input
stringlengths
2.65k
237k
output
stringclasses
1 value
""" Shared methods for Batch pipelines. Batch docs: https://hail.is/docs/batch/api/batch/hailtop.batch.job.Job.html#hailtop.batch.job.Job """ import collections import contextlib import itertools import logging import os import subprocess from typing import List, Union import configargparse import hailtop.batch as hb import hailtop.batch_client.client as bc from hailtop.batch.job import Job _GCLOUD_PROJECT = None class HG38_REF_PATHS: fasta = ( "gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta" ) fai = "gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.fai" dict = "gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.dict" gencode_v36_gtf = "gs://macarthurlab-rnaseq/ref/gencode.v36.annotation.gtf" class HG37_REF_PATHS: fasta = ( "gs://gcp-public-data--broad-references/hg19/v0/Homo_sapiens_assembly19.fasta" ) fai = "gs://gcp-public-data--broad-references/hg19/v0/Homo_sapiens_assembly19.fasta.fai" dict = "gs://gcp-public-data--broad-references/hg19/v0/Homo_sapiens_assembly19.dict" def set_gcloud_project(gcloud_project): global _GCLOUD_PROJECT _GCLOUD_PROJECT = gcloud_project def init_arg_parser( default_billing_project="tgg-rare-disease", default_temp_bucket="macarthurlab-cromwell", default_cpu=1, default_memory=3.75, parser=configargparse.ArgumentParser( formatter_class=configargparse.ArgumentDefaultsRawHelpFormatter ), gsa_key_file=None, ): """Initializes and returns an argparse instance with common pipeline args pre-defined.""" local_or_cluster_grp = parser.add_mutually_exclusive_group(required=True) local_or_cluster_grp.add_argument( "--local", action="store_true", help="Batch: run locally" ) local_or_cluster_grp.add_argument( "--cluster", action="store_true", help="Batch: submit to cluster" ) parser.add_argument( "-r", "--raw", action="store_true", help="Batch: run directly on the machine, without using a docker image", ) parser.add_argument( "--gsa-key-file", default=gsa_key_file, help="Batch: path of gcloud service account .json " "key file. If provided, Batch will mount this file into the docker image so gcloud commands can run as this service account.", ) parser.add_argument( "--batch-billing-project", default=default_billing_project, help="Batch: this billing project will be " "charged when running jobs on the Batch cluster. To set up a billing project name, contact the hail team.", ) parser.add_argument( "--batch-temp-bucket", default=default_temp_bucket, help="Batch: bucket where it stores temp " "files. The batch service-account must have Admin permissions for this bucket. These can be added by running " "gsutil iam ch serviceAccount:[SERVICE_ACCOUNT_NAME]:objectAdmin gs://[BUCKET_NAME]", ) parser.add_argument( "-t", "--cpu", type=float, default=default_cpu, choices=[0.25, 0.5, 1, 2, 4, 8, 16], help="Batch: number of CPUs (eg. 0.5)", ) parser.add_argument( "-m", "--memory", type=float, default=default_memory, help="Batch: memory in gigabytes (eg. 3.75)", ) parser.add_argument( "-f", "--force", action="store_true", help="Recompute and overwrite cached or previously computed data", ) parser.add_argument( "--start-with", type=int, help="Start from this step in the pipeline" ) parser.add_argument( "--dry-run", action="store_true", help="Don't run commands, just print them." ) parser.add_argument("--verbose", action="store_true", help="Verbose log output.") return parser @contextlib.contextmanager def run_batch(args, batch_name=None): """Wrapper around creating, running, and then closing a Batch run. :param args: Parsed args from the ArgumentParser created via the init_arg_parser method :param batch_name: (optional) batch label which will show up in the Batch web UI Usage: with run_batch(args) as batch: ... batch job definitions ... """ if args.local: backend = ( hb.LocalBackend() if args.raw else hb.LocalBackend(gsa_key_file=args.gsa_key_file) ) else: backend = hb.ServiceBackend( billing_project=args.batch_billing_project, bucket=args.batch_temp_bucket ) try: batch = hb.Batch(backend=backend, name=batch_name) batch.batch_utils_temp_bucket = args.batch_temp_bucket yield batch # returned to with ... as batch: # run on end of with..: block batch.run(dry_run=args.dry_run, verbose=args.verbose) finally: if isinstance(backend, hb.ServiceBackend): backend.close() def init_job( batch, name: str = None, image: str = None, cpu: float = None, memory: float = None, disk_size: float = None, ): """Common job init steps :param batch: Batch object :param name: job label which will show up in the Batch web UI :param image: docker image name (eg. "weisburd/image-name@sha256:aa19845da5") :param cpu: number of CPUs (between 0.25 to 16) :param memory: amount of RAM in Gb (eg. 3.75) :param disk_size: amount of disk in Gb (eg. 50) :return: new job object """ j = batch.new_job(name=name) if image: j.image(image) if cpu: if cpu < 0.25 or cpu > 16: raise ValueError( f"CPU arg is {cpu}. This is outside the range of 0.25 to 16 CPUs" ) j.cpu(cpu) # Batch default is 1 if memory: if memory < 0.1 or memory > 60: raise ValueError( f"Memory arg is {memory}. This is outside the range of 0.1 to 60 Gb" ) j.memory(f"{memory}Gi") # Batch default is 3.75G if disk_size: if disk_size < 1 or disk_size > 1000: raise ValueError( f"Disk size arg is {disk_size}. This is outside the range of 1 to 1000 Gb" ) j.storage(f"{disk_size}Gi") j.command( "set -euxo pipefail" ) # set bash options for easier debugging and to make command execution more robust return j def switch_gcloud_auth_to_user_account( batch_job: Job, gs_path_of_gcloud_credentials: str, gcloud_user_account: str, gcloud_project: str = None, ): """This method adds some shell commands to your Batch job to switch gcloud auth from the Batch-provided service account to your user account. This can be used to access all your google buckets without having to first grant access to the Batch service account For this to work, you must first 1) create a google bucket that only you have access to - for example: gs://weisburd-gcloud-secrets/ 2) on your local machine, make sure you're logged in to gcloud by running gcloud auth login 3) copy your local ~/.config directory (which caches your gcloud auth credentials) to the secrets bucket from step 1 gsutil -m cp -r ~/.config/ gs://weisburd-gcloud-secrets/ 4) grant your default Batch service-account read access to your secrets bucket so it can download these credentials into each docker container. 5) make sure gcloud & gsutil are installed inside the docker images you use for your Batch jobs 6) call this method at the beginning of your batch job: Example: switch_gcloud_auth_to_user_account( batch_job, "gs://weisburd-gcloud-secrets", "<EMAIL>", "seqr-project") :param batch_job: Batch job object :param gs_path_of_gcloud_credentials: google bucket path that contains your .config folder :param gcloud_user_account: user account to activate :param gcloud_project: (optional) set this as the default gcloud project :return: """ batch_job.command(f"gcloud auth list") batch_job.command( f"gcloud auth activate-service-account --key-file /gsa-key/key.json" ) batch_job.command( f"gsutil -m cp -r {os.path.join(gs_path_of_gcloud_credentials, '.config')} /tmp/" ) batch_job.command(f"rm -rf ~/.config") batch_job.command(f"mv /tmp/.config ~/") batch_job.command(f"gcloud config set account {gcloud_user_account}") if gcloud_project or _GCLOUD_PROJECT: batch_job.command( f"gcloud config set project {gcloud_project or _GCLOUD_PROJECT}" ) batch_job.command( f"gcloud auth list" ) # print auth list again to show that 'gcloud config set account' succeeded. # attach credentials to batch_job object batch_job._batch_utils_gs_path_of_gcloud_credentials = gs_path_of_gcloud_credentials batch_job._batch_utils_gcloud_user_account = gcloud_user_account class StorageBucketRegionException(Exception): pass def check_storage_bucket_region( google_storage_paths: Union[str, list], gcloud_project: str = None, verbose: bool = True, ): """Checks whether the given google storage path(s) are stored in US-CENTRAL1 - the region where the hail Batch cluster is located. Localizing data from other regions will be slower and result in egress charges. :param google_storage_paths: a gs:// path or a list of gs:// paths to check. :param gcloud_project: (optional) if specified, it will be added to the gsutil command with the -u arg. :raises StorageRegionException: If the given path(s) is not stored in the same region as the Batch cluster. """ if isinstance(google_storage_paths, str): google_storage_paths = [google_storage_paths] buckets = set([path.split("/")[2] for path in google_storage_paths]) for bucket in buckets: gsutil_command = f"gsutil" if gcloud_project or _GCLOUD_PROJECT: gsutil_command += f" -u {gcloud_project or _GCLOUD_PROJECT}" output = subprocess.check_output( f"{gsutil_command} ls -L -b gs://{bucket}", shell=True, encoding="UTF-8" ) for line in output.split("\n"): if "Location constraint:" in line: location = line.strip().split()[-1] break else: raise StorageBucketRegionException( f"ERROR: Couldn't determine gs://{bucket} bucket region." ) if location not in {"US", "US-CENTRAL1"}: raise StorageBucketRegionException( f"ERROR: gs://{bucket} is located in {location}. This may cause egress " f"charges when copying files to the Batch cluster which is in US-CENTRAL." ) if verbose: print(f"Confirmed gs://{bucket} is in {location}") # dictionary that maps a job id to the set of buckets that have been gcsfuse-mounted into this job, to avoid mounting # the same bucket 2x _GCSFUSE_MOUNTED_BUCKETS_PER_JOB = collections.defaultdict(set) def localize_file( job, google_storage_path: str, gcloud_project: str = None, use_gcsfuse: bool = False ) -> str: """Copies a file from a google bucket to the local filesystem and returns the new absolute local path. Requires gsutil to exist inside the docker container. :param job: batch Job object :param google_storage_path: gs:// path of file to localize :param gcloud_project: (optional) if specified, it will be added to the gsutil command with the -u arg. :param use_gcsfuse: instead of copying the file, use gcsfuse to mount the bucket containing this file. :returns: Local file path after localization. """ path = google_storage_path.replace("gs://", "") dirname = os.path.dirname(path) bucket_name = path.split("/")[0] if use_gcsfuse: root_dir = "/gcsfuse_mounts" local_bucket_dir = os.path.join(root_dir, bucket_name) local_file_path = os.path.join(root_dir, path) job_hash = hash(job) if bucket_name not in _GCSFUSE_MOUNTED_BUCKETS_PER_JOB[job_hash]: job.command(f"mkdir -p {local_bucket_dir}") job.gcsfuse(bucket_name, local_bucket_dir, read_only=True) _GCSFUSE_MOUNTED_BUCKETS_PER_JOB[job_hash].add(bucket_name) else: gsutil_command = f"gsutil" if gcloud_project or _GCLOUD_PROJECT: gsutil_command += f" -u {gcloud_project or _GCLOUD_PROJECT}" root_dir = "/localized" local_dir = os.path.join(root_dir, dirname) local_file_path = os.path.join(root_dir, path) job.command( f"mkdir -p '{local_dir}'; time {gsutil_command} -m cp -r '{google_storage_path}' '{local_file_path}'" ) job.command(f"ls -lh '{local_file_path}'") # make sure file exists return local_file_path # dictionary that maps a job
MOL 2 24.096 12.184 15.639 1.00 0.00 C \n', 'ATOM 834 H1 MOL 2 24.205 9.449 21.095 1.00 0.00 H1- \n', 'ATOM 835 H2 MOL 2 22.553 12.378 19.986 1.00 0.00 H1- \n', 'ATOM 836 H3 MOL 2 23.476 12.911 18.186 1.00 0.00 H1- \n', 'ATOM 837 H4 MOL 2 22.898 11.048 16.874 1.00 0.00 H1- \n', 'ATOM 838 H5 MOL 2 24.391 10.557 16.869 1.00 0.00 H1- \n', 'ATOM 839 H6 MOL 2 23.910 11.666 14.840 1.00 0.00 H1- \n', 'ATOM 840 H7 MOL 2 23.515 12.963 15.634 1.00 0.00 H1- \n', 'ATOM 841 N1 MOL 2 13.304 13.515 6.890 1.00 0.00 N3- \n', 'ATOM 842 C1 MOL 2 13.731 15.133 9.221 1.00 0.00 C \n', 'ATOM 843 C2 MOL 2 14.496 14.027 8.885 1.00 0.00 C \n', 'ATOM 844 C3 MOL 2 14.173 13.212 7.715 1.00 0.00 C \n', 'ATOM 845 C4 MOL 2 13.107 12.648 5.739 1.00 0.00 C \n', 'ATOM 846 C5 MOL 2 13.377 13.456 4.479 1.00 0.00 C \n', 'ATOM 847 C6 MOL 2 13.104 12.616 3.239 1.00 0.00 C \n', 'ATOM 848 H1 MOL 2 12.995 15.351 8.695 1.00 0.00 H1- \n', 'ATOM 849 H2 MOL 2 14.647 12.422 7.586 1.00 0.00 H1- \n', 'ATOM 850 H3 MOL 2 13.724 11.889 5.786 1.00 0.00 H1- \n', 'ATOM 851 H4 MOL 2 14.302 13.752 4.474 1.00 0.00 H1- \n', 'ATOM 852 H5 MOL 2 12.809 14.243 4.469 1.00 0.00 H1- \n', 'ATOM 853 H6 MOL 2 13.290 13.134 2.440 1.00 0.00 H1- \n', 'ATOM 854 H7 MOL 2 13.685 11.837 3.234 1.00 0.00 H1- \n', 'ATOM 855 N1 MOL 2 13.304 1.115 19.290 1.00 0.00 N3- \n', 'ATOM 856 C1 MOL 2 13.731 2.733 21.621 1.00 0.00 C \n', 'ATOM 857 C2 MOL 2 14.496 1.627 21.285 1.00 0.00 C \n', 'ATOM 858 C3 MOL 2 14.173 0.812 20.115 1.00 0.00 C \n', 'ATOM 859 C4 MOL 2 13.107 0.248 18.139 1.00 0.00 C \n', 'ATOM 860 C5 MOL 2 13.377 1.056 16.879 1.00 0.00 C \n', 'ATOM 861 C6 MOL 2 13.104 0.216 15.639 1.00 0.00 C \n', 'ATOM 862 H1 MOL 2 12.995 2.951 21.095 1.00 0.00 H1- \n', 'ATOM 863 H2 MOL 2 14.647 0.022 19.986 1.00 0.00 H1- \n', 'ATOM 864 H3 MOL 2 13.724 24.289 18.186 1.00 0.00 H1- \n', 'ATOM 865 H4 MOL 2 14.302 1.352 16.874 1.00 0.00 H1- \n', 'ATOM 866 H5 MOL 2 12.809 1.843 16.869 1.00 0.00 H1- \n', 'ATOM 867 H6 MOL 2 13.290 0.734 14.840 1.00 0.00 H1- \n', 'ATOM 868 H7 MOL 2 13.685 24.237 15.634 1.00 0.00 H1- \n', 'ATOM 869 N1 MOL 2 0.904 13.515 19.290 1.00 0.00 N3- \n', 'ATOM 870 C1 MOL 2 1.331 15.133 21.621 1.00 0.00 C \n', 'ATOM 871 C2 MOL 2 2.096 14.027 21.285 1.00 0.00 C \n', 'ATOM 872 C3 MOL 2 1.773 13.212 20.115 1.00 0.00 C \n', 'ATOM 873 C4 MOL 2 0.707 12.648 18.139 1.00 0.00 C \n', 'ATOM 874 C5 MOL 2 0.977 13.456 16.879 1.00 0.00 C \n', 'ATOM 875 C6 MOL 2 0.704 12.616 15.639 1.00 0.00 C \n', 'ATOM 876 H1 MOL 2 0.595 15.351 21.095 1.00 0.00 H1- \n', 'ATOM 877 H2 MOL 2 2.247 12.422 19.986 1.00 0.00 H1- \n', 'ATOM 878 H3 MOL 2 1.324 11.889 18.186 1.00 0.00 H1- \n', 'ATOM 879 H4 MOL 2 1.902 13.752 16.874 1.00 0.00 H1- \n', 'ATOM 880 H5 MOL 2 0.409 14.243 16.869 1.00 0.00 H1- \n', 'ATOM 881 H6 MOL 2 0.890 13.134 14.840 1.00 0.00 H1- \n', 'ATOM 882 H7 MOL 2 1.285 11.837 15.634 1.00 0.00 H1- \n', 'ATOM 883 N1 MOL 2 0.904 1.115 6.890 1.00 0.00 N3- \n', 'ATOM 884 C1 MOL 2 1.331 2.733 9.221 1.00 0.00 C \n', 'ATOM 885 C2 MOL 2 2.096 1.627 8.885 1.00 0.00 C \n', 'ATOM 886 C3 MOL 2 1.773 0.812 7.715 1.00 0.00 C \n', 'ATOM 887 C4 MOL 2 0.707 0.248 5.739 1.00 0.00 C \n', 'ATOM 888 C5 MOL 2 0.977 1.056 4.479 1.00 0.00 C \n', 'ATOM 889 C6 MOL 2 0.704 0.216 3.239 1.00 0.00 C \n', 'ATOM 890 H1 MOL 2 0.595 2.951 8.695 1.00 0.00 H1- \n', 'ATOM 891 H2 MOL 2 2.247 0.022 7.586 1.00 0.00 H1- \n', 'ATOM 892 H3 MOL 2 1.324 24.289 5.786 1.00 0.00 H1- \n', 'ATOM 893 H4 MOL 2 1.902 1.352 4.474 1.00 0.00 H1- \n', 'ATOM 894 H5 MOL 2 0.409 1.843 4.469 1.00 0.00 H1- \n', 'ATOM 895 H6 MOL 2 0.890 0.734 2.440 1.00 0.00 H1- \n', 'ATOM 896 H7 MOL 2 1.285 24.237 3.234 1.00 0.00 H1- \n', 'ATOM 897 N1 MOL 2 13.515 6.890 13.304 1.00 0.00 N3- \n', 'ATOM 898 C1 MOL 2 15.133 9.221 13.731 1.00 0.00 C \n', 'ATOM 899 C2 MOL 2 14.027 8.885 14.496 1.00 0.00 C \n', 'ATOM 900 C3 MOL 2 13.212 7.715 14.173 1.00 0.00 C \n', 'ATOM 901 C4 MOL 2 12.648 5.739 13.107 1.00 0.00 C \n', 'ATOM 902 C5 MOL 2 13.456 4.479 13.377 1.00 0.00 C \n', 'ATOM 903 C6 MOL 2 12.616 3.239 13.104 1.00 0.00 C \n', 'ATOM 904 H1 MOL 2 15.351 8.695 12.995 1.00 0.00 H1- \n', 'ATOM 905 H2 MOL 2 12.422 7.586 14.647 1.00 0.00 H1- \n', 'ATOM 906 H3 MOL 2 11.889 5.786 13.724 1.00 0.00 H1- \n', 'ATOM 907 H4 MOL 2 13.752 4.474 14.302 1.00 0.00 H1- \n', 'ATOM 908 H5 MOL 2 14.243 4.469 12.809 1.00 0.00 H1- \n', 'ATOM 909 H6 MOL 2 13.134 2.440 13.290 1.00 0.00 H1- \n', 'ATOM 910 H7 MOL 2 11.837 3.234 13.685 1.00 0.00 H1- \n', 'ATOM 911 N1 MOL 2 13.515 19.290 0.904 1.00 0.00 N3- \n', 'ATOM 912 C1 MOL 2 15.133 21.621 1.331 1.00 0.00 C \n', 'ATOM 913 C2 MOL 2 14.027 21.285 2.096 1.00 0.00 C \n', 'ATOM 914 C3 MOL 2 13.212 20.115 1.773 1.00 0.00 C \n', 'ATOM 915 C4 MOL 2 12.648 18.139 0.707 1.00 0.00 C \n', 'ATOM 916 C5 MOL 2 13.456 16.879 0.977 1.00 0.00 C \n', 'ATOM 917 C6 MOL 2 12.616 15.639 0.704 1.00 0.00 C \n', 'ATOM 918 H1 MOL 2 15.351 21.095 0.595 1.00 0.00 H1- \n', 'ATOM 919 H2 MOL 2 12.422 19.986 2.247 1.00 0.00 H1- \n', 'ATOM 920 H3 MOL 2 11.889 18.186 1.324 1.00 0.00 H1- \n', 'ATOM 921 H4 MOL 2 13.752 16.874 1.902 1.00 0.00 H1- \n', 'ATOM 922 H5 MOL 2 14.243 16.869 0.409 1.00 0.00 H1- \n', 'ATOM 923 H6 MOL 2 13.134 14.840 0.890 1.00 0.00 H1- \n', 'ATOM 924 H7 MOL 2 11.837 15.634 1.285 1.00 0.00 H1- \n', 'ATOM 925 N1 MOL 2 1.115 6.890 0.904 1.00 0.00 N3- \n', 'ATOM 926 C1 MOL 2 2.733 9.221 1.331 1.00 0.00 C \n', 'ATOM 927 C2 MOL 2 1.627 8.885 2.096 1.00 0.00 C \n', 'ATOM 928 C3 MOL 2 0.812 7.715 1.773 1.00 0.00 C \n', 'ATOM 929 C4 MOL 2 0.248 5.739 0.707 1.00 0.00 C \n', 'ATOM 930 C5 MOL 2 1.056 4.479 0.977 1.00 0.00 C \n', 'ATOM 931 C6 MOL 2 0.216 3.239 0.704 1.00 0.00 C \n', 'ATOM 932 H1 MOL 2 2.951 8.695 0.595 1.00 0.00 H1- \n', 'ATOM 933 H2 MOL 2 0.022 7.586 2.247 1.00 0.00 H1- \n', 'ATOM 934 H3 MOL 2 24.289 5.786 1.324 1.00 0.00 H1- \n', 'ATOM 935 H4 MOL 2 1.352 4.474 1.902 1.00 0.00 H1- \n', 'ATOM 936 H5 MOL 2 1.843 4.469 0.409 1.00 0.00 H1- \n', 'ATOM 937 H6 MOL 2 0.734 2.440 0.890 1.00 0.00 H1- \n', 'ATOM 938 H7 MOL 2 24.237 3.234 1.285 1.00 0.00 H1- \n', 'ATOM 939 N1 MOL 2 1.115 19.290 13.304 1.00 0.00 N3-
# for the prefix check, it is important that the compared pathes both have trailing slashes, # so that a path /foobar will NOT be accepted with --restrict-to-path /foo option. path_with_sep = os.path.join(path, '') # make sure there is a trailing slash (os.sep) for restrict_to_path in self.restrict_to_paths: restrict_to_path_with_sep = os.path.join(os.path.realpath(restrict_to_path), '') # trailing slash if path_with_sep.startswith(restrict_to_path_with_sep): break else: raise PathNotAllowed(path) self.repository = Repository(path, create, lock_wait=lock_wait, lock=lock, append_only=self.append_only or append_only, exclusive=exclusive) self.repository.__enter__() # clean exit handled by serve() method return self.repository.id def inject_exception(self, kind): kind = kind.decode() s1 = 'test string' s2 = 'test string2' if kind == 'DoesNotExist': raise Repository.DoesNotExist(s1) elif kind == 'AlreadyExists': raise Repository.AlreadyExists(s1) elif kind == 'CheckNeeded': raise Repository.CheckNeeded(s1) elif kind == 'IntegrityError': raise IntegrityError(s1) elif kind == 'PathNotAllowed': raise PathNotAllowed() elif kind == 'ObjectNotFound': raise Repository.ObjectNotFound(s1, s2) elif kind == 'InvalidRPCMethod': raise InvalidRPCMethod(s1) elif kind == 'divide': 0 // 0 class SleepingBandwidthLimiter: def __init__(self, limit): if limit: self.ratelimit = int(limit * RATELIMIT_PERIOD) self.ratelimit_last = time.monotonic() self.ratelimit_quota = self.ratelimit else: self.ratelimit = None def write(self, fd, to_send): if self.ratelimit: now = time.monotonic() if self.ratelimit_last + RATELIMIT_PERIOD <= now: self.ratelimit_quota += self.ratelimit if self.ratelimit_quota > 2 * self.ratelimit: self.ratelimit_quota = 2 * self.ratelimit self.ratelimit_last = now if self.ratelimit_quota == 0: tosleep = self.ratelimit_last + RATELIMIT_PERIOD - now time.sleep(tosleep) self.ratelimit_quota += self.ratelimit self.ratelimit_last = time.monotonic() if len(to_send) > self.ratelimit_quota: to_send = to_send[:self.ratelimit_quota] written = os.write(fd, to_send) if self.ratelimit: self.ratelimit_quota -= written return written def api(*, since, **kwargs_decorator): """Check version requirements and use self.call to do the remote method call. <since> specifies the version in which borg introduced this method, calling this method when connected to an older version will fail without transmiting anything to the server. Further kwargs can be used to encode version specific restrictions. If a previous hardcoded behaviour is parameterized in a version, this allows calls that use the previously hardcoded behaviour to pass through and generates an error if another behaviour is requested by the client. e.g. when 'append_only' was introduced in 1.0.7 the previous behaviour was what now is append_only=False. Thus @api(..., append_only={'since': parse_version('1.0.7'), 'previously': False}) allows calls with append_only=False for all version but rejects calls using append_only=True on versions older than 1.0.7. """ def decorator(f): @functools.wraps(f) def do_rpc(self, *args, **kwargs): sig = inspect.signature(f) bound_args = sig.bind(self, *args, **kwargs) named = {} # Arguments for the remote process extra = {} # Arguments for the local process for name, param in sig.parameters.items(): if name == 'self': continue if name in bound_args.arguments: if name == 'wait': extra[name] = bound_args.arguments[name] else: named[name] = bound_args.arguments[name] else: if param.default is not param.empty: named[name] = param.default if self.server_version < since: raise self.RPCServerOutdated(f.__name__, format_version(since)) for name, restriction in kwargs_decorator.items(): if restriction['since'] <= self.server_version: continue if 'previously' in restriction and named[name] == restriction['previously']: continue raise self.RPCServerOutdated("{0} {1}={2!s}".format(f.__name__, name, named[name]), format_version(restriction['since'])) return self.call(f.__name__, named, **extra) return do_rpc return decorator class RemoteRepository: extra_test_args = [] class RPCError(Exception): def __init__(self, unpacked): # for borg < 1.1: unpacked only has b'exception_class' as key # for borg 1.1+: unpacked has keys: b'exception_args', b'exception_full', b'exception_short', b'sysinfo' self.unpacked = unpacked def get_message(self): if b'exception_short' in self.unpacked: return b'\n'.join(self.unpacked[b'exception_short']).decode() else: return self.exception_class @property def exception_class(self): return self.unpacked[b'exception_class'].decode() @property def exception_full(self): if b'exception_full' in self.unpacked: return b'\n'.join(self.unpacked[b'exception_full']).decode() else: return self.get_message() + '\nRemote Exception (see remote log for the traceback)' @property def sysinfo(self): if b'sysinfo' in self.unpacked: return self.unpacked[b'sysinfo'].decode() else: return '' class RPCServerOutdated(Error): """Borg server is too old for {}. Required version {}""" @property def method(self): return self.args[0] @property def required_version(self): return self.args[1] # If compatibility with 1.0.x is not longer needed, replace all checks of this with True and simplify the code dictFormat = False # outside of __init__ for testing of legacy free protocol def __init__(self, location, create=False, exclusive=False, lock_wait=None, lock=True, append_only=False, args=None): self.location = self._location = location self.preload_ids = [] self.msgid = 0 self.to_send = b'' self.chunkid_to_msgids = {} self.ignore_responses = set() self.responses = {} self.ratelimit = SleepingBandwidthLimiter(args.remote_ratelimit * 1024 if args and args.remote_ratelimit else 0) self.unpacker = get_limited_unpacker('client') self.server_version = parse_version('1.0.8') # fallback version if server is too old to send version information self.p = None testing = location.host == '__testsuite__' borg_cmd = self.borg_cmd(args, testing) env = dict(os.environ) if not testing: borg_cmd = self.ssh_cmd(location) + borg_cmd # pyinstaller binary modifies LD_LIBRARY_PATH=/tmp/_ME... but we do not want # that the system's ssh binary picks up (non-matching) libraries from there. # thus we install the original LDLP, before pyinstaller has modified it: lp_key = 'LD_LIBRARY_PATH' lp_orig = env.get(lp_key + '_ORIG') # pyinstaller >= 20160820 has this if lp_orig is not None: env[lp_key] = lp_orig else: env.pop(lp_key, None) env.pop('BORG_PASSPHRASE', None) # security: do not give secrets to subprocess env['BORG_VERSION'] = __version__ logger.debug('SSH command line: %s', borg_cmd) self.p = Popen(borg_cmd, bufsize=0, stdin=PIPE, stdout=PIPE, stderr=PIPE, env=env) self.stdin_fd = self.p.stdin.fileno() self.stdout_fd = self.p.stdout.fileno() self.stderr_fd = self.p.stderr.fileno() fcntl.fcntl(self.stdin_fd, fcntl.F_SETFL, fcntl.fcntl(self.stdin_fd, fcntl.F_GETFL) | os.O_NONBLOCK) fcntl.fcntl(self.stdout_fd, fcntl.F_SETFL, fcntl.fcntl(self.stdout_fd, fcntl.F_GETFL) | os.O_NONBLOCK) fcntl.fcntl(self.stderr_fd, fcntl.F_SETFL, fcntl.fcntl(self.stderr_fd, fcntl.F_GETFL) | os.O_NONBLOCK) self.r_fds = [self.stdout_fd, self.stderr_fd] self.x_fds = [self.stdin_fd, self.stdout_fd, self.stderr_fd] try: try: version = self.call('negotiate', {'client_data': {b'client_version': BORG_VERSION}}) except ConnectionClosed: raise ConnectionClosedWithHint('Is borg working on the server?') from None if version == RPC_PROTOCOL_VERSION: self.dictFormat = False elif isinstance(version, dict) and b'server_version' in version: self.dictFormat = True self.server_version = version[b'server_version'] else: raise Exception('Server insisted on using unsupported protocol version %s' % version) def do_open(): self.id = self.open(path=self.location.path, create=create, lock_wait=lock_wait, lock=lock, exclusive=exclusive, append_only=append_only) if self.dictFormat: do_open() else: # Ugly detection of versions prior to 1.0.7: If open throws it has to be 1.0.6 or lower try: do_open() except self.RPCError as err: if err.exception_class != 'TypeError': raise msg = """\ Please note: If you see a TypeError complaining about the number of positional arguments given to open(), you can ignore it if it comes from a borg version < 1.0.7. This TypeError is a cosmetic side effect of the compatibility code borg clients >= 1.0.7 have to support older borg servers. This problem will go away as soon as the server has been upgraded to 1.0.7+. """ # emit this msg in the same way as the 'Remote: ...' lines that show the remote TypeError sys.stderr.write(msg) self.server_version = parse_version('1.0.6') compatMap['open'] = ('path', 'create', 'lock_wait', 'lock', ), # try again with corrected version and compatMap do_open() except Exception: self.close() raise def __del__(self): if len(self.responses): logging.debug('still %d cached responses left in RemoteRepository' % (len(self.responses),)) if self.p: self.close() assert False, 'cleanup happened in Repository.__del__' def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.location.canonical_path()) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): try: if exc_type is not None: self.rollback() finally: # in any case, we want to cleanly close the repo, even if the # rollback can not succeed (e.g. because the connection was # already closed) and raised another exception: self.close() @property def id_str(self): return bin_to_hex(self.id) def borg_cmd(self, args, testing): """return a borg serve command line""" # give some args/options to 'borg serve' process as they were given to us opts = [] if args is not None: opts.append('--umask=%03o' % args.umask) root_logger = logging.getLogger() if root_logger.isEnabledFor(logging.DEBUG): opts.append('--debug') elif root_logger.isEnabledFor(logging.INFO): opts.append('--info') elif root_logger.isEnabledFor(logging.WARNING): pass # warning is default elif root_logger.isEnabledFor(logging.ERROR): opts.append('--error') elif root_logger.isEnabledFor(logging.CRITICAL): opts.append('--critical') else: raise ValueError('log level missing, fix this code') env_vars = [] if yes(env_var_override='BORG_HOSTNAME_IS_UNIQUE', env_msg=None, prompt=False): env_vars.append('BORG_HOSTNAME_IS_UNIQUE=yes') if testing: return env_vars + [sys.executable, '-m', 'borg.archiver', 'serve'] + opts + self.extra_test_args else: # pragma: no cover remote_path = args.remote_path or os.environ.get('BORG_REMOTE_PATH', 'borg') remote_path = replace_placeholders(remote_path) return env_vars + [remote_path, 'serve'] + opts def ssh_cmd(self, location): """return a ssh command line that can be prefixed to a borg command line""" args = shlex.split(os.environ.get('BORG_RSH', 'ssh')) if location.port: args += ['-p', str(location.port)] if location.user: args.append('%s@%s' % (location.user, location.host)) else: args.append('%s' % location.host) return args def named_to_positional(self, method, kwargs): return [kwargs[name] for name in compatMap[method]] def call(self, cmd, args, **kw): for resp in self.call_many(cmd, [args], **kw): return resp def call_many(self, cmd, calls, wait=True, is_preloaded=False): if not calls: return def pop_preload_msgid(chunkid): msgid = self.chunkid_to_msgids[chunkid].pop(0) if not self.chunkid_to_msgids[chunkid]: del self.chunkid_to_msgids[chunkid]
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v7.common.types import metrics as gagc_metrics from google.ads.googleads.v7.common.types import segments as gagc_segments from google.ads.googleads.v7.enums.types import ( response_content_type as gage_response_content_type, ) from google.ads.googleads.v7.enums.types import ( summary_row_setting as gage_summary_row_setting, ) from google.ads.googleads.v7.resources.types import ( account_budget as gagr_account_budget, ) from google.ads.googleads.v7.resources.types import ( account_budget_proposal as gagr_account_budget_proposal, ) from google.ads.googleads.v7.resources.types import ( account_link as gagr_account_link, ) from google.ads.googleads.v7.resources.types import ad_group as gagr_ad_group from google.ads.googleads.v7.resources.types import ( ad_group_ad as gagr_ad_group_ad, ) from google.ads.googleads.v7.resources.types import ( ad_group_ad_asset_view as gagr_ad_group_ad_asset_view, ) from google.ads.googleads.v7.resources.types import ( ad_group_ad_label as gagr_ad_group_ad_label, ) from google.ads.googleads.v7.resources.types import ( ad_group_asset as gagr_ad_group_asset, ) from google.ads.googleads.v7.resources.types import ( ad_group_audience_view as gagr_ad_group_audience_view, ) from google.ads.googleads.v7.resources.types import ( ad_group_bid_modifier as gagr_ad_group_bid_modifier, ) from google.ads.googleads.v7.resources.types import ( ad_group_criterion as gagr_ad_group_criterion, ) from google.ads.googleads.v7.resources.types import ( ad_group_criterion_label as gagr_ad_group_criterion_label, ) from google.ads.googleads.v7.resources.types import ( ad_group_criterion_simulation as gagr_ad_group_criterion_simulation, ) from google.ads.googleads.v7.resources.types import ( ad_group_extension_setting as gagr_ad_group_extension_setting, ) from google.ads.googleads.v7.resources.types import ( ad_group_feed as gagr_ad_group_feed, ) from google.ads.googleads.v7.resources.types import ( ad_group_label as gagr_ad_group_label, ) from google.ads.googleads.v7.resources.types import ( ad_group_simulation as gagr_ad_group_simulation, ) from google.ads.googleads.v7.resources.types import ( ad_parameter as gagr_ad_parameter, ) from google.ads.googleads.v7.resources.types import ( ad_schedule_view as gagr_ad_schedule_view, ) from google.ads.googleads.v7.resources.types import ( age_range_view as gagr_age_range_view, ) from google.ads.googleads.v7.resources.types import asset as gagr_asset from google.ads.googleads.v7.resources.types import batch_job as gagr_batch_job from google.ads.googleads.v7.resources.types import ( bidding_strategy as gagr_bidding_strategy, ) from google.ads.googleads.v7.resources.types import ( bidding_strategy_simulation as gagr_bidding_strategy_simulation, ) from google.ads.googleads.v7.resources.types import ( billing_setup as gagr_billing_setup, ) from google.ads.googleads.v7.resources.types import call_view as gagr_call_view from google.ads.googleads.v7.resources.types import campaign as gagr_campaign from google.ads.googleads.v7.resources.types import ( campaign_asset as gagr_campaign_asset, ) from google.ads.googleads.v7.resources.types import ( campaign_audience_view as gagr_campaign_audience_view, ) from google.ads.googleads.v7.resources.types import ( campaign_bid_modifier as gagr_campaign_bid_modifier, ) from google.ads.googleads.v7.resources.types import ( campaign_budget as gagr_campaign_budget, ) from google.ads.googleads.v7.resources.types import ( campaign_criterion as gagr_campaign_criterion, ) from google.ads.googleads.v7.resources.types import ( campaign_criterion_simulation as gagr_campaign_criterion_simulation, ) from google.ads.googleads.v7.resources.types import ( campaign_draft as gagr_campaign_draft, ) from google.ads.googleads.v7.resources.types import ( campaign_experiment as gagr_campaign_experiment, ) from google.ads.googleads.v7.resources.types import ( campaign_extension_setting as gagr_campaign_extension_setting, ) from google.ads.googleads.v7.resources.types import ( campaign_feed as gagr_campaign_feed, ) from google.ads.googleads.v7.resources.types import ( campaign_label as gagr_campaign_label, ) from google.ads.googleads.v7.resources.types import ( campaign_shared_set as gagr_campaign_shared_set, ) from google.ads.googleads.v7.resources.types import ( campaign_simulation as gagr_campaign_simulation, ) from google.ads.googleads.v7.resources.types import ( carrier_constant as gagr_carrier_constant, ) from google.ads.googleads.v7.resources.types import ( change_event as gagr_change_event, ) from google.ads.googleads.v7.resources.types import ( change_status as gagr_change_status, ) from google.ads.googleads.v7.resources.types import ( click_view as gagr_click_view, ) from google.ads.googleads.v7.resources.types import ( combined_audience as gagr_combined_audience, ) from google.ads.googleads.v7.resources.types import ( conversion_action as gagr_conversion_action, ) from google.ads.googleads.v7.resources.types import ( conversion_custom_variable as gagr_conversion_custom_variable, ) from google.ads.googleads.v7.resources.types import ( currency_constant as gagr_currency_constant, ) from google.ads.googleads.v7.resources.types import ( custom_audience as gagr_custom_audience, ) from google.ads.googleads.v7.resources.types import ( custom_interest as gagr_custom_interest, ) from google.ads.googleads.v7.resources.types import customer as gagr_customer from google.ads.googleads.v7.resources.types import ( customer_asset as gagr_customer_asset, ) from google.ads.googleads.v7.resources.types import ( customer_client as gagr_customer_client, ) from google.ads.googleads.v7.resources.types import ( customer_client_link as gagr_customer_client_link, ) from google.ads.googleads.v7.resources.types import ( customer_extension_setting as gagr_customer_extension_setting, ) from google.ads.googleads.v7.resources.types import ( customer_feed as gagr_customer_feed, ) from google.ads.googleads.v7.resources.types import ( customer_label as gagr_customer_label, ) from google.ads.googleads.v7.resources.types import ( customer_manager_link as gagr_customer_manager_link, ) from google.ads.googleads.v7.resources.types import ( customer_negative_criterion as gagr_customer_negative_criterion, ) from google.ads.googleads.v7.resources.types import ( customer_user_access as gagr_customer_user_access, ) from google.ads.googleads.v7.resources.types import ( customer_user_access_invitation as gagr_customer_user_access_invitation, ) from google.ads.googleads.v7.resources.types import ( detail_placement_view as gagr_detail_placement_view, ) from google.ads.googleads.v7.resources.types import ( display_keyword_view as gagr_display_keyword_view, ) from google.ads.googleads.v7.resources.types import ( distance_view as gagr_distance_view, ) from google.ads.googleads.v7.resources.types import ( domain_category as gagr_domain_category, ) from google.ads.googleads.v7.resources.types import ( dynamic_search_ads_search_term_view as gagr_dynamic_search_ads_search_term_view, ) from google.ads.googleads.v7.resources.types import ( expanded_landing_page_view as gagr_expanded_landing_page_view, ) from google.ads.googleads.v7.resources.types import ( extension_feed_item as gagr_extension_feed_item, ) from google.ads.googleads.v7.resources.types import feed as gagr_feed from google.ads.googleads.v7.resources.types import feed_item as gagr_feed_item from google.ads.googleads.v7.resources.types import ( feed_item_set as gagr_feed_item_set, ) from google.ads.googleads.v7.resources.types import ( feed_item_set_link as gagr_feed_item_set_link, ) from google.ads.googleads.v7.resources.types import ( feed_item_target as gagr_feed_item_target, ) from google.ads.googleads.v7.resources.types import ( feed_mapping as gagr_feed_mapping, ) from google.ads.googleads.v7.resources.types import ( feed_placeholder_view as gagr_feed_placeholder_view, ) from google.ads.googleads.v7.resources.types import ( gender_view as gagr_gender_view, ) from google.ads.googleads.v7.resources.types import ( geo_target_constant as gagr_geo_target_constant, ) from google.ads.googleads.v7.resources.types import ( geographic_view as gagr_geographic_view, ) from google.ads.googleads.v7.resources.types import ( group_placement_view as gagr_group_placement_view, ) from google.ads.googleads.v7.resources.types import ( hotel_group_view as gagr_hotel_group_view, ) from google.ads.googleads.v7.resources.types import ( hotel_performance_view as gagr_hotel_performance_view, ) from google.ads.googleads.v7.resources.types import ( income_range_view as gagr_income_range_view, ) from google.ads.googleads.v7.resources.types import ( keyword_plan as gagr_keyword_plan, ) from google.ads.googleads.v7.resources.types import ( keyword_plan_ad_group as gagr_keyword_plan_ad_group, ) from google.ads.googleads.v7.resources.types import ( keyword_plan_ad_group_keyword as gagr_keyword_plan_ad_group_keyword, ) from google.ads.googleads.v7.resources.types import ( keyword_plan_campaign as gagr_keyword_plan_campaign, ) from google.ads.googleads.v7.resources.types import ( keyword_plan_campaign_keyword as gagr_keyword_plan_campaign_keyword, ) from google.ads.googleads.v7.resources.types import ( keyword_view as gagr_keyword_view, ) from google.ads.googleads.v7.resources.types import label as gagr_label from google.ads.googleads.v7.resources.types import ( landing_page_view as gagr_landing_page_view, ) from google.ads.googleads.v7.resources.types import ( language_constant as gagr_language_constant, ) from google.ads.googleads.v7.resources.types import ( life_event as gagr_life_event, ) from google.ads.googleads.v7.resources.types import ( location_view as gagr_location_view, ) from google.ads.googleads.v7.resources.types import ( managed_placement_view as gagr_managed_placement_view, ) from google.ads.googleads.v7.resources.types import ( media_file as gagr_media_file, ) from google.ads.googleads.v7.resources.types import ( mobile_app_category_constant as gagr_mobile_app_category_constant, ) from google.ads.googleads.v7.resources.types import ( mobile_device_constant as gagr_mobile_device_constant, ) from google.ads.googleads.v7.resources.types import ( offline_user_data_job as gagr_offline_user_data_job, ) from google.ads.googleads.v7.resources.types import ( operating_system_version_constant as gagr_operating_system_version_constant, ) from google.ads.googleads.v7.resources.types import ( paid_organic_search_term_view as gagr_paid_organic_search_term_view, ) from google.ads.googleads.v7.resources.types import ( parental_status_view as gagr_parental_status_view, ) from google.ads.googleads.v7.resources.types import ( product_bidding_category_constant as gagr_product_bidding_category_constant, ) from google.ads.googleads.v7.resources.types import ( product_group_view as gagr_product_group_view, ) from google.ads.googleads.v7.resources.types import ( recommendation as gagr_recommendation, ) from google.ads.googleads.v7.resources.types import ( remarketing_action as gagr_remarketing_action, ) from google.ads.googleads.v7.resources.types import ( search_term_view as gagr_search_term_view, ) from google.ads.googleads.v7.resources.types import ( shared_criterion as gagr_shared_criterion, ) from google.ads.googleads.v7.resources.types import ( shared_set as gagr_shared_set, ) from google.ads.googleads.v7.resources.types import ( shopping_performance_view as gagr_shopping_performance_view, ) from google.ads.googleads.v7.resources.types import ( third_party_app_analytics_link as gagr_third_party_app_analytics_link, ) from google.ads.googleads.v7.resources.types import ( topic_constant as gagr_topic_constant, ) from google.ads.googleads.v7.resources.types import ( topic_view as gagr_topic_view, ) from google.ads.googleads.v7.resources.types import ( user_interest as gagr_user_interest, ) from google.ads.googleads.v7.resources.types import user_list as gagr_user_list from google.ads.googleads.v7.resources.types import ( user_location_view as gagr_user_location_view, ) from google.ads.googleads.v7.resources.types import video as gagr_video from google.ads.googleads.v7.resources.types import ( webpage_view as gagr_webpage_view, ) from google.ads.googleads.v7.services.types import ad_group_ad_label_service from google.ads.googleads.v7.services.types import ad_group_ad_service from google.ads.googleads.v7.services.types import ad_group_asset_service from google.ads.googleads.v7.services.types import ad_group_bid_modifier_service from google.ads.googleads.v7.services.types import ( ad_group_criterion_label_service, ) from google.ads.googleads.v7.services.types import ad_group_criterion_service from google.ads.googleads.v7.services.types import ( ad_group_extension_setting_service, ) from google.ads.googleads.v7.services.types import ad_group_feed_service from google.ads.googleads.v7.services.types import ad_group_label_service from google.ads.googleads.v7.services.types import ad_group_service from google.ads.googleads.v7.services.types import ad_parameter_service from google.ads.googleads.v7.services.types import ad_service from google.ads.googleads.v7.services.types import asset_service from google.ads.googleads.v7.services.types import bidding_strategy_service from google.ads.googleads.v7.services.types import campaign_asset_service from google.ads.googleads.v7.services.types import campaign_bid_modifier_service from google.ads.googleads.v7.services.types import campaign_budget_service from google.ads.googleads.v7.services.types import campaign_criterion_service from google.ads.googleads.v7.services.types import campaign_draft_service from google.ads.googleads.v7.services.types import campaign_experiment_service from google.ads.googleads.v7.services.types import ( campaign_extension_setting_service, ) from google.ads.googleads.v7.services.types import campaign_feed_service from google.ads.googleads.v7.services.types import campaign_label_service from google.ads.googleads.v7.services.types import campaign_service from google.ads.googleads.v7.services.types import campaign_shared_set_service from google.ads.googleads.v7.services.types import conversion_action_service from google.ads.googleads.v7.services.types import ( conversion_custom_variable_service, ) from google.ads.googleads.v7.services.types import customer_asset_service from google.ads.googleads.v7.services.types import ( customer_extension_setting_service, ) from google.ads.googleads.v7.services.types import customer_feed_service from google.ads.googleads.v7.services.types import customer_label_service from google.ads.googleads.v7.services.types import ( customer_negative_criterion_service, ) from google.ads.googleads.v7.services.types import customer_service from google.ads.googleads.v7.services.types import extension_feed_item_service from google.ads.googleads.v7.services.types import feed_item_service from google.ads.googleads.v7.services.types import feed_item_set_link_service from google.ads.googleads.v7.services.types import feed_item_set_service from google.ads.googleads.v7.services.types import feed_item_target_service from google.ads.googleads.v7.services.types import feed_mapping_service from google.ads.googleads.v7.services.types import feed_service from google.ads.googleads.v7.services.types import ( keyword_plan_ad_group_keyword_service, ) from google.ads.googleads.v7.services.types import keyword_plan_ad_group_service from google.ads.googleads.v7.services.types import ( keyword_plan_campaign_keyword_service, ) from google.ads.googleads.v7.services.types import keyword_plan_campaign_service from google.ads.googleads.v7.services.types import keyword_plan_service from google.ads.googleads.v7.services.types import label_service from google.ads.googleads.v7.services.types import media_file_service from google.ads.googleads.v7.services.types import remarketing_action_service from google.ads.googleads.v7.services.types import shared_criterion_service from google.ads.googleads.v7.services.types import shared_set_service from google.ads.googleads.v7.services.types import user_list_service from google.protobuf import field_mask_pb2 as gp_field_mask # type: ignore from google.rpc import status_pb2 as status # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v7.services", marshal="google.ads.googleads.v7", manifest={ "SearchGoogleAdsRequest", "SearchGoogleAdsResponse", "SearchGoogleAdsStreamRequest", "SearchGoogleAdsStreamResponse", "GoogleAdsRow", "MutateGoogleAdsRequest", "MutateGoogleAdsResponse", "MutateOperation", "MutateOperationResponse", }, ) class SearchGoogleAdsRequest(proto.Message): r"""Request message for [GoogleAdsService.Search][google.ads.googleads.v7.services.GoogleAdsService.Search]. Attributes: customer_id (str): Required. The ID of the customer being queried. query (str): Required. The query string. page_token (str): Token of the page to retrieve. If not specified, the first page of results will be returned. Use the value obtained from ``next_page_token`` in the previous response in order to request the next page of results. page_size (int): Number of elements to retrieve in a single page. When too large a page is requested, the server may decide to further limit the number of returned resources. validate_only (bool): If true, the request is validated but not executed. return_total_results_count (bool): If true, the total number of results that match the query ignoring the LIMIT clause will be included in the response. Default is false. summary_row_setting (google.ads.googleads.v7.enums.types.SummaryRowSettingEnum.SummaryRowSetting): Determines whether a summary row will be returned. By default, summary row is not returned. If requested, the summary row will be sent in a response by itself after all other query results are returned. """ customer_id = proto.Field(proto.STRING, number=1,) query = proto.Field(proto.STRING, number=2,) page_token = proto.Field(proto.STRING, number=3,) page_size = proto.Field(proto.INT32, number=4,) validate_only = proto.Field(proto.BOOL, number=5,) return_total_results_count = proto.Field(proto.BOOL, number=7,) summary_row_setting = proto.Field( proto.ENUM, number=8, enum=gage_summary_row_setting.SummaryRowSettingEnum.SummaryRowSetting, ) class SearchGoogleAdsResponse(proto.Message): r"""Response message for [GoogleAdsService.Search][google.ads.googleads.v7.services.GoogleAdsService.Search]. Attributes: results (Sequence[google.ads.googleads.v7.services.types.GoogleAdsRow]): The list of rows that matched the query. next_page_token (str): Pagination token used to retrieve the next page of results. Pass the content of this string as the ``page_token`` attribute of the next request. ``next_page_token`` is not returned for the last page. total_results_count (int): Total number of results that match the query ignoring the LIMIT clause. field_mask (google.protobuf.field_mask_pb2.FieldMask): FieldMask that represents what fields were requested by the user. summary_row (google.ads.googleads.v7.services.types.GoogleAdsRow): Summary row that contains summary of metrics in results. Summary
template = {"group": "", "alternate_configs": [{"members": [], "linked_song": []}]} same_group_different_artists = [ { "group": "StylipS", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [ 13264, 13265, 20633, 13731, 13807, 13809, 14336, 21216, 14835, 15241, ], } ], }, { "group": "Sanshuu Chuugaku Yuusha-bu", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [17758, 18468, 35129, 35130], } ], }, { "group": "Oratorio The World God Only Knows", "alternate_configs": [ {"members": ["ELISA", "Lia"], "linked_song": [11379]}, {"members": ["<NAME>"], "linked_song": [13321]}, {"members": ["big shrug"], "linked_song": [10881]}, ], }, { "group": "Kalafina", "alternate_configs": [ { "members": [ "<NAME>", "WAKANA", "<NAME>", "Maya (Kalafina)", ], "linked_song": [31731, 31732, 8677, 8678], }, { "members": ["<NAME>", "WAKANA"], "linked_song": [ 31728, 31729, 31730, 31734, 31735, 8674, 8675, 8676, ], }, ], }, { "group": "ClariS", "alternate_configs": [ { "members": ["Clara (ClariS)", "Alice (ClariS)"], "linked_song": [ 10843, "reunion", 12406, "Connect", "Naisho no Hanashi", 12530, 12533, 12536, 12742, 13352, 13354, 17899, 17900, ], }, ], }, { "group": "MYTH & ROID", "alternate_configs": [ { "members": ["<NAME>"], "linked_song": [ "STYX HELIX", "STRAIGHT BET", "Paradisus-Paradoxum", 15595, 18567, "JINGO JUNGLE", "L.L.L.", ], }, ], }, { "group": "Colors", "alternate_configs": [ { "members": ["<NAME>", "<NAME>"], "linked_song": [13319], }, { "members": ["<NAME>", "<NAME>"], "linked_song": [20855], }, ], }, { "group": "eyelis", "alternate_configs": [ {"members": ["<NAME>"], "linked_song": [12766, 12772]}, ], }, { "group": "Zukkoke Girls", "alternate_configs": [ { "members": ["<NAME>", "<NAME>", "SUZUTOMO"], "linked_song": [21827], }, ], }, { "group": "Needless\u2605Girls+", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [10209], }, ], }, { "group": "supercell", "alternate_configs": [ {"members": ["<NAME>"], "linked_song": ["Black★Rock Shooter"]}, { "members": ["<NAME>"], "linked_song": [8521, 9031, "Kimi no Shiranai Monogatari", 13030], }, {"members": ["Ann", "gaku"], "linked_song": [27198]}, {"members": ["Ann"], "linked_song": [27214]}, ], }, { "group": "My Melodies", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [7583, 7588], }, ], }, { "group": "Nagarekawa Girls", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [14058], }, { "members": [ "<NAME>", "<NAME>", "The rest of the fucking town", ], "linked_song": [22287], }, ], }, { "group": "Almost The Entire Fucking Cast", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [27281], }, ], }, { "group": "Uchujin", "alternate_configs": [ {"members": ["Noko"], "linked_song": [12639]}, {"members": ["<NAME>"], "linked_song": [12640]}, {"members": ["<NAME>"], "linked_song": [12641]}, ], }, { "group": "fripSide", "alternate_configs": [ {"members": ["nao"], "linked_song": [9498, 22427]}, { "members": ["<NAME>"], "linked_song": [ "only my railgun", "LEVEL5-judgelight-", 10918, 11105, 11276, 12751, 12752, "eternal reality", "Sister's Noise", "black bullet", 15090, 15382, 15473, 16069, 16070, 16403, 22117, 19126, 16777, 23903, 21794, 27440, 30373, 31181, 35102, 35820, ], }, ], }, { "group": "Veil", "alternate_configs": [ {"members": ["<NAME>"], "linked_song": [23669]}, {"members": ["<NAME>"], "linked_song": [23668]}, {"members": ["Lia"], "linked_song": [10780]}, ], }, { "group": "Shirahamazaka Koukou Gasshou-bu", "alternate_configs": [ {"members": ["<NAME>", "<NAME>"], "linked_song": [12390]}, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [18033, 18066], }, ], }, { "group": "FAKY", "alternate_configs": [ { "members": [ "<NAME>", "Mikako (FAKY)", "Anna (FAKY)", "HARUKI (FAKY)", "Tina (FAKY)", ], "linked_song": [13861], }, { "members": [ "<NAME>", "Mikako (FAKY)", "Akina (FAKY)", "Anna (FAKY)", ], "linked_song": [16713, 21041], }, ], }, { "group": "MAHO-dou", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [ 30995, 31128, 3818, 30681, 30725, 5975, 5976, 5977, 33397, 34466, ], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [ 31032, 31057, 31065, 31234, 30562, 30680, 30683, 30724, 3820, 3821, 30519, 30911, 6160, ], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [3814, 3817, 3817, 31061, 6163, 6164], }, ], }, { "group": "LizNoir", "alternate_configs": [ { "members": ["<NAME>", "<NAME>"], "linked_song": [32447, 33141], }, ], }, { "group": "FranChouChou", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [ 32926, 33454, 33478, 33547, 33616, 33617, 33932, 34165, 34166, 34167, ], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [34531, 33784], }, ], }, { "group": "POLKA DOTS", "alternate_configs": [{"members": ["<NAME>"], "linked_song": [16561]}], }, { "group": "9nine", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [16595, 22106], } ], }, { "group": "Shiritsu Ebisu Chuugaku", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [13736], } ], }, { "group": "THE IDOLM@STER CINDERELLA GIRLS LITTLE STARS!", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [16501], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [19166], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23989], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23990], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23991], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23992], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23993], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [23994], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [24014], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [24541], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [24681], }, ], }, { "group": "BiS", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Muropanako", "Mewclub", "<NAME>", "YUiNA EMPiRE", ], "linked_song": [24023], } ], }, { "group": "ARCANA PROJECT", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [34417, 35029], } ], }, { "group": "EMPiRE", "alternate_configs": [ { "members": [ "YU-KI EMPiRE", "YUKA EMPiRE", "MAYU EMPiRE", "MiDORiKO EMPiRE", "MAHO EMPiRE", "MiKiNA EMPiRE", ], "linked_song": [23196], }, { "members": [ "YU-KI EMPiRE", "MAYU EMPiRE", "MiDORiKO EMPiRE", "MAHO EMPiRE", "MiKiNA EMPiRE", "NOW EMPiRE", ], "linked_song": [26470, 32830], }, ], }, { "group": "Dempagumi.inc", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [11355], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [18079], }, ], }, { "group": "Niji no Conquistador", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [26627], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [27660], }, ], }, { "group": "<NAME>!", "alternate_configs": [ { "members": ["<NAME>", "<NAME>", "<NAME>"], "linked_song": [10513], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [10514], }, ], }, { "group": "<NAME>", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [7180], }, ], }, { "group": "NEWS", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [15392, 30852], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [32166, 35048], }, ], }, { "group": "Hey! Say! JUMP", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [5856, 5881], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [15971, 27133], }, ], }, { "group": "KinKi Kids", "alternate_configs": [ { "members": [ "<NAME>", ], "linked_song": [29685], }, { "members": [ "<NAME>", ], "linked_song": [29686], }, ], }, { "group": "Matsuri nine.", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [34322], }, ], }, { "group": "BOYS AND MEN", "alternate_configs": [ { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Yuuhi", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [17760, 30117], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Yuuhi", "<NAME>", "<NAME>", "<NAME>", ], "linked_song": [26587], }, { "members": [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Yuuhi", "<NAME>", "<NAME>",
""" Getter method for idle, mapped from YANG variable /system/cpus/cpu/state/idle (container) YANG Description: Percentage of CPU time spent idle. """ return self.__idle def _set_idle(self, v, load=False): """ Setter method for idle, mapped from YANG variable /system/cpus/cpu/state/idle (container) If this variable is read-only (config: false) in the source YANG file, then _set_idle is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_idle() directly. YANG Description: Percentage of CPU time spent idle. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=idle.idle, is_container='container', yang_name="idle", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """idle must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=idle.idle, is_container='container', yang_name="idle", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False)""", }) self.__idle = t if hasattr(self, '_set'): self._set() def _unset_idle(self): self.__idle = YANGDynClass(base=idle.idle, is_container='container', yang_name="idle", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) def _get_wait(self): """ Getter method for wait, mapped from YANG variable /system/cpus/cpu/state/wait (container) YANG Description: Percentage of CPU time spent waiting for I/O. """ return self.__wait def _set_wait(self, v, load=False): """ Setter method for wait, mapped from YANG variable /system/cpus/cpu/state/wait (container) If this variable is read-only (config: false) in the source YANG file, then _set_wait is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_wait() directly. YANG Description: Percentage of CPU time spent waiting for I/O. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=wait.wait, is_container='container', yang_name="wait", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """wait must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=wait.wait, is_container='container', yang_name="wait", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False)""", }) self.__wait = t if hasattr(self, '_set'): self._set() def _unset_wait(self): self.__wait = YANGDynClass(base=wait.wait, is_container='container', yang_name="wait", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) def _get_hardware_interrupt(self): """ Getter method for hardware_interrupt, mapped from YANG variable /system/cpus/cpu/state/hardware_interrupt (container) YANG Description: Percentage of CPU time spent servicing hardware interrupts. """ return self.__hardware_interrupt def _set_hardware_interrupt(self, v, load=False): """ Setter method for hardware_interrupt, mapped from YANG variable /system/cpus/cpu/state/hardware_interrupt (container) If this variable is read-only (config: false) in the source YANG file, then _set_hardware_interrupt is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hardware_interrupt() directly. YANG Description: Percentage of CPU time spent servicing hardware interrupts. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=hardware_interrupt.hardware_interrupt, is_container='container', yang_name="hardware-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """hardware_interrupt must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=hardware_interrupt.hardware_interrupt, is_container='container', yang_name="hardware-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False)""", }) self.__hardware_interrupt = t if hasattr(self, '_set'): self._set() def _unset_hardware_interrupt(self): self.__hardware_interrupt = YANGDynClass(base=hardware_interrupt.hardware_interrupt, is_container='container', yang_name="hardware-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) def _get_software_interrupt(self): """ Getter method for software_interrupt, mapped from YANG variable /system/cpus/cpu/state/software_interrupt (container) YANG Description: Percentage of CPU time spent servicing software interrupts """ return self.__software_interrupt def _set_software_interrupt(self, v, load=False): """ Setter method for software_interrupt, mapped from YANG variable /system/cpus/cpu/state/software_interrupt (container) If this variable is read-only (config: false) in the source YANG file, then _set_software_interrupt is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_software_interrupt() directly. YANG Description: Percentage of CPU time spent servicing software interrupts """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=software_interrupt.software_interrupt, is_container='container', yang_name="software-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """software_interrupt must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=software_interrupt.software_interrupt, is_container='container', yang_name="software-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False)""", }) self.__software_interrupt = t if hasattr(self, '_set'): self._set() def _unset_software_interrupt(self): self.__software_interrupt = YANGDynClass(base=software_interrupt.software_interrupt, is_container='container', yang_name="software-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) index = __builtin__.property(_get_index) total = __builtin__.property(_get_total) user = __builtin__.property(_get_user) kernel = __builtin__.property(_get_kernel) nice = __builtin__.property(_get_nice) idle = __builtin__.property(_get_idle) wait = __builtin__.property(_get_wait) hardware_interrupt = __builtin__.property(_get_hardware_interrupt) software_interrupt = __builtin__.property(_get_software_interrupt) _pyangbind_elements = OrderedDict([('index', index), ('total', total), ('user', user), ('kernel', kernel), ('nice', nice), ('idle', idle), ('wait', wait), ('hardware_interrupt', hardware_interrupt), ('software_interrupt', software_interrupt), ]) from . import total from . import user from . import kernel from . import nice from . import idle from . import wait from . import hardware_interrupt from . import software_interrupt class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-system - based on the path /system/cpus/cpu/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Operational state data for the system CPU(s) """ __slots__ = ('_path_helper', '_extmethods', '__index','__total','__user','__kernel','__nice','__idle','__wait','__hardware_interrupt','__software_interrupt',) _yang_name = 'state' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): helper = kwargs.pop("path_helper", None) if helper is False: self._path_helper = False elif helper is not None and isinstance(helper, xpathhelper.YANGPathHelper): self._path_helper = helper elif hasattr(self, "_parent"): helper = getattr(self._parent, "_path_helper", False) self._path_helper = helper else: self._path_helper = False self._extmethods = False self.__index = YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ALL': {}},),RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32),], is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='union', is_config=False) self.__total = YANGDynClass(base=total.total, is_container='container', yang_name="total", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__user = YANGDynClass(base=user.user, is_container='container', yang_name="user", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__kernel = YANGDynClass(base=kernel.kernel, is_container='container', yang_name="kernel", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__nice = YANGDynClass(base=nice.nice, is_container='container', yang_name="nice", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__idle = YANGDynClass(base=idle.idle, is_container='container', yang_name="idle", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__wait = YANGDynClass(base=wait.wait, is_container='container', yang_name="wait", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__hardware_interrupt = YANGDynClass(base=hardware_interrupt.hardware_interrupt, is_container='container', yang_name="hardware-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) self.__software_interrupt = YANGDynClass(base=software_interrupt.software_interrupt, is_container='container', yang_name="software-interrupt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='container', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['system', 'cpus', 'cpu', 'state'] def _get_index(self): """ Getter method for index, mapped from YANG variable /system/cpus/cpu/state/index (union) YANG Description: The CPU index for each processor core on the system. On a single-core system, the index should be zero. The ALL index signifies an aggregation of the CPU utilization statistics over all cores in the system. """ return self.__index def _set_index(self, v, load=False): """ Setter method for index, mapped from YANG variable /system/cpus/cpu/state/index (union) If this variable is read-only (config: false) in the source YANG file, then _set_index is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_index() directly. YANG Description: The CPU index for each processor core on the system. On a single-core system, the index should be zero. The ALL index signifies an aggregation of the CPU utilization statistics over all cores in the system. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ALL': {}},),RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32),], is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='union', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """index must be of a type compatible with union""", 'defined-type': "openconfig-system:union", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ALL': {}},),RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32),], is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='union', is_config=False)""", }) self.__index = t if hasattr(self, '_set'): self._set() def _unset_index(self): self.__index = YANGDynClass(base=[RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ALL': {}},),RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32),], is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/system', defining_module='openconfig-system', yang_type='union', is_config=False) def _get_total(self): """ Getter method for total, mapped from YANG variable /system/cpus/cpu/state/total (container) YANG Description: Total CPU utilization. """ return
indexes''' self.__open_db() self.__open_collections() u, v = self.endpoint_names self.edges.create_index( [ (u, ASCENDING), (v, ASCENDING) ], name='incident', unique=True) def __check_metadata(self, metadata): '''Checks if the provided metadata matches the existing metadata in the meta collection''' if self.directed is None: assert metadata['directed'] is not None,\ "Meta collection exists but does not contain "\ "directed information" self.directed = metadata['directed'] elif metadata['directed'] != self.directed: raise ValueError(( "Input parameter directed={} does not match" "directed value {} already in stored metadata") .format(self.directed, metadata['directed'])) if self.total_roi is None: if 'total_roi_offset' in metadata\ and 'total_roi_shape' in metadata: offset = metadata['total_roi_offset'] shape = metadata['total_roi_shape'] self.total_roi = Roi(offset, shape) else: offset = self.total_roi.get_offset() if list(offset) != metadata['total_roi_offset']: raise ValueError(( "Input total_roi offset {} does not match" "total_roi offset {} already stored in metadata") .format( self.total_roi.get_offset(), metadata['total_roi_offset'])) if list(self.total_roi.get_shape()) != metadata['total_roi_shape']: raise ValueError(( "Input total_roi shape {} does not match" "total_roi shape {} already stored in metadata") .format( self.total_roi.get_shape(), metadata['total_roi_shape'])) def __set_metadata(self): '''Sets the metadata in the meta collection to the provided values''' if not self.directed: # default is false self.directed = False meta_data = {'directed': self.directed} # if total_roi not specified, don't write it if self.total_roi: meta_data['total_roi_offset'] = self.total_roi.get_offset() meta_data['total_roi_shape'] = self.total_roi.get_shape() self.__open_collections() # It's possible that another worker has already inserted the metadata - # upsert to keep only one document in the collection self.meta.replace_one(meta_data, meta_data, upsert=True) def __pos_query(self, roi): '''Generates a mongo query for position''' begin = roi.get_begin() end = roi.get_end() if type(self.position_attribute) == list: assert len(self.position_attribute) == roi.dims, ( 'Number of position attributes does not match number of ' 'dimensions') return { key: { k: v for k, v in zip( ["$gte", "$lt"], [ b if b is not None else float("-inf"), e if e is not None else float("inf"), ], ) } for key, b, e in zip(self.position_attribute, begin, end) } else: return { "position.%d" % d: { k: v for k, v in zip( ["$gte", "$lt"], [ b if b is not None else float("-inf"), e if e is not None else float("inf"), ], ) } for d, (b, e) in enumerate(zip(begin, end)) } class MongoDbSharedSubGraph(SharedSubGraph): def __init__( self, graph_provider, roi): super().__init__() self.provider = graph_provider self.roi = roi self.client = MongoClient(self.provider.host) self.database = self.client[self.provider.db_name] self.nodes_collection = self.database[ self.provider.nodes_collection_name] self.edges_collection = self.database[ self.provider.edges_collection_name] def write_nodes( self, roi=None, attributes=None, fail_if_exists=False, fail_if_not_exists=False, delete=False): assert not delete, "Delete not implemented" assert not(fail_if_exists and fail_if_not_exists),\ "Cannot have fail_if_exists and fail_if_not_exists simultaneously" if self.provider.mode == 'r': raise RuntimeError("Trying to write to read-only DB") if roi is None: roi = self.roi logger.debug("Writing nodes") nodes = [] for node_id, data in self.nodes(data=True): if not self.__contains(roi, node_id): logger.debug( "Skipping node {} with data {} because not in roi {}" .format(node_id, data, roi)) continue node = { 'id': int(np.int64(node_id)) } if not attributes: node.update(data) else: for key in data: if key in attributes: node[key] = data[key] nodes.append(node) if len(nodes) == 0: return try: self.__write(self.nodes_collection, ['id'], nodes, fail_if_exists=fail_if_exists, fail_if_not_exists=fail_if_not_exists, delete=delete) except BulkWriteError as e: logger.error(e.details) raise def write_edges( self, roi=None, attributes=None, fail_if_exists=False, fail_if_not_exists=False, delete=False): assert not delete, "Delete not implemented" assert not(fail_if_exists and fail_if_not_exists),\ "Cannot have fail_if_exists and fail_if_not_exists simultaneously" if self.provider.mode == 'r': raise RuntimeError("Trying to write to read-only DB") if roi is None: roi = self.roi logger.debug("Writing edges in %s", roi) edges = [] u_name, v_name = self.provider.endpoint_names for u, v, data in self.edges(data=True): if not self.is_directed(): u, v = min(u, v), max(u, v) if not self.__contains(roi, u): logger.debug( ("Skipping edge with u {}, v {}," + "and data {} because u not in roi {}") .format(u, v, data, roi)) continue edge = { u_name: int(np.int64(u)), v_name: int(np.int64(v)), } if not attributes: edge.update(data) else: for key in data: if key in attributes: edge[key] = data[key] edges.append(edge) if len(edges) == 0: logger.debug("No edges to insert in %s", roi) return try: self.__write(self.edges_collection, [u_name, v_name], edges, fail_if_exists=fail_if_exists, fail_if_not_exists=fail_if_not_exists, delete=delete) except BulkWriteError as e: logger.error(e.details) raise def update_node_attrs( self, roi=None, attributes=None): if self.provider.mode == 'r': raise RuntimeError("Trying to write to read-only DB") if roi is None: roi = self.roi logger.debug("Updating node attributes") updates = [] for node_id, data in self.nodes(data=True): if not self.__contains(roi, node_id): logger.debug( "Skipping node {} with data {} because not in roi {}" .format(node_id, data, roi)) continue _filter = { 'id': int(np.int64(node_id)) } if not attributes: update = {'$set': data} else: update = {} for key in data: if key in attributes: update[key] = data[key] if not update: logger.info("Skipping node %s with data %s" " - no attributes to update" % (node_id, data)) continue update = {'$set': update} updates.append(UpdateOne(_filter, update)) if len(updates) == 0: return try: self.nodes_collection.bulk_write(updates, ordered=False) except BulkWriteError as e: logger.error(e.details) raise def update_edge_attrs( self, roi=None, attributes=None): if self.provider.mode == 'r': raise RuntimeError("Trying to write to read-only DB") if roi is None: roi = self.roi logger.debug("Updating edge attributes") updates = [] u_name, v_name = self.provider.endpoint_names for u, v, data in self.edges(data=True): if not self.is_directed(): u, v = min(u, v), max(u, v) if not self.__contains(roi, u): logger.debug( ("Skipping edge with u {}, v {}," + "and data {} because u not in roi {}") .format(u, v, data, roi)) continue _filter = { u_name: int(np.int64(u)), v_name: int(np.int64(v)), } if not attributes: update = {'$set': data} else: update = {} for key in data: if key in attributes: update[key] = data[key] if not update: logger.info("Skipping edge %s -> %s with data %s" "- no attributes to update" % (u, v, data)) continue update = {'$set': update} updates.append(UpdateOne(_filter, update)) if len(updates) == 0: logger.info("No updates in roi %s" % roi) return try: self.edges_collection.bulk_write(updates, ordered=False) except BulkWriteError as e: logger.error(e.details) raise def get_connected_components(self): '''Returns a list of connected components as networkx (di)graphs''' subgraphs = [] if self.is_directed(): node_set_generator = nx.weakly_connected_components(self) else: node_set_generator = nx.connected_components(self) for node_set in node_set_generator: edge_set = self.edges(node_set, data=True) if self.is_directed(): g = nx.DiGraph() else: g = nx.Graph() g.add_nodes_from([(node, self.nodes[node]) for node in node_set]) g.add_edges_from(edge_set) subgraphs.append(g) return subgraphs def __write(self, collection, match_fields, docs, fail_if_exists=False, fail_if_not_exists=False, delete=False): '''Writes documents to provided mongo collection, checking for restricitons. Args: collection (``pymongo.collection``): The collection to write the documents into. match_fields (``list`` of ``string``): The set of fields to match to be considered the same document. docs (``dict`` or ``bson``): The documents to insert into the collection fail_if_exists, fail_if_not_exists, delete (``bool``): see write_nodes or write_edges for explanations of these flags ''' assert not delete, "Delete not implemented" match_docs = [] for doc in docs: match_doc = {} for field in match_fields: match_doc[field] = doc[field] match_docs.append(match_doc) if fail_if_exists: self.__write_fail_if_exists(collection, match_docs, docs) elif fail_if_not_exists: self.__write_fail_if_not_exists(collection, match_docs, docs) else: self.__write_no_flags(collection, match_docs, docs) def __write_no_flags(self, collection, old_docs, new_docs): bulk_query = [ReplaceOne(old, new, upsert=True) for old, new in zip(old_docs, new_docs)] collection.bulk_write(bulk_query, ordered=False) def __write_fail_if_exists(self, collection, old_docs, new_docs): for old in old_docs: if collection.find(old): raise WriteError( "Found existing doc %s and fail_if_exists set to True." " Aborting write for all docs." % old) collection.insert_many(new_docs) def __write_fail_if_not_exists(self, collection, old_docs, new_docs): for old in old_docs: if not collection.find(old): raise WriteError( "Did not find existing doc %s and fail_if_not_exists " "set to True. Aborting write for all docs." % old) bulk_query = [ReplaceOne(old, new, upsert=False) for old, new in zip(old_docs, new_docs)] result = collection.bulk_write(bulk_query, ordered=False) assert len(new_docs) == result.matched_count,\ ("Supposed to replace %s docs, but only replaced %s" % (len(new_docs), result.matched_count)) def __contains(self, roi, node): '''Determines if the given node is inside the given roi''' node_data = self.nodes[node] # Some nodes are outside of the originally requested ROI (they have # been pulled in by edges leaving the ROI). These nodes have no # attributes, so we can't perform an inclusion test. However, we # know they are outside of the subgraph ROI, and therefore also # outside of 'roi', whatever it is. coordinate = [] if type(self.provider.position_attribute) == list: for pos_attr in self.provider.position_attribute: if pos_attr not in node_data: return False coordinate.append(node_data[pos_attr]) else: if self.provider.position_attribute not in node_data: return False coordinate = node_data[self.provider.position_attribute] logger.debug("Checking if coordinate {} is inside roi {}" .format(coordinate,
116.50 SOURCE3_SOURCE5 720 1.3034 c3-c -ca 64.2 118.40 SOURCE4_SOURCE5 749 1.4991 c3-c -cc 65.0 117.29 CORR_SOURCE5 118 1.7737 c3-c -cd 65.0 117.29 CORR_SOURCE5 118 1.7737 c3-c -ce 64.9 116.44 CORR_SOURCE5 543 1.3559 c3-c -cf 64.9 116.44 CORR_SOURCE5 543 1.3559 c3-c -cg 66.0 115.00 SOURCE2 1 c3-c -ch 66.0 115.00 SOURCE2 1 c3-c -cl 71.2 111.99 SOURCE3 2 0.0125 c3-c -f 88.4 110.70 SOURCE2 1 c3-c -h4 46.1 114.64 SOURCE4_SOURCE5 193 0.4989 c3-c -ha 46.0 115.22 SOURCE3 15 0.3181 c3-c -i 60.4 112.94 SOURCE3 1 c3-c -n2 83.5 114.53 SOURCE3 1 c3-c -n4 81.1 112.26 SOURCE3 2 c3-c -n 84.3 115.18 SOURCE3_SOURCE5 2997 1.3885 c3-c -ne 84.9 112.61 CORR_SOURCE5 19 2.4426 c3-c -nf 84.9 112.61 CORR_SOURCE5 19 2.4426 c3-c -o 84.6 123.20 SOURCE3_SOURCE5 10083 1.8011 c3-c -oh 85.8 112.73 SOURCE3_SOURCE5 1989 1.3796 c3-c -os 86.4 110.72 SOURCE3_SOURCE5 1786 0.9391 c3-c -p3 77.8 116.42 SOURCE3 3 0.1291 c3-c -p5 77.0 118.90 SOURCE3 1 c3-c -pe 77.4 114.85 SOURCE3 1 c3-c -pf 77.4 114.85 SOURCE3 1 c3-c -px 77.4 115.60 SOURCE3 1 c3-c -py 77.7 118.16 SOURCE3 3 1.0735 c3-c -s4 61.4 114.79 SOURCE3 1 c3-c -s6 61.4 114.72 SOURCE3 1 c3-c -s 63.9 123.15 SOURCE3_SOURCE5 66 1.3121 c3-c -sh 63.8 112.65 SOURCE3_SOURCE5 9 1.5127 c3-c -ss 63.4 113.51 SOURCE3_SOURCE5 65 0.9334 c3-c -sx 61.2 113.97 SOURCE3 3 0.0610 c3-c -sy 61.6 114.28 SOURCE3 3 0.7341 ca-c -ca 65.0 118.11 SOURCE4_SOURCE5 506 1.8633 ca-c -cc 66.1 116.00 CORR_SOURCE5 670 1.7109 ca-c -cd 66.1 116.00 CORR_SOURCE5 670 1.7109 ca-c -ce 65.0 119.02 CORR_SOURCE5 83 1.3943 ca-c -cf 65.0 119.02 CORR_SOURCE5 83 1.3943 ca-c -h4 46.9 115.14 SOURCE4_SOURCE5 122 0.7683 ca-c -ha 47.2 114.12 SOURCE3 1 ca-c -n 85.4 115.25 SOURCE4_SOURCE5 1494 1.4889 ca-c -ne 85.3 114.71 SOURCE4_SOURCE5 14 0.5855 ca-c -o 86.2 122.60 SOURCE3_SOURCE5 3960 1.5802 ca-c -oh 86.7 113.45 SOURCE4_SOURCE5 656 0.8414 ca-c -os 87.0 112.44 SOURCE3_SOURCE5 493 0.8365 ca-c -s 64.6 122.68 SOURCE4_SOURCE5 32 1.3788 ca-c -sh 62.5 118.63 SOURCE3 1 ca-c -ss 63.4 115.05 SOURCE4_SOURCE5 37 1.0695 br-cc-c 65.2 116.28 SOURCE4_SOURCE5 32 1.1116 br-cc-cc 63.4 124.05 SOURCE4_SOURCE5 31 1.9388 br-cc-cd 63.7 124.23 SOURCE4_SOURCE5 116 2.3356 br-cc-na 80.6 121.58 SOURCE4_SOURCE5 19 0.8500 c2-cc-c3 65.3 126.11 SOURCE3 2 c2-cc-ca 67.0 124.42 CORR_SOURCE5 25 1.8245 c2-cc-cc 68.3 122.19 CORR_SOURCE5 46 2.3853 c2-cc-cd 71.3 117.02 SOURCE3 2 0.0703 c2-cc-ha 49.2 122.72 SOURCE3 2 0.0092 c2-cc-n 86.2 124.91 SOURCE3_SOURCE5 5 1.6803 c2-cc-os 88.0 121.42 CORR_SOURCE5 24 0.9570 c -c -c3 63.6 116.17 SOURCE3_SOURCE5 58 1.1332 c3-cc-ca 63.3 126.52 CORR_SOURCE5 370 1.8946 c3-cc-cc 66.7 115.97 SOURCE3 4 3.0507 c3-cc-cd 66.8 119.45 SOURCE3 35 8.2040 c3-cc-cf 67.4 117.84 CORR 2 c3-cc-ha 45.5 121.52 SOURCE3 32 3.2091 c3-cc-n2 83.3 125.69 CORR_SOURCE5 12 1.9935 c3-cc-n 83.6 119.19 CORR_SOURCE5 107 2.1078 c3-cc-na 82.4 122.73 CORR_SOURCE5 961 1.6482 c3-cc-nc 83.2 120.95 CORR_SOURCE5 456 0.8756 c3-cc-nd 83.9 122.41 CORR_SOURCE5 653 1.6992 c3-cc-os 84.9 116.80 CORR_SOURCE5 306 0.8990 c3-cc-ss 62.7 121.53 CORR_SOURCE5 270 1.0948 c -c -c 64.4 111.68 SOURCE3 2 6.1226 c -c -ca 63.6 118.60 SOURCE4_SOURCE5 90 1.0263 ca-cc-cc 69.3 111.04 SOURCE3 9 7.9455 ca-cc-cd 69.8 113.51 SOURCE3 26 7.4229 ca-cc-ce 64.3 127.01 SOURCE4_SOURCE5 38 1.6763 ca-cc-h4 45.4 129.25 SOURCE3_SOURCE5 54 1.5632 ca-cc-ha 46.3 124.04 SOURCE3 34 3.6691 ca-cc-n 85.6 117.67 CORR 18 ca-cc-nc 84.9 120.59 CORR_SOURCE5 224 1.0853 ca-cc-nd 85.3 123.24 CORR_SOURCE5 246 2.3557 ca-cc-nh 84.3 122.13 SOURCE4_SOURCE5 20 1.7636 ca-cc-oh 86.6 117.55 CORR_SOURCE5 35 1.9318 ca-cc-os 87.2 114.75 CORR_SOURCE5 247 2.0579 ca-cc-ss 63.4 120.80 CORR_SOURCE5 80 2.1212 c -cc-c2 67.5 121.17 CORR_SOURCE5 28 1.6484 c -cc-c3 65.4 117.76 CORR_SOURCE5 566 1.9588 c -cc-c 65.2 121.07 CORR_SOURCE5 128 0.8902 c -c -cc 66.0 111.67 SOURCE3 4 5.5146 c -cc-ca 65.0 122.95 SOURCE3 1 c -cc-cc 65.7 122.69 SOURCE3 2 cc-c -cc 66.7 115.84 CORR_SOURCE5 115 1.4659 cc-cc-cc 70.1 110.70 SOURCE3 54 3.4091 cc-cc-cd 70.3 114.19 SOURCE3 517 6.5960 cc-cc-ce 64.9 127.06 CORR_SOURCE5 61 2.3233 cc-cc-cf 68.0 122.72 CORR_SOURCE5 66 1.9701 cc-cc-cg 65.8 125.91 CORR_SOURCE5 41 1.1646 c -cc-cd 67.2 121.35 CORR_SOURCE5 3554 2.2084 cc-c -cd 67.6 112.79 SOURCE3 1 c -cc-ce 65.4 121.57 CORR_SOURCE5 29 1.1305 cc-c -ce 66.4 115.57 SOURCE4_SOURCE5 14 1.2088 cc-cc-f 88.4 119.19 SOURCE4_SOURCE5 26 0.8983 c -cc-cg 67.0 117.88 SOURCE4_SOURCE5 26 0.6759 cc-cc-h4 46.3 127.96 SOURCE3_SOURCE5 391 2.1732 cc-cc-ha 47.6 121.07 CORR_SOURCE5 2414 2.2010 c -cc-cl 72.6 116.38 CORR_SOURCE5 50 1.2099 cc-cc-n2 87.4 122.21 CORR_SOURCE5 37 1.6493 cc-cc-n 85.8 119.89 SOURCE3 36 0.2095 cc-cc-na 86.5 117.77 SOURCE3_SOURCE5 865 1.5665 cc-cc-nc 85.3 121.98 CORR_SOURCE5 141 1.9633 cc-cc-nd 90.3 112.56 SOURCE3 141 4.2871 cc-cc-nh 86.0 119.72 CORR_SOURCE5 348 1.7785 cc-cc-oh 86.2 121.27 CORR_SOURCE5 11 2.2744 cc-cc-os 87.2 117.34 CORR_SOURCE5 217 1.9304 cc-cc-pd 84.5 115.36 SOURCE3 84 cc-cc-ss 63.9 120.21 CORR_SOURCE5 52 2.1160 cc-cc-sy 61.1 128.25 SOURCE4_SOURCE5 20 0.9014 c -c -cd 66.0 111.67 SOURCE3 4 5.5146 cd-cc-cd 70.0 120.08 CORR_SOURCE5 119 1.6139 cd-cc-ce 65.8 128.05 CORR_SOURCE5 350 2.4628 cd-cc-cl 71.7 123.41 CORR_SOURCE5 115 2.1217 cd-cc-f 89.6 121.19 SOURCE4_SOURCE5 82 0.7206 cd-cc-h4 47.8 128.48 SOURCE3_SOURCE5 3291 2.3189 cd-cc-ha 49.0 121.76 SOURCE3_SOURCE5 4433 1.8701 cd-cc-n 87.0 121.33 SOURCE3_SOURCE5 821 1.9126 cd-cc-na 92.7 106.99 SOURCE3_SOURCE5 3003 2.3845 cd-cc-nc 91.1 111.65 CORR_SOURCE5 1656 1.8430 cd-cc-nh 86.3 123.84 CORR_SOURCE5 152 2.2360 cd-cc-no 82.9 128.69 SOURCE4_SOURCE5 314 1.4409 cd-cc-oh 87.2 123.78 CORR_SOURCE5 251 1.1988 cd-cc-os 88.0 120.30 SOURCE3 64 5.4354 cd-cc-ss 66.9 111.55 CORR_SOURCE5 1048 1.8648 cd-cc-sy 62.5 124.55 CORR_SOURCE5 56 1.7107 ce-cc-na 83.4 124.35 CORR_SOURCE5 87 1.3591 ce-cc-nc 84.8 121.10 CORR_SOURCE5 43 1.2959 ce-cc-nd 85.9 121.70 CORR_SOURCE5 58 1.4179 ce-cc-os 85.8 118.76 CORR_SOURCE5 92 1.3159 ce-cc-ss 63.2 121.58 CORR_SOURCE5 54 1.3126 c -cc-f 87.8 116.98 SOURCE4_SOURCE5 49 0.4690 cg-cc-na 84.9 122.61 SOURCE4_SOURCE5 12 0.9695 cg-cc-ss 63.8 120.73 SOURCE4_SOURCE5 27 0.9221 cc-c -h4 47.6 114.83 SOURCE4_SOURCE5 25 0.5124 c -cc-ha 47.4 116.64 SOURCE3_SOURCE5 896 1.3075 cl-cc-na 90.5 121.12 SOURCE4_SOURCE5 37 0.7206 cl-cc-nd 91.0 122.07 CORR_SOURCE5 19 1.6973 cl-cc-ss 71.9 119.85 SOURCE4_SOURCE5 27 0.9529 c -cc-n2 85.2 123.93 CORR_SOURCE5 6 0.0993 c -cc-n 85.7 116.37 CORR_SOURCE5 41 2.4875 cc-c -n 87.1 112.70 SOURCE3_SOURCE5 1124 1.8431 c -cc-nc 83.5 123.32 CORR_SOURCE5 27 2.2025 cc-c -nd 85.6 116.24 CORR_SOURCE5 38 1.0053 c -cc-nd 85.3 121.88 CORR_SOURCE5 54 2.0672 c -cc-ne 84.5 119.88 SOURCE4 6 0.3139 cc-c -o 86.7 123.93 SOURCE3_SOURCE5 3463 2.3073 c -cc-oh 87.6 113.66 CORR_SOURCE5 190 1.6462 cc-c -oh 87.8 112.84 CORR_SOURCE5 184 0.7264 c -cc-os 85.1 119.26 CORR_SOURCE5 104 2.4145 cc-c -os 87.1 114.20 SOURCE3_SOURCE5 427 2.2749 cc-c -s 64.0 126.28 SOURCE4_SOURCE5 69 1.9867 cc-c -ss 64.4 112.40 SOURCE4_SOURCE5 42 0.9902 cx-cc-nd 83.2 127.88 5/2017 15 1.5594 cx-cc-os 85.5 118.06 5/2017 13 0.0898 cd-c -cd 66.7 115.84 CORR_SOURCE5 115 1.4659 cd-c -cx 65.4 117.42 5/2017 24 0.1441 cd-c -n 87.1 112.70 SOURCE3_SOURCE5 1124 1.8431 cd-c -nc 85.6 116.24 CORR_SOURCE5 38 1.0053 cd-c -nd 86.5 113.75 SOURCE4_SOURCE5 28 0.0860 cd-c -o 86.7 123.93 SOURCE3_SOURCE5 3463 2.3073 cd-c -oh 87.8 112.84 CORR_SOURCE5 184 0.7264 cd-c -os 87.1 114.20 SOURCE3_SOURCE5 427 2.2749 ce-c -ce 66.0 115.82 CORR_SOURCE5 103 0.7143 ce-c -cf 65.9 116.37 SOURCE4_SOURCE5 31 1.3157 ce-c -cx 65.8 114.98 5/2017 36 3.8282 ce-c -h4 47.2 114.89 SOURCE4_SOURCE5 113 0.4718 ce-c -ha 47.2 115.22 SOURCE3 7 2.4188 ce-c -n 85.7 115.22 CORR_SOURCE5 38 1.1173 ce-c -o 86.3 123.20 SOURCE3_SOURCE5 2306 2.0617 ce-c -oh 87.0 113.62 CORR_SOURCE5 273 1.4501 ce-c -os 87.8 110.93 CORR_SOURCE5 445 1.6899 ce-c -s 64.7 122.63 SOURCE3_SOURCE5 11 1.3034 ce-c -ss 64.8 110.49 SOURCE4_SOURCE5 13 0.5852 cf-c -cf 66.0 115.82 CORR_SOURCE5 103 0.7143 cf-c -ha 47.2 115.22 SOURCE3 7 cf-c -n 85.7 115.22 CORR_SOURCE5 38 1.1173 cf-c -o 86.3 123.20 SOURCE3_SOURCE5 2306 2.0617 cf-c -oh 87.0 113.62 CORR_SOURCE5 273 1.4501 cf-c -os 87.8 110.93 CORR_SOURCE5 445 1.6899 cf-c -s 64.7 122.63 SOURCE3_SOURCE5 11 1.3034 cg-c -cg 67.6 115.38 SOURCE3 1 cg-c -ha 48.3 113.90 SOURCE2 1 cg-c -o 88.2 121.78 SOURCE3_SOURCE5 13 0.8393 c -c -h4 45.2 115.80 SOURCE4_SOURCE5 17 0.7492 h4-cc-n 62.7 115.69 SOURCE3_SOURCE5 425 0.9142 h4-cc-na 61.5 120.53 SOURCE3_SOURCE5 1801 1.3882 h4-cc-nc 61.7 121.14 SOURCE3_SOURCE5 574 0.5658 h4-cc-nd 64.3 118.47 SOURCE3_SOURCE5 435 1.3360 h4-cc-os 63.6 114.90 SOURCE3_SOURCE5 456 0.8638 h4-cc-ss 42.5 119.97 SOURCE3_SOURCE5 496 0.7119 h5-cc-n 62.7 115.70 CORR_SOURCE5 41 0.7665 h5-cc-na 61.2 121.55 SOURCE3_SOURCE5 1138 0.7136 h5-cc-nc 61.3 122.92 SOURCE3_SOURCE5 136 0.3532 h5-cc-nd 62.5 125.52 SOURCE3_SOURCE5 1309 0.7276 h5-cc-os 63.1 116.83 SOURCE3_SOURCE5 42 1.3051 h5-cc-ss 42.3 121.02 SOURCE3_SOURCE5 46 0.6462 c -c -ha 45.4 115.43 SOURCE2 3 0.6549 ha-cc-na 61.2 121.50 SOURCE2 1 ha-cc-nc 62.9 116.54 SOURCE3 5 1.4482 ha-cc-nd 64.2 118.88 SOURCE3 20 2.8923 ha-cc-os 64.8 110.86 SOURCE3 7 1.3846 ha-cc-pd 54.9 121.76 SOURCE3 84 ha-cc-ss 42.2 121.64 SOURCE2 5 1.3276 ch-c -ch 67.6 115.38 SOURCE3 1 ch-c -ha 48.3 113.90 SOURCE2 1 ch-c -o 88.2 121.78 SOURCE3_SOURCE5 13 0.8393 cl-c -cl 80.7 111.30 SOURCE2 1 cl-c -f 93.2 112.00 SOURCE2 1 cl-c -ha 48.2 109.90 SOURCE2 1 cl-c -o 89.0 120.69 SOURCE3_SOURCE5 14 1.1076 cl-c -s 69.9 127.60 SOURCE2 1 c -c -n 84.3 112.74 SOURCE4_SOURCE5 157 2.1770 na-cc-nc 108.8 121.95 CORR_SOURCE5 321 1.6221 na-cc-nd 115.5 112.22 SOURCE3_SOURCE5 2726 1.5103 na-cc-no 105.3 124.59 SOURCE4_SOURCE5 162 0.8093 na-cc-oh 111.7 117.48 SOURCE4_SOURCE5 39 0.9806 na-cc-sx 79.7 117.02 SOURCE4_SOURCE5 32 0.3937 na-cc-sy 79.5 120.46 SOURCE4_SOURCE5 15 1.7292 nc-cc-nd 114.2 115.83 CORR_SOURCE5 309 1.2424 nc-cc-nh 111.3 117.23 CORR_SOURCE5 51 1.7463 nc-cc-no 106.9 121.73 SOURCE4_SOURCE5 17 0.8729 nc-cc-ss 79.9 122.64 SOURCE3_SOURCE5 10 1.3100 nd-cc-nd 110.8 128.07 SOURCE4_SOURCE5 17 0.2580 nd-cc-ne 107.8 129.01 SOURCE4_SOURCE5 20 1.2478 nd-cc-nh 111.7 120.65 SOURCE3_SOURCE5 554 1.6769 nd-cc-no 108.2 122.75 SOURCE4_SOURCE5 80 0.3006 nd-cc-oh 112.7 121.12 CORR_SOURCE5
<filename>network.py import numpy as np import tensorflow as tf import re import math from config import * from .deform_conv_layer import deform_conv_op as deform_conv_op DEFAULT_PADDING = 'SAME' DEFAULT_TYPE = tf.float32 def include_original(dec): """ Meta decorator, which make the original function callable (via f._original() )""" def meta_decorator(f): decorated = dec(f) decorated._original = f return decorated return meta_decorator summary = True def ActivationSummary(layer): #tensorBoard (jmfacil) if summary: TOWER_NAME = 'tower' tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', layer.op.name) tf.summary.histogram(tensor_name + '/activations', layer) @include_original def layer(op): def layer_decorated(self, *args, **kwargs): # Automatically set a name if not provided. name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) # Figure out the layer inputs. if len(self.inputs) == 0: raise RuntimeError('No input variables found for layer %s.' % name) elif len(self.inputs) == 1: layer_input = self.inputs[0] else: layer_input = list(self.inputs) # Perform the operation and get the output. layer_output = op(self, layer_input, *args, **kwargs) # Add to layer LUT. self.layers[name] = layer_output # This output is now the input for the next layer. self.feed(layer_output) # Return self for chained calls. return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True, is_training = True,bs=16):#,reuse=None): #cfernandez self.inputs = [] self.batch_size = bs self.layers = dict(inputs) self.trainable = trainable self.is_training = is_training self.setup() def setup(self): raise NotImplementedError('Must be subclassed.') def load(self, data_path, session, ignore_missing=False): def transform_names(k): if k == 'mean': return 'moving_mean' if k == 'variance': return 'moving_variance' if k == 'scale': return 'gamma' if k == 'offset': return 'beta' return k print(data_path) data_dict = np.load(data_path,encoding='latin1').item() for key in data_dict: superkey=self.nname+"/"+key with tf.variable_scope(superkey, reuse=True): for subkey in data_dict[key]: try: nsubkey=transform_names(subkey) var = tf.get_variable(nsubkey) session.run(var.assign(data_dict[key][subkey])) except ValueError: print("ignore "+key,subkey) print(superkey,tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=superkey)) if not ignore_missing: raise print ("Loaded weitghts") def feed(self, *args): assert len(args) != 0 self.inputs = [] for layer in args: if isinstance(layer, str): try: layer = self.layers[layer] print(layer) except KeyError: print(list(self.layers.keys())) raise KeyError('Unknown layer name fed: %s' % layer) self.inputs.append(layer) return self def get_output(self, layer): try: layer = self.layers[layer] except KeyError: print(list(self.layers.keys())) raise KeyError('Unknown layer name fed: %s' % layer) return layer def get_layer_output(self, name): return self.layers[name] def get_unique_name(self, prefix): id = sum(t.startswith(prefix) for t, _ in list(self.layers.items())) + 1 return '%s_%d' % (prefix, id) def make_var(self, name, shape, initializer=None, trainable=True, regularizer=None): return tf.get_variable(name, shape, initializer=initializer, trainable=trainable, regularizer=regularizer) def validate_padding(self, padding): assert padding in ('SAME', 'VALID') def filler(self, params): #chema #print "Filler: "+str(params) value = params.get("value",0.0) mean = params.get("mean",0.0) std = params.get("std",0.1) dtype = params.get("dtype",DEFAULT_TYPE) name = params.get("name",None) uniform = params.get("uniform",False) return { "xavier_conv2d" : tf.contrib.layers.xavier_initializer_conv2d(uniform = uniform), "t_normal" : tf.truncated_normal_initializer(mean = mean, stddev = std, dtype = dtype) , "constant" : tf.constant_initializer(value = value, dtype = dtype) }[params.get("type","t_normal")] @layer def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, rate=1, biased=True, relu=True, padding=DEFAULT_PADDING, trainable=True, initializer=None): """ contribution by miraclebiu, and biased option""" self.validate_padding(padding) c_i = input.get_shape()[-1] convolve = lambda i, k: tf.nn.convolution( i, k, padding=padding, strides=[s_h, s_w], dilation_rate=[rate, rate]) with tf.variable_scope(name,reuse=False) as scope: #cfernandez reuse # init_weights = tf.truncated_normal_initializer(0.0, stddev=0.001) init_weights = tf.zeros_initializer() if initializer is 'zeros' else tf.contrib.layers.variance_scaling_initializer( factor=0.01, mode='FAN_AVG', uniform=False) init_biases = tf.constant_initializer(0.0) #kernel = self.make_var('weights', [k_h, k_w, c_i, c_o], init_weights, trainable, # regularizer=self.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)) kernel = self.make_var('weights', shape=[k_h, k_w, c_i // 1, c_o],initializer=self.filler({ "type" : "t_normal", #cfernandez "mean" : 0.0, "std" : 0.1 }),regularizer=self.l2_regularizer(args.weight_decay)) #0.0005 cfg.TRAIN.WEIGHT_DECAY if biased: biases = self.make_var('biases', [c_o], init_biases, trainable) conv = convolve(input, kernel) if relu: bias = tf.nn.bias_add(conv, biases) output = tf.nn.relu(bias) output = tf.nn.bias_add(conv, biases) else: conv = convolve(input, kernel) if relu: output = tf.nn.relu(conv) output = conv return output @staticmethod def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) @staticmethod def equi_coord(pano_W,pano_H,k_W,k_H,u,v): """ contribution by cfernandez and jmfacil """ fov_w = k_W * np.deg2rad(360./float(pano_W)) focal = (float(k_W)/2) / np.tan(fov_w/2) c_x = 0 c_y = 0 u_r, v_r = u, v u_r, v_r = u_r-float(pano_W)/2.,v_r-float(pano_H)/2. phi, theta = u_r/(pano_W) * (np.pi) *2, -v_r/(pano_H) * (np.pi) ROT = Network.rotation_matrix((0,1,0),phi) ROT = np.matmul(ROT,Network.rotation_matrix((1,0,0),theta))#np.eye(3) h_range = np.array(range(k_H)) w_range = np.array(range(k_W)) w_ones = (np.ones(k_W)) h_ones = (np.ones(k_H)) h_grid = np.matmul(np.expand_dims(h_range,-1),np.expand_dims(w_ones,0))+0.5-float(k_H)/2 w_grid = np.matmul(np.expand_dims(h_ones,-1),np.expand_dims(w_range,0))+0.5-float(k_W)/2 K=np.array([[focal,0,c_x],[0,focal,c_y],[0.,0.,1.]]) inv_K = np.linalg.inv(K) rays = np.stack([w_grid,h_grid,np.ones(h_grid.shape)],0) rays = np.matmul(inv_K,rays.reshape(3,k_H*k_W)) rays /= np.linalg.norm(rays,axis=0,keepdims=True) rays = np.matmul(ROT,rays) rays=rays.reshape(3,k_H,k_W) phi = np.arctan2(rays[0,...],rays[2,...]) theta = np.arcsin(np.clip(rays[1,...],-1,1)) x = (pano_W)/(2.*np.pi)*phi +float(pano_W)/2. y = (pano_H)/(np.pi)*theta +float(pano_H)/2. roi_y = h_grid+v_r +float(pano_H)/2. roi_x = w_grid+u_r +float(pano_W)/2. new_roi_y = (y) new_roi_x = (x) offsets_x = (new_roi_x - roi_x) offsets_y = (new_roi_y - roi_y) return offsets_x, offsets_y @staticmethod def equi_coord_fixed_resoltuion(pano_W,pano_H,k_W,k_H,u,v,pano_Hf = -1, pano_Wf=-1): """ contribution by cfernandez and jmfacil """ pano_Hf = pano_H if pano_Hf<=0 else pano_H/pano_Hf pano_Wf = pano_W if pano_Wf<=0 else pano_W/pano_Wf fov_w = k_W * np.deg2rad(360./float(pano_Wf)) focal = (float(k_W)/2) / np.tan(fov_w/2) c_x = 0 c_y = 0 u_r, v_r = u, v u_r, v_r = u_r-float(pano_W)/2.,v_r-float(pano_H)/2. phi, theta = u_r/(pano_W) * (np.pi) *2, -v_r/(pano_H) * (np.pi) ROT = Network.rotation_matrix((0,1,0),phi) ROT = np.matmul(ROT,Network.rotation_matrix((1,0,0),theta))#np.eye(3) h_range = np.array(range(k_H)) w_range = np.array(range(k_W)) w_ones = (np.ones(k_W)) h_ones = (np.ones(k_H)) h_grid = np.matmul(np.expand_dims(h_range,-1),np.expand_dims(w_ones,0))+0.5-float(k_H)/2 w_grid = np.matmul(np.expand_dims(h_ones,-1),np.expand_dims(w_range,0))+0.5-float(k_W)/2 K=np.array([[focal,0,c_x],[0,focal,c_y],[0.,0.,1.]]) inv_K = np.linalg.inv(K) rays = np.stack([w_grid,h_grid,np.ones(h_grid.shape)],0) rays = np.matmul(inv_K,rays.reshape(3,k_H*k_W)) rays /= np.linalg.norm(rays,axis=0,keepdims=True) rays = np.matmul(ROT,rays) rays=rays.reshape(3,k_H,k_W) phi = np.arctan2(rays[0,...],rays[2,...]) theta = np.arcsin(np.clip(rays[1,...],-1,1)) x = (pano_W)/(2.*np.pi)*phi +float(pano_W)/2. y = (pano_H)/(np.pi)*theta +float(pano_H)/2. roi_y = h_grid+v_r +float(pano_H)/2. roi_x = w_grid+u_r +float(pano_W)/2. new_roi_y = (y) new_roi_x = (x) offsets_x = (new_roi_x - roi_x) offsets_y = (new_roi_y - roi_y) return offsets_x, offsets_y @staticmethod def distortion_aware_map(pano_W, pano_H, k_W, k_H, s_width = 1, s_height = 1,bs = 16): """ contribution by cfernandez and jmfacil """ n=1 offset = np.zeros(shape=[pano_H,pano_W,k_H*k_W*2]) print(offset.shape) for v in range(0, pano_H, s_height): for u in range(0, pano_W, s_width): offsets_x, offsets_y = Network.equi_coord_fixed_resoltuion(pano_W,pano_H,k_W,k_H,u,v,1,1) offsets = np.concatenate((np.expand_dims(offsets_y,-1),np.expand_dims(offsets_x,-1)),axis=-1) total_offsets = offsets.flatten().astype("float32") offset[v,u,:] = total_offsets offset = tf.constant(offset) offset = tf.expand_dims(offset, 0) offset = tf.concat([offset for _ in range(bs)],axis=0) offset = tf.cast(offset, tf.float32) return offset @layer def equi_conv(self, input, k_h, k_w, c_o, s_h, s_w, num_deform_group, name, num_groups = 1, rate = 1, biased=True, relu=True, padding=DEFAULT_PADDING, trainable=True, initializer=None): """ contribution by cfernandez and jmfacil """ self.validate_padding(padding) data = input n,h,w,_ = tuple(data.get_shape().as_list()) data_shape = data.shape offset = tf.stop_gradient(Network.distortion_aware_map(w, h, k_w, k_h, s_width = s_w, s_height = s_h,bs= self.batch_size)) c_i = data.get_shape()[-1] trans2NCHW = lambda x:tf.transpose(x, [0, 3 ,1 ,2]) trans2NHWC = lambda x:tf.transpose(x, [0, 2 ,3, 1]) # deform conv only supports NCHW data = trans2NCHW(data) offset = trans2NCHW(offset) dconvolve = lambda i, k, o: deform_conv_op.deform_conv_op( i, k, o, strides = [1, 1, s_h, s_w], rates=[1, 1, rate, rate], padding=padding, num_groups=num_groups, deformable_group=num_deform_group) with tf.variable_scope(name, reuse=False) as scope: init_weights = tf.zeros_initializer() if initializer is 'zeros' else tf.contrib.layers.variance_scaling_initializer( factor=0.01, mode='FAN_AVG', uniform=False) init_biases = tf.constant_initializer(0.0) kernel = self.make_var('weights', [k_h, k_w, c_i, c_o], init_weights, trainable, regularizer=self.l2_regularizer(args.weight_decay)) kernel = tf.transpose(kernel,[3,2,0,1]) ActivationSummary(offset) print(data, kernel, offset) dconv = trans2NHWC(dconvolve(data, kernel, offset)) if biased: biases = self.make_var('biases', [c_o], init_biases, trainable) if relu: bias = tf.nn.bias_add(dconv, biases) return tf.nn.relu(bias) return tf.nn.bias_add(dconv, biases) else: if relu: return tf.nn.relu(dconv) return dconv @layer def upconv(self, input, shape, c_o, ksize=4, stride=2, name='upconv', biased=False, relu=True, padding=DEFAULT_PADDING, trainable=True, initializer=None): """ up-conv""" self.validate_padding(padding) c_in = input.get_shape()[3].value in_shape_d = tf.shape(input) in_shape = input.shape.as_list() if shape is None: h = ((in_shape[1]) * stride) w = ((in_shape[2]) * stride) new_shape = [in_shape_d[0], h,
import datetime import json from StringIO import StringIO from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.serializers import json as djson from django.utils.encoding import force_unicode from tastypie.bundle import Bundle from tastypie.exceptions import UnsupportedFormat from tastypie.utils import format_datetime, format_date, format_time, make_naive try: import lxml from lxml.etree import parse as parse_xml from lxml.etree import Element, tostring except ImportError: lxml = None try: import yaml from django.core.serializers import pyyaml except ImportError: yaml = None try: import biplist except ImportError: biplist = None # Ugh & blah. # So doing a regular dump is generally fine, since Tastypie doesn't usually # serialize advanced types. *HOWEVER*, it will dump out Python Unicode strings # as a custom YAML tag, which of course ``yaml.safe_load`` can't handle. if yaml is not None: from yaml.constructor import SafeConstructor from yaml.loader import Reader, Scanner, Parser, Composer, Resolver class TastypieConstructor(SafeConstructor): def construct_yaml_unicode_dammit(self, node): value = self.construct_scalar(node) try: return value.encode('ascii') except UnicodeEncodeError: return value TastypieConstructor.add_constructor(u'tag:yaml.org,2002:python/unicode', TastypieConstructor.construct_yaml_unicode_dammit) class TastypieLoader(Reader, Scanner, Parser, Composer, TastypieConstructor, Resolver): def __init__(self, stream): Reader.__init__(self, stream) Scanner.__init__(self) Parser.__init__(self) Composer.__init__(self) TastypieConstructor.__init__(self) Resolver.__init__(self) class Serializer(object): """ A swappable class for serialization. This handles most types of data as well as the following output formats:: * json * jsonp * xml * yaml * html * plist (see http://explorapp.com/biplist/) It was designed to make changing behavior easy, either by overridding the various format methods (i.e. ``to_json``), by changing the ``formats/content_types`` options or by altering the other hook methods. """ formats = ['json', 'jsonp', 'xml', 'yaml', 'html', 'plist'] content_types = { 'json': 'application/json', 'jsonp': 'text/javascript', 'xml': 'application/xml', 'yaml': 'text/yaml', 'html': 'text/html', 'plist': 'application/x-plist', } def __init__(self, formats=None, content_types=None, datetime_formatting=None): self.supported_formats = [] self.datetime_formatting = getattr(settings, 'TASTYPIE_DATETIME_FORMATTING', 'iso-8601') if formats is not None: self.formats = formats if content_types is not None: self.content_types = content_types if datetime_formatting is not None: self.datetime_formatting = datetime_formatting for format in self.formats: try: self.supported_formats.append(self.content_types[format]) except KeyError: raise ImproperlyConfigured("Content type for specified type '%s' not found. Please provide it at either the class level or via the arguments." % format) def get_mime_for_format(self, format): """ Given a format, attempts to determine the correct MIME type. If not available on the current ``Serializer``, returns ``application/json`` by default. """ try: return self.content_types[format] except KeyError: return 'application/json' def format_datetime(self, data): """ A hook to control how datetimes are formatted. Can be overridden at the ``Serializer`` level (``datetime_formatting``) or globally (via ``settings.TASTYPIE_DATETIME_FORMATTING``). Default is ``iso-8601``, which looks like "2010-12-16T03:02:14". """ data = make_naive(data) if self.datetime_formatting == 'rfc-2822': return format_datetime(data) return data.isoformat() def format_date(self, data): """ A hook to control how dates are formatted. Can be overridden at the ``Serializer`` level (``datetime_formatting``) or globally (via ``settings.TASTYPIE_DATETIME_FORMATTING``). Default is ``iso-8601``, which looks like "2010-12-16". """ if self.datetime_formatting == 'rfc-2822': return format_date(data) return data.isoformat() def format_time(self, data): """ A hook to control how times are formatted. Can be overridden at the ``Serializer`` level (``datetime_formatting``) or globally (via ``settings.TASTYPIE_DATETIME_FORMATTING``). Default is ``iso-8601``, which looks like "03:02:14". """ if self.datetime_formatting == 'rfc-2822': return format_time(data) return data.isoformat() def serialize(self, bundle, format='application/json', options={}): """ Given some data and a format, calls the correct method to serialize the data and returns the result. """ desired_format = None for short_format, long_format in self.content_types.items(): if format == long_format: if hasattr(self, "to_%s" % short_format): desired_format = short_format break if desired_format is None: raise UnsupportedFormat("The format indicated '%s' had no available serialization method. Please check your ``formats`` and ``content_types`` on your Serializer." % format) serialized = getattr(self, "to_%s" % desired_format)(bundle, options) return serialized def deserialize(self, content, format='application/json'): """ Given some data and a format, calls the correct method to deserialize the data and returns the result. """ desired_format = None format = format.split(';')[0] for short_format, long_format in self.content_types.items(): if format == long_format: if hasattr(self, "from_%s" % short_format): desired_format = short_format break if desired_format is None: raise UnsupportedFormat("The format indicated '%s' had no available deserialization method. Please check your ``formats`` and ``content_types`` on your Serializer." % format) deserialized = getattr(self, "from_%s" % desired_format)(content) return deserialized def to_simple(self, data, options): """ For a piece of data, attempts to recognize it and provide a simplified form of something complex. This brings complex Python data structures down to native types of the serialization format(s). """ if isinstance(data, (list, tuple)): return [self.to_simple(item, options) for item in data] if isinstance(data, dict): return dict((key, self.to_simple(val, options)) for (key, val) in data.iteritems()) elif isinstance(data, Bundle): return dict((key, self.to_simple(val, options)) for (key, val) in data.data.iteritems()) elif hasattr(data, 'dehydrated_type'): if getattr(data, 'dehydrated_type', None) == 'related' and data.is_m2m == False: if data.full: return self.to_simple(data.fk_resource, options) else: return self.to_simple(data.value, options) elif getattr(data, 'dehydrated_type', None) == 'related' and data.is_m2m == True: if data.full: return [self.to_simple(bundle, options) for bundle in data.m2m_bundles] else: return [self.to_simple(val, options) for val in data.value] else: return self.to_simple(data.value, options) elif isinstance(data, datetime.datetime): return self.format_datetime(data) elif isinstance(data, datetime.date): return self.format_date(data) elif isinstance(data, datetime.time): return self.format_time(data) elif isinstance(data, bool): return data elif type(data) in (long, int, float): return data elif data is None: return None else: return force_unicode(data) def to_etree(self, data, options=None, name=None, depth=0): """ Given some data, converts that data to an ``etree.Element`` suitable for use in the XML output. """ if isinstance(data, (list, tuple)): element = Element(name or 'objects') if name: element = Element(name) element.set('type', 'list') else: element = Element('objects') for item in data: element.append(self.to_etree(item, options, depth=depth+1)) elif isinstance(data, dict): if depth == 0: element = Element(name or 'response') else: element = Element(name or 'object') element.set('type', 'hash') for (key, value) in data.iteritems(): element.append(self.to_etree(value, options, name=key, depth=depth+1)) elif isinstance(data, Bundle): element = Element(name or 'object') for field_name, field_object in data.data.items(): element.append(self.to_etree(field_object, options, name=field_name, depth=depth+1)) elif hasattr(data, 'dehydrated_type'): if getattr(data, 'dehydrated_type', None) == 'related' and data.is_m2m == False: if data.full: return self.to_etree(data.fk_resource, options, name, depth+1) else: return self.to_etree(data.value, options, name, depth+1) elif getattr(data, 'dehydrated_type', None) == 'related' and data.is_m2m == True: if data.full: element = Element(name or 'objects') for bundle in data.m2m_bundles: element.append(self.to_etree(bundle, options, bundle.resource_name, depth+1)) else: element = Element(name or 'objects') for value in data.value: element.append(self.to_etree(value, options, name, depth=depth+1)) else: return self.to_etree(data.value, options, name) else: element = Element(name or 'value') simple_data = self.to_simple(data, options) data_type = get_type_string(simple_data) if data_type != 'string': element.set('type', get_type_string(simple_data)) if data_type != 'null': if isinstance(simple_data, unicode): element.text = simple_data else: element.text = force_unicode(simple_data) return element def from_etree(self, data): """ Not the smartest deserializer on the planet. At the request level, it first tries to output the deserialized subelement called "object" or "objects" and falls back to deserializing based on hinted types in the XML element attribute "type". """ if data.tag == 'request': # if "object" or "objects" exists, return deserialized forms. elements = data.getchildren() for element in elements: if element.tag in ('object', 'objects'): return self.from_etree(element) return dict((element.tag, self.from_etree(element)) for element in elements) elif data.tag == 'object' or data.get('type') == 'hash': return dict((element.tag, self.from_etree(element)) for element in data.getchildren()) elif data.tag == 'objects' or data.get('type') == 'list': return [self.from_etree(element) for element in data.getchildren()] else: type_string = data.get('type') if type_string in ('string', None): return data.text elif type_string == 'integer': return int(data.text) elif type_string == 'float': return float(data.text) elif type_string == 'boolean': if data.text == 'True': return True else: return False else: return None def to_json(self, data, options=None): """ Given some Python data, produces JSON output. """ options = options or {} data = self.to_simple(data, options) return json.dumps(data, cls=djson.DjangoJSONEncoder, sort_keys=True, ensure_ascii=False) def from_json(self, content): """ Given some JSON data, returns a Python dictionary of the decoded data. """ return json.loads(content) def to_jsonp(self, data, options=None): """ Given some Python data, produces JSON output wrapped in the provided callback. """ options = options or {} return '%s(%s)' % (options['callback'], self.to_json(data, options)) def to_xml(self, data, options=None): """ Given some Python data, produces XML output. """ options = options or {} if lxml is None: raise ImproperlyConfigured("Usage of the XML aspects requires lxml.") return tostring(self.to_etree(data, options), xml_declaration=True, encoding='utf-8') def from_xml(self, content): """ Given some XML data, returns a Python dictionary of the decoded data. """ if lxml is None: raise ImproperlyConfigured("Usage of the XML aspects requires lxml.") return self.from_etree(parse_xml(StringIO(content)).getroot()) def to_yaml(self, data, options=None): """
kdt :param random_kdt_num_archs: Number of architectures for random kdt :return: None """ prefix_name = lambda prefix, name: name if prefix is None else f'{prefix}-{name}' try: fname = prefix_name(prefix, f'rank_change-{epoch}.pdf') fig = process_rank_data_nasbench(save_data, os.path.join(self.exp_dir, fname)) if self.writer: self.writer.add_figure(tag=fname.split('.')[0].replace('_','-'), figure=fig, global_step=epoch) except Exception as e: logging.warning(e) try: ranking_per_epoch = save_data['ranking_per_epoch'] except KeyError as e: logging.warning("save_data parsed into _save_ranking_results expect having key ranking_per_epoch" "; got {}. Using self.ranking_per_epoch instead".format(save_data.keys())) ranking_per_epoch = self.ranking_per_epoch # Compute Kendall tau for every epochs and save them into result. # IPython.embed() kd_tau, kd_tau_report = self._compute_kendall_tau(ranking_per_epoch) save_data['kendaltau'] = kd_tau if compute_kdt_before and 'ranking_per_epoch_before' in self.running_stats.keys(): kd_tau_before, kd_tau_before_report = self._compute_kendall_tau( self.running_stats['ranking_per_epoch_before']) save_data['kendaltau_before'] = kd_tau_before if self.writer is not None: p = sorted([elem[1] for elem in ranking_per_epoch[epoch]], key=itemgetter(2)) tensorboard_summarize_list( [e[0] for e in p], self.writer, prefix_name(prefix, 'eval_acc'), epoch, ascending=False ) tensorboard_summarize_list( [e[1] for e in p], self.writer, prefix_name(prefix, 'eval_obj'), epoch, ascending=True ) self.writer.add_scalar(prefix_name(prefix, 'eval_kendall_tau'), kd_tau_report, epoch) if compute_kdt_before and 'ranking_per_epoch_before' in self.running_stats.keys(): self.writer.add_scalar(prefix_name(prefix, 'eval_kendall_tau/original'), kd_tau_before_report, epoch) # add these and collect writer keys if any([sparse_kdt, percentile, random_kdt]): data = ranking_per_epoch[epoch] # ranking by valid accuracy model_ids = [elem[1][3] for elem in data] model_perfs = [elem[1][0] for elem in data] model_ids, model_perfs = sort_hash_perfs(model_ids, model_perfs) model_gt_perfs = self.search_space.query_gt_perfs(model_ids) sorted_indices = np.argsort(model_perfs)[::-1] sorted_model_ids = [model_ids[i] for i in sorted_indices] # IPython.embed(header='checking the saving here.') add_metrics = {} if sparse_kdt: if not isinstance(sparse_kdt_threshold, (tuple, list)): sparse_kdt_threshold = [sparse_kdt_threshold] for th in sparse_kdt_threshold: kdt = compute_sparse_kendalltau(model_ids, model_perfs, model_gt_perfs, threshold=th) add_metrics[prefix_name(prefix, f'eval_kendall_tau/sparse_{th}')] = kdt.correlation if percentile: for top_k in percentile_top_K: res = compute_percentile(sorted_model_ids, self.search_space.num_architectures, top_k, verbose=self.args.debug) mname = prefix_name(prefix, 'percentile') add_metrics[f'{mname}/min_{top_k}'] = res.min() add_metrics[f'{mname}/median_{top_k}'] = np.median(res) add_metrics[f'{mname}/max_{top_k}'] = res.max() logging.info("{} of top {}: {} - {} - {}".format( mname, top_k, res.min(), np.median(res), res.max())) if random_kdt: for subsample in random_kdt_num_archs: if subsample > len(sorted_model_ids): continue kdt_final = [] for _ in range(random_kdt_numrepeat): sub_model_indices = sorted( np.random.choice(np.arange(0, len(sorted_model_ids)), subsample, replace=False).tolist()) sub_model_ids = [sorted_model_ids[i] for i in sub_model_indices] kdt = kendalltau(sub_model_ids, list(reversed(sorted(sub_model_ids)))) kdt_final.append(kdt.correlation) kdt_final = np.asanyarray(kdt_final, dtype=np.float) mname = prefix_name(prefix, 'eval_kendall_tau') add_metrics[f'{mname}/random_{subsample}_min'] = kdt_final.min() add_metrics[f'{mname}/random_{subsample}_max'] = kdt_final.max() add_metrics[f'{mname}/random_{subsample}_mean'] = kdt_final.mean() logging.info("Random subsample {} archs: kendall tau {} ({},{})".format( subsample, kdt_final.mean(), kdt_final.min(), kdt_final.max())) # end of additioanl metrics if self.writer: for k, v in add_metrics.items(): self.writer.add_scalar(k, v, epoch) return save_data def _save_results(self, save_data, epoch, rank_details=False, filename='result.json', **kwargs): if rank_details: save_data = self._save_ranking_results(save_data, epoch, **kwargs) utils.save_json(save_data, os.path.join(self.exp_dir, filename)) # if hasattr(self, 'writer') and self.writer is not None: # self.writer.export_scalars_to_json(os.path.join(self.exp_dir, 'tb_scalars.json')) def save_results(self, epoch, rank_details=True): save_data = { 'ranking_per_epoch': self.ranking_per_epoch, 'trained_model_spec_per_steps': self.trained_model_spec_ids, } # for other to overwrite. return self._save_results(save_data, epoch, rank_details, sparse_kdt=True, percentile=True, random_kdt=True) def save_policy_results(self, epoch, sampled_arch_ids, sample_perfs=None): """Save policy results, used for policy such as DARTS, NAO and ENAS, to track the intermediate results Parameters ---------- epoch : int epoch number sampled_arch_ids : list List of sampled architecture IDs """ # Make sure this id pool is not None. model_spec_id_pool = sampled_arch_ids self.logger.info(f'saving policy sampled ID at epoch {epoch}') # save the eval arch pool. archs = [] for i in model_spec_id_pool: if isinstance(i, int): archs.append(self.search_space.topology_by_id(i)) else: archs.append(i) perfs = sample_perfs if sample_perfs else [0] * len(archs) for i, pos in enumerate(model_spec_id_pool): self.logger.info(f'particle gen id: {i}, performance: {perfs[i]}' f'spec: {archs[i]}, pos {pos}') self.save_arch_pool_performance(model_spec_id_pool, perfs, prefix='sampler') self.save_duplicate_arch_pool(prefix='sampler', epoch=epoch) if self.writer: # process data into list gt_perfs = self.search_space.query_gt_perfs(sampled_arch_ids) if gt_perfs: tensorboard_summarize_list(np.array(gt_perfs), writer=self.writer, key='policy/gt_acc', step=epoch, ascending=False) percentile = np.array(sampled_arch_ids) / self.search_space.num_architectures self.writer.add_scalar('policy/percentile_median', np.median(percentile), epoch) self.writer.add_scalar('policy/percentile_max', np.max(percentile), epoch) def check_should_save(self, epoch): """ invoke the evaluate step, this is also used to update epoch information. :param epoch: :return: """ self.running_stats['epoch'] = epoch self.epoch if self.args.extensive_save and epoch > 50: return any([(epoch - i) % self.args.save_every_epoch == 0 for i in range(3)]) return epoch % self.args.save_every_epoch == 0 and epoch > 0 # logging for normal one. def logging_at_epoch(self, acc, obj, epoch, keyword, display_dict=None): message = f'{keyword} at epoch {epoch} | loss: {obj:8.2f} | top_1_acc: {acc:8.2f}' if display_dict: for k, v in display_dict.items(): message += f' | {k}: {v} ' logging.info(message) self.running_stats['epoch'] = epoch if self.writer: self.writer.add_scalar(f'{keyword}/loss', obj, epoch) self.writer.add_scalar(f'{keyword}/top_1_acc', acc, epoch) if display_dict: for k, v in display_dict.items(): self.writer.add_scalar(f'{keyword}/{k}', v, epoch) def logging_maml(self, acc, obj, epoch, keyword, **kwargs): """ specifically for MAML procedures""" if isinstance(acc, tuple) and len(acc) == 2: self.logging_at_epoch(acc[0], obj[0], epoch, keyword + '_task', **kwargs) self.logging_at_epoch(acc[1], obj[1], epoch, keyword + '_meta', **kwargs) else: return self.logging_at_epoch(acc, obj, epoch, keyword, **kwargs) def save_checkpoint(self, model, optimizer, backup_epoch=None, other_dict=None): d = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'misc': self.running_stats } if self.amp: d['amp'] = self.amp.state_dict() if self.scheduler: d['scheduler'] = self.scheduler.state_dict() if other_dict: d.update(other_dict) utils.save_checkpoint_v2(d, self.exp_dir + '/checkpoint.pt', backup_weights_epoch=backup_epoch) def resume_from_checkpoint(self, path=None, epoch=None): """ resume the training and restoring the statistics. """ path = path or self.exp_dir if self.args.resume_path and os.path.exists(self.args.resume_path): path = self.args.resume_path if os.path.exists(os.path.join(path, 'checkpoint.pt')): res_dict = torch.load(os.path.join(path, 'checkpoint.pt')) elif os.path.exists(path) and '.pt' in path[-10:]: res_dict = torch.load(path) else: try: res_dict = utils.load_checkpoint_v2(path, epoch=epoch) except FileNotFoundError: return None if 'darts_nds' in path: # wrapping the keys to counter the changes. res_dict['model'] = darts_nds_map_state_dict_keys_from_non_wsbn_to_wsbn(res_dict['model']) # reload the running status. self.running_stats = res_dict['misc'] self.running_stats['epoch'] += 1 logging.info("=" * 80) logging.info(f"Resume training from epoch {self.epoch}... ") # logging.info(f"Reload to start from epoch {self.epoch}") if res_dict: if hasattr(self.parallel_model, 'module'): if not any([k.startswith('module') for k in res_dict['model'].keys()]): mk, uk = self.parallel_model.module.load_state_dict(res_dict['model'], strict=False) else: mk, uk = self.parallel_model.load_state_dict(res_dict['model'], strict=False) else: mk, uk = self.parallel_model.load_state_dict(res_dict['model'], strict=False) logging.info('model resumed...') if len(mk) > 0 and not self.args.debug: import warnings warnings.warn("Loading model state dicts error: missing keys {}".format(mk)) self.optimizer.load_state_dict(res_dict['optimizer']) logging.info(f'optimizer resumed...') if 'scheduler' in res_dict.keys(): self.scheduler.load_state_dict(res_dict['scheduler']) logging.info(f'LR scheduler resumed, lr={self.scheduler.get_last_lr()[0]}') else: # step to the epoch logging.info(f'LR scheduler resume to epoch number {self.epoch}') self.scheduler.step(self.epoch) if isinstance(self.scheduler, torch.optim.lr_scheduler.CosineAnnealingLR): self.scheduler.T_max = max(self.args.epochs_lr, self.args.epochs) self.scheduler.eta_min = self.args.learning_rate_min logging.info(self.scheduler.__dict__) else: # import ipdb; ipdb.set_trace() # raise NotImplementedError(f"TO support correct resume by override T_max. {self.scheduler}") logging.warn(f'Do not set the T_max for learning rate scheduler {self.scheduler}') if 'amp' in res_dict.keys(): self.amp.load_state_dict(res_dict['amp']) logging.info(f'amp resume') else: logging.info("No model file found here. start from scratch from epoch {}".format(self.epoch)) logging.info("=" * 80) # load eval results. result_path = os.path.join(path, 'result.json') if os.path.exists(result_path): save_data = utils.load_json(result_path) logging.info(f'loading results {save_data.keys()}.') for k, v in save_data.items(): self.running_stats[k] = v # process named tuple. logging.info("resume the Rank namedtuple") rp_dict = self.ranking_per_epoch self.running_stats['ranking_per_epoch'] = OrderedDict() for k, v in rp_dict.items(): self.ranking_per_epoch[int(k)] = [[i1, Rank(*i2)] for i1, i2 in v] return res_dict def save_duplicate_arch_pool(self, prefix, epoch): f_pool = os.path.join(self.exp_dir, f'{prefix}_arch_pool') f_perf = os.path.join(self.exp_dir, f'{prefix}_arch_pool.perf') if os.path.exists(f_pool): shutil.copy(f_pool, f_pool + '.{}'.format(epoch)) if os.path.exists(f_perf): shutil.copy(f_perf, f_perf + '.{}'.format(epoch)) def save_arch_pool_performance(self, archs, perfs, prefix='valid'): old_archs_sorted_indices = np.argsort(perfs)[::-1] old_archs = [archs[i] for i in old_archs_sorted_indices] old_archs_perf = [perfs[i] for i in old_archs_sorted_indices] with open(os.path.join(self.exp_dir, f'{prefix}_arch_pool'), 'w') as fa_latest: with open(os.path.join(self.exp_dir, f'{prefix}_arch_pool.perf'), 'w') as fp_latest: for arch_id, perf in zip(old_archs, old_archs_perf): if isinstance(arch_id, int): arch = self.search_space.process_archname_by_id(arch_id) else: arch = arch_id fa_latest.write('{}\n'.format(arch)) fp_latest.write('{}\n'.format(perf)) class CNNWarmupSearchPolicy(CNNSearchPolicy): # def sample_topologies_by_distance(self, num_architectures): # num_root = num_architectures // 10 # num_arch_per_root = 10 - 1 # ids = [] # distance = self.args.landmark_sample_distance # for _ in range(num_root): # mid, spec = self.search_space.random_topology() # arch = NAOParsingNASBench201.parse_model_spec_to_arch(spec) # ids.append(mid) # for _ in range(num_arch_per_root): # dist, counter = 0, 0 # n_spec = spec # nid = None # while dist <= distance and counter < 50: # counter += 1 # nid, n_spec = self.search_space.mutate_topology(n_spec) # n_arch = NAOParsingNASBench201.parse_model_spec_to_arch(n_spec) # dist = hamming_distance([n_arch], [arch]) # if nid: # logging.debug(f'sample architecture distance {dist}: ({nid}) {n_spec}') # ids.append(nid) # logging.debug(f'Sampling landmark by distance: {ids}') # return list(sorted(ids)) def initialize_misc(self, mode='warmup'): args = self.args # initialize path and logger if not args.continue_train: self.sub_directory_path = mode or 'warmup' self.exp_dir = os.path.join(self.args.main_path, self.sub_directory_path) utils.create_exp_dir(self.exp_dir) utils.save_json(args, self.exp_dir + '/args.json') if self.args.visualize: self.viz_dir_path = utils.create_viz_dir(self.exp_dir) if self.args.tensorboard: self.tb_dir = self.exp_dir tboard_dir = os.path.join(self.args.tboard_dir, self.sub_directory_path) self.writer = SummaryWriter(tboard_dir) # Set logger and directory. self.logger = utils.get_logger( "train_search", file_handler=utils.get_file_handler(os.path.join(self.exp_dir, 'log.txt')), level=logging.INFO if not args.debug else logging.DEBUG ) def run(self): """ Procedure of training. This run describes the
import asyncio import functools import collections import locale import threading from contextlib import contextmanager __all__ = ( "with_timeout", "StreamIO", "Throttle", "StreamThrottle", "ThrottleStreamIO", "END_OF_LINE", "DEFAULT_BLOCK_SIZE", "wrap_with_container", "AsyncStreamIterator", "AbstractAsyncLister", "AsyncListerMixin", "async_enterable", "DEFAULT_PORT", "DEFAULT_USER", "DEFAULT_PASSWORD", "DEFAULT_ACCOUNT", "setlocale", ) END_OF_LINE = "\r\n" DEFAULT_BLOCK_SIZE = 8192 DEFAULT_PORT = 21 DEFAULT_USER = "anonymous" DEFAULT_PASSWORD = "<PASSWORD>@" DEFAULT_ACCOUNT = "" def _with_timeout(name): def decorator(f): @functools.wraps(f) def wrapper(cls, *args, **kwargs): coro = f(cls, *args, **kwargs) timeout = getattr(cls, name) return asyncio.wait_for(coro, timeout, loop=cls.loop) return wrapper return decorator def with_timeout(name): """ Method decorator, wraps method with :py:func:`asyncio.wait_for`. `timeout` argument takes from `name` decorator argument or "timeout". :param name: name of timeout attribute :type name: :py:class:`str` :raises asyncio.TimeoutError: if coroutine does not finished in timeout Wait for `self.timeout` :: >>> def __init__(self, ...): ... ... self.timeout = 1 ... ... @with_timeout ... async def foo(self, ...): ... ... pass Wait for custom timeout :: >>> def __init__(self, ...): ... ... self.foo_timeout = 1 ... ... @with_timeout("foo_timeout") ... async def foo(self, ...): ... ... pass """ if isinstance(name, str): return _with_timeout(name) else: return _with_timeout("timeout")(name) class AsyncStreamIterator: def __init__(self, read_coro): self.read_coro = read_coro async def __aiter__(self): return self async def __anext__(self): data = await self.read_coro() if data: return data else: raise StopAsyncIteration class AsyncListerMixin: """ Add ability to `async for` context to collect data to list via await. :: >>> class Context(AsyncListerMixin): ... ... >>> results = await Context(...) """ async def _to_list(self): items = [] async for item in self: items.append(item) return items def __await__(self): return self._to_list().__await__() class AbstractAsyncLister(AsyncListerMixin): """ Abstract context with ability to collect all iterables into :py:class:`list` via `await` with optional timeout (via :py:func:`aioftp.with_timeout`) :param timeout: timeout for __aiter__, __anext__ operations :type timeout: :py:class:`None`, :py:class:`int` or :py:class:`float` :param loop: loop to use for timeouts :type loop: :py:class:`asyncio.BaseEventLoop` :: >>> class Lister(AbstractAsyncLister): ... ... @with_timeout ... async def __aiter__(self): ... ... ... @with_timeout ... async def __anext__(self): ... ... :: >>> async for block in Lister(...): ... ... :: >>> result = await Lister(...) >>> result [block, block, block, ...] """ def __init__(self, *, timeout=None, loop=None): self.timeout = timeout self.loop = loop or asyncio.get_event_loop() @with_timeout async def __aiter__(self): raise NotImplementedError @with_timeout async def __anext__(self): raise NotImplementedError def async_enterable(f): """ Decorator. Bring coroutine result up, so it can be used as async context :: >>> async def foo(): ... ... ... ... return AsyncContextInstance(...) ... ... ctx = await foo() ... async with ctx: ... ... # do :: >>> @async_enterable ... async def foo(): ... ... ... ... return AsyncContextInstance(...) ... ... async with foo() as ctx: ... ... # do ... ... ctx = await foo() ... async with ctx: ... ... # do """ @functools.wraps(f) def wrapper(*args, **kwargs): class AsyncEnterableInstance: async def __aenter__(self): self.context = await f(*args, **kwargs) return await self.context.__aenter__() async def __aexit__(self, *args, **kwargs): await self.context.__aexit__(*args, **kwargs) def __await__(self): return f(*args, **kwargs).__await__() return AsyncEnterableInstance() return wrapper def wrap_with_container(o): if isinstance(o, str): o = (o,) return o class StreamIO: """ Stream input/output wrapper with timeout. :param reader: stream reader :type reader: :py:class:`asyncio.StreamReader` :param writer: stream writer :type writer: :py:class:`asyncio.StreamWriter` :param timeout: socket timeout for read/write operations :type timeout: :py:class:`int`, :py:class:`float` or :py:class:`None` :param read_timeout: socket timeout for read operations, overrides `timeout` :type read_timeout: :py:class:`int`, :py:class:`float` or :py:class:`None` :param write_timeout: socket timeout for write operations, overrides `timeout` :type write_timeout: :py:class:`int`, :py:class:`float` or :py:class:`None` :param loop: loop to use for creating connection and binding with streams :type loop: :py:class:`asyncio.BaseEventLoop` """ def __init__(self, reader, writer, *, timeout=None, read_timeout=None, write_timeout=None, loop=None): self.reader = reader self.writer = writer self.read_timeout = read_timeout or timeout self.write_timeout = write_timeout or timeout self.loop = loop or asyncio.get_event_loop() @with_timeout("read_timeout") async def readline(self): """ :py:func:`asyncio.coroutine` Proxy for :py:meth:`asyncio.StreamReader.readline`. """ return await self.reader.readline() @with_timeout("read_timeout") async def read(self, count=-1): """ :py:func:`asyncio.coroutine` Proxy for :py:meth:`asyncio.StreamReader.read`. :param count: block size for read operation :type count: :py:class:`int` """ return await self.reader.read(count) @with_timeout("write_timeout") async def write(self, data): """ :py:func:`asyncio.coroutine` Combination of :py:meth:`asyncio.StreamWriter.write` and :py:meth:`asyncio.StreamWriter.drain`. :param data: data to write :type data: :py:class:`bytes` """ self.writer.write(data) await self.writer.drain() def close(self): """ Close connection. """ self.writer.close() class Throttle: """ Throttle for streams. :param loop: loop to use :type loop: :py:class:`asyncio.BaseEventLoop` :param limit: speed limit in bytes or :py:class:`None` for unlimited :type limit: :py:class:`int` or :py:class:`None` :param reset_rate: time in seconds for «round» throttle memory (to deal with float precision when divide) :type reset_rate: :py:class:`int` or :py:class:`float` """ def __init__(self, *, loop=None, limit=None, reset_rate=10): self.loop = loop or asyncio.get_event_loop() self._limit = limit self.reset_rate = reset_rate self._start = None self._sum = 0 async def wait(self): """ :py:func:`asyncio.coroutine` Wait until can do IO """ if self._limit is not None and self._limit > 0 and \ self._start is not None: now = self.loop.time() end = self._start + self._sum / self._limit await asyncio.sleep(max(0, end - now), loop=self.loop) def append(self, data, start): """ Count `data` for throttle :param data: bytes of data for count :type data: :py:class:`bytes` :param start: start of read/write time from :py:meth:`asyncio.BaseEventLoop.time` :type start: :py:class:`float` """ if self._limit is not None and self._limit > 0: if self._start is None: self._start = start if start - self._start > self.reset_rate: self._sum -= round((start - self._start) * self._limit) self._start = start self._sum += len(data) @property def limit(self): """ Throttle limit """ return self._limit @limit.setter def limit(self, value): """ Set throttle limit :param value: bytes per second :type value: :py:class:`int` or :py:class:`None` """ self._limit = value self._start = None self._sum = 0 def clone(self): """ Clone throttle without memory """ return Throttle( loop=self.loop, limit=self._limit, reset_rate=self.reset_rate ) def __repr__(self): return "{}(loop={!r}, limit={!r}, reset_rate={!r})".format( self.__class__.__name__, self.loop, self._limit, self.reset_rate ) class StreamThrottle(collections.namedtuple("StreamThrottle", "read write")): """ Stream throttle with `read` and `write` :py:class:`aioftp.Throttle` :param read: stream read throttle :type read: :py:class:`aioftp.Throttle` :param write: stream write throttle :type write: :py:class:`aioftp.Throttle` """ def clone(self): """ Clone throttles without memory """ return StreamThrottle( read=self.read.clone(), write=self.write.clone() ) @classmethod def from_limits(cls, read_speed_limit=None, write_speed_limit=None, *, loop=None): """ Simple wrapper for creation :py:class:`aioftp.StreamThrottle` :param read_speed_limit: stream read speed limit in bytes or :py:class:`None` for unlimited :type read_speed_limit: :py:class:`int` or :py:class:`None` :param write_speed_limit: stream write speed limit in bytes or :py:class:`None` for unlimited :type write_speed_limit: :py:class:`int` or :py:class:`None` :param loop: loop to use :type loop: :py:class:`asyncio.BaseEventLoop` """ loop = loop or asyncio.get_event_loop() return cls( read=Throttle( loop=loop, limit=read_speed_limit ), write=Throttle( loop=loop, limit=write_speed_limit ), ) class ThrottleStreamIO(StreamIO): """ Throttled :py:class:`aioftp.StreamIO`. `ThrottleStreamIO` is subclass of :py:class:`aioftp.StreamIO`. `throttles` attribute is dictionary of `name`: :py:class:`aioftp.StreamThrottle` pairs :param *args: positional arguments for :py:class:`aioftp.StreamIO` :param **kwargs: keyword arguments for :py:class:`aioftp.StreamIO` :param throttles: dictionary of throttles :type throttles: :py:class:`dict` with :py:class:`aioftp.Throttle` values :: >>> self.stream = ThrottleStreamIO( ... reader, ... writer, ... throttles={ ... "main": StreamThrottle( ... read=Throttle(...), ... write=Throttle(...) ... ) ... }, ... timeout=timeout, ... loop=loop ... ) """ def __init__(self, *args, throttles={}, **kwargs): super().__init__(*args, **kwargs) self.throttles = throttles async def wait(self, name): """ :py:func:`asyncio.coroutine` Wait for all throttles :param name: name of throttle to acquire ("read" or "write") :type name: :py:class:`str` """ waiters = [] for throttle in self.throttles.values(): curr_throttle = getattr(throttle, name) if curr_throttle.limit: waiters.append(curr_throttle.wait()) if waiters: await asyncio.wait(waiters, loop=self.loop) def append(self, name, data, start): """ Update timeout for all throttles :param name: name of throttle to append to ("read" or "write") :type name: :py:class:`str` :param data: bytes of data for count :type data: :py:class:`bytes` :param start: start of read/write time from :py:meth:`asyncio.BaseEventLoop.time` :type start: :py:class:`float` """ for throttle in self.throttles.values(): getattr(throttle, name).append(data, start) async def read(self, count=-1): """ :py:func:`asyncio.coroutine` :py:meth:`aioftp.StreamIO.read` proxy """ await self.wait("read") start = self.loop.time() data = await super().read(count) self.append("read", data, start) return data async def readline(self): """ :py:func:`asyncio.coroutine` :py:meth:`aioftp.StreamIO.readline` proxy """ await self.wait("read") start = self.loop.time() data = await super().readline() self.append("read", data, start) return data async def write(self, data): """ :py:func:`asyncio.coroutine` :py:meth:`aioftp.StreamIO.write` proxy """ await self.wait("write") start = self.loop.time() await super().write(data) self.append("write", data, start) async def __aenter__(self): return self async def __aexit__(self, *args): self.close() def iter_by_line(self): """ Read/iterate stream by line. :rtype: :py:class:`aioftp.AsyncStreamIterator` :: >>> async for line in stream.iter_by_line(): ... ... """ return AsyncStreamIterator(self.readline) def iter_by_block(self, count=DEFAULT_BLOCK_SIZE): """ Read/iterate stream by block. :rtype: :py:class:`aioftp.AsyncStreamIterator` :: >>> async for
z_range[1], nsim ) # Draw a random redshift from a uniform distribution self.z = uniform( low=z_range[0], high=z_range[1], size=nsim ) lightcurvelist = [] peakabsmagRlist = [] modelparamlist = [] subclasslist = [] modelindexlist = [] sourcenamelist = [] t0list = [] if sntype=='Ia': x0list = [] x1list = [] clist = [] else : amplitudelist = [] for isim in range(self.nsim): # Randomly draw an sncosmo model from the available list, according to # the predefined probability list, setting the SN sub-class for this # simulated SN imodel = choice( np.arange(len(modelset)), replace=True, p=self.SourceprobSet ) model = modelset[imodel] subclass = self.SubclassSet[imodel] z = self.z[isim] EBV = self.EBV[isim] Rv = self.Rv[isim] # Set the peak absolute magnitude according to the observed # luminosity functions, as defined in Table 3 of Graur:2014a; # and set the host extinction according to the 'mid' dust model # of Rodney:2014a. if subclass == 'Ia' : MR = normal( -19.37, 0.47 ) elif subclass == 'Ib' : MR = normal( -17.90, 0.90 ) elif subclass == 'Ic' : MR = normal( -18.30, 0.60 ) elif subclass == 'IIP' : MR = normal( -16.56, 0.80 ) elif subclass == 'IIL' : MR = normal( -17.66, 0.42 ) elif subclass == 'IIn' : MR = normal( -18.25, 1.00 ) model.set(z=z) model.set_source_peakabsmag( MR, 'bessellr', 'vega', cosmo=self.cosmo) modelindexlist.append( imodel ) subclasslist.append( subclass ) peakabsmagRlist.append( MR ) sourcenamelist.append( self.SourcenameSet[imodel] ) if subclass =='Ia' : x0 = model.get('x0') # TODO : use bifurcated gaussians for more realistic x1,c dist'ns x1 = normal(0., 1.) c = normal(0., 0.1) t0 = uniform( t0_range[0], t0_range[1] ) modelparams = {'z':z, 't0':t0, 'x0':x0, 'x1':x1, 'c':c, 'hostebv':EBV, 'hostr_v':Rv} t0list.append( t0 ) x0list.append( x0 ) x1list.append( x1 ) clist.append( c ) t0list.append( t0 ) else : amplitude = model.get('amplitude') t0 = uniform( t0_range[0], t0_range[1] ) modelparams = {'z':z, 't0':t0, 'amplitude':amplitude, 'hostebv':EBV, 'hostr_v':Rv } amplitudelist.append( amplitude ) t0list.append( t0 ) modelparamlist.append( modelparams ) # Generate one simulated SN: snlc = sncosmo.realize_lcs(self.observations, model, [ modelparams ], thresh=None)#, perfect=perfect ) lightcurvelist.append( snlc[0] ) self.lightcurves = lightcurvelist self.t0 = np.array( t0list ) self.modelindex = np.array( modelindexlist ) self.sourcename = np.array( sourcenamelist ) self.subclass = np.array( subclasslist ) self.modelparam = np.array( modelparamlist ) self.peakabsmagR = np.array( peakabsmagRlist ) if sntype=='Ia': self.x0 = np.array( x0list ) self.x1 = np.array( x1list ) self.c = np.array( clist ) else : self.amplitude = np.array( amplitudelist ) return def scumsum( a ): """ Sorted Cumulative Sum function : Construct an array "sumabove" such that the cell at index i in sumabove is equal to the sum of all cells from the input array "a" that have a cell value higher than a[i] """ # Collapse the array into 1 dimension sumabove = a.ravel() # Sort the raveled array by descending cell value iravelsorted = sumabove.argsort( axis=0 )[::-1] # Reassign each cell to be the cumulative sum of all # input array cells with a higher value : sumabove[iravelsorted] = sumabove[iravelsorted].cumsum() # Now unravel back into shape of original array and return return( sumabove.reshape( a.shape ) ) def sncosmo_sim( snroot='nebra', z_range=[1.4,2.3], t0_range=[-20,20], filterset='hst',nsim=1000, verbose=True, clobber=False ): """ Run sncosmo simulations for a color-color figure for SN Nebra """ import os import cPickle simIapkl='%s_SncosmoSim_Ia.pkl'%snroot simIIpkl='%s_SncosmoSim_II.pkl'%snroot simIbcpkl='%s_SncosmoSim_Ibc.pkl'%snroot if os.path.isfile( simIapkl ) and not clobber>1 : if verbose: print("Loading Ia simulation from pickle : %s"%simIapkl) fin = open( simIapkl, 'rb' ) simIa = cPickle.load( fin ) fin.close() else : if verbose: print("Running a new Ia simulation, then saving to pickle : %s"%simIapkl) simIa = SncosmoSim( 'Ia' , z_range=z_range, t0_range=t0_range, nsim=nsim, filterset=filterset ) fout = open( simIapkl, 'wb' ) cPickle.dump( simIa, fout, protocol=-1 ) fout.close() if os.path.isfile( simIIpkl ) and not clobber>1 : if verbose: print("Loading II simulation from pickle : %s"%simIIpkl) fin = open( simIIpkl, 'rb' ) simII = cPickle.load(fin) fin.close() else : if verbose: print("Running a new II simulation, then saving to pickle : %s"%simIIpkl) simII = SncosmoSim( 'II' , z_range=z_range, t0_range=t0_range, nsim=nsim, filterset=filterset ) fout = open( simIIpkl, 'wb' ) cPickle.dump( simII, fout, protocol=-1 ) fout.close() if os.path.isfile( simIbcpkl ) and not clobber>1 : if verbose: print("Loading Ibc simulation from pickle : %s"%simIbcpkl) fin = open( simIbcpkl, 'rb' ) simIbc = cPickle.load(fin) fin.close() else : if verbose: print("Running a new Ibc simulation, then saving to pickle : %s"%simIbcpkl) simIbc = SncosmoSim( 'Ibc' , z_range=z_range, t0_range=t0_range, nsim=nsim, filterset=filterset ) fout = open( simIbcpkl, 'wb' ) cPickle.dump( simIbc, fout, protocol=-1 ) fout.close() return( simIa, simII, simIbc ) def _plot_colorcolor_singlesim(snsim, band1, band2, band3, plotstyle='points', nbins=None, **plotargs): """ plot a color-color diagram :param snsim: :return: """ import numpy as np from matplotlib import pyplot as pl, cm, ticker igood = np.where([np.all(snlc['flux']>0) for snlc in snsim.lightcurves])[0] # ibad = np.where([np.any(snlc['flux']<=0) for snlc in snsim.lightcurves])[0] lclist = [snsim.lightcurves[i] for i in igood] mag = np.array([ -2.5*np.log10( np.ma.masked_less_equal(snlc['flux'],0,copy=False) )\ + snlc['zp'] for snlc in lclist ]) flt = np.array( [snlc['band'] for snlc in lclist] ) i1 = np.where((flt == band1)) i2 = np.where((flt == band2)) i3 = np.where((flt == band3)) ax = pl.gca() if plotstyle=='points': plotargfinal = {'marker':'o', 'alpha':0.3, 'color':'darkorange', 'ls':' '} plotargfinal.update( **plotargs ) ax.plot( mag[i1]-mag[i2], mag[i2]-mag[i3], **plotargfinal ) elif plotstyle.startswith('contour') or plotstyle=='gradient': xarray = mag[i2]-mag[i3] nsim = len(xarray) if nbins is None : nbins = int( np.sqrt( nsim ) ) if plotstyle.startswith('contour'): plotargfinal = {'levels':[0.0,0.68,0.95],'colors':['r','g','b'], 'ls':'-','alpha':0.5, 'extend':'neither'} else : plotargfinal = {'levels':np.arange(0.68,0.99,0.01), 'cmap':cm.Greys,'ls':'-', 'alpha':0.5, 'extend':'neither'} plotargfinal.update( **plotargs ) # Plot filled contours, showing the full extent of the population, # and contour lines containing 68% of the population. # First, bin the points into a 2-d histogram: # (Note that we reverse the x-y order here to get the binned arrays # plotted in the correct direction ) count,y,x = np.histogram2d( mag[i2]-mag[i3],mag[i1]-mag[i2], bins=nbins, range=__CONTOUR_RANGE__ ) # Renormalize relative to the sum of all SNe in this class : count /= count.sum() # Now set up an array 'cabove' such that the cell value in cabove[i,j] # is equal to the sum of all cells that have a value higher than c[i,j] cabove = scumsum( count ) # solid lines give probability contours at specified levels # (defaults to 0.68 for "1-sigma contours") #ax.contour( x[:-1], y[:-1], cabove, **plotargfinal ) ax.contourf( x[:-1], y[:-1], cabove, **plotargfinal ) ax.set_xlabel( '%s - %s' % (band1.upper(), band2.upper())) ax.set_ylabel( '%s - %s' % (band2.upper(), band3.upper())) #ax.xaxis.set_major_locator( ticker.MultipleLocator( 0.1 ) ) #ax.xaxis.set_minor_locator( ticker.MultipleLocator( 0.05 ) ) #ax.yaxis.set_major_locator( ticker.MultipleLocator( 0.1 ) ) #ax.yaxis.set_minor_locator( ticker.MultipleLocator( 0.05 ) ) return( ax ) def plotcontours( sim1, sim2, sim3=None, band1='f350lp', band2='f125w', band3='f160w', nbins=None, **plotargs ): """ Make a circle diagram, i.e. a med-wide band pseudo-color-color plot, showing both Type Ia and CC simulations over the given redshift range. :param snsim: :return: """ plotargs1 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR1], 'alpha':0.3 } plotargs1.update( **plotargs ) plotargs2 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR2], 'alpha':0.3 } plotargs2.update( **plotargs ) plotargs3 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR3], 'alpha':0.3 } plotargs3.update( **plotargs ) ax = _plot_colorcolor_singlesim(sim1, band1, band2, band3, nbins=nbins, plotstyle='contourf', **plotargs1) ax = _plot_colorcolor_singlesim(sim2, band1, band2, band3, nbins=nbins, plotstyle='contourf', **plotargs2) if sim3 is not None : ax = _plot_colorcolor_singlesim(sim3, band1, band2, band3, nbins=nbins, plotstyle='contourf', **plotargs3) return( ax ) def plotgradient( sim1, sim2, sim3=None, band1='f350lp', band2='f125w', band3='f160w', nbins=None, **plotargs ): """ Make a circle diagram, i.e. a med-wide band pseudo-color-color plot, showing both Type Ia and CC simulations over the given redshift range. :param snsim: :return: """ plotargs1 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR1], 'alpha':0.3 } plotargs1.update( **plotargs ) plotargs2 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR2], 'alpha':0.3 } plotargs2.update( **plotargs ) plotargs3 = { 'levels':[0.,0.68,0.95], 'colors':[_COLOR3], 'alpha':0.3 } plotargs3.update( **plotargs ) ax = _plot_colorcolor_singlesim(sim1, band1, band2, band3, nbins=nbins, plotstyle='gradient', **plotargs1) ax = _plot_colorcolor_singlesim(sim2, band1, band2, band3, nbins=nbins, plotstyle='gradient', **plotargs2) if sim3 is not None : ax = _plot_colorcolor_singlesim(sim3, band1, band2, band3, nbins=nbins, plotstyle='gradient', **plotargs3) return( ax ) def plotpoints(sim1, sim2, sim3=None, band1='f350lp', band2='f125w', band3='f160w', **plotargs): """ Make a circle diagram, i.e. a med-wide band pseudo-color-color plot, showing both Type Ia and CC simulations over the given redshift range. :param snsim: :return: """
'states', 'cells'], outputs=['output_policy', 'states', 'cells']) def apply_policy(self, input_image, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) output_policy = self.policy.apply(h) return output_policy, h, c @application(inputs=['input_image', 'states', 'cells'], outputs=['output_value']) def apply_value(self, input_image, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) output_value = self.value.apply(h) return output_value @application(inputs=['input_image', 'input_actions', 'input_reward', 'states', 'cells'], outputs=['total_error']) def cost(self, input_image, input_actions, input_reward, states, cells): h, c = self.lstm_block.apply(inputs=self.linear_to_lstm.apply( self.shared_a3c.apply(input_image)), states=states, cells=cells) h = h.sum(axis=1) c = c.sum(axis=1) p_value = self.policy.apply(h) log_prob = T.log(T.sum((p_value) * input_actions, axis=1, keepdims=True)) v_value = self.value.apply(h) p_loss = -log_prob * theano.gradient.disconnected_grad( input_reward[:, None] - v_value) entropy = -T.sum(p_value * T.log(p_value), axis=1, keepdims=True) # encourage action diversity by substracting entropy p_loss = p_loss - self.beta * entropy v_loss = T.sqr(input_reward[:, None] - v_value) total_error = T.mean(p_loss + (0.5 * v_loss)) return total_error def build_a3c_network(feature_maps=[16, 32], conv_sizes=[8, 4], pool_sizes=[4, 2], # FIXME: used image_shape elsewhere image_size=(80, 80), step_size=[4, 2], num_channels=10, mlp_hiddens=[256], num_actions=10, lr=0.00025, clip_c=0.8, border_mode='full', async_update=False): """ Builds the agent networks/functions Parameters: ----------- feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer conv_sizes: list of int # FIXME: change the name num of filters at each convolutional layer pooling sizes: list of int # FIXME: not used size of the pooling layer. One element per convolutional layer image_size : list of int width and height shape of the resized image step_size: list of int typically called stride num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. num_actions: int number of actions of the Actor (output of the policy network) lr : float learning rate of async rmsprop clip_c : float > 0 if gradient should be clipped. FIXME: actually not used border_mode : str full or valid are accepted by Blocks. Full will be usually employed. async_update: bool true if the network to be created is the shared worker or False if it is just a worker. """ # Activation functions conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] conv_subsample = [[step, step] for step in step_size] policy_and_value_net = PolicyAndValueA3C( conv_activations, num_channels, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(.0)) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net.shared_a3c.push_initialization_config() policy_and_value_net.push_initialization_config() # Xavier initialization for i in range(len(policy_and_value_net.shared_a3c.layers)): if i == 0: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((image_size[0] * image_size[1] * num_channels))) else: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((conv_sizes[(i-1)/2] * conv_sizes[(i-1)/2] * feature_maps[(i-1)/2]))) policy_and_value_net.shared_a3c.layers[i].bias_init = Constant(.1) for i in range(len(policy_and_value_net.shared_a3c. top_mlp.linear_transformations)): policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].weights_init = Uniform(std=1.0/np.sqrt((conv_sizes[-1] * conv_sizes[-1] * feature_maps[-1]))) policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].bias_init = Constant(.0) policy_and_value_net.policy.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.value.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.shared_a3c.initialize() policy_and_value_net.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) th_input_image = T.tensor4('input_image') th_reward = T.fvector('input_reward') th_actions = T.imatrix('input_actions') policy_network = policy_and_value_net.apply_policy(th_input_image) value_network = policy_and_value_net.apply_value(th_input_image) cost_network = policy_and_value_net.cost(th_input_image, th_actions, th_reward) # FIXME: added for debug, remove extracost_network = policy_and_value_net.extra_cost(th_input_image, th_actions, th_reward) # DEBUG cg_policy = ComputationGraph(policy_network) cg_value = ComputationGraph(value_network) # Perform some optimization step cg = ComputationGraph(cost_network) # FIXME: Remove cg_extra = ComputationGraph(extracost_network) # DEBUG # Print shapes of network parameters shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up training algorithm logger.info("Initializing training algorithm") cost_model = Model(cost_network) value_model = Model(value_network) if not async_update: # A threaded worker: steep gradient descent # A trick was done here to reuse existent bricks. The system performed # steepest descent to aggregate the gradients. However, the gradients # are averaged in a minibatch (instead of being just added). Therefore, # the agent is going to perform the following operations in each # minibatch: # 1) steepes descent with learning rate of 1 to only aggregate the # gradients. # 2) undo the update operation to obtain the avg. gradient : # gradient = parameter_before_minibatch - parameter_after_minibatch # 3) Multiply the gradient by the length of the minibatch to obtain the # exact gradient at each minibatch. algorithm = GradientDescent( cost=cost_network, parameters=cg.parameters, step_rule=Scale()) else: # Async update for the shared worker # The other part of the trick. A custom optimization block was # developed # here to receive as inputs the acc. gradients at each worker algorithm = AsyncUpdate(parameters=cg.parameters, inputs=cost_model.get_parameter_dict().keys(), step_rule=AsyncRMSProp(learning_rate=lr, # FIXME: put as # parameter decay_rate=0.99, max_scaling=10)) algorithm.initialize() f_cost = theano.function(inputs=cg.inputs, outputs=cg.outputs) f_policy = theano.function(inputs=cg_policy.inputs, outputs=cg_policy.outputs) f_value = theano.function(inputs=cg_value.inputs, outputs=cg_value.outputs) # f_extracost = theano.function(inputs=cg_extra.inputs, # outputs=cg_extra.outputs) return cost_model, f_policy, f_value, algorithm, f_cost def build_a3c_network_lstm(feature_maps=[16, 32], conv_sizes=[8, 4], pool_sizes=[4, 2], # FIXME: used image_shape elsewhere image_size=(80, 80), step_size=[4, 2], num_channels=10, mlp_hiddens=[256], lstm_output_units=256, num_actions=10, lr=0.00025, clip_c=0.8, border_mode='full', async_update=False): """ Builds the agent networks/functions Parameters: ----------- feature_maps : list of [int, int] size of the filters (width, height) at each convolutional layer conv_sizes: list of int # FIXME: change the name num of filters at each convolutional layer pooling sizes: list of int # FIXME: not used size of the pooling layer. One element per convolutional layer image_size : list of int width and height shape of the resized image step_size: list of int typically called stride num_channels : int input channels in the first convolution layer. It is the number of historic frames used as the input state of the agent. mlp_hiddens: list of int size of the output layer of the hidden layers. One element per hidden layer. lstm_output_units: int number of units in the lstm output num_actions: int number of actions of the Actor (output of the policy network) lr : float learning rate of async rmsprop clip_c : float > 0 if gradient should be clipped. FIXME: actually not used border_mode : str full or valid are accepted by Blocks. Full will be usually employed. async_update: bool true if the network to be created is the shared worker or False if it is just a worker. """ # Activation functions conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] conv_subsample = [[step, step] for step in step_size] policy_and_value_net = PolicyAndValueA3CLSTM( conv_activations, num_channels, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), mlp_hiddens=mlp_hiddens, lstm_output_units=lstm_output_units, number_actions=num_actions, mlp_activations=mlp_activations, conv_step=conv_subsample, border_mode='full', weights_init=Uniform(width=.2), biases_init=Constant(.0)) # We push initialization config to set different initialization schemes # for convolutional layers. policy_and_value_net.shared_a3c.push_initialization_config() policy_and_value_net.push_initialization_config() # Xavier initialization for i in range(len(policy_and_value_net.shared_a3c.layers)): if i == 0: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((image_size[0] * image_size[1] * num_channels))) else: policy_and_value_net.shared_a3c.layers[i].weights_init = Uniform( std=1.0/np.sqrt((conv_sizes[(i-1)/2] * conv_sizes[(i-1)/2] * feature_maps[(i-1)/2]))) policy_and_value_net.shared_a3c.layers[i].bias_init = Constant(.1) for i in range(len(policy_and_value_net.shared_a3c. top_mlp.linear_transformations)): policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].weights_init = Uniform(std=1.0/np.sqrt((conv_sizes[-1] * conv_sizes[-1] * feature_maps[-1]))) policy_and_value_net.shared_a3c.top_mlp.linear_transformations[ i].bias_init = Constant(.0) policy_and_value_net.linear_to_lstm.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.linear_to_lstm.biases_init = Constant(.0) policy_and_value_net.linear_to_lstm.initialize() policy_and_value_net.lstm_block.weights_init = Uniform( std=1.0/np.sqrt(mlp_hiddens[-1])) policy_and_value_net.lstm_block.biases_init = Constant(.0) policy_and_value_net.lstm_block.initialize() policy_and_value_net.policy.weights_init = Uniform( std=1.0/np.sqrt(lstm_output_units)) policy_and_value_net.value.weights_init = Uniform( std=1.0/np.sqrt(lstm_output_units)) policy_and_value_net.shared_a3c.initialize() policy_and_value_net.initialize() logging.info("Input dim: {} {} {}".format( *policy_and_value_net.shared_a3c.children[0].get_dim('input_'))) for i, layer in enumerate(policy_and_value_net.shared_a3c.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) th_input_image = T.tensor4('input_image') th_reward = T.fvector('input_reward') th_actions = T.imatrix('input_actions') th_states = T.matrix('states') th_cells = T.matrix('cells') policy_network = policy_and_value_net.apply_policy(th_input_image, th_states, th_cells) value_network = policy_and_value_net.apply_value(th_input_image, th_states, th_cells) cost_network = policy_and_value_net.cost(th_input_image, th_actions, th_reward, th_states, th_cells) cg_policy = ComputationGraph(policy_network) cg_value = ComputationGraph(value_network) print "POLICY INPUTS ", cg_policy.inputs print "VALUE INPUTS ", cg_value.inputs print "POLICY OUTPUTS ", cg_policy.outputs print "VALUE OUTPUTS ", cg_value.outputs # Perform some optimization step cg = ComputationGraph(cost_network) # Print shapes of network parameters shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Set up
<filename>tensorflow_model_analysis/view/util.py<gh_stars>0 # Lint as: python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """View API for Tensorflow Model Analysis.""" from __future__ import absolute_import from __future__ import division # Standard __future__ imports from __future__ import print_function import json import os from typing import Any, Dict, List, Optional, Text, Tuple, Union from absl import logging from tensorflow_model_analysis import config from tensorflow_model_analysis.metrics import example_count from tensorflow_model_analysis.metrics import metric_types from tensorflow_model_analysis.metrics import weighted_example_count from tensorflow_model_analysis.post_export_metrics import metric_keys from tensorflow_model_analysis.proto import metrics_for_slice_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer from tensorflow_model_analysis.view import view_types from google.protobuf import json_format def get_slicing_metrics( results: List[Tuple[slicer.SliceKeyType, Dict[Text, Any]]], slicing_column: Optional[Text] = None, slicing_spec: Optional[slicer.SingleSliceSpec] = None, ) -> List[Dict[Text, Union[Dict[Text, Any], Text]]]: """Util function that extracts slicing metrics from the results. If neither slicing_column nor slicing_spec is provided, get Overall. If slicing_column is set, use it to filter metrics from results. Otherwise, use slicing_spec for filtering. Args: results: A list of records. Each record is a tuple of (slice_name, {output_name: {sub_key: {metric_name, metric_value}}}). slicing_column: The column to filter the resuslts with. slicing_spec: The slicer.SingleSliceSpec to filter the resutls with. Returns: A list of {slice, metrics} Raises: ValueError: The provided slicing_column does not exist in results or more than one set of overall result is found. """ if slicing_column: data = find_all_slices(results, slicer.SingleSliceSpec(columns=[slicing_column])) elif not slicing_spec: data = find_all_slices(results, slicer.SingleSliceSpec()) else: data = find_all_slices(results, slicing_spec) slice_count = len(data) if not slice_count: if not slicing_spec: if not slicing_column: slicing_column = slicer.OVERALL_SLICE_NAME raise ValueError('No slices found for %s' % slicing_column) else: raise ValueError('No slices found for %s' % slicing_spec) elif not slicing_column and not slicing_spec and slice_count > 1: raise ValueError('More than one slice found for %s' % slicer.OVERALL_SLICE_NAME) else: return data def find_all_slices( results: List[Tuple[slicer.SliceKeyType, Dict[Text, Any]]], slicing_spec: slicer.SingleSliceSpec ) -> List[Dict[Text, Union[Dict[Text, Any], Text]]]: """Util function that extracts slicing metrics for the named column. Args: results: A list of records. Each record is a tuple of (slice_name, {metric_name, metric_value}). slicing_spec: The spec to slice on. Returns: A list of {slice, metrics} """ data = [] for (slice_key, metric_value) in results: if slicing_spec.is_slice_applicable(slice_key): data.append({ 'slice': slicer.stringify_slice_key(slice_key), 'metrics': metric_value }) return data # pytype: disable=bad-return-type def get_time_series( results: view_types.EvalResults, slicing_spec: slicer.SingleSliceSpec, display_full_path: bool ) -> List[Dict[Text, Union[Dict[Union[float, Text], Any], Text]]]: """Util function that extracts time series data for the specified slice. Args: results: A collection of EvalResult whose metrics should be visualized in a time series. slicing_spec: The spec specifying the slice to show in the time series. display_full_path: Whether to display the full path or just the file name. Returns: A list of dictionaries, where each dictionary contains the config and the metrics for the specified slice for a single eval run. Raises: ValueError: if the given slice spec matches more than one slice for any eval run in results or if the slicing spec matches nothing in all eval runs. """ data = [] for result in results.get_results(): matching_slices = find_all_slices(result.slicing_metrics, slicing_spec) slice_count = len(matching_slices) if slice_count == 1: data.append({ 'metrics': matching_slices[0]['metrics'], 'config': { 'modelIdentifier': _get_identifier(result.model_location, display_full_path), 'dataIdentifier': _get_identifier(result.data_location, display_full_path), } }) elif slice_count > 1: raise ValueError('Given slice spec matches more than one slice.') run_count = len(data) if not run_count: raise ValueError('Given slice spec has no matches in any eval run.') return data # pytype: disable=bad-return-type def _get_identifier(path: Text, use_full_path: bool) -> Text: """"Returns the desired identifier based on the path to the file. Args: path: The full path to the file. use_full_path: Whether to use the full path or just the file name as the identifier. Returns: A string containing the identifier """ return path if use_full_path else os.path.basename(path) # Passing the keys from python means that it is possible to reuse the plot UI # with other data by overwriting the config on python side. _SUPPORTED_PLOT_KEYS = { 'calibrationPlot': { 'metricName': 'calibrationHistogramBuckets', 'dataSeries': 'buckets', }, 'confusionMatrixPlot': { 'metricName': 'confusionMatrixAtThresholds', 'dataSeries': 'matrices', }, 'multiClassConfusionMatrixPlot': { 'metricName': 'multiClassConfusionMatrixAtThresholds', 'dataSeries': 'matrices', }, 'multiLabelConfusionMatrixPlot': { 'metricName': 'multiLabelConfusionMatrixAtThresholds', 'dataSeries': 'matrices', } } def _replace_nan_with_none( plot_data: Union[Dict[Text, Any], Text], plot_keys: Dict[Text, Dict[Text, Text]]) -> Union[Dict[Text, Any], Text]: """Replaces all instances of nan with None in plot data. This is necessary for Colab integration where we serializes the data into json string as NaN is not supported by json standard. Turning nan into None will make the value null once parsed. The visualization already handles falsy values by setting them to zero. Args: plot_data: The original plot data plot_keys: A dictionary containing field names of plot data. Returns: Transformed plot data where all nan has been replaced with None. """ output_metrics = {} for plot_type in plot_keys: metric_name = plot_keys[plot_type]['metricName'] if metric_name in plot_data: data_series_name = plot_keys[plot_type]['dataSeries'] if data_series_name in plot_data[metric_name]: data_series = plot_data[metric_name][data_series_name] outputs = [] for entry in data_series: output = {} for key in entry: value = entry[key] # When converting protocol buffer into dict, float value nan is # automatically converted into the string 'NaN'. output[key] = None if value == 'NaN' else value outputs.append(output) output_metrics[metric_name] = {data_series_name: outputs} return output_metrics def get_plot_data_and_config( results: List[Tuple[slicer.SliceKeyType, Dict[Text, Any]]], slicing_spec: slicer.SingleSliceSpec, output_name: Optional[Text] = None, class_id: Optional[int] = None, top_k: Optional[int] = None, k: Optional[int] = None, label: Optional[Text] = None, ) -> Tuple[Union[Dict[Text, Any], Text], Dict[Text, Union[Dict[Text, Dict[ Text, Text]], Text]]]: """Util function that extracts plot for a particular slice from the results. Args: results: A list of records. Each record is a tuple of (slice_name, {metric_name, metric_value}). slicing_spec: The slicer.SingleSliceSpec to identify the slice to fetch plot for. output_name: The name of the output. class_id: An int representing the class id if model is multi-class. top_k: The k used to compute prediction in the top k position. k: The k used to compute prediciton at the kth position. label: A partial label used to match a set of plots in the results. This is kept for backward compatibility. Returns: (plot_data, plot_config) for the specified slice. Note that plot_data should be of type Dict[Text, Any]. However, PyType can't figure it out. As a result, the annotation has to be Union[Dict[Text, Any], Text]. Raises: ValueError: The provided slicing_column does not exist in results or more than one result is found; or there is not plot data available; or there are multiple sets of plot while label is not provided; or label matches to more than one set of plots; or label does not match any set of plots. """ if label is not None and (output_name is not None or class_id is not None or top_k is not None or k is not None): # Plot key (specified by output_name and class_id / top k / k) and label ( # for backward compatibiility only) should not be provided together. raise ValueError('Do not specify both label and output_name / class_id') sub_key_oneof_check = 0 sub_key_id = None if class_id is not None: sub_key_oneof_check = sub_key_oneof_check + 1 sub_key_id = 'classId:' + str(class_id) if top_k is not None: sub_key_oneof_check = sub_key_oneof_check + 1 sub_key_id = 'topK:' + str(top_k) if k is not None: sub_key_oneof_check = sub_key_oneof_check + 1 sub_key_id = 'k:' + str(k) if sub_key_oneof_check > 1: raise ValueError('Up to one of class_id, top_k and k can be provided.') output_name = '' if output_name is None else output_name matching_slices = find_all_slices(results, slicing_spec) count = len(matching_slices) if count == 0: raise ValueError('No slice matching slicing spec is found.') elif count > 1: raise ValueError('More than one slice matching slicing spec is found.') target_slice = matching_slices[0] plot_config = { 'sliceName': target_slice['slice'], 'metricKeys': _SUPPORTED_PLOT_KEYS, } if output_name not in target_slice['metrics']: if output_name: raise ValueError('No plot data found for
E501 :return: The os_api_level of this Device. # noqa: E501 :rtype: integer """ return self._os_api_level @os_api_level.setter def os_api_level(self, os_api_level): """Sets the os_api_level of this Device. API level when applicable like in Android (example: 15). # noqa: E501 :param os_api_level: The os_api_level of this Device. # noqa: E501 :type: integer """ self._os_api_level = os_api_level @property def locale(self): """Gets the locale of this Device. # noqa: E501 Language code (example: en_US). # noqa: E501 :return: The locale of this Device. # noqa: E501 :rtype: string """ return self._locale @locale.setter def locale(self, locale): """Sets the locale of this Device. Language code (example: en_US). # noqa: E501 :param locale: The locale of this Device. # noqa: E501 :type: string """ if locale is None: raise ValueError("Invalid value for `locale`, must not be `None`") # noqa: E501 self._locale = locale @property def time_zone_offset(self): """Gets the time_zone_offset of this Device. # noqa: E501 The offset in minutes from UTC for the device time zone, including daylight savings time. # noqa: E501 :return: The time_zone_offset of this Device. # noqa: E501 :rtype: integer """ return self._time_zone_offset @time_zone_offset.setter def time_zone_offset(self, time_zone_offset): """Sets the time_zone_offset of this Device. The offset in minutes from UTC for the device time zone, including daylight savings time. # noqa: E501 :param time_zone_offset: The time_zone_offset of this Device. # noqa: E501 :type: integer """ if time_zone_offset is None: raise ValueError("Invalid value for `time_zone_offset`, must not be `None`") # noqa: E501 self._time_zone_offset = time_zone_offset @property def screen_size(self): """Gets the screen_size of this Device. # noqa: E501 Screen size of the device in pixels (example: 640x480). # noqa: E501 :return: The screen_size of this Device. # noqa: E501 :rtype: string """ return self._screen_size @screen_size.setter def screen_size(self, screen_size): """Sets the screen_size of this Device. Screen size of the device in pixels (example: 640x480). # noqa: E501 :param screen_size: The screen_size of this Device. # noqa: E501 :type: string """ self._screen_size = screen_size @property def app_version(self): """Gets the app_version of this Device. # noqa: E501 Application version name, e.g. 1.1.0 # noqa: E501 :return: The app_version of this Device. # noqa: E501 :rtype: string """ return self._app_version @app_version.setter def app_version(self, app_version): """Sets the app_version of this Device. Application version name, e.g. 1.1.0 # noqa: E501 :param app_version: The app_version of this Device. # noqa: E501 :type: string """ if app_version is None: raise ValueError("Invalid value for `app_version`, must not be `None`") # noqa: E501 self._app_version = app_version @property def carrier_name(self): """Gets the carrier_name of this Device. # noqa: E501 Carrier name (for mobile devices). # noqa: E501 :return: The carrier_name of this Device. # noqa: E501 :rtype: string """ return self._carrier_name @carrier_name.setter def carrier_name(self, carrier_name): """Sets the carrier_name of this Device. Carrier name (for mobile devices). # noqa: E501 :param carrier_name: The carrier_name of this Device. # noqa: E501 :type: string """ self._carrier_name = carrier_name @property def carrier_code(self): """Gets the carrier_code of this Device. # noqa: E501 Carrier country code (for mobile devices). # noqa: E501 :return: The carrier_code of this Device. # noqa: E501 :rtype: string """ return self._carrier_code @carrier_code.setter def carrier_code(self, carrier_code): """Sets the carrier_code of this Device. Carrier country code (for mobile devices). # noqa: E501 :param carrier_code: The carrier_code of this Device. # noqa: E501 :type: string """ self._carrier_code = carrier_code @property def carrier_country(self): """Gets the carrier_country of this Device. # noqa: E501 Carrier country. # noqa: E501 :return: The carrier_country of this Device. # noqa: E501 :rtype: string """ return self._carrier_country @carrier_country.setter def carrier_country(self, carrier_country): """Sets the carrier_country of this Device. Carrier country. # noqa: E501 :param carrier_country: The carrier_country of this Device. # noqa: E501 :type: string """ self._carrier_country = carrier_country @property def app_build(self): """Gets the app_build of this Device. # noqa: E501 The app's build number, e.g. 42. # noqa: E501 :return: The app_build of this Device. # noqa: E501 :rtype: string """ return self._app_build @app_build.setter def app_build(self, app_build): """Sets the app_build of this Device. The app's build number, e.g. 42. # noqa: E501 :param app_build: The app_build of this Device. # noqa: E501 :type: string """ if app_build is None: raise ValueError("Invalid value for `app_build`, must not be `None`") # noqa: E501 self._app_build = app_build @property def app_namespace(self): """Gets the app_namespace of this Device. # noqa: E501 The bundle identifier, package identifier, or namespace, depending on what the individual plattforms use, .e.g com.microsoft.example. # noqa: E501 :return: The app_namespace of this Device. # noqa: E501 :rtype: string """ return self._app_namespace @app_namespace.setter def app_namespace(self, app_namespace): """Sets the app_namespace of this Device. The bundle identifier, package identifier, or namespace, depending on what the individual plattforms use, .e.g com.microsoft.example. # noqa: E501 :param app_namespace: The app_namespace of this Device. # noqa: E501 :type: string """ self._app_namespace = app_namespace @property def live_update_release_label(self): """Gets the live_update_release_label of this Device. # noqa: E501 Label that is used to identify application code 'version' released via Live Update beacon running on device # noqa: E501 :return: The live_update_release_label of this Device. # noqa: E501 :rtype: string """ return self._live_update_release_label @live_update_release_label.setter def live_update_release_label(self, live_update_release_label): """Sets the live_update_release_label of this Device. Label that is used to identify application code 'version' released via Live Update beacon running on device # noqa: E501 :param live_update_release_label: The live_update_release_label of this Device. # noqa: E501 :type: string """ self._live_update_release_label = live_update_release_label @property def live_update_deployment_key(self): """Gets the live_update_deployment_key of this Device. # noqa: E501 Identifier of environment that current application release belongs to, deployment key then maps to environment like Production, Staging. # noqa: E501 :return: The live_update_deployment_key of this Device. # noqa: E501 :rtype: string """ return self._live_update_deployment_key @live_update_deployment_key.setter def live_update_deployment_key(self, live_update_deployment_key): """Sets the live_update_deployment_key of this Device. Identifier of environment that current application release belongs to, deployment key then maps to environment like Production, Staging. # noqa: E501 :param live_update_deployment_key: The live_update_deployment_key of this Device. # noqa: E501 :type: string """ self._live_update_deployment_key = live_update_deployment_key @property def live_update_package_hash(self): """Gets the live_update_package_hash of this Device. # noqa: E501 Hash of all files (ReactNative or Cordova) deployed to device via LiveUpdate beacon. Helps identify the Release version on device or need to download updates in future. # noqa: E501 :return: The live_update_package_hash of this Device. # noqa: E501 :rtype: string """ return self._live_update_package_hash @live_update_package_hash.setter def live_update_package_hash(self, live_update_package_hash): """Sets the live_update_package_hash of this Device. Hash of all files (ReactNative or Cordova) deployed to device via LiveUpdate beacon. Helps identify the Release version on device or need to download updates in future. # noqa: E501 :param live_update_package_hash: The live_update_package_hash of this Device. # noqa: E501 :type: string """ self._live_update_package_hash = live_update_package_hash @property def wrapper_runtime_version(self): """Gets the wrapper_runtime_version of this Device. # noqa: E501 Version of the wrapper technology framework (Xamarin runtime version or ReactNative or Cordova etc...). See wrapper_sdk_name to see if this version refers to Xamarin or ReactNative or other. # noqa: E501 :return: The wrapper_runtime_version of this Device. # noqa: E501 :rtype: string """ return self._wrapper_runtime_version @wrapper_runtime_version.setter def wrapper_runtime_version(self, wrapper_runtime_version): """Sets the wrapper_runtime_version of this Device. Version of the wrapper technology framework (Xamarin runtime version or ReactNative or Cordova etc...). See wrapper_sdk_name to see if this version refers to Xamarin or ReactNative or other. # noqa: E501 :param wrapper_runtime_version: The wrapper_runtime_version of this Device. # noqa: E501 :type: string """ self._wrapper_runtime_version = wrapper_runtime_version def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects
def pid_query def query_changes (self, * filter, ** kw) : """Return changes matching `filter` and `kw`""" return self.ems.changes (* filter, ** kw) # end def query_changes @TFL.Meta.Lazy_Method_RLV def r_incorrect (self, gauge = Gauge_Logger (), eiter = None) : """Returns all objects which are region-wise incorrect (i.e., violating the object's `region` predicates). """ with self.as_active () : return self._check_inv (gauge, "region", eiter) # end def i_incorrect def record_change (self, Change, * args, ** kw) : """Record the `Change` specified by `args` and `kw`""" with self.ems.save_point () : result = self.historian.record (Change, * args, ** kw) if result is not None : result.user = self.user self.ems.register_change (result) result.do_callbacks (self) return result # end def record_change def remove (self, entity) : """Remove `entity` from scope `self`""" assert (entity != self.root) Change = MOM.SCM.Change.Destroy with self.nested_change_recorder (Change, entity) : entity._destroy () self.ems.remove (entity) # end def remove def rename (self, entity, new_epk, renamer) : self.ems.rename (entity, new_epk, renamer) # end def rename def rollback (self, keep_zombies = False) : """Rollback and discard the outstanding changes.""" self.ems.rollback (keep_zombies) self.count_change () # end def rollback def rollback_pending_change (self) : """Rollback the last, not yet recorded, change but keep all earlier outstanding changes. """ changes = tuple (self.uncommitted_changes.changes) self.rollback (keep_zombies = True) for c in changes : c.redo (self) # end def rollback_pending_change def start_change_recorder (self) : if not self.historian._rec_stack : self.historian.push_recorder (MOM.SCM.Tracker.Preferred_Recorder) # end def start_change_recorder def stop_change_recorder (self) : if self.historian._rec_stack : self.historian.pop_recorder () # end def stop_change_recorder @TFL.Contextmanager def temp_change_recorder (self, Recorder) : with self.historian.temp_recorder (Recorder) : yield # end def temp_change_recorder def user_diff (self, other, ignore = ()) : """Return differences of entities `self` and `other` concerning user attributes.""" result = {} seen = set () def diff (lhs, rhs) : for e in lhs : k = e.epk_raw t = e.type_name if k not in seen : seen.add (k) o = rhs [t].instance (* k, raw = True) if o is None : diff = "Present in %s, missing in %s" % (lhs, rhs) else : diff = e.user_diff (o, ignore) if diff : result [(t, k)] = diff diff (self, other) diff (other, self) return result # end def user_diff def user_equal (self, other) : """Compare entities of `self` and `other` regarding user attributes.""" s_count = self.ems.count (self.MOM.Id_Entity.E_Type, strict = False) o_count = other.ems.count (other.MOM.Id_Entity.E_Type, strict = False) if s_count == o_count : for e in self : o = other [e.type_name].instance (* e.epk_raw, raw = True) if not (o and e.user_equal (o)) : break else : return True return False # end def user_equal def _check_inv (self, gauge, kind, eiter = None) : err_result = [] wrn_result = [] sk = self.MOM.Id_Entity.sort_key if eiter is None : eiter = self.entity_iter_gauge \ (gauge, label = "Checking %s invariants" % kind) for e in eiter : try : ews = e._pred_man.check_kind (kind, e) if ews.errors : err_result.append (e) if ews.warnings : wrn_result.append (e) except Exception : print \ ( "Error during evaluation of", kind, "invariant for ", e , file = sys.stderr ) traceback.print_exc () err_result.append (e) return MOM.Pred.Err_and_Warn_List \ (sorted (err_result, key = sk), sorted (wrn_result, key = sk)) # end def _check_inv def _get_etm (self, name) : try : result = self._etm [name] except KeyError : pn, _, rest = split_hst (name, ".") try : result = self._pkg_ns [pn] except KeyError : raise AttributeError (name) for k in rest.split (".") : result = getattr (result, k) self._etm [name] = result return result # end def _get_etm def _new_guid (self) : return str (uuid.uuid4 ()) # end def _new_guid def _new_id (self) : result = Scope.__id Scope.__id += 1 return result # end def _new_id def _outer_pgk_ns (self, outer, pns, _pkg_ns) : while True : outer, _, name = rsplit_hst (outer, ".") if (not outer) or outer in _pkg_ns : break pns = pns._Outer yield outer, pns # end def _outer_pgk_ns def _register_root (self, root) : if root is not None : if self.root is None : self.root = self._roots [root.type_base_name] = root self.root_pid = root.pid self.bname = root.ui_display else : raise TypeError ("Root was already set to %r" % (self.root, )) # end def _register_root def _run_init_callbacks (self) : for c in self.init_callback : c (self) self.app_type.run_init_callbacks (self) # end def _run_init_callbacks def _setup_pkg_ns (self, app_type) : _pkg_ns = self._pkg_ns = {} Pkg_NS = self.Pkg_NS for name, pns in sorted \ (pyk.iteritems (app_type.PNS_Map), key = TFL.Getter [0]) : _pkg_ns [name] = Pkg_NS (self, pns, name) for outer, pns in self._outer_pgk_ns (name, pns, _pkg_ns): _pkg_ns [outer] = Pkg_NS (self, pns, outer) # end def _setup_pkg_ns def _setup_root (self, app_type, root_spec) : RT = self.Root_Type if root_spec and RT : if callable (root_spec) : result = root_spec (self) if not isinstance (result, RT.Essence) : raise TypeError \ ( "%s returned %s %r, expected %s" % (root_spec, result.__class__, result, RT) ) else : result = RT (* root_spec) self._register_root (result) return result # end def _setup_root def __getattr__ (self, name) : if name.startswith ("__") and name.endswith ("__") : ### Placate inspect.unwrap of Python 3.5, ### which accesses `__wrapped__` and eventually throws `ValueError` return getattr (self.__super, name) if "." in name : if name in self._etm : return self._etm [name] else : return self._get_etm (name) else : for dict in self._roots, self._pkg_ns : try : result = dict [name] except KeyError : pass else : setattr (self, name, result) return result return getattr (self.app_type, name) # end def __getattr__ def __getitem__ (self, name) : if not isinstance (name, pyk.string_types) : name = name.type_name try : return self._get_etm (name) except AttributeError : raise KeyError (name) # end def __getitem__ def __iter__ (self) : """Generate all essential instances stored in database""" return iter (self.ems) # end def __iter__ def __str__ (self) : url = self._cleaned_url (str (self.db_url)) return "%s %s<%s>" % (self.__class__.__name__, self.bname, url) # end def __str__ # end class Scope atexit.register (Scope.destroy_all) ### «text» ### start of documentation __doc__ = """ .. class:: Scope `MOM.Scope` maps the object model of a specific derived :class:`~_MOM.App_Type.App_Type` to a concrete database storing instances of the essential objects and links. `Scope` instances cannot be created by just calling the `Scope` class, like normal Python types. Instead, :meth:`load` and :meth:`new` create scopes connected to existing or newly created databases, respectively. For each package namespace defining essential object types, `Scope` provides an attribute with the name of the package namespace. That attribute lets one access all essential types of the package namespace. For instance, if the scope contains a package namespace ``PAP``, one can access ``scope.PAP.Person`` or ``scope.PAP.Phone``. Each attribute of ``scope.PAP`` refers to the :class:`~_MOM.E_Type_Manager.Object` or :class:`~_MOM.E_Type_Manager.Link` instance of the corresponding essential type. **`Scope` provides the attributes:** .. attribute:: app_type The derived app_type of the scope. .. attribute:: changes The number of changes up to now. .. attribute:: changes_to_save The number of outstanding changes waiting to be commited (or rollbacked). .. attribute:: db_meta_data Meta data about the scope and its database. .. attribute:: db_url The URL of the database the scope is connected to. .. attribute:: max_cid The currently maximum change-id. .. attribute:: max_pid The currently maximum permanent id in use. .. attribute:: relevant_roots A list of all relevant roots of the application. A relevant root is an etype that has its own table in the database. .. attribute:: uncommitted_changes The list of outstanding changes waiting to be commited (or rollbacked). **`Scope` provides the class methods:** .. automethod:: load .. automethod:: new **`Scope` provides the class and instance methods:** .. automethod:: add_after_commit_callback(* callbacks) .. automethod:: add_init_callback(* callbacks) .. automethod:: add_kill_callback(* callbacks) **`Scope` provides the instance methods:** .. automethod:: add .. automethod:: as_active .. automethod:: commit .. automethod:: copy .. automethod:: destroy .. automethod:: entity_iter .. automethod:: entity_iter_gauge .. automethod:: entity_type .. automethod:: g_incorrect() .. automethod:: has_changed .. automethod:: i_incorrect() .. automethod:: nested_change_recorder .. automethod::
#!/usr/bin/env python3 """ USBI2C AVR Miner 3.1 © MIT licensed Modified by JK-Rolling 20220101 Full credit belong to https://duinocoin.com https://github.com/revoxhere/duino-coin Duino-Coin Team & Community 2019-2022 """ from os import _exit, mkdir from os import name as osname from os import path from os import system as ossystem from platform import machine as osprocessor from platform import system import sys from configparser import ConfigParser from pathlib import Path from json import load as jsonload import json from locale import LC_ALL, getdefaultlocale, getlocale, setlocale from re import sub from socket import socket from datetime import datetime from statistics import mean from signal import SIGINT, signal from time import ctime, sleep, strptime, time import pip from subprocess import DEVNULL, Popen, check_call, call from threading import Thread from threading import Lock as thread_lock from threading import Semaphore import base64 as b64 import os printlock = Semaphore(value=1) serlock = Semaphore(value=1) # Python <3.5 check f"Your Python version is too old. Duino-Coin Miner requires version 3.6 or above. Update your packages and try again" def install(package): try: pip.main(["install", package]) except AttributeError: check_call([sys.executable, '-m', 'pip', 'install', package]) call([sys.executable, __file__]) try: from serial import Serial import serial.tools.list_ports except ModuleNotFoundError: print("Pyserial is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install pyserial") install('pyserial') try: import requests except ModuleNotFoundError: print("Requests is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install requests") install('requests') try: from colorama import Back, Fore, Style, init init(autoreset=True) except ModuleNotFoundError: print("Colorama is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install colorama") install("colorama") try: from pypresence import Presence except ModuleNotFoundError: print("Pypresence is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install pypresence") install("pypresence") def now(): return datetime.now() def port_num(com): #return str(''.join(filter(str.isdigit, com))) return com class Settings: VER = '3.1' SOC_TIMEOUT = 45 REPORT_TIME = 60 AVR_TIMEOUT = 10 # diff 16 * 100 / 269 h/s = 5.94 s DELAY_START = 60 # 60 seconds start delay between worker to help kolka sync efficiency drop CRC8_EN = "y" BAUDRATE = 115200 DATA_DIR = "Duino-Coin AVR Miner " + str(VER) SEPARATOR = "," USBI2C_SEPARATOR = ":" USBI2C_EOL = "$" ENCODING = "utf-8" try: # Raspberry Pi latin users can't display this character "‖".encode(sys.stdout.encoding) BLOCK = " ‖ " except: BLOCK = " | " PICK = "" COG = " @" if (osname != "nt" or bool(osname == "nt" and os.environ.get("WT_SESSION"))): # Windows' cmd does not support emojis, shame! # And some codecs same, for example the Latin-1 encoding don`t support emoji try: "⛏ ⚙".encode(sys.stdout.encoding) # if the terminal support emoji PICK = " ⛏" COG = " ⚙" except UnicodeEncodeError: # else PICK = "" COG = " @" def check_mining_key(user_settings): user_settings = user_settings["AVR Miner"] if user_settings["mining_key"] != "None": key = b64.b64decode(user_settings["mining_key"]).decode('utf-8') else: key = '' response = requests.get( "https://server.duinocoin.com/mining_key" + "?u=" + user_settings["username"] + "&k=" + key, timeout=10 ).json() if response["success"] and not response["has_key"]: # if the user doesn't have a mining key user_settings["mining_key"] = "None" config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") sleep(1.5) return if not response["success"]: if user_settings["mining_key"] == "None": pretty_print( "sys0", get_string("mining_key_required"), "warning") mining_key = input("Enter your mining key: ") user_settings["mining_key"] = b64.b64encode(mining_key.encode("utf-8")).decode('utf-8') config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") sleep(1.5) check_mining_key(config) else: pretty_print( "sys0", get_string("invalid_mining_key"), "error") retry = input("You want to retry? (y/n): ") if retry == "y" or retry == "Y": mining_key = input("Enter your mining key: ") user_settings["mining_key"] = b64.b64encode(mining_key.encode("utf-8")).decode('utf-8') config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") sleep(1.5) check_mining_key(config) else: return class Client: """ Class helping to organize socket connections """ def connect(pool: tuple): s = socket() s.settimeout(Settings.SOC_TIMEOUT) s.connect((pool)) return s def send(s, msg: str): sent = s.sendall(str(msg).encode(Settings.ENCODING)) return True def recv(s, limit: int = 128): data = s.recv(limit).decode(Settings.ENCODING).rstrip("\n") return data def fetch_pool(): while True: pretty_print("net0", " " + get_string("connection_search"), "info") try: response = requests.get( "https://server.duinocoin.com/getPool", timeout=10).json() if response["success"] == True: pretty_print("net0", get_string("connecting_node") + response["name"], "info") NODE_ADDRESS = response["ip"] NODE_PORT = response["port"] debug_output(f"Fetched pool: {response['name']}") return (NODE_ADDRESS, NODE_PORT) elif "message" in response: pretty_print(f"Warning: {response['message']}" + ", retrying in 15s", "warning", "net0") sleep(15) else: raise Exception( "no response - IP ban or connection error") except Exception as e: if "Expecting value" in str(e): pretty_print("net0", get_string("node_picker_unavailable") + f"15s {Style.RESET_ALL}({e})", "warning") else: pretty_print("net0", get_string("node_picker_error") + f"15s {Style.RESET_ALL}({e})", "error") sleep(15) class Donate: def load(donation_level): if donation_level > 0: if osname == 'nt': if not Path( f"{Settings.DATA_DIR}/Donate.exe").is_file(): url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableWindows.exe') r = requests.get(url, timeout=15) with open(f"{Settings.DATA_DIR}/Donate.exe", 'wb') as f: f.write(r.content) elif osname == "posix": if osprocessor() == "aarch64": url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableAARCH64') elif osprocessor() == "armv7l": url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableAARCH32') else: url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableLinux') if not Path( f"{Settings.DATA_DIR}/Donate").is_file(): r = requests.get(url, timeout=15) with open(f"{Settings.DATA_DIR}/Donate", "wb") as f: f.write(r.content) def start(donation_level): if osname == 'nt': cmd = (f'cd "{Settings.DATA_DIR}" & Donate.exe ' + '-o stratum+tcp://xmg.minerclaim.net:3333 ' + f'-u revox.donate -p x -s 4 -e {donation_level*3}') elif osname == 'posix': cmd = (f'cd "{Settings.DATA_DIR}" && chmod +x Donate ' + '&& nice -20 ./Donate -o ' + 'stratum+tcp://xmg.minerclaim.net:3333 ' + f'-u revox.donate -p x -s 4 -e {donation_level*3}') if donation_level <= 0: pretty_print( 'sys0', Fore.YELLOW + get_string('free_network_warning').lstrip() + get_string('donate_warning').replace("\n", "\n\t\t") + Fore.GREEN + 'https://duinocoin.com/donate' + Fore.YELLOW + get_string('learn_more_donate'), 'warning') sleep(5) if donation_level > 0: debug_output(get_string('starting_donation')) donateExecutable = Popen(cmd, shell=True, stderr=DEVNULL) pretty_print('sys0', get_string('thanks_donation').replace("\n", "\n\t\t"), 'error') shares = [0, 0, 0] bad_crc8 = 0 i2c_retry_count = 0 hashrate_mean = [] ping_mean = [] diff = 0 shuffle_ports = "y" donator_running = False job = '' debug = 'n' discord_presence = 'y' rig_identifier = 'None' donation_level = 0 hashrate = 0 config = ConfigParser() mining_start_time = time() if not path.exists(Settings.DATA_DIR): mkdir(Settings.DATA_DIR) if not Path(Settings.DATA_DIR + '/Translations.json').is_file(): url = ('https://raw.githubusercontent.com/' + 'revoxhere/' + 'duino-coin/master/Resources/' + 'AVR_Miner_langs.json') r = requests.get(url, timeout=5) with open(Settings.DATA_DIR + '/Translations.json', 'wb') as f: f.write(r.content) # Load language file with open(Settings.DATA_DIR + '/Translations.json', 'r', encoding='utf8') as lang_file: lang_file = jsonload(lang_file) # OS X invalid locale hack if system() == 'Darwin': if getlocale()[0] is None: setlocale(LC_ALL, 'en_US.UTF-8') try: if not Path(Settings.DATA_DIR + '/Settings.cfg').is_file(): locale = getdefaultlocale()[0] if locale.startswith('es'): lang = 'spanish' elif locale.startswith('sk'): lang = 'slovak' elif locale.startswith('ru'): lang = 'russian' elif locale.startswith('pl'): lang = 'polish' elif locale.startswith('de'): lang = 'german' elif locale.startswith('fr'): lang = 'french' elif locale.startswith('tr'): lang = 'turkish' elif locale.startswith('it'): lang = 'italian' elif locale.startswith('pt'): lang = 'portuguese' elif locale.startswith('zh'): lang = 'chinese_simplified' elif locale.startswith('th'): lang = 'thai' elif locale.startswith('az'): lang = 'azerbaijani' elif locale.startswith('nl'): lang = 'dutch' elif locale.startswith('ko'): lang = 'korean' elif locale.startswith("id"): lang = "indonesian" elif locale.startswith("cz"): lang = "czech" else: lang = 'english' else: try: config.read(Settings.DATA_DIR + '/Settings.cfg') lang = config["AVR Miner"]['language'] except Exception: lang = 'english' except: lang = 'english' def get_string(string_name: str): if string_name in lang_file[lang]: return lang_file[lang][string_name] elif string_name in lang_file['english']: return lang_file['english'][string_name] else: return string_name def get_prefix(symbol: str, val: float, accuracy: int): """ H/s, 1000 => 1 kH/s """ if val >= 1_000_000_000_000: # Really? val = str(round((val / 1_000_000_000_000), accuracy)) + " T" elif val >= 1_000_000_000: val = str(round((val / 1_000_000_000), accuracy)) + " G" elif val >= 1_000_000: val = str(round((val / 1_000_000), accuracy)) + " M" elif val >= 1_000: val = str(round((val / 1_000))) + " k" else: if symbol: val = str(round(val)) + " " else: val = str(round(val)) return val + symbol def debug_output(text: str): if debug == 'y': print(Style.RESET_ALL + Fore.WHITE + now().strftime(Style.DIM + '%H:%M:%S.%f ') + Style.NORMAL + f'DEBUG: {text}') def ondemand_print(text: str): print(Style.RESET_ALL + Fore.WHITE + now().strftime(Style.DIM + '%H:%M:%S.%f ') + Style.NORMAL + f'DEBUG: {text}') def title(title: str): if osname == 'nt': """ Changing the title in Windows' cmd is easy - just use the built-in title command """ ossystem('title ' + title) else: """ Most *nix terminals use this escape sequence to change the console window title """ try: print('\33]0;' + title +
<reponame>henriktao/pulumi-azure # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['SubscriptionArgs', 'Subscription'] @pulumi.input_type class SubscriptionArgs: def __init__(__self__, *, subscription_name: pulumi.Input[str], alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workload: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Subscription resource. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ pulumi.set(__self__, "subscription_name", subscription_name) if alias is not None: pulumi.set(__self__, "alias", alias) if billing_scope_id is not None: pulumi.set(__self__, "billing_scope_id", billing_scope_id) if subscription_id is not None: pulumi.set(__self__, "subscription_id", subscription_id) if tags is not None: pulumi.set(__self__, "tags", tags) if workload is not None: pulumi.set(__self__, "workload", workload) @property @pulumi.getter(name="subscriptionName") def subscription_name(self) -> pulumi.Input[str]: """ The Name of the Subscription. This is the Display Name in the portal. """ return pulumi.get(self, "subscription_name") @subscription_name.setter def subscription_name(self, value: pulumi.Input[str]): pulumi.set(self, "subscription_name", value) @property @pulumi.getter def alias(self) -> Optional[pulumi.Input[str]]: """ The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "alias") @alias.setter def alias(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "alias", value) @property @pulumi.getter(name="billingScopeId") def billing_scope_id(self) -> Optional[pulumi.Input[str]]: """ The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. """ return pulumi.get(self, "billing_scope_id") @billing_scope_id.setter def billing_scope_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "billing_scope_id", value) @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Subscription. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "subscription_id") @subscription_id.setter def subscription_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_id", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the Subscription. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter def workload(self) -> Optional[pulumi.Input[str]]: """ The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "workload") @workload.setter def workload(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "workload", value) @pulumi.input_type class _SubscriptionState: def __init__(__self__, *, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tenant_id: Optional[pulumi.Input[str]] = None, workload: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Subscription resources. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] tenant_id: The ID of the Tenant to which the subscription belongs. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ if alias is not None: pulumi.set(__self__, "alias", alias) if billing_scope_id is not None: pulumi.set(__self__, "billing_scope_id", billing_scope_id) if subscription_id is not None: pulumi.set(__self__, "subscription_id", subscription_id) if subscription_name is not None: pulumi.set(__self__, "subscription_name", subscription_name) if tags is not None: pulumi.set(__self__, "tags", tags) if tenant_id is not None: pulumi.set(__self__, "tenant_id", tenant_id) if workload is not None: pulumi.set(__self__, "workload", workload) @property @pulumi.getter def alias(self) -> Optional[pulumi.Input[str]]: """ The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "alias") @alias.setter def alias(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "alias", value) @property @pulumi.getter(name="billingScopeId") def billing_scope_id(self) -> Optional[pulumi.Input[str]]: """ The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. """ return pulumi.get(self, "billing_scope_id") @billing_scope_id.setter def billing_scope_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "billing_scope_id", value) @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Subscription. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "subscription_id") @subscription_id.setter def subscription_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_id", value) @property @pulumi.getter(name="subscriptionName") def subscription_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the Subscription. This is the Display Name in the portal. """ return pulumi.get(self, "subscription_name") @subscription_name.setter def subscription_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the Subscription. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tenantId") def tenant_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Tenant to which the subscription belongs. """ return pulumi.get(self, "tenant_id") @tenant_id.setter def tenant_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tenant_id", value) @property @pulumi.getter def workload(self) -> Optional[pulumi.Input[str]]: """ The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "workload") @workload.setter def workload(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "workload", value) class Subscription(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workload: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an Alias for a Subscription - which adds an Alias to an existing Subscription, allowing it to be managed in the provider - or create a new Subscription with a new Alias. > **NOTE:** Destroying a Subscription controlled by this resource will place the Subscription into a cancelled state. It is possible to re-activate a subscription within 90-days of cancellation, after which time the Subscription is irrevocably deleted, and the Subscription ID cannot be re-used. For further information see [here](https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription#what-happens-after-subscription-cancellation). Users can optionally delete a Subscription once 72 hours have passed, however, this functionality is not suitable for this provider. A `Deleted` subscription cannot be reactivated. > **NOTE:** It is not possible to destroy (cancel) a subscription if it contains resources. If resources are present that are not managed by the provider then these will need to be removed before the Subscription can be destroyed. > **NOTE:** Azure supports Multiple Aliases per Subscription, however, to reliably manage this resource in this provider only a single Alias is supported. ## Example Usage ### Creating A New Alias And Subscription For An Enrollment Account ```python import pulumi import pulumi_azure as azure example_enrollment_account_scope = azure.billing.get_enrollment_account_scope(billing_account_name="1234567890", enrollment_account_name="0123456") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example EA Subscription", billing_scope_id=example_enrollment_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Customer Account ```python import pulumi import pulumi_azure as azure example_mca_account_scope = azure.billing.get_mca_account_scope(billing_account_name="e879cf0f-2b4d-5431-109a-f72fc9868693:024cabf4-7321-4cf9-be59-df0c77ca51de_2019-05-31", billing_profile_name="PE2Q-NOIT-BG7-TGB", invoice_section_name="MTT4-OBS7-PJA-TGB") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example MCA Subscription", billing_scope_id=example_mca_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Partner Account ```python import pulumi import
}) // SV length sizeChart .width(plotw).height(ploth).gap(1) .margins({top: 10, right: 50, bottom: 30, left: 40}) .x(d3.scaleLinear().domain([0, sizeKeys.length])) .round(Math.floor) .brushOn(true) .elasticX(true) .dimension(sizeDimension) .group(index_group(nonEmptySizeGroup)) .elasticY(true) .yAxisLabel('Count') .filterPrinter(function (filters) { var filter = filters[0] return sizeKeys[filter[0]] + ' - ' + sizeKeys[filter[1]] }) // adds left padding to plots inside filtering panel .on('renderlet', function() { d3.selectAll("svg") .classed("pl-3", true) }) // limit the number of labels along x-axis sizeChart.xAxis().ticks(10) sizeChart.yAxis().ticks(5) // update labels from keys sizeChart.xAxis().tickFormat(function(v) { return sizeKeys[v] }) // update the status format for this chart sizeChart.filterHandler(function (dimension, filters) { if (filters.length === 0) { // the empty case (no filtering) dimension.filter(null) } else { dimension.filterRange([sizeKeys[filters[0][0]], sizeKeys[filters[0][1]]]) } return filters }) // sv type typeChart .width(plotw).height(ploth).gap(1) .margins({top: 10, right: 50, bottom: 30, left: 40}) .x(d3.scaleBand()) .xUnits(dc.units.ordinal) .elasticX(true) .elasticY(true) .dimension(typeDimension) .group(nonEmptyTypeGroup) .yAxisLabel('Count') typeChart.yAxis().ticks(5) // chromosome chromChart .width(plotw).height(ploth).gap(1) .margins({top: 10, right: 50, bottom: 30, left: 40}) .x(d3.scaleBand()) .xUnits(dc.units.ordinal) .yAxisLabel('Count') .elasticX(true) .elasticY(true) .dimension(chromDimension) .group(nonEmptyChromGroup) .ordering((d) => { v = parseInt(d.key) if (v) { return v } else { return d.key } }) chromChart.yAxis().ticks(5) // overlaps if (annotation) { var overlapsDimension = ndx.dimension((d) => { return d.overlaps }) var overlapsGroup = overlapsDimension.group().reduceCount() var nonEmptyOverlapsGroup = remove_empty_bins(overlapsGroup) overlapsChart = dc.barChart("#overlaps-chart") overlapsChart .width(plotw).height(ploth).gap(1) .margins({top: 10, right: 50, bottom: 30, left: 40}) .x(d3.scaleBand()) .xUnits(dc.units.ordinal) .elasticX(true) .elasticY(true) .dimension(overlapsDimension) .group(nonEmptyOverlapsGroup) .yAxisLabel('Count') overlapsChart.yAxis().ticks(5) } variantCount .crossfilter(ndx) .groupAll(all) // (_optional_) `.html` sets different html when some records or all records are selected. // `.html` replaces everything in the anchor with the html given using the following function. // `%filter-count` and `%total-count` are replaced with the values obtained. .html({ some: '<strong>%filter-count</strong> selected out of <strong>%total-count</strong> records' + ' | <a href=\\'javascript:dc.filterAll(); dc.renderAll();\\'>Reset All</a>', all: '<strong>%total-count</strong> records' }); dc.renderAll() }) </script> </html> """ cmp_lookup = { ">": operator.gt, # e.g. DHFC < 0.5 "<": operator.lt, "<=": operator.le, ">=": operator.ge, "==": operator.eq, "contains": operator.contains, # e.g. CSQ contains HIGH "exists": lambda a, b: True, # e.g. exists smoove_gene } class Sample(object): __slots__ = [ "family_id", "id", "paternal_id", "maternal_id", "mom", "dad", "kids", "i", ] def __init__(self, line): toks = line.rstrip().split() self.family_id = toks[0] self.id = toks[1] self.paternal_id = toks[2] self.maternal_id = toks[3] self.kids = [] self.i = -1 # index in the vcf. def __repr__(self): return "Sample(id:{id},paternal_id:{pid},maternal_id:{mid})".format( id=self.id, pid=self.paternal_id, mid=self.maternal_id ) def flatten(value, sep=","): """ >>> flatten([1,2,3,4]) '1,2,3,4' >>> flatten((5,6)) '5,6' >>> flatten(0.987654321) '0.987654' >>> flatten(7) '7' >>> flatten("flatten") 'flatten' """ flat = None # tuple or list if isinstance(value, tuple) or isinstance(value, list): flat = sep.join([str(i) for i in value]) # reformats long float values elif isinstance(value, float): flat = "%.6f" % (value,) # string and int else: flat = str(value) return flat def zip_lists(value): """ >>> zip_lists([[0,1,2], [3,4,5]]) ['0 3', '1 4', '2 5'] """ return [flatten(i, sep=" ") for i in zip(*value)] def get_format_fields(ids, variant): """ args: ids (list) - list of FORMAT field IDs, e.g. ['AS', 'AP', 'DHFFC'] variant (pysam.libcbcf.VariantRecord) returns: list """ fields = list() for i in ids: fields.append( ["%s=%s" % (i, flatten(j.get(i, ""))) for j in variant.samples.values()] ) return zip_lists(fields) def get_format_title(samples, ids, variant): """ args: samples (list) - list of sample IDs in order of VCF annotations ids (list) - list of FORMAT field IDs, e.g. ['AS', 'AP', 'DHFFC'] variant (pysam.libcbcf.VariantRecord) returns: dict """ fields = get_format_fields(ids, variant) return dict(zip(samples, fields)) def make_plot_titles(samples, attr_values): """ keeping this method separate in the event we add more things to the title args: samples (list) - list of sample IDs attr_values (str) - string of VCF FORMAT values returns: dict >>> make_plot_titles(['s1', 's2', 's3'], {'s1': 'AS=0 AP=0', 's2': 'AS=0 AP=1', 's3': 'AS=1 AP=1'}) {'s1': "'s1 AS=0 AP=0'", 's2': "'s2 AS=0 AP=1'", 's3': "'s3 AS=1 AP=1'"} """ plot_titles = dict() for sample in samples: if sample in attr_values: plot_titles[sample] = quote("%s %s" % (sample, attr_values[sample])) return plot_titles def get_overlap( tabix, chrom, start, end, priority=["exon", "gene", "transcript", "cds"], no_hit="intergenic", fix_chr=True, ): """ args: tabix (pysam.libctabix.TabixFile) - open TabixFile chrom (str) start (int) end (int) priority (Optional[list]) - order of preferred region annotation no_hit (Optional[str]) - use this annotation if no matches among priority fix_chr (Optional[bool]) - try to fetch a region using both non-'chr' and 'chr' prefix on failures returns: str """ overlaps = None try: overlaps = set( [i.split("\t")[2].lower() for i in tabix.fetch(chrom, start, end)] ) except IndexError: # probably not a gff or gtf print("Invalid annotation file specified for --gff") overlaps = None except ValueError: if fix_chr: # try removing chr if chrom.startswith("chr"): overlaps = get_overlap( tabix, chrom[3:], start, end, priority, no_hit, False ) # or adding chr else: overlaps = get_overlap( tabix, "chr{chrom}".format(chrom=chrom), start, end, priority, no_hit, False, ) except: # bad regions print( "Error fetching {chrom}:{start}-{end}".format( chrom=chrom, start=start, end=end ) ) overlaps = None overlap = "" if overlaps: for feature in priority: if feature in overlaps: overlap = feature break else: # fetching overlaps failed overlap = "unknown" if not overlap and no_hit: overlap = no_hit return overlap def parse_ped(path, vcf_samples=None): if path is None: return {} samples = [] look = {} for line in open(path): samples.append(Sample(line)) look[samples[-1].id] = samples[-1] for s in samples: s.dad = look.get(s.paternal_id) if s.dad is not None: s.dad.kids.append(s) s.mom = look.get(s.maternal_id) if s.mom is not None: s.mom.kids.append(s) # match these samples to the ones in the VCF. if vcf_samples is not None: result = [] for i, variant_sample in enumerate(vcf_samples): if not variant_sample in look: continue result.append(next(s for s in samples if s.id == variant_sample)) result[-1].i = i samples = result return {s.id: s for s in samples} def get_names_to_bams(bams, name_list=None): """ get mapping from names (read group samples) to bam paths) this is useful because the VCF has the names and we'll want the bam paths for those samples if name_list is passed in as a parameter those will be used instead """ names = {} if name_list: if len(name_list) != len(bams): sys.exit("List of sample IDs does not match list of alignment files.") for i, p in enumerate(bams): names[name_list[i]] = p else: for p in bams: b = pysam.AlignmentFile(p) try: names[b.header["RG"][0]["SM"]] = p except: sys.exit( "No RG field in alignment file " + p + ". \nInclude ordered list of sample IDs to avoid this error" ) return names def tryfloat(v): try: return float(v) except: return v def to_exprs(astr): """ an expr is just a 3-tuple of "name", fn, value" e.g. "DHFFC", operator.lt, 0.7" >>> to_exprs("DHFFC < 0.5 & SVTYPE == 'DEL'") [('DHFFC', <built-in function lt>, 0.5), ('SVTYPE', <built-in function eq>, 'DEL')] >>> to_exprs("CSQ contains 'HIGH'") [('CSQ', <built-in function contains>, 'HIGH')] """ astr = (x.strip() for x in astr.strip().split("&")) result = [] for a in astr: a = [x.strip() for x in a.split()] if len(a) == 2: assert a[1] == "exists", ("bad expression", a) a.append("extra_arg") assert len(a) == 3, ("bad expression", a) assert a[1] in cmp_lookup, ( "comparison:" + a[1] + " not supported. must be one of:" + ",".join(cmp_lookup.keys()) ) result.append((a[0], cmp_lookup[a[1]], tryfloat(a[2].strip("'").strip('"')))) return result def check_expr(vdict, expr): """ >>> check_expr({"CSQ": "asdfHIGHasdf"}, to_exprs("CSQ contains 'HIGH'")) True >>> check_expr({"CSQ": "asdfHIGHasdf", "DHFC": 1.1}, to_exprs("CSQ contains 'HIGH' & DHFC < 0.5")) False >>> check_expr({"CSQ": "asdfHIGHasdf", "DHFC": 1.1}, to_exprs("CSQ contains 'HIGH' & DHFC < 1.5")) True >>> check_expr({"smoove_gene": "asdf"}, to_exprs("smoove_gene exists")) True >>> check_expr({"smooe_gene": "asdf"}, to_exprs("smoove_gene exists")) False >>> check_expr({"smoove_gene": ""}, to_exprs("smoove_gene exists")) True """ # a single set of exprs must be "anded" for name, fcmp, val in expr: # NOTE: asking for a missing annotation will return false. if not name in vdict: return False if not fcmp(vdict[name], val): return False return True def make_single(vdict): """ >>> d = {"xx": (1,)} >>> make_single(d) {'xx': 1} """ for k in vdict.keys(): if isinstance(vdict[k], tuple) and len(vdict[k]) == 1: vdict[k] = vdict[k][0] return vdict def get_dn_row(ped_samples): for s in ped_samples.values(): if s.mom is not None and s.dad is not None: return '{title:"de novo", field:"dn"}' return "" def read_important_regions(bedfilename): important_regions = {} with open(bedfilename, "r") as bedfile: for line in bedfile: pos_fields = line.strip().split() region_string = "_".join(pos_fields[1:3]) if pos_fields[0] not in important_regions: important_regions[pos_fields[0]] = [] important_regions[pos_fields[0]].append(region_string) return important_regions def var_in_important_regions(important_regions,
params or params['list_id'] is None): raise ValueError("Missing the required parameter `list_id` when calling ``") # noqa: E501 # verify the required parameter 'month' is set if ('month' not in params or params['month'] is None): raise ValueError("Missing the required parameter `month` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'list_id' in params: path_params['list_id'] = params['list_id'] # noqa: E501 if 'month' in params: path_params['month'] = params['month'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/lists/{list_id}/growth-history/{month}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GrowthHistory', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_list_interest_categories(self, list_id, **kwargs): # noqa: E501 """List interest categories # noqa: E501 Get information about a list's interest categories. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_list_interest_categories(list_id, async_req=True) >>> result = thread.get() :param async_req bool :param str list_id: The unique ID for the list. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :param int count: The number of records to return. Default value is 10. Maximum value is 1000 :param int offset: Used for [pagination](https://mailchimp.com/developer/marketing/docs/methods-parameters/#pagination), this it the number of records from a collection to skip. Default value is 0. :param str type: Restrict results a type of interest group :return: InterestGroupings If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_list_interest_categories_with_http_info(list_id, **kwargs) # noqa: E501 else: (data) = self.get_list_interest_categories_with_http_info(list_id, **kwargs) # noqa: E501 return data def get_list_interest_categories_with_http_info(self, list_id, **kwargs): # noqa: E501 """List interest categories # noqa: E501 Get information about a list's interest categories. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_list_interest_categories_with_http_info(list_id, async_req=True) >>> result = thread.get() :param async_req bool :param str list_id: The unique ID for the list. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :param int count: The number of records to return. Default value is 10. Maximum value is 1000 :param int offset: Used for [pagination](https://mailchimp.com/developer/marketing/docs/methods-parameters/#pagination), this it the number of records from a collection to skip. Default value is 0. :param str type: Restrict results a type of interest group :return: InterestGroupings If the method is called asynchronously, returns the request thread. """ all_params = ['list_id', 'fields', 'exclude_fields', 'count', 'offset', 'type'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_list_interest_categories" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'list_id' is set if ('list_id' not in params or params['list_id'] is None): raise ValueError("Missing the required parameter `list_id` when calling ``") # noqa: E501 if 'count' in params and params['count'] > 1000: # noqa: E501 raise ValueError("Invalid value for parameter `count` when calling ``, must be a value less than or equal to `1000`") # noqa: E501 collection_formats = {} path_params = {} if 'list_id' in params: path_params['list_id'] = params['list_id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 if 'count' in params: query_params.append(('count', params['count'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'type' in params: query_params.append(('type', params['type'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/lists/{list_id}/interest-categories', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='InterestGroupings', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_interest_category(self, list_id, interest_category_id, **kwargs): # noqa: E501 """Get interest category info # noqa: E501 Get information about a specific interest category. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_interest_category(list_id, interest_category_id, async_req=True) >>> result = thread.get() :param async_req bool :param str list_id: The unique ID for the list. (required) :param str interest_category_id: The unique ID for the interest category. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: InterestCategory If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_interest_category_with_http_info(list_id, interest_category_id, **kwargs) # noqa: E501 else: (data) = self.get_interest_category_with_http_info(list_id, interest_category_id, **kwargs) # noqa: E501 return data def get_interest_category_with_http_info(self, list_id, interest_category_id, **kwargs): # noqa: E501 """Get interest category info # noqa: E501 Get information about a specific interest category. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_interest_category_with_http_info(list_id, interest_category_id, async_req=True) >>> result = thread.get() :param async_req bool :param str list_id: The unique ID for the list. (required) :param str interest_category_id: The unique ID for the interest category. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: InterestCategory If the method is called asynchronously, returns the request thread. """ all_params = ['list_id', 'interest_category_id', 'fields', 'exclude_fields'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_interest_category" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'list_id' is set if ('list_id' not in params or params['list_id'] is None): raise ValueError("Missing the required parameter `list_id` when calling ``") # noqa: E501 # verify the required parameter 'interest_category_id' is set if ('interest_category_id' not in params or params['interest_category_id'] is None): raise ValueError("Missing the required parameter `interest_category_id` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'list_id' in params: path_params['list_id'] = params['list_id'] # noqa: E501 if 'interest_category_id' in params: path_params['interest_category_id'] = params['interest_category_id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/lists/{list_id}/interest-categories/{interest_category_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='InterestCategory', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_interest_category_interests(self, list_id, interest_category_id, **kwargs): # noqa: E501 """List interests in category # noqa:
AuiDockingGuideWindow(self, rectCenter, wx.CENTER, True, useAero) # top-left diamond tld = [wx.Point(rectTop.x, rectTop.y+rectTop.height-8), wx.Point(rectLeft.x+rectLeft.width-8, rectLeft.y), rectTop.GetBottomLeft()] # bottom-left diamond bld = [wx.Point(rectLeft.x+rectLeft.width-8, rectLeft.y+rectLeft.height), wx.Point(rectBottom.x, rectBottom.y+8), rectBottom.GetTopLeft()] # top-right diamond trd = [wx.Point(rectTop.x+rectTop.width, rectTop.y+rectTop.height-8), wx.Point(rectRight.x+8, rectRight.y), rectRight.GetTopLeft()] # bottom-right diamond brd = [wx.Point(rectRight.x+8, rectRight.y+rectRight.height), wx.Point(rectBottom.x+rectBottom.width, rectBottom.y+8), rectBottom.GetTopRight()] self._triangles = [tld[0:2], bld[0:2], [wx.Point(rectTop.x+rectTop.width-1, rectTop.y+rectTop.height-8), wx.Point(rectRight.x+7, rectRight.y)], [wx.Point(rectRight.x+7, rectRight.y+rectRight.height), wx.Point(rectBottom.x+rectBottom.width-1, rectBottom.y+8)]] region = wx.Region() region.UnionRect(rectLeft) region.UnionRect(rectTop) region.UnionRect(rectRight) region.UnionRect(rectBottom) region.UnionRect(rectCenter) region.UnionRegion(wx.RegionFromPoints(tld)) region.UnionRegion(wx.RegionFromPoints(bld)) region.UnionRegion(wx.RegionFromPoints(trd)) region.UnionRegion(wx.RegionFromPoints(brd)) elif useAero: self._aeroBmp = aero_dock_pane.GetBitmap() region = wx.RegionFromBitmap(self._aeroBmp) self._allAeroBmps = [aero_dock_pane_left.GetBitmap(), aero_dock_pane_top.GetBitmap(), aero_dock_pane_right.GetBitmap(), aero_dock_pane_bottom.GetBitmap(), aero_dock_pane_center.GetBitmap(), aero_dock_pane.GetBitmap()] self._deniedBitmap = aero_denied.GetBitmap() self._aeroRects = [rectLeft, rectTop, rectRight, rectBottom, rectCenter] self._valid = True elif useWhidbey: self._aeroBmp = whidbey_dock_pane.GetBitmap() region = wx.RegionFromBitmap(self._aeroBmp) self._allAeroBmps = [whidbey_dock_pane_left.GetBitmap(), whidbey_dock_pane_top.GetBitmap(), whidbey_dock_pane_right.GetBitmap(), whidbey_dock_pane_bottom.GetBitmap(), whidbey_dock_pane_center.GetBitmap(), whidbey_dock_pane.GetBitmap()] self._deniedBitmap = whidbey_denied.GetBitmap() self._aeroRects = [rectLeft, rectTop, rectRight, rectBottom, rectCenter] self._valid = True self.region = region def SetGuideShape(self, event=None): """ Sets the correct shape for the docking guide window. :param `event`: on wxGTK, a `wx.WindowCreateEvent` event to process. """ self.SetShape(self.region) if event is not None: # Skip the event on wxGTK event.Skip() wx.CallAfter(wx.SafeYield, self, True) def UpdateDockGuide(self, pos): """ Updates the docking guides images depending on the mouse position, using focused images if the mouse is inside the docking guide or unfocused images if it is outside. :param `pos`: a `wx.Point` mouse position. """ if not self._useAero: for target in self.GetChildren(): target.UpdateDockGuide(pos) else: lenRects = len(self._aeroRects) for indx, rect in enumerate(self._aeroRects): if rect.Contains(pos): if self._allAeroBmps[indx] != self._aeroBmp: if indx < lenRects - 1 or (indx == lenRects - 1 and self._valid): self._aeroBmp = self._allAeroBmps[indx] self.Refresh() else: self._aeroBmp = self._allAeroBmps[-1] self.Refresh() return if self._aeroBmp != self._allAeroBmps[-1]: self._aeroBmp = self._allAeroBmps[-1] self.Refresh() def HitTest(self, x, y): """ Checks if the mouse position is inside the target windows rect. :param `x`: the `x` mouse position; :param `y`: the `y` mouse position. """ if not self._useAero: if self.targetLeft.GetScreenRect().Contains((x, y)): return wx.LEFT if self.targetTop.GetScreenRect().Contains((x, y)): return wx.UP if self.targetRight.GetScreenRect().Contains((x, y)): return wx.RIGHT if self.targetBottom.GetScreenRect().Contains((x, y)): return wx.DOWN if self.targetCenter.IsValid() and self.targetCenter.GetScreenRect().Contains((x, y)): return wx.CENTER else: constants = [wx.LEFT, wx.UP, wx.RIGHT, wx.DOWN, wx.CENTER] lenRects = len(self._aeroRects) for indx, rect in enumerate(self._aeroRects): if rect.Contains((x, y)): if indx < lenRects or (indx == lenRects-1 and self._valid): return constants[indx] return -1 def ValidateNotebookDocking(self, valid): """ Sets whether a pane can be docked on top of another to create an automatic L{AuiNotebook}. :param `valid`: whether a pane can be docked on top to another to form an automatic L{AuiNotebook}. """ if not self._useAero: if self.targetCenter.IsValid() != valid: self.targetCenter.SetValid(valid) self.targetCenter.Refresh() else: if self._valid != valid: self._valid = valid self.Refresh() def AeroMove(self, pos): """ Moves the docking guide window to the new position. :param `pos`: the new docking guide position. """ if not self._useAero: return useWhidbey = (GetManager(self.GetParent()).GetFlags() & AUI_MGR_WHIDBEY_DOCKING_GUIDES) != 0 if useWhidbey: sizeX, sizeY = whidbeySizeX, whidbeySizeY else: sizeX, sizeY = aeroguideSizeX, aeroguideSizeY size = self.GetSize() leftRect, topRect, rightRect, bottomRect, centerRect = self._aeroRects thePos = pos + wx.Point((size.x-sizeY)/2, (size.y-sizeX)/2) centerRect.SetPosition(thePos) leftRect.SetPosition(thePos + wx.Point(-sizeY, 0)) topRect.SetPosition(thePos + wx.Point(0, -sizeY)) rightRect.SetPosition(thePos + wx.Point(sizeX, 0)) bottomRect.SetPosition(thePos + wx.Point(0, sizeX)) def OnEraseBackground(self, event): """ Handles the ``wx.EVT_ERASE_BACKGROUND`` event for L{AuiCenterDockingGuide}. :param `event`: `wx.EraseEvent` to be processed. :note: This is intentiobnally empty to reduce flickering while drawing. """ pass def OnPaint(self, event): """ Handles the ``wx.EVT_PAINT`` event for L{AuiCenterDockingGuide}. :param `event`: a `wx.PaintEvent` to be processed. """ dc = wx.AutoBufferedPaintDC(self) if self._useAero: dc.SetBrush(wx.TRANSPARENT_BRUSH) dc.SetPen(wx.TRANSPARENT_PEN) else: dc.SetBrush(wx.Brush(colourTargetBackground)) dc.SetPen(wx.Pen(colourTargetBorder)) rect = self.GetClientRect() dc.DrawRectangle(rect.x, rect.y, rect.width, rect.height) if self._useAero: dc.DrawBitmap(self._aeroBmp, 0, 0, True) if not self._valid: diff = (self._useAero == 2 and [1] or [0])[0] bmpX, bmpY = self._deniedBitmap.GetWidth(), self._deniedBitmap.GetHeight() xPos, yPos = (rect.x + (rect.width)/2 - bmpX/2), (rect.y + (rect.height)/2 - bmpY/2) dc.DrawBitmap(self._deniedBitmap, xPos+1, yPos+diff, True) return dc.SetPen(wx.Pen(colourTargetBorder, 2)) for pts in self._triangles: dc.DrawLinePoint(pts[0], pts[1]) # ---------------------------------------------------------------------------- # AuiDockingHintWindow # ---------------------------------------------------------------------------- class AuiDockingHintWindow(wx.Frame): """ The original wxAUI docking window hint. """ def __init__(self, parent, id=wx.ID_ANY, title="", pos=wx.DefaultPosition, size=wx.Size(1, 1), style=wx.FRAME_TOOL_WINDOW | wx.FRAME_FLOAT_ON_PARENT | wx.FRAME_NO_TASKBAR | wx.NO_BORDER | wx.FRAME_SHAPED, name="auiHintWindow"): """ Default class constructor. Used internally, do not call it in your code! :param `parent`: the L{AuiDockingGuide} parent; :param `id`: the window identifier. It may take a value of -1 to indicate a default value. :param `title`: the caption to be displayed on the frame's title bar; :param `pos`: the window position. A value of (-1, -1) indicates a default position, chosen by either the windowing system or wxPython, depending on platform; :param `size`: the window size. A value of (-1, -1) indicates a default size, chosen by either the windowing system or wxPython, depending on platform; :param `style`: the window style; :param `name`: the name of the window. This parameter is used to associate a name with the item, allowing the application user to set Motif resource values for individual windows. """ if wx.Platform == '__WXMAC__' and style & wx.FRAME_SHAPED: # Having the shaped frame causes the frame to not be visible # with the transparent style hints. style -= wx.FRAME_SHAPED wx.Frame.__init__(self, parent, id, title, pos, size, style, name=name) self._blindMode = False self.SetBackgroundColour(colourHintBackground) # Can't set background colour on a frame on wxMac # so add a panel to set the colour on. if wx.Platform == '__WXMAC__': sizer = wx.BoxSizer(wx.HORIZONTAL) self.panel = wx.Panel(self) sizer.Add(self.panel, 1, wx.EXPAND) self.SetSizer(sizer) self.panel.SetBackgroundColour(colourHintBackground) self.Bind(wx.EVT_SIZE, self.OnSize) def MakeVenetianBlinds(self): """ Creates the "venetian blind" effect if L{AuiManager} has the ``AUI_MGR_VENETIAN_BLINDS_HINT`` flag set. """ amount = 128 size = self.GetClientSize() region = wx.Region(0, 0, size.x, 1) for y in xrange(size.y): # Reverse the order of the bottom 4 bits j = (y & 8 and [1] or [0])[0] | (y & 4 and [2] or [0])[0] | \ (y & 2 and [4] or [0])[0] | (y & 1 and [8] or [0])[0] if 16*j+8 < amount: region.Union(0, y, size.x, 1) self.SetShape(region) def SetBlindMode(self, flags): """ Sets whether venetian blinds or transparent hints will be shown as docking hint. This depends on the L{AuiManager} flags. :param `flags`: the L{AuiManager} flags. """ self._blindMode = (flags & AUI_MGR_VENETIAN_BLINDS_HINT) != 0 if self._blindMode or not self.CanSetTransparent(): self.MakeVenetianBlinds() self.SetTransparent(255) else: self.SetShape(wx.Region()) if flags & AUI_MGR_HINT_FADE == 0: self.SetTransparent(80) else: self.SetTransparent(0) def SetShape(self, region): """ If the platform supports it, sets the shape of the window to that depicted by `region`. The system will not display or respond to any mouse event for the pixels that lie outside of the region. To reset the window to the normal rectangular shape simply call L{SetShape} again with an empty region. :param `region`: the shape of the frame. :note: Overridden for wxMac. """ if wx.Platform == '__WXMAC__': # HACK so we don't crash when SetShape is called return else: super(AuiDockingHintWindow, self).SetShape(region) def Show(self, show=True): """ Show the hint window. :param `show`: whether to show or hide the frame. """ super(AuiDockingHintWindow, self).Show(show) if wx.Platform == '__WXMAC__': # Need to manually do layout since its a borderless frame. self.Layout() def OnSize(self, event): """ Handles the ``wx.EVT_SIZE`` event for L{AuiDockingHintWindow}. :param `event`: a `wx.SizeEvent` to be processed. """ if self._blindMode or not self.CanSetTransparent(): self.MakeVenetianBlinds() # ---------------------------------------------------------------------------- # # -- AuiFloatingFrame class implementation -- class AuiFloatingFrame(wx.MiniFrame): """ AuiFloatingFrame is the frame class that holds floating panes. """ def __init__(self, parent, owner_mgr, pane=None, id=wx.ID_ANY, title="", style=wx.FRAME_TOOL_WINDOW | wx.FRAME_FLOAT_ON_PARENT | wx.FRAME_NO_TASKBAR | wx.CLIP_CHILDREN): """ Default class constructor. Used internally, do not call it in your code! :param `parent`: the L{AuiFloatingFrame} parent; :param `owner_mgr`: the L{AuiManager} that manages the floating pane; :param `pane`: the L{AuiPaneInfo} pane that is about to float; :param `id`: the window identifier. It may take a value of -1 to indicate a default value. :param `title`: the caption to be displayed on the frame's title bar. :param `style`: the window style. """ if pane and pane.IsResizeable(): style += wx.RESIZE_BORDER if pane: self._is_toolbar = pane.IsToolbar() self._useNativeMiniframes = False if AuiManager_UseNativeMiniframes(owner_mgr): # On wxMac we always use native miniframes self._useNativeMiniframes = True style += wx.CAPTION + wx.SYSTEM_MENU if pane.HasCloseButton(): style += wx.CLOSE_BOX if pane.HasMaximizeButton(): style += wx.MAXIMIZE_BOX if pane.HasMinimizeButton(): style += wx.MINIMIZE_BOX
# -*- coding: utf-8 -*- # # Copyright (C) 2019 <NAME> <<EMAIL>> # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import print_function import re import sys import six import pytest import requests import mock from os.path import dirname from os.path import join from apprise import Apprise from apprise import AppriseAsset from apprise import AppriseAttachment from apprise import NotifyBase from apprise import NotifyType from apprise import NotifyFormat from apprise import NotifyImageSize from apprise import __version__ from apprise import URLBase from apprise import PrivacyMode from apprise.plugins import SCHEMA_MAP from apprise.plugins import __load_matrix from apprise.plugins import __reset_matrix from apprise.utils import parse_list import inspect # Disable logging for a cleaner testing output import logging logging.disable(logging.CRITICAL) # Sending notifications requires the coroutines to be awaited, so we need to # wrap the original function when mocking it. But don't import for Python 2. if not six.PY2: import apprise.py3compat.asyncio as py3aio else: class py3aio: def notify(): pass # Attachment Directory TEST_VAR_DIR = join(dirname(__file__), 'var') def test_apprise(): """ API: Apprise() object """ def do_notify(server, *args, **kwargs): return server.notify(*args, **kwargs) apprise_test(do_notify) @pytest.mark.skipif(sys.version_info.major <= 2, reason="Requires Python 3.x+") def test_apprise_async(): """ API: Apprise() object asynchronous methods """ def do_notify(server, *args, **kwargs): return py3aio.tosync(server.async_notify(*args, **kwargs)) apprise_test(do_notify) def apprise_test(do_notify): # Caling load matix a second time which is an internal function causes it # to skip over content already loaded into our matrix and thefore accesses # other if/else parts of the code that aren't otherwise called __load_matrix() a = Apprise() # no items assert len(a) == 0 # Apprise object can also be directly tested with 'if' keyword # No entries results in a False response assert not a # Create an Asset object asset = AppriseAsset(theme='default') # We can load the device using our asset a = Apprise(asset=asset) # We can load our servers up front as well servers = [ 'faast://abcdefghijklmnop-abcdefg', 'kodi://kodi.server.local', ] a = Apprise(servers=servers) # 2 servers loaded assert len(a) == 2 # Apprise object can also be directly tested with 'if' keyword # At least one entry results in a True response assert a # We can retrieve our URLs this way: assert len(a.urls()) == 2 # We can add another server assert a.add('mmosts://mattermost.server.local/' '3ccdd113474722377935511fc85d3dd4') is True assert len(a) == 3 # Try adding nothing but delimiters assert a.add(',, ,, , , , ,') is False # The number of servers added doesn't change assert len(a) == 3 # We can pop an object off of our stack by it's indexed value: obj = a.pop(0) assert isinstance(obj, NotifyBase) is True assert len(a) == 2 # We can retrieve elements from our list too by reference: assert isinstance(a[0].url(), six.string_types) is True # We can iterate over our list too: count = 0 for o in a: assert isinstance(o.url(), six.string_types) is True count += 1 # verify that we did indeed iterate over each element assert len(a) == count # We can empty our set a.clear() assert len(a) == 0 # An invalid schema assert a.add('this is not a parseable url at all') is False assert len(a) == 0 # An unsupported schema assert a.add( 'invalid://we.just.do.not.support.this.plugin.type') is False assert len(a) == 0 # A poorly formatted URL assert a.add('json://user:@@@:bad?no.good') is False assert len(a) == 0 # Add a server with our asset we created earlier assert a.add('mmosts://mattermost.server.local/' '3ccdd113474722377935511fc85d3dd4', asset=asset) is True # Clear our server listings again a.clear() # No servers to notify assert do_notify(a, title="my title", body="my body") is False class BadNotification(NotifyBase): def __init__(self, **kwargs): super(BadNotification, self).__init__(**kwargs) # We fail whenever we're initialized raise TypeError() def url(self): # Support URL return '' @staticmethod def parse_url(url, *args, **kwargs): # always parseable return NotifyBase.parse_url(url, verify_host=False) class GoodNotification(NotifyBase): def __init__(self, **kwargs): super(GoodNotification, self).__init__( notify_format=NotifyFormat.HTML, **kwargs) def url(self): # Support URL return '' def send(self, **kwargs): # Pretend everything is okay return True @staticmethod def parse_url(url, *args, **kwargs): # always parseable return NotifyBase.parse_url(url, verify_host=False) # Store our bad notification in our schema map SCHEMA_MAP['bad'] = BadNotification # Store our good notification in our schema map SCHEMA_MAP['good'] = GoodNotification # Just to explain what is happening here, we would have parsed the # url properly but failed when we went to go and create an instance # of it. assert a.add('bad://localhost') is False assert len(a) == 0 # We'll fail because we've got nothing to notify assert do_notify( a, title="my title", body="my body") is False # Clear our server listings again a.clear() assert a.add('good://localhost') is True assert len(a) == 1 # Bad Notification Type is still allowed as it is presumed the user # know's what their doing assert do_notify( a, title="my title", body="my body", notify_type='bad') is True # No Title/Body combo's assert do_notify(a, title=None, body=None) is False assert do_notify(a, title='', body=None) is False assert do_notify(a, title=None, body='') is False # As long as one is present, we're good assert do_notify(a, title=None, body='present') is True assert do_notify(a, title='present', body=None) is True assert do_notify(a, title="present", body="present") is True # Send Attachment with success attach = join(TEST_VAR_DIR, 'apprise-test.gif') assert do_notify( a, body='body', title='test', notify_type=NotifyType.INFO, attach=attach) is True # Send the attachment as an AppriseAttachment object assert do_notify( a, body='body', title='test', notify_type=NotifyType.INFO, attach=AppriseAttachment(attach)) is True # test a invalid attachment assert do_notify( a, body='body', title='test', notify_type=NotifyType.INFO, attach='invalid://') is False # Repeat the same tests above... # however do it by directly accessing the object; this grants the similar # results: assert do_notify( a[0], body='body', title='test', notify_type=NotifyType.INFO, attach=attach) is True # Send the attachment as an AppriseAttachment object assert do_notify( a[0], body='body', title='test', notify_type=NotifyType.INFO, attach=AppriseAttachment(attach)) is True # test a invalid attachment assert do_notify( a[0], body='body', title='test', notify_type=NotifyType.INFO, attach='invalid://') is False class ThrowNotification(NotifyBase): def notify(self, **kwargs): # Pretend everything is okay raise TypeError() def url(self): # Support URL return '' class RuntimeNotification(NotifyBase): def notify(self, **kwargs): # Pretend everything is okay raise RuntimeError() def url(self): # Support URL return '' class FailNotification(NotifyBase): def notify(self, **kwargs): # Pretend everything is okay return False def url(self): # Support URL return '' # Store our bad notification in our schema map SCHEMA_MAP['throw'] = ThrowNotification # Store our good notification in our schema map SCHEMA_MAP['fail'] = FailNotification # Store our good notification in our schema map SCHEMA_MAP['runtime'] = RuntimeNotification for async_mode in (True, False): # Create an Asset object asset = AppriseAsset(theme='default', async_mode=async_mode) # We can load the device using our asset a = Apprise(asset=asset) assert a.add('runtime://localhost') is True assert a.add('throw://localhost') is True assert a.add('fail://localhost') is True assert len(a) == 3 # Test when our notify both throws an exception and or just # simply returns False assert do_notify(a, title="present", body="present") is False # Create a Notification that throws an unexected exception class ThrowInstantiateNotification(NotifyBase): def __init__(self, **kwargs): # Pretend everything is okay raise TypeError() def url(self): # Support URL return '' SCHEMA_MAP['throw'] = ThrowInstantiateNotification # Reset our object a.clear() assert len(a) == 0 # Test our socket details # rto = Socket Read Timeout # cto = Socket Connect Timeout plugin = a.instantiate('good://localhost?rto=5.1&cto=10') assert isinstance(plugin, NotifyBase) assert plugin.socket_connect_timeout == 10.0 assert plugin.socket_read_timeout == 5.1 plugin = a.instantiate('good://localhost?rto=invalid&cto=invalid') assert isinstance(plugin, NotifyBase) assert
from __future__ import division import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import cPickle as pickle import numpy as np import os, sys try: from scipy.stats import linregress except ImportError: print "Didn't load linregress from scipy.stats" class Collecting_clashscore_data(object): def __init__(self): """ Collect and analyse clashscore test data good test result should have only one line x1::x2::x3::x4::x5 Where: x1 (0): pdb_file_name x2 (1): macro_molecule_cctbx_clashscore x3 (2): symmetry_cctbx_clashscore x4 (3): total_cctbx_clashscore x5 (4): probe_clashscore if test results contains only -1: PDB file was not found if test results contains only -2: there where issues getting the clashscore and proper structure factor file was not available if test results start with "Sorry" set values to -3 """ self.current_dir = os.getcwd() self.working_path = '' self.data_file_name = 'test_data' self.clean_data_file_name = 'test_clean_data' self.data_dict_file_name = 'test_data_dict' self.files_with_problem_file_name = 'files_with_issues.txt' self.data = [] self.clean_data = [] self.pdb_id_with_issues = [] self.data_dict = {} self.queue_data_path = "/net/cci/youval/work/work/Clashes/queue_clash_compare" # containers for results self.data_sym_clashes = {} self.data_outliers = {} # when cctbx very different than probe # self.structure_where_pdb_not_found = [] self.structure_with_error_when_processing_phenix_clashscore = [] self.other_issues_with_results = [] def set_working_path(self,all_data=True): """ Set working and data folders When all_data=False use the data for the test on macro molecule (not the complete model) C:\Phenix\Dev\Work\work\Clashes\CCTBX_PROBE_compare """ r1 = r'C:\Users\Youval\Google Drive\Documents\LBNL\phenix\publications' r1 += r'\news letter\clash score\related code' data_1 = r1 + r'\pdb_scan_result_macro_molecule_files' data_2 = r1 + r'\pdb_scan_result_complete_files' osType = sys.platform if osType.startswith('win'): assert os.path.isdir(data_1) assert os.path.isdir(data_2) if all_data: self.working_path = data_2 print data_2 else: self.working_path = data_1 print data_1 else: path = '/net/cci/youval/work/work/Clashes' self.working_path = path # convert the path to python format self.working_path = os.path.realpath(self.working_path) os.chdir(self.working_path) def change_to_original_path(self): """ change current directory to original one """ os.chdir(self.current_dir) def get_test_data(self): """ If test_data.txt and test_data_dict exit, use them, otherwise create them "data_dict" is a dictionary for the "clean_data" "data" contains all data collected """ have_data = os.path.isfile(self.data_file_name) have_data &= os.path.isfile(self.data_dict_file_name) if have_data: print 'using existing data files' self.data = pickle.load(open(self.data_file_name,'r')) self.clean_data = pickle.load(open(self.clean_data_file_name,'r')) self.clean_data = [x for x in self.clean_data if x[1] >= 0 ] self.data_dict = pickle.load(open(self.data_dict_file_name,'r')) self.pdb_id_with_issues = open( self.files_with_problem_file_name,'r').read().splitlines() print "Number of good file with issues: ",len(self.pdb_id_with_issues) print "Total number files processed: ",len(self.data) else: print 'getting new data from {}'.format(self.queue_data_path) # check if data folder exist if os.path.isdir(self.queue_data_path): # Read files in directory_path files = os.listdir(self.queue_data_path) # collect only the files that starts with log_ files = [x for x in files if x.startswith('log_')] print "Number of log files: ",len(files) for fn in files: d = open(os.path.join(self.queue_data_path, fn), "r").readlines() if d: raw_data = d[0].split('::') else: raw_data = [] if (len(d)==1) and (len(raw_data) == 5): pdb_id = raw_data[0] data = [round(float(x),1) for x in raw_data[1:]] data = [pdb_id] + data else: # Some issue with results pdb_id = fn[-4:] data = [pdb_id,-3,-3,-3,-3] self.data.append(data) # clean data, collect good data print 'Total number data records: {}'.format(len(self.data)) for d in self.data: pdb_id = d[0] if d[1] >= 0: self.clean_data.append(d) self.data_dict[pdb_id] = d else: self.pdb_id_with_issues.append(pdb_id) print "Number of good records: ",len(self.clean_data) pickle.dump(self.data, open(self.data_file_name,'w')) pickle.dump(self.clean_data, open(self.clean_data_file_name,'w')) pickle.dump(self.data_dict, open(self.data_dict_file_name,'w')) pdb_id_with_issues = '\n'.join(self.pdb_id_with_issues) open(self.files_with_problem_file_name,'w').write(pdb_id_with_issues) print 'Number of good data points: {}'.format(len(self.clean_data)) for d in self.data: pdb_id = d[0] if d[1] == -1: self.structure_where_pdb_not_found.append(pdb_id) elif d[1] == -2: self.structure_with_error_when_processing_phenix_clashscore.append(pdb_id) elif d[1] == -3: self.other_issues_with_results.append(pdb_id) print "structure_where_pdb_not_found: ",len(self.structure_where_pdb_not_found) print "structure_with_error_when_processing_phenix_clashscore: ",\ len(self.structure_with_error_when_processing_phenix_clashscore) n_to_print = min(10,len(self.structure_with_error_when_processing_phenix_clashscore)) print self.structure_with_error_when_processing_phenix_clashscore[:n_to_print] print "other_issues_with_results: ",len(self.other_issues_with_results) print self.other_issues_with_results print '-'*50 def plot_reference(self,ignore_delta=100): """ Compare CCBTX macro molecule non-bonded clashscore to PROBE clashscore Args: ignore_delta (float): ignore outlier points where abs(cctbx_score - probe_score) > ignore_delta """ if self.clean_data: # figure limits max_x = 100 max_y = 100 fontsize = 20 # get data cctbx_prob = [(x[4],x[1]) for x in self.clean_data if (abs(x[1]-x[4])<ignore_delta)] outliers = [x[0] for x in self.clean_data if (abs(x[1]-x[4])>20) and (x[4] < 20)] n_ignored = len(self.clean_data)-len(cctbx_prob) n_all = len(self.clean_data) print '(macro. mol.) Number of data points ignored: ',n_ignored print outliers cctbx_prob.sort() # cctbx cctbx_score = [x[1] for x in cctbx_prob] probe_score = [x[0] for x in cctbx_prob] # Get linear fitting parameters x_fit = [0,max_x] # m,b = plb.polyfit(cctbx_score, probe_score, 1) m,b ,r_value,_,_ = linregress(cctbx_score, probe_score) print 'r-value: ',r_value y_fit = [b,m * max_x + b] # gr = 1.61803398875 # Golden ratio gr = 1 h = 12 # figure height w = gr*h # figure width fig = plt.figure(figsize=(w,h)) plt.plot(cctbx_score,probe_score,'.b',x_fit,y_fit,'y',linewidth=2) plt.xticks(fontsize=fontsize - 2) plt.yticks(fontsize=fontsize - 2) # plt.title( # 'CCBTX macro molecule vs PROBE non-bonded clashscore', # fontsize=fontsize) plt.ylabel('PROBE clashscore',fontsize=fontsize) plt.xlabel('Non-bonded overlaps per 1000 atoms',fontsize=fontsize) ignore_str = 'Ignore {} of {} outlier points where\n' ignore_str += 'abs(macro_mol cctbx_score - probe_score) >= {}' ignore_str = ignore_str.format(n_ignored,n_all,ignore_delta) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # plt.text(2,max_y - 2,ignore_str, # fontsize=fontsize,verticalalignment='top',bbox=props) plt.xlim([0,max_x]) plt.ylim([0,max_y]) plt.show() fig.savefig('cctbx_macro_mol_vs_probe.png') print 'Linear fit info: PROBE = {} * CCBTX + {}'.format(m,b) print ignore_str print '-'*50 else: print 'Load data before attempting to plot' def plot_total(self,ignore_delta=100): """ Compare CCBTX total_cctbx_clashscore to PROBE clashscore Args: ignore_delta (float): ignore outlier points where abs(cctbx_score - probe_score) > ignore_delta """ if self.clean_data: # figure limits max_x = 100 max_y = 100 fontsize = 20 # get data assert len(self.clean_data[0]) == 5 cctbx_prob = [(x[4],x[3]) for x in self.clean_data if abs(x[4]-x[3])<ignore_delta] n_ignored = len(self.clean_data)-len(cctbx_prob) n_all = len(self.clean_data) print 'Number of data points ignored: ',n_ignored cctbx_prob.sort() # cctbx cctbx_score = [x[1] for x in cctbx_prob] probe_score = [x[0] for x in cctbx_prob] # Get linear fitting parameters x_fit = [0,max_x] # m,b = plb.polyfit(cctbx_score, probe_score, 1) m,b ,r_value,_,_ = linregress(cctbx_score, probe_score) print 'r-value: ',r_value y_fit = [b,m * max_x + b] #gr = 1.61803398875 # Golden ratio gr = 1 h = 12 # figure height w = gr*h # figure width fig = plt.figure(figsize=(w,h)) plt.plot(cctbx_score,probe_score,'.b',x_fit,y_fit,'y',linewidth=2) plt.xticks(fontsize=fontsize - 2) plt.yticks(fontsize=fontsize - 2) # plt.title( # 'CCBTX total vs PROBE non-bonded clashscore',fontsize=fontsize) plt.ylabel('PROBE clashscore',fontsize=fontsize) plt.xlabel( 'Non-bonded overlaps per 1000 atoms', fontsize=fontsize) ignore_str = 'Ignore {} of {} outlier points where\n' ignore_str += 'abs(clashscore difference) >= {}' ignore_str = ignore_str.format(n_ignored,n_all,ignore_delta) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # plt.text(2,max_y - 2,ignore_str, # fontsize=fontsize,verticalalignment='top',bbox=props) plt.xlim([0,max_x]) plt.ylim([0,max_y]) plt.show() fig.savefig('cctbx_total_vs_probe.png') print 'Linear fit all data, info: PROBE = {} * CCBTX + {}'.format(m,b) print ignore_str print '-'*50 else: print 'Load data before attempting to plot' def plot_sym(self,ignore_delta=100): """ Plot plot of CCBTX all clashscore and symmetry clashscore vs. PROBE clashscore Args: ignore_delta (float): ignore outlier points where abs(cctbx_score - probe_score) > ignore_delta """ if self.clean_data: # figure limits max_x = 100 max_y = 100 fontsize = 20 # get data assert len(self.clean_data[0]) == 5 # x[4] : probe # x[3] : cctbx_total_vs_probe # x[2] : symmetry_cctbx_clashscore cctbx_prob = [(x[4],x[3],x[2]) for x in self.clean_data if abs(x[4]-x[3])<ignore_delta] n_ignored = len(self.clean_data)-len(cctbx_prob) n_all = len(self.clean_data) print 'Number of data points ignored: ',n_ignored cctbx_prob.sort() # cctbx cctbx_score = [x[1] for x in cctbx_prob] cctbx_sym = [x[2] for x in cctbx_prob] probe_score = [x[0] for x in cctbx_prob] # Get linear fitting parameters x_fit = [0,max_x] # m,b = plb.polyfit(cctbx_score, probe_score, 1) m,b ,r_value,_,_ = linregress(cctbx_score, probe_score) print 'r-value: ',r_value y_fit = [b,m * max_x + b] print 'Linear fit info: PROBE = {} * CCBTX + {}'.format(m,b) print '-'*50 # create plot # gr = 1.61803398875 # Golden ratio plt.close('all') gr = 1 h = 4 # figure height w = gr*2*h # figure width # setup subplots fig = plt.figure(figsize=(8.3,8.2)) # gs = gridspec.GridSpec(2,1,width_ratios=[1,1],height_ratios=[2,1]) gs = gridspec.GridSpec(2,1,height_ratios=[2,1]) # gs.update(left=0.05, right=0.48, wspace=0.05) ax1 = plt.subplot(gs[0,0]) ax2 = plt.subplot(gs[1,0]) ax1.plot(cctbx_score,probe_score,'.b',x_fit,y_fit,'y',linewidth=2) ax1.tick_params(axis='both',labelsize=fontsize) ax1.ticklabel_format(axis='both',labelsize=fontsize) # ax1.set_title( # 'Clashscores and symmetry related clashes', # fontsize=fontsize) ax1.set_ylabel('PROBE clashscore',fontsize=fontsize) ax1.set_xlabel('Non-bonded overlaps per 1000 atoms',fontsize=fontsize) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) text_params = {'fontsize':fontsize,'verticalalignment':'top','bbox':props} ax1.text(2,max_y - 2,'a',**text_params) ax1.set_xlim([0,max_x]) ax1.set_ylim([0,max_y]) # second plot n_files = np.arange(0,len(cctbx_sym)) ax2.plot(cctbx_sym,n_files,'.g') ax2.text(2,max_y - 2,'b',**text_params) ax2.set_ylabel('Files',fontsize=fontsize) ax2.set_xlabel('CCTBX symmetry clashscore',fontsize=fontsize) ax2.tick_params(axis='both',labelsize=fontsize) ax2.set_ylim([0,len(cctbx_sym)]) ax2.set_xlim([0,max_y]) ax2.set_yticks((5000,20000)) ax2.set_yticklabels(('5k','20k')) plt.show() # fig.savefig('cctbx_simple_vs_probe.png') else: print 'Load data before attempting to plot' def hist_sym(self,prob_limit=1000): """ CCTBX symmetry clashscore histogram - Considering clashes where PROBE clashscore is <= prob_limit - All symmetry clashscores larger than 9 will
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches # TODO: import only necessary tensorflow functions import tensorflow as tf import tensorflow_datasets as tfds from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,\ roc_curve, roc_auc_score, classification_report, accuracy_score, precision_score, recall_score # TODO: Add docstrings # Loads the Patch Camelyon dataset def load_pcam(data_dir=None): pcam, pcam_info = tfds.load("patch_camelyon", with_info=True, data_dir=data_dir) print(pcam_info) return pcam, pcam_info # Converts images to prepare them for modelling def convert_sample(sample): # Credit: <NAME> image, label = sample['image'], sample['label'] image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Alternative to convert_sample which also converts images to grayscale def convert_sample_grayscale(sample): image, label = sample['image'], sample['label'] image = tf.image.rgb_to_grayscale(image, name=None) image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Substitute for ImageDataGenerator which gets along with the TensorFlow Dataset object def build_pipelines(pcam, grayscale=False): # Uses the grayscale version of convert_sample if grayscale: train_pipeline = pcam['train'].map(convert_sample_grayscale, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample_grayscale, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample_grayscale, num_parallel_calls=8).batch(128).prefetch(2) # Uses the normal version of convert_sample else: # Credit: <NAME> train_pipeline = pcam['train'].map(convert_sample, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample, num_parallel_calls=8).batch(128).prefetch(2) return train_pipeline, valid_pipeline, test_pipeline # Export the training history to a .csv file def save_history(hist_df, filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_csv_file = filepath with open(hist_csv_file, mode='w') as f: hist_df.to_csv(f) # Loads model training history .csv into a pandas dataframe def load_history(filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_df = pd.read_csv(filepath, index_col=0) return hist_df # Plot the training accuracy and loss from training history def plot_history(hist_df, figsize=(10,4), title=None, save=False, filepath=None): # Create subplots plt.subplots(1, 2, figsize=figsize) # Creates a title for the whole plot plt.suptitle(title, fontsize=24) # Plot accuracies for train and validation sets plt.subplot(1, 2, 1) plt.plot(hist_df['accuracy'], label='Train', marker='o') plt.plot(hist_df['val_accuracy'], label='Validation', marker='o') plt.title('Training and Validation Accuracy', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Accuracy', size=16) plt.legend() # Plot losses plt.subplot(1, 2, 2) plt.plot(hist_df['loss'], label='Train', marker='o') plt.plot(hist_df['val_loss'], label='Validation', marker='o') plt.title('Training and Validation Loss', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Loss', size=16) plt.legend() # This ensures the subplots do not overlap plt.tight_layout() if save: # Sample filepath: 'data/plots/cnn1_acc_loss_plot.png' plt.savefig(filepath) # Show the subplots plt.show() # Plot the confusion matrix for a model def plot_cf_matrix(y_true, y_pred, normalize=True, save=False, filepath=None): cf_matrix = confusion_matrix(y_true, y_pred) # Turns the values in the confusion matrix into percentages if normalize: cf_matrix = cf_matrix / cf_matrix.sum(axis=1) ConfusionMatrixDisplay(cf_matrix, display_labels=['Healthy (0)', 'Cancer (1)']).plot() if save: # Sample filepath: 'data/plots/cnn1_cf_matrix.png' plt.savefig(filepath) plt.show() # Plot the ROC curve and calculate AUC def plot_roc_curve(y_true, y_proba, save=False, filepath=None): if y_proba.shape[1] == 2: # y_proba is still one-hot encoded, so grab only the class 1 probabilities y_proba = np.array([i[1] for i in y_proba]) fprs, tprs, thresholds = roc_curve(y_true, y_proba) roc_auc = roc_auc_score(y_true, y_proba) plt.figure(figsize=(8, 6)) plt.plot(fprs, tprs, color='darkorange', lw=2, label='AUC = %0.2f' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlabel('False Positive Rate (FPR)', size=16) plt.ylabel('True Positive Rate (TPR)', size=16) plt.title('ROC Curve for Cancer Detection', size=20) plt.legend(loc="best") if save: # Sample filepath: 'data/plots/cnn1_roc.png' plt.savefig(filepath) plt.show() print(f'Area under curve (AUC):{roc_auc}') # Create a list of ground truth labels from a specified data split def generate_y_true(pcam, split='test'): # Initialize iterator so it starts from the beginning iterator = pcam[split].__iter__() # Create an empty list to store the labels y_true = [] if split == 'train': # There are 262144 images in the training set for i in range(262144): y_true.append(int(iterator.get_next()['label'])) else: # There are 32768 images in the validation and test sets for i in range(32768): y_true.append(int(iterator.get_next()['label'])) return np.array(y_true) # Get predictions as probabilities from a trained model def generate_y_proba(model, test_pipeline, class_1=False, save=False, filepath=None): y_proba = model.predict(test_pipeline) if class_1: # Return just the class_1 predictions rather than one-hot encoded predictions y_proba = np.array([i[1] for i in y_proba]) # Save y_proba to a .csv file to load later without training the model if save: y_proba_df = pd.DataFrame(y_proba) # Sample filepath: 'data/models/cnn1_y_proba.csv' y_proba_csv_file = filepath with open(y_proba_csv_file, mode='w') as f: y_proba_df.to_csv(f) return y_proba # Load y_proba from a .csv file def load_y_proba(filepath): # Sample filepath: 'data/models/cnn1_y_proba.csv' y_proba = pd.read_csv(filepath, index_col=0).to_numpy() return y_proba # Get predictions based on y_proba with the ability to change the decision threshold def generate_y_pred(y_proba, threshold=0.5): if y_proba.shape[1] == 2: # y_proba is still one-hot encoded, so grab only the class 1 probabilities y_proba = np.array([i[1] for i in y_proba]) # Predict the positive class when the probability exceeds the given threshold y_pred = np.where(y_proba >= threshold, 1, 0) return y_pred # Print test set accuracy score def print_test_accuracy(y_true, y_pred): print(accuracy_score(y_true, y_pred)) # Print the percentage the pathologist's workload has been reduced by pre-screening healthy images def print_workload_reduction(y_pred): size_of_test_set = 32768 # Cancerous images are class 1 predictions cancer_images = np.count_nonzero(y_pred) # Healthy images are class 0 predictions and are discarded healthy_images = size_of_test_set - cancer_images # Workload reduction is the percent of predicted healthy images expressed as a percentage of the test set workload_reduction = round((100*healthy_images / size_of_test_set), 1) print(f'{workload_reduction}%') # Print the classification report to get precision, accuracy, and f1 score to 4 decimal places def print_classification_report(y_true, y_pred): print(classification_report(y_true, y_pred, digits=4)) # Plot a 3x3 grid of sample images from a given data split, with the option for grayscale and saving the figure def plot_examples(pcam, split='train', grayscale=False, save=False, filepath=None): iterator = pcam[split].__iter__() fig, ax = plt.subplots(3, 3, figsize=(10,10)) # Plot title plt.suptitle(split + ' set samples', size=20) for i in range(9): ax = plt.subplot(3, 3, i+1) # Get the next image from the iterator sample_image = iterator.get_next() # Extract the image and its label image = sample_image['image'] label = int(sample_image['label']) # Convert the image to grayscale if specified if grayscale: image = tf.image.rgb_to_grayscale(image) print(image.shape) # Need to change the colormap of matplotlib to 'Greys_r' or else the images look yellow/green when plotted ax.imshow(image, cmap='Greys_r') else: ax.imshow(image) plt.title('Class Label: '+ str(label), size=16) # Create a green rectangle patch to highlight the central 32 x 32 pixel region # I couldn't find documentation for how the linewidth is extended, it's possible I've covered a couple pixels of the central region rect = patches.Rectangle((31, 31), 32, 32, linewidth=3, edgecolor='g', facecolor='none') # Add the patch to the axes ax.add_patch(rect) # Need to specify values for rect=[left, bottom, right, top] to ensure suptitle isn't overlapping the images plt.tight_layout(rect=[0, 0.03, 1, 0.95]) if save: # Sample filepath: 'data/plots/example_images.png' plt.savefig(filepath) plt.show() # Plot a 3x3 grid of images misclassified by the model, with the option to view different samples of images def plot_misclassified_images(pcam, y_true, y_pred, grayscale=False, image_index=0, save=False, filepath=None): # Create an iterator object to iterate through images in the test set test_iterator = pcam['test'].__iter__() images_plotted = 0 # If image_index is set to a value, iterate through the images to start from the specified index # i.e. if image_index = 10, we iterate through the first 9 images here so when we load the next image inside the loop, we will load the 10th image for i in range(image_index): next_image = test_iterator.get_next() fig, ax = plt.subplots(3, 3, figsize=(10,10)) # Title for the entire plot plt.suptitle('Misclassified Images from the Test Set', size=20) while True: next_image = test_iterator.get_next() image = next_image['image'] label = int(next_image['label']) # If the image was misclassified if y_true[image_index] != y_pred[image_index]: ax = plt.subplot(3, 3, images_plotted+1) if grayscale: image = tf.image.rgb_to_grayscale(image) # Need to change the colormap of matplotlib to 'Greys_r' or else the images look yellow/green when plotted ax.imshow(image, cmap='Greys_r') else: ax.imshow(image) # Title format for image #1 which was predicted class 1 but is really class 0: # Image 1 # Predicted Label: 1 (0) title = f'Image {str(image_index)}\nPredicted Label: {str(y_pred[image_index])} ({str(label)})' plt.title(title, size=16) # Create a green rectangle patch to highlight the central 32 x 32 pixel region # I couldn't find documentation for how the linewidth is extended, it's possible I've covered a couple pixels of the central region rect = patches.Rectangle((31, 31), 32, 32, linewidth=3, edgecolor='g', facecolor='none') # Add the patch to the axes ax.add_patch(rect) images_plotted += 1 # Stop the loop after
""" Wrapper function for performing CCI analysis, varrying the analysis based on the inputted data / state of the anndata object. """ import os import numba import numpy as np import pandas as pd from typing import Union from anndata import AnnData from .base import calc_neighbours, get_lrs_scores, calc_distance from .permutation import perform_spot_testing from .go import run_GO from .het import ( count, get_data_for_counting, get_interaction_matrix, get_interaction_pvals, ) from statsmodels.stats.multitest import multipletests ################################################################################ # Functions related to Ligand-Receptor interactions # ################################################################################ def load_lrs(names: Union[str, list, None] = None, species: str = "human") -> np.array: """Loads inputted LR database, & concatenates into consistent database set of pairs without duplicates. If None loads 'connectomeDB2020_lit'. Parameters ---------- names: list Databases to load, options: 'connectomeDB2020_lit' (literature verified), 'connectomeDB2020_put' (putative). If more than one specified, loads all & removes duplicates. species: str Format of the LR genes, either 'human' or 'mouse'. Returns ------- lrs: np.array lr pairs from the database in format ['L1_R1', 'LN_RN'] """ if type(names) == type(None): names = ["connectomeDB2020_lit"] if type(names) == str: names = [names] path = os.path.dirname(os.path.realpath(__file__)) dbs = [pd.read_csv(f"{path}/databases/{name}.txt", sep="\t") for name in names] lrs_full = [] for db in dbs: lrs = [f"{db.values[i,0]}_{db.values[i,1]}" for i in range(db.shape[0])] lrs_full.extend(lrs) lrs_full = np.unique(lrs_full) # If dealing with mouse, need to reformat # if species == "mouse": genes1 = [lr_.split("_")[0] for lr_ in lrs_full] genes2 = [lr_.split("_")[1] for lr_ in lrs_full] lrs_full = np.array( [ genes1[i][0] + genes1[i][1:].lower() + "_" + genes2[i][0] + genes2[i][1:].lower() for i in range(len(lrs_full)) ] ) return lrs_full def grid(adata, n_row: int = 10, n_col: int = 10, use_label: str = None): """Creates a new anndata representing a gridded version of the data; can be used upstream of CCI pipeline. NOTE: intended use is for single cell spatial data, not Visium or other lower resolution tech. Parameters ---------- adata: AnnData The data object. n_row: int The number of rows in the grid. n_col: int The number of columns in the grid. use_label: str The cell type labels in adata.obs to join together & save as deconvolution data. Returns ------- grid_data: AnnData Equivalent expression data to adata, except values have been summed by cells that fall within defined bins. """ # Retrieving the coordinates of each grid # n_squares = n_row * n_col cell_bcs = adata.obs_names.values xs, ys = adata.obs["imagecol"].values, adata.obs["imagerow"].values grid_counts, xedges, yedges = np.histogram2d(xs, ys, bins=[n_col, n_row]) grid_expr = np.zeros((n_squares, adata.shape[1])) grid_coords = np.zeros((n_squares, 2)) grid_bcs = [] grid_cell_counts = [] gridded_cells = [] cell_grid = [] # If use_label specified, then will generate deconvolution information if type(use_label) != type(None): cell_labels = adata.obs[use_label].values.astype(str) cell_set = np.unique(cell_labels) cell_info = np.zeros((n_squares, len(cell_set))) # generate grids from top to bottom and left to right n = 0 for i in range(n_col): x_left, x_right = xedges[i], xedges[i + 1] for j in range(n_row): y_down, y_up = yedges[j], yedges[j + 1] grid_coords[n, :] = [(x_right + x_left) / 2, (y_up + y_down) / 2] # Now determining the cells within the gridded area # if i != n_col - 1 and j == n_row - 1: # top left corner x_true = (xs >= x_left) & (xs < x_right) y_true = (ys <= y_up) & (ys > y_down) elif i == n_col - 1 and j != n_row - 1: # bottom righ corner x_true = (xs > x_left) & (xs <= x_right) y_true = (ys < y_up) & (ys >= y_down) else: # average case x_true = (xs >= x_left) & (xs < x_right) y_true = (ys < y_up) & (ys >= y_down) grid_cells = cell_bcs[x_true & y_true] grid_cells_str = ",".join(grid_cells) grid_bcs.append(grid_cells_str) grid_cell_counts.append(len(grid_cells)) gridded_cells.extend(grid_cells) cell_grid.extend([f"grid_{n}"] * len(grid_cells)) # Summing the expression across these cells to get the grid expression # if len(grid_cells) > 0: cell_bool = [cell in grid_cells for cell in cell_bcs] grid_expr[n, :] = adata.X[cell_bool, :].sum(axis=0) # If we have cell type information, will record # if type(use_label) != type(None) and len(grid_cells) > 0: grid_cell_types = cell_labels[cell_bool] cell_info[n, :] = [ len(np.where(grid_cell_types == ct)[0]) / len(grid_cell_types) for ct in cell_set ] n += 1 # Creating gridded anndata # grid_expr = pd.DataFrame( grid_expr, index=[f"grid_{i}" for i in range(n_squares)], columns=adata.var_names.values.astype(str), ) grid_data = AnnData(grid_expr) grid_data.obs["imagecol"] = grid_coords[:, 0] grid_data.obs["imagerow"] = grid_coords[:, 1] grid_data.obs["n_cells"] = grid_cell_counts grid_data.obsm["spatial"] = grid_coords grid_data.uns["spatial"] = adata.uns["spatial"] if type(use_label) != type(None): grid_data.uns[use_label] = pd.DataFrame( cell_info, index=grid_data.obs_names.values.astype(str), columns=cell_set ) max_indices = np.apply_along_axis(np.argmax, 1, cell_info) cell_set = np.unique(grid_data.uns[use_label].columns.values) grid_data.obs[use_label] = [cell_set[index] for index in max_indices] grid_data.obs[use_label] = grid_data.obs[use_label].astype("category") # Subsetting to only gridded spots that contain cells # grid_data = grid_data[grid_data.obs["n_cells"] > 0, :].copy() if type(use_label) != type(None): grid_data.uns[use_label] = grid_data.uns[use_label].loc[grid_data.obs_names, :] grid_data.uns["grid_counts"] = grid_counts grid_data.uns["grid_xedges"] = xedges grid_data.uns["grid_yedges"] = yedges return grid_data def run( adata: AnnData, lrs: np.array, min_spots: int = 10, distance: int = None, n_pairs: int = 1000, n_cpus: int = None, use_label: str = None, adj_method: str = "fdr_bh", pval_adj_cutoff: float = 0.05, min_expr: float = 0, save_bg: bool = False, neg_binom: bool = False, verbose: bool = True, ): """Performs stLearn LR analysis. Parameters ----------- adata: AnnData The data object. lrs: np.array The LR pairs to score/test for enrichment (in format 'L1_R1'). min_spots: int Minimum number of spots with an LR score for an LR to be considered for further testing. distance: int Distance to determine the neighbours (default [None] is immediately adjacent neighbours if using Visium), distance=0 means within spot (only for non-single-cell spatial data). n_pairs: int Number of random pairs of genes to generate when creating the background distribution per LR pair; higher than more accurate p-value estimation. n_cpus: int The number of cpus to use for multi-threading. use_label: str The cell type deconvolution results to use in counting stored in adata.uns; if not specified only considered LR expression without cell heterogeneity. adj_method: str Parsed to statsmodels.stats.multitest.multipletests for multiple hypothesis testing correction; see there for other options. pval_adj_cutoff: float P-value below which LR is considered significant in spot neighbourhood. min_expr: float Minimum gene expression of either L or R for spot to be considered to expression of either. save_bg: bool Whether to save the background per LR pair; for method development only. Not recommended since huge memory. neg_binom: bool Whether to fit a negative binomial distribution for all background scores generated across spots per LR after discretising the random scores. Can be extremely slow. verbose: bool Whether print dialogue to user during run-time. Returns -------- adata: AnnData Relevant information stored: adata.uns['lr_summary'] Summary of significant spots detected per LR, the LRs listed in the index is the same order of LRs in the columns of results stored in adata.obsm below. Hence the order of this must be maintained. adata.obsm Additional keys are added; 'lr_scores', 'lr_sig_scores', 'p_vals', 'p_adjs', '-log10(p_adjs)'. All are numpy matrices, with columns referring to the LRs listed in adata.uns['lr_summary']. 'lr_scores' is the raw scores, while 'lr_sig_scores' is the same except only for significant scores; non-significant scores are set to zero. adata.obsm['het'] Only if use_label specified; contains the counts of the cell types found per spot. """ # Setting threads for paralellisation # if type(n_cpus) != type(None): numba.set_num_threads(n_cpus) # Making sure none of the var_names contains '_' already, these will need # to be renamed. prob_genes = [gene for gene in adata.var_names if '_' in gene] if len(prob_genes)>0: raise Exception("Detected '_' within some gene names, which breaks " +\ "internal string handling for the lrs in format 'L_R'.\n"+\ "Recommend to rename adata.var_names or remove these "+\ f"genes from adata:\n {prob_genes}") # Calculating neighbour & storing # distance = calc_distance(adata, distance) neighbours = calc_neighbours(adata, distance, verbose=verbose) adata.obsm["spot_neighbours"] = pd.DataFrame( [",".join(x.astype(str)) for x in neighbours], index=adata.obs_names, columns=["neighbour_indices"], ) spot_neighs_df = adata.obsm["spot_neighbours"] spot_neigh_bcs = [] for i in range(spot_neighs_df.shape[0]): neigh_indices = [ int(index) for index in spot_neighs_df.values[i, 0].split(",") if index != "" ] neigh_bcs = [adata.obs_names[index] for index in neigh_indices] spot_neigh_bcs.append(",".join(neigh_bcs)) spot_neigh_bcs_df = pd.DataFrame( spot_neigh_bcs, index=spot_neighs_df.index, columns=["neighbour_bcs"] ) # Important to store barcodes in-case adata subsetted # adata.obsm["spot_neigh_bcs"] = spot_neigh_bcs_df if verbose: print( "Spot neighbour indices
pulumi.get(self, "locations") @locations.setter def locations(self, value: pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerAllocationPolicyLocationArgs']]]): pulumi.set(self, "locations", value) @pulumi.input_type class AlbLoadBalancerAllocationPolicyLocationArgs: def __init__(__self__, *, subnet_id: pulumi.Input[str], zone_id: pulumi.Input[str], disable_traffic: Optional[pulumi.Input[bool]] = None): """ :param pulumi.Input[str] subnet_id: Provided by the client or computed automatically. :param pulumi.Input[str] zone_id: ID of the zone that location is located at. :param pulumi.Input[bool] disable_traffic: If set, will disable all L7 instances in the zone for request handling. """ pulumi.set(__self__, "subnet_id", subnet_id) pulumi.set(__self__, "zone_id", zone_id) if disable_traffic is not None: pulumi.set(__self__, "disable_traffic", disable_traffic) @property @pulumi.getter(name="subnetId") def subnet_id(self) -> pulumi.Input[str]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "subnet_id") @subnet_id.setter def subnet_id(self, value: pulumi.Input[str]): pulumi.set(self, "subnet_id", value) @property @pulumi.getter(name="zoneId") def zone_id(self) -> pulumi.Input[str]: """ ID of the zone that location is located at. """ return pulumi.get(self, "zone_id") @zone_id.setter def zone_id(self, value: pulumi.Input[str]): pulumi.set(self, "zone_id", value) @property @pulumi.getter(name="disableTraffic") def disable_traffic(self) -> Optional[pulumi.Input[bool]]: """ If set, will disable all L7 instances in the zone for request handling. """ return pulumi.get(self, "disable_traffic") @disable_traffic.setter def disable_traffic(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disable_traffic", value) @pulumi.input_type class AlbLoadBalancerListenerArgs: def __init__(__self__, *, name: pulumi.Input[str], endpoints: Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointArgs']]]] = None, http: Optional[pulumi.Input['AlbLoadBalancerListenerHttpArgs']] = None, tls: Optional[pulumi.Input['AlbLoadBalancerListenerTlsArgs']] = None): """ :param pulumi.Input[str] name: name of SNI match. :param pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointArgs']]] endpoints: Network endpoints (addresses and ports) of the listener. The structure is documented below. :param pulumi.Input['AlbLoadBalancerListenerHttpArgs'] http: HTTP listener resource. The structure is documented below. :param pulumi.Input['AlbLoadBalancerListenerTlsArgs'] tls: TLS listener resource. The structure is documented below. """ pulumi.set(__self__, "name", name) if endpoints is not None: pulumi.set(__self__, "endpoints", endpoints) if http is not None: pulumi.set(__self__, "http", http) if tls is not None: pulumi.set(__self__, "tls", tls) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ name of SNI match. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def endpoints(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointArgs']]]]: """ Network endpoints (addresses and ports) of the listener. The structure is documented below. """ return pulumi.get(self, "endpoints") @endpoints.setter def endpoints(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointArgs']]]]): pulumi.set(self, "endpoints", value) @property @pulumi.getter def http(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerHttpArgs']]: """ HTTP listener resource. The structure is documented below. """ return pulumi.get(self, "http") @http.setter def http(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerHttpArgs']]): pulumi.set(self, "http", value) @property @pulumi.getter def tls(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerTlsArgs']]: """ TLS listener resource. The structure is documented below. """ return pulumi.get(self, "tls") @tls.setter def tls(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerTlsArgs']]): pulumi.set(self, "tls", value) @pulumi.input_type class AlbLoadBalancerListenerEndpointArgs: def __init__(__self__, *, addresses: pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointAddressArgs']]], ports: pulumi.Input[Sequence[pulumi.Input[int]]]): """ :param pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointAddressArgs']]] addresses: Provided by the client or computed automatically. :param pulumi.Input[Sequence[pulumi.Input[int]]] ports: One or more ports to listen on. """ pulumi.set(__self__, "addresses", addresses) pulumi.set(__self__, "ports", ports) @property @pulumi.getter def addresses(self) -> pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointAddressArgs']]]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "addresses") @addresses.setter def addresses(self, value: pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerEndpointAddressArgs']]]): pulumi.set(self, "addresses", value) @property @pulumi.getter def ports(self) -> pulumi.Input[Sequence[pulumi.Input[int]]]: """ One or more ports to listen on. """ return pulumi.get(self, "ports") @ports.setter def ports(self, value: pulumi.Input[Sequence[pulumi.Input[int]]]): pulumi.set(self, "ports", value) @pulumi.input_type class AlbLoadBalancerListenerEndpointAddressArgs: def __init__(__self__, *, external_ipv4_address: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv4AddressArgs']] = None, external_ipv6_address: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv6AddressArgs']] = None, internal_ipv4_address: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressInternalIpv4AddressArgs']] = None): """ :param pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv4AddressArgs'] external_ipv4_address: External IPv4 address. The structure is documented below. :param pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv6AddressArgs'] external_ipv6_address: External IPv6 address. The structure is documented below. :param pulumi.Input['AlbLoadBalancerListenerEndpointAddressInternalIpv4AddressArgs'] internal_ipv4_address: Internal IPv4 address. The structure is documented below. """ if external_ipv4_address is not None: pulumi.set(__self__, "external_ipv4_address", external_ipv4_address) if external_ipv6_address is not None: pulumi.set(__self__, "external_ipv6_address", external_ipv6_address) if internal_ipv4_address is not None: pulumi.set(__self__, "internal_ipv4_address", internal_ipv4_address) @property @pulumi.getter(name="externalIpv4Address") def external_ipv4_address(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv4AddressArgs']]: """ External IPv4 address. The structure is documented below. """ return pulumi.get(self, "external_ipv4_address") @external_ipv4_address.setter def external_ipv4_address(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv4AddressArgs']]): pulumi.set(self, "external_ipv4_address", value) @property @pulumi.getter(name="externalIpv6Address") def external_ipv6_address(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv6AddressArgs']]: """ External IPv6 address. The structure is documented below. """ return pulumi.get(self, "external_ipv6_address") @external_ipv6_address.setter def external_ipv6_address(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressExternalIpv6AddressArgs']]): pulumi.set(self, "external_ipv6_address", value) @property @pulumi.getter(name="internalIpv4Address") def internal_ipv4_address(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressInternalIpv4AddressArgs']]: """ Internal IPv4 address. The structure is documented below. """ return pulumi.get(self, "internal_ipv4_address") @internal_ipv4_address.setter def internal_ipv4_address(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerEndpointAddressInternalIpv4AddressArgs']]): pulumi.set(self, "internal_ipv4_address", value) @pulumi.input_type class AlbLoadBalancerListenerEndpointAddressExternalIpv4AddressArgs: def __init__(__self__, *, address: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] address: Provided by the client or computed automatically. """ if address is not None: pulumi.set(__self__, "address", address) @property @pulumi.getter def address(self) -> Optional[pulumi.Input[str]]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "address") @address.setter def address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "address", value) @pulumi.input_type class AlbLoadBalancerListenerEndpointAddressExternalIpv6AddressArgs: def __init__(__self__, *, address: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] address: Provided by the client or computed automatically. """ if address is not None: pulumi.set(__self__, "address", address) @property @pulumi.getter def address(self) -> Optional[pulumi.Input[str]]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "address") @address.setter def address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "address", value) @pulumi.input_type class AlbLoadBalancerListenerEndpointAddressInternalIpv4AddressArgs: def __init__(__self__, *, address: Optional[pulumi.Input[str]] = None, subnet_id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] address: Provided by the client or computed automatically. :param pulumi.Input[str] subnet_id: Provided by the client or computed automatically. """ if address is not None: pulumi.set(__self__, "address", address) if subnet_id is not None: pulumi.set(__self__, "subnet_id", subnet_id) @property @pulumi.getter def address(self) -> Optional[pulumi.Input[str]]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "address") @address.setter def address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "address", value) @property @pulumi.getter(name="subnetId") def subnet_id(self) -> Optional[pulumi.Input[str]]: """ Provided by the client or computed automatically. """ return pulumi.get(self, "subnet_id") @subnet_id.setter def subnet_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subnet_id", value) @pulumi.input_type class AlbLoadBalancerListenerHttpArgs: def __init__(__self__, *, handler: Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerArgs']] = None, redirects: Optional[pulumi.Input['AlbLoadBalancerListenerHttpRedirectsArgs']] = None): """ :param pulumi.Input['AlbLoadBalancerListenerHttpHandlerArgs'] handler: HTTP handler that sets plaintext HTTP router. The structure is documented below. :param pulumi.Input['AlbLoadBalancerListenerHttpRedirectsArgs'] redirects: Shortcut for adding http > https redirects. The structure is documented below. """ if handler is not None: pulumi.set(__self__, "handler", handler) if redirects is not None: pulumi.set(__self__, "redirects", redirects) @property @pulumi.getter def handler(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerArgs']]: """ HTTP handler that sets plaintext HTTP router. The structure is documented below. """ return pulumi.get(self, "handler") @handler.setter def handler(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerArgs']]): pulumi.set(self, "handler", value) @property @pulumi.getter def redirects(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerHttpRedirectsArgs']]: """ Shortcut for adding http > https redirects. The structure is documented below. """ return pulumi.get(self, "redirects") @redirects.setter def redirects(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerHttpRedirectsArgs']]): pulumi.set(self, "redirects", value) @pulumi.input_type class AlbLoadBalancerListenerHttpHandlerArgs: def __init__(__self__, *, allow_http10: Optional[pulumi.Input[bool]] = None, http2_options: Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerHttp2OptionsArgs']] = None, http_router_id: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[bool] allow_http10: If set, will enable only HTTP1 protocol with HTTP1.0 support. :param pulumi.Input['AlbLoadBalancerListenerHttpHandlerHttp2OptionsArgs'] http2_options: If set, will enable HTTP2 protocol for the handler. The structure is documented below. :param pulumi.Input[str] http_router_id: HTTP router id. """ if allow_http10 is not None: pulumi.set(__self__, "allow_http10", allow_http10) if http2_options is not None: pulumi.set(__self__, "http2_options", http2_options) if http_router_id is not None: pulumi.set(__self__, "http_router_id", http_router_id) @property @pulumi.getter(name="allowHttp10") def allow_http10(self) -> Optional[pulumi.Input[bool]]: """ If set, will enable only HTTP1 protocol with HTTP1.0 support. """ return pulumi.get(self, "allow_http10") @allow_http10.setter def allow_http10(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "allow_http10", value) @property @pulumi.getter(name="http2Options") def http2_options(self) -> Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerHttp2OptionsArgs']]: """ If set, will enable HTTP2 protocol for the handler. The structure is documented below. """ return pulumi.get(self, "http2_options") @http2_options.setter def http2_options(self, value: Optional[pulumi.Input['AlbLoadBalancerListenerHttpHandlerHttp2OptionsArgs']]): pulumi.set(self, "http2_options", value) @property @pulumi.getter(name="httpRouterId") def http_router_id(self) -> Optional[pulumi.Input[str]]: """ HTTP router id. """ return pulumi.get(self, "http_router_id") @http_router_id.setter def http_router_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "http_router_id", value) @pulumi.input_type class AlbLoadBalancerListenerHttpHandlerHttp2OptionsArgs: def __init__(__self__, *, max_concurrent_streams: Optional[pulumi.Input[int]] = None): """ :param pulumi.Input[int] max_concurrent_streams: Maximum number of concurrent streams. """ if max_concurrent_streams is not None: pulumi.set(__self__, "max_concurrent_streams", max_concurrent_streams) @property @pulumi.getter(name="maxConcurrentStreams") def max_concurrent_streams(self) -> Optional[pulumi.Input[int]]: """ Maximum number of concurrent streams. """ return pulumi.get(self, "max_concurrent_streams") @max_concurrent_streams.setter def max_concurrent_streams(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_concurrent_streams", value) @pulumi.input_type class AlbLoadBalancerListenerHttpRedirectsArgs: def __init__(__self__, *, http_to_https: Optional[pulumi.Input[bool]] = None): if http_to_https is not None: pulumi.set(__self__, "http_to_https", http_to_https) @property @pulumi.getter(name="httpToHttps") def http_to_https(self) -> Optional[pulumi.Input[bool]]: return pulumi.get(self, "http_to_https") @http_to_https.setter def http_to_https(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "http_to_https", value) @pulumi.input_type class AlbLoadBalancerListenerTlsArgs: def __init__(__self__, *, default_handler: pulumi.Input['AlbLoadBalancerListenerTlsDefaultHandlerArgs'], sni_handlers: Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerTlsSniHandlerArgs']]]] = None): """ :param pulumi.Input['AlbLoadBalancerListenerTlsDefaultHandlerArgs'] default_handler: TLS handler resource. The structure is documented below. :param pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerTlsSniHandlerArgs']]] sni_handlers: SNI match resource. The structure is documented below. """ pulumi.set(__self__, "default_handler", default_handler) if sni_handlers is not None: pulumi.set(__self__, "sni_handlers", sni_handlers) @property @pulumi.getter(name="defaultHandler") def default_handler(self) -> pulumi.Input['AlbLoadBalancerListenerTlsDefaultHandlerArgs']: """ TLS handler resource. The structure is documented below. """ return pulumi.get(self, "default_handler") @default_handler.setter def default_handler(self, value: pulumi.Input['AlbLoadBalancerListenerTlsDefaultHandlerArgs']): pulumi.set(self, "default_handler", value) @property @pulumi.getter(name="sniHandlers") def sni_handlers(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerTlsSniHandlerArgs']]]]: """ SNI match resource. The structure is documented below. """ return pulumi.get(self, "sni_handlers") @sni_handlers.setter def sni_handlers(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AlbLoadBalancerListenerTlsSniHandlerArgs']]]]):
= ['_'.join(i.split('(')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split(')')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split('&')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = [i.split('.')[0] for i in sixyNineVideos] for emot in sixyNineVideos: summary_data_frame.loc[emot, '69Videos'] = 'Final' if (date == '2018_Oct_10-Nov_15'): #videoPrefix == 'WithThirty': clipDir = '/mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/block_For_30_Stimuli/Videos' videoStims = glob.glob(os.path.join(clipDir, '*')) videoStims = [i.split('/')[-1] for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = ['_'.join(i.split(' ')) for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = ['_'.join(i.split("'")) for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = ['_'.join(i.split('(')) for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = ['_'.join(i.split(')')) for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = ['_'.join(i.split('&')) for i in videoStims] ### Renaming the experiment Ids taken from csv file videoStims = [i.split('.')[0] for i in videoStims] for emot in videoStims: summary_data_frame.loc[emot, '30Videos'] = 'Final' elif videoPrefix == 'WithForty': import pickle ### This file is created using the program /mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/Survey/knowingAboutBlocks.py. fortyVideosDir = '/mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/Survey' fortyVidoes = pickle.load(open(os.path.join(fortyVideosDir, 'WithAllVideos__BlockInformationForStimuli_Nov_1-Nov_15.pkl'), 'rb'))[1] sixyNineVideos = [i.split('/')[-1] for i in summary_data_frame.index.values] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split(' ')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split("'")) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split('(')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split(')')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = ['_'.join(i.split('&')) for i in sixyNineVideos] ### Renaming the experiment Ids taken from csv file sixyNineVideos = [i.split('.')[0] for i in sixyNineVideos] summary_data_frame['Experiment_id'] = sixyNineVideos summary_data_frame.set_index('Experiment_id', drop=True, inplace=True) for emot in fortyVidoes: summary_data_frame.loc[emot, '40Videos'] = 'Final' os.chdir('..') summary_data_frame.to_csv(os.path.join(_thisDir, 'NewTarget', 'summary_data_frame_'+cleaning_flag+date+'.csv')) pd.DataFrame(greater_than_50).to_csv(os.path.join(_thisDir, 'NewTarget', 'Greater_Then_50_'+cleaning_flag+date+'.csv')) ########################## Clustering if cleaning_flag == 'after_cleaning': import sklearn.cluster dataToCluster = summary_data_frame[["mean_dist_origin", "VA_std"]] dataToCluster.dropna(inplace=True) clusterObject = sklearn.cluster.KMeans(n_clusters=2) cluster = clusterObject.fit(dataToCluster) cluster_1 = dataToCluster.index.values[np.where(cluster.labels_==0)[0]] cluster_2 = dataToCluster.index.values[np.where(cluster.labels_==1)[0]] summary_data_frame.loc[cluster_1, 'Cluster_Marker'] = '*' summary_data_frame.loc[cluster_2, 'Cluster_Marker'] = '#' if (date == '2018_Oct_10-Oct_20'): #videoPrefix == 'WithSixtyNine': NaNVal = summary_data_frame.index.values[np.where(np.isnan(summary_data_frame['VideoId']))[0]] summary_data_frame.drop(NaNVal, inplace=True, axis=0) selectedForScatter = summary_data_frame.index.values[np.where(summary_data_frame['69Videos']=='Final')[0]] elif (date == '2018_Oct_10-Nov_15') and (videoPrefix == 'With69Videos_'): selectedForScatter = summary_data_frame.index.values[np.where(summary_data_frame['69Videos']=='Final')[0]] elif (date == '2018_Oct_10-Nov_15'): #videoPrefix == 'WithThirty': selectedForScatter = summary_data_frame.index.values[np.where(summary_data_frame['30Videos']=='Final')[0]] summary_data_frame.to_csv(os.path.join(_thisDir, 'NewTarget', 'WithClustering_summary_data_frame_'+cleaning_flag+date+'.csv')) from adjustText import adjust_text if (videoPrefix == 'WithThirtyVideos_'): ax = summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean']].plot.scatter(x='V_mean', y='A_mean', s=40, figsize=(20,10), fontsize=40) texts = [] for v, a, emt in summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean','MostRated']].values: texts.append(plt.text(v, a, emt, fontsize=35)) #ax.annotate(emt, (v,a), fontsize=30) plt.ylabel('Arousal Mean', fontsize=30) plt.xlabel('Valence Mean', fontsize=30) adjust_text(texts, only_move={'points':'y', 'texts':'y'}, arrowprops=dict(arrowstyle="->", color='r', lw=1.5)) plt.savefig(os.path.join(_thisDir, 'NewTarget', '%s_Valence_ArousalRepresentationSelectedStimuli%s_%s.png' %(videoPrefix, date, cleaning_flag)), bbox_inches='tight') plt.savefig(os.path.join(_thisDir, 'NewTarget', '%s_Valence_ArousalRepresentationSelectedStimuli%s_%s.pdf' %(videoPrefix, date, cleaning_flag)), bbox_inches='tight') elif (videoPrefix == 'With69Videos_'): plt.clf() plt.close() ax = summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean']].plot.scatter(x='V_mean', y='A_mean', s=40, fontsize=40)#, figsize=(15,15), fontsize=40) texts = [] '''### Annotating data ponts with emotion names for v, a, emt in summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean','MostRated']].values: texts.append(plt.text(v, a, emt, fontsize=23)) #ax.annotate(emt, (v,a), fontsize=30) adjust_text(texts, only_move={'points':'y', 'texts':'y'}, arrowprops=dict(arrowstyle="->", color='r', lw=1.5))''' plt.ylabel('Arousal Mean', fontsize=30) plt.xlabel('Valence Mean', fontsize=30) plt.savefig(os.path.join(_thisDir, 'NewTarget', '%s_Valence_ArousalRepresentationSelectedStimuli%s_%s.png' %(videoPrefix, date, cleaning_flag)), bbox_inches='tight') plt.savefig(os.path.join(_thisDir, 'NewTarget', '%s_Valence_ArousalRepresentationSelectedStimuli%s_%s.pdf' %(videoPrefix, date, cleaning_flag)), bbox_inches='tight') plt.clf() plt.close() #elif videoPrefix == 'WithSixtyNine': '''else: pdb.set_trace() ax = summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean']].plot.scatter(x='V_mean', y='A_mean', s=40, figsize=(20,10), fontsize=40) texts = [] for v, a, emt in summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean','WarinnerName']].values: texts.append(plt.text(v, a, emt, fontsize=35)) #ax.annotate(emt, (v,a), fontsize=30) plt.ylabel('Arousal Mean', fontsize=30) plt.xlabel('Valence Mean', fontsize=30) adjust_text(texts, only_move={'points':'y', 'texts':'y'}, arrowprops=dict(arrowstyle="->", color='r', lw=1.5)) #summary_data_frame.loc[selectedForScatter, ['V_mean', 'A_mean']].plot.scatter(x='V_mean', y='A_mean', s=40, figsize=(20,10), fontsize=40) #plt.ylabel('Arousal Mean', fontsize=30) #plt.xlabel('Valence Mean', fontsize=30) plt.savefig(os.path.join(_thisDir, 'NewTarget', 'Valence_ArousalRepresentationSelectedStimuli%s_%s.png' %(date, cleaning_flag)), bbox_inches='tight') plt.savefig(os.path.join(_thisDir, 'NewTarget', 'Valence_ArousalRepresentationSelectedStimuli%s_%s.pdf' %(date, cleaning_flag)), bbox_inches='tight')''' print("After this please go to VAD_Plotting for summarized data in this module or go for Data cleaning") #################################### Incluse MAD information also. if cleaning_flag == 'after_cleaning': MADFile = 'RProgram_MeanAbsoluteDifference_%s%s.csv' %(cleaning_flag, date) MADFrame = pd.read_csv(os.path.join(_thisDir, 'NewTarget', MADFile), index_col = 0) MADEmt = MADFrame.index.values MADEmt = [i.split('/')[-1] for i in MADFrame.index.values] ### Renaming the experiment Ids taken from csv file MADEmt = ['_'.join(i.split(' ')) for i in MADEmt] ### Renaming the experiment Ids taken from csv file MADEmt = ['_'.join(i.split("'")) for i in MADEmt] ### Renaming the experiment Ids taken from csv file MADEmt = ['_'.join(i.split('(')) for i in MADEmt] ### Renaming the experiment Ids taken from csv file MADEmt = ['_'.join(i.split(')')) for i in MADEmt] ### Renaming the experiment Ids taken from csv file MADEmt = ['_'.join(i.split('&')) for i in MADEmt] ### Renaming the experiment Ids taken from csv file MADEmt = [i.split('.')[0] for i in MADEmt] MADFrame['Experiment_id'] = MADEmt MADFrame.set_index('Experiment_id', drop=True, inplace=True) for vidStim in summary_data_frame.index.values: try: summary_data_frame.loc[vidStim, 'VMAD'] = MADFrame.loc[vidStim, 'VMAD'] summary_data_frame.loc[vidStim, 'AMAD'] = MADFrame.loc[vidStim, 'AMAD'] summary_data_frame.loc[vidStim, 'DMAD'] = MADFrame.loc[vidStim, 'DMAD'] summary_data_frame.loc[vidStim, 'LMAD'] = MADFrame.loc[vidStim, 'LMAD'] summary_data_frame.loc[vidStim, 'FMAD'] = MADFrame.loc[vidStim, 'FMAD'] except: continue ####################### Concordance Results ## This file is created using R Program: /mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/Survey/IRRTest_KendallVegan_StimulationWise.R CCCFile = 'AllStimuli_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFile_Cluster_1 = 'Cluster-1_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFile_Cluster_2 = 'Cluster-2_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFrame = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile), index_col = 0) CCCFrame_Cluster_1 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile_Cluster_1), index_col = 0) CCCFrame_Cluster_2 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile_Cluster_2), index_col = 0) CCCEmt = CCCFrame.index.values CCCEmt = [i.split('/')[-1] for i in CCCFrame.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame['Experiment_id'] = CCCEmt CCCFrame.set_index('Experiment_id', drop=True, inplace=True) CCCEmt = [i.split('/')[-1] for i in CCCFrame_Cluster_1.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame_Cluster_1['Experiment_id'] = CCCEmt CCCFrame_Cluster_1.set_index('Experiment_id', drop=True, inplace=True) CCCEmt = [i.split('/')[-1] for i in CCCFrame_Cluster_2.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame_Cluster_2['Experiment_id'] = CCCEmt CCCFrame_Cluster_2.set_index('Experiment_id', drop=True, inplace=True) for vidStim in summary_data_frame.index.values: try: summary_data_frame.loc[vidStim, 'AllStim_W'] = CCCFrame.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'AllStim_F'] = CCCFrame.loc[vidStim, 'Concord_F'] summary_data_frame.loc[vidStim, 'AllStim_Prob.F'] = CCCFrame.loc[vidStim, 'Concord_Prob.F'] summary_data_frame.loc[vidStim, 'AllStim_Chi2'] = CCCFrame.loc[vidStim, 'Concord_Chi2'] summary_data_frame.loc[vidStim, 'AllStim_Prob.perm'] = CCCFrame.loc[vidStim, 'Concord_Prob.perm'] summary_data_frame.loc[vidStim, 'AllStim_Dimension'] = CCCFrame.loc[vidStim, 'Concord_Dimension'] summary_data_frame.loc[vidStim, 'AllStimCateg'] = CCCFrame.loc[vidStim, 'ConcordCateg'] summary_data_frame.loc[vidStim, 'Clust_1_W'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'Clust_1_F'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_F'] summary_data_frame.loc[vidStim, 'Clust_1_Prob.F'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Prob.F'] summary_data_frame.loc[vidStim, 'Clust_1_Chi2'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Chi2'] summary_data_frame.loc[vidStim, 'Clust_1_Prob.perm'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Prob.perm'] summary_data_frame.loc[vidStim, 'Clust_1_Dimension'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Dimension'] summary_data_frame.loc[vidStim, 'Clust_1Categ'] = CCCFrame_Cluster_1.loc[vidStim, 'ConcordCateg'] summary_data_frame.loc[vidStim, 'Clust_2_W'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'Clust_2_F']
fourier_amplitude[numpy.where(fourier_amplitude > 1.0)] = 1.0 fourier_amplitude[2:][numpy.where(numpy.greater(fourier_amplitude[2:], fourier_amplitude[1:-1]))] = 0 else: if fourier_amplitude > 1.0 : return 1.0 if fourier_amplitude < 0.0 : return 0.0 #check the previous return fourier_amplitude ###################################################################### # STRAIN ###################################################################### # INVARIANT PAH -------------------------------- def strain_invariant_function_pah(L, h, k, l, lattice_parameter, a, b, C_hkl): s_hkl = Utilities.s_hkl(lattice_parameter, h, k, l) return numpy.exp(-((2*numpy.pi**2)/((s_hkl**2)*(lattice_parameter**4))) * C_hkl * (a*L + b*(L**2))) def displacement_invariant_pah(L, h, k, l, a, b, C_hkl): return numpy.sqrt((C_hkl*(a*L + b*(L**2)))/((h**2+k**2+l**2)**2)) # Krivoglaz-Wilkens -------------------------------- from scipy import integrate from numpy import pi, log, sqrt, arcsin, sin, cos # TO SHORTEN FORMULAS def clausen_integral_inner_function(t): return log(2*sin(t/2)) def clausen_integral(x=0.0): _v_integrate_quad = numpy.vectorize(integrate.quad) return -1*(_v_integrate_quad(lambda t: clausen_integral_inner_function(t), 0.0, x)[0]) def f_star(eta, use_simplified_calculation=True): is_array = isinstance(eta, list) or isinstance(eta, numpy.ndarray) if not is_array: if eta >= 1: return (256/(45*pi*eta)) - ((11/24) + (log(2) - log(eta))/4)/(eta**2) else: if use_simplified_calculation: return (7/4) - log(2) - log(eta) + ((eta**2)/6) - (32*(eta**3))/(225*pi) else: return (256/(45*pi*eta)) \ + ((eta**2)/6) - log(2) - log(eta) \ + -eta*sqrt(1-(eta**2))*(769 + 4*(eta**2)*(20.5 + (eta**2)))/(180*pi*(eta**2)) \ + -((45 - 180*eta**2)*clausen_integral(2*arcsin(eta)) \ + (15*arcsin(eta)*(11 + 4*(eta**2)*(10.5 + (eta**2)) + (6 - 24*(eta**2))*(log(2) + log(eta)))))/(180*pi*(eta**2)) else: result = numpy.zeros(len(eta)) cursor_1 = numpy.where(eta >= 1) cursor_2 = numpy.where(eta < 1) eta1 = eta[cursor_1] eta2 = eta[cursor_2] result[cursor_1] = (256/(45*pi*eta1)) - ((11/24) + (log(2) - log(eta1))/4)/(eta1**2) if use_simplified_calculation: result[cursor_2] = (7/4) - log(2) - log(eta2) + ((eta2**2)/6) - (32*(eta2**3))/(225*pi) else: result[cursor_2] = (256/(45*pi*eta2)) \ + ((eta2**2)/6) - log(2) - log(eta2) \ + -eta2*sqrt(1-(eta2**2))*(769 + 4*(eta2**2)*(20.5 + (eta2**2)))/(180*pi*(eta2**2)) \ + -((45 - 180*eta2**2)*clausen_integral(2*arcsin(eta2)) \ + (15*arcsin(eta2)*(11 + 4*(eta2**2)*(10.5 + (eta2**2)) + (6 - 24*(eta2**2))*(log(2) + log(eta2)))))/(180*pi*(eta2**2)) return result def C_hkl_krivoglaz_wilkens(h, k, l, Ae, Be, As, Bs, mix): H_2 = __H_invariant_square(h, k, l) C_hkl_edge = Ae + Be*H_2 C_hkl_screw = As + Bs*H_2 return mix*C_hkl_edge + (1-mix)*C_hkl_screw def strain_krivoglaz_wilkens(L, h, k, l, lattice_parameter, rho, Re, Ae, Be, As, Bs, mix, b): s_hkl = Utilities.s_hkl(lattice_parameter, h, k, l) C_hkl = C_hkl_krivoglaz_wilkens(h, k, l, Ae, Be, As, Bs, mix) return numpy.exp(-(0.5*pi*(s_hkl**2)*(b**2)*rho*C_hkl*(L**2)*f_star(L/Re))) def displacement_krivoglaz_wilkens(L, h, k, l, rho, Re, Ae, Be, As, Bs, mix, b): C_hkl = C_hkl_krivoglaz_wilkens(h, k, l, Ae, Be, As, Bs, mix) return numpy.sqrt(rho*C_hkl*(b**2)*(L**2)*f_star(L/Re)/(4*numpy.pi)) # WARREN MODEL -------------------------------- def load_warren_files(): delta_l_dict = {} delta_l2_dict = {} path = os.path.join(os.path.dirname(__file__), "data") path = os.path.join(path, "delta_l_files") filenames = os.listdir(path) for filename in filenames: if filename.endswith('FTinfo'): hkl = filename[0:3] name = os.path.join(path, filename) data = numpy.loadtxt(name) L = data[:,0] delta_l_dict[hkl] = [L, data[:, 1]] # deltal_fun delta_l2_dict[hkl] = [L, data[:,2]] # deltal2_fun return delta_l_dict, delta_l2_dict delta_l_dict, delta_l2_dict = load_warren_files() def modify_delta_l(l, delta_l, lattice_parameter, average_lattice_parameter): return delta_l - (average_lattice_parameter/lattice_parameter -1)*l def modify_delta_l2(l, delta_l, delta_l2, lattice_parameter, average_lattice_parameter): return delta_l2 - 2*delta_l*(average_lattice_parameter/lattice_parameter -1)*l \ + ((average_lattice_parameter/lattice_parameter -1)*l)**2 def re_warren_strain(s_hkl, delta_l2): return numpy.exp(-0.5*((s_hkl*2*numpy.pi)**2)*delta_l2) def im_warren_strain(s_hkl, delta_l): return (s_hkl*2*numpy.pi)*delta_l def strain_warren_function(L, h, k, l, lattice_parameter, average_lattice_parameter): hkl = str(h) + str(k) + str(l) if hkl not in delta_l_dict.keys(): return numpy.ones(len(L)), numpy.zeros(len(L)) delta_l_entry = delta_l_dict[hkl] delta_l2_entry = delta_l2_dict[hkl] l_local = delta_l_entry[0] delta_l = delta_l_entry[1] delta_l2 = delta_l2_entry[1] new_delta_l = modify_delta_l(l_local, delta_l, lattice_parameter, average_lattice_parameter) new_delta_l2 = modify_delta_l2(l_local, delta_l, delta_l2, lattice_parameter, average_lattice_parameter) new_delta_l = numpy.interp(L, l_local, new_delta_l) new_delta_l2 = numpy.interp(L, l_local, new_delta_l2) s_hkl = Utilities.s_hkl(average_lattice_parameter, h, k, l) return re_warren_strain(s_hkl, new_delta_l2), im_warren_strain(s_hkl, new_delta_l) ###################################################################### # STRUCTURE ###################################################################### def __load_atomic_scattering_factor_coefficients(): atomic_scattering_factor_coefficients = {} path = os.path.join(os.path.dirname(__file__), "data") file_name = os.path.join(path, "atomic_scattering_factor_coefficients.dat") file = open(file_name, "r") rows = file.readlines() for row in rows: tokens = numpy.array(row.strip().split(sep=" ")) tokens = tokens[numpy.where(tokens != '')] if not tokens is None and len(tokens) == 10: element = tokens[0].strip() coefficients =[[[float(tokens[1].strip()), float(tokens[2].strip())], [float(tokens[3].strip()), float(tokens[4].strip())], [float(tokens[5].strip()), float(tokens[6].strip())], [float(tokens[7].strip()), float(tokens[8].strip())]], float(tokens[9].strip())] atomic_scattering_factor_coefficients[element] = coefficients file.close() return atomic_scattering_factor_coefficients atomic_scattering_factor_coefficients = __load_atomic_scattering_factor_coefficients() def multiplicity_cubic(h, k, l): p = [6, 12, 24, 8, 24, 48] hkl = sorted([h, k, l], reverse=True) h, k, l = hkl[0], hkl[1], hkl[2] if (h != 0 and k == 0 and l ==0): return p[0] elif (h == k and l == 0): return p[1] elif ((h == k and l != h and l != k) or (k==l and h != k and h != l)): return p[2] elif (h == k and k == l): return p[3] elif (h != k and l == 0): return p[4] elif (h != k and k != l and h!=l): return p[5] def atomic_scattering_factor(s, element): coefficients = atomic_scattering_factor_coefficients[str(element).upper()] ab = coefficients[0] c = coefficients[1] f_s = numpy.zeros(numpy.size(s)) s_angstrom = s/10 # to angstrom-1 for index in range(0, len(ab)): a = ab[index][0] b = ab[index][1] f_s += a*numpy.exp(-b*((0.5*s_angstrom)**2)) # TODO: AGGIUNGERE DFi e DFii return f_s + c def structure_factor(s, formula, h, k, l, symmetry): elements = ChemicalFormulaParser.parse_formula(formula) if len(elements) == 1: #TODO: this is valid for Cubic materials only if symmetry == Symmetry.FCC: return 4*atomic_scattering_factor(s, elements[0]._element) elif symmetry == Symmetry.BCC: return 2*atomic_scattering_factor(s, elements[0]._element) elif symmetry == Symmetry.SIMPLE_CUBIC: return atomic_scattering_factor(s, elements[0]._element) else: total_weight = 0.0 total_structure_factor = 0.0 cell = get_cell(symmetry) for element in elements: weight = element._n_atoms element_structure_factor = 0.0 for atom in cell: element_structure_factor += atomic_scattering_factor(s, element._element) * numpy.exp(2 * numpy.pi * 1j * (numpy.dot(atom, [h, k ,l]))) element_structure_factor *= weight total_weight += weight total_structure_factor += element_structure_factor total_structure_factor /= total_weight return total_structure_factor def get_cell(symmetry=Symmetry.FCC): if symmetry == Symmetry.SIMPLE_CUBIC: return [[0, 0, 0]] elif symmetry == Symmetry.BCC: return [[0, 0, 0], [0.5, 0.5, 0.5]] elif symmetry == Symmetry.FCC: return [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]] def squared_modulus_structure_factor(s, formula, h, k, l, symmetry=Symmetry.FCC): return numpy.absolute(structure_factor(s, formula, h, k, l, symmetry))**2 def saxs(s, D, a0, formula, symmetry, normalize_to): f = atomic_scattering_factor(s, ChemicalFormulaParser.parse_formula(formula)[0]._element) Z = 4 if symmetry == Symmetry.FCC else 2 if symmetry == Symmetry.BCC else 1 N = (Z*pi*(D**3))/(6*(a0**3)) if normalize_to == Normalization.NORMALIZE_TO_N: normalization = N*(numpy.absolute(f)**2) elif normalize_to == Normalization.NORMALIZE_TO_N2: normalization = (N*numpy.absolute(f))**2 x = pi*D*s saxs = normalization*(3*(sin(x)-x*cos(x))/(x**3))**2 saxs[numpy.where(numpy.isnan(saxs))] = 1.0 return saxs ###################################################################### # INSTRUMENTAL ###################################################################### def caglioti_eta(a, b, c, theta): # input: radians eta = a + b * theta + c * theta**2 if isinstance(eta, numpy.float64): eta = 0 if eta < 0 else 1 if eta > 1 else eta else: eta[numpy.where(eta < 0)] = 0 eta[numpy.where(eta > 1)] = 1 return eta def caglioti_fwhm(U, V, W, theta): # input: radians, output: degrees return numpy.sqrt(W + V * numpy.tan(theta) + U * (numpy.tan(theta)**2)) def delta_two_theta_lab6(ax, bx, cx, dx, ex, theta): # input: radians tan_theta = numpy.tan(theta) delta_twotheta = numpy.radians(ax*(1/tan_theta) + bx + cx*tan_theta + dx*tan_theta**2 + ex*tan_theta**3) delta_twotheta[numpy.where(numpy.isnan(delta_twotheta))] = 0.0 delta_twotheta[numpy.where(numpy.isinf(delta_twotheta))] = 0.0 return delta_twotheta def delta_two_theta_specimen_displacement(goniometer_radius, displacement, theta): return -(2*displacement/goniometer_radius)*cos(theta) def lab6_tan_correction(theta, wavelength, ax, bx, cx, dx, ex): delta_twotheta = delta_two_theta_lab6(ax, bx, cx, dx, ex, theta) return delta_twotheta*numpy.cos(theta)/wavelength def specimen_displacement(theta, wavelength, goniometer_radius, displacement): # input radians delta_twotheta = delta_two_theta_specimen_displacement(goniometer_radius, displacement, theta) return delta_twotheta*numpy.cos(theta)/wavelength def instrumental_function(L, h, k, l, lattice_parameter, wavelength, U, V, W, a, b, c): theta = Utilities.theta_hkl(lattice_parameter, h, k, l, wavelength) eta = caglioti_eta(a, b, c, numpy.degrees(theta)) sigma = numpy.radians(caglioti_fwhm(U, V, W, theta))*0.5*(numpy.cos(theta)/wavelength) k = eta * numpy.sqrt(numpy.pi*numpy.log(2)) k /= k + (1-eta) exponent = numpy.pi * sigma * L return k*numpy.exp(-2.0*exponent) + (1-k)*numpy.exp(-(exponent**2)/numpy.log(2)) ###################################################################### # CALCULATION OF INTEGRAL BREADTH ###################################################################### def __instrumental_function(L, reflection, lattice_parameter, wavelength, instrumental_profile_parameters, ib_total=False): if instrumental_profile_parameters is None: return 1.0 if ib_total else 0.0 else: return instrumental_function(L, reflection.h, reflection.k, reflection.l, lattice_parameter, wavelength, instrumental_profile_parameters.U.value, instrumental_profile_parameters.V.value, instrumental_profile_parameters.W.value, instrumental_profile_parameters.a.value, instrumental_profile_parameters.b.value, instrumental_profile_parameters.c.value) def __size_function(L, reflection, size_parameters, ib_total=False): if not size_parameters is None and size_parameters.active: if size_parameters.distribution == Distribution.LOGNORMAL: if size_parameters.shape == Shape.WULFF: return size_function_wulff_solids_lognormal(L, reflection.h, reflection.k, reflection.l, size_parameters.sigma.value, size_parameters.mu.value, size_parameters.truncation.value, size_parameters.cube_face) else: return size_function_lognormal(L, size_parameters.sigma.value, size_parameters.mu.value) elif size_parameters.distribution == Distribution.DELTA: return size_function_delta(L, size_parameters.mu.value) elif size_parameters.distribution == Distribution.GAMMA: return size_function_gamma(L, size_parameters.sigma.value, size_parameters.mu.value) else: return 1.0 if ib_total else 0.0 else: return 1.0 if ib_total else 0.0 def __strain_function(L, reflection, lattice_parameter, strain_parameters, ib_total=False): if not strain_parameters is None and strain_parameters.active: if isinstance(strain_parameters, InvariantPAH): return strain_invariant_function_pah(L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.aa.value, strain_parameters.bb.value, strain_parameters.get_invariant(reflection.h, reflection.k, reflection.l)) elif isinstance(strain_parameters, KrivoglazWilkensModel): return strain_krivoglaz_wilkens(L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.rho.value, strain_parameters.Re.value, strain_parameters.Ae.value, strain_parameters.Be.value, strain_parameters.As.value, strain_parameters.Bs.value, strain_parameters.mix.value, strain_parameters.b.value) else: return 1.0 if ib_total else 0.0 else: return 1.0 if ib_total else 0.0 def integral_breadth_instrumental_function(reflection, lattice_parameter, wavelength, instrumental_profile_parameters): return 1 / (2 * integrate.quad(lambda L: __instrumental_function(L, reflection, lattice_parameter, wavelength, instrumental_profile_parameters), 0, numpy.inf)[0]) def integral_breadth_size(reflection, size_parameters): if size_parameters.active: return 1 / (2 * integrate.quad(lambda L: __size_function(L, reflection, size_parameters), 0, numpy.inf)[0]) else: return numpy.nan def integral_breadth_strain(reflection, lattice_parameter,
#!/usr/bin/env python # # pKaTool - analysis of systems of titratable groups # Copyright (C) 2010 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Contact information: # Email: Jens.Nielsen_at_<EMAIL> # Normal mail: # <NAME> # SBBS, Conway Institute # University College Dublin # Dublin 4, Ireland import sys, os import pKarun.pKarun_main as pKarun from pKarun.pKa_utility_functions import * import pKaIO class recordstate: """Class for keeping track of states in f.ex. MC sampling""" def __init__(self): self.states=[] return def recordstate(self,state): self.states.append((state.copy())) return # # Dummy function for accessing pKarun routines # class pKacalc(pKarun.pKarun): def dummy_function(self): return # # ------ # class Monte_Carlo(pKaIO.pKaIO): # # Monte Carlo algorithm and base class for the other pKa calc routines # def acid_base(self,group): # # Return 1 for a base, return -1 for an acid # import string return self.acidbase[string.split(group,':')[-1]] # # ----------------------- # def get_modelpKa(self,group): # # Return the model pKa value for the group # import string group=string.split(group,':')[-1] return self.modelpKas[group] # # ------------------------- # def prepare_matrix(self): """ # Prepare the matrix # # Precompute full term """ self.intene={} for key in self.matrix.keys(): self.intene[key]={} for key2 in self.matrix[key].keys(): #print key,key2,self.matrix[key][key2] self.intene[key][key2]= self.matrix[key][key2][0] \ -self.matrix[key][key2][1] \ -self.matrix[key][key2][2] \ +self.matrix[key][key2][3] # # Make sure that the matrix is symmetrical # residues=self.intene.keys() residues.sort() for key in residues: for key2 in residues: if not self.intene[key].has_key(key2): print 'prepare matrix failed' print 'Matrix[%s] is missing key; %s' %(key,key2) print key print self.intene[key].keys() raise Exception('Matrix[%s] is missing key; %s' %(key,key2)) E12=self.intene[key][key2] E21=self.intene[key2][key] new_ene=min(E12,E21) self.intene[key][key2]=new_ene self.intene[key2][key]=new_ene return # # ---------------------- # def calc_intpKas(self): # # Set a few constants # # Check that all dictionaries have been filled # self.groups=self.desolv.keys() if self.groups!=self.backgr.keys(): print print 'Inconsistent desolv and backgr' print raise Exception('Error in Python Monte Carlo routine') # # Calculate the intrinsic pKa values # import math self.ln10=math.log(10) self.intrinsic_pKa={} self.groups.sort() for group in self.groups: resname=get_resname(group) self.intrinsic_pKa[group]=self.get_modelpKa(group)+ \ -float(self.acid_base(group))*self.desolv[group]/self.ln10 + \ float(self.acid_base(group))*self.backgr[group]/self.ln10 return # # ----------------- # def calc_pKas(self,mcsteps=2000,phstep=0.1,phstart=2.0,phend=14.0,verbose=1,complete_pka=None,exp_pHs=[]): """Calculate pKa values for the system""" # # Init # # Set a few constants # # KBol and Temp are equal to 1.0 everywhere in this derived class! # # Check that all dictionaries have been filled # self.groups=self.desolv.keys() self.groups.sort() b_groups=self.backgr.keys() b_groups.sort() m_groups=self.matrix.keys() m_groups.sort() # if self.groups!=b_groups or self.groups!=m_groups: print print 'Inconsistent desolv, backgr and matrix dictionaries' print ndes=len(self.desolv.keys()) nback=len(self.backgr.keys()) nmat=len(self.matrix.keys()) print 'Groups in desolv: %3d, groups in backgr: %3d, groups in matrix: %3d \n' %(ndes,nback,nmat) groups=self.backgr.keys()+self.desolv.keys()+self.matrix.keys() g_dict={} for group in groups: g_dict[group]=1 groups=g_dict.keys() groups.sort() for group in groups: has=['-','-','-'] if self.desolv.has_key(group): has[0]='+' if self.backgr.has_key(group): has[1]='+' if self.matrix.has_key(group): has[2]='+' print '%14s Desolv: %s, Backgr: %s, Matrix: %s' %(group,has[0],has[1],has[2]) print 'Done with ',group print 'Totally done' import sys sys.stdout.flush() raise 'Error in Python Monte Carlo routine' # # Prepare the matrix # self.prepare_matrix() # # Calculate the intrinsic pKa values # self.calc_intpKas() # # Calculate pKa values # return self._calc_pKas(mcsteps,phstep,phstart,phend,verbose,complete_pka,exp_pHs=exp_pHs) # # ------ # def _calc_pKas(self,mcsteps=200000,phstep=0.1,phstart=1.0,phend=20.0,verbose=1,complete_pka=None,exp_pHs=[]): """Calculate pKa values from intrinsic pKa values and interaction energies. No checking done""" # # KBol and Temp are equal to 1.0 everywhere # import math self.ln10=math.log(10) # # Start calculating protonation states # self.mcsteps=mcsteps pHs=range(int(phstart*100.0),int(phend*100.0),int(phstep*100.0)) pHvalues=[] for pH in pHs: pHvalues.append(float(pH)/100.0) pHvalues.extend(exp_pHs) self.pHvalues=pHvalues self.prot_states_tmp={} # # Calculate protonation states at each pH value # self.all_states={} import copy for pH in pHvalues: tmp,states=self.calc_fractional_charge(pH) if tmp=={}: print pH print 'No result' raise Exception('I dont believe it') self.prot_states_tmp[pH]=copy.deepcopy(tmp) self.all_states[pH]=copy.deepcopy(states) if verbose>1: print # # Determine pKas # pkavalues=self.determine_pKa_values() # # Reformat the titration data # self.prot_states={} for group in self.groups: self.prot_states[group]={} for ph in pHvalues: self.prot_states[group][ph]=self.prot_states_tmp[ph][group] self.prot_states[group]['pKa']=pkavalues[group] self.prot_states_tmp=None # # ---------- # self.pka={} for group in pkavalues.keys(): self.pka[group]={'pKa':pkavalues[group]} if complete_pka: self.complete_pka() return pkavalues,self.prot_states # # -------------------------- # def determine_pKa_values(self): """Determine pKa values as half-points of titration from titration data""" pkavalues={} pHvalues=self.pHvalues pHvalues.sort() for group in self.groups: pka=-99.9 last_crg=self.prot_states_tmp[pHvalues[0]][group] phstep=float(pHvalues[1]-pHvalues[0]) for ph in pHvalues: try: crg=self.prot_states_tmp[ph][group] except: grps=self.prot_states_tmp[ph].keys() grps.sort() print grps print group raise 'same error' # # ---- # if crg<last_crg: if self.acid_base(group)==1: if crg<=0.5 and last_crg>0.5: pka=(last_crg-0.5)/(last_crg-crg)*phstep+(ph-phstep) break else: if crg<=-0.5 and last_crg>-0.5: pka=(last_crg-(-0.5))/(last_crg-crg)*phstep+(ph-phstep) break last_crg=crg if pka<-90.0: if self.acid_base(group)==1: if last_crg>0.5: pka=99.9 else: pka=-99.9 else: if last_crg>-0.5: pka=99.9 else: pka=-99.9 pkavalues[group]=pka return pkavalues # # -------------------------- # def calc_fractional_charge(self,pH): # # Calculate the fractional charge for all residues # at this pH # # Get all the groups # # Define the Monte Carlo parameters # eqsteps=self.mcsteps/10 # # Initialise the random number generator # import random, math rand=random.Random(198984) # # Initialise helper MC class # X=recordstate() # # Construct the starting state # State is a dictionary. For each group the value # is either 1 (charged) or 0 (neutral) # state={} old_cha={} for group in self.groups: state[group]=rand.randint(0,1) curE=self.get_energy(pH,state) # # Start the MC steps # for step in range(self.mcsteps): # # Construct the new state # change_group=rand.choice(self.groups) new_state=state.copy() new_state[change_group]=abs(new_state[change_group]-1) # # Calculate the new energy # newE=self.get_energy(pH,new_state) if newE<=curE: state=new_state.copy() curE=newE else: deltaE=newE-curE if deltaE<50.0: if rand.random()<=math.exp(-deltaE): state=new_state.copy() curE=newE else: pass else: pass if step>eqsteps: X.recordstate(state) # # Find the fractional degree of protonation # sumstate={} for group in self.groups: sum=0 for state in X.states: sum=sum+state[group] sumstate[group]=float(sum)/float(len(X.states)) if isacid(group): sumstate[group]=-sumstate[group] # # Done # return sumstate,{} # # -------------------- # def get_energy(self,pH,state): # # Get the energy for this state # energy=0.0 for group in self.groups: # # Add the effect of the non-titratable environment # if state[group]==1: energy=energy+float(self.acid_base(group))*self.ln10* \ (pH-self.intrinsic_pKa[group]) # # Add the effect of all other titratable groups in the system # for group2 in self.groups: if state[group2]==1 and group!=group2: energy=energy+self.intene[group][group2]/2.0 # # If we have a non-system groups to take into account, then we include # that here # if hasattr(self,'non_system_groups'): energy=energy+self.non_system_groups[group][round(pH,1)] return energy # # ----- # def complete_pka(self): """Complete the self.pka dictionary. Insert delec,ddesolv,dbackgr,dpka and intpka values""" for group in self.pka.keys(): self.pka[group]['intpka']=self.intrinsic_pKa[group] self.pka[group]['modelpK']=self.get_modelpKa(group) self.pka[group]['desolv']=-float(self.acid_base(group))*self.desolv[group]/self.ln10 self.pka[group]['backgr']=float(self.acid_base(group))*self.backgr[group]/self.ln10 self.pka[group]['delec']=self.pka[group]['pKa']-self.pka[group]['intpka'] return # # ------------------------------- # class Monte_Carlo_CPP(Monte_Carlo): """ # C++ implementation of the Monte Carlo alg """ def test(self): """Test if we can import the C++ module""" import pMC return # # -------- # def make_matrix_linear(self): """Change the matrix to linear form - this makes it easy to pass it to the C++ code""" linear=[] residues=self.intene.keys() residues.sort() for group1 in residues: for group2 in residues: linear.append(self.intene[group1][group2]) return linear # # ----------------- # def calc_pKas(self,mcsteps=200000,phstep=0.1,phstart=0.0,phend=14,verbose=1,complete_pka=None,exp_pHs=[],monitor_states=None): """ # Calculate pKa values """ # Init # # Set constants # KBol and Temp are equal to 1.0 everywhere in this derived class! # # Check that all dictionaries have been filled # self.groups=self.desolv.keys() self.groups.sort() b_groups=self.backgr.keys() b_groups.sort() m_groups=self.matrix.keys() m_groups.sort() if self.groups!=b_groups or self.groups!=m_groups: print print 'Inconsistent desolv, backgr and matrix dictionaries' print ndes=len(self.desolv.keys()) nback=len(self.backgr.keys()) nmat=len(self.matrix.keys()) print 'Groups in desolv: %3d, groups in backgr: %3d, groups in matrix: %3d \n' %(ndes,nback,nmat) groups=self.backgr.keys()+self.desolv.keys()+self.matrix.keys() g_dict={} for group in groups: g_dict[group]=1 groups=g_dict.keys() groups.sort() for group in groups: has=['-','-','-'] if self.desolv.has_key(group): has[0]='+' if self.backgr.has_key(group): has[1]='+' if self.matrix.has_key(group): has[2]='+' print '%14s Desolv: %s, Backgr: %s, Matrix: %s' %(group,has[0],has[1],has[2]) print 'Totall done here' import sys sys.stdout.flush() raise Exception('Error in C++ Monte Carlo module') # # Prepare the matrix # self.prepare_matrix() # # Calculate the intrinsic pKa values # self.calc_intpKas() return self._calc_pKas(mcsteps,phstep,phstart,phend,verbose,complete_pka,monitor_states=monitor_states) def allok(self,list): for value in list: if not value and value!=0.0: return None return 1 # # ---- # def _calc_pKas(self,mcsteps=200000,phstep=0.1,phstart=1.0,phend=20.0,verbose=1,complete_pka=None,exp_pHs=[], monitor_groups=None,monitor_states=None): """Do the pKa calculation with the CPP module""" # # Do specific CPP setup # import time starttime=time.time() residues=self.intrinsic_pKa.keys() residues.sort() intpkas=[] acidbase=[] for residue
####Please do not remove lines below#### from lmfit import Parameters import numpy as np import sys import os sys.path.append(os.path.abspath('.')) sys.path.append(os.path.abspath('./Functions')) sys.path.append(os.path.abspath('./Fortran_rountines')) ####Please do not remove lines above#### ####Import your modules below if needed#### from FormFactors.Sphere import Sphere from Chemical_Formula import Chemical_Formula from PeakFunctions import LogNormal, Gaussian from utils import find_minmax class Sphere_Uniform: #Please put the class name same as the function name def __init__(self, x=0, Np=10, flux=1e13, dist='Gaussian', Energy=None, relement='Au', NrDep=1, norm=1.0, bkg=0.0, mpar={'Material':['Au','H2O'],'Density':[19.32,1.0],'Sol_Density':[1.0,1.0],'Rmoles':[1.0,0.0],'R':[1.0,0.0],'Rsig':[0.0,0.0]}): """ Documentation Calculates the Energy dependent form factor of multilayered nanoparticles with different materials x : Reciprocal wave-vector 'Q' inv-Angs in the form of a scalar or an array relement : Resonant element of the nanoparticle. Default: 'Au' Energy : Energy of X-rays in keV at which the form-factor is calculated. Default: None Np : No. of points with which the size distribution will be computed. Default: 10 NrDep : Energy dependence of the non-resonant element. Default= 1 (Energy Dependent), 0 (Energy independent) dist : The probablity distribution fucntion for the radii of different interfaces in the nanoparticles. Default: Gaussian norm : The density of the nanoparticles in Molar (Moles/Liter) bkg : Constant incoherent background flux : Total X-ray flux to calculate the errorbar to simulate the errorbar for the fitted data mpar : Multi-parameter which defines the following including the solvent/bulk medium which is the last one. Default: 'H2O' Material ('Materials' using chemical formula), Density ('Density' in gm/cubic-cms), Density of solvent ('Sol_Density' in gm/cubic-cms) of the particular layer Mole-fraction ('Rmoles') of resonant element in the material) Radii ('R' in Angs), and Widths of the distributions ('Rsig' in Angs) of radii of all the interfaces present in the nanoparticle system. Default: [0.0] """ if type(x)==list: self.x=np.array(x) else: self.x=x self.norm=norm self.bkg=bkg self.dist=dist self.Np=Np self.Energy=Energy self.relement=relement self.NrDep=NrDep #self.rhosol=rhosol self.flux=flux self.__mpar__=mpar #If there is any multivalued parameter self.choices={'dist':['Gaussian','LogNormal']} #If there are choices available for any fixed parameters self.init_params() self.__cf__=Chemical_Formula() self.__fit__=False def init_params(self): """ Define all the fitting parameters like self.param.add('sig',value = 0, vary = 0, min = -np.inf, max = np.inf, expr = None, brute_step = None) """ self.params=Parameters() self.params.add('norm',value=self.norm,vary=0, min = -np.inf, max = np.inf, expr = None, brute_step = 0.1) self.params.add('bkg',value=self.bkg,vary=0, min = -np.inf, max = np.inf, expr = None, brute_step = 0.1) for key in self.__mpar__.keys(): if key!='Material': for i in range(len(self.__mpar__[key])): self.params.add('__%s__%03d'%(key,i),value=self.__mpar__[key][i],vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=None) def calc_rho(self,material=['Au','H2O'], density=[19.3,1.0], sol_density=[1.0,1.0], Rmoles=[1.0,0.0], Energy=None, NrDep=1): """ Calculates the complex electron density of core-shell type multilayered particles in el/Angstroms^3 R :: list of Radii and subsequent shell thicknesses in Angstroms of the nanoparticle system material :: list of material of all the shells starting from the core to outside density :: list of density of all the materials in gm/cm^3 starting from the inner core to outside rmoles :: mole-fraction of the resonant element in the materials Energy :: Energy in keV """ self.output_params['scaler_parameters']={} if len(material) == len(density): Nl = len(material) rho = [] adensity = [] # Density of anomalous element eirho = [] # Energy independent electron density for i in range(Nl): mat=material[i].split(':') if len(mat)==2: solute,solvent=mat solute_formula=self.__cf__.parse(solute) if self.relement in solute_formula.keys(): self.__cf__.formula_dict[self.relement] = Rmoles[i] solute_elements=self.__cf__.elements() solute_mw=self.__cf__.molecular_weight() solute_mv=self.__cf__.molar_volume() solute_mole_ratio=self.__cf__.element_mole_ratio() solvent_formula=self.__cf__.parse(solvent) solvent_elements=self.__cf__.elements() solvent_mw=self.__cf__.molecular_weight() solvent_mole_ratio=self.__cf__.element_mole_ratio() solvent_moles=sol_density[i]/solvent_mw solute_moles=density[i]/solute_mw total_moles=solvent_moles+solute_moles solvent_mole_fraction=solvent_moles/total_moles solute_mole_fraction=solute_moles/total_moles comb_material='' for ele in solute_mole_ratio.keys(): comb_material+='%s%.6f'%(ele,solute_mole_ratio[ele]*solute_mole_fraction) for ele in solvent_mole_ratio.keys(): comb_material+='%s%.6f'%(ele,solvent_mole_ratio[ele]*solvent_mole_fraction) tdensity=density[i]+sol_density[i]*(1-solute_mv*density[i]/solute_mw) self.output_params['scaler_parameters']['density[%s]' % material[i]]=tdensity else: formula=self.__cf__.parse(material[i]) if self.relement in formula.keys(): self.__cf__.formula_dict[self.relement]=Rmoles[i] mole_ratio=self.__cf__.element_mole_ratio() comb_material='' for ele in mole_ratio.keys(): comb_material+='%s%.6f'%(ele,mole_ratio[ele]) #comb_material=material[i] tdensity=density[i] self.output_params['scaler_parameters']['density[%s]' % material[i]] = tdensity formula = self.__cf__.parse(comb_material) molwt = self.__cf__.molecular_weight() elements = self.__cf__.elements() mole_ratio = self.__cf__.element_mole_ratio() # numbers=np.array(chemical_formula.get_element_numbers(material[i])) moles = [mole_ratio[ele] for ele in elements] nelectrons = 0.0 felectrons = complex(0.0, 0.0) aden=0.0 for j in range(len(elements)): f0 = self.__cf__.xdb.f0(elements[j], 0.0)[0] nelectrons = nelectrons + moles[j] * f0 if Energy is not None: if elements[j]!=self.relement: if NrDep==1: f1 = self.__cf__.xdb.f1_chantler(element=elements[j], energy=Energy * 1e3, smoothing=0) f2 = self.__cf__.xdb.f2_chantler(element=elements[j], energy=Energy * 1e3, smoothing=0) felectrons = felectrons + moles[j] * complex(f1, f2) else: f1 = self.__cf__.xdb.f1_chantler(element=elements[j], energy=Energy * 1e3, smoothing=0) f2 = self.__cf__.xdb.f2_chantler(element=elements[j], energy=Energy * 1e3, smoothing=0) felectrons = felectrons + moles[j] * complex(f1, f2) if elements[j]==self.relement: aden+=0.6023 * moles[j]*tdensity/molwt adensity.append(aden)# * np.where(r > Radii[i - 1], 1.0, 0.0) * pl.where(r <= Radii[i], 1.0, 0.0) / molwt eirho.append(0.6023 * (nelectrons) * tdensity/molwt)# * np.where(r > Radii[i - 1], 1.0,0.0) * pl.where(r <= Radii[i], 1.0,0.0) / molwt rho.append(0.6023 * (nelectrons + felectrons) * tdensity/molwt)# * np.where(r > Radii[i - 1], 1.0,0.0) * pl.where(r <= Radii[i], 1.0, 0.0) / molwt # else: # eirho.append(0.6023 * (nelectrons) * density[i]/molwt)# * np.where(r <= Radii[i], 1.0, 0.0) / molwt # rho.append(0.6023 * (nelectrons + felectrons) * density[i]/molwt)# * np.where(r <= Radii[i], 1.0,0.0) / molwt self.output_params['scaler_parameters']['rho[%s]' % material[i]]=rho[-1] self.output_params['scaler_parameters']['eirho[%s]' % material[i]] = eirho[-1] self.output_params['scaler_parameters']['adensity[%s]' % material[i]] = adensity[-1] return rho, eirho, adensity def calc_form(self, q, r, rho): """ Calculates the isotropic form factor in cm^-1 using the isotropic electron density as a funciton of radial distance q :: scaler or array of reciprocal reciprocal wave vector in inv. Angstroms at which the form factor needs to be calculated in r :: array of radial distances at which he electron density in known in Angstroms rho :: array of electron densities as a funciton of radial distance in el/Angstroms^3. Note: The electron density should decay to zero at the last radial distance """ dr = r[1] - r[0] amp = np.zeros_like(q) rho = rho - rho[-1] for r1, rho1 in zip(r, rho): amp = amp + 4 * np.pi * r1 * rho1 * np.sin(q * r1) / q form = 2.818e-5 ** 2 * np.absolute(amp) ** 2 * dr ** 2 * 1e-16 return form, 2.818e-5 * amp * dr * 1e-8 def calc_mesh(self,R=[1.0],Rsig=[0.0],Np=100): """ Computes a multi-dimensional meshgrid of radii (R) of interfaces with a finite widths (Rsig>0.001) of distribution :param R: :param Rsig: :return: """ r1 = 'np.meshgrid(' for (i, r) in enumerate(R): if Rsig[i] > 0.001: lgn = eval(self.dist+'.'+self.dist+'(x=0.001, pos=r, wid=Rsig[i])') rmin, rmax = find_minmax(lgn, r, Rsig[i]) r1 = r1 + 'np.linspace(%f,%f,%d),' % (rmin, rmax, Np) else: r1 = r1 + '[%f],' % r r1 = r1[:-1] + ')' return (eval(r1)) def sphere(self,q, R, dist, sdist, rho, eirho, adensity): form = np.zeros_like(R[0]) eiform = np.zeros_like(R[0]) aform = np.zeros_like(R[0]) r1 = np.zeros_like(R[0]) for i, r in enumerate(R): drho = rho[i] - rho[i + 1] deirho = eirho[i] - eirho[i+1] darho = adensity[i] - adensity[i+1] r1 += r fact=4* np.pi * 2.818e-5*1.0e-8*(np.sin(q * r1) - q * r1 * np.cos(q * r1)) / q ** 3 form = form + drho * fact eiform = eiform + deirho*fact aform = aform + darho*fact return np.sum(np.abs(form) ** 2 * dist) / sdist, np.sum(np.abs(eiform) ** 2 * dist) / sdist, np.sum(np.abs(aform) ** 2 * dist) / sdist, np.sum(eiform*aform*dist) / sdist #in cm^2 def sphere_dict(self,q, R, dist, sdist, rho, eirho, adensity,key='SAXS-term'): form = np.zeros_like(R[0]) eiform = np.zeros_like(R[0]) aform = np.zeros_like(R[0]) r1 = np.zeros_like(R[0]) for i, r in enumerate(R): drho = rho[i] - rho[i + 1] deirho = eirho[i] - eirho[i+1] darho = adensity[i] - adensity[i+1] r1 += r fact=4* np.pi * 2.818e-5*1.0e-8*(np.sin(q * r1) - q * r1 * np.cos(q * r1)) / q ** 3 eiform = eiform + deirho*fact aform = aform + darho*fact form = form + drho * fact if key=='SAXS-term': return np.sum(np.abs(eiform) ** 2 * dist) / sdist # in cm^2 elif key=='Resonant-term': return np.sum(np.abs(aform) ** 2 * dist) / sdist # in cm^2 elif key=='Cross-term': return np.sum(eiform * aform * dist) / sdist # in cm^2 elif key=='Total': return np.sum(np.abs(form) ** 2 * dist) / sdist # in cm^2 def update_params(self): self.norm=self.params['norm'].value self.bkg=self.params['bkg'].value key='Density' self.__density__=[self.params['__%s__%03d'%(key,i)].value for i in range(len(self.__mpar__[key]))] key='Sol_Density' self.__sol_density__=[self.params['__%s__%03d'%(key,i)].value for i in range(len(self.__mpar__[key]))] key='Rmoles' self.__Rmoles__=[self.params['__%s__%03d'%(key,i)].value for i in range(len(self.__mpar__[key]))] key='R' self.__R__=[self.params['__%s__%03d'%(key,i)].value for i in range(len(self.__mpar__[key]))] key='Rsig' self.__Rsig__=[self.params['__%s__%03d'%(key,i)].value for i in range(len(self.__mpar__[key]))] key='Material' self.__material__=[self.__mpar__[key][i] for i in range(len(self.__mpar__[key]))] def y(self): """ Define the function in terms of x to return some value """ self.output_params={} self.update_params() rho,eirho,adensity=self.calc_rho(material=self.__material__, density=self.__density__, sol_density=self.__sol_density__,Energy=self.Energy, Rmoles= self.__Rmoles__, NrDep=self.NrDep) #rho.append(self.rhosol) #eirho.append(self.rhosol) #adensity.append(0.0) r=self.calc_mesh(R=self.__R__[:-1],Rsig=self.__Rsig__,Np=self.Np) adist = np.ones_like(r[0]) for
<reponame>zackbatist/QualCoder # -*- coding: utf-8 -*- ''' Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Author: <NAME> (ccbogel) https://github.com/ccbogel/QualCoder https://qualcoder.wordpress.com/ ''' from copy import copy import logging from lxml import etree import os import shutil import sys import traceback import uuid import zipfile from PyQt5 import QtWidgets path = os.path.abspath(os.path.dirname(__file__)) logger = logging.getLogger(__name__) def exception_handler(exception_type, value, tb_obj): """ Global exception handler useful in GUIs. tb_obj: exception.__traceback__ """ tb = '\n'.join(traceback.format_tb(tb_obj)) text = 'Traceback (most recent call last):\n' + tb + '\n' + exception_type.__name__ + ': ' + str(value) print(text) logger.error(_("Uncaught exception: ") + text) #QtWidgets.QMessageBox.critical(None, _('Uncaught Exception'), text) class Refi(QtWidgets.QDialog): """ Create Rotterdam Exchange Format Initiative (refi) xml documents for codebook.xml and project.xml NOTES: https://stackoverflow.com/questions/299588/validating-with-an-xml-schema-in-python http://infohost.nmt.edu/tcc/help/pubs/pylxml/web/index.html """ categories = [] codes = [] users = [] sources = [] guids = [] notes = [] # contains xml of guid and note (memo) text variables = [] # contains dictionary of variable xml, guid, name xml = "" parent_textEdit = None settings = None tree = None def __init__(self, settings, parent_textEdit): """ """ sys.excepthook = exception_handler self.settings = settings self.parent_textEdit = parent_textEdit self.get_categories() self.get_codes() self.get_users() self.get_sources() #self.codebook_xml() #self.xml_validation("codebook") self.project_xml() self.xml_validation("project") self.export_project() print(self.notes) exit(0) def export_project(self): ''' .qde file Internal files are identified in the path attribute of the source element by the URL naming scheme internal:// /sources folder Audio and video source file size: The maximum size in bytes allowed for an internal file is 2,147,483,647 bytes (2^31−1 bytes, or 2 GiB minus 1 byte). An exporting application must detect file size limit during export and inform the user. Source types: Plain text, PDF Images must be jpeg or png - although I will export all types Create an unzipped folder with a /sources folder and project.qde xml document Then create zip wih suffix .qdpx ''' project_name = self.settings['projectName'][:-4] prep_path = os.path.expanduser('~') + '/.qualcoder/' + project_name print(prep_path) try: shutil.rmtree(prep_path) except FileNotFoundError: pass try: os.mkdir(prep_path) os.mkdir(prep_path + "/sources") except Exception as e: logger.error(_("Project export error ") + str(e)) QtWidgets.QMessageBox.warning(None, _("Project"), _("Project not exported. Exiting. ") + str(e)) exit(0) try: with open(prep_path +'/' + project_name + '.qde', 'w') as f: f.write(self.xml) except Exception as e: QtWidgets.QMessageBox.warning(None, _("Project"), _("Project not exported. Exiting. ") + str(e)) print(e) exit(0) for s in self.sources: #print(s) destination = '/sources/' + s['filename'] if s['mediapath'] is not None: try: if s['external'] is None: shutil.copyfile(self.settings['path'] + s['mediapath'], prep_path + destination) else: shutil.copyfile(self.settings['path'] + s['mediapath'], self.settings['directory'] + '/' + s['filename']) except FileNotFoundError as e: print(e) if s['mediapath'] is None: # a document try: shutil.copyfile(self.settings['path'] + '/documents/' + s['name'], prep_path + destination) except FileNotFoundError as e: with open(prep_path + destination, 'w') as f: f.write(s['fulltext']) # Also need to add the plain text file as a source # plaintext has different guid from richtext with open(prep_path + '/sources/' + s['plaintext_filename'], 'w') as f: f.write(s['fulltext']) export_path = self.settings['path'][:-4] shutil.make_archive(export_path, 'zip', prep_path) os.rename(export_path + ".zip", export_path + ".qpdx") try: shutil.rmtree(prep_path) except FileNotFoundError: pass msg = export_path + ".qpdx\n" msg += "Journals, most memos and variables are not exported. " msg += "GIFs (if present) are not converted to jpg on export, which does not meet the exchange standard. " msg += "This project exchange is not fully compliant with the exchange standard." QtWidgets.QMessageBox.information(None, _("Project exported"), _(msg)) def user_guid(self, username): """ Requires a username. returns matching guid """ for u in self.users: if u['name'] == username: return u['guid'] return "" def code_guid(self, code_id): """ Requires a code id. returns matching guid """ for c in self.codes: if c['cid'] == code_id: return c['guid'] return "" def project_xml(self): """ Creates the xml for the .qde file. base path for external sources is set to the settings directory. """ self.xml = '<?xml version="1.0" standalone="yes"?>\n' #encoding="UTF-8"?>\n' self.xml += '<Project ' self.xml += 'xmlns="urn:QDA-XML:project:1.0" ' guid = self.create_guid() self.xml += 'creatingUserGUID="' + guid + '" ' # there is no creating user in QualCoder cur = self.settings['conn'].cursor() cur.execute("select date,memo from project") result = cur.fetchone() dtime = result[0].replace(" ", "T") self.xml += 'creationDateTime="' + dtime + '" ' #self.xml += 'basePath="' + self.settings['directory'] + '" ' self.xml += 'name="' + self.settings['projectName'] + '" ' self.xml += 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ' self.xml += 'origin="Qualcoder-1.3" ' self.xml += 'xsi:schemaLocation="urn:QDA-XML:project:1:0 http://schema.qdasoftware.org/versions/Project/v1.0/Project.xsd"' self.xml += '>\n' # add users self.xml += "<Users>\n" for row in self.users: self.xml += '<User guid="' + row['guid'] + '" name="' + row['name'] + '"/>\n' self.xml += "</Users>\n" self.xml += self.codebook_xml() self.xml += self.variables_xml() self.xml += self.cases_xml() self.xml += self.sources_xml() self.xml += self.notes_xml() #self.sets_xml() self.xml += '</Project>' def variables_xml(self): """ Variables are associated with Sources and Cases """ self.variables = [] xml = "" cur = self.settings['conn'].cursor() cur.execute("select name, date ,owner, memo, caseOrFile,valuetype from attribute_type") results = cur.fetchall() if results == []: return xml xml = '<Variables>\n' for r in results: guid = self.create_guid() xml += '<Variable guid="' + guid + '" ' xml += 'name="' + r[0] + '" ' xml += 'typeOfVariable="' # Only two variable options in QualCoder if r[5] == 'numeric': xml += 'Float" ' else: xml += 'Text" ' xml += '>\n' xml += '</Variable>\n' self.variables.append({'guid': guid, 'name': r[0], 'type': r[5], 'caseOrFile': r[4]}) xml += '</Variables>\n' return xml def create_note_xml(self, guid, text, user, datetime, name=""): """ Create a Note xml for project, sources, cases, codes, etc Appends xml in notes list. name is used for names of journal entries. returns a guid for a NoteRef """ guid = self.create_guid() xml = '<Note guid="' + guid + '" ' xml += 'creatingUser="' + user + '" ' xml += 'creationDateTime="' + datetime + '" ' if name != "": xml += 'name="' + name + '" ' xml += '>\n' xml += '<PlainTextContent>' + text + '</PlainTextContent>\n' xml += '</Note>\n' self.notes.append(xml) noteref = '<NoteRef targetGUID="' + guid + '" />\n' return noteref def notes_xml(self): """ Collate note_xml list into final xml <Notes><Note></Note></Notes> Note xml requires a NoteRef in the source or case returns xml """ if self.notes == []: return '' xml = '<Notes>\n' for note in self.notes: xml += note xml += '</Notes>\n' return xml def cases_xml(self): """ Create xml for cases. Putting memo into description, but should I also create a Note xml too? returns xml """ xml = '' cur = self.settings['conn'].cursor() cur.execute("select caseid, name, memo, owner, date from cases") result = cur.fetchall() if result == []: return xml xml = '<Cases>\n' for r in result: xml += '<Case guid="' + self.create_guid() + '" ' xml += 'name="' + r[1] + '">\n' if r[2] != "": xml += '<Description>' + r[2] + '</Description>\n' xml += self.case_source_ref_xml(r[0]) #TODO unsure how this works as only has a targetRef #xml += self.case_selection_xml(r[0]) #TODO unsure how this works #xml += self.case_variables_xml(r[0]) xml += '</Case>\n' xml += '</Cases>\n' return xml def case_source_ref_xml(self, caseid): """ Find sources linked to this case, pos0 and pos1 must equal zero. """ xml = '' cur = self.settings['conn'].cursor() cur.execute("select fid, owner, date from case_text where caseid=? and pos0=0 and pos1=0", [caseid,]) result = cur.fetchall() if result == []: return xml for row in result: for s in self.sources: if s['id'] == row[0]: # put xml creation
<reponame>robot-acceleration/RBDReference<filename>RBDReference.py import numpy as np import copy np.set_printoptions(precision=4, suppress=True, linewidth = 100) class RBDReference: def __init__(self, robotObj): self.robot = robotObj def mxS(self, S, vec, alpha = 1.0): if S[0] == 1: return self.mx1(vec,alpha) elif S[1] == 1: return self.mx2(vec,alpha) elif S[2] == 1: return self.mx3(vec,alpha) elif S[3] == 1: return self.mx4(vec,alpha) elif S[4] == 1: return self.mx5(vec,alpha) elif S[5] == 1: return self.mx6(vec,alpha) else: return np.zeros((6)) def mx1(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[1] = vec[2]*alpha vecX[2] = -vec[1]*alpha vecX[4] = vec[5]*alpha vecX[5] = -vec[4]*alpha except: vecX[1] = vec[0,2]*alpha vecX[2] = -vec[0,1]*alpha vecX[4] = vec[0,5]*alpha vecX[5] = -vec[0,4]*alpha return vecX def mx2(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[0] = -vec[2]*alpha vecX[2] = vec[0]*alpha vecX[3] = -vec[5]*alpha vecX[5] = vec[3]*alpha except: vecX[0] = -vec[0,2]*alpha vecX[2] = vec[0,0]*alpha vecX[3] = -vec[0,5]*alpha vecX[5] = vec[0,3]*alpha return vecX def mx3(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[0] = vec[1]*alpha vecX[1] = -vec[0]*alpha vecX[3] = vec[4]*alpha vecX[4] = -vec[3]*alpha except: vecX[0] = vec[0,1]*alpha vecX[1] = -vec[0,0]*alpha vecX[3] = vec[0,4]*alpha vecX[4] = -vec[0,3]*alpha return vecX def mx4(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[4] = vec[2]*alpha vecX[5] = -vec[1]*alpha except: vecX[4] = vec[0,2]*alpha vecX[5] = -vec[0,1]*alpha return vecX def mx5(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[3] = -vec[2]*alpha vecX[5] = vec[0]*alpha except: vecX[3] = -vec[0,2]*alpha vecX[5] = vec[0,0]*alpha return vecX def mx6(self, vec, alpha = 1.0): vecX = np.zeros((6)) try: vecX[3] = vec[1]*alpha vecX[4] = -vec[0]*alpha except: vecX[3] = vec[0,1]*alpha vecX[4] = -vec[0,0]*alpha return vecX def fxv(self, fxVec, timesVec): # Fx(fxVec)*timesVec # 0 -v(2) v(1) 0 -v(5) v(4) # v(2) 0 -v(0) v(5) 0 -v(3) #-v(1) v(0) 0 -v(4) v(3) 0 # 0 0 0 0 -v(2) v(1) # 0 0 0 v(2) 0 -v(0) # 0 0 0 -v(1) v(0) 0 result = np.zeros((6)) result[0] = -fxVec[2] * timesVec[1] + fxVec[1] * timesVec[2] - fxVec[5] * timesVec[4] + fxVec[4] * timesVec[5] result[1] = fxVec[2] * timesVec[0] - fxVec[0] * timesVec[2] + fxVec[5] * timesVec[3] - fxVec[3] * timesVec[5] result[2] = -fxVec[1] * timesVec[0] + fxVec[0] * timesVec[1] - fxVec[4] * timesVec[3] + fxVec[3] * timesVec[4] result[3] = -fxVec[2] * timesVec[4] + fxVec[1] * timesVec[5] result[4] = fxVec[2] * timesVec[3] - fxVec[0] * timesVec[5] result[5] = -fxVec[1] * timesVec[3] + fxVec[0] * timesVec[4] return result def fxS(self, S, vec, alpha = 1.0): return -self.mxS(S, vec, alpha) def vxIv(self, vec, Imat): temp = np.matmul(Imat,vec) vecXIvec = np.zeros((6)) vecXIvec[0] = -vec[2]*temp[1] + vec[1]*temp[2] + -vec[2+3]*temp[1+3] + vec[1+3]*temp[2+3] vecXIvec[1] = vec[2]*temp[0] + -vec[0]*temp[2] + vec[2+3]*temp[0+3] + -vec[0+3]*temp[2+3] vecXIvec[2] = -vec[1]*temp[0] + vec[0]*temp[1] + -vec[1+3]*temp[0+3] + vec[0+3]*temp[1+3] vecXIvec[3] = -vec[2]*temp[1+3] + vec[1]*temp[2+3] vecXIvec[4] = vec[2]*temp[0+3] + -vec[0]*temp[2+3] vecXIvec[5] = -vec[1]*temp[0+3] + vec[0]*temp[1+3] return vecXIvec def rnea_fpass(self, q, qd, qdd = None, GRAVITY = -9.81): # allocate memory n = len(qd) v = np.zeros((6,n)) a = np.zeros((6,n)) f = np.zeros((6,n)) gravity_vec = np.zeros((6)) gravity_vec[5] = -GRAVITY # a_base is gravity vec # forward pass for ind in range(n): parent_ind = self.robot.get_parent_id(ind) Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) S = self.robot.get_S_by_id(ind) # compute v and a if parent_ind == -1: # parent is base # v_base is zero so v[:,ind] remains 0 a[:,ind] = np.matmul(Xmat,gravity_vec) else: v[:,ind] = np.matmul(Xmat,v[:,parent_ind]) a[:,ind] = np.matmul(Xmat,a[:,parent_ind]) v[:,ind] += S*qd[ind] a[:,ind] += self.mxS(S,v[:,ind],qd[ind]) if qdd is not None: a[:,ind] += S*qdd[ind] # compute f Imat = self.robot.get_Imat_by_id(ind) f[:,ind] = np.matmul(Imat,a[:,ind]) + self.vxIv(v[:,ind],Imat) return (v,a,f) def rnea_bpass(self, q, qd, f, USE_VELOCITY_DAMPING = False): # allocate memory n = len(q) # assuming len(q) = len(qd) c = np.zeros(n) # backward pass for ind in range(n-1,-1,-1): S = self.robot.get_S_by_id(ind) # compute c c[ind] = np.matmul(np.transpose(S),f[:,ind]) # update f if applicable parent_ind = self.robot.get_parent_id(ind) if parent_ind != -1: Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) temp = np.matmul(np.transpose(Xmat),f[:,ind]) f[:,parent_ind] = f[:,parent_ind] + temp.flatten() # add velocity damping (defaults to 0) if USE_VELOCITY_DAMPING: for k in range(n): c[k] += self.robot.get_damping_by_id(k) * qd[k] return (c,f) def rnea(self, q, qd, qdd = None, GRAVITY = -9.81, USE_VELOCITY_DAMPING = False): # forward pass (v,a,f) = self.rnea_fpass(q, qd, qdd, GRAVITY) # backward pass (c,f) = self.rnea_bpass(q, qd, f, USE_VELOCITY_DAMPING) return (c,v,a,f) def rnea_grad_fpass_dq(self, q, qd, v, a, GRAVITY = -9.81): # allocate memory n = len(qd) dv_dq = np.zeros((6,n,n)) da_dq = np.zeros((6,n,n)) df_dq = np.zeros((6,n,n)) gravity_vec = np.zeros((6)) gravity_vec[5] = -GRAVITY # a_base is gravity vec for ind in range(n): parent_ind = self.robot.get_parent_id(ind) Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) S = self.robot.get_S_by_id(ind) # dv_du = X * dv_du_parent + (if c == ind){mxS(Xvp)} if parent_ind != -1: # note that v_base is zero so dv_du parent contribution is 0 dv_dq[:,:,ind] = np.matmul(Xmat,dv_dq[:,:,parent_ind]) dv_dq[:,ind,ind] += self.mxS(S,np.matmul(Xmat,v[:,parent_ind])) # da_du = x*da_du_parent + mxS_onCols(dv_du)*qd + (if c == ind){mxS(Xap)} if parent_ind != -1: # note that a_base is constant gravity so da_du parent contribution is 0 da_dq[:,:,ind] = np.matmul(Xmat,da_dq[:,:,parent_ind]) for c in range(n): da_dq[:,c,ind] += self.mxS(S,dv_dq[:,c,ind],qd[ind]) if parent_ind != -1: # note that a_base is just gravity da_dq[:,ind,ind] += self.mxS(S,np.matmul(Xmat,a[:,parent_ind])) else: da_dq[:,ind,ind] += self.mxS(S,np.matmul(Xmat,gravity_vec)) # df_du = I*da_du + fx_onCols(dv_du)*Iv + fx(v)*I*dv_du Imat = self.robot.get_Imat_by_id(ind) df_dq[:,:,ind] = np.matmul(Imat,da_dq[:,:,ind]) Iv = np.matmul(Imat,v[:,ind]) for c in range(n): df_dq[:,c,ind] += self.fxv(dv_dq[:,c,ind],Iv) df_dq[:,c,ind] += self.fxv(v[:,ind],np.matmul(Imat,dv_dq[:,c,ind])) return (dv_dq, da_dq, df_dq) def rnea_grad_fpass_dqd(self, q, qd, v): # allocate memory n = len(qd) dv_dqd = np.zeros((6,n,n)) da_dqd = np.zeros((6,n,n)) df_dqd = np.zeros((6,n,n)) # forward pass for ind in range(n): parent_ind = self.robot.get_parent_id(ind) Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) S = self.robot.get_S_by_id(ind) # dv_du = X * dv_du_parent + (if c == ind){S} if parent_ind != -1: # note that v_base is zero so dv_du parent contribution is 0 dv_dqd[:,:,ind] = np.matmul(Xmat,dv_dqd[:,:,parent_ind]) dv_dqd[:,ind,ind] += S # da_du = x*da_du_parent + mxS_onCols(dv_du)*qd + (if c == ind){mxS(v)} if parent_ind != -1: # note that a_base is constant gravity so da_du parent contribution is 0 da_dqd[:,:,ind] = np.matmul(Xmat,da_dqd[:,:,parent_ind]) for c in range(n): da_dqd[:,c,ind] += self.mxS(S,dv_dqd[:,c,ind],qd[ind]) da_dqd[:,ind,ind] += self.mxS(S,v[:,ind]) # df_du = I*da_du + fx_onCols(dv_du)*Iv + fx(v)*I*dv_du Imat = self.robot.get_Imat_by_id(ind) df_dqd[:,:,ind] = np.matmul(Imat,da_dqd[:,:,ind]) Iv = np.matmul(Imat,v[:,ind]) for c in range(n): df_dqd[:,c,ind] += self.fxv(dv_dqd[:,c,ind],Iv) df_dqd[:,c,ind] += self.fxv(v[:,ind],np.matmul(Imat,dv_dqd[:,c,ind])) return (dv_dqd, da_dqd, df_dqd) def rnea_grad_bpass_dq(self, q, f, df_dq): # allocate memory n = len(q) # assuming len(q) = len(qd) dc_dq = np.zeros((n,n)) for ind in range(n-1,-1,-1): # dc_du is S^T*df_du S = self.robot.get_S_by_id(ind) dc_dq[ind,:] = np.matmul(np.transpose(S),df_dq[:,:,ind]) # df_du_parent += X^T*df_du + (if ind == c){X^T*fxS(f)} parent_ind = self.robot.get_parent_id(ind) if parent_ind != -1: Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) df_dq[:,:,parent_ind] += np.matmul(np.transpose(Xmat),df_dq[:,:,ind]) delta_dq = np.matmul(np.transpose(Xmat),self.fxS(S,f[:,ind])) for entry in range(6): df_dq[entry,ind,parent_ind] += delta_dq[entry] return dc_dq def rnea_grad_bpass_dqd(self, q, df_dqd, USE_VELOCITY_DAMPING = False): # allocate memory n = len(q) # assuming len(q) = len(qd) dc_dqd = np.zeros((n,n)) for ind in range(n-1,-1,-1): # dc_du is S^T*df_du S = self.robot.get_S_by_id(ind) dc_dqd[ind,:] = np.matmul(np.transpose(S),df_dqd[:,:,ind]) # df_du_parent += X^T*df_du parent_ind = self.robot.get_parent_id(ind) if parent_ind != -1: Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) df_dqd[:,:,parent_ind] += np.matmul(np.transpose(Xmat),df_dqd[:,:,ind]) # add in the damping if USE_VELOCITY_DAMPING: for ind in range(n): dc_dqd[ind,ind] += self.robot.get_damping_by_id(ind) return dc_dqd def rnea_grad(self, q, qd, qdd = None, GRAVITY = -9.81, USE_VELOCITY_DAMPING = False): (c, v, a, f) = self.rnea(q, qd, qdd, GRAVITY) # forward pass, dq (dv_dq, da_dq, df_dq) = self.rnea_grad_fpass_dq(q, qd, v, a, GRAVITY) # forward pass, dqd (dv_dqd, da_dqd, df_dqd) = self.rnea_grad_fpass_dqd(q, qd, v) # backward pass, dq dc_dq = self.rnea_grad_bpass_dq(q, f, df_dq) # backward pass, dqd dc_dqd = self.rnea_grad_bpass_dqd(q, df_dqd, USE_VELOCITY_DAMPING) dc_du = np.hstack((dc_dq,dc_dqd)) return dc_du def minv_bpass(self, q): # allocate memory n = len(q) Minv = np.zeros((n,n)) F = np.zeros((n,6,n)) U = np.zeros((n,6)) Dinv = np.zeros(n) # set initial IA to I IA = copy.deepcopy(self.robot.get_Imats_dict_by_id()) # backward pass for ind in range(n-1,-1,-1): # Compute U, D S = self.robot.get_S_by_id(ind) subtreeInds = self.robot.get_subtree_by_id(ind) U[ind,:] = np.matmul(IA[ind],S) Dinv[ind] = 1/np.matmul(S.transpose(),U[ind,:]) # Update Minv Minv[ind,ind] = Dinv[ind] for subInd in subtreeInds: Minv[ind,subInd] -= Dinv[ind] * np.matmul(S.transpose(),F[ind,:,subInd]) # update parent if applicable parent_ind = self.robot.get_parent_id(ind) if parent_ind != -1: Xmat = self.robot.get_Xmat_Func_by_id(ind)(q[ind]) # update F for subInd in
#!/usr/bin/python # -*- coding: utf-8 -*- # # PyKOALA: KOALA data processing and analysis # by <NAME> and <NAME> # Extra work by <NAME> (MQ PACE student) # Plus Taylah and Matt (sky subtraction) from __future__ import absolute_import, division, print_function from past.utils import old_div version = "Version 0.72 - 13th February 2020" import copy import os.path as pth import sys from astropy.convolution import Gaussian2DKernel, interpolate_replace_nans from astropy.io import fits from astropy.wcs import WCS import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np from scipy import interpolate from scipy.ndimage.interpolation import shift import scipy.signal as sig from .constants import C, PARSEC as pc from .utils.cube_alignment import offset_between_cubes, compare_cubes, align_n_cubes from .utils.flux import search_peaks, fluxes, dfluxes, substract_given_gaussian from .utils.io import read_table, save_rss_fits, save_fits_file from .utils.moffat import fit_Moffat from .utils.plots import ( plot_redshift_peaks, plot_weights_for_getting_smooth_spectrum, plot_correction_in_fibre_p_fibre, plot_suspicious_fibres_graph, plot_skyline_5578, plot_offset_between_cubes, plot_response, plot_telluric_correction, plot_plot ) from .utils.sky_spectrum import scale_sky_spectrum, median_filter from .utils.spectrum_tools import rebin_spec_shift, smooth_spectrum from .utils.utils import ( FitsExt, FitsFibresIFUIndex, coord_range, median_absolute_deviation, ) from ._version import get_versions __version__ = get_versions()["version"] del get_versions # ----------------------------------------------------------------------------- # Define constants # ----------------------------------------------------------------------------- DATA_PATH = pth.join(pth.dirname(__file__), "data") # ----------------------------------------------------------------------------- # Define COLOUR scales # ----------------------------------------------------------------------------- fuego_color_map = colors.LinearSegmentedColormap.from_list( "fuego", ( (0.25, 0, 0), (0.5, 0, 0), (1, 0, 0), (1, 0.5, 0), (1, 0.75, 0), (1, 1, 0), (1, 1, 1), ), N=256, gamma=1.0, ) fuego_color_map.set_bad("lightgray") plt.register_cmap(cmap=fuego_color_map) projo = [0.25, 0.5, 1, 1.0, 1.00, 1, 1] pverde = [0.00, 0.0, 0, 0.5, 0.75, 1, 1] pazul = [0.00, 0.0, 0, 0.0, 0.00, 0, 1] # ----------------------------------------------------------------------------- # RSS CLASS # ----------------------------------------------------------------------------- class RSS(object): """ Collection of row-stacked spectra (RSS). Attributes ---------- wavelength: np.array(float) Wavelength, in Angstroms. intensity: np.array(float) Intensity :math:`I_\lambda` per unit wavelength. variance: np.array(float) Variance :math:`\sigma^2_\lambda` per unit wavelength (note the square in the definition of the variance). """ # ----------------------------------------------------------------------------- def __init__(self): self.description = "Undefined row-stacked spectra (RSS)" self.n_spectra = 0 self.n_wave = 0 self.wavelength = np.zeros((0)) self.intensity = np.zeros((0, 0)) self.intensity_corrected = self.intensity self.variance = np.zeros_like(self.intensity) self.RA_centre_deg = 0.0 self.DEC_centre_deg = 0.0 self.offset_RA_arcsec = np.zeros((0)) self.offset_DEC_arcsec = np.zeros_like(self.offset_RA_arcsec) self.ALIGNED_RA_centre_deg = 0.0 # Added by ANGEL, 6 Sep self.ALIGNED_DEC_centre_deg = 0.0 # Added by ANGEL, 6 Sep self.relative_throughput = np.ones((0)) # Added by ANGEL, 16 Sep # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def compute_integrated_fibre( self, list_spectra="all", valid_wave_min=0, valid_wave_max=0, min_value=0.1, plot=False, title=" - Integrated values", warnings=True, text="...", correct_negative_sky=False, ): """ Compute the integrated flux of a fibre in a particular range, valid_wave_min to valid_wave_max. Parameters ---------- list_spectra: float (default "all") list with the number of fibres for computing integrated value if using "all" it does all fibres valid_wave_min, valid_wave_max : float the integrated flux value will be computed in the range [valid_wave_min, valid_wave_max] (default = , if they all 0 we use [self.valid_wave_min, self.valid_wave_max] min_value: float (default 0) For values lower than min_value, we set them as min_value plot : Boolean (default = False) Plot title : string Title for the plot text: string A bit of extra text warnings : Boolean (default = False) Write warnings, e.g. when the integrated flux is negative correct_negative_sky : Boolean (default = False) Corrects negative values making 0 the integrated flux of the lowest fibre Example ---------- integrated_fibre_6500_6600 = star1r.compute_integrated_fibre(valid_wave_min=6500, valid_wave_max=6600, title = " - [6500,6600]", plot = True) """ print("\n Computing integrated fibre values {}".format(text)) if list_spectra == "all": list_spectra = list(range(self.n_spectra)) if valid_wave_min == 0: valid_wave_min = self.valid_wave_min if valid_wave_max == 0: valid_wave_max = self.valid_wave_max self.integrated_fibre = np.zeros(self.n_spectra) region = np.where( (self.wavelength > valid_wave_min) & (self.wavelength < valid_wave_max) ) waves_in_region = len(region[0]) n_negative_fibres = 0 negative_fibres = [] for i in range(self.n_spectra): self.integrated_fibre[i] = np.nansum(self.intensity_corrected[i, region]) if self.integrated_fibre[i] < 0: if warnings: print( " WARNING: The integrated flux in fibre {:4} is negative, flux/wave = {:10.2f}, (probably sky), CHECK !".format( i, self.integrated_fibre[i]/waves_in_region )) n_negative_fibres = n_negative_fibres + 1 # self.integrated_fibre[i] = min_value negative_fibres.append(i) if len(negative_fibres) != 0: print("\n> Number of fibres with integrated flux < 0 : {:4}, that is the {:5.2f} % of the total !".format( n_negative_fibres, n_negative_fibres * 100.0 / self.n_spectra )) negative_fibres_sorted = [] integrated_intensity_sorted = np.argsort( self.integrated_fibre/waves_in_region ) for fibre_ in range(n_negative_fibres): negative_fibres_sorted.append(integrated_intensity_sorted[fibre_]) # print "\n> Checking results using",n_negative_fibres,"fibres with the lowest integrated intensity" # print " which are :",negative_fibres_sorted if correct_negative_sky: min_sky_value = self.integrated_fibre[negative_fibres_sorted[0]] min_sky_value_per_wave = min_sky_value/waves_in_region print( "\n> Correcting negative values making 0 the integrated flux of the lowest fibre, which is {:4} with {:10.2f} counts/wave".format( negative_fibres_sorted[0], min_sky_value_per_wave )) # print self.integrated_fibre[negative_fibres_sorted[0]] self.integrated_fibre = self.integrated_fibre - min_sky_value for i in range(self.n_spectra): self.intensity_corrected[i] = ( self.intensity_corrected[i] - min_sky_value_per_wave ) else: print( "\n> Adopting integrated flux = {:5.2f} for all fibres with negative integrated flux (for presentation purposes)".format( min_value )) for i in negative_fibres_sorted: self.integrated_fibre[i] = min_value # for i in range(self.n_spectra): # if self.integrated_fibre[i] < 0: # if warnings: print " WARNING: The integrated flux in fibre {:4} STILL is negative, flux/wave = {:10.2f}, (probably sky), CHECK !".format(i,self.integrated_fibre[i]/waves_in_region) if plot: # print"\n Plotting map with integrated values:" self.RSS_map( self.integrated_fibre, norm=colors.PowerNorm(gamma=1.0 / 4.0), title=title, ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def identify_el( self, high_fibres=10, brightest_line="Ha", cut=1.5, fibre=0, broad=1.0, verbose=True, plot=True, ): """ Identify fibres with highest intensity (high_fibres=10). Add all in a single spectrum. Identify emission features. These emission features should be those expected in all the cube! Also, choosing fibre=number, it identifies el in a particular fibre. Parameters ---------- high_fibres: float (default 10) use the high_fibres highest intensity fibres for identifying brightest_line : string (default "Ha") string name with the emission line that is expected to be the brightest in integrated spectrum cut: float (default 1.5) The peak has to have a cut higher than cut to be considered as emission line fibre: integer (default 0) If fibre is given, it identifies emission lines in the given fibre broad: float (default 1.0) Broad (FWHM) of the expected emission lines verbose : boolean (default = True) Write results plot : boolean (default = False) Plot results Example ---------- self.el=self.identify_el(high_fibres=10, brightest_line = "Ha", cut=2., verbose=True, plot=True, fibre=0, broad=1.5) """ if fibre == 0: integrated_intensity_sorted = np.argsort(self.integrated_fibre) region = [] for fibre in range(high_fibres): region.append(integrated_intensity_sorted[-1 - fibre]) if verbose: print("\n> Identifying emission lines using the {} fibres with the highest integrated intensity".format(high_fibres)) print(" which are : {}".format(region)) combined_high_spectrum = np.nansum(self.intensity_corrected[region], axis=0) else: combined_high_spectrum = self.intensity_corrected[fibre] if verbose: print("\n> Identifying emission lines in fibre {}".format(fibre)) # Search peaks peaks, peaks_name, peaks_rest, continuum_limits = search_peaks( self.wavelength, combined_high_spectrum, plot=plot, cut=cut, brightest_line=brightest_line, verbose=False, ) p_peaks_l = [] p_peaks_fwhm = [] # Do Gaussian fit and provide center & FWHM (flux could be also included, not at the moment as not abs. flux-cal done) if verbose: print("\n Emission lines identified:") for eline in range(len(peaks)): lowlow = continuum_limits[0][eline] lowhigh = continuum_limits[1][eline] highlow = continuum_limits[2][eline] highhigh = continuum_limits[3][eline] resultado = fluxes( self.wavelength, combined_high_spectrum, peaks[eline], verbose=False, broad=broad, lowlow=lowlow, lowhigh=lowhigh, highlow=highlow, highhigh=highhigh, plot=plot, fcal=False, ) p_peaks_l.append(resultado[1]) p_peaks_fwhm.append(resultado[5]) if verbose: print(" {:3}. {:7s} {:8.2f} centered at {:8.2f} and FWHM = {:6.2f}".format( eline + 1, peaks_name[eline], peaks_rest[eline], p_peaks_l[eline], p_peaks_fwhm[eline], )) return [peaks_name, peaks_rest, p_peaks_l, p_peaks_fwhm] # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def correct_high_cosmics_and_defects( self, step=50, correct_high_cosmics=False, fibre_p=0, remove_5578=False, # if fibre_p=fibre plots the corrections in that fibre clip_high=100, warnings=False, plot=True, plot_suspicious_fibres=True, verbose=False, fig_size=12, ): """ Task for correcting high cosmics and CCD defects using median values of nearby pixels. 2dFdr corrects for (the majority) of the cosmic rays, usually correct_high_cosmics = False. ANGEL COMMENT: Check, probably can be improved using MATT median running + plotting outside Parameters ---------- rect_high_cosmics: boolean (default = False) Correct ONLY CCD defects re_p: integer (default = 0) Plots the corrections in fibre fibre_p ove_5578: boolean (default = False) Removes skyline 5578 (blue spectrum) using Gaussian fit ND CHECK: This also MODIFIES the throughput correction correcting for flux_5578_medfilt /median_flux_5578_medfilt step: integer (default = 50) Number of points for calculating median value clip_high : float (default = 100) Minimum value of flux/median in a pixel to be consider as a cosmic if s[wave] > clip_high*fit_median[wave] -> IT IS A COSMIC verbose: boolean (default = False) Write results warnings: boolean (default = False) Write warnings plot: boolean (default = False) Plot results plot_suspicious_fibres: boolean (default = False) Plots fibre(s) that could have a cosmic left (but it could
# Copyright 2014 Altera Corporation. All Rights Reserved. # Copyright 2015-2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module provides a base class derived from `unittest.TestClass` for unit tests using the :py:class:`pyfakefs` module. `fake_filesystem_unittest.TestCase` searches `sys.modules` for modules that import the `os`, `io`, `path` `shutil`, and `pathlib` modules. The `setUpPyfakefs()` method binds these modules to the corresponding fake modules from `pyfakefs`. Further, the `open()` built-in is bound to a fake `open()`. In Python 2, built-in `file()` is similarly bound to the fake `open()`. It is expected that `setUpPyfakefs()` be invoked at the beginning of the derived class' `setUp()` method. There is no need to add anything to the derived class' `tearDown()` method. During the test, everything uses the fake file system and modules. This means that even in your test fixture, familiar functions like `open()` and `os.makedirs()` manipulate the fake file system. Existing unit tests that use the real file system can be retrofitted to use pyfakefs by simply changing their base class from `:py:class`unittest.TestCase` to `:py:class`pyfakefs.fake_filesystem_unittest.TestCase`. """ import doctest import inspect import sys import tempfile import unittest from pyfakefs.deprecator import Deprecator try: from importlib.machinery import ModuleSpec except ImportError: ModuleSpec = object try: # python >= 3.4 from importlib import reload except ImportError: try: # python 3.0 - 3.3 from imp import reload except ImportError: # python 2 - reload is built-in pass from pyfakefs import fake_filesystem from pyfakefs import fake_filesystem_shutil from pyfakefs import mox3_stubout if sys.version_info >= (3, 4): from pyfakefs import fake_pathlib try: import scandir # noqa: F401 import used to set has_scandir import fake_scandir has_scandir = True except ImportError: has_scandir = False if sys.version_info < (3, ): import __builtin__ as builtins # pylint: disable=import-error else: import builtins def load_doctests(loader, tests, ignore, module, additional_skip_names=None, patch_path=True): # pylint: disable=unused-argument """Load the doctest tests for the specified module into unittest. Args: loader, tests, ignore : arguments passed in from `load_tests()` module: module under test additional_skip_names: see :py:class:`TestCase` for an explanation patch_path: see :py:class:`TestCase` for an explanation File `example_test.py` in the pyfakefs release provides a usage example. """ _patcher = Patcher(additional_skip_names=additional_skip_names, patch_path=patch_path) globs = _patcher.replace_globs(vars(module)) tests.addTests(doctest.DocTestSuite(module, globs=globs, setUp=_patcher.setUp, tearDown=_patcher.tearDown)) return tests class TestCaseMixin(object): """Test case mixin that automatically replaces file-system related modules by fake implementations. Attributes: additional_skip_names: names of modules inside of which no module replacement shall be performed, in addition to the names in :py:attr:`fake_filesystem_unittest.Patcher.SKIPNAMES`. patch_path: if False, modules named *path* will not be patched with the fake ``os.path`` module. Set this to False when you need to import some other module named ``path``, for example:: from my_module import path Irrespective of patch_path, module ``os.path`` is still correctly faked if imported the usual way using ``import os`` or ``import os.path``. modules_to_reload: A list of modules that need to be reloaded to be patched dynamically; may be needed if the module imports file system modules under an alias .. note:: This is done independently of `use_dynamic_patch` .. caution:: Reloading modules may have unwanted side effects. use_dynamic_patch: If `True`, dynamic patching after setup is used (for example for modules loaded locally inside of functions). Can be switched off if it causes unwanted side effects. modules_to_patch: A dictionary of fake modules mapped to the patched module names. Can be used to add patching of modules not provided by `pyfakefs`. If you want to patch a class in a module imported using `from some_module import SomeClass`, you have to specify `some_module.Class` as the key for the fake class. If you specify attributes `additional_skip_names` or `patch_path` here and you have DocTests, consider also specifying the same arguments to :py:func:`load_doctests`. Example usage in derived test classes:: from unittest import TestCase from fake_filesystem_unittest import TestCaseMixin class MyTestCase(TestCase, TestCaseMixin): def __init__(self, methodName='runTest'): super(MyTestCase, self).__init__( methodName=methodName, additional_skip_names=['posixpath']) import sut class AnotherTestCase(TestCase, TestCaseMixin): def __init__(self, methodName='runTest'): super(MyTestCase, self).__init__( methodName=methodName, modules_to_reload=[sut]) """ additional_skip_names = None patch_patch = True modules_to_reload = None use_dynamic_patch = True modules_to_patch = None @property def fs(self): return self._stubber.fs def setUpPyfakefs(self): """Bind the file-related modules to the :py:class:`pyfakefs` fake file system instead of the real file system. Also bind the fake `open()` function, and on Python 2, the `file()` function. Invoke this at the beginning of the `setUp()` method in your unit test class. """ self._stubber = Patcher( additional_skip_names=self.additional_skip_names, patch_path=self.patch_path, use_dynamic_patch=self.use_dynamic_patch, modules_to_reload=self.modules_to_reload, modules_to_patch=self.modules_to_patch) self._stubber.setUp() self.addCleanup(self._stubber.tearDown) class TestCase(unittest.TestCase, TestCaseMixin): """Test case class that automatically replaces file-system related modules by fake implementations. """ def __init__(self, methodName='runTest', additional_skip_names=None, patch_path=True, modules_to_reload=None, use_dynamic_patch=True, modules_to_patch=None): """Creates the test class instance and the stubber used to stub out file system related modules. Args: methodName: The name of the test method (same as in unittest.TestCase) """ super(TestCase, self).__init__(methodName) self.additional_skip_names = additional_skip_names self.patch_path = patch_path self.modules_to_reload = modules_to_reload self.use_dynamic_patch = use_dynamic_patch self.modules_to_patch = modules_to_patch @Deprecator('add_real_file') def copyRealFile(self, real_file_path, fake_file_path=None, create_missing_dirs=True): """Add the file `real_file_path` in the real file system to the same path in the fake file system. **This method is deprecated** in favor of :py:meth:`FakeFilesystem..add_real_file`. `copyRealFile()` is retained with limited functionality for backward compatibility only. Args: real_file_path: Path to the file in both the real and fake file systems fake_file_path: Deprecated. Use the default, which is `real_file_path`. If a value other than `real_file_path` is specified, a `ValueError` exception will be raised. create_missing_dirs: Deprecated. Use the default, which creates missing directories in the fake file system. If `False` is specified, a `ValueError` exception is raised. Returns: The newly created FakeFile object. Raises: IOError: If the file already exists in the fake file system. ValueError: If deprecated argument values are specified. See: :py:meth:`FakeFileSystem.add_real_file` """ if fake_file_path is not None and real_file_path != fake_file_path: raise ValueError("CopyRealFile() is deprecated and no longer " "supports different real and fake file paths") if not create_missing_dirs: raise ValueError("CopyRealFile() is deprecated and no longer " "supports NOT creating missing directories") return self._stubber.fs.add_real_file(real_file_path, read_only=False) @DeprecationWarning def tearDownPyfakefs(self): """This method is deprecated and exists only for backward compatibility. It does nothing. """ pass class Patcher(object): """ Instantiate a stub creator to bind and un-bind the file-related modules to the :py:mod:`pyfakefs` fake modules. The arguments are explained in :py:class:`TestCase`. :py:class:`Patcher` is used in :py:class:`TestCase`. :py:class:`Patcher` also works as a context manager for PyTest:: with Patcher(): doStuff() """ SKIPMODULES = {None, fake_filesystem, fake_filesystem_shutil, sys} '''Stub nothing that is imported within these modules. `sys` is included to prevent `sys.path` from being stubbed with the fake `os.path`. ''' assert None in SKIPMODULES, ("sys.modules contains 'None' values;" " must skip them.") HAS_PATHLIB = sys.version_info >= (3, 4) IS_WINDOWS = sys.platform in ('win32', 'cygwin') SKIPNAMES = {'os', 'path', 'io', 'genericpath'} if HAS_PATHLIB: SKIPNAMES.add('pathlib') def __init__(self, additional_skip_names=None, patch_path=True, modules_to_reload=None, use_dynamic_patch=True, modules_to_patch=None): """For a description of the arguments, see TestCase.__init__""" self._skipNames = self.SKIPNAMES.copy() if additional_skip_names is not None: self._skipNames.update(additional_skip_names) self._patchPath = patch_path if not patch_path: self._skipNames.discard('path') self._skipNames.discard('genericpath') self.modules_to_reload = [tempfile] if modules_to_reload is not None: self.modules_to_reload.extend(modules_to_reload) self._use_dynamic_patch = use_dynamic_patch # Attributes set by _findModules() # IMPORTANT TESTING NOTE: Whenever you add a new module below, test # it by adding an attribute in fixtures/module_with_attributes.py # and a test in fake_filesystem_unittest_test.py, class # TestAttributesWithFakeModuleNames. self._fake_module_classes = { 'os': fake_filesystem.FakeOsModule, 'shutil': fake_filesystem_shutil.FakeShutilModule, 'io': fake_filesystem.FakeIoModule, } if self.HAS_PATHLIB: self._fake_module_classes[ 'pathlib'] = fake_pathlib.FakePathlibModule if has_scandir: self._fake_module_classes[ 'scandir'] = fake_scandir.FakeScanDirModule self._class_modules = {} if modules_to_patch is not None: for name, fake_module in modules_to_patch.items(): if '.' in name: module_name, name = name.split('.') self._class_modules[name] = module_name self._fake_module_classes[name] = fake_module self._modules = {} for name in self._fake_module_classes: self._modules[name] = set() if self._patchPath: self._modules['path'] = set() self._find_modules() assert None not in vars(self).values(), \ "_findModules() missed the initialization of an instance variable" # Attributes set by _refresh() self._stubs = None self.fs = None self.fake_open = None self.fake_modules = {} self._dyn_patcher = None # _isStale is set by tearDown(), reset by _refresh() self._isStale
<gh_stars>10-100 # Copyright (c) 2012 The Khronos Group Inc. # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and /or associated documentation files (the "Materials "), to deal in the Materials without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Materials, and to permit persons to whom the Materials are furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Materials. # THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. import wx import wx.wizard import shutil import threading import zipfile import glob, os import shutil import Core.Common.FGlobals as FGlobals import Core.Common.FUtils as FUtils from Core.Common.FConstants import * from Core.Gui.Dialog.FAppSettingsDialog import * from Core.Gui.Dialog.FBlessedViewerDialog import * from Core.Gui.Dialog.FCompareSetupDialog import * from Core.Gui.Dialog.FExecutionDialog import * from Core.Gui.Dialog.FOpenDialog import * from Core.Gui.Dialog.FPreferenceDialog import * from Core.Gui.Dialog.FProgressDialog import * from Core.Gui.Dialog.FRegExDialog import * from Core.Gui.Dialog.FRunConfigDialog import * from Core.Gui.Dialog.FSelectDataSetDialog import * from Core.Gui.Dialog.FSettingDialog import * from Core.Gui.Grid.FExecutionGrid import * from Core.Gui.FMenuBar import * from Core.Gui.FImageType import * from Core.FTestSuite import * from Core.FHtmlExporter import * from Core.FCsvExporter import * def makeArchive(fileList, archive): """ 'fileList' is a list of file names - full path each name 'archive' is the file name for the archive with a full path """ try: print "making archive: %s adopters: %s " % (archive, FGlobals.adoptersPackage) if (FGlobals.adoptersPackage == 'True'): typeList = [".png", ".dae", ".html", ".csv", ".sha", ".log", ".py", ".txt"] else: typeList = [".html", ".csv", ".sha", ".txt", ".py"] print "TypeList: %s" % (typeList) a = zipfile.ZipFile(archive, 'w', zipfile.ZIP_DEFLATED) for f in fileList: found = False for t in typeList: pos = f.find(t) if (pos > -1): # Insure its the last thing flen = len(f) tlen = len(t) # print "flen: %s tlen: %s pos: %s" % (flen, tlen, pos) if (pos == (flen - tlen)): pos = f.find("blessed") if (pos < 0): found = True if (found): print "archiving file %s" % (f) a.write(f) else: print "skipping file %s" % (f) a.close() print "Done making archive" return True except: return False def dirEntries(dir_name, subdir, *args): '''Return a list of file names found in directory 'dir_name' If 'subdir' is True, recursively access subdirectories under 'dir_name'. Additional arguments, if any, are file extensions to match filenames. Matched file names are added to the list. If there are no additional arguments, all files found in the directory are added to the list. Example usage: fileList = dirEntries(r'H:\TEMP', False, 'txt', 'py') Only files with 'txt' and 'py' extensions will be added to the list. Example usage: fileList = dirEntries(r'H:\TEMP', True) All files and all the files in subdirectories under H:\TEMP will be added to the list. ''' fileList = [] for file in os.listdir(dir_name): dirfile = os.path.join(dir_name, file) if os.path.isfile(dirfile): if not args: fileList.append(dirfile) else: if os.path.splitext(dirfile)[1][1:] in args: fileList.append(dirfile) # recursively access file names in subdirectories elif os.path.isdir(dirfile) and subdir: print "Accessing directory:", dirfile fileList.extend(dirEntries(dirfile, subdir, *args)) return fileList class FSFrame(FTestSuite): def __init__(self, MDIparent, createToolbar): FTestSuite.__init__(self) self.__MDIparent = MDIparent self.menu = FMenuBar(self, createToolbar) self.SetMenuBar(self.menu) self.menu.Bind(FMenuBar.ID_NEW, self.__OnNew) self.menu.Bind(FMenuBar.ID_EXIT, self.__OnExit) self.menu.Bind(FMenuBar.ID_HELP, self.__OnHelp) self.menu.Bind(FMenuBar.ID_ABOUT, self.__OnAbout) self.menu.Bind(FMenuBar.ID_OPEN, self.__OnOpen) def __OnNew(self, e): dialog = FRunConfigDialog(self, self.applicationMap) if (dialog.ShowModal() == wx.ID_OK): testProcedure = self.SaveProcedure(dialog.title, dialog.selectedRun, dialog.GetComments()) if (testProcedure != None): child = RunTable(self.__MDIparent, wx.ID_ANY, testProcedure) child.Maximize(True) child.Show(True) dialog.Destroy() def __OnOpen(self, e): fileChooser = FOpenDialog(self) if (fileChooser.ShowModal() == wx.ID_OK): self.OpenTestProcedure(fileChooser.GetPath()) def __BusyInfoOpenTestProcedure(self, filename): busyInfo = wx.BusyInfo("Opening test procedure: loading. Please " + "wait...") return self.Load(filename) def __BusyInfoCheckForNewTests(self, testProcedure, regExId): busyInfo = wx.BusyInfo("Opening test procedure: checking regular " + "expression. Please wait...") return testProcedure.CheckForNewTests(regExId) def OpenTestProcedure(self, filename): testProcedure = self.__BusyInfoOpenTestProcedure(filename) recovered = testProcedure.GetRecoveredTestIds() if (recovered != ""): FUtils.ShowWarning(self, "Encountered unfinished test " + "executions. Recovering to previous finished execution " + "for these tests:\n\n" + recovered) for regExId in testProcedure.GetRegExIdGenerator(): dataSets = self.__BusyInfoCheckForNewTests(testProcedure, regExId) if (len(dataSets) == 0): continue displayDataSets = "" for dataSet in dataSets: displayDataSets = (displayDataSets + FUtils.GetRelativePath(dataSet, MAIN_FOLDER) + "\n") if (FUtils.ShowConfirmation(self, "Found these missing data sets for " + "Regular Expression " + str(regExId) + ": \n" + testProcedure.GetRegExString(regExId) + "\n\n\n" + displayDataSets + "\n\n" + "Do you want to add them to the test procedure? " + "Selecting \"No\" will also ignore them from future " + "confirmations.", False)): settings = testProcedure.GetRegExSettings(regExId) for dataSet in dataSets: testProcedure.AddTest(dataSet, settings) else: ignored = testProcedure.GetIgnoredRegExList(regExId) if (len(ignored) == 0): ignored.append("") # len(dataSet) != 0 for dataSet in dataSets: displayedFilename = FUtils.GetRelativePath(dataSet, MAIN_FOLDER) regExPath = FUtils.NormalizeRegEx(displayedFilename) newIgnored = ignored[-1] if (newIgnored != ""): newIgnored = newIgnored + "|" newIgnored = newIgnored + regExPath if (len(newIgnored) < 30000): ignored[-1] = newIgnored else: ignored.append(regExPath) testProcedure.SetRegEx(regExId, testProcedure.GetRegExList(regExId), ignored) busyInfo = wx.BusyInfo("Opening test procedure: Creating grid. " + "Please wait...") child = RunTable(self.__MDIparent, wx.ID_ANY, testProcedure) child.Maximize(True) child.Show(True) def __OnExit(self, e): self.__MDIparent.Destroy() def __OnHelp(self, e): # XXX: this is windows only os.startfile(DOCUMENTATION) def __OnAbout(self, e): message = ("COLLADA Conformance Test Suite v" + str(VERSION) +"\n\n" + "Copyright (C) 2006-2010 Khronos Group\n" + "Available only to Khronos members.\n") wx.MessageDialog(self, message, "About COLLADA Conformance Test Suite", style = wx.OK).ShowModal() class RunTable(FSFrame, wx.MDIChildFrame): def __init__(self, parent, id, testProcedure): wx.MDIChildFrame.__init__(self, parent, id, testProcedure.GetName(), size = (400, 320), style = wx.DEFAULT_FRAME_STYLE | wx.NO_FULL_REPAINT_ON_RESIZE) FSFrame.__init__(self, self.GetParent(), True) self.menu.Bind(FMenuBar.ID_SAVEAS, self.__OnSaveAs) self.menu.Bind(FMenuBar.ID_EXPORT_ALL_CSV, self.__OnExportAllCsv) self.menu.Bind(FMenuBar.ID_EXPORT_ALL, self.__OnExportAll) self.menu.Bind(FMenuBar.ID_EXPORT_SELECTED, self.__OnExportSelected) self.menu.Bind(FMenuBar.ID_CLOSE, self.__OnClose) self.menu.Bind(FMenuBar.ID_PACKAGE_RESULTS, self.__OnPackageResults) self.Bind(wx.EVT_CLOSE, self.__OnClose) self.menu.Bind(FMenuBar.ID_RELOAD, self.__OnReload) self.menu.Bind(FMenuBar.ID_PREFERENCES, self.__OnPreference) self.menu.Bind(FMenuBar.ID_ADD_TEST, self.__OnAddTest) self.menu.Bind(FMenuBar.ID_RUN_SELECTED, self.__OnRunSelected) self.menu.Bind(FMenuBar.ID_RUN_ALL, self.__OnRunAll) self.menu.Bind(FMenuBar.ID_RUN_UNRAN, self.__OnRunUnran) self.menu.Bind(FMenuBar.ID_SELECT_ALL, self.__OnSelectAll) self.menu.Bind(FMenuBar.ID_REFRESH, self.__OnRefreshTable) self.menu.Bind(FMenuBar.ID_REFRESH_SELECTED, self.__OnRefreshSelected) self.menu.Bind(FMenuBar.ID_ANIMATE, self.__OnAnimate) self.menu.Bind(FMenuBar.ID_REGEX, self.__OnRegEx) self.CreateStatusBar() self.__mdiId = self.GetParent().AddTestProcedure(testProcedure) self.__testProcedure = testProcedure self.__csvExporter = FCsvExporter() self.__htmlExporter = FHtmlExporter() self.__animateAll = False self.__grid = self.__CreateGrid() self.__grid.SortColumn(0, True) for test in self.__testProcedure.GetTestGenerator(): id = test.GetTestId() self.__grid.AddExecution(id, test, test.GetCurrentExecution()) self.__grid.PartialRefreshAdd(test) self.__grid.PartialRefreshDone() def SetStatistics(self, total, passed, failed): self.menu.SetTotal(total) self.menu.SetPassed(passed) self.menu.SetFailed(failed) def SetBadgesEarned(self, badgesEarned): self.menu.SetBadgesEarned(badgesEarned) def __OnAnimate(self, e): e.Skip() newValue = not e.IsChecked() if (self.__animateAll != newValue): self.__animateAll = newValue self.__grid.SetAnimateAll(newValue) def __OnSelectAll(self, e): e.Skip() self.__grid.SelectAll() def __CreateGrid(self): grid = FExecutionGrid(self, self.__testProcedure, False, self.configDict["feelingViewerGUI"], self.configDict["pythonExecutable"]) grid.AppendContext("Run Selected", self.__OnContextRun) grid.AppendContext(None, None) grid.AppendContext("Show Previous", self.__OnContextShowPrevious) grid.AppendContext("Compare Execution With", self.__OnCompare) grid.AppendContext(None, None) grid.AppendContext("View Settings", self.__OnViewSettings) grid.AppendContext("Change Settings", self.__OnChangeSettings) grid.AppendContext(None, None) grid.AppendContext("Delete Execution", self.__OnContextDeleteExecution) grid.AppendContext("Delete Test", self.__OnContextDeleteTest) grid.AppendContext(None, None) grid.AppendContext("View Blessed", self.__OnContextViewBlessed) grid.AppendExecutionContext() return grid def __OnRegEx(self, e): dialog = FRegExDialog(self, self.__testProcedure, self.applicationMap) dialog.ShowModal() def __OnContextViewBlessed(self, e): if (len(self.__grid.GetSelectedKeys()) == 0): return if (len(self.__grid.GetSelectedKeys()) > 1): FUtils.ShowWarning(self, "Select only one test to view settings.") return key = self.__grid.GetSelectedKeys()[0] test = self.__testProcedure.GetTest(key) # FBlessedViewerDialog may unbless. self.__grid.PartialRefreshRemove(test) FBlessedViewerDialog(self, test.GetDataSetPath()).ShowModal() self.__grid.PartialRefreshAdd(test) self.__grid.PartialRefreshDone() def __OnViewSettings(self, e): if (len(self.__grid.GetSelectedKeys()) == 0): return if (len(self.__grid.GetSelectedKeys()) > 1): FUtils.ShowWarning(self, "Select only one test to view settings.") return key = self.__grid.GetSelectedKeys()[0] setting = self.__testProcedure.GetTest(key).GetSettings() FSettingDialog(self, self.__testProcedure, self.applicationMap, False, setting).ShowModal() def __OnChangeSettings(self, e): if (len(self.__grid.GetSelectedKeys()) == 0): return settings = [] for step, app, op, setting in self.__testProcedure.GetStepGenerator(): settings.append(None) for key in self.__grid.GetSelectedKeys(): test = self.__testProcedure.GetTest(key) if (settings[-1] == None): settings[-1] = test.GetSettings()[step] else: if (settings[-1] != test.GetSettings()[step]): settings[-1] = None break dialog = FSettingDialog(self, self.__testProcedure, self.applicationMap, True, settings) if (dialog.ShowModal() == wx.ID_OK): newSettings = dialog.GetSettings() addedTestDesc = [] removedTestKeys = [] for key in self.__grid.GetSelectedKeys(): test = self.__testProcedure.GetTest(key) settings = test.GetSettings() changed = False # should be same length or else something is seriously wrong for i in range(len(newSettings)): if (newSettings[i] != settings[i]):
in the header 3 >>> field_expected_1 = 'project.s1'+util.str_source_variable_separator+'a' >>> field_expected_1 in header_combined True >>> f_expect2 = 'project.s1'+util.str_source_variable_separator+'b' >>> f_expect3 = 'project.s2'+util.str_source_variable_separator+'z' >>> all([f_expect3 in header_combined, f_expect2 in header_combined]) True >>> result3 = [('big','set')] #Try adding a large result set >>> result3.extend([(3.141,'2999-12-31T23:59:59Z') for i in range(9990000)]) >>> dict_results['project2.big_set'] = result3 >>> combined = get_source_results_combined( dict_results) >>> len(combined) #Expect header row + 9990003 data row 9990004 """ # Combine resultsets # FIXME: Below may be possible with SQLalchemy ORM, but either way # Warehouse db schema is expected to obviate the need for this function. header_row_combined = [] data_rows_combined = numpy.array([], dtype=object)#conserve memory w/ NumPy for str_source_id in dict_results_by_id.keys(): #1) Add columns from this resultset to header row #No dataset fields have been identified as compatible/shared dimensions #.. so we make no attempt to combine/consolidate them. result = dict_results_by_id[ str_source_id] if result is None: continue #No results Skipping. try: header_result = result[0] header_prefixed = [] for str_field in header_result: str_field_prefixed =util.prefix_field_name(str_field, str_source_id) header_prefixed.append( str_field_prefixed) header_row_combined.extend( header_prefixed) except IndexError: #source resultset has no header! Skipping. continue #2) Extend all combined data rows w/ null values for the new header fields int_starting_combined_width = 0 if len(data_rows_combined) > 0: int_rows, int_starting_combined_width = data_rows_combined.shape int_header_len = len(header_result) tuple_col_padding_size = (int_rows, int_header_len) array_padding = numpy.empty(tuple_col_padding_size, dtype=object) array_padding.fill(str_no_data_placeholder) list_add_columns = [data_rows_combined, array_padding] data_rows_combined = numpy.column_stack(list_add_columns) #3) Add rows from this resultset to combined data rows array_result_data_rows = numpy.array(result[1:], dtype=object) if int_starting_combined_width > 0: # extend the new data rows with additional columns of padding int_pad_width = int_starting_combined_width#offset new fields int_padding_rows = len(array_result_data_rows) tuple_padding_size = (int_padding_rows, int_pad_width) array_padding_new_rows = numpy.empty(tuple_padding_size, dtype=object) array_padding_new_rows.fill(str_no_data_placeholder) list_add_columns = [array_padding_new_rows, array_result_data_rows] array_result_data_rows = numpy.column_stack(list_add_columns) if int_starting_combined_width == 0: data_rows_combined = array_result_data_rows continue #Otherwise,now that new rows size is same as master list: append list_add_new_rows = [data_rows_combined, array_result_data_rows] data_rows_combined = numpy.concatenate( list_add_new_rows) # convert header list, plus list of data-row lists # into one list of tuples result_combined = [] result_combined.append( tuple(header_row_combined) ) for list_data_row in data_rows_combined: result_combined.append( tuple(list_data_row) ) return result_combined def get_list_of_warehouse_variables(): """ Returns a list of names, representing all available Warehouse variables """ list_variables = [] loader = api.config_loader for dict_source in loader.get_list_of_etl_dicts(): str_dataset_id = dict_source['id'] # retrieve & decode the configured list of fields+types str_field_types_json = dict_source['python_types'] dict_field_types = json.loads( str_field_types_json) # add the field names, to our list for str_source_variable in dict_field_types.keys(): str_warehouse_variable = util.prefix_field_name(str_source_variable, str_dataset_id) list_variables.append( str_warehouse_variable) return list_variables def get_source_tables(): """ Returns list of 'table' warehouse support DTOs representing all configured data sources. """ with get_source_model_session() as available_model: return available_model['tables'] def get_source_variables(): """ Returns 'variable' DWSupport objects representing all configured fields """ with get_source_model_session() as available_model: return available_model['variables'] @contextlib.contextmanager def get_source_model_session(): """ returns a dict, representing the complete DWSupport configuration """ yield prefetch_cache.get_model() def get_sql_filtered(source_table, python_types, filters ,empty_fact_dimensions = []): """ Returns String,representing an inline view definition for retrieving source Keyword Parameters: source_table -- a 'table' warehouse support DTO,representing the source returned SQL will retrieve. python_types -- JSON encoded string representing a Dict that maps field names to Python type constructors filters -- list of Strings, representing Selection filter expressions empty_cell_dimensions -- list of Strings representing Dimension tables (or OLAP-Roles) which are to be OUTER JOINED to produce empty Fact value cells for all Dimensional values not found in the fact. TODO: provide unittest coverage """ try: table_type.validate( source_table['type']) except table_type.ValidateUnexpectedValue as e: raise NotImplementedError('No SQL Generation method, for type: {}'.format(source_table)) from e #TODO: make this into a local class schema = "dw" #Default, for now all warehoused tables are in same schema #if source is a Fact table, join on its dimensions & alias all dimensional fields with get_source_model_session() as current_model: if source_table['type'] == 'fact': # compose sql: fact_name = source_table['name'] # get variable lists & associations, by parent table_name variables, associations_by_parent, aliases, nonselects = get_fact_children(fact_name, current_model) return sqlgenerator.get_fact_sql(fact_name, schema, variables ,associations_by_parent, aliases, current_model ,nonselects, filters, empty_fact_dimensions) #source is a Dimension or OLAP-Role # get dimension fields dimension_name = source_table['name'] associations = current_model['associations'] if source_table['type'] == 'dimension role': role_name = source_table['name'] #Name is actually an alias # locate base dimension name dimension_name = _get_alias_base( role_name, associations) variables = variable.get(dimension_name, connection_func=util.get_dwsupport_connection) if source_table['type'] == 'dimension role': variables = _get_aliased_variables(role_name, variables) # compose SQL return _get_dim_sql(dimension_name, schema, variables, python_types, current_model, filters) def get_fact_children(fact_name, current_model): """ Returns Fact table variables, associations, OLAP-roles & role-support Dims Variables & associations a represented as Dicts, indexed by parent table_name. Dimension roles are returned as a list of names. Keyword Parameters: fact_name -- String, representing name of the fact table for which dicts of variable lists and associations are to be retrieved. current_model -- Dict, representing the full DWSupport configuration """ # get associations, by parent table_name associations_all = current_model['associations'] associations_by_parent = {} aliases = [] nonselect_tables = [] for a in associations_all: if a['table'] == fact_name: # add association to Dict,only if it relates to fact_name dimension_name = a['parent'] associations_by_parent[ dimension_name] = a if a['type'] == 'fact dimension role': # Make a note, if the Dict is an alias("Role") aliases.append( dimension_name) # construct artificial Dimension relations,for any standalone OLAP-Roles for table_name in aliases: #fetch the Role information role_association = associations_by_parent[table_name] role_name = role_association['parent'] dimension_name = _get_alias_base( role_name, associations_all) # check if base dimension is listed if dimension_name not in associations_by_parent.keys(): # build a fake association, for the dimension fake_base_association = dict(role_association) fake_base_association['parent'] = dimension_name fake_base_association['type'] = 'fact dimension' # map artificial relation, to enable SQL generation associations_by_parent[ dimension_name] = fake_base_association nonselect_tables.append( dimension_name) #mark as artificial # get variables, by table_name relevant_tables = [fact_name] + list(associations_by_parent.keys()) variables_all = current_model['variables'] variables_by_parent = {} variables_by_table_name = {} #also, prepare a map of variables for v in variables_all: table_name = v['table'] variables_by_table_name.setdefault(table_name, [])#map is for Aliases variables_by_table_name[table_name].append(v) if table_name in relevant_tables: # add variable to our Dict lists, if it relates to this source variables_by_parent.setdefault(table_name, [])#if new table,init our Dict variables_by_parent[table_name].append(v) # get variables for aliases (Aliases dont have their own variables) # also, construct artificial Fact-to-dim associations for aliases. for table_name in aliases: role_association = associations_by_parent[table_name] role_name = role_association['parent'] dimension_name = _get_alias_base( role_name, associations_all) dimension_variables = variables_by_table_name[dimension_name] alias_variables = _get_aliased_variables( role_name ,dimension_variables) variables_by_parent[table_name] = alias_variables # replace "role" association with an 'aliased' fact association aliased_association = dict(role_association) aliased_association['parent'] = dimension_name associations_by_parent[table_name] = aliased_association return variables_by_parent, associations_by_parent, aliases, nonselect_tables def get_fact_variables(fact_table, current_model): """ Returns Dicts,representing fact's variable dtos & physical columns Both dicts are indexed by variable's web API identifier (e.g.: 'fact_column_name', 'associated_dimension$dim_column_name', or 'custom_variable_identifier') Keyword Parameters: fact_table -- dwsupport DTO,representing the fact table for which Dict of python types is to be retreived. current_model -- Dict, representing the full DWSupport configuration TODO: improve test coverage """ fact_name = fact_table['name'] variables, associations_garbage, alias_garbage, nonselect_tables = get_fact_children(fact_name, current_model) fact_variables = {} physical_columns ={} for table_name in variables: #retrieve variables list for all selectable Fact fields if table_name in nonselect_tables: continue # skip variable_list = variables[table_name] for var in variable_list: final_var = dict(var) variable_id = _get_fact_variable_name(var, fact_name) final_var['column'] = variable_id custom_id = util.get_custom_variable_name( final_var ,current_model) if custom_id is not None: variable_id = custom_id final_var['column'] = custom_id fact_variables[variable_id] = final_var physical_columns[variable_id] = var['column'] return fact_variables, physical_columns def _get_fact_variable_name( source_variable, fact_name): """ Utility function,returning API identifier for the referenced variable Keyword Parameters: source_variable -- dwsupport DTO, representing a dimension or fact summary field. fact_name -- String, representing the name of the fact table fields are associated with. >>> fact_var1 = {'column':'measured_kg','title': 'Measured Fact1','table':'foo_fact'} >>> _get_fact_variable_name( fact_var1, 'foo_fact') 'measured_kg' >>> dim_var1 = {'column':'date','title': 'Trip Date','table':'date_dim'} >>> _get_fact_variable_name( dim_var1, 'foo_fact') 'date_dim$date' """ identifier = source_variable['column'] #initialize variable_table = source_variable['table'] if not variable_table == fact_name: #variable did not come from the Fact # table. Prefix with the name of it's originating table,to orient user identifier = util.prefix_field_name( identifier, variable_table) return identifier def _get_dim_sql( dimension_name, schema, variables, python_types, model, filters): """ Utility function, to generate SQL select statement for a single dimension Keyword Parameters: dimension_name -- String representation of the dimension table name
utils.runscript(script, args) assert os.path.exists(outfile) return outfile def test_filter_stoptags(): infile = utils.copy_test_data('test-abund-read-2.fa') in_dir = os.path.dirname(infile) stopfile = utils.get_temp_filename('stoptags', in_dir) # first, copy test-abund-read-2.fa to 'test.fa' in the temp dir. # now, create a file with some stop tags in it -- K = 18 kh = khmer._Nodegraph(K, [1]) kh.add_stop_tag('GTTGACGGGGCTCAGGGG') kh.save_stop_tags(stopfile) del kh # finally, run filter-stoptags. script = 'filter-stoptags.py' args = ['-k', str(K), stopfile, infile, infile] utils.runscript(script, args, in_dir) # verify that the basic output file exists outfile = infile + '.stopfilt' assert os.path.exists(outfile), outfile # it should contain only one unique sequence, because we've trimmed # off everything after the beginning of the only long sequence in there. seqs = set([r.sequence for r in screed.open(outfile)]) assert len(seqs) == 1, seqs assert 'GGTTGACGGGGCTCAGGG' in seqs, seqs def test_filter_stoptags_fq(): infile = utils.copy_test_data('test-abund-read-2.fq') in_dir = os.path.dirname(infile) stopfile = utils.get_temp_filename('stoptags', in_dir) # first, copy test-abund-read-2.fa to 'test.fa' in the temp dir. # now, create a file with some stop tags in it -- K = 18 kh = khmer._Nodegraph(K, [1]) kh.add_stop_tag('GTTGACGGGGCTCAGGGG') kh.save_stop_tags(stopfile) del kh # finally, run filter-stoptags. script = 'filter-stoptags.py' args = ['-k', str(K), stopfile, infile, infile] utils.runscript(script, args, in_dir) # verify that the basic output file exists outfile = infile + '.stopfilt' assert os.path.exists(outfile), outfile # it should contain only one unique sequence, because we've trimmed # off everything after the beginning of the only long sequence in there. seqs = set([r.sequence for r in screed.open(outfile)]) assert len(seqs) == 1, seqs assert 'GGTTGACGGGGCTCAGGG' in seqs, seqs # make sure that record names are carried through unparsed names = [r.name for r in screed.open(outfile)] names = set(names) assert 'seq 1::BAR' in names def test_count_median(): infile = utils.copy_test_data('test-abund-read-2.fa') outfile = infile + '.counts' counting_ht = _make_counting(infile, K=8) script = 'count-median.py' args = [counting_ht, infile, outfile] utils.runscript(script, args) assert os.path.exists(outfile), outfile data = [x.strip() for x in open(outfile).readlines()[1:]] data = set(data) assert len(data) == 2, data assert 'seq,1001,1001.0,0.0,18' in data, data assert '895:1:37:17593:9954/1,1,103.803741455,303.702941895,114' in data def test_count_median_fq_csv(): infile = utils.copy_test_data('test-abund-read-2.fq') outfile = infile + '.counts' counting_ht = _make_counting(infile, K=8) script = 'count-median.py' args = [counting_ht, infile, outfile] utils.runscript(script, args) assert os.path.exists(outfile), outfile data = [x.strip() for x in open(outfile)] data = set(data) assert len(data) == 4, data assert 'name,median,average,stddev,seqlen' in data assert 'seq,1001,1001.0,0.0,18' in data # verify that sequence names remain unparsed names = set([line.split(',')[0] for line in data]) assert '895:1:37:17593:9954 1::FOO' in names, names def test_count_median_fq_csv_stdout(): infile = utils.copy_test_data('test-abund-read-2.fq') outfile = '-' counting_ht = _make_counting(infile, K=8) script = 'count-median.py' args = [counting_ht, infile, outfile] (status, out, err) = utils.runscript(script, args) assert 'name,median,average,stddev,seqlen' in out assert 'seq,1001,1001.0,0.0,18' in out def test_load_graph(): script = 'load-graph.py' args = ['-x', '1e7', '-N', '2', '-k', '20'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) assert 'Total number of unique k-mers: 3960' in err, err ht_file = outfile assert os.path.exists(ht_file), ht_file tagset_file = outfile + '.tagset' assert os.path.exists(tagset_file), tagset_file try: ht = khmer.load_nodegraph(ht_file) except OSError as err: assert 0, str(err) ht.load_tagset(tagset_file) # check to make sure we get the expected result for this data set # upon partitioning (all in one partition). This is kind of a # roundabout way of checking that load-graph.py worked :) subset = ht.do_subset_partition(0, 0) x = ht.subset_count_partitions(subset) assert x == (1, 0), x @pytest.mark.known_failing def test_oxli_build_graph(): script = 'oxli' args = ['build-graph', '-x', '1e7', '-N', '2', '-k', '20'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) assert 'Total number of unique k-mers: 3960' in err, err ht_file = outfile assert os.path.exists(ht_file), ht_file tagset_file = outfile + '.tagset' assert os.path.exists(tagset_file), tagset_file ht = khmer.load_nodegraph(ht_file) ht.load_tagset(tagset_file) # check to make sure we get the expected result for this data set # upon partitioning (all in one partition). This is kind of a # roundabout way of checking that load-graph.py worked :) subset = ht.do_subset_partition(0, 0) x = ht.subset_count_partitions(subset) assert x == (1, 0), x @pytest.mark.known_failing def test_oxli_build_graph_unique_kmers_arg(): script = 'oxli' args = ['build-graph', '-x', '1e7', '-N', '2', '-k', '20', '-U', '3960'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) assert 'Total number of unique k-mers: 3960' in err, err assert 'INFO: set memory ceiling automatically' in err, err assert 'Ceiling is: 1e+06 bytes' in err, err ht_file = outfile assert os.path.exists(ht_file), ht_file tagset_file = outfile + '.tagset' assert os.path.exists(tagset_file), tagset_file ht = khmer.load_nodegraph(ht_file) ht.load_tagset(tagset_file) # check to make sure we get the expected result for this data set # upon partitioning (all in one partition). This is kind of a # roundabout way of checking that load-graph.py worked :) subset = ht.do_subset_partition(0, 0) x = ht.subset_count_partitions(subset) assert x == (1, 0), x @pytest.mark.known_failing def test_oxli_nocommand(): script = 'oxli' (status, out, err) = utils.runscript(script, []) assert status == 0 def test_load_graph_no_tags(): script = 'load-graph.py' args = ['-x', '1e7', '-N', '2', '-k', '20', '-n'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) utils.runscript(script, args) ht_file = outfile assert os.path.exists(ht_file), ht_file tagset_file = outfile + '.tagset' assert not os.path.exists(tagset_file), tagset_file assert khmer.load_nodegraph(ht_file) # can't think of a good way to make sure this worked, beyond just # loading the ht file... @pytest.mark.known_failing def test_oxli_build_graph_no_tags(): script = 'oxli' args = ['build-graph', '-x', '1e7', '-N', '2', '-k', '20', '-n'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) utils.runscript(script, args) ht_file = outfile assert os.path.exists(ht_file), ht_file tagset_file = outfile + '.tagset' assert not os.path.exists(tagset_file), tagset_file assert khmer.load_nodegraph(ht_file) # can't think of a good way to make sure this worked, beyond just # loading the ht file... def test_load_graph_fail(): script = 'load-graph.py' args = ['-x', '1e3', '-N', '2', '-k', '20'] # use small HT outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args, fail_ok=True) assert status == 1, status assert "** ERROR: the graph structure is too small" in err @pytest.mark.known_failing def test_oxli_build_graph_fail(): script = 'oxli' args = ['build-graph', '-x', '1e3', '-N', '2', '-k', '20'] # use small HT outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args, fail_ok=True) assert status == 1, status assert "** ERROR: the graph structure is too small" in err @pytest.mark.known_failing def test_oxli_build_graph_yuge(): script = 'oxli' args = ['build-graph', '-M', '800T', '-k', '20'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args, fail_ok=True) assert status != 0, status assert 'ERROR: Not enough free space on disk' in err def test_load_graph_write_fp(): script = 'load-graph.py' args = ['-x', '1e5', '-N', '2', '-k', '20'] # use small HT outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) ht_file = outfile assert os.path.exists(ht_file), ht_file info_file = outfile + '.info' assert os.path.exists(info_file), info_file data = [x.strip() for x in open(info_file)] data = set(data) assert '3959 unique k-mers' in data, data assert 'false positive rate estimated to be 0.002' in data @pytest.mark.known_failing def test_oxli_build_graph_write_fp(): script = 'oxli' # use small HT args = ['build-graph', '-x', '1e5', '-N', '2', '-k', '20'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) ht_file = outfile assert os.path.exists(ht_file), ht_file info_file = outfile + '.info' assert os.path.exists(info_file), info_file data = [x.strip() for x in open(info_file)] data = set(data) assert '3959 unique k-mers' in data assert 'false positive rate estimated to be 0.002' in data def test_load_graph_multithread(): script = 'load-graph.py' outfile = utils.get_temp_filename('test') infile = utils.get_test_data('test-reads.fa') args = ['-N', '4', '-x', '1e7', '-T', '8', outfile, infile] (status, out, err) = utils.runscript(script, args) @pytest.mark.known_failing def test_oxli_build_graph_multithread(): script = 'oxli' outfile = utils.get_temp_filename('test') infile = utils.get_test_data('test-reads.fa') args = ['build-graph', '-N', '4', '-x', '1e7', '-T', '8', outfile, infile] (status, out, err) = utils.runscript(script, args) def test_load_graph_max_memory_usage_parameter(): script = 'load-graph.py' args = ['-M', '2e7', '-k', '20', '-n'] outfile = utils.get_temp_filename('out') infile = utils.get_test_data('random-20-a.fa') args.extend([outfile, infile]) (status, out, err) = utils.runscript(script, args) assert 'Total number of unique k-mers: 3960' in err, err ht_file = outfile assert os.path.exists(ht_file), ht_file try: ht = khmer.load_nodegraph(ht_file) except OSError as err: assert 0, str(err) assert (sum(ht.hashsizes()) / 8.) < 2e7, ht.hashsizes() def _make_graph(infilename, min_hashsize=1e7, n_hashes=2,
<reponame>pyrv/pycontract<filename>pycontract_core.py<gh_stars>0 """ PyContract """ import copy import inspect from abc import ABC from dataclasses import dataclass from typing import List, Set, Callable, Optional, Dict import pyfiglet def print_banner(text: str): ''' Prints a banner as ASCII art in slant format. See: https://github.com/pwaller/pyfiglet. :param text: the text to be printed as ASCII art. ''' ascii_banner = pyfiglet.figlet_format(text, font='slant') print(ascii_banner) def data(cls): """ Decorator for decorating events and states, allowing to declare parameters more easily than with __init__. Also, the unsafe_hash=True introduces a hash function needed for storing states in sets. """ return dataclass(cls, unsafe_hash=True) """ Auxiliary types. """ Char = str """ When set to true output will contain debugging information. """ DEBUG: bool = False """ When set garbage collected states will be printed. This can be used to study how garbage collection works. """ DEBUG_GC: bool = False """ When set progress will be reported for every `DEBUG_PROGRESS` event. Default is `None` which means no progress reports. """ DEBUG_PROGRESS: int = None """ The current monitor being evaluated. Is used from within states to access the monitor they are part of. """ __monitor__: object = None def test(nr: int, txt: str, msg: str = ''): """ Prints error message. Used when locating a bug and temporary print statements are needed. By calling this function instead of print, it is possible quickly locate all such calls when one is done bug hunting, so that they can be removed again. :param nr: a number allowing to trace printed message back to code :param txt: a headline explaining the message :param msg: the message to be printed """ print(f'# test [{nr}] {txt}: {msg}') def set_debug(value: bool): """ Sets the debug flag. When True, for each submitted event will be printed: 1. the event number and event 2. for each monitor: 2.1 internal transitions in the monitor 2.2 final set of states of the monitor :param value: when True debugging information is printed. """ global DEBUG DEBUG = value def set_debug_gc(value: bool): """ Sets the garbage collection debug flag. When True, garbage collected states will be printed :param value: when True debugging information is printed. """ global DEBUG_GC DEBUG_GC = value def set_debug_progress(value: int): """ Sets the progress reporting debug value. When different from None, a message is issued for every `value` event. :param value: a message will be issued for every `value` event. """ global DEBUG_PROGRESS DEBUG_PROGRESS = value def debug_mode() -> bool: """ Returns value of DEBUG flag. Used in other modules where the DEBUG variable is not accessible. :return: the value of the DEBUG flag. """ return DEBUG def debug(msg: str): """ Prints debugging information. By giving this function a special name it is easier to locate debugging statements. :param msg: the message to be printed. """ print(msg) def debug_frame(symbol: Char, msg: str): """ Prints a message surrounded by a line of symbols before and after, if the DEBUG flag is True. :param symbol: the symbol to make up the line, as long as the message. :param msg: the message to be printed. """ if DEBUG: print_frame(symbol, msg) def print_frame(symbol: Char, msg: str): """ Prints a message surrounded by a line of symbols before and after, :param symbol: the symbol to make up the line, as long as the message. :param msg: the message to be printed. """ length = len(msg) print(symbol * length) print(msg) print(symbol * length) print() def mk_string(begin: str, separator: str, end: str, args: list) -> str: """ Turns a list of values into a string, surrounded by given begin and end strings, and elements separated by a given separator. :param begin: string to begin with. :param separator: separator to separate list elements. :param end: string to end with. :param args: the list of values. :return: the resulting string. """ result = begin sep = "" for arg in args: result += f'{sep}{quote(arg)}' sep = separator + ' ' result += end return result def is_state_class(member: object) -> bool: """ Returns true if the object member is a class and specifically a subclass of State. Used for identifying the states in a monitor. :param member: the member object to check. :return: True iff the object member is a class and specifically a subclass of State. """ return inspect.isclass(member) and issubclass(member, State) def is_transition_method(member: object) -> bool: """ Returns true if the object member is a method named `transition`. Used for identifying the methods in a monitor that model transitions. :param member: the member object to check. :return: True iff the object member is a function named `transition`. """ return inspect.ismethod(member) and member.__name__ == 'transition' def hasattr_really(obj: object, attr) -> bool: """ Examines whether an object really has an attribute, without calling __getattr__, which in states looks up the attribute in the monitor it is part of. :param obj: the object to look for the attribute. :param attr: the attribute. :return: True iff the attribute is really defined in that object. """ try: obj.__getattribute__(attr) return True except: return False def quote(arg: object) -> object: """ Puts quotes around a string (so it appears as a string in output). Otherwise returns argument unchanged. :param arg: argument to transform. :return: argument quoted if a string, otherwise unchanged. """ if isinstance(arg,str): return f"'{arg}'" else: return arg @data class Event: pass @data class State: """ Objects of this class represent active states in the state machine. It is defined as data state, which activates the hash function, used for storing states in a hashset. """ def __init__(self): """ Will eventually point to the monitor instance this state instance is part of. __init__ does not need to be called, but its definition removes some warnings in PyCharm. """ self.monitor = None """ Data specific to a particular form of analysis can be stored here and printed out when the `end()` method of the monitor containing the state is called. """ self.__data_object__: object = None def __str__(self) -> str: result = self.get_state_name() if hasattr_really(self, '__init__'): args = inspect.getfullargspec(self.__init__).args[1:] result += mk_string('(', ',', ')', [getattr(self, arg) for arg in args]) if hasattr_really(self, '__data_object__') and self.__data_object__ is not None: result += '\n' + self.__data_object__.__str__() return result def __getattr__(self, attr) -> object: """ Used for looking up an attribute in the monitor of a state, when the attribute is not defined in the state. This is used for transition methods that are defined at the outermost level, and which get inserted into the anonymous always state. In that state the self argument of these methods no longer refers to the monitor. One would have to write self.monitor.attr in those methods which is annoying. :param attr: the attribute to look up. :return: the value of the attribute. """ return getattr(self.monitor, attr) def __bool__(self): """ Allows a state to be used as a Boolean, which is True if the state is in the state vector. Can be used for expressing past time properties. :return: True of the state is in the state vector. """ return __monitor__.contains_state(self) def __del__(self): """ Called when a state object is garbage collected. Prints the state if `DEBUG_GC` is True. """ if DEBUG_GC: print(f'{str(self)} garbage collected') def set_monitor_to(self, monitor: "Monitor"): """ Assigns the monitor instance this state instance is part of to the variable self.monitor. :param monitor: assumed to be the parent monitor instance of this state instance. """ self.monitor = monitor def get_state_name(self) -> str: """ Returns the name of the state. :return: the name of the state. """ return self.__class__.__name__ def exists(self, predicate: Callable[["State"], bool]) -> bool: """ Returns True iff there exists a state s in the state vector of the monitor, such that predicate(s) is True. :param predicate: the predicate which a state in the state vector must satisfy. :return: True iff. a state in the state vector satisfies the predicate. """ return self.monitor.exists(predicate) def transition(self, event) -> Optional[List["State"]]: """ Evaluates a state on an event. The result is an optional list of resulting states. None is returned if either there is no transition corresponding to the event. :param event: the event on which the state is evaluated. :return: the optional list of
"1.7", "пытлив": "1.7", "укромн": "1.7", "обдума": "1.7", "ценостн": "1.7", "звучн": "1.7", "кокетлив": "1.7", "неуязвим": "1.7", "статусн": "1.7", "горчичн": "1.7", "обезжирен": "1.7", "эталон": "1.7", "разоблачительн": "1.7", "прийшл": "1.7", "юниорск": "1.7", "зрим": "1.7", "взыскательн": "1.7", "этичн": "1.7", "ельцинск": "1.7", "прорывн": "1.7", "голев": "1.7", "диснеевск": "1.7", "вялен": "1.7", "отбивн": "1.7", "доказательн": "1.7", "ненаглядн": "1.7", "стосовн": "1.7", "хвалебн": "1.7", "неберджаевск": "1.7", "остыл": "1.7", "безосновательн": "1.7", "фантастичн": "1.7", "грозненск": "1.7", "наступательн": "1.7", "поэтичн": "1.7", "перуанск": "1.7", "пятнадцатилетн": "1.7", "монархическ": "1.7", "скрупулезн": "1.7", "пленительн": "1.7", "педантичн": "1.7", "излечим": "1.7", "матвеевск": "1.7", "ошеломительн": "1.7", "путн": "1.7", "лестн": "1.7", "безрисков": "1.7", "предусмотрительн": "1.7", "нецелев": "1.7", "артистичн": "1.7", "мны": "1.7", "темпераментн": "1.7", "честолюбив": "1.7", "эргономичн": "1.7", "ультрасовремен": "1.7", "поправим": "1.7", "цапк": "1.7", "быстроразвива": "1.7", "гротескн": "1.7", "поподробн": "1.7", "вожделен": "1.7", "утешительн": "1.7", "высокоприбыльн": "1.7", "закадычн": "1.7", "мускулист": "1.7", "могат": "1.7", "пристойн": "1.7", "суперсовремен": "1.7", "интересненек": "1.7", "ратн": "1.7", "сносн": "1.7", "доподлин": "1.7", "высокопрофессиональн": "1.7", "услужлив": "1.7", "источникграмотн": "1.7", "эмпирическ": "1.7", "рентабельн": "1.7", "позволительн": "1.7", "высокоразвит": "1.7", "натхнен": "1.7", "изобильн": "1.7", "богобоязнен": "1.7", "пояснительн": "1.7", "виключн": "1.7", "затейлив": "1.7", "статн": "1.7", "полнофункциональн": "1.7", "сберегательн": "1.7", "высокопроизводительн": "1.7", "проворн": "1.7", "сильнодейств": "1.7", "поскромн": "1.7", "контртеррористическ": "1.7", "лик": "1.7", "неиспользова": "1.7", "богослужебн": "1.7", "проактивн": "1.7", "плодовит": "1.7", "недюжин": "1.7", "непробива": "1.7", "сприя": "1.7", "простительн": "1.7", "положен": "1.7", "вальяжн": "1.7", "неслаб": "1.7", "урожайн": "1.7", "полноразмерн": "1.7", "прохладительн": "1.7", "поступательн": "1.7", "высокоточн": "1.7", "визначен": "1.7", "теологическ": "1.7", "неистребим": "1.7", "ретив": "1.7", "лицензирова": "1.7", "набожн": "1.7", "здоровеньк": "1.7", "фотогеничн": "1.7", "целительск": "1.7", "увеселительн": "1.7", "увесист": "1.7", "ликвидн": "1.7", "несокрушим": "1.7", "сохра": "1.7", "оскароносн": "1.7", "вумн": "1.7", "антистрессов": "1.7", "вольготн": "1.7", "релевантн": "1.7", "негнущ": "1.7", "дифференцирова": "1.7", "небанальн": "1.7", "достатъчн": "1.7", "стабилизацион": "1.7", "богоявленск": "1.7", "душещипательн": "1.7", "горячительн": "1.7", "щеняч": "1.7", "неотступн": "1.7", "антигитлеровск": "1.7", "преогромн": "1.7", "высокохудожествен": "1.7", "беспреста": "1.7", "знательн": "1.7", "гармоническ": "1.7", "жилист": "1.7", "бескрайн": "1.7", "уловим": "1.7", "шаловлив": "1.7", "хвален": "1.7", "нелишн": "1.7", "правельн": "1.7", "стопудов": "1.7", "неистощим": "1.7", "беспроблемн": "1.7", "обольстительн": "1.7", "сверхбыстр": "1.7", "непридума": "1.7", "всемерн": "1.7", "сверхтонк": "1.7", "безотлагательн": "1.7", "прагматическ": "1.7", "обогатительн": "1.7", "хватательн": "1.7", "запаслив": "1.7", "предрождественск": "1.7", "объединительн": "1.7", "позновательн": "1.7", "вещн": "1.7", "модернизацион": "1.7", "экслюзивн": "1.7", "розважальн": "1.7", "противовирусн": "1.7", "сакраментальн": "1.7", "актуальненьк": "1.7", "настощ": "1.7", "интересненьк": "1.7", "родненьк": "1.7", "некисл": "1.7", "гыг": "1.7", "добавочн": "1.7", "актуальненек": "1.7", "поприличн": "1.7", "соромн": "1.7", "лесн": "1.7", "восстановим": "1.7", "всезна": "1.7", "беспримерн": "1.7", "импозантн": "1.7", "неодноразов": "1.7", "мимимишн": "1.7", "миловидн": "1.7", "противораков": "1.7", "экзальтирова": "1.7", "цивильн": "1.7", "соразмерн": "1.7", "неувяда": "1.7", "бесхитростн": "1.7", "великодержавн": "1.7", "усидчив": "1.7", "гыгыг": "1.7", "влюбчив": "1.7", "оглашен": "1.7", "распрекрасн": "1.7", "неповин": "1.7", "тусовочн": "1.7", "обличительн": "1.7", "высокопрочн": "1.7", "экстатическ": "1.7", "деликатесн": "1.7", "певуч": "1.7", "побогат": "1.7", "молодецк": "1.7", "улюблен": "1.7", "сладострастн": "1.7", "богатеньк": "1.7", "приснопамятн": "1.7", "исполним": "1.7", "ваа": "1.7", "живоначальн": "1.7", "професиональн": "1.7", "небезынтересн": "1.7", "незамутнен": "1.7", "самокритичн": "1.7", "самоуправля": "1.7", "яншн": "1.7", "непогрешим": "1.7", "стоическ": "1.7", "человеколюбив": "1.7", "чудненьк": "1.7", "смирительн": "1.7", "преспокойн": "1.7", "антивоен": "1.7", "узкоспециализирова": "1.7", "охренен": "1.7", "понятлив": "1.7", "кейн": "1.7", "антидопингов": "1.7", "амурн": "1.7", "фартов": "1.7", "бодренек": "1.7", "неопасн": "1.7", "суперпопулярн": "1.7", "ессн": "1.7", "фул": "1.7", "сверхпрочн": "1.7", "атличн": "1.7", "естесствен": "1.7", "серъезн": "1.7", "ударопрочн": "1.7", "бронебойн": "1.7", "гигиеничн": "1.7", "хэллоуинск": "1.7", "шутовск": "1.7", "беззлобн": "1.7", "кульн": "1.7", "правомочн": "1.7", "нашенск": "1.7", "просветительн": "1.7", "папулярн": "1.7", "пральн": "1.7", "ахуительн": "1.7", "гламурненьк": "1.7", "платоническ": "1.7", "анекдотичн": "1.7", "мультифункциональн": "1.7", "свабодн": "1.7", "работн": "1.7", "всепобежда": "1.7", "беспплатн": "1.7", "супергеройск": "1.7", "зауважен": "1.7", "свежеприготовлен": "1.7", "каллиграфическ": "1.7", "кавайн": "1.7", "середн": "1.7", "незапятна": "1.7", "верноподда": "1.7", "хардкорн": "1.7", "заправск": "1.7", "высок": "1.7", "высокобюджетн": "1.7", "клэшмоб": "1.7", "ассортиментн": "1.7", "подр": "1.7", "союзническ": "1.7", "фотокор": "1.7", "высоколиквидн": "1.7", "лавов": "1.7", "одушевлен": "1.7", "долгоживущ": "1.7", "голеньк": "1.7", "высокопородн": "1.7", "сверхсовремен": "1.7", "непобежден": "1.7", "раздольн": "1.7", "културн": "1.7", "август": "1.7", "скоромн": "1.7", "всеблаг": "1.7", "безубыточн": "1.7", "патетическ": "1.7", "уи": "1.7", "моегобесплатногомультимедийн": "1.7", "релаксацион": "1.7", "неженск": "1.7", "побудительн": "1.7", "филосовск": "1.7", "богородичн": "1.7", "синергетическ": "1.7", "жествен": "1.7", "сверхпопулярн": "1.7", "мишн": "1.7", "еееее": "1.7", "комплиментарн": "1.7", "всеохватыва": "1.7", "гутн": "1.7", "конкурентноспособн": "1.7", "высокорейтингов": "1.7", "моногамн": "1.7", "непоган": "1.7", "смишн": "1.7", "сверхприбыльн": "1.7", "антиэкстремистск": "1.7", "безотходн": "1.7", "смехов": "1.7", "эстетск": "1.7", "хлебосольн": "1.7", "свойск": "1.7", "быстроходн": "1.7", "хоробр": "1.7", "обществен": "1.7", "непротиворечив": "1.7", "яхонтов": "1.7", "гладеньк": "1.7", "небезосновательн": "1.7", "износостойк": "1.7", "организован": "1.7", "пригож": "1.7", "духоподъемн": "1.7", "долготерпелив": "1.7", "всемирноизвестн": "1.7", "нерастрачен": "1.7", "великосветск": "1.7", "небьющ": "1.7", "апробирова": "1.7", "забавненьк": "1.7", "класическ": "1.7", "первосортн": "1.7", "мегапопулярн": "1.7", "прогностическ": "1.7", "итересн": "1.7", "сорвремен": "1.7", "коренаст": "1.7", "контактн": "1.7", "невиноват": "1.7", "адмиральск": "1.7", "легкоусвоя": "1.7", "рассудочн": "1.7", "зычн": "1.7", "незамерза": "1.7", "ии": "1.7", "сверхбогат": "1.7", "профориентацион": "1.7", "крепеньк": "1.7", "саморазвива": "1.7", "разнобразн": "1.7", "всепроща": "1.7", "обеспечительн": "1.7", "философическ": "1.7", "живоносн": "1.7", "субтильн": "1.7", "смотрибельн": "1.7", "менторск": "1.7", "энергонезависим": "1.7", "патрэбн": "1.7", "реформистск": "1.7", "острожн": "1.7", "давольн": "1.7", "стебловск": "1.7", "сердешн": "1.7", "благоугодн": "1.7", "топиарн": "1.7", "сверхэффективн": "1.7", "животворн": "1.7", "самоокупа": "1.7", "издат": "1.7", "съвършен": "1.7", "обоятельн": "1.7", "диетологическ": "1.7", "экстенсивн": "1.7", "нанотехнологичн": "1.7", "многоопытн": "1.7", "конгениальн": "1.7", "цесн": "1.7", "каноничн": "1.7", "мягеньк": "1.7", "супермодн": "1.7", "душеспасительн": "1.7", "обьективн": "1.7", "проффесиональн": "1.7", "веснян": "1.7", "неповрежден": "1.7", "травоньк": "1.7", "мотивировочн": "1.7", "удаленьк": "1.7", "деятельностн": "1.7", "трезвомысля": "1.7", "поетичн": "1.7", "обезательн": "1.7", "ееееее": "1.7", "сухоньк": "1.7", "всамделишн": "1.7", "легеньк": "1.7", "празничн": "1.7", "благовон": "1.7", "богодухновен": "1.7", "сейшн": "1.7", "саморегулир": "1.7", "лощен": "1.7", "мироточив": "1.7", "польз": "1.7", "резистивн": "1.7", "сверхцен": "1.7", "шал": "2.5", "доверчив": "2.5", "застенчив": "2.5", "страстн": "2.5", "гладк": "2.5", "деликатн": "2.5", "уместн": "2.5", "кротк": "2.5", "комическ": "2.5", "величав": "2.5", "лиричн": "2.5", "эротичн": "2.5", "простодушн": "2.5", "сочувствен": "2.5", "культурн": "2.5", "холен": "2.5", "духовн": "2.5", "благоуха": "2.5", "полюбовн": "2.5", "гарн": "2.5", "бож": "2.5", "мягк": "2.5", "фантастическ": "2.5", "сказочн": "2.5", "тщательн": "2.5", "горд": "2.5", "стойк": "2.5", "царск": "2.5", "необычайн": "2.5", "толков": "2.5", "бережн": "2.5", "радужн": "2.5", "аппетитн": "2.5", "величествен": "2.5", "складн": "2.5", "доходчив": "2.5", "колоритн": "2.5", "резв": "2.5", "комичн": "2.5", "геройск": "2.5", "почтительн": "2.5", "мирн": "2.5", "стильн": "2.5", "идеальн": "2.5", "обязательн": "2.5", "уверен": "2.5", "творческ": "2.5", "умн": "2.5", "достойн": "2.5", "талантлив": "2.5", "душевн": "2.5", "мудр": "2.5", "разумн": "2.5", "священ": "2.5", "симпатичн": "2.5", "красочн": "2.5", "плодотворн": "2.5", "щедр": "2.5", "изыска": "2.5", "изящн": "2.5", "заботлив": "2.5", "впечатля": "2.5", "эффектн": "2.5", "терпелив": "2.5", "праведн": "2.5", "героическ": "2.5", "отважн": "2.5", "доверительн": "2.5", "преславн": "2.5", "усердн": "2.5", "приветлив": "2.5", "добросовестн": "2.5", "виртуозн": "2.5", "ослепительн": "2.5", "знатн": "2.5", "доблестн": "2.5", "феноменальн": "2.5", "добротн": "2.5", "хорошеньк": "2.5", "выигрышн": "2.5", "прилежн": "2.5", "шутлив": "2.5", "эстетичн": "2.5", "дурач": "2.5", "добива": "2.5", "аплодирова": "2.5", "безмерн": "2.5", "беспрекословн": "2.5", "благодарствова": "2.5", "благополучч": "2.5", "благоприятствова": "2.5", "блиста": "2.5", "богоблад": "2.5", "боголепн": "2.5", "боготвор": "2.5", "будораж": "2.5", "везт": "2.5", "велич": "2.5", "венча": "2.5", "верифицирова": "2.5", "верова": "2.5", "взбодр": "2.5", "внемл": "2.5", "внима": "2.5", "возблагодар": "2.5", "возвеличива": "2.5", "возвелич": "2.5", "возвыс": "2.5", "возда": "2.5", "вознаград": "2.5", "вознагражда": "2.5", "возрожда": "2.5", "воодушев": "2.5", "воплоща": "2.5", "воскреснут": "2.5", "воспева": "2.5", "воспет": "2.5", "воспрянут": "2.5", "впечатлет": "2.5", "впечатл": "2.5", "всенепремен": "2.5", "вступа": "2.5", "выигрыва": "2.5", "выруча": "2.5", "гармонизирова": "2.5", "гармонирова": "2.5", "гогота": "2.5", "дар": "2.5", "дарува": "2.5", "дерза": "2.5", "дзякова": "2.5", "див": "2.5", "доверя": "2.5", "договарива": "2.5", "долюб": "2.5", "дорож": "2.5", "достига": "2.5", "друж": "2.5", "дякова": "2.5", "жалет": "2.5", "животвор": "2.5", "забавля": "2.5", "заважают": "2.5", "задобр": "2.5", "заигрыва": "2.5", "заинтригова": "2.5", "замечта": "2.5", "засия": "2.5", "заслужива": "2.5", "заслуж": "2.5", "заступ": "2.5", "затрепета": "2.5", "затус": "2.5", "захохота": "2.5", "зачарова": "2.5", "зачаровыва": "2.5", "здраствова": "2.5", "извиня": "2.5", "излечива": "2.5", "излюб": "2.5", "изнеж": "2.5", "изобилова": "2.5", "изумля": "2.5", "импонирова": "2.5", "искорен": "2.5", "искуп": "2.5", "исправ": "2.5", "исцеля": "2.5", "красивит": "2.5", "красова": "2.5", "кураж": "2.5", "лавстор": "2.5", "лапул": "2.5", "лелея": "2.5", "лидирова": "2.5", "лицезрет": "2.5", "лобза": "2.5", "лобыза": "2.5", "лыб": "2.5", "мамахохота": "2.5", "ман": "2.5", "мер": "2.5", "милет": "2.5", "милова": "2.5", "мир": "2.5", "млет": "2.5", "мур": "2.5", "мурлыка": "2.5", "мурлыч": "2.5", "навесел": "2.5", "надея": "2.5", "насмеш": "2.5", "насмешлив": "2.5", "насмея": "2.5", "нафантазирова": "2.5", "нахвалива": "2.5", "начистот": "2.5", "ниспосла": "2.5", "нормализова": "2.5", "обескураж": "2.5", "облагоражива": "2.5", "облагород": "2.5", "облегча": "2.5", "облюбова": "2.5", "обнадежива": "2.5", "обнадеж": "2.5", "обогаща": "2.5", "ободр": "2.5", "обожеств": "2.5", "обожествля": "2.5", "обольща": "2.5", "оборжа": "2.5", "образум": "2.5", "обхохота": "2.5", "одарива": "2.5", "одаря": "2.5", "одобр":
'фагоцит', 'falsifika(ts)iya': 'фальсификация', 'farma(ts)evt': 'фармацевт', 'farma(ts)evtika': 'фармацевтика', 'farma(ts)iya': 'фармация', 'federa(ts)iya': 'федерация', 'fermenta(ts)iya': 'ферментация', 'film-kon(s)ert': 'фильм-концерт', 'filtra(ts)iya': 'фильтрация', 'fiton(s)id': 'фитонцид', 'forma(ts)iya': 'формация', 'frak(s)ion': 'фракцион', 'frak(s)iooner': 'фракциоонер', 'frak(s)iya': 'фракция', 'fran(s)iya': 'франция', 'fran(s)uz': 'француз', 'fran(s)uzlar': 'французлар', 'fran(s)uzcha': 'французча', 'fri(ts)': 'фриц', 'funk(s)ional': 'функционал', 'funk(s)iya': 'функция', 'xemosorb(s)iya': 'хемосорбция', 'xole(ts)istit': 'холецистит', '(s)anga': 'цанга', '(s)apfa': 'цапфа', '(s)edra': 'цедра', '(s)eziy': 'цезий', '(s)eytnot': 'цейтнот', '(s)ellofan': 'целлофан', '(s)elluloid': 'целлулоид', '(s)ellyuloza': 'целлюлоза', '(s)elsiy': 'цельсий', '(s)ement': 'цемент', '(s)ementlamoq': 'цементламоқ', '(s)enz': 'ценз', '(s)enzor': 'цензор', '(s)enzura': 'цензура', '(s)ent': 'цент', '(s)entner': 'центнер', '(s)entnerli': 'центнерли', '(s)entnerchi': 'центнерчи', '(s)entralizm': 'централизм', '(s)entrizm': 'центризм', '(s)entrist': 'центрист', '(s)entrifuga': 'центрифуга', '(s)eriy': 'церий', '(s)esarka': 'цесарка', '(s)ex': 'цех', '(s)ian': 'циан', '(s)ianli': 'цианли', '(s)iviliza(ts)iya': 'цивилизация', '(s)igara': 'цигара', '(s)ikl': 'цикл', '(s)iklik': 'циклик', '(s)ikllashtirmoq': 'цикллаштирмоқ', '(s)iklli': 'циклли', '(s)iklon': 'циклон', '(s)iklotron': 'циклотрон', '(s)ilindr': 'цилиндр', '(s)ilindrik': 'цилиндрик', '(s)ilindrli': 'цилиндрли', '(s)inga': 'цинга', '(s)ink': 'цинк', '(s)inkograf': 'цинкограф', '(s)inkografiya': 'цинкография', '(s)irk': 'цирк', '(s)irkoniy': 'цирконий', '(s)irkul': 'циркуль', '(s)irkulyar': 'циркуляр', '(s)irkchi': 'циркчи', '(s)irroz': 'цирроз', '(s)isterna': 'цистерна', '(s)isternali': 'цистернали', '(s)istit': 'цистит', '(s)itata': 'цитата', '(s)itatabozlik': 'цитатабозлик', '(s)ito-': 'цито-', '(s)itodiagnostika': 'цитодиагностика', '(s)itokimyo': 'цитокимё', '(s)itoliz': 'цитолиз', '(s)itologiya': 'цитология', '(s)itrus': 'цитрус', '(s)iferblat': 'циферблат', '(s)iferblatli': 'циферблатли', '(s)okol': 'цоколь', '(s)unami': 'цунами', 'cherepi(ts)a': 'черепица', 'shvey(s)ar': 'швейцар', 'shmu(ts)titul': 'шмуцтитул', 'shni(ts)el': 'шницель', 'shpri(ts)': 'шприц', 'shtangen(s)irkul': 'штангенциркуль', 'evakua(ts)iya': 'эвакуация', 'evolyu(ts)ion': 'эволюцион', 'evolyu(ts)iya': 'эволюция', 'ego(ts)entrizm': 'эгоцентризм', 'eksguma(ts)iya': 'эксгумация', 'ekspedi(ts)ion': 'экспедицион', 'ekspedi(ts)iya': 'экспедиция', 'ekspedi(ts)iyachi': 'экспедициячи', 'ekspluata(ts)iya': 'эксплуатация', 'ekspluata(ts)iyachi': 'эксплуатациячи', 'ekspozi(ts)iya': 'экспозиция', 'ekspropria(ts)iya': 'экспроприация', 'ekstradi(ts)iya': 'экстрадиция', 'ekstrak(s)iya': 'экстракция', 'elektrifika(ts)iya': 'электрификация', 'elektrostan(s)iya': 'электростанция', 'emansipa(ts)iya': 'эмансипация', 'emigra(ts)iya': 'эмиграция', 'emo(ts)ional': 'эмоционал', 'emo(ts)ionallik': 'эмоционаллик', 'emo(ts)iya': 'эмоция', 'empiriokriti(ts)izm': 'эмпириокритицизм', 'en(s)efalit': 'энцефалит', 'en(s)efalogramma': 'энцефалограмма', 'en(s)iklopedik': 'энциклопедик', 'en(s)iklopedist': 'энциклопедист', 'en(s)iklopediya': 'энциклопедия', 'en(s)iklopediyachi': 'энциклопедиячи', 'epi(ts)entr': 'эпицентр', 'eritro(ts)itlar': 'эритроцитлар', 'erudi(ts)iya': 'эрудиция', 'eskala(ts)iya': 'эскалация', 'esmine(ts)': 'эсминец', 'essen(s)iya': 'эссенция', 'yurisdik(s)iya': 'юрисдикция', 'yurispruden(s)iya': 'юриспруденция', 'yusti(ts)iya': 'юстиция', } # These words cannot be reliably transliterated into cyrillic E_WORDS = { 'bel(e)taj': 'бельэтаж', 'bugun-(e)rta': 'бугун-эрта', 'diqqat-(e)ʼtibor': 'диққат-эътибор', 'ich-(e)t': 'ич-эт', 'karat(e)': 'каратэ', 'm(e)r': 'мэр', 'obroʻ-(e)ʼtiborli': 'обрў-эътиборли', 'omon-(e)son': 'омон-эсон', 'r(e)ket': 'рэкет', 'sut(e)mizuvchilar': 'сутэмизувчилар', 'upa-(e)lik': 'упа-элик', 'xayr-(e)hson': 'хайр-эҳсон', 'qayn(e)gachi': 'қайнэгачи', } # Not to confuse with ш SH_WORDS = { 'a(sh)ob': 'асҳоб', 'mu(sh)af': 'мусҳаф' } # Not to confuse with ё YO_WORDS = { 'general-ma(yo)r': 'генерал-майор', '(yo)g': 'йог', '(yo)ga': 'йога', '(yo)gurt': 'йогурт', '(yo)d': 'йод', '(yo)dlamoq': 'йодламоқ', '(yo)dli': 'йодли', 'ma(yo)nez': 'майонез', 'mikrorayon': 'микрорайон', 'ma(yo)r': 'майор', 'ra(yo)n': 'район', } YU_WORDS = { 'mo(yu)pa': 'мойупа', 'po(yu)stun': 'пойустун' } YA_WORDS = { 'po(ya)bzal': 'пойабзал', 'po(ya)ndoz': 'пойандоз', 'po(ya)fzal': 'пойафзал' } YE_WORDS = { 'i(ye)': 'ийе', 'konve(ye)r': 'конвейер', 'ple(ye)r': 'плейер', 'sta(ye)r': 'стайер', 'fo(ye)': 'фойе' } SOFT_SIGN_WORDS = { 'aviamodel': 'авиамодель', 'avtomagistralavtomat': 'автомагистральавтомат', 'avtomobil': 'автомобиль', 'akvarel': 'акварель', 'alkogol': 'алкоголь', 'albatros': 'альбатрос', 'albom': 'альбом', 'alpinizm': 'альпинизм', 'alpinist': 'альпинист', 'alt': 'альт', 'alternativ': 'альтернатив', 'alternativa': 'альтернатива', 'altimetr': 'альтиметр', 'altchi': 'альтчи', 'alfa': 'альфа', 'alfa-zarralar': 'альфа-зарралар', 'alma-terapiya': 'альма-терапия', 'alyans': 'альянс', 'amalgama': 'амальгама', 'ansambl': 'ансамбль', 'apelsin': 'апельсин', 'aprel': 'апрель', 'artel': 'артель', 'artikl': 'артикль', 'arergard': 'арьергард', 'asfalt': 'асфальт', 'asfaltlamoq': 'асфальтламоқ', 'asfaltli': 'асфальтли', 'atele': 'ателье', 'bazalt': 'базальт', 'balzam': 'бальзам', 'balzamlash': 'бальзамлаш', 'balneolog': 'бальнеолог', 'balneologik': 'бальнеологик', 'balneologiya': 'бальнеология', 'balneoterapiya': 'бальнеотерапия', 'balneotexnika': 'бальнеотехника', 'banderol': 'бандероль', 'barelef': 'барельеф', 'barrel': 'баррель', 'barer': 'барьер', 'batalon': 'батальон', 'belveder': 'бельведер', 'belgiyalik': 'бельгиялик', 'belting': 'бельтинг', 'beletaj': 'бельэтаж', 'bilyard': 'бильярд', 'binokl': 'бинокль', 'biofiltr': 'биофильтр', 'bolonya': 'болонья', 'bolshevizm': 'большевизм', 'bolshevik': 'большевик', 'brakonerlik': 'браконьерлик', 'broneavtomobil': 'бронеавтомобиль', 'bron': 'бронь', 'budilnik': 'будильник', 'bulvar': 'бульвар', 'buldenej': 'бульденеж', 'buldog': 'бульдог', 'buldozer': 'бульдозер', 'buldozerchi': 'бульдозерчи', 'bulon': 'бульон', 'byulleten': 'бюллетень', 'valeryanka': 'валерьянка', 'valvatsiya': 'вальвация', 'vals': 'вальс', 'vanil': 'ваниль', 'varete': 'варьете', 'vedomost': 'ведомость', 'veksel': 'вексель', 'ventil': 'вентиль', 'vermishel': 'вермишель', 'verner': 'верньер', 'verf': 'верфь', 'vestibyul': 'вестибюль', 'videofilm': 'видеофильм', 'viklyuchatel': 'виключатель', 'vinetka': 'виньетка', 'violonchel': 'виолончель', 'vklyuchatel': 'включатель', 'vodevil': 'водевиль', 'volost': 'волость', 'volt': 'вольт', 'volta': 'вольта', 'voltli': 'вольтли', 'voltmetr': 'вольтметр', 'volfram': 'вольфрам', 'vulgar': 'вульгар', 'vulgarizm': 'вульгаризм', 'vulgarlashtirmoq': 'вульгарлаштирмоқ', 'gavan': 'гавань', 'galvanizatsiya': 'гальванизация', 'galvanik': 'гальваник', 'galvanometr': 'гальванометр', 'gantel': 'гантель', 'garmon': 'гармонь', 'gastrol': 'гастроль', 'gastrol-konsert': 'гастроль-концерт', 'gelmint': 'гельминт', 'gelmintoz': 'гельминтоз', 'gelmintologiya': 'гельминтология', 'geraldika': 'геральдика', 'gilza': 'гильза', 'giposulfit': 'гипосульфит', 'golf': 'гольф', 'gorelef': 'горельеф', 'gorizontal': 'горизонталь', 'gospital': 'госпиталь', 'grifel': 'грифель', 'guash': 'гуашь', 'daltonizm': 'дальтонизм', 'dvigatel': 'двигатель', 'devalvatsiya': 'девальвация', 'dekabr': 'декабрь', 'delta': 'дельта', 'delfin': 'дельфин', 'delfinariy': 'дельфинарий', 'delfinsimonlar': 'дельфинсимонлар', 'detal': 'деталь', 'diagonal': 'диагональ', 'diafilm': 'диафильм', 'dizel': 'дизель', 'dizel-motor': 'дизель-мотор', 'dirijabl': 'дирижабль', 'drel': 'дрель', 'duel': 'дуэль', 'jenshen': 'женьшень', 'impuls': 'импульс', 'inventar': 'инвентарь', 'insult': 'инсульт', 'intervyu': 'интервью', 'interer': 'интерьер', 'italyan': 'итальян', 'italyanlar': 'итальянлар', 'italyancha': 'итальянча', 'iyul': 'июль', 'iyun': 'июнь', 'kabel': 'кабель', 'kalendar': 'календарь', 'kalka': 'калька', 'kalkalamoq': 'калькаламоқ', 'kalkulyator': 'калькулятор', 'kalkulyatsiya': 'калькуляция', 'kalsiy': 'кальций', 'kanifol': 'канифоль', 'kapelmeyster': 'капельмейстер', 'kapsyul': 'капсюль', 'karamel': 'карамель', 'kartel': 'картель', 'kartech': 'картечь', 'karusel': 'карусель', 'karer': 'карьер', 'kastryul': 'кастрюль', 'kastryulka': 'кастрюлька', 'katapulta': 'катапульта', 'kafel': 'кафель', 'kinofestival': 'кинофестиваль', 'kinofilm': 'кинофильм', 'kisel': 'кисель', 'kitel': 'китель', 'knyaz': 'князь', 'kobalt': 'кобальт', 'kokil': 'кокиль', 'kokteyl': 'коктейль', 'kompyuter': 'компьютер', 'kompyuterlashtirmoq': 'компьютерлаштирмоқ', 'konsultant': 'консультант', 'konsultativ': 'консультатив', 'konsultatsiya': 'консультация', 'kontrol': 'контроль', 'konferanse': 'конферансье', 'konslager': 'концлагерь', 'kon': 'конь', 'konki': 'коньки', 'konkichi': 'конькичи', 'konyunktiva': 'коньюнктива', 'konyunktivit': 'коньюнктивит', 'konyunktura': 'коньюнктура', 'konyak': 'коньяк', 'korol': 'король', 'kreml': 'кремль', 'krovat': 'кровать', 'kulminatsion': 'кульминацион', 'kulminatsiya': 'кульминация', 'kultivator': 'культиватор', 'kultivatsiya': 'культивация', 'kulturizm': 'культуризм', 'kurer': 'курьер', 'kyat': 'кьят', 'lager': 'лагерь', 'latun': 'латунь', 'losos': 'лосось', 'loson': 'лосьон', 'magistral': 'магистраль', 'marseleza': 'марсельеза', 'mebel': 'мебель', 'medal': 'медаль', 'medalon': 'медальон', 'melxior': 'мельхиор', 'menshevizm': 'меньшевизм', 'menshevik': 'меньшевик', 'migren': 'мигрень', 'mikroinsult': 'микроинсульт', 'mikrofilm': 'микрофильм', 'model': 'модель', 'modeler': 'модельер', 'molbert': 'мольберт', 'monastir': 'монастирь', 'monokultoura': 'монокультоура', 'motel': 'мотель', 'multi-': 'мульти-', 'multimediya': 'мультимедия', 'multimillioner': 'мультимиллионер', 'multiplikatsion': 'мультипликацион', 'multiplikator': 'мультипликатор', 'multiplikatsiya': 'мультипликация', 'neft': 'нефть', 'nikel': 'никель', 'nimpalto': 'нимпальто', 'nippel': 'ниппель', 'nol': 'ноль', 'normal': 'нормаль', 'noyabr': 'ноябрь', 'oblast': 'область', 'okkultizm': 'оккультизм', 'oktabr': 'октябрь', 'otel': 'отель', 'oftalmologiya': 'офтальмология', 'ochered': 'очередь', 'pavilon': 'павильон', 'palma': 'пальма', 'palmazor': 'пальмазор', 'palpatsiya': 'пальпация', 'palto': 'пальто', 'paltobop': 'пальтобоп', 'paltolik': 'пальтолик', 'panel': 'панель', 'parallel': 'параллель', 'parol': 'пароль', 'patrul': 'патруль', 'pedal': 'педаль', 'penalti': 'пенальти', 'pechat': 'печать', 'pechene': 'печенье', 'pech': 'печь', 'plastir': 'пластирь', 'povest': 'повесть', 'polka': 'полька', 'portfel': 'портфель', 'porshen': 'поршень', 'pochtalon': 'почтальон', 'predoxranitel': 'предохранитель', 'premera': 'премьера', 'premer-ministr': 'премьер-министр', 'press-pape': 'пресс-папье', 'press-sekretar': 'пресс-секретарь', 'pristan': 'пристань', 'profil': 'профиль', 'pulverizator': 'пульверизатор', 'pulmonologiya': 'пульмонология', 'pulpa': 'пульпа', 'pulpit': 'пульпит', 'puls': 'пульс', 'pult': 'пульт', 'pesa': 'пьеса', 'radiospektakl': 'радиоспектакль', 'rante': 'рантье', 'revalvatsiya': 'ревальвация', 'revolver': 'револьвер', 'rezba': 'резьба', 'rezbali': 'резьбали', 'relef': 'рельеф', 'rels': 'рельс', 'relsli': 'рельсли', 'relssiz': 'рельссиз', 'retush': 'ретушь', 'riyel': 'риель', 'ritsar': 'рицарь', 'rol': 'роль', 'royal': 'рояль', 'rubilnik': 'рубильник', 'rubl': 'рубль', 'rul': 'руль', 'saldo': 'сальдо', 'salto': 'сальто', 'sekretar': 'секретарь', 'selderey': 'сельдерей', 'seld': 'сельдь', 'sentabr': 'сентябрь', 'senor': 'сеньор', 'senora': 'сеньора', 'sinka': 'синька', 'sinkalamoq': 'синькаламоқ', 'siren': 'сирень', 'skalpel': 'скальпель', 'slesar': 'слесарь', 'sobol': 'соболь', 'sol': 'соль', 'spektakl': 'спектакль', 'spiral': 'спираль', 'statya': 'статья', 'stelka': 'стелька', 'sterjen': 'стержень', 'stil': 'стиль', 'sudya': 'судья', 'sudyalik': 'судьялик', 'sulfat': 'сульфат', 'sulfatlar': 'сульфатлар', 'tabel': 'табель', 'talk': 'тальк', 'tekstil': 'текстиль', 'telefilm': 'телефильм', 'tigel': 'тигель', 'tokar': 'токарь', 'tol': 'толь', 'tonnel': 'тоннель', 'tunnel': 'туннель', 'tush': 'тушь', 'tyulen': 'тюлень', 'tyul': 'тюль', 'ultimatum': 'ультиматум', 'ultra-': 'ультра-', 'ultrabinafsha': 'ультрабинафша', 'ultramikroskop': 'ультрамикроскоп', 'ultratovush': 'ультратовуш', 'ultraqisqa': 'ультрақисқа', 'umivalnik': 'умивальник', 'util': 'утиль', 'fakultativ': 'факультатив', 'fakultet': 'факультет', 'fakultetlalaro': 'факультетлаларо', 'falsifikator': 'фальсификатор', 'falsifikatsiya': 'фальсификация', 'fevral': 'февраль', 'feldmarshal': 'фельдмаршал', 'feldsher': 'фельдшер', 'feldʼeger': 'фельдъегерь', 'feleton': 'фельетон', 'feletonchi': 'фельетончи', 'festival': 'фестиваль', 'fizkultura': 'физкультура', 'fizkulturachi': 'физкультурачи', 'film': 'фильм', 'film-konsert': 'фильм-концерт', 'filmoskop': 'фильмоскоп', 'filmoteka': 'фильмотека', 'filtr': 'фильтр', 'filtratsiya': 'фильтрация', 'filtrlamoq': 'фильтрламоқ', 'filtrli': 'фильтрли', 'folga': 'фольга', 'folklor': 'фольклор', 'folklorist': 'фольклорист', 'folkloristika': 'фольклористика', 'folklorchi': 'фольклорчи', 'folklorshunos': 'фольклоршунос', 'folklorshunoslik': 'фольклоршунослик', 'fonar': 'фонарь', 'fortepyano': 'фортепьяно', 'xolodilnik': 'холодильник', 'xrustal': 'хрусталь', 'selsiy': 'цельсий', 'sirkul': 'циркуль', 'sokol': 'цоколь', 'chizel': 'чизель', 'shagren': 'шагрень', 'shampun': 'шампунь', 'sherst': 'шерсть', 'shinel': 'шинель', 'shifoner': 'шифоньер', 'shnitsel': 'шницель', 'shpatel': 'шпатель', 'shpilka': 'шпилька', 'shpindel': 'шпиндель', 'shtangensirkul': 'штангенциркуль', 'shtapel': 'штапель', 'shtempel': 'штемпель', 'emal': 'эмаль', 'emulsiya': 'эмульсия', 'endshpil': 'эндшпиль', 'eskadrilya': 'эскадрилья', 'yuan': 'юань', 'yuriskonsult': 'юрисконсульт', 'yakor': 'якорь', 'yanvar': 'январь', } CYRILLIC_TO_LATIN = { 'а': 'a', 'А': 'A', 'б': 'b', 'Б': 'B', 'в': 'v', 'В': 'V', 'г': 'g', 'Г': 'G', 'д': 'd', 'Д': 'D', 'е': 'e', 'Е': 'E', 'ё': 'yo', 'Ё': 'Yo', 'ж': 'j', 'Ж': 'J', 'з': 'z', 'З': 'Z', 'и': 'i', 'И': 'I', 'й': 'y', 'Й': 'Y', 'к': 'k', 'К': 'K', 'л': 'l', 'Л': 'L', 'м': 'm', 'М': 'M', 'н': 'n', 'Н': 'N', 'о': 'o', 'О': 'O', 'п': 'p', 'П': 'P', 'р': 'r', 'Р': 'R', 'с': 's', 'С': 'S', 'т': 't', 'Т': 'T', 'у': 'u', 'У': 'U', 'ф': 'f', 'Ф': 'F', 'х': 'x', 'Х': 'X', 'ц': 's', 'Ц': 'S', 'ч': 'ch', 'Ч': 'Ch', 'ш': 'sh', 'Ш': 'Sh', 'ъ': 'ʼ', 'Ъ': 'ʼ', 'ь': '', 'Ь': '', 'э': 'e', 'Э': 'E', 'ю': 'yu', 'Ю': 'Yu', 'я': 'ya', 'Я': 'Ya', 'ў': 'oʻ', 'Ў': 'Oʻ', 'қ': 'q', 'Қ': 'Q', 'ғ': 'gʻ', 'Ғ': 'Gʻ', 'ҳ': 'h', 'Ҳ': 'H', } CYRILLIC_VOWELS = ( 'а', 'А', 'е', 'Е', 'ё',
Markers', icon='RENDER_RESULT').tmarkers = True elif len(marker_list_camera) == len(cameras): if scene.frame_current>0 : row.operator("cameramanager.render_all_camera",text='Render All Cameras', icon='RENDER_RESULT') else: row.operator("cameramanager.render_all_camera",text='Render All', icon='RENDER_RESULT') row.operator("cameramanager.render_all_camera",text='Render Markers', icon='RENDER_RESULT').tmarkers = True else: if len(render_all_list) <2: row.label(text='Choose at least two Cameras', icon ='ERROR') elif 1 < len(render_all_list) < len(cameras) : row.operator("cameramanager.render_all_camera",text='Render Selection: {0}'.format(len(render_all_list)), icon='RENDER_RESULT') elif len(render_all_list) == len(cameras) : row.operator("cameramanager.render_all_camera",text='Render All Cameras', icon='RENDER_RESULT') elif len(cameras) > 2: if rs.switchRenderSelection == True: if len(render_all_list) <2: row.label(text='Choose at least two Cameras', icon ='ERROR') #Switch button for cameras listing for batch rendering if len(cameras) > 2: row.separator() row.prop(rs,"switchRenderSelection",text='', icon='RESTRICT_SELECT_OFF') ### ]Buttons below Cameras List row = layout.row(align=True) else: ## row = layout.row(align=True) row.alignment='CENTER' row.alert = True row.label(text=" No cameras in this scene", icon ='ERROR') row.alert = False ###Camera Manager Settings[ _____________________________________________________________________________________ else: ## Manager Options [----------- row = layout.row(align=True) box = layout.box() row = box.row(align=True) row.alert = True row.alignment='CENTER' row.label(text='Manager Options') row = box.row(align=True) row = row.box() row = row.row(align=True) row.label(text='Tools Toggles:') row.prop(rs,"cmBut_Render",text="",icon='SEQ_PREVIEW') row.prop(rs,"cmBut_AlignV",text="",icon='VIEW_PERSPECTIVE') row.prop(rs,"cmBut_AlignO",text="",icon='CUBE') row.prop(rs,"cmBut_Trackto",text="",icon='TRACKER') row.prop(rs,"cmBut_Marker",text="",icon='MARKER') row.prop(rs,"cmBut_AnimData",text="",icon='KEYTYPE_KEYFRAME_VEC') box.use_property_split = True box.use_property_decorate = False row = layout.row(align=True) row = box.row(align=True) row = row.box() row.prop(rs,'Manager_ShowSelect_Color',text='Selection Highlight') ## ]Manager Options ## New Camera Lens Settings [----------- row = layout.row(align=True) box = layout.box() row = box.row(align=True) row.alert = True row.alignment='CENTER' row.label(text='New Camera Lens Settings') row = box.row(align=True) row = row.box() row.label(text='Camera Perspective',icon='VIEW_PERSPECTIVE') row.prop(rs,"NewCam_lensPersp") row = row.row(align=True) row.prop(rs,"NewCam_ClipStart",text="Clip Start") row.prop(rs,"NewCam_ClipEnd",text="End") row = box.row(align=True) row = row.box() row.label(text='Camera Orthogaphic',icon='VIEW_ORTHO') row.prop(rs,"NewCam_lensOrtho",text="Scale") row = row.row(align=True) row.prop(rs,"NewCam_ClipStartOrtho",text="Clip Start") row.prop(rs,"NewCam_ClipEndOrtho",text="End") ## ]New Camera Lens Settings # CAMERA QUICK SETTINGS ###################################################################################### class CAMMANAGER_PT_QuickSettings(Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_context = "objectmode" bl_category = "Render" bl_label = "Settings :" #bl_options = {'DEFAULT_CLOSED'} bl_idname = "CAMMANAGER_PT_QuickSettings" bl_parent_id = "CAMMANAGER_PT_Cammanager" _selectedCam = [] @classmethod def poll(cls, context): return (context.active_object is not None and context.active_object==bpy.context.space_data.camera) and bpy.context.scene.RBTab_Settings.cmOptions == False def draw_header_preset(self, context): scene = context.scene cameras = sorted([o for o in scene.objects if o.type == 'CAMERA'],key=lambda o: o.name) ob = context.active_object selectedObj = bpy.context.selected_objects selectedCam = sorted([o for o in selectedObj if o.type == 'CAMERA'],key=lambda o: o.name) noCustomDimCam = sorted([o for o in cameras if o.RBTab_obj_Settings.Custom_CamRes_prop == False],key=lambda o: o.name) layout = self.layout row = layout.row(align=True) if len(cameras) > 0 and (ob in cameras): if len(selectedCam) == 1 : if ob in selectedCam: chosen_camera = context.active_object row.label(text="{0}".format(chosen_camera .name)) elif len(selectedCam) > 1: if ob in selectedCam: row.alert = True chosen_camera = context.active_object row.label(text="[..{0}..]".format(chosen_camera .name)) else: row.active = False chosen_camera = context.active_object row.label(text="{0}".format(chosen_camera .name)) else: chosen_camera = context.active_object row.label(text="{0}".format(chosen_camera .name)) def draw(self, context): scene = context.scene rs = scene.RBTab_Settings ob = context.active_object cs = ob.RBTab_obj_Settings render = scene.render cameras = sorted([o for o in scene.objects if o.type == 'CAMERA'],key=lambda o: o.name) view = context.space_data chosen_camera = bpy.context.object.data cam = chosen_camera selectedObj = bpy.context.selected_objects selectedCam = sorted([o for o in selectedObj if o.type == 'CAMERA'],key=lambda o: o.name) noCustomDimCam = sorted([o for o in cameras if o.RBTab_obj_Settings.Custom_CamRes_prop == False],key=lambda o: o.name) selectedCustomDimCam = list(set(selectedCam) - set(noCustomDimCam)) self._selectedCam = selectedCam layout = self.layout if len(cameras) > 0 and (ob in cameras): row = layout.row(align=True) # if len(selectedCam) > 1 and ob not in selectedCam: # row.enabled = False # layout.emboss = 'NONE'################ row.prop(cam, "type", text="") row = layout.row(align=True) #if len(selectedCam) > 1 and ob not in selectedCam: row.enabled = False ################ if cam.type == 'PERSP': row.prop(cam, "lens", text="Focal") elif cam.type == 'ORTHO': row.prop(cam, "ortho_scale", text="Scale") elif cam.type == 'PANO': engine = context.engine if engine == 'CYCLES': ccam = cam.cycles row = box.row() row.prop(ccam, "panorama_type", text="") row = box.row() if ccam.panorama_type == 'FISHEYE_EQUIDISTANT': row.prop(ccam, "fisheye_fov", text="FOV") elif ccam.panorama_type == 'FISHEYE_EQUISOLID': row.prop(ccam, "fisheye_lens", text="Lens") row.prop(ccam, "fisheye_fov", text="FOV") elif ccam.panorama_type == 'EQUIRECTANGULAR': row = box.row() row.label(text="Latitude:") row = box.row() row.prop(ccam, "latitude_min", text="Min") row.prop(ccam, "latitude_max", text="Max") row = box.row() row.label(text="Longitude:") row = box.row() row.prop(ccam, "longitude_min", text="Min") row.prop(ccam, "longitude_max", text="Max") elif engine in {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'}: if cam.lens_unit == 'MILLIMETERS': row.prop(cam, "lens") elif cam.lens_unit == 'FOV': row.prop(cam, "angle") row.prop(cam, "lens_unit") row = layout.row(align=True) #if len(selectedCam) > 1 and ob not in selectedCam: row.enabled = False ################ row.prop(cam, "shift_x", text="Shift H") row.prop(cam, "shift_y", text="V") row = layout.row(align=True) #if len(selectedCam) > 1 and ob not in selectedCam: row.enabled = False ################ row.prop(cam, "clip_start", text="Clip Start") row.prop(cam, "clip_end", text="End") layout.separator() row = layout.row(align=True) #if len(selectedCam) > 1 and ob not in selectedCam: row.enabled = False ################ if cs.Custom_CamRes_prop == False: row.operator('cameramanager.custom_resolution',text="Save Custom Resolution",icon='FILE_TICK').crrefresh = False elif cs.Custom_CamRes_prop == True and (cs.Custom_CamHRes_prop == render.resolution_x) and (cs.Custom_CamVRes_prop == render.resolution_y): row.operator('cameramanager.custom_resolution',text="{0} x {1}".format(cs.Custom_CamHRes_prop,cs.Custom_CamVRes_prop), icon='LOCKED') row.operator('cameramanager.custom_resolution',text="", icon='PANEL_CLOSE',emboss=False).crdel = True elif cs.Custom_CamRes_prop == True and (cs.Custom_CamHRes_prop != render.resolution_x) or (cs.Custom_CamVRes_prop != render.resolution_y): row.operator('cameramanager.custom_resolution',text="{0} x {1}".format(cs.Custom_CamHRes_prop,cs.Custom_CamVRes_prop), icon='LOCKED').crrefresh = True row.operator('cameramanager.custom_resolution',text="", icon='PANEL_CLOSE',emboss=False).crdel = True # CAMERA MANAGER FOOTER INFOS ###################################################################################### class CAMMANAGER_PT_InfosCamActiv(Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_context = "objectmode" bl_category = "Render" bl_label = "Camera Infos" bl_idname = "CAMMANAGER_PT_InfosCamActiv" bl_options = {'HIDE_HEADER'} bl_parent_id = "CAMMANAGER_PT_Cammanager" @classmethod def poll(cls, context): return (context.active_object is not None and context.active_object==bpy.context.space_data.camera and bpy.context.scene.RBTab_Settings.cmOptions == False) def draw(self, context): scene = context.scene ob = context.active_object cs = ob.RBTab_obj_Settings marker_list = context.scene.timeline_markers chosen_camera = context.active_object render = context.scene.render cameras = sorted([o for o in scene.objects if o.type == 'CAMERA'],key=lambda o: o.name) layout = self.layout split = layout.split() layout.use_property_split = True layout.use_property_decorate = False row = layout.row(align=True) row.scale_y = 0.7 if (context.active_object is not None): if len(cameras) > 0 and (ob in cameras): _customDim = "" _trackTo = "" _markerName = "" _markerFrame = "" _infos = "" if cs.Custom_CamRes_prop == True: _customDim = "{0}x{1} ".format(cs.Custom_CamHRes_prop,cs.Custom_CamVRes_prop) if len(chosen_camera.constraints) > 0 and chosen_camera.constraints[0].target is not None: _trackTo = " [{0}] ".format(chosen_camera.constraints[0].target.name) for marker in marker_list: if marker.camera == chosen_camera and scene.frame_current != 0: _markerName = " <{0}>".format(marker.camera.name) _markerFrame = "({0})".format(marker.frame) _infos = _customDim + _trackTo + _markerName + _markerFrame if len(chosen_camera.constraints) > 0 and chosen_camera.constraints[0].target is None: _infos ="No Target" if _infos != "": if _infos == "No Target": row.alert = True row.label(text = "Track To Error : " + _infos, icon ='ERROR') else: row.label(text = _infos, icon ='INFO') # RENDER PRESET ###################################################################################### class RENDER_PT_presets(PresetPanel, Panel): bl_label = "Render Presets" preset_subdir = "render" preset_operator = "script.execute_preset" preset_add_operator = "render.preset_add" # RENDER DIMENSIONS SUBPANEL ###################################################################################### class MYBIGBUTTONTAB_PT_RenderDimensions(Panel): bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_category = "Render" bl_label = "Dimensions" bl_options = {'DEFAULT_CLOSED'} bl_idname = "MYBIGBUTTON_PT_RenderDimensions" bl_parent_id = "MYBIGBUTTONTAB_PT_MyBigButton" @classmethod def poll(cls, context): return bpy.context.scene.RBTab_Settings.mbbOptions == False #return context.mode == 'OBJECT' def draw_header_preset(self, _context): RENDER_PT_presets.draw_panel_header(self.layout) def draw(self, context): scene = context.scene rd = scene.render rs = scene.RBTab_Settings layout = self.layout row = layout.row(align=True) row.prop(scene.render, 'resolution_x', text="H") row.operator("render.toggle_orientation", text="", icon='ARROW_LEFTRIGHT') row.prop(scene.render, 'resolution_y', text="V") if (rd.resolution_x != rs.Default_HRes_prop) or (rd.resolution_y != rs.Default_VRes_prop): row.operator("render.store_as_defaultres", text="", icon='FILE_TICK',emboss=False) layout.prop(context.scene.render, "resolution_percentage", text="") row = layout.row(align=True) area = next(area for area in bpy.context.screen.areas if area.type == 'VIEW_3D') if area.spaces[0].region_3d.view_perspective == 'CAMERA': row.active = True row.enabled = True row.prop(rd, "use_border", text="Render Region", icon='SHADING_BBOX') if rd.use_border == True: row.prop(rd, "use_crop_to_border", text="Crop Region", icon='IMAGE_PLANE') else: row.active = False row.enabled = False row.prop(rd, "use_border", text="Render Region", icon='SHADING_BBOX') if rd.use_border == True: row.prop(rd, "use_crop_to_border", text="Crop Region", icon='IMAGE_PLANE') # visual alarm ###################################################################################### class MYBIGBUTTONTAB_PT_VisualAlarm(Panel): bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_category = "Render" bl_label = "ALARME - ESC to Abort" bl_options = {'HIDE_HEADER'} bl_idname = "MYBIGBUTTONTAB_PT_VisualAlarm" @classmethod def poll(cls, context): return bpy.context.scene.RBTab_Settings.alarmInProgress == True def draw(self, context):
<gh_stars>10-100 import pytest import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import scarlet class TestProjections(object): """Test project_image Because the behavior of projections is dependent on whether the input image and the output image have an even or odd number of pixels, we have tests for all four different cases (odd-odd, even-even, odd-even, even-odd). """ def test_odd2odd(self): project_image = scarlet.interpolation.project_image img = np.arange(35).reshape(5, 7) # samller to bigger shape = (11, 9) result = project_image(img, shape) truth = np.zeros(shape) truth[3:-3, 1:-1] = img assert_array_equal(result, truth) # bigger to smaller shape = (3, 3) result = project_image(img, shape) truth = img[1:-1, 2:-2] assert_array_equal(result, truth) # lower left smaller to bigger shape = (11, 9) result = project_image(img, shape, (-6, -6)) truth = np.zeros(shape) truth[:4, :5] = img[-4:, -5:] assert_array_equal(result, truth) # lower left bigger to smaller shape = (3, 3) result = project_image(img, shape, (-4, -6)) truth = np.zeros(shape) truth[:2, :2] = img[-2:, -2:] assert_array_equal(result, truth) # upper right smaller to bigger shape = (11, 9) result = project_image(img, shape, (4, 0)) truth = np.zeros(shape) truth[-2:, -5:] = img[:2, :5] assert_array_equal(result, truth) # upper right bigger to smaller shape = (3, 3) result = project_image(img, shape, (0, 1)) truth = np.zeros(shape) truth[-2:, -1:] = img[:2, :1] assert_array_equal(result, truth) def test_even2even(self): project_image = scarlet.interpolation.project_image img = np.arange(48).reshape(8, 6) # samller to bigger shape = (12, 8) result = project_image(img, shape) truth = np.zeros(shape) truth[2:-2, 1:-1] = img assert_array_equal(result, truth) # bigger to smaller shape = (6, 4) result = project_image(img, shape) truth = img[1:-1, 1:-1] assert_array_equal(result, truth) # lower left smaller to bigger shape = (14, 18) result = project_image(img, shape, (-10, -11)) truth = np.zeros(shape) truth[:5, :4] = img[-5:, -4:] assert_array_equal(result, truth) # lower left bigger to smaller shape = (4, 4) result = project_image(img, shape, (-1, -1)) truth = np.zeros(shape) truth[-3:, -3:] = img[:3, :3] assert_array_equal(result, truth) # upper right smaller to bigger shape = (12, 10) result = project_image(img, shape, (3, 1)) truth = np.zeros(shape) truth[-3:, -4:] = img[:3, :4] assert_array_equal(result, truth) # upper right bigger to smaller shape = (4, 4) result = project_image(img, shape, (0, -1)) truth = np.zeros(shape) truth[-2:, -3:] = img[:2, :3] assert_array_equal(result, truth) def test_odd2even(self): project_image = scarlet.interpolation.project_image img = np.arange(35).reshape(5, 7) # samller to bigger shape = (10, 8) result = project_image(img, shape) truth = np.zeros(shape) truth[3:8, 1:] = img assert_array_equal(result, truth) # bigger to smaller shape = (4, 4) result = project_image(img, shape) truth = img[:4, 1:-2] assert_array_equal(result, truth) # lower left smaller to bigger shape = (14, 18) result = project_image(img, shape, (-9, -11)) truth = np.zeros(shape) truth[:3, :5] = img[-3:, -5:] assert_array_equal(result, truth) # lower left bigger to smaller shape = (4, 4) result = project_image(img, shape, (-4, -5)) truth = np.zeros(shape) truth[:3, :4] = img[-3:, -4:] assert_array_equal(result, truth) # upper right smaller to bigger shape = (12, 10) result = project_image(img, shape, (3, 1)) truth = np.zeros(shape) truth[-3:, -4:] = img[:3, :4] # upper right bigger to smaller shape = (4, 4) result = project_image(img, shape, (1, 0)) truth = np.zeros(shape) truth[-1:, -2:] = img[:1, :2] assert_array_equal(result, truth) def test_even2odd(self): project_image = scarlet.interpolation.project_image img = np.arange(48).reshape(8, 6) # samller to bigger shape = (11, 9) result = project_image(img, shape) truth = np.zeros(shape) truth[1:-2, 1:-2] = img assert_array_equal(result, truth) # bigger to smaller shape = (3, 3) result = project_image(img, shape) truth = img[3:-2, 2:-1] assert_array_equal(result, truth) # lower left smaller to bigger shape = (11, 9) result = project_image(img, shape, (-9, -5)) truth = np.zeros(shape) truth[:4, :5] = img[-4:, -5:] assert_array_equal(result, truth) # lower left bigger to smaller shape = (3, 3) result = project_image(img, shape, (-7, -5)) truth = np.zeros(shape) truth[:2, :2] = img[-2:, -2:] assert_array_equal(result, truth) # upper right smaller to bigger shape = (11, 9) result = project_image(img, shape, (4, 0)) truth = np.zeros(shape) truth[-2:, -5:] = img[:2, :5] assert_array_equal(result, truth) # upper right bigger to smaller shape = (3, 3) result = project_image(img, shape, (0, 1)) truth = np.zeros(shape) truth[-2:, -1:] = img[:2, :1] assert_array_equal(result, truth) def test_zoom(self): # Test that zomming out and in keeps a consistent center kernel = np.arange(4).reshape(2, 2) + 1 p3 = scarlet.interpolation.project_image(kernel, (3, 3)) p6 = scarlet.interpolation.project_image(p3, (6, 6)) p5 = scarlet.interpolation.project_image(p6, (5, 5)) p2 = scarlet.interpolation.project_image(p3, (2, 2)) assert_array_equal(p2, kernel) truth = [[1.0, 2.0, 0.0], [3.0, 4.0, 0.0], [0.0, 0.0, 0.0]] assert_array_equal(p3, truth) truth = [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 2.0, 0.0, 0.0], [0.0, 0.0, 3.0, 4.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] assert_array_equal(p6, truth) truth = [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 2.0, 0.0, 0.0], [0.0, 3.0, 4.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ] assert_array_equal(p5, truth) def interpolate_comparison(func, zero_truth, positive_truth, **kwargs): # zero shift result = func(0, **kwargs) truth = zero_truth assert_almost_equal(result[0], truth[0]) assert_array_equal(result[1], truth[1]) # positive shift result = func(0.103, **kwargs) truth = positive_truth assert_almost_equal(result[0], truth[0]) assert_array_equal(result[1], truth[1]) # negative shift result = func(-0.103, **kwargs) truth = (truth[0][::-1], -truth[1][::-1]) assert_almost_equal(result[0], truth[0]) assert_array_equal(result[1], truth[1]) with pytest.raises(ValueError): scarlet.interpolation.lanczos(1.1) with pytest.raises(ValueError): scarlet.interpolation.lanczos(-1.1) class TestConvolutions: """Test FFT convolutions and interpolation algorithms """ def test_bilinear(self): zero_truth = (np.array([1, 0]), np.array([0, 1])) positive_truth = (np.array([1 - 0.103, 0.103]), np.array([0, 1])) interpolate_comparison( scarlet.interpolation.bilinear, zero_truth, positive_truth ) def test_cubic_spline(self): zero_truth = (np.array([0.0, 1.0, 0.0, 0.0]), np.array([-1, 0, 1, 2])) positive_truth = ( np.array([-0.08287473, 0.97987473, 0.11251627, -0.00951627]), np.array([-1, 0, 1, 2]), ) interpolate_comparison( scarlet.interpolation.cubic_spline, zero_truth, positive_truth ) def test_catmull_rom(self): # Catmull Rom should be the same as the cubic spline # with a=0.5 and b=0 zero_truth = scarlet.interpolation.cubic_spline(0, a=0.5) positive_truth = scarlet.interpolation.cubic_spline(0.103, a=0.5) interpolate_comparison( scarlet.interpolation.catmull_rom, zero_truth, positive_truth ) def test_mitchel_netravali(self): # Mitchel Netravali should be the same as the cubic spline # with a=1/3 and b=1/3 zero_truth = scarlet.interpolation.cubic_spline(0, a=1 / 3, b=1 / 3) positive_truth = scarlet.interpolation.cubic_spline(0.103, a=1 / 3, b=1 / 3) interpolate_comparison( scarlet.interpolation.mitchel_netravali, zero_truth, positive_truth ) def test_lanczos(self): # test Lanczos 3 zero_truth = (np.array([0, 0, 1, 0, 0, 0]), np.arange(6) - 2) positive_truth = ( np.array( [ 0.01763955, -0.07267534, 0.98073579, 0.09695747, -0.0245699, 0.00123974, ] ), np.array([-2, -1, 0, 1, 2, 3]), ) interpolate_comparison( scarlet.interpolation.lanczos, zero_truth, positive_truth ) # test Lanczos 5 _truth = np.zeros((10,)) _truth[4] = 1 zero_truth = (_truth, np.arange(10) - 4) positive_truth = ( np.array( [ 5.11187895e-03, -1.55432491e-02, 3.52955166e-02, -8.45895745e-02, 9.81954247e-01, 1.06954413e-01, -4.15882547e-02, 1.85994926e-02, -6.77652513e-03, 4.34415682e-04, ] ), np.array([-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]), ) interpolate_comparison( scarlet.interpolation.lanczos, zero_truth, positive_truth, a=5 ) def test_separable(self): result = scarlet.interpolation.get_separable_kernel(0.103, 0.42) truth = [ [ 0.000506097, -0.002566513, 0.012535221, 0.008810656, -0.002073032, 0.000332194, ], [ -0.002085129, 0.010574090, -0.051645379, -0.036300092, 0.008540937, -0.001368644, ], [ 0.028138304, -0.142694735, 0.696941621, 0.489860766, -0.115257837, 0.018469518, ], [ 0.002781808, -0.014107082, 0.068901018, 0.048428598, -0.011394616, 0.001825933, ], [ -0.000704935, 0.003574863, -0.017460144, -0.012272247, 0.002887499, -0.000462708, ], [ 0.000035569, -0.000180379, 0.000880996, 0.000619227, -0.000145696, 0.000023347, ], ] assert_almost_equal(result[0], truth) assert_array_equal(result[1], [-2, -1, 0, 1, 2, 3]) assert_array_equal(result[2], [-2, -1, 0, 1, 2, 3]) result = scarlet.interpolation.get_separable_kernel( 0.103, -0.42, kernel=scarlet.interpolation.bilinear ) truth = [[0.376740000, 0.520260000], [0.043260000, 0.059740000]] assert_almost_equal(result[0], truth) assert_array_equal(result[1], [0, 1]) assert_array_equal(result[2], [-1, 0]) result = scarlet.interpolation.get_separable_kernel(0.103, 0.42, a=5) truth = [ [ 0.0000458, -0.0001796, 0.0004278, -0.0009684, 0.0037091, 0.0026576, -0.0008415, 0.0003764, -0.0001524, 0.0000312, ], [ -0.0001391, 0.0005461, -0.0013007, 0.0029445, -0.0112779, -0.0080806, 0.0025588, -0.0011444, 0.0004633, -0.0000948, ], [ 0.0003160, -0.0012401, 0.0029536, -0.0066863, 0.0256097, 0.0183494, -0.0058105, 0.0025986, -0.0010520, 0.0002154, ], [ -0.0007572, 0.0029722, -0.0070786, 0.0160245, -0.0613765, -0.0439765, 0.0139254, -0.0062278, 0.0025211, -0.0005161, ], [ 0.0087903, -0.0345021, 0.0821710, -0.1860199, 0.7124863, 0.5104987, -0.1616529, 0.0722953, -0.0292664, 0.0059916, ], [ 0.0009574, -0.0037580, 0.0089501, -0.0202613, 0.0776040, 0.0556035, -0.0176072, 0.0078744, -0.0031877, 0.0006526, ], [ -0.0003723, 0.0014613, -0.0034802, 0.0078784, -0.0301756, -0.0216209, 0.0068464, -0.0030619, 0.0012395, -0.0002538, ], [ 0.0001665, -0.0006535, 0.0015564, -0.0035235, 0.0134954, 0.0096695, -0.0030619, 0.0013694, -0.0005543, 0.0001135, ], [ -0.0000607, 0.0002381, -0.0005671, 0.0012837, -0.0049169, -0.0035230, 0.0011156, -0.0004989, 0.0002020, -0.0000413, ], [ 0.0000039, -0.0000153, 0.0000364, -0.0000823, 0.0003152, 0.0002258, -0.0000715, 0.0000320, -0.0000129, 0.0000027,
- mckin/mbkin)))/ (1216215*mbkin) + (64*mckin**2*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(405405*mbkin**2) - (64*mckin**3*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (110565*mbkin**3) + (32*mckin**4*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(22113*mbkin**4) - (32*mckin**5*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (12285*mbkin**5) + (128*mckin**6*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(36855*mbkin**6) - (128*mckin**7*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (36855*mbkin**7) + (32*mckin**8*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(12285*mbkin**8) - (32*mckin**9*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (22113*mbkin**9) + (64*mckin**10*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(110565*mbkin**10) - (64*mckin**11*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (405405*mbkin**11) + (32*mckin**12*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/(1216215*mbkin**12) - (32*mckin**13*(-72701 + 99099*np.log(2) + 99099*np.log(1 - mckin/mbkin)))/ (15810795*mbkin**13) + (-1182523 + 1552320*np.log(2) + 1552320*np.log(1 - mckin/mbkin))/7203735 - (4*mckin*(-1182523 + 1552320*np.log(2) + 1552320*np.log(1 - mckin/mbkin)))/(2401245*mbkin) + (2*mckin**2*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(218295*mbkin**2) - (4*mckin**3*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(130977*mbkin**3) + (mckin**4*(-1182523 + 1552320*np.log(2) + 1552320*np.log(1 - mckin/mbkin)))/(14553*mbkin**4) - (8*mckin**5*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(72765*mbkin**5) + (4*mckin**6*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(31185*mbkin**6) - (8*mckin**7*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(72765*mbkin**7) + (mckin**8*(-1182523 + 1552320*np.log(2) + 1552320*np.log(1 - mckin/mbkin)))/(14553*mbkin**8) - (4*mckin**9*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(130977*mbkin**9) + (2*mckin**10*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(218295*mbkin**10) - (4*mckin**11*(-1182523 + 1552320*np.log(2) + 1552320* np.log(1 - mckin/mbkin)))/(2401245*mbkin**11) + (mckin**12*(-1182523 + 1552320*np.log(2) + 1552320*np.log(1 - mckin/mbkin)))/(7203735*mbkin**12) + (8*(-20507983 + 28522494*np.log(2) + 28522494*np.log(1 - mckin/mbkin)))/ 1217431215 - (16*mckin*(-20507983 + 28522494*np.log(2) + 28522494*np.log(1 - mckin/mbkin)))/(173918745*mbkin) + (8*mckin**2*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(13378365*mbkin**2) - (32*mckin**3*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(13378365*mbkin**3) + (8*mckin**4*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(1216215*mbkin**4) - (16*mckin**5*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(1216215*mbkin**5) + (8*mckin**6*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(405405*mbkin**6) - (64*mckin**7*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(2837835*mbkin**7) + (8*mckin**8*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(405405*mbkin**8) - (16*mckin**9*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(1216215*mbkin**9) + (8*mckin**10*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(1216215*mbkin**10) - (32*mckin**11*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(13378365*mbkin**11) + (8*mckin**12*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(13378365*mbkin**12) - (16*mckin**13*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(173918745*mbkin**13) + (8*mckin**14*(-20507983 + 28522494*np.log(2) + 28522494* np.log(1 - mckin/mbkin)))/(1217431215*mbkin**14) + (-33813661 + 47893560*np.log(2) + 47893560*np.log(1 - mckin/mbkin))/ 289864575 - (16*mckin*(-33813661 + 47893560*np.log(2) + 47893560*np.log(1 - mckin/mbkin)))/(289864575*mbkin) + (8*mckin**2*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(19324305*mbkin**2) - (16*mckin**3*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(8281845*mbkin**3) + (4*mckin**4*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(637065*mbkin**4) - (16*mckin**5*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(1061775*mbkin**5) + (8*mckin**6*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(289575*mbkin**6) - (16*mckin**7*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(405405*mbkin**7) + (2*mckin**8*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(45045*mbkin**8) - (16*mckin**9*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(405405*mbkin**9) + (8*mckin**10*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(289575*mbkin**10) - (16*mckin**11*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(1061775*mbkin**11) + (4*mckin**12*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(637065*mbkin**12) - (16*mckin**13*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(8281845*mbkin**13) + (8*mckin**14*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(19324305*mbkin**14) - (16*mckin**15*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(289864575*mbkin**15) + (mckin**16*(-33813661 + 47893560*np.log(2) + 47893560* np.log(1 - mckin/mbkin)))/(289864575*mbkin**16) + (-253404061 + 356516160*np.log(2) + 356516160*np.log(1 - mckin/mbkin))/ 2029052025 - (mckin*(-253404061 + 356516160*np.log(2) + 356516160*np.log(1 - mckin/mbkin)))/(135270135*mbkin) + (mckin**2*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(19324305*mbkin**2) - (mckin**3*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(4459455*mbkin**3) + (mckin**4*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(1486485*mbkin**4) - (mckin**5*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(675675*mbkin**5) + (mckin**6*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(405405*mbkin**6) - (mckin**7*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(315315*mbkin**7) + (mckin**8*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(315315*mbkin**8) - (mckin**9*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(405405*mbkin**9) + (mckin**10*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(675675*mbkin**10) - (mckin**11*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(1486485*mbkin**11) + (mckin**12*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(4459455*mbkin**12) - (mckin**13*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(19324305*mbkin**13) + (mckin**14*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(135270135*mbkin**14) - (mckin**15*(-253404061 + 356516160*np.log(2) + 356516160* np.log(1 - mckin/mbkin)))/(2029052025*mbkin**15) + (-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin))/335083448700 - (mckin*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(19710791100*mbkin) + (2*mckin**2*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(4927697775*mbkin**2) - (2*mckin**3*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(985539555*mbkin**3) + (mckin**4*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(140791365*mbkin**4) - (mckin**5*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(54150525*mbkin**5) + (2*mckin**6*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(54150525*mbkin**6) - (2*mckin**7*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(34459425*mbkin**7) + (mckin**8*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(13783770*mbkin**8) - (mckin**9*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(13783770*mbkin**9) + (2*mckin**10*(-36724834687 + 52219630320*np.log(2) + 52219630320*np.log(1 - mckin/mbkin)))/(34459425*mbkin**10) - (2*mckin**11*(-36724834687 + 52219630320*np.log(2) + 52219630320*np.log(1 - mckin/mbkin)))/(54150525*mbkin**11) + (mckin**12*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(54150525*mbkin**12) - (mckin**13*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(140791365*mbkin**13) + (2*mckin**14*(-36724834687 + 52219630320*np.log(2) + 52219630320*np.log(1 - mckin/mbkin)))/(985539555*mbkin**14) - (2*mckin**15*(-36724834687 + 52219630320*np.log(2) + 52219630320*np.log(1 - mckin/mbkin)))/(4927697775*mbkin**15) + (mckin**16*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(19710791100*mbkin**16) - (mckin**17*(-36724834687 + 52219630320*np.log(2) + 52219630320* np.log(1 - mckin/mbkin)))/(335083448700*mbkin**17) + (-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin))/4691168281800 - (mckin*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(260620460100*mbkin) + (mckin**2*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(30661230600*mbkin**2) - (2*mckin**3*(-485272020137 + 691512341520*np.log(2) + 691512341520*np.log(1 - mckin/mbkin)))/(11497961475*mbkin**3) + (mckin**4*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(1533061530*mbkin**4) - (mckin**5*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(547521975*mbkin**5) + (mckin**6*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(252702450*mbkin**6) - (2*mckin**7*(-485272020137 + 691512341520*np.log(2) + 691512341520*np.log(1 - mckin/mbkin)))/(294819525*mbkin**7) + (mckin**8*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(107207100*mbkin**8) - (mckin**9*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(96486390*mbkin**9) + (mckin**10*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(107207100*mbkin**10) - (2*mckin**11*(-485272020137 + 691512341520*np.log(2) + 691512341520*np.log(1 - mckin/mbkin)))/(294819525*mbkin**11) + (mckin**12*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(252702450*mbkin**12) - (mckin**13*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(547521975*mbkin**13) + (mckin**14*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(1533061530*mbkin**14) - (2*mckin**15*(-485272020137 + 691512341520*np.log(2) + 691512341520*np.log(1 - mckin/mbkin)))/(11497961475*mbkin**15) + (mckin**16*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(30661230600*mbkin**16) - (mckin**17*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(260620460100*mbkin**17) + (mckin**18*(-485272020137 + 691512341520*np.log(2) + 691512341520* np.log(1 - mckin/mbkin)))/(4691168281800*mbkin**18) + (-4916068298621 + 7016274641376*np.log(2) + 7016274641376* np.log(1 - mckin/mbkin))/52784781809760 - (mckin*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376* np.log(1 - mckin/mbkin)))/(2639239090488*mbkin) + (mckin**2*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(277814641104*mbkin**2) - (mckin**3*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(46302440184*mbkin**3) + (mckin**4*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(10894691808*mbkin**4) - (mckin**5*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(3404591190*mbkin**5) + (mckin**6*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(1361836476*mbkin**6) - (mckin**7*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(680918238*mbkin**7) + (mckin**8*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(419026608*mbkin**8) - (mckin**9*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(314269956*mbkin**9) + (mckin**10*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(285699960*mbkin**10) - (mckin**11*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(314269956*mbkin**11) + (mckin**12*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(419026608*mbkin**12) - (mckin**13*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(680918238*mbkin**13) + (mckin**14*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(1361836476*mbkin**14) - (mckin**15*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(3404591190*mbkin**15) + (mckin**16*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(10894691808*mbkin**16) - (mckin**17*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(46302440184*mbkin**17) + (mckin**18*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(277814641104*mbkin**18) - (mckin**19*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(2639239090488*mbkin**19) + (mckin**20*(-4916068298621 + 7016274641376*np.log(2) + 7016274641376*np.log(1 - mckin/mbkin)))/(52784781809760*mbkin**20) + (-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160* np.log(1 - mckin/mbkin))/10161070498378800 - (mckin*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(534793184125200* mbkin) + (mckin**2*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(59421464902800* mbkin**2) - (mckin**3*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(10486140865200* mbkin**3) + (mckin**4*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(2621535216300* mbkin**4) - (mckin**5*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(873845072100*mbkin**5) + (mckin**6*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(374505030900*mbkin**6) - (mckin**7*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(201656555100*mbkin**7) + (mckin**8*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(134437703400*mbkin**8) - (mckin**9*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(109994484600*mbkin**9) + (mckin**10*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(109994484600* mbkin**10) - (mckin**11*(-995781239706241 + 1420555140164160* np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/ (134437703400*mbkin**11) + (mckin**12*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(201656555100*mbkin**12) - (mckin**13*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(374505030900* mbkin**13) + (mckin**14*(-995781239706241 + 1420555140164160* np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/ (873845072100*mbkin**14) - (mckin**15*(-995781239706241 + 1420555140164160*np.log(2) + 1420555140164160*np.log(1 - mckin/mbkin)))/(2621535216300*mbkin**15)
from abc import ABC, abstractmethod from enum import Enum from functools import partial # from math import isinf from typing import Union, Optional, Any from typing import Callable, Tuple, Dict, List, Set, Type # noqa: F401 from ..builtin_values import Bool, ops_symbols from ..abstract_value import AbstractValue from ...abstract_domain import AbstractDomain from ...errors import TypeCheckLogger from .objects_ids import new_id from ...miscelaneous import Pos __all__ = ['PythonValue', 'PT', 'AbstractMutVal', 'Args'] class PT(Enum): """Python types supported in pytropos""" # Undefined = 0 Top = 1 # Bottom = 2 InConstruction = 11 class PythonValue(AbstractDomain): def __init__(self, val: Union[AbstractValue, PT] = PT.Top ) -> None: self.val = val __top = None # type: PythonValue @classmethod def top(cls) -> 'PythonValue': """Returns the Top element from the lattice: Any?""" if cls.__top is None: cls.__top = PythonValue(PT.Top) return cls.__top def is_top(self) -> 'bool': """Returns True if this object is the top of the lattice, ie, if Any?""" return self.val is PT.Top def join(self, other: 'PythonValue') -> 'PythonValue': if self.val is PT.Top or other.val is PT.Top: return PythonValue.top() assert isinstance(self.val, AbstractValue) assert isinstance(other.val, AbstractValue) if type(self.val) is type(other.val): # noqa: E721 return PythonValue(self.val.join(other.val)) return PythonValue.top() def widen_op(self, other: 'PythonValue') -> 'Tuple[PythonValue, bool]': # eg: PythonValue(Int(5)) == PythonValue(Int(5)) if self == other: return self, True # eg: PythonValue(PT.Top) and PythonValue(Int(5)) if self.val is PT.Top or other.val is PT.Top: return PythonValue.top(), False # eg: PythonValue(Float(3)) and PythonValue(Int(5)) if type(self.val) is not type(other.val): # noqa: E721 return PythonValue.top(), False assert isinstance(self.val, AbstractValue) assert isinstance(other.val, AbstractValue) # eg: PythonValue(List([3])) and PythonValue(List([3,5])) if self.__op_in_abstractvalue_overwritten(self.val.widen_op): new_val, fix = self.val.widen_op(other.val) # eg: PythonValue(Int(3)) and PythonValue(Int(5)) else: new_val = self.val.join(other.val) # TODO(helq): This is not how a widening operator is defined, actually we # compare with <= not == !!! fix = new_val == self.val return PythonValue(new_val), fix def is_mut(self) -> 'bool': """Checks if the object is mutable""" return isinstance(self.val, AbstractMutVal) @property def mut_id(self) -> 'int': """Returns id of object if it is mutable""" assert isinstance(self.val, AbstractMutVal) return self.val.mut_id def copy_mut(self, mut_heap: 'Dict[int, PythonValue]' ) -> 'PythonValue': """Copies a mutable object recursively""" assert isinstance(self.val, AbstractMutVal) if self.is_top(): return self if self.mut_id in mut_heap: return mut_heap[self.mut_id] else: new_obj = mut_heap[self.mut_id] = PythonValue(PT.InConstruction) new_obj.val = self.val.copy_mut(mut_heap) return new_obj def convert_into_top(self, converted: 'Set[int]') -> None: """Makes the underlying AbstractMutVal Top""" assert isinstance(self.val, AbstractMutVal) self.val.convert_into_top(converted) self.val = self.val.top() def new_vals_to_top( self, mut_heap: 'Dict[Tuple[str, int], Tuple[int, int, PythonValue]]', side: str ) -> None: """Makes a mutable object Top""" assert isinstance(self.val, AbstractMutVal) self.val.new_vals_to_top(mut_heap, side) def join_mut(self, other: 'PythonValue', mut_heap: 'Dict[Tuple[str, int], Tuple[int, int, PythonValue]]' ) -> 'PythonValue': """Joining two mutable PythonValues""" assert isinstance(self.val, AbstractMutVal) assert isinstance(other.val, AbstractMutVal) left_iden = ('left', self.mut_id) right_iden = ('right', other.mut_id) # Checking if we have encounter already this value if (left_iden in mut_heap) or (right_iden in mut_heap): # self and other have already been joined if (left_iden in mut_heap) and mut_heap[left_iden][1] == other.mut_id: # assert right_iden in mut_heap assert mut_heap[right_iden][0] == self.mut_id assert mut_heap[right_iden][2] is mut_heap[left_iden][2] return mut_heap[left_iden][2] # left has been already been joined with other object else: self.new_vals_to_top(mut_heap, 'left') other.new_vals_to_top(mut_heap, 'right') return PythonValue.top() if type(self.val) is not type(other.val): # noqa: E721 self.new_vals_to_top(mut_heap, 'left') other.new_vals_to_top(mut_heap, 'right') return PythonValue.top() # If the value is top the result its top if self.val.is_top(): other.new_vals_to_top(mut_heap, 'right') return PythonValue(self.val.top()) if other.val.is_top(): self.new_vals_to_top(mut_heap, 'right') return PythonValue(self.val.top()) new_obj = PythonValue(PT.InConstruction) mut_heap[left_iden] = mut_heap[right_iden] = \ (self.mut_id, other.mut_id, new_obj) new_val = self.val.join_mut(other.val, mut_heap) if new_obj.val == PT.InConstruction: new_obj.val = new_val # Notice that we don't change the value of the Object if it is not InConstruction. # If a PythonValue is not anymore in construction it means that it has been made # "top" by some call before it return new_obj # TODO(helq): This equality function is faulty (because of the underlying mutable # variables). An equality function should be defined in Store, not here, to compare # two different Stores. Similar to how `join_mut` is defined def __eq__(self, other: Any) -> 'bool': if self is other: return True if not isinstance(other, PythonValue): return False return self.val == other.val __repr_visited = set() # type: Set[int] def __repr__(self) -> str: if self.val is PT.Top: return "Top" elif self.val is PT.InConstruction: return "InConstruction" else: # self.type is PT.Top assert not isinstance(self.val, PT) if self.is_mut(): if self.mut_id in self.__repr_visited: return 'Ref' else: self.__repr_visited.add(self.mut_id) r = self.val.abstract_repr self.__repr_visited.remove(self.mut_id) return r else: return self.val.abstract_repr # TODO(helq): Improve by checking if the given parameters correspond to the arguments # the function receives, if not return Top def call(self, store: Any, args: 'Args', pos: Optional[Pos] = None) -> 'PythonValue': if self.is_top(): return PythonValue.top() # This assert is always true, it's just to keep Mypy from crying assert isinstance(self.val, AbstractValue), \ f"The type is {type(self.val)} but should have been an AbstractValue" call_method = self.val.fun_call if self.__op_in_abstractvalue_overwritten(call_method): newval = call_method(store, args, pos) # type: PythonValue assert isinstance(newval, PythonValue), "A function call didn't return a PythonValue" else: TypeCheckLogger().new_warning( "E016", f"TypeError: '{self.val.type_name}' object is not callable", pos) newval = PythonValue.top() return newval @property def attr(self) -> 'AttrsContainer': if self.is_top(): return AttrsTopContainer() # This assert is always true, it's just to keep Mypy from crying assert isinstance(self.val, AbstractValue), \ f"The type is {type(self.val)} but should have been an AbstractValue" call_method = self.val.get_attrs if self.__op_in_abstractvalue_overwritten(call_method): return call_method() # type: ignore else: return AttrsTopContainer() def subs(self, pos: 'Optional[Pos]' = None) -> 'SubscriptsContainer': if self.is_top(): return SubscriptsTopContainer() # This assert is always true, it's just to keep Mypy from crying assert isinstance(self.val, AbstractValue), \ f"The type is {type(self.val)} but should have been an AbstractValue" call_method = self.val.get_subscripts if self.__op_in_abstractvalue_overwritten(call_method): return call_method(pos) # type: ignore else: TypeCheckLogger().new_warning( "E015", f"TypeError: '{self.val.type_name}' object is not subscriptable", pos) return SubscriptsTopContainer() def __getattr__(self, name: str) -> Any: # Checking if name is add, mul, truediv if name in ops_symbols.keys(): return partial(self.operate, name) raise AttributeError(f"PythonValue has no attribute called '{name}'") @staticmethod def __op_in_abstractvalue_overwritten(method: Any) -> 'bool': """Checks whether the method (defined in AbstractValue) was overwriten or not""" notoverwritten = hasattr(method, '__qualname__') and \ method.__qualname__.split('.')[0] == "AbstractValue" return not notoverwritten # ie, True if method overwritten def operate(self, op: str, other: 'PythonValue', pos: Optional[Pos] = None) -> 'PythonValue': op_sym = ops_symbols[op] if self.val is PT.Top or other.val is PT.Top: return PythonValue.top() # This assert is always true, it's just to keep Mypy from crying assert isinstance(self.val, AbstractValue), \ f"Left type is {type(self.val)} but should have been an AbstractValue" assert isinstance(other.val, AbstractValue), \ f"Left type is {type(other.val)} but should have been an AbstractValue" # If both values have the same type use val.op_add(otherval) if type(self.val) is type(other.val): # noqa: E721 # Checking if op_add has been overwritten by the class that has been called # If it hasn't, the operation result is Top op_method = getattr(self.val, f'op_{op}') if self.__op_in_abstractvalue_overwritten(op_method): newval = op_method(other.val, pos) else: TypeCheckLogger().new_warning( "E009", f"TypeError: unsupported operand type(s) for {op_sym}: " f"'{self.val.type_name}' and '{other.val.type_name}'", pos) newval = PT.Top # If values have different type use val.op_add_OtherType(otherval) # or otherval.op_add_Type(val) else: leftOpName = "op_r{op}_{class_name}".format(op=op, class_name=type(self.val).__name__) rightOpName = "op_{op}_{class_name}".format(op=op, class_name=type(other.val).__name__) try: newval = getattr(self.val, rightOpName)(other.val, pos) except AttributeError: try: newval = getattr(other.val, leftOpName)(self.val, pos) except AttributeError: TypeCheckLogger().new_warning( "E009", f"TypeError: unsupported operand type(s) for {op_sym}: " f"'{self.val.type_name}' and '{other.val.type_name}'", pos) newval = PT.Top if newval is None: return PythonValue.top() return PythonValue(newval) def bool(self, pos: Optional[Pos] = None) -> 'PythonValue': """method documentation""" if isinstance(self.val, Bool): return self if self.val is PT.Top: return PythonValue(Bool.top()) assert isinstance(self.val, AbstractValue) op_method = self.val.op_bool if self.__op_in_abstractvalue_overwritten(op_method): bool_val = op_method(pos) # Checking bool_val is a boolean! if not isinstance(bool_val, Bool): TypeCheckLogger().new_warning( "E010", f"TypeError: __bool__ should return bool, returned {bool_val.val.type_name}", pos) return PythonValue(Bool.top()) return PythonValue(bool_val) # TODO(helq): If the operation was not defined more stuff is to be done, like # checking __len__. # More info: https://docs.python.org/3/reference/datamodel.html#object.__bool__ return PythonValue(Bool.top()) def type(self) -> str: """Returns the type of the value hold self.val""" if self.val is PT.Top: return "Top" elif self.val is PT.InConstruction: return "InConstruction" else: # self.type is PT.Top assert not isinstance(self.val, PT) return str(self.val.type_name) def __lt__(self, other: 'PythonValue') -> '__builtins__.bool': if
description_btn] box244 = Box(children=row, layout=box_layout) name_btn = Button(description='activated_speed', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float229 = FloatText(value='0.4', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='micron/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' description_btn = Button(description='speed after activation', disabled=True, layout=desc_button_layout) description_btn.style.button_color = 'lightgreen' row = [name_btn, self.float229, units_btn, description_btn] box245 = Box(children=row, layout=box_layout) name_btn = Button(description='activated_cytokine_secretion_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float230 = FloatText(value='1', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' description_btn = Button(description='rate of secreting pro-inflamatory cytokine after activation', disabled=True, layout=desc_button_layout) description_btn.style.button_color = 'tan' row = [name_btn, self.float230, units_btn, description_btn] box246 = Box(children=row, layout=box_layout) name_btn = Button(description='activated_immune_cell', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float231 = FloatText(value='0.0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='dimensionless', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' description_btn = Button(description='used internally to track activation state', disabled=True, layout=desc_button_layout) description_btn.style.button_color = 'lightgreen' row = [name_btn, self.float231, units_btn, description_btn] box247 = Box(children=row, layout=box_layout) name_btn = Button(description='antiinflammatory_cytokine_secretion_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float232 = FloatText(value='15', step='1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' description_btn = Button(description='secretion rate of anti-inflammatory from infected epithelium cell', disabled=True, layout=desc_button_layout) description_btn.style.button_color = 'tan' row = [name_btn, self.float232, units_btn, description_btn] box248 = Box(children=row, layout=box_layout) name_btn = Button(description='collagen_secretion_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float233 = FloatText(value='1', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' description_btn = Button(description='secretion rate of collagen from fibroblast', disabled=True, layout=desc_button_layout) description_btn.style.button_color = 'lightgreen' row = [name_btn, self.float233, units_btn, description_btn] box249 = Box(children=row, layout=box_layout) self.cell_def_vbox1 = VBox([ div_row9, box125, box126, box127, box128, div_row10, death_model1,box129, box130, box131, box132, box133, box134, box135, death_model2,box136, box137, box138, box139, box140, box141, box142, div_row11, box143, box144, box145, box146, box147, box148, box149, box150, box151, div_row12, box152, box153, box154, box155, box156, div_row13, box157,box158,box159,self.bool7,self.bool8,chemotaxis_btn,self.bool9,box160,box161,div_row14, box162,box163,box164,box165,box166,box167,box168,box169,box170,box171,box172,box173,box174,box175,box176,box177,box178,box179,div_row15, div_row16, box180, box181, box182, box183, box184, box185, box186, box187, box188, box189, box190, box191, box192, box193, box194, box195, box196, box197, box198, box199, box200, box201, box202, box203, box204, box205, box206, box207, box208, box209, box210, box211, box212, box213, box214, box215, box216, box217, box218, box219, box220, box221, box222, box223, box224, box225, box226, box227, box228, box229, box230, box231, box232, box233, box234, box235, box236, box237, box238, box239, box240, box241, box242, box243, box244, box245, box246, box247, box248, box249, ]) # ------------------------------------------ self.cell_def_vboxes.append(self.cell_def_vbox1) # >>>>>>>>>>>>>>>>> <cell_definition> = CD8 Tcell # ------------------------- div_row17 = Button(description='phenotype:cycle (model: flow_cytometry_separated_cycle_model; code=6)', disabled=True, layout=divider_button_layout) div_row17.style.button_color = 'orange' name_btn = Button(description='Phase 0 -> Phase 1 transition rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float234 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float234, units_btn, ] box250 = Box(children=row, layout=box_layout) name_btn = Button(description='Phase 1 -> Phase 2 transition rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float235 = FloatText(value='0.00208333', step='0.0001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float235, units_btn, ] box251 = Box(children=row, layout=box_layout) name_btn = Button(description='Phase 2 -> Phase 3 transition rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float236 = FloatText(value='0.00416667', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float236, units_btn, ] box252 = Box(children=row, layout=box_layout) name_btn = Button(description='Phase 3 -> Phase 0 transition rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float237 = FloatText(value='0.0166667', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float237, units_btn, ] box253 = Box(children=row, layout=box_layout) # ------------------------- div_row18 = Button(description='phenotype:death', disabled=True, layout=divider_button_layout) div_row18.style.button_color = 'orange' death_model1 = Button(description='model: apoptosis', disabled=True, layout={'width':'30%'}) death_model1.style.button_color = '#ffde6b' name_btn = Button(description='death rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float238 = FloatText(value='2.8e-4', step='1e-05', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float238, units_btn, ] box254 = Box(children=row, layout=box_layout) name_btn = Button(description='unlysed_fluid_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float239 = FloatText(value='0.05', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float239, units_btn, ] box255 = Box(children=row, layout=box_layout) name_btn = Button(description='lysed_fluid_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float240 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float240, units_btn, ] box256 = Box(children=row, layout=box_layout) name_btn = Button(description='cytoplasmic_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float241 = FloatText(value='1.66667e-02', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float241, units_btn, ] box257 = Box(children=row, layout=box_layout) name_btn = Button(description='nuclear_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float242 = FloatText(value='5.83333e-03', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float242, units_btn, ] box258 = Box(children=row, layout=box_layout) name_btn = Button(description='calcification_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float243 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float243, units_btn, ] box259 = Box(children=row, layout=box_layout) name_btn = Button(description='relative_rupture_volume', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float244 = FloatText(value='2.0', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float244, units_btn, ] box260 = Box(children=row, layout=box_layout) death_model2 = Button(description='model: necrosis', disabled=True, layout={'width':'30%'}) death_model2.style.button_color = '#ffde6b' name_btn = Button(description='death rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float245 = FloatText(value='0.0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float245, units_btn, ] box261 = Box(children=row, layout=box_layout) name_btn = Button(description='unlysed_fluid_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float246 = FloatText(value='0.05', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float246, units_btn, ] box262 = Box(children=row, layout=box_layout) name_btn = Button(description='lysed_fluid_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float247 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float247, units_btn, ] box263 = Box(children=row, layout=box_layout) name_btn = Button(description='cytoplasmic_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float248 = FloatText(value='1.66667e-02', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float248, units_btn, ] box264 = Box(children=row, layout=box_layout) name_btn = Button(description='nuclear_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float249 = FloatText(value='5.83333e-03', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float249, units_btn, ] box265 = Box(children=row, layout=box_layout) name_btn = Button(description='calcification_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float250 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float250, units_btn, ] box266 = Box(children=row, layout=box_layout) name_btn = Button(description='relative_rupture_volume', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float251 = FloatText(value='2.0', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float251, units_btn, ] box267 = Box(children=row, layout=box_layout) # ------------------------- div_row19 = Button(description='phenotype:volume', disabled=True, layout=divider_button_layout) div_row19.style.button_color = 'orange' name_btn = Button(description='total', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float252 = FloatText(value='478', step='10', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float252, units_btn, ] box268 = Box(children=row, layout=box_layout) name_btn = Button(description='fluid_fraction', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float253 = FloatText(value='0.75', step='0.1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float253, units_btn, ] box269 = Box(children=row, layout=box_layout) name_btn = Button(description='nuclear', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float254 = FloatText(value='47.8', step='1', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float254, units_btn, ] box270 = Box(children=row, layout=box_layout) name_btn = Button(description='fluid_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float255 = FloatText(value='0.05', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float255, units_btn, ] box271 = Box(children=row, layout=box_layout) name_btn = Button(description='cytoplasmic_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float256 = FloatText(value='0.0045', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float256, units_btn, ] box272 = Box(children=row, layout=box_layout) name_btn = Button(description='nuclear_biomass_change_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float257 = FloatText(value='0.0055', step='0.001', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float257, units_btn, ] box273 = Box(children=row, layout=box_layout) name_btn = Button(description='calcified_fraction', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float258 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'lightgreen' row = [name_btn, self.float258, units_btn, ] box274 = Box(children=row, layout=box_layout) name_btn = Button(description='calcification_rate', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'tan' self.float259 = FloatText(value='0', step='0.01', style=style, layout=widget_layout) units_btn = Button(description='1/min', disabled=True, layout=name_button_layout) units_btn.style.button_color = 'tan' row = [name_btn, self.float259, units_btn, ] box275 = Box(children=row, layout=box_layout) name_btn = Button(description='relative_rupture_volume', disabled=True, layout=name_button_layout) name_btn.style.button_color = 'lightgreen' self.float260
+ Ad[3, 2] * tp2_2 + Ad[3, 3] * tp2_3 ) values[n] = ( Phi0_0 * ( Phi1_0 * ( Phi2_0 * (coefs[i0 + 0, i1 + 0, i2 + 0]) + Phi2_1 * (coefs[i0 + 0, i1 + 0, i2 + 1]) + Phi2_2 * (coefs[i0 + 0, i1 + 0, i2 + 2]) + Phi2_3 * (coefs[i0 + 0, i1 + 0, i2 + 3]) ) + Phi1_1 * ( Phi2_0 * (coefs[i0 + 0, i1 + 1, i2 + 0]) + Phi2_1 * (coefs[i0 + 0, i1 + 1, i2 + 1]) + Phi2_2 * (coefs[i0 + 0, i1 + 1, i2 + 2]) + Phi2_3 * (coefs[i0 + 0, i1 + 1, i2 + 3]) ) + Phi1_2 * ( Phi2_0 * (coefs[i0 + 0, i1 + 2, i2 + 0]) + Phi2_1 * (coefs[i0 + 0, i1 + 2, i2 + 1]) + Phi2_2 * (coefs[i0 + 0, i1 + 2, i2 + 2]) + Phi2_3 * (coefs[i0 + 0, i1 + 2, i2 + 3]) ) + Phi1_3 * ( Phi2_0 * (coefs[i0 + 0, i1 + 3, i2 + 0]) + Phi2_1 * (coefs[i0 + 0, i1 + 3, i2 + 1]) + Phi2_2 * (coefs[i0 + 0, i1 + 3, i2 + 2]) + Phi2_3 * (coefs[i0 + 0, i1 + 3, i2 + 3]) ) ) + Phi0_1 * ( Phi1_0 * ( Phi2_0 * (coefs[i0 + 1, i1 + 0, i2 + 0]) + Phi2_1 * (coefs[i0 + 1, i1 + 0, i2 + 1]) + Phi2_2 * (coefs[i0 + 1, i1 + 0, i2 + 2]) + Phi2_3 * (coefs[i0 + 1, i1 + 0, i2 + 3]) ) + Phi1_1 * ( Phi2_0 * (coefs[i0 + 1, i1 + 1, i2 + 0]) + Phi2_1 * (coefs[i0 + 1, i1 + 1, i2 + 1]) + Phi2_2 * (coefs[i0 + 1, i1 + 1, i2 + 2]) + Phi2_3 * (coefs[i0 + 1, i1 + 1, i2 + 3]) ) + Phi1_2 * ( Phi2_0 * (coefs[i0 + 1, i1 + 2, i2 + 0]) + Phi2_1 * (coefs[i0 + 1, i1 + 2, i2 + 1]) + Phi2_2 * (coefs[i0 + 1, i1 + 2, i2 + 2]) + Phi2_3 * (coefs[i0 + 1, i1 + 2, i2 + 3]) ) + Phi1_3 * ( Phi2_0 * (coefs[i0 + 1, i1 + 3, i2 + 0]) + Phi2_1 * (coefs[i0 + 1, i1 + 3, i2 + 1]) + Phi2_2 * (coefs[i0 + 1, i1 + 3, i2 + 2]) + Phi2_3 * (coefs[i0 + 1, i1 + 3, i2 + 3]) ) ) + Phi0_2 * ( Phi1_0 * ( Phi2_0 * (coefs[i0 + 2, i1 + 0, i2 + 0]) + Phi2_1 * (coefs[i0 + 2, i1 + 0, i2 + 1]) + Phi2_2 * (coefs[i0 + 2, i1 + 0, i2 + 2]) + Phi2_3 * (coefs[i0 + 2, i1 + 0, i2 + 3]) ) + Phi1_1 * ( Phi2_0 * (coefs[i0 + 2, i1 + 1, i2 + 0]) + Phi2_1 * (coefs[i0 + 2, i1 + 1, i2 + 1]) + Phi2_2 * (coefs[i0 + 2, i1 + 1, i2 + 2]) + Phi2_3 * (coefs[i0 + 2, i1 + 1, i2 + 3]) ) + Phi1_2 * ( Phi2_0 * (coefs[i0 + 2, i1 + 2, i2 + 0]) + Phi2_1 * (coefs[i0 + 2, i1 + 2, i2 + 1]) + Phi2_2 * (coefs[i0 + 2, i1 + 2, i2 + 2]) + Phi2_3 * (coefs[i0 + 2, i1 + 2, i2 + 3]) ) + Phi1_3 * ( Phi2_0 * (coefs[i0 + 2, i1 + 3, i2 + 0]) + Phi2_1 * (coefs[i0 + 2, i1 + 3, i2 + 1]) + Phi2_2 * (coefs[i0 + 2, i1 + 3, i2 + 2]) + Phi2_3 * (coefs[i0 + 2, i1 + 3, i2 + 3]) ) ) + Phi0_3 * ( Phi1_0 * ( Phi2_0 * (coefs[i0 + 3, i1 + 0, i2 + 0]) + Phi2_1 * (coefs[i0 + 3, i1 + 0, i2 + 1]) + Phi2_2 * (coefs[i0 + 3, i1 + 0, i2 + 2]) + Phi2_3 * (coefs[i0 + 3, i1 + 0, i2 + 3]) ) + Phi1_1 * ( Phi2_0 * (coefs[i0 + 3, i1 + 1, i2 + 0]) + Phi2_1 * (coefs[i0 + 3, i1 + 1, i2 + 1]) + Phi2_2 * (coefs[i0 + 3, i1 + 1, i2 + 2]) + Phi2_3 * (coefs[i0 + 3, i1 + 1, i2 + 3]) ) + Phi1_2 * ( Phi2_0 * (coefs[i0 + 3, i1 + 2, i2 + 0]) + Phi2_1 * (coefs[i0 + 3, i1 + 2, i2 + 1]) + Phi2_2 * (coefs[i0 + 3, i1 + 2, i2 + 2]) + Phi2_3 * (coefs[i0 + 3, i1 + 2, i2 + 3]) ) + Phi1_3 * ( Phi2_0 * (coefs[i0 + 3, i1 + 3, i2 + 0]) + Phi2_1 * (coefs[i0 + 3, i1 + 3, i2 + 1]) + Phi2_2 * (coefs[i0 + 3, i1 + 3, i2 + 2]) + Phi2_3 * (coefs[i0 + 3, i1 + 3, i2 + 3]) ) ) ) @njit(cache=True) def kernel(n, a, b, orders, coefs, points, values): x0 = points[n, 0] x1 = points[n, 1] x2 = points[n, 2] # common to all units M0 = orders[0] start0 = a[0] dinv0 = (orders[0] - 1.0) / (b[0] - a[0]) M1 = orders[1] start1 = a[1] dinv1 = (orders[1] - 1.0) / (b[1] - a[1]) M2 = orders[2] start2 = a[2] dinv2 = (orders[2] - 1.0) / (b[2] - a[2]) # locate the point u0 = (x0 - start0) * dinv0 i0 = int(floor(u0)) i0 = max(min(i0, M0 - 2), 0) t0 = u0 - i0 u1 = (x1 - start1) * dinv1 i1 = int(floor(u1)) i1 = max(min(i1, M1 - 2), 0) t1 = u1 - i1 u2 = (x2 - start2) * dinv2 i2 = int(floor(u2)) i2 = max(min(i2, M2 - 2), 0) t2 = u2 - i2 tp0_0 = t0 * t0 * t0 tp0_1 = t0 * t0 tp0_2 = t0 tp0_3 = 1.0 tp1_0 = t1 * t1 * t1 tp1_1 = t1 * t1 tp1_2 = t1 tp1_3 = 1.0 tp2_0 = t2 * t2 * t2 tp2_1 = t2 * t2 tp2_2 = t2 tp2_3 = 1.0 Phi0_0 = 0 Phi0_1 = 0 Phi0_2 = 0 Phi0_3 = 0 if t0 < 0: Phi0_0 = dAd[0, 3] * t0 + Ad[0, 3] Phi0_1 = dAd[1, 3] * t0 + Ad[1, 3] Phi0_2 = dAd[2, 3] * t0 + Ad[2, 3] Phi0_3 = dAd[3, 3] * t0 + Ad[3, 3] elif t0 > 1: Phi0_0 = (3 * Ad[0, 0] + 2 * Ad[0, 1] + Ad[0, 2]) * (t0 - 1) + ( Ad[0, 0] + Ad[0, 1] + Ad[0, 2] + Ad[0, 3] ) Phi0_1 = (3 * Ad[1, 0] + 2 * Ad[1, 1] + Ad[1, 2]) * (t0 - 1) + ( Ad[1, 0] + Ad[1, 1] + Ad[1, 2] + Ad[1, 3] ) Phi0_2 = (3 * Ad[2, 0] + 2 * Ad[2, 1] + Ad[2, 2]) * (t0 - 1) + ( Ad[2, 0] + Ad[2, 1] + Ad[2, 2] + Ad[2, 3] ) Phi0_3 = (3 * Ad[3, 0] + 2 * Ad[3, 1] + Ad[3, 2]) * (t0 - 1) + ( Ad[3, 0] + Ad[3, 1] + Ad[3, 2] + Ad[3, 3] ) else: Phi0_0 = ( Ad[0, 0] * tp0_0 + Ad[0, 1] * tp0_1 + Ad[0, 2] * tp0_2 + Ad[0, 3] * tp0_3 ) Phi0_1 = ( Ad[1, 0] * tp0_0 + Ad[1, 1] * tp0_1 + Ad[1, 2] * tp0_2
import argparse import glob import re import sys from typing import List print_columns = ["name", "total_synthesis_time"] regel_columns = ["regel_time", "regel_timeout", "regel_sketch", "regel_solution"] all_columns = ["name", "enumerator", "timed_out", "total_synthesis_time", "regex_synthesis_time", "first_regex_time", "enumerated_regexes", "regex_interactions", "regex_distinguishing_time", "cap_groups_synthesis_time", "enumerated_cap_groups", "cap_conditions_synthesis_time", "enumerated_cap_conditions", "cap_conditions_interactions", "cap_conditions_distinguishing_time", "solution", "nodes", "first_regex", "cap_groups", "ground_truth", "regel_time", "regel_timeout", "regel_sketch", "regel_solution"] exclude_instances = ["datetime2.txt", "date3.txt"] # , "color.txt", "date.txt", "date7.txt", "id1.txt", "date3.txt"] logs = {"nopruning": "log_10_22_mtnp", "dynamic": "log_10_28_dy", "multitree": "log_10_22_mt", "ktree": "log_10_22_kt", "lines": "log_10_22_li", "multi-dist": "log_10_26_muti-dist"} class Instance: def __init__(self, name): global all_columns self.values = {} for col in all_columns: self.values[col] = "undefined" self.values['name'] = name def print_table(instances: List, regel: bool): """ Print execution information for each instance (sorted by name) """ global print_columns, regel_columns if regel: print_columns.extend(regel_columns) print(", ".join(print_columns)) for idx, instance in enumerate(instances): row = [] for col_name in print_columns: if col_name in ["solution", "cap_groups", "ground_truth", "regel_sketch", "regel_solution", "first_regex"]: row.append(f'"{instance.values[col_name]}"') else: row.append(str(instance.values[col_name])) print(', '.join(row)) def print_only_synthesis_times(instances): for instance in instances: time = instance.values["total_synthesis_time"] if time == "undefined": time = 4000 print(time) def print_rank(instances): """ Print execution time for each instance (sorted by time) """ ranked = sorted(instances, key=lambda i: 4000 if i.values["total_synthesis_time"] == 'undefined' else i.values["total_synthesis_time"]) print("instance, time, ranking") for idx, instance in enumerate(ranked): time = 4000 if instance.values["total_synthesis_time"] == "undefined" else \ instance.values["total_synthesis_time"] print(f'{instance.values["name"]}, {time}, {idx + 1}') def print_regel_rank(instances): ranked = sorted(instances, key=lambda i: 4000 if i.values["regel_time"] == 'undefined' else i.values["regel_time"]) print("instance, time, ranking") for idx, instance in enumerate(ranked): time = 4000 if instance.values["regel_time"] == "undefined" else instance.values["regel_time"] print(f'{instance.values["name"]}, {time}, {idx + 1}') def print_compare_times(): global logs instances = {} for log in logs: log_files = glob.glob(logs[log] + "/*.txt") instances[log] = [] for log_file in log_files: instance = read_log(log_file) if instance is not None: instances[log].append(instance) instances[log] = sorted(instances[log], key=lambda i: i.values['name']) columns = list(logs.keys()) print(", ".join(["instance"] + columns)) # get number of instances from any list in the dictionary num_instances = len(next(iter(instances.values()))) for idx in range(num_instances): row = [] instance_name = next(iter(instances.values()))[idx].values["name"] row.append(instance_name) for c in columns: time = instances[c][idx].values["total_synthesis_time"] if time == "undefined": time = 4000 row.append(time) print(", ".join(map(str, row))) def print_count_solved(instances: List): count = 0 for instance in instances: if instance.values["solution"] != 'No solution' and instance.values["solution"] != 'undefined': count += 1 print(count) def print_count_solved_all(instances: List): instances = list(filter(lambda i: i.values["solution"] != 'No solution' and i.values["solution"] != 'undefined', instances)) count_3600 = 0 count_60 = 0 count_10 = 0 for instance in instances: if instance.values["first_regex_time"] < 3600: count_3600 += 1 if instance.values["first_regex_time"] < 60: count_60 += 1 if instance.values["first_regex_time"] < 10: count_10 += 1 print(count_10, count_60, count_3600) def print_count_not_timeout(instances: List): count = 0 for instance in instances: if not instance.values['timed_out']: count += 1 print(count) def print_count_not_timeout_all(instances: List): instances = list(filter(lambda i: not i.values['timed_out'], instances)) count_3600 = 0 count_60 = 0 count_10 = 0 for instance in instances: if instance.values["total_synthesis_time"] < 3600: count_3600 += 1 if instance.values["total_synthesis_time"] < 60: count_60 += 1 if instance.values["total_synthesis_time"] < 10: count_10 += 1 print(count_10, count_60, count_3600) def print_regel_count_not_timeout_all(instances): instances = list(filter(lambda i: not i.values['regel_timeout'], instances)) count_3600 = 0 count_60 = 0 count_10 = 0 for instance in instances: if instance.values["regel_time"] < 3600: count_3600 += 1 if instance.values["regel_time"] < 60: count_60 += 1 if instance.values["regel_time"] < 10: count_10 += 1 print(count_10, count_60, count_3600) def main(): parser = argparse.ArgumentParser(description='Validations Synthesizer tester', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('log_dir', metavar='DIR', type=str, help="Logs directory", default='') parser.add_argument('-r', '--regel-log-dir', metavar='DIR', type=str, help="Regel logs directory", default='') parser.add_argument('--rank', action="store_true", help="Rank instances according to synthesis time") parser.add_argument('--count-solved', action="store_true", help="Count number of instances that returned a solution (time out or not).") parser.add_argument('--only-synthesis-times', action="store_true", help="Print only the synthesis time for each instance.") parser.add_argument('--count-solved-all', action="store_true", help="Count number of instances that returned a solution (time out or not) in 10, 60 and 3600 " "seconds.") parser.add_argument('--count-not-timeout', action="store_true", help="Count number of instances that did not time out.") parser.add_argument('--count-not-timeout-all', action="store_true", help="Count number of instances that did not time out in 10, 60 and 3600 seconds.") parser.add_argument('--regel-count-not-timeout-all', action="store_true", help="Count number of instances that did not time out with REGEL in 10, 60 and 3600 seconds.") parser.add_argument('--rank-regel', action="store_true", help="Make REGEL time ranking") parser.add_argument('--compare-times', action="store_true", help="Make table comparing the synthesis time for different methods") args = parser.parse_args() log_dir = args.log_dir regel_log_dir = args.regel_log_dir log_files = glob.glob(log_dir + "/*.txt") instances = [] for log_file in log_files: instance = read_log(log_file) if instance is not None: instances.append(instance) if len(regel_log_dir) > 0: for instance in instances: read_regel_log(instance, regel_log_dir) instances = sorted(instances, key=lambda i: i.values['name']) if args.rank: print_rank(instances) elif args.rank_regel: assert len(regel_log_dir) > 0, "please indicate REGEL logs directory" print_regel_rank(instances) elif args.compare_times: print_compare_times() elif args.only_synthesis_times: print_only_synthesis_times(instances) elif args.count_solved: print_count_solved(instances) elif args.count_solved_all: print_count_solved_all(instances) elif args.count_not_timeout: print_count_not_timeout(instances) elif args.count_not_timeout_all: print_count_not_timeout_all(instances) elif args.regel_count_not_timeout_all: assert len(regel_log_dir) > 0, "please indicate REGEL logs directory" print_regel_count_not_timeout_all(instances) else: print_table(instances, len(regel_log_dir) > 0) def read_regel_log(instance, regel_log_dir): try: with open(regel_log_dir + "/" + instance.values['name'] + "-1") as f: for line in f: if "Sketch" in line: regex = r"Sketch: (.+)" m = re.search(regex, line) if m is not None: instance.values["regel_sketch"] = m[1] elif "Learned program" in line: regex = r"Learned program: (.+): (?:\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values["regel_solution"] = m[1] elif "Total time" in line: regex = r"Total time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['regel_time'] = float(m[1]) instance.values['regel_timeout'] = False except IOError: try: with open(regel_log_dir + "/" + instance.values['name'] + "-b") as f: for line in f: if "Learned program" in line: regex = r"Learned program: (.+): (?:\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values["regel_solution"] = m[1] elif "Total time" in line: regex = r"Total time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['regel_time'] = float(m[1]) instance.values['regel_timeout'] = False except IOError: print("could not open", regel_log_dir + "/" + instance.values['name'] + "-1", file=sys.stderr) def read_log(log_file): instance_name = list(filter(None, log_file.split('/')))[-1] for excluded in exclude_instances: if excluded in instance_name: return None instance = Instance(instance_name) with open(log_file) as f: regex_synthesis = False cap_groups_synthesis = False cap_conditions_synthesis = False solution_print = False for line in f: if "Enumerator" in line: regex = "Enumerator: (.+)" m = re.search(regex, line) if m is not None: instance.values['enumerator'] = m[1] elif "Terminated" in line: regex = "Terminated: (.+)" m = re.search(regex, line) if m is not None: instance.values['timed_out'] = m[1] == 'True' elif "Elapsed time" in line: regex = r"Elapsed time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['total_synthesis_time'] = float(m[1]) elif "Time per depth" in line: regex = "Time per depth: (.+)" m = re.search(regex, line) if m is not None: instance.values['per_depth_times'] = m[1] elif "Regex synthesis" in line: regex_synthesis = True continue elif "Capturing groups synthesis" in line: regex_synthesis = False cap_groups_synthesis = True continue elif "Capturing conditions synthesis" in line: cap_groups_synthesis = False cap_conditions_synthesis = True continue elif "First regex:" in line: regex = r"First regex: (.+)" m = re.search(regex, line) if m is not None: instance.values['first_regex'] = m[1] elif "Solution" in line: cap_conditions_synthesis = False solution_print = True regex = r"Solution: (.+)" m = re.search(regex, line) if m is not None: instance.values['solution'] = m[1] continue elif "No solution" in line: cap_conditions_synthesis = False solution_print = True instance.values['solution'] = 'No solution' instance.values['cap_groups'] = None continue elif regex_synthesis: if "Regex time" in line: regex = r"Regex time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['regex_synthesis_time'] = float(m[1]) elif "First regex time" in line: regex = r"First regex time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['first_regex_time'] = float(m[1]) elif "Enumerated" in line: regex = r"Enumerated: (\d+)" m = re.search(regex, line) if m is not None: instance.values['enumerated_regexes'] = int(m[1]) elif "Interactions" in line: regex = r"Interactions: (\d+)" m = re.search(regex, line) if m is not None: instance.values['regex_interactions'] = int(m[1]) elif "Distinguish time" in line: regex = r"Distinguish time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['regex_distinguishing_time'] = float(m[1]) elif cap_groups_synthesis: if "Cap. groups time" in line: regex = r"Cap. groups time: (\d+\.\d+)" m = re.search(regex, line) if m is not None: instance.values['cap_groups_synthesis_time'] = float(m[1]) elif "Enumerated" in line: regex = r"Enumerated: (\d+)" m = re.search(regex, line) if m is not None: instance.values['enumerated_cap_groups'] = int(m[1])
the form in order to minimize fetching of data. If the query parameter is ommitted all variables are fetched. If the query parameter contains non-existent variable names, the variable names are ignored. :param bool deserialize_values: Determines whether serializable variable values (typically variables that store custom Java objects) should be deserialized on server side (default true). If set to true, a serializable variable will be deserialized on server side and transformed to JSON using [Jackson's](http://jackson.codehaus.org/) POJO/bean property introspection feature. Note that this requires the Java classes of the variable value to be on the REST API's classpath. If set to false, a serializable variable will be returned in its serialized format. For example, a variable that is serialized as XML will be returned as a JSON string containing XML. **Note**: While true is the default value for reasons of backward compatibility, we recommend setting this parameter to false when developing web applications that are independent of the Java process applications deployed to the engine. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: dict(str, VariableValueDto) If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_start_form_variables_with_http_info(id, **kwargs) # noqa: E501 def get_start_form_variables_with_http_info(self, id, **kwargs): # noqa: E501 """Get Start Form Variables # noqa: E501 Retrieves the start form variables for a process definition (only if they are defined via the [Generated Task Form](https://docs.camunda.org/manual/7.13/user-guide/task-forms/#generated-task-forms) approach). The start form variables take form data specified on the start event into account. If form fields are defined, the variable types and default values of the form fields are taken into account. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_start_form_variables_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str id: The id of the process definition to retrieve the variables for. (required) :param str variable_names: A comma-separated list of variable names. Allows restricting the list of requested variables to the variable names in the list. It is best practice to restrict the list of variables to the variables actually required by the form in order to minimize fetching of data. If the query parameter is ommitted all variables are fetched. If the query parameter contains non-existent variable names, the variable names are ignored. :param bool deserialize_values: Determines whether serializable variable values (typically variables that store custom Java objects) should be deserialized on server side (default true). If set to true, a serializable variable will be deserialized on server side and transformed to JSON using [Jackson's](http://jackson.codehaus.org/) POJO/bean property introspection feature. Note that this requires the Java classes of the variable value to be on the REST API's classpath. If set to false, a serializable variable will be returned in its serialized format. For example, a variable that is serialized as XML will be returned as a JSON string containing XML. **Note**: While true is the default value for reasons of backward compatibility, we recommend setting this parameter to false when developing web applications that are independent of the Java process applications deployed to the engine. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(dict(str, VariableValueDto), status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'id', 'variable_names', 'deserialize_values' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_start_form_variables" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'id' is set if self.api_client.client_side_validation and ('id' not in local_var_params or # noqa: E501 local_var_params['id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `id` when calling `get_start_form_variables`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in local_var_params: path_params['id'] = local_var_params['id'] # noqa: E501 query_params = [] if 'variable_names' in local_var_params and local_var_params['variable_names'] is not None: # noqa: E501 query_params.append(('variableNames', local_var_params['variable_names'])) # noqa: E501 if 'deserialize_values' in local_var_params and local_var_params['deserialize_values'] is not None: # noqa: E501 query_params.append(('deserializeValues', local_var_params['deserialize_values'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/process-definition/{id}/form-variables', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='dict(str, VariableValueDto)', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_start_form_variables_by_key(self, key, **kwargs): # noqa: E501 """Get Start Form Variables # noqa: E501 Retrieves the start form variables for the latest process definition which belongs to no tenant (only if they are defined via the [Generated Task Form](https://docs.camunda.org/manual/7.13/user-guide/task-forms/#generated-task-forms) approach). The start form variables take form data specified on the start event into account. If form fields are defined, the variable types and default values of the form fields are taken into account. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_start_form_variables_by_key(key, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str key: The key of the process definition (the latest version thereof) to be retrieved. (required) :param str variable_names: A comma-separated list of variable names. Allows restricting the list of requested variables to the variable names in the list. It is best practice to restrict the list of variables to the variables actually required by the form in order to minimize fetching of data. If the query parameter is ommitted all variables are fetched. If the query parameter contains non-existent variable names, the variable names are ignored. :param bool deserialize_values: Determines whether serializable variable values (typically variables that store custom Java objects) should be deserialized on server side (default true). If set to true, a serializable variable will be deserialized on server side and transformed to JSON using [Jackson's](http://jackson.codehaus.org/) POJO/bean property introspection feature. Note that this requires the Java classes of the variable value to be on the REST API's classpath. If set to false, a serializable variable will be returned in its serialized format. For example, a variable that is serialized as XML will be returned as a JSON string containing XML. **Note**: While true is the default value for reasons of backward compatibility, we recommend setting this parameter to false when developing web applications that are independent of the Java process applications deployed to the engine. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: dict(str, VariableValueDto) If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_start_form_variables_by_key_with_http_info(key, **kwargs) # noqa: E501 def get_start_form_variables_by_key_with_http_info(self, key, **kwargs): # noqa: E501 """Get Start Form Variables # noqa: E501 Retrieves the start form variables for the latest process definition which belongs to no tenant (only if they are defined via the [Generated Task Form](https://docs.camunda.org/manual/7.13/user-guide/task-forms/#generated-task-forms) approach). The start form variables take form data specified on the start event into account. If form fields are defined, the variable types and default values of the
# Copyright (c) 2017, Teriks # All rights reserved. # # pake is distributed under the following BSD 3-Clause License # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import codecs import os.path import shutil import subprocess import sys import os import tempfile import pake import pake.process import pake.program import pake.util import pake.returncodes as returncodes import pake.conf __all__ = ['export', 'subpake', 'SubpakeException', 'EXPORTS'] EXPORTS = dict() """ A dictionary object containing all current exports by name, you are free to modify this dictionary directly. See: :py:meth:`pake.export`, :py:meth:`pake.subpake` and :py:meth:`pake.TaskContext.subpake`. Be careful and make sure it remains a dictionary object. Export values must be able to **repr()** into parsable python literals. """ class SubpakeException(pake.process.StreamingSubprocessException): """ Raised upon encountering a non-zero return code from a subpake invocation. This exception is raised from both :py:meth:`pake.subpake` and :py:meth:`pake.TaskContext.subpake`. .. py:attribute:: cmd Executed subpake command in list form. .. py:attribute:: returncode Process returncode. .. py:attribute:: message Optional message from the raising function, may be **None** .. py:attribute:: filename Filename describing the file from which the process call was initiated. (might be None) .. py:attribute:: function_name Function name describing the function which initiated the process call. (might be None) .. py:attribute:: line_number Line Number describing the line where the process call was initiated. (might be None) """ def __init__(self, cmd, returncode, output=None, output_stream=None, message=None): """ :param cmd: Command in list form. :param returncode: The command's returncode. :param output: (Optional) All output from the command as bytes. :param output_stream: (Optional) A file like object containing the process output, at **seek(0)**. By providing this parameter instead of **output**, you give this object permission to close the stream when it is garbage collected or when :py:meth:`pake.SubpakeException.write_info` is called. :param message: Optional exception message. """ super().__init__(cmd=cmd, returncode=returncode, output=output, output_stream=output_stream, message=message) def export(name, value): """ Exports a define that can be retrieved in subpake scripts via :py:func:`pake.Pake.get_define`. This function can redefine the value of an existing export as well. The :py:attr:`pake.EXPORTS` dictionary can also be manipulated directly. Export values must be able to **repr()** into parsable python literals. :param name: The name of the define. :param value: The value of the define. """ EXPORTS[name] = value def subpake(*args, stdout=None, silent=False, ignore_errors=False, call_exit=True, readline=True, collect_output=False, collect_output_lock=None): """ Execute a ``pakefile.py`` script, changing directories if necessary. This function should not be used inside tasks, use: :py:meth:`pake.TaskContext.subpake` instead. A :py:meth:`pake.TaskContext` instance is passed into the single parameter of each task, usually named **ctx**. :py:meth:`pake.subpake` allows similar syntax to :py:meth:`pake.TaskContext.call` for its **\*args** parameter. Subpake scripts do not inherit the **--jobs** argument from the parent script, if you want to run them with multithreading enabled you need to pass your own **--jobs** argument manually. Example: .. code-block:: python # These are all equivalent pake.subpake('dir/pakefile.py', 'task_a', '-C', 'some_dir') pake.subpake(['dir/pakefile.py', 'task_a', '-C', 'some_dir']) # note the nested iterable containing string arguments pake.subpake(['dir/pakefile.py', 'task_a', ['-C', 'some_dir']]) pake.subpake('dir/pakefile.py task_a -C some_dir') :param args: The script, and additional arguments to pass to the script. You may pass the command words as a single iterable, a string, or as variadic arguments. :param stdout: The file output to write all of the pakefile's output to. (defaults to :py:attr:`pake.conf.stdout`) The pakefile's **stderr** will be redirected to its **stdout**, so the passed file object will receive all output from the pakefile including error messages. :param silent: Whether or not to silence all output from the subpake script. :param ignore_errors: If this is **True**, this function will never call **exit** or throw :py:exc:`pake.SubpakeException` if the executed pakefile returns with a non-zero exit code. It will instead return the exit code from the subprocess to the caller. :param call_exit: Whether or not to print to :py:attr:`pake.conf.stderr` and immediately call **exit** if the pakefile script encounters an error. The value of this parameter will be disregarded when **ignore_errors=True**. :param readline: Whether or not to use **readline** for reading process output when **ignore_errors** and **silent** are **False**, this is necessary for live output in that case. When live output to a terminal is not required, such as when writing to a file on disk, setting this parameter to **False** results in more efficient writes. This parameter defaults to **True** :param collect_output: Whether or not to collect all subpake output to a temporary file and then write it incrementally to the **stdout** parameter when the process finishes. This can help prevent crashes when dealing with lots of output. When you pass **True** to this parameter, the **readline** parameter is ignored. See: :ref:`Output synchronization with ctx.call & ctx.subpake` :param collect_output_lock: If you provide a lockable object such as :py:class:`threading.Lock` or :py:class:`threading.RLock`, The subpake function will try to acquire the lock before incrementally writing to the **stdout** parameter when **collect_output=True**. The lock you pass is only required to implement a context manager and be usable in a **with** statement, no methods are called on the lock. :py:meth:`pake.TaskContext.subpake` will pass :py:attr:`pake.TaskContext.io_lock` for you if **collect_output=True**. :raises: :py:exc:`ValueError` if no command + optional command arguments are provided. :raises: :py:exc:`FileNotFoundError` if the first argument *(the pakefile)* is not found. :raises: :py:exc:`pake.SubpakeException` if the called pakefile script encounters an error and the following is true: **exit_on_error=False** and **ignore_errors=False**. """ args = pake.util.handle_shell_args(args) if len(args) < 1: raise ValueError('Not enough arguments provided, ' 'must at least provide a pakefile.py script path as the first argument.') script = args.pop(0) if not os.path.isfile(script): raise FileNotFoundError('pakefile: "{}" does not exist.'.format(script)) stdout = stdout if stdout is not None else pake.conf.stdout script_dir = os.path.dirname(os.path.abspath(script)) try: depth = pake.program.get_subpake_depth() + 1 except pake.program.PakeUninitializedException: depth = 0 extra_args = ['--_subpake_depth', str(depth), '--stdin-defines'] if os.getcwd() != script_dir: extra_args += ['--directory', script_dir] args = [sys.executable, script] + extra_args + list(str(i) for i in args) if ignore_errors: return _subpake_ignore_errors( args=args, stdout=stdout, silent=silent, collect_output=collect_output, collect_output_lock=collect_output_lock) return _subpake_with_errors(args=args, stdout=stdout, silent=silent, call_exit=call_exit, readline=readline, collect_output=collect_output, collect_output_lock=collect_output_lock) def _subpake_ignore_errors(args, stdout, silent, collect_output, collect_output_lock): use_temp_file_for_collect = collect_output and not silent if use_temp_file_for_collect: p_stdout = tempfile.TemporaryFile(mode='w+', newline='\n') elif silent: p_stdout = subprocess.DEVNULL else: p_stdout = stdout try: with subprocess.Popen(args, stdout=p_stdout, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, universal_newlines=True) as process: process.stdin.write(repr(EXPORTS)) process.stdin.flush() process.stdin.close() try: return process.wait() except: # pragma: no cover process.kill() process.wait() raise finally: if use_temp_file_for_collect: # Rewind the temp file first p_stdout.seek(0) if collect_output_lock: with collect_output_lock: shutil.copyfileobj(p_stdout, stdout) else: shutil.copyfileobj(p_stdout, stdout) p_stdout.close() def _subpake_with_errors(args, stdout, silent, call_exit, readline, collect_output, collect_output_lock): with subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, universal_newlines=True) as process: process.stdin.write(repr(EXPORTS)) process.stdin.flush() process.stdin.close() output_copy_buffer = tempfile.TemporaryFile(mode='w+', newline='\n') def do_collect_output(seek0_before, seek0_after): if seek0_before: output_copy_buffer.seek(0) if collect_output and not silent: if collect_output_lock: with collect_output_lock: shutil.copyfileobj(output_copy_buffer, stdout) else: shutil.copyfileobj(output_copy_buffer, stdout) if seek0_after: output_copy_buffer.seek(0) try: if not silent: pake.util.copyfileobj_tee(process.stdout, [stdout, output_copy_buffer], readline=readline) else: # Only need to copy to the output_copy_buffer, for error reporting # when silent = True shutil.copyfileobj(process.stdout, output_copy_buffer)
<filename>cblb/models_8bit_cblb.py import numpy as np from models import * def MUX_8_1_model_ode(state, T, params): delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x, gamma_x, theta_x, r_X = params params_yes = gamma_x, n_y, theta_x, delta_x, rho_x params_not = delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x I0, I1, I2, I3, I4, I5, I6, I7, S0, S1, S2 = state[:11] I0_out, I1_out, I2_out, I3_out, I4_out, I5_out, I6_out, I7_out = state[11:19] L_I0_I0, L_I1_S2, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S1, L_I3_S2, L_I3_I3, L_I4_S0, L_I4_I4, L_I5_S0, L_I5_S2, L_I5_I5, L_I6_S0, L_I6_S1, L_I6_I6, L_I7_S0, L_I7_S1, L_I7_S2, L_I7_I7, L_I0, L_I1, L_I2, L_I3, L_I4, L_I5, L_I6, L_I7 = state[19:47] N_I0_S0, N_I0_S1, N_I0_S2, N_I0_I0, N_I1_S0, N_I1_S1, N_I1_S2, N_I1_I1, N_I2_S0, N_I2_S1, N_I2_S2, N_I2_I2, N_I3_S0, N_I3_S1, N_I3_S2, N_I3_I3, N_I4_S0, N_I4_S1, N_I4_S2, N_I4_I4, N_I5_S0, N_I5_S1, N_I5_S2, N_I5_I5, N_I6_S0, N_I6_S1, N_I6_S2, N_I6_I6, N_I7_S0, N_I7_S1, N_I7_S2, N_I7_I7, N_I0, N_I1, N_I2, N_I3, N_I4, N_I5, N_I6, N_I7 = state[47:87] out = state[87] """ I0 """ dI0_out = 0 # yes S0: I0_S0 state_yes_I0_S0 = I0_out, S0, N_I0_S0 dI0_out += yes_cell_wrapper(state_yes_I0_S0, params_yes) dN_I0_S0 = population(N_I0_S0, r_X) # yes S1: I0_S1 state_yes_I0_S1 = I0_out, S1, N_I0_S1 dI0_out += yes_cell_wrapper(state_yes_I0_S1, params_yes) dN_I0_S1 = population(N_I0_S1, r_X) # yes S2: I0_S2 state_yes_I0_S2 = I0_out, S2, N_I0_S2 dI0_out += yes_cell_wrapper(state_yes_I0_S2, params_yes) dN_I0_S2 = population(N_I0_S2, r_X) # not I0: I0_I0 state_not_I0_I0 = L_I0_I0, I0_out, I0, N_I0_I0 dL_I0_I0, dd = not_cell_wrapper(state_not_I0_I0, params_not) dI0_out += dd dN_I0_I0 = population(N_I0_I0, r_X) """ I1 """ dI1_out = 0 # yes S0: I1_S0 state_yes_I1_S0 = I1_out, S0, N_I1_S0 dI1_out += yes_cell_wrapper(state_yes_I1_S0, params_yes) dN_I1_S0 = population(N_I1_S0, r_X) # yes S1: I1_S1 state_yes_I1_S1 = I1_out, S1, N_I1_S1 dI1_out += yes_cell_wrapper(state_yes_I1_S1, params_yes) dN_I1_S1 = population(N_I1_S1, r_X) # not S2: I1_S2 state_not_I1_S2 = L_I1_S2, I1_out, S2, N_I1_S2 dL_I1_S2, dd = not_cell_wrapper(state_not_I1_S2, params_not) dI1_out += dd dN_I1_S2 = population(N_I1_S2, r_X) # not I1: I1_I1 state_not_I1_I1 = L_I1_I1, I1_out, I1, N_I1_I1 dL_I1_I1, dd = not_cell_wrapper(state_not_I1_I1, params_not) dI1_out += dd dN_I1_I1 = population(N_I1_I1, r_X) """ I2 """ dI2_out = 0 # yes S0: I2_S0 state_yes_I2_S0 = I2_out, S0, N_I2_S0 dI2_out += yes_cell_wrapper(state_yes_I2_S0, params_yes) dN_I2_S0 = population(N_I2_S0, r_X) # not S1: I2_S1 state_not_I2_S1 = L_I2_S1, I2_out, S1, N_I2_S1 dL_I2_S1, dd = not_cell_wrapper(state_not_I2_S1, params_not) dI2_out += dd dN_I2_S1 = population(N_I2_S1, r_X) # yes S2: I2_S2 state_yes_I2_S2 = I2_out, S2, N_I2_S2 dI2_out += yes_cell_wrapper(state_yes_I2_S2, params_yes) dN_I2_S2 = population(N_I2_S2, r_X) # not I2: I2_I2 state_not_I2_I2 = L_I2_I2, I2_out, I2, N_I2_I2 dL_I2_I2, dd = not_cell_wrapper(state_not_I2_I2, params_not) dI2_out += dd dN_I2_I2 = population(N_I2_I2, r_X) """ I3 """ dI3_out = 0 # yes S0: I3_S0 state_yes_I3_S0 = I3_out, S0, N_I3_S0 dI3_out += yes_cell_wrapper(state_yes_I3_S0, params_yes) dN_I3_S0 = population(N_I3_S0, r_X) # not S1: I3_S1 state_not_I3_S1 = L_I3_S1, I3_out, S1, N_I3_S1 dL_I3_S1, dd = not_cell_wrapper(state_not_I3_S1, params_not) dI3_out += dd dN_I3_S1 = population(N_I3_S1, r_X) # not S2: I3_S2 state_not_I3_S2 = L_I3_S2, I3_out, S2, N_I3_S2 dL_I3_S2, dd = not_cell_wrapper(state_not_I3_S2, params_not) dI3_out += dd dN_I3_S2 = population(N_I3_S2, r_X) # not I3: I3_I3 state_not_I3_I3 = L_I3_I3, I3_out, I3, N_I3_I3 dL_I3_I3, dd = not_cell_wrapper(state_not_I3_I3, params_not) dI3_out += dd dN_I3_I3 = population(N_I3_I3, r_X) """ I4 """ dI4_out = 0 # not S0: I4_S0 state_not_I4_S0 = L_I4_S0, I4_out, S0, N_I4_S0 dL_I4_S0, dd = not_cell_wrapper(state_not_I4_S0, params_not) dI4_out += dd dN_I4_S0 = population(N_I4_S0, r_X) # yes S1: I4_S1 state_yes_I4_S1 = I4_out, S1, N_I4_S1 dI4_out += yes_cell_wrapper(state_yes_I4_S1, params_yes) dN_I4_S1 = population(N_I4_S1, r_X) # yes S2: I4_S2 state_yes_I4_S2 = I4_out, S2, N_I4_S2 dI4_out += yes_cell_wrapper(state_yes_I4_S2, params_yes) dN_I4_S2 = population(N_I4_S2, r_X) # not I4: I4_I4 state_not_I4_I4 = L_I4_I4, I4_out, I4, N_I4_I4 dL_I4_I4, dd = not_cell_wrapper(state_not_I4_I4, params_not) dI4_out += dd dN_I4_I4 = population(N_I4_I4, r_X) """ I5 """ dI5_out = 0 # not S0: I5_S0 state_not_I5_S0 = L_I5_S0, I5_out, S0, N_I5_S0 dL_I5_S0, dd = not_cell_wrapper(state_not_I5_S0, params_not) dI5_out += dd dN_I5_S0 = population(N_I5_S0, r_X) # yes S1: I5_S1 state_yes_I5_S1 = I5_out, S1, N_I5_S1 dI5_out += yes_cell_wrapper(state_yes_I5_S1, params_yes) dN_I5_S1 = population(N_I5_S1, r_X) # not S2: I5_S2 state_not_I5_S2 = L_I5_S2, I5_out, S2, N_I5_S2 dL_I5_S2, dd = not_cell_wrapper(state_not_I5_S2, params_not) dI5_out += dd dN_I5_S2 = population(N_I5_S2, r_X) # not I5: I5_I5 state_not_I5_I5 = L_I5_I5, I5_out, I5, N_I5_I5 dL_I5_I5, dd = not_cell_wrapper(state_not_I5_I5, params_not) dI5_out += dd dN_I5_I5 = population(N_I5_I5, r_X) """ I6 """ dI6_out = 0 # not S0: I6_S0 state_not_I6_S0 = L_I6_S0, I6_out, S0, N_I6_S0 dL_I6_S0, dd = not_cell_wrapper(state_not_I6_S0, params_not) dI6_out += dd dN_I6_S0 = population(N_I6_S0, r_X) # not S1: I6_S1 state_not_I6_S1 = L_I6_S1, I6_out, S1, N_I6_S1 dL_I6_S1, dd = not_cell_wrapper(state_not_I6_S1, params_not) dI6_out += dd dN_I6_S1 = population(N_I6_S1, r_X) # yes S2: I6_S2 state_yes_I6_S2 = I6_out, S2, N_I6_S2 dI6_out += yes_cell_wrapper(state_yes_I6_S2, params_yes) dN_I6_S2 = population(N_I6_S2, r_X) # not I6: I6_I6 state_not_I6_I6 = L_I6_I6, I6_out, I6, N_I6_I6 dL_I6_I6, dd = not_cell_wrapper(state_not_I6_I6, params_not) dI6_out += dd dN_I6_I6 = population(N_I6_I6, r_X) """ I7 """ dI7_out = 0 # not S0: I7_S0 state_not_I7_S0 = L_I7_S0, I7_out, S0, N_I7_S0 dL_I7_S0, dd = not_cell_wrapper(state_not_I7_S0, params_not) dI7_out += dd dN_I7_S0 = population(N_I7_S0, r_X) # not S1: I7_S1 state_not_I7_S1 = L_I7_S1, I7_out, S1, N_I7_S1 dL_I7_S1, dd = not_cell_wrapper(state_not_I7_S1, params_not) dI7_out += dd dN_I7_S1 = population(N_I7_S1, r_X) # not S2: I7_S2 state_not_I7_S2 = L_I7_S2, I7_out, S2, N_I7_S2 dL_I7_S2, dd = not_cell_wrapper(state_not_I7_S2, params_not) dI7_out += dd dN_I7_S2 = population(N_I7_S2, r_X) # not I7: I7_I7 state_not_I7_I7 = L_I7_I7, I7_out, I7, N_I7_I7 dL_I7_I7, dd = not_cell_wrapper(state_not_I7_I7, params_not) dI7_out += dd dN_I7_I7 = population(N_I7_I7, r_X) """ out """ dout = 0 # not I0: I0 state_not_I0 = L_I0, out, I0_out, N_I0 dL_I0, dd = not_cell_wrapper(state_not_I0, params_not) dout += dd dN_I0 = population(N_I0, r_X) # not I1: I1 state_not_I1 = L_I1, out, I1_out, N_I1 dL_I1, dd = not_cell_wrapper(state_not_I1, params_not) dout += dd dN_I1 = population(N_I1, r_X) # not I2: I2 state_not_I2 = L_I2, out, I2_out, N_I2 dL_I2, dd = not_cell_wrapper(state_not_I2, params_not) dout += dd dN_I2 = population(N_I2, r_X) # not I3: I3 state_not_I3 = L_I3, out, I3_out, N_I3 dL_I3, dd = not_cell_wrapper(state_not_I3, params_not) dout += dd dN_I3 = population(N_I3, r_X) # not I4: I4 state_not_I4 = L_I4, out, I4_out, N_I4 dL_I4, dd = not_cell_wrapper(state_not_I4, params_not) dout += dd dN_I4 = population(N_I4, r_X) # not I5: I5 state_not_I5 = L_I5, out, I5_out, N_I5 dL_I5, dd = not_cell_wrapper(state_not_I5, params_not) dout += dd dN_I5 = population(N_I5, r_X) # not I6: I6 state_not_I6 = L_I6, out, I6_out, N_I6 dL_I6, dd = not_cell_wrapper(state_not_I6, params_not) dout += dd dN_I6 = population(N_I6, r_X) # not I7: I7 state_not_I7 = L_I7, out, I7_out, N_I7 dL_I7, dd = not_cell_wrapper(state_not_I7, params_not) dout += dd dN_I7 = population(N_I7, r_X) dI0, dI1, dI2, dI3, dI4, dI5, dI6, dI7, dS0, dS1, dS2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 dstate = np.array([dI0, dI1, dI2, dI3, dI4, dI5, dI6, dI7, dS0, dS1, dS2, dI0_out, dI1_out, dI2_out, dI3_out, dI4_out, dI5_out, dI6_out, dI7_out, dL_I0_I0, dL_I1_S2, dL_I1_I1, dL_I2_S1, dL_I2_I2, dL_I3_S1, dL_I3_S2, dL_I3_I3, dL_I4_S0, dL_I4_I4, dL_I5_S0, dL_I5_S2, dL_I5_I5, dL_I6_S0, dL_I6_S1, dL_I6_I6, dL_I7_S0, dL_I7_S1, dL_I7_S2, dL_I7_I7, dL_I0, dL_I1, dL_I2, dL_I3, dL_I4, dL_I5, dL_I6, dL_I7, dN_I0_S0, dN_I0_S1, dN_I0_S2, dN_I0_I0, dN_I1_S0, dN_I1_S2, dN_I1_S1, dN_I1_I1, dN_I2_S0, dN_I2_S1, dN_I2_S2, dN_I2_I2, dN_I3_S0, dN_I3_S1, dN_I3_S2, dN_I3_I3, dN_I4_S0, dN_I4_S1, dN_I4_S2, dN_I4_I4, dN_I5_S0, dN_I5_S1, dN_I5_S2, dN_I5_I5, dN_I6_S0, dN_I6_S1, dN_I6_S2, dN_I6_I6, dN_I7_S0, dN_I7_S1, dN_I7_S2, dN_I7_I7, dN_I0, dN_I1, dN_I2, dN_I3, dN_I4, dN_I5, dN_I6, dN_I7, dout]) return dstate def MUX_8_1_generate_stoichiometry(): I0_out, I1_out, I2_out, I3_out, I4_out, I5_out, I6_out, I7_out = range(11, 19) L_I0_I0, L_I1_S2, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S1, L_I3_S2, L_I3_I3, L_I4_S0, L_I4_I4, L_I5_S0, L_I5_S2, L_I5_I5, L_I6_S0, L_I6_S1, L_I6_I6, L_I7_S0, L_I7_S1, L_I7_S2, L_I7_I7, L_I0, L_I1, L_I2, L_I3, L_I4, L_I5, L_I6, L_I7 = range(19, 47) out = 87 # # x axis ... species # y axis ... reactions # N = np.zeros((88, 176)) ##################### I0 """ # yes S0: I0_S0 """ r = 0 # reaction 0 # 0 --> I0_out N[I0_out, r] = 1 r += 1 # reaction 1 # I0_out --> 0 N[I0_out, r] = -1 r += 1 # reaction 2 # I0_out --> 0 N[I0_out, r] = -1 """ # yes S1: I0_S1 """ r += 1 # reaction 3 # 0 --> I0_out N[I0_out, r] = 1 r += 1 #
<reponame>mmabey/fhir.resources<gh_stars>0 # -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/CapabilityStatement Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ import io import json import os import unittest import pytest from .. import capabilitystatement from ..fhirdate import FHIRDate from .fixtures import force_bytes @pytest.mark.usefixtures("base_settings") class CapabilityStatementTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get("FHIR_UNITTEST_DATADIR") or "" with io.open(os.path.join(datadir, filename), "r", encoding="utf-8") as handle: js = json.load(handle) self.assertEqual("CapabilityStatement", js["resourceType"]) return capabilitystatement.CapabilityStatement(js) def testCapabilityStatement1(self): inst = self.instantiate_from("capabilitystatement-messagedefinition.json") self.assertIsNotNone( inst, "Must have instantiated a CapabilityStatement instance" ) self.implCapabilityStatement1(inst) js = inst.as_json() self.assertEqual("CapabilityStatement", js["resourceType"]) inst2 = capabilitystatement.CapabilityStatement(js) self.implCapabilityStatement1(inst2) def implCapabilityStatement1(self, inst): self.assertEqual( force_bytes(inst.contact[0].name), force_bytes("System Administrator") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].system), force_bytes("email") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].value), force_bytes("<EMAIL>") ) self.assertEqual(inst.date.date, FHIRDate("2012-01-04").date) self.assertEqual(inst.date.as_json(), "2012-01-04") self.assertEqual( force_bytes(inst.description), force_bytes( "Sample capability statement showing new MessageDefinition structure" ), ) self.assertTrue(inst.experimental) self.assertEqual(force_bytes(inst.fhirVersion), force_bytes("4.0.1")) self.assertEqual(force_bytes(inst.format[0]), force_bytes("xml")) self.assertEqual(force_bytes(inst.format[1]), force_bytes("json")) self.assertEqual(force_bytes(inst.id), force_bytes("messagedefinition")) self.assertEqual( force_bytes(inst.implementation.description), force_bytes("Acme Message endpoint"), ) self.assertEqual( force_bytes(inst.implementation.url), force_bytes("http://acem.com/fhir/message-drop"), ) self.assertEqual(force_bytes(inst.kind), force_bytes("instance")) self.assertEqual( force_bytes(inst.messaging[0].documentation), force_bytes("ADT A08 equivalent for external system notifications"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].address), force_bytes("mllp:10.1.1.10:9234"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].protocol.code), force_bytes("mllp"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].protocol.system), force_bytes("http://terminology.hl7.org/CodeSystem/message-transport"), ) self.assertEqual(inst.messaging[0].reliableCache, 30) self.assertEqual( force_bytes(inst.messaging[0].supportedMessage[0].definition), force_bytes("MessageDefinition/example"), ) self.assertEqual( force_bytes(inst.messaging[0].supportedMessage[0].mode), force_bytes("receiver"), ) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual( force_bytes(inst.meta.tag[0].display), force_bytes("test health data") ) self.assertEqual( force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason"), ) self.assertEqual(force_bytes(inst.publisher), force_bytes("ACME Corporation")) self.assertEqual(force_bytes(inst.software.name), force_bytes("EHR")) self.assertEqual(force_bytes(inst.status), force_bytes("draft")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) def testCapabilityStatement2(self): inst = self.instantiate_from("capabilitystatement-example.json") self.assertIsNotNone( inst, "Must have instantiated a CapabilityStatement instance" ) self.implCapabilityStatement2(inst) js = inst.as_json() self.assertEqual("CapabilityStatement", js["resourceType"]) inst2 = capabilitystatement.CapabilityStatement(js) self.implCapabilityStatement2(inst2) def implCapabilityStatement2(self, inst): self.assertEqual( force_bytes(inst.contact[0].name), force_bytes("System Administrator") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].system), force_bytes("email") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].value), force_bytes("<EMAIL>") ) self.assertEqual( force_bytes(inst.copyright), force_bytes("Copyright © Acme Healthcare and GoodCorp EHR Systems"), ) self.assertEqual(inst.date.date, FHIRDate("2012-01-04").date) self.assertEqual(inst.date.as_json(), "2012-01-04") self.assertEqual( force_bytes(inst.description), force_bytes( "This is the FHIR capability statement for the main EHR at ACME for the private interface - it does not describe the public interface" ), ) self.assertEqual( force_bytes(inst.document[0].documentation), force_bytes("Basic rules for all documents in the EHR system"), ) self.assertEqual(force_bytes(inst.document[0].mode), force_bytes("consumer")) self.assertEqual( force_bytes(inst.document[0].profile), force_bytes( "http://fhir.hl7.org/base/Profilebc054d23-75e1-4dc6-aca5-838b6b1ac81d/_history/b5fdd9fc-b021-4ea1-911a-721a60663796" ), ) self.assertTrue(inst.experimental) self.assertEqual(force_bytes(inst.fhirVersion), force_bytes("4.0.1")) self.assertEqual(force_bytes(inst.format[0]), force_bytes("xml")) self.assertEqual(force_bytes(inst.format[1]), force_bytes("json")) self.assertEqual(force_bytes(inst.id), force_bytes("example")) self.assertEqual( force_bytes(inst.implementation.description), force_bytes("main EHR at ACME"), ) self.assertEqual( force_bytes(inst.implementation.url), force_bytes("http://10.2.3.4/fhir") ) self.assertEqual( force_bytes(inst.implementationGuide[0]), force_bytes("http://hl7.org/fhir/us/lab"), ) self.assertEqual( force_bytes(inst.instantiates[0]), force_bytes("http://ihe.org/fhir/CapabilityStatement/pixm-client"), ) self.assertEqual( force_bytes(inst.jurisdiction[0].coding[0].code), force_bytes("US") ) self.assertEqual( force_bytes(inst.jurisdiction[0].coding[0].display), force_bytes("United States of America (the)"), ) self.assertEqual( force_bytes(inst.jurisdiction[0].coding[0].system), force_bytes("urn:iso:std:iso:3166"), ) self.assertEqual(force_bytes(inst.kind), force_bytes("instance")) self.assertEqual( force_bytes(inst.messaging[0].documentation), force_bytes("ADT A08 equivalent for external system notifications"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].address), force_bytes("mllp:10.1.1.10:9234"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].protocol.code), force_bytes("mllp"), ) self.assertEqual( force_bytes(inst.messaging[0].endpoint[0].protocol.system), force_bytes("http://terminology.hl7.org/CodeSystem/message-transport"), ) self.assertEqual(inst.messaging[0].reliableCache, 30) self.assertEqual( force_bytes(inst.messaging[0].supportedMessage[0].definition), force_bytes("MessageDefinition/example"), ) self.assertEqual( force_bytes(inst.messaging[0].supportedMessage[0].mode), force_bytes("receiver"), ) self.assertEqual(force_bytes(inst.name), force_bytes("ACME-EHR")) self.assertEqual( force_bytes(inst.patchFormat[0]), force_bytes("application/xml-patch+xml") ) self.assertEqual( force_bytes(inst.patchFormat[1]), force_bytes("application/json-patch+json") ) self.assertEqual(force_bytes(inst.publisher), force_bytes("ACME Corporation")) self.assertEqual( force_bytes(inst.purpose), force_bytes( "Main EHR capability statement, published for contracting and operational support" ), ) self.assertEqual( force_bytes(inst.rest[0].compartment[0]), force_bytes("http://hl7.org/fhir/CompartmentDefinition/patient"), ) self.assertEqual( force_bytes(inst.rest[0].documentation), force_bytes("Main FHIR endpoint for acem health"), ) self.assertEqual( force_bytes(inst.rest[0].interaction[0].code), force_bytes("transaction") ) self.assertEqual( force_bytes(inst.rest[0].interaction[1].code), force_bytes("history-system") ) self.assertEqual(force_bytes(inst.rest[0].mode), force_bytes("server")) self.assertTrue(inst.rest[0].resource[0].conditionalCreate) self.assertEqual( force_bytes(inst.rest[0].resource[0].conditionalDelete), force_bytes("not-supported"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].conditionalRead), force_bytes("full-support"), ) self.assertFalse(inst.rest[0].resource[0].conditionalUpdate) self.assertEqual( force_bytes(inst.rest[0].resource[0].documentation), force_bytes("This server does not let the clients create identities."), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].code), force_bytes("read"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].code), force_bytes("vread"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].documentation), force_bytes("Only supported for patient records since 12-Dec 2012"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[2].code), force_bytes("update"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[3].code), force_bytes("history-instance"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[4].code), force_bytes("create"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[5].code), force_bytes("history-type"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].profile), force_bytes( "http://registry.fhir.org/r4/StructureDefinition/7896271d-57f6-4231-89dc-dcc91eab2416" ), ) self.assertTrue(inst.rest[0].resource[0].readHistory) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchInclude[0]), force_bytes("Organization"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].definition), force_bytes("http://hl7.org/fhir/SearchParameter/Patient-identifier"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].documentation), force_bytes("Only supports search by institution MRN"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].name), force_bytes("identifier"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].definition), force_bytes( "http://hl7.org/fhir/SearchParameter/Patient-general-practitioner" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].name), force_bytes("general-practitioner"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].type), force_bytes("reference"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchRevInclude[0]), force_bytes("Person"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].supportedProfile[0]), force_bytes( "http://registry.fhir.org/r4/StructureDefinition/00ab9e7a-06c7-4f77-9234-4154ca1e3347" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].type), force_bytes("Patient") ) self.assertFalse(inst.rest[0].resource[0].updateCreate) self.assertEqual( force_bytes(inst.rest[0].resource[0].versioning), force_bytes("versioned-update"), ) self.assertTrue(inst.rest[0].security.cors) self.assertEqual( force_bytes(inst.rest[0].security.description), force_bytes("See Smart on FHIR documentation"), ) self.assertEqual( force_bytes(inst.rest[0].security.service[0].coding[0].code), force_bytes("SMART-on-FHIR"), ) self.assertEqual( force_bytes(inst.rest[0].security.service[0].coding[0].system), force_bytes( "http://terminology.hl7.org/CodeSystem/restful-security-service" ), ) self.assertEqual(force_bytes(inst.software.name), force_bytes("EHR")) self.assertEqual(inst.software.releaseDate.date, FHIRDate("2012-01-04").date) self.assertEqual(inst.software.releaseDate.as_json(), "2012-01-04") self.assertEqual( force_bytes(inst.software.version), force_bytes("0.00.020.2134") ) self.assertEqual(force_bytes(inst.status), force_bytes("draft")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual( force_bytes(inst.title), force_bytes("ACME EHR capability statement") ) self.assertEqual( force_bytes(inst.url), force_bytes("urn:uuid:68D043B5-9ECF-4559-A57A-396E0D452311"), ) self.assertEqual( force_bytes(inst.useContext[0].code.code), force_bytes("focus") ) self.assertEqual( force_bytes(inst.useContext[0].code.system), force_bytes("http://terminology.hl7.org/CodeSystem/usage-context-type"), ) self.assertEqual( force_bytes(inst.useContext[0].valueCodeableConcept.coding[0].code), force_bytes("positive"), ) self.assertEqual( force_bytes(inst.useContext[0].valueCodeableConcept.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/variant-state"), ) self.assertEqual(force_bytes(inst.version), force_bytes("20130510")) def testCapabilityStatement3(self): inst = self.instantiate_from("capabilitystatement-measure-processor.json") self.assertIsNotNone( inst, "Must have instantiated a CapabilityStatement instance" ) self.implCapabilityStatement3(inst) js = inst.as_json() self.assertEqual("CapabilityStatement", js["resourceType"]) inst2 = capabilitystatement.CapabilityStatement(js) self.implCapabilityStatement3(inst2) def implCapabilityStatement3(self, inst): self.assertEqual(force_bytes(inst.contact[0].name), force_bytes("FHIR Project")) self.assertEqual( force_bytes(inst.contact[0].telecom[0].system), force_bytes("other") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].value), force_bytes("http://hl7.org/fhir"), ) self.assertEqual(inst.date.date, FHIRDate("2016-09-16").date) self.assertEqual(inst.date.as_json(), "2016-09-16") self.assertEqual( force_bytes(inst.description), force_bytes( "Basic conformance statement for a Measure Processor Service. A server can support more functionality than defined here, but this is the minimum amount" ), ) self.assertEqual(force_bytes(inst.fhirVersion), force_bytes("4.0.1")) self.assertEqual(force_bytes(inst.format[0]), force_bytes("json")) self.assertEqual(force_bytes(inst.format[1]), force_bytes("xml")) self.assertEqual(force_bytes(inst.id), force_bytes("measure-processor")) self.assertEqual(force_bytes(inst.kind), force_bytes("capability")) self.assertEqual( force_bytes(inst.name), force_bytes("Measure Processor Service Conformance Statement"), ) self.assertEqual(force_bytes(inst.publisher), force_bytes("HL7, Inc")) self.assertEqual( force_bytes(inst.rest[0].documentation), force_bytes("RESTful Measure Processor Service"), ) self.assertEqual(force_bytes(inst.rest[0].mode), force_bytes("server")) self.assertEqual( force_bytes(inst.rest[0].operation[0].definition), force_bytes("OperationDefinition/Measure-evaluate-measure"), ) self.assertEqual( force_bytes(inst.rest[0].operation[0].name), force_bytes("evaluate-measure") ) self.assertEqual( force_bytes(inst.rest[0].operation[1].definition), force_bytes("OperationDefinition/Measure-data-requirements"), ) self.assertEqual( force_bytes(inst.rest[0].operation[1].name), force_bytes("data-requirements"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].code), force_bytes("read"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].documentation), force_bytes( "Read allows clients to get the logical definitions of the measures" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].code), force_bytes("search-type"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].documentation), force_bytes( "Search allows clients to filter measures based on a provided search parameter" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].profile), force_bytes("StructureDefinition/Measure"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].definition), force_bytes("http://hl7.org/fhir/SearchParameter/Measure-identifier"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].name), force_bytes("identifier"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].definition), force_bytes("http://hl7.org/fhir/SearchParameter/Measure-status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].name), force_bytes("status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].definition), force_bytes("http://hl7.org/fhir/SearchParameter/Measure-version"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].name), force_bytes("version"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].type), force_bytes("string"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].type), force_bytes("Measure") ) self.assertTrue(inst.rest[0].security.cors) self.assertEqual( force_bytes(inst.rest[0].security.service[0].coding[0].code), force_bytes("Certificates"), ) self.assertEqual( force_bytes(inst.rest[0].security.service[0].coding[0].system), force_bytes( "http://terminology.hl7.org/CodeSystem/restful-security-service" ), ) self.assertEqual( force_bytes(inst.software.name), force_bytes("ACME Measure Processor Service"), ) self.assertEqual(force_bytes(inst.status), force_bytes("draft")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual( force_bytes(inst.url), force_bytes("http://hl7.org/fhir/measure-processor") ) def testCapabilityStatement4(self): inst = self.instantiate_from("capabilitystatement-terminology-server.json") self.assertIsNotNone( inst, "Must have instantiated a CapabilityStatement instance" ) self.implCapabilityStatement4(inst) js = inst.as_json() self.assertEqual("CapabilityStatement", js["resourceType"]) inst2 = capabilitystatement.CapabilityStatement(js) self.implCapabilityStatement4(inst2) def implCapabilityStatement4(self, inst): self.assertEqual(force_bytes(inst.contact[0].name), force_bytes("FHIR Project")) self.assertEqual( force_bytes(inst.contact[0].telecom[0].system), force_bytes("url") ) self.assertEqual( force_bytes(inst.contact[0].telecom[0].value), force_bytes("http://hl7.org/fhir"), ) self.assertEqual(inst.date.date, FHIRDate("2015-07-05").date) self.assertEqual(inst.date.as_json(), "2015-07-05") self.assertEqual( force_bytes(inst.description), force_bytes( "Basic capability statement for a Terminology Server. A server can support more fucntionality than defined here, but this is the minimum amount" ), ) self.assertEqual( force_bytes(inst.extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-supported-system" ), ) self.assertEqual( force_bytes(inst.extension[0].valueUri), force_bytes("http://loinc.org") ) self.assertEqual(force_bytes(inst.fhirVersion), force_bytes("4.0.1")) self.assertEqual(force_bytes(inst.format[0]), force_bytes("json")) self.assertEqual(force_bytes(inst.format[1]), force_bytes("xml")) self.assertEqual(force_bytes(inst.id), force_bytes("terminology-server")) self.assertEqual(force_bytes(inst.kind), force_bytes("capability")) self.assertEqual( force_bytes(inst.name), force_bytes("Terminology Service Capability Statement"), ) self.assertEqual(force_bytes(inst.publisher), force_bytes("HL7, Inc")) self.assertEqual( force_bytes(inst.rest[0].documentation), force_bytes("RESTful Terminology Server"), ) self.assertEqual(force_bytes(inst.rest[0].mode), force_bytes("server")) self.assertEqual( force_bytes(inst.rest[0].operation[0].definition), force_bytes("OperationDefinition/ValueSet-expand"), ) self.assertEqual( force_bytes(inst.rest[0].operation[0].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].operation[0].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].operation[0].name), force_bytes("expand") ) self.assertEqual( force_bytes(inst.rest[0].operation[1].definition), force_bytes("OperationDefinition/CodeSystem-lookup"), ) self.assertEqual( force_bytes(inst.rest[0].operation[1].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].operation[1].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].operation[1].name), force_bytes("lookup") ) self.assertEqual( force_bytes(inst.rest[0].operation[2].definition), force_bytes("OperationDefinition/ValueSet-validate-code"), ) self.assertEqual( force_bytes(inst.rest[0].operation[2].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].operation[2].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].operation[2].name), force_bytes("validate-code") ) self.assertEqual( force_bytes(inst.rest[0].operation[3].definition), force_bytes("OperationDefinition/ConceptMap-translate"), ) self.assertEqual( force_bytes(inst.rest[0].operation[3].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].operation[3].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].operation[3].name), force_bytes("translate") ) self.assertEqual( force_bytes(inst.rest[0].operation[4].definition), force_bytes("OperationDefinition/ConceptMap-closure"), ) self.assertEqual( force_bytes(inst.rest[0].operation[4].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].operation[4].extension[0].valueCode), force_bytes("SHOULD"), ) self.assertEqual( force_bytes(inst.rest[0].operation[4].name), force_bytes("closure") ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].code), force_bytes("read"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].documentation), force_bytes( "Read allows clients to get the logical definitions of the value sets" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[0].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].code), force_bytes("search-type"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].documentation), force_bytes("Search allows clients to find value sets on the server"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].interaction[1].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].profile), force_bytes("StructureDefinition/ValueSet"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].name), force_bytes("date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[0].type), force_bytes("date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-name"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].name), force_bytes("name"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[1].type), force_bytes("string"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-reference"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].name), force_bytes("reference"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[2].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[3].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[3].name), force_bytes("status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[3].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[4].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-url"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[4].name), force_bytes("url"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[4].type), force_bytes("uri"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[5].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ValueSet-version"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[5].name), force_bytes("version"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].searchParam[5].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[0].type), force_bytes("ValueSet") ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[0].code), force_bytes("read"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[0].documentation), force_bytes( "Read allows clients to get the logical definitions of the concept maps" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[0].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[0].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[1].code), force_bytes("search-type"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[1].documentation), force_bytes("Search allows clients to find concept maps on the server"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[1].extension[0].url), force_bytes( "http://hl7.org/fhir/StructureDefinition/capabilitystatement-expectation" ), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].interaction[1].extension[0].valueCode), force_bytes("SHALL"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].profile), force_bytes("StructureDefinition/ConceptMap"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[0].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ConceptMap-date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[0].name), force_bytes("date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[0].type), force_bytes("date"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[1].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ConceptMap-name"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[1].name), force_bytes("name"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[1].type), force_bytes("string"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[2].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ConceptMap-status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[2].name), force_bytes("status"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[2].type), force_bytes("token"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[3].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ConceptMap-source"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[3].name), force_bytes("source"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[3].type), force_bytes("uri"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[4].definition), force_bytes("http://hl7.org/fhir/SearchParameter/ConceptMap-target"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[4].name), force_bytes("target"), ) self.assertEqual( force_bytes(inst.rest[0].resource[1].searchParam[4].type), force_bytes("uri"), )
<gh_stars>0 from abc import ABC, abstractmethod from threading import Timer, Lock, Thread import serial import io import logging import json import re import queue import time import RPi.GPIO as GPIO from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTShadowClient class PhysicalThing(object): _logger = logging.getLogger(__name__) def __init__(self, endpoint=None, thingName=None, rootCAPath=None, certificatePath=None, privateKeyPath=None, region=None, device=None, devices=None): ''' Initialize connection to AWS IOT shadow service ''' self._eventQueue = queue.Queue() self._localShadow = dict() # dictionary of local property values self._propertyHandlers = dict() # dictionary to set which device handles which property values self._shadowHandler = self._iotConnect(endpoint, thingName, rootCAPath, certificatePath, privateKeyPath, region) if device is not None and devices is not None: self._logger.debug('Arguments for both device and devices have been provided. Normal usage is one or the other') if device is not None: self.registerDevice(device) if devices is not None: for d in devices: self.registerDevice(d) def _iotConnect(self, endpoint, thingName, rootCAPath, certificatePath, privateKeyPath, region): ''' Establish connection to the AWS IOT service ''' # Init AWSIoTMQTTShadowClient myAWSIoTMQTTShadowClient = None myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient('pyASHdenTV') myAWSIoTMQTTShadowClient.configureEndpoint(endpoint, 8883) myAWSIoTMQTTShadowClient.configureCredentials(rootCAPath, privateKeyPath, certificatePath) # AWSIoTMQTTShadowClient configuration myAWSIoTMQTTShadowClient.configureAutoReconnectBackoffTime(1, 32, 20) myAWSIoTMQTTShadowClient.configureConnectDisconnectTimeout(10) # 10 sec myAWSIoTMQTTShadowClient.configureMQTTOperationTimeout(5) # 5 sec # Connect to AWS IoT myAWSIoTMQTTShadowClient.connect() # Create a deviceShadow with persistent subscription deviceShadowHandler = myAWSIoTMQTTShadowClient.createShadowHandlerWithName(thingName, True) # Delete shadow JSON doc deviceShadowHandler.shadowDelete(self._deleteCallback, 5) # Listen on deltas deviceShadowHandler.shadowRegisterDeltaCallback(self._deltaCallback) return deviceShadowHandler def registerDevice(self, device): ''' Register a device as the handler for the set of properties that the device implements ''' for property in device.properties: if property in self._localShadow: self._logger.warn('{0} is trying to register {1} which is a property that is already in use.'.format(device.__name__, property)) self._localShadow[property] = device.properties[property] self._propertyHandlers[property] = device device.start(self._eventQueue) def _deleteCallback(self, payload, responseStatus, token): ''' Log result when a request to delete the IOT shadow has been made ''' if responseStatus == 'accepted': self._logger.info("Delete request " + token + " accepted!") return self._logger.warn({ 'timeout': "Delete request " + token + " time out!", 'rejected': "Delete request " + token + " rejected!" }.get(responseStatus, "Delete request with token " + token + "contained unexpected response status " + responseStatus)) def _updateCallback(self, payload, responseStatus, token): ''' Log result when a request has been made to update the IOT shadow ''' if responseStatus == 'accepted': payloadDict = json.loads(payload) self._logger.info("Received delta request: " + json.dumps(payloadDict)) return self._logger.warn({ 'timeout': "Update request " + token + " timed out!", 'rejected': "Update request " + token + " was rejected!" }.get(reponseStatus, "Update request " + token + " contained unexpected response status " + responseStatus)) def _deltaCallback(self, payload, responseStatus, token): ''' Receive an delta message from IOT service and forward update requests for every included property to the event queue ''' print ('Delta message received with content: {0}'.format(payload)) payloadDict = json.loads(payload) for property in payloadDict['state']: self._logger.info('Delta Message: processing item [{0}][{1}]'.format(property, payloadDict['state'][property])) self._eventQueue.put({'source': '__thing__', 'action': 'UPDATE', 'property': property, 'value': payloadDict['state'][property] }) def onChange(self, updatedProperties): return None def start(self): self._main() def _main(self): while True: messages = [ self._eventQueue.get() ] self._eventQueue.task_done() ''' A new message has come in but it may be a batch of updates so wait for a short time and then read all pending messages ''' time.sleep(0.1) try: while True: messages.append( self._eventQueue.get_nowait()) self._eventQueue.task_done() except queue.Empty: pass ''' Process all received messages ''' updatedProperties = dict() for message in messages: if message['action'] == 'EXIT': ''' If an EXIT message is received then stop processing messages and exit the main thing loop ''' return if message['action'] == 'UPDATE': if message['source'] == '__thing__': ''' Update is from IOT service. Determine which device supports the updated property and send an update request to it ''' self._propertyHandlers[message['property']].updateDevice(message['property'], message['value']) else: ''' Update is from device. Add it to updatedProperties ''' updatedProperties[message['property']] = message['value'] localPropertyChanges = self.onChange(updatedProperties) if localPropertyChanges: for k, v in localPropertyChanges: self._propertyHandlers[k].updateDevice(k,v) ''' If there are properties to report to the IOT service, send an update message ''' updateNeeded = False payloadDict = { 'state': { 'reported': {}, 'desired': {} } } for property, value in updatedProperties.items(): if self._localShadow[property] != value: print ('IOT UPDATED: [{0}:{1}]'.format(property, value)) updateNeeded = True payloadDict['state']['reported'] = updatedProperties payloadDict['state']['desired'] = updatedProperties if updateNeeded: self._shadowHandler.shadowUpdate(json.dumps(payloadDict), self._updateCallback, 5) class PhysicalDevice(ABC): ''' Device that makes up part of an IOT thing ''' _logger = logging.getLogger(__name__) def __init__(self, name = None, stream = None, properties = None, eol='\n', timeout=5, synchronous=False): ''' Initialize device driver and set it to receive updates from the eventQueue ''' self._stream = stream self._eol = eol self._timeout = timeout self._synchronous = synchronous self.properties = properties # dictionary of the properties and starting values for device self.__name__ = name if name is not None else self.__class__.__name__ self._deviceQueue = queue.Queue() self.readlock = Lock() self._waitFor = None # Are we waiting for a specific value from the device self._exit = False # Set when a request has been made to exit the device driver def __del__(self): self.close() def start(self, eventQueue): self._eventQueue = eventQueue # Starting event loops _threadWrite = Thread(target=self._writeLoop) _threadWrite.start() # If device is asynchronous, start an independent read thread if not self._synchronous: _threadRead = Thread(target=self._readLoop) _threadRead.start() def updateDevice(self, property, value): ''' Send message to device to tell it to update one of its property values ''' self._deviceQueue.put({'source': '__thing__', 'action': 'UPDATE', 'property': property, 'value': value }) def updateThing(self, property, value): ''' Send message to thing telling it to update its thing shadow to reflect the device's reported state ''' self._eventQueue.put({'source': self.__name__, 'action': 'UPDATE', 'property': property, 'value': value }) # update local property value self.properties[property] = value def exit(self): ''' Shut down device driver ''' self._exit = True self._deviceQueue.put({'action': 'EXIT'}) @classmethod def deviceToProperty(cls, property, regex): def decorateinterface(func): transform = getattr(func, '__deviceToProperty__', {}) cre = re.compile(regex) transform[cre] = (property, func) func.__deviceToProperty__ = transform return func return decorateinterface @classmethod def propertyToDevice(cls, property, cmd): def decorateinterface(func): transform = getattr(func, '__propertyToDevice__', {}) transform[property] = (cmd, func) func.__propertyToDevice__ = transform return func return decorateinterface @classmethod def _deviceToProperty(cls, value): for supercls in cls.__mro__: # This makes inherited Appliances work for method in supercls.__dict__.values(): d2pList = getattr(method, '__deviceToProperty__', {}) for cre, (property, method) in d2pList.items(): match = cre.match(value) if match: return (property, method, match) return None @classmethod def _propertyToDevice(cls, property): for supercls in cls.__mro__: # This makes inherited Appliances work for method in supercls.__dict__.values(): p2dList = getattr(method, '__propertyToDevice__', {}) if p2dList and property in p2dList: return p2dList.get(property) def _readLoop(self): ''' Main event loop for reading from device ''' print ('Starting {0} readLoop'.format(self.__name__)) while not self._exit: val = self.read() if val: #print ('{0}:[{1}]'.format(self.__name__, val.replace('\r','\\r'))) self._processDeviceResponse(val) def _processDeviceResponse(self, val): ret = self._deviceToProperty(val) # Retrieve appropriate handler to translate device value into property value if ret: (property, method, match) = ret if type(property) is not list: property = [ property ] for i in range(len(property)): # Extract out each match group and send to method to get it translated from the value from the device to the property value mval = match.group(i+1) xval = method(self, property[i], mval) if self.properties[property[i]] != xval: # Send updated property to Thing self.updateThing(property[i], xval) # else: # print ('{0}:[{1}] Ignored'.format(self.__name__, val.replace('\r','\\r'))) def _writeLoop(self): ''' Main event loop for writing to device ''' print ('Starting {0} writeLoop'.format(self.__name__)) while not self._exit: try: # Wait for ready state to be reached while not self.ready(): print ('{0} Sleeping ...'.format(self.__name__)) time.sleep(5) raise queue.Empty message = self._deviceQueue.get(block=True, timeout=5) self._deviceQueue.task_done() if message['action'].upper() == 'EXIT': return elif message['action'].upper() == 'UPDATE': print ('IOT requests [{0}:{1}]'.format(message['property'], message['value'])) ret = self._propertyToDevice(message['property']) if ret: (cmd, method) = ret # Send updated property to device val = self.write(cmd.format(method(self,message['value']))) # If device is synchronous, it likely returned a response from the command we just sent if val: # If so, process it self._processDeviceResponse(val) else: self._logger.warn('{0} has no property that matches {1}'.format(self.__name__,message['property'])) except queue.Empty: # If nothing waiting to be written or the device is not ready, send a query to get current device status qs = self.queryStatus() if qs: # Get the query to send. If the query is a list, process each query individually qs = qs if type(qs) is list else [ qs ] for q in qs: val = self.write(q)
import os import unittest import pikepdf import pdf_preflight.rules as rules import pdf_preflight.profiles as profiles pdf_folder = os.path.join(os.path.dirname(__file__), "pdfs") class TestPdfPreflight(unittest.TestCase): def test_profile__pdfa1a(self): filename = os.path.join(pdf_folder, "pdfa-1a.pdf") self.assertEqual(None, profiles.Pdfa1a.check_preflight(filename)) filename = os.path.join(pdf_folder, "standard_14_font.pdf") with self.assertRaisesRegex(Exception, "^PDF failed Preflight checks.*") as cm: profiles.Pdfa1a.check_preflight(filename) expected_exception = ("PDF failed Preflight checks with the following Issues & exceptions:\n" "ISSUES:\n" "Rule 'OnlyEmbeddedFonts' found an error on page 1: " "All fonts must be embedded; found non-embedded font.\n") self.assertTrue(str(cm.exception).startswith(expected_exception)) def test_profile__pdfx1a(self): filename = os.path.join(pdf_folder, "pdfx-1a.pdf") self.assertEqual(None, profiles.Pdfx1a.check_preflight(filename)) filename = os.path.join(pdf_folder, "fails_pdfx.pdf") with self.assertRaisesRegex(Exception, "^PDF failed Preflight checks.*") as cm: profiles.Pdfx1a.check_preflight(filename) expected_exception = ("PDF failed Preflight checks with the following Issues & exceptions:\n" "ISSUES:\n" "Rule 'InfoHasKeys' found an error in document metadata: " "Info dict missing required key '/ModDate'\n" "Rule 'InfoHasKeys' found an error in document metadata: " "Info dict missing required key '/Title'\n" "Rule 'InfoSpecifiesTrapping' found an error in document metadata: " "Info dict missing required key '/Trapped'.\n" "Rule 'MatchInfoEntries' found an error in document metadata: " "Info dict missing required key '/GTS_PDFXConformance'\n" "Rule 'MatchInfoEntries' found an error in document metadata: " "Info dict missing required key '/GTS_PDFXVersion'\n" "Rule 'MaxVersion' found an error in document metadata: " "PDF version should be 1.3 or lower.\n" "Rule 'NoRgb' found an error on page 1-100: " "Found RGB colorspace; RGB objects are prohibited.\n" "Rule 'NoTransparency' found an error on page 1-100: " "Found object with transparency; transparent objects are prohibited.\n" "Rule 'OutputIntentForPdfx' found an error in document metadata: " "OutputIntent with subtype '/GTS_PDFX' is required but was not found.\n" "Rule 'PdfxOutputIntentHasKeys' found an error in document metadata: " "GTS_PDFX OutputIntent not found, assumed to be missing all required keys " "'['/OutputConditionIdentifier', '/Info']'.\n" "Rule 'PrintBoxes' found an error on page 1-100: " "ArtBox or TrimBox is required, but neither was found; TrimBox is preferred.\n" "Rule 'RootHasKeys' found an error in document metadata: " "Root dict missing required key '/OutputIntents'\n") self.assertTrue(str(cm.exception).startswith(expected_exception)) def test_profile__pdfx1a2003(self): filename = os.path.join(pdf_folder, "pdfx-1a-2003.pdf") self.assertEqual(None, profiles.Pdfx1a2003.check_preflight(filename)) filename = os.path.join(pdf_folder, "fails_pdfx.pdf") with self.assertRaisesRegex(Exception, "^PDF failed Preflight checks.*") as cm: profiles.Pdfx1a2003.check_preflight(filename) expected_exception = ("PDF failed Preflight checks with the following Issues & exceptions:\n" "ISSUES:\n" "Rule 'InfoHasKeys' found an error in document metadata: " "Info dict missing required key '/ModDate'\n" "Rule 'InfoHasKeys' found an error in document metadata: " "Info dict missing required key '/Title'\n" "Rule 'InfoSpecifiesTrapping' found an error in document metadata: " "Info dict missing required key '/Trapped'.\n" "Rule 'MatchInfoEntries' found an error in document metadata: " "Info dict missing required key '/GTS_PDFXVersion'\n" "Rule 'MaxVersion' found an error in document metadata: " "PDF version should be 1.4 or lower.\n" "Rule 'NoRgb' found an error on page 1-100: " "Found RGB colorspace; RGB objects are prohibited.\n" "Rule 'NoTransparency' found an error on page 1-100: " "Found object with transparency; transparent objects are prohibited.\n" "Rule 'OutputIntentForPdfx' found an error in document metadata: " "OutputIntent with subtype '/GTS_PDFX' is required but was not found.\n" "Rule 'PdfxOutputIntentHasKeys' found an error in document metadata: " "GTS_PDFX OutputIntent not found, assumed to be missing all required keys " "'['/OutputConditionIdentifier', '/Info']'.\n" "Rule 'PrintBoxes' found an error on page 1-100: " "ArtBox or TrimBox is required, but neither was found; TrimBox is preferred.\n" "Rule 'RootHasKeys' found an error in document metadata: " "Root dict missing required key '/OutputIntents'\n") self.assertTrue(str(cm.exception).startswith(expected_exception)) ###################################################################### def test_rule__box_nesting(self): filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: issues = rules.BoxNesting.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "bleedbox_larger_than_mediabox.pdf") with pikepdf.open(filename) as pdf: issues = rules.BoxNesting.check(pdf) issue = issues[0] self.assertEqual(1, issue.page) self.assertEqual("BoxNesting", issue.rule) self.assertEqual("BleedBox must be smaller than MediaBox", issue.desc) def test_rule__compression_algorithms(self): filename = os.path.join(pdf_folder, "jbig2.pdf") with pikepdf.open(filename) as pdf: allowed_algorithms = ["/FlateDecode", "/JBIG2Decode"] issues = rules.CompressionAlgorithms.check(pdf, allowed_algorithms) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "jbig2.pdf") with pikepdf.open(filename) as pdf: allowed_algorithms = ["/FlateDecode"] issues = rules.CompressionAlgorithms.check(pdf, allowed_algorithms) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("CompressionAlgorithms", issue.rule) self.assertEqual("File uses unwanted compression algorithm: '/JBIG2Decode'", issue.desc) def test_rule__document_id(self): filename = os.path.join(pdf_folder, "pdfx-1a-subsetting.pdf") with pikepdf.open(filename) as pdf: issues = rules.DocumentId.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "no_document_id.pdf") with pikepdf.open(filename) as pdf: issues = rules.DocumentId.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("DocumentId", issue.rule) self.assertEqual("Document ID missing.", issue.desc) def test_rule__info_has_keys(self): filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: entries = ["/Creator", "/Producer"] issues = rules.InfoHasKeys.check(pdf, entries) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: entries = ["/GTS_PDFXVersion"] issues = rules.InfoHasKeys.check(pdf, entries) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("InfoHasKeys", issue.rule) self.assertEqual("Info dict missing required key '/GTS_PDFXVersion'", issue.desc) def test_rule__info_specifies_trapping(self): filename = os.path.join(pdf_folder, "trapped_false.pdf") with pikepdf.open(filename) as pdf: issues = rules.InfoSpecifiesTrapping.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "trapped_true.pdf") with pikepdf.open(filename) as pdf: issues = rules.InfoSpecifiesTrapping.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "trapped_broken.pdf") with pikepdf.open(filename) as pdf: issues = rules.InfoSpecifiesTrapping.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("InfoSpecifiesTrapping", issue.rule) self.assertEqual("Value of Info entry '/Trapped' must be True or False.", issue.desc) filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: issues = rules.InfoSpecifiesTrapping.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("InfoSpecifiesTrapping", issue.rule) self.assertEqual("Info dict missing required key '/Trapped'.", issue.desc) def test_rule__match_info_entries(self): filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: entries = {"/Creator": r"Prawn"} issues = rules.MatchInfoEntries.check(pdf, entries) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: entries = {"/GTS_PDFXVersion": "^PDF/X.*"} issues = rules.MatchInfoEntries.check(pdf, entries) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("MatchInfoEntries", issue.rule) self.assertEqual("Info dict missing required key '/GTS_PDFXVersion'", issue.desc) filename = os.path.join(pdf_folder, "72ppi.pdf") with pikepdf.open(filename) as pdf: entries = {"/Creator": r"Shrimp"} issues = rules.MatchInfoEntries.check(pdf, entries) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("MatchInfoEntries", issue.rule) self.assertEqual("Value of Info entry '/Creator' doesn't match regex 'Shrimp'", issue.desc) def test_rule__max_version(self): filename = os.path.join(pdf_folder, "version_1_3.pdf") with pikepdf.open(filename) as pdf: issues = rules.MaxVersion.check(pdf, "1.3") self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "version_1_3.pdf") with pikepdf.open(filename) as pdf: issues = rules.MaxVersion.check(pdf, "1.4") self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "version_1_4.pdf") with pikepdf.open(filename) as pdf: issues = rules.MaxVersion.check(pdf, "1.4") self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "version_1_4.pdf") with pikepdf.open(filename) as pdf: issues = rules.MaxVersion.check(pdf, "1.3") issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("MaxVersion", issue.rule) self.assertEqual("PDF version should be 1.3 or lower.", issue.desc) def test_rule__no_filespecs(self): filename = os.path.join(pdf_folder, "rgb.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoFilespecs.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "filespec_to_external_file.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoFilespecs.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("NoFilespecs", issue.rule) self.assertEqual("Found one or more filespecs; use of filespecs to reference external files is prohibited.", issue.desc) def test_rule__no_rgb(self): filename = os.path.join(pdf_folder, "gray.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoRgb.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "rgb.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoRgb.check(pdf) issue = issues[0] self.assertEqual(1, issue.page) self.assertEqual("NoRgb", issue.rule) self.assertEqual("Found RGB colorspace; RGB objects are prohibited.", issue.desc) def test_rule__no_transparency(self): filename = os.path.join(pdf_folder, "gray.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoTransparency.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "transparency.pdf") with pikepdf.open(filename) as pdf: issues = rules.NoTransparency.check(pdf) issue = issues[0] self.assertEqual(1, issue.page) self.assertEqual("NoTransparency", issue.rule) self.assertEqual("Found object with transparency; transparent objects are prohibited.", issue.desc) def test_rule__only_embedded_fonts(self): # pass a file with embedded fonts that don't have subsets filename = os.path.join(pdf_folder, "pdfx-1a-no-subsetting.pdf") with pikepdf.open(filename) as pdf: issues = rules.OnlyEmbeddedFonts.check(pdf) self.assertEqual(None, issues) # pass a file with embedded fonts that do have subsets filename = os.path.join(pdf_folder, "pdfx-1a-subsetting.pdf") with pikepdf.open(filename) as pdf: issues = rules.OnlyEmbeddedFonts.check(pdf) self.assertEqual(None, issues) # fail a file with a standard font that's not embedded filename = os.path.join(pdf_folder, "standard_14_font.pdf") with pikepdf.open(filename) as pdf: issues = rules.OnlyEmbeddedFonts.check(pdf) issue = issues[0] self.assertEqual(1, issue.page) self.assertEqual("OnlyEmbeddedFonts", issue.rule) self.assertEqual("All fonts must be embedded; found non-embedded font.", issue.desc) def test_rule__output_intent_for_pdfx(self): filename = os.path.join(pdf_folder, "pdfx-1a-subsetting.pdf") with pikepdf.open(filename) as pdf: issues = rules.OutputIntentForPdfx.check(pdf) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "two_outputintents.pdf") with pikepdf.open(filename) as pdf: issues = rules.OutputIntentForPdfx.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("OutputIntentForPdfx", issue.rule) self.assertEqual("Exactly one OutputIntent with subtype '/GTS_PDFX' is required; found multiple.", issue.desc) filename = os.path.join(pdf_folder, "version_1_4.pdf") with pikepdf.open(filename) as pdf: issues = rules.OutputIntentForPdfx.check(pdf) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("OutputIntentForPdfx", issue.rule) self.assertEqual("OutputIntent with subtype '/GTS_PDFX' is required but was not found.", issue.desc) def test_rule__pdfx_output_intent_has_keys(self): filename = os.path.join(pdf_folder, "pdfx-1a-subsetting.pdf") with pikepdf.open(filename) as pdf: entries = ["/OutputConditionIdentifier", "/Info"] issues = rules.PdfxOutputIntentHasKeys.check(pdf, entries) self.assertEqual(None, issues) filename = os.path.join(pdf_folder, "pdfx-1a-subsetting.pdf") with pikepdf.open(filename) as pdf: entries = ["/Cheese"] issues = rules.PdfxOutputIntentHasKeys.check(pdf, entries) issue = issues[0] self.assertEqual("Metadata", issue.page) self.assertEqual("PdfxOutputIntentHasKeys", issue.rule) self.assertEqual("GTS_PDFX OutputIntent missing required key '/Cheese'.", issue.desc) filename =
plot-metrics can be specified as keyboard argument 'plot_metrics'. It's value can be: - Empty: default value used is 'price' - plot_metrics = a String 'method' corresponding to a valid '.method()' implemented by self.fin_inst object - if plot_metrics == 'implied_volatility', method .plot_iv() is called (implemented only for options, not portfolios) - plot-details can be specified as keyboard argument 'plot_details'. It's value can be: - Empty: default value used is False - plot_details = True or False If True, we distinguish between the single-option (a) and portfolio (b) cases: a) Single-option case: upper and lower price boundaries are shown if .plot_single_time() method is called. b) Portfolio case: constituent instruments' details are shown if .plot_single_time() method is called. - surf-plot can be specified as keyboard argument 'surf_plot'. It's value can be: - Empty: default value used is False - surf_plot = True or False If True, .plot_surf() is called in case of Iterable time-parameter, otherwise .plot_multi_time() is called. - view can be specified as keyboard argument 'view'. It's value can be: - Empty: default value used is (30, -60) - surf_plot = Tuple of two numbers It represent the pair of (elevation angle, azimutal angle) of the plot view in case .plot_surf() is called. """ # argument parsing and plot setup plot_metrics = self.parse_plot_metrics(**kwargs) if plot_metrics == "implied_volatility": imp_vol = kwargs["IV"] time_parameter = self.time_parameter_label(imp_vol.index) self.plot_iv(imp_vol, time_parameter) else: x_axis = self.x_axis(*args, **kwargs) time_parameter, time_label_parameter = self.time_parameter(*args, **kwargs) surf_plot = self.parse_surf_plot(**kwargs) if is_iterable_not_string(time_parameter) and not surf_plot: self.plot_multi_time(x_axis, time_parameter, time_label_parameter, plot_metrics) elif is_iterable_not_string(time_parameter): plot_view = self.parse_surf_plot_view(**kwargs) self.plot_surf(x_axis, time_parameter, time_label_parameter, plot_metrics, plot_view) else: plot_details = self.parse_plot_details(**kwargs) self.plot_single_time(x_axis, time_parameter, time_label_parameter, plot_metrics, plot_details) # -----------------------------------------------------------------------------# class OptionPlotter(Plotter): """ Plotter class to plot the price/P&L of single options. Inherits from Plotter base-class. It implements a composition with an underlying `PlainVanillaOption` or `DigitalOption` object to access option-specific attributes. Attributes: ----------- public attributes inherited from Plotter class Public Methods: -------- public methods inherited from Plotter class plot_iv: Plot FinancialInstrument Black-Scholes implied-volatility as multiple dates line plots and as surface plot. plot_surf: Plot FinancialInstrument values as a surface of underlying value(s) and multiple dates. plot_multi_time: Plot FinancialInstrument values against underlying value(s), possibly at multiple dates. plot_single_time: Plot FinancialInstrument values against underlying value(s) at fixed date. Instantiation and Usage examples: -------- - options_plot.py - options_plot_other_params.py - options_plot_IV.py - options_plot_surface.py """ def __init__(self, *args, **kwargs): # calling the Plotter initializer super(OptionPlotter, self).__init__(*args, **kwargs) def plot_iv(self, iv, time_labels): """ Plot FinancialInstrument Black-Scholes implied-volatility as multiple dates line plots and as surface plot. Parameter 'iv' is required to be a pd.DataFrame. Usage examples: - options_plot_IV.py """ plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.Blues(np.linspace(0, 1, len(iv.index)))) # # Line plots # ax = iv.T.plot(figsize=(10, 6), colormap="Blues") # set axis labels ax.set_xlabel(iv.columns.name, fontsize=12) ax.set_ylabel('Black-Scholes Implied Volatility', fontsize=12) # set title ax.set_title("Implied volatility of a " + self.get_title(), fontsize=12) # add the legend ('best' loc parameters places the legend in the best position automatically) ax.legend(datetime_obj_to_date_string(iv.index), loc='best', ncol=1) # # Surf plot # # define the figure fig = plt.figure(figsize=(15, 10)) ax = fig.gca(projection='3d') # grid points, if needed convert dates to numeric representation for plotting times_numeric = self.fin_inst.time_to_maturity(t=iv.index) # date_to_number(iv.index) K_grid, time_grid = np.meshgrid(iv.columns, times_numeric) # surface plot surf = ax.plot_surface(iv.columns, time_grid, iv.values.astype('float64'), rstride=2, cstride=2, cmap=plt.cm.Blues, linewidth=0.5, antialiased=True, zorder=1) # plot the price for different underlying values, one line for each different date plt.gca().set_prop_cycle(None) i = 0 for iv_at_t in iv.itertuples(): t = self.fin_inst.time_to_maturity(t=iv_at_t.Index) ax.plot(iv.columns, np.repeat(t, repeats=len(iv.columns)), iv_at_t[1:], '-', lw=1.5, label=datetime_obj_to_date_string(iv_at_t.Index), zorder=2 + i) i += 1 # set y ticks ax.set_yticks(times_numeric) ax.set_yticklabels(time_labels) # set axis labels ax.set_xlabel(iv.columns.name, fontsize=12) ax.set_ylabel(r"Date" if is_date(iv.index) else r"Time-to-Maturity", fontsize=12) ax.set_zlabel('Black-Scholes Implied Volatility', fontsize=12) # set title ax.set_title("Implied volatility of a " + self.get_title(), fontsize=12) # add the legend ('best' loc parameters places the legend in the best position automatically) ax.legend(loc='best', ncol=1) # add a grid to ease visualization plt.grid(True) # draw a colorbar for color-reference fig.colorbar(surf, orientation="horizontal", shrink=0.5, aspect=10, pad=0.05) # show the plot fig.tight_layout() plt.show() def plot_surf(self, x_axis_dict, times, time_labels, plot_metrics, view): """ Plot FinancialInstrument values as a surface of underlying value(s) and multiple dates. Usage examples: - options_plot_surface.py """ # identifier of the x-axis x_id = x_axis_dict.pop('x_axis', 'x-id not found') # other x-axis parameters sigma_axis = x_axis_dict.pop('sigma_axis', False) r_axis = x_axis_dict.pop('r_axis', False) # x-axis values x = x_axis_dict[x_id] # number of times-to-maturity considered n_times = len(times) plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.Blues(np.linspace(0, 1, n_times))) # define the figure fig = plt.figure(figsize=(15, 10)) ax = fig.gca(projection='3d') # define a dense grid of times # in case of dates: from the most recent valuation date to expiration date # in case of times-to-maturity: from the biggest tau to 0 (that is, expiration) times_dense = self.make_dense(times) n_times_dense = len(times_dense) # if times are dates, we convert into their numeric representation. This is needed for plotting times_numeric = date_to_number(times) times_dense_numeric = date_to_number(times_dense) # precompute surface (exploiting vectorization) surface_metrics = getattr(self.fin_inst, plot_metrics)( **{x_id: x, 't': times_dense, 'sigma_axis': sigma_axis, 'r_axis': r_axis}, np_output=False) # grid points, if needed convert dates to numeric representation for plotting x_axis_grid, time_grid = np.meshgrid(surface_metrics.columns, times_dense_numeric) # surface plot surf = ax.plot_surface(x_axis_grid, time_grid, surface_metrics.values.astype('float64'), rstride=2, cstride=2, cmap=plt.cm.Blues, linewidth=0.5, antialiased=True, zorder=1) # plot the price for different underlying values, one line for each different date plt.gca().set_prop_cycle(None) for i in range(n_times): ax.plot(x, np.repeat(times_numeric[i], repeats=len(x)), surface_metrics.loc[times[i], :], '-', lw=1.5, label=time_labels[i], zorder=1 + i + 1) # precompute emission level metrics (exploiting vectorization) if x_id == 'S': x_emission = self.fin_inst.get_S() elif x_id == 'K': x_emission = self.fin_inst.get_K() elif x_id == 'sigma': x_emission = self.fin_inst.get_sigma() elif x_id == 'r': x_emission = self.fin_inst.get_r() emission_metrics = getattr(self.fin_inst, plot_metrics)(**{x_id: x_emission, 't': times}) emission_metrics_dense = getattr(self.fin_inst, plot_metrics)(**{x_id: x_emission, 't': times_dense}) # blue dot at original underlying level for reference ax.plot(x_emission + np.zeros(n_times), times_numeric, emission_metrics, 'b.', ms=10, label=r"Emission level $" + x_id + r"={:.2f}$".format(x_emission), zorder=1 + i + 2) ax.plot(x_emission + np.zeros(n_times_dense), times_dense_numeric, emission_metrics_dense, 'b--', lw=1.5, zorder=1 + i + 2) # part meaningful only if the x-axis is 'S' or 'K' if x_id in ['S', 'K']: # plot the red payoff line for different underlying values if plot_metrics in ['price', 'PnL']: ax.plot(x, np.repeat(times_dense_numeric[-1], repeats=len(x)), getattr(self.fin_inst, plot_metrics)( **{x_id: x, 'tau': 0.0, 'sigma_axis': sigma_axis, 'r_axis': r_axis}), 'r-', lw=1.5, label=plot_metrics + r" at maturity (" + self.fin_inst.get_docstring('payoff') + r")", zorder=1 + i + 3) # plot a dot to highlight the strike position and a reference zero line ax.plot(np.array([self.fin_inst.get_K()]), np.array([times_dense_numeric[-1]]), np.array([0.0]), 'k.', ms=15, label="Strike $K={}$".format(self.fin_inst.get_K()), zorder=1 + i + 4) ax.plot(self.fin_inst.get_K() + np.zeros(n_times_dense), times_dense_numeric, np.zeros_like(times_dense), 'k--', lw=1.5, zorder=1 + i + 5) # include expiration time tick times_numeric, time_labels = self.add_time_tick_and_label(time_parameter=times, old_time_ticks=times_numeric, old_time_ticks_label=time_labels) # set y ticks ax.set_yticks(times_numeric) ax.set_yticklabels(time_labels) # set axis labels ax.set_xlabel(x_id, fontsize=12) ax.set_ylabel(r"Date" if is_date(times) else r"Time-to-Maturity", fontsize=12) ax.set_zlabel('Black-Scholes {}'.format(plot_metrics), fontsize=12) # set title ax.set_title(plot_metrics + " of a " + self.get_title(), fontsize=12) # add the legend ('best' loc parameters places the legend in the best position automatically) ax.legend(loc='best', ncol=1) # add a grid to ease visualization plt.grid(True) # draw a colorbar for color-reference fig.colorbar(surf, orientation="horizontal", shrink=0.5, aspect=10, pad=0.05) # set the plot view ax.view_init(view[0], view[1]) # rotate view and invert y axis in case of dates # for better perspective if is_date(times): ax.view_init(ax.elev, ax.azim + 180) ax.invert_xaxis() # show the plot fig.tight_layout() plt.show() def plot_multi_time(self, x_axis_dict, times, time_labels, plot_metrics): """ Plot FinancialInstrument values against underlying value(s), possibly at multiple dates. Usage examples: - options_plot.py - options_plot_other_params.py """ # identifier of the x-axis x_id = x_axis_dict.pop('x_axis', 'x-id not found') # other x-axis parameters sigma_axis = x_axis_dict.pop('sigma_axis', False) r_axis = x_axis_dict.pop('r_axis', False) # x-axis values x = x_axis_dict[x_id] # number of times-to-maturity considered n_times = len(times) plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.Blues(np.linspace(0, 1, n_times))) # define the figure fig, ax = plt.subplots(figsize=(10, 6)) # precompute surface
<filename>volttron/platform/vip/agent/subsystems/configstore.py # -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2017, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import logging import traceback import os import weakref import fnmatch import greenlet import inspect from .base import SubsystemBase from volttron.platform.storeutils import list_unique_links, check_for_config_link from volttron.platform.vip.agent import errors from volttron.platform.agent.known_identities import CONFIGURATION_STORE from collections import defaultdict from copy import deepcopy """The configstore subsystem manages the agent side of the configuration store. It is responsible for processing change notifications from the platform and triggering the correct callbacks with the contents of a configuration. """ __docformat__ = 'reStructuredText' __version__ = '1.0' _log = logging.getLogger(__name__) VALID_ACTIONS = set(["NEW", "UPDATE", "DELETE"]) class ConfigStore(SubsystemBase): def __init__(self, owner, core, rpc): self._core = weakref.ref(core) self._rpc = weakref.ref(rpc) self._ref_map = {} #For triggering callbacks. self._reverse_ref_map = defaultdict(set) # For triggering callbacks. self._store = {} self._default_store = {} self._callbacks = {} self._name_map = {} self._default_name_map = {} self._initialized = False self._initial_callbacks_called = False self._process_callbacks_code_object = self._process_callbacks.__code__ def sub_factory(): return defaultdict(set) self._subscriptions = defaultdict(sub_factory) def onsetup(sender, **kwargs): rpc.export(self._update_config, 'config.update') rpc.export(self._initial_update, 'config.initial_update') core.onsetup.connect(onsetup, self) core.configuration.connect(self._onconfig, self) def _onconfig(self, sender, **kwargs): if not self._initialized: try: self._rpc().call(CONFIGURATION_STORE, "get_configs").get() except errors.Unreachable as e: _log.error("Connected platform does not support the Configuration Store feature.") return except errors.VIPError as e: _log.error("Error retrieving agent configurations: {}".format(e)) return affected_configs = {} for config_name in self._store: affected_configs[config_name] = "NEW" for config_name in self._default_store: affected_configs[config_name] = "NEW" self._process_callbacks(affected_configs) self._initial_callbacks_called = True def _add_refs(self, config_name, contents): refs = list_unique_links(contents) self._ref_map[config_name] = refs for ref in refs: self._reverse_ref_map[ref].add(config_name) def _update_refs(self, config_name, contents): self._delete_refs(config_name) self._add_refs(config_name, contents) def _delete_refs(self, config_name): #Delete refs if they exist. old_refs = self._ref_map.pop(config_name, set()) for ref in old_refs: reverse_ref_set = self._reverse_ref_map[ref] reverse_ref_set.remove(config_name) if not reverse_ref_set: del self._reverse_ref_map[ref] def _initial_update(self, configs, reset_name_map=True): self._initialized = True self._store = {key.lower(): value for (key,value) in configs.iteritems()} if reset_name_map: self._name_map = {key.lower(): key for key in configs.iterkeys()} for config_name, config_contents in self._store.iteritems(): self._add_refs(config_name, config_contents) for config_name, config_contents in self._default_store.iteritems(): if config_name not in self._store: self._add_refs(config_name, config_contents) def _process_links(self, config_contents, already_gathered): if isinstance(config_contents,dict ): for key in config_contents.keys(): value = config_contents[key] if isinstance(value, (dict,list)): self._process_links(value, already_gathered) elif isinstance(value, str): config_name = check_for_config_link(value) if config_name is not None: config_contents[key] = self._gather_child_configs(config_name, already_gathered) if isinstance(config_contents,list): for i in xrange(len(config_contents)): value = config_contents[i] if isinstance(value, (dict, list)): self._process_links(value, already_gathered) elif isinstance(value, str): config_name = check_for_config_link(value) if config_name is not None: config_contents[i] = self._gather_child_configs(config_name, already_gathered) def _gather_child_configs(self, config_name, already_gathered): if config_name in already_gathered: return already_gathered[config_name] config_contents = self._store.get(config_name) if config_contents is None: config_contents = self._default_store.get(config_name) config_contents = deepcopy(config_contents) already_gathered[config_name] = config_contents self._process_links(config_contents, already_gathered) return config_contents def _gather_config(self, config_name): config_contents = self._store.get(config_name) if config_contents is None: config_contents = self._default_store.get(config_name) if config_contents is None: raise KeyError("{} not in store".format(config_name)) already_configured = {} return self._gather_child_configs(config_name, already_configured) def _gather_affected(self, config_name, seen_dict): reverse_refs = self._reverse_ref_map[config_name] for ref in reverse_refs: if ref not in seen_dict: seen_dict[ref] = "UPDATE" self._gather_affected(ref, seen_dict) def _update_config(self, action, config_name, contents=None, trigger_callback=False): """Called by the platform to push out configuration changes.""" #If we haven't yet grabbed the initial callback state we just bail. if not self._initialized: return affected_configs = {} #Update local store. if action == "DELETE": config_name_lower = config_name.lower() if config_name_lower in self._store: del self._store[config_name_lower] if config_name_lower not in self._default_store: affected_configs[config_name_lower] = "DELETE" self._gather_affected(config_name_lower, affected_configs) self._delete_refs(config_name_lower) else: affected_configs[config_name_lower] = "UPDATE" self._gather_affected(config_name_lower, affected_configs) self._update_refs(config_name_lower, self._default_store[config_name_lower]) if action == "DELETE_ALL": for name in self._store: affected_configs[name] = "DELETE" #Just assume all default stores updated. for name in self._default_store: affected_configs[name] = "UPDATE" self._ref_map = {} self._reverse_ref_map = defaultdict(set) self._initial_update({}, False) if action in ("NEW", "UPDATE"): config_name_lower = config_name.lower() self._store[config_name_lower] = contents self._name_map[config_name_lower] = config_name if config_name_lower in self._default_store: action = "UPDATE" affected_configs[config_name_lower] = action self._update_refs(config_name_lower, self._store[config_name_lower]) self._gather_affected(config_name_lower, affected_configs) if trigger_callback and self._initial_callbacks_called: self._process_callbacks(affected_configs) if action == "DELETE": del self._name_map[config_name_lower] if action == "DELETE_ALL": self._name_map.clear() def _process_callbacks(self, affected_configs): _log.debug("Processing callbacks for affected files: {}".format(affected_configs)) all_map = self._default_name_map.copy() all_map.update(self._name_map) #Always process "config" first. if "config" in affected_configs: self._process_callbacks_one_config("config", affected_configs["config"], all_map) for config_name, action in affected_configs.iteritems(): if config_name == "config": continue self._process_callbacks_one_config(config_name, action, all_map) def _process_callbacks_one_config(self, config_name, action, name_map): callbacks = set() for pattern, actions in self._subscriptions.iteritems(): if fnmatch.fnmatchcase(config_name, pattern) and action in actions: callbacks.update(actions[action]) for callback in callbacks: try: if action == "DELETE": contents = None else: contents = self._gather_config(config_name) callback(name_map[config_name], action, contents) except StandardError as e: tb_str = traceback.format_exc() _log.error("Problem processing callback:") _log.error(tb_str) def list(self): """Returns a list of configuration names for this agent. :returns: Configuration names :rtype: list :Return Values: A list of all the configuration names available for this agent. """ # Handle case were we are called during "onstart". if not self._initialized: try: self._rpc().call(CONFIGURATION_STORE, "get_configs").get() except errors.Unreachable as e: _log.error("Connected platform does not support the Configuration Store feature.") except errors.VIPError as e: _log.error("Error retrieving agent configurations: {}".format(e)) all_map = self._default_name_map.copy() all_map.update(self._name_map) store_set = set(self._store.keys()) default_set = set(self._default_store.keys()) config_list = list(all_map[x] for x in (store_set|default_set)) config_list.sort() return config_list def get(self, config_name="config"): """Returns the contents of a configuration. :param config_name: Name of configuration to add to store. :type config_name: str :returns: Configuration contents :rtype: dict, list, or string :Return Values: The contents of the configuration specified. """ #Handle case were we are called during "onstart". #If we fail to initialize we don't raise an exception as there still #may be a default configuration to grab. if not self._initialized: try: self._rpc().call(CONFIGURATION_STORE, "get_configs").get() except errors.Unreachable as e: _log.error("Connected platform does not support the Configuration Store feature.") except errors.VIPError as e: _log.error("Error retrieving agent configurations: {}".format(e)) config_name = config_name.lower() return self._gather_config(config_name) def _check_call_from_process_callbacks(self): frame_records = inspect.stack() try: #Don't create any unneeded references to frame objects. for i in xrange(1, len(frame_records)): if self._process_callbacks_code_object is frame_records[i][0].f_code: raise RuntimeError("Cannot request changes to the config store from a configuration callback.") finally: del frame_records def set(self, config_name, contents, trigger_callback=False, send_update=True): """Called to set the contents of a configuration. May not be called before the onstart phase of an agents lifetime. May not be called from a configuration callback. Will produce a runtime error if done so. :param config_name: Name of configuration to add to store. :param contents: Contents of the configuration. May be a string, dictionary, or list. :param trigger_callback: Tell the platform to trigger callbacks on the agent for this change. :type config_name: str :type contents: str, dict, list :type trigger_callback: bool """ self._check_call_from_process_callbacks() self._rpc().call(CONFIGURATION_STORE, "set_config", config_name, contents, trigger_callback=trigger_callback, send_update=send_update).get(timeout=10.0) def set_default(self, config_name, contents): """Called to set the contents of a default configuration file. Default configurations are used if the configuration store does not contain a configuration with that name. May not be called
<filename>common/firewall/base.py from builtins import range from common.neutron.base import BaseNeutronTest from tcutils.util import get_random_name, retry from vn_test import VNFixture from vm_test import VMFixture from project_test import ProjectFixture from port_fixture import PortFixture from firewall_rule import FirewallRuleFixture from firewall_policy import FirewallPolicyFixture from firewall_group import FirewallGroupFixture from application_policy_set import ApplicationPolicySetFixture from address_group import AddressGroupFixture from service_group import ServiceGroupFixture from collections import defaultdict from collections import OrderedDict as dict from vnc_api.vnc_api import NoIdError, BadRequest import random import copy class BaseFirewallTest(BaseNeutronTest): @classmethod def setUpClass(cls): cls.tags = dict(); cls.vns = dict(); cls.vms = dict() cls.sec_groups = dict(); cls.policys = dict() super(BaseFirewallTest, cls).setUpClass() cls.project_name = cls.inputs.project_name cls.domain_name = cls.inputs.domain_name cls.vnc_h = cls.connections.orch.vnc_h cls.api_type = 'contrail' try: cls.create_common_objects() except: cls.tearDownClass() raise # end setUpClass @classmethod def tearDownClass(cls): cls.cleanup_common_objects() super(BaseFirewallTest, cls).tearDownClass() # end tearDownClass @classmethod def create_common_objects(cls): ''' Create tags under both global and local scope Site: svl, blr deployment: prod, dev application: hr, eng tier: web, logic, db ''' cls.tags['global'] = defaultdict(dict) cls.tags['local'] = defaultdict(dict) for site in ['svl', 'blr']: cls.tags['global']['site'][site] = cls.create_only_tag('site', site, 'global') cls.tags['local']['site'][site] = cls.create_only_tag('site', site) for deploy in ['prod', 'dev']: cls.tags['global']['deployment'][deploy] = \ cls.create_only_tag('deployment', deploy, 'global') cls.tags['local']['deployment'][deploy] = cls.create_only_tag('deployment', deploy) for app in ['hr', 'eng']: cls.tags['global']['application'][app] = \ cls.create_only_tag('application', app, 'global') cls.tags['local']['application'][app] = cls.create_only_tag('application', app) for tier in ['web', 'logic', 'db']: cls.tags['global']['tier'][tier] = cls.create_only_tag('tier', tier, 'global') cls.tags['local']['tier'][tier] = cls.create_only_tag('tier', tier) @classmethod def cleanup_common_objects(cls): if getattr(cls, 'vms', None): for obj in cls.vms.values(): obj.cleanUp() if getattr(cls, 'vns', None): for obj in cls.vns.values(): obj.cleanUp() for scopes in cls.tags.values(): for tag_types in scopes.values(): for obj in tag_types.values(): cls.vnc_h.delete_tag(id=obj.uuid) if getattr(cls, 'save_af', None): cls.inputs.set_af(cls.save_af) @classmethod def create_only_tag(cls, tag_type, tag_value, scope='local', **kwargs): connections = kwargs.pop('connections', None) or cls.connections project_name = connections.project_name domain_name = connections.domain_name project_fqname = [domain_name, project_name] name = get_random_name(project_name) if scope == 'local': parent_type = 'project'; fqname = list(project_fqname) else: parent_type = None; fqname = [] fqname.append(name) vnc_h = connections.orch.vnc_h uuid = vnc_h.check_and_create_tag(fqname, tag_type, tag_value, parent_type) cls.logger.info('Created Tag %s - %s %s=%s'%(uuid, project_fqname if scope == 'local' else 'global', tag_type, tag_value)) return vnc_h.read_tag(id=uuid) def create_tag(self, *args, **kwargs): connections = kwargs.pop('connections', None) or self.connections obj = self.create_only_tag(*args, **kwargs) if kwargs.pop('cleanup', True): self.addCleanup(self.delete_tag, obj.uuid, connections=connections) return obj def delete_tag(self, uuid, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h self.logger.info('Deleting Tag %s'%(uuid)) return vnc_h.delete_tag(id=uuid) def enable_security_draft_mode(self, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h if SCOPE1 == 'global': project_fqname = None elif SCOPE1 == 'local': project_fqname = self.project.project_fq_name if SCOPE2 == 'global': self.logger.info('Enable security draft mode on global') vnc_h.enable_security_draft_mode() self.logger.info('Enable security draft mode on %s'%( project_fqname if project_fqname else 'global')) vnc_h.enable_security_draft_mode(project_fqname) def disable_security_draft_mode(self, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections retry = kwargs.get('retry', 1) vnc_h = connections.orch.vnc_h while retry: try: if SCOPE1 == 'global': project_fqname = None elif SCOPE1 == 'local': project_fqname = self.project.project_fq_name if SCOPE2 == 'global': self.logger.info('Disable security draft mode on global') vnc_h.disable_security_draft_mode() self.logger.info('Disable security draft mode on %s'%( project_fqname if project_fqname else 'global')) vnc_h.disable_security_draft_mode(project_fqname) break except BadRequest as e: retry = retry - 1 if not retry: raise self.sleep(5) def discard(self, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h if SCOPE1 == 'global': project_fqname = None elif SCOPE1 == 'local': project_fqname = self.project.project_fq_name self.logger.info('discard security drafts on %s'%( project_fqname if project_fqname else 'global')) vnc_h.discard_security_draft(project_fqname) if SCOPE1 == 'local' and SCOPE2 == 'global': self.logger.info('discard security drafts on global') self.sleep(kwargs.get('interval') or 2) vnc_h.discard_security_draft() def commit(self, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h if SCOPE1 == 'global': project_fqname = None elif SCOPE1 == 'local': project_fqname = self.project.project_fq_name self.logger.info('commit security drafts on %s'%( project_fqname if project_fqname else 'global')) vnc_h.commit_security_draft(project_fqname) if SCOPE1 == 'local' and SCOPE2 == 'global': self.logger.info('commit security drafts on global') self.sleep(kwargs.get('interval') or 2) vnc_h.commit_security_draft() def list_security_drafts(self, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): drafts = defaultdict(list) connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h objs = list() if SCOPE1 == 'global': project_fqname = None elif SCOPE1 == 'local': project_fqname = self.project.project_fq_name if SCOPE2 == 'global': try: objs.append(vnc_h.list_security_drafts()) except NoIdError: pass try: objs.append(vnc_h.list_security_drafts(project_fqname)) except NoIdError: pass for obj in objs: for ag in obj.get_address_groups() or []: drafts['address-group'].append(ag['to']) for sg in obj.get_service_groups() or []: drafts['service-group'].append(sg['to']) for fwr in obj.get_firewall_rules() or []: drafts['firewall-rule'].append(fwr['to']) for fwp in obj.get_firewall_policys() or []: drafts['firewall-policy'].append(fwp['to']) for aps in obj.get_application_policy_sets() or []: drafts['application-policy-set'].append(aps['to']) return drafts def validate_draft(self, fixtures_draft_states, SCOPE1=None, SCOPE2=None, project_fqname=None, **kwargs): self.logger.info('Validating drafts on SCOPE1: %s, SCOPE2: %s,' ' project: %s'%(SCOPE1, SCOPE2, project_fqname)) drafts = self.list_security_drafts(SCOPE1, SCOPE2, project_fqname, **kwargs) copy_of_drafts = copy.deepcopy(drafts) if (drafts and not fixtures_draft_states) or \ (fixtures_draft_states and not drafts): assert False, "exp %s and got %s"%(fixtures_draft_states, drafts) # Compare fqname against states created, updated, deleted for state, fixtures in fixtures_draft_states.items(): for fixture in fixtures: fqname = list(fixture.fq_name) if len(fqname) == 2: fqname[0] = 'draft-policy-management' else: fqname.insert(-1, 'draft-policy-management') d1, obj_type, d3 = self._get_obj_from_fixture(fixture) assert fqname in drafts[obj_type] draft_obj = fixture.get_draft() assert draft_obj.draft_mode_state == state drafts[obj_type].remove(fqname) for obj_type, objs in drafts.items(): assert not objs, "Unexpected drafts %s"%drafts self.logger.debug('Validated drafts %s'%copy_of_drafts) def _get_port(self, uuid, **kwargs): connections = kwargs.pop('connections', None) or self.connections return self.useFixture(PortFixture(uuid=uuid, connections=connections)) def _get_obj_from_fixture(self, fixture): obj = None; object_type = None; uuid = None if type(fixture) == VNFixture: obj = fixture.api_vn_obj elif type(fixture) == VMFixture: uuid = fixture.vm_id object_type = 'virtual-machine' elif type(fixture) == ProjectFixture: obj = fixture.project_obj elif type(fixture) == PortFixture: obj = fixture.vmi_obj elif type(fixture) == AddressGroupFixture: uuid = fixture.uuid object_type = 'address-group' elif type(fixture) == ServiceGroupFixture: uuid = fixture.uuid object_type = 'service-group' elif type(fixture) == ApplicationPolicySetFixture: uuid = fixture.uuid object_type = 'application-policy-set' elif type(fixture) == FirewallPolicyFixture: uuid = fixture.uuid object_type = 'firewall-policy' elif type(fixture) == FirewallRuleFixture: uuid = fixture.uuid object_type = 'firewall-rule' return (obj, object_type, uuid) def add_labels(self, fixture, labels, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h obj, object_type, uuid = self._get_obj_from_fixture(fixture) is_global = False if getattr(labels[0], 'parent_type', None) == 'project' else True tags = [label.tag_value for label in labels] vnc_h.add_labels(tags, is_global, obj, object_type, uuid) self.logger.info('Add %s labels %s to %s'%('global' if is_global else '', tags, obj.uuid if obj else uuid)) self.addCleanup(self.delete_labels, fixture, labels, **kwargs) def delete_labels(self, fixture, labels, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h obj, object_type, uuid = self._get_obj_from_fixture(fixture) is_global = False if getattr(labels[0], 'parent_type', None) == 'project' else True labels = [label.tag_value for label in labels] self.logger.info('Delete %s labels %s to %s'%('global' if is_global else '', labels, obj.uuid if obj else uuid)) vnc_h.delete_labels(labels, is_global, obj, object_type, uuid) def set_tag(self, fixture, tag, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h obj, object_type, uuid = self._get_obj_from_fixture(fixture) is_global = False if getattr(tag, 'parent_type', None) == 'project' else True vnc_h.set_tag(tag.tag_type_name, tag.tag_value, is_global, obj, object_type, uuid) self.logger.info('Set %s tag %s=%s to %s'%('global' if is_global else '', tag.tag_type_name, tag.tag_value, obj.uuid if obj else uuid)) self.addCleanup(self.unset_tag, fixture, tag, **kwargs) def unset_tag(self, fixture, tag, **kwargs): connections = kwargs.pop('connections', None) or self.connections vnc_h = connections.orch.vnc_h obj, object_type, uuid = self._get_obj_from_fixture(fixture) vnc_h.unset_tag(tag.tag_type_name, obj, object_type, uuid) self.logger.info('Unset tag type %s from %s'%(tag.tag_type_name, obj.uuid if obj else uuid)) def create_fw_policy(self, scope=None, rules=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections api_type = kwargs.pop('api_type', self.api_type) return self.useFixture(FirewallPolicyFixture(scope=scope, rules=rules, connections=connections, api_type=api_type, **kwargs)) def add_fw_rule(self, fwp_fixture, rule_uuid, seq_no): return fwp_fixture.add_firewall_rules([{'uuid': rule_uuid, 'seq_no': seq_no}]) def remove_fw_rule(self, fwp_fixture, rule_uuid): return fwp_fixture.remove_firewall_rule(rule_uuid) def create_fw_rule(self, scope=None, **kwargs): connections = kwargs.pop('connections', None) or self.connections api_type = kwargs.pop('api_type', self.api_type) return self.useFixture(FirewallRuleFixture(scope=scope, connections=connections, api_type=api_type, **kwargs)) def _get_vmi_uuid(self, fixture): if type(fixture) == VMFixture: return list(fixture.get_vmi_ids().values())[0] elif type(fixture) == PortFixture: return fixture.uuid def get_ip_address(self, fixture): if type(fixture) == VMFixture: return fixture.vm_ip elif type(fixture) == PortFixture: return fixture.get_ip_addresses()[0] @property def default_fwg(self): if not getattr(self, '_default_fwg', None): self._default_fwg = self.create_fw_group(name='default') return self._default_fwg def create_fw_group(self, vm_fixtures=None, port_fixtures=None, ingress_policy=None, egress_policy=None, verify=True, **kwargs): connections = kwargs.pop('connections', None) or self.connections ingress_policy_id = ingress_policy.uuid if ingress_policy else None egress_policy_id = egress_policy.uuid if egress_policy else None ports = [self._get_vmi_uuid(fixture) for fixture in (vm_fixtures or list()) + (port_fixtures or list())] # A port can only be associated to only one FW-Group # By default default FWG will have all ports associated # so disassociate from default FWG before associating to new FWG if ports and kwargs.get('name')
import socket import sys import threading import time import uuid import unittest from mock import patch from nose import SkipTest from nose.tools import eq_ from nose.tools import raises from kazoo.testing import KazooTestCase from kazoo.exceptions import ( AuthFailedError, BadArgumentsError, ConfigurationError, ConnectionClosedError, ConnectionLoss, InvalidACLError, NoAuthError, NoNodeError, NodeExistsError, SessionExpiredError, ) from kazoo.protocol.connection import _CONNECTION_DROP from kazoo.protocol.states import KeeperState, KazooState from kazoo.tests.util import TRAVIS_ZK_VERSION if sys.version_info > (3, ): # pragma: nocover def u(s): return s else: # pragma: nocover def u(s): return unicode(s, "unicode_escape") class TestClientTransitions(KazooTestCase): def test_connection_and_disconnection(self): states = [] rc = threading.Event() @self.client.add_listener def listener(state): states.append(state) if state == KazooState.CONNECTED: rc.set() self.client.stop() eq_(states, [KazooState.LOST]) states.pop() self.client.start() rc.wait(2) eq_(states, [KazooState.CONNECTED]) rc.clear() states.pop() self.expire_session() rc.wait(2) req_states = [KazooState.LOST, KazooState.CONNECTED] eq_(states, req_states) class TestClientConstructor(unittest.TestCase): def _makeOne(self, *args, **kw): from kazoo.client import KazooClient return KazooClient(*args, **kw) def test_invalid_handler(self): from kazoo.handlers.threading import SequentialThreadingHandler self.assertRaises(ConfigurationError, self._makeOne, handler=SequentialThreadingHandler) def test_chroot(self): self.assertEqual(self._makeOne(hosts='127.0.0.1:2181/').chroot, '') self.assertEqual(self._makeOne(hosts='127.0.0.1:2181/a').chroot, '/a') self.assertEqual(self._makeOne(hosts='127.0.0.1/a').chroot, '/a') self.assertEqual(self._makeOne(hosts='127.0.0.1/a/b').chroot, '/a/b') self.assertEqual(self._makeOne( hosts='127.0.0.1:2181,127.0.0.1:2182/a/b').chroot, '/a/b') def test_connection_timeout(self): from kazoo.handlers.threading import TimeoutError client = self._makeOne(hosts='127.0.0.1:9') self.assertTrue(client.handler.timeout_exception is TimeoutError) self.assertRaises(TimeoutError, client.start, 0.1) def test_ordered_host_selection(self): client = self._makeOne(hosts='127.0.0.1:9,127.0.0.2:9/a', randomize_hosts=False) hosts = [h for h in client.hosts] eq_(hosts, [('127.0.0.1', 9), ('127.0.0.2', 9)]) def test_invalid_hostname(self): client = self._makeOne(hosts='nosuchhost/a') timeout = client.handler.timeout_exception self.assertRaises(timeout, client.start, 0.1) def test_retry_options_dict(self): from kazoo.retry import KazooRetry client = self._makeOne(command_retry=dict(max_tries=99), connection_retry=dict(delay=99)) self.assertTrue(type(client._conn_retry) is KazooRetry) self.assertTrue(type(client._retry) is KazooRetry) eq_(client._retry.max_tries, 99) eq_(client._conn_retry.delay, 99) class TestAuthentication(KazooTestCase): def _makeAuth(self, *args, **kwargs): from kazoo.security import make_digest_acl return make_digest_acl(*args, **kwargs) def test_auth(self): username = uuid.uuid4().hex password = uuid.uuid4().hex digest_auth = "%s:%s" % (username, password) acl = self._makeAuth(username, password, all=True) client = self._get_client() client.start() client.add_auth("digest", digest_auth) client.default_acl = (acl,) try: client.create("/1") client.create("/1/2") client.ensure_path("/1/2/3") eve = self._get_client() eve.start() self.assertRaises(NoAuthError, eve.get, "/1/2") # try again with the wrong auth token eve.add_auth("digest", "badbad:bad") self.assertRaises(NoAuthError, eve.get, "/1/2") finally: # Ensure we remove the ACL protected nodes client.delete("/1", recursive=True) eve.stop() eve.close() def test_connect_auth(self): username = uuid.uuid4().hex password = uuid.uuid4().hex digest_auth = "%s:%s" % (username, password) acl = self._makeAuth(username, password, all=True) client = self._get_client(auth_data=[('digest', digest_auth)]) client.start() try: client.create('/1', acl=(acl,)) # give ZK a chance to copy data to other node time.sleep(0.1) self.assertRaises(NoAuthError, self.client.get, "/1") finally: client.delete('/1') client.stop() client.close() def test_unicode_auth(self): username = u("xe4/\hm") password = u("/\<PASSWORD>") digest_auth = "%s:%s" % (username, password) acl = self._makeAuth(username, password, all=True) client = self._get_client() client.start() client.add_auth("digest", digest_auth) client.default_acl = (acl,) try: client.create("/1") client.ensure_path("/1/2/3") eve = self._get_client() eve.start() self.assertRaises(NoAuthError, eve.get, "/1/2") # try again with the wrong auth token eve.add_auth("digest", "badbad:bad") self.assertRaises(NoAuthError, eve.get, "/1/2") finally: # Ensure we remove the ACL protected nodes client.delete("/1", recursive=True) eve.stop() eve.close() def test_invalid_auth(self): client = self._get_client() client.start() self.assertRaises(TypeError, client.add_auth, 'digest', ('user', 'pass')) self.assertRaises(TypeError, client.add_auth, None, ('user', 'pass')) def test_async_auth(self): client = self._get_client() client.start() username = uuid.uuid4().hex password = <PASSWORD> digest_auth = "%s:%s" % (username, password) result = client.add_auth_async("digest", digest_auth) self.assertTrue(result.get()) def test_async_auth_failure(self): client = self._get_client() client.start() username = uuid.uuid4().hex password = <PASSWORD> digest_auth = "%s:%s" % (username, password) self.assertRaises(AuthFailedError, client.add_auth, "unknown-scheme", digest_auth) def test_add_auth_on_reconnect(self): client = self._get_client() client.start() client.add_auth("digest", "jsmith:jsmith") client._connection._socket.shutdown(socket.SHUT_RDWR) while not client.connected: time.sleep(0.1) self.assertTrue(("digest", "jsmith:jsmith") in client.auth_data) class TestConnection(KazooTestCase): def test_chroot_warning(self): k = self._get_nonchroot_client() k.chroot = 'abba' try: with patch('warnings.warn') as mock_func: k.start() assert mock_func.called finally: k.stop() def test_session_expire(self): from kazoo.protocol.states import KazooState cv = threading.Event() def watch_events(event): if event == KazooState.LOST: cv.set() self.client.add_listener(watch_events) self.expire_session() cv.wait(3) assert cv.is_set() def test_bad_session_expire(self): from kazoo.protocol.states import KazooState cv = threading.Event() ab = threading.Event() def watch_events(event): if event == KazooState.LOST: ab.set() raise Exception("oops") cv.set() self.client.add_listener(watch_events) self.expire_session() ab.wait(0.5) assert ab.is_set() cv.wait(0.5) assert not cv.is_set() def test_state_listener(self): from kazoo.protocol.states import KazooState states = [] condition = threading.Condition() def listener(state): with condition: states.append(state) condition.notify_all() self.client.stop() eq_(self.client.state, KazooState.LOST) self.client.add_listener(listener) self.client.start(5) with condition: if not states: condition.wait(5) eq_(len(states), 1) eq_(states[0], KazooState.CONNECTED) def test_invalid_listener(self): self.assertRaises(ConfigurationError, self.client.add_listener, 15) def test_listener_only_called_on_real_state_change(self): from kazoo.protocol.states import KazooState self.assertTrue(self.client.state, KazooState.CONNECTED) called = [False] condition = threading.Event() def listener(state): called[0] = True condition.set() self.client.add_listener(listener) self.client._make_state_change(KazooState.CONNECTED) condition.wait(3) self.assertFalse(called[0]) def test_no_connection(self): client = self.client client.stop() self.assertFalse(client.connected) self.assertTrue(client.client_id is None) self.assertRaises(ConnectionClosedError, client.exists, '/') def test_close_connecting_connection(self): client = self.client client.stop() ev = threading.Event() def close_on_connecting(state): if state in (KazooState.CONNECTED, KazooState.LOST): ev.set() client.add_listener(close_on_connecting) client.start() # Wait until we connect ev.wait(5) ev.clear() self.client._call(_CONNECTION_DROP, client.handler.async_result()) client.stop() # ...and then wait until the connection is lost ev.wait(5) self.assertRaises(ConnectionClosedError, self.client.create, '/foobar') def test_double_start(self): self.assertTrue(self.client.connected) self.client.start() self.assertTrue(self.client.connected) def test_double_stop(self): self.client.stop() self.assertFalse(self.client.connected) self.client.stop() self.assertFalse(self.client.connected) def test_restart(self): self.assertTrue(self.client.connected) self.client.restart() self.assertTrue(self.client.connected) def test_closed(self): client = self.client client.stop() write_pipe = client._connection._write_pipe # close the connection to free the pipe client.close() eq_(client._connection._write_pipe, None) # sneak in and patch client to simulate race between a thread # calling stop(); close() and one running a command oldstate = client._state client._state = KeeperState.CONNECTED client._connection._write_pipe = write_pipe try: # simulate call made after write pipe is closed self.assertRaises(ConnectionClosedError, client.exists, '/') # simualte call made after write pipe is set to None client._connection._write_pipe = None self.assertRaises(ConnectionClosedError, client.exists, '/') finally: # reset for teardown client._state = oldstate client._connection._write_pipe = None class TestClient(KazooTestCase): def _getKazooState(self): from kazoo.protocol.states import KazooState return KazooState def test_client_id(self): client_id = self.client.client_id self.assertEqual(type(client_id), tuple) # make sure password is of correct length self.assertEqual(len(client_id[1]), 16) def test_connected(self): client = self.client self.assertTrue(client.connected) def test_create(self): client = self.client path = client.create("/1") eq_(path, "/1") self.assertTrue(client.exists("/1")) def test_create_on_broken_connection(self): client = self.client client.start() client._state = KeeperState.EXPIRED_SESSION self.assertRaises(SessionExpiredError, client.create, '/closedpath', b'bar') client._state = KeeperState.AUTH_FAILED self.assertRaises(AuthFailedError, client.create, '/closedpath', b'bar') client._state = KeeperState.CONNECTING self.assertRaises(SessionExpiredError, client.create, '/closedpath', b'bar') client.stop() client.close() self.assertRaises(ConnectionClosedError, client.create, '/closedpath', b'bar') def test_create_null_data(self): client = self.client client.create("/nulldata", None) value, _ = client.get("/nulldata") self.assertEqual(value, None) def test_create_empty_string(self): client = self.client client.create("/empty", b"") value, _ = client.get("/empty") eq_(value, b"") def test_create_unicode_path(self): client = self.client path = client.create(u("/ascii")) eq_(path, u("/ascii")) path = client.create(u("/\xe4hm")) eq_(path, u("/\xe4hm")) def test_create_async_returns_unchrooted_path(self): client = self.client path = client.create_async('/1').get() eq_(path, "/1") def test_create_invalid_path(self): client = self.client self.assertRaises(TypeError, client.create, ('a', )) self.assertRaises(ValueError, client.create, ".") self.assertRaises(ValueError, client.create, "/a/../b") self.assertRaises(BadArgumentsError, client.create, "/b\x00") self.assertRaises(BadArgumentsError, client.create, "/b\x1e") def test_create_invalid_arguments(self): from kazoo.security import OPEN_ACL_UNSAFE single_acl = OPEN_ACL_UNSAFE[0] client = self.client self.assertRaises(TypeError, client.create, 'a', acl='all') self.assertRaises(TypeError, client.create, 'a', acl=single_acl) self.assertRaises(TypeError, client.create, 'a', value=['a']) self.assertRaises(TypeError, client.create, 'a', ephemeral='yes') self.assertRaises(TypeError, client.create, 'a', sequence='yes') self.assertRaises(TypeError, client.create, 'a', makepath='yes') def test_create_value(self): client = self.client client.create("/1", b"bytes") data, stat = client.get("/1") eq_(data, b"bytes") def test_create_unicode_value(self): client = self.client self.assertRaises(TypeError, client.create, "/1", u("\xe4hm")) def test_create_large_value(self): client = self.client kb_512 = b"a" * (512 * 1024) client.create("/1", kb_512) self.assertTrue(client.exists("/1")) mb_2 = b"a" * (2 * 1024 * 1024) self.assertRaises(ConnectionLoss, client.create, "/2", mb_2) def test_create_acl_duplicate(self): from kazoo.security import OPEN_ACL_UNSAFE single_acl = OPEN_ACL_UNSAFE[0] client = self.client client.create("/1", acl=[single_acl, single_acl]) acls, stat = client.get_acls("/1") # ZK >3.4 removes duplicate ACL entries if TRAVIS_ZK_VERSION: version = TRAVIS_ZK_VERSION else: version = client.server_version() self.assertEqual(len(acls), 1 if version > (3, 4) else 2) def test_create_acl_empty_list(self): from kazoo.security import OPEN_ACL_UNSAFE client = self.client client.create("/1", acl=[]) acls, stat = client.get_acls("/1") self.assertEqual(acls, OPEN_ACL_UNSAFE) def test_version_no_connection(self): @raises(ConnectionLoss) def testit(): self.client.server_version() self.client.stop() testit() def test_create_ephemeral(self): client = self.client client.create("/1", b"ephemeral", ephemeral=True) data, stat = client.get("/1") eq_(data, b"ephemeral") eq_(stat.ephemeralOwner, client.client_id[0]) def test_create_no_ephemeral(self): client = self.client client.create("/1", b"val1") data, stat = client.get("/1") self.assertFalse(stat.ephemeralOwner) def test_create_ephemeral_no_children(self): from kazoo.exceptions import NoChildrenForEphemeralsError client = self.client client.create("/1", b"ephemeral", ephemeral=True) self.assertRaises(NoChildrenForEphemeralsError, client.create, "/1/2", b"val1") self.assertRaises(NoChildrenForEphemeralsError, client.create, "/1/2", b"val1", ephemeral=True) def test_create_sequence(self): client = self.client client.create("/folder") path = client.create("/folder/a", b"sequence", sequence=True) eq_(path, "/folder/a0000000000") path2 = client.create("/folder/a", b"sequence", sequence=True) eq_(path2, "/folder/a0000000001") path3 = client.create("/folder/", b"sequence", sequence=True) eq_(path3, "/folder/0000000002") def test_create_ephemeral_sequence(self): basepath = "/" + uuid.uuid4().hex realpath = self.client.create(basepath, b"sandwich", sequence=True, ephemeral=True) self.assertTrue(basepath != realpath and realpath.startswith(basepath)) data, stat = self.client.get(realpath) eq_(data, b"sandwich") def test_create_makepath(self): self.client.create("/1/2", b"val1", makepath=True) data, stat = self.client.get("/1/2") eq_(data, b"val1") self.client.create("/1/2/3/4/5", b"val2", makepath=True) data, stat = self.client.get("/1/2/3/4/5") eq_(data, b"val2") self.assertRaises(NodeExistsError, self.client.create, "/1/2/3/4/5", b"val2", makepath=True) def test_create_makepath_incompatible_acls(self): from kazoo.client import KazooClient from kazoo.security import make_digest_acl_credential, CREATOR_ALL_ACL credential = make_digest_acl_credential("username", "password") alt_client = KazooClient(self.cluster[0].address + self.client.chroot, max_retries=5, auth_data=[("digest", credential)]) alt_client.start() alt_client.create("/1/2", b"val2", makepath=True, acl=CREATOR_ALL_ACL) try: self.assertRaises(NoAuthError, self.client.create, "/1/2/3/4/5", b"val2", makepath=True) finally: alt_client.delete('/', recursive=True) alt_client.stop() def test_create_no_makepath(self): self.assertRaises(NoNodeError, self.client.create, "/1/2", b"val1") self.assertRaises(NoNodeError, self.client.create, "/1/2", b"val1", makepath=False) self.client.create("/1/2", b"val1", makepath=True) self.assertRaises(NoNodeError, self.client.create, "/1/2/3/4", b"val1", makepath=False) def test_create_exists(self): from kazoo.exceptions import NodeExistsError client = self.client path = client.create("/1") self.assertRaises(NodeExistsError, client.create, path) def test_create_get_set(self): nodepath = "/" + uuid.uuid4().hex self.client.create(nodepath, b"sandwich", ephemeral=True) data, stat = self.client.get(nodepath) eq_(data, b"sandwich") newstat = self.client.set(nodepath, b"hats", stat.version) self.assertTrue(newstat)
from inspect import isfunction, isclass import warnings import pytest try: # python 3.5+ from typing import Set, Any, List, Iterable except ImportError: pass from _pytest.mark import MarkDecorator from .pytest_compat import itermarkers, apply_mark_to, PytestUnknownMarkWarning info_mode = False debug_mode = False def set_verbosity_level(pytest_config_verbositylevel): global info_mode, debug_mode info_mode = pytest_config_verbositylevel >= 3 # -vv debug_mode = pytest_config_verbositylevel >= 4 # -vvv class EasyMarkerDecorator(MarkDecorator): """ A mark decorator that in addition provides a .param(*values) convenience method """ @classmethod def create_with_name(cls, name): # create a pytest.mark.<name>, and copy its internal mark _md = getattr(pytest.mark, name) try: mark = _md.mark except AttributeError: # happens in pytest 2, to maybe move in compat in the future mark = _md.markname return cls(mark) def param(self, *values): """ Convenience shortcut for `pytest.param(*values, marks=self)` """ return pytest.param(*values, marks=self) class _Agnostic: """A special symbol used internally""" def __repr__(self): return "agnostic" class EasyMarker(MarkDecorator): """ A pair of marker + commandline option for pytest. See constructor for details """ __slots__ = 'marker_id', 'full_name', \ 'has_arg', 'allowed_values', 'used_values', \ 'cmdoption_short', 'cmdoption_long', \ 'not_filtering_skips_marked', 'filtering_skips_unmarked', \ 'cmdhelp', 'markhelp' _all_markers = [] def __init__(self, marker_id, # type: str mode, # type: str full_name=None, # type: str has_arg=True, # type: bool allowed_values=None, # type: Iterable[Any] cmdoption_short=None, # type: str cmdoption_long=None, # type: str cmdhelp=None, # type: str markhelp=None, # type: str ): """ Creates a pair of marker + commandline option for pytest. Marker instances can be used - to decorate test classes or test functions: @marker or @marker(arg) depending whether you set has_arg=False/True - in parametrization values with `pytest.param(*<argvalues>, marks=<self>)` or `pytest.param(*<argvalues>, marks=<self>(arg))` (for this, we inherit from MarkDecorator and override <self>.mark) In addition, `<self>.param(*<argvalues>)` or `<self>(arg).param(*<argvalues>)` is a convenience method provided to do the same than `pytest.param(*<argvalues>, marks=<self>)` or `pytest.param(*<argvalues>, marks=<self>(arg))`. A special decorator `@<marker>.agnostic` can be used to decorate tests that should always run, whatever the configuration. This is only relevant for `mode='silos'` or `mode='hard_filter'`, see below. :param marker_id: the name of the pytest mark. Applying this marker with `@marker(arg)` will be equivalent to applying @pytest.mark.<marker_id>(arg) :param mode: a mandatory string indicating the working mode of this mark and the associated filter option. Four modes are supported: - 'silos': When the option is inactive, only non-marked tests are run. When the option is active, only relevant marked tests run. There is no test in common between these "silos" - 'extender': When the option is inactive, only non-marked tests are run, this is the "base" set of tests. When the option is active, it adds the relevant marked tests to the base set. - 'hard_filter': When the option is inactive, all tests run. When the option is active, only the relevant marked tests run. - 'soft_filter': When the option is inactive, all tests run. When the option is active, all non-marked tests continue to run, but among marked tests only the relevant ones run. :param full_name: the full name of the marker, to be used in help texts. If `None` (default), it defaults to `marker_id`. :param has_arg: if this is `True` (default), the marker has a single argument and the filtering commandline option accepts an argument too. For example a `colormarker` with id `color` will accept an argument describing which color: `@colormarker('yellow')`. If this is `False`, the marker has no argument and the filtering commandline option is a flag with no arguments too. For example a `smokemarker` with id `smoke`: `@smokemarker`. :param allowed_values: a predefined set of values that can be used for this marker. Applying the mark with another value as argument will result in a `ValueError`being raised. `None` (default) will allow users to apply this mark with any value. Note that this can only be set if `has_arg`is `True` :param cmdoption_short: the id to use for the "short" command option (for example providing `'E'` or `'-E'` will result in the option `'-E'`). `None` (default) will *not* create a "short" command option, to avoid name collisions. :param cmdoption_long: the id to use for the "long" command option (for example providing `'env'` or `'--env'` will result in the option `'--env'`). `None` (default) will use `marker_id` for the long command option. :param cmdhelp: the help message displayed when `pytest --help` is called :param markhelp: the help message displayed when `pytest --markers` is called """ # mode validation if mode == "silos": # When the option is inactive, only non-marked tests are run. not_filtering_skips_marked = True # When the option is active, only relevant marked tests run. There is no test in common between these silos filtering_skips_unmarked = True elif mode == "extender": # When the option is inactive, only non-marked tests are run, this is the "base" set of tests. not_filtering_skips_marked = True # When the option is active, it adds the relevant marked tests to the base set. filtering_skips_unmarked = False elif mode == "hard_filter": # When the option is inactive, all tests run. not_filtering_skips_marked = False # When the option is active, only the relevant marked tests run. filtering_skips_unmarked = True elif mode == "soft_filter": # When the option is inactive, all tests run. not_filtering_skips_marked = False # When the option is active, all non-marked tests continue to run, but among marked tests only # the relevant ones run. filtering_skips_unmarked = False if not has_arg: raise ValueError("It does not make sense to set `mode` to `'soft_filter'` when the marker has " "no arguments.") else: raise ValueError("Invalid 'mode' %r. Only 'silos', 'extender', 'hard_filter' or 'soft_filter' are " "supported." % mode) # identifiers if marker_id is None: raise ValueError("a non-None `marker_id` is mandatory") self.marker_id = marker_id # no need to call super constructor, we will never use it directly # indeed we override the .mark attribute with a property, see below # super(EasyMarker, self).__init__(Mark(marker_id, (), {})) self.full_name = full_name if full_name is not None else marker_id # (default) # arguments self.has_arg = has_arg # note: we do not use a set to store the allowed values because we want to preserve the order self.allowed_values = tuple(allowed_values) if allowed_values is not None else None if not self.has_arg and self.allowed_values is not None: raise ValueError("`allowed_values` should not be provided if `has_arg` is `False`, as the marker does not " "accept any arguments") # cmdoption short if cmdoption_short is not None: if cmdoption_short.startswith('--'): raise ValueError("Short command option should only have a single leading dash `-` symbol or zero, not " "two. Found %s" % cmdoption_short) else: cmdoption_short = "-%s" % cmdoption_short.strip('-') self.cmdoption_short = cmdoption_short # cmdoption long if cmdoption_long is None: cmdoption_long = self.marker_id if cmdoption_long.startswith('-') and cmdoption_long[1] != '-': raise ValueError("Long command option should have two leading dash `-` symbols or zero, not one. " "Found %s" % cmdoption_long) else: self.cmdoption_long = "--%s" % cmdoption_long.strip('-') # query filters self.not_filtering_skips_marked = not_filtering_skips_marked self.filtering_skips_unmarked = filtering_skips_unmarked # help messages self.cmdhelp = cmdhelp if cmdhelp is not None else self._get_default_cmdhelp() self.markhelp = markhelp if markhelp is not None else self._get_default_markhelp() # register the marker so that we can list them all in `list_all()` EasyMarker._all_markers.append(self) # prepare to collect the list of values actually used self.used_values = set() @property def mark(self): # called by pytest when pytest.param(<argvalue>, marks=<self>) if self.has_arg: raise ValueError("This marker '%s' has a mandatory argument" % self.marker_id) return self.get_mark_decorator().mark def param(self, *values): """ Convenience shortcut for `pytest.param(*values, marks=self)` """ return pytest.param(*values, marks=self) def __str__(self): return "Pytest marker '%s' with CLI option '%s' and decorator '@pytest.mark.%s(<%s>)'" \ % (self.full_name, self.cmdoption_both, self.marker_id, self.marker_id) def __repr__(self): return str(self) def _get_default_cmdhelp(self): if self.has_arg: if self.filtering_skips_unmarked: first_part = "only run tests marked as requiring %s NAME (marked with @%s(NAME))." \ % (self.full_name, self.marker_id) else: first_part = "run tests marked as requiring %s NAME (marked with @%s(NAME)), as well as tests not " \ "marked with @%s." % (self.full_name, self.marker_id, self.marker_id) else: first_part = "only run tests marked as %s (marked with @%s)." % (self.full_name, self.marker_id) if self.not_filtering_skips_marked: return first_part + " Important: if you call `pytest` without
None return """ Next some funcs that just say stuff""" def repeat_me(text=""): to_repeat = text.replace('repeat after me', '', 1) say(to_repeat) return def say_time(text=""): now = datetime.now() dt_string = now.strftime("Your space time co ordinates are %I %M %p on %A %B %d, %Y.") say(dt_string) return """ Use the openweathermap API to get weather info. right now have hardcoded a bunch of stuff, such as the API key, the lat and long for Portland, etc. The API returns info in JSON format, which is a nested series of dicts and things. """ def say_weather(text=""): api_key = "5295f26a45340d6e3fbf3e63fb069a79" base_url = "http://api.openweathermap.org/data/2.5/onecall?" full_url = (base_url + "lat=45.5051&lon=-122.6750" + "&exclude=hourly,minutely" + "&appid=" + api_key + "&units=imperial" ) say("Let me check.") try: response = requests.get(full_url) data = json.loads(response.text) except: say("Sorry, I'm not sure. Try looking out the window.") return current = data["current"] current_temp = current["temp"] current_weather = current["weather"] current_description = current_weather[0]["description"] daily = data["daily"] daily_temp = daily[0]["temp"] max_temp = daily_temp["max"] min_temp = daily_temp["min"] say('Right now in Portland its "%d" degrees Fahrenheit.' % current_temp) say('The sky looks "%s" to me.' % current_description) say('Forecast calls for a high of "%d", and a low of "%d".' % (max_temp, min_temp)) return def tell_joke(text=""): url = "https://official-joke-api.appspot.com/random_joke" try: data = requests.get(url) joke = json.loads(data.text) except: say("Sorry, I can't think of one right now.") return say(joke["setup"]+"..") say(joke["punchline"]) return def trivia(text=""): url = "https://opentdb.com/api.php?amount=1&category=23&difficulty=medium&type=multiple" try: data = requests.get(url) trivia = json.loads(data.text) except: say("argh.") return logging.info(trivia.json()) return def say_fav_show(text=""): say("Doctor Who, obviously!") return def say_creator(text=""): say("Some maniac from Reed College. Between you and me, I think he's got a screw loose.") return def say_name(text=""): say("My name is <NAME>. I'm an experimental robot created by <NAME>. I can respond to simple commands. I can also tell jokes.") return def say_goodbye(text=""): global user_name say("Goodbye, " + user_name + ". Talk to you later.") exit() return def say_what(text=""): #this is our generic "i didn't understand" situation if not text: return else: say("Sorry, I don't understand.") return """ Next, the "tell me about x" function. User asks for info on a topic and we look it up in wikipedia. i don't think the wikipedia module is super reliable and wish we could do better error-checking. there's long latency while we get info. """ def tell_me_about(text): if not text: return -1 # so text will be something like "tell me about Delaware." # first we have to strip out the 'tell me about' preamble topic = text.replace('tell me about', '', 1) if not topic: say("Sorry, I didn't catch that.") return -1 say("OK, Hang on a sec while I look up" + topic) try: wikipedia_entry = wikipedia.summary(topic, sentences=wiki_sentences) except wikipedia.exceptions.PageError as e: logging.info(e.options) say("Page error.") return -1 except wikipedia.exceptions.DisambiguationError as e: logging.info(e.options) say("Sorry, that was too ambiguous.") return -1 except : say("Sorry, something went wrong.") return -1 say("Here's what I found:") say(wikipedia_entry) return 1 def more_detail(text=""): global wiki_sentences wiki_sentences = wiki_sentences + 2 say("Affirmative") return def less_detail(text=""): global wiki_sentences wiki_sentences = wiki_sentences - 2 if wiki_sentences <= 1 : wiki_sentences = 1 say("Affirmative") return """ next answer any questions that have stumped us so far. That means the question was not in our phraselist. This is explicitly for questions. so first let's make sure there is a question word. Let's also kick out questions about you and me since those are not things the internet is likely to answer well. at first, tried to post a query to duckduckgo but i don't understand their format so right now am just asking Alexa! """ def answer_question(question=""): global k9_volume if not question : return 0 qlist = [ 'who','whos','what','whats','which','why','where','wheres','when','whens','how','hows'] first_word = question.split()[0] if first_word not in qlist : logging.info('"%s" is not a question.' % question) return 0 shitlist = ['you','your','me','my','us','we'] s = set(question.split()).intersection(shitlist) if len(s) != 0 : say("That is a personal question.") return 0 say("I have no idea. But I know someone who might know.") k9_volume = k9_volume + 20 # make it loud! say("Alexa! " + question) k9_volume = k9_volume - 20 # back to normal volume return 1 """ url = 'https://api.duckduckgo.com/?q="%s"&format=json' % question logging.info(url) data = requests.get(url) answer = json.loads(data.text) logging.info(answer["AbstractText"]) say(answer["AbstractText"]) return 1 """ """ Next a func to do some clever responses for users we expect to encounter """ def set_user_name(text): global user_name global user_name_tries if text is None: user_name_tries+=1 if user_name_tries <= 3 : say("Sorry, I didn't hear that. What is your name?") return None else : say("Still didn't hear it. I'll call you Ishmael.") user_name = "Ishmael" user_name_tries = 0 return user_name else : user_name = text.lower() if "chris" in user_name: say("I thought it might be you, " + user_name + ". What an unexpected pleasure.") return user_name else : say("Greetings, " + user_name + ". It's a pleasure to meet you.") return user_name return None """ Next set up a dictionary of known phrases user might say and functions K9 might execute in response. In python dictionaries have a key:value structure. The phrases are keys and the functions are values. The phrase is a string that we can pass to some of these functions. The keys can be used as hints for voice recognition """ phrase_bank = { 'K9' : wake_up, 'turn the light on' : light_on, 'turn the light off': light_off, 'blink the light' : light_blink, 'pulse the light' : light_pulse, 'turn left' : turn_left, 'turn right' : turn_right, 'spin' : spin, 'go forward' : go_forward, 'go back' : go_back, 'back up' : go_back, 'speed up' : speed_up, 'slow down' : slow_down, 'attack' : attack, 'stop' : halt, 'halt' : halt, 'woe' : halt, 'explore' : explore, 'get louder' : get_louder, 'speak up' : get_louder, 'pipe down' : get_quieter, 'too loud' : get_quieter, 'more detail' : more_detail, 'less detail' : less_detail, 'broad strokes' : less_detail, 'repeat after me' : repeat_me, 'what time is it' : say_time, 'what\'s the time' : say_time, 'what is the weather' : say_weather, 'what\'s the weather' : say_weather, 'what is your favorite show' : say_fav_show, 'what\'s your favorite show' : say_fav_show, 'what\'s your name' : say_name, 'who are you' : say_name, 'identify yourself' : say_name, 'who built you' : say_creator, 'who made you' : say_creator, 'who created you' : say_creator, 'tell me about' : tell_me_about, 'tell me a joke' : tell_joke, 'tell me another joke' : tell_joke, 'tell me a better joke' : tell_joke, 'say something funny' : tell_joke, 'make me laugh' : tell_joke, 'see you' : say_goodbye, 'chow' : say_goodbye, 'goodbye' : say_goodbye } """ Next a function that takes a phrase, looks at phrase_bank to see if we know how to handle and returns appropriate function. Otherwise return the say_what function. Note the phrase may actually *contain* the key phrase. So if user asks "I say, what time is it, eh?" We look to see if the phrase_bank contains "what time is it". We need to figure out how to strip extraneous stuff from the beginning of phrase, too """ def respond_to_phrase(phrase): if not phrase: return for key in phrase_bank : if key in phrase : func = phrase_bank[key] return func(phrase) # if we're here, we didn't find phrase in the phrase_bank logging.info('not finding "%s"' % phrase) first_word = phrase.split()[0] qlist = ['who','what','which','why','where','when','how'] if first_word in qlist : return answer_question(phrase) else : return(say_what(phrase)) def get_hints(language_code): if language_code.startswith('en_'): return (phrase_bank.keys()) return None """ Next define a subclass of the cloudspeech client. mostly because I want k9 to show user that it is "listening" by pulsing an LED. """ class K9Client (CloudSpeechClient): def start_listening(self): k9_board.led.state = Led.PULSE_SLOW # Calling the parent's class method, whic basically just logs to the logfile. super().start_listening() return def stop_listening(self): k9_board.led.state = Led.OFF super().stop_listening() return """ Finally, define the main() loop """ def main(): global awake_flag logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description='Assistant service example.') parser.add_argument('--language', default=locale_language()) args = parser.parse_args() logging.info('Initializing for language %s...', args.language)
else: t = type(val) cls = t.__module__+"."+t.__qualname__ add = id(val) return MPackage.F(MPackage.PackageContext+"PyObject", self.ref, cls, add) def __add__(self, amt): from operator import add return self.handler.ref(self.handler._op(add, self.ref, amt)) def __sub__(self, amt): from operator import sub return self.handler.ref(self.handler._op(sub, self.ref, amt)) def __mul__(self, amt): from operator import mul return self.handler.ref(self.handler._op(mul, self.ref, amt)) def __call__(self, *args, **kwargs): return self.get()(*args, **kwargs) def __iadd__(self, amt): return self.handler._iop(self.ref, amt) def __imul__(self, amt): return self.handler.imul(self.ref, amt) def __getattr__(self, item): return self.handler.get() ############################################################################################### # # # Expr # # # ############################################################################################### class Expr: """The Expr class is a representation of arbitrary Mathematica expressions in Java. Exprs are created by reading an expression from a link (using the getExpr() method), they can be decomposed into component Exprs with methods like head() and part(), and their structure can be queried with methods like length(), numberQ(), and matrixQ(). All these methods will be familiar to Mathematica programmers, and their Expr counterparts work similarly. Like Mathematica expressions, Exprs are immutable, meaning they can never be changed once they are created. Operations that might appear to modify an Expr (like delete()) return new modified Exprs without changing the original. <p> Exprs are stored initially in a very efficient way, and they can be created and written to links very quickly. When you call operations that inspect their structure or that extract component parts, however, it is likely that they must be unpacked into a more Java-native form that requires more memory. <p> In its present state, Expr has four main uses: <p> (1) Storing expressions read from a link so that they can be later written to another link. This use replaces functionality that C-language programmers would use a loopback link for. (J/Link has a LoopbackLink interface as well, but Expr affords an even easier method.) <pre> Expr e = ml.getExpr(); // ... Later, write it to a different MathLink: otherML.put(e); e.dispose();</pre> Note that if you just want to move an expression immediately from one link to another, you can use the MathLink method transferExpression() and avoid creating an Expr to store it. <p> (2) Many of the KernelLink methods take either a string or an Expr. If it is not convenient to build a string of Mathematica input, you can use an Expr. There are two ways to build an Expr: you can use a constructor, or you can create a loopback link as a scratchpad, build the expression on this link with a series of MathLink put calls, then read the expression off the loopback link using getExpr(). Here is an example that creates an Expr that represents 2+2 and computes it in Mathematica using these two techniques: <pre> // First method: Build it using Expr constructors: Expr e1 = new Expr(new Expr(Expr.SYMBOL, "Plus"), new Expr[]{new Expr(2), new Expr(2)}); // ml is a KernelLink String result = ml.evaluateToOutputForm(e1, 72); // Second method: Build it on a LoopbackLink with MathLink calls: LoopbackLink loop = MathLinkFactory.createLoopbackLink(); loop.putFunction("Plus", 2); loop.put(2); loop.put(2); Expr e2 = loop.getExpr(); loop.close(); result = ml.evaluateToOutputForm(e2, 72); e2.dispose();</pre> (3) Getting a string representation of an expression. Sometimes you want to be able to produce a readable string form of an entire expression, particularly for debugging. The toString() method will do this for you: <pre> // This code will print out the next expression waiting on the link without // consuming it, so that the state of the link is unchanged: System.out.println("Next expression is: " + ml.peekExpr().toString());</pre> (4) Examining the structure or properties of an expression. Although it is possible to do this sort of thing with MathLink calls, it is very difficult in general. Expr lets you read an entire expression from a link and then examine it using a very high-level interface and without having to worry about managing your current position in an incoming stream of data. <p> Expr is a work in progress. It will be expanded in the future. """ __EXPR_TABLE = {} __ALLOW_EMPTY = False def __init__(self, *args, loopback = None): self.__type = None self.__itype = None self.__dims = None self.__head = None self.__args = None self.__link = loopback self.__hash = None if len(args)>0: head = args[0] args = args[1:] if len(args) == 0: self.__init_from_val(head) elif isinstance(head, (int, str)) and len(args) == 1: self.__init_from_val_and_hint(head, args[0]) elif isinstance(head, Expr): if head.data_type == "Symbol": self.__init_from_head_and_args(head, args) else: raise ValueError( "{}: head must be of type 'Symbol' not '{}'".format(type(self).__name__, head.data_type) ) else: raise ValueError( "Unable to construct {} from head {} and args {}".format(type(self).__name__, head, args) ) elif not self.__ALLOW_EMPTY and not loopback: raise TypeError("__init__() missing 1 required positional argument: 'val'") else: self.__type = Env.getExprTypeInt("Unknown") @classmethod def _get_cached_expr(cls, name, *args): try: expr = cls.__EXPR_TABLE[name] except KeyError: expr = cls.__EXPR_TABLE[name] = cls(*args) return expr @classmethod def _get_head(cls, sym): return cls._get_cached_expr(sym, "Symbol", sym) def __init_from_val(self, val): """Create an Expr from the value val :param val: :return: """ from decimal import Decimal as decimal from fractions import Fraction as fraction from collections import OrderedDict as Association from array import array converter_map = { int : { "type" : Env.getExprTypeInt("Integer"), "head" : "Integer" }, float : { "type" : Env.getExprTypeInt("Real"), "head" : "Real" }, str : { "type" : Env.getExprTypeInt("String"), "head" : "String" }, decimal : { "type" : Env.getExprTypeInt("Decimal"), "head" : "Real" }, fraction : { "type" : Env.getExprTypeInt("Rational"), "head" : "Rational" }, complex : { "type" : Env.getExprTypeInt("Complex"), "head" : "Complex" }, } otype = None ohead = None oitype = None odims = None for key, item in converter_map.items(): if isinstance(val, key): otype = item["type"] ohead = self._get_head(item["head"]) odims = (0,) break if otype is None: if isinstance(val, BufferedNDArray): ohead = self._get_head("List") otype = Env.getExprTypeInt("BufferedNDArray") oitype = val.typecode odims = val.shape if isinstance(val, array): ohead = self._get_head("List") otype = Env.getExprTypeInt("Array") oitype = val.typecode odims = (len(val), ) elif isinstance(val, Association): ohead = self._get_head("Association") otype = Env.getExprTypeInt("Association") odims = (len(val), ) elif isinstance(val, (list, tuple)): ohead = self._get_head("List") otype = Env.getExprTypeInt("List") odims = ArrayUtils.get_array_dims(val, False) elif Env.HAS_NUMPY: import numpy as np if isinstance(val, np.ndarray): ohead = self._get_head("List") otype = Env.getExprTypeInt("NumPyArray") oitype = val.dtype.type odims = val.shape if otype is None: ohead = self._get_head(type(val).__name__) try: iter(val) # iterable anything is a list ? except: otype = self._get_head("Object") odims = (0, ) else: otype = Env.getExprTypeInt("Function") odims = ArrayUtils.get_array_dims(val, False) self.__head = ohead self.__args = (val, ) self.__type = otype self.__itype = oitype self.__dims = odims def __init_from_val_and_hint(self, typename, val): """Creates an Expr representing a Mathematica Integer, Real, String, or Symbol whose value is given by the supplied string (for example "2", "3.14", or "Plus"). :param typename: the type of the Expr; must be one of "Integer", "Real", "Decimal", "Fraction", or "Symbol" :param val: the value of the Expr, interpreted according to the type argument :return: """ if isinstance(typename, int): typename = Env.getExprTypeName(typename) if typename == "Integer": self.__head = self._get_head("Integer") self.__args = (int(val), ) self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "Real": self.__head = self._get_head("Real") self.__args = (float(val), ) self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "String": self.__head = self._get_head("String") self.__args = (str(val), ), self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "Symbol": import re if not isinstance(val, str): raise TypeError("{} with head Symbol can't have value of type {}. Only str is allowed".format(type(self).__name__, type(val).__name__)) val = val.strip() sym_re = "($|[^\W\d_])+" sym_re = re.compile(sym_re, re.U) if not re.match(sym_re, val): raise ValueError("Symbol must match regex {}".format(sym_re)) if val == "Symbol": self.__head = self else: self.__head = self._get_head("Symbol") self.__args = (val, ) self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "Rational": from fractions import Fraction as fraction self.__head = self._get_head("Rational") self.__args = (fraction(val), ), self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "Decimal": from decimal import Decimal as decimal self.__head = self._get_head("Real") self.__args = (decimal(val), ), self.__type = Env.getExprTypeInt(typename) self.__dims = () elif typename == "Complex": self.__head = self._get_head("Complex") self.__args = (complex(val), ), self.__type = Env.getExprTypeInt(typename) self.__dims
of tuples,with the # strategies you are looking to apply # to each type. [ (list, ["append"]), (dict, ["merge"]) ], # next, choose the fallback strategies, # applied to all other types: ["override"], # finally, choose the strategies in # the case where the types conflict: ["override"] ) return my_merger.merge(dct1, dct2) def merge_all(dcts): """ Shallow merge all the dcts :param dcts: :return: """ return reduce( lambda accum, dct: merge(accum, dct), dict(), dcts ) def merge_deep_all(dcts): """ Merge deep all dicts using merge_deep :param dcts: :return: """"" return reduce( lambda accum, dct: merge_deep(accum, dct), dict(), dcts ) @curry def merge(dct1, dct2): """ Ramda implmentation of merge :param dct1: :param dct2: :return: """ return merge_dicts(dct1, dct2) def compact(lst): """ Ramda implmentation of compact. Removes Nones from lst (not 0, etc) :param lst: :return: """ return filter(lambda x: x is not None, lst) def compact_empty(lst): """ Ramda implmentation of compact. Removes empty strings :param lst: :return: """ return filter(lambda x: x != '', lst) def from_pairs(pairs): """ Implementation of ramda from_pairs Converts a list of pairs or tuples of pairs to a dict :param pairs: :return: """ return {k: v for k, v in pairs} def to_pairs(dct): """ Implementation of ramda to_pairs Converts a dict to a list of pairs :param dct: :return: """ return dct.items() def flatten(lst): """ Impemenation of ramda flatten :param lst: :return: """ return list(itertools.chain.from_iterable(lst)) @curry def concat(lst1, lst2): """ Implmentation of ramda cancat :param lst1: :param lst2: :return: """ return lst1 + lst2 def from_pairs_to_array_values(pairs): """ Like from pairs but combines duplicate key values into arrays :param pairs: :return: """ result = {} for pair in pairs: result[pair[0]] = concat(prop_or([], pair[0], result), [pair[1]]) return result def fullname(o): """ https://stackoverflow.com/questions/2020014/get-fully-qualified-class-name-of-an-object-in-python Return the full name of a class :param o: :return: """ return o.__module__ + "." + o.__class__.__name__ def length(lst): """ Implementation of Ramda length :param lst: :return: """ return len(lst) def isalambda(v): """ Detects if something is a lambda :param v: :return: """ return isfunction(v) and v.__name__ == '<lambda>' @curry def map_prop_value_as_index(prp, lst): """ Returns the given prop of each item in the list :param prp: :param lst: :return: """ return from_pairs(map(lambda item: (prop(prp, item), item), lst)) def to_dict_deep(obj, classkey=None): """ Converts an object to a dict deeply :param obj: :param classkey: :return: """ if isinstance(dict, obj): data = {} for (k, v) in obj.items(): data[k] = to_dict_deep(v, classkey) return data elif hasattr(obj, "_ast"): return to_dict_deep(obj._ast()) elif hasattr(obj, "__iter__") and not isinstance(str, obj): return [to_dict_deep(v, classkey) for v in obj] elif hasattr(obj, "__dict__"): data = dict([(key, to_dict_deep(value, classkey)) for key, value in obj.__dict__.items() if not callable(value) and not key.startswith('_')]) if classkey is not None and hasattr(obj, "__class__"): data[classkey] = obj.__class__.__name__ return data else: return obj @curry def flatten_dct_until(obj, until_func, separator): """ Flattens an objects so deep keys and array indices become concatinated strings E.g. {a: {b: [1, 3]}} => {'a.b.0': 1, 'a.b.1': 2} @param {Object} obj The object to flattened @param {Function} until_func stop flattening a line if the this function returns false for the current key Takes 2 args, key and value @param {Object} separator Key segment separator, probably either '.' or '__' @returns {Object} The 1-D version of the object :param obj: :return: """ return from_pairs(_flatten_dct(obj, until_func, separator)) @curry def flatten_dct(obj, separator): """ Flattens an objects so deep keys and array indices become concatinated strings E.g. {a: {b: [1, 3]}} => {'a.b.0': 1, 'a.b.1': 2} @param {Object} obj The object to flattened @param {Object} separator Key segment separator, probably either '.' or '__' @returns {Object} The 1-D version of the object :param obj: :return: """ return from_pairs(_flatten_dct(obj, always(True), separator)) def _flatten_dct(obj, until_func, separator, recurse_keys=[]): """ :param obj: :param until_func: Stops recursion on a certain line if the function returns false and the remaining value is returned with the key :param recurse_keys: :return: """ return if_else( # If we have something iterable besides a string that is truty both(isinstance((dict, list, tuple)), identity), # Then recurse on each object or array value. If o is not truthy, meaning {} or [], return # a single item dict with the keys and o as the value lambda o: compose( flatten, map_with_obj_to_values( lambda k, oo: _flatten_dct(oo, until_func, separator, concat(recurse_keys, [k])) if until_func(k, oo) else [[join(separator, concat(recurse_keys, [k])), oo]] ), # Convert lists and tuples to dict where indexes become keys if_else(isinstance(dict), identity, list_to_dict) )(o), # If not an object return a single pair lambda o: [[join(separator, recurse_keys), o]] )(obj) def key_string_to_lens_path(key_string): """ Converts a key string like 'foo.bar.0.wopper' to ['foo', 'bar', 0, 'wopper'] :param {String} keyString The dot-separated key string :return {[String]} The lens array containing string or integers """ return map( if_else( isinstance(int), # convert to int lambda s: int(s), # Leave the string alone identity ), key_string.split('.') ) @curry def fake_lens_path_view(lens_path, obj): """ Simulates R.view with a lens_path since we don't have lens functions :param lens_path: Array of string paths :param obj: Object containing the given path :return: The value at the path or None """ if equals(0, length(lens_path)): return obj segment = head(lens_path) return if_else( both(lambda _: identity(segment), has(segment)), # Recurse on the rest of the path compose(fake_lens_path_view(tail(lens_path)), getitem(segment)), # Give up lambda _: None )(obj) @curry def fake_lens_path_set(lens_path, value, obj): """ Simulates R.set with a lens_path since we don't have lens functions. obj can be a dict or instance. :param lens_path: Array of string paths :param value: The value to set at the lens path :param obj: Object containing the given path :return: The value at the path or None """ segment = head(lens_path) obj_copy = copy.copy(obj) def set_array_index(i, v, l): # Fill the array with None up to the given index and set the index to v try: l[i] = v except IndexError: for _ in range(i - len(l) + 1): l.append(None) l[i] = v if not (length(lens_path) - 1): # Done new_value = value else: # Find the value at the path or create a {} or [] at obj[segment] found_or_created = item_path_or( if_else( lambda segment: isint(segment) or segment.isnumeric(), always([]), always({}) )(head(tail(lens_path))), int(segment) if isint(segment) else segment, obj ) # Recurse on the rest of the path new_value = fake_lens_path_set(tail(lens_path), value, found_or_created) # Set or replace if isint(segment) or segment.isnumeric(): set_array_index(int(segment), new_value, obj_copy) else: if isinstance(dict, obj_copy): obj_copy[segment] = new_value elif isinstance(object, obj_copy): setattr(obj_copy, segment, new_value) return obj_copy def unflatten_dct(obj): """ Undoes the work of flatten_dict @param {Object} obj 1-D object in the form returned by flattenObj @returns {Object} The original :param obj: :return: """ def reduce_func(accum, key_string_and_value): key_string = key_string_and_value[0] value = key_string_and_value[1] item_key_path = key_string_to_lens_path(key_string) # All but the last segment gives us the item container len container_key_path = init(item_key_path) container = unless( # If the path has any length (not []) and the value is set, don't do anything both(always(length(container_key_path)), fake_lens_path_view(container_key_path)), # Else we are at the top level, so use the existing accum or create a [] or {} # depending on if our item key is a number or not lambda x: default_to( if_else( lambda segment: segment.isnumeric(), always([]), always({}) )(head(item_key_path)) )(x) )(accum) # Finally set the container at the itemLensPath return fake_lens_path_set( item_key_path, value, container ) return compose( reduce( reduce_func, # null initial value None ), to_pairs )(obj) def list_to_dict(lst): return dict(zip(range(len(lst)), lst)) @curry def when(if_pred, when_true, obj): """ Ramda when implementation :param if_pred: :param when_true: :param obj: :return: """ return if_else(if_pred, when_true, identity, obj) @curry def unless(unless_pred, when_not_true, obj): """ Ramda unless implementation :param unless_pred: :param when_not_true: :param obj: :return: """ return if_else(unless_pred, identity, when_not_true, obj) @curry def props(props, obj_or_dict): """ Ramda implmentation of props, which fetches each specified prop in a dict or object using prop() on each of props. Props must all be defined :param props: List of simple props :param obj_or_dict: And object or dict :return: A list of the resolved prop values """ return map( lambda p: prop(p, obj_or_dict), props ) @curry def props_or(undefined_value, props, obj_or_dict): """ Ramda implmentation of props, which fetches each specified prop in a dict or object using prop() on each of props. :param
dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderRequest, ) -> dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderHeaders() return self.renew_application_authorization_service_order_with_options(request, headers, runtime) async def renew_application_authorization_service_order_async( self, request: dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderRequest, ) -> dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderHeaders() return await self.renew_application_authorization_service_order_with_options_async(request, headers, runtime) def renew_application_authorization_service_order_with_options( self, request: dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderRequest, headers: dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse: UtilClient.validate_model(request) body = {} if not UtilClient.is_unset(request.instance_id): body['instanceId'] = request.instance_id if not UtilClient.is_unset(request.access_key): body['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_union_id): body['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.end_time_gmt): body['endTimeGMT'] = request.end_time_gmt real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, body=OpenApiUtilClient.parse_to_map(body) ) return TeaCore.from_map( dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse(), self.do_roarequest('RenewApplicationAuthorizationServiceOrder', 'yida_1.0', 'HTTP', 'POST', 'AK', f'/v1.0/yida/applicationAuthorizations/orders/renew', 'json', req, runtime) ) async def renew_application_authorization_service_order_with_options_async( self, request: dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderRequest, headers: dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse: UtilClient.validate_model(request) body = {} if not UtilClient.is_unset(request.instance_id): body['instanceId'] = request.instance_id if not UtilClient.is_unset(request.access_key): body['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_union_id): body['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.end_time_gmt): body['endTimeGMT'] = request.end_time_gmt real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, body=OpenApiUtilClient.parse_to_map(body) ) return TeaCore.from_map( dingtalkyida__1__0_models.RenewApplicationAuthorizationServiceOrderResponse(), await self.do_roarequest_async('RenewApplicationAuthorizationServiceOrder', 'yida_1.0', 'HTTP', 'POST', 'AK', f'/v1.0/yida/applicationAuthorizations/orders/renew', 'json', req, runtime) ) def get_process_definition( self, process_instance_id: str, request: dingtalkyida__1__0_models.GetProcessDefinitionRequest, ) -> dingtalkyida__1__0_models.GetProcessDefinitionResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetProcessDefinitionHeaders() return self.get_process_definition_with_options(process_instance_id, request, headers, runtime) async def get_process_definition_async( self, process_instance_id: str, request: dingtalkyida__1__0_models.GetProcessDefinitionRequest, ) -> dingtalkyida__1__0_models.GetProcessDefinitionResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetProcessDefinitionHeaders() return await self.get_process_definition_with_options_async(process_instance_id, request, headers, runtime) def get_process_definition_with_options( self, process_instance_id: str, request: dingtalkyida__1__0_models.GetProcessDefinitionRequest, headers: dingtalkyida__1__0_models.GetProcessDefinitionHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.GetProcessDefinitionResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.corp_id): query['corpId'] = request.corp_id if not UtilClient.is_unset(request.group_id): query['groupId'] = request.group_id if not UtilClient.is_unset(request.app_type): query['appType'] = request.app_type if not UtilClient.is_unset(request.order_number): query['orderNumber'] = request.order_number if not UtilClient.is_unset(request.system_type): query['systemType'] = request.system_type if not UtilClient.is_unset(request.system_token): query['systemToken'] = request.system_token if not UtilClient.is_unset(request.name_space): query['nameSpace'] = request.name_space if not UtilClient.is_unset(request.language): query['language'] = request.language if not UtilClient.is_unset(request.user_id): query['userId'] = request.user_id real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.GetProcessDefinitionResponse(), self.do_roarequest('GetProcessDefinition', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/processes/definitions/{process_instance_id}', 'json', req, runtime) ) async def get_process_definition_with_options_async( self, process_instance_id: str, request: dingtalkyida__1__0_models.GetProcessDefinitionRequest, headers: dingtalkyida__1__0_models.GetProcessDefinitionHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.GetProcessDefinitionResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.corp_id): query['corpId'] = request.corp_id if not UtilClient.is_unset(request.group_id): query['groupId'] = request.group_id if not UtilClient.is_unset(request.app_type): query['appType'] = request.app_type if not UtilClient.is_unset(request.order_number): query['orderNumber'] = request.order_number if not UtilClient.is_unset(request.system_type): query['systemType'] = request.system_type if not UtilClient.is_unset(request.system_token): query['systemToken'] = request.system_token if not UtilClient.is_unset(request.name_space): query['nameSpace'] = request.name_space if not UtilClient.is_unset(request.language): query['language'] = request.language if not UtilClient.is_unset(request.user_id): query['userId'] = request.user_id real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.GetProcessDefinitionResponse(), await self.do_roarequest_async('GetProcessDefinition', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/processes/definitions/{process_instance_id}', 'json', req, runtime) ) def upgrade_tenant_information( self, request: dingtalkyida__1__0_models.UpgradeTenantInformationRequest, ) -> dingtalkyida__1__0_models.UpgradeTenantInformationResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.UpgradeTenantInformationHeaders() return self.upgrade_tenant_information_with_options(request, headers, runtime) async def upgrade_tenant_information_async( self, request: dingtalkyida__1__0_models.UpgradeTenantInformationRequest, ) -> dingtalkyida__1__0_models.UpgradeTenantInformationResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.UpgradeTenantInformationHeaders() return await self.upgrade_tenant_information_with_options_async(request, headers, runtime) def upgrade_tenant_information_with_options( self, request: dingtalkyida__1__0_models.UpgradeTenantInformationRequest, headers: dingtalkyida__1__0_models.UpgradeTenantInformationHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.UpgradeTenantInformationResponse: UtilClient.validate_model(request) body = {} if not UtilClient.is_unset(request.access_key): body['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_union_id): body['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.account_number): body['accountNumber'] = request.account_number if not UtilClient.is_unset(request.commodity_type): body['commodityType'] = request.commodity_type real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, body=OpenApiUtilClient.parse_to_map(body) ) return TeaCore.from_map( dingtalkyida__1__0_models.UpgradeTenantInformationResponse(), self.do_roarequest('UpgradeTenantInformation', 'yida_1.0', 'HTTP', 'PUT', 'AK', f'/v1.0/yida/apps/tenantInfos', 'json', req, runtime) ) async def upgrade_tenant_information_with_options_async( self, request: dingtalkyida__1__0_models.UpgradeTenantInformationRequest, headers: dingtalkyida__1__0_models.UpgradeTenantInformationHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.UpgradeTenantInformationResponse: UtilClient.validate_model(request) body = {} if not UtilClient.is_unset(request.access_key): body['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_union_id): body['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.account_number): body['accountNumber'] = request.account_number if not UtilClient.is_unset(request.commodity_type): body['commodityType'] = request.commodity_type real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, body=OpenApiUtilClient.parse_to_map(body) ) return TeaCore.from_map( dingtalkyida__1__0_models.UpgradeTenantInformationResponse(), await self.do_roarequest_async('UpgradeTenantInformation', 'yida_1.0', 'HTTP', 'PUT', 'AK', f'/v1.0/yida/apps/tenantInfos', 'json', req, runtime) ) def get_application_authorization_service_platform_resource( self, request: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceRequest, ) -> dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceHeaders() return self.get_application_authorization_service_platform_resource_with_options(request, headers, runtime) async def get_application_authorization_service_platform_resource_async( self, request: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceRequest, ) -> dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceHeaders() return await self.get_application_authorization_service_platform_resource_with_options_async(request, headers, runtime) def get_application_authorization_service_platform_resource_with_options( self, request: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceRequest, headers: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.instance_id): query['instanceId'] = request.instance_id if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_uid): query['callerUid'] = request.caller_uid real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse(), self.do_roarequest('GetApplicationAuthorizationServicePlatformResource', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/authorization/platformResources', 'json', req, runtime) ) async def get_application_authorization_service_platform_resource_with_options_async( self, request: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceRequest, headers: dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.instance_id): query['instanceId'] = request.instance_id if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key if not UtilClient.is_unset(request.caller_uid): query['callerUid'] = request.caller_uid real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.GetApplicationAuthorizationServicePlatformResourceResponse(), await self.do_roarequest_async('GetApplicationAuthorizationServicePlatformResource', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/authorization/platformResources', 'json', req, runtime) ) def list_application_authorization_service_application_information( self, instance_id: str, request: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationRequest, ) -> dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationHeaders() return self.list_application_authorization_service_application_information_with_options(instance_id, request, headers, runtime) async def list_application_authorization_service_application_information_async( self, instance_id: str, request: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationRequest, ) -> dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationHeaders() return await self.list_application_authorization_service_application_information_with_options_async(instance_id, request, headers, runtime) def list_application_authorization_service_application_information_with_options( self, instance_id: str, request: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationRequest, headers: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key if not UtilClient.is_unset(request.page_size): query['pageSize'] = request.page_size if not UtilClient.is_unset(request.caller_union_id): query['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.page_number): query['pageNumber'] = request.page_number real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse(), self.do_roarequest('ListApplicationAuthorizationServiceApplicationInformation', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/authorizations/applicationInfos/{instance_id}', 'json', req, runtime) ) async def list_application_authorization_service_application_information_with_options_async( self, instance_id: str, request: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationRequest, headers: dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key if not UtilClient.is_unset(request.page_size): query['pageSize'] = request.page_size if not UtilClient.is_unset(request.caller_union_id): query['callerUnionId'] = request.caller_union_id if not UtilClient.is_unset(request.page_number): query['pageNumber'] = request.page_number real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.ListApplicationAuthorizationServiceApplicationInformationResponse(), await self.do_roarequest_async('ListApplicationAuthorizationServiceApplicationInformation', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/authorizations/applicationInfos/{instance_id}', 'json', req, runtime) ) def validate_application_authorization_service_order( self, caller_uid: str, request: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderRequest, ) -> dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderHeaders() return self.validate_application_authorization_service_order_with_options(caller_uid, request, headers, runtime) async def validate_application_authorization_service_order_async( self, caller_uid: str, request: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderRequest, ) -> dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderHeaders() return await self.validate_application_authorization_service_order_with_options_async(caller_uid, request, headers, runtime) def validate_application_authorization_service_order_with_options( self, caller_uid: str, request: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderRequest, headers: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse(), self.do_roarequest('ValidateApplicationAuthorizationServiceOrder', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/appsAuthorizations/freshOrderInfoReviews/{caller_uid}', 'json', req, runtime) ) async def validate_application_authorization_service_order_with_options_async( self, caller_uid: str, request: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderRequest, headers: dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.access_key): query['accessKey'] = request.access_key real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.ValidateApplicationAuthorizationServiceOrderResponse(), await self.do_roarequest_async('ValidateApplicationAuthorizationServiceOrder', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/appsAuthorizations/freshOrderInfoReviews/{caller_uid}', 'json', req, runtime) ) def get_activity_list( self, request: dingtalkyida__1__0_models.GetActivityListRequest, ) -> dingtalkyida__1__0_models.GetActivityListResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetActivityListHeaders() return self.get_activity_list_with_options(request, headers, runtime) async def get_activity_list_async( self, request: dingtalkyida__1__0_models.GetActivityListRequest, ) -> dingtalkyida__1__0_models.GetActivityListResponse: runtime = util_models.RuntimeOptions() headers = dingtalkyida__1__0_models.GetActivityListHeaders() return await self.get_activity_list_with_options_async(request, headers, runtime) def get_activity_list_with_options( self, request: dingtalkyida__1__0_models.GetActivityListRequest, headers: dingtalkyida__1__0_models.GetActivityListHeaders, runtime: util_models.RuntimeOptions, ) -> dingtalkyida__1__0_models.GetActivityListResponse: UtilClient.validate_model(request) query = {} if not UtilClient.is_unset(request.process_code): query['processCode'] = request.process_code if not UtilClient.is_unset(request.app_type): query['appType'] = request.app_type if not UtilClient.is_unset(request.system_token): query['systemToken'] = request.system_token if not UtilClient.is_unset(request.language): query['language'] = request.language if not UtilClient.is_unset(request.user_id): query['userId'] = request.user_id real_headers = {} if not UtilClient.is_unset(headers.common_headers): real_headers = headers.common_headers if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token): real_headers['x-acs-dingtalk-access-token'] = headers.x_acs_dingtalk_access_token req = open_api_models.OpenApiRequest( headers=real_headers, query=OpenApiUtilClient.query(query) ) return TeaCore.from_map( dingtalkyida__1__0_models.GetActivityListResponse(), self.do_roarequest('GetActivityList', 'yida_1.0', 'HTTP', 'GET', 'AK', f'/v1.0/yida/processes/activities',
Header "Accept" is "application/json" When I make a "POST" request with the repository id Then I should receive a "200" response code And response should have key "status" of 200 And response header "Content-Type" should be "application/json; charset=UTF-8" And response should not have key "errors" """) @given(u'the "set asset" endpoint for the "{obj}" "{attr}" with the asset "{asset_no}"') def given_a_set(context, obj, attr, asset_no): repository_id = get_repository_id(context) context.execute_steps(u""" Given the "set asset" endpoint """) resource_id = quote_plus(getattr(context, obj).get(attr)) context.endpoint = context.endpoint.format(repository_id, resource_id, context.set_asset_ids[int(asset_no)]) @given(u'a set with {nbassets} assets') def given_a_set_with_assets(context, nbassets): context.execute_steps(u""" Given a set And a group of {} asset ids And the "set assets" endpoint of the repository for the "set" "id" and parameter "assets" is the set_asset_ids When I make a "POST" request Then I should receive a "200" response code And response should have key "status" of 200 """.format(nbassets)) context.params = {} @given(u'an array of 1 assets as the body') def use_premade_asset(context): body = [ { "source_id_type": context.id_map['source_id_type'], "source_id": context.id_map['source_id'] } ] context.body = body def generate_query(number, valid_id=True): result = [] for i in range(number): result.append(generate_query_object(valid_id)) return result def generate_random_id(keytype="testcoid"): uuidv = str(uuid.uuid4()).replace('-', '') if keytype == "hub_keyS0": return "https://openpermissions.org/s0/hub1/asset/testco/testcoid/%s"%(uuidv) else: return uuidv def generate_query_object(valid_id): source_id_type = COMMON_ASSET_DETAILS['source_id_type'] if valid_id else u"InvalidIdType" return {"source_id_type": source_id_type, "source_id": generate_random_id()} @given(u'an invalid Query objects as the body') def invalid_objects_as_body(context): context.body = "gibberish" @given(u'"{no_of_lic_offs}" offers have already been onboarded') def add_offers(context, no_of_lic_offs): try: no_of_lic_offs = int(no_of_lic_offs) except ValueError: raise ValueError("Number of offers must be a number") context.offer_ids = [] for _ in range(no_of_lic_offs): add_an_offer(context, "valid") if context.offer['id'] not in context.offer_ids: context.offer_ids.append(context.offer['id']) @given(u'"{no_of_lic_offs}" offers with sets have already been onboarded') def add_offer_sets(context, no_of_lic_offs): try: no_of_lic_offs = int(no_of_lic_offs) except ValueError: raise ValueError("Number of offers must be a number") context.offer_ids = [] for _ in range(no_of_lic_offs): add_offer_and_set(context, "valid") if context.offer['id'] not in context.offer_ids: context.offer_ids.append(context.offer['id']) @given(u'body is a "valid" {content_type} asset') def inject_valid_asset_into_context_body(context, content_type): source_id = generate_random_id() entity_ids, asset_ttl = format_common_asset(source_id) offer_id = getattr(context, 'offer', {}).get('id') offer_ids = [offer_id] if offer_id else [] context.body = generate_asset( offer_ids, asset_ttl, entity_ids[0], content_type ) @given(u'body is an "invalid" xml asset') def inject_invalid_asset_into_context_body(context): context.body = """ <?xml version="1.0" encoding="UTF-8"?> <note> <p> badly formed xml </note> """ @given(u'body is "not" an xml asset') def inject_not_an_asset_into_context_body(context): context.body = "not xml data" date_format = "%Y-%m-%dT%H:%M:%SZ" def isoformat(d): """ :param d: a date :return: Returns valid iso8601 with timezone dateformat for linked data """ return d.strftime(date_format) def generate_asset(offer_ids, asset_ttl, entity_id, content_type='xml'): graph = Graph() graph.parse(data=asset_ttl, format='turtle') for offer_id in offer_ids: asset_offer_ttl = ASSET_DIRECT_OFFER_TEMPLATE.format( prefixes=COMMON_PREFIXES, id=entity_id, offer_id=offer_id, modified=isoformat(datetime.utcnow()) ) graph.parse(data=asset_offer_ttl, format='turtle') asset = graph.serialize(format=content_type) return asset def generate_indirect_asset(asset_ttl, entity_id, offer_ids=[], set_ids=[], content_type='xml'): graph = Graph() graph.parse(data=asset_ttl, format='turtle') for offer_id in offer_ids: asset_offer_ttl = ASSET_INDIRECT_OFFER_TEMPLATE.format( prefixes=COMMON_PREFIXES, id=entity_id, offer_id=offer_id, set_id=offer_id+"5e4", modified=isoformat(datetime.utcnow()) ) graph.parse(data=asset_offer_ttl, format='turtle') for set_id in set_ids: asset_offer_ttl = ASSET_INDIRECT_SET_TEMPLATE.format( prefixes=COMMON_PREFIXES, id=entity_id, set_id=set_id, modified=isoformat(datetime.utcnow()) ) graph.parse(data=asset_offer_ttl, format='turtle') asset = graph.serialize(format=content_type) return asset def format_common_asset(source_id): bnode_id = generate_random_id() if COMMON_ASSET_DETAILS['source_id_type'] != 'hub_key': entity_ids = [generate_random_id()] else: entity_ids = [source_id] asset = ASSET_TEMPLATE.format( prefixes=COMMON_PREFIXES, id=entity_ids[0], source_id_type=COMMON_ASSET_DETAILS['source_id_type'], source_id=source_id, bnode_id=bnode_id, timestamp=datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") ) return (entity_ids, asset) @given(u'an {asset} has been added for the given offer') @clean_step def add_asset_for_offers(context, asset): assert hasattr(context, 'repository'), 'no repository set in the context' if hasattr(context, 'offer_ids'): offer_ids = context.offer_ids elif hasattr(context, 'offer'): offer_ids = [context.offer['id']] else: raise KeyError("Missing offer ID(s) for asset") source_id = generate_random_id() entity_ids, asset_ttl = format_common_asset(source_id) if asset == "asset": asset_xml = generate_asset(offer_ids, asset_ttl, entity_ids[0]) if asset == "indirect asset": asset_xml = generate_indirect_asset(asset_ttl, entity_ids[0], offer_ids=offer_ids) context.body = asset_xml hub_key = TEMPLATE_HUBKEY.format( repo_id=context.repository['id'], id_type=asset, id=unquote_plus(entity_ids[0].encode()) ) hub_key0 = TEMPLATE_HUBKEY_V0.format( entity_type = 'asset', org_id = COMMON_ASSET_DETAILS["organisation_id"], source_id_type = COMMON_ASSET_DETAILS['source_id_type'], source_id=source_id ) context.id_map = { 'source_id_type': COMMON_ASSET_DETAILS['source_id_type'], 'source_id': source_id, 'entity_id': unquote_plus(entity_ids[0].encode()), 'hub_key': hub_key, 'hub_key1': '/'.join(hub_key.split('/')[3:]), 'hub_key0': '/'.join(hub_key0.split('/')[3:]) } context.asset = {'id': entity_ids[0]} context.execute_steps(u""" Given the "repository" service And the repository "testco repo" belonging to "testco" And the client ID is the "testco" "external" service ID And the client has an access token granting "write" access to the repository And the "assets" endpoint And Header "Content-Type" is "application/xml" And Header "Accept" is "application/json" When I make a "POST" request with the repository id """) check_success(context) def check_success(context): if context.response.status_code != 200: status_code = context.response.status_code error = context.response_object.get("errors", [{}])[0] source = error.get('source', 'not set').strip() error_msg = error.get('message', 'not set').strip() msg = '\n\n========================== CAPTURED ERROR =========================' msg += "\nStatus code: {}\nSource: {}\nError message: {}\n".format( status_code, source, error_msg ) raise AssertionError(msg) @given(u'an asset not in the repository') def a_new_asset_not_in_repo(context): source_id = generate_random_id() context.id_map = { 'source_id_type': COMMON_ASSET_DETAILS['source_id_type'], 'source_id': source_id } @given(u'a body of {count} generated valid ids') def add_valid_ids_to_body(context, count): context.body = { 'ids': [{ 'source_id_type': COMMON_ASSET_DETAILS['source_id_type'], 'source_id': generate_random_id()} for _ in range(int(count)) ] } @given(u'a body of {count} generated invalid ids') def add_invalid_ids_to_body(context, count): ids = [] for index in range(int(count)): if index % 2: ids.append({ 'source_id_type': COMMON_ASSET_DETAILS['source_id_type'] }) else: ids.append({'source_id': generate_random_id()}) context.body = {'ids': ids} @given(u'a body of {count} generated invalid id types') def add_invalid_types_to_body(context, count): context.body = {'ids': [{'source_id_type': 'InvalidPictureIDType', 'source_id': generate_random_id()} for _ in range(int(count))]} @given(u'the "{resource}" endpoint of the repository for the "{obj}" "{attr}"') def endpoint_of_the_repository(context, resource, obj, attr): repository_id = get_repository_id(context) context.execute_steps(u""" Given the "{}" endpoint """.format(resource)) resource_id = quote_plus(getattr(context, obj).get(attr)) context.endpoint = context.endpoint.format(repository_id, resource_id) @given(u'the "{resource}" endpoint of the repository for an invalid {entity_type}') def repository_enpoint_invalid_entity(context, resource, entity_type): repository_id = get_repository_id(context) context.execute_steps(u""" Given the "{}" endpoint """.format(resource)) context.endpoint = context.endpoint.format(repository_id, 'a' * 32) @given(u'the additional IDs endpoint for the new asset') def endpoint_for_asset(context): repository_id = get_repository_id(context) context.execute_steps(u""" Given the "asset ids" endpoint """) entity_id = context.id_map['entity_id'] context.endpoint = context.endpoint.format(quote_plus(repository_id), quote_plus(entity_id)) @given(u'the additional IDs endpoint for an illegal asset') def endpoint_for_illegal_asset(context): repository_id = get_repository_id(context) context.execute_steps(u""" Given the "asset ids" endpoint """) entity_id = str(uuid.uuid4()).replace('-', '') context.endpoint = context.endpoint.format(quote_plus(repository_id), quote_plus(entity_id)) @when(u'I query the "{service}" service for the asset') def query_for_asset(context, service): assert service == context.service_name, ( 'expected context.service_name = {} got {}'.format( service, context.service_name) ) id_map = context.id_map query_an_asset(context, id_map['source_id_type'], id_map['source_id']) @when(u'I query the "{service}" service for the asset using a schema 0 hub key') def query_for_asset(context, service): assert service == context.service_name, ( 'expected context.service_name = {} got {}'.format( service, context.service_name) ) id_map = context.id_map hub_key = 'https://openpermissions.org/s0/hub1/asset/maryevans/{}/{}'.format( id_map['source_id_type'], id_map['source_id']) query_an_asset(context, 'hub_key', hub_key) @when(u'I bulk query the "{service}" service for the asset') def query_for_asset(context, service): assert service == context.service_name, ( 'expected context.service_name = {} got {}'.format( service, context.service_name) ) id_map = context.id_map body = [ { 'source_id_type': id_map['source_id_type'], 'source_id': id_map['source_id'] } ] query_by_source_id_and_type(context, body) @when(u'I bulk query the "{service}" service for the asset using a schema 0 hub key') def query_for_asset(context, service): assert service == context.service_name, ( 'expected context.service_name = {} got {}'.format( service, context.service_name) ) id_map = context.id_map hub_key = 'https://openpermissions.org/s0/hub1/asset/maryevans/{}/{}'.format( id_map['source_id_type'], id_map['source_id']) body = [ { 'source_id_type': 'hub_key', 'source_id': hub_key } ] query_by_source_id_and_type(context, body) @when(u'I query the "{service}" service for the asset together with another asset') def query_for_multi_assets(context, service): assert service == context.service_name, ( 'expected context.service_name = {} got {}'.format( service, context.service_name) ) id_map = context.id_map body = [ { 'source_id_type': id_map['source_id_type'], 'source_id': id_map['source_id'] } ] body.append(generate_query_object(True)) query_by_source_id_and_type(context, body) @clean_step def query_an_asset(context, source_id_type, source_id): context.execute_steps(u""" Given Header "Content-Type" is "application/json" And Header "Accept" is "application/json" And parameter "source_id_type" is "{}" And parameter "source_id" is "{}" When I make a "GET" request """.format(source_id_type, source_id)) @clean_step def query_by_source_id_and_type(context, body): context.body = body context.execute_steps(u""" Given Header "Content-Type" is "application/json" And Header "Accept" is "application/json" When I make a "POST" request """) @given(u'an array of "{number}" "{query_type}" Query objects as the body') def step_impl(context, number, query_type): num = int(number) if query_type == "no result": context.body = generate_query(context, num) elif query_type == "resulting": context.body = get_query(context, num) elif query_type == "mixed": assert num >= 2 div, mod = divmod(num, 2) context.body = generate_query(div + mod) context.body += get_query(context, div) elif query_type == "invalid id type": context.body = generate_query(num, False) else: assert False @given(u'the additional id \"{source_id_type}\" \"{source_id}\" has been attached to the asset') def added_ids(context, source_id_type, source_id): context.id_to_be_attached = { 'ids': [ { 'source_id_type': source_id_type, 'source_id': source_id } ] } context.clean_execute_steps(u""" Given the "repository" service And the repository "testco repo" belonging to "testco" And the client ID is the "testco" "external" service ID And the client has an access token granting "write" access to the repository And the request body is the "id_to_be_attached" And Header "Content-Type" is "application/json" And Header "Accept"
<gh_stars>0 import os from datetime import date as datetime from flask import Flask, Markup, redirect, render_template, request, session from flask_session import Session from sqlalchemy import ( Column, ForeignKey, Integer, Sequence, String, create_engine, ) from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, scoped_session, sessionmaker import config app = Flask(__name__) # Check for environment variable if not os.getenv("DATABASE_URL"): raise RuntimeError("DATABASE_URL is not set") # Configure session to use filesystem app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Set up database engine = create_engine(os.getenv("DATABASE_URL")) db = scoped_session(sessionmaker(bind=engine)) Base = declarative_base() class User(Base): __tablename__ = "users" id = Column(Integer, Sequence("users_sequence"), primary_key=True) username = Column(String, nullable=False, unique=True) password = Column(String, nullable=False) name = Column(String, nullable=False) elevation = Column(Integer, nullable=False, default=0) posts = relationship("Post", back_populates="user") comments = relationship("Comment", back_populates="user") def __repr__(self): return str( [ self.id, self.username, self.password, self.name, self.elevation, self.posts, self.comments, ] ) class Post(Base): __tablename__ = "posts" id = Column(Integer, Sequence("posts_sequence"), primary_key=True) title = Column(String, nullable=False, unique=True) slug = Column(String, nullable=False, unique=True) user_id = Column(Integer, ForeignKey("users.id")) year = Column(String, nullable=False) month = Column(String, nullable=False) date = Column(String, nullable=False) content = Column(String, nullable=False) user = relationship("User", back_populates="posts") comments = relationship("Comment", back_populates="post") def __repr__(self): return str( [ self.id, self.title, self.slug, "{d}-{m}-{y}".format(d=self.year, m=self.month, y=self.date), self.user.name, self.comments, ] ) class Page(Base): __tablename__ = "pages" id = Column(Integer, Sequence("pages_sequence"), primary_key=True) title = Column(String, nullable=False, unique=True) slug = Column(String, nullable=False, unique=True) precedence = Column(Integer, nullable=False) content = Column(String, nullable=False) def __repr__(self): return str([self.id, self.title, self.slug, self.precedence]) class Comment(Base): __tablename__ = "comments" id = Column(Integer, Sequence("comments_sequence"), primary_key=True) content = Column(String, nullable=False) user_id = Column(Integer, ForeignKey("users.id")) post_id = Column(Integer, ForeignKey("posts.id")) user = relationship("User", back_populates="comments") post = relationship("Post", back_populates="comments") def __repr__(self): return str([self.id, self.user.name, self.post.slug]) Base.metadata.create_all(engine) if ( db.query(User).all() == [] and db.query(Post).all() == [] and db.query(Page).all() == [] and db.query(Comment).all() == [] ): db.add( User( username="admin", password="password", name="Konikal", elevation=4 ) ) db.add( Post( title="Hello world!", slug="hello-world", user_id=1, year=datetime.today().strftime("%Y"), month=datetime.today().strftime("%m"), date=datetime.today().strftime("%d"), content="""{"ops":[{"insert":"Welcome to Konikal. This is your first post. Edit or delete it, then start posting!"}]}""", ) ) db.add( Page( title="Home", slug="home", precedence="1", content="""{"ops":[{"insert":"Welcome to Konikal. This is your home page. Edit or delete it, then start posting!"}]}""", ) ) db.add( Comment( content="""{"ops":[{"insert":"This is your first comment. Edit or delete it, then start posting!"}]}""", user_id=1, post_id=1, ) ) db.commit() ############################################################################### # Main page @app.route("/") def root(): session["route"] = "/" pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if home is not None: return render_template( "page.html", pagebar=Markup(config.pagebar["home"].format(pagebar=pagebar)), body=Markup( config.page["page"].format( title=home.title, content=home.content ) ), custom=config.custom, ) else: body = "" posts = ( db.query(Post) .order_by( Post.year.desc(), Post.month.desc(), Post.date.desc(), Post.id.desc(), ) .all() ) if posts != []: for i in posts: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=i.year, month=i.month, date=i.date, ) else: body = "No posts" return render_template( "page.html", pagebar=Markup(config.pagebar["no_home"].format(pagebar=pagebar)), body=Markup( config.page["posts"].format(page="All Posts", body=body) ), custom=config.custom, ) # Redirect route @app.route("/route") def route(): if "route" in session: if session["route"].find("/user/") != -1: return redirect("/") else: return redirect(session["route"]) else: return redirect("/") # Search page @app.route("/search", methods=["GET"]) def search(): search = request.args.get("search").lower() session["search"] = search body = "" posts = ( db.query(Post) .order_by( Post.year.desc(), Post.month.desc(), Post.date.desc(), Post.id.desc(), ) .all() ) results = [] for i in posts: if i.title.lower().find(search) != -1 or i.title.lower().find(search) != -1: results.append(i) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if posts != []: for i in results: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=i.year, month=i.month, date=i.date, ) else: body = "No posts" if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) session["route"] = "/posts" return render_template( "page.html", pagebar=pagebar, body=Markup(config.page["posts"].format(page="Search: " + search, body=body)), custom=config.custom, ) # All posts page @app.route("/posts") def posts(): body = "" posts = ( db.query(Post) .order_by( Post.year.desc(), Post.month.desc(), Post.date.desc(), Post.id.desc(), ) .all() ) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if posts != []: for i in posts: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=i.year, month=i.month, date=i.date, ) else: body = "No posts" if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) session["route"] = "/posts" return render_template( "page.html", pagebar=pagebar, body=Markup(config.page["posts"].format(page="All Posts", body=body)), custom=config.custom, ) # Year posts page @app.route("/posts/<year>") def posts_year(year): body = "" posts = ( db.query(Post) .filter_by(year=year) .order_by(Post.month.desc(), Post.date.desc(), Post.id.desc()) .all() ) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if posts != []: for i in posts: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=year, month=i.month, date=i.date, ) else: body = "No posts" if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) session["route"] = "/posts/{year}".format(year=year) return render_template( "page.html", pagebar=pagebar, body=Markup(config.page["posts"].format(page=year, body=body)), custom=config.custom, ) # Month posts page @app.route("/posts/<year>/<month>") def posts_year_month(year, month): body = "" posts = ( db.query(Post) .filter_by(year=year, month=month) .order_by(Post.date.desc(), Post.id.desc()) .all() ) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if posts != []: for i in posts: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=year, month=month, date=i.date, ) else: body = "No posts" if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) session["route"] = "/posts/{year}/{month}".format(year=year, month=month) return render_template( "page.html", pagebar=pagebar, body=Markup( config.page["posts"].format( page="{month}-{year}".format(month=month, year=year), body=body ) ), custom=config.custom, ) # Date posts page @app.route("/posts/<year>/<month>/<date>") def posts_year_month_date(year, month, date): body = "" posts = ( db.query(Post) .filter_by(year=year, month=month, date=date) .order_by(Post.id.desc()) .all() ) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if posts != []: for i in posts: body += """ <tr> <td><a href="/posts/{year}/{month}/{date}/{slug}">{title}</a></td> <td>By {author}</td> <td><a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a></td> </tr> """.format( title=i.title, slug=i.slug, author=i.user.name, year=year, month=month, date=date, ) else: body = "No posts" if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) session["route"] = "/posts/{year}/{month}/{date}".format( year=year, month=month, date=date ) return render_template( "page.html", pagebar=pagebar, body=Markup( config.page["posts"].format( page="{date}-{month}-{year}".format( date=date, month=month, year=year ), body=body, ) ), custom=config.custom, ) # Post page @app.route("/posts/<year>/<month>/<date>/<slug>") def posts_year_month_date_slug(year, month, date, slug): post = ( db.query(Post) .filter_by(year=year, month=month, date=date, slug=slug) .first() ) pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if post is not None: session["route"] = "/posts/{year}/{month}/{date}/{slug}".format( year=year, month=month, date=date, slug=slug ) if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) return render_template( "page.html", pagebar=pagebar, body=Markup( config.page["post"].format( title=post.title, date="""<a href="/posts/{year}/{month}/{date}">{date}</a>-<a href="/posts/{year}/{month}">{month}</a>-<a href="/posts/{year}">{year}</a>""".format( date=date, month=month, year=year ), author=post.user.name, content=post.content, ) ), custom=config.custom, ) else: session["error"] = "alert('Invalid route: Post does not exist');" return redirect(session["route"]) # Page page @app.route("/<slug>") def slug(slug): page = db.query(Page).filter_by(slug=slug).first() pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if page is not None: if slug == "home": return redirect("/") else: session["route"] = "/{slug}".format(slug=slug) if home is not None: pagebar = Markup( config.pagebar["home"].format(pagebar=pagebar) ) else: pagebar = Markup( config.pagebar["no_home"].format(pagebar=pagebar) ) session["route"] = "/{slug}".format(slug=slug) return render_template( "page.html", pagebar=pagebar, body=Markup( config.page["page"].format( title=page.title, content=page.content ) ), custom=config.custom, ) else: session["error"] = "alert('Invalid route: Page does not exist');" return redirect(session["route"]) # Login page @app.route("/login") def login(): if "user" not in session: pagebar = "" pages = db.query(Page).order_by(Page.precedence.desc()).all() for i in pages: pagebar += """ <li class="nav-item active"> <a class="nav-link" href="/{slug}">{title}</a> </li> """.format( title=i.title, slug=i.slug ) home = db.query(Page).filter_by(slug="home").first() if home is not None: pagebar = Markup(config.pagebar["home"].format(pagebar=pagebar)) else: pagebar = Markup(config.pagebar["no_home"].format(pagebar=pagebar)) return render_template( "page.html", pagebar=pagebar, body=Markup(config.page["login"]), custom=config.custom, ) else: session["error"] = "alert('Invalid login: Already logged in');" return redirect("/route") # Login processing @app.route("/login/done", methods=["POST"]) def
<reponame>sassoftware/conary<gh_stars>10-100 # # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import conary_test from conary_test import rephelp from conary.deps import deps from conary import versions from conary.build.policy import PolicyError from conary.build.errors import CookError from conary import rpmhelper from conary_test import resources pythonVer = "%s.%s" % sys.version_info[:2] class RpmCapsuleTest(rephelp.RepositoryHelper): @conary_test.rpm def testRPMCapsuleEpoch(self): recipestr1 = r""" class TestEpoch(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('epoch-1.0-1.i386.rpm') """ built, d = self.buildRecipe(recipestr1, "TestEpoch") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) self.assertEquals(trv.troveInfo.capsule.rpm.epoch(), 17) @conary_test.rpm def testScriptHasLdSoConf(self): 'test warning on capsule scripts containing "ld.so.conf" (CNP-185)' recipestr = """ class TestLdSoConf(CapsuleRecipe): name = 'scripts' version = '1.0_1' clearBuildReqs() def setup(r): r.addCapsule('scripts-1.0-1.x86_64.rpm') """ # note that cookrpmcapsuletest:testCookWithScripts tests success case self.assertRaises(PolicyError, self.buildRecipe, recipestr, 'TestLdSoConf') @conary_test.rpm def testRPMCapsuleDepPolicy(self): """ Make sure that RPMProvide and RPMProvide work""" recipestr1 = r""" class TestEpoch(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('epoch-1.0-1.i386.rpm') r.RPMProvides('rpm: nonsenseProvision(FOO BAR)', 'epoch:rpm' ) r.RPMRequires('rpm: nonsenseRequirement(BAZ QUX)', 'epoch' ) """ self.cfg.enableRPMVersionDeps = False built, d = self.buildRecipe(recipestr1, "TestEpoch") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) self.assertEquals(str(trv.provides()), '\n'.join(('trove: epoch:rpm', 'rpm: epoch', 'rpm: epoch[x86-32]', 'rpm: nonsenseProvision(BAR FOO)'))) self.assertEquals(str(trv.requires), '\n'.join(('rpm: nonsenseRequirement(BAZ QUX)', 'rpmlib: CompressedFileNames', 'rpmlib: PayloadFilesHavePrefix'))) self.cfg.enableRPMVersionDeps = True built, d = self.buildRecipe(recipestr1, "TestEpoch") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) self.assertEquals(str(trv.provides()), '\n'.join(('trove: epoch:rpm', 'rpm: epoch', 'rpm: epoch-17:1.0', 'rpm: epoch-17:1.0-1', 'rpm: epoch[x86-32]', 'rpm: epoch[x86-32]-17:1.0', 'rpm: epoch[x86-32]-17:1.0-1', 'rpm: nonsenseProvision(BAR FOO)'))) self.assertEquals(str(trv.requires), '\n'.join(('rpm: nonsenseRequirement(BAZ QUX)', 'rpmlib: CompressedFileNames', 'rpmlib: PayloadFilesHavePrefix'))) @conary_test.rpm def testRPMCapsuleDepPolicy2(self): """Make sure that we can't specify non rpm and rpmlib deps using RPMProvides""" recipestr1 = r""" class TestEpoch(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('epoch-1.0-1.i386.rpm') r.RPMProvides('soname: nonsenseProvision(FOO BAR)', 'epoch' ) """ try: self.buildRecipe(recipestr1, "TestEpoch") except CookError, e: err = str(e).split('\n')[1] self.assertEqual( str(err), " PolicyError: RPMProvides cannot " "be used to provide the non-rpm dependency: 'soname: " "nonsenseProvision(FOO BAR)'") @conary_test.rpm def testRPMCapsuleDepPolicy3(self): """Make sure that we can't specify non rpm and rpmlib deps using RPMRequires""" recipestr1 = r""" class TestEpoch(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('epoch-1.0-1.i386.rpm') r.RPMRequires('soname: nonsenseProvision(FOO BAR)', 'epoch' ) """ try: self.buildRecipe(recipestr1, "TestEpoch") except CookError, e: err = str(e).split('\n')[1] self.assertEqual( str(err), " PolicyError: RPMRequires cannot " "be used to provide the non-rpm dependency: 'soname: " "nonsenseProvision(FOO BAR)'") @conary_test.rpm def testRPMProvidesExceptions(self): """ Make sure you can add exceptions for rpm dependencies. You need to be able to do this when an RPM that you are installing incorrectly provides something that the system provides to avoid installing all RPMs as one large job. It only makes sense to do exceptDeps for RPMProvides since rpm provisions aren't actually attached to files. """ recipe1 = """ class TestRecipe(CapsuleRecipe): name = 'test' version = '1' clearBuildReqs() def setup(r): r.addCapsule('perl-Archive-Tar-1.46-68.fc11.x86_64.rpm') """ recipe2 = recipe1 + "\n r.RPMProvides(exceptDeps='rpm: perl.*')" def getPerlProvides(trv): return [ x for x in str(trv.provides()).split('\n') if x.startswith('rpm: perl') ] self.cfg.enableRPMVersionDeps = False r1trv = self.build(recipe1, 'TestRecipe') r1provides = getPerlProvides(r1trv) self.assertEqual(len(r1provides), 5) r2trv = self.build(recipe2, 'TestRecipe') r2provides = getPerlProvides(r2trv) self.assertEqual(len(r2provides), 0) self.assertTrue([ x for x in str(r2trv.provides()) ]) self.cfg.enableRPMVersionDeps = True r1trv = self.build(recipe1, 'TestRecipe') r1provides = getPerlProvides(r1trv) self.assertEqual(len(r1provides), 19) r2trv = self.build(recipe2, 'TestRecipe') r2provides = getPerlProvides(r2trv) self.assertEqual(len(r2provides), 0) self.assertTrue([ x for x in str(r2trv.provides()) ]) @conary_test.rpm def testRPMCapsuleKernelModMerging(self): ''' Make sure that RPMRequires passes through mergeKmodSymbols correctly ''' def checkDeps(built, reqExpected, provExpected): nvf = built nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmDependencies)) provGot = list(trv.provides().iterDepsByClass(deps.RpmDependencies)) self.assertEquals(str(reqGot), reqExpected) self.assertEquals(str(provGot), provExpected) recipestr1 = r""" class TestKernel(CapsuleRecipe): name = 'kernelish' version = '0' clearBuildReqs() def setup(r): r.addCapsule('kernelish-1.0-1.noarch.rpm') r.RPMRequires(mergeKmodSymbols=True) """ self.cfg.enableRPMVersionDeps = False built, d = self.buildRecipe(recipestr1, "TestKernel") req = "[Dependency('ksym', flags={'bar:123456789abcdef': 1, 'foo:123456789abcdef': 1})]" prov = "[Dependency('kernel', flags={'bar:123456789abcdef': 1, 'foo:123456789abcdef': 1}), Dependency('kernelish')]" checkDeps(built[0], req, prov) self.cfg.enableRPMVersionDeps = True built, d = self.buildRecipe(recipestr1, "TestKernel") req = "[Dependency('ksym', flags={'bar:123456789abcdef': 1, 'foo:123456789abcdef': 1})]" prov = "[Dependency('kernel', flags={'bar:123456789abcdef': 1, 'foo:123456789abcdef': 1}), Dependency('kernelish-1.0'), Dependency('kernelish-0:1.0'), Dependency('kernelish-0:1.0-1'), Dependency('kernelish'), Dependency('kernelish-1.0-1')]" checkDeps(built[0], req, prov) recipestr2 = r""" class TestKernel(CapsuleRecipe): name = 'kernelish' version = '0' clearBuildReqs() def setup(r): r.addCapsule('kernelish-1.0-1.noarch.rpm') r.RPMRequires(mergeKmodSymbols=False) """ self.cfg.enableRPMVersionDeps = False built, d = self.buildRecipe(recipestr2, "TestKernel") req = "[Dependency('ksym[bar:123456789abcdef]'), Dependency('ksym[foo:123456789abcdef]')]" prov = "[Dependency('kernel[foo:123456789abcdef]'), Dependency('kernelish'), Dependency('kernel[bar:123456789abcdef]')]" checkDeps(built[0], req, prov) self.cfg.enableRPMVersionDeps = True built, d = self.buildRecipe(recipestr2, "TestKernel") req = "[Dependency('ksym[bar:123456789abcdef]'), Dependency('ksym[foo:123456789abcdef]')]" prov = '[%s]' % ', '.join([ "Dependency('kernelish-1.0')", "Dependency('kernel[bar:123456789abcdef]')", "Dependency('kernelish-0:1.0')", "Dependency('kernelish-0:1.0-1')", "Dependency('kernel[foo:123456789abcdef]')", "Dependency('kernelish')", "Dependency('kernelish-1.0-1')", ]) checkDeps(built[0], req, prov) @conary_test.rpm def testRPMCapsuleDepCulling(self): """ Make sure that RPMRequires redundent rpm requires are culled""" recipestr1 = r""" class TestDepCulling(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('gnome-main-menu-0.9.10-26.x86_64.rpm') """ self.cfg.enableRPMVersionDeps = False self.overrideBuildFlavor('is: x86_64') built, d = self.buildRecipe(recipestr1, "TestDepCulling") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmDependencies)) reqExpected = "[Dependency('hal'), Dependency('gnome-main-menu-lang'), Dependency('gnome-panel'), Dependency('tango-icon-theme'), Dependency('coreutils'), Dependency('dbus-1-glib'), Dependency('libssui'), Dependency('eel'), Dependency('wireless-tools')]" self.assertEquals(str(reqGot), reqExpected) self.cfg.enableRPMVersionDeps = True built, d = self.buildRecipe(recipestr1, "TestDepCulling") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmDependencies)) reqExpected = "[Dependency('hal'), Dependency('gnome-main-menu-lang'), Dependency('gnome-main-menu-lang-0.9.10'), Dependency('gnome-panel'), Dependency('tango-icon-theme'), Dependency('coreutils'), Dependency('dbus-1-glib'), Dependency('libssui'), Dependency('eel'), Dependency('wireless-tools')]" self.assertEquals(str(reqGot), reqExpected) @conary_test.rpm def testRPMRequiresExceptions(self): """ Make sure that RPMRequires's exceptions argument works""" recipestr1 = r""" class TestRPMRequiresExceptions(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('gnome-main-menu-0.9.10-26.x86_64.rpm') r.RPMRequires(exceptions='gnome-main-menu.*rpm') """ self.overrideBuildFlavor('is: x86_64') built, d = self.buildRecipe(recipestr1, "TestRPMRequiresExceptions") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmDependencies)) reqExpected = "[]" self.assertEquals(str(reqGot), reqExpected) @conary_test.rpm def testRPMRequiresExceptDeps1(self): """ Make sure that RPMRequires's exceptDeps argument works""" recipestr1 = r""" class TestRPMRequiresExceptDeps(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('gnome-main-menu-0.9.10-26.x86_64.rpm') r.RPMRequires(exceptDeps='rpmlib: .*') """ self.overrideBuildFlavor('is: x86_64') built, d = self.buildRecipe(recipestr1, "TestRPMRequiresExceptDeps") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmLibDependencies)) reqExpected = "[]" self.assertEquals(str(reqGot), reqExpected) @conary_test.rpm def testRPMRequiresExceptDeps2(self): """ Make sure that RPMRequires's exceptDeps argument works""" recipestr1 = r""" class TestRPMRequiresExceptDeps(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('gnome-main-menu-0.9.10-26.x86_64.rpm') r.RPMRequires(exceptDeps=('gnome-main-menu.*','rpmlib: .*')) """ self.overrideBuildFlavor('is: x86_64') built, d = self.buildRecipe(recipestr1, "TestRPMRequiresExceptDeps") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmLibDependencies)) reqExpected = "[]" self.assertEquals(str(reqGot), reqExpected) @conary_test.rpm def testRPMRequiresExceptDeps3(self): """ Make sure that RPMRequires's exceptDeps argument works""" recipestr1 = r""" class TestRPMRequiresExceptDeps(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('gnome-main-menu-0.9.10-26.x86_64.rpm') r.RPMRequires(exceptDeps=(('gnome-main-menu.*','rpm: .*'),) ) """ self.overrideBuildFlavor('is: x86_64') built, d = self.buildRecipe(recipestr1, "TestRPMRequiresExceptDeps") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) reqGot = list(trv.requires().iterDepsByClass(deps.RpmDependencies)) reqExpected = "[]" self.assertEquals(str(reqGot), reqExpected) @conary_test.rpm def testRPMCapsuleUserGroup(self): recipestr1 = r""" class TestGroup(CapsuleRecipe): name = 'test' version = '0' clearBuildReqs() def setup(r): r.addCapsule('ownerships-1.0-1.i386.rpm') """ built, d = self.buildRecipe(recipestr1, "TestGroup") nvf = built[0] nvf = nvf[0], versions.VersionFromString(nvf[1]), nvf[2] repos = self.openRepository() trv = repos.getTrove(*nvf) self.assertEquals(trv.requires(), deps.ThawDependencySet( '17#CompressedFileNames|17#PayloadFilesHavePrefix|' '17#PayloadIsBzip2')) @conary_test.rpm def testRPMCapsuleGhost(self): recipestr1 = r""" class TestGhost(CapsuleRecipe): name = 'ghost' version = '1.0' clearBuildReqs() def setup(r): r.addCapsule('ghost-1.0-1.i386.rpm') # ensure that initialContents overrides transient r.Transient('/foo/ghost') """ built, d = self.buildRecipe(recipestr1, "TestGhost") client = self.getConaryClient() repos = client.getRepos() nvf = repos.findTrove(None, built[0]) trv = repos.getTrove(*nvf[0]) fileList = list(trv.iterFileList()) fileObjs = repos.getFileVersions([(x[0], x[2], x[3]) for x in fileList if x[1] == '/foo/ghost']) for fileInfo, fileObj in zip(fileList, fileObjs): self.assertFalse(fileObj.flags.isConfig(), "Expected config to be unset for %s" % fileInfo[1]) self.assertFalse(fileObj.flags.isTransient(), "Expected transient to be unset for %s" % fileInfo[1]) self.assertTrue(fileObj.flags.isInitialContents(), "Expected initialContents for %s" % fileInfo[1]) @conary_test.rpm def testRPMCapsuleDeps(self): 'make sure that rpm capsule deps are correct' recipestr1 = r""" class TestProvides(CapsuleRecipe): name = 'depstest' version = '1.0' clearBuildReqs() def setup(r): r.addCapsule('depstest-0.1-1.x86_64.rpm') """ self.cfg.enableRPMVersionDeps = False built, d = self.buildRecipe(recipestr1, "TestProvides") client = self.getConaryClient() repos = client.getRepos() nvf = repos.findTrove(None, built[0]) trv = repos.getTrove(*nvf[0]) reqExpected = '\n'.join(( 'abi: ELF32(SysV x86)', 'file: /bin/sh', 'soname: ELF32/ld-linux.so.2(GLIBC_PRIVATE SysV
, rloc , port ) : self . rloc . copy_address ( rloc ) self . translated_rloc . copy_address ( rloc ) self . translated_port = port if 73 - 73: OOooOOo / Oo0Ooo if 80 - 80: OoO0O00 + I1IiiI % i1IIi / I11i % i1IIi * i11iIiiIii def is_rloc_translated ( self ) : return ( self . translated_rloc . is_null ( ) == False ) if 27 - 27: OoOoOO00 / I1Ii111 * O0 / I1IiiI - IiII / o0oOOo0O0Ooo if 70 - 70: I1ii11iIi11i def rloc_exists ( self ) : if ( self . rloc . is_null ( ) == False ) : return ( True ) if ( self . rle_name or self . geo_name or self . elp_name or self . json_name ) : return ( False ) if 11 - 11: I1Ii111 return ( True ) if 70 - 70: Ii1I if 22 - 22: Ii1I def is_rtr ( self ) : return ( ( self . priority == 254 and self . mpriority == 255 and self . weight == 0 and self . mweight == 0 ) ) if 59 - 59: I1ii11iIi11i if 90 - 90: OOooOOo / iII111i if 70 - 70: o0oOOo0O0Ooo def print_state_change ( self , new_state ) : I1Ii1iI1 = self . print_state ( ) OO0o0o0oo = "{} -> {}" . format ( I1Ii1iI1 , new_state ) if ( new_state == "up" and self . unreach_state ( ) ) : OO0o0o0oo = bold ( OO0o0o0oo , False ) if 44 - 44: Oo0Ooo + Ii1I + ooOoO0o / I1ii11iIi11i return ( OO0o0o0oo ) if 50 - 50: i1IIi . iIii1I11I1II1 % OoO0O00 if 45 - 45: OoooooooOO . O0 * oO0o + IiII def print_rloc_probe_rtt ( self ) : if ( self . rloc_probe_rtt == - 1 ) : return ( "none" ) return ( self . rloc_probe_rtt ) if 18 - 18: II111iiii . O0 - I11i / I11i if 71 - 71: OoOoOO00 + iIii1I11I1II1 - II111iiii / i1IIi def print_recent_rloc_probe_rtts ( self ) : I111II = str ( self . recent_rloc_probe_rtts ) I111II = I111II . replace ( "-1" , "?" ) return ( I111II ) if 22 - 22: I1Ii111 - OOooOOo * i1IIi if 88 - 88: ooOoO0o + iIii1I11I1II1 + OoO0O00 * I1Ii111 + oO0o def compute_rloc_probe_rtt ( self ) : i1oo0OO0Oo = self . rloc_probe_rtt self . rloc_probe_rtt = - 1 if ( self . last_rloc_probe_reply == None ) : return if ( self . last_rloc_probe == None ) : return self . rloc_probe_rtt = self . last_rloc_probe_reply - self . last_rloc_probe self . rloc_probe_rtt = round ( self . rloc_probe_rtt , 3 ) I1IIIIII1 = self . recent_rloc_probe_rtts self . recent_rloc_probe_rtts = [ i1oo0OO0Oo ] + I1IIIIII1 [ 0 : - 1 ] if 76 - 76: I1Ii111 * OOooOOo * IiII % IiII / o0oOOo0O0Ooo * I11i if 41 - 41: i11iIiiIii . I1IiiI / O0 def print_rloc_probe_hops ( self ) : return ( self . rloc_probe_hops ) if 93 - 93: Oo0Ooo % OoOoOO00 . II111iiii if 60 - 60: OoO0O00 - IiII % O0 * I1ii11iIi11i def print_recent_rloc_probe_hops ( self ) : oOO000OOOOOooo = str ( self . recent_rloc_probe_hops ) return ( oOO000OOOOOooo ) if 64 - 64: OoO0O00 % OoOoOO00 % I1IiiI - Ii1I / IiII * Ii1I if 74 - 74: IiII - O0 % OOooOOo % OoooooooOO - I11i def store_rloc_probe_hops ( self , to_hops , from_ttl ) : if ( to_hops == 0 ) : to_hops = "?" elif ( to_hops < LISP_RLOC_PROBE_TTL / 2 ) : to_hops = "!" else : to_hops = str ( LISP_RLOC_PROBE_TTL - to_hops ) if 4 - 4: i1IIi + OoOoOO00 + iIii1I11I1II1 - i1IIi * i11iIiiIii if ( from_ttl < LISP_RLOC_PROBE_TTL / 2 ) : OO0oOo00 = "!" else : OO0oOo00 = str ( LISP_RLOC_PROBE_TTL - from_ttl ) if 88 - 88: O0 % OOooOOo . iII111i if 40 - 40: O0 . Ii1I % IiII % I1ii11iIi11i - OoOoOO00 i1oo0OO0Oo = self . rloc_probe_hops self . rloc_probe_hops = to_hops + "/" + OO0oOo00 I1IIIIII1 = self . recent_rloc_probe_hops self . recent_rloc_probe_hops = [ i1oo0OO0Oo ] + I1IIIIII1 [ 0 : - 1 ] if 94 - 94: I1IiiI . I1Ii111 if 37 - 37: i1IIi - O0 def process_rloc_probe_reply ( self , nonce , eid , group , hop_count , ttl ) : oOOoo0O00 = self while ( True ) : if ( oOOoo0O00 . last_rloc_probe_nonce == nonce ) : break oOOoo0O00 = oOOoo0O00 . next_rloc if ( oOOoo0O00 == None ) : lprint ( " No matching nonce state found for nonce 0x{}" . format ( lisp_hex_string ( nonce ) ) ) if 36 - 36: I1Ii111 . OoooooooOO - i1IIi % iII111i - II111iiii * i11iIiiIii return if 90 - 90: OoOoOO00 % iII111i - Oo0Ooo if 13 - 13: o0oOOo0O0Ooo / O0 . I1Ii111 * I1Ii111 if 76 - 76: Ii1I - iII111i oOOoo0O00 . last_rloc_probe_reply = lisp_get_timestamp ( ) oOOoo0O00 . compute_rloc_probe_rtt ( ) OOo0OOo = oOOoo0O00 . print_state_change ( "up" ) if ( oOOoo0O00 . state != LISP_RLOC_UP_STATE ) : lisp_update_rtr_updown ( oOOoo0O00 . rloc , True ) oOOoo0O00 . state = LISP_RLOC_UP_STATE oOOoo0O00 . last_state_change = lisp_get_timestamp ( ) Iii1 = lisp_map_cache . lookup_cache ( eid , True ) if ( Iii1 ) : lisp_write_ipc_map_cache ( True , Iii1 ) if 31 - 31: I11i . ooOoO0o if 69 - 69: I1ii11iIi11i oOOoo0O00 . store_rloc_probe_hops ( hop_count , ttl ) if 6 - 6: iIii1I11I1II1 * I1ii11iIi11i / I11i % I1Ii111 / Oo0Ooo iI11iI11i11ii = bold ( "RLOC-probe reply" , False ) I1iiIiiii1111 = oOOoo0O00 . rloc . print_address_no_iid ( ) OOOOo000o = bold ( str ( oOOoo0O00 . print_rloc_probe_rtt ( ) ) , False ) i111 = ":{}" . format ( self . translated_port ) if self . translated_port != 0 else "" if 42 - 42: iII111i / i11iIiiIii + II111iiii % IiII / ooOoO0o o00ooO0Ooo = "" if ( oOOoo0O00 . rloc_next_hop != None ) : oOo0OOOOOO , o0O0 = oOOoo0O00 . rloc_next_hop o00ooO0Ooo = ", nh {}({})" . format ( o0O0 , oOo0OOOOOO ) if 57 - 57: ooOoO0o * oO0o + o0oOOo0O0Ooo if 97 - 97: OoooooooOO * I1IiiI . Ii1I * I1IiiI ooo0OO = green ( lisp_print_eid_tuple ( eid , group ) , False ) lprint ( ( " Received {} from {}{} for {}, {}, rtt {}{}, " + "to-ttl/from-ttl {}" ) . format ( iI11iI11i11ii , red ( I1iiIiiii1111 , False ) , i111 , ooo0OO , # OoO0O00 * OoO0O00 OOo0OOo , OOOOo000o , o00ooO0Ooo , str ( hop_count ) + "/" + str ( ttl ) ) ) if 66 - 66: i1IIi . IiII / OoOoOO00 / i11iIiiIii if ( oOOoo0O00 . rloc_next_hop == None ) : return if 53 - 53: OoOoOO00 % OoooooooOO + Ii1I if 85 - 85: ooOoO0o % i11iIiiIii * oO0o / ooOoO0o / I1Ii111 . i11iIiiIii if 23 - 23: i1IIi + I1Ii111 / Oo0Ooo * O0 . O0 if 67 - 67: OoO0O00 - II111iiii + Ii1I oOOoo0O00 = None iIiiII = None while ( True ) : oOOoo0O00 = self if oOOoo0O00 == None else oOOoo0O00 . next_rloc if ( oOOoo0O00 == None ) : break if ( oOOoo0O00 . up_state ( ) == False ) : continue if ( oOOoo0O00 . rloc_probe_rtt == - 1 ) : continue if 88 - 88: i1IIi . I1IiiI - I11i % OoooooooOO / OoOoOO00 + OoOoOO00 if ( iIiiII == None ) : iIiiII = oOOoo0O00 if ( oOOoo0O00 . rloc_probe_rtt < iIiiII . rloc_probe_rtt ) : iIiiII = oOOoo0O00 if 32 - 32: o0oOOo0O0Ooo * O0 if 65 - 65:
<reponame>arccode/factory # Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import contextlib import errno import json import os from unittest import mock import xmlrpc.client import rest_framework.status import rest_framework.test from backend import models SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) @contextlib.contextmanager def TestData(file_name, deserialize=True): """Load a JSON file under the testdata folder using the with statement.""" with open(os.path.join(SCRIPT_DIR, 'testdata', file_name)) as f: if deserialize: yield json.load(f) else: yield f.read() class UploadedFileTest(rest_framework.test.APITestCase): def setUp(self): with open(__file__) as f: response = self.client.post('/files/', data={'file': f}) self.uploaded_file_id = response.json()['id'] def testWithUploadedFile(self): """The normal use case of UploadedFile.""" with models.UploadedFile(self.uploaded_file_id) as path: self.assertTrue(os.path.isfile(path)) self.assertFalse(os.path.exists(path)) @mock.patch('os.unlink') def testWithUploadedFileNoSuchFile(self, unlink): """The uploaded file will be removed after used, but it doesn't matter if it has already been removed.""" unlink.side_effect = OSError(errno.ENOENT, 'No such file') with models.UploadedFile(self.uploaded_file_id) as path: unlink.assert_not_called() unlink.assert_called_once_with(path) @mock.patch('os.unlink') def testWithUploadedFileUnlinkRaisesErrorOtherThanENOENT(self, unlink): """Test if os.unlink() raises error other than ENOENT.""" unlink.side_effect = OSError(errno.EACCES, 'Permission denied') # This case should never happen actually, but if it happened, we'll just # raise. with self.assertRaises(OSError): with models.UploadedFile(self.uploaded_file_id): pass @mock.patch('os.rmdir') def testWithUploadedFileDirectoryNotEmpty(self, rmdir): """The code will try to remove the parent directory of the uploaded file, but will fail if it's not empty, which we don't care.""" rmdir.side_effect = OSError(errno.ENOTEMPTY, 'Directory not empty') with models.UploadedFile(self.uploaded_file_id) as path: rmdir.assert_not_called() rmdir.assert_called_once_with(os.path.dirname(path)) @mock.patch('os.rmdir') def testWithUploadedFileRmdirRaisesErrorOtherThanENOTEMPTY(self, rmdir): """Test if os.rmdir() raises error other than ENOTEMPTY.""" rmdir.side_effect = OSError(errno.EACCES, 'Permission denied') # This case should never happen actually, but if it happened, we'll just # raise. with self.assertRaises(OSError): with models.UploadedFile(self.uploaded_file_id): pass # TODO(pihsun): Check if testdata still makes sense after there's no match, and # there's only one active bundle. class DomeAPITest(rest_framework.test.APITestCase): """Test Dome APIs. This class is somewhere between unit test and integration test. All layers below Dome back-end are mocked (such as docker commands, Umpire, etc.), but models, serializers, views, and urls modules are not tested separately. TODO(littlecvr): we probably need real unit tests and integration tests. Project APIs: - GET projects/ List projects. - POST /projects/ Create a new project. - DELETE /projects/${PROJECT_NAME}/ Delete a specific project. - PUT /projects/${PROJECT_NAME}/ Add/create/delete Umpire container of the project. Bundle APIs: - GET /projects/${PROJECT_NAME}/bundles/ List bundles. - POST /projects/${PROJECT_NAME/bundles/ Upload a new bundle. - PUT /projects/${PROJECT_NAME}/bundles/ Reorder the bundles. - DELETE /projects/${PROJECT_NAME}/bundles/${BUNDLE_NAME}/ Delete bundle. - PUT /projects/${PROJECT_NAME/bundles/${BUNDLE_NAME}/ Update bundle resources Resource APIs: - POST /projects/${PROJECT_NAME}/resources/ Add a resource to Umpire. """ # TODO(littlecvr): separate tests into different groups (project, bundle, # resource). @classmethod def setUpClass(cls): super(DomeAPITest, cls).setUpClass() cls.PROJECT_WITHOUT_UMPIRE_NAME = 'project_without_umpire' cls.PROJECT_WITH_UMPIRE_NAME = 'project_with_umpire' cls.PROJECT_WITH_UMPIRE_PORT = 8080 cls.MOCK_UMPIRE_VERSION = 5 models.Project.objects.create(name=cls.PROJECT_WITHOUT_UMPIRE_NAME) models.Project.objects.create(name=cls.PROJECT_WITH_UMPIRE_NAME, umpire_enabled=True, umpire_port=cls.PROJECT_WITH_UMPIRE_PORT) os.makedirs(os.path.join( models.UMPIRE_BASE_DIR, cls.PROJECT_WITH_UMPIRE_NAME)) def setUp(self): self.maxDiff = None # developer friendly setting ENTITIES_TO_MOCK = ['subprocess.call', 'subprocess.check_call', 'subprocess.check_output', 'shutil.copy', 'shutil.rmtree', 'os.chmod', 'xmlrpc.client.ServerProxy'] self.patchers = [] self.mocks = {} for entity in ENTITIES_TO_MOCK: self.patchers.append(mock.patch(entity)) self.mocks[entity] = self.patchers[-1].start() self.patchers.append(mock.patch.object( models.Project, 'GetExistingUmpirePort')) self.mocks['GetExistingUmpirePort'] = self.patchers[-1].start() self.mocks['GetExistingUmpirePort'].return_value = None def MockUmpireGetActiveConfig(): """Mock the GetActiveConfig() call because it's used so often.""" add_config_from_blob_mock = ( self.mocks['xmlrpc.client.ServerProxy']().AddConfigFromBlob) # Emulate Umpire to some extend: if new config has been uploaded, return # it; otherwise, return the default config. if add_config_from_blob_mock.called: args, unused_kwargs = add_config_from_blob_mock.call_args return args[0] with TestData('umpire_config.json', deserialize=False) as config_str: return config_str def MockUmpireGetPayloadsDict(file_name): """Mock the GetPayloadsDict() RPC call in Umpire.""" with TestData(file_name) as c: return c self.mocks['xmlrpc.client.ServerProxy']().GetActiveConfig = ( mock.MagicMock(side_effect=MockUmpireGetActiveConfig)) self.mocks['xmlrpc.client.ServerProxy']().GetPayloadsDict = ( mock.MagicMock(side_effect=MockUmpireGetPayloadsDict)) self.mocks['xmlrpc.client.ServerProxy']().GetVersion = ( mock.MagicMock(return_value=self.MOCK_UMPIRE_VERSION)) def tearDown(self): for patcher in self.patchers: patcher.stop() def testAddExistingUmpire(self): UMPIRE_PORT = 8090 # pretend we have the container self.mocks['subprocess.check_output'].return_value = ( models.Project.GetUmpireContainerName(self.PROJECT_WITHOUT_UMPIRE_NAME)) self.mocks['GetExistingUmpirePort'].return_value = UMPIRE_PORT response = self._AddExistingUmpire(self.PROJECT_WITHOUT_UMPIRE_NAME) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) self.assertTrue( response.content, { 'name': self.PROJECT_WITHOUT_UMPIRE_NAME, 'umpireEnabled': True, 'umpirePort': UMPIRE_PORT, 'hasExistingUmpire': True }) # no docker commands should be called self.mocks['subprocess.call'].assert_not_called() self.mocks['subprocess.check_call'].assert_not_called() def testCreateProject(self): PROJECT_NAME = 'testing_project' response = self._CreateProject(PROJECT_NAME) self.assertEqual(response.status_code, rest_framework.status.HTTP_201_CREATED) self.assertJSONEqual( response.content, { 'name': PROJECT_NAME, 'umpireEnabled': False, 'umpirePort': None, 'netbootBundle': None, 'hasExistingUmpire': False }) # no docker commands should be called self.mocks['subprocess.call'].assert_not_called() self.mocks['subprocess.check_call'].assert_not_called() self.mocks['subprocess.check_output'].assert_not_called() def testCreateProjectThatAlreadyExists(self): response = self._CreateProject(self.PROJECT_WITH_UMPIRE_NAME) # TODO(littlecvr): should expect HTTP_409_CONFLICT self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) # TODO(littlecvr): should expect message like "Project OOO already exists" def testCreateProjectWithEmptyName(self): response = self._CreateProject('') self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) def testCreateProjectWithSlashesInName(self): response = self._CreateProject('a/b') self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) def testCreateProjectWithoutName(self): response = self.client.post('/projects/', data={}, format='json') self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) self.assertTrue('is required' in response.json()['name']) def testDeleteAllProjects(self): response = self.client.delete('/projects/') self.assertEqual(response.status_code, rest_framework.status.HTTP_405_METHOD_NOT_ALLOWED) def testDeleteProject(self): response = self._DeleteProject(self.PROJECT_WITH_UMPIRE_NAME) self.assertEqual(response.status_code, rest_framework.status.HTTP_204_NO_CONTENT) # make sure the container has also been removed self.mocks['subprocess.call'].assert_called_with([ 'docker', 'rm', models.Project.GetUmpireContainerName(self.PROJECT_WITH_UMPIRE_NAME)]) def testDeleteNonExistingProject(self): response = self._DeleteProject('non_existing_project') self.assertEqual(response.status_code, rest_framework.status.HTTP_404_NOT_FOUND) def testDisableUmpire(self): response = self._DisableUmpire(self.PROJECT_WITH_UMPIRE_NAME) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) self.assertJSONEqual( response.content, { 'name': self.PROJECT_WITH_UMPIRE_NAME, 'umpireEnabled': False, 'umpirePort': 8080, 'netbootBundle': None, 'hasExistingUmpire': False }) # make sure the container has also been removed self.mocks['subprocess.call'].assert_called_with([ 'docker', 'rm', models.Project.GetUmpireContainerName(self.PROJECT_WITH_UMPIRE_NAME)]) def testDisableUmpireOnProjectWithoutUmpire(self): response = self._DisableUmpire(self.PROJECT_WITHOUT_UMPIRE_NAME) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) self.assertJSONEqual( response.content, { 'name': self.PROJECT_WITHOUT_UMPIRE_NAME, 'umpireEnabled': False, 'umpirePort': None, 'netbootBundle': None, 'hasExistingUmpire': False }) # nothing should be changed and nothing should be called self.mocks['subprocess.call'].assert_not_called() self.mocks['subprocess.check_call'].assert_not_called() self.mocks['subprocess.check_output'].assert_not_called() def testEnableUmpire(self): UMPIRE_PORT = 8090 # pretend there is no containers self.mocks['subprocess.check_output'].side_effect = [ '', models.Project.GetUmpireContainerName(self.PROJECT_WITHOUT_UMPIRE_NAME)] self.mocks['GetExistingUmpirePort'].return_value = UMPIRE_PORT response = self._EnableUmpire(self.PROJECT_WITHOUT_UMPIRE_NAME, UMPIRE_PORT) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) self.assertJSONEqual( response.content, { 'name': self.PROJECT_WITHOUT_UMPIRE_NAME, 'umpireEnabled': True, 'umpirePort': UMPIRE_PORT, 'netbootBundle': None, 'hasExistingUmpire': True }) # make sure docker run has been called container_name = models.Project.GetUmpireContainerName( self.PROJECT_WITHOUT_UMPIRE_NAME) docker_run_called = False for call in self.mocks['subprocess.check_call'].call_args_list: args, unused_kwargs = call if 'run' in args[0] and container_name in args[0]: docker_run_called = True break self.assertTrue(docker_run_called) def testEnableUmpireButUmpireAlreadyEnabled(self): """Test enabling Umpire on a project with Umpire already enabled (and the Umpire container exists). Nothing should be changed, and no Docker commands except querying for container name should be called. """ UMPIRE_PORT = 8090 # pretend there is no container self.mocks['subprocess.check_output'].return_value = '' self._EnableUmpire(self.PROJECT_WITH_UMPIRE_NAME, UMPIRE_PORT) # make sure no docker commands (except querying for container name) are # called self.mocks['subprocess.call'].assert_not_called() self.mocks['subprocess.check_call'].assert_not_called() def testUploadResource(self): RESOURCE_TYPE = 'toolkit' RESOURCE_VERSION = '1234.5678' EXPECTED_RETURN_VALUE = {'type': RESOURCE_TYPE, 'version': RESOURCE_VERSION} # mock Umpire AddResource() call self.mocks['xmlrpc.client.ServerProxy']().AddPayload = mock.MagicMock( return_value={RESOURCE_TYPE: EXPECTED_RETURN_VALUE}) response = self._CreateResource(self.PROJECT_WITH_UMPIRE_NAME, RESOURCE_TYPE) self.assertEqual(response.status_code, rest_framework.status.HTTP_201_CREATED) self.assertJSONEqual(response.content, EXPECTED_RETURN_VALUE) # make sure AddResource() is called self.mocks['xmlrpc.client.ServerProxy']().AddPayload.assert_called_with( mock.ANY, RESOURCE_TYPE) def testUploadResourceToNonExistingProject(self): RESOURCE_TYPE = 'device_factory_toolkit' response = self._CreateResource('non_existing_project', RESOURCE_TYPE) self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) def testActivateBundle(self): response = self._ActivateBundle(self.PROJECT_WITH_UMPIRE_NAME, 'testing_bundle_02') self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) with TestData('umpire_config-activated.json') as c: self.assertEqual(c, self._GetLastestUploadedConfig()) with TestData('expected_response-activated_bundle.json') as r: self.assertEqual(r, response.json()) def testActivateNonExistingBundle(self): response = self._ActivateBundle(self.PROJECT_WITH_UMPIRE_NAME, 'non_existing_bundle') self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) self.assertIn('does not exist', response.json()['detail']) def testActivateBundleUnicode(self): response = self._ActivateBundle(self.PROJECT_WITH_UMPIRE_NAME, u'testing_bundle_04_with_\u4e2d\u6587') self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) with TestData('umpire_config-activated_unicode.json') as c: self.assertEqual(c, self._GetLastestUploadedConfig()) with TestData('expected_response-activated_bundle_unicode.json') as r: self.assertEqual(r, response.json(encoding='UTF-8')) def testDeleteBundle(self): response = self.client.delete( '/projects/%s/bundles/%s/' % (self.PROJECT_WITH_UMPIRE_NAME, 'testing_bundle_02'), format='json') self.assertEqual(response.status_code, rest_framework.status.HTTP_204_NO_CONTENT) with TestData('umpire_config-deleted.json') as c: self.assertEqual(c, self._GetLastestUploadedConfig()) def testDeleteActiveBundle(self): response = self.client.delete( '/projects/%s/bundles/%s/' % (self.PROJECT_WITH_UMPIRE_NAME, 'testing_bundle_01'), format='json') self.assertEqual(response.status_code, rest_framework.status.HTTP_422_UNPROCESSABLE_ENTITY) def testDeleteNonExistingBundle(self): response = self.client.delete( '/projects/%s/bundles/%s/' % (self.PROJECT_WITH_UMPIRE_NAME, 'non_existing_bundle'), format='json') self.assertEqual(response.status_code, rest_framework.status.HTTP_404_NOT_FOUND) self.assertIn('not found', response.json()['detail']) def testListBundles(self): response = self.client.get( '/projects/%s/bundles/' % self.PROJECT_WITH_UMPIRE_NAME, format='json') self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) bundle_list = response.json() with TestData('expected_response-get_bundle_list.json') as r: self.assertEqual(r, bundle_list) def testReorderBundles(self): response = self._ReorderBundles(self.PROJECT_WITH_UMPIRE_NAME, ['testing_bundle_02', 'testing_bundle_01', 'testing_bundle_03', 'empty_init_bundle', u'testing_bundle_04_with_\u4e2d\u6587']) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) with TestData('umpire_config-reordered.json') as c: self.assertEqual(c, self._GetLastestUploadedConfig()) with TestData('expected_response-reorder_bundles.json') as r: self.assertEqual(r, response.json()) def testReorderBundlesWithoutListingAllBundleNames(self): response = self._ReorderBundles(self.PROJECT_WITH_UMPIRE_NAME, ['testing_bundle_02', 'testing_bundle_01', 'testing_bundle_03', 'empty_init_bundle']) self.assertEqual(response.status_code, rest_framework.status.HTTP_400_BAD_REQUEST) self.assertTrue('All bundles must be listed' in response.json()['detail']) def testUploadBundle(self): with TestData( 'umpire_config-uploaded.json', deserialize=False) as config_str: self.mocks['xmlrpc.client.ServerProxy']().GetActiveConfig =\ mock.MagicMock(return_value=config_str) with TestData('new_bundle.json') as b: bundle = b response = self._UploadNewBundle(self.PROJECT_WITH_UMPIRE_NAME, bundle['id'], bundle['note']) self.assertEqual(response.status_code, rest_framework.status.HTTP_201_CREATED) self.mocks['xmlrpc.client.ServerProxy']().ImportBundle.assert_called_once() def testUploadBundleThatAlreadyExists(self): BUNDLE_NAME = 'existing_bundle' BUNDLE_NOTE = 'existing_bundle_note' self.mocks['xmlrpc.client.ServerProxy']().ImportBundle = mock.MagicMock( side_effect=xmlrpc.client.Fault( -32500, # application error, doesn't matter actually "UmpireError: bundle_id: '%s' already in use" % BUNDLE_NAME)) response = self._UploadNewBundle(self.PROJECT_WITH_UMPIRE_NAME, BUNDLE_NAME, BUNDLE_NOTE) self.assertEqual(response.status_code, rest_framework.status.HTTP_409_CONFLICT) self.assertTrue('already exists' in response.json()['detail']) def testUploadBundleUnknownUmpireError(self): BUNDLE_NAME = 'doomed_bundle' BUNDLE_NOTE = 'doomed bundle' self.mocks['xmlrpc.client.ServerProxy']().ImportBundle = mock.MagicMock( side_effect=xmlrpc.client.Fault( -32500, # application error, doesn't matter actually 'UmpireError: Unknown error')) response = self._UploadNewBundle(self.PROJECT_WITH_UMPIRE_NAME, BUNDLE_NAME, BUNDLE_NOTE) self.assertEqual(response.status_code, rest_framework.status.HTTP_500_INTERNAL_SERVER_ERROR) self.assertIn('Unknown error', response.json()['detail']) def testUpdateBundleResource(self): response = self.client.put( '/projects/%s/bundles/%s/' % (self.PROJECT_WITH_UMPIRE_NAME, 'testing_bundle_01'), data={ 'newName': 'testing_bundle_01_new', 'note': 'climbing like a monkey', 'resources': { 'device_factory_toolkit': { 'type': 'device_factory_toolkit', 'file_id': self._UploadFile()['id'] } } }, format='json' ) self.assertEqual(response.status_code, rest_framework.status.HTTP_200_OK) # the first call to UploadConfig() should duplicate the source bundle with # the new name with TestData('umpire_config-resource_updated.json') as c: self.assertEqual(c, self._GetUploadedConfig(0)) # just make sure Update()
<filename>tests/test_preview_item.py<gh_stars>1-10 # -*- coding: utf-8 -*- """Unit tests for PreviewItem.""" from __future__ import unicode_literals import unittest from mock import mock from collections import OrderedDict import pywikibot from wikidatastuff.preview_item import PreviewItem from wikidatastuff.qualifier import Qualifier # replace with mocks from wikidatastuff.statement import Statement # replace with mocks from wikidatastuff.reference import Reference # replace with mocks class BasicFormatMocker(unittest.TestCase): """Patch some basic formatters and provide a repo.""" def setUp(self): self.repo = pywikibot.Site('test', 'wikidata') # patch bold def bold_side_effect(val): return 'bold_{}'.format(val) bold_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.make_text_bold') self.mock_bold = bold_patcher.start() self.mock_bold.side_effect = bold_side_effect # patch italics def italics_side_effect(val): return 'italics_{}'.format(val) italics_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.make_text_italics') self.mock_italics = italics_patcher.start() self.mock_italics.side_effect = italics_side_effect self.addCleanup(bold_patcher.stop) self.addCleanup(italics_patcher.stop) # patch wikidata_template wd_template_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.make_wikidata_template') self.mock_wd_template = wd_template_patcher.start() self.mock_wd_template.side_effect = ['wd_template_{}'.format(i) for i in range(1, 5)] self.addCleanup(wd_template_patcher.stop) class TestPreviewItemBase(BasicFormatMocker): """Shared setup for all instance method tests.""" def setUp(self): super(TestPreviewItemBase, self).setUp() self.preview_item = PreviewItem( labels={}, descriptions={}, protoclaims={}, item=None, ref=None) class TestMakeWikidataTemplate(unittest.TestCase): """Test the make_wikidata_template method.""" def setUp(self): self.repo = pywikibot.Site('test', 'wikidata') def test_make_wikidata_template_empty(self): with self.assertRaises(ValueError) as cm: PreviewItem.make_wikidata_template('') self.assertEqual( str(cm.exception), 'Sorry only items and properties are supported, not whatever ' '"" is.' ) def test_make_wikidata_template_none(self): with self.assertRaises(ValueError) as cm: PreviewItem.make_wikidata_template(None) self.assertEqual( str(cm.exception), 'Sorry only items and properties are supported, not whatever ' '"None" is.' ) def test_make_wikidata_template_qid(self): expected = '{{Q|Q123}}' self.assertEqual( PreviewItem.make_wikidata_template('Q123'), expected ) def test_make_wikidata_template_pid(self): expected = '{{P|P123}}' self.assertEqual( PreviewItem.make_wikidata_template('P123'), expected ) def test_make_wikidata_template_item_page(self): expected = '{{Q|Q321}}' item = pywikibot.ItemPage(self.repo, 'Q321') self.assertEqual( PreviewItem.make_wikidata_template(item), expected ) def test_make_wikidata_template_property_page(self): expected = '{{P|P321}}' prop = pywikibot.PropertyPage(self.repo, 'P321') self.assertEqual( PreviewItem.make_wikidata_template(prop), expected ) def test_make_wikidata_template_bad_id_fail(self): with self.assertRaises(ValueError) as cm: PreviewItem.make_wikidata_template('dummy') self.assertEqual( str(cm.exception), 'Sorry only items and properties are supported, not whatever ' '"dummy" is.' ) def test_make_wikidata_template_special_novalue(self): expected = "{{Q'|no value}}" self.assertEqual( PreviewItem.make_wikidata_template('novalue', special=True), expected ) def test_make_wikidata_template_special_somevalue(self): expected = "{{Q'|some value}}" self.assertEqual( PreviewItem.make_wikidata_template('somevalue', special=True), expected ) def test_make_wikidata_template_special_fail(self): with self.assertRaises(ValueError) as cm: PreviewItem.make_wikidata_template('dummy', special=True) self.assertEqual( str(cm.exception), 'Sorry but "dummy" is not a recognized special value/snaktype.' ) class TestFormatItem(TestPreviewItemBase): """Test the format_item method.""" def test_format_item_none(self): self.preview_item.item = None self.assertEqual( self.preview_item.format_item(), '–' ) def test_format_item_with_item(self): self.preview_item.item = 'anything' self.preview_item.format_item() self.mock_wd_template.assert_called_once_with('anything') class TestFormatDescriptions(TestPreviewItemBase): """Test the format_descriptions method.""" def test_format_descriptions_empty(self): self.preview_item.desc_dict = {} self.assertEqual(self.preview_item.format_descriptions(), '') def test_make_wikidata_template_with_data(self): descriptions = { 'en': 'en_desc', 'sv': 'sv_desc' } self.preview_item.desc_dict = OrderedDict( sorted(descriptions.items(), key=lambda t: t[0])) expected = ( '* bold_en: en_desc\n' '* bold_sv: sv_desc\n' ) self.assertEqual(self.preview_item.format_descriptions(), expected) self.mock_bold.assert_has_calls([mock.call('en'), mock.call('sv')]) class TestFormatLabels(TestPreviewItemBase): """Test the format_labels method.""" def test_format_labels_empty(self): self.preview_item.labels_dict = {} self.assertEqual(self.preview_item.format_labels(), '') def test_format_labels_with_multiple_langs(self): labels = { 'en': ['en_label'], 'sv': ['sv_label'] } self.preview_item.labels_dict = OrderedDict( sorted(labels.items(), key=lambda t: t[0])) expected = ( '* bold_en: italics_en_label\n' '* bold_sv: italics_sv_label\n' ) self.assertEqual(self.preview_item.format_labels(), expected) self.mock_bold.assert_has_calls([mock.call('en'), mock.call('sv')]) def test_format_labels_with_multiple_names(self): self.preview_item.labels_dict = { 'en': ['en_label', 'en_alias_1', 'en_alias_2'] } expected = ( '* bold_en: italics_en_label | en_alias_1 | en_alias_2\n' ) self.assertEqual(self.preview_item.format_labels(), expected) self.mock_bold.assert_called_once_with('en') self.mock_italics.assert_called_once_with('en_label') class TestFormatItis(BasicFormatMocker): """Test the format_itis method.""" def setUp(self): super(TestFormatItis, self).setUp() timestring_patcher = mock.patch( 'wikidatastuff.preview_item.pywikibot.WbTime.toTimestr') self.mock_format_timestring = timestring_patcher.start() self.mock_format_timestring.return_value = 'formatted_WbTime' self.addCleanup(timestring_patcher.stop) def test_format_itis_none(self): itis = None expected = 'None' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_not_called() self.mock_format_timestring.assert_not_called() def test_format_itis_item_page(self): itis = pywikibot.ItemPage(self.repo, 'Q123') expected = 'wd_template_1' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_called_once_with(itis) self.mock_format_timestring.assert_not_called() def test_format_itis_quantity(self): itis = pywikibot.WbQuantity(123, site=self.repo) expected = '123' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_not_called() self.mock_format_timestring.assert_not_called() def test_format_itis_quantity_unit(self): unit = pywikibot.ItemPage(self.repo, 'Q123') itis = pywikibot.WbQuantity(123, unit=unit, site=self.repo) expected = '123 wd_template_1' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_called_once_with(unit) self.mock_format_timestring.assert_not_called() def test_format_itis_time(self): itis = pywikibot.WbTime(year=1999) expected = 'formatted_WbTime' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_not_called() self.mock_format_timestring.assert_called_once() def test_format_itis_other(self): itis = [1, 2, 3] expected = '[1, 2, 3]' self.assertEqual(PreviewItem.format_itis(itis), expected) self.mock_wd_template.assert_not_called() self.mock_format_timestring.assert_not_called() def test_format_itis_special(self): itis = 'dummy' expected = 'wd_template_1' self.assertEqual( PreviewItem.format_itis(itis, special=True), expected ) self.mock_wd_template.assert_called_once_with(itis, special=True) self.mock_format_timestring.assert_not_called() def test_format_itis_statement_item(self): item = pywikibot.ItemPage(self.repo, 'Q123') itis = Statement(item) expected = 'wd_template_1' self.assertEqual( PreviewItem.format_itis(itis), expected ) self.mock_wd_template.assert_called_once_with(item) self.mock_format_timestring.assert_not_called() def test_format_itis_statement_other(self): itis = Statement('dummy') expected = 'dummy' self.assertEqual( PreviewItem.format_itis(itis), expected ) self.mock_wd_template.assert_not_called() self.mock_format_timestring.assert_not_called() def test_format_itis_statement_detect_special(self): itis = Statement('novalue', special=True) expected = 'wd_template_1' self.assertEqual( PreviewItem.format_itis(itis), expected ) self.mock_wd_template.assert_called_once_with('novalue', special=True) self.mock_format_timestring.assert_not_called() class TestFormatClaim(BasicFormatMocker): """Test the format_claim method.""" def setUp(self): super(TestFormatClaim, self).setUp() itis_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_itis') self.mock_format_itis = itis_patcher.start() self.mock_format_itis.return_value = 'formatted_itis' self.addCleanup(itis_patcher.stop) def test_format_claim_basic(self): claim = pywikibot.Claim(self.repo, 'P123') claim.setTarget('1') expected = 'wd_template_1: formatted_itis' self.assertEqual(PreviewItem.format_claim(claim), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with('1', False) def test_format_claim_special(self): claim = pywikibot.Claim(self.repo, 'P123') claim.setSnakType('novalue') expected = 'wd_template_1: formatted_itis' self.assertEqual(PreviewItem.format_claim(claim), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with('novalue', True) class TestFormatReference(BasicFormatMocker): """Test the format_reference method.""" def setUp(self): super(TestFormatReference, self).setUp() claim_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_claim') self.mock_format_claim = claim_patcher.start() self.mock_format_claim.side_effect = ['formatted_claim_{}'.format(i) for i in range(1, 5)] self.addCleanup(claim_patcher.stop) self.claim_1 = pywikibot.Claim(self.repo, 'P123') self.claim_1.setTarget('1') self.claim_2 = pywikibot.Claim(self.repo, 'P123') self.claim_2.setTarget('2') self.claim_3 = pywikibot.Claim(self.repo, 'P123') self.claim_3.setTarget('3') self.claim_4 = pywikibot.Claim(self.repo, 'P123') self.claim_4.setTarget('4') def test_format_reference_basic(self): ref = Reference( source_test=[self.claim_1, self.claim_2], source_notest=[self.claim_3, self.claim_4] ) expected = ( ':italics_tested:\n' ':*formatted_claim_1\n' ':*formatted_claim_2\n' ':italics_not tested:\n' ':*formatted_claim_3\n' ':*formatted_claim_4\n' ) self.assertEqual(PreviewItem.format_reference(ref), expected) self.mock_format_claim.assert_has_calls([ mock.call(self.claim_1), mock.call(self.claim_2), mock.call(self.claim_3), mock.call(self.claim_4) ]) self.mock_italics.assert_has_calls([ mock.call('tested'), mock.call('not tested') ]) def test_format_reference_no_test(self): ref = Reference(source_notest=self.claim_1) expected = ( ':italics_not tested:\n' ':*formatted_claim_1\n' ) self.assertEqual(PreviewItem.format_reference(ref), expected) self.mock_format_claim.assert_called_once_with(self.claim_1) self.mock_italics.assert_called_once_with('not tested') def test_format_reference_no_notest(self): ref = Reference(source_test=self.claim_1) expected = ( ':italics_tested:\n' ':*formatted_claim_1\n' ) self.assertEqual(PreviewItem.format_reference(ref), expected) self.mock_format_claim.assert_called_once_with(self.claim_1) self.mock_italics.assert_called_once_with('tested') class TestFormatQual(BasicFormatMocker): """Test the format_qual method.""" def setUp(self): super(TestFormatQual, self).setUp() itis_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_itis') self.mock_format_itis = itis_patcher.start() self.mock_format_itis.return_value = 'formatted_itis' self.addCleanup(itis_patcher.stop) def test_format_qual_basic(self): qual = Qualifier('P123', 'val') self.assertEqual( PreviewItem.format_qual(qual), 'wd_template_1: formatted_itis') self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with('val') class TestFormatProtoclaims(TestPreviewItemBase): """Test the format_protoclaims method.""" def setUp(self): super(TestFormatProtoclaims, self).setUp() itis_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_itis') self.mock_format_itis = itis_patcher.start() self.mock_format_itis.side_effect = ['formatted_itis_{}'.format(i) for i in range(1, 5)] self.addCleanup(itis_patcher.stop) qual_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_qual') self.mock_format_qual = qual_patcher.start() self.mock_format_qual.side_effect = ['formatted_qual_{}'.format(i) for i in range(1, 5)] self.addCleanup(qual_patcher.stop) ref_patcher = mock.patch( 'wikidatastuff.preview_item.PreviewItem.format_reference') self.mock_format_ref = ref_patcher.start() self.mock_format_ref.side_effect = ['formatted_reference_{}'.format(i) for i in range(1, 5)] self.addCleanup(ref_patcher.stop) def test_format_protoclaims_no_protoclaims(self): self.preview_item.protoclaims = {} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_not_called() self.mock_format_itis.assert_not_called() self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_not_called() def test_format_protoclaims_no_single_none_claim(self): self.preview_item.protoclaims = {'P123': None} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_not_called() self.mock_format_itis.assert_not_called() self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_not_called() def test_format_protoclaims_single(self): itis = Statement('dummy') self.preview_item.protoclaims = {'P123': itis} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with(itis) self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_not_called() def test_format_protoclaims_single_with_qual(self): itis = Statement('dummy') qual = Qualifier('P321', 'qual_dummy') itis._quals.add(qual) self.preview_item.protoclaims = {'P123': itis} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| formatted_qual_1 \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with(itis) self.mock_format_qual.assert_called_once_with(qual) self.mock_format_ref.assert_not_called() def test_format_protoclaims_single_with_multiple_qual(self): itis = Statement('dummy') qual_1 = Qualifier('P321', 'qual_dummy') qual_2 = Qualifier('P213', 'qual_dummy') itis._quals.add(qual_1) itis._quals.add(qual_2) self.preview_item.protoclaims = {'P123': itis} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| * formatted_qual_1 \n' '* formatted_qual_2 \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_called_once_with(itis) self.mock_format_qual.assert_has_calls([ mock.call(qual_1), mock.call(qual_2)], any_order=True ) self.mock_format_ref.assert_not_called() def test_format_protoclaims_multple_same_prop(self): itis_1 = Statement('foo') itis_2 = Statement('bar') self.preview_item.protoclaims = {'P123': [itis_1, itis_2]} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| \n' '|-\n' '| wd_template_1 \n' '| formatted_itis_2 \n' '| \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_has_calls([ mock.call(itis_1), mock.call(itis_2) ]) self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_not_called() def test_format_protoclaims_multple_different_prop(self): itis_1 = Statement('foo') itis_2 = Statement('bar') protoclaims = {'P123': itis_1, 'P321': itis_2} self.preview_item.protoclaims = OrderedDict( sorted(protoclaims.items(), key=lambda t: int(t[0][1:]))) expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| \n' '|-\n' '| wd_template_2 \n' '| formatted_itis_2 \n' '| \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_has_calls([ mock.call('P123'), mock.call('P321')], any_order=True ) self.mock_format_itis.assert_has_calls([ mock.call(itis_1), mock.call(itis_2)], any_order=True ) self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_not_called() def test_format_protoclaims_ref_adds_column(self): claim_1 = pywikibot.Claim(self.repo, 'P123') claim_1.setTarget('1') ref_1 = Reference(claim_1) itis_1 = Statement('foo') itis_2 = Statement('bar').add_reference(ref_1) self.preview_item.protoclaims = {'P123': [itis_1, itis_2]} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" "! References\n" '|-\n' '| wd_template_1 \n' '| formatted_itis_1 \n' '| \n' '| \n' '|-\n' '| wd_template_1 \n' '| formatted_itis_2 \n' '| \n' '| \nformatted_reference_1 \n' "|}" ) self.assertEqual(self.preview_item.format_protoclaims(), expected) self.mock_wd_template.assert_called_once_with('P123') self.mock_format_itis.assert_has_calls([ mock.call(itis_1), mock.call(itis_2) ]) self.mock_format_qual.assert_not_called() self.mock_format_ref.assert_called_once_with(ref_1) def test_format_protoclaims_ref_adds_column_set_default(self): claim_1 = pywikibot.Claim(self.repo, 'P123') claim_1.setTarget('1') ref_1 = Reference(claim_1) claim_2 = pywikibot.Claim(self.repo, 'P123') claim_2.setTarget('2') ref_2 = Reference(claim_2) itis_1 = Statement('foo') itis_2 = Statement('bar').add_reference(ref_1) self.preview_item.ref = ref_2 self.preview_item.protoclaims = {'P123': [itis_1, itis_2]} expected = ( "{| class='wikitable'\n" "|-\n" "! Property\n" "! Value\n" "! Qualifiers\n" "! References\n" '|-\n' '| wd_template_1 \n' '|
if lib_conf == None or not os.path.exists(lib_conf): return with open(lib_conf) as lib_conf_handle: for line in lib_conf_handle: # remove comments match = re.search('^[^#]*', line) line = match.group() # skip empty lines if re.search('^\s*$', line): continue # parse (allowing spaces) # <confLibName>:<confLibPath> match = re.search('^\s*(?P<name>[a-zA-Z0-9_]+)\s*:' + '\s*(?P<path>[^\s]*)\s*$', line) if (not match.group('name')) or (not match.group('path')): error_exit("libConf file syntax error: '" + line + "'"); lcname = match.group('name') lcpath = match.group('path') conf_lib_list.append({ 'name': lcname, 'path': lcpath }) def gen_conf_lib_preamble(): for conf_lib in conf_lib_list: add_conf_lib_sticky_path(conf_lib['path']) for idx, conf_lib in reversed(list(enumerate(conf_lib_list))): clpriority = len(conf_lib_list) - idx add_conf_lib(clpriority, conf_lib['name'], conf_lib['path']) add_conf_lib(0, None, None) preamble = get_output_str() return preamble def process_directive(line, directive_fn, linenr, basedir): global make_target, used_resources filename = None filenames = None relative_dir = None match = re.search('^([^a-z]*)%%([a-z]+)%%:\s*([^\s]*)\s*$', line) if match == None or len(match.groups()) != 3: error_exit(directive_fn + ':' + str(linenr) + ': directive has invalid syntax: ' + line) directive_prefix = match.group(1) directive = match.group(2) basename = match.group(3) stdmatch = re.search('^<(.*)>$', basename) quotematch = re.search('^"(.*)"$', basename) # tildematch = re.search('^~/(.*)$', basename) if stdmatch != None: filename = find_file_in_path(directive, stdmatch.group(1)) elif quotematch != None: filename = os.path.join(basedir, quotematch.group(1)) if not os.path.isfile(filename): filename = find_file_in_path(directive, quotematch.group(1)) elif basename == 'source': filename = get_cdl_source() if source_dir is not None: relative_dir = source_dir elif basename == 'foreign': filenames = [] for fn in used_resources.get("foreign"): filenames.append(find_file_in_path('foreign', fn)) elif basename == 'fonturls': write_font_urls(directive_prefix) return # elif tildematch != None: # filename = os.path.join(get_root_dir(), tildematch.group(1)) else: print('basename="' + basename + '"') if get_mode() == 'incl': print(directive, filename) if filename is not None: if relative_dir is None: relative_dir = os.path.dirname(filename) process_file(directive, filename, relative_dir) elif filenames is not None: for filename in filenames: process_file(directive, filename, os.path.dirname(filename)) else: error_exit('invalid directive: ' + line) # Only compress svg images def use_compression_for_image(filename): return filename.endswith(".svg") # Compress all data files def use_compression_for_data(filename): return True # Stores which resource has been copied to which path; avoids duplicate copies # and resolves faster copied_resources = {} # Stores which path is the target for which resource; avoids duplicate naming resource_targets = {} def add_copied_resource(resource_hash, path): global copied_resources if path in resource_targets and resource_targets[path] != resource_hash: error_exit("{} is the target for both {} and {}".format( path, resource_targets[path], resource_hash )) copied_resources[resource_hash] = path resource_targets[path] = resource_hash # Returns the path to the file from the macro. When common_dir has been set, # copies the file to that directory, compressing it when the extension allows # it, but only when the source file is newer. def copy_and_compress(type, macro_arg, use_compression_fun, common_dir): global copied_resources resource_hash = type + ':' + macro_arg if resource_hash in copied_resources: return copied_resources[resource_hash] src_path = find_file_in_path(type, macro_arg) if common_dir == None: add_copied_resource(resource_hash, src_path) return src_path out_path = os.path.join(common_dir, os.path.basename(macro_arg)) if not os.path.exists(src_path): print("{0} does not exist: {1}".format(type, src_path), file=sys.stderr) add_copied_resource(resource_hash, out_path) return out_path use_compression = use_compression_fun(macro_arg) if out_path == src_path: add_copied_resource(resource_hash, src_path) return out_path # In case someone puts the images in the common_dir target_path = out_path if use_compression: target_path += '.gz' if not os.path.exists(target_path) or os.path.getmtime(target_path) < os.path.getmtime(src_path): if use_compression: with open(src_path, 'rb') as f_in, gzip.open(target_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) else: with open(src_path, 'rb') as f_in, open(target_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) add_copied_resource(resource_hash, src_path) return out_path # format: %%image:(url)%%. Behaves like process_image_macro. # Calls copy_and_compress for an image def process_image_macro(macro_name, macro_args): global common_image_dir return copy_and_compress('image', macro_args[0], use_compression_for_image, common_image_dir) # format: %%font:(fontFamily,url)%%, no comma in the font name, no superfluous spaces def process_font_macro(macro_name, macro_args): if len(macro_args) < 2: error_exit('font macro should have two arguments') url = ",".join(macro_args[1:]) # in case the URL constains commas add_resource_usage('font', url) return macro_args[0] # format: %%data:(url)%%. Behaves like process_image_macro. # Calls copy_and_compress for a data file def process_data_macro(macro_name, macro_args): global common_data_dir return copy_and_compress('data', macro_args[0], use_compression_for_data, common_data_dir) def process_buildinfo_macro(macro_name, macro_args): global build_info_file return build_info_file def process_conf_lib_preamble_macro(macro_name, macro_args): push_include_file('template', '--conf-lib-include--') str = '\n' + gen_conf_lib_preamble() pop_include_file('template', '--conf-lib-include--') return str def process_title_macro(macro_name, macro_args): global title return title def process_splash_screen_url_macro(macro_name, macro_args): global splash_screen_url return normalize_path(find_file_in_path('url', splash_screen_url)) def process_classes_macro(macro_name, macro_args): global conf_lib_by_priority return "\n" + \ ",\n".join( map( lambda x: "\t{\n\t\tname: '" + ("" if x['name'] == None else x['name']) + "',\n\t\tclasses: [\n\t\t\t" + ",\n\t\t\t".join(x['class_list']) + "\n\t\t]\n\t}", conf_lib_by_priority ) ) + "\n" def process_textfile_macro(macro_name, macro_args): if len(macro_args) != 1: error_exit('textfile macro should have one argument') src_path = find_file_in_path('text', macro_args[0]) if get_mode() == 'incl': print('textfile', src_path) return "" str = "" with open(src_path) as input_handle: for line in input_handle: str += "\\n" + line[:-1].replace('\\', '\\\\').replace('"', '\\"') return str[2:] def process_url_macro(macro_name, macro_args): if len(macro_args) != 1: error_exit('textfile macro should have one argument') return find_file_in_path('url', macro_args[0]) def process_macro(dtype, line, fn, linenr, match): macro_name = match.group(1) macro_arg_str = match.group(2) # extract arguments macro_args = re.findall('[^,]+', macro_arg_str) if macro_name == 'image': macro_subst = process_image_macro(macro_name, macro_args) elif macro_name == 'data': macro_subst = process_data_macro(macro_name, macro_args) elif macro_name == 'font': macro_subst = process_font_macro(macro_name, macro_args) elif macro_name == 'buildinfo': macro_subst = process_buildinfo_macro(macro_name, macro_args) elif macro_name == 'conflibPreamble': macro_subst = process_conf_lib_preamble_macro(macro_name, macro_args) elif macro_name == 'title': macro_subst = process_title_macro(macro_name, macro_args) elif macro_name == 'splashScreenUrl': macro_subst = process_splash_screen_url_macro(macro_name, macro_args) elif macro_name == 'classes': macro_subst = process_classes_macro(macro_name, macro_args) elif macro_name == 'textfile': macro_subst = process_textfile_macro(macro_name, macro_args) elif macro_name == 'url': macro_subst = process_url_macro(macro_name, macro_args) else: error_exit(fn + ':' + str(linenr) + ": don't know (yet) how to handle macro '" + macro_name + "' in '" + line + "'") if macro_subst == None: error_exit(fn + ':' + str(linenr) + ': empty subst') return macro_subst def get_current_conf_lib_name(): global current_conf_lib if current_conf_lib == None or current_conf_lib['name'] == None: conf_lib_name = "" else: conf_lib_name = current_conf_lib['name'] return conf_lib_name def verify_current_conf_lib(conf_lib_name): cblp_name = conf_lib_by_priority[0]['name'] if cblp_name == None: cblp_name = "" if cblp_name != conf_lib_name: error_exit('confLib names do not match') def process_class_def(dtype, line, fn): """replace 'var classes =' with 'var <CL>__<fn>__classes =' where <CL> is the current confLib (may be empty) and <fn> is the current source file name""" global conf_lib_by_priority conf_lib_name = get_current_conf_lib_name() verify_current_conf_lib(conf_lib_name) mclass_name = conf_lib_name + '__' + stemname(fn, conf_lib_name) + '__classes' mclass_def = 'var ' + mclass_name + ' =' match = re.search('^\s*var[^=]*=(.*)$', line) mclass_def = mclass_def + match.group(1) + "\n" section_print(dtype, mclass_def) conf_lib_by_priority[0]['class_list'].append(mclass_name) def process_constant_def(dtype, line, fn): """ replace 'var xxxConstants = { ... };' with 'var <confLib1>__xxxConstants = { ... };' and then, at the end of the 'constantfile' section append 'var xxxConstants = mergeCdlConstants( <confLib1>__xxxConstants, <confLib2>__xxxConstants, ... );' (ordered by confLib priority) to allow higher priority confLibs to overwrite constants defined in lower priority confLibs, such that the affect reaches back into the lower priority confLib. For example, if Core has CellConstants = { width: 5 } Cell: { position: { width: CellConstants.width } } and Mon1 has CellConstants = { width: 2 } then setting CellConstants.width to 2 must occur before including Core::Cell a constant definition is also identified as var xxx = { // %%constantdef%% """ conf_lib_name = get_current_conf_lib_name() verify_current_conf_lib(conf_lib_name) # neutralize processed %%constantdef%% by converting %% to %- constdef_match = re.search('^(.*//.*)%%constantdef%%(.*)$', line) if constdef_match: line = constdef_match.group(1) + '%-constantdef-%' + \ constdef_match.group(2) match = re.search('^\s*var\s+([a-zA-Z0-9_]+)\s*=(.*)$', line) if (not match) or (not match.group(1)) or (not match.group(2)): error_exit('constant_def: parse failure (' + line + ')') const_name = match.group(1) mconst_name = conf_lib_name + '__' + const_name mconst_def = 'var ' + mconst_name + ' =' + match.group(2) + "\n" section_print(dtype, mconst_def) conf_lib_by_priority[0]['constant'].append({ 'name': const_name, 'element': mconst_name }) # The pattern for macros macro_re = re.compile('%%([a-zA-Z0-9_]*):\(([^%()]*)\)%%') # The pattern for includes include_re = re.compile('^[^a-z]*%%[a-z]+%%:') # Returns a string indicating the line type # - 'class' when the line is var classes/stemname = ... # - 'screen' when the line is var screenArea = ... # - '' otherwise def process_line(dtype, line, fn, linenr, basedir): line = line.rstrip('\n') line += '\n' mode = get_mode() line = macro_re.sub(lambda match_group: process_macro(dtype, line, fn, linenr, match_group), line) if include_re.search(line): process_directive(line, fn, linenr, basedir) elif dtype == 'classfile' and (re.search('^\s*var\s+classes\s*=', line) or \ re.search('^\s*var\s*' + stemname(fn, None) + '\s*=', line)): if mode == 'js': process_class_def(dtype, line, fn) return 'class' elif (dtype == 'constantfile' and \ re.search('^\s*var\s+[a-zA-Z0-9_]+[cC]onstants\s*=', line)) \ or \ re.search('\s*var\s+[a-zA-Z0-9_]+\s*=.*//.*%%constantdef%%', line): if mode == 'js': process_constant_def(dtype, line, fn) return 'constant' else: if dtype == 'template' or get_mode() == 'js': section_print(dtype, line) if re.search('^\s*var\s+screenArea\s*=', line): return 'screen' if re.search('^\s*var\s+test\s*=', line): return 'test' return '' def process_file(dtype, filename, basedir): global processed_files global
None), ('CRC', 'i'), ('SwHolding', '16d'), ('UserParamEx','8d'), ] size_check = 352 class V9_SweepRecord(TreeNode): field_info = [ ('Mark', 'i'), ('Label', '32s', cstr), ('AuxDataFileOffset', 'i'), ('StimCount', 'i'), ('SweepCount', 'i'), ('Time', 'd'), ('Timer', 'd'), ('SwUserParams', '4d'), ('Temperature', 'd'), ('OldIntSol', 'i'), ('OldExtSol', 'i'), ('DigitalIn', 'h'), ('SweepKind', 'h'), ('DigitalOut','h'), ('Filler1', 'i', None), ('Markers', '4d'), ('Filler2', 'i', None), ('CRC', 'i'), ('SwHolding', '16d'), ] ## according to Matlab Heka, but it could be 290 or 294. dependent on veriion of Heka ##TODO : need clear this part! # size_check = 288 class UserParamDescrType(Struct): field_info = [ ('Name', '32s', cstr), ('Unit', '8s', cstr), ] size_check = 40 class AmplifierState(Struct): field_info = [ ('StateVersion', '8s', cstr), ('RealCurrentGain', 'd'), ('RealF2Bandwidth', 'd'), ('F2Frequency', 'd'), ('RsValue', 'd'), ('RsFraction', 'd'), ('GLeak', 'd'), ('CFastAmp1', 'd'), ('CFastAmp2', 'd'), ('CFastTau', 'd'), ('CSlow', 'd'), ('GSeries', 'd'), ('StimDacScale', 'd'), ('CCStimScale', 'd'), ('VHold', 'd'), ('LastVHold', 'd'), ('VpOffset', 'd'), ('VLiquidJunction', 'd'), ('CCIHold', 'd'), ('CSlowStimVolts', 'd'), ('CCTrackVHold', 'd'), ('TimeoutLength', 'd'), ('SearchDelay', 'd'), ('MConductance', 'd'), ('MCapacitance', 'd'), ('SerialNumber', '8s', cstr), ('E9Boards', 'h'), ('CSlowCycles', 'h'), ('IMonAdc', 'h'), ('VMonAdc', 'h'), ('MuxAdc', 'h'), ('TstDac', 'h'), ('StimDac', 'h'), ('StimDacOffset', 'h'), ('MaxDigitalBit', 'h'), ('SpareInt1', 'h', None), ('SpareInt2', 'h', None), ('SpareInt3', 'h', None), ('AmplKind', 'c'), ('IsEpc9N', 'c'), ('ADBoard', 'c'), ('BoardVersion', 'c'), ('ActiveE9Board', 'c'), ('Mode', 'c'), ('Range', 'c'), ('F2Response', 'c'), ('RsOn', 'c'), ('CSlowRange', 'c'), ('CCRange', 'c'), ('CCGain', 'c'), ('CSlowToTstDac', 'c'), ('StimPath', 'c'), ('CCTrackTau', 'c'), ('WasClipping', 'c'), ('RepetitiveCSlow', 'c'), ('LastCSlowRange', 'c'), ('Locked', 'c'), ('CanCCFast', 'c'), ('CanLowCCRange', 'c'), ('CanHighCCRange', 'c'), ('CanCCTracking', 'c'), ('HasVmonPath', 'c'), ('HasNewCCMode', 'c'), ('Selector', 'c'), ('HoldInverted', 'c'), ('AutoCFast', 'c'), ('AutoCSlow', 'c'), ('HasVmonX100', 'c'), ('TestDacOn', 'c'), ('QMuxAdcOn', 'c'), ('RealImon1Bandwidth', 'd'), ('StimScale', 'd'), ('Gain', 'c'), ('Filter1', 'c'), ('StimFilterOn', 'c'), ('RsSlow', 'c'), ('Old1', 'c'), ('CCCFastOn', 'c'), ('CCFastSpeed', 'c'), ('F2Source', 'c'), ('TestRange', 'c'), ('TestDacPath', 'c'), ('MuxChannel', 'c'), ('MuxGain64', 'c'), ('VmonX100', 'c'), ('IsQuadro', 'c'), ('SpareBool4', 'c', None), ('SpareBool5', 'c', None), ('StimFilterHz', 'd'), ('RsTau', 'd'), ('FilterOffsetDac', 'h'), ('ReferenceDac', 'h'), ('SpareInt6', 'h', None), ('SpareInt7', 'h', None), ('Spares1', '24s', None), ('CalibDate', '16s'), ('SelHold', 'd'), ('Spares2', '32s', None), ] size_check = 400 class LockInParams(Struct): field_info = [ ('ExtCalPhase', 'd'), ('ExtCalAtten', 'd'), ('PLPhase', 'd'), ('PLPhaseY1', 'd'), ('PLPhaseY2', 'd'), ('UsedPhaseShift', 'd'), ('UsedAttenuation', 'd'), ('Spares2', '8s', None), ('ExtCalValid', '?'), ('PLPhaseValid', '?'), ('LockInMode', 'c'), ('CalMode', 'c'), ('Spares', '28s', None), ] size_check = 96 class V9_SeriesRecord(TreeNode): ## Done! field_info = [ ('Mark', 'i'), ('Label', '32s', cstr), ('Comment', '80s', cstr), ('SeriesCount', 'i'), ('NumberSweeps', 'i'), ('AmplStateOffset', 'i'), ('AmplStateSeries', 'i'), ('MethodTag', 'i'), ('Time', 'd'), ('PageWidth', 'd'), ('SwUserParamDescr', UserParamDescrType.array(4)), ('MethodName','32s', cstr), ('SeUserParams', '4d'), ('LockInParams', LockInParams), ('AmplifierState', AmplifierState), ('Username', '80s', cstr), ('UserParamDescr', UserParamDescrType.array(4)), ('Filler1', 'i', None), ('CRC', 'i'), ('UserParams2', '4d'), ('UserParamDescr2',UserParamDescrType.array(4)), ('ScanParams', '96c'), ## 96 uint8 ] size_check = 1408 class SeriesRecord(TreeNode): ## Done! validated with Matlab HEKA importer! field_info = [ ('Mark', 'i'), ('Label', '32s', cstr), ('Comment', '80s', cstr), ('SeriesCount', 'i'), ('NumberSweeps', 'i'), ('AmplStateFlag', 'i'), ('AmplStateRef', 'i'), ('MethodTag', 'i'), ('Time', 'd'), ('PageWidth', 'd'), ('SwUserParamDescr', UserParamDescrType.array(2)), ('Filler1', '80s', None), ('MethodName','32s', cstr), ('PhotoParams1', '4d'), ('OldLockInParams', LockInParams), ('OldAmpState', AmplifierState), ('Username', '80s', cstr), ('PhotoParams2', UserParamDescrType.array(4)), ('Filler1', 'i', None), ('CRC', 'i'), ('UserParams2', '4d'), ('UserParamDescr2',UserParamDescrType.array(4)), ('ScanParams', '96c'), ## 96 uint8 ('UserDescr2', UserParamDescrType.array(8) ) ] size_check = 1728 class GroupRecord(TreeNode): field_info = [ ('Mark', 'i'), ('Label', '32s', cstr), ('Text', '80s', cstr), ('ExperimentNumber', 'i'), ('GroupCount', 'i'), ('CRC', 'i'), ('MatrixWidth', 'd'), ('MatrixHeight', 'd'), ] size_check = 144 class Pulsed(TreeNode): field_info = [ ('Version', 'i'), ('Mark', 'i'), ('VersionName', '32s', cstr), ('AuxFileName', '80s', cstr), ('RootText', '400s', cstr), ('StartTime', 'd'), ('MaxSamples', 'i'), ('CRC', 'i'), ('Features', 'h'), ('Filler1', 'h', None), ('Filler2', 'i', None), ('TcEnumerator','32h'), ('TcKind', '32c') ] size_check = 640 rectypes = [ None, GroupRecord, SeriesRecord, SweepRecord, TraceRecord ] def __init__(self, bundle, offset=0, size=None): fh = open(bundle.file_name, 'rb') #pdb.set_trace() fh.seek(offset) # read .pul header magic = fh.read(4) if magic == b'eerT': self.endian = '<' elif magic == b'Tree': self.endian = '>' elif magic ==b'DAT1': self.endian = '>' else: raise RuntimeError('Bad file magic: %s' % magic) levels = struct.unpack(self.endian + 'i', fh.read(4))[0] # read size of each level (one int per level) self.level_sizes = [] for i in range(levels): size = struct.unpack(self.endian + 'i', fh.read(4))[0] self.level_sizes.append(size) TreeNode.__init__(self, fh, self) class Pulsed9(TreeNode): field_info = [ ('Version', 'i'), ('Mark', 'i'), ('VersionName', '32s', cstr), ('AuxFileName', '80s', cstr), ('RootText', '400s', cstr), ('StartTime', 'd'), ('MaxSamples', 'i'), ('CRC', 'i'), ('Features', 'h'), ('Filler1', 'h', None), ('Filler2', 'i', None), ] size_check = 544 rectypes = [ None, GroupRecord, ## no changes in group record between version 9 and version 1000 V9_SeriesRecord, V9_SweepRecord, TraceRecord ## no changes in tracerecord between version 9 and version 1000 ] def __init__(self, bundle, offset=0, size=None): fh = open(bundle.file_name, 'rb') fh.seek(offset) # read .pul header magic = fh.read(4) if magic == b'eerT': self.endian = '<' elif magic == b'Tree': self.endian = '>' else: raise RuntimeError('Bad file magic: %s' % magic) levels = struct.unpack(self.endian + 'i', fh.read(4))[0] # read size of each level (one int per level) self.level_sizes = [] for i in range(levels): size = struct.unpack(self.endian + 'i', fh.read(4))[0] self.level_sizes.append(size) TreeNode.__init__(self, fh, self) class Data(object): def __init__(self, bundle, offset=0, size=None): self.bundle = bundle self.offset = offset def __getitem__(self, *args): index = args[0] assert len(index) == 4 pul = self.bundle.pul trace = pul[index[0]][index[1]][index[2]][index[3]] fh = open(self.bundle.file_name, 'rb') fh.seek(trace.Data) fmt = bytearray(trace.DataFormat)[0] dtype = [np.int16, np.int32, np.float32, np.float64][fmt] dByte =[2, 4, 4, 8][fmt]; nItemsPerBlock = np.int(trace.InterleaveSizeS/dByte) TotalBytes = trace.DataPoints * dByte #print('{:f}, {:f}'.format(trace.DataPoints, trace.InterleaveSizeS)) if trace.DataPoints >= trace.InterleaveSizeS and trace.InterleaveSizeS !=0: print('long block') ### there is a mixture of data points (count) and bytes! data = np.fromfile(fh, count=nItemsPerBlock, dtype=dtype) dataRead = trace.InterleaveSizeS data2Read = TotalBytes- dataRead ## in bytes c= 0 while data2Read > 0 : fh.seek(trace.InterleaveSkip - trace.InterleaveSizeS, os.SEEK_CUR) ## skip the skip-block c = c+1 # print(c) if data2Read < trace.InterleaveSizeS: ## less than a block size data0 = np.fromfile(fh, count=np.int(data2Read/dByte), dtype=dtype) data = np.concatenate((data, data0)) break else: ## larger than a block size data0 = np.fromfile(fh, count=nItemsPerBlock, dtype=dtype) data = np.concatenate((data, data0)) dataRead = trace.InterleaveSizeS + dataRead data2Read = TotalBytes - dataRead else: data = np.fromfile(fh, count=trace.DataPoints, dtype=dtype) return data * trace.DataScaler + trace.ZeroData class StimulationRecord(TreeNode): ''' (* StimulationRecord = RECORD *) ''' ### Long real: d ### Byte: c field_info = [ ('Mark', 'i'), # = 0; (* INT32 *) ('EntryName', '32s',cstr), # = 4; (* String32Type *) ('FileName', '32s',cstr), # = 36; (* String32Type *) ('AnalName', '32s',cstr), # = 68; (* String32Type *) ('DataStartSegment', 'i'), # = 100; (* INT32 *) ('DataStartTime', 'd'), # = 104; (* LONGREAL *) ('SampleInterval', 'd'), # = 112; (* LONGREAL *) ('SweepInterval', 'd'), # = 120; (* LONGREAL *) ('LeakDelay', 'd'), # = 128; (* LONGREAL *) ('FilterFactor', 'd'), # = 136; (* LONGREAL *) ('NumberSweeps', 'i'), # = 144; (* INT32 *) ('NumberLeaks', 'i'), # = 148; (* INT32 *) ('NumberAverages ', 'i'), # = 152; (* INT32 *) ('ActualAdcChannels', 'i'), # = 156; (* INT32 *) ('ActualDacChannels ', 'i'), # = 160; (* INT32 *) ('ExtTrigger', 'c'), # = 164; (* BYTE *) ('NoStartWait', 'h'), # = 165; (* BOOLEAN *) ('UseScanRates', 'h'), # = 166; (* BOOLEAN *) ('NoContAq', 'h'), # = 167; (* BOOLEAN *) ('HasLockIn', 'h'), # = 168; (* BOOLEAN *) ('OldStartMacKind', 'c'), # = 169; (* CHAR *) ('OldEndMacKind', 'h'), # = 170; (* BOOLEAN *) ('AutoRange', 'c'), # = 171; (* BYTE *) ('BreakNext', 'h'), # = 172; (* BOOLEAN *) ('IsExpanded', 'h'), # = 173; (* BOOLEAN *) ('LeakCompMode', 'h'), # = 174; (* BOOLEAN *) ('HasChirp', 'h'), # = 175; (* BOOLEAN *) ('OldStartMacro', '32s',cstr), # = 176; (* String32Type *) ('OldEndMacro', '32s',cstr), # = 208; (* String32Type *) ('IsGapFree', 'h'), # = 240; (* BOOLEAN *) ('HandledExternally ', 'h'), # = 241; (* BOOLEAN *) ('Filler1', 'i'), # = 242; (* BOOLEAN *) ('Filler2', 'i'), # = 243; (* BOOLEAN *) ('CRC', 'i'), # = 244; (* CARD32 *) ] # size_check = 248 class ChannelRecord(TreeNode): ''' set fileds of Channel record ''' field_info = [ ('Mark','i'),# = fread(fh, 1, 'int32=>int32');% = 0; (* INT32 *) ('LinkedChannel','i'),# =
""" detector Copyright (c) 2020 <NAME> Licensed under the MIT License (see LICENSE for details) Written by <NAME> """ import os import sys import json # import datetime # not really useful so remove soon pls import numpy as np import skimage.draw import imgaug # should augment this improt as well haha # from PIL import Image # Root directory of project ROOT_DIR = os.path.abspath("../../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils # sys.path.insert(1, 'samples/hentai/') # from hentai import HentaiConfig from cv2 import VideoCapture, CAP_PROP_FRAME_HEIGHT, CAP_PROP_FRAME_WIDTH, CAP_PROP_FPS, VideoWriter, VideoWriter_fourcc DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") # Path to trained weights WEIGHTS_PATH = os.path.join(ROOT_DIR, "weights.h5") # taking this from hentai to avoid import class HentaiConfig(Config): """Configuration for training on the toy dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "hentai" # We use a GPU with 12GB memory, which can fit two images. # Adjust down if you use a smaller GPU. IMAGES_PER_GPU = 1 # Number of classes (including background) NUM_CLASSES = 1 + 1 + 1 # Background + censor bar + mosaic # Number of training steps per epoch, equal to dataset train size STEPS_PER_EPOCH = 297 # Skip detections with < 65% confidence NOTE: lowered this because its better for false positives DETECTION_MIN_CONFIDENCE = 0.55 class Detector(): # at startup, dont create model yet def __init__(self, weights_path): class InferenceConfig(HentaiConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 self.config = InferenceConfig() self.weights_path = weights_path # counts how many non-png images, if >1 then warn user self.dcp_compat = 0 # keep model loading to be done later, not now # Make sure this is called before using model weights def load_weights(self): self.model = modellib.MaskRCNN(mode="inference", config=self.config, model_dir=DEFAULT_LOGS_DIR) self.model.load_weights(self.weights_path, by_name=True) def apply_cover(self, image, mask): """Apply cover over image. Based off of Mask-RCNN Balloon color splash function image: RGB image [height, width, 3] mask: instance segmentation mask [height, width, instance count] Returns result covered image. """ # Copy color pixels from the original color image where mask is set # green = np.array([[[0, 255, 0]]], dtype=np.uint8) # print('apply_cover: shape of image is',image.shape) green = np.zeros([image.shape[0], image.shape[1], image.shape[2]], dtype=np.uint8) green[:,:] = [0, 255, 0] if mask.shape[-1] > 0: # We're treating all instances as one, so collapse the mask into one layer mask = (np.sum(mask, -1, keepdims=True) < 1) cover = np.where(mask, image, green).astype(np.uint8) else: # error case, return image cover = image return cover, mask def get_non_png(self): return self.dcp_compat def video_create(self, image_path=None, dcp_path=''): assert image_path # Video capture to get shapes and stats # Only supports 1 video at a time, but this can still get mp4 only vid_list = [] for file in os.listdir(image_path): if file.endswith('mp4') or file.endswith('MP4'): vid_list.append(image_path + '/' + file) video_path = vid_list[0] # ONLY works with 1 video for now vcapture = VideoCapture(video_path) width = int(vcapture.get(CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(CAP_PROP_FPS) # Define codec and create video writer, video output is purely for debugging and educational purpose. Not used in decensoring. file_name = "uncensored_video.avi" vwriter = VideoWriter(file_name, VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 print("Beginning build. Do ensure only relevant images are in source directory") input_path = dcp_path + '/decensor_output/' img_list = [] # output of the video detection should be in order anyway # os.chdir(input_path) # files = filter(os.path.isfile, os.listdir(input_path)) # files = [os.path.join( f) for f in files] # files.sort(key=lambda x: os.path.getmtime(x)) # for file in files: for file in os.listdir(input_path): # TODO: check what other filetpyes supported if file.endswith('.png') or file.endswith('.PNG'): img_list.append(input_path + file) print('adding image ', input_path + file) for img in img_list: print("frame: ", count) # Read next image image = skimage.io.imread(img) # Should be no alpha channel in created image # Add image to video writer, after flipping R and B value image = image[..., ::-1] vwriter.write(image) count += 1 vwriter.release() print('video complete') # save path and orig video folder are both paths, but orig video folder is for original mosaics to be saved. # fname = filename. # image_path = path of input file, image or video def detect_and_cover(self, image_path=None, fname=None, save_path='', is_video=False, orig_video_folder=None, save_mask=False): assert image_path assert fname # replace these with something better? if is_video: # TODO: video capabilities will finalize later # from cv2 import VideoCapture, CAP_PROP_FRAME_HEIGHT, CAP_PROP_FRAME_WIDTH, CAP_PROP_FPS, VideoWriter, VideoWriter_fourcc # Video capture video_path = image_path vcapture = VideoCapture(video_path) width = int(vcapture.get(CAP_PROP_FRAME_WIDTH)) height = int(vcapture.get(CAP_PROP_FRAME_HEIGHT)) fps = vcapture.get(CAP_PROP_FPS) # Define codec and create video writer, video output is purely for debugging and educational purpose. Not used in decensoring. file_name = fname + "_with_censor_masks.avi" vwriter = VideoWriter(file_name, VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True while success: print("frame: ", count) # Read next image success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # save frame into decensor input original. Need to keep names persistent. im_name = fname[:-4] # if we get this far, we definitely have a .mp4. Remove that, add count and .png ending file_name = orig_video_folder + im_name + str(count).zfill(6) + '.png' # NOTE Should be adequite for having 10^6 frames, which is more than enough for even 30 mintues total. # print('saving frame as ', file_name) skimage.io.imsave(file_name, image) # Detect objects r = self.model.detect([image], verbose=0)[0] # Apply cover cov, mask = self.apply_cover(image, r['masks']) # save covered frame into input for decensoring path file_name = save_path + im_name + str(count).zfill(6) + '.png' # print('saving covered frame as ', file_name) skimage.io.imsave(file_name, cov) # RGB -> BGR to save image to video cov = cov[..., ::-1] # Add image to video writer vwriter.write(cov) count += 1 vwriter.release() print('video complete') else: # print("Running on ", end='') # print(image_path) # Read image image = skimage.io.imread(image_path) # problems with strange shapes if image.shape[-1] == 4: image = image[..., :3] # strip alpha channel # Detect objects r = self.model.detect([image], verbose=0)[0] cov, mask = self.apply_cover(image, r['masks']) # Save output file_name = save_path + fname skimage.io.imsave(file_name, cov) # print("Saved to ", file_name) # Option to save ask separately not working rn # if(save_mask==True): # skimage.io.imsave(file_name+'_mask', skimage.img_as_uint(mask)) # save to default input dir for now def run_on_folder(self, input_folder, output_folder, is_video=False, orig_video_folder=None, save_mask=False): assert input_folder assert output_folder # replace with catches and popups file_counter = 0 if(is_video == True): # support for multiple videos if your computer can even handle that vid_list = [] for file in os.listdir(input_folder): if file.endswith('mp4') or file.endswith('MP4'): vid_list.append((input_folder + '/' + file, file)) for vid_path, vid_name in vid_list: # video will not support separate mask saves self.detect_and_cover(vid_path, vid_name, output_folder, is_video=True, orig_video_folder=orig_video_folder) print('detection on video', file_counter, 'is complete') file_counter += 1 else: # obtain inputs from the input folder img_list = [] for file in os.listdir(input_folder): # TODO: check what other filetpyes supported if file.endswith('.png') or file.endswith('.PNG'): img_list.append((input_folder + '/' + file, file)) elif file.endswith(".jpg") or file.endswith(".JPG") or file.endswith(".jpeg"): # img_list.append((input_folder + '/' + file, file)) # Do not add jpgs. Conversion to png must happen first self.dcp_compat += 1 # save run detection with outputs to output folder for img_path, img_name in img_list: self.detect_and_cover(img_path, img_name, output_folder, save_mask=save_mask) print('detection on image', file_counter, 'is complete') file_counter += 1 # return 0 # main only used for debugging here. Comment out pls '''if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Utilize Mask R-CNN to detect censor bars.') parser.add_argument('--weights', required=True, metavar="/path/to/weights.h5", help="Path to weights.h5") parser.add_argument('--imagedir', required=True, metavar="path to image folder", help='Folder of images to apply mask coverage on') # parser.add_argument('--video', required=False, # metavar="path or URL to video", # help='Video to apply effect on') args = parser.parse_args() weights_path = args.weights images_path = args.imagedir output_dir = "temp_out/" print('Initializing Detector class') detect_instance = Detector(weights_path=args.weights) print('loading
"RBS Status", "Source Storage", "Archival Storage"] page_cursor = response.get('data', {}).get('vSphereVmNewConnection', {}).get('pageInfo', {}) next_page_context = { "next_page_token": page_cursor.get('endCursor', ''), "name": "rubrik-polaris-vm-objects-list", "has_next_page": page_cursor.get('hasNextPage', '') } if next_page_context.get('has_next_page'): readable_output = "{}\n {} {}".format(tableToMarkdown(table_name, hr, header, removeNull=True), MESSAGES['NEXT_RECORD'], page_cursor.get('endCursor')) else: readable_output = tableToMarkdown(table_name, hr, header, removeNull=True) outputs = { f"{OUTPUT_PREFIX['VM_OBJECT']}(val.id == obj.id)": context, f"{OUTPUT_PREFIX['PAGE_TOKEN_VM_OBJECT']}(val.name == obj.name)": remove_empty_elements(next_page_context) } return CommandResults( outputs=outputs, raw_response=response, readable_output=readable_output ) def rubrik_polaris_vm_object_snapshot_list_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Search for a Rubrik snapshot of an object based on the arguments. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ object_id = validate_required_arg("object_id", args.get('object_id')) start_date = end_date = "" start_date_ob = arg_to_datetime(validate_required_arg("start_date", args.get("start_date"))) if start_date_ob: start_date = start_date_ob.strftime(DATE_TIME_FORMAT) end_date_ob = arg_to_datetime(validate_required_arg("end_date", args.get("end_date"))) if end_date_ob: end_date = end_date_ob.strftime(DATE_TIME_FORMAT) timezone_offset = validate_required_arg("timezone_offset", args.get("timezone_offset")) cluster_connected = args.get("cluster_connected", DEFAULT_CLUSTER_CONNECTED) if cluster_connected: cluster_connected = validate_boolean_argument(cluster_connected, 'cluster_connected') snapshot_group_by = args.get('snapshot_group_by', DEFAULT_SNAPSHOT_GROUP_BY) missed_snapshot_by = args.get('missed_snapshot_group_by', DEFAULT_SNAPSHOT_GROUP_BY) time_range = { "start": start_date, "end": end_date } response = client.get_object_snapshot(snapshot_group_by=snapshot_group_by, missed_snapshot_group_by=missed_snapshot_by, object_id=object_id, time_range=time_range, timezone_offset=timezone_offset, cluster_connected=cluster_connected) data = response.get('data', {}).get('snappable', {}) if not data.get('snapshotGroupByConnection', {}).get('nodes'): return CommandResults(readable_output=MESSAGES["NO_RECORDS_FOUND"].format("vm object snapshots")) context, hr = prepare_context_hr_vm_object_snapshot(data) table_name = "VM Object Snapshots" header = ["Snapshot Details", SNAPSHOT_IDS] readable_output = tableToMarkdown(table_name, hr, header, removeNull=True) return CommandResults( outputs_prefix=OUTPUT_PREFIX['VM_OBJECT'], outputs_key_field="id", outputs=context, raw_response=response, readable_output=readable_output ) def rubrik_sonar_ondemand_scan_status_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Retrieve the status of a scanned system in Polaris Sonar. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ crawl_id = args.get("crawl_id") if not crawl_id: raise ValueError(ERROR_MESSAGES['MISSING_REQUIRED_FIELD'].format("crawl_id")) raw_response = client.get_on_demand_scan_status(crawl_id) nodes = raw_response.get("data", {}).get("crawl", {}).get("crawlObjConnection", {}).get("nodes", []) response_crawl_id = raw_response.get("data", {}).get("crawl", {}).get("id", "") if not nodes: return CommandResults(readable_output=MESSAGES['NO_RESPONSE']) context, hr = prepare_context_hr_sonar_ondemand_scan_status(nodes, response_crawl_id) return CommandResults(outputs_prefix=OUTPUT_PREFIX['SONAR_ON_DEMAND_SCAN'], outputs_key_field="crawlId", readable_output=hr, outputs=context, raw_response=raw_response) def rubrik_sonar_ondemand_scan_result_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Retrieve the download link for an on-demand scan of a system in Rubrik Polaris - Sonar. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ crawl_id = validate_required_arg("crawl_id", args.get("crawl_id", "")) file_type = validate_required_arg("file_type", args.get("file_type")) raw_response = client.get_on_demand_scan_result(crawl_id, {"fileType": file_type}) outputs = raw_response.get("data", {}).get("downloadResultsCsv", {}) if not outputs or not outputs.get("downloadLink"): return CommandResults(readable_output=MESSAGES['NO_RESPONSE']) hr_content = { "Scan result CSV Download Link": f"Download the [CSV]({outputs.get('downloadLink')}) file to see the result." } hr = tableToMarkdown("Sonar On-Demand Scan Result", hr_content, headers="Scan result CSV Download Link", removeNull=True) context = { "crawlId": crawl_id.lower(), "Result": outputs } return CommandResults(outputs_prefix=OUTPUT_PREFIX['SONAR_ON_DEMAND_SCAN'], outputs_key_field="crawlId", readable_output=hr, outputs=context, raw_response=raw_response) def rubrik_radar_anomaly_csv_analysis_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Request for the analysis and retrieve the download link for the Radar CSV analyzed file. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ cluster_id = validate_required_arg("cluster_id", args.get('cluster_id')) snapshot_id = validate_required_arg("snapshot_id", args.get("snapshot_id")) object_id = validate_required_arg("object_id", args.get("object_id")) response = client.get_csv_result(cluster_id=cluster_id, snappable_id=object_id, snapshot_id=snapshot_id) data = response.get("data", {}) download_data = data.get('investigationCsvDownloadLink', {}) if not download_data: return CommandResults(readable_output=MESSAGES["NO_RESPONSE"]) context = { "clusterId": cluster_id, "snapshotId": snapshot_id, "objectId": object_id } context.update(data) table_name = "Radar Anomaly CSV Analysis" hr = [f"Download the analyzed [CSV]({download_data.get('downloadLink')}) file."] readable_output = tableToMarkdown(table_name, hr, ["CSV Download Link"], removeNull=True) return CommandResults( outputs_prefix=OUTPUT_PREFIX["RADAR_ANOMALY_CSV_ANALYSIS"], outputs_key_field=["clusterId", "snapshotId", "objectId"], outputs=context, raw_response=response, readable_output=readable_output ) def rubrik_sonar_csv_download_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Request for the analysis and retrieve the download link for the Radar CSV analyzed file. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ snapshot_id = validate_required_arg("snapshot_id", args.get("snapshot_id")) object_id = validate_required_arg("object_id", args.get("object_id")) file_type = args.get('file_type') filters = None if file_type: filters = { "fileType": file_type } response = client.get_csv_download(snappable_id=object_id, snapshot_id=snapshot_id, filters=filters) data = response.get("data", {}) if not data: return CommandResults(readable_output=MESSAGES["NO_RESPONSE"]) context = { "snapshotId": snapshot_id, "objectId": object_id } context.update(data) table_name = "Sonar CSV Download" if data.get('downloadSnapshotResultsCsv', {}).get('isSuccessful'): hr = ["Success"] else: hr = ["Failed"] readable_output = tableToMarkdown(table_name, hr, ["Download Status"], removeNull=True) return CommandResults( outputs_prefix=OUTPUT_PREFIX["SONAR_CSV_DOWNLOAD"], outputs_key_field=["snapshotId", "objectId"], outputs=context, raw_response=response, readable_output=readable_output ) def rubrik_gps_snapshot_files_list_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Retrieve the list of the available files that can be downloaded. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ snapshot_id = validate_required_arg("snapshot_id", args.get("snapshot_id", "")) search_prefix = args.get("search_prefix", "") path = args.get("path", "") limit = arg_to_number(args.get('limit', DEFAULT_LIMIT)) if not limit or limit <= 0 or limit > 1000: raise ValueError(ERROR_MESSAGES["INVALID_LIMIT"].format(limit)) next_page_token = args.get('next_page_token') raw_response = client.get_snapshot_files(snapshot_id=snapshot_id, search_prefix=search_prefix, path=path, first=limit, after=next_page_token) outputs = raw_response.get("data", {}).get("browseSnapshotFileConnection", {}).get("edges", []) page_cursor = raw_response.get("data", {}).get("browseSnapshotFileConnection", {}).get("pageInfo", {}) if not outputs: return CommandResults(readable_output=MESSAGES['NO_RECORDS_FOUND'].format("files")) context, hr = prepare_context_hr_gps_snapshot_files(outputs, snapshot_id) next_page_context = { "next_page_token": page_cursor.get('endCursor', ''), "name": "rubrik-gps-snapshot-files-list", "has_next_page": page_cursor.get('hasNextPage', '') } outputs = { f"{OUTPUT_PREFIX['GPS_SNAPSHOT_FILES']}(val.snapshotId == obj.snapshotId)": context, f"{OUTPUT_PREFIX['PAGE_TOKEN_GPS_SNAPSHOT_FILES']}(val.name == obj.name)": remove_empty_elements( next_page_context) } if page_cursor.get("hasNextPage"): hr += "{} {}".format(MESSAGES['NEXT_RECORD'], page_cursor.get("endCursor")) return CommandResults(readable_output=hr, outputs=outputs, raw_response=raw_response) def rubrik_gps_vm_export_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Request to initiate an export of a snapshot of a virtual machine. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ config, object_id = validate_vm_export_args(args) raw_response = client.export_vm_snapshot(config, object_id) outputs = raw_response.get("data", {}) if not outputs: return CommandResults(readable_output=MESSAGES['NO_RECORDS_FOUND'].format('vm export')) snapshot_export_request_id = outputs.get('vSphereVMExportSnapshotV2', {}).get('id', '') hr_content = {"Snapshot Export Request ID": snapshot_export_request_id} hr = tableToMarkdown("GPS VM Export", hr_content, headers="Snapshot Export Request ID", removeNull=True) context = { "id": snapshot_export_request_id } return CommandResults(outputs_prefix=OUTPUT_PREFIX['GPS_VM_EXPORT'], outputs_key_field="id", readable_output=hr, outputs=context, raw_response=raw_response) def rubrik_user_downloads_list_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Retrieve the user downloads. This would return the current and past download history. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ response = client.get_user_downloads() data = response.get("data", {}) if not data: return CommandResults(readable_output=MESSAGES["NO_RECORDS_FOUND"].format("user downloads")) context, hr = prepare_context_hr_user_downloads(data.get('getUserDownloads', [])) table_name = "User Downloads" headers = ["Download ID", "Name", "Status", "Identifier", "Creation Time", "Completion Time"] readable_output = tableToMarkdown(table_name, hr, headers, removeNull=True) return CommandResults( outputs_prefix=OUTPUT_PREFIX["USER_DOWNLOADS"], outputs_key_field="id", outputs=context, raw_response=response, readable_output=readable_output ) def rubrik_sonar_csv_result_download_command(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Retrieve the download link for the requested Sonar CSV Snapshot file. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ download_id = arg_to_number(validate_required_arg("download_id", args.get("download_id"))) response = client.get_csv_result_download(download_id=download_id) data = response.get("data", {}) if not data: return CommandResults(readable_output=MESSAGES["NO_RESPONSE"]) context = { "downloadId": download_id } context.update(data) table_name = "Sonar CSV Result" url_ = data.get('getDownloadUrl', {}).get('url') hr = [f"Download the [CSV]({url_}) file to see the result."] readable_output = tableToMarkdown(table_name, hr, ["Download URL"], removeNull=True) return CommandResults( outputs_prefix=OUTPUT_PREFIX["SONAR_CSV_DOWNLOAD"], outputs_key_field="downloadId", outputs=context, raw_response=response, readable_output=readable_output ) def rubrik_gps_sla_domain_list(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ List available SLA Domains Rubrik Polaris - GPS. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ name = args.get("name", "") cluster_uuid = args.get("cluster_id", "") object_type = argToList(args.get("object_type")) show_cluster_slas_only = args.get("show_cluster_slas_only", DEFAULT_SHOW_CLUSTER_SLA_ONLY) limit = arg_to_number(args.get('limit', DEFAULT_LIMIT)) next_page_token = args.get('next_page_token') sort_order = args.get('sort_order', DEFAULT_SORT_ORDER) sort_by = args.get('sort_by', DEFAULT_SORT_BY_SLA_DOMAIN) filters = [] if name: filters.append({ "field": "NAME", "text": name }) if cluster_uuid: filters.append({ "field": "CLUSTER_UUID", "text": cluster_uuid }) if object_type: filters.append({ "field": "OBJECT_TYPE", "objectTypeList": object_type }) if show_cluster_slas_only: show_cluster_slas_only = validate_boolean_argument(show_cluster_slas_only, "show_cluster_slas_only") filters.append({ "field": "SHOW_CLUSTER_SLAS_ONLY", "text": str(show_cluster_slas_only).lower() }) if not limit or limit <= 0 or limit > 1000: raise ValueError(ERROR_MESSAGES['INVALID_LIMIT'].format(limit)) response = client.list_sla_domains(after=next_page_token, first=limit, filters=filters, sort_order=sort_order, sort_by=sort_by, show_protected_object_count=True) edges = response.get('data', {}).get('globalSlaConnection', {}).get('edges', []) if not edges: return CommandResults(readable_output=MESSAGES["NO_RECORDS_FOUND"].format("sla domains")) context, hr = prepare_context_hr_sla_domains_list(edges) page_cursor = response.get('data', {}).get('globalSlaConnection', {}).get('pageInfo', {}) next_page_context = { "next_page_token": page_cursor.get('endCursor', ''), "name": "rubrik-gps-sla-domain-list", "has_next_page": page_cursor.get('hasNextPage', '') } if next_page_context.get('has_next_page'): hr += f"\n {MESSAGES['NEXT_RECORD']} {page_cursor.get('endCursor')}\n" outputs = { f"{OUTPUT_PREFIX['GPS_SLA_DOMAIN']}(val.id == obj.id)": context, f"{OUTPUT_PREFIX['PAGE_TOKEN_SLA_DOMAIN']}(val.name == obj.name)": remove_empty_elements(next_page_context) } return CommandResults( outputs=outputs, raw_response=response, readable_output=hr ) def rubrik_gps_vm_snapshot_create(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Trigger an on-demand vm snapshot. :type client: ``PolarisClient`` :param
New `forcefield` keyword to switch between different values of DEFAULT_DONORS/ACCEPTORS to accomodate different force fields. Also has an option "other" for no default values. .. versionchanged:: 0.8 The new default for `update_selection1` and `update_selection2` is now ``True`` (see `Issue 138`_). Set to ``False`` if your selections only need to be determined once (will increase performance). .. versionchanged:: 0.9.0 New keyword `distance_type` to select between calculation between heavy atoms or hydrogen-acceptor. It defaults to the previous behavior (i.e. "hydrogen"). .. versionchanged:: 0.11.0 Initial checks for selections that potentially raise :exc:`SelectionError`. .. versionchanged:: 0.17.0 use 0-based indexing .. deprecated:: 0.16 The previous `verbose` keyword argument was replaced by `debug`. Note that the `verbose` keyword argument is now consistently used to toggle progress meters throughout the library. .. _`Issue 138`: https://github.com/MDAnalysis/mdanalysis/issues/138 """ super(HydrogenBondAnalysis, self).__init__(universe.trajectory, **kwargs) warnings.warn( "This class is deprecated as of MDAnalysis version 1.0 and will " "be removed in version 2.0." "Please use MDAnalysis.analysis.hydrogenbonds.hbond_analysis.HydrogenBondAnalysis instead.", category=DeprecationWarning ) # per-frame debugging output? self.debug = debug self._get_bonded_hydrogens_algorithms = { "distance": self._get_bonded_hydrogens_dist, # 0.7.6 default "heuristic": self._get_bonded_hydrogens_list, # pre 0.7.6 } if not detect_hydrogens in self._get_bonded_hydrogens_algorithms: raise ValueError("detect_hydrogens must be one of {0!r}".format( self._get_bonded_hydrogens_algorithms.keys())) self.detect_hydrogens = detect_hydrogens self.u = universe self.selection1 = selection1 self.selection2 = selection2 self.selection1_type = selection1_type self.update_selection1 = update_selection1 self.update_selection2 = update_selection2 self.filter_first = filter_first self.distance = distance self.distance_type = distance_type # note: everything except 'heavy' will give the default behavior self.angle = angle self.pbc = pbc and all(self.u.dimensions[:3]) # set up the donors/acceptors lists if donors is None: donors = [] if acceptors is None: acceptors = [] self.forcefield = forcefield self.donors = tuple(set(self.DEFAULT_DONORS[forcefield]).union(donors)) self.acceptors = tuple(set(self.DEFAULT_ACCEPTORS[forcefield]).union(acceptors)) if not (self.selection1 and self.selection2): raise ValueError('HydrogenBondAnalysis: invalid selections') elif self.selection1_type not in ('both', 'donor', 'acceptor'): raise ValueError('HydrogenBondAnalysis: Invalid selection type {0!s}'.format(self.selection1_type)) self._timeseries = None # final result accessed as self.timeseries self.timesteps = None # time for each frame self.table = None # placeholder for output table self._update_selection_1() self._update_selection_2() self._log_parameters() if self.selection1_type == 'donor': self._sanity_check(1, 'donors') self._sanity_check(2, 'acceptors') elif self.selection1_type == 'acceptor': self._sanity_check(1, 'acceptors') self._sanity_check(2, 'donors') else: # both self._sanity_check(1, 'donors') self._sanity_check(1, 'acceptors') self._sanity_check(2, 'acceptors') self._sanity_check(2, 'donors') logger.info("HBond analysis: initial checks passed.") def _sanity_check(self, selection, htype): """sanity check the selections 1 and 2 *selection* is 1 or 2, *htype* is "donors" or "acceptors" If selections do not update and the required donor and acceptor selections are empty then a :exc:`SelectionError` is immediately raised. If selections update dynamically then it is possible that the selection will yield donors/acceptors at a later step and we only issue a warning. .. versionadded:: 0.11.0 """ assert selection in (1, 2) assert htype in ("donors", "acceptors") # horrible data organization: _s1_donors, _s2_acceptors, etc, update_selection1, ... atoms = getattr(self, "_s{0}_{1}".format(selection, htype)) update = getattr(self, "update_selection{0}".format(selection)) if not atoms: errmsg = "No {1} found in selection {0}. " \ "You might have to specify a custom '{1}' keyword.".format( selection, htype) if not update: logger.error(errmsg) raise SelectionError(errmsg) else: errmsg += " Selection will update so continuing with fingers crossed." warnings.warn(errmsg, category=SelectionWarning) logger.warning(errmsg) def _log_parameters(self): """Log important parameters to the logfile.""" logger.info("HBond analysis: selection1 = %r (update: %r)", self.selection1, self.update_selection1) logger.info("HBond analysis: selection2 = %r (update: %r)", self.selection2, self.update_selection2) logger.info("HBond analysis: criterion: donor %s atom and acceptor atom distance <= %.3f A", self.distance_type, self.distance) logger.info("HBond analysis: criterion: angle D-H-A >= %.3f degrees", self.angle) logger.info("HBond analysis: force field %s to guess donor and acceptor names", self.forcefield) logger.info("HBond analysis: bonded hydrogen detection algorithm: %r", self.detect_hydrogens) def _get_bonded_hydrogens(self, atom, **kwargs): """Find hydrogens bonded to `atom`. This method is typically not called by a user but it is documented to facilitate understanding of the internals of :class:`HydrogenBondAnalysis`. Parameters ---------- atom : groups.Atom heavy atom **kwargs passed through to the calculation method that was selected with the `detect_hydrogens` kwarg of :class:`HydrogenBondAnalysis`. Returns ------- hydrogen_atoms : AtomGroup or [] list of hydrogens (can be a :class:`~MDAnalysis.core.groups.AtomGroup`) or empty list ``[]`` if none were found. See Also -------- :meth:`_get_bonded_hydrogens_dist` :meth:`_get_bonded_hydrogens_list` .. versionchanged:: 0.7.6 Can switch algorithm by using the `detect_hydrogens` keyword to the constructor. *kwargs* can be used to supply arguments for algorithm. """ return self._get_bonded_hydrogens_algorithms[self.detect_hydrogens](atom, **kwargs) def _get_bonded_hydrogens_dist(self, atom): """Find hydrogens bonded within cutoff to `atom`. Hydrogens are detected by either name ("H*", "[123]H*") or type ("H"); this is not fool-proof as the atom type is not always a character but the name pattern should catch most typical occurrences. The distance from `atom` is calculated for all hydrogens in the residue and only those within a cutoff are kept. The cutoff depends on the heavy atom (more precisely, on its element, which is taken as the first letter of its name ``atom.name[0]``) and is parameterized in :attr:`HydrogenBondAnalysis.r_cov`. If no match is found then the default of 1.5 Å is used. Parameters ---------- atom : groups.Atom heavy atom Returns ------- hydrogen_atoms : AtomGroup or [] list of hydrogens (can be a :class:`~MDAnalysis.core.groups.AtomGroup`) or empty list ``[]`` if none were found. Notes ----- The performance of this implementation could be improved once the topology always contains bonded information; it currently uses the selection parser with an "around" selection. .. versionadded:: 0.7.6 """ try: return atom.residue.atoms.select_atoms( "(name H* 1H* 2H* 3H* or type H) and around {0:f} name {1!s}" "".format(self.r_cov[atom.name[0]], atom.name)) except NoDataError: return [] def _get_bonded_hydrogens_list(self, atom, **kwargs): """Find "bonded" hydrogens to the donor *atom*. At the moment this relies on the **assumption** that the hydrogens are listed directly after the heavy atom in the topology. If this is not the case then this function will fail. Hydrogens are detected by name ``H*``, ``[123]H*`` and they have to be within a maximum distance from the heavy atom. The cutoff distance depends on the heavy atom and is parameterized in :attr:`HydrogenBondAnalysis.r_cov`. Parameters ---------- atom : groups.Atom heavy atom **kwargs ignored Returns ------- hydrogen_atoms : AtomGroup or [] list of hydrogens (can be a :class:`~MDAnalysis.core.groups.AtomGroup`) or empty list ``[]`` if none were found. .. versionchanged:: 0.7.6 Added detection of ``[123]H`` and additional check that a selected hydrogen is bonded to the donor atom (i.e. its distance to the donor is less than the covalent radius stored in :attr:`HydrogenBondAnalysis.r_cov` or the default 1.5 Å). Changed name to :meth:`~HydrogenBondAnalysis._get_bonded_hydrogens_list` and added *kwargs* so that it can be used instead of :meth:`~HydrogenBondAnalysis._get_bonded_hydrogens_dist`. """ warnings.warn("_get_bonded_hydrogens_list() (heuristic detection) does " "not always find " "all hydrogens; Using detect_hydrogens='distance', when " "constructing the HydrogenBondAnalysis class is safer. " "Removal of this feature is targeted for 1.0", category=DeprecationWarning) box = self.u.dimensions if self.pbc else None try: hydrogens = [ a for a in self.u.atoms[atom.index + 1:atom.index + 4] if (a.name.startswith(('H', '1H', '2H', '3H')) and distances.calc_bonds(atom.position, a.position, box=box) < self.r_cov[atom.name[0]]) ] except IndexError: hydrogens = [] # weird corner case that atom is the last one in universe return hydrogens def _update_selection_1(self): self._s1 = self.u.select_atoms(self.selection1) self.logger_debug("Size of selection 1: {0} atoms".format(len(self._s1))) if not self._s1: logger.warning("Selection 1 '{0}' did not select any atoms." .format(str(self.selection1)[:80])) self._s1_donors = {} self._s1_donors_h = {} self._s1_acceptors = {} if self.selection1_type in ('donor', 'both'): self._s1_donors = self._s1.select_atoms( 'name {0}'.format(' '.join(self.donors))) self._s1_donors_h = {} for i, d in enumerate(self._s1_donors): tmp = self._get_bonded_hydrogens(d) if tmp: self._s1_donors_h[i] = tmp self.logger_debug("Selection 1 donors: {0}".format(len(self._s1_donors))) self.logger_debug("Selection 1 donor hydrogens: {0}".format(len(self._s1_donors_h))) if self.selection1_type in ('acceptor', 'both'): self._s1_acceptors = self._s1.select_atoms( 'name {0}'.format(' '.join(self.acceptors))) self.logger_debug("Selection 1 acceptors: {0}".format(len(self._s1_acceptors))) def _update_selection_2(self): box = self.u.dimensions if self.pbc else None self._s2 = self.u.select_atoms(self.selection2) if self.filter_first and self._s2: self.logger_debug('Size of selection 2 before filtering:' ' {} atoms'.format(len(self._s2))) ns_selection_2 = AtomNeighborSearch(self._s2, box) self._s2 = ns_selection_2.search(self._s1, 3. * self.distance) self.logger_debug('Size of selection 2: {0} atoms'.format(len(self._s2))) if not self._s2: logger.warning('Selection 2 "{0}" did not select any atoms.' .format(str(self.selection2)[:80])) self._s2_donors = {} self._s2_donors_h = {} self._s2_acceptors = {} if not self._s2: return None if self.selection1_type in ('donor', 'both'): self._s2_acceptors = self._s2.select_atoms( 'name {0}'.format(' '.join(self.acceptors))) self.logger_debug("Selection 2 acceptors: {0:d}".format(len(self._s2_acceptors))) if self.selection1_type in ('acceptor', 'both'): self._s2_donors = self._s2.select_atoms( 'name {0}'.format(' '.join(self.donors))) self._s2_donors_h = {} for
# # The next three lines are self-descriptive. But you will need the *\maketitle* **after** the \begin{document} for those items to appear. # # ### The Body # # The body is similar to what you would find in a normal word processor. The first element to add to the body is the *abstract*. An abstract informs the reader what will follow in the rest of the document. For your class projects, this will be a <250 word summary of your work. In your class assignments, you can write a summary of what you learned so that when *future* you comes back to it, it will hopefully make sense. To create an abstract: # # >\begin{abstract} # # >This is a simple paragraph at the beginning of the document. A brief introduction to the main subject. # # >\end{abstract} # # you must create an abstract environment. Environments (e.g., abstract, figure, table, equation) always have a \begin and an \end statement to tell the LaTex compiler that it needs to do something different here and for how long. # # There are other elements that in the body that **don't** need an environment because they are self explanatory to the compiler when to stop. For example, you can organize the body using sections, subsections, subsubsections, etc. Although an environment is not required, you do need a `\` to tell the compiler that it isn't really text either. # # >\section{Introduction} # # >\section{Methods} # # >\subsection{Newton's 1st Law} # # >\subsubsection{Einstein's Theory of General Relativity} # # >\section{Results} # # In the above examples: # # - The first section is the Introduction and it will be enumerated starting from 1. The LaTex compiler will know when the Introduction ends when it encounters the next \section command. # - The second section called Methods (enumerated with 2) has a subsection called Newton's 1st Law. Subsections are then enumerated with a ".#", where the above subsection is 2.1. Subsubsections will gain an additional ".#" so that it will numbered 2.1.1. # - The third section (enumerated with 3) tells the compiler to go back to the previous level in the tree. # # Between section commands, this is where the main text will appear. In contrast to a word processor (like Word), LaTex allows for inline commands. The most common inline commands are: # # - Enter math mode with \$ signs. Suppose you need the greek letter $\alpha$, then you can easily add it to your text by placing the \alpha between \$ \$. This is less cumbersome than having to define a macro in Word. Anything that you could do in an equation, can be done in math mode (e.g., \frac{1}{2}x^2 in between \$ signs appears as $\frac{1}{2}x^2$) # - Cite a reference. This will be explained more later. # - Add a comment to the writer using \%. Everything on a line that comes after \% will not appear in the pdf document, but can serve as a note for later. # - You can add text formatting for **bold**, *italics*, or $\texttt{texttype}$ using: \textbf, \textit, or \texttt. # # Figures and tables are created using an environment (recall that this means begin and end statements). For many of the extra features for figures, you will need to add `\usepackage{graphicx}` to the front matter. Figures and tables have similar structures as you can see in these basic examples: # # >\begin{figure}[!h] # # >\centering # # >\includegraphics[width=\linewidth]{filename.png} # # >\caption{This is the figure caption, which describes basic aspects of the figure to the reader. \label{fig:Fig1}} # # >\end{figure} # # and # # >\begin{table}[!h] # # >\centering # # >\begin{tabular}{c|c|c} # # >\hline # # >cell11 & cell12 & cell13 \ \ # # >cell21 & cell22 & cell23 \ \ # # >cell31 & cell32 & cell33 # # >\end{tabular} # # >caption{This is a table caption, which describes the basic apsects of the table or gives the table a title. \label{tab:Tab1}} # # >\end{table} # # The figure and table environment have a [] after the begin statement, where positioning arguments are placed (e.g., !=override default, h=here, t=top of page, b=bottom of page). This is followed by \centering, which tells the LaTeX compiler to place the figure/table in the center of the page (<------center------->). The figure environment relies on the `\includegraphics` command from the graphicx package, which this has a [] for arguments that tell the LaTeX compiler how to scale the figure. In the above example, the figure is scaled so that the width of the figure spans an entire line. The {} after \includegraphics holds the filename of the image (e.g., `filename.png`), where LaTex can handle many filetypes (e.g., png, jpg, and pdf are the most common). The table environment is different in that it holds *tabular* environment within *table* environment. The tabular environment has arguments {} that tell the LateX compiler: # # - the number of columns (implicitly), # - the alignment within columns (explicitly), and # - the borders between columns. # # The columns can be left (l), center (c), or (r) aligned, where the total number of these characters indicates the number of columns (3l's = 3 columns left aligned). The \hline command draws a horizontal line that spans the width of the table. The data within the table is separated using the `&` symbol and a row is terminated with `\\`. The last row **doesn't** need to be terminated with `\\` and the `\end{tabular}` must follow on the next line. # # Both figures and tables use the *caption* environment to hold the description and a *label* environment so that the figure/table can be dynamically referenced in the text (using `\ref{fig:Fig1}` or `\ref{tab:Tab1}`). The beauty of LaTex is that the referencing system keeps track of the figure and table numbering so that if the order of tables are switched, then the numbering is updated with the next compilation. Finally, both figures and tables **require** an \end statement. # # The LaTex compiler will abort or crash if a given environment does not have matching {} or begin/end statements. This is usually indicated in the compilation log (upper right button **View Logs**). # # ### The Back Matter # # The back matter contains supplementary information to the body (e.g., acknowledgments, references, appendices). The acknowledgments (**note the spelling**) is an environment so it needs a \begin{acknowledgments} and an \end{ackowledgments}, where this section is where you would thank particular individuals/institutions that aided in the completion of the project (e.g., converstations, resources, proofing). # # An appendix is started with the `\appendix` command, which behaves much like the body but includes supplementary material (e.g., a derivation of an equation, how a new method was verified) and it's labeled with letters (A,B,C,...). For you, this is where you can put the code that you generate using the \verbatim environment. Addtional guides on how to include code in Latex can be found [here](https://www.overleaf.com/learn/latex/Code_listing). # # In addition to the ease of generating equations, LaTex is preferred because it makes referencing easier too with BibTex. At the end of your document, references are included by telling LaTex the referencing style (e.g., apsrev4-2.bst for *Physical Review*) and a database of references (e.g., references.bib) through supplemental files. You must include the following for the references: # # >\bibliographystyle{style_filename.bst} # # >\bibliography{reference_filename.bib} # # The reference database (*.bib file) will contain entries like the following: # # ``` # @ARTICLE{Berman1983, # author = "<NAME>., <NAME> <NAME>., <NAME>.", # title = "Stability of nonlinear modes", # journal = "Physica D", # volume = "88", # pages = "445", # year = "1983", # } # ``` # where the `Berman1983` is a label used for the inline citation command within the body (e.g., \cite{Berman1983}). The quotation marks for each field tell BibTex not to change the formatting (i.e., captialization). There are different types of environments that correspond to different references (e.g., ARTICLE, BOOK, INPROCEEDINGS, etc.). Remember that environments require an opening { and closing }. #
(len(raw) < 3): continue self.ShowProgress( iline* 100.0 /(maxlines+1)) if mode == '2d': self.dimension = 2 sx = raw.split() yval = float(sx[2]) tmp_y.append(yval) self.yaddr = sx[1].strip() if self.yaddr.endswith(':'): self.yaddr = self.yaddr[:-1] mode = None if len(tmp_dat)>0: ntotal_at_2d.append(len(tmp_dat)) elif mode == 'epics scan': # real numeric column data print( 'Warning: file appears to have a second scan appended!') break elif mode == 'data': # real numeric column data tmp_dat.append(numpy.array([float(i) for i in raw.split()])) elif mode == '-----': if col_legend is None: col_legend = lines.pop()[1:].strip().split() elif mode in ( '=====', 'n_points'): pass elif mode == 'user titles': self.user_titles.append(raw[1:].strip()) elif mode == 'pv list': str = raw[1:].strip().replace('not connected',' = not connected') if str.lower().startswith(mode): continue desc = str addr = '' val = 'unknown' try: x = str.split('=') desc = x[0].replace('\t','').strip() val = x[1].strip() if '(' in desc and desc.endswith(')'): n = desc.rfind('(') addr = desc[n+1:-1] desc = desc[:n].rstrip() except: pass self.env_addr.append(addr) self.env_desc.append(desc) self.env_val.append(val) elif mode == 'scan regions': self.scan_regions.append(raw[1:].strip()) elif mode == 'scan ended at': self.stop_time = raw[20:].strip() elif mode == 'scan began at': self.start_time = raw[20:].strip() elif mode == 'column labels': col_details.append(raw[1:].strip()) elif mode is None: sx = [i.strip() for i in raw[1:].split('=')] if len(sx)>1: if sx[0] == 'scan prefix': self.scan_prefix = sx[1] if sx[0] == 'scan dimension': self.dimension = int(float(sx[1])) else: print( 'UNKOWN MODE = ',mode, raw[:20]) del lines try: col_details.pop(0) except IndexError: print( 'Empty Scan File') return -2 if len(self.user_titles) > 1: self.user_titles.pop(0) if len(self.scan_regions) > 1: self.scan_regions.pop(0) # check that 2d maps are of consistent size if self.dimension == 2: ntotal_at_2d.append(len(tmp_dat)) np_row0 = ntotal_at_2d[0] nrows = len(ntotal_at_2d) npts = len(tmp_dat) if npts != np_row0 * nrows: for i,n in enumerate(ntotal_at_2d): if n == np_row0*(i+1): nrows,npts_total = i+1,n if len(tmp_y) > nrows or len(tmp_dat)> npts_total: print( 'Warning: Some trailing data may be lost!') tmp_y = tmp_y[:nrows] tmp_dat = tmp_dat[:npts_total] # self.y = numpy.array(tmp_y) # done reading file self._make_arrays(tmp_dat,col_legend,col_details) tmp_dat = None self.xaddr = self.pos_addr[0].strip() for addr,desc in zip(self.env_addr,self.env_desc): if self.xaddr == addr: self.xdesc = desc if self.yaddr == addr: self.ydesc = desc self.has_fullxrf = False if os.path.exists("%s.fullxrf" %fname): self.read_fullxrf("%s.fullxrf" %fname, len(self.x), len(self.y)) def read_fullxrf(self,xrfname, n_xin, n_yin): inpf = open(xrfname,'r') atime = os.stat(xrfname)[8] prefix = os.path.splitext(xrfname)[0] print('Reading Full XRF spectra from %s' % xrfname) first_line = inpf.readline() if not first_line.startswith('; MCA Spectra'): print('Warning: %s is not a QuadXRF File' % xrffile) inpf.close() return self.has_fullxrf = True isHeader= True nheader = 0 header = {'CAL_OFFSET':None,'CAL_SLOPE':None,'CAL_QUAD':None} rois = [] n_energies = 2048 while isHeader: line = inpf.readline() nheader = nheader + 1 isHeader = line.startswith(';') and not line.startswith(';----') words = line[2:-1].split(':') if words[0] in header.keys(): header[words[0]] = [float(i) for i in words[1].split()] elif words[0].startswith('ROI'): roinum = int(words[0][3:]) rois.append((words[1].strip(),int(words[2]),int(words[3]))) # end of header: read one last line line = inpf.readline() nelem = self.nelem = len(header['CAL_OFFSET']) nheader = nheader + 1 # print('==rois==' , len(rois), len(rois)/nelem, nelem) allrois = [] nrois = len(rois)/nelem for i in range(nrois): tmp = [rois[i+j*nrois] for j in range(nelem)] allrois.append( tuple(tmp) ) for i in range(nrois): nam = [] lo = [] hi = [] for j in range(nelem): r = rois[i+j*nrois] nam.append(r[0]) lo.append(r[1]) hi.append(r[2]) self.roi_names.append(nam) self.roi_llim.append(lo) self.roi_hlim.append(hi) roi_template ="""ROI_%i_LEFT: %i %i %i %i ROI_%i_RIGHT: %i %i %i %i ROI_%i_LABEL: %s & %s & %s & %s & """ rout = [] for i in range(nrois): vals = [i] + self.roi_llim[i] + [i] + self.roi_hlim[i] + [i] + self.roi_names[i] rout.append(roi_template % tuple(vals)) xrf_header= """VERSION: 3.1 ELEMENTS: %i DATE: %s CHANNELS: %i ROIS: %i %i %i %i REAL_TIME: 1.0 1.0 1.0 1.0 LIVE_TIME: 1.0 1.0 1.0 1.0 CAL_OFFSET: %15.8e %15.8e %15.8e %15.8e CAL_SLOPE: %15.8e %15.8e %15.8e %15.8e CAL_QUAD: %15.8e %15.8e %15.8e %15.8e TWO_THETA: 10.0000000 10.0000000 10.0000000 10.0000000""" hout = [nelem, time.ctime(atime),n_energies, nrois, nrois, nrois, nrois] hout.extend( header['CAL_OFFSET']) hout.extend( header['CAL_SLOPE']) hout.extend( header['CAL_QUAD']) obuff ="%s\n%s" % (xrf_header % tuple(hout), '\n'.join(rout)) rois = [] allrois = [] self.xrf_header = obuff # dir = prefix self.xrf_energies = [] x_en = numpy.arange(n_energies)*1.0 for i in range(nelem): off = header['CAL_OFFSET'][i] slope = header['CAL_SLOPE'][i] quad = header['CAL_QUAD'][i] self.xrf_energies.append(off + x_en * (slope + x_en * quad)) self.xrf_energies = numpy.array(self.xrf_energies) self.xrf_dict = {} processing = True iyold = 1 ix = 0 iy = 0 # lines = inpf.readlines() progress_save = self.progress self.progress = self.my_progress # slow part: ascii text to numpy array for line in inpf:# enumerate(lines): raw = numpy.fromstring(line[:-1],sep=' ') ix = raw[0] iy = raw[1] dat = raw[2:] if iy != iyold: iyold = iy if iy>1: self.PrintMessage('. ') self.xrf_dict['%i/%i' % (ix,iy)] = dat inpf.close() xrf_shape = (n_xin, nelem, n_energies) if self.dimension == 2: xrf_shape = (n_yin, n_xin, nelem, n_energies) # print( 'xrf_shape ', xrf_shape) self.xrf_data = -1*numpy.ones(xrf_shape) xrf_dt_factor = self.dt_factor * 1.0 if self.dimension == 2: xrf_dt_factor = xrf_dt_factor.transpose((1,2,0))[:,:,:,numpy.newaxis] for iy in range(n_yin): for ix in range(n_xin): key = <KEY> (ix+1,iy+1) if key in self.xrf_dict: d = numpy.array(self.xrf_dict[key]) d.shape = (nelem,n_energies) self.xrf_data[iy,ix,:,:] = d else: xrf_dt_factor = xrf_dt_factor.transpose((1,0))[:,:,numpy.newaxis] for ix in range(n_xin): key = <KEY> (ix+1,iy) d = numpy.array(self.xrf_dict[key]) d.shape = (nelem, n_energies) self.xrf_data[ix,:,:] = d self.xrf_corr = self.xrf_data * xrf_dt_factor # merge XRF data en_merge = self.xrf_energies[0] if self.dimension == 2: self.xrf_merge = self.xrf_data[:,:,0,:]*1.0 self.xrf_merge_corr = self.xrf_corr[:,:,0,:]*1.0 self.PrintMessage('\n') for iy in range(n_yin): self.PrintMessage('. ') for ix in range(n_xin): sum_r = self.xrf_merge[iy,ix,:]*1.0 sum_c = self.xrf_merge_corr[iy,ix,:]*1.0 for idet in range(1,nelem): en = self.xrf_energies[idet] dat_r = self.xrf_data[iy,ix,idet,:] dat_c = self.xrf_corr[iy,ix,idet,:] sum_r += numpy.interp(en_merge, en, dat_r) sum_c += numpy.interp(en_merge, en, dat_c) self.xrf_merge[iy,ix,:] = sum_r self.xrf_merge_corr[iy,ix,:] = sum_c else: self.xrf_merge = self.xrf_data[:,0,:]*1.0 self.xrf_merge_corr = self.xrf_corr[:,0,:]*1.0 for ix in range(n_xin): sum_r = self.xrf_merge[ix,:]*1.0 sum_c = self.xrf_merge_corr[ix,:]*1.0 for idet in range(1,nelem): en = self.xrf_energies[idet] dat_r = self.xrf_data[ix,idet,:] dat_c = self.xrf_corr[ix,idet,:] sum_r += numpy.interp(en_merge, en, dat_r) sum_c += numpy.interp(en_merge, en, dat_c) self.xrf_merge[ix,:] = sum_r self.xrf_merge_corr[ix,:] = sum_c self.progress = progress_save inpf.close() self.xrf_dict = None def save_sums_ascii(self,fname=None, correct=True,extension='dat'): if fname is None: fname = self.path map = None correct = correct and hasattr(self,'det_corr') outf = _cleanfile(fname) fout = open("%s.%s" % (outf,extension),'w') fout.write("# ASCII data from %s\n" % self.filename) fout.write("# x positioner %s = %s\n" % (self.xaddr,self.xdesc)) if self.dimension==2: fout.write("# y positioner %s = %s\n" % (self.yaddr,self.ydesc)) fout.write("# Dead Time Correction applied: %s\n" % correct) fout.write("#-----------------------------------------\n") labels = [self.xdesc] if self.dimension == 2: ydesc = self.ydesc if ydesc in ('',None): ydesc = 'Y' labels.append(ydesc) labels.extend(self.sums_names) labels = ["%5s" % _cleanfile(l) for l in labels] olabel = ' '.join(labels) fout.write("# %s\n" % olabel) sums = self.sums if correct: sums = self.sums_corr if self.dimension ==1: for i,x in enumerate(self.x): o = ["%10.5f" % x] o.extend(["%12g" % s for s in sums[:,i]]) fout.write(" %s\n" % " ".join(o) ) else: for i,x in enumerate(self.x): for j,y in enumerate(self.y): o = [" %10.5f" % x, " %10.5f" % y] o.extend(["%12g" % s for s in sums[:,j,i]]) fout.write(" %s\n" % " ".join(o)) fout.close() def gsescan_group(fname, _larch=None, bad=None, **kws): """simple mapping of EscanData file to larch groups""" escan = EscanData(fname, bad=bad) if escan.status is not None: raise ValueError('Not a valid Escan Data file') group = Group() group.__name__ ='GSE Escan Data file %s' % fname for key, val in escan.__dict__.items(): if not key.startswith('_'): setattr(group, key, val) group.array_labels = group.pos_desc + group.sums_names group.get_data = escan.get_data return group GSE_header_IDE= ['# XDI/1.0 GSE/1.0', '# Beamline.name: 13-ID-E, GSECARS', '# Monochromator.name: Si 111, LN2 Cooled', '# Monochromator.dspacing: 3.13477', '# Facility.name: APS', '# Facility.xray_source: 3.6 cm undulator', '# Detectors.i0: 20cm ion chamber, He', '# Detectors.ifluor: Si SDD Vortex ME-4, XIA xMAP, 4 elements', '# Column.1: energy eV', '# Column.2: mufluor', '# Column.3: i0', '# Column.4: ifluor (corrected for deadtime)', '# Column.5: ifluor_raw (not corrected) ' ] GSE_header_BMD = ['# XDI/1.0 GSE/1.0', '# Beamline.name: 13-BM-D, GSECARS', '# Monochromator.name: Si 111, water cooled ', '# Monochromator.dspacing: 3.13477', '# Facility.name: APS', '# Facility.xray_source: bending magnet', '# Detectors.i0: 10cm ion chamber, N2', '# Detectors.ifluor: Ge SSD detector, XIA xMAP, 12 elements', '# Column.1: energy eV', '# Column.2: mufluor', '# Column.3: i0', '# Column.4: ifluor (corrected for deadtime)', '# Column.5: ifluor_raw (not corrected) ' ] def gsescan_deadtime_correct(fname, channelname, subdir='DT_Corrected', bad=None, _larch=None): """convert GSE ESCAN fluorescence XAFS scans to dead time
<filename>ball_catching/strategies/soc_solvers.py<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Mon Sep 26 09:29:13 2016 @author: Hoefer """ import argparse import os import sys import yaml import numpy as np import matplotlib.pylab as plt from ball_catching.config import settings_root from ball_catching.dynamics.world import DynamicsModel def dot3(A,B,C): """ Returns the matrix multiplication of A*B*C""" return np.dot(A, np.dot(B,C)) # ==================================================================== class LQR: def __init__(self): pass @property def name(self): return "LQR" # def solve(self, N, A=None, B=None): # """Solve the LQR problem, iterating over N steps""" # # Q, R, P0 = self.Q, self.R, self.H # # if A is None: # A = dynamics.Adt # if B is None: # B = dynamics.Bdt # # P = P0[:,:] # Plog = [P0] # Flog = [] # # for i in range(N): # try: # F = - np.dot ( np.linalg.inv(R + np.dot(np.dot(B.T, P), B)), # np.dot( np.dot(B.T, P), A ) ) # except np.linalg.linalg.LinAlgError as e: # print "warn: %s" % str(e) # F = np.zeros(B.T.shape) # # Flog.append(F) # P = np.dot ( np.dot( (A + np.dot(B, F)).T, P ), # (A + np.dot(B, F))) + np.dot( np.dot(F.T, R), F) + Q # Plog.append(P) # # self.Plog = Plog # self.Flog = Flog # # return Plog, Flog def solve(self, N, dynamics, A=None, B=None, c=None): """Solve the LQR problem, iterating over N steps""" self.dynamics_local = dynamics dt = dynamics.DT Q, R, S = self.Q, self.R, self.H D_s, D_a = self.Q.shape[0], self.R.shape[0] #P = np.zeros( (D_a, D_s)) s = np.zeros( (D_s,) ) if A is None: A = dynamics.Adt if B is None: B = dynamics.Bdt if c is None: c = dynamics.cdt #c = np.zeros( (D_s,) ) F = np.zeros( (N, D_a, D_s) ) f = np.zeros( (N, D_a) ) inv = np.linalg.inv for t in reversed(range(N)): C = dot3(B.T, S, A) #+ P D = dot3(A.T, S, A) + Q E = dot3(B.T, S, B) + R d = np.dot(A.T, s+S.dot(c)) #+ q e = np.dot(B.T, s+S.dot(c)) #+ r #F[t] = - inv(E).dot(C) #f[t] = - inv(E).dot(e) #S = D + C.T.dot(F[t]) #s = d + C.T.dot(f[t]) idx = N-t-1 F[idx] = - inv(E).dot(C) f[idx] = - inv(E).dot(e) S = D + C.T.dot(F[idx]) s = d + C.T.dot(f[idx]) self.F = F self.f = f self.tti = [ i*dt for i in range(N) ] return self.tti, self.F, self.f def cost_t(self, x, u): Q, R, = self.Q, self.R x = x.reshape( (-1,1) ) u = u.reshape( (-1,1) ) sx = np.dot(x.T, np.dot(Q, x)) su = np.dot(u.T, np.dot(R, u)) return (sx + su)[0,0] def cost_final(self, x): x = x.reshape( (-1,1) ) return np.dot(x.T, np.dot(self.H, x))[0,0] def J(self, x, u, N): """Compute the total cost of a trajectory x & u for N steps""" Q, R, H = self.Q, self.R, self.H sum = 0 for i in range(N-1): #FIXME use cost_t xx = x[i,:].T uu = u[i,:].T sx = np.dot(xx.T, np.dot(Q, xx)) su = np.dot(uu.T, np.dot(R, uu)) sum += sx sum += su # last step: if x.shape[0] == N: #FIXME use cost_final sum += np.dot(x[-1,:].T, np.dot(H, (x[-1,:]))) return 0.5 * sum # ==================================================================== class iLQR(LQR): @property def name(self): return "iLQR" def solve(self, N, dynamics, x0=None, u0=None, max_iter=1000, A=None, B=None, c=None, verbose=True): """Solve the iLQR problem, iterating over N steps""" inv = np.linalg.inv self.dynamics_local = dynamics dt = dynamics.DT # cost matrices Q, R, S = self.Q, self.R, self.H D_s, D_a = self.Q.shape[0], self.R.shape[0] #S = np.zeros( (D_a, D_s)) s = np.zeros( (D_s,) ) if A is None: A = dynamics.Adt if B is None: B = dynamics.Bdt if c is None: c = dynamics.cdt #c = np.zeros( (D_s,) ) g = lambda x,u: dynamics.step(x,u,noise=False) if x0 is None: x0 = np.zeros( (D_s,) ) if u0 is None: u0 = np.zeros( (D_a,) ) tf, N, _, _ = dynamics.get_time_to_impact(x0) # initialize state and action matrices F = np.zeros( (N, D_a, D_s) ) f = np.zeros( (N, D_a) ) # initialize state and action matrices x_hat = np.zeros((N+1, D_s)) x_hat_new = np.zeros((N+1, D_s)) u_hat = np.zeros((N, D_a)) u_hat_new = np.zeros((N, D_a)) old_cost = np.inf new_cost = 0. for opt_iter in range(max_iter): alpha = 1. # line search parameter # ------------ # Forward pass # line search first_round = True while first_round or (new_cost >= old_cost and np.abs((old_cost - new_cost) / new_cost) >= 1e-4): first_round = False new_cost = 0. # initialize trajectory x_hat_new[0,:] = x0 for t in range(N): idx = N-t-1 # line search for choosing optimal combination of old and new action u_hat_new[t,:] = (1.0 - alpha)*u_hat[t,:] \ + F[idx].dot(x_hat_new[t,:] - (1.0 - alpha)*x_hat[t,:]) + alpha*f[idx] # next time-step x_hat_new[t+1,:] = g(x_hat_new[t,:], u_hat_new[t,:]) new_cost += self.cost_t(x_hat_new[t,:], u_hat_new[t,:]) new_cost += self.cost_final(x_hat_new[t,:]) alpha *= 0.5 x_hat[:] = x_hat_new[:] u_hat[:] = u_hat_new[:] if verbose: print ("Iter: %d, Alpha: %f, Rel. progress: %f, Cost: %f" % \ (opt_iter, (2*alpha), ((old_cost-new_cost)/new_cost), new_cost,)) if np.abs((old_cost - new_cost) / new_cost) < 1e-4: break old_cost = new_cost # ------------ # backward pass # for quadratizing final cost (not implemented) #S = np.zeros( (D_s, D_s) ) #s = np.zeros( (D_s, ) ) S = self.H s = np.zeros( (D_s, ) ) #for (size_t t = ell-1; t != -1; --t) { for t in reversed(range(N)): # jacobian A = dynamics.compute_J(x_hat[t], u_hat[t]) B = dynamics.Bdt # FIXME nonlinear motion model support c = x_hat[t+1] - (A.dot(x_hat[t]) - B.dot(u_hat[t])).flatten() C = dot3(B.T, S, A) #+ P D = dot3(A.T, S, A) + Q E = dot3(B.T, S, B) + R d = np.dot(A.T, s+S.dot(c)) #+ q e = np.dot(B.T, s+S.dot(c)) #+ r # F[t] = - inv(E).dot(C) # f[t] = - inv(E).dot(e) # S = D + C.T.dot(F[t]) # s = d + C.T.dot(f[t]) idx = N-t-1 F[idx] = - inv(E).dot(C) f[idx] = - inv(E).dot(e) S = D + C.T.dot(F[idx]) s = d + C.T.dot(f[idx]) self.F = F self.f = f self.tti = [ i*dt for i in range(N) ] # old style #self.Flog = [ F[t] for t in range(F.shape[0]) ] return self.tti, self.F, self.f # ==================================================================== class SOCBallCatching: def __init__(self, solver, dynamics_local, terminal_distance, terminal_velocity, control_effort): """ Generates cost matrices Q, H, R and assigns them to the solver (LQR or iLQR) """ self.terminal_distance = terminal_distance self.terminal_velocity = terminal_velocity self.control_effort = control_effort D_s = dynamics_local.state_dim D_a = dynamics_local.action_dim Q = np.zeros((D_s,D_s)) R = np.identity(D_a)*control_effort H = np.zeros((D_s,D_s)) # agent terminal_distance to ball (x dimension) H[0,0] = terminal_distance H[9,9] = terminal_distance H[0,9] = H[9,0] = -terminal_distance # agent terminal_distance to ball (z dimension) H[6,6] = terminal_distance H[12,12] = terminal_distance H[6,12] = H[12,6] = -terminal_distance # agent velocity at contact H[10,10] = terminal_velocity H[13,13] = terminal_velocity # init solver cost solver.Q = Q solver.R = R solver.H = H self.dynamics_global = DynamicsModel() self.solver = solver self.solver.dynamics_local = dynamics_local def solve(self, N=None): fr, dt, dim = self.dynamics_global.FRAMERATE,\ self.dynamics_global.DT,\ self.dynamics_global.dim if N is None: N = int(10*fr) # 10 seconds at current framerate # -------- # Use LQR if self.solver.name == "LQR": #dynamics_local = DynamicsModel(dt=dt, dim=dim, # drag=False, copy=True) ret = self.solver.solve(N, self.solver.dynamics_local) # -------- # Use iLQR elif self.solver.name == "iLQR": #dynamics_local = DynamicsModel(dt=dt, dim=dim, # drag=True, copy=True) D_s = self.dynamics_global.state_dim D_a = self.dynamics_global.action_dim # we need to set x0 and u0 x0 = np.zeros( (D_s,) ) # using 'far' setting x0[1] = 150. # ball velocity x #x0[4] = 15.556 # ball velocity z x0[4] = 150. # ball velocity z #if dim==3: # x0[7] = x0[1] # ball velocity x, y and z x0[5] = -self.dynamics_global.GRAVITY x0[9] = 300 # agent x-position if dim==3: #x0[12] = x0[9] # agent z-position x0[12] = 30. # agent z-position u0 = np.zeros( (D_a,) ) ret =
<filename>colour/notation/munsell.py """ Munsell Renotation System ========================= Defines various objects for *Munsell Renotation System* computations: - :func:`colour.notation.munsell_value_Priest1920`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *Priest, Gibson and MacNicholas (1920)* method. - :func:`colour.notation.munsell_value_Munsell1933`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *Munsell, Sloan and Godlove (1933)* method. - :func:`colour.notation.munsell_value_Moon1943`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *Moon and Spencer (1943)* method. - :func:`colour.notation.munsell_value_Saunderson1944`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *Saunderson and Milner (1944)* method. - :func:`colour.notation.munsell_value_Ladd1955`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *Ladd and Pinney (1955)* method. - :func:`colour.notation.munsell_value_McCamy1987`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *McCamy (1987)* method. - :func:`colour.notation.munsell_value_ASTMD1535`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using *ASTM D1535-08e1* method. - :attr:`colour.MUNSELL_VALUE_METHODS`: Supported *Munsell* value computation methods. - :func:`colour.munsell_value`: *Munsell* value :math:`V` computation of given *luminance* :math:`Y` using given method. - :func:`colour.munsell_colour_to_xyY` - :func:`colour.xyY_to_munsell_colour` Notes ----- - The Munsell Renotation data commonly available within the *all.dat*, *experimental.dat* and *real.dat* files features *CIE xyY* colourspace values that are scaled by a :math:`1 / 0.975 \\simeq 1.02568` factor. If you are performing conversions using *Munsell* *Colorlab* specification, e.g. *2.5R 9/2*, according to *ASTM D1535-08e1* method, you should not scale the output :math:`Y` Luminance. However, if you use directly the *CIE xyY* colourspace values from the Munsell Renotation data data, you should scale the :math:`Y` Luminance before conversions by a :math:`0.975` factor. *ASTM D1535-08e1* states that:: The coefficients of this equation are obtained from the 1943 equation by multiplying each coefficient by 0.975, the reflectance factor of magnesium oxide with respect to the perfect reflecting diffuser, and rounding to ve digits of precision. References ---------- - :cite:`ASTMInternational1989a` : ASTM International. (1989). ASTM D1535-89 - Standard Practice for Specifying Color by the Munsell System (pp. 1-29). Retrieved September 25, 2014, from http://www.astm.org/DATABASE.CART/HISTORICAL/D1535-89.htm - :cite:`Centore2012a` : Centore, P. (2012). An open-source inversion algorithm for the Munsell renotation. Color Research & Application, 37(6), 455-464. doi:10.1002/col.20715 - :cite:`Centore2014k` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/MunsellHueToASTMHue.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014l` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellSystemRoutines/LinearVsRadialInterpOnRenotationOvoid.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014m` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/MunsellToxyY.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014n` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/FindHueOnRenotationOvoid.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014o` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellSystemRoutines/BoundingRenotationHues.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014p` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/xyYtoMunsell.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014q` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/MunsellToxyForIntegerMunsellValue.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014r` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/MaxChromaForExtrapolatedRenotation.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014s` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/MunsellHueToChromDiagHueAngle.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014t` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - MunsellRenotationRoutines/ChromDiagHueAngleToMunsellHue.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centore2014u` : Centore, P. (2014). MunsellAndKubelkaMunkToolboxApr2014 - GeneralRoutines/CIELABtoApproxMunsellSpec.m. https://github.com/colour-science/MunsellAndKubelkaMunkToolbox - :cite:`Centorea` : Centore, P. (n.d.). The Munsell and Kubelka-Munk Toolbox. Retrieved January 23, 2018, from http://www.munsellcolourscienceforpainters.com/\ MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html - :cite:`Wikipedia2007c` : <NAME>., <NAME>., & <NAME>. (1995). Lightness dependency of chroma scales of a nonlinear color-appearance model and its latest formulation. Color Research & Application, 20(3), 156-167. doi:10.1002/col.5080200305 """ from __future__ import annotations import numpy as np import re from colour.algebra import ( Extrapolator, LinearInterpolator, cartesian_to_cylindrical, euclidean_distance, polar_to_cartesian, spow, ) from colour.colorimetry import CCS_ILLUMINANTS, luminance_ASTMD1535 from colour.constants import ( INTEGER_THRESHOLD, FLOATING_POINT_NUMBER_PATTERN, ) from colour.hints import ( ArrayLike, Boolean, Dict, Floating, FloatingOrArrayLike, FloatingOrNDArray, Integer, Literal, NDArray, Optional, StrOrArrayLike, StrOrNDArray, Tuple, Union, ) from colour.models import Lab_to_LCHab, XYZ_to_Lab, XYZ_to_xy, xyY_to_XYZ from colour.volume import is_within_macadam_limits from colour.notation import MUNSELL_COLOURS_ALL from colour.utilities import ( CACHE_REGISTRY, CaseInsensitiveMapping, Lookup, as_float, as_float_array, as_float_scalar, as_int_scalar, attest, domain_range_scale, from_range_1, from_range_10, get_domain_range_scale, to_domain_1, to_domain_10, to_domain_100, is_integer, is_numeric, tsplit, tstack, usage_warning, validate_method, ) __author__ = "Colour Developers, <NAME>" __copyright__ = "Copyright 2013 Colour Developers" __copyright__ += ", " __copyright__ += ( "The Munsell and Kubelka-Munk Toolbox: Copyright 2010-2018 <NAME> " "(Gales Ferry, CT 06335, USA); used by permission." ) __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "<EMAIL>" __status__ = "Production" __all__ = [ "MUNSELL_GRAY_PATTERN", "MUNSELL_COLOUR_PATTERN", "MUNSELL_GRAY_FORMAT", "MUNSELL_COLOUR_FORMAT", "MUNSELL_GRAY_EXTENDED_FORMAT", "MUNSELL_COLOUR_EXTENDED_FORMAT", "MUNSELL_HUE_LETTER_CODES", "ILLUMINANT_NAME_MUNSELL", "CCS_ILLUMINANT_MUNSELL", "munsell_value_Priest1920", "munsell_value_Munsell1933", "munsell_value_Moon1943", "munsell_value_Saunderson1944", "munsell_value_Ladd1955", "munsell_value_McCamy1987", "munsell_value_ASTMD1535", "MUNSELL_VALUE_METHODS", "munsell_value", "munsell_specification_to_xyY", "munsell_colour_to_xyY", "xyY_to_munsell_specification", "xyY_to_munsell_colour", "parse_munsell_colour", "is_grey_munsell_colour", "normalise_munsell_specification", "munsell_colour_to_munsell_specification", "munsell_specification_to_munsell_colour", "xyY_from_renotation", "is_specification_in_renotation", "bounding_hues_from_renotation", "hue_to_hue_angle", "hue_angle_to_hue", "hue_to_ASTM_hue", "interpolation_method_from_renotation_ovoid", "xy_from_renotation_ovoid", "LCHab_to_munsell_specification", "maximum_chroma_from_renotation", "munsell_specification_to_xy", ] MUNSELL_GRAY_PATTERN: str = f"N(?P<value>{FLOATING_POINT_NUMBER_PATTERN})" MUNSELL_COLOUR_PATTERN: str = ( f"(?P<hue>{FLOATING_POINT_NUMBER_PATTERN})\\s*" f"(?P<letter>BG|GY|YR|RP|PB|B|G|Y|R|P)\\s*" f"(?P<value>{FLOATING_POINT_NUMBER_PATTERN})\\s*\\/\\s*" f"(?P<chroma>[-+]?{FLOATING_POINT_NUMBER_PATTERN})" ) MUNSELL_GRAY_FORMAT: str = "N{0}" MUNSELL_COLOUR_FORMAT: str = "{0} {1}/{2}" MUNSELL_GRAY_EXTENDED_FORMAT: str = "N{0:.{1}f}" MUNSELL_COLOUR_EXTENDED_FORMAT: str = "{0:.{1}f}{2} {3:.{4}f}/{5:.{6}f}" MUNSELL_HUE_LETTER_CODES: Lookup = Lookup( { "BG": 2, "GY": 4, "YR": 6, "RP": 8, "PB": 10, "B": 1, "G": 3, "Y": 5, "R": 7, "P": 9, } ) ILLUMINANT_NAME_MUNSELL: str = "C" CCS_ILLUMINANT_MUNSELL: NDArray = CCS_ILLUMINANTS[ "CIE 1931 2 Degree Standard Observer" ][ILLUMINANT_NAME_MUNSELL] _MUNSELL_SPECIFICATIONS_CACHE: Dict = CACHE_REGISTRY.register_cache( f"{__name__}._MUNSELL_SPECIFICATIONS_CACHE" ) _MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE: Dict = ( CACHE_REGISTRY.register_cache( f"{__name__}._MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE" ) ) _MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE: Dict = ( CACHE_REGISTRY.register_cache( f"{__name__}._MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE" ) ) def _munsell_specifications() -> NDArray: """ Return the *Munsell Renotation System* specifications and caches them if not existing. The *Munsell Renotation System* data is stored in :attr:`colour.notation.MUNSELL_COLOURS` attribute in a 2 columns form:: ( (('2.5GY', 0.2, 2.0), (0.713, 1.414, 0.237)), (('5GY', 0.2, 2.0), (0.449, 1.145, 0.237)), ..., (('7.5GY', 0.2, 2.0), (0.262, 0.837, 0.237)), ) The first column is converted from *Munsell* colour to specification using :func:`colour.notation.munsell.munsell_colour_to_munsell_specification` definition: ('2.5GY', 0.2, 2.0) --> (2.5, 0.2, 2.0, 4) Returns ------- :class:`numpy.ndarray` *Munsell Renotation System* specifications. """ global _MUNSELL_SPECIFICATIONS_CACHE if "All" in _MUNSELL_SPECIFICATIONS_CACHE: return _MUNSELL_SPECIFICATIONS_CACHE["All"] munsell_specifications = np.array( [ munsell_colour_to_munsell_specification( MUNSELL_COLOUR_FORMAT.format(*colour[0]) ) for colour in MUNSELL_COLOURS_ALL ] ) _MUNSELL_SPECIFICATIONS_CACHE["All"] = munsell_specifications return munsell_specifications def _munsell_value_ASTMD1535_interpolator() -> Extrapolator: """ Return the *Munsell* value interpolator for *ASTM D1535-08e1* method and caches it if not existing. Returns ------- :class:`colour.Extrapolator` *Munsell* value interpolator for *ASTM D1535-08e1* method. """ global _MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE if "ASTM D1535-08 Interpolator" in ( _MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE ): return _MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE[ "ASTM D1535-08 Interpolator" ] munsell_values = np.arange(0, 10, 0.001) interpolator = LinearInterpolator( luminance_ASTMD1535(munsell_values), munsell_values ) extrapolator = Extrapolator(interpolator) _MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR_CACHE[ "ASTM D1535-08 Interpolator" ] = extrapolator return extrapolator def _munsell_maximum_chromas_from_renotation() -> Tuple[ Tuple[Tuple[Floating, Floating, Floating], Floating], ... ]: """ Return the maximum *Munsell* chromas from *Munsell Renotation System* data and caches them if not existing. Returns ------- :class:`tuple` Maximum *Munsell* chromas. """ global _MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE if "Maximum Chromas From Renotation" in ( _MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE ): return _MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE[ "Maximum Chromas From Renotation" ] chromas: Dict[Tuple[Floating, Floating, Floating], Floating] = {} for munsell_colour in MUNSELL_COLOURS_ALL: hue, value, chroma, code = tsplit( munsell_colour_to_munsell_specification( MUNSELL_COLOUR_FORMAT.format(*munsell_colour[0]) ) ) index = (hue, value, code) if index in chromas: chroma = max([chromas[index], chroma]) chromas[index] = chroma maximum_chromas_from_renotation = tuple( zip(chromas.keys(), chromas.values()) ) _MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION_CACHE[ "Maximum Chromas From Renotation" ] = maximum_chromas_from_renotation return maximum_chromas_from_renotation def munsell_value_Priest1920(Y: FloatingOrArrayLike) -> FloatingOrNDArray: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Priest et al. (1920)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.floating` or :class:`numpy.ndarray` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Priest1920(12.23634268) # doctest: +ELLIPSIS 3.4980484... """ Y = to_domain_100(Y) V = 10 * np.sqrt(Y / 100) return as_float(from_range_10(V)) def munsell_value_Munsell1933(Y: FloatingOrArrayLike) -> FloatingOrNDArray: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Munsell et al. (1933)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.floating` or :class:`numpy.ndarray` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Munsell1933(12.23634268) # doctest: +ELLIPSIS 4.1627702... """ Y = to_domain_100(Y) V = np.sqrt(1.4742 * Y - 0.004743 * (Y * Y)) return as_float(from_range_10(V)) def munsell_value_Moon1943(Y: FloatingOrArrayLike) -> FloatingOrNDArray: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Moon and Spencer (1943)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.floating` or :class:`numpy.ndarray` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Moon1943(12.23634268) # doctest: +ELLIPSIS 4.0688120... """ Y = to_domain_100(Y) V = 1.4 * spow(Y, 0.426) return as_float(from_range_10(V)) def
model_base.predict_proba(X_sample) time_predict_frac = time.time() - time_start_predict time_predict_estimate = time_predict_frac / frac logger.log(15, f'\t{round(time_predict_estimate, 2)}s\t= Estimated out-of-fold prediction time...') if time_predict_estimate > time_left: logger.warning(f'\tNot enough time to generate out-of-fold predictions for model. Estimated time required was {round(time_predict_estimate, 2)}s compared to {round(time_left, 2)}s of available time.') raise TimeLimitExceeded if use_child_oof: logger.log(15, '\t`use_child_oof` was specified for this model. It will function similarly to a bagged model, but will only fit one child model.') time_start_predict = time.time() if model_base._get_tags().get('valid_oof', False): self._oof_pred_proba = model_base.get_oof_pred_proba(X=X, y=y) else: logger.warning('\tWARNING: `use_child_oof` was specified but child model does not have a dedicated `get_oof_pred_proba` method. This model may have heavily overfit validation scores.') self._oof_pred_proba = model_base.predict_proba(X=X) self._child_oof = True model_base.predict_time = time.time() - time_start_predict model_base.val_score = model_base.score_with_y_pred_proba(y=y, y_pred_proba=self._oof_pred_proba) else: self._oof_pred_proba = model_base.predict_proba(X=X) # TODO: Cheater value, will be overfit to valid set self._oof_pred_model_repeats = np.ones(shape=len(X), dtype=np.uint8) self._n_repeats = 1 self._n_repeats_finished = 1 self._k_per_n_repeat = [1] self._bagged_mode = False model_base.reduce_memory_size(remove_fit=True, remove_info=False, requires_save=True) if not self.params.get('save_bag_folds', True): model_base.model = None if self.low_memory: self.save_child(model_base, verbose=False) self.models = [model_base.name] else: self.models = [model_base] self._add_child_times_to_bag(model=model_base) def _fit_folds(self, X, y, model_base, k_fold=None, k_fold_start=0, k_fold_end=None, n_repeats=1, n_repeat_start=0, time_limit=None, sample_weight=None, save_folds=True, groups=None, **kwargs): fold_fitting_strategy = self.params.get('fold_fitting_strategy', SequentialLocalFoldFittingStrategy) # TODO: Preprocess data here instead of repeatedly # FIXME: Raise exception if multiclass/binary and a single val fold contains all instances of a class. (Can happen if custom groups is specified) time_start = time.time() if k_fold_start != 0: cv_splitter = self._cv_splitters[n_repeat_start] else: cv_splitter = self._get_cv_splitter(n_splits=k_fold, n_repeats=n_repeats, groups=groups) if k_fold != cv_splitter.n_splits: k_fold = cv_splitter.n_splits if k_fold_end is None: k_fold_end = k_fold kfolds = cv_splitter.split(X=X, y=y) oof_pred_proba, oof_pred_model_repeats = self._construct_empty_oof(X=X, y=y) models = [] fold_start = n_repeat_start * k_fold + k_fold_start fold_end = (n_repeats - 1) * k_fold + k_fold_end folds_to_fit = fold_end - fold_start # noinspection PyCallingNonCallable fold_fitting_strategy: AbstractFoldFittingStrategy = fold_fitting_strategy( self, X, y, sample_weight, time_limit, time_start, models, oof_pred_proba, oof_pred_model_repeats, save_folds=save_folds) for j in range(n_repeat_start, n_repeats): # For each n_repeat if j != n_repeat_start or k_fold_start == 0: self._cv_splitters.append(cv_splitter) cur_repeat_count = j - n_repeat_start fold_start_n_repeat = fold_start + cur_repeat_count * k_fold fold_end_n_repeat = min(fold_start_n_repeat + k_fold, fold_end) for i in range(fold_start_n_repeat, fold_end_n_repeat): # For each fold fold_num_in_repeat = i - (j * k_fold) # The fold in the current repeat set (first fold in set = 0) fold_ctx = dict( model_name_suffix=f'S{j + 1}F{fold_num_in_repeat + 1}', # S5F3 = 3rd fold of the 5th repeat set fold=kfolds[i], is_last_fold=i != (fold_end - 1), folds_to_fit=folds_to_fit, folds_finished=i - fold_start, folds_left=fold_end - i, ) fold_fitting_strategy.schedule_fold_model_fit(model_base, fold_ctx, kwargs) if (fold_end_n_repeat != fold_end) or (k_fold == k_fold_end): self._k_per_n_repeat.append(k_fold) fold_fitting_strategy.after_all_folds_scheduled() self.models += models self._bagged_mode = True if self._oof_pred_proba is None: self._oof_pred_proba = oof_pred_proba self._oof_pred_model_repeats = oof_pred_model_repeats else: self._oof_pred_proba += oof_pred_proba self._oof_pred_model_repeats += oof_pred_model_repeats self._n_repeats = n_repeats if k_fold == k_fold_end: self._k = None self._k_fold_end = 0 self._n_repeats_finished = self._n_repeats else: self._k = k_fold self._k_fold_end = k_fold_end self._n_repeats_finished = self._n_repeats - 1 # TODO: Augment to generate OOF after shuffling each column in X (Batching), this is the fastest way. # TODO: Reduce logging clutter during OOF importance calculation (Currently logs separately for each child) # Generates OOF predictions from pre-trained bagged models, assuming X and y are in the same row order as used in .fit(X, y) def compute_feature_importance(self, X, y, features=None, silent=False, time_limit=None, is_oof=False, **kwargs) -> pd.DataFrame: if features is None: # FIXME: use FULL features (children can have different features) features = self.load_child(model=self.models[0]).features if not is_oof: return super().compute_feature_importance(X, y, features=features, time_limit=time_limit, silent=silent, **kwargs) fi_fold_list = [] model_index = 0 num_children = len(self.models) if time_limit is not None: time_limit_per_child = time_limit / num_children else: time_limit_per_child = None if not silent: logging_message = f'Computing feature importance via permutation shuffling for {len(features)} features using out-of-fold (OOF) data aggregated across {num_children} child models...' if time_limit is not None: logging_message = f'{logging_message} Time limit: {time_limit}s...' logger.log(20, logging_message) time_start = time.time() early_stop = False children_completed = 0 log_final_suffix = '' for n_repeat, k in enumerate(self._k_per_n_repeat): if is_oof: if self._child_oof or not self._bagged_mode: raise AssertionError('Model trained with no validation data cannot get feature importances on training data, please specify new test data to compute feature importances (model=%s)' % self.name) kfolds = self._cv_splitters[n_repeat].split(X=X, y=y) cur_kfolds = kfolds[n_repeat * k:(n_repeat + 1) * k] else: cur_kfolds = [(None, list(range(len(X))))] * k for i, fold in enumerate(cur_kfolds): _, test_index = fold model = self.load_child(self.models[model_index + i]) fi_fold = model.compute_feature_importance(X=X.iloc[test_index, :], y=y.iloc[test_index], features=features, time_limit=time_limit_per_child, silent=silent, log_prefix='\t', importance_as_list=True, **kwargs) fi_fold_list.append(fi_fold) children_completed += 1 if time_limit is not None and children_completed != num_children: time_now = time.time() time_left = time_limit - (time_now - time_start) time_child_average = (time_now - time_start) / children_completed if time_left < (time_child_average * 1.1): log_final_suffix = f' (Early stopping due to lack of time...)' early_stop = True break if early_stop: break model_index += k # TODO: DON'T THROW AWAY SAMPLES! USE LARGER N fi_list_dict = dict() for val in fi_fold_list: val = val['importance'].to_dict() # TODO: Don't throw away stddev information of children for key in val: if key not in fi_list_dict: fi_list_dict[key] = [] fi_list_dict[key] += val[key] fi_df = _compute_fi_with_stddev(fi_list_dict) if not silent: logger.log(20, f'\t{round(time.time() - time_start, 2)}s\t= Actual runtime (Completed {children_completed} of {num_children} children){log_final_suffix}') return fi_df def load_child(self, model, verbose=False) -> AbstractModel: if isinstance(model, str): child_path = self.create_contexts(self.path + model + os.path.sep) return self._child_type.load(path=child_path, verbose=verbose) else: return model def save_child(self, model, verbose=False): child = self.load_child(model) child.set_contexts(self.path + child.name + os.path.sep) child.save(verbose=verbose) # TODO: Multiply epochs/n_iterations by some value (such as 1.1) to account for having more training data than bagged models def convert_to_refit_full_template(self): init_args = self._get_init_args() init_args['hyperparameters']['save_bag_folds'] = True # refit full models must save folds init_args['model_base'] = self.convert_to_refitfull_template_child() init_args['name'] = init_args['name'] + REFIT_FULL_SUFFIX model_full_template = self.__class__(**init_args) return model_full_template def convert_to_refitfull_template_child(self): compressed_params = self._get_compressed_params() child_compressed = copy.deepcopy(self._get_model_base()) child_compressed.feature_metadata = self.feature_metadata # TODO: Don't pass this here child_compressed.params = compressed_params return child_compressed def _get_init_args(self): init_args = dict( model_base=self._get_model_base(), random_state=self._random_state, ) init_args.update(super()._get_init_args()) init_args.pop('problem_type') return init_args def _get_compressed_params(self, model_params_list=None): if model_params_list is None: model_params_list = [ self.load_child(child).get_trained_params() for child in self.models ] model_params_compressed = dict() for param in model_params_list[0].keys(): model_param_vals = [model_params[param] for model_params in model_params_list] if all(isinstance(val, bool) for val in model_param_vals): counter = Counter(model_param_vals) compressed_val = counter.most_common(1)[0][0] elif all(isinstance(val, int) for val in model_param_vals): compressed_val = round(mean(model_param_vals)) elif all(isinstance(val, float) for val in model_param_vals): compressed_val = mean(model_param_vals) else: try: counter = Counter(model_param_vals) compressed_val = counter.most_common(1)[0][0] except TypeError: compressed_val = model_param_vals[0] model_params_compressed[param] = compressed_val return model_params_compressed def _get_compressed_params_trained(self): model_params_list = [ self.load_child(child).params_trained for child in self.models ] return self._get_compressed_params(model_params_list=model_params_list) def _get_model_base(self): if self.model_base is None: return self.load_model_base() else: return self.model_base def _add_child_times_to_bag(self, model): if self.fit_time is None: self.fit_time = model.fit_time else: self.fit_time += model.fit_time if self.predict_time is None: self.predict_time = model.predict_time else: self.predict_time += model.predict_time @classmethod def load(cls, path: str, reset_paths=True, low_memory=True, load_oof=False, verbose=True): model = super().load(path=path, reset_paths=reset_paths, verbose=verbose) if not low_memory: model.persist_child_models(reset_paths=reset_paths) if load_oof: model._load_oof() return model @classmethod def load_oof(cls, path, verbose=True): try: oof = load_pkl.load(path=path + 'utils' + os.path.sep + cls._oof_filename, verbose=verbose) oof_pred_proba = oof['_oof_pred_proba'] oof_pred_model_repeats = oof['_oof_pred_model_repeats'] except FileNotFoundError: model = cls.load(path=path, reset_paths=True, verbose=verbose) model._load_oof() oof_pred_proba = model._oof_pred_proba oof_pred_model_repeats = model._oof_pred_model_repeats return cls._oof_pred_proba_func(oof_pred_proba=oof_pred_proba, oof_pred_model_repeats=oof_pred_model_repeats) def _load_oof(self): if self._oof_pred_proba is not None: pass else: oof = load_pkl.load(path=self.path + 'utils' + os.path.sep + self._oof_filename) self._oof_pred_proba = oof['_oof_pred_proba'] self._oof_pred_model_repeats = oof['_oof_pred_model_repeats'] def persist_child_models(self, reset_paths=True): for i, model_name in enumerate(self.models): if isinstance(model_name, str): child_path = self.create_contexts(self.path + model_name + os.path.sep) child_model = self._child_type.load(path=child_path, reset_paths=reset_paths, verbose=True) self.models[i] = child_model def load_model_base(self): return load_pkl.load(path=self.path + 'utils' + os.path.sep + 'model_template.pkl') def save_model_base(self, model_base): save_pkl.save(path=self.path + 'utils' + os.path.sep + 'model_template.pkl', object=model_base) def save(self, path=None, verbose=True, save_oof=True, save_children=False) -> str: if path is None: path = self.path if save_children: model_names = [] for child in self.models: child = self.load_child(child) child.set_contexts(path + child.name + os.path.sep) child.save(verbose=False) model_names.append(child.name) self.models = model_names if save_oof and self._oof_pred_proba is not None: save_pkl.save(path=path + 'utils' + os.path.sep + self._oof_filename, object={ '_oof_pred_proba': self._oof_pred_proba, '_oof_pred_model_repeats': self._oof_pred_model_repeats, }) self._oof_pred_proba = None self._oof_pred_model_repeats = None return super().save(path=path, verbose=verbose) # If `remove_fit_stack=True`, variables
<gh_stars>0 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `neural_tangents/stax.py`.""" import functools import itertools import random as prandom from typing import Tuple from absl.testing import absltest from absl.testing import parameterized from jax import default_backend from jax import jit from jax import test_util as jtu from jax.config import config from jax.example_libraries import stax as ostax import jax.numpy as np import jax.random as random import neural_tangents as nt from neural_tangents import stax from tests import test_utils import numpy as onp config.parse_flags_with_absl() config.update('jax_numpy_rank_promotion', 'raise') MODELS = [ 'fc', 'conv' ] BATCH_SIZE = 4 INPUT_SHAPE = (BATCH_SIZE, 8, 6, 2) WIDTHS = [2**10] N_SAMPLES = 100 RTOL = 0.041 ATOL = 0.1 FILTER_SHAPES = [ (2, 1), (3, 2) ] PADDINGS = [ 'SAME', 'VALID', 'CIRCULAR' ] STRIDES = [ (1, 2), (2, 1), ] ACTIVATIONS = { stax.Relu(): 'Relu', } PROJECTIONS = [ 'FLAT', 'POOL', 'ATTN', ] LAYER_NORM = [ 'C', 'HC', 'CHW', 'NC', 'NWC', 'NCHW' ] POOL_TYPES = [ 'SUM', 'AVG' ] PARAMETERIZATIONS = [ 'NTK', 'STANDARD' ] test_utils.update_test_tolerance() prandom.seed(1) def _get_inputs( key, same_inputs, shape, fn=np.cos ) -> Tuple[np.ndarray, np.ndarray]: key, split = random.split(key) x1 = fn(random.normal(key, shape)) batch_axis = shape.index(BATCH_SIZE) shape = shape[:batch_axis] + (2 * BATCH_SIZE,) + shape[batch_axis + 1:] x2 = None if same_inputs else fn(random.normal(split, shape)) * 2 return x1, x2 def _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d, pool_type, layer_norm, parameterization, use_dropout): if is_conv: # Select a random filter order. default_filter_spec = 'HW' filter_specs = [''.join(p) for p in itertools.permutations('HWIO')] filter_spec = prandom.choice(filter_specs) filter_shape = tuple(filter_shape[default_filter_spec.index(c)] for c in filter_spec if c in default_filter_spec) strides = tuple(strides[default_filter_spec.index(c)] for c in filter_spec if c in default_filter_spec) # Select the activation order. default_spec = 'NHWC' if default_backend() == 'tpu': # Keep batch dimension leading for TPU for batching to work. specs = ['N' + ''.join(p) for p in itertools.permutations('CHW')] else: specs = [''.join(p) for p in itertools.permutations('NCHW')] spec = prandom.choice(specs) input_shape = tuple(INPUT_SHAPE[default_spec.index(c)] for c in spec) else: input_shape = (INPUT_SHAPE[0], onp.prod(INPUT_SHAPE[1:])) if default_backend() == 'tpu': spec = 'NC' else: spec = prandom.choice(['NC', 'CN']) if spec.index('N') == 1: input_shape = input_shape[::-1] filter_spec = None dimension_numbers = (spec, filter_spec, spec) batch_axis, channel_axis = spec.index('N'), spec.index('C') spec_fc = ''.join(c for c in spec if c in ('N', 'C')) batch_axis_fc, channel_axis_fc = spec_fc.index('N'), spec_fc.index('C') if not is_conv: batch_axis = batch_axis_fc channel_axis = channel_axis_fc if layer_norm: layer_norm = tuple(spec.index(c) for c in layer_norm) def fc(out_dim): return stax.Dense( out_dim=out_dim, W_std=W_std, b_std=b_std, parameterization=parameterization, batch_axis=batch_axis_fc, channel_axis=channel_axis_fc ) def conv(out_chan): return stax.Conv( out_chan=out_chan, filter_shape=filter_shape, strides=strides, padding=padding, W_std=W_std, b_std=b_std, dimension_numbers=dimension_numbers, parameterization=parameterization ) affine = conv(width) if is_conv else fc(width) rate = onp.random.uniform(0.5, 0.9) dropout = stax.Dropout(rate, mode='train') if pool_type == 'AVG': pool_fn = stax.AvgPool global_pool_fn = stax.GlobalAvgPool elif pool_type == 'SUM': pool_fn = stax.SumPool global_pool_fn = stax.GlobalSumPool else: raise ValueError(pool_type) if use_pooling: pool_or_identity = pool_fn((2, 3), None, 'SAME' if padding == 'SAME' else 'CIRCULAR', batch_axis=batch_axis, channel_axis=channel_axis) else: pool_or_identity = stax.Identity() dropout_or_identity = dropout if use_dropout else stax.Identity() layer_norm_or_identity = (stax.Identity() if layer_norm is None else stax.LayerNorm(axis=layer_norm, batch_axis=batch_axis, channel_axis=channel_axis)) res_unit = stax.serial(dropout_or_identity, affine, pool_or_identity) if is_res: block = stax.serial( affine, stax.FanOut(2), stax.parallel(stax.Identity(), res_unit), stax.FanInSum(), layer_norm_or_identity, phi) else: block = stax.serial( affine, res_unit, layer_norm_or_identity, phi) if proj_into_2d == 'FLAT': proj_layer = stax.Flatten(batch_axis, batch_axis_fc) elif proj_into_2d == 'POOL': proj_layer = global_pool_fn(batch_axis, channel_axis) elif proj_into_2d.startswith('ATTN'): n_heads = int(np.sqrt(width)) n_chan_val = int(np.round(float(width) / n_heads)) proj_layer = stax.serial( stax.GlobalSelfAttention( n_chan_out=width, n_chan_key=width, n_chan_val=n_chan_val, n_heads=n_heads, linear_scaling=True, W_key_std=W_std, W_value_std=W_std, W_query_std=W_std, W_out_std=1.0, b_std=b_std, batch_axis=batch_axis, channel_axis=channel_axis), stax.Flatten(batch_axis, batch_axis_fc)) else: raise ValueError(proj_into_2d) readout = stax.serial(proj_layer, fc(1 if is_ntk else width)) device_count = -1 if spec.index('N') == 0 else 0 return stax.serial(block, readout), input_shape, device_count, channel_axis_fc def _get_net_pool(width, is_ntk, pool_type, padding, filter_shape, strides, normalize_edges): W_std, b_std = 2.**0.5, 0.5**0.5 phi = stax.Relu() parameterization = 'ntk' fc = functools.partial( stax.Dense, W_std=W_std / width if pool_type == 'SUM' else W_std, b_std=b_std, parameterization=parameterization) conv = functools.partial( stax.Conv, filter_shape=filter_shape, strides=None, padding='SAME', W_std=W_std / onp.prod(filter_shape) if pool_type == 'SUM' else W_std, b_std=b_std, parameterization=parameterization) if pool_type == 'AVG': pool_fn = functools.partial(stax.AvgPool, normalize_edges=normalize_edges) global_pool_fn = stax.GlobalAvgPool elif pool_type == 'SUM': pool_fn = stax.SumPool global_pool_fn = stax.GlobalSumPool else: raise ValueError(pool_type) pool = pool_fn(filter_shape, strides, padding) device_count = -1 return stax.serial( conv(width), phi, pool, conv(width), phi, global_pool_fn(), fc(1 if is_ntk else width) ), INPUT_SHAPE, device_count, -1 class StaxTest(test_utils.NeuralTangentsTestCase): def _skip_test(self, filter_shape, is_conv, is_res, padding, proj_into_2d, strides, use_pooling): if is_conv: test_utils.skip_test(self) if (is_res and is_conv and ((strides is not None and strides != (1, 1)) or (padding == 'VALID' and filter_shape != (1, 1)))): raise absltest.SkipTest('Different paths in a residual models need to ' 'return outputs of the same shape.') elif (filter_shape != FILTER_SHAPES[0] or padding != PADDINGS[0] or strides != STRIDES[0] or proj_into_2d != PROJECTIONS[0] or use_pooling): raise absltest.SkipTest('FC models do not have these parameters.') @parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}'.format( model, phi_name, width, 'same_inputs' if same_inputs else 'different_inputs', 'filter_shape=%s' % str(filter_shape), 'padding=%s' % padding, 'strides=%s' % str(strides), 'pool' if use_pooling else 'flatten', 'NTK' if is_ntk else 'NNGP', 'RESNET' if is_res else 'serial', proj_into_2d), 'model': model, 'width': width, 'strides': strides, 'padding': padding, 'phi': phi, 'same_inputs': same_inputs, 'filter_shape': filter_shape, 'use_pooling': use_pooling, 'is_ntk': is_ntk, 'is_res': is_res, 'proj_into_2d': proj_into_2d } for model in MODELS for width in WIDTHS for phi, phi_name in ACTIVATIONS.items() for same_inputs in [False] for padding in PADDINGS for strides in STRIDES for filter_shape in FILTER_SHAPES for use_pooling in [False, True] for is_ntk in [False, True] for is_res in [False, True] for proj_into_2d in PROJECTIONS)) def test_exact(self, model, width, strides, padding, phi, same_inputs, filter_shape, use_pooling, is_ntk, is_res, proj_into_2d): is_conv = 'conv' in model # Check for duplicate / incorrectly-shaped NN configs / wrong backend. self._skip_test(filter_shape, is_conv, is_res, padding, proj_into_2d, strides, use_pooling) pool_type = 'AVG' W_std, b_std = 2.**0.5, 0.5**0.5 layer_norm = None parameterization = 'ntk' use_dropout = False net = _get_net(W_std, b_std, filter_shape, is_conv, use_pooling, is_res, padding, phi, strides, width, is_ntk, proj_into_2d, pool_type, layer_norm, parameterization, use_dropout) self._check_agreement_with_empirical( net, same_inputs, use_dropout, is_ntk, RTOL, 1.05) # pylint: disable=g-complex-comprehension @parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': f'_model={model}' f'_width={width}' f'_same_inputs={same_inputs}' f'_filter_shape={filter_shape}' f'_proj={proj_into_2d}_' f'_is_ntk={is_ntk}_' f'_b_std={b_std}_' f'_param={parameterization}', 'model': model, 'width': width, 'same_inputs': same_inputs, 'filter_shape': filter_shape, 'proj_into_2d': proj_into_2d, 'is_ntk': is_ntk, 'b_std': b_std, 'parameterization': parameterization } for model in MODELS for width in WIDTHS for same_inputs in [False] for is_ntk in [False, True] for filter_shape in FILTER_SHAPES for proj_into_2d in PROJECTIONS[:2] for b_std in [None, 0., 0.5**0.5] for parameterization in PARAMETERIZATIONS)) def test_parameterizations( self, model, width, same_inputs, is_ntk, filter_shape, proj_into_2d, b_std, parameterization ): is_conv = 'conv' in model W_std = 2.**0.5 if parameterization == 'STANDARD': W_std /= width**0.5 if b_std is not None: b_std /= width**0.5 padding = PADDINGS[0] strides = STRIDES[0] phi = stax.Relu() use_pooling, is_res = False, False layer_norm = None pool_type = 'AVG' use_dropout = False # Check for duplicate / incorrectly-shaped NN configs / wrong backend. if is_conv: test_utils.skip_test(self) elif proj_into_2d != PROJECTIONS[0] or filter_shape != FILTER_SHAPES[0]: raise absltest.SkipTest('FC models do not have these parameters.') net = _get_net(W_std=W_std, b_std=b_std, filter_shape=filter_shape, is_conv=is_conv, use_pooling=use_pooling, is_res=is_res, padding=padding, phi=phi, strides=strides, width=width, is_ntk=is_ntk, proj_into_2d=proj_into_2d, pool_type=pool_type, layer_norm=layer_norm, parameterization=parameterization, use_dropout=use_dropout) self._check_agreement_with_empirical(net=net, same_inputs=same_inputs, use_dropout=use_dropout, is_ntk=is_ntk, rtol=0.021, atol=0.2) @parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '_{}_{}_{}_{}_{}_{}'.format( model, width, 'same_inputs' if same_inputs else 'different_inputs', 'NTK' if is_ntk else 'NNGP', proj_into_2d, 'layer_norm=%s' % str(layer_norm)), 'model': model, 'width': width, 'same_inputs': same_inputs, 'is_ntk': is_ntk, 'proj_into_2d': proj_into_2d, 'layer_norm': layer_norm } for model in MODELS for width in WIDTHS for same_inputs in [False] for is_ntk in [False, True] for proj_into_2d in PROJECTIONS[:2] for layer_norm in LAYER_NORM)) def test_layernorm(self, model, width, same_inputs, is_ntk, proj_into_2d, layer_norm): is_conv = 'conv' in model # Check for duplicate / incorrectly-shaped NN configs / wrong backend. if is_conv: test_utils.skip_test(self) elif proj_into_2d != PROJECTIONS[0] or layer_norm not in ('C', 'NC'): raise absltest.SkipTest('FC models do not have these parameters.') W_std, b_std = 2.**0.5, 0.5**0.5 filter_shape = FILTER_SHAPES[0] padding = PADDINGS[0] strides = STRIDES[0] phi = stax.Relu() use_pooling,
code was not 201') self.assertEqual(response_data['job_type'], input_job_type, 'job_type was not set properly') self.assertEqual(response_data['artifact_id'], input_artifact_id, 'artifact_id was not set properly') self.assertRegex(response_data['id'], r'[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}\Z') self.assertIsNone(response_data['ssh_containers'], 'ssh_containers not null') self.assertIsNotNone(response_data['created'], 'job creation date/time was not set properly') self.assertItemsEqual(response_data.keys(), ['created', 'job_type', 'artifact_id', 'build_env_size', 'id', 'enable_debug', 'public_key_id', 'kubernetes_job', 'kubernetes_service', 'kubernetes_configmap', 'ssh_containers', 'status', 'image_root_archive_name', 'initrd_file_name', 'kernel_file_name', 'resultant_image_id', 'kubernetes_namespace', 'kernel_parameters_file_name'], 'returned keys not the same') @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') @mock.patch("src.server.app.app.s3.generate_presigned_url") def test_post_enable_debug_true(self, s3_mock, mock_open, utils_mock, config_mock, client_mock): input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id debug_ssh_container_name = 'debug' debug_ssh_container_jail = False input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'enable_debug': True, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), } s3url = S3Url(self.recipe_data['link']['path']) expected_params = {'Bucket': s3url.bucket, 'Key': s3url.key} self.stubber.add_response('head_object', {"ETag": self.recipe_data['link']["etag"]}, expected_params) s3_mock.return_value = "http://localhost/path/to/file_abc.tgz" self.stubber.activate() response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) self.stubber.deactivate() response_data = json.loads(response.data) self.assertEqual(response.status_code, 201, 'status code was not 201') self.assertEqual(response_data['job_type'], input_job_type, 'job_type was not set properly') self.assertEqual(response_data['artifact_id'], input_artifact_id, 'artifact_id was not set properly') self.assertRegex(response_data['id'], r'[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}\Z') self.assertIsNotNone(response_data['ssh_containers'], 'ssh_containers not null') external_host_name = "{}.ims.cmn.shasta.local".format(response_data['id']) self.assertEqual(response_data['ssh_containers'][0]['connection_info']['customer_access']['host'], external_host_name, 'SSH Container host value did not match expected value') self.assertEqual(response_data['ssh_containers'][0]['connection_info']['customer_access']['port'], 22, 'SSH Container host value did not match expected value') cluster_local_host_name = \ "{r[kubernetes_service]}.{r[kubernetes_namespace]}.svc.cluster.local".format(r=response_data) self.assertEqual(response_data['ssh_containers'][0]['connection_info']['cluster.local']['host'], cluster_local_host_name, 'SSH Container host value did not match expected value') self.assertEqual(response_data['ssh_containers'][0]['connection_info']['cluster.local']['port'], 22, 'SSH Container host value did not match expected value') self.assertEqual(response_data['ssh_containers'][0]['name'], debug_ssh_container_name, 'SSH Container name value did not match') self.assertEqual(response_data['ssh_containers'][0]['jail'], debug_ssh_container_jail, 'SSH Container jail value did not match') self.assertIsNotNone(response_data['created'], 'job creation date/time was not set properly') self.assertItemsEqual(response_data.keys(), ['created', 'job_type', 'artifact_id', 'build_env_size', 'id', 'enable_debug', 'public_key_id', 'kubernetes_job', 'kubernetes_service', 'kubernetes_configmap', 'ssh_containers', 'status', 'image_root_archive_name', 'initrd_file_name', 'kernel_file_name', 'resultant_image_id', 'kubernetes_namespace', 'kernel_parameters_file_name'], 'returned keys not the same') @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') @mock.patch("src.server.app.app.s3.generate_presigned_url") def test_post_ims_job_namespace(self, s3_mock, mock_open, utils_mock, config_mock, client_mock): """ Test happy path POST """ input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id job_namespace = self.getUniqueString() input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'enable_debug': False, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), } s3url = S3Url(self.recipe_data['link']['path']) expected_params = {'Bucket': s3url.bucket, 'Key': s3url.key} self.stubber.add_response('head_object', {"ETag": self.recipe_data['link']["etag"]}, expected_params) s3_mock.return_value = "http://localhost/path/to/file_abc.tgz" with mock.patch.dict('os.environ', {'DEFAULT_IMS_JOB_NAMESPACE': job_namespace}): self.stubber.activate() response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) self.stubber.deactivate() response_data = json.loads(response.data) self.assertEqual(response.status_code, 201, 'status code was not 201') self.assertEqual(response_data['job_type'], input_job_type, 'job_type was not set properly') self.assertEqual(response_data['artifact_id'], input_artifact_id, 'artifact_id was not set properly') self.assertRegex(response_data['id'], r'[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}\Z') self.assertIsNone(response_data['ssh_containers'], 'ssh_containers not null') self.assertIsNotNone(response_data['created'], 'job creation date/time was not set properly') self.assertEqual(response_data['kubernetes_namespace'], job_namespace, "kubernetes_namespace was not set properly") self.assertItemsEqual(response_data.keys(), ['created', 'job_type', 'artifact_id', 'build_env_size', 'id', 'enable_debug', 'public_key_id', 'kubernetes_job', 'kubernetes_service', 'kubernetes_configmap', 'ssh_containers', 'status', 'image_root_archive_name', 'initrd_file_name', 'kernel_file_name', 'resultant_image_id', 'kubernetes_namespace', 'kernel_parameters_file_name'], 'returned keys not the same') def test_post_create_with_ssh_container(self, utils_mock, config_mock, client_mock): """ Test create with ssh_container """ input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), 'ssh_containers': [ {'name': 'post-build', 'jail': False} ] } response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) self.assertEqual(response.status_code, 400, 'status code was not 400') @responses.activate @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') @mock.patch("src.server.app.app.s3.generate_presigned_url") def test_post_customize_with_out_ssh_container(self, s3_mock, mock_open, utils_mock, config_mock, client_mock): """ Test happy path POST without a ssh_container """ input_job_type = "customize" input_artifact_id = self.test_image_id public_key_id = self.test_public_key_id default_ssh_container_name = "customize" default_ssh_container_jail = False input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), } manifest_s3_info = S3Url(self.image_data["link"]["path"]) manifest_expected_params = {'Bucket': manifest_s3_info.bucket, 'Key': manifest_s3_info.key} self.stubber.add_response( 'head_object', {"ETag": self.image_data["link"]["etag"]}, manifest_expected_params ) s3_manifest_json = json.dumps(self.s3_manifest_data).encode() self.stubber.add_response( 'get_object', { 'Body': StreamingBody(io.BytesIO(s3_manifest_json), len(s3_manifest_json)), 'ContentLength': len(s3_manifest_json) }, manifest_expected_params ) rootfs_manifest_info = [artifact for artifact in self.s3_manifest_data["artifacts"] if artifact["type"].startswith(self.manifest_rootfs_mime_type)] self.assertEqual(len(rootfs_manifest_info), 1) rootfs_s3_info = S3Url(rootfs_manifest_info[0]["link"]["path"]) self.stubber.add_response( 'head_object', {"ETag": rootfs_manifest_info[0]["link"]["etag"]}, {'Bucket': rootfs_s3_info.bucket, 'Key': rootfs_s3_info.key} ) s3_mock.return_value = "http://localhost/path/to/file_abc.tgz" self.stubber.activate() response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) self.stubber.deactivate() response_data = json.loads(response.data) self.assertEqual(response.status_code, 201, 'status code was not 201') self.assertEqual(response_data['job_type'], input_job_type, 'job_type was not set properly') self.assertEqual(response_data['artifact_id'], input_artifact_id, 'artifact_id was not set properly') self.assertIsNotNone(response_data['ssh_containers'], 'ssh_containers not null') self.assertEqual(response_data['ssh_containers'][0]['name'], default_ssh_container_name, 'SSH Container name value did not match') self.assertEqual(response_data['ssh_containers'][0]['jail'], default_ssh_container_jail, 'SSH Container jail value did not match') self.assertRegex(response_data['id'], r'[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}\Z') self.assertIsNotNone(response_data['created'], 'job creation date/time was not set properly') self.assertItemsEqual(response_data.keys(), ['created', 'job_type', 'artifact_id', 'build_env_size', 'id', 'enable_debug', 'public_key_id', 'kubernetes_job', 'kubernetes_service', 'kubernetes_configmap', 'ssh_containers', 'status', 'image_root_archive_name', 'initrd_file_name', 'kernel_file_name', 'resultant_image_id', 'kubernetes_namespace', 'kernel_parameters_file_name'], 'returned keys not the same') @responses.activate @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') @mock.patch("src.server.app.app.s3.generate_presigned_url") def test_post_customize_with_ssh_container(self, s3_mock, mock_open, utils_mock, config_mock, client_mock): """ Test happy path POST with one ssh_container """ input_job_type = "customize" input_artifact_id = self.test_image_id public_key_id = self.test_public_key_id ssh_container_name = "my-ssh-jail" ssh_container_jail = True input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), 'ssh_containers': [ {'name': ssh_container_name, 'jail': ssh_container_jail} ] } s3_manifest_json = json.dumps(self.s3_manifest_data).encode() raw_stream = StreamingBody( io.BytesIO(s3_manifest_json), len(s3_manifest_json) ) manifest_s3_info = S3Url(self.image_data["link"]["path"]) manifest_expected_params = {'Bucket': manifest_s3_info.bucket, 'Key': manifest_s3_info.key} self.stubber.add_response( 'head_object', {"ETag": self.image_data["link"]["etag"]}, manifest_expected_params ) s3_manifest_json = json.dumps(self.s3_manifest_data).encode() self.stubber.add_response( 'get_object', { 'Body': StreamingBody(io.BytesIO(s3_manifest_json), len(s3_manifest_json)), 'ContentLength': len(s3_manifest_json) }, manifest_expected_params ) rootfs_manifest_info = [artifact for artifact in self.s3_manifest_data["artifacts"] if artifact["type"].startswith(self.manifest_rootfs_mime_type)] self.assertEqual(len(rootfs_manifest_info), 1) rootfs_s3_info = S3Url(rootfs_manifest_info[0]["link"]["path"]) self.stubber.add_response( 'head_object', { "ETag": rootfs_manifest_info[0]["link"]["etag"], "Metadata": { "md5sum": rootfs_manifest_info[0]["md5"] } }, {'Bucket': rootfs_s3_info.bucket, 'Key': rootfs_s3_info.key} ) s3_mock.return_value = "http://localhost/path/to/file_abc.tgz" self.stubber.activate() response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) self.stubber.deactivate() response_data = json.loads(response.data) self.assertEqual(response.status_code, 201, 'status code was not 201') self.assertEqual(response_data['job_type'], input_job_type, 'job_type was not set properly') self.assertEqual(response_data['artifact_id'], input_artifact_id, 'artifact_id was not set properly') self.assertEqual(response_data['ssh_containers'][0]['name'], ssh_container_name, 'SSH Container name value did not match') self.assertEqual(response_data['ssh_containers'][0]['jail'], ssh_container_jail, 'SSH Container jail value did not match') external_host_name = "{}.ims.cmn.shasta.local".format(response_data['id']) self.assertEqual(response_data['ssh_containers'][0]['connection_info']['customer_access']['host'], external_host_name, 'SSH Container host value did not match expected value') self.assertEqual(response_data['ssh_containers'][0]['connection_info']['customer_access']['port'], 22, 'SSH Container host value did not match expected value') cluster_local_host_name = \ "{r[kubernetes_service]}.{r[kubernetes_namespace]}.svc.cluster.local".format(r=response_data) self.assertEqual(response_data['ssh_containers'][0]['connection_info']['cluster.local']['host'], cluster_local_host_name, 'SSH Container host value did not match expected value') self.assertEqual(response_data['ssh_containers'][0]['connection_info']['cluster.local']['port'], 22, 'SSH Container host value did not match expected value') self.assertRegex(response_data['id'], r'[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}\Z') self.assertIsNotNone(response_data['created'], 'job creation date/time was not set properly') self.assertItemsEqual(response_data.keys(), ['created', 'job_type', 'artifact_id', 'build_env_size', 'id', 'enable_debug', 'public_key_id', 'kubernetes_job', 'kubernetes_service', 'kubernetes_configmap', 'ssh_containers', 'status', 'image_root_archive_name', 'initrd_file_name', 'kernel_file_name', 'resultant_image_id', 'kubernetes_namespace', 'kernel_parameters_file_name'], 'returned keys not the same') def test_post_create_with_multiple_ssh_containers(self, utils_mock, config_mock, client_mock): """ Post Job Create with multiple ssh_containers requested """ input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), 'ssh_containers': [ {'name': 'pre-cfs', 'jail': False}, {'name': 'cfs', 'jail': True}, {'name': 'post-cfs', 'jail': False}, ] } response = self.app.post('/jobs', content_type='application/json', data=json.dumps(input_data)) response_data = json.loads(response.data) self.assertEqual(response.status_code, 400, 'status code was not 400') def test_post_400_no_input(self, utils_mock, config_mock, client_mock): """ Test a POST request with no input provided by the client """ response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps({})) check_error_responses(self, response, 400, ['status', 'title', 'detail']) def test_post_422_missing_inputs(self, utils_mock, config_mock, client_mock): """ Test a POST request with missing data provided by the client """ input_data = {'job_type': self.getUniqueString()} response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) input_data = {'artifact_id': str(uuid.uuid4())} response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) def test_post_422_improper_type_inputs(self, utils_mock, config_mock, client_mock): """ Test a POST request with invalid data provided by the client (bad types) """ input_data = {'job_type': self.getUniqueInteger(), 'artifact_id': str(uuid.uuid4())} response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) input_data = {'job_type': self.getUniqueString(), 'artifact_id': self.getUniqueInteger()} response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) def test_post_422_unknown_field(self, utils_mock, config_mock, client_mock): """ Test a POST request with a field that is not valid for the request """ input_job_type = self.getUniqueString() input_artifact_id = str(uuid.uuid4()) input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'invalid_field': str(uuid.uuid4()) # invalid } response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') def test_post_422_missing_image_root_archive_name(self, mock_open, utils_mock, config_mock, client_mock): """ Test case where image_root_archive_name is missing """ input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'enable_debug': False, # 'image_root_archive_name': self.getUniqueString(), 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), } response = self.app.post(self.test_uri, content_type='application/json', data=json.dumps(input_data)) check_error_responses(self, response, 422, ['status', 'title', 'detail', 'errors']) self.assertIn("image_root_archive_name", response.json["errors"], "Expected image_root_archive_name to be listed in error detail") @mock.patch("src.server.v2.resources.jobs.open", new_callable=mock.mock_open, read_data='{"metadata":{"name":"foo"}}') def test_post_422_image_root_archive_name_is_blank(self, mock_open, utils_mock, config_mock, client_mock): """ Test case where image_root_archive_name is blank """ input_job_type = "create" input_artifact_id = self.test_recipe_id public_key_id = self.test_public_key_id input_data = { 'job_type': input_job_type, 'artifact_id': input_artifact_id, 'public_key_id': public_key_id, 'enable_debug': False, 'image_root_archive_name': "", 'kernel_file_name': self.getUniqueString(), 'initrd_file_name': self.getUniqueString(), } response = self.app.post(self.test_uri, content_type='application/json',
"""Mutation. Usage: mutation play [--verbose] [--exclude=<globs>] [--only-deadcode-detection] [--include=<globs>] [--sampling=<s>] [--randomly-seed=<n>] [--max-workers=<n>] [<file-or-directory> ...] [-- TEST-COMMAND ...] mutation replay [--verbose] [--max-workers=<n>] mutation list mutation show MUTATION mutation apply MUTATION mutation (-h | --help) mutation --version Options: --verbose Show more information. -h --help Show this screen. --version Show version. """ import asyncio import fnmatch import functools import itertools import os import random import re import shlex import sys import time from ast import Constant from concurrent import futures from contextlib import contextmanager from copy import deepcopy from datetime import timedelta from difflib import unified_diff from uuid import UUID import lexode import parso import pygments import pygments.formatters import pygments.lexers import zstandard as zstd from aiostream import pipe, stream from astunparse import unparse from coverage import Coverage from docopt import docopt from humanize import precisedelta from loguru import logger as log from lsm import LSM from pathlib3x import Path from termcolor import colored from tqdm import tqdm from ulid import ULID __version__ = (0, 4, 4) MINUTE = 60 # seconds HOUR = 60 * MINUTE DAY = 24 * HOUR MONTH = 31 * DAY def humanize(seconds): if seconds < 1: precision = "seconds" elif seconds // DAY != 0: precision = "days" elif seconds // DAY != 0: precision = "hours" elif seconds // HOUR != 0: precision = "minutes" else: precision = "seconds" return precisedelta(timedelta(seconds=seconds), minimum_unit=precision) PRONOTION = "https://youtu.be/ihZEaj9ml4w?list=PLOSNaPJYYhrtliZqyEWDWL0oqeH0hOHnj" log.remove() if os.environ.get("DEBUG", False): log.add( sys.stdout, format="<level>{level}</level> {message}", level="TRACE", colorize=True, enqueue=True, ) else: log.add( sys.stdout, format="<level>{level}</level> {message}", level="INFO", colorize=True, enqueue=True, ) # The function patch was taken somewhere over the rainbow... _hdr_pat = re.compile(r"^@@ -(\d+),?(\d+)? \+(\d+),?(\d+)? @@$") def patch(diff, source): """Apply unified diff patch to string s to recover newer string. If revert is True, treat s as the newer string, recover older string. """ s = source.splitlines(True) p = diff.splitlines(True) t = "" i = sl = 0 (midx, sign) = (1, "+") while i < len(p) and p[i].startswith(("---", "+++")): i += 1 # skip header lines while i < len(p): m = _hdr_pat.match(p[i]) if not m: raise Exception("Cannot process diff") i += 1 l = int(m.group(midx)) - 1 + (m.group(midx + 1) == "0") t += "".join(s[sl:l]) sl = l while i < len(p) and p[i][0] != "@": if i + 1 < len(p) and p[i + 1][0] == "\\": line = p[i][:-1] i += 2 else: line = p[i] i += 1 if len(line) > 0: if line[0] == sign or line[0] == " ": t += line[1:] sl += line[0] != sign t += "\n" + "".join(s[sl:]) return t def glob2predicate(patterns): def regex_join(regexes): """Combine a list of regexes into one that matches any of them.""" return "|".join("(?:%s)" % r for r in regexes) regexes = (fnmatch.translate(pattern) for pattern in patterns) regex = re.compile(regex_join(regexes)) def predicate(path): return regex.match(path) is not None return predicate def node_iter(node, level=1): yield node for child in node.children: if not getattr(child, "children", False): yield child continue yield from node_iter(child, level + 1) def node_copy_tree(node, index): root = node.get_root_node() root = deepcopy(root) iterator = itertools.dropwhile( lambda x: x[0] != index, zip(itertools.count(0), node_iter(root)) ) index, node = next(iterator) return root, node @contextmanager def timeit(): start = time.perf_counter() yield lambda: time.perf_counter() - start class Mutation(type): ALL = set() DEADCODE = set() deadcode_detection = False def __init__(cls, *args, **kwargs): super().__init__(*args, **kwargs) obj = cls() type(cls).ALL.add(obj) if cls.deadcode_detection: type(cls).DEADCODE.add(obj) class StatementDrop(metaclass=Mutation): deadcode_detection = True NEWLINE = "a = 42\n" def predicate(self, node): return "stmt" in node.type and node.type != "expr_stmt" def mutate(self, node, index): root, new = node_copy_tree(node, index) index = new.parent.children.index(new) passi = parso.parse("pass").children[0] passi.prefix = new.get_first_leaf().prefix new.parent.children[index] = passi newline = parso.parse(type(self).NEWLINE).children[0].children[1] new.parent.children.insert(index + 1, newline) yield root, new class DefinitionDrop(metaclass=Mutation): deadcode_detection = True def predicate(self, node): # There is also node.type = 'lambdadef' but lambadef are # always part of a assignation statement. So, that case is # handled in StatementDrop. return node.type in ("classdef", "funcdef") def mutate(self, node, index): root, new = node_copy_tree(node, index) new.parent.children.remove(new) yield root, new def chunks(iterable, n): """Yield successive n-sized chunks from iterable.""" it = iter(iterable) while chunk := tuple(itertools.islice(it, n)): yield chunk class MutateNumber(metaclass=Mutation): COUNT = 5 def predicate(self, node): return node.type == "number" def mutate(self, node, index): value = eval(node.value) if isinstance(value, int): def randomize(x): return random.randint(0, x) else: def randomize(x): return random.random() * x for size in range(8, 32): if value < 2 ** size: break count = 0 while count != self.COUNT: count += 1 root, new = node_copy_tree(node, index) new.value = str(randomize(2 ** size)) if new.value == node.value: continue yield root, new class MutateString(metaclass=Mutation): def predicate(self, node): # str or bytes. return node.type == "string" def mutate(self, node, index): root, new = node_copy_tree(node, index) value = eval(new.value) if isinstance(value, bytes): value = b"coffeebad" + value else: value = "mutated string " + value value = Constant(value=value, kind="") value = unparse(value).strip() new.value = value yield root, new class MutateKeyword(metaclass=Mutation): KEYWORDS = set(["continue", "break", "pass"]) SINGLETON = set(["True", "False", "None"]) # Support xor operator ^ BOOLEAN = set(["and", "or"]) TARGETS = KEYWORDS | SINGLETON | BOOLEAN def predicate(self, node): return node.type == "keyword" and node.value in type(self).TARGETS def mutate(self, node, index): value = node.value for targets in [self.KEYWORDS, self.SINGLETON, self.BOOLEAN]: if value in targets: break else: raise NotImplementedError for target in targets: if target == value: continue root, new = node_copy_tree(node, index) new.value = target yield root, new class Comparison(metaclass=Mutation): def predicate(self, node): return node == "comparison" def mutate(self, node, index): root, new = node_copy_tree(node, index) not_test = parso.parse("not ({})".format(new.get_code())) index = new.parent.children.index(new) new.parent.children[index] = not_test return root, new class MutateOperator(metaclass=Mutation): BINARY = ["+", "-", "%", "|", "&", "//", "/", "*", "^", "**", "@"] BITWISE = ["<<", ">>"] COMPARISON = ["<", "<=", "==", "!=", ">=", ">"] ASSIGNEMENT = ["="] + [x + "=" for x in BINARY + BITWISE] # TODO support OPERATORS_CONTAINS = ["in", "not in"] OPERATORS = [ BINARY, BITWISE, BITWISE, COMPARISON, ASSIGNEMENT, ] def predicate(self, node): return node.type == "operator" def mutate(self, node, index): for operators in type(self).OPERATORS: if node.value not in operators: continue for new_operator in operators: if node.value == new_operator: continue root, new = node_copy_tree(node, index) new.value = new_operator yield root, new def diff(source, target, filename=""): lines = unified_diff( source.split("\n"), target.split("\n"), filename, filename, lineterm="" ) out = "\n".join(lines) return out def mutate(node, index, mutations): for mutation in mutations: if not mutation.predicate(node): continue yield from mutation.mutate(node, index) def interesting(new_node, coverage): if getattr(new_node, "line", False): return new_node.line in coverage return new_node.get_first_leaf().line in coverage def deltas_compute(source, path, coverage, mutations): ast = parso.parse(source) ignored = 0 for (index, node) in zip(itertools.count(0), node_iter(ast)): for root, new_node in mutate(node, index, mutations): if not interesting(new_node, coverage): ignored += 1 continue target = root.get_code() delta = diff(source, target, path) yield delta if ignored > 1: msg = "Ignored {} mutations from file at {}" msg += " because there is no associated coverage." log.trace(msg, ignored, path) async def pool_for_each_par_map(loop, pool, f, p, iterator): zx = stream.iterate(iterator) zx = zx | pipe.map(lambda x: loop.run_in_executor(pool, p, x)) async with zx.stream() as streamer: limit = pool._max_workers unfinished = [] while True: tasks = [] for i in range(limit): try: task = await streamer.__anext__() except StopAsyncIteration: limit = 0 else: tasks.append(task) tasks = tasks + list(unfinished) if not tasks: break finished, unfinished = await asyncio.wait( tasks, return_when=asyncio.FIRST_COMPLETED ) for finish in finished: out = finish.result() f(out) limit = pool._max_workers - len(unfinished) def mutation_create(item): path, source, coverage, mutation_predicate = item if not coverage: msg = "Ignoring file {} because there is no associated coverage." log.trace(msg, path) return [] log.trace("Mutating file: {}...", path) mutations = [m for m in Mutation.ALL if mutation_predicate(m)] deltas = deltas_compute(source, path, coverage, mutations) # return the compressed deltas to save some time in the # mainthread. out = [(path, zstd.compress(x.encode("utf8"))) for x in deltas] log.trace("There is {} mutations for the file `{}`", len(out), path) return out def install_module_loader(uid): db = LSM(".mutation.okvslite") mutation_show(uid.hex) path, diff = lexode.unpack(db[lexode.pack([1, uid])]) diff = zstd.decompress(diff).decode("utf8") with open(path) as f: source = f.read() patched = patch(diff, source) import imp components = path[:-3].split("/") while components: for pythonpath in sys.path: filepath = os.path.join(pythonpath, "/".join(components)) filepath += ".py" ok = os.path.exists(filepath) if ok: module_path = ".".join(components) break else: components.pop() continue break if module_path is None: raise Exception("sys.path oops!") patched_module = imp.new_module(module_path) try: exec(patched,
# Licensed under the Apache License Version 2.0: http://www.apache.org/licenses/LICENSE-2.0.txt """Celery tasks relating to Twitter.""" __author__ = '<NAME>' from datetime import datetime from celery import chain, group from celery.task.control import revoke from celery.utils.log import get_task_logger from itertools import groupby from app import app from db_settings import get_neo_driver, cache from solr_tools import tweets2Solr from twitter_settings import * from twitter_tools.neo import connections2Neo, tweetDump2Neo, users2Neo, setUserDefunct, multiUserTweetDump2Neo from twitter_tools.rated_twitter import RatedTwitter from twitter_tools.streaming_twitter import StreamingTwitter from twitter_tools.tools import renderTwitterUser, decomposeTweets from crawl.crawl_cypher import nextNearest, whoNext, start_user_crawl, update_crawl logger = get_task_logger(__name__) @app.task(name='twitter_tasks.twitterCall', bind=True) def twitterCall(self, method_name, credentials=False, **kwargs): """Attempt a given Twitter API call, retry if rate-limited. Returns the result of the call. Positional arguments: methodName -- the Twitter API method to call args -- a dicionary of keyword arguments """ api = RatedTwitter(credentials=credentials) limit = api.can_we_do_that(method_name) if limit: logger.info('*** TWITTER RATE-LIMITED: %s ***' % method_name) raise twitterCall.retry(exc=Exception('Twitter rate-limited', method_name), countdown=limit) else: okay, result = api.method_call(method_name, **kwargs) if okay: logger.info('*** TWITTER CALL: %s suceeded***' % method_name) return result else: assert False @app.task(name='twitter_tasks.pushRenderedTwits2Neo', bind=True) def pushRenderedTwits2Neo(self, twits): db = get_neo_driver() users2Neo(db, twits) db.close() @app.task(name='twitter_tasks.pushTwitterUsers', bind=True) def pushTwitterUsers(self, twits): """Store Twitter users returned by a Twitter API call in Neo4J. Positional arguments: twits -- a list of Twitter users as returned by Twython """ logger.info('***Push twitter users to neo ***') rightNow = datetime.now().isoformat() for twit in twits: twit['last_scraped'] = rightNow logger.info('***Push twitter user: ' + twit['screen_name'] + ' ***') renderedTwits = [renderTwitterUser(twit) for twit in twits] pushRenderedTwits2Neo.delay(renderedTwits) @app.task(name='twitter_tasks.getTwitterUsers', bind=True) def getTwitterUsers(self, users, credentials=False): """Look-up a set of Twitter users by screen_name and store them in Neo4J. Positional arguments: users -- a list of screen_names """ userList = ','.join(users) logger.info('***Getting twitter users: ' + userList + ' ***') chain(twitterCall.s('lookup_user', credentials, **{'screen_name': userList}), pushTwitterUsers.s())() @app.task(name='twitter_tasks.start_stream', bind=True) def start_stream(self, track=None, follow=False, credentials=False): logger.info('***Starting twitter filter stream***') # TODO one of filter_terms or follow is required, return error if neither present # start the stream stream_task = stream_filter.delay(credentials=credentials, track=track) cache.set("stream_id_" + self.request.id, stream_task.id.encode('utf-8')) @app.task(name='twitter_tasks.stop_stream', bind=True) def stop_stream(self, task_id): # stop the stream running in the stream started by the given task id logger.info('***Stopping twitter filter streamer ***') stream_id = cache.get("stream_id_" + task_id).decode('utf-8') revoke(stream_id, terminate=True) # clean up the cache @app.task(name='twitter_tasks.stream_filter', bind=True) def stream_filter(self, credentials=False, retry_count=None, track=None): logger.info('***Creating twitter filter streamer in task id: ' + self.request.id + ' ***') streamer = StreamingTwitter(credentials=credentials, retry_count=retry_count, stream_id=self.request.id) streamer.statuses.filter(track=track) @app.task(name='twitter_tasks.push_stream_results', bind=True) def push_stream_results(self, statuses): logger.info('***Push twitter filter stream results***') sorted_statuses = sorted(statuses, key=lambda status: status['user']['screen_name']) decomposed_tweets = decomposeTweets(statuses) users = [list(group)[0]['user'] for key, group in groupby(sorted_statuses, lambda status: status['user']['screen_name'])] pushTwitterUsers.delay(users) pushRenderedMultiUserTweets2Neo.delay(decomposed_tweets) @app.task(name='twitter_tasks.search', bind=True) def search(self, query_terms, result_type='mixed', page_size=100, lang='en', tweet_id=0, maxTweets=False, count=0, credentials=False): logger.info('***Starting TWITTER search ***') api = RatedTwitter(credentials=credentials) limit = api.search_wait() if limit: logger.info('*** TWITTER RATE-LIMITED: search starts with: %s:%d ***' % (query_terms[0], str(count))) raise search.retry(countdown=limit) else: query = {'q': query_terms, 'result_type': result_type, 'count': page_size, 'lang': lang, } if tweet_id: query['max_id'] = tweet_id okay, result = api.search(**query) if okay: logger.info('*** TWITTER search starts with: %s:%s ***' % (query_terms[0], str(tweet_id))) if result: push_search_results.delay(result) newCount = count + len(result['statuses']) if maxTweets: if newCount > maxTweets: # No need for the task to call itself again. return try: # Parse the data returned to get max_id to be passed in consequent call. next_results_url_params = result['search_metadata']['next_results'] next_max_id = next_results_url_params.split('max_id=')[1].split('&')[0] # Not done yet, the task calls itself with an updated count and tweetId. search.delay(query_terms, maxTweets=maxTweets, count=newCount, tweet_id=next_max_id, result_type=result_type, page_size=page_size, lang=lang, credentials=credentials) except: #do we have anything we want in the except clause if there is not a next batch of tweets? return else: if result == 'limited': raise search.retry(countdown=api.search_wait()) @app.task(name='twitter_tasks.push_search_results', bind=True) def push_search_results(self, search_results, cacheKey=False): statuses = search_results['statuses'] sorted_statuses = sorted(statuses, key=lambda status: status['user']['screen_name']) decomposed_tweets = decomposeTweets(statuses) users = [list(group)[0]['user'] for key, group in groupby(sorted_statuses, lambda status: status['user']['screen_name'])] pushTwitterUsers.delay(users) pushRenderedMultiUserTweets2Neo.delay(decomposed_tweets) @app.task(name='twitter_tasks.pushRenderedMultiUserTweets2Neo', bind=True) def pushRenderedMultiUserTweets2Neo(self, all_tweets_dump): db = get_neo_driver() multiUserTweetDump2Neo(db, all_tweets_dump) db.close() @app.task(name='twitter_tasks.pushRenderedTweets2Neo', bind=True) def pushRenderedTweets2Neo(self, user, tweetDump): db = get_neo_driver() tweetDump2Neo(db, user, tweetDump) db.close() @app.task(name='twitter_tasks.pushRenderedTweets2Solr', bind=True) def pushRenderedTweets2Solr(self, tweets): tweets2Solr(tweets) @app.task(name='twitter_tasks.pushTweets', bind=True) def pushTweets(self, tweets, user, cacheKey=False): """ Dump a set of tweets from a given user's timeline to Neo4J/Solr. Positional arguments: tweets -- a list of tweets as returned by Twython. user -- screen_name of the user Keyword arguments: cacheKey -- a Redis key that identifies an on-going task to grab a user's timeline """ logger.info('Executing pushTweets task id {0.id}, task parent id {0.parent_id}, root id {0.root_id}'.format(self.request)) tweetDump = decomposeTweets(tweets) # Extract mentions, URLs, replies hashtags etc... pushRenderedTweets2Neo.delay(user, tweetDump) for label in ['tweet', 'retweet', 'quotetweet']: pushRenderedTweets2Solr.delay([t[0] for t in tweetDump[label]]) if cacheKey: # These are the last Tweets, tell the scraper we're done. cache.set(cacheKey, 'done') logger.info('*** %s: DONE WITH TWEETS ***' % user) @app.task(name='twitter_tasks.getTweets', bind=True) def getTweets(self, user, maxTweets=3000, count=0, tweetId=0, cacheKey=False, credentials=False): logger.info('Executing getTweets task id {0.id}, args: {0.args!r} kwargs: {0.kwargs!r}'.format(self.request)) logger.info('task parent id {0.parent_id}, root id {0.root_id}'.format(self.request)) """Get tweets from the timeline of the given user, push them to Neo4J. Positional arguments: user -- The screen_name of the user Keyword arguments: maxTweets -- The maximum number of tweets to retrieve cacheKey -- a Redis key that identifies an on-going task to grab a user's timeline count -- The number of tweets already retrieved, set when the task calls itself tweetId -- The maximum tweet ID to retrieve, set when the task calls itself """ api = RatedTwitter(credentials=credentials) limit = api.get_user_timeline_wait() if limit: logger.info('*** TWITTER RATE-LIMITED: statuses.user_timeline: %s:%d ***' % (user, str(count))) raise getTweets.retry(countdown=limit) else: args = {'screen_name': user, 'exclude_replies': False, 'include_rts': True, 'trim_user': False, 'count': 200} if tweetId: args['max_id'] = tweetId okay, result = api.get_user_timeline(**args) if okay: logger.info('*** TWITTER USER_TIMELINE: %s:%s ***' % (user, str(tweetId))) if result: newCount = count + len(result) if maxTweets: if newCount > maxTweets: # No need for the task to call itself again. pushTweets.delay(result, user, cacheKey=cacheKey) # Give pushTweets the cache-key to end the job. return else: pushTweets.delay(result, user) newTweetId = min([t['id'] for t in result]) - 1 # Not done yet, the task calls itself with an updated count and tweetId. getTweets.delay(user, maxTweets=maxTweets, count=newCount, tweetId=newTweetId, cacheKey=cacheKey, credentials=credentials) else: pushTweets.delay([], user, cacheKey=cacheKey) # Nothing more found, so tell pushTweets the job is done. else: if result == '404': db = get_neo_driver() setUserDefunct(db, user) db.close() cache.set('scrape_tweets_' + self.request.root_id, 'done') if result == 'limited': raise getTweets.retry(countdown=api.get_user_timeline_wait()) @app.task(name='twitter_tasks.pushRenderedConnections2Neo', bind=True) def pushRenderedConnections2Neo(self, user, renderedTwits, friends=True): db = get_neo_driver() connections2Neo(db, user,renderedTwits,friends=friends) db.close() @app.task(name='twitter_tasks.pushTwitterConnections', bind=True) def pushTwitterConnections(self, twits, user, friends=True, cacheKey=False): """Push the Twitter connections of a given user to Neo4J. Positional arguments: twits -- a list of Twitter users as returned by Twython user -- The screen_name of the user Keyword arguments: friends -- "twits" are the user's friends if True, (default) else they're followers cacheKey -- a Redis key that identifies an on-going task to grab a user's friends or followers """ if friends: job = ' FRIENDS' else: job = ' FOLLOWERS' if twits: rendered_twits = [renderTwitterUser(twit) for twit in twits] pushRenderedConnections2Neo.delay(user, rendered_twits, friends=friends) if cacheKey: # These are the last connections, tell the scraper we're done. cache.set(cacheKey, 'done') logger.info('*** %s: DONE WITH %s ***' % (user, job)) @app.task(name='twitter_tasks.getTwitterConnections', bind=True) def getTwitterConnections(self, user, friends=True, cursor=-1, credentials=False, cacheKey=False): """Get the connections of the given user, push them to Neo4J. Positional arguments: user -- The screen_name of the user Keyword arguments: friends -- "twits" are the user's friends if True, (default) else they're followers cacheKey -- a Redis key that identifies an on-going task to grab a user's friends or followers cursor -- Id of the next block of connections to retrieve, set when the task calls itself """ api = RatedTwitter(credentials=credentials) if friends: method = api.get_friends_list limit = api.get_friends_list_wait() method_name = 'get_friends_list' else: method = api.get_followers_list limit = api.get_followers_list_wait() method_name = 'get_followers_list' if limit: logger.info('*** TWITTER RATE-LIMITED: %s:%s ***' % (method_name, str(cursor))) raise getTwitterConnections.retry(countdown=limit) else: okay, result = method(screen_name=user, cursor=cursor, count=200) # We can get a maximum of 200 connections at once. if okay: logger.info('*** TWITTER CURSOR: %s:%s:%s ***' % (method_name, user, str(cursor))) twits = result['users'] next_cursor = result.get('next_cursor', False) if next_cursor: # Unless the next cursor is 0, we're not done yet. getTwitterConnections.delay(user, friends=friends, cursor=next_cursor, cacheKey=cacheKey, credentials=credentials) pushTwitterConnections.delay(twits, user,
after the Remote Passive Rendezvous completes. If the assisting device does not observe traffic across the tunnel from both sides within a period of time equal to or great than this timeout, it will close the tunnel. """ args = shlex.split(line) optParser = OptionParser(usage=optparse.SUPPRESS_USAGE, option_class=ExtendedOption) optParser.add_option("-p", "--pairing-code", action="store", dest="pairingCode", type="string") optParser.add_option("-t", "--access-token", action="store", dest="accessToken", type="base64") optParser.add_option("-d", "--use-dummy-access-token", action="store_true", dest="useDummyAccessToken") optParser.add_option("-j", "--joiner-address", action="store", dest="joinerAddr", type="string") optParser.add_option("-r", "--rendezvous-timeout", action="store", dest="rendezvousTimeout", type="int") optParser.add_option("-i", "--inactivity-timeout", action="store", dest="inactivityTimeout", type="int") try: (options, remainingArgs) = optParser.parse_args(args) except SystemExit: return if (len(remainingArgs) > 1): print "Unexpected argument: " + remainingArgs[1] return if (len(remainingArgs) == 1): options.pairingCode = remainingArgs[0] if (options.useDummyAccessToken and not options.accessToken): options.accessToken = base64.standard_b64decode(dummyAccessToken) if (options.pairingCode and options.accessToken): print "Cannot specify both pairing code and access token" return try: self.devMgr.RemotePassiveRendezvous(rendezvousDeviceAddr=options.joinerAddr, pairingCode=options.pairingCode, accessToken=options.accessToken, rendezvousTimeout=options.rendezvousTimeout, inactivityTimeout=options.inactivityTimeout) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return print "Successfully connected to remote device %X" % (self.devMgr.DeviceId()) def do_reconnect(self, line): """ reconnect Reconnect to the device using the previously supplied connect arguments. """ args = shlex.split(line) if (len(args) != 0): print "Usage:" self.do_help('reconnect') return try: self.devMgr.ReconnectDevice() except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return def do_close(self, line): """ close Close the connection to the device. """ args = shlex.split(line) if (len(args) != 0): print "Usage:" self.do_help('close') return try: self.devMgr.Close() self.devMgr.CloseEndpoints() except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) def do_enableconnectionmonitor(self, line): """ enable-connection-monitor [ <interval> <timeout> ] Instruct the device to enable Weave connection monitoring. <interval> -- Interval at which to send EchoRequest messages (in ms). Defaults to 500. Max is 65535 ms. <timeout> -- Amount of time after which the lack of a response to an EchoRequest will cause the device to terminate the connection (in ms). Defaults to 2000. Max is 65535 ms. """ args = shlex.split(line) if (len(args) > 2): print "Unexpected argument: " + args[2] return if (len(args) == 0): interval = 500 timeout = 2000 elif (len(args) == 2): interval = int(args[0]) if (interval < 0 or interval > 65535): print "Invalid value specified for interval: " + args[0] return timeout = int(args[1]) if (timeout < 0 or timeout > 65535): print "Invalid value specified for interval: " + args[1] return else: print "Usage:" self.do_help('rendezvous') return try: self.devMgr.EnableConnectionMonitor(interval, timeout) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return print "Connection monitor enabled" def do_disableconnectionmonitor(self, line): """ disable-connection-monitor Instruct the device to disable Weave connection monitoring. """ args = shlex.split(line) if (len(args) > 0): print "Unexpected argument: " + args[2] return try: self.devMgr.DisableConnectionMonitor() except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return print "Connection monitor disabled" def do_scannetworks(self, line): """ scan-networks Scan for remote WiFi networks. """ args = shlex.split(line) networkType = WeaveDeviceMgr.NetworkType_WiFi if (len(args) > 1): print "Unexpected argument: " + args[1] return if (len(args) == 1): try: networkType = WeaveDeviceMgr.ParseNetworkType(args[0]) except Exception, ex: print "Invalid network type: " + args[0] return try: scanResult = self.devMgr.ScanNetworks(networkType) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return print "ScanNetworks complete, %d network(s) found" % (len(scanResult)) i = 1 for net in scanResult: print " Network %d" % (i) net.Print(" ") i = i + 1 def do_addnetwork(self, line): self.do_addwifinetwork(line) def do_addwifinetwork(self, line): """ add-wifi-network <ssid> <security-type> [ <key> ] Provision a new WiFi network. <security-type>: none wep wpa wpa2 wpa2-mixed-personal wpa-enterprise wpa2-enterprise wpa2-mixed-enterprise """ args = shlex.split(line) if (len(args) == 0): print "Usage:" self.do_help('add-wifi-network') return if (len(args) < 2): print "Please specify WiFI security type" return securityType = WeaveDeviceMgr.ParseSecurityType(args[1]) if (securityType == None): print "Unrecognized security type: " + args[1] return networkInfo = WeaveDeviceMgr.NetworkInfo( networkType = WeaveDeviceMgr.NetworkType_WiFi, wifiSSID = args[0], wifiMode = WeaveDeviceMgr.WiFiMode_Managed, wifiRole = WeaveDeviceMgr.WiFiRole_Station, wifiSecurityType = securityType) if (securityType != WeaveDeviceMgr.WiFiSecurityType_None): if (len(args) < 3): print "Must supply WiFi key" return if (len(args) > 3): print "Unexpected argument: " + args[3] return networkInfo.WiFiKey = args[2] elif (len(args) > 2): print "Unexpected argument: " + args[2] return try: addResult = self.devMgr.AddNetwork(networkInfo) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return self.lastNetworkId = addResult print "Add wifi network complete (network id = " + str(addResult) + ")" def do_addthreadnetwork(self, line): """ add-thread-network <name> <extended-pan-id> [ <key> ] [ <field>=<value>... ] Provision a new Thread network. <name>: string name of network <extended-pan-id>: hex string (8 bytes) <key>: hex string (any length) <field>: thread-key or key thread-pan-id or pan-id thread-channel or channel ... """ args = shlex.split(line) if (len(args) == 0): print "Usage:" self.do_help('add-thread-network') return if (len(args) < 2): print "Please specify the Network Name and Extended PAN Identifier" return networkInfo = WeaveDeviceMgr.NetworkInfo() networkInfo.NetworkType = WeaveDeviceMgr.NetworkType_Thread networkInfo.ThreadNetworkName = args[0] try: networkInfo.ThreadExtendedPANId = bytearray(binascii.unhexlify(args[1])) if len(networkInfo.ThreadExtendedPANId) != 8: print "Thread extended PAN id must be 8 bytes in hex" return except ValueError: print "Invalid value specified for thread extended PAN id: " + args[1] return kvstart = 3 if (len(args[2].split('=', 1)) == 1) else 2 if (kvstart > 2): try: networkInfo.ThreadNetworkKey = bytearray(binascii.unhexlify(args[2])) except ValueError: print "Invalid value for Thread Network Key" return for addedVal in args[kvstart:]: pair = addedVal.split('=', 1) if (len(pair) < 2): print "Invalid argument: must be key=value format <" + addedVal + ">" return name = pair[0] val = pair[1] if name == 'key': name = 'threadnetworkkey' elif name == 'channel': name = 'threadchannel' elif name == 'extended-pan-id': name = 'threadextendedpanid' try: if (name == 'threadchannel' or name == 'thread-channel'): val = int(val, 10) elif (name == 'threadnetworkkey' or name == 'thread-network-key' or name == 'thread-key'): val = bytearray(binascii.unhexlify(val)) elif (name == 'threadextendedpanid' or name == 'thread-extended-pan-id'): val = bytearray(binascii.unhexlify(val)) elif (name == 'threadpanid' or name == 'thread-pan-id' or name == 'pan-id'): val = int(val, 16) except ValueError: print "Invalid value specified for <" + name + "> field" return try: networkInfo.SetField(name, val) except Exception, ex: print str(ex) return if networkInfo.ThreadPANId != None: panId=networkInfo.ThreadPANId if panId < 1 or panId > 0xffff: print "Thread PAN Id must be non-zero and 2 bytes in hex" return try: addResult = self.devMgr.AddNetwork(networkInfo) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return self.lastNetworkId = addResult print "Add thread network complete (network id = " + str(addResult) + ")" def do_createthreadnetwork(self, line): """ create-thread-network [ <options> ] Send a request to device to create a new Thread network and wait for a reply. Options: --name <name> Thread network name (string). --key <key> Thread network key (hex string of any length). --panid <panid> Thread network PAN id (16-bit hex int). --channel <channel> Thread network channel number (int). Valid supported range is [11 - 26]. All above parameters are optional and if not specified the value will be created by device. """ args = shlex.split(line) optParser = OptionParser(usage=optparse.SUPPRESS_USAGE, option_class=ExtendedOption) optParser.add_option("-n", "--name", action="store", dest="threadNetworkName", type="string") optParser.add_option("-k", "--key", action="store", dest="threadNetworkKey", type="string") optParser.add_option("-p", "--panid", action="store", dest="threadPANId", type="hexint") optParser.add_option("-c", "--channel", action="store", dest="threadChannel", type="int") try: (options, remainingArgs) = optParser.parse_args(args) except SystemExit: return if (len(remainingArgs) > 0): print "Unexpected argument: " + remainingArgs[0] return networkInfo = WeaveDeviceMgr.NetworkInfo() networkInfo.NetworkType = WeaveDeviceMgr.NetworkType_Thread if (options.threadNetworkName): networkInfo.ThreadNetworkName = options.threadNetworkName if (options.threadNetworkKey): networkInfo.ThreadNetworkKey = bytearray(binascii.unhexlify(options.threadNetworkKey)) if (options.threadPANId): networkInfo.ThreadPANId = options.threadPANId if (networkInfo.ThreadPANId > 0xffff): print "Thread PAN Id must be 16-bit hex value." return if (options.threadChannel): networkInfo.ThreadChannel = options.threadChannel if (networkInfo.ThreadChannel < 11 or networkInfo.ThreadChannel > 26): print "Thread Channel value must be in a range [11 - 26]." return try: addResult = self.devMgr.AddNetwork(networkInfo) except WeaveDeviceMgr.DeviceManagerException, ex: print str(ex) return self.lastNetworkId = addResult print "Create Thread network complete (network id = " + str(addResult) + ")" def do_updatenetwork(self, line): """ update-network <network-id> [ <field>=<value>... ] Update an existing provisioned network. <field>: wifi-ssid or ssid wifi-mode wifi-role wifi-security or security wifi-key or key thread-network-name or thread-name thread-extended-pan-id or pan-id network-key or thread-key """ args = shlex.split(line) print args if (len(args) == 0): print "Usage:" self.do_help('update-network') return if (len(args) < 1): print "Please specify the network id" return networkId = self.parseNetworkId(args[0]) if (networkId == None): return self.lastNetworkId = networkId networkInfo = WeaveDeviceMgr.NetworkInfo(networkId=networkId) for updatedVal in args[1:]: nameVal = updatedVal.split('=', 1) if (len(nameVal) < 2): print "Invalid argument: updatedVal" return try: networkInfo.SetField(nameVal[0], nameVal[1]) except Exception, ex: print str(ex) return try: self.devMgr.UpdateNetwork(networkInfo)
if settings['setKey']['status']: if xmobz.startswith(settings['setKey']['key']): cmd = xmobz.replace(settings['setKey']['key'],'') else: cmd = 'Undefined command' else: cmd = text.lower() return cmd def removeCmd(text, key=''): if key == '': setKey = '' if not settings['setKey']['status'] else settings['setKey']['key'] else: setKey = key text_ = text[len(setKey):] sep = text_.split(' ') return text_[len(sep[0] + ' '):] # 𐀀 HΞLLTΞRHΞΛD ᴄᴏʀᴘ. _______________________________________________________ async def mobanzu(op): try: if settings["restartPoint"] is not None: a001.sendMessage(settings["restartPoint"],"[ Bots Operated Again... ]") settings["restartPoint"] = None if op.type == 0: # print ("[ 0 ] END OF OPERATION") return if op.type == 11 or op.type == 122: if op.type == 11: print ("[ 11 ] NOTIFIED UPDATE GROUP") else: print ("[ 122 ] NOTIFIED UPDATE CHAT") if settings["autoPurge"] == True: if op.param2 in status["blacklist"]: try: fck1 = threading.Thread(target=lockqr, args=(op.param1,)).start() fck2 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param1 in status["promax"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_1 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: d23X_2 = threading.Thread(target=lockqr, args=(op.param1,)).start() d23X_3 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param2 in status["blacklist"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: try: d23X_4 = threading.Thread(target=lockqr, args=(op.param1,)).start() d23X_5 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 in status["blacklist"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: try: d23X_6 = threading.Thread(target=lockqr, args=(op.param1,)).start() d23X_7 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 == '4': if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_8 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: groupqr = a001.getGroup(op.param1) if groupqr.preventedJoinByTicket == False: d23X_9 = threading.Thread(target=lockqr, args=(op.param1,)).start() d23X_10 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: groupqr = a002.getGroup(op.param1) if groupqr.preventedJoinByTicket == False: d23X_11 = threading.Thread(target=lockqr, args=(op.param1,)).start() d23X_12 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 == '1': if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_13 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: groupn = a001.getGroup(op.param1).name if groupn not in settings["changeGroupName"][op.param1]: progn = a001.getGroup(op.param1) progn.name = settings["changeGroupName"][op.param1] a001.updateGroup(progn) d23X_14 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() else: progn = a001.getGroup(op.param1).name settings["changeGroupName"][op.param1] = progn with open('settings.json', 'w') as fp: json.dump(settings, fp, sort_keys=True, indent=4) groupp = a001.getGroup(op.param1).pictureStatus if groupp not in settings["changeGroupPicture"][op.param1]: progp = a001.getGroup(op.param1) progp.pictureStatus = settings["changeGroupPicture"] a001.updateGroupPicture(progp) d23X_15 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() else: progp = a001.getGroup(op.param1).pictureStatus settings["changeGroupPicture"][op.param1] = progp with open('settings.json', 'w') as fp: json.dump(settings, fp, sort_keys=True, indent=4) except: try: groupn = a002.getGroup(op.param1).name if groupn not in settings["changeGroupName"][op.param1]: progn = a002.getGroup(op.param1) progn.name = settings["changeGroupName"][op.param1] a002.updateGroup(progn) d23X_16 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() else: progn = a002.getGroup(op.param1).name settings["changeGroupName"][op.param1] = progn with open('settings.json', 'w') as fp: json.dump(settings, fp, sort_keys=True, indent=4) groupp = a002.getGroup(op.param1).pictureStatus if groupp not in settings["changeGroupPicture"][op.param1]: progp = a002.getGroup(op.param1) progp.pictureStatus = settings["changeGroupPicture"] a002.updateGroupPicture(progp) d23X_17 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() else: progp = a002.getGroup(op.param1).pictureStatus settings["changeGroupPicture"][op.param1] = progp with open('settings.json', 'w') as fp: json.dump(settings, fp, sort_keys=True, indent=4) except: pass if op.type == 13 or op.type == 124: if op.type == 13: print ("[ 13 ] NOTIFIED INVITE INTO GROUP") else: print ("[ 124 ] NOTIFIED INVITE INTO CHAT") if settings["autoPurge"] == True: if op.param2 in status["blacklist"]: try: fck3 = threading.Thread(target=cancel, args=(op.param1, op.param3)).start() fck4 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param1 in status["promax"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_18 = threading.Thread(target=blacklist, args=(op.param2,)).start() d23X_19 = threading.Thread(target=blacklist, args=(op.param3,)).start() try: d23X_20 = threading.Thread(target=cancel, args=(op.param1, op.param3)).start() d23X_21 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv1 = op.param3.replace('\x1e',',') inv2 = inv1.split(',') for _mid in inv2: d23X_22 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_23 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv3 = op.param3.replace('\x1e',',') inv4 = inv3.split(',') for _mid in inv4: d23X_24 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_25 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param2 in status["blacklist"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: try: d23X_26 = threading.Thread(target=cancel, args=(op.param1, op.param3)).start() d23X_27 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv1 = op.param3.replace('\x1e',',') inv2 = inv1.split(',') for _mid in inv2: d23X_28 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_29 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv3 = op.param3.replace('\x1e',',') inv4 = inv3.split(',') for _mid in inv4: d23X_30 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_31 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 in status["blacklist"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: try: d23X_32 = threading.Thread(target=cancel, args=(op.param1, op.param3)).start() d23X_33 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv1 = op.param3.replace('\x1e',',') inv2 = inv1.split(',') for _mid in inv2: d23X_34 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_35 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: try: inv3 = op.param3.replace('\x1e',',') inv4 = inv3.split(',') for _mid in inv4: d23X_36 = threading.Thread(target=cancel, args=(op.param1, _mid)).start() d23X_37 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if M001D23 in op.param3: if settings["autoJoin"] == True: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: try: d23X_38 = threading.Thread(target=join, args=(op.param1,)).start() except: pass else: try: d23X_39 = threading.Thread(target=reject, args=(op.param1,)).start() except: pass if M002D23 in op.param3: if settings["autoJoin"] == True: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: try: d23X_40 = threading.Thread(target=join, args=(op.param1,)).start() except: pass else: try: d23X_41 = threading.Thread(target=reject, args=(op.param1,)).start() except: pass if op.type == 17 or op.type == 130: if op.type == 17: print ("[ 17 ] NOTIFIED ACCEPT GROUP INVITATION") else: print ("[ 130 ] NOTIFIED ACCEPT CHAT INVITATION") if settings["autoPurge"] == True: if op.param2 in status["blacklist"]: try: fck5 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param1 in status["promax"]: if op.param2 in status["blacklist"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: try: d23X_42 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.type == 19 or op.type == 133: if op.type == 19: print ("[ 19 ] NOTIFIED KICKOUT FROM GROUP") else: print ("[ 133 ] NOTIFIED DELETE OTHER FROM CHAT") if settings["autoPurge"] == True: if op.param2 in status["blacklist"]: try: fck6 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param1 in status["promax"]: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_43 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: d23X_44 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() d23X_45 = threading.Thread(target=invite, args=(op.param1, op.param3)).start() except: pass if op.param3 in M001D23: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_46 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: d23X_47 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() d23X_48 = threading.Thread(target=backup, args=(op.param1, op.param3)).start() d23X_49 = threading.Thread(target=antijs, args=(op.param1, op.param2)).start() d23X_50 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 in M002D23: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_51 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: d23X_52 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() d23X_53 = threading.Thread(target=backup, args=(op.param1, op.param3)).start() d23X_54 = threading.Thread(target=antijs, args=(op.param1, op.param2)).start() d23X_55 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.param3 in M003D23: if op.param2 in creator or op.param2 in owner or op.param2 in admin or op.param2 in staff or op.param2 in Bots or op.param2 in mybots: pass else: d23X_56 = threading.Thread(target=blacklist, args=(op.param2,)).start() try: d23X_57 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() d23X_58 = threading.Thread(target=invite, args=(op.param1, op.param3)).start() d23X_59 = threading.Thread(target=kick, args=(op.param1, op.param2)).start() except: pass if op.type == 32 or op.type == 126: if op.type
<filename>gs_manager/servers/generic/steam.py<gh_stars>1-10 import os import re import time from queue import Empty, Queue from threading import Thread from typing import List, Optional, Type, Dict from subprocess import CalledProcessError # nosec import click import click_spinner import requests from steamfiles import acf from gs_manager.command import Config, ServerCommandClass from gs_manager.command.validators import GenericConfigType, ListFlatten from gs_manager.decorators import multi_instance, require, single_instance from gs_manager.servers.base import ( STATUS_FAILED, STATUS_PARTIAL_FAIL, STATUS_SUCCESS, BaseServer, BaseServerConfig, ) from gs_manager.utils import get_server_path from valve.source import NoResponseError from valve.source.a2s import ServerQuerier __all__ = ["SteamServer", "SteamServerConfig"] STEAM_PUBLISHED_FILES_API = "https://api.steampowered.com/ISteamRemoteStorage/GetPublishedFileDetails/v1" # noqa def _enqueue_output(out, queue): for line in iter(out.readline, b""): queue.put(line) out.close() class SteamServerConfig(BaseServerConfig): steamcmd_path: str = "steamcmd" steam_query_ip: str = "127.0.0.1" steam_query_port: Optional[int] = None workshop_id: int = None workshop_items: List[str] = [] steam_username: str = None steam_password: str = None steam_requires_login: bool = False app_id: int = None _validators: Dict[str, List[GenericConfigType]] = { **BaseServerConfig._validators, **{ "workshop_items": [ListFlatten], }, } @property def global_options(self): global_options = super().global_options.copy() all_options = [ { "param_decls": ("--steamcmd-path",), "type": click.Path(), "help": "Path to steamcmd executable", }, { "param_decls": ("--app-id",), "type": int, "help": "app ID for Steam game to update from", }, { "param_decls": ("--steam-query-port",), "type": int, "help": "Port to query to check if server is accessible", }, { "param_decls": ("--steam-query-ip",), "type": int, "help": "IP to query to check if server is accessible", }, { "param_decls": ("--steam-username",), "type": str, "help": "Steam username to use instead of anonymous", }, { "param_decls": ("--steam-password",), "type": str, "help": "Steam password to use instead of anonymous", }, ] global_options["all"] += all_options return global_options class SteamServer(BaseServer): name: str = "steam" config_class: Optional[Type[Config]] = SteamServerConfig _config: SteamServerConfig _servers: Dict[str, ServerQuerier] = {} @property def config(self) -> SteamServerConfig: return super().config @property def server(self) -> Optional[ServerQuerier]: if self.is_query_enabled(): if self._servers.get(self.server_name) is None: self._servers[self.server_name] = ServerQuerier( ( self.config.steam_query_ip, int(self.config.steam_query_port), ), ) return self._servers[self.server_name] return None def is_accessible(self) -> bool: if self.is_query_enabled(): try: self.server.ping() except NoResponseError: return False return True def is_query_enabled(self) -> bool: return self.config.steam_query_port is not None def _parse_line(self, bar, line): step_name = line.group("step_name") current = int(line.group("current")) total = int(line.group("total")) self.logger.debug( "processed: {}: {} / {}".format(step_name, current, total) ) if bar is None and current < total: bar = click.progressbar( length=total, show_eta=False, show_percent=True, label=step_name, ) if bar is not None: bar.update(current) def _wait_until_validated( self, app_id, process, detailed_status=False, force=False ): update_verb = "updating" if force: update_verb = "valdiating" if detailed_status: # this does not work as expected because of a steamcmd bug # https://github.com/ValveSoftware/Source-1-Games/issues/1684 # https://github.com/ValveSoftware/Source-1-Games/issues/1929 buffer = Queue() thread = Thread( target=_enqueue_output, args=(process.stdout, buffer), daemon=True, ) thread.start() bar = None line_re = re.compile( r"Update state \(0x\d+\) (?P<step_name>\w+), progress: " r"\d+\.\d+ \((?P<current>\d+) \/ (?P<total>\d+)\)" ) self.logger.debug("start processing output...") while True: try: line = buffer.get_nowait().decode("utf-8").strip() except Empty: time.sleep(0.1) else: self.logger.debug("line: {}".format(line)) self._parse_line(bar, line_re.match(line)) if process.poll() is not None and buffer.empty(): break else: self.logger.info( f"{update_verb} {app_id}...", nl=False, ) with click_spinner.spinner(): while process.poll() is None: time.sleep(1) def _check_steam_for_update(self, app_id: str, branch: str): manifest_file = get_server_path( ["steamapps", f"appmanifest_{app_id}.acf"] ) if not os.path.isfile(manifest_file): self.logger.debug("No local manifet") return True manifest = None with open(manifest_file, "r") as f: manifest = acf.load(f) stdout = self.run_command( ( f"{self.config.steamcmd_path} +app_info_update 1 " f"+app_info_print {app_id} +quit" ), redirect_output=True, ) index = stdout.find(f'"{app_id}"') app_info = acf.loads(stdout[index:]) try: current_buildid = app_info[app_id]["depots"]["branches"][branch][ "buildid" ] except KeyError: self.logger.debug("Failed to parse remote manifest") return True self.logger.debug(f"current: {manifest['AppState']['buildid']}") self.logger.debug(f"latest: {current_buildid}") return manifest["AppState"]["buildid"] != current_buildid def _get_published_file(self, file_id): s = requests.Session() adapter = requests.adapters.HTTPAdapter(max_retries=5) s.mount("http://", adapter) r = s.post( STEAM_PUBLISHED_FILES_API, {"itemcount": 1, "publishedfileids[0]": file_id}, ) r.raise_for_status() return r.json() def _stop_servers(self, was_running, reason: Optional[str] = None): current_instance = self.config.instance_name multi_instance = self.config.multi_instance if reason is None: reason = "Updates found" if self._command_exists("say_command"): self.logger.info("notifying users...") self.set_instance(None, False) self.invoke( self.say, command_string=f"{reason}. Server restarting in 5 minutes", do_print=False, parallel=True, current_instances=f"@each:{','.join(was_running)}", ) self._wait(300 - self.config.pre_stop) if self._command_exists("save_command"): self.logger.info("saving servers...") self.set_instance(None, False) self.invoke( self.command, command_string=self.config.save_command, do_print=False, parallel=True, current_instances=f"@each:{','.join(was_running)}", ) self.set_instance(None, False) self.invoke( self.stop, force=False, reason="New updates found.", verb="restarting", parallel=True, current_instances=f"@each:{','.join(was_running)}", ) self.set_instance(current_instance, multi_instance) with open(get_server_path(".start_servers"), "w") as f: if isinstance(was_running, bool): f.write("default") else: f.write(",".join(was_running)) def _start_servers(self, restart, was_running): if not restart: return if not was_running: was_running = self._was_running_from_disk() if not was_running: return current_instance = self.config.instance_name multi_instance = self.config.multi_instance self.set_instance(None, False) if len(was_running) == 1 and was_running[0] == "default": self.invoke(self.start, no_verify=False, foreground=False) else: self.invoke( self.start, no_verify=False, foreground=False, parallel=True, current_instances=f"@each:{','.join(was_running)}", ) self.set_instance(current_instance, multi_instance) def _was_running_from_disk(self): was_running = False start_servers = get_server_path(".start_servers") if os.path.exists(start_servers): with open(start_servers, "r") as f: was_running = f.read().strip().split(",") os.remove(start_servers) return was_running def _steam_login(self) -> str: if self.config.steam_username and self.config.steam_password: return ( f"+login {self.config.steam_username} " f"{self.config.steam_password}" ) elif self.config.steam_requires_login: raise click.BadParameter( ( "this server requires a valid Steam login. Provide " "a --steam-username and --steam-password" ), self.context, ) return "+login anonymous" def str_mods(self, mods): mods = [str(mod) for mod in mods] return mods @multi_instance @click.command(cls=ServerCommandClass) @click.pass_obj def status(self, *args, **kwargs): """ checks if Steam server is running or not """ if not self.is_running(): self._find_pid(False) if self.is_running(): try: if self.is_query_enabled(): server_info = self.server.info() self.logger.success(f"{self.server_name} is running") self.logger.info( f"server name: {server_info['server_name']}" ) self.logger.info(f"map: {server_info['map']}") self.logger.info(f"game: {server_info['game']}") self.logger.info( f"players: {server_info['player_count']}/" f"{server_info['max_players']} " f"({server_info['bot_count']} bots)" ) self.logger.info( f"server type: {server_info['server_type']}" ) self.logger.info( "password protected: " f"{server_info['password_protected']}" ) self.logger.info(f"VAC: {server_info['vac_enabled']}") self.logger.info(f"version: {server_info['version']}") else: self.logger.success(f"{self.server_name} is running") return STATUS_SUCCESS except NoResponseError: self.logger.error( f"{self.server_name} is running but not accesible" ) return STATUS_PARTIAL_FAIL self.logger.warning(f"{self.server_name} is not running") return STATUS_FAILED @require("app_id") @require("steamcmd_path") @single_instance @click.option( "--allow-run", is_flag=True, help="Allow running instances", ) @click.option( "-f", "--force", is_flag=True, help="Force a full validate of all mod files", ) @click.option( "-s", "--stop", is_flag=True, help="Do a shutdown if instances are running", ) @click.option( "-r", "--restart", is_flag=True, help="Do a restart if instances are running", ) @click.command(cls=ServerCommandClass) @click.pass_obj def install( self, allow_run: bool, force: bool, stop: bool, restart: bool, app_id: Optional[int] = None, *args, **kwargs, ) -> int: """ installs/validates/updates the gameserver """ app_id = app_id or self.config.app_id if not force: self.logger.info(f"checking for update for {app_id}...") needs_update = self._check_steam_for_update( str(self.config.app_id), "public" ) if not needs_update: self.logger.success( f"{self.config.app_id} is already on latest version" ) return STATUS_SUCCESS was_running = False if not allow_run: was_running = self.is_running(check_all=True) if was_running: if not (restart or stop): self.logger.warning( f"at least once instance of {app_id} " "is still running" ) return STATUS_PARTIAL_FAIL self._stop_servers( was_running, reason="Updates found for game" ) process = self.run_command( ( f"{self.config.steamcmd_path} {self._steam_login()} " f"+force_install_dir {self.config.server_path} +app_update " f"{app_id} validate +quit" ), redirect_output=True, return_process=True, ) self._wait_until_validated(app_id, process, force=force) if process.returncode == 0: self.logger.success("\nvalidated {}".format(app_id)) self._start_servers(restart, was_running) return STATUS_SUCCESS else: self.logger.error( "\nfailed to validate {}".format(self.server_name) ) return STATUS_FAILED @require("app_id") @require("workshop_id") @single_instance @click.command(cls=ServerCommandClass) @click.option( "-w", "--workshop-id", type=int, help="Workshop ID to use for downloading workshop items from", ) @click.option( "-i", "--workshop-items", type=int, multiple=True, help="List of comma seperated IDs for workshop items to download", ) @click.option( "--allow-run", is_flag=True, help="Allow running instances", ) @click.option( "-f", "--force", is_flag=True, help="Force a full validate of all mod files", ) @click.option( "-s", "--stop", is_flag=True, help="Do a shutdown if instances are running", ) @click.option( "-r", "--restart", is_flag=True, help="Do a restart if instances are running", ) @click.pass_obj def workshop_download( self, allow_run: bool, force: bool, stop: bool, restart: bool, *args, **kwargs, ) -> int: """ downloads Steam workshop items """ was_running = False if not force: needs_update = self._check_steam_for_update( str(self.config.workshop_id), "public" ) if not needs_update: self.logger.success( f"{self.config.workshop_id} is already on latest version" ) self._start_servers(restart, was_running) return STATUS_SUCCESS if not allow_run: was_running = self.is_running(check_all=True) if was_running: if not (restart or stop): self.logger.warning( f"at least once instance of {self.config.app_id} " "is still running" ) return STATUS_PARTIAL_FAIL self._stop_servers( was_running, reason="Updates found for workshop app" ) status = self.invoke( self.install, app_id=self.config.workshop_id, allow_run=True, force=force, ) if not status == STATUS_SUCCESS: return status if len(self.config.workshop_items) == 0: self.logger.warning("\nno workshop items selected for install") return STATUS_PARTIAL_FAIL mods_to_update = [] manifest_file = get_server_path( [ "steamapps", "workshop", f"appworkshop_{self.config.workshop_id}.acf", ], ) if not force and os.path.isfile(manifest_file): manifest = None with open(manifest_file, "r") as f: manifest = acf.load(f) self.logger.info("checking for updates for workshop items...") with click.progressbar(self.config.workshop_items) as bar: for workshop_item in bar: workshop_item = str(workshop_item) if ( workshop_item not in manifest["AppWorkshop"][ "WorkshopItemsInstalled" ] ): mods_to_update.append(workshop_item) continue last_update_time = int( manifest["AppWorkshop"]["WorkshopItemsInstalled"][ workshop_item ]["timeupdated"] ) try: latest_metadata = self._get_published_file( workshop_item ) except requests.HTTPError: self.logger.error( "\ncould not query Steam for updates" ) return STATUS_FAILED newest_update_time = int( latest_metadata["response"]["publishedfiledetails"][0][ "time_updated"
<gh_stars>1-10 from __future__ import print_function from __future__ import unicode_literals from future.builtins import str #coding=utf8 import sys sys.path.insert(0, '..') from par import SimpleVisitor from par.md import MarkdownGrammar, MarkdownHtmlVisitor template="""<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <link rel="stylesheet" type="text/css" href="bootstrap.min.css"/> <link rel="stylesheet" type="text/css" href="example.css"/> <title>%(title)s</title> </head> <body> <div class="container"> %(body)s </div> </body> </html> """ tag_class = { 'table':'', } text = u""" Markdown: Syntax ================ * [Overview](#overview) * [Philosophy](#philosophy) * [Inline HTML](#html) * [Automatic Escaping for Special Characters](#autoescape) * [Block Elements](#block) * [Paragraphs and Line Breaks](#p) * [Headers](#header) * [Blockquotes](#blockquote) * [Lists](#list) * [Code Blocks](#precode) * [Horizontal Rules](#hr) * [Span Elements](#span) * [Links](#link) * [Emphasis](#em) * [Code](#code) * [Images](#img) * [Miscellaneous](#misc) * [Backslash Escapes](#backslash) * [Automatic Links](#autolink) **Note:** This document is itself written using Markdown; you can [see the source for it by adding '.text' to the URL][src]. [src]: /projects/markdown/syntax.text * * * <h2 id="overview">Overview</h2> <h3 id="philosophy">Philosophy</h3> Markdown is intended to be as easy-to-read and easy-to-write as is feasible. Readability, however, is emphasized above all else. A Markdown-formatted document should be publishable as-is, as plain text, without looking like it's been marked up with tags or formatting instructions. While Markdown's syntax has been influenced by several existing text-to-HTML filters -- including [Setext] [1], [atx] [2], [Textile] [3], [reStructuredText] [4], [Grutatext] [5], and [EtText] [6] -- the single biggest source of inspiration for Markdown's syntax is the format of plain text email. [1]: http://docutils.sourceforge.net/mirror/setext.html [2]: http://www.aaronsw.com/2002/atx/ [3]: http://textism.com/tools/textile/ [4]: http://docutils.sourceforge.net/rst.html [5]: http://www.triptico.com/software/grutatxt.html [6]: http://ettext.taint.org/doc/ To this end, Markdown's syntax is comprised entirely of punctuation characters, which punctuation characters have been carefully chosen so as to look like what they mean. E.g., asterisks around a word actually look like \*emphasis\*. Markdown lists look like, well, lists. Even blockquotes look like quoted passages of text, assuming you've ever used email. <h3 id="html">Inline HTML</h3> Markdown's syntax is intended for one purpose: to be used as a format for *writing* for the web. Markdown is not a replacement for HTML, or even close to it. Its syntax is very small, corresponding only to a very small subset of HTML tags. The idea is *not* to create a syntax that makes it easier to insert HTML tags. In my opinion, HTML tags are already easy to insert. The idea for Markdown is to make it easy to read, write, and edit prose. HTML is a *publishing* format; Markdown is a *writing* format. Thus, Markdown's formatting syntax only addresses issues that can be conveyed in plain text. For any markup that is not covered by Markdown's syntax, you simply use HTML itself. There's no need to preface it or delimit it to indicate that you're switching from Markdown to HTML; you just use the tags. The only restrictions are that block-level HTML elements -- e.g. `<div>`, `<table>`, `<pre>`, `<p>`, etc. -- must be separated from surrounding content by blank lines, and the start and end tags of the block should not be indented with tabs or spaces. Markdown is smart enough not to add extra (unwanted) `<p>` tags around HTML block-level tags. For example, to add an HTML table to a Markdown article: This is a regular paragraph. <table> <tr> <td>Foo</td> </tr> </table> This is another regular paragraph. Note that Markdown formatting syntax is not processed within block-level HTML tags. E.g., you can't use Markdown-style `*emphasis*` inside an HTML block. Span-level HTML tags -- e.g. `<span>`, `<cite>`, or `<del>` -- can be used anywhere in a Markdown paragraph, list item, or header. If you want, you can even use HTML tags instead of Markdown formatting; e.g. if you'd prefer to use HTML `<a>` or `<img>` tags instead of Markdown's link or image syntax, go right ahead. Unlike block-level HTML tags, Markdown syntax *is* processed within span-level tags. <h3 id="autoescape">Automatic Escaping for Special Characters</h3> In HTML, there are two characters that demand special treatment: `<` and `&`. Left angle brackets are used to start tags; ampersands are used to denote HTML entities. If you want to use them as literal characters, you must escape them as entities, e.g. `&lt;`, and `&amp;`. Ampersands in particular are bedeviling for web writers. If you want to write about 'AT&T', you need to write '`AT&amp;T`'. You even need to escape ampersands within URLs. Thus, if you want to link to: http://images.google.com/images?num=30&q=larry+bird you need to encode the URL as: http://images.google.com/images?num=30&amp;q=larry+bird in your anchor tag `href` attribute. Needless to say, this is easy to forget, and is probably the single most common source of HTML validation errors in otherwise well-marked-up web sites. Markdown allows you to use these characters naturally, taking care of all the necessary escaping for you. If you use an ampersand as part of an HTML entity, it remains unchanged; otherwise it will be translated into `&amp;`. So, if you want to include a copyright symbol in your article, you can write: &copy; and Markdown will leave it alone. But if you write: AT&T Markdown will translate it to: AT&amp;T Similarly, because Markdown supports [inline HTML](#html), if you use angle brackets as delimiters for HTML tags, Markdown will treat them as such. But if you write: 4 < 5 Markdown will translate it to: 4 &lt; 5 However, inside Markdown code spans and blocks, angle brackets and ampersands are *always* encoded automatically. This makes it easy to use Markdown to write about HTML code. (As opposed to raw HTML, which is a terrible format for writing about HTML syntax, because every single `<` and `&` in your example code needs to be escaped.) * * * <h2 id="block">Block Elements</h2> <h3 id="p">Paragraphs and Line Breaks</h3> A paragraph is simply one or more consecutive lines of text, separated by one or more blank lines. (A blank line is any line that looks like a blank line -- a line containing nothing but spaces or tabs is considered blank.) Normal paragraphs should not be indented with spaces or tabs. The implication of the "one or more consecutive lines of text" rule is that Markdown supports "hard-wrapped" text paragraphs. This differs significantly from most other text-to-HTML formatters (including Movable Type's "Convert Line Breaks" option) which translate every line break character in a paragraph into a `<br />` tag. When you *do* want to insert a `<br />` break tag using Markdown, you end a line with two or more spaces, then type return. Yes, this takes a tad more effort to create a `<br />`, but a simplistic "every line break is a `<br />`" rule wouldn't work for Markdown. Markdown's email-style [blockquoting][bq] and multi-paragraph [list items][l] work best -- and look better -- when you format them with hard breaks. [bq]: #blockquote [l]: #list <h3 id="header">Headers</h3> Markdown supports two styles of headers, [Setext] [1] and [atx] [2]. Setext-style headers are "underlined" using equal signs (for first-level headers) and dashes (for second-level headers). For example: This is an H1 ============= This is an H2 ------------- Any number of underlining `=`'s or `-`'s will work. Atx-style headers use 1-6 hash characters at the start of the line, corresponding to header levels 1-6. For example: # This is an H1 ## This is an H2 ###### This is an H6 Optionally, you may "close" atx-style headers. This is purely cosmetic -- you can use this if you think it looks better. The closing hashes don't even need to match the number of hashes used to open the header. (The number of opening hashes determines the header level.) : # This is an H1 # ## This is an H2 ## ### This is an H3 ###### <h3 id="blockquote">Blockquotes</h3> Markdown uses email-style `>` characters for blockquoting. If you're familiar with quoting passages of text in an email message, then you know how to create a blockquote in Markdown. It looks best if you hard wrap the text and put a `>` before every line: > This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet, > consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus. > Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus. > > Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse > id sem consectetuer libero luctus adipiscing. Markdown allows you to be lazy and only put the `>` before the first line of a hard-wrapped paragraph: > This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus. > Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse id sem consectetuer libero luctus adipiscing. Blockquotes can be nested (i.e. a blockquote-in-a-blockquote) by adding additional levels of `>`:
<reponame>ojhall94/halletal2019<gh_stars>1-10 # !/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import seaborn as sns import matplotlib sns.set_palette('colorblind') matplotlib.rc('xtick', labelsize=15) matplotlib.rc('ytick', labelsize=15) matplotlib.rc('axes',labelsize=15) import pandas as pd import pystan import corner import pickle import glob import argparse parser = argparse.ArgumentParser(description='Run our PyStan model on some data') parser.add_argument('type', type=str, choices=['astero', 'gaia'], help='Choice of PyStan model.') parser.add_argument('iters', type=int, help='Number of MCMC iterations in PyStan.') parser.add_argument('corrections', type=str, choices=['None', 'RC'], help='Choice of corrections to the seismic scaling relations.') parser.add_argument('band', type=str, choices=['K','J','H','GAIA'], help='Choice of photometric passband.') parser.add_argument('tempdiff', type=float, help='Perturbation to the temperature values in K') # parser.add_argument('bclabel', type=str, choices=['nn','lt','nt'], help='Temp arg: nn: no prop; lt prop logg and teff; nt prop t only.') parser.add_argument('-t', '--testing', action='store_const', const=True, default=False, help='Turn on to output results to a test_build folder') parser.add_argument('-u','--update', action='store_const', const=True, default=False, help='Turn on to update the PyStan model you choose to run') parser.add_argument('-a','--apokasc', action='store_const', const=True, default=False, help='Turn on to run on the APOKASC subsample') parser.add_argument('-af', '--apofull', action='store_const', const=True, default=False, help='Turn on to propagate full APOKASC data') parser.add_argument('-v', '--visual', action='store_const', const=True, default=False, help='Turn on to include cornerplots') args = parser.parse_args() import os import sys sys.path.append(os.path.expanduser('~')+'/PhD/Hacks_and_Mocks/asfgrid/') import asfgrid from omnitool.literature_values import Av_coeffs, hawkvals from omnitool import scalings from omnitool.literature_values import Rsol # __outdir__ = os.path.expanduser('~')+'/Projects/Oli/Output/' # __datdir__ = os.path.expanduser('~')+'/Projects/Oli/Data/' __outdir__ = os.path.expanduser('~')+'/PhD/Gaia_Project/Output/' __datdir__ = os.path.expanduser('~')+'/PhD/Gaia_Project/data/KepxDR2/' __iter__ = args.iters def create_astrostan(overwrite=True): astrostan = ''' functions { real bailerjones_lpdf(real r, real L){ return log((1/(2*L^3)) * (r*r) * exp(-r/L)); } real precalc_multinormal_lpdf(vector oo, vector oo_true, real logdetc, matrix invc, int N, real Nfloat){ vector[N] r; r = oo - oo_true; return -0.5 * ((r' * invc * r) + logdetc + Nfloat * log(2*pi())); } } data { int<lower = 0> N; real<lower= 0> Nfloat; vector[N] m; vector<lower=0>[N] m_err; vector[N] oo; vector<lower=0>[N] RlEbv; matrix[N, N] invc; real logdetc; real mu_init; real mu_spread; real sig_init; real sig_spread; } parameters { //Hyperparameters real mu; real<lower=0.> sigma; real<lower=1.> sigo; real<lower=0.5,upper=1.> Q; real<lower=.1, upper=4000.> L; real oo_zp; //Latent parameters vector[N] M_infd_std; vector[N] Ai; vector<lower = 1.>[N] r_infd; } transformed parameters{ //Inferred and transformed parameters vector[N] M_infd; //Operations for (n in 1:N){ M_infd[n] = mu + sigma * M_infd_std[n]; //Rescale the M fit } } model { //Define calculable properties vector[N] m_true; vector[N] oo_true; //Hyperparameters [p(theta_rc, L)] mu ~ normal(mu_init, mu_spread); // Prior from seismo sigma ~ normal(sig_init, sig_spread); Q ~ normal(1., .25); sigo ~ normal(3.0, 1.0); L ~ uniform(0.1, 4000.); // Prior on the length scale oo_zp ~ normal(0.0, 500.); // Prior on the offset (in mu as) //Latent parameters [p(alpha_i | theta_rc, L)] Ai ~ normal(RlEbv, 0.05); for (n in 1:N){ r_infd[n] ~ bailerjones(L); target += log_mix(Q, normal_lpdf(M_infd_std[n] | 0., 1.), normal_lpdf(M_infd_std[n] | 0., sigo)); } //Calculable properties for (n in 1:N){ m_true[n] = M_infd[n] + 5*log10(r_infd[n]) - 5 + Ai[n]; oo_true[n] = (1000./r_infd[n]) + (oo_zp/1000.); } //Observables [p(D | theta_rc, L, alpha)] oo ~ precalc_multinormal(oo_true, logdetc, invc, N, Nfloat); m ~ normal(m_true, m_err); //Measurement uncertainty on magnitude } ''' model_path = 'astrostan.pkl' if overwrite: print('Updating Stan model') sm = pystan.StanModel(model_code = astrostan, model_name='astrostan') with open(model_path, 'wb') as f: pickle.dump(sm, f) if not os.path.isfile(model_path): print('Saving Stan Model') sm = pystan.StanModel(model_code = astrostan, model_name='astrostan') with open(model_path, 'wb') as f: pickle.dump(sm, f) def create_asterostan(overwrite=True): asterostan = ''' data { int<lower = 0> N; vector[N] Mobs; vector[N] Munc; real muH; } parameters { //Hyperparameters real mu; real <lower=0.> sigma; real <lower=0.5,upper=1.> Q; real <lower=1.> sigo; //Latent Parameters vector[N] Mtrue_std; } transformed parameters{ vector[N] Mtrue; for (n in 1:N){ Mtrue[n] = mu + sigma * Mtrue_std[n]; } } model { mu ~ normal(muH, 1.0); //p(theta) sigma ~ normal(0.0, 1.0); //'' sigo ~ normal(3.0, 2.0); //'' Q ~ normal(1., 0.1); //'' Mobs ~ normal(Mtrue, Munc); //p(D | theta, alpha) //p(alpha | theta) for (n in 1:N) target += log_mix(Q, normal_lpdf(Mtrue_std[n] | 0., 1.), normal_lpdf(Mtrue_std[n] | 0., sigo)); } ''' model_path = 'asterostan.pkl' if overwrite: print('Updating Stan model') sm = pystan.StanModel(model_code = asterostan, model_name='astrostan') pkl_file = open(model_path, 'wb') pickle.dump(sm, pkl_file) pkl_file.close() if not os.path.isfile(model_path): print('Saving Stan Model') sm = pystan.StanModel(model_code = asterostan, model_name='astrostan') pkl_file = open(model_path, 'wb') pickle.dump(sm, pkl_file) pkl_file.close() def update_stan(model='gaia'): if model == 'gaia': create_astrostan(overwrite=True) if model == 'astero': create_asterostan(overwrite=True) if model == 'both': create_astrostan(overwrite=True) create_asterostan(overwrite=True) class run_stan: def __init__(self, _dat, _init=0., _majorlabel='', _minorlabel='', _stantype='astero'): '''Core PyStan class. Input __init__: _dat (dict): Dictionary of the data in pystan format. _init (dict): Dictionary of initial guesses in pystan format. _majorlabel (str): Name of the run set. This will be the name of the local directory the results are stored in. _minorlabel (str): Name of the individual run (i.e. a numeric value). This will be included in the title of all output files. _stantype (str): Stanmodel to be used, either 'astero' or 'gaia'. Input __call__: verbose (bool): If True: saves chains, median and standard deviations on parameter posteriors, and the rhat values (as well as plot of rhats) visual (bool): If True: saves cornerplot and the pystan chain plot. ''' self.dat = _dat self.init = _init self.data = _stantype #Either astero or gaia self.runlabel = __outdir__+_majorlabel+'/'+_stantype+'_'+_minorlabel #Check folder exists, if not, overwrite if not os.path.exists(__outdir__+_majorlabel): os.makedirs(__outdir__+_majorlabel) def build_metadata(self): '''Builds label metadata for the run''' if self.data == 'astero': self.pars = ['mu', 'sigma', 'Q', 'sigo'] self.verbose = [r'$\mu_{RC} (mag)$',r'$\sigma_{RC} (mag)$',r'$Q$', r'$\sigma_o (mag)$'] if self.data =='gaia': self.pars = ['mu', 'sigma', 'Q', 'sigo', 'L', 'oo_zp'] self.verbose = [r'$\mu_{RC} (mag)$',r'$\sigma_{RC} (mag)$',r'$Q$', r'$\sigma_o (mag)$', r'$L (pc)$', r'$\varpi_{zp} (\mu as)$'] def read_stan(self): '''Reads the existing stanmodels''' if self.data == 'astero': model_path = 'asterostan.pkl' if os.path.isfile(model_path): sm = pickle.load(open(model_path, 'rb')) else: print('No stan model found') create_asterostan(overwrite=True) sys.exit() if self.data == 'gaia': model_path = 'astrostan.pkl' if os.path.isfile(model_path): sm = pickle.load(open(model_path, 'rb')) else: print('No stan model found') create_astrostan(overwrite=True) sys.exit() return sm def run_stan(self): '''Runs PyStan''' sm = self.read_stan() if self.init != 0.: fit = sm.sampling(data = self.dat, iter= __iter__, chains=4, seed=24601, init = [self.init, self.init, self.init, self.init]) else: fit = sm.sampling(data = self.dat, seed=24601, iter= __iter__, chains=4) return fit def out_corner(self, fit): chain = np.array([fit[label] for label in self.pars]) corner.corner(chain.T,labels=self.verbose,\ quantiles=[0.16, 0.5, 0.84],\ show_titles=True, title_kwargs={"fontsize": 12}) plt.savefig(self.runlabel+'_corner.png') plt.close('all') def out_stanplot(self, fit): fit.plot() plt.savefig(self.runlabel+'_stanplot.png') plt.close('all') def run_output(self, fit): #Save the chains chain = np.array([fit[label] for label in self.pars]) np.savetxt(self.runlabel+'_chains.txt',chain) #Save the full fit extract outlabel = self.runlabel+'_fullchain_dict.pkl' output = open(outlabel, 'wb') pickle.dump(fit.extract(), output) output.close() #Save the parameters pardict = {label:np.median(fit[label]) for label in self.pars} pardict.update({label+'_std':np.std(fit[label]) for label in self.pars}) pardict = pd.DataFrame.from_dict(pardict,orient='index').T pardict.to_csv(self.runlabel+'_pars.csv') #Save the Rhat values s = fit.summary() rhat = s['summary'][:,-1] np.savetxt(self.runlabel+'_rhats.txt', rhat) def __call__(self, verbose=True, visual=True): self.build_metadata() fit = self.run_stan() if visual: self.out_corner(fit) # self.out_stanplot(fit) if verbose: self.run_output(fit) print('Run to + '+self.runlabel+' complete!') def read_data(): '''Reads in the Yu et al. 2018 data''' if args.type == 'gaia': sfile = __datdir__+'rcxyu18.csv' else: if args.apokasc: sfile = __datdir__+'rcxyuxapokasc2.csv' else: sfile = __datdir__+'rcxyu18.csv' df = pd.read_csv(sfile) return df def read_paramdict(majorlabel, minorlabel='', sort='astero'): '''Reads in results for either: -A full run series (majorlabel) where the minorlabel is included as a column in the output. -A single run (majorlabel and minorlabel). Returns a pandas dataframe. ''' loc = __outdir__+majorlabel+'/' if minorlabel != '': globlist = glob.glob(loc+sort+'_'+str(float(minorlabel))+'_*pars*.csv') else: globlist = glob.glob(loc+sort+'*_*pars*.csv') minorlabels = [os.path.basename(globloc).split('_')[1] for globloc in globlist] df = pd.DataFrame() for n, globloc in enumerate(globlist): sdf = pd.read_csv(globloc, index_col = 0) if minorlabels[n] != 'pars.csv': sdf[majorlabel] = minorlabels[n] df = df.append(sdf) return df.sort_values(by=majorlabel) def read_astero_output(majorlabel, minorlabel, sort): loc = __outdir__+majorlabel+'/'+sort+'_'+str(float(minorlabel))+'_fullchain_dict.pkl' pkl_file = open(loc, 'rb') fit = pickle.load(pkl_file) pkl_file.close() M_infd = np.median(fit['Mtrue'],axis=0) M_infd_std = np.median(fit['Mtrue_std'], axis=0) return M_infd, M_infd_std def get_basic_init(type='gaia'): '''Returns a basic series of initial guesses in PyStan format.''' init = {'mu':-1.7, 'sigma':0.1, 'Q':0.95, 'sigo':4.} if type == 'gaia': init['L'] = 1000 return init def get_fdnu(df): asf = asfgrid.Seism() evstate = np.ones(len(df))*2 logz = np.log10(df.Z.values) teff = df.Teff.values + args.tempdiff dnu = df.dnu.values numax = df.numax.values mass, radius = asf.get_mass_radius(evstate, logz, teff, dnu, numax) logg = asf.mr2logg(mass, radius) fdnu = asf._get_fdnu(evstate, logz, teff, mass, logg, fill_value='nearest') return fdnu def kernel(ra, dec, sigma, p): ''' p[0] : Offset p[1] : Exponential decay scale ''' dr = np.deg2rad(dec) thetaij = np.sqrt((np.subtract.outer(ra, ra)*np.cos(0.5*np.add.outer(dr, dr)))**2 + np.subtract.outer(dec, dec)**2) cov = p[0] * np.exp(-thetaij / p[1]) np.fill_diagonal(cov, np.diag(cov) + sigma**2) if not np.all(np.linalg.eigvals(cov) > 0): raise ValueError("The matrix isn't positive-definite
<reponame>bilgelm/NiMARE<gh_stars>0 """ Topic modeling with generalized correspondence latent Dirichlet allocation. """ import logging import os.path as op import numpy as np import pandas as pd import nibabel as nib from scipy.stats import multivariate_normal from ...base import AnnotationModel from ...due import due, Doi from ...utils import get_template LGR = logging.getLogger(__name__) @due.dcite(Doi('10.1371/journal.pcbi.1005649'), description='Introduces GC-LDA decoding.') class GCLDAModel(AnnotationModel): """ Generate a GCLDA topic model. Parameters ---------- count_df : :obj:`pandas.DataFrame` A DataFrame with feature counts for the model. The index is 'id', used for identifying studies. Other columns are features (e.g., unigrams and bigrams from Neurosynth), where each value is the number of times the feature is found in a given article. coordinates_df : :obj:`pandas.DataFrame` A DataFrame with a list of foci in the dataset. The index is 'id', used for identifying studies. Additional columns include 'i', 'j' and 'k' (the matrix indices of the foci in standard space). n_topics : :obj:`int`, optional Number of topics to generate in model. The default is 100. n_regions : :obj:`int`, optional Number of subregions per topic (>=1). The default is 2. alpha : :obj:`float`, optional Prior count on topics for each document. The default is 0.1. beta : :obj:`float`, optional Prior count on word-types for each topic. The default is 0.01. gamma : :obj:`float`, optional Prior count added to y-counts when sampling z assignments. The default is 0.01. delta : :obj:`float`, optional Prior count on subregions for each topic. The default is 1.0. dobs : :obj:`int`, optional Spatial region 'default observations' (# observations weighting Sigma estimates in direction of default 'roi_size' value). The default is 25. roi_size : :obj:`float`, optional Default spatial 'region of interest' size (default value of diagonals in covariance matrix for spatial distribution, which the distributions are biased towards). The default is 50.0. symmetric : :obj:`bool`, optional Whether or not to use symmetry constraint on subregions. Symmetry requires n_regions = 2. The default is False. seed_init : :obj:`int`, optional Initial value of random seed. The default is 1. name : :obj:`str`, optional Name of model. """ def __init__(self, count_df, coordinates_df, mask='Mni152_2mm', n_topics=100, n_regions=2, symmetric=True, alpha=.1, beta=.01, gamma=.01, delta=1.0, dobs=25, roi_size=50.0, seed_init=1, name='gclda'): LGR.info('Constructing/Initializing GCLDA Model') # --- Checking to make sure parameters are valid if (symmetric is True) and (n_regions != 2): # symmetric model only valid if R = 2 raise ValueError('Cannot run a symmetric model unless #Subregions ' '(n_regions) == 2 !') # Initialize sampling parameters self.iter = 0 # Tracks the global sampling iteration of the model self.seed = 0 # Tracks current random seed to use (gets incremented # after initialization and each sampling update) # Set up model hyperparameters # Pseudo-count hyperparams need to be floats so that when sampling # distributions are computed the count matrices/vectors are converted # to floats self.params = { 'n_topics': n_topics, # Number of topics (T) 'n_regions': n_regions, # Number of subregions (R) 'alpha': alpha, # Prior count on topics for each doc 'beta': beta, # Prior count on word-types for each topic 'gamma': gamma, # Prior count added to y-counts when sampling z assignments 'delta': delta, # Prior count on subregions for each topic 'roi_size': roi_size, # Default ROI (default covariance spatial # region we regularize towards) (not in paper) 'dobs': dobs, # Sample constant (# observations weighting # sigma in direction of default covariance) # (not in paper) 'symmetric': symmetric, # Use constrained symmetry on subregions? # (only for n_regions = 2) 'seed_init': seed_init, # Random seed for initializing model } self.model_name = ('{0}_{1}T_{2}R_alpha{3:.3f}_beta{4:.3f}_' 'gamma{5:.3f}_delta{6:.3f}_{7}dobs_{8:.1f}roi_{9}' 'symmetric_{10}').format( name, self.params['n_topics'], self.params['n_regions'], self.params['alpha'], self.params['beta'], self.params['gamma'], self.params['delta'], self.params['dobs'], self.params['roi_size'], self.params['symmetric'], self.params['seed_init']) # Prepare data if isinstance(mask, str) and not op.isfile(mask): self.mask = get_template(mask, mask='brain') elif isinstance(mask, str) and op.isfile(mask): self.mask = nib.load(mask) elif isinstance(mask, nib.Nifti1Image): self.mask = mask else: raise Exception('Input "mask" could not be figured out.') # Import all word-labels into a list # List of word-strings (wtoken_word_idx values are indices into this list) self.vocabulary = count_df.columns.tolist() # Extract document and word indices from count_df count_df.index = count_df.index.astype(str) ids = count_df.index.tolist() docidx_mapper = {id_: i for (i, id_) in enumerate(ids)} self.ids = ids # Create docidx column count_df['id'] = count_df.index count_df['docidx'] = count_df['id'].map(docidx_mapper) count_df = count_df.dropna(subset=['docidx']) count_df = count_df.drop('id', 1) # Remove words not found anywhere in the corpus count_df = count_df.loc[:, (count_df != 0).any(axis=0)] # Get updated vocabulary word_labels = count_df.columns.tolist() word_labels.remove('docidx') self.word_labels = word_labels widx_mapper = {word: i for (i, word) in enumerate(self.word_labels)} # Melt dataframe and create widx column widx_df = pd.melt(count_df, id_vars=['docidx'], var_name='word', value_name='count') widx_df['widx'] = widx_df['word'].map(widx_mapper) # Replicate rows based on count widx_df = widx_df.loc[np.repeat(widx_df.index.values, widx_df['count'])] widx_df = widx_df[['docidx', 'widx']].astype(int) widx_df.sort_values(by=['docidx', 'widx'], inplace=True) # List of document-indices for word-tokens self.wtoken_doc_idx = widx_df['docidx'].tolist() # List of word-indices for word-tokens self.wtoken_word_idx = widx_df['widx'].tolist() # Import all peak-indices into lists if 'id' not in coordinates_df.columns: coordinates_df['id'] = coordinates_df.index coordinates_df['docidx'] = coordinates_df['id'].astype(str).map(docidx_mapper) coordinates_df = coordinates_df.dropna(subset=['docidx']) coordinates_df = coordinates_df[['docidx', 'x', 'y', 'z']] coordinates_df['docidx'] = coordinates_df['docidx'].astype(int) # List of document-indices for peak-tokens x self.ptoken_doc_idx = coordinates_df['docidx'].tolist() self.peak_vals = coordinates_df[['x', 'y', 'z']].values # Seed random number generator np.random.seed(self.params['seed_init']) # pylint: disable=no-member # Preallocate vectors of assignment indices self.wtoken_topic_idx = np.zeros( len(self.wtoken_word_idx), dtype=int) # word->topic assignments # Randomly initialize peak->topic assignments (y) ~ unif(1...n_topics) self.peak_topic_idx = np.random.randint( self.params['n_topics'], # pylint: disable=no-member size=(len(self.ptoken_doc_idx))) self.peak_region_idx = np.zeros( len(self.ptoken_doc_idx), dtype=int) # peak->region assignments # Preallocate count matrices # Peaks: D x T: Number of peak-tokens assigned to each topic per document self.n_peak_tokens_doc_by_topic = np.zeros( (len(self.ids), self.params['n_topics']), dtype=int) # Peaks: R x T: Number of peak-tokens assigned to each subregion per topic self.n_peak_tokens_region_by_topic = np.zeros( (self.params['n_regions'], self.params['n_topics']), dtype=int) # Words: W x T: Number of word-tokens assigned to each topic per word-type self.n_word_tokens_word_by_topic = np.zeros( (len(self.word_labels), self.params['n_topics']), dtype=int) # Words: D x T: Number of word-tokens assigned to each topic per document self.n_word_tokens_doc_by_topic = np.zeros( (len(self.ids), self.params['n_topics']), dtype=int) # Words: 1 x T: Total number of word-tokens assigned to each topic (across all docs) self.total_n_word_tokens_by_topic = np.zeros( (1, self.params['n_topics']), dtype=int) # Preallocate Gaussians for all subregions # Regions_Mu & Regions_Sigma: Gaussian mean and covariance for all # subregions of all topics # Formed using lists (over topics) of lists (over subregions) of numpy # arrays # regions_mu = (n_topics, n_regions, 1, n_peak_dims) # regions_sigma = (n_topics, n_regions, n_peak_dims, n_peak_dims) self.regions_mu = [] self.regions_sigma = [] for i_topic in range(self.params['n_topics']): topic_mu = [] topic_sigma = [] for j_region in range(self.params['n_regions']): topic_mu.append(np.zeros((1, self.peak_vals.shape[1]))) topic_sigma.append(np.zeros( (self.peak_vals.shape[1], self.peak_vals.shape[1]))) self.regions_mu.append(topic_mu) # (\mu^{(t)}_r) self.regions_sigma.append(topic_sigma) # (\sigma^{(t)}_r) # Initialize lists for tracking log-likelihood of data over sampling iterations self.loglikely_iter = [] # Tracks iteration we compute each loglikelihood at self.loglikely_x = [] # Tracks log-likelihood of peak tokens self.loglikely_w = [] # Tracks log-likelihood of word tokens self.loglikely_tot = [] # Tracks log-likelihood of peak + word tokens # Initialize peak->subregion assignments (r) if not self.params['symmetric']: # if symmetric model use deterministic assignment : # if peak_val[0] > 0, r = 1, else r = 0 self.peak_region_idx[:] = np.random.randint( self.params['n_regions'], # pylint: disable=no-member size=(len(self.ptoken_doc_idx))) else: # if asymmetric model, randomly sample r ~ unif(1...n_regions) self.peak_region_idx[:] = (self.peak_vals[:, 0] > 0).astype(int) # Update model vectors and count matrices to reflect y and r assignments for i_ptoken in range(len(self.ptoken_doc_idx)): # document -idx (d) doc = self.ptoken_doc_idx[i_ptoken] topic = self.peak_topic_idx[i_ptoken] # peak-token -> topic assignment (y_i) region = self.peak_region_idx[i_ptoken] # peak-token -> subregion assignment (c_i) self.n_peak_tokens_doc_by_topic[doc, topic] += 1 # Increment document-by-topic counts self.n_peak_tokens_region_by_topic[region, topic] += 1 # Increment region-by-topic # Randomly Initialize Word->Topic Assignments (z) for each word # token w_i: sample z_i proportional to p(topic|doc_i) for i_wtoken in range(len(self.wtoken_word_idx)): # w_i word-type word = self.wtoken_word_idx[i_wtoken] # w_i doc-index doc = self.wtoken_doc_idx[i_wtoken] # Estimate p(t|d) for current doc p_topic_g_doc = self.n_peak_tokens_doc_by_topic[doc] + self.params['gamma'] # Sample a topic from p(t|d) for the z-assignment probs = np.cumsum(p_topic_g_doc) # Compute a cdf of the sampling # distribution for z # Which elements of cdf are less than random sample? sample_locs = probs < np.random.rand() * probs[-1] # pylint:
import csv import logging import os from dataset_manager.enums import FeatureType, FeatureFunctionType logger = logging.getLogger(__name__) class OpensmileExtractor(): CONFIG_ENERGY = os.path.join(os.path.dirname(__file__), "configurations/energy.conf") CONFIG_EMOTION_FEATURES = os.path.join(os.path.dirname(__file__), "configurations/emotion-features.conf") CONFIG_MFCC = os.path.join(os.path.dirname(__file__), "configurations/mfcc.conf") CONFIG_PITCH = os.path.join(os.path.dirname(__file__), "configurations/pitch.conf") CONFIG_LSP = os.path.join(os.path.dirname(__file__), "configurations/lsp.conf") CONFIG_INTENSITY = os.path.join(os.path.dirname(__file__), "configurations/intensity.conf") CONFIG_MZCR = os.path.join(os.path.dirname(__file__), "configurations/mzcr.conf") CONFIG_SPECTRAL = os.path.join(os.path.dirname(__file__), "configurations/spectral.conf") configurations = { FeatureType.ENERGY: CONFIG_ENERGY, FeatureType.MFCC_1: CONFIG_MFCC, FeatureType.MFCC_2: CONFIG_MFCC, FeatureType.MFCC_3: CONFIG_MFCC, FeatureType.MFCC_4: CONFIG_MFCC, FeatureType.MFCC_5: CONFIG_MFCC, FeatureType.MFCC_6: CONFIG_MFCC, FeatureType.MFCC_7: CONFIG_MFCC, FeatureType.MFCC_8: CONFIG_MFCC, FeatureType.MFCC_9: CONFIG_MFCC, FeatureType.MFCC_10: CONFIG_MFCC, FeatureType.MFCC_11: CONFIG_MFCC, FeatureType.MFCC_12: CONFIG_MFCC, FeatureType.PITCH_VOICE_PROB: CONFIG_PITCH, FeatureType.PITCH_F0: CONFIG_PITCH, FeatureType.LSP_1: CONFIG_LSP, FeatureType.LSP_2: CONFIG_LSP, FeatureType.LSP_3: CONFIG_LSP, FeatureType.LSP_4: CONFIG_LSP, FeatureType.LSP_5: CONFIG_LSP, FeatureType.LSP_6: CONFIG_LSP, FeatureType.LSP_7: CONFIG_LSP, FeatureType.INTENSITY: CONFIG_INTENSITY, FeatureType.LOUDNESS: CONFIG_INTENSITY, FeatureType.MZCR: CONFIG_MZCR, FeatureType.SPECTRAL_1: CONFIG_SPECTRAL, FeatureType.SPECTRAL_2: CONFIG_SPECTRAL, FeatureType.SPECTRAL_3: CONFIG_SPECTRAL, FeatureType.SPECTRAL_4: CONFIG_SPECTRAL, FeatureType.SPECTRAL_5: CONFIG_SPECTRAL, FeatureType.SPECTRAL_ROLLOFF_1: CONFIG_SPECTRAL, FeatureType.SPECTRAL_ROLLOFF_2: CONFIG_SPECTRAL, FeatureType.SPECTRAL_ROLLOFF_3: CONFIG_SPECTRAL, FeatureType.SPECTRAL_ROLLOFF_4: CONFIG_SPECTRAL, FeatureType.SPECTRAL_FLUX: CONFIG_SPECTRAL, FeatureType.SPECTRAL_CENTROID: CONFIG_SPECTRAL, FeatureType.SPECTRAL_MAX_POS: CONFIG_SPECTRAL, FeatureType.SPECTRAL_MIN_POS: CONFIG_SPECTRAL } def _extract(self, config, params=""): """ Opensmile extraction by calling the command-line extraction command. """ logger.info("OpenSmile extraction with config: %s", config) smile_cmd = os.popen("which SMILExtract").read().replace('\n', '') cmd = '{} -C "{}" {}'.format(smile_cmd, config, params) os.system(cmd) # def compute_energy(self, video): # """ # Energy extraction for a given video. Returns a list containing the energy rms for each frame. # # :param video: # :return: # """ # # logger.info("Computing sound energy") # # audio_path = video.audio_path # output_file = os.path.join(video.dataset.audio_folder_path, "{}.energy.csv".format(video.name)) # # # Get video frame-rate, and compute framesize (in seconds) # fps = video.video_part.fps # framesize = 1 / fps # # # Prepare params (input file, output file, framesize) # params = '-I "{}" -O "{}" -F {}'.format(audio_path, output_file, framesize) # # # Do extraction # self._extract(self.CONFIG_ENERGY, params) # # energy = list() # # # Read the csv and add them to the multimedia element # with open(output_file, 'rb') as csvfile: # csv_reader = csv.DictReader(csvfile, delimiter=';') # for i, row in enumerate(csv_reader): # energy.append([i, float(row['pcm_RMSenergy'])]) # # # Cleanup # os.remove(output_file) # # return energy def compute(self, features): video = features.multimedia_part.video audio_path = video.audio_path output_file = os.path.join(video.dataset.audio_path, "{}.output.csv".format(video.name)) # Get video frame-rate, and compute framesize (in seconds) fps = video.video_part.fps framesize = 1 / fps # Do first time only with mean for each frames, used for arousal # Prepare params (input file, output file, framesize) params = '-I "{}" -O "{}" -F {}'.format(audio_path, output_file, framesize) # Do extraction self._extract(self.configurations[features.type], params) result = dict() function = FeatureFunctionType.VALUE # Read the csv and add them to the multimedia element crt_nb_frame = 0 with open(output_file, 'rb') as csvfile: csv_reader = csv.DictReader(csvfile, delimiter=';') for i, row in enumerate(csv_reader): crt_nb_frame += 1 if not result.has_key(function): result[function] = list() function_field = FeatureFunctionType.fields[function] if FeatureType.fields.has_key(features.type): field = FeatureType.fields[features.type] + "_" + function_field else: field = function_field result[function].append([i, float(row[field])]) os.remove(output_file) # Add 0 values to the end as OpenSmile does not process the last second! for i in range(crt_nb_frame, video.nb_frames): result[function].append([i, 0.]) # Prepare params (input file, output file, framesize) params = '-I "{}" -O "{}" -F {}'.format(audio_path, output_file, framesize) # Do extraction self._extract(self.configurations[features.type] + '.1s', params) # Read the csv and add them to the multimedia element crt_nb_frame = 0 with open(output_file, 'rb') as csvfile: csv_reader = csv.DictReader(csvfile, delimiter=';') for i, row in enumerate(csv_reader): crt_nb_frame += 1 frame_idx = int(i*fps) for function in FeatureType.functions[features.type]: if not result.has_key(function): result[function] = list() function_field = FeatureFunctionType.fields[function] if FeatureType.fields.has_key(features.type): field = FeatureType.fields[features.type] + "_" + function_field else: field = function_field result[function].append([frame_idx, float(row[field])]) # Cleanup os.remove(output_file) return result # def compute_mfcc_with_functionals(self, video): # """ # MFCC features extraction for a given video. Returns a dictionary containing the list of mfcc[1-12] functionals # # Returned dictionary looks like: # { "frameTime": 0.0, # "mfcc_sma[7]_skewness": 0.1635602, # "mfcc_sma[8]_amean": -3.041601, # "mfcc_sma[5]_range": 5.615002, ... # """ # logger.info("Computing mfcc") # # audio_path = video.audio_path # output_file = os.path.join(video.dataset.audio_folder_path, "{}.mfcc.csv".format(video.name)) # # # Get video frame-rate, and compute framesize (in seconds) # fps = video.video_part.fps # framesize = 1 / fps # # # Prepare params (input file, output file, framesize) # params = '-I "{}" -O "{}" -F {}'.format(audio_path, output_file, framesize) # # # Do extraction # self._extract(self.CONFIG_MFCC, params) # # # mfcc = list() # # # Read the csv and add them to the multimedia element # with open(output_file, 'rb') as csvfile: # csv_reader = csv.DictReader(csvfile, delimiter=';') # for i, row in enumerate(csv_reader): # frameFeatures = {} # frameFeatures['frameTime'] = float(row['frameTime']) # for j in range(1,13) : # frameFeatures['mfcc_sma['+str(j)+']_max'] = float(row['mfcc_sma['+str(j)+']_max']) # frameFeatures['mfcc_sma['+str(j)+']_min'] = float(row['mfcc_sma['+str(j)+']_min']) # frameFeatures['mfcc_sma['+str(j)+']_range'] = float(row['mfcc_sma['+str(j)+']_range']) # frameFeatures['mfcc_sma['+str(j)+']_maxPos'] = float(row['mfcc_sma['+str(j)+']_maxPos']) # frameFeatures['mfcc_sma['+str(j)+']_minPos'] = float(row['mfcc_sma['+str(j)+']_minPos']) # frameFeatures['mfcc_sma['+str(j)+']_amean'] = float(row['mfcc_sma['+str(j)+']_amean']) # frameFeatures['mfcc_sma['+str(j)+']_linregc1'] = float(row['mfcc_sma['+str(j)+']_linregc1']) # frameFeatures['mfcc_sma['+str(j)+']_linregc2'] = float(row['mfcc_sma['+str(j)+']_linregc2']) # frameFeatures['mfcc_sma['+str(j)+']_linregerrQ'] = float(row['mfcc_sma['+str(j)+']_linregerrQ']) # frameFeatures['mfcc_sma['+str(j)+']_skewness'] = float(row['mfcc_sma['+str(j)+']_skewness']) # frameFeatures['mfcc_sma['+str(j)+']_kurtosis'] = float(row['mfcc_sma['+str(j)+']_kurtosis']) # frameFeatures['mfcc_sma_de['+str(j)+']_max'] = float(row['mfcc_sma_de['+str(j)+']_max']) # frameFeatures['mfcc_sma_de['+str(j)+']_min'] = float(row['mfcc_sma_de['+str(j)+']_min']) # frameFeatures['mfcc_sma_de['+str(j)+']_range'] = float(row['mfcc_sma_de['+str(j)+']_range']) # frameFeatures['mfcc_sma_de['+str(j)+']_maxPos'] = float(row['mfcc_sma_de['+str(j)+']_maxPos']) # frameFeatures['mfcc_sma_de['+str(j)+']_minPos'] = float(row['mfcc_sma_de['+str(j)+']_minPos']) # frameFeatures['mfcc_sma_de['+str(j)+']_amean'] = float(row['mfcc_sma_de['+str(j)+']_amean']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregc1'] = float(row['mfcc_sma_de['+str(j)+']_linregc1']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregc2'] = float(row['mfcc_sma_de['+str(j)+']_linregc2']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregerrQ'] = float(row['mfcc_sma_de['+str(j)+']_linregerrQ']) # frameFeatures['mfcc_sma_de['+str(j)+']_skewness'] = float(row['mfcc_sma_de['+str(j)+']_skewness']) # frameFeatures['mfcc_sma_de['+str(j)+']_kurtosis'] = float(row['mfcc_sma_de['+str(j)+']_kurtosis']) # mfcc.append(frameFeatures) # # Cleanup # os.remove(output_file) # # return mfcc # # def compute_mfcc_with_functionals_on_relevant_parts(self, video): # """ # MFCC features extraction for a given video. Returns a dictionary containing the list of mfcc[1-12] functionals # # Returned dictionary looks like: # { "frameTime": 0.0, # "mfcc_sma[7]_skewness": 0.1635602, # "mfcc_sma[8]_amean": -3.041601, # "mfcc_sma[5]_range": 5.615002, ... # """ # logger.info("Computing mfcc") # # audio_path = video.audio_path # output_file = os.path.join(video.dataset.audio_folder_path, "{}.mfcc.csv".format(video.name)) # # # Get video frame-rate, and compute framesize (in seconds) # fps = video.video_part.fps # framesize = 1 / fps # # # mfcc = list() # # for partition in video.arousal.arousal_partitions: # # # Prepare params (input file, output file, framesize) # start_second = partition[0][0] / fps # end_second = partition[1][0] /fps # output_file = os.path.join(video.dataset.audio_folder_path, "{}.mfcc.csv".format(video.name)) # params = '-I "{}" -O "{}" -F {} -S {} -E {}'.format(audio_path, output_file, framesize, start_second, end_second) # # # Do extraction # self._extract(self.CONFIG_MFCC, params) # # # Read the csv and add them to the multimedia element # with open(output_file, 'rb') as csvfile: # csv_reader = csv.DictReader(csvfile, delimiter=';') # for i, row in enumerate(csv_reader): # frameFeatures = {} # frameFeatures['frameTime'] = float(row['frameTime']) + int(start_second) # for j in range(1,13) : # frameFeatures['mfcc_sma['+str(j)+']_max'] = float(row['mfcc_sma['+str(j)+']_max']) # frameFeatures['mfcc_sma['+str(j)+']_min'] = float(row['mfcc_sma['+str(j)+']_min']) # frameFeatures['mfcc_sma['+str(j)+']_range'] = float(row['mfcc_sma['+str(j)+']_range']) # frameFeatures['mfcc_sma['+str(j)+']_maxPos'] = float(row['mfcc_sma['+str(j)+']_maxPos']) # frameFeatures['mfcc_sma['+str(j)+']_minPos'] = float(row['mfcc_sma['+str(j)+']_minPos']) # frameFeatures['mfcc_sma['+str(j)+']_amean'] = float(row['mfcc_sma['+str(j)+']_amean']) # frameFeatures['mfcc_sma['+str(j)+']_linregc1'] = float(row['mfcc_sma['+str(j)+']_linregc1']) # frameFeatures['mfcc_sma['+str(j)+']_linregc2'] = float(row['mfcc_sma['+str(j)+']_linregc2']) # frameFeatures['mfcc_sma['+str(j)+']_linregerrQ'] = float(row['mfcc_sma['+str(j)+']_linregerrQ']) # frameFeatures['mfcc_sma['+str(j)+']_skewness'] = float(row['mfcc_sma['+str(j)+']_skewness']) # frameFeatures['mfcc_sma['+str(j)+']_kurtosis'] = float(row['mfcc_sma['+str(j)+']_kurtosis']) # frameFeatures['mfcc_sma_de['+str(j)+']_max'] = float(row['mfcc_sma_de['+str(j)+']_max']) # frameFeatures['mfcc_sma_de['+str(j)+']_min'] = float(row['mfcc_sma_de['+str(j)+']_min']) # frameFeatures['mfcc_sma_de['+str(j)+']_range'] = float(row['mfcc_sma_de['+str(j)+']_range']) # frameFeatures['mfcc_sma_de['+str(j)+']_maxPos'] = float(row['mfcc_sma_de['+str(j)+']_maxPos']) # frameFeatures['mfcc_sma_de['+str(j)+']_minPos'] = float(row['mfcc_sma_de['+str(j)+']_minPos']) # frameFeatures['mfcc_sma_de['+str(j)+']_amean'] = float(row['mfcc_sma_de['+str(j)+']_amean']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregc1'] = float(row['mfcc_sma_de['+str(j)+']_linregc1']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregc2'] = float(row['mfcc_sma_de['+str(j)+']_linregc2']) # frameFeatures['mfcc_sma_de['+str(j)+']_linregerrQ'] = float(row['mfcc_sma_de['+str(j)+']_linregerrQ']) # frameFeatures['mfcc_sma_de['+str(j)+']_skewness'] = float(row['mfcc_sma_de['+str(j)+']_skewness']) # frameFeatures['mfcc_sma_de['+str(j)+']_kurtosis'] = float(row['mfcc_sma_de['+str(j)+']_kurtosis']) # mfcc.append(frameFeatures) # # Cleanup # os.remove(output_file) # # return mfcc # # # def compute_pitch_with_functionals(self, video): # """ # Pitch feature extraction for a given video. Returns a dictionary containing the list of pitch functionals # # Returned dictionary looks like: # { "frameTime": 0.0, # ""F0_sma_amean": 0.0, # "F0_sma_minPos": 0.0, # "F0_sma_linregc2": 0.0, ... # """ # logger.info("Computing pitch") # # audio_path = video.audio_path # output_file = os.path.join(video.dataset.audio_folder_path, "{}.pitch.csv".format(video.name)) # # # Get video frame-rate, and compute framesize (in seconds) # fps = video.video_part.fps # framesize = 1 / fps # # # Prepare params (input file, output file, framesize) # params = '-I "{}" -O "{}" -F {}'.format(audio_path, output_file, framesize) # # # Do extraction # self._extract(self.CONFIG_PITCH, params) # # # pitch = list() # # #Read the csv and add them to the multimedia element # with open(output_file, 'rb') as csvfile: # csv_reader = csv.DictReader(csvfile, delimiter=';') # for i, row in enumerate(csv_reader): # frameFeatures = {} # frameFeatures['frameTime'] = float(row['frameTime']) # frameFeatures['voiceProb_sma_max'] = float(row['voiceProb_sma_max']) # frameFeatures['voiceProb_sma_min'] = float(row['voiceProb_sma_min']) # frameFeatures['voiceProb_sma_range'] = float(row['voiceProb_sma_range']) # frameFeatures['voiceProb_sma_maxPos'] = float(row['voiceProb_sma_maxPos']) # frameFeatures['voiceProb_sma_minPos'] = float(row['voiceProb_sma_minPos']) # frameFeatures['voiceProb_sma_amean'] = float(row['voiceProb_sma_amean']) # frameFeatures['voiceProb_sma_linregc1'] = float(row['voiceProb_sma_linregc1']) # frameFeatures['voiceProb_sma_linregc2'] = float(row['voiceProb_sma_linregc2']) # frameFeatures['voiceProb_sma_linregerrQ'] = float(row['voiceProb_sma_linregerrQ']) # frameFeatures['voiceProb_sma_stddev'] =
# -*- coding: utf-8 -*- # Copyright (c) 2014 Plivo Team. See LICENSE.txt for details. import os import uuid import time import math import unittest import msgpack from sharq import SharQ from sharq.utils import generate_epoch class SharQTestCase(unittest.TestCase): """ `SharQTestCase` contains the functional test cases that validate the correctness of all the APIs exposed by SharQ. """ def setUp(self): cwd = os.path.dirname(os.path.realpath(__file__)) config_path = os.path.join(cwd, 'sharq.test.conf') # test config self.queue = SharQ(config_path) # flush all the keys in the test db before starting test self.queue._r.flushdb() # test specific values self._test_queue_id = 'johndoe' self._test_queue_type = 'sms' self._test_payload_1 = { 'to': '1000000000', 'message': 'Hello, world' } self._test_payload_2 = { 'to': '1000000001', 'message': 'Hello, SharQ' } self._test_requeue_limit_5 = 5 self._test_requeue_limit_neg_1 = -1 self._test_requeue_limit_0 = 0 self._test2_queue_id = 'thetourist' self._test2_queue_type = 'package' def _get_job_id(self): """Generates a uuid4 and returns the string representation of it. """ return str(uuid.uuid4()) def test_enqueue_response_status(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) self.assertEqual(response['status'], 'queued') def test_enqueue_job_queue_existence(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if the job queue exists queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id ) self.assertTrue(self.queue._r.exists(queue_name)) def test_enqueue_job_existence_in_job_queue(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if the queue contains the job we just pushed (by peeking) queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id ) latest_job_id = self.queue._r.lrange(queue_name, -1, -1) self.assertEqual(latest_job_id, [job_id]) def test_enqueue_job_queue_length(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if the queue length is one queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id ) queue_length = self.queue._r.llen(queue_name) self.assertEqual(queue_length, 1) def test_enqueue_payload_dump(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if the payload is saved in the appropriate structure payload_map_name = '%s:payload' % (self.queue._key_prefix) # check if the payload map exists self.assertTrue(self.queue._r.exists(payload_map_name)) def test_enqueue_payload_encode_decode(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) payload_map_name = '%s:payload' % (self.queue._key_prefix) payload_map_key = '%s:%s:%s' % ( self._test_queue_type, self._test_queue_id, job_id) raw_payload = self.queue._r.hget(payload_map_name, payload_map_key) # decode the payload from msgpack to dictionary payload = msgpack.unpackb(raw_payload[1:-1]) self.assertEqual(payload, self._test_payload_1) def test_enqueue_interval_map_existence(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if interval is saved in the appropriate structure interval_map_name = '%s:interval' % (self.queue._key_prefix) # check if interval map exists self.assertTrue(self.queue._r.exists(interval_map_name)) def test_enqueue_interval_value(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check if interval is saved in the appropriate structure interval_map_name = '%s:interval' % (self.queue._key_prefix) interval_map_key = '%s:%s' % ( self._test_queue_type, self._test_queue_id) interval = self.queue._r.hget( interval_map_name, interval_map_key) self.assertEqual(interval, '10000') # 10s (10000ms) def test_enqueue_requeue_limit_map_existence(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type # without a requeue limit parameter ) # check if requeue limit is saved in the appropriate structure requeue_limit_map_name = '%s:%s:%s:requeues_remaining' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id, ) # check if requeue limit map exists self.assertTrue(self.queue._r.exists(requeue_limit_map_name)) job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, requeue_limit=self._test_requeue_limit_5 ) # check if requeue limit is saved in the appropriate structure requeue_limit_map_name = '%s:%s:%s:requeues_remaining' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id, ) # check if requeue limit map exists self.assertTrue(self.queue._r.exists(requeue_limit_map_name)) def test_enqueue_requeue_limit_value(self): # without requeue limit (but reading from the config) job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type # without requeue limit. ) # check if requeue limit is saved in the appropriate structure requeue_limit_map_name = '%s:%s:%s:requeues_remaining' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id, ) requeues_remaining = self.queue._r.hget( requeue_limit_map_name, job_id) self.assertEqual(requeues_remaining, '-1') # from the config file. # with requeue limit in the enqueue function. job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, requeue_limit=self._test_requeue_limit_5 ) # check if requeue limit is saved in the appropriate structure requeue_limit_map_name = '%s:%s:%s:requeues_remaining' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id, ) requeues_remaining = self.queue._r.hget( requeue_limit_map_name, job_id) self.assertEqual(requeues_remaining, '5') # 5 retries remaining. def test_enqueue_ready_set(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) sorted_set_name = '%s:%s' % ( self.queue._key_prefix, self._test_queue_type) self.assertTrue(self.queue._r.exists(sorted_set_name)) def test_enqueue_ready_set_contents(self): job_id = self._get_job_id() start_time = str(generate_epoch()) response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) end_time = str(generate_epoch()) sorted_set_name = '%s:%s' % ( self.queue._key_prefix, self._test_queue_type) queue_id_list = self.queue._r.zrangebyscore( sorted_set_name, start_time, end_time) # check if exactly one item in the list self.assertEqual(len(queue_id_list), 1) # check the value to match the queue_id self.assertEqual(queue_id_list[0], self._test_queue_id) def test_enqueue_queue_type_ready_set(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # check the queue type ready set. queue_type_ready_set = self.queue._r.smembers( '%s:ready:queue_type' % self.queue._key_prefix) self.assertEqual(len(queue_type_ready_set), 1) self.assertEqual(queue_type_ready_set.pop(), self._test_queue_type) def test_enqueue_queue_type_active_set(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) queue_type_ready_set = self.queue._r.smembers( '%s:active:queue_type' % self.queue._key_prefix) self.assertEqual(len(queue_type_ready_set), 0) def test_enqueue_metrics_global_enqueue_counter(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) timestamp = int(generate_epoch()) # epoch for the minute. timestamp_minute = str(int(math.floor(timestamp / 60000.0) * 60000)) counter_value = self.queue._r.get('%s:enqueue_counter:%s' % ( self.queue._key_prefix, timestamp_minute)) self.assertEqual(counter_value, '1') def test_enqueue_metrics_per_queue_enqueue_counter(self): job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) response = self.queue.dequeue( queue_type=self._test_queue_type ) timestamp = int(generate_epoch()) # epoch for the minute. timestamp_minute = str(int(math.floor(timestamp / 60000.0) * 60000)) counter_value = self.queue._r.get('%s:%s:%s:enqueue_counter:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id, timestamp_minute)) self.assertEqual(counter_value, '1') def test_enqueue_second_job_status(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) self.assertEqual(response['status'], 'queued') def test_enqueue_second_job_queue_existence(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id) self.assertTrue(self.queue._r.exists(queue_name)) def test_enqueue_second_job_existence_in_job_queue(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id) latest_job_id = self.queue._r.lrange(queue_name, -1, -1) self.assertEqual(latest_job_id, [job_id]) def test_enqueue_second_job_queue_length(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) queue_name = '%s:%s:%s' % ( self.queue._key_prefix, self._test_queue_type, self._test_queue_id) # check if the queue length is two queue_length = self.queue._r.llen(queue_name) self.assertEqual(queue_length, 2) def test_enqueue_second_job_payload_dump(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) payload_map_name = '%s:payload' % (self.queue._key_prefix) # check if the payload map exists self.assertTrue(self.queue._r.exists(payload_map_name)) def test_enqueue_second_job_payload_encode_decode(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) payload_map_name = '%s:payload' % (self.queue._key_prefix) payload_map_key = '%s:%s:%s' % ( self._test_queue_type, self._test_queue_id, job_id) raw_payload = self.queue._r.hget(payload_map_name, payload_map_key) # decode the payload from msgpack to dictionary payload = msgpack.unpackb(raw_payload[1:-1]) self.assertEqual(payload, self._test_payload_2) def test_enqueue_second_job_interval_map_existence(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_2, interval=20000, # 20s (20000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) interval_map_name = '%s:interval' % (self.queue._key_prefix) # check if interval map exists self.assertTrue(self.queue._r.exists(interval_map_name)) def test_enqueue_second_job_interval_value(self): # job 1 job_id = self._get_job_id() response = self.queue.enqueue( payload=self._test_payload_1, interval=10000, # 10s (10000ms) job_id=job_id, queue_id=self._test_queue_id, queue_type=self._test_queue_type, ) # job 2 job_id
1, self.heads, C // self.heads).permute(2, 0, 3, 1, 4) kv = self.to_kv(attn_kv).reshape(B_, N, 2, self.heads, C // self.heads).permute(2, 0, 3, 1, 4) q = q[0] k, v = kv[0], kv[1] return q,k,v def flops(self, H, W): flops = H*W*self.dim*self.inner_dim*3 return flops class LinearProjection_Concat_kv(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., bias=True): super().__init__() inner_dim = dim_head * heads self.heads = heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = bias) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = bias) self.dim = dim self.inner_dim = inner_dim def forward(self, x, attn_kv=None): B_, N, C = x.shape attn_kv = x if attn_kv is None else attn_kv qkv_dec = self.to_qkv(x).reshape(B_, N, 3, self.heads, C // self.heads).permute(2, 0, 3, 1, 4) kv_enc = self.to_kv(attn_kv).reshape(B_, N, 2, self.heads, C // self.heads).permute(2, 0, 3, 1, 4) q, k_d, v_d = qkv_dec[0], qkv_dec[1], qkv_dec[2] # make torchscript happy (cannot use tensor as tuple) k_e, v_e = kv_enc[0], kv_enc[1] k = torch.cat((k_d,k_e),dim=2) v = torch.cat((v_d,v_e),dim=2) return q,k,v def flops(self, H, W): flops = H*W*self.dim*self.inner_dim*5 return flops ######################################### ########### window-based self-attention ############# class WindowAttention(nn.Module): def __init__(self, dim, win_size,num_heads, token_projection='linear', qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,se_layer=False): super().__init__() self.dim = dim self.win_size = win_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * win_size[0] - 1) * (2 * win_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.win_size[0]) # [0,...,Wh-1] coords_w = torch.arange(self.win_size[1]) # [0,...,Ww-1] coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.win_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.win_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.win_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) if token_projection =='conv': self.qkv = ConvProjection(dim,num_heads,dim//num_heads,bias=qkv_bias) elif token_projection =='linear_concat': self.qkv = LinearProjection_Concat_kv(dim,num_heads,dim//num_heads,bias=qkv_bias) else: self.qkv = LinearProjection(dim,num_heads,dim//num_heads,bias=qkv_bias) self.token_projection = token_projection self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.se_layer = SELayer(dim) if se_layer else nn.Identity() self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, attn_kv=None, mask=None): B_, N, C = x.shape q, k, v = self.qkv(x,attn_kv) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.win_size[0] * self.win_size[1], self.win_size[0] * self.win_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww ratio = attn.size(-1)//relative_position_bias.size(-1) relative_position_bias = repeat(relative_position_bias, 'nH l c -> nH l (c d)', d = ratio) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] mask = repeat(mask, 'nW m n -> nW m (n d)',d = ratio) attn = attn.view(B_ // nW, nW, self.num_heads, N, N*ratio) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N*ratio) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.se_layer(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, win_size={self.win_size}, num_heads={self.num_heads}' def flops(self, H, W): # calculate flops for 1 window with token length of N # print(N, self.dim) flops = 0 N = self.win_size[0]*self.win_size[1] nW = H*W/N # qkv = self.qkv(x) # flops += N * self.dim * 3 * self.dim flops += self.qkv.flops(H, W) # attn = (q @ k.transpose(-2, -1)) if self.token_projection !='linear_concat': flops += nW * self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += nW * self.num_heads * N * N * (self.dim // self.num_heads) else: flops += nW * self.num_heads * N * (self.dim // self.num_heads) * N*2 # x = (attn @ v) flops += nW * self.num_heads * N * N*2 * (self.dim // self.num_heads) # x = self.proj(x) flops += nW * N * self.dim * self.dim print("W-MSA:{%.2f}"%(flops/1e9)) return flops ######################################### ########### feed-forward network ############# class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.in_features = in_features self.hidden_features = hidden_features self.out_features = out_features def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def flops(self, H, W): flops = 0 # fc1 flops += H*W*self.in_features*self.hidden_features # fc2 flops += H*W*self.hidden_features*self.out_features print("MLP:{%.2f}"%(flops/1e9)) return flops class LeFF(nn.Module): def __init__(self, dim=32, hidden_dim=128, act_layer=nn.GELU,drop = 0.): super().__init__() self.linear1 = nn.Sequential(nn.Linear(dim, hidden_dim), act_layer()) self.dwconv = nn.Sequential(nn.Conv2d(hidden_dim,hidden_dim,groups=hidden_dim,kernel_size=3,stride=1,padding=1), act_layer()) self.linear2 = nn.Sequential(nn.Linear(hidden_dim, dim)) self.dim = dim self.hidden_dim = hidden_dim def forward(self, x): # bs x hw x c bs, hw, c = x.size() hh = int(math.sqrt(hw)) x = self.linear1(x) # spatial restore x = rearrange(x, ' b (h w) (c) -> b c h w ', h = hh, w = hh) # bs,hidden_dim,32x32 x = self.dwconv(x) # flaten x = rearrange(x, ' b c h w -> b (h w) c', h = hh, w = hh) x = self.linear2(x) return x def flops(self, H, W): flops = 0 # fc1 flops += H*W*self.dim*self.hidden_dim # dwconv flops += H*W*self.hidden_dim*3*3 # fc2 flops += H*W*self.hidden_dim*self.dim print("LeFF:{%.2f}"%(flops/1e9)) return flops ######################################### ########### window operation############# def window_partition(x, win_size, dilation_rate=1): B, H, W, C = x.shape if dilation_rate !=1: x = x.permute(0,3,1,2) # B, C, H, W assert type(dilation_rate) is int, 'dilation_rate should be a int' x = F.unfold(x, kernel_size=win_size,dilation=dilation_rate,padding=4*(dilation_rate-1),stride=win_size) # B, C*Wh*Ww, H/Wh*W/Ww windows = x.permute(0,2,1).contiguous().view(-1, C, win_size, win_size) # B' ,C ,Wh ,Ww windows = windows.permute(0,2,3,1).contiguous() # B' ,Wh ,Ww ,C else: x = x.view(B, H // win_size, win_size, W // win_size, win_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C) # B' ,Wh ,Ww ,C return windows def window_reverse(windows, win_size, H, W, dilation_rate=1): # B' ,Wh ,Ww ,C B = int(windows.shape[0] / (H * W / win_size / win_size)) x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1) if dilation_rate !=1: x = windows.permute(0,5,3,4,1,2).contiguous() # B, C*Wh*Ww, H/Wh*W/Ww x = F.fold(x, (H, W), kernel_size=win_size, dilation=dilation_rate, padding=4*(dilation_rate-1),stride=win_size) else: x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x ######################################### # Downsample Block class Downsample(nn.Module): def __init__(self, in_channel, out_channel): super(Downsample, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=4, stride=2, padding=1), ) self.in_channel = in_channel self.out_channel = out_channel def forward(self, x): B, L, C = x.shape # import pdb;pdb.set_trace() H = int(math.sqrt(L)) W = int(math.sqrt(L)) x = x.transpose(1, 2).contiguous().view(B, C, H, W) out = self.conv(x).flatten(2).transpose(1,2).contiguous() # B H*W C return out def flops(self, H, W): flops = 0 # conv flops += H/2*W/2*self.in_channel*self.out_channel*4*4 print("Downsample:{%.2f}"%(flops/1e9)) return flops class NearestUpsample(nn.Module): def __init__(self, in_channel, out_channel): super(NearestUpsample, self).__init__() self.deconv = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(inplace=True) ) self.in_channel = in_channel self.out_channel = out_channel def forward(self, x): B, L, C = x.shape H = int(math.sqrt(L)) W = int(math.sqrt(L)) x = x.transpose(1, 2).contiguous().view(B, C, H, W) x = F.interpolate(x, scale_factor=2, mode='nearest') out = self.deconv(x).flatten(2).transpose(1,2).contiguous() # B H*W C return out def flops(self, H, W): flops = 0 return flops class MyUpsample(nn.Module): def __init__(self, in_channel, out_channel): super(MyUpsample, self).__init__() self.deconv = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1), nn.LeakyReLU(inplace=True) ) self.in_channel = in_channel self.out_channel = out_channel def forward(self, x): B, L, C = x.shape H = int(math.sqrt(L)) W = int(math.sqrt(L)) x = x.transpose(1, 2).contiguous().view(B, C, H, W) x = F.interpolate(x, scale_factor=2, mode='nearest') out = self.deconv(x).flatten(2).transpose(1,2).contiguous() # B H*W C return out def flops(self, H, W): flops = 0 # conv flops += H*2*W*2*self.in_channel*self.out_channel*2*2 print("Upsample:{%.2f}"%(flops/1e9)) return flops # Upsample Block class Upsample(nn.Module): def __init__(self, in_channel, out_channel): super(Upsample, self).__init__() self.deconv = nn.Sequential( nn.ConvTranspose2d(in_channel, out_channel, kernel_size=2, stride=2), ) self.in_channel = in_channel self.out_channel = out_channel def forward(self, x):
''' This module contains the ConfigForm class (a popup dialog). @author: <NAME> ''' import clr import log from cvform import CVForm from configuration import Configuration import i18n import System clr.AddReference('System.Windows.Forms') from System.Windows.Forms import AutoScaleMode, Button, CheckBox, ContextMenu, \ CheckedListBox, DialogResult, FlatStyle, Label, MenuItem, \ RichTextBox, SelectionMode, TabControl, TabPage, TextBox, LinkLabel clr.AddReference('System.Drawing') from System.Drawing import Point, Size, ContentAlignment # ============================================================================= class ConfigForm(CVForm): ''' This class is a popup, modal dialog that displays all of the configurable options available to the user. The user can change any of the options, and then click OK or Cancel to quit the dialog and contine the normal execution of the program. Clicking Cancel will discard any configuration changes that were made; clicking OK will save them permanently. ''' # ========================================================================== def __init__(self, owner): ''' Initializes this form. owner -> this form's owner window/dialog ''' # these are the strings that the user sees for each checkbox; they can # also be used to reference each checkbox inside the checkboxlist ConfigForm.__SERIES_CB = i18n.get("ConfigFormSeriesCB") ConfigForm.__NUMBER_CB = i18n.get("ConfigFormNumberCB") ConfigForm.__PUBLISHED_CB = i18n.get("ConfigFormPublishedCB") ConfigForm.__RELEASED_CB = i18n.get("ConfigFormReleasedCB") ConfigForm.__TITLE_CB = i18n.get("ConfigFormTitleCB") ConfigForm.__CROSSOVERS_CB = i18n.get("ConfigFormCrossoversCB") ConfigForm.__WRITER_CB = i18n.get("ConfigFormWriterCB") ConfigForm.__PENCILLER_CB = i18n.get("ConfigFormPencillerCB") ConfigForm.__INKER_CB = i18n.get("ConfigFormInkerCB") ConfigForm.__COVER_ARTIST_CB = i18n.get("ConfigFormCoverCB") ConfigForm.__COLORIST_CB = i18n.get("ConfigFormColoristCB") ConfigForm.__LETTERER_CB = i18n.get("ConfigFormLettererCB") ConfigForm.__EDITOR_CB = i18n.get("ConfigFormEditorCB") ConfigForm.__SUMMARY_CB = i18n.get("ConfigFormSummaryCB") ConfigForm.__IMPRINT_CB = i18n.get("ConfigFormImprintCB") ConfigForm.__PUBLISHER_CB = i18n.get("ConfigFormPublisherCB") ConfigForm.__VOLUME_CB = i18n.get("ConfigFormVolumeCB") ConfigForm.__CHARACTERS_CB = i18n.get("ConfigFormCharactersCB") ConfigForm.__TEAMS_CB = i18n.get("ConfigFormTeamsCB") ConfigForm.__LOCATIONS_CB = i18n.get("ConfigFormLocationsCB") ConfigForm.__WEBPAGE_CB = i18n.get("ConfigFormWebCB") # the TabControl that contains all our TabPages self.__tabcontrol = None # the ok button for this dialog self.__ok_button = None # the cancel button for this dialog self.__cancel_button = None # the restore defaults button for this dialog self.__restore_button = None # "options" checkboxes self.__ow_existing_cb = None self.__ignore_blanks_cb = None self.__autochoose_series_cb = None self.__confirm_issue_cb = None self.__convert_imprints_cb = None self.__summary_dialog_cb = None self.__download_thumbs_cb = None self.__preserve_thumbs_cb = None self.__fast_rescrape_cb = None self.__rescrape_tags_cb = None self.__rescrape_notes_cb = None # "api key" textbox self.__api_key_tbox = None # "advanced settings" textbox self.__advanced_tbox = None # "data" checkbox list self.__update_checklist = None CVForm.__init__(self, owner, "configformLocation") self.__build_gui() # ========================================================================== def __build_gui(self): ''' Constructs and initializes the gui for this form. ''' # 1. --- build each gui component self.__ok_button = self.__build_okbutton() self.__cancel_button = self.__build_cancel_button() self.__restore_button = self.__build_restore_button() self.__tabcontrol = self.__build_tabcontrol() # 2. -- configure this form, and add all the gui components to it self.AutoScaleMode = AutoScaleMode.Font self.ClientSize = Size(416, 375) self.Text = i18n.get("ConfigFormTitle") self.Controls.Add(self.__ok_button) self.Controls.Add(self.__cancel_button) self.Controls.Add(self.__restore_button) self.Controls.Add(self.__tabcontrol) # 3. -- define the keyboard focus tab traversal ordering self.__ok_button.TabIndex = 0 self.__cancel_button.TabIndex = 1 self.__restore_button.TabIndex = 2 self.__tabcontrol.TabIndex = 3 self.__fired_update_gui() # ========================================================================== def __build_okbutton(self): ''' builds and returns the ok button for this form ''' button = Button() button.DialogResult = DialogResult.OK button.Location = Point(228, 343) button.Size = Size(80, 23) button.Text = i18n.get("ConfigFormOK") return button # ========================================================================== def __build_restore_button(self): ''' builds and returns the restore button for this form ''' button = Button() button.Click += self.__fired_restore_defaults button.Location = Point(10, 343) button.Size = Size(170, 23) button.Text = i18n.get("ConfigFormRestore") return button # ========================================================================== def __build_cancel_button(self): ''' builds and returns the cancel button for this form ''' button = Button() button.DialogResult = DialogResult.Cancel button.Location = Point(315, 343) button.Size = Size(90, 23) button.Text = i18n.get("ConfigFormCancel") return button # ========================================================================== def __build_tabcontrol(self): ''' builds and returns the TabControl for this dialog ''' tabcontrol = TabControl() tabcontrol.Location = Point(10, 15) tabcontrol.Size = Size(395, 302) tabcontrol.Controls.Add( self.__build_comicvinetab() ) tabcontrol.Controls.Add( self.__build_detailstab() ) tabcontrol.Controls.Add( self.__build_behaviourtab() ) tabcontrol.Controls.Add( self.__build_datatab() ) tabcontrol.Controls.Add( self.__build_advancedtab() ) return tabcontrol # ========================================================================== def __build_comicvinetab(self): ''' builds and returns the "ComicVine" Tab for the TabControl ''' tabpage = TabPage() tabpage.Text = i18n.get("ConfigFormComicVineTab") tabpage.Name = "comicvine" # 1. --- a description label for this tabpage label = Label() label.UseMnemonic = False label.AutoSize = False label.Location = Point(34, 80) label.Size = Size(315, 54) label.Text = i18n.get("ConfigFormComicVineText") # 2. --- the API key text box fired_update_gui = self.__fired_update_gui class ApiKeyTextBox(TextBox): def OnTextChanged(self, args): fired_update_gui() self.__api_key_tbox = ApiKeyTextBox() tbox = self.__api_key_tbox tbox.Location = Point(34, 135) tbox.Size = Size(315, 1) menu = ContextMenu() items = menu.MenuItems items.Add( MenuItem(i18n.get("TextCut"), lambda s, ea : tbox.Cut() ) ) items.Add( MenuItem(i18n.get("TextCopy"), lambda s, ea : tbox.Copy() ) ) items.Add( MenuItem(i18n.get("TextPaste"), lambda s, ea : tbox.Paste() ) ) tbox.ContextMenu = menu # 3. --- add a clickable link to send the user to ComicVine linklabel = LinkLabel() linklabel.UseMnemonic = False linklabel.AutoSize = False linklabel.Location = Point(34, 170) linklabel.Size = Size(315, 34) linklabel.Text = i18n.get("ConfigFormComicVineClickHere") linklabel.LinkClicked += self.__fired_linkclicked # 4. --- add 'em all to this tabpage tabpage.Controls.Add(label) tabpage.Controls.Add(tbox) tabpage.Controls.Add(linklabel) return tabpage # ========================================================================== def __build_detailstab(self): ''' builds and returns the "Details" Tab for the TabControl ''' tabpage = TabPage() tabpage.Text = i18n.get("ConfigFormDetailsTab") tabpage.Name = "details" # 1. --- a description label for this tabpage label = Label() label.UseMnemonic = False label.AutoSize = True label.Location = Point(14, 35) label.Size = Size(299, 17) label.Text = i18n.get("ConfigFormDetailsText") # 2. --- the 'select all' button checkall_button = Button() checkall_button.Click += self.__fired_checkall checkall_button.Location = Point(280, 107) checkall_button.Size = Size(100, 23) checkall_button.Text = i18n.get("ConfigFormDetailsAll") # 3. --- the 'deselect all' button uncheckall_button = Button() uncheckall_button.Click += self.__fired_uncheckall uncheckall_button.Location = Point(280, 138) uncheckall_button.Size = Size(100, 23) uncheckall_button.Text = i18n.get("ConfigFormDetailsNone") # 4. --- build the update checklist (contains all the 'data' checkboxes) self.__update_checklist = CheckedListBox() self.__update_checklist.CheckOnClick = True self.__update_checklist.ColumnWidth = 125 self.__update_checklist.ThreeDCheckBoxes = True self.__update_checklist.Location = Point(15, 65) self.__update_checklist.MultiColumn = True self.__update_checklist.SelectionMode = SelectionMode.One self.__update_checklist.Size = Size(260, 170) self.__update_checklist.ItemCheck += self.__fired_update_gui self.__update_checklist.Items.Add(ConfigForm.__SERIES_CB) self.__update_checklist.Items.Add(ConfigForm.__VOLUME_CB) self.__update_checklist.Items.Add(ConfigForm.__NUMBER_CB) self.__update_checklist.Items.Add(ConfigForm.__TITLE_CB) self.__update_checklist.Items.Add(ConfigForm.__PUBLISHED_CB) self.__update_checklist.Items.Add(ConfigForm.__RELEASED_CB) self.__update_checklist.Items.Add(ConfigForm.__CROSSOVERS_CB) self.__update_checklist.Items.Add(ConfigForm.__PUBLISHER_CB) self.__update_checklist.Items.Add(ConfigForm.__IMPRINT_CB) self.__update_checklist.Items.Add(ConfigForm.__WRITER_CB) self.__update_checklist.Items.Add(ConfigForm.__PENCILLER_CB) self.__update_checklist.Items.Add(ConfigForm.__INKER_CB) self.__update_checklist.Items.Add(ConfigForm.__COLORIST_CB) self.__update_checklist.Items.Add(ConfigForm.__LETTERER_CB) self.__update_checklist.Items.Add(ConfigForm.__COVER_ARTIST_CB) self.__update_checklist.Items.Add(ConfigForm.__EDITOR_CB) self.__update_checklist.Items.Add(ConfigForm.__SUMMARY_CB) self.__update_checklist.Items.Add(ConfigForm.__CHARACTERS_CB) self.__update_checklist.Items.Add(ConfigForm.__TEAMS_CB) self.__update_checklist.Items.Add(ConfigForm.__LOCATIONS_CB) self.__update_checklist.Items.Add(ConfigForm.__WEBPAGE_CB) # 5. --- add 'em all to this tabpage tabpage.Controls.Add(label) tabpage.Controls.Add(checkall_button) tabpage.Controls.Add(uncheckall_button) tabpage.Controls.Add(self.__update_checklist) return tabpage # ========================================================================== def __build_behaviourtab(self): ''' builds and returns the "Behaviour" Tab for the TabControl ''' tabpage = TabPage() tabpage.Text = i18n.get("ConfigFormBehaviourTab") # 1. --- build the 'When scraping for the first time' label first_scrape_label = Label() first_scrape_label.AutoSize = False first_scrape_label.FlatStyle = FlatStyle.System first_scrape_label.Location = Point(52, 27) first_scrape_label.Text = i18n.get("ConfigFormFirstScrapeLabel") first_scrape_label.Size = Size(300, 17) # 1. --- build the 'autochoose series' checkbox self.__autochoose_series_cb = CheckBox() self.__autochoose_series_cb.AutoSize = False self.__autochoose_series_cb.FlatStyle = FlatStyle.System self.__autochoose_series_cb.Location = Point(82, 45) self.__autochoose_series_cb.Size = Size(300, 34) self.__autochoose_series_cb.Text =i18n.get("ConfigFormAutochooseSeriesCB") self.__autochoose_series_cb.CheckedChanged += self.__fired_update_gui # 2. --- build the 'confirm issue' checkbox self.__confirm_issue_cb = CheckBox() self.__confirm_issue_cb.AutoSize = False self.__confirm_issue_cb.FlatStyle = FlatStyle.System self.__confirm_issue_cb.Location = Point(82, 75) self.__confirm_issue_cb.Size = Size(300, 34) self.__confirm_issue_cb.Text = i18n.get("ConfigFormConfirmIssueCB") self.__confirm_issue_cb.CheckedChanged += self.__fired_update_gui # 3. -- build the 'use fast rescrape' checkbox self.__fast_rescrape_cb = CheckBox() self.__fast_rescrape_cb.AutoSize = False self.__fast_rescrape_cb.FlatStyle = FlatStyle.System self.__fast_rescrape_cb.Location = Point(52, 116) self.__fast_rescrape_cb.Size = Size(300, 34) self.__fast_rescrape_cb.Text = i18n.get("ConfigFormRescrapeCB") self.__fast_rescrape_cb.CheckedChanged += self.__fired_update_gui # 4. -- build the 'add rescrape hints to notes' checkbox self.__rescrape_notes_cb = CheckBox() self.__rescrape_notes_cb.AutoSize = False self.__rescrape_notes_cb.FlatStyle = FlatStyle.System self.__rescrape_notes_cb.Location = Point(82, 151) self.__rescrape_notes_cb.Size = Size(270, 17) self.__rescrape_notes_cb.Text = i18n.get("ConfigFormRescrapeNotesCB") self.__rescrape_notes_cb.CheckedChanged += self.__fired_update_gui # 5. -- build the 'add rescrape hints to tags' checkbox self.__rescrape_tags_cb = CheckBox() self.__rescrape_tags_cb.AutoSize = False self.__rescrape_tags_cb.FlatStyle = FlatStyle.System self.__rescrape_tags_cb.Location = Point(82, 181) self.__rescrape_tags_cb.Size = Size(270, 17) self.__rescrape_tags_cb.Text = i18n.get("ConfigFormRescrapeTagsCB") self.__rescrape_tags_cb.CheckedChanged += self.__fired_update_gui # 6. --- build the 'specify series name' checkbox self.__summary_dialog_cb = CheckBox() self.__summary_dialog_cb.AutoSize = False self.__summary_dialog_cb.FlatStyle = FlatStyle.System self.__summary_dialog_cb.Location = Point(52, 214) self.__summary_dialog_cb.Size = Size(300, 34) self.__summary_dialog_cb.Text = i18n.get("ConfigFormShowSummaryCB") self.__summary_dialog_cb.CheckedChanged += self.__fired_update_gui # 7. --- add 'em all to the tabpage tabpage.Controls.Add(first_scrape_label) tabpage.Controls.Add(self.__autochoose_series_cb) tabpage.Controls.Add(self.__confirm_issue_cb) tabpage.Controls.Add(self.__fast_rescrape_cb) tabpage.Controls.Add(self.__rescrape_tags_cb) tabpage.Controls.Add(self.__rescrape_notes_cb) tabpage.Controls.Add(self.__summary_dialog_cb) return tabpage # ========================================================================== def __build_datatab(self): ''' builds and returns the "Data" Tab for the TabControl ''' tabpage = TabPage() tabpage.Text = i18n.get("ConfigFormDataTab") # 1. --- build the 'convert imprints checkbox' self.__convert_imprints_cb = CheckBox() self.__convert_imprints_cb.AutoSize = False self.__convert_imprints_cb.FlatStyle =
import os import sys import time import random from collections import OrderedDict import boto3 import pandas as pd import numpy as np from six import raise_from from PIL import Image, ImageFile, ImageDraw from botocore.exceptions import ClientError from keras_retinanet.preprocessing.csv_generator import Generator from keras_retinanet.utils.image import read_image_bgr, resize_image from utils.query import pd_query, cursor from config import config # Without this the program will crash ImageFile.LOAD_TRUNCATED_IMAGES = True def error_print(message): print(f'[Warning] {message}', file=sys.stderr) def _parse(value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _atomic_file_exists(file_path): """ Atomically check if a file exists Returns a boolean representing if the file exists """ try: # This file open is atomic. This avoids race conditions when multiple processes are running. # This race condition only happens when workers > 1 and multiprocessing = True in fit_generator fd = os.open(file_path, os.O_CREAT | os.O_EXCL) os.close(fd) return False except FileExistsError: return True def _get_labelmap(classes): """ Initializes the classmap of each class's database IDs to training IDs """ # Keras requires that the mapping IDs correspond to the index number of the class. # So we create that mapping (dictionary) class_id_name = pd_query( f"select id, name from concepts where id = ANY(ARRAY{classes})") labelmap = pd.Series(class_id_name.name.values, index=class_id_name.id).to_dict() return labelmap def get_classmap(classes): """ Initializes the classmap of each class's database IDs to training IDs """ # Keras requires that the mapping IDs correspond to the index number of the class. # So we create that mapping (dictionary) classmap = {class_: index for index, class_ in enumerate(classes)} return classmap def _bound_coordinates(curr): x_ratio = (curr['videowidth'] / config.RESIZED_WIDTH) y_ratio = (curr['videoheight'] / config.RESIZED_HEIGHT) x1 = min(max(int(curr['x1'] / x_ratio), 0), config.RESIZED_WIDTH) x2 = min(max(int(curr['x2'] / x_ratio), 0), config.RESIZED_WIDTH) y1 = min(max(int(curr['y1'] / y_ratio), 0), config.RESIZED_HEIGHT) y2 = min(max(int(curr['y2'] / y_ratio), 0), config.RESIZED_HEIGHT) return x1, x2, y1, y2 class AnnotationGenerator(object): def __init__(self, collection_ids, verified_only, include_tracking, verify_videos, classes, min_examples, validation_split=0.8): print("Grabbing annotations....") # Start with a list of all possible annotations, grouped by frame in video selected_frames, concept_counts = self._select_annotations(collection_ids, verified_only, include_tracking, verify_videos, min_examples, classes) print(f"Found {sum(concept_counts.values())} annotations.") # Creating a counter for each user: the concepts & whether they were verified. userDict = {} for user_df in selected_frames: userId = str(user_df['userid'].iloc[0]) if userId not in userDict: userDict[userId] = {} for index,row in user_df.iterrows(): # each unique concept conceptId = str(row['conceptid']) if conceptId not in userDict[userId]: userDict[userId][conceptId] = {'0': 0, '1':0} # 0 is un-verified, 1 is verified if pd.notnull(row['verifiedby']): # it has been verified, increment verified count userDict[userId][conceptId]['1'] +=1 else: userDict[userId][conceptId]['0'] +=1 self.userDict = userDict self.selected_frames = selected_frames self.classmap = get_classmap(classes) # Shuffle selected frames so that training/testing set are different each run random.shuffle(self.selected_frames) num_frames = len(self.selected_frames) split_index = int(num_frames * validation_split) # Split our data into training and testing sets, based on validation_split self.training_set = self.selected_frames[0:split_index] self.testing_set = self.selected_frames[split_index:] def flow_from_s3(self, image_folder='', image_extension='.png', subset='training', **kwargs): # Depending on subset, return either a training or testing generator if subset == 'training': return S3Generator( selected_frames=self.training_set, image_folder=image_folder, image_extension=image_extension, classes=self.classmap, **kwargs ) elif subset in ['validation', 'testing']: return S3Generator( selected_frames=self.testing_set, image_folder=image_folder, image_extension=image_extension, classes=self.classmap, **kwargs ) else: raise ValueError( 'subset parameter must be either "training" or "validation"/"testing"') @staticmethod def _select_annotations(collection_ids, verified_only, include_tracking, verify_videos, min_examples, concepts): selected = [] concept_count = {} annotations = AnnotationGenerator._get_annotations( collection_ids, verified_only, include_tracking, verify_videos, concepts, min_examples) for concept in concepts: concept_count[concept] = 0 # This grouping ensure that we can view all annotations for a single image frames_group = annotations.groupby( ['videoid', 'frame_num'], sort=False) frames_group = [df for _, df in frames_group] ai_id = pd_query( "SELECT id FROM users WHERE username='tracking'").id[0] # Give priority to frames with highest verification priority # And with least amount of tracking annotations # And lower speed frames_group.sort(key=lambda df: ( -df.priority.max(), list(df['userid']).count(ai_id), df.speed.mean())) # Selects images that we'll use (each group has annotations for an image) for annotation_group in frames_group: # Check if we have min number of images already if not any(v < min_examples for v in concept_count.values()): break in_annot = [] for i, row in annotation_group.iterrows(): if row['conceptid'] not in concept_count: continue concept_count[row['conceptid']] += 1 in_annot.append(row['conceptid']) x1, x2, y1, y2 = _bound_coordinates(row) annotation_group.at[i, 'x1'] = x1 annotation_group.at[i, 'x2'] = x2 annotation_group.at[i, 'y1'] = y1 annotation_group.at[i, 'y2'] = y2 annotation_group.at[i, 'videowidth'] = config.RESIZED_WIDTH annotation_group.at[i, 'videoheight'] = config.RESIZED_HEIGHT # Checks if frame has only concept we have too many of if any(v > min_examples for v in concept_count.values()): # Gets all concepts that we have too many of excess = list( {key: value for (key, value) in concept_count.items() if value > min_examples}) # if it doens't include concept that we need more of # Don't save the annotation if set(excess) >= set(in_annot): for a in in_annot: concept_count[a] -= 1 continue selected.append(annotation_group) return selected, concept_count @staticmethod def _get_annotations(collection_ids, verified_only, include_tracking, verify_videos, concepts, min_examples): # Query that gets all annotations for given concepts # making sure that any tracking annotations originated from good users tracking_user = cursor.execute( """SELECT id FROM users WHERE username = 'tracking'""") tracking_uid = cursor.fetchone()[0] annotations_query = r''' WITH collection AS (SELECT A.id, image, userid, videoid, videowidth, videoheight, conceptid, x1, x2, y1, y2, speed, ROUND(fps * timeinvideo) as frame_num, verifiedby FROM annotation_intermediate inter LEFT JOIN annotations a ON a.id=inter.annotationid LEFT JOIN videos ON videos.id=videoid WHERE inter.id = ANY(%s) AND a.videoid <> ANY(%s) ''' if verified_only: annotations_query += """ AND a.verifiedby IS NOT NULL""" # Filter collection so each concept has min_example annotations annotations_query += r''' ), filteredCollection AS ( SELECT * FROM ( SELECT ROW_NUMBER() OVER ( PARTITION BY conceptid ORDER BY userid=32, verifiedby IS NULL) AS r, c.* FROM collection c) t WHERE t.r <= (%s) ) ''' # Add annotations that exist in the same frame annotations_query += r''' SELECT A.id, image, userid, videoid, videowidth, videoheight, conceptid, x1, x2, y1, y2, speed, priority, ROUND(fps * timeinvideo) as frame_num, verifiedby FROM annotations a LEFT JOIN videos ON videos.id=videoid WHERE ABS(x2-x1)>25 AND ABS(y2-y1)>25 AND x1>=0 AND x1<videowidth AND x2>0 AND x2<=videowidth AND y1>=0 AND y1<videowidth AND y2>0 AND y2<=videowidth AND EXISTS ( SELECT 1 FROM filteredCollection c WHERE c.videoid=a.videoid AND c.frame_num=ROUND(fps * timeinvideo)) ''' if not include_tracking: annotations_query += f''' AND a.userid <> {tracking_uid}''' return pd_query( annotations_query, (collection_ids, verify_videos, min_examples)) class S3Generator(Generator): def __init__(self, classes, selected_frames, image_folder, image_extension='.png', **kwargs): self.image_folder = image_folder # We initalize selected_annotations to hold all possible annotation iamges. # Then, downloaded_images will hold those that have already been downloaded self.selected_annotations = pd.concat(selected_frames).reset_index() # Go ahead and add a column with the file name we'll save the images as # We use videoid + frame_num as this ensures that we never download # the same frame in a video twice, even if it has multiple annotations self.selected_annotations['save_name'] = self.selected_annotations.apply( lambda row: f'{row["videoid"]}_{int(row["frame_num"])}', axis=1 ) # Make a set of all images that've already been downloaded self.downloaded_images = set(os.listdir(image_folder)) self.image_extension = image_extension self.classes = classes self.labelmap = _get_labelmap(list(classes)) self.failed_downloads = set() # Make a reverse dictionary so that we can lookup the other way self.labels = {} for key, value in self.classes.items(): self.labels[value] = key self._connect_s3() self.image_data = self._read_annotations() super(S3Generator, self).__init__(**kwargs) def size(self): """ Size of the dataset. """ return len(self.selected_annotations.index) def num_classes(self): """ Number of classes in the dataset. """ return len(self.classes) def has_label(self, label): """ Return True if label is a known label. """ return label in self.labels def has_name(self, name): """ Returns True if name is a known class. """ return name in self.classes def name_to_label(self, name): """ Map name to label. """ return self.classes[name] def label_to_name(self, label): """ Map label to name. """ return self.labelmap[self.labels[label]] def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ image = self.selected_annotations.iloc[image_index] image_width = image['videowidth'] image_height = image['videoheight'] return float(image_width) / float(image_height) def load_image(self, image_index): """ Load an image at the image_index. """ if self._download_image(image_index): return read_image_bgr(self.image_path(image_index)) return self.load_image((image_index +
<filename>tests/test_data/netsim_data.py SCENARIO_1_STAT = { "stat_samples": { "D": { (0, 9): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 8888.888888888889, "avg_receive_rate_pps": 1.1111111111111112, "avg_send_rate_bps": 0.0, "avg_send_rate_pps": 0.0, "duration": 9, "last_state_change_timestamp": 9, "timestamp": 9, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 10000, "total_received_pkts": 10, "total_sent_bytes": 0, "total_sent_pkts": 0, } }, "S": { (0, 9): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 0.0, "avg_receive_rate_pps": 0.0, "avg_send_rate_bps": 8888.888888888889, "avg_send_rate_pps": 1.1111111111111112, "duration": 9, "last_state_change_timestamp": 9, "timestamp": 9, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 0, "total_received_pkts": 0, "total_sent_bytes": 10000, "total_sent_pkts": 10, } }, } } SCENARIO_2_3_STAT = { "stat_samples": { "D": { (0, 10): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 8000.0, "avg_receive_rate_pps": 1.0, "avg_send_rate_bps": 0.0, "avg_send_rate_pps": 0.0, "duration": 10, "last_state_change_timestamp": 9, "timestamp": 10, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 10000, "total_received_pkts": 10, "total_sent_bytes": 0, "total_sent_pkts": 0, } }, "S": { (0, 10): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 0.0, "avg_receive_rate_pps": 0.0, "avg_send_rate_bps": 8000.0, "avg_send_rate_pps": 1.0, "duration": 10, "last_state_change_timestamp": 9, "timestamp": 10, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 0, "total_received_pkts": 0, "total_sent_bytes": 10000, "total_sent_pkts": 10, } }, } } SCENARIO_6_STAT = { "stat_samples": { "D": { (0, 2): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 1.2, "avg_latency_at_departure": 0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 8000.0, "avg_receive_rate_pps": 1.0, "avg_send_rate_bps": 0.0, "avg_send_rate_pps": 0.0, "duration": 2.0, "last_state_change_timestamp": 1.6, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 2000, "total_received_pkts": 2, "total_sent_bytes": 0, "total_sent_pkts": 0, }, (2, 4): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 1.4749999999999999, "avg_latency_at_departure": 0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 16000.0, "avg_receive_rate_pps": 2.0, "avg_send_rate_bps": 0.0, "avg_send_rate_pps": 0.0, "duration": 2.0, "last_state_change_timestamp": 3.6, "timestamp": 4, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 4000, "total_received_pkts": 4, "total_sent_bytes": 0, "total_sent_pkts": 0, }, }, "S": { (0, 2): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 0.0, "avg_receive_rate_pps": 0.0, "avg_send_rate_bps": 76000.0, "avg_send_rate_pps": 9.5, "duration": 2.0, "last_state_change_timestamp": 1.9000000000000006, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 0, "total_received_pkts": 0, "total_sent_bytes": 19000, "total_sent_pkts": 19, }, (2, 4): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_latency_at_arrival": 0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_receive_rate_bps": 0.0, "avg_receive_rate_pps": 0.0, "avg_send_rate_bps": 80000.0, "avg_send_rate_pps": 10.0, "duration": 2.0, "last_state_change_timestamp": 3.900000000000002, "timestamp": 4, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 0, "total_received_pkts": 0, "total_sent_bytes": 20000, "total_sent_pkts": 20, }, }, "SW1": { (0, 2): { "avg_drop_rate_bps": 56000.0, "avg_drop_rate_pps": 7.0, "avg_receive_rate_bps": 76000.0, "avg_receive_rate_pps": 9.5, "avg_send_rate_bps": 12000.0, "avg_send_rate_pps": 1.5, "duration": 2.0, "last_state_change_timestamp": 1.9000000000000006, "packet_processors": { "PacketProcessor": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 9.5, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_put_rate_pps": 9.5, "avg_queue_len": 0.0, "avg_receive_rate_bps": 76000.0, "avg_receive_rate_pps": 9.5, "avg_send_rate_bps": 76000.0, "avg_send_rate_pps": 9.5, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 2.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 1.9000000000000006, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 19000, "total_get_pkts": 19, "total_put_bytes": 19000, "total_put_pkts": 19, "total_received_bytes": 19000, "total_received_pkts": 19, "total_sent_bytes": 19000, "total_sent_pkts": 19, } }, "rx_interface_queues": { "S:SW1:1": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 0, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 19, "total_get_requested_count": 20, "total_put_processed_count": 19, "total_put_requested_count": 19, } }, "rx_interfaces": { "S:SW1:1": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 9.5, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_put_rate_pps": 9.5, "avg_queue_len": 0.0, "avg_receive_rate_bps": 76000.0, "avg_receive_rate_pps": 9.5, "avg_send_rate_bps": 76000.0, "avg_send_rate_pps": 9.5, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 2.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 1.9000000000000006, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 19000, "total_get_pkts": 19, "total_put_bytes": 19000, "total_put_pkts": 19, "total_received_bytes": 19000, "total_received_pkts": 19, "total_sent_bytes": 19000, "total_sent_pkts": 19, } }, "timestamp": 2, "total_dropped_bytes": 14000, "total_dropped_pkts": 14, "total_received_bytes": 19000, "total_received_pkts": 19, "total_sent_bytes": 3000, "total_sent_pkts": 3, "tx_interface_queues": { "SW1:SW2:2": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 1, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 4, "total_get_requested_count": 4, "total_put_processed_count": 5, "total_put_requested_count": 5, } }, "tx_interfaces": { "SW1:SW2:2": { "avg_drop_rate_bps": 56000.0, "avg_drop_rate_pps": 7.0, "avg_get_rate_pps": 2.0, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.7999999999999999, "avg_latency_at_drop": 0.0, "avg_put_rate_pps": 2.5, "avg_queue_len": 0.8499999999999999, "avg_receive_rate_bps": 76000.0, "avg_receive_rate_pps": 9.5, "avg_send_rate_bps": 12000.0, "avg_send_rate_pps": 1.5, "avg_wait_time": 0.32500000000000007, "cur_queue_len": 1, "duration": 2.0, "integral_queue_sum": 1.6999999999999997, "integral_wait_time_sum": 1.3000000000000003, "last_state_change_timestamp": 1.9000000000000006, "max_queue_len": 1, "max_wait_time": 0.5000000000000001, "timestamp": 2, "total_dropped_bytes": 14000, "total_dropped_pkts": 14, "total_get_bytes": 4000, "total_get_pkts": 4, "total_put_bytes": 5000, "total_put_pkts": 5, "total_received_bytes": 19000, "total_received_pkts": 19, "total_sent_bytes": 3000, "total_sent_pkts": 3, } }, }, (2, 4): { "avg_drop_rate_bps": 120000.0, "avg_drop_rate_pps": 15.0, "avg_receive_rate_bps": 156000.0, "avg_receive_rate_pps": 19.5, "avg_send_rate_bps": 28000.0, "avg_send_rate_pps": 3.5, "duration": 2.0, "last_state_change_timestamp": 3.900000000000002, "packet_processors": { "PacketProcessor": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 9.75, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_put_rate_pps": 9.75, "avg_queue_len": 0.0, "avg_receive_rate_bps": 78000.0, "avg_receive_rate_pps": 9.75, "avg_send_rate_bps": 78000.0, "avg_send_rate_pps": 9.75, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 4.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 3.900000000000002, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 4, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 39000, "total_get_pkts": 39, "total_put_bytes": 39000, "total_put_pkts": 39, "total_received_bytes": 39000, "total_received_pkts": 39, "total_sent_bytes": 39000, "total_sent_pkts": 39, } }, "rx_interface_queues": { "S:SW1:1": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 0, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 39, "total_get_requested_count": 40, "total_put_processed_count": 39, "total_put_requested_count": 39, } }, "rx_interfaces": { "S:SW1:1": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 9.75, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.0, "avg_latency_at_drop": 0, "avg_put_rate_pps": 9.75, "avg_queue_len": 0.0, "avg_receive_rate_bps": 78000.0, "avg_receive_rate_pps": 9.75, "avg_send_rate_bps": 78000.0, "avg_send_rate_pps": 9.75, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 4.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 3.900000000000002, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 4, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 39000, "total_get_pkts": 39, "total_put_bytes": 39000, "total_put_pkts": 39, "total_received_bytes": 39000, "total_received_pkts": 39, "total_sent_bytes": 39000, "total_sent_pkts": 39, } }, "timestamp": 4, "total_dropped_bytes": 30000, "total_dropped_pkts": 30, "total_received_bytes": 39000, "total_received_pkts": 39, "total_sent_bytes": 7000, "total_sent_pkts": 7, "tx_interface_queues": { "SW1:SW2:2": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 1, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 8, "total_get_requested_count": 8, "total_put_processed_count": 9, "total_put_requested_count": 9, } }, "tx_interfaces": { "SW1:SW2:2": { "avg_drop_rate_bps": 60000.0, "avg_drop_rate_pps": 7.5, "avg_get_rate_pps": 2.0, "avg_latency_at_arrival": 0.0, "avg_latency_at_departure": 0.8999999999999998, "avg_latency_at_drop": 0.0, "avg_put_rate_pps": 2.25, "avg_queue_len": 0.9249999999999988, "avg_receive_rate_bps": 78000.0, "avg_receive_rate_pps": 9.75, "avg_send_rate_bps": 14000.0, "avg_send_rate_pps": 1.75, "avg_wait_time": 0.4124999999999997, "cur_queue_len": 1, "duration": 4.0, "integral_queue_sum": 3.6999999999999953, "integral_wait_time_sum": 3.2999999999999976, "last_state_change_timestamp": 3.900000000000002, "max_queue_len": 1, "max_wait_time": 0.5000000000000001, "timestamp": 4, "total_dropped_bytes": 30000, "total_dropped_pkts": 30, "total_get_bytes": 8000, "total_get_pkts": 8, "total_put_bytes": 9000, "total_put_pkts": 9, "total_received_bytes": 39000, "total_received_pkts": 39, "total_sent_bytes": 7000, "total_sent_pkts": 7, } }, }, }, "SW2": { (0, 2): { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_receive_rate_bps": 12000.0, "avg_receive_rate_pps": 1.5, "avg_send_rate_bps": 8000.0, "avg_send_rate_pps": 1.0, "duration": 2.0, "last_state_change_timestamp": 1.6, "packet_processors": { "PacketProcessor": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 1.5, "avg_latency_at_arrival": 0.7999999999999999, "avg_latency_at_departure": 0.7999999999999999, "avg_latency_at_drop": 0, "avg_put_rate_pps": 1.5, "avg_queue_len": 0.0, "avg_receive_rate_bps": 12000.0, "avg_receive_rate_pps": 1.5, "avg_send_rate_bps": 12000.0, "avg_send_rate_pps": 1.5, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 2.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 1.6, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 3000, "total_get_pkts": 3, "total_put_bytes": 3000, "total_put_pkts": 3, "total_received_bytes": 3000, "total_received_pkts": 3, "total_sent_bytes": 3000, "total_sent_pkts": 3, } }, "rx_interface_queues": { "SW1:SW2:2": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 0, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 3, "total_get_requested_count": 4, "total_put_processed_count": 3, "total_put_requested_count": 3, } }, "rx_interfaces": { "SW1:SW2:2": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 1.5, "avg_latency_at_arrival": 0.7999999999999999, "avg_latency_at_departure": 0.7999999999999999, "avg_latency_at_drop": 0, "avg_put_rate_pps": 1.5, "avg_queue_len": 0.0, "avg_receive_rate_bps": 12000.0, "avg_receive_rate_pps": 1.5, "avg_send_rate_bps": 12000.0, "avg_send_rate_pps": 1.5, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 2.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 1.6, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 3000, "total_get_pkts": 3, "total_put_bytes": 3000, "total_put_pkts": 3, "total_received_bytes": 3000, "total_received_pkts": 3, "total_sent_bytes": 3000, "total_sent_pkts": 3, } }, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_received_bytes": 3000, "total_received_pkts": 3, "total_sent_bytes": 2000, "total_sent_pkts": 2, "tx_interface_queues": { "SW2:D:3": { "avg_get_processed_rate": 0, "avg_get_requested_rate": 0, "avg_put_processed_rate": 0, "avg_put_requested_rate": 0, "avg_queue_len": 0, "cur_queue_len": 0, "duration": 0, "integral_queue_sum": 0, "last_state_change_timestamp": 0, "max_queue_len": 0, "timestamp": 0, "total_get_processed_count": 3, "total_get_requested_count": 3, "total_put_processed_count": 3, "total_put_requested_count": 3, } }, "tx_interfaces": { "SW2:D:3": { "avg_drop_rate_bps": 0.0, "avg_drop_rate_pps": 0.0, "avg_get_rate_pps": 1.5, "avg_latency_at_arrival": 0.7999999999999999, "avg_latency_at_departure": 1.2, "avg_latency_at_drop": 0, "avg_put_rate_pps": 1.5, "avg_queue_len": 0.0, "avg_receive_rate_bps": 12000.0, "avg_receive_rate_pps": 1.5, "avg_send_rate_bps": 8000.0, "avg_send_rate_pps": 1.0, "avg_wait_time": 0.0, "cur_queue_len": 0, "duration": 2.0, "integral_queue_sum": 0.0, "integral_wait_time_sum": 0.0, "last_state_change_timestamp": 1.6, "max_queue_len": 0, "max_wait_time": 0, "timestamp": 2, "total_dropped_bytes": 0, "total_dropped_pkts": 0, "total_get_bytes": 3000, "total_get_pkts": 3, "total_put_bytes": 3000, "total_put_pkts": 3, "total_received_bytes": 3000, "total_received_pkts":
import numpy as np from scipy.optimize import minimize from scipy.io import loadmat from math import sqrt,exp import pickle import sys from time import time def initializeWeights(n_in, n_out): """ # initializeWeights return the random weights for Neural Network given the # number of node in the input layer and output layer # Input: # n_in: number of nodes of the input layer # n_out: number of nodes of the output layer # Output: # W: matrix of random initial weights with size (n_out x (n_in + 1))""" epsilon = sqrt(6) / sqrt(n_in + n_out + 1) W = (np.random.rand(n_out, n_in + 1) * 2 * epsilon) - epsilon return W def sigmoid(z): """# Notice that z can be a scalar, a vector or a matrix # return the sigmoid of input z""" return 1.0 / (1.0 + np.exp(-1.0 * z)) def preprocess(): """ Input: Although this function doesn't have any input, you are required to load the MNIST data set from file 'mnist_all.mat'. Output: train_data: matrix of training set. Each row of train_data contains feature vector of a image train_label: vector of label corresponding to each image in the training set validation_data: matrix of training set. Each row of validation_data contains feature vector of a image validation_label: vector of label corresponding to each image in the training set test_data: matrix of training set. Each row of test_data contains feature vector of a image test_label: vector of label corresponding to each image in the testing set Some suggestions for preprocessing step: - feature selection""" mat = loadmat('mnist_all.mat') # loads the MAT object as a Dictionary # Pick a reasonable size for validation data # ------------Initialize preprocess arrays----------------------# train_preprocess = np.zeros(shape=(50000, 784)) validation_preprocess = np.zeros(shape=(10000, 784)) test_preprocess = np.zeros(shape=(10000, 784)) train_label_preprocess = np.zeros(shape=(50000,)) validation_label_preprocess = np.zeros(shape=(10000,)) test_label_preprocess = np.zeros(shape=(10000,)) # ------------Initialize flag variables----------------------# train_len = 0 validation_len = 0 test_len = 0 train_label_len = 0 validation_label_len = 0 # ------------Start to split the data set into 6 arrays-----------# for key in mat: # -----------when the set is training set--------------------# if "train" in key: label = key[-1] # record the corresponding label tup = mat.get(key) sap = range(tup.shape[0]) tup_perm = np.random.permutation(sap) tup_len = len(tup) # get the length of current training set tag_len = tup_len - 1000 # defines the number of examples which will be added into the training set # ---------------------adding data to training set-------------------------# train_preprocess[train_len:train_len + tag_len] = tup[tup_perm[1000:], :] train_len += tag_len train_label_preprocess[train_label_len:train_label_len + tag_len] = label train_label_len += tag_len # ---------------------adding data to validation set-------------------------# validation_preprocess[validation_len:validation_len + 1000] = tup[tup_perm[0:1000], :] validation_len += 1000 validation_label_preprocess[validation_label_len:validation_label_len + 1000] = label validation_label_len += 1000 # ---------------------adding data to test set-------------------------# elif "test" in key: label = key[-1] tup = mat.get(key) sap = range(tup.shape[0]) tup_perm = np.random.permutation(sap) tup_len = len(tup) test_label_preprocess[test_len:test_len + tup_len] = label test_preprocess[test_len:test_len + tup_len] = tup[tup_perm] test_len += tup_len # ---------------------Shuffle,double and normalize-------------------------# train_size = range(train_preprocess.shape[0]) train_perm = np.random.permutation(train_size) train_data = train_preprocess[train_perm] train_data = np.double(train_data) train_data = train_data / 255.0 train_label = train_label_preprocess[train_perm] validation_size = range(validation_preprocess.shape[0]) vali_perm = np.random.permutation(validation_size) validation_data = validation_preprocess[vali_perm] validation_data = np.double(validation_data) validation_data = validation_data / 255.0 validation_label = validation_label_preprocess[vali_perm] test_size = range(test_preprocess.shape[0]) test_perm = np.random.permutation(test_size) test_data = test_preprocess[test_perm] test_data = np.double(test_data) test_data = test_data / 255.0 test_label = test_label_preprocess[test_perm] same_value_cols = np.all(train_data == train_data[0,:], axis = 0) common = np.where(same_value_cols == True)[0] train_data = np.delete(train_data,common,axis=1) validation_data = np.delete(validation_data,common,axis=1) test_data = np.delete(test_data,common,axis=1) print('preprocess done') return train_data, train_label, validation_data, validation_label, test_data, test_label def feedForward(inputs, weight): net = np.dot(inputs, weight.T) out = sigmoid(net) return out def computeGradient(training_data, out_hidden, w2, out_output, train_label): deltaL = out_output - train_label gradient_out = np.dot(deltaL.T, out_hidden) gradient_out *= (training_data.shape[0] ** -1) gradient_hidden = np.dot(training_data.T, np.dot(deltaL, w2) * out_hidden * ( 1 - out_hidden)) gradient_hidden = gradient_hidden[:,:-1] gradient_hidden = gradient_hidden.T gradient_hidden *= (training_data.shape[0] ** -1) return gradient_hidden,gradient_out def addRegularization(training_data, w1, w2, obj_val, gradient_hidden, gradient_out, lambdaval): obj_val += (lambdaval/(2*training_data.shape[0])) * (np.sum(w1 * w1) + np.sum(w2 * w2)) gradient_out += (training_data.shape[0] ** -1) * (lambdaval * w2) gradient_hidden += (training_data.shape[0] ** -1) * (lambdaval * w1) return obj_val,gradient_hidden,gradient_out def nnObjFunction(params, *args): """% nnObjFunction computes the value of objective function (negative log % likelihood error function with regularization) given the parameters % of Neural Networks, thetraining data, their corresponding training % labels and lambda - regularization hyper-parameter. % Input: % params: vector of weights of 2 matrices w1 (weights of connections from % input layer to hidden layer) and w2 (weights of connections from % hidden layer to output layer) where all of the weights are contained % in a single vector. % n_input: number of node in input layer (not include the bias node) % n_hidden: number of node in hidden layer (not include the bias node) % n_class: number of node in output layer (number of classes in % classification problem % training_data: matrix of training data. Each row of this matrix % represents the feature vector of a particular image % training_label: the vector of truth label of training images. Each entry % in the vector represents the truth label of its corresponding image. % lambda: regularization hyper-parameter. This value is used for fixing the % overfitting problem. % Output: % obj_val: a scalar value representing value of error function % obj_grad: a SINGLE vector of gradient value of error function % NOTE: how to compute obj_grad % Use backpropagation algorithm to compute the gradient of error function % for each weights in weight matrices. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % reshape 'params' vector into 2 matrices of weight w1 and w2 % w1: matrix of weights of connections from input layer to hidden layers. % w1(i, j) represents the weight of connection from unit j in input % layer to unit i in hidden layer. % w2: matrix of weights of connections from hidden layer to output layers. % w2(i, j) represents the weight of connection from unit j in hidden % layer to unit i in output layer.""" n_input, n_hidden, n_class, training_data, training_label, lambdaval = args w1 = params[0:n_hidden * (n_input + 1)].reshape((n_hidden, (n_input + 1))) w2 = params[(n_hidden * (n_input + 1)):].reshape((n_class, (n_hidden + 1))) obj_val = 0 train_label = np.zeros((training_label.shape[0],n_class)) train_label[np.arange(training_label.shape[0]),training_label.astype(int)] = 1 training_data = np.hstack((training_data, np.ones((training_data.shape[0],1)))) out_hidden = feedForward(training_data, w1) out_hidden = np.hstack((out_hidden, np.ones((out_hidden.shape[0],1)))) out_output = feedForward(out_hidden, w2) obj_val = (-1.0/training_data.shape[0]) * (np.sum( np.sum( ( train_label * np.log(out_output) ) + ( (1 - train_label) * np.log(1 - out_output) ) ) ) ) gradient_hidden, gradient_out = computeGradient(training_data, out_hidden, w2, out_output, train_label) obj_val, gradient_hidden, gradient_out = addRegularization(training_data, w1, w2, obj_val, gradient_hidden, gradient_out, lambdaval) # Make sure you reshape the gradient matrices to a 1D array. for instance if your gradient matrices are grad_w1 and grad_w2 # you would use code similar to the one below to create a flat array # obj_grad = np.concatenate((grad_w1.flatten(), grad_w2.flatten()),0) # obj_grad = np.array([]) obj_grad = np.concatenate((gradient_hidden.flatten(), gradient_out.flatten()),0) return (obj_val, obj_grad) def nnPredict(w1, w2, data): """% nnPredict predicts the label of data given the parameter w1, w2 of Neural % Network. % Input: % w1: matrix of weights of connections from input layer to hidden layers. % w1(i, j) represents the weight of connection from unit i in input % layer to unit j in hidden layer. % w2: matrix of weights of connections from hidden layer to output layers. % w2(i, j) represents the weight of connection from unit i in input % layer to unit j in hidden layer. % data: matrix of data. Each row of this matrix represents the feature % vector of a particular image % Output: % label: a column vector of predicted labels""" data = np.hstack((data, np.ones((data.shape[0],1)))) out_hidden = feedForward(data, w1) out_hidden = np.hstack((out_hidden, np.ones((out_hidden.shape[0],1)))) out_output = feedForward(out_hidden, w2) labels = np.argmax(out_output, axis = 1) # Your code here return labels """**************Neural Network Script Starts here********************************""" # n_input =
-m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'getf2_npvt_batched', '-f getf2_npvt_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'batch_c': '1', } ), ( 'getf2_npvt_strided_batched', '-f getf2_npvt_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'batch_c': '1', } ), ( 'getrf_npvt', '-f getrf_npvt -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'getrf_npvt_batched', '-f getrf_npvt_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'batch_c': '1', } ), ( 'getrf_npvt_strided_batched', '-f getrf_npvt_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'batch_c': '1', } ), ( 'getrf', '-f getrf -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'getrf_batched', '-f getrf_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'getrf_strided_batched', '-f getrf_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'getf2', '-f getf2 -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'getf2_batched', '-f getf2_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'getf2_strided_batched', '-f getf2_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'geqr2', '-f geqr2 -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', } ), ( 'geqr2_batched', '-f geqr2_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', 'strideP': '10', 'batch_c': '1', } ), ( 'geqr2_strided_batched', '-f geqr2_strided_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', 'strideA': '150', 'strideP': '10', 'batch_c': '1', } ), ( 'geqrf', '-f geqrf -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', } ), ( 'geqrf_batched', '-f geqrf_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', 'strideP': '10', 'batch_c': '1', } ), ( 'geqrf_strided_batched', '-f geqrf_strided_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', 'strideA': '150', 'strideP': '10', 'batch_c': '1', } ), ( 'geqrf_ptr_batched', '-f geqrf_ptr_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', 'strideP': '10', 'batch_c': '1', } ), ( 'gerq2', '-f gerq2 -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'gerq2_batched', '-f gerq2_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'gerq2_strided_batched', '-f gerq2_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'gerqf', '-f gerqf -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'gerqf_batched', '-f gerqf_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'gerqf_strided_batched', '-f gerqf_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'geql2', '-f geql2 -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'geql2_batched', '-f geql2_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'geql2_strided_batched', '-f geql2_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'geqlf', '-f geqlf -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'geqlf_batched', '-f geqlf_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'geqlf_strided_batched', '-f geqlf_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'gelq2', '-f gelq2 -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'gelq2_batched', '-f gelq2_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'gelq2_strided_batched', '-f gelq2_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'gelqf', '-f gelqf -m 10', { 'm': '10', 'n': '10', 'lda': '10', } ), ( 'gelqf_batched', '-f gelqf_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'gelqf_strided_batched', '-f gelqf_strided_batched -m 10', { 'm': '10', 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'getrs', '-f getrs -n 10', { 'trans': 'N', 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', } ), ( 'getrs_batched', '-f getrs_batched -n 10', { 'trans': 'N', 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'getrs_strided_batched', '-f getrs_strided_batched -n 10', { 'trans': 'N', 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', 'strideA': '100', 'strideP': '10', 'strideB': '100', 'batch_c': '1', } ), ( 'gesv', '-f gesv -n 10', { 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', } ), ( 'gesv_batched', '-f gesv_batched -n 10', { 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'gesv_strided_batched', '-f gesv_strided_batched -n 10', { 'n': '10', 'nrhs': '10', 'lda': '10', 'ldb': '10', 'strideA': '100', 'strideP': '10', 'strideB': '100', 'batch_c': '1', } ), ( 'gesvd', '-f gesvd -n 10 -m 15', { 'left_svect': 'N', 'right_svect': 'N', 'm': '15', 'n': '10', 'lda': '15', 'ldu': '15', 'ldv': '10', } ), ( 'gesvd_batched', '-f gesvd_batched -n 10 -m 15', { 'left_svect': 'N', 'right_svect': 'N', 'm': '15', 'n': '10', 'lda': '15', 'strideS': '10', 'ldu': '15', 'strideU': '225', 'ldv': '10', 'strideV': '100', 'strideE': '9', 'batch_c': '1', } ), ( 'gesvd_strided_batched', '-f gesvd_strided_batched -n 10 -m 15', { 'left_svect': 'N', 'right_svect': 'N', 'm': '15', 'n': '10', 'lda': '15', 'strideA': '150', 'strideS': '10', 'ldu': '15', 'strideU': '225', 'ldv': '10', 'strideV': '100', 'strideE': '9', 'batch_c': '1', } ), ( 'trtri', '-f trtri -n 10', { 'uplo': 'U', 'diag': 'N', 'n': '10', 'lda': '10', } ), ( 'trtri_batched', '-f trtri_batched -n 10', { 'uplo': 'U', 'diag': 'N', 'n': '10', 'lda': '10', 'batch_c': '1', } ), ( 'trtri_strided_batched', '-f trtri_strided_batched -n 10', { 'uplo': 'U', 'diag': 'N', 'n': '10', 'lda': '10', 'strideA': '100', 'batch_c': '1', } ), ( 'getri', '-f getri -n 10', { 'n': '10', 'lda': '10', } ), ( 'getri_batched', '-f getri_batched -n 10', { 'n': '10', 'lda': '10', 'strideP': '10', 'batch_c': '1', } ), ( 'getri_strided_batched', '-f getri_strided_batched -n 10', { 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'batch_c': '1', } ), ( 'getri_npvt', '-f getri_npvt -n 10', { 'n': '10', 'lda': '10', } ), ( 'getri_npvt_batched', '-f getri_npvt_batched -n 10', { 'n': '10', 'lda': '10', 'batch_c': '1', } ), ( 'getri_npvt_strided_batched', '-f getri_npvt_strided_batched -n 10', { 'n': '10', 'lda': '10', 'strideA': '100', 'batch_c': '1', } ), ( 'getri_outofplace', '-f getri_outofplace -n 10', { 'n': '10', 'lda': '10', 'ldc': '10', } ), ( 'getri_outofplace_batched', '-f getri_outofplace_batched -n 10', { 'n': '10', 'lda': '10', 'strideP': '10', 'ldc': '10', 'batch_c': '1', } ), ( 'getri_outofplace_strided_batched', '-f getri_outofplace_strided_batched -n 10', { 'n': '10', 'lda': '10', 'strideA': '100', 'strideP': '10', 'ldc': '10', 'strideC': '100', 'batch_c': '1', } ), ( 'getri_npvt_outofplace', '-f getri_npvt_outofplace -n 10', { 'n': '10', 'lda': '10', 'ldc': '10', } ), ( 'getri_npvt_outofplace_batched', '-f getri_npvt_outofplace_batched -n 10', { 'n': '10', 'lda': '10', 'ldc': '10', 'batch_c': '1', } ), ( 'getri_npvt_outofplace_strided_batched', '-f getri_npvt_outofplace_strided_batched -n 10', { 'n': '10', 'lda': '10', 'strideA': '100', 'ldc': '10', 'strideC': '100', 'batch_c': '1', } ), ( 'gels', '-f gels -n 10 -m 15', { 'trans': 'N', 'm': '15', 'n': '10', 'nrhs': '10', 'lda': '15', 'ldb': '15', } ), ( 'gels_batched', '-f gels_batched -n 10 -m 15', { 'trans': 'N', 'm': '15', 'n': '10', 'nrhs': '10', 'lda': '15', 'ldb': '15', 'batch_c': '1', } ), ( 'gels_strided_batched', '-f gels_strided_batched -n 10 -m 15', { 'trans': 'N', 'm': '15', 'n': '10', 'nrhs': '10', 'lda': '15', 'ldb': '15', 'strideA': '150', 'strideB': '150', 'batch_c': '1', } ), ( 'gebd2', '-f gebd2 -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15', } ), ( 'gebd2_batched', '-f gebd2_batched -n 10 -m 15', { 'm': '15', 'n': '10', 'lda': '15',
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals import os import random from datetime import date, timedelta import mock from dateutil.relativedelta import relativedelta from django.core.management import call_command from django.test import override_settings from django.urls import reverse from django.conf import settings from django.core import mail from rest_framework import status from account.models import User from agency.agencies import UNICEF, WFP from agency.models import Agency from agency.roles import VALID_FOCAL_POINT_ROLE_NAMES, AgencyRole from common.headers import CustomHeader from notification.consts import NotificationType, NOTIFICATION_DATA from partner.roles import PartnerRole from partner.serializers import PartnerShortSerializer from project.models import Assessment, Application, EOI, Pin from partner.models import Partner from common.tests.base import BaseAPITestCase from common.factories import ( OpenEOIFactory, AgencyMemberFactory, PartnerSimpleFactory, PartnerMemberFactory, AgencyOfficeFactory, AgencyFactory, PartnerVerificationFactory, UserFactory, PartnerFactory, get_new_common_file, DirectEOIFactory, FinalizedEOIFactory) from common.models import Specialization, CommonFile from common.consts import ( SELECTION_CRITERIA_CHOICES, JUSTIFICATION_FOR_DIRECT_SELECTION, APPLICATION_STATUSES, COMPLETED_REASON, CFEI_TYPES, CFEI_STATUSES, EXTENDED_APPLICATION_STATUSES, ) from project.views import PinProjectAPIView from project.serializers import ConvertUnsolicitedSerializer filename = os.path.join(settings.PROJECT_ROOT, 'apps', 'common', 'tests', 'test.doc') class TestPinUnpinWrongEOIAPITestCase(BaseAPITestCase): user_type = BaseAPITestCase.USER_PARTNER def test_pin_unpin_project_wrong_eois(self): url = reverse('projects:pins') response = self.client.patch(url, data={"eoi_ids": [1, 2, 3], "pin": True}) self.assertResponseStatusIs(response, status_code=status.HTTP_400_BAD_REQUEST) self.assertEquals(response.data['non_field_errors'], PinProjectAPIView.ERROR_MSG_WRONG_EOI_PKS) self.assertEquals(Pin.objects.count(), 0) class TestPinUnpinEOIAPITestCase(BaseAPITestCase): user_type = BaseAPITestCase.USER_PARTNER quantity = 2 url = reverse('projects:pins') def setUp(self): super(TestPinUnpinEOIAPITestCase, self).setUp() AgencyOfficeFactory.create_batch(self.quantity) AgencyMemberFactory.create_batch(self.quantity) OpenEOIFactory.create_batch(self.quantity, is_published=True) def test_pin_unpin_project_wrong_params(self): eoi_ids = EOI.objects.all().values_list('id', flat=True) response = self.client.patch(self.url, data={"eoi_ids": eoi_ids, "pin": None}) self.assertResponseStatusIs(response, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.data['non_field_errors'], PinProjectAPIView.ERROR_MSG_WRONG_PARAMS) self.assertEquals(Pin.objects.count(), 0) def test_pin_unpin_project(self): # add pins eoi_ids = EOI.objects.all().values_list('id', flat=True) response = self.client.patch(self.url, data={"eoi_ids": eoi_ids, "pin": True}) self.assertResponseStatusIs(response, status.HTTP_201_CREATED) self.assertEquals(Pin.objects.count(), self.quantity) self.assertEquals(response.data["eoi_ids"], list(eoi_ids)) # read pins response = self.client.get(self.url) self.assertResponseStatusIs(response) self.assertEquals(response.data['count'], self.quantity) # delete pins response = self.client.patch(self.url, data={"eoi_ids": eoi_ids, "pin": False}) self.assertResponseStatusIs(response, status_code=status.HTTP_204_NO_CONTENT) self.assertEquals(Pin.objects.count(), 0) class TestOpenProjectsAPITestCase(BaseAPITestCase): quantity = 2 url = reverse('projects:open') user_type = BaseAPITestCase.USER_AGENCY agency_role = AgencyRole.EDITOR_ADVANCED def setUp(self): super(TestOpenProjectsAPITestCase, self).setUp() AgencyOfficeFactory.create_batch(self.quantity) AgencyMemberFactory.create_batch(self.quantity) PartnerMemberFactory.create_batch(self.quantity) OpenEOIFactory.create_batch(self.quantity, agency=self.user.agency) def test_open_project(self): # read open projects response = self.client.get(self.url) self.assertResponseStatusIs(response) self.assertEquals(response.data['count'], self.quantity) @override_settings(EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend') def test_create_patch_project(self): ao = self.user.agency_members.first().office payload = { 'title': "EOI title", 'agency': ao.agency.id, 'focal_points': [ AgencyMemberFactory(role=list(VALID_FOCAL_POINT_ROLE_NAMES)[0], office=ao).user.id ], 'locations': [ { "admin_level_1": {"name": "Baghdad", "country_code": 'IQ'}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, { "admin_level_1": {"name": "Paris", "country_code": "FR"}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, ], 'agency_office': ao.id, 'specializations': Specialization.objects.all().values_list('id', flat=True)[:2], 'description': 'Brief background of the project', 'other_information': 'Other information', "clarification_request_deadline_date": date.today(), 'start_date': date.today(), 'end_date': date.today(), 'deadline_date': date.today(), 'notif_results_date': date.today(), 'has_weighting': True, 'assessments_criteria': [ {'selection_criteria': SELECTION_CRITERIA_CHOICES.sector, 'weight': 10}, {'selection_criteria': SELECTION_CRITERIA_CHOICES.local, 'weight': 40}, ], } response = self.client.post(self.url, data=payload) self.assertResponseStatusIs(response, status_code=status.HTTP_400_BAD_REQUEST) self.assertEquals( response.data['assessments_criteria'], ['The sum of all weight criteria must be equal to 100.'] ) payload['assessments_criteria'].extend([ {'selection_criteria': SELECTION_CRITERIA_CHOICES.cost, 'weight': 20}, {'selection_criteria': SELECTION_CRITERIA_CHOICES.innovative, 'weight': 30}, ]) response = self.client.post(self.url, data=payload) self.assertResponseStatusIs(response, status_code=status.HTTP_201_CREATED) eoi = EOI.objects.order_by('id').last() self.assertEquals(response.data['title'], payload['title']) self.assertEquals(eoi.created_by.id, self.user.id) self.assertEquals(response.data['id'], eoi.id) self.assertTrue(eoi.is_weight_adjustments_ok, 'The sum of all weight criteria must be equal to 100.') # invite partners url = reverse('projects:eoi-detail', kwargs={"pk": eoi.id}) payload = { "invited_partners": PartnerShortSerializer([ Partner.objects.first(), Partner.objects.last() ], many=True).data } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertEquals(response.data['id'], eoi.id) self.assertTrue(Partner.objects.first().id in [p['id'] for p in response.data['invited_partners']]) self.assertTrue(Partner.objects.count(), len(response.data['invited_partners'])) call_command('send_daily_notifications') notification_emails = list(filter( lambda msg: f'/cfei/open/{eoi.id}/overview' in msg.body, mail.outbox )) self.assertTrue(len(notification_emails) >= 1) payload = { "invited_partners": PartnerShortSerializer([Partner.objects.last()], many=True).data } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertEquals(response.data['id'], eoi.id) self.assertTrue(Partner.objects.last().id in [p['id'] for p in response.data['invited_partners']]) self.assertTrue(Partner.objects.count(), 1) self.assertTrue(len(response.data['invited_partners']), 1) self.assertTrue(len(mail.outbox) > 0) # mail.outbox is in shared resource, can have also other mails mail.outbox = [] # edit EOI - dates & focal point(s) payload = { "start_date": date.today() - timedelta(days=10), "end_date": date.today() + timedelta(days=20), "deadline_date": date.today() + timedelta(days=10), "notif_results_date": date.today() + timedelta(days=15), "focal_points": [ AgencyMemberFactory(role=list(VALID_FOCAL_POINT_ROLE_NAMES)[0], office=ao).user.id, ] } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertEquals(response.data['notif_results_date'], str(date.today() + timedelta(days=15))) # complete this CFEI justification = "mission completed" payload = { "justification": justification, "completed_reason": COMPLETED_REASON.cancelled, } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertEquals(response.data['completed_reason'], COMPLETED_REASON.cancelled) self.assertTrue(response.data['completed_date']) self.assertTrue(response.data['is_completed']) self.assertEquals(response.data['justification'], justification) @override_settings(EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend') def test_patch_locations_for_project(self): cfei = OpenEOIFactory(created_by=self.user) details_url = reverse('projects:eoi-detail', kwargs={'pk': cfei.id}) details_response = self.client.get(details_url) self.assertResponseStatusIs(details_response) initial_locations = details_response.data['locations'] new_locations_payload = { 'locations': [ { "admin_level_1": {"name": "Baghdad", "country_code": 'IQ'}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, { "admin_level_1": {"name": "Paris", "country_code": "FR"}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, ], } update_response = self.client.patch(details_url, data=new_locations_payload) self.assertResponseStatusIs(update_response) self.assertEqual( len(new_locations_payload['locations']), len(update_response.data['locations']) ) second_update_payload = { 'locations': [ { "admin_level_1": {"name": "Poland", "country_code": 'PL'}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, ] + initial_locations, } second_update_response = self.client.patch(details_url, data=second_update_payload) self.assertResponseStatusIs(second_update_response) self.assertEqual( len(second_update_payload['locations']), len(second_update_response.data['locations']) ) self.assertTrue( {l['id'] for l in initial_locations}.issubset( {l['id'] for l in second_update_response.data['locations']} ) ) @override_settings(EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend') def test_patch_specializations_for_project(self): cfei = OpenEOIFactory(created_by=self.user) details_url = reverse('projects:eoi-detail', kwargs={'pk': cfei.id}) details_response = self.client.get(details_url) self.assertResponseStatusIs(details_response) for _ in range(10): spec_count = random.randint(2, 7) update_payload = { 'specializations': Specialization.objects.order_by('?').values_list('id', flat=True)[:spec_count], } update_response = self.client.patch(details_url, data=update_payload) self.assertResponseStatusIs(update_response) self.assertEqual(len(update_response.data['specializations']), spec_count) class TestDirectProjectsAPITestCase(BaseAPITestCase): quantity = 2 url = reverse('projects:direct') user_type = 'agency' agency_role = AgencyRole.EDITOR_ADVANCED def setUp(self): super(TestDirectProjectsAPITestCase, self).setUp() PartnerSimpleFactory() AgencyOfficeFactory.create_batch(self.quantity) AgencyMemberFactory.create_batch(self.quantity) OpenEOIFactory.create_batch(self.quantity) # TODO: This test is not deterministic - randomly fails def test_create_direct_project(self): ao = self.user.agency_members.first().office payload = { 'eoi': { 'title': "EOI title", 'agency': ao.agency.id, 'focal_points': [self.user.id], 'locations': [ { "admin_level_1": {"name": "Baghdad", "country_code": 'IQ'}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, { "admin_level_1": {"name": "Paris", "country_code": "FR"}, "lat": random.randint(-90, 90), "lon": random.randint(-180, 180), }, ], 'agency_office': ao.id, 'specializations': Specialization.objects.all().values_list('id', flat=True)[:2], 'description': 'Brief background of the project', 'other_information': 'Other information', 'start_date': date.today(), 'end_date': date.today(), 'notif_results_date': date.today(), 'has_weighting': True, }, 'applications': [ { "partner": Partner.objects.last().id, "ds_justification_select": [ JUSTIFICATION_FOR_DIRECT_SELECTION.known, JUSTIFICATION_FOR_DIRECT_SELECTION.local, ], "ds_attachment": get_new_common_file().id, "justification_reason": "To save those we love." }, ] } response = self.client.post(self.url, data=payload) self.assertEqual(response.status_code, status.HTTP_201_CREATED, msg=response.data) self.assertEquals(response.data['eoi']['title'], payload['eoi']['title']) self.assertEquals(response.data['eoi']['created_by'], self.user.id) self.assertEquals(response.data['eoi']['display_type'], CFEI_TYPES.direct) self.assertEquals(response.data['eoi']['id'], EOI.objects.order_by('id').last().id) app = Application.objects.get(pk=response.data['applications'][0]['id']) self.assertEquals(app.submitter, self.user) self.assertEquals( app.ds_justification_select, [JUSTIFICATION_FOR_DIRECT_SELECTION.known, JUSTIFICATION_FOR_DIRECT_SELECTION.local] ) app = Application.objects.get(pk=response.data['applications'][0]['id']) self.assertEquals(app.submitter, self.user) self.assertEquals( app.ds_justification_select, [JUSTIFICATION_FOR_DIRECT_SELECTION.known, JUSTIFICATION_FOR_DIRECT_SELECTION.local] ) self.assertIsNotNone(response.data['applications'][-1]['ds_attachment']) class TestPartnerApplicationsAPITestCase(BaseAPITestCase): user_type = BaseAPITestCase.USER_PARTNER def setUp(self): super(TestPartnerApplicationsAPITestCase, self).setUp() AgencyOfficeFactory.create_batch(self.quantity) AgencyMemberFactory.create_batch(self.quantity) OpenEOIFactory.create_batch(self.quantity, display_type='NoN') PartnerSimpleFactory.create_batch(self.quantity) @mock.patch('partner.models.Partner.profile_is_complete', lambda _: True) def test_create(self): self.client.set_headers({ CustomHeader.PARTNER_ID.value: self.user.partner_members.first().partner.id }) eoi_id = EOI.objects.first().id url = reverse('projects:partner-applications', kwargs={"pk": eoi_id}) payload = { "cn": get_new_common_file().id, } response = self.client.post(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_201_CREATED) app = Application.objects.last() self.assertEquals(response.data['id'], app.id) self.assertEquals(app.submitter.id, self.user.id) common_file = CommonFile.objects.create() common_file.file_field.save('test.csv', open(filename)) payload = { "cn": common_file.id, } response = self.client.post(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.data[0], 'You already applied for this project.') url = reverse('projects:agency-applications', kwargs={"pk": eoi_id}) payload = { "partner": Partner.objects.exclude(applications__eoi_id=eoi_id).order_by('?').last().id, "ds_justification_select": [JUSTIFICATION_FOR_DIRECT_SELECTION.known], "justification_reason": "a good reason", } response = self.client.post(url, data=payload) expected_msgs = 'You do not have permission to perform this action.' self.assertEquals(response.data['detail'], expected_msgs) class TestAgencyApplicationsAPITestCase(BaseAPITestCase): user_type = BaseAPITestCase.USER_AGENCY agency_role = AgencyRole.EDITOR_ADVANCED def setUp(self): super(TestAgencyApplicationsAPITestCase, self).setUp() AgencyMemberFactory.create_batch(self.quantity) PartnerSimpleFactory.create_batch(self.quantity) @mock.patch('partner.models.Partner.profile_is_complete', lambda _: True) def test_create(self): eoi = OpenEOIFactory(display_type='NoN', agency=self.user.agency) eoi.focal_points.add(self.user) url = reverse('projects:agency-applications', kwargs={"pk": eoi.id}) partner = Partner.objects.last() PartnerVerificationFactory(partner=partner) payload = { "partner": partner.id, "ds_justification_select": [JUSTIFICATION_FOR_DIRECT_SELECTION.known], "justification_reason": "a good reason", } response = self.client.post(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_201_CREATED) app_id = eoi.applications.last().id self.assertEqual(response.data['id'], app_id) eoi.display_type = CFEI_TYPES.direct eoi.save() url = reverse('projects:agency-applications-delete', kwargs={"pk": app_id, "eoi_id": eoi.id}) response = self.client.delete(url) self.assertResponseStatusIs(response, status.HTTP_204_NO_CONTENT) class TestApplicationsAPITestCase(BaseAPITestCase): user_type = BaseAPITestCase.USER_AGENCY agency_role = AgencyRole.EDITOR_ADVANCED def setUp(self): super(TestApplicationsAPITestCase, self).setUp() AgencyOfficeFactory.create_batch(self.quantity) AgencyMemberFactory.create_batch(self.quantity) # make sure that creating user is not the current one creator = UserFactory() AgencyMemberFactory(user=creator, office=self.user.agency_members.first().office) self.eoi = OpenEOIFactory(is_published=True, created_by=creator, agency=self.user.agency) self.eoi.focal_points.clear() @override_settings(EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend') def test_read_update_application(self): application = self.eoi.applications.first() PartnerMemberFactory.create_batch(5, partner=application.partner) url = reverse('projects:application', kwargs={"pk": application.id}) response = self.client.get(url) self.assertResponseStatusIs(response) self.assertFalse(response.data['did_win']) self.assertEquals(response.data['ds_justification_select'], []) payload = { "status": APPLICATION_STATUSES.preselected, "ds_justification_select": [JUSTIFICATION_FOR_DIRECT_SELECTION.local], } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_400_BAD_REQUEST) self.assertEquals( response.data['non_field_errors'], ['Only Focal Point/Creator is allowed to pre-select/reject an application.'] ) self.client.logout() creator = application.eoi.created_by self.client.force_login(creator) response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_403_FORBIDDEN) creator.agency_members.update(role=AgencyRole.EDITOR_ADVANCED.name) response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_200_OK) self.assertEquals(response.data['status'], APPLICATION_STATUSES.preselected) self.assertEquals(response.data['ds_justification_select'], [JUSTIFICATION_FOR_DIRECT_SELECTION.local]) payload = { "did_win": True, "status": APPLICATION_STATUSES.preselected, "justification_reason": "good reason", } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_400_BAD_REQUEST) self.assertIn('review_summary_comment', response.data) application.eoi.review_summary_comment = 'Test comment' application.eoi.save() response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response, status.HTTP_400_BAD_REQUEST) self.assertEquals( response.data['non_field_errors'], ['You cannot award an application if the profile has not been verified yet.'] ) PartnerVerificationFactory(partner=application.partner, submitter=application.eoi.created_by) response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertIn('application_status', response.data) self.assertTrue(response.data['did_win']) self.assertEquals(response.data['status'], APPLICATION_STATUSES.preselected) call_command('send_daily_notifications') self.assertTrue(len(mail.outbox) > 0) mail.outbox = [] partner_user = UserFactory() PartnerMemberFactory(user=partner_user, partner=application.partner, role=PartnerRole.ADMIN.name) self.client.force_login(partner_user) # accept offer payload = { "did_accept": True, } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertTrue(response.data['did_accept']) self.assertEquals(response.data['decision_date'], str(date.today())) self.client.force_login(application.eoi.created_by) awarded_partners_response = self.client.get( reverse('projects:applications-awarded-partners', kwargs={"eoi_id": application.id}) ) self.assertEqual( awarded_partners_response.status_code, status.HTTP_200_OK, msg=awarded_partners_response.content ) if awarded_partners_response.data: self.assertEqual(awarded_partners_response.data[0]['partner_decision_date'], str(date.today())) self.assertEqual(awarded_partners_response.data[0]['partner_notified'].date(), date.today()) self.client.force_login(partner_user) payload = { "did_accept": False, "did_decline": True, } response = self.client.patch(url, data=payload) self.assertResponseStatusIs(response) self.assertFalse(response.data['did_accept']) self.assertTrue(response.data['did_decline']) self.client.force_login(application.eoi.created_by) reason = "They are better then You." payload = { "did_withdraw": True, "withdraw_reason": reason, "status": APPLICATION_STATUSES.rejected,
uuid, ): """Delete. :param uuid: Id of the purge rule """ request_data = { 'uuid': uuid, } errors_mapping = {} errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_FOUND', None)] = NotFound('The rule was not found') errors_mapping[('NOT_PERMITTED', None)] = NotPermitted('You are not permitted to delete purge rules for this account') query_data = { 'api': self._api, 'url': '/purge/delete', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def run( self, dry_run, account_id=None, object=None, rule_id=None, ): """Run. :param dry_run: Do a dry run of the rule - flag :param account_id: account_id :param object: Limit purging to this object only (optional) :param rule_id: rule_id """ request_data = { 'account_id': account_id, 'dry_run': dry_run, 'object': object, 'rule_id': rule_id, } errors_mapping = {} errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_FOUND', None)] = NotFound('The rule or account was not found') errors_mapping[('NOT_PERMITTED', None)] = NotPermitted('You are not permitted to run purge rules for this account') query_data = { 'api': self._api, 'url': '/purge/run', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) class AsyncPurge: """AsyncPurge.""" def __init__(self, api): self._api = api def list( self, account_id, ): """List. :param account_id: uuid of the account """ request_data = { 'account_id': account_id, } errors_mapping = {} errors_mapping[('FILTER_NOT_FOUND', None)] = FilterNotFound('The filter can not be found. The error_subtype will hold the filter UUID') errors_mapping[('INVALID_CONDITION', None)] = InvalidCondition('The condition is not support. The error_subtype will hold the filter expression this applies to') errors_mapping[('INVALID_FIELD', None)] = InvalidField('The field is not valid for this object. The error_subtype will hold the filter expression this applies to') errors_mapping[('INVALID_SORT_FIELD', None)] = InvalidSortField('The field is not valid for this object. The error_subtype will hold the field name this applies to') errors_mapping[('INVALID_SORT_ORDER', None)] = InvalidSortOrder('The sort order for the field is invalid. The error_subtype will hold the field name this applies to') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_FOUND', None)] = NotFound('The account can not be found') errors_mapping[('NOT_PERMITTED', None)] = NotPermitted('You are not permitted to view this list') query_data = { 'api': self._api, 'url': '/purge/list', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } query_data['paginated_field'] = 'purges' return AsyncQueryOPSF(**query_data) def add( self, account_id, days_old, days_old_how, name, adults=None, archive=None, global_param=None, max_deletes=None, minors=None, modalities=None, namespaces=None, object=None, owned_phr=None, shared_from_phr=None, skinny=None, study_status_tags=None, suspended=None, thin=None, ): """Add. :param account_id: uuid of the account the rule is for :param days_old: Studies greater than or equal to these days old will be purged :param days_old_how: How should the days old value be calculated using the 'U'pdated, 'C'reated or 'S'tudy date :param name: Name of the purge rule :param adults: Apply this rule to adults - flag (optional) :param archive: Archive the studies rather than deleting them - flag (optional) :param global_param: Flag to make this a global purge rule (optional) :param max_deletes: Maximum number of purges per run of the rule (optional) :param minors: Apply this rule to minors - flag (optional) :param modalities: A JSON array of modalities to limit the rule to (optional) :param namespaces: A JSON array of namespace uuid to limit the rule to (optional) :param object: The object to be purged, Study by default (Study|Hl7) (optional) :param owned_phr: Apply this rule to owned PHR namespaces - flag (optional) :param shared_from_phr: If a study was shared from a PHR namespace delete the copy in the PHR namespace as well - flag (optional) :param skinny: Make the studies skinny rather than deleting - flag (optional) :param study_status_tags: A comma separated list of study status tags to purge (optional) :param suspended: This rule is suspended and not applied - flag (optional) :param thin: Make the studies thin rather than deleting - flag (optional) """ request_data = { 'account_id': account_id, 'adults': adults, 'archive': archive, 'days_old': days_old, 'days_old_how': days_old_how, 'global': global_param, 'max_deletes': max_deletes, 'minors': minors, 'modalities': modalities, 'name': name, 'namespaces': namespaces, 'object': object, 'owned_phr': owned_phr, 'shared_from_phr': shared_from_phr, 'skinny': skinny, 'study_status_tags': study_status_tags, 'suspended': suspended, 'thin': thin, } errors_mapping = {} errors_mapping[('GT_ZERO', None)] = GtZero('The parameter must be great than zero. The error_subtype holds the name of the parameter') errors_mapping[('INVALID_FLAG', None)] = InvalidFlag('An invalid flag was passed. The error_subtype holds the name of the invalid flag') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_A_NUMBER', None)] = NotANumber('The parameter must be a valid number. The error_subtype holds the name of the parameter') errors_mapping[('NOT_FOUND', None)] = NotFound('The account or namespace was not found. The error_subtype holds the uuid of the not found item') errors_mapping[('NOT_LIST', None)] = NotList('The field is not a JSON array. The error_subtype holds the name of the field') errors_mapping[('NOT_PERMITTED', None)] = NotPermitted('You are not permitted to add a purge to that account') errors_mapping[('ONLY_ONE_FLAG', None)] = OnlyOneFlag('You can set either the skinny, thin or archive flag, not multiple') errors_mapping[('VALIDATION_FAILED', None)] = ValidationFailed('A field failed validation. The error_subtype holds the name of the invalid field') query_data = { 'api': self._api, 'url': '/purge/add', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return AsyncQueryO(**query_data) def set( self, uuid, adults=None, archive=None, days_old=None, days_old_how=None, global_param=None, max_deletes=None, minors=None, modalities=None, name=None, namespaces=None, owned_phr=None, shared_from_phr=None, skinny=None, study_status_tags=None, suspended=None, thin=None, ): """Set. :param uuid: Id of the purge rule :param adults: Apply this rule to adults - flag (optional) :param archive: Archive the studies rather than deleting them - flag (optional) :param days_old: Studies greater than or equal to these days old will be purged (optional) :param days_old_how: How should the days old value be calculated using the 'U'pdated, 'C'reated or 'S'tudy date (optional) :param global_param: Flag to make this a global purge rule (optional) :param max_deletes: Maximum number of purges per run of the rule (optional) :param minors: Apply this rule to minors - flag (optional) :param modalities: A JSON array of modalities to limit the rule to) (optional) :param name: Name of the purge rule (optional) :param namespaces: A JSON array of namespace uuid to limit the rule to (optional) :param owned_phr: Apply this rule owned PHR namespaces - flag (optional) :param shared_from_phr: If a study was shared from a PHR namespace delete the copy in the PHR namespace as well - flag (optional) :param skinny: Make the studies skinny rather than deleting - flag (optional) :param study_status_tags: A comma separated list of study status tags to purge (optional) :param suspended: This rule is suspended and not applied - flag (optional) :param thin: Make the studies thin rather than deleting - flag (optional) """ request_data = { 'adults': adults, 'archive': archive, 'days_old': days_old, 'days_old_how': days_old_how, 'global': global_param, 'max_deletes': max_deletes, 'minors': minors, 'modalities': modalities, 'name': name, 'namespaces': namespaces, 'owned_phr': owned_phr, 'shared_from_phr': shared_from_phr, 'skinny': skinny, 'study_status_tags': study_status_tags, 'suspended': suspended, 'thin': thin, 'uuid': uuid, } errors_mapping = {} errors_mapping[('GT_ZERO', None)] = GtZero('The parameter must be great than zero. The error_subtype holds the name of the parameter') errors_mapping[('INVALID_FLAG', None)] = InvalidFlag('An invalid flag was passed. The error_subtype holds the name of the invalid flag') errors_mapping[('INVALID_JSON', None)] = InvalidJson('The field is not in valid JSON format. The error_subtype holds the name of the field') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_A_NUMBER', None)] = NotANumber('The parameter must be a valid number. The error_subtype holds the name of the parameter') errors_mapping[('NOT_FOUND', None)] = NotFound('The account or namespace was not found. The error_subtype holds the uuid of the not found item') errors_mapping[('NOT_PERMITTED', None)] = NotPermitted('You are not permitted to edit a purge rule') errors_mapping[('ONLY_ONE_FLAG', None)] = OnlyOneFlag('You can set either the skinny,
try: params = request._serialize() body = self.call("DescribeDDoSEvInfo", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSEvInfoResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSEvList(self, request): """获取DDoS攻击事件列表 :param request: Request instance for DescribeDDoSEvList. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSEvListRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSEvListResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSEvList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSEvListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSIpLog(self, request): """获取DDoSIP攻击日志 :param request: Request instance for DescribeDDoSIpLog. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSIpLogRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSIpLogResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSIpLog", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSIpLogResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSNetCount(self, request): """获取高防IP专业版资源的DDoS攻击占比分析 :param request: Request instance for DescribeDDoSNetCount. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetCountRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetCountResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSNetCount", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSNetCountResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSNetEvInfo(self, request): """获取高防IP专业版资源的DDoS攻击事件详情 :param request: Request instance for DescribeDDoSNetEvInfo. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetEvInfoRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetEvInfoResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSNetEvInfo", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSNetEvInfoResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSNetEvList(self, request): """获取高防IP专业版资源的DDoS攻击事件列表 :param request: Request instance for DescribeDDoSNetEvList. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetEvListRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetEvListResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSNetEvList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSNetEvListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSNetIpLog(self, request): """获取高防IP专业版资源的DDoSIP攻击日志 :param request: Request instance for DescribeDDoSNetIpLog. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetIpLogRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetIpLogResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSNetIpLog", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSNetIpLogResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSNetTrend(self, request): """获取高防IP专业版资源的DDoS攻击指标数据 :param request: Request instance for DescribeDDoSNetTrend. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetTrendRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSNetTrendResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSNetTrend", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSNetTrendResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSPolicy(self, request): """获取DDoS高级策略 :param request: Request instance for DescribeDDoSPolicy. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSPolicyRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSPolicyResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSPolicy", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSPolicyResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSTrend(self, request): """获取DDoS攻击流量带宽和攻击包速率数据 :param request: Request instance for DescribeDDoSTrend. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSTrendRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSTrendResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSTrend", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSTrendResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeDDoSUsedStatis(self, request): """统计用户的高防资源的使用天数和DDoS攻击防护次数 :param request: Request instance for DescribeDDoSUsedStatis. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSUsedStatisRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeDDoSUsedStatisResponse` """ try: params = request._serialize() body = self.call("DescribeDDoSUsedStatis", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeDDoSUsedStatisResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeIPProductInfo(self, request): """获取独享包或共享包IP对应的云资产信息,只支持独享包和共享包的IP :param request: Request instance for DescribeIPProductInfo. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeIPProductInfoRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeIPProductInfoResponse` """ try: params = request._serialize() body = self.call("DescribeIPProductInfo", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeIPProductInfoResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeInsurePacks(self, request): """获取保险包套餐列表 :param request: Request instance for DescribeInsurePacks. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeInsurePacksRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeInsurePacksResponse` """ try: params = request._serialize() body = self.call("DescribeInsurePacks", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeInsurePacksResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeIpBlockList(self, request): """获取IP封堵列表 :param request: Request instance for DescribeIpBlockList. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeIpBlockListRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeIpBlockListResponse` """ try: params = request._serialize() body = self.call("DescribeIpBlockList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeIpBlockListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeIpUnBlockList(self, request): """获取IP解封记录 :param request: Request instance for DescribeIpUnBlockList. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeIpUnBlockListRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeIpUnBlockListResponse` """ try: params = request._serialize() body = self.call("DescribeIpUnBlockList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeIpUnBlockListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeL4HealthConfig(self, request): """导出四层健康检查配置 :param request: Request instance for DescribeL4HealthConfig. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeL4HealthConfigRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeL4HealthConfigResponse` """ try: params = request._serialize() body = self.call("DescribeL4HealthConfig", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeL4HealthConfigResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeL4RulesErrHealth(self, request): """获取L4转发规则健康检查异常结果 :param request: Request instance for DescribeL4RulesErrHealth. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeL4RulesErrHealthRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeL4RulesErrHealthResponse` """ try: params = request._serialize() body = self.call("DescribeL4RulesErrHealth", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeL4RulesErrHealthResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeL7HealthConfig(self, request): """导出七层健康检查配置 :param request: Request instance for DescribeL7HealthConfig. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribeL7HealthConfigRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribeL7HealthConfigResponse` """ try: params = request._serialize() body = self.call("DescribeL7HealthConfig", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeL7HealthConfigResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribePackIndex(self, request): """获取产品总览统计,支持高防包、高防IP、高防IP专业版; :param request: Request instance for DescribePackIndex. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribePackIndexRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribePackIndexResponse` """ try: params = request._serialize() body = self.call("DescribePackIndex", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribePackIndexResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribePcap(self, request): """下载攻击事件的pcap包 :param request: Request instance for DescribePcap. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribePcapRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribePcapResponse` """ try: params = request._serialize() body = self.call("DescribePcap", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribePcapResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribePolicyCase(self, request): """获取策略场景 :param request: Request instance for DescribePolicyCase. :type request: :class:`tencentcloud.dayu.v20180709.models.DescribePolicyCaseRequest` :rtype: :class:`tencentcloud.dayu.v20180709.models.DescribePolicyCaseResponse` """