15,'R'], ['CR427', 'C', 10,'R'], ['CR428', 'C', 15,'R'], ['CR429', 'C', 80,'AN'], ], 'CR5': [ ['BOTSID', 'M', 3,'AN'], ['CR501', 'C', 1,'AN'], ['CR502', 'C', 15,'R'], ['CR503', 'C', 1,'AN'], ['CR504', 'C', 1,'AN'], ['CR505', 'C', 80,'AN'], ['CR506', 'C', 15,'R'], ['CR507', 'C', 15,'R'], ['CR508', 'C', 15,'R'], ['CR509', 'C', 80,'AN'], ['CR510', 'C', 15,'R'], ['CR511', 'C', 15,'R'], ['CR512', 'C', 1,'AN'], ['CR513', 'C', 1,'AN'], ['CR514', 'C', 1,'AN'], ['CR515', 'C', 1,'AN'], ['CR516', 'C', 15,'R'], ['CR517', 'C', 1,'AN'], ], 'CR8': [ ['BOTSID', 'M', 3,'AN'], ['CR801', 'M', 1,'AN'], ['CR802', 'M', 1,'AN'], ['CR803', 'M', (6,6),'DT'], ['CR804', 'M', (6,6),'DT'], ['CR805', 'M', 30,'AN'], ['CR806', 'M', 30,'AN'], ['CR807', 'M', 30,'AN'], ['CR808', 'M', 1,'AN'], ['CR809', 'M', 1,'AN'], ], 'CRC': [ ['BOTSID', 'M', 3,'AN'], ['CRC01', 'M', (2,2),'AN'], ['CRC02', 'M', 1,'AN'], ['CRC03', 'M', (2,2),'AN'], ['CRC04', 'C', (2,2),'AN'], ['CRC05', 'C', (2,2),'AN'], ['CRC06', 'C', (2,2),'AN'], ['CRC07', 'C', (2,2),'AN'], ], 'CRI': [ ['BOTSID', 'M', 3,'AN'], ['CRI01', 'C', (3,3),'AN'], ['CRI02', 'C', 2,'AN'], ['CRI03', 'C', (2,3),'AN'], ['CRI04', 'C', 1,'AN'], ['CRI05', 'C', 1,'AN'], ], 'CRO': [ ['BOTSID', 'M', 3,'AN'], ['CRO01', 'M', (2,3),'AN'], ['CRO02', 'M', 35,'AN'], ['CRO03', 'M', (2,2),'AN'], ['CRO04', 'M', 30,'AN'], ['CRO05', 'M', 2,'AN'], ], 'CRS': [ ['BOTSID', 'M', 3,'AN'], ['CRS01', 'M', 1,'AN'], ['CRS02', 'C', 1,'AN'], ['CRS03', 'C', 15,'R'], ['CRS04', 'C', 15,'R'], ['CRS05', 'C', 3,'AN'], ['CRS06', 'C', 3,'AN'], ['CRS07', 'C', 1,'AN'], ['CRS08', 'C', 2,'AN'], ['CRS09', 'C', 1,'AN'], ['CRS10', 'C', 2,'AN'], ['CRS11', 'C', (2,17),'AN'], ['CRS12', 'C', 15,'R'], ['CRS13', 'C', (2,2),'AN'], ['CRS14', 'C', 35,'AN'], ['CRS15', 'C', 30,'AN'], ['CRS16', 'C', 35,'AN'], ['CRS17', 'C', 15,'R'], ['CRS18', 'C', 15,'R'], ['CRS19', 'C', (6,6),'DT'], ['CRS20', 'C', (2,2),'AN'], ], 'CRT': [ ['BOTSID', 'M', 3,'AN'], ['CRT01', 'M', (2,2),'AN'], ['CRT02', 'C', (2,2),'AN'], ['CRT03', 'C', (2,2),'AN'], ['CRT04', 'C', (2,2),'AN'], ['CRT05', 'C', 2,'AN'], ['CRT06', 'C', 2,'AN'], ['CRT07', 'C', (2,2),'AN'], ['CRT08', 'C', (2,2),'AN'], ['CRT09', 'C', 45,'AN'], ['CRT10', 'C', (2,2),'AN'], ], 'CS': [ ['BOTSID', 'M', 3,'AN'], ['CS01', 'C', 30,'AN'], ['CS02', 'C', 8,'AN'], ['CS03', 'C', 30,'AN'], ['CS04', 'C', (2,2),'AN'], ['CS05', 'C', 30,'AN'], ['CS06', 'C', 22,'AN'], ['CS07', 'C', (2,10),'AN'], ['CS08', 'C', (2,2),'AN'], ['CS09', 'C', 10,'R'], ['CS10', 'C', 10,'R'], ['CS11', 'C', 15,'R'], ['CS12', 'C', (2,2),'AN'], ['CS13', 'C', (2,10),'AN'], ['CS14', 'C', (2,2),'AN'], ['CS15', 'C', 14,'R'], ['CS16', 'C', (2,2),'AN'], ['CS17', 'C', 1,'AN'], ['CS18', 'C', 1,'AN'], ], 'CSB': [ ['BOTSID', 'M', 3,'AN'], ['CSB01', 'M', (2,4),'AN'], ['CSB02', 'C', 32,'AN'], ], 'CSF': [ ['BOTSID', 'M', 3,'AN'], ['CSF01', 'M', (2,2),'AN'], ['CSF02', 'C', 6,'R'], ['CSF03', 'C', 9,'R'], ], 'CSH': [ ['BOTSID', 'M', 3,'AN'], ['CSH01', 'C', 2,'AN'], ['CSH02', 'C', 1,'AN'], ['CSH03', 'C', (2,9),'N2'], ['CSH04', 'C', 35,'AN'], ['CSH05', 'C', (6,6),'DT'], ['CSH06', 'C', (2,2),'AN'], ['CSH07', 'C', (2,10),'AN'], ['CSH08', 'C', 2,'AN'], ['CSH09', 'C', 10,'R'], ], 'CSI': [ ['BOTSID', 'M', 3,'AN'], ['CSI01', 'M', (2,2),'AN'], ['CSI02', 'M', (3,3),'AN'], ['CSI03', 'M', (2,3),'AN'], ['CSI04', 'M', 35,'AN'], ], 'CSM': [ ['BOTSID', 'M', 3,'AN'], ['CSM01', 'M', (3,4),'AN'], ['CSM02', 'M', (4,16),'AN'], ['CSM03', 'M', (4,16),'AN'], ], 'CSS': [ ['BOTSID', 'M', 3,'AN'], ['CSS01', 'M', (2,2),'AN'], ['CSS02', 'M', (2,2),'AN'], ['CSS03', 'M', 3,'R'], ['CSS04', 'C', 3,'R'], ['CSS05', 'C', 3,'R'], ['CSS06', 'C', 3,'R'], ['CSS07', 'C', 3,'R'], ], 'CST': [ ['BOTSID', 'M', 3,'AN'], ['CST01', 'M', (3,3),'AN'], ['CST02', 'M', 15,'R'], ['CST03', 'C', (2,2),'AN'], ['CST04', 'C', 15,'R'], ], 'CSU': [ ['BOTSID', 'M', 3,'AN'], ['CSU01', 'C', 35,'AN'], ['CSU02', 'C', 30,'AN'], ['CSU03', 'C', (2,3),'AN'], ['CSU04', 'C', 35,'AN'], ['CSU05', 'C', (2,3),'AN'], ['CSU06', 'C', 35,'AN'], ], 'CTB': [ ['BOTSID', 'M', 3,'AN'], ['CTB01', 'M', (2,2),'AN'], ['CTB02', 'C', 80,'AN'], ['CTB03', 'C', (2,2),'AN'], ['CTB04', 'C', 15,'R'], ['CTB05', 'C', 2,'AN'], ['CTB06', 'C', 15,'N2'], ], 'CTC': [ ['BOTSID', 'M', 3,'AN'], ['CTC01', 'M', (2,4),'AN'], ['CTC02', 'M', (2,4),'AN'], ['CTC03', 'M', 1,'AN'], ['CTC04', 'M', (2,2),'AN'], ['CTC05', 'M', (2,2),'AN'], ['CTC06', 'M', (2,2),'R'], ['CTC07', 'M', (2,2),'R'], ['CTC08', 'M', (2,2),'AN'], ['CTC09', 'C', (2,2),'R'], ['CTC10', 'C', (2,2),'R'], ['CTC11', 'C', (2,2),'AN'], ['CTC12', 'C', 2,'AN'], ], 'CTP': [ ['BOTSID', 'M', 3,'AN'], ['CTP01', 'C', (2,2),'AN'], ['CTP02', 'C', (3,3),'AN'], ['CTP03', 'C', 14,'R'], ['CTP04', 'C', 15,'R'], ['CTP05', 'C', (2,2),'AN'], ['CTP06', 'C', (3,3),'AN'], ['CTP07', 'C', 10,'R'], ['CTP08', 'C', 15,'R'], ['CTP09', 'C', (2,2),'AN'], ], 'CTT': [ ['BOTSID', 'M', 3,'AN'], ['CTT01', 'M', 6,'R'], ['CTT02', 'C', 10,'R'], ['CTT03', 'C', 10,'R'], ['CTT04', 'C', (2,2),'AN'], ['CTT05', 'C', 8,'R'], ['CTT06', 'C', (2,2),'AN'], ['CTT07', 'C', 80,'AN'], ], 'CUR': [ ['BOTSID', 'M', 3,'AN'], ['CUR01', 'M', (2,2),'AN'], ['CUR02', 'M', (3,3),'AN'], ['CUR03', 'C', (4,6),'R'], ['CUR04', 'C', (2,2),'AN'], ['CUR05', 'C', (3,3),'AN'], ['CUR06', 'C', (3,3),'AN'], ['CUR07', 'C', (3,3),'AN'], ['CUR08', 'C', (6,6),'DT'], ['CUR09', 'C', (4,8),'TM'], ['CUR10', 'C', (3,3),'AN'], ['CUR11', 'C', (6,6),'DT'], ['CUR12', 'C', (4,8),'TM'], ['CUR13', 'C', (3,3),'AN'], ['CUR14', 'C', (6,6),'DT'], ['CUR15', 'C', (4,8),'TM'], ['CUR16', 'C', (3,3),'AN'], ['CUR17', 'C', (6,6),'DT'], ['CUR18', 'C', (4,8),'TM'], ['CUR19', 'C', (3,3),'AN'], ['CUR20', 'C', (6,6),'DT'], ['CUR21', 'C', (4,8),'TM'], ], 'CV': [ ['BOTSID', 'M', 3,'AN'], ['CV01', 'M', 1,'AN'], ['CV02', 'C', (2,2),'AN'], ['CV03', 'C', 1,'AN'], ['CV04', 'C', 1,'AN'], ['CV05', 'C', 15,'R'], ['CV06', 'C', 1,'AN'], ['CV07', 'C', 15,'R'], ['CV08', 'C', 15,'R'], ['CV09', 'C', 15,'R'], ['CV10', 'C', 15,'R'], ['CV11', 'C', 15,'R'], ['CV12', 'C', 15,'R'], ['CV13', 'C', 15,'R'], ['CV14', 'C', 1,'AN'], ], 'CYC': [ ['BOTSID', 'M', 3,'AN'], ['CYC01', 'M', (2,2),'R'], ['CYC02', 'M', (2,2),'R'], ['CYC03', 'M', (2,2),'AN'], ['CYC04', 'M', 3,'R'], ['CYC05', 'M', (6,9),'AN'], ['CYC06', 'M', (2,4),'AN'], ['CYC07', 'C', (7,7),'AN'], ], 'D8': [ ['BOTSID', 'M', 3,'AN'], ['D801', 'M', (2,4),'AN'], ], 'D9': [ ['BOTSID', 'M', 3,'AN'], ['D901', 'C', 5,'AN'], ['D902', 'M', (2,30),'AN'], ['D903', 'M', (2,2),'AN'], ['D904', 'C', (2,3),'AN'], ['D905', 'C', 5,'AN'], ['D906', 'C', (2,30),'AN'], ['D907', 'C', (2,2),'AN'], ['D908', 'C', (6,9),'AN'], ['D909', 'C', (3,9),'AN'], ], 'DAD': [ ['BOTSID', 'M', 3,'AN'], ['DAD01', 'M', 2,'AN'],
"""Generated message classes for gkehub version v1alpha1. """ # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'gkehub' class AuditConfig(_messages.Message): r"""Specifies the audit configuration for a service. The configuration determines which permission types are logged, and what identities, if any, are exempted from logging. An AuditConfig must have one or more AuditLogConfigs. If there are AuditConfigs for both `allServices` and a specific service, the union of the two AuditConfigs is used for that service: the log_types specified in each AuditConfig are enabled, and the exempted_members in each AuditLogConfig are exempted. Example Policy with multiple AuditConfigs: { "audit_configs": [ { "service": "allServices" "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:<EMAIL>" ] }, { "log_type": "DATA_WRITE", }, { "log_type": "ADMIN_READ", } ] }, { "service": "fooservice.googleapis.com" "audit_log_configs": [ { "log_type": "DATA_READ", }, { "log_type": "DATA_WRITE", "exempted_members": [ "user:<EMAIL>" ] } ] } ] } For fooservice, this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also exempts <EMAIL> from DATA_READ logging, and <EMAIL> from DATA_WRITE logging. Fields: auditLogConfigs: The configuration for logging of each type of permission. exemptedMembers: A string attribute. service: Specifies a service that will be enabled for audit logging. For example, `storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special value that covers all services. """ auditLogConfigs = _messages.MessageField('AuditLogConfig', 1, repeated=True) exemptedMembers = _messages.StringField(2, repeated=True) service = _messages.StringField(3) class AuditLogConfig(_messages.Message): r"""Provides the configuration for logging a type of permissions. Example: { "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:<EMAIL>" ] }, { "log_type": "DATA_WRITE", } ] } This enables 'DATA_READ' and 'DATA_WRITE' logging, while exempting <EMAIL> from DATA_READ logging. Enums: LogTypeValueValuesEnum: The log type that this config enables. Fields: exemptedMembers: Specifies the identities that do not cause logging for this type of permission. Follows the same format of Binding.members. logType: The log type that this config enables. """ class LogTypeValueValuesEnum(_messages.Enum): r"""The log type that this config enables. Values: LOG_TYPE_UNSPECIFIED: Default case. Should never be this. ADMIN_READ: Admin reads. Example: CloudIAM getIamPolicy DATA_WRITE: Data writes. Example: CloudSQL Users create DATA_READ: Data reads. Example: CloudSQL Users list """ LOG_TYPE_UNSPECIFIED = 0 ADMIN_READ = 1 DATA_WRITE = 2 DATA_READ = 3 exemptedMembers = _messages.StringField(1, repeated=True) logType = _messages.EnumField('LogTypeValueValuesEnum', 2) class AuthorizationLoggingOptions(_messages.Message): r"""Authorization-related information used by Cloud Audit Logging. Enums: PermissionTypeValueValuesEnum: The type of the permission that was checked. Fields: permissionType: The type of the permission that was checked. """ class PermissionTypeValueValuesEnum(_messages.Enum): r"""The type of the permission that was checked. Values: PERMISSION_TYPE_UNSPECIFIED: Default. Should not be used. ADMIN_READ: A read of admin (meta) data. ADMIN_WRITE: A write of admin (meta) data. DATA_READ: A read of standard data. DATA_WRITE: A write of standard data. """ PERMISSION_TYPE_UNSPECIFIED = 0 ADMIN_READ = 1 ADMIN_WRITE = 2 DATA_READ = 3 DATA_WRITE = 4 permissionType = _messages.EnumField('PermissionTypeValueValuesEnum', 1) class Binding(_messages.Message): r"""Associates `members` with a `role`. Fields: condition: Unimplemented. The condition that is associated with this binding. NOTE: an unsatisfied condition will not allow user access via current binding. Different bindings, including their conditions, are examined independently. members: Specifies the identities requesting access for a Cloud Platform resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. * `user:{emailid}`: An email address that represents a specific Google account. For example, `<EMAIL>` . * `serviceAccount:{emailid}`: An email address that represents a service account. For example, `my-other- <EMAIL>`. * `group:{emailid}`: An email address that represents a Google group. For example, `<EMAIL>`. * `domain:{domain}`: A Google Apps domain name that represents all the users of that domain. For example, `google.com` or `example.com`. role: Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. """ condition = _messages.MessageField('Expr', 1) members = _messages.StringField(2, repeated=True) role = _messages.StringField(3) class CancelOperationRequest(_messages.Message): r"""The request message for Operations.CancelOperation.""" class CloudAuditOptions(_messages.Message): r"""Write a Cloud Audit log Enums: LogNameValueValuesEnum: The log_name to populate in the Cloud Audit Record. Fields: authorizationLoggingOptions: Information used by the Cloud Audit Logging pipeline. logName: The log_name to populate in the Cloud Audit Record. """ class LogNameValueValuesEnum(_messages.Enum): r"""The log_name to populate in the Cloud Audit Record. Values: UNSPECIFIED_LOG_NAME: Default. Should not be used. ADMIN_ACTIVITY: Corresponds to "cloudaudit.googleapis.com/activity" DATA_ACCESS: Corresponds to "cloudaudit.googleapis.com/data_access" """ UNSPECIFIED_LOG_NAME = 0 ADMIN_ACTIVITY = 1 DATA_ACCESS = 2 authorizationLoggingOptions = _messages.MessageField('AuthorizationLoggingOptions', 1) logName = _messages.EnumField('LogNameValueValuesEnum', 2) class Condition(_messages.Message): r"""A condition to be met. Enums: IamValueValuesEnum: Trusted attributes supplied by the IAM system. OpValueValuesEnum: An operator to apply the subject with. SysValueValuesEnum: Trusted attributes supplied by any service that owns resources and uses the IAM system for access control. Fields: iam: Trusted attributes supplied by the IAM system. op: An operator to apply the subject with. svc: Trusted attributes discharged by the service. sys: Trusted attributes supplied by any service that owns resources and uses the IAM system for access control. values: The objects of the condition. """ class IamValueValuesEnum(_messages.Enum): r"""Trusted attributes supplied by the IAM system. Values: NO_ATTR: Default non-attribute. AUTHORITY: Either principal or (if present) authority selector. ATTRIBUTION: The principal (even if an authority selector is present), which must only be used for attribution, not authorization. SECURITY_REALM: Any of the security realms in the IAMContext (go /security-realms). When used with IN, the condition indicates "any of the request's realms match one of the given values; with NOT_IN, "none of the realms match any of the given values". Note that a value can be: - 'self' (i.e., allow connections from clients that are in the same security realm) - a realm (e.g., 'campus-abc') - a realm group (e.g., 'realms-for-borg-cell-xx', see: go/realm-groups) A match is determined by a realm group membership check performed by a RealmAclRep object (go/realm-acl-howto). It is not permitted to grant access based on the *absence* of a realm, so realm conditions can only be used in a "positive" context (e.g., ALLOW/IN or DENY/NOT_IN). APPROVER: An approver (distinct from the requester) that has authorized this request. When used with IN, the condition indicates that one of the approvers associated with the request matches the specified principal, or is a member of the specified group. Approvers can only grant additional access, and are thus only used in a strictly positive context (e.g. ALLOW/IN or DENY/NOT_IN). JUSTIFICATION_TYPE: What types of justifications have been supplied with this request. String values should match enum names from tech.iam.JustificationType, e.g. "MANUAL_STRING". It is not permitted to grant access based on the *absence* of a justification, so justification conditions can only be used in a "positive" context (e.g., ALLOW/IN or DENY/NOT_IN). Multiple justifications, e.g., a Buganizer ID and a manually-entered reason, are normal and supported. CREDENTIALS_TYPE: What type of credentials have been supplied with this request. String values should match enum names from security_loas_l2.CredentialsType - currently, only CREDS_TYPE_EMERGENCY is supported. It is not permitted to grant access based on the *absence* of a credentials type, so the conditions can only be used in a "positive" context (e.g., ALLOW/IN or DENY/NOT_IN). """ NO_ATTR = 0 AUTHORITY = 1 ATTRIBUTION = 2 SECURITY_REALM = 3 APPROVER = 4 JUSTIFICATION_TYPE = 5 CREDENTIALS_TYPE = 6 class OpValueValuesEnum(_messages.Enum): r"""An operator to apply the subject with. Values: NO_OP: Default no-op. EQUALS: DEPRECATED. Use IN instead. NOT_EQUALS: DEPRECATED. Use NOT_IN instead. IN: The condition is true if the subject (or any element of it if it is a set) matches any of the supplied values. NOT_IN: The condition is true if the subject (or every element of it if it is a set) matches none of the supplied values. DISCHARGED: Subject is discharged """ NO_OP = 0 EQUALS = 1 NOT_EQUALS = 2 IN = 3 NOT_IN = 4 DISCHARGED = 5 class SysValueValuesEnum(_messages.Enum): r"""Trusted attributes supplied by any service that owns resources
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------- # Name: sfp_accounts # Purpose: Identify the existence of a given acount on various sites thanks # to Micah Hoffman's (https://github.com/WebBreacher) list. # # Author: <NAME> <<EMAIL>> # # Created: 18/02/2015 # Copyright: (c) <NAME> 2015 # Licence: MIT # ------------------------------------------------------------------------------- import json import random import threading import time from queue import Empty as QueueEmpty from queue import Queue from spiderfoot import SpiderFootEvent, SpiderFootPlugin class sfp_accounts(SpiderFootPlugin): meta = { 'name': "Account Finder", 'summary': "Look for possible associated accounts on nearly 200 websites like Ebay, Slashdot, reddit, etc.", 'useCases': ["Footprint", "Passive"], 'categories': ["Social Media"] } # Default options opts = { "ignorenamedict": True, "ignoreworddict": True, "musthavename": True, "userfromemail": True, "permutate": False, "usernamesize": 4, "_maxthreads": 20 } # Option descriptions optdescs = { "ignorenamedict": "Don't bother looking up names that are just stand-alone first names (too many false positives).", "ignoreworddict": "Don't bother looking up names that appear in the dictionary.", "musthavename": "The username must be mentioned on the social media page to consider it valid (helps avoid false positives).", "userfromemail": "Extract usernames from e-mail addresses at all? If disabled this can reduce false positives for common usernames but for highly unique usernames it would result in missed accounts.", "permutate": "Look for the existence of account name permutations. Useful to identify fraudulent social media accounts or account squatting.", "usernamesize": "The minimum length of a username to query across social media sites. Helps avoid false positives for very common short usernames.", "_maxthreads": "Maximum threads" } results = None reportedUsers = list() siteResults = dict() sites = list() errorState = False distrustedChecked = False lock = None def setup(self, sfc, userOpts=dict()): self.sf = sfc self.results = self.tempStorage() self.commonNames = list() self.reportedUsers = list() self.errorState = False self.distrustedChecked = False self.__dataSource__ = "Social Media" self.lock = threading.Lock() for opt in list(userOpts.keys()): self.opts[opt] = userOpts[opt] self.commonNames = set(self.sf.dictnames()) self.words = set(self.sf.dictwords()) content = self.sf.cacheGet("sfaccounts", 48) if content is None: url = "https://raw.githubusercontent.com/WebBreacher/WhatsMyName/master/web_accounts_list.json" data = self.sf.fetchUrl(url, useragent="SpiderFoot") if data['content'] is None: self.error(f"Unable to fetch {url}") self.errorState = True return content = data['content'] self.sf.cachePut("sfaccounts", content) try: self.sites = [site for site in json.loads(content)['sites'] if site['valid']] except Exception as e: self.error(f"Unable to parse social media accounts list: {e}") self.errorState = True return def watchedEvents(self): return ["EMAILADDR", "DOMAIN_NAME", "HUMAN_NAME", "USERNAME"] def producedEvents(self): return ["USERNAME", "ACCOUNT_EXTERNAL_OWNED", "SIMILAR_ACCOUNT_EXTERNAL"] def checkSite(self, name, site): if 'check_uri' not in site: return url = site['check_uri'].format(account=name) if 'pretty_uri' in site: ret_url = site['pretty_uri'].format(account=name) else: ret_url = url retname = f"{site['name']} (Category: {site['category']})\n<SFURL>{ret_url}</SFURL>" res = self.sf.fetchUrl( url, timeout=self.opts['_fetchtimeout'], useragent=self.opts['_useragent'], noLog=True, verify=False ) if not res['content']: with self.lock: self.siteResults[retname] = False return if res['code'] != site.get('account_existence_code'): with self.lock: self.siteResults[retname] = False return if site.get('account_existence_string') not in res['content']: with self.lock: self.siteResults[retname] = False return if self.opts['musthavename']: if name.lower() not in res['content'].lower(): self.debug(f"Skipping {site['name']} as username not mentioned.") with self.lock: self.siteResults[retname] = False return # Some sites can't handle periods so treat bob.abc and bob as the same # TODO: fix this once WhatsMyName has support for usernames with '.' if "." in name: firstname = name.split(".")[0] if firstname + "<" in res['content'] or firstname + '"' in res['content']: with self.lock: self.siteResults[retname] = False return with self.lock: self.siteResults[retname] = True def checkSites(self, username, sites=None): def processSiteQueue(username, queue): try: while True: site = queue.get(timeout=0.1) try: self.checkSite(username, site) except Exception as e: self.debug(f'Thread {threading.current_thread().name} exception: {e}') except QueueEmpty: return startTime = time.monotonic() # results will be collected in siteResults self.siteResults = {} sites = self.sites if sites is None else sites # load the queue queue = Queue() for site in sites: queue.put(site) # start the scan threads threads = [] for i in range(min(len(sites), self.opts['_maxthreads'])): thread = threading.Thread( name=f'sfp_accounts_scan_{i}', target=processSiteQueue, args=(username, queue)) thread.start() threads.append(thread) # wait for all scan threads to finish while threads: threads.pop(0).join() duration = time.monotonic() - startTime scanRate = len(sites) / duration self.debug(f'Scan statistics: name={username}, count={len(self.siteResults)}, duration={duration:.2f}, rate={scanRate:.0f}') return [site for site, found in self.siteResults.items() if found] def generatePermutations(self, username): permutations = list() prefixsuffix = ['_', '-'] replacements = { 'a': ['4', 's'], 'b': ['v', 'n'], 'c': ['x', 'v'], 'd': ['s', 'f'], 'e': ['w', 'r'], 'f': ['d', 'g'], 'g': ['f', 'h'], 'h': ['g', 'j', 'n'], 'i': ['o', 'u', '1'], 'j': ['k', 'h', 'i'], 'k': ['l', 'j'], 'l': ['i', '1', 'k'], 'm': ['n'], 'n': ['m'], 'o': ['p', 'i', '0'], 'p': ['o', 'q'], 'r': ['t', 'e'], 's': ['a', 'd', '5'], 't': ['7', 'y', 'z', 'r'], 'u': ['v', 'i', 'y', 'z'], 'v': ['u', 'c', 'b'], 'w': ['v', 'vv', 'q', 'e'], 'x': ['z', 'y', 'c'], 'y': ['z', 'x'], 'z': ['y', 'x'], '0': ['o'], '1': ['l'], '2': ['5'], '3': ['e'], '4': ['a'], '5': ['s'], '6': ['b'], '7': ['t'], '8': ['b'], '9': [] } pairs = { 'oo': ['00'], 'll': ['l1l', 'l1l', '111', '11'], '11': ['ll', 'lll', 'l1l', '1l1'] } # Generate a set with replacements, then # add suffixes and prefixes. pos = 0 for c in username: if c not in replacements: continue if len(replacements[c]) == 0: continue npos = pos + 1 for xc in replacements[c]: newuser = username[0:pos] + xc + username[npos:len(username)] permutations.append(newuser) pos += 1 # Search for common double-letter replacements for p in pairs: if p in username: for r in pairs[p]: permutations.append(username.replace(p, r)) # Search for prefixed and suffixed usernames for c in prefixsuffix: permutations.append(username + c) permutations.append(c + username) # Search for double character usernames pos = 0 for c in username: permutations.append(username[0:pos] + c + c + username[(pos + 1):len(username)]) pos += 1 return list(set(permutations)) def handleEvent(self, event): eventName = event.eventType srcModuleName = event.module eventData = event.data users = list() if self.errorState: return self.debug(f"Received event, {eventName}, from {srcModuleName}") # Skip events coming from me unless they are USERNAME events if eventName != "USERNAME" and srcModuleName == "sfp_accounts": self.debug(f"Ignoring {eventName}, from self.") return if eventData in list(self.results.keys()): return self.results[eventData] = True # If being called for the first time, let's see how trusted the # sites are by attempting to fetch a garbage user. if not self.distrustedChecked: # Check if a state cache exists first, to not have to do this all the time content = self.sf.cacheGet("sfaccounts_state_v2", 72) if content: if content != "None": # "None" is written to the cached file when no sites are distrusted delsites = list() for line in content.split("\n"): if line == '': continue delsites.append(line) self.sites = [d for d in self.sites if d['name'] not in delsites] else: randpool = 'abcdefghijklmnopqrstuvwxyz1234567890' randuser = ''.join([random.SystemRandom().choice(randpool) for x in range(10)]) res = self.checkSites(randuser) if res: delsites = list() for site in res: sitename = site.split(" (Category:")[0] self.debug(f"Distrusting {sitename}") delsites.append(sitename) self.sites = [d for d in self.sites if d['name'] not in delsites] else: # The caching code needs *some* content delsites = "None" self.sf.cachePut("sfaccounts_state_v2", delsites) self.distrustedChecked = True if eventName == "HUMAN_NAME": names = [eventData.lower().replace(" ", ""), eventData.lower().replace(" ", ".")] for name in names: users.append(name) if eventName == "DOMAIN_NAME": kw = self.sf.domainKeyword(eventData, self.opts['_internettlds']) if not kw: return users.append(kw) if eventName == "EMAILADDR" and self.opts['userfromemail']: name = eventData.split("@")[0].lower() users.append(name) if eventName == "USERNAME": users.append(eventData) for user in set(users): if user in self.opts['_genericusers'].split(","): self.debug(f"{user} is a generic account name, skipping.") continue if self.opts['ignorenamedict'] and user in self.commonNames: self.debug(f"{user} is found in our name dictionary, skipping.") continue if self.opts['ignoreworddict'] and user in self.words: self.debug(f"{user} is found in our word dictionary, skipping.") continue if user not in self.reportedUsers and eventData != user: if len(user) < self.opts['usernamesize']: self.debug(f"{user} is too short, skipping.") continue evt = SpiderFootEvent("USERNAME", user, self.__name__, event) self.notifyListeners(evt) self.reportedUsers.append(user) # Only look up accounts when we've received a USERNAME event (possibly from # ourselves), since we want them to have gone through some verification by # this module, and we don't want duplicates (one based on EMAILADDR and another # based on USERNAME). if eventName == "USERNAME": res = self.checkSites(user) for site in res: evt = SpiderFootEvent( "ACCOUNT_EXTERNAL_OWNED", site, self.__name__, event ) self.notifyListeners(evt) if self.opts['permutate']: permutations = self.generatePermutations(user) for puser in permutations: res = self.checkSites(puser) for site in res: evt =
= self._vtf_importer.stage( params["$bumpmap2"], vmt_data.param_open_texture("$bumpmap2"), 'Non-Color' ) if "$bumptransform2" in params: transform = vmt_data.param_as_transform("$bumptransform2") if transform.scale != (1, 1) or transform.rotate != 0 or transform.translate != (0, 0): texture_inputs["$bumpmap2"] = _TransformedTextureInput( transform.scale, transform.rotate, transform.translate, interpolation ) texture_inputs["$bumpmap2"].setimage(image2) if vmt_data.param_flag("$addbumpmaps"): # FIXME: mixing textures is not a correct way of combining normal maps if "$bumpdetailscale1" in params: bumpamount1 = vmt_data.param_as_float("$bumpdetailscale1") else: bumpamount1 = 1 if "$bumpdetailscale2" in params: bumpamount2 = vmt_data.param_as_float("$bumpdetailscale2") else: bumpamount2 = 1 blend_fac = bumpamount2 / (bumpamount1 + bumpamount2) blended = _BlendedTextureInput(blend_fac, texture_inputs["$bumpmap"], texture_inputs["$bumpmap2"]) else: blended = _BlendedTextureInput(blend_input, texture_inputs["$bumpmap"], texture_inputs["$bumpmap2"]) texture_inputs["$bumpmap"] = blended self._shader_dict['Normal'].input = texture_inputs["$bumpmap"].color if vmt_data.param_flag("$ssbump"): self._shader_dict['Normal'].append(_SsbumpToNormalMaterialNode()) else: if not self.simple: self._shader_dict['Normal'].append(_DXNormalMapConverterMaterialNode()) self._shader_dict['Normal'].append(_NormalMapMaterialNode()) elif not self.simple and ("$detail" in params and "$detailblendmode" in params and vmt_data.param_as_int("$detailblendmode") == 10): dimage = self._vtf_importer.stage(params["$detail"], vmt_data.param_open_texture("$detail"), 'Non-Color') scale = (1, 1) if "$detailscale" in params: try: scale_x, scale_y, _ = vmt_data.param_as_vec3("$detailscale") except vmt.VMTParseException: try: scale_x, scale_y = vmt_data.param_as_vec2("$detailscale") except vmt.VMTParseException: scale_x = scale_y = vmt_data.param_as_float("$detailscale") scale = (scale[0] * scale_x, scale[1] * scale_y) if "$detailtexturetransform" in params: transform = vmt_data.param_as_transform("$detailtexturetransform") scale = (scale[0] * transform.scale[0], scale[1] * transform.scale[1]) rotate = transform.rotate translate = transform.translate else: rotate = 0 translate = (0, 0) if scale != (1, 1) or rotate != 0 or translate != (0, 0): texture_inputs["$detail"] = _TransformedTextureInput(scale, rotate, translate, interpolation) texture_inputs["$detail"].setimage(dimage) self._shader_dict['Normal'].input = texture_inputs["$detail"].color self._shader_dict['Normal'].append(_SsbumpToNormalMaterialNode()) if vmt_data.param_flag("$translucent"): self.blend_method = 'BLEND' self.shadow_method = 'HASHED' if "$basetexture" in params: self._shader_dict['Alpha'].input = texture_inputs["$basetexture"].alpha if not self.simple and "$alpha" in params: self._shader_dict['Alpha'].append(_MultiplyMaterialNode(vmt_data.param_as_float("$alpha"))) elif vmt_data.param_flag("$alphatest"): self.blend_method = 'CLIP' self.shadow_method = 'CLIP' if "$basetexture" in params: self._shader_dict['Alpha'].input = texture_inputs["$basetexture"].alpha if "$alphatestreference" in params: self.alpha_reference = vmt_data.param_as_float("$alphatestreference") elif "$allowalphatocoverage" in params: self.blend_method = 'HASHED' if not self.simple and "$alpha" in params: self._shader_dict['Alpha'].append(_MultiplyMaterialNode(vmt_data.param_as_float("$alpha"))) elif not self.simple and vmt_data.param_flag("$vertexalpha"): self.blend_method = 'BLEND' self.shadow_method = 'HASHED' self._shader_dict['Alpha'].input = vertex_col_input.alpha if not self.simple and "$alpha" in params: self._shader_dict['Alpha'].append(_MultiplyMaterialNode(vmt_data.param_as_float("$alpha"))) elif "$alpha" in params: self._shader_dict['Alpha'].const = vmt_data.param_as_float("$alpha") self.blend_method = 'BLEND' self.shadow_method = 'HASHED' if "$masks1" in params: image = self._vtf_importer.stage(params["$masks1"], vmt_data.param_open_texture("$masks1"), 'Non-Color') texture_inputs["$masks1"].setimage(image) masks1 = True else: masks1 = False if vmt_data.param_flag("$phong") or vmt_data.shader == "character": if vmt_data.param_flag("$basemapluminancephongmask") and "$basetexture" in params: self._shader_dict['Specular'].input = texture_inputs["$basetexture"].color elif not self.simple and vmt_data.param_flag("$basemapalphaphongmask") and "$basetexture" in params: self._shader_dict['Specular'].input = texture_inputs["$basetexture"].alpha elif not self.simple and masks1: self._shader_dict['Specular'].input = texture_inputs["$masks1"].channels.g elif not self.simple and "$bumpmap" in params: self._shader_dict['Specular'].input = texture_inputs["$bumpmap"].alpha if "$phongexponent" in params: if not self.simple and "$phongexponent2" in params: self._shader_dict['Roughness'].input = _BlendedConstantInput( blend_input, ((150 - vmt_data.param_as_float("$phongexponent")) / 150) * 0.66, ((150 - vmt_data.param_as_float("$phongexponent2")) / 150) * 0.66, ).const else: self._shader_dict['Roughness'].const = ( (150 - vmt_data.param_as_float("$phongexponent")) / 150 ) * 0.66 elif not self.simple and "$phongexponenttexture" in params: image = self._vtf_importer.stage( params["$phongexponenttexture"], vmt_data.param_open_texture("$phongexponenttexture"), 'Non-Color' ) texture_inputs["$phongexponenttexture"].setimage(image) self._shader_dict['Roughness'].input = texture_inputs["$phongexponenttexture"].channels.r self._shader_dict['Roughness'].append(_InvertMaterialNode()) self._shader_dict['Roughness'].append(_MultiplyMaterialNode(0.66)) if vmt_data.param_flag("$phongalbedotint"): self._shader_dict['Specular Tint'].input = texture_inputs["$phongexponenttexture"].channels.g else: self._shader_dict['Roughness'].const = 0.6 elif "$envmap" in params: if not self.simple and ((vmt_data.param_flag("$basealphaenvmapmask") or vmt_data.param_flag("$basealphaenvmask")) and "$basetexture" in params): self._shader_dict['Specular'].input = texture_inputs["$basetexture"].alpha self._shader_dict['Specular'].append(_InvertMaterialNode()) elif not self.simple and vmt_data.param_flag("$normalmapalphaenvmapmask") and "$bumpmap" in params: self._shader_dict['Specular'].input = texture_inputs["$bumpmap"].alpha elif not self.simple and (vmt_data.param_flag("$envmapmaskintintmasktexture") and "$tintmasktexture" in params): self._shader_dict['Specular'].input = texture_inputs["$tintmasktexture"].channels.r elif "$envmapmask" in params: image = self._vtf_importer.stage( params["$envmapmask"], vmt_data.param_open_texture("$envmapmask"), 'Non-Color' ) if "$envmapmasktransform" in params: transform = vmt_data.param_as_transform("$envmapmasktransform") if transform.scale != (1, 1) or transform.rotate != 0 or transform.translate != (0, 0): texture_inputs["$envmapmask"] = _TransformedTextureInput( transform.scale, transform.rotate, transform.translate, interpolation ) texture_inputs["$envmapmask"].setimage(image) self._shader_dict['Specular'].input = texture_inputs["$envmapmask"].color if not self.simple and "$envmaptint" in params: tint = vmt_data.param_as_color("$envmaptint") self._shader_dict['Specular'].append(_MultiplyMaterialNode(sum(tint) / 3)) elif "$envmaptint" in params: tint = vmt_data.param_as_color("$envmaptint") self._shader_dict['Specular'].const = sum(tint) / 3 else: self._shader_dict['Specular'].const = 0.8 self._shader_dict['Roughness'].const = 0.1 elif vmt_data.shader == "unlitgeneric" or vmt_data.param_flag("%compilenolight"): self._shader_dict['Specular'].const = 0.0 self._shader_dict['Roughness'].const = 1.0 else: self._shader_dict['Specular'].const = 0.1 self._shader_dict['Roughness'].const = 0.9 if not self.simple and masks1: self._shader_dict['Metallic'].input = texture_inputs["$masks1"].channels.b self._shader_dict['Metallic'].append(_InvertMaterialNode()) elif "$metalness" in params: self._shader_dict['Metallic'].const = vmt_data.param_as_float("$metalness") selfillum_input = None if not self.simple and vmt_data.param_flag("$selfillum_envmapmask_alpha") and "$envmapmask" in params: selfillum_input = texture_inputs["$envmapmask"].alpha elif vmt_data.param_flag("$selfillum"): if "$selfillummask" in params: image = self._vtf_importer.stage( params["$selfillummask"], vmt_data.param_open_texture("$selfillummask"), 'Non-Color' ) texture_inputs["$selfillummask"].setimage(image) selfillum_input = texture_inputs["$selfillummask"].color elif not self.simple and "$basetexture" in params: selfillum_input = texture_inputs["$basetexture"].alpha if selfillum_input is not None: if not self.simple: self._shader_dict['Emission'].input = texture_inputs["$basetexture"].color self._shader_dict['Emission'].append(_MultiplyRGBMaterialNode(selfillum_input, 1)) else: self._shader_dict['Emission'].input = selfillum_input def get_size(self) -> Tuple[int, int]: if self.size_reference is None: return 1, 1 return self.size_reference.get_image().size def get_material(self) -> bpy.types.Material: if self._material is None: self._material = bpy.data.materials.new(self.name) self._material.vmt_data.nodraw = self.nodraw return self._material def set_material(self, material: bpy.types.Material) -> None: self._material = material material.name = self.name self._material.vmt_data.nodraw = self.nodraw def build(self) -> bpy.types.Material: material = self.get_material() material.use_nodes = True material.blend_method = self.blend_method material.shadow_method = self.shadow_method material.alpha_threshold = self.alpha_reference material.use_backface_culling = self.cull nt = material.node_tree nt.nodes.clear() pos_ref = _PosRef() out_node: Node = nt.nodes.new('ShaderNodeOutputMaterial') out_node.location = pos_ref.loc() pos_ref.x -= 300 if self.nodraw: shader_node: Node = nt.nodes.new('ShaderNodeBsdfTransparent') elif self.water: material.use_screen_refraction = True shader_node = nt.nodes.new('ShaderNodeBsdfGlass') shader_node.inputs['IOR'].default_value = 1.333 shader_node.inputs['Roughness'].default_value = 0.3 else: shader_node = nt.nodes.new('ShaderNodeBsdfPrincipled') shader_node.location = pos_ref.loc() pos_ref.x -= 100 nt.links.new(shader_node.outputs['BSDF'], out_node.inputs['Surface']) if self.nodraw: return material required_inputs: Dict[_MaterialInputBase, None] = {} # Waiting for ordered sets paths_pos_ref = pos_ref.copy() path_end_pos_x = 0 for socket_name in self._shader_dict: paths_pos_ref.y = min(paths_pos_ref.y, self._shader_dict[socket_name].min_start_y) path_pos_ref = paths_pos_ref.copy() required_inputs.update(map( lambda x: (x, None), self._shader_dict[socket_name].connect_path(nt, shader_node.inputs[socket_name], path_pos_ref) )) if path_pos_ref.x < path_end_pos_x: path_end_pos_x = path_pos_ref.x paths_pos_ref.y -= self._shader_dict[socket_name].dimension_y() created_inputs: Set[_MaterialInputBase] = set() input_pos_ref = pos_ref.copy() input_pos_ref.x = path_end_pos_x - 100 for material_input in required_inputs: if material_input in created_inputs: continue dimension_y = material_input.full_dimension_y(created_inputs) material_input.full_create(nt, input_pos_ref.copy(), created_inputs) input_pos_ref.y -= dimension_y for socket_name in self._shader_dict: self._shader_dict[socket_name].connect_inputs(nt) return material class StagedMaterial(): def __init__(self, importer: 'VMTImporter', name: str, builder: Optional[_MaterialBuilder], reused: Optional[bpy.types.Material] = None) -> None: self.name = name self.builder = builder self.reused = reused self._vmt_importer = importer def get_material(self) -> bpy.types.Material: if self.reused is not None: return self.reused if self.builder is None: raise Exception("a builder was not specified for non-reused staged material") return self.builder.get_material() def set_material(self, material: bpy.types.Material) -> None: if self.builder is not None: self.builder.set_material(material) @staticmethod def from_existing(importer: 'VMTImporter', material: bpy.types.Material) -> 'StagedMaterial': return StagedMaterial(importer, material.vmt_data.full_name, None, material) def _fallback_material(material_name: str, truncated_name: str) -> VMTData: return VMTData(1, 1, fallback_material(material_name, truncated_name)) class VMTImporter(): def __init__(self, verbose: bool = False, simple: bool = False, interpolation: str = 'Linear', cull: bool = False, editor_materials: bool = False, reuse_old: bool = True, reuse_old_images: bool = True) -> None: self.verbose = verbose self.simple = simple self.interpolation = interpolation self.cull = cull self.editor_materials = editor_materials self.reuse_old = reuse_old self.progress_callback: Callable[[int, int], None] = lambda current, total: None self.texture_progress_callback: Callable[[int, int], None] = lambda current, total: None self._nodraw_cache: Dict[str, bool] = {} self._precache: Dict[str, _MaterialBuilder] = {} self._cache: Dict[str, VMTData] = {} self._vtf_importer = import_vtf.VTFImporter(reuse_old=reuse_old_images) self._staging: Dict[str, StagedMaterial] = {} self._loaded: Dict[str, StagedMaterial] = {} self.reusable_amount = 0 self.importable_amount = 0 self.invalid_amount = 0 def is_nodraw(self, material_name: str, vmt_data: Callable[[], vmt.VMT]) -> bool: material_name = material_name.lower() truncated_name = truncate_name(material_name) if material_name in self._nodraw_cache: return self._nodraw_cache[material_name] if self.reuse_old and truncated_name in bpy.data.materials: material: bpy.types.Material = bpy.data.materials[truncated_name] if material.use_nodes and len(material.node_tree.nodes) != 0: is_nodraw = material.vmt_data.nodraw self._nodraw_cache[material_name] = is_nodraw return is_nodraw try: builder = _MaterialBuilder(self._vtf_importer, truncated_name, vmt_data(), simple=self.simple, interpolation=self.interpolation, cull=self.cull, editor_materials=self.editor_materials) except FileNotFoundError: print(f"[WARNING] MATERIAL {material_name} NOT FOUND") self._cache[material_name] = _fallback_material(material_name, truncated_name) is_nodraw = is_invisible_tool((material_name,)) except vmt.VMTParseException as err: print(f"[WARNING] MATERIAL {material_name} IS INVALID") if self.verbose: traceback.print_exception(type(err), err, err.__traceback__) self._cache[material_name] = _fallback_material(material_name, truncated_name) is_nodraw = is_invisible_tool((material_name,)) else: self._precache[material_name] = builder is_nodraw = builder.nodraw self._nodraw_cache[material_name] = is_nodraw return is_nodraw def stage(self, material_name: str, vmt_data: Callable[[], vmt.VMT]) -> StagedMaterial: material_name = material_name.lower() truncated_name = truncate_name(material_name) if material_name in self._staging: return self._staging[material_name] if material_name in self._loaded: return self._loaded[material_name] if material_name in self._cache: # material was not found in nodraw check self._staging[material_name] = StagedMaterial.from_existing(self, self._cache[material_name].material) self.invalid_amount += 1 return self._staging[material_name] if self.verbose: print(f"[VERBOSE] Staging material {material_name}") if self.reuse_old and truncated_name in bpy.data.materials: material: bpy.types.Material = bpy.data.materials[truncated_name] if material.use_nodes and len(material.node_tree.nodes) != 0: self._staging[material_name] = StagedMaterial.from_existing(self, material) self.reusable_amount += 1 return self._staging[material_name] try: if material_name in self._precache: builder = self._precache[material_name] else: builder = _MaterialBuilder(self._vtf_importer, truncated_name, vmt_data(), simple=self.simple, interpolation=self.interpolation, cull=self.cull, editor_materials=self.editor_materials) self._nodraw_cache[material_name] = builder.nodraw except FileNotFoundError: print(f"[WARNING] MATERIAL {material_name} NOT FOUND") data = _fallback_material(material_name, truncated_name) self._cache[material_name] = data self._staging[material_name] = StagedMaterial.from_existing(self, data.material) self.invalid_amount += 1
<filename>py_dataset/libdataset.py<gh_stars>1-10 #!/usr/bin/env python3 # # libdataet.py is a C type wrapper for our libdataset.go is a C shared. # It is used to test our dataset functions exported from the C-Shared # library libdataset.so, libdataset.dynlib or libdataset.dll. # # @author <NAME>, <<EMAIL>> # # Copyright (c) 2019, Caltech # All rights not granted herein are expressly reserved by Caltech. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import sys, platform import os import json from ctypes import CDLL, c_char_p, c_int, c_bool # Figure out shared library extension go_basename = 'lib/libdataset' ext = '.so' if sys.platform.startswith('win'): ext = '.dll' if sys.platform.startswith('darwin'): #M1 mac uses a special dylib if platform.processor() == 'arm': ext = '-arm.dylib' else: ext = '.dylib' if sys.platform.startswith('linux'): ext = '.so' # Find our shared library and load it dir_path = os.path.dirname(os.path.realpath(__file__)) libdataset = CDLL(os.path.join(dir_path, go_basename+ext)) # # Setup our Go functions to be nicely wrapped # # NOTE: we use a horrible hack in this library. It is a royal pain # to pass dynamic dataset structures between C and Python let alone # between Go and C. As a result I've chosen the easy programing path # of passing JSON source between the code spaces. This has proven # simple, reliable and *inefficent* in memory usage. I've opted for # reliability and simplicity. RSD, 2020-03-18 # error_clear() clears the error values # # It takes no args and returns no value. # error_message() returns the error messages aggregated # in previously envoked shared library functions. # # Return: error message text (string) libdataset.error_message.restype = c_char_p # use_strict_dotpath() sets the state of the strict dotpath # interpretation. Strict dot paths expect a period at the # beginning, non strict will prefix a period automatigally. # This is useful where you're using labels in a report # (the period is annoying) and also in generating transformed # object attributes (the period is useful). # # Args: is True (1) or False (0) libdataset.use_strict_dotpath.argtypes = [ c_bool ] # Return: True (1) or False (0) libdataset.use_strict_dotpath.restype = c_bool # dataset_version() returns the version number of the libdataset # used. # # Return: semver (string) libdataset.dataset_version.restype = c_char_p # is_verbose() returns the state of the verbose flag. # # Returns: True (1) or False (0) libdataset.is_verbose.restype = c_bool # verbose_on() sets the verbose flag to True. # # Returns: True (1) or False (0) libdataset.verbose_on.restype = c_bool # verbose_off() sets the verbose flag to False # # Returns: True (1) or False (0) libdataset.verbose_off.restype = c_bool # init_collection() creates a dataset collection. # # Args: collection_name (string) libdataset.init_collection.argtypes = [ c_char_p ] # Returns: True (1) or False (0) libdataset.init_collection.restype = c_bool # is_collection_open() checks to see if the collection # is already open and in the list of open collections. # # Args: collection_name (string) libdataset.is_collection_open.argtypes = [ c_char_p ] # Returns: Ture (1) or False (0) libdataset.is_collection_open.restype = c_bool # collections() returns a list of opened collections. # # Returns: string (names of collections) libdataset.collections.restype = c_char_p # open_collcetion() explicitly opens a collection. # # Args: collection_name (string) libdataset.open_collection.argtypes = [ c_char_p ] # Returns: True (1) or False (0) libdataset.open_collection.restype = c_bool # close_collection() closes a previously opened collection. # Most libdataset commands auto-magically open the collection. # # Args: collection_name (string) libdataset.close_collection.argtypes = [ c_char_p ] # Returns: True (1) or False (0) libdataset.close_collection.restype = c_bool # close_all_collections closes all opened collections. # # Returns: True (1) or False (0) libdataset.close_all_collections.restype = c_bool # create_object() creates a JSON object in a collection. # # Args: collection_name (string), key (string), value (JSON source) libdataset.create_object.argtypes = [ c_char_p, c_char_p, c_char_p ] # Returns: True (1) or False (0) libdataset.create_object.restype = c_bool # read_object() retrieves a JSON object from a collection. # # Args: collection_name (string), key (string), clean_object (bool) libdataset.read_object.argtypes = [ c_char_p, c_char_p, c_bool ] # Returns: string (JSON source) libdataset.read_object.restype = c_char_p # read_object_list() returns a list of objects for the provided keys # in the collection. # # Args: collection_name (string), keys (list of key strings AS JSON), # clean_object (bool) libdataset.read_object_list.argtypes = [ c_char_p, c_char_p, c_bool ] # Returns: string (JSON source) libdataset.read_object_list.restype = c_char_p # update_object() updates an object in the collection given a key # and new object. # # Args: collection_name (string), key (string), value (JSON sourc) libdataset.update_object.argtypes = [ c_char_p, c_char_p, c_char_p ] # Returns: True (1) or False (0) libdataset.update_object.restype = c_bool # delete_object() removes an object from a collection. # # Args: collection_name (string), key (string) libdataset.delete_object.argtypes = [ c_char_p, c_char_p ] # Returns: True (1), False (0) libdataset.delete_object.restype = c_bool # key_exists() tests for a key in a collection. # # Args: collection_name (string), key (string) libdataset.key_exists.argtypes = [ c_char_p, c_char_p ] # Returns: True (1), False (0) libdataset.key_exists.restype = c_bool # keys() returns a list of all keys in a collection. # # Args: collection_name (string) libdataset.keys.argtypes = [ c_char_p ] # Returns: string (JSON source) libdataset.keys.restype = c_char_p # count_objects() returns the number of objects in a collection. # # Args: collection_name (string) libdataset.count_objects.argtypes = [ c_char_p ] # Returns: integer (int) libdataset.count_objects.restype = c_int # NOTE: this diverges from cli and reflects low level dataset organization # # import_csv - import a CSV file into a collection # syntax: COLLECTION CSV_FILENAME ID_COL # # options that should support sensible defaults: # # UseHeaderRow (bool, 1 true, 0 false) # Overwrite (bool, 1 true, 0 false) # Args: collection_name (string), csv_filename (string), id_column_no (int), use_header_row (bool), overwrite (bool) libdataset.import_csv.argtypes = [ c_char_p, c_char_p, c_int, c_bool, c_bool ] # Returns: True (1), False (0) libdataset.import_csv.restype = c_bool # export_csv() exports a dataset collection objects into a CSV file # based on the contents of a frame. # # Args: collection_name (string), frame_name (string), csv_filename (string) libdataset.export_csv.argtypes = [ c_char_p, c_char_p, c_char_p ] # Returns: True (1), False (0) libdataset.export_csv.restype = c_bool # sync_receive_csv() retrieves data in a CSV file and updates a collection # using a frame. # # Args: collection_name (string), frame_name (string), csv_filename (string), overwrite (bool) libdataset.sync_recieve_csv.argtypes = [ c_char_p, c_char_p, c_char_p, c_bool] # Returns: True (1) or False (0) libdataset.sync_recieve_csv.restype = c_bool # sync_send_csv() updates a CSV file based on the objects in a collection # using a frame. # # Args: collection_name (string), frame_name (string), csv_filename (string), ovewrite (bool) libdataset.sync_send_csv.argtypes = [ c_char_p, c_char_p, c_char_p, c_bool ] # Returns: True (1) or False (0) libdataset.sync_send_csv.restype = c_bool # collection_exists() returns True if a collection exists, False otherwise. # NOTE: This will be renamed collection_exists() in a coming release # of libdataset. # # Returns: True (1) or False (0) libdataset.collection_exists.restype = c_bool # list_objects() returns a list of objects for a list of keys. # # Args: collection_name (string), key list (JSON array source) libdataset.list_objects.argtypes = [ c_char_p, c_char_p ] # Returns: string (JSON Array of Objects source) libdataset.list_objects.restype = c_char_p # object_path() returns the file system path to an object in a # collection. # # Args: collection_name (string), key (string) libdataset.object_path.argtypes = [ c_char_p, c_char_p ] # Return: string libdataset.object_path.restype = c_char_p # check_collection() checks a collection for structural errors. # # Args: collection_name (string) libdataset.check_collection.argtypes = [ c_char_p ] # Returns: True (1) or False (0) libdataset.check_collection.restype = c_bool # repair_collection() trys to repair a collection when it has # structural errors. # # Args: collection_name (string) libdataset.repair_collection.argtypes = [ c_char_p ] # Returns: True (1) or False (0) libdataset.repair_collection.restype = c_bool # attach() adds a file to a JSON object record. # # Args: collection_name (string), key (string), semver (string), filenames (string) libdataset.attach.argtypes = [ c_char_p, c_char_p, c_char_p, c_char_p ] # Returns: True (1) or False (0) libdataset.attach.restype = c_bool # attachments() lists the files attached to a JSON
<filename>ops/dataset.py # Code for "TSM: Temporal Shift Module for Efficient Video Understanding" # arXiv:1811.08383 # <NAME>*, <NAME>, <NAME> # {jilin, <EMAIL>, <EMAIL> import torch.utils.data as data from PIL import Image import os import numpy as np from numpy.random import randint # intesities = ['BL1', 'PA1', 'PA2', 'PA3', 'PA4'] dict_biovid = [None, None, {'BL1': 0, 'PA4': 1}, {'BL1': 0, 'PA3': 1, 'PA4': 2}, {'BL1': 0, 'PA2': 1, 'PA3': 2, 'PA4': 3}, {'BL1': 0, 'PA1': 1, 'PA2': 2, 'PA3': 3, 'PA4': 4}] no_biovid = [37, 38, 41, 42, 43, 50, 57, 68] # Not used in biomedical signals due to poor signal quality class VideoRecord(object): def __init__(self, row): self._data = row @property def path(self): return self._data[0] @property def num_frames(self): return int(self._data[1]) @property def label(self): return int(self._data[2]) class VideoRecordIPN(object): def __init__(self, row, idn=1): self._data = row self._idn = idn @property def path(self): return self._data[0] @property def st_frame(self): return int(self._data[3]) @property def en_frame(self): return int(self._data[4]) @property def num_frames(self): return int(self._data[-1]) @property def label(self): return int(self._data[2])-int(self._idn) class TSNDataSet(data.Dataset): def __init__(self, root_path, list_file, num_segments=3, new_length=1, modality='RGB', image_tmpl='img_{:05d}.jpg', transform=None, random_shift=True, test_mode=False, remove_missing=False, dense_sample=False, twice_sample=False, dense_window=False, full_sample=False, ipn=False, ipn_no_class=1): self.root_path = root_path self.list_file = list_file self.num_segments = num_segments self.new_length = new_length self.modality = modality self.image_tmpl = image_tmpl self.transform = transform self.random_shift = random_shift self.test_mode = test_mode self.remove_missing = remove_missing self.dense_sample = dense_sample # using dense sample as I3D self.twice_sample = twice_sample # twice sample for more validation self.dense_window = dense_window self.full_sample = full_sample self.ipn = ipn self.id_noc = ipn_no_class if self.dense_sample: print('=> Using dense sample for the dataset...') if self.twice_sample: print('=> Using twice sample for the dataset...') if self.dense_window: print('=> Using dense window sample for the dataset...') if self.full_sample: print('=> Using full sample for the dataset...') if self.modality == 'RGBDiff': self.new_length += 1 # Diff needs one more image to calculate diff self._parse_list() def _load_image(self, directory, idx): if self.modality == 'RGB' or self.modality == 'RGBDiff': if self.image_tmpl == '{}_{:06d}.jpg': file_name = self.image_tmpl.format(directory, idx) return [Image.open(os.path.join(self.root_path, directory, file_name)).convert('RGB')] elif self.image_tmpl == '{}/{}_{:04d}.jpg': file_name = self.image_tmpl.format(directory, directory, idx) return [Image.open(os.path.join(self.root_path, directory.split('-')[0], file_name)).convert('RGB')] else: try: return [Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(idx))).convert('RGB')] except Exception: print('error loading image:', os.path.join(self.root_path, directory, self.image_tmpl.format(idx))) return [Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(1))).convert('RGB')] elif self.modality == 'Flow': if self.image_tmpl == 'flow_{}_{:05d}.jpg': # ucf x_img = Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format('x', idx))).convert( 'L') y_img = Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format('y', idx))).convert( 'L') elif self.image_tmpl == '{:06d}-{}_{:05d}.jpg': # something v1 flow x_img = Image.open(os.path.join(self.root_path, '{:06d}'.format(int(directory)), self.image_tmpl. format(int(directory), 'x', idx))).convert('L') y_img = Image.open(os.path.join(self.root_path, '{:06d}'.format(int(directory)), self.image_tmpl. format(int(directory), 'y', idx))).convert('L') else: try: # idx_skip = 1 + (idx-1)*5 flow = Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(idx))).convert( 'RGB') except Exception: print('error loading flow file:', os.path.join(self.root_path, directory, self.image_tmpl.format(idx))) flow = Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(1))).convert('RGB') # the input flow file is RGB image with (flow_x, flow_y, blank) for each channel flow_x, flow_y, _ = flow.split() x_img = flow_x.convert('L') y_img = flow_y.convert('L') return [x_img, y_img] elif self.modality in ['RGB-flo', 'RGB-seg']: if self.modality.split('-')[1] == 'flo': sensor = 'flow' ext = 'jpg' elif self.modality.split('-')[1] == 'seg': sensor = 'segment_five' ext = 'png' file_name = self.image_tmpl.format(directory, idx) imgC = Image.open(os.path.join(self.root_path, directory, file_name)).convert('RGB') imgD = Image.open(os.path.join(self.root_path.replace('frames',sensor), directory, file_name.replace('jpg',ext))).convert('RGB') if self.modality.split('-')[1] == 'seg': return [imgC, self._ipn_fassd(imgD.convert('L'))] else: return [imgC, imgD] def _ipn_fassd(self, img, pix_val=190): imgS = np.asarray(img) imgT = imgS.copy() imgT[imgS==pix_val] = 0 imgT[imgT>0] = 255 imgT = np.uint8(imgT) return Image.fromarray(np.concatenate([np.expand_dims(imgT, 2),np.expand_dims(imgT, 2),np.expand_dims(imgT, 2)], axis=2)) def _parse_biovid(self, directory, frames=138): folder_list = os.listdir(os.path.join(self.root_path, directory)) folder_list.sort() bio_labels = dict_biovid[self.id_noc] # print(list(bio_labels.keys())) out_list = [] for i, path in enumerate(folder_list): if path.split('-')[1] not in list(bio_labels.keys()): continue out_list.append([path, frames, bio_labels[path.split('-')[1]]]) return out_list def _parse_list(self): # hacer una funcion que genere todos los items de un folder de persona # lo que generaria listas de forma que VideoRecord class se pueda usar # check the frame number is large >3: if self.ipn: tmp = [x.strip().split(',') for x in open(self.list_file)] if self.id_noc > 1: tmp = [item for item in tmp if int(item[2]) > self.id_noc-1] self.video_list = [VideoRecordIPN(item, self.id_noc) for item in tmp] elif self.image_tmpl == '{}/{}_{:04d}.jpg': val_ids_raw = self.list_file.split(',')[1] val_ids = [int(item) for item in val_ids_raw.split('.')] main_folder_list = os.listdir(self.root_path) main_folder_list.sort() if self.list_file.split(',')[0] == 'train': print('generating training list of {} subjects...'.format(len(main_folder_list)-len(val_ids)-len(no_biovid))) tmp = [] for i, item in enumerate(main_folder_list): if i in no_biovid: continue if i not in val_ids: tmp += self._parse_biovid(item) else: print('validating BioVid with {} subjects:'.format(len(val_ids))) print(' {}'.format([main_folder_list[item] for item in val_ids])) tmp = [] for val_id in val_ids: tmp += self._parse_biovid(main_folder_list[val_id]) self.video_list = [VideoRecord(item) for item in tmp] else: tmp = [x.strip().split(' ') for x in open(self.list_file)] if not self.test_mode or self.remove_missing: tmp = [item for item in tmp if int(item[1]) >= 3] self.video_list = [VideoRecord(item) for item in tmp] if self.image_tmpl == '{:06d}-{}_{:05d}.jpg': for v in self.video_list: v._data[1] = int(v._data[1]) / 2 print('video clips:%d' % (len(self.video_list))) def _sample_indices(self, record): """ :param record: VideoRecord :return: list """ if self.dense_sample: # i3d dense sample sample_pos = max(1, 1 + record.num_frames - 64) t_stride = 64 // self.num_segments start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos - 1) offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 else: # normal sample average_duration = (record.num_frames - self.new_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments) elif record.num_frames > self.num_segments: offsets = np.sort(randint(record.num_frames - self.new_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments,)) return offsets + 1 def _get_val_indices(self, record): if self.dense_sample: # i3d dense sample sample_pos = max(1, 1 + record.num_frames - 64) t_stride = 64 // self.num_segments start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos - 1) offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 else: if record.num_frames > self.num_segments + self.new_length - 1: tick = (record.num_frames - self.new_length + 1) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)]) else: offsets = np.zeros((self.num_segments,)) return offsets + 1 def _get_test_indices(self, record): if self.dense_sample: # # Orginal: # sample_pos = max(1, 1 + record.num_frames - 64) # t_stride = 64 // self.num_segments # start_list = np.linspace(0, sample_pos - 1, num=10, dtype=int) # Proposed: chunks = record.num_frames//self.num_segments t_stride = max(1, chunks // self.num_segments) sample_pos = max(1, 1 + record.num_frames - t_stride*self.num_segments) start_list = np.linspace(0, sample_pos - 1, num=10, dtype=int) offsets = [] for start_idx in start_list.tolist(): offsets += [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 elif self.dense_window: chunks = record.num_frames//self.num_segments t_stride = max(1, chunks // self.num_segments) sample_pos = max(1, 1 + record.num_frames - t_stride*self.num_segments) start_list = np.linspace(0, sample_pos - 1, num=chunks+1, dtype=int) offsets = [] for start_idx in start_list.tolist(): offsets += [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)] return np.array(offsets) + 1 elif self.twice_sample: tick = (record.num_frames - self.new_length + 1) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)] + [int(tick * x) for x in range(self.num_segments)]) return offsets + 1 elif self.full_sample: tick = (record.num_frames - self.new_length + 1) / float(self.num_segments) offsets = [] for start_idx in range(int(tick+1)): offsets += [int(start_idx + tick * x) for x in range(self.num_segments)] return np.array(offsets) + 1 else: tick = (record.num_frames - self.new_length + 1) / float(self.num_segments) offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)]) return offsets + 1 def __getitem__(self, index): record = self.video_list[index] # check this is a legit video folder if self.image_tmpl == 'flow_{}_{:05d}.jpg': file_name = self.image_tmpl.format('x', 1) full_path = os.path.join(self.root_path, record.path, file_name) elif self.image_tmpl == '{:06d}-{}_{:05d}.jpg': file_name = self.image_tmpl.format(int(record.path), 'x', 1) full_path = os.path.join(self.root_path, '{:06d}'.format(int(record.path)), file_name) elif self.image_tmpl == '{}_{:06d}.jpg': file_name = self.image_tmpl.format(record.path, record.st_frame) full_path = os.path.join(self.root_path, record.path, file_name) elif self.image_tmpl == '{}/{}_{:04d}.jpg': file_name = self.image_tmpl.format(record.path, record.path, 1) full_path = os.path.join(self.root_path, record.path.split('-')[0], file_name) else: file_name = self.image_tmpl.format(1) full_path = os.path.join(self.root_path, record.path, file_name) while not os.path.exists(full_path): print('################## Not Found:', os.path.join(self.root_path, record.path, file_name)) index = np.random.randint(len(self.video_list)) record = self.video_list[index] if self.image_tmpl == 'flow_{}_{:05d}.jpg': file_name = self.image_tmpl.format('x', 1) full_path = os.path.join(self.root_path, record.path, file_name) elif self.image_tmpl == '{:06d}-{}_{:05d}.jpg':
import typing import os import sys import select import io import warnings import logging from collections import namedtuple import functools import shlex import subprocess import google.auth import paramiko import shutil import time import numpy as np import pandas as pd import requests import hashlib def isatty(*streams: typing.IO) -> bool: """ Returns true if all of the provided streams are ttys """ for stream in streams: try: if not (hasattr(stream, 'fileno') and os.isatty(stream.fileno())): return False except io.UnsupportedOperation: return False return True class ArgumentHelper(dict): """ Helper class for setting arguments to slurm commands Used only to handle keyword arguments to console commands Should not be responsible for positionals """ def __init__(self, *flags: str, **params: typing.Any): """ Creates a new ArgumentHelper Flags can be passed as positional arguments Parameters can be passed as keyword arguments """ object.__setattr__(self, 'defaults', {}) object.__setattr__(self, 'flags', [item for item in flags]) object.__setattr__(self, 'params', {k:v for k,v in params.items()}) for key, val in [*self.params.items()]: if val is True: self.flags.append(key) del self.params[key] def __repr__(self) -> str: return '<ArgumentHelper{}>'.format( self.commandline ) def __getattr__(self, name): return self[name] def __setattr__(self, name, value): self[name] = value def __delattr__(self, name): del self[name] def __getitem__(self, name): if name in self.params: return self.params[name] if name in self.flags: return True if name in self.defaults: return self.defaults[name] def __setitem__(self, name, value): if value is True: self.flags.append(name) elif value is False: object.__setattr__(self, 'flags', [flag for flag in self.flags if flag != name]) else: self.params[name] = value def __delitem__(self, name): if name in self.params: del self.params[name] elif name in self.flags: object.__setattr__(self, 'flags', [flag for flag in self.flags if flag != name]) else: raise KeyError("No such argument {}".format(name)) @staticmethod def translate(flag) -> str: """Converts acceptable python strings to command line args""" return flag.replace('_', '-') @property def commandline(self) -> str: """Expands the arguments to command line form""" return '{short_prespace}{short_flags}{short_params}{long_flags}{params}'.format( short_prespace=' -' if len([f for f in self.flags if len(f) == 1]) else '', short_flags=''.join(flag for flag in self.flags if len(flag)==1), short_params=''.join( ' -{}={}'.format(self.translate(key), shlex.quote(value)) for key, value in self.params.items() if len(key) == 1 ), long_flags=''.join(' --{}'.format(self.translate(flag)) for flag in self.flags if len(flag) > 1), params=''.join( ' --{}={}'.format(self.translate(key), shlex.quote(value)) for key, value in self.params.items() if len(key) > 1 ) ) def setdefaults(self, **kwargs: typing.Any): self.defaults.update(kwargs) def make_interactive(channel: paramiko.Channel) -> typing.Tuple[int, typing.BinaryIO, typing.BinaryIO]: """ Manages an interactive command Takes in a paramiko.Channel shared by stdin, stdout, stderr of a currently running command The current interpreter stdin is duplicated and written to the command's stdin The command's stdout and stderr are written to the interpreter's stdout and stderr and also buffered in a ByteStream for later reading Returns (exit status, Stdout buffer, Stderr bufer) """ infd = sys.stdin.fileno() channelfd = channel.fileno() poll = select.poll() poll.register(infd, select.POLLIN+select.POLLPRI+select.POLLERR+select.POLLHUP) poll.register(channelfd, select.POLLIN+select.POLLPRI+select.POLLERR+select.POLLHUP) stdout = io.BytesIO() stderr = io.BytesIO() while not channel.exit_status_ready(): for fd, event in poll.poll(0.5): if fd == infd and event & (select.POLLIN + select.POLLPRI): # Text available on python stdin channel.send(os.read(infd, 4096)) if channel.recv_ready(): content = channel.recv(4096) sys.stdout.write(content.decode()) sys.stdout.flush() stdout.write(content) if channel.recv_stderr_ready(): content = channel.recv_stderr(4096) sys.stderr.write(content.decode()) sys.stderr.flush() stderr.write(content) if channel.recv_ready(): content = channel.recv(4096) sys.stdout.write(content.decode()) sys.stdout.flush() stdout.write(content) if channel.recv_stderr_ready(): content = channel.recv_stderr(4096) sys.stderr.write(content.decode()) sys.stderr.flush() stderr.write(content) stdout.seek(0,0) stderr.seek(0,0) return channel.recv_exit_status(), stdout, stderr def get_default_gcp_zone(): try: response = requests.get( 'http://metadata.google.internal/computeMetadata/v1/instance/zone', headers={ 'Metadata-Flavor': 'Google' } ) if response.status_code == 200: return os.path.basename(response.text) except requests.exceptions.ConnectionError: pass # not on GCE instance, check env try: response = subprocess.run('gcloud config get-value compute/zone', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if response.returncode == 0 and b'(unset)' not in response.stdout.strip(): return response.stdout.strip().decode() except subprocess.CalledProcessError: pass # gcloud config not happy, just return default return 'us-central1-a' __DEFAULT_GCP_PROJECT__ = None def get_default_gcp_project(): """ Returns the currently configured default project """ global __DEFAULT_GCP_PROJECT__ try: if __DEFAULT_GCP_PROJECT__ is None: __DEFAULT_GCP_PROJECT__ = google.auth.default()[1] except google.auth.exceptions.GoogleAuthError: warnings.warn( "Unable to load gcloud credentials. Some features may not function properly", stacklevel=1 ) return __DEFAULT_GCP_PROJECT__ def check_call(cmd:str, rc: int, stdout: typing.Optional[typing.BinaryIO] = None, stderr: typing.Optional[typing.BinaryIO] = None): """ Checks that the rc is 0 If not, flush stdout and stderr streams and raise a CalledProcessError """ if rc != 0: if stdout is not None: sys.stdout.write(stdout.read().decode()) sys.stdout.flush() if stderr is not None: sys.stderr.write(stderr.read().decode()) sys.stderr.flush() raise subprocess.CalledProcessError(rc, cmd) predefined_mtypes = { # cost / CPU in each of the predefined tracks 'n1-standard': (0.0475, 0.01), 'n1-highmem': (0.0592, 0.0125), 'n1-highcpu': (0.03545, 0.0075), 'n2-standard': (0.4855, 0.01175), 'n2-highmem': (0.0655, 0.01585), 'n2-highcpu': (0.03585, 0.00865), 'm1-ultramem': (0.1575975, 0.0332775), 'm2-ultramem': (0.2028173077, 0), # no preemptible version 'c2-standard': (0.0522, 0.012625) } CustomPricing = namedtuple('CustomPricing', [ 'cpu_cost', 'mem_cost', 'ext_cost', 'preempt_cpu_cost', 'preempt_mem_cost', 'preempt_ext_cost' ]) custom_mtypes = { # cost / CPU, extended memory cost, preemptible cpu, preemptible extended memory 'n1-custom': CustomPricing( 0.033174, 0.004446, 0.00955, 0.00698, 0.00094, 0.002014 #extends > 6.5gb/core ), 'n2-custom': CustomPricing( 0.033174, 0.004446, 0.00955, 0.00802, 0.00108, 0.002310 # extends > 7gb/core ) } fixed_cost = { # For fixed machine types, direct mapping of cost 'm1-megamem-96': (10.6740, 2.26), 'f1-micro': (0.0076, 0.0035), 'g1-small': (0.0257, 0.007) } gpu_pricing = { 'nvidia-tesla-t4': (0.95, 0.29), 'nvidia-tesla-p4': (0.60, 0.216), 'nvidia-tesla-v100': (2.48, 0.74), 'nvidia-tesla-p100': (1.46, 0.43), 'nvidia-tesla-k80': (0.45, 0.135) } @functools.lru_cache() def _get_mtype_cost(mtype: str) -> typing.Tuple[float, float]: """ Returns the hourly cost of a google VM based on machine type. Returns a tuple of (non-preemptible cost, preemptible cost) """ if mtype in fixed_cost: return fixed_cost[mtype] components = mtype.split('-') if len(components) < 3: raise ValueError("mtype {} not in expected format".format(mtype)) track = '{}-{}'.format(components[0], components[1]) if 'custom' in mtype: # (n1-|n2-)?custom-(\d+)-(\d+)(-ext)? if components[0] == 'custom': components = ['n1'] + components if len(components) not in {4, 5}: raise ValueError("Custom mtype {} not in expected format".format(mtype)) cores = int(components[2]) mem = int(components[3]) / 1024 if track == 'n1-custom': reg_mem = min(mem, cores * 6.5) else: reg_mem = min(mem, cores * 8) ext_mem = mem - reg_mem price_model = custom_mtypes[track] return ( (price_model.cpu_cost * cores) + (price_model.mem_cost * reg_mem) + (price_model.ext_cost * ext_mem), (price_model.preempt_cpu_cost * cores) + (price_model.preempt_mem_cost * reg_mem) + (price_model.preempt_ext_cost * ext_mem) ) if track not in predefined_mtypes: raise ValueError("mtype family {} not defined".format(track)) cores = int(components[2]) return ( predefined_mtypes[track][0] * cores, predefined_mtypes[track][1] * cores ) def gcp_hourly_cost(mtype: str, preemptible: bool = False, ssd_size: int = 0, hdd_size: int = 0, gpu_type: typing.Optional[str] = None, gpu_count: int = 0) -> float: """ Gets the hourly cost of a GCP VM based on its machine type and disk size. Does not include any sustained usage discounts. Actual pricing may vary based on compute region """ mtype_cost, preemptible_cost = _get_mtype_cost(mtype) return ( (preemptible_cost if preemptible else mtype_cost) + (0.00023287671232876715 * ssd_size) + (0.00005479452055 * hdd_size) + ( 0 if gpu_type is None or gpu_count < 1 else (gpu_pricing[gpu_type][1 if preemptible else 0] * gpu_count) ) ) # rmtree_retry removed in favor of AbstractTransport.rmtree from threading import Lock write_lock = Lock() read_lock = Lock() def pandas_write_hdf5_buffered(df: pd.DataFrame, key: str, buf: io.BufferedWriter): """ Write a Pandas dataframe in HDF5 format to a buffer. """ ## I am getting ## HDF5ExtError("Unable to open/create file '/dev/null'") ## unable to truncate a file which is already open with write_lock: with pd.HDFStore( "/dev/null", mode = "w", driver = "H5FD_CORE", driver_core_backing_store = 0 ) as store: store["results"] = df buf.write(store._handle.get_file_image()) def pandas_read_hdf5_buffered(key: str, buf: io.BufferedReader) -> pd.DataFrame: """ Read a Pandas dataframe in HDF5 format from a buffer. """ ## Without this lock, job avoidance breaks when starting two jobs simultaneously!! with read_lock: with pd.HDFStore( "dummy_hdf5", mode = "r", driver = "H5FD_CORE", driver_core_backing_store = 0, driver_core_image = buf.read() ) as store: return store[key] def base32(buf: bytes): """ Convert a byte array into a base32 encoded string """ table = np.array(list("abcdefghijklmnopqrstuvwxyz012345")) bits = np.unpackbits(np.frombuffer(buf, dtype = np.uint8)) bits = np.pad(bits, (0, 5 - (len(bits) % 5)), constant_values = 0).reshape(-1, 5) return "".join(table[np.ravel(bits@2**np.c_[4:-1:-1])]) def sha1_base32(buf: bytes, n: int = None): """ Return a base32 representation of the first n bytes of SHA1(buf). If n = None, the entire buffer will be encoded. """ return base32(hashlib.sha1(buf).digest()[slice(0, n)]) ## Hook for get external logging module CANINE_GET_LOGGER_HOOK = None class canine_logging: @staticmethod def set_get_logger_hook(func): global CANINE_GET_LOGGER_HOOK CANINE_GET_LOGGER_HOOK = func @staticmethod def log(level, msg, *args, **kwargs): if not CANINE_GET_LOGGER_HOOK: return print(msg) else: return CANINE_GET_LOGGER_HOOK().log(level, msg, *args, **kwargs) @staticmethod def info(msg): if not CANINE_GET_LOGGER_HOOK: return print(msg) else: return CANINE_GET_LOGGER_HOOK().info(msg) ## Increased logging level. By default, we want to log our staff with info1. ##
is only one player in the category. Add a dummy None player full_set.add(None) full_list = list(full_set) for category_combo in itertools.combinations(full_list, int(math.ceil(len(full_list)/2.0))): yield (category_combo, tuple(full_set.difference(category_combo))) def generate_team_combinations(deviation_categories_dict, total_players, prune_search=False): # generate all valid cross-category 2-team picks via a filtered cartesian product of valid in-category combos. generators = collections.OrderedDict() for deviation_category, player_stats in deviation_categories_dict.items(): generators[deviation_category] = generate_category_combo_sets(player_stats) # feed the generators into the cartesian product generator for teams_combo in (itertools.product(*generators.values())): running_delta = 0 valid_combo = True # strip out dummy/None players strip_none = lambda ps: tuple(p for p in ps if p is not None) teams_combo = tuple((strip_none(team_category[0]), strip_none(team_category[1])) for team_category in teams_combo) counted_players = sum(len(team_category) for team_category in itertools.chain.from_iterable(teams_combo)) if prune_search_space: for team_category in teams_combo: # filter to disallow bias on same team in 2 adjacent skill categories players_a, players_b = team_category category_delta = len(players_b) - len(players_a) if abs(category_delta) >= 2: valid_combo = False break running_delta += category_delta if abs(running_delta) >= 2: valid_combo = False break if valid_combo: yield teams_combo def worst_case_search_space_combo_count(players): players_count = len(players) return nchoosek(players_count, int(math.ceil(players_count/2.0))) def search_optimal_team_combinations(teams_generator): # iterate through the generated teams, using heuristics to rate them and keep the top N for teams_combo in teams_generator: teams = tuple(tuple(itertools.chain.from_iterable(team)) for team in zip(*teams_combo)) yield teams def analyze_teams(teams): return BalancePrediction(teams[0], teams[1]) total_players = len(players) teams_combos_generator = generate_team_combinations(deviation_categories, total_players, prune_search=prune_search_space) max_iterations = worst_case_search_space_combo_count(players) max_iteration_digits = int(math.log10(max_iterations)+1) FixedSizePriorityQueue(max_results) results = FixedSizePriorityQueue(max_results) for i, teams in enumerate(search_optimal_team_combinations(teams_combos_generator)): balance_prediction = analyze_teams(teams) assert isinstance(balance_prediction, BalancePrediction) match_prediction = balance_prediction.generate_match_prediction(player_stats) abs_balance_distance = abs(match_prediction.distance) results.add_item((abs_balance_distance, match_prediction, teams)) if verbose: combo_desc = str(i+1).ljust(max_iteration_digits, " ") print "Combo %s : %s" % (combo_desc, describe_balanced_team_combo(teams[0], teams[1], match_prediction)) # This step seems heavyweight if we are to return a lot of results, so max_results should always be small. # convert it back into a list of players result_combos = [] for result in results.nsmallest(): teams_as_players = [] (abs_balance_distance, match_prediction, teams) = result for team in teams: teams_as_players.append(tuple(player_stats[pid].player for pid in team)) team_combo = BalancedTeamCombo(teams_tup=tuple(teams_as_players), match_prediction=match_prediction) result_combos.append(team_combo) return result_combos SwitchOperation = collections.namedtuple("SwitchOperation", ["players_affected", "players_moved_from_a_to_b", "players_moved_from_b_to_a"]) SwitchProposal = collections.namedtuple("SwitchProposal", ["switch_operation", "balanced_team_combo"]) def get_proposed_team_combo_moves(team_combo_1, team_combo_2): # team_combo_1 is current, team_combo_2 is a proposed combination assert len(team_combo_1) == 2 and len(team_combo_2) == 2 team1a, team1b = set(team_combo_1[0]), set(team_combo_1[1]) if isinstance(team_combo_2, BalancedTeamCombo): team2a, team2b = set(team_combo_2.teams_tup[0]), set(team_combo_2.teams_tup[1]) else: team2a, team2b = set(team_combo_2[0]), set(team_combo_2[1]) assert team1a.union(team1b) == team2a.union(team2b), "inconsistent input data" assert not team1a.intersection(team1b), "inconsistent input data" assert not team2a.intersection(team2b), "inconsistent input data" players_moved_from_a_to_b = team2a.difference(team1a) players_moved_from_b_to_a = team2b.difference(team1b) players_affected = players_moved_from_a_to_b.union(players_moved_from_b_to_a) return SwitchOperation(players_affected=players_affected, players_moved_from_a_to_b=players_moved_from_a_to_b, players_moved_from_b_to_a=players_moved_from_b_to_a) def describe_switch_operation(switch_op, team_names=None): assert isinstance(switch_op, SwitchOperation) left_team_desc = "" right_team_desc = "" if team_names: assert len(team_names) == 2 left_team_desc = "%s " % team_names[0] right_team_desc = " %s" % team_names[1] def get_names(player_set): s = [] for i, player in enumerate(sorted(list(player_set), key=lambda p: p.elo, reverse=True)): if i != 0: s.append(", ") s.append("%s(%d)" % (player.name, player.elo)) return "".join(s) out = [] if switch_op.players_moved_from_a_to_b: out.append("%s --->%s" % (get_names(switch_op.players_moved_from_a_to_b), right_team_desc)) if switch_op.players_moved_from_a_to_b and switch_op.players_moved_from_b_to_a: out.append(" | ") if switch_op.players_moved_from_b_to_a: out.append("%s<--- %s" % (left_team_desc, get_names(switch_op.players_moved_from_b_to_a))) return "".join(out) def generate_switch_proposals(teams, verbose=False, max_results=5): # add 1 to max results, because if the input teams are optimal, then they will come as a result. players = [] [[players.append(p) for p in team_players] for team_players in teams] balanced_team_combos = balance_players_by_skill_variance(players, verbose=verbose, prune_search_space=True, max_results=max_results+1) switch_proposals = [] for balanced_combo in balanced_team_combos: switch_op = get_proposed_team_combo_moves(teams, balanced_combo) assert isinstance(switch_op, SwitchOperation) assert isinstance(balanced_combo, BalancedTeamCombo) if not switch_op.players_affected: # no change continue switch_proposals.append(SwitchProposal(switch_operation=switch_op, balanced_team_combo=balanced_combo)) return switch_proposals class Unstaker(object): """ This class encapsulates a set of unstak balancing suggestions, and data related to current server operations on these suggestions. It can be seen as a finite state machine managing these steps: - STARTGEN: Invalidation of old suggestions. (e.g. vote enacted, teams change, new match). - GENERATING: Generation of new suggestions (possibly a long running operation). - STOREGEN: Recording the generated results (multiple choices of balancing) - PRESENTGEN: Presentation of the group of suggestions, ready for selection. - VOTECHOICE: Accepting democratic player votes for selecting the balance suggestion. (It can be forced by admin). - RESETCHOICE: An admin nominated transition from VOTECHOICE to PRESENTGEN. (not part of the standard flow). - PLAYERCONFIRMATION: Waiting for nominated switch players to confirm unanimous agreement. (It can be forced by admin). - EXECUTESWITCH: Perform the swap action. After this we are back at STARTGEN. When PRESENTGEN occurs, the options are listed in descending order of predicted fitness. In other words, the calculated best balanced option is presented first. A natural consequence of this structure is that we can encode an admin forced balance operation ("unstak") as a forced progression through all FSM steps assuming all players voted the first choice in VOTECHOICE, followed by all players agreeing in PLAYERCONFIRMATION. So a balance operation can simply set a bit that auto progresses through all states. There are a few complexities to bear in mind when thinking about unstak balancing compared to the existing balance operation: - unstak will try to balance mismatched odd-even teams (n vs n+1). - legacy balance will only attempt to balance teams with matching player counts (n vs n). - unstak can suggest player switches that can involve a single player or up to half of all players. - legacy balance will only suggest a switch between player pairs. - unstak tries to match "skill distribution shape" of the teams, and not just aggregated values. - legacy balance can consider a fully uniform team vs a highly skewed team as balanced, unstak will not. - As an example of a skewed vs uniform matching: Team A has 6 players around 1400 skillrating (normal distribution). Team B has players at [2200, 1950, 1800, 1100, 750, 600] skillratings. Both teams have the same skillrating average (1400) and sum. However, while Team B has a chance of winning, the load on the top 3 players is large, due to the anchoring effect of the bottom 3 players on Team B. From experience, it can work, but it is most commonly a frustrating experience for all members of the skewed team, especially if Team A works together. Teamwork is a lot less effective for Team B due to skill disparity and focusing effects. The "shape matching" property of unstak addresses this, but could be considered a disadvantage, because sometimes you can have interesting matches with skewed players, but this is rare. These differences are basically due to the fact that legacy balance uses a naive hill-climbing style algorithm using player pair switches for iterative improvements (locally optimal solutions). In contrast, unstak tries to completely re-assemble teams by first categorizing players based on relative stat deviations, and then performing an exhaustive search between these categories and using a set of heuristics to keep the top N results. The search space is drastically reduced compared to a naive (N choose K) search by restricting to combinations which contain subsets of players in the same "skill deviation group" to be equally spread in a way that is non-consequetively biased across adjacent deviation groups. This allows it to find a globally optimal solution (satisfying the hueristic) in a smaller search space than a pure brute force that returns "shape matched" results. There is a very small chance that the heuristic-based global optimum lies outside of the trimmed search space, but that would probably be explained by a deficiency in the heuristic and would also probably represent a low quality match. Therefore, unstak is generally a more involved and expensive operation due to its exhaustive search approach and may require being run as a delayed/background operation since it may take more than one frame to complete. """ STARTGEN = 0 GENERATING = 1 STOREGEN = 2 PRESENTGEN = 3 VOTECHOICE = 4 RESETCHOICE = 5 PLAYERCONFIRMATION = 6 EXECUTESWITCH = 7 def __init__(self): self.state = self.STARTGEN self.switch_proposals = []
<filename>asr1k_neutron_l3/plugins/l3/service_plugins/l3_extension_adapter.py # Copyright 2017 SAP SE # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from collections import OrderedDict import time from neutron.db import dns_db from neutron.db import extraroute_db from neutron.db import l3_gwmode_db as l3_db from neutron_lib.db import api as db_api from oslo_log import helpers as log_helpers from oslo_log import log from asr1k_neutron_l3.common import asr1k_constants as constants from asr1k_neutron_l3.common import cache_utils from asr1k_neutron_l3.common import utils from asr1k_neutron_l3.common.instrument import instrument from asr1k_neutron_l3.extensions import asr1koperations as asr1k_ext from asr1k_neutron_l3.plugins.db import asr1k_db from asr1k_neutron_l3.plugins.db import models as asr1k_models from asr1k_neutron_l3.plugins.l3.rpc import ask1k_l3_notifier from asr1k_neutron_l3.plugins.l3.schedulers import asr1k_scheduler_db from asr1k_neutron_l3.plugins.l3.service_plugins.initializer import Initializer LOG = log.getLogger(__name__) class L3RpcNotifierMixin(object): """Mixin class to add rpc notifier attribute to db_base_plugin_v2.""" @property def l3_rpc_notifier(self): if not hasattr(self, '_l3_rpc_notifier') or \ not isinstance(self._l3_rpc_notifier, ask1k_l3_notifier.ASR1KAgentNotifyAPI): self._l3_rpc_notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return self._l3_rpc_notifier @l3_rpc_notifier.setter def l3_rpc_notifier(self, value): self._l3_rpc_notifier = value @log_helpers.log_method_call def notify_router_updated(self, context, router_id, operation=None): if router_id: self.l3_rpc_notifier.routers_updated( context, [router_id], operation) @log_helpers.log_method_call def notify_routers_updated(self, context, router_ids, operation=None, data=None): if router_ids: self.l3_rpc_notifier.routers_updated( context, router_ids, operation, data) @log_helpers.log_method_call def notify_router_deleted(self, context, router_id): self.l3_rpc_notifier.router_deleted(context, router_id) @log_helpers.log_method_call def notify_router_sync(self, context, router_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.router_sync(context, router_id) @log_helpers.log_method_call def notify_router_teardown(self, context, router_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.router_teardown(context, router_id) @log_helpers.log_method_call def notify_router_validate(self, context, router_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.router_validate(context, router_id) @log_helpers.log_method_call def notify_network_sync(self, context, network_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.network_sync(context, network_id) @log_helpers.log_method_call def notify_network_validate(self, context, network_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.network_validate(context, network_id) @log_helpers.log_method_call def notify_interface_statistics(self, context, router_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.interface_statistics(context, router_id) @log_helpers.log_method_call def notify_show_orphans(self, context, host): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.show_orphans(context, host) @log_helpers.log_method_call def notify_delete_orphans(self, context, host): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.delete_orphans(context, host) @log_helpers.log_method_call def notify_list_devices(self, context, host): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.list_devices(context, host) @log_helpers.log_method_call def notify_show_device(self, context, host, device_id): notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.show_device(context, host, device_id) @log_helpers.log_method_call def notify_agent_init_config(self, context, host, router_infos): LOG.debug('agent_initial_config') notifier = ask1k_l3_notifier.ASR1KAgentNotifyAPI() return notifier.agent_init_config(context, host, router_infos) class ASR1KPluginBase(l3_db.L3_NAT_db_mixin, asr1k_scheduler_db.AZASR1KL3AgentSchedulerDbMixin, extraroute_db.ExtraRoute_db_mixin, dns_db.DNSDbMixin, L3RpcNotifierMixin, asr1k_ext.DevicePluginBase): def __init__(self): self.db = asr1k_db.get_db_plugin() def get_agent_for_router(self, context, router_id): """Returns all hosts to send notification about router update""" agents = self.list_l3_agents_hosting_router(context, router_id) agents_list = agents.get('agents', []) if len(agents_list) == 1: return agents_list[0] else: LOG.error('get host for router: there should be one and only one agent, got {}'.format(agents_list)) def get_host_for_router(self, context, router_id): agent = self.get_agent_for_router(context, router_id) if agent is not None: return agent.get('host') def get_hosts_for_network(self, context, network_id): return self.db.get_asr1k_hosts_for_network(context, network_id) def _ensure_second_dot1q(self, context): session = db_api.get_writer_session() extra_atts = session.query(asr1k_models.ASR1KExtraAttsModel).all() second_dot1qs = [] for extra_att in extra_atts: second_dot1qs.append(extra_att.second_dot1q) for extra_att in extra_atts: if extra_att.second_dot1q == 0: for x in range(asr1k_db.MIN_SECOND_DOT1Q, asr1k_db.MAX_SECOND_DOT1Q): if x not in second_dot1qs: extra_att.second_dot1q = x second_dot1qs.append(x) break with context.session.begin(subtransactions=True): entry = session.query(asr1k_models.ASR1KExtraAttsModel).filter_by(router_id=extra_att.router_id, agent_host=extra_att.agent_host, port_id=extra_att.port_id, segment_id=extra_att.segment_id ).first() if entry: entry.update(extra_att) @instrument() @log_helpers.log_method_call def get_sync_data(self, context, router_ids=None, active=None, host=None): if host is not None: host_router_ids = self.db.get_all_router_ids(context, host) router_ids = [r for r in router_ids if r in host_router_ids] if not bool(router_ids): return [] extra_atts = self._get_extra_atts(context, router_ids, host) router_atts = self._get_router_atts(context, router_ids) try: routers = super(ASR1KPluginBase, self).get_sync_data(context, router_ids=router_ids, active=active) except TypeError: # We may have a race in the L3/L2 scavengers, lets back of and try again time.sleep(.25) routers = super(ASR1KPluginBase, self).get_sync_data(context, router_ids=router_ids, active=active) if not bool(routers): routers = [] for router_id in router_ids: routers.append({'id': router_id, constants.ASR1K_ROUTER_ATTS_KEY: router_atts.get(router_id, {})}) for router in routers: extra_att = extra_atts.get(router['id']) if extra_atts is None: if host is None: LOG.debug("Not including router {} in sync its extra atts are missing.".format(router['id'])) else: LOG.debug("Not including router {} in sync its extra atts are missing for host {}." "".format(router['id'], host)) continue router[constants.ASR1K_EXTRA_ATTS_KEY] = extra_att router_att = router_atts.get(router['id'], {}) router[constants.ASR1K_ROUTER_ATTS_KEY] = router_att # Make sure the gateway IPs all have prefixes and are sorted consistently # this is to prevent foo when we have to assign to nat pool, because we # can guarantee a consistent order from neutron and we can't change the # pool on the active device and it has (currently) to be different from # the interface device. gw_info = router.get('external_gateway_info', None) gw_port = router.get('gw_port', None) if gw_port is not None: ips = gw_port.get('fixed_ips', []) prefixes = {} if bool(ips): for ip in ips: prefix = ip.get('prefixlen', None) subnet_id = ip.get('subnet_id', None) if prefix is not None and subnet_id is not None: prefixes[subnet_id] = prefix for ip in ips: if ip.get('prefixlen', None) is None: prefix = prefixes.get(ip.get('subnet_id', None)) if prefix is not None: ip['prefixlen'] = prefix gw_port['fixed_ips'] = sorted(ips, key=lambda k: k.get('ip_address')) if gw_info is not None: gw_info['external_fixed_ips'] = gw_port['fixed_ips'] rt_import = [] rt_export = [] bgpvpns = self.db.get_bgpvpns_by_router_id(context, router['id']) router["bgpvpn_advertise_extra_routes"] = True if bgpvpns: adv_mode = self.db.get_bgpvpn_advertise_extra_routes_by_router_id(context, router['id']) router["bgpvpn_advertise_extra_routes"] = adv_mode for bgpvpn in bgpvpns: if bgpvpn.route_targets: rt_import += bgpvpn.route_targets.split(",") rt_export += bgpvpn.route_targets.split(",") if bgpvpn.import_targets: rt_import += bgpvpn.import_targets.split(",") if bgpvpn.export_targets: rt_export += bgpvpn.export_targets.split(",") router["rt_export"] = list(set(rt_export)) router["rt_import"] = list(set(rt_import)) return routers def get_deleted_router_atts(self, context): return self.db.get_deleted_router_atts(context) def _get_device_info(self, context, host): return self.db.get_device_info(context, host) def _get_extra_atts(self, context, router_ids, host=None): extra_atts = self.db.get_extra_atts_for_routers(context, router_ids, host=host) return_dict = {} for extra_att in extra_atts: router_id = extra_att.get('router_id') if return_dict.get(router_id) is None: return_dict[router_id] = {} if host is None: return_dict[router_id][extra_att.get('port_id')] = extra_att else: if host == extra_att.get('agent_host'): return_dict[router_id][extra_att.get('port_id')] = extra_att return return_dict def _get_router_atts(self, context, router_ids): router_atts = self.db.get_router_atts_for_routers(context, router_ids) return_dict = {} for router_att in router_atts: if return_dict.get(router_att.get('router_id')) is None: return_dict[router_att.get('router_id')] = {} return_dict[router_att.get('router_id')] = router_att return return_dict @log_helpers.log_method_call def create_router(self, context, router): result = super(ASR1KPluginBase, self).create_router(context, router) asr1k_db.RouterAttsDb.ensure(context, result.get('id')) return result @log_helpers.log_method_call def update_router(self, context, id, router): result = super(ASR1KPluginBase, self).update_router(context, id, router) asr1k_db.RouterAttsDb.ensure(context, result.get('id')) return result @log_helpers.log_method_call def get_router(self, context, id, fields=None): return super(ASR1KPluginBase, self).get_router(context, id, fields) def _add_router_to_cache(self, context, router_id): LOG.debug("Adding router %s to internal router cache", router_id) host = self.get_host_for_router(context, [router_id]) routers = self.get_sync_data(context, [router_id]) if not routers: LOG.warning("Could not add router %s to internal router cache: get_sync_data came up empty", router_id) return cache_utils.cache_deleted_router(host, router_id, routers[0]) @log_helpers.log_method_call def delete_router(self, context, id): self._add_router_to_cache(context, id) return super(ASR1KPluginBase, self).delete_router(context, id) @log_helpers.log_method_call def add_router_to_l3_agent(self, context, agent_id, router_id): result = super(ASR1KPluginBase, self).add_router_to_l3_agent(context, agent_id, router_id) asr1k_db.RouterAttsDb.ensure(context, router_id) return result @log_helpers.log_method_call def remove_router_from_l3_agent(self, context, agent_id, router_id): self._add_router_to_cache(context, router_id) return super(ASR1KPluginBase, self).remove_router_from_l3_agent(context, agent_id, router_id) @log_helpers.log_method_call def add_router_interface(self, context, router_id, interface_info=None): return super(ASR1KPluginBase, self).add_router_interface(context, router_id, interface_info) @log_helpers.log_method_call def remove_router_interface(self, context, router_id, interface_info): return super(ASR1KPluginBase, self).remove_router_interface(context, router_id, interface_info) def validate(self, context, id, fields=None): result = self.notify_router_validate(context, id) return {'diffs': result} def sync(self, context, id, fields=None): result = self.notify_router_sync(context, id) return {'device': {'network_id': result}} def validate_network(self, context, id, fields=None): result = self.notify_network_validate(context, id) return {'diffs': result} def sync_network(self, context, id, fields=None): result = self.notify_network_sync(context, id) return {'device': {'network_id': result}} def orphans(self, context, dry_run=True): result = self.notify_router_sync(context, dry_run) return result def get_config(self, context, id): router_atts = self._get_router_atts(context, [id]) extra_atts = self._get_extra_atts(context, [id]) atts = extra_atts.get(id, None) result = OrderedDict({'id': id, 'rd': None}) if len(router_atts) > 0: att = router_atts.get(id, None) if att is not None: result['rd'] = att.get('rd') ports = [] if atts is not None: for port_id in atts.keys(): port = OrderedDict({'port_id': port_id}) att = atts.get(port_id) if att is not None: port['segment_id'] = att.segment_id port['segmentation_id'] = att.segmentation_id port['second_dot1q'] = att.second_dot1q port['external_service_instance'] = att.segmentation_id port['loopback_service_instance'] = utils.to_bridge_domain(att.second_dot1q) port['bridge_domain'] = utils.to_bridge_domain(att.second_dot1q) port['deleted_l2'] = att.deleted_l2 port['deleted_l3'] = att.deleted_l3 ports.append(port) result['ports'] = ports return dict(result) def ensure_config(self, context, id): asr1k_db.RouterAttsDb.ensure(context, id) ports = self.db.get_router_ports(context, id) for port in ports: segment = self.db.get_router_segment_for_port(context, id, port.get('id')) asr1k_db.ExtraAttsDb.ensure(id, port, segment, clean_old=True) return self.get_config(context, id) def interface_statistics(self, context, id, fields=None): result = self.notify_interface_statistics(context, id) return {'interface_statistics': result} def teardown(self, context, id, fields=None): result = self.notify_router_teardown(context, id) return {'device': {'id': result}} def show_orphans(self, context, host): result = self.notify_show_orphans(context, host) return result def delete_orphans(self, context, host): result = self.notify_delete_orphans(context, host) return result def list_devices(self, context, host): result = self.notify_list_devices(context, host) device_info = self.db.get_device_info(context, host) for id in result: device = result.get(id) self._add_device_enabled(device_info, device)
<gh_stars>0 import ast import base64 import json from datetime import datetime import dicttoxml from django.db.models import Q from django.http import HttpResponse from django.shortcuts import render from django.views import View import MySQLdb as db # The main view that handles Private API requests import redis from api.models import APIRequest, APIKey from core.models import Resource, ResourceParameter, ResourceHeader, ResourceDataSourceColumn, DatabaseColumn, Database, \ ResourceDataSourceFilter, DatabaseTable, ResourceParentChildRelationship, BlockedIP, ResourceDataBind, \ ResourceUserGroup, ResourceTextSource def get_client_ip(request): x_forwarded_for = request.META.get('HTTP_X_REAL_IP') if x_forwarded_for: ip = x_forwarded_for.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip class RequestHandlerPrivate(View): # First handle GET requests def get(self, request): # The first thing we need to do is check to see if the header information has been sent for authorisation etc. if 'HTTP_AUTHORIZATION' in request.META: # Access GET params: print(request.GET) # The key was provided so check it. First we need to base64 decode the key. # Extract the key from the string. Base64decode, remove the last colon, and decode to utf-8 rather than bytes api_key = base64.b64decode(request.META['HTTP_AUTHORIZATION'].split('Basic ', 1)[1])[:-1].decode('utf-8') # Look up API key try: api_key = APIKey.objects.get(key=api_key) # Check to see if the requesters IP is blocked ip = get_client_ip(request) try: blocked_ip = BlockedIP.objects.get(ip_address=ip) response = json.dumps({ 'error': { 'message': 'Requests from this IP are blocked', 'type': 'blocked_ip' } }) # This means it does exist so send a return message. api_request = APIRequest( authentication_type='KEY', type=request.method, resource=request.META['HTTP_RESOURCE'], url=request.get_full_path(), status='403 ERR', ip_address=get_client_ip(request), source=request.META['HTTP_USER_AGENT'], api_key=api_key, response_to_user=response ) api_request.save() return HttpResponse(response, content_type='application/json', status=403) except: # If it doesn't exist then just pass and continue pass # API Key is found. No check for a resource. if 'HTTP_RESOURCE' in request.META: # Now that we know they provided a resource, let's check to see if it exists. try: resource = Resource.objects.get( name=request.META['HTTP_RESOURCE'], project=api_key.project, request_type='GET' ) # Check to see if the resource is "turned off" if not resource.status: response = { 'error': { 'message': 'The owner of this resource has it disabled/off. Check back later as it may be enabled/turned on', 'type': 'endpoint_off' } } if resource.response_format == 'JSON': return HttpResponse(json.dumps(response), content_type='application/json') elif resource.response_format == 'XML': return HttpResponse(dicttoxml.dicttoxml(response), content_type='application/xml') # Now we have the API Key. Let's make sure that the groups match. user_groups = ResourceUserGroup.objects.all().filter(resource=resource) # We only check for user groups if they are present or if the api_key doesn't contain master if user_groups and 'rb_mstr_key_' not in api_key.key: # If the api_key has a user group attached to it # If it doesn't ignore it if api_key.user_group: # Check to see if that user_group is in the set user_groups. If not then say permission denied in_group = False for user_group in user_groups: if api_key.user_group == user_group.user_group: in_group = True if in_group is False: response = { 'error': { 'message': 'Permission Denied. Your API Key/User Group doesn\'t allow you to access that resource.', 'type': 'permission_denied' } } if resource.response_format == 'JSON': response = json.dumps(response) elif resource.response_format == 'XML': response = dicttoxml.dicttoxml(response) # This means a required header is not provided so record it and respond api_request = APIRequest( authentication_type='KEY', type=request.method, resource=request.META['HTTP_RESOURCE'], url=request.get_full_path(), status='403 ERR', ip_address=get_client_ip(request), source=request.META['HTTP_USER_AGENT'], api_key=api_key, response_to_user=response ) api_request.save() if resource.response_format == 'JSON': return HttpResponse(response, content_type='application/json', status=403) elif resource.response_format == 'XML': return HttpResponse(response, content_type='application/xml', status=403) # The resource does exist! Now we need to go through the request and check to see # if what is required has been sent. # Create a resource_request object that holds all data as we move futher through resource_request = {} # HEADERS CHECK # We need to check and see if there are headers. resource_headers = ResourceHeader.objects.all().filter(resource=resource) # Create a list of the provided headers and their values provided_headers = [] # If there are headers if resource_headers: # Loop through each header and check to see if it exists in the request for header in resource_headers: # Check to see if that one is present. HTTP_+header name with dashes replaced with underscores. if 'HTTP_' + header.key.upper().replace('-', '_') in request.META: # Does exist. single_header_object = { 'obj': header, 'provided_value': request.META['HTTP_' + header.key.upper().replace('-', '_')] } # Append it to the users provided headers provided_headers.append(single_header_object) else: response = { 'error': { 'message': 'Your request is missing a required header. Missing header is: ' + header.key, 'type': 'missing_header' } } if resource.response_format == 'JSON': response = json.dumps(response) elif resource.response_format == 'XML': response = dicttoxml.dicttoxml(response) # This means a required header is not provided so record it and respond api_request = APIRequest( authentication_type='KEY', type=request.method, resource=request.META['HTTP_RESOURCE'], url=request.get_full_path(), status='400 ERR', ip_address=get_client_ip(request), source=request.META['HTTP_USER_AGENT'], api_key=api_key, response_to_user=response ) api_request.save() if resource.response_format == 'JSON': return HttpResponse(response, content_type='application/json', status=400) elif resource.response_format == 'XML': return HttpResponse(response, content_type='application/xml', status=400) # If we got here we either have a list with no headers or a list with headers that have values. # Either way, if the incorrect values were given we would not be here. resource_request['headers'] = provided_headers # GET PARAMETER CHECK # Now we have looked at headers, lets do the same with GET parameters. resource_parameters = ResourceParameter.objects.all().filter(resource=resource) # Create a list of provided resources provided_parameters = [] # If there are resource parameters, i.e GET URL parameters if resource_parameters: # Loop through each parameter for parameter in resource_parameters: # Check to see if that was provided if parameter.key in request.GET: # It is provided so lets get it. single_parameter_obj = { 'obj': parameter, 'provided_value': request.GET[parameter.key] } # Append it to the list of provided parameters provided_parameters.append(single_parameter_obj) else: response = { 'error': { 'message': 'Your request is missing a required GET parameter. Missing parameter is: ' + parameter.key, 'type': 'missing_parameter' } } if resource.response_format == 'JSON': response = json.dumps(response) elif resource.response_format == 'XML': response = dicttoxml.dicttoxml(response) # This means a required header is not provided so record it and respond api_request = APIRequest( authentication_type='KEY', type=request.method, resource=request.META['HTTP_RESOURCE'], url=request.get_full_path(), status='400 ERR', ip_address=get_client_ip(request), source=request.META['HTTP_USER_AGENT'], api_key=api_key, response_to_user=response ) api_request.save() if resource.response_format == 'JSON': return HttpResponse(response, content_type='application/json', status=400) elif resource.response_format == 'XML': return HttpResponse(response, content_type='application/xml', status=400) # Like with headers, if we have gotten here we have analysed the correct GET parameters resource_request['parameters'] = provided_parameters # Value to determine if the resulting response should be saved to Redis need_to_be_cached = False # Let us check to see if the user has caching on. If they do then we can check Redis for cached results if resource.project.caching: # Now that we know that caching is enabled. Check to see if there has been any stores today of this cache # Let's connect to Redis r = redis.Redis(host='127.0.0.1', port=6379, db=0) # Now we have a connection, check to see if there is a cache with todays timestamp if r.get(datetime.now().strftime('%Y-%m-%d:%H')): # So there is a cache from the last hour. This means that we now need to basically look # through all requests to this resource and see if any of them have happened in this hour # of this day. If they have then we must let SQL do its thing, else we can just returned the # Redis cache. day = datetime.today().strftime('%d') month = datetime.today().strftime('%m') year = datetime.today().strftime('%Y') hour = datetime.today().strftime('%H') # Get all POST requests post_requests = APIRequest.objects.all().filter( type='POST', resource=resource.name, date__day=day, date__month=month, date__year=year, date__hour=hour ) # Get all DELETE requests delete_requests = APIRequest.objects.all().filter( type='DELETE', resource=resource.name, date__day=day, date__month=month, date__year=year, date__hour=hour ) # So if neither have entries then we can return the Redis result # Any future checks here to whether or not the data has been modified # would go here if not post_requests and not delete_requests: # Now that we know there hasn't been POSTs or DELETEs to any other resource with the same name, we still # have to find out if any tables have been involved in POSTs that are included in this resource. # First get the tables. # We can do this here while we have access to that objects data_source_columns = ResourceDataSourceColumn.objects.all().filter( resource=resource) tables_included = [] for data_source_column in data_source_columns: # Get the the table from that column table = DatabaseColumn.objects.get(id=int(data_source_column.column_id)).table if table not in tables_included: tables_included.append(table)
# -*- coding: utf-8 -*- # Copyright 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from synapse.api import errors from synapse.api.constants import EventTypes from synapse.util import stringutils from synapse.util.async import Linearizer from synapse.util.caches.expiringcache import ExpiringCache from synapse.util.retryutils import NotRetryingDestination from synapse.util.metrics import measure_func from synapse.types import get_domain_from_id, RoomStreamToken from twisted.internet import defer from ._base import BaseHandler import logging logger = logging.getLogger(__name__) class DeviceHandler(BaseHandler): def __init__(self, hs): super(DeviceHandler, self).__init__(hs) self.hs = hs self.state = hs.get_state_handler() self.federation_sender = hs.get_federation_sender() self.federation = hs.get_replication_layer() self._edu_updater = DeviceListEduUpdater(hs, self) self.federation.register_edu_handler( "m.device_list_update", self._edu_updater.incoming_device_list_update, ) self.federation.register_query_handler( "user_devices", self.on_federation_query_user_devices, ) hs.get_distributor().observe("user_left_room", self.user_left_room) @defer.inlineCallbacks def check_device_registered(self, user_id, device_id, initial_device_display_name=None): """ If the given device has not been registered, register it with the supplied display name. If no device_id is supplied, we make one up. Args: user_id (str): @user:id device_id (str | None): device id supplied by client initial_device_display_name (str | None): device display name from client Returns: str: device id (generated if none was supplied) """ if device_id is not None: new_device = yield self.store.store_device( user_id=user_id, device_id=device_id, initial_device_display_name=initial_device_display_name, ) if new_device: yield self.notify_device_update(user_id, [device_id]) defer.returnValue(device_id) # if the device id is not specified, we'll autogen one, but loop a few # times in case of a clash. attempts = 0 while attempts < 5: device_id = stringutils.random_string(10).upper() new_device = yield self.store.store_device( user_id=user_id, device_id=device_id, initial_device_display_name=initial_device_display_name, ) if new_device: yield self.notify_device_update(user_id, [device_id]) defer.returnValue(device_id) attempts += 1 raise errors.StoreError(500, "Couldn't generate a device ID.") @defer.inlineCallbacks def get_devices_by_user(self, user_id): """ Retrieve the given user's devices Args: user_id (str): Returns: defer.Deferred: list[dict[str, X]]: info on each device """ device_map = yield self.store.get_devices_by_user(user_id) ips = yield self.store.get_last_client_ip_by_device( user_id, device_id=None ) devices = device_map.values() for device in devices: _update_device_from_client_ips(device, ips) defer.returnValue(devices) @defer.inlineCallbacks def get_device(self, user_id, device_id): """ Retrieve the given device Args: user_id (str): device_id (str): Returns: defer.Deferred: dict[str, X]: info on the device Raises: errors.NotFoundError: if the device was not found """ try: device = yield self.store.get_device(user_id, device_id) except errors.StoreError: raise errors.NotFoundError ips = yield self.store.get_last_client_ip_by_device( user_id, device_id, ) _update_device_from_client_ips(device, ips) defer.returnValue(device) @defer.inlineCallbacks def delete_device(self, user_id, device_id): """ Delete the given device Args: user_id (str): device_id (str): Returns: defer.Deferred: """ try: yield self.store.delete_device(user_id, device_id) except errors.StoreError, e: if e.code == 404: # no match pass else: raise yield self.store.user_delete_access_tokens( user_id, device_id=device_id, delete_refresh_tokens=True, ) yield self.store.delete_e2e_keys_by_device( user_id=user_id, device_id=device_id ) yield self.notify_device_update(user_id, [device_id]) @defer.inlineCallbacks def delete_devices(self, user_id, device_ids): """ Delete several devices Args: user_id (str): device_ids (str): The list of device IDs to delete Returns: defer.Deferred: """ try: yield self.store.delete_devices(user_id, device_ids) except errors.StoreError, e: if e.code == 404: # no match pass else: raise # Delete access tokens and e2e keys for each device. Not optimised as it is not # considered as part of a critical path. for device_id in device_ids: yield self.store.user_delete_access_tokens( user_id, device_id=device_id, delete_refresh_tokens=True, ) yield self.store.delete_e2e_keys_by_device( user_id=user_id, device_id=device_id ) yield self.notify_device_update(user_id, device_ids) @defer.inlineCallbacks def update_device(self, user_id, device_id, content): """ Update the given device Args: user_id (str): device_id (str): content (dict): body of update request Returns: defer.Deferred: """ try: yield self.store.update_device( user_id, device_id, new_display_name=content.get("display_name") ) yield self.notify_device_update(user_id, [device_id]) except errors.StoreError, e: if e.code == 404: raise errors.NotFoundError() else: raise @measure_func("notify_device_update") @defer.inlineCallbacks def notify_device_update(self, user_id, device_ids): """Notify that a user's device(s) has changed. Pokes the notifier, and remote servers if the user is local. """ users_who_share_room = yield self.store.get_users_who_share_room_with_user( user_id ) hosts = set() if self.hs.is_mine_id(user_id): hosts.update(get_domain_from_id(u) for u in users_who_share_room) hosts.discard(self.server_name) position = yield self.store.add_device_change_to_streams( user_id, device_ids, list(hosts) ) room_ids = yield self.store.get_rooms_for_user(user_id) yield self.notifier.on_new_event( "device_list_key", position, rooms=room_ids, ) if hosts: logger.info("Sending device list update notif to: %r", hosts) for host in hosts: self.federation_sender.send_device_messages(host) @measure_func("device.get_user_ids_changed") @defer.inlineCallbacks def get_user_ids_changed(self, user_id, from_token): """Get list of users that have had the devices updated, or have newly joined a room, that `user_id` may be interested in. Args: user_id (str) from_token (StreamToken) """ room_ids = yield self.store.get_rooms_for_user(user_id) # First we check if any devices have changed changed = yield self.store.get_user_whose_devices_changed( from_token.device_list_key ) # Then work out if any users have since joined rooms_changed = self.store.get_rooms_that_changed(room_ids, from_token.room_key) stream_ordering = RoomStreamToken.parse_stream_token( from_token.room_key).stream possibly_changed = set(changed) for room_id in rooms_changed: # Fetch the current state at the time. try: event_ids = yield self.store.get_forward_extremeties_for_room( room_id, stream_ordering=stream_ordering ) except errors.StoreError: # we have purged the stream_ordering index since the stream # ordering: treat it the same as a new room event_ids = [] current_state_ids = yield self.store.get_current_state_ids(room_id) # special-case for an empty prev state: include all members # in the changed list if not event_ids: for key, event_id in current_state_ids.iteritems(): etype, state_key = key if etype != EventTypes.Member: continue possibly_changed.add(state_key) continue # mapping from event_id -> state_dict prev_state_ids = yield self.store.get_state_ids_for_events(event_ids) # If there has been any change in membership, include them in the # possibly changed list. We'll check if they are joined below, # and we're not toooo worried about spuriously adding users. for key, event_id in current_state_ids.iteritems(): etype, state_key = key if etype != EventTypes.Member: continue # check if this member has changed since any of the extremities # at the stream_ordering, and add them to the list if so. for state_dict in prev_state_ids.values(): prev_event_id = state_dict.get(key, None) if not prev_event_id or prev_event_id != event_id: possibly_changed.add(state_key) break users_who_share_room = yield self.store.get_users_who_share_room_with_user( user_id ) # Take the intersection of the users whose devices may have changed # and those that actually still share a room with the user defer.returnValue(users_who_share_room & possibly_changed) @defer.inlineCallbacks def on_federation_query_user_devices(self, user_id): stream_id, devices = yield self.store.get_devices_with_keys_by_user(user_id) defer.returnValue({ "user_id": user_id, "stream_id": stream_id, "devices": devices, }) @defer.inlineCallbacks def user_left_room(self, user, room_id): user_id = user.to_string() room_ids = yield self.store.get_rooms_for_user(user_id) if not room_ids: # We no longer share rooms with this user, so we'll no longer # receive device updates. Mark this in DB. yield self.store.mark_remote_user_device_list_as_unsubscribed(user_id) def _update_device_from_client_ips(device, client_ips): ip = client_ips.get((device["user_id"], device["device_id"]), {}) device.update({ "last_seen_ts": ip.get("last_seen"), "last_seen_ip": ip.get("ip"), }) class DeviceListEduUpdater(object): "Handles incoming device list updates from federation and updates the DB" def __init__(self, hs, device_handler): self.store = hs.get_datastore() self.federation = hs.get_replication_layer() self.clock = hs.get_clock() self.device_handler = device_handler self._remote_edu_linearizer = Linearizer(name="remote_device_list") # user_id -> list of updates waiting to be handled. self._pending_updates = {} # Recently seen stream ids. We don't bother keeping these in the DB, # but they're useful to have them about to reduce the number of spurious # resyncs. self._seen_updates = ExpiringCache( cache_name="device_update_edu", clock=self.clock, max_len=10000, expiry_ms=30 * 60 * 1000, iterable=True, ) @defer.inlineCallbacks def incoming_device_list_update(self, origin, edu_content): """Called on incoming device list update from federation. Responsible for parsing the EDU and adding to pending updates list. """ user_id = edu_content.pop("user_id") device_id = edu_content.pop("device_id") stream_id = str(edu_content.pop("stream_id")) # They may come as ints prev_ids = edu_content.pop("prev_id", []) prev_ids = [str(p) for p in prev_ids] # They may come as ints if get_domain_from_id(user_id) != origin: # TODO: Raise? logger.warning("Got device list update edu for %r from %r", user_id, origin) return room_ids = yield self.store.get_rooms_for_user(user_id) if not room_ids: # We don't share any rooms with this user. Ignore update, as we # probably won't get any further updates. return self._pending_updates.setdefault(user_id, []).append( (device_id, stream_id, prev_ids, edu_content) ) yield self._handle_device_updates(user_id) @measure_func("_incoming_device_list_update") @defer.inlineCallbacks def _handle_device_updates(self, user_id): "Actually handle pending updates." with (yield self._remote_edu_linearizer.queue(user_id)): pending_updates = self._pending_updates.pop(user_id, []) if not pending_updates: # This can happen since we batch updates return # Given a list of updates we check if we need to resync. This # happens if we've missed updates. resync = yield self._need_to_do_resync(user_id, pending_updates) if resync: # Fetch all devices for the user. origin = get_domain_from_id(user_id) try: result = yield self.federation.query_user_devices(origin, user_id) except NotRetryingDestination: # TODO: Remember that we are now out of sync and try
1 on edge 1 and # point 2 on edge 2, and assign. sp_12 = len_1 if len_1 > len_2: sp_12 = len_2 nearest[p1, p2] = sp_12 if symmetric: # Mirror the upper and lower triangle when symmetric. nearest[p2,p1] = nearest[p1,p2] # Populate the main diagonal when symmetric. if symmetric: if fill_diagonal == None: np.fill_diagonal(nearest, np.nan) else: np.fill_diagonal(nearest, fill_diagonal) return nearest def nearestneighbordistances(self, sourcepattern, destpattern=None, n_processes=None): """ Compute the interpattern nearest neighbor distances or the intrapattern nearest neighbor distances between a source pattern and a destination pattern. Parameters ---------- sourcepattern: str The key of a point pattern snapped to the network. destpattern: str (Optional) The key of a point pattern snapped to the network. n_processes: int, str (Optional) Specify the number of cores to utilize. Default is 1 core. Use (int) to specify an exact number or cores. Use ("all") to request all available cores. Returns ------- nearest: ndarray (n,2) With column[:,0] containing the id of the nearest neighbor and column [:,1] containing the distance. """ if not sourcepattern in self.pointpatterns.keys(): raise KeyError("Available point patterns are {}".format(self.pointpatterns.keys())) if not hasattr(self,'alldistances'): self.node_distance_matrix(n_processes) pt_indices = self.pointpatterns[sourcepattern].points.keys() dist_to_node = self.pointpatterns[sourcepattern].dist_to_node nearest = np.zeros((len(pt_indices), 2), dtype=np.float32) nearest[:,1] = np.inf if destpattern == None: destpattern = sourcepattern searchpts = copy.deepcopy(pt_indices) searchnodes = {} for s in searchpts: e1, e2 = dist_to_node[s].keys() searchnodes[s] = (e1, e2) for p1 in pt_indices: # Get the source nodes and dist to source nodes. source1, source2 = searchnodes[p1] sdist1, sdist2 = dist_to_node[p1].values() searchpts.remove(p1) for p2 in searchpts: dest1, dest2 = searchnodes[p2] ddist1, ddist2 = dist_to_node[p2].values() source1_to_dest1 = sdist1 + self.alldistances[source1][0][dest1] + ddist1 source1_to_dest2 = sdist1 + self.alldistances[source1][0][dest2] + ddist2 source2_to_dest1 = sdist2 + self.alldistances[source2][0][dest1] + ddist1 source2_to_dest2 = sdist2 + self.alldistances[source2][0][dest2] + ddist2 if source1_to_dest1 < nearest[p1, 1]: nearest[p1, 0] = p2 nearest[p1, 1] = source1_to_dest1 if source1_to_dest1 < nearest[p2, 1]: nearest[p2, 0] = p1 nearest[p2, 1] = source1_to_dest1 if source1_to_dest2 < nearest[p1, 1]: nearest[p1, 0] = p2 nearest[p1, 1] = source1_to_dest2 if source1_to_dest1 < nearest[p2, 1]: nearest[p2, 0] = p1 nearest[p2, 1] = source1_to_dest2 if source2_to_dest1 < nearest[p1, 1]: nearest[p1, 0] = p2 nearest[p1, 1] = source2_to_dest1 if source2_to_dest1 < nearest[p2, 1]: nearest[p2, 0] = p1 nearest[p2, 1] = source2_to_dest1 if source2_to_dest2 < nearest[p1, 1]: nearest[p1, 0] = p2 nearest[p1, 1] = source2_to_dest2 if source2_to_dest2 < nearest[p2, 1]: nearest[p2, 0] = p1 nearest[p2, 1] = source2_to_dest2 return nearest def NetworkF(self, pointpattern, nsteps=10, permutations=99, threshold=0.2, distribution='uniform', lowerbound=None, upperbound=None): """ Computes a network constrained F-Function Parameters ---------- pointpattern: object A PySAL point pattern object. nsteps: int The number of steps at which the count of the nearest neighbors is computed. permutations: int The number of permutations to perform (default 99). threshold: float The level at which significance is computed. -- 0.5 would be 97.5% and 2.5% distribution: str The distribution from which random points are sampled: -- uniform or poisson lowerbound: float The lower bound at which the F-function is computed. (Default 0) upperbound: float The upper bound at which the F-function is computed. Defaults to the maximum observed nearest neighbor distance. Returns ------- NetworkF: object A network F class instance. """ return NetworkF(self, pointpattern, nsteps=nsteps, permutations=permutations,threshold=threshold, distribution=distribution,lowerbound=lowerbound, upperbound=upperbound) def NetworkG(self, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lowerbound=None, upperbound=None): """ Computes a network constrained G-Function Parameters ---------- pointpattern: object A PySAL point pattern object. nsteps: int The number of steps at which the count of the nearest neighbors is computed. permutations: int The number of permutations to perform (default 99). threshold: float The level at which significance is computed. -- 0.5 would be 97.5% and 2.5% distribution: str The distribution from which random points are sampled: -- uniform or poisson lowerbound: float The lower bound at which the G-function is computed. (Default 0) upperbound: float The upper bound at which the G-function is computed. Defaults to the maximum observed nearest neighbor distance. Returns ------- NetworkG: object A network G class instance. """ return NetworkG(self, pointpattern, nsteps=nsteps, permutations=permutations,threshold=threshold, distribution=distribution,lowerbound=lowerbound, upperbound=upperbound) def NetworkK(self, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lowerbound=None, upperbound=None): """ Computes a network constrained K-Function Parameters ---------- pointpattern: object A PySAL point pattern object. nsteps: int The number of steps at which the count of the nearest neighbors is computed. permutations: int The number of permutations to perform (default 99). threshold: float The level at which significance is computed. -- 0.5 would be 97.5% and 2.5% distribution: str The distribution from which random points are sampled: -- uniform or poisson lowerbound: float The lower bound at which the K-function is computed. (Default 0) upperbound: float The upper bound at which the K-function is computed. Defaults to the maximum observed nearest neighbor distance. Returns ------- NetworkK: object A network K class instance. """ return NetworkK(self, pointpattern, nsteps=nsteps, permutations=permutations,threshold=threshold, distribution=distribution,lowerbound=lowerbound, upperbound=upperbound) def segment_edges(self, distance): """ Segment all of the edges in the network at either a fixed distance or a fixed number of segments. Parameters ----------- distance: float The distance at which edges are split. Returns ------- sn: object PySAL Network Object. Example ------- >>> ntw = ps.Network(ps.examples.get_path('streets.shp')) >>> n200 = ntw.segment_edges(200.0) >>> len(n200.edges) 688 """ sn = Network() sn.adjacencylist = copy.deepcopy(self.adjacencylist) sn.edge_lengths = copy.deepcopy(self.edge_lengths) sn.edges = set(copy.deepcopy(self.edges)) sn.node_coords = copy.deepcopy(self.node_coords) sn.node_list = copy.deepcopy(self.node_list) sn.nodes = copy.deepcopy(self.nodes) sn.pointpatterns = copy.deepcopy(self.pointpatterns) sn.in_shp = self.in_shp current_node_id = max(self.nodes.values()) newedges = set() removeedges = set() for e in sn.edges: length = sn.edge_lengths[e] interval = distance totallength = 0 currentstart = startnode = e[0] endnode = e[1] # If the edge will be segmented remove the current edge from the adjacency list. if interval < length: sn.adjacencylist[e[0]].remove(e[1]) sn.adjacencylist[e[1]].remove(e[0]) sn.edge_lengths.pop(e, None) removeedges.add(e) else: continue while totallength < length: currentstop = current_node_id if totallength + interval > length: currentstop = endnode interval = length - totallength totallength = length else: current_node_id += 1 currentstop = current_node_id totallength += interval # Compute the new node coordinate. newx, newy = self._newpoint_coords(e, totallength) # Update node_list. if currentstop not in sn.node_list: sn.node_list.append(currentstop) # Update nodes and node_coords. sn.node_coords[currentstop] = newx, newy sn.nodes[(newx, newy)] = currentstop # Update the adjacency list. sn.adjacencylist[currentstart].append(currentstop) sn.adjacencylist[currentstop].append(currentstart) # Add the new edge to the edge dict. # Iterating over this so we need to add after iterating. newedges.add(tuple(sorted([currentstart, currentstop]))) # Modify edge_lengths. sn.edge_lengths[tuple(sorted([currentstart, currentstop]))] = interval # Increment the start to the stop. currentstart = currentstop sn.edges.update(newedges) sn.edges.difference_update(removeedges) sn.edges = list(sn.edges) # Update the point pattern snapping. for instance in sn.pointpatterns.itervalues(): sn._snap_to_edge(instance) return sn def savenetwork(self, filename): """ Save a network to disk as a binary file Parameters ---------- filename: str The filename where the network should be saved. This should be a full path or the file is saved whereever this method is called from. Example -------- >>> ntw = ps.Network(ps.examples.get_path('streets.shp')) >>> ntw.savenetwork('mynetwork.pkl') """ with open(filename, 'wb') as networkout: cPickle.dump(self, networkout, protocol=2) @staticmethod def loadnetwork(filename): with open(filename, 'rb') as networkin: self = cPickle.load(networkin) return self class PointPattern(): """ A stub point pattern class used to store a point pattern. This class is monkey patched with network specific attributes when the points are snapped to a network. In the future this class may be replaced with a generic point pattern class. Parameters ---------- shapefile: str The input shapefile. idvariable: str Field in the shapefile to use as an id variable. attribute: bool {False, True} A flag to indicate whether all attributes are tagged to this class. Attributes ---------- points: dict Keys are the point ids. Values are the coordinates. npoints: int The number of points. """ def __init__(self, shapefile, idvariable=None, attribute=False): self.points = {} self.npoints = 0 if idvariable: ids = get_ids(shapefile, idvariable) else: ids = None pts = ps.open(shapefile) # Get attributes if requested if attribute == True: dbname = os.path.splitext(shapefile)[0] + '.dbf' db = ps.open(dbname) else: db = None
<filename>google/cloud/bigquery/v2/bigquery-v2-py/google/cloud/bigquery_v2/services/model_service/async_client.py # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import functools import re from typing import Dict, Sequence, Tuple, Type, Union import pkg_resources import google.api_core.client_options as ClientOptions # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.bigquery_v2.types import encryption_config from google.cloud.bigquery_v2.types import model from google.cloud.bigquery_v2.types import model as gcb_model from google.cloud.bigquery_v2.types import model_reference from google.cloud.bigquery_v2.types import standard_sql from google.protobuf import wrappers_pb2 # type: ignore from .transports.base import ModelServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc_asyncio import ModelServiceGrpcAsyncIOTransport from .client import ModelServiceClient class ModelServiceAsyncClient: """""" _client: ModelServiceClient DEFAULT_ENDPOINT = ModelServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = ModelServiceClient.DEFAULT_MTLS_ENDPOINT common_billing_account_path = staticmethod(ModelServiceClient.common_billing_account_path) parse_common_billing_account_path = staticmethod(ModelServiceClient.parse_common_billing_account_path) common_folder_path = staticmethod(ModelServiceClient.common_folder_path) parse_common_folder_path = staticmethod(ModelServiceClient.parse_common_folder_path) common_organization_path = staticmethod(ModelServiceClient.common_organization_path) parse_common_organization_path = staticmethod(ModelServiceClient.parse_common_organization_path) common_project_path = staticmethod(ModelServiceClient.common_project_path) parse_common_project_path = staticmethod(ModelServiceClient.parse_common_project_path) common_location_path = staticmethod(ModelServiceClient.common_location_path) parse_common_location_path = staticmethod(ModelServiceClient.parse_common_location_path) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_info.__func__(ModelServiceAsyncClient, info, *args, **kwargs) # type: ignore @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_file.__func__(ModelServiceAsyncClient, filename, *args, **kwargs) # type: ignore from_service_account_json = from_service_account_file @property def transport(self) -> ModelServiceTransport: """Returns the transport used by the client instance. Returns: ModelServiceTransport: The transport used by the client instance. """ return self._client.transport get_transport_class = functools.partial(type(ModelServiceClient).get_transport_class, type(ModelServiceClient)) def __init__(self, *, credentials: ga_credentials.Credentials = None, transport: Union[str, ModelServiceTransport] = "grpc_asyncio", client_options: ClientOptions = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the model service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.ModelServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = ModelServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) async def get_model(self, request: model.GetModelRequest = None, *, project_id: str = None, dataset_id: str = None, model_id: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Gets the specified model resource by model ID. Args: request (:class:`google.cloud.bigquery_v2.types.GetModelRequest`): The request object. project_id (:class:`str`): Required. Project ID of the requested model. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the requested model. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model_id (:class:`str`): Required. Model ID of the requested model. This corresponds to the ``model_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.bigquery_v2.types.Model: """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, model_id]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = model.GetModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if model_id is not None: request.model_id = model_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_model, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata(( ("project_id", request.project_id), ("dataset_id", request.dataset_id), ("model_id", request.model_id), )), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def list_models(self, request: model.ListModelsRequest = None, *, project_id: str = None, dataset_id: str = None, max_results: wrappers_pb2.UInt32Value = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> model.ListModelsResponse: r"""Lists all models in the specified dataset. Requires the READER dataset role. After retrieving the list of models, you can get information about a particular model by calling the models.get method. Args: request (:class:`google.cloud.bigquery_v2.types.ListModelsRequest`): The request object. project_id (:class:`str`): Required. Project ID of the models to list. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the models to list. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. max_results (:class:`google.protobuf.wrappers_pb2.UInt32Value`): The maximum number of results to return in a single response page. Leverage the page tokens to iterate through the entire collection. This corresponds to the ``max_results`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.bigquery_v2.types.ListModelsResponse: """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, max_results]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = model.ListModelsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if max_results is not None: request.max_results = max_results # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_models, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within
<reponame>calbach/curation<filename>data_steward/analytics/table_metrics/Table_Metrics_part_1.py # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # + # #!pip install --upgrade google-cloud-bigquery[pandas] # - from google.cloud import bigquery client = bigquery.Client() # %load_ext google.cloud.bigquery # %reload_ext google.cloud.bigquery # + ####################################### print('Setting everything up...') ####################################### import warnings warnings.filterwarnings('ignore') import pandas as pd import matplotlib.pyplot as plt DATASET = plt.style.use('ggplot') pd.options.display.max_rows = 999 pd.options.display.max_columns = 999 pd.options.display.max_colwidth = 999 def cstr(s, color='black'): return "<text style=color:{}>{}</text>".format(color, s) print('done.') # + dic = {'src_hpo_id': ["trans_am_essentia", "saou_ummc", "seec_miami", "seec_morehouse", "seec_emory", "uamc_banner", "pitt", "nyc_cu", "ipmc_uic", "trans_am_spectrum", "tach_hfhs", "nec_bmc", "cpmc_uci", "nec_phs", "nyc_cornell", "ipmc_nu", "nyc_hh", "ipmc_uchicago", "aouw_mcri", "syhc", "cpmc_ceders", "seec_ufl", "saou_uab", "trans_am_baylor", "cpmc_ucsd", "ecchc", "chci", "aouw_uwh", "cpmc_usc", "hrhc", "ipmc_northshore", "chs", "cpmc_ucsf", "jhchc", "aouw_mcw", "cpmc_ucd", "ipmc_rush"], 'HPO': ["Essentia Health Superior Clinic", "University of Mississippi", "SouthEast Enrollment Center Miami", "SouthEast Enrollment Center Morehouse", "SouthEast Enrollment Center Emory", "Banner Health", "University of Pittsburgh", "Columbia University Medical Center", "University of Illinois Chicago", "Spectrum Health", "Henry Ford Health System", "Boston Medical Center", "UC Irvine", "Partners HealthCare", "Weill Cornell Medical Center", "Northwestern Memorial Hospital", "Harlem Hospital", "University of Chicago", "Marshfield Clinic", "San Ysidro Health Center", "Cedars-Sinai", "University of Florida", "University of Alabama at Birmingham", "Baylor", "UC San Diego", "Eau Claire Cooperative Health Center", "Community Health Center, Inc.", "UW Health (University of Wisconsin Madison)", "University of Southern California", "HRHCare", "NorthShore University Health System", "Cherokee Health Systems", "UC San Francisco", "Jackson-Hinds CHC", "Medical College of Wisconsin", "UC Davis", "Rush University"]} site_df = pd.DataFrame(data=dic) site_df # - # # There should not be duplicate rows. # ## visit_occurrence table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, visit_concept_id, visit_start_date, visit_start_datetime, visit_end_date, visit_end_datetime, visit_type_concept_id, provider_id, care_site_id, visit_source_value, visit_source_concept_id, admitting_source_concept_id, admitting_source_value, discharge_to_concept_id, discharge_to_source_value, preceding_visit_occurrence_id, COUNT(*) as cnt FROM `{}.unioned_ehr_visit_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_visit_occurrence`) AS t2 ON t1.visit_occurrence_id=t2.visit_occurrence_id WHERE t1.visit_concept_id!=0 AND t1.visit_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() visit_occurrence = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'visit_occurrence'}).sort_values(["visit_occurrence"]).set_index("src_hpo_id") visit_occurrence = visit_occurrence.reset_index() visit_occurrence # ## condition_occurrence table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, condition_concept_id, condition_start_date, condition_start_datetime, condition_end_date, condition_end_datetime, condition_type_concept_id, stop_reason, provider_id, visit_occurrence_id, condition_source_value, condition_source_concept_id, condition_status_source_value, condition_status_concept_id, COUNT(*) as cnt FROM `{}.unioned_ehr_condition_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_condition_occurrence`) AS t2 ON t1.condition_occurrence_id=t2.condition_occurrence_id WHERE t1.condition_concept_id!=0 AND t1.condition_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() condition_occurrence = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'condition_occurrence'}).sort_values(["condition_occurrence"]).set_index("src_hpo_id") condition_occurrence = condition_occurrence.reset_index() condition_occurrence # ## drug_exposure table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, drug_concept_id, drug_exposure_start_date,drug_exposure_start_datetime, drug_exposure_end_date,drug_exposure_end_datetime, verbatim_end_date, drug_type_concept_id, stop_reason, refills, quantity, days_supply, sig, route_concept_id, lot_number, provider_id, visit_occurrence_id, drug_source_value, drug_source_concept_id, route_source_value, dose_unit_source_value, COUNT(*) as cnt FROM `{}.unioned_ehr_drug_exposure` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_drug_exposure`) AS t2 ON t1.drug_exposure_id=t2.drug_exposure_id WHERE t1.drug_concept_id!=0 AND t1.drug_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 HAVING COUNT(*) > 1 ORDER BY 1,2,3 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() drug_exposure = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'drug_exposure'}).sort_values(["drug_exposure"]).set_index("src_hpo_id") drug_exposure = drug_exposure.reset_index() drug_exposure # ## measurement table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, measurement_concept_id, measurement_date, measurement_datetime, measurement_type_concept_id, operator_concept_id, value_as_number, value_as_concept_id, unit_concept_id, range_low, range_high, provider_id, visit_occurrence_id, measurement_source_value, measurement_source_concept_id, unit_source_value, value_source_value, COUNT(*) as cnt FROM `{}.unioned_ehr_measurement` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_measurement`) AS t2 ON t1.measurement_id=t2.measurement_id WHERE t1.measurement_concept_id!=0 AND t1.measurement_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 HAVING COUNT(*) > 1 ORDER BY 1,2,3 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() measurement = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'measurement'}).sort_values(["measurement"]).set_index("src_hpo_id") measurement = measurement.reset_index() measurement # ## procedure_occurrence # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, procedure_concept_id, procedure_date, procedure_datetime, procedure_type_concept_id, modifier_concept_id, quantity, provider_id, visit_occurrence_id, procedure_source_value, procedure_source_concept_id, qualifier_source_value, COUNT(*) as cnt FROM `{}.unioned_ehr_procedure_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_procedure_occurrence`) AS t2 ON t1.procedure_occurrence_id=t2.procedure_occurrence_id WHERE t1.procedure_concept_id!=0 AND t1.procedure_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() procedure_occurrence = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'procedure_occurrence'}).sort_values(["procedure_occurrence"]).set_index("src_hpo_id") procedure_occurrence = procedure_occurrence.reset_index() procedure_occurrence # ## observation table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, observation_concept_id, observation_date, observation_datetime, observation_type_concept_id, value_as_number, value_as_string, value_as_concept_id, qualifier_concept_id, unit_concept_id, provider_id, visit_occurrence_id, observation_source_value, observation_source_concept_id, unit_source_value, qualifier_source_value, value_source_concept_id, value_source_value, questionnaire_response_id, COUNT(*) as cnt FROM `{}.unioned_ehr_observation` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_observation`) AS t2 ON t1.observation_id=t2.observation_id WHERE t1.observation_concept_id!=0 AND t1.observation_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() observation = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'observation'}).sort_values(["observation"]).set_index("src_hpo_id") observation = observation.reset_index() observation # ## provider table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT provider_name, NPI, DEA, specialty_concept_id, care_site_id, year_of_birth, gender_concept_id, provider_source_value, specialty_source_value, specialty_source_concept_id, gender_source_value, gender_source_concept_id, COUNT(*) as cnt FROM `{}.unioned_ehr_provider` AS t1 GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() # ## device_exposure table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, device_concept_id, device_exposure_start_date, device_exposure_start_datetime, device_exposure_end_date, device_exposure_end_datetime, device_type_concept_id, unique_device_id, quantity, provider_id, visit_occurrence_id, device_source_value, device_source_concept_id, COUNT(*) as cnt FROM `{}.unioned_ehr_device_exposure` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_device_exposure`) AS t2 ON t1.device_exposure_id=t2.device_exposure_id WHERE t1.device_concept_id!=0 AND t1.device_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() device_exposure = foreign_key_df.groupby(['src_hpo_id']).size().reset_index().rename( columns={0: 'device_exposure'}).sort_values(["device_exposure"]).set_index("src_hpo_id") device_exposure = device_exposure.reset_index() device_exposure # ## death table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT death_date, death_datetime, death_type_concept_id, cause_concept_id, cause_source_value, cause_source_concept_id, COUNT(*) as cnt FROM `{}.unioned_ehr_death` AS t1 WHERE t1.death_date IS NOT NULL AND t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() # ## care_site table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT place_of_service_concept_id, location_id, place_of_service_source_value, care_site_name, care_site_source_value, COUNT(*) as cnt FROM `{}.unioned_ehr_care_site` AS t1 GROUP BY 1,2,3,4,5 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5 '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() # ## Sites combined sites_success = pd.merge(visit_occurrence, condition_occurrence, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, drug_exposure, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, measurement, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, procedure_occurrence, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, device_exposure, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, observation, how='outer', on='src_hpo_id') sites_success = pd.merge(sites_success, site_df, how='outer', on='src_hpo_id') sites_success = sites_success.fillna(0) sites_success[["visit_occurrence", "condition_occurrence", "drug_exposure", "measurement", "procedure_occurrence", "device_exposure", "observation"]] \ = sites_success[["visit_occurrence", "condition_occurrence", "drug_exposure", "measurement", "procedure_occurrence", "device_exposure", "observation"]].astype(int) sites_success sites_success.to_csv("data\\duplicates.csv") # # 20.Dataframe (row for each hpo_id) Condition_occurrence table, condition_source_concept_id field condition_concept_df = pd.io.gbq.read_gbq(''' WITH data1 AS ( SELECT src_hpo_id, COUNT(*) AS condition_total_row FROM `{}.unioned_ehr_condition_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_condition_occurrence`) AS t2 ON t1.condition_occurrence_id=t2.condition_occurrence_id GROUP BY 1 ), data2 AS ( SELECT src_hpo_id, COUNT(*) AS condition_well_defined_row FROM `{}.unioned_ehr_condition_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_condition_occurrence`) AS t2 ON t1.condition_occurrence_id=t2.condition_occurrence_id INNER JOIN `{}.concept` as t3 ON t3.concept_id = t1.condition_concept_id WHERE t3.domain_id="Condition" and t3.standard_concept="S" GROUP BY 1 ), data3 AS ( SELECT src_hpo_id, COUNT(*) AS condition_total_zero FROM `{}.unioned_ehr_condition_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_condition_occurrence`) AS t2 ON t1.condition_occurrence_id=t2.condition_occurrence_id INNER JOIN `{}.concept` as t3 ON t3.concept_id = t1.condition_concept_id WHERE (t3.concept_id=0 or t3.concept_id is null) GROUP BY 1 ) SELECT data1.src_hpo_id, condition_well_defined_row, condition_total_row, round(100*(condition_well_defined_row/condition_total_row),1) as condition_success_rate FROM data1 LEFT OUTER JOIN data2 ON data1.src_hpo_id=data2.src_hpo_id LEFT OUTER JOIN data3 ON data1.src_hpo_id=data3.src_hpo_id ORDER BY 1 DESC '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard' ) condition_concept_df.shape condition_concept_df = condition_concept_df.fillna(0) condition_concept_df # # 21.Dataframe (row for each hpo_id) Procedure_occurrence table, procedure_source_concept_id field procedure_concept_df = pd.io.gbq.read_gbq(''' WITH data1 AS ( SELECT src_hpo_id, COUNT(*) AS procedure_total_row FROM `{}.unioned_ehr_procedure_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{}._mapping_procedure_occurrence`) AS t2 ON t1.procedure_occurrence_id=t2.procedure_occurrence_id GROUP BY 1 ), data2 AS (
""" var, name, freq = fields print name outputMeter = ops.Meter(model) outputMeter.setMeterFileOnly(False) outputMeter.setName(name.strip()) outputMeter.setReportingFrequency(freq.strip()) def setOutputs(self, simulationOutputs, model): if simulationOutputs == []: return else: for output in simulationOutputs: try: # remove comment outstr = output.split("!")[0].strip() # remove ; from the end finalout = outstr.replace(";", "", 1) # split into fields fields = finalout.split(",") print fields if fields[0].strip().lower() == "output:variable": self.setOutputVariable(fields, model) elif fields[0].strip().lower() == "output:meter": self.setOutputMeter(fields, model) elif fields[0].strip().lower() == "outputcontrol:table:style": pass #self.setOutputControl(fields, model) else: msg = fields[0] + " is missing from the outputs!" #ghenv.Component.AddRuntimeMessage(gh.GH_RuntimeMessageLevel.Warning, msg) except Exception, e: print e pass class RunOPS(object): def __init__(self, model, weatherFilePath = r"C:\EnergyPlusV8-1-0\WeatherData\USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw"): self.weatherFile = weatherFilePath # just for batch file as an alternate solution self.EPPath = ops.Path(r"C:\EnergyPlusV8-1-0\EnergyPlus.exe") self.epwFile = ops.Path(weatherFilePath) self.iddFile = ops.Path(r"C:\EnergyPlusV8-1-0\Energy+.idd") self.model = model def osmToidf(self, workingDir, projectName, osmPath): # create a new folder to run the analysis projectFolder =os.path.join(workingDir, projectName) try: os.mkdir(projectFolder) except: pass idfFolder = os.path.join(projectFolder) idfFilePath = ops.Path(os.path.join(projectFolder, "ModelToIdf", "in.idf")) forwardTranslator = ops.EnergyPlusForwardTranslator() workspace = forwardTranslator.translateModel(self.model) # remove the current object tableStyleObjects = workspace.getObjectsByType(ops.IddObjectType("OutputControl_Table_Style")) for obj in tableStyleObjects: obj.remove() tableStyle = ops.IdfObject(ops.IddObjectType("OutputControl_Table_Style")) tableStyle.setString(0, "CommaAndHTML") workspace.addObject(tableStyle) workspace.save(idfFilePath, overwrite = True) """ CHarriman added code to always add monthly reports to idf for ease of use in SQL on Nov 8 2014 """ #Monthly code added based on #git site:https://github.com/NREL/OpenStudio/blob/develop/openstudiocore/src/runmanager/lib/EnergyPlusPreProcessJob.cpp#L202 makeMonthly = True if makeMonthly: self.writeIDFWithMonthly(idfFilePath) #DBPath = ops.Path(os.path.join(projectFolder, projectName + "_osmToidf.db")) # start run manager #rm = ops.RunManager(DBPath, True, True) # create workflow #wf = ops.Workflow("EnergyPlus") # put in queue and let it go #rm.enqueue(wf.create(ops.Path(projectFolder), osmPath, self.epwFile), True) #rm.setPaused(False) #while rm.workPending(): # time.sleep(.5) # print "Converting osm to idf ..." #rm.Dispose() # don't remove this as Rhino will crash if you don't dispose run manager return idfFolder, idfFilePath def writeIDFWithMonthly(self, idfFilePath): print "Making Monthly SQL reading possible." print idfFilePath fi = open(str(idfFilePath),'r') fi.seek(0) prepare=False count = 0 lines=[] for line in fi: if line.strip() != 'Output:SQLite,': if (prepare): count+=1; if (count==2): lines.append("\n") lines.append("Output:Table:Monthly," + "\n") lines.append(" Building Energy Performance - Electricity, !- Name"+ "\n") lines.append(" 2, !- Digits After Decimal"+ "\n") lines.append(" InteriorLights:Electricity, !- Variable or Meter 1 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 1"+ "\n") lines.append(" ExteriorLights:Electricity, !- Variable or Meter 2 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 2"+ "\n") lines.append(" InteriorEquipment:Electricity, !- Variable or Meter 3 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 3"+ "\n") lines.append(" ExteriorEquipment:Electricity, !- Variable or Meter 4 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 4"+ "\n") lines.append(" Fans:Electricity, !- Variable or Meter 5 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 5"+ "\n") lines.append(" Pumps:Electricity, !- Variable or Meter 6 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 6"+ "\n") lines.append(" Heating:Electricity, !- Variable or Meter 7 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 7"+ "\n") lines.append(" Cooling:Electricity, !- Variable or Meter 8 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 8"+ "\n") lines.append(" HeatRejection:Electricity, !- Variable or Meter 9 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 9"+ "\n") lines.append(" Humidifier:Electricity, !- Variable or Meter 10 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 10"+ "\n") lines.append(" HeatRecovery:Electricity,!- Variable or Meter 11 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 11"+ "\n") lines.append(" WaterSystems:Electricity,!- Variable or Meter 12 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 12"+ "\n") lines.append(" Cogeneration:Electricity,!- Variable or Meter 13 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 13"+ "\n") lines.append(" Refrigeration:Electricity,!- Variable or Meter 14 Name"+ "\n") lines.append(" SumOrAverage; !- Aggregation Type for Variable or Meter 14"+ "\n") """ lines.append("\n") lines.append("Output:Table:Monthly," + "\n") lines.append(" Building Energy Performance - Water, !- Name"+ "\n") lines.append(" 2, !- Digits After Decimal"+ "\n") lines.append(" InteriorLights:Water, !- Variable or Meter 1 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 1"+ "\n") lines.append(" ExteriorLights:Water, !- Variable or Meter 2 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 2"+ "\n") lines.append(" InteriorEquipment:Water, !- Variable or Meter 3 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 3"+ "\n") lines.append(" ExteriorEquipment:Water, !- Variable or Meter 4 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 4"+ "\n") lines.append(" Fans:Water, !- Variable or Meter 5 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 5"+ "\n") lines.append(" Pumps:Water, !- Variable or Meter 6 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 6"+ "\n") lines.append(" Heating:Water, !- Variable or Meter 7 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 7"+ "\n") lines.append(" Cooling:Water, !- Variable or Meter 8 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 8"+ "\n") lines.append(" HeatRejection:Water, !- Variable or Meter 9 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 9"+ "\n") lines.append(" Humidifier:Water, !- Variable or Meter 10 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 10"+ "\n") lines.append(" HeatRecovery:Water,!- Variable or Meter 11 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 11"+ "\n") lines.append(" WaterSystems:Water,!- Variable or Meter 12 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 12"+ "\n") lines.append(" Cogeneration:Water,!- Variable or Meter 13 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 13"+ "\n") lines.append(" Refrigeration:Water,!- Variable or Meter 14 Name"+ "\n") lines.append(" SumOrAverage; !- Aggregation Type for Variable or Meter 14"+ "\n") """ lines.append("\n") lines.append("Output:Table:Monthly,"+ "\n") lines.append(" Building Energy Performance - Natural Gas, !- Name"+ "\n") lines.append(" 2, !- Digits After Decimal"+ "\n") lines.append(" InteriorEquipment:Gas, !- Variable or Meter 1 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 1"+ "\n") lines.append(" ExteriorEquipment:Gas, !- Variable or Meter 2 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 2"+ "\n") lines.append(" Heating:Gas, !- Variable or Meter 3 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 3"+ "\n") lines.append(" Cooling:Gas, !- Variable or Meter 4 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 4"+ "\n") lines.append(" WaterSystems:Gas, !- Variable or Meter 5 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 5"+ "\n") lines.append(" Cogeneration:Gas, !- Variable or Meter 6 Name"+ "\n") lines.append(" SumOrAverage; !- Aggregation Type for Variable or Meter 6"+ "\n") lines.append("\n") lines.append("Output:Table:Monthly,"+ "\n") lines.append(" Building Energy Performance - District Heating, !- Name"+ "\n") lines.append(" 2, !- Digits After Decimal"+ "\n") lines.append(" InteriorLights:DistrictHeating, !- Variable or Meter 1 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 1"+ "\n") lines.append(" ExteriorLights:DistrictHeating, !- Variable or Meter 2 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 2"+ "\n") lines.append(" InteriorEquipment:DistrictHeating, !- Variable or Meter 3 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 3"+ "\n") lines.append(" ExteriorEquipment:DistrictHeating, !- Variable or Meter 4 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 4"+ "\n") lines.append(" Fans:DistrictHeating, !- Variable or Meter 5 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 5"+ "\n") lines.append(" Pumps:DistrictHeating, !- Variable or Meter 6 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 6"+ "\n") lines.append(" Heating:DistrictHeating, !- Variable or Meter 7 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 7"+ "\n") lines.append(" Cooling:DistrictHeating, !- Variable or Meter 8 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 8"+ "\n") lines.append(" HeatRejection:DistrictHeating, !- Variable or Meter 9 Name"+ "\n") lines.append(" SumOrAverage, !- Aggregation Type for Variable or Meter 9"+ "\n") lines.append(" Humidifier:DistrictHeating, !- Variable or Meter 10 Name"+ "\n") lines.append(" SumOrAverage, !-
# wcurve.py - basic arithmetic on elliptic curves in short Weiertsrass form. # # Copyright (c) 2010-2011 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ This package implements basic arithmetic operations such as point addition and single-scalar multiplication on elliptic curves in short Weiertsrass form. Example:: import wcurve, random # Instantiate secp256r1 aka nistp256r1 standardized curve curve = wcurve.secp256r1_curve() # Generate a new secret value sk = random.SystemRandom().randint(1, curve.n - 1) # Compute the public key associated with the previous secret pk = sk * curve.base_point # Get its affine coordinates pkx, pky = pk.to_affine() Internally, curve points are represented in Jacobian coordinates. There's currently no optimized implementation for the double scalar multiplication operation, it is merely the addition of two independents single-scalar multiplications. The primary goal of this code is to keep things simple and offer a pure Python standalone interface to some of currently the most used curves. As implemented, single-scalar multiplications are not protected against DPA and some types of fault attacks. However, exponentiations algorithms are regulars, without dummy operations and conditional branching instructions are avoided. Beside the usual scalar multiplication algorithm transparently used when :py:func:`secp256r1_curve` is instantiated, another algorithm is implemented. This one uses *infective computations* techniques [2]_ to prevent an attacker from extracting useful information from a wrong scalar-multiplication result. This algorithm is automatically used when a :py:func:`secp256r1_curve_infective` curve is instantiated. For more details on *infective computations* read the docstring of :py:meth:`JacobianPoint.scalar_multiplication_infective`. .. note:: functions, classes and methods prefixed with _ in the source code are privates to this module, there are not intended to be called from external client code. """ import copy import random __author__ = "<NAME> (<EMAIL>)" __version__ = "0.1.9" def _check_integer_type(val): """ Check val is an integer, raise an exception if it is not the case. """ try: import numbers if isinstance(val, numbers.Integral): return True except: if isinstance(val, int) or isinstance(val, long): return True raise TypeError("Invalid type %s, expected integral type." % type(val)) def _bit_length(x): """ Returns the bit length of |x|. """ x = abs(x) # Try to use r to protect the top bit of x. r = random.SystemRandom().randint(0, 64) x = x << r # See comment in JacobianPoint.scalar_multiplication(). if not x: return 0 n = -r while x: n += 1 x >>= 1 return n def _cond_swap_values(swap, u, v): """ Conditionally swap u and v if swap=1 and otherwise left unchanged if swap=0. The value of swap must be 0 or 1 exclusively. """ swap_diff = (-swap) & (u ^ v) return u ^ swap_diff, v ^ swap_diff class _ZpZArithmetic: def __init__(self, p, order): """ order = euler_phi(p) """ self.p = p self.order = order @staticmethod def create_from_curve(curve): if hasattr(curve, 'phi_p'): return _ZpZArithmetic(curve.p, curve.phi_p) return _FpArithmetic(curve.p) def exp(self, g, k, k_num_bits): """ Returns g^k mod self.p with |k|=k_num_bits. """ return self._exp(g, k, k_num_bits, self.p) def _exp(self, g, k, k_num_bits, n): """ Montgomery Ladder. Compute g^k mod n with |k|=k_num_bits. """ r0 = 1 r1 = g while k_num_bits >= 0: cur_bit = (k >> k_num_bits) & 1 r0, r1 = _cond_swap_values(1 - cur_bit, r0, r1) r0 = r0 * r1 % n r1 = r1 ** 2 % n r0, r1 = _cond_swap_values(1 - cur_bit, r0, r1) k_num_bits -= 1 return r0 def inverse(self, g): """ Returns the inverse of g mod p. This method does not check the element is invertible, this is the responsability of the caller. """ return self._inverse(g, self.order, self.p) def _inverse(self, g, order, p): """ Returns inverse of g mod p. """ e = order - 1 r = self._exp(g, e, _bit_length(e), p) # Could not get a null result if the element had been invertible. if not r: # equiv. to 'not r == 0' raise ValueError("%d has no inverse mod %d." % (g, p)) return r class _FpArithmetic(_ZpZArithmetic): def __init__(self, p): """ p is prime """ _ZpZArithmetic.__init__(self, p, p - 1) def _crt(lst, modulus): """ Compute a list of crts sharing the same modulus. """ prod = 1 for m in modulus: prod *= m ldiv = tuple(map(lambda m: prod // m, modulus)) linv = tuple(map(lambda x, y: _FpArithmetic(y).inverse(x), ldiv, modulus)) def _sum(a): t = sum(map(lambda x, y, z: x * y * z, a, linv, ldiv)) return t % prod return tuple(map(_sum, lst)) class _CoZArithmetic: """ Co-Z arithmetic from "Co-Z Addition Formulae and Binary Ladders on Elliptic Curves", <NAME> and <NAME> and <NAME>. The zaddu, zaddc and dblu formulas are copied from the Appendix A and the section 4.3 of this paper. """ def __init__(self, curve): """ You shouldn't have to instantiate this class directly. """ self.curve = curve def zaddu(self, p, q): """ Point addition with update. (R,P)=ZADDU(P,Q) where R=P+Q=(X3:Y3:Z3) and P=(h2X1:h3Y1:Z3) with Z3=hZ1 for some h!=0 """ assert p.z % self.curve.p == q.z % self.curve.p t1 = p.x; t2 = p.y; t3 = p.z; t4 = q.x; t5 = q.y; t6 = t1 - t4 t3 = t3 * t6 % self.curve.p # z3 t6 = t6 ** 2 % self.curve.p # c t1 = t1 * t6 % self.curve.p # w1 t6 = t6 * t4 % self.curve.p # w2 t5 = t2 - t5 t4 = t5 ** 2 % self.curve.p # d t4 = t4 - t1 t4 = (t4 - t6) % self.curve.p # x3 t6 = t1 - t6 t2 = t2 * t6 % self.curve.p # a1 t6 = t1 - t4 t5 = t5 * t6 % self.curve.p t5 = (t5 - t2) % self.curve.p # y3 return (JacobianPoint(t4, t5, t3, self.curve), JacobianPoint(t1, t2, t3, self.curve)) def zaddc(self, p, q): """ Conjugate point addition. (R,S)=ZADDC(P,Q) where R=P+Q=(X3:Y3:Z3) and S=P-Q=(X3:Y3:Z3) """ assert p.z % self.curve.p == q.z % self.curve.p t1 = p.x; t2 = p.y; t3 = p.z; t4 = q.x; t5 = q.y; t6 = t1 - t4 t3 = t3 * t6 % self.curve.p t6 = t6 ** 2 % self.curve.p t7 = t1 * t6 % self.curve.p t6 = t6 * t4 % self.curve.p t1 = t2 + t5 t4 = t1 ** 2 % self.curve.p t4 = t4 - t7 t4 = (t4 - t6) % self.curve.p t1 = t2 - t5 t1 = t1 ** 2 % self.curve.p t1 = t1 - t7 t1 = (t1 - t6) % self.curve.p t6 = t6 - t7 t6 = t6 * t2 % self.curve.p t2 = t2 - t5 t5 = 2 * t5 t5 = t2 + t5 t7 = t7 - t4 t5 = t5 * t7 % self.curve.p t5 = (t5 + t6) % self.curve.p t7 = t4 + t7 t7 = t7 - t1 t2 = t2 * t7 % self.curve.p t2 = (t2 + t6) % self.curve.p return (JacobianPoint(t1, t2, t3, self.curve), JacobianPoint(t4, t5, t3, self.curve)) def dblu(self, p): """ Initial point doubling (requires z=1). (2P,P) = DBLU(P) """ assert p.z % self.curve.p == 1 t1 = p.x; t2 = p.y; t4 = t1 ** 2 % self.curve.p # b t5 = 3 * t4 t5 = t5 + self.curve.a #
email_flow_folder, **kwargs): # noqa: E501 """Insert email flow folder # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_flow_folder(storefront_oid, email_flow_folder, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailFlowFolder email_flow_folder: Email flow folder (required) :return: EmailFlowFolderResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.insert_email_flow_folder_with_http_info(storefront_oid, email_flow_folder, **kwargs) # noqa: E501 else: (data) = self.insert_email_flow_folder_with_http_info(storefront_oid, email_flow_folder, **kwargs) # noqa: E501 return data def insert_email_flow_folder_with_http_info(self, storefront_oid, email_flow_folder, **kwargs): # noqa: E501 """Insert email flow folder # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_flow_folder_with_http_info(storefront_oid, email_flow_folder, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailFlowFolder email_flow_folder: Email flow folder (required) :return: EmailFlowFolderResponse If the method is called asynchronously, returns the request thread. """ all_params = ['storefront_oid', 'email_flow_folder'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method insert_email_flow_folder" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'storefront_oid' is set if ('storefront_oid' not in params or params['storefront_oid'] is None): raise ValueError("Missing the required parameter `storefront_oid` when calling `insert_email_flow_folder`") # noqa: E501 # verify the required parameter 'email_flow_folder' is set if ('email_flow_folder' not in params or params['email_flow_folder'] is None): raise ValueError("Missing the required parameter `email_flow_folder` when calling `insert_email_flow_folder`") # noqa: E501 collection_formats = {} path_params = {} if 'storefront_oid' in params: path_params['storefront_oid'] = params['storefront_oid'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'email_flow_folder' in params: body_params = params['email_flow_folder'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['ultraCartBrowserApiKey', 'ultraCartOauth', 'ultraCartSimpleApiKey'] # noqa: E501 return self.api_client.call_api( '/storefront/{storefront_oid}/email/flow_folders', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='EmailFlowFolderResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def insert_email_list(self, storefront_oid, email_list, **kwargs): # noqa: E501 """Insert email list # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_list(storefront_oid, email_list, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailList email_list: Email list (required) :return: EmailListResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.insert_email_list_with_http_info(storefront_oid, email_list, **kwargs) # noqa: E501 else: (data) = self.insert_email_list_with_http_info(storefront_oid, email_list, **kwargs) # noqa: E501 return data def insert_email_list_with_http_info(self, storefront_oid, email_list, **kwargs): # noqa: E501 """Insert email list # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_list_with_http_info(storefront_oid, email_list, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailList email_list: Email list (required) :return: EmailListResponse If the method is called asynchronously, returns the request thread. """ all_params = ['storefront_oid', 'email_list'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method insert_email_list" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'storefront_oid' is set if ('storefront_oid' not in params or params['storefront_oid'] is None): raise ValueError("Missing the required parameter `storefront_oid` when calling `insert_email_list`") # noqa: E501 # verify the required parameter 'email_list' is set if ('email_list' not in params or params['email_list'] is None): raise ValueError("Missing the required parameter `email_list` when calling `insert_email_list`") # noqa: E501 collection_formats = {} path_params = {} if 'storefront_oid' in params: path_params['storefront_oid'] = params['storefront_oid'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'email_list' in params: body_params = params['email_list'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['ultraCartBrowserApiKey', 'ultraCartOauth', 'ultraCartSimpleApiKey'] # noqa: E501 return self.api_client.call_api( '/storefront/{storefront_oid}/email/lists', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='EmailListResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def insert_email_list_segment_folder(self, storefront_oid, email_list_segment_folder, **kwargs): # noqa: E501 """Insert email campaign folder # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_list_segment_folder(storefront_oid, email_list_segment_folder, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailListSegmentFolder email_list_segment_folder: Email campaign folder (required) :return: EmailListSegmentFolderResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.insert_email_list_segment_folder_with_http_info(storefront_oid, email_list_segment_folder, **kwargs) # noqa: E501 else: (data) = self.insert_email_list_segment_folder_with_http_info(storefront_oid, email_list_segment_folder, **kwargs) # noqa: E501 return data def insert_email_list_segment_folder_with_http_info(self, storefront_oid, email_list_segment_folder, **kwargs): # noqa: E501 """Insert email campaign folder # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_list_segment_folder_with_http_info(storefront_oid, email_list_segment_folder, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailListSegmentFolder email_list_segment_folder: Email campaign folder (required) :return: EmailListSegmentFolderResponse If the method is called asynchronously, returns the request thread. """ all_params = ['storefront_oid', 'email_list_segment_folder'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method insert_email_list_segment_folder" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'storefront_oid' is set if ('storefront_oid' not in params or params['storefront_oid'] is None): raise ValueError("Missing the required parameter `storefront_oid` when calling `insert_email_list_segment_folder`") # noqa: E501 # verify the required parameter 'email_list_segment_folder' is set if ('email_list_segment_folder' not in params or params['email_list_segment_folder'] is None): raise ValueError("Missing the required parameter `email_list_segment_folder` when calling `insert_email_list_segment_folder`") # noqa: E501 collection_formats = {} path_params = {} if 'storefront_oid' in params: path_params['storefront_oid'] = params['storefront_oid'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'email_list_segment_folder' in params: body_params = params['email_list_segment_folder'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['ultraCartBrowserApiKey', 'ultraCartOauth', 'ultraCartSimpleApiKey'] # noqa: E501 return self.api_client.call_api( '/storefront/{storefront_oid}/email/list_segment_folders', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='EmailListSegmentFolderResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def insert_email_postcard(self, storefront_oid, email_commseq_postcard, **kwargs): # noqa: E501 """Insert email postcard # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_postcard(storefront_oid, email_commseq_postcard, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailCommseqPostcard email_commseq_postcard: Email postcard (required) :return: EmailCommseqPostcardResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.insert_email_postcard_with_http_info(storefront_oid, email_commseq_postcard, **kwargs) # noqa: E501 else: (data) = self.insert_email_postcard_with_http_info(storefront_oid, email_commseq_postcard, **kwargs) # noqa: E501 return data def insert_email_postcard_with_http_info(self, storefront_oid, email_commseq_postcard, **kwargs): # noqa: E501 """Insert email postcard # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insert_email_postcard_with_http_info(storefront_oid, email_commseq_postcard, async_req=True) >>> result = thread.get() :param async_req bool :param int storefront_oid: (required) :param EmailCommseqPostcard email_commseq_postcard: Email postcard (required) :return: EmailCommseqPostcardResponse If the method is called asynchronously, returns the request thread. """ all_params = ['storefront_oid', 'email_commseq_postcard'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method insert_email_postcard" % key ) params[key] = val del params['kwargs'] # verify the required
<filename>qutip/fortran/mcsolve_f90.py # This file is part of QuTiP: Quantum Toolbox in Python. # # Copyright (c) 2011 and later, <NAME> and <NAME>. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Original Code by <NAME> (2012): github.com/arnelg/qutipf90mc ############################################################################### import numpy as np from qutip import * from qutip.fortran import qutraj_run as qtf90 from qutip.odeconfig import odeconfig from qutip.qobj import Qobj from qutip.mcsolve import _mc_data_config from qutip.odeoptions import Odeoptions from qutip.odedata import Odedata from qutip.settings import debug if debug: import inspect import os # Working precision wpr = np.dtype(np.float64) wpc = np.dtype(np.complex128) def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None, options=Odeoptions(), sparse_dms=True, serial=False, ptrace_sel=[], calc_entropy=False): """ Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for problems without explicit time-dependence, and with some optional input: Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like ``list`` or ``array`` of collapse operators. e_ops : array_like ``list`` or ``array`` of operators for calculating expectation values. options : Odeoptions Instance of ODE solver options. sparse_dms : boolean If averaged density matrices are returned, they will be stored as sparse (Compressed Row Format) matrices during computation if sparse_dms = True (default), and dense matrices otherwise. Dense matrices might be preferable for smaller systems. serial : boolean If True (default is False) the solver will not make use of the multiprocessing module, and simply run in serial. ptrace_sel: list This optional argument specifies a list of components to keep when returning a partially traced density matrix. This can be convenient for large systems where memory becomes a problem, but you are only interested in parts of the density matrix. calc_entropy : boolean If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged entropy over trajectories in results.entropy. This can be interpreted as a measure of entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310 (2012). Returns ------- results : Odedata Object storing all results from simulation. """ if ntraj is None: ntraj = options.ntraj if psi0.type != 'ket': raise Exception("Initial state must be a state vector.") odeconfig.options = options # set num_cpus to the value given in qutip.settings # if none in Odeoptions if not odeconfig.options.num_cpus: odeconfig.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: odeconfig.psi0 = psi0.tidyup(options.atol).full() else: odeconfig.psi0 = psi0.full() odeconfig.psi0_dims = psi0.dims odeconfig.psi0_shape = psi0.shape # set general items odeconfig.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): raise Exception("ntraj as list argument is not supported.") else: odeconfig.ntraj = ntraj # ntraj_list = [ntraj] # set norm finding constants odeconfig.norm_tol = options.norm_tol odeconfig.norm_steps = options.norm_steps if not options.rhs_reuse: odeconfig.soft_reset() # no time dependence odeconfig.tflag = 0 # no gui odeconfig.options.gui = False # check for collapse operators if len(c_ops) > 0: odeconfig.cflag = 1 else: odeconfig.cflag = 0 # Configure data _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, odeconfig) # Load Monte Carlo class mc = _MC_class() # Set solver type if (options.method == 'adams'): mc.mf = 10 elif (options.method == 'bdf'): mc.mf = 22 else: if debug: print('Unrecognized method for ode solver, using "adams".') mc.mf = 10 # store ket and density matrix dims and shape for convenience mc.psi0_dims = psi0.dims mc.psi0_shape = psi0.shape mc.dm_dims = (psi0 * psi0.dag()).dims mc.dm_shape = (psi0 * psi0.dag()).shape # use sparse density matrices during computation? mc.sparse_dms = sparse_dms # run in serial? mc.serial_run = serial or (ntraj == 1) # are we doing a partial trace for returned states? mc.ptrace_sel = ptrace_sel if (ptrace_sel != []): if debug: print("ptrace_sel set to " + str(ptrace_sel)) print("We are using dense density matrices during computation " + "when performing partial trace. Setting sparse_dms = False") print("This feature is experimental.") mc.sparse_dms = False mc.dm_dims = psi0.ptrace(ptrace_sel).dims mc.dm_shape = psi0.ptrace(ptrace_sel).shape if (calc_entropy): if (ptrace_sel == []): if debug: print("calc_entropy = True, but ptrace_sel = []. Please set " + "a list of components to keep when calculating average " + "entropy of reduced density matrix in ptrace_sel. " + "Setting calc_entropy = False.") calc_entropy = False mc.calc_entropy = calc_entropy # construct output Odedata object output = Odedata() # Run mc.run() output.states = mc.sol.states output.expect = mc.sol.expect output.col_times = mc.sol.col_times output.col_which = mc.sol.col_which if (hasattr(mc.sol, 'entropy')): output.entropy = mc.sol.entropy output.solver = 'Fortran 90 Monte Carlo solver' # simulation parameters output.times = odeconfig.tlist output.num_expect = odeconfig.e_num output.num_collapse = odeconfig.c_num output.ntraj = odeconfig.ntraj return output class _MC_class(): def __init__(self): self.cpus = odeconfig.options.num_cpus self.nprocs = self.cpus self.sol = Odedata() self.mf = 10 # If returning density matrices, return as sparse or dense? self.sparse_dms = True # Run in serial? self.serial_run = False self.ntraj = odeconfig.ntraj self.ntrajs = [] self.seed = None self.psi0_dims = None self.psi0_shape = None self.dm_dims = None self.dm_shape = None self.unravel_type = 2 self.ptrace_sel = [] self.calc_entropy = False def parallel(self): from multiprocessing import Process, Queue, JoinableQueue if debug: print(inspect.stack()[0][3]) self.ntrajs = [] for i in range(self.cpus): self.ntrajs.append(min(int(np.floor(float(self.ntraj) / self.cpus)), self.ntraj - sum(self.ntrajs))) cnt = sum(self.ntrajs) while cnt < self.ntraj: for i in range(self.cpus): self.ntrajs[i] += 1 cnt += 1 if (cnt >= self.ntraj): break self.ntrajs = np.array(self.ntrajs) self.ntrajs = self.ntrajs[np.where(self.ntrajs > 0)] self.nprocs = len(self.ntrajs) sols = [] processes = [] resq = JoinableQueue() resq.join() if debug: print("Number of cpus: " + str(self.cpus)) print("Trying to start " + str(self.nprocs) + " process(es).") print("Number of trajectories for each process: " + str(self.ntrajs)) for i in range(self.nprocs): p = Process(target=self.evolve_serial, args=((resq, self.ntrajs[i], i, self.seed * (i + 1)),)) p.start() processes.append(p) cnt = 0 while True: try: sols.append(resq.get()) resq.task_done() cnt += 1 if (cnt >= self.nprocs): break except KeyboardInterrupt: break except: pass resq.join() for proc in processes: try: proc.join() except KeyboardInterrupt: if debug: print("Cancel thread on keyboard interrupt") proc.terminate() proc.join() resq.close() return sols def serial(self): if debug: print(inspect.stack()[0][3]) self.nprocs = 1 self.ntrajs = [self.ntraj] if debug: print("Running in serial.") print("Number of trajectories: " + str(self.ntraj)) sol = self.evolve_serial((0, self.ntraj, 0, self.seed)) return [sol] def run(self): if debug: print(inspect.stack()[0][3]) from numpy.random import random_integers if (odeconfig.c_num == 0): # force one trajectory if no collapse operators odeconfig.ntraj = 1 self.ntraj = 1 # Set unravel_type to 1 to integrate without collapses self.unravel_type = 1 if (odeconfig.e_num == 0): # If we are returning states, and there are no # collapse operators, set average_states to False to return # ket vectors instead of density matrices odeconfig.options.average_states = False # generate a random seed, useful if e.g. running with MPI self.seed = random_integers(1e8) if (self.serial_run): # run
# ## # Copyright 2016 <NAME>, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ## # -*- coding: utf-8 -*- """ Upload Component Command for rdmc """ import os import sys import json import time import shutil from random import choice from string import ascii_lowercase from argparse import ArgumentParser import ctypes from ctypes import c_char_p, c_int, c_uint32 from six.moves import input import redfish.hpilo.risblobstore2 as risblobstore2 from redfish.ris.rmc_helper import InvalidPathError from rdmc_base_classes import RdmcCommandBase, add_login_arguments_group from rdmc_helper import ReturnCodes, InvalidCommandLineErrorOPTS, Encryption, UploadError, \ InvalidCommandLineError, IncompatibleiLOVersionError, TimeOutError def human_readable_time(seconds): """ Returns human readable time :param seconds: Amount of seconds to parse. :type seconds: string. """ seconds = int(seconds) hours = seconds / 3600 seconds = seconds % 3600 minutes = seconds / 60 seconds = seconds % 60 return str(hours) + " hour(s) " + str(minutes) + \ " minute(s) " + str(seconds) + " second(s) " class UploadComponentCommand(RdmcCommandBase): """ Constructor """ def __init__(self, rdmcObj): RdmcCommandBase.__init__(self, \ name='uploadcomp', \ usage='uploadcomp [OPTIONS]\n\n\tRun to upload the component on ' \ 'to iLO Repository\n\n\tUpload component to the iLO ' \ 'repository.\n\texample: uploadcomp --component <path> ' \ '--compsig <path_to_signature>\n\n\tFlash the component ' \ 'instead of add to the iLO repository.\n\texample: ' \ 'uploadcomp --component <binary_path> --update_target ' \ '--update_repository', \ summary='Upload components/binary to the iLO Repository.', \ aliases=['Uploadcomp'], \ argparser=ArgumentParser()) self.definearguments(self.parser) self._rdmc = rdmcObj self.typepath = rdmcObj.app.typepath self.lobobj = rdmcObj.commands_dict["LoginCommand"](rdmcObj) self.logoutobj = rdmcObj.commands_dict["LogoutCommand"](rdmcObj) self.fwpkgprepare = rdmcObj.commands_dict["FwpkgCommand"].preparefwpkg def run(self, line): """ Wrapper function for upload command main function :param line: string of arguments passed in :type line: str. """ try: (options, _) = self._parse_arglist(line) except (InvalidCommandLineErrorOPTS, SystemExit): if ("-h" in line) or ("--help" in line): return ReturnCodes.SUCCESS else: raise InvalidCommandLineErrorOPTS("") self.uploadcommandvalidation(options) fwpkg = False if options.component.endswith('.fwpkg'): fwpkg = True comp, loc, ctype = self.fwpkgprepare(self, options.component) if ctype == 'C': options.component = comp[0] else: options.component = os.path.join(loc, comp[0]) if self.typepath.defs.isgen9: raise IncompatibleiLOVersionError(\ 'iLO Repository commands are only available on iLO 5.') filestoupload = self._check_and_split_files(options) if self.componentvalidation(options, filestoupload): start_time = time.time() ret = ReturnCodes.FAILED_TO_UPLOAD_COMPONENT if 'blobstore' in self._rdmc.app.current_client.base_url: ret = self.uploadlocally(filestoupload, options) else: ret = self.uploadfunction(filestoupload, options) sys.stdout.write("%s\n" % human_readable_time(time.time() - start_time)) if len(filestoupload) > 1: path, _ = os.path.split((filestoupload[0])[1]) shutil.rmtree(path) elif fwpkg: shutil.rmtree(loc) if options.logout: self.logoutobj.run("") else: ret = ReturnCodes.SUCCESS return ret def componentvalidation(self, options, filelist): """ Check for duplicate component in repository :param options: command line options :type options: list. :param filelist: list of files to be uploaded (multiple files will be generated for items over 32K in size) :type filelist: list of strings """ validation = True prevfile = None path = '/redfish/v1/UpdateService/ComponentRepository/?$expand=.' results = self._rdmc.app.get_handler(path, service=True, silent=True) results = results.dict if 'Members' in results and results['Members']: for comp in results['Members']: for filehndl in filelist: if comp['Filename'].upper() == unicode(filehndl[0]).upper()\ and not options.forceupload and prevfile != filehndl[0].upper(): ans = input("A component with the same name (%s) has " \ "been found. Would you like to upload and "\ "overwrite this file? (y/n)" % comp['Filename']) if ans.lower() == 'n': sys.stdout.write('Upload stopped by user due to filename conflict.'\ ' If you would like to bypass this check include the'\ ' "--forceupload" flag.\n') validation = False break if comp['Filename'].upper() == unicode(filehndl[0]).upper()\ and prevfile != filehndl[0].upper() and comp['Locked']: sys.stdout.write('Component is currently locked by a taskqueue task or '\ 'installset. Remove any installsets or taskqueue tasks '\ 'containing the file and try again.\n') validation = False break prevfile = str(comp['Filename'].upper()) return validation def _check_and_split_files(self, options): """ Check and split the file to upload on to iLO Repository :param options: command line options :type options: list. """ def check_file_wr(filename, rw): try: fd = open(filename, rw) fd.close() except IOError: raise InvalidFileInputError("The file \'%s\' could not be opened for upload" % \ filename) maxcompsize = 32 * 1024 * 1024 size = os.path.getsize(options.component) filelist = [] # Lets get the component filename _, filename = os.path.split(options.component) check_file_wr(os.path.normpath(options.component), 'r') # This is to upload the binary directly to flash scenario if not options.componentsig: if not self.findcompsig(filename): return [(filename, options.component, options.componentsig, 0)] if size > maxcompsize: sys.stdout.write("Component is more than 32MB in size. ") sys.stdout.write("Component size = %s\n" % str(size)) section = 1 sigpath, _ = os.path.split(options.componentsig) check_file_wr(os.path.normpath(options.componentsig), 'r') filebasename = filename[:filename.rfind('.')] tempfoldername = "bmn" + ''.join(choice(ascii_lowercase) for i in range(12)) tempdir = os.path.join(self._rdmc.app.config.get_cachedir(), tempfoldername) sys.stdout.write("Spliting component. Temporary " \ "cache directory at %s\n" % tempdir) if not os.path.exists(tempdir): os.makedirs(tempdir) with open(options.component, 'rb') as component: while True: data = component.read(maxcompsize) if len(data) != 0: sectionfilename = filebasename + "_part" + str(section) sectionfilepath = os.path.join(tempdir, sectionfilename) sectioncompsigpath = os.path.join(sigpath, sectionfilename + ".compsig") writefile = open(sectionfilepath, 'wb') writefile.write(data) writefile.close() item = (filename, sectionfilepath, sectioncompsigpath, section - 1) filelist.append(item) section += 1 if len(data) != maxcompsize: break return filelist else: return [(filename, options.component, options.componentsig, 0)] def uploadfunction(self, filelist, options=None): """ Main upload command worker function :param filelist: List of files to upload. :type filelist: list. :param options: command line options :type options: list. """ # returns a tuple with the state and the result dict state, result = self.get_update_service_state() if (state != "COMPLETED" and state != "COMPLETE" and state != "ERROR" and state != "IDLE"): sys.stdout.write("iLO UpdateService is busy. Please try again.") return ReturnCodes.UPDATE_SERVICE_BUSY sessionkey = self._rdmc.app.current_client.session_key etag = "" hpe = result['Oem']['Hpe'] urltosend = "/cgi-bin/uploadFile" if 'PushUpdateUri' in hpe: urltosend = hpe['PushUpdateUri'] elif 'HttpPushUri' in result: urltosend = result['HttpPushUri'] else: return ReturnCodes.FAILED_TO_UPLOAD_COMPONENT for item in filelist: ilo_upload_filename = item[0] ilo_upload_compsig_filename = ilo_upload_filename[\ :ilo_upload_filename.rfind('.')] + ".compsig" componentpath = item[1] compsigpath = item[2] _, filename = os.path.split(componentpath) if not etag: etag = "sum" + filename.replace('.', '') etag = etag.replace('-', '') etag = etag.replace('_', '') section_num = item[3] sessionkey = (sessionkey) parameters = {'UpdateRepository': options.update_repository, \ 'UpdateTarget': options.update_target, \ 'ETag': etag, 'Section': section_num} data = [('sessionKey', sessionkey), ('parameters', json.dumps(parameters))] if not compsigpath: compsigpath = self.findcompsig(componentpath) if compsigpath: with open(compsigpath, 'rb') as fle: output = fle.read() data.append(('compsig', (ilo_upload_compsig_filename, output, \ 'application/octet-stream'))) output = None with open(componentpath, 'rb') as fle: output = fle.read() data.append(('file', (ilo_upload_filename, output, 'application/octet-stream'))) res = self._rdmc.app.post_handler(str(urltosend), data, response=True, \ headers={'Cookie': 'sessionKey=' + sessionkey}) if res.status != 200: return ReturnCodes.FAILED_TO_UPLOAD_COMPONENT else: sys.stdout.write("Component " + filename + \ " uploaded successfully\n") if not self.wait_for_state_change(): # Failed to upload the component. raise UploadError("Error while processing the component.") return ReturnCodes.SUCCESS def wait_for_state_change(self, wait_time=420): """ Wait for the iLO UpdateService to a move to terminal state. :param options: command line options :type options: list. :param wait_time: time to wait on upload :type wait_time: int. """ total_time = 0 spinner = ['|', '/', '-', '\\'] state = "" sys.stdout.write("Waiting for iLO UpdateService to finish processing the component\n") while total_time < wait_time: state, _ = self.get_update_service_state() if state == "ERROR": return False elif state != "COMPLETED" and state != "IDLE" and state != "COMPLETE": # Lets try again after 8 seconds count = 0 # fancy spinner while count <= 32: sys.stdout.write('Updating: %s\r' % spinner[count % 4]) time.sleep(0.25) count += 1 total_time += 8 else: break if total_time > wait_time: raise TimeOutError("UpdateService in " + state + " state for " + str(wait_time) + "s") return True def get_update_service_state(self): """ Get the current UpdateService state :param options: command line options :type options: list. """ path = "/redfish/v1/UpdateService" results = self._rdmc.app.get_handler(path, service=True, silent=True) if results and results.status == 200 and results.dict: output = results.dict if self._rdmc.opts.verbose: sys.stdout.write("UpdateService state = " + \ (output['Oem']['Hpe']['State']).upper() + "\n") return (output['Oem']['Hpe']['State']).upper(), results.dict else: return 'UNKNOWN', {} def findcompsig(self, comppath): """Try to find compsig if not included :param comppath: Path of file to find compsig for. :type comppath: str. """ compsig = '' cutpath = comppath.split(os.sep) _file = cutpath[-1] _file_rev
(self == other) class next_row_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT,(Cell, Cell.thrift_spec)), None, ), # 0 (1, TType.STRUCT, 'e', (ClientException, ClientException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype70, _size67) = iprot.readListBegin() for _i71 in xrange(_size67): _elem72 = Cell() _elem72.read(iprot) self.success.append(_elem72) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = ClientException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('next_row_result') if self.success != None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.STRUCT, len(self.success)) for iter73 in self.success: iter73.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.e != None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class next_row_as_arrays_args: """ Attributes: - scanner """ thrift_spec = ( None, # 0 (1, TType.I64, 'scanner', None, None, ), # 1 ) def __init__(self, scanner=None,): self.scanner = scanner def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.scanner = iprot.readI64(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('next_row_as_arrays_args') if self.scanner != None: oprot.writeFieldBegin('scanner', TType.I64, 1) oprot.writeI64(self.scanner) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class next_row_as_arrays_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.LIST, 'success', (TType.LIST,(TType.STRING,None)), None, ), # 0 (1, TType.STRUCT, 'e', (ClientException, ClientException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype77, _size74) = iprot.readListBegin() for _i78 in xrange(_size74): _elem79 = [] (_etype83, _size80) = iprot.readListBegin() for _i84 in xrange(_size80): _elem85 = iprot.readString(); _elem79.append(_elem85) iprot.readListEnd() self.success.append(_elem79) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = ClientException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('next_row_as_arrays_result') if self.success != None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.LIST, len(self.success)) for iter86 in self.success: oprot.writeListBegin(TType.STRING, len(iter86)) for iter87 in iter86: oprot.writeString(iter87) oprot.writeListEnd() oprot.writeListEnd() oprot.writeFieldEnd() if self.e != None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class next_row_serialized_args: """ Attributes: - scanner """ thrift_spec = ( None, # 0 (1, TType.I64, 'scanner', None, None, ), # 1 ) def __init__(self, scanner=None,): self.scanner = scanner def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.scanner = iprot.readI64(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('next_row_serialized_args') if self.scanner != None: oprot.writeFieldBegin('scanner', TType.I64, 1) oprot.writeI64(self.scanner) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class next_row_serialized_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.STRING, 'success', None, None, ), # 0 (1, TType.STRUCT, 'e', (ClientException, ClientException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRING: self.success = iprot.readString(); else: iprot.skip(ftype) elif fid == 1: if ftype == TType.STRUCT: self.e = ClientException() self.e.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('next_row_serialized_result') if self.success != None: oprot.writeFieldBegin('success', TType.STRING, 0) oprot.writeString(self.success) oprot.writeFieldEnd() if self.e != None: oprot.writeFieldBegin('e', TType.STRUCT, 1) self.e.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class get_row_args: """ Attributes: - ns - table_name - row """ thrift_spec = ( None, # 0 (1, TType.I64, 'ns', None, None, ), # 1 (2, TType.STRING, 'table_name', None, None, ), # 2 (3, TType.STRING, 'row', None, None, ), # 3 ) def __init__(self, ns=None, table_name=None, row=None,): self.ns = ns self.table_name = table_name self.row = row def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.ns = iprot.readI64(); else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.table_name = iprot.readString(); else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.row = iprot.readString(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('get_row_args') if self.ns != None: oprot.writeFieldBegin('ns', TType.I64, 1) oprot.writeI64(self.ns) oprot.writeFieldEnd() if self.table_name != None: oprot.writeFieldBegin('table_name', TType.STRING, 2) oprot.writeString(self.table_name) oprot.writeFieldEnd() if self.row != None: oprot.writeFieldBegin('row', TType.STRING, 3) oprot.writeString(self.row) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class get_row_result: """ Attributes: - success - e """ thrift_spec = ( (0, TType.LIST, 'success', (TType.STRUCT,(Cell, Cell.thrift_spec)), None, ), # 0 (1, TType.STRUCT, 'e', (ClientException, ClientException.thrift_spec), None, ), # 1 ) def __init__(self, success=None, e=None,): self.success = success self.e = e def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype91, _size88) = iprot.readListBegin() for _i92 in xrange(_size88): _elem93 = Cell() _elem93.read(iprot) self.success.append(_elem93) iprot.readListEnd() else: iprot.skip(ftype) elif fid ==
import sys sys.path.append('/home/george2/Raise/ProgramRepair/CodeSeer/projects/src/main/python') from CodeJam.Y14R5P1.kusano.A import * def func_423b915d9ce740ba94f31ad435e988c2(D): a -= 1 B += D[a] return B def func_b94e6667fda54c809e409e83d306253b(D): a -= 1 B += D[a] return a def func_01f4c9980c1e402db83c6b2b44957ea7(D, a): B += D[a] A -= D[a] return A def func_a6da5619e76d4b5b899ae8c98b2a8895(D, a): B += D[a] A -= D[a] return B def func_48c6027e0d8f49bcb228a602fd904ca2(D): a -= 1 B += D[a] A -= D[a] return B def func_72f1e170c35643878cee7af17f621942(D): a -= 1 B += D[a] A -= D[a] return A def func_00e15a6009724540b1e8c65086c6d98d(D): a -= 1 B += D[a] A -= D[a] return a def func_ca0ad3a583b84900ae17904df72d19ff(D, a): B -= D[a] A += D[a] return B def func_a73f62a8aaa541148bd6b4a43ca354b3(D, a): B -= D[a] A += D[a] return A def func_91fea46230c44582b41482c58c57a419(D): A += D[a] a += 1 return A def func_a3989d71f18d4e5c9e40284adbe9f35b(D): A += D[a] a += 1 return a def func_1f157e3e7b0f47e1975c0532cb0e6261(C, B, A): a += 1 t = max(A, B, C) return a def func_226808347d7d4d479eb30ebab4af1533(C, B, A): a += 1 t = max(A, B, C) return t def func_e959cf105f9d4ba49a4e520762b40dc2(D): B -= D[a] A += D[a] a += 1 return B def func_51cc323a577b4f66b43a43f525231061(D): B -= D[a] A += D[a] a += 1 return A def func_24493df319fa46949023b48a7293ab0c(D): B -= D[a] A += D[a] a += 1 return a def func_84115b907e8b45eca7fcbcf566584a30(C, B, D): A += D[a] a += 1 t = max(A, B, C) return t def func_a871538e9489492a912b0e85bb526a17(C, B, D): A += D[a] a += 1 t = max(A, B, C) return A def func_d9f777c452154c96aef0c14e1fc564dc(C, B, D): A += D[a] a += 1 t = max(A, B, C) return a def func_bab03939161f42d098797010f9d79207(C, D): B -= D[a] A += D[a] a += 1 t = max(A, B, C) return t def func_7a1a0ca356414b05ba5071f9a62daaea(C, D): B -= D[a] A += D[a] a += 1 t = max(A, B, C) return B def func_571a239af28d4d5694c5d45bce687b04(C, D): B -= D[a] A += D[a] a += 1 t = max(A, B, C) return a def func_6efed0d2d6cf491aaacbca184552e776(C, D): B -= D[a] A += D[a] a += 1 t = max(A, B, C) return A def func_c2352deb110a442188b2c76a643abc18(D): b += 1 C -= D[b] return C def func_02faa767a67646f6ab5e465012c29197(D): b += 1 C -= D[b] return b def func_8620ab6842af46f4bf11c3744eaf3d25(b, D): C -= D[b] B += D[b] return C def func_e756efaa56434464a2046204173de711(b, D): C -= D[b] B += D[b] return B def func_57cbfd0df9a44afca326c0ca7c064031(C, b, D, A): B += D[b] p = max(A, B, C) return B def func_717ac3ae6ef04ca78327f3d4411a95a0(C, b, D, A): B += D[b] p = max(A, B, C) return p def func_87d62cd5a7d9423da8e178433d11d0bd(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return t def func_729f4b0abdee45db92697ad60f22de43(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return B def func_224443b73bf94833951150b9c0ac39d6(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return A def func_046e3efa7fa4462f844b092d96dac21a(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return a def func_bb0e4f90a1d24f84a234dc3da71019cf(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return p def func_d57a3651beb14ede861a92d8e43841bd(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return B def func_cd1127704f9f4e1e9955f038cf61d483(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return a def func_0b04e22065404608b3ff4537fcebd37b(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return A def func_e15be5cd479f4d02854035982ffe0a59(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return p def func_b0ffc645b8fb4cd38b1f208ee5ba1bd9(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return t def func_d68e7071a5634c2e9b44bcdd8af173b0(C, b, D): while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return ans def func_94b93592fa214040b0ee2e0724c2c401(D): b += 1 C -= D[b] B += D[b] return B def func_add4a515daa14ce798537566a9dc9cb2(D): b += 1 C -= D[b] B += D[b] return C def func_4522067fe54a4a62aa1e715ea4165da7(D): b += 1 C -= D[b] B += D[b] return b def func_093e85d8dfb84c5195be05ad7e63fa96(b, D, A): C -= D[b] B += D[b] p = max(A, B, C) return p def func_e5ac5214bc254084b78cd58ab3edc207(b, D, A): C -= D[b] B += D[b] p = max(A, B, C) return C def func_91342846479b47fcaa0fccc8e5941249(b, D, A): C -= D[b] B += D[b] p = max(A, B, C) return B def func_06aee82aae7a435e833abc86781dd193(C, b, D): B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return A def func_b0e69cf895814692be2e6194658be459(C, b, D): B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return B def func_4693be6469624743a699ce6802c68bec(C, b, D): B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return a def func_a16820b104c24240a6775804f8ea3fb1(C, b, D): B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return t def func_b4bb4e9f3b4946b6a152524ced22a653(C, b, D): B += D[b] p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t return p def func_5045ca50c3b54f33a6342da74145fbff(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return p def func_d565540fc63340caa481d7287cdb79e6(C, b, D): p = max(A, B, C) while a < b: B -= D[a] A += D[a] a += 1 t = max(A, B, C) if t >= p: a -= 1 B += D[a] A -= D[a] break p = t ans = min(ans, p) return ans def func_ead070062a6c4ec2b22cffb9686c5e1a(C, b, D): p
1j * t_values[2])) + (R4 / (1 + w * 1j * t_values[3])) + (R5 / (1 + w * 1j * t_values[4])) + (R6 / (1 + w * 1j * t_values[5])) + (R7 / (1 + w * 1j * t_values[6])) + (R8 / (1 + w * 1j * t_values[7])) + (R9 / (1 + w * 1j * t_values[8])) + (R10 / (1 + w * 1j * t_values[9])) + (R11 / (1 + w * 1j * t_values[10])) + (R12 / (1 + w * 1j * t_values[11])) + (R13 / (1 + w * 1j * t_values[12])) + (R14 / (1 + w * 1j * t_values[13])) + (R15 / (1 + w * 1j * t_values[14])) + (R16 / (1 + w * 1j * t_values[15])) + (R17 / (1 + w * 1j * t_values[16])) + (R18 / (1 + w * 1j * t_values[17])) + (R19 / (1 + w * 1j * t_values[18])) + (R20 / (1 + w * 1j * t_values[19])) + (R21 / (1 + w * 1j * t_values[20])) + (R22 / (1 + w * 1j * t_values[21])) + (R23 / (1 + w * 1j * t_values[22])) + (R24 / (1 + w * 1j * t_values[23])) + (R25 / (1 + w * 1j * t_values[24])) + (R26 / (1 + w * 1j * t_values[25])) + (R27 / (1 + w * 1j * t_values[26])) + (R28 / (1 + w * 1j * t_values[27])) + (R29 / (1 + w * 1j * t_values[28])) + (R30 / (1 + w * 1j * t_values[29])) + (R31 / (1 + w * 1j * t_values[30])) + (R32 / (1 + w * 1j * t_values[31])) + (R33 / (1 + w * 1j * t_values[32])) + (R34 / (1 + w * 1j * t_values[33])) + (R35 / (1 + w * 1j * t_values[34])) + (R36 / (1 + w * 1j * t_values[35])) + (R37 / (1 + w * 1j * t_values[36])) + (R38 / (1 + w * 1j * t_values[37])) + (R39 / (1 + w * 1j * t_values[38])) + (R40 / (1 + w * 1j * t_values[39])) + (R41 / (1 + w * 1j * t_values[40])) + (R42 / (1 + w * 1j * t_values[41])) + (R43 / (1 + w * 1j * t_values[42])) + (R44 / (1 + w * 1j * t_values[43])) + (R45 / (1 + w * 1j * t_values[44])) + (R46 / (1 + w * 1j * t_values[45])) + (R47 / (1 + w * 1j * t_values[46])) + (R48 / (1 + w * 1j * t_values[47])) + (R49 / (1 + w * 1j * t_values[48])) + (R50 / (1 + w * 1j * t_values[49])) + (R51 / (1 + w * 1j * t_values[50])) + (R52 / (1 + w * 1j * t_values[51])) + (R53 / (1 + w * 1j * t_values[52])) + (R54 / (1 + w * 1j * t_values[53])) ) def KK_RC55_fit(params, w, t_values): """ Kramers-Kronig Function: -RC- <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] R1 = params["R1"] R2 = params["R2"] R3 = params["R3"] R4 = params["R4"] R5 = params["R5"] R6 = params["R6"] R7 = params["R7"] R8 = params["R8"] R9 = params["R9"] R10 = params["R10"] R11 = params["R11"] R12 = params["R12"] R13 = params["R13"] R14 = params["R14"] R15 = params["R15"] R16 = params["R16"] R17 = params["R17"] R18 = params["R18"] R19 = params["R19"] R20 = params["R20"] R21 = params["R21"] R22 = params["R22"] R23 = params["R23"] R24 = params["R24"] R25 = params["R25"] R26 = params["R26"] R27 = params["R27"] R28 = params["R28"] R29 = params["R29"] R30 = params["R30"] R31 = params["R31"] R32 = params["R32"] R33 = params["R33"] R34 = params["R34"] R35 = params["R35"] R36 = params["R36"] R37 = params["R37"] R38 = params["R38"] R39 = params["R39"] R40 = params["R40"] R41 = params["R41"] R42 = params["R42"] R43 = params["R43"] R44 = params["R44"] R45 = params["R45"] R46 = params["R46"] R47 = params["R47"] R48 = params["R48"] R49 = params["R49"] R50 = params["R50"] R51 = params["R51"] R52 = params["R52"] R53 = params["R53"] R54 = params["R54"] R55 = params["R55"] return ( Rs + (R1 / (1 + w * 1j * t_values[0])) + (R2 / (1 + w * 1j * t_values[1])) + (R3 / (1 + w * 1j * t_values[2])) + (R4 / (1 + w * 1j * t_values[3])) + (R5 / (1 + w * 1j * t_values[4])) + (R6 / (1 + w * 1j * t_values[5])) + (R7 / (1 + w * 1j * t_values[6])) + (R8 / (1 + w * 1j * t_values[7])) + (R9 / (1 + w * 1j * t_values[8])) + (R10 / (1 + w * 1j * t_values[9])) + (R11 / (1 + w * 1j * t_values[10])) + (R12 / (1 + w * 1j * t_values[11])) + (R13 / (1 + w * 1j * t_values[12])) + (R14 / (1 + w * 1j * t_values[13])) + (R15 / (1 + w * 1j * t_values[14])) + (R16 / (1 + w * 1j * t_values[15])) + (R17 / (1 + w * 1j * t_values[16])) + (R18 / (1 + w * 1j * t_values[17])) + (R19 / (1 + w * 1j * t_values[18])) + (R20 / (1 + w * 1j * t_values[19])) + (R21 / (1 + w * 1j * t_values[20])) + (R22 / (1 + w * 1j * t_values[21])) + (R23 / (1 + w * 1j * t_values[22])) + (R24 / (1 + w * 1j * t_values[23])) + (R25 / (1 + w * 1j * t_values[24])) + (R26 / (1 + w * 1j * t_values[25])) + (R27 / (1 + w * 1j * t_values[26])) + (R28 / (1 + w * 1j * t_values[27])) + (R29 / (1 + w * 1j * t_values[28])) + (R30 / (1 + w * 1j * t_values[29])) + (R31 / (1 + w * 1j * t_values[30])) + (R32 / (1 + w * 1j * t_values[31])) + (R33 / (1 + w * 1j * t_values[32])) + (R34 / (1 + w * 1j * t_values[33])) + (R35 / (1 + w * 1j * t_values[34])) + (R36 / (1 + w * 1j * t_values[35])) + (R37 / (1 + w * 1j * t_values[36])) + (R38 / (1 + w * 1j * t_values[37])) + (R39 / (1 + w * 1j * t_values[38])) + (R40 / (1 + w * 1j * t_values[39])) + (R41 / (1 + w * 1j * t_values[40])) + (R42 / (1 + w * 1j * t_values[41])) + (R43 / (1 + w * 1j * t_values[42])) + (R44 / (1 + w * 1j * t_values[43])) + (R45 / (1 + w * 1j * t_values[44])) + (R46 / (1 + w * 1j * t_values[45])) + (R47 / (1 + w * 1j * t_values[46])) + (R48 / (1 + w * 1j * t_values[47])) + (R49 / (1 + w * 1j * t_values[48])) + (R50 / (1 + w * 1j * t_values[49])) + (R51 / (1 + w * 1j * t_values[50])) + (R52 / (1 + w * 1j * t_values[51])) + (R53 / (1 + w * 1j * t_values[52])) + (R54 / (1 + w * 1j * t_values[53])) + (R55 / (1 + w * 1j * t_values[54])) ) def KK_RC56_fit(params, w, t_values): """ Kramers-Kronig Function: -RC- <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] R1 = params["R1"] R2 = params["R2"] R3 = params["R3"] R4 = params["R4"] R5 = params["R5"] R6 =