input
stringlengths
2.65k
237k
output
stringclasses
1 value
IP range, the provided " f"ending IP address of {storage_controller_vm_ip_range_end_address} is " "the same as the provided starting IP address of " f"{storage_controller_vm_ip_range_start_address}. Please provide a " "different ending IP address and restart the HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HXDP storage controller VM management starting IP address and subnet mask can be configured on an IP interface try: storage_controller_vm_ip_range_start_address_ip_interface = ipaddress.ip_interface(f"{storage_controller_vm_ip_range_start_address}/{storage_controller_vm_ip_range_subnet_mask}") except Exception as exception_message: print("There was an issue with testing the IP interface configuration for " "the provided HXDP storage controller VM management starting IP " f"address of {storage_controller_vm_ip_range_start_address} " "and the associated subnet mask of " f"{storage_controller_vm_ip_range_subnet_mask}.\n" "Please review the error message below, repair the provided IP address " "settings, then re-run the HX Auto Deploy Tool.\n") print(exception_message) sys.exit(0) # Determine HXDP storage controller VM management IP network from provided starting IP address and subnet mask storage_controller_vm_ip_range_start_address_network = storage_controller_vm_ip_range_start_address_ip_interface.network # Verify the HXDP storage controller VM management ending IP address is in the same network as the starting IP address if ipaddress.ip_address(storage_controller_vm_ip_range_end_address) not in storage_controller_vm_ip_range_start_address_network: print("For the HXDP storage controller VM management IP range, the provided " f"ending IP address of {storage_controller_vm_ip_range_end_address} is " "not in the same subnet of the provided starting IP address of " f"{storage_controller_vm_ip_range_start_address}. Please provide a " "different ending IP address and restart the HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HXDP storage controller VM management gateway IP address is in the same network as the starting IP address if ipaddress.ip_address(storage_controller_vm_ip_range_gateway) not in storage_controller_vm_ip_range_start_address_network: print("For the HXDP storage controller VM management IP range, the provided " f"gateway IP address of {storage_controller_vm_ip_range_gateway} is " "not in the same subnet of the provided starting IP address of " f"{storage_controller_vm_ip_range_start_address}. Please provide a " "different gateway IP address and restart the HX Auto Deploy Tool.\n") sys.exit(0) # Create the HXDP storage controller VM IP address range list storage_controller_vm_ip_range_list = create_ip_list(storage_controller_vm_ip_range_start_address, storage_controller_vm_ip_range_end_address) # Verify the created HXDP storage controller VM IP address range list can support the provided HyperFlex cluster size if len(storage_controller_vm_ip_range_list) < hx_cluster_size: print("The HXDP storage controller VM IP address range has a total of " f"{len(storage_controller_vm_ip_range_list)} usable addresses. This is " f"less than the provided HyperFlex cluster size of {hx_cluster_size}. " "Please increase the size of the HXDP storage controller VM IP address " "range then restart the HX Auto Deploy Tool. The provided value for " "the starting or ending IP and subnet mask may need to be adjusted.\n" f"Current starting IP address: {storage_controller_vm_ip_range_start_address}\n" f"Current ending IP address: {storage_controller_vm_ip_range_end_address}\n" f"Current subnet mask: {storage_controller_vm_ip_range_subnet_mask}\n") sys.exit(0) # Verify the created HXDP storage controller VM IP address range list does not conflict with any entries in the HX node attribute list for storage_controller_vm_ip in storage_controller_vm_ip_range_list: if storage_controller_vm_ip in hx_node_attribute_list: print(f"The HXDP storage controller VM IP address of {storage_controller_vm_ip} " "created from the IP address range of " f"{storage_controller_vm_ip_range_start_address} - " f"{storage_controller_vm_ip_range_end_address}, conflicts with an " "IP address entry in the HX node attribute list variable named " "hx_node_attribute_list.\n" "The hx_node_attribute_list variable contains the following entries: \n" f"{hx_node_attribute_list}\n" "Please resolve the IP address conflict and restart " "the HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HXDP cluster management (HX Connect) IP address does not conflict with any entries in the VMware ESXi hypervisor management IP address range list if hx_connect_mgmt_ip_address in esxi_mgmt_ip_range_list: print("The provided HyperFlex cluster management IP address of " f"{hx_connect_mgmt_ip_address} is in the same range of IP addresses " "allocated for the VMware ESXi hypervisor management interfaces. " "Please provide a different HyperFlex cluster management IP address " "and restart the HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HXDP cluster management (HX Connect) IP address does not conflict with any entries in the HXDP storage controller VM management IP address range list if hx_connect_mgmt_ip_address in storage_controller_vm_ip_range_list: print("The provided HyperFlex cluster management IP address of " f"{hx_connect_mgmt_ip_address} is in the same range of IP addresses " "allocated for the HXDP storage controller VM management interfaces. " "Please provide a different HyperFlex cluster management IP address " "and restart the HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HXDP cluster management (HX Connect) IP address is in the same network as the HXDP storage controller VM IP addresses if ipaddress.ip_address(hx_connect_mgmt_ip_address) not in storage_controller_vm_ip_range_start_address_network: print("The provided HyperFlex cluster management IP address of " f"{hx_connect_mgmt_ip_address} is not in the same subnet of " f"{storage_controller_vm_ip_range_start_address_network} as the " "provided starting IP address of " f"{storage_controller_vm_ip_range_start_address} and the provided " f"ending IP address of {storage_controller_vm_ip_range_end_address} for " "the HXDP storage controller VM management interfaces. Please provide " "a different HyperFlex cluster management IP address and restart the " "HX Auto Deploy Tool.\n") sys.exit(0) # Verify the HyperFlex cluster management IP address does not conflict with any entries in the HX node attribute list if hx_connect_mgmt_ip_address in hx_node_attribute_list: print("The HyperFlex cluster management IP address of " f"{hx_connect_mgmt_ip_address} conflicts with an IP address entry in " "the HX node attribute list variable named hx_node_attribute_list.\n" "The hx_node_attribute_list variable contains the following entries: \n" f"{hx_node_attribute_list}\n" "Please resolve the IP address conflict and restart " "the HX Auto Deploy Tool.\n") sys.exit(0) # Completion of the preliminary check of the provided variable values print("The preliminary check of the provided variable values is complete.\n") # Set the Deployment Tool Type maker_type = "Cisco HyperFlex Edge Automated Deployment Tool" # Set the HyperFlex Management Deployment Type hx_mgmt_platform_type = "EDGE" # Set the HyperFlex MAC prefix starting and ending addresses based on the provided uplink speed if hx_node_uplink_speed == "1G": hx_mac_prefix_start_address_post_uplink_speed_checked = "" hx_mac_prefix_end_address_post_uplink_speed_checked = "" else: hx_mac_prefix_start_address_post_uplink_speed_checked = f"00:25:B5:{hx_mac_prefix_start_address}" hx_mac_prefix_end_address_post_uplink_speed_checked = f"00:25:B5:{hx_mac_prefix_end_address}" # Set the HyperFlex MAC prefix address based on the provided uplink speed setting if hx_node_uplink_speed == "1G": hx_mac_prefix_address_post_uplink_speed_checked = "" else: hx_mac_prefix_address_post_uplink_speed_checked = f"00:25:B5:{hx_mac_prefix_address}" # Define Intersight SDK IntersightApiClient variable # Last tested on Cisco Intersight API Reference v1.0.9-4246 (SaaS) api_instance = IntersightApiClient(host=intersight_base_url, private_key=key, api_key_id=key_id) # Establish function to test for the availability of the Intersight API and Intersight account def test_intersight_service(): """This is a function to test the availability of the Intersight API and Intersight account. The Intersight account tested for is the owner of the provided Intersight API key and key ID. """ try: # Check that Intersight Account is accessible print("Testing access to the Intersight API by verifying the Intersight " "account information...") check_account = intersight.IamAccountApi(api_instance) get_account = check_account.iam_accounts_get() if check_account.api_client.last_response.status != 200: print("The Intersight API and Account Availability Test did not pass.") print("The Intersight account information could not be verified.") print("Exiting due to the Intersight account being unavailable.\n") print("Please verify that the correct API Key ID has been provided then " "restart the HX Auto Deploy Tool.\n") print("If applicable, also verify that all Intersight services are up \n" "and operational at https://status.intersight.com.\n") sys.exit(0) else: account_name = get_account.results[0].name print("The Intersight API and Account Availability Test has passed.\n") print(f"The Intersight account named '{account_name}' has been found.\n") return account_name except Exception: print("Unable to access the Intersight API.") print("Exiting due to the Intersight API being unavailable.\n") print("Please verify that the correct API Key ID has been provided then " "restart the HX Auto Deploy Tool.\n") print("If applicable, also verify that all Intersight services are up \n" "and operational at https://status.intersight.com.\n") sys.exit(0) # Establish function to retrieve Intersight API objects def intersight_object_retriever(object_name, object_type, intersight_api_path, org="default"): """This is a function to retrieve named Intersight objects using the Intersight API. """ # Retrieving the provided object from Intersight... full_intersight_api_path = f"/{intersight_api_path}" try: api_instance.call_api(full_intersight_api_path,"GET") response = api_instance.last_response.data results = json.loads(response) # The Intersight API resource path has been accessed successfully. get_intersight_objects = results except Exception: print("There was an issue retrieving the " f"{object_type} from Intersight.") print(f"Unable to access the provided Intersight API resource path '{intersight_api_path}'.") print("Please review and resolve any error messages then restart " f"the {maker_type}.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) if get_intersight_objects.get("Results"): for intersight_object in get_intersight_objects.get("Results"): if intersight_object.get("Organization"): provided_org_moid = intersight_object_retriever(org, "Organization", "organization/Organizations") if intersight_object.get("Organization", {}).get("Moid") == provided_org_moid: if intersight_object.get("Name") == object_name: intersight_object_moid = intersight_object.get("Moid") # The provided object and MOID has been identified and retrieved. return intersight_object_moid else: if intersight_object.get("Name") == object_name: intersight_object_moid = intersight_object.get("Moid") # The provided
<filename>sudokutools/solvers.py """High level solving of sudokus. This module provides classes which represent typical sudoku solving steps used by humans. Steps can be found and applied to a given sudoku. But steps can also be printed without applying them, e.g. to inform a user, what steps can be taken to solve the sudoku. A single solve step may consist of multiple actions, e.g. * Setting a number at a given field. * Setting the candidates at a given field. * Removing some of the candidates at a given field. Solve steps defined here: * CalcCandidates * NakedSingle * NakedPair * NakedTriple * NakedQuad * NakedQuint * HiddenSingle * HiddenPair * HiddenTriple * HiddenQuad * HiddenQuint * PointingPair * PointingTriple * XWing * Swordfish * Jellyfish * Bruteforce """ from collections import defaultdict, namedtuple from functools import total_ordering from itertools import combinations, product from sudokutools.solve import init_candidates, calc_candidates, dlx from sudokutools.sudoku import Sudoku class Action(namedtuple("ActionTuple", ["func", "row", "col", "value"])): """Named tuple, that represents a single change operation on a sudoku. Create with: Action(func, row, col, value) Args: func (callable): One of Sudoku.set_number, Sudoku.set_candidates and Sudoku.remove_candidates row (int): The row of the field, which will be changed. col (int): The column of the field, which will be changed. value (int or iterable): The number or candidates to set/remove. """ @total_ordering class SolveStep(object): def __init__(self, clues=(), affected=(), values=()): """Create a new solve step. Args: clues (iterable of (int, int)): An iterable of (row, col) pairs which cause this step. affected (iterable of (int, int)): An iterable of (row, col) pairs which are affected by this step. values (iterable of int) : A list of values to apply to the affected fields. """ self.clues = tuple(sorted(clues)) self.affected = tuple(sorted(affected)) self.values = tuple(sorted(values)) self.actions = [] def __eq__(self, other): return (self.clues, self.affected, self.values) == ( other.clues, other.affected, other.values) def __lt__(self, other): return (self.clues, self.affected, self.values) < ( other.clues, other.affected, other.values) def __repr__(self): return "%s(%s, %s, %s)" % ( self.__class__.__name__, self.clues, self.affected, self.values) def __str__(self): return "%s at %s: %s" % ( self.__class__.__name__, self.clues, self.values) @classmethod def find(cls, sudoku): """Iterates through all possible solve steps of this class. Args: sudoku (Sudoku): The sudoku to solve. Yields: SolveStep: The next solve step. """ raise NotImplementedError("%s.find() not implemented." % cls.__name__) def build_actions(self, sudoku): raise NotImplementedError( "%s.build_actions() not implemented." % self.__class__.__name__) def apply(self, sudoku): """Apply this solve step to the sudoku.""" if not self.actions: self.build_actions(sudoku) for action in self.actions: action.func(sudoku, action.row, action.col, action.value) @classmethod def apply_all(cls, sudoku): """Apply all possible steps of this class to the sudoku.""" for step in cls.find(sudoku): step.apply(sudoku) class CalculateCandidates(SolveStep): """Calculates the candidates of fields.""" @classmethod def find(cls, sudoku): for row, col in sudoku: # ignore fields with defined candidates if sudoku.get_candidates(row, col): continue values = calc_candidates(sudoku, row, col) yield cls(((row, col),), ((row, col),), values) def build_actions(self, sudoku): row, col = self.clues[0] self.actions.append( Action(Sudoku.set_candidates, row, col, self.values)) class _SingleFieldStep(SolveStep): """Represents a solve method, which sets a single field.""" def __init__(self, row, col, value): super(_SingleFieldStep, self).__init__( ((row, col),), ((row, col),), (value, )) def __repr__(self): row, col = self.clues[0] value = self.values[0] return "%s(%d, %d, %d)" % (self.__class__.__name__, row, col, value) def __str__(self): return "%s at %s: %s" % ( self.__class__.__name__, self.clues[0], self.values[0]) @classmethod def find(cls, sudoku): raise NotImplementedError("%s.find() not implemented." % cls.__name__) def build_actions(self, sudoku): row, col = self.affected[0] value = self.values[0] self.actions.append( Action(Sudoku.set_number, row, col, value)) self.actions.append( Action(Sudoku.set_candidates, row, col, {value})) for i, j in sudoku.surrounding_of(row, col, include=False): if value in sudoku.get_candidates(i, j): self.actions.append( Action(Sudoku.remove_candidates, i, j, {value})) class NakedSingle(_SingleFieldStep): """Finds naked singles in a sudoku. A naked single is a field with only one candidate. The field can be set to this candidate and this candidate can be removed from all fields in the same row, column and box. """ @classmethod def find(cls, sudoku): for row, col in sudoku.empty(): candidates = sudoku.get_candidates(row, col) if len(candidates) == 1: for value in candidates: break yield cls(row, col, value) class HiddenSingle(_SingleFieldStep): """Finds hidden singles in a sudoku. A hidden single is a field containing a candidate which exists in no other fields in the same row, column or box. The field can be set to this candidate and this candidate can be removed from all fields in the same row, column and box. """ @classmethod def find(cls, sudoku): yielded_coords = [] for row, col in sudoku.empty(): for f in sudoku.column_of, sudoku.row_of, sudoku.box_of: found_hidden_single = False candidates = set(sudoku.numbers) for i, j in f(row, col, include=False): candidates -= sudoku.get_candidates(i, j) for value in candidates: if (row, col) not in yielded_coords: yielded_coords.append((row, col)) yield cls(row, col, value) found_hidden_single = True # skip the other functions if found_hidden_single: break class Bruteforce(_SingleFieldStep): """Solve the sudoku using brute force. Bruteforce simply works by trial and error testing each combination of valid candidates in a field until a solution has been found. """ @classmethod def find(cls, sudoku): try: solution = next(dlx(sudoku)) except StopIteration: return for row, col in sudoku.diff(solution): yield cls(row, col, solution[row, col]) class NakedTuple(SolveStep): """Finds naked tuples in a sudoku. A naked tuple is a set of n fields in a row, column or box, which (in unison) contain a set of at most n candidates. These candidates can be removed from all fields in the same row, column or box. """ n = 2 def build_actions(self, sudoku): for (i, j) in self.affected: to_remove = set(self.values) & sudoku.get_candidates(i, j) self.actions.append( Action(Sudoku.remove_candidates, i, j, to_remove) ) @classmethod def find(cls, sudoku): # keep track of yielded steps yielded_coords = [] # we work through rows, cols and quads in 3 steps, since the # empty fields can changed in-between for func in sudoku.row_of, sudoku.column_of, sudoku.box_of: clist = [] for (row, col) in sudoku.empty(): coords = func(row, col) if coords not in clist: clist.append(coords) for coords in clist: for step in cls.__find_at(sudoku, coords): if step.clues not in yielded_coords: yielded_coords.append(step.clues) yield step @classmethod def __find_at(cls, sudoku, coords): # Create a list of fields with at least 2 and at most n candidates. # (We ignore naked singles here, because combinations() would # return a very long list otherwise.) n_candidates = [(row, col) for (row, col) in coords if 1 < len( sudoku.get_candidates(row, col)) <= cls.n] for fields in combinations(n_candidates, cls.n): all_candidates = set() for (row, col) in fields: all_candidates |= sudoku.get_candidates(row, col) if len(all_candidates) <= cls.n: # Naked Tuple found - only yield, if actions can be applied. affected = [(r, c) for r, c in coords if (r, c) not in fields and set(all_candidates)& sudoku.get_candidates(r, c)] if affected: step = cls( clues=fields, affected=affected, values=all_candidates) yield step NakedPair = type("NakedPair", (NakedTuple,), dict(n=2)) NakedTriple = type("NakedTriple", (NakedTuple,), dict(n=3)) NakedQuad = type("NakedQuad", (NakedTuple,), dict(n=4)) NakedQuint = type("NakedQuint", (NakedTuple,), dict(n=5)) class HiddenTuple(SolveStep): """Finds hidden tuples in a sudoku. A hidden tuple is a set of n fields in a row, column or box, which (in unison) contain a set of at most n candidates, which are present in no other fields of the same row, column or box. All other candidates can be removed from these fields. """ n = 2 def build_actions(self, sudoku): for row, col in self.affected: to_remove = sudoku.get_candidates(row, col) - set(self.values) self.actions.append( Action(Sudoku.remove_candidates, row, col, to_remove)) @classmethod def find(cls, sudoku): # keep track of yielded steps yielded_coords = [] # we work through rows, cols and quads in 3 steps, since the # empty fields can changed in-between for func in sudoku.row_of, sudoku.column_of, sudoku.box_of: clist = [] for (i, j) in sudoku.empty(): coords = func(i, j) if coords not in clist: clist.append(coords) for coords in clist: for step in cls.__find_at(sudoku, coords): yield step @classmethod def __find_at(cls, sudoku, coords): cand_coords = defaultdict(lambda: set()) # build coordinate list for each candidate for cand in sudoku.numbers: for (row, col) in coords: if cand in sudoku.get_candidates(row, col): cand_coords[cand].add((row, col)) # create a list of numbers with at most n occurrences n_times = [c for c in sudoku.numbers if 1 < len(cand_coords[c]) <= cls.n] # select n numbers from the n_times list for numbers in combinations(n_times, cls.n):
<gh_stars>1-10 # -*- coding: utf-8 -*- from datetime import * import pytest import os import sys from v8 import * from v8.utils import * if is_py3k: def toUnicodeString(s): return s else: def toUnicodeString(s, encoding='utf-8'): return s if isinstance(s, unicode) else unicode(s, encoding) def testObject(): with JSContext() as ctxt: o = ctxt.eval("new Object()") assert hash(o) > 0 o1 = o.clone() assert hash(o1) == hash(o) assert o != o1 pytest.raises(UnboundLocalError, o.clone) def testAutoConverter(): with JSContext() as ctxt: ctxt.eval(""" var_i = 1; var_f = 1.0; var_s = "test"; var_b = true; var_s_obj = new String("test"); var_b_obj = new Boolean(true); var_f_obj = new Number(1.5); """) vars = ctxt.locals var_i = vars.var_i assert var_i assert 1 == int(var_i) var_f = vars.var_f assert var_f assert 1.0 == float(vars.var_f) var_s = vars.var_s assert var_s assert "test" == str(vars.var_s) var_b = vars.var_b assert var_b assert bool(var_b) assert "test" == vars.var_s_obj assert vars.var_b_obj assert 1.5 == vars.var_f_obj attrs = dir(ctxt.locals) assert attrs assert "var_i" in attrs assert "var_f" in attrs assert "var_s" in attrs assert "var_b" in attrs assert "var_s_obj" in attrs assert "var_b_obj" in attrs assert "var_f_obj" in attrs def testExactConverter(): class MyInteger(int, JSClass): pass class MyString(str, JSClass): pass class MyUnicode(unicode, JSClass): pass class MyDateTime(time, JSClass): pass class Global(JSClass): var_bool = True var_int = 1 var_float = 1.0 var_str = 'str' var_unicode = u'unicode' var_datetime = datetime.now() var_date = date.today() var_time = time() var_myint = MyInteger() var_mystr = MyString('mystr') var_myunicode = MyUnicode('myunicode') var_mytime = MyDateTime() with JSContext(Global()) as ctxt: typename = ctxt.eval("(function (name) { return this[name].constructor.name; })") typeof = ctxt.eval("(function (name) { return typeof(this[name]); })") assert 'Boolean' == typename('var_bool') assert 'Number' == typename('var_int') assert 'Number' == typename('var_float') assert 'String' == typename('var_str') assert 'String' == typename('var_unicode') assert 'Date' == typename('var_datetime') assert 'Date' == typename('var_date') assert 'Date' == typename('var_time') assert 'MyInteger' == typename('var_myint') assert 'MyString' == typename('var_mystr') assert 'MyUnicode' == typename('var_myunicode') assert 'MyDateTime' == typename('var_mytime') assert 'object' == typeof('var_myint') assert 'object' == typeof('var_mystr') assert 'object' == typeof('var_myunicode') assert 'object' == typeof('var_mytime') def testJavascriptWrapper(): with JSContext() as ctxt: assert type(None) == type(ctxt.eval("null")) assert type(None) == type(ctxt.eval("undefined")) assert bool == type(ctxt.eval("true")) assert str == type(ctxt.eval("'test'")) assert int == type(ctxt.eval("123")) assert float == type(ctxt.eval("3.14")) assert datetime == type(ctxt.eval("new Date()")) assert JSArray == type(ctxt.eval("[1, 2, 3]")) assert JSFunction == type(ctxt.eval("(function() {})")) assert JSObject == type(ctxt.eval("new Object()")) def test_python_wrapper(): with JSContext() as ctxt: typeof = ctxt.eval("(function type(value) { return typeof value; })") protoof = ctxt.eval("(function protoof(value) { return Object.prototype.toString.apply(value); })") assert '[object Null]' == protoof(None) assert 'boolean' == typeof(True) assert 'number' == typeof(123) assert 'number' == typeof(3.14) assert 'string' == typeof('test') assert 'string' == typeof(u'test') assert '[object Date]' == protoof(datetime.now()) assert '[object Date]' == protoof(date.today()) assert '[object Date]' == protoof(time()) def test(): pass assert '[object Function]' == protoof(abs) assert '[object Function]' == protoof(test) assert '[object Function]' == protoof(test_python_wrapper) assert '[object Function]' == protoof(int) def testFunction(): with JSContext() as ctxt: func = ctxt.eval(""" (function () { function a() { return "abc"; } return a(); }) """) assert "abc" == str(func()) assert func != None assert not (func == None) func = ctxt.eval("(function test() {})") assert "test" == func.name assert "" == func.resname assert 0 == func.linenum assert 14 == func.colnum assert 0 == func.lineoff assert 0 == func.coloff #TODO fix me, why the setter doesn't work? # func.name = "hello" # it seems __setattr__ was called instead of CJavascriptFunction::SetName func.setName("hello") assert "hello" == func.name def testCall(): class Hello(object): def __call__(self, name): return "hello " + name class Global(JSClass): hello = Hello() with JSContext(Global()) as ctxt: assert "hello flier" == ctxt.eval("hello('flier')") def testJSFunction(): with JSContext() as ctxt: hello = ctxt.eval("(function (name) { return 'hello ' + name; })") assert isinstance(hello, JSFunction) assert "hello flier" == hello('flier') assert "hello flier" == hello.invoke(['flier']) obj = ctxt.eval("({ 'name': 'flier', 'hello': function (name) { return 'hello ' + name + ' from ' + this.name; }})") hello = obj.hello assert isinstance(hello, JSFunction) assert "hello flier from flier" == hello('flier') tester = ctxt.eval("({ 'name': 'tester' })") assert "hello flier from tester" == hello.apply(tester, ['flier']) assert "hello flier from json" == hello.apply({ 'name': 'json' }, ['flier']) def testConstructor(): with JSContext() as ctx: ctx.eval(""" var Test = function() { this.trySomething(); }; Test.prototype.trySomething = function() { this.name = 'flier'; }; var Test2 = function(first_name, last_name) { this.name = first_name + ' ' + last_name; }; """) assert isinstance(ctx.locals.Test, JSFunction) test = JSObject.create(ctx.locals.Test) assert isinstance(ctx.locals.Test, JSObject) assert "flier" == test.name; test2 = JSObject.create(ctx.locals.Test2, ('Flier', 'Lu')) assert "<NAME>" == test2.name; test3 = JSObject.create(ctx.locals.Test2, ('Flier', 'Lu'), { 'email': '<EMAIL>' }) assert "<EMAIL>" == test3.email; def testJSError(): with JSContext() as ctxt: try: ctxt.eval('throw "test"') pytest.fail() except: assert JSError, sys.exc_info([0]) def testErrorInfo(): with JSContext() as ctxt: with JSEngine() as engine: try: engine.compile(""" function hello() { throw Error("hello world"); } hello();""", "test", 10, 10).run() pytest.fail() except JSError as e: assert str(e).startswith('JSError: Error: hello world ( test @ 14 : 26 ) ->') assert "Error" == e.name assert "hello world" == e.message assert "test" == e.scriptName assert 14 == e.lineNum assert 78 == e.startPos assert 79 == e.endPos assert 26 == e.startCol assert 27 == e.endCol assert 'throw Error("hello world");' == e.sourceLine.strip() assert 'Error: hello world\n' +\ ' at Error (native)\n' +\ ' at hello (test:14:27)\n' +\ ' at test:17:17' == e.stackTrace def testParseStack(): assert [ ('Error', 'unknown source', None, None), ('test', 'native', None, None), ('<anonymous>', 'test0', 3, 5), ('f', 'test1', 2, 19), ('g', 'test2', 1, 15), (None, 'test3', 1, None), (None, 'test3', 1, 1), ] == JSError.parse_stack("""Error: err at Error (unknown source) at test (native) at new <anonymous> (test0:3:5) at f (test1:2:19) at g (test2:1:15) at test3:1 at test3:1:1""") def testStackTrace(): class Global(JSClass): def GetCurrentStackTrace(self, limit): return JSStackTrace.GetCurrentStackTrace(4, JSStackTrace.Options.Detailed) with JSContext(Global()) as ctxt: st = ctxt.eval(""" function a() { return GetCurrentStackTrace(10); } function b() { return eval("a()"); } function c() { return new b(); } c();""", "test") assert 4 == len(st) assert "\tat a (test:4:24)\n\tat (eval)\n\tat b (test:8:24)\n\tat c (test:12:24)\n" == str(st) assert "test.a (4:24)\n. (1:1) eval\ntest.b (8:24) constructor\ntest.c (12:24)" ==\ "\n".join(["%s.%s (%d:%d)%s%s" % ( f.scriptName, f.funcName, f.lineNum, f.column, ' eval' if f.isEval else '', ' constructor' if f.isConstructor else '') for f in st]) def testPythonException(): class Global(JSClass): def raiseException(self): raise RuntimeError("Hello") with JSContext(Global()) as ctxt: r = ctxt.eval(""" msg =""; try { this.raiseException() } catch(e) { msg += "catch " + e + ";"; } finally { msg += "finally"; }""") assert "catch Error: Hello;finally" == str(ctxt.locals.msg) def testExceptionMapping(): class TestException(Exception): pass class Global(JSClass): def raiseIndexError(self): return [1, 2, 3][5] def raiseAttributeError(self): None.hello() def raiseSyntaxError(self): eval("???") def raiseTypeError(self): int(sys) def raiseNotImplementedError(self): raise NotImplementedError("Not support") def raiseExceptions(self): raise TestException() with JSContext(Global()) as ctxt: ctxt.eval("try { this.raiseIndexError(); } catch (e) { msg = e; }") assert "RangeError: list index out of range" == str(ctxt.locals.msg) ctxt.eval("try { this.raiseAttributeError(); } catch (e) { msg = e; }") assert "ReferenceError: 'NoneType' object has no attribute 'hello'" == str(ctxt.locals.msg) ctxt.eval("try { this.raiseSyntaxError(); } catch (e) { msg = e; }") assert "SyntaxError: invalid syntax" == str(ctxt.locals.msg) ctxt.eval("try { this.raiseTypeError(); } catch (e) { msg = e; }") assert "TypeError: int() argument must be a string or a number, not 'module'" == str(ctxt.locals.msg) ctxt.eval("try { this.raiseNotImplementedError(); } catch (e) { msg = e; }") assert "Error: Not support" == str(ctxt.locals.msg) pytest.raises(TestException, ctxt.eval, "this.raiseExceptions();") def testArray(): with JSContext() as ctxt: array = ctxt.eval(""" var array = new Array(); for (i=0; i<10; i++) { array[i] = 10-i; } array; """) assert isinstance(array, JSArray) assert 10 == len(array) assert 5 in array assert 15 not in array assert 10 == len(array) for i in range(10): assert 10-i == array[i] array[5] = 0 assert 0 == array[5] del array[5] assert None == array[5] # array [10, 9, 8, 7, 6, None, 4, 3, 2, 1] # array[4:7] 4^^^^^^^^^7 # array[-3:-1] -3^^^^^^-1 # array[0:0] [] assert [6, None, 4] == array[4:7] assert [3, 2] == array[-3:-1] assert [] == array[0:0] array[1:3] = [9, 9, 9] assert [10, 9, 9, 9, 7, 6, None, 4, 3, 2, 1] == list(array) array[5:8] = [8, 8] assert [10, 9,
getattr(fixpart, attr) stringified[attr] = val.replace(b'\x00', b'').decode('ascii') fixpart = fixpart._replace(**stringified) return fixpart def read_fea_header(self, level=0): '''Read header of FT_FEA with no fea subtype.''' # TODO: combine feapart1 and feapart2 hdr = EspsHeader(level) feapart1 = EspsFeapart1._make( struct.unpack( self.feapart1_fmt, self.fh.read(struct.calcsize(self.feapart1_fmt)) ) ) hdr.feapart1 = feapart1 if feapart1.field_order != 0: msg = 'Support for field_order YES not implemented.' raise NotImplementedError(msg) size = feapart1.field_count lfmt = '{:}{:d}l'.format(self.byte_order, size) hfmt = '{:}{:d}h'.format(self.byte_order, size) # TODO: these should not be stored directly in hdr; need different names hdr.sizes = struct.unpack(lfmt, self.fh.read(struct.calcsize(lfmt))) hdr.starts = struct.unpack(lfmt, self.fh.read(struct.calcsize(lfmt))) hdr.ranks = struct.unpack(hfmt, self.fh.read(struct.calcsize(hfmt))) hdr.types = struct.unpack(hfmt, self.fh.read(struct.calcsize(hfmt))) hdr.names = [] hdr.dimens = [] hdr.srcfields = [] feapart2 = EspsFeapart2._make( struct.unpack( self.feapart2_fmt, self.fh.read(struct.calcsize(self.feapart2_fmt)) ) ) hdr.feapart2 = feapart2 hdr.derived = struct.unpack(hfmt, self.fh.read(struct.calcsize(hfmt))) for rnk, typ in zip(hdr.ranks, hdr.types): slen = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] sfmt = '{:d}s'.format(slen) hdr.names.append( struct.unpack( sfmt, self.fh.read(struct.calcsize(sfmt)))[0].decode('ascii') ) if rnk != 0: lfmt = '{:}{:d}l'.format(self.byte_order, rnk) hdr.dimens.append( struct.unpack(lfmt, self.fh.read(struct.calcsize(lfmt)))[0] ) if typ == 7: # CODED defined in esps.h # TODO: implement this from lines 1281-1302 in headers.c # Note that read_coded() is implemented already and may be # used to read the coded value. raise NotImplementedError('CODED fea type not implemented.') slen = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] sfmt = '{:d}s'.format(slen) flds = [] for i in np.arange(slen): slen2 = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] sfmt2 = '{:d}s'.format(slen2) flds.append( struct.unpack( sfmt2, self.fh.read(struct.calcsize(sfmt2)))[0].decode('ascii') ) hdr.srcfields.append(flds) # read variable part while True: code = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] slen = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] if EspsVarheadType[code]['is_string'] is True: sfmt = '{:d}s'.format(slen * 4) name = struct.unpack( sfmt, self.fh.read(struct.calcsize(sfmt)) )[0].replace(b'\x00', b'').decode('ascii') if code == 0: # PT_ENDPAR break try: if EspsVarheadType[code]['subtype'] == 'PT_GENHD': setattr(hdr.genhd, name, self.read_genhd()) elif EspsVarheadType[code]['subtype'] == 'PT_HEADER': break # TODO: recursive header reading is untested. #hdr.variable.srchead.append(self.recursive_rh(hdr.level+1)) elif EspsVarheadType[code]['is_string'] is True: # all other string types setattr(hdr.variable, EspsVarheadType[code]['fld'], name) else: # TODO: I am hoping that the genhd fields, e.g. record_freq, # start_time, come first, as they are the only ones we are # interested in. Stop processing after they are found. break except KeyError: try: msg = 'Reading of ESPS {:} variable header not implemented.'.format( EspsVarheadType[code]['subtype'] ) raise NotImplementedError(msg) except KeyError: msg = 'Did not recognize ESPS variable header code {:d}'.format( code ) raise RuntimeError(msg) return hdr def read_genhd(self): '''Read generic header.''' sz = struct.unpack(self.byte_order + 'i', self.fh.read(4))[0] typ = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] val = None if EspsDtype[typ] is None: # TODO: implement additional dtypes? msg = 'fea type {:d} not implemented in read_genhd.'.format(type) raise NotImplementedError(msg) elif typ == 7: # CODED val = self.read_coded() else: vfmt = '{:}{:d}{:}'.format(self.byte_order, sz, EspsDtype[typ]) val = struct.unpack( vfmt, self.fh.read(struct.calcsize(vfmt)) )[0] if EspsDtype[typ] == 's': val = val.replace(b'\x00', b'').decode('ascii') return val def read_coded(self): '''Read 'coded' header value.''' codes = {} n = 0 lngth = struct.unpack(self.byte_order + 'h', self.fh.read(2))[0] while lngth != 0: codefmt = '{:d}s'.format(lngth) codes[n] = struct.unpack( codefmt, self.fh.read(struct.calcsize(codefmt)) )[0].replace(b'\x00', b'').decode('ascii') lngth = struct.unpack('h', self.fh.read(struct.calcsize('h')))[0] n += 1 key = struct.unpack('h', self.fh.read(struct.calcsize('h')))[0] return codes[key] def read_fea_ana_header(self): '''Read header of a FEA_ANA file.''' print('fea_ana type') # TODO: despite the name 'recursive_rh', recursion does not yet work. def recursive_rh(self, level=0): '''Read the file header.''' if level == 0: fixpart = self.read_fixpart() self.ftype = fixpart.type if self.ftype == 13: try: hdr_func = getattr( self, EspsFeaType[self.fea_type]['hdr_func'] ) hdr = hdr_func(level) if level == 0: hdr.fixpart = fixpart except KeyError: try: msg = 'Reading of ESPS {:} files not implemented'.format( EspsFeaType[self.fea_type]['subtype'] ) raise RuntimeError(msg) except KeyError: msg = 'Did not recognize ESPS FEA file subtype {:d}'.format( self.fea_type ) raise RuntimeError(msg) else: raise RuntimeError('Do not know how to read type {:}.'.format( self.ftype )) return hdr def check_data_read(self): '''Perform checks on whether data was read correctly.''' # After reading, filehandle should be at the end of the file. assert(self.fh.tell() == os.stat(self.fh.name).st_size) # TODO: additional checks against nframes or other header values # to see that records were read correctly. class EspsSgramReader(EspsFeaReader): '''A class for reading ESPS .fspec files produced by the sgram command.''' def __init__(self, infile=None, open_mode='rb', *args, **kwargs): super(EspsSgramReader, self).__init__(infile=infile, open_mode=open_mode, *args, **kwargs) # Read the data records. self.data = np.fromfile(self.fh, self.fromfile_dtype) self.check_data_read() bins = np.arange(self.num_freqs + 1, dtype=float) self._bins = bins * self.sf / self.fft_length self._times = (np.arange(len(self.data)) / self.record_freq) + \ self.start_time self.set_data_view() @property def fromfile_dtype(self): '''The dtypes for unpacking item records using np.fromfile().''' # TODO: Not sure this is right for all .fspec files. if self._fromfile_dtype is None or self._fromfile_dtype == []: self._fromfile_dtype = [] flds = [] try: assert(self.hdr.feapart2.nfloat == 1) except AssertionError: sys.stderr.write('Unexpected number of floats.') raise # TODO: check fixpart for tag=1 before adding 'tag' to flds? Note that # fixpart has 'tag', 'nfloat', and 'nchar' values whereas self.hdr.feapart2 # has 'nfloat' and 'nbyte' values but no 'tag'. flds.append(('tag', self.byte_order + 'u4')) flds.append(('tot_power', self.byte_order + 'f4')) flds.append( ('re_spec_val', '{:d}B'.format(self.hdr.feapart2.nbyte)) ) self._fromfile_dtype = np.dtype(flds) return self._fromfile_dtype @property def sgram(self): '''Return the spectrogram values of the current data view.''' return self.data[:]['re_spec_val'][ self.data_view['t1idx']:self.data_view['t2idx'], self.data_view['hz1idx']:self.data_view['hz2idx'] ].T @property def power(self): '''Return the power values of the current data view.''' return self.data[:]['tot_power'][ self.data_view['t1idx']:self.data_view['t2idx'] ] @property def tag(self): '''Return the tag values of the current data view.''' # TODO: What are the 'tag' values? Should this property have a better name? # The values seem to be related to the step size and I think indicates the # sample in the original audio file where the record is centered. # pplain reports this value as 'tag'. return self.data[:]['tag'][ self.data_view['t1idx']:self.data_view['t2idx'], self.data_view['hz1idx']:self.data_view['hz2idx'] ] @property def bin_hz(self): '''Return an array of the centers of the fft frequency bins in Hertz of the current data view.''' return self._bins[self.data_view['hz1idx']:self.data_view['hz2idx']] @property def times(self): '''Return the timepoints of each spectral slice in sgram of the current data view.''' return self._times[self.data_view['t1idx']:self.data_view['t2idx']] @property def data_view_extent(self): '''Return sgram slice's extents suitable for use as imshow()'s 'extent' param for current data view.''' tdelta = self._times[1] - self._times[0] fdelta = self._bins[1] - self._bins[0] return [ self._times[self.data_view['t1idx']] - tdelta/2, self._times[self.data_view['t2idx']] + tdelta/2, self._bins[self.data_view['hz1idx']] - fdelta/2, self._bins[self.data_view['hz2idx']] + fdelta/2 ] @property def sf(self): '''Return the sf (sampling frequency) value.''' return self.hdr.genhd.sf @property def window_type(self): '''Return the window_type value.''' return self.hdr.genhd.window_type @property def frmlen(self): '''Return the frmlen value.''' return self.hdr.genhd.frmlen @property def frame_meth(self): '''Return the frame_meth value.''' return self.hdr.genhd.frame_meth @property def freq_format(self): '''Return the freq_format value.''' return self.hdr.genhd.freq_format @property def record_freq(self): '''Return the record_freq value.''' return self.hdr.genhd.record_freq @property def start(self): '''Return the start value.''' return self.hdr.genhd.start @property def sgram_method(self): '''Return the sgram_method value.''' return self.hdr.genhd.sgram_method @property def fft_order(self): '''Return the fft_order value.''' return self.hdr.genhd.fft_order @property def fft_length(self): '''Return the fft_length value.''' return self.hdr.genhd.fft_length @property def spec_type(self): '''Return the spec_type value.''' return self.hdr.genhd.spec_type @property def step(self): '''Return the step value.''' return self.hdr.genhd.step @property def num_freqs(self): '''Return the num_freqs value.''' return self.hdr.genhd.num_freqs @property def pre_emphasis(self): '''Return the pre_emphasis value.''' return self.hdr.genhd.pre_emphasis @property def contin(self): '''Return the contin value.''' return self.hdr.genhd.contin @property def start_time(self): '''Return the start_time value.''' return self.hdr.genhd.start_time def set_data_view(self, t1=0.0, t2=np.inf, hz1=0.0, hz2=np.inf): '''Set the time and frequency ranges that determine the values returned by data-related properties.''' t1idx = (np.abs(self._times - t1)).argmin() if t2 != np.inf: t2idx = (np.abs(self._times - t2)).argmin() else: t2idx = len(self._times) - 1 hz1idx = (np.abs(self._bins - hz1)).argmin() if hz2 != np.inf: hz2idx = (np.abs(self._bins - hz2)).argmin() else: hz2idx = self.num_freqs self.data_view = { 't1idx': t1idx, 't2idx': t2idx, 'hz1idx': hz1idx, 'hz2idx': hz2idx } class EspsFormantReader(EspsFeaReader): '''A class for reading ESPS .fb files produced by formant and rformant commands.''' def __init__(self, infile=None, open_mode='rb', *args, **kwargs): super(EspsFormantReader, self).__init__(infile=infile, open_mode=open_mode, *args, **kwargs) self._times = None def __str__(self): return f'''{type(self)} {self.fh.name} start time (genhd): {self.start_time} record freq (genhd): {self.record_freq} data offset (preamble): {self.preamble.data_offset} record size (preamble): {self.preamble.record_size} field count: {self.hdr.feapart1.field_count} field order: {self.hdr.feapart1.field_order} names: {self.hdr.names} sizes: {self.hdr.sizes} ranks: {self.hdr.ranks} dimens: {self.hdr.dimens} types: {self.hdr.types} fromfile_dtype {self.fromfile_dtype} fromfile_dtype size (should be the same as record size): {self.fromfile_dtype.itemsize} ''' @property def record_freq(self): return self.hdr.genhd.record_freq @property def start_time(self): return self.hdr.genhd.start_time @property def times(self): if self._times is None: frame_period = 1 / self.record_freq self._times = \ (np.arange(self.nrecs) * frame_period) \
from __future__ import print_function import numpy as np from scipy.linalg import eigh, expm, norm from scipy.sparse import csr_matrix, spmatrix from math import factorial import warnings from functools import reduce try: import qutip except ImportError: qutip = None class Setup(object): sparse = False def __init__(self, H0, Hcs, c_ops=None, loss_vec=None, sparse=False): self.sparse = sparse if c_ops is None: c_ops = [] self.c_ops = c_ops = self.map_from_qobj(c_ops) self.H0 = self.from_qobj(H0) for op in c_ops: self.H0 += -0.5j*op.conj().T.dot(op) dim = self.H0.shape[0] assert self.H0.shape == (dim, dim) self.Hcs = self.map_from_qobj(Hcs) n_ctrls = self.Hcs.shape[0] if not self.sparse: assert self.Hcs.shape == (n_ctrls, dim, dim), self.Hcs.shape self.hermitian = True for H in [self.H0] + list(self.Hcs): if self.sparse: H = H.toarray() if not np.allclose(H, H.conj().T): print('Non-Hermitian hamiltonian detected!') self.hermitian = False break self.loss_vec = loss_vec def from_qobj(self, A, sparse=None): if sparse is None: sparse = self.sparse if qutip is not None and isinstance(A, qutip.Qobj): arr = np.squeeze(A.full()) elif sparse and isinstance(A, spmatrix): return A.tocsr() else: arr = np.asarray(A).copy().astype(complex) if sparse and arr.ndim == 2 and arr.shape[0] == arr.shape[1]: return csr_matrix(arr) return arr def map_from_qobj(self, A, sparse=None): return np.array([self.from_qobj(a, sparse=sparse) for a in A]) def get_fids(self, controls, aux_params, dt): raise NotImplementedError def set_dtype(self, dtype): self.H0 = self.H0.astype(dtype) self.Hcs = [Hc.astype(dtype) for Hc in self.Hcs] class StateTransferSetup(Setup): r"""Optimize a problem of the form .. math:: \max_\epsilon \big|\sum_k \langle \text{final}_k| U(\epsilon) |\text{init}_k\rangle\big| Since the absolute value is taken after the sum, this results in a coherent evolution of the initial states into the final states. """ def __init__(self, H0, Hcs, inits, finals, c_ops=None, gauge_ops=None, loss_vec=None, coherent=True, sparse=False, use_taylor=False): self.use_taylor = use_taylor self.taylor_order = 5 if not use_taylor: if sparse: warnings.warn('Exact (non-taylor) method incompatible with sparse matrices, using dense matrices') sparse = False super(StateTransferSetup, self).__init__(H0, Hcs, c_ops=c_ops, loss_vec=loss_vec, sparse=sparse) self.inits = self.map_from_qobj(inits) self.finals = self.map_from_qobj(finals) self.gauge_ops = None self.coherent = coherent if gauge_ops is not None: self.gauge_ops = self.map_from_qobj(gauge_ops, sparse=False) def optimize_taylor_order(self, max_norm, plen, dt, aux_params=None, tol=1e-6): if aux_params is None: aux_params = [] orders = [] for _ in range(3): ctrls = max_norm * np.random.randn(len(self.Hcs), plen) self.taylor_order = 5 prev_psi = self.get_fids(ctrls, aux_params, dt)[0] rel_err = 1 while rel_err > tol: self.taylor_order += 1 psi = self.get_fids(ctrls, aux_params, dt)[0] rel_err = np.sum(np.abs(psi - prev_psi)**2) / np.sum(np.abs(psi)**2) print('Taylor order:', self.taylor_order, 'Rel Err:', rel_err) prev_psi = psi orders.append(self.taylor_order) self.taylor_order = max(orders) print('Using taylor order', self.taylor_order) def __getitem__(self, item): return [self.H0, self.Hcs, self.inits, self.finals, self.gauge_ops][item] def get_fids(self, controls, aux_params, dt): if self.use_taylor: return taylor_states_fidelity( controls, self.H0, self.Hcs, self.inits, self.finals, dt=dt, gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian, coherent=self.coherent, loss_vec=self.loss_vec, order=self.taylor_order ) else: return states_fidelity( controls, self.H0, self.Hcs, self.inits, self.finals, dt=dt, gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian, coherent=self.coherent, loss_vec=self.loss_vec ) def set_dtype(self, dtype): super(StateTransferSetup, self).set_dtype(dtype) self.inits = self.inits.astype(dtype) self.finals = self.finals.astype(dtype) if self.gauge_ops is not None: self.gauge_ops = self.gauge_ops.astype(dtype) class UnitarySetup(Setup): r"""Optimize a problem of the form .. math:: \max_\epsilon \big|\text{Tr}[U_\text{target} U(\epsilon)^\dagger]\big| """ def __init__(self, H0, Hcs, U_target, c_ops=None, gauge_ops=None): super(UnitarySetup, self).__init__(H0, Hcs, c_ops=c_ops) self.U_target = self.from_qobj(U_target) self.gauge_ops = None if gauge_ops is not None: self.gauge_ops = self.map_from_qobj(gauge_ops) def __getitem__(self, item): return [self.H0, self.Hcs, self.U_target][item] def get_fids(self, controls, aux_params, dt): return prop_fidelity( controls, self.H0, self.Hcs, self.U_target, aux_params, self.gauge_ops, dt, hermitian=self.hermitian, loss_vec=self.loss_vec ) def set_dtype(self, dtype): super(UnitarySetup, self).set_dtype(dtype) self.U_target = self.U_target.astype(dtype) if self.gauge_ops is not None: self.gauge_ops = self.gauge_ops class ExpectationSetup(Setup): def __init__(self, H0, Hcs, inits, expect_ops, c_ops=None): super(ExpectationSetup, self).__init__(H0, Hcs, c_ops=c_ops) self.inits = self.from_qobj(inits) #map_from_qobj(inits) self.expect_ops = self.from_qobj(expect_ops) #map_from_qobj(expect_ops) def __getitem__(self, item): return [self.H0, self.Hcs, self.inits, self.expect_ops][item] def get_fids(self, controls, aux_params, dt): prop, fid, d_fid = get_expectation(controls, self.H0, self.Hcs, self.inits, self.expect_ops, dt) return prop, fid, d_fid, np.zeros_like(aux_params) def set_dtype(self, dtype): super(ExpectationSetup, self).set_dtype(dtype) self.inits = self.inits.astype(dtype) self.expect_ops = self.expect_ops.astype(dtype) class LindbladSetup(StateTransferSetup): def __init__(self, H0, Hcs, inits, finals, c_ops, loss_vec=None, **kwargs): L0 = self.make_liouvillian(H0) + sum(map(self.make_dissipator, c_ops)) Lcs = np.array(list(map(self.make_liouvillian, Hcs))) inits = self.map_from_qobj(inits) finals = self.map_from_qobj(finals) if inits[0].shape[0] != L0.shape[0]: rho_inits = [np.outer(i1, i2.conj()).flatten() for i1 in inits for i2 in inits] rho_finals = [np.outer(f1, f2.conj()).flatten() for f1 in finals for f2 in finals] else: rho_inits = inits rho_finals = finals super(LindbladSetup, self).__init__(L0, Lcs, rho_inits, rho_finals, **kwargs) # self.hermitian = False def get_fids(self, controls, aux_params, dt): prop, fid, d_fid, d_fid_aux = super(LindbladSetup, self).get_fids(controls, aux_params, dt) fid = np.sqrt(fid) d_fid = d_fid / fid d_fid_aux = d_fid_aux / fid return prop, fid, d_fid, d_fid_aux def make_liouvillian(self, H): H = self.from_qobj(H) I = np.eye(H.shape[0]) return (np.kron(I, H) - np.kron(H.T, I)) def make_dissipator(self, c_op): c_op = self.from_qobj(c_op) cd = c_op.T.conj() c = c_op cdc = cd.dot(c) I = np.eye(c_op.shape[0]) return 1j * (np.kron(cd.T, c) - 0.5 * (np.kron(I, cdc) + np.kron(cdc.T, I))) class SubspaceSetup(StateTransferSetup): def get_fids(self, controls, aux_params, dt): assert not self.use_taylor return states_fidelity( controls, self.H0, self.Hcs, self.inits, self.finals, dt=dt, gauge_vals=aux_params, gauge_ops=self.gauge_ops, hermitian=self.hermitian, coherent=False, subspace_contain=True, loss_vec=self.loss_vec ) def states_fidelity(controls, H_drift, H_controls, inits, finals, gauge_vals=None, gauge_ops=None, dt=1, hermitian=True, coherent=True, subspace_contain=False, loss_vec=None): n_ctrls, plen = controls.shape n_states = len(inits) use_gauge = gauge_ops is not None dim = H_drift.shape[0] H_drift = dt * H_drift H_controls = dt * np.array(H_controls) # TODO: Don't re-initialize every time if possible props = np.empty((plen, dim, dim), H_drift.dtype) d_props = np.empty((n_ctrls, plen, dim, dim), H_drift.dtype) for i, time_slice in enumerate(controls.T): H = H_drift + sum(c*Hc for c,Hc in zip(time_slice, H_controls)) if hermitian: props[i], d_props[:, i, :, :] = step_propagator(H, H_controls, loss_vec) else: props[i], d_props[:, i, :, :] = step_propagator_nonhermitian(H, H_controls) if use_gauge: g_sum = sum(g_val*g_op for g_val, g_op in zip(gauge_vals, gauge_ops)) g_prop, d_g_props = step_propagator(g_sum, gauge_ops) props = np.concatenate((props, [g_prop])) prop_inits = [inits.T] for prop in props: prop_inits.append(prop.dot(prop_inits[-1])) prop_finals = [finals.conj()] for prop in reversed(props): prop_finals.append(prop_finals[-1].dot(prop)) prop_finals.reverse() if coherent: ovlp = np.sum(prop_finals[-1].T * prop_inits[-1]) fid = abs(ovlp) d_ovlps = [] for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])): for d_prop in d_props[:, i]: d_ovlps.append(np.sum(pf.T * d_prop.dot(pi))) d_ovlps = np.array(d_ovlps).reshape((plen, n_ctrls)).T d_fids = (ovlp.real*d_ovlps.real + ovlp.imag*d_ovlps.imag) / (fid) elif subspace_contain: ovlps = prop_finals[-1].dot(prop_inits[-1]) a_ovlps = np.abs(ovlps)**2 fid = np.sum(a_ovlps) d_fids = [] for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])): for d_prop in d_props[:, i]: d_ovlp = pf.dot(d_prop.dot(pi)) d_a_ovlps = 2 * (ovlps.real*d_ovlp.real + ovlps.imag*d_ovlp.imag) d_fids.append(np.sum(d_a_ovlps)) d_fids = np.array(d_fids).reshape((plen, n_ctrls)).T else: ovlps = np.sum(prop_finals[-1].T * prop_inits[-1], axis=0) a_ovlps = np.abs(ovlps)**2 fid = np.sum(a_ovlps) d_fids = [] for i, (pi, pf) in enumerate(zip(prop_inits[:plen], prop_finals[1:])): for d_prop in d_props[:, i]: d_ovlp = pf.T * d_prop.dot(pi) d_a_ovlps = 2 * (ovlps.real*d_ovlp.real + ovlps.imag*d_ovlp.imag) d_fids.append(np.sum(d_a_ovlps)) d_fids = np.array(d_fids).reshape((plen, n_ctrls)).T if not use_gauge: return prop_inits[-1], fid / n_states, d_fids / n_states, [] d_g_ovlps = [] pi = prop_inits[-2] pf = prop_finals[-1] for d_prop in d_g_props: d_g_ovlps.append(np.sum(pf.T * d_prop.dot(pi))) d_g_ovlps = np.array(d_g_ovlps) d_g_fids = (ovlp.real*d_g_ovlps.real + ovlp.imag*d_g_ovlps.imag) / (fid) return prop_inits[-1], fid / n_states, d_fids / n_states, d_g_fids / n_states def get_expectation(controls, H_drift, H_controls, init, expect_op, dt=1): H_drift = dt * H_drift H_controls = dt * np.array(H_controls) tot_prop, d_tot_props, _ = total_propagator(controls, H_drift, H_controls) final = tot_prop.dot(init) d_finals = np.einsum('ijkl,l->ijk', d_tot_props, init) expect = final.conj().T.dot(expect_op).dot(final).real d_op_finals = np.einsum('ij,klj->kli', expect_op, d_finals) d_expects = 2*np.einsum('i,jki->jk', final.conj(), d_op_finals).real return tot_prop, expect, d_expects def prop_fidelity(controls, H_drift, H_controls, U_target, gauge_vals, gauge_ops, dt=1, hermitian=True, loss_vec=None): """ Get the total propagator as well as the fidelity to a given target defined as abs(Tr(U_target . U.conj().T)) and the gradient of the fidelity with respect to the controls """ H_drift = dt * H_drift H_controls = dt * np.array(H_controls) tot_prop, d_tot_props, d_g_props = total_propagator( controls, H_drift, H_controls, gauge_vals, gauge_ops, hermitian=hermitian, loss_vec=loss_vec ) return prop_fidelity_from_U(tot_prop, d_tot_props, d_g_props, U_target) def prop_fidelity_from_U(U, dUs, d_g_Us, U_target): norm = np.sum(abs(U_target)**2) overlap = np.sum(U_target.conj() * U) / norm d_overlaps = np.sum(U_target.conj() * dUs, axis=(2,3)) / norm fid = abs(overlap) d_fid = (overlap.real*d_overlaps.real + overlap.imag*d_overlaps.imag) / fid if len(d_g_Us) == 0: d_g_fid = [] else: d_g_overlaps = np.sum(U_target.conj() * d_g_Us, axis=(1,2)) / norm d_g_fid = (overlap.real*d_g_overlaps.real + overlap.imag*d_g_overlaps.imag) / fid return U, fid, d_fid, d_g_fid def total_propagator(controls, H_drift, H_controls, gauge_vals=None, gauge_ops=None, hermitian=True, loss_vec=None): """ Compute step propagator for each time point and take product to find the total propagator. Similarly find the derivative of the propagator with respect to the controls. :param controls: (N_CTRLS, PLEN) real array :param H_drift: (DIM, DIM) complex array :param H_controls: (N_CTRLS, DIM, DIM) complex
to 0, the cookie is non-persistent and lasts only until the end of the browser session (or equivalent). The maximum allowed value for TTL is one day. When the load balancing scheme is INTERNAL, this field is not used. """ return pulumi.get(self, "affinity_cookie_ttl_sec") @affinity_cookie_ttl_sec.setter def affinity_cookie_ttl_sec(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "affinity_cookie_ttl_sec", value) @property @pulumi.getter def backends(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionBackendServiceBackendArgs']]]]: """ The set of backends that serve this RegionBackendService. Structure is documented below. """ return pulumi.get(self, "backends") @backends.setter def backends(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionBackendServiceBackendArgs']]]]): pulumi.set(self, "backends", value) @property @pulumi.getter(name="cdnPolicy") def cdn_policy(self) -> Optional[pulumi.Input['RegionBackendServiceCdnPolicyArgs']]: """ Cloud CDN configuration for this BackendService. Structure is documented below. """ return pulumi.get(self, "cdn_policy") @cdn_policy.setter def cdn_policy(self, value: Optional[pulumi.Input['RegionBackendServiceCdnPolicyArgs']]): pulumi.set(self, "cdn_policy", value) @property @pulumi.getter(name="circuitBreakers") def circuit_breakers(self) -> Optional[pulumi.Input['RegionBackendServiceCircuitBreakersArgs']]: """ Settings controlling the volume of connections to a backend service. This field is applicable only when the `load_balancing_scheme` is set to INTERNAL_MANAGED and the `protocol` is set to HTTP, HTTPS, or HTTP2. Structure is documented below. """ return pulumi.get(self, "circuit_breakers") @circuit_breakers.setter def circuit_breakers(self, value: Optional[pulumi.Input['RegionBackendServiceCircuitBreakersArgs']]): pulumi.set(self, "circuit_breakers", value) @property @pulumi.getter(name="connectionDrainingTimeoutSec") def connection_draining_timeout_sec(self) -> Optional[pulumi.Input[int]]: """ Time for which instance will be drained (not accept new connections, but still work to finish started). """ return pulumi.get(self, "connection_draining_timeout_sec") @connection_draining_timeout_sec.setter def connection_draining_timeout_sec(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "connection_draining_timeout_sec", value) @property @pulumi.getter(name="consistentHash") def consistent_hash(self) -> Optional[pulumi.Input['RegionBackendServiceConsistentHashArgs']]: """ Consistent Hash-based load balancing can be used to provide soft session affinity based on HTTP headers, cookies or other properties. This load balancing policy is applicable only for HTTP connections. The affinity to a particular destination host will be lost when one or more hosts are added/removed from the destination service. This field specifies parameters that control consistent hashing. This field only applies when all of the following are true - """ return pulumi.get(self, "consistent_hash") @consistent_hash.setter def consistent_hash(self, value: Optional[pulumi.Input['RegionBackendServiceConsistentHashArgs']]): pulumi.set(self, "consistent_hash", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ An optional description of this resource. Provide this property when you create the resource. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="enableCdn") def enable_cdn(self) -> Optional[pulumi.Input[bool]]: """ If true, enable Cloud CDN for this RegionBackendService. """ return pulumi.get(self, "enable_cdn") @enable_cdn.setter def enable_cdn(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_cdn", value) @property @pulumi.getter(name="failoverPolicy") def failover_policy(self) -> Optional[pulumi.Input['RegionBackendServiceFailoverPolicyArgs']]: """ Policy for failovers. Structure is documented below. """ return pulumi.get(self, "failover_policy") @failover_policy.setter def failover_policy(self, value: Optional[pulumi.Input['RegionBackendServiceFailoverPolicyArgs']]): pulumi.set(self, "failover_policy", value) @property @pulumi.getter(name="healthChecks") def health_checks(self) -> Optional[pulumi.Input[str]]: """ The set of URLs to HealthCheck resources for health checking this RegionBackendService. Currently at most one health check can be specified. A health check must be specified unless the backend service uses an internet or serverless NEG as a backend. """ return pulumi.get(self, "health_checks") @health_checks.setter def health_checks(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "health_checks", value) @property @pulumi.getter def iap(self) -> Optional[pulumi.Input['RegionBackendServiceIapArgs']]: """ Settings for enabling Cloud Identity Aware Proxy Structure is documented below. """ return pulumi.get(self, "iap") @iap.setter def iap(self, value: Optional[pulumi.Input['RegionBackendServiceIapArgs']]): pulumi.set(self, "iap", value) @property @pulumi.getter(name="loadBalancingScheme") def load_balancing_scheme(self) -> Optional[pulumi.Input[str]]: """ Indicates what kind of load balancing this regional backend service will be used for. A backend service created for one type of load balancing cannot be used with the other(s). Default value is `INTERNAL`. Possible values are `EXTERNAL`, `INTERNAL`, and `INTERNAL_MANAGED`. """ return pulumi.get(self, "load_balancing_scheme") @load_balancing_scheme.setter def load_balancing_scheme(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "load_balancing_scheme", value) @property @pulumi.getter(name="localityLbPolicy") def locality_lb_policy(self) -> Optional[pulumi.Input[str]]: """ The load balancing algorithm used within the scope of the locality. The possible values are - * ROUND_ROBIN - This is a simple policy in which each healthy backend is selected in round robin order. * LEAST_REQUEST - An O(1) algorithm which selects two random healthy hosts and picks the host which has fewer active requests. * RING_HASH - The ring/modulo hash load balancer implements consistent hashing to backends. The algorithm has the property that the addition/removal of a host from a set of N hosts only affects 1/N of the requests. * RANDOM - The load balancer selects a random healthy host. * ORIGINAL_DESTINATION - Backend host is selected based on the client connection metadata, i.e., connections are opened to the same address as the destination address of the incoming connection before the connection was redirected to the load balancer. * MAGLEV - used as a drop in replacement for the ring hash load balancer. Maglev is not as stable as ring hash but has faster table lookup build times and host selection times. For more information about Maglev, refer to https://ai.google/research/pubs/pub44824 This field is applicable only when the `load_balancing_scheme` is set to INTERNAL_MANAGED and the `protocol` is set to HTTP, HTTPS, or HTTP2. Possible values are `ROUND_ROBIN`, `LEAST_REQUEST`, `RING_HASH`, `RANDOM`, `ORIGINAL_DESTINATION`, and `MAGLEV`. """ return pulumi.get(self, "locality_lb_policy") @locality_lb_policy.setter def locality_lb_policy(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "locality_lb_policy", value) @property @pulumi.getter(name="logConfig") def log_config(self) -> Optional[pulumi.Input['RegionBackendServiceLogConfigArgs']]: """ This field denotes the logging options for the load balancer traffic served by this backend service. If logging is enabled, logs will be exported to Stackdriver. Structure is documented below. """ return pulumi.get(self, "log_config") @log_config.setter def log_config(self, value: Optional[pulumi.Input['RegionBackendServiceLogConfigArgs']]): pulumi.set(self, "log_config", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name of the cookie. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def network(self) -> Optional[pulumi.Input[str]]: """ The URL of the network to which this backend service belongs. This field can only be specified when the load balancing scheme is set to INTERNAL. """ return pulumi.get(self, "network") @network.setter def network(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "network", value) @property @pulumi.getter(name="outlierDetection") def outlier_detection(self) -> Optional[pulumi.Input['RegionBackendServiceOutlierDetectionArgs']]: """ Settings controlling eviction of unhealthy hosts from the load balancing pool. This field is applicable only when the `load_balancing_scheme` is set to INTERNAL_MANAGED and the `protocol` is set to HTTP, HTTPS, or HTTP2. Structure is documented below. """ return pulumi.get(self, "outlier_detection") @outlier_detection.setter def outlier_detection(self, value: Optional[pulumi.Input['RegionBackendServiceOutlierDetectionArgs']]): pulumi.set(self, "outlier_detection", value) @property @pulumi.getter(name="portName") def port_name(self) -> Optional[pulumi.Input[str]]: """ A named port on a backend instance group representing the port for communication to the backend VMs in that group. Required when the loadBalancingScheme is EXTERNAL, INTERNAL_MANAGED, or INTERNAL_SELF_MANAGED and the backends are instance groups. The named port must be defined on each backend instance group. This parameter has no meaning if the backends are NEGs. API sets a default of "http" if not given. Must be omitted when the loadBalancingScheme is INTERNAL (Internal TCP/UDP Load Balancing). """ return pulumi.get(self, "port_name") @port_name.setter def port_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "port_name", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter def protocol(self) -> Optional[pulumi.Input[str]]: """ The protocol this RegionBackendService uses to communicate with backends. The default is HTTP. **NOTE**: HTTP2 is only valid for beta HTTP/2 load balancer types and may result in errors if used with the GA API. Possible values are `HTTP`, `HTTPS`, `HTTP2`, `SSL`, `TCP`, `UDP`, `GRPC`, and `UNSPECIFIED`. """ return pulumi.get(self, "protocol") @protocol.setter def protocol(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "protocol", value) @property @pulumi.getter def region(self) -> Optional[pulumi.Input[str]]: """ The Region in which the created backend service should reside. If it is not provided, the provider region is used. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region", value) @property @pulumi.getter(name="sessionAffinity") def session_affinity(self) -> Optional[pulumi.Input[str]]: """ Type of session affinity to use. The default is NONE. Session affinity is not applicable if the protocol is UDP. Possible values are `NONE`, `CLIENT_IP`, `CLIENT_IP_PORT_PROTO`, `CLIENT_IP_PROTO`, `GENERATED_COOKIE`, `HEADER_FIELD`, and `HTTP_COOKIE`. """ return pulumi.get(self, "session_affinity") @session_affinity.setter def session_affinity(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "session_affinity", value) @property @pulumi.getter(name="timeoutSec") def timeout_sec(self) -> Optional[pulumi.Input[int]]: """ How many seconds to wait for the backend before considering it a failed request. Default is 30 seconds. Valid range is [1, 86400]. """ return pulumi.get(self, "timeout_sec") @timeout_sec.setter def timeout_sec(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "timeout_sec", value) @pulumi.input_type class _RegionBackendServiceState: def __init__(__self__, *, affinity_cookie_ttl_sec: Optional[pulumi.Input[int]] = None, backends: Optional[pulumi.Input[Sequence[pulumi.Input['RegionBackendServiceBackendArgs']]]] = None, cdn_policy: Optional[pulumi.Input['RegionBackendServiceCdnPolicyArgs']]
= max([abs(min(dtxlist)),abs(max(dtxlist))]) self.dtymax0 = max([abs(min(dtylist)),abs(max(dtylist))]) self.dtzmax0 = max([abs(min(dtzlist)),abs(max(dtzlist))]) self.dmaxset = 1 for i in range(self.num_z): for j in range(self.num_x): dtxi,dtzi,dtxj_up,dtxj_down,dtxj_left,dtxj_right,dtzj_up,dtzj_down,dtzj_left,dtzj_right,di,dj_up,dj_down,dj_left,dj_right,n_up,n_down,n_left,n_right,pos1,pos2,bc,geo = state_data(i,j,self) ''' self.metagrid[i][j] = [[dtxi],[dtzi],[dtxj_up],[dtxj_down],[dtxj_left],[dtxj_right],[dtzj_up],[dtzj_down],[dtzj_left],[dtzj_right],[di],[dj_up],[dj_down],[dj_left],[dj_right],[n_up],[n_down],[n_left],[n_right],[pos1],[pos2],[bc],[geo]] ''' self.metagrid[i][j] = [ [n_up],[n_down],[n_left],[n_right], [pos1],[pos2], [geo] ] # Function to calculate value use in the reward system / 報酬制度での価値利用を計算する機能 def _game_gen_state_condi(self): self.gen_model.gen_surface1() # Calculate total surface / 総表面積を計算する self.strain_e = self.gen_model.surface_1 # Current total surface of this structure / この構造の総表面積 if self.game_step == 1: # Initial total length of this structure / この構造の初期の全長 self.int_strain_e = self.gen_model.surface_1 else: pass # Function to initialize state / 状態を初期化する関数 def _game_get_1_state(self,do): self._update_metagrid() # update structural data array / 構造データ配列を更新する # do = [i,j] # metagrid[z,x] # Check game type to generate state from structural data array / 構造データ配列から状態を生成するゲームタイプをチェックしてください x = self.metagrid[do[0]][do[1]] state = np.array(x) # state / 状態 return state # Function to generate next state / 次の状態を生成する関数 def _game_get_next_state(self,do,action,i=0): num = [action[0][0],action[0][1],action[0][2],action[0][3],action[0][4],action[0][5]] num = num.index(max(num)) # Find maximum index of the action receive from Neural Network / ニューラルネットワークから受け取るアクションの最大インデックスを見つける # next_state = f(action) # Interpretation of action index / 行動のインデックスの解釈 if num == 0: # Adjust this node by moving up in the magnitude of y_step / y_stepの大きさを上に移動して、このノードを調整します if self.gen_model.n_u_name_div[do[0]][do[1]].res[1] !=1: if self.gen_model.n_u_name_div[do[0]][do[1]].coord[1] + self.y_step <= self.max_y_val: self.gen_model.n_u_name_div[do[0]][do[1]].coord[1] += self.y_step else: pass else: pass elif num == 1: # Adjust this node by moving down in the magnitude of y_step / y_stepの大きさを下に移動して、このノードを調整します if self.gen_model.n_u_name_div[do[0]][do[1]].res[1] != 1: if self.gen_model.n_u_name_div[do[0]][do[1]].coord[1] - self.y_step >= 0: self.gen_model.n_u_name_div[do[0]][do[1]].coord[1] -= self.y_step else: pass else: pass elif num == 2: # Agent move to other node to the right(move right x+1) / #エージェントは他のノードに右に移動します(右にx + 1移動) # do[z,x] if (do[1]+1 != (len(self.gen_model.n_u_name_div[0]))): self.doing[0][1] = do[1]+1 else: pass elif num == 3: # Agent move to other node to the left(move left x-1) / エージェントは他のノードに左に移動します(左に移動x-1) # do[z,x] if (do[1] != 0): self.doing[0][1] = do[1]-1 else: pass elif num == 4: # Agent move to other node to the upper(move up z-1) / エージェントが他のノードに移動します(上に移動z-1) # do[z,x] if (do[0] != 0): self.doing[0][0] = do[0]-1 else: pass elif num == 5: # Agent move to other node to the lower(move down z+1) / エージェントは他のノードに移動します(z + 1に移動) # do[z,x] if (do[0]+1 != (len(self.gen_model.n_u_name_div))): self.doing[0][0] = do[0]+1 else: pass announce = ['z_up','z_down','move right','move left','move up','move down'] # list of actions / 行動のリスト if self.tell_action == True: print(announce[num-1]) # print out action if tell_action is Trues / tell_actionがTrueの場合、行動を出力します self._update_metagrid() # update structural data array / 構造データ配列を更新する # Check game type to generate state from structural data array / 構造データ配列から状態を生成するゲームタイプをチェックしてください x = self.metagrid[self.doing[i][0]][self.doing[i][1]] next_state = np.array(x) # next_state / 次の状態 return next_state # Function to calculate value use in the reward system / 報酬制度での価値利用を計算する機能 def _gen_gen_reward_condition(self): self.gen_model.gen_surface1() # Calculate next state's total surface / 次の状態の総表面積を計算する self.next_strain_e = self.gen_model.surface_1# Total surface of this structure in the next_state after agents do actions / エージェントが行動を実行した後のnext_state内のこの構造の総表面積 # Function to calculate reward for each agent / 各エージェントの報酬を計算する機能 def _game_get_reward(self,agent): self.reward[agent] += 1000*(self.strain_e[0]-self.next_strain_e[0])/(self.int_strain_e[0]) # Reward rule / 報酬規定 if self.game_step == self.end_step: # Check if game is end / ゲームが終了したかどうかを確認する self.done_counter = 1 return self.reward[agent],self.done_counter # Function to reset every values and prepare for the next game / すべての値をリセットして次のゲームに備える機能 def reset(self): self.state = [] # Game state / ゲームの状態 self.action = [] # Game action / ゲームの行動 self.reward = [] # Game reward for each agent / 各エージェントのゲーム報酬 for i in range(self.num_agents): self.reward.append(0) self.next_state = [] # Game next state / ゲームの次の状態 self.done = [] # Game over counter / ゲームオーバーカウンター self.doing = [] # List of position(x,z) in the structure of each agent / 各エージェントの構造内のposition(x、z)のリスト for i in range(self.num_agents): # Initialize starting position of each structure / 各構造の開始位置を初期化 self.doing.append([0,0]) self.game_step = 1 # Game initial step / ゲームの最初のステップ self.xmax = 0 # Maximum x coordinate value in this structural model (horizontal) / この構造モデルの最大x座標値(水平) self.xmin = 0 # Minimum x coordinate value in this structural model (horizontal) / この構造モデル(水平)の最小x座標値 self.ymax = 0 # Maximum y coordinate value in this structural model (vertical) / この構造モデルのY座標の最大値(垂直) self.ymin = 0 # Minimum y coordinate value in this structural model (vertical) / この構造モデルのY座標の最小値(垂直) self.zmax = 0 # Maximum z coordinate value in this structural model (horizontal) / この構造モデルの最大Z座標値(水平) self.zmin = 0 # Minimum z coordinate value in this structural model (horizontal) / この構造モデルの最小Z座標値(水平) self.sval = 0.001 # small noise / 小さなノイズ self.dymax = 0 self.dymin = 0 self.sdyval = 0 self.dmax0 = 0 self.dmaxset = 0 self.dtxmax = 0 self.dtxmin = 0 self.dtymax = 0 self.dtymin = 0 self.dtzmax = 0 self.dtzmin = 0 self.dtxmax0 = 0 self.dtymax0 = 0 self.dtzmax0 = 0 #********** self.int_strain_e = 0 # Initial Total length for this game / このゲームの初期の全長 self.strain_e = 0 # Current Total length for this game / このゲームの現在の合計の長さ self.next_strain_e = 0 # Total length after agents do actions. Used for calculating reward / エージェントがアクションを実行した後の全長。 報酬の計算に使用されます #********** self.reward_counter = [] # List of reward of each agent / 各エージェントの報酬一覧 for i in range(self.num_agents): # Initialize reward for each agent / 各エージェントの報酬を初期化する self.reward.append(0) self.reward_counter.append(0) self.done_counter = 0 # Counter for game end / ゲーム終了のカウンター # Function change state to next_state / 関数は状態を次の状態に変更します def step(self): self.state = self.next_state self.action = [] # Reset List of Action for each agent / 各エージェントのアクションリストをリセット for i in range(len(self.reward)): # Reset List of Reward for each agent / 各エージェントの報酬リストをリセット self.reward[i] = 0 self.next_state = [] # Reset List of next state for each agent / 各エージェントの次の状態のリストをリセット self.done = [] # Reset List of game over counter / ゲームオーバーカウンターのリストをリセット self.game_step += 1 # Increase game step counter / ゲームのステップカウンターを増やす #============================================================================= # GAME 2 '研究室' class Game2: def __init__(self,end_step,alpha,max_y_val,model,num_agents=1,render=0,tell_action=False): self.name = 'GAME 2' # Name of the game / ゲームの名前 self.description = 'AGENT HAS 6 ACTIONS: MOVE NODE (UP DOWN), MOVE TO SURROUNDING NODES (LEFT RIGHT UP DOWN)' # Game's description / ゲームの説明 self.objective = 'REDUCE STRAIN ENERGY' # Game's objective / ゲームの目的 self.tell_action =tell_action # Print agent action in console /コンソールでエージェントの行動を印刷する self.num_agents = num_agents # Amount of agents in the game / ゲーム内のエージェントの数 self.gen_model = model # Gen structural model used in the game / ゲームで使用されるGen構造モデル self.model = model.model # Structural model used in the game / ゲームで使用される構造モデル self.num_x = model.num_x # Amount of Structural model's span in x axis (horizontal) / X軸での構造モデルのスパンの量(水平) self.num_z = model.num_z # Amount of Structural model's span in z axis (horizontal) / Z軸での構造モデルのスパンの量(水平) self.render = render # Render after each step / 各ステップ後にレンダリング self.game_step = 1 # Game initial step / ゲームの最初のステップ self.game_type = 0 # Game's state type / ゲームの状態タイプ self.end_step = end_step # Game final step / ゲームの最終ステップ self.alpha = alpha # Magnitude for agents to adjust structure as a factor of Structural model's span / エージェントが構造モデルのスパンの要素として構造を調整するための大きさ self.y_step = self.alpha*self.gen_model.span # Magnitude for agents to adjust structure(m) / エージェントが構造を調整するための大きさ(m) self.state = [] # Game state / ゲームの状態 self.action = [] # Game action / ゲームの行動 self.reward = [] # Game reward for each agent / 各エージェントのゲーム報酬 self.next_state = [] # Game next state / ゲームの次の状態 self.done = [] # Game over counter / ゲームオーバーカウンター self.doing = [] # List of position(x,z) in the structure of each agent / 各エージェントの構造内のposition(x、z)のリスト for i in range(self.num_agents): # Initialize starting position of each structure / 各構造の開始位置を初期化 self.doing.append([0,0]) self.metagrid = [] # 2-D Array of data in each structural node / 各構造ノードのデータの2次元配列 for i in range(self.num_z): # Initialize structural data array / 構造データ配列を初期化する self.metagrid.append([]) for j in range(self.num_x): self.metagrid[-1].append([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) # Maximum num_state in this suite is 23 / このスイートの最大num_stateは23です self.xmax = 0 # Maximum x coordinate value in this structural model (horizontal) / この構造モデルの最大x座標値(水平) self.xmin = 0 # Minimum x coordinate value in this structural model (horizontal) / この構造モデル(水平)の最小x座標値 self.ymax = 0 # Maximum y coordinate value in this structural model (vertical) / この構造モデルのY座標の最大値(垂直) self.ymin = 0 # Minimum y coordinate value in this structural model (vertical) / この構造モデルのY座標の最小値(垂直) self.zmax = 0 # Maximum z coordinate value in this structural model (horizontal)
<reponame>AndresQuichimbo/landlab import numpy as np import pytest from numpy import testing from landlab import HexModelGrid, RasterModelGrid from landlab.components import FlowAccumulator, Space def test_route_to_multiple_error_raised(): mg = RasterModelGrid((10, 10)) z = mg.add_zeros("topographic__elevation", at="node") z += mg.x_of_node + mg.y_of_node fa = FlowAccumulator(mg, flow_director="MFD") fa.run_one_step() with pytest.raises(NotImplementedError): Space( mg, K_sed=0.1, K_br=0.1, F_f=0.5, phi=0.1, H_star=1.0, v_s=0.001, m_sp=1.0, n_sp=0.5, sp_crit_sed=0, sp_crit_br=0, ) def test_bad_solver_name(): """ Test that any solver name besides 'basic' and 'adaptive' raises an error. """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") soil = mg.add_zeros("soil__depth", at="node") mg["node"]["topographic__elevation"] += ( mg.node_y / 10000 + mg.node_x / 10000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) br[:] = z[:] - soil[:] # Create a D8 flow handler FlowAccumulator(mg, flow_director="D8") # try to instantiate SPACE using a wrong solver name with pytest.raises(ValueError): Space( mg, K_sed=0.01, K_br=0.01, F_f=0.0, phi=0.0, v_s=0.001, m_sp=0.5, n_sp=1.0, sp_crit_sed=0, sp_crit_br=0, solver="something_else", ) def test_soil_field_already_on_grid(): """ Test that an existing soil grid field is not changed by instantiating SPACE. """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") soil = mg.add_zeros("soil__depth", at="node") soil += 1.0 # add 1m of soil everywehre mg["node"]["topographic__elevation"] += ( mg.node_y / 10000 + mg.node_x / 10000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) br[:] = z[:] - soil[:] # Create a D8 flow handler FlowAccumulator(mg, flow_director="D8") # Instantiate SPACE sp = Space( mg, K_sed=0.01, K_br=0.01, F_f=0.0, phi=0.0, v_s=0.001, m_sp=0.5, n_sp=1.0, sp_crit_sed=0, sp_crit_br=0, solver="basic", ) # ensure that 'soil__depth' field is everywhere equal to 1.0 m. testing.assert_array_equal( np.ones(mg.number_of_nodes), sp._soil__depth, err_msg="SPACE soil depth field test failed", verbose=True, ) def test_br_field_already_on_grid(): """ Test that an existing bedrock elevation grid field is not changed by instantiating SPACE. """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") br += 1.0 # make bedrock elevation 5m below surface soil = mg.add_zeros("soil__depth", at="node") mg["node"]["topographic__elevation"] += ( mg.node_y / 10000 + mg.node_x / 10000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) z[:] = br[:] + soil[:] # Create a D8 flow handler FlowAccumulator(mg, flow_director="D8") # Instantiate SPACE sp = Space( mg, K_sed=0.01, K_br=0.01, F_f=0.0, phi=0.0, v_s=0.001, m_sp=0.5, n_sp=1.0, sp_crit_sed=0, sp_crit_br=0, solver="basic", ) # ensure that 'bedrock__elevation' field is everywhere equal to 1.0 m. testing.assert_array_equal( np.ones(mg.number_of_nodes), sp._bedrock__elevation, err_msg="SPACE bedrock field test failed", verbose=True, ) def test_matches_detachment_solution(): """ Test that model matches the detachment-limited analytical solution for slope/area relationship at steady state: S=(U/K_br)^(1/n)*A^(-m/n). """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") soil = mg.add_zeros("soil__depth", at="node") mg["node"]["topographic__elevation"] += ( mg.node_y / 10000 + mg.node_x / 10000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) br[:] = z[:] - soil[:] # Create a D8 flow handler fa = FlowAccumulator(mg, flow_director="D8") # Parameter values for detachment-limited test K_br = 0.01 U = 0.0001 dt = 1.0 F_f = 1.0 # all detached rock disappears; detachment-ltd end-member m_sp = 0.5 n_sp = 1.0 # Instantiate the Space component... sp = Space( mg, K_sed=0.00001, K_br=K_br, F_f=F_f, phi=0.1, H_star=1.0, v_s=0.001, m_sp=m_sp, n_sp=n_sp, sp_crit_sed=0, sp_crit_br=0, ) # ... and run it to steady state (2000x1-year timesteps). for i in range(2000): fa.run_one_step() sp.run_one_step(dt=dt) z[mg.core_nodes] += U * dt # m br[mg.core_nodes] = z[mg.core_nodes] - soil[mg.core_nodes] # compare numerical and analytical slope solutions num_slope = mg.at_node["topographic__steepest_slope"][mg.core_nodes] analytical_slope = np.power(U / K_br, 1.0 / n_sp) * np.power( mg.at_node["drainage_area"][mg.core_nodes], -m_sp / n_sp ) # test for match with analytical slope-area relationship testing.assert_array_almost_equal( num_slope, analytical_slope, decimal=8, err_msg="SPACE detachment-limited test failed", verbose=True, ) @pytest.mark.slow def test_matches_transport_solution(): """ Test that model matches the transport-limited analytical solution for slope/area relationship at steady state: S=((U * v_s) / (K_sed * A^m) + U / (K_sed * A^m))^(1/n). Also test that model matches the analytical solution for steady-state sediment flux: Qs = U * A * (1 - phi). """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") soil = mg.add_zeros("soil__depth", at="node") mg["node"]["topographic__elevation"] += ( mg.node_y / 100000 + mg.node_x / 100000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) soil[:] += 100.0 # initial soil depth of 100 m br[:] = z[:] z[:] += soil[:] # Create a D8 flow handler fa = FlowAccumulator( mg, flow_director="D8", depression_finder="DepressionFinderAndRouter" ) # Parameter values for detachment-limited test K_sed = 0.01 U = 0.0001 dt = 1.0 F_f = 1.0 # all detached rock disappears; detachment-ltd end-member m_sp = 0.5 n_sp = 1.0 v_s = 0.5 phi = 0.5 # Instantiate the Space component... sp = Space( mg, K_sed=K_sed, K_br=0.01, F_f=F_f, phi=phi, H_star=1.0, v_s=v_s, m_sp=m_sp, n_sp=n_sp, sp_crit_sed=0, sp_crit_br=0, erode_flooded_nodes=False, ) # ... and run it to steady state (5000x1-year timesteps). for i in range(5000): fa.run_one_step() sp.run_one_step(dt=dt) br[mg.core_nodes] += U * dt # m soil[ 0 ] = 100.0 # enforce constant soil depth at boundary to keep lowering steady z[:] = br[:] + soil[:] # compare numerical and analytical slope solutions num_slope = mg.at_node["topographic__steepest_slope"][mg.core_nodes] analytical_slope = np.power( ( (U * v_s * (1 - phi)) / (K_sed * np.power(mg.at_node["drainage_area"][mg.core_nodes], m_sp)) ) + ( (U * (1 - phi)) / (K_sed * np.power(mg.at_node["drainage_area"][mg.core_nodes], m_sp)) ), 1.0 / n_sp, ) # test for match with analytical slope-area relationship testing.assert_array_almost_equal( num_slope, analytical_slope, decimal=8, err_msg="SPACE transport-limited slope-area test failed", verbose=True, ) # compare numerical and analytical sediment flux solutions num_sedflux = mg.at_node["sediment__flux"][mg.core_nodes] analytical_sedflux = U * mg.at_node["drainage_area"][mg.core_nodes] * (1 - phi) # test for match with anakytical sediment flux testing.assert_array_almost_equal( num_sedflux, analytical_sedflux, decimal=8, err_msg="SPACE transport-limited sediment flux test failed", verbose=True, ) @pytest.mark.slow def test_matches_bedrock_alluvial_solution(): """ Test that model matches the bedrock-alluvial analytical solution for slope/area relationship at steady state: S=((U * v_s * (1 - F_f)) / (K_sed * A^m) + U / (K_br * A^m))^(1/n). Also test that the soil depth everywhere matches the bedrock-alluvial analytical solution at steady state: H = -H_star * ln(1 - (v_s / (K_sed / (K_br * (1 - F_f)) + v_s))). """ # set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), xy_spacing=10.0) z = mg.add_zeros("topographic__elevation", at="node") br = mg.add_zeros("bedrock__elevation", at="node") soil = mg.add_zeros("soil__depth", at="node") mg["node"]["topographic__elevation"] += ( mg.node_y / 100000 + mg.node_x / 100000 + np.random.rand(len(mg.node_y)) / 10000 ) mg.set_closed_boundaries_at_grid_edges( bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True, ) mg.set_watershed_boundary_condition_outlet_id( 0, mg["node"]["topographic__elevation"], -9999.0 ) soil[:] += 0.0 # initial condition of no soil depth. br[:] = z[:] z[:] += soil[:] # Create a D8 flow handler fa = FlowAccumulator( mg, flow_director="D8", depression_finder="DepressionFinderAndRouter" ) # Parameter values for detachment-limited test K_br = 0.02 K_sed = 0.02 U = 0.0001 dt = 1.0 F_f = 0.2 # all detached rock disappears; detachment-ltd end-member m_sp = 0.5 n_sp = 1.0 v_s = 0.25 H_star = 0.1 # Instantiate the Space component... sp = Space( mg, K_sed=K_sed, K_br=K_br, F_f=F_f, phi=0.0, H_star=H_star, v_s=v_s, m_sp=m_sp, n_sp=n_sp, sp_crit_sed=0, sp_crit_br=0, erode_flooded_nodes=False, ) # ... and run it to steady state (10000x1-year timesteps). for i in range(10000): fa.run_one_step() sp.run_one_step(dt=dt) br[mg.core_nodes] += U * dt # m soil[0] = 0.0 # enforce 0 soil depth at boundary to keep lowering steady z[:] = br[:]
<reponame>msarmie/horizon # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Default settings for openstack_dashboard""" import os from django.utils.translation import pgettext_lazy from django.utils.translation import ugettext_lazy as _ # openstack_auth.default is imported in horizon.defaults. from horizon.defaults import * # noqa: F401,F403,H303 def _get_root_path(): return os.path.dirname(os.path.abspath(__file__)) # --------------------------------------------------- # Override horizn, openstack_auth and Django settings # --------------------------------------------------- WEBROOT = '/' # from openstack_auth # NOTE: The following are calculated baed on WEBROOT # after loading local_settings # LOGIN_URL = WEBROOT + 'auth/login/' # LOGOUT_URL = WEBROOT + 'auth/logout/' # LOGIN_ERROR = WEBROOT + 'auth/error/' LOGIN_URL = None LOGOUT_URL = None LOGIN_ERROR = None # from openstack_auth # NOTE: The following are calculated baed on WEBROOT # after loading local_settings # LOGIN_REDIRECT_URL can be used as an alternative for # HORIZON_CONFIG.user_home, if user_home is not set. # Do not set it to '/home/', as this will cause circular redirect loop # LOGIN_REDIRECT_URL = WEBROOT LOGIN_REDIRECT_URL = None # NOTE: The following are calculated baed on WEBROOT # after loading local_settings MEDIA_ROOT = None MEDIA_URL = None STATIC_ROOT = None STATIC_URL = None # The Horizon Policy Enforcement engine uses these values to load per service # policy rule files. The content of these files should match the files the # OpenStack services are using to determine role based access control in the # target installation. # Path to directory containing policy.json files POLICY_FILES_PATH = os.path.join(_get_root_path(), "conf") # Map of local copy of service policy files. # Please insure that your identity policy file matches the one being used on # your keystone servers. There is an alternate policy file that may be used # in the Keystone v3 multi-domain case, policy.v3cloudsample.json. # This file is not included in the Horizon repository by default but can be # found at # http://git.openstack.org/cgit/openstack/keystone/tree/etc/ \ # policy.v3cloudsample.json # Having matching policy files on the Horizon and Keystone servers is essential # for normal operation. This holds true for all services and their policy files. POLICY_FILES = { 'identity': 'keystone_policy.json', 'compute': 'nova_policy.json', 'volume': 'cinder_policy.json', 'image': 'glance_policy.json', 'network': 'neutron_policy.json', } # Services for which horizon has extra policies are defined # in POLICY_DIRS by default. POLICY_DIRS = { 'compute': ['nova_policy.d'], 'volume': ['cinder_policy.d'], } POLICY_CHECK_FUNCTION = 'openstack_auth.policy.check' SITE_BRANDING = 'OpenStack Dashboard' NG_TEMPLATE_CACHE_AGE = 2592000 # 'key', 'label', 'path' AVAILABLE_THEMES = [ ( 'default', pgettext_lazy('Default style theme', 'Default'), 'themes/default' ), ( 'material', pgettext_lazy("Google's Material Design style theme", "Material"), 'themes/material' ), ] # None means to Use AVAILABLE_THEMES as the default value. SELECTABLE_THEMES = None # ---------------------------------------- # openstack_dashboard settings # ---------------------------------------- # Dict used to restrict user private subnet cidr range. # An empty list means that user input will not be restricted # for a corresponding IP version. By default, there is # no restriction for IPv4 or IPv6. To restrict # user private subnet cidr range set ALLOWED_PRIVATE_SUBNET_CIDR # to something like # ALLOWED_PRIVATE_SUBNET_CIDR = { # 'ipv4': ['10.0.0.0/8', '192.168.0.0/16'], # 'ipv6': ['fc00::/7'] # } ALLOWED_PRIVATE_SUBNET_CIDR = {'ipv4': [], 'ipv6': []} # The number of objects (Swift containers/objects or images) to display # on a single page before providing a paging element (a "more" link) # to paginate results. API_RESULT_LIMIT = 1000 API_RESULT_PAGE_SIZE = 20 # For multiple regions uncomment this configuration, and add (endpoint, title). # AVAILABLE_REGIONS = [ # ('http://cluster1.example.com/identity/v3', 'cluster1'), # ('http://cluster2.example.com/identity/v3', 'cluster2'), # ] AVAILABLE_REGIONS = [] # Modules that provide /auth routes that can be used to handle different types # of user authentication. Add auth plugins that require extra route handling to # this list. AUTHENTICATION_URLS = [ 'openstack_auth.urls', ] # Set Console type: # valid options are "AUTO"(default), "VNC", "SPICE", "RDP", "SERIAL", "MKS" # or None. Set to None explicitly if you want to deactivate the console. CONSOLE_TYPE = "AUTO" # A dictionary of default settings for create image modal. CREATE_IMAGE_DEFAULTS = { 'image_visibility': "public", } # When launching an instance, the menu of available flavors is # sorted by RAM usage, ascending. If you would like a different sort order, # you can provide another flavor attribute as sorting key. Alternatively, you # can provide a custom callback method to use for sorting. You can also provide # a flag for reverse sort. For more info, see # http://docs.python.org/2/library/functions.html#sorted # CREATE_INSTANCE_FLAVOR_SORT = { # 'key': 'name', # # or # 'key': my_awesome_callback_method, # 'reverse': False, # } CREATE_INSTANCE_FLAVOR_SORT = {} # DISALLOW_IFRAME_EMBED can be used to prevent Horizon from being embedded # within an iframe. Legacy browsers are still vulnerable to a Cross-Frame # Scripting (XFS) vulnerability, so this option allows extra security hardening # where iframes are not used in deployment. Default setting is True. # For more information see: # http://tinyurl.com/anticlickjack DISALLOW_IFRAME_EMBED = True # Specify a maximum number of items to display in a dropdown. DROPDOWN_MAX_ITEMS = 30 ENABLE_CLIENT_TOKEN = True # Set this to True to display an 'Admin Password' field on the Change Password # form to verify that it is indeed the admin logged-in who wants to change # the password. ENFORCE_PASSWORD_CHECK = False EXTERNAL_MONITORING = [] # To allow operators to require users provide a search criteria first # before loading any data into the views, set the following dict # attributes to True in each one of the panels you want to enable this feature. # Follow the convention <dashboard>.<view> FILTER_DATA_FIRST = { 'admin.instances': False, 'admin.images': False, 'admin.networks': False, 'admin.routers': False, 'admin.volumes': False, 'identity.application_credentials': False, 'identity.groups': False, 'identity.projects': False, 'identity.roles': False, 'identity.users': False, } # Set to 'legacy' or 'direct' to allow users to upload images to glance via # Horizon server. When enabled, a file form field will appear on the create # image form. If set to 'off', there will be no file form field on the create # image form. See documentation for deployment considerations. HORIZON_IMAGES_UPLOAD_MODE = 'legacy' # Allow a location to be set when creating or updating Glance images. # If using Glance V2, this value should be False unless the Glance # configuration and policies allow setting locations. IMAGES_ALLOW_LOCATION = False # A default instance boot source. Allowed values are: "image", "snapshot", # "volume" and "volume_snapshot" DEFAULT_BOOT_SOURCE = "image" # The IMAGE_CUSTOM_PROPERTY_TITLES settings is used to customize the titles for # image custom property attributes that appear on image detail pages. IMAGE_CUSTOM_PROPERTY_TITLES = { "architecture": _("Architecture"), "kernel_id": _("Kernel ID"), "ramdisk_id": _("Ramdisk ID"), "image_state": _("Euca2ools state"), "project_id": _("Project ID"), "image_type": _("Image Type"), } IMAGES_LIST_FILTER_TENANTS = [] # The default number of lines displayed for instance console log. INSTANCE_LOG_LENGTH = 35 # The Launch Instance user experience has been significantly enhanced. # You can choose whether to enable the new launch instance experience, # the legacy experience, or both. The legacy experience will be removed # in a future release, but is available as a temporary backup setting to ensure # compatibility with existing deployments. Further development will not be # done on the legacy experience. Please report any problems with the new # experience via the Launchpad tracking system. # # Toggle LAUNCH_INSTANCE_LEGACY_ENABLED and LAUNCH_INSTANCE_NG_ENABLED to # determine the experience to enable. Set them both to true to enable # both. LAUNCH_INSTANCE_LEGACY_ENABLED = False LAUNCH_INSTANCE_NG_ENABLED = True # A dictionary of settings which can be used to provide the default values for # properties found in the Launch Instance modal. LAUNCH_INSTANCE_DEFAULTS = { 'config_drive': False, 'create_volume': True, 'hide_create_volume': False, 'disable_image': False, 'disable_instance_snapshot': False, 'disable_volume': False, 'disable_volume_snapshot': False, 'enable_scheduler_hints': True, } # The absolute path to the directory where message files are collected. # The message file must have a .json file extension. When the user logins to # horizon, the message files collected are processed and displayed to the user. MESSAGES_PATH = None OPENRC_CUSTOM_TEMPLATE = 'project/api_access/openrc.sh.template' OPENSTACK_CLOUDS_YAML_CUSTOM_TEMPLATE = ('project/api_access/' 'clouds.yaml.template') # The default date range in the Overview panel meters - either <today> minus N # days (if the value is integer N), or from the beginning of the current month # until today (if set to None). This setting should be used to limit the amount # of data fetched by default when rendering the Overview panel. OVERVIEW_DAYS_RANGE = 1 # Projects and users can have extra attributes as defined by keystone v3. # Horizon has the ability to display these extra attributes via this setting. # If you'd like to display extra data in the project or user tables, set the # corresponding dict key to the attribute name, followed by the display name. # For more information, see horizon's customization # (https://docs.openstack.org/horizon/latest/configuration/ #
import json import warnings from enum import Enum from typing import Any, List, Tuple, Union import numpy as np import torch from mmhuman3d.core.cameras.cameras import PerspectiveCameras from mmhuman3d.core.conventions.cameras.convert_convention import ( convert_camera_matrix, convert_K_3x3_to_4x4, convert_K_4x4_to_3x3, ) from .builder import build_cameras _CAMERA_PARAMETER_SUPPORTED_KEYS_ = { 'H': { 'type': int, }, 'W': { 'type': int, }, 'in_mat': { 'type': list, 'len': 3, }, 'rotation_mat': { 'type': list, 'len': 3, }, 'translation': { 'type': list, 'len': 3, }, 'k1': { 'type': float, }, 'k2': { 'type': float, }, 'k3': { 'type': float, }, 'k4': { 'type': float, }, 'k5': { 'type': float, }, 'k6': { 'type': float, }, 'p1': { 'type': float, }, 'p2': { 'type': float, }, } class _TypeValidation(Enum): MATCH = 0 ARRAY = 1 FAIL = 2 class CameraParameter: logger = None SUPPORTED_KEYS = _CAMERA_PARAMETER_SUPPORTED_KEYS_ def __init__(self, name: str = 'default', H: int = 1080, W: int = 1920) -> None: """ Args: name (str, optional): Name of this camera. Defaults to "default". H (int, optional): Height of a frame, in pixel. Defaults to 1080. W (int, optional): Width of a frame, in pixel. Defaults to 1920. """ self.name = name self.parameters_dict = {} in_mat = __zero_mat_list__(3) self.parameters_dict['in_mat'] = in_mat for distort_name in __distort_coefficient_names__: self.parameters_dict[distort_name] = 0.0 _, H = self.validate_item('H', H) self.parameters_dict['H'] = H _, W = self.validate_item('W', W) self.parameters_dict['W'] = W r_mat = __zero_mat_list__(3) self.parameters_dict['rotation_mat'] = r_mat t_list = [0.0, 0.0, 0.0] self.parameters_dict['translation'] = t_list def reset_distort(self) -> None: """Reset all distort coefficients to zero.""" for distort_name in __distort_coefficient_names__: self.parameters_dict[distort_name] = 0.0 def get_opencv_distort_mat(self) -> np.ndarray: """Get a numpy array of 8 distort coefficients, which is the distCoeffs arg of cv2.undistort. Returns: ndarray: (k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6) of 8 elements. """ dist_coeffs = [ self.get_value('k1'), self.get_value('k2'), self.get_value('p1'), self.get_value('p2'), self.get_value('k3'), self.get_value('k4'), self.get_value('k5'), self.get_value('k6'), ] dist_coeffs = np.array(dist_coeffs) return dist_coeffs def set_KRT(self, K_mat: np.ndarray, R_mat: np.ndarray, T_vec: np.ndarray, inverse_extrinsic: bool = False) -> None: """Set intrinsic and extrinsic of a camera. Args: K_mat (np.ndarray): In shape [3, 3]. R_mat (np.ndarray): Rotation from world to view in default. In shape [3, 3]. T_vec (np.ndarray): Translation from world to view in default. In shape [3,]. inverse_extrinsic (bool, optional): If true, R_mat and T_vec transform a point from view to world. Defaults to False. """ k_shape = K_mat.shape assert k_shape[0] == k_shape[1] == 3 r_shape = R_mat.shape assert r_shape[0] == r_shape[1] == 3 assert T_vec.ndim == 1 and T_vec.shape[0] == 3 self.set_mat_np('in_mat', K_mat) if inverse_extrinsic: R_mat = np.linalg.inv(R_mat) T_vec = -np.dot(R_mat, T_vec).reshape((3)) self.set_mat_np('rotation_mat', R_mat) self.set_value('translation', T_vec.tolist()) def get_KRT(self, k_dim=3) -> List[np.ndarray]: """Get intrinsic and extrinsic of a camera. Args: k_dim (int, optional): Dimension of the returned mat K. Defaults to 3. Raises: ValueError: k_dim is neither 3 nor 4. Returns: List[np.ndarray]: K_mat (np.ndarray): In shape [3, 3]. R_mat (np.ndarray): Rotation from world to view in default. In shape [3, 3]. T_vec (np.ndarray): Translation from world to view in default. In shape [3,]. """ K_3x3 = self.get_mat_np('in_mat') R_mat = self.get_mat_np('rotation_mat') T_vec = np.asarray(self.get_value('translation')) if k_dim == 3: return [K_3x3, R_mat, T_vec] elif k_dim == 4: K_3x3 = np.expand_dims(K_3x3, 0) # shape (1, 3, 3) K_4x4 = convert_K_3x3_to_4x4( K=K_3x3, is_perspective=True) # shape (1, 4, 4) K_4x4 = K_4x4[0, :, :] return [K_4x4, R_mat, T_vec] else: raise ValueError(f'K mat cannot be converted to {k_dim}x{k_dim}') def set_mat_np(self, mat_key: str, mat_numpy: np.ndarray) -> None: """Set a matrix-type parameter to mat_numpy. Args: mat_key (str): Key of the target matrix. in_mat or rotation_mat. mat_numpy (ndarray): Matrix in numpy format. Raises: TypeError: mat_numpy is not an np.ndarray. """ if not isinstance(mat_numpy, np.ndarray): raise TypeError self.set_mat_list(mat_key, mat_numpy.tolist()) def set_mat_list(self, mat_key: str, mat_list: List[list]) -> None: """Set a matrix-type parameter to mat_list. Args: mat_key (str): Key of the target matrix. in_mat or rotation_mat. mat_list (List[list]): Matrix in list format. """ _, mat_list = self.validate_item(mat_key, mat_list) self.parameters_dict[mat_key] = mat_list def set_value(self, key: str, value: Any) -> None: """Set a parameter to value. Args: key (str): Name of the parameter. value (object): New value of the parameter. """ _, value = self.validate_item(key, value) self.parameters_dict[key] = value def get_value(self, key: str) -> Any: """Get a parameter by key. Args: key (str): Name of the parameter. Raises: KeyError: key not in self.parameters_dict Returns: object: Value of the parameter. """ if key not in self.parameters_dict: raise KeyError(key) else: return self.parameters_dict[key] def get_mat_np(self, key: str) -> np.ndarray: """Get a a matrix-type parameter by key. Args: key (str): Name of the parameter. Raises: KeyError: key not in self.parameters_dict Returns: ndarray: Value of the parameter. """ if key not in self.parameters_dict: raise KeyError(key) else: mat_list = self.parameters_dict[key] mat_np = np.array(mat_list).reshape((3, 3)) return mat_np def to_string(self) -> str: """Convert self.to_dict() to a string. Returns: str: A dict in json string format. """ dump_dict = self.to_dict() ret_str = json.dumps(dump_dict) return ret_str def to_dict(self) -> dict: """Dump camera name and parameters to dict. Returns: dict: Put self.name and self.parameters_dict in one dict. """ dump_dict = self.parameters_dict.copy() dump_dict['name'] = self.name return dump_dict def dump(self, json_path: str) -> None: """Dump camera name and parameters to a file. Returns: dict: Put self.name and self.parameters_dict in one dict, and dump them to a json file. """ dump_dict = self.to_dict() with open(json_path, 'w') as f_write: json.dump(dump_dict, f_write) def load(self, json_path: str) -> None: """Load camera name and parameters from a file.""" with open(json_path, 'r') as f_read: dumped_dict = json.load(f_read) self.load_from_dict(dumped_dict) def load_from_dict(self, json_dict: dict) -> None: """Load name and parameters from a dict. Args: json_dict (dict): A dict comes from self.to_dict(). """ for key in json_dict.keys(): if key == 'name': self.name = json_dict[key] elif key == 'rotation': self.parameters_dict['rotation_mat'] = np.array( json_dict[key]).reshape(3, 3).tolist() elif key == 'translation': self.parameters_dict[key] = np.array(json_dict[key]).reshape( (3)).tolist() else: self.parameters_dict[key] = json_dict[key] if '_mat' in key: self.parameters_dict[key] = np.array( self.parameters_dict[key]).reshape(3, 3).tolist() def load_from_chessboard(self, chessboard_dict: dict, name: str, inverse: bool = True) -> None: """Load name and parameters from a dict. Args: chessboard_dict (dict): A dict loaded from json.load(chessboard_file). name (str): Name of this camera. inverse (bool, optional): Whether to inverse rotation and translation mat. Defaults to False. """ camera_param_dict = \ __parse_chessboard_param__(chessboard_dict, name, inverse=inverse) self.load_from_dict(camera_param_dict) def load_kinect_from_smc(self, smc_reader, kinect_id: int) -> None: """Load name and parameters of a kinect from an SmcReader instance. Args: smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader): An SmcReader instance containing kinect camera parameters. kinect_id (int): Id of the target kinect. """ name = kinect_id extrinsics_dict = \ smc_reader.get_kinect_color_extrinsics( kinect_id, homogeneous=False ) rot_np = extrinsics_dict['R'] trans_np = extrinsics_dict['T'] intrinsics_np = \ smc_reader.get_kinect_color_intrinsics( kinect_id ) resolution = \ smc_reader.get_kinect_color_resolution( kinect_id ) rmatrix = np.linalg.inv(rot_np).reshape(3, 3) tvec = -np.dot(rmatrix, trans_np) self.name = name self.set_mat_np('in_mat', intrinsics_np) self.set_mat_np('rotation_mat', rmatrix) self.set_value('translation', tvec.tolist()) self.set_value('H', resolution[1]) self.set_value('W', resolution[0]) def load_iphone_from_smc(self, smc_reader, iphone_id: int = 0, frame_id: int = 0) -> None: """Load name and parameters of an iPhone from an SmcReader instance. Args: smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader): An SmcReader instance containing kinect camera parameters. iphone_id (int): Id of the target iphone. Defaults to 0. frame_id (int): Frame ID of one selected frame. It only influences the intrinsics. Defaults to 0. """ name = f'iPhone_{iphone_id}' extrinsics_mat = \ smc_reader.get_iphone_extrinsics( iphone_id, homogeneous=True ) rot_np = extrinsics_mat[:3, :3] trans_np = extrinsics_mat[:3, 3] intrinsics_np = \ smc_reader.get_iphone_intrinsics( iphone_id, frame_id ) resolution = \ smc_reader.get_iphone_color_resolution( iphone_id ) rmatrix = np.linalg.inv(rot_np).reshape(3, 3) tvec = -np.dot(rmatrix, trans_np) self.name = name self.set_mat_np('in_mat', intrinsics_np) self.set_mat_np('rotation_mat', rmatrix) self.set_value('translation', tvec.tolist()) self.set_value('H', resolution[1]) self.set_value('W', resolution[0]) @classmethod def load_from_perspective_cameras(cls, cam, name: str, resolution: Union[List, Tuple] = None): """Load parameters from a PerspectiveCameras and return a CameraParameter. Args: cam (mmhuman3d.core.cameras.cameras.PerspectiveCameras): An instance. name (str): Name of this camera. """ assert isinstance(cam, PerspectiveCameras ), 'Wrong input, support PerspectiveCameras only!' if len(cam) > 1: warnings.warn('Will only use the first camera in the batch.') cam = cam[0] resolution = resolution if resolution is not None else cam.resolution[ 0].tolist() height, width = int(resolution[0]), int(resolution[1]) cam_param = CameraParameter() cam_param.__init__(H=height, W=width, name=name) k_4x4 = cam.K # shape (1, 4, 4) r_3x3 = cam.R # shape (1, 3, 3) t_3 = cam.T # shape (1, 3) is_perspective = cam.is_perspective() in_ndc =
'TTL': 300, 'Type': 'A' }, # this is a ordinary record. should be not modified. # we expect to have the tree without the ip that has weight 0. ] + policy_members_to_list(policy_members, policy_record) expected = sorted(expected, key=sort_key) actual = strip_ns_and_soa( boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id), zone.root) assert actual == expected @pytest.mark.django_db def test_policy_record_with_all_ips_disabled(zone, boto_client): policy = G(m.Policy, routing='latency') ip1 = create_ip_with_healthcheck() ip1.enabled = False ip1.save() ip2 = create_ip_with_healthcheck() ip2.enabled = False ip2.save() G(m.PolicyMember, policy=policy, region=regions[0], ip=ip1) G(m.PolicyMember, policy=policy, region=regions[1], ip=ip2) G(m.PolicyRecord, zone=zone, policy=policy, name='@') with pytest.raises(Exception) as exc: zone.reconcile() assert "Policy can't be applied" in str(exc) expected = [ { 'Name': 'test.test-zinc.net.', 'ResourceRecords': [{'Value': '1.1.1.1'}], 'TTL': 300, 'Type': 'A' }, # this is a ordinary record. should be not modified. ] rrsets = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) assert strip_ns_and_soa(rrsets, zone.root) == sorted(expected, key=sort_key) @pytest.mark.django_db def test_apply_policy_on_zone(zone, boto_client): policy = G(m.Policy) ip = create_ip_with_healthcheck() policy_members = [ G(m.PolicyMember, policy=policy, region=regions[0], ip=ip), G(m.PolicyMember, policy=policy, region=regions[1], ip=ip), ] policy_record = G(m.PolicyRecord, zone=zone, policy=policy, name='@') policy_record_2 = G(m.PolicyRecord, zone=zone, policy=policy, name='www') zone.reconcile() expected = [ { 'Name': 'test.test-zinc.net.', 'ResourceRecords': [{'Value': '1.1.1.1'}], 'TTL': 300, 'Type': 'A' }, # this is a ordinary record. should be not modified. ] + (policy_members_to_list(policy_members, policy_record) + policy_members_to_list([], policy_record_2, just_pr=True)) rrsets = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) assert strip_ns_and_soa(rrsets, zone.root) == sorted(expected, key=sort_key) @pytest.mark.django_db def test_apply_policy_is_not_duplicated(zone): policy = G(m.Policy) G(m.PolicyMember, policy=policy, region=regions[0]) G(m.PolicyMember, policy=policy, region=regions[1]) G(m.PolicyRecord, zone=zone, policy=policy, name='@') G(m.PolicyRecord, zone=zone, policy=policy, name='www') with patch('zinc.route53.Policy.reconcile') as policy_reconcile: zone.reconcile() policy_reconcile.assert_called_once() @pytest.mark.django_db def test_modifying_a_policy_member_in_policy_all_policy_members_get_dirty(zone): policy = G(m.Policy) ip = create_ip_with_healthcheck() G(m.PolicyMember, policy=policy, region=regions[0], ip=ip) policy_member = G(m.PolicyMember, policy=policy, region=regions[1], ip=ip) policy_records = [ G(m.PolicyRecord, zone=zone, policy=policy, name='@'), G(m.PolicyRecord, zone=zone, policy=policy, name='www') ] zone.reconcile() policy_records_from_db = set(m.PolicyRecord.objects.all().values_list('id', 'dirty')) assert policy_records_from_db == set([(record.id, False) for record in policy_records]) policy_member.weight = 3 policy_member.save() policy_records_from_db = set(m.PolicyRecord.objects.all().values_list('id', 'dirty')) assert policy_records_from_db == set([(record.id, True) for record in policy_records]) @pytest.mark.django_db def test_changing_an_disabled(zone): policy = G(m.Policy) ip = G(m.IP, healthcheck_id=None) ip2 = G(m.IP, healthcheck_id=None) G(m.PolicyMember, policy=policy, region=regions[0], ip=ip) G(m.PolicyMember, policy=policy, region=regions[1], ip=ip2) policy_records = [ G(m.PolicyRecord, zone=zone, policy=policy, name='@', dirty=False), G(m.PolicyRecord, zone=zone, policy=policy, name='www', dirty=False) ] zone.reconcile() policy_records_from_db = set(m.PolicyRecord.objects.all().values_list('id', 'dirty')) assert policy_records_from_db == set([(record.id, False) for record in policy_records]) @pytest.mark.django_db def test_ip_mark_policy_records_dirty(zone): policy1 = G(m.Policy) policy2 = G(m.Policy) ip1 = create_ip_with_healthcheck() ip2 = create_ip_with_healthcheck() G(m.PolicyMember, policy=policy1, region=regions[0], ip=ip1) G(m.PolicyMember, policy=policy2, region=regions[1], ip=ip2) policy_record_1 = G(m.PolicyRecord, zone=zone, policy=policy1, name='pr1', dirty=False) policy_record_2 = G(m.PolicyRecord, zone=zone, policy=policy1, name='pr2', dirty=False) other_zone_policy_record = G( m.PolicyRecord, zone=zone, policy=policy2, name='oz_pr', dirty=False) ip1.mark_policy_records_dirty() policy_record_1.refresh_from_db() policy_record_2.refresh_from_db() other_zone_policy_record.refresh_from_db() assert policy_record_1.dirty is True assert policy_record_2.dirty is True assert other_zone_policy_record.dirty is False # different policy, should not have changed @pytest.mark.django_db def test_weighted_policy(zone, boto_client): policy = G(m.Policy, routing='weighted') ip = G(m.IP, healthcheck_id=None) ip2 = G(m.IP, healthcheck_id=None) policy_members = [ G(m.PolicyMember, policy=policy, region=regions[0], ip=ip), G(m.PolicyMember, policy=policy, region=regions[0], ip=ip2) ] policy_record = G(m.PolicyRecord, zone=zone, policy=policy, name='@') zone.reconcile() expected = [ { 'Name': 'test.test-zinc.net.', 'ResourceRecords': [{'Value': '1.1.1.1'}], 'TTL': 300, 'Type': 'A' }, # this is a ordinary record. should be not modified. ] + policy_members_to_list(policy_members, policy_record, no_health=True) rrsets = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) assert strip_ns_and_soa(rrsets, zone.root) == sorted(expected, key=sort_key) @pytest.mark.django_db def test_dangling_records(zone, boto_client): """ Tests a dangling record in an existing policy tree gets removed. """ dangling_record = { 'Name': '_zn_policy1.us-east-1.' + zone.root, 'Type': 'A', 'ResourceRecords': [{'Value': '127.1.1.1'}], 'SetIdentifier': 'test-identifier', 'Weight': 20, 'TTL': 30 } boto_client.change_resource_record_sets( HostedZoneId=zone.route53_id, ChangeBatch={ 'Comment': 'string', 'Changes': [ { 'Action': 'CREATE', 'ResourceRecordSet': dangling_record } ] } ) ip = create_ip_with_healthcheck() policy = G(m.Policy, name='policy1') G(m.PolicyMember, ip=ip, policy=policy, region='us-east-1', weight=10) G(m.PolicyRecord, zone=zone, policy=policy, name='record', dirty=True) route53.Policy(policy=policy, zone=zone.r53_zone).reconcile() zone.commit() records = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) assert dangling_record not in records['ResourceRecordSets'] @pytest.mark.django_db def test_check_policy_trees(zone, boto_client): ip = create_ip_with_healthcheck() policy = G(m.Policy, name='policy1', routing='weighted') member = G(m.PolicyMember, ip=ip, policy=policy, region='us-east-1', weight=10) G(m.PolicyRecord, zone=zone, policy=policy, name='record', dirty=True) route53.Policy(policy=policy, zone=zone.r53_zone).reconcile() zone.commit() dangling_record = { 'Name': '_zn_policy1.us-east-1.' + zone.root, 'Type': 'A', 'ResourceRecords': [{'Value': '127.1.1.1'}], 'SetIdentifier': 'test-identifier', 'Weight': 20, 'TTL': 30 } boto_client.change_resource_record_sets( HostedZoneId=zone.route53_id, ChangeBatch={ 'Comment': 'string', 'Changes': [{'Action': 'CREATE', 'ResourceRecordSet': dangling_record}] } ) zone.r53_zone._clear_cache() # because check_policy_trees relies on the change_batch produced by policy_reconcile # we first check that explicitly ip.healthcheck_id = 'spam-id' ip.save() route53.Policy(policy=policy, zone=zone.r53_zone).reconcile() assert zone.r53_zone._change_batch == [ {'Action': 'DELETE', 'ResourceRecordSet': dangling_record}, {'Action': 'UPSERT', 'ResourceRecordSet': {'HealthCheckId': 'spam-id', 'Name': '_zn_policy1.test-zinc.net.', 'ResourceRecords': [{'Value': ip.ip}], 'SetIdentifier': '{}-us-east-1'.format(member.id), 'TTL': 30, 'Type': 'A', 'Weight': 10}} ] # reset the change_batch and test the check method zone.r53_zone._change_batch = [] with patch('zinc.route53.zone.logger.error') as error: zone.r53_zone.check_policy_trees() assert error.called_with("Glitch in the matrix for %s %s", zone.root, policy.name) @pytest.mark.django_db def test_change_policy(zone, boto_client): """ Tests that changing the policy for a policy_record doesn't leave dangling record behind """ ip1 = create_ip_with_healthcheck() ip2 = create_ip_with_healthcheck() policy1 = G(m.Policy, name='policy1') policy2 = G(m.Policy, name='policy2') # add each IP to both policies G(m.PolicyMember, ip=ip1, policy=policy1, region='us-east-1', weight=10) G(m.PolicyMember, ip=ip1, policy=policy2, region='us-east-1', weight=10) G(m.PolicyMember, ip=ip2, policy=policy1, region='us-east-2', weight=10) G(m.PolicyMember, ip=ip2, policy=policy2, region='us-east-2', weight=10) # build a tree with policy1 policy_record = G(m.PolicyRecord, zone=zone, policy=policy1, name='record', dirty=True) zone.reconcile() # switch to policy2 and rebuild policy_record.policy = policy2 policy_record.dirty = True policy_record.save() zone.reconcile() records = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) policy1_records = [record['Name'] for record in records['ResourceRecordSets'] if record['Name'].startswith('_zn_policy1')] assert policy1_records == [] @pytest.mark.django_db def test_untouched_policy_not_deleted(zone, boto_client): """ Tests a policy record with dirty=False doesn't end up deleted after a tree rebuild. """ ip1 = create_ip_with_healthcheck() policy1 = G(m.Policy, name='policy1', routing='weighted') G(m.PolicyMember, ip=ip1, policy=policy1, region='us-east-1', weight=10) ip2 = create_ip_with_healthcheck() policy2 = G(m.Policy, name='policy2', routing='weighted') G(m.PolicyMember, ip=ip2, policy=policy2, region='us-east-2', weight=10) # build a tree with policy1 G(m.PolicyRecord, zone=zone, policy=policy1, name='policy_record1', dirty=True) zone.reconcile() # add another policy record G(m.PolicyRecord, zone=zone, policy=policy2, name='policy_record2', dirty=True) zone.reconcile() records = boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id) policy_records = set([record['Name'] for record in records['ResourceRecordSets'] if record['Name'].startswith('_zn_')]) # check policy1's records are still here assert policy_records == set(['_zn_policy1.test-zinc.net.', '_zn_policy2.test-zinc.net.']) @pytest.mark.django_db def test_delete_policy_record(zone, boto_client): """ Tests a policy record by deleting and creating immediate after. Issue #210 """ ip1 = create_ip_with_healthcheck() policy = G(m.Policy, name='policy') G(m.PolicyMember, ip=ip1, policy=policy, region='us-east-1', weight=10) policy_record = G(m.PolicyRecord, zone=zone, policy=policy, name='www', dirty=True) zone.reconcile() # reconcile policy_record.soft_delete() # delete the record zone.reconcile() # reconcile # assert the object is deleted. assert not m.PolicyRecord.objects.filter(id=policy_record.id).exists() # assert route53 should be empty expected = sorted([ { 'Name': 'test.test-zinc.net.', 'ResourceRecords': [{'Value': '1.1.1.1'}], 'TTL': 300, 'Type': 'A' }, # this is a ordinary record. should be not modified. ], key=sort_key) result = strip_ns_and_soa( boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id), zone.root ) assert result == expected @pytest.mark.django_db def test_r53_policy_record_aws_records(zone, boto_client): """ Tests a PolicyRecord loads it's records correctly from AWS """ route53.Record( name='_zn_pol1.us-east-1', values=['192.168.127.12'], type='A', zone=zone.r53_zone, ttl=30, set_identifier='foo', weight=10, ).save() route53.Record( name='_zn_pol1', alias_target={ 'DNSName': '_zn_pol1.us-east-1.{}'.format(zone.root), 'HostedZoneId': zone.r53_zone.id, 'EvaluateTargetHealth': False }, type='A', zone=zone.r53_zone, ).save() zone.commit() policy = G(m.Policy, name='pol1') policy_record = G(m.PolicyRecord, zone=zone, name='www', policy=policy) policy = route53.Policy(zone=zone.r53_zone, policy=policy_record.policy) assert set([r.name for r in policy.aws_records.values()]) == set([ '_zn_pol1', '_zn_pol1.us-east-1']) @pytest.mark.django_db def test_r53_policy_expected_aws_records(zone, boto_client): """ Tests a Policy builds the expected desired_records for the alias tree. """ policy = G(m.Policy, name='pol1') policy_record = G(m.PolicyRecord, zone=zone, name='www', policy=policy) ip1 = create_ip_with_healthcheck() G(m.PolicyMember, policy=policy_record.policy, region=regions[0], ip=ip1) G(m.PolicyMember, policy=policy_record.policy, region=regions[1], ip=ip1) # pol_factory = route53.CachingFactory(route53.Policy) r53_policy = route53.Policy(zone=zone.r53_zone, policy=policy) assert [(r.name, r.values) for r in r53_policy.desired_records.values()] == [ ('_zn_pol1_us-east-1', [ip1.ip]), ('_zn_pol1_us-east-2', [ip1.ip]), ('_zn_pol1', ['ALIAS _zn_pol1_us-east-1.test-zinc.net.']), ('_zn_pol1', ['ALIAS _zn_pol1_us-east-2.test-zinc.net.']), ] @pytest.mark.django_db def test_r53_policy_reconcile(zone, boto_client): policy = G(m.Policy, name='pol1') policy_record = G(m.PolicyRecord, zone=zone, name='www', policy=policy) ip1 = create_ip_with_healthcheck() G(m.PolicyMember, policy=policy_record.policy, region=regions[0], ip=ip1) G(m.PolicyMember, policy=policy_record.policy, region=regions[1], ip=ip1) r53_policy = route53.Policy(zone=zone.r53_zone, policy=policy) r53_policy.reconcile() zone.commit() raw_aws_records = [ route53.Record.from_aws_record(r, zone=zone) for r in strip_ns_and_soa( boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id), zone.root)] # only look at the hidden records (the ones part of the policy tree) records = [(r.name, r.values) for r in raw_aws_records if r.is_hidden] assert records == [ ('_zn_pol1', ['ALIAS _zn_pol1_us-east-1.test-zinc.net.']), ('_zn_pol1', ['ALIAS _zn_pol1_us-east-2.test-zinc.net.']), ('_zn_pol1_us-east-1', [ip1.ip]), ('_zn_pol1_us-east-2', [ip1.ip]), ] @pytest.mark.django_db def test_r53_policy_reconcile_cname_clash(zone, boto_client): """ Tests a single policy records clashing with a cname won't block the rest of the zone reconciling. """ policy = G(m.Policy, name='pol1') G(m.PolicyRecord, zone=zone, name='www', policy=policy) conflict = G(m.PolicyRecord, zone=zone, name='conflict', policy=policy, dirty=True) route53.Record( name='conflict', values=['conflict.example.com'], type='CNAME', zone=zone.r53_zone, ttl=30, ).save() zone.commit() ip1 = create_ip_with_healthcheck() G(m.PolicyMember, policy=policy, region=regions[0], ip=ip1) G(m.PolicyMember, policy=policy, region=regions[1], ip=ip1) zone.reconcile() raw_aws_records = [ route53.Record.from_aws_record(r, zone=zone) for r in strip_ns_and_soa( boto_client.list_resource_record_sets(HostedZoneId=zone.route53_id), zone.root)] # only look at the hidden records (the ones part of the policy tree) records = [(r.name, r.values) for r in raw_aws_records] expected = [ ('_zn_pol1', ['ALIAS _zn_pol1_us-east-1.test-zinc.net.']), ('_zn_pol1', ['ALIAS _zn_pol1_us-east-2.test-zinc.net.']), ('_zn_pol1_us-east-1', [ip1.ip]), ('_zn_pol1_us-east-2', [ip1.ip]), ('conflict', ['conflict.example.com']), ('test', ['1.1.1.1']), ('www', ['ALIAS _zn_pol1.test-zinc.net.']),
<gh_stars>10-100 from __future__ import division, unicode_literals, absolute_import import numpy as np import logging logger = logging.getLogger(__name__) from .utils import dict_2_list from collections import namedtuple Variable = namedtuple("Variable", ("name","func","kwarg"), defaults=(None,None,{}) ) Constant = namedtuple("Constant", ("name","value"), defaults=(None,None) ) def draw_uniform_list(pr, N): Nparam = len(pr.names) init_samples = np.array([[np.random.uniform(pr.bounds[i][0],pr.bounds[i][1]) for i in range(Nparam)] for _ in range(N)]) return init_samples def draw_uniform_samples(pr, Nmax): from .utils import list_2_dict Nparam = len(pr.names) samples = np.transpose([np.random.uniform(pr.bounds[i][0],pr.bounds[i][1], size=Nmax) for i in range(Nparam)]) init_samples = [list_2_dict(samples[i], pr.names) for i in range(Nmax)] log_prob = [pr.log_prior(init_samples[i]) for i in range(Nmax)] return init_samples, log_prob def rejection_sampling(pr, Nmax, maxlogp=None): # draw initial points and compute (prior) probabilities init_samples, log_prob = draw_uniform_samples(pr, Nmax) if maxlogp == None: log_prob_max = np.max(log_prob) else: log_prob_max = np.max([maxlogp,np.max(log_prob)]) acc = ((log_prob - log_prob_max ) > np.log(np.random.uniform(0.,1.,size=len(log_prob)))) Nout = (acc).sum() samples = np.array(init_samples)[acc] log_prob = np.array(log_prob)[acc] return samples , log_prob, Nout class Parameter(object): """ Parameter object """ def __init__(self, name=None, min=None, max=None, prior='uniform', periodic=0, func=None, func_kwarg={}, interp_kwarg={'ngrid':2000, 'kind':'linear'}, **kwarg): """ Initialize parameter Arguments: - name : str, name of parameter - min : float, lower bound - max : float, upper bound - periodic : bool, periodic (True) or reflective (False) - prior : str, specify implemented prior distribution to be used: uniform, log-uniform, linear, quadratic, power-law, triangular, cosinusoidal, sinusoidal, exponential, exp-log, normal, log-normal (default uniform) - func : method, if not None this method will define the prior distribution and the prior string will be ignored - func_kwarg : dict, optional keyword arguments for input function - interp_kwarg : dict, optional keyword arguments for interpolator, the dictionary should contain two arguments: - ngrid : int, number of point for the grid - kind : str, kind of interpolation for scipy.interpolate.interp1d - kwargs : it is possible to pass further arguments depending on the employed prior: - deg : if power, deg is the power-law degree - tau : if exponential, tau is the exponential decay factor - mu, sigma : if normal, specify mean and stdev """ # check name if name == None: raise AttributeError("Unable to initialize parameter, name is missing.") else: name = str(name) # check bounds if min == None or max == None: raise ValueError("Unable to initialize parameter {}, please define upper and lower bounds.".format(name)) if min >= max : raise ValueError("Unable to initialize parameter {}, lower bound is greater or equal to the upper bound".format(name)) bound = [float(min),float(max)] # check periodic periodic = int(periodic) # check/get distribution if func == None: from . import __known_probs__ if not isinstance(prior, str): _all = '' for kpi in __known_probs__ : _all = _all + kpi +', ' raise AttributeError("Unable to initialize parameter {}, prior argument is not a string. Please use one of the followings: {}or a customized function using the func argument".format(name,_all)) if prior not in __known_probs__: _all = '' for kpi in __known_probs__ : _all = _all + kpi +', ' raise AttributeError("Unable to initialize parameter {}, unknown prior argument. Please use one of the followings: {}or a customized function using the func argument".format(name,_all)) # if func == None, read prior from prior string from .utils import get_parameter_distribution_from_string prob = get_parameter_distribution_from_string(name, prior, min, max, kwarg) else: prior = 'custom' if callable(func): from .utils import initialize_param_from_func prob = initialize_param_from_func(name, min, max, func, kwarg=func_kwarg, **interp_kwarg) else: raise AttributeError("Unable to initialize parameter {}, requested probability function is not callable.".format(name)) # set properties self._name = name self._bound = bound self._periodic = periodic self._kind = prior self._prob = prob def __eq__(self, other): # check prior arguments args = ['_name', '_bound', '_periodic', '_kind'] bools = [self.__dict__[ai] == other.__dict__[ai] for ai in args] # if customized prior, check agreement between interpolators if self._kind == 'custom' and bools[-1]: bools.append(all(np.abs(self._prob.log_density.x - other._prob.log_density.x) < 1e-30)) bools.append(all(np.abs(self._prob.log_density.y - other._prob.log_density.y) < 1e-30)) return all(bools) def __ne__(self, other): return not self.__eq__(other) @property def name(self): return self._name @property def bound(self): return self._bound @property def lower_bound(self): return self._bound[0] @property def upper_bound(self): return self._bound[1] @property def periodic(self): return self._periodic def log_density(self, x): return self._prob.log_density(x) def cumulative(self, x): return self._prob.cumulative(x) def quantile(self, x): return self._prob.quantile(x) class Prior(object): """ Prior object """ def __init__(self, parameters, variables=[], constants=[]): """ Initialize Prior object Arguments: - parameters : list of bajes.inf.Parameter objects - variables : list of bajes.inf.Variable objects, default empty - constants : list of bajes.inf.Constant objects, default empty """ self.ndim = len(parameters) # reading constant properties self.const = {ci.name : ci.value for ci in constants} # reading variables properties self.v_names = [] self.v_funcs = [] self.v_kwargs = [] for vi in variables: # check that every element in parameters is a Parameter object if not isinstance(vi, Variable): logger.error("The Prior received a variable that is not a Variable object.") raise ValueError("The Prior received a variable that is is not a Variable object.") # check that name is not in constants if vi.name in list(self.const.keys()): logger.error("Repeated name {} between variables and contants. Please use different names.".format(vi.name)) raise ValueError("Repeated name {} in sampling variables and contants. Please use different names.".format(vi.name)) # append information self.v_names.append(vi.name) self.v_funcs.append(vi.func) self.v_kwargs.append(vi.kwarg) # checking/reading parameters temp_names = [] for pi in parameters: # check that every element in parameters is a Parameter object if not isinstance(pi, Parameter): logger.error("The Prior received a parameter that is not a Parameter object.") raise ValueError("The Prior received a parameter that is is not a Parameter object.") # check bounds lengths if len(pi.bound) !=2: logger.error("Wrong prior bounds for {} parameter. Bounds array length is different from 2.".format(pi.name)) raise ValueError("Wrong prior bounds for {} parameter. Bounds array length is different from 2.".format(pi.name)) # check that name is not repeated if pi.name in temp_names: logger.error("Repeate name {} for different parameters. Please use different names.".format(pi.name)) raise ValueError("Repeate name {} for different parameters. Please use different names.".format(pi.name)) # check that name is not in constants if pi.name in list(self.const.keys()) or pi.name in self.v_names: logger.error("Repeated name {} between parameters/contants/variables. Please use different names.".format(pi.name)) raise ValueError("Repeated name {} in sampling parameters/contants/variables. Please use different names.".format(pi.name)) self.parameters = parameters @property def names(self): return [p.name for p in self.parameters] @property def bounds(self): return [p.bound for p in self.parameters] @property def periodics(self): return [p.periodic for p in self.parameters] def this_sample(self, p): """ Fill parameters dictionary with constants and variables """ # collect variables v = {n: f(**p,**k) for n,f,k in zip(self.v_names, self.v_funcs, self.v_kwargs)} # merge parameters, variables and constants return {**p, **v, **self.const} def log_prior(self, x): """ Compute log-prior from parameter """ if isinstance(x, (list,np.ndarray)): return sum([pi.log_density(xi) for pi, xi in zip(self.parameters, x)]) else: # if x is not a list, it may be a dictionary. However some structures might not be pure dictionaries (i.e. cpnest.LivePoint), # then, the only requirement is that we can access to the values of the parameter as a dictionary return sum([pi.log_density(x[pi.name]) for pi in self.parameters]) def prior_transform(self, u): """ Transform uniform sample in prior sample """ return np.array([pi.quantile(xi) for pi,xi in zip(self.parameters, u)]) def cumulative(self, x, name=None): if isinstance(x, (float, int, np.float)): x = [x] if len(x) == self.ndim: return np.prod(list(map(lambda pi, xi: pi.cumulative(xi), self.parameters, x))) else: if name == None: raise AttributeError("Unable to estimate partial cumulative probability. Please include the names of the requested parameters.") indx = [i for i,pi in enumerate(self.paramters) if pi.name in name] return np.prod(list(map(lambda i, xi: self.parameters[i].cumulative(xi), indx, x))) @property def sample(self): u = np.random.uniform(0,1,size=self.ndim) return self.prior_transform(u) def get_prior_samples(self, n, **kwargs): return np.array([self.sample for _ in range(n)]) def rejection_sampling(self, Nmax, maxlogpr=None): return rejection_sampling(self,Nmax,maxlogp=maxlogpr) def sample_uniform(self, N): return draw_uniform_list(self, N) def in_bounds(self, x): if isinstance(x, (list,np.ndarray)): return all([pi.bound[0]<=xi<=pi.bound[1] for xi,pi in zip(x,self.parameters)]) else: # if x is not a list/array, it may be a dictionary. # However some structures might not be pure dictionaries (i.e. cpnest.LivePoint). # Then, the only requirement is that we can
if 'Load Preset' in selection: # Rebuild settings menu using preset settings_menu = build_settings_menu(silent=False) else: break # Detect drives if 'Detect drives' in selection[0]: std.clear_screen() std.print_warning(DETECT_DRIVES_NOTICE) if std.ask('Are you sure you proceed?'): std.print_standard('Forcing controllers to rescan for devices...') cmd = 'echo "- - -" | sudo tee /sys/class/scsi_host/host*/scan' exe.run_program(cmd, check=False, shell=True) if source_or_destination_changed(state): std.abort() # Start recovery if 'Start' in selection: std.clear_screen() run_recovery(state, main_menu, settings_menu, dry_run=args['--dry-run']) # Quit if 'Quit' in selection: total_percent = state.get_percent_recovered() if total_percent == 100: break # Recovey < 100% std.print_warning('Recovery is less than 100%') if std.ask('Are you sure you want to quit?'): break # Save results to log LOG.info('') for line in state.generate_report(): LOG.info(' %s', std.strip_colors(line)) def mount_raw_image(path): """Mount raw image using OS specific methods, returns pathlib.Path.""" loopback_path = None if PLATFORM == 'Darwin': loopback_path = mount_raw_image_macos(path) elif PLATFORM == 'Linux': loopback_path = mount_raw_image_linux(path) # Check if not loopback_path: std.print_error(f'Failed to mount image: {path}') # Register unmount atexit atexit.register(unmount_loopback_device, loopback_path) # Done return loopback_path def mount_raw_image_linux(path): """Mount raw image using losetup, returns pathlib.Path.""" loopback_path = None # Mount using losetup cmd = [ 'sudo', 'losetup', '--find', '--partscan', '--show', path, ] proc = exe.run_program(cmd, check=False) # Check result if proc.returncode == 0: loopback_path = proc.stdout.strip() # Done return loopback_path def mount_raw_image_macos(path): """Mount raw image using hdiutil, returns pathlib.Path.""" loopback_path = None plist_data = {} # Mount using hdiutil # plistdata['system-entities'][{}...] cmd = [ 'hdiutil', 'attach', '-imagekey', 'diskimage-class=CRawDiskImage', '-nomount', '-plist', '-readonly', path, ] proc = exe.run_program(cmd, check=False, encoding=None, errors=None) # Check result try: plist_data = plistlib.loads(proc.stdout) except plistlib.InvalidFileException: return None for dev in plist_data.get('system-entities', []): dev_path = dev.get('dev-entry', '') if re.match(r'^/dev/disk\d+$', dev_path): loopback_path = dev_path # Done return loopback_path def run_ddrescue(state, block_pair, pass_name, settings, dry_run=True): # pylint: disable=too-many-statements """Run ddrescue using passed settings.""" cmd = build_ddrescue_cmd(block_pair, pass_name, settings) poweroff_source_after_idle = True state.update_progress_pane('Active') std.clear_screen() warning_message = '' def _poweroff_source_drive(idle_minutes): """Power off source drive after a while.""" source_dev = state.source.path # Bail early if PLATFORM == 'Darwin': return # Sleep i = 0 while i < idle_minutes*60: if not poweroff_source_after_idle: # Countdown canceled, exit without powering-down drives return if i % 600 == 0 and i > 0: if i == 600: std.print_standard(' ', flush=True) std.print_warning( f'Powering off source in {int((idle_minutes*60-i)/60)} minutes...', ) std.sleep(5) i += 5 # Power off drive cmd = ['sudo', 'hdparm', '-Y', source_dev] proc = exe.run_program(cmd, check=False) if proc.returncode: std.print_error(f'Failed to poweroff source {source_dev}') else: std.print_warning(f'Powered off source {source_dev}') std.print_standard( 'Press Enter to return to main menu...', end='', flush=True, ) def _update_smart_pane(): """Update SMART pane every 30 seconds.""" state.source.update_smart_details() now = datetime.datetime.now(tz=TIMEZONE).strftime('%Y-%m-%d %H:%M %Z') with open(f'{state.log_dir}/smart.out', 'w', encoding='utf-8') as _f: _f.write( std.color_string( ['SMART Attributes', f'Updated: {now}\n'], ['BLUE', 'YELLOW'], sep='\t\t', ), ) _f.write('\n'.join(state.source.generate_report(header=False))) # Dry run if dry_run: LOG.info('ddrescue cmd: %s', cmd) return # Start ddrescue proc = exe.popen_program(cmd) # ddrescue loop _i = 0 while True: if _i % 30 == 0: # Update SMART pane _update_smart_pane() # Check destination warning_message = check_destination_health(state.destination) if warning_message: # Error detected on destination, stop recovery exe.stop_process(proc) std.print_error(warning_message) break if _i % 60 == 0: # Clear ddrescue pane tmux.clear_pane() _i += 1 # Update progress block_pair.update_progress(pass_name) state.update_progress_pane('Active') # Check if complete try: proc.wait(timeout=1) break except KeyboardInterrupt: # Wait a bit to let ddrescue exit safely LOG.warning('ddrescue stopped by user') warning_message = 'Aborted' std.sleep(2) exe.stop_process(proc, graceful=False) break except subprocess.TimeoutExpired: # Continue to next loop to update panes pass else: # Done std.sleep(1) break # Update progress # NOTE: Using 'Active' here to avoid flickering between block pairs block_pair.update_progress(pass_name) state.update_progress_pane('Active') # Check result if proc.poll(): # True if return code is non-zero (poll() returns None if still running) poweroff_thread = exe.start_thread( _poweroff_source_drive, [cfg.ddrescue.DRIVE_POWEROFF_TIMEOUT], ) warning_message = 'Error(s) encountered, see message above' state.update_top_panes() if warning_message: print(' ') print(' ') std.print_error('DDRESCUE PROCESS HALTED') print(' ') std.print_warning(warning_message) # Needs attention? if str(proc.poll()) != '0': state.update_progress_pane('NEEDS ATTENTION') std.pause('Press Enter to return to main menu...') # Stop source poweroff countdown std.print_standard('Stopping device poweroff countdown...', flush=True) poweroff_source_after_idle = False poweroff_thread.join() # Done raise std.GenericAbort() def run_recovery(state, main_menu, settings_menu, dry_run=True): # pylint: disable=too-many-branches """Run recovery passes.""" atexit.register(state.save_debug_reports) attempted_recovery = False auto_continue = False # Bail early if is_missing_source_or_destination(state): std.print_standard('') std.pause('Press Enter to return to main menu...') return if source_or_destination_changed(state): std.print_standard('') std.abort() # Get settings for name, details in main_menu.toggles.items(): if 'Auto continue' in name and details['Selected']: auto_continue = True if 'Retry' in name and details['Selected']: details['Selected'] = False state.retry_all_passes() settings = get_ddrescue_settings(settings_menu) # Start SMART/Journal state.panes['SMART'] = tmux.split_window( behind=True, lines=12, vertical=True, watch_file=f'{state.log_dir}/smart.out', ) if PLATFORM != 'Darwin': state.panes['Journal'] = tmux.split_window( lines=4, vertical=True, cmd='journalctl --dmesg --follow', ) # Run pass(es) for pass_name in ('read', 'trim', 'scrape'): abort = False # Skip to next pass if state.pass_complete(pass_name): # NOTE: This bypasses auto_continue state.skip_pass(pass_name) continue # Run ddrescue for pair in state.block_pairs: if not pair.pass_complete(pass_name): attempted_recovery = True state.mark_started() try: run_ddrescue(state, pair, pass_name, settings, dry_run=dry_run) except (FileNotFoundError, KeyboardInterrupt, std.GenericAbort): is_missing_source_or_destination(state) abort = True break # Continue or return to menu all_complete = state.pass_complete(pass_name) all_above_threshold = state.pass_above_threshold(pass_name) if abort or not (all_complete and all_above_threshold and auto_continue): LOG.warning('Recovery halted') break # Stop SMART/Journal for pane in ('SMART', 'Journal'): if pane in state.panes: tmux.kill_pane(state.panes.pop(pane)) # Show warning if nothing was done if not attempted_recovery: std.print_warning('No actions performed') std.print_standard(' ') std.pause('Press Enter to return to main menu...') # Done state.save_debug_reports() atexit.unregister(state.save_debug_reports) state.update_progress_pane('Idle') def select_disk(prompt, skip_disk=None): """Select disk from list, returns Disk().""" std.print_info('Scanning disks...') disks = hw_obj.get_disks() menu = std.Menu( title=std.color_string(f'ddrescue TUI: {prompt} Selection', 'GREEN'), ) menu.disabled_str = 'Already selected' menu.separator = ' ' menu.add_action('Quit') for disk in disks: disable_option = False size = disk.details["size"] # Check if option should be disabled if skip_disk: parent = skip_disk.details.get('parent', None) if (disk.path.samefile(skip_disk.path) or (parent and disk.path.samefile(parent))): disable_option = True # Add to menu menu.add_option( name=( f'{str(disk.path):<12} ' f'{disk.details["bus"]:<5} ' f'{std.bytes_to_string(size, decimals=1, use_binary=False):<8} ' f'{disk.details["model"]} ' f'{disk.details["serial"]}' ), details={'Disabled': disable_option, 'Object': disk}, ) # Get selection selection = menu.simple_select() if 'Quit' in selection: raise std.GenericAbort() # Done return selection[-1]['Object'] def select_disk_parts(prompt, disk): """Select disk parts from list, returns list of Disk().""" title = std.color_string('ddrescue TUI: Partition Selection', 'GREEN') title += f'\n\nDisk: {disk.path} {disk.description}' menu = std.Menu(title) menu.separator = ' ' menu.add_action('All') menu.add_action('None') menu.add_action('Proceed', {'Separator': True}) menu.add_action('Quit') object_list = [] def _select_parts(menu): """Loop over selection menu until at least one partition selected.""" while True: selection = menu.advanced_select( f'Please select the parts to {prompt.lower()}: ', ) if 'All' in selection: for option in menu.options.values(): option['Selected'] = True elif 'None' in selection: for option in menu.options.values(): option['Selected'] = False elif 'Proceed' in selection: if any(option['Selected'] for option in menu.options.values()): # At least one partition/device selected/device selected break elif 'Quit' in selection: raise std.GenericAbort() # Bail early if running under macOS if PLATFORM == 'Darwin': return [disk] # Bail early if child device selected if disk.details.get('parent', False): return [disk] # Add parts whole_disk_str = f'{str(disk.path):<14} (Whole device)' for part in disk.details.get('children', []): size = part["size"] name = ( f'{str(part["path"]):<14} ' f'({std.bytes_to_string(size, decimals=1, use_binary=False):>6})' ) menu.add_option(name, details={'Selected': True, 'Path': part['path']}) # Add whole disk if necessary if not menu.options: menu.add_option(whole_disk_str, {'Selected': True, 'Path': disk.path}) menu.title += '\n\n' menu.title += std.color_string(' No partitions detected.', 'YELLOW') # Get selection _select_parts(menu) # Build list of Disk() object_list for option in menu.options.values(): if option['Selected']: object_list.append(option['Path']) # Check if whole disk selected if len(object_list) == len(disk.details.get('children', [])): # NOTE: This is not true if the disk has no partitions msg = f'Preserve partition table and unused space in {prompt.lower()}?' if std.ask(msg): # Replace part list with whole disk obj object_list = [disk.path] # Convert object_list to hw_obj.Disk() objects print(' ') std.print_info('Getting disk/partition details...') object_list = [hw_obj.Disk(path) for path in object_list] # Done return object_list def select_path(prompt): """Select path, returns pathlib.Path.""" invalid = False menu = std.Menu( title=std.color_string(f'ddrescue TUI: {prompt} Path Selection', 'GREEN'), ) menu.separator = ' ' menu.add_action('Quit') menu.add_option('Current directory') menu.add_option('Enter manually') path = None # Make selection selection = menu.simple_select() if 'Current directory' in selection: path = os.getcwd() elif 'Enter manually' in selection: path =
in use by the simulation data.""" dm = data.models if file_type == 'undulatorTable': if _is_tabulated_undulator_source(dm.simulation): return dm.tabulatedUndulator.magneticFile == filename return False field = None if file_type == 'mirror': field = 'MirrorFile' elif file_type == 'sample': field = 'ImageFile' if not field: return False for m in dm.beamline: for k, v in _SCHEMA.model[m.type].items(): t = v[1] if m[k] and t == field: if m[k] == filename: return True return False def validate_file(file_type, path): """Ensure the data file contains parseable rows data""" match = re.search(r'\.(\w+)$', str(path)) extension = None if match: extension = match.group(1).lower() else: return 'invalid file extension' if extension not in _FILE_TYPE_EXTENSIONS[file_type]: return 'invalid file type: {}'.format(extension) if file_type == 'mirror': # mirror file try: count = 0 with open(str(path)) as f: for line in f.readlines(): parts = line.split("\t") if len(parts) > 0: float(parts[0]) if len(parts) > 1: float(parts[1]) count += 1 if count == 0: return 'no data rows found in file' except ValueError as e: return 'invalid file format: {}'.format(e) elif file_type == 'undulatorTable': # undulator magnetic data file #TODO(pjm): add additional zip file validation try: template_common.validate_safe_zip(str(path), '.', validate_magnet_data_file) except AssertionError as err: return err.message elif file_type == 'sample': filename = os.path.splitext(os.path.basename(str(path)))[0] # Save the processed file: srwl_uti_smp.SRWLUtiSmp(file_path=str(path), is_save_images=True, prefix=filename) return None def write_parameters(data, run_dir, is_parallel): """Write the parameters file Args: data (dict): input run_dir (py.path): where to write is_parallel (bool): run in background? """ pkio.write_text( run_dir.join(template_common.PARAMETERS_PYTHON_FILE), _generate_parameters_file(data, run_dir=run_dir) ) def _add_report_filenames(v): for k in _DATA_FILE_FOR_MODEL: v['{}Filename'.format(k)] = _DATA_FILE_FOR_MODEL[k]['filename'] def _beamline_element(template, item, fields, propagation, shift='', is_crystal=False): el = template.format(*map(lambda x: item[x], fields)) pp = _propagation_params(propagation[str(item['id'])][0], shift) # special case for crystal elements if is_crystal: el = ''' opCr = {} # Set crystal orientation: opCr.set_orient({}, {}, {}, {}, {}) el.append(opCr)'''.format( el, item['nvx'], item['nvy'], item['nvz'], item['tvx'], item['tvy'] ) else: el = '{} el.append({})'.format(shift, el) return el, pp def _calculate_beam_drift(ebeam_position, source_type, undulator_type, undulator_length, undulator_period): if ebeam_position['driftCalculationMethod'] == 'auto': """Calculate drift for ideal undulator.""" if _is_idealized_undulator(source_type, undulator_type): # initial drift = 1/2 undulator length + 2 periods return -0.5 * float(undulator_length) - 2 * float(undulator_period) return 0 return ebeam_position['drift'] def _compute_material_characteristics(model, photon_energy, prefix=''): fields_with_prefix = pkcollections.Dict({ 'material': 'material', 'refractiveIndex': 'refractiveIndex', 'attenuationLength': 'attenuationLength', }) if prefix: for k in fields_with_prefix.keys(): fields_with_prefix[k] = '{}{}{}'.format( prefix, fields_with_prefix[k][0].upper(), fields_with_prefix[k][1:], ) if model[fields_with_prefix['material']] == 'User-defined': return model # Index of refraction: kwargs = pkcollections.Dict({ 'energy': photon_energy, }) if model['method'] == 'server': kwargs['precise'] = True kwargs['formula'] = model[fields_with_prefix['material']] elif model['method'] == 'file': kwargs['precise'] = True kwargs['data_file'] = '{}_delta.dat'.format(model[fields_with_prefix['material']]) else: kwargs['calc_delta'] = True kwargs['formula'] = model[fields_with_prefix['material']] delta = bnlcrl.pkcli.simulate.find_delta(**kwargs) model[fields_with_prefix['refractiveIndex']] = delta['characteristic_value'] # Attenuation length: kwargs['characteristic'] = 'atten' if model['method'] == 'file': kwargs['precise'] = True kwargs['data_file'] = '{}_atten.dat'.format(model[fields_with_prefix['material']]) if model['method'] == 'calculation': # The method 'calculation' in bnlcrl library is not supported yet for attenuation length calculation. pass else: atten = bnlcrl.pkcli.simulate.find_delta(**kwargs) model[fields_with_prefix['attenuationLength']] = atten['characteristic_value'] return model def _compute_crl_focus(model): d = bnlcrl.pkcli.simulate.calc_ideal_focus( radius=float(model['tipRadius']) * 1e-6, # um -> m n=model['numberOfLenses'], delta=model['refractiveIndex'], p0=model['position'] ) model['focalDistance'] = d['ideal_focus'] model['absoluteFocusPosition'] = d['p1_ideal_from_source'] return model def _compute_crystal_init(model): parms_list = ['dSpacing', 'psi0r', 'psi0i', 'psiHr', 'psiHi', 'psiHBr', 'psiHBi', 'grazingAngle'] try: material_raw = model['material'] # name contains either "(SRW)" or "(X0h)" material = material_raw.split()[0] # short name for SRW (e.g., Si), long name for X0h (e.g., Silicon) h = int(model['h']) k = int(model['k']) l = int(model['l']) millerIndices = [h, k, l] energy = model['energy'] grazingAngle = None if re.search('(X0h)', material_raw): crystal_parameters = crystal.get_crystal_parameters(material, energy, h, k, l) dc = crystal_parameters['d'] xr0 = crystal_parameters['xr0'] xi0 = crystal_parameters['xi0'] xrh = crystal_parameters['xrh'] xih = crystal_parameters['xih'] elif re.search('(SRW)', material_raw): dc = srwl_uti_cryst_pl_sp(millerIndices, material) xr0, xi0, xrh, xih = srwl_uti_cryst_pol_f(energy, millerIndices, material) else: dc = xr0 = xi0 = xrh = xih = None if dc: angles_data = crystal.calc_bragg_angle(d=dc, energy_eV=energy, n=1) grazingAngle = angles_data['bragg_angle'] model['dSpacing'] = dc model['psi0r'] = xr0 model['psi0i'] = xi0 model['psiHr'] = xrh model['psiHi'] = xih model['psiHBr'] = xrh model['psiHBi'] = xih model['grazingAngle'] = grazingAngle except Exception: pkdlog('{}: error: {}', material_raw, pkdexc()) for key in parms_list: model[key] = None return model def _compute_crystal_orientation(model): if not model['dSpacing']: return model parms_list = ['nvx', 'nvy', 'nvz', 'tvx', 'tvy'] try: opCr = srwlib.SRWLOptCryst( _d_sp=model['dSpacing'], _psi0r=model['psi0r'], _psi0i=model['psi0i'], _psi_hr=model['psiHr'], _psi_hi=model['psiHi'], _psi_hbr=model['psiHBr'], _psi_hbi=model['psiHBi'], _tc=model['crystalThickness'], _ang_as=model['asymmetryAngle'], ) orientDataCr = opCr.find_orient(_en=model['energy'], _ang_dif_pl=model['grazingAngle'])[0] tCr = orientDataCr[0] # Tangential Vector to Crystal surface nCr = orientDataCr[2] # Normal Vector to Crystal surface if model['rotationAngle'] != 0: rot = uti_math.trf_rotation([0, 1, 0], model['rotationAngle'], [0, 0, 0])[0] nCr = uti_math.matr_prod(rot, nCr) tCr = uti_math.matr_prod(rot, tCr) model['nvx'] = nCr[0] model['nvy'] = nCr[1] model['nvz'] = nCr[2] model['tvx'] = tCr[0] model['tvy'] = tCr[1] except Exception: pkdlog('\n{}', traceback.format_exc()) for key in parms_list: model[key] = None return model def _compute_grazing_angle(model): def preserve_sign(item, field, new_value): old_value = item[field] if field in item else 0 was_negative = float(old_value) < 0 item[field] = float(new_value) if (was_negative and item[field] > 0) or item[field] < 0: item[field] = - item[field] grazing_angle = float(model['grazingAngle']) / 1000.0 preserve_sign(model, 'normalVectorZ', math.sin(grazing_angle)) if model['autocomputeVectors'] == 'horizontal': preserve_sign(model, 'normalVectorX', math.cos(grazing_angle)) preserve_sign(model, 'tangentialVectorX', math.sin(grazing_angle)) model['normalVectorY'] = 0 model['tangentialVectorY'] = 0 elif model['autocomputeVectors'] == 'vertical': preserve_sign(model, 'normalVectorY', math.cos(grazing_angle)) preserve_sign(model, 'tangentialVectorY', math.sin(grazing_angle)) model['normalVectorX'] = 0 model['tangentialVectorX'] = 0 return model def _compute_undulator_length(model): if model['undulatorType'] == 'u_i': return {} zip_file = simulation_db.simulation_lib_dir(SIM_TYPE).join(model['magneticFile']) if zip_file.check(): return { 'length': MagnMeasZip(str(zip_file)).find_closest_gap(model['gap']), } return {} def _convert_ebeam_units(field_name, value, to_si=True): """Convert values from the schema to SI units (m, rad) and back. Args: field_name: name of the field in _SCHEMA['model']['electronBeam']. value: value of the field. to_si: if set to True, convert to SI units, otherwise convert back to the units in the schema. Returns: value: converted value. """ if field_name in _SCHEMA['model']['electronBeam'].keys(): label, field_type = _SCHEMA['model']['electronBeam'][field_name] if field_type == 'Float': if re.search('\[m(m|rad)\]', label): value *= _invert_value(1e3, to_si) elif re.search('\[\xb5(m|rad)\]', label): # mu value *= _invert_value(1e6, to_si) elif re.search('\[n(m|rad)\]', label): value *= _invert_value(1e9, to_si) return value def _create_user_model(data, model_name): model = data['models'][model_name] if model_name == 'tabulatedUndulator': model = model.copy() model['undulator'] = data['models']['undulator'] return model def _delete_user_models(electron_beam, tabulated_undulator): """Remove the beam and undulator user model list files""" for model_name in _USER_MODEL_LIST_FILENAME.keys(): model = electron_beam if model_name == 'electronBeam' else tabulated_undulator if not model or 'id' not in model: continue user_model_list = _load_user_model_list(model_name) for i,m in enumerate(user_model_list): if m['id'] == model.id: del user_model_list[i] _save_user_model_list(model_name, user_model_list) break return pkcollections.Dict({}) def _extract_brilliance_report(model, data): label = template_common.enum_text(_SCHEMA, 'BrillianceReportType', model['reportType']) if model['reportType'] in ('3', '4'): label += ' [rad]' elif model['reportType'] in ('5', '6'): label += ' [m]' x_points = [] points = [] scale_adjustment = 1000.0 if 'brightnessComponent' in model and model['brightnessComponent'] == 'spectral-detuning': scale_adjustment = 1.0 for f in data: m = re.search('^f(\d+)', f) if m: x_points.append((np.array(data[f]['data']) * scale_adjustment).tolist()) points.append(data['e{}'.format(m.group(1))]['data']) title = template_common.enum_text(_SCHEMA, 'BrightnessComponent', model['brightnessComponent']) if model['brightnessComponent'] == 'k-tuning': if model['initialHarmonic'] == model['finalHarmonic']: title += ', Harmonic {}'.format(model['initialHarmonic']) else: title += ', Harmonic {} - {}'.format(model['initialHarmonic'], model['finalHarmonic']) else: title += ', Harmonic {}'.format(model['harmonic']) return { 'title': title, 'y_label': label, 'x_label': 'Photon Energy [eV]', 'x_range': [np.amin(x_points), np.amax(x_points)], 'y_range': [np.amin(points), np.amax(points)], 'x_points': x_points, 'points': points, } def _extract_trajectory_report(model, data): available_axes = {} for s in _SCHEMA['enum']['TrajectoryPlotAxis']: available_axes[s[0]] = s[1] x_points = data[model['plotAxisX']]['data'] plots = [] y_range = [] for f in ('plotAxisY', 'plotAxisY2'): if model[f] != 'None': points = data[model[f]]['data'] if y_range: y_range = [min(y_range[0], min(points)), max(y_range[1], max(points))] else: y_range = [min(points), max(points)] plots.append({ 'points': points, 'label': available_axes[model[f]], #TODO(pjm): refactor with template_common.compute_plot_color_and_range() 'color': '#ff7f0e' if len(plots) else '#1f77b4', }) return { 'title': 'Electron Trajectory', 'x_range': [min(x_points), max(x_points)], 'x_points': x_points, 'y_label': '[' + data[model['plotAxisY']]['units'] + ']', 'x_label': available_axes[model['plotAxisX']] + ' [' + data[model['plotAxisX']]['units'] + ']', 'y_range': y_range, 'plots': plots, } def _fixup_beamline(data): for item in data['models']['beamline']: if item['type'] == 'ellipsoidMirror': if 'firstFocusLength' not in item: item['firstFocusLength'] = item['position'] if item['type'] in ['grating', 'ellipsoidMirror', 'sphericalMirror', 'toroidalMirror']: if 'grazingAngle' not in item: angle = 0 if item['normalVectorX']: angle = math.acos(abs(float(item['normalVectorX']))) * 1000 elif item['normalVectorY']: angle = math.acos(abs(float(item['normalVectorY']))) * 1000 item['grazingAngle'] = angle if 'grazingAngle' in item and 'normalVectorX' in item and 'autocomputeVectors' not in item: item['autocomputeVectors'] = '1' if item['type'] == 'crl': key_value_pairs = pkcollections.Dict({ 'material': 'User-defined', 'method': 'server', 'absoluteFocusPosition': None, 'focalDistance': None, 'tipRadius': float(item['radius']) * 1e6, # m -> um
# coding: utf-8 # ## Case study # # In this case study we'll walk through using Python to fetch some data, clean it, and then graph it. This may be a short project, but it combines a number of features of the language we've dicussed, and gives you a chance to a see a project worked through from beginning to end. At almost every step we will also briefly call out alternatives and enhancements you can make. # # Global temperature change is the topic of much discussion. But those discussions are based on a global scale, Suppose I want to know what the temperatures have been doing near where I am? One way of finding out would be to get some historical data for my location and process that data and plot it to see exactly what's been happening. # # Fortunately, there are several sources of historical weather data that are freely available. We're going to talk through using data from the Global Historical Climatology Network, which has data from around the world. You may find other sources, which may have different data formats, but the steps and the processes we discuss here should be generally applicable to any data set. # ### Downloading the data # # The first step will be to get the data. There is an archive of daily historical weather data at https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/, which has a wide array of datay. The first step will be to figure out which files we want and exactly where they are, and then to download them. Once we have the data, we can move on to processing and ultimately displaying our results. # # In order to download the files, which are accessable via HTTPS, we will need the requests library. We can get requests with `pip install requests` at the command prompt. Once we have requests our first step will be to fetch the `readme.txt` file, which can guide us as the formats and location of the data files we'll want. # In[11]: # import requests import requests # In[ ]: # get readme.txt file r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt') readme = r.text # When we look at the readme file, it looks something like this: # In[4]: print(readme) # In particular, we'll be interested in section II which lists the contents. # # ``` # II. CONTENTS OF ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily # # all: Directory with ".dly" files for all of GHCN-Daily # gsn: Directory with ".dly" files for the GCOS Surface Network # (GSN) # hcn: Directory with ".dly" files for U.S. HCN # by_year: Directory with GHCN Daily files parsed into yearly # subsets with observation times where available. See the # /by_year/readme.txt and # /by_year/ghcn-daily-by_year-format.rtf # files for further information # grid: Directory with the GHCN-Daily gridded dataset known # as HadGHCND # papers: Directory with pdf versions of journal articles relevant # to the GHCN-Daily dataset # figures: Directory containing figures that summarize the inventory # of GHCN-Daily station records # # ghcnd-all.tar.gz: TAR file of the GZIP-compressed files in the "all" directory # ghcnd-gsn.tar.gz: TAR file of the GZIP-compressed "gsn" directory # ghcnd-hcn.tar.gz: TAR file of the GZIP-compressed "hcn" directory # # ghcnd-countries.txt: List of country codes (FIPS) and names # ghcnd-inventory.txt: File listing the periods of record for each station and # element # ghcnd-stations.txt: List of stations and their metadata (e.g., coordinates) # ghcnd-states.txt: List of U.S. state and Canadian Province codes # used in ghcnd-stations.txt # ghcnd-version.txt: File that specifies the current version of GHCN Daily # # readme.txt: This file # status.txt: Notes on the current status of GHCN-Daily # ``` # # As we look at the files available we cansee that `ghcnd-inventory.txt` has a listing of the recording periods for each station which will help us find a good data set, and `ghcnd-stations.txt` lists the stations which should help us find the station closest to our location, so we'll grab those two files first. # ``` # II. CONTENTS OF ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily # # all: Directory with ".dly" files for all of GHCN-Daily # gsn: Directory with ".dly" files for the GCOS Surface Network # (GSN) # hcn: Directory with ".dly" files for U.S. HCN # by_year: Directory with GHCN Daily files parsed into yearly # subsets with observation times where available. See the # /by_year/readme.txt and # /by_year/ghcn-daily-by_year-format.rtf # files for further information # grid: Directory with the GHCN-Daily gridded dataset known # as HadGHCND # papers: Directory with pdf versions of journal articles relevant # to the GHCN-Daily dataset # figures: Directory containing figures that summarize the inventory # of GHCN-Daily station records # # ghcnd-all.tar.gz: TAR file of the GZIP-compressed files in the "all" directory # ghcnd-gsn.tar.gz: TAR file of the GZIP-compressed "gsn" directory # ghcnd-hcn.tar.gz: TAR file of the GZIP-compressed "hcn" directory # # ghcnd-countries.txt: List of country codes (FIPS) and names # ghcnd-inventory.txt: File listing the periods of record for each station and # element # ghcnd-stations.txt: List of stations and their metadata (e.g., coordinates) # ghcnd-states.txt: List of U.S. state and Canadian Province codes # used in ghcnd-stations.txt # ghcnd-version.txt: File that specifies the current version of GHCN Daily # # readme.txt: This file # status.txt: Notes on the current status of GHCN-Daily # ``` # # In[12]: # get inventory and stations files r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-inventory.txt') inventory_txt = r.text r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt') stations_txt = r.text # Once we have those files, we can save them to our local disk, so that we won't need to download them again if we need to go back to the original data. # In[13]: # save both the inventory and stations files to disk, in case we need them with open("inventory.txt", "w") as inventory_file: inventory_file.write(inventory_txt) with open("stations.txt", "w") as stations_file: stations_file.write(stations_txt) # We'll start by looking at the inventory file. Here's what the first 137 characters show us: # In[16]: print(inventory_txt[:137]) # If we look at section VII of the `readme.txt` file we can see that the format of the inventory file is: # ``` # VII. FORMAT OF "ghcnd-inventory.txt" # # ------------------------------ # Variable Columns Type # ------------------------------ # ID 1-11 Character # LATITUDE 13-20 Real # LONGITUDE 22-30 Real # ELEMENT 32-35 Character # FIRSTYEAR 37-40 Integer # LASTYEAR 42-45 Integer # ------------------------------ # # These variables have the following definitions: # # ID is the station identification code. Please see "ghcnd-stations.txt" # for a complete list of stations and their metadata. # # LATITUDE is the latitude of the station (in decimal degrees). # # LONGITUDE is the longitude of the station (in decimal degrees). # # ELEMENT is the element type. See section III for a definition of elements. # # FIRSTYEAR is the first year of unflagged data for the given element. # # LASTYEAR is the last year of unflagged data for the given element. # ``` # # From this descrption we can tell that inventory list has most of the information we need to find out what station we'll want to look at. We can use the latitude and longitude to find the stations closest to us, and then we can use the first and years years to a station with records covering a long span of time. # # The only question this file leaves us with is what the "ELEMENT" field is, for that it suggests we look at section III. In section III (which we'll look at in more detail later) we find the following description of the main elements: # # ``` # ELEMENT is the element type. There are five core elements as well as a number # of addition elements. # # The five core elements are: # # PRCP = Precipitation (tenths of mm) # SNOW = Snowfall (mm) # SNWD = Snow depth (mm) # TMAX = Maximum temperature (tenths of degrees C) # TMIN = Minimum temperature (tenths of degrees C) # ``` # # For our purpose we'll be interested in the TMAX and TMIN elements, which are maximum and minimum temperatures in tenths of degrees Centigrade. # ### Parsing the inventory data # # The `readme.txt` file tells us what we've got in the inventory file, so we can parse the data into a more usable format. We could just store the parsed inventory
iftrue elif claripy.is_false(cond_v): return iffalse else: data = iftrue.merge(iffalse) return data # # Unary operation handlers # def _handle_Const(self, expr) -> MultiValues: return MultiValues(offset_to_values={0: { claripy_value(expr.con.type, expr.con.value) }}) def _handle_Conversion(self, expr): simop = vex_operations[expr.op] bits = int(simop.op_attrs['to_size']) arg_0 = self._expr(expr.args[0]) # if there are multiple values with only one offset, we apply conversion to each one of them # otherwise, we return a TOP if len(arg_0.values) == 1: # extension, extract, or doing nothing data = set() for v in next(iter(arg_0.values.values())): if bits > v.size(): data.add(v.zero_extend(bits - v.size())) else: data.add(v[bits - 1:0]) r = MultiValues(offset_to_values={next(iter(arg_0.values.keys())): data}) else: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Not1(self, expr): arg0 = expr.args[0] expr_0 = self._expr(arg0) e0 = expr_0.one_value() if e0 is not None and not e0.symbolic: return MultiValues(offset_to_values={0: { claripy.BVV(1, 1) if e0._model_concrete.value != 1 else claripy.BVV(0, 1) }}) return MultiValues(offset_to_values={0: {self.state.top(1)}}) def _handle_Not(self, expr): arg0 = expr.args[0] expr_0 = self._expr(arg0) bits = expr.result_size(self.tyenv) e0 = expr_0.one_value() if e0 is not None and not e0.symbolic: return MultiValues(offset_to_values={0: {~e0}}) # pylint:disable=invalid-unary-operand-type return MultiValues(offset_to_values={0: {self.state.top(bits)}}) def _handle_Clz64(self, expr): arg0 = expr.args[0] _ = self._expr(arg0) bits = expr.result_size(self.tyenv) # Need to actually implement this later return MultiValues(offset_to_values={0: {self.state.top(bits)}}) def _handle_Ctz64(self, expr): arg0 = expr.args[0] _ = self._expr(arg0) bits = expr.result_size(self.tyenv) # Need to actually implement this later return MultiValues(offset_to_values={0: {self.state.top(bits)}}) # # Binary operation handlers # def _handle_ExpCmpNE64(self, expr): _, _ = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) # Need to actually implement this later r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_16HLto32(self, expr): _, _ = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) # Need to actually implement this later r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Add(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support addition between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # adding a single value to a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v + expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # adding a single value to a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {v + expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: # adding two single values together r = MultiValues(offset_to_values={0: {expr0_v + expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Sub(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support addition between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # subtracting a single value from a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v - expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # subtracting a single value from a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {expr0_v - v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: # subtracting a single value from another single value r = MultiValues(offset_to_values={0: {expr0_v - expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Mul(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support multiplication between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # multiplying a single value to a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v * expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # multiplying a single value to a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {v * expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: # multiplying two single values together r = MultiValues(offset_to_values={0: {expr0_v * expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Mull(self, expr): _, _ = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) return MultiValues(offset_to_values={0: {self.state.top(bits)}}) def _handle_Div(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support division between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: if len(expr0.values) == 1 and 0 in expr0.values: vs = {v / expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: if len(expr1.values) == 1 and 0 in expr1.values: vs = {v / expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: if expr0_v.concrete and expr1_v.concrete: # dividing two single values r = MultiValues(offset_to_values={0: {expr0_v / expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_DivMod(self, expr): _, _ = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_And(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support addition between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # bitwise-and a single value with a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v & expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # bitwise-and a single value to a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {v & expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: if expr0_v.concrete and expr1_v.concrete: # bitwise-and two single values together r = MultiValues(offset_to_values={0: {expr0_v & expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Xor(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support xor between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # bitwise-xor a single value with a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v ^ expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # bitwise-xor a single value to a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {v ^ expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: if expr0_v.concrete and expr1_v.concrete: # bitwise-xor two single values together r = MultiValues(offset_to_values={0: {expr0_v ^ expr1_v}}) if r is None: r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) return r def _handle_Or(self, expr): expr0, expr1 = self._expr(expr.args[0]), self._expr(expr.args[1]) bits = expr.result_size(self.tyenv) r = None expr0_v = expr0.one_value() expr1_v = expr1.one_value() if expr0_v is None and expr1_v is None: # we do not support or between two real multivalues r = MultiValues(offset_to_values={0: {self.state.top(bits)}}) elif expr0_v is None and expr1_v is not None: # bitwise-or a single value with a multivalue if len(expr0.values) == 1 and 0 in expr0.values: vs = {v | expr1_v for v in expr0.values[0]} r = MultiValues(offset_to_values={0: vs}) elif expr0_v is not None and expr1_v is None: # bitwise-or a single value to a multivalue if len(expr1.values) == 1 and 0 in expr1.values: vs = {v | expr0_v for v in expr1.values[0]} r = MultiValues(offset_to_values={0: vs}) else: # bitwise-and two single values together r = MultiValues(offset_to_values={0: {expr0_v | expr1_v}}) if r is None: r =
'void' else: # TODO: extract informations needed for printing in case of function argument which itself has a function argument arg_code = ', '.join('{}'.format(self._print_FuncAddressDeclare(i)) if isinstance(i, FunctionAddress) else '{0}{1}'.format(self.get_declare_type(i), i) for i in args) return '{}(*{})({});\n'.format(ret_type, name, arg_code) def _print_Declare(self, expr): if isinstance(expr.variable, InhomogeneousTupleVariable): return ''.join(self._print_Declare(Declare(v.dtype,v,intent=expr.intent, static=expr.static)) for v in expr.variable) declaration_type = self.get_declare_type(expr.variable) variable = self._print(expr.variable.name) if expr.variable.is_stack_array: preface, init = self._init_stack_array(expr.variable,) else: preface = '' init = '' declaration = '{dtype}{var}{init};\n'.format( dtype = declaration_type, var = variable, init = init) return preface + declaration def _print_NativeBool(self, expr): self._additional_imports.add('stdbool') return 'bool' def _print_NativeInteger(self, expr): return 'int' def _print_NativeReal(self, expr): return 'real' def _print_NativeVoid(self, expr): return 'void' def _print_NativeComplex(self, expr): self._additional_imports.add('complex') return 'complex' def _print_NativeString(self, expr): return 'string' def function_signature(self, expr, print_arg_names = True): """Extract from function definition all the information (name, input, output) needed to create the signature Parameters ---------- expr : FunctionDef the function defintion print_arg_names : Bool default value True and False when we don't need to print arguments names Return ------ String Signature of the function """ args = list(expr.arguments) if len(expr.results) == 1: ret_type = self.get_declare_type(expr.results[0]) elif len(expr.results) > 1: ret_type = self._print(datatype('int')) + ' ' args += [FunctionDefArgument(a.clone(name = a.name, is_pointer =True)) for a in expr.results] else: ret_type = self._print(datatype('void')) + ' ' name = expr.name if not args: arg_code = 'void' else: arg_code = ', '.join('{}'.format(self.function_signature(i.var, False)) if isinstance(i.var, FunctionAddress) else '{0}'.format(self.get_declare_type(i.var)) + (i.name if print_arg_names else '') for i in args) if isinstance(expr, FunctionAddress): return '{}(*{})({})'.format(ret_type, name, arg_code) else: return '{0}{1}({2})'.format(ret_type, name, arg_code) def _print_IndexedElement(self, expr): base = expr.base inds = list(expr.indices) base_shape = base.shape allow_negative_indexes = True if isinstance(base, PythonTuple) else base.allows_negative_indexes for i, ind in enumerate(inds): if isinstance(ind, PyccelUnarySub) and isinstance(ind.args[0], LiteralInteger): inds[i] = PyccelMinus(base_shape[i], ind.args[0], simplify = True) else: #indices of indexedElement of len==1 shouldn't be a tuple if isinstance(ind, tuple) and len(ind) == 1: inds[i].args = ind[0] if allow_negative_indexes and \ not isinstance(ind, LiteralInteger) and not isinstance(ind, Slice): inds[i] = IfTernaryOperator(PyccelLt(ind, LiteralInteger(0)), PyccelAdd(base_shape[i], ind, simplify = True), ind) #set dtype to the C struct types dtype = self._print(expr.dtype) dtype = self.find_in_ndarray_type_registry(dtype, expr.precision) base_name = self._print(base) if base.is_ndarray or isinstance(base, HomogeneousTupleVariable): if expr.rank > 0: #managing the Slice input for i , ind in enumerate(inds): if isinstance(ind, Slice): inds[i] = self._new_slice_with_processed_arguments(ind, PyccelArraySize(base, i), allow_negative_indexes) else: inds[i] = Slice(ind, PyccelAdd(ind, LiteralInteger(1), simplify = True), LiteralInteger(1)) inds = [self._print(i) for i in inds] return "array_slicing(%s, %s, %s)" % (base_name, expr.rank, ", ".join(inds)) inds = [self._cast_to(i, NativeInteger(), 8).format(self._print(i)) for i in inds] else: raise NotImplementedError(expr) return "GET_ELEMENT(%s, %s, %s)" % (base_name, dtype, ", ".join(inds)) def _cast_to(self, expr, dtype, precision): """ add cast to an expression when needed parameters ---------- expr : PyccelAstNode the expression to be cast dtype : Datatype base type of the cast precision : integer precision of the base type of the cast Return ------ String Return format string that contains the desired cast type """ if (expr.dtype != dtype or expr.precision != precision): cast=self.find_in_dtype_registry(self._print(dtype), precision) return '({}){{}}'.format(cast) return '{}' def _print_DottedVariable(self, expr): """convert dotted Variable to their C equivalent""" return '{}.{}'.format(self._print(expr.lhs), self._print(expr.name)) @staticmethod def _new_slice_with_processed_arguments(_slice, array_size, allow_negative_index): """ Create new slice with informations collected from old slice and decorators Parameters ---------- _slice : Slice slice needed to collect (start, stop, step) array_size : PyccelArraySize call to function size() allow_negative_index : Bool True when the decorator allow_negative_index is present Returns ------- Slice """ start = LiteralInteger(0) if _slice.start is None else _slice.start stop = array_size if _slice.stop is None else _slice.stop # negative start and end in slice if isinstance(start, PyccelUnarySub) and isinstance(start.args[0], LiteralInteger): start = PyccelMinus(array_size, start.args[0], simplify = True) elif allow_negative_index and not isinstance(start, (LiteralInteger, PyccelArraySize)): start = IfTernaryOperator(PyccelLt(start, LiteralInteger(0)), PyccelMinus(array_size, start, simplify = True), start) if isinstance(stop, PyccelUnarySub) and isinstance(stop.args[0], LiteralInteger): stop = PyccelMinus(array_size, stop.args[0], simplify = True) elif allow_negative_index and not isinstance(stop, (LiteralInteger, PyccelArraySize)): stop = IfTernaryOperator(PyccelLt(stop, LiteralInteger(0)), PyccelMinus(array_size, stop, simplify = True), stop) # steps in slices step = _slice.step if step is None: step = LiteralInteger(1) # negative step in slice elif isinstance(step, PyccelUnarySub) and isinstance(step.args[0], LiteralInteger): start = PyccelMinus(array_size, LiteralInteger(1), simplify = True) if _slice.start is None else start stop = LiteralInteger(0) if _slice.stop is None else stop # variable step in slice elif allow_negative_index and step and not isinstance(step, LiteralInteger): og_start = start start = IfTernaryOperator(PyccelGt(step, LiteralInteger(0)), start, PyccelMinus(stop, LiteralInteger(1), simplify = True)) stop = IfTernaryOperator(PyccelGt(step, LiteralInteger(0)), stop, og_start) return Slice(start, stop, step) def _print_PyccelArraySize(self, expr): return '{}.shape[{}]'.format(expr.arg, expr.index) def _print_Allocate(self, expr): free_code = '' #free the array if its already allocated and checking if its not null if the status is unknown if (expr.status == 'unknown'): free_code = 'if (%s.shape != NULL)\n' % self._print(expr.variable.name) free_code += "{{\n{}}}\n".format(self._print(Deallocate(expr.variable))) elif (expr.status == 'allocated'): free_code += self._print(Deallocate(expr.variable)) self._additional_imports.add('ndarrays') shape = ", ".join(self._print(i) for i in expr.shape) dtype = self._print(expr.variable.dtype) dtype = self.find_in_ndarray_type_registry(dtype, expr.variable.precision) shape_dtype = self.find_in_dtype_registry('int', 8) shape_Assign = "("+ shape_dtype +"[]){" + shape + "}" alloc_code = "{} = array_create({}, {}, {});\n".format(expr.variable, len(expr.shape), shape_Assign, dtype) return '{}{}'.format(free_code, alloc_code) def _print_Deallocate(self, expr): if isinstance(expr.variable, InhomogeneousTupleVariable): return ''.join(self._print(Deallocate(v)) for v in expr.variable) if expr.variable.is_pointer: return 'free_pointer({});\n'.format(self._print(expr.variable)) return 'free_array({});\n'.format(self._print(expr.variable)) def _print_Slice(self, expr): start = self._print(expr.start) stop = self._print(expr.stop) step = self._print(expr.step) return 'new_slice({}, {}, {})'.format(start, stop, step) def _print_NumpyUfuncBase(self, expr): """ Convert a Python expression with a Numpy function call to C function call Parameters ---------- expr : Pyccel ast node Python expression with a Numpy function call Returns ------- string Equivalent expression in C language Example ------- numpy.cos(x) ==> cos(x) """ # add necessary include self._additional_imports.add('math') type_name = type(expr).__name__ try: func_name = numpy_ufunc_to_c_real[type_name] except KeyError: errors.report(PYCCEL_RESTRICTION_TODO, severity='fatal') args = [] for arg in expr.args: if arg.dtype is NativeComplex(): self._additional_imports.add('complex') try: func_name = numpy_ufunc_to_c_complex[type_name] args.append(self._print(arg)) except KeyError: errors.report(INCOMPATIBLE_TYPEVAR_TO_FUNC.format(type_name) ,severity='fatal') elif arg.dtype is not NativeReal(): args.append(self._print(NumpyFloat(arg))) else : args.append(self._print(arg)) code_args = ', '.join(args) return '{0}({1})'.format(func_name, code_args) def _print_MathFunctionBase(self, expr): """ Convert a Python expression with a math function call to C function call Parameters ---------- expr : Pyccel ast node Python expression with a Math function call Returns ------- string Equivalent expression in C language ------ Example: -------- math.sin(x) ==> sin(x) """ # add necessary include type_name = type(expr).__name__ try: func_name = math_function_to_c[type_name] except KeyError: errors.report(PYCCEL_RESTRICTION_TODO, severity='fatal') if func_name.startswith("pyc"): self._additional_imports.add('pyc_math_c') else: if expr.dtype is NativeComplex(): self._additional_imports.add('cmath') else: self._additional_imports.add('math') args = [] for arg in expr.args: if arg.dtype != NativeReal() and not func_name.startswith("pyc"): args.append(self._print(NumpyFloat(arg))) else: args.append(self._print(arg)) code_args = ', '.join(args) if expr.dtype == NativeInteger(): cast_type = self.find_in_dtype_registry('int', expr.precision) return '({0}){1}({2})'.format(cast_type, func_name, code_args) return '{0}({1})'.format(func_name, code_args) def _print_MathIsfinite(self, expr): """Convert a Python expression with a math isfinite function call to C function call""" # add necessary include self._additional_imports.add('math') arg = expr.args[0] if arg.dtype is NativeInteger(): code_arg = self._print(NumpyFloat(arg)) else: code_arg = self._print(arg) return "isfinite({})".format(code_arg) def _print_MathIsinf(self, expr): """Convert a Python expression with a math isinf function call to C function call""" # add necessary include self._additional_imports.add('math') arg = expr.args[0] if arg.dtype is NativeInteger(): code_arg = self._print(NumpyFloat(arg)) else: code_arg = self._print(arg) return "isinf({})".format(code_arg) def _print_MathIsnan(self, expr): """Convert a Python expression with a math isnan function call to C function call""" # add necessary include self._additional_imports.add('math') arg = expr.args[0] if arg.dtype is NativeInteger(): code_arg = self._print(NumpyFloat(arg)) else: code_arg = self._print(arg) return "isnan({})".format(code_arg) def _print_MathTrunc(self, expr): """Convert a Python expression with a math trunc function call to C function call""" # add necessary include self._additional_imports.add('math') arg = expr.args[0] if arg.dtype is NativeInteger(): code_arg = self._print(NumpyFloat(arg)) else: code_arg = self._print(arg) return "trunc({})".format(code_arg) def _print_FunctionAddress(self, expr): return expr.name def _print_Rand(self, expr): raise NotImplementedError("Rand not implemented") def _print_NumpyRandint(self, expr): raise NotImplementedError("Randint not implemented") def _print_NumpyMod(self, expr): return self._print(PyccelMod(*expr.args)) def _print_Interface(self, expr): return "" def _print_FunctionDef(self, expr): if len(expr.results) > 1: self._additional_args.append(expr.results) body = self._print(expr.body) decs = [Declare(i.dtype, i) if isinstance(i, Variable) else FuncAddressDeclare(i) for i in expr.local_vars] if len(expr.results) <= 1 : for i in expr.results: if isinstance(i, Variable) and not i.is_temp: decs +=
<filename>pyqstrat/account.py from collections import defaultdict from sortedcontainers import SortedDict import math import pandas as pd import numpy as np from pyqstrat.pq_types import ContractGroup, Trade, Contract from types import SimpleNamespace from typing import Sequence, Any, Tuple, Callable, Union, MutableSet, MutableSequence, MutableMapping, List, Optional def calc_trade_pnl(open_qtys: np.ndarray, open_prices: np.ndarray, new_qtys: np.ndarray, new_prices: np.ndarray, multiplier: float) -> Tuple[np.ndarray, np.ndarray, float, float, float]: ''' >>> print(calc_trade_pnl( ... open_qtys = np.array([], dtype = float), open_prices = np.array([], dtype = float), ... new_qtys = np.array([-8, 9, -4]), new_prices = np.array([10, 11, 6]), multiplier = 100)) (array([-3.]), array([6.]), -3.0, 6.0, -1300.0) >>> print(calc_trade_pnl(open_qtys = np.array([], dtype = float), open_prices = np.array([], dtype = float), new_qtys = np.array([3, 10, -5]), ... new_prices = np.array([51, 50, 45]), multiplier = 100)) (array([8.]), array([50.]), 8.0, 50.0, -2800.0) >>> print(calc_trade_pnl(open_qtys = np.array([]), open_prices = np.array([]), ... new_qtys = np.array([-58, -5, -5, 6, -8, 5, 5, -5, 19, 7, 5, -5, 39]), ... new_prices = np.array([2080, 2075.25, 2070.75, 2076, 2066.75, 2069.25, 2074.75, 2069.75, 2087.25, 2097.25, 2106, 2088.25, 2085.25]), ... multiplier = 50)) (array([], dtype=float64), array([], dtype=float64), 0.0, 0, -33762.5) ''' # TODO: Cythonize this realized = 0. new_qtys = new_qtys.copy() new_prices = new_prices.copy() _open_prices = np.zeros(len(open_prices) + len(new_prices), dtype=float) _open_prices[:len(open_prices)] = open_prices _open_qtys = np.zeros(len(open_qtys) + len(new_qtys), dtype=float) _open_qtys[:len(open_qtys)] = open_qtys new_qty_indices = np.nonzero(new_qtys)[0] open_qty_indices = np.zeros(len(_open_qtys), dtype=int) nonzero_indices = np.nonzero(_open_qtys)[0] open_qty_indices[:len(nonzero_indices)] = nonzero_indices i = 0 # index into new_qty_indices to get idx of the new qty we are currently netting o = len(nonzero_indices) # virtual length of open_qty_indices j = 0 # index into open_qty_indices to get idx of the open qty we are currently netting k = len(open_qtys) # virtual length of _open_qtys # Try to net all new trades against existing non-netted trades. # Append any remaining non-netted new trades to end of existing trades while i < len(new_qty_indices): # Always try to net first non-zero new trade against first non-zero existing trade # FIFO acccounting new_idx = new_qty_indices[i] new_qty, new_price = new_qtys[new_idx], new_prices[new_idx] # print(f'i: {i} j: {j} k: {k} o: {o} oq: {_open_qtys} oqi: {open_qty_indices} op: {_open_prices} nq: {new_qtys} np: {new_prices}') if j < o: # while we still have open positions to net against open_idx = open_qty_indices[j] open_qty, open_price = _open_qtys[open_idx], _open_prices[open_idx] if math.copysign(1, open_qty) == math.copysign(1, new_qty): # Nothing to net against so add this trade to the array and wait for the next offsetting trade _open_qtys[k] = new_qty _open_prices[k] = new_price open_qty_indices[o] = k k += 1 o += 1 new_qtys[new_idx] = 0 i += 1 elif abs(new_qty) > abs(open_qty): # New trade has more qty than offsetting trade so: # a. net against offsetting trade # b. remove the offsetting trade # c. reduce qty of new trade open_qty, open_price = _open_qtys[open_idx], _open_prices[open_idx] realized += open_qty * (new_price - open_price) # print(f'open_qty: {open_qty} open_price: {open_price} open_idx: {open_idx} i: {i} # j: {j} k: {k} l: {l} oq: {_open_qtys} oqi: {open_qty_indices} op: {_open_prices} nq: {new_qtys} np: {new_prices}') _open_qtys[open_idx] = 0 j += 1 new_qtys[new_idx] += open_qty else: # New trade has less qty than offsetting trade so: # a. net against offsetting trade # b. remove new trade # c. reduce qty of offsetting trade realized += new_qty * (open_price - new_price) new_qtys[new_idx] = 0 i += 1 _open_qtys[open_idx] += new_qty else: # Nothing to net against so add this trade to the open trades array and wait for the next offsetting trade _open_qtys[k] = new_qty _open_prices[k] = new_price open_qty_indices[o] = k k += 1 o += 1 new_qtys[new_idx] = 0 i += 1 mask = _open_qtys != 0 _open_qtys = _open_qtys[mask] _open_prices = _open_prices[mask] open_qty = np.sum(_open_qtys) if math.isclose(open_qty, 0): weighted_avg_price = 0 else: weighted_avg_price = np.sum(_open_qtys * _open_prices) / open_qty return _open_qtys, _open_prices, open_qty, weighted_avg_price, realized * multiplier def leading_nan_to_zero(df: pd.DataFrame, columns: Sequence[str]) -> pd.DataFrame: for column in columns: vals = df[column].values first_non_nan_index_ = np.ravel(np.nonzero(~np.isnan(vals))) # type: ignore if len(first_non_nan_index_): first_non_nan_index = first_non_nan_index_[0] else: first_non_nan_index = -1 if first_non_nan_index > 0 and first_non_nan_index < len(vals): vals[:first_non_nan_index] = np.nan_to_num(vals[:first_non_nan_index]) df[column] = vals return df def find_last_non_nan_index(array: np.ndarray) -> int: i = np.nonzero(np.isfinite(array))[0] if len(i): return i[-1] return 0 def find_index_before(sorted_dict: SortedDict, key: Any) -> int: ''' Find index of the first key in a sorted dict that is less than or equal to the key passed in. If the key is less than the first key in the dict, return -1 ''' size = len(sorted_dict) if not size: return -1 i = sorted_dict.bisect_left(key) if i == size: return size - 1 if sorted_dict.keys()[i] != key: return i - 1 return i class ContractPNL: '''Computes pnl for a single contract over time given trades and market data''' def __init__(self, contract: Contract, account_timestamps: np.ndarray, price_function: Callable[[Contract, np.ndarray, int, SimpleNamespace], float], strategy_context: SimpleNamespace) -> None: self.contract = contract self._price_function = price_function self.strategy_context = strategy_context self._account_timestamps = account_timestamps self._trade_pnl = SortedDict() self._net_pnl = SortedDict() # Store trades that are not offset so when new trades come in we can offset against these to calc pnl self.open_qtys = np.empty(0, dtype=int) self.open_prices = np.empty(0, dtype=float) self.first_trade_timestamp: Optional[np.datetime64] = None self.final_pnl = np.nan def _add_trades(self, trades: Sequence[Trade]) -> None: ''' Args: trades: Must be sorted by timestamp ''' if not len(trades): return timestamps = [trade.timestamp for trade in trades] if len(self._trade_pnl): k, v = self._trade_pnl.peekitem(0) if timestamps[0] <= k: raise Exception(f'Can only add a trade that is newer than last added current: {timestamps[0]} prev max timestamp: {k}') if self.first_trade_timestamp is None: self.first_trade_timestamp = timestamps[0] for i, timestamp in enumerate(timestamps): t_trades = [trade for trade in trades if trade.timestamp == timestamp] open_qtys, open_prices, open_qty, weighted_avg_price, realized_chg = calc_trade_pnl( self.open_qtys, self.open_prices, np.array([trade.qty for trade in t_trades]), np.array([trade.price for trade in t_trades]), self.contract.multiplier) self.open_qtys = open_qtys self.open_prices = open_prices position_chg = sum([trade.qty for trade in t_trades]) commission_chg = sum([trade.commission for trade in t_trades]) fee_chg = sum([trade.fee for trade in t_trades]) index = find_index_before(self._trade_pnl, timestamp) if index == -1: self._trade_pnl[timestamp] = (position_chg, realized_chg, fee_chg, commission_chg, open_qty, weighted_avg_price) else: prev_timestamp, (prev_position, prev_realized, prev_fee, prev_commission, _, _) = self._trade_pnl.peekitem(index) self._trade_pnl[timestamp] = (prev_position + position_chg, prev_realized + realized_chg, prev_fee + fee_chg, prev_commission + commission_chg, open_qty, weighted_avg_price) self.calc_net_pnl(timestamp) def calc_net_pnl(self, timestamp: np.datetime64) -> None: if timestamp in self._net_pnl: return if self.first_trade_timestamp is None or timestamp < self.first_trade_timestamp: return # TODO: Option expiry should be a special case. If option expires at 3:00 pm, we put in an expiry order at 3 pm and the # trade comes in at 3:01 pm. In this case, the final pnl is recorded at 3:01 but should be at 3 pm. if self.contract.expiry is not None and timestamp > self.contract.expiry and not math.isnan(self.final_pnl): return i = np.searchsorted(self._account_timestamps, timestamp) assert(self._account_timestamps[i] == timestamp) # Find the index before or equal to current timestamp. If not found, set to 0's trade_pnl_index = find_index_before(self._trade_pnl, timestamp) if trade_pnl_index == -1: realized, fee, commission, open_qty, open_qty, weighted_avg_price = 0, 0, 0, 0, 0, 0 else: _, (_, realized, fee, commission, open_qty, weighted_avg_price) = self._trade_pnl.peekitem(trade_pnl_index) price = np.nan if math.isclose(open_qty, 0): unrealized = 0.0 else: price = self._price_function(self.contract, self._account_timestamps, i, self.strategy_context) # type: ignore assert np.isreal(price), \ f'Unexpected price type: {price} {type(price)} for contract: {self.contract} timestamp: {self._account_timestamps[i]}' if math.isnan(price): index = find_index_before(self._net_pnl, timestamp) # Last index we computed net pnl for if index == -1: prev_unrealized = 0 else: _, (_, prev_unrealized, _) = self._net_pnl.peekitem(index) unrealized = prev_unrealized else: unrealized = open_qty * (price - weighted_avg_price) * self.contract.multiplier net_pnl = realized + unrealized - commission - fee self._net_pnl[timestamp] = (price, unrealized, net_pnl) if self.contract.expiry is not None and timestamp > self.contract.expiry: self.final_pnl = net_pnl def position(self, timestamp: np.datetime64) -> float: index = find_index_before(self._trade_pnl, timestamp) if index == -1: return 0. _, (position, _, _, _, _, _) = self._trade_pnl.peekitem(index) # Less than or
i=None): if i is None: return self.getTokens(StlParser.Identifier) else: return self.getToken(StlParser.Identifier, i) def COMMA(self): return self.getToken(StlParser.COMMA, 0) def RPAREN(self): return self.getToken(StlParser.RPAREN, 0) def accept(self, visitor): if hasattr(visitor, "visitRosTopic"): return visitor.visitRosTopic(self) else: return visitor.visitChildren(self) def annotation_type(self): localctx = StlParser.Annotation_typeContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_annotation_type) try: localctx = StlParser.RosTopicContext(self, localctx) self.enterOuterAlt(localctx, 1) self.state = 80 self.match(StlParser.ROS_Topic) self.state = 81 self.match(StlParser.LPAREN) self.state = 82 self.match(StlParser.Identifier) self.state = 83 self.match(StlParser.COMMA) self.state = 84 self.match(StlParser.Identifier) self.state = 85 self.match(StlParser.RPAREN) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class VariableDeclarationContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.VariableDeclarationContext, self).__init__(parent, invokingState) self.parser = parser def domainType(self): return self.getTypedRuleContext(StlParser.DomainTypeContext,0) def identifier(self): return self.getTypedRuleContext(StlParser.IdentifierContext,0) def Constant(self): return self.getToken(StlParser.Constant, 0) def ioType(self): return self.getTypedRuleContext(StlParser.IoTypeContext,0) def assignment(self): return self.getTypedRuleContext(StlParser.AssignmentContext,0) def getRuleIndex(self): return StlParser.RULE_variableDeclaration def accept(self, visitor): if hasattr(visitor, "visitVariableDeclaration"): return visitor.visitVariableDeclaration(self) else: return visitor.visitChildren(self) def variableDeclaration(self): localctx = StlParser.VariableDeclarationContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_variableDeclaration) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 88 _la = self._input.LA(1) if _la==StlParser.Constant: self.state = 87 self.match(StlParser.Constant) self.state = 91 _la = self._input.LA(1) if _la==StlParser.Input or _la==StlParser.Output: self.state = 90 self.ioType() self.state = 93 self.domainType() self.state = 94 self.identifier() self.state = 96 _la = self._input.LA(1) if _la==StlParser.EQUAL: self.state = 95 self.assignment() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AssignmentContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.AssignmentContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return StlParser.RULE_assignment def copyFrom(self, ctx): super(StlParser.AssignmentContext, self).copyFrom(ctx) class AsgnExprContext(AssignmentContext): def __init__(self, parser, ctx): # actually a StlParser.AssignmentContext) super(StlParser.AsgnExprContext, self).__init__(parser) self.copyFrom(ctx) def EQUAL(self): return self.getToken(StlParser.EQUAL, 0) def expression(self): return self.getTypedRuleContext(StlParser.ExpressionContext,0) def accept(self, visitor): if hasattr(visitor, "visitAsgnExpr"): return visitor.visitAsgnExpr(self) else: return visitor.visitChildren(self) class AsgnLiteralContext(AssignmentContext): def __init__(self, parser, ctx): # actually a StlParser.AssignmentContext) super(StlParser.AsgnLiteralContext, self).__init__(parser) self.copyFrom(ctx) def EQUAL(self): return self.getToken(StlParser.EQUAL, 0) def literal(self): return self.getTypedRuleContext(StlParser.LiteralContext,0) def accept(self, visitor): if hasattr(visitor, "visitAsgnLiteral"): return visitor.visitAsgnLiteral(self) else: return visitor.visitChildren(self) def assignment(self): localctx = StlParser.AssignmentContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_assignment) try: self.state = 102 la_ = self._interp.adaptivePredict(self._input,7,self._ctx) if la_ == 1: localctx = StlParser.AsgnLiteralContext(self, localctx) self.enterOuterAlt(localctx, 1) self.state = 98 self.match(StlParser.EQUAL) self.state = 99 self.literal() pass elif la_ == 2: localctx = StlParser.AsgnExprContext(self, localctx) self.enterOuterAlt(localctx, 2) self.state = 100 self.match(StlParser.EQUAL) self.state = 101 self.expression(0) pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class DomainTypeContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.DomainTypeContext, self).__init__(parent, invokingState) self.parser = parser def DomainTypeFloat(self): return self.getToken(StlParser.DomainTypeFloat, 0) def DomainTypeInt(self): return self.getToken(StlParser.DomainTypeInt, 0) def DomainTypeLong(self): return self.getToken(StlParser.DomainTypeLong, 0) def DomainTypeComplex(self): return self.getToken(StlParser.DomainTypeComplex, 0) def Identifier(self): return self.getToken(StlParser.Identifier, 0) def getRuleIndex(self): return StlParser.RULE_domainType def accept(self, visitor): if hasattr(visitor, "visitDomainType"): return visitor.visitDomainType(self) else: return visitor.visitChildren(self) def domainType(self): localctx = StlParser.DomainTypeContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_domainType) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 104 _la = self._input.LA(1) if not(((((_la - 29)) & ~0x3f) == 0 and ((1 << (_la - 29)) & ((1 << (StlParser.DomainTypeFloat - 29)) | (1 << (StlParser.DomainTypeLong - 29)) | (1 << (StlParser.DomainTypeComplex - 29)) | (1 << (StlParser.DomainTypeInt - 29)) | (1 << (StlParser.Identifier - 29)))) != 0)): self._errHandler.recoverInline(self) else: self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class IoTypeContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.IoTypeContext, self).__init__(parent, invokingState) self.parser = parser def Input(self): return self.getToken(StlParser.Input, 0) def Output(self): return self.getToken(StlParser.Output, 0) def getRuleIndex(self): return StlParser.RULE_ioType def accept(self, visitor): if hasattr(visitor, "visitIoType"): return visitor.visitIoType(self) else: return visitor.visitChildren(self) def ioType(self): localctx = StlParser.IoTypeContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_ioType) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 106 _la = self._input.LA(1) if not(_la==StlParser.Input or _la==StlParser.Output): self._errHandler.recoverInline(self) else: self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class IntervalContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.IntervalContext, self).__init__(parent, invokingState) self.parser = parser def LBRACK(self): return self.getToken(StlParser.LBRACK, 0) def intervalTime(self, i=None): if i is None: return self.getTypedRuleContexts(StlParser.IntervalTimeContext) else: return self.getTypedRuleContext(StlParser.IntervalTimeContext,i) def COLON(self): return self.getToken(StlParser.COLON, 0) def RBRACK(self): return self.getToken(StlParser.RBRACK, 0) def getRuleIndex(self): return StlParser.RULE_interval def accept(self, visitor): if hasattr(visitor, "visitInterval"): return visitor.visitInterval(self) else: return visitor.visitChildren(self) def interval(self): localctx = StlParser.IntervalContext(self, self._ctx, self.state) self.enterRule(localctx, 24, self.RULE_interval) try: self.enterOuterAlt(localctx, 1) self.state = 108 self.match(StlParser.LBRACK) self.state = 109 self.intervalTime() self.state = 110 self.match(StlParser.COLON) self.state = 111 self.intervalTime() self.state = 112 self.match(StlParser.RBRACK) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class IntervalTimeContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.IntervalTimeContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return StlParser.RULE_intervalTime def copyFrom(self, ctx): super(StlParser.IntervalTimeContext, self).copyFrom(ctx) class IntervalTimeLiteralContext(IntervalTimeContext): def __init__(self, parser, ctx): # actually a StlParser.IntervalTimeContext) super(StlParser.IntervalTimeLiteralContext, self).__init__(parser) self.copyFrom(ctx) def literal(self): return self.getTypedRuleContext(StlParser.LiteralContext,0) def unit(self): return self.getTypedRuleContext(StlParser.UnitContext,0) def accept(self, visitor): if hasattr(visitor, "visitIntervalTimeLiteral"): return visitor.visitIntervalTimeLiteral(self) else: return visitor.visitChildren(self) def intervalTime(self): localctx = StlParser.IntervalTimeContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_intervalTime) self._la = 0 # Token type try: localctx = StlParser.IntervalTimeLiteralContext(self, localctx) self.enterOuterAlt(localctx, 1) self.state = 114 self.literal() self.state = 116 _la = self._input.LA(1) if (((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << StlParser.SEC) | (1 << StlParser.MSEC) | (1 << StlParser.USEC) | (1 << StlParser.NSEC) | (1 << StlParser.PSEC))) != 0): self.state = 115 self.unit() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class UnitContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.UnitContext, self).__init__(parent, invokingState) self.parser = parser def SEC(self): return self.getToken(StlParser.SEC, 0) def MSEC(self): return self.getToken(StlParser.MSEC, 0) def USEC(self): return self.getToken(StlParser.USEC, 0) def NSEC(self): return self.getToken(StlParser.NSEC, 0) def PSEC(self): return self.getToken(StlParser.PSEC, 0) def getRuleIndex(self): return StlParser.RULE_unit def accept(self, visitor): if hasattr(visitor, "visitUnit"): return visitor.visitUnit(self) else: return visitor.visitChildren(self) def unit(self): localctx = StlParser.UnitContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_unit) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 118 _la = self._input.LA(1) if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << StlParser.SEC) | (1 << StlParser.MSEC) | (1 << StlParser.USEC) | (1 << StlParser.NSEC) | (1 << StlParser.PSEC))) != 0)): self._errHandler.recoverInline(self) else: self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TopExpressionContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.TopExpressionContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return StlParser.RULE_topExpression def copyFrom(self, ctx): super(StlParser.TopExpressionContext, self).copyFrom(ctx) class ExprContext(TopExpressionContext): def __init__(self, parser, ctx): # actually a StlParser.TopExpressionContext) super(StlParser.ExprContext, self).__init__(parser) self.copyFrom(ctx) def expression(self): return self.getTypedRuleContext(StlParser.ExpressionContext,0) def accept(self, visitor): if hasattr(visitor, "visitExpr"): return visitor.visitExpr(self) else: return visitor.visitChildren(self) class ExprUntimedEvExprContext(TopExpressionContext): def __init__(self, parser, ctx): # actually a StlParser.TopExpressionContext) super(StlParser.ExprUntimedEvExprContext, self).__init__(parser) self.copyFrom(ctx) def EventuallyOperator(self): return self.getToken(StlParser.EventuallyOperator, 0) def expression(self): return self.getTypedRuleContext(StlParser.ExpressionContext,0) def accept(self, visitor): if hasattr(visitor, "visitExprUntimedEvExpr"): return visitor.visitExprUntimedEvExpr(self) else: return visitor.visitChildren(self) class ExprUntimedAlwaysExprContext(TopExpressionContext): def __init__(self, parser, ctx): # actually a StlParser.TopExpressionContext) super(StlParser.ExprUntimedAlwaysExprContext, self).__init__(parser) self.copyFrom(ctx) def AlwaysOperator(self): return self.getToken(StlParser.AlwaysOperator, 0) def expression(self): return self.getTypedRuleContext(StlParser.ExpressionContext,0) def accept(self, visitor): if hasattr(visitor, "visitExprUntimedAlwaysExpr"): return visitor.visitExprUntimedAlwaysExpr(self) else: return visitor.visitChildren(self) def topExpression(self): localctx = StlParser.TopExpressionContext(self, self._ctx, self.state) self.enterRule(localctx, 30, self.RULE_topExpression) try: self.state = 125 la_ = self._interp.adaptivePredict(self._input,9,self._ctx) if la_ == 1: localctx = StlParser.ExprUntimedAlwaysExprContext(self, localctx) self.enterOuterAlt(localctx, 1) self.state = 120 self.match(StlParser.AlwaysOperator) self.state = 121 self.expression(0) pass elif la_ == 2: localctx = StlParser.ExprUntimedEvExprContext(self, localctx) self.enterOuterAlt(localctx, 2) self.state = 122 self.match(StlParser.EventuallyOperator) self.state = 123 self.expression(0) pass elif la_ == 3: localctx = StlParser.ExprContext(self, localctx) self.enterOuterAlt(localctx, 3) self.state = 124 self.expression(0) pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExpressionContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(StlParser.ExpressionContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return StlParser.RULE_expression def copyFrom(self, ctx): super(StlParser.ExpressionContext, self).copyFrom(ctx) class ExprParenContext(ExpressionContext): def __init__(self, parser, ctx): # actually a StlParser.ExpressionContext) super(StlParser.ExprParenContext, self).__init__(parser) self.copyFrom(ctx) def LPAREN(self): return self.getToken(StlParser.LPAREN, 0) def expression(self): return self.getTypedRuleContext(StlParser.ExpressionContext,0) def RPAREN(self): return self.getToken(StlParser.RPAREN, 0) def accept(self, visitor): if hasattr(visitor, "visitExprParen"): return visitor.visitExprParen(self) else: return visitor.visitChildren(self) class ExprAndExprContext(ExpressionContext): def __init__(self, parser, ctx): # actually a StlParser.ExpressionContext) super(StlParser.ExprAndExprContext, self).__init__(parser) self.copyFrom(ctx) def expression(self, i=None): if i is None: return self.getTypedRuleContexts(StlParser.ExpressionContext) else: return self.getTypedRuleContext(StlParser.ExpressionContext,i) def AndOperator(self): return self.getToken(StlParser.AndOperator, 0) def accept(self, visitor): if hasattr(visitor, "visitExprAndExpr"): return visitor.visitExprAndExpr(self) else: return visitor.visitChildren(self) class ExpreOnceExprContext(ExpressionContext): def
the model to find out what features are more discriminative for the positive and negative classes Usually the computationally light chi2 test against the class labels. :param training_data: numpy ndarray representing the training dataset features :param training_data_labels: numpy ndarray representing the training dataset labels :param testing_data: numpy ndarray representing the testing dataset features :param feature_names: list of feature names :returns: list containing the number_top_features :rtype: list """ logger.info("Ranking features using the chi2 test ..") ch2 = SelectKBest(chi2, k=number_top_features) training_data_filtered = ch2.fit_transform(training_data, training_data_labels) # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] feature_names.append('Label') return feature_names def _load_labels(self, labels_filepath): """Loads the labels from the labels file :param labels_filepath: path to the labels file :returns: dictionary mapping the document name to its class :rtype: dictionary """ labels_dict={} labels_file = Path(labels_filepath) if labels_file.is_file(): logger.info("Loading: " + labels_filepath) with open(labels_filepath, "r") as ins: for line in ins: line=line.strip("\n") line=line.split(" ") file_name=line[0] file_class=line[1] labels_dict[file_name]=file_class else: raise IOError("Labels file: " + labels_filepath + " does not exist.") return labels_dict def _extract_token_features_from_text(self, corpus_list, doc_name_to_id_dict): """Extracts simple punctuation and capitalisation count-based features from documents :param corpus_list: list of documents :param doc_name_to_id_dict: dictionary mapping from document name to position in corpus_list :returns: dictionary mapping document name to a list of token features :rtype: dictionary """ ''' Go through the documents and extract simple punctuation and lexical features (capitalisation, count of punctuation) ''' doc_count=0 token_feature_dict=defaultdict(list) for doc_name, row_id in doc_name_to_id_dict.iteritems(): logger.debug("Extracting token features from: " + doc_name) doc=corpus_list[row_id] sentences=doc.split(".") upper_count=0 lower_count=0 mixed_count=0 punctuation_count=0 for sentence in sentences: words=sentence.split(" ") for word in words: if word.isupper(): if re.search('[a-zA-Z]',word): upper_count+=1 if word.islower(): if re.search('[a-zA-Z]',word): lower_count+=1 if not word.islower() and not word.isupper(): if re.search('[a-zA-Z]',word): mixed_count+=1 if word in string.punctuation: if len(word)>0: punctuation_count+=1 token_feature_dict[doc_name].append([upper_count,lower_count,mixed_count,punctuation_count]) return token_feature_dict def _extract_sentiment_from_text(self, corpus_list, doc_name_to_id_dict): """Extracts several simple sentiment features from a document. I count the number of positive and negative sentiment words in a document, the number, the count of the longest run of positives/negatives and the overall polarity of the document. These features are attempting to identify incongruety, and therefore potentially sarcasm. See paper: Joshi et al. (2015), Harnessing Context Incongruity for Sarcasm Detection :param corpus_list: list of documents from corpus :param doc_name_to_id_dict: mapping from the document name to its position in corpus_list :returns: dictionary of sentiment features per document :rtype: dictionary """ vader = SentimentIntensityAnalyzer() ''' Go through the documents and rate their sentiment ''' doc_count=0 sentiment_feature_dict=defaultdict(list) for doc_name, row_id in doc_name_to_id_dict.iteritems(): logger.debug("Extracting sentiment from: " + doc_name) doc=corpus_list[row_id] ''' doc is one document from our corpus ''' sentences=doc.split(".") pos_count=0 neg_count=0 prev_word_was_positive=False prev_word_was_negative=False pos_neg_count=0 count=0 longest_run_of_positives=0 longest_run_of_negatives=0 run_of_positives_count=0 run_of_negatives_count=0 score=vader.polarity_scores(' '.join(sentences)) compound_polarity=score['compound'] ''' Rate the overall polarity of the document (1 positive, 0 negative) ''' if compound_polarity>0: compound_polarity=1 else: compound_polarity=0 ''' Rate each word in the corpus for sentiment and construct the word-based features ''' for sentence in sentences: words=sentence.split(" ") for word in words: score=vader.polarity_scores(word) ''' If the negative sentiment of a word is greater than the positive sentiment ''' if score['pos']>abs(score['neg']): pos_count+=1 if prev_word_was_negative: pos_neg_count+=1 prev_word_was_negative=False if run_of_negatives_count>longest_run_of_negatives: longest_run_of_negatives=run_of_negatives_count run_of_negatives_count=0 else: run_of_positives_count+=1 prev_word_was_positive=True ''' If the positive sentiment of a word is greater than the negative sentiment ''' if score['pos']<abs(score['neg']): neg_count+=1 if prev_word_was_positive: prev_word_was_positive=False pos_neg_count+=1 if run_of_positives_count>longest_run_of_positives: longest_run_of_positives=run_of_positives_count run_of_negatives_count=0 else: run_of_negatives_count+=1 prev_word_was_negative=True count+=1 sentiment_feature_dict[doc_name].append([pos_count,neg_count,pos_neg_count,longest_run_of_negatives,longest_run_of_positives,compound_polarity]) return sentiment_feature_dict def _load_text(self, data_dirpath, vectorizer_count=None, vectorizer_tfidf=None): """ Parses and tokenises the input document files :param data_dirpath: the directory containing the documents :param count_vectorizer: scikit vectorizer to extract corpus counts (optional) :param tfidf_vectorizer: scikit vectorizer to extract corpus tfidf (optional) :returns: vectorizer_count, vectorizer_tfidf, pandas dataframe containing features,pandas dataframe containing features, list of documents (corpus_list), mapping of document names to positions in the list of documents (corpus_list) :rtype: vectorizer, vectorizer, pandas dataframe, pandas dataframe, list, dictionary """ corpus_list=[] document_name_to_id_dict={} count=0 file_list=sorted(os.listdir(data_dirpath)) # read the files in sorted order for filename in file_list: data_filepath=data_dirpath+"/"+filename logger.debug("Loading: " + data_filepath) ''' load in the document be mindful of the encoding ''' text=io.open(data_filepath, mode="r", encoding="ISO-8859-1").read() tokens=SatireClassifier.tokenize(text) ''' corpus_list is a list of the documents pre-processed for stopwords etc ''' corpus_list.append(' '.join(tokens)) ''' dictionary that maps a filename to its position in corpus_list ''' document_name_to_id_dict[filename]=count count+=1 ''' Extract count features from the text ''' if not vectorizer_count: ''' We have not passed in a vectorizer, so create one. Else transform the dataset using the provided vectorizer e.g. so the training and testing datasets share the same words. ''' vectorizer_count = CountVectorizer(ngram_range=(1,1),token_pattern=r"(?u)\b\w\w+\b|\*|!|\?|\"|\'", encoding="ISO-8859-1",strip_accents='unicode') vectorizer_tfidf = TfidfVectorizer(ngram_range=(1,1),token_pattern=r"(?u)\b\w\w+\b|\*|!|\?|\"|\'", encoding="ISO-8859-1",strip_accents='unicode', sublinear_tf=False) #TfidfVectorizer(sublinear_tf=True, max_df=0.75, stop_words='english') corpus_counts = vectorizer_count.fit_transform(corpus_list) corpus_tfidf = vectorizer_tfidf.fit_transform(corpus_list) else: corpus_counts = vectorizer_count.transform(corpus_list) corpus_tfidf = vectorizer_tfidf.transform(corpus_list) ''' Store the features and column names in a pandas dataframe for ease of manipulation. The words in the corpus are the column headings. ''' corpus_counts_df = pd.DataFrame(corpus_counts.toarray(), columns=vectorizer_count.get_feature_names()) corpus_tfidf_df = pd.DataFrame(corpus_tfidf.toarray(), columns=vectorizer_tfidf.get_feature_names()) return vectorizer_count, vectorizer_tfidf, corpus_counts_df, corpus_tfidf_df, corpus_list, document_name_to_id_dict def _add_labels_to_documents(self,text_df,doc_name_to_id_dict,labels_dict): """Adds satire/non-satire labels to the correct documents in the pandas dataframe :param text_df: pandas dataframe containing the text features for our documents :param doc_name_to_id_dict: dictionary mapping document name :param labels_dict: :returns: pandas dataframe enriched with class labels :rtype: pandas dataframe """ logger.info("Adding labels to documents ...") for doc_name,row_id in doc_name_to_id_dict.iteritems(): if doc_name in labels_dict: label=labels_dict[doc_name] logger.debug("Label is: " + label + " for document: " + doc_name) if "true" in label: text_df.ix[row_id,'Label']=0 else: text_df.ix[row_id,'Label']=1 else: logger.debug("Could not find " + doc_name + " in the labels_dict, even though it should really be there.") return text_df def _add_sentiment_to_documents(self,text_df,doc_name_to_id_dict,sentiment_dict): """Adds the sentiment features to the pandas features dataframe :param text_df: pandas dataframe containing our features :param doc_name_to_id_dict: dictionary mapping document name to row in the dataframe :param sentiment_dict: dictionary containing the sentiment features for each document :returns: enriched dataframe containing the additional featureset :rtype: pandas dataframe """ for doc_name,row_id in doc_name_to_id_dict.iteritems(): if doc_name in sentiment_dict: sentiment=sentiment_dict[doc_name][0] logger.debug("Positive sentiment is: " + str(sentiment[0]) + " for document: " + doc_name) logger.debug("Negative sentiment is: " + str(sentiment[1]) + " for document: " + doc_name) text_df.ix[row_id,'Sentiment_pos']=sentiment[0] text_df.ix[row_id,'Sentiment_neg']=sentiment[1] text_df.ix[row_id,'Sentiment_change']=sentiment[2] text_df.ix[row_id,'Sentiment_neg_run']=sentiment[3] text_df.ix[row_id,'Sentiment_pos_run']=sentiment[4] text_df.ix[row_id,'Sentiment_compound']=sentiment[5] else: logger.debug("Could not find " + doc_name + " in the labels_dict, even though it should really be there.") return text_df def _add_token_features_to_documents(self,text_df,doc_name_to_id_dict,tokens_dict): """Adds the token features to the pandas features dataframe :param text_df: pandas dataframe containing our features :param doc_name_to_id_dict: dictionary mapping document name to row in the dataframe :param tokens_dict: dictionary containing the token features for each document :returns: enriched dataframe containing the additional featureset :rtype: pandas dataframe """ for doc_name,row_id in doc_name_to_id_dict.iteritems(): if doc_name in tokens_dict: token_features=tokens_dict[doc_name][0] text_df.ix[row_id,'Token_upper']=token_features[0] text_df.ix[row_id,'Token_lower']=token_features[1] text_df.ix[row_id,'Token_mixed']=token_features[2] text_df.ix[row_id,'Token_punctuation']=token_features[3] else: logger.debug("Could not find " + doc_name + " in the tokens_dict, even though it should really be there.") return text_df def _normalise_sparse_features(self,text_features_df,scaler=None): """Normalises sparse features so that their maximum is 1.0 while retaining sparsity. :param text_features_df: pandas dataframe containing the text features :param scaler: scikit scaler to perform the normalisation (optional) :returns: normalised text features in pandas dataframe, scikit scaler :rtype: pandas dataframe, scikit scaler """ text_features_without_labels=text_features_df.loc[:,text_features_df.columns != 'Label'].values if not scaler: scaler = preprocessing.MaxAbsScaler().fit(text_features_without_labels) text_features_without_labels=scaler.transform(text_features_without_labels) text_features_df.loc[:,text_features_df.columns!='Label']=text_features_without_labels return text_features_df, scaler def _load_discrete_data(self): """Reads all the files in the data directory into a python list. I assume they contain text. This list is passed in to the scikit-learn CountVectorizer to extract tf-idf count-based features. CountVectorizer also stops, stems the text. All the features are discrete counts. :returns: pandas dataframe for training features, training labels dictionary, training sentences list, pandas dataframe for testing features, testing labels dictionary, testing sentences list :rtype: pandas dataframe, dictionary, list, pandas dataframe, dictionary, list """ ''' Read the data ''' training_labels_dict=self._load_labels(self.training_labels_filepath) testing_labels_dict=self._load_labels(self.testing_labels_filepath) count_vectorizer,tfidf_vectorizer,training_text_df,training_tfidf_df,training_sentences,training_doc_name_to_id_dict=self._load_text(self.training_dirpath) training_sentiment_feature_dict=self._extract_sentiment_from_text(training_sentences, training_doc_name_to_id_dict) training_token_feature_dict=self._extract_token_features_from_text(training_sentences, training_doc_name_to_id_dict) training_watch_word_feature_dict=self._extract_watch_word_features_from_text(training_sentences, training_doc_name_to_id_dict) _,_,testing_text_df,testing_tfidf_df,testing_sentences,testing_doc_name_to_id_dict=self._load_text(self.testing_dirpath, count_vectorizer, tfidf_vectorizer) testing_sentiment_feature_dict=self._extract_sentiment_from_text(testing_sentences, testing_doc_name_to_id_dict) testing_token_feature_dict=self._extract_token_features_from_text(testing_sentences, testing_doc_name_to_id_dict) testing_watch_word_feature_dict=self._extract_watch_word_features_from_text(testing_sentences, testing_doc_name_to_id_dict) logger.info("Size of training dataset: " + str(training_text_df.shape[0])+"x"+str(training_text_df.shape[1])) logger.info("Size of testing dataset: " + str(testing_text_df.shape[0]) +"x"+ str(testing_text_df.shape[1])) '''
'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0907826, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 3.10146, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 2.83407e-06, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202691, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 1.01201e-05, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.165626, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.267148, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.134847, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.567621, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.189425, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.19355, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 1.91191e-06, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00694708, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0502372, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0513779, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0502391, 'Execution Unit/Register Files/Runtime Dynamic': 0.058325, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.105836, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.272112, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.50613, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00238358, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00238358, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00214464, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000867714, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000738048, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00764984, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0204046, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0493909, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 3.14169, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.185957, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.167754, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 5.51268, 'Instruction Fetch Unit/Runtime Dynamic': 0.431156, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0375641, 'L2/Runtime Dynamic': 0.00825058, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.73504, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.732701, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0484613, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0484613, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.96388, 'Load Store Unit/Runtime Dynamic': 1.02016, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.119497, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.238995, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0424099, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.042828, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.195339, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0309176, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.4243, 'Memory Management Unit/Runtime Dynamic': 0.0737456, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 16.7214, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 5.35156e-06, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00747264, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0840284, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming
276.3, 266.1, 276.1, 268.1, 277.0, 273.4, 269.7, ], ] ], units="K", dtype="f8", ) f.set_data(data, axes=("domainaxis0", "domainaxis1", "domainaxis2")) # domain_ancillary c = DomainAncillary() c.set_properties({"units": "m"}) c.nc_set_variable("a") data = Data([10.0], units="m", dtype="f8") c.set_data(data) b = Bounds() b.nc_set_variable("a_bounds") data = Data([[5.0, 15.0]], units="m", dtype="f8") b.set_data(data) c.set_bounds(b) f.set_construct( c, axes=("domainaxis0",), key="domainancillary0", copy=False ) # domain_ancillary c = DomainAncillary() c.nc_set_variable("b") data = Data([20.0], dtype="f8") c.set_data(data) b = Bounds() b.nc_set_variable("b_bounds") data = Data([[14.0, 26.0]], dtype="f8") b.set_data(data) c.set_bounds(b) f.set_construct( c, axes=("domainaxis0",), key="domainancillary1", copy=False ) # domain_ancillary c = DomainAncillary() c.set_properties({"units": "m", "standard_name": "surface_altitude"}) c.nc_set_variable("surface_altitude") data = Data( [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 12.0, 10.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.0, 52.0, 40.0], [0.0, 0.0, 0.0, 7.0, 12.0, 8.0, 37.0, 73.0, 107.0], [0.0, 0.0, 28.0, 30.0, 30.0, 30.0, 83.0, 102.0, 164.0], [34.0, 38.0, 34.0, 32.0, 30.0, 31.0, 105.0, 281.0, 370.0], [91.0, 89.0, 95.0, 94.0, 132.0, 194.0, 154.0, 318.0, 357.0], [93.0, 114.0, 116.0, 178.0, 323.0, 365.0, 307.0, 289.0, 270.0], ], units="m", dtype="f4", ) c.set_data(data) f.set_construct( c, axes=("domainaxis1", "domainaxis2"), key="domainancillary2", copy=False, ) # cell_measure c = CellMeasure() c.set_properties({"units": "km2"}) c.nc_set_variable("cell_measure") data = Data( [ [ 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2391.9657, 2392.6009, ], [ 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2393.0949, 2393.0949, ], [ 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.4478, 2393.4478, 2393.4478, ], [ 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.6595, 2393.6595, 2393.6595, 2393.6595, ], [ 2393.6595, 2393.6595, 2393.6595, 2393.6595, 2393.6595, 2393.7301, 2393.7301, 2393.7301, 2393.7301, 2393.7301, ], [ 2393.7301, 2393.7301, 2393.7301, 2393.7301, 2393.6595, 2393.6595, 2393.6595, 2393.6595, 2393.6595, 2393.6595, ], [ 2393.6595, 2393.6595, 2393.6595, 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.4478, 2393.4478, ], [ 2393.4478, 2393.4478, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, 2393.0949, ], [ 2393.0949, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, 2392.6009, ], ], units="km2", dtype="f8", ) c.set_data(data) c.set_measure("area") f.set_construct( c, axes=("domainaxis2", "domainaxis1"), key="cellmeasure0", copy=False, ) # auxiliary_coordinate c = AuxiliaryCoordinate() c.set_properties({"units": "degrees_N", "standard_name": "latitude"}) c.nc_set_variable("latitude_1") data = Data( [ [ 53.941, 53.987, 54.029, 54.066, 54.099, 54.127, 54.15, 54.169, 54.184, ], [ 53.504, 53.55, 53.591, 53.627, 53.66, 53.687, 53.711, 53.729, 53.744, ], [ 53.067, 53.112, 53.152, 53.189, 53.221, 53.248, 53.271, 53.29, 53.304, ], [ 52.629, 52.674, 52.714, 52.75, 52.782, 52.809, 52.832, 52.85, 52.864, ], [ 52.192, 52.236, 52.276, 52.311, 52.343, 52.37, 52.392, 52.41, 52.424, ], [ 51.754, 51.798, 51.837, 51.873, 51.904, 51.93, 51.953, 51.971, 51.984, ], [ 51.316, 51.36, 51.399, 51.434, 51.465, 51.491, 51.513, 51.531, 51.545, ], [ 50.879, 50.922, 50.96, 50.995, 51.025, 51.052, 51.074, 51.091, 51.105, ], [ 50.441, 50.484, 50.522, 50.556, 50.586, 50.612, 50.634, 50.652, 50.665, ], [ 50.003, 50.045, 50.083, 50.117, 50.147, 50.173, 50.194, 50.212, 50.225, ], ], units="degrees_N", dtype="f8", ) c.set_data(data) f.set_construct( c, axes=("domainaxis1", "domainaxis2"), key="auxiliarycoordinate0", copy=False, ) # auxiliary_coordinate c = AuxiliaryCoordinate() c.set_properties({"units": "degrees_E", "standard_name": "longitude"}) c.nc_set_variable("longitude_1") data = Data( [ [ 2.004, 2.747, 3.492, 4.238, 4.986, 5.734, 6.484, 7.234, 7.985, 2.085, ], [ 2.821, 3.558, 4.297, 5.037, 5.778, 6.52, 7.262, 8.005, 2.165, 2.893, ], [ 3.623, 4.355, 5.087, 5.821, 6.555, 7.29, 8.026, 2.243, 2.964, 3.687, ], [ 4.411, 5.136, 5.862, 6.589, 7.317, 8.045, 2.319, 3.033, 3.749, 4.466, ], [ 5.184, 5.903, 6.623, 7.344, 8.065, 2.394, 3.101, 3.81, 4.52, 5.231, ], [ 5.944, 6.656, 7.37, 8.084, 2.467, 3.168, 3.87, 4.573, 5.278, 5.983, ], [ 6.689, 7.395, 8.102, 2.539, 3.233, 3.929, 4.626, 5.323, 6.022, 6.721, ], [ 7.42, 8.121, 2.61, 3.298, 3.987, 4.677, 5.368, 6.059, 6.752, 7.445, ], [ 8.139, 2.679, 3.361, 4.043, 4.727, 5.411, 6.097, 6.783, 7.469, 8.156, ], ], units="degrees_E", dtype="f8", ) c.set_data(data) f.set_construct( c, axes=("domainaxis2", "domainaxis1"), key="auxiliarycoordinate1", copy=False, ) # auxiliary_coordinate c = AuxiliaryCoordinate() c.set_properties({"long_name": "Grid latitude name"}) c.nc_set_variable("auxiliary") data_mask = Data( [ True, False, False, False, False, False, False, False, False, False, ], dtype="b1", ) data = Data( [ b"", b"beta", b"gamma", b"delta", b"epsilon", b"zeta", b"eta", b"theta", b"iota", b"kappa", ], dtype="S7", mask=data_mask, ) c.set_data(data) f.set_construct( c, axes=("domainaxis1",), key="auxiliarycoordinate2", copy=False ) # dimension_coordinate c = DimensionCoordinate() c.set_properties( { "computed_standard_name": "altitude", "standard_name": "atmosphere_hybrid_height_coordinate", } ) c.nc_set_variable("atmosphere_hybrid_height_coordinate") data = Data([1.5], dtype="f8") c.set_data(data) b = Bounds() b.nc_set_variable("atmosphere_hybrid_height_coordinate_bounds") data = Data([[1.0, 2.0]], dtype="f8") b.set_data(data) c.set_bounds(b) f.set_construct( c, axes=("domainaxis0",), key="dimensioncoordinate0", copy=False ) # dimension_coordinate c = DimensionCoordinate() c.set_properties( {"units": "degrees", "standard_name": "grid_latitude"} ) c.nc_set_variable("y") data = Data( [2.2, 1.76, 1.32, 0.88, 0.44, 0.0, -0.44, -0.88, -1.32, -1.76], units="degrees", dtype="f8", ) c.set_data(data) b = Bounds() b.nc_set_variable("y_bnds") data = Data( [ [2.42, 1.98], [1.98, 1.54], [1.54, 1.1], [1.1, 0.66], [0.66, 0.22], [0.22, -0.22], [-0.22, -0.66], [-0.66, -1.1], [-1.1, -1.54], [-1.54, -1.98], ], units="degrees", dtype="f8", ) b.set_data(data) c.set_bounds(b) f.set_construct( c, axes=("domainaxis1",), key="dimensioncoordinate1", copy=False ) # dimension_coordinate c = DimensionCoordinate() c.set_properties( {"units": "degrees", "standard_name": "grid_longitude"} ) c.nc_set_variable("x") data = Data( [-4.7, -4.26, -3.82, -3.38, -2.94, -2.5, -2.06, -1.62, -1.18], units="degrees", dtype="f8", ) c.set_data(data) b = Bounds() b.nc_set_variable("x_bnds") data = Data( [ [-4.92, -4.48], [-4.48, -4.04], [-4.04, -3.6], [-3.6, -3.16], [-3.16, -2.72], [-2.72, -2.28], [-2.28, -1.84], [-1.84, -1.4], [-1.4, -0.96], ], units="degrees", dtype="f8", ) b.set_data(data) c.set_bounds(b) f.set_construct( c, axes=("domainaxis2",), key="dimensioncoordinate2", copy=False ) # dimension_coordinate c = DimensionCoordinate() c.set_properties( {"units": "days since 2018-12-01", "standard_name": "time"} ) c.nc_set_variable("time") data = Data([31.0], units="days since 2018-12-01", dtype="f8") c.set_data(data) f.set_construct( c, axes=("domainaxis3",), key="dimensioncoordinate3", copy=False ) # field_ancillary c = FieldAncillary() c.set_properties( {"units": "K", "standard_name": "air_temperature standard_error"} ) c.nc_set_variable("air_temperature_standard_error") data = Data( [ [0.76, 0.38, 0.68, 0.19, 0.14, 0.52, 0.57, 0.19, 0.81], [0.59, 0.68, 0.25, 0.13, 0.37, 0.12, 0.26, 0.45, 0.36], [0.88, 0.4, 0.35, 0.87, 0.24, 0.64, 0.78, 0.28, 0.11], [0.73, 0.49, 0.69, 0.54, 0.17, 0.6, 0.82, 0.89, 0.71], [0.43, 0.39, 0.45, 0.74, 0.85, 0.47, 0.37, 0.87, 0.46], [0.47, 0.31, 0.76, 0.69, 0.61, 0.26, 0.43, 0.75, 0.23], [0.43, 0.26, 0.5, 0.79, 0.25, 0.63, 0.25, 0.24, 0.74], [0.33, 0.26, 0.89, 0.48, 0.79, 0.88, 0.41, 0.89, 0.47], [0.25, 0.42, 0.61, 0.87, 0.58, 0.89, 0.58, 0.8, 0.32], [0.49, 0.48, 0.49, 0.16, 0.65, 0.66, 0.86, 0.74, 0.32], ], units="K", dtype="f8", ) c.set_data(data) f.set_construct( c, axes=("domainaxis1", "domainaxis2"), key="fieldancillary0", copy=False, ) # cell_method c = CellMethod() c.set_method("mean") c.set_axes(("domainaxis1", "domainaxis2")) c.set_qualifier("where", "land") interval0 = Data(0.1, units="degrees", dtype="f8") c.set_qualifier("interval", [interval0]) f.set_construct(c) # cell_method c = CellMethod() c.set_method("maximum") c.set_axes("domainaxis3") f.set_construct(c) # coordinate_reference c = CoordinateReference() c.set_coordinates({"dimensioncoordinate0"}) c.datum.set_parameter("earth_radius", 6371007) c.coordinate_conversion.set_parameter( "standard_name", "atmosphere_hybrid_height_coordinate" ) c.coordinate_conversion.set_parameter( "computed_standard_name", "altitude" ) c.coordinate_conversion.set_domain_ancillaries( { "a": "domainancillary0", "b": "domainancillary1", "orog": "domainancillary2", } ) f.set_construct(c) # coordinate_reference c = CoordinateReference() c.nc_set_variable("rotated_latitude_longitude") c.set_coordinates( { "dimensioncoordinate2", "auxiliarycoordinate1", "dimensioncoordinate1", "auxiliarycoordinate0", } ) c.datum.set_parameter("earth_radius", 6371007) c.coordinate_conversion.set_parameter("grid_north_pole_latitude", 38.0) c.coordinate_conversion.set_parameter( "grid_north_pole_longitude", 190.0 ) c.coordinate_conversion.set_parameter( "grid_mapping_name", "rotated_latitude_longitude" ) f.set_construct(c) elif n == 3: f = Field() f.set_properties( { "Conventions": "CF-" + CF(), "featureType": "timeSeries", "_FillValue": -999.9, "standard_name": "precipitation_flux", "units": "kg m-2 day-1", } ) f.nc_set_variable("p") f.nc_set_global_attributes({"Conventions": None, "featureType": None}) # domain_axis c = DomainAxis(size=4) c.nc_set_dimension("station") f.set_construct(c, key="domainaxis0") # domain_axis c = DomainAxis(size=9) c.nc_set_dimension("timeseries") f.set_construct(c, key="domainaxis1") # field data data_mask = Data( [ [False, False, False, True, True, True, True, True, True], [False, False, False, False, False, False, False, True, True], [False, False, False, False, False, True, True, True, True], [ False, False, False, False, False, False, False, False, False, ], ], dtype="b1", ) data = Data( [ [ 3.98, 0.0, 0.0, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, ], [ 0.0, 0.0, 0.0, 3.4, 0.0, 0.0, 4.61, 9.969209968386869e36, 9.969209968386869e36, ], [ 0.86, 0.8, 0.75, 0.0, 4.56, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, ], [0.0, 0.09, 0.0, 0.91, 2.96, 1.14, 3.86, 0.0, 0.0], ], units="kg m-2 day-1", dtype="f8", mask=data_mask, ) f.set_data(data, axes=("domainaxis0", "domainaxis1")) # auxiliary_coordinate c = AuxiliaryCoordinate() c.set_properties( { "standard_name": "time", "long_name": "time of measurement", "units": "days since 1970-01-01 00:00:00", } ) c.nc_set_variable("time") data_mask = Data( [ [False, False, False, True, True, True, True, True, True], [False, False, False, False, False, False, False, True, True], [False, False, False, False, False, True, True, True, True], [ False, False, False, False, False, False, False, False, False, ], ], dtype="b1", ) data = Data( [ [ -3.0, -2.0, -1.0, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, 9.969209968386869e36, ], [ 1.0, 2.0,
import numpy as np from numba import jit import numpy.lib.recfunctions as rfn ########################################################################## def count_hsps(blast_out): """Iterate over blast output. It considers that the output is in outfmt 6 and that all the hsp should be one after the other Args: blast_out (string): Path to a blast tabulated output return: int: number of hsps """ current_pair = '' with open(blast_out) as r_file: for line in r_file: split_line = line.rstrip().split('\t') if current_pair == '': current_pair = (split_line[0], split_line[1]) number = 1 elif (split_line[0], split_line[1]) != current_pair: current_pair = (split_line[0], split_line[1]) number += 1 return number ########################################################################## def iterrator_on_blast_hsp(blast_out): """Iterate over blast output. It considers that the output is in outfmt 6 and that all the hsp should be one after the other Args: blast_out (string): Path to a blast tabulated output Yields: pandas.DataFrame: A pandas Dataframe of the two proteins and their hsps """ current_pair = '' list_line = [] with open(blast_out) as r_file: for line in r_file: split_line = line.rstrip().split('\t') if (split_line[0], split_line[1]) == current_pair: list_line.append(split_line) elif current_pair == '': current_pair = (split_line[0], split_line[1]) list_line = [split_line] else: yield list_line current_pair = (split_line[0], split_line[1]) list_line = [split_line] yield list_line ########################################################################## @jit(nopython=True) def get_orientation(sstart, send): """Returns the orientation between two points. Args: sstart (numpy.array): Start of the sequence send (numpy.array): End of the sequence Returns: numpy.array: 1 or -1 depending on the orientation """ return (send - sstart) // np.abs((send - sstart)) ########################################################################## @jit(nopython=True) def update_values(old_values, sens): """Update sequence start/end with depending of the orientation. Args: old_values (numpy.array): Position in the sequence sens (numpy.array): 1 or -1 depending on the orientation Returns: np.array: Position in the sequence """ return old_values * sens ########################################################################## @jit(nopython=True) def length_aln_on_sequence(start, end): """Return the length of the sequence. Args: start (numpy.array): Start of the sequence end (numpy.array): End of the sequence Returns: np.array: Length of the protein """ return end - start + 1 ########################################################################## @jit(nopython=True) def calculateIdentities(percIdentity, length): """Return the length of the sequence. Args: percIdentity (numpy.array): Percentage of identity from blast length (numpy.array): length of the alignment Returns: np.array: number of identical amino acids in the alignment """ return np.floor(percIdentity * length / 100 + 0.5) ########################################################################## @jit(nopython=True) def calculate_fraction(delta, lgHSP, bitscore, pid, pos): """Calculate the new score, identities and positives of the hsp2. Args: delta (int): Difference of size between old and new hsp2 length lgHSP (int): size of the hsp before trimming bitscore (float): Score of the alignment pid (int): Number of identical in the alignment pos (int): Number of positives in the alignment Returns: float, int, int, int: The updated values of the score, identities, positives and length """ # Calculate new score, id and positive # Calculation: initial_value * (franction of length that has been preserved) fraction = 1 - (delta / lgHSP) new_score = np.floor(bitscore * fraction) new_id = np.floor(pid * fraction) new_pos = np.floor(pos * fraction) # Calculate new length new_length = lgHSP - delta # Set expect value to -1 : this value should not be used after # having changed HSPs boundaries # new_evalue = -1 return new_score, new_id, new_pos, new_length ########################################################################## def remove_overlap_query(hsp1, hsp2): """Remove overlap with the given hsp2 in the query. Args: hsp1 (np.array): Blast values of the given hsp (best) hsp2 (np.array): Blast values of the given hsp (questioning) Returns: dict: Dictionnary with the updated values for the hsp2 """ # Calculate where is the overlap and remove the overlapping part: 'qstart': 6, 'qend': 7, 'sstart': 8, 'send': 9, if hsp2[6] < hsp1[6]: new_qstart = hsp2[6] new_qend = hsp1[6] -1 delta = hsp2[7] - new_qend new_sstart = hsp2[8] new_send = hsp2[9] - delta elif hsp2[7] > hsp1[7]: new_qstart = hsp1[7] + 1 new_qend = hsp2[7] delta = new_qstart - hsp2[6] new_sstart = hsp2[8] + delta new_send = hsp2[9] # lgHSP: 17, bitscore: 11, id: 12, pos:13 new_score, new_id, new_pos, new_length = calculate_fraction(delta=delta, lgHSP=hsp2[17], bitscore=hsp2[11], pid=hsp2[12], pos=hsp2[13]) return {11:new_score, 17:new_length, 7:new_qend, 6:new_qstart, 9:new_send, 8:new_sstart, 13:new_pos, 12:new_id} ########################################################################## def remove_overlap_subject(hsp1, hsp2): """Remove overlap with the given hsp2 in the subject. Args: hsp1 (pandas.Series): Blast values of the given hsp (best) hsp2 (pandas.Series): Blast values of the given hsp (questioning) Returns: dict: Dictionnary with the updated values for the hsp2 """ # Calculate where is the overlap and remove the overlapping part: 'qstart': 6, 'qend': 7, 'sstart': 8, 'send': 9, if hsp2[8] < hsp1[8]: new_sstart = hsp2[8] new_send = hsp1[8] -1 delta = hsp2[9] - new_send new_qstart = hsp2[6] new_qend = hsp2[7] - delta elif hsp2[9] > hsp1[9]: new_sstart = hsp1[9] + 1 new_send = hsp2[9] delta = new_sstart - hsp2[8] new_qstart = hsp2[6] + delta new_qend = hsp2[7] # lgHSP: 17, bitscore: 11, id: 12, pos:13 new_score, new_id, new_pos, new_length = calculate_fraction(delta=delta, lgHSP=hsp2[17], bitscore=hsp2[11], pid=hsp2[12], pos=hsp2[13]) return {11:new_score, 17:new_length, 7:new_qend, 6:new_qstart, 9:new_send, 8:new_sstart, 13:new_pos, 12:new_id} ########################################################################## def checkHSPS(hsp1, hsp2, HSPMIN=100): """compare two HSPS in the blast output Args: hsp1 (np.array): Blast values of the given hsp (best) hsp2 (np.array): Blast values of the given hsp (questioning) HSPMIN (int, optional): Minumum length of the HSP. Defaults to 100. Returns: dict: Dictionnary with the updated values for the hsp2 """ dict_update = {18:0} # Check if the hsp2 is in a different orientation than hsp1: 'sens': 14 if hsp1[14] != hsp2[14]: # print(f'orientation wrong: {hsp1[14]} != {hsp2[14]}') return dict_update # Check is hsp2 inside hsp1 for the query sequence: 'qstart': 6, 'qend': 7, if hsp1[6] >= hsp2[6] and hsp1[7] <= hsp2[7]: # print(f'hsp2 inside hsp1 for query: {hsp1[6]} >= {hsp2[6]} and {hsp1[7]} <= {hsp2[7]}') return dict_update # Check is hsp1 inside hsp2 for the query sequence: 'qstart': 6, 'qend': 7, elif hsp1[6] <= hsp2[6] and hsp1[7] >= hsp2[7]: # print(f'hsp1 inside hsp2 for query: {hsp1[6]} <= {hsp2[6]} and {hsp1[7]} >= {hsp2[7]}') return dict_update # Check is hsp1 inside hsp2 for the subject sequence: 'sstart': 8, 'send': 9, elif hsp1[8] >= hsp2[8] and hsp1[9] <= hsp2[9]: # print(f'hsp2 inside hsp1 for subject: {hsp1[8]} >= {hsp2[8]} and {hsp1[9]} <= {hsp2[9]}') return dict_update # Check is hsp2 inside hsp1 for the subject sequence: 'sstart': 8, 'send': 9, elif hsp1[8] <= hsp2[8] and hsp1[9] >= hsp2[9]: # print(f'hsp1 inside hsp2 for subject: {hsp1[8]} <= {hsp2[8]} and {hsp1[9]} >= {hsp2[9]}') return dict_update # reject HSPs that are in different orientation: 'qstart': 6, 'qend': 7, 'sstart': 8, 'send': 9, # Query: ---- A ---- B ----- A = HSP1 # Sbjct: ---- B ---- A ----- B = HSP2 if (hsp1[7] - hsp2[7]) * (hsp1[9] - hsp2[9]) < 0: # print(f'HSPs are in different orientation 1: ({hsp1[7]} - {hsp2[7]}) * ({hsp1[9]} - {hsp2[9]}) ===> {(hsp1[7] - hsp2[7]) * (hsp1[9] - hsp2[9])} < 0') return dict_update elif (hsp1[6] - hsp2[6]) * (hsp1[8] - hsp2[8]) < 0: # print(f'HSPs are in different orientation 2: ({hsp1[6]} - {hsp2[6]}) * ({hsp1[8]} - {hsp2[8]}) ===> {(hsp1[6] - hsp2[6]) * (hsp1[8] - hsp2[8])} < 0') return dict_update overlap_q = (hsp2[6] - hsp1[7]) * (hsp2[7] - hsp1[6]) overlap_s = (hsp2[8] - hsp1[9]) * (hsp2[9] - hsp1[8]) # Accept non-overlapping HSPs in correct orientation if overlap_q > 0 and overlap_s > 0 : # print(f'No overlap in query and subject: {overlap_q} > 0 and {overlap_s} > 0') dict_update[18] = 1 return dict_update # Test if the query is overlaping elif overlap_q < 0: # print(f'Overlap in query: {overlap_q} > 0') dict_update = remove_overlap_query(hsp1=hsp1, hsp2=hsp2) # update the hsp2 array with the new values for index_key in dict_update: hsp2[index_key] = dict_update[index_key] overlap_s = (hsp2[8] - hsp1[9]) * (hsp2[9] - hsp1[8]) # Test if the subject is overlaping after possible update of an overlaping query if overlap_s < 0: # print(f'Overlap in subject: {overlap_s} > 0') dict_update = remove_overlap_subject(hsp1=hsp1, hsp2=hsp2) # update the hsp2 array with the new values for index_key in dict_update: hsp2[index_key] = dict_update[index_key] # Filter out HSPs
from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ title = 'mean' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.mean(self.input(0))) class Median_Node(NodeBase): """ Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ title = 'median' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.median(self.input(0))) class Median_Grouped_Node(NodeBase): """ Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ title = 'median_grouped' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), NodeInputBP(label='interval', dtype=dtypes.Data(default=1, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.median_grouped(self.input(0), self.input(1))) class Median_High_Node(NodeBase): """ Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ title = 'median_high' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.median_high(self.input(0))) class Median_Low_Node(NodeBase): """ Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ title = 'median_low' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.median_low(self.input(0))) class Mode_Node(NodeBase): """ Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there are multiple modes with same frequency, return the first one encountered: >>> mode(['red', 'red', 'green', 'blue', 'blue']) 'red' If *data* is empty, ``mode``, raises StatisticsError. """ title = 'mode' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.mode(self.input(0))) class Multimode_Node(NodeBase): """ Return a list of the most frequently occurring values. Will return more than one result if there are multiple modes or an empty list if *data* is empty. >>> multimode('aabbbbbbbbcc') ['b'] >>> multimode('aabbbbccddddeeffffgg') ['b', 'd', 'f'] >>> multimode('') [] """ title = 'multimode' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.multimode(self.input(0))) class Pstdev_Node(NodeBase): """ Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ title = 'pstdev' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), NodeInputBP(label='mu', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.pstdev(self.input(0), self.input(1))) class Pvariance_Node(NodeBase): """ Return the population variance of ``data``. data should be a sequence or iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ title = 'pvariance' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), NodeInputBP(label='mu', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.pvariance(self.input(0), self.input(1))) class Quantiles_Node(NodeBase): """ Divide *data* into *n* continuous intervals with equal probability. Returns a list of (n - 1) cut points separating the intervals. Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set *n* to 100 for percentiles which gives the 99 cuts points that separate *data* in to 100 equal sized groups. The *data* can be any iterable containing sample. The cut points are linearly interpolated between data points. If *method* is set to *inclusive*, *data* is treated as population data. The minimum value is treated as the 0th percentile and the maximum value is treated as the 100th percentile. """ title = 'quantiles' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.quantiles(self.input(0))) class Sqrt_Node(NodeBase): """ Return the square root of x.""" title = 'sqrt' type_ = 'statistics' init_inputs = [ NodeInputBP(label='x'), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.sqrt(self.input(0))) class Stdev_Node(NodeBase): """ Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ title = 'stdev' type_ = 'statistics' init_inputs = [ NodeInputBP(label='data'), NodeInputBP(label='xbar', dtype=dtypes.Data(default=None, size='s')), ] init_outputs = [ NodeOutputBP(type_='data'), ] color = '#32DA22' def update_event(self, inp=-1): self.set_output_val(0, statistics.stdev(self.input(0), self.input(1))) class Variance_Node(NodeBase): """ Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """
# encoding=utf8 """ Module containing functions for calculating or approximating factorials. """ import numpy as np from decimal import Decimal, localcontext def factorial(n, prec=100): r""" Function for calculating factorials using the standard approach as explained in the Notes section. For factorials over 100, the decimal package is used to support the resulting large integers. Parameters ---------- n : int The desired integer to calculate the factorial. prec : int default 100, optional Defines level of precision for factorials over 100 for use by the decimal package Returns ------- int or Decimal The computed factorial of the given integer. Notes ----- Factorials are denoted for a positive integer :math:`x` as :math:`x!` and are defined as: .. math:: x! = (x)(x - 1)(x - 2) \cdots (2)(1) For example, the factorial of 5 is written as: .. math:: 5! = (5)(4)(3)(2)(1) = 120 Examples -------- >>> factorial(10) 3628800.0 >>> factorial(50) 3.0414093201713376e+64 # Factorials above 100 use the decimal package to handle the resulting large integers >>> factorial(200) Decimal('7.886578673647905035523632139321850622951359776871732632947425332443594499634033429203042840119846238E+374') References ---------- Press, W., <NAME>., <NAME>., & <NAME>. (2007). Numerical recipes (3rd ed.). Cambridge: Cambridge University Press. Weisstein, <NAME>. "Factorial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Factorial.html """ if n != np.floor(n): n = np.floor(n) factor = np.arange(1, n + 1) if n > 100: with localcontext() as ctx: ctx.prec = prec f = Decimal(1) for i in reversed(factor): f = Decimal(f) * i else: f = float(1) for i in reversed(factor): f = f * i return int(f) def stirlingln(n, keep_log=False, prec=100): r""" Approximates the factorial of n using the approximation given by Ramanujan in his lost notebook (Ramanujan 1988, as cited in Wikipedia). Computing the factorial in logarithmic form is useful as it helps avoid overflow when n is large. As values of n increase, the approximation given becomes more exact. Parameters ---------- n : int The desired integer to calculate the factorial. keep_log : bool default False If True, the approximation remains in logarithmic form. If False, converts to exponent form before returning the factorial approximation. prec : int default 100, optional Defines level of precision for factorials over 100. Returns ------- int or Decimal The computed log factorial of the given integer. Notes ----- It is often useful to compute the logarithmic form of the factorial and convert it to exponent form to avoid overflow. The approximation is an alternative approach given by Srinivasa Ramanujan (Ramanujan 1988). .. math:: ln n! \approx n ln n - n + \frac{1}{6} ln(n(1 + 4n(1 + 2n))) + \frac{1}{2} ln \pi Examples -------- # Difference between actual factorial calculation and Stirling's Approximation # for low values of n is practically zero >>> (factorial(5) - stirlingln(5)) / stirlingln(5) 3.8020354295010749e-06 >>> stirlingln(50) 3.041409303897981e+64 >>> stirlingln(100) 9.3326215380340829e+157 # If the keep_log flag is set to True, the output remains in logarithmic form. >>> stirlingln(100, True) 363.73937555488197 References ---------- Stirling's approximation. (2017, March 8). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Stirling%27s_approximation&oldid=769328178 """ if n != np.floor(n): n = np.floor(n) n = float(n) if n > 100: with localcontext() as ctx: ctx.prec = prec f = Decimal(n * np.log(n) - n + (1. / 6.) * np.log(n * (1. + 4. * n * (1. + 2. * n))) + .5 * np.log(np.pi)) else: f = n * np.log(n) - n + (1. / 6.) * np.log(n * (1. + 4. * n * (1. + 2. * n))) + .5 * np.log(np.pi) if keep_log is False: return np.exp(f) return f def stirling(n, prec=100): r""" Approximates a factorial of an integer :math:`n` using Stirling's Approximation. Specifically, the approximation is done using a method developed by Gosper. Parameters ---------- n : int The desired integer to calculate the factorial. prec Defines level of precision for factorials over 100. Default 100. Optional Returns ------- int or Decimal The computed factorial of the given integer. Notes ----- Stirling's approximation is a method of approximating a factorial :math:`n!`. As the value of :math:`n` increases, the more exact the approximation becomes; however, it still yields almost exact results for small values of :math:`n`. The approximation used is given by Gosper, which is noted to be a better approximation to :math:`n!` and also results in a very close approximation to :math:`0! = 1`. .. math:: n! \approx \sqrt{(2n + \frac{1}{3})\pi} n^n e^{-n} Examples -------- >>> stirling(0) 1.0233267079464885 >>> (factorial(5) - stirling(5)) / stirling(5) 0.00024981097589214563 >>> stirling(5) 119.9700301696855 >>> stirling(50) 3.0414009581300833e+64 References ---------- Stirling's approximation. (2017, March 8). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Stirling%27s_approximation&oldid=769328178 Weisstein, <NAME>. "Stirling's Approximation." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/StirlingsApproximation.html """ if n != np.floor(n): n = np.floor(n) if n >= 100: with localcontext() as ctx: ctx.prec = prec f = Decimal(np.sqrt((2. * n + 1. / 3.) * np.pi) * n ** n * np.exp(-n)) else: f = np.sqrt((2. * n + 1. / 3.) * np.pi) * n ** n * np.exp(-n) return f def ramanujan(n, prec=100): r""" Approximates the factorial :math:`n!` given an integer :math:`n` using Ramanujan's formula. Ramanujan's formula is just as or more accurate than several other factorial approximation formulas. Parameters ---------- n Integer to approximate factorial prec Defines level of precision for factorials over 100. Default 100. Optional Returns ------- int or Decimal Factorial of :math:`n` as approximated by Ramanujan's formula. Notes ----- Ramanujan's formula is another factorial approximation method known for its accuracy in comparison to other factorial approximation approaches including Stirling's and Gosper's approximations. Ramanujan's formula is defined as: .. math:: n! \approx \sqrt{\pi} \left(\frac{n}{e}\right)^n \sqrt[6]{8n^3 + 4n^2 + n + \frac{1}{30}} Examples -------- >>> ramanujan(10) 3628800.3116126074 >>> ramanujan(5) 120.00014706585664 References ---------- Mortici, Cristinel. On Gosper's Formula for the Gamma Function. Valahia University of Targoviste, Department of Mathematics. Retrieved from http://files.ele-math.com/articles/jmi-05-53.pdf """ if n != np.floor(n): n = np.floor(n) if n >= 100: with localcontext() as ctx: ctx.prec = prec f = Decimal( np.sqrt(np.pi) * n ** n * np.exp(-n) * (8. * n ** 3. + 4. * n ** 2. + n + 1. / 30.) ** (1. / 6.)) else: f = np.sqrt(np.pi) * n ** n * np.exp(-n) * (8. * n ** 3. + 4. * n ** 2. + n + (1. / 30.)) ** (1. / 6.) return f def fallingfactorial(x, n): r""" Computes the falling factorial. Parameters ---------- x Integer. The value will be rounded down if the value is not an integer. n Integer. The value will be rounded down if the value is not an integer. Returns ------- int or str The falling factorial for an integer :math:`n`, :math:`(x)_{n}`. If x is a str, the output is the symbolic representation of the falling factorial. Notes ----- The falling factorial, denoted as :math:`(x)_{n}` (or :math:`x^{\underline{n}}`) is defined as the following: .. math:: (x)_n = x(x - 1) \cdots (x - (n - 1)) The first few falling factorials are then: ..math:: (x)_0 = 1 (x)_1 = x (x)_2 = x(x - 1) (x)_3 = x(x - 1)(x - 2) (x)_4 = x(x - 1)(x - 2)(x - 3) Examples -------- >>> fallingfactorial(10, 5) 30240 >>> fallingfactorial(10, 2) 90 >>> fallingfactorial('x', 2) 'x*(x - 1)' >>> fallingfactorial('a', 4) 'a*(a - 1)*(a - 2)*(a - 3)' References ---------- Falling and rising factorials. (2017, June 8). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Falling_and_rising_factorials&oldid=784512036 Weisstein, <NAME>. "Falling Factorial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FallingFactorial.html """ if n != np.floor(n): n = np.floor(n) if isinstance(x, str): f = x for i in np.arange(1, np.absolute(n)): f = f + '*(' + str(x) + ' - ' + str(i) + ')' if n < 0: f = '1 /' + f else: if x != np.floor(x): x = np.floor(x) f = np.uint64(1.0) for i in np.arange(np.absolute(n)): f *= (x - i) if n < 0: f = 1 / f return f def risingfactorial(x, n): r""" Computes the rising factorial. Also known
{ 'storageAccountType': 'Standard_LRS' }, 'name': vm_name, 'createOption': 'FromImage' } }, 'osProfile': { 'adminUsername': admin_username, 'computerName': vm_name, 'adminPassword': <PASSWORD> }, 'networkProfile': { 'networkInterfaces': [ { 'id': full_nic_id, 'properties': { 'primary': 'true' } } ] } }, 'name': vm_name } return vm def http_request(method, url_suffix=None, data=None, headers=HEADERS, params=None, codes=None, full_url=None, j_son=None): """ A wrapper for requests lib to send our requests and handle requests and responses better parameter: (string) method A string denoting the http request method to use. Can be 'GET', 'POST, 'PUT', 'DELETE', etc. parameter: (string) url_suffix The API endpoint that determines which data we are trying to access/create/update in our call to the API parameter: (dict) data The key/value pairs to be form-encoded parameter: (dict) headers The headers to use with the request parameter: (dict) params The parameters to use with this request parameter: (set) codes The set of status codes against which the status code of the response should be checked parameter: (string) full_url The full url to make a request to. Only necessary in the case that you need to make an API request to an endpoint which differs in its base url from the majority of the API calls in the integration parameter: (dict) j_son A JSON serializable Python object to send in the body of the request returns: JSON Response Object """ update_access_token() try: url = full_url if full_url else None if not url: url = BASE_URL + url_suffix if url_suffix else BASE_URL r = requests.request( method, url, headers=headers, data=data, params=params, verify=USE_SSL, json=j_son ) green_codes = codes if codes else {200, 201, 202, 204} if r.status_code not in green_codes: err_msg = 'Error in API call to Azure Compute Integration [{}] - {}'.format(r.status_code, r.reason) err = r.json().get('error') if err: err_msg1 = '\nError code: {}\nError message: {}'.format(err.get('code'), err.get('message')) err_msg += err_msg1 raise Exception(err_msg) response = json.loads(r.content) except ValueError: response = r.content return response '''MAIN FUNCTIONS / API CALLS''' # <---------- Test Module ----------> # def test_module(): # Implicitly will test TENANT_ID, TOKEN and SUBSCRIPTION_ID list_resource_groups() demisto.results('ok') # <-------- Resource Groups --------> # def list_resource_groups(): parameters = {'api-version': '2018-05-01'} response = http_request('GET', params=parameters, codes={200}) return response def list_resource_groups_command(): """ List all Resource Groups belonging to your Azure subscription returns: Resource-Group Objects """ response = list_resource_groups() # Retrieve relevant properties to return to context value = response.get('value') resource_groups = [] for resource_group in value: resource_group_context = { 'Name': resource_group.get('name'), 'ID': resource_group.get('id'), 'Location': resource_group.get('location'), 'ProvisioningState': resource_group.get('properties', {}).get('provisioningState') } resource_groups.append(resource_group_context) title = 'List of Resource Groups' human_readable = tableToMarkdown(title, resource_groups, removeNull=True) entry_context = {'Azure.ResourceGroup(val.Name && val.Name === obj.Name)': resource_groups} demisto.results({ 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['text'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': human_readable, 'EntryContext': entry_context }) # <-------- Virtual Machines --------> # def list_vms(resource_group): # Construct endpoint URI suffix url_endpoint = resource_group + '/providers/Microsoft.Compute/virtualMachines' parameters = {'api-version': API_VERSION} # Call API response = http_request('GET', url_endpoint, params=parameters, codes={200}) return response def list_vms_command(): """ List the VM instances in the specified Resource Group demisto parameter: (string) resource_group Resource Group of the VMs returns: Virtual Machine Objects """ resource_group = demisto.args().get('resource_group') response = list_vms(resource_group) vm_objects_list = response.get('value') vms = [] for vm_object in vm_objects_list: vm_name = vm_object.get('name').lower() location = vm_object.get('location') properties = vm_object.get('properties') provisioning_state = properties.get('provisioningState') os_disk = properties.get('storageProfile', {}).get('osDisk') datadisk = os_disk.get('diskSizeGB', 'NA') vm_id = properties.get('vmId') os_type = os_disk.get('osType') vm = { 'Name': vm_name, 'ID': vm_id, 'Size': datadisk, 'OS': os_type, 'Location': location, 'ProvisioningState': provisioning_state, 'ResourceGroup': resource_group } vms.append(vm) title = 'Microsoft Azure - List of Virtual Machines in Resource Group "{}"'.format(resource_group) table_headers = ['Name', 'ID', 'Size', 'OS', 'Location', 'ProvisioningState', 'ResourceGroup'] human_readable = tableToMarkdown(title, vms, headers=table_headers, removeNull=True) entry_context = {'Azure.Compute(val.Name && val.Name === obj.Name)': vms} demisto.results({ 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['text'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': human_readable, 'EntryContext': entry_context }) def get_vm(args): # Retrieve relevant command arguments resource_group = args.get('resource_group') vm_name = args.get('virtual_machine_name') # Construct endpoint URI suffix url_endpoint = resource_group + '/providers/Microsoft.Compute/virtualMachines/' + vm_name parameters = {'$expand': 'instanceView', 'api-version': API_VERSION} # Call API response = http_request('GET', url_endpoint, params=parameters, codes={200}) return response def get_vm_command(): """ Get the properties of a specified Virtual Machine demisto parameter: (string) resource_group Resource Group to which the virtual machine belongs demisto parameter: (string) virtual_machine_name Name of the virtual machine you wish to view the details of returns: Virtual Machine Object """ args = demisto.args() response = get_vm(args) # Retrieve relevant properties to return to context vm_name = response.get('name').lower() properties = response.get('properties') os_disk = properties.get('storageProfile', {}).get('osDisk') datadisk = os_disk.get('diskSizeGB', 'NA') vm_id = properties.get('vmId') os_type = os_disk.get('osType') provisioning_state = properties.get('provisioningState') location = response.get('location') statuses = properties.get('instanceView', {}).get('statuses') power_state = None for status in statuses: status_code = status.get('code') status_code_prefix = status_code[:status_code.find('/')] if status_code_prefix == 'PowerState': power_state = status.get('displayStatus') vm = { 'Name': vm_name, 'ID': vm_id, 'Size': datadisk, 'OS': os_type, 'ProvisioningState': provisioning_state, 'Location': location, 'PowerState': power_state, 'ResourceGroup': args.get('resource_group') } title = 'Properties of VM "{}"'.format(vm_name) table_headers = ['Name', 'ID', 'Size', 'OS', 'ProvisioningState', 'Location', 'PowerState'] human_readable = tableToMarkdown(title, vm, headers=table_headers, removeNull=True) entry_context = {'Azure.Compute(val.Name && val.Name === obj.Name)': vm} demisto.results({ 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': human_readable, 'EntryContext': entry_context }) def create_vm(args): # Retrieve relevant command arguments resource_group = args.get('resource_group') vm_name = args.get('virtual_machine_name') # Construct endpoint URI suffix url_endpoint = resource_group + '/providers/Microsoft.Compute/virtualMachines/' + vm_name parameters = {'api-version': API_VERSION} # Construct VM object utilizing parameters passed as command arguments payload = create_vm_parameters(args) # Call API response = http_request('PUT', url_endpoint, params=parameters, j_son=payload) return response def create_vm_command(): """ Create a virtual machine instance with the specified OS image demisto parameter: (string) resource_group Resource group to which the new VM will belong demisto parameter: (string) virtual_machine_name Name to assign to the new virtual machine demisto parameter: (string) virtual_machine_location Region in which the vm will be hosted demisto parameter: (string) nic_name The name of the Network Interface to link the VM with. This must be created from the Azure Portal demisto parameter: (string) vm_size The name of a VirtualMachineSize which determines the size of the deployed vm demisto parameter: (string) os_image Choose the base operating system image of the vm demisto parameter: (string) sku SKU of the image to be used demisto parameter: (string) publisher Name of the publisher of the image demisto parameter: (string) version Version of the image to use demisto parameter: (string) offer Specifies the offer of the platform image or marketplace image used to create the virtual machine demisto parameter: (string) admin_username Admin Username to be used when creating the VM demisto parameter: (string) admin_password Admin Password to be used when creating the VM returns: Virtual Machine Object """ args = demisto.args() response = create_vm(args) # Retrieve relevant properties to return to context vm_name = response.get('name').lower() properties = response.get('properties') os_disk = properties.get('storageProfile', {}).get('osDisk') datadisk = os_disk.get('diskSizeGB', 'NA') vm_id = properties.get('vmId') os_type = os_disk.get('osType') provisioning_state = properties.get('provisioningState') location = response.get('location') vm = { 'Name': vm_name, 'ID': vm_id, 'Size': datadisk, 'OS': os_type, 'ProvisioningState': provisioning_state, 'Location': location, 'ResourceGroup': args.get('resource_group') } title = 'Created Virtual Machine "{}"'.format(vm_name) human_readable = tableToMarkdown(title, vm, removeNull=True) entry_context = {'Azure.Compute(val.Name && val.Name === obj.Name)': vm} demisto.results({ 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': human_readable, 'EntryContext': entry_context }) def delete_vm(args): # Retrieve relevant command arguments resource_group = args.get('resource_group') vm_name = args.get('virtual_machine_name') # Construct endpoint URI suffix (for de-allocation of compute resources) url_endpoint = resource_group + '/providers/Microsoft.Compute/virtualMachines/' + vm_name + '/deallocate' parameters = {'api-version': API_VERSION} # Call API to deallocate compute resources _ = http_request('POST', url_endpoint, params=parameters, codes={200, 202}) # Construct endpoint URI suffix (for deletion) url_endpoint = resource_group + '/providers/Microsoft.Compute/virtualMachines/' + vm_name parameters = {'api-version': API_VERSION} # Call API to delete response = http_request('DELETE', url_endpoint, params=parameters, codes={200, 202, 204}) return response def delete_vm_command(): """ Delete a specified Virtual Machine demisto parameter: (string) resource_group Resource Group to which the virtual machine belongs demisto parameter: (string) virtual_machine_name Name of the virtual machine to delete returns: Success message to the war room """ args = demisto.args() _ = delete_vm(args) success_msg = '"{}" VM Deletion Successfully Initiated'.format(args.get('virtual_machine_name')) demisto.results(success_msg) def start_vm(args): # Retrieve relevant command arguments resource_group = args.get('resource_group') vm_name = args.get('virtual_machine_name') # Construct endpoint
<gh_stars>10-100 """ Pytorch modules """ from collections import defaultdict import copy import json import logging from io import open import torch from torch import nn from torch.nn import functional as F # from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm from torch.nn import LayerNorm from .layer import GELU, BertLayer, BertPooler, BertOnlyMLMHead from .ot import optimal_transport_dist logger = logging.getLogger(__name__) class UniterConfig(object): """Configuration class to store the configuration of a `UniterModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_hidden_layers_img=1, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02): """Constructs UniterConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `UniterModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e. feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `UniterModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_hidden_layers_img = num_hidden_layers_img self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError("First argument must be either a vocabulary size " "(int) or the path to a pretrained model config " "file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `UniterConfig` from a Python dictionary of parameters.""" config = UniterConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `UniterConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class UniterPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, UniterConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of " "class `UniterConfig`. To create a model from a Google " "pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses # truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, config_file, state_dict, *inputs, **kwargs): """ Instantiate a UniterPreTrainedModel from a pre-trained model file or a pytorch state dict. Params: config_file: config json file state_dict: an state dictionnary *inputs, **kwargs: additional input for the specific Uniter class """ # Load config config = UniterConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = ({} if metadata is None else metadata.get(prefix[:-1], {})) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): start_prefix = 'bert.' load(model, prefix=start_prefix) if len(missing_keys) > 0: logger.info("Weights of {} not initialized from " "pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in " "{}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for ' '{}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) return model class UniterTextEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model # variable name and be able to load any TensorFlow checkpoint file self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, position_ids, token_type_ids=None): if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = (words_embeddings + position_embeddings + token_type_embeddings) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class UniterImageEmbeddings(nn.Module): def __init__(self, config, img_dim): super().__init__() self.img_linear = nn.Linear(img_dim, config.hidden_size) self.img_layer_norm = LayerNorm(config.hidden_size, eps=1e-12) self.pos_layer_norm = LayerNorm(config.hidden_size, eps=1e-12) self.pos_linear = nn.Linear(7, config.hidden_size) self.mask_embedding = nn.Embedding(2, img_dim, padding_idx=0) # tf naming convention for layer norm self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, img_feat, img_pos_feat, type_embeddings, img_masks=None): if img_masks is not None: self.mask_embedding.weight.data[0, :].fill_(0) mask = self.mask_embedding(img_masks.long()) img_feat = img_feat + mask transformed_im = self.img_layer_norm(self.img_linear(img_feat)) transformed_pos = self.pos_layer_norm(self.pos_linear(img_pos_feat)) embeddings = transformed_im + transformed_pos + type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class UniterEncoder(nn.Module): def __init__(self, config): super().__init__() layer = BertLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, input_, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] hidden_states = input_ for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers def pad_tensor_to_mul(tensor, dim=0, mul=8): """ pad tensor to multiples (8 for tensor cores) """ # TODO find out whether this helps speed return tensor, 0 t_size = list(tensor.size()) n_pad = mul - t_size[dim] % mul if n_pad == mul: n_pad = 0 padded_tensor = tensor else: t_size[dim] = n_pad pad = torch.zeros(*t_size, dtype=tensor.dtype, device=tensor.device) padded_tensor = torch.cat([tensor, pad], dim=dim) return padded_tensor, n_pad class UniterModel(UniterPreTrainedModel): """ Modification for Joint Vision-Language Encoding """ def __init__(self, config, img_dim): super().__init__(config) self.embeddings = UniterTextEmbeddings(config) self.img_embeddings = UniterImageEmbeddings(config, img_dim) self.encoder = UniterEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_weights) def _compute_txt_embeddings(self, input_ids, position_ids, txt_type_ids=None): output = self.embeddings(input_ids, position_ids, txt_type_ids) return output def _compute_img_embeddings(self, img_feat, img_pos_feat, img_masks=None, img_type_ids=None): if img_type_ids is None: img_type_ids = torch.ones_like(img_feat[:, :, 0].long()) img_type_embeddings = self.embeddings.token_type_embeddings( img_type_ids) output = self.img_embeddings(img_feat, img_pos_feat, img_type_embeddings, img_masks) return output def _compute_img_txt_embeddings(self, input_ids, position_ids, img_feat, img_pos_feat, gather_index, img_masks=None, txt_type_ids=None, img_type_ids=None): txt_emb = self._compute_txt_embeddings( input_ids, position_ids, txt_type_ids) img_emb = self._compute_img_embeddings( img_feat, img_pos_feat, img_masks, img_type_ids) # align back to most compact input if gather_index is None: embedding_output = torch.cat([txt_emb, img_emb], dim=1) else: gather_index = gather_index.unsqueeze(-1).expand( -1, -1, self.config.hidden_size) embedding_output = torch.gather(torch.cat([txt_emb, img_emb], dim=1), dim=1, index=gather_index) return embedding_output def forward(self, input_ids, position_ids, img_feat, img_pos_feat, attention_mask, gather_index=None, img_masks=None, output_all_encoded_layers=True, txt_type_ids=None, img_type_ids=None): # compute self-attention mask extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # embedding layer if input_ids is None: # image only embedding_output = self._compute_img_embeddings( img_feat, img_pos_feat, img_masks, img_type_ids) elif img_feat is None: # text only embedding_output = self._compute_txt_embeddings( input_ids, position_ids, txt_type_ids) else: embedding_output = self._compute_img_txt_embeddings( input_ids, position_ids, img_feat, img_pos_feat, gather_index, img_masks, txt_type_ids, img_type_ids) encoded_layers = self.encoder( embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers class RegionFeatureRegression(nn.Module): def __init__(self, hidden_size, feat_dim, img_linear_weight): super().__init__() self.net = nn.Sequential(nn.Linear(hidden_size, hidden_size), GELU(), LayerNorm(hidden_size, eps=1e-12)) self.weight = img_linear_weight self.bias = nn.Parameter(torch.zeros(feat_dim)) def forward(self, input_): hidden = self.net(input_) output = F.linear(hidden, self.weight.t(), self.bias) return output class RegionClassification(nn.Module): def __init__(self, hidden_size, label_dim): super().__init__() self.net = nn.Sequential(nn.Linear(hidden_size, hidden_size), GELU(), LayerNorm(hidden_size, eps=1e-12), nn.Linear(hidden_size, label_dim)) def forward(self, input_): output = self.net(input_) return output class UniterForPretraining(UniterPreTrainedModel): """ MLM + MRM """ def __init__(self, config, img_dim, img_label_dim, nce_temp=1, ot_pos_only=False): super().__init__(config) self.bert
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'gui.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.setWindowModality(QtCore.Qt.ApplicationModal) MainWindow.resize(466, 700) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) MainWindow.setMinimumSize(QtCore.QSize(466, 700)) MainWindow.setMaximumSize(QtCore.QSize(466, 700)) MainWindow.setBaseSize(QtCore.QSize(0, 0)) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.layoutWidget = QtGui.QWidget(self.centralwidget) self.layoutWidget.setGeometry(QtCore.QRect(10, 10, 489, 710)) self.layoutWidget.setObjectName(_fromUtf8("layoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.layoutWidget) self.verticalLayout.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.gr_input = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gr_input.sizePolicy().hasHeightForWidth()) self.gr_input.setSizePolicy(sizePolicy) self.gr_input.setMinimumSize(QtCore.QSize(430, 0)) self.gr_input.setMaximumSize(QtCore.QSize(430, 16777215)) self.gr_input.setObjectName(_fromUtf8("gr_input")) self.verticalLayout_7 = QtGui.QVBoxLayout(self.gr_input) self.verticalLayout_7.setSpacing(0) self.verticalLayout_7.setObjectName(_fromUtf8("verticalLayout_7")) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_4.setSpacing(0) self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.lb_run = QtGui.QLabel(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_run.sizePolicy().hasHeightForWidth()) self.lb_run.setSizePolicy(sizePolicy) self.lb_run.setMinimumSize(QtCore.QSize(40, 0)) self.lb_run.setMaximumSize(QtCore.QSize(40, 24)) self.lb_run.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_run.setObjectName(_fromUtf8("lb_run")) self.horizontalLayout_4.addWidget(self.lb_run) self.le_run = QtGui.QLineEdit(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_run.sizePolicy().hasHeightForWidth()) self.le_run.setSizePolicy(sizePolicy) self.le_run.setMinimumSize(QtCore.QSize(280, 0)) self.le_run.setMaximumSize(QtCore.QSize(16777215, 24)) self.le_run.setObjectName(_fromUtf8("le_run")) self.horizontalLayout_4.addWidget(self.le_run) self.pb_run = QtGui.QPushButton(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pb_run.sizePolicy().hasHeightForWidth()) self.pb_run.setSizePolicy(sizePolicy) self.pb_run.setMaximumSize(QtCore.QSize(16777215, 24)) self.pb_run.setObjectName(_fromUtf8("pb_run")) self.horizontalLayout_4.addWidget(self.pb_run) self.verticalLayout_7.addLayout(self.horizontalLayout_4) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_2.setSpacing(0) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.lb_map = QtGui.QLabel(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_map.sizePolicy().hasHeightForWidth()) self.lb_map.setSizePolicy(sizePolicy) self.lb_map.setMinimumSize(QtCore.QSize(40, 0)) self.lb_map.setMaximumSize(QtCore.QSize(40, 24)) self.lb_map.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_map.setObjectName(_fromUtf8("lb_map")) self.horizontalLayout_2.addWidget(self.lb_map) self.le_map = QtGui.QLineEdit(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_map.sizePolicy().hasHeightForWidth()) self.le_map.setSizePolicy(sizePolicy) self.le_map.setMinimumSize(QtCore.QSize(280, 0)) self.le_map.setMaximumSize(QtCore.QSize(16777215, 24)) self.le_map.setObjectName(_fromUtf8("le_map")) self.horizontalLayout_2.addWidget(self.le_map) self.pb_map = QtGui.QPushButton(self.gr_input) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pb_map.sizePolicy().hasHeightForWidth()) self.pb_map.setSizePolicy(sizePolicy) self.pb_map.setMaximumSize(QtCore.QSize(16777215, 24)) self.pb_map.setObjectName(_fromUtf8("pb_map")) self.horizontalLayout_2.addWidget(self.pb_map) self.verticalLayout_7.addLayout(self.horizontalLayout_2) self.verticalLayout.addWidget(self.gr_input) self.gr_stage = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gr_stage.sizePolicy().hasHeightForWidth()) self.gr_stage.setSizePolicy(sizePolicy) self.gr_stage.setMinimumSize(QtCore.QSize(440, 0)) self.gr_stage.setMaximumSize(QtCore.QSize(440, 16777215)) self.gr_stage.setObjectName(_fromUtf8("gr_stage")) self.horizontalLayout_16 = QtGui.QHBoxLayout(self.gr_stage) self.horizontalLayout_16.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_16.setSpacing(0) self.horizontalLayout_16.setObjectName(_fromUtf8("horizontalLayout_16")) self.tb_align = QtGui.QTabWidget(self.gr_stage) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tb_align.sizePolicy().hasHeightForWidth()) self.tb_align.setSizePolicy(sizePolicy) self.tb_align.setMinimumSize(QtCore.QSize(220, 190)) self.tb_align.setMaximumSize(QtCore.QSize(220, 190)) self.tb_align.setBaseSize(QtCore.QSize(0, 0)) self.tb_align.setTabPosition(QtGui.QTabWidget.West) self.tb_align.setObjectName(_fromUtf8("tb_align")) self.tab_print = QtGui.QWidget() self.tab_print.setObjectName(_fromUtf8("tab_print")) self.lb_printpix = QtGui.QLabel(self.tab_print) self.lb_printpix.setGeometry(QtCore.QRect(0, 0, 191, 181)) self.lb_printpix.setText(_fromUtf8("")) self.lb_printpix.setPixmap( QtGui.QPixmap(_fromUtf8(":/alignment/alignprint.png")) ) self.lb_printpix.setScaledContents(False) self.lb_printpix.setAlignment(QtCore.Qt.AlignCenter) self.lb_printpix.setObjectName(_fromUtf8("lb_printpix")) self.tb_align.addTab(self.tab_print, _fromUtf8("")) self.tab_wafer = QtGui.QWidget() self.tab_wafer.setObjectName(_fromUtf8("tab_wafer")) self.lb_waferpix = QtGui.QLabel(self.tab_wafer) self.lb_waferpix.setGeometry(QtCore.QRect(0, 0, 191, 181)) self.lb_waferpix.setText(_fromUtf8("")) self.lb_waferpix.setPixmap( QtGui.QPixmap(_fromUtf8(":/alignment/alignwafer.png")) ) self.lb_waferpix.setScaledContents(False) self.lb_waferpix.setAlignment(QtCore.Qt.AlignCenter) self.lb_waferpix.setObjectName(_fromUtf8("lb_waferpix")) self.tb_align.addTab(self.tab_wafer, _fromUtf8("")) self.horizontalLayout_16.addWidget(self.tb_align) spacerItem = QtGui.QSpacerItem( 8, 20, QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Minimum ) self.horizontalLayout_16.addItem(spacerItem) self.verticalLayout_8 = QtGui.QVBoxLayout() self.verticalLayout_8.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout_8.setSpacing(0) self.verticalLayout_8.setObjectName(_fromUtf8("verticalLayout_8")) self.lb_stagcoord = QtGui.QLabel(self.gr_stage) self.lb_stagcoord.setObjectName(_fromUtf8("lb_stagcoord")) self.verticalLayout_8.addWidget(self.lb_stagcoord) spacerItem1 = QtGui.QSpacerItem( 20, 8, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout_8.addItem(spacerItem1) self.tw_stage = QtGui.QTableWidget(self.gr_stage) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tw_stage.sizePolicy().hasHeightForWidth()) self.tw_stage.setSizePolicy(sizePolicy) self.tw_stage.setMaximumSize(QtCore.QSize(180, 97)) self.tw_stage.setObjectName(_fromUtf8("tw_stage")) self.tw_stage.setColumnCount(3) self.tw_stage.setRowCount(3) item = QtGui.QTableWidgetItem() self.tw_stage.setVerticalHeaderItem(0, item) item = QtGui.QTableWidgetItem() self.tw_stage.setVerticalHeaderItem(1, item) item = QtGui.QTableWidgetItem() self.tw_stage.setVerticalHeaderItem(2, item) item = QtGui.QTableWidgetItem() self.tw_stage.setHorizontalHeaderItem(0, item) item = QtGui.QTableWidgetItem() self.tw_stage.setHorizontalHeaderItem(1, item) item = QtGui.QTableWidgetItem() self.tw_stage.setHorizontalHeaderItem(2, item) item = QtGui.QTableWidgetItem() self.tw_stage.setItem(0, 0, item) self.tw_stage.horizontalHeader().setDefaultSectionSize(54) self.tw_stage.horizontalHeader().setMinimumSectionSize(54) self.tw_stage.verticalHeader().setVisible(True) self.tw_stage.verticalHeader().setDefaultSectionSize(24) self.tw_stage.verticalHeader().setMinimumSectionSize(24) self.verticalLayout_8.addWidget(self.tw_stage) spacerItem2 = QtGui.QSpacerItem( 20, 8, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout_8.addItem(spacerItem2) self.horizontalLayout_15 = QtGui.QHBoxLayout() self.horizontalLayout_15.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_15.setSpacing(0) self.horizontalLayout_15.setObjectName(_fromUtf8("horizontalLayout_15")) self.lb_stagz = QtGui.QLabel(self.gr_stage) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_stagz.sizePolicy().hasHeightForWidth()) self.lb_stagz.setSizePolicy(sizePolicy) self.lb_stagz.setMinimumSize(QtCore.QSize(32, 0)) self.lb_stagz.setMaximumSize(QtCore.QSize(32, 24)) self.lb_stagz.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_stagz.setObjectName(_fromUtf8("lb_stagz")) self.horizontalLayout_15.addWidget(self.lb_stagz) self.le_stagz = QtGui.QLineEdit(self.gr_stage) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_stagz.sizePolicy().hasHeightForWidth()) self.le_stagz.setSizePolicy(sizePolicy) self.le_stagz.setMinimumSize(QtCore.QSize(54, 24)) self.le_stagz.setMaximumSize(QtCore.QSize(54, 24)) self.le_stagz.setObjectName(_fromUtf8("le_stagz")) self.horizontalLayout_15.addWidget(self.le_stagz) spacerItem3 = QtGui.QSpacerItem( 18, 20, QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Minimum ) self.horizontalLayout_15.addItem(spacerItem3) self.cb_rotonly = QtGui.QCheckBox(self.gr_stage) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cb_rotonly.sizePolicy().hasHeightForWidth()) self.cb_rotonly.setSizePolicy(sizePolicy) self.cb_rotonly.setMinimumSize(QtCore.QSize(78, 0)) self.cb_rotonly.setMaximumSize(QtCore.QSize(78, 16777215)) self.cb_rotonly.setObjectName(_fromUtf8("cb_rotonly")) self.horizontalLayout_15.addWidget(self.cb_rotonly) self.verticalLayout_8.addLayout(self.horizontalLayout_15) spacerItem4 = QtGui.QSpacerItem( 20, 8, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout_8.addItem(spacerItem4) self.le_waferignore = QtGui.QLabel(self.gr_stage) self.le_waferignore.setTextFormat(QtCore.Qt.RichText) self.le_waferignore.setObjectName(_fromUtf8("le_waferignore")) self.verticalLayout_8.addWidget(self.le_waferignore) self.lb_rotonly = QtGui.QLabel(self.gr_stage) self.lb_rotonly.setTextFormat(QtCore.Qt.RichText) self.lb_rotonly.setObjectName(_fromUtf8("lb_rotonly")) self.verticalLayout_8.addWidget(self.lb_rotonly) self.horizontalLayout_16.addLayout(self.verticalLayout_8) self.verticalLayout.addWidget(self.gr_stage) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout.setSpacing(0) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.gr_filter = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gr_filter.sizePolicy().hasHeightForWidth()) self.gr_filter.setSizePolicy(sizePolicy) self.gr_filter.setMinimumSize(QtCore.QSize(220, 90)) self.gr_filter.setMaximumSize(QtCore.QSize(220, 90)) self.gr_filter.setObjectName(_fromUtf8("gr_filter")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.gr_filter) self.verticalLayout_2.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout_2.setSpacing(0) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.horizontalLayout_5 = QtGui.QHBoxLayout() self.horizontalLayout_5.setSpacing(0) self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.lb_keepcode = QtGui.QLabel(self.gr_filter) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_keepcode.sizePolicy().hasHeightForWidth()) self.lb_keepcode.setSizePolicy(sizePolicy) self.lb_keepcode.setMinimumSize(QtCore.QSize(60, 0)) self.lb_keepcode.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_keepcode.setObjectName(_fromUtf8("lb_keepcode")) self.horizontalLayout_5.addWidget(self.lb_keepcode) self.le_keepcode = QtGui.QLineEdit(self.gr_filter) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_keepcode.sizePolicy().hasHeightForWidth()) self.le_keepcode.setSizePolicy(sizePolicy) self.le_keepcode.setMinimumSize(QtCore.QSize(103, 24)) self.le_keepcode.setMaximumSize(QtCore.QSize(130, 24)) self.le_keepcode.setObjectName(_fromUtf8("le_keepcode")) self.horizontalLayout_5.addWidget(self.le_keepcode) self.verticalLayout_2.addLayout(self.horizontalLayout_5) self.horizontalLayout_7 = QtGui.QHBoxLayout() self.horizontalLayout_7.setSpacing(0) self.horizontalLayout_7.setObjectName(_fromUtf8("horizontalLayout_7")) self.lb_omitch = QtGui.QLabel(self.gr_filter) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_omitch.sizePolicy().hasHeightForWidth()) self.lb_omitch.setSizePolicy(sizePolicy) self.lb_omitch.setMinimumSize(QtCore.QSize(60, 0)) self.lb_omitch.setMaximumSize(QtCore.QSize(60, 16777215)) self.lb_omitch.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_omitch.setObjectName(_fromUtf8("lb_omitch")) self.horizontalLayout_7.addWidget(self.lb_omitch) self.le_omitch = QtGui.QLineEdit(self.gr_filter) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_omitch.sizePolicy().hasHeightForWidth()) self.le_omitch.setSizePolicy(sizePolicy) self.le_omitch.setMinimumSize(QtCore.QSize(130, 24)) self.le_omitch.setMaximumSize(QtCore.QSize(130, 24)) self.le_omitch.setObjectName(_fromUtf8("le_omitch")) self.horizontalLayout_7.addWidget(self.le_omitch) self.verticalLayout_2.addLayout(self.horizontalLayout_7) self.horizontalLayout.addWidget(self.gr_filter) self.gr_platecoord = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.gr_platecoord.sizePolicy().hasHeightForWidth() ) self.gr_platecoord.setSizePolicy(sizePolicy) self.gr_platecoord.setMinimumSize(QtCore.QSize(220, 90)) self.gr_platecoord.setMaximumSize(QtCore.QSize(220, 90)) self.gr_platecoord.setObjectName(_fromUtf8("gr_platecoord")) self.verticalLayout_4 = QtGui.QVBoxLayout(self.gr_platecoord) self.verticalLayout_4.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout_4.setSpacing(0) self.verticalLayout_4.setObjectName(_fromUtf8("verticalLayout_4")) self.horizontalLayout_11 = QtGui.QHBoxLayout() self.horizontalLayout_11.setSpacing(0) self.horizontalLayout_11.setObjectName(_fromUtf8("horizontalLayout_11")) self.lb_xmin = QtGui.QLabel(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_xmin.sizePolicy().hasHeightForWidth()) self.lb_xmin.setSizePolicy(sizePolicy) self.lb_xmin.setMinimumSize(QtCore.QSize(42, 0)) self.lb_xmin.setMaximumSize(QtCore.QSize(42, 16777215)) self.lb_xmin.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_xmin.setObjectName(_fromUtf8("lb_xmin")) self.horizontalLayout_11.addWidget(self.lb_xmin) self.le_xmin = QtGui.QLineEdit(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_xmin.sizePolicy().hasHeightForWidth()) self.le_xmin.setSizePolicy(sizePolicy) self.le_xmin.setMinimumSize(QtCore.QSize(58, 24)) self.le_xmin.setMaximumSize(QtCore.QSize(58, 24)) self.le_xmin.setCursor(QtGui.QCursor(QtCore.Qt.IBeamCursor)) self.le_xmin.setObjectName(_fromUtf8("le_xmin")) self.horizontalLayout_11.addWidget(self.le_xmin) self.lb_xmax = QtGui.QLabel(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_xmax.sizePolicy().hasHeightForWidth()) self.lb_xmax.setSizePolicy(sizePolicy) self.lb_xmax.setMinimumSize(QtCore.QSize(42, 0)) self.lb_xmax.setMaximumSize(QtCore.QSize(42, 16777215)) self.lb_xmax.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_xmax.setObjectName(_fromUtf8("lb_xmax")) self.horizontalLayout_11.addWidget(self.lb_xmax) self.le_xmax = QtGui.QLineEdit(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_xmax.sizePolicy().hasHeightForWidth()) self.le_xmax.setSizePolicy(sizePolicy) self.le_xmax.setMinimumSize(QtCore.QSize(58, 24)) self.le_xmax.setMaximumSize(QtCore.QSize(58, 24)) self.le_xmax.setObjectName(_fromUtf8("le_xmax")) self.horizontalLayout_11.addWidget(self.le_xmax) self.verticalLayout_4.addLayout(self.horizontalLayout_11) self.horizontalLayout_6 = QtGui.QHBoxLayout() self.horizontalLayout_6.setSpacing(0) self.horizontalLayout_6.setObjectName(_fromUtf8("horizontalLayout_6")) self.lb_ymin = QtGui.QLabel(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_ymin.sizePolicy().hasHeightForWidth()) self.lb_ymin.setSizePolicy(sizePolicy) self.lb_ymin.setMinimumSize(QtCore.QSize(42, 0)) self.lb_ymin.setMaximumSize(QtCore.QSize(42, 16777215)) self.lb_ymin.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_ymin.setObjectName(_fromUtf8("lb_ymin")) self.horizontalLayout_6.addWidget(self.lb_ymin) self.le_ymin = QtGui.QLineEdit(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_ymin.sizePolicy().hasHeightForWidth()) self.le_ymin.setSizePolicy(sizePolicy) self.le_ymin.setMinimumSize(QtCore.QSize(58, 24)) self.le_ymin.setMaximumSize(QtCore.QSize(58, 24)) self.le_ymin.setObjectName(_fromUtf8("le_ymin")) self.horizontalLayout_6.addWidget(self.le_ymin) self.lb_ymax = QtGui.QLabel(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_ymax.sizePolicy().hasHeightForWidth()) self.lb_ymax.setSizePolicy(sizePolicy) self.lb_ymax.setMinimumSize(QtCore.QSize(42, 0)) self.lb_ymax.setMaximumSize(QtCore.QSize(42, 16777215)) self.lb_ymax.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_ymax.setObjectName(_fromUtf8("lb_ymax")) self.horizontalLayout_6.addWidget(self.lb_ymax) self.le_ymax = QtGui.QLineEdit(self.gr_platecoord) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_ymax.sizePolicy().hasHeightForWidth()) self.le_ymax.setSizePolicy(sizePolicy) self.le_ymax.setMinimumSize(QtCore.QSize(58, 24)) self.le_ymax.setMaximumSize(QtCore.QSize(58, 24)) self.le_ymax.setObjectName(_fromUtf8("le_ymax")) self.horizontalLayout_6.addWidget(self.le_ymax) self.verticalLayout_4.addLayout(self.horizontalLayout_6) self.horizontalLayout.addWidget(self.gr_platecoord) self.verticalLayout.addLayout(self.horizontalLayout) self.horizontalLayout_12 = QtGui.QHBoxLayout() self.horizontalLayout_12.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_12.setSpacing(0) self.horizontalLayout_12.setObjectName(_fromUtf8("horizontalLayout_12")) self.gr_skip = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gr_skip.sizePolicy().hasHeightForWidth()) self.gr_skip.setSizePolicy(sizePolicy) self.gr_skip.setMinimumSize(QtCore.QSize(200, 150)) self.gr_skip.setMaximumSize(QtCore.QSize(200, 150)) self.gr_skip.setObjectName(_fromUtf8("gr_skip")) self.verticalLayout_5 = QtGui.QVBoxLayout(self.gr_skip) self.verticalLayout_5.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout_5.setSpacing(0) self.verticalLayout_5.setObjectName(_fromUtf8("verticalLayout_5")) self.horizontalLayout_9 = QtGui.QHBoxLayout() self.horizontalLayout_9.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_9.setSpacing(0) self.horizontalLayout_9.setObjectName(_fromUtf8("horizontalLayout_9")) self.le_sampleskip = QtGui.QLineEdit(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.le_sampleskip.sizePolicy().hasHeightForWidth() ) self.le_sampleskip.setSizePolicy(sizePolicy) self.le_sampleskip.setMinimumSize(QtCore.QSize(60, 24)) self.le_sampleskip.setMaximumSize(QtCore.QSize(60, 24)) self.le_sampleskip.setObjectName(_fromUtf8("le_sampleskip")) self.horizontalLayout_9.addWidget(self.le_sampleskip) self.lb_sampleskip = QtGui.QLabel(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.lb_sampleskip.sizePolicy().hasHeightForWidth() ) self.lb_sampleskip.setSizePolicy(sizePolicy) self.lb_sampleskip.setMinimumSize(QtCore.QSize(50, 0)) self.lb_sampleskip.setAlignment( QtCore.Qt.AlignLeading | QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter ) self.lb_sampleskip.setObjectName(_fromUtf8("lb_sampleskip")) self.horizontalLayout_9.addWidget(self.lb_sampleskip) self.verticalLayout_5.addLayout(self.horizontalLayout_9) self.horizontalLayout_8 = QtGui.QHBoxLayout() self.horizontalLayout_8.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_8.setSpacing(0) self.horizontalLayout_8.setObjectName(_fromUtf8("horizontalLayout_8")) self.le_colskip = QtGui.QLineEdit(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_colskip.sizePolicy().hasHeightForWidth()) self.le_colskip.setSizePolicy(sizePolicy) self.le_colskip.setMinimumSize(QtCore.QSize(60, 24)) self.le_colskip.setMaximumSize(QtCore.QSize(60, 24)) self.le_colskip.setObjectName(_fromUtf8("le_colskip")) self.horizontalLayout_8.addWidget(self.le_colskip) self.lb_colskip = QtGui.QLabel(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_colskip.sizePolicy().hasHeightForWidth()) self.lb_colskip.setSizePolicy(sizePolicy) self.lb_colskip.setMinimumSize(QtCore.QSize(50, 0)) self.lb_colskip.setAlignment( QtCore.Qt.AlignLeading | QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter ) self.lb_colskip.setObjectName(_fromUtf8("lb_colskip")) self.horizontalLayout_8.addWidget(self.lb_colskip) self.verticalLayout_5.addLayout(self.horizontalLayout_8) self.horizontalLayout_14 = QtGui.QHBoxLayout() self.horizontalLayout_14.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_14.setSpacing(0) self.horizontalLayout_14.setObjectName(_fromUtf8("horizontalLayout_14")) self.le_rowskip = QtGui.QLineEdit(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_rowskip.sizePolicy().hasHeightForWidth()) self.le_rowskip.setSizePolicy(sizePolicy) self.le_rowskip.setMinimumSize(QtCore.QSize(60, 24)) self.le_rowskip.setMaximumSize(QtCore.QSize(60, 24)) self.le_rowskip.setObjectName(_fromUtf8("le_rowskip")) self.horizontalLayout_14.addWidget(self.le_rowskip) self.lb_rowskip = QtGui.QLabel(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_rowskip.sizePolicy().hasHeightForWidth()) self.lb_rowskip.setSizePolicy(sizePolicy) self.lb_rowskip.setMinimumSize(QtCore.QSize(50, 0)) self.lb_rowskip.setAlignment( QtCore.Qt.AlignLeading | QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter ) self.lb_rowskip.setObjectName(_fromUtf8("lb_rowskip")) self.horizontalLayout_14.addWidget(self.lb_rowskip) self.verticalLayout_5.addLayout(self.horizontalLayout_14) self.horizontalLayout_10 = QtGui.QHBoxLayout() self.horizontalLayout_10.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.horizontalLayout_10.setSpacing(0) self.horizontalLayout_10.setObjectName(_fromUtf8("horizontalLayout_10")) self.le_atskip = QtGui.QLineEdit(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_atskip.sizePolicy().hasHeightForWidth()) self.le_atskip.setSizePolicy(sizePolicy) self.le_atskip.setMinimumSize(QtCore.QSize(60, 24)) self.le_atskip.setMaximumSize(QtCore.QSize(60, 24)) self.le_atskip.setObjectName(_fromUtf8("le_atskip")) self.horizontalLayout_10.addWidget(self.le_atskip) self.lb_atskip = QtGui.QLabel(self.gr_skip) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_atskip.sizePolicy().hasHeightForWidth()) self.lb_atskip.setSizePolicy(sizePolicy) self.lb_atskip.setMinimumSize(QtCore.QSize(50, 0)) self.lb_atskip.setAlignment( QtCore.Qt.AlignLeading | QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter ) self.lb_atskip.setObjectName(_fromUtf8("lb_atskip")) self.horizontalLayout_10.addWidget(self.lb_atskip) self.verticalLayout_5.addLayout(self.horizontalLayout_10) self.horizontalLayout_12.addWidget(self.gr_skip) self.gr_sample = QtGui.QGroupBox(self.layoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gr_sample.sizePolicy().hasHeightForWidth()) self.gr_sample.setSizePolicy(sizePolicy) self.gr_sample.setMinimumSize(QtCore.QSize(285, 136)) self.gr_sample.setMaximumSize(QtCore.QSize(285, 136)) self.gr_sample.setObjectName(_fromUtf8("gr_sample")) self.verticalLayout_6 = QtGui.QVBoxLayout(self.gr_sample) self.verticalLayout_6.setSizeConstraint(QtGui.QLayout.SetFixedSize) self.verticalLayout_6.setSpacing(0) self.verticalLayout_6.setObjectName(_fromUtf8("verticalLayout_6")) self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.te_samplelist = QtGui.QTextEdit(self.gr_sample) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.te_samplelist.sizePolicy().hasHeightForWidth() ) self.te_samplelist.setSizePolicy(sizePolicy) self.te_samplelist.setMinimumSize(QtCore.QSize(280, 68)) self.te_samplelist.setMaximumSize(QtCore.QSize(280, 68)) self.te_samplelist.setObjectName(_fromUtf8("te_samplelist")) self.verticalLayout_3.addWidget(self.te_samplelist) spacerItem5 = QtGui.QSpacerItem( 20, 4, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout_3.addItem(spacerItem5) self.horizontalLayout_13 = QtGui.QHBoxLayout() self.horizontalLayout_13.setSpacing(0) self.horizontalLayout_13.setObjectName(_fromUtf8("horizontalLayout_13")) self.lb_samplemin = QtGui.QLabel(self.gr_sample) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_samplemin.sizePolicy().hasHeightForWidth()) self.lb_samplemin.setSizePolicy(sizePolicy) self.lb_samplemin.setMinimumSize(QtCore.QSize(80, 0)) self.lb_samplemin.setMaximumSize(QtCore.QSize(80, 16777215)) self.lb_samplemin.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_samplemin.setObjectName(_fromUtf8("lb_samplemin")) self.horizontalLayout_13.addWidget(self.lb_samplemin) self.le_samplemin = QtGui.QLineEdit(self.gr_sample) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_samplemin.sizePolicy().hasHeightForWidth()) self.le_samplemin.setSizePolicy(sizePolicy) self.le_samplemin.setMinimumSize(QtCore.QSize(60, 24)) self.le_samplemin.setMaximumSize(QtCore.QSize(60, 24)) self.le_samplemin.setObjectName(_fromUtf8("le_samplemin")) self.horizontalLayout_13.addWidget(self.le_samplemin) self.lb_samplemax = QtGui.QLabel(self.gr_sample) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_samplemax.sizePolicy().hasHeightForWidth()) self.lb_samplemax.setSizePolicy(sizePolicy) self.lb_samplemax.setMinimumSize(QtCore.QSize(80, 0)) self.lb_samplemax.setMaximumSize(QtCore.QSize(80, 16777215)) self.lb_samplemax.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing | QtCore.Qt.AlignVCenter ) self.lb_samplemax.setObjectName(_fromUtf8("lb_samplemax")) self.horizontalLayout_13.addWidget(self.lb_samplemax) self.le_samplemax = QtGui.QLineEdit(self.gr_sample) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.le_samplemax.sizePolicy().hasHeightForWidth()) self.le_samplemax.setSizePolicy(sizePolicy) self.le_samplemax.setMinimumSize(QtCore.QSize(60, 24)) self.le_samplemax.setMaximumSize(QtCore.QSize(60, 24)) self.le_samplemax.setObjectName(_fromUtf8("le_samplemax")) self.horizontalLayout_13.addWidget(self.le_samplemax) self.verticalLayout_3.addLayout(self.horizontalLayout_13) self.verticalLayout_6.addLayout(self.verticalLayout_3) self.horizontalLayout_12.addWidget(self.gr_sample) self.verticalLayout.addLayout(self.horizontalLayout_12) spacerItem6 = QtGui.QSpacerItem( 20, 8, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout.addItem(spacerItem6) self.horizontalLayout_17 = QtGui.QHBoxLayout() self.horizontalLayout_17.setObjectName(_fromUtf8("horizontalLayout_17")) self.pb_preview = QtGui.QPushButton(self.layoutWidget) self.pb_preview.setObjectName(_fromUtf8("pb_preview")) self.horizontalLayout_17.addWidget(self.pb_preview) self.pb_alignsave = QtGui.QPushButton(self.layoutWidget) self.pb_alignsave.setObjectName(_fromUtf8("pb_alignsave")) self.horizontalLayout_17.addWidget(self.pb_alignsave) self.verticalLayout.addLayout(self.horizontalLayout_17) spacerItem7 = QtGui.QSpacerItem( 20, 8, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed ) self.verticalLayout.addItem(spacerItem7) self.br_outputlog = QtGui.QTextBrowser(self.layoutWidget) sizePolicy = QtGui.QSizePolicy( QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.br_outputlog.sizePolicy().hasHeightForWidth()) self.br_outputlog.setSizePolicy(sizePolicy) self.br_outputlog.setMaximumSize(QtCore.QSize(16777215, 110)) self.br_outputlog.setObjectName(_fromUtf8("br_outputlog")) self.verticalLayout.addWidget(self.br_outputlog) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow)
originCoordLong, and originCoordName are used to specify a (named) coordinate. For the destination, the corresponding parameters are named either destId or destCoordLat, destCoordLong and destCoordName. It is also possible to define a via-stop/station. This forces the journey planner to search for trips which pass the defined station. The parameter is called viaId. When searching for a trip that goes via a coordinate, rather than a stop, two separate trip requests need to be combined into one. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_trip_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int origin_id: origin stop id :param float origin_coord_lat: origin latitude of center coordinate in the WGS84 system :param float origin_coord_long: origin longitude of center coordinate in the WGS84 system :param str origin_coord_name: name of the address at the specified origin coordinate :param int dest_id: destination stop id :param float dest_coord_lat: destination latitude of center coordinate in the WGS84 system :param float dest_coord_long: destination longitude of center coordinate in the WGS84 system :param str dest_coord_name: name of the address at the specified destination coordinate :param int via_id: via stop/station id :param date date: date of the trip :param str time: time of the trip in format HH:MM :param str search_for_arrival: to specify that the given time and date is not the departure time but the latest time to arrive at the destination, set this parameter to the value 1. :param str use_vas: to exclude trips with Västtågen, set this parameter to 0. :param str use_ld_train: to exclude trips with long distance trains, set this parameter to 0. :param str use_reg_train: to exclude trips with regional trains, set this parameter to 0. :param str use_bus: to exclude trips with buses, set this parameter to 0. :param str use_medical: to include medical transport lines trips with buses, set this parameter to 1. :param str origin_medical_con: to search for medical transport connections from the origin, set this parameter to 1. :param str dest_medical_con: to search for medical transport connections from the destination, set this parameter to 1. :param str wheel_chair_space: to search for trips where at least one wheelchair space is present in the vehicle, set this parameter to 1. :param str stroller_space: to search for trips with space for stroller, baby carriage or rollator in the vehicle, set this parameter to 1. :param str low_floor: to search for trips where the vehicle is equipped with a low floor section, but not necessarily a ramp or lift, set this parameter to 1. :param str ramp_or_lift: to search for trips where the vehicle is equipped with ramp or lift that allows fully barrier-free boarding and alighting, set this parameter to 1. :param str use_boat: to exclude trips with boats, set this parameter to 0. :param str use_tram: to exclude trips with trams, set this parameter to 0. :param str use_pt: to exclude trips with public transportation, set this parameter to 0. :param str exclude_dr: to exclude journeys which require tel. registration, set this parameter to 1. :param int max_walk_dist: maximum walking distance from/to the coordinate in meters :param str walk_speed: walking speed given in percent of normal speed :param str origin_walk: to exclude trips with walks from/to coordinates, set this to 0 :param str dest_walk: to exclude trips with walks from/to coordinates, set this to 0 :param str only_walk: to search for walk-only trips, set this to 1 :param str origin_bike: to search for trips with a bike ride from the origin to a nearby stop, where the journey continues using public transport, set this to 1. :param int max_bike_dist: maximum biking distance from/to the coordinate in meters :param str bike_criterion: optimize for either the fastest route or a route that is made up of a larger percentage of bike road, where 'F' is used to indicate tha fastest route with mimimized travel time, and 'D' is used to indicate dedicated bike roads to maximize use of bike roads. :param str bike_profile: determines the altitude profile of the route, based on a setting for how fast the user can bike when it is steep, where 'E' is used to indicate easy with minimized steepnes, 'N' is used to indicate normal, and 'P' is used to indicate powerful to allow more steepness. :param str only_bike: to search for bike-only trips, set this to 1 :param str origin_car: to search for trips where customer travels by car from the origin and is dropped off at a stop to continue the trip using public transport, set this to 1. :param str origin_car_with_parking: to search for trips where the customer travels by car from the origin, parks at a commuter parking and walks to a nearby stop to continue the trip using public transport, set this to 1. :param int max_car_dist: maximum car distance from/to the coordinate in meters :param str only_car: to search for car-only trips, set this to 1 :param int max_changes: maximum number of changes in the trip :param int additional_change_time: to prolong the minimal change times in minutes between the public transport legs of the returned journeys :param str disregard_default_change_margin: to ignore the default change margin, set this to 1 :param str need_journey_detail: if the reference URL for the journey detail service is not needed in the re, set this to 0 :param str need_geo: if a reference link for each leg of the resulting trips, which can be used to request the geometry, is needed, set this to 1 :param str need_itinerary: if a reference link for each leg of the resulting trips, which can be used to request the itinerary, is needed, set this to 1 :param int num_trips: the number of trips in the returned result :param str format: the required response format :param str jsonp_callback: If JSONP response format is needed, you can append an additional parameter to specify the name of a callback function, and the JSON object will be wrapped by a function call with this name. :return: TripList If the method is called asynchronously, returns the request thread. """ all_params = ['origin_id', 'origin_coord_lat', 'origin_coord_long', 'origin_coord_name', 'dest_id', 'dest_coord_lat', 'dest_coord_long', 'dest_coord_name', 'via_id', 'date', 'time', 'search_for_arrival', 'use_vas', 'use_ld_train', 'use_reg_train', 'use_bus', 'use_medical', 'origin_medical_con', 'dest_medical_con', 'wheel_chair_space', 'stroller_space', 'low_floor', 'ramp_or_lift', 'use_boat', 'use_tram', 'use_pt', 'exclude_dr', 'max_walk_dist', 'walk_speed', 'origin_walk', 'dest_walk', 'only_walk', 'origin_bike', 'max_bike_dist', 'bike_criterion', 'bike_profile', 'only_bike', 'origin_car', 'origin_car_with_parking', 'max_car_dist', 'only_car', 'max_changes', 'additional_change_time', 'disregard_default_change_margin', 'need_journey_detail', 'need_geo', 'need_itinerary', 'num_trips', 'format', 'jsonp_callback'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_trip" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'origin_id' in params: query_params.append(('originId', params['origin_id'])) if 'origin_coord_lat' in params: query_params.append(('originCoordLat', params['origin_coord_lat'])) if 'origin_coord_long' in params: query_params.append(('originCoordLong', params['origin_coord_long'])) if 'origin_coord_name' in params: query_params.append(('originCoordName', params['origin_coord_name'])) if 'dest_id' in params: query_params.append(('destId', params['dest_id'])) if 'dest_coord_lat' in params: query_params.append(('destCoordLat', params['dest_coord_lat'])) if 'dest_coord_long' in params: query_params.append(('destCoordLong', params['dest_coord_long'])) if 'dest_coord_name' in params: query_params.append(('destCoordName', params['dest_coord_name'])) if 'via_id' in params: query_params.append(('viaId', params['via_id'])) if 'date' in params: query_params.append(('date', params['date'])) if 'time' in params: query_params.append(('time', params['time'])) if 'search_for_arrival' in params: query_params.append(('searchForArrival', params['search_for_arrival'])) if 'use_vas' in params: query_params.append(('useVas', params['use_vas'])) if 'use_ld_train' in params: query_params.append(('useLDTrain', params['use_ld_train'])) if 'use_reg_train' in params: query_params.append(('useRegTrain', params['use_reg_train'])) if 'use_bus' in params: query_params.append(('useBus', params['use_bus'])) if 'use_medical' in params: query_params.append(('useMedical', params['use_medical'])) if 'origin_medical_con' in params: query_params.append(('originMedicalCon', params['origin_medical_con'])) if 'dest_medical_con' in params: query_params.append(('destMedicalCon', params['dest_medical_con'])) if 'wheel_chair_space' in params: query_params.append(('wheelChairSpace', params['wheel_chair_space'])) if 'stroller_space' in params: query_params.append(('strollerSpace', params['stroller_space'])) if 'low_floor' in params: query_params.append(('lowFloor', params['low_floor'])) if 'ramp_or_lift' in params: query_params.append(('rampOrLift', params['ramp_or_lift'])) if 'use_boat' in params: query_params.append(('useBoat', params['use_boat'])) if 'use_tram' in params: query_params.append(('useTram', params['use_tram'])) if 'use_pt' in params: query_params.append(('usePT', params['use_pt'])) if
cb.solve() error += cb.close() if not forsystemhealth: interpolate_bandpass_solutions( msname, sourcename, thresh=interp_thresh, polyorder=interp_polyorder, mode='a' ) caltables += [ { 'table': '{0}_{1}_bacal'.format(msname, sourcename), 'type': 'B', 'spwmap': spwmap } ] cb = cc.calibrater() error += cb.open('{0}.ms'.format(msname)) error += apply_calibration_tables(cb, caltables) error += cb.setsolve( type='B', combine=combine, table='{0}_{1}_bpcal'.format(msname, sourcename), refant=refant, apmode='p', t='inf', solnorm=True ) error += cb.solve() error += cb.close() if not forsystemhealth: # and not keepdelays: interpolate_bandpass_solutions( msname, sourcename, thresh=interp_thresh, polyorder=interp_polyorder, mode='p' ) if not forsystemhealth and keepdelays: with table( '{0}_{1}_kcal'.format(msname, sourcename), readonly=False ) as tb: fparam = np.array(tb.FPARAM[:]) newparam = np.round(kcorr[:, np.newaxis, :]/2)*2 print('kcal', fparam.shape, newparam.shape) tb.putcol('FPARAM', newparam) with table( '{0}_{1}_bkcal'.format(msname, sourcename), readonly=False ) as tb: bpass = np.array(tb.CPARAM[:]) print(newparam.shape, bpass.shape, fobs.shape) bpass *= np.exp( -2j*np.pi*(fobs[:, np.newaxis]-fref_snaps)* newparam ) print(bpass.shape) tb.putcol('CPARAM', bpass) if forsystemhealth: caltables += [ { 'table': '{0}_{1}_bpcal'.format(msname, sourcename), 'type': 'B', 'spwmap': spwmap } ] cb = cc.calibrater() error += not cb.open('{0}.ms'.format(msname)) error += apply_calibration_tables(cb, caltables) error += not cb.setsolve( type='M' if blbased else 'G', combine=combine, table='{0}_{1}_2gcal'.format(msname, sourcename), refant=refant, apmode='ap', t=tbeam ) error += not cb.solve() error += not cb.close() return error def flag_antenna(msname, antenna, datacolumn='data', pol=None): """Flags an antenna in a measurement set using CASA. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. antenna : str The antenna to flag. If type *str*, this is the name of the antenna. If type *int*, the index of the antenna in the measurement set. datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. pol : str The polarization to flag. Must be `'A'` (which is mapped to polarization 'XX' of the CASA measurement set) or `'B'` (mapped to polarization 'YY'). Can also be `None`, for which both polarizations are flagged. Defaults to `None`. Returns ------- int The number of errors that occured during flagging. """ if isinstance(antenna, int): antenna = str(antenna) error = 0 ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() rec = {} rec['mode'] = 'manual' #rec['clipoutside'] = False rec['datacolumn'] = datacolumn rec['antenna'] = antenna if pol is not None: rec['correlation'] = 'XX' if pol == 'A' else 'YY' else: rec['correlation'] = 'XX,YY' error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() error += not ag.done() return error def flag_manual(msname, key, value, datacolumn='data', pol=None): """Flags a measurement set in CASA using a flagging string. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. key : str The CASA-interpreted flagging specifier. datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. pol : str The polarization to flag. Must be `'A'` (which is mapped to polarization 'XX' of the CASA measurement set) or `'B'` (mapped to polarization 'YY'). Can also be `None`, for which both polarizations are flagged. Defaults to `None`. Returns ------- int The number of errors that occured during flagging. """ error = 0 ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() rec = {} rec['mode'] = 'manual' rec['datacolumn'] = datacolumn rec[key] = value if pol is not None: rec['correlation'] = 'XX' if pol == 'A' else 'YY' else: rec['correlation'] = 'XX,YY' error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() error += not ag.done() return error def flag_baselines(msname, datacolumn='data', uvrange='2~15m'): """Flags an antenna in a measurement set using CASA. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. uvrange : str The uvrange to flag. Should be CASA-interpretable. Returns ------- int The number of errors that occured during flagging. """ error = 0 ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() rec = {} rec['mode'] = 'manual' rec['datacolumn'] = datacolumn rec['uvrange'] = uvrange error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() error += not ag.done() return error def reset_flags(msname, datacolumn=None): """Resets all flags in a measurement set, so that all data is unflagged. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. Returns ------- int The number of errors that occured during flagging. """ error = 0 ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() rec = {} rec['mode'] = 'unflag' if datacolumn is not None: rec['datacolumn'] = datacolumn rec['antenna'] = '' error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() error += not ag.done() return error def flag_zeros(msname, datacolumn='data'): """Flags all zeros in a measurement set. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. Returns ------- int The number of errors that occured during flagging. """ error = 0 ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() rec = {} rec['mode'] = 'clip' rec['clipzeros'] = True rec['datacolumn'] = datacolumn error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() error += not ag.done() return error # TODO: Change times to not use mjds, but mjd instead def flag_badtimes(msname, times, bad, nant, datacolumn='data', verbose=False): """Flags bad time bins for each antenna in a measurement set using CASA. Could use some work to select antennas to flag in a smarter way. Parameters ---------- msname : str The name of the measurement set. The MS `msname`.ms will be opened. times : ndarray A 1-D array of times, type float, seconds since MJD=0. Times should be equally spaced and cover the entire time range of the measurement set, but can be coarser than the resolution of the measurement set. bad : ndarray A 1-D boolean array with dimensions (len(`times`), `nant`). Should have a value of ``True`` if the corresponding timebins should be flagged. nant : int The number of antennas in the measurement set (includes ones not in the visibilities). datacolumn : str The column of the measurement set to flag. Options are ``'data'``, ``'model'``, ``'corrected'`` for the uncalibrated visibilities, the visibility model (used by CASA to calculate calibration solutions), the calibrated visibilities. Defaults to ``'data'``. verbose : boolean If ``True``, will print information about the antenna/time pairs being flagged. Defaults to ``False``. Returns ------- int The number of errors that occured during flagging. """ error = 0 tdiff = np.median(np.diff(times)) ag = cc.agentflagger() error += not ag.open('{0}.ms'.format(msname)) error += not ag.selectdata() for i in range(nant): rec = {} rec['mode'] = 'clip' rec['clipoutside'] = False rec['datacolumn'] = datacolumn rec['antenna'] = str(i) rec['polarization_type'] = 'XX' tstr = '' for j, timesj in enumerate(times): if bad[j]: if len(tstr) > 0: tstr += '; ' tstr += '{0}~{1}'.format(timesj-tdiff/2, timesj+tdiff/2) if verbose: print('For antenna {0}, flagged: {1}'.format(i, tstr)) error += not ag.parseagentparameters(rec) error += not ag.init() error += not ag.run() rec['polarization_type'] = 'YY' tstr = '' for j, timesj in enumerate(times): if bad[j]: if len(tstr) > 0: tstr += '; ' tstr += '{0}~{1}'.format(timesj-tdiff/2, timesj+tdiff/2) if verbose: print('For antenna {0}, flagged: {1}'.format(i, tstr)) error += not ag.parseagentparameters(rec) error +=
<reponame>faradayio/docker-crankshaft<gh_stars>10-100 import unittest import numpy as np import unittest # from mock_plpy import MockPlPy # plpy = MockPlPy() # # import sys # sys.modules['plpy'] = plpy from helper import plpy, fixture_file import crankshaft.space_time_dynamics as std from crankshaft import random_seeds import json class SpaceTimeTests(unittest.TestCase): """Testing class for Markov Functions.""" def setUp(self): plpy._reset() self.params = {"id_col": "cartodb_id", "time_cols": ['dec_2013', 'jan_2014', 'feb_2014'], "subquery": "SELECT * FROM a_list", "geom_col": "the_geom", "num_ngbrs": 321} self.neighbors_data = json.loads(open(fixture_file('neighbors_markov.json')).read()) self.markov_data = json.loads(open(fixture_file('markov.json')).read()) self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T self.transition_matrix = np.array([ [[ 0.96341463, 0.0304878 , 0.00609756, 0. , 0. ], [ 0.06040268, 0.83221477, 0.10738255, 0. , 0. ], [ 0. , 0.14 , 0.74 , 0.12 , 0. ], [ 0. , 0.03571429, 0.32142857, 0.57142857, 0.07142857], [ 0. , 0. , 0. , 0.16666667, 0.83333333]], [[ 0.79831933, 0.16806723, 0.03361345, 0. , 0. ], [ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ], [ 0.00537634, 0.06989247, 0.8655914 , 0.05913978, 0. ], [ 0. , 0. , 0.06372549, 0.90196078, 0.03431373], [ 0. , 0. , 0. , 0.19444444, 0.80555556]], [[ 0.84693878, 0.15306122, 0. , 0. , 0. ], [ 0.08133971, 0.78947368, 0.1291866 , 0. , 0. ], [ 0.00518135, 0.0984456 , 0.79274611, 0.0984456 , 0.00518135], [ 0. , 0. , 0.09411765, 0.87058824, 0.03529412], [ 0. , 0. , 0. , 0.10204082, 0.89795918]], [[ 0.8852459 , 0.09836066, 0. , 0.01639344, 0. ], [ 0.03875969, 0.81395349, 0.13953488, 0. , 0.00775194], [ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ], [ 0. , 0.02339181, 0.12865497, 0.75438596, 0.09356725], [ 0. , 0. , 0. , 0.09661836, 0.90338164]], [[ 0.33333333, 0.66666667, 0. , 0. , 0. ], [ 0.0483871 , 0.77419355, 0.16129032, 0.01612903, 0. ], [ 0.01149425, 0.16091954, 0.74712644, 0.08045977, 0. ], [ 0. , 0.01036269, 0.06217617, 0.89637306, 0.03108808], [ 0. , 0. , 0. , 0.02352941, 0.97647059]]] ) def test_spatial_markov(self): """Test Spatial Markov.""" data = [ { 'id': d['id'], 'attr1': d['y1995'], 'attr2': d['y1996'], 'attr3': d['y1997'], 'attr4': d['y1998'], 'attr5': d['y1999'], 'attr6': d['y2000'], 'attr7': d['y2001'], 'attr8': d['y2002'], 'attr9': d['y2003'], 'attr10': d['y2004'], 'attr11': d['y2005'], 'attr12': d['y2006'], 'attr13': d['y2007'], 'attr14': d['y2008'], 'attr15': d['y2009'], 'neighbors': d['neighbors'] } for d in self.neighbors_data] print(str(data[0])) plpy._define_result('select', data) random_seeds.set_random_seeds(1234) result = std.spatial_markov_trend('subquery', ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'], 5, 'knn', 5, 0, 'the_geom', 'cartodb_id') self.assertTrue(result != None) result = [(row[0], row[1], row[2], row[3], row[4]) for row in result] print result[0] expected = self.markov_data for ([res_trend, res_up, res_down, res_vol, res_id], [exp_trend, exp_up, exp_down, exp_vol, exp_id] ) in zip(result, expected): self.assertAlmostEqual(res_trend, exp_trend) def test_get_time_data(self): """Test get_time_data""" data = [ { 'attr1': d['y1995'], 'attr2': d['y1996'], 'attr3': d['y1997'], 'attr4': d['y1998'], 'attr5': d['y1999'], 'attr6': d['y2000'], 'attr7': d['y2001'], 'attr8': d['y2002'], 'attr9': d['y2003'], 'attr10': d['y2004'], 'attr11': d['y2005'], 'attr12': d['y2006'], 'attr13': d['y2007'], 'attr14': d['y2008'], 'attr15': d['y2009'] } for d in self.neighbors_data] result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009']) ## expected was prepared from PySAL example: ### f = ps.open(ps.examples.get_path("usjoin.csv")) ### pci = np.array([f.by_col[str(y)] for y in range(1995, 2010)]).transpose() ### rpci = pci / (pci.mean(axis = 0)) expected = np.array([[ 0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154, 0.83271652 , 0.83786314, 0.85012593, 0.85509656, 0.86416612, 0.87119375, 0.86302631 , 0.86148267, 0.86252252, 0.86746356], [ 0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388, 0.90746978 , 0.89830489, 0.89431991, 0.88924794, 0.89815176, 0.91832091, 0.91706054 , 0.90139505, 0.87897455, 0.86216858], [ 0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522, 0.78964559 , 0.80584442, 0.8084998, 0.82258551, 0.82668196, 0.82373724, 0.81814804 , 0.83675961, 0.83574199, 0.84647177], [ 1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841, 1.14506948 , 1.12151133, 1.11160697, 1.10888621, 1.11399806, 1.12168029, 1.13164797 , 1.12958508, 1.11371818, 1.09936775], [ 1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025, 1.16898201 , 1.17212488, 1.14752303, 1.11843284, 1.11024964, 1.11943471, 1.11736468 , 1.10863242, 1.09642516, 1.07762337], [ 1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684, 1.44184737 , 1.44782832, 1.41978227, 1.39092208, 1.4059372, 1.40788646, 1.44052766 , 1.45241216, 1.43306098, 1.4174431 ], [ 1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149, 1.10888138 , 1.11856629, 1.13062931, 1.11944984, 1.12446239, 1.11671008, 1.10880034 , 1.08401709, 1.06959206, 1.07875225], [ 1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545, 0.99854316 , 0.9880258, 0.99669587, 0.99327676, 1.01400905, 1.03176742, 1.040511 , 1.01749645, 0.9936394, 0.98279746], [ 0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845, 0.99127006 , 0.97925917, 0.9683482, 0.95335147, 0.93694787, 0.94308213, 0.92232874 , 0.91284091, 0.89689833, 0.88928858], [ 0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044, 0.8578708 , 0.86036185, 0.86107306, 0.8500772, 0.86981998, 0.86837929, 0.87204141 , 0.86633032, 0.84946077, 0.83287146], [ 1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624, 1.14450183 , 1.12349752, 1.12596664, 1.12213996, 1.1119989, 1.10257792, 1.10491258 , 1.11059842, 1.10509795, 1.10020097], [ 0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687, 0.95831051 , 0.94480909, 0.94804195, 0.95430286, 0.94103989, 0.92122519, 0.91010201 , 0.89280392, 0.89298243, 0.89165385], [ 0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647, 0.9480927 , 0.93539182, 0.95388718, 0.94597005, 0.96918424, 0.94781281, 0.93466815 , 0.94281559, 0.96520315, 0.96715441], [ 0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897, 0.98687073 , 0.99237486, 0.98209969, 0.9877653, 0.97399471, 0.96910087, 0.98416665 , 0.98423613, 0.99823861, 0.99545704], [ 0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012, 0.86191535 , 0.84981451, 0.85472102, 0.84564835, 0.83998883, 0.83478547, 0.82803648 , 0.8198736, 0.82265395, 0.8399404 ], [ 0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136, 0.82785597 , 0.86008789, 0.86776298, 0.86720209, 0.8676334, 0.89179317, 0.94202108 , 0.9422231, 0.93902708, 0.94479184], [ 0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238, 0.90906632 , 0.92693339, 0.93695966, 0.94242697, 0.94338265, 0.91981796, 0.91108804 , 0.90543476, 0.91737138, 0.94793657], [ 1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723, 1.20172869 , 1.21328691, 1.22624778, 1.22397075, 1.23857042, 1.24419893, 1.23929384 , 1.23418676, 1.23626739, 1.26754398], [ 1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667, 1.34790023 , 1.34399863, 1.32575181, 1.30795492, 1.30544841, 1.30303302, 1.32107766 , 1.32936244, 1.33001241, 1.33288462], [ 1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093, 1.05059016 , 1.03405057, 1.02747623, 1.03162734, 0.9961416, 0.97356208, 0.94241549 , 0.92754547, 0.92549227, 0.92138102], [ 1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264, 1.13889622 , 1.12442212, 1.13367018, 1.13982256, 1.14029944, 1.11979401, 1.10905389 , 1.10577769, 1.11166825, 1.09985155], [ 0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284, 0.74480073 , 0.76098396, 0.76156903, 0.76651952, 0.76533288, 0.78205934, 0.76842416 , 0.77487118, 0.77768683, 0.78801192], [ 0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803, 0.97370819 , 0.96419154, 0.97209861, 0.97441313, 0.96356162, 0.94745352, 0.93965462 , 0.93069645, 0.94020973, 0.94358232], [ 0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801, 0.80071489 , 0.83358256, 0.83451613, 0.85175032, 0.85954307, 0.86790024, 0.87170334 , 0.87863799, 0.87497981, 0.87888675], [ 0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619, 0.98733195 , 0.99644997, 0.99669587, 1.02559097, 1.01116651, 0.99988024, 0.97906749 , 0.99323123, 1.00204939, 0.99602148], [ 1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683, 1.08312397 , 1.05192626, 1.04230892, 1.05577278, 1.08569751, 1.12443486, 1.08891079 , 1.08603695, 1.05997314, 1.02160943], [ 1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272, 1.18257029 , 1.16226243, 1.16009196, 1.14467789, 1.14820235, 1.12386598, 1.12680236 , 1.12357937, 1.1159258, 1.12570828], [ 1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667, 1.31210239 , 1.29989156, 1.29203193, 1.27183516, 1.26830786, 1.2617743, 1.28656675 , 1.29734097, 1.29390205, 1.29345446], [ 0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864, 0.78772975 , 0.82848011, 0.8259679, 0.82435705, 0.83108634, 0.84373784, 0.83891093 , 0.84349247, 0.85637272, 0.86539395], [ 1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626, 1.2256767 , 1.21126648, 1.19377804, 1.18355337, 1.19674434, 1.21536573, 1.23653297 , 1.27962009, 1.27968392, 1.25907738], [ 0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282, 0.96480308 , 0.94686376, 0.93679073, 0.92540049, 0.92988835, 0.93442917, 0.92100464 , 0.91475304, 0.90249622, 0.9021363 ], [ 0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368, 0.88937573 , 0.894401, 0.90448993, 0.95495898, 0.92698333, 0.94745352, 0.92562488 , 0.96635366, 1.02520312, 1.0394296 ], [ 1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073, 1.00759019 , 0.99192968, 0.99747298, 0.99550759, 0.97583768, 0.9610168, 0.94779638 , 0.93759089, 0.93353431, 0.94121705], [ 0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613, 0.83434854 , 0.85813595, 0.84667961, 0.84374558, 0.85951183, 0.87194227, 0.89455097 , 0.88283929, 0.90349491, 0.90600675], [ 1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086, 1.00581626 , 0.98850522, 0.99291168, 0.98983209, 0.97511924, 0.96134615, 0.96382634 , 0.95011401, 0.9434686, 0.94637765], [ 1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857, 1.04800023 , 1.03024941, 1.04200483, 1.0402554, 1.03296979, 1.02191682, 1.02476275 , 1.02347523, 1.02517684, 1.04359571], [ 1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043, 1.0531801 , 1.07452771, 1.09383478, 1.1052447, 1.10322136, 1.09167939, 1.08772756 , 1.08859544, 1.09177338, 1.1096083 ], [ 0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809, 0.86287327 , 0.85169796, 0.85411285, 0.84886336, 0.84517414, 0.84843858, 0.84488343 , 0.83374329, 0.82812044, 0.82878599], [ 0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286, 0.92652175 , 0.94278865, 0.93682452, 0.98655146, 0.992237, 0.9798497, 0.93869677 , 0.96947771, 1.00362626, 0.98102351], [ 0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967, 0.93092109 , 0.92662519, 0.93412152, 0.93501274, 0.92879506, 0.92110542, 0.91035556 , 0.90430364, 0.89994694, 0.90073864], [ 0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824, 0.98882205 , 0.97662234, 0.95601578, 0.94905385, 0.94934888, 0.97152609, 0.97163004 , 0.9700702, 0.97158948, 0.95884908], [ 0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751, 0.84818516 , 0.85265681, 0.84502402, 0.82645665, 0.81743586, 0.83550406, 0.83338919 , 0.83511679, 0.82136617, 0.80921874], [ 0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441, 0.95440787 , 0.96364363, 0.96804412, 0.97136214, 0.97583768, 0.95571724, 0.96895368 , 0.97001634, 0.97082733, 0.98782366], [ 1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249, 1.10558188 , 1.1214086, 1.12292577, 1.13021031, 1.13342735, 1.14686068, 1.14502975
0x47FA MediaGaugeB251 = 0x47FB MediaGaugeB252 = 0x47FC MediaGaugeB253 = 0x47FD MediaGaugeB254 = 0x47FE MediaGaugeB255 = 0x47FF # MediaGaugeC List MediaGaugeC0 = 0x4800 MediaGaugeC1 = 0x4801 MediaGaugeC2 = 0x4802 MediaGaugeC3 = 0x4803 MediaGaugeC4 = 0x4804 MediaGaugeC5 = 0x4805 MediaGaugeC6 = 0x4806 MediaGaugeC7 = 0x4807 MediaGaugeC8 = 0x4808 MediaGaugeC9 = 0x4809 MediaGaugeC10 = 0x480A MediaGaugeC11 = 0x480B MediaGaugeC12 = 0x480C MediaGaugeC13 = 0x480D MediaGaugeC14 = 0x480E MediaGaugeC15 = 0x480F MediaGaugeC16 = 0x4810 MediaGaugeC17 = 0x4811 MediaGaugeC18 = 0x4812 MediaGaugeC19 = 0x4813 MediaGaugeC20 = 0x4814 MediaGaugeC21 = 0x4815 MediaGaugeC22 = 0x4816 MediaGaugeC23 = 0x4817 MediaGaugeC24 = 0x4818 MediaGaugeC25 = 0x4819 MediaGaugeC26 = 0x481A MediaGaugeC27 = 0x481B MediaGaugeC28 = 0x481C MediaGaugeC29 = 0x481D MediaGaugeC30 = 0x481E MediaGaugeC31 = 0x481F MediaGaugeC32 = 0x4820 MediaGaugeC33 = 0x4821 MediaGaugeC34 = 0x4822 MediaGaugeC35 = 0x4823 MediaGaugeC36 = 0x4824 MediaGaugeC37 = 0x4825 MediaGaugeC38 = 0x4826 MediaGaugeC39 = 0x4827 MediaGaugeC40 = 0x4828 MediaGaugeC41 = 0x4829 MediaGaugeC42 = 0x482A MediaGaugeC43 = 0x482B MediaGaugeC44 = 0x482C MediaGaugeC45 = 0x482D MediaGaugeC46 = 0x482E MediaGaugeC47 = 0x482F MediaGaugeC48 = 0x4830 MediaGaugeC49 = 0x4831 MediaGaugeC50 = 0x4832 MediaGaugeC51 = 0x4833 MediaGaugeC52 = 0x4834 MediaGaugeC53 = 0x4835 MediaGaugeC54 = 0x4836 MediaGaugeC55 = 0x4837 MediaGaugeC56 = 0x4838 MediaGaugeC57 = 0x4839 MediaGaugeC58 = 0x483A MediaGaugeC59 = 0x483B MediaGaugeC60 = 0x483C MediaGaugeC61 = 0x483D MediaGaugeC62 = 0x483E MediaGaugeC63 = 0x483F MediaGaugeC64 = 0x4840 MediaGaugeC65 = 0x4841 MediaGaugeC66 = 0x4842 MediaGaugeC67 = 0x4843 MediaGaugeC68 = 0x4844 MediaGaugeC69 = 0x4845 MediaGaugeC70 = 0x4846 MediaGaugeC71 = 0x4847 MediaGaugeC72 = 0x4848 MediaGaugeC73 = 0x4849 MediaGaugeC74 = 0x484A MediaGaugeC75 = 0x484B MediaGaugeC76 = 0x484C MediaGaugeC77 = 0x484D MediaGaugeC78 = 0x484E MediaGaugeC79 = 0x484F MediaGaugeC80 = 0x4850 MediaGaugeC81 = 0x4851 MediaGaugeC82 = 0x4852 MediaGaugeC83 = 0x4853 MediaGaugeC84 = 0x4854 MediaGaugeC85 = 0x4855 MediaGaugeC86 = 0x4856 MediaGaugeC87 = 0x4857 MediaGaugeC88 = 0x4858 MediaGaugeC89 = 0x4859 MediaGaugeC90 = 0x485A MediaGaugeC91 = 0x485B MediaGaugeC92 = 0x485C MediaGaugeC93 = 0x485D MediaGaugeC94 = 0x485E MediaGaugeC95 = 0x485F MediaGaugeC96 = 0x4860 MediaGaugeC97 = 0x4861 MediaGaugeC98 = 0x4862 MediaGaugeC99 = 0x4863 MediaGaugeC100 = 0x4864 MediaGaugeC101 = 0x4865 MediaGaugeC102 = 0x4866 MediaGaugeC103 = 0x4867 MediaGaugeC104 = 0x4868 MediaGaugeC105 = 0x4869 MediaGaugeC106 = 0x486A MediaGaugeC107 = 0x486B MediaGaugeC108 = 0x486C MediaGaugeC109 = 0x486D MediaGaugeC110 = 0x486E MediaGaugeC111 = 0x486F MediaGaugeC112 = 0x4870 MediaGaugeC113 = 0x4871 MediaGaugeC114 = 0x4872 MediaGaugeC115 = 0x4873 MediaGaugeC116 = 0x4874 MediaGaugeC117 = 0x4875 MediaGaugeC118 = 0x4876 MediaGaugeC119 = 0x4877 MediaGaugeC120 = 0x4878 MediaGaugeC121 = 0x4879 MediaGaugeC122 = 0x487A MediaGaugeC123 = 0x487B MediaGaugeC124 = 0x487C MediaGaugeC125 = 0x487D MediaGaugeC126 = 0x487E MediaGaugeC127 = 0x487F MediaGaugeC128 = 0x4880 MediaGaugeC129 = 0x4881 MediaGaugeC130 = 0x4882 MediaGaugeC131 = 0x4883 MediaGaugeC132 = 0x4884 MediaGaugeC133 = 0x4885 MediaGaugeC134 = 0x4886 MediaGaugeC135 = 0x4887 MediaGaugeC136 = 0x4888 MediaGaugeC137 = 0x4889 MediaGaugeC138 = 0x488A MediaGaugeC139 = 0x488B MediaGaugeC140 = 0x488C MediaGaugeC141 = 0x488D MediaGaugeC142 = 0x488E MediaGaugeC143 = 0x488F MediaGaugeC144 = 0x4890 MediaGaugeC145 = 0x4891 MediaGaugeC146 = 0x4892 MediaGaugeC147 = 0x4893 MediaGaugeC148 = 0x4894 MediaGaugeC149 = 0x4895 MediaGaugeC150 = 0x4896 MediaGaugeC151 = 0x4897 MediaGaugeC152 = 0x4898 MediaGaugeC153 = 0x4899 MediaGaugeC154 = 0x489A MediaGaugeC155 = 0x489B MediaGaugeC156 = 0x489C MediaGaugeC157 = 0x489D MediaGaugeC158 = 0x489E MediaGaugeC159 = 0x489F MediaGaugeC160 = 0x48A0 MediaGaugeC161 = 0x48A1 MediaGaugeC162 = 0x48A2 MediaGaugeC163 = 0x48A3 MediaGaugeC164 = 0x48A4 MediaGaugeC165 = 0x48A5 MediaGaugeC166 = 0x48A6 MediaGaugeC167 = 0x48A7 MediaGaugeC168 = 0x48A8 MediaGaugeC169 = 0x48A9 MediaGaugeC170 = 0x48AA MediaGaugeC171 = 0x48AB MediaGaugeC172 = 0x48AC MediaGaugeC173 = 0x48AD MediaGaugeC174 = 0x48AE MediaGaugeC175 = 0x48AF MediaGaugeC176 = 0x48B0 MediaGaugeC177 = 0x48B1 MediaGaugeC178 = 0x48B2 MediaGaugeC179 = 0x48B3 MediaGaugeC180 = 0x48B4 MediaGaugeC181 = 0x48B5 MediaGaugeC182 = 0x48B6 MediaGaugeC183 = 0x48B7 MediaGaugeC184 = 0x48B8 MediaGaugeC185 = 0x48B9 MediaGaugeC186 = 0x48BA MediaGaugeC187 = 0x48BB MediaGaugeC188 = 0x48BC MediaGaugeC189 = 0x48BD MediaGaugeC190 = 0x48BE MediaGaugeC191 = 0x48BF MediaGaugeC192 = 0x48C0 MediaGaugeC193 = 0x48C1 MediaGaugeC194 = 0x48C2 MediaGaugeC195 = 0x48C3 MediaGaugeC196 = 0x48C4 MediaGaugeC197 = 0x48C5 MediaGaugeC198 = 0x48C6 MediaGaugeC199 = 0x48C7 MediaGaugeC200 = 0x48C8 MediaGaugeC201 = 0x48C9 MediaGaugeC202 = 0x48CA MediaGaugeC203 = 0x48CB MediaGaugeC204 = 0x48CC MediaGaugeC205 = 0x48CD MediaGaugeC206 = 0x48CE MediaGaugeC207 = 0x48CF MediaGaugeC208 = 0x48D0 MediaGaugeC209 = 0x48D1 MediaGaugeC210 = 0x48D2 MediaGaugeC211 = 0x48D3 MediaGaugeC212 = 0x48D4 MediaGaugeC213 = 0x48D5 MediaGaugeC214 = 0x48D6 MediaGaugeC215 = 0x48D7 MediaGaugeC216 = 0x48D8 MediaGaugeC217 = 0x48D9 MediaGaugeC218 = 0x48DA MediaGaugeC219 = 0x48DB MediaGaugeC220 = 0x48DC MediaGaugeC221 = 0x48DD MediaGaugeC222 = 0x48DE MediaGaugeC223 = 0x48DF MediaGaugeC224 = 0x48E0 MediaGaugeC225 = 0x48E1 MediaGaugeC226 = 0x48E2 MediaGaugeC227 = 0x48E3 MediaGaugeC228 = 0x48E4 MediaGaugeC229 = 0x48E5 MediaGaugeC230 = 0x48E6 MediaGaugeC231 = 0x48E7 MediaGaugeC232 = 0x48E8 MediaGaugeC233 = 0x48E9 MediaGaugeC234 = 0x48EA MediaGaugeC235 = 0x48EB MediaGaugeC236 = 0x48EC MediaGaugeC237 = 0x48ED MediaGaugeC238 = 0x48EE MediaGaugeC239 = 0x48EF MediaGaugeC240 = 0x48F0 MediaGaugeC241 = 0x48F1 MediaGaugeC242 = 0x48F2 MediaGaugeC243 = 0x48F3 MediaGaugeC244 = 0x48F4 MediaGaugeC245 = 0x48F5 MediaGaugeC246 = 0x48F6 MediaGaugeC247 = 0x48F7 MediaGaugeC248 = 0x48F8 MediaGaugeC249 = 0x48F9 MediaGaugeC250 = 0x48FA MediaGaugeC251 = 0x48FB MediaGaugeC252 = 0x48FC MediaGaugeC253 = 0x48FD MediaGaugeC254 = 0x48FE MediaGaugeC255 = 0x48FF # MediaGaugeD List MediaGaugeD0 = 0x4900 MediaGaugeD1 = 0x4901 MediaGaugeD2 = 0x4902 MediaGaugeD3 = 0x4903 MediaGaugeD4 = 0x4904 MediaGaugeD5 = 0x4905 MediaGaugeD6 = 0x4906 MediaGaugeD7 = 0x4907 MediaGaugeD8 = 0x4908 MediaGaugeD9 = 0x4909 MediaGaugeD10 = 0x490A MediaGaugeD11 = 0x490B MediaGaugeD12 = 0x490C MediaGaugeD13 = 0x490D MediaGaugeD14 = 0x490E MediaGaugeD15 = 0x490F MediaGaugeD16 = 0x4910 MediaGaugeD17 = 0x4911 MediaGaugeD18 = 0x4912 MediaGaugeD19 = 0x4913 MediaGaugeD20 = 0x4914 MediaGaugeD21 = 0x4915 MediaGaugeD22 = 0x4916 MediaGaugeD23 = 0x4917 MediaGaugeD24 = 0x4918 MediaGaugeD25 = 0x4919 MediaGaugeD26 = 0x491A MediaGaugeD27 = 0x491B MediaGaugeD28 = 0x491C MediaGaugeD29 = 0x491D MediaGaugeD30 = 0x491E MediaGaugeD31 = 0x491F MediaGaugeD32 = 0x4920 MediaGaugeD33 = 0x4921 MediaGaugeD34 = 0x4922 MediaGaugeD35 = 0x4923 MediaGaugeD36 = 0x4924 MediaGaugeD37 = 0x4925 MediaGaugeD38 = 0x4926 MediaGaugeD39 = 0x4927 MediaGaugeD40 = 0x4928 MediaGaugeD41 = 0x4929 MediaGaugeD42 = 0x492A MediaGaugeD43 = 0x492B MediaGaugeD44 = 0x492C MediaGaugeD45 = 0x492D MediaGaugeD46 = 0x492E MediaGaugeD47 = 0x492F MediaGaugeD48 = 0x4930 MediaGaugeD49 = 0x4931 MediaGaugeD50 = 0x4932 MediaGaugeD51 = 0x4933 MediaGaugeD52 = 0x4934 MediaGaugeD53 = 0x4935 MediaGaugeD54 = 0x4936 MediaGaugeD55 = 0x4937 MediaGaugeD56 = 0x4938 MediaGaugeD57 = 0x4939 MediaGaugeD58 = 0x493A MediaGaugeD59 = 0x493B MediaGaugeD60 = 0x493C MediaGaugeD61 = 0x493D MediaGaugeD62 = 0x493E MediaGaugeD63 = 0x493F MediaGaugeD64 = 0x4940 MediaGaugeD65 = 0x4941 MediaGaugeD66 = 0x4942 MediaGaugeD67 = 0x4943 MediaGaugeD68 = 0x4944 MediaGaugeD69 = 0x4945 MediaGaugeD70 = 0x4946 MediaGaugeD71 = 0x4947 MediaGaugeD72 = 0x4948 MediaGaugeD73 = 0x4949 MediaGaugeD74 = 0x494A MediaGaugeD75 = 0x494B MediaGaugeD76 = 0x494C MediaGaugeD77 = 0x494D MediaGaugeD78 = 0x494E MediaGaugeD79 = 0x494F MediaGaugeD80 = 0x4950 MediaGaugeD81 = 0x4951 MediaGaugeD82 = 0x4952 MediaGaugeD83 = 0x4953 MediaGaugeD84 = 0x4954 MediaGaugeD85 = 0x4955 MediaGaugeD86 = 0x4956 MediaGaugeD87 = 0x4957 MediaGaugeD88 = 0x4958 MediaGaugeD89 = 0x4959 MediaGaugeD90 = 0x495A MediaGaugeD91 = 0x495B MediaGaugeD92 = 0x495C MediaGaugeD93 = 0x495D MediaGaugeD94 = 0x495E MediaGaugeD95 = 0x495F MediaGaugeD96 = 0x4960 MediaGaugeD97 = 0x4961 MediaGaugeD98 = 0x4962 MediaGaugeD99 = 0x4963 MediaGaugeD100 = 0x4964 MediaGaugeD101 = 0x4965 MediaGaugeD102 = 0x4966 MediaGaugeD103 = 0x4967 MediaGaugeD104 = 0x4968 MediaGaugeD105 = 0x4969 MediaGaugeD106 = 0x496A MediaGaugeD107 = 0x496B MediaGaugeD108 = 0x496C MediaGaugeD109 = 0x496D MediaGaugeD110 = 0x496E MediaGaugeD111 = 0x496F MediaGaugeD112 = 0x4970 MediaGaugeD113 = 0x4971 MediaGaugeD114 = 0x4972 MediaGaugeD115 = 0x4973 MediaGaugeD116 = 0x4974 MediaGaugeD117 = 0x4975 MediaGaugeD118 = 0x4976 MediaGaugeD119 = 0x4977 MediaGaugeD120 = 0x4978 MediaGaugeD121 = 0x4979 MediaGaugeD122 = 0x497A MediaGaugeD123 = 0x497B MediaGaugeD124 = 0x497C MediaGaugeD125 = 0x497D MediaGaugeD126 = 0x497E MediaGaugeD127 = 0x497F MediaGaugeD128 = 0x4980 MediaGaugeD129 = 0x4981 MediaGaugeD130 = 0x4982 MediaGaugeD131 = 0x4983 MediaGaugeD132 = 0x4984 MediaGaugeD133 = 0x4985 MediaGaugeD134 = 0x4986 MediaGaugeD135 = 0x4987 MediaGaugeD136 = 0x4988 MediaGaugeD137 = 0x4989 MediaGaugeD138 = 0x498A MediaGaugeD139 = 0x498B MediaGaugeD140 = 0x498C MediaGaugeD141 = 0x498D MediaGaugeD142 = 0x498E MediaGaugeD143 = 0x498F MediaGaugeD144 = 0x4990 MediaGaugeD145 = 0x4991 MediaGaugeD146 = 0x4992 MediaGaugeD147 = 0x4993 MediaGaugeD148 = 0x4994 MediaGaugeD149 = 0x4995 MediaGaugeD150 = 0x4996 MediaGaugeD151 = 0x4997 MediaGaugeD152 = 0x4998 MediaGaugeD153 = 0x4999 MediaGaugeD154 = 0x499A MediaGaugeD155 = 0x499B MediaGaugeD156 = 0x499C MediaGaugeD157 = 0x499D MediaGaugeD158 = 0x499E MediaGaugeD159 = 0x499F MediaGaugeD160 = 0x49A0 MediaGaugeD161 = 0x49A1 MediaGaugeD162 = 0x49A2 MediaGaugeD163
<reponame>Amrib24/aws-secure-environment-accelerator #!/usr/bin/env python import os import boto3 import botocore import json import threading import time import sys import argparse import base64 import re from tabulate import tabulate from os import path parser = argparse.ArgumentParser( description="A development script that cleans up resources deployed by the accelerator. Use Administrator AWS credentials in the root account when running this script." ) parser.add_argument('--AcceleratorPrefix', default='ASEA', help='The value set in AcceleratorPrefix') organizations = boto3.client("organizations") sts = boto3.client("sts") def get_accounts(): print("Accounts:") all_aws_accounts = [] paginator = organizations.get_paginator('list_accounts') page_iterator = paginator.paginate() for aws_accounts in page_iterator: tmp = map(lambda x: [x["Id"], x["Name"]], aws_accounts["Accounts"]) print(tabulate(list(tmp), headers=["Id", "Name"])) all_aws_accounts = all_aws_accounts + list(aws_accounts["Accounts"]) return all_aws_accounts def build_stack_data(accounts, regions, admin_role_name, root_account_name): print("Stacks:") result = {} result["Accounts"] = [] result["Regions"] = regions all_stacks = {} for account in accounts: cloudformation = None roleArn = "arn:aws:iam::{accountId}:role/{roleName}".format(accountId=account["Id"], roleName=admin_role_name) result["Accounts"].append( { "AccountId": account["Id"], "AccountName": account["Name"], "AdminRoleArn": roleArn } ) credentials = sts.assume_role( RoleArn=roleArn, RoleSessionName="AcceleratorCleanupScript" ) region_stacks = {} for region in regions: print("Processing {} - {}".format(account["Name"], region)) cloudformation = boto3.client("cloudformation", region_name=region, aws_access_key_id=credentials["Credentials"]["AccessKeyId"], aws_secret_access_key=credentials["Credentials"]["SecretAccessKey"], aws_session_token=credentials["Credentials"]["SessionToken"] ) stacks = cloudformation.list_stacks( StackStatusFilter=['CREATE_COMPLETE', 'UPDATE_COMPLETE', 'DELETE_FAILED', 'DELETE_IN_PROGRESS', 'ROLLBACK_COMPLETE', 'ROLLBACK_FAILED'] ) region_stacks[region] = list(map(lambda x: {"StackName":x["StackName"],"StackId":x["StackId"], "StackStatus":x["StackStatus"]}, stacks["StackSummaries"])) tmp = map(lambda x: [x["StackName"], "True" if "ParentId" in x else "", region, account["Id"], x["StackStatus"]], stacks["StackSummaries"]) print(tabulate(list(tmp), headers=["StackName", "IsNested", "Region", "AccountId", "StackStatus"])) print() all_stacks[account["Id"]] = region_stacks result["AllStacks"] = all_stacks with open('stacks.json', 'w') as outfile: json.dump(result, outfile) return all_stacks def process_delete(all_stacks): phases = [ "-Phase5", "Phase4-HostedZonesAssc1", "Phase4-RulesAsscociation1", "-Phase4", "Phase3-CentralVpcResolverEndpoints", "-Phase3", "Phase2-VpcEndpoints1", "-Phase2", "-Phase1", "-Phase0", "-Phase-1", "-InitialSetup", "{}-CDKToolkit".format(AcceleratorPrefix), "{}-PipelineRole".format(AcceleratorPrefix), ] # Process one phase at a time, but to all accounts through all regions # For each Phase # For each Account # For each Region # Look for a stack with name ending in the phase. What status is it in? # Does it contain any S3 buckets? If yes, delete them first # Wait until all done for phase in phases: print("\n\nProcessing '{}'".format(phase)) threads = list() try: print("Waiting for all Phase stack cleanup threads to finish...") for account in all_stacks["Accounts"]: for region in all_stacks["Regions"]: for stack in all_stacks["AllStacks"][account["AccountId"]][region]: if stack["StackName"].endswith(phase): t = threading.Thread(target=thread_cloudformation_delete, args=(phase, region, stack["StackId"], account["AdminRoleArn"], account["AccountId"])) threads.append(t) t.start() except: print("Error!", sys.exc_info()[0], "occurred.") finally: for index, thread in enumerate(threads): thread.join() print("Done. All Phase stack cleanup threads finished.") print("Done processing '{}'".format(phase)) def thread_cloudformation_delete(phase, region, stackid, admin_role, accountId): print("TID-{} - Processing '{}' in {} {}".format(threading.get_ident(), stackid, accountId, region)) sts = boto3.client("sts") try: credentials = sts.assume_role( RoleArn=admin_role, RoleSessionName="AcceleratorCleanupScript" ) cloudformation = boto3.client("cloudformation", region_name=region, aws_access_key_id=credentials["Credentials"]["AccessKeyId"], aws_secret_access_key=credentials["Credentials"]["SecretAccessKey"], aws_session_token=credentials["Credentials"]["SessionToken"] ) #Are there any S3 buckets? resources = cloudformation.describe_stack_resources(StackName=stackid) for resource in resources["StackResources"]: if resource["ResourceType"] == "AWS::S3::Bucket" and resource["ResourceStatus"] != "DELETE_COMPLETE": #delete all bucket contents first print("TID-{} - S3 Bucket Resource '{}'".format(threading.get_ident(), resource["PhysicalResourceId"])) delete_s3_bucket(region, credentials["Credentials"], resource["PhysicalResourceId"]) elif resource["ResourceType"] == "AWS::ElasticLoadBalancingV2::LoadBalancer" and resource["ResourceStatus"] != "DELETE_COMPLETE": print("TID-{} - Checking ELB termination protection '{}'".format(threading.get_ident(), resource["PhysicalResourceId"])) remove_elb_termination_block(region, credentials["Credentials"], resource["PhysicalResourceId"]) elif resource["ResourceType"] == "AWS::ECR::Repository" and resource["ResourceStatus"] != "DELETE_COMPLETE": print("TID-{} - ECR Resource '{}".format(threading.get_ident(), resource["PhysicalResourceId"])) remove_ecr_repository(region, credentials["Credentials"], resource["PhysicalResourceId"]) elif resource["ResourceType"] == "AWS::IAM::Role" and resource["ResourceStatus"] != "DELETE_COMPLETE": print("TID-{} - IAM Role Permission Boundary check '{}'".format(threading.get_ident(), resource["PhysicalResourceId"])) remove_permission_boundaries(region, credentials["Credentials"], resource["PhysicalResourceId"]) remove_permissions_special_case(region, credentials["Credentials"], resource["PhysicalResourceId"]) stack = cloudformation.describe_stacks( StackName=stackid ) for index, s in enumerate(stack["Stacks"]): stack_name = s["StackId"] if s["StackStatus"] != "DELETE_COMPLETE": print("TID-{} - Deleting Stack Region: {}, StackName: {}, StackStatus: {}".format( threading.get_ident(),region, stack_name, s["StackStatus"])) cloudformation.update_termination_protection( EnableTerminationProtection=False, StackName=stack_name ) waiter = cloudformation.get_waiter('stack_delete_complete') cloudformation.delete_stack(StackName=stack_name) waiter.wait(StackName=stack_name) #Did the stack delete fail? stack_failed = stack_exists(cloudformation, stack_name, 'DELETE_FAILED') print("TID-{} - Done. Deleting Stack Region: {}, StackName: {}, StackStatus: {}".format(threading.get_ident(), region, stack_name, s["StackStatus"])) except botocore.exceptions.ClientError as err: print('TID-{} Error Message: {}'.format(threading.get_ident(), err.response['Error']['Message'])) def stack_exists(client, name, required_status = 'CREATE_COMPLETE'): try: data = client.describe_stacks(StackName = name) except botocore.exceptions.ClientError: return False return data['Stacks'][0]['StackStatus'] == required_status def remove_ecr_repository(region, account_credentials, ecr_id): ecr = boto3.client('ecr', region_name=region, aws_access_key_id=account_credentials['AccessKeyId'], aws_secret_access_key=account_credentials['SecretAccessKey'], aws_session_token=account_credentials['SessionToken'] ) print("TID-{} - Deleting ECR Repository '{}'".format(threading.get_ident(), ecr_id)) ecr.delete_repository(repositoryName=ecr_id, force=True) print("TID-{} - Deleted ECR Repository '{}'".format(threading.get_ident(), ecr_id)) def remove_permissions_special_case(region, account_credentials, role_id): if role_id.endswith("-Rsyslog-Role") or role_id.endswith("Firewall-Role"): iam = boto3.client('iam', region_name=region, aws_access_key_id=account_credentials['AccessKeyId'], aws_secret_access_key=account_credentials['SecretAccessKey'], aws_session_token=account_credentials['SessionToken'] ) managed_policies = iam.list_attached_role_policies(RoleName=role_id) for mpolicy in managed_policies['AttachedPolicies']: print("TID-{} - Detaching policy {} from {}".format(threading.get_ident(), mpolicy['PolicyName'], role_id)) iam.detach_role_policy(RoleName=role_id, PolicyArn=mpolicy['PolicyArn']) print("TID-{} - Detached policy {} from {}".format(threading.get_ident(), mpolicy['PolicyName'], role_id)) inline_policies = iam.list_role_policies(RoleName=role_id) for ipolicy in inline_policies['PolicyNames']: print("TID-{} - Deleting inline policy {} from {}".format(threading.get_ident(), ipolicy, role_id)) iam.delete_role_policy(RoleName=role_id, PolicyName=ipolicy) print("TID-{} - Deleted inline policy {} from {}".format(threading.get_ident(), ipolicy, role_id)) def remove_permission_boundaries(region, account_credentials, role_id): iam = boto3.client('iam', region_name=region, aws_access_key_id=account_credentials['AccessKeyId'], aws_secret_access_key=account_credentials['SecretAccessKey'], aws_session_token=account_credentials['SessionToken'] ) role = iam.get_role(RoleName=role_id)['Role'] # Is there a permission boundary if 'PermissionsBoundary' in role: print("TID-{} - Removing permission boundary from {}".format(threading.get_ident(), role_id)) iam.delete_role_permissions_boundary(RoleName=role_id) print("TID-{} - Removed permission boundary from {}".format(threading.get_ident(), role_id)) else: print("TID-{} - Role '{}' has no permission boundary".format(threading.get_ident(), role_id)) def remove_elb_termination_block(region, account_credentials, elb_id): ec2 = boto3.client('elbv2', region_name=region, aws_access_key_id=account_credentials['AccessKeyId'], aws_secret_access_key=account_credentials['SecretAccessKey'], aws_session_token=account_credentials['SessionToken'] ) elb_attr = ec2.describe_load_balancer_attributes(LoadBalancerArn=elb_id) for attr in elb_attr["Attributes"]: if attr["Key"] == "deletion_protection.enabled" and bool(attr["Value"]) == True: attr["Value"] = 'false' ec2.modify_load_balancer_attributes( LoadBalancerArn=elb_id, Attributes=[attr] ) print("TID-{} - Removed deletion protection for {}".format(threading.get_ident(), elb_id)) def delete_s3_bucket(region, account_credentials, bucket_name): s3 = boto3.resource('s3', region_name=region, aws_access_key_id=account_credentials['AccessKeyId'], aws_secret_access_key=account_credentials['SecretAccessKey'], aws_session_token=account_credentials['SessionToken'] ) s3_bucket = s3.Bucket(bucket_name) if s3_bucket in s3.buckets.all(): print("TID-{} - Emptying bucket (this may take a while) {}".format(threading.get_ident(), bucket_name)) s3_bucket.object_versions.all().delete() print("TID-{} Done. Emptying bucket (this may take a while) {}".format(threading.get_ident(), bucket_name)) print('TID-{} Deleting bucket {}'.format(threading.get_ident(), bucket_name)) try: s3_bucket.delete() print('TID-{} Done. Deleting bucket {}'.format(threading.get_ident(), bucket_name)) except botocore.exceptions.ClientError as e: print("TID-{} Error while trying to delete S3 bucket {}, it should be empty by now so if you see BucketNotEmpty check the bucket in AWS console and delete it manually".format(threading.get_ident(), bucket_name)) print(e) def delete_scps(credentials, region): organizations = boto3.client("organizations", region_name=region, aws_access_key_id=credentials["Credentials"]["AccessKeyId"], aws_secret_access_key=credentials["Credentials"]["SecretAccessKey"], aws_session_token=credentials["Credentials"]["SessionToken"] ) scps = organizations.list_policies( Filter='SERVICE_CONTROL_POLICY' ) print("Deleting SCPs...") for scp in scps["Policies"]: scp_name = scp["Name"] if scp_name.startswith(AcceleratorPrefix): print("Detaching SCP '{}'".format(scp["Name"])) targets = organizations.list_targets_for_policy(PolicyId=scp["Id"]) for target in targets["Targets"]: organizations.detach_policy( PolicyId=scp["Id"], TargetId=target["TargetId"] ) print("Done. Detaching SCP '{}'".format(scp["Name"])) print("Deleting SCP '{}'".format(scp["Name"])) organizations.delete_policy( PolicyId=scp["Id"] ) print("Done. Deleting SCP '{}'".format(scp["Name"])) print("Done. Deleting SCPs...") def root_cleanup(credentials, region): print("delete stack sets") cloudformation = boto3.client("cloudformation", region_name=region, aws_access_key_id=credentials["Credentials"]["AccessKeyId"], aws_secret_access_key=credentials["Credentials"]["SecretAccessKey"], aws_session_token=credentials["Credentials"]["SessionToken"] ) stacksets = cloudformation.list_stack_sets() for stackset in stacksets["Summaries"]: name = stackset["StackSetName"] if name.startswith(AcceleratorPrefix): instances = cloudformation.list_stack_instances(StackSetName=name) instances_accounts = list(map(lambda x: x["Account"], instances["Summaries"])) instances_regions = list(set(map(lambda x: x["Region"], instances["Summaries"]))) if len(instances_accounts) > 0: cloudformation.delete_stack_instances( StackSetName=name, RetainStacks=False, Accounts=instances_accounts, Regions=instances_regions ) while True: instances = cloudformation.list_stack_instances(StackSetName=name) num = len(instances["Summaries"]) print("Instances left: {}".format(num)) if num == 0: break time.sleep(15) waiter = cloudformation.get_waiter('stack_delete_complete') cloudformation.delete_stack(StackName=name) waiter.wait(StackName=name) print("Done. Stack {} deleted".format(name)) cloud_trail_name = AcceleratorPrefix + "-Org-Trail" cloudtrail = boto3.client("cloudtrail", region_name=region, aws_access_key_id=credentials["Credentials"]["AccessKeyId"], aws_secret_access_key=credentials["Credentials"]["SecretAccessKey"], aws_session_token=credentials["Credentials"]["SessionToken"] ) print("Deleting {}".format(cloud_trail_name)) try: cloudtrail.delete_trail(Name=cloud_trail_name) print("Done. Deleting {}".format(cloud_trail_name)) except botocore.exceptions.ClientError as err: print('Error Message: {}'.format(err.response['Error']['Message'])) cleanup_ecr(credentials, region) cleanup_dynamodb(credentials, region) def cleanup(): print("cleanup") supported_regions = [] admin_role = "" root_account_name = "" root_region = "" security_account_name = "" isALZorCT = False with open('config.json') as json_file: config = json.load(json_file) supported_regions = config["global-options"]["supported-regions"] admin_role = config["global-options"]["organization-admin-role"] config_root_account_name = config["global-options"]["aws-org-management"]["account"] root_region = config["global-options"]["aws-org-management"]["region"] if root_region == "${HOME_REGION}": my_session = boto3.session.Session() root_region = my_session.region_name print("Setting region to '{}'".format(root_region)) config_security_account_name = config["global-options"]["central-security-services"]["account"] root_account_name = config["mandatory-account-configs"][config_root_account_name]["account-name"] security_account_name = config["mandatory-account-configs"][config_security_account_name]["account-name"] isALZorCT = config["global-options"]["ct-baseline"] or ("alz-baseline" in config["global-options"] and config["global-options"]["alz-baseline"]) if isALZorCT: print("This cleanup script is designed to retract all components deployed in the accelerator and is intended for development use. It isn't tested for cleanup with baseline configurations.") return print("RootAccount: {}", root_account_name) all_stacks = None if path.exists("stacks.json"): print("Loading stacks.json...") with open('stacks.json') as stacks_json_file: all_stacks = json.load(stacks_json_file) print("Done") else: aws_accounts = get_accounts() all_stacks = build_stack_data(aws_accounts, supported_regions, admin_role, root_account_name) print("Review stacks.json") print("*** SSO must be cleaned up manually before continuing ***") return root_admin_arn_role = None for a in all_stacks["Accounts"]: if a["AccountName"] == root_account_name: root_admin_arn_role = a["AdminRoleArn"] root_credentials = sts.assume_role( RoleArn=root_admin_arn_role, RoleSessionName="AcceleratorCleanupScript" ) delete_scps(root_credentials, root_region) cleanup_route53_resolver_load_config() cleanup_directory_sharing_load_config() process_delete(all_stacks) root_cleanup(root_credentials, root_region) security_credentials = None for a in all_stacks["Accounts"]: if a["AccountName"] == security_account_name: security_role_arn = a["AdminRoleArn"] security_credentials = sts.assume_role( RoleArn=security_role_arn, RoleSessionName="AcceleratorCleanupScript" ) break if security_credentials is not None:
<reponame>checkly/pulumi-checkly # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['CheckGroupArgs', 'CheckGroup'] @pulumi.input_type class CheckGroupArgs: def __init__(__self__, *, activated: pulumi.Input[bool], concurrency: pulumi.Input[int], locations: pulumi.Input[Sequence[pulumi.Input[str]]], alert_channel_subscriptions: Optional[pulumi.Input[Sequence[pulumi.Input['CheckGroupAlertChannelSubscriptionArgs']]]] = None, alert_settings: Optional[pulumi.Input['CheckGroupAlertSettingsArgs']] = None, api_check_defaults: Optional[pulumi.Input['CheckGroupApiCheckDefaultsArgs']] = None, double_check: Optional[pulumi.Input[bool]] = None, environment_variables: Optional[pulumi.Input[Mapping[str, Any]]] = None, local_setup_script: Optional[pulumi.Input[str]] = None, local_teardown_script: Optional[pulumi.Input[str]] = None, muted: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, runtime_id: Optional[pulumi.Input[str]] = None, setup_snippet_id: Optional[pulumi.Input[int]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, teardown_snippet_id: Optional[pulumi.Input[int]] = None, use_global_alert_settings: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a CheckGroup resource. :param pulumi.Input[bool] activated: Determines if the checks in the group are running or not. :param pulumi.Input[int] concurrency: Determines how many checks are run concurrently when triggering a check group from CI/CD or through the API. :param pulumi.Input[Sequence[pulumi.Input[str]]] locations: An array of one or more data center locations where to run the checks. :param pulumi.Input[bool] double_check: Setting this to `true` will trigger a retry when a check fails from the failing region and another, randomly selected region before marking the check as failed. :param pulumi.Input[Mapping[str, Any]] environment_variables: Key/value pairs for setting environment variables during check execution. These are only relevant for browser checks. Use global environment variables whenever possible. :param pulumi.Input[str] local_setup_script: A valid piece of Node.js code to run in the setup phase of an API check in this group. :param pulumi.Input[str] local_teardown_script: A valid piece of Node.js code to run in the teardown phase of an API check in this group. :param pulumi.Input[bool] muted: Determines if any notifications will be sent out when a check in this group fails and/or recovers. :param pulumi.Input[str] name: The name of the check group. :param pulumi.Input[str] runtime_id: The id of the runtime to use for this group. :param pulumi.Input[int] setup_snippet_id: An ID reference to a snippet to use in the setup phase of an API check. :param pulumi.Input[Sequence[pulumi.Input[str]]] tags: Tags for organizing and filtering checks. :param pulumi.Input[int] teardown_snippet_id: An ID reference to a snippet to use in the teardown phase of an API check. :param pulumi.Input[bool] use_global_alert_settings: When true, the account level alert settings will be used, not the alert setting defined on this check group. """ pulumi.set(__self__, "activated", activated) pulumi.set(__self__, "concurrency", concurrency) pulumi.set(__self__, "locations", locations) if alert_channel_subscriptions is not None: pulumi.set(__self__, "alert_channel_subscriptions", alert_channel_subscriptions) if alert_settings is not None: pulumi.set(__self__, "alert_settings", alert_settings) if api_check_defaults is not None: pulumi.set(__self__, "api_check_defaults", api_check_defaults) if double_check is not None: pulumi.set(__self__, "double_check", double_check) if environment_variables is not None: pulumi.set(__self__, "environment_variables", environment_variables) if local_setup_script is not None: pulumi.set(__self__, "local_setup_script", local_setup_script) if local_teardown_script is not None: pulumi.set(__self__, "local_teardown_script", local_teardown_script) if muted is not None: pulumi.set(__self__, "muted", muted) if name is not None: pulumi.set(__self__, "name", name) if runtime_id is not None: pulumi.set(__self__, "runtime_id", runtime_id) if setup_snippet_id is not None: pulumi.set(__self__, "setup_snippet_id", setup_snippet_id) if tags is not None: pulumi.set(__self__, "tags", tags) if teardown_snippet_id is not None: pulumi.set(__self__, "teardown_snippet_id", teardown_snippet_id) if use_global_alert_settings is not None: pulumi.set(__self__, "use_global_alert_settings", use_global_alert_settings) @property @pulumi.getter def activated(self) -> pulumi.Input[bool]: """ Determines if the checks in the group are running or not. """ return pulumi.get(self, "activated") @activated.setter def activated(self, value: pulumi.Input[bool]): pulumi.set(self, "activated", value) @property @pulumi.getter def concurrency(self) -> pulumi.Input[int]: """ Determines how many checks are run concurrently when triggering a check group from CI/CD or through the API. """ return pulumi.get(self, "concurrency") @concurrency.setter def concurrency(self, value: pulumi.Input[int]): pulumi.set(self, "concurrency", value) @property @pulumi.getter def locations(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ An array of one or more data center locations where to run the checks. """ return pulumi.get(self, "locations") @locations.setter def locations(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "locations", value) @property @pulumi.getter(name="alertChannelSubscriptions") def alert_channel_subscriptions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['CheckGroupAlertChannelSubscriptionArgs']]]]: return pulumi.get(self, "alert_channel_subscriptions") @alert_channel_subscriptions.setter def alert_channel_subscriptions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['CheckGroupAlertChannelSubscriptionArgs']]]]): pulumi.set(self, "alert_channel_subscriptions", value) @property @pulumi.getter(name="alertSettings") def alert_settings(self) -> Optional[pulumi.Input['CheckGroupAlertSettingsArgs']]: return pulumi.get(self, "alert_settings") @alert_settings.setter def alert_settings(self, value: Optional[pulumi.Input['CheckGroupAlertSettingsArgs']]): pulumi.set(self, "alert_settings", value) @property @pulumi.getter(name="apiCheckDefaults") def api_check_defaults(self) -> Optional[pulumi.Input['CheckGroupApiCheckDefaultsArgs']]: return pulumi.get(self, "api_check_defaults") @api_check_defaults.setter def api_check_defaults(self, value: Optional[pulumi.Input['CheckGroupApiCheckDefaultsArgs']]): pulumi.set(self, "api_check_defaults", value) @property @pulumi.getter(name="doubleCheck") def double_check(self) -> Optional[pulumi.Input[bool]]: """ Setting this to `true` will trigger a retry when a check fails from the failing region and another, randomly selected region before marking the check as failed. """ return pulumi.get(self, "double_check") @double_check.setter def double_check(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "double_check", value) @property @pulumi.getter(name="environmentVariables") def environment_variables(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Key/value pairs for setting environment variables during check execution. These are only relevant for browser checks. Use global environment variables whenever possible. """ return pulumi.get(self, "environment_variables") @environment_variables.setter def environment_variables(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "environment_variables", value) @property @pulumi.getter(name="localSetupScript") def local_setup_script(self) -> Optional[pulumi.Input[str]]: """ A valid piece of Node.js code to run in the setup phase of an API check in this group. """ return pulumi.get(self, "local_setup_script") @local_setup_script.setter def local_setup_script(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "local_setup_script", value) @property @pulumi.getter(name="localTeardownScript") def local_teardown_script(self) -> Optional[pulumi.Input[str]]: """ A valid piece of Node.js code to run in the teardown phase of an API check in this group. """ return pulumi.get(self, "local_teardown_script") @local_teardown_script.setter def local_teardown_script(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "local_teardown_script", value) @property @pulumi.getter def muted(self) -> Optional[pulumi.Input[bool]]: """ Determines if any notifications will be sent out when a check in this group fails and/or recovers. """ return pulumi.get(self, "muted") @muted.setter def muted(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "muted", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the check group. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="runtimeId") def runtime_id(self) -> Optional[pulumi.Input[str]]: """ The id of the runtime to use for this group. """ return pulumi.get(self, "runtime_id") @runtime_id.setter def runtime_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "runtime_id", value) @property @pulumi.getter(name="setupSnippetId") def setup_snippet_id(self) -> Optional[pulumi.Input[int]]: """ An ID reference to a snippet to use in the setup phase of an API check. """ return pulumi.get(self, "setup_snippet_id") @setup_snippet_id.setter def setup_snippet_id(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "setup_snippet_id", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Tags for organizing and filtering checks. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="teardownSnippetId") def teardown_snippet_id(self) -> Optional[pulumi.Input[int]]: """ An ID reference to a snippet to use in the teardown phase of an API check. """ return pulumi.get(self, "teardown_snippet_id") @teardown_snippet_id.setter def teardown_snippet_id(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "teardown_snippet_id", value) @property @pulumi.getter(name="useGlobalAlertSettings") def use_global_alert_settings(self) -> Optional[pulumi.Input[bool]]: """ When true, the account level alert settings will be used, not the alert setting defined on this check group. """ return pulumi.get(self, "use_global_alert_settings") @use_global_alert_settings.setter def use_global_alert_settings(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "use_global_alert_settings", value) @pulumi.input_type class _CheckGroupState: def __init__(__self__, *, activated: Optional[pulumi.Input[bool]] = None, alert_channel_subscriptions: Optional[pulumi.Input[Sequence[pulumi.Input['CheckGroupAlertChannelSubscriptionArgs']]]] = None, alert_settings: Optional[pulumi.Input['CheckGroupAlertSettingsArgs']] = None, api_check_defaults: Optional[pulumi.Input['CheckGroupApiCheckDefaultsArgs']] = None, concurrency: Optional[pulumi.Input[int]] = None, double_check: Optional[pulumi.Input[bool]] = None, environment_variables: Optional[pulumi.Input[Mapping[str, Any]]] = None, local_setup_script: Optional[pulumi.Input[str]] = None, local_teardown_script: Optional[pulumi.Input[str]] = None, locations: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, muted: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, runtime_id: Optional[pulumi.Input[str]] = None, setup_snippet_id: Optional[pulumi.Input[int]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, teardown_snippet_id: Optional[pulumi.Input[int]] = None, use_global_alert_settings: Optional[pulumi.Input[bool]] = None): """ Input properties used for looking up and filtering CheckGroup resources. :param pulumi.Input[bool] activated: Determines if the checks in the group are running or not. :param pulumi.Input[int] concurrency: Determines how many checks are run concurrently when triggering a check group from CI/CD or through the API. :param pulumi.Input[bool] double_check: Setting this to `true` will trigger a retry when a check fails from the failing region and another, randomly selected region before marking the check as failed. :param pulumi.Input[Mapping[str, Any]] environment_variables: Key/value pairs for setting environment variables during check execution. These are only relevant for browser checks. Use global environment variables whenever possible. :param pulumi.Input[str] local_setup_script: A valid piece of Node.js code to run in the setup phase of an API check in this group. :param pulumi.Input[str] local_teardown_script: A valid piece of Node.js code to run in the teardown phase of an API check in this group. :param pulumi.Input[Sequence[pulumi.Input[str]]] locations: An array
################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 01-12-2020 # # Author(s): <NAME>, <NAME> # # E-mail: <EMAIL> # # Website: avalanche.continualai.org # ################################################################################ from typing import Optional, Sequence, List, Union from torch.nn import Module, CrossEntropyLoss from torch.optim import Optimizer, SGD from avalanche.models.pnn import PNN from avalanche.training.plugins.evaluation import default_logger from avalanche.training.plugins import StrategyPlugin, CWRStarPlugin, \ ReplayPlugin, GDumbPlugin, LwFPlugin, AGEMPlugin, GEMPlugin, EWCPlugin, \ EvaluationPlugin, SynapticIntelligencePlugin, CoPEPlugin, \ GSS_greedyPlugin, LFLPlugin from avalanche.training.strategies.base_strategy import BaseStrategy class Naive(BaseStrategy): """ Naive finetuning. The simplest (and least effective) Continual Learning strategy. Naive just incrementally fine tunes a single model without employing any method to contrast the catastrophic forgetting of previous knowledge. This strategy does not use task identities. Naive is easy to set up and its results are commonly used to show the worst performing baseline. """ def __init__(self, model: Module, optimizer: Optimizer, criterion=CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """ Creates an instance of the Naive strategy. :param model: The model. :param optimizer: The optimizer to use. :param criterion: The loss criterion to use. :param train_mb_size: The train minibatch size. Defaults to 1. :param train_epochs: The number of training epochs. Defaults to 1. :param eval_mb_size: The eval minibatch size. Defaults to 1. :param device: The device to use. Defaults to None (cpu). :param plugins: Plugins to be added. Defaults to None. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. """ super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every) class PNNStrategy(BaseStrategy): """ Progressive Neural Network strategy. """ def __init__(self, num_layers: int, in_features: int, hidden_features_per_column: int, lr: float, momentum=0, dampening=0, weight_decay=0, nesterov=False, adapter='mlp', criterion=CrossEntropyLoss(), train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """ Progressive Neural Network strategy. :param num_layers: Number of layers for the PNN architecture. :param in_features: Number of input features. :param hidden_features_per_column: Number of hidden units for each column of the PNN architecture. :param lr: learning rate :param momentum: momentum factor (default: 0) :param weight_decay: weight decay (L2 penalty) (default: 0) :param dampening: dampening for momentum (default: 0) :param nesterov: enables Nesterov momentum (default: False) :param adapter: adapter type. One of {'linear', 'mlp'} (default='mlp') :param criterion: The loss criterion to use. :param train_mb_size: The train minibatch size. Defaults to 1. :param train_epochs: The number of training epochs. Defaults to 1. :param eval_mb_size: The eval minibatch size. Defaults to 1. :param device: The device to use. Defaults to None (cpu). :param plugins: Plugins to be added. Defaults to None. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. """ model = PNN( num_layers=num_layers, in_features=in_features, hidden_features_per_column=hidden_features_per_column, adapter=adapter ) optimizer = SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay, dampening=dampening, nesterov=nesterov) super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every) class CWRStar(BaseStrategy): """ CWR* Strategy. """ def __init__(self, model: Module, optimizer: Optimizer, criterion, cwr_layer_name: str, train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """ :param model: The model. :param optimizer: The optimizer to use. :param criterion: The loss criterion to use. :param cwr_layer_name: name of the CWR layer. Defaults to None, which means that the last fully connected layer will be used. :param train_mb_size: The train minibatch size. Defaults to 1. :param train_epochs: The number of training epochs. Defaults to 1. :param eval_mb_size: The eval minibatch size. Defaults to 1. :param device: The device to use. Defaults to None (cpu). :param plugins: Plugins to be added. Defaults to None. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. """ cwsp = CWRStarPlugin(model, cwr_layer_name, freeze_remaining_model=True) if plugins is None: plugins = [cwsp] else: plugins.append(cwsp) super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every) class Replay(BaseStrategy): """ Experience replay strategy. See ReplayPlugin for more details. This strategy does not use task identities. """ def __init__(self, model: Module, optimizer: Optimizer, criterion, mem_size: int = 200, train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """ Init. :param model: The model. :param optimizer: The optimizer to use. :param criterion: The loss criterion to use. :param mem_size: replay buffer size. :param train_mb_size: The train minibatch size. Defaults to 1. :param train_epochs: The number of training epochs. Defaults to 1. :param eval_mb_size: The eval minibatch size. Defaults to 1. :param device: The device to use. Defaults to None (cpu). :param plugins: Plugins to be added. Defaults to None. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. """ rp = ReplayPlugin(mem_size) if plugins is None: plugins = [rp] else: plugins.append(rp) super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every) class GSS_greedy(BaseStrategy): """ Experience replay strategy. See ReplayPlugin for more details. This strategy does not use task identities. """ def __init__(self, model: Module, optimizer: Optimizer, criterion, mem_size: int = 200, mem_strength=1, input_size=[], train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """Init. :param model: The model. :param optimizer: The optimizer to use. :param criterion: The loss criterion to use. :param mem_size: replay buffer size. :param n: memory random set size. :param train_mb_size: The train minibatch size. Defaults to 1. :param train_epochs: The number of training epochs. Defaults to 1. :param eval_mb_size: The eval minibatch size. Defaults to 1. :param device: The device to use. Defaults to None (cpu). :param plugins: Plugins to be added. Defaults to None. :param evaluator: (optional) instance of EvaluationPlugin for logging and metric computations. :param eval_every: the frequency of the calls to `eval` inside the training loop. -1 disables the evaluation. 0 means `eval` is called only at the end of the learning experience. Values >0 mean that `eval` is called every `eval_every` epochs and at the end of the learning experience. """ rp = GSS_greedyPlugin(mem_size=mem_size, mem_strength=mem_strength, input_size=input_size) if plugins is None: plugins = [rp] else: plugins.append(rp) super().__init__( model, optimizer, criterion, train_mb_size=train_mb_size, train_epochs=train_epochs, eval_mb_size=eval_mb_size, device=device, plugins=plugins, evaluator=evaluator, eval_every=eval_every) class GDumb(BaseStrategy): """ GDumb strategy. See GDumbPlugin for more details. This strategy does not use task identities. """ def __init__(self, model: Module, optimizer: Optimizer, criterion, mem_size: int = 200, train_mb_size: int = 1, train_epochs: int = 1, eval_mb_size: int = None, device=None, plugins: Optional[List[StrategyPlugin]] = None, evaluator: EvaluationPlugin = default_logger, eval_every=-1): """Init. :param model: The model. :param optimizer: The optimizer to use. :param criterion: The loss criterion to use. :param mem_size: replay buffer size. :param
import datetime import json from unittest import mock import pytest from simple_salesforce import SalesforceMalformedRequest from cumulusci.tasks.push.push_api import ( BasePushApiObject, MetadataPackage, MetadataPackageVersion, PackagePushError, PackagePushJob, PackagePushRequest, PackageSubscriber, SalesforcePushApi, batch_list, ) NAME = "Chewbacca" SF_ID = "033xxxxxxxxx" PUSH_API = "push_api" NAMESPACE = "namespace" ORG_KEY = "bar" @pytest.fixture def sf_push_api(): return SalesforcePushApi(sf=mock.Mock(), logger=mock.Mock()) @pytest.fixture def metadata_package(): return MetadataPackage( push_api=mock.MagicMock(), name=NAME, sf_id=SF_ID, namespace=NAMESPACE ) @pytest.fixture def metadata_package_version(metadata_package): return MetadataPackageVersion( push_api=mock.MagicMock(), package=metadata_package, name=NAME, sf_id=SF_ID, state="Beta", major="1", minor="2", patch="3", build="4", ) @pytest.fixture def package_push_job(): return PackagePushJob( push_api=mock.MagicMock(), request="", org="00DS0000003TJJ6MAO", status="Succeeded", sf_id=SF_ID, ) @pytest.fixture def package_subscriber(): return PackageSubscriber( push_api=mock.MagicMock(), version="1.2.3", status="Succeeded", org_name="foo", org_key="bar", org_status="Succeeded", org_type="Sandbox", sf_id=SF_ID, ) @pytest.fixture def package_push_error(): return PackagePushError( push_api="foo", sf_id=SF_ID, job="Foo", severity="high", error_type="bar", title="foo_bar", message="The foo hit the bar", details="foo bar, foo, foo bar", ) @pytest.fixture def package_push_request(): return PackagePushRequest( push_api=mock.MagicMock(), version="1.2.3", start_time="12:03", status="Succeeded", sf_id=SF_ID, ) def test_base_push_format_where(): base_obj = BasePushApiObject() field_name = "id_field" sf_id = "006000000XXX000" where_clause = "id=001000000XXX000" base_obj.sf_id = sf_id returned = base_obj.format_where(field_name, where_clause) assert "{} = '{}' AND ({})".format(field_name, sf_id, where_clause) == returned returned = base_obj.format_where(field_name, None) assert "{} = '{}'".format(field_name, sf_id) == returned def test_metadata_package_init(): package = MetadataPackage(PUSH_API, NAME) assert package.push_api == PUSH_API assert package.sf_id is None assert package.name == NAME assert package.namespace is None package = MetadataPackage(PUSH_API, NAME, SF_ID, NAMESPACE) assert package.push_api == PUSH_API assert package.sf_id == SF_ID assert package.name == NAME assert package.namespace == NAMESPACE def test_metadata_package_get_versions(metadata_package): expected = f"MetadataPackageId = '{SF_ID}'" metadata_package.get_package_versions() metadata_package.push_api.get_package_versions.assert_called_once_with( expected, None ) def test_metadata_package_get_version_objs(metadata_package): expected = f"MetadataPackageId = '{SF_ID}'" metadata_package.get_package_version_objs() metadata_package.push_api.get_package_version_objs.assert_called_once_with( expected, None ) def test_metadata_package_get_versions_by_id(metadata_package): expected = f"MetadataPackageId = '{SF_ID}'" metadata_package.get_package_versions_by_id() metadata_package.push_api.get_package_versions_by_id.assert_called_once_with( expected, None ) def test_metadata_package_version_version_number(metadata_package_version): expected = "1.2.3 (Beta 4)" actual = metadata_package_version.version_number assert expected == actual def test_sf_push_return_query_records(sf_push_api): query = "SELECT Id FROM Account" records = ["record 1", "record 2", "record 3"] results = {"totalSize": 10, "records": records} sf_push_api.sf.query_all.return_value = results returned = sf_push_api.return_query_records(query) assert len(records) == len(returned) results["totalSize"] = 0 sf_push_api.sf.query_all.return_value = results returned = sf_push_api.return_query_records(query) assert [] == returned def test_sf_push_format_where(sf_push_api): returned = sf_push_api.format_where_clause(None) assert "" == returned default_where = "Id='001000000XXX000'" sf_push_api.default_where = {"Account": default_where} returned = sf_push_api.format_where_clause(None, "Object__c") assert "" == returned returned = sf_push_api.format_where_clause(None, "Account") assert " WHERE ({})".format(default_where) == returned where = "IsDeleted=False" returned = sf_push_api.format_where_clause(where) assert " WHERE {}".format(where) == returned # No default where for Object__C returned = sf_push_api.format_where_clause(where, "Object__c") assert " WHERE {}".format(where) == returned returned = sf_push_api.format_where_clause(where, "Account") assert " WHERE ({}) AND ({})".format(default_where, where) == returned def test_sf_push_add_query_limit(sf_push_api): query = "SELECT Id FROM Account" limit = 100 returned = sf_push_api.add_query_limit(query, limit) assert "{} LIMIT {}".format(query, limit) == returned def test_sf_push_add_query_no_limit(sf_push_api): query = "SELECT Id FROM Account" returned = sf_push_api.add_query_limit(query, None) assert f"{query}" == returned def test_sf_push_get_packages(sf_push_api): query = "SELECT id, name, namespaceprefix FROM MetadataPackage WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_packages("Name='foo'", None) sf_push_api.return_query_records.assert_called_once_with(query) def test_sf_push_get_package_objs(sf_push_api, metadata_package): sf_push_api.get_packages = mock.MagicMock() packages = { "Id": metadata_package.sf_id, "Name": metadata_package.name, "NamespacePrefix": metadata_package.namespace, } sf_push_api.get_packages.return_value = [packages] actual_result_list = sf_push_api.get_package_objs("Name='foo'", None) assert len(actual_result_list) == 1 actual_result = actual_result_list[0] assert packages["Id"] == actual_result.sf_id assert packages["Name"] == actual_result.name assert packages["NamespacePrefix"] == actual_result.namespace def test_sf_push_get_packages_by_id(sf_push_api, metadata_package): sf_push_api.get_package_objs = mock.MagicMock() sf_push_api.get_package_objs.return_value = [metadata_package] package_expected = {metadata_package.sf_id: metadata_package} package_result = sf_push_api.get_packages_by_id("Name='foo'", None) sf_push_api.get_package_objs.assert_called_with("Name='foo'", None) assert package_expected == package_result def test_sf_push_get_package_versions(sf_push_api): query = "SELECT Id, Name, MetadataPackageId, ReleaseState, MajorVersion, MinorVersion, PatchVersion, BuildNumber FROM MetadataPackageVersion WHERE Name='foo' ORDER BY MajorVersion DESC, MinorVersion DESC, PatchVersion, BuildNumber DESC" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_package_versions("Name='foo'", None) sf_push_api.return_query_records.assert_called_once_with(query) def test_sf_push_get_package_version_objs(sf_push_api): query = "SELECT Id, Name, MetadataPackageId, ReleaseState, MajorVersion, MinorVersion, PatchVersion, BuildNumber FROM MetadataPackageVersion WHERE Name='foo' ORDER BY MajorVersion DESC, MinorVersion DESC, PatchVersion, BuildNumber DESC" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_package_version_objs("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_package_version_by_id(sf_push_api, metadata_package_version): sf_push_api.get_package_version_objs = mock.MagicMock() sf_push_api.get_package_version_objs.return_value = [metadata_package_version] package_expected = {metadata_package_version.sf_id: metadata_package_version} package_result = sf_push_api.get_package_versions_by_id("Name='foo'", None) sf_push_api.get_package_version_objs.assert_called_with("Name='foo'", None) assert package_expected == package_result def test_sf_push_get_subscribers(sf_push_api): query = "SELECT Id, MetadataPackageVersionId, InstalledStatus, OrgName, OrgKey, OrgStatus, OrgType from PackageSubscriber WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_subscribers("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_subscriber_objs(sf_push_api): query = "SELECT Id, MetadataPackageVersionId, InstalledStatus, OrgName, OrgKey, OrgStatus, OrgType from PackageSubscriber WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_subscriber_objs("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_subscribers_by_org_key(sf_push_api, package_subscriber): sf_push_api.get_subscriber_objs = mock.MagicMock() sf_push_api.get_subscriber_objs.return_value = [package_subscriber] package_expected = {package_subscriber.org_key: package_subscriber} package_result = sf_push_api.get_subscribers_by_org_key("Name='foo'", None) sf_push_api.get_subscriber_objs.assert_called_with("Name='foo'", None) assert package_expected == package_result def test_sf_push_get_push_requests(sf_push_api): query = "SELECT Id, PackageVersionId, ScheduledStartTime, Status FROM PackagePushRequest WHERE Name='foo' ORDER BY ScheduledStartTime DESC" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_push_requests("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_push_request_objs(sf_push_api): query = "SELECT Id, PackageVersionId, ScheduledStartTime, Status FROM PackagePushRequest WHERE Name='foo' ORDER BY ScheduledStartTime DESC" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_push_request_objs("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_push_requests_by_id(sf_push_api, package_push_request): sf_push_api.get_push_request_objs = mock.MagicMock() sf_push_api.get_push_request_objs.return_value = [package_push_request] package_expected = {package_push_request.sf_id: package_push_request} package_result = sf_push_api.get_push_requests_by_id("Name='foo'", None) sf_push_api.get_push_request_objs.assert_called_with("Name='foo'", None) assert package_expected == package_result def test_sf_push_get_push_jobs(sf_push_api): query = "SELECT Id, PackagePushRequestId, SubscriberOrganizationKey, Status FROM PackagePushJob WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_push_jobs("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_push_job_objs(sf_push_api): query = "SELECT Id, PackagePushRequestId, SubscriberOrganizationKey, Status FROM PackagePushJob WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_push_job_objs("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_push_jobs_by_id(sf_push_api, package_push_job): sf_push_api.get_push_job_objs = mock.MagicMock() sf_push_api.get_push_job_objs.return_value = [package_push_job] package_expected = {package_push_job.sf_id: package_push_job} package_result = sf_push_api.get_push_jobs_by_id("Name='foo'", None) sf_push_api.get_push_job_objs.assert_called_with("Name='foo'", None) assert package_expected == package_result def test_sf_push_get_push_errors(sf_push_api): query = "SELECT Id, PackagePushJobId, ErrorSeverity, ErrorType, ErrorTitle, ErrorMessage, ErrorDetails FROM PackagePushError WHERE Name='foo'" sf_push_api.return_query_records = mock.MagicMock() sf_push_api.get_push_errors("Name='foo'", None) sf_push_api.return_query_records.assert_called_with(query) def test_sf_push_get_push_error_objs(sf_push_api, package_push_job, package_push_error): sf_push_api.get_push_job_objs = mock.MagicMock() sf_push_api.get_push_job_objs.return_value = [package_push_job] sf_push_api.lazy = ["jobs"] sf_push_api.get_push_errors = mock.MagicMock() record = { "ErrorSeverity": "high", "ErrorType": "bar", "ErrorTitle": "foo_bar", "ErrorMessage": "The foo hit the bar", "ErrorDetails": "foo bar, foo, foo bar", "Id": SF_ID, "PackagePushJobId": "pkg_push_id", } sf_push_api.get_push_errors.return_value = [record] actual_result_list = sf_push_api.get_push_error_objs("Name='foo'", None) sf_push_api.get_push_job_objs.assert_called_once_with(where="Id = 'pkg_push_id'") assert len(actual_result_list) == 1 actual_result = actual_result_list[0] assert record["ErrorMessage"] == actual_result.message assert record["ErrorDetails"] == actual_result.details assert record["Id"] == actual_result.sf_id assert actual_result.job == package_push_job def test_sf_push_get_push_errors_by_id(sf_push_api, package_push_error): sf_push_api.get_push_error_objs = mock.MagicMock() sf_push_api.get_push_error_objs.return_value = [package_push_error] push_error_expected = {package_push_error.sf_id: package_push_error} push_error_result = sf_push_api.get_push_errors_by_id("Name='foo'", None) sf_push_api.get_push_error_objs.assert_called_with("Name='foo'", None) assert push_error_expected == push_error_result def test_sf_push_cancel_push_request(sf_push_api): ref_id = "12" sf_push_api.cancel_push_request(ref_id) sf_push_api.sf.PackagePushRequest.update.assert_called_once_with( ref_id, {"Status": "Canceled"} ) def test_sf_push_run_push_request(sf_push_api): ref_id = "12" sf_push_api.run_push_request(ref_id) sf_push_api.sf.PackagePushRequest.update.assert_called_once_with( ref_id, {"Status": "Pending"} ) def test_sf_push_create_push_request(sf_push_api, metadata_package_version): sf_push_api.batch_size = 1 push_request_id = "0DV?xxxxxx?" version_id = metadata_package_version.sf_id = "0KM?xxxxx?" orgs = ["00D000000001", "00D000000002"] batch_0, batch_1 = [orgs[0]], [orgs[1]] start_time = datetime.datetime.now() sf_push_api.sf.PackagePushRequest.create.return_value = {"id": push_request_id} sf_push_api.sf.base_url = "url" sf_push_api._add_batch = mock.MagicMock(side_effect=[batch_0, batch_1]) actual_id, actual_org_count = sf_push_api.create_push_request( metadata_package_version, orgs, start_time ) sf_push_api.sf.PackagePushRequest.create.assert_called_once_with( {"PackageVersionId": version_id, "ScheduledStartTime": start_time.isoformat()} ) assert mock.call(batch_0, push_request_id) in sf_push_api._add_batch.call_args_list assert mock.call(batch_1, push_request_id) in sf_push_api._add_batch.call_args_list assert push_request_id == actual_id assert 2 == actual_org_count def test_sf_push_add_push_batch(sf_push_api, metadata_package_version): push_request_id = "0DV?xxxxxx?" metadata_package_version.sf_id = "0KM?xxxxx?" orgs = ["00D000000001", "00D000000002"] expected_records_json = json.dumps( { "records": [ { "attributes": {"type": "PackagePushJob", "referenceId": orgs[0]}, "PackagePushRequestId": push_request_id, "SubscriberOrganizationKey": orgs[0], }, { "attributes": {"type": "PackagePushJob", "referenceId": orgs[1]}, "PackagePushRequestId": push_request_id, "SubscriberOrganizationKey": orgs[1], }, ] } ) sf_push_api.sf.base_url = "base_url/" returned_batch = sf_push_api._add_batch(orgs, push_request_id) sf_push_api.sf._call_salesforce.assert_called_once_with( "POST", "base_url/composite/tree/PackagePushJob", data=expected_records_json ) assert ["00D000000001", "00D000000002"] == returned_batch def test_sf_push_add_push_batch_retry(sf_push_api, metadata_package_version): push_request_id = "0DV?xxxxxx?" orgs = ["00D000000001", "00D000000002", "00D000000003"] retry_response = { "results": [ { "referenceId": orgs[0], "errors": [ {"message": "Something bad has happened! Whatever could it be?"} ], } ] } duplicate_response = { "results": [ { "referenceId": orgs[1], "errors": [{"message": "", "statusCode": "DUPLICATE_VALUE"}], } ] } invalid_response = { "results": [ { "referenceId": orgs[2], "errors": [{"message": "", "statusCode": "INVALID_OPERATION"}], } ] } sf_push_api.sf.base_url = "base_url/" sf_push_api.sf._call_salesforce.side_effect = [ SalesforceMalformedRequest( "base_url/composite/tree/PackagePushJob", 400, "resource_name", retry_response, ), SalesforceMalformedRequest( "base_url/composite/tree/PackagePushJob", 400, "resource_name", duplicate_response, ), SalesforceMalformedRequest( "base_url/composite/tree/PackagePushJob", 400, "resource_name", invalid_response, ), [], ] returned_batch = sf_push_api._add_batch(orgs, push_request_id) assert [orgs[0]] == returned_batch # only remaining org should be retry-able assert 4 == sf_push_api.sf._call_salesforce.call_count def test_push_batch_list(): data = ["zero", "one", "two", "three"] actual_batch_list = batch_list(data, 1) expected_batch_list = [["zero"], ["one"], ["two"], ["three"]] assert expected_batch_list == actual_batch_list actual_batch_list = batch_list(data, 2) expected_batch_list = [["zero", "one"], ["two", "three"]] assert expected_batch_list == actual_batch_list actual_batch_list = batch_list(data, 3) expected_batch_list = [["zero", "one", "two"], ["three"]] assert expected_batch_list == actual_batch_list actual_batch_list = batch_list(data, 4) expected_batch_list = [["zero", "one", "two", "three"]] assert expected_batch_list == actual_batch_list actual_batch_list = batch_list(data, 5) assert expected_batch_list == actual_batch_list actual_batch_list = batch_list([], 2) expected_batch_list = [] assert expected_batch_list == actual_batch_list def test_version_init(metadata_package): package = MetadataPackageVersion( push_api=PUSH_API, package=metadata_package, name=NAME, sf_id=SF_ID, state="Beta", major="1", minor="2", patch="3", build="4", ) assert package.push_api == PUSH_API assert package.package == metadata_package assert package.name == NAME assert package.sf_id == SF_ID assert package.state == "Beta" assert package.major == "1" assert package.minor == "2" assert package.patch == "3" assert package.build == "4" def test_version_number(metadata_package_version): actual = metadata_package_version.version_number expected = "1.2.3 (Beta 4)" assert actual == expected def test_metadata_package_get_subscribers(metadata_package_version): expected = f"MetadataPackageVersionId = '{SF_ID}'" metadata_package_version.get_subscribers() metadata_package_version.push_api.get_subscribers.assert_called_once_with( expected, None ) def test_metadata_package_get_subscriber_objects(metadata_package_version): expected = f"MetadataPackageVersionId = '{SF_ID}'"
<reponame>formalabstracts/CNL-CIC<filename>2parser/parser_combinator.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 12 14:39:04 2021 @author: <NAME> This file contains parser combinators. The original name was parse.py, but that conflicts with a python lib. The combinators should preserves tokens; nothings should be discarded. The bottom part of this module contains various parsers for words, phrases, and delimited matters. """ import logging from exception import ParseError, ParseNoCatch, DataProcess, ErrorItem import copy, lib, msg, word_lists import tokenlib import inner_lexer import lexer from tokenlib import (mk_stream , Etok, Item) from ply.lex import LexToken import sample #import sample from state import state logger = logging.getLogger(__name__) def pstream(p:'Parse',s): """For reunning test cases on different parsers. p is a parser s:str is input to parser output is the output of p applied to s. """ #try: return (p.process(mk_stream(s)).acc) #except ParseError as pe: # logger.exception(pe) # raise pe #raise #traceback.print_stack() class Parse: """base class for parsers. Many of the standard combinators are given. process:Item->Item processes one or more tokens from the item stream. We refer to process as the 'item transformer'. A sample is a function that returns a random parse on input tokenlib.random. It is a function sample:acc -> acc transforming accumulated toks. """ def __init__(self,process,nonterminal,production='',sample=None,show_up=('',[])): """r:Item->Item, repr:str""" self._process = process self.nonterminal = nonterminal self.production = production self._sample = sample self.show_up=show_up def __repr__(self): if self.production: return self.nonterminal + '-' + self.production else: return self.nonterminal empty_item = Item(stream=[],pos=0,acc=None) def sample(self): if not(self._sample): raise ParseError(ErrorItem(item=None,nonterminal=f'sample not installed: {self.nonterminal}-{self.production}')) return self._sample() def process(self,item): # sample mode if state.mk_sample: acc = self.sample() return tokenlib.update(acc,item) # process mode, the front door. try: return self._process(item) except ParseError as pe: ei = pe.error_stack nt = ei.nonterminal if self.nonterminal or self.production: nt = f'({nt}; {self})' #As a last resort try a backdoor, nonterminal as terminal... #the backdoor should never raise an exception. if not(tokenlib.eof(item)): item1 = tokenlib.next_item(item) if item1.acc.value == self.nonterminal: acc = Etok.etok(item1.acc) return tokenlib.update(acc,item1) raise ParseError(ErrorItem(item=ei.item, nonterminal=nt)) def preprocess(self,pre): """Use pre if possible for process.""" def f(item): try: return pre(item) except: self.process(item) return Parse(f,nonterminal=self.nonterminal,production=self.production,show_up=self.show_up) def update(self,d): for key,value in d.items(): setattr(self,key,value) return self def setsample(self,s): self._sample = s return self def name(self,nonterminal,production=''): self.nonterminal=nonterminal if production: self.production=production #msg.setdefault(production,self.production) return self def show(self,level): """DEBUG Not implemented. Generate the parse tree (in words) of the parser, down to given level""" if (level==0): return (f'{self}',[]) if self.show_up==('',[]): return ('',[]) (comb,ps)=self.show_up if comb[0:4]=='pass': return ps[0].show(level) if (level==1): pass ## DEBUG FIX def next_token(): # constructor for next token """The work horse of parsing. Parser to fetch the next token. """ def f(item): return tokenlib.next_item(item) return Parse(f,'.',sample=sample.next_token) def finished(): """fails if tokens remain in stream, otherwise do nothing""" def f(item): if item.pos < len(item.stream): raise ParseError(ErrorItem(item=item,nonterminal='$')) return item return Parse(f,'$',sample=sample.none) def identity(): #was nothing """Does no parsing, identity parser""" return Parse(lambda item:item,'identity',sample=sample.none) def fail(): """This parser always fails""" def f(item): raise ParseError(ErrorItem(item=item,nonterminal='fail')) return Parse(f,'fail') # def nil(self): # """replaces output with nil list""" # return self.treat(lambda _:[]).name('nil','') def probe(self): """run parser but then undo""" def f(item): try: self.process(item) return item except ParseError as pe: raise ParseError(ErrorItem(item=item,nonterminal='-probe')) from pe return Parse(f,self.nonterminal,self.production,sample=sample.none,show_up=('pass',[self])) def nocatch(self,nt=''): """No catch error if failure""" def f(item): try: return self.process(item) except ParseError as pe: nonterminal= msg.setdefault(nt,'nocatch') raise ParseNoCatch(ErrorItem(item=item,nonterminal=nonterminal)) from pe return Parse(f,'nocatch',sample=self.sample,show_up=('pass',[self])) def commit(self,probe:'Parse',msg='') -> 'Parse': """if trial_parse does not fail, discard, then apply pr without catching""" def f(item): probe.process(item) return self.nocatch(msg).process(item) return Parse(f,self.nonterminal,self.production,sample=self.sample) # more directly # try: # return pr.process(item) # except pe: # try: # probe.process(item) # raise NoCatch(pe.args[0]) # except: # raise pe def reparse(self,p2): """Run parser as a reparser on list of accumulated tokens. If accumulated tokens == [], then do nothing. All tokens must be consumed. """ def f(item): try: item0 = self.process(item) acc = item0.acc if not acc: return item item1 = tokenlib.Item(stream=acc,pos=0,acc=None) item2 = (self + Parse.finished()).treat(lib.fst).process(item1) item3 = tokenlib.update(item2.acc,item0) return item3 except ParseError as pe: raise ParseError(ErrorItem(item=item1,nonterminal='reparse-'+p2.nonterminal)) from pe return Parse(f,self.nonterminal,self.production,show_up=('reparse',[p2])) def reparse_list(self,p2): """Run parser p2 as reparser on each accumulated list entry. All tokens must be consumed.""" def f(item): try: item1 = self.process(item) acc = item1.acc its1 = [tokenlib.Item(stream=a,pos=0,acc=None) for a in acc] acc2 = [(p2 + Parse.finished()).treat(lib.fst).process(it).acc for it in its1] item3 = tokenlib.update(acc2,item1) return item3 except ParseError as pe: raise ParseError(ErrorItem(item=item,nonterminal='reparse_list-'+p2.nonterminal)) from pe return Parse(f,self.nonterminal,self.production,show_up=('reparse_list',[p2])) def __add__(self,other): """combine two parsers in succession, returning pair of results.""" def f(item:tokenlib.Item): item1 = self.process(item) acc1 = item1.acc #try: item2 = other.name(f'(+{other})').process(tokenlib.update(None,item1)) #except ParseError: # raise ParseError(ErrorItem(item=item1,nonterminal= f'{other.nonterminal}-{other.production}')) return tokenlib.update((acc1,item2.acc),item2) if (self.show_up[0]=='add'): show_up = ('add',self.show_up[1]+[other]) else: show_up = ('add',[self,other]) return Parse(f,'',sample=sample.add_sample(self,other),show_up=show_up) def __or__(self,other): """try first parser then next. Lower precedence than +""" def f(item): try: return self.process(item) except ParseError as pe1: try: return other.process(item) except ParseError as pe2: #debug:print(f'pe1={pe1.args}') parse_error1 = pe1.error_stack #args[0] item1 = parse_error1.item item2 = pe2.error_stack.item # args[0].item if item2.pos > item1.pos: #raise the most progressed raise pe2 raise pe1 if (self.show_up[0]=='or'): show_up = ('or',self.show_up[1]+[other]) else: show_up = ('or',[self,other]) return Parse(f,'',sample=sample.or_sample(self,other),show_up=show_up) def treat(self,treatment,name=''): """apply treatment to parser output. The treatment transforms the accumulator.""" def f(item): item1 = self.process(item) try: item2 = tokenlib.update(treatment(item1.acc),item1) return item2 except ParseError as pe: nonterminal=msg.setdefault(name,'treat') raise ParseError(ErrorItem(item=item,nonterminal=nonterminal)) from pe pr = Parse(f,self.nonterminal,self.production,sample=sample.treat_sample(self,treatment),show_up=('pass',[self])) if name: return pr.name(name) return pr def _many_nosep(self): """parse zero or more times""" def f(item): try: item1 = self.process(item) except (ParseError, StopIteration): return tokenlib.update([],item) #all returns must be a list acc1 = item1.acc # item2 = f(tokenlib.update(None,item1)) #this doesn't fail return tokenlib.update([acc1]+item2.acc,item2) show_up=(f'{self}*',self.show_up[1]) return Parse(f,self.nonterminal+'*',sample=sample.many(self,None),show_up=show_up) def atleast(self,n): """parse at least n times. Output acc is a list """ def f(item): if n < 1: item1 = self.many().process(item) return item1 #acc is a list else: item1 = (self + Parse.atleast(self,n-1)).treat(lib.prepend).process(item) return item1 if n==1: supp = '' else: supp = f'{n}' return Parse(f,f'{self.nonterminal}+'+supp,sample=sample.atleast(self,n)) def _plus_nosep(self): """parse at least once""" return self.atleast(1) def plus(self,sep=None): """Sequence of at least one parse with optional separation sep Output is a list If sep, then non sep items are obtained by slice [0::2] """ if not(sep): return self._plus_nosep() def f(acc): (x,xs) = acc return [x]+ lib.flatten(xs) return (self + (sep + self).many()).treat(f).name('plus',self.nonterminal).setsample(sample.plus(self,sep)) def many(self,sep=None): """sequence of parses with optional separation sep """ def f(_): return [] if not(sep): return self._many_nosep() return (self.plus(sep) | Parse.identity().treat(f)).setsample(sample.many(self,sep)) def possibly(self): """zero or one parses. It never fails. acc left unchanged (None), if no match.""" def f(item): try: return self.process(item) except (ParseError,StopIteration): return item return Parse(f,'?',sample=sample.possibly(self)) def if_test(self,p): #was some """Next token passes boolean test or fail""" def f(item): item1 = self.process(item) if p(item1.acc): return item1 else: raise ParseError(ErrorItem(item=item,nonterminal=f'{self.nonterminal}-if-{self.production}')) return Parse(f,'if',sample=sample.if_test(self,p)) def if_value(self,v): #was a """parse if next token has value v or fail""" def p(tok): return tok.value == v return self.name(self.nonterminal,v).if_test(p).setsample(sample.if_value(v)) def if_rawvalue(self,v): """parse if token has rawvalue v or fail. >>> pstream(Parse.next_token().if_rawvalue('True'),'True') LexToken(WORD,'true',1,0) """ def p(tok): return (lexer.rawvalue(tok) == v) return self.name(self.nonterminal,v).if_test(p).setsample(sample.if_rawvalue(v)) def if_types(self,ts): """parse if next type is in ts or fail""" def p(tok): return tok.type in ts return self.name(list(ts)[0]).if_test(p).setsample(sample.if_types(ts)) # class methods def all(prs): """sequentially parse a list of parsers and return list of results""" def f(item): if not prs: return tokenlib.update([],item) else: item1 = prs[0].process(item) acc1 = item1.acc item2 = Parse.all(prs[1:]).process(tokenlib.update(None,item1)) return tokenlib.update([acc1]+item2.acc,item2) return Parse(f,'all',sample=sample.all_sample(prs)) def first(prs): #was parse_some """parse first in a list that does not fail""" def f(item): raise ParseError(ErrorItem(item=item,nonterminal='first-empty')) if not prs: return Parse(f,'first') return Parse.__or__(prs[0],Parse.first(prs[1:])).name('first').setsample(sample.first(prs)) # def gen_first(prs_gen,args): # """Repeat (lazy) parse generator until first non-failure. # Yields of generator function prs_gen should be a parser. # Generator formed by prs_gen(*args). # Deprecated. Use LazyParser instead. # """ # def f(item): # gen = prs_gen(*args) # #print(f'\nentering first on {item.stream[item.pos].value}\n') # item_max = item # while True: # try: # prs = next(gen) # #print(f'{prs}--start on {item.stream[item.pos].value}') # item1 = prs.process(item) # del gen # #print(f'{prs}--works') # return item1 # except ParseError as pe: # #print(f'{prs}--fails') # item_e = pe.args[0] # if item_e.pos > item_max.pos: # item_max = item_e # pass # except StopIteration: # #print(f'{prs}--stop') # del gen # raise ParseError(ErrorItem(item=item,nonterminal='gen_first')) # return Parse(f,'gen_first') class
<reponame>selinozdas/ObsCo from helpers import quick_sort,get_variances from pprint import pprint from db import mongo import numpy as np import pickle from sklearn.externals import joblib from sentiment import vect from util import remove_common_adjectives filename = 'obsco_model.sav' model = joblib.load(open(filename, 'rb')) def fetchUser(name="", userId=-1) -> list: """ Fetch user with the given ID from DB. Keyword arguments: name -- name of the user which can be used for search (default "") userId -- unique id of the user (default -1) Return Value: results -- list of users with the given credentials """ users = mongo.db.users results = [] # No query for invalid calls if (name == "" and userId == -1): return [] # function call with userId elif (userId != -1): for entry in users.find({'id':userId},{'_id':0}): if (int(entry["id"]) == int(userId)): results.append(entry) # function call with only name elif (str(name) != ""): split_name = "".join(name.split()) split_name = split_name.lower() for entry in users.find(({},{'_id':0})): temp_entry = entry["name"].lower() temp_entry = "".join(temp_entry.split()) if (split_name in temp_entry): results.append(entry) # if no result can be found if (len(results) == 0): return [] return results def getSkill(userId, skill=-1) -> list: """ Finds the specified skill information of a user, if it is not entered returns all skills of the user. Keyword Arguments: userId -- unique id of the user (non-optional) skill -- unique id of the skill (default -1) Return Value: skill_temp -- skill information if skill id is given else all skills of the given user """ # fetch user try: user = fetchUser(userId=userId) except: user = [] skill_temp = -1 # get skills if user is found if (len(user) != 0): for u in user: if (skill != -1): for entry in u["skills"]: if (skill == entry["id"]): skill_temp = entry if (skill_temp == -1): return "No such skill exist for the given user" else: return skill_temp else: skill_temp = u["skills"] for i in skill_temp: name = getSkillName(i['id']) i['name'] = name return skill_temp def getGroup(group: int, name="") -> list: """ Lists the members of the group. Keyword Arguments: group -- unique id of the group (non-optional) name -- name of the group for search queries (default "") Return Value: user_list -- list of users in the group """ groups = mongo.db.groups.find({'id':group},{'_id':0}) userID_list = [] user_list = [] for entry in groups: if entry["id"] == group: userID_list = userID_list + entry["members"] if len(userID_list) != 0: for entry in userID_list: x = fetchUser(userId=entry) user_list = user_list + x return user_list def addSkill(name): skill_nu = getSkillLength() + 1 entry = {'id':skill_nu, 'name':name,'members':[]} try: response = mongo.db.skills.insert_one(entry) except: return 'Yetenek eklenemedi' return 'Yetenek başarıyla eklendi' def getGroupMembers(group): groups = mongo.db.groups.find({'id':group},{'_id':0}) userID_list = [] user_list = [] for entry in groups: if entry["id"] == group: userID_list = userID_list + entry["members"] if len(userID_list) != 0: for entry in userID_list: x = fetchUser(userId=entry) y = [] for i in x: temp = {'id':i['id'],'name':i['name']} y.append(temp) user_list = user_list + y return user_list def canSee(userId,group): user_list = fetchUser(userId=userId) val = 0 user = user_list[0] groups = user['groups'] for g in groups: if g['id'] == group: val = g['leaders'] return val def getGroupName( group:int): groups = mongo.db.groups.find({'id':group},{'_id':0}) group_list = [i for i in groups] return group_list[0]['name'] def getSkillName( skill:int): ''' returns the name of the skill with given id ''' skills = mongo.db.skills.find({'id':skill},{'_id':0}) skill_list = [i for i in skills] return skill_list[0]['name'] def analysisInfo(userid:int): ''' Returns the information that is going to be used for recommender ''' members = getGroups(userid) member_list = [] for member in members: entry = {member['id']: member['skills']} member_list.append(entry) return member_list def getSkillLength(): ''' Returns the total number of skills ''' skills = mongo.db.skills.find({},{'_id':0}) skills = [skill for skill in skills] return(len(skills)) def getSkillList(): ''' Returns a list of dictionary of the skills with {id:name} key value pairs ''' skills = mongo.db.skills.find({},{'_id':0}) result = [] for entry in skills: temp = {} temp['id'] = entry['id'] temp['name'] = entry['name'] result.append(temp) return result def recommender(info,skills,mem_count): column_nu = getSkillLength() member_nu = len(info) matrix = np.zeros(shape = (member_nu,column_nu),dtype = int) column_names = list(range(1,column_nu+1)) row_names = [] for entry in info: row_names= row_names + list([i for i in entry.keys()]) skill_list = [] for entry in info: skill_list= skill_list + list([i for i in entry.values()]) row = 0 for member in skill_list: for skill in member: column = skill['id']-1 matrix[row,column]= skill['value'] row += 1 variances = get_variances(matrix) column_name_map = {} for i in range(len(column_names)): column_name_map[column_names[i]] = i skill_indexes = [] for i in range(len(skills)): if skills[i] in column_name_map: skill_indexes.append(column_name_map[skills[i]]) if len(skill_indexes) == 0: print("No skills found") return [] ranks = [] for i in range(member_nu): rank = 0 for s in skill_indexes: rank += matrix[i][s] * variances[s] ranks.append(rank) rank_index = quick_sort(ranks, is_ascending=False) if mem_count > member_nu: mem_count = member_nu result = [] for i in range(mem_count): entry = {row_names[rank_index[i]]: ranks[i]} result.append(entry) return result def recommend(group,skills,mem_nu): ''' ''' info = analysisInfo(group) recommended = recommender(info,skills,mem_nu) members = [] for i in recommended: user_list = fetchUser(userId=list(i.keys())[0]) user = user_list[0] temp = {} temp['id'] = user['id'] temp['name'] = user['name'] temp['recommended'] = float(format(list(i.values())[0],'.2f')) members.append(temp) return members def getTotalReputation(id): relations_list = mongo.db.relations.find({},{'_id':0}) relations = [rel for rel in relations_list if id == rel['voted']] count = len(relations) sum_result = 0 for rel in relations: scores = rel['votes'] sum_scores = sum(scores) len_scores = len(scores) if len_scores !=0: sum_result = sum_result + sum_scores/len_scores return float(format(sum_result/count,'.2f')) def getRelation(first,second): relations_list = mongo.db.relations.find({},{'_id':0}) relations = [rel for rel in relations_list] for entry in relations: if first == entry['voter'] and second == entry['voted']: scores = sum(entry['votes']) len_scores = len(entry['votes']) if len_scores != 0: return scores/len_scores return 0 def getGroupReputation(voted,group): relations_list = mongo.db.relations.find({},{'_id':0}) relations = [rel for rel in relations_list if id == rel['voted']] members = getGroupMembers(group) member_ids = [member['id'] for member in members if member['id'] != id] member_count = len(member_ids) score_sum = 0 for member in member_ids: score_sum += getRelation(voted,member) return float(format(score_sum/member_count,'.2f')) def getRelations(id,group): members = getGroupMembers(group) member_except_id = [member for member in members if member['id'] != id] for member in member_except_id: member['score'] = float(format(getRelation(id,member['id']),'.2f')) return sorted(member_except_id, key = lambda i: i['score'],reverse=True) def analyzer(entry): processed,v = remove_common_adjectives(entry) result = model.predict(vect.transform([processed])) p = result[0] print(p,v,processed) if (p == 0) and (v == 0): return 1 elif (p == 0) and (v == 1): return 0 elif (p == 1) and (v == 0): return 0 elif (p == 1) and (v == 1): return 1 else: return int(p) return p def addNLPVote(voter,voted,entry): nlp_result = analyzer(entry) relations_list = mongo.db.relations.find({},{'_id':0}) relations = [rel for rel in relations_list if voter == rel['voter'] and voted == rel['voted']] relations = relations[0]['votes'] relations.append(nlp_result) relations_list = mongo.db.relations.update({'voter':voter,'voted':voted},{'$set':{'votes':relations}}) relations_list = mongo.db.relations.find({},{'_id':0}) relations = [rel for rel in relations_list if voter == rel['voter'] and voted == rel['voted']] relations = relations[0]['votes'] return nlp_result def getGroups(id): group_list = mongo.db.groups.find({},{'_id':0}) groups = [g['id'] for g in group_list if id in g['leaders'] ] member_list = [] for i in groups: member_i = getGroup(i) for j in member_i: if j not in member_list: member_list.append(j) return member_list def createGroup(name,owner,member_list): group_list = mongo.db.groups.find({},{'_id':0}) groups = [x for x in group_list] new_group_id = len(groups)+1 ids_to_add = member_list.split('_') members = [int(i) for i in ids_to_add] name = ' '.join(name.split('_')) leaders = [owner] new_group = {'id':new_group_id, 'name':name, 'members':members, 'owner':owner, 'leaders':leaders} try: mongo.db.groups.insert_one(new_group) except: return 'Grup olusturulamadi.' if owner in members: for mem in members: g_info = {} u = fetchUser(userId=mem)[0] g = u['groups'] if mem == owner: g_info['id'] = new_group_id g_info['leaders'] = 1 g_info['owner'] = 1 g_info['members'] = 1 g.append(g_info) else: g_info['id'] = new_group_id g_info['leaders'] = 0 g_info['owner'] = 0 g_info['members'] = 1 g.append(g_info) mongo.db.users.update_one({'id':mem},{'$set':{'groups':g}}) else: for mem in members: g_info = {} u = fetchUser(userId=mem)[0] g = u['groups'] g_info['id'] = new_group_id g_info['leaders'] = 0 g_info['owner'] = 0 g_info['members'] = 1 g.append(g_info) mongo.db.users.update_one({'id':mem},{'$set':{'groups':g}}) return 'Grup basariyla eklendi' def addLeader(owner,group,members): can_see = canSee(owner,group) if can_see == 1: cursor = mongo.db.groups.find({'id':group},{'_id':0}) group_to_add = [i for i in cursor][0] to_be_leader = members.split('_') to_be_leader = [int(i) for i in to_be_leader] current_leaders = group_to_add['leaders'] to_be_leader = [i for i in to_be_leader if i not in current_leaders] current_leaders = current_leaders + to_be_leader mongo.db.groups.update_one({'id':group},{'$set':{'leaders':current_leaders}}) for l in to_be_leader: user = fetchUser(userId=l)[0]
of the same type. Parameter default values are instantiated once and cached to be reused when another Parameterized object of the same type is instantiated. Can be useful to easily modify large collections of Parameterized objects at once and can provide a significant speedup. """ _share = False _shared_cache = {} def __enter__(self): shared_parameters._share = True def __exit__(self, exc_type, exc_val, exc_tb): shared_parameters._share = False shared_parameters._shared_cache = {} def as_uninitialized(fn): """ Decorator: call fn with the parameterized_instance's initialization flag set to False, then revert the flag. (Used to decorate Parameterized methods that must alter a constant Parameter.) """ @wraps(fn) def override_initialization(self_,*args,**kw): parameterized_instance = self_.self original_initialized=parameterized_instance.initialized parameterized_instance.initialized=False fn(parameterized_instance,*args,**kw) parameterized_instance.initialized=original_initialized return override_initialization class Comparator(object): """ Comparator defines methods for determining whether two objects should be considered equal. It works by registering custom comparison functions, which may either be registed by type or with a predicate function. If no matching comparison can be found for the two objects the comparison will return False. If registered by type the Comparator will check whether both objects are of that type and apply the comparison. If the equality function is instead registered with a function it will call the function with each object individually to check if the comparison applies. This is useful for defining comparisons for objects without explicitly importing them. To use the Comparator simply call the is_equal function. """ equalities = { numbers.Number: operator.eq, basestring: operator.eq, bytes: operator.eq, type(None): operator.eq } @classmethod def is_equal(cls, obj1, obj2): for eq_type, eq in cls.equalities.items(): if ((isinstance(eq_type, FunctionType) and eq_type(obj1) and eq_type(obj2)) or (isinstance(obj1, eq_type) and isinstance(obj2, eq_type))): return eq(obj1, obj2) if isinstance(obj2, (list, set, tuple)): return cls.compare_iterator(obj1, obj2) elif isinstance(obj2, dict): return cls.compare_mapping(obj1, obj2) return False @classmethod def compare_iterator(cls, obj1, obj2): if type(obj1) != type(obj2) or len(obj1) != len(obj2): return False for o1, o2 in zip(obj1, obj2): if not cls.is_equal(o1, o2): return False return True @classmethod def compare_mapping(cls, obj1, obj2): if type(obj1) != type(obj2) or len(obj1) != len(obj2): return False for k in obj1: if k in obj2: if not cls.is_equal(obj1[k], obj2[k]): return False else: return False return True class Parameters(object): """Object that holds the namespace and implementation of Parameterized methods as well as any state that is not in __slots__ or the Parameters themselves. Exists at both the metaclass level (instantiated by the metaclass) and at the instance level. Can contain state specific to either the class or the instance as necessary. """ _disable_stubs = False # Flag used to disable stubs in the API1 tests # None for no action, True to raise and False to warn. def __init__(self_, cls, self=None): """ cls is the Parameterized class which is always set. self is the instance if set. """ self_.cls = cls self_.self = self @property def _BATCH_WATCH(self_): return self_.self_or_cls._parameters_state['BATCH_WATCH'] @_BATCH_WATCH.setter def _BATCH_WATCH(self_, value): self_.self_or_cls._parameters_state['BATCH_WATCH'] = value @property def _TRIGGER(self_): return self_.self_or_cls._parameters_state['TRIGGER'] @_TRIGGER.setter def _TRIGGER(self_, value): self_.self_or_cls._parameters_state['TRIGGER'] = value @property def _events(self_): return self_.self_or_cls._parameters_state['events'] @_events.setter def _events(self_, value): self_.self_or_cls._parameters_state['events'] = value @property def _watchers(self_): return self_.self_or_cls._parameters_state['watchers'] @_watchers.setter def _watchers(self_, value): self_.self_or_cls._parameters_state['watchers'] = value @property def self_or_cls(self_): return self_.cls if self_.self is None else self_.self def __setstate__(self, state): # Set old parameters state on Parameterized._parameters_state self_or_cls = state.get('self', state.get('cls')) for k in self_or_cls._parameters_state: key = '_'+k if key in state: self_or_cls._parameters_state[k] = state.pop(key) for k, v in state.items(): setattr(self, k, v) def __getitem__(self_, key): """ Returns the class or instance parameter """ inst = self_.self parameters = self_.objects(False) if inst is None else inst.param.objects(False) p = parameters[key] if (inst is not None and getattr(inst, 'initialized', False) and p.per_instance and not getattr(inst, '_disable_instance__params', False)): if key not in inst._instance__params: try: # Do not copy watchers on class parameter watchers = p.watchers p.watchers = {} p = copy.copy(p) except: raise finally: p.watchers = watchers p.owner = inst inst._instance__params[key] = p else: p = inst._instance__params[key] return p def __dir__(self_): """ Adds parameters to dir """ return super(Parameters, self_).__dir__() + list(self_) def __iter__(self_): """ Iterates over the parameters on this object. """ for p in self_.objects(instance=False): yield p def __contains__(self_, param): return param in list(self_) def __getattr__(self_, attr): """ Extends attribute access to parameter objects. """ cls = self_.__dict__.get('cls') if cls is None: # Class not initialized raise AttributeError try: params = list(getattr(cls, '_%s__params' % cls.__name__)) except AttributeError: params = [n for class_ in classlist(cls) for n, v in class_.__dict__.items() if isinstance(v, Parameter)] if attr in params: return self_.__getitem__(attr) elif self_.self is None: raise AttributeError("type object '%s.param' has no attribute %r" % (self_.cls.__name__, attr)) else: raise AttributeError("'%s.param' object has no attribute %r" % (self_.cls.__name__, attr)) @as_uninitialized def _set_name(self_, name): self = self_.param.self self.name=name @as_uninitialized def _generate_name(self_): self = self_.param.self self.param._set_name('%s%05d' % (self.__class__.__name__ ,object_count)) @as_uninitialized def _setup_params(self_,**params): """ Initialize default and keyword parameter values. First, ensures that all Parameters with 'instantiate=True' (typically used for mutable Parameters) are copied directly into each object, to ensure that there is an independent copy (to avoid surprising aliasing errors). Then sets each of the keyword arguments, warning when any of them are not defined as parameters. Constant Parameters can be set during calls to this method. """ self = self_.param.self ## Deepcopy all 'instantiate=True' parameters # (build a set of names first to avoid redundantly instantiating # a later-overridden parent class's parameter) params_to_instantiate = {} for class_ in classlist(type(self)): if not issubclass(class_, Parameterized): continue for (k,v) in class_.__dict__.items(): # (avoid replacing name with the default of None) if isinstance(v,Parameter) and v.instantiate and k!="name": params_to_instantiate[k]=v for p in params_to_instantiate.values(): self.param._instantiate_param(p) ## keyword arg setting for name,val in params.items(): desc = self.__class__.get_param_descriptor(name)[0] # pylint: disable-msg=E1101 if not desc: self.param.warning("Setting non-parameter attribute %s=%s using a mechanism intended only for parameters",name,val) # i.e. if not desc it's setting an attribute in __dict__, not a Parameter setattr(self,name,val) @classmethod def deprecate(cls, fn): """ Decorator to issue warnings for API moving onto the param namespace and to add a docstring directing people to the appropriate method. """ def inner(*args, **kwargs): if cls._disable_stubs: raise AssertionError('Stubs supporting old API disabled') elif cls._disable_stubs is None: pass elif cls._disable_stubs is False: get_logger(name=args[0].__class__.__name__).log( WARNING, 'Use method %r via param namespace ' % fn.__name__) return fn(*args, **kwargs) inner.__doc__= "Inspect .param.%s method for the full docstring" % fn.__name__ return inner @classmethod def _changed(cls, event): """ Predicate that determines whether a Event object has actually changed such that old != new. """ return not Comparator.is_equal(event.old, event.new) # CEBALERT: this is a bit ugly def _instantiate_param(self_,param_obj,dict_=None,key=None): # deepcopy param_obj.default into self.__dict__ (or dict_ if supplied) # under the parameter's _internal_name (or key if supplied) self = self_.self dict_ = dict_ or self.__dict__ key = key or param_obj._internal_name param_key = (str(type(self)), param_obj.name) if shared_parameters._share: if param_key in shared_parameters._shared_cache: new_object = shared_parameters._shared_cache[param_key] else: new_object = copy.deepcopy(param_obj.default) shared_parameters._shared_cache[param_key] = new_object else: new_object = copy.deepcopy(param_obj.default) dict_[key]=new_object if isinstance(new_object,Parameterized): global object_count object_count+=1 # CB: writes over name given to the original object; # should it instead keep the same name? new_object.param._generate_name() # Classmethods def print_param_defaults(self_): """Print the default values of all cls's Parameters.""" cls = self_.cls for key,val in cls.__dict__.items(): if isinstance(val,Parameter): print(cls.__name__+'.'+key+ '='+ repr(val.default)) def set_default(self_,param_name,value): """ Set the default value of param_name. Equivalent to setting param_name on the class. """ cls = self_.cls setattr(cls,param_name,value) def _add_parameter(self_, param_name,param_obj): """ Add a new Parameter object into this object's class. Supposed to result in a Parameter equivalent to one declared in the class's source code. """ # CEBALERT: can't we just do # setattr(cls,param_name,param_obj)? The metaclass's # __setattr__ is actually written to handle that. (Would also # need to do something about the params() cache. That cache # is a pain, but it definitely improved the startup time; it # would be worthwhile making sure no method except for one # "add_param()" method has to deal with it (plus any future # remove_param() method.) cls = self_.cls type.__setattr__(cls,param_name,param_obj) ParameterizedMetaclass._initialize_parameter(cls,param_name,param_obj) # delete cached params() try: delattr(cls,'_%s__params'%cls.__name__) except AttributeError: pass def params(self_,
timeout): """ Sets the timeout limit for an order to the RAPI. :param timeout: The value of the timeout in seconds. :type timeout: float """ self.timeout_order = float(timeout) def set_attempts(self, number): """ Sets number of attempts to be made to the RAPI before the script ends. :param number: The value for the number of attempts. :type number: int """ self.attempts = int(number) def set_fieldConvention(self, convention): """ Sets the naming convention of the output fields. :param convention: The type of naming convention for the fields. - ``words``: The label with spaces and words will be returned. - ``camel`` (default): The format will be lower camel case like 'camelCase'. - ``upper``: The format will be all uppercase with underscore for spaces. :type convention: str """ self.name_conv = convention self._update_conv() def download_image(self, url, dest_fn, fsize): """ Given a list of remote and local items, download the remote data if it is not already found locally. (Adapted from the eodms-api-client (https://pypi.org/project/eodms-api-client/) developed by <NAME>) :param url: The download URL of the image. :type url: str :param dest_fn: The local destination filename for the download. :type dest_fn: str :param fsize: The total filesize of the image. :type fsize: int """ # If we have an existing local file, check the filesize against the manifest if os.path.exists(dest_fn): # if all-good, continue to next file if os.stat(dest_fn).st_size == fsize: msg = "No download necessary. " \ "Local file already exists: %s" % dest_fn self._log_msg(msg) return None # Otherwise, delete the incomplete/malformed local file and redownload else: msg = 'Filesize mismatch with %s. Re-downloading...' % \ os.path.basename(dest_fn) self._log_msg(msg, 'warning') os.remove(dest_fn) # Use streamed download so we can wrap nicely with tqdm with self._session.get(url, stream=True, verify=self.verify) as stream: with open(dest_fn, 'wb') as pipe: with tqdm.wrapattr( pipe, method='write', miniters=1, total=fsize, desc="%s%s" % (self._header, os.path.basename(dest_fn)) ) as file_out: for chunk in stream.iter_content(chunk_size=1024): file_out.write(chunk) msg = '%s has been downloaded.' % dest_fn self._log_msg(msg) def download(self, items, dest, wait=10.0): """ Downloads a list of order items from the EODMS RAPI. :param items: A list of order items returned from the RAPI. Example: .. code-block:: python {'items': [ {'recordId': '8023427', 'status': 'SUBMITTED', 'collectionId': 'RCMImageProducts', 'itemId': '346204', 'orderId': '50975'}, ...]} or .. code-block:: python [{ 'recordId': '8023427', 'status': 'SUBMITTED', 'collectionId': 'RCMImageProducts', 'itemId': '346204', 'orderId': '50975' }, ...] :type items: list or dict :param dest: The local download folder location. :type dest: str :param wait: Sets the time to wait before checking the status of all orders. :type wait: float or int :return: A list of the download (completed) items. :rtype: list """ msg = "Downloading images..." self._log_msg(msg, log_indent='\n\n\t', out_indent='\n') if items is None: msg = "No images to download." self._log_msg(msg) return [] if isinstance(items, dict): if 'items' in items.keys(): items = items['items'] if len(items) == 0: msg = "No images to download." self._log_msg(msg) return [] complete_items = [] while len(items) > len(complete_items): time.sleep(wait) start, end = self._get_dateRange(items) orders = self.get_orders(dtstart=start, dtend=end) if len(orders) == 0: msg = "No orders could be found." self._log_msg(msg) return [] new_count = len(complete_items) for itm in items: item_id = itm['itemId'] cur_item = self._get_itemFromOrders(item_id, orders) status = cur_item['status'] record_id = cur_item['recordId'] # Check record is already complete if self._check_complete(complete_items, record_id): continue if status in self.failed_status: if status == 'FAILED': # If the order has failed, inform user status_mess = cur_item.get('statusMessage') msg = "\n The following Order Item has failed:" if status_mess is None: msg += "\n Order Item Id: %s\n" \ " Record Id: %s" \ " Collection: %s\n" % \ (cur_item['itemId'], \ cur_item['recordId'], \ cur_item['collectionId']) else: msg += "\n Order Item Id: %s\n" \ " Record Id: %s\n" \ " Collection: %s\n" \ " Reason for Failure: %s" % \ (cur_item['itemId'], cur_item['recordId'], \ cur_item['collectionId'], \ cur_item['statusMessage']) else: # If the order was unsuccessful with another status, # inform user msg = "\n The following Order Item has status " \ "'%s' and will not be downloaded:" % status msg += "\n Order Item Id: %s\n" \ " Record Id: %s\n" \ " Collection: %s\n" % \ (cur_item['itemId'], \ cur_item['recordId'], \ cur_item['collectionId']) self._log_msg(msg) cur_item['downloaded'] = 'False' complete_items.append(cur_item) elif status == 'AVAILABLE_FOR_DOWNLOAD': cur_item['downloaded'] = 'True' dests = cur_item['destinations'] manifest_key = list(cur_item['manifest'].keys()).pop() fsize = int(cur_item['manifest'][manifest_key]) download_paths = [] for d in dests: # Get the string value of the destination str_val = d['stringValue'] str_val = str_val.replace('</br>', '') # Parse the HTML text of the destination string root = ElementTree.fromstring(str_val) url = root.text fn = os.path.basename(url) # Download the image msg = "Downloading image with " \ "Record Id %s (%s)." % (record_id, \ os.path.basename(url)) self._log_msg(msg) # Save the image contents to the 'downloads' folder out_fn = os.path.join(dest, fn) full_path = os.path.realpath(out_fn) if not os.path.exists(dest): os.mkdir(dest) self.download_image(url, out_fn, fsize) print('') # Record the URL and downloaded file to a dictionary dest_info = {} dest_info['url'] = url dest_info['local_destination'] = full_path download_paths.append(dest_info) cur_item['downloadPaths'] = download_paths complete_items.append(cur_item) if new_count == 0 and len(complete_items) == 0: msg = "No items are ready for download yet." self._log_msg(msg) elif new_count == len(complete_items): msg = "No new items are ready for download yet." self._log_msg(msg) return complete_items def get_availableFields(self, collection=None, name_type='all'): """ Gets a dictionary of available fields for a collection from the RAPI. :param collection: The Collection ID. :type collection: str :return: A dictionary containing the available fields for the given collection. :rtype: dict """ if collection is None: if self.collection is None: self._log_msg('No collection can be determined.', 'warning') return None collection = self.collection query_url = '%s/collections/%s' % (self.rapi_root, collection) coll_res = self._submit(query_url, timeout=20.0) if coll_res is None: return None # If an error occurred if isinstance(coll_res, QueryError): self._log_msg(coll_res._get_msgs(True), 'warning') return None # Get a list of the searchFields fields = {} if name_type == 'title' or name_type == 'id': srch_fields = [] for r in coll_res['searchFields']: srch_fields.append(r[name_type]) fields['search'] = srch_fields res_fields = [] for r in coll_res['resultFields']: res_fields.append(r[name_type]) fields['results'] = res_fields else: srch_fields = {} for r in coll_res['searchFields']: srch_fields[r['title']] = {'id': r['id'], \ 'datatype': r['datatype'], \ 'choices': r.get('choices')} fields['search'] = srch_fields res_fields = {} for r in coll_res['resultFields']: res_fields[r['title']] = {'id': r['id'], \ 'datatype': r['datatype']} fields['results'] = res_fields return fields def get_fieldChoices(self, collection, field=None): """ Gets the avaiable choices for a specified field. If no choices exist, then the data type is returned. :param collection: The collection containing the field. :type collection: str :param field: The field name or field ID. :type field: str :return: Either a list of choices or a string containing the data type. :rtype: list or str """ fields = self.get_availableFields(collection) all_fields = {} for f, v in fields['search'].items(): choices = [] if field is None: field_choices = v.get('choices') if field_choices is not None: for c in field_choices: value = c['value'] if not value == '': choices.append(value) all_fields[f] = choices else: all_fields[f] = {'data_type': v.get('datatype')} else: if f == field or v['id'] == field: field_choices = v.get('choices') if field_choices is not None: for c in field_choices: value = c['value'] if not value == '': choices.append(value) return choices else: return {'data_type': v.get('datatype')} return all_fields def get_collections(self, as_list=False, opt='id', redo=False): """ Gets a list of available collections for the current user. :param as_list: Determines the type of return. If False, a dictionary will be returned. If True, only a list of collection IDs will be returned. :type as_list: bool :return: Either
= parse_yaml(paths, fn) all_run_data = copy.deepcopy(run_data) # all_run_data includes failed jobs if show_fails: # remove all jobs that have no PBS info in log file for jobid in all_run_data: if all_run_data[jobid]['PBS log']['Run completion date'] is None: del run_data[jobid] # (jobid, run completion date) tuples sorted by run completion date jobid_run_tuples = sorted([(k, v['PBS log']['Run completion date']) for (k, v) in run_data.items()], key=lambda t: t[1]) if len(jobid_run_tuples) == 0: print('\nAborting: no jobs?') return # jobid keys into run_data sorted by run completion date sortedjobids = [k[0] for k in jobid_run_tuples] else: # remove failed jobs from run_data for jobid in all_run_data: print('.', end='', flush=True) pbs = all_run_data[jobid]['PBS log'] date = pbs['Run completion date'] if date is None: # no PBS info in log file del run_data[jobid] elif pbs['Run number'] is None: # not a model run log file del run_data[jobid] elif pbs['Exit Status'] != 0: # output dir belongs to this job only if Exit Status = 0 del run_data[jobid] elif len(run_data[jobid]['config.yaml']) == 0: # output dir missing del run_data[jobid] # (jobid, run number) tuples sorted by run number - re-done below jobid_run_tuples = sorted([(k, v['PBS log']['Run number']) for (k, v) in run_data.items()], key=lambda t: t[1]) if len(jobid_run_tuples) == 0: print('\nAborting: no successful jobs?') return # Remove the older jobid if run number is duplicated - assume run was re-done # (check by date rather than jobid, since jobid sometimes rolls over) prev_jobid_run = jobid_run_tuples[0] for jobid_run in jobid_run_tuples[1:]: if jobid_run[1] == prev_jobid_run[1]: # duplicated run number if run_data[jobid_run[0]]['PBS log']['Run completion date']\ > run_data[prev_jobid_run[0]]['PBS log']['Run completion date']: del run_data[prev_jobid_run[0]] prev_jobid_run = jobid_run else: del run_data[jobid_run[0]] else: prev_jobid_run = jobid_run # re-do (jobid, run number) tuples sorted by run number jobid_run_tuples = sorted([(k, v['PBS log']['Run number']) for (k, v) in run_data.items()], key=lambda t: t[1]) if len(jobid_run_tuples) == 0: print('\nAborting: no successful jobs?') return # jobid keys into run_data sorted by run number sortedjobids = [k[0] for k in jobid_run_tuples] # allow referencing by submodel name as well as list index for jobid in run_data: run_data[jobid]['config.yaml']['submodels-by-name'] = dict() for sm in run_data[jobid]['config.yaml']['submodels']: run_data[jobid]['config.yaml']['submodels-by-name'][sm['name']] = sm # make a 'timing' entry to contain model timestep and run length for both MATM and YATM runs # run length is [years, months, days, seconds] to accommodate both MATM and YATM prevjobid = -1 for jobid in sortedjobids: r = run_data[jobid] timing = dict() if r['namelists']['accessom2.nml'] is None: # non-YATM run timing['Timestep'] = r['config.yaml']['submodels'][1]['timestep'] # MOM timestep rt = r['config.yaml']['calendar']['runtime'] timing['Run length'] = [rt['years'], rt['months'], rt['days'], 0] # insert 0 seconds else: timing['Timestep'] = r['namelists']['accessom2.nml']['accessom2_nml']['ice_ocean_timestep'] rp = r['namelists']['accessom2.nml']['date_manager_nml']['restart_period'] timing['Run length'] = rp[0:2] + [0] + [rp[2]] # insert 0 days yrs = r['MOM_time_stamp.out']['Model run length (days)']/365.25 # FUDGE: assumes 365.25-day year timing['SU per model year'] = r['PBS log']['Service Units']/yrs timing['Walltime (hr) per model year'] = r['PBS log']['Walltime Used (hr)']/yrs storagekeys = list(r['storage'].keys()) for k in storagekeys: timing[k + ' per model year'] = round(r['storage'][k]/yrs, 3) if prevjobid >= 0: # also record time including wait between runs d1 = dateutil.parser.parse(run_data[prevjobid]['PBS log']['Run completion date']) d2 = dateutil.parser.parse(r['PBS log']['Run completion date']) tot_walltime = (d2-d1).total_seconds()/3600 timing['Walltime (hr) between this completion and previous completion'] = tot_walltime timing['Wait (hr) between this run and previous'] = tot_walltime - r['PBS log']['Walltime Used (hr)'] timing['SU per calendar day'] = r['PBS log']['Service Units']/tot_walltime*24 timing['Model years per calendar day'] = yrs/tot_walltime*24 for k in storagekeys: timing[k + ' per calendar day'] = round(r['storage'][k]/tot_walltime*24, 3) r['timing'] = timing prevjobid = jobid # include changes in all git commits since previous run for i, jobid in enumerate(sortedjobids): print('.', end='', flush=True) run_data[jobid]['git diff'] = \ git_diff(basepath, run_data[sortedjobids[max(i-1, 0)]]['git log']['Commit'], run_data[jobid]['git log']['Commit']) # count failed jobs prior to each successful run # BUG: always have zero count between two successful runs straddling a jobid rollover # BUG: first run also counts all fails after a rollover prevjobid = -1 for jobid in sortedjobids: c = [e for e in all_run_data.keys() if e > prevjobid and e < jobid and e not in run_data] c.sort() run_data[jobid]['PBS log']['Failed previous jobids'] = c run_data[jobid]['PBS log']['Failed previous jobs'] = len(c) prevjobid = jobid if list_available: print('\nAvailable data which can be tabulated if added to output_format') print('(but you may need to edit some keys to ensure uniqueness):') keylist = [] for k in keylistssuperset(run_data): keylist.append((k[-1], "['" + "', '".join(k) + "']")) keylist.sort(key = lambda x: x[1]) maxkeywidth = max([len(k[0]) for k in keylist]) for k in keylist: print(" ('" + k[0] + "', " + " "*(maxkeywidth-len(k[0])) + k[1] + "),") if dump_all: dumpoutfile = os.path.splitext(outfile)[0]+'.yaml' print('\nWriting', dumpoutfile) with open(dumpoutfile, 'w') as outf: yaml.dump(run_data, outf, default_flow_style=False) ########################################################################### # Specify the output format here. ########################################################################### # output_format is a OrderedDict of (key, value) tuples, one for each column. # keys are column headers (arbitrary but must be unique) # values are lists of keys into run_data (omitting job id) # "run_summary.py --list" will list all available data you can add here # (but you may need to edit some keys to ensure uniqueness) output_format = OrderedDict([ ('Run', ['PBS log', 'Run number']), ('Run start', ['MOM_time_stamp.out', 'Model start time']), ('Run end', ['MOM_time_stamp.out', 'Model end time']), ('Run length (y, m, d, s)', ['timing', 'Run length']), ('Run length (days)', ['MOM_time_stamp.out', 'Model run length (days)']), ('Control directory', ['paths', 'Control path']), # ('Archive directory', ['paths', 'Archive path']), # ('Sync directory', ['paths', 'Sync path']), ('Output directory', ['paths', 'Output path']), ('Output GiB', ['storage', 'Output path GiB']), ('Restart directory', ['paths', 'Restart path']), ('Restart GiB', ['storage', 'Restart path GiB']), ('Run by', ['git log', 'Author']), ('Run completion date', ['PBS log', 'Run completion date']), ('Job Id', ['PBS log', 'Job Id']), ('Failed jobs', ['PBS log', 'Failed previous jobs']), ('Failed jobids', ['PBS log', 'Failed previous jobids']), ('Queue', ['config.yaml', 'queue']), ('Service Units', ['PBS log', 'Service Units']), ('Walltime Used (hr)', ['PBS log', 'Walltime Used (hr)']), ('SU per model year', ['timing', 'SU per model year']), ('Walltime (hr) per model year', ['timing', 'Walltime (hr) per model year']), ('Wait (hr) between runs', ['timing', 'Wait (hr) between this run and previous']), ('SU per calendar day', ['timing', 'SU per calendar day']), ('Model years per calendar day', ['timing', 'Model years per calendar day']), ('Memory Used (Gb)', ['PBS log', 'Memory Used (Gb)']), ('NCPUs Used', ['PBS log', 'NCPUs Used']), ('MOM NCPUs', ['config.yaml', 'submodels-by-name', 'ocean', 'ncpus']), ('CICE NCPUs', ['config.yaml', 'submodels-by-name', 'ice', 'ncpus']), # ('Max Ocean diagnostics (s)', ['access-om2.out', '(Ocean diagnostics)', 'tmax']), # ('Max Ocean diagnostics: tracer (s)', ['access-om2.out', '(Ocean diagnostics: tracer)', 'tmax']), ('Fraction of MOM runtime in oasis_recv', ['access-om2.out', 'oasis_recv', 'tfrac']), ('Max MOM wait for oasis_recv (s)', ['access-om2.out', 'oasis_recv', 'tmax']), ('Max CICE wait for coupler (s)', ['ice_diag.d', 'timing', 'waiting_o', 'node', 'max']), ('Max CICE I/O time (s)', ['ice_diag.d', 'timing', 'ReadWrite', 'node', 'max']), ('MOM tile layout', ['namelists', 'ocean/input.nml', 'ocean_model_nml', 'layout']), ('CICE tile distribution', ['namelists', 'ice/cice_in.nml', 'domain_nml', 'distribution_type']), ('CICE block_size_x', ['ice_diag.d', 'block_size_x']), ('CICE block_size_y', ['ice_diag.d', 'block_size_y']), ('Timestep (s)', ['timing', 'Timestep']), ('MOM barotropic split', ['namelists', 'ocean/input.nml', 'ocean_model_nml', 'barotropic_split']), ('CICE dynamic split (ndtd)', ['namelists', 'ice/cice_in.nml', 'setup_nml', 'ndtd']), # ('ktherm', ['namelists', 'ice/cice_in.nml', 'thermo_nml', 'ktherm']), # ('Common inputs', ['config.yaml', 'input']), # ('Atmosphere executable', ['config.yaml', 'submodels-by-name', 'atmosphere', 'exe']), # ('Atmosphere inputs', ['config.yaml', 'submodels-by-name', 'atmosphere', 'input']), # ('MOM executable', ['config.yaml', 'submodels-by-name', 'ocean', 'exe']), # ('MOM inputs', ['config.yaml', 'submodels-by-name', 'ocean', 'input']), # ('CICE executable', ['config.yaml', 'submodels-by-name', 'ice', 'exe']), # ('CICE inputs', ['config.yaml', 'submodels-by-name', 'ice', 'input']), # ('Payu version', ['PBS log', 'payu version']), ('Git hash of run', ['git log', 'Commit']), ('Commit date', ['git log', 'Date']), ('Git-tracked file changes', ['git diff', 'Changed files']), ('Git log messages', ['git diff', 'Messages']), ]) SUdata = [dictget(run_data, [jobid] + ['PBS log', 'Service Units']) for jobid in sortedjobids] stats = OrderedDict([ # tuples: (label, function) ('Total', sum), ('Mean', np.mean), ('Median', np.median), ('Min', min), ('Max', max), ('Std dev', np.std), ('SU correlation', lambda x: np.corrcoef(x, SUdata)[0, 1]), ('SU slope', lambda x: np.polyfit(x, SUdata, 1)[0]), ('Dimensionless SU slope', lambda x: np.polyfit(x, SUdata, 1)[0]*np.mean(x)/np.mean(SUdata)) ]) ########################################################################### if no_stats: stats = OrderedDict([]) if show_fails: # output crash-related info (redefines order of any keys already
type _MODULE_TYPE_ = { "LIBRARY" : "BASE", "SECURITY_CORE" : "SEC", "PEI_CORE" : "PEI_CORE", "COMBINED_PEIM_DRIVER" : "PEIM", "PIC_PEIM" : "PEIM", "RELOCATABLE_PEIM" : "PEIM", "PE32_PEIM" : "PEIM", "BS_DRIVER" : "DXE_DRIVER", "RT_DRIVER" : "DXE_RUNTIME_DRIVER", "SAL_RT_DRIVER" : "DXE_SAL_DRIVER", "DXE_SMM_DRIVER" : "DXE_SMM_DRIVER", # "SMM_DRIVER" : "DXE_SMM_DRIVER", # "BS_DRIVER" : "DXE_SMM_DRIVER", # "BS_DRIVER" : "UEFI_DRIVER", "APPLICATION" : "UEFI_APPLICATION", "LOGO" : "BASE", } # regular expression for converting XXX_FLAGS in [nmake] section to new type _NMAKE_FLAG_PATTERN_ = re.compile("(?:EBC_)?([A-Z]+)_(?:STD_|PROJ_|ARCH_)?FLAGS(?:_DLL|_ASL|_EXE)?", re.UNICODE) # dict used to convert old tool name used in [nmake] section to new ones _TOOL_CODE_ = { "C" : "CC", "LIB" : "SLINK", "LINK" : "DLINK", } ## Constructor of DscBuildData # # Initialize object of DscBuildData # # @param FilePath The path of platform description file # @param RawData The raw data of DSC file # @param BuildDataBase Database used to retrieve module/package information # @param Arch The target architecture # @param Platform The name of platform employing this module # @param Macros Macros used for replacement in DSC file # def __init__(self, FilePath, RawData, BuildDatabase, Arch='COMMON', Target=None, Toolchain=None): self.MetaFile = FilePath self._ModuleDir = FilePath.Dir self._RawData = RawData self._Bdb = BuildDatabase self._Arch = Arch self._Target = Target self._Toolchain = Toolchain self._Platform = 'COMMON' self._SourceOverridePath = None if FilePath.Key in GlobalData.gOverrideDir: self._SourceOverridePath = GlobalData.gOverrideDir[FilePath.Key] self._Clear() ## XXX[key] = value def __setitem__(self, key, value): self.__dict__[self._PROPERTY_[key]] = value ## value = XXX[key] def __getitem__(self, key): return self.__dict__[self._PROPERTY_[key]] ## "in" test support def __contains__(self, key): return key in self._PROPERTY_ ## Set all internal used members of InfBuildData to None def _Clear(self): self._HeaderComments = None self._TailComments = None self._Header_ = None self._AutoGenVersion = None self._BaseName = None self._DxsFile = None self._ModuleType = None self._ComponentType = None self._BuildType = None self._Guid = None self._Version = None self._PcdIsDriver = None self._BinaryModule = None self._Shadow = None self._MakefileName = None self._CustomMakefile = None self._Specification = None self._LibraryClass = None self._ModuleEntryPointList = None self._ModuleUnloadImageList = None self._ConstructorList = None self._DestructorList = None self._Defs = None self._Binaries = None self._Sources = None self._LibraryClasses = None self._Libraries = None self._Protocols = None self._ProtocolComments = None self._Ppis = None self._PpiComments = None self._Guids = None self._GuidsUsedByPcd = sdict() self._GuidComments = None self._Includes = None self._Packages = None self._Pcds = None self._PcdComments = None self._BuildOptions = None self._Depex = None self._DepexExpression = None self.__Macros = None ## Get current effective macros def _GetMacros(self): if self.__Macros == None: self.__Macros = {} # EDK_GLOBAL defined macros can be applied to EDK module if self.AutoGenVersion < 0x00010005: self.__Macros.update(GlobalData.gEdkGlobal) self.__Macros.update(GlobalData.gGlobalDefines) return self.__Macros ## Get architecture def _GetArch(self): return self._Arch ## Set architecture # # Changing the default ARCH to another may affect all other information # because all information in a platform may be ARCH-related. That's # why we need to clear all internal used members, in order to cause all # information to be re-retrieved. # # @param Value The value of ARCH # def _SetArch(self, Value): if self._Arch == Value: return self._Arch = Value self._Clear() ## Return the name of platform employing this module def _GetPlatform(self): return self._Platform ## Change the name of platform employing this module # # Changing the default name of platform to another may affect some information # because they may be PLATFORM-related. That's why we need to clear all internal # used members, in order to cause all information to be re-retrieved. # def _SetPlatform(self, Value): if self._Platform == Value: return self._Platform = Value self._Clear() def _GetHeaderComments(self): if not self._HeaderComments: self._HeaderComments = [] RecordList = self._RawData[MODEL_META_DATA_HEADER_COMMENT] for Record in RecordList: self._HeaderComments.append(Record[0]) return self._HeaderComments def _GetTailComments(self): if not self._TailComments: self._TailComments = [] RecordList = self._RawData[MODEL_META_DATA_TAIL_COMMENT] for Record in RecordList: self._TailComments.append(Record[0]) return self._TailComments ## Retrieve all information in [Defines] section # # (Retriving all [Defines] information in one-shot is just to save time.) # def _GetHeaderInfo(self): RecordList = self._RawData[MODEL_META_DATA_HEADER, self._Arch, self._Platform] for Record in RecordList: Name, Value = Record[1], ReplaceMacro(Record[2], self._Macros, False) # items defined _PROPERTY_ don't need additional processing if Name in self: self[Name] = Value if self._Defs == None: self._Defs = sdict() self._Defs[Name] = Value self._Macros[Name] = Value # some special items in [Defines] section need special treatment elif Name in ('EFI_SPECIFICATION_VERSION', 'UEFI_SPECIFICATION_VERSION', 'EDK_RELEASE_VERSION', 'PI_SPECIFICATION_VERSION'): if Name in ('EFI_SPECIFICATION_VERSION', 'UEFI_SPECIFICATION_VERSION'): Name = 'UEFI_SPECIFICATION_VERSION' if self._Specification == None: self._Specification = sdict() self._Specification[Name] = GetHexVerValue(Value) if self._Specification[Name] == None: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "'%s' format is not supported for %s" % (Value, Name), File=self.MetaFile, Line=Record[-1]) elif Name == 'LIBRARY_CLASS': if self._LibraryClass == None: self._LibraryClass = [] ValueList = GetSplitValueList(Value) LibraryClass = ValueList[0] if len(ValueList) > 1: SupModuleList = GetSplitValueList(ValueList[1], ' ') else: SupModuleList = SUP_MODULE_LIST self._LibraryClass.append(LibraryClassObject(LibraryClass, SupModuleList)) elif Name == 'ENTRY_POINT': if self._ModuleEntryPointList == None: self._ModuleEntryPointList = [] self._ModuleEntryPointList.append(Value) elif Name == 'UNLOAD_IMAGE': if self._ModuleUnloadImageList == None: self._ModuleUnloadImageList = [] if not Value: continue self._ModuleUnloadImageList.append(Value) elif Name == 'CONSTRUCTOR': if self._ConstructorList == None: self._ConstructorList = [] if not Value: continue self._ConstructorList.append(Value) elif Name == 'DESTRUCTOR': if self._DestructorList == None: self._DestructorList = [] if not Value: continue self._DestructorList.append(Value) elif Name == TAB_INF_DEFINES_CUSTOM_MAKEFILE: TokenList = GetSplitValueList(Value) if self._CustomMakefile == None: self._CustomMakefile = {} if len(TokenList) < 2: self._CustomMakefile['MSFT'] = TokenList[0] self._CustomMakefile['GCC'] = TokenList[0] else: if TokenList[0] not in ['MSFT', 'GCC']: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "No supported family [%s]" % TokenList[0], File=self.MetaFile, Line=Record[-1]) self._CustomMakefile[TokenList[0]] = TokenList[1] else: if self._Defs == None: self._Defs = sdict() self._Defs[Name] = Value self._Macros[Name] = Value # # Retrieve information in sections specific to Edk.x modules # if self.AutoGenVersion >= 0x00010005: if not self._ModuleType: EdkLogger.error("build", ATTRIBUTE_NOT_AVAILABLE, "MODULE_TYPE is not given", File=self.MetaFile) if self._ModuleType not in SUP_MODULE_LIST: RecordList = self._RawData[MODEL_META_DATA_HEADER, self._Arch, self._Platform] for Record in RecordList: Name = Record[1] if Name == "MODULE_TYPE": LineNo = Record[6] break EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MODULE_TYPE %s is not supported for EDK II, valid values are:\n %s" % (self._ModuleType, ' '.join(l for l in SUP_MODULE_LIST)), File=self.MetaFile, Line=LineNo) if (self._Specification == None) or (not 'PI_SPECIFICATION_VERSION' in self._Specification) or (int(self._Specification['PI_SPECIFICATION_VERSION'], 16) < 0x0001000A): if self._ModuleType == SUP_MODULE_SMM_CORE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "SMM_CORE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x0001000A", File=self.MetaFile) if (self._Specification == None) or (not 'PI_SPECIFICATION_VERSION' in self._Specification) or (int(self._Specification['PI_SPECIFICATION_VERSION'], 16) < 0x00010032): if self._ModuleType == SUP_MODULE_MM_CORE_STANDALONE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MM_CORE_STANDALONE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x00010032", File=self.MetaFile) if self._ModuleType == SUP_MODULE_MM_STANDALONE: EdkLogger.error("build", FORMAT_NOT_SUPPORTED, "MM_STANDALONE module type can't be used in the module with PI_SPECIFICATION_VERSION less than 0x00010032", File=self.MetaFile) if self._Defs and 'PCI_DEVICE_ID' in self._Defs and 'PCI_VENDOR_ID' in self._Defs \ and 'PCI_CLASS_CODE' in self._Defs and 'PCI_REVISION' in self._Defs: self._BuildType = 'UEFI_OPTIONROM' if 'PCI_COMPRESS' in self._Defs: if self._Defs['PCI_COMPRESS'] not in ('TRUE', 'FALSE'): EdkLogger.error("build", FORMAT_INVALID, "Expected TRUE/FALSE for PCI_COMPRESS: %s" %self.MetaFile) elif self._Defs and 'UEFI_HII_RESOURCE_SECTION' in self._Defs \ and self._Defs['UEFI_HII_RESOURCE_SECTION'] == 'TRUE': self._BuildType = 'UEFI_HII' else: self._BuildType = self._ModuleType.upper() if self._DxsFile: File = PathClass(NormPath(self._DxsFile), self._ModuleDir, Arch=self._Arch) # check the file validation ErrorCode, ErrorInfo = File.Validate(".dxs", CaseSensitive=False) if ErrorCode != 0: EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) if self.Sources == None: self._Sources = [] self._Sources.append(File) else: if not self._ComponentType: EdkLogger.error("build", ATTRIBUTE_NOT_AVAILABLE, "COMPONENT_TYPE is not given", File=self.MetaFile) self._BuildType = self._ComponentType.upper() if self._ComponentType in self._MODULE_TYPE_: self._ModuleType = self._MODULE_TYPE_[self._ComponentType] if self._ComponentType == 'LIBRARY': self._LibraryClass = [LibraryClassObject(self._BaseName, SUP_MODULE_LIST)] # make use some [nmake] section macros Macros = self._Macros Macros["EDK_SOURCE"] = GlobalData.gEcpSource Macros['PROCESSOR'] = self._Arch RecordList = self._RawData[MODEL_META_DATA_NMAKE, self._Arch, self._Platform] for Name, Value, Dummy, Arch, Platform, ID, LineNo in RecordList: Value = ReplaceMacro(Value, Macros, True) if Name == "IMAGE_ENTRY_POINT": if self._ModuleEntryPointList == None: self._ModuleEntryPointList = [] self._ModuleEntryPointList.append(Value) elif Name == "DPX_SOURCE": File = PathClass(NormPath(Value), self._ModuleDir, Arch=self._Arch) # check the file validation ErrorCode, ErrorInfo = File.Validate(".dxs", CaseSensitive=False) if ErrorCode != 0: EdkLogger.error('build', ErrorCode, ExtraData=ErrorInfo, File=self.MetaFile, Line=LineNo) if self.Sources == None: self._Sources = [] self._Sources.append(File) else: ToolList = self._NMAKE_FLAG_PATTERN_.findall(Name) if len(ToolList) == 0 or len(ToolList) != 1: pass # EdkLogger.warn("build", "Don't know how to do with macro [%s]" % Name, # File=self.MetaFile, Line=LineNo) else: if self._BuildOptions == None: self._BuildOptions = sdict() if ToolList[0] in self._TOOL_CODE_: Tool = self._TOOL_CODE_[ToolList[0]] else: Tool =
all or a subset of the columns from the input files. For complete details, see the `1dcat Documentation. <https://afni.nimh.nih.gov/pub/dist/doc/program_help/1dcat.html>`_ Examples ======== >>> from nipype.interfaces import afni >>> cat1d = afni.Cat() >>> cat1d.inputs.sel = "'[0,2]'" >>> cat1d.inputs.in_files = ['f1.1D', 'f2.1D'] >>> cat1d.inputs.out_file = 'catout.1d' >>> cat1d.cmdline # doctest: +ALLOW_UNICODE "1dcat -sel '[0,2]' f1.1D f2.1D > catout.1d" >>> res = cat1d.run() # doctest: +SKIP """ _cmd = '1dcat' input_spec = CatInputSpec output_spec = AFNICommandOutputSpec class CopyInputSpec(AFNICommandInputSpec): in_file = File( desc='input file to 3dcopy', argstr='%s', position=-2, mandatory=True, exists=True, copyfile=False) out_file = File( name_template='%s_copy', desc='output image file name', argstr='%s', position=-1, name_source='in_file') class Copy(AFNICommand): """Copies an image of one type to an image of the same or different type using 3dcopy command For complete details, see the `3dcopy Documentation. <https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcopy.html>`_ Examples ======== >>> from nipype.interfaces import afni >>> copy3d = afni.Copy() >>> copy3d.inputs.in_file = 'functional.nii' >>> copy3d.cmdline # doctest: +ALLOW_UNICODE '3dcopy functional.nii functional_copy' >>> res = copy3d.run() # doctest: +SKIP >>> from copy import deepcopy >>> copy3d_2 = deepcopy(copy3d) >>> copy3d_2.inputs.outputtype = 'NIFTI' >>> copy3d_2.cmdline # doctest: +ALLOW_UNICODE '3dcopy functional.nii functional_copy.nii' >>> res = copy3d_2.run() # doctest: +SKIP >>> copy3d_3 = deepcopy(copy3d) >>> copy3d_3.inputs.outputtype = 'NIFTI_GZ' >>> copy3d_3.cmdline # doctest: +ALLOW_UNICODE '3dcopy functional.nii functional_copy.nii.gz' >>> res = copy3d_3.run() # doctest: +SKIP >>> copy3d_4 = deepcopy(copy3d) >>> copy3d_4.inputs.out_file = 'new_func.nii' >>> copy3d_4.cmdline # doctest: +ALLOW_UNICODE '3dcopy functional.nii new_func.nii' >>> res = copy3d_4.run() # doctest: +SKIP """ _cmd = '3dcopy' input_spec = CopyInputSpec output_spec = AFNICommandOutputSpec class Edge3InputSpec(AFNICommandInputSpec): in_file = File( desc='input file to 3dedge3', argstr='-input %s', position=0, mandatory=True, exists=True, copyfile=False) out_file = File( desc='output image file name', position=-1, argstr='-prefix %s') datum = traits.Enum( 'byte','short','float', argstr='-datum %s', desc='specify data type for output. Valid types are \'byte\', ' '\'short\' and \'float\'.') fscale = traits.Bool( desc='Force scaling of the output to the maximum integer range.', argstr='-fscale', xor=['gscale', 'nscale', 'scale_floats']) gscale = traits.Bool( desc='Same as \'-fscale\', but also forces each output sub-brick to ' 'to get the same scaling factor.', argstr='-gscale', xor=['fscale', 'nscale', 'scale_floats']) nscale = traits.Bool( desc='Don\'t do any scaling on output to byte or short datasets.', argstr='-nscale', xor=['fscale', 'gscale', 'scale_floats']) scale_floats = traits.Float( desc='Multiply input by VAL, but only if the input datum is ' 'float. This is needed when the input dataset ' 'has a small range, like 0 to 2.0 for instance. ' 'With such a range, very few edges are detected due to ' 'what I suspect to be truncation problems. ' 'Multiplying such a dataset by 10000 fixes the problem ' 'and the scaling is undone at the output.', argstr='-scale_floats %f', xor=['fscale', 'gscale', 'nscale']) verbose = traits.Bool( desc='Print out some information along the way.', argstr='-verbose') class Edge3(AFNICommand): """Does 3D Edge detection using the library 3DEdge by <NAME> (<EMAIL>). For complete details, see the `3dedge3 Documentation. <https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dedge3.html>`_ references_ = [{'entry': BibTeX('@article{Deriche1987,' 'author={<NAME>},' 'title={Optimal edge detection using recursive filtering},' 'journal={International Journal of Computer Vision},' 'volume={2},', 'pages={167-187},' 'year={1987},' '}'), 'tags': ['method'], }, {'entry': BibTeX('@article{MongaDericheMalandainCocquerez1991,' 'author={<NAME>, <NAME>, <NAME>, <NAME>},' 'title={Recursive filtering and edge tracking: two primary tools for 3D edge detection},' 'journal={Image and vision computing},' 'volume={9},', 'pages={203-214},' 'year={1991},' '}'), 'tags': ['method'], }, ] Examples ======== >>> from nipype.interfaces import afni >>> edge3 = afni.Edge3() >>> edge3.inputs.in_file = 'functional.nii' >>> edge3.inputs.out_file = 'edges.nii' >>> edge3.inputs.datum = 'byte' >>> edge3.cmdline # doctest: +ALLOW_UNICODE '3dedge3 -input functional.nii -datum byte -prefix edges.nii' >>> res = edge3.run() # doctest: +SKIP """ _cmd = '3dedge3' input_spec = Edge3InputSpec output_spec = AFNICommandOutputSpec class EvalInputSpec(AFNICommandInputSpec): in_file_a = File( desc='input file to 1deval', argstr='-a %s', position=0, mandatory=True, exists=True) in_file_b = File( desc='operand file to 1deval', argstr='-b %s', position=1, exists=True) in_file_c = File( desc='operand file to 1deval', argstr='-c %s', position=2, exists=True) out_file = File( name_template='%s_calc', desc='output image file name', argstr='-prefix %s', name_source='in_file_a') out1D = traits.Bool( desc='output in 1D', argstr='-1D') expr = Str( desc='expr', argstr='-expr "%s"', position=3, mandatory=True) start_idx = traits.Int( desc='start index for in_file_a', requires=['stop_idx']) stop_idx = traits.Int( desc='stop index for in_file_a', requires=['start_idx']) single_idx = traits.Int( desc='volume index for in_file_a') other = File( desc='other options', argstr='') class Eval(AFNICommand): """Evaluates an expression that may include columns of data from one or more text files. For complete details, see the `1deval Documentation. <https://afni.nimh.nih.gov/pub/dist/doc/program_help/1deval.html>`_ Examples ======== >>> from nipype.interfaces import afni >>> eval = afni.Eval() >>> eval.inputs.in_file_a = 'seed.1D' >>> eval.inputs.in_file_b = 'resp.1D' >>> eval.inputs.expr = 'a*b' >>> eval.inputs.out1D = True >>> eval.inputs.out_file = 'data_calc.1D' >>> eval.cmdline # doctest: +ALLOW_UNICODE '1deval -a seed.1D -b resp.1D -expr "a*b" -1D -prefix data_calc.1D' >>> res = eval.run() # doctest: +SKIP """ _cmd = '1deval' input_spec = EvalInputSpec output_spec = AFNICommandOutputSpec def _format_arg(self, name, trait_spec, value): if name == 'in_file_a': arg = trait_spec.argstr % value if isdefined(self.inputs.start_idx): arg += '[%d..%d]' % (self.inputs.start_idx, self.inputs.stop_idx) if isdefined(self.inputs.single_idx): arg += '[%d]' % (self.inputs.single_idx) return arg return super(Eval, self)._format_arg(name, trait_spec, value) def _parse_inputs(self, skip=None): """Skip the arguments without argstr metadata """ return super(Eval, self)._parse_inputs( skip=('start_idx', 'stop_idx', 'other')) class FWHMxInputSpec(CommandLineInputSpec): in_file = File( desc='input dataset', argstr='-input %s', mandatory=True, exists=True) out_file = File( argstr='> %s', name_source='in_file', name_template='%s_fwhmx.out', position=-1, keep_extension=False, desc='output file') out_subbricks = File( argstr='-out %s', name_source='in_file', name_template='%s_subbricks.out', keep_extension=False, desc='output file listing the subbricks FWHM') mask = File( desc='use only voxels that are nonzero in mask', argstr='-mask %s', exists=True) automask = traits.Bool( False, usedefault=True, argstr='-automask', desc='compute a mask from THIS dataset, a la 3dAutomask') detrend = traits.Either( traits.Bool(), traits.Int(), default=False, argstr='-detrend', xor=['demed'], usedefault=True, desc='instead of demed (0th order detrending), detrend to the ' 'specified order. If order is not given, the program picks ' 'q=NT/30. -detrend disables -demed, and includes -unif.') demed = traits.Bool( False, argstr='-demed', xor=['detrend'], desc='If the input dataset has more than one sub-brick (e.g., has a ' 'time axis), then subtract the median of each voxel\'s time ' 'series before processing FWHM. This will tend to remove ' 'intrinsic spatial structure and leave behind the noise.') unif = traits.Bool( False, argstr='-unif', desc='If the input dataset has more than one sub-brick, then ' 'normalize each voxel\'s time series to have the same MAD before ' 'processing FWHM.') out_detrend = File( argstr='-detprefix %s', name_source='in_file', name_template='%s_detrend', keep_extension=False, desc='Save the detrended file into a dataset') geom = traits.Bool( argstr='-geom', xor=['arith'], desc='if in_file has more than one sub-brick, compute the final ' 'estimate as the geometric mean of the individual sub-brick FWHM ' 'estimates') arith = traits.Bool( argstr='-arith', xor=['geom'], desc='if in_file has more than one sub-brick, compute the final ' 'estimate as the arithmetic mean of the individual sub-brick ' 'FWHM estimates') combine = traits.Bool( argstr='-combine', desc='combine the final measurements along each axis') compat = traits.Bool( argstr='-compat', desc='be compatible with the older 3dFWHM') acf = traits.Either( traits.Bool(), File(), traits.Tuple(File(exists=True), traits.Float()), default=False, usedefault=True, argstr='-acf', desc='computes the spatial autocorrelation') class FWHMxOutputSpec(TraitedSpec): out_file = File( exists=True, desc='output file') out_subbricks = File( exists=True, desc='output file (subbricks)') out_detrend = File( desc='output file, detrended') fwhm = traits.Either( traits.Tuple(traits.Float(), traits.Float(), traits.Float()), traits.Tuple(traits.Float(), traits.Float(), traits.Float(), traits.Float()), desc='FWHM along each axis') acf_param = traits.Either( traits.Tuple(traits.Float(), traits.Float(), traits.Float()), traits.Tuple(traits.Float(), traits.Float(), traits.Float(), traits.Float()), desc='fitted ACF model parameters') out_acf = File( exists=True, desc='output acf file') class FWHMx(AFNICommandBase): """ Unlike the older 3dFWHM, this program computes FWHMs for all sub-bricks in the input dataset, each one separately. The output for each one is written to the file specified by '-out'. The mean (arithmetic or geometric) of all the FWHMs along each axis is written to stdout. (A non-positive output value indicates something bad happened; e.g., FWHM in z is meaningless for a 2D dataset; the estimation method computed incoherent intermediate results.) For complete details, see the `3dFWHMx Documentation. <https://afni.nimh.nih.gov/pub../pub/dist/doc/program_help/3dFWHMx.html>`_ Examples -------- >>> from nipype.interfaces import afni >>> fwhm = afni.FWHMx() >>> fwhm.inputs.in_file = 'functional.nii' >>> fwhm.cmdline # doctest: +ALLOW_UNICODE '3dFWHMx -input functional.nii -out functional_subbricks.out > functional_fwhmx.out' >>> res = fwhm.run() # doctest: +SKIP (Classic) METHOD: * Calculate ratio of variance of first differences to data variance. * Should be the same as 3dFWHM for a 1-brick dataset. (But the output format is simpler to use in a script.) .. note:: IMPORTANT NOTE [AFNI > 16]
import numpy as np # Size of the maze maze_size = (250, 400) class Node: # To save the index of the current node node_index = 0 # To save the index of the parent node parent_index = 0 # A list of all the possible actions [North, East, South, West, North-East, South-East, South-West, North-West] possible_actions = np.zeros(8, dtype = 'bool') # Cost to this node cost_to_come = 0 # To save the center location center_location = (0, 0) # Count of possible child nodes child_nodes = 0 # Constructor - To be used later def __init__(self) -> None: pass # Method to print all the stored information of the node def print_current_values (self) -> None: print(f'The index of the current node is {self.node_index}') print(f'The index of the parent node {self.parent_index}') print(f'The cost to come of the current node is {self.cost_to_come}') print(f'The possible actions of the current node are {self.possible_actions}') print(f'The location of the center is {self.center_location}') print(f'The possible child nodes are {self.child_nodes}') # Updating the node # Input: The location of the node, index and visited, open and obstacle lists # Output: 1. updates the values of the center location, parent location, possible actions and number of child nodes # 2. Returns True if there is a possibility to move def update_node (self, location, index, list_1, list_2, list_3): self.center_location = location self.parent_index = index self.action_checker(list_1, list_2, list_3) # Method to check all the possible directions of the current node # Input: The current node and visited, open and obstacle lists # Output: Returns True if there is a possibility to move def action_checker (self, list_1, list_2, list_3): self.possible_actions = [self.check_north(self.center_location, list_1, list_2, list_3), self.check_east(self.center_location, list_1, list_2, list_3), self.check_south(self.center_location, list_1, list_2, list_3), self.check_west(self.center_location, list_1, list_2, list_3), self.check_north_east(self.center_location, list_1, list_2, list_3), self.check_south_east(self.center_location, list_1, list_2, list_3), self.check_south_west(self.center_location, list_1, list_2, list_3), self.check_north_west(self.center_location, list_1, list_2, list_3)] self.child_count() if self.child_nodes != 0: return True else: return False # Method to update the number of child nodes # Input: The node # Output: Updates the child nodes in the node object def child_count(self): self.child_nodes = np.count_nonzero(self.possible_actions) # Method to check if the specified node can move North # Input: Node location and visited, open and obstacle lists # Output: True if we can move North def check_north (self, node, list_1, list_2, list_3): if ((node[0] - 1) == -1) or \ node_finder(((node[0] - 1), node[1]), list_1) or \ node_finder(((node[0] - 1), node[1]), list_2) or \ node_finder(((node[0] - 1), node[1]), list_3): return False else: return True # Method to check if the specified node can move East # Input: Node location and visited, open and obstacle lists # Output: True if we can move East def check_east (self, node, list_1, list_2, list_3): if ((node[1] + 1) >= maze_size[1]) or \ node_finder((node[0], (node[1] + 1)), list_1) or \ node_finder((node[0], (node[1] + 1)), list_2) or \ node_finder((node[0], (node[1] + 1)), list_3): return False else: return True # Method to check if the specified node can move South # Input: Node location and visited, open and obstacle lists # Output: True if we can move South def check_south (self, node, list_1, list_2, list_3): if ((node[0] + 1) >= maze_size[0]) or \ node_finder(((node[0] + 1), node[1]), list_1) or \ node_finder(((node[0] + 1), node[1]), list_2) or \ node_finder(((node[0] + 1), node[1]), list_3): return False else: return True # Method to check if the specified node can move West # Input: Node location and visited, open and obstacle lists # Output: True if we can move West def check_west (self, node, list_1, list_2, list_3): if ((node[1] - 1) == -1) or \ node_finder((node[0], (node[1] - 1)), list_1) or \ node_finder((node[0], (node[1] - 1)), list_2) or \ node_finder((node[0], (node[1] - 1)), list_3): return False else: return True # Method to check if the specified node can move North-East # Input: Node location and visited, open and obstacle lists # Output: True if we can move North-East def check_north_east (self, node, list_1, list_2, list_3): if ((node[0] - 1) == -1) or ((node[1] + 1) >= maze_size[1]) or \ node_finder(((node[0] - 1), (node[1] + 1)), list_1) or \ node_finder(((node[0] - 1), (node[1] + 1)), list_2) or \ node_finder(((node[0] - 1), (node[1] + 1)), list_3): return False else: return True # Method to check if the specified node can move South-East # Input: Node location and visited, open and obstacle lists # Output: True if we can move South-East def check_south_east (self, node, list_1, list_2, list_3): if ((node[0] + 1) >= maze_size[0]) or ((node[1] + 1) >= maze_size[1]) or \ node_finder(((node[0] + 1), (node[1] + 1)), list_1) or \ node_finder(((node[0] + 1), (node[1] + 1)), list_2) or \ node_finder(((node[0] + 1), (node[1] + 1)), list_3): return False else: return True # Method to check if the specified node can move South-West # Input: Node location and visited, open and obstacle lists # Output: True if we can move South-West def check_south_west (self, node, list_1, list_2, list_3): if ((node[0] + 1) >= maze_size[0]) or ((node[1] - 1) == -1) or \ node_finder(((node[0] + 1), (node[1] - 1)), list_1) or \ node_finder(((node[0] + 1), (node[1] - 1)), list_2) or \ node_finder(((node[0] + 1), (node[1] - 1)), list_3): return False else: return True # Method to check if the specified node can move North-West # Input: Node location and visited, open and obstacle lists # Output: True if we can move North-West def check_north_west (self, node, list_1, list_2, list_3): if ((node[0] - 1) == -1) or ((node[1] - 1) == -1) or \ node_finder(((node[0] - 1), (node[1] - 1)), list_1) or \ node_finder(((node[0] - 1), (node[1] - 1)), list_2) or \ node_finder(((node[0] - 1), (node[1] - 1)), list_3): return False else: return True # Method to move North # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_north (self, node, parent_cost, current_cost): self.center_location = (node[0] - 1, node[1]) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move East # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_east (self, node, parent_cost, current_cost): self.center_location = (node[0], node[1] + 1) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move South # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_south (self, node, parent_cost, current_cost): self.center_location = (node[0] + 1, node[1]) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move West # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_west (self, node, parent_cost, current_cost): self.center_location = (node[0], node[1] - 1) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move North-East # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_north_east (self, node, parent_cost, current_cost): self.center_location = (node[0] - 1, node[1] + 1) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move South-East # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_south_east (self, node, parent_cost, current_cost): self.center_location = (node[0] + 1, node[1] + 1) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move South-West # Input: The node, node location, parent cost, cost to reach current node # Output: Updates the node location and cost to come def move_south_west (self, node, parent_cost, current_cost): self.center_location = (node[0] + 1, node[1] - 1) self.cost_to_come = np.round(parent_cost + current_cost, 2) # Method to move North-West # Input:
2, "photos are missing in db" assert tu.album_exists_in_db("FußÄ-Füße"), "unicode album is not in db" def test_corrupted(self): # load 1 album with a corrupted file tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load unicode album name tu.load_photoset("corrupted_file") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-d', '-v']) # no crash assert result.exit_code == 0, "process result is ok" # no import assert tu.count_fs_photos() == 0, "there are photos in fs" assert tu.count_db_photos() == 0, "there are photos in db" assert tu.album_exists_in_db("corrupted_file"), "corrupted_album not in db" def test_empty_album(self): # load 1 empty album tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load unicode album name tu.load_photoset("empty_album") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" # no import assert tu.count_fs_photos() == 0, "there are photos are in fs" assert tu.count_db_photos() == 0, "there are photos are in db" assert not(tu.album_exists_in_db("empty_album")), "empty_album in db" def test_long_album(self): tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # get max_width column album name width maxwidth = tu.get_column_width("lychee_albums", "title") logger.info("album title length: " + str(maxwidth)) # create long album name dest_alb_name = 'a' * (maxwidth + 10) assert len(dest_alb_name) == (maxwidth + 10) # copy album with name tu.load_photoset("album1", dest_alb_name) # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" # there is a max_width album albums = tu.get_album_ids_titles() alb_real_name = albums.pop()["title"] assert len(alb_real_name) == maxwidth, "album len is not " + str(maxwidth) def test_sha1(self): """ Should also trigger a warn duplicates containes photos from album1 """ tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("album1") # load 2 album with same photo under different name tu.load_photoset("duplicates") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" # no duplicate assert tu.count_db_albums() == 2, "two albums not created" assert tu.count_fs_photos() == 2, "there are duplicate photos in fs" assert tu.count_db_photos() == 2, "there are duplicate photos in db" assert tu.count_fs_thumb() == 2, "there are duplicate photos in thumb" def test_album_keep_original_case(self): # load 1 album with a mixed case name and spaces # name in db is equal to directory name tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("album1", "AlBum_One") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" assert tu.count_db_albums() == 1, "two albums created" assert tu.count_fs_photos() == 1, "there are duplicate photos in fs" assert tu.count_db_photos() == 1, "there are duplicate photos in db" assert tu.count_fs_thumb() == 1, "there are duplicate photos in thumb" assert tu.get_album_id("AlBum_One"), 'there is no album with this name' def test_bad_taketime(self): # load "bad taketime" album name tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("invalid_takedate") launch_date = datetime.datetime.now() time.sleep(1) # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" assert tu.count_db_albums() == 1, "two albums created" assert tu.count_fs_photos() == 1, "there are duplicate photos in fs" assert tu.count_db_photos() == 1, "there are duplicate photos in db" assert tu.count_fs_thumb() == 1, "there are duplicate photos in thumb" creation_date = tu.get_album_creation_date("invalid_takedate") creation_date = datetime.datetime.fromtimestamp(creation_date) assert creation_date > launch_date, "creation date should be now" def test_invalid_taketime(self): # load "bad taketime" album name tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("invalid_taketime") src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" assert tu.count_db_albums() == 1, "too much albums created" assert tu.count_fs_photos() == 1, "there are duplicate photos in fs" assert tu.count_db_photos() == 1, "there are duplicate photos in db" assert tu.count_fs_thumb() == 1, "there are duplicate photos in thumb" def test_quotes_in_album_name(self): # load "bad taketime" album name tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("with'\"quotes") src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" assert tu.count_db_albums() == 1, "too much albums created" assert tu.count_fs_photos() == 1, "there are duplicate photos in fs" assert tu.count_db_photos() == 1, "there are duplicate photos in db" assert tu.count_fs_thumb() == 1, "there are duplicate photos in thumb" def test_photoid_equal_timestamp(self): tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("album3") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # normal mode before_launch = datetime.datetime.now() time.sleep(1.1) # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" time.sleep(1.1) after_launch = datetime.datetime.now() photos = tu.get_photos(tu.get_album_id('album3')) for p in photos: logger.info(p) # substract 4 last characters ts = str(p['id'])[:-4] # timestamp to date dt = datetime.datetime.fromtimestamp(int(ts)) logger.info(dt) assert after_launch > dt, "date from id not < date after launch" assert dt > before_launch, "date from id not > date before launch" def test_shutter_speed(self): tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("rotation") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" photos = tu.get_photos(tu.get_album_id('rotation')) for p in photos: if p['title'] == 'P1010319.JPG': assert p['shutter'] == '1/60 s', "shutter {} not equal 1/60 s".format(p['shutter']) assert p['focal'] == '4.9 mm', "focal {} not equal 4.9 mm".format(p['focal']) assert p['iso'] == '100', "iso {} not equal 100".format(p['iso']) assert p['aperture'] == 'F3.3', "aperture {} not equal F3.3".format(p['aperture']) if p['title'] == 'P1010328.JPG': assert p['shutter'] == '1/30 s', "shutter {} not equal 1/30 s".format(p['shutter']) assert p['focal'] == '4.9 mm', "focal {} not equal 4.9 mm".format(p['focal']) assert p['iso'] == '400', "iso {} not equal 400".format(p['iso']) assert p['aperture'] == 'F3.3', "aperture {} not equal F3.3".format(p['aperture']) def test_rotation(self): tu = TestUtils() assert tu.is_env_clean(tu.conf['lycheepath']), "env not clean" # load 1 album with same photo under different name tu.load_photoset("rotation") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" photos = tu.get_photos(tu.get_album_id('rotation')) for p in photos: # rotation tag is gone pfullpath = os.path.join(lych, "uploads", "big", p['url']) img = Image.open(pfullpath) assert "exif" in img.info, "Pas d'info exif" exif_dict = piexif.load(img.info["exif"]) assert exif_dict["0th"][piexif.ImageIFD.Orientation] == 1, "Exif rotation should be 1" img.close() def test_launch_every_test_with_cli_runner(self): """ conf borg is shared between test and cli, this is potentially bad""" try: # load "bad taketime" album name tu = TestUtils() tu.load_photoset("album3") # launch lycheesync src = tu.conf['testphotopath'] lych = tu.conf['lycheepath'] conf = tu.conf['conf'] # run runner = CliRunner() result = runner.invoke(main, [src, lych, conf, '-v']) # no crash assert result.exit_code == 0, "process result is ok" except Exception as e: logger.exception(e) assert
import argparse import json import multiprocessing import os import platform import re import shutil import signal import stat import subprocess import time import traceback import urllib import uuid import zipfile from os.path import expanduser import psutil import requests import yaml from fedml.cli.edge_deployment.mqtt_manager import MqttManager from fedml.cli.edge_deployment.yaml_utils import load_yaml_config from fedml.mlops import MLOpsMetrics import click class FedMLClientRunner: def __init__(self, args, edge_id, request_json=None): self.mqtt_mgr = None self.client_mqtt_mgr = None self.edge_id = edge_id self.process = None self.args = args self.request_json = request_json self.version = args.version self.device_id = args.device_id self.cloud_region = args.cloud_region self.cur_dir = os.path.split(os.path.realpath(__file__))[0] if args.current_running_dir is not None: self.cur_dir = args.current_running_dir self.sudo_cmd = "" self.is_mac = False if platform.system() == "Darwin": self.is_mac = True self.agent_config = None self.fedml_data_base_package_dir = os.path.join("/", "fedml", "data") self.fedml_data_local_package_dir = os.path.join("/", "fedml", "fedml-package", "fedml", "data") self.fedml_data_dir = self.fedml_data_base_package_dir self.fedml_config_dir = os.path.join("/", "fedml", "conf") self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES = {"${FEDSYS.RUN_ID}": "", "${FEDSYS.PRIVATE_LOCAL_DATA}": "", "${FEDSYS.CLIENT_ID_LIST}": "", "${FEDSYS.SYNTHETIC_DATA_URL}": "", "${FEDSYS.IS_USING_LOCAL_DATA}": "", "${FEDSYS.CLIENT_NUM}": "", "${FEDSYS.CLIENT_INDEX}": "", "${FEDSYS.CLIENT_OBJECT_LIST}": "", "${FEDSYS.LOG_SERVER_URL}": ""} self.container_name = None self.mlops_metrics = None click.echo("Current directory of client agent: " + self.cur_dir) @staticmethod def generate_yaml_doc(run_config_object, yaml_file): try: file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(run_config_object, file) file.close() except Exception as e: click.echo("Generate yaml file.") def build_dynamic_constrain_variables(self, run_id, run_config, unzip_package_path): data_config = run_config["data_config"] server_edge_id_list = self.request_json["edgeids"] local_edge_id_list = [1] local_edge_id_list[0] = self.edge_id is_using_local_data = 0 private_data_dir = data_config["privateLocalData"] synthetic_data_url = data_config["syntheticDataUrl"] edges = self.request_json["edges"] # if private_data_dir is not None \ # and len(str(private_data_dir).strip(' ')) > 0: # is_using_local_data = 1 if private_data_dir is None or len(str(private_data_dir).strip(' ')) <= 0: params_config = run_config.get("parameters", None) private_data_dir = os.path.join(unzip_package_path, "fedml", "data") if synthetic_data_url is None or len(str(synthetic_data_url)) <= 0: synthetic_data_url = private_data_dir self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.RUN_ID}"] = run_id self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.PRIVATE_LOCAL_DATA}"] = private_data_dir.replace(' ', '') self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.CLIENT_ID_LIST}"] = str(local_edge_id_list).replace(' ', '') self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.SYNTHETIC_DATA_URL}"] = synthetic_data_url.replace(' ', '') self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.IS_USING_LOCAL_DATA}"] = str(is_using_local_data) self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.CLIENT_NUM}"] = len(server_edge_id_list) self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.CLIENT_INDEX}"] = server_edge_id_list.index(self.edge_id) + 1 client_objects = str(json.dumps(edges)) client_objects = client_objects.replace(" ", "").replace("\n", "").replace('"', '\\"') self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.CLIENT_OBJECT_LIST}"] = client_objects self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES["${FEDSYS.LOG_SERVER_URL}"] = self.agent_config["ml_ops_config"][ "LOG_SERVER_URL"] def unzip_file(self, zip_file, unzip_file_path): result = False if zipfile.is_zipfile(zip_file): with zipfile.ZipFile(zip_file, 'r') as zipf: zipf.extractall(unzip_file_path) result = True return result def retrieve_and_unzip_package(self, package_name, package_url): package_file_no_extension = str(package_name).split('.')[0] home_dir = expanduser("~") local_package_path = os.path.join(home_dir, "fedml-client", "fedml_packages") try: os.makedirs(local_package_path) except Exception as e: click.echo("make dir") local_package_file = os.path.join(local_package_path, os.path.basename(package_url)) if not os.path.exists(local_package_file): urllib.request.urlretrieve(package_url, local_package_file) unzip_package_path = local_package_path try: shutil.rmtree(os.path.join(unzip_package_path, package_file_no_extension), ignore_errors=True) except Exception as e: pass self.unzip_file(local_package_file, unzip_package_path) unzip_package_path = os.path.join(unzip_package_path, package_file_no_extension) return unzip_package_path def update_local_fedml_config(self, run_id, run_config): packages_config = run_config["packages_config"] # Copy config file from the client unzip_package_path = self.retrieve_and_unzip_package(packages_config["linuxClient"], packages_config["linuxClientUrl"]) fedml_local_config_file = unzip_package_path + os.path.join("/", "conf", "fedml.yaml") # Load the above config to memory config_from_container = load_yaml_config(fedml_local_config_file) container_entry_file_config = config_from_container["entry_config"] container_dynamic_args_config = config_from_container["dynamic_args"] entry_file = container_entry_file_config["entry_file"] conf_file = container_entry_file_config["conf_file"] full_conf_path = os.path.join(unzip_package_path, "fedml", "config", os.path.basename(conf_file)) home_dir = expanduser("~") fedml_package_home_dir = os.path.join(home_dir, "fedml-client") # Dynamically build constrain variable with realtime parameters from server self.build_dynamic_constrain_variables(run_id, run_config, fedml_package_home_dir) # Update entry arguments value with constrain variable values with realtime parameters from server # currently we support the following constrain variables: # ${FEDSYS_RUN_ID}: a run id represented one entire Federated Learning flow # ${FEDSYS_PRIVATE_LOCAL_DATA}: private local data path in the Federated Learning client # ${FEDSYS_CLIENT_ID_LIST}: client list in one entire Federated Learning flow # ${FEDSYS_SYNTHETIC_DATA_URL}: synthetic data url from server, # if this value is not null, the client will download data from this URL to use it as # federated training data set # ${FEDSYS_IS_USING_LOCAL_DATA}: whether use private local data as federated training data set container_dynamic_args_config["data_cache_dir"] = "${FEDSYS.PRIVATE_LOCAL_DATA}" for constrain_variable_key, constrain_variable_value in self.FEDML_DYNAMIC_CONSTRAIN_VARIABLES.items(): for argument_key, argument_value in container_dynamic_args_config.items(): if argument_value is not None and str(argument_value).find(constrain_variable_key) == 0: replaced_argument_value = str(argument_value).replace(constrain_variable_key, str(constrain_variable_value)) container_dynamic_args_config[argument_key] = replaced_argument_value # Merge all container new config sections as new config dictionary container_config_to_yaml = dict() container_config_to_yaml["entry_config"] = container_entry_file_config container_config_to_yaml["dynamic_args"] = container_dynamic_args_config container_config_to_yaml["dynamic_args"]["config_version"] = self.args.config_version container_dynamic_args_config["mqtt_config_path"] = os.path.join(unzip_package_path, "fedml", "config", os.path.basename(container_dynamic_args_config[ "mqtt_config_path"])) container_dynamic_args_config["s3_config_path"] = os.path.join(unzip_package_path, "fedml", "config", os.path.basename(container_dynamic_args_config[ "s3_config_path"])) log_file_dir = os.path.join(fedml_package_home_dir, "fedml", "logs") try: os.makedirs(log_file_dir) except Exception as e: pass container_config_to_yaml["dynamic_args"]["log_file_dir"] = log_file_dir # Save new config dictionary to local file fedml_updated_config_file = os.path.join(unzip_package_path, "conf", "fedml.yaml") FedMLClientRunner.generate_yaml_doc(container_config_to_yaml, fedml_updated_config_file) # Build dynamic arguments and set arguments to fedml config object self.build_dynamic_args(container_config_to_yaml, unzip_package_path) return unzip_package_path, container_config_to_yaml def build_dynamic_args(self, package_conf_object, base_dir): fedml_conf_file = package_conf_object["entry_config"]["conf_file"] print("fedml_conf_file:" + fedml_conf_file) fedml_conf_path = os.path.join(base_dir, "fedml", "config", os.path.basename(fedml_conf_file)) fedml_conf_object = load_yaml_config(fedml_conf_path) package_dynamic_args = package_conf_object["dynamic_args"] fedml_conf_object["comm_args"]["mqtt_config_path"] = package_dynamic_args["mqtt_config_path"] fedml_conf_object["comm_args"]["s3_config_path"] = package_dynamic_args["s3_config_path"] fedml_conf_object["common_args"]["using_mlops"] = True fedml_conf_object["train_args"]["run_id"] = package_dynamic_args["run_id"] fedml_conf_object["train_args"]["client_id_list"] = package_dynamic_args["client_id_list"] fedml_conf_object["train_args"]["client_num_in_total"] = int(package_dynamic_args["client_num_in_total"]) fedml_conf_object["train_args"]["client_num_per_round"] = int(package_dynamic_args["client_num_in_total"]) fedml_conf_object["device_args"]["worker_num"] = int(package_dynamic_args["client_num_in_total"]) fedml_conf_object["data_args"]["data_cache_dir"] = package_dynamic_args["data_cache_dir"] fedml_conf_object["tracking_args"]["log_file_dir"] = package_dynamic_args["log_file_dir"] fedml_conf_object["tracking_args"]["log_server_url"] = package_dynamic_args["log_server_url"] bootstrap_script_file = fedml_conf_object["environment_args"]["bootstrap"] bootstrap_script_path = os.path.join(base_dir, "fedml", "config", os.path.basename(bootstrap_script_file)) try: os.makedirs(package_dynamic_args["data_cache_dir"]) except Exception as e: pass fedml_conf_object["dynamic_args"] = package_dynamic_args FedMLClientRunner.generate_yaml_doc(fedml_conf_object, fedml_conf_path) try: bootstrap_stat = os.stat(bootstrap_script_path) os.chmod(bootstrap_script_path, bootstrap_stat.st_mode | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) os.system(bootstrap_script_path) except Exception as e: click.echo("Exception when executing bootstrap.sh: {}", traceback.format_exc()) def build_image_unique_id(self, run_id, run_config): config_name = str(run_config.get("configName", "run_" + str(run_id))) config_creater = str(run_config.get("userId", "user_" + str(run_id))) image_unique_id = re.sub('[^a-zA-Z0-9_-]', '', str(config_name + "_" + config_creater)) image_unique_id = image_unique_id.lower() return image_unique_id def run(self): click.echo("start_run: " + json.dumps(self.request_json)) run_id = self.request_json["runId"] run_config = self.request_json["run_config"] data_config = run_config["data_config"] packages_config = run_config["packages_config"] # get training params private_local_data_dir = data_config.get("privateLocalData", "") is_using_local_data = 0 # if private_local_data_dir is not None and len(str(private_local_data_dir).strip(' ')) > 0: # is_using_local_data = 1 # start a run according to the hyper-parameters # fedml_local_data_dir = self.cur_dir + "/fedml_data/run_" + str(run_id) + "_edge_" + str(edge_id) fedml_local_data_dir = os.path.join(self.cur_dir, "fedml_data") fedml_local_config_dir = os.path.join(self.cur_dir, "fedml_config") if is_using_local_data: fedml_local_data_dir = private_local_data_dir self.fedml_data_dir = self.fedml_data_local_package_dir # update local config with real time parameters from server and dynamically replace variables value unzip_package_path, fedml_config_object = self.update_local_fedml_config(run_id, run_config) entry_file_config = fedml_config_object["entry_config"] dynamic_args_config = fedml_config_object["dynamic_args"] entry_file = os.path.basename(entry_file_config["entry_file"]) conf_file = entry_file_config["conf_file"] FedMLClientRunner.cleanup_edge_learning_process() os.chdir(os.path.join(unzip_package_path, "fedml")) python_program = 'python' python_version_str = os.popen("python --version").read() if python_version_str.find("Python 3.") == -1: python_version_str = os.popen("python3 --version").read() if python_version_str.find("Python 3.") != -1: python_program = 'python3' process = subprocess.Popen([python_program, entry_file, '--cf', conf_file, '--rank', str(dynamic_args_config["rank"])]) FedMLClientRunner.save_edge_learning_process(process.pid) process.wait() self.reset_devices_status(self.edge_id) def reset_devices_status(self, edge_id): # if self.client_mqtt_mgr is None: # self.client_mqtt_mgr = MqttManager( # self.agent_config["mqtt_config"]["BROKER_HOST"], # self.agent_config["mqtt_config"]["BROKER_PORT"], # self.agent_config["mqtt_config"]["MQTT_USER"], # self.agent_config["mqtt_config"]["MQTT_PWD"], # self.agent_config["mqtt_config"]["MQTT_KEEPALIVE"], # "FLClient_Agent-Train", # ) # mlops_logger = MLOpsMetrics() # mlops_logger.set_messenger(self.client_mqtt_mgr) self.mlops_metrics.report_client_training_status(edge_id, MqttManager.MSG_MLOPS_CLIENT_STATUS_FINISHED) time.sleep(3) def stop_run(self): if self.process is not None: try: self.process.terminate() self.process.join() self.process = None except Exception as e: pass FedMLClientRunner.cleanup_edge_learning_process() FedMLClientRunner.cleanup_edge_run_process() click.echo("Stop run successfully.") self.mlops_metrics.report_client_training_status(self.edge_id, MqttManager.MSG_MLOPS_CLIENT_STATUS_FINISHED) def callback_start_train(self, topic, payload): click.echo("callback_start_train: topic = %s, payload = %s" % (topic, payload)) # get training params request_json = json.loads(payload) run_id = request_json["runId"] # Terminate previous process about starting or stopping run command if self.process is not None: try: self.process.terminate() self.process.join() self.process = None except Exception as e: pass FedMLClientRunner.cleanup_edge_run_process() # Start cross-silo server with multi processing mode self.request_json = request_json self.container_name = "fedml_container_run_" + str(run_id) + "_edge_" + str(self.edge_id) self.process = multiprocessing.Process(target=self.run) self.process.start() FedMLClientRunner.save_edge_run_process(self.process.pid) #self.run() def callback_stop_train(self, topic, payload): click.echo("callback_stop_train: topic = %s, payload = %s" % (topic, payload)) # Notify MLOps with the stopping message self.mlops_metrics.report_client_training_status(self.edge_id, MqttManager.MSG_MLOPS_CLIENT_STATUS_STOPPING) request_json = json.loads(payload) run_id = request_json["runId"] click.echo("Stopping run...") click.echo("Stop run with multiprocessing.") # Stop cross-silo server with multi processing mode self.request_json = request_json self.container_name = "fedml_container_run_" + str(run_id) + "_edge_" + str(self.edge_id) multiprocessing.Process(target=self.stop_run).start() self.mlops_metrics.report_client_training_status(self.edge_id, MqttManager.MSG_MLOPS_CLIENT_STATUS_FINISHED) def cleanup_client_with_finished_status(self): self.stop_run() @staticmethod def cleanup_edge_run_process(): try: home_dir = expanduser("~") local_pkg_data_dir = os.path.join(home_dir, "fedml-client", "fedml", "data") edge_process_id_file = os.path.join(local_pkg_data_dir, "edge-sub-process.id") edge_process_info = load_yaml_config(edge_process_id_file) edge_process_id = edge_process_info.get('process_id', None) if edge_process_id is not None: try: edge_process = psutil.Process(edge_process_id) for edge_sub_process in edge_process.children(): os.kill(edge_sub_process.pid, signal.SIGTERM) if edge_process is not None: os.kill(edge_process.pid, signal.SIGTERM) except Exception as e: pass yaml_object = {} yaml_object['process_id'] = -1 FedMLClientRunner.generate_yaml_doc(yaml_object, edge_process_id_file) except Exception as e: pass @staticmethod def save_edge_run_process(edge_process_id): try: home_dir = expanduser("~") local_pkg_data_dir = os.path.join(home_dir, "fedml-client", "fedml", "data") edge_process_id_file = os.path.join(local_pkg_data_dir, "edge-sub-process.id") yaml_object = {} yaml_object['process_id'] = edge_process_id FedMLClientRunner.generate_yaml_doc(yaml_object, edge_process_id_file) except Exception as e: pass @staticmethod def cleanup_edge_learning_process(): try: home_dir = expanduser("~") local_pkg_data_dir = os.path.join(home_dir, "fedml-client", "fedml", "data") edge_process_id_file = os.path.join(local_pkg_data_dir, "edge-learning-process.id") edge_process_info = load_yaml_config(edge_process_id_file) edge_process_id = edge_process_info.get('process_id', None) if edge_process_id is not None: try: edge_process = psutil.Process(edge_process_id) for edge_sub_process in edge_process.children(): os.kill(edge_sub_process.pid, signal.SIGTERM) if edge_process is not None: os.kill(edge_process.pid, signal.SIGTERM) except Exception as e: pass yaml_object = {} yaml_object['process_id'] = -1 FedMLClientRunner.generate_yaml_doc(yaml_object, edge_process_id_file) except Exception as e: pass @staticmethod def save_edge_learning_process(edge_learning_id): try:
""" Copyright (c) 2014 NavPy Developers. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in LICENSE.txt """ import numpy as np from . import wgs84 from ..utils import input_check_Nx3 as _input_check_Nx3 from ..utils import input_check_Nx3x3 as _input_check_Nx3x3 from ..utils import input_check_Nx1 as _input_check_Nx1 def angle2dcm(rotAngle1, rotAngle2, rotAngle3, input_unit='rad', rotation_sequence='ZYX', output_type='ndarray'): """ This function converts Euler Angle into Direction Cosine Matrix (DCM). The DCM is described by three sucessive rotation rotAngle1, rotAngle2, and rotAngle3 about the axes described by the rotation_sequence. The default rotation_sequence='ZYX' is the aerospace sequence and rotAngle1 is the yaw angle, rotAngle2 is the pitch angle, and rotAngle3 is the roll angle. In this case DCM transforms a vector from the locally level coordinate frame (i.e. the NED frame) to the body frame. This function can batch process a series of rotations (e.g., time series of Euler angles). Parameters ---------- rotAngle1, rotAngle2, rotAngle3 : angles {(N,), (N,1), or (1,N)} They are a sequence of angles about successive axes described by rotation_sequence. input_unit : {'rad', 'deg'}, optional Rotation angles. Default is 'rad'. rotation_sequence : {'ZYX'}, optional Rotation sequences. Default is 'ZYX'. output_type : {'ndarray','matrix'}, optional Output type. Default is 'ndarray'. Returns -------- C : {3x3} Direction Cosine Matrix Notes ----- Programmer: <NAME> Created: May 03, 2011 Last Modified: January 12, 2016 """ rotAngle1, N1 = _input_check_Nx1(rotAngle1) rotAngle2, N2 = _input_check_Nx1(rotAngle2) rotAngle3, N3 = _input_check_Nx1(rotAngle3) if(N1 != N2 or N1 != N3): raise ValueError('Inputs are not of same dimensions') if(N1 > 1 and output_type != 'ndarray'): raise ValueError('Matrix output requires scalar inputs') R3 = np.zeros((N1, 3, 3)) R2 = np.zeros((N1, 3, 3)) R1 = np.zeros((N1, 3, 3)) if(input_unit == 'deg'): rotAngle1 = np.deg2rad(rotAngle1) rotAngle2 = np.deg2rad(rotAngle2) rotAngle3 = np.deg2rad(rotAngle3) R3[:, 2, 2] = 1.0 R3[:, 0, 0] = np.cos(rotAngle1) R3[:, 0, 1] = np.sin(rotAngle1) R3[:, 1, 0] = -np.sin(rotAngle1) R3[:, 1, 1] = np.cos(rotAngle1) R2[:, 1, 1] = 1.0 R2[:, 0, 0] = np.cos(rotAngle2) R2[:, 0, 2] = -np.sin(rotAngle2) R2[:, 2, 0] = np.sin(rotAngle2) R2[:, 2, 2] = np.cos(rotAngle2) R1[:, 0, 0] = 1.0 R1[:, 1, 1] = np.cos(rotAngle3) R1[:, 1, 2] = np.sin(rotAngle3) R1[:, 2, 1] = -np.sin(rotAngle3) R1[:, 2, 2] = np.cos(rotAngle3) if rotation_sequence == 'ZYX': try: # Equivalent to C = R1.dot(R2.dot(R3)) for each of N inputs but # implemented efficiently in C extension C = np.einsum('nij, njk, nkm -> nim', R1, R2, R3) except AttributeError: # Older NumPy without einsum C = np.zeros((N1, 3, 3)) for i, (R1, R2, R3) in enumerate(zip(R1, R2, R3)): C[i] = R1.dot(R2.dot(R3)) else: raise NotImplementedError('Rotation sequences other than ZYX are not currently implemented') if(N1 == 1): C = C[0] if(output_type == 'matrix'): C = np.matrix(C) return C def dcm2angle(C, output_unit='rad', rotation_sequence='ZYX'): """ This function converts a Direction Cosine Matrix (DCM) into the three rotation angles. The DCM is described by three sucessive rotation rotAngle1, rotAngle2, and rotAngle3 about the axes described by the rotation_sequence. The default rotation_sequence='ZYX' is the aerospace sequence and rotAngle1 is the yaw angle, rotAngle2 is the pitch angle, and rotAngle3 is the roll angle. In this case DCM transforms a vector from the locally level coordinate frame (i.e. the NED frame) to the body frame. This function can batch process a series of rotations (e.g., time series of direction cosine matrices). Parameters ---------- C : {(3,3), (N,3,3), or (3,3,N)} direction consine matrix that rotates the vector from the first frame to the second frame according to the specified rotation_sequence. output_unit : {'rad', 'deg'}, optional Rotation angles. Default is 'rad'. rotation_sequence : {'ZYX'}, optional Rotation sequences. Default is 'ZYX'. Returns ------- rotAngle1, rotAngle2, rotAngle3 : angles They are a sequence of angles about successive axes described by rotation_sequence. Notes ----- The returned rotAngle1 and 3 will be between +/- 180 deg (+/- pi rad). In contrast, rotAngle2 will be in the interval +/- 90 deg (+/- pi/2 rad). In the 'ZYX' or '321' aerospace sequence, that means the pitch angle returned will always be inside the closed interval +/- 90 deg (+/- pi/2 rad). Applications where pitch angles near or larger than 90 degrees in magnitude are expected should used alternate attitude parameterizations like quaternions. """ C, N = _input_check_Nx3x3(C) if(rotation_sequence == 'ZYX'): rotAngle1 = np.arctan2(C[..., 0, 1], C[..., 0, 0]) # Yaw rotAngle2 = -np.arcsin(C[..., 0, 2]) # Pitch rotAngle3 = np.arctan2(C[..., 1, 2], C[..., 2, 2]) # Roll else: raise NotImplementedError('Rotation sequences other than ZYX are not currently implemented') if(output_unit == 'deg'): rotAngle1 = np.rad2deg(rotAngle1) rotAngle2 = np.rad2deg(rotAngle2) rotAngle3 = np.rad2deg(rotAngle3) return rotAngle1, rotAngle2, rotAngle3 def omega2rates(pitch, roll, input_unit='rad', euler_angles_order='roll_pitch_yaw', output_type='ndarray'): """ This function is used to create the transformation matrix to go from: [p, q, r] --> [roll_rate, pitch_rate, yaw_rate] where pqr are xyz body rotation-rate measurements expressed in body frame. Yaw, pitch, and roll are the Euler angles. We assume the Euler angles are 3-2-1 (i.e Yaw -> Pitch -> Roll) transformations that go from navigation- frame to body-frame. Parameters ---------- pitch : pitch angle, units of input_unit. roll : roll angle , units of input_unit. input_unit : units for input angles {'rad', 'deg'}, optional euler_angles_order : {'roll_pitch_yaw', 'yaw_pitch_roll'}, optional Assumed order of Euler Angles attitude state vector (see ``Notes``). output_type : {'ndarray' or 'matrix'}, optional Numpy array (default) or matrix Returns ------- R : transformation matrix, from xyz body-rate to Euler angle-rates numpy 'output_type' 3x3 (Note: default return variable is an ARRAY, not a matrix) Notes ----- Since the returned transformation matrix is used to transform one vector to another, the assumed attitude variables order matters. The ``euler_angles_order`` parameter can be used to specify the assumed order. The difference is demonstrated by example: By default euler_angles_order='roll_pitch_yaw' R = omega2rates(pitch, roll) [ roll_rate] [omega_x] [pitch_rate] = dot(R,[omega_y]) [ yaw_rate] [omega_z] Now assume our attitude state is [yaw, pitch, roll].T R = omega2rates(pitch, roll, euler_angles_order='yaw_pitch_roll') [ yaw_rate] [omega_x] [pitch_rate] = dot(R,[omega_y]) [ roll_rate] [omega_z] References ---------- [1] Equation 2.74, Aided Navigation: GPS with High Rate Sensors, <NAME> 2008 [2] omega2rates.m function at: http://www.gnssapplications.org/downloads/chapter7/Chapter7_GNSS_INS_Functions.tar.gz """ # Apply necessary unit transformations. if input_unit == 'rad': pitch_rad, roll_rad = pitch, roll elif input_unit == 'deg': pitch_rad, roll_rad = np.radians([pitch, roll]) # Build transformation matrix. s_r, c_r = np.sin( roll_rad), np.cos( roll_rad) s_p, c_p = np.sin(pitch_rad), np.cos(pitch_rad) # Check for singularities (i.e. pitch near 90 degrees) singular_tol = 1e-2; # flags anything between [90 +/- .5 deg] if abs(c_p) < singular_tol: print('WARNING (omega2rates): Operating near pitch = 90 deg singularity. NaN returned. ') return np.nan if euler_angles_order == 'roll_pitch_yaw': R = np.array( [[ 1, s_r*s_p/c_p, c_r*s_p/c_p], [ 0, c_r , -s_r ], [ 0, s_r/c_p , c_r/c_p ]], dtype=float) elif euler_angles_order == 'yaw_pitch_roll': R = np.array( [[ 0, s_r/c_p , c_r/c_p ], [ 0, c_r , -s_r ], [ 1, s_r*s_p/c_p, c_r*s_p/c_p]], dtype=float) if output_type == 'ndarray': pass elif output_type=='matrix': R = np.matrix(R) else: print("WARNING (omega2rates): Unrecognized 'output_type' requested.") print("NaN is returned.") return np.nan return R def angle2quat(rotAngle1,rotAngle2,rotAngle3, input_unit='rad',rotation_sequence='ZYX'): """ Convert a sequence of rotation angles to an equivalent unit quaternion This function can take inputs in either degree or radians, and can also batch process a series of rotations (e.g., time series of Euler angles). By default this function assumes aerospace rotation sequence but can be changed using the ``rotation_sequence`` keyword argument. Parameters ---------- rotAngle1, rotAngle2, rotAngle3 : {(N,), (N,1), or (1,N)} They are a sequence of angles about successive axes described by rotation_sequence. input_unit : {'rad', 'deg'}, optional Rotation angles. Default is 'rad'. rotation_sequence : {'ZYX'}, optional Rotation sequences. Default is 'ZYX'. Returns ------- q0 : {(N,)} array like scalar componenet of the quaternion qvec : {(N,3)} array like vector component of the quaternion Notes ----- Convert rotation angles to unit quaternion that transforms a vector in F1 to F2 according to :math:`v_q^{F2} = q^{-1} \otimes v_q^{F1} \otimes
<reponame>TRO-HIT/nipype<filename>nipype/interfaces/freesurfer/preprocess.py # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Provides interfaces to various commands provided by FreeSurfer """ import os import os.path as op from glob import glob import shutil import sys import numpy as np from nibabel import load from ... import logging, LooseVersion from ...utils.filemanip import fname_presuffix, check_depends from ..io import FreeSurferSource from ..base import ( TraitedSpec, File, traits, Directory, InputMultiPath, OutputMultiPath, CommandLine, CommandLineInputSpec, isdefined, ) from .base import FSCommand, FSTraitedSpec, FSTraitedSpecOpenMP, FSCommandOpenMP, Info from .utils import copy2subjdir __docformat__ = "restructuredtext" iflogger = logging.getLogger("nipype.interface") # Keeping this to avoid breaking external programs that depend on it, but # this should not be used internally FSVersion = Info.looseversion().vstring class ParseDICOMDirInputSpec(FSTraitedSpec): dicom_dir = Directory( exists=True, argstr="--d %s", mandatory=True, desc="path to siemens dicom directory", ) dicom_info_file = File( "dicominfo.txt", argstr="--o %s", usedefault=True, desc="file to which results are written", ) sortbyrun = traits.Bool(argstr="--sortbyrun", desc="assign run numbers") summarize = traits.Bool( argstr="--summarize", desc="only print out info for run leaders" ) class ParseDICOMDirOutputSpec(TraitedSpec): dicom_info_file = File(exists=True, desc="text file containing dicom information") class ParseDICOMDir(FSCommand): """Uses mri_parse_sdcmdir to get information from dicom directories Examples -------- >>> from nipype.interfaces.freesurfer import ParseDICOMDir >>> dcminfo = ParseDICOMDir() >>> dcminfo.inputs.dicom_dir = '.' >>> dcminfo.inputs.sortbyrun = True >>> dcminfo.inputs.summarize = True >>> dcminfo.cmdline 'mri_parse_sdcmdir --d . --o dicominfo.txt --sortbyrun --summarize' """ _cmd = "mri_parse_sdcmdir" input_spec = ParseDICOMDirInputSpec output_spec = ParseDICOMDirOutputSpec def _list_outputs(self): outputs = self.output_spec().get() if isdefined(self.inputs.dicom_info_file): outputs["dicom_info_file"] = os.path.join( os.getcwd(), self.inputs.dicom_info_file ) return outputs class UnpackSDICOMDirInputSpec(FSTraitedSpec): source_dir = Directory( exists=True, argstr="-src %s", mandatory=True, desc="directory with the DICOM files", ) output_dir = Directory( argstr="-targ %s", desc="top directory into which the files will be unpacked" ) run_info = traits.Tuple( traits.Int, traits.Str, traits.Str, traits.Str, mandatory=True, argstr="-run %d %s %s %s", xor=("run_info", "config", "seq_config"), desc="runno subdir format name : spec unpacking rules on cmdline", ) config = File( exists=True, argstr="-cfg %s", mandatory=True, xor=("run_info", "config", "seq_config"), desc="specify unpacking rules in file", ) seq_config = File( exists=True, argstr="-seqcfg %s", mandatory=True, xor=("run_info", "config", "seq_config"), desc="specify unpacking rules based on sequence", ) dir_structure = traits.Enum( "fsfast", "generic", argstr="-%s", desc="unpack to specified directory structures", ) no_info_dump = traits.Bool(argstr="-noinfodump", desc="do not create infodump file") scan_only = File( exists=True, argstr="-scanonly %s", desc="only scan the directory and put result in file", ) log_file = File(exists=True, argstr="-log %s", desc="explicilty set log file") spm_zeropad = traits.Int( argstr="-nspmzeropad %d", desc="set frame number zero padding width for SPM" ) no_unpack_err = traits.Bool( argstr="-no-unpackerr", desc="do not try to unpack runs with errors" ) class UnpackSDICOMDir(FSCommand): """Use unpacksdcmdir to convert dicom files Call unpacksdcmdir -help from the command line to see more information on using this command. Examples -------- >>> from nipype.interfaces.freesurfer import UnpackSDICOMDir >>> unpack = UnpackSDICOMDir() >>> unpack.inputs.source_dir = '.' >>> unpack.inputs.output_dir = '.' >>> unpack.inputs.run_info = (5, 'mprage', 'nii', 'struct') >>> unpack.inputs.dir_structure = 'generic' >>> unpack.cmdline 'unpacksdcmdir -generic -targ . -run 5 mprage nii struct -src .' """ _cmd = "unpacksdcmdir" input_spec = UnpackSDICOMDirInputSpec class MRIConvertInputSpec(FSTraitedSpec): read_only = traits.Bool(argstr="--read_only", desc="read the input volume") no_write = traits.Bool(argstr="--no_write", desc="do not write output") in_info = traits.Bool(argstr="--in_info", desc="display input info") out_info = traits.Bool(argstr="--out_info", desc="display output info") in_stats = traits.Bool(argstr="--in_stats", desc="display input stats") out_stats = traits.Bool(argstr="--out_stats", desc="display output stats") in_matrix = traits.Bool(argstr="--in_matrix", desc="display input matrix") out_matrix = traits.Bool(argstr="--out_matrix", desc="display output matrix") in_i_size = traits.Int(argstr="--in_i_size %d", desc="input i size") in_j_size = traits.Int(argstr="--in_j_size %d", desc="input j size") in_k_size = traits.Int(argstr="--in_k_size %d", desc="input k size") force_ras = traits.Bool( argstr="--force_ras_good", desc="use default when orientation info absent" ) in_i_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--in_i_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) in_j_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--in_j_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) in_k_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--in_k_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) _orientations = [ "LAI", "LIA", "ALI", "AIL", "ILA", "IAL", "LAS", "LSA", "ALS", "ASL", "SLA", "SAL", "LPI", "LIP", "PLI", "PIL", "ILP", "IPL", "LPS", "LSP", "PLS", "PSL", "SLP", "SPL", "RAI", "RIA", "ARI", "AIR", "IRA", "IAR", "RAS", "RSA", "ARS", "ASR", "SRA", "SAR", "RPI", "RIP", "PRI", "PIR", "IRP", "IPR", "RPS", "RSP", "PRS", "PSR", "SRP", "SPR", ] # _orientations = [comb for comb in itertools.chain(*[[''.join(c) for c in itertools.permutations(s)] for s in [a+b+c for a in 'LR' for b in 'AP' for c in 'IS']])] in_orientation = traits.Enum( _orientations, argstr="--in_orientation %s", desc="specify the input orientation", ) in_center = traits.List( traits.Float, maxlen=3, argstr="--in_center %s", desc="<R coordinate> <A coordinate> <S coordinate>", ) sphinx = traits.Bool(argstr="--sphinx", desc="change orientation info to sphinx") out_i_count = traits.Int( argstr="--out_i_count %d", desc="some count ?? in i direction" ) out_j_count = traits.Int( argstr="--out_j_count %d", desc="some count ?? in j direction" ) out_k_count = traits.Int( argstr="--out_k_count %d", desc="some count ?? in k direction" ) vox_size = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="-voxsize %f %f %f", desc="<size_x> <size_y> <size_z> specify the size (mm) - useful for upsampling or downsampling", ) out_i_size = traits.Int(argstr="--out_i_size %d", desc="output i size") out_j_size = traits.Int(argstr="--out_j_size %d", desc="output j size") out_k_size = traits.Int(argstr="--out_k_size %d", desc="output k size") out_i_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--out_i_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) out_j_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--out_j_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) out_k_dir = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--out_k_direction %f %f %f", desc="<R direction> <A direction> <S direction>", ) out_orientation = traits.Enum( _orientations, argstr="--out_orientation %s", desc="specify the output orientation", ) out_center = traits.Tuple( traits.Float, traits.Float, traits.Float, argstr="--out_center %f %f %f", desc="<R coordinate> <A coordinate> <S coordinate>", ) out_datatype = traits.Enum( "uchar", "short", "int", "float", argstr="--out_data_type %s", desc="output data type <uchar|short|int|float>", ) resample_type = traits.Enum( "interpolate", "weighted", "nearest", "sinc", "cubic", argstr="--resample_type %s", desc="<interpolate|weighted|nearest|sinc|cubic> (default is interpolate)", ) no_scale = traits.Bool(argstr="--no_scale 1", desc="dont rescale values for COR") no_change = traits.Bool( argstr="--nochange", desc="don't change type of input to that of template" ) tr = traits.Int(argstr="-tr %d", desc="TR in msec") te = traits.Int(argstr="-te %d", desc="TE in msec") ti = traits.Int(argstr="-ti %d", desc="TI in msec (note upper case flag)") autoalign_matrix = File( exists=True, argstr="--autoalign %s", desc="text file with autoalign matrix" ) unwarp_gradient = traits.Bool( argstr="--unwarp_gradient_nonlinearity", desc="unwarp gradient nonlinearity" ) apply_transform = File( exists=True, argstr="--apply_transform %s", desc="apply xfm file" ) apply_inv_transform = File( exists=True, argstr="--apply_inverse_transform %s", desc="apply inverse transformation xfm file", ) devolve_transform = traits.Str(argstr="--devolvexfm %s", desc="subject id") crop_center = traits.Tuple( traits.Int, traits.Int, traits.Int, argstr="--crop %d %d %d", desc="<x> <y> <z> crop to 256 around center (x, y, z)", ) crop_size = traits.Tuple( traits.Int, traits.Int, traits.Int, argstr="--cropsize %d %d %d", desc="<dx> <dy> <dz> crop to size <dx, dy, dz>", ) cut_ends = traits.Int( argstr="--cutends %d", desc="remove ncut slices from the ends" ) slice_crop = traits.Tuple( traits.Int, traits.Int, argstr="--slice-crop %d %d", desc="s_start s_end : keep slices s_start to s_end", ) slice_reverse = traits.Bool( argstr="--slice-reverse", desc="reverse order of slices, update vox2ras" ) slice_bias = traits.Float( argstr="--slice-bias %f", desc="apply half-cosine bias field" ) fwhm = traits.Float(argstr="--fwhm %f", desc="smooth input volume by fwhm mm") _filetypes = [ "cor", "mgh", "mgz", "minc", "analyze", "analyze4d", "spm", "afni", "brik", "bshort", "bfloat", "sdt", "outline", "otl", "gdf", "nifti1", "nii", "niigz", ] _infiletypes = ["ge", "gelx", "lx", "ximg", "siemens", "dicom", "siemens_dicom"] in_type = traits.Enum( _filetypes + _infiletypes, argstr="--in_type %s", desc="input file type" ) out_type = traits.Enum(_filetypes, argstr="--out_type %s", desc="output file type") ascii = traits.Bool( argstr="--ascii", desc="save output as ascii col>row>slice>frame" ) reorder = traits.Tuple( traits.Int, traits.Int, traits.Int, argstr="--reorder %d %d %d", desc="olddim1 olddim2 olddim3", ) invert_contrast = traits.Float( argstr="--invert_contrast %f", desc="threshold for inversting contrast" ) in_file = File( exists=True, mandatory=True, position=-2, argstr="--input_volume %s", desc="File to read/convert", ) out_file = File( argstr="--output_volume %s", position=-1, genfile=True, desc="output filename or True to generate one", ) conform = traits.Bool( argstr="--conform", desc="conform to 1mm voxel size in coronal slice direction with 256^3 or more", ) conform_min = traits.Bool(argstr="--conform_min", desc="conform to smallest size") conform_size = traits.Float( argstr="--conform_size %s", desc="conform to size_in_mm" ) cw256 = traits.Bool(argstr="--cw256", desc="confrom to dimensions of 256^3") parse_only = traits.Bool(argstr="--parse_only", desc="parse input only") subject_name = traits.Str(argstr="--subject_name %s", desc="subject name ???") reslice_like = File( exists=True, argstr="--reslice_like %s", desc="reslice output to match file" ) template_type = traits.Enum( _filetypes + _infiletypes, argstr="--template_type %s", desc="template file type", ) split
(before_colon, after_docstring), colon, docstring, body = tokens else: raise CoconutInternalException("invalid match def joining tokens", tokens) # after_docstring and body are their own self-contained suites, but we # expect them to both be one suite, so we have to join them together after_docstring, dedent = split_trailing_indent(after_docstring) indent, body = split_leading_indent(body) indentation = collapse_indents(dedent + indent) return ( before_colon + colon + "\n" + (openindent + docstring + closeindent if docstring is not None else "") + after_docstring + indentation + body ) def where_handle(tokens): """Process where statements.""" final_stmt, init_stmts = tokens return "".join(init_stmts) + final_stmt + "\n" def kwd_err_msg_handle(tokens): """Handle keyword parse error messages.""" internal_assert(len(tokens) == 1, "invalid keyword err msg tokens", tokens) return 'invalid use of the keyword "' + tokens[0] + '"' def string_atom_handle(tokens): """Handle concatenation of string literals.""" internal_assert(len(tokens) >= 1, "invalid string literal tokens", tokens) if any(s.endswith(")") for s in tokens): # has .format() calls return "(" + " + ".join(tokens) + ")" else: return " ".join(tokens) string_atom_handle.ignore_one_token = True def alt_ternary_handle(tokens): """Handle if ... then ... else ternary operator.""" cond, if_true, if_false = tokens return "{if_true} if {cond} else {if_false}".format(cond=cond, if_true=if_true, if_false=if_false) def yield_funcdef_handle(tokens): """Handle yield def explicit generators.""" internal_assert(len(tokens) == 1, "invalid yield def tokens", tokens) return tokens[0] + openindent + handle_indentation( """ if False: yield """, add_newline=True, ) + closeindent # end: HANDLERS # ----------------------------------------------------------------------------------------------------------------------- # MAIN GRAMMAR: # ----------------------------------------------------------------------------------------------------------------------- class Grammar(object): """Coconut grammar specification.""" timing_info = None comma = Literal(",") dubstar = Literal("**") star = ~dubstar + Literal("*") at = Literal("@") arrow = Literal("->") | fixto(Literal("\u2192"), "->") colon_eq = Literal(":=") unsafe_dubcolon = Literal("::") unsafe_colon = Literal(":") colon = ~unsafe_dubcolon + ~colon_eq + unsafe_colon semicolon = Literal(";") | invalid_syntax("\u037e", "invalid Greek question mark instead of semicolon", greedy=True) eq = Literal("==") equals = ~eq + Literal("=") lbrack = Literal("[") rbrack = Literal("]") lbrace = Literal("{") rbrace = Literal("}") lbanana = ~Literal("(|)") + ~Literal("(|>") + ~Literal("(|*") + ~Literal("(|?") + Literal("(|") rbanana = Literal("|)") lparen = ~lbanana + Literal("(") rparen = Literal(")") unsafe_dot = Literal(".") dot = ~Literal("..") + unsafe_dot plus = Literal("+") minus = ~Literal("->") + Literal("-") dubslash = Literal("//") slash = ~dubslash + Literal("/") pipe = Literal("|>") | fixto(Literal("\u21a6"), "|>") star_pipe = Literal("|*>") | fixto(Literal("*\u21a6"), "|*>") dubstar_pipe = Literal("|**>") | fixto(Literal("**\u21a6"), "|**>") back_pipe = Literal("<|") | fixto(Literal("\u21a4"), "<|") back_star_pipe = Literal("<*|") | ~Literal("\u21a4**") + fixto(Literal("\u21a4*"), "<*|") back_dubstar_pipe = Literal("<**|") | fixto(Literal("\u21a4**"), "<**|") none_pipe = Literal("|?>") | fixto(Literal("?\u21a6"), "|?>") none_star_pipe = Literal("|?*>") | fixto(Literal("?*\u21a6"), "|?*>") none_dubstar_pipe = Literal("|?**>") | fixto(Literal("?**\u21a6"), "|?**>") dotdot = ( ~Literal("...") + ~Literal("..>") + ~Literal("..*") + Literal("..") | ~Literal("\u2218>") + ~Literal("\u2218*>") + fixto(Literal("\u2218"), "..") ) comp_pipe = Literal("..>") | fixto(Literal("\u2218>"), "..>") comp_back_pipe = Literal("<..") | fixto(Literal("<\u2218"), "<..") comp_star_pipe = Literal("..*>") | fixto(Literal("\u2218*>"), "..*>") comp_back_star_pipe = Literal("<*..") | fixto(Literal("<*\u2218"), "<*..") comp_dubstar_pipe = Literal("..**>") | fixto(Literal("\u2218**>"), "..**>") comp_back_dubstar_pipe = Literal("<**..") | fixto(Literal("<**\u2218"), "<**..") amp = Literal("&") | fixto(Literal("\u2227") | Literal("\u2229"), "&") caret = Literal("^") | fixto(Literal("\u22bb") | Literal("\u2295"), "^") unsafe_bar = ~Literal("|>") + ~Literal("|*") + Literal("|") | fixto(Literal("\u2228") | Literal("\u222a"), "|") bar = ~rbanana + unsafe_bar percent = Literal("%") dollar = Literal("$") lshift = Literal("<<") | fixto(Literal("\xab"), "<<") rshift = Literal(">>") | fixto(Literal("\xbb"), ">>") tilde = Literal("~") | fixto(~Literal("\xac=") + Literal("\xac"), "~") underscore = Literal("_") pound = Literal("#") unsafe_backtick = Literal("`") dubbackslash = Literal("\\\\") backslash = ~dubbackslash + Literal("\\") dubquestion = Literal("??") questionmark = ~dubquestion + Literal("?") except_star_kwd = combine(keyword("except") + star) except_kwd = ~except_star_kwd + keyword("except") lambda_kwd = keyword("lambda") | fixto(keyword("\u03bb", explicit_prefix=colon), "lambda") async_kwd = keyword("async", explicit_prefix=colon) await_kwd = keyword("await", explicit_prefix=colon) data_kwd = keyword("data", explicit_prefix=colon) match_kwd = keyword("match", explicit_prefix=colon) case_kwd = keyword("case", explicit_prefix=colon) cases_kwd = keyword("cases", explicit_prefix=colon) where_kwd = keyword("where", explicit_prefix=colon) addpattern_kwd = keyword("addpattern", explicit_prefix=colon) then_kwd = keyword("then", explicit_prefix=colon) ellipsis = Forward() ellipsis_ref = Literal("...") | Literal("\u2026") lt = ~Literal("<<") + ~Literal("<=") + ~Literal("<|") + ~Literal("<..") + ~Literal("<*") + Literal("<") gt = ~Literal(">>") + ~Literal(">=") + Literal(">") le = Literal("<=") | fixto(Literal("\u2264"), "<=") ge = Literal(">=") | fixto(Literal("\u2265"), ">=") ne = Literal("!=") | fixto(Literal("\xac=") | Literal("\u2260"), "!=") mul_star = star | fixto(Literal("\xd7"), "*") exp_dubstar = dubstar | fixto(Literal("\u2191"), "**") neg_minus = ( minus | fixto(Literal("\u207b"), "-") | invalid_syntax("\u2212", "U+2212 is only for negation, not subtraction") ) sub_minus = ( minus | fixto(Literal("\u2212"), "-") | invalid_syntax("\u207b", "U+207b is only for subtraction, not negation") ) div_slash = slash | fixto(Literal("\xf7") + ~slash, "/") div_dubslash = dubslash | fixto(combine(Literal("\xf7") + slash), "//") matrix_at_ref = at | fixto(Literal("\u22c5"), "@") matrix_at = Forward() test = Forward() test_no_chain, dubcolon = disable_inside(test, unsafe_dubcolon) test_no_infix, backtick = disable_inside(test, unsafe_backtick) base_name_regex = r"" for no_kwd in keyword_vars + const_vars: base_name_regex += r"(?!" + no_kwd + r"\b)" base_name_regex += r"(?![0-9])\w+\b" base_name = ( regex_item(base_name_regex) | backslash.suppress() + any_keyword_in(reserved_vars) ) name = Forward() dotted_name = condense(name + ZeroOrMore(dot + name)) must_be_dotted_name = condense(name + OneOrMore(dot + name)) integer = combine(Word(nums) + ZeroOrMore(underscore.suppress() + Word(nums))) binint = combine(Word("01") + ZeroOrMore(underscore.suppress() + Word("01"))) octint = combine(Word("01234567") + ZeroOrMore(underscore.suppress() + Word("01234567"))) hexint = combine(Word(hexnums) + ZeroOrMore(underscore.suppress() + Word(hexnums))) imag_j = CaselessLiteral("j") | fixto(CaselessLiteral("i"), "j") basenum = combine( integer + dot + Optional(integer) | Optional(integer) + dot + integer, ) | integer sci_e = combine(CaselessLiteral("e") + Optional(plus | neg_minus)) numitem = ~(Literal("0") + Word(nums + "_", exact=1)) + combine(basenum + Optional(sci_e + integer)) imag_num = combine(numitem + imag_j) bin_num = combine(CaselessLiteral("0b") + Optional(underscore.suppress()) + binint) oct_num = combine(CaselessLiteral("0o") + Optional(underscore.suppress()) + octint) hex_num = combine(CaselessLiteral("0x") + Optional(underscore.suppress()) + hexint) number = addspace( ( bin_num | oct_num | hex_num | imag_num | numitem ) + Optional(condense(dot + name)), ) moduledoc_item = Forward() unwrap = Literal(unwrapper) comment = Forward() comment_ref = combine(pound + integer + unwrap) string_item = ( combine(Literal(strwrapper) + integer + unwrap) | invalid_syntax(("\u201c", "\u201d", "\u2018", "\u2019"), "invalid unicode quotation mark; strings must use \" or '", greedy=True) ) passthrough = combine(backslash + integer + unwrap) passthrough_block = combine(fixto(dubbackslash, "\\") + integer + unwrap) endline = Forward() endline_ref = condense(OneOrMore(Literal("\n"))) lineitem = combine(Optional(comment) + endline) newline = condense(OneOrMore(lineitem)) end_simple_stmt_item = FollowedBy(semicolon | newline) start_marker = StringStart() moduledoc_marker = condense(ZeroOrMore(lineitem) - Optional(moduledoc_item)) end_marker = StringEnd() indent = Literal(openindent) dedent = Literal(closeindent) u_string = Forward() f_string = Forward() bit_b = Optional(CaselessLiteral("b")) raw_r = Optional(CaselessLiteral("r")) b_string = combine((bit_b + raw_r | raw_r + bit_b) + string_item) unicode_u = CaselessLiteral("u").suppress() u_string_ref = combine((unicode_u + raw_r | raw_r + unicode_u) + string_item) format_f = CaselessLiteral("f").suppress() f_string_ref = combine((format_f + raw_r | raw_r + format_f) + string_item) string = trace(b_string | u_string | f_string) moduledoc = string + newline docstring = condense(moduledoc) pipe_augassign = ( combine(pipe + equals) | combine(star_pipe + equals) | combine(dubstar_pipe + equals) | combine(back_pipe + equals) | combine(back_star_pipe + equals) | combine(back_dubstar_pipe + equals) | combine(none_pipe + equals) | combine(none_star_pipe + equals) | combine(none_dubstar_pipe + equals) ) augassign = ( pipe_augassign | combine(comp_pipe + equals) | combine(dotdot + equals) | combine(comp_back_pipe + equals) | combine(comp_star_pipe + equals) | combine(comp_back_star_pipe + equals) | combine(comp_dubstar_pipe + equals) | combine(comp_back_dubstar_pipe + equals) | combine(unsafe_dubcolon + equals) | combine(div_dubslash + equals) | combine(div_slash + equals) | combine(exp_dubstar + equals) | combine(mul_star + equals) | combine(plus + equals) | combine(sub_minus + equals) | combine(percent + equals) | combine(amp + equals) | combine(bar + equals) | combine(caret + equals) | combine(lshift + equals) | combine(rshift + equals) | combine(matrix_at + equals) | combine(dubquestion + equals) ) comp_op = ( le | ge | ne | lt | gt | eq | addspace(keyword("not") + keyword("in")) | keyword("in") | addspace(keyword("is") + keyword("not")) | keyword("is") ) expr = Forward() star_expr = Forward() dubstar_expr = Forward() comp_for = Forward() test_no_cond = Forward() namedexpr_test = Forward() # for namedexpr locations only supported in Python 3.10 new_namedexpr_test = Forward() testlist = trace(itemlist(test, comma, suppress_trailing=False)) testlist_has_comma = trace(addspace(OneOrMore(condense(test + comma)) + Optional(test))) new_namedexpr_testlist_has_comma = trace(addspace(OneOrMore(condense(new_namedexpr_test + comma)) + Optional(test))) testlist_star_expr = Forward() testlist_star_expr_ref = tokenlist(Group(test) | star_expr, comma, suppress=False) testlist_star_namedexpr = Forward() testlist_star_namedexpr_tokens = tokenlist(Group(namedexpr_test) | star_expr, comma, suppress=False) yield_from = Forward() dict_comp = Forward() dict_literal = Forward() yield_classic = addspace(keyword("yield") + Optional(testlist)) yield_from_ref =
<filename>common/rtt_worker.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Author: <NAME>, ph4r05, 2018 # pip install shellescape sarge import logging import signal import threading import time import sys import os import random import socket import typing import shutil import tempfile import paramiko import sshtunnel from shlex import quote import shellescape from sarge import Capture, Feeder, run from . import rtt_sftp_conn from . import rtt_utils logger = logging.getLogger(__name__) SARGE_FILTER_INSTALLED = False RTT_BATTERIES = { 'Dieharder': 'dieharder', 'NIST Statistical Testing Suite': 'nist_sts', 'TestU01 Alphabit': 'tu01_alphabit', 'TestU01 Block Alphabit': 'tu01_blockalphabit', 'TestU01 Crush': 'tu01_crush', 'TestU01 Rabbit': 'tu01_rabbit', 'TestU01 Small Crush': 'tu01_smallcrush', } def job_battery_to_experiment(bat): for keys in RTT_BATTERIES: if RTT_BATTERIES[keys] == bat: return keys raise ValueError('Key not found: %s' % bat) def experiment_battery_to_job(bat): return RTT_BATTERIES[bat] def try_fnc(fnc): try: return fnc() except: pass class SargeLogFilter(logging.Filter): """Filters out debugging logs generated by sarge - output capture. It is way too verbose for debug""" def __init__(self, name="", *args, **kwargs): self.namex = name logging.Filter.__init__(self, *args, **kwargs) def filter(self, record): if record.levelno != logging.DEBUG: return 1 try: # Parse messages are too verbose, skip. if record.name == "sarge.parse": return 0 # Disable output processing message - length of one character. msg = record.getMessage() if "queued chunk of length 1" in msg: return 0 return 1 except Exception as e: logger.error("Exception in log filtering: %s" % (e,), exc_info=e) return 1 def install_sarge_filter(): """ Installs Sarge log filter to avoid long 1char debug dumps :return: """ global SARGE_FILTER_INSTALLED if SARGE_FILTER_INSTALLED: return for handler in logging.getLogger().handlers: handler.addFilter(SargeLogFilter("hnd")) logging.getLogger().addFilter(SargeLogFilter("root")) SARGE_FILTER_INSTALLED = True def sarge_sigint(proc, sig=signal.SIGTERM): """ Sends sigint to sarge process :return: """ proc.process_ready.wait() p = proc.process if not p: # pragma: no cover raise ValueError("There is no subprocess") p.send_signal(sig) def escape_shell(inp): """ Shell-escapes input param :param inp: :return: """ try: inp = inp.decode("utf8") except: pass try: return shellescape.quote(inp) except: pass quote(inp) class AsyncRunner: def __init__(self, cmd, args=None, stdout=None, stderr=None, cwd=None, shell=True, env=None): self.cmd = cmd self.args = args self.on_finished = None self.on_output = None self.on_tick = None self.no_log_just_write = False self.log_out_during = True self.log_out_after = True self.stdout = stdout self.stderr = stderr self.cwd = cwd self.shell = shell self.env = env self.preexec_setgrp = False self.using_stdout_cap = True self.using_stderr_cap = True self.ret_code = None self.out_acc = [] self.err_acc = [] self.feeder = None self.proc = None self.is_running = False self.was_running = False self.terminating = False self.thread = None def run(self): try: self.run_internal() except Exception as e: self.is_running = False logger.error("Unexpected exception in runner: %s" % (e,), exc_info=e) finally: self.was_running = True def __del__(self): self.deinit() def deinit(self): rtt_utils.try_fnc(lambda: self.feeder.close()) if not self.proc: return if self.using_stdout_cap: rtt_utils.try_fnc(lambda: self.proc.stdout.close()) if self.using_stderr_cap: rtt_utils.try_fnc(lambda: self.proc.stderr.close()) rtt_utils.try_fnc(lambda: self.proc.close()) def drain_stream(self, s, block=False, timeout=0.15): ret = [] while True: rs = s.read(-1, block, timeout) if not rs: break ret.append(rs) return ret def run_internal(self): def preexec_function(): os.setpgrp() cmd = self.cmd if self.shell: args_str = ( " ".join(self.args) if isinstance(self.args, (list, tuple)) else self.args ) if isinstance(cmd, (list, tuple)): cmd = " ".join(cmd) if args_str and len(args_str) > 0: cmd += " " + args_str else: if self.args and not isinstance(self.args, (list, tuple)): raise ValueError("!Shell requires array of args") if self.args: cmd += self.args self.using_stdout_cap = self.stdout is None self.using_stderr_cap = self.stderr is None self.feeder = Feeder() logger.debug("Starting command %s in %s" % (cmd, self.cwd)) run_args = {} if self.preexec_setgrp: run_args['preexec_fn'] = preexec_function p = run( cmd, input=self.feeder, async_=True, stdout=self.stdout or Capture(timeout=0.1, buffer_size=1), stderr=self.stderr or Capture(timeout=0.1, buffer_size=1), cwd=self.cwd, env=self.env, shell=self.shell, **run_args ) self.proc = p self.ret_code = 1 self.out_acc, self.err_acc = [], [] out_cur, err_cur = [""], [""] def process_line(line, is_err=False): dst = self.err_acc if is_err else self.out_acc dst.append(line) if self.log_out_during: if self.no_log_just_write: dv = sys.stderr if is_err else sys.stdout dv.write(line + "\n") dv.flush() else: logger.debug("Out: %s" % line.strip()) if self.on_output: self.on_output(self, line, is_err) def add_output(buffers, is_err=False, finish=False): buffers = [x.decode("utf8") for x in buffers if x is not None and x != ""] lines = [""] if not buffers and not finish: return dst_cur = err_cur if is_err else out_cur for x in buffers: clines = [v.strip("\r") for v in x.split("\n")] lines[-1] += clines[0] lines.extend(clines[1:]) nlines = len(lines) dst_cur[0] += lines[0] if nlines > 1: process_line(dst_cur[0], is_err) dst_cur[0] = "" for line in lines[1:-1]: process_line(line, is_err) if not finish and nlines > 1: dst_cur[0] = lines[-1] or "" if finish: cline = dst_cur[0] if nlines == 1 else lines[-1] if cline: process_line(cline, is_err) try: while len(p.commands) == 0: time.sleep(0.15) logger.debug("Program started, progs: %s" % len(p.commands)) if p.commands[0] is None: self.is_running = False self.was_running = True logger.error("Program could not be started") return self.is_running = True self.on_change() out = None err = None while p.commands[0] and p.commands[0].returncode is None: if self.using_stdout_cap: out = p.stdout.read(-1, False) add_output([out], is_err=False) if self.using_stderr_cap: err = p.stderr.read(-1, False) add_output([err], is_err=True) if self.on_tick: self.on_tick(self) p.commands[0].poll() if self.terminating and p.commands[0].returncode is None: logger.debug("Terminating by sigint %s" % p.commands[0]) sarge_sigint(p.commands[0], signal.SIGTERM) sarge_sigint(p.commands[0], signal.SIGINT) logger.debug("Sigint sent") logger.debug("Process closed") # If there is data, consume it right away. if (self.using_stdout_cap and out) or (self.using_stderr_cap and err): continue time.sleep(0.15) logger.debug("Runner while ended") p.wait() self.ret_code = p.commands[0].returncode if p.commands[0] else -1 if self.using_stdout_cap: try_fnc(lambda: p.stdout.close()) add_output(self.drain_stream(p.stdout, True), finish=True) if self.using_stderr_cap: try_fnc(lambda: p.stderr.close()) add_output(self.drain_stream(p.stderr, True), is_err=True, finish=True) self.was_running = True self.is_running = False self.on_change() logger.debug("Program ended with code: %s" % self.ret_code) logger.debug("Command: %s" % cmd) if self.log_out_after: logger.debug("Std out: %s" % "\n".join(self.out_acc)) logger.debug("Error out: %s" % "\n".join(self.err_acc)) except Exception as e: self.is_running = False logger.error("Exception in async runner: %s" % (e,)) finally: self.was_running = True rtt_utils.try_fnc(lambda: self.feeder.close()) rtt_utils.try_fnc(lambda: self.proc.close()) if self.on_finished: self.on_finished(self) def on_change(self): pass def shutdown(self): if not self.is_running: return self.terminating = True time.sleep(1) # Terminating with sigint logger.info("Waiting for program to terminate...") while self.is_running: time.sleep(0.1) logger.info("Program terminated") self.deinit() def start(self): install_sarge_filter() self.thread = threading.Thread(target=self.run, args=()) self.thread.setDaemon(False) self.thread.start() self.terminating = False self.is_running = False while not self.is_running and not self.was_running: time.sleep(0.1) return self def get_rtt_runner(rtt_args, cwd=None): rtt_env = {'LD_LIBRARY_PATH': rtt_utils.extend_lib_path(cwd)} async_runner = AsyncRunner(rtt_args, cwd=cwd, shell=False, env=rtt_env) async_runner.log_out_after = False async_runner.preexec_setgrp = True return async_runner def get_booltest_rtt_runner(rtt_args, cwd=None): async_runner = AsyncRunner(rtt_args, cwd=cwd, shell=False) async_runner.log_out_after = False async_runner.preexec_setgrp = True return async_runner class SSHForwarder: def __init__(self, ssh_params: rtt_sftp_conn.SSHParams, remote_server: str, remote_port: int, local_port=None): self.ssh_params = ssh_params self.remote_server = remote_server self.remote_port = remote_port self.local_port = local_port def start(self): raise ValueError('Not implemented') def shutdown(self): raise ValueError('Not implemented') class SSHForwarderPython(SSHForwarder): def __init__(self, ssh_params: rtt_sftp_conn.SSHParams, remote_server: str, remote_port: int, local_port=None): super().__init__(ssh_params, remote_server, remote_port, local_port) self.is_running = False self.terminating = False self.thread = None def run(self): logger.info("Establishing SSH tunnel...") local_args = {} if not self.local_port else {'local_bind_address': ('0.0.0.0', self.local_port)} with sshtunnel.open_tunnel( (self.ssh_params.host, self.ssh_params.port), ssh_username=self.ssh_params.user, ssh_pkey=self.ssh_params.pkey_file, ssh_private_key_password=self.ssh_params.pkey_pass, remote_bind_address=(self.remote_server, self.remote_port), **local_args ) as tunnel: self.local_port = tunnel.local_bind_port self.is_running = True logger.info("SSH tunnel established, port: %s" % self.local_port) while not self.terminating: time.sleep(0.5) self.is_running = False logger.info("Closing SSH tunnel") def start(self): self.thread = threading.Thread(target=self.run, args=()) self.thread.setDaemon(False) self.thread.start() self.terminating = False self.is_running = False while not self.is_running: time.sleep(0.1) return self def shutdown(self): if not self.is_running: return self.terminating = True time.sleep(1) # Terminating with sigint logger.info("Waiting for ssh tunnel to terminate...") while self.is_running: time.sleep(0.1) def bind_random_port(): for _ in range(5000): port = random.randrange(20000, 65535) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(('127.0.0.1', port)) return s, port except socket.error as e: s.close() raise ValueError('Binding took too long') def try_to_connect(host, port, timeout=15): tstart = time.time() while True: if time.time() - tstart > timeout: raise ValueError('Could not connect in time') s = socket.socket() s.settimeout(5) try: s.connect((host, port)) return s except socket.error as exc: time.sleep(0.1) continue class SSHForwarderLinux(SSHForwarder): def __init__(self, ssh_params: rtt_sftp_conn.SSHParams, remote_server: str, remote_port: int, local_port=None): super().__init__(ssh_params, remote_server, remote_port, local_port) self.on_bind_error = None self.do_setsid = True self.reservation_socket = None self.runner = None # type: typing.Optional[AsyncRunner] self.ssh_passwd_asked = False self.ssh_passwd_entered = False self.bind_error = False self.ask_pass_path = None self.first_tick = None self.script_path = None self.pid_path = None def __del__(self): logger.info("SSH shutdown on delete (dirty)") self.shutdown() def create_runner(self): if self.local_port is None: self.reservation_socket, self.local_port = bind_random_port() logger.info("Reserving random local port: %s" % self.local_port) args = [ '-i', '\'%s\'' % self.ssh_params.pkey_file, '-L', '%s:%s:%s' % (self.local_port, self.remote_server, self.remote_port), '-N', '-oLogLevel=error', '-oStrictHostKeyChecking=no', '-oUserKnownHostsFile=/dev/null', '-o ConnectTimeout=30', '-p', '%s' % self.ssh_params.port, '\'%s\'@%s' % (self.ssh_params.user, self.ssh_params.host), ] args_str = ' '.join(args) cmd = 'ssh %s' % args_str if self.do_setsid: self.create_shell_run_script(cmd) cmd =
<gh_stars>0 #!/usr/bin/env python3 # module checking try: import os import sys import argparse import getpass import configparser except: print("Missing modules detected!") sys.exit(1) # Testing rich existence try: from rich import print from rich.table import Table except: print("Error: >rich< module not found.") sys.exit(1) # Testing puremagic existence try: import puremagic as pr except: print("Error: >puremagic< module not found.") sys.exit(1) # Testing pyaxmlparser existence try: import pyaxmlparser except: print("Error: >pyaxmlparser< module not found.") sys.exit(1) try: from colorama import Fore, Style except: print("Error: >colorama< module not found.") sys.exit(1) # Disabling pyaxmlparser's logs pyaxmlparser.core.log.disabled = True # Colors red = Fore.LIGHTRED_EX cyan = Fore.LIGHTCYAN_EX white = Style.RESET_ALL green = Fore.LIGHTGREEN_EX # Legends infoC = f"{cyan}[{red}*{cyan}]{white}" infoS = f"[bold cyan][[bold red]*[bold cyan]][white]" foundS = f"[bold cyan][[bold red]+[bold cyan]][white]" errorS = f"[bold cyan][[bold red]![bold cyan]][white]" # Gathering username username = getpass.getuser() # Is Qu1cksc0pe installed?? if os.path.exists("/usr/bin/qu1cksc0pe") == True and os.path.exists(f"/etc/qu1cksc0pe.conf") == True: # Parsing new path and write into handler sc0peConf = configparser.ConfigParser() sc0peConf.read(f"/etc/qu1cksc0pe.conf") sc0pe_path = str(sc0peConf["Qu1cksc0pe_PATH"]["sc0pe"]) path_handler = open(".path_handler", "w") path_handler.write(sc0pe_path) path_handler.close() else: # Parsing current path and write into handler sc0pe_path = str(os.getcwd()) path_handler = open(".path_handler", "w") path_handler.write(sc0pe_path) path_handler.close() libscan = configparser.ConfigParser() # Parsing android libscanner configuration file libscan.read("Systems/Android/libScanner.conf") libscan["Rule_PATH"]["rulepath"] = f"{sc0pe_path}/Systems/Android/YaraRules/" with open("Systems/Android/libScanner.conf", "w") as ff: libscan.write(ff) # Banner os.system(f"python3 {sc0pe_path}/Modules/banners.py") # User home detection homeD = "/home" if sys.platform == "darwin": homeD = "/Users" # Argument crating, parsing and handling args = [] parser = argparse.ArgumentParser() parser.add_argument("--file", required=False, help="Specify a file to scan or analyze.") parser.add_argument("--folder", required=False, help="Specify a folder to scan or analyze.") parser.add_argument("--analyze", required=False, help="Analyze target file.", action="store_true") parser.add_argument("--console", required=False, help="Use Qu1cksc0pe on interactive shell.", action="store_true") parser.add_argument("--db_update", required=False, help="Update malware hash database.", action="store_true") parser.add_argument("--docs", required=False, help="Analyze document files.", action="store_true") parser.add_argument("--domain", required=False, help="Extract URLs and IP addresses from file.", action="store_true") parser.add_argument("--hashscan", required=False, help="Scan target file's hash in local database.", action="store_true") parser.add_argument("--health", required=False, help="Check for dependencies and configurations.", action="store_true") parser.add_argument("--install", required=False, help="Install or Uninstall Qu1cksc0pe.", action="store_true") parser.add_argument("--key_init", required=False, help="Enter your VirusTotal API key.", action="store_true") parser.add_argument("--lang", required=False, help="Detect programming language.", action="store_true") parser.add_argument("--metadata", required=False, help="Get exif/metadata information.", action="store_true") parser.add_argument("--mitre", required=False, help="Generate MITRE ATT&CK table for target sample (Windows samples for now.).", action="store_true") parser.add_argument("--packer", required=False, help="Check if your file is packed with common packers.", action="store_true") parser.add_argument("--resource", required=False, help="Analyze resources in target file", action="store_true") parser.add_argument("--report", required=False, help="Export analysis reports into a file (JSON Format for now).", action="store_true") parser.add_argument("--runtime", required=False, help="Analyze APK files dynamically.", action="store_true") parser.add_argument("--sigcheck", required=False, help="Scan file signatures in target file.", action="store_true") parser.add_argument("--vtFile", required=False, help="Scan your file with VirusTotal API.", action="store_true") args = parser.parse_args() # Basic analyzer function that handles single and multiple scans def BasicAnalyzer(analyzeFile): print(f"{infoS} Analyzing: [bold green]{analyzeFile}[white]") fileType = str(pr.magic_file(analyzeFile)) # Windows Analysis if "Windows Executable" in fileType or ".msi" in fileType or ".dll" in fileType or ".exe" in fileType: print(f"{infoS} Target OS: [bold green]Windows[white]\n") if args.report: command = f"python3 {sc0pe_path}/Modules/winAnalyzer.py {analyzeFile} True" else: command = f"python3 {sc0pe_path}/Modules/winAnalyzer.py {analyzeFile} False" os.system(command) # Linux Analysis elif "ELF" in fileType: print(f"{infoS} Target OS: [bold green]Linux[white]\n") if args.report: command = f"python3 {sc0pe_path}/Modules/linAnalyzer.py {analyzeFile} True" else: command = f"python3 {sc0pe_path}/Modules/linAnalyzer.py {analyzeFile} False" os.system(command) # MacOSX Analysis elif "Mach-O" in fileType: print(f"{infoS} Target OS: [bold green]OSX[white]\n") command = f"python3 {sc0pe_path}/Modules/osXAnalyzer.py {analyzeFile}" os.system(command) # Android Analysis elif "PK" in fileType and "Java archive" in fileType: look = pyaxmlparser.APK(analyzeFile) if look.is_valid_APK() == True: print(f"{infoS} Target OS: [bold green]Android[white]") command = f"apkid -j {args.file} > apkid.json" os.system(command) if args.report: command = f"python3 {sc0pe_path}/Modules/apkAnalyzer.py {analyzeFile} True" else: command = f"python3 {sc0pe_path}/Modules/apkAnalyzer.py {analyzeFile} False" os.system(command) if os.path.exists("apkid.json"): os.remove("apkid.json") # APP Security choice = str(input(f"\n{infoC} Do you want to check target app\'s security? This process will take a while.[Y/n]: ")) if choice == "Y" or choice == "y": os.system(f"python3 {sc0pe_path}/Modules/apkSecCheck.py") else: pass else: print("\n[bold white on red]Qu1cksc0pe doesn\'t support archive analysis for now ;)\n") sys.exit(1) else: print("\n[bold white on red]File type not supported. Make sure you are analyze executable files or document files.") print("[bold]>>> If you want to scan document files try [bold green][i]--docs[/i] [white]argument.") sys.exit(1) # Main function def Qu1cksc0pe(): # Getting all strings from the file if the target file exists. if args.file: if os.path.exists(args.file): if os.path.exists("/usr/bin/strings"): allA = "--all" if sys.platform == "darwin": allA = "-a" command = f"strings {allA} {args.file} > temp.txt" os.system(command) else: print("[bold white on red][blink]strings[/blink] command not found. You need to install it.") sys.exit(1) else: print("[bold white on red]Target file not found!\n") sys.exit(1) # Analyze the target file if args.analyze: # Handling --file argument if args.file is not None: BasicAnalyzer(analyzeFile=args.file) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--analyze[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # Analyze document files if args.docs: # Handling --file argument if args.file is not None: print(f"{infoS} Analyzing: [bold green]{args.file}[white]") command = f"python3 {sc0pe_path}/Modules/nonExecAnalyzer.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--docs[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # Hash Scanning if args.hashscan: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/hashScanner.py {args.file} --normal" os.system(command) # Handling --folder argument if args.folder is not None: command = f"python3 {sc0pe_path}/Modules/hashScanner.py {args.folder} --multiscan" os.system(command) # File signature scanner if args.sigcheck: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/sigChecker.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--sigcheck[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # Resource analyzer if args.resource: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/resourceChecker.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--resource[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # metadata if args.metadata: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/metadata.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--metadata[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # MITRE ATT&CK if args.mitre: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/mitre.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--mitre[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # Language detection if args.lang: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/languageDetect.py {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--lang[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # VT File scanner if args.vtFile: # Handling --file argument if args.file is not None: # if there is no key quit try: directory = f"{homeD}/{username}/sc0pe_Base/sc0pe_VT_apikey.txt" apik = open(directory, "r").read().split("\n") except: print("[bold white on red]Use [blink]--key_init[/blink] to enter your key!\n") sys.exit(1) # if key is not valid quit if apik[0] == '' or apik[0] is None or len(apik[0]) != 64: print("[bold]Please get your API key from -> [bold green][a]https://www.virustotal.com/[/a]\n") sys.exit(1) else: command = f"python3 {sc0pe_path}/Modules/VTwrapper.py {apik[0]} {args.file}" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red]If you want to get banned from VirusTotal then do that :).\n") sys.exit(1) # packer detection if args.packer: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/packerAnalyzer.py {args.file} --single" os.system(command) # Handling --folder argument if args.folder is not None: command = f"python3 {sc0pe_path}/Modules/packerAnalyzer.py {args.folder} --multiscan" os.system(command) # domain extraction if args.domain: # Handling --file argument if args.file is not None: command = f"python3 {sc0pe_path}/Modules/domainCatcher.py" os.system(command) # Handling --folder argument if args.folder is not None: print("[bold white on red][blink]--domain[/blink] argument is not supported for folder analyzing!\n") sys.exit(1) # Dynamic APK analyzer if args.runtime: command = f"python3 {sc0pe_path}/Modules/androidRuntime.py" os.system(command) # Interactive shell if args.console: command = f"python3 {sc0pe_path}/Modules/console.py" os.system(command) # Dependency checker if args.health: command = f"python3 {sc0pe_path}/Modules/checkHealth.py" os.system(command) # Database update if args.db_update: command = f"python3 {sc0pe_path}/Modules/hashScanner.py --db_update" os.system(command) # entering VT API key if args.key_init: try: if os.path.exists(f"{homeD}/{username}/sc0pe_Base/"): pass else: os.system(f"mkdir {homeD}/{username}/sc0pe_Base/") apikey = str(input(f"{infoC} Enter your VirusTotal API key: ")) apifile = open(f"{homeD}/{username}/sc0pe_Base/sc0pe_VT_apikey.txt", "w") apifile.write(apikey) print(f"{foundS} Your VirusTotal API key saved.") except KeyboardInterrupt: print("\n[bold white on red]Program terminated by user.\n") # Install Qu1cksc0pe on your system!! if args.install: print(f"{infoS} Checking permissions...") if os.getuid() == 0: print(f"{infoS} User: [bold green]root[white]\n") print(f"[bold cyan][[bold red]1[bold cyan]][white] Install Qu1cksc0pe.") print(f"[bold cyan][[bold red]2[bold cyan]][white] Uninstall Qu1cksc0pe") choose = int(input(f"\n{green}>>>>{white} ")) if choose == 1: print(f"\n{infoS} Looks like we have permission to
### Expected results for parse.py unit tests # coding: utf-8 from collections import OrderedDict book_1 = { 'book': {'filename': '1En', 'title': '1 Enoch', 'textStructure': ''}, 'version': [ { 'attributes': {'title': 'Ethiopic 1', 'author': 'Anonymous', 'fragment': '', 'language': 'Ethiopic',}, 'organisation_levels': 2, 'divisions': {'labels': ['Chapter', 'Verse'], 'delimiters': [':'], 'text': ['', '']}, 'resources': [ [ {'attributes': {'name': 'Resource1'}, 'info': ['Info 1', 'Info 2'], 'url': 'www.example.com'}, {'attributes': {'name': 'Resource2'}, 'info': ['Info 3', 'Info 4'], 'url': ''} ], [ {'attributes': {'name': 'Resource3'}, 'info': ['Info 5', 'Info 6'], 'url': 'www.example.com'}, {'attributes': {'name': 'Resource4'}, 'info': ['Info 7', 'Info 8'], 'url': ''} ], ], 'manuscripts': [ { 'p1': { 'attributes': {'abbrev': 'p1', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': 'John Rylands Library Ethiopic 23', 'sup': ['Sup 1', 'Sup 2'],}, 'bibliography': [], }, 'p2': { 'attributes': { 'abbrev': 'p2', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': 'John Rylands Library Ethiopic 23', 'sup': [],}, 'bibliography': [], }, 'p3': { 'attributes': {'abbrev': 'p3', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': '', 'sup': ['Sup 1', 'Sup 2'],}, 'bibliography': [ {'text': '<NAME>, The Ethiopic book of Enoch : A New Edition in the Light of the Aramaic Dead Sea Fragments. Oxford: Clarendon, 1978.', 'booktitle': ['Booktitle 1', 'Booktitle 2',]}, {'text': '<NAME>, The Ethiopic book of Enoch : A New Edition in the Light of the Aramaic Dead Sea Fragments. Oxford: Clarendon, 1978.', 'booktitle': []}, {'text': '', 'booktitle': ['Booktitle 3', 'Booktitle 4',]}, {'text': '', 'booktitle': []}, ], }, 'Bertalotto ': { 'attributes': {'abbrev': 'Bertalotto ', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': "Bertalotto's correction of orthographic tendencies in ms p", 'sup': [],}, 'bibliography': [ {'text': '<NAME>, The Ethiopic book of Enoch : A New Edition in the Light of the Aramaic Dead Sea Fragments. Oxford: Clarendon, 1978.', 'booktitle': []}, ] }, } ], 'text_structure': { '1:1': { 'attributes': [ {'number': '1', 'fragment': 'Fragment 1',}, {'number': '1', 'fragment': 'Fragment 2',}, ], 'units': [ {'id': '1', 'group': '1', 'parallel': 'Parallel 1'}, ], 'readings': { '1': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ቃለ፡​በረከት፡​ዘሄኖከ፡​ዘከመ፡​ባረከ፡​ኅሩያነ፡​ወጻድቃነ፡​እለ፡​ሀለዉ፡​ይኩኑ፡​በዕለተ፡​ምንዳቤ፡​ለአሰስሎ፡​ኵሎ፡​እኩያን፡​ወረሲዓን፡​', encoding='utf-8'), 'w': [] } } } }, '1:2': { 'attributes': [ {'number': '1', 'fragment': 'Fragment 1',}, {'number': '2', 'fragment': '',}, ], 'units': [ {'id': '2', 'group': '2', 'parallel': ''}, {'id': '3', 'group': '0', 'parallel': 'Parallel 2'}, {'id': '4', 'group': '0', 'parallel': ''}, ], 'readings': { '2': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': 'following', 'indent': '',}, 'text': unicode('ወአውሥአ፡​ሄኖክ፡​ወይቤ፡​ብእሲ፡​ጻድቅ፡​ዘእምኀበ፡​እግዚአብሔር፡​እንዘ፡​አዕይንቲሁ፡​ክሡታት፡​ወይሬኢ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': 'lex', 'style': 'style', 'lang': 'lang'}, 'text': 'w 1' }, ] } }, '3': { 'p': { 'attributes': {'option': '0', 'mss': 'p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ራዕየ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': 'lex', 'style': 'style', 'lang': ''}, 'text': 'w 2' }, ] }, 'Bertalotto': { 'attributes': {'option': '1', 'mss': 'Bertalotto ', 'linebreak': '', 'indent': 'yes',}, 'text': unicode('ራእየ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': 'lex', 'style': '', 'lang': 'lang'}, 'text': 'w 3' }, ] } }, '4': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': 'no',}, 'text': unicode('ቅዱሰ፡​ዘበሰማያት፡​ዘአርአዩኒ፡​መላእክት፡​ወሰማዕኩ፡​እምኀቤሆሙ፡​ኵሎ፡​ወአእመርኩ፡​አነ፡​ዘእሬኢ፡​ወአኮ፡​ለዝ፡​ትውልድ፡​አላ፡​ለዘ፡​ይመጽኡ፡​ትውልድ፡​ርሑቃን፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': 'lex', 'style': '', 'lang': ''}, 'text': 'w 4' }, ] } }, } }, '1:3': { 'attributes': [ {'number': '1', 'fragment': 'Fragment 1',}, {'number': '3', 'fragment': '',}, ], 'units': [ {'id': '5', 'group': '0', 'parallel': ''}, {'id': '6', 'group': '0', 'parallel': ''}, {'id': '7', 'group': '0', 'parallel': ''}, ], 'readings': { '5': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': 'following', 'indent': 'yes',}, 'text': unicode('በእንተ፡​ኅሩያን፡​እቤ፡​ወአውሣእኩ፡​በእንቲአሆሙ፡​ምስለ፡​ዘይወጽእ፡​ቅዱስ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': '', 'style': 'style', 'lang': 'lang'}, 'text': 'w 5' }, ] } }, '6': { 'p': { 'attributes': {'option': '0', 'mss': 'p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወዓቢይ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': '', 'style': 'style', 'lang': ''}, 'text': 'w 6' }, ] }, 'Bertalotto': { 'attributes': {'option': '1', 'mss': 'Bertalotto ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወዐቢይ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': '', 'style': '', 'lang': 'lang'}, 'text': 'w 7' }, ] } }, '7': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('እማኅደሩ', encoding='utf-8'), 'w': [ { 'attributes': {'morph': 'morph', 'lex': '', 'style': '', 'lang': ''}, 'text': 'w 8' }, ] } }, } }, # end of <div> '2:1': { 'attributes': [ {'number': '2', 'fragment': '',}, {'number': '1', 'fragment': 'Fragment 3',}, ], 'units': [ {'id': '25', 'group': '0', 'parallel': ''}, {'id': '26', 'group': '0', 'parallel': ''}, {'id': '27', 'group': '0', 'parallel': ''}, {'id': '28', 'group': '0', 'parallel': ''}, {'id': '29', 'group': '0', 'parallel': ''}, ], 'readings': { '25': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ጠየቁ፡​ኵሎ፡​ዘውስተ፡​ሰማይ፡​ግብረ፡​እፎ፡​ኢይመይጡ፡​ፍናዊሆሙ፡​ብርሃናት፡​ዘውስተ፡​ሰማይ፡​ከመ፡​ኵሉ፡​ይሠርቅ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': 'lex', 'style': 'style', 'lang': 'lang'}, 'text': 'w 9' }, ] } }, '26': { 'Bertalotto': { 'attributes': {'option': '0', 'mss': 'Bertalotto ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወየዐርብ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': 'lex', 'style': 'style', 'lang': ''}, 'text': 'w 10' }, ] }, 'p': { 'attributes': {'option': '1', 'mss': 'p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወየዓርብ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': 'lex', 'style': '', 'lang': 'lang'}, 'text': 'w 11' }, ] } }, '27': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ሥሩዕ፡​ኵሉ፡​በዘመኑ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': 'lex', 'style': '', 'lang': ''}, 'text': 'w 12' }, ] } }, '28': { 'Bertalotto': { 'attributes': {'option': '0', 'mss': 'Bertalotto ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወኢይትዐደዉ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': '', 'style': 'style', 'lang': 'lang'}, 'text': 'w 13' }, ] }, 'p': { 'attributes': {'option': '1', 'mss': 'p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ወኢይትዓደዉ፡​', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': '', 'style': 'style', 'lang': ''}, 'text': 'w 14' }, ] } }, '29': { 'Bertalotto': { 'attributes': {'option': '0', 'mss': 'Bertalotto ', 'linebreak': '', 'indent': '',}, 'text': unicode('እምትእዛዞሙ።', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': '', 'style': '', 'lang': 'lang'}, 'text': 'w 15' }, ] }, 'p': { 'attributes': {'option': '1', 'mss': 'p ', 'linebreak': '', 'indent': '',}, 'text': unicode('እምትዛዞሙ።', encoding='utf-8'), 'w': [ { 'attributes': {'morph': '', 'lex': '', 'style': '', 'lang': ''}, 'text': 'w 16' }, ] } }, } }, # end of <div> } # end of text_structure }, # end of version { 'attributes': {'title': 'Ethiopic 2', 'author': 'Anonymous', 'fragment': 'Fragment 1', 'language': '',}, 'organisation_levels': 2, 'divisions': {'labels': ['Chapter', 'Verse'], 'delimiters': [':'], 'text': ['', '']}, 'resources': [], 'manuscripts': [ { 'p1': { 'attributes': {'abbrev': 'p1', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': '<NAME>ands Library Ethiopic 23', 'sup': [],}, 'bibliography': [], }, } ], 'text_structure': { '1:1': { 'attributes': [ {'number': '1', 'fragment': '',}, {'number': '1', 'fragment': '',}, ], 'units': [ {'id': '1', 'group': '0', 'parallel': ''}, ], 'readings': { '1': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ቃለ፡​በረከት፡​ዘሄኖከ፡​ዘከመ፡​ባረከ፡​ኅሩያነ፡​ወጻድቃነ፡​እለ፡​ሀለዉ፡​ይኩኑ፡​በዕለተ፡​ምንዳቤ፡​ለአሰስሎ፡​ኵሎ፡​እኩያን፡​ወረሲዓን፡​', encoding='utf-8'), 'w': [] } } } }, } # end of text_structure }, # end of version { 'attributes': {'title': 'Ethiopic 3', 'author': 'Anonymous', 'fragment': '', 'language': '',}, 'organisation_levels': 2, 'divisions': {'labels': ['Chapter', 'Verse'], 'delimiters': [':'], 'text': ['', '']}, 'resources': [], 'manuscripts': [ { 'p1': { 'attributes': {'abbrev': 'p1', 'language': 'Ethiopic', 'show': 'yes'}, 'name': {'text': 'John Rylands Library Ethiopic 23', 'sup': [],}, 'bibliography': [], }, } ], 'text_structure': { '1:1': { 'attributes': [ {'number': '1', 'fragment': '',}, {'number': '1', 'fragment': '',}, ], 'units': [ {'id': '1', 'group': '0', 'parallel': ''}, ], 'readings': { '1': { 'Bertalotto p': { 'attributes': {'option': '0', 'mss': 'Bertalotto p ', 'linebreak': '', 'indent': '',}, 'text': unicode('ቃለ፡​በረከት፡​ዘሄኖከ፡​ዘከመ፡​ባረከ፡​ኅሩያነ፡​ወጻድቃነ፡​እለ፡​ሀለዉ፡​ይኩኑ፡​በዕለተ፡​ምንዳቤ፡​ለአሰስሎ፡​ኵሎ፡​እኩያን፡​ወረሲዓን፡​', encoding='utf-8'), 'w': [] } } } }, } # end of text_structure }, # end of version ], } book_2 =
<gh_stars>0 import re, socket, json, sys, six from xbmcswift2 import Plugin, xbmc, xbmcaddon, xbmcgui, xbmcplugin from resources.lib.hamivideo.api import Hamivideo import base64, time, os try: from multiprocessing.dummy import Pool as ThreadPool threadpool_imported = True except: threadpool_imported = False #import web_pdb socket.setdefaulttimeout(180) plugin = Plugin() addon = xbmcaddon.Addon() addonname = addon.getAddonInfo('name') addonid = xbmcaddon.Addon().getAddonInfo('id') plugin_storagepath = plugin.storage_path fakemediaurl_suffix = 'index.m3u8' try: import multiprocessing workers = multiprocessing.cpu_count() except: workers = 4 #project https://www.9900.com.tw/B003.htm #project https://www.gdaily.org/22554/2020-watch-video settings = { 'chromedriver_path': plugin.get_setting('chromedriver_path', six.text_type), 'chromebinary_location': plugin.get_setting('chromebinary_location', six.text_type), 'geckodriver_path': plugin.get_setting('geckodriver_path', six.text_type), 'firefoxbinary_location': plugin.get_setting('firefoxbinary_location', six.text_type), 'docker_remote_selenium_addr': plugin.get_setting('docker_remote_selenium_addr', six.text_type), 'browser_type': plugin.get_setting('browser_type', six.text_type), 'chromeublockpath': plugin.get_setting('chromeublockpath', six.text_type), 'firefoxublockpath': plugin.get_setting('firefoxublockpath', six.text_type), 'seleniumlogpath': plugin.get_setting('seleniumlogpath', six.text_type), 'ptsplusloginidpw': (plugin.get_setting('ptsplusid', six.text_type),plugin.get_setting('ptspluspw', six.text_type)) } @plugin.route('/') def index(): hamichlst = [{ 'label': 'Hamivideo channels', 'path': plugin.url_for('list_hamichannels'), 'is_playable': False }] linetodaylst = [{ 'label': 'Line Today channels', 'path': plugin.url_for('list_linetodaychannels'), 'is_playable': False }] maplestagelst = [{ 'label': 'MapleStage channels', 'path': plugin.url_for('list_maplestagechs', churl="default", type='parent'), 'is_playable': False }] linetvlst = [{ 'label': 'Linetv channels', 'path': plugin.url_for('list_linetvchannels', churl="default", type='parent', total_eps='default'), 'is_playable': False }] ptspluslst = [{ 'label': 'PTS plus channels', 'path': plugin.url_for('list_ptspluschannels', churl="default", type='parent', total_eps='default'), 'is_playable': False }] viutvlst = [{ 'label': 'Viutv channels', 'path': plugin.url_for('list_viutvchannels', churl="default", type='parent'), 'is_playable': False }] pokulst = [{ 'label': 'Poku channels', 'path': plugin.url_for('list_pokuchannels', churl="default", type='parent'), 'is_playable': False }] dramaqlst = [{ 'label': 'Dramaq channels', 'path': plugin.url_for('list_dramaq', drama_name="None"), 'is_playable': False }] directplaylst = [{ 'label': 'Play Streaming URL Directly', 'path': plugin.url_for('playchannel', churl=fakemediaurl_suffix, type='direct'), 'is_playable': True, }] backgroundinfolist = [{ 'label': 'Background info', 'path': plugin.url_for('backgroundinfo'), 'is_playable': False },{ 'label': 'Next view mode', 'path': plugin.url_for('nextviewmode'), 'is_playable': False },] #linetodaylst+maplestagelst+viutvlst+pokulst+ return plugin.finish(hamichlst+linetvlst+ptspluslst+dramaqlst+directplaylst) #view_mode=50 @plugin.route('/listhamichannels/') def list_hamichannels(): hamic = Hamivideo(settings) channels = hamic.return_hamichannels() channels = [{ 'label': '%s %s %s' % (c['name'], c['programtime'], c['program']), 'label2': '%s' % (c['program']), 'path': plugin.url_for('playchannel', churl=c['link'].replace('.do', '.m3u8'), type='hami'), 'icon': c['icon'], 'thumbnail': c['icon'], 'is_playable': True, } for c in channels] length_of_ch = str(len(channels)) return plugin.finish(channels) @plugin.route('/listlinetodaychannels/') def list_linetodaychannels(): hamic = Hamivideo(settings) channels = hamic.return_linetodaychs() channels = [{ 'label': c['name'], 'path': plugin.url_for('playchannel', churl=c['link'].replace('.do', '.m3u8')+fakemediaurl_suffix, type='linetoday'), 'icon': c['icon'], 'thumbnail': c['icon'], 'is_playable': True, } for c in channels] length_of_ch = str(len(channels)) return plugin.finish(channels) @plugin.route('/listlinetvchannels/<type>/<churl>') def list_linetvchannels(churl="", type="parent"): hamic = Hamivideo(settings) if type=="parent": channels = hamic.ret_linetv_main_menu_catgs(hamic.linetv_host_url) channels = [{ 'label': k, 'path': plugin.url_for('list_linetvchannels', churl=v, type='listsubcatgs'), 'icon': '', 'thumbnail': '', 'is_playable': False, } for k,v in channels.items()] if type=="listsubcatgs": channels = hamic.ret_linetv_main_menu_catgs(churl) channels = [{ 'label': k, 'path': plugin.url_for('list_linetvchannels', churl=v, type='listdramas'), 'icon': '', 'thumbnail': '', 'is_playable': False, } for k,v in channels.items()] if type=="listdramas": #channels = hamic.ret_linetv_dramas_with_description_of_a_catg(churl) channels = hamic.ret_linetv_dramas_of_a_catg(churl) channels = [{ 'label': c['name'], 'label2': c['description'], 'path': plugin.url_for('list_linetvchannels', churl=c['id'], type='listeps'), 'icon': c['posterUrl'], 'thumbnail': c['verticalPosterUrl'], 'info': c['info'], 'is_playable': False, } for c in channels] if type=='listeps': drama = hamic.ret_linetv_drama(int(churl)) episode_args = [(int(churl), c) for c in range(1, drama['total_eps']+1)] episodedatas = hamic.try_multi_run(hamic.ret_linetv_episode_data_multi_run_wrapper, episode_args) descriptions = hamic.try_multi_run(hamic.ret_linetv_drama_description_multi_run_wrapper, episode_args) episodedatas = {int(d['episode']):d for d in episodedatas} descriptions = {int(d['drama_episode']):d['drama_description'] for d in descriptions} channels = list() for c in range(1, int(drama['total_eps'])+1): reqheaders = episodedatas[c]['reqheaders'] reqheaders_strs = episodedatas[c]['reqheaders_strs'] channel = { 'label': episodedatas[c]['epsInfo']['eps_title'], 'label2': '', 'path': episodedatas[c]['multibitrateplaylist'], 'icon': drama['poster_url'], 'thumbnail': drama['vertical_poster'], 'info': {'plot': descriptions[c]}, 'properties': { 'inputstream': 'inputstream.adaptive', 'inputstream.adaptive.license_type': 'com.widevine.alpha', #, 'com.microsoft.playready' 'inputstream.adaptive.manifest_type': 'hls', 'inputstream.adaptive.license_key': 'time='+str(round(time.time(),3)).replace('.','').ljust(13, '0')+'|'+reqheaders_strs+'||R', #str(int(time.time() ) ) #'inputstream.adaptive.stream_headers': reqheaders_strs, }, 'is_playable': True, #'setsubtitles': episodedatas[c]['subtitle_url'] } channels.append(channel) return plugin.finish(channels) @plugin.route('/listptspluschannels/<type>/<churl>') def list_ptspluschannels(churl="", type="parent"): hamic = Hamivideo(settings) if type=="parent": channels = hamic.ret_ptsplus_main_menu_catgs() channels = [{ 'label': v['genreName'], 'path': plugin.url_for('list_ptspluschannels', churl=v['genreId'], type='listprograms'), 'icon': '', 'thumbnail': '', 'is_playable': False, } for v in channels] if type=="listprograms": channels = hamic.ret_ptsplus_programs_under_a_catg(churl) plugin.log.info('genreId is: '+churl) channels = [{ 'label': v['titleLocal'], 'label2': '', 'path': plugin.url_for('list_ptspluschannels', churl=v['seasonId'], type='listeps'), 'info': {'plot': v['synopsisLocal']}, 'thumbnail': v['artWorkImagesDict']['Season_KeyVisual'], 'icon': v['artWorkImagesDict']['Season_Post'], 'is_playable': False, } for v in channels] if type=="listeps": plugin.log.info('seasonId is: '+churl) channels = hamic.ret_ptsplus_episodes_under_a_program(churl) channels = [{ 'label': '第'+'{0:03d}'.format(v['episodeNumber'])+'集', 'label2': '', 'path': v['m3u8url'], 'info': {'plot': v['synopsisLocal']}, 'thumbnail': v['artWorkImagesDict']['Episode_KeyVisual'], 'icon': v['artWorkImagesDict']['Episode_Post'], 'is_playable': True, } for v in channels] channels = sorted(channels, key=lambda k: k['label']) return plugin.finish(channels) #https://ewcdn14.nowe.com/session/p8-5-f9faefbc85c-318d3fad569f91c/Content/DASH_VOS3/Live/channel(VOS_CH099)/manifest.mpd?token=<PASSWORD> #https://ewcdn13.nowe.com/session/p8-3-37e14e40349-c4ae989921b1c8d/Content/DASH_VOS3/Live/channel(VOS_CH099)/manifest.mpd?token=<PASSWORD> #https://ewcdn13.nowe.com/session/p8-3-37e14e40349-c4ae989921b1c8d/Content/DASH_VOS3/Live/channel(VOS_CH099)/manifest.mpd?token=<PASSWORD> #https://ewcdn13.nowe.com/session/p8-3-37e14e40349-c4ae989921b1c8d/Content/DASH_VOS3/Live/channel(VOS_CH099)/manifest.mpd?token=<PASSWORD> #listitem.setProperty('inputstreamaddon', 'inputstream.adaptive') #listitem.setProperty('inputstream.adaptive.manifest_type', 'mpd') #listitem.setMimeType('application/dash+xml') #listitem.setProperty('inputstream.adaptive.stream_headers', 'Referer=blah&User-Agent=Blah') #listitem.setContentLookup(False) @plugin.route('/listviutvchannels/<type>/<churl>') def list_viutvchannels(churl="", type="parent"): hamic = Hamivideo(settings) channels = [hamic.ret_viutv(chid) for chid in ["096","099"]] channels = [{ 'label': c['name'], 'label2': c['description'], 'path': plugin.url_for('playchannel', churl=c['mpdurl'], type='viutv'), 'icon': c['icon'], 'thumbnail': c['icon'], 'info': c['info'], 'properties': { 'inputstreamaddon': 'inputstream.adaptive', 'inputstream.adaptive.license_type': 'com.widevine.alpha', #, 'com.widevine.alpha' 'inputstream.adaptive.manifest_type': 'mpd', 'inputstream.adaptive.license_key': "|".join([ "https://fwp.nowe.com/wrapperWV", json.dumps({ 'Host':'fwp.nowe.com', 'Origin':'https://viu.tv', 'Referer':'https://viu.tv/', 'TE':'Trailers', }), json.dumps({ "rawLicenseRequestBase64":"CAQ=", "drmToken":c['drmToken'], }), "B", #[Response] #'inputstream.adaptive.stream_headers': reqheaders_strs, ]) }, 'is_playable': True, } for c in channels] return plugin.finish(channels) @plugin.route('/listmaplestagedramas/<type>/<churl>') def list_maplestagechs(churl="", type="parent"): hamic = Hamivideo(settings) if type=="parent": channels = hamic.ret_maplestage_parent_catgs() channels = [{ 'label': c['name'], #+xbmc.executebuiltin('Container.SetViewMode(%s)' % view_mode_id) 'path': plugin.url_for('list_maplestagechs', churl=c['link'], type='underparent'), 'icon': c['icon'], 'thumbnail': c['icon'], 'is_playable': False, } for c in channels] if type=="underparent": channels = hamic.ret_maplestage_dramas_of_a_parent(churl) channels = [{ 'label': c['name'], 'path': plugin.url_for('list_maplestagechs', churl=c['link'], type='underdrama'), 'icon': c['icon'], 'thumbnail': c['icon'], 'is_playable': False, } for c in channels] if type=="underdrama": channels = hamic.ret_episode_links_of_a_maplestage_drama(churl) drama_name = channels[0]['program'] channels = [{ 'label': c['name'], 'label2': c['info']['plot'], 'path': plugin.url_for('playchannel', churl=c['link']+fakemediaurl_suffix, type='maplestage'), 'icon': c['icon'], 'thumbnail': c['icon'], 'info': c['info'], 'is_playable': True, } for c in channels] channels.append({ 'label': 'Switch to DramaQ sources for '+six.ensure_str(drama_name), 'path': plugin.url_for('list_dramaq', drama_name=base64.b64encode(six.ensure_str(drama_name)) ), 'is_playable': False, }) length_of_ch = str(len(channels)) return plugin.finish(channels, sort_methods = ['label', 'title']) @plugin.route('/list_dramaq/<drama_name>') def list_dramaq(drama_name="None"): hamic = Hamivideo(settings) if drama_name=="None": drama_name = plugin.keyboard(six.ensure_str(''), heading="搜尋Dramaq/Qdrama") else: drama_name = base64.b64decode(drama_name) channels = hamic.ret_dramaq_episodes(drama_name) channels = [{ 'label': c['name'], 'path': plugin.url_for('playchannel', churl=c['link']+fakemediaurl_suffix, type='dramaq'), 'icon': c['icon'], 'thumbnail': c['icon'], 'info': c['info'], 'is_playable': True, } for c in channels] return plugin.finish(channels, sort_methods = ['label']) @plugin.route('/nextviewmode/') def nextviewmode(): #xbmc.executebuiltin('Container.NextViewMode()') #xbmcplugin.setContent(plugin.handle, 'movies') plugin.set_content('guide') @plugin.route('/backgroundinfo') def backgroundinfo(): import platform, os hamic = Hamivideo(settings) htmlsrc = "test" items = [ {'label': plugin_storagepath}, {'label': platform.machine()}, {'label': settings['chromebinary_location']}, {'label': settings['chromedriver_path']}, {'label': htmlsrc} ] return plugin.finish(items) @plugin.route('/channeldetail/<churl>') def show_channel_detail(churl): #hamic = Hamivideo() #xbmc.executebuiltin(streamingurl) #xbmcgui.Dialog().ok(addonname,streamingurl) plugin.log.info('now in addonname '+addonname+" and addon id is "+addonid) #plugin.log.info('parsed result: %s' % streamingurl) pluginplaybackurl = 'plugin://%s/play/%s' % (addonid, churl) #plugin.set_resolved_url(pluginplaybackurl) #plugin.log.info('Playing url: %s' % streamingurl) #return plugin.finish([{"label": 'test', 'path': 'test'}]) #print(streamingurl) #pass #items = [{ # 'label': 'play', # 'path': streamingurl, # 'is_playable': True #}] #return plugin.finish(items) @plugin.route('/list_pokuchannels/<churl>/<type>') def list_pokuchannels(churl='default', type='parent'): hamic = Hamivideo(settings) nextmode = { 'parent': 'drama', 'drama': 'listepisodes', 'search': 'listepisodes', 'listepisodes': 'poku', } nextpluginurl = { 'parent': 'list_pokuchannels', 'drama': 'list_pokuchannels', 'search': 'list_pokuchannels', 'listepisodes': 'playchannel', } if type=='parent': channels = { '電視劇': 'tvseries', '電視劇美劇': 'us', '電視劇韓劇': 'kr', '電視劇陸劇': 'cn', '電視劇台劇': 'tw', '電視劇日劇': 'jp', '電影': 'movies', '電影劇情電影': 'dramamovie', '電影動作': 'action', '電影喜劇': 'comedy', '電影科幻': 'scifi', '電影愛情': 'romance', '電影動漫': 'anime', '電影戰爭': 'war', '電影恐怖': 'horror', '電影動畫': 'cartoon', '電影紀錄片': 'documentary', '綜藝': 'tvshow', '動漫': 'anime', } channels = {k:"https://poku.tv/vodtype/"+v+".html" for k,v in channels.items()} additional_channels = { '綜藝中國1': 'https://poku.tv/vodshow/tvshow-%E5%A4%A7%E9%99%B8----------.html', '綜藝臺灣': 'https://poku.tv/vodshow/tvshow-%E8%87%BA%E7%81%A3----------.html', '綜藝香港': 'https://poku.tv/vodshow/tvshow-%E9%A6%99%E6%B8%AF----------.html', '綜藝韓國': 'https://poku.tv/vodshow/tvshow-%E9%9F%93%E5%9C%8B----------.html', '綜藝日本': 'https://poku.tv/vodshow/tvshow-%E6%97%A5%E6%9C%AC----------.html', '綜藝中國2': 'https://poku.tv/vodshow/tvshow-%E4%B8%AD%E5%9C%8B----------.html', '綜藝歐美': 'https://poku.tv/vodshow/tvshow-%E6%AD%90%E7%BE%8E----------.html', '動漫中國': 'https://poku.tv/vodshow/anime-%E5%A4%A7%E9%99%B8----------.html', '動漫臺灣': 'https://poku.tv/vodshow/anime-%E8%87%BA%E7%81%A3----------.html', '動漫香港': 'https://poku.tv/vodshow/anime-%E9%A6%99%E6%B8%AF----------.html', '動漫韓國': 'https://poku.tv/vodshow/anime-%E9%9F%93%E5%9C%8B----------.html', '動漫日本': 'https://poku.tv/vodshow/anime-%E6%97%A5%E6%9C%AC----------.html', '動漫美國': 'https://poku.tv/vodshow/anime-%E7%BE%8E%E5%9C%8B----------.html', } channels = hamic.merge_two_dicts(channels, additional_channels) channels = [{ 'label': six.ensure_str(k), 'path': plugin.url_for(nextpluginurl[type], churl=v, type=nextmode[type]), 'icon': '', 'thumbnail': '', 'info': '', 'is_playable': False, } for k,v in channels.items()] channels.append({ 'label': six.ensure_str('搜尋poku.tv'), 'path': plugin.url_for(nextpluginurl[type], churl='search', type='search'), 'icon': '', 'thumbnail': '', 'info': '', 'is_playable': False, }) if type=='search': searchkwd = plugin.keyboard(six.ensure_str(''), heading="搜尋Poku.tv") searchurl = 'https://poku.tv/vodsearch/-------------.html?submit=&wd='+searchkwd results = hamic.get_poku_dramas([searchurl,'search']) channels = [{ 'label': v['title'], 'path': plugin.url_for(nextpluginurl[type], churl=v['link'], type=nextmode[type]), 'icon': v['thumbnail'], 'thumbnail': v['thumbnail'], 'info': { 'plot': v['description'], }, 'is_playable': False, } for v in results] if type in ['drama','listepisodes']: if type=='drama': allpagesnum_info = hamic.get_poku_dramas([churl,'allnum']) if allpagesnum_info['allpageslink']!=None: iterargs = [[x, type] for x in allpagesnum_info['allpageslink']] if threadpool_imported: pool = ThreadPool(workers) results = pool.map(hamic.get_poku_dramas, iterargs) pool.close() pool.join() else: results = [hamic.get_poku_dramas(iterarg) for iterarg in iterargs] results = reduce(lambda x,y: x+y, results) else: results = hamic.get_poku_dramas([churl,type]) results = hamic.unique(results) is_playable = False else: results = hamic.get_poku_dramas([churl,type]) is_playable = True channels = [{ 'label': v['title'], 'path': plugin.url_for(nextpluginurl[type], churl=(v['link']+fakemediaurl_suffix if type=='listepisodes' else v['link']), type=nextmode[type]), 'icon': v['thumbnail'], 'thumbnail': v['thumbnail'], 'info': { 'plot': (v['description']+v['metadata'] if type=='listepisodes' else v['description']), }, 'is_playable': is_playable, } for v in results] return plugin.finish(channels, sort_methods = ['label']) @plugin.route('/play/<type>/<churl>') def playchannel(churl, type="hami"): hamic = Hamivideo(settings) #hamic.clear_other_browser_processed() if type in ['linetoday','maplestage','linetv','dramaq','poku']: cchurl = churl.replace(fakemediaurl_suffix,'') elif type=='direct': cchurl = plugin.keyboard(six.ensure_str(''), heading="輸入串流網址").strip() else: cchurl = churl.replace('.m3u8','.do') plugin.log.info('starting parsing '+cchurl+' by '+type) if type=='maplestage': streamingurl = hamic.ret_maplestage_streamingurl_by_req(cchurl) #streamingurl = hamic.get_streamingurl_of_ch(cchurl, type=type, logtype='performancelogs') subtitleurl = None #decoding discussion: https://www.52pojie.cn/thread-944303-1-1.html #https://tools.ietf.org/html/rfc8216#section-4.3.2.4 #https://github.com/peak3d/inputstream.adaptive/wiki/Integration #python someone demonstrate key decryption https://www.52pojie.cn/thread-986218-1-1.html #https://www.52pojie.cn/thread-1123891-1-1.html if type=='dramaq': streamingurl = hamic.ret_dramaq_streaming_url_by_req(cchurl) subtitleurl = None elif type=='hami': channelid = os.path.basename(cchurl).replace('.do','') streamingurl = hamic.ret_hami_streaming_url_by_req(channelid) streamingurl = hamic.get_better_q_streamingsrc(streamingurl) streamingurl = streamingurl+"|User-Agent=Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36&referer=https://hamivideo.hinet.net&origin=https://hamivideo.hinet.net" subtitleurl = None #elif type=='linetv': # epi_data = hamic.ret_linetv_episode_data(url=cchurl) # streamingurl = epi_data['multibitrateplaylist'] # subtitleurl = epi_data['epsInfo']['source'][0]['links'][0]['subtitle'] elif type=='viutv': streamingurl = cchurl #hamic.ret_viutv(churl)['mpdurl'] subtitleurl = None elif type=='poku': streamingurl = hamic.get_poku_dramas([cchurl, 'findstreamingurl']) streamingurl = streamingurl['videourl']+'|'+streamingurl['req_header_str'] subtitleurl = None elif type=='direct': if re.search('youtube.com/watch\?v',cchurl)!=None: plugin.log.info('matching youtube url!') youtube_video_id = re.match(".+youtube.com/.+v=([\w\d]+)",cchurl).group(1) cchurl = "plugin://plugin.video.youtube/play/?video_id="+youtube_video_id plugin.log.info('transform youtube url to '+cchurl) streamingurl = cchurl subtitleurl = None elif type=='linetoday': streamingurl = hamic.get_streamingurl_of_ch(cchurl, type=type, logtype='networklogs') subtitleurl = None if re.search('(timed out|timeout|unknown error|connection refused)', streamingurl)!=None: #hamic.clear_other_browser_processed() pass plugin.log.info('parsing result is: '+streamingurl) plugin.set_resolved_url(streamingurl, subtitles=subtitleurl) # Suggested view codes for each type from different skins (initial list thanks to xbmcswift2 library) ALL_VIEW_CODES = { 'list': { 'skin.confluence': 50, # List 'skin.aeon.nox': 50, # List 'skin.droid': 50, # List 'skin.quartz': 50, # List 'skin.re-touched': 50, # List 'skin.estuary': 50, # 50 = List, 51 = Poster, 52 = Lists,53 = Shift, 54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'thumbnail': { 'skin.confluence': 501, # Thumbnail 'skin.aeon.nox': 500, # Wall 'skin.droid': 51, # Big icons 'skin.quartz': 51, # Big icons 'skin.re-touched': 500, # Thumbnail 'skin.estuary': 500, # 50 = List, 51 = Poster, 52 = Lists, 53 = Shift, 54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'movies': { 'skin.confluence': 500, # Thumbnail 515, # Media Info 3 'skin.aeon.nox': 500, # Wall 'skin.droid': 51, # Big icons 'skin.quartz': 52, # Media info 'skin.re-touched': 500, # Thumbnail 'skin.estuary': 52, # 50 = List, 51 = Poster,52 = Lists,53 = Shift, 54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'tvshows': { 'skin.confluence': 500, # Thumbnail 515, # Media Info 3 'skin.aeon.nox': 500, # Wall 'skin.droid': 51, # Big icons 'skin.quartz': 52, # Media info 'skin.re-touched': 500, # Thumbnail 'skin.estuary': 54, # 50 = List, 51 = Poster,52 = Lists, 53 = Shift, 54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'seasons': { 'skin.confluence': 50, # List 'skin.aeon.nox': 50, # List 'skin.droid': 50, # List 'skin.quartz': 52, # Media info 'skin.re-touched': 50, # List 'skin.estuary': 53, # 50 = List, 51 = Poster,52 = Lists, 53 = Shift, 54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'episodes': { 'skin.confluence': 500, # Media Info 'skin.aeon.nox': 518, # Infopanel 'skin.droid': 50, # List 'skin.quartz': 52, # Media info 'skin.re-touched': 550, # Wide 'skin.estuary': 55. # 50 = List, 51 = Poster,52 = Lists,53 = Shift,54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, 'sets': { 'skin.confluence': 500, # List 'skin.aeon.nox': 50, # List 'skin.droid': 50, # List 'skin.quartz': 50, # List 'skin.re-touched': 50, # List 'skin.estuary': 55, # 50 = List, 51 = Poster,52 = Lists,53 = Shift,54 = InfoWall 55 = Wide list, 500 = Wall,501= List, 502 = Fanart }, } def set_view(view_mode, view_code=0): if get_setting('auto-view') == 'true': # Set the content for
# -*- coding: utf-8 -*- """Тесты модуля matan""" import unittest import random from fem.matan import Matrix class TestMatrixOperations(unittest.TestCase): """Тестирование операций с матрицами""" def test_create_col(self): """Тест на создание вектора столбца""" col1 = Matrix([[1], [2], [3], [4]]) col2 = Matrix([1, 2, 3, 4]) msg = f"Столбцы\n{col1} и \n{col2}должны быть одинаковыми" self.assertEqual(col1, col2, msg) def test_create_row(self): """Тест на создание вектора строки""" row1 = Matrix([[1], [2], [3], [4]], to_row=True) row2 = Matrix([1, 2, 3, 4], to_row=True) msg = f"Строки\n{row1}и\n{row2}должны быть одинаковыми" self.assertEqual(row1, row2, msg) def test_add_cols(self): """Сложение двух столбцов""" A = Matrix([1, 2]) B = Matrix([3, 4]) C = Matrix([4, 6]) msg = f"\n{A} + \n{B} НЕ РАВНО \n{C}" self.assertEqual(A+B, C, msg) def test_add_rows(self): """Сложение двух столбцов""" A = Matrix([1, 2], to_row=True) B = Matrix([3, 4], to_row=True) C = Matrix([4, 6], to_row=True) msg = f"\n{A} + {B} НЕ РАВНО {C}" self.assertEqual(A+B, C, msg) def test_add_matrix(self): """Сложение двух матриц""" A = Matrix([[1, 2], [3, 4]]) B = Matrix([[5, 6], [7, 8]]) C = Matrix([[6, 8], [10, 12]]) msg = f"\n{A} + \n{B} НЕ РАВНО \n{C}" self.assertEqual(A+B, C, msg) def test_add_col_and_row(self): """Сложение столбца и строки""" col = Matrix([1, 2]) row = Matrix([3, 4], to_row=True) with self.assertRaises(Exception): # столбец и строку нельзя складывать col + row def test_add_row_and_col(self): """Сложение строки и столбца""" row = Matrix([1, 2], to_row=True) col = Matrix([3, 4]) with self.assertRaises(Exception): # строку и столбец нельзя складывать row + col def test_mult_row_and_col(self): """Умножение строки на столбец""" row = Matrix([1, 2], to_row=True) col = Matrix([3, 4]) res = Matrix([11]) msg = f"\n{row * col} НЕ РАВНО {res}" self.assertEqual(row * col, res, msg) def test_mult_col_and_row(self): """Умножение столбца на строку""" col = Matrix([1, 2]) row = Matrix([3, 4], to_row=True) res = Matrix([[3, 4], [6, 8]]) msg = f"\n{col * row} НЕ РАВНО\n{res}" self.assertEqual(col * row, res, msg) def test_mult_cols(self): """Умножение столбца на столбец""" col = Matrix([1, 2]) with self.assertRaises(Exception): # столбец нельзя умножить на столбецц # Неподходящие размерности col * col def test_mult_rows(self): """Умножение столбца на столбец""" row = Matrix([1, 2], to_row=True) with self.assertRaises(Exception): # строку нельзя умножить на строку # Неподходящие размерности row * row def test_mult_bad_matrix(self): """Умножить не соразмерные матрицы""" A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B = Matrix([[1, 2], [3, 4]]) with self.assertRaises(Exception): # несоразмерные матрицы нельзя умножать A * B def test_mult_good_matrix(self): """Умножение соразмерных матриц""" A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) res = Matrix([[30, 36, 42], [66, 81, 96], [102, 126, 150]]) msg = f"\n{A * A} НЕ РАВНО\n{res}" self.assertEqual(A * A, res, msg) def test_mult_col_and_num(self): """Умножение столбца на число""" col = Matrix([1, 2, 3]) num = 2 res = Matrix([2, 4, 6]) msg = f"\n{col}умножить на {num} НЕ РАВНО\n{res}" self.assertEqual(col * num, res, msg) def test_mult_row_and_num(self): """Умножение строки на число""" row = Matrix([1, 2, 3], to_row=True) num = 2 res = Matrix([2, 4, 6], to_row=True) msg = f"\n{row}умножить на {num} НЕ РАВНО {res}" self.assertEqual(row * num, res, msg) def test_mult_matrix_and_num(self): """Умножение матрицы на число""" m = Matrix([[1, 2], [3, 4]]) num = 2 res = Matrix([[2, 4], [6, 8]]) msg = f"\n{m}умножить на {num} НЕ РАВНО\n{res}" self.assertEqual(m * num, res, msg) def test_assign_number_to_column_row(self): """Присвоить число строке столбца""" col = Matrix([1, 2, 3]) col[0] = 0 res = Matrix([0, 2, 3]) msg = f"\n{col}НЕ РАВНО \n{res}" self.assertEqual(col, res, msg) def test_assign_number_to_row_column(self): """Присвоить число столбцу строки""" row = Matrix([1, 2, 3], to_row=True) row[0] = 0 res = Matrix([0, 2, 3], to_row=True) msg = f"\n{row}НЕ РАВНО \n{res}" self.assertEqual(row, res, msg) def test_assign_good_one_matrix_to_matrix_row(self): """Присвоить валидную матрицу строку строке матрицы""" m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) one_m = Matrix([10, 11, 12], to_row=True) m[0] = one_m res = Matrix([[10, 11, 12], [4, 5, 6], [7, 8, 9]]) msg = f"\n{m}НЕ РАВНО \n{res}" self.assertEqual(m, res, msg) def test_assign_bad_one_matrix_to_matrix_row(self): """Присвоить НЕвалидную матрицу строку строке матрицы""" m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) one_m = Matrix([10, 11, 12, 14], to_row=True) with self.assertRaises(Exception): # размерности не подходят m[0] = one_m def test_assign_same_row_to_matrix_row(self): """Присвоить строке матрицы её же строку""" m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) m[0] = m[2] res = Matrix([[7, 8, 9], [4, 5, 6], [7, 8, 9]]) msg = f"\n{m}НЕ РАВНО \n{res}" self.assertEqual(m, res, msg) def test_mult_row_of_matrix_by_num(self): """Умножить строку матрицы на число""" m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) m[0] *= 2 res = Matrix([[2, 4, 6], [4, 5, 6], [7, 8, 9]]) msg = f"\n{m}НЕ РАВНО \n{res}" self.assertEqual(m, res, msg) def test_sub_row_of_matrix_by_num(self): """Делить строку матрицы на число""" m = Matrix([[2, 4, 6], [4, 5, 6], [7, 8, 9]]) m[0] /= 2 res = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) msg = f"\n{m}НЕ РАВНО \n{res}" self.assertEqual(m, res, msg) def test_compare_matrix_row_and_separate_row(self): """Cравнить строку матрицы и отдельную строку""" m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) row = Matrix([1, 2, 3], to_row=True) msg = f"\n{m[0]} НЕ РАВНО {row}" self.assertTrue(m[0] == row, msg) def test_get_col_elemet(self): """Тест на получение элемента матрицы столбца""" # Элемент столбца можно получить: # либо через одну скобку [i, j] # Через одну скобку с одним индексом [k] - если это строка или столбец col = Matrix([1, 2, 3, 4]) # Проверка полученеие элемента for i in range(col.rows): msg = f'\n{col}col[{i}]={col[i]} не равен col[{i}, 0]={col[i, 0]}' self.assertEqual(col[i], col[i, 0], msg) def test_get_row_elemet(self): """Тест на получение элемента матрицы строки""" # Элемент строки можно получить: # либо через одну скобку [i, j] # Через одну скобку с одним индексом [k] - если это строка или столбец row = Matrix([1, 2, 3, 4], to_row=True) # Проверка полученеие элемента for i in range(row.cols): msg = f'\n{row}row[{i}]={row[i]} не равен row[0, {i}]={row[0, i]}' self.assertEqual(row[i], row[0, i], msg) def test_set_col_elemet(self): """Тест на присвоение элемента матрицы столбца""" # Элемент столбца можно задать: # либо через одну скобку [i, j] # Через одну скобку с одним индексом [k] - если это строка или столбец col = Matrix([1, 2, 3, 4]) # проверка задания элемента for i in range(col.rows): # Задаём элемент через единственный индекс num = random.random() col[i] = num # Проверяем через единственный индекс msg = f'\n{col} [i] num={num} не равно col[{i}]={col[i]}' self.assertEqual(num, col[i], msg) # Проверяем через двойной индекс msg = f'\n{col} [i] num={num} не равно col[{i}, 0]={col[i, 0]}' self.assertEqual(num, col[i, 0], msg) # Задаём элемент через двойной индекс num = random.random() col[i, 0] = num # Проверяем через двойной индекс msg = f'\n{col}[i, j] num={num} не равно col[{i}, 0]={col[i, 0]}' self.assertEqual(num, col[i, 0], msg) # Проверяем через единственный индекс msg = f'\n{col}[i, j] num={num} не равно col[{i}]={col[i]}' self.assertEqual(num, col[i], msg) def test_set_row_elemet(self): """Тест на присвоение элемента матрицы строки""" # Элемент строки можно задать: # либо через одну скобку [i, j] # Через одну скобку с одним индексом [k] - если это строка или столбец row = Matrix([1, 2, 3, 4], to_row=True) # проверка задания элемента for i in range(row.cols): # Задаём элемент через единственный индекс num = random.random() row[i] = num # Проверяем через единственный индекс msg = f'\n{row} [i] num={num} не равно row[{i}]={row[i]}' self.assertEqual(num, row[i], msg) # Проверяем через двойной индекс msg = f'\n{row} [i] num={num} не равно row[0, {i}]={row[0, i]}' self.assertEqual(num, row[0, i], msg) # Задаём элемент через двойной индекс num = random.random() row[0, i] = num # Проверяем через двойной индекс msg = f'\n{row}[i, j] num={num} не равно row[0, {i}]={row[0, i]}' self.assertEqual(num, row[0, i], msg) # Проверяем через единственный индекс msg = f'\n{row}[i, j] num={num} не равно row[{i}]={row[i]}' self.assertEqual(num, row[i], msg) def test_get_matrix_element(self): """Тест на получение элемента матрицы""" # Элемент матрицы можно получить: # либо через одну скобку [i, j] # Либо через двойную [i][j] m = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Обходим все элементы матрицы и проверяем # правильность их возвращения for i in range(m.rows): for j in range(m.cols): msg = f'\n{m}m[{i}, {j}]={m[i, j]} не равен m[{i}][{j}]={m[i][j]}' self.assertEqual(m[i, j], m[i][j], msg) def test_set_matrix_element(self): """Тест на присвоение элемента матрицы""" # Элемент
""" Classic cart-pole system implemented by <NAME> et al. Copied from http://incompleteideas.net/sutton/book/code/pole.c permalink: https://perma.cc/C9ZM-652R """ import math import gym from gym import spaces, logger from gym.utils import seeding import numpy as np from scipy.integrate import ode g = 9.8 # gravity force_mag = 10.0 tau = 0.02 # seconds between state updates # cart m_cart = 1 # pole 1 l_1 = 1 # length m_1 = 0.1 # mass # pole 2 l_2 = 1 # length m_2 = 0.1 # mass def f(time, state, input): x = state[0] x_dot = state[1] theta_1 = state[2] theta_1_dot = state[3] theta_2 = state[4] theta_2_dot = state[5] x_dot_dot = ((l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_1_dot ** 2 + g * l_2 * m_2 * np.sin(theta_2)) * (m_1 * np.cos(theta_2) + m_2 * np.cos(theta_2) - m_1 * np.cos(theta_1 - theta_2) * np.cos(theta_1) - m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1))) / (l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - l_2 * m_2 ** 2 - l_2 * m_1 ** 2 - 2 * l_2 * m_1 * m_2 - l_2 * m_1 * m_cart - l_2 * m_2 * m_cart + l_2 * m_1 ** 2 * np.cos(theta_1) ** 2 + l_2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_2 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 + 2 * l_2 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_2 * m_1 * m_2 * np.cos(theta_2) ** 2 - 2 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \ + ((- l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_2_dot ** 2 + g * l_1 * np.sin(theta_1) * (m_1 + m_2)) * (m_1 * np.cos(theta_1) + m_2 * np.cos(theta_1) - m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_2))) / (l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - l_1 * m_2 ** 2 - l_1 * m_1 ** 2 - 2 * l_1 * m_1 * m_2 - l_1 * m_1 * m_cart - l_1 * m_2 * m_cart + l_1 * m_1 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_2) ** 2 - 2 * l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \ - ((- m_2 * np.cos(theta_1 - theta_2) ** 2 + m_1 + m_2) *(l_1 * np.sin(theta_1) * (m_1 + m_2) * theta_1_dot ** 2 + l_2 * m_2 * np.sin(theta_2) * theta_2_dot ** 2 + input)) / (m_1 ** 2 * np.cos(theta_1) ** 2 - m_1 * m_cart - m_2 * m_cart - 2 * m_1 * m_2 + m_2 ** 2 * np.cos(theta_1) ** 2 + m_2 ** 2 * np.cos(theta_2) ** 2 + m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - m_1 ** 2 - m_2 ** 2 + 2 * m_1 * m_2 * np.cos(theta_1) ** 2 + m_1 * m_2 * np.cos(theta_2) ** 2 + m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 - 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) theta_1_dot_dot = ((m_1 * np.cos(theta_1) + m_2 * np.cos(theta_1) - m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_2)) * (l_1 * np.sin(theta_1) * (m_1 + m_2) * theta_1_dot ** 2 + l_2 * m_2 * np.sin(theta_2) * theta_2_dot ** 2 + input)) \ / (l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 - l_1 * m_2 ** 2 - l_1 * m_1 ** 2 - 2 * l_1 * m_1 * m_2 - l_1 * m_1 * m_cart - l_1 * m_2 * m_cart + l_1 * m_1 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * m_1 * m_2 * np.cos(theta_2) ** 2 - 2 * l_1 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * l_1 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \ - ((- l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_2_dot ** 2 + g * l_1 * np.sin(theta_1) * (m_1 + m_2)) * (- m_2 * np.cos(theta_2) ** 2 + m_1 + m_2 + m_cart)) \ / (l_1 ** 2 * m_1 ** 2 * np.cos(theta_1) ** 2 - l_1 ** 2 * m_2 ** 2 - 2 * l_1 ** 2 * m_1 * m_2 - l_1 ** 2 * m_1 * m_cart - l_1 ** 2 * m_2 * m_cart - l_1 ** 2 * m_1 ** 2 + l_1 ** 2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 ** 2 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_1 ** 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 ** 2 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 ** 2 * m_1 * m_2 * np.cos(theta_2) ** 2 + l_1 ** 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 ** 2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 - 2 * l_1 ** 2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * l_1 ** 2 * m_1 * m_2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2)) \ + ((l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_1_dot ** 2 + g * l_2 * m_2 * np.sin(theta_2)) * (m_1 * np.cos(theta_1 - theta_2) + m_2 * np.cos(theta_1 - theta_2) + m_cart * np.cos(theta_1 - theta_2) - m_1 * np.cos(theta_1) * np.cos(theta_2) - m_2 * np.cos(theta_1) * np.cos(theta_2))) / (l_1 * l_2 * m_1 ** 2 * np.cos(theta_1) ** 2 - l_1 * l_2 * m_2 ** 2 - 2 * l_1 * l_2 * m_1 * m_2 - l_1 * l_2 * m_1 * m_cart - l_1 * l_2 * m_2 * m_cart - l_1 * l_2 * m_1 ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_1) ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_2) ** 2 + l_1 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) ** 2 + 2 * l_1 * l_2 * m_1 * m_2 * np.cos(theta_1) ** 2 + l_1 * l_2 * m_1 * m_2 * np.cos(theta_2) ** 2 + l_1 * l_2 * m_1 * m_2 * np.cos(theta_1 - theta_2) ** 2 + l_1 * l_2 * m_2 * m_cart * np.cos(theta_1 - theta_2) ** 2 - 2 * l_1 * l_2 * m_2 ** 2 * np.cos(theta_1 - theta_2) * np.cos(theta_1) * np.cos(theta_2) - 2 * l_1 * l_2 * m_1 * m_2 * np.cos(theta_1
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from vdp.model.v1alpha import healthcheck_pb2 as vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2 from vdp.model.v1alpha import model_definition_pb2 as vdp_dot_model_dot_v1alpha_dot_model__definition__pb2 from vdp.model.v1alpha import model_pb2 as vdp_dot_model_dot_v1alpha_dot_model__pb2 class ModelServiceStub(object): """Model service responds to incoming model requests """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Liveness = channel.unary_unary( '/vdp.model.v1alpha.ModelService/Liveness', request_serializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessResponse.FromString, ) self.Readiness = channel.unary_unary( '/vdp.model.v1alpha.ModelService/Readiness', request_serializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessResponse.FromString, ) self.ListModelDefinition = channel.unary_unary( '/vdp.model.v1alpha.ModelService/ListModelDefinition', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionResponse.FromString, ) self.GetModelDefinition = channel.unary_unary( '/vdp.model.v1alpha.ModelService/GetModelDefinition', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionResponse.FromString, ) self.ListModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/ListModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelResponse.FromString, ) self.CreateModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/CreateModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelResponse.FromString, ) self.CreateModelBinaryFileUpload = channel.stream_unary( '/vdp.model.v1alpha.ModelService/CreateModelBinaryFileUpload', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadResponse.FromString, ) self.GetModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/GetModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelResponse.FromString, ) self.UpdateModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/UpdateModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelResponse.FromString, ) self.DeleteModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/DeleteModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelResponse.FromString, ) self.LookUpModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/LookUpModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelResponse.FromString, ) self.RenameModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/RenameModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelResponse.FromString, ) self.PublishModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/PublishModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelResponse.FromString, ) self.UnpublishModel = channel.unary_unary( '/vdp.model.v1alpha.ModelService/UnpublishModel', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UnpublishModelRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UnpublishModelResponse.FromString, ) self.ListModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/ListModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelInstanceResponse.FromString, ) self.GetModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/GetModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceResponse.FromString, ) self.LookUpModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/LookUpModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelInstanceResponse.FromString, ) self.DeployModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/DeployModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeployModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeployModelInstanceResponse.FromString, ) self.UndeployModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/UndeployModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UndeployModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UndeployModelInstanceResponse.FromString, ) self.GetModelInstanceCard = channel.unary_unary( '/vdp.model.v1alpha.ModelService/GetModelInstanceCard', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceCardRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceCardResponse.FromString, ) self.TriggerModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/TriggerModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TriggerModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TriggerModelInstanceResponse.FromString, ) self.TestModelInstance = channel.unary_unary( '/vdp.model.v1alpha.ModelService/TestModelInstance', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceResponse.FromString, ) self.TestModelInstanceBinaryFileUpload = channel.stream_unary( '/vdp.model.v1alpha.ModelService/TestModelInstanceBinaryFileUpload', request_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceBinaryFileUploadRequest.SerializeToString, response_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceBinaryFileUploadResponse.FromString, ) class ModelServiceServicer(object): """Model service responds to incoming model requests """ def Liveness(self, request, context): """Liveness method receives a LivenessRequest message and returns a LivenessResponse message. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Readiness(self, request, context): """Readiness method receives a ReadinessRequest message and returns a ReadinessResponse message. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListModelDefinition(self, request, context): """ListModelDefinition method receives a ListModelDefinitionRequest message and returns a ListModelDefinitionResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetModelDefinition(self, request, context): """GetModelDefinition method receives a GetModelDefinitionRequest message and returns a GetModelDefinitionResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListModel(self, request, context): """ListModel method receives a ListModelRequest message and returns a ListModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateModel(self, request, context): """CreateModel method receives a CreateModelRequest message and returns a CreateModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateModelBinaryFileUpload(self, request_iterator, context): """CreateModelBinaryFileUpload method receives a CreateModelBinaryFileUploadRequest message and returns a CreateModelBinaryFileUploadResponse message. Endpoint: "POST /v1alpha/models:multipart" """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetModel(self, request, context): """GetModel method receives a GetModelRequest message and returns a GetModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateModel(self, request, context): """UpdateModel method receives a UpdateModelRequest message and returns a UpdateModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteModel(self, request, context): """DeleteModel method receives a DeleteModelRequest message and returns a DeleteModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def LookUpModel(self, request, context): """LookUpModel method receives a LookUpModelRequest message and returns a LookUpModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RenameModel(self, request, context): """RenameModel method rename a model """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def PublishModel(self, request, context): """PublishModel method receives a PublishModelRequest message and returns a PublishModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UnpublishModel(self, request, context): """UnpublishModel method receives a UnpublishModelRequest message and returns a UnpublishModelResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListModelInstance(self, request, context): """ListModelInstance method receives a ListModelInstanceRequest message and returns a ListModelInstanceResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetModelInstance(self, request, context): """GetModelInstance method receives a GetModelInstanceRequest message and returns a GetModelInstanceResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def LookUpModelInstance(self, request, context): """LookUpModelInstance method receives a LookUpModelInstanceRequest message and returns a LookUpModelInstanceResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeployModelInstance(self, request, context): """DeployModelInstance deploy a model instance to online state TODO: should use [Long-running operations](https://google.aip.dev/151) """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UndeployModelInstance(self, request, context): """UndeployModelInstance undeploy a model instance to offline state TODO: should use [Long-running operations](https://google.aip.dev/151) """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetModelInstanceCard(self, request, context): """GetModelInstanceCard method receives a GetModelInstanceCardRequest message and returns a GetModelInstanceCardResponse """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def TriggerModelInstance(self, request, context): """///////////////////////////////////////////////////// TriggerModelInstance method receives a TriggerModelInstanceRequest message and returns a TriggerModelInstanceResponse message. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def TestModelInstance(self, request, context): """TestModelInstance method receives a TestModelInstanceRequest message and returns a TestModelInstanceResponse message. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def TestModelInstanceBinaryFileUpload(self, request_iterator, context): """TestModelInstanceBinaryFileUpload method receives a TestModelInstanceBinaryFileUploadRequest message and returns a TestModelInstanceBinaryFileUploadResponse message. Endpoint: "POST/v1alpha/{name=models/*/instances/*}:test-multipart" """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ModelServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Liveness': grpc.unary_unary_rpc_method_handler( servicer.Liveness, request_deserializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessResponse.SerializeToString, ), 'Readiness': grpc.unary_unary_rpc_method_handler( servicer.Readiness, request_deserializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessResponse.SerializeToString, ), 'ListModelDefinition': grpc.unary_unary_rpc_method_handler( servicer.ListModelDefinition, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionResponse.SerializeToString, ), 'GetModelDefinition': grpc.unary_unary_rpc_method_handler( servicer.GetModelDefinition, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionResponse.SerializeToString, ), 'ListModel': grpc.unary_unary_rpc_method_handler( servicer.ListModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelResponse.SerializeToString, ), 'CreateModel': grpc.unary_unary_rpc_method_handler( servicer.CreateModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelResponse.SerializeToString, ), 'CreateModelBinaryFileUpload': grpc.stream_unary_rpc_method_handler( servicer.CreateModelBinaryFileUpload, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadResponse.SerializeToString, ), 'GetModel': grpc.unary_unary_rpc_method_handler( servicer.GetModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelResponse.SerializeToString, ), 'UpdateModel': grpc.unary_unary_rpc_method_handler( servicer.UpdateModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelResponse.SerializeToString, ), 'DeleteModel': grpc.unary_unary_rpc_method_handler( servicer.DeleteModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelResponse.SerializeToString, ), 'LookUpModel': grpc.unary_unary_rpc_method_handler( servicer.LookUpModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelResponse.SerializeToString, ), 'RenameModel': grpc.unary_unary_rpc_method_handler( servicer.RenameModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelResponse.SerializeToString, ), 'PublishModel': grpc.unary_unary_rpc_method_handler( servicer.PublishModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelResponse.SerializeToString, ), 'UnpublishModel': grpc.unary_unary_rpc_method_handler( servicer.UnpublishModel, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UnpublishModelRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UnpublishModelResponse.SerializeToString, ), 'ListModelInstance': grpc.unary_unary_rpc_method_handler( servicer.ListModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelInstanceResponse.SerializeToString, ), 'GetModelInstance': grpc.unary_unary_rpc_method_handler( servicer.GetModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceResponse.SerializeToString, ), 'LookUpModelInstance': grpc.unary_unary_rpc_method_handler( servicer.LookUpModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelInstanceResponse.SerializeToString, ), 'DeployModelInstance': grpc.unary_unary_rpc_method_handler( servicer.DeployModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeployModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.DeployModelInstanceResponse.SerializeToString, ), 'UndeployModelInstance': grpc.unary_unary_rpc_method_handler( servicer.UndeployModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UndeployModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.UndeployModelInstanceResponse.SerializeToString, ), 'GetModelInstanceCard': grpc.unary_unary_rpc_method_handler( servicer.GetModelInstanceCard, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceCardRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelInstanceCardResponse.SerializeToString, ), 'TriggerModelInstance': grpc.unary_unary_rpc_method_handler( servicer.TriggerModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TriggerModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TriggerModelInstanceResponse.SerializeToString, ), 'TestModelInstance': grpc.unary_unary_rpc_method_handler( servicer.TestModelInstance, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceResponse.SerializeToString, ), 'TestModelInstanceBinaryFileUpload': grpc.stream_unary_rpc_method_handler( servicer.TestModelInstanceBinaryFileUpload, request_deserializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceBinaryFileUploadRequest.FromString, response_serializer=vdp_dot_model_dot_v1alpha_dot_model__pb2.TestModelInstanceBinaryFileUploadResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'vdp.model.v1alpha.ModelService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class ModelService(object): """Model service responds to incoming model requests """ @staticmethod def Liveness(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/Liveness', vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.LivenessResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Readiness(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/Readiness', vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_healthcheck__pb2.ReadinessResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListModelDefinition(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/ListModelDefinition', vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.ListModelDefinitionResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetModelDefinition(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/GetModelDefinition', vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__definition__pb2.GetModelDefinitionResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/ListModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.ListModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/CreateModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateModelBinaryFileUpload(request_iterator, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.stream_unary(request_iterator, target, '/vdp.model.v1alpha.ModelService/CreateModelBinaryFileUpload', vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.CreateModelBinaryFileUploadResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/GetModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.GetModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/UpdateModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.UpdateModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/DeleteModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.DeleteModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def LookUpModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/LookUpModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.LookUpModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def RenameModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/RenameModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.RenameModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def PublishModel(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/vdp.model.v1alpha.ModelService/PublishModel', vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelRequest.SerializeToString, vdp_dot_model_dot_v1alpha_dot_model__pb2.PublishModelResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UnpublishModel(request, target, options=(),
''' @FileName : init_guess.py @EditTime : 2021-12-13 13:37:50 @Author : <NAME> @Email : <EMAIL> @Description : ''' from core.utils.recompute3D import recompute3D import torch import numpy as np from core.utils.umeyama import umeyama import cv2 from core.utils.visualization3d import Visualization from core.affinity.affinity import ComposedAffinity from core.assignment.associate import simple_associate from scipy import signal def joint_interpolation(poses, n_joints): """ Interpolate poses to a complete motion, the empty frame is None """ start = 0 # If the first frame is None if poses[start] is None: poses[start] = np.zeros((n_joints, 3)) for n, joint in enumerate(poses): if joint is not None: if n >= len(poses)-1: break if poses[start+1] is not None: start += 1 if n != start: j1 = poses[start] start_t = start det = (joint - j1) / (n - start_t) for i in range(n - start_t): poses[start] = j1 + det * i start += 1 t = poses[start] # If the last frame is None while(start<n+1): poses[start] = t start += 1 return poses def rec_3D_joints(keypoints, extris, intris, idx, filter_joints_idx, first_frame=False): keypoints = np.array(keypoints, dtype=np.float32) keypoints = keypoints[:,:,idx,filter_joints_idx] n_views, n_frames, n_joints = keypoints.shape[:3] joints = [] for f in range(n_frames): if first_frame and f > 0: break # Filter out unreliable detection pack = [[keypoints[v][f], extris[v], intris[v]] for v in range(n_views) if keypoints[v][f][:,2].max() > 0.2] if len(pack) < 2: # Do not process single view case joints.append(None) continue keps = np.array([p[0] for p in pack]) cam_extris = np.array([p[1] for p in pack]) cam_intris = np.array([p[2] for p in pack]) rec_joints3d = recompute3D(cam_extris, cam_intris, keps.copy()) joints.append(rec_joints3d) # Interpolation joints = joint_interpolation(joints, n_joints) return joints def physics_geometry_filter(keypoints, extris, intris, frames_seq, flags, img_paths, dataset_obj, filter_joints_idx): """ Filter out the noisy detection and recompute 3D joints using the filtered keypoints """ # Calculate the joints in first frame last_js = [] for idx in range(dataset_obj.num_people): rec_joints3d = rec_3D_joints(keypoints, extris, intris, idx, filter_joints_idx, first_frame=True) last_js.append(rec_joints3d[0]) joints = [] affinity_model = ComposedAffinity(cameras=[extris, intris]) n_views = len(extris) n_people = dataset_obj.num_people n_joints = len(filter_joints_idx) total_n_joints = dataset_obj.num_joints Pall = np.array([intri @ extri[:3] for extri, intri in zip(extris, intris)]) # Container to save filtered results filterd_keypoints = [[[np.zeros((total_n_joints,3)) for n in range(n_people)] for f in range(frames_seq)] for v in range(n_views)] last_2d = [[keypoints[v][0][idx] for v in range(n_views)] for idx in range(n_people)] total_joints = [] for i in range(frames_seq): keyps = [keypoints[v][i] for v in range(n_views)] joint = [] for idx, last_j in enumerate(last_js): # Filter affinity, dimGroups = affinity_model(keyps, None, last_2d[idx], last_j, images=img_paths) keyps, output = simple_associate(keyps, affinity, dimGroups, Pall, idx) # Recompute 3D joints from the filtered keypoints and the initial cameras pack = [[k, extris[i], intris[i]] for i, k in enumerate(output) if k is not None] if len(pack) < 2: # do not process single view case joint.append(None) continue keps = np.array([p[0][filter_joints_idx] for p in pack]) cam_extris = np.array([p[1] for p in pack]) cam_intris = np.array([p[2] for p in pack]) rec_joints3d = recompute3D(cam_extris, cam_intris, keps.copy()) joint.append(rec_joints3d) # Save the filtered keypoints for v in range(n_views): filterd_keypoints[v][i][idx] = output[v] if output[v] is not None else np.zeros((total_n_joints,3)) if output[v] is not None: last_2d[idx][v] = output[v] if len(cam_extris) > 2: last_js[idx] = rec_joints3d total_joints.append(joint) # Interpolation interpolated_joints = [] for idx in range(n_people): joints = [j[idx] for j in total_joints] joints = joint_interpolation(joints, n_joints) interpolated_joints.append(np.array(joints)) return filterd_keypoints, flags, interpolated_joints def init_guess(setting, data, dataset_obj, frames_seq=1, use_torso=False, **kwargs): models = setting['model'] dtype = setting['dtype'] keypoints = data['keypoints'] flags = data['flags'] device = setting['device'] est_scale = not setting['fix_scale'] fixed_scale = 1. if setting['fixed_scale'] is None else setting['fixed_scale'] extris = setting['extrinsics'] intris = setting['intrinsics'] # The joints that are used for calculating consistency # (LS,RS,LE,RE,LW,RW,LH,RH,LK,RK,LA,RA) filter_joints_idx = [5,6,7,8,9,10,11,12,13,14,15,16] # Step1: Get initial joint positions for SMPL model init_SMPL_joints = [] for idx in range(dataset_obj.num_people): # Reset the SMPL model with initial parameters init_t = torch.zeros((frames_seq, 3), dtype=dtype) init_r = torch.zeros((frames_seq, 3), dtype=dtype) init_s = torch.tensor(fixed_scale, dtype=dtype) init_shape = torch.zeros((1, 10), dtype=dtype) models[idx].reset_params(transl=init_t, global_orient=init_r, scale=init_s, betas=init_shape) init_pose = torch.zeros((frames_seq, 69), dtype=dtype, device=device) with torch.no_grad(): model_output = models[idx](return_verts=False, return_full_pose=False, body_pose=init_pose) output_joints = model_output.joints.cpu().numpy() init_SMPL_joints.append(output_joints) # Step2: Get reconstructed joint positions from 2D detections and inital cameras use_filter = False if use_filter: keypoints, flags, init_rec_joints = physics_geometry_filter(keypoints, extris, intris, frames_seq, flags, data['img_path'], dataset_obj, filter_joints_idx) else: init_rec_joints = [] for idx in range(dataset_obj.num_people): # Recompute 3D joints with the initial cameras rec_joints3ds = rec_3D_joints(keypoints, extris, intris, idx, filter_joints_idx) init_rec_joints.append(np.array(rec_joints3ds)) # Step3: Align the SMPL models to the reconstructed joints for idx in range(dataset_obj.num_people): rec_joints3ds = init_rec_joints[idx] model_joint3ds = init_SMPL_joints[idx] rotations, translations = [], [] # Filter out noisy reconstrction with Butterworth Filter b, a = signal.butter(3, 0.05, 'lowpass') filtered_joints = signal.filtfilt(b, a, rec_joints3ds.T).T.copy() # Calculate the global rotations and translations for SMPL models for joints, joints3d in zip(model_joint3ds, filtered_joints): # We align the SMPL to the joints in torso (L_Shoulder, R_Shoulder, L_Hip, R_Hip) joints = joints[[5,6,11,12]] joints3d = joints3d[[0,1,6,7]] if abs(joints3d).max() < 0.1: rotations.append(np.zeros((3,))) translations.append(np.zeros((3,))) continue # get transformation rot, trans, scale = umeyama(joints, joints3d, est_scale) rot = cv2.Rodrigues(rot)[0].reshape(3,) rotations.append(rot) translations.append(trans) # Apply the estimated results if est_scale: init_s = torch.tensor(scale, dtype=dtype) else: init_s = torch.tensor(fixed_scale, dtype=dtype) init_t = torch.tensor(translations, dtype=dtype) init_r = torch.tensor(rotations, dtype=dtype) models[idx].reset_params(transl=init_t, global_orient=init_r, scale=init_s) if kwargs.get('use_vposer') or kwargs.get('use_motionprior'): with torch.no_grad(): setting['pose_embedding'][idx].fill_(0) # Visualize the initialized results if False: import os from core.utils.render import Renderer if kwargs.get('use_vposer'): vposer = setting['vposer'] init_pose = vposer.decode( setting['pose_embedding'][idx], output_type='aa').view( frames_seq, -1) elif kwargs.get('use_motionprior'): vposer = setting['vposer'] init_pose = vposer.decode( setting['pose_embedding'][idx], t=setting['pose_embedding'][idx].shape[0]).view( setting['pose_embedding'][idx].shape[0], -1) else: init_pose = torch.zeros((frames_seq, 69), dtype=dtype, device=device) model_output = models[idx](return_verts=True, return_full_pose=True, body_pose=init_pose) for i, (joints, verts) in enumerate(zip(model_output.joints.detach().cpu().numpy(), model_output.vertices.detach().cpu().numpy())): for v in range(1): img = cv2.imread(os.path.join(dataset_obj.img_folder, data['img_path'][v][i])) render = Renderer(resolution=(img.shape[1], img.shape[0])) img = render(verts, models[idx].faces, extris[v][:3,:3].copy(), extris[v][:3,3].copy(), intris[v].copy(), img.copy(), color=[1,1,0.9], viz=False) render.vis_img("img", img) render.renderer.delete() del render del model_output torch.cuda.empty_cache() data['keypoints'] = keypoints data['flags'] = flags return data def fix_params(setting, scale=None, shape=None): """ Use the fixed shape and scale parameters. """ dtype = setting['dtype'] models = setting['model'] for model in models: init_t = model.transl init_r = model.global_orient init_s = model.scale init_shape = model.betas if scale is not None: init_s = torch.tensor(scale, dtype=dtype) model.scale.requires_grad = False if shape is not None: init_shape = torch.tensor(shape, dtype=dtype) model.betas.requires_grad = False model.reset_params(transl=init_t, global_orient=init_r, scale=init_s, betas=init_shape) def appearance_align(data, dataset_obj): ''' We assume the first frame is aligned. ''' torso = [i for i in range(26)] #[5,6,11,12,18,19] n_views = len(data['img_path']) appearance_buffer = [] appearances = data['appearances'] keypoints = data['keypoints'] aligned_keypoints = [[[None for n in range(dataset_obj.num_people)] for f in range(dataset_obj.frames)] for v in range(n_views)] aligned_appearances= [[[None for n in range(dataset_obj.num_people)] for f in range(dataset_obj.frames)] for v in range(n_views)] # Load initial appearance for each person based on the first frame. for idx in range(dataset_obj.num_people): app_t = [] for v in range(n_views): if appearances[v][0][idx] is not None: app_t.append(appearances[v][0][idx]) app_t = np.array(app_t) app_t = np.mean(app_t, axis=0) appearance_buffer.append(app_t) appearance_buffer = np.array(appearance_buffer) # Align each frame for f in range(dataset_obj.frames): if f == 105: print(1) for v in range(n_views): app_t = [[i, app] for i, app in enumerate(appearances[v][f]) if app is not None] if len(app_t) < 1: continue apps = np.array([ap[1] for ap in app_t])[None,:] * 100 temp_buffer = appearance_buffer.copy()[:,None] * 100 loss = np.linalg.norm(apps - temp_buffer, axis=-1) if f > 0: kep_lt = np.ones((dataset_obj.num_people, len(torso), 3)) * 100 non_idx = [] for i, kep in enumerate(aligned_keypoints[v][f-1]): if kep is not None: kep_lt[i] = kep[torso] else: non_idx.append(i) #kep_lt = [[i, kep] for i, kep in enumerate(keypoints[v][f-1]) if kep is not None] kep_t = [[i, kep[torso]] for i, kep in enumerate(keypoints[v][f]) if kep is not None] keplt = kep_lt[:,None] kept = np.array([kep[1] for kep in kep_t])[None,:] loss_kp = np.linalg.norm(keplt[...,:2] - kept[...,:2], axis=-1) conf = np.sqrt(keplt[...,-1] * kept[...,-1]) loss_kp = (loss_kp * conf).sum(axis=-1)/conf.sum(axis=-1) # if len(non_idx) > 0: # loss_kp[non_idx] = 0 # loss = loss + loss_kp for igt, gt in enumerate(appearance_buffer): if loss[igt].min() > 100: continue bestid = np.argmin(loss[igt]) loss[:,bestid] = 1000 if f > 0 and aligned_keypoints[v][f-1][igt] is not None: dis = np.linalg.norm(aligned_keypoints[v][f-1][igt][:,:2] - keypoints[v][f][app_t[bestid][0]][:,:2], axis=-1) conf
#!/usr/bin/env python from __future__ import print_function import os import sys import time import traceback from github import GithubException, GithubObject from issue_finder import CommitFinder, IssueFinder from mantisdump import MantisDump, MantisSchema # Python3 redefined 'unicode' to be 'str' if sys.version_info[0] >= 3: unicode = str def pluralize(number): "Trivial method to return an 's' if 'number' is not equal to 1" return "" if number == 1 else "s" class MantisConverter(object): LABEL_COLORS = { "new": "fcbdbd", "feedback": "e3b7eb", "acknowledged": "ffcd85", "confirmed": "fff494", "assigned": "c2dfff", "resolved": "d2f5b0", } def __init__(self, mantis_dump, svndb, gitrepo, project_names=None, verbose=False): # GitHub or local repo if gitrepo is None: raise Exception("Please specify a Git repo object") self.__gitrepo = gitrepo if mantis_dump is None: raise Exception("Please specify the Mantis dump file") if not os.path.exists(mantis_dump): raise Exception("Mantis dump file \"%s\" does not exist" % (mantis_dump, )) # list of Mantis projects associated with the Subversion project self.__project_names = project_names self.__close_resolved = False self.__preserve_all_status = False self.__preserve_resolved = False # cached lists of GitHub issue labels and milestones # (loaded when needed) self.__labels = None self.__milestones = None # dictionary mapping Mantis issue numbers to GitHub issue numbers self.__mantis2github = {} # list of missing issues self.__missing = [] # get the list of all Mantis issues self.__all_issues = self.load_issues(mantis_dump, verbose=False) # get the list of Mantis issues referenced in SVN log messages # and SVN commits referenced in Mantis notes if svndb is None: self.__svn_issues = None else: self.__svn_issues = self.find_svn_issues(svndb) # ordered list of Mantis issues for this project self.__project_issue_numbers = \ self.__create_issue_order(verbose=verbose) if verbose: if self.__project_names is None: pstr = "all projects" else: pstr = ", ".join(self.__project_names) num_issues = len(self.__project_issue_numbers) print("Found %d issue%s (out of %d total) for %s" % (num_issues, pluralize(num_issues), len(self.__all_issues), pstr)) def __len__(self): return len(self.__project_issue_numbers) def __add_github_label(self, label_name): if self.__labels is None: tmplist = {} for label in self.__gitrepo.get_labels(): tmplist[label.name] = label self.__labels = tmplist if label_name in self.__labels: return self.__labels[label_name] if label_name not in self.LABEL_COLORS: raise Exception("No color found for issue status \"%s\"" % label_name) color = self.LABEL_COLORS[label_name] description = "Mantis status %s" % label_name try: label = self.__gitrepo.create_label(label_name, color, description) except GithubException: raise Exception("Cannot create label %s color %s (%s)" % (label_name, color, description)) self.__labels[label.name] = label return label def __add_github_milestone(self, milestone_name): if self.__milestones is None: tmplist = {} for milestone in self.__gitrepo.get_milestones(): tmplist[milestone.title] = milestone self.__milestones = tmplist if milestone_name in self.__milestones: return self.__milestones[milestone_name] description = milestone_name try: milestone = self.__gitrepo.create_milestone(milestone_name, state="open", description=description) except GithubException: raise Exception("Cannot create milestone %s (%s)" % (milestone_name, description)) self.__milestones[milestone.title] = milestone return milestone def __create_issue_order(self, verbose=False): """ Create an ordered list of Mantis issue numbers for this project """ # find Mantis issues referenced in SVN commits references = {} if self.__svn_issues is not None: for rev, numlist in self.__svn_issues.items(): for inum in numlist: if inum is None: print("ERROR: Ignoring rev%d issue number set" " to None" % (rev, ), file=sys.stderr) else: references[inum] = 1 if verbose: print("Found %d referenced Mantis issues" % len(references)) # find Mantis issues for the specified project(s) for issue in self.__all_issues.values(): if self.__project_names is None or \ issue.project in self.__project_names: if issue.id is None: print("ERROR: Found ID set to None in issue %s" % (issue, ), file=sys.stderr) else: references[issue.id] = 0 if verbose: num_refs = len(references) print("Found %d total Mantis issue%s" % (num_refs, pluralize(num_refs))) mantis_ids = list(references.keys()) mantis_ids.sort() return mantis_ids @classmethod def __mantis_issue_to_strings(cls, issue, foreign_project=None): """ Convert a Mantis issue to a title string and a body string for GitHub """ title_prefix = None title = None message = None for text in (issue.summary, issue.description): if text is not None and isinstance(text, bytes): text = text.decode("utf-8", "ignore") if text is not None and text != "": if title is None: title_prefix = "[%s on %s] " % \ (issue.reporter, issue.date_submitted) title = text else: message = "\n" + text if title is None: print("WARNING: No summary/description for issue #%d" % (issue.id, ), file=sys.stderr) title = "Mantis issue %d" % issue.id if foreign_project is not None: title = "%s: %s" % (foreign_project, title) if title_prefix is not None: title = "%s: %s" % (title_prefix, title) for fld, text in (("Steps to Reproduce", issue.steps_to_reproduce), ("Additional Information", issue.additional_information)): if text is not None and text != "": if message is None: message = "%s: %s" % (fld, text) else: message += "\n\n%s: %s" % (fld, text) return title, message @classmethod def __mantis_note_to_string(cls, note, database=None): text = "[%s on %s]" % (note.reporter, note.last_modified) if not isinstance(note.text, bytes): fixed = note.text else: fixed = note.text.decode("utf-8", "ignore") # if there's no SVN commit database, # we can't map SVN revisions to Git hashs if database is None: return text + "\n" + fixed # add Git hashes to all notes which refer to SVN revision numbers for line in fixed.split("\n"): svn_rev = CommitFinder.find_in_text(line) # if we find an SVN revision, link it to the Git hash cstr = "\n" if svn_rev is not None: result = database.find_hash_from_revision(revision=svn_rev) if result is not None and result[1] is not None: cstr = "\n[commit %s] " % (result[1], ) # add this line to the note text += cstr + line return text def __open_issue(self, issue, database=None): "Open a GitHub issue which copies the Mantis issue" if self.__project_names is None or \ issue.project in self.__project_names: foreign_project = None else: foreign_project = issue.project labels = GithubObject.NotSet if not issue.is_closed: if self.__preserve_all_status or \ (self.__preserve_resolved and issue.is_resolved): label_name = issue.status label = self.__add_github_label(label_name) labels = (label, ) ms_name = None if issue.fixed_in_version != "": ms_name = issue.fixed_in_version elif issue.target_version != "": ms_name = issue.target_version if ms_name is None: milestone = GithubObject.NotSet else: milestone = self.__add_github_milestone(ms_name) title, message = \ self.__mantis_issue_to_strings(issue, foreign_project) retries = 6 sleep_secs = 60 while retries > 0: try: gh_issue = self.__gitrepo.create_issue(title, message, milestone=milestone, labels=labels) break except GithubException as gex: if gex.status != 403: raise retries -= 1 if retries <= 0: print("WARNING: Failed to open issue for Mantis #%s" % (issue.id, ), file=sys.stderr) return None print("\r%s\rMantis #%s sleeping for %s seconds ." % (" "*60, issue.id, sleep_secs), end="") sys.stdout.flush() time.sleep(sleep_secs) sleep_secs += 60 print(".. retrying \"%s\"\r" % (title, )) sys.stdout.flush() continue for note in issue.notes: message = self.__mantis_note_to_string(note, database=database) try: gh_issue.create_comment(message) except GithubException: raise Exception("Cannot create GitHub issue #%d" " comment \"%s\"" % (gh_issue.number, message)) self.__mantis2github[issue.id] = gh_issue return gh_issue def add_issues(self, mantis_id=None, add_after=False, database=None, pause_count=None, pause_seconds=None, report_progress=None, verbose=False): """ If 'mantis_id' is None, add all issues If `add_after` is False, add issues with IDs less than `mantis_id`. If `add_after` is True, add issues with IDs greater than `mantis_id`. """ issues = [] for inum in self.__project_issue_numbers: if mantis_id is not None: if not add_after and inum >= mantis_id: # we've added all issues before 'mantis_id', exit the loop break if add_after and inum <= mantis_id: # we haven't started adding yet, keep looking continue if inum in self.__mantis2github: # issue has been added, continue looking continue if inum not in self.__all_issues: if inum not in self.__missing: # add to list of missing issues and complain self.__missing.append(inum) if mantis_id is None: extra = "" else: extra = " (before adding #%s)" % (mantis_id, ) print("ERROR: Cannot add missing issue #%s%s" % (inum, extra), file=sys.stderr) continue issues.append(self.__all_issues[inum]) if verbose: print("\nOpening %d issues%s" % (len(issues), "" if mantis_id is None else " preceeding Mantis #%s" % (mantis_id, ))) else: # start the Mantis progress on a new line print() # attempt to create all the preceding issues for count, issue in enumerate(issues): if report_progress is not None: report_progress(count, len(issues), "Mantis", "issue", issue.id) try: gh_issue = self.__open_issue(issue, database=database) if gh_issue is not None: if issue.is_closed or (self.__close_resolved and issue.is_resolved): gh_issue.edit(body="No associated GitHub commit", state="closed") except KeyboardInterrupt: raise except: print("Failed to open & close issue #%s (%d of %d)" % (issue.id, count, len(issues)), file=sys.stderr) traceback.print_exc() gh_issue = None # if requested, pause a bit after adding the number of issues # specified by 'pause_count' if pause_count
<reponame>leozz37/makani # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import os import string import tempfile import unittest import jsmin import makani from makani.analysis.checks import base_check from makani.analysis.checks import check_range from makani.analysis.checks import gradebook from makani.analysis.checks import gradebook_base_check from makani.analysis.checks import log_util from makani.gs.monitor2.apps.layout import stoplights from makani.gs.monitor2.apps.receiver import aio_util from makani.gs.monitor2.project import settings from makani.lib.python import struct_tree from makani.lib.python.h5_utils import h5_io import mock import numpy _GRADEBOOK_FILE = os.path.join( makani.HOME, 'gs/monitor2/apps/plugins/layouts/gradebook.json') def _Multiply(v, multiplier): return v * multiplier def IsDevicePopulated(populated, device_id): # pylint: disable=unused-argument return True class PatchCheckers(object): def __init__(self): self._patchers = [ mock.patch( ('makani.analysis.checks.avionics_util.' 'IsDevicePopulated'), IsDevicePopulated), ] def __enter__(self): for p in self._patchers: p.start() def __exit__(self, exc_type, exc_value, traceback): for p in self._patchers: p.stop() class TestAnalysis(unittest.TestCase): """Test utilities in the analysis module.""" def _GradebookFromString(self, gradebook_string): return gradebook.Gradebook(json.loads(jsmin.jsmin(gradebook_string)), settings.NETWORK_YAML) def testSeparateFieldIndex(self): segments, slices = base_check.SeparateFieldIndex('a[:].b[0].c') self.assertEqual(segments, ['a', 'b', 'c']) self.assertEqual(slices, [':', '0']) segments, slices = base_check.SeparateFieldIndex('ab[:][0].c') self.assertEqual(segments, ['ab', 'c']) self.assertEqual(slices, [':', '0']) segments, slices = base_check.SeparateFieldIndex('a.bc[:][0]') self.assertEqual(segments, ['a', 'bc']) self.assertEqual(slices, [':', '0']) def testIndicesToOrderAndDedup(self): sequence = numpy.array([1, 10, 10, 2, 2, 3, 4, 5, 4, 3, 7, 7, 7, 8, 8, 1]) prefix_template = string.Template('$message_type.$aio_node') data = {'a': {'b': {'aio_header': {'sequence': sequence}}}} indices = log_util.MessageOrderedIndices( struct_tree.StructTree(data), 'a', 'b', prefix_template, wraparound=10) reference = numpy.array([1, 0, 3, 5, 6, 7, 10, 13, 15]) output = numpy.array([10, 1, 2, 3, 4, 5, 7, 8, 1]) self.assertTrue(numpy.array_equal(indices, reference)) self.assertTrue(numpy.array_equal(sequence[indices], output)) reference = numpy.array([1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1]) bitmask = log_util.MessageDedupSelection( struct_tree.StructTree(data), 'a', 'b', prefix_template, wraparound=10) self.assertTrue(numpy.array_equal(bitmask, reference)) def testRangeClasses(self): array = numpy.array([0, 1, 2, 3, 4]) crange = check_range.Singleton(1) self.assertIn(1, crange) self.assertNotIn(3, crange) self.assertIn(numpy.array([1, 1]), crange) self.assertNotIn(numpy.array([1, 2]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 1, 0, 0, 0]))) self.assertEqual(str(crange), '1') crange = check_range.Container({1, 'a'}) self.assertIn(1, crange) self.assertIn('a', crange) self.assertNotIn(3, crange) self.assertNotIn('b', crange) self.assertIn(numpy.array([1, 1]), crange) self.assertNotIn(numpy.array([1, 2]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 1, 0, 0, 0]))) self.assertEqual(str(crange), "{1, 'a'}") crange = check_range.Container({1: 2, 'a': 'b'}) self.assertIn(1, crange) self.assertIn('a', crange) self.assertNotIn(3, crange) self.assertNotIn('b', crange) self.assertIn(numpy.array([1, 1]), crange) self.assertNotIn(numpy.array([1, 2]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 1, 0, 0, 0]))) self.assertEqual(str(crange), "{1, 'a'}") crange = check_range.Container([1, 2, 'a', 'b']) self.assertIn(1, crange) self.assertIn('a', crange) self.assertNotIn(3, crange) self.assertNotIn('c', crange) self.assertIn(numpy.array([1, 2]), crange) self.assertNotIn(numpy.array([1, 3]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 1, 1, 0, 0]))) self.assertEqual(str(crange), "{1, 2, 'a', 'b'}") crange = check_range.Interval([1, 3]) self.assertIn(1, crange) self.assertIn(3, crange) self.assertIn(2, crange) self.assertNotIn(5, crange) self.assertNotIn(0, crange) self.assertIn(numpy.array([1, 2, 3]), crange) self.assertNotIn(numpy.array([1, 2, 3, 4]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 1, 1, 1, 0]))) self.assertEqual(str(crange), '[1, 3]') crange = check_range.Interval([1, 3], inclusiveness=[False, False]) self.assertIn(1.1, crange) self.assertIn(2.9, crange) self.assertIn(2, crange) self.assertNotIn(1, crange) self.assertNotIn(3, crange) self.assertIn(numpy.array([2, 2]), crange) self.assertNotIn(numpy.array([1, 2, 3]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 0, 1, 0, 0]))) self.assertEqual(str(crange), '(1, 3)') crange = check_range.Interval([3, None]) self.assertIn(3, crange) self.assertNotIn(2, crange) self.assertIn(numpy.array([3, 4]), crange) self.assertNotIn(numpy.array([1, 2, 3]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 0, 0, 1, 1]))) self.assertEqual(str(crange), '[3, inf]') crange = check_range.Interval([None, 3]) self.assertIn(3, crange) self.assertNotIn(4, crange) self.assertIn(numpy.array([2, 3]), crange) self.assertNotIn(numpy.array([2, 3, 4]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([1, 1, 1, 1, 0]))) self.assertEqual(str(crange), '[-inf, 3]') crange = check_range.Interval([None, None]) self.assertIn(4, crange) self.assertIn(numpy.array([2, 2]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([1, 1, 1, 1, 1]))) self.assertEqual(str(crange), '[-inf, inf]') crange = check_range.Container([]) self.assertNotIn(4, crange) self.assertNotIn(numpy.array([2, 2]), crange) self.assertTrue(numpy.array_equal( crange.Select(array), numpy.array([0, 0, 0, 0, 0]))) self.assertEqual(str(crange), '{}') with self.assertRaises(AssertionError): check_range.Singleton(None) def testRangeChecker(self): array = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) cranges = check_range.RangeChecker([{3, 4}, 5, [7], [8, None], [None, 1]]) self.assertIn(0, cranges) self.assertIn(1, cranges) self.assertNotIn(2, cranges) self.assertIn(3, cranges) self.assertIn(4, cranges) self.assertIn(5, cranges) self.assertNotIn(6, cranges) self.assertIn(7, cranges) self.assertIn(8, cranges) self.assertIn(9, cranges) self.assertTrue(numpy.array_equal( cranges.Select(array), numpy.array([1, 1, 0, 1, 1, 1, 0, 1, 1, 1]))) cranges = check_range.RangeChecker([]) self.assertNotIn(4, cranges) self.assertTrue(numpy.array_equal( cranges.Select(array), numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))) with self.assertRaises(TypeError): check_range.RangeChecker(None) cranges = check_range.RangeChecker([[None, None]]) self.assertIn(123, cranges) self.assertIn('a', cranges) cranges = check_range.RangeChecker([None]) self.assertNotIn(123, cranges) self.assertNotIn('a', cranges) def testRolling(self): array = numpy.array([0, 1, 2, 3, 4, 5, 6]) rolled = numpy.array([ [0, 1, 2, 3], [2, 3, 4, 5], ]) self.assertTrue(numpy.array_equal(log_util.Rolling(array, 4, 2), rolled)) rolled = numpy.array([ [1, 2, 3, 4], [3, 4, 5, 6], ]) self.assertTrue(numpy.array_equal(log_util.Rolling(array, 4, 2, False), rolled)) def testAioCheckByRange(self): normal_ranges = check_range.RangeChecker([[5, 8], [15, 18]]) warning_ranges = check_range.RangeChecker([0, [3, 20]]) self.assertEqual( aio_util.CheckByRange( 5, normal_ranges, warning_ranges, 'test')[0]['stoplight'], stoplights.STOPLIGHT_NORMAL) self.assertEqual( aio_util.CheckByRange( 0, normal_ranges, warning_ranges, 'test')[0]['stoplight'], stoplights.STOPLIGHT_WARNING) self.assertEqual( aio_util.CheckByRange( 1, normal_ranges, warning_ranges, 'test')[0]['stoplight'], stoplights.STOPLIGHT_ERROR) array = numpy.array([5, 15, 18]) self.assertEqual( aio_util.CheckByRange( array, normal_ranges, warning_ranges, '')[0]['stoplight'], stoplights.STOPLIGHT_NORMAL) array = numpy.array([0, 5, 18]) self.assertEqual( aio_util.CheckByRange( array, normal_ranges, warning_ranges, '')[0]['stoplight'], stoplights.STOPLIGHT_WARNING) array = numpy.array([1, 5, 10, 18]) self.assertEqual( aio_util.CheckByRange( array, normal_ranges, warning_ranges, '')[0]['stoplight'], stoplights.STOPLIGHT_ERROR) def testLogCheckByRange(self): normal_ranges = check_range.RangeChecker([[5, 8], [15, 18]]) warning_ranges = check_range.RangeChecker([0, [3, 20]]) array = numpy.array([0, 1, 5, 10, 18]) results = log_util.CheckByRange( array, normal_ranges, warning_ranges, min_gap=1000) self.assertEqual( results['warning'], {'total': 5, 'count': 2, 'range': [0, 10], 'sections': [(0, 4)], 'expecting': '[[5, 8], [15, 18]]'}) self.assertEqual( results['error'], {'total': 5, 'count': 1, 'range': [1, 1], 'sections': [(1, 2)], 'expecting': '[0, [3, 20]]'}) def _GetValidSampleGradebook(self): gradebook_string = """ { "imports": { "motor_thermal_types": "makani.avionics.common.motor_thermal_types", "analysis_tests": "makani.analysis.checks.tests" }, "checks": { "ServoStatus": { "ServoA4": { "angle_desired": { "normal_ranges": [[0, 90]], "warning_ranges": "any" } } }, "MotorStatus": { "(.*)": { "temps[motor_thermal_types.kMotorThermalChannelBoard]": { "normal_ranges": [[60, 70], 0], "warning_ranges": "any", // Callback to preprocess the data. "callback": "analysis_tests._Multiply", "callback_args": [2], "name": "Board Temperature" }, "temps[motor_thermal_types.kMotorThermalChannelControllerAir]": { "normal_ranges": [[60, 70], 0], "warning_ranges": [[60, 90]], // Callback to preprocess the data. "callback": "analysis_tests._Multiply", "callback_args": [2] } } } } } """ return self._GradebookFromString(gradebook_string) def testGradebook(self): book = self._GetValidSampleGradebook() criteria = book.GetCriteria(['ServoStatus', 'ServoA4', 'angle_desired']) self.assertIn(80, criteria.normal_ranges) self.assertNotIn(100, criteria.normal_ranges) self.assertIn(100, criteria.warning_ranges) criteria = book.GetCriteria(['MotorStatus', 'MotorPti', 'temps[0]']) self.assertIn(0, criteria.normal_ranges) self.assertIn(60, criteria.normal_ranges) self.assertIn(70, criteria.normal_ranges) self.assertNotIn(20, criteria.normal_ranges) field_map = book.GetFieldMap('$message_type.') self.assertEqual(set(field_map.keys()), {'ServoStatus', 'MotorStatus'}) self.assertEqual(set(field_map['MotorStatus'].keys()), { ''.join(x) for x in itertools.product(('DynoMotor', 'Motor'), 'PS', 'bt', 'io')}) self.assertEqual(field_map['MotorStatus']['MotorPti'], { 'temps[0]': ['MotorStatus.temps[0]'], 'temps[1]': ['MotorStatus.temps[1]'], }) def testGradebookOnAio(self): book = self._GetValidSampleGradebook() messages = struct_tree.StructTree({ 'MotorStatus': { 'MotorPti': { 'temps': [30, 40, 50, 60] } } }, True) checks = gradebook_base_check.GradebookChecks() checks.Initialize(book, for_log=False, use_full_name=False) for item in checks.List(): item.Check(*item.Populate(messages)) if item.FieldIndex() == 'MotorStatus.MotorPti.temps[0]': self.assertEqual(item.GetResults(), [{ 'name': 'Value', 'value': 60, 'stoplight': 3 }]) elif item.FieldIndex() == 'MotorStatus.MotorPti.temps[1]': self.assertEqual(item.GetResults(), [{ 'name': 'Value', 'value': 80, 'stoplight': 2 }]) else: self.assertFalse(item.GetResults()) def testGradebookOnLog(self): book = self._GetValidSampleGradebook() message = numpy.array( [(((30., 31.),), (1,)), (((50., 51.),), (3,)), (((40., 41.),), (2,)), (((60., 61.),), (4,))], dtype=[ ('message', [('temps', 'f', (2,))]), ('aio_header', [('sequence', '>u2'),]) ] ) dataset = { 'messages': { 'kAioNodeMotorPti': { 'kMessageTypeMotorStatus': message } } } with tempfile.NamedTemporaryFile() as temp_hdf5: h5_io.H5Dump(temp_hdf5.name, dataset) checks = gradebook_base_check.GradebookChecks() checks.Initialize(book, for_log=True, use_full_name=True) for item in checks.List(): item.Check(*item.Populate(struct_tree.StructTree(temp_hdf5.name))) # After ordering the sequence and applying the callback, temps[0] # becomes [60.0, 80.0, 100.0, 120.0] and temps[1] becomes # [62.0, 82.0, 102.0, 122.0]. if item.FieldIndex() == 'MotorStatus.MotorPti.temps[0]': self.assertEqual(item.GetResults(), { 'MotorPti.Board Temperature (Value)': { 'warning': {'count': 3, 'range': [80.0, 120.0], 'total': 4, 'sections': [(1, 4)], 'expecting': '[[60, 70], 0]'} } }) self.assertTrue(item.HasWarnings()) self.assertFalse(item.HasErrors()) elif item.FieldIndex() == 'MotorStatus.MotorPti.temps[1]': self.assertEqual(item.GetResults(), { 'MotorPti.temps[1] (Value)': { 'warning': {'count': 1, 'range': [82.0, 82.0], 'total': 4, 'sections': [(1, 2)], 'expecting': '[[60, 70], 0]'}, 'error': {'count': 2, 'range': [102.0, 122.0], 'total': 4, 'sections': [(2, 4)], 'expecting': '[[60, 90]]'} } }) self.assertTrue(item.HasWarnings()) self.assertTrue(item.HasErrors()) else: self.assertFalse(item.GetResults()) self.assertFalse(item.HasWarnings()) self.assertFalse(item.HasErrors()) def testBadGradebook(self): gradebook_string = """ { "imports": { "bad_module": "bad_package.bad_module" } } """ with self.assertRaises(gradebook.GradebookParserError): self._GradebookFromString(gradebook_string) gradebook_string = """ { "checks": { "BadMessage": {} } } """ with self.assertRaises(gradebook.GradebookParserError): self._GradebookFromString(gradebook_string) gradebook_string = """ { "imports": { "analysis_tests": "makani.analysis.checks.tests" }, "checks": { "ServoStatus": { "ServoA4": { "angle_bias": { "normal_ranges": [[0, 90]], "warning_ranges": "any", // A missing function from a module. "callback": "analysis_tests._Divide" } } } } } """ with self.assertRaises(gradebook.GradebookParserError): self._GradebookFromString(gradebook_string) gradebook_string = """ { "checks": { "ServoStatus": {
import pytest import matplotlib.pyplot as plt import numpy as np import popkinmocks as pkm @pytest.fixture def my_component(): ssps = pkm.model_grids.milesSSPs() ssps.logarithmically_resample(dv=100.) ssps.calculate_fourier_transform() ssps.get_light_weights() cube = pkm.ifu_cube.IFUCube(ssps=ssps, nx=9, ny=10) gc1 = pkm.components.growingDisk(cube=cube, rotation=0., center=(0,0)) gc1.set_p_t(lmd=2., phi=0.8) gc1.set_p_x_t(sig_x_lims=(0.5, 0.2), sig_y_lims=(0.03, 0.1), alpha_lims=(1.2, 0.8)) gc1.set_t_dep(sig_x=0.5, sig_y=0.1, alpha=3., t_dep_in=0.5, t_dep_out=5.) gc1.set_p_z_tx() gc1.set_mu_v(sig_x_lims=(0.5, 0.1), sig_y_lims=(0.1, 0.1), rmax_lims=(0.5, 1.1), vmax_lims=(250., 100.), vinf_lims=(60., 40.)) gc1.set_sig_v(sig_x_lims=(0.7, 0.1), sig_y_lims=(0.2, 0.1), alpha_lims=(3.0, 2.5), sig_v_in_lims=(70., 50.), sig_v_out_lims=(80., 60.)) gc1.evaluate_ybar() return ssps, cube, gc1 @pytest.fixture def my_kinematic_maps(): delta_E_v_x = np.array([ [-2.63231254, -2.91232087, -2.98508593, -1.98673529, 3.78808848, 3.78808848, -1.98673529, -2.98508593, -2.91232087, -2.63231254], [-2.13502906, -2.45075383, -2.69793969, -2.22245885, 3.19109946, 3.19109946, -2.22245885, -2.69793969, -2.45075383, -2.13502906], [-1.51721452, -1.80255015, -2.1309258 , -2.17208163, 1.81371172, 1.81371172, -2.17208163, -2.1309258 , -1.80255015, -1.51721452], [-0.79161243, -0.96531765, -1.21070541, -1.49427586, -0.1610911 , -0.1610911 , -1.49427586, -1.21070541, -0.96531765, -0.79161243], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0.79161243, 0.96531765, 1.21070541, 1.49427586, 0.1610911 , 0.1610911 , 1.49427586, 1.21070541, 0.96531765, 0.79161243], [ 1.51721452, 1.80255015, 2.1309258 , 2.17208163, -1.81371172, -1.81371172, 2.17208163, 2.1309258 , 1.80255015, 1.51721452], [ 2.13502906, 2.45075383, 2.69793969, 2.22245885, -3.19109946, -3.19109946, 2.22245885, 2.69793969, 2.45075383, 2.13502906], [ 2.63231254, 2.91232087, 2.98508593, 1.98673529, -3.78808848, -3.78808848, 1.98673529, 2.98508593, 2.91232087, 2.63231254]]) delta_var_v_x = np.array([ [-280.21425525, -291.19986619, -291.65748034, -244.40588447, -293.61176514, -293.61176514, -244.40588447, -291.65748034, -291.19986619, -280.21425525], [-262.32619221, -272.2404863 , -278.53941553, -250.2600659 , -257.36865076, -257.36865076, -250.2600659 , -278.53941553, -272.2404863 , -262.32619221], [-245.37601092, -251.26140478, -257.12608689, -246.94594179, -202.56176355, -202.56176355, -246.94594179, -257.12608689, -251.26140478, -245.37601092], [-232.85496802, -233.77421875, -233.61601769, -227.79587279, -181.7993307 , -181.7993307 , -227.79587279, -233.61601769, -233.77421875, -232.85496802], [-228.18799987, -226.78761345, -222.59783462, -211.84505418, -195.8310754 , -195.8310754 , -211.84505418, -222.59783462, -226.78761345, -228.18799987], [-232.85496802, -233.77421875, -233.61601769, -227.79587279, -181.7993307 , -181.7993307 , -227.79587279, -233.61601769, -233.77421875, -232.85496802], [-245.37601092, -251.26140478, -257.12608689, -246.94594179, -202.56176355, -202.56176355, -246.94594179, -257.12608689, -251.26140478, -245.37601092], [-262.32619221, -272.2404863 , -278.53941553, -250.2600659 , -257.36865076, -257.36865076, -250.2600659 , -278.53941553, -272.2404863 , -262.32619221], [-280.21425525, -291.19986619, -291.65748034, -244.40588447, -293.61176514, -293.61176514, -244.40588447, -291.65748034, -291.19986619, -280.21425525]]) delta_skew_v_x = np.array([ [-0.14324404, -0.15862658, -0.16467698, -0.11463442, 0.18223122, 0.18223122, -0.11463442, -0.16467698, -0.15862658, -0.14324404], [-0.1171153 , -0.13410869, -0.14820029, -0.1258044 , 0.15951882, 0.15951882, -0.1258044 , -0.14820029, -0.13410869, -0.1171153 ], [-0.08405618, -0.09957583, -0.11747619, -0.121175 , 0.09641303, 0.09641303, -0.121175 , -0.11747619, -0.09957583, -0.08405618], [-0.04424465, -0.05391409, -0.0675346 , -0.08357988, -0.009748 , -0.009748 , -0.08357988, -0.0675346 , -0.05391409, -0.04424465], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0.04424465, 0.05391409, 0.0675346 , 0.08357988, 0.009748 , 0.009748 , 0.08357988, 0.0675346 , 0.05391409, 0.04424465], [ 0.08405618, 0.09957583, 0.11747619, 0.121175 , -0.09641303, -0.09641303, 0.121175 , 0.11747619, 0.09957583, 0.08405618], [ 0.1171153 , 0.13410869, 0.14820029, 0.1258044 , -0.15951882, -0.15951882, 0.1258044 , 0.14820029, 0.13410869, 0.1171153 ], [ 0.14324404, 0.15862658, 0.16467698, 0.11463442, -0.18223122, -0.18223122, 0.11463442, 0.16467698, 0.15862658, 0.14324404]]) delta_kurt_v_x = np.array([ [-0.05086873, -0.05405702, -0.05568311, -0.04437223, -0.03793468, -0.03793468, -0.04437223, -0.05568311, -0.05405702, -0.05086873], [-0.04656647, -0.04921657, -0.05156603, -0.0461324 , -0.03620234, -0.03620234, -0.0461324 , -0.05156603, -0.04921657, -0.04656647], [-0.04239277, -0.04396597, -0.04576849, -0.04462888, -0.03099179, -0.03099179, -0.04462888, -0.04576849, -0.04396597, -0.04239277], [-0.03917829, -0.03946778, -0.03966134, -0.03926559, -0.03064167, -0.03064167, -0.03926559, -0.03966134, -0.03946778, -0.03917829], [-0.03794008, -0.03760283, -0.03672604, -0.03514706, -0.03743389, -0.03743389, -0.03514706, -0.03672604, -0.03760283, -0.03794008], [-0.03917829, -0.03946778, -0.03966134, -0.03926559, -0.03064167, -0.03064167, -0.03926559, -0.03966134, -0.03946778, -0.03917829], [-0.04239277, -0.04396597, -0.04576849, -0.04462888, -0.03099179, -0.03099179, -0.04462888, -0.04576849, -0.04396597, -0.04239277], [-0.04656647, -0.04921657, -0.05156603, -0.0461324 , -0.03620234, -0.03620234, -0.0461324 , -0.05156603, -0.04921657, -0.04656647], [-0.05086873, -0.05405702, -0.05568311, -0.04437223, -0.03793468, -0.03793468, -0.04437223, -0.05568311, -0.05405702, -0.05086873]]) return delta_E_v_x, delta_var_v_x, delta_skew_v_x, delta_kurt_v_x @pytest.fixture def my_ybar(): ybar = np.array([[ [1.66503907e-07, 2.50790314e-07, 5.14674482e-07, 3.34792026e-07, 2.00169632e-07], [1.72432910e-07, 2.73377303e-07, 6.41443532e-07, 3.87723843e-07, 2.11101778e-07], [1.73808494e-07, 2.81770920e-07, 7.99925189e-07, 4.16908084e-07, 2.14249485e-07], [1.69921633e-07, 2.67298718e-07, 6.14766128e-07, 3.76492694e-07, 2.07368985e-07], [1.62462075e-07, 2.42726446e-07, 4.79021326e-07, 3.21478885e-07, 1.94621366e-07]], [[1.82074881e-07, 2.76814846e-07, 5.81555277e-07, 3.73077668e-07, 2.19687251e-07], [1.87718002e-07, 2.99395561e-07, 7.30464312e-07, 4.28388405e-07, 2.30306513e-07], [1.88770248e-07, 3.06619783e-07, 8.85958564e-07, 4.54873360e-07, 2.32873273e-07], [1.84696877e-07, 2.91174753e-07, 6.67850264e-07, 4.10589086e-07, 2.25614454e-07], [1.76838721e-07, 2.64512976e-07, 5.25959705e-07, 3.50300927e-07, 2.11999609e-07]], [[1.63627114e-07, 2.48525524e-07, 5.25187306e-07, 3.34836620e-07, 1.97338003e-07], [1.68708135e-07, 2.68573140e-07, 6.52644330e-07, 3.83549190e-07, 2.06820312e-07], [1.69921000e-07, 2.75567210e-07, 7.84323467e-07, 4.07850387e-07, 2.09491566e-07], [1.66822897e-07, 2.63473972e-07, 6.13428884e-07, 3.72590034e-07, 2.03899524e-07], [1.60325493e-07, 2.40759492e-07, 4.88627858e-07, 3.20425681e-07, 1.92487762e-07]], [[1.70426217e-07, 2.57397205e-07, 5.38202276e-07, 3.45194536e-07, 2.05046627e-07], [1.76854175e-07, 2.80221904e-07, 6.73254196e-07, 3.98333138e-07, 2.16412619e-07], [1.79803094e-07, 2.91937009e-07, 8.44428120e-07, 4.32949595e-07, 2.21778297e-07], [1.78412976e-07, 2.84434418e-07, 7.01377895e-07, 4.07341196e-07, 2.18828490e-07], [1.73084470e-07, 2.63494388e-07, 5.58817773e-07, 3.56047725e-07, 2.08916742e-07]], [[1.77229738e-07, 2.68601732e-07, 5.62901991e-07, 3.61334368e-07, 2.13535044e-07], [1.83396155e-07, 2.91427877e-07, 7.09885256e-07, 4.15813189e-07, 2.24664803e-07], [1.85709465e-07, 3.01607892e-07, 8.79930876e-07, 4.47673038e-07, 2.29084998e-07], [1.83427421e-07, 2.91425538e-07, 7.06680623e-07, 4.15565366e-07, 2.24695361e-07], [1.77224931e-07, 2.68370911e-07, 5.59722173e-07, 3.60511928e-07, 2.13473486e-07]], [[1.75398267e-07, 2.65386099e-07, 5.51247442e-07, 3.56184177e-07, 2.11202651e-07], [1.81699796e-07, 2.88524375e-07, 6.98556961e-07, 4.11228126e-07, 2.22533778e-07], [1.84145868e-07, 2.99137885e-07, 8.77273315e-07, 4.44270026e-07, 2.27175489e-07], [1.81950349e-07, 2.89169549e-07, 7.02702028e-07, 4.12528744e-07, 2.22915144e-07], [1.75818229e-07, 2.66301210e-07, 5.55043114e-07, 3.57770563e-07, 2.11801036e-07]], [[1.66938646e-07, 2.53055653e-07, 5.26550036e-07, 3.40034134e-07, 2.01183284e-07], [1.72418890e-07, 2.74223204e-07, 6.66385134e-07, 3.91467558e-07, 2.11296351e-07], [1.73990411e-07, 2.82320301e-07, 8.21770638e-07, 4.18706520e-07, 2.14549991e-07], [1.71174183e-07, 2.70973774e-07, 6.47855433e-07, 3.84829848e-07, 2.09390566e-07], [1.64896074e-07, 2.48648524e-07, 5.13397507e-07, 3.32670755e-07, 1.98279413e-07]]]) return ybar @pytest.fixture def my_second_component(my_component): ssps, cube, gc1 = my_component gc2 = pkm.components.growingDisk(cube=cube, rotation=10., center=(0.05,-0.07)) gc2.set_p_t(lmd=1.6, phi=0.3) gc2.set_p_x_t(sig_x_lims=(0.9, 0.5), sig_y_lims=(0.9, 0.5), alpha_lims=(1.1, 1.1)) gc2.set_t_dep(sig_x=0.9, sig_y=0.8, alpha=1.1, t_dep_in=6., t_dep_out=1.) gc2.set_p_z_tx() gc2.set_mu_v(sig_x_lims=(0.5, 0.4), sig_y_lims=(0.4, 0.6), rmax_lims=(0.7, 0.2), vmax_lims=(-150., -190.), vinf_lims=(-70., -30.)) gc2.set_sig_v(sig_x_lims=(0.4, 0.3), sig_y_lims=(0.3, 0.4), alpha_lims=(2.0, 1.5), sig_v_in_lims=(70., 90.), sig_v_out_lims=(10., 20.)) gc2.evaluate_ybar() return gc2 @pytest.fixture def my_two_component_data(): ybar_trim = np.array([[ [6.78795924e-07, 7.01686348e-07, 8.01859822e-07, 6.54575404e-07, 5.86147750e-07], [8.93118591e-07, 1.01044963e-06, 1.08760627e-06, 9.08970737e-07, 8.04216872e-07], [1.09005990e-06, 1.51395591e-06, 2.18895041e-06, 1.56156125e-06, 1.08249656e-06], [1.06030173e-06, 1.35771822e-06, 1.73337573e-06, 1.51595824e-06, 1.12148005e-06], [8.87440824e-07, 1.02287996e-06, 1.23583244e-06, 1.13249444e-06, 9.56997325e-07]], [[6.95057611e-07, 8.35432206e-07, 1.06261004e-06, 8.99305095e-07, 7.32804325e-07], [8.09742717e-07, 1.05492919e-06, 1.43766915e-06, 1.16205100e-06, 8.66742670e-07], [8.75172239e-07, 1.23894490e-06, 2.14608013e-06, 1.40958716e-06, 9.45855918e-07], [8.29082597e-07, 1.10288440e-06, 1.52975025e-06, 1.21627303e-06, 8.86178288e-07], [7.18016977e-07, 8.75130099e-07, 1.10430275e-06, 9.41110691e-07, 7.56015945e-07]], [[6.49843531e-07, 7.89512647e-07, 1.03427326e-06, 8.65798455e-07, 6.91205926e-07], [7.53867148e-07, 9.89815363e-07, 1.40081086e-06, 1.10819279e-06, 8.11863590e-07], [8.12491049e-07, 1.15577039e-06, 2.06803774e-06, 1.33052216e-06, 8.82837321e-07], [7.69889623e-07, 1.03204022e-06, 1.48874368e-06, 1.15180122e-06, 8.27565395e-07], [6.69875308e-07, 8.26185161e-07, 1.08094531e-06, 8.98515696e-07, 7.08868996e-07]], [[5.38070313e-07, 6.61388554e-07, 8.92535864e-07, 7.39803311e-07, 5.77997480e-07], [6.23192516e-07, 8.22422661e-07, 1.20670143e-06, 9.37011543e-07, 6.72947869e-07], [6.77164279e-07, 9.65679392e-07, 1.75427227e-06, 1.11299841e-06, 7.32227156e-07], [6.48558116e-07, 8.74125093e-07, 1.27402740e-06, 9.79381998e-07, 6.95077317e-07], [5.66898459e-07, 7.01068275e-07, 9.27462212e-07, 7.67217788e-07, 6.00170529e-07]]]) kurtosis_map = np.array([ [1.91380693, 1.55782066, 1.27171119, 1.08833282, 1.02749551, 1.07150682, 1.11635444, 1.23115968, 1.405092 , 1.62503012], [2.30940445, 1.83576031, 1.42308581, 1.15675259, 1.0759083 , 1.13154697, 1.18255044, 1.34491972, 1.59086255, 1.88417317], [2.97029226, 2.39380564, 1.76191518, 1.29496091, 1.1713133 , 1.21681466, 1.29511235, 1.57516296, 1.94876758, 2.32885887], [3.82246852, 3.4337086 , 2.71641518, 1.76578055, 1.34413923, 1.33416537, 1.6430093 , 2.19152103, 2.68168558, 3.05339968], [4.02059459, 3.94261714, 3.80437848, 3.50847935, 2.6304971 , 2.73780921, 3.23658831, 3.55078133, 3.74262018, 3.86515134], [3.16015004, 2.77293542, 2.23467474, 1.62505916, 1.40562588, 1.31127397, 2.49819678, 3.38667439, 3.80341415, 3.99499944], [2.31046908, 1.90151357, 1.52427507, 1.30081999, 1.23387369, 1.08291611, 1.42886235, 2.13711064, 2.82258727, 3.32086012], [1.83368963, 1.54303228, 1.32668847, 1.21687229, 1.11168503, 1.03704828, 1.18182108, 1.57250558, 2.08491235, 2.59049802], [1.58092215, 1.37653744, 1.23203566, 1.15021943, 1.04524221, 1.01358309, 1.09786527, 1.34131655, 1.69539686, 2.09911566]]) return ybar_trim, kurtosis_map def test_component_normalisation(my_component): """Tests the normalisations of all densities evaluated for a component """ ssps, cube, gc1 = my_component v_edg = np.linspace(-900, 900, 20) dv = v_edg[1] - v_edg[0] na = np.newaxis # check p_t a = gc1.get_p_t(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1) a = gc1.get_p_t(density=True, light_weighted=False) assert np.isclose(np.sum(a*ssps.delta_t), 1) a = gc1.get_p_t(density=False, light_weighted=True) assert np.isclose(np.sum(a), 1) a = gc1.get_p_t(density=True, light_weighted=True) assert np.isclose(np.sum(a*ssps.delta_t), 1) # check p_x_t a = gc1.get_p_x_t(density=False, light_weighted=False) assert np.allclose(np.sum(a, (0,1)), 1.) a = gc1.get_p_x_t(density=True, light_weighted=False) assert np.allclose(np.sum(a*cube.dx*cube.dy, (0,1)), 1.) a = gc1.get_p_x_t(density=False, light_weighted=True) assert np.allclose(np.sum(a, (0,1)), 1.) a = gc1.get_p_x_t(density=True, light_weighted=True) assert np.allclose(np.sum(a*cube.dx*cube.dy, (0,1)), 1.) # check p_tx a = gc1.get_p_tx(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1.) a = gc1.get_p_tx(density=True, light_weighted=False) assert np.isclose(np.sum(a*ssps.delta_t[:,na,na]*cube.dx*cube.dy), 1) a = gc1.get_p_tx(density=False, light_weighted=True) assert np.isclose(np.sum(a), 1.) a = gc1.get_p_tx(density=True, light_weighted=True) assert np.isclose(np.sum(a*ssps.delta_t[:,na,na]*cube.dx*cube.dy), 1) # check p_z_tx a = gc1.get_p_z_tx(density=False, light_weighted=False) assert np.allclose(np.sum(a, 0), 1.) a = gc1.get_p_z_tx(density=True, light_weighted=False) assert np.allclose(np.sum(a*ssps.delta_z[:,na,na,na], 0), 1.) a = gc1.get_p_z_tx(density=False, light_weighted=True) assert np.allclose(np.sum(a, 0), 1.) a = gc1.get_p_z_tx(density=True, light_weighted=True) assert np.allclose(np.sum(a*ssps.delta_z[:,na,na,na], 0), 1.) # check p_txz a = gc1.get_p_txz(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1) a = gc1.get_p_txz(density=True, light_weighted=False) vol_elmt = ssps.delta_t[:,na,na,na]*cube.dx*cube.dy*ssps.delta_z[na,na,na,:] assert np.isclose(np.sum(a * vol_elmt), 1) a = gc1.get_p_txz(density=False, light_weighted=True) assert np.isclose(np.sum(a), 1) a = gc1.get_p_txz(density=True, light_weighted=True) vol_elmt = ssps.delta_t[:,na,na,na]*cube.dx*cube.dy*ssps.delta_z[na,na,na,:] assert np.isclose(np.sum(a * vol_elmt), 1) # check get_p_x a = gc1.get_p_x(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1) a = gc1.get_p_x(density=True, light_weighted=False) assert np.isclose(np.sum(a*cube.dx*cube.dy), 1) a = gc1.get_p_x(density=False, light_weighted=True) assert np.isclose(np.sum(a), 1) a = gc1.get_p_x(density=True, light_weighted=True) assert np.isclose(np.sum(a*cube.dx*cube.dy), 1) # check get_p_z a = gc1.get_p_z(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1) a = gc1.get_p_z(density=True, light_weighted=False) assert np.isclose(np.sum(a*ssps.delta_z), 1) a = gc1.get_p_z(density=False, light_weighted=True) assert np.isclose(np.sum(a), 1) a = gc1.get_p_z(density=True, light_weighted=True) assert np.isclose(np.sum(a*ssps.delta_z), 1) # check p_tz_x a = gc1.get_p_tz_x(density=False, light_weighted=False) assert np.allclose(np.sum(a, (0,1)), 1.) a = gc1.get_p_tz_x(density=True, light_weighted=False) vol_elmt = ssps.delta_t[:,na,na,na]*ssps.delta_z[na,:,na,na] assert np.allclose(np.sum(a*vol_elmt, (0,1)), 1.) a = gc1.get_p_tz_x(density=False, light_weighted=True) assert np.allclose(np.sum(a, (0,1)), 1.) a = gc1.get_p_tz_x(density=True, light_weighted=True) vol_elmt = ssps.delta_t[:,na,na,na]*ssps.delta_z[na,:,na,na] assert np.allclose(np.sum(a*vol_elmt, (0,1)), 1.) # check p_tz a = gc1.get_p_tz(density=False, light_weighted=False) assert np.isclose(np.sum(a), 1.) a = gc1.get_p_tz(density=True, light_weighted=False) assert np.isclose(np.sum(a*ssps.delta_t[:,na]*ssps.delta_z[na,:]), 1.) a
<filename>tencentcloud/eiam/v20210420/eiam_client.py # -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.common.abstract_client import AbstractClient from tencentcloud.eiam.v20210420 import models class EiamClient(AbstractClient): _apiVersion = '2021-04-20' _endpoint = 'eiam.tencentcloudapi.com' _service = 'eiam' def AddAccountToAccountGroup(self, request): """账号组添加账号 :param request: Request instance for AddAccountToAccountGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.AddAccountToAccountGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.AddAccountToAccountGroupResponse` """ try: params = request._serialize() body = self.call("AddAccountToAccountGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.AddAccountToAccountGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def AddUserToUserGroup(self, request): """加入用户到用户组 :param request: Request instance for AddUserToUserGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.AddUserToUserGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.AddUserToUserGroupResponse` """ try: params = request._serialize() body = self.call("AddUserToUserGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.AddUserToUserGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateAccountGroup(self, request): """创建账号组 :param request: Request instance for CreateAccountGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.CreateAccountGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.CreateAccountGroupResponse` """ try: params = request._serialize() body = self.call("CreateAccountGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateAccountGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateAppAccount(self, request): """创建应用账号 :param request: Request instance for CreateAppAccount. :type request: :class:`tencentcloud.eiam.v20210420.models.CreateAppAccountRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.CreateAppAccountResponse` """ try: params = request._serialize() body = self.call("CreateAppAccount", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateAppAccountResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateOrgNode(self, request): """新建一个机构节点 :param request: Request instance for CreateOrgNode. :type request: :class:`tencentcloud.eiam.v20210420.models.CreateOrgNodeRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.CreateOrgNodeResponse` """ try: params = request._serialize() body = self.call("CreateOrgNode", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateOrgNodeResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateUser(self, request): """新建一个用户 :param request: Request instance for CreateUser. :type request: :class:`tencentcloud.eiam.v20210420.models.CreateUserRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.CreateUserResponse` """ try: params = request._serialize() body = self.call("CreateUser", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateUserResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateUserGroup(self, request): """新建用户组 :param request: Request instance for CreateUserGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.CreateUserGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.CreateUserGroupResponse` """ try: params = request._serialize() body = self.call("CreateUserGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateUserGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteAccountGroup(self, request): """删除账号组 :param request: Request instance for DeleteAccountGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteAccountGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteAccountGroupResponse` """ try: params = request._serialize() body = self.call("DeleteAccountGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteAccountGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteAppAccount(self, request): """删除应用账号 :param request: Request instance for DeleteAppAccount. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteAppAccountRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteAppAccountResponse` """ try: params = request._serialize() body = self.call("DeleteAppAccount", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteAppAccountResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteOrgNode(self, request): """删除一个机构节点 :param request: Request instance for DeleteOrgNode. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteOrgNodeRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteOrgNodeResponse` """ try: params = request._serialize() body = self.call("DeleteOrgNode", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteOrgNodeResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteUser(self, request): """通过用户名或用户 id 删除用户。 :param request: Request instance for DeleteUser. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteUserRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteUserResponse` """ try: params = request._serialize() body = self.call("DeleteUser", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteUserResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteUserGroup(self, request): """删除一个用户组 :param request: Request instance for DeleteUserGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteUserGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteUserGroupResponse` """ try: params = request._serialize() body = self.call("DeleteUserGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteUserGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteUsers(self, request): """批量删除当前节点下的用户。如果出现个别用户删除错误,将不影响其余被勾选用户被删除的操作,同时提示未被删除的用户名称/用户ID。 :param request: Request instance for DeleteUsers. :type request: :class:`tencentcloud.eiam.v20210420.models.DeleteUsersRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DeleteUsersResponse` """ try: params = request._serialize() body = self.call("DeleteUsers", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteUsersResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeAccountGroup(self, request): """查询账号组列表 :param request: Request instance for DescribeAccountGroup. :type request: :class:`tencentcloud.eiam.v20210420.models.DescribeAccountGroupRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DescribeAccountGroupResponse` """ try: params = request._serialize() body = self.call("DescribeAccountGroup", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeAccountGroupResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeAppAccount(self, request): """查询应用账号列表 :param request: Request instance for DescribeAppAccount. :type request: :class:`tencentcloud.eiam.v20210420.models.DescribeAppAccountRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DescribeAppAccountResponse` """ try: params = request._serialize() body = self.call("DescribeAppAccount", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeAppAccountResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeApplication(self, request): """获取一个应用的信息。 :param request: Request instance for DescribeApplication. :type request: :class:`tencentcloud.eiam.v20210420.models.DescribeApplicationRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DescribeApplicationResponse` """ try: params = request._serialize() body = self.call("DescribeApplication", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeApplicationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeOrgNode(self, request): """根据机构节点ID读取机构节点信息 :param request: Request instance for DescribeOrgNode. :type request: :class:`tencentcloud.eiam.v20210420.models.DescribeOrgNodeRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DescribeOrgNodeResponse` """ try: params = request._serialize() body = self.call("DescribeOrgNode", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeOrgNodeResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeOrgResourcesAuthorization(self, request): """查询指定机构下的资源授权列表 :param request: Request instance for DescribeOrgResourcesAuthorization. :type request: :class:`tencentcloud.eiam.v20210420.models.DescribeOrgResourcesAuthorizationRequest` :rtype: :class:`tencentcloud.eiam.v20210420.models.DescribeOrgResourcesAuthorizationResponse` """ try: params = request._serialize() body = self.call("DescribeOrgResourcesAuthorization", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeOrgResourcesAuthorizationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribePublicKey(self, request): """获取JWT公钥信息。 :param request: Request instance for DescribePublicKey. :type
str) == True : r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) # it's a variable length opcode else : r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_VARIABLE( i, op_value, self.__raw_buff[ i : ] ) len_format = calcsize(r_format) raw_buff = self.__raw_buff[ i : i + 1 + len_format ] jbc = JBC( class_manager, JAVA_OPCODES[ op_value ][0], raw_buff, ( r_function, v_function, r_buff, r_format, f_function ) ) self.__bytecodes.append( jbc ) i += len_format else : self.__bytecodes.append( JBC( class_manager, JAVA_OPCODES[ op_value ][0], self.__raw_buff[ i ] ) ) else : bytecode.Exit( "op_value 0x%x is unknown" % op_value ) i += 1 # Create branch bytecodes list idx = 0 nb = 0 for i in self.__bytecodes : self.__maps.append( idx ) if i.get_name() in BRANCH_JVM_OPCODES : self.__branches.append( nb ) idx += i.get_length() nb += 1 def _patch_bytecodes(self) : methods = [] for i in self.__bytecodes : if "invoke" in i.get_name() : operands = i.get_operands() methods.append( operands ) op_value = INVERT_JAVA_OPCODES[ i.get_name() ] raw_buff = pack( '>B', op_value ) r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) new_class_index = self.__CM.create_class( operands[0] ) new_name_and_type_index = self.__CM.create_name_and_type( operands[1], operands[2] ) self.__CM.create_method_ref( new_class_index, new_name_and_type_index ) value = getattr( self.__CM, JAVA_OPCODES[ op_value ][5] )( *operands[0:] ) if value == -1 : bytecode.Exit( "Unable to found method " + str(operands) ) raw_buff += pack(r_format, *v_function( value ) ) i.reload( raw_buff ) elif "anewarray" in i.get_name() : operands = i.get_operands() op_value = INVERT_JAVA_OPCODES[ i.get_name() ] raw_buff = pack( '>B', op_value ) r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) new_class_index = self.__CM.create_class( operands ) raw_buff += pack(r_format, *v_function( new_class_index ) ) i.reload( raw_buff ) elif "getstatic" == i.get_name() : operands = i.get_operands() op_value = INVERT_JAVA_OPCODES[ i.get_name() ] raw_buff = pack( '>B', op_value ) r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) new_class_index = self.__CM.create_class( operands[0] ) new_name_and_type_index = self.__CM.create_name_and_type( operands[1], operands[2] ) self.__CM.create_field_ref( new_class_index, new_name_and_type_index ) value = getattr( self.__CM, JAVA_OPCODES[ op_value ][5] )( *operands[1:] ) if value == -1 : bytecode.Exit( "Unable to found method " + str(operands) ) raw_buff += pack(r_format, *v_function( value ) ) i.reload( raw_buff ) elif "ldc" == i.get_name() : operands = i.get_operands() op_value = INVERT_JAVA_OPCODES[ i.get_name() ] raw_buff = pack( '>B', op_value ) r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) if operands[0] != "CONSTANT_Integer" and operands[0] != "CONSTANT_String" : bytecode.Exit( "...." ) if operands[0] == "CONSTANT_Integer" : new_int_index = self.__CM.create_integer( operands[1] ) raw_buff += pack(r_format, *v_function( new_int_index ) ) elif operands[0] == "CONSTANT_String" : new_string_index = self.__CM.create_string( operands[1] ) raw_buff += pack(r_format, *v_function( new_string_index ) ) i.reload( raw_buff ) elif "new" == i.get_name() : operands = i.get_operands() op_value = INVERT_JAVA_OPCODES[ i.get_name() ] raw_buff = pack( '>B', op_value ) r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) new_class_index = self.__CM.create_class( operands ) raw_buff += pack(r_format, *v_function( new_class_index ) ) i.reload( raw_buff ) return methods def get(self) : """ Return all bytecodes @rtype : L{list} """ return self.__bytecodes def get_raw(self) : return ''.join(x.get_raw() for x in self.__bytecodes) def show(self) : """ Display the code like a disassembler """ nb = 0 for i in self.__bytecodes : print nb, self.__maps[nb], i.show( self.__maps[nb] ) print nb += 1 def pretty_show(self, m_a) : """ Display the code like a disassembler but with instructions' links """ bytecode.PrettyShow( m_a.basic_blocks.gets() ) bytecode.PrettyShowEx( m_a.exceptions.gets() ) def get_relative_idx(self, idx) : """ Return the relative idx by given an offset in the code @param idx : an offset in the code @rtype : the relative index in the code, it's the position in the list of a bytecode """ n = 0 x = 0 for i in self.__bytecodes : #print n, idx if n == idx : return x n += i.get_length() x += 1 return -1 def get_at(self, idx) : """ Return a specific bytecode at an index @param : the index of a bytecode @rtype : L{JBC} """ return self.__bytecodes[ idx ] def remove_at(self, idx) : """ Remove bytecode at a specific index @param idx : the index to remove the bytecode @rtype : the length of the removed bytecode """ val = self.__bytecodes[idx] val_m = self.__maps[idx] # Remove the index if it's in our branch list if idx in self.__branches : self.__branches.remove( idx ) # Adjust each branch for i in self.__branches : self.__bytecodes[i].adjust_r( self.__maps[i], val_m, val.get_length() ) # Remove it ! self.__maps.pop(idx) self.__bytecodes.pop(idx) # Adjust branch and map list self._adjust_maps( val_m, val.get_length() * -1 ) self._adjust_branches( idx, -1 ) return val.get_length() def _adjust_maps(self, val, size) : nb = 0 for i in self.__maps : if i > val : self.__maps[ nb ] = i + size nb = nb + 1 def _adjust_maps_i(self, val, size) : nb = 0 x = 0 for i in self.__maps : if i == val : x+=1 if x == 2 : self.__maps[ nb ] = i + size if i > val : self.__maps[ nb ] = i + size nb = nb + 1 def _adjust_branches(self, val, size) : nb = 0 for i in self.__branches : if i > val : self.__branches[ nb ] = i + size nb += 1 def insert_at(self, idx, byte_code) : """ Insert bytecode at a specific index @param idx : the index to insert the bytecode @param bytecode : a list which represent the bytecode @rtype : the length of the inserted bytecode """ # Get the op_value and add it to the raw_buff op_name = byte_code[0] op_value = INVERT_JAVA_OPCODES[ op_name ] raw_buff = pack( '>B', op_value ) new_jbc = None # If it's an op_value with args, we must handle that ! if len( JAVA_OPCODES[ op_value ] ) > 1 : # Find information about the op_value r_function, v_function, r_buff, r_format, f_function = EXTRACT_INFORMATION_SIMPLE( op_value ) # Special values for this op_value (advanced bytecode) if len( JAVA_OPCODES[ op_value ] ) == 6 : value = getattr( self.__CM, JAVA_OPCODES[ op_value ][5] )( *byte_code[1:] ) if value == -1 : bytecode.Exit( "Unable to found " + str(byte_code[1:]) ) raw_buff += pack(r_format, *v_function( value ) ) else : raw_buff += pack(r_format, *v_function( *byte_code[1:] ) ) new_jbc = JBC(self.__CM, op_name, raw_buff, ( r_function, v_function, r_buff, r_format, f_function ) ) else : new_jbc = JBC(self.__CM, op_name, raw_buff) # Adjust each branch with the new insertion val_m = self.__maps[ idx ] for i in self.__branches : self.__bytecodes[i].adjust_i( self.__maps[i], val_m, new_jbc.get_length() ) # Insert the new bytecode at the correct index # Adjust maps + branches self.__bytecodes.insert( idx, new_jbc ) self.__maps.insert( idx, val_m ) self._adjust_maps_i( val_m, new_jbc.get_length() ) self._adjust_branches( idx, 1 ) # Add it to the branches if it's a correct op_value if new_jbc.get_name() in BRANCH_JVM_OPCODES : self.__branches.append( idx ) # FIXME # modify the exception table # modify tableswitch and lookupswitch instructions # return the length of the raw_buff return len(raw_buff) def remplace_at(self, idx, bytecode) : """ Remplace bytecode at a specific index by another bytecode (remplace = remove + insert) @param idx : the index to insert the bytecode @param bytecode : a list which represent the bytecode @rtype : the length of the inserted bytecode """ self.remove_at(idx) * (-1) size = self.insert_at(idx, bytecode) return size def set_cm(self, cm) : self.__CM = cm for i in self.__bytecodes : i.set_cm( cm ) class BasicAttribute(object) : def __init__(self) : self.__attributes = [] def get_attributes(self) : return self.__attributes def set_cm(self, cm) : self.__CM = cm class CodeAttribute(BasicAttribute) : def __init__(self, class_manager, buff) : self.__CM = class_manager super(CodeAttribute, self).__init__() # u2 attribute_name_index; # u4 attribute_length; # u2 max_stack; # u2 max_locals; # u4 code_length; # u1 code[code_length]; self.low_struct = SVs( CODE_LOW_STRUCT[0], CODE_LOW_STRUCT[1], buff.read( calcsize(CODE_LOW_STRUCT[0]) ) ) self.__code = JavaCode( class_manager, buff.read( self.low_struct.get_value().code_length ) ) # u2 exception_table_length; self.exception_table_length = SV( '>H', buff.read(2) ) # { u2 start_pc; # u2 end_pc; # u2 handler_pc; # u2 catch_type; # } exception_table[exception_table_length]; self.__exception_table = [] for i in range(0, self.exception_table_length.get_value()) : et
f') plt.title('Electric field (Intensity/Mean)') plt.xlabel('$x/r_f$') if not subplot: plt.show() return def plot_delay(self, subplot=False): # get frequency to set the scale, enter in GHz Freq = self.freq/1000 plt.subplot(2, 1, 1) plt.plot(np.linspace(0, self.dx*self.nx, self.nx), -self.dm/(2*self.dlam*Freq)) plt.ylabel('Group delay (ns)') plt.xlabel('$x/r_f$') plt.subplot(2, 1, 2) plt.plot(np.mean(self.pulsewin, axis=1)) plt.ylabel('Intensity (arb)') plt.xlabel('Delay (arb)') plt.show() return def plot_pulse(self, subplot=False): # get frequency to set the scale, enter in GHz Freq = self.freq/1000 lpw = np.log10(self.pulsewin) vmax = np.max(lpw) vmin = np.median(lpw) - 3 plt.pcolormesh(np.linspace(0, self.dx*self.nx, self.nx), (np.arange(0, 3*self.nf/2, 1) - self.nf/2) / (2*self.dlam*Freq), lpw[int(self.nf/2):, :], vmin=vmin, vmax=vmax) plt.colorbar plt.ylabel('Delay (ns)') plt.xlabel('$x/r_f$') plt.plot(np.linspace(0, self.dx*self.nx, self.nx), -self.dm/(2*self.dlam*Freq), 'k') # group delay=-phase delay plt.show() def plot_all(self): plt.figure(2) plt.subplot(2, 2, 1) self.plot_screen(subplot=True) plt.subplot(2, 2, 2) self.plot_intensity(subplot=True) plt.subplot(2, 1, 2) self.plot_dynspec(subplot=True) plt.show() """ The code below is unfinished, but will eventually allow one to compute the ACF analytically, including a phase gradient. A dynamic spectrum with phase gradients (beyond those that arise naturally) can be simulated from this. """ class ACF(): def __init__(self, s_max=5, dnu_max=5, ns=256, nf=256, ar=1, alpha=5/3, phasegrad_x=0, phasegrad_y=0, V_x=1, V_y=0, psi=0, amp=1, use_t=True, plot=False, display=True): """ Generate an ACF from the theoretical function in: Rickett et al. (2014) s_max - number of coherence spatial scales to calculate over dnu_max - number of decorrelation bandwidths to calculate over ns - number of spatial steps nf - number of decorrelation bandwidth steps alpha - exponent for interstellar turbulence ar - axial ratio of diffractive scintillation. Major axis defines x phasegrad_x - phase gradient in x direction phasegrad_y - phase gradient in y direction Vx - Effective velocity in x direction Vy - Effective velocity in y direction If ISS spectrum is a Kolmogorov power-law with no inner or outer scale, alpha=5/3 """ self.s_max = s_max self.dnu_max = dnu_max self.ns = ns self.nf = nf self.ar = ar self.alpha = alpha self.phasegrad_x = phasegrad_x self.phasegrad_y = phasegrad_y self.V_x = V_x self.V_y = V_y self.use_t = use_t # self.psi = psi self.amp = amp return def calc_acf(self, plot=False): """ computes 2-D ACF of intensity vs t and v where optimal sampling of t and v is provided with the output ACF assume ISS spectrum is a Kolmogorov power-law with no inner or outer scale requires velocity and angular displacement due to phase gradient (vectors) vectors are x, y where x = major axis of spatial structure, i.e. density variations are elongated by "ar" in the x direction. y is 90deg CCW. implement the integrals in Appendix A of Rickett, Coles et al ApJ 2014 on the analysis of the double pulsar scintillation equations A1 and A2. A2 has an error. It would be correct if nu were replaced by omega, i.e. had an extra 2*pi coordinates are with respect to ar major axis so we don't have to rotate the structure, we put V and sig vectors in the structure coordinates. The distance sn is normalized by So and the frequency dnun by \nu_{0.5} the spatial scale and the frequency scale respectively. the phase gradient is normalized by the 1/s0, i.e. sigxn = gradphix*s0 if there is no phase gradient then the acf is symmetric and only one quadrant needs to be calculated. Otherwise two quadrants are necessary. new algorithm to compute same integral. Normalized integral is game(sn, dnun) = -j/(2pi)^2 (1/dnun) sum sum (dsn)^2 game(snp,0)exp((j/4pi)(1/dnun) | sn - snp|^2 the worst case sampling is when dnun is very small. Then the argument of the complex exponential becomes large and aliasing will occur. If dnun=0.01 and dsp=0.1 the alias will peak at snx = 5. Reducing the sampling dsp to 0.05 will push that alias out to snx = 8. However halving dsp will increase the time by a factor of 4. The frequency decorrelation is quite linear near the origin and looks quasi-exponential, the 0.5 width is dnun = 0.15. Sampling of 0.05 is more than adequate in frequency. Sampling of 0.1 in sn is adequate dnun = 0.0 is divergent with this integral but can be obtained trivially from the ACF of the electric field directly Use formula vec{S} = vec{V} t - 2 vec{vec{sigma_p}}}delta nu/nu equation A6 to get equal t sampling. dt = ds / |V| and tmax= Smax + 2 |sigma_p| dnu/nu """ alph2 = self.alpha/2 nf = self.nf ns = self.ns spmax = self.s_max dnumax = self.dnu_max sigxn = self.phasegrad_x sigyn = self.phasegrad_y V_x = self.V_x V_y = self.V_y amp = self.amp Vmag = np.sqrt(self.V_x**2 + self.V_y**2) dsp = 2 * spmax / (ns) # ddnun = 2 * dnumax / nf sqrtar = np.sqrt(self.ar) # equally spaced dnu array dnu = dnun * nuhalf dnun = np.linspace(0, dnumax, int(np.ceil(nf/2))) ndnun = len(dnun) if sigxn == 0 and sigyn == 0: # calculate only one quadrant tn >= 0 gammitv = np.zeros((int(ns/2), int(nf/2))) # equally spaced t array t= tn*S0 tn = np.arange(0.0, spmax/Vmag, dsp/Vmag) snx = V_x*tn sny = V_y*tn snp = np.arange(-2*spmax, 2*spmax, dsp) SNPX, SNPY = np.meshgrid(snp, snp) gammes = np.exp(-0.5*((SNPX/sqrtar)**2 + (SNPY*sqrtar)**2)**alph2) # ACF of e-field # compute dnun = 0 first gammitv[:, 0] = np.exp(-0.5*((snx/sqrtar)**2 + (sny*sqrtar)**2)**alph2) # now do first dnu step with double spatial resolution snp2 = np.arange(-2*spmax, 2*spmax, dsp/2) SNPX2, SNPY2 = np.meshgrid(snp2, snp2) gammes2 = np.exp(-0.5*((SNPX2/sqrtar)**2 + (SNPY2*sqrtar)**2)**alph2) # ACF of e-field for isn in range(0, len(snx)): ARG = ((SNPX2-snx[isn])**2 + (SNPY2-sny[isn])**2)/(2*dnun[1]) temp = gammes2 * np.exp(1j*ARG) gammitv[isn, 1] = -1j*(dsp/2)**2 * \ np.sum(temp)/((2*np.pi)*dnun[1]) # now do remainder of dnu array for idn in range(2, ndnun): for isn in range(0, len(snx)): ARG = ((SNPX-snx[isn])**2 + (SNPY-sny[isn])**2)/(2*dnun[idn]) temp = gammes*np.exp(1j * ARG) gammitv[isn, idn] = -1j*dsp**2 * \ np.sum(temp)/((2*np.pi)*dnun[idn]) # equation A1 convert ACF of E to ACF of I gammitv = np.real(gammitv * np.conj(gammitv)).squeeze() nr, nc = np.shape(gammitv) gam2 = np.zeros((nr, nc*2)) gam2[:, 1:nc] = np.fliplr(gammitv[:, 1:]) gam2[:, nc:] = gammitv gam3 = np.zeros((nr*2, nc*2)) gam3[1:nr, :] = np.flipud(gam2[1:, :]) gam3[nr:, :] = gam2 gam3 = np.transpose(gam3) nf, nt = np.shape(gam3) t2 = np.linspace(-spmax/Vmag, spmax/Vmag, nt) f2 = np.linspace(-dnumax, dnumax, nf) s2 = t2*Vmag else: # calculate two quadrants -tmax t < tmax if self.use_t: # equally spaced t array t = tn*S0 tn = np.linspace(-spmax, spmax, ns) snp = np.arange(-spmax*Vmag, spmax*Vmag, dsp) else: tn = np.linspace(-spmax/Vmag, spmax/Vmag, ns) snp = np.arange(-spmax, spmax, dsp) snx, sny = V_x * tn, V_y * tn SNPX, SNPY = np.meshgrid(snp, snp) gammes = np.exp(-0.5 * ((SNPX / sqrtar)**2 + (SNPY * sqrtar)**2)**alph2) # ACF of E-field # compute dnun = 0 first gammitv = np.zeros((int(ns), int(np.ceil(nf / 2)))) gammitv[:, 0] = np.exp(-0.5 * ((snx / sqrtar)**2 + (sny * sqrtar)**2)**alph2) for idn in range(1, int(np.ceil(nf/2))): snxt = snx - 2 * sigxn * dnun[idn] snyt = sny - 2 * sigyn * dnun[idn] for isn in range(ns): temp = gammes * np.exp(1j * ((SNPX - snxt[isn])**2 + (SNPY - snyt[isn])**2) / (2 * dnun[idn])) gammitv[isn, idn] = -1j * dsp**2 * np.sum(temp[:]) /\ ((2 * np.pi) * dnun[idn]) # equation A1 convert ACF of E to ACF of I gammitv = np.real(gammitv * np.conj(gammitv)) gam3 = amp * np.transpose(np.conj(np.hstack((np.fliplr(np.flipud( gammitv[:, 1:])), gammitv)))) # scale by amplitude and crop to match data f2 = np.hstack((np.flip(-dnun[1:]), dnun)) t2 = tn s2 = t2 * Vmag self.fn = f2 self.tn = t2 self.sn = s2 self.acf = gam3 if plot: self.plot_acf() return def calc_sspec(self): arr = np.fft.fftshift(self.acf) arr = np.fft.fft2(arr) arr = np.fft.fftshift(arr) arr = np.real(arr) self.sspec = 10*np.log10(arr) def plot_acf(self, display=True): """ Plots the simulated ACF """ plt.pcolormesh(self.tn, self.fn, self.acf) plt.xlabel(r'Time lag ($s/s_d$)') plt.ylabel(r'Frequency lag ($\nu/\nu_d$)') if display: plt.show() def plot_sspec(self, display=True): """ Plots the simulated ACF """ plt.pcolormesh(self.tn, self.fn, self.sspec) plt.xlabel(r'Delay') plt.ylabel(r'Doppler') if display: plt.show() return class Brightness(): def __init__(self, ar=1.0, exponent=1.67, thetagx=0, thetagy=0.0, psi=90, thetarx=0, thetary=0.0, df=0.04, dt=0.08, dx=0.1, nf=10, nt=80, nx=30, ncuts=5, plot=True, contour=True, figsize=(10, 8), smooth_jacobian=False): """ Simulate Delay-Doppler Spectrum from Scattered angular spectrum from Yao et
<filename>tests/test_urls.py # -*- coding: utf-8 -*- """ Tests for the basecampy3.urls package. """ from __future__ import unicode_literals import logging import os import re import time import unittest import uuid from datetime import date, datetime, timedelta import dateutil import pytz from tzlocal import get_localzone from basecampy3 import Basecamp3, exc logger = logging.getLogger("basecampy3") logger.setLevel(logging.DEBUG) logging.basicConfig(level=logging.INFO) logging.getLogger("basecampy3.transport_adapter").setLevel(logging.INFO) try: PRE_MADE_PROJECT_ID = os.environ["BC3_TEST_PROJECT_ID"] """ REQUIRED: An ID for a Project you create in advance that must have a Question (Check-In), an Answer to that Question, and Email Forwards must be enabled. """ except Exception: raise EnvironmentError("You must define environment variable " "'BC3_TEST_PROJECT_ID' so that Questions and " "Forwards can be tested.") class APITest(unittest.TestCase): PROJECT_TEST_NAME_PREFIX = "_DELETE_pytest__basecampy3_" PROJECT_TEST_DESCRIPTION = "Trash me I am a test project." UPLOAD_TEST_FILE_NAME = "testfile.png" api = None def __init__(self, methodName='runTest'): super(APITest, self).__init__(methodName=methodName) if APITest.api is None: APITest.api = Basecamp3() def setUp(self): proj = self._create_test_project(middle="URLs") self.project_id = proj["id"] dock = proj["dock"] dock_by_name = {i["name"]: i["id"] for i in dock} self.campfire_id = dock_by_name["chat"] self.message_board_id = dock_by_name["message_board"] self.todoset_id = dock_by_name["todoset"] self.schedule_id = dock_by_name["schedule"] self.questionnaire_id = dock_by_name["questionnaire"] self.vault_id = dock_by_name["vault"] self.inbox_id = dock_by_name["inbox"] # premade project that will be used for # a subset of the tests (because they do not support # creation via the API, the data must already exist) url = self.api.urls.projects.get(project=PRE_MADE_PROJECT_ID) data = self._get_data(url) self.premade_project = data["id"] dock = data["dock"] dock_by_name = {i["name"]: i["id"] for i in dock} self.premade_questionnaire = dock_by_name["questionnaire"] self.premade_inbox = dock_by_name["inbox"] def tearDown(self): # trash any projects we missed trashed = 0 url = self.api.urls.projects.list() response = url.request(self.api.session) if not response.ok: logger.error("Unable to list projects to delete test projects.") raise exc.Basecamp3Error(response=response) data = response.json() projects_to_delete = [pd for pd in data if pd["name"].startswith(self.PROJECT_TEST_NAME_PREFIX)] errors = [] for project in projects_to_delete: del_url = self.api.urls.projects.trash(project["id"]) response = del_url.request(self.api.session) if not response.ok: ex = exc.Basecamp3Error(response=response) errors.append(ex) else: trashed += 1 if errors: for error in errors: logger.error(error) logger.error("Not all test projects got deleted.") logger.info("Test(s) complete. Deleted %s out of %s test project(s).", trashed, len(projects_to_delete)) time.sleep(1) def _create_test_project(self, middle="", suffix=None): if suffix is None: suffix = uuid.uuid4() name = "%s%s%s" % (self.PROJECT_TEST_NAME_PREFIX, middle, suffix) url = self.api.urls.projects.create(name=name, description=self.PROJECT_TEST_DESCRIPTION) response = url.request(self.api.session) if not response.ok: logger.error("Unable to create a test project.") raise exc.Basecamp3Error(response=response) project_data = response.json() return project_data def test_campfire_lines(self): test_text = "Good morning!" # Create Campfire Line data = self._create_campfire_line(test_text) line_id = data["id"] assert data["content"] == test_text # Get Campfire Line data = self._get_campfire_line(line_id) assert data["id"] == line_id assert data["content"] == test_text # Get Campfire Line (test caching) data = self._get_campfire_line(line_id) assert data["id"] == line_id assert data["content"] == test_text # List Campfire Lines data = self._list_campfire_lines() assert len(data) == 1 # Delete the Campfire Line url = self.api.urls.campfire_lines.delete(project=self.project_id, campfire=self.campfire_id, line=line_id) self._get_no_content(url) logger.info("Successfully tested Campfire Lines!") def test_campfires(self): # Get Campfire url = self.api.urls.campfires.get(project=self.project_id, campfire=self.campfire_id) data = self._get_data(url) assert data["id"] == self.campfire_id assert data["type"] == "Chat::Transcript" assert "lines_url" in data # List Campfires visible to user account-wide url = self.api.urls.campfires.list() data = self._get_data(url) assert len(data) > 0 assert data[0]["type"] == "Chat::Transcript" assert "lines_url" in data[0] logger.info("Successfully tested Campfires!") def test_chatbots(self): test_service_name = "TestBot%s" % int(time.time()) test_command_url = "https://example.com" test_content = "<strong>Howdy</strong> there." # Create Chatbot url = self.api.urls.chatbots.create(project=self.project_id, campfire=self.campfire_id, service_name=test_service_name, command_url=test_command_url) data = self._get_data(url) chatbot_id = data["id"] # Get Chatbot url = self.api.urls.chatbots.get(project=self.project_id, campfire=self.campfire_id, chatbot=chatbot_id) data = self._get_data(url) assert data["id"] == chatbot_id assert data["service_name"] == test_service_name assert data["command_url"] == test_command_url # Create Line as Chatbot match = re.search(r"integrations/([^/]+)/buckets", data["lines_url"]) chatbot_key = match.group(1) url = self.api.urls.chatbots.create_line(project=self.project_id, campfire=self.campfire_id, chatbot_key=chatbot_key, content=test_content) self._get_no_content(url) # List Chatbots url = self.api.urls.chatbots.list(project=self.project_id, campfire=self.campfire_id) data = self._get_data(url) assert len(data) > 0 test_updated_service_name = "two%s" % test_service_name test_updated_command_url = "%s/updated" % test_command_url # Update Chatbot url = self.api.urls.chatbots.update(project=self.project_id, campfire=self.campfire_id, chatbot=chatbot_id, service_name=test_updated_service_name, command_url=test_updated_command_url) data = self._get_data(url) assert data["id"] == chatbot_id assert data["service_name"] == test_updated_service_name assert data["command_url"] == test_updated_command_url # Delete Chatbot url = self.api.urls.chatbots.delete(project=self.project_id, campfire=self.campfire_id, chatbot=chatbot_id) self._get_no_content(url) logger.info("Successfully tested chatbots!") def test_comments(self): comment_content = "Just a test comment here." # Create Document to put Comments on url = self.api.urls.documents.create(project=self.project_id, vault=self.vault_id, title="Test Comment Document", content="Does not really matter what is in here...", status="active") data = self._get_data(url) document_id = data["id"] url = self.api.urls.comments.create(project=self.project_id, recording=document_id, content=comment_content) data = self._get_data(url) comment_id = data["id"] assert data["content"] == comment_content # Get Comment url = self.api.urls.comments.get(project=self.project_id, comment=comment_id) data = self._get_data(url) assert data["id"] == comment_id assert data["content"] == comment_content # List Comments by Recording url = self.api.urls.comments.list_by_recording(project=self.project_id, recording=document_id) data = self._get_data(url) assert len(data) > 0 new_comment_content = "I changed my mind." # Update Comment url = self.api.urls.comments.update(project=self.project_id, comment=comment_id, content=new_comment_content) data = self._get_data(url) assert data["id"] == comment_id assert data["content"] == new_comment_content self._recording_tests(comment_id, self.api.urls.comments, test_visibility=False) # Delete our test document self.api.urls.documents.trash(project=self.project_id, recording=document_id) logger.info("Successfully tested Comments!") def test_documents(self): test_title = "Test Document" test_content = "I am an awesome <strong>Document!</strong>" # Create Document url = self.api.urls.documents.create(project=self.project_id, vault=self.vault_id, title=test_title, content=test_content, status="active") data = self._get_data(url) document_id = data["id"] assert data["status"] == "active" assert data["title"] == test_title assert data["content"] == test_content # Get Document url = self.api.urls.documents.get(project=self.project_id, document=document_id) data = self._get_data(url) assert data["id"] == document_id print(data) # List Documents By Vault url = self.api.urls.documents.list_by_vault(project=self.project_id, vault=self.vault_id) data = self._get_data(url) assert len(data) > 0 new_document_title = "Oh that is new" new_content = "Wowee!<br><br>I am a document!" # Update Document url = self.api.urls.documents.update(project=self.project_id, document=document_id, title=new_document_title, content=new_content) data = self._get_data(url) assert data["id"] == document_id assert data["title"] == new_document_title assert data["content"] == new_content print(data) self._recording_tests(document_id, self.api.urls.documents) logger.info("Successfully tested Documents!") def test_message_boards(self): url = self.api.urls.message_boards.get(project=self.project_id, board=self.message_board_id) data = self._get_data(url) assert data["id"] == self.message_board_id logger.info("Successfully tested Message Boards!") def test_message_types(self): message_type_name = "Neigh" message_type_icon = "🐴" # Create new Message Type url = self.api.urls.message_types.create(project=self.project_id, name=message_type_name, icon=message_type_icon) data = self._get_data(url) message_type_id = data["id"] assert message_type_name == data["name"] assert message_type_icon == data["icon"] # List Message Types url = self.api.urls.message_types.list(project=self.project_id) data = self._get_data(url) assert len(data) > 0 # Get Message Type url = self.api.urls.message_types.get(project=self.project_id, message_type=message_type_id) data = self._get_data(url) assert data["id"] == message_type_id assert message_type_name == data["name"] assert message_type_icon == data["icon"] new_name = "Moo" new_icon = "🐄" # Update Message Type url = self.api.urls.message_types.update(project=self.project_id, message_type=message_type_id, name=new_name, icon=new_icon) data = self._get_data(url) assert data["name"] == new_name assert data["icon"] == new_icon url = self.api.urls.message_types.delete(project=self.project_id, message_type=message_type_id) self._get_no_content(url) logger.info("Successfully tested Message Types!") def test_messages(self): subject = "BasecamPY Test Subject" content = "<strong>Welcome to BasecamPY!</strong><br>Enjoy!" # List Message Types url = self.api.urls.message_types.list(project=self.project_id) data = self._get_data(url) # just get the first category to start with category_id = data[0]["id"] # we'll use this one to test updating later new_category_id = data[1]["id"] # Create new Message url = self.api.urls.messages.create(project=self.project_id, message_board=self.message_board_id, subject=subject, content=content, category_id=category_id) data = self._get_data(url) message_id = data["id"] assert data["subject"] == subject assert data["content"] == content # List by Message Board url = self.api.urls.messages.list_by_message_board(project=self.project_id, message_board=self.message_board_id) data = self._get_data(url) assert len(data) > 0 # Get a Message url = self.api.urls.messages.get(project=self.project_id, message=message_id) data = self._get_data(url) assert data["id"] == message_id assert data["category"]["id"] == category_id assert data["subject"] == subject assert data["content"] == content new_subject = "Basecampy3 is neat" new_content = "I think so anyway" # Update a Message url = self.api.urls.messages.update(project=self.project_id, message=message_id, subject=new_subject, content=new_content, category_id=new_category_id) data = self._get_data(url) assert data["id"] == message_id assert data["category"]["id"] == new_category_id assert data["subject"] == new_subject assert data["content"] == new_content self._recording_tests(message_id, self.api.urls.messages) logger.info("Successfully tested Message objects!") def test_people(self): # Get Current User person_id = self._get_current_user() # Get User url = self.api.urls.people.get(person=person_id) data = self._get_data(url) assert data["id"] == person_id # List Pingable url = self.api.urls.people.list_pingable() _ = self._get_data(url) # List by Project url = self.api.urls.people.list_by_project(self.project_id) data = self._get_data(url) assert len(data) > 0 # List all People url = self.api.urls.people.list() data = self._get_data(url) assert len(data) > 0 logger.info("Successfully tested People objects!") def test_projects(self): # List Projects url = self.api.urls.projects.list() data = self._get_data(url) assert len(data) > 1 # Get Project url = self.api.urls.projects.get(project=self.project_id) data = self._get_data(url) assert data["id"] == self.project_id old_name = data["name"] old_desc = data["description"] # we will skip Create projects because it gets tested by every other test! # Update Project new_name = "%s Renamed" % old_name new_desc = "%s Modified" % old_desc url = self.api.urls.projects.update(project=self.project_id, name=new_name, description=new_desc) data = self._get_data(url) assert data["id"] == self.project_id assert data["name"] == new_name assert data["description"] == new_desc # We will skip trashing a project
<gh_stars>0 import pytest from anchore_engine.common.models.policy_engine import NVDReference from anchore_engine.services.policy_engine.engine.vulns.mappers import ( ENGINE_DISTRO_MAPPERS, ENGINE_PACKAGE_MAPPERS, GRYPE_PACKAGE_MAPPERS, EngineGrypeDBMapper, JavaMapper, VulnerabilityMapper, ) @pytest.mark.parametrize( "test_distro, expected_os, expected_like_os", [ pytest.param("rhel", "redhat", "fedora", id="rhel"), pytest.param("amzn", "amazonlinux", "fedora", id="amazonlinux"), pytest.param("ol", "oraclelinux", "fedora", id="oraclelinux"), pytest.param("centos", "centos", "fedora", id="centos"), pytest.param("debian", "debian", "debian", id="debian"), pytest.param("ubuntu", "ubuntu", "debian", id="ubuntu"), pytest.param("alpine", "alpine", "alpine", id="alpine"), pytest.param("sles", "sles", "sles", id="sles"), pytest.param("windows", "windows", "", id="windows"), pytest.param("rocky", "rockylinux", "fedora", id="rocky"), ], ) def test_engine_distro_mappers(test_distro, expected_os, expected_like_os): mapper = ENGINE_DISTRO_MAPPERS.get(test_distro) assert mapper.grype_os == expected_os assert mapper.grype_like_os == expected_like_os assert mapper.to_grype_distro("0") == { "name": expected_os, "version": "0", "idLike": expected_like_os, } @pytest.mark.parametrize( "test_type, expected_type", [ pytest.param("java", "java-archive", id="java"), pytest.param("APKG", "apk", id="apkg"), pytest.param("dpkg", "deb", id="dpkg"), pytest.param("kb", "msrc-kb", id="msrc-kb"), ], ) def test_engine_package_mappers(test_type, expected_type): mapper = ENGINE_PACKAGE_MAPPERS.get(test_type) assert mapper.grype_type == expected_type @pytest.mark.parametrize( "test_type, expected_type", [ pytest.param("jenkins-plugin", "java", id="jenkins"), pytest.param("java-archive", "java", id="java"), pytest.param("deb", "dpkg", id="dpkg"), pytest.param("apk", "APKG", id="apkg"), pytest.param("msrc-kb", "kb", id="msrc-kb"), ], ) def test_grype_package_mappers(test_type, expected_type): mapper = GRYPE_PACKAGE_MAPPERS.get(test_type) assert mapper.engine_type == expected_type class TestJavaMapper: @pytest.mark.parametrize( "input_metadata, expected_output", [ ( { "pom.properties": "\ngroupId=org.yaml\nartifactId=snakeyaml\nversion=\n" }, { "pomProperties": { "artifactId": "snakeyaml", "groupId": "org.yaml", "version": "", } }, ), ( { "pom.properties": "groupId=org.yaml\nartifactId=snakeyaml\nversion=1.18" }, { "pomProperties": { "artifactId": "snakeyaml", "groupId": "org.yaml", "version": "1.18", } }, ), ( { "pom.properties": { "artifactId": "snakeyaml", "groupId": "org.yaml", "version": "1.18", } }, { "pomProperties": { "artifactId": "snakeyaml", "groupId": "org.yaml", "version": "1.18", } }, ), ( { "pom.properties": "\ngroupId=org.yaml\nartifactId=snakeyaml\nversion=1.18\n", "someProperty": "someValue", }, { "pomProperties": { "artifactId": "snakeyaml", "groupId": "org.yaml", "version": "1.18", }, }, ), ( {"pom.properties": "\ngroupId\nartifactId=snakeyaml\nversion=1.18\n"}, { "pomProperties": { "artifactId": "snakeyaml", "groupId": "", "version": "1.18", } }, ), ( {"pom.properties": "\norg.yaml\nartifactId=snakeyaml\nversion=1.18\n"}, { "pomProperties": { "artifactId": "snakeyaml", "org.yaml": "", "version": "1.18", } }, ), ], ) def test_image_content_to_grype_metadata(self, input_metadata, expected_output): # Function under test result = JavaMapper._image_content_to_grype_metadata(input_metadata) # Validate result assert result == expected_output class TestImageContentAPIToGrypeSbom: @pytest.mark.parametrize( "mapper, test_input, expected", [ pytest.param( ENGINE_PACKAGE_MAPPERS.get("npm"), { "cpes": [ "cpe:2.3:a:lodash:lodash:4.17.4:*:*:*:*:*:*:*", "cpe:2.3:a:*:lodash:4.17.4:*:*:*:*:*:*:*", ], "license": "MIT", "licenses": ["MIT"], "location": "/node_modules/lodash/package.json", "origin": "<NAME> <<EMAIL>> (http://allyoucanleet.com/)", "package": "lodash", "type": "NPM", "version": "4.17.4", }, { "name": "lodash", "type": "npm", "language": "javascript", "locations": [{"path": "/node_modules/lodash/package.json"}], "cpes": [ "cpe:2.3:a:*:lodash:4.17.4:*:*:*:*:*:*:*", "cpe:2.3:a:lodash:lodash:4.17.4:*:*:*:*:*:*:*", ], "version": "4.17.4", }, id="npm", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("gem"), { "cpes": [ "cpe:2.3:a:jessica-lynn-suttles:bundler:2.1.4:*:*:*:*:*:*:*", "cpe:2.3:a:jessica_lynn_suttles:bundler:2.1.4:*:*:*:*:*:*:*", ], "license": "MIT", "licenses": ["MIT"], "location": "/usr/lib/ruby/gems/2.7.0/specifications/bundler-2.1.4.gemspec", "origin": "...", "package": "bundler", "type": "GEM", "version": "2.1.4", }, { "name": "bundler", "type": "gem", "language": "ruby", "locations": [ { "path": "/usr/lib/ruby/gems/2.7.0/specifications/bundler-2.1.4.gemspec" } ], "cpes": [ "cpe:2.3:a:jessica_lynn_suttles:bundler:2.1.4:*:*:*:*:*:*:*", "cpe:2.3:a:jessica-lynn-suttles:bundler:2.1.4:*:*:*:*:*:*:*", ], "version": "2.1.4", }, id="gem", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("python"), { "cpes": [ "cpe:2.3:a:python-pip:pip:21.2.2:*:*:*:*:*:*:*", "cpe:2.3:a:python:pip:21.2.2:*:*:*:*:*:*:*", "cpe:2.3:a:pip:pip:21.2.2:*:*:*:*:*:*:*", ], "license": "MIT", "licenses": ["MIT"], "location": "/usr/local/lib/python3.9/site-packages/pip", "origin": "The pip developers <<EMAIL>>", "package": "pip", "type": "PYTHON", "version": "21.2.2", }, { "name": "pip", "version": "21.2.2", "type": "python", "cpes": [ "cpe:2.3:a:python-pip:pip:21.2.2:*:*:*:*:*:*:*", "cpe:2.3:a:python:pip:21.2.2:*:*:*:*:*:*:*", "cpe:2.3:a:pip:pip:21.2.2:*:*:*:*:*:*:*", ], "language": "python", "locations": [ {"path": "/usr/local/lib/python3.9/site-packages/pip"} ], }, id="python", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("java"), { "cpes": [ "cpe:2.3:a:amqp-client:amqp_client:5.9.0:*:*:*:*:*:*:*", "cpe:2.3:a:amqp_client:amqp_client:5.9.0:*:*:*:*:*:*:*", ], "implementation-version": "N/A", "location": "/usr/share/logstash/vendor/bundle/jruby/2.5.0/gems/march_hare-4.3.0-java/lib/ext/rabbitmq-client.jar:amqp-client", "maven-version": "5.9.0", "metadata": { "pom.properties": "\ngroupId=com.rabbitmq\nartifactId=amqp-client\nversion=5.9.0\n" }, "origin": "com.rabbitmq", "package": "amqp-client", "specification-version": "N/A", "type": "JAVA-JAR", "version": "5.9.0", }, { "cpes": [ "cpe:2.3:a:amqp-client:amqp_client:5.9.0:*:*:*:*:*:*:*", "cpe:2.3:a:amqp_client:amqp_client:5.9.0:*:*:*:*:*:*:*", ], "language": "java", "locations": [ { "path": "/usr/share/logstash/vendor/bundle/jruby/2.5.0/gems/march_hare-4.3.0-java/lib/ext/rabbitmq-client.jar:amqp-client" } ], "metadata": { "pomProperties": { "artifactId": "amqp-client", "groupId": "com.rabbitmq", "version": "5.9.0", } }, "metadataType": "JavaMetadata", "name": "amqp-client", "type": "java-archive", "version": "5.9.0", }, id="java", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("dpkg"), { "cpes": ["cpe:2.3:a:bsdutils:bsdutils:1:2.33.1-0.1:*:*:*:*:*:*:*"], "license": "BSD-2-clause BSD-3-clause BSD-4-clause GPL-2 GPL-2+ GPL-3 GPL-3+ LGPL LGPL-2 LGPL-2+ LGPL-2.1 LGPL-2.1+ LGPL-3 LGPL-3+ MIT public-domain", "licenses": [ "BSD-2-clause", ], "origin": "<NAME> <<EMAIL>> (maintainer)", "package": "bsdutils", "size": "293000", "sourcepkg": "util-linux", "type": "dpkg", "version": "1:2.33.1-0.1", }, { "name": "bsdutils", "version": "1:2.33.1-0.1", "type": "deb", "cpes": ["cpe:2.3:a:bsdutils:bsdutils:1:2.33.1-0.1:*:*:*:*:*:*:*"], "locations": [{"path": "pkgdb"}], "metadataType": "DpkgMetadata", "metadata": {"source": "util-linux"}, }, id="dpkg-with-source", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("APKG"), { "cpes": [ "cpe:2.3:a:ssl-client:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl_client:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl-client:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl_client:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", ], "license": "GPL-2.0-only", "licenses": ["GPL-2.0-only"], "origin": "<NAME> <<EMAIL>>", "package": "ssl_client", "size": "28672", "sourcepkg": "busybox", "type": "APKG", "version": "1.32.1-r5", }, { "name": "ssl_client", "version": "1.32.1-r5", "type": "apk", "cpes": [ "cpe:2.3:a:ssl-client:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl_client:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl-client:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl_client:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl:ssl_client:1.32.1-r5:*:*:*:*:*:*:*", "cpe:2.3:a:ssl:ssl-client:1.32.1-r5:*:*:*:*:*:*:*", ], "locations": [{"path": "pkgdb"}], "metadataType": "ApkMetadata", "metadata": {"originPackage": "busybox"}, }, id="apkg-with-source", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("kb"), { "cpes": None, "license": "Unknown", "licenses": ["Unknown"], "origin": "Microsoft", "package": "935509", "size": "0", "sourcepkg": "10855", "type": "kb", "version": "935509", }, { "name": "10855", "version": "935509", "type": "msrc-kb", "locations": [{"path": "registry"}], }, id="microsoft-kb", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("rpm"), { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "license": "OpenSSL and ASL 2.0", "licenses": ["OpenSSL", "and", "ASL", "2.0"], "origin": "Red Hat, Inc.", "package": "openssl-libs", "size": "3757208", "sourcepkg": "openssl-1.1.1g-15.el8_3.src.rpm", "type": "rpm", "version": "1:1.1.1g-15.el8_3", }, { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "rpm", "locations": [{"path": "pkgdb"}], "version": "1:1.1.1g-15.el8_3", "metadataType": "RpmdbMetadata", "metadata": { "sourceRpm": "openssl-1.1.1g-15.el8_3.src.rpm", "epoch": 1, }, }, id="rpm-with-epoch", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("rpm"), { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "license": "OpenSSL and ASL 2.0", "licenses": ["OpenSSL", "and", "ASL", "2.0"], "origin": "Red Hat, Inc.", "package": "openssl-libs", "size": "3757208", "sourcepkg": "openssl-1.1.1g-15.el8_3.src.rpm", "type": "rpm", "version": "1.1.1g-15.el8_3", }, { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "rpm", "locations": [{"path": "pkgdb"}], "version": "1.1.1g-15.el8_3", "metadataType": "RpmdbMetadata", "metadata": { "sourceRpm": "openssl-1.1.1g-15.el8_3.src.rpm", "epoch": None, }, }, id="rpm-no-epoch", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("rpm"), { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "license": "OpenSSL and ASL 2.0", "licenses": ["OpenSSL", "and", "ASL", "2.0"], "origin": "Red Hat, Inc.", "package": "openssl-libs", "size": "3757208", "sourcepkg": None, "type": "rpm", "version": "1.1.1g-15.el8_3", }, { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "rpm", "locations": [{"path": "pkgdb"}], "version": "1.1.1g-15.el8_3", "metadataType": "RpmdbMetadata", "metadata": { "sourceRpm": None, "epoch": None, }, }, id="rpm-no-src", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("rpm"), { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "license": "OpenSSL and ASL 2.0", "licenses": ["OpenSSL", "and", "ASL", "2.0"], "origin": "Red Hat, Inc.", "package": "openssl-libs", "size": "3757208", "sourcepkg": None, "type": "rpm", "version": "1:1.1.1g-15.el8_3", }, { "cpes": [ "cpe:2.3:a:openssl-libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl-libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl_libs:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:openssl:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl-libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", "cpe:2.3:a:redhat:openssl_libs:1.1.1g-15.el8_3:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "rpm", "locations": [{"path": "pkgdb"}], "version": "1:1.1.1g-15.el8_3", "metadataType": "RpmdbMetadata", "metadata": { "sourceRpm": None, "epoch": 1, }, }, id="rpm-no-src-but-epoch", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("go"), { "cpes": [], "package": "openssl-libs", "type": "go", "version": "1.1.1", }, { "cpes": [ "cpe:2.3:a:*:openssl-libs:1.1.1:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "go-module", "language": "go", "version": "1.1.1", }, id="go-mod-no-cpes", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("go"), { "cpes": [ "cpe:2.3:a:myvendor:openssl-libs:1.1.1-a:*:*:*:*:*:*:*", ], "package": "openssl-libs", "type": "go", "version": "1.1.1", }, { "cpes": [ "cpe:2.3:a:myvendor:openssl-libs:1.1.1-a:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "go-module", "language": "go", "version": "1.1.1", }, id="go-mod-with-cpes", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("binary"), { "cpes": [], "package": "openssl-libs", "type": "go", "version": "1.1.1", }, { "cpes": [ "cpe:2.3:a:*:openssl-libs:1.1.1:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "binary", "language": "", "version": "1.1.1", }, id="binary-no-cpes", ), pytest.param( ENGINE_PACKAGE_MAPPERS.get("binary"), { "cpes": [ "cpe:2.3:a:myvendor:openssl-libs:1.1.1-a:*:*:*:*:*:*:*", ], "package": "openssl-libs", "type": "go", "version": "1.1.1", }, { "cpes": [ "cpe:2.3:a:myvendor:openssl-libs:1.1.1-a:*:*:*:*:*:*:*", ], "name": "openssl-libs", "type": "binary", "language": "", "version": "1.1.1", }, id="binary-with-cpes", ), ], ) def test_mappers(self, mapper, test_input, expected): actual = mapper.image_content_to_grype_sbom(test_input) # sort the list attributes before comparing actual = { key: sorted(value) if isinstance(value, list) else value for key, value in actual.items() } expected = { key: sorted(value) if isinstance(value, list) else value for key, value in expected.items() } assert actual.pop("id") assert actual == expected class TestVulnerabilityMapper: @pytest.mark.parametrize( "vuln_id,feed_group,nvd_refs,expected", [ pytest.param("foobar", "vulndb:xyz", None, "foobar", id="none-nvd-refs"), pytest.param(None, None, None, None, id="all-none"), pytest.param("foobar", "vulndb:xyz", [], "foobar", id="no-nvd-refs"), pytest.param( "foobar", "vulndb:xyz", ["1"], "foobar", id="invalid-nvd-refs" ), pytest.param("foobar", None, [], "foobar", id="none-feed-group"), pytest.param("foobar", 1, [], "foobar", id="invalid-feed-group-int"), pytest.param( "foobar", ["x", "y"], None, "foobar", id="invalid-feed-group-list" ), pytest.param( "foobar", "abc:xyz", [NVDReference(vulnerability_id="CVE-xyz")], "foobar", id="valid-dont-transform", ), pytest.param( "foobar", "vulndb", [NVDReference(vulnerability_id="CVE-xyz")], "CVE-xyz", id="valid-transform", ), pytest.param( "foobar", "vulndb", [ NVDReference(vulnerability_id="CVE-xyz"), NVDReference(vulnerability_id="CVE-pqr"), ], "foobar", id="valid-multiple-nvd-refs", ), ], ) def test_get_normalized_vulnerability_id( self, vuln_id, feed_group, nvd_refs, expected ): assert ( VulnerabilityMapper._try_get_normalized_vulnerability_id( vuln_id, feed_group, nvd_refs ) == expected ) @pytest.mark.parametrize( "vuln_id,url,expected", [ pytest.param( "foobar", None, "http://<valid endpoint not found>/query/vulnerabilities?id=foobar", id="none-url", ), pytest.param( "foobar", "", "http://<valid endpoint not found>/query/vulnerabilities?id=foobar", id="blank-url", ), ], ) def test_try_make_link(self, vuln_id, url, expected): assert VulnerabilityMapper._try_make_link(vuln_id, url) == expected class TestEngineGrypeDBMapper: @pytest.mark.parametrize( "cvss_dict, expected", [ pytest.param( { "VendorMetadata": None, "Metrics": { "BaseScore": 7.8, "ExploitabilityScore": 10, "ImpactScore": 6.9, }, "Vector": "AV:N/AC:L/Au:N/C:N/I:N/A:C", "Version": "2.0", }, { "version": "2.0", "vector_string": "AV:N/AC:L/Au:N/C:N/I:N/A:C", "severity": "High", "base_metrics": { "base_score": 7.8, "expolitability_score": 10, "impact_score": 6.9, }, }, id="nvd-cvss-2", ), pytest.param( { "VendorMetadata": None, "Metrics": { "BaseScore": 7.5, "ExploitabilityScore": 3.9, "ImpactScore": 3.6, }, "Vector": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Version": "3.1", }, { "version":
<filename>banyan/controllers/cloud_resource.py import logging from typing import List from uuid import UUID import copy from time import sleep from cement import Controller, ex from banyan.controllers.base import Base from banyan.api import BanyanApiClient from banyan.model.cloud_resource import CloudResource, CloudResourceInfo from banyan.ext.iaas.base import IaasResource class CloudResourceController(Controller): class Meta: label = 'cloud_resource' stacked_type = 'nested' stacked_on = 'base' help = 'manage cloud resources discovered from IaaS' @property def _client(self) -> BanyanApiClient: return self.app.client def trunc(self, value, num_chars) -> str: if not value: return '' value = str(value) if len(value) < num_chars + 3: return value else: return '...' + value[-num_chars:] @ex(help='list cloud_resources', arguments=[ (['--cloud'], { 'help': 'filter by provider - AWS | AZURE | GCP | OCI | ...' }), (['--account'], { 'help': 'filter by account' }), (['--region'], { 'help': 'filter by region/location/zone' }), (['--resource_type'], { 'help': 'filter by type - ec2 | vm | rds | ...' }) ]) def list(self): params={'cloud_provider': self.app.pargs.cloud, 'account': self.app.pargs.account, 'region': self.app.pargs.region, 'resource_type': self.app.pargs.resource_type} synced_resources: List[CloudResourceInfo] = self._client.cloud_resources.list(params=params) results = list() headers = ['Name', 'ID', 'Cloud', 'Account', 'Region', 'Type', 'Private Address', 'Public Address', '# Tags', 'Status'] for res in synced_resources: new_res = [res.name[:20], res.resource_udid, res.cloud_provider, self.trunc(res.account,6), res.region, res.resource_type, self.trunc(res.private_ip or res.private_dns_name, 24), self.trunc(res.public_ip or res.public_dns_name, 24), len(res.tags or []), res.status] results.append(new_res) self.app.render(results, handler='tabulate', headers=headers, tablefmt='simple') @ex(help='show details & tags of a cloud_resource', arguments=[ (['resource_uuid'], { 'help': 'get discovered resource by Banyan UUID.' }), ]) def get(self): id: UUID = self.app.pargs.resource_uuid d_resource: CloudResourceInfo = self._client.cloud_resources.get(id) dr_json = CloudResourceInfo.Schema().dump(d_resource) self.app.render(dr_json, handler='json', indent=2, sort_keys=True) @ex(help='create a new cloud_resource', arguments=[ (['resources_json'], { 'help': 'JSON blob describing the new discovered resource(s) to be created, or a filename ' 'containing JSON prefixed by "@" (example: @res.json).' }), ]) def create(self): d_resource = Base.get_json_input(self.app.pargs.resources_json) d_resource: CloudResourceInfo = self._client.cloud_resources.create(d_resource) dr_json = CloudResource.Schema().dump(d_resource) self.app.render(dr_json, handler='json', indent=2, sort_keys=True) @ex(hide=True, help='update status for a given cloud_resource record', arguments=[ (['resource_uuid'], { 'help': 'Banyan UUID of discovered resource to update.' }), (['status'], { 'help': 'Status - Discovered | Ignored | Published' }), ]) def update_status(self): id: UUID = self.app.pargs.resource_uuid status: str = self.app.pargs.status d_resource: CloudResourceInfo = self._client.cloud_resources.update_status(id, status) dr_json = CloudResource.Schema().dump(d_resource) self.app.render(dr_json, handler='json', indent=2, sort_keys=True) @ex(help='delete a given cloud_resource record', arguments=[ (['resource_uuid'], { 'help': 'Banyan UUID of discovered resource to delete.' }), ]) def delete(self): id: UUID = self.app.pargs.resource_uuid info = self._client.cloud_resources.delete(id) self.app.render(info, handler='json') @ex(hide=True, help='delete all cloud_resource records') def delete_all(self): synced_resources: List[CloudResourceInfo] = self._client.cloud_resources.list() for d_resource in synced_resources: info = self._client.cloud_resources.delete(d_resource.id) self.app.render(info, handler='json') sleep(0.05) @ex(help='show cloud_resources associated with services', arguments=[ (['--resource_uuid'], { 'help': 'Banyan UUID of discovered resource to list associations for.' }), ]) def list_associations(self): assocs = self._client.cloud_resources.associations(self.app.pargs.resource_uuid) results = list() headers = ['ID', 'Resource ID', 'Resource Name', 'Resource Type', 'Service ID', 'Service Name', 'Resource Status'] for res in assocs: new_res = [res.id, self.trunc(res.resource_udid,9), res.resource_name, res.resource_type, res.service_id, res.service_name, res.resource_status] results.append(new_res) self.app.render(results, handler='tabulate', headers=headers, tablefmt='simple') @ex(hide=True, help='associate cloud_resource with service', arguments=[ (['resource_uuid'], { 'help': 'Banyan UUID of discovered resource to associate.' }), (['service_name'], { 'metavar': 'service_name_or_id', 'help': 'Name or ID of the service to associate a discovered resource with.', }), ]) def associate_with_service(self): info = self._client.cloud_resources.associate(self.app.pargs.resource_uuid, self.app.pargs.service_name) self.app.render(info, handler='json') @ex(hide=True, help='dissociate cloud_resource from service', arguments=[ (['association_uuid'], { 'help': 'Association UUID of discovered resource and service.' }), ]) def dissociate_from_service(self): info = self._client.cloud_resources.dissociate(self.app.pargs.association_uuid) self.app.render(info, handler='json') @ex(help='test AWS configuration by getting EC2 resources', arguments=[ (['region'], { 'help': 'region where AWS EC2 resources exist - us-east-1, us-west-2, etc.' }) ]) def test_aws(self): try: from banyan.ext.iaas.aws import AwsController except Exception as ex: raise NotImplementedError("AWS SDK not configured correctly > %s" % ex.args[0]) aws = AwsController(self.app.pargs.region) instances: List[IaasResource] = aws.list_ec2() if len(instances): print('--> AWS configuration test passed. Found %d resources.' % len(instances)) else: print('--> AWS configuration test failed. Check your AWS credentials and SDK configuration.') @ex(help='sync cloud_resources with AWS IaaS', arguments=[ (['resource_type'], { 'help': 'type of AWS resource - ec2 | rds | elb. You can say "all" but be careful!' }), (['region'], { 'help': 'region where AWS resources run - us-east-1, us-west-2, etc. You can say "all" but be careful!' }), (['--tag_name'], { 'help': 'only sync resources with specific tag name. If not specified, sync all resources.' }), (['--wait_for_input', '-w'], { 'action': 'store_true', 'help': 'wait for user input before proceeding to next step' }) ]) def sync_aws(self): try: from banyan.ext.iaas.aws import AwsController except Exception as ex: raise NotImplementedError("AWS SDK not configured correctly > %s" % ex.args[0]) rt = self.app.pargs.resource_type.lower() wait = self.app.pargs.wait_for_input instances: List[IaasResource] = list() aws = AwsController(self.app.pargs.region, self.app.pargs.tag_name) if rt == 'ec2' or rt == 'all': Base.wait_for_input(wait, 'Getting list of AWS EC2 resources') instances += aws.list_ec2() if rt == 'rds' or rt == 'all': Base.wait_for_input(wait, 'Getting list of AWS RDS resources') instances += aws.list_rds() if rt == 'elb' or rt == 'all': Base.wait_for_input(wait, 'Getting list of AWS ELB resources') instances += aws.list_elb() results = Base.tabulate_iaas_resources(instances) self.app.render(results, handler='tabulate', headers='keys', tablefmt='simple') if len(results) == 0: print('--> No AWS resources to sync') return Base.wait_for_input(wait, 'Filtering for new AWS resources') params={'cloud_provider': aws.provider, 'resource_type': rt, 'region': self.app.pargs.region} synced_resources: List[CloudResourceInfo] = self._client.cloud_resources.list(params=Base.sanitize_alls(params)) added_instances = Base.added_iaas_resources(instances, synced_resources) new_results = Base.tabulate_iaas_resources(added_instances) self.app.render(new_results, handler='tabulate', headers='keys', tablefmt='simple') if len(new_results) == 0: print('--> No new AWS resources to sync') return Base.wait_for_input(wait, 'Syncing into Banyan Cloud Resource inventory') for instance in added_instances: res = Base.convert_iaas_resource(instance) self._client.cloud_resources.create(res) print('\n--> Added AWS resource id(name): %s(%s)' % (res.resource_id, res.resource_name)) sleep(0.05) print('\n--> Sync with AWS successful.') @ex(help='test Azure configuration', arguments=[ (['resource_group'], { 'help': 'Azure Resource Group where some VMs run. You can say "all" but be careful!' }) ]) def test_azure(self): try: from banyan.ext.iaas.azure_cloud import AzureController except Exception as ex: raise NotImplementedError("Azure SDK not configured correctly > %s" % ex.args[0]) azr = AzureController(self.app.pargs.resource_group) instances: List[IaasResource] = azr.list_vm() if len(instances): print('--> Azure configuration test passed. Found %d resources.' % len(instances)) else: print('--> Azure configuration test failed. Check your Azure credentials and SDK configuration.') @ex(help='sync cloud_resources with Azure IaaS', arguments=[ (['resource_type'], { 'help': 'type of Azure resource - vm | lbl. You can say "all" but be careful!' }), (['resource_group'], { 'help': 'Azure Resource Group where resources run. You can say "all" but be careful!' }), (['--location'], { 'help': 'location where Azure resources run - centralus, eastus, etc. If not specified, all locations are used.' }), (['--tag_name'], { 'help': 'only sync resources with specific tag name. If not specified, sync all resources.' }), (['--wait_for_input', '-w'], { 'action': 'store_true', 'help': 'wait for user input before proceeding to next step' }) ]) def sync_azure(self): try: from banyan.ext.iaas.azure_cloud import AzureController except Exception as ex: raise NotImplementedError("Azure SDK not configured correctly > %s" % ex.args[0]) rt = self.app.pargs.resource_type.lower() wait = self.app.pargs.wait_for_input instances: List[IaasResource] = list() azr = AzureController(self.app.pargs.resource_group, self.app.pargs.location, self.app.pargs.tag_name) if rt == 'vm' or rt == 'all': Base.wait_for_input(wait, 'Getting list of Azure VM resources') instances += azr.list_vm() if rt == 'lb' or rt == 'all': Base.wait_for_input(wait, 'Getting list of Azure LB resources') instances += azr.list_lb() results = Base.tabulate_iaas_resources(instances, ['id']) self.app.render(results, handler='tabulate', headers='keys', tablefmt='simple') if len(results) == 0: print('--> No Azure resources to sync') return Base.wait_for_input(wait, 'Filtering for new Azure resources') params={'cloud_provider': azr.provider, 'resource_type': rt, 'account': self.app.pargs.resource_group, 'region': self.app.pargs.location} synced_resources: List[CloudResourceInfo] = self._client.cloud_resources.list(params=Base.sanitize_alls(params)) added_instances = Base.added_iaas_resources(instances, synced_resources) new_results = Base.tabulate_iaas_resources(added_instances, ['id']) self.app.render(new_results, handler='tabulate', headers='keys', tablefmt='simple') if len(new_results) == 0: print('--> No new Azure resources to sync') return Base.wait_for_input(wait, 'Syncing into Banyan Cloud Resource inventory') for instance in added_instances: res = Base.convert_iaas_resource(instance) self._client.cloud_resources.create(res) print('\n--> Added Azure resource id(name): %s(%s)' % (res.resource_id, res.resource_name)) sleep(0.05) print('\n--> Sync with Azure successful.') @ex(help='test Google Cloud configuration', arguments=[ (['project'], { 'help': 'Project ID where GCP resources run. You can say "all" but be careful!' }) ]) def test_gcp(self): try: from banyan.ext.iaas.gcp import GcpController except Exception as ex: raise NotImplementedError("GCP Client Libraries for Python not configured correctly > %s" % ex.args[0]) gcp = GcpController(self.app.pargs.project) instances: List[IaasResource] = gcp.list_vm() if len(instances): print('--> Google Cloud configuration test passed. Found %d resources.' % len(instances)) else: print('--> Google Cloud
<gh_stars>0 import os import subprocess from unittest import mock from . import * from .... import * from mopack.builders.bfg9000 import Bfg9000Builder from mopack.config import Config from mopack.path import Path from mopack.sources import Package from mopack.sources.apt import AptPackage from mopack.sources.sdist import TarballPackage from mopack.types import ConfigurationError def mock_exists(p): return os.path.basename(p) == 'mopack.yml' class TestTarball(SDistTestCase): pkg_type = TarballPackage srcurl = 'http://example.invalid/hello-bfg.tar.gz' srcpath = os.path.join(test_data_dir, 'hello-bfg.tar.gz') def setUp(self): self.config = Config([]) def mock_urlopen(self, url): return open(self.srcpath, 'rb') def check_fetch(self, pkg): srcdir = os.path.join(self.pkgdir, 'src', 'foo') with mock.patch('mopack.sources.sdist.urlopen', self.mock_urlopen), \ mock.patch('tarfile.TarFile.extractall') as mtar, \ mock.patch('os.path.isdir', return_value=True), \ mock.patch('os.path.exists', return_value=False): # noqa pkg.fetch(self.config, self.pkgdir) mtar.assert_called_once_with(srcdir, None) def test_url(self): pkg = self.make_package('foo', url=self.srcurl, build='bfg9000') self.assertEqual(pkg.url, self.srcurl) self.assertEqual(pkg.path, None) self.assertEqual(pkg.patch, None) self.assertEqual(pkg.builder, self.make_builder(Bfg9000Builder, 'foo')) self.assertEqual(pkg.needs_dependencies, True) self.assertEqual(pkg.should_deploy, True) self.check_fetch(pkg) self.check_resolve(pkg) def test_path(self): pkg = self.make_package('foo', path=self.srcpath, build='bfg9000') self.assertEqual(pkg.url, None) self.assertEqual(pkg.path, Path(self.srcpath)) self.assertEqual(pkg.patch, None) self.assertEqual(pkg.builder, self.make_builder(Bfg9000Builder, 'foo')) self.assertEqual(pkg.needs_dependencies, True) self.assertEqual(pkg.should_deploy, True) self.check_fetch(pkg) self.check_resolve(pkg) def test_zip_path(self): srcpath = os.path.join(test_data_dir, 'hello-bfg.zip') pkg = self.make_package('foo', build='bfg9000', path=srcpath) self.assertEqual(pkg.url, None) self.assertEqual(pkg.path, Path(srcpath)) self.assertEqual(pkg.builder, self.make_builder(Bfg9000Builder, 'foo')) self.assertEqual(pkg.needs_dependencies, True) self.assertEqual(pkg.should_deploy, True) srcdir = os.path.join(self.pkgdir, 'src', 'foo') with mock.patch('mopack.sources.sdist.urlopen', self.mock_urlopen), \ mock.patch('zipfile.ZipFile.extractall') as mtar, \ mock.patch('os.path.isdir', return_value=True), \ mock.patch('os.path.exists', return_value=False): # noqa pkg.fetch(self.config, self.pkgdir) mtar.assert_called_once_with(srcdir, None) self.check_resolve(pkg) def test_invalid_url_path(self): with self.assertRaises(TypeError): self.make_package('foo', build='bfg9000') with self.assertRaises(TypeError): self.make_package('foo', url=self.srcurl, path=self.srcpath, build='bfg9000') def test_files(self): pkg = self.make_package('foo', path=self.srcpath, files='/hello-bfg/include/', build='bfg9000') self.assertEqual(pkg.files, ['/hello-bfg/include/']) srcdir = os.path.join(self.pkgdir, 'src', 'foo') with mock.patch('mopack.sources.sdist.urlopen', self.mock_urlopen), \ mock.patch('tarfile.TarFile.extract') as mtar, \ mock.patch('os.path.isdir', return_value=True), \ mock.patch('os.path.exists', return_value=False): # noqa pkg.fetch(self.config, self.pkgdir) self.assertEqual(mtar.mock_calls, [ mock.call('hello-bfg/include', srcdir), mock.call('hello-bfg/include/hello.hpp', srcdir), ]) self.check_resolve(pkg) def test_patch(self): patch = os.path.join(test_data_dir, 'hello-bfg.patch') pkg = self.make_package('foo', path=self.srcpath, patch=patch, build='bfg9000') self.assertEqual(pkg.patch, Path(patch)) srcdir = os.path.join(self.pkgdir, 'src', 'foo') with mock.patch('mopack.sources.sdist.urlopen', self.mock_urlopen), \ mock.patch('mopack.sources.sdist.pushd'), \ mock.patch('tarfile.TarFile.extractall') as mtar, \ mock.patch('os.path.isdir', return_value=True), \ mock.patch('os.path.exists', return_value=False), \ mock.patch('builtins.open', mock_open_after_first()) as mopen, \ mock.patch('os.makedirs'), \ mock.patch('subprocess.run') as mrun: # noqa pkg.fetch(self.config, self.pkgdir) mtar.assert_called_once_with(srcdir, None) mrun.assert_called_once_with( ['patch', '-p1'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=mopen(), universal_newlines=True, check=True ) self.check_resolve(pkg) def test_build(self): build = {'type': 'bfg9000', 'extra_args': '--extra'} pkg = self.make_package('foo', path=self.srcpath, build=build, usage='pkg_config') self.assertEqual(pkg.path, Path(self.srcpath)) self.assertEqual(pkg.builder, self.make_builder( Bfg9000Builder, 'foo', extra_args='--extra' )) self.check_fetch(pkg) self.check_resolve(pkg) def test_infer_build(self): # Basic inference pkg = self.make_package('foo', path=self.srcpath) self.assertEqual(pkg.builder, None) with mock.patch('os.path.exists', mock_exists), \ mock.patch('builtins.open', mock_open_after_first( read_data='export:\n build: bfg9000' )), \ mock.patch('tarfile.TarFile.extractall'): # noqa config = pkg.fetch(self.config, self.pkgdir) self.assertEqual(config.export.build, 'bfg9000') self.assertEqual(pkg, self.make_package( 'foo', path=self.srcpath, build='bfg9000' )) self.check_resolve(pkg) # Infer but override usage and version pkg = self.make_package('foo', path=self.srcpath, usage={'type': 'system'}) self.assertEqual(pkg.builder, None) with mock.patch('os.path.exists', mock_exists), \ mock.patch('builtins.open', mock_open_after_first( read_data='export:\n build: bfg9000' )), \ mock.patch('tarfile.TarFile.extractall'): # noqa config = pkg.fetch(self.config, self.pkgdir) self.assertEqual(config.export.build, 'bfg9000') self.assertEqual(pkg, self.make_package( 'foo', path=self.srcpath, build='bfg9000', usage={'type': 'system'} )) with mock.patch('subprocess.run', side_effect=OSError()), \ mock.patch('mopack.usage.path_system.PathUsage._filter_path', lambda *args: []), \ mock.patch('mopack.usage.path_system.file_outdated', return_value=True), \ mock.patch('os.makedirs'), \ mock.patch('builtins.open'): # noqa self.check_resolve(pkg, usage={ 'name': 'foo', 'type': 'system', 'path': [self.pkgconfdir(None)], 'pcfiles': ['foo'], 'generated': True, 'auto_link': False, }) def test_infer_build_override(self): pkg = self.make_package('foo', path=self.srcpath, build='cmake', usage='pkg_config') with mock.patch('os.path.exists', mock_exists), \ mock.patch('builtins.open', mock_open_after_first( read_data='export:\n build: bfg9000' )), \ mock.patch('tarfile.TarFile.extractall'): # noqa config = pkg.fetch(self.config, self.pkgdir) self.assertEqual(config.export.build, 'bfg9000') self.assertEqual(pkg, self.make_package( 'foo', path=self.srcpath, build='cmake', usage='pkg_config' )) with mock.patch('mopack.builders.cmake.pushd'): self.check_resolve(pkg) def test_usage(self): pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', usage='pkg_config') self.assertEqual(pkg.path, Path(self.srcpath)) self.assertEqual(pkg.builder, self.make_builder( Bfg9000Builder, 'foo', usage='pkg_config' )) self.check_fetch(pkg) self.check_resolve(pkg) with mock.patch('subprocess.run') as mrun: pkg.version(self.pkgdir) mrun.assert_called_once_with( ['pkg-config', 'foo', '--modversion'], check=True, env={'PKG_CONFIG_PATH': self.pkgconfdir('foo')}, stdout=subprocess.PIPE, universal_newlines=True ) usage = {'type': 'pkg_config', 'path': 'pkgconf'} pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', usage=usage) self.assertEqual(pkg.path, Path(self.srcpath)) self.assertEqual(pkg.builder, self.make_builder( Bfg9000Builder, 'foo', usage=usage )) self.check_fetch(pkg) self.check_resolve(pkg, usage={ 'name': 'foo', 'type': 'pkg_config', 'path': [self.pkgconfdir('foo', 'pkgconf')], 'pcfiles': ['foo'], 'extra_args': [], }) usage = {'type': 'path', 'libraries': []} pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', usage=usage) self.assertEqual(pkg.path, Path(self.srcpath)) self.assertEqual(pkg.builder, self.make_builder( Bfg9000Builder, 'foo', usage=usage )) self.check_fetch(pkg) self.check_resolve(pkg, usage={ 'name': 'foo', 'type': 'path', 'path': [self.pkgconfdir(None)], 'pcfiles': ['foo'], 'generated': True, 'auto_link': False, }) with mock.patch('subprocess.run') as mrun: self.assertEqual(pkg.version(self.pkgdir), None) mrun.assert_not_called() def test_submodules(self): submodules_required = {'names': '*', 'required': True} submodules_optional = {'names': '*', 'required': False} pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', submodules=submodules_required) self.check_fetch(pkg) self.check_resolve(pkg, submodules=['sub']) pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', usage={'type': 'pkg_config', 'pcfile': 'bar'}, submodules=submodules_required) self.check_fetch(pkg) self.check_resolve(pkg, submodules=['sub'], usage={ 'name': 'foo', 'type': 'pkg_config', 'path': [self.pkgconfdir('foo')], 'pcfiles': ['bar', 'foo_sub'], 'extra_args': [], }) pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', submodules=submodules_optional) self.check_fetch(pkg) self.check_resolve(pkg, submodules=['sub']) pkg = self.make_package('foo', path=self.srcpath, build='bfg9000', usage={'type': 'pkg_config', 'pcfile': 'bar'}, submodules=submodules_optional) self.check_fetch(pkg) self.check_resolve(pkg, submodules=['sub'], usage={ 'name': 'foo', 'type': 'pkg_config', 'path': [self.pkgconfdir('foo')], 'pcfiles': ['bar', 'foo_sub'], 'extra_args': [], }) def test_invalid_submodule(self): pkg = self.make_package( 'foo', path=self.srcpath, build='bfg9000', submodules={'names': ['sub'], 'required': True} ) with self.assertRaises(ValueError): pkg.get_usage(self.pkgdir, ['invalid']) def test_already_fetched(self): def mock_exists(p): return os.path.basename(p) == 'foo' build = {'type': 'bfg9000', 'extra_args': '--extra'} pkg = self.make_package('foo', path=self.srcpath, srcdir='srcdir', build=build, usage='pkg_config') with mock.patch('os.path.exists', mock_exists), \ mock.patch('tarfile.TarFile.extractall') as mtar, \ mock.patch('os.path.isdir', return_value=True): # noqa pkg.fetch(self.config, self.pkgdir) mtar.assert_not_called() self.check_resolve(pkg) def test_deploy(self): deploy_paths = {'prefix': '/usr/local'} pkg = self.make_package('foo', url=self.srcurl, build='bfg9000', deploy_paths=deploy_paths) self.assertEqual(pkg.should_deploy, True) self.check_fetch(pkg) with mock_open_log() as mopen, \ mock.patch('mopack.builders.bfg9000.pushd'), \ mock.patch('subprocess.run') as mrun: # noqa pkg.resolve(self.pkgdir) mopen.assert_called_with(os.path.join( self.pkgdir, 'logs', 'foo.log' ), 'a') builddir = os.path.join(self.pkgdir, 'build', 'foo') mrun.assert_any_call( ['bfg9000', 'configure', builddir, '--prefix', '/usr/local'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, check=True ) with mock_open_log() as mopen, \ mock.patch('mopack.builders.bfg9000.pushd'), \ mock.patch('subprocess.run'): # noqa pkg.deploy(self.pkgdir) mopen.assert_called_with(os.path.join( self.pkgdir, 'logs', 'deploy', 'foo.log' ), 'a') pkg = self.make_package('foo', url='http://example.com', build='bfg9000', deploy=False) self.assertEqual(pkg.should_deploy, False) with mock_open_log() as mopen: pkg.deploy(self.pkgdir) mopen.assert_not_called() def test_clean_pre(self): otherpath = os.path.join(test_data_dir, 'other_project.tar.gz') oldpkg = self.make_package('foo', path=self.srcpath, srcdir='bfg_project', build='bfg9000') newpkg1 = self.make_package('foo', path=otherpath, build='bfg9000') newpkg2 = self.make_package(AptPackage, 'foo') srcdir = os.path.join(self.pkgdir, 'src', 'foo') # Tarball -> Tarball (same) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_pre(oldpkg, self.pkgdir), False) mlog.assert_not_called() mrmtree.assert_not_called() # Tarball -> Tarball (different) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_pre(newpkg1, self.pkgdir), True) mlog.assert_called_once() mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> Apt with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_pre(newpkg2, self.pkgdir), True) mlog.assert_called_once() mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> nothing with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_pre(None, self.pkgdir), True) mlog.assert_called_once() mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> nothing (quiet) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_pre(None, self.pkgdir, True), True) mlog.assert_not_called() mrmtree.assert_called_once_with(srcdir, ignore_errors=True) def test_clean_post(self): otherpath = os.path.join(test_data_dir, 'other_project.tar.gz') oldpkg = self.make_package('foo', path=self.srcpath, srcdir='bfg_project', build='bfg9000') newpkg1 = self.make_package('foo', path=otherpath, build='bfg9000') newpkg2 = self.make_package(AptPackage, 'foo') # Tarball -> Tarball (same) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean: # noqa self.assertEqual(oldpkg.clean_post(oldpkg, self.pkgdir), False) mlog.assert_not_called() mclean.assert_not_called() # Tarball -> Tarball (different) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean: # noqa self.assertEqual(oldpkg.clean_post(newpkg1, self.pkgdir), True) mlog.assert_called_once() mclean.assert_called_once_with(self.pkgdir) # Tarball -> Apt with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean: # noqa self.assertEqual(oldpkg.clean_post(newpkg2, self.pkgdir), True) mlog.assert_called_once() mclean.assert_called_once_with(self.pkgdir) # Tarball -> nothing with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean: # noqa self.assertEqual(oldpkg.clean_post(None, self.pkgdir), True) mlog.assert_called_once() mclean.assert_called_once_with(self.pkgdir) # Tarball -> nothing (quiet) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean: # noqa self.assertEqual(oldpkg.clean_post(None, self.pkgdir, True), True) mlog.assert_not_called() mclean.assert_called_once_with(self.pkgdir) def test_clean_all(self): otherpath = os.path.join(test_data_dir, 'other_project.tar.gz') oldpkg = self.make_package('foo', path=self.srcpath, srcdir='bfg_project', build='bfg9000') newpkg1 = self.make_package('foo', path=otherpath, build='bfg9000') newpkg2 = self.make_package(AptPackage, 'foo') srcdir = os.path.join(self.pkgdir, 'src', 'foo') # Tarball -> Tarball (same) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_all(oldpkg, self.pkgdir), (False, False)) mlog.assert_not_called() mclean.assert_not_called() mrmtree.assert_not_called() # Tarball -> Tarball (different) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_all(newpkg1, self.pkgdir), (True, True)) self.assertEqual(mlog.call_count, 2) mclean.assert_called_once_with(self.pkgdir) mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> Apt with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_all(newpkg2, self.pkgdir), (True, True)) self.assertEqual(mlog.call_count, 2) mclean.assert_called_once_with(self.pkgdir) mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> nothing with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_all(None, self.pkgdir), (True, True)) self.assertEqual(mlog.call_count, 2) mclean.assert_called_once_with(self.pkgdir) mrmtree.assert_called_once_with(srcdir, ignore_errors=True) # Tarball -> nothing (quiet) with mock.patch('mopack.log.pkg_clean') as mlog, \ mock.patch(mock_bfgclean) as mclean, \ mock.patch('shutil.rmtree') as mrmtree: # noqa self.assertEqual(oldpkg.clean_all(None, self.pkgdir, True), (True, True)) mlog.assert_not_called() mclean.assert_called_once_with(self.pkgdir) mrmtree.assert_called_once_with(srcdir, ignore_errors=True) def test_equality(self): otherpath = os.path.join(test_data_dir, 'other_project.tar.gz') pkg = self.make_package('foo', path=self.srcpath, build='bfg9000') self.assertEqual(pkg, self.make_package( 'foo', path=self.srcpath, build='bfg9000' )) self.assertEqual(pkg, self.make_package( 'foo', path=self.srcpath, build='bfg9000', config_file='/path/to/mopack2.yml' )) self.assertNotEqual(pkg, self.make_package( 'bar', path=self.srcpath, build='bfg9000' )) self.assertNotEqual(pkg, self.make_package( 'foo', url=self.srcurl, build='bfg9000' )) self.assertNotEqual(pkg, self.make_package( 'foo', path=otherpath, build='bfg9000' )) def test_rehydrate(self): opts = self.make_options() pkg = TarballPackage('foo', path=self.srcpath, build='bfg9000', _options=opts, config_file=self.config_file) data = through_json(pkg.dehydrate()) self.assertEqual(pkg, Package.rehydrate(data, _options=opts)) pkg = TarballPackage('foo', url=self.srcurl, build='bfg9000', _options=opts, config_file=self.config_file) data = through_json(pkg.dehydrate()) self.assertEqual(pkg, Package.rehydrate(data,
<filename>ads/feature_engineering/feature_type/handler/feature_validator.py #!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2021, 2022 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ """ The module that helps to register custom validators for the feature types and extending registered validators with dispatching based on the specific arguments. Classes ------- FeatureValidator The Feature Validator class to manage custom validators. FeatureValidatorMethod The Feature Validator Method class. Extends methods which requires dispatching based on the specific arguments. """ import inspect from typing import Any, Callable, Dict, Tuple, Union import pandas as pd class WrongHandlerMethodSignature(ValueError): def __init__(self, handler_name: str, condition: str, handler_signature: str): super().__init__( f"The registered condition {condition} is not compatible " f"with the provided {handler_name} method. " f"Expected parameters: {handler_signature}" ) class ValidatorNotFound(ValueError): def __init__(self, name: str): super().__init__(f"Validator {name} not found.") class ValidatorWithConditionNotFound(ValueError): def __init__(self, name: str): super().__init__(f"Validator {name} with provided condition not found.") class ValidatorAlreadyExists(ValueError): def __init__(self, name: str): super().__init__(f"Validator {name} already exists.") class ValidatorWithConditionAlreadyExists(ValueError): def __init__(self, name: str): super().__init__(f"Validator {name} with provided condition already exists.") def _prepare_condition(params: Union[Tuple, Dict[str, Any]]) -> Tuple: """Converts provided parameters to Tuple. Parameters ----------- params: (Union[Tuple, Dict[str, Any]]) The condition which will be used to register a new validator. Returns ------- Tuple Prepared condition. Raises ------ ValueError If condition not provided or provided in the wrong format. """ if not params: raise ValueError("Condition not provided.") if not isinstance(params, (dict, tuple)): raise ValueError( "Wrong format for the condition. Condition should be dict or list." ) if not isinstance(params, tuple): return tuple((key, params[key]) for key in params) return params class FeatureValidator: """The Feature Validator class to manage custom validators. Methods ------- register(self, name: str, handler: Callable, condition: Union[Tuple, Dict[str, Any]] = None, replace: bool = False) -> None Registers new validator. unregister(self, name: str, condition: Union[Tuple, Dict[str, Any]] = None) -> None Unregisters validator. registered(self) -> pd.DataFrame Gets the list of registered validators. Examples -------- >>> series = pd.Series(['+1-202-555-0141', '+1-202-555-0142'], name='Phone Number') >>> def phone_number_validator(data: pd.Series) -> pd.Series: ... print("phone_number_validator") ... return data >>> def universal_phone_number_validator(data: pd.Series, country_code) -> pd.Series: ... print("universal_phone_number_validator") ... return data >>> def us_phone_number_validator(data: pd.Series, country_code) -> pd.Series: ... print("us_phone_number_validator") ... return data >>> PhoneNumber.validator.register(name="is_phone_number", handler=phone_number_validator, replace=True) >>> PhoneNumber.validator.register(name="is_phone_number", handler=universal_phone_number_validator, condition = ('country_code',)) >>> PhoneNumber.validator.register(name="is_phone_number", handler=us_phone_number_validator, condition = {'country_code':'+1'}) >>> PhoneNumber.validator.is_phone_number(series) phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 >>> PhoneNumber.validator.is_phone_number(series, country_code = '+7') universal_phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 >>> PhoneNumber.validator.is_phone_number(series, country_code = '+1') us_phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 >>> PhoneNumber.validator.registered() Validator Condition Handler --------------------------------------------------------------------------------- 0 is_phone_number () phone_number_validator 1 is_phone_number ('country_code') universal_phone_number_validator 2 is_phone_number {'country_code': '+1'} us_phone_number_validator >>> series.ads.validator.is_phone_number() phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 >>> series.ads.validator.is_phone_number(country_code = '+7') universal_phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 >>> series.ads.validator.is_phone_number(country_code = '+1') us_phone_number_validator 0 +1-202-555-0141 1 +1-202-555-0142 """ def __init__(self): """Initializes the FeatureValidator.""" self._validators = {} def register( self, name: str, handler: Callable, condition: Union[Tuple, Dict[str, Any]] = None, replace: bool = False, ) -> None: """Registers new validator. Parameters ---------- name : str The validator name. handler: callable The handler. condition: Union[Tuple, Dict[str, Any]] The condition for the validator. replace: bool The flag indicating if the registered validator should be replaced with the new one. Returns ------- None Nothing. Raises ------ ValueError The name is empty or handler is not provided. TypeError The handler is not callable. The name of the validator is not a string. ValidatorAlreadyExists The validator is already registered. """ if not name: raise ValueError("Validator name is not provided.") if not isinstance(name, str): raise TypeError("Validator name should be a string.") if not replace and name in self._validators: if not condition: raise ValidatorAlreadyExists(name) if self._validators[name]._has_condition(condition): raise ValidatorWithConditionAlreadyExists(name) if not handler: raise ValueError("Handler is not provided.") if not callable(handler): raise TypeError("Handler should be a function.") if condition: self._validators[name].register(condition=condition, handler=handler) else: self._validators[name] = FeatureValidatorMethod(handler) def unregister( self, name: str, condition: Union[Tuple, Dict[str, Any]] = None ) -> None: """Unregisters validator. Parameters ---------- name: str The name of the validator to be unregistered. condition: Union[Tuple, Dict[str, Any]] The condition for the validator to be unregistered. Returns ------- None Nothing. Raises ------ TypeError The name of the validator is not a string. ValidatorNotFound The validator not found. ValidatorWIthConditionNotFound The validator with provided condition not found. """ if not name: raise ValueError("Validator name is not provided.") if not isinstance(name, str): raise TypeError("Validator name should be a string.") if name not in self._validators: raise ValidatorNotFound(name) if condition and not self._validators[name]._has_condition(condition): raise ValidatorWithConditionNotFound(name) if condition: self._validators[name].unregister(condition) else: del self._validators[name] def registered(self) -> pd.DataFrame: """Gets the list of registered validators. Returns ------- pd.DataFrame The list of registerd validators. """ result_df = pd.DataFrame((), columns=["Validator", "Condition", "Handler"]) for key, feature_validator in self._validators.items(): feature_validators_df = feature_validator.registered() feature_validators_df.insert(0, "Validator", key) result_df = result_df.append(feature_validators_df) result_df.reset_index(drop=True, inplace=True) return result_df def _bind_data(self, data: pd.Series) -> None: """Binds the data to the all registered validators. Parameters ---------- data: pd.Series The data to be processed. """ for validator in self._validators.values(): validator._bind_data(data) def __getattr__(self, attr): """Makes it possible to invoke registered validators as a regular method.""" if attr in self._validators: return self._validators[attr] raise AttributeError(attr) class FeatureValidatorMethod: """The Feature Validator Method class. Extends methods which requires dispatching based on the specific arguments. Methods ------- register(self, condition: Union[Tuple, Dict[str, Any]], handler: Callable) -> None Registers new handler. unregister(self, condition: Union[Tuple, Dict[str, Any]]) -> None Unregisters existing handler. registered(self) -> pd.DataFrame Gets the list of registered handlers. """ def __init__(self, handler: Callable): """Initializes the Feature Validator Method. Parameters ---------- handler: Callable The handler that will be called by default if suitable one not found. """ if not handler: raise ValueError("Default handler is not specified.") self._default_handler = handler self._handlers = {} self._data = None def register( self, condition: Union[Tuple, Dict[str, Any]], handler: Callable ) -> None: """Registers new handler. Parameters ----------- condition: Union[Tuple, Dict[str, Any]] The condition which will be used to register a new handler. handler: Callable The handler to be registered. Returns ------- None Nothing. Raises ------ ValueError If condition not provided or provided in the wrong format. If handler not provided or has wrong format. """ if not condition: raise ValueError("Condition not provided.") if not isinstance(condition, (dict, tuple)): raise ValueError( "Wrong format for the condition. Condition should be dict or list." ) if not handler or not callable(handler): raise ValueError("Handler not provided. Handler should be a function.") prepared_condition = _prepare_condition(condition) # self.__validate_handler_signature(handler) self._handlers[prepared_condition] = handler self._data = None def unregister(self, condition: Union[Tuple, Dict[str, Any]]) -> None: """Unregisters existing handler. Parameters ----------- condition: Union[Tuple, Dict[str, Any]] The condition which will be used to unregister a handler. Returns ------- None Nothing. Raises ------ ValueError If condition not provided or provided in the wrong format. If condition not registered. """ if not condition: raise ValueError("Condition not provided.") if not isinstance(condition, (dict, tuple)): raise ValueError( "Wrong format for the condition. Condition should be dict or list." ) prepared_condition = _prepare_condition(condition) if prepared_condition not in self._handlers: raise ValueError("Condition not registered.") del self._handlers[prepared_condition] def registered(self) -> pd.DataFrame: """Gets the list of registered handlers. Returns ------- pd.DataFrame The list of registerd handlers. """ result = [("()", self._default_handler.__name__)] for key, value in self._handlers.items(): try: str_key = str(dict(key)) except ValueError: str_key = str(key) result.append((str_key, value.__name__)) return pd.DataFrame(result, columns=["Condition", "Handler"]) def _process(self, *args, **kwargs) -> pd.Series: """Finds and invokes a suitable handler for the provided condition. Parameters ---------- *args Variable length argument list. **kwargs Arbitrary keyword arguments. Parameters to search suitable handler. Returns ------- pd.Series The result of invoked handler. """ if kwargs: for key in ( tuple((key, kwargs[key]) for key in kwargs), tuple(kwargs.keys()), ): if key in self._handlers: return self._handlers[key](self._data, *args, **kwargs) return self._default_handler(self._data, *args, **kwargs) def _bind_data(self, data: pd.Series) -> None: """Binds the data to the validator. Parameters ---------- data: pd.Series The data to be processed. """ self._data = data def _validate_handler_signature( self, condition: Union[Tuple, Dict[str, Any]], handler: Callable ) -> bool: """Validates handler signature. Parameters ---------- condition: Union[Tuple, Dict[str, Any]] The condition to validate. handler: Callabe The hanlder to validate. Returns ------- bool True if provided condition and handler arguments compatible. Raises ------- WrongHandlerMethodSignature If provided condition and
<reponame>renato2099/weld import pandas as pd import grizzly_impl from lazy_op import LazyOpResult, to_weld_type from weld.weldobject import * import utils class SeriesWeld(LazyOpResult): """Summary Attributes: column_name (TYPE): Description df (TYPE): Description dim (int): Description expr (TYPE): Description weld_type (TYPE): Description """ def __init__(self, expr, weld_type, df=None, column_name=None, index_type=None, index_name=None): """Summary TODO: Implement an actual Index Object like how Pandas does Args: expr (TYPE): Description weld_type (TYPE): Description df (None, optional): Description column_name (None, optional): Description """ self.expr = expr self.weld_type = weld_type self.dim = 1 self.df = df self.column_name = column_name self.index_type = index_type self.index_name = index_name def __getitem__(self, key): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if isinstance(key, slice): start = key.start # TODO : We currently do nothing with step step = key.step stop = key.stop if self.index_type is not None: index_expr = grizzly_impl.get_field(self.expr, 0) column_expr = grizzly_impl.get_field(self.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) sliced_expr = grizzly_impl.slice_vec(zip_expr, start, stop) unzip_expr = grizzly_impl.unzip_columns( sliced_expr, [self.index_type, self.weld_type] ) return SeriesWeld( unzip_expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) else: return SeriesWeld( grizzly_impl.slice_vec( self.expr, start, stop ) ) else: # By default we return as if the key were predicates to filter by return self.filter(key) def __setitem__(self, predicates, new_value): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if self.df is not None and self.column_name is not None: self.df[self.column_name] = self.mask(predicates, new_value) @property def loc(self): return WeldLocIndexer( self ) def __getattr__(self, key): """Summary Args: key (TYPE): Description Returns: TYPE: Description Raises: Exception: Description """ if key == 'str' and self.weld_type == WeldVec(WeldChar()): return StringSeriesWeld( self.expr, self.weld_type, self.df, self.column_name ) raise AttributeError("Attr %s does not exist" % key) @property def index(self): if self.index_type is not None: return SeriesWeld( grizzly_impl.get_field( self.expr, 0 ), self.index_type, self.df, self.index_name ) # TODO : Make all series have a series attribute raise Exception("No index present") def evaluate(self, verbose=False, passes=None): if self.index_type is not None: index, column = LazyOpResult( self.expr, WeldStruct([WeldVec(self.index_type), WeldVec(self.weld_type)]), 0 ).evaluate(verbose=verbose, passes=passes) series = pd.Series(column, index) series.index.rename(self.index_name, True) return series else: column = LazyOpResult.evaluate(self, verbose=verbose, passes=passes) return pd.Series(column) def sort_values(self, ascending=False): """ Sorts the values of this series """ if self.index_type is not None: index_expr = grizzly_impl.get_field(self.expr, 0) column_expr = grizzly_impl.get_field(self.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) result_expr = grizzly_impl.sort(zip_expr, 1, self.weld_type, ascending) unzip_expr = grizzly_impl.unzip_columns( result_expr, [self.index_type, self.weld_type] ) return SeriesWeld( unzip_expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) else: result_expr = grizzly_impl.sort(self.expr) # TODO need to finish this def unique(self): """Summary Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.unique( self.expr, self.weld_type ), self.weld_type, self.df, self.column_name ) def lower(self): """Summary Returns: TYPE: Description """ # TODO : Bug in nested map operating on strings # TODO : Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.to_lower( self.expr, elem_type ), self.weld_type, self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type") def contains(self, string): """Summary Returns: TYPE: Description """ # Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.contains( self.expr, elem_type, string ), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type") def isin(self, ls): if isinstance(ls, SeriesWeld): if self.weld_type == ls.weld_type: return SeriesWeld( grizzly_impl.isin(self.expr, ls.expr, self.weld_type), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call isin on different typed list") def prod(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.aggr( self.expr, "*", 1, self.weld_type ), self.weld_type, 0 ) def sum(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.aggr( self.expr, "+", 0, self.weld_type ), self.weld_type, 0 ) def max(self): """Summary Returns: TYPE: Description """ pass def min(self): """Summary Returns: TYPE: Description """ pass def count(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.count( self.expr, self.weld_type ), WeldInt(), 0 ) def mask(self, predicates, new_value): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if isinstance(predicates, SeriesWeld): predicates = predicates.expr return SeriesWeld( grizzly_impl.mask( self.expr, predicates, new_value, self.weld_type ), self.weld_type, self.df, self.column_name ) def filter(self, predicates): if isinstance(predicates, SeriesWeld): predicates = predicates.expr return SeriesWeld( grizzly_impl.filter( self.expr, predicates, self.weld_type ), self.weld_type, self.df, self.column_name ) def add(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "+", self.weld_type ), self.weld_type, self.df, self.column_name ) def __sub__(self, other): # TODO subtractionw without index variables if self.index_type is not None: index = grizzly_impl.get_field(self.expr, 0) expr1 = grizzly_impl.get_field(self.expr, 1) else: expr1 = self.expr if other.index_type is not None: index2 = grizzly_impl.get_field(other.expr, 0) expr2 = grizzly_impl.get_field(other.expr, 1) else: expr2 = other.expr index_expr = LazyOpResult(index, self.index_type, 0) sub_expr = SeriesWeld( grizzly_impl.element_wise_op( expr1, expr2, "-", self.weld_type ), self.weld_type, self.df, self.column_name ) index_sub_expr = utils.group([index_expr, sub_expr]) return SeriesWeld( index_sub_expr.expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) # We also need to ensure that both indexes of the subtracted # columns are compatible def sub(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "-", self.weld_type ), self.weld_type, self.df, self.column_name ) def mul(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "*", self.weld_type ), self.weld_type, self.df, self.column_name ) def div(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "/", self.weld_type ), self.weld_type, self.df, self.column_name ) def per_element_and(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "&&", self.weld_type ), self.weld_type, self.df, self.column_name ) def mod(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "%", self.weld_type ), self.weld_type, self.df, self.column_name ) def __eq__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "==", self.weld_type ), WeldBit(), self.df, self.column_name ) def __ne__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "!=", self.weld_type ), WeldBit(), self.df, self.column_name ) def __gt__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, ">", self.weld_type ), WeldBit(), self.df, self.column_name ) def __ge__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if self.index_type is not None: expr = grizzly_impl.get_field(self.expr, 1) else: expr = self.expr return SeriesWeld( grizzly_impl.compare( expr, other, ">=", self.weld_type ), WeldBit(), self.df, self.column_name ) def __lt__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "<", self.weld_type ), WeldBit(), self.df, self.column_name ) def __le__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "<=", self.weld_type ), WeldBit(), self.df, self.column_name ) class StringSeriesWeld: """Summary Attributes: column_name (TYPE): Description df (TYPE): Description dim (int): Description expr (TYPE): Description weld_type (TYPE): Description """ def __init__(self, expr, weld_type, df=None, column_name=None): """Summary Args: expr (TYPE): Description weld_type (TYPE): Description df (None, optional): Description column_name (None, optional): Description """ self.expr = expr self.weld_type = weld_type self.dim = 1 self.df = df self.column_name = column_name def slice(self, start, size): """Summary Args: start (TYPE): Description size (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.slice( self.expr, start, size, self.weld_type ), self.weld_type, self.df, self.column_name ) class WeldLocIndexer: """ Label location based indexer for selection by label for Series objects. Attributes: grizzly_obj (TYPE): The Series being indexed into. """ def __init__(self, grizzly_obj): # If index_type field of grizzly_obj is None # then we assume normal 0 - 1 indexing self.grizzly_obj = grizzly_obj def __getitem__(self, key): if isinstance(self.grizzly_obj, SeriesWeld): series = self.grizzly_obj if isinstance(key, SeriesWeld): if series.index_type is not None: index_expr = grizzly_impl.get_field(series.expr, 0) column_expr = grizzly_impl.get_field(series.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) predicate_expr = grizzly_impl.isin(index_expr, key.expr, series.index_type) filtered_expr = grizzly_impl.filter( zip_expr, predicate_expr ) unzip_expr = grizzly_impl.unzip_columns( filtered_expr, [series.index_type, series.weld_type] ) return SeriesWeld( unzip_expr, series.weld_type, series.df, series.column_name, series.index_type, series.index_name ) # TODO : Need to implement for
(0,5) : self.tech_level+1 elif self.government == 7 : self.tech_level+=2 elif self.government == 13 : self.tech_level-=2 elif self.government == 14 : self.tech_level-=2 else: self.tech_level =0 self.tech_level=min(self.tech_level,max_tl) # CTM-sequence (specialized technology levels) if self.population > 0: # tECCME self.tech_level_civilian = min(max(self.tech_level-7+roll(6,6)//3,0),max_tl) self.tech_level_civilian_energy = min(max(self.tech_level_civilian-3+roll(4,6)//2//2,0),max_tl) self.tech_level_civilian_computing = min(max(self.tech_level_civilian-3+roll(6,6)//3//2,0),max_tl) self.tech_level_civilian_communication = min(max(self.tech_level_civilian-3+roll(6,6)//3//2,0),max_tl) self.tech_level_civilian_medicine = min(max(self.tech_level_civilian-3+roll(2,6)//1//2,0),max_tl) self.tech_level_civilian_environment = min(max(self.tech_level_civilian-3+roll(4,6)//2//2,0),max_tl) # tLWAS self.tech_level_transportation = min(max(self.tech_level-7+roll(6,6)//3,0),max_tl) self.tech_level_transportation_land = min(max(self.tech_level_transportation-3+roll(6,6)//3//2,0),max_tl) self.tech_level_transportation_water = min(max(self.tech_level_transportation-3+roll(6,6)//3//2,0),max_tl) self.tech_level_transportation_air = min(max(self.tech_level_transportation-3+roll(4,6)//2//2,0),max_tl) self.tech_level_transportation_space = min(max(self.tech_level_transportation-3+roll(4,6)//2//2,0),max_tl) # tPPHH self.tech_level_military = min(max(self.tech_level-7+roll(6,6)//3,0),max_tl) self.tech_level_military_personalweapons = min(max(self.tech_level_military-3+roll(6,6)//3//2,0),max_tl) self.tech_level_military_personalarmour = min(max(self.tech_level_military-3+roll(6,6)//3//2,0),max_tl) self.tech_level_military_heavyweapons = min(max(self.tech_level_military-3+roll(6,6)//3//2,0),max_tl) self.tech_level_military_heavyarmour = min(max(self.tech_level_military-3+roll(6,6)//3//2,0),max_tl) else: # tECCME self.tech_level_civilian = 0 self.tech_level_civilian_energy = 0 self.tech_level_civilian_computing = 0 self.tech_level_civilian_communication = 0 self.tech_level_civilian_medicine = 0 self.tech_level_civilian_environment = 0 # tLWAS self.tech_level_transportation = 0 self.tech_level_transportation_land = 0 self.tech_level_transportation_water = 0 self.tech_level_transportation_air = 0 self.tech_level_transportation_space = 0 # tPPHH self.tech_level_military = 0 self.tech_level_military_personalweapons = 0 self.tech_level_military_personalarmour = 0 self.tech_level_military_heavyweapons = 0 self.tech_level_military_heavyarmour = 0 def newPBJ(self): # PBJ-sequence (resources) if self.population==0: self.population_mod=0 self.asteroid_belts =max(roll(2,6)//2-3,0) if self.size==0: self.asteroid_belts+=1 self.jovian_planets =max(roll(2,6)-5,0) def newWDITTP(self): # WDITTP-sequence (specialized law levels) if self.population > 0: self.law_level_weapons = self.law_level-2+roll(1,6)//2 self.law_level_drugs = self.law_level-2+roll(1,6)//2 self.law_level_information = self.law_level-2+roll(1,6)//2 self.law_level_technology = self.law_level-2+roll(1,6)//2 self.law_level_travellers = self.law_level self.law_level_powers = self.law_level-2+roll(1,6)//2 # Government-ammended WDITTP-sequence if self.government in [0,10]: self.law_level -= 1 if self.government in [1,3,4,5,6,8,9,11,12]: self.law_level_weapons += roll(1,6) if self.government in [1,2,4,8,9]: self.law_level_drugs += roll(1,6) if self.government in [5,9,11]: self.law_level_information+= roll(1,6) if self.government in [1,3,5,6,9,11]: self.law_level_technology += roll(1,6) if self.government in [1,3,6,9]: self.law_level_travellers += roll(1,6) if self.government in [1,3,4,9]: self.law_level_powers += roll(1,6) if self.government>=13 or self.government==7: for i in range(roll(1,6)-1): es=random.choice(("self.law_level_weapons ",\ "self.law_level_drugs ",\ "self.law_level_information",\ "self.law_level_technology ",\ "self.law_level_travellers ",\ "self.law_level_powers ")) exec(es+"+=(roll(2,6)+1)//2") self.law_level = self.law_level_travellers else: self.law_level_weapons = 0 self.law_level_drugs = 0 self.law_level_information = 0 self.law_level_technology = 0 self.law_level_travellers = 0 self.law_level_powers = 0 # reset law levels self.law_level_weapons = max(self.law_level_weapons ,0) self.law_level_drugs = max(self.law_level_drugs ,0) self.law_level_information= max(self.law_level_information,0) self.law_level_technology = max(self.law_level_technology ,0) self.law_level_travellers = max(self.law_level_travellers ,0) self.law_level_powers = max(self.law_level_powers ,0) pass def newInfo(self,quirk_chance): # travel code self.travel_code=" " if self.population > 0 \ and self.populated \ and (self.government == 0 \ or self.government == 7 \ or self.government == 10 \ or self.law_level == 0 \ or self.law_level_weapons == 0 \ or self.law_level_information >= 9 \ or self.law_level_technology >= 9 \ or self.law_level_travellers >= 9 \ or self.government == 0 \ or self.atmosphere >= 10 ): self.travel_code="a" self.trade_codes = self.getTradeCodes() if self.population>0 \ and quirk_chance<random.randrange(100): self.quirk = self.getQuirk() else: self.quirk = "" pass def getTradeCodes(self): rc = '' from traceback import print_exc from sys import argv path = argv[0][:argv[0].rfind("\\")+1] NAME = 'name' TAG = 'tag' SIZE = 'size' ATMOSPHERE = 'atmosphere' HYDROGRAPHICS = 'hydrographics' POPULATION = 'population' GOVERNMENT = 'government' LAWLEVEL = 'lawlevel' TECHLEVEL = 'techlevel' for tradecode in self.TRADECODES['tradecode']: try: tcode = True for requirement in tradecode['requirements'].keys(): if requirement.endswith('__info') \ or requirement == XML_Parse.CDATA \ or requirement == XML_Parse.ATTR_TAG\ or tradecode['requirements'][requirement][XML_Parse.CDATA] == None \ or tradecode['requirements'][requirement][XML_Parse.CDATA].strip() == '' : continue else: req_info = tradecode['requirements'][requirement][XML_Parse.CDATA] if requirement == SIZE: req = splitup( req_info ) if self.size in req: pass else: tcode = False elif requirement == ATMOSPHERE: req = splitup( req_info ) if self.atmosphere in req: pass else: tcode = False elif requirement == HYDROGRAPHICS: req = splitup( req_info ) if self.hydrographics in req: pass else: tcode = False elif requirement == POPULATION: req = splitup( req_info ) if self.population in req: pass else: tcode = False elif requirement == GOVERNMENT: req = splitup( req_info ) if self.government in req: pass else: tcode = False elif requirement == LAWLEVEL: req = splitup( req_info ) if self.law_level in req: pass else: tcode = False elif requirement == TECHLEVEL: req = splitup( req_info ) if self.tech_level in req: pass else: tcode = False # print( ' ' + tradecode['name'] + ' is ' + str(tcode) ) if tradecode[XML_Parse.ATTR_TAG][TAG]=="As" and self.type=="satellite": tcode=False if tradecode[XML_Parse.ATTR_TAG][TAG]=="Ga" and abs(self.GoldieDist)>10: tcode=False if tradecode[XML_Parse.ATTR_TAG][TAG]=="Ic" and self.GoldieDist>12 and self.hydrographics>0: tcode=True if tcode: rc += " " + tradecode[XML_Parse.ATTR_TAG][TAG] except Exception as e: print(tradecode[XML_Parse.ATTR_TAG][TAG]) print_exc()#print(e) return rc def getTag(self): r = roll(1,100) rc = '' tags = [ 'Abandoned Colony', \ 'Alien Ruins', \ 'Altered Humanity', \ 'Anthromorphs', \ 'Battleground', \ 'Bubble Cities', \ 'Cheap Life', \ 'Civil War', \ 'Cold War', \ 'Colony', \ 'Cyclical Doom', \ 'Doomed World', \ 'Dying Race', \ 'Eugenics Cult', \ 'Feral World', \ 'Flying Cities', \ 'Forbidden Tech', \ 'Freak Geology', \ 'Freak Weather', \ 'Friendly Foe', \ 'Gold Rush', \ 'Great Work', \ 'Hatred', \ 'Hivemind', \ 'Holy War', \ 'Hostile Biosphere', \ 'Hostile Space', \ 'Immortals', \ 'Local Specialty', \ 'Local Tech', \ 'Major Spaceyard', \ 'Megacorps', \ 'Mercenaries', \ 'Minimal Contact', \ 'Misandry/Misogyny', \ 'Night World', \ 'Nomads', \ 'Out of Contact', \ 'Outpost World', \ 'Pilgrimage Site', \ 'Pleasure World', \ 'Police State', \ 'Post-Scarcity', \ 'Tech Cultists', \ 'Primitive Aliens', \ 'Quarantined World', \ 'Radioactive World', \ 'Refugees', \ 'Regional Hegemon', \ 'Restrictive Laws', \ 'Revanchists', \ 'Revolutionaries', \ 'Rigid Culture', \ 'Rising Hegemon', \ 'Ritual Combat', \ 'Robots', \ 'Seagoing Cities', \ 'Sealed Menace', \ 'Secret Masters', \ 'Sectarians', \ 'Seismic Instability', \ 'Shackled World', \ 'Societal Despair', \ 'Sole Supplier', \ 'Taboo Treasure', \ 'Terraform Failure', \ 'Tomb World', \ 'Unshackled AI', \ 'Urbanized Surface', \ 'Utopia', \ 'Xenophiles', \ 'Xenophobes', \ 'Zombies' ] rc = random.choice( tags ) return rc def getQuirk(self): rc = '' from traceback import print_exc from sys import argv dom_quirk=random.choice(self.CULTURE['quirk']) rc+=dom_quirk[XML_Parse.ATTR_TAG]['index'] return rc def newOrbitInfo(self): year=365.25 week=7 day =1 self.isTideLocked=False if self.type=="satellite": # position in orbit if self.isMainworld: self.parent.pos=0 self.pos=0 else: self.pos=random.randrange(73)*5 # orbital period if self.band.startswith("near" ): self.orbital_period=1.0 elif self.band.startswith("mid" ): if roll(1,6)<=1: retrograde= 1.00 else: retrograde=-1.25 self.orbital_period=year*max(self.parent.gravity,1)/10*(3+roll(2,6))/10*retrograde elif self.band.startswith("far" ): if roll(1,6)<=3: retrograde= 1.00 else: retrograde=-1.25 self.orbital_period=year*max(self.parent.gravity*1.1,1)/10*(roll(1,2)*0.5+0.15)*retrograde elif self.band.startswith("rogue"): if roll(1,6)<=5: retrograde= 1.00 else: retrograde=-1.25 self.orbital_period=year*max(self.parent.gravity*1.5,1)/10*(roll(1,2)*0.15+0.15)*retrograde else: self.orbital_period=1.0 # length of day if self.band.startswith("near" ): self.isTideLocked =True self.rotations_per_orbit=1.0 elif self.band.startswith("mid" ): if self.parent.gravity+roll(2,6) > 12: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*32*(3+roll(2,6))/10 elif self.band.startswith("far" ): if self.parent.gravity+roll(2,6) > 16: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*32*(3+roll(2,6))/7 elif self.band.startswith("rogue"): if self.parent.gravity+roll(2,6) > 20: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*32*(3+roll(2,6))/5 # traversal self.weekly_traversal=360*(7/self.orbital_period) else: # re-get orbit self.orbit=int(self.AUtoStar*100) # position in orbit if self.isMainworld: self.pos=0 else: self.pos=random.randrange(73)*5 # orbital period if self.band.startswith("near" ): self.orbital_period=year*self.AUtoStar*(2+roll(2,4))/10 elif self.band.startswith("mid" ): self.orbital_period=year*self.AUtoStar*(7+roll(1,6))/10 elif self.band.startswith("far" ): if roll(1,6)<=1: retrograde= 1.00 else: retrograde=-1.25 self.orbital_period=year*self.AUtoStar*(2+roll(2,6))*retrograde elif self.band.startswith("rogue"): if roll(1,6)<=2: retrograde= 1.00 else: retrograde=-1.25 self.orbital_period=year*self.AUtoStar*(4+4*roll(4,6))*retrograde else: self.orbital_period=1.0 # length of day if self.band.startswith("near" ): if roll(2,6) > 5: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*self.AUtoStar*roll( 1,6) elif self.band.startswith("mid" ): if not self.isGasGiant and roll(2,6) > 9: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*self.AUtoStar*roll(10,6)*10 elif self.band.startswith("far" ): if not self.isGasGiant and roll(2,6) > 11: self.isTideLocked=True self.rotations_per_orbit=1.0 else: self.rotations_per_orbit=day*self.AUtoStar*roll( 3,6)*100 elif self.band.startswith("rogue"): self.rotations_per_orbit=day*self.AUtoStar*roll( 3,6)*100 # traversal self.weekly_traversal=360*(7/self.orbital_period) if self.atmosphere==15: if self.hydrographics==10: self.comment +="Atmo:\"Panthalassic world (>85% water by volume)\"," elif not self.isTideLocked and roll(1,6)==2: self.comment +="Atmo:\"Constant Storms (pressure changes wildly)\"," elif not self.isTideLocked and self.size>2 and self.size<7: self.comment +="Atmo:\"Ellipsoidal Atmosphere (viable density only at equator)\"," pass def load(self,uwppp): # # ## ref: M 49 - X420000-0 KN3 00000 0-00000 0-0000 0-0000 00000 |n|noname I|n| |a| Ba De Po |o|143.18|1.00|0.00|o| |c|---|c| # create pointer p=0 # Mainworld Status self.isMainworld=False p+=0 length=1 marker=uwppp[p:p+length] if marker in ("M","m"): self.isMainworld=True if marker in ("•","M"): self.type="planet" else: self.type="satellite" # AUtoStar p+=length length=4 if self.type!="satellite": self.AUtoStar = float( uwppp[p:p+length] ) / 100 self.orbit = int( float( uwppp[p:p+length] ) ) else: self.AUtoStar = -1 self.orbit = int( float( uwppp[p:p+length] ) ) # UWP p+=length+3 length=9 uwp=uwppp[p:p+length] if uwp.lower().startswith("sgg"): self.isGasGiant=True self.isGasGiantSmall=True self.size =int( self.config.get("GAS GIANTS","size (sgg)") ) self.gravity = self.size self.atmosphere =int( self.config.get("GAS GIANTS","atmosphere") ) self.hydrographics =int( self.config.get("GAS GIANTS","hydrographics") ) self.population =0 self.government =0 self.law_level =0 self.tech_level =0 elif uwp.lower().startswith("lgg"): self.size =int( self.config.get("GAS GIANTS","size (lgg)") ) self.gravity =self.size self.atmosphere =int( self.config.get("GAS GIANTS","atmosphere") ) self.hydrographics =int( self.config.get("GAS GIANTS","hydrographics") ) self.population =0 self.government =0 self.law_level =0 self.tech_level =0 else: self.starport = uwp[ 0: 1].lower() self.size = uwp[ 1: 2].lower() self.atmosphere =findPosInList(self.HEX_EXPANDED,uwp[ 2: 3].lower())[0] self.hydrographics =findPosInList(self.HEX_EXPANDED,uwp[ 3: 4].lower())[0] self.population =findPosInList(self.HEX_EXPANDED,uwp[
<filename>vst_sim/src/vstsim/grasping/grasp_sampler.py # -*- coding: utf-8 -*- from abc import ABCMeta, abstractmethod import copy import logging import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np # import os, IPython, sys import math import random import time import scipy.stats as stats from vstsim.visualization.GL_visualizer3d import GL_Visualizer try: import pcl except ImportError: logging.warning('Failed to import pcl!') import vstsim import itertools as it import multiprocessing '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' import datetime import pickle from vstsim.grasping import Grasp, Contact3D, ParallelJawPtGrasp3D, PointGraspMetrics3D, \ VacuumPoint, GraspQuality_Vacuum, DexterousVacuumPoint, DexterousQuality_Vacuum, \ ChameleonTongueContact, ChameleonTongue_Quality from vstsim.grasping import GraspInfo, GraspInfo_TongueGrasp from vstsim.grasping import math_robot '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' from autolab_core import RigidTransform import scipy # create logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) USE_OPENRAVE = True try: import openravepy as rave except ImportError: logger.warning('Failed to import OpenRAVE') USE_OPENRAVE = False try: import rospy import moveit_commander except ImportError: logger.warning("Failed to import rospy, you can't grasp now.") try: from mayavi import mlab except ImportError: mlab = [] logger.warning('Do not have mayavi installed, please set the vis to False') """ Copyright ©2017. The Regents of the University of California (Regents). All Rights Reserved. Permission to use, copy, modify, and distribute this software and its documentation for educational, research, and not-for-profit purposes, without fee and without a signed licensing agreement, is hereby granted, provided that the above copyright notice, this paragraph and the following two paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643- 7201, <EMAIL>, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities. IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. """ """ Classes for sampling grasps. Author: <NAME> """ """ Modified by: <NAME> Email : <EMAIL> Date : 23/02/2020 09:53 """ color_ls = np.ones((14, 3), dtype=np.int32) color_ls[0, :] = np.array([255, 0, 0]) # Red color_ls[1, :] = np.array([60, 180, 75]) # Green color_ls[2, :] = np.array([255, 225, 25]) # Yellow color_ls[3, :] = np.array([0, 130, 200]) # Blue color_ls[4, :] = np.array([245, 130, 48]) # Orange color_ls[5, :] = np.array([145, 30, 180]) # Purple color_ls[6, :] = np.array([70, 240, 240]) # Cyan color_ls[7, :] = np.array([240, 50, 230]) # Magenta color_ls[8, :] = np.array([210, 245, 60]) # Lime color_ls[9, :] = np.array([250, 190, 190]) # Pink color_ls[10, :] = np.array([0, 128, 128]) # Teal color_ls[11, :] = np.array([128, 0, 0]) # Maroon color_ls[12, :] = np.array([128, 128, 0]) # Olive color_ls[13, :] = np.array([0, 0, 128]) # Navy # class GraspSampler(metaclass=ABCMeta): class GraspSampler: """ Base class for various methods to sample a number of grasps on an object. Should not be instantiated directly. Attributes ---------- gripper : :obj:`RobotGripper` the gripper to compute grasps for config : :obj:`YamlConfig` configuration for the grasp sampler """ __metaclass__ = ABCMeta def __init__(self, gripper, config): self.gripper = gripper self._configure(config) def _configure(self, config): """ Configures the grasp generator.""" ######################################### if 'sampling_friction_coef' in list(config.keys()): self.friction_coef = config['sampling_friction_coef'] else: self.friction_coef = 2.0 ######################################### if 'num_cone_faces' in list(config.keys()): self.num_cone_faces = config['num_cone_faces'] else: self.num_cone_faces = 8 ######################################### if 'grasp_samples_per_surface_point' in list(config.keys()): self.num_samples = config['grasp_samples_per_surface_point'] else: self.num_samples = 1 ######################################### if 'target_num_grasps' in list(config.keys()): self.target_num_grasps = config['target_num_grasps'] else: self.target_num_grasps = 1 ######################################### if self.target_num_grasps is None: self.target_num_grasps = 1 ######################################### if 'min_contact_dist' in list(config.keys()): self.min_contact_dist = config['min_contact_dist'] else: self.min_contact_dist = 0.0 ######################################### if 'num_grasp_rots' in list(config.keys()): self.num_grasp_rots = config['num_grasp_rots'] else: self.num_grasp_rots = 0.0 ########################################### ########################################### # parameters for virtual camera ######################################### if 'back_up_dis' in list(config.keys()): self.back_up_dis = config['back_up_dis'] else: self.back_up_dis = 1 ######################################### if 'max_projection_dis' in list(config.keys()): self.max_projection_dis = config['max_projection_dis'] else: self.max_projection_dis = 1 ######################################### if 'num_projection_steps' in list(config.keys()): self.num_projection_steps = config['num_projection_steps'] else: self.num_projection_steps = 20 ######################################### if 'resolution_pc' in list(config.keys()): self.resolution_pc = config['resolution_pc'] else: self.resolution_pc = 24 ######################################### if 'angle_range_max' in list(config.keys()): self.angle_range = config['angle_range_max'] else: self.angle_range = 30.0 ######################################### if 'angle_range_max' in list(config.keys()): self.angle_range_max = config['angle_range_max'] else: self.angle_range_max = 5.0 ######################################### if 'angle_range_min' in list(config.keys()): self.angle_range_min = config['angle_range_min'] else: self.angle_range_min = 1.0 ######################################### if 'num_angle_steps' in list(config.keys()): self.num_angle_steps = config['num_angle_steps'] else: self.num_angle_steps = 5 ######################################### if 'scale_obj' in list(config.keys()): self.scale_obj = config['scale_obj'] else: self.scale_obj = 1.0 ######################################### if 'dim_grasp_matrix' in list(config.keys()): self.dim_grasp_matrix = config['dim_grasp_matrix'] else: self.dim_grasp_matrix = 100 ######################################### if 'max_num_surface_points' in list(config.keys()): self.max_num_surface_points_ = config['max_num_surface_points'] else: self.max_num_surface_points_ = 100 ######################################### if 'grasp_dist_thresh' in list(config.keys()): self.grasp_dist_thresh_ = config['grasp_dist_thresh'] else: self.grasp_dist_thresh_ = 0 @abstractmethod def sample_grasps(self, graspable, num_grasps_generate, vis, **kwargs): """ Create a list of candidate grasps for a given object. Must be implemented for all grasp sampler classes. Parameters --------- graspable : :obj:`GraspableObject3D` object to sample grasps on num_grasps_generate : int vis : bool """ grasp = [] return grasp # pass def generate_grasps_stable_poses(self, graspable, stable_poses, target_num_grasps=None, grasp_gen_mult=5, max_iter=3, sample_approach_angles=False, vis=False, **kwargs): """Samples a set of grasps for an object, aligning the approach angles to the object stable poses. Parameters ---------- graspable : :obj:`GraspableObject3D` the object to grasp stable_poses : :obj:`list` of :obj:`meshpy.StablePose` list of stable poses for the object with ids read from the database target_num_grasps : int number of grasps to return, defualts to self.target_num_grasps grasp_gen_mult : int number of additional grasps to generate max_iter : int number of attempts to return an exact number of grasps before giving up sample_approach_angles : bool whether or not to sample approach angles vis : bool Return ------ :obj:`list` of :obj:`ParallelJawPtGrasp3D` list of generated grasps """ # sample dense grasps unaligned_grasps = self.generate_grasps(graspable, target_num_grasps=target_num_grasps, grasp_gen_mult=grasp_gen_mult, max_iter=max_iter, vis=vis) # align for each stable pose grasps = {} print(sample_approach_angles) # add by Liang for stable_pose in stable_poses: grasps[stable_pose.id] = [] for grasp in unaligned_grasps: aligned_grasp = grasp.perpendicular_table(grasp) grasps[stable_pose.id].append(copy.deepcopy(aligned_grasp)) return grasps def generate_grasps(self, graspable, target_num_grasps=None, grasp_gen_mult=5, max_iter=3, sample_approach_angles=False, vis=False, **kwargs): """Samples a set of grasps for an object. Parameters ---------- graspable : :obj:`GraspableObject3D` the object to grasp target_num_grasps : int number of grasps to return, defualts to self.target_num_grasps grasp_gen_mult : int number of additional grasps to generate max_iter : int number of attempts to return an exact number of grasps before giving up sample_approach_angles : bool whether or not to sample approach angles vis : bool whether show the grasp on picture Return ------ :obj:`list` of :obj:`ParallelJawPtGrasp3D` list of generated grasps """ # get num grasps if target_num_grasps is None: target_num_grasps = self.target_num_grasps num_grasps_remaining = target_num_grasps grasps = [] k = 1 while num_grasps_remaining > 0 and k <= max_iter: # SAMPLING: generate more than we need num_grasps_generate = grasp_gen_mult * num_grasps_remaining new_grasps = self.sample_grasps(graspable, num_grasps_generate, vis, **kwargs) # COVERAGE REJECTION: prune grasps by distance pruned_grasps = [] for grasp in new_grasps: min_dist = np.inf for cur_grasp in grasps: dist = ParallelJawPtGrasp3D.distance(cur_grasp, grasp) if dist < min_dist: min_dist = dist for cur_grasp in pruned_grasps: dist = ParallelJawPtGrasp3D.distance(cur_grasp, grasp) if dist < min_dist: min_dist = dist if min_dist >= self.grasp_dist_thresh_: pruned_grasps.append(grasp) # ANGLE EXPANSION sample grasp rotations around the axis candidate_grasps = [] if sample_approach_angles: for grasp in pruned_grasps: # construct a set of rotated grasps for i in range(self.num_grasp_rots): rotated_grasp = copy.copy(grasp) delta_theta = 0 # add by <NAME> print("This function can not use yes, as delta_theta is not set. --<NAME>") rotated_grasp.set_approach_angle(i * delta_theta) candidate_grasps.append(rotated_grasp) else: candidate_grasps = pruned_grasps # add to the current grasp set grasps += candidate_grasps logger.info('%d/%d grasps found after iteration %d.', len(grasps), target_num_grasps, k) grasp_gen_mult *= 2 num_grasps_remaining = target_num_grasps - len(grasps) k += 1 # shuffle computed grasps random.shuffle(grasps) if len(grasps) > target_num_grasps: logger.info('Truncating %d grasps to %d.', len(grasps), target_num_grasps) grasps = grasps[:target_num_grasps] logger.info('Found %d grasps.', len(grasps)) return grasps def show_points(self, point, color='lb', scale_factor=.0005): if color == 'b': color_f = (0, 0, 1) elif color == 'r': color_f = (1, 0, 0) elif color == 'g': color_f = (0, 1, 0) elif color == 'lb': # light blue color_f = (0.22, 1, 1) else: color_f = (1, 1, 1) if point.size == 3: # vis for only one point, shape must be (3,), for shape (1, 3) is not work point = point.reshape(3, ) mlab.points3d(point[0], point[1], point[2], color=color_f, scale_factor=scale_factor) else: # vis
<filename>Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/courseware/tests/test_tabs.py """ Test cases for tabs. """ from unittest.mock import MagicMock, Mock, patch import pytest from crum import set_current_request from django.contrib.auth.models import AnonymousUser from django.http import Http404 from django.urls import reverse from milestones.tests.utils import MilestonesTestCaseMixin from edx_toggles.toggles.testutils import override_waffle_flag from lms.djangoapps.courseware.tabs import ( CourseInfoTab, CoursewareTab, DatesTab, ExternalDiscussionCourseTab, ExternalLinkCourseTab, ProgressTab, get_course_tab_list ) from lms.djangoapps.courseware.tests.helpers import LoginEnrollmentTestCase from lms.djangoapps.courseware.views.views import StaticCourseTabView, get_static_tab_fragment from openedx.core.djangolib.testing.utils import get_mock_request from openedx.core.lib.courses import get_course_by_id from openedx.features.course_experience import DISABLE_UNIFIED_COURSE_TAB_FLAG from common.djangoapps.student.models import CourseEnrollment from common.djangoapps.student.tests.factories import InstructorFactory from common.djangoapps.student.tests.factories import StaffFactory from common.djangoapps.student.tests.factories import UserFactory from common.djangoapps.util.milestones_helpers import ( add_course_content_milestone, add_course_milestone, add_milestone, get_milestone_relationship_types ) from xmodule import tabs as xmodule_tabs from xmodule.modulestore.tests.django_utils import ( TEST_DATA_MIXED_MODULESTORE, ModuleStoreTestCase, SharedModuleStoreTestCase ) from xmodule.modulestore.tests.factories import CourseFactory, ItemFactory from xmodule.modulestore.tests.utils import TEST_DATA_DIR from xmodule.modulestore.xml_importer import import_course_from_xml class TabTestCase(SharedModuleStoreTestCase): """Base class for Tab-related test cases.""" @classmethod def setUpClass(cls): super().setUpClass() cls.course = CourseFactory.create(org='edX', course='toy', run='2012_Fall') cls.fake_dict_tab = {'fake_key': 'fake_value'} cls.books = None def setUp(self): super().setUp() self.reverse = lambda name, args: "name/{}/args/{}".format(name, ",".join(str(a) for a in args)) def create_mock_user(self, is_staff=True, is_enrolled=True): """ Creates a mock user with the specified properties. """ user = UserFactory(is_staff=is_staff) user.is_enrolled = is_enrolled return user def is_tab_enabled(self, tab, course, user): """ Returns true if the specified tab is enabled. """ return tab.is_enabled(course, user=user) def set_up_books(self, num_books): """Initializes the textbooks in the course and adds the given number of books to each textbook""" self.books = [MagicMock() for _ in range(num_books)] for book_index, book in enumerate(self.books): book.title = f'Book{book_index}' self.course.textbooks = self.books self.course.pdf_textbooks = self.books self.course.html_textbooks = self.books def check_tab( self, tab_class, dict_tab, expected_link, expected_tab_id, expected_name='same', invalid_dict_tab=None, ): """ Helper method to verify a tab class. 'tab_class' is the class of the tab that is being tested 'dict_tab' is the raw dictionary value of the tab 'expected_link' is the expected value for the hyperlink of the tab 'expected_tab_id' is the expected value for the unique id of the tab 'expected_name' is the expected value for the name of the tab 'invalid_dict_tab' is an invalid dictionary value for the tab. Can be 'None' if the given tab class does not have any keys to validate. """ # create tab tab = tab_class(tab_dict=dict_tab) # name is as expected assert tab.name == expected_name # link is as expected assert tab.link_func(self.course, self.reverse) == expected_link # verify active page name assert tab.tab_id == expected_tab_id # validate tab assert tab.validate(dict_tab) if invalid_dict_tab: with pytest.raises(xmodule_tabs.InvalidTabsException): tab.validate(invalid_dict_tab) # check get and set methods self.check_get_and_set_methods(tab) # check to_json and from_json methods self.check_tab_json_methods(tab) # check equality methods self.check_tab_equality(tab, dict_tab) # return tab for any additional tests return tab def check_tab_equality(self, tab, dict_tab): """Tests the equality methods on the given tab""" assert tab == dict_tab # test __eq__ ne_dict_tab = dict_tab ne_dict_tab['type'] = 'fake_type' assert tab != ne_dict_tab # test __ne__: incorrect type assert tab != {'fake_key': 'fake_value'} # test __ne__: missing type def check_tab_json_methods(self, tab): """Tests the json from and to methods on the given tab""" serialized_tab = tab.to_json() deserialized_tab = tab.from_json(serialized_tab) assert serialized_tab == deserialized_tab def check_can_display_results( self, tab, expected_value=True, for_authenticated_users_only=False, for_staff_only=False, for_enrolled_users_only=False ): """Checks can display results for various users""" if for_staff_only: user = self.create_mock_user(is_staff=True, is_enrolled=True) assert expected_value == self.is_tab_enabled(tab, self.course, user) if for_authenticated_users_only: user = self.create_mock_user(is_staff=False, is_enrolled=False) assert expected_value == self.is_tab_enabled(tab, self.course, user) if not for_staff_only and not for_authenticated_users_only and not for_enrolled_users_only: user = AnonymousUser() assert expected_value == self.is_tab_enabled(tab, self.course, user) if for_enrolled_users_only: user = self.create_mock_user(is_staff=False, is_enrolled=True) assert expected_value == self.is_tab_enabled(tab, self.course, user) def check_get_and_set_methods(self, tab): """Test __getitem__ and __setitem__ calls""" assert tab['type'] == tab.type assert tab['tab_id'] == tab.tab_id with pytest.raises(KeyError): _ = tab['invalid_key'] self.check_get_and_set_method_for_key(tab, 'name') self.check_get_and_set_method_for_key(tab, 'tab_id') with pytest.raises(KeyError): tab['invalid_key'] = 'New Value' def check_get_and_set_method_for_key(self, tab, key): """Test __getitem__ and __setitem__ for the given key""" old_value = tab[key] new_value = 'New Value' tab[key] = new_value assert tab[key] == new_value tab[key] = old_value assert tab[key] == old_value class TextbooksTestCase(TabTestCase): """Test cases for Textbook Tab.""" def setUp(self): super().setUp() self.set_up_books(2) self.dict_tab = MagicMock() self.course.tabs = [ xmodule_tabs.CourseTab.load('textbooks'), xmodule_tabs.CourseTab.load('pdf_textbooks'), xmodule_tabs.CourseTab.load('html_textbooks'), ] self.num_textbook_tabs = sum(1 for tab in self.course.tabs if tab.type in [ 'textbooks', 'pdf_textbooks', 'html_textbooks' ]) self.num_textbooks = self.num_textbook_tabs * len(self.books) @patch.dict("django.conf.settings.FEATURES", {"ENABLE_TEXTBOOK": True}) def test_textbooks_enabled(self): type_to_reverse_name = {'textbook': 'book', 'pdftextbook': 'pdf_book', 'htmltextbook': 'html_book'} num_textbooks_found = 0 user = self.create_mock_user(is_staff=False, is_enrolled=True) for tab in xmodule_tabs.CourseTabList.iterate_displayable(self.course, user=user): # verify all textbook type tabs if tab.type == 'single_textbook': book_type, book_index = tab.tab_id.split("/", 1) expected_link = self.reverse( type_to_reverse_name[book_type], args=[str(self.course.id), book_index] ) assert tab.link_func(self.course, self.reverse) == expected_link assert tab.name.startswith(f'Book{book_index}') num_textbooks_found = num_textbooks_found + 1 assert num_textbooks_found == self.num_textbooks class StaticTabDateTestCase(LoginEnrollmentTestCase, SharedModuleStoreTestCase): """Test cases for Static Tab Dates.""" MODULESTORE = TEST_DATA_MIXED_MODULESTORE @classmethod def setUpClass(cls): super().setUpClass() cls.course = CourseFactory.create() cls.page = ItemFactory.create( category="static_tab", parent_location=cls.course.location, data="OOGIE BLOOGIE", display_name="new_tab" ) cls.course.tabs.append(xmodule_tabs.CourseTab.load('static_tab', name='New Tab', url_slug='new_tab')) cls.course.save() def test_logged_in(self): self.setup_user() url = reverse('static_tab', args=[str(self.course.id), 'new_tab']) resp = self.client.get(url) self.assertContains(resp, "OOGIE BLOOGIE") def test_anonymous_user(self): url = reverse('static_tab', args=[str(self.course.id), 'new_tab']) resp = self.client.get(url) self.assertContains(resp, "OOGIE BLOOGIE") def test_invalid_course_key(self): self.setup_user() self.addCleanup(set_current_request, None) request = get_mock_request(self.user) with pytest.raises(Http404): StaticCourseTabView().get(request, course_id='edX/toy', tab_slug='new_tab') def test_get_static_tab_fragment(self): self.setup_user() course = get_course_by_id(self.course.id) self.addCleanup(set_current_request, None) request = get_mock_request(self.user) tab = xmodule_tabs.CourseTabList.get_tab_by_slug(course.tabs, 'new_tab') # Test render works okay tab_content = get_static_tab_fragment(request, course, tab).content assert str(self.course.id) in tab_content assert 'static_tab' in tab_content # Test when render raises an exception with patch('lms.djangoapps.courseware.views.views.get_module') as mock_module_render: mock_module_render.return_value = MagicMock( render=Mock(side_effect=Exception('Render failed!')) ) static_tab_content = get_static_tab_fragment(request, course, tab).content assert 'this module is temporarily unavailable' in static_tab_content class StaticTabDateTestCaseXML(LoginEnrollmentTestCase, ModuleStoreTestCase): """ Tests for the static tab dates of an XML course """ MODULESTORE = TEST_DATA_MIXED_MODULESTORE def setUp(self): """ Set up the tests """ super().setUp() # The following XML test course (which lives at common/test/data/2014) # is closed; we're testing that tabs still appear when # the course is already closed self.xml_course_key = self.store.make_course_key('edX', 'detached_pages', '2014') import_course_from_xml( self.store, 'test_user', TEST_DATA_DIR, source_dirs=['2014'], static_content_store=None, target_id=self.xml_course_key, raise_on_failure=True, create_if_not_present=True, ) # this text appears in the test course's tab # common/test/data/2014/tabs/8e4cce2b4aaf4ba28b1220804619e41f.html self.xml_data = "static 463139" self.xml_url = "8e4cce2b4aaf4ba28b1220804619e41f" @patch.dict('django.conf.settings.FEATURES', {'DISABLE_START_DATES': False}) def test_logged_in_xml(self): self.setup_user() url = reverse('static_tab', args=[str(self.xml_course_key), self.xml_url]) resp = self.client.get(url) self.assertContains(resp, self.xml_data) @patch.dict('django.conf.settings.FEATURES', {'DISABLE_START_DATES': False}) def test_anonymous_user_xml(self): url = reverse('static_tab', args=[str(self.xml_course_key), self.xml_url]) resp = self.client.get(url) self.assertContains(resp, self.xml_data) @patch.dict('django.conf.settings.FEATURES', {'ENTRANCE_EXAMS': True}) class EntranceExamsTabsTestCase(LoginEnrollmentTestCase, ModuleStoreTestCase, MilestonesTestCaseMixin): """ Validate tab behavior when dealing with Entrance Exams """ MODULESTORE = TEST_DATA_MIXED_MODULESTORE @patch.dict('django.conf.settings.FEATURES', {'ENTRANCE_EXAMS': True}) def setUp(self): """ Test case scaffolding """ super().setUp() self.course = CourseFactory.create() self.instructor_tab = ItemFactory.create( category="instructor", parent_location=self.course.location, data="Instructor Tab", display_name="Instructor" ) self.extra_tab_2 = ItemFactory.create( category="static_tab", parent_location=self.course.location, data="Extra Tab", display_name="Extra Tab 2" ) self.extra_tab_3 = ItemFactory.create( category="static_tab", parent_location=self.course.location, data="Extra Tab", display_name="Extra Tab 3" ) self.setup_user() self.enroll(self.course) self.user.is_staff = True self.relationship_types = get_milestone_relationship_types() self.addCleanup(set_current_request, None) def test_get_course_tabs_list_entrance_exam_enabled(self): """ Unit Test: test_get_course_tabs_list_entrance_exam_enabled """ entrance_exam = ItemFactory.create( category="chapter", parent_location=self.course.location, data="Exam Data", display_name="Entrance Exam", is_entrance_exam=True ) milestone = { 'name': 'Test Milestone', 'namespace': f'{str(self.course.id)}.entrance_exams', 'description': 'Testing Courseware Tabs' } self.user.is_staff = False self.course.entrance_exam_enabled = True self.course.entrance_exam_id = str(entrance_exam.location) milestone = add_milestone(milestone) add_course_milestone( str(self.course.id), self.relationship_types['REQUIRES'], milestone ) add_course_content_milestone( str(self.course.id), str(entrance_exam.location), self.relationship_types['FULFILLS'], milestone ) course_tab_list = get_course_tab_list(self.user, self.course) assert len(course_tab_list) == 2 assert course_tab_list[0]['tab_id'] == 'courseware' assert course_tab_list[0]['name'] == 'Entrance Exam' def test_get_course_tabs_list_skipped_entrance_exam(self): """ Tests tab list is not limited if user is allowed to skip entrance exam. """ #create a user student = UserFactory() # login as instructor hit skip entrance exam api in instructor app instructor = InstructorFactory(course_key=self.course.id) self.client.logout() self.client.login(username=instructor.username, password='<PASSWORD>') url = reverse('mark_student_can_skip_entrance_exam', kwargs={'course_id': str(self.course.id)}) response = self.client.post(url, { 'unique_student_identifier': student.email, }) assert response.status_code == 200 # log in again as student self.client.logout() self.login(self.email, self.password) course_tab_list = get_course_tab_list(self.user, self.course) assert len(course_tab_list) == 5 def test_course_tabs_list_for_staff_members(self): """ Tests tab list is not limited if user is member of staff and has not passed entrance exam. """ # Login as member of staff self.client.logout() staff_user = StaffFactory(course_key=self.course.id) self.client.login(username=staff_user.username, password='<PASSWORD>') course_tab_list = get_course_tab_list(staff_user, self.course) assert len(course_tab_list) == 5 class TextBookCourseViewsTestCase(LoginEnrollmentTestCase, SharedModuleStoreTestCase): """ Validate tab behavior when dealing with textbooks. """ MODULESTORE = TEST_DATA_MIXED_MODULESTORE @classmethod def setUpClass(cls): super().setUpClass() cls.course = CourseFactory.create() def setUp(self): super().setUp() self.set_up_books(2) self.setup_user() self.enroll(self.course) self.num_textbook_tabs = sum(1 for tab in self.course.tabs if tab.type in [ 'textbooks', 'pdf_textbooks', 'html_textbooks' ]) self.num_textbooks = self.num_textbook_tabs * len(self.books) def set_up_books(self, num_books): """Initializes the textbooks in the course and adds the given number of books to each textbook""" self.books = [MagicMock() for _ in range(num_books)] for book_index, book in enumerate(self.books): book.title
assert sech(5*pi*I/4) == -sqrt(2) assert sech(-5*pi*I/4) == -sqrt(2) assert sech(pi*I/6) == 2/sqrt(3) assert sech(-pi*I/6) == 2/sqrt(3) assert sech(7*pi*I/6) == -2/sqrt(3) assert sech(-5*pi*I/6) == -2/sqrt(3) assert sech(pi*I/105) == 1/cos(pi/105) assert sech(-pi*I/105) == 1/cos(pi/105) assert sech(x*I) == 1/cos(x) assert sech(k*pi*I) == 1/cos(k*pi) assert sech(17*k*pi*I) == 1/cos(17*k*pi) assert sech(n).is_real is True def test_sech_series(): x = Symbol('x') assert sech(x).series(x, 0, 10) == \ 1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10) def test_sech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sech(x).fdiff(2)) def test_asinh(): x, y = symbols('x,y') assert asinh(x) == asinh(x) assert asinh(-x) == -asinh(x) #at specific points assert asinh(nan) == nan assert asinh( 0) == 0 assert asinh(+1) == log(sqrt(2) + 1) assert asinh(-1) == log(sqrt(2) - 1) assert asinh(I) == pi*I/2 assert asinh(-I) == -pi*I/2 assert asinh(I/2) == pi*I/6 assert asinh(-I/2) == -pi*I/6 # at infinites assert asinh(oo) == oo assert asinh(-oo) == -oo assert asinh(I*oo) == oo assert asinh(-I *oo) == -oo assert asinh(zoo) == zoo #properties assert asinh(I *(sqrt(3) - 1)/(2**(S(3)/2))) == pi*I/12 assert asinh(-I *(sqrt(3) - 1)/(2**(S(3)/2))) == -pi*I/12 assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10 assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10 assert asinh(I*(sqrt(5) + 1)/4) == 3*pi*I/10 assert asinh(-I*(sqrt(5) + 1)/4) == -3*pi*I/10 # Symmetry assert asinh(-S.Half) == -asinh(S.Half) def test_asinh_rewrite(): x = Symbol('x') assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1)) def test_asinh_series(): x = Symbol('x') assert asinh(x).series(x, 0, 8) == \ x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8) t5 = asinh(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112 def test_asinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asinh(x).fdiff(2)) def test_acosh(): x = Symbol('x') assert acosh(-x) == acosh(-x) #at specific points assert acosh(1) == 0 assert acosh(-1) == pi*I assert acosh(0) == I*pi/2 assert acosh(Rational(1, 2)) == I*pi/3 assert acosh(Rational(-1, 2)) == 2*pi*I/3 assert acosh(nan) == nan # at infinites assert acosh(oo) == oo assert acosh(-oo) == oo assert acosh(I*oo) == oo + I*pi/2 assert acosh(-I*oo) == oo - I*pi/2 assert acosh(zoo) == zoo assert acosh(I) == log(I*(1 + sqrt(2))) assert acosh(-I) == log(-I*(1 + sqrt(2))) assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == 5*pi*I/12 assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == 7*pi*I/12 assert acosh(sqrt(2)/2) == I*pi/4 assert acosh(-sqrt(2)/2) == 3*I*pi/4 assert acosh(sqrt(3)/2) == I*pi/6 assert acosh(-sqrt(3)/2) == 5*I*pi/6 assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8 assert acosh(-sqrt(2 + sqrt(2))/2) == 7*I*pi/8 assert acosh(sqrt(2 - sqrt(2))/2) == 3*I*pi/8 assert acosh(-sqrt(2 - sqrt(2))/2) == 5*I*pi/8 assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12 assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == 11*I*pi/12 assert acosh((sqrt(5) + 1)/4) == I*pi/5 assert acosh(-(sqrt(5) + 1)/4) == 4*I*pi/5 assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I' assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I' def test_acosh_rewrite(): x = Symbol('x') assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1)) def test_acosh_series(): x = Symbol('x') assert acosh(x).series(x, 0, 8) == \ -I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8) t5 = acosh(x).taylor_term(5, x) assert t5 == - 3*I*x**5/40 assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112 def test_acosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acosh(x).fdiff(2)) def test_asech(): x = Symbol('x') assert asech(-x) == asech(-x) # values at fixed points assert asech(1) == 0 assert asech(-1) == pi*I assert asech(0) == oo assert asech(2) == I*pi/3 assert asech(-2) == 2*I*pi / 3 assert asech(nan) == nan # at infinites assert asech(oo) == I*pi/2 assert asech(-oo) == I*pi/2 assert asech(zoo) == I*AccumBounds(-pi/2, pi/2) assert asech(I) == log(1 + sqrt(2)) - I*pi/2 assert asech(-I) == log(1 + sqrt(2)) + I*pi/2 assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12 assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10 assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10 assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8 assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8 assert asech(sqrt(5) - 1) == I*pi / 5 assert asech(1 - sqrt(5)) == 4*I*pi / 5 assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8 # properties # asech(x) == acosh(1/x) assert asech(sqrt(2)) == acosh(1/sqrt(2)) assert asech(2/sqrt(3)) == acosh(sqrt(3)/2) assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2) assert asech(S(2)) == acosh(1/S(2)) # asech(x) == I*acos(1/x) # (Note: the exact formula is asech(x) == +/- I*acos(1/x)) assert asech(-sqrt(2)) == I*acos(-1/sqrt(2)) assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2) assert asech(-S(2)) == I*acos(-S.Half) assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2) # sech(asech(x)) / x == 1 assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1 assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1 assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1 assert expand_mul(sech(asech((1 + sqrt(5)))) / ((1 + sqrt(5)))) == 1 assert expand_mul(sech(asech((-1 - sqrt(5)))) / ((-1 - sqrt(5)))) == 1 assert expand_mul(sech(asech((-sqrt(6) - sqrt(2)))) / ((-sqrt(6) - sqrt(2)))) == 1 # numerical evaluation assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I' assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I' def test_asech_series(): x = Symbol('x') t6 = asech(x).expansion_term(6, x) assert t6 == -5*x**6/96 assert asech(x).expansion_term(8, x, t6, 0) == -35*x**8/1024 def test_asech_rewrite(): x = Symbol('x') assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1)) def test_asech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asech(x).fdiff(2)) def test_acsch(): x = Symbol('x') assert acsch(-x) == acsch(-x) assert acsch(x) == -acsch(-x) # values at fixed points assert acsch(1) == log(1 + sqrt(2)) assert acsch(-1) == - log(1 + sqrt(2)) assert acsch(0) == zoo assert acsch(2) == log((1+sqrt(5))/2) assert acsch(-2) == - log((1+sqrt(5))/2) assert acsch(I) == - I*pi/2 assert acsch(-I) == I*pi/2 assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12 assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12 assert acsch(-I*(1 + sqrt(5))) == I*pi / 10 assert acsch(I*(1 + sqrt(5))) == -I*pi / 10 assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8 assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8 assert acsch(-I*2) == I*pi / 6 assert acsch(I*2) == -I*pi / 6 assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5 assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5 assert acsch(-I*sqrt(2)) == I*pi / 4 assert acsch(I*sqrt(2)) == -I*pi / 4 assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10 assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10 assert acsch(-I*2 / sqrt(3)) == I*pi / 3 assert acsch(I*2 / sqrt(3)) == -I*pi / 3 assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8 assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8 assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5 assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5 assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12 assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12 assert acsch(nan) == nan # properties # acsch(x) == asinh(1/x) assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2) # acsch(x) == -I*asin(I/x) assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2) # csch(acsch(x)) / x == 1 assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1 assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / ((I*(1 + sqrt(5))))) == 1 assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 # numerical evaluation assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I' assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I' def test_acsch_infinities(): assert acsch(oo) == 0 assert acsch(-oo) == 0 assert acsch(zoo) == 0 def test_acsch_rewrite(): x = Symbol('x') assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1)) def test_acsch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acsch(x).fdiff(2)) def test_atanh(): x = Symbol('x') #at specific points assert atanh(0) == 0 assert atanh(I) == I*pi/4 assert atanh(-I) == -I*pi/4 assert atanh(1) == oo assert atanh(-1) == -oo assert atanh(nan) == nan # at infinites assert atanh(oo) == -I*pi/2 assert atanh(-oo) == I*pi/2 assert atanh(I*oo) == I*pi/2 assert atanh(-I*oo) == -I*pi/2 assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2) #properties assert atanh(-x) == -atanh(x) assert atanh(I/sqrt(3)) == I*pi/6 assert atanh(-I/sqrt(3)) == -I*pi/6 assert atanh(I*sqrt(3)) == I*pi/3 assert atanh(-I*sqrt(3)) == -I*pi/3 assert atanh(I*(1 + sqrt(2))) == 3*pi*I/8 assert atanh(I*(sqrt(2) - 1)) == pi*I/8 assert atanh(I*(1 - sqrt(2))) == -pi*I/8 assert atanh(-I*(1 + sqrt(2))) == -3*pi*I/8 assert atanh(I*sqrt(5 + 2*sqrt(5))) == 2*I*pi/5 assert atanh(-I*sqrt(5 + 2*sqrt(5))) == -2*I*pi/5 assert atanh(I*(2 -
DA: " + str(da)) tree = self.process_das([da])[0] log_debug("RESULT: %s" % str(tree)) # append the tree to a t-tree document, if requested if gen_doc: zone = self.get_target_zone(gen_doc) zone.ttree = tree.create_ttree() zone.sentence = str(da) # return the result return tree def init_slot_err_stats(self): """Initialize slot error statistics accumulator.""" self.slot_err_stats = SlotErrAnalyzer(self.validation_delex_slots) def get_slot_err_stats(self): """Return current slot error statistics, as a string.""" return ("Slot error: %.6f (M: %d, S: %d, T: %d)" % (self.slot_err_stats.slot_error(), self.slot_err_stats.missing, self.slot_err_stats.superfluous, self.slot_err_stats.total)) @staticmethod def load_from_file(model_fname): """Detect correct model type (plain/ensemble) and start loading.""" model_type = Seq2SeqGen # default to plain generator with file_stream(model_fname, 'rb', encoding=None) as fh: data = pickle.load(fh) if isinstance(data, type): model_type = data return model_type.load_from_file(model_fname) class Seq2SeqGen(Seq2SeqBase, TFModel): """A plain sequence-to-sequence generator (using encoder-decoder architecture from TensorFlow).""" def __init__(self, cfg): """Initialize the generator, fill in the configuration.""" Seq2SeqBase.__init__(self, cfg) TFModel.__init__(self, scope_name='seq2seq_gen-' + cfg.get('scope_suffix', '')) # extract the individual elements out of the configuration dict self.emb_size = cfg.get('emb_size', 50) self.batch_size = cfg.get('batch_size', 10) self.dropout_keep_prob = cfg.get('dropout_keep_prob', 1) self.optimizer_type = cfg.get('optimizer_type', 'adam') self.passes = cfg.get('passes', 5) self.min_passes = cfg.get('min_passes', 1) self.improve_interval = cfg.get('improve_interval', 10) self.top_k = cfg.get('top_k', 5) # self.checkpoint_dir = cfg.get('checkpoint_dir', '/tmp/') # TODO fix (not used now) self.use_dec_cost = cfg.get('use_dec_cost', False) self.alpha = cfg.get('alpha', 1e-3) self.alpha_decay = cfg.get('alpha_decay', 0.0) self.validation_size = cfg.get('validation_size', 0) self.validation_freq = cfg.get('validation_freq', 10) self.validation_no_overlap = cfg.get('validation_no_overlap', False) self.validation_use_all_refs = cfg.get('validation_use_all_refs', False) self.validation_delex_slots = cfg.get('validation_delex_slots', set()) self.validation_use_train_refs = cfg.get('validation_use_train_refs', False) if self.validation_delex_slots: self.validation_delex_slots = set(self.validation_delex_slots.split(',')) self.multiple_refs = cfg.get('multiple_refs', False) # multiple references for validation self.ref_selectors = cfg.get('ref_selectors', None) # selectors of validation trees (if in separate file) self.max_cores = cfg.get('max_cores') self.mode = cfg.get('mode', 'tokens' if cfg.get('use_tokens') else 'trees') self.nn_type = cfg.get('nn_type', 'emb_seq2seq') self.randomize = cfg.get('randomize', True) self.cell_type = cfg.get('cell_type', 'lstm') self.bleu_validation_weight = cfg.get('bleu_validation_weight', 0.0) self.use_context = cfg.get('use_context', False) # Train Summaries self.train_summary_dir = cfg.get('tb_summary_dir', None) if self.train_summary_dir: self.loss_summary_seq2seq = None self.train_summary_op = None self.train_summary_writer = None def _init_training(self, das_file, ttree_file, data_portion, context_file, validation_files, lexic_files): """Load training data, prepare batches, build the NN. @param das_file: training DAs (file path) @param ttree_file: training t-trees (file path) @param data_portion: portion of the data to be actually used for training @param context_file: training contexts (file path) @param validation_files: validation file paths (or None) @param lexic_files: paths to lexicalization data (or None) """ # read training data log_info('Reading DAs from ' + das_file + '...') das = read_das(das_file) log_info('Reading t-trees/sentences from ' + ttree_file + '...') trees = read_trees_or_tokens(ttree_file, self.mode, self.language, self.selector) if self.use_context: das = self._load_contexts(das, context_file) # make training data smaller if necessary train_size = int(round(data_portion * len(trees))) self.train_trees = trees[:train_size] self.train_das = das[:train_size] # get validation set (default to empty) self.valid_trees = [] self.valid_das = [] # load separate validation data files... if validation_files: valid_trees_for_lexic = self._load_valid_data(validation_files) valid_idxs = None # not needed, abstraction loads from separate file # ... or save part of the training data for validation: elif self.validation_size > 0: valid_trees_for_lexic, valid_idxs = self._cut_valid_data() # will set train_trees, valid_trees, train_das, valid_das else: valid_trees_for_lexic, valid_idxs = None, None if self.validation_use_all_refs: # try to use multiple references (not in lexicalizer) self._regroup_valid_refs() log_info('Using %d training, %d validation instances (with %d references).' % (len(self.train_das), len(self.valid_das), len([ref for inst in self.valid_trees for ref in inst]))) # initialize embeddings if self.use_context: self.da_embs = ContextDAEmbeddingSeq2SeqExtract(cfg=self.cfg) else: self.da_embs = DAEmbeddingSeq2SeqExtract(cfg=self.cfg) if self.mode == 'tokens': self.tree_embs = TokenEmbeddingSeq2SeqExtract(cfg=self.cfg) elif self.mode == 'tagged_lemmas': self.tree_embs = TaggedLemmasEmbeddingSeq2SeqExtract(cfg=self.cfg) else: self.tree_embs = TreeEmbeddingSeq2SeqExtract(cfg=self.cfg) self.da_dict_size = self.da_embs.init_dict(self.train_das) self.tree_dict_size = self.tree_embs.init_dict(self.train_trees) self.max_tree_len = self.tree_embs.get_embeddings_shape()[0] self.max_da_len = self.da_embs.get_embeddings_shape()[0] # prepare training batches self.train_enc = [cut_batch_into_steps(b) for b in grouper([self.da_embs.get_embeddings(da) for da in self.train_das], self.batch_size, None)] self.train_dec = [cut_batch_into_steps(b) for b in grouper([self.tree_embs.get_embeddings(tree) for tree in self.train_trees], self.batch_size, None)] # train lexicalizer (store surface forms, possibly train LM) if self.lexicalizer: self.lexicalizer.train(lexic_files, self.train_trees, valid_trees_for_lexic, valid_idxs) # train the classifier for filtering n-best lists if self.classif_filter: self.classif_filter.train(self.train_das, self.train_trees, valid_das=self.valid_das, valid_trees=self.valid_trees) # convert validation data to flat trees to enable F1 measuring if self.validation_size > 0 and self.mode in ['tokens', 'tagged_lemmas']: self.valid_trees = self._valid_data_to_flat_trees(self.valid_trees) # initialize top costs self.top_k_costs = [float('nan')] * self.top_k self.checkpoint_path = None # build the NN self._init_neural_network() # initialize the NN variables self.session.run(tf.compat.v1.global_variables_initializer()) def _load_contexts(self, das, context_file): """Load input context utterances from a .yaml.gz/.pickle.gz/.txt file and add them to the given DAs (each returned item is then a tuple of context + DA).""" # read contexts, combine them with corresponding DAs for easier handling if context_file is None: raise ValueError('Expected context utterances file name!') log_info('Reading context utterances from %s...' % context_file) contexts = read_trees_or_tokens(context_file, 'tokens', self.language, self.selector) return [(context, da) for context, da in zip(contexts, das)] def _load_valid_data(self, valid_data_paths): """Load validation data from separate files (comma-separated list of files with DAs, trees, and optionally contexts is expected).""" # parse validation data file specification valid_data_paths = valid_data_paths.split(',') if len(valid_data_paths) == 3: # with contexts (this does not determine if they're used) valid_das_file, valid_trees_file, valid_context_file = valid_data_paths else: valid_das_file, valid_trees_file = valid_data_paths # load the validation data log_info('Reading DAs from ' + valid_das_file + '...') self.valid_das = read_das(valid_das_file) log_info('Reading t-trees/sentences from ' + valid_trees_file + '...') valid_trees = read_trees_or_tokens(valid_trees_file, self.mode, self.language, self.ref_selectors, ref_mode=True) if self.use_context: self.valid_das = self._load_contexts(self.valid_das, valid_context_file) # reorder validation data for multiple references (see also _cut_valid_data) # if we empty-lines-separated reference text file, use that organization if self.mode == 'tokens' and any([len(inst) > 1 for inst in valid_trees]): self.valid_trees = valid_trees valid_trees = [tree for inst in valid_trees for tree in inst] # no grouping for lexicalizer # other type of validation data grouping else: if self.mode == 'tokens': # roll back the grouping when it's not used in our text file valid_trees = [inst[0] for inst in valid_trees] if self.multiple_refs: valid_size = len(valid_trees) num_refs, refs_stored = self._check_multiple_ref_type(valid_size) # serial: different instances next to each other, then synonymous in the same order if refs_stored == 'serial': valid_tree_chunks = [chunk for chunk in chunk_list(valid_trees, old_div(valid_size, num_refs))] self.valid_trees = [[chunk[i] for chunk in valid_tree_chunks] for i in range(old_div(valid_size, num_refs))] if len(self.valid_das) > len(self.valid_trees): self.valid_das = self.valid_das[0:old_div(valid_size, num_refs)] # parallel: synonymous instances next to each other elif refs_stored == 'parallel': self.valid_trees = [chunk for chunk in chunk_list(valid_trees, num_refs)] if len(self.valid_das) > len(self.valid_trees): self.valid_das = self.valid_das[::num_refs] # no multiple references; make lists of size 1 to simplify working with the data else: self.valid_trees = [[tree] for tree in valid_trees] return valid_trees # return for lexicalizer, which doesn't use any grouping def _tokens_to_flat_trees(self, sents): """Use sentences (pairs token-tag) read from Treex files and convert them into flat trees (each token has a node right under the root, lemma is the token, formeme is 'x'). Uses TokenEmbeddingSeq2SeqExtract conversion there and back. @param sents: sentences to be converted @return: a list of flat trees """ return [self.tree_embs.ids_to_tree(self.tree_embs.get_embeddings(sent)) for sent in sents] def _check_multiple_ref_type(self, data_size): """Parse multiple references setting from the configuration file and check if the data size is compatible with it.""" num_refs, refs_stored = self.multiple_refs.split(',') num_refs = int(num_refs) if data_size % num_refs != 0: raise Exception('Data length must be divisible by the number of references!') return num_refs, refs_stored def _regroup_valid_refs(self): """Group all validation trees/sentences according to the same DA (sorted and possibly delexicalized). """ if self.use_context: # if context is used, then train_das are da[1] normalized_das = [da[1].get_delexicalized(self.validation_delex_slots) for da in self.valid_das] else: normalized_das = [da.get_delexicalized(self.validation_delex_slots) for da in self.valid_das] da_groups = {} for trees, da in zip(self.valid_trees, normalized_das): da.sort() da_groups[da] = da_groups.get(da, []) da_groups[da].extend(trees) # use training trees as additional references if needed if self.validation_use_train_refs: if self.use_context: # if context is used, then train_das are da[1] normalized_train_das = [da[1].get_delexicalized(self.validation_delex_slots) for da in self.train_das] else: normalized_train_das = [da.get_delexicalized(self.validation_delex_slots) for da in self.train_das] for tree, da in zip(self.train_trees, normalized_train_das): da.sort() if da in da_groups: da_groups[da].append(tree) # deduplicate the references for da_group in da_groups.values(): da_group.sort() da_groups = {da: [sent for sent, _ in groupby(da_group)] for da, da_group in da_groups.items()} # store the references in correct order self.valid_trees = [da_groups[da] for da in normalized_das] def _cut_valid_data(self): """Put
#!/usr/bin/python # General imports from __future__ import absolute_import, division, print_function from sshutil.cmd import SSHCommand import logging import telnetlib import socket import json import time import random from socket import AF_INET from socket import AF_INET6 # ipaddress dependencies from ipaddress import IPv4Interface, IPv6Interface from ipaddress import IPv4Network, IPv6Network from ipaddress import AddressValueError # NetworkX dependencies from networkx.readwrite import json_graph # Main Routing Table MAIN_ROUTING_TABLE = 254 ZEBRA_PORT = 2601 SSH_PORT = 22 MIN_TABLE_ID = 2 # Linux kernel supports up to 255 different tables (or 2**32?) MAX_TABLE_ID = 2**32 - 1 # = 255 # Table where we store our seg6local routes LOCAL_SID_TABLE = MAIN_ROUTING_TABLE # Reserved table IDs RESERVED_TABLEIDS = [0, 253, 254, 255] RESERVED_TABLEIDS.append(LOCAL_SID_TABLE) RESERVED_TENANTIDS = [0] WAIT_TOPOLOGY_INTERVAL = 1 # Logger reference logger = logging.getLogger(__name__) # Initialize random seed random.seed(time.time()) class InterfaceType: UNKNOWN = 'unknown' WAN = 'wan' LAN = 'lan' ''' class DeviceStatus: NOT_CONNECTED = 'Not Connected' CONNECTED = 'Connected' RUNNING = 'Running' ''' supported_interface_types = [ InterfaceType.WAN, InterfaceType.LAN ] # Generate a random token used to authenticate the tenant def generate_token(): # Example of token: J4Ie2QKOHz3IVSQs8yA1ahAKfl1ySrtVxGVuT6NkuElGfC8cm55rFhyzkc79pjSLOsr7zKOu7rkMgNMyEHlze4iXVNoX1AtifuieNrrW4rrCroScpGdQqHMETJU46okS # noqa: E501 seq = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890' token = '' for _ in range(0, 128): token += random.choice(seq) # Return the token return token # Return true if the IP address belongs to the network def IPv6AddrInNet(ipaddr, net): # return IPv6Interface(unicode(ipaddr)) in IPv6Network(unicode(net)) return IPv6Interface(ipaddr) in IPv6Network(net) # Find a IPv6 address contained in the net def findIPv6AddrInNet(ipaddrs, net): for ipaddr in ipaddrs: if IPv6AddrInNet(ipaddr, net): return ipaddr return None def merge_two_dicts(x, y): z = x.copy() # start with x's keys and values z.update(y) # modifies z with y's keys and values & returns None return z def print_and_die(msg, code=-2): print(msg) exit(code) class TenantIDAllocator: def __init__(self): # Set of reusable tenant ID self.reusable_tenantids = set() # Last used tenant ID self.last_allocated_tenantid = -1 # Mapping token to tenant ID self.token_to_tenantid = dict() # Allocate and return a new tenant ID for a token def get_new_tenantid(self, token): if self.token_to_tenantid.get(token): # The token already has a tenant ID return -1 else: # Check if a reusable tenant ID is available if self.reusable_tenantids: tenantid = self.reusable_tenantids.pop() else: # Get new tenant ID self.last_allocated_tenantid += 1 while self.last_allocated_tenantid in RESERVED_TENANTIDS: # Skip reserved tenant ID self.last_allocated_tenantid += 1 tenantid = self.last_allocated_tenantid # If tenant ID is valid if validate_tenantid(tenantid) is True: # Assigne tenant ID to the token self.token_to_tenantid[token] = str(tenantid) return str(tenantid) # Return -1 if tenant IDs are finished else: return -1 # Return tenant ID, if no tenant ID assigned to the token return -1 def get_tenantid(self, token): return str(self.token_to_tenantid.get(token, -1)) # Release tenant ID and mark it as reusable def release_tenantid(self, token): # Check if the token has an associated tenantid if token in self.token_to_tenantid: tenantid = self.token_to_tenantid[token] # Unassigne the tenant ID del self.token_to_tenantid[token] # Mark the tenant ID as reusable self.reusable_tenantids.add(tenantid) return str(tenantid) else: # The token has not an associated tenant ID return -1 # Table ID Allocator class TableIDAllocator: def __init__(self): # Mapping VPN name to table ID, indexed by tenant ID self.vpn_to_tableid = dict() # Set of reusable table IDs, indexed by tenant ID self.reusable_tableids = dict() # Last used table ID, indexed by tenant ID self.last_allocated_tableid = dict() # Allocate and return a new table ID for a VPN def get_new_tableid(self, vpn_name, tenantid): if tenantid not in self.vpn_to_tableid: # Initialize data structures self.vpn_to_tableid[tenantid] = dict() self.reusable_tableids[tenantid] = set() self.last_allocated_tableid[tenantid] = -1 # Get the new table ID if self.vpn_to_tableid[tenantid].get(vpn_name): # The VPN already has an associated table ID return -1 else: # Check if a reusable table ID is available if self.reusable_tableids[tenantid]: tableid = self.reusable_tableids[tenantid].pop() else: # If not, get a new table ID self.last_allocated_tableid[tenantid] += 1 while self.last_allocated_tableid[ tenantid ] in RESERVED_TABLEIDS: # Skip reserved table IDs self.last_allocated_tableid[tenantid] += 1 tableid = self.last_allocated_tableid[tenantid] # Assign the table ID to the VPN name self.vpn_to_tableid[tenantid][vpn_name] = tableid # And return return tableid # Return the table ID assigned to the VPN # If the VPN has no assigned table IDs, return -1 def get_tableid(self, vpn_name, tenantid): if tenantid not in self.vpn_to_tableid: return -1 return self.vpn_to_tableid[tenantid].get(vpn_name, -1) # Release a table ID and mark it as reusable def release_tableid(self, vpn_name, tenantid): # Check if the VPN has an associated table ID if self.vpn_to_tableid[tenantid].get(vpn_name): # The VPN has an associated table ID tableid = self.vpn_to_tableid[tenantid][vpn_name] # Unassign the table ID del self.vpn_to_tableid[tenantid][vpn_name] # Mark the table ID as reusable self.reusable_tableids[tenantid].add(tableid) # If the tenant has no VPNs, # destory data structures if len(self.vpn_to_tableid[tenantid]) == 0: del self.vpn_to_tableid[tenantid] del self.reusable_tableids[tenantid] del self.last_allocated_tableid[tenantid] # Return the table ID return tableid else: # The VPN has not an associated table ID return -1 class VTEPIPv6NetAllocator: bit = 16 net = u"fcfb::/%d" % bit prefix = 64 def __init__(self): print("*** Calculating Available Mgmt Addresses") self.hosts = (IPv6Network(self.net)).hosts() def nextVTEPAddress(self): n_host = next(self.hosts) return n_host.__str__() class VTEPIPv4NetAllocator: bit = 8 net = u"10.0.0.0/%d" % bit prefix = 16 def __init__(self): print("*** Calculating Available Mgmt Addresses") self.vtepnet = (IPv4Network(self.net)).hosts() def nextVTEPAddress(self): n_host = next(self.vtepnet) return n_host.__str__() # Utiliy function to check if the provided table ID is valid def validate_table_id(tableid): return tableid >= MIN_TABLE_ID and tableid <= MAX_TABLE_ID def validate_deviceid(deviceid): return deviceid is not None and deviceid != '' def validate_overlayid(overlayid): return overlayid is not None and overlayid != '' def validate_tenantid(tenantid): return tenantid is not None and tenantid != '' def validate_overlay_type(overlay_type): return overlay_type in supported_overlay_types def validate_overlay_name(overlay_name): return overlay_name is not None and overlay_name != '' def validate_tunnel_mode(tunnel_mode, supported_tunnel_modes): return tunnel_mode in supported_tunnel_modes def validate_port(port): return port >= 0 and port <= 65535 def validate_interface_type(interface_type): return interface_type in supported_interface_types # Utiliy function to check if the IP # is a valid IPv6 address def validate_ipv6_address(ip): if ip is None: return False try: IPv6Interface(ip) return True except AddressValueError: return False # Utiliy function to check if the IP # is a valid IPv4 address def validate_ipv4_address(ip): if ip is None: return False try: IPv4Interface(ip) return True except AddressValueError: return False # Utiliy function to check if the IP # is a valid address def validate_ip_address(ip): return validate_ipv4_address(ip) or validate_ipv6_address(ip) # Utiliy function to get the IP address family def getAddressFamily(ip): if validate_ipv6_address(ip): # IPv6 address return AF_INET6 elif validate_ipv4_address(ip): # IPv4 address return AF_INET else: # Invalid address return None class OverlayType: IPv6Overlay = 'IPv6Overlay' IPv4Overlay = 'IPv4Overlay' supported_overlay_types = [OverlayType.IPv4Overlay, OverlayType.IPv6Overlay] ''' class VPN: # tableid=-1): def __init__(self, tunnel_id, vpn_name, vpn_type, interfaces, tenantid, tunnel_mode): # Tunnel ID self.id = tunnel_id # VPN name self.vpn_name = vpn_name # VPN type self.vpn_type = vpn_type # Interfaces belonging to the VPN self.interfaces = set(interfaces) #self.interfaces = dict() # for interface in interfaces: # routerid = interface.routerid # interface_name = interface.interface_name # if self.interfaces.get(routerid) is None: # self.interfaces[routerid] = dict() # self.interfaces[routerid][interface_name] = interface # Tenant ID self.tenantid = tenantid # Table ID #self.tableid = tableid #self.tunnel_specific_data = dict() self.tunnel_mode = tunnel_mode def removeInterface(self, routerid, interface_name): for interface in self.interfaces.copy(): if interface.routerid == routerid and \ interface.interface_name == interface_name: self.interfaces.remove(interface) return True return False def numberOfInterfaces(self, routerid): num = 0 for interface in self.interfaces: if interface.routerid == routerid: num += 1 return num def getInterface(self, routerid, interface_name): for interface in self.interfaces: if interface.routerid == routerid and \ interface.interface_name == interface_name: return interface return None class Interface: def __init__(self, routerid, interface_name): # Router ID self.routerid = routerid # Interface name self.interface_name = interface_name ''' # IPv6 utility functions def del_ipv6_nd_prefix_quagga(router, intf, prefix): # Establish a telnet connection with the zebra daemon # and try to reconfigure the addressing plan of the router router = str(router) port = ZEBRA_PORT intf = str(intf) prefix = str(prefix) try: print('%s - Trying to reconfigure addressing plan' % router) password = '<PASSWORD>' # Init telnet tn = telnetlib.Telnet(router, port) # Password tn.read_until(b'Password: ') tn.write(b'%s\r\n' % password.encode()) # Terminal length set to 0 to not have interruptions tn.write(b'terminal length 0\r\n') # Enable tn.write(b'enable\r\n') # Password tn.read_until(b'Password: ') tn.write(b'%s\r\n' % password.encode()) # Configure terminal tn.write(b'configure terminal\r\n') # Interface configuration tn.write(b'interface %s\r\n' % intf.encode()) # Remove old IPv6 prefix tn.write(b'no ipv6 nd prefix %s\r\n' % prefix) # Close interface configuration tn.write(b'q\r\n') # Close configuration mode tn.write(b'q\r\n') # Close privileged mode tn.write(b'q\r\n') # Close telnet tn.close() except socket.error: print('Error: cannot establish a connection ' 'to %s on port %s'
<reponame>jfallaire/generator-ps-boilerplate-project<filename>generators/simple/templates/src/platform/extensionRunner/cdf/document_definition.py<gh_stars>1-10 """ - THIS FILE IS GENERATED - CoveoInterfaces/DocumentDefinition/CoveoDocumentDefinition.jid """ from attr import attrib, attrs from enum import auto from typing import Any, Dict, List, Optional as Opt, Union from .root import CASING, JidEnumFlag, JidType class CompressionType(JidEnumFlag): """ Attributes: Uncompressed: Document is uncompressed ZLib: Data is compressed with zlib GZip: Data is compressed with GZip LZMA: Data is compressed with LZMA (e.g. 7-zip) Deflate: Data is compressed with Zlib (No Header, e.g. DeflateStream from .Net) """ Uncompressed: int = auto() ZLib: int = auto() GZip: int = auto() LZMA: int = auto() Deflate: int = auto() @attrs(kw_only=True, auto_attribs=True) class BlobEntry(JidType, hint="Coveo.BlobEntry"): """A structure that represents a blob entry from a store. Attributes: id_: The Id of the blob. inline_blob: The blob content when inline. compression: The compression method on the blob """ id_: Opt[str] = attrib(default=None, metadata={CASING: "Id"}) inline_blob: Opt[Union[str, bytes]] = None compression: Opt[CompressionType] = None def __init__( self, *, id_: Opt[str] = attrib(default=None, metadata={CASING: "Id"}), inline_blob: Opt[Union[str, bytes]] = None, compression: Opt[CompressionType] = None, ) -> None: """ Parameters: id_: The Id of the blob. inline_blob: The blob content when inline. compression: The compression method on the blob """ @attrs(kw_only=True, auto_attribs=True) class LocalBlobEntry(BlobEntry, hint="Coveo.LocalBlobEntry"): """Blob entry that is stored locally Attributes: file_name: the local filename to access the blob from """ file_name: Opt[str] = None def __init__(self, *, file_name: Opt[str] = None) -> None: """ Parameters: file_name: the local filename to access the blob from """ class PermissionIdentityType(JidEnumFlag): """Defines permission identity types. Attributes: Unknown: Represents a standard, or undefined identity. User: Represents a 'User' identity. Group: Represents a 'Group' identity. VirtualGroup: Represents a 'VirtualGroup' identity. """ Unknown: int = auto() User: int = auto() Group: int = auto() VirtualGroup: int = auto() @attrs(kw_only=True, auto_attribs=True) class Permission(JidType, hint="Coveo.Permission"): """A structure that represents a single permission. Attributes: identity_type: The type of identity. security_provider: The name of the security provider. identity: The identity, as defined by the specified security provider. additional_info: The additional information """ identity_type: Opt[PermissionIdentityType] = None security_provider: Opt[str] = None identity: Opt[str] = None additional_info: Opt[Dict[str, str]] = None def __init__( self, *, identity_type: Opt[PermissionIdentityType] = None, security_provider: Opt[str] = None, identity: Opt[str] = None, additional_info: Opt[Dict[str, str]] = None, ) -> None: """ Parameters: identity_type: The type of identity. security_provider: The name of the security provider. identity: The identity, as defined by the specified security provider. additional_info: The additional information """ @attrs(kw_only=True, auto_attribs=True) class SecurityIdentity(JidType, hint="Coveo.SecurityIdentity"): """A structure that represents a single security identity. Also known as a declarator. Attributes: identity_type: The type of security identity provider: Security provider associated with the identity. name: Name of the security identity. additional_info: Additional information associated with the security identity as key-value pairs. """ identity_type: Opt[PermissionIdentityType] = None provider: Opt[str] = None name: Opt[str] = None additional_info: Opt[Dict[str, str]] = None def __init__( self, *, identity_type: Opt[PermissionIdentityType] = None, provider: Opt[str] = None, name: Opt[str] = None, additional_info: Opt[Dict[str, str]] = None, ) -> None: """ Parameters: identity_type: The type of security identity provider: Security provider associated with the identity. name: Name of the security identity. additional_info: Additional information associated with the security identity as key-value pairs. """ @attrs(kw_only=True, auto_attribs=True) class PermissionSet(JidType, hint="Coveo.PermissionSet"): """A structure that represents a collection of allowed and denied permissions. Attributes: allow_anonymous: Indicates if anonymous users (i.e.: everyone) are allowed. allowed_permissions: The list of allowed permissions. denied_permissions: The list of denied permissions. name: An optional permission set name. """ allow_anonymous: Opt[bool] = None allowed_permissions: Opt[List[Permission]] = None denied_permissions: Opt[List[Permission]] = None name: Opt[str] = None def __init__( self, *, allow_anonymous: Opt[bool] = None, allowed_permissions: Opt[List[Permission]] = None, denied_permissions: Opt[List[Permission]] = None, name: Opt[str] = None, ) -> None: """ Parameters: allow_anonymous: Indicates if anonymous users (i.e.: everyone) are allowed. allowed_permissions: The list of allowed permissions. denied_permissions: The list of denied permissions. name: An optional permission set name. """ @attrs(kw_only=True, auto_attribs=True) class PermissionLevel(JidType, hint="Coveo.PermissionLevel"): """A structure that represents a level of permission where multiple permission sets can be specified. Attributes: name: An optional permission level name. """ permission_sets: Opt[List[PermissionSet]] = None name: Opt[str] = None def __init__(self, *, permission_sets: Opt[List[PermissionSet]] = None, name: Opt[str] = None) -> None: """ Parameters: name: An optional permission level name. """ @attrs(kw_only=True, auto_attribs=True) class PermissionModel(JidType, hint="Coveo.PermissionModel"): """A structure that represent a permissions model that contains one or many permission levels.""" permission_levels: Opt[List[PermissionLevel]] = None def __init__(self, *, permission_levels: Opt[List[PermissionLevel]] = None) -> None: ... @attrs(kw_only=True, auto_attribs=True) class SummarySentence(JidType, hint="Coveo.SummarySentence"): """ Attributes: text: The summary sentence text. word_count: The number of words in the summary sentence. score: The score of the sentence. """ text: Opt[str] = None word_count: Opt[int] = None score: Opt[int] = None def __init__(self, *, text: Opt[str] = None, word_count: Opt[int] = None, score: Opt[int] = None) -> None: """ Parameters: text: The summary sentence text. word_count: The number of words in the summary sentence. score: The score of the sentence. """ @attrs(kw_only=True, auto_attribs=True) class DataStreamValue(JidType, hint="Coveo.DataStreamValue"): """A structure that represents a data stream. Attributes: value: The blob entry containing the data. origin: The name of the component that created this data. """ value: Opt[BlobEntry] = None origin: Opt[str] = None def __init__(self, *, value: Opt[BlobEntry] = None, origin: Opt[str] = None) -> None: """ Parameters: value: The blob entry containing the data. origin: The name of the component that created this data. """ @attrs(kw_only=True, auto_attribs=True) class MetaDataValue(JidType, hint="Coveo.MetaDataValue"): """A structure that represents a collection of meta data from the same origin Attributes: values: The map of meta data. origin: The origin of the meta data. """ values: Opt[Dict[str, List[Any]]] = None origin: Opt[str] = None def __init__(self, *, values: Opt[Dict[str, List[Any]]] = None, origin: Opt[str] = None) -> None: """ Parameters: values: The map of meta data. origin: The origin of the meta data. """ class OperationType(JidEnumFlag): """Defines document operation types. Attributes: Add: Add the document. Delete: Delete a specific document. DeleteOlderThan: Delete documents that are older than /OperationId/. DeleteAndChildren: Delete the document and its children. """ Add: int = auto() Delete: int = auto() DeleteOlderThan: int = auto() DeleteAndChildren: int = auto() @attrs(kw_only=True, auto_attribs=True) class Document(JidType, hint="Coveo.Document"): """A structure that represents a document. Attributes: operation_id: An Id used to order operations. index_identifier: An identifier used to identify the index this document should go to. source_operation_id: The Id of the source operation that last processed this document. type_: The operation to perform on this document. source_key: The Id of the source that contains this document. source_id: The unique Id of the source that contains this document. organization_id: The Id of the organization to which this document belong. id_: The Id of this document. parent_id: The Id of the parent document. top_parent_id: The Id of the top parent document. permissions: The permissions of this document. meta_data: The meta data values pertaining to this document. data_streams: The data streams (blobs) associated with this document. attachments: The collection of children documents. attachment_ids: The collection of children ids. """ operation_id: Opt[int] = None index_identifier: Opt[str] = None source_operation_id: Opt[str] = None type_: Opt[OperationType] = attrib(default=None, metadata={CASING: "Type"}) source_key: Opt[str] = None source_id: Opt[str] = None organization_id: Opt[str] = None id_: Opt[str] = attrib(default=None, metadata={CASING: "Id"}) parent_id: Opt[str] = None top_parent_id: Opt[str] = None permissions: Opt[List[PermissionLevel]] = None meta_data: Opt[List[MetaDataValue]] = None data_streams: Opt[Dict[str, List[DataStreamValue]]] = None attachments: "Opt[List[Document]]" = None attachment_ids: Opt[List[str]] = None def __init__( self, *, operation_id: Opt[int] = None, index_identifier: Opt[str] = None, source_operation_id: Opt[str] = None, type_: Opt[OperationType] = attrib(default=None, metadata={CASING: "Type"}), source_key: Opt[str] = None, source_id: Opt[str] = None, organization_id: Opt[str] = None, id_: Opt[str] = attrib(default=None, metadata={CASING: "Id"}), parent_id: Opt[str] = None, top_parent_id: Opt[str] = None, permissions: Opt[List[PermissionLevel]] = None, meta_data: Opt[List[MetaDataValue]] = None, data_streams: Opt[Dict[str, List[DataStreamValue]]] = None, attachments: "Opt[List[Document]]" = None, attachment_ids: Opt[List[str]] = None, ) -> None: """ Parameters: operation_id: An Id used to order operations. index_identifier: An identifier used to identify the index this document should go to. source_operation_id: The Id of the source operation that last processed this document. type_: The operation to
DPR 633/72" riferimento_ordine="" quantita="1" prezzo="2,00" sconti="" codice_iva="53" u_m="Nr" importo="2,00" fattura.add_row(codice_articolo,descrizione,riferimento_ordine,u_m,quantita,prezzo,sconti,importo,codice_iva) if not codice_iva in lista_codici_iva: lista_codici_iva[codice_iva] = 2 else: lista_codici_iva[codice_iva] +=2 if scritta_esenzione: fattura.add_row("","","","","","","","","") fattura.add_row("","","","","","","","","") scritte = scritta_esenzione_cliente.split(",") for scritta in scritte: fattura.add_row("",scritta,"","","","","","","") bollo_presente = False for k,v in lista_codici_iva.iteritems(): codice_iva = k importo_netto = v # print "LISTA CODICI : ",codice_iva,importo_netto dettaglio_iva = db(db.anagrafica_codici_iva.codice_iva == codice_iva).select().first() percentuale_iva = dettaglio_iva.percentuale_iva descrizione_iva = dettaglio_iva.descrizione_codice_iva imposta_iva = return_imposta(v,percentuale_iva) if dettaglio_iva.bollo_su_importi_esenti is True: if not bollo_presente: bollo = db(db.bolli.descrizione=="Fattura").select().first()["valore"] bollo_presente = True fattura.footer_2(codice_iva,"",return_currency(importo_netto),descrizione_iva,return_currency(imposta_iva),"") if bollo: _bollo = db(db.bolli.descrizione=="Fattura").select().first()["valore"] importo_totale += float(_bollo) importo_totale_da_salvare = importo_totale +imposta_iva # print "Imposta iva {0}".format(imposta_iva) # print "Importo calcolato {0}".format(importo_totale_da_salvare) importo_totale = Money(str(importo_totale),"EUR") importo_totale = importo_totale.format("it_IT").encode('ascii', 'ignore').decode('ascii') fattura.footer(str(importo_totale)," "," "," "," ",str(importo_totale),str(return_currency(imposta_totale))) fattura.totale(str(ritorna_prezzo_europeo(importo_totale_da_salvare))) # db.fatture_salvate.insert(scadenza=scadenza_salvata,nome_cliente=nome_cliente,data_fattura = datetime.datetime.now().strftime("%d/%m/%Y"),numero_fattura = numero_fattura_da_salvare,id_cliente=id_cliente,id_ddt = lista_ddt,totale = importo_totale_da_salvare) # print "SCADENZA {0}".format(scadenza) """ fattura.foote,Field('nome_cliente')sr("Totale merce","Sconto","Netto merce","spese varie","spese_trasporto","totale_imponibile","Totale imposta") fattura.footer_2("CodIva","Spese accessorie","Imponibile","Iva","Imposta","Bolli") fattura.footer_2("CodIva2","Spese accessorie2","Imponibile2","Iva2","Imposta2","Bolli2") fattura.totale("14567645") """ fattura.add_row("","","","","","","","","") fattura.add_row("",annotazioni,"","","","","","","") fattura.insert_rows() fattura.create_pdf() # db(db.fattura).delete() # db.fattura.insert(numero_fattura = numero_fattura_da_salvare) @service.jsonrpc @service.jsonrpc2 def crea_fattura_preview_istantanea(args): id_cliente=args['0'] # print "ID CLIENTE : ",id_cliente numero_corrente_fattura = db(db.fattura).select().first()["numero_fattura"] numero = int(numero_corrente_fattura.split("/")[0]) anno = int(numero_corrente_fattura.split("/")[1]) numero +=1 numero_fattura_da_salvare = str(numero)+"/"+str(anno) """ Dati cliente """ dati_cliente = db(db.clienti.id == id_cliente).select().first() nome_cliente=dati_cliente.nome citta_cliente = dati_cliente.citta indirizzo_cliente = dati_cliente.indirizzo cap_cliente = dati_cliente.cap provincia_cliente = dati_cliente.provincia cf_cliente = dati_cliente.codice_fiscale pi_cliente = dati_cliente.partita_iva nazione_cliente = dati_cliente.nazione codice_banca = dati_cliente.codice_banca dettagli_banca = db(db.anagrafica_banche.descrizione == codice_banca).select().first() annotazioni=dati_cliente.annotazioni scritta_esenzione_cliente = dati_cliente.descrizione_esenzione_iva bollo= dati_cliente.bollo if bollo: db(db.righe_in_fattura_istantanea.codice_articolo=="BOLLO").delete() db.righe_in_fattura_istantanea.insert( codice_articolo="BOLLO", descrizione="art. 15 DPR 633/72", riferimento_ordine="", qta="1", prezzo="2", sconti="", codice_iva="Esenzione Iva", commento="" ) scritta_esenzione = False # print "1" # print dettagli_banca # print "2" start_date = datetime.datetime.now() fattura = FATTURA("FATTURA IMMEDIATA",datetime.datetime.now().date().strftime("%d/%m/%Y"),numero_fattura_da_salvare,anteprima=True) fattura.intestazione(nome_cliente,citta_cliente,indirizzo_cliente,cap_cliente,provincia_cliente,nazione_cliente,cf_cliente,pi_cliente) try: fattura.dettaglio(str(id_cliente),dettagli_banca.descrizione,str(dettagli_banca.iban),"PAGAMENTO","SCADENZA") except Exception,e: # print e response.flash="Controllare il tipo di pagamento in anagrafica cliente" return locals() fattura.rows=[] lista_codici_iva = {} importo_totale = 0 imposta_totale = 0 imposta_iva = 0 lista_ddt = [] scritta_esenzione = False if True: rows = db(db.righe_in_fattura_istantanea).select() for row in rows: try: pagamento = db(db.clienti.id == id_cliente).select().first()["pagamento"] if "F.M." in pagamento: fine_mese = True else: fine_mese = False if not fine_mese: try: giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] if start_date.date().month==12 or start_date.date().month==1: if int(giorni_da_aggiungere)==60: giorni_da_aggiungere="56" scadenza = datetime.datetime.now().date() + datetime.timedelta(days = int(giorni_da_aggiungere)) scadenza_salvata = scadenza scadenza = scadenza.strftime("%d/%m/%Y") except: response.flash="Tipo di pagamento '{0}' non esistente in anagraficaca pagamenti".format(pagamento) return locals() else: if ("M.S." or "ms") in pagamento: giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] giorni_mese_successivo = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni_mese_successivo"] scadenza = start_date.date() + datetime.timedelta(days = int(giorni_da_aggiungere)) day_start,day_end = monthrange(scadenza.year, scadenza.month) scadenza = str(day_end)+"/"+str(scadenza.month)+"/"+str(scadenza.year) scadenza = datetime.datetime.strptime(scadenza,"%d/%m/%Y") scadenza = scadenza.date() + datetime.timedelta(days = int(giorni_mese_successivo)) scadenza = scadenza.strftime("%d/%m/%Y") else: # Fine mese senza M.S. giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] if start_date.date().month==12 or start_date.date().month==1: if int(giorni_da_aggiungere)==60: giorni_da_aggiungere="56" scadenza = start_date.date() + datetime.timedelta(days = int(giorni_da_aggiungere)) day_start,day_end = monthrange(scadenza.year, scadenza.month) scadenza = str(day_end)+"/"+str(scadenza.month)+"/"+str(scadenza.year) pass fattura.dettaglio(str(id_cliente),dettagli_banca.descrizione,str(dettagli_banca.iban),pagamento,str(scadenza)) except Exception,e: # print e response.flash="Controllare il tipo di pagamento in anagrafica" return locals() sconti = row.sconti if row.sconti is None: sconti="" if len(row.codice_articolo) > 0 and not 'commento' in row.codice_articolo: try: if row.prezzo == "0": row.prezzo = "" f = float(row.prezzo) # print "SONO QUI : PREZZO = ".format(f) except: msg = "Prezzo non presente Cod.Art : " + row.codice_articolo response.flash=msg return locals() try: f=float(row.qta) except: msg = "Quantità non valida Cod.Art : " + row.codice_articolo response.flash=msg return locals() pass importo = saved_importo = float(row.qta) * float(row.prezzo) importo = Money(str(importo),"EUR") importo = importo.format("it_IT").encode('ascii', 'ignore').decode('ascii') prezzo = str(row.prezzo).replace(".",",") codice_iva = db(db.anagrafica_codici_iva.descrizione_codice_iva == row.codice_iva).select().first()["codice_iva"] percentuale_iva = db(db.anagrafica_codici_iva.descrizione_codice_iva == row.codice_iva).select().first()["percentuale_iva"] descrizione_codice_iva = db(db.anagrafica_codici_iva.descrizione_codice_iva == row.codice_iva).select().first()["descrizione_codice_iva"] if "Esenzione" in descrizione_codice_iva: scritta_esenzione = True importo_totale +=saved_importo imposta_totale += return_imposta(saved_importo,int(percentuale_iva)) if not codice_iva in lista_codici_iva: lista_codici_iva[codice_iva] = saved_importo else: lista_codici_iva[codice_iva] += saved_importo else: row.u_m,row.codice_articolo,prezzo,sconti,importo,codice_iva,row.riferimento_ordine,row.qta = "","","","","","","","" row.codice_articolo,prezzo,sconti,importo,codice_iva,row.riferimento_ordine,row.qta = "","","","","","","" row.descrizione=row.commento row.u_m="" fattura.add_row(row.codice_articolo,row.descrizione,row.riferimento_ordine,row.u_m,row.qta,prezzo,sconti,importo,codice_iva) # print lista_codici_iva if scritta_esenzione: fattura.add_row("","","","","","","","","") fattura.add_row("","","","","","","","","") scritte = scritta_esenzione_cliente.split(",") for scritta in scritte: fattura.add_row("",scritta,"","","","","","","") scadenza="" bollo_presente = False bollo = 0 for k,v in lista_codici_iva.iteritems(): codice_iva = k importo_netto = v # print "LISTA CODICI : ",codice_iva,importo_netto dettaglio_iva = db(db.anagrafica_codici_iva.codice_iva == codice_iva).select().first() percentuale_iva = dettaglio_iva.percentuale_iva descrizione_iva = dettaglio_iva.descrizione_codice_iva imposta_iva = return_imposta(v,percentuale_iva) if dettaglio_iva.bollo_su_importi_esenti is True: if not bollo_presente: bollo = db(db.bolli.descrizione=="Fattura").select().first()["valore"] bollo_presente = True fattura.footer_2(codice_iva,"",return_currency(importo_netto),descrizione_iva,return_currency(imposta_iva),"") bollo = 0 """ if bollo_presente: bollo = db(db.bolli.descrizione=="Fattura").select().first()["valore"] importo_totale += float(bollo) """ importo_totale_da_salvare = importo_totale +imposta_iva importo_totale = Money(str(importo_totale),"EUR") importo_totale = importo_totale.format("it_IT").encode('ascii', 'ignore').decode('ascii') fattura.footer(str(importo_totale)," "," "," "," ",str(importo_totale),str(return_currency(imposta_totale))) fattura.totale(str(importo_totale_da_salvare)) # db.fatture_salvate.insert(scadenza=scadenza_salvata,nome_cliente=nome_cliente,data_fattura = datetime.datetime.now().strftime("%d/%m/%Y"),numero_fattura = numero_fattura_da_salvare,id_cliente=id_cliente,id_ddt = lista_ddt,totale = importo_totale_da_salvare) # print "SCADENZA {0}".format(scadenza) """ fattura.foote,Field('nome_cliente')sr("Totale merce","Sconto","Netto merce","spese varie","spese_trasporto","totale_imponibile","Totale imposta") fattura.footer_2("CodIva","Spese accessorie","Imponibile","Iva","Imposta","Bolli") fattura.footer_2("CodIva2","Spese accessorie2","Imponibile2","Iva2","Imposta2","Bolli2") fattura.totale("14567645") """ fattura.add_row("","","","","","","","","") fattura.add_row("",annotazioni,"","","","","","","") fattura.insert_rows() fattura.create_pdf() # db(db.fattura).delete() # db.fattura.insert(numero_fattura = numero_fattura_da_salvare) @service.jsonrpc @service.jsonrpc2 def crea_fattura_preview_istantanea_accredito(args): # print "In preview instantanea accredito" id_cliente=args['0'] # print "ID CLIENTE : ",id_cliente numero_corrente_fattura = db(db.fattura).select().first()["numero_fattura"] numero = int(numero_corrente_fattura.split("/")[0]) anno = int(numero_corrente_fattura.split("/")[1]) numero +=1 numero_fattura_da_salvare = str(numero)+"/"+str(anno) """ Dati cliente """ dati_cliente = db(db.clienti.id == id_cliente).select().first() nome_cliente=dati_cliente.nome citta_cliente = dati_cliente.citta indirizzo_cliente = dati_cliente.indirizzo cap_cliente = dati_cliente.cap provincia_cliente = dati_cliente.provincia cf_cliente = dati_cliente.codice_fiscale pi_cliente = dati_cliente.partita_iva nazione_cliente = dati_cliente.nazione codice_banca = dati_cliente.codice_banca dettagli_banca = db(db.anagrafica_banche.descrizione == codice_banca).select().first() annotazioni=dati_cliente.annotazioni # print "1" # print dettagli_banca # print "2" start_date = datetime.datetime.now() fattura = FATTURA("NOTA DI ACCREDITO",datetime.datetime.now().date().strftime("%d/%m/%Y"),numero_fattura_da_salvare,anteprima=True) fattura.intestazione(nome_cliente,citta_cliente,indirizzo_cliente,cap_cliente,provincia_cliente,nazione_cliente,cf_cliente,pi_cliente) try: fattura.dettaglio(str(id_cliente),dettagli_banca.descrizione,str(dettagli_banca.iban),"PAGAMENTO","SCADENZA") except Exception,e: # print e response.flash="Controllare il tipo di pagamento in anagrafica cliente" return locals() fattura.rows=[] lista_codici_iva = {} importo_totale = 0 imposta_totale = 0 imposta_iva = 0 lista_ddt = [] if True: rows = db(db.righe_in_fattura_istantanea).select() for row in rows: try: pagamento = db(db.clienti.id == id_cliente).select().first()["pagamento"] if "F.M." in pagamento: fine_mese = True else: fine_mese = False if not fine_mese: try: giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] scadenza = datetime.datetime.now().date() + datetime.timedelta(days = int(giorni_da_aggiungere)) scadenza_salvata = scadenza scadenza = scadenza.strftime("%d/%m/%Y") except: response.flash="Tipo di pagamento '{0}' non esistente in anagraficaca pagamenti".format(pagamento) return locals() else: if ("M.S." or "ms") in pagamento: giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] giorni_mese_successivo = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni_mese_successivo"] scadenza = start_date.date() + datetime.timedelta(days = int(giorni_da_aggiungere)) day_start,day_end = monthrange(scadenza.year, scadenza.month) scadenza = str(day_end)+"/"+str(scadenza.month)+"/"+str(scadenza.year) scadenza = datetime.datetime.strptime(scadenza,"%d/%m/%Y") scadenza = scadenza.date() + datetime.timedelta(days = int(giorni_mese_successivo)) scadenza = scadenza.strftime("%d/%m/%Y") else: # Fine mese senza M.S. giorni_da_aggiungere = db(db.codici_pagamenti.descrizione_codice_pagamento == pagamento).select().first()["giorni"] scadenza = start_date.date() + datetime.timedelta(days = int(giorni_da_aggiungere)) day_start,day_end = monthrange(scadenza.year, scadenza.month) scadenza = str(day_end)+"/"+str(scadenza.month)+"/"+str(scadenza.year) pass fattura.dettaglio(str(id_cliente),dettagli_banca.descrizione,str(dettagli_banca.iban),pagamento,str(scadenza)) except Exception,e: # print e response.flash="Controllare il tipo di pagamento in anagrafica" return locals() sconti = row.sconti if row.sconti is None: sconti="" if len(row.codice_articolo) > 0 and not 'commento' in row.codice_articolo: try: if row.prezzo == "0": row.prezzo = "" f = float(row.prezzo) # print "SONO QUI : PREZZO = ".format(f) except: msg = "Prezzo non presente Cod.Art : " + row.codice_articolo response.flash=msg return locals() try: f=float(row.qta) except: msg = "Quantità non valida Cod.Art : " + row.codice_articolo response.flash=msg return locals() pass importo = saved_importo = float(row.qta) * float(row.prezzo) importo = Money(str(importo),"EUR") importo = importo.format("it_IT").encode('ascii', 'ignore').decode('ascii') prezzo = str(row.prezzo).replace(".",",") codice_iva = db(db.anagrafica_codici_iva.descrizione_codice_iva == row.codice_iva).select().first()["codice_iva"] percentuale_iva = db(db.anagrafica_codici_iva.descrizione_codice_iva == row.codice_iva).select().first()["percentuale_iva"] importo_totale +=saved_importo imposta_totale += return_imposta(saved_importo,int(percentuale_iva)) if not codice_iva in lista_codici_iva: lista_codici_iva[codice_iva] = saved_importo else: lista_codici_iva[codice_iva] += saved_importo else: row.codice_articolo,prezzo,sconti,importo,codice_iva,row.riferimento_ordine,row.qta = "","","","","","","" row.descrizione=row.commento fattura.add_row(row.codice_articolo,row.descrizione,row.riferimento_ordine,row.u_m,row.qta,prezzo,sconti,importo,codice_iva) # print lista_codici_iva scadenza=""
(a_name, i, run)) clr_redraw() if self.verbose and not self.ipy: print('iter %d took %.3f seconds' % (i, time.time() - iter_time)) elif self.ipy: iter_timebox.value = time.time() - iter_time iter_progress.value += 1 iter_progress.description = 'Iter [%d/%d]' % (iter_progress.value, n_iter) # run finished; store final acquisitions for acquisition in acquisitions: self.final_acquisitions[acquisition.acq_name].append(acquisition) self.save(temp=True) # save in case of error later if self.verbose and not self.ipy: runtime = time.time() - begin_time print('Run %d took %.3f seconds' % (run+1, runtime)) elif self.ipy: run_progress.value += 1 run_progress.description = 'Run [%d/%d]' % (run_progress.value, n_runs) run_timebox.value = time.time() - begin_time iter_progress.value = 1 iter_progress.description = 'Iter [%d/%d]' % (iter_progress.value, n_iter) if self.ipy: run_timebox.close() iter_timebox.close() run_progress.close() iter_progress.close() sim_name.close() @property def observed_data(self): obs_data = set() # set for removing duplicate data points for acq_type, acqs in self.final_acquisitions.items(): for acq in acqs: for theta, discr in zip(acq.model.thetas, acq.model.discrs): data = np.zeros(self.input_dim + 1) data[:-1] = theta data[-1] = discr obs_data.add(tuple(data)) return np.array(list(obs_data)) def get_observed_data_for_acq(self, acq_name): f_acqs = self.final_acquisitions[acq_name] obs_data = set() for acq in f_acqs: for theta, discr in zip(acq.model.thetas, acq.model.discrs): datum = np.zeros(self.input_dim + 1) datum[:-1] = theta datum[-1] = discr obs_data.add(tuple(datum)) return np.array(list(obs_data)) def _get_ground_truth(self, h, n_grid_pts, n_local_pts, c_spr): """ Loads/calculates ground truth, depending on the simulator. """ out = dict() # Bacterial infections simulator (true, not interpolated) if isinstance(self.sim, BacterialInfectionsSimulator): bac_res = pkl.load(open('BAC_DATA/BACTERIAL_RESULTS.p', 'rb')).reshape(-1, 4) if isinstance(self.sim, BacterialInfections2D): k_dim = self.sim.known_dim k_prm = self.sim.known_param full_data = bac_res[np.where(abs(bac_res[:, k_dim] - k_prm) < 0.0001), :].squeeze() full_data = np.delete(full_data, obj=k_dim, axis=1).reshape(-1, 3) else: full_data = bac_res if len(full_data) < n_grid_pts**2: warnings.warn('Only %d BactInf data points available...' % len(full_data)) grid_thetas = full_data[:n_grid_pts**2, :-1] grid_pdf_true = kde.calculate_bact_inf_pdf(self.sim, full_data[:n_grid_pts**2, :], h) local_thetas = full_data[:n_local_pts**2, :-1] local_pdf_true = kde.calculate_bact_inf_pdf(self.sim, full_data[:n_local_pts**2, :], h) multiple_minima = False out['grid_thetas'] = grid_thetas out['grid_pdf_true'] = grid_pdf_true out['local_thetas'] = local_thetas out['local_pdf_true'] = local_pdf_true out['multiple_minima'] = multiple_minima return out # ======================================================= # 1 or 2 dimensions => create grid if self.input_dim in [1,2]: grid_thetas = kde.create_grid(self.sim, n_grid_pts) grid_pdf_true = kde.calculate_true_pdf(self.sim, h, grid_thetas) # Gaussian => sample from it elif self.sim.name[:20] == 'MultivariateGaussian': n_grid_pts = max(n_grid_pts, 10000) print('Sampling %d points for MC estimate of TV/KL' % n_grid_pts) grid_thetas = self.sim.sample(n_samples=n_grid_pts, cov_spread=c_spr) grid_pdf_true = self.sim.pdf(grid_thetas) # Other 3D+ => use MCMC to sample points for ground truth else: n_samps = int(n_grid_pts / 50) grid_thetas = np.zeros((0, self.input_dim)) for i in range(50): print('MCMC iter %d' % i) samples = sample_mcmc(self.sim, h, burnin=200, n_samples=n_samps, progress_bar=True) grid_thetas = np.vstack([grid_thetas, samples]) if self.ipy: clear_output() grid_pdf_true = kde.calculate_true_pdf(self.sim, h, grid_thetas) # Create local_thetas as grid around minima local_thetas = kde.create_grid(self.sim, n_local_pts, local=True) if type(local_thetas) == list: # <- if simulator has multiple global minima multiple_minima = True local_pdf_true = [] for local_t in local_thetas: local_pdf_true__ = kde.calculate_true_pdf(self.sim, h, local_t) local_pdf_true.append(local_pdf_true__) else: multiple_minima = False local_pdf_true = kde.calculate_true_pdf(self.sim, h, local_thetas) out['grid_thetas'] = grid_thetas out['grid_pdf_true'] = grid_pdf_true out['local_thetas'] = local_thetas out['local_pdf_true'] = local_pdf_true out['multiple_minima'] = multiple_minima return out def calculate_distances(self, metrics='all', n_grid_pts=None, n_local_pts=20, c_spr=2.5): """ Returns: -TV distances, -KL divergences (true | approx), -"Local" TV distances, -Euclid. dist. between true minimizer t and estimated minimizer t' under GP model. metrics: The metrics to calculate. Pass 'all' to calculate all, else pass a list containing anything in ['tv', 'kl', 'local', 'argmin']. n_grid_pts: Number of grid (or sampled) points to calculate full TV/KL at. If simulator is MVGaussian w/ dim. > 2, it is number of sampled points for evaluating full TV/KL. n_local_pts: Number of grid points for 'local' TV (only around minima). c_spr: Factor to multiply Gaussian covariances by for Monte Carlo TV/KL calculations. """ if metrics != 'all': chs = ['kl', 'tv', 'local', 'argmin'] assert isinstance(metrics, list), "pass metrics='all' or as a list of strings." assert all([m in chs for m in metrics]), "choose from: %s" % chs if n_grid_pts is None: if self.input_dim <= 2: n_grid_pts = 100 else: n_grid_pts = 10000 use_metric = lambda m: (metrics == 'all') or (m in metrics) # Find suitable value for the bandwidth, h =============================== observed_data = self.observed_data mx = observed_data[:, -1].max() mn = observed_data[:, -1].min() h = mn + (mx - mn) * self.h_mult print('Using h=%.4f' % h) # Calculate ground truth ================================================= ground_truth = self._get_ground_truth(h, n_grid_pts, n_local_pts, c_spr) grid_thetas, local_thetas = ground_truth['grid_thetas'], ground_truth['local_thetas'] grid_pdf_true = ground_truth['grid_pdf_true'] local_pdf_true = ground_truth['local_pdf_true'] multiple_minima = ground_truth['multiple_minima'] n_runs = len(self.final_acquisitions.values()[0]) n_iter = len(self.final_acquisitions.values()[0][0].model.discrs) - self.num_init_pts n_acqs = len(self.final_acquisitions.values()) # Progress bars in Jupyter =============================================== if self.ipy: sim_name = Text(value=self.sim.name+' metric calculation.') run_progress = IntProgress(min=1, max=n_runs, value=1, description='Run [1/%d]' % n_runs) run_timebox = FloatText(value='0.00', description='last run time:') iter_progress = IntProgress(min=1, max=n_iter, value=1, description='Iter [1/%d]' % n_iter) display(sim_name) display(run_progress) display(run_timebox) display(iter_progress) if len(self.final_acquisitions.keys()) > 1: acq_timebox = FloatText(value='0.00', description='last acq. time:') acq_progress = IntProgress(min=1, max=n_acqs, value=1, description='Acq. [1/%d]' % n_acqs) display(acq_timebox) display(acq_progress) # acq_name: [avg distances, standard deviations] (over n_runs) tv_dists = {a: None for a in self.final_acquisitions.keys()} kl_divs = {a: None for a in self.final_acquisitions.keys()} local_tvs = {a: None for a in self.final_acquisitions.keys()} min_dists = {a: None for a in self.final_acquisitions.keys()} # Do the actual metric calculations ====================================== for acq_num, (name, acquisitions) in enumerate(self.final_acquisitions.items()): start_time = time.time() if self.verbose and not self.ipy: print('Calculating metrics for {}'.format(name)) T = n_iter all_dists = np.zeros((n_runs, n_iter)) all_kls = np.zeros((n_runs, n_iter)) all_locals = np.zeros((n_runs, n_iter)) all_argmins = np.zeros((n_runs, n_iter)) err_msg = 'n_runs: %d; n_acqs: %d; acq: %s' % (n_runs, len(acquisitions), acquisitions[0].acq_name) assert n_runs == len(acquisitions), err_msg for run, acquisition in enumerate(acquisitions): run_time = time.time() for i in range(n_iter): iter_time = time.time() model = acquisition.model.get_state_at_earlier_iter( T-i+self.num_init_pts ) # GRID METRICS (KL/FULL TV) ================================== if use_metric('tv') or use_metric('kl'): grid_pdf_m = kde.calculate_approx_pdf( model, h, thetas=grid_thetas ) if use_metric('tv'): # TV distance, KL divergence all_dists[run][n_iter-i-1] = 0.5 * np.sum( np.abs(grid_pdf_true - grid_pdf_m) ) if use_metric('kl'): all_kls[run][n_iter-i-1] = entropy( grid_pdf_true, grid_pdf_m ) # ============================================================ # LOCAL TV =================================================== if use_metric('local'): if multiple_minima: # <- multiple global minima tv = 0. for j in range(len(local_thetas)): local_grid = local_thetas[j] lcl_pdf_true = local_pdf_true[j] lcl_pdf_m = kde.calculate_approx_pdf( model, h, local_grid ) tv += 0.5 * np.sum( np.abs(lcl_pdf_true - lcl_pdf_m) ) tv /= len(local_thetas) else: # <- only one global minimum local_pdf_m = kde.calculate_approx_pdf( model, h, local_thetas ) tv = 0.5 * np.sum( np.abs(local_pdf_true - local_pdf_m) ) all_locals[run][n_iter-i-1] = tv # ============================================================ # ARGMIN_DISTANCES =========================================== if use_metric('argmin'): argmin_m = model.find_minimizer() all_argmins[run][n_iter-i-1] = min( [np.sqrt(np.sum((argmin_m - argmin)**2)) for argmin in self.sim.argmin.reshape(-1, self.input_dim)] ) if self.verbose and not self.ipy: t_time = time.time() - iter_time acq_msg = 'Acq: %s [%d/%d] - ' % (name, acq_num+1, n_acqs) run_msg = 'Run [%d/%d] - ' % (run+1, n_runs) ite_msg = 'Iter [%d/%d] - ' % (i+1, n_iter) msg = '%s%s%sTime: %.3f' % (acq_msg, run_msg, ite_msg, t_time) print(msg) elif self.ipy: iter_progress.value += 1 iter_progress.description = 'Iter [%d/%d]' % (iter_progress.value, n_iter) if self.ipy: run_timebox.value = time.time() - run_time run_progress.value += 1 run_progress.description = 'Run [%d/%d]' % (run_progress.value, n_runs) iter_progress.value = 1 iter_progress.description = 'Iter [1/%d]' % n_iter # Now calculate means and std. devs across the runs avg_dists = np.mean(all_dists, axis=0) # <- full TV dists std_dists = np.std(all_dists, axis=0) tv_dists[name] = (avg_dists, std_dists) avg_kls = np.mean(all_kls, axis=0) # <- full KL divs. std_kls = np.std(all_kls, axis=0) kl_divs[name] = (avg_kls, std_kls) avg_locals = np.mean(all_locals, axis=0) # <- local TV dists std_locals = np.std(all_locals, axis=0) local_tvs[name] = (avg_locals, std_locals) avg_argmins = np.mean(all_argmins, axis=0) std_argmins = np.std(all_argmins, axis=0) min_dists[name] = (avg_argmins, std_argmins) elapsed = time.time() - start_time if self.verbose and not self.ipy: print('Acq. took %.3f seconds' % elapsed) elif self.ipy: if len(self.final_acquisitions.keys()) > 1: acq_timebox.value = time.time() - start_time acq_progress.value += 1 acq_progress.description = 'Acq. [%d/%d]' % (acq_progress.value, n_acqs) run_progress.value = 1 run_progress.description = 'Run [%d/%d]' % (run_progress.value, n_runs) # Cache results ========================================================== cache_results = True if cache_results: if use_metric('tv'): self.results_cache['TV'].append(tv_dists)
<filename>seraphsix/models/destiny.py from datetime import datetime, timezone from dataclasses import dataclass, field from dataclasses_json import dataclass_json, config, LetterCase from marshmallow import fields from typing import Optional, List, Dict, Any from seraphsix import constants from seraphsix.tasks.parsing import member_hash, member_hash_db __all__ = [ "DestinyActivity", "DestinyActivityDetails", "DestinyActivityResponse", "DestinyActivityResults", "DestinyActivityStat", "DestinyActivityStatValue", "DestinyBungieNetUser", "DestinyBungieNetUserInfo", "DestinyCharacter", "DestinyCharacterData", "DestinyCharacterResponse", "DestinyCharacterResults", "DestinyGroup", "DestinyGroupClanBannerData", "DestinyGroupClanInfo", "DestinyGroupD2ClanProgression", "DestinyGroupDetail", "DestinyGroupFeatures", "DestinyGroupMember", "DestinyGroupMemberKick", "DestinyGroupMemberKickResponse", "DestinyGroupMemberResults", "DestinyGroupMembersResponse", "DestinyGroupPendingMember", "DestinyGroupPendingMemberResults", "DestinyGroupPendingMembersResponse", "DestinyGroupResponse", "DestinyMemberGroup", "DestinyMemberGroupResponse", "DestinyMemberGroupResults", "DestinyMembership", "DestinyMembershipResponse", "DestinyMembershipResults", "DestinyPGCR", "DestinyPGCREntry", "DestinyPGCRExtended", "DestinyPGCRResponse", "DestinyPGCRWeapon", "DestinyPlayer", "DestinyProfile", "DestinyProfileData", "DestinyProfileResponse", "DestinyProfileResults", "DestinyResponse", "DestinyResults", "DestinySearchPlayerResponse", "DestinyTokenErrorResponse", "DestinyTokenResponse", "DestinyUserInfo", ] def encode_datetime(obj): return obj.strftime(constants.DESTINY_DATE_FORMAT_API) def decode_datetime(obj): try: return datetime.strptime(obj, constants.DESTINY_DATE_FORMAT) except ValueError: return datetime.strptime(obj, constants.DESTINY_DATE_FORMAT_MS) def encode_datetime_timestamp(obj): return str(int(datetime.timestamp(obj))) def decode_datetime_timestamp(obj): return datetime.fromtimestamp(float(obj)).astimezone(tz=timezone.utc) def encode_id_string(obj): return str(obj) def decode_id_string(obj): if obj: return int(obj) else: return None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyUserInfo: cross_save_override: int is_public: bool membership_type: int membership_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) applicable_membership_types: Optional[List[int]] = None last_seen_display_name: Optional[str] = field( metadata=config(field_name="LastSeenDisplayName"), default=None ) last_seen_display_name_type: Optional[int] = field( metadata=config(field_name="LastSeenDisplayNameType"), default=None ) display_name: Optional[str] = None icon_path: Optional[str] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyBungieNetUserInfo: supplemental_display_name: str icon_path: str cross_save_override: int is_public: bool membership_type: int membership_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) display_name: str @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyProfileData: user_info: DestinyUserInfo date_last_played: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) versions_owned: int character_ids: List[int] season_hashes: List[int] current_season_hash: int current_season_reward_power_cap: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyProfile: data: DestinyProfileData privacy: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyProfileResults: profile: DestinyProfile @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyCharacterData: membership_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) membership_type: int character_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) date_last_played: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) minutes_played_this_session: str minutes_played_total: str light: int stats: Dict[str, int] race_hash: int gender_hash: int class_hash: int race_type: int class_type: int gender_type: int emblem_path: str emblem_background_path: str emblem_hash: int emblem_color: Dict[str, int] level_progression: Dict[str, int] base_character_level: int percent_to_next_level: int title_record_hash: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyCharacter: data: Dict[int, DestinyCharacterData] privacy: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivityStatValue: value: float display_value: str @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivityStat: basic: DestinyActivityStatValue stat_id: Optional[str] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivityDetails: reference_id: int director_activity_hash: int instance_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) mode: int modes: List[int] is_private: bool membership_type: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivity: period: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) activity_details: DestinyActivityDetails values: Dict[str, DestinyActivityStat] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivityResults: activities: Optional[List[DestinyActivity]] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPlayer: destiny_user_info: DestinyUserInfo class_hash: int race_hash: int gender_hash: int character_level: int light_level: int emblem_hash: int character_class: Optional[str] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPGCRWeapon: reference_id: int values: Dict[str, DestinyActivityStat] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPGCRExtended: values: Dict[str, DestinyActivityStat] weapons: Optional[List[DestinyPGCRWeapon]] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPGCREntry: standing: int player: DestinyPlayer score: DestinyActivityStat character_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) values: Dict[str, DestinyActivityStat] extended: DestinyPGCRExtended @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPGCR: period: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) activity_details: DestinyActivityDetails starting_phase_index: int entries: List[DestinyPGCREntry] teams: List[Any] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMembership: # Basically the same as DestinyUserInfo with the addition of the "LastSeen" fields # TODO Consolidate these two? last_seen_display_name: str = field( metadata=config(field_name="LastSeenDisplayName") ) last_seen_display_name_type: int = field( metadata=config(field_name="LastSeenDisplayNameType") ) icon_path: str cross_save_override: int applicable_membership_types: List[int] is_public: bool membership_type: int membership_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) display_name: str @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyBungieNetUser: membership_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) unique_name: str display_name: str profile_picture: int profile_theme: int user_title: int success_message_flags: str is_deleted: bool about: str first_access: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) last_update: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) show_activity: bool locale: str locale_inherit_default: bool show_group_messaging: bool profile_picture_path: str profile_theme_name: str user_title_display: str status_text: str status_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) psn_display_name: Optional[str] = None xbox_display_name: Optional[str] = None steam_display_name: Optional[str] = None stadia_display_name: Optional[str] = None twitch_display_name: Optional[str] = None blizzard_display_name: Optional[str] = None fb_display_name: Optional[str] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMembershipResults: destiny_memberships: List[DestinyMembership] bungie_net_user: Optional[DestinyBungieNetUser] = None primary_membership_id: Optional[int] = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ), default=None, ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupMember: member_type: int is_online: bool last_online_status_change: datetime = field( metadata=config( encoder=encode_datetime_timestamp, decoder=decode_datetime_timestamp, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) group_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) destiny_user_info: DestinyUserInfo join_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) bungie_net_user_info: Optional[DestinyBungieNetUserInfo] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupFeatures: maximum_members: int maximum_memberships_of_group_type: int capabilities: int membership_types: List[int] invite_permission_override: bool update_culture_permission_override: bool host_guidedGame_permission_override: int update_banner_permission_override: bool join_level: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupD2ClanProgression: progression_hash: int daily_progress: int daily_limit: int weekly_progress: int weekly_limit: int current_progress: int level: int level_cap: int step_index: int progress_to_next_level: int next_level_at: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupClanBannerData: decal_id: int decal_color_id: int decal_background_color_id: int gonfalon_id: int gonfalon_color_id: int gonfalon_detail_id: int gonfalon_detail_color_id: int @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupClanInfo: d2_clan_progressions: Dict[int, DestinyGroupD2ClanProgression] clan_callsign: str clan_banner_data: DestinyGroupClanBannerData @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupDetail: group_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) name: str group_type: int membership_id_created: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) creation_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) modification_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) about: str tags: List[Any] member_count: int is_public: bool is_public_topic_admin_only: bool motto: str allow_chat: bool is_default_post_public: bool chat_security: int locale: str avatar_image_index: int homepage: int membership_option: int default_publicity: int theme: str banner_path: str avatar_path: str conversation_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) enable_invitation_messaging_for_admins: bool ban_expire_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) features: DestinyGroupFeatures clan_info: DestinyGroupClanInfo @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroup: detail: DestinyGroupDetail founder: DestinyGroupMember allied_ids: List[int] alliance_status: int group_join_invite_count: int current_user_memberships_inactive_for_destiny: bool current_user_member_map: Dict[Any, Any] current_user_potential_member_map: Dict[Any, Any] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMemberGroup: member: DestinyGroupMember group: DestinyGroupDetail @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupPendingMember: group_id: int = field( metadata=config( encoder=encode_id_string, decoder=decode_id_string, mm_field=fields.Integer(), ) ) creation_date: datetime = field( metadata=config( encoder=encode_datetime, decoder=decode_datetime, mm_field=fields.DateTime(format=constants.DESTINY_DATE_FORMAT), ) ) resolve_state: int destiny_user_info: DestinyUserInfo bungie_net_user_info: Optional[DestinyBungieNetUserInfo] = None @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupMemberKick: group: DestinyGroupDetail group_deleted: bool @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyResponse: error_code: int = field(metadata=config(field_name="ErrorCode")) error_status: str = field(metadata=config(field_name="ErrorStatus")) message: str = field(metadata=config(field_name="Message")) message_data: object = field(metadata=config(field_name="MessageData")) throttle_seconds: int = field(metadata=config(field_name="ThrottleSeconds")) response: Optional[object] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyResults: results: List[object] total_results: int has_more: bool query: Dict[str, int] use_total_results: bool @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMemberGroupResults(DestinyResults): results: List[DestinyMemberGroup] are_all_memberships_inactive: Dict[str, bool] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMemberGroupResponse(DestinyResponse): response: Optional[DestinyMemberGroupResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupResponse(DestinyResponse): response: Optional[DestinyGroup] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupMemberResults(DestinyResults): results: List[DestinyGroupMember] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupMembersResponse(DestinyResponse): response: Optional[DestinyGroupMemberResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupPendingMemberResults(DestinyResults): results: List[DestinyGroupPendingMember] @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupPendingMembersResponse(DestinyResponse): response: Optional[DestinyGroupPendingMemberResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyGroupMemberKickResponse(DestinyResponse): response: Optional[DestinyGroupMemberKick] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinySearchPlayerResponse(DestinyResponse): response: Optional[List[DestinyUserInfo]] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyProfileResponse(DestinyResponse): response: Optional[DestinyProfileResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyCharacterResults: characters: DestinyCharacter @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyCharacterResponse(DestinyResponse): response: Optional[DestinyCharacterResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyActivityResponse(DestinyResponse): response: Optional[DestinyActivityResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyMembershipResponse(DestinyResponse): response: Optional[DestinyMembershipResults] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json(letter_case=LetterCase.CAMEL) @dataclass class DestinyPGCRResponse(DestinyResponse): response: Optional[DestinyPGCR] = field( metadata=config(field_name="Response"), default=None ) @dataclass_json @dataclass class DestinyTokenResponse: access_token: str expires_in: int membership_id: int refresh_token: str refresh_expires_in: int token_type: str error: Optional[str] = None @dataclass_json @dataclass class DestinyTokenErrorResponse: error: str error_description: str class UserMembership(object): def __init__(self): self.id = None self.username = None def __call__(self, details): self.id = details.membership_id self.username = details.display_name def __repr__(self): return f"<{type(self).__name__}: {self.username}-{self.id}>" class User(object): class Memberships(object): def __init__(self): self.bungie = UserMembership() self.psn = UserMembership() self.xbox = UserMembership() self.blizzard = UserMembership() self.steam = UserMembership() self.stadia = UserMembership() def __init__(self, details): self.memberships = self.Memberships() self.primary_membership_id = details.primary_membership_id self.is_cross_save = self.primary_membership_id is not None if hasattr(details, "destiny_user_info"): self._process_membership(details.destiny_user_info) elif hasattr(details, "destiny_memberships"): for entry in details.destiny_memberships: self._process_membership(entry) if hasattr(details, "bungie_net_user_info"): self._process_membership(details.bungie_net_user_info) if hasattr(details, "bungie_net_user"): self._process_membership(details.bungie_net_user) def _process_membership(self, entry): if not hasattr(entry, "membership_id"): return if not hasattr(entry, "membership_type"): self.memberships.bungie(entry) else: if entry.membership_type == constants.PLATFORM_XBOX: self.memberships.xbox(entry) elif entry.membership_type == constants.PLATFORM_PSN: self.memberships.psn(entry) elif entry.membership_type == constants.PLATFORM_BLIZZARD: self.memberships.blizzard(entry) elif entry.membership_type == constants.PLATFORM_STEAM: self.memberships.steam(entry) elif entry.membership_type == constants.PLATFORM_STADIA: self.memberships.stadia(entry) elif entry.membership_type == constants.PLATFORM_BUNGIE: self.memberships.bungie(entry) def to_dict(self): return dict( bungie_id=self.memberships.bungie.id, bungie_username=self.memberships.bungie.username, xbox_id=self.memberships.xbox.id, xbox_username=self.memberships.xbox.username, psn_id=self.memberships.psn.id, psn_username=self.memberships.psn.username, blizzard_id=self.memberships.blizzard.id, blizzard_username=self.memberships.blizzard.username, steam_id=self.memberships.steam.id, steam_username=self.memberships.steam.username, stadia_id=self.memberships.stadia.id, stadia_username=self.memberships.stadia.username, primary_membership_id=self.primary_membership_id, is_cross_save=self.is_cross_save, ) class Member(User): def __init__(self, details, user_details): super().__init__(user_details) self.join_date = details.join_date self.is_online = details.is_online self.last_online_status_change = details.last_online_status_change self.group_id = details.group_id self.member_type = details.member_type if self.memberships.xbox.id: self.platform_id = constants.PLATFORM_XBOX self.member_id = self.memberships.xbox.id elif self.memberships.psn.id: self.platform_id = constants.PLATFORM_PSN self.member_id = self.memberships.psn.id elif self.memberships.blizzard.id: self.platform_id = constants.PLATFORM_BLIZZARD self.member_id = self.memberships.blizzard.id elif self.memberships.steam.id: self.platform_id = constants.PLATFORM_STEAM self.member_id = self.memberships.steam.id elif self.memberships.stadia.id: self.platform_id = constants.PLATFORM_STADIA self.member_id = self.memberships.stadia.id def __repr__(self): return f"<{type(self).__name__}: {self.platform_id}-{self.member_id}>" def __str__(self): return f"{self.platform_id}-{self.member_id}" class Player(object): def __init__(self, details): self.membership_id = details.player.destiny_user_info.membership_id self.membership_type = details.player.destiny_user_info.membership_type self.name = details.player.destiny_user_info.display_name self.completed = False if details.values["completed"].basic.display_value == "Yes": self.completed = True try: self.time_played = details.values["timePlayedSeconds"].basic.value except KeyError: self.time_played = 0.0 def __str__(self): return f"<{type(self).__name__}: {self.membership_type}-{self.membership_id}>" def __repr__(self): return str(self.__dict__) class Game(object): def __init__(self,
<reponame>Anikbh11/trident """ Ion fraction fields using Cloudy data. """ #----------------------------------------------------------------------------- # Copyright (c) 2016, Trident Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. #----------------------------------------------------------------------------- from yt.fields.field_detector import \ FieldDetector from yt.utilities.linear_interpolators import \ TrilinearFieldInterpolator, \ UnilinearFieldInterpolator from yt.utilities.physical_constants import mh from yt.funcs import mylog import numpy as np import h5py import copy import os from trident.config import \ ion_table_filepath from trident.line_database import \ LineDatabase, \ uniquify from trident.roman import \ from_roman H_mass_fraction = 0.76 to_nH = H_mass_fraction / mh # set fractions to 0 for values lower than 1e-9, # which is what is used in Sutherland & Dopita (1993). fraction_zero_point = 1.e-9 zero_out_value = -30. table_store = {} class IonBalanceTable(object): def __init__(self, filename=None, atom=None): """ Base class for building additional ion fields Used to load in an HDF5 file that contains the values for the elemental ionization state of the gas as a function of density, temperature, metallcity, and redshift (for metagalactic photoionizing radiation field). **Parameters** :filename: string, optional Name of the HDF5 file that contains the ionization table data. Default: it uses the table specified in ~/.trident/config :atom: string, optional The atomic species for which you want to create an IonBalanceTable Default: None """ if filename is None: filename = ion_table_filepath self.filename = filename self.parameters = [] self.ion_fraction = [] self._load_hdf5_table(atom) def _load_hdf5_table(self, atom): """ Read in the HDF5 ion balance table """ input = h5py.File(self.filename, 'r') self.ion_fraction = input[atom][()] self.ion_fraction[self.ion_fraction < np.log10(fraction_zero_point)] = zero_out_value for par in range(1, len(self.ion_fraction.shape) - 1): name = "Parameter%d" % par self.parameters.append(input[atom].attrs[name]) self.parameters.append(input[atom].attrs['Temperature']) input.close() def _log_nH(field, data): """ One index of ion balance table is in log of density, so this translates dataset's density values into the same format for indexing the table N.B. All datasets *should* have an H_nuclei_density field defined if created in the standard way in yt. Ray objects will also include H_nuclei_density from the parent dataset to assure identical behavior when ions are added to a ray as when they are added to an original dataset before then being included in a ray. """ if ("gas", "H_nuclei_density") in data.ds.derived_field_list: log_nH_field = np.log10(data["gas", "H_nuclei_density"]) else: log_nH_field = np.log10(data["gas", "density"] * to_nH) return log_nH_field def _redshift(field, data): """ One index of ion balance table is in redshift, so this translates dataset's redshift values into the same format for indexing the table Note that if there already exists a "redshift" field on the dataset (e.g., on a LightRay dataset), that redshift field will be used instead. This can lead to slight differences (1 part in 1e8) in the calculation of ion fields when added to a LightRay than when added to a dataset because redshift is continually varying (slightly) along the ray, whereas it is fixed for a standard dataset. """ # Assure that redshift is defined for dataset--if not, assume z=0 try: current_redshift = data.ds.current_redshift except AttributeError: current_redshift = 0. return current_redshift * \ np.ones(data["gas", "density"].shape, dtype=data["gas", "density"].dtype) def _log_T(field, data): """ One index of ion balance table is in log of temperature, so this translates dataset's temperature values into the same format for indexing the table """ return np.log10(data["gas", "temperature"]) def add_ion_fields(ds, ions, ftype='gas', ionization_table=None, field_suffix=False, line_database=None, sampling_type='local', particle_type=None): """ Preferred method for adding ion fields to a yt dataset. Select ions based on the selection indexing set up in :class:`~trident.LineDatabase.parse_subset_to_ions` function, that is, by specifying a list of strings where each string represents an ion or line. Strings are of one of three forms: * <element> * <element> <ion state> * <element> <ion state> <line_wavelength> If a line_database is selected, then the ions chosen will be a subset of the ions present in the equivalent :class:`~trident.LineDatabase`, nominally located in ``trident.__path__/data/line_lists``. For each ion species selected, four fields will be added (example for Mg II): * Ion fraction field. e.g. ("gas", 'Mg_p1_ion_fraction') * Number density field. e.g. ("gas", 'Mg_p1_number_density') * Density field. e.g. ("gas", 'Mg_p1_density') * Mass field. e.g. ("gas", 'Mg_p1_mass') This function is the preferred method for adding ion fields to one's dataset, but for more fine-grained control, one can also employ the :class:`~trident.add_ion_fraction_field`, :class:`~trident.add_ion_number_density_field`, :class:`~trident.add_ion_density_field`, :class:`~trident.add_ion_mass_field` functions individually. Fields are added assuming collisional ionization equilibrium and photoionization in the optically thin limit from a redshift-dependent metagalactic ionizing background using the ionization_table specified. **Parameters** :ds: yt dataset object This is the dataset to which the ion fraction field will be added. :ions: list of strings List of strings matching possible lines. Strings can be of the form: * Atom - Examples: "H", "C", "Mg" * Ion - Examples: "H I", "H II", "C IV", "Mg II" * Line - Examples: "H I 1216", "C II 1336", "Mg II 1240" If set to 'all', creates **all** ions for the first 30 elements: (ie hydrogen to zinc). If set to 'all' with ``line_database`` keyword set, then creates **all** ions associated with the lines specified in the equivalent :class:`~trident.LineDatabase`. :ionization_table: string, optional Path to an appropriately formatted HDF5 table that can be used to compute the ion fraction as a function of density, temperature, metallicity, and redshift. When set to None, it uses the table specified in ~/.trident/config Default: None :field_suffix: boolean, optional Determines whether or not to append a suffix to the field name that indicates what ionization table was used. Useful when using generating ion_fields that already exist in a dataset. :line_database: string, optional Ions are selected out of the set of ions present in the line_database constructed from the line list filename specified here. See :class:`~trident.LineDatabase` for more information. :ftype: string, optional This is deprecated and no longer necessary since all relevant fields are aliased to the 'gas' ftype. Default: 'gas' :sampling_type: string, optional This is deprecated and no longer necessary. Default: 'local' :particle_type: boolean, optional This is deprecated and no longer necessary. Default: 'auto' **Example** To add ionized hydrogen, doubly-ionized Carbon, and all of the Magnesium species fields to a dataset, you would run: >>> import yt >>> import trident >>> ds = yt.load('path/to/file') >>> trident.add_ion_fields(ds, ions=['H II', 'C III', 'Mg']) """ ion_list = [] if ionization_table is None: ionization_table = ion_table_filepath # Parse the ions given following the LineDatabase syntax # If line_database is set, then use the underlying file as the line list # to select ions from. if line_database is not None: line_database = LineDatabase(line_database) ion_list = line_database.parse_subset_to_ions(ions) # Otherwise, any ion can be selected (not just ones in the line list). else: if ions == 'all' or ions == ['all']: for k, v in atomic_number.items(): for j in range(v+1): ion_list.append((k, j+1)) else: for ion in ions: ionn = ion.split() if len(ionn) >= 2: ion_list.append((ionn[0], from_roman(ionn[1]))) elif len(ionn) == 1: num_states = atomic_number[ionn[0]] for j in range(num_states+1): ion_list.append((ionn[0], j+1)) else: raise RuntimeError("Cannot add a blank ion.") # make sure ion list is unique ion_list = uniquify(ion_list) # adding X_p#_ion_mass field triggers the addition of: # - X_P#_ion_fraction # - X_P#_number_density # - X_P#_density for (atom, ion) in ion_list: add_ion_mass_field(atom, ion, ds, ftype, ionization_table, field_suffix=field_suffix, sampling_type=sampling_type) def add_ion_fraction_field(atom, ion, ds, ftype="gas", ionization_table=None, field_suffix=False, sampling_type='local', particle_type=None): """ Add ion fraction field to a yt dataset for the desired ion. .. note:: The preferred method for adding ion fields to a dataset is using :class:`~trident.add_ion_fields`, For example, add_ion_fraction_field('O', 6, ds) creates a field called O_p5_ion_fraction for dataset ds, which represents 5-ionized oxygen (O plus 5 = O VI = 'O', 6). Fields are added assuming collisional ionization equilibrium and photoionization in the optically thin limit from a redshift-dependent metagalactic ionizing background using the ionization_table specified. **Parameters** :atom: string Atomic species for desired ion fraction (e.g. 'H', 'C', 'Mg') :ion: integer Ion number for desired species (e.g. 1 = neutral, 2 = singly ionized, 3 = doubly ionized, etc.) :ds: yt dataset object This is the dataset to which the ion fraction field will be added. :ftype: string, optional This is deprecated and no longer necessary since all relevant fields are aliased to
was not 'High'. ###################### if not test2_ok: deficiency_type = '' status = '' global_EQR = np.nan comment = 'not enough data for test2 (jan-may)' elif test2_result > self.deficiency_limit or np.isnan(test2_result): #### METHOD 1 #### deficiency_type = 'seasonal' global_EQR, status = self._calculate_global_EQR_from_indicator_value(water_body=water_body, value=test1_result, max_value=100) elif test2_result <= self.deficiency_limit: # TODO: only use station with wadep >= maxD-10 # mean_affected_area_fraction = by_date_deep.AREA_PERC_BELOW_CRITICAL_DEPH.mean() # mean_critical_depth = by_date_deep.CRITICAL_DEPH.mean() deficiency_type = 'longterm' if self.ref_settings.get_value(variable=self.wb_id_header, water_body=water_body) == water_body: #### METHOD 2 #### global_EQR, status = self._calculate_global_EQR_from_indicator_value(water_body=water_body, value=mean_affected_area_fraction, max_value=100) else: #### METHOD 1 ##### comment = 'no classboundaries defined for longterm deficieny in this waterbody, using definition of seasonal deficiency' global_EQR, status = self._calculate_global_EQR_from_indicator_value(value=test1_result, water_body=water_body) else: by_period = False if by_period: by_period = pd.DataFrame( {self.wb_id_header: [water_body], 'WATER_BODY_NAME': [wb_name], 'WATER_TYPE_AREA': [type_area], 'GLOBAL_EQR': [global_EQR], 'STATUS': [status], 'DEEPEST_STATNS': deepest_statns_str, 'MAX_WADEP': wb_max_wadep, 'O2 conc test1': [test1_result], 'O2 conc test2': [test2_result], '% Area below conc limit': [mean_affected_area_fraction], 'Depth of conc limit': [mean_critical_depth], 'max depth': [self.maxD[water_body]], 'test1_ok': [test1_ok], 'test1_month_list': [test1_month_list], 'test1_no_yr': [test1_no_yr], 'test2_ok': [test2_ok], 'test2_month_list': [test2_month_list], 'test2_no_yr': [test2_no_yr], 'DEFICIENCY_TYPE': [deficiency_type], 'CONC_LIMIT': [self.deficiency_limit], 'COMMENT': [comment], 'STATNS_below_limit': stations_below_limit_str}) by_period['variance'] = np.nan by_period['p_ges'] = np.nan return by_date_deep, by_date, False, by_period ############################################################################### ############################################################################### class IndicatorPhytoplankton(IndicatorBase): """ Class with methods incommon for Phytoplankton indicators. """ def __init__(self, subset_uuid, parent_workspace_object, indicator): super().__init__(subset_uuid, parent_workspace_object, indicator) # [self.column_list.append(c) for c in ['MNDEP', 'MXDEP', 'DEPH', 'RLABO'] if c not in self.column_list] [self.column_list.append(c) for c in ['MNDEP', 'MXDEP', 'DEPH'] if c not in self.column_list] if self.name == 'indicator_chl': if all(x in self.get_filtered_data(subset=self.subset, step='step_2').columns for x in self.parameter_list[0:-1]): # if data is available for all parameters, use all except SALT self.indicator_parameter = self.parameter_list[0:-1] elif all(x in self.get_filtered_data(subset=self.subset, step='step_2').columns for x in self.parameter_list[1:-1]): # if data is available for all parameters but the first (CPHL_INTEG), use the remaining two (CPHL_INTEG_CALC and CPHL_BTL) except SALT self.indicator_parameter = self.parameter_list[1:-1] self.column_list.remove(self.parameter_list[0]) elif self.parameter_list[0] in self.get_filtered_data(subset=self.subset, step='step_2').columns: # if data is available only for the first parameter (CPHL_INTEG), use only CPHL_INTEG self.indicator_parameter = [self.parameter_list[0]] self.column_list = [c for c in self.column_list if c not in self.parameter_list[1:-1]] self.salt_parameter = self.parameter_list[-1] self.notintegrate_typeareas = ['8', '9', '10', '11', '12-s', '12-n,', '13', '14', '15', '24'] self.start_deph_max = 2 self.end_deph_max = 11 self.end_deph_min = 9 # Set dataframe to use self._set_water_body_indicator_df(water_body=None) # ================================================================================================================== def _get_surface_df(self, df, type_area): # TODO: This is now very slow since it has to look at each measurement. Can be written much faster. # For a start you can turn of all the if-statements and just take discrete sample or integrated. """ First step before calculating EQR values and status. Collect the surface data that should be used. :param df: :param type_area: :return: surface dataframe, list with indeces used, comment """ # -------------------------------------------------------------------------------------------------------------- def get_surface_sample(df): """ # Get a surface (<2 m) sample from available data # 1. Bottle sample <2 m # 2. Hose sample from <2 m # 3. Shallowest sample from bottle or hose :param df :return add_df """ # ---------------------------------------------------------------------------------------------------------- def get_hose_surface_data(df): """ gets best available hose data for surface :param df: :return: add_df """ comment = '' MXD = df.MXDEP.values[0] MND = df.MNDEP.values[0] if MXD <= max_surf_deph: # max depth for hose data is from shallow depths, use this value = df.loc[df.MXDEP == MXD, param] add_df = df.loc[df.MXDEP == MXD].copy() value_found = True elif MXD == np.nan and MND <= max_surf_deph: # no max depth given, min depth for hose data is from shallow depths, use this value = df.loc[df.MNDEP == MND, param] add_df = df.loc[df.MNDEP == MND].copy() value_found = True elif MXD <= 11: # use out of bounds hose data value = df.loc[df.MXDEP == MXD, param] add_df = df.loc[df.MXDEP == MXD].copy() value_found = True comment = 'Expert judgement. This is not true surface sample' else: return False add_df['comment'] = comment add_df['VALUE'] = value if 'VALUE' not in add_df.columns: raise Exception(message='no VALUE key') return add_df # ---------------------------------------------------------------------------------------------------------- comment = '' max_surf_deph = self.start_deph_max indicator_cols = ~df[indicator_list].isnull().all() indicator_cols = indicator_cols[np.where(indicator_cols)[0]].index[:].tolist() param = 'CPHL_BTL' value_found = False if param in indicator_cols: # There is chlorophyll bottle data idxmin = df.dropna(subset=[param])['DEPH'].idxmin(skipna=True) minD_old = df.dropna(subset=[param]).DEPH.min() minD = df.loc[idxmin, 'DEPH'] if minD <= max_surf_deph: # There is chlorophyll bottle data from an accepted depth value_old = df.loc[df.DEPH == minD, param] add_df_old = df.loc[df.DEPH == minD, ].copy() value = df.loc[idxmin, param] add_df = df.loc[[idxmin], :].copy() add_df['comment'] = comment add_df['VALUE'] = value value_found = True else: # no true surface sample from bottle, proceed to check hose data. value_found = False if not value_found: # check hose data param_list = [p for p in ['CPHL_INTEG', 'BIOV_CONC_ALL'] if p in indicator_list] if len(param_list) == 1: param = param_list[0] if not df.dropna(subset=[param]).empty: # There is hose data if len(df) > 1: # print('length of df > 1', df.STATN, df[param]) # df can be >1 if there are duplicates, then they have different sample_ID add_df = False for name, hose_group in df.groupby(['SAMPLE_ID']): add_df_hose = get_hose_surface_data(hose_group) if isinstance(add_df_hose, bool): # no hose data in the bounds given, use bottle out of depth bounds? param = 'CPHL_BTL' if param in indicator_cols: minD = df.DEPH.min() value = df.loc[df.DEPH == minD, param] add_df = df.loc[df.DEPH == minD,].copy() value_found = True comment = 'Expert judgement. This is not true surface sample' add_df['comment'] = comment add_df['VALUE'] = value else: False elif isinstance(add_df, pd.DataFrame): add_df_next = add_df_hose add_df = pd.concat([add_df, add_df_next]) if 'VALUE' not in add_df.columns: raise Exception(message='no VALUE key') else: add_df = add_df_hose else: add_df = get_hose_surface_data(df) if 'VALUE' not in add_df.columns: raise Exception(message='no VALUE key') if isinstance(add_df, bool): # no hose data in the bounds given, use bottle out of depth bounds? value_found = False else: value_found = True if not value_found: # no hose data use bottle data from shallowest available depth param = 'CPHL_BTL' if param in indicator_cols: minD = df.DEPH.min() value = df.loc[df.DEPH == minD, param] add_df = df.loc[df.DEPH == minD, ].copy() value_found = True comment = 'Expert judgement. This is not true surface sample' add_df['comment'] = comment add_df['VALUE'] = value else: return False # TODO: add value to column VALUE above and change names here if 'VALUE' not in add_df.columns: raise KeyError(message='key VALUE missing in add_df') if self.name == 'indicator_chl': add_df['CPHL_SOURCE'] = param add_df.rename(columns={'comment': 'CPHL_comment', 'VALUE': 'CPHL'}, inplace=True) else: add_df.rename(columns={'comment': 'BIOV_comment', 'VALUE': self.indicator_parameter[0]}, inplace=True) return add_df # -------------------------------------------------------------------------------------------------------------- def get_integ_sample(df): """ :param df :return add_df """ # ---------------------------------------------------------------------------------------------------------- def get_integrated(df): MXD = df.MXDEP.values MND = df.MNDEP.values try: MXD[0] except IndexError: print(MXD) if len(MND) > 1: print(df.WATER_BODY_NAME, MND, MXD) pass else: MXD = MXD[0] MND = MND[0] if MND == np.nan: MND = 0 if MND <= start_deph_max and MXD <= end_deph_max and MXD >= end_deph_min: # integrated data is within depth bounds value = df.loc[df.MXDEP == MXD, param] if len(df[param]) != len(value.values): print('df and value does not match', df[param], value.values) add_df = df.loc[df[param] == value.values, ].copy() add_df['comment'] = '' add_df['VALUE'] = value return add_df elif MND <= end_deph_max and MXD <= end_deph_max: # elif MND <= start_deph_max and MXD <= end_deph_max: # check for smaller range integrated data, # for delivery created on 20190307 the commented elif was used value = df.loc[df.MXDEP == MXD, param] add_df = df.loc[df[param] == value.values, ].copy() add_df['comment'] = 'Expert judgement. Integrated data to shallow' add_df['VALUE'] = value return add_df # ---------------------------------------------------------------------------------------------------------- start_deph_max = self.start_deph_max end_deph_max = self.end_deph_max end_deph_min = self.end_deph_min indicator_cols = ~df[indicator_list].isnull().all() indicator_cols = indicator_cols[np.where(indicator_cols)[0]].index[:].tolist() comment = '' add_df = False param_list = [p for p in ['CPHL_INTEG', 'CPHL_INTEG_CALC', 'BIOV_CONC_ALL'] if p in indicator_cols] if len(param_list) == 0: # no hose data if 'CPHL_BTL' in df.columns: if not df.dropna(subset=['CPHL_BTL']).empty: param = 'CPHL_BTL' add_df = df.dropna(subset=[param]) add_df['VALUE'] = add_df[param] add_df['comment'] = 'Expert judgement. Not integrated sample' else: return False else: # check hose data param = param_list[0] df_filtered = df.dropna(subset=[param]).copy() df_filtered = df_filtered.loc[(df_filtered.MXDEP <= end_deph_max) & (df_filtered.MNDEP <= start_deph_max)].dropna(subset=[param]) if df_filtered is None or df_filtered.empty: # max depth of integrated data is to large or no hose data at all
import numpy as np import torch import itertools from torchvision import datasets import torchvision.transforms as transforms import matplotlib.pyplot as plt from skimage.measure import compare_psnr, compare_ssim from skimage.restoration import denoise_nl_means, estimate_sigma import skimage.io as sio from glow.glow import Glow from dcgan.dcgan import Generator import json import os import warnings warnings.filterwarnings("ignore") def solveInpainting(args): if args.prior == 'glow': GlowInpaint(args) elif args.prior == 'dcgan': GANInpaint(args) elif args.prior == 'glowred': GlowREDInpaint(args) else: raise "prior not defined correctly" def np_to_torch(img_np): """Converts image in numpy.array to torch.Tensor. From C x W x H [0..1] to C x W x H [0..1] """ # return torch.from_numpy(img_np)[None, :].float().cuda() return torch.from_numpy(img_np).float().cuda() def torch_to_np(img_torch): """Converts an image in torch.Tensor format to np.array. From 1 x C x W x H [0..1] to C x W x H [0..1] """ return img_torch.detach().cpu().numpy() # add [0] later def Denoiser(d_name, sigma_f, x_f): x = torch_to_np(x_f) if d_name == 'nlm': patch_kw = dict(patch_size=5, # 5x5 patches patch_distance=6, # 13x13 search area multichannel=True) s0 = np.mean(estimate_sigma(x[0], multichannel=True)) s1 = np.mean(estimate_sigma(x[1], multichannel=True)) x0 = denoise_nl_means(x[0], h=s0, sigma=s0, fast_mode=False, **patch_kw) x1 = denoise_nl_means(x[1], h=s1, sigma=s1, fast_mode=False, **patch_kw) x = np.stack([x0, x1]) else: raise "other denoisers not implemented" x_f = np_to_torch(x) return x_f import itertools from pprint import pprint inputdata = [ ['a', 'b', 'c'], ['d'], ['e', 'f'], ] result = list(itertools.product(*inputdata)) def GlowREDInpaint(args): # loopOver = zip(args.gamma) hyperparams = [args.gamma, args.alpha, args.beta] loopOver = list(itertools.product(*hyperparams)) for gamma, alpha, beta in loopOver: skip_to_next = False # flag to skip to next loop if recovery is fails due to instability n = args.size * args.size * 3 modeldir = "./trained_models/%s/glow" % args.model test_folder = "./test_images/%s" % args.dataset save_path = "./results/%s/%s" % (args.dataset, args.experiment) # loading dataset trans = transforms.Compose([transforms.Resize((args.size, args.size)), transforms.ToTensor()]) test_dataset = datasets.ImageFolder(test_folder, transform=trans) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batchsize, drop_last=False, shuffle=False) # loading glow configurations config_path = modeldir + "/configs.json" with open(config_path, 'r') as f: configs = json.load(f) # regularizor gamma = torch.tensor(gamma, requires_grad=True, dtype=torch.float, device=args.device) # alpha = args.alpha # beta = args.beta # getting test images Original = [] Recovered = [] Masked = [] Mask = [] Residual_Curve = [] for i, data in enumerate(test_dataloader): # getting batch of data x_test = data[0] x_test = x_test.clone().to(device=args.device) n_test = x_test.size()[0] assert n_test == args.batchsize, "please make sure that no. of images are evenly divided by batchsize" # generate mask mask = gen_mask(args.inpaint_method, args.size, args.mask_size) mask = np.array([mask for i in range(n_test)]) mask = mask.reshape([n_test, 1, args.size, args.size]) mask = torch.tensor(mask, dtype=torch.float, requires_grad=False, device=args.device) # loading glow model glow = Glow((3, args.size, args.size), K=configs["K"], L=configs["L"], coupling=configs["coupling"], n_bits_x=configs["n_bits_x"], nn_init_last_zeros=configs["last_zeros"], device=args.device) glow.load_state_dict(torch.load(modeldir + "/glowmodel.pt")) glow.eval() # making a forward to record shapes of z's for reverse pass _ = glow(glow.preprocess(torch.zeros_like(x_test))) # initializing z from Gaussian if args.init_strategy == "random": z_sampled = np.random.normal(0, args.init_std, [n_test, n]) z_sampled = torch.tensor(z_sampled, requires_grad=True, dtype=torch.float, device=args.device) # initializing z from image with noise filled only in masked region elif args.init_strategy == "noisy_filled": x_noisy_filled = x_test.clone().detach() noise = np.random.normal(0, 0.2, x_noisy_filled.size()) noise = torch.tensor(noise, dtype=torch.float, device=args.device) noise = noise * (1 - mask) x_noisy_filled = x_noisy_filled + noise x_noisy_filled = torch.clamp(x_noisy_filled, 0, 1) z, _, _ = glow(x_noisy_filled - 0.5) z = glow.flatten_z(z).clone().detach() z_sampled = z.clone().detach().requires_grad_(True) # initializing z from image with masked region inverted elif args.init_strategy == "inverted_filled": x_inverted_filled = x_test.clone().detach() missing_x = x_inverted_filled.clone() missing_x = missing_x.data.cpu().numpy() missing_x = missing_x[:, :, ::-1, ::-1] missing_x = torch.tensor(missing_x.copy(), dtype=torch.float, device=args.device) missing_x = (1 - mask) * missing_x x_inverted_filled = x_inverted_filled * mask x_inverted_filled = x_inverted_filled + missing_x z, _, _ = glow(x_inverted_filled - 0.5) z = glow.flatten_z(z).clone().detach() z_sampled = z.clone().detach().requires_grad_(True) # initializing z from masked image ( masked region as zeros ) elif args.init_strategy == "black_filled": x_black_filled = x_test.clone().detach() x_black_filled = mask * x_black_filled x_black_filled = x_black_filled * mask z, _, _ = glow(x_black_filled - 0.5) z = glow.flatten_z(z).clone().detach() z_sampled = z.clone().detach().requires_grad_(True) # initializing z from noisy complete image elif args.init_strategy == "noisy": x_noisy = x_test.clone().detach() noise = np.random.normal(0, 0.05, x_noisy.size()) noise = torch.tensor(noise, dtype=torch.float, device=args.device) x_noisy = x_noisy + noise x_noisy = torch.clamp(x_noisy, 0, 1) z, _, _ = glow(x_noisy - 0.5) z = glow.flatten_z(z).clone().detach() z_sampled = z.clone().detach().requires_grad_(True) # initializing z from image with only noise in masked region elif args.init_strategy == "only_noise_filled": x_noisy_filled = x_test.clone().detach() noise = np.random.normal(0, 0.2, x_noisy_filled.size()) noise = torch.tensor(noise, dtype=torch.float, device=args.device) noise = noise * (1 - mask) x_noisy_filled = mask * x_noisy_filled + noise x_noisy_filled = torch.clamp(x_noisy_filled, 0, 1) z, _, _ = glow(x_noisy_filled - 0.5) z = glow.flatten_z(z).clone().detach() z_sampled = z.clone().detach().requires_grad_(True) else: raise "Initialization strategy not defined" # selecting optimizer if args.optim == "adam": optimizer = torch.optim.Adam([z_sampled], lr=args.lr, ) elif args.optim == "lbfgs": optimizer = torch.optim.LBFGS([z_sampled], lr=args.lr, ) # metrics to record over training psnr_t = torch.nn.MSELoss().to(device=args.device) residual = [] x_f = (x_test * mask).clone() u = torch.zeros_like(x_test) # running optimizer steps for t in range(args.steps): def closure(): optimizer.zero_grad() z_unflat = glow.unflatten_z(z_sampled, clone=False) x_gen = glow(z_unflat, reverse=True, reverse_clone=False) x_gen = glow.postprocess(x_gen, floor_clamp=False) x_masked_test = x_test * mask x_masked_gen = x_gen * mask global residual_t residual_t = ((x_masked_gen - x_masked_test) ** 2).view(len(x_masked_test), -1).sum(dim=1).mean() z_reg_loss_t = gamma * z_sampled.norm(dim=1).mean() residual_x = beta * ((x_gen - (x_f - u)) ** 2).view(len(x_gen), -1).sum(dim=1).mean() loss_t = residual_t + z_reg_loss_t + residual_x psnr = psnr_t(x_test, x_gen) psnr = 10 * np.log10(1 / psnr.item()) print("\rAt step=%0.3d|loss=%0.4f|residual_t=%0.4f|residual_x=%0.4f|z_reg=%0.5f|psnr=%0.3f" % ( t, loss_t.item(), residual_t.item(), residual_x.item(), z_reg_loss_t.item(), psnr), end="\r") loss_t.backward() return loss_t def denoiser_step(x_f, u): z_unflat = glow.unflatten_z(z_sampled, clone=False) x_gen = glow(z_unflat, reverse=True, reverse_clone=False).detach() x_gen = glow.postprocess(x_gen, floor_clamp=False) x_f = 1 / (beta + alpha) * (beta * Denoiser(args.denoiser, args.sigma_f, x_f) + alpha * (x_gen + u)) u = u + x_gen - x_f return x_f, u optimizer.step(closure) residual.append(residual_t.item()) if t % args.update_iter == args.update_iter - 1: x_f, u = denoiser_step(x_f, u) # try: # optimizer.step(closure) # residual.append(residual_t.item()) # if t % args.update_iter == 0: # x_f, u = denoiser_step(x_f, u) # # except: # skip_to_next = True # break if skip_to_next: break # getting recovered and true images x_test_np = x_test.data.cpu().numpy().transpose(0, 2, 3, 1) z_unflat = glow.unflatten_z(z_sampled, clone=False) x_gen = glow(z_unflat, reverse=True, reverse_clone=False) x_gen = glow.postprocess(x_gen, floor_clamp=False) x_gen_np = x_gen.data.cpu().numpy().transpose(0, 2, 3, 1) x_gen_np = np.clip(x_gen_np, 0, 1) mask_np = mask.data.cpu().numpy() x_masked_test = x_test * mask x_masked_test_np = x_masked_test.data.cpu().numpy().transpose(0, 2, 3, 1) x_masked_test_np = np.clip(x_masked_test_np, 0, 1) Original.append(x_test_np) Recovered.append(x_gen_np) Masked.append(x_masked_test_np) Residual_Curve.append(residual) Mask.append(mask_np) # freeing up memory for second loop glow.zero_grad() optimizer.zero_grad() del x_test, x_gen, optimizer, psnr_t, z_sampled, glow, mask, torch.cuda.empty_cache() print("\nbatch completed") if skip_to_next: print("\nskipping current loop due to instability or user triggered quit") continue # metric evaluations Original = np.vstack(Original) Recovered = np.vstack(Recovered) Masked = np.vstack(Masked) Mask = np.vstack(Mask) psnr = [compare_psnr(x, y) for x, y in zip(Original, Recovered)] # print performance analysis printout = "+-" * 10 + "%s" % args.dataset + "-+" * 10 + "\n" printout = printout + "\t n_test = %d\n" % len(Recovered) printout = printout + "\t inpaint_method = %s\n" % args.inpaint_method printout = printout + "\t mask_size = %0.3f\n" % args.mask_size printout = printout + "\t update_iter = %0.4f\n" % args.update_iter printout = printout + "\t gamma = %0.6f\n" % gamma printout = printout + "\t alpha = %0.6f\n" % alpha printout = printout + "\t beta = %0.6f\n" % beta printout = printout + "\t PSNR = %0.3f\n" % np.mean(psnr) print(printout) if args.save_metrics_text: with open("%s_inpaint_glow_results.txt" % args.dataset, "a") as f: f.write('\n' + printout) # saving images if args.save_results: gamma = gamma.item() file_names = [name[0].split("/")[-1].split(".")[0] for name in test_dataset.samples] if args.init_strategy == 'random': save_path = save_path + "/inpaint_%s_masksize_%0.4f_updateiter_%0.4f_gamma_%0.6f_alpha_%0.6f_beta_%0.6f_steps_%d_lr_%0.3f_init_std_%0.2f_optim_%s" save_path = save_path % ( args.inpaint_method, args.mask_size, args.update_iter, gamma, alpha, beta, args.steps, args.lr, args.init_std, args.optim) else: save_path = save_path + "/inpaint_%s_masksize_%0.4f_updateiter_%0.4f_gamma_%0.6f_alpha_%0.6f_beta_%0.6f_steps_%d_lr_%0.3f_init_std_%0.2f_optim_%s" save_path = save_path % ( args.inpaint_method, args.mask_size, args.update_iter, gamma, alpha, beta, args.steps, args.lr, args.init_strategy, args.optim) if not os.path.exists(save_path): os.makedirs(save_path) else: save_path_1 = save_path + "_1" if not os.path.exists(save_path_1): os.makedirs(save_path_1) save_path = save_path_1 else: save_path_2 = save_path + "_2" if not os.path.exists(save_path_2): os.makedirs(save_path_2) save_path = save_path_2 _ = [sio.imsave(save_path + "/" + name + "_recov.jpg", x) for x, name in zip(Recovered, file_names)] _ = [sio.imsave(save_path + "/" +
# coding=utf-8 __source__ = 'https://leetcode.com/problems/super-egg-drop/' # Time: O(KlongN) # Space: O(NK) # DP # dp(K,N)= min(max(dp(K−1,X−1),dp(K,N−X)))) # 1≤X≤N # # Description: Leetcode # 887. Super Egg Drop # # You are given K eggs, and you have access to a building with N floors from 1 to N. # # Each egg is identical in function, and if an egg breaks, you cannot drop it again. # # You know that there exists a floor F with 0 <= F <= N such that any egg dropped at a floor higher than F will break, # and any egg dropped at or below floor F will not break. # # Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X (with 1 <= X <= N). # # Your goal is to know with certainty what the value of F is. # # What is the minimum number of moves that you need to know with certainty what F is, # regardless of the initial value of F? # # # Example 1: # # Input: K = 1, N = 2 # Output: 2 # Explanation: # Drop the egg from floor 1. If it breaks, we know with certainty that F = 0. # Otherwise, drop the egg from floor 2. If it breaks, we know with certainty that F = 1. # If it didn't break, then we know with certainty F = 2. # Hence, we needed 2 moves in the worst case to know what F is with certainty. # Example 2: # # Input: K = 2, N = 6 # Output: 3 # Example 3: # # Input: K = 3, N = 14 # Output: 4 # # # Note: # # 1 <= K <= 100 # 1 <= N <= 10000 # import unittest # 20ms 100% class Solution(object): def superEggDrop(self, K, N): """ :type K: int :type N: int :rtype: int """ # O(K) memory, O(KlogN) computation dp = [1] * (K+1) dp[0] = 0 steps = 1 while dp[K] < N: for j in range(K, 0, -1): dp[j] += dp[j-1] + 1 steps += 1 return steps # dp = {(1, i) : 1 for i in range(1, K+1)} # dp[(1, 0)] = 0 # j = 1 # while dp[(j, K)] < N: # j += 1 # dp[(j, 0)] = 0 # for i in range(1, K+1): # dp[(j, i)] = dp[(j-1, i-1)] + dp[(j-1, i)] + 1 # print dp # return j # 20ms 100% class SolutionBinominal(object): def superEggDrop(self, K, N): def f(x): ans = 0 r = 1 for i in range(1, K+1): r *= x-i+1 r //= i ans += r if ans >= N: break return ans lo, hi = 1, N while lo < hi: mi = (lo + hi) // 2 if f(mi) < N: lo = mi + 1 else: hi = mi return lo # 2200 ms 11.11% class SolutionBottomUpDP(object): def superEggDrop(self, K, N): # Right now, dp[i] represents dp(1, i) dp = range(N+1) for k in xrange(2, K+1): # Now, we will develop dp2[i] = dp(k, i) dp2 = [0] x = 1 for n in xrange(1, N+1): # Let's find dp2[n] = dp(k, n) # Increase our optimal x while we can make our answer better. # Notice max(dp[x-1], dp2[n-x]) > max(dp[x], dp2[n-x-1]) # is simply max(T1(x-1), T2(x-1)) > max(T1(x), T2(x)). while x < n and max(dp[x-1], dp2[n-x]) > \ max(dp[x], dp2[n-x-1]): x += 1 # The final answer happens at this x. dp2.append(1 + max(dp[x-1], dp2[n-x])) dp = dp2 return dp[-1] class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) if __name__ == '__main__': unittest.main() Java = ''' # Thought: https://leetcode.com/problems/super-egg-drop/solution/ # Approach 1: Dynamic Programming with Binary Search Complexity Analysis Time Complexity: O(K *NlogN) Space Complexity: O(K * N) # 152ms 12.44% class Solution { //K eggs, N floors Map<Integer, Integer> memo = new HashMap(); public int superEggDrop(int K, int N) { return dp(K, N); } private int dp(int K, int N) { if (!memo.containsKey(N * 100 + K)) { int ans; if (N == 0) ans = 0; else if (K == 1) ans = N; else { int lo = 1, hi = N; while (lo + 1 < hi) { int x = (lo + hi) / 2; int t1 = dp(K - 1, x - 1); int t2 = dp(K, N - x); if (t1 < t2) lo = x; else if (t1 > t2) hi = x; else lo = hi = x; } ans = 1 + Math.min(Math.max(dp(K - 1, lo - 1), dp(K, N-lo)), Math.max(dp(K - 1, hi - 1), dp(K, N - hi))); } memo.put(N * 100 + K, ans); } return memo.get(N * 100 + K); } } # Approach 2: Dynamic Programming with Optimality Criterion (bottom-up) # # Complexity Analysis # Time Complexity: O(K * N). # Space Complexity: O(N). # 26ms 34.45% class Solution { public int superEggDrop(int K, int N) { // Right now, dp[i] represents dp(1, i) int[] dp = new int[N+1]; for (int i = 0; i <= N; ++i) dp[i] = i; for (int k = 2; k <= K; ++k) { // Now, we will develop dp2[i] = dp(k, i) int[] dp2 = new int[N + 1]; int x = 1; for (int n = 1; n <= N; ++n) { // Let's find dp2[n] = dp(k, n) // Increase our optimal x while we can make our answer better. // Notice max(dp[x-1], dp2[n-x]) > max(dp[x], dp2[n-x-1]) // is simply max(T1(x-1), T2(x-1)) > max(T1(x), T2(x)). while (x < n && Math.max(dp[x - 1], dp2[n - x]) > Math.max(dp[x], dp2[n-x-1])) x++; // The final answer happens at this x. dp2[n] = 1 + Math.max(dp[x-1], dp2[n-x]); } dp = dp2; } return dp[N]; } } Approach 3: Mathematical # 4ms 100% class Solution { public int superEggDrop(int K, int N) { int lo = 1, hi = N; while (lo < hi) { int mid = lo + (hi - lo) / 2; if (f(mid, K, N) < N) lo = mid + 1; else hi = mid; } return lo; } private int f(int x, int K, int N) { int ans = 0, r = 1; for (int i = 1; i <= K; i++) { r *= x - i + 1; r /= i; ans += r; if (ans > N) break; } return ans; } } # DP: https://leetcode.com/problems/super-egg-drop/discuss/158974/C%2B%2BJavaPython-2D-and-1D-DP-O(KlogN) # Drop eggs is a very classical problem. # Some people may come up with idea O(KN^2) # where dp[K][N] = 1 + max(dp[K - 1][i - 1],dp[K][N - i]) for i in 1...N. # However this idea is very brute force, for the reason that you check all possiblity. # # So I consider this problem in a different way: # dp[M][K]means that, given K eggs and M moves, # what is the maximum number of floor that we can check. # # The dp equation is: # dp[m][k] = dp[m - 1][k - 1] + dp[m - 1][k] + 1, # which means we take 1 move to a floor, # if egg breaks, then we can check dp[m - 1][k - 1] floors. # if egg doesn't breaks, then we can check dp[m - 1][k - 1] floors. # # dp[m][k] is similar to the number of combinations and it increase exponentially to N # # Time Complexity: # O(KlogN) Time, O(NK) Space # think of example 3, with binary search, split at 7th fl, # it then become 2 sub questions, the lower level one is example 2 # example 2 split at mid, third fl, and it become part of example 1 class Solution { // 2-d DP # 8ms 75.45% public int superEggDrop(int K, int N) { int[][] floors = new int[K + 1][N + 1]; for (int j = 1; j < N + 1; j++) { for (int i = 1; i < K + 1; i++) { floors[i][j] = floors[i-1][j-1] + floors[i][j-1] + 1; if (floors[i][j] >= N) return j; } } return N; } //100% - 1d dp: Dynamic Program # 5ms 86.63% public int superEggDrop(int K, int N) { int[] floors = new int[K+1]; int moves = 0; while (
#!/usr/bin/env python """ Main process for updating audio files metadata from parsed configuration files. All options defining specific metadata fields (``--artist``, ``--year``, etc.) override any corresponding information fields found in configurations files from options ``--info`` or ``--all``. Applied changes listed in ``--output`` file. """ import argparse import logging import os import sys from typing import List, Optional, Union, Tuple from logging import DEBUG, INFO, WARNING, ERROR, CRITICAL, NOTSET import aiu from aiu import DEFAULT_EXCEPTIONS_CONFIG, DEFAULT_STOPWORDS_CONFIG, LOGGER, TRACE, __meta__, tags as t from aiu.parser import ( ALL_IMAGE_EXTENSIONS, ALL_PARSER_EXTENSIONS, FORMAT_MODE_ANY, FORMAT_MODE_YAML, FORMAT_MODES, PARSER_MODES, get_audio_files, load_config, parse_audio_config, save_audio_config ) from aiu.updater import merge_audio_configs, apply_audio_config, update_file_names from aiu.utils import backup_files, look_for_default_file, save_cover_file, validate_output_file, log_exception from aiu.typedefs import AudioConfig, Duration from aiu.youtube import fetch_files, get_metadata def cli(): _PROG = "aiu" _NAME = "Audio Info Updater ({})".format(_PROG) _DESC = "{}. {}".format(_NAME, __doc__) _HELP_FORMAT = """{} Format Modes Below are the applicable format modes for format/parser options. Note that not all modes necessarily apply to both. Refer to their option of applicable values. ``any`` Attempts to automatically determine which of the formats to apply based on the contents of the provided information file. If this is causing problems, switch to explicit specification of the provided format. ``csv`` Expects an header row indicating the fields retrieved on following lines. Then, each line provide an entry to attempt matching against an audio file. ``tab`` Takes a plain list of (any amount of) tab delimited rows where each one represents a potential audio file to find. Rows are expected to have following format (bracket fields are optional): [track] title duration ``json`` / ``yaml`` Standard representation of corresponding formats of a list of objects. Each object provides fields and values to attempt match against audio files. Fields names correspond to the lower case values ``list`` Parses a plain list with each field placed on a separate row. Rows are expected to provide continuous intervals between corresponding field, as presented below, for each audio files to attempt match. Corresponding fields must be provided for each entry. Either one or both of the TRACK/DURATION fields are mandatory. [track-1] title-1 [duration-1] [track-2] title-2 [duration-2] ... """.format(_NAME) try: ap = argparse.ArgumentParser(prog=_PROG, description=_DESC, add_help=False, formatter_class=lambda prog: argparse.HelpFormatter(prog, width=120)) gen_args = ap.add_argument_group(title="General Arguments", description="Arguments that provides information about the application " "or usage related details.") gen_args.add_argument("--help", "-h", action="help", help="Display this help message.") gen_args.add_argument("--help-format", action="store_true", help="Display additional help details about formatter/parser modes.") gen_args.add_argument("--version", action="version", version=__meta__.__version__, help="Display the program's version.") parser_args = ap.add_argument_group(title="Parsing Arguments", description="Arguments that control parsing methodologies and " "configurations to update matched audio files metadata.") parser_args.add_argument("-l", "--link", "--youtube", dest="link", help="YouTube music link from where to retrieve songs and album metadata. " "When provided, other options will override whichever tag information was " "automatically obtained from the URL reference.") parser_args.add_argument("-p", "--path", "-f", "--file", default=".", dest="search_path", help="Path where to search for audio and metadata info files to process. " "Can either be a directory path where all containing audio files will be " "processed or a single audio file path to process by itself " "(default: %(default)s).") parser_args.add_argument("-i", "--info", dest="info_file", help="Path to audio metadata information file to be applied to format matched with " "audio files. (default: looks for text file compatible format named `info`, " "`config` or `meta` under `path`, uses the first match with ``any`` format).") parser_args.add_argument("-a", "--all", dest="all_info_file", help="Path to audio info file of metadata to apply to every matched audio files. " "This is mainly to apply shared tags across a list of matched audio files such " "as the same ARTIST, ALBUM or YEAR values for a set of grouped tracks. " "(default: looks for text file compatible format named `all`, `any` or " "`every` under `path`, uses the first match with ``any`` format).") parser_args.add_argument("-P", "--parser", dest="parser_mode", default="any", choices=[p.name for p in PARSER_MODES], help="Parsing mode to enforce. See also ``--help-format`` for details. " "(default: %(default)s)") parser_args.add_argument("-o", "--output", "--output-file", dest="output_file", help="Location where to save applied output configurations (file or directory). " "(default: ``output.yml`` located under ``--outdir``, ``--path`` directory " " or parent directory of ``--file``, whichever comes first).") parser_args.add_argument("-O", "--outdir", "--output-dir", dest="output_dir", help="Output directory of applied configuration if not defined by ``--output`` " "and download location of files referenced by ``--link``.") parser_args.add_argument("-F", "--format, --output-format", dest="output_mode", default=FORMAT_MODE_YAML, choices=[f.name for f in FORMAT_MODES], help="Output format of applied metadata details. " "See also ``--help-format`` for details. (default: %(default)s)") parser_args.add_argument("-E", "--exceptions", default=DEFAULT_EXCEPTIONS_CONFIG, dest="exceptions_config", help="Path to custom exceptions configuration file " "(default: ``config/exceptions.cfg``). " "During formatting of fields, words matched against keys in the file will be " "replaced by the specified value instead of default word capitalization.") parser_args.add_argument("-S", "--stopwords", default=DEFAULT_STOPWORDS_CONFIG, dest="stopwords_config", help="Path to custom stopwords configuration file " "(default: ``config/stopwords.cfg``). " "When formatting fields of ID3 tags and file names, the resulting words " "matched against listed words from that file will be converted to lowercase " "instead of the default word capitalization.") op_args = ap.add_argument_group(title="Operation Arguments", description="Arguments to control which subset of operations to apply on " "matched audio files and parsed metadata.") op_args.add_argument("--dry", action="store_true", help="Do not execute any modification, just pretend. " "(note: works best when combined with outputs of ``--verbose`` or ``--debug``)") op_args.add_argument("-b", "--backup", action="store_true", help="Create a backup of files to be modified. Files are saved in directory named " "``backup`` under the ``--path`` or parent directory of ``--file``. " "No backup is accomplished otherwise.") op_args.add_argument("--rename-title", "--RT", action="store_true", help="Specifies whether to rename matched audio files with their corresponding ``TITLE``. " "This is equivalent to ``--rename-format '%%(TITLE)s'``.") op_args.add_argument("--prefix-track", "--PT", action="store_true", help="Specifies whether to prefix the file name with ``TRACK`` when combined with " "``--rename-title`` option. " "This is equivalent to ``--rename-format '%%(TRACK)s %%(TITLE)s'``.") op_args.add_argument("--rename-format", "--RF", help="Specify the specific ``FORMAT`` to employ for renaming files. " "Formatting template follows the ``%%(<TAG>)`` syntax. " "Supported ``<TAG>`` fields are listed in ID3 TAG names except image-related items.") op_args.add_argument("--no-fetch", "--nF", action="store_true", help="Must be combined with ``--link`` option. Enforces parser mode ``youtube``. " "When provided, instead of downloading music files, only metadata information will " "be retrieved from the link in order to obtain ID3 audio tag metadata and apply them " "to referenced pre-existing audio files in the search path. The metadata retrieved " "this way replaces corresponding ID3 tag details otherwise provided by ``--info``.") op_args.add_argument("--no-info", "--nI", action="store_true", help="Disable auto-detection of 'info' common audio metadata information file names. " "Useful when detection of an existing file on search path should be avoided. " "Ignored if ``--info`` is explicitly specified.") op_args.add_argument("--no-all", "--nA", action="store_true", help="Disable auto-detection of 'all' common audio metadata information file names. " "Useful when detection of an existing file on search path should be avoided. " "Ignored if ``--all`` is explicitly specified.") op_args.add_argument("--no-cover", "--nC", action="store_true", help="Disable auto-detection of common cover image file names. " "Useful when detection of an existing file on search path should be avoided. " "Ignored if ``--cover`` is explicitly specified.") op_args.add_argument("--no-rename", "--nR", action="store_true", help="Do not apply any file rename operation. (note: implied when ``--dry`` is provided)") op_args.add_argument("--no-update", "--nU", action="store_true", help="Do not apply any ID3-Tags updates. (note: implied when ``--dry`` is provided)") op_args.add_argument("--no-output", "--nO", action="store_true", help="Do not save results to output configurations file. (see: ``--output``)") op_args.add_argument("--no-result", "--nP", action="store_true", help="Do not print results to console output. " "Be aware that result will be reported only if logging level is ``--verbose`` " "or ``--debug``. This flag is redundant for more restrictive logging levels.") id3_args = ap.add_argument_group(title="ID3 Tags Arguments", description="Options to directly provide specific ID3 tag values to one or " "many audio files matched instead of through ``--info`` " "and ``--all`` configuration files.") id3_args.add_argument("-c", "--cover", "-I", "--image", dest="cover_file", help="Path where to find image file to use as audio file album cover. " "(default: looks for image of compatible format named " "`cover`, `artwork`, `art` or `image` under ``--path`` or parent directory " "of ``--file``, using the first match).") id3_args.add_argument("-T", "--title", dest=t.TAG_TITLE, help="Name to apply as ``TAG_TITLE`` metadata attribute to file(s).") id3_track = id3_args.add_mutually_exclusive_group() id3_track.add_argument("-N", "--track", "--track-number",
self), alignment=core.Qt.AlignHCenter | core.Qt.AlignVCenter) hsizer.addSpacing(102) # 82) hsizer.addWidget(qtw.QLabel(self.master.captions['C_WID'], self), alignment=core.Qt.AlignVCenter) hsizer.addSpacing(8) # 84) hsizer.addWidget(qtw.QLabel(self.master.captions['C_IND'], self), alignment=core.Qt.AlignVCenter) hsizer.addWidget(qtw.QLabel(self.master.captions['C_SEQ'], self), alignment=core.Qt.AlignVCenter) hsizer.addStretch() self.sizer.addLayout(hsizer) pnl = qtw.QFrame(self) self.scrl = qtw.QScrollArea(self) self.scrl.setWidget(pnl) self.scrl.setAlignment(core.Qt.AlignBottom) self.scrl.setWidgetResizable(True) self.bar = self.scrl.verticalScrollBar() self.gsizer = qtw.QVBoxLayout() self.rownum = 0 # indicates the number of rows in the gridlayout self.data, self.checks = [], [] self.col_textids, self.col_names = self.master.col_textids, self.master.col_names for ix, item in enumerate(self.master.book.page.column_info): item.append(ix) self.add_row(*item) box = qtw.QVBoxLayout() box.addLayout(self.gsizer) box.addStretch() pnl.setLayout(box) self.sizer.addWidget(self.scrl) buttonbox = qtw.QDialogButtonBox() btn = buttonbox.addButton(self.master.captions['C_ADDCOL'], qtw.QDialogButtonBox.ActionRole) btn.clicked.connect(self.add_column) btn = buttonbox.addButton(self.master.captions['C_REMCOL'], qtw.QDialogButtonBox.ActionRole) btn.clicked.connect(self.remove_columns) buttonbox.addButton(qtw.QDialogButtonBox.Ok) buttonbox.addButton(qtw.QDialogButtonBox.Cancel) buttonbox.accepted.connect(self.accept) buttonbox.rejected.connect(self.reject) hsizer = qtw.QHBoxLayout() hsizer.addStretch() hsizer.addWidget(buttonbox) hsizer.addStretch() self.sizer.addLayout(hsizer) self.setLayout(self.sizer) self.initializing = False def add_row(self, name='', width='', is_flag=False, colno=''): """create a row for defining column settings """ self.rownum += 1 rownum = self.rownum colnum = 0 check = qtw.QCheckBox(self) ghsizer = qtw.QHBoxLayout() ghsizer.addWidget(check, rownum) self.checks.append(check) colnum += 1 w_name = qtw.QComboBox(self) w_name.addItems(self.col_names) w_name.setEditable(True) if name: w_name.setCurrentIndex(self.col_textids.index(name)) else: w_name.clearEditText() w_name.editTextChanged.connect(self.on_text_changed) ghsizer.addWidget(w_name, rownum) colnum += 1 hsizer = qtw.QHBoxLayout() hsizer.addSpacing(20) w_width = qtw.QSpinBox(self) w_width.setMaximum(999) if width: w_width.setValue(width) w_width.setFixedWidth(48) hsizer.addWidget(w_width) hsizer.addSpacing(20) ghsizer.addLayout(hsizer, rownum) colnum += 1 hsizer = qtw.QHBoxLayout() hsizer.addSpacing(40) w_flag = qtw.QCheckBox(self) w_flag.setChecked(is_flag) w_flag.setFixedWidth(32) hsizer.addWidget(w_flag) hsizer.addSpacing(24) ghsizer.addLayout(hsizer, rownum) colnum += 1 hsizer = qtw.QHBoxLayout() hsizer.addSpacing(68) val = self.rownum if colno == '' else colno + 1 w_colno = qtw.QSpinBox(self) w_colno.setMinimum(1) w_colno.setMaximum(99) w_colno.setValue(val) w_colno.setFixedWidth(36) hsizer.addWidget(w_colno) hsizer.addStretch() ghsizer.addLayout(hsizer, rownum) self.gsizer.addLayout(ghsizer) old_colno = "new" if colno == '' else colno self.data.append((w_name, w_width, w_colno, w_flag, old_colno)) vbar = self.scrl.verticalScrollBar() vbar.setMaximum(vbar.maximum() + 62) vbar.setValue(vbar.maximum()) def delete_row(self, rownum): """remove a column settings row """ self.rownum -= 1 check = self.checks[rownum] for widgets in self.data[rownum:]: w_colno = widgets[2] w_colno.setValue(w_colno.value() - 1) w_name, w_width, w_colno, w_flag, _ = self.data[rownum] for widget in check, w_name, w_width, w_colno, w_flag: self.gsizer.removeWidget(widget) widget.close() self.gsizer.removeItem(self.gsizer.itemAt(rownum)) self.checks.pop(rownum) self.data.pop(rownum) def on_text_changed(self, text): "adjust column width based on length of column title" for w_name, w_width, *dummy in self.data: column_text = w_name.currentText() if column_text == text: w_width.setValue(10 * len(text)) break def add_column(self): """nieuwe rij aanmaken in self.gsizer""" self.add_row() def remove_columns(self): """alle aangevinkte items verwijderen uit self.gsizer""" test = [x.isChecked() for x in self.checks] checked = [x for x, y in enumerate(test) if y] if not any(test): return if ask_question(self.parent, 'Q_REMCOL'): for row in reversed(checked): self.delete_row(row) def accept(self): """save the changed settings and leave """ data = [(x.currentText(), y.value(), a.text(), b.isChecked(), c) for x, y, a, b, c in self.data] ok, cancel = self.master.accept_columnsettings(data) if ok: super().accept() # elif cancel: # super().reject() class NewColumnsDialog(qtw.QDialog): """dialoog voor aanmaken nieuwe kolom-ids """ def __init__(self, parent, master): self.parent = parent self.master = master self.initializing = True super().__init__(parent) self.setWindowTitle(self.master.title) self.sizer = qtw.QVBoxLayout() text = '\n'.join((self.master.captions['T_TRANS'].split(' / '))) hsizer = qtw.QHBoxLayout() hsizer.addWidget(qtw.QLabel(text, self)) self.sizer.addLayout(hsizer) # maak een kop voor de id en een kop voor elke taal die ondersteund wordt gsizer = qtw.QGridLayout() row = col = 0 gsizer.addWidget(qtw.QLabel('text id', self), row, col) for name in self.master.dialog_data['languages']: col += 1 gsizer.addWidget(qtw.QLabel(name.split('.')[0].title(), self), row, col) # maak een regel voor elke nieuwe titel en neem de waarde over # in de kolom die overeenkomt met de huidige taalinstelling # tevens de betreffende text entry read-only maken self.widgets = [] for item in self.master.dialog_data['new_titles']: row += 1 entry_row = [] for col in range(len(self.master.dialog_data['languages']) + 1): entry = qtw.QLineEdit(self) if col == 0: text = self.master.dialog_data['textid'] else: text = item if col == self.master.dialog_data['colno']: entry.setEnabled(False) entry.setText(text) gsizer.addWidget(entry, row, col) entry_row.append(entry) self.widgets.append(entry_row) self.sizer.addLayout(gsizer) buttonbox = qtw.QDialogButtonBox() buttonbox.addButton(qtw.QDialogButtonBox.Ok) buttonbox.addButton(qtw.QDialogButtonBox.Cancel) buttonbox.accepted.connect(self.accept) buttonbox.rejected.connect(self.reject) hsizer = qtw.QHBoxLayout() hsizer.addStretch() hsizer.addWidget(buttonbox) hsizer.addStretch() self.sizer.addLayout(hsizer) self.setLayout(self.sizer) self.initializing = False def accept(self): """save the changed settings and leave """ entries = [[col.text() for col in row] for row in self.widgets] ok = self.master.accept_newcolumns(entries) if ok: super().accept() class ExtraSettingsDialog(qtw.QDialog): """dialoog voor invullen tool specifieke instellingen """ def __init__(self, parent, master): self.parent = parent self.master = master # self.title = self.master.title self.captions = self.master.captions super().__init__(parent) ## self.resize(680, 400) self.setWindowTitle(self.master.title) self.sizer = qtw.QVBoxLayout() pnl = qtw.QFrame() vsizer = qtw.QVBoxLayout() hsizer = qtw.QHBoxLayout() text = qtw.QLabel(self.master.captions['S_PLGNAM'], self) self.t_program = qtw.QLineEdit(self.master.book.page.settings[shared.SettType.PLG.value], self) hsizer.addWidget(text) hsizer.addWidget(self.t_program) vsizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() text = qtw.QLabel(self.master.captions['S_PNLNAM'], self) self.t_title = qtw.QLineEdit(self.master.book.page.settings[shared.SettType.PNL.value], self) hsizer.addWidget(text) hsizer.addWidget(self.t_title) vsizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() self.c_rebuild = qtw.QCheckBox(self.master.captions['T_MAKE'].format( self.master.captions['S_RBLD']), self) if self.master.book.page.settings[shared.SettType.RBLD.value] == '1': self.c_rebuild.toggle() hsizer.addWidget(self.c_rebuild) vsizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() self.c_showdet = qtw.QCheckBox(self.master.captions['S_DETS'], self) try: if self.master.book.page.settings[shared.SettType.DETS.value] == '1': self.c_showdet.toggle() except KeyError: shared.log_exc() hsizer.addWidget(self.c_showdet) vsizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() self.c_redef = qtw.QCheckBox(self.master.captions['T_MAKE'].format( self.master.captions['S_RSAV']), self) if self.master.book.page.settings[shared.SettType.RDEF.value] == '1': self.c_redef.toggle() hsizer.addWidget(self.c_redef) vsizer.addLayout(hsizer) pnl.setLayout(vsizer) pnl.setFrameStyle(qtw.QFrame.Box | qtw.QFrame.Raised) self.sizer.addWidget(pnl) pnl = qtw.QFrame(self) vsizer = qtw.QVBoxLayout() text = self.master.captions['T_XTRASET'].format( self.master.book.page.settings[shared.SettType.PNL.value]) hsizer = qtw.QHBoxLayout() label = qtw.QLabel(text, self) hsizer.addStretch() hsizer.addWidget(label) hsizer.addStretch() vsizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() hsizer.addSpacing(41) hsizer.addWidget(qtw.QLabel(self.master.captions['C_NAM'], self), alignment=core.Qt.AlignHCenter) hsizer.addSpacing(52) hsizer.addWidget(qtw.QLabel(self.master.captions['C_VAL'], self), alignment=core.Qt.AlignHCenter) hsizer.addStretch() vsizer.addLayout(hsizer) pnl2 = qtw.QFrame(self) self.scrl = qtw.QScrollArea(self) self.scrl.setWidget(pnl2) self.scrl.setWidgetResizable(True) self.bar = self.scrl.verticalScrollBar() self.gsizer = qtw.QGridLayout() rownum = 0 self.rownum = rownum self.data, self.checks = [], [] for name, value in self.master.book.page.settings.items(): if name not in shared.csv_settingnames and name != 'extra': try: desc = self.master.book.page.settings['extra'][name] except KeyError: desc = '' self.add_row(name, value, desc) pnl2.setLayout(self.gsizer) pnl.setFrameStyle(qtw.QFrame.Box) self.scrl.ensureVisible(0, 0) vsizer.addWidget(self.scrl) hsizer = qtw.QHBoxLayout() hsizer.addStretch() btn = qtw.QPushButton(self.master.captions['C_ADDSET'], self) btn.clicked.connect(self.add_setting) hsizer.addWidget(btn) btn = qtw.QPushButton(self.master.captions['C_REMSET'], self) btn.clicked.connect(self.remove_settings) hsizer.addWidget(btn) hsizer.addStretch() vsizer.addLayout(hsizer) pnl.setLayout(vsizer) pnl.setFrameStyle(qtw.QFrame.Box | qtw.QFrame.Raised) self.sizer.addWidget(pnl) buttonbox = qtw.QDialogButtonBox() btn = buttonbox.addButton(qtw.QDialogButtonBox.Ok) btn = buttonbox.addButton(qtw.QDialogButtonBox.Cancel) buttonbox.accepted.connect(self.accept) buttonbox.rejected.connect(self.reject) hsizer = qtw.QHBoxLayout() hsizer.addStretch() hsizer.addWidget(buttonbox) hsizer.addStretch() self.sizer.addLayout(hsizer) self.setLayout(self.sizer) def add_row(self, name='', value='', desc=''): """add a row for defining a setting (name, value) """ self.rownum += 1 colnum = 0 check = qtw.QCheckBox(self) self.gsizer.addWidget(check, self.rownum, colnum) self.checks.append(check) colnum += 1 w_name = qtw.QLineEdit(name, self) w_name.setFixedWidth(88) if name: w_name.setReadOnly(True) ## w_name.setMaxLength(50) self.gsizer.addWidget(w_name, self.rownum, colnum) colnum += 1 w_value = qtw.QLineEdit(value, self) self.gsizer.addWidget(w_value, self.rownum, colnum) self.rownum += 1 w_desc = qtw.QLineEdit(desc, self) self.gsizer.addWidget(w_desc, self.rownum, colnum) self.data.append((w_name, w_value, w_desc)) vbar = self.scrl.verticalScrollBar() vbar.setMaximum(vbar.maximum() + 62) vbar.setValue(vbar.maximum()) def delete_row(self, rownum): """delete a setting definition row """ check = self.checks[rownum] w_name, w_value, w_desc = self.data[rownum] for widget in check, w_name, w_value, w_desc: self.gsizer.removeWidget(widget) widget.close() self.checks.pop(rownum) self.data.pop(rownum) def add_setting(self): """nieuwe rij aanmaken in self.gsizer""" self.add_row() def remove_settings(self): """alle aangevinkte items verwijderen uit self.gsizer""" test = [x.isChecked() for x in self.checks] checked = [x for x, y in enumerate(test) if y] if any(test): if ask_question(self.parent, 'Q_REMSET'): for row in reversed(checked): self.delete_row(row) def accept(self): """update settings and leave """ data = [(x.text(), y.text(), z.text()) for x, y, z in self.data] ok = self.master.accept_extrasettings(self.t_program.text(), self.t_title.text(), self.c_rebuild.isChecked(), self.c_showdet.isChecked(), self.c_redef.isChecked(), data) if not ok: self.c_showdet.setChecked(False) self.c_redef.setChecked(False) else: super().accept() class EntryDialog(qtw.QDialog): """Dialog for Manual Entry """ def __init__(self, parent, master): self.parent = parent self.master = master self.captions = self.master.captions super().__init__(parent) self.resize(680, 400) self.setWindowTitle(self.master.title) self.sizer = qtw.QVBoxLayout() hsizer = qtw.QHBoxLayout() self.p0list = qtw.QTableWidget(self) # use self.parent.page.column_info to define grid names, widths = [], [] for row in self.master.book.page.column_info: names.append(self.captions[row[0]]) widths.append(row[1]) self.p0list.setColumnCount(len(names)) self.p0list.setHorizontalHeaderLabels(names) p0hdr = self.p0list.horizontalHeader() for indx, wid in enumerate(widths): p0hdr.resizeSection(indx, wid) # use self.master.page.data to populate grid self.data = self.master.book.page.data num_rows = 0 for rowkey, row in self.data.items(): self.p0list.insertRow(num_rows) for i, element in enumerate(row): new_item = qtw.QTableWidgetItem() new_item.setText(element) self.p0list.setItem(num_rows, i, new_item) num_rows += 1 self.numrows = num_rows hsizer.addWidget(self.p0list) self.sizer.addLayout(hsizer) hsizer = qtw.QHBoxLayout() hsizer.addStretch() buttonbox = qtw.QDialogButtonBox() btn = buttonbox.addButton(self.captions['C_ADDKEY'], qtw.QDialogButtonBox.ActionRole) btn.clicked.connect(self.add_key) btn = buttonbox.addButton(self.captions['C_REMKEY'], qtw.QDialogButtonBox.ActionRole) btn.clicked.connect(self.delete_key) buttonbox.addButton(qtw.QDialogButtonBox.Ok) buttonbox.addButton(qtw.QDialogButtonBox.Cancel) buttonbox.accepted.connect(self.accept) buttonbox.rejected.connect(self.reject) hsizer.addWidget(buttonbox) hsizer.addStretch() self.sizer.addLayout(hsizer) self.setLayout(self.sizer) def add_key(self): "add a line to the grid" self.p0list.insertRow(self.numrows) for i in range(self.p0list.columnCount()): new_item = qtw.QTableWidgetItem() new_item.setText("") self.p0list.setItem(self.numrows, i, new_item) self.numrows += 1 ## self.p0list.scrollToItem(new_item) self.p0list.scrollToBottom() def delete_key(self): "remove selected line(s) from the grid" selected_rows = [] for item in self.p0list.selectedRanges(): for increment in range(item.rowCount()): selected_rows.append(item.topRow() + increment) for row in reversed(sorted(selected_rows)): self.p0list.removeRow(row) def accept(self): """send updates to parent and leave """ new_values = collections.defaultdict(list) display = False for rowid in range(self.p0list.rowCount()): for colid in range(self.p0list.columnCount()): try: value = self.p0list.item(rowid, colid).text() except AttributeError: value = '' new_values[rowid + 1].append(value.replace('\\n', '\n')) self.master.book.page.data = new_values super().accept() class CompleteDialog(qtw.QDialog): """Model dialog for entering / completing command descriptions """ def __init__(self, parent, master): self.parent = parent self.master = master ## self.captions = self.parent.captions super().__init__(parent) self.resize(680, 400) self.read_data() # client exit to get start data for dialog self.p0list = qtw.QTableWidget(len(self.cmds), 2, self) self.p0list.setHorizontalHeaderLabels([shared.get_text(self.parent, 'C_CMD'), shared.get_text(self.parent, 'C_DESC')]) hdr
import os import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn.neighbors import ( NearestNeighbors, radius_neighbors_graph, kneighbors_graph) from sklearn.utils.graph import graph_shortest_path from scipy.spatial import distance_matrix from scipy.spatial.distance import pdist, squareform from sklearn import datasets from ._fast_utils import distance_matrix class Shape(object): def __init__(self, X=None, name='random', seed=42, n_neighbors=12, dim=3, use_noise=False, noise_std=1e-2, n_jobs=4): np.random.seed(seed) self.points = X self.seed = seed self.name = name self.n_neighbors = n_neighbors self.dim = dim self.n_jobs = n_jobs self.euclidean_d = None self.sqeuclidean_d = None self.geodesic_d = None self.use_noise = use_noise self.noise_std = noise_std self.color = None def generate(self, npoints, use_cache=True): if (use_cache and self.points is not None and npoints == self.points.shape[0]): return self.points self.points = np.random.rand(npoints, self.dim) return self.points def add_noise(self, x): if self.use_noise: n = np.random.normal(0, self.noise_std, x.shape) x = x + n return x def noise_round_points(self, p): if self.use_noise: noise_x = np.random.normal(0, self.noise_std, p.shape[0]) noise_y = np.random.normal(0, self.noise_std, p.shape[0]) noise_z = np.random.normal(0, self.noise_std, p.shape[0]) noise = np.stack((noise_x, noise_y, noise_z), axis=1) p += noise p = np.around(p, decimals=6) return p def euclidean_distances(self, points=None, use_cache=True): if use_cache and self.euclidean_d is not None: return self.euclidean_d if points is None: points = self.points self.euclidean_d = distance_matrix(points) return self.euclidean_d def sqeuclidean_distances(self, points=None, use_cache=True): if use_cache and self.sqeuclidean_d is not None: return self.euclidean_d if points is None: points = self.points self.sqeuclidean_d = squareform(pdist(points, metric='sqeuclidean')) return self.sqeuclidean_d def geodesic_radius(self, points=None, use_cache=True): if use_cache and self.geodesic_d is not None: return self.geodesic_d if points is None: points = self.points dist = self.euclidean_distances() nbrs_inc = np.argsort(dist, axis=1) max_dist = -1 for i in range(dist.shape[0]): achieved_neighbors = 0 while achieved_neighbors < min(self.n_neighbors, dist.shape[0]): j = achieved_neighbors if max_dist < dist[i][nbrs_inc[i][j]]: max_dist = dist[i][nbrs_inc[i][j]] achieved_neighbors += 1 nbrs = (NearestNeighbors(algorithm='auto', n_neighbors=self.n_neighbors, radius=max_dist, n_jobs=self.n_jobs) .fit(points)) kng = radius_neighbors_graph( nbrs, max_dist, mode='distance', n_jobs=self.n_jobs) self.geodesic_d = graph_shortest_path(kng, method='D', directed=False) return self.geodesic_d def geodesic_neighbors(self, points=None, use_cache=True): if use_cache and self.geodesic_d is not None: return self.geodesic_d if points is None: points = self.points nbrs = (NearestNeighbors(algorithm='auto', n_neighbors=self.n_neighbors, n_jobs=self.n_jobs) .fit(points)) kng = kneighbors_graph(nbrs, self.n_neighbors, mode='distance', n_jobs=self.n_jobs) self.geodesic_d = graph_shortest_path(kng, method='D', directed=False) return self.geodesic_d def _save_data(self, x, data_dir='./'): if x is not None: filename = '{}_{}_{}_{}'.format( self.name, self.points.shape[0], self.dim, 'noise' if self.use_noise else 'no_noise') save_file = os.path.join( data_dir, filename) np.savetxt(save_file, x, delimiter=',') def save(self): self._save_data(self.points, '{}_coords.dat') self._save_data(self.euclidean_d, 'Euclidean_{}.dat') self._save_data(self.geodesic_d, 'Geodesic_{}.dat') def instance(self, npoints=0, distance='euclidean', geomethod='neigh'): if self.points is None: points = self.generate(npoints) points = self.add_noise(points) self.points = points else: points = self.add_noise(self.points) self.points = points if distance == 'euclidean': dist = self.euclidean_distances() elif distance == 'sqeuclidean': dist = self.sqeuclidean_distances() else: if geomethod == 'radius': dist = self.geodesic_radius() else: dist = self.geodesic_neighbors() return points, dist def plot3d(self, report_dir='./'): if self.points is None: return xx = self.points[:, 0] yy = self.points[:, 1] zz = self.points[:, 2] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xx, yy, zz) filename = '{}_{}_{}_{}'.format( self.name, self.points.shape[0], self.dim, 'noise' if self.use_noise else 'no_noise') plt.savefig(os.path.join(report_dir, filename)) class Ball(Shape): def __init__(self, X=None, radius=0.9, name='ball', use_noise=True, noise_std=1e-2, seed=42, n_neighbors=8, dim=3, n_jobs=4): super(Ball, self).__init__( name=name, seed=seed, n_neighbors=n_neighbors, dim=dim, use_noise=use_noise, noise_std=noise_std, n_jobs=n_jobs) self.radius = radius def generate(self, npoints, use_cache=True): if (use_cache and self.points is not None and npoints == self.points.shape[0]): return self.points phi = np.random.uniform(0, 2.0 * np.pi, npoints) costheta = np.random.uniform(-1.0, 1.0, npoints) u = np.random.uniform(0.0, 1.0, npoints) theta = np.arccos(costheta) r = self.radius * np.cbrt(u) sintheta = np.sin(theta) x = r * sintheta * np.cos(phi) y = r * sintheta * np.sin(phi) z = r * costheta p = np.stack((x, y, z), axis=1) self.points = self.noise_round_points(p) return self.points class Sphere(Shape): def __init__(self, X=None, radius=0.9, name='sphere', use_noise=True, noise_std=1e-2, seed=42, n_neighbors=8, dim=3, n_jobs=4): super(Sphere, self).__init__( name=name, seed=seed, n_neighbors=n_neighbors, dim=dim, use_noise=use_noise, noise_std=noise_std, n_jobs=n_jobs) self.radius = radius @staticmethod def _get_coords(theta, phi): x = np.cos(theta) * np.sin(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(phi) return x, y, z def generate(self, npoints, use_cache=True): phi = np.random.uniform(0, 2.0 * np.pi, npoints) costheta = np.random.uniform(-1.0, 1.0, npoints) theta = np.arccos(costheta) x, y, z = self._get_coords(theta, phi) p = np.stack((x, y, z), axis=1) self.points = self.noise_round_points(p) return self.points class CutSphere(Shape): def __init__(self, X=None, radius=0.9, cut_theta=0.5 * np.pi, name='cut-sphere', use_noise=True, noise_std=1e-2, seed=42, n_neighbors=8, dim=3, n_jobs=4): super(CutSphere, self).__init__( name=name, seed=seed, n_neighbors=n_neighbors, dim=dim, use_noise=use_noise, noise_std=noise_std, n_jobs=n_jobs) self.radius = radius self.cut_theta = cut_theta @staticmethod def _get_coords(theta, phi): x = np.cos(theta) * np.sin(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(phi) return x, y, z def generate(self, npoints, use_cache=True): phi = np.random.uniform(0, 2.0 * np.pi, npoints) costheta = np.random.uniform(np.cos(self.cut_theta), 1.0, npoints) theta = np.arccos(costheta) # cut_theta = theta[theta < self.cut_theta] x, y, z = self._get_coords(theta, phi) p = np.stack((x, y, z), axis=1) self.points = self.noise_round_points(p) return self.points class Spiral(Shape): def __init__(self, X=None, name='spiral', angle_start=np.pi, angle_stop=4*np.pi, r_stop=0.9, r_start=0.1, depth=12, use_noise=True, noise_std=1e-2, seed=42, n_neighbors=8, dim=3, n_jobs=4): super(Spiral, self).__init__( name=name, seed=seed, n_neighbors=n_neighbors, dim=dim, use_noise=use_noise, noise_std=noise_std, n_jobs=n_jobs) self.angle_start = angle_start self.angle_stop = angle_stop self.r_start = r_start self.r_stop = r_stop self.depth = depth def generate(self, npoints, use_cache=True): rows = np.round(npoints / self.depth) - 1 angle_step = float(self.angle_stop - self.angle_start) / rows distance_step = float(self.r_stop - self.r_start) / rows angle = self.angle_start distance = self.r_start points = [] while angle <= self.angle_stop: for i in range(self.depth): x = -0.9 + (1.8 * i) / (self.depth - 1) y = distance * np.cos(angle) z = distance * np.sin(angle) points.append([x, y, z]) distance += distance_step angle += angle_step p = np.array(points) self.points = self.noise_round_points(p) self.color = self.points[:, 0] return self.points class SpiralHole(Shape): def __init__(self, X=None, name='spiral-with-hole', angle_start=np.pi, angle_stop=4*np.pi, r_stop=0.9, r_start=0.1, depth=10, use_noise=True, noise_std=1e-2, seed=42, n_neighbors=8, dim=3, n_jobs=4): super(SpiralHole, self).__init__( name=name, seed=seed, n_neighbors=n_neighbors, dim=dim, use_noise=use_noise, noise_std=noise_std, n_jobs=n_jobs) self.angle_start = angle_start self.angle_stop = angle_stop self.r_start = r_start self.r_stop = r_stop self.depth = depth self.angle_hole_start = float(360 + 45) * np.pi / 180 self.angle_hole_stop = float(360 + 135) * np.pi / 180 def generate(self, npoints, use_cache=True): rows = np.round(npoints / self.depth) - 1 angle_step = float(self.angle_stop - self.angle_start) / rows distance_step = float(self.r_stop - self.r_start) / rows angle = self.angle_start distance = self.r_start points = [] while angle <= self.angle_stop: for i in range(self.depth): x = -0.9 + (1.8 * i) / (self.depth - 1) y = distance * np.cos(angle) z = distance * np.sin(angle) min_hole = np.round(int(2 * self.depth / 3)) max_hole = np.round(int(self.depth / 3)) if (self.angle_hole_stop >= angle >= self.angle_hole_start and min_hole > i >= max_hole): pass else: points.append([x, y, z]) distance += distance_step angle += angle_step p = np.array(points) self.points = self.noise_round_points(p) return self.points class SwissRoll(Shape): def generate(self, npoints, use_cache=True): noise_std = 0 if not self.use_noise else self.noise_std self.points, self.color = datasets.samples_generator.make_swiss_roll( n_samples=npoints, noise=noise_std, random_state=self.seed) return self.points class SCurve(Shape): def generate(self, npoints, use_cache=True): noise_std = 0 if not self.use_noise else self.noise_std self.points, self.color = datasets.samples_generator.make_s_curve( n_samples=npoints, noise=noise_std, random_state=self.seed) return self.points class ToroidalHelix(Shape): def generate(self, npoints, use_cache=True): param = -1 t = np.arange(1, npoints) / float(npoints) e_t = t ** (param * 2.0 * np.pi) self.color = e_t p = np.array([ (2 + np.cos(8 * e_t)) * np.cos(e_t), (2 + np.cos(8 * e_t)) * np.sin(e_t), np.sin(8 * e_t)]).T self.points = self.noise_round_points(p) return self.points class SwissHole(Shape): def generate(self, npoints, use_cache=True): param = 1 tt = (3 * np.pi / 2.0) * (1 + 2.0 * np.random.rand(2 * npoints)) h = 21 * np.random.rand(2 * npoints) kl = np.zeros(2 * npoints) for ii in range(2 * npoints): if 9 < tt[ii] < 12: if 9 < h[ii] < 14: kl[ii] = 1 tt = tt[kl == 0] h = h[kl == 0] p = np.array([tt * np.cos(tt), h, param * tt * np.sin(tt)]).T self.points = self.noise_round_points(p) self.color = tt return self.points class PuncturedSphere(Shape): def generate(self, npoints, use_cache=True): param = .5 inc = 9.0 / np.sqrt(npoints) yy, xx = map(lambda z: z.flatten(), np.mgrid[-5:5:inc, -5:5:inc]) rr2 = xx ** 2 + yy ** 2 ii = np.argsort(rr2) y = np.array([xx[ii[:npoints]].T, yy[ii[:npoints]].T]) a = 4.0 / (4 + np.sum(y ** 2, axis=0)) p = np.array([a * y[0, :], a * y[1, :], param * 2 * (1 - a)]).T self.points = self.noise_round_points(p) self.color = self.points[:, 2] return self.points class CornerPlane(Shape): def generate(self, npoints, use_cache=True): k = 0
Register('csrce2', 8, 0x90006710), Register('csrce3', 8, 0x90006718), Register('csrce4', 8, 0x90006720), Register('csrce5', 8, 0x90006728), Register('csrce6', 8, 0x90006730), Register('csrce7', 8, 0x90006738), Register('csrce8', 8, 0x90006740), Register('csrce9', 8, 0x90006748), Register('csrcea', 8, 0x90006750), Register('csrceb', 8, 0x90006758), Register('csrcec', 8, 0x90006760), Register('csrced', 8, 0x90006768), Register('csrcee', 8, 0x90006770), Register('csrcef', 8, 0x90006778), Register('csrcf0', 8, 0x90006780), Register('csrcf1', 8, 0x90006788), Register('csrcf2', 8, 0x90006790), Register('csrcf3', 8, 0x90006798), Register('csrcf4', 8, 0x900067a0), Register('csrcf5', 8, 0x900067a8), Register('csrcf6', 8, 0x900067b0), Register('csrcf7', 8, 0x900067b8), Register('csrcf8', 8, 0x900067c0), Register('csrcf9', 8, 0x900067c8), Register('csrcfa', 8, 0x900067d0), Register('csrcfb', 8, 0x900067d8), Register('csrcfc', 8, 0x900067e0), Register('csrcfd', 8, 0x900067e8), Register('csrcfe', 8, 0x900067f0), Register('csrcff', 8, 0x900067f8), Register('csrd00', 8, 0x90006800), Register('csrd01', 8, 0x90006808), Register('csrd02', 8, 0x90006810), Register('csrd03', 8, 0x90006818), Register('csrd04', 8, 0x90006820), Register('csrd05', 8, 0x90006828), Register('csrd06', 8, 0x90006830), Register('csrd07', 8, 0x90006838), Register('csrd08', 8, 0x90006840), Register('csrd09', 8, 0x90006848), Register('csrd0a', 8, 0x90006850), Register('csrd0b', 8, 0x90006858), Register('csrd0c', 8, 0x90006860), Register('csrd0d', 8, 0x90006868), Register('csrd0e', 8, 0x90006870), Register('csrd0f', 8, 0x90006878), Register('csrd10', 8, 0x90006880), Register('csrd11', 8, 0x90006888), Register('csrd12', 8, 0x90006890), Register('csrd13', 8, 0x90006898), Register('csrd14', 8, 0x900068a0), Register('csrd15', 8, 0x900068a8), Register('csrd16', 8, 0x900068b0), Register('csrd17', 8, 0x900068b8), Register('csrd18', 8, 0x900068c0), Register('csrd19', 8, 0x900068c8), Register('csrd1a', 8, 0x900068d0), Register('csrd1b', 8, 0x900068d8), Register('csrd1c', 8, 0x900068e0), Register('csrd1d', 8, 0x900068e8), Register('csrd1e', 8, 0x900068f0), Register('csrd1f', 8, 0x900068f8), Register('csrd20', 8, 0x90006900), Register('csrd21', 8, 0x90006908), Register('csrd22', 8, 0x90006910), Register('csrd23', 8, 0x90006918), Register('csrd24', 8, 0x90006920), Register('csrd25', 8, 0x90006928), Register('csrd26', 8, 0x90006930), Register('csrd27', 8, 0x90006938), Register('csrd28', 8, 0x90006940), Register('csrd29', 8, 0x90006948), Register('csrd2a', 8, 0x90006950), Register('csrd2b', 8, 0x90006958), Register('csrd2c', 8, 0x90006960), Register('csrd2d', 8, 0x90006968), Register('csrd2e', 8, 0x90006970), Register('csrd2f', 8, 0x90006978), Register('csrd30', 8, 0x90006980), Register('csrd31', 8, 0x90006988), Register('csrd32', 8, 0x90006990), Register('csrd33', 8, 0x90006998), Register('csrd34', 8, 0x900069a0), Register('csrd35', 8, 0x900069a8), Register('csrd36', 8, 0x900069b0), Register('csrd37', 8, 0x900069b8), Register('csrd38', 8, 0x900069c0), Register('csrd39', 8, 0x900069c8), Register('csrd3a', 8, 0x900069d0), Register('csrd3b', 8, 0x900069d8), Register('csrd3c', 8, 0x900069e0), Register('csrd3d', 8, 0x900069e8), Register('csrd3e', 8, 0x900069f0), Register('csrd3f', 8, 0x900069f8), Register('csrd40', 8, 0x90006a00), Register('csrd41', 8, 0x90006a08), Register('csrd42', 8, 0x90006a10), Register('csrd43', 8, 0x90006a18), Register('csrd44', 8, 0x90006a20), Register('csrd45', 8, 0x90006a28), Register('csrd46', 8, 0x90006a30), Register('csrd47', 8, 0x90006a38), Register('csrd48', 8, 0x90006a40), Register('csrd49', 8, 0x90006a48), Register('csrd4a', 8, 0x90006a50), Register('csrd4b', 8, 0x90006a58), Register('csrd4c', 8, 0x90006a60), Register('csrd4d', 8, 0x90006a68), Register('csrd4e', 8, 0x90006a70), Register('csrd4f', 8, 0x90006a78), Register('csrd50', 8, 0x90006a80), Register('csrd51', 8, 0x90006a88), Register('csrd52', 8, 0x90006a90), Register('csrd53', 8, 0x90006a98), Register('csrd54', 8, 0x90006aa0), Register('csrd55', 8, 0x90006aa8), Register('csrd56', 8, 0x90006ab0), Register('csrd57', 8, 0x90006ab8), Register('csrd58', 8, 0x90006ac0), Register('csrd59', 8, 0x90006ac8), Register('csrd5a', 8, 0x90006ad0), Register('csrd5b', 8, 0x90006ad8), Register('csrd5c', 8, 0x90006ae0), Register('csrd5d', 8, 0x90006ae8), Register('csrd5e', 8, 0x90006af0), Register('csrd5f', 8, 0x90006af8), Register('csrd60', 8, 0x90006b00), Register('csrd61', 8, 0x90006b08), Register('csrd62', 8, 0x90006b10), Register('csrd63', 8, 0x90006b18), Register('csrd64', 8, 0x90006b20), Register('csrd65', 8, 0x90006b28), Register('csrd66', 8, 0x90006b30), Register('csrd67', 8, 0x90006b38), Register('csrd68', 8, 0x90006b40), Register('csrd69', 8, 0x90006b48), Register('csrd6a', 8, 0x90006b50), Register('csrd6b', 8, 0x90006b58), Register('csrd6c', 8, 0x90006b60), Register('csrd6d', 8, 0x90006b68), Register('csrd6e', 8, 0x90006b70), Register('csrd6f', 8, 0x90006b78), Register('csrd70', 8, 0x90006b80), Register('csrd71', 8, 0x90006b88), Register('csrd72', 8, 0x90006b90), Register('csrd73', 8, 0x90006b98), Register('csrd74', 8, 0x90006ba0), Register('csrd75', 8, 0x90006ba8), Register('csrd76', 8, 0x90006bb0), Register('csrd77', 8, 0x90006bb8), Register('csrd78', 8, 0x90006bc0), Register('csrd79', 8, 0x90006bc8), Register('csrd7a', 8, 0x90006bd0), Register('csrd7b', 8, 0x90006bd8), Register('csrd7c', 8, 0x90006be0), Register('csrd7d', 8, 0x90006be8), Register('csrd7e', 8, 0x90006bf0), Register('csrd7f', 8, 0x90006bf8), Register('csrd80', 8, 0x90006c00), Register('csrd81', 8, 0x90006c08), Register('csrd82', 8, 0x90006c10), Register('csrd83', 8, 0x90006c18), Register('csrd84', 8, 0x90006c20), Register('csrd85', 8, 0x90006c28), Register('csrd86', 8, 0x90006c30), Register('csrd87', 8, 0x90006c38), Register('csrd88', 8, 0x90006c40), Register('csrd89', 8, 0x90006c48), Register('csrd8a', 8, 0x90006c50), Register('csrd8b', 8, 0x90006c58), Register('csrd8c', 8, 0x90006c60), Register('csrd8d', 8, 0x90006c68), Register('csrd8e', 8, 0x90006c70), Register('csrd8f', 8, 0x90006c78), Register('csrd90', 8, 0x90006c80), Register('csrd91', 8, 0x90006c88), Register('csrd92', 8, 0x90006c90), Register('csrd93', 8, 0x90006c98), Register('csrd94', 8, 0x90006ca0), Register('csrd95', 8, 0x90006ca8), Register('csrd96', 8, 0x90006cb0), Register('csrd97', 8, 0x90006cb8), Register('csrd98', 8, 0x90006cc0), Register('csrd99', 8, 0x90006cc8), Register('csrd9a', 8, 0x90006cd0), Register('csrd9b', 8, 0x90006cd8), Register('csrd9c', 8, 0x90006ce0), Register('csrd9d', 8, 0x90006ce8), Register('csrd9e', 8, 0x90006cf0), Register('csrd9f', 8, 0x90006cf8), Register('csrda0', 8, 0x90006d00), Register('csrda1', 8, 0x90006d08), Register('csrda2', 8, 0x90006d10), Register('csrda3', 8, 0x90006d18), Register('csrda4', 8, 0x90006d20), Register('csrda5', 8, 0x90006d28), Register('csrda6', 8, 0x90006d30), Register('csrda7', 8, 0x90006d38), Register('csrda8', 8, 0x90006d40), Register('csrda9', 8, 0x90006d48), Register('csrdaa', 8, 0x90006d50), Register('csrdab', 8, 0x90006d58), Register('csrdac', 8, 0x90006d60), Register('csrdad', 8, 0x90006d68), Register('csrdae', 8, 0x90006d70), Register('csrdaf', 8, 0x90006d78), Register('csrdb0', 8, 0x90006d80), Register('csrdb1', 8, 0x90006d88), Register('csrdb2', 8, 0x90006d90), Register('csrdb3', 8, 0x90006d98), Register('csrdb4', 8, 0x90006da0), Register('csrdb5', 8, 0x90006da8), Register('csrdb6', 8, 0x90006db0), Register('csrdb7', 8, 0x90006db8), Register('csrdb8', 8, 0x90006dc0), Register('csrdb9', 8, 0x90006dc8), Register('csrdba', 8, 0x90006dd0), Register('csrdbb', 8, 0x90006dd8), Register('csrdbc', 8, 0x90006de0), Register('csrdbd', 8, 0x90006de8), Register('csrdbe', 8, 0x90006df0), Register('csrdbf', 8, 0x90006df8), Register('csrdc0', 8, 0x90006e00), Register('csrdc1', 8, 0x90006e08), Register('csrdc2', 8, 0x90006e10), Register('csrdc3', 8, 0x90006e18), Register('csrdc4', 8, 0x90006e20), Register('csrdc5', 8, 0x90006e28), Register('csrdc6', 8, 0x90006e30), Register('csrdc7', 8, 0x90006e38), Register('csrdc8', 8, 0x90006e40), Register('csrdc9', 8, 0x90006e48), Register('csrdca', 8, 0x90006e50), Register('csrdcb', 8, 0x90006e58), Register('csrdcc', 8, 0x90006e60), Register('csrdcd', 8, 0x90006e68), Register('csrdce', 8, 0x90006e70), Register('csrdcf', 8, 0x90006e78), Register('csrdd0', 8, 0x90006e80), Register('csrdd1', 8, 0x90006e88), Register('csrdd2', 8, 0x90006e90), Register('csrdd3', 8, 0x90006e98), Register('csrdd4', 8, 0x90006ea0), Register('csrdd5', 8, 0x90006ea8), Register('csrdd6', 8, 0x90006eb0), Register('csrdd7', 8, 0x90006eb8), Register('csrdd8', 8, 0x90006ec0), Register('csrdd9', 8, 0x90006ec8), Register('csrdda', 8, 0x90006ed0), Register('csrddb', 8, 0x90006ed8), Register('csrddc', 8, 0x90006ee0), Register('csrddd', 8, 0x90006ee8), Register('csrdde', 8, 0x90006ef0), Register('csrddf', 8, 0x90006ef8), Register('csrde0', 8, 0x90006f00), Register('csrde1', 8, 0x90006f08), Register('csrde2', 8, 0x90006f10), Register('csrde3', 8, 0x90006f18), Register('csrde4', 8, 0x90006f20), Register('csrde5', 8, 0x90006f28), Register('csrde6', 8, 0x90006f30), Register('csrde7', 8, 0x90006f38), Register('csrde8', 8, 0x90006f40), Register('csrde9', 8, 0x90006f48), Register('csrdea', 8, 0x90006f50), Register('csrdeb', 8, 0x90006f58), Register('csrdec', 8, 0x90006f60), Register('csrded', 8, 0x90006f68), Register('csrdee', 8, 0x90006f70), Register('csrdef', 8, 0x90006f78), Register('csrdf0', 8, 0x90006f80), Register('csrdf1', 8, 0x90006f88), Register('csrdf2', 8, 0x90006f90), Register('csrdf3', 8, 0x90006f98), Register('csrdf4', 8, 0x90006fa0), Register('csrdf5', 8, 0x90006fa8), Register('csrdf6', 8, 0x90006fb0), Register('csrdf7', 8, 0x90006fb8), Register('csrdf8', 8, 0x90006fc0), Register('csrdf9', 8, 0x90006fc8), Register('csrdfa', 8, 0x90006fd0), Register('csrdfb', 8, 0x90006fd8), Register('csrdfc', 8, 0x90006fe0), Register('csrdfd', 8, 0x90006fe8), Register('csrdfe', 8, 0x90006ff0), Register('csrdff', 8, 0x90006ff8), Register('csre00', 8, 0x90007000), Register('csre01', 8, 0x90007008), Register('csre02', 8, 0x90007010), Register('csre03', 8, 0x90007018), Register('csre04', 8, 0x90007020), Register('csre05', 8, 0x90007028), Register('csre06', 8, 0x90007030), Register('csre07', 8, 0x90007038), Register('csre08', 8, 0x90007040), Register('csre09', 8, 0x90007048), Register('csre0a', 8, 0x90007050), Register('csre0b', 8, 0x90007058), Register('csre0c', 8, 0x90007060), Register('csre0d', 8, 0x90007068), Register('csre0e', 8, 0x90007070), Register('csre0f', 8, 0x90007078), Register('csre10', 8, 0x90007080), Register('csre11', 8, 0x90007088), Register('hgeip', 8, 0x90007090), Register('csre13', 8, 0x90007098), Register('csre14', 8, 0x900070a0), Register('csre15', 8, 0x900070a8), Register('csre16', 8, 0x900070b0), Register('csre17', 8, 0x900070b8), Register('csre18', 8, 0x900070c0), Register('csre19', 8, 0x900070c8), Register('csre1a', 8, 0x900070d0), Register('csre1b', 8, 0x900070d8), Register('csre1c', 8, 0x900070e0), Register('csre1d', 8, 0x900070e8), Register('csre1e', 8, 0x900070f0), Register('csre1f', 8, 0x900070f8), Register('csre20', 8, 0x90007100), Register('csre21', 8, 0x90007108), Register('csre22', 8, 0x90007110), Register('csre23', 8, 0x90007118), Register('csre24', 8, 0x90007120), Register('csre25', 8, 0x90007128), Register('csre26', 8, 0x90007130), Register('csre27', 8, 0x90007138), Register('csre28', 8, 0x90007140), Register('csre29', 8, 0x90007148), Register('csre2a', 8, 0x90007150), Register('csre2b', 8, 0x90007158), Register('csre2c', 8, 0x90007160), Register('csre2d', 8, 0x90007168), Register('csre2e', 8, 0x90007170), Register('csre2f', 8, 0x90007178), Register('csre30', 8, 0x90007180), Register('csre31', 8, 0x90007188), Register('csre32', 8, 0x90007190), Register('csre33', 8, 0x90007198), Register('csre34', 8, 0x900071a0), Register('csre35', 8, 0x900071a8), Register('csre36', 8, 0x900071b0), Register('csre37', 8, 0x900071b8), Register('csre38', 8, 0x900071c0), Register('csre39', 8, 0x900071c8), Register('csre3a', 8, 0x900071d0), Register('csre3b', 8, 0x900071d8), Register('csre3c', 8, 0x900071e0), Register('csre3d', 8, 0x900071e8), Register('csre3e', 8, 0x900071f0), Register('csre3f', 8, 0x900071f8), Register('csre40', 8, 0x90007200), Register('csre41', 8, 0x90007208), Register('csre42', 8, 0x90007210), Register('csre43', 8, 0x90007218), Register('csre44', 8, 0x90007220), Register('csre45', 8, 0x90007228), Register('csre46', 8, 0x90007230), Register('csre47', 8, 0x90007238), Register('csre48', 8, 0x90007240), Register('csre49', 8, 0x90007248), Register('csre4a', 8, 0x90007250), Register('csre4b', 8, 0x90007258), Register('csre4c', 8, 0x90007260), Register('csre4d', 8, 0x90007268), Register('csre4e', 8, 0x90007270), Register('csre4f', 8, 0x90007278), Register('csre50', 8, 0x90007280), Register('csre51', 8, 0x90007288), Register('csre52', 8, 0x90007290), Register('csre53', 8, 0x90007298), Register('csre54', 8, 0x900072a0), Register('csre55', 8, 0x900072a8), Register('csre56', 8, 0x900072b0), Register('csre57', 8, 0x900072b8), Register('csre58', 8, 0x900072c0), Register('csre59', 8, 0x900072c8), Register('csre5a', 8, 0x900072d0), Register('csre5b', 8, 0x900072d8), Register('csre5c', 8, 0x900072e0), Register('csre5d', 8, 0x900072e8), Register('csre5e', 8, 0x900072f0), Register('csre5f', 8, 0x900072f8), Register('csre60', 8, 0x90007300), Register('csre61', 8, 0x90007308), Register('csre62', 8, 0x90007310), Register('csre63', 8, 0x90007318), Register('csre64', 8, 0x90007320), Register('csre65', 8, 0x90007328), Register('csre66', 8, 0x90007330), Register('csre67', 8, 0x90007338), Register('csre68', 8, 0x90007340), Register('csre69', 8, 0x90007348), Register('csre6a', 8, 0x90007350), Register('csre6b', 8, 0x90007358), Register('csre6c', 8, 0x90007360), Register('csre6d', 8, 0x90007368), Register('csre6e', 8, 0x90007370), Register('csre6f', 8, 0x90007378), Register('csre70', 8, 0x90007380), Register('csre71', 8, 0x90007388), Register('csre72', 8, 0x90007390), Register('csre73', 8, 0x90007398), Register('csre74', 8, 0x900073a0), Register('csre75', 8, 0x900073a8), Register('csre76', 8, 0x900073b0), Register('csre77', 8, 0x900073b8), Register('csre78', 8, 0x900073c0), Register('csre79', 8, 0x900073c8), Register('csre7a', 8, 0x900073d0), Register('csre7b', 8, 0x900073d8), Register('csre7c', 8, 0x900073e0), Register('csre7d', 8, 0x900073e8), Register('csre7e', 8, 0x900073f0), Register('csre7f', 8, 0x900073f8), Register('csre80', 8, 0x90007400), Register('csre81', 8, 0x90007408), Register('csre82', 8, 0x90007410), Register('csre83', 8, 0x90007418), Register('csre84', 8, 0x90007420), Register('csre85', 8, 0x90007428), Register('csre86', 8, 0x90007430), Register('csre87', 8, 0x90007438), Register('csre88', 8, 0x90007440), Register('csre89', 8, 0x90007448), Register('csre8a', 8, 0x90007450), Register('csre8b', 8, 0x90007458), Register('csre8c', 8,
#! python ## Copyright (c) 2018-2021, Carnegie Mellon University ## See LICENSE for details ## This script reads a file, cube-sizes.txt, that contains several cube size ## specifications for the 3D DFT. This script will: ## Generate a list of source file names for CMake to build ## Create the source files (by running Spiral), writing them ## to directory lib_<stem>_srcs ## Create the prototype definitions in a private library include file: <stem>_decls.h ## Create the public header file for the library: <stem>_public.h ## Compiling and library is handled by CMake. import sys import subprocess import os, stat import re import shutil ## file stem can be an argument speciying library to build if len ( sys.argv ) < 2: ## No library name stem provided, default to mddft3d_ _file_stem = 'mddft3d_' else: ## Use given argument as the library stem name _file_stem = sys.argv[1] if not re.match ( '_$', _file_stem ): ## append an underscore if one is not present _file_stem = _file_stem + '_' ## Code to build -- Hip or CUDA (default) governs file suffix etc. _code_type = 'CUDA' _file_suffix = '.cu' if len ( sys.argv ) >= 3: ## Code type specified _code_type = sys.argv[2] if re.match ( 'cuda', _code_type, re.IGNORECASE ): ## CUDA selected _code_type = 'CUDA' _file_suffix = '.cu' if re.match ( 'hip', _code_type, re.IGNORECASE ): ## HIP selected _code_type = 'HIP' _file_suffix = '.cpp' ## Create the library sources directory (if it doesn't exist) _srcs_dir = 'lib_' + _file_stem + 'srcs' isdir = os.path.isdir ( _srcs_dir ) if not isdir: os.mkdir ( _srcs_dir ) _cmake_srcs = open ( _srcs_dir + '/SourceList.cmake', 'w' ) _cmake_srcs.write ( 'set ( _source_files ${_source_files} \n' ) ## Build a header file for the library with the declarations and tables to ## manage the entry points in the library _lib_hdrfname = _srcs_dir + '/' + _file_stem + 'decls.h' _lib_pubfname = _srcs_dir + '/' + _file_stem + 'public.h' _lib_apifname = _srcs_dir + '/' + _file_stem + 'libentry' + _file_suffix _lib_cmakefil = _srcs_dir + '/CMakeLists.txt' def start_header_file ( type ): "Sets up the common stuff for both header files" _str = '#ifndef ' + _file_stem + type + '_HEADER_INCLUDED\n' _str = _str + '#define ' + _file_stem + type + '_HEADER_INCLUDED\n\n' _str = _str + '// Copyright (c) 2018-2021, Carnegie Mellon University\n' _str = _str + '// See LICENSE for details\n\n' _str = _str + '#ifndef INITTRANSFORMFUNC\n' _str = _str + '#define INITTRANSFORMFUNC\n' _str = _str + 'typedef void ( * initTransformFunc ) ( void );\n' _str = _str + '#endif\n\n' _str = _str + '#ifndef DESTROYTRANSFORMFUNC\n' _str = _str + '#define DESTROYTRANSFORMFUNC\n' _str = _str + 'typedef void ( * destroyTransformFunc ) ( void );\n' _str = _str + '#endif\n\n' _str = _str + '#ifndef RUNTRANSFORMFUNC\n' _str = _str + '#define RUNTRANSFORMFUNC\n' _str = _str + 'typedef void ( * runTransformFunc ) ( double *output, double *input );\n' _str = _str + '#endif\n\n' _str = _str + '#ifndef CUBESIZE_T\n' _str = _str + '#define CUBESIZE_T\n' _str = _str + 'typedef struct cubesize { int dimx, dimy, dimz; } cubesize_t;\n' _str = _str + '#endif\n\n' _str = _str + '#ifndef TRANSFORMTUPLE_T\n' _str = _str + '#define TRANSFORMTUPLE_T\n' _str = _str + 'typedef struct transformTuple {\n' _str = _str + ' initTransformFunc initfp;\n' _str = _str + ' destroyTransformFunc destroyfp;\n' _str = _str + ' runTransformFunc runfp;\n' _str = _str + '} transformTuple_t;\n' _str = _str + '#endif\n\n' return _str; def body_public_header (): "Add the body details for the public header file" _str = '// Query the list of sizes available from the library; returns a pointer to an\n' _str = _str + '// array of size, each element is a struct of type cubesize specifying the X,\n' _str = _str + '// Y, and Z dimensions\n\n' _str = _str + 'cubesize_t * ' + _file_stem + 'QuerySizes ();\n\n' _str = _str + '// Run an ' + _file_stem + ' transform once: run the init functions, run the transform,\n' _str = _str + '// and finally tear down by calling the destroy function. Accepts cubesize_t\n' _str = _str + '// specifying size, and pointers to the output (returned) data and the input\n' _str = _str + '// data.\n\n' _str = _str + 'void ' + _file_stem + 'Run ( cubesize_t req, double * output, double * input );\n\n' _str = _str + '// Get a transform tuple -- a set of pointers to the init, destroy, and run\n' _str = _str + '// functions for a specific size ' + _file_stem + ' transform. Using this information the\n' _str = _str + '// user may call the nit function to setup for the transform, then run the\n' _str = _str + '// transform repeatedly, and finally tesr down (using destroy function).\n\n' _str = _str + 'transformTuple_t * ' + _file_stem + 'Tuple ( cubesize_t req );\n\n' _str = _str + '#endif\n\n' return _str; def library_api ( ): "Sets up the public API for the library" _str = '// Copyright (c) 2018-2021, Carnegie Mellon University\n' _str = _str + '// See LICENSE for details\n\n' _str = _str + '#include <stdio.h>\n' _str = _str + '#include <stdlib.h>\n' _str = _str + '#include <string.h>\n' _str = _str + '#include "' + _file_stem + 'decls.h"\n' _str = _str + '#include "' + _file_stem + 'public.h"\n\n' _str = _str + '// Query the list of sizes available from the library; returns a pointer to an\n' _str = _str + '// array of size, each element is a struct of type cubesize specifying the X,\n' _str = _str + '// Y, and Z dimensions\n\n' _str = _str + 'cubesize_t * ' + _file_stem + 'QuerySizes ()\n' _str = _str + '{\n' _str = _str + ' cubesize_t *wp = (cubesize_t *) malloc ( sizeof ( AllCubes ) );\n' _str = _str + ' if ( wp != NULL)\n' _str = _str + ' memcpy ( (void *) wp, (const void *) AllCubes, sizeof ( AllCubes ) );\n\n' _str = _str + ' return wp;\n' _str = _str + '}\n\n' _str = _str + '// Get a transform tuple -- a set of pointers to the init, destroy, and run\n' _str = _str + '// functions for a specific size ' + _file_stem + ' transform. Using this information the\n' _str = _str + '// user may call the nit function to setup for the transform, then run the\n' _str = _str + '// transform repeatedly, and finally tesr down (using destroy function).\n' _str = _str + '// Returns NULL if requested size is not found\n\n' _str = _str + 'transformTuple_t * ' + _file_stem + 'Tuple ( cubesize_t req )\n' _str = _str + '{\n' _str = _str + ' int indx;\n' _str = _str + ' int numentries = sizeof ( AllCubes ) / sizeof ( cubesize_t ) - 1; // last entry in { 0, 0, 0 }\n' _str = _str + ' transformTuple_t *wp = NULL;\n\n' _str = _str + ' for ( indx = 0; indx < numentries; indx++ ) {\n' _str = _str + ' if ( req.dimx == AllCubes[indx].dimx &&\n' _str = _str + ' req.dimy == AllCubes[indx].dimy &&\n' _str = _str + ' req.dimz == AllCubes[indx].dimz ) {\n' _str = _str + ' // found a match\n' _str = _str + ' wp = (transformTuple_t *) malloc ( sizeof ( transformTuple_t ) );\n' _str = _str + ' if ( wp != NULL) {\n' _str = _str + ' *wp = ' + _file_stem + 'Tuples[indx];\n' _str = _str + ' }\n' _str = _str + ' break;\n' _str = _str + ' }\n' _str = _str + ' }\n\n' _str = _str + ' return wp;\n' _str = _str + '}\n\n' _str = _str + '// Run an ' + _file_stem + ' transform once: run the init functions, run the transform,\n' _str = _str + '// and finally tear down by calling the destroy
<gh_stars>1-10 from medpy.io import load from medpy.io import save import numpy as np from sklearn import utils from os import listdir,makedirs from os.path import isfile, join, isdir,exists import os from medpy.features import indices import pickle import medpy.metric import scipy.ndimage as ndimage import math from sklearn.externals import joblib from sklearn.ensemble import RandomForestClassifier from sklearn import mixture import scipy.stats as stats from medpy import filter import matplotlib.pyplot as plt import xlsxwriter from scipy.ndimage.morphology import binary_dilation class subject_class: def __init__(self, types_sequences ,path_sequences,path_subject): self.dir = path_subject self.T1= 0 self.T1_path = '' self.T2 = 0 self.T2_path= '' self.FLAIR = 0 self.FLAIR_path = '' self.DP = 0 self.DP_path = '' self.GADO = 0 self.GADO_path = '' for n_paths in range(len(path_sequences)): if types_sequences [n_paths] =='T1': self.T1 = 1 self.T1_path = path_sequences[n_paths] if types_sequences [n_paths] =='T2': self.T2 = 1 self.T2_path = path_sequences[0] if types_sequences [n_paths] =='FLAIR': self.FLAIR = 1 self.FLAIR_path = path_sequences[n_paths] if types_sequences [n_paths] =='GADO': self.GADO = 1 self.GADO_path = path_sequences[n_paths] if types_sequences [n_paths] =='DP': self.DP = 1 self.DP_path = path_sequences[n_paths] self.T1_irs = 0 self.T1_irs_path = '' self.T2_irs = 0 self.T2_irs_path = '' self.FLAIR_irs = 0 self.FLAIR_irs_path = '' self.DP_irs = 0 self.DP_irs_path = '' self.GADO_irs = 0 self.GADO_irs_path = '' self.brain_mask = 0 self.brain_mask_path = '' self.lesion_mask = 0 self.lesion_mask_path = '' self.csf_ext_train = 0 self.csf_ext_train_path = '' def add_intermediate(self,path_intermediate): self.intermediate = 1 self.intermediate_path = path_intermediate def add_brain_mask(self,path_brain_mask): self.brain_mask = 1 self.brain_mask_path = path_brain_mask def add_pp_sequences(self,types_sequences ,path_pp_sequences): for n_paths in range(len(path_pp_sequences)): if types_sequences[n_paths] == 'T1': self.T1_pp = 1 self.T1_pp_path = path_pp_sequences[n_paths] if types_sequences[n_paths] == 'T2': self.T2_pp = 1 self.T2_pp_path = path_pp_sequences[0] if types_sequences[n_paths] == 'FLAIR': self.FLAIR_pp = 1 self.FLAIR_pp_path = path_pp_sequences[n_paths] if types_sequences[n_paths] == 'GADO': self.GADO_pp = 1 self.GADO_pp_path = path_pp_sequences[n_paths] if types_sequences[n_paths] == 'DP': self.DP_pp = 1 self.DP_pp_path = path_pp_sequences[n_paths] def add_tissue_segmentation(self, path_GM,path_WM,path_CSF): self.GM = 1 self.GM_path = path_GM self.WM = 1 self.WM_path = path_WM self.CSF = 1 self.CSF_path = path_CSF def add_lesion_mask(self,path_lesion_mask): self.brain_mask = 1 self.brain_mask = path_lesion_mask def return_sequences(self): sequences = [] if self.T1 == 1: sequences.append(self.T1_path) if self.T2 == 1: sequences.append(self.T2_path) if self.FLAIR == 1: sequences.append(self.FLAIR_path) if self.DP == 1: sequences.append(self.DP_path) if self.GADO == 1: sequences.append(self.GADO_path) return sequences def return_irs_sequences(self): sequences = [] if self.T1_irs == 1: sequences.append(self.T1_irs_path) if self.T2_irs == 1: sequences.append(self.T2_irs_path) if self.FLAIR_irs == 1: sequences.append(self.FLAIR_irs_path) if self.DP_irs == 1: sequences.append(self.DP_irs_path) if self.GADO_irs == 1: sequences.append(self.GADO_irs_path) return sequences def add_ext_csf_classifier(self,class_ext_csf_path): self.classifier_ext_csf = 1 self.classifier_ext_csf_path = class_ext_csf_path def add_ms_classifier(self, class_ms_path): self.classifier_ms = 1 self.classifier_ms_path = class_ms_path def create_subject(flags_sequences,path_sequences,subject_name,subject_path): subject = subject_class(subject_name, flags_sequences, path_sequences,subject_path) return subject def create_brain_mask(subject): if subject.T1_pp == 1: vol, header = load(subject.T1_pp_path) mask_brain = vol > 0 save(mask_brain, join(subject.intermediate_path, 'brain_mask.nii.gz'), header) else: c1, headerc1 = load(join(subject.intermediate_path,'c1T1.nii')) c2, headerc2 = load(join(subject.intermediate_path, 'c2T1.nii')) c3, headerc3 = load(join(subject.intermediate_path, 'c3T1.nii')) c4, headerc4 = load(join(subject.intermediate_path, 'c4T1.nii')) c5, headerc5 = load(join(subject.intermediate_path, 'c5T1.nii')) t1,t1_header = load(subject.T1_path) mask_brain = ((c1+c2+c3) > 0.95) * (c4 + c5 < 0.1 ) save(mask_brain, join(subject.intermediate_path,'brain_mask.nii.gz'), t1_header) subject.add_brain_mask(join(subject.intermediate_path, 'brain_mask.nii.gz')) return subject def retrain_intensity(image,seq_type): path = join(os.path.dirname(os.path.realpath(__file__)),'train_int') subdirectories = os.listdir(path) folders = [] for dir in subdirectories: if isdir(join(path, dir)): folders.append(dir) images=[] if seq_type == 1: seq = 'T1_preprocessed.nii.gz' if seq_type == 2: seq = 'T2_preprocessed.nii.gz' if seq_type == 3: seq = 'FLAIR_preprocessed.nii.gz' if seq_type == 4: seq = 'DP_preprocessed.nii.gz' if seq_type == 5: seq = 'GADO_preprocessed.nii.gz' for subject in folders: im, im_header = medpy.io.load(join(path, subject, seq)) mask, mask_header = medpy.io.load(join(path, subject, 'Mask_registered.nii.gz')) images.append(im[mask > 0]) images.append(image) irs = medpy.filter.IntensityRangeStandardization() trained_model, transformed_images = irs.train_transform(images) return transformed_images[15] def intensity_correction(subject): # if not exists(join(subject.dir, subject.irs_dir)): # makedirs(join(subject.dir, subject.irs_dir)) # if not exists(join(subject.dir, subject.irs_dir,subject.name)): # makedirs(join(subject.dir, subject.irs_dir,subject.name)) if subject.T1 == 1: with open(join(os.path.dirname(os.path.realpath(__file__)),'models/model_T1.pkl'), 'r') as f: irs = pickle.load(f) vol, header = load(subject.T1_pp_path) mask, mask_header = load(subject.brain_mask_path) spacing_indices = (1, 1, 1) vol_indices = indices(vol, spacing_indices, mask) try: intensities_corrected = irs.transform(vol[mask > 0]) except: intensities_corrected= retrain_intensity(vol[mask > 0], 1) vol_irs = np.zeros(vol.shape) for n_voxel in range(len(vol[mask > 0])): vol_irs[vol_indices[n_voxel][0], vol_indices[n_voxel][1], vol_indices[n_voxel][2]] = \ intensities_corrected[n_voxel] save(vol_irs, join(subject.intermediate_path, 'T1_corrected.nii.gz'), header) subject.T1_irs = 1 subject.T1_irs_path = join(subject.intermediate_path, 'T1_corrected.nii.gz') if subject.T2 == 1: with open(join(os.path.dirname(os.path.realpath(__file__)),'models/model_T2.pkl'), 'r') as f: irs = pickle.load(f) vol, header = load(subject.T2_pp_path) mask, mask_header = load(subject.brain_mask_path) spacing_indices = (1, 1, 1) vol_indices = indices(vol, spacing_indices, mask) try: intensities_corrected = irs.transform(vol[mask > 0]) except: intensities_corrected = retrain_intensity(vol[mask > 0], 2) vol_irs = np.zeros(vol.shape) for n_voxel in range(len(vol[mask > 0])): vol_irs[vol_indices[n_voxel][0], vol_indices[n_voxel][1], vol_indices[n_voxel][2]] = \ intensities_corrected[n_voxel] save(vol_irs, join(subject.intermediate_path, 'T2_corrected.nii.gz'), header) subject.T2_irs = 1 subject.T2_irs_path = join(subject.intermediate_path,'T2_corrected.nii.gz') if subject.FLAIR == 1: with open(join(os.path.dirname(os.path.realpath(__file__)),'models/model_FLAIR.pkl'), 'r') as f: irs = pickle.load(f) vol, header = load(subject.FLAIR_pp_path) mask, mask_header = load(subject.brain_mask_path) spacing_indices = (1, 1, 1) vol_indices = indices(vol, spacing_indices, mask) try: intensities_corrected = irs.transform(vol[mask > 0]) except: intensities_corrected = retrain_intensity(vol[mask > 0], 3) vol_irs = np.zeros(vol.shape) for n_voxel in range(len(vol[mask > 0])): vol_irs[vol_indices[n_voxel][0], vol_indices[n_voxel][1], vol_indices[n_voxel][2]] = \ intensities_corrected[n_voxel] save(vol_irs, join(subject.intermediate_path,'FLAIR_corrected.nii.gz'), header) subject.FLAIR_irs = 1 subject.FLAIR_irs_path = join(subject.intermediate_path, 'FLAIR_corrected.nii.gz') if subject.DP == 1: with open(join(os.path.dirname(os.path.realpath(__file__)),'models/model_DP.pkl'), 'r') as f: irs = pickle.load(f) vol, header = load(subject.DP_pp_path) mask, mask_header = load(subject.brain_mask_path) spacing_indices = (1, 1, 1) vol_indices = indices(vol, spacing_indices, mask) try: intensities_corrected = irs.transform(vol[mask > 0]) except: intensities_corrected = retrain_intensity(vol[mask > 0], 4) vol_irs = np.zeros(vol.shape) for n_voxel in range(len(vol[mask > 0])): vol_irs[vol_indices[n_voxel][0], vol_indices[n_voxel][1], vol_indices[n_voxel][2]] = \ intensities_corrected[n_voxel] save(vol_irs, join(subject.intermediate_path, 'DP_corrected.nii.gz'), header) subject.DP_irs = 1 subject.DP_irs_path = join(subject.intermediate_path, 'DP_corrected.nii.gz') if subject.GADO== 1: with open(join(os.path.dirname(os.path.realpath(__file__)),'models/model_GADO.pkl'), 'r') as f: irs = pickle.load(f) vol, header = load(subject.GADO_pp_path) mask, mask_header = load(subject.brain_mask_path) spacing_indices = (1, 1, 1) vol_indices = indices(vol, spacing_indices, mask) try: intensities_corrected = irs.transform(vol[mask > 0]) except: intensities_corrected = retrain_intensity(vol[mask > 0], 5) vol_irs = np.zeros(vol.shape) for n_voxel in range(len(vol[mask > 0])): vol_irs[vol_indices[n_voxel][0], vol_indices[n_voxel][1], vol_indices[n_voxel][2]] = \ intensities_corrected[n_voxel] save(vol_irs, join(subject.intermediate_path, 'GADO_corrected.nii.gz'), header) subject.GADO_irs = 1 subject.GADO_irs_path = join(subject.intermediate_path, 'GADO_corrected.nii.gz') return subject def gray_matter_threshold(flair,GM_mask): GM=medpy.features.intensities(flair,GM_mask) n, bins, patch = plt.hist(GM, bins=200, label="Flair WM",histtype='stepfilled') maximo = np.max(n) paso=bins[1]-bins[0] pico=bins[np.argmax(n)]+paso/2 test=n>(maximo/2) iter=0 modo=0 for j in test: if modo==0: if j == True: indice1=iter modo=1 else: if j==False: indice2=iter-1 break iter+=1 fwhm=(bins[indice2]-bins[indice1])/2 # plt.axvline(pico, color='r', linestyle='dashed', linewidth=2) # gamma_int=1 gamma_int =0.2 # plt.axvline(pico+gamma_int*fwhm, color='r', linestyle='dashed', linewidth=5,label = "Threshold") Tint=pico + gamma_int*fwhm return flair>Tint def kernel_subs_creator(tam,spacing): kernel_shape = np.asarray([(int(round(tam/spacing[0]))),(int(round(tam/spacing[1]))),(int(round(tam/spacing[2])))]) for shape_kernel in range(len(kernel_shape)): if kernel_shape[shape_kernel] % 2 ==0: kernel_shape[shape_kernel] +=1 kernel = np.ones(kernel_shape.tolist())*-1/((kernel_shape[0] * kernel_shape[1] *kernel_shape[2]) -1) kernel_center = [ math.floor(elem/2.0) for elem in kernel.shape ] kernel[int(kernel_center[0]),int(kernel_center[1]),int(kernel_center[2])] = 1 return kernel def subsampling(path,sampling): random_data=utils.shuffle(np.load(path,'r')) subset=random_data[1:int(sampling*random_data.shape[0])][:].copy() return subset def create_features_csfext(subject,flag): print "------------Creating csf ext features-----------------" mask, mask_header = load(subject.brain_mask_path) pv1, pv1_header = load(subject.GM_path) pv2, pv2_header = load(subject.WM_path) pv0, pv0_header = load(subject.CSF_path) flair, fl_header = load(subject.FLAIR_irs_path) if flag == 0: mask_class, mask_class_header = load(subject.gt_extcsf_path) mask_class = ((pv0 > pv1) * (pv0 > pv2) * mask_class == 0) data_name = 'vent' if flag == 1: mask_class,mask_class_header = load(subject.gt_extcsf_path) data_name = 'csf_ext' if flag == 2: mask_class = ((pv0 > pv1) * (pv0 > pv2)) data_name = 'csf' if flag > 3: 'error invalid flag' return -1 mask_voxels = mask * mask_class iter = 0 for vol_path in subject.return_irs_sequences(): print 'Generating csf features ---< ' + ' ' + vol_path image_data, image_header = load(vol_path) spacing = medpy.io.header.get_pixel_spacing(image_header) intensities = medpy.features.intensity.intensities(image_data, mask_voxels) gaussian1 = medpy.features.intensity.local_mean_gauss(image_data, 3, spacing, mask_voxels) gaussian2 = medpy.features.intensity.local_mean_gauss(image_data, 5, spacing, mask_voxels) gaussian3 = medpy.features.intensity.local_mean_gauss(image_data, 7, spacing, mask_voxels) kernel1 = kernel_subs_creator(3, spacing) subs1 = medpy.features.intensity.intensities(ndimage.filters.convolve(image_data, kernel1), mask_voxels) kernel2 = kernel_subs_creator(5, spacing) subs2 = medpy.features.intensity.intensities(ndimage.filters.convolve(image_data, kernel2), mask_voxels) kernel3 = kernel_subs_creator(7, spacing) subs3 = medpy.features.intensity.intensities(ndimage.filters.convolve(image_data, kernel3), mask_voxels) if iter == 0: joined = medpy.features.utilities.join(intensities, gaussian1, gaussian2, gaussian3, subs1, subs2, subs3) else: joined = medpy.features.utilities.join(joined, intensities, gaussian1, gaussian2, gaussian3, subs1, subs2, subs3) iter += 1 print 'Generating tissue and distance features' spacing_indices = (1, 1, 1) spacing = medpy.io.header.get_pixel_spacing(fl_header) indices = medpy.features.indices(flair, spacing_indices, mask_voxels) distances_0 = medpy.features.intensity.centerdistance_xdminus1(flair, 0, spacing, mask_voxels) distances_1 = medpy.features.intensity.centerdistance_xdminus1(flair, 1, spacing, mask_voxels) distances_2 = medpy.features.intensity.centerdistance_xdminus1(flair, 2, spacing, mask_voxels) flair_unpp, fl_unpp_header = load(subject.FLAIR_path) skull = (flair_unpp * (mask==0))>10 spacing = medpy.io.header.get_pixel_spacing(fl_header) dist_transform_vol = ndimage.distance_transform_edt(skull == 0, sampling=spacing) dist_transform_feature = medpy.features.intensity.intensities(dist_transform_vol, mask_voxels) intensities_pv0 = medpy.features.intensity.intensities(pv0, mask_voxels) intensities_pv1 = medpy.features.intensity.intensities(pv1, mask_voxels) intensities_pv2 = medpy.features.intensity.intensities(pv2, mask_voxels) gaussian1_pv0 = medpy.features.intensity.local_mean_gauss(pv0, 3, spacing, mask_voxels) gaussian2_pv0 = medpy.features.intensity.local_mean_gauss(pv0, 7, spacing, mask_voxels) gaussian3_pv0 = medpy.features.intensity.local_mean_gauss(pv0, 15, spacing, mask_voxels) gaussian1_pv1 = medpy.features.intensity.local_mean_gauss(pv1, 3, spacing, mask_voxels) gaussian2_pv1 = medpy.features.intensity.local_mean_gauss(pv1, 7, spacing, mask_voxels)
('credit', False, Credit), ('credit-words', True, CreditWords), ('encoding', False, Encoding), ('software', True, Software), ('supports', False, Supports), ('encoding-date', True), ('part-list', False, PartList), ('part-group', False, PartGroup), ('group-name', True), ('group-symbol', True), ('group-barline', True), ('group-name-display', False), ('group-abbreviation', False), ('group-abbreviation-display', False), ('group-time', False), ('solo', False), ('ensemble', False), ('score-part', False, ScorePart), ('score-instrument', False, ScoreInstrument), ('instrument-name', True), ('instrument-abbreviation', True), ('part-name', True), ('harmony', False, Harmony), ('inversion', True), ('function', True), ('root', False, Root), ('root-step', True), ('root-alter', True), ('kind', True, Kind), ('bass', False, Bass), ('bass-step', True), ('bass-alter', True), ('degree', False, Degree), ('degree-value', True, DegreeValue), ('degree-alter', True, DegreeAlter), ('degree-type', True, DegreeType), ('midi-instrument', False, MIDIInstrument), ('midi-channel', True), ('midi-program', True), ('volume', False), ('pan', False), ('elevation', False), ('midi-name', False), ('midi-bank', False), ('midi-unpitched', False), ('double', False), ] # order matters: keep order here self.tagsCharData = [] # note: this may no longer be needed self.tagsAll = [] for data in _tags: # some cases have a string w/o a class definition if isinstance(data, str): # if common.isStr(data): if data in DYNAMIC_MARKS: data = [data, False, DynamicMark] elif data in ARTICULATION_MARKS: data = [data, False, ArticulationMark] elif data in TECHNICAL_MARKS: data = [data, False, TechnicalMark] else: raise MusicXMLException('got tag without any information on it: %s' % data) tagName = data[0] charDataBool = data[1] if len(data) > 2: className = data[2] else: # not all tags define a class name className = None # store tag names in order self.tagsAll.append(tagName) if charDataBool: self.tagsCharData.append(tagName) self._t[tagName] = Tag(tagName, charDataBool, className) # utility self._stat = None self._statMapWidth = 80 def __getitem__(self, key): return self._t[key] def getClassName(self, key): ''' Get the class or name, or None if none defined. >>> tl = musicxml.mxObjects.TagLib() >>> tl.getClassName('voice') ''' return self._t[key].className # may be None def keys(self): return self._t.keys() #--------------------------------------------------------------------------- # utilities for error checking and debugging def _statTabulate(self): self._stat = {} tags = list(self._t.keys()) tags.sort() maxCount = 0 maxTag = 0 for tag in tags: if self._t[tag].count > maxCount: maxCount = self._t[tag].count if len(tag) > maxTag: maxTag = len(tag) for tag in tags: # get magnitude string if maxCount > 0: if maxCount > self._statMapWidth: scalar = self._statMapWidth * (self._t[tag].count / float(maxCount)) scalar = int(round(scalar)) else: scalar = self._t[tag].count magStr = scalar * '.' else: magStr = '' # get formatted tag str tagStr = tag.ljust(maxTag+1) # store count, tag string, magnitude string self._stat[tag] = [self._t[tag].count, tagStr, magStr] def statClear(self): tags = self._t.keys() for tag in tags: self._t[tag].count = 0 def _statMapActive(self): '''Display method for tag audit checks ''' tags = list(self._t.keys()) tags.sort() sortOrder = [] for tag in tags: if self._stat[tag][0] > 0: # count, tagStr, magStr sortOrder.append(self._stat[tag]) sortOrder.sort() msg = [] for count, tagStr, magStr in sortOrder: msg.append(tagStr + str(count).ljust(4) + magStr) print('\n'.join(msg)) def statRun(self): self._statTabulate() self._statMapActive() def audit(self): ''' A way to check for errors in SAX parsing. Assumes that all start() calls have been paired with an end() call, and that all element data has been cleared. ''' errors = [] header = 'TagLib audit: ' for key in self._t: if self._t[key].status: # if true errors.append('tag <%s> left open' % key) if self._t[key].cdFlag: sample = self._t[key].charData if sample != '': errors.append('tag <%s> left element data: %s' % (key, sample)) if len(errors) != 0: ok = False return ok, header + ('%s errors found:\n' % len(errors)) + '\n'.join(errors) else: ok = True return ok, header + 'no errors found.' #------------------------------------------------------------------------------- class MusicXMLElement(xmlnode.XMLNode): '''MusicXML elements are an abstraction of MusicXML into an object oriented framework. Some, not all, of MusicXML elements are represented as objects. Some sub-elements are much more simply placed as attributes of parent objects. These simple elements have only a tag and character data. Elements that have attributes and/or sub-elements, however, must be represented as objects. ''' def __init__(self): ''' These tests are module specific and should be loaded as unittests, below >>> a = musicxml.mxObjects.MusicXMLElement() >>> a._convertNameToXml('groupAbbreviation') 'group-abbreviation' >>> a._convertNameToXml('midiUnpitched') 'midi-unpitched' >>> a._convertNameToXml('groupNameDisplay') 'group-name-display' >>> a._convertNameToXml('group-name-display') 'group-name-display' >>> a = musicxml.mxObjects.MusicXMLElement() >>> a._convertNameFromXml('group-abbreviation') 'groupAbbreviation' >>> a._convertNameFromXml('midi-unpitched') 'midiUnpitched' >>> a._convertNameFromXml('midiUnpitched') 'midiUnpitched' >>> a._convertNameFromXml('opus') 'opus' >>> a._convertNameFromXml('group-name-display') 'groupNameDisplay' >>> a = musicxml.mxObjects.MusicXMLElement() >>> len(a._publicAttributes()) 3 >>> print(a._publicAttributes()) ['charData', 'external', 'tag'] ''' xmlnode.XMLNode.__init__(self) self.external = {} # references to external objects self._attr = {} # store attributes in dictionary self._tag = None # name of tag self.charData = None # obtained by assignment from a Tag self._doctypeName = 'score-partwise' self._doctypePublic = '-//Recordare//DTD MusicXML 2.0 Partwise//EN' self._doctypeSystem = 'http://www.musicxml.org/dtds/partwise.dtd' # dictionary of local Python name and possible names assumed # from music xml. used in get and set methods # specialize in subclassess self._crossReference = {'charData': ['characterData', 'content']} class MusicXMLElementList(MusicXMLElement): '''MusicXML that is designed to function as a list. In general, this is an element this only used to contain other Elements. List operations permit easy access and manipuation. Note that design here mirrors that of node.py NodeList, but this needs to be a subclass of of MusicXMLElement ''' def __init__(self): MusicXMLElement.__init__(self) # basic storage location self.componentList = [] # additional attributes and elements will be defined in subclass def _getComponents(self): return self.componentList def append(self, item): self.componentList.append(item) def insert(self, position, item): self.componentList.insert(position, item) def __len__(self): return len(self.componentList) def __iter__(self): return common.Iterator(self.componentList) def __getitem__(self, key): '''Get item via index value ''' return self.componentList[key] def __add__(self, other): '''Used to combine component lists of objects. There may be other object attributes not on component list that are not 'added' with this method. >>> a = musicxml.mxObjects.MusicXMLElementList() >>> a.componentList.append(1) >>> b = musicxml.mxObjects.MusicXMLElementList() >>> b.componentList.append(2) >>> c = a + b >>> c.componentList [1, 2] >>> a.componentList # original is not changed [1] ''' new = copy.deepcopy(self) new.componentList += other.componentList return new #------------------------------------------------------------------------------- class Score(MusicXMLElementList): '''Score is used to collect score header elements and, if available, all other MusicXML data. Score can be used for partwise or timewise scores. This object includes all MusicXML score information. ''' def __init__(self, m21Version=None): ''' >>> a = musicxml.mxObjects.Score() >>> a.tag 'score-partwise' >>> a.setDefaults() >>> b = musicxml.mxObjects.Identification() >>> b.setDefaults() >>> a.set('identification', b) >>> c = musicxml.mxObjects.Score() >>> d = c.merge(a) ''' MusicXMLElementList.__init__(self) self._tag = 'score-partwise' # assumed for now # attributes self._attr['version'] = None # elements self.movementTitle = None self.movementNumber = None # component objects self.workObj = None self.identificationObj = None self.defaultsObj = None self.encodingObj = None self.partListObj = None self.creditList = [] # store a list of credit objects self.componentList = [] # list of Part objects self._crossReference['partListObj'] = ['partlist', 'part-list'] self._crossReference['identificationObj'] = ['identification'] # the score, as the outermost container, stores the m21 version # number that it was made with when written to disc # this value is only relevant in comparing pickled files self.m21Version = m21Version def _getComponents(self): c = [] c.append(self.workObj) c.append(('movement-number', self.movementNumber)) c.append(('movement-title', self.movementTitle)) c.append(self.identificationObj) c.append(self.defaultsObj) c = c + self.creditList c.append(self.partListObj) c = c + self.componentList return c def setDefaults(self): self.set('movementTitle', defaults.title) #--------------------------------------------------------------------------- # utility methods unique to the score def getPartIds(self): ''' A quick way to get all valid part ids in the componentList ''' post = [] for part in self.componentList: post.append(part.get('id')) return post def getPartIdsFromPartListObj(self): ''' A quick way to get all valid part ids in the partListObj for each one that is a ScorePart ''' post = [] for part in self.partListObj: if isinstance(part, ScorePart): post.append(part.get('id')) return post def partIdToNameDict(self): ''' A quick way to get a mapping of valid part ids to the part names from a :class:`~music21.musicxml.Score` (musicxml.Score) object in the `.partListObj` property. Returns a dictionary mapping part id to part-name for each :class:`~music21.musicxml.ScorePart` in `.partListObj`.
'\U0001d54a', 'sopf;': '\U0001d564', 'spades;': '\u2660', 'spadesuit;': '\u2660', 'spar;': '\u2225', 'sqcap;': '\u2293', 'sqcaps;': '\u2293\ufe00', 'sqcup;': '\u2294', 'sqcups;': '\u2294\ufe00', 'Sqrt;': '\u221a', 'sqsub;': '\u228f', 'sqsube;': '\u2291', 'sqsubset;': '\u228f', 'sqsubseteq;': '\u2291', 'sqsup;': '\u2290', 'sqsupe;': '\u2292', 'sqsupset;': '\u2290', 'sqsupseteq;': '\u2292', 'squ;': '\u25a1', 'Square;': '\u25a1', 'square;': '\u25a1', 'SquareIntersection;': '\u2293', 'SquareSubset;': '\u228f', 'SquareSubsetEqual;': '\u2291', 'SquareSuperset;': '\u2290', 'SquareSupersetEqual;': '\u2292', 'SquareUnion;': '\u2294', 'squarf;': '\u25aa', 'squf;': '\u25aa', 'srarr;': '\u2192', 'Sscr;': '\U0001d4ae', 'sscr;': '\U0001d4c8', 'ssetmn;': '\u2216', 'ssmile;': '\u2323', 'sstarf;': '\u22c6', 'Star;': '\u22c6', 'star;': '\u2606', 'starf;': '\u2605', 'straightepsilon;': '\u03f5', 'straightphi;': '\u03d5', 'strns;': '\xaf', 'Sub;': '\u22d0', 'sub;': '\u2282', 'subdot;': '\u2abd', 'subE;': '\u2ac5', 'sube;': '\u2286', 'subedot;': '\u2ac3', 'submult;': '\u2ac1', 'subnE;': '\u2acb', 'subne;': '\u228a', 'subplus;': '\u2abf', 'subrarr;': '\u2979', 'Subset;': '\u22d0', 'subset;': '\u2282', 'subseteq;': '\u2286', 'subseteqq;': '\u2ac5', 'SubsetEqual;': '\u2286', 'subsetneq;': '\u228a', 'subsetneqq;': '\u2acb', 'subsim;': '\u2ac7', 'subsub;': '\u2ad5', 'subsup;': '\u2ad3', 'succ;': '\u227b', 'succapprox;': '\u2ab8', 'succcurlyeq;': '\u227d', 'Succeeds;': '\u227b', 'SucceedsEqual;': '\u2ab0', 'SucceedsSlantEqual;': '\u227d', 'SucceedsTilde;': '\u227f', 'succeq;': '\u2ab0', 'succnapprox;': '\u2aba', 'succneqq;': '\u2ab6', 'succnsim;': '\u22e9', 'succsim;': '\u227f', 'SuchThat;': '\u220b', 'Sum;': '\u2211', 'sum;': '\u2211', 'sung;': '\u266a', 'sup1': '\xb9', 'sup1;': '\xb9', 'sup2': '\xb2', 'sup2;': '\xb2', 'sup3': '\xb3', 'sup3;': '\xb3', 'Sup;': '\u22d1', 'sup;': '\u2283', 'supdot;': '\u2abe', 'supdsub;': '\u2ad8', 'supE;': '\u2ac6', 'supe;': '\u2287', 'supedot;': '\u2ac4', 'Superset;': '\u2283', 'SupersetEqual;': '\u2287', 'suphsol;': '\u27c9', 'suphsub;': '\u2ad7', 'suplarr;': '\u297b', 'supmult;': '\u2ac2', 'supnE;': '\u2acc', 'supne;': '\u228b', 'supplus;': '\u2ac0', 'Supset;': '\u22d1', 'supset;': '\u2283', 'supseteq;': '\u2287', 'supseteqq;': '\u2ac6', 'supsetneq;': '\u228b', 'supsetneqq;': '\u2acc', 'supsim;': '\u2ac8', 'supsub;': '\u2ad4', 'supsup;': '\u2ad6', 'swarhk;': '\u2926', 'swArr;': '\u21d9', 'swarr;': '\u2199', 'swarrow;': '\u2199', 'swnwar;': '\u292a', 'szlig': '\xdf', 'szlig;': '\xdf', 'Tab;': '\t', 'target;': '\u2316', 'Tau;': '\u03a4', 'tau;': '\u03c4', 'tbrk;': '\u23b4', 'Tcaron;': '\u0164', 'tcaron;': '\u0165', 'Tcedil;': '\u0162', 'tcedil;': '\u0163', 'Tcy;': '\u0422', 'tcy;': '\u0442', 'tdot;': '\u20db', 'telrec;': '\u2315', 'Tfr;': '\U0001d517', 'tfr;': '\U0001d531', 'there4;': '\u2234', 'Therefore;': '\u2234', 'therefore;': '\u2234', 'Theta;': '\u0398', 'theta;': '\u03b8', 'thetasym;': '\u03d1', 'thetav;': '\u03d1', 'thickapprox;': '\u2248', 'thicksim;': '\u223c', 'ThickSpace;': '\u205f\u200a', 'thinsp;': '\u2009', 'ThinSpace;': '\u2009', 'thkap;': '\u2248', 'thksim;': '\u223c', 'THORN': '\xde', 'thorn': '\xfe', 'THORN;': '\xde', 'thorn;': '\xfe', 'Tilde;': '\u223c', 'tilde;': '\u02dc', 'TildeEqual;': '\u2243', 'TildeFullEqual;': '\u2245', 'TildeTilde;': '\u2248', 'times': '\xd7', 'times;': '\xd7', 'timesb;': '\u22a0', 'timesbar;': '\u2a31', 'timesd;': '\u2a30', 'tint;': '\u222d', 'toea;': '\u2928', 'top;': '\u22a4', 'topbot;': '\u2336', 'topcir;': '\u2af1', 'Topf;': '\U0001d54b', 'topf;': '\U0001d565', 'topfork;': '\u2ada', 'tosa;': '\u2929', 'tprime;': '\u2034', 'TRADE;': '\u2122', 'trade;': '\u2122', 'triangle;': '\u25b5', 'triangledown;': '\u25bf', 'triangleleft;': '\u25c3', 'trianglelefteq;': '\u22b4', 'triangleq;': '\u225c', 'triangleright;': '\u25b9', 'trianglerighteq;': '\u22b5', 'tridot;': '\u25ec', 'trie;': '\u225c', 'triminus;': '\u2a3a', 'TripleDot;': '\u20db', 'triplus;': '\u2a39', 'trisb;': '\u29cd', 'tritime;': '\u2a3b', 'trpezium;': '\u23e2', 'Tscr;': '\U0001d4af', 'tscr;': '\U0001d4c9', 'TScy;': '\u0426', 'tscy;': '\u0446', 'TSHcy;': '\u040b', 'tshcy;': '\u045b', 'Tstrok;': '\u0166', 'tstrok;': '\u0167', 'twixt;': '\u226c', 'twoheadleftarrow;': '\u219e', 'twoheadrightarrow;': '\u21a0', 'Uacute': '\xda', 'uacute': '\xfa', 'Uacute;': '\xda', 'uacute;': '\xfa', 'Uarr;': '\u219f', 'uArr;': '\u21d1', 'uarr;': '\u2191', 'Uarrocir;': '\u2949', 'Ubrcy;': '\u040e', 'ubrcy;': '\u045e', 'Ubreve;': '\u016c', 'ubreve;': '\u016d', 'Ucirc': '\xdb', 'ucirc': '\xfb', 'Ucirc;': '\xdb', 'ucirc;': '\xfb', 'Ucy;': '\u0423', 'ucy;': '\u0443', 'udarr;': '\u21c5', 'Udblac;': '\u0170', 'udblac;': '\u0171', 'udhar;': '\u296e', 'ufisht;': '\u297e', 'Ufr;': '\U0001d518', 'ufr;': '\U0001d532', 'Ugrave': '\xd9', 'ugrave': '\xf9', 'Ugrave;': '\xd9', 'ugrave;': '\xf9', 'uHar;': '\u2963', 'uharl;': '\u21bf', 'uharr;': '\u21be', 'uhblk;': '\u2580', 'ulcorn;': '\u231c', 'ulcorner;': '\u231c', 'ulcrop;': '\u230f', 'ultri;': '\u25f8', 'Umacr;': '\u016a', 'umacr;': '\u016b', 'uml': '\xa8', 'uml;': '\xa8', 'UnderBar;': '_', 'UnderBrace;': '\u23df', 'UnderBracket;': '\u23b5', 'UnderParenthesis;': '\u23dd', 'Union;': '\u22c3', 'UnionPlus;': '\u228e', 'Uogon;': '\u0172', 'uogon;': '\u0173', 'Uopf;': '\U0001d54c', 'uopf;': '\U0001d566', 'UpArrow;': '\u2191', 'Uparrow;': '\u21d1', 'uparrow;': '\u2191', 'UpArrowBar;': '\u2912', 'UpArrowDownArrow;': '\u21c5', 'UpDownArrow;': '\u2195', 'Updownarrow;': '\u21d5', 'updownarrow;': '\u2195', 'UpEquilibrium;': '\u296e', 'upharpoonleft;': '\u21bf', 'upharpoonright;': '\u21be', 'uplus;': '\u228e', 'UpperLeftArrow;': '\u2196', 'UpperRightArrow;': '\u2197', 'Upsi;': '\u03d2', 'upsi;': '\u03c5', 'upsih;': '\u03d2', 'Upsilon;': '\u03a5', 'upsilon;': '\u03c5', 'UpTee;': '\u22a5', 'UpTeeArrow;': '\u21a5', 'upuparrows;': '\u21c8', 'urcorn;': '\u231d', 'urcorner;': '\u231d', 'urcrop;': '\u230e', 'Uring;': '\u016e', 'uring;': '\u016f', 'urtri;': '\u25f9', 'Uscr;': '\U0001d4b0', 'uscr;': '\U0001d4ca', 'utdot;': '\u22f0', 'Utilde;': '\u0168', 'utilde;': '\u0169', 'utri;': '\u25b5', 'utrif;': '\u25b4', 'uuarr;': '\u21c8', 'Uuml': '\xdc', 'uuml': '\xfc', 'Uuml;': '\xdc', 'uuml;': '\xfc', 'uwangle;': '\u29a7', 'vangrt;': '\u299c', 'varepsilon;': '\u03f5', 'varkappa;': '\u03f0', 'varnothing;': '\u2205', 'varphi;': '\u03d5', 'varpi;': '\u03d6', 'varpropto;': '\u221d', 'vArr;': '\u21d5', 'varr;': '\u2195', 'varrho;': '\u03f1', 'varsigma;': '\u03c2', 'varsubsetneq;': '\u228a\ufe00', 'varsubsetneqq;': '\u2acb\ufe00', 'varsupsetneq;': '\u228b\ufe00', 'varsupsetneqq;': '\u2acc\ufe00', 'vartheta;': '\u03d1', 'vartriangleleft;': '\u22b2', 'vartriangleright;': '\u22b3', 'Vbar;': '\u2aeb', 'vBar;': '\u2ae8', 'vBarv;': '\u2ae9', 'Vcy;': '\u0412', 'vcy;': '\u0432', 'VDash;': '\u22ab', 'Vdash;': '\u22a9', 'vDash;': '\u22a8', 'vdash;': '\u22a2', 'Vdashl;': '\u2ae6', 'Vee;': '\u22c1', 'vee;': '\u2228', 'veebar;': '\u22bb', 'veeeq;': '\u225a', 'vellip;': '\u22ee', 'Verbar;': '\u2016', 'verbar;': '|', 'Vert;': '\u2016', 'vert;': '|', 'VerticalBar;': '\u2223', 'VerticalLine;': '|', 'VerticalSeparator;': '\u2758', 'VerticalTilde;': '\u2240', 'VeryThinSpace;': '\u200a', 'Vfr;': '\U0001d519', 'vfr;': '\U0001d533', 'vltri;': '\u22b2', 'vnsub;': '\u2282\u20d2', 'vnsup;': '\u2283\u20d2', 'Vopf;': '\U0001d54d', 'vopf;': '\U0001d567', 'vprop;': '\u221d', 'vrtri;': '\u22b3', 'Vscr;': '\U0001d4b1', 'vscr;': '\U0001d4cb', 'vsubnE;': '\u2acb\ufe00', 'vsubne;': '\u228a\ufe00', 'vsupnE;': '\u2acc\ufe00', 'vsupne;': '\u228b\ufe00', 'Vvdash;': '\u22aa', 'vzigzag;': '\u299a', 'Wcirc;': '\u0174', 'wcirc;': '\u0175', 'wedbar;': '\u2a5f', 'Wedge;': '\u22c0', 'wedge;': '\u2227', 'wedgeq;': '\u2259', 'weierp;': '\u2118', 'Wfr;': '\U0001d51a', 'wfr;': '\U0001d534', 'Wopf;': '\U0001d54e', 'wopf;': '\U0001d568', 'wp;': '\u2118', 'wr;': '\u2240', 'wreath;': '\u2240', 'Wscr;': '\U0001d4b2', 'wscr;': '\U0001d4cc', 'xcap;': '\u22c2', 'xcirc;': '\u25ef', 'xcup;': '\u22c3', 'xdtri;': '\u25bd', 'Xfr;': '\U0001d51b', 'xfr;': '\U0001d535', 'xhArr;': '\u27fa', 'xharr;': '\u27f7', 'Xi;': '\u039e', 'xi;': '\u03be', 'xlArr;': '\u27f8', 'xlarr;': '\u27f5', 'xmap;': '\u27fc', 'xnis;': '\u22fb', 'xodot;': '\u2a00', 'Xopf;': '\U0001d54f', 'xopf;': '\U0001d569', 'xoplus;': '\u2a01', 'xotime;': '\u2a02', 'xrArr;': '\u27f9', 'xrarr;': '\u27f6', 'Xscr;': '\U0001d4b3', 'xscr;': '\U0001d4cd', 'xsqcup;': '\u2a06', 'xuplus;': '\u2a04', 'xutri;': '\u25b3', 'xvee;': '\u22c1', 'xwedge;': '\u22c0', 'Yacute': '\xdd', 'yacute': '\xfd', 'Yacute;': '\xdd', 'yacute;': '\xfd', 'YAcy;': '\u042f', 'yacy;': '\u044f', 'Ycirc;': '\u0176', 'ycirc;': '\u0177', 'Ycy;': '\u042b', 'ycy;': '\u044b', 'yen': '\xa5', 'yen;': '\xa5', 'Yfr;': '\U0001d51c', 'yfr;': '\U0001d536', 'YIcy;': '\u0407', 'yicy;': '\u0457', 'Yopf;': '\U0001d550', 'yopf;': '\U0001d56a', 'Yscr;': '\U0001d4b4', 'yscr;': '\U0001d4ce', 'YUcy;': '\u042e', 'yucy;': '\u044e', 'yuml': '\xff', 'Yuml;': '\u0178', 'yuml;': '\xff', 'Zacute;': '\u0179', 'zacute;': '\u017a', 'Zcaron;': '\u017d', 'zcaron;': '\u017e', 'Zcy;': '\u0417', 'zcy;': '\u0437', 'Zdot;': '\u017b', 'zdot;': '\u017c', 'zeetrf;': '\u2128', 'ZeroWidthSpace;': '\u200b', 'Zeta;': '\u0396', 'zeta;': '\u03b6', 'Zfr;': '\u2128', 'zfr;': '\U0001d537', 'ZHcy;': '\u0416', 'zhcy;': '\u0436', 'zigrarr;': '\u21dd', 'Zopf;': '\u2124', 'zopf;': '\U0001d56b', 'Zscr;': '\U0001d4b5', 'zscr;': '\U0001d4cf', 'zwj;': '\u200d', 'zwnj;': '\u200c', } class EntitySubstitution(object): """The ability to substitute XML or HTML entities for certain characters.""" def _populate_class_variables(): """Initialize variables used by this class to manage the plethora of HTML5 named entities. This function returns a 3-tuple containing two dictionaries and a regular expression: unicode_to_name - A mapping of Unicode strings like "⦨" to entity names like "angmsdaa". When a single Unicode string has multiple entity names, we try to choose the most commonly-used name. name_to_unicode: A mapping of entity names like "angmsdaa" to Unicode strings like "⦨". named_entity_re: A regular expression matching (almost) any Unicode string that corresponds to an HTML5 named entity. """ unicode_to_name = {} name_to_unicode = {} short_entities = set() long_entities_by_first_character = defaultdict(set) for name_with_semicolon, character in sorted(html5.items()): # "It is intentional, for legacy compatibility, that many # code points have multiple character reference names. For # example, some appear both with and without the trailing # semicolon, or with different capitalizations." # - https://html.spec.whatwg.org/multipage/named-characters.html#named-character-references # # The parsers are in charge of handling (or not) character # references with no trailing semicolon, so we remove the # semicolon whenever it appears. if name_with_semicolon.endswith(';'): name = name_with_semicolon[:-1] else: name = name_with_semicolon # When parsing HTML, we want to recognize any known named # entity and convert it to a sequence of Unicode # characters. if name not in name_to_unicode: name_to_unicode[name] = character # When _generating_ HTML, we want to recognize special # character sequences that _could_ be converted to named # entities. unicode_to_name[character] = name # We also need to build a regular expression that lets us # _find_ those characters in output strings so we can # replace them. # # This is tricky, for two reasons. if (len(character) == 1 and ord(character) < 128 and character not in '<>&'): # First, it would be annoying to turn single ASCII # characters like | into named entities like # &verbar;. The exceptions are <>&, which we _must_ # turn into named entities to produce valid HTML. continue if len(character) > 1 and all(ord(x) < 128 for x in character): # We also do not want to turn _combinations_ of ASCII # characters like 'fj' into named entities like '&fjlig;', # though that's more debateable. continue # Second, some named entities have a Unicode value that's # a subset of the Unicode value for some _other_ named # entity. As an example, \u2267' is &GreaterFullEqual;, # but '\u2267\u0338' is
None: if "buffer" not in args: args = {"buffer":""} return args args["buffer"]+=data for iteration in range(args["buffer"].count("|")): # Isolate a particular command length = args["buffer"].index("|") if length==0: args["buffer"] = args["buffer"][1:] continue data = args["buffer"][0:length] args["buffer"] = args["buffer"][length+1:] if data[0]=="<" and self._mainchat: self._mainchat(data+"\n") elif data[0]=="$": x = data.split() if x[0]=="$Lock": self._socket.send("$Supports UserCommand UserIP2 TTHSearch GetZBlock |$Key "+self.lock2key(x[1])+"|$ValidateNick "+self._config["nick"]+"|") elif x[0]=="$Supports": self._config["hub_supports"] = x[1:] elif x[0]=="$HubName": self._config["hubname"] = x[-1] self._mainchat("Hub Name : "+self._config["hubname"]+"\n") elif x[0]=="$GetPass": self._socket.send("$MyPass "+self._config["pass"]+"|") elif x[0]=="$BadPass": self.disconnect() elif x[0]=="$Hello": if x[1]==self._config["nick"]: self._socket.send("$Version "+self._config["version"]+"|$MyINFO $ALL "+self._config["nick"]+" "+self._config["desc"]+" <"+self._config["client"]+" V:"+str(self._config["version"])+",M:"+("A" if self._config["mode"] else "P")+",H:"+self._config["hubcount"]+",S:"+str(self._download["maxupslots"])+">$ $"+self._config["connection"]+chr(self._config["status"])+"$"+self._config["email"]+"$"+str(self._config["sharesize"])+"$|$GetNickList|") else: try: self._nicklist[x[1]] except: self._nicklist[x[1]] = {"operator":False,"bot":False} # $OpList and $BotList commands will soon follow (if required), so we can make this assumption here. elif x[0]=="$LogedIn": self._config["operator"] = True elif x[0]=="$HubTopic": self._config["topic"] = data[10:] self._mainchat("Hub Topic : "+self._config["topic"]+"\n") elif x[0]=="$NickList": self._nicklock.acquire() for nick in data[10:].split("$$"): if nick=="": continue try: self._nicklist[nick] except KeyError: self._nicklist[nick] = {"operator":False,"bot":False} try: self._nicklist[nick]["ip"] = self._userips[nick] except KeyError: pass self._socket.send("$UserIP "+data[9:]+"|") self._nicklock.release() elif x[0]=="$UserIP": for item in data[8:].split("$$"): if item=="": continue nick,ip = item.split() self._userips[nick] = ip elif x[0]=="$OpList": ops = data[8:].split("$$") for nick in self._nicklist: if nick=="": continue self._nicklist[nick]["operator"] = (True if nick in ops else False) elif x[0]=="$BotList": bots = data[9:].split("$$") for nick in self._nicklist: if nick=="": continue self._nicklist[nick]["bot"] = (True if nick in bots else False) elif x[0]=="$MyINFO": nick,desc,conn,flag,email,share = re.findall("^\$MyINFO \$ALL ([^ ]*) ([^\$]*)\$.\$([^\$]*)([^\$])\$([^\$]*)\$([^\$]*)\$",data)[0] try: self._config["nicklist"][nick] except KeyError: self._nicklist[nick] = {"operator":False,"bot":False} self._nicklist[nick]["desc"] = desc self._nicklist[nick]["conn"] = conn self._nicklist[nick]["flag"] = flag self._nicklist[nick]["email"] = email self._nicklist[nick]["share"] = share elif x[0]=="$To:": info2 = re.findall("^\$To\: ([^ ]*) From: ([^ ]*) \$(.*)$",data) if len(info2)==0: continue else: info2 = info2[0] if self._config["nick"]!=info2[0]: continue try: self._pm( info2[1] , time.strftime("%d-%b-%Y %H:%S",time.localtime())+" "+info2[2] ) except TypeError: pass elif x[0]=="$Quit": try: del self._nicklist[x[1]] except KeyError: pass elif x[0]=="$ForceMove": if x[1].count(":")==0: addr = (x[1],411) elif x[1].count(":")==1: addr = tuple(x.split(":")) else: self.debug("Invalid Redirection Address") continue if self._config["host"]==addr[0] and self._config["port"]==addr[1]: self.debug("Redirected to the same hub : "+x[1]) continue self._config["host"],self._config["port"] = addr self.reconnect() elif x[0]=="$Search": self.search_result_generate(data) elif x[0]=="$SR": self.search_result_process(data) elif x[0]=="$ConnectToMe": continue # SHERIFFBOT remote = x[2] # This client's mode does not matter here d = {"host":remote.split(":")[0], "port":remote.split(":")[1] } d["socket"] = Connection({ "name":remote,"host":remote.split(":")[0],"port":remote.split(":")[1],"role":"client","type":"tcp","handler":self.transfer_handler,"args":{"role":"client","transfer":d},"debug":self._debug }) self._transfer.append(d) elif x[0]=="$RevConnectToMe": continue # SHERIFFBOT self.connect_remote(x[1],False) else: self.debug("Unrecognized Command : "+data) # end of iteration return args ################################################## Interaction Functions ################################################## def mc_send(self,data): # Write to the mainchat for all users to see self._socket.send("<"+self._config["nick"]+"> "+self.escape(data)+"|") # Sending a raw command containing another nick here causes the server to reject it. return self def pm_send(self,nick,data): # Sends a private message to the specified user self._socket.send("$To: %s From: %s $<%s> %s|" %(nick,self._config["nick"],self._config["nick"],self.escape(data))) print "$To: %s From: %s $<%s> %s|" %(nick,self._config["nick"],self._config["nick"],self.escape(data)) return self def download_tth(self,tth,name=None,location=None,success_callback=None,success_callback_args=None,failure_callback=None,failure_callback_args=None): # INCOMPLETE : Validate TTH self._queue.append({"id":tth,"incomplete":tth,"parts":-1,"type":"tth","nick":[],"priority":3,"name":name,"location":location,"active":False,"considered":False,"success_callback":success_callback,"success_callback_args":success_callback_args,"failure_callback":failure_callback,"failure_callback_args":failure_callback_args}) return self def download_filelist(self,nick,success_callback=None,success_callback_args=None,failure_callback=None,failure_callback_args=None): # Downloads the filelist of a specific user flag = True for item in self._queue: if item["id"]==self._config["filelist"] and item["incomplete"]==self.escape_filename(nick)+".filelist" and item["name"]=="@"+self.escape_filename(nick)+".xml.bz2": flag = False if flag: self._queue.append({"id":self._config["filelist"],"incomplete":self.escape_filename(nick)+".filelist","part":0,"parts":1,"type":"file","nick":[nick],"offset":"0","length":-1,"priority":5,"name":"@"+self.escape_filename(nick)+".xml.bz2","size":-1,"location":self._dir["filelist"], "active":False,"considered":False,"success_callback":success_callback,"success_callback_args":success_callback_args,"failure_callback":failure_callback,"failure_callback_args":failure_callback_args}) return self def download_manager(self): # An infinite loop that keeps trying to start queued downloads. while self._download["active"]: # Keep doing this as long as the client runs flag = False; # Initially assume that new search will be performed, so wait for a while before the next cycle for item in self._queue: # For each item in queue if not self._download["active"]: # Check if the client isnt being shut down flag = True; break # Download Manager is being terminated # print "Download Queue :", [i["name"]+":"+str(i["part"]) if "part" in i else "-1" for i in self._queue] # NOTICE : DEBUG only if self._download["downslots"]==self._download["maxdownslots"]: break # If slots are not available, wait for a while if item["active"]==True or item["considered"]==True: continue # If item isnt already being downloaded if item["type"]=="file": # Filelist Downloads item["considered"] = True def fail(): item["considered"] = False self.debug("Removing filelist from queue as "+str(item["nick"])+" is not responding.") self._queue.remove(item) # SHERIFFBOT : Delete this item from queue if item["failure_callback"]!=None: try: if item["failure_callback_args"]!=None: item["failure_callback"](item["failure_callback_args"]) else: item["failure_callback"]() except: self.debug("Failure Callback Function Error : "+str(args["get"])) exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=10, file=(sys.stdout)) self.connect_remote(item["nick"],True,fail) # Connect to the peer. Filelists always have only one part, an assumption made in filelist_get. elif item["type"]=="tth": # TTH Downloads if item["parts"]==-1: # What to do if no other information about the file is available flag = True # No need to wait after one cycle result = [] # List to hold search results from sources self.search("TTH:"+item["id"],lambda x:result.append(x),{"type":"tth","mode":"auto"}) # Start a search for sources time.sleep(self._config["searchtime_auto"]) # Assume that search results will arrive in this much time if len(result)==0: continue # No results - cant do anything about that :( if item["name"] is None: item["name"] = re.split("/",result[0][2].replace("\\","/") )[-1] # If name isnt provided, use the one from the first search result to arrive. item["size"] = int(result[0][3]); # Set total file size, to be used during rebuilding item["nick"] = self.unique(item["nick"]+[x[1] for x in result]) # Initialize/Expand source list, without redundancy parts = int(math.ceil(float(item["size"])/self._config["segment_size"])) # Calculate number of blocks this file is not be divided into based on preconfigured block size. if parts==0: # If the file is empty (size 0), write it now only. open(self.transfer_filename(item),"wb").close() # Create and close an empty file. continue # We can assume after this point that at least one part is present. item["parts"] = parts; item["length"] = self._config["segment_size"] # Setting general infomration applicable to all parts, except last. for part in range(parts-1): # Leaving out the last part, given that the length may be different. item["part"] = part; item["offset"] = part*self._config["segment_size"]; # Set part-specific information self._queue.append(copy.deepcopy(item)) # All parts now have information all necessary information, and may now be treated individually. item["part"] = parts-1; item["offset"] = (parts-1)*self._config["segment_size"]; # It is not necessary to append the last block again, as we can transform the current one into that. item["length"] = ((item["size"]+self._config["segment_size"]-1)%self._config["segment_size"])+1 # Get the exact length of the last part print "added "+str(parts)+" items" if not self.transfer_verify(item): # Check whether or not this item has already been downloaded. x = [i for i in self._queue if (item["id"]==i["id"] and "part" in i and item["part"]==i["part"])] # Isolate item with matching signature if len(x)==1 and x[0] in self._queue: self._queue.remove(x[0]) # Remove item from queue self.transfer_rebuild(item); continue # Try rebuilding it, but invariably move on connected = list(itertools.chain(*[[transfer[key] for key in transfer if key=="nick"] for transfer in self._transfer])) # Generate list of nicks to which we are already connected. nick = filter(lambda n: n not in connected and n in self._nicklist.keys(),item["nick"]) # Select only those to which we arent connected and are online. The original list isnt touched because if len(nick)==0: continue # No one left :( print "Actually being considered ...",item["part"] item["considered"] = True def fail(): item["considered"] = False nick=random.choice(nick); # Randomly select a nickname # INCOMPLETE (possible) : Failure callbacks before file removal self.spawn("RemoteConnection:"+nick,self.connect_remote,(nick,True,fail)) # Connect to the nick. transfer_next deals with determining which file to download from the peer. if not flag: time.sleep(self._config["download_time"]) # If no searches have been performed, wait for a while before starting next cycle return self # Allows more functions to be chained in the same line ################################################## Transfer Functions ################################################## def connect_remote(self,nick,rev=True,failure=None): # Sets up a connection with nick if type(nick) is list: if len(nick)==0: return self else: nick=nick[0] if self._config["mode"]: # Nothing can be done if both are passive port = random.randint(1000,2**16-1) # Randomly select +ve integer for a part number in the given range d = { "nick":nick } # This is the prototype for the transfer object, created so that the connection object it will contain will have a reference to it. self.debug("Sending connection request to "+nick+" ...") while True: # Keeping trying to bind to different port numbers try: d["socket"] = Connection({"name":nick,"host":self._config["localhost"],"port":port,"role":"server","type":"tcp","handler":self.transfer_handler,"args":{"role":"server","transfer":d,"failure":failure,"nick":nick},"debug":self._debug}) break # Terminate loop only after binding to a specific port. Those Connections objects that could not bind have lost their except ConnectionError: port = random.randint(0,2**16-1) # If this particular port is occupied,try another one randomly self._transfer.append(d) for retry in range(self._config["retry"]): self._socket.send("$ConnectToMe "+nick+" "+self._config["localhost"]+":"+str(port)+"|") time.sleep(self._config["wait"]) if d["socket"].clients(): return self # Connection Successful self.debug("No response from "+nick+" after waiting for "+str(self._config["wait"])+" seconds.") self.debug("Connection to "+nick+" failed - timeout.") d["socket"].close() # Terminate the server if failure!=None: failure() return self elif rev: self._socket.send("$RevConnectToMe "+self._config["nick"]+" "+nick+"|") return self def transfer_verify(self,get): # Checks whether or not it is safe to download this file tempname = self._dir["incomplete"]+os.sep+self.escape_filename(get["incomplete"])+".part"+str(get["part"]) # Generate the name of the temporary file in which to store data before joining and transferring it to the target. if not get["active"] and (not os.path.exists(tempname) or os.path.getsize(tempname)<get["length"]): return True # If the file doesnt exist, or if the size hasent reached the target, start this download. x = [item for item in self._queue if item["id"]==get["id"] and item["incomplete"]==get["incomplete"] and "part" in item and item["part"]==get["part"]] # Locate items in the queue with the same signature as the current one. if len(x)==1 and x[0] in self._queue: self._queue.remove(x[0]) # As the file is already available completely, we can remove the corresponding item from the queue. return False # This object has not been verified for download, which means that it has already beeen downloaded, and rebuilding should be attempted. def transfer_next(self,args,info): # Check if we need to download something from this peer self._download["lock"].acquire() #
# qmpy/materials/entry.py from datetime import datetime import time import os from django.db import models from django.db import transaction import networkx as nx from qmpy.db.custom import * from qmpy.materials.composition import * from qmpy.materials.element import Element, Species from qmpy.materials.structure import Structure, StructureError from qmpy.utils import * from qmpy.computing.resources import Project from qmpy.data.meta_data import * import qmpy.io as io import qmpy.computing.scripts as scripts import qmpy.analysis.vasp as vasp logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) k_desc = 'Descriptive keyword for looking up entries' h_desc = 'A note indicating a reason the entry should not be calculated' @add_meta_data('keyword', description=k_desc) @add_meta_data('hold', description=h_desc) class Entry(models.Model): """Base class for a database entry. The core model for typical database entries. An Entry model represents an input structure to the database, and can be created from any input file. The Entry also ties together all of the associated :mod:`qmpy.Structure`, :mod:`qmpy.Calculation`, :mod:`qmpy.Reference`, :mod:`qmpy.FormationEnergies`, and other associated databas entries. Relationships: | :mod:`~qmpy.Calculation` via calculation_set | :mod:`~qmpy.DOS` via dos_set | :mod:`~qmpy.Entry` via duplicate_of | :mod:`~qmpy.Entry` via duplicates | :mod:`~qmpy.Element` via element_set | :mod:`~qmpy.FormationEnergy` via formationenergy_set | :mod:`~qmpy.Job` via job_set | :mod:`~qmpy.MetaData` via meta_data | :mod:`~qmpy.Project` via project_set | :mod:`~qmpy.Prototype` via prototype | :mod:`~qmpy.Species` via species_set | :mod:`~qmpy.Structure` via structure_set | :mod:`~qmpy.Task` via task_set | :mod:`~qmpy.Reference` via reference | :mod:`~qmpy.Composition` via composition Attributes: | id: Primary key (auto-incrementing int) | label: An identifying name for the structure. e.g. icsd-1001 or A3 """ ### structure properties path = models.CharField(max_length=255, unique=True) meta_data = models.ManyToManyField('MetaData') label = models.CharField(max_length=20, null=True) ### record keeping duplicate_of = models.ForeignKey('Entry', related_name='duplicates', null=True) ntypes = models.IntegerField(blank=True, null=True) natoms = models.IntegerField(blank=True, null=True) ### links element_set = models.ManyToManyField('Element') species_set = models.ManyToManyField('Species') project_set = models.ManyToManyField('Project') composition = models.ForeignKey('Composition', blank=True, null=True) reference = models.ForeignKey('Reference', null=True, blank=True) prototype = models.ForeignKey('Prototype', null=True, blank=True) class Meta: app_label = 'qmpy' db_table = 'entries' def __str__(self): return '%s - %s' % (self.id, self.name) @transaction.atomic def save(self, *args, **kwargs): """Saves the Entry, as well as all associated objects.""" if not self.reference is None: if self.reference.id is None: self.reference.save() self.reference = self.reference super(Entry, self).save(*args, **kwargs) if not self.duplicate_of: self.duplicate_of = self super(Entry, self).save(*args, **kwargs) if self._structures: for k, v in self.structures.items(): v.label = k v.entry = self v.save() #self.structure_set = self.structures.values() if self._calculations: for k, v in self.calculations.items(): v.label = k v.entry = self v.save() #self.calculation_set = self.calculations.values() if self._elements: self.element_set = self.elements if self._species: self.species_set = self.species if self._projects: self.project_set = self.projects if self._keywords or self._holds: self.meta_data = self.hold_objects + self.keyword_objects @staticmethod def create(source, keywords=[], projects=[], prototype=None, **kwargs): """ Attempts to create an Entry object from a provided input file. Processed in the following way: #. If an Entry exists at the specified path, returns that Entry. #. Create an Entry, and assign all fundamental attributes. (natoms, ntypes, input, path, elements, keywords, projects). #. If the input file is a CIF, and because CIF files have additional composition and reference information, if that file format is found, an additional test is performed to check that the reported composition matches the composition of the resulting structure. The reference for the work is also created and assigned to the entry. #. Attempt to identify another entry that this is either exactly equivalent to, or a defect cell of. Keywords: keywords: list of keywords to associate with the entry. projects: list of project names to associate with the entry. """ source_file = os.path.abspath(source) if 'libraries_v2_0/libraries_v1_overflow' in source_file: source_file = source_file.replace("libraries_v2_0/libraries_v1_overflow", "libraries") path = os.path.dirname(source_file) # Step 1 if Entry.objects.filter(path=path).exists(): return Entry.objects.get(path=path) # Step 2 entry = Entry(**kwargs) try: structure = io.poscar.read(source_file) except ValueError: structure = io.cif.read(source_file) structure.make_primitive() entry.source_file = source_file entry.path = os.path.dirname(source_file) entry.input = structure entry.ntypes = structure.ntypes entry.natoms = len(structure.sites) entry.elements = entry.comp.keys() entry.composition = Composition.get(structure.comp) for kw in keywords: entry.add_keyword(kw) entry.projects = projects entry.prototype = prototype # Step 3 c1 = structure.composition if 'cif' in source_file: c2 = structure.reported_composition if not c1.compare(c2, 5e-2): entry.add_hold("composition mismatch in cif") entry.composition = c2 entry.reference = io.cif.read_reference(source_file) # check for perfect crystals if not any([ s.partial for s in structure.sites ]): dup = Entry.get(structure) if dup is not None: entry.duplicate_of = dup entry.add_hold('duplicate') return entry # detect solid solution if all([ s.occupancy > 0.99 for s in structure.sites ]): if any([ len(s) > 1 for s in structure.sites ]): entry.add_keyword('solid solution') if any([ s.partial for s in structure.sites ]): entry.add_hold('partial occupancy') return entry @staticmethod def get(structure, tol=1e-1): if isinstance(structure, Structure): return Entry.search_by_structure(structure, tol=tol) @staticmethod def search_by_structure(structure, tol=1e-2): c = Composition.get(structure.comp) for e in c.entries: if e.structure.compare(structure, tol=tol): return e return None _elements = None @property def elements(self): """List of Elements""" if self._elements is None: self._elements = [ Element.get(e) for e in self.comp.keys() ] return self._elements @elements.setter def elements(self, elements): self._elements = [ Element.get(e) for e in elements ] _species = None @property def species(self): """List of Species""" if self._species is None: self._species = [ Species.get(s) for s in self.spec_comp.keys() ] return self._species @species.setter def species(self, species): self._species = [ Species.get(e) for e in species ] _projects = None @property def projects(self): """List of Projects""" if self._projects is None: self._projects = list(self.project_set.all()) return self._projects @projects.setter def projects(self, projects): self._projects = [ Project.get(p) for p in projects ] _structures = None @property def structures(self): if self._structures is None: if self.id is None: self._structures = {} else: structs = {} for s in self.structure_set.exclude(label=''): structs[s.label] = s self._structures = structs return self._structures s = structures @structures.setter def structures(self, structs): if not isinstance(structs, dict): raise TypeError('structures must be a dict') if not all( isinstance(v, Structure) for v in structs.values()): raise TypeError('structures must be a dict of Calculations') self._structures = structs @structures.deleter def structures(self, struct): self._structures[struct].delete() del self._structures[struct] _calculations = None @property def calculations(self): """Dictionary of label:Calculation pairs.""" if self._calculations is None: if self.id is None: self._calculations = {} else: calcs = {} for c in self.calculation_set.exclude(label=''): calcs[c.label] = c self._calculations = calcs return self._calculations c = calculations @calculations.setter def calculations(self, calcs): if not isinstance(calcs, dict): raise TypeError('calculations must be a dict') if not all( isinstance(v, vasp.Calculation) for v in calcs.values()): raise TypeError('calculations must be a dict of Calculations') self._calculations = calcs @calculations.deleter def calculations(self, calc): self._calculations[calc].delete() del self._calculations[calc] @property def input(self): return self.structures.get('input') @property def structure(self): if 'final' in self.structures: return self.structures['final'] elif 'relaxed' in self.structures: return self.structures['relaxed'] elif 'relaxation' in self.structures: return self.structures['relaxation'] elif 'standard' in self.structures: return self.structures['standard'] elif 'fine_relax' in self.structures: return self.structures['fine_relax'] else: try: return self.structures['input'] except KeyError: return None @input.setter def input(self, structure): self.structures['input'] = structure @property def tasks(self): return list(self.task_set.all()) @property def jobs(self): return list(self.job_set.all()) @property def comp(self): if not self.composition_id is None: return parse_comp(self.composition_id) elif not self.input is None: return self.input.comp else: return {} @property def spec_comp(self): """ Composition dictionary, using species (element + oxidation state) instead of just the elements. """ if self.input is None: return {} else: return self.input.spec_comp @property def unit_comp(self): """Composition dictionary, normalized to 1 atom.""" return unit_comp(self.comp) @property def red_comp(self): """Composition dictionary, in reduced form.""" return reduce_comp(self.comp) @property def name(self): """Unformatted name""" return format_comp(reduce_comp(self.comp)) @property def latex(self): """LaTeX formatted name""" return format_latex(reduce_comp(self.comp)) @property def html(self): """HTML formatted name""" return format_html(reduce_comp(self.comp)) @property def proto_label(self): #if not self.prototype is None: # return self.prototype.name protos = [] for e in self.duplicates.all(): if not e.prototype is None: protos.append(e.prototype.name) protos = list(set(protos)) if len(protos) == 1: return protos[0] else: return ', '.join(protos) @property def space(self): """Return the set of elements in the input structure. Examples:: >>> e = Entry.create("fe2o3/POSCAR") # an input containing Fe2O3 >>> e.space set(["Fe", "O"]) """ return set([ e.symbol for e in self.elements]) @property def total_energy(self): """ If the structure has been relaxed, returns the formation energy of the final relaxed structure. Otherwise, returns None. """ es = [] if 'static' in self.calculations: if self.calculations['static'].converged: return self.calculations['static'].energy_pa #es.append(self.calculations['static'].energy_pa) if 'standard' in self.calculations: if self.calculations['standard'].converged: return self.calculations['standard'].energy_pa #es.append(self.calculations['standard'].energy_pa) if not es: return None #else: # return min(es) _energy = None @property def energy(self): """ If the structure has been relaxed, returns the formation energy of the final relaxed structure. Otherwise, returns None. """ if self._energy is None: fes
Return a boolean FastArray set to True where duplicate rows exist, optionally only considering certain columns Parameters ---------- subset : str or list of str, optional A column label or list of column labels to inspect for duplicate values. When ``None``, all columns will be examined. keep : {'first', 'last', False}, default 'first' * ``first`` : keep duplicates except for the first occurrence. * ``last`` : keep duplicates except for the last occurrence. * False : set to True for all duplicates. Examples -------- >>> ds=rt.Dataset({'somenans': [0., 1., 2., rt.nan, 0., 5.], 's2': [0., 1., rt.nan, rt.nan, 0., 5.]}) >>> ds # somenans s2 - -------- ---- 0 0.00 0.00 1 1.00 1.00 2 2.00 nan 3 nan nan 4 0.00 0.00 5 5.00 5.00 >>> ds.duplicated() FastArray([False, False, False, False, True, False]) Notes ----- Consider using ``rt.Grouping(subset).ifirstkey`` as a fancy index to pull in unique rows. """ if subset is None: subset = list(self.keys()) else: if not isinstance(subset, list): subset = [subset] g = self.gbu(subset).get_groupings() igroup = g['iGroup'] ifirstgroup= g['iFirstGroup'] ncountgroup = g['nCountGroup'] result = ones(igroup.shape, dtype=bool) # return row of first occurrence if keep == 'first': # remove invalid bin ifirstgroup = ifirstgroup[1:] result[igroup[ifirstgroup]]=False # return row of last occurrence (however, keys will be in order of their first occurrence) elif keep == 'last': lastindex = ifirstgroup[-1] + ncountgroup[-1] -1 # skip invalid and shift everything ilast = ifirstgroup[2:] ilast -=1 result[igroup[ilast]]=False # set the last one result[lastindex]=False # only return rows that occur once elif keep is False: ifirstgroup = ifirstgroup[ncountgroup==1] result[igroup[ifirstgroup]]=False return result # ------------------------------------------------------------- def drop_duplicates(self, subset=None, keep: Union[bool, str] = 'first', inplace: bool = False) -> 'Dataset': """ Return Dataset with duplicate rows removed, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- deduplicated : Dataset Notes ----- If `keep` is 'last', the rows in the result will match pandas, but the order will be based on first occurrence of the unique key. Examples -------- >>> np.random.seed(12345) >>> ds = rt.Dataset({ ... 'strcol' : np.random.choice(['a','b','c','d'], 15), ... 'intcol' : np.random.randint(0, 3, 15), ... 'rand' : np.random.rand(15) ... }) >>> ds # strcol intcol rand -- ------ ------ ---- 0 c 2 0.05 1 b 1 0.81 2 b 2 0.93 3 b 0 0.36 4 a 2 0.69 5 b 1 0.13 6 c 1 0.83 7 c 2 0.32 8 b 1 0.74 9 c 2 0.60 10 b 2 0.36 11 b 1 0.79 12 c 0 0.70 13 b 1 0.82 14 d 1 0.90 <BLANKLINE> [15 rows x 3 columns] total bytes: 195.0 B Keep only the row of the first occurrence: >>> ds.drop_duplicates(['strcol','intcol']) # strcol intcol rand - ------ ------ ---- 0 c 2 0.05 1 b 1 0.81 2 b 2 0.93 3 b 0 0.36 4 a 2 0.69 5 c 1 0.83 6 c 0 0.70 7 d 1 0.90 <BLANKLINE> [8 rows x 3 columns] total bytes: 104.0 B Keep only the row of the last occurrence: >>> ds.drop_duplicates(['strcol','intcol'], keep='last') # strcol intcol rand - ------ ------ ---- 0 c 2 0.60 1 b 1 0.82 2 b 2 0.36 3 b 0 0.36 4 a 2 0.69 5 c 1 0.83 6 c 0 0.70 7 d 1 0.90 <BLANKLINE> [8 rows x 3 columns] total bytes: 104.0 B Keep only the rows which only occur once: >>> ds.drop_duplicates(['strcol','intcol'], keep=False) # strcol intcol rand - ------ ------ ---- 0 b 0 0.36 1 a 2 0.69 2 c 1 0.83 3 c 0 0.70 4 d 1 0.90 <BLANKLINE> [5 rows x 3 columns] total bytes: 65.0 B """ if self.shape[0] == 0: if inplace: return self else: return TypeRegister.Dataset(self) if subset is None: subset = list(self.keys()) else: if not isinstance(subset, list): subset = [subset] gb = self.gbu(subset) # return row of first occurrence if keep == 'first': deduplicated = gb.first() deduplicated.label_remove() # return row of last occurrence (however, keys will be in order of their first occurrence) elif keep == 'last': deduplicated = gb.last() deduplicated.label_remove() # only return rows that occur once elif keep is False: non_duplicated = gb.count().Count == 1 deduplicated = gb.first() deduplicated.label_remove() deduplicated = deduplicated[non_duplicated,:] else: raise ValueError(f"Got unexpected value for keep {keep}.") # replace all columns in dictionary if inplace is True: if deduplicated._nrows != self._nrows: # swap out all column data self._nrows = deduplicated._nrows self._col_sortlist = None self.col_replace_all(deduplicated, check_exists=False) return self return deduplicated # ------------------------------------------------------------- def col_replace_all(self, newdict, check_exists: bool = True) -> None: """ Replace the data for each item in the item dict. Original attributes will be retained. Useful for internal routines that need to swap out all columns quickly. Parameters ---------- newdict : dictionary of item names -> new item data (can also be a Dataset) check_exists : bool if True, all newdict keys and old item keys will be compared to ensure a match """ self._all_items.item_replace_all(newdict, check_exists=check_exists) # ------------------------------------------------------------- def all(self, axis=0, as_dataset: bool = True): """ Returns truth value 'all' along axis. Behavior for ``axis=None`` differs from pandas! Parameters ---------- axis : int, optional * axis=0 (dflt.) -> over columns (returns Struct (or Dataset) of bools) string synonyms: c, C, col, COL, column, COLUMN * axis=1 -> over rows (returns array of bools) string synonyms: r, R, row, ROW * axis=None -> over rows and columns (returns bool) string synonyms: all, ALL as_dataset : bool When ``axis=0``, return Dataset instead of Struct. Defaults to False. Returns ------- Struct (or Dataset) or list or bool """ def _col_all(_col): try: return bool(_col.all()) except TypeError: return all(_col) axis = self._axis_key(axis) cond_rtn_type = type(self) if as_dataset else Struct if axis == 0: return cond_rtn_type({_cn: _col_all(_val) for _cn, _val in self.items()}) if axis is None: return all(_col_all(_val) for _cn, _val in self.items()) if axis == 1: # for each col, !=0 to get back bool array. then inplace AND all those results, careful with string arrays temparray=ones(len(self), dtype=bool) for arr in self.values(): if arr.dtype.num <= 13: # inplace AND for numerical data # for cats we will assume 0 is the invalid and !=0 check works temparray *= arr != 0 else: # care about string array? if arr.dtype.char in 'US': temparray *= arr != '' else: # skip this datatype pass return temparray raise NotImplementedError('Dataset.all(axis=<0, 1, None>)') def sorts_on(self) -> None: """ Turns on all row/column sorts for display. False by default. sorts_view must have been called before :return: None """ if self._col_sortlist is None: warnings.warn(f"sort_view was not called first. Display sorting will remain off.") return self._sort_display = True def sorts_off(self) -> None: """ Turns off all row/column sorts for display (happens when sort_view is called) If sort is cached, it will remain in cache in case sorts are toggled back on. :return: None """ self._col_sortlist = None self._sort_display = False # ------------------------------------------------------- def get_row_sort_info(self): sortdict = None # general row sort will take precedence if self._col_sortlist is not None: for col in self._col_sortlist: if col not in self: print(str(col), "is not a valid key to sort by.") # clear invalid sort from dataset self._col_sortlist = None break else: #sortdict = {col: self.__getattribute__(col) for col in self._col_sortlist} sortdict = {col: self.col_get_value(col) for col in self._col_sortlist} return self._uniqueid, self._nrows, sortdict # ------------------------------------------------------- def _sort_lexsort(self, by, ascending=True): bylist = by if not isinstance(by, list): bylist = [bylist] sortkeys = [] for col in bylist: sortkeys.append(self.col_get_value(col)) # larger
# -*- test-case-name: flocker.node.agents.functional.test_ebs -*- # Copyright Hybrid Logic Ltd. See LICENSE file for details. """ An EBS implementation of the ``IBlockDeviceAPI``. """ from subprocess import check_output import threading import time import logging from uuid import UUID from bitmath import Byte, GiB from pyrsistent import PRecord, field, pset, pmap, thaw from zope.interface import implementer from boto import ec2 from boto import config from boto.ec2.connection import EC2Connection from boto.utils import get_instance_metadata from boto.exception import EC2ResponseError from twisted.python.constants import ( Names, NamedConstant, Values, ValueConstant ) from twisted.python.filepath import FilePath from eliot import Message from .blockdevice import ( IBlockDeviceAPI, BlockDeviceVolume, UnknownVolume, AlreadyAttachedVolume, UnattachedVolume, StorageProfileAttributes ) from ...control import pmap_field from ._logging import ( AWS_ACTION, BOTO_EC2RESPONSE_ERROR, NO_AVAILABLE_DEVICE, NO_NEW_DEVICE_IN_OS, WAITING_FOR_VOLUME_STATUS_CHANGE, BOTO_LOG_HEADER, IN_USE_DEVICES, ) DATASET_ID_LABEL = u'flocker-dataset-id' METADATA_VERSION_LABEL = u'flocker-metadata-version' CLUSTER_ID_LABEL = u'flocker-cluster-id' BOTO_NUM_RETRIES = u'20' VOLUME_STATE_CHANGE_TIMEOUT = 300 MAX_ATTACH_RETRIES = 3 class ProfileAttributeNames(Values): """ Storage profile attribute names. """ SNAPSHOT = ValueConstant(u'snapshot') VOLUME_TYPE = ValueConstant(u'volume_type') IOPS = ValueConstant(u'iops') ENCRYPTED = ValueConstant(u'encrypted') class VolumeOperations(Names): """ Supported EBS backend operations on a volume. """ CREATE = NamedConstant() ATTACH = NamedConstant() DETACH = NamedConstant() DESTROY = NamedConstant() class VolumeStates(Values): """ Expected EBS volume states during ``VolumeOperations``. """ EMPTY = ValueConstant('') CREATING = ValueConstant(u'creating') AVAILABLE = ValueConstant(u'available') ATTACHING = ValueConstant(u'attaching') IN_USE = ValueConstant(u'in-use') DETACHING = ValueConstant(u'detaching') DELETING = ValueConstant(u'deleting') class VolumeStateFlow(PRecord): """ Expected EBS volume state flow during ``VolumeOperations``. """ start_state = field(mandatory=True, type=ValueConstant) transient_state = field(mandatory=True, type=ValueConstant) end_state = field(mandatory=True, type=ValueConstant) # Boolean flag to indicate if a volume state transition # results in non-empty ``attach_data.device`` and # ``attach_data.instance_id`` for the EBS volume. sets_attach = field(mandatory=True, type=bool) unsets_attach = field(mandatory=True, type=bool) class VolumeStateTable(PRecord): """ Map of volume operation to expected volume state transitions and expected update to volume's ``attach_data``. """ def _populate_volume_state_table(): """ Initialize volume state table with transitions for ``create_volume``, ``attach_volume``, ``detach_volume``, ``delete_volume`` operations. """ O = VolumeOperations S = VolumeStates table = pmap() def add_flow(operation, start, transient, end, sets_attach, unsets_attach): """ Helper to add expected volume states for given operation. """ return table.set(operation, VolumeStateFlow(start_state=start, transient_state=transient, end_state=end, sets_attach=sets_attach, unsets_attach=unsets_attach)) table = add_flow(O.CREATE, S.EMPTY, S.CREATING, S.AVAILABLE, False, False) table = add_flow(O.ATTACH, S.AVAILABLE, S.ATTACHING, S.IN_USE, True, False) table = add_flow(O.DETACH, S.IN_USE, S.DETACHING, S.AVAILABLE, False, True) table = add_flow(O.DESTROY, S.AVAILABLE, S.DELETING, S.EMPTY, False, False) return table table = pmap_field(NamedConstant, VolumeStateFlow, initial=_populate_volume_state_table()) VOLUME_STATE_TABLE = VolumeStateTable() class TimeoutException(Exception): """ A timeout on waiting for volume to reach destination end state. :param unicode blockdevice_id: Unique identifier for a volume. :param NamedConstant operation: Operation performed on volume. :param unicode start_state: Volume's start state before operation. :param unicode transient_state: Expected transient state during operation. :param unicode end_state: Expected end state on operation completion. :param unicode current_state: Volume's state at timeout. """ def __init__(self, blockdevice_id, operation, start_state, transient_state, end_state, current_state): Exception.__init__(self, blockdevice_id) self.blockdevice_id = blockdevice_id self.operation = operation self.start_state = start_state self.transient_state = transient_state self.end_state = end_state self.current_state = current_state class UnexpectedStateException(Exception): """ An unexpected state was encountered by a volume as a result of operation. :param unicode blockdevice_id: Unique identifier for a volume. :param NamedConstant operation: Operation performed on volume. :param unicode start_state: Volume's start state before operation. :param unicode transient_state: Expected transient state during operation. :param unicode end_state: Expected end state on operation completion. :param unicode current_state: Volume's state at timeout. """ def __init__(self, blockdevice_id, operation, start_state, transient_state, end_state, current_state): Exception.__init__(self, blockdevice_id) self.blockdevice_id = blockdevice_id self.operation = operation self.start_state = start_state self.transient_state = transient_state self.end_state = end_state self.current_state = current_state class EliotLogHandler(logging.Handler): # Whitelist ``"msg": "Params:`` field for logging. _to_log = {"Params"} def emit(self, record): fields = vars(record) # Only log certain things. The log is massively too verbose # otherwise. if fields.get("msg", ":").split(":")[0] in self._to_log: Message.new( message_type=BOTO_LOG_HEADER, **fields ).write() def _enable_boto_logging(): """ Make boto log activity using Eliot. """ logger = logging.getLogger("boto") logger.addHandler(EliotLogHandler()) # It seems as though basically all boto log messages are at the same # level. Either we can see all of them or we can see none of them. # We'll do some extra filtering in the handler. logger.setLevel(logging.DEBUG) _enable_boto_logging() class AttachedUnexpectedDevice(Exception): """ A volume was attached to a device other than the one we expected. :ivar str _template: A native string giving the template into which to format attributes for the string representation. """ _template = "AttachedUnexpectedDevice(requested={!r}, discovered={!r})" def __init__(self, requested, discovered): """ :param FilePath requested: The requested device name. :param FilePath discovered: The device which was discovered on the system. """ self.requested = requested self.discovered = discovered def __str__(self): return self._template.format( self.requested.path, self.discovered.path, ) __repr__ = __str__ def _expected_device(requested_device): """ Given a device we requested from AWS EBS, determine the OS device path that will actually be created. This maps EBS required ``/dev/sdX`` names to ``/dev/vbdX`` names that are used by currently supported platforms (Ubuntu 14.04 and CentOS 7). """ prefix = b"/dev/sd" if requested_device.startswith(prefix): return FilePath(b"/dev").child(b"xvd" + requested_device[len(prefix):]) raise ValueError( "Unsupported requested device {!r}".format(requested_device) ) def ec2_client(region, zone, access_key_id, secret_access_key): """ Establish connection to EC2 client. :param str region: The name of the EC2 region to connect to. :param str zone: The zone for the EC2 region to connect to. :param str access_key_id: "aws_access_key_id" credential for EC2. :param str secret_access_key: "aws_secret_access_key" EC2 credential. :return: An ``_EC2`` giving information about EC2 client connection and EC2 instance zone. """ # Set 2 retry knobs in Boto to BOTO_NUM_RETRIES: # 1. ``num_retries``: # Request automatic exponential backoff and retry # attempts by Boto if an EC2 API call fails with # ``RequestLimitExceeded`` due to system load. # 2. ``metadata_service_num_attempts``: # Request for retry attempts by Boto to # retrieve data from Metadata Service used to retrieve # credentials for IAM roles on EC2 instances. if not config.has_section('Boto'): config.add_section('Boto') config.set('Boto', 'num_retries', BOTO_NUM_RETRIES) config.set('Boto', 'metadata_service_num_attempts', BOTO_NUM_RETRIES) # Get Boto EC2 connection with ``EC2ResponseError`` logged by Eliot. connection = ec2.connect_to_region(region, aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key) return _EC2(zone=zone, connection=_LoggedBotoConnection(connection=connection)) def _boto_logged_method(method_name, original_name): """ Run a boto.ec2.connection.EC2Connection method and log additional information about any exceptions that are raised. :param str method_name: The name of the method of the wrapped object to call. :param str original_name: The name of the attribute of self where the wrapped object can be found. :return: A function which will call the method of the wrapped object and do the extra exception logging. """ def _run_with_logging(self, *args, **kwargs): """ Run given boto.ec2.connection.EC2Connection method with exception logging for ``EC2ResponseError``. """ original = getattr(self, original_name) method = getattr(original, method_name) # Trace IBlockDeviceAPI ``method`` as Eliot Action. # See https://clusterhq.atlassian.net/browse/FLOC-2054 # for ensuring all method arguments are serializable. with AWS_ACTION(operation=[method_name, args, kwargs]): try: return method(*args, **kwargs) except EC2ResponseError as e: BOTO_EC2RESPONSE_ERROR( aws_code=e.code, aws_message=e.message, aws_request_id=e.request_id, ).write() raise return _run_with_logging def boto_logger(*args, **kwargs): """ Decorator to log all callable boto.ec2.connection.EC2Connection methods. :return: A function that will decorate all methods of the given class with Boto exception logging. """ def _class_decorator(cls): for attr in EC2Connection.__dict__: # Log wrap all callable methods except `__init__`. if attr != '__init__': attribute = getattr(EC2Connection, attr) if callable(attribute): setattr(cls, attr, _boto_logged_method(attr, *args, **kwargs)) return cls return _class_decorator @boto_logger("connection") class _LoggedBotoConnection(PRecord): """ Wrapper ``PRecord`` around ``boto.ec2.connection.EC2Connection`` to facilitate logging of exceptions from Boto APIs. :ivar boto.ec2.connection.EC2Connection connection: Object representing connection to an EC2 instance with logged ``EC2ConnectionError``. """ connection = field(mandatory=True) class _EC2(PRecord): """ :ivar str zone: The name of the zone for the connection. :ivar boto.ec2.connection.EC2Connection connection: Object representing connection to an EC2 instance. """ zone = field(mandatory=True) connection = field(mandatory=True) def _blockdevicevolume_from_ebs_volume(ebs_volume): """ Helper function to convert Volume information from EBS format to Flocker block device format. :param boto.ec2.volume ebs_volume: Volume in EC2 format. :return: Input volume in BlockDeviceVolume format. """ return BlockDeviceVolume( blockdevice_id=unicode(ebs_volume.id), size=int(GiB(ebs_volume.size).to_Byte().value), attached_to=ebs_volume.attach_data.instance_id, dataset_id=UUID(ebs_volume.tags[DATASET_ID_LABEL]) ) def _get_ebs_volume_state(volume): """ Fetch input EBS volume's latest state from backend. :param boto.ec2.volume volume: Volume that needs state update. :returns: EBS volume with latest state known to backend. :rtype: boto.ec2.volume """ return volume.update() def _should_finish(operation, volume, update, start_time, timeout=VOLUME_STATE_CHANGE_TIMEOUT): """ Helper function to determine if wait for volume's state transition resulting from given operation is over. The method completes if volume reached expected end state, or, failed to reach expected end state, or we timed out waiting for the volume to reach expected end state. :param NamedConstant operation: Operation performed on given volume. :param boto.ec2.volume volume: Target volume of
[] starting_time = time.time() self.DurationPerTrial = pd.Series(index=np.arange(repeats), dtype=float) self.RetPerTrial = pd.Series(index=np.arange(repeats), dtype=float) ret_per_trial = [] # Try as many times as required by the integer 'repeats' for i in np.arange(repeats): start_trial = time.time() if not pick_ml and progress: print(f"\nInstance {self.instance}: Trial {i}\n") # RUN HEURISTIC new, reduced_trees, seq_heights, df_pred = Heuristic(progress=progress, reduce_trivial=reduce_trivial, pick_lowest_cherry=pick_lowest_cherry, pick_ml=pick_ml, model_name=model_name, str_features=str_features) if progress: print(f"Instance {self.instance}: found sequence of length: {len(new)}") print(f"Instance {self.instance}: adding roots") # complete partial sequence new, reduced_trees = sequence_add_roots(new, reduced_trees) for k in np.arange(len(new) - len(seq_heights)): seq_heights += [seq_heights[-1]] if progress: print(f"Instance {self.instance}: final length: {len(new)}") self.CPS_Compute_Reps += 1 self.DurationPerTrial[i] = time.time() - start_trial # FIND RETICULATION NUMBER converted_new_seq = [(self.labels_reversed[pair[0]], self.labels_reversed[pair[1]]) for pair in new] # Output the raw network if self.distances: network = PhN(seq=converted_new_seq, reduced_trees=reduced_trees, heights=seq_heights) else: network = PhN(seq=converted_new_seq, reduced_trees=reduced_trees) # ret_per_trial.append(len(network.reticulations())) self.RetPerTrial[i] = sum(network.reticulations_non_binary()) # store best sequence if best is None or len(new) < len(best): best = new red_trees_best = reduced_trees heights_best = seq_heights if progress: print(f"Instance {self.instance}: best sequence has length: {len(best)}") if time_limit and time.time() - starting_time > time_limit: break # storing stuff of heuristic self.CPS_Compute_Time += time.time() - starting_time # storing best network new_seq = best if not self.best_seq_with_lengths or len(new_seq) < len(self.best_seq_with_lengths): converted_new_seq = [] for pair in new_seq: converted_new_seq += [(self.labels_reversed[pair[0]], self.labels_reversed[pair[1]])] self.best_seq_with_lengths = converted_new_seq self.best_seq_with_lengths_red_trees = red_trees_best self.best_seq_with_lengths_heights = heights_best return self.best_seq_with_lengths, df_pred def CPHeuristic(self, progress=False, reduce_trivial=True, pick_lowest_cherry=True, pick_ml=False, model_name=None, str_features=None): # Works in a copy of the input trees, copy_of_inputs, because trees have to be reduced somewhere. copy_of_inputs = deepcopy(self) CPS = [] reduced_trees = [] heights_seq = [] candidate_leaves = deepcopy(self.leaves) # Make dict of reducible pairs reducible_pairs = self.find_all_pairs() current_heights = dict() # for each reducible pair: [0] gives height, [1] the number of trees it was computed in. if pick_ml: # create initial features start_time_init = time.time() features = Features(reducible_pairs, copy_of_inputs.trees, root=2, str_features=str_features) df_pred = pd.DataFrame(columns=["x", "y", "no_cher_pred", "cher_pred", "ret_cher_pred", "trees_reduced"]) if progress: print( f"Instance {self.instance}: Initial features found in {np.round(time.time() - start_time_init, 3)}s") # open prediction model if model_name is None: model_name = "../LearningCherries/RFModels/rf_cherries_lgt_no_cat.joblib" rf_model = joblib.load(model_name) else: df_pred = None while copy_of_inputs.trees: if progress: print(f"Instance {self.instance}: Sequence has length {len(CPS)}") print(f"Instance {self.instance}: {len(copy_of_inputs.trees)} trees left.\n") if reduce_trivial: new_seq, new_red_trees, reducible_pairs, new_heights_seq = copy_of_inputs.reduce_trivial_pairs_lengths( candidate_leaves, reducible_pairs) if progress: print(f"Instance {self.instance}: Trivial cherries reduced") CPS += new_seq reduced_trees += new_red_trees heights_seq += new_heights_seq if len(copy_of_inputs.trees) == 0: break current_heights = copy_of_inputs.update_heights(current_heights, reducible_pairs) if pick_lowest_cherry: lowest_height = None lowest_heights_found = 1 for pair in reducible_pairs: height_pair_tuple = current_heights[pair][0] height_pair = float(height_pair_tuple[0] + height_pair_tuple[1]) / 2 new_found = False if (not lowest_height) or lowest_height > height_pair: new_found = True lowest_heights_found = 1 elif lowest_height == height_pair: lowest_heights_found += 1 if random.random() < 1 / float(lowest_heights_found): new_found = True if new_found: lowest_cherry = pair lowest_height = height_pair lowest_height_tuple = height_pair_tuple chosen_cherry = lowest_cherry chosen_height_tuple = lowest_height_tuple elif pick_ml: # predict if cherry prediction = pd.DataFrame(np.array([p[:, 1] for p in rf_model.predict_proba(features.data)]).transpose(), index=features.data.index) max_cherry = prediction[1].argmax() max_cherry_prob = prediction.iloc[max_cherry, 1] chosen_cherry = prediction.index[max_cherry] if max_cherry_prob < 1: max_ret_cherry = (prediction[1] + prediction[2]).argmax() chosen_cherry = prediction.index[max_ret_cherry] chosen_height_tuple = current_heights[chosen_cherry][0] df_pred.loc[len(df_pred)] = [*chosen_cherry, *prediction.loc[chosen_cherry], np.nan] if progress: print(f"Instance {self.instance}: chosen cherry = {chosen_cherry}, " f"ML prediction = {list(prediction.loc[chosen_cherry])}") else: random_cherry_num = np.random.choice(np.arange(len(reducible_pairs))) chosen_cherry = list(reducible_pairs)[random_cherry_num] chosen_height_tuple = current_heights[chosen_cherry][0] CPS += [chosen_cherry] heights_seq += [chosen_height_tuple] # update cherries before reducing trees with chosen cherry if pick_ml: start_time_update_before = time.time() features.update_cherry_features_before(chosen_cherry, reducible_pairs, copy_of_inputs.trees) if progress: print(f"Instance {self.instance}: Update BEFORE features found in {np.round(time.time() - start_time_update_before, 3)}s") elif progress: print(f"Instance {self.instance}: chosen cherry = {chosen_cherry}") # reduce trees with chosen cherry new_reduced = copy_of_inputs.reduce_pair_in_all(chosen_cherry, reducible_pairs=reducible_pairs) reducible_pairs = copy_of_inputs.update_reducible_pairs(reducible_pairs, new_reduced) if progress: print(f"Instance {self.instance}: {len(reducible_pairs)} reducible pairs left") if pick_ml: df_pred.iloc[-1]["trees_reduced"] = len(new_reduced) start_time_update_after = time.time() features.update_cherry_features_after(chosen_cherry, reducible_pairs, copy_of_inputs.trees, new_reduced) if progress: print(f"Instance {self.instance}: Update AFTER features found in {np.round(time.time() - start_time_update_after, 3)}s") reduced_trees += [new_reduced] if reduce_trivial: candidate_leaves = set(chosen_cherry) return CPS, reduced_trees, heights_seq, df_pred # when using machine learning, update the topological/combinatorial length of nodes def update_node_comb_length(self, x, y, reduced_trees): for t in reduced_trees: try: self.trees[t].nw.nodes[y]["node_comb"] -= 1 except KeyError: continue # todo: Returns an updated dictionary of heights of the reducible pairs def update_heights(self, current_heights, reducible_pairs): for pair, trees in reducible_pairs.items(): # updating is only necessary when the set of trees for that pair is changed or # the reducible pair was not reducible before. if pair not in current_heights or not current_heights[pair][1] == len(trees): height_pair = self.height_pair(pair, trees) current_heights[pair] = (height_pair, len(trees)) return current_heights # Returns the average height of a pair in a set of trees # The pair must be reducible in each tree in 'trees' def height_pair(self, pair, trees): height_pair = [0, 0] for t in trees: height_in_t = self.trees[t].height_of_cherry(*pair) height_pair[0] += height_in_t[0] height_pair[1] += height_in_t[1] return [height_pair[0] / float(len(trees)), height_pair[1] / float(len(trees))] # Finds the set of reducible pairs in all trees # Returns a dictionary with reducible pairs as keys, and the trees they reduce as values. def find_all_pairs(self): reducible_pairs = dict() for i, t in self.trees.items(): red_pairs_t = t.find_all_reducible_pairs() for pair in red_pairs_t: if pair in reducible_pairs: reducible_pairs[pair].add(i) else: reducible_pairs[pair] = {i} return reducible_pairs # Returns the updated dictionary of reducible pairs in all trees after a reduction (with the trees they reduce as values) # we only need to update for the trees that got reduced: 'new_red_treed' def update_reducible_pairs(self, reducible_pairs, new_red_trees): # Remove trees to update from all pairs pair_del = [] for pair, trees in reducible_pairs.items(): trees.difference_update(new_red_trees) if len(trees) == 0: pair_del.append(pair) for pair in pair_del: del reducible_pairs[pair] # Add the trees to the right pairs again for index in new_red_trees: if index in self.trees: t = self.trees[index] red_pairs_t = t.find_all_reducible_pairs() for pair in red_pairs_t: if pair in reducible_pairs: reducible_pairs[pair].add(index) else: reducible_pairs[pair] = {index} return reducible_pairs # reduces the given pair in all trees # Returns the set of trees that were reduced # CHANGES THE SET OF TREES, ONLY PERFORM IN A COPY OF THE CLASS INSTANCE def reduce_pair_in_all(self, pair, reducible_pairs=None): if not len(reducible_pairs): print("no reducible pairs") if reducible_pairs is None: reducible_pairs = dict() reduced_trees_for_pair = [] if pair in reducible_pairs: trees_to_reduce = reducible_pairs[pair] else: trees_to_reduce = deepcopy(self.trees) for t in trees_to_reduce: if t in self.trees: tree = self.trees[t] if tree.reduce_pair(*pair): reduced_trees_for_pair += [t] if len(tree.nw.edges()) <= 2: del self.trees[t] return set(reduced_trees_for_pair) # reduces the trivial pairs in the current set of trees with branch lengths # runs efficiently by giving a set of leaves 'candidate_leaves' that may be involved in trivial pairs # this set must be given; after a reduction of the pair (a,b) only using the leaves a and b works # Returns the reduced pairs and the sets of trees thet were reduced, also updates the reducible pairs and their heights. # CHANGES THE SET OF TREES, ONLY PERFORM IN A COPY OF THE CLASS INSTANCE def reduce_trivial_pairs_lengths(self, candidate_leaves, reducible_pairs): seq = [] reduced_tree_sets = [] heights_seq = [] while candidate_leaves: l = candidate_leaves.pop() new_pairs = list(self.trivial_pair_with(l)) if new_pairs: # print("found a trivial pair") seq += new_pairs for p in new_pairs: height_p = self.height_pair(p, reducible_pairs[p]) red_trees_p = self.reduce_pair_in_all(p, reducible_pairs=reducible_pairs) heights_seq += [height_p] reducible_pairs = self.update_reducible_pairs(reducible_pairs, red_trees_p) reduced_tree_sets += [red_trees_p] candidate_leaves = candidate_leaves | set(p) return seq, reduced_tree_sets, reducible_pairs, heights_seq # Returns all trivial pairs involving the leaf l def trivial_pair_with(self, l): pairs = set() # Go through all trees t with index i. for i, t in self.trees.items(): # If the leaf occurs in t if l in t.leaves: # Compute reducible pairs of t with the leaf as first coordinate pairs_in_t = t.find_pairs_with_first(l) # If we did not have a set of candidate pairs yet, use pairs_in_t if not pairs: pairs = pairs_in_t # Else, the candidate pairs must also be in t, so take intersection else: pairs = pairs & pairs_in_t # If we do not have any candidate
KB = 0.53 * x_T BMT = ((0.085 * x_CB - 0.002) * x_B * x_B) / (x_T * x_CB) KG = 1.0 + 0.52 * x_D constraintFuncs[8] = (KB + BMT - KG) - (0.07 * x_B) constraintFuncs = np.where(constraintFuncs < 0, -constraintFuncs, 0) f[3] = constraintFuncs[0] + constraintFuncs[1] + constraintFuncs[2] + constraintFuncs[3] + constraintFuncs[4] + constraintFuncs[5] + constraintFuncs[6] + constraintFuncs[7] + constraintFuncs[8] return f class RE61(): def __init__(self): self.problem_name = 'RE61' self.n_objectives = 6 self.n_variables = 3 self.n_constraints = 0 self.n_original_constraints = 7 self.lbound = np.zeros(self.n_variables) self.ubound = np.zeros(self.n_variables) self.lbound[0] = 0.01 self.lbound[1] = 0.01 self.lbound[2] = 0.01 self.ubound[0] = 0.45 self.ubound[1] = 0.10 self.ubound[2] = 0.10 def evaluate(self, x): f = np.zeros(self.n_objectives) g = np.zeros(self.n_original_constraints) # First original objective function f[0] = 106780.37 * (x[1] + x[2]) + 61704.67 #Second original objective function f[1] = 3000 * x[0] # Third original objective function f[2] = 305700 * 2289 * x[1] / np.power(0.06*2289, 0.65) # Fourth original objective function f[3] = 250 * 2289 * np.exp(-39.75*x[1]+9.9*x[2]+2.74) # Fifth original objective function f[4] = 25 * (1.39 /(x[0]*x[1]) + 4940*x[2] -80) # Constraint functions g[0] = 1 - (0.00139/(x[0]*x[1])+4.94*x[2]-0.08) g[1] = 1 - (0.000306/(x[0]*x[1])+1.082*x[2]-0.0986) g[2] = 50000 - (12.307/(x[0]*x[1]) + 49408.24*x[2]+4051.02) g[3] = 16000 - (2.098/(x[0]*x[1])+8046.33*x[2]-696.71) g[4] = 10000 - (2.138/(x[0]*x[1])+7883.39*x[2]-705.04) g[5] = 2000 - (0.417*x[0]*x[1] + 1721.26*x[2]-136.54) g[6] = 550 - (0.164/(x[0]*x[1])+631.13*x[2]-54.48) g = np.where(g < 0, -g, 0) f[5] = g[0] + g[1] + g[2] + g[3] + g[4] + g[5] + g[6] return f class RE91(): def __init__(self, set_random_seed=False): self.problem_name = 'RE91' self.n_objectives = 9 self.n_variables = 7 self.n_constraints = 0 self.n_original_constraints = 0 self.lbound = np.zeros(self.n_variables) self.ubound = np.zeros(self.n_variables) self.lbound[0] = 0.5 self.lbound[1] = 0.45 self.lbound[2] = 0.5 self.lbound[3] = 0.5 self.lbound[4] = 0.875 self.lbound[5] = 0.4 self.lbound[6] = 0.4 self.ubound[0] = 1.5 self.ubound[1] = 1.35 self.ubound[2] = 1.5 self.ubound[3] = 1.5 self.ubound[4] = 2.625 self.ubound[5] = 1.2 self.ubound[6] = 1.2 if set_random_seed: np.random.seed(seed=0) def evaluate(self, x): f = np.zeros(self.n_objectives) g = np.zeros(self.n_original_constraints) x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] x5 = x[4] x6 = x[5] x7 = x[6] # stochastic variables x8 = 0.006 * (np.random.normal(0, 1)) + 0.345 x9 = 0.006 * (np.random.normal(0, 1)) + 0.192 x10 = 10 * (np.random.normal(0, 1)) + 0.0 x11 = 10 * (np.random.normal(0, 1)) + 0.0 # First function f[0] = 1.98 + 4.9 * x1 + 6.67 * x2 + 6.98 * x3 + 4.01 * x4 + 1.75 * x5 + 0.00001 * x6 + 2.73 * x7 # Second function f[1] = max(0.0, (1.16 - 0.3717* x2 * x4 - 0.00931 * x2 * x10 - 0.484 * x3 * x9 + 0.01343 * x6 * x10 )/1.0) # Third function f[2] = max(0.0, (0.261 - 0.0159 * x1 * x2 - 0.188 * x1 * x8 - 0.019 * x2 * x7 + 0.0144 * x3 * x5 + 0.87570001 * x5 * x10 + 0.08045 * x6 * x9 + 0.00139 * x8 * x11 + 0.00001575 * x10 * x11)/0.32) # Fourth function f[3] = max(0.0, (0.214 + 0.00817 * x5 - 0.131 * x1 * x8 - 0.0704 * x1 * x9 + 0.03099 * x2 * x6 - 0.018 * x2 * x7 + 0.0208 * x3 * x8 + 0.121 * x3 * x9 - 0.00364 * x5 * x6 + 0.0007715 * x5 * x10 - 0.0005354 * x6 * x10 + 0.00121 * x8 * x11 + 0.00184 * x9 * x10 - 0.018 * x2 * x2)/0.32) # Fifth function f[4] = max(0.0, (0.74 - 0.61* x2 - 0.163 * x3 * x8 + 0.001232 * x3 * x10 - 0.166 * x7 * x9 + 0.227 * x2 * x2)/0.32) # Sixth function tmp = (( 28.98 + 3.818 * x3 - 4.2 * x1 * x2 + 0.0207 * x5 * x10 + 6.63 * x6 * x9 - 7.77 * x7 * x8 + 0.32 * x9 * x10) + (33.86 + 2.95 * x3 + 0.1792 * x10 - 5.057 * x1 * x2 - 11 * x2 * x8 - 0.0215 * x5 * x10 - 9.98 * x7 * x8 + 22 * x8 * x9) + (46.36 - 9.9 * x2 - 12.9 * x1 * x8 + 0.1107 * x3 * x10) )/3 f[5] = max(0.0, tmp/32) # Seventh function f[6] = max(0.0, (4.72 - 0.5 * x4 - 0.19 * x2 * x3 - 0.0122 * x4 * x10 + 0.009325 * x6 * x10 + 0.000191 * x11 * x11)/4.0) # EighthEighth function f[7] = max(0.0, (10.58 - 0.674 * x1 * x2 - 1.95 * x2 * x8 + 0.02054 * x3 * x10 - 0.0198 * x4 * x10 + 0.028 * x6 * x10)/9.9) # Ninth function f[8] = max(0.0, (16.45 - 0.489 * x3 * x7 - 0.843 * x5 * x6 + 0.0432 * x9 * x10 - 0.0556 * x9 * x11 - 0.000786 * x11 * x11)/15.7) return f class CRE21(): def __init__(self): self.problem_name = 'CRE21' self.n_objectives = 2 self.n_variables = 3 self.n_constraints = 3 self.ubound = np.zeros(self.n_variables) self.lbound = np.zeros(self.n_variables) self.lbound[0] = 0.00001 self.lbound[1] = 0.00001 self.lbound[2] = 1.0 self.ubound[0] = 100.0 self.ubound[1] = 100.0 self.ubound[2] = 3.0 def evaluate(self, x): f = np.zeros(self.n_objectives) g = np.zeros(self.n_constraints) x1 = x[0] x2 = x[1] x3 = x[2] # First original objective function f[0] = x1 * np.sqrt(16.0 + (x3 * x3)) + x2 * np.sqrt(1.0 + x3 * x3) # Second original objective function f[1] = (20.0 * np.sqrt(16.0 + (x3 * x3))) / (x1 * x3) # Constraint functions g[0] = 0.1 - f[0] g[1] = 100000.0 - f[1] g[2] = 100000 - ((80.0 * np.sqrt(1.0 + x3 * x3)) / (x3 * x2)) g = np.where(g < 0, -g, 0) return f, g class CRE22(): def __init__(self): self.problem_name = 'CRE22' self.n_objectives = 2 self.n_variables = 4 self.n_constraints = 4 self.ubound = np.zeros(self.n_variables) self.lbound = np.zeros(self.n_variables) self.lbound[0] = 0.125 self.lbound[1] = 0.1 self.lbound[2] = 0.1 self.lbound[3] = 0.125 self.ubound[0] = 5.0 self.ubound[1] = 10.0 self.ubound[2] = 10.0 self.ubound[3] = 5.0 def evaluate(self, x): f = np.zeros(self.n_objectives) g = np.zeros(self.n_constraints) x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] P = 6000 L = 14 E = 30 * 1e6 # // deltaMax = 0.25 G = 12 * 1e6 tauMax = 13600 sigmaMax = 30000 # First original objective function f[0] = (1.10471 * x1 * x1 * x2) + (0.04811 * x3 * x4) * (14.0 + x2) # Second original objective function f[1] = (4 * P * L * L * L) / (E * x4 * x3 * x3 * x3) # Constraint functions M = P * (L + (x2 / 2)) tmpVar = ((x2 * x2) / 4.0) + np.power((x1 + x3) / 2.0, 2) R = np.sqrt(tmpVar) tmpVar = ((x2 * x2) / 12.0) + np.power((x1 + x3) / 2.0, 2) J = 2 * np.sqrt(2) * x1 * x2 * tmpVar tauDashDash = (M * R) / J tauDash = P / (np.sqrt(2) * x1 * x2) tmpVar = tauDash * tauDash + ((2 * tauDash * tauDashDash * x2) / (2 * R)) + (tauDashDash * tauDashDash) tau = np.sqrt(tmpVar) sigma = (6 * P * L) / (x4 * x3 * x3) tmpVar = 4.013 * E * np.sqrt((x3 * x3 * x4 * x4 * x4 * x4 *
import re from flask import jsonify from sqlalchemy import text from db import db class IcuDevelopments: __build_obj = """ json_build_object( 'timestamp', agg.timestamp, 'inserted', agg.last_insert_date, 'last_updated', agg.last_update, 'num_hospitals', agg.num_hospitals, 'icu_low_state', json_build_object( 'Verfügbar', icu_low_v, 'Begrenzt', icu_low_b, 'Ausgelastet', icu_low_a, 'Nicht verfügbar', icu_low_nv ), 'icu_high_state', json_build_object( 'Verfügbar', icu_high_v, 'Begrenzt', icu_high_b, 'Ausgelastet', icu_high_a, 'Nicht verfügbar', icu_high_nv ), 'ecmo_state', json_build_object( 'Verfügbar', ecmo_v, 'Begrenzt', ecmo_b, 'Ausgelastet', ecmo_a, 'Nicht verfügbar', ecmo_nv ) )::jsonb """ __agg_cols = """ r.ids as ids, r.name as name, c.timestamp as timestamp, MAX(c.last_update) as last_update, MAX(c.last_insert_date) as last_insert_date, r.geom as geom, SUM(icu_low_v) as icu_low_v, SUM(icu_low_b) as icu_low_b, SUM(icu_low_a) as icu_low_a, SUM(icu_low_nv) as icu_low_nv, SUM(icu_high_v) as icu_high_v, SUM(icu_high_b) as icu_high_b, SUM(icu_high_a) as icu_high_a, SUM(icu_high_nv) as icu_high_nv, SUM(ecmo_v) as ecmo_v, SUM(ecmo_b) as ecmo_b, SUM(ecmo_a) as ecmo_a, SUM(ecmo_nv) as ecmo_nv, COUNT(r.ids) as num_hospitals """ def get_hospital(self, from_time, to_time, max_days_old, id_hospital, want_geom: bool): """ Return the development of one hospital """ return self.__res_single(self.__get_hospitals(from_time, to_time, max_days_old, id_hospital), from_time, to_time, max_days_old, id_hospital, self.__get_feature_hospital, want_geom=want_geom) def get_hospitals(self, from_time, to_time, max_days_old, want_geom: bool): """ Return the development of all hospital """ return self.__res_collection(self.__get_hospitals(from_time, to_time, max_days_old, None), from_time, to_time, max_days_old, self.__get_feature_hospital, want_geom=want_geom) def get_county(self, from_time, to_time, max_days_old, id_county, want_geom: bool): """ Return the development of icu capacities for one county """ return self.__res_single( self.__agg_query('landkreise_extended', 'county_id', from_time, to_time, max_days_old, id_county), from_time, to_time, max_days_old, id_county, self.__get_feature_agg, want_geom=want_geom) def get_by_counties(self, from_time, to_time, max_days_old, want_geom: bool): """ Return the development of icu capacities by counties """ return self.__res_collection( self.__agg_query('landkreise_extended', 'county_id', from_time, to_time, max_days_old, None), from_time, to_time, max_days_old, self.__get_feature_agg, want_geom=want_geom) def get_district(self, from_time, to_time, max_days_old, id_district, want_geom: bool): """ Return the development of icu capacities for one district """ return self.__res_single( self.__agg_query('regierungsbezirke', 'gd_id', from_time, to_time, max_days_old, id_district), from_time, to_time, max_days_old, id_district, self.__get_feature_agg, want_geom=want_geom) def get_by_districts(self, from_time, to_time, max_days_old, want_geom: bool): """ Return the development of icu capacities by districts """ return self.__res_collection( self.__agg_query('regierungsbezirke', 'gd_id', from_time, to_time, max_days_old, None), from_time, to_time, max_days_old, self.__get_feature_agg, want_geom=want_geom) def get_state(self, from_time, to_time, max_days_old, id_state, want_geom: bool): """ Return the development of icu capacities for one state """ return self.__res_single( self.__agg_query('bundeslaender', 'state_id', from_time, to_time, max_days_old, id_state), from_time, to_time, max_days_old, id_state, self.__get_feature_agg, want_geom=want_geom) def get_by_states(self, from_time, to_time, max_days_old, want_geom: bool): """ Return the development of icu capacities by states """ return self.__res_collection( self.__agg_query('bundeslaender', 'state_id', from_time, to_time, max_days_old, None), from_time, to_time, max_days_old, self.__get_feature_agg, want_geom=want_geom) def get_country(self, from_time, to_time, max_days_old, id_country, want_geom: bool): """ Return the development of icu capacities for one country """ return self.__res_single( self.__agg_query('germany', 'country_id', from_time, to_time, max_days_old, id_country), from_time, to_time, max_days_old, id_country, self.__get_feature_agg, want_geom=want_geom) def get_by_countries(self, from_time, to_time, max_days_old, want_geom: bool): """ Return the development of icu capacities by countries """ return self.__res_collection(self.__agg_query('germany', 'country_id', from_time, to_time, max_days_old, None), from_time, to_time, max_days_old, self.__get_feature_agg, want_geom=want_geom) def get_aggregated(self, agg_dict: dict, from_time: str, to_time: str, want_geom: bool): return self.__res_single(sql_stmt=self.__agg_region_query(agg_dict, from_time, to_time), from_time=from_time, to_time=to_time, max_days_old=5, cb=self.__get_feature_agg, id_hospital=None, want_geom=want_geom) @staticmethod def __get_feature_hospital(r, want_geom: bool): # agg.id, # agg.name, # agg.address, # agg.state, # agg.contact, # agg.helipad_nearby, # st_asgeojson(agg.location) :: jsonb AS geom, # CASE # WHEN min(agg.timestamp) IS NULL THEN NULL # ELSE json_agg( # {buildObj} # ORDER BY # agg.timestamp # )::jsonb # END AS development feature = { "type": 'Feature', "properties": { "id": r[0], "name": r[1], "address": r[2], "contact": r[4], "helipad_nearby": r[5], "developments": r[7] } } if want_geom: feature['geometry'] = r[6] return feature @staticmethod def __res_collection(sql_stmt, from_time, to_time, max_days_old, cb, want_geom: bool): sql_result = db.engine.execute(sql_stmt, from_time=from_time, to_time=to_time, max_days_old=max_days_old) \ .fetchall() features = [] for r in sql_result: feature = cb(r, want_geom=want_geom) features.append(feature) featurecollection = {"type": "FeatureCollection", "features": features} return jsonify(featurecollection), 200 @staticmethod def __res_single(sql_stmt, from_time, to_time, max_days_old, id_hospital, cb, want_geom: bool): r = db.engine.execute(sql_stmt, from_time=from_time, to_time=to_time, max_days_old=max_days_old, id_obj=id_hospital).fetchone() if r is None: return jsonify({'error': 'not found'}), 404 feature = cb(r, want_geom=want_geom) return jsonify(feature), 200 @staticmethod def __get_feature_agg(r, want_geom): # agg.ids, # agg.name, # st_asgeojson(agg.geom) :: jsonb AS geom, # st_asgeojson(st_centroid(agg.geom)):: jsonb AS centroid, # AS development, # AS developmentDays feature = { "type": 'Feature', "properties": { "id": r[0], "name": r[1], "centroid": r[3], "developments": r[4], "developmentDays": r[5] } } if want_geom: feature['geometry'] = r[2] return feature @staticmethod def __get_agg_cols(show_region=True): region_cols = "" if show_region: region_cols = """ r.ids as ids, r.name as name, r.geom as geom, """ return f""" {region_cols} c.timestamp as timestamp, MAX(c.last_update) as last_update, MAX(c.last_insert_date) as last_insert_date, SUM(icu_low_v) as icu_low_v, SUM(icu_low_b) as icu_low_b, SUM(icu_low_a) as icu_low_a, SUM(icu_low_nv) as icu_low_nv, SUM(icu_high_v) as icu_high_v, SUM(icu_high_b) as icu_high_b, SUM(icu_high_a) as icu_high_a, SUM(icu_high_nv) as icu_high_nv, SUM(ecmo_v) as ecmo_v, SUM(ecmo_b) as ecmo_b, SUM(ecmo_a) as ecmo_a, SUM(ecmo_nv) as ecmo_nv, COUNT(c.hospital_id) as num_hospitals """ def __agg_query(self, agg_table, region_id_col, from_time, to_time, max_days_old, id_obj): sql_from_time = "" sql_to_time = "" sql_max_days_old = "" sql_id_obj = "" if from_time: sql_from_time = "AND agg.timestamp >= :from_time" if to_time: sql_to_time = "AND agg.timestamp <= :to_time" if max_days_old: sql_max_days_old = "AND c.age <= (:max_days_old || ' days') ::interval" if id_obj: sql_id_obj = "AND agg.ids = :id_obj" # noinspection SqlResolve stmnt = text(""" WITH agg AS ( SELECT {agg_cols} FROM filled_hospital_timeseries_with_fix c JOIN {agg_table} r ON c.{region_id_col} = r.ids WHERE landkreis_id IS NOT NULL {sql_max_days_old} GROUP BY r.ids, r.name, r.geom, c.timestamp ) SELECT agg.ids, agg.name, st_asgeojson(agg.geom) :: jsonb AS geom, st_asgeojson(st_centroid(agg.geom)):: jsonb AS centroid, -- check if the first value is null, can ONLY happen if there are no values for the landkreis, -- then we return null CASE WHEN min(agg.timestamp) IS NULL THEN NULL ELSE json_agg( {build_obj} ORDER BY agg.timestamp )::jsonb END AS development, CASE WHEN min(agg.timestamp) IS NULL THEN NULL ELSE json_object_agg( agg.timestamp::date, {build_obj} ORDER BY agg.timestamp )::jsonb END AS developmentDays FROM agg WHERE 1 = 1 {sql_from_time} {sql_to_time} {sql_id_obj} GROUP BY agg.ids, agg.name, agg.geom """.format(agg_table=agg_table, agg_cols=self.__agg_cols, build_obj=self.__build_obj, sql_from_time=sql_from_time, sql_to_time=sql_to_time, sql_max_days_old=sql_max_days_old, sql_id_obj=sql_id_obj, region_id_col=region_id_col) ) # current_app.logger.debug(stmnt) return stmnt def __get_hospitals(self, from_time, to_time, max_days_old, id_hospital): """ Return the development of icu capacities by counties """ sql_from_time = "" sql_to_time = "" sql_max_days_old = "" sql_id_county = "" if from_time: sql_from_time = "AND agg.timestamp >= :from_time" if to_time: sql_to_time = "AND agg.timestamp <= :to_time" if max_days_old: sql_max_days_old = "AND agg.age <= (:max_days_old || ' days') ::interval" if id_hospital: sql_id_county = "AND agg.hospital_id = :id_obj" # noinspection SqlUnused sql_stmt = text(""" SELECT agg.hospital_id, agg.name, agg.address, agg.state, agg.contact, agg.helipad_nearby, st_asgeojson(agg.geom) :: jsonb AS geom, CASE WHEN min(agg.timestamp) IS NULL THEN NULL ELSE json_agg( {build_obj} ORDER BY agg.timestamp )::jsonb END AS development, CASE WHEN min(agg.timestamp) IS NULL THEN NULL ELSE json_object_agg( agg.timestamp::date, {build_obj} ORDER BY agg.timestamp )::jsonb END AS developmentDays FROM (SELECT *, 1 AS num_hospitals FROM filled_hospital_timeseries_with_fix) agg WHERE landkreis_id IS NOT NULL {sql_from_time} {sql_to_time} {sql_id_county} {sql_max_days_old} GROUP BY agg.hospital_id, agg.name, agg.address, agg.state, agg.contact, agg.geom, agg.helipad_nearby """.format(build_obj=self.__build_obj, sql_from_time=sql_from_time, sql_to_time=sql_to_time, sql_max_days_old=sql_max_days_old, sql_id_county=sql_id_county)) # current_app.logger.debug(f'Counties: {sql_stmt}') return sql_stmt # noinspection DuplicatedCode def __agg_region_query(self, agg_table_dict: dict[str, str], from_time: str, to_time: str): sql_from_time = "" sql_to_time = "" sql_join_union = [] regex = re.compile(r"[^0-9]", re.IGNORECASE) all_ids = [] number_of_ids = 0 ids: str agg_table = '' region_filter_arr = [] for agg_table, ids in agg_table_dict.items(): if ids is None: continue ids_sanitized = list(map(lambda d: re.sub(regex, "", d.strip()), ids.split(","))) number_of_ids += len(ids_sanitized) all_ids += ids_sanitized ids_sanitized_sql = "('" + ("', '".join(ids_sanitized)) + "')" desc = '' if agg_table == 'landkreise': agg_table = 'landkreise_extended' desc = "bez AS description" region_filter_arr.append(f'county_id IN {ids_sanitized_sql}') elif agg_table == 'regierungsbezirke': desc = "'RB' AS description" region_filter_arr.append(f'gd_id IN {ids_sanitized_sql}') elif agg_table == 'bundeslaender': desc = "'BL' AS description" region_filter_arr.append(f'state_id IN {ids_sanitized_sql}') elif agg_table == 'laender': agg_table = 'germany' ids_sanitized_sql = '(\'de\')' all_ids.append('de') region_filter_arr.append(f'country_id IN {ids_sanitized_sql}') desc = "'L' AS description" # noinspection SqlResolve sql_join_union += [f"SELECT ids, geom, name, {desc} FROM {agg_table} WHERE ids IN {ids_sanitized_sql}"] sql_joins = " ( " + (" UNION ".join(sql_join_union)) + " ) AS r" region_filters = " OR ".join(region_filter_arr) if from_time: sql_from_time = f"AND agg.timestamp >= :fromTimeParam" if to_time: sql_to_time = f"AND agg.timestamp <= :toTimeParam" # noinspection SqlResolve sql_stmt = text(""" WITH regions_arr AS ( SELECT array_agg(DISTINCT r.ids) as ids, array_agg(DISTINCT (r.description || ' ' || r.name)) as name, array_agg(DISTINCT r.description) as "desc", st_union(DISTINCT r.geom) as geom FROM {sql_joins}
import sys from ctypes import * import platform from .types import * from ._platform import DLL_PATH, is_windows def load_libtiepie(): """Load libtiepie library and import all functions.""" if is_windows: from ctypes.wintypes import HANDLE, HWND, LPARAM, WPARAM api = CDLL(DLL_PATH) api.LibInit.restype = None api.LibInit.argtypes = [] api.LibIsInitialized.restype = c_uint8 api.LibIsInitialized.argtypes = [] api.LibExit.restype = None api.LibExit.argtypes = [] api.LibGetVersion.restype = c_uint64 api.LibGetVersion.argtypes = [] api.LibGetVersionExtra.restype = c_char_p api.LibGetVersionExtra.argtypes = [] api.LibGetConfig.restype = c_uint32 api.LibGetConfig.argtypes = [c_void_p, c_uint32] api.LibGetLastStatus.restype = c_int32 api.LibGetLastStatus.argtypes = [] api.LibGetLastStatusStr.restype = c_char_p api.LibGetLastStatusStr.argtypes = [] api.LstUpdate.restype = None api.LstUpdate.argtypes = [] api.LstGetCount.restype = c_uint32 api.LstGetCount.argtypes = [] api.LstOpenDevice.restype = c_uint32 api.LstOpenDevice.argtypes = [c_uint32, c_uint32, c_uint32] api.LstOpenOscilloscope.restype = c_uint32 api.LstOpenOscilloscope.argtypes = [c_uint32, c_uint32] api.LstOpenGenerator.restype = c_uint32 api.LstOpenGenerator.argtypes = [c_uint32, c_uint32] api.LstOpenI2CHost.restype = c_uint32 api.LstOpenI2CHost.argtypes = [c_uint32, c_uint32] api.LstCreateCombinedDevice.restype = c_uint32 api.LstCreateCombinedDevice.argtypes = [c_void_p, c_uint32] api.LstCreateAndOpenCombinedDevice.restype = c_uint32 api.LstCreateAndOpenCombinedDevice.argtypes = [c_void_p, c_uint32] api.LstRemoveDevice.restype = None api.LstRemoveDevice.argtypes = [c_uint32] api.LstRemoveDeviceForce.restype = None api.LstRemoveDeviceForce.argtypes = [c_uint32] api.LstDevCanOpen.restype = c_uint8 api.LstDevCanOpen.argtypes = [c_uint32, c_uint32, c_uint32] api.LstDevGetProductId.restype = c_uint32 api.LstDevGetProductId.argtypes = [c_uint32, c_uint32] api.LstDevGetVendorId.restype = c_uint32 api.LstDevGetVendorId.argtypes = [c_uint32, c_uint32] api.LstDevGetName.restype = c_uint32 api.LstDevGetName.argtypes = [c_uint32, c_uint32, c_char_p, c_uint32] api.LstDevGetNameShort.restype = c_uint32 api.LstDevGetNameShort.argtypes = [c_uint32, c_uint32, c_char_p, c_uint32] api.LstDevGetNameShortest.restype = c_uint32 api.LstDevGetNameShortest.argtypes = [c_uint32, c_uint32, c_char_p, c_uint32] api.LstDevGetDriverVersion.restype = c_uint64 api.LstDevGetDriverVersion.argtypes = [c_uint32, c_uint32] api.LstDevGetRecommendedDriverVersion.restype = c_uint64 api.LstDevGetRecommendedDriverVersion.argtypes = [c_uint32, c_uint32] api.LstDevGetFirmwareVersion.restype = c_uint64 api.LstDevGetFirmwareVersion.argtypes = [c_uint32, c_uint32] api.LstDevGetRecommendedFirmwareVersion.restype = c_uint64 api.LstDevGetRecommendedFirmwareVersion.argtypes = [c_uint32, c_uint32] api.LstDevGetCalibrationDate.restype = c_uint32 api.LstDevGetCalibrationDate.argtypes = [c_uint32, c_uint32] api.LstDevGetSerialNumber.restype = c_uint32 api.LstDevGetSerialNumber.argtypes = [c_uint32, c_uint32] api.LstDevGetIPv4Address.restype = c_uint32 api.LstDevGetIPv4Address.argtypes = [c_uint32, c_uint32] api.LstDevGetIPPort.restype = c_uint16 api.LstDevGetIPPort.argtypes = [c_uint32, c_uint32] api.LstDevHasServer.restype = c_uint8 api.LstDevHasServer.argtypes = [c_uint32, c_uint32] api.LstDevGetServer.restype = c_uint32 api.LstDevGetServer.argtypes = [c_uint32, c_uint32] api.LstDevGetTypes.restype = c_uint32 api.LstDevGetTypes.argtypes = [c_uint32, c_uint32] api.LstDevGetContainedSerialNumbers.restype = c_uint32 api.LstDevGetContainedSerialNumbers.argtypes = [c_uint32, c_uint32, c_void_p, c_uint32] api.LstCbDevGetProductId.restype = c_uint32 api.LstCbDevGetProductId.argtypes = [c_uint32, c_uint32, c_uint32] api.LstCbDevGetVendorId.restype = c_uint32 api.LstCbDevGetVendorId.argtypes = [c_uint32, c_uint32, c_uint32] api.LstCbDevGetName.restype = c_uint32 api.LstCbDevGetName.argtypes = [c_uint32, c_uint32, c_uint32, c_char_p, c_uint32] api.LstCbDevGetNameShort.restype = c_uint32 api.LstCbDevGetNameShort.argtypes = [c_uint32, c_uint32, c_uint32, c_char_p, c_uint32] api.LstCbDevGetNameShortest.restype = c_uint32 api.LstCbDevGetNameShortest.argtypes = [c_uint32, c_uint32, c_uint32, c_char_p, c_uint32] api.LstCbDevGetDriverVersion.restype = c_uint64 api.LstCbDevGetDriverVersion.argtypes = [c_uint32, c_uint32, c_uint32] api.LstCbDevGetFirmwareVersion.restype = c_uint64 api.LstCbDevGetFirmwareVersion.argtypes = [c_uint32, c_uint32, c_uint32] api.LstCbDevGetCalibrationDate.restype = c_uint32 api.LstCbDevGetCalibrationDate.argtypes = [c_uint32, c_uint32, c_uint32] api.LstCbScpGetChannelCount.restype = c_uint16 api.LstCbScpGetChannelCount.argtypes = [c_uint32, c_uint32, c_uint32] api.LstSetCallbackDeviceAdded.restype = None api.LstSetCallbackDeviceAdded.argtypes = [CallbackDeviceList, c_void_p] api.LstSetCallbackDeviceRemoved.restype = None api.LstSetCallbackDeviceRemoved.argtypes = [CallbackDeviceList, c_void_p] api.LstSetCallbackDeviceCanOpenChanged.restype = None api.LstSetCallbackDeviceCanOpenChanged.argtypes = [CallbackDeviceList, c_void_p] if platform.system() == 'Linux': api.LstSetEventDeviceAdded.restype = None api.LstSetEventDeviceAdded.argtypes = [c_int] api.LstSetEventDeviceRemoved.restype = None api.LstSetEventDeviceRemoved.argtypes = [c_int] api.LstSetEventDeviceCanOpenChanged.restype = None api.LstSetEventDeviceCanOpenChanged.argtypes = [c_int] if platform.system() == 'Windows': api.LstSetEventDeviceAdded.restype = None api.LstSetEventDeviceAdded.argtypes = [HANDLE] api.LstSetEventDeviceRemoved.restype = None api.LstSetEventDeviceRemoved.argtypes = [HANDLE] api.LstSetEventDeviceCanOpenChanged.restype = None api.LstSetEventDeviceCanOpenChanged.argtypes = [HANDLE] api.LstSetMessageDeviceAdded.restype = None api.LstSetMessageDeviceAdded.argtypes = [HWND] api.LstSetMessageDeviceRemoved.restype = None api.LstSetMessageDeviceRemoved.argtypes = [HWND] api.LstSetMessageDeviceCanOpenChanged.restype = None api.LstSetMessageDeviceCanOpenChanged.argtypes = [HWND] api.NetGetAutoDetectEnabled.restype = c_uint8 api.NetGetAutoDetectEnabled.argtypes = [] api.NetSetAutoDetectEnabled.restype = c_uint8 api.NetSetAutoDetectEnabled.argtypes = [c_uint8] api.NetSrvAdd.restype = c_uint8 api.NetSrvAdd.argtypes = [c_char_p, c_uint32, c_void_p] api.NetSrvRemove.restype = c_uint8 api.NetSrvRemove.argtypes = [c_char_p, c_uint32, c_uint8] api.NetSrvGetCount.restype = c_uint32 api.NetSrvGetCount.argtypes = [] api.NetSrvGetByIndex.restype = c_uint32 api.NetSrvGetByIndex.argtypes = [c_uint32] api.NetSrvGetByURL.restype = c_uint32 api.NetSrvGetByURL.argtypes = [c_char_p, c_uint32] api.NetSrvSetCallbackAdded.restype = None api.NetSrvSetCallbackAdded.argtypes = [CallbackHandle, c_void_p] if platform.system() == 'Linux': api.NetSrvSetEventAdded.restype = None api.NetSrvSetEventAdded.argtypes = [c_int] if platform.system() == 'Windows': api.NetSrvSetEventAdded.restype = None api.NetSrvSetEventAdded.argtypes = [HANDLE] api.NetSrvSetMessageAdded.restype = None api.NetSrvSetMessageAdded.argtypes = [HWND] api.ObjClose.restype = None api.ObjClose.argtypes = [c_uint32] api.ObjIsRemoved.restype = c_uint8 api.ObjIsRemoved.argtypes = [c_uint32] api.ObjGetInterfaces.restype = c_uint64 api.ObjGetInterfaces.argtypes = [c_uint32] api.ObjSetEventCallback.restype = None api.ObjSetEventCallback.argtypes = [c_uint32, CallbackEvent, c_void_p] api.ObjGetEvent.restype = c_uint8 api.ObjGetEvent.argtypes = [c_uint32, c_void_p, c_void_p] if platform.system() == 'Linux': api.ObjSetEventEvent.restype = None api.ObjSetEventEvent.argtypes = [c_uint32, c_int] if platform.system() == 'Windows': api.ObjSetEventEvent.restype = None api.ObjSetEventEvent.argtypes = [c_uint32, HANDLE] api.ObjSetEventWindowHandle.restype = None api.ObjSetEventWindowHandle.argtypes = [c_uint32, HWND] api.DevClose.restype = None api.DevClose.argtypes = [c_uint32] api.DevIsRemoved.restype = c_uint8 api.DevIsRemoved.argtypes = [c_uint32] api.DevGetDriverVersion.restype = c_uint64 api.DevGetDriverVersion.argtypes = [c_uint32] api.DevGetFirmwareVersion.restype = c_uint64 api.DevGetFirmwareVersion.argtypes = [c_uint32] api.DevGetCalibrationDate.restype = c_uint32 api.DevGetCalibrationDate.argtypes = [c_uint32] api.DevGetCalibrationToken.restype = c_uint32 api.DevGetCalibrationToken.argtypes = [c_uint32, c_char_p, c_uint32] api.DevGetSerialNumber.restype = c_uint32 api.DevGetSerialNumber.argtypes = [c_uint32] api.DevGetIPv4Address.restype = c_uint32 api.DevGetIPv4Address.argtypes = [c_uint32] api.DevGetIPPort.restype = c_uint16 api.DevGetIPPort.argtypes = [c_uint32] api.DevGetProductId.restype = c_uint32 api.DevGetProductId.argtypes = [c_uint32] api.DevGetVendorId.restype = c_uint32 api.DevGetVendorId.argtypes = [c_uint32] api.DevGetType.restype = c_uint32 api.DevGetType.argtypes = [c_uint32] api.DevGetName.restype = c_uint32 api.DevGetName.argtypes = [c_uint32, c_char_p, c_uint32] api.DevGetNameShort.restype = c_uint32 api.DevGetNameShort.argtypes = [c_uint32, c_char_p, c_uint32] api.DevGetNameShortest.restype = c_uint32 api.DevGetNameShortest.argtypes = [c_uint32, c_char_p, c_uint32] api.DevHasBattery.restype = c_uint8 api.DevHasBattery.argtypes = [c_uint32] api.DevGetBatteryCharge.restype = c_int8 api.DevGetBatteryCharge.argtypes = [c_uint32] api.DevGetBatteryTimeToEmpty.restype = c_int32 api.DevGetBatteryTimeToEmpty.argtypes = [c_uint32] api.DevGetBatteryTimeToFull.restype = c_int32 api.DevGetBatteryTimeToFull.argtypes = [c_uint32] api.DevIsBatteryChargerConnected.restype = c_uint8 api.DevIsBatteryChargerConnected.argtypes = [c_uint32] api.DevIsBatteryCharging.restype = c_uint8 api.DevIsBatteryCharging.argtypes = [c_uint32] api.DevIsBatteryBroken.restype = c_uint8 api.DevIsBatteryBroken.argtypes = [c_uint32] api.DevSetCallbackRemoved.restype = None api.DevSetCallbackRemoved.argtypes = [c_uint32, Callback, c_void_p] if platform.system() == 'Linux': api.DevSetEventRemoved.restype = None api.DevSetEventRemoved.argtypes = [c_uint32, c_int] if platform.system() == 'Windows': api.DevSetEventRemoved.restype = None api.DevSetEventRemoved.argtypes = [c_uint32, HANDLE] api.DevSetMessageRemoved.restype = None api.DevSetMessageRemoved.argtypes = [c_uint32, HWND, WPARAM, LPARAM] api.DevTrGetInputCount.restype = c_uint16 api.DevTrGetInputCount.argtypes = [c_uint32] api.DevTrGetInputIndexById.restype = c_uint16 api.DevTrGetInputIndexById.argtypes = [c_uint32, c_uint32] api.ScpTrInIsTriggered.restype = c_uint8 api.ScpTrInIsTriggered.argtypes = [c_uint32, c_uint16] api.DevTrInGetEnabled.restype = c_uint8 api.DevTrInGetEnabled.argtypes = [c_uint32, c_uint16] api.DevTrInSetEnabled.restype = c_uint8 api.DevTrInSetEnabled.argtypes = [c_uint32, c_uint16, c_uint8] api.DevTrInGetKinds.restype = c_uint64 api.DevTrInGetKinds.argtypes = [c_uint32, c_uint16] api.ScpTrInGetKindsEx.restype = c_uint64 api.ScpTrInGetKindsEx.argtypes = [c_uint32, c_uint16, c_uint32] api.DevTrInGetKind.restype = c_uint64 api.DevTrInGetKind.argtypes = [c_uint32, c_uint16] api.DevTrInSetKind.restype = c_uint64 api.DevTrInSetKind.argtypes = [c_uint32, c_uint16, c_uint64] api.DevTrInIsAvailable.restype = c_uint8 api.DevTrInIsAvailable.argtypes = [c_uint32, c_uint16] api.ScpTrInIsAvailableEx.restype = c_uint8 api.ScpTrInIsAvailableEx.argtypes = [c_uint32, c_uint16, c_uint32] api.DevTrInGetId.restype = c_uint32 api.DevTrInGetId.argtypes = [c_uint32, c_uint16] api.DevTrInGetName.restype = c_uint32 api.DevTrInGetName.argtypes = [c_uint32, c_uint16, c_char_p, c_uint32] api.DevTrGetOutputCount.restype = c_uint16 api.DevTrGetOutputCount.argtypes = [c_uint32] api.DevTrGetOutputIndexById.restype = c_uint16 api.DevTrGetOutputIndexById.argtypes = [c_uint32, c_uint32] api.DevTrOutGetEnabled.restype = c_uint8 api.DevTrOutGetEnabled.argtypes = [c_uint32, c_uint16] api.DevTrOutSetEnabled.restype = c_uint8 api.DevTrOutSetEnabled.argtypes = [c_uint32, c_uint16, c_uint8] api.DevTrOutGetEvents.restype = c_uint64 api.DevTrOutGetEvents.argtypes = [c_uint32, c_uint16] api.DevTrOutGetEvent.restype = c_uint64 api.DevTrOutGetEvent.argtypes = [c_uint32, c_uint16] api.DevTrOutSetEvent.restype = c_uint64 api.DevTrOutSetEvent.argtypes = [c_uint32, c_uint16, c_uint64] api.DevTrOutGetId.restype = c_uint32 api.DevTrOutGetId.argtypes = [c_uint32, c_uint16] api.DevTrOutGetName.restype = c_uint32 api.DevTrOutGetName.argtypes = [c_uint32, c_uint16, c_char_p, c_uint32] api.DevTrOutTrigger.restype = c_uint8 api.DevTrOutTrigger.argtypes = [c_uint32, c_uint16] api.ScpGetChannelCount.restype = c_uint16 api.ScpGetChannelCount.argtypes = [c_uint32] api.ScpChIsAvailable.restype = c_uint8 api.ScpChIsAvailable.argtypes = [c_uint32, c_uint16] api.ScpChIsAvailableEx.restype = c_uint8 api.ScpChIsAvailableEx.argtypes = [c_uint32, c_uint16, c_uint32, c_double, c_uint8, c_void_p, c_uint16] api.ScpChGetConnectorType.restype = c_uint32 api.ScpChGetConnectorType.argtypes = [c_uint32, c_uint16] api.ScpChIsDifferential.restype = c_uint8 api.ScpChIsDifferential.argtypes = [c_uint32, c_uint16] api.ScpChGetImpedance.restype = c_double api.ScpChGetImpedance.argtypes = [c_uint32, c_uint16] api.ScpChGetBandwidths.restype = c_uint32 api.ScpChGetBandwidths.argtypes = [c_uint32, c_uint16, c_void_p, c_uint32] api.ScpChGetBandwidth.restype = c_double api.ScpChGetBandwidth.argtypes = [c_uint32, c_uint16] api.ScpChSetBandwidth.restype = c_double api.ScpChSetBandwidth.argtypes = [c_uint32, c_uint16, c_double] api.ScpChGetCouplings.restype = c_uint64 api.ScpChGetCouplings.argtypes = [c_uint32, c_uint16] api.ScpChGetCoupling.restype = c_uint64 api.ScpChGetCoupling.argtypes = [c_uint32, c_uint16] api.ScpChSetCoupling.restype = c_uint64 api.ScpChSetCoupling.argtypes = [c_uint32, c_uint16, c_uint64] api.ScpChGetEnabled.restype = c_uint8 api.ScpChGetEnabled.argtypes = [c_uint32, c_uint16] api.ScpChSetEnabled.restype = c_uint8 api.ScpChSetEnabled.argtypes = [c_uint32, c_uint16, c_uint8] api.ScpChGetProbeGain.restype = c_double api.ScpChGetProbeGain.argtypes = [c_uint32, c_uint16] api.ScpChSetProbeGain.restype = c_double api.ScpChSetProbeGain.argtypes = [c_uint32, c_uint16, c_double] api.ScpChGetProbeOffset.restype = c_double api.ScpChGetProbeOffset.argtypes = [c_uint32, c_uint16] api.ScpChSetProbeOffset.restype = c_double api.ScpChSetProbeOffset.argtypes = [c_uint32, c_uint16, c_double] api.ScpChGetAutoRanging.restype = c_uint8 api.ScpChGetAutoRanging.argtypes = [c_uint32, c_uint16] api.ScpChSetAutoRanging.restype = c_uint8 api.ScpChSetAutoRanging.argtypes = [c_uint32, c_uint16, c_uint8] api.ScpChGetRanges.restype = c_uint32 api.ScpChGetRanges.argtypes = [c_uint32, c_uint16, c_void_p, c_uint32] api.ScpChGetRangesEx.restype = c_uint32 api.ScpChGetRangesEx.argtypes = [c_uint32, c_uint16, c_uint64, c_void_p, c_uint32] api.ScpChGetRange.restype = c_double api.ScpChGetRange.argtypes = [c_uint32, c_uint16] api.ScpChSetRange.restype = c_double api.ScpChSetRange.argtypes = [c_uint32, c_uint16, c_double] api.ScpChHasSafeGround.restype = c_uint8 api.ScpChHasSafeGround.argtypes = [c_uint32, c_uint16] api.ScpChGetSafeGroundEnabled.restype = c_uint8 api.ScpChGetSafeGroundEnabled.argtypes = [c_uint32, c_uint16] api.ScpChSetSafeGroundEnabled.restype = c_uint8 api.ScpChSetSafeGroundEnabled.argtypes = [c_uint32, c_uint16, c_uint8] api.ScpChGetSafeGroundThresholdMin.restype = c_double api.ScpChGetSafeGroundThresholdMin.argtypes = [c_uint32, c_uint16] api.ScpChGetSafeGroundThresholdMax.restype = c_double api.ScpChGetSafeGroundThresholdMax.argtypes = [c_uint32, c_uint16] api.ScpChGetSafeGroundThreshold.restype = c_double api.ScpChGetSafeGroundThreshold.argtypes = [c_uint32, c_uint16] api.ScpChSetSafeGroundThreshold.restype = c_double api.ScpChSetSafeGroundThreshold.argtypes = [c_uint32, c_uint16, c_double] api.ScpChVerifySafeGroundThreshold.restype = c_double api.ScpChVerifySafeGroundThreshold.argtypes = [c_uint32, c_uint16, c_double] api.ScpChHasTrigger.restype = c_uint8 api.ScpChHasTrigger.argtypes = [c_uint32, c_uint16] api.ScpChHasTriggerEx.restype = c_uint8 api.ScpChHasTriggerEx.argtypes = [c_uint32, c_uint16, c_uint32] api.ScpChTrIsAvailable.restype = c_uint8 api.ScpChTrIsAvailable.argtypes = [c_uint32, c_uint16] api.ScpChTrIsAvailableEx.restype = c_uint8 api.ScpChTrIsAvailableEx.argtypes = [c_uint32, c_uint16, c_uint32, c_double, c_uint8, c_void_p, c_void_p, c_uint16] api.ScpChTrIsTriggered.restype = c_uint8 api.ScpChTrIsTriggered.argtypes = [c_uint32, c_uint16] api.ScpChTrGetEnabled.restype = c_uint8 api.ScpChTrGetEnabled.argtypes = [c_uint32, c_uint16] api.ScpChTrSetEnabled.restype = c_uint8 api.ScpChTrSetEnabled.argtypes = [c_uint32, c_uint16, c_uint8] api.ScpChTrGetKinds.restype = c_uint64 api.ScpChTrGetKinds.argtypes = [c_uint32, c_uint16] api.ScpChTrGetKindsEx.restype = c_uint64 api.ScpChTrGetKindsEx.argtypes = [c_uint32, c_uint16, c_uint32] api.ScpChTrGetKind.restype = c_uint64 api.ScpChTrGetKind.argtypes = [c_uint32, c_uint16] api.ScpChTrSetKind.restype = c_uint64 api.ScpChTrSetKind.argtypes = [c_uint32, c_uint16, c_uint64] api.ScpChTrGetLevelModes.restype = c_uint32 api.ScpChTrGetLevelModes.argtypes = [c_uint32, c_uint16] api.ScpChTrGetLevelMode.restype = c_uint32 api.ScpChTrGetLevelMode.argtypes =
import pickle from abc import ABC, abstractmethod from io import BytesIO from db_classes import PRG from geo_utilities import * class XmlParser(ABC): def __init__(self, xml_path: str, tags_tuple: tuple, event_type: str) -> None: self.xml_path = xml_path self.tags_tuple = tags_tuple self.event_type = event_type @property def get_xml_path(self) -> str: return f"{self.xml_path}" @abstractmethod def check_path(self) -> None: pass @abstractmethod def parse_xml(self) -> None: pass class BDOT10kDictsParser(XmlParser): def __init__(self, xml_path: str, tags_tuple: tuple, event_type: str) -> None: super().__init__(xml_path, tags_tuple, event_type) self.bdot10k_dicts = {} self.check_path() self.parse_xml() def check_path(self) -> None: """" Method that checks if path to file is valid """ if not os.path.isfile(self.xml_path): raise Exception("Pod adresem: '" + self.xml_path + "' nie ma pliku '" + os.environ['BDOT10K_DICTS_NAME'] + "'. Uzupełnij ten plik i uruchom program ponownie!") def parse_xml(self) -> None: """ Method that parses xml file to dictionairy object """ xml_contex = etree.iterparse(self.xml_path, events=(self.event_type,), tag=self.tags_tuple) curr_dict = {} c_val = "" for _, curr_node in xml_contex: c_text = curr_node.text curr_attrib = curr_node.attrib if not c_text.isspace() and c_text is not None: c_text1 = "".join([lett if not lett.isupper() else " " + lett.lower() for i, lett in enumerate(c_text)]) curr_dict[c_val] = c_text1 if 'value' in curr_attrib: c_val = curr_attrib['value'] if 'name' in curr_attrib: curr_dict = {} self.bdot10k_dicts[curr_attrib['name']] = curr_dict def get_bdot10k_dicts(self) -> dict: """ Method that returns final dicts """ return self.bdot10k_dicts class BDOT10kDataParser(XmlParser): def __init__(self, xml_path: str, tags_tuple: tuple, event_type: str, dicts_tags: dict, tags_dict: dict) -> None: super().__init__(xml_path, tags_tuple, event_type) self.dicts_tags = dicts_tags self.tags_dict = tags_dict self.check_path() self.bdot10k_dicts = read_bdot10k_dicts() self.parse_xml() def check_path(self) -> None: """" Method that checks if path to file is valid """ if not os.path.isfile(self.xml_path): raise Exception("Pod adresem: '" + self.xml_path + "' nie ma pliku '" + os.environ['BDOT10K_NAME'] + "'. Pobierz ten plik ze strony: '" + os.environ['BDOT10K_LINK'] + "' i uruchom program" + " ponownie!") def parse_xml(self) -> None: """ Method that parses xml file and saves data to SQL database """ with zipfile.ZipFile(self.xml_path, "r") as zfile: for woj_name in zfile.namelist(): woj_zip = BytesIO(zfile.read(woj_name)) logging.info(woj_name) bdot10k_woj_rows = [] with zipfile.ZipFile(woj_zip, "r") as zfile2: for pow_name in zfile2.namelist(): pow_zip = BytesIO(zfile2.read(pow_name)) with zipfile.ZipFile(pow_zip, "r") as zfile3: for xml_file in zfile3.namelist(): if "BUBD" in xml_file: # Wyciągamy interesujące nas informacje z pliku xml i zapisujemy je w tablicy bd_xml = BytesIO(zfile3.read(xml_file)) xml_contex = etree.iterparse(bd_xml, events=(self.event_type,), tag=self.tags_tuple) fin_row = ['', '', '', '', 0, 0, '', 0.0, 0.0, 0.0, ''] bdot10k_woj_rows += self.parse_bdot10k_xml(xml_contex, fin_row) # Zapisujemy do bazy danych informacje dotyczące budynkow z danego województwa bdot10k_rows = [] db_save_freq = int(os.environ['DB_SAVE_FREQ']) with sa.orm.Session(SQL_ENGINE) as db_session: for i, c_row in enumerate(bdot10k_woj_rows): bdot10k_rows.append(BDOT10K(*c_row)) if i % db_save_freq == 0: db_session.bulk_save_objects(bdot10k_rows) db_session.commit() bdot10k_rows = [] if bdot10k_rows: db_session.bulk_save_objects(bdot10k_rows) db_session.commit() def parse_bdot10k_xml(self, xml_contex: etree.iterparse, fin_row: list) -> list: """ Method that exctrats data from BDOT10k XML file """ # Tworzymy liste przechowujaca dane z XML o powiatach bdot10k_pow_rows = [] all_tags = self.tags_tuple for _, curr_node in xml_contex: c_tag = curr_node.tag row_idx = self.tags_dict[c_tag] c_text = curr_node.text if curr_node.text is not None else '' if c_tag == all_tags[7] and c_text is not None and not c_text.isspace(): # Wczytujemy geometrię WKT crds_lst = c_text.split(" ") coords_str = "".join([crds_lst[i] + " " + crds_lst[i + 1] + ", " for i in range(0, len(crds_lst), 2)]) poly_wkt = "POLYGON((" + coords_str[:-2] + "))" poly_geom = ogr.CreateGeometryFromWkt(poly_wkt) # Wyliczamy powierzchnię budynku mnozac powierzchnie wielokata przez liczbe kondygnacji poly_area = poly_geom.GetArea() fin_row[-4] = int(poly_area) if fin_row[4] == 0 else int(poly_area * fin_row[4]) # Konwertujemy współrzędne z układu map polskich do układu map google coord_trans = create_coords_transform(int(os.environ["PL_CRDS"]), int(os.environ["WORLD_CRDS"]), True) poly_geom.Transform(coord_trans) # Wyliczamy centroid wielokata budynku poly_centroid = poly_geom.Centroid() poly_centr_y = np.asarray(poly_centroid.GetY()) poly_centr_x = np.asarray(poly_centroid.GetX()) coords_prec = int(os.environ["COORDS_PREC"]) fin_row[-3] = np.round(poly_centr_y, coords_prec) fin_row[-2] = np.round(poly_centr_x, coords_prec) # Konwertujemy geometrie na GeoJson geojson_poly = poly_geom.ExportToJson() reduced_geojson = reduce_coordinates_precision(geojson_poly, coords_prec) fin_row[-1] = reduced_geojson # Dodajemy nowy wiersz do lacznej listy c_sekt_tpl = get_sector_codes(poly_centr_y, poly_centr_x) c_sekt_szer = c_sekt_tpl[0] c_sekt_dl = c_sekt_tpl[1] kod_sektora = str(c_sekt_szer).zfill(3) + "_" + str(c_sekt_dl).zfill(3) fin_row2 = [kod_sektora] + fin_row bdot10k_pow_rows.append(fin_row2) fin_row = ['', '', '', '', 0, 0, '', 0.0, 0.0, 0.0, ''] elif c_tag == all_tags[5]: fin_row[row_idx] = 1 if c_text == 'true' else 0 elif c_tag == all_tags[4]: fin_row[row_idx] = int(c_text) if c_text.isnumeric() else 0 elif c_tag in (all_tags[0], all_tags[1], all_tags[2], all_tags[3]): c_dict = self.bdot10k_dicts[self.dicts_tags[c_tag]] if c_text in c_dict: if fin_row[row_idx] == '': fin_row[row_idx] = c_dict[c_text] else: fin_row[row_idx] += " | " + c_dict[c_text] else: fin_row[row_idx] = "" else: fin_row[row_idx] = c_text # Czyscimy przetworzone obiekty wezlow XML z pamieci clear_xml_node(curr_node) return bdot10k_pow_rows @time_decorator def read_bdot10k_dicts() -> dict: """ Function that reads BDOT10K dicts into dictionairy""" # Parsujemy plik XML do postaci słowika dicts_path = os.path.join(os.environ["PARENT_PATH"], os.environ['SLOWS_PATH']) all_tags = tuple(os.environ['BDOT10K_DICTS_TAGS'].split(";")) bdot10k_dicts = BDOT10kDictsParser(dicts_path, all_tags, 'start').get_bdot10k_dicts() # Importujemy inne słowniki niezawarte w domyślnym zestawie słowników bubd_codes_path = os.path.join(os.environ["PARENT_PATH"], os.environ['BUBD_CODES_PATH']) bdot10k_dicts["x_kod"] = csv_to_dict(bubd_codes_path) # Importujemy inne słowniki niezawarte w domyślnym zestawie słowników karto10k_path = os.path.join(os.environ["PARENT_PATH"], os.environ['KARTO10K_PATH']) bdot10k_dicts["x_kodKarto10k"] = csv_to_dict(karto10k_path) return bdot10k_dicts class PRGDataParser(XmlParser): def __init__(self, xml_path: str, tags_tuple: tuple, event_type: str, perms_dict: dict) -> None: super().__init__(xml_path, tags_tuple, event_type) self.perms_dict = perms_dict self.check_path() self.addr_phrs_list = [] self.addr_phrs_len = 0 self.parse_xml() def check_path(self) -> None: """" Method that checks if path to file is valid """ if not os.path.isfile(self.xml_path): raise Exception("Pod adresem: '" + self.xml_path + "' nie ma pliku '" + os.environ['PRG_NAME'] + "'. Pobierz ten plik ze strony: '" + os.environ['PRG_LINK'] + "' i uruchom program ponownie!") def parse_xml(self) -> None: """ Method that parses xml file and saves data to SQL database """ # Definiujemy podstawowe parametry x_path, x_filename = os.path.split(self.xml_path) os.chdir(x_path) # Tworzymy transformacje wspolrzednych wrld_pl_trans = create_coords_transform(int(os.environ['WORLD_CRDS']), int(os.environ['PL_CRDS']), True) sekt_num = int(os.environ["SEKT_NUM"]) sekt_addr_phrs = np.full(shape=(sekt_num, sekt_num), fill_value='', dtype=object) # Definiujemy sesję sql engine with sa.orm.Session(SQL_ENGINE) as db_session: teryt_arr = pd.read_sql(db_session.query(TerytCodes.teryt_name, TerytCodes.teryt_code).statement, SQL_ENGINE).to_numpy() json_arr = pd.read_sql(db_session.query(RegJSON.json_teryt, RegJSON.json_shape).statement, SQL_ENGINE).to_numpy() with zipfile.ZipFile(x_filename, "r") as zfile: woj_names = zfile.namelist() if len(list(os.listdir(x_path))) < 3: zfile.extractall() for woj_name in woj_names: # Wczytujemy dane XML dla danego wojewodztwa xml_contex = etree.iterparse(woj_name, events=(self.event_type,), tag=self.tags_tuple[:-1]) # Tworzymy listę punktów adresowych PRG points_list = self.create_points_list(xml_contex) points_arr = np.empty(shape=(len(points_list), 11), dtype=object) points_arr[:] = points_list[:] # Konwertujemy wspolrzedne PRG z ukladu polskiego do ukladu mag Google i sprawdzamy czy leżą one # wewnątrz shapefile'a swojej gminy self.check_prg_pts_add_db(points_arr, woj_name, teryt_arr, json_arr, wrld_pl_trans, sekt_addr_phrs) # Zapisujemy zbiór unikalnych adresow na dysku twardym with open(os.path.join(os.environ["PARENT_PATH"], os.environ['ADDRS_PATH']), 'wb') as f: pickle.dump(sekt_addr_phrs, f, pickle.HIGHEST_PROTOCOL) def create_points_list(self, xml_contex: etree.iterparse) -> list: """ Creating list of data points """ # Definiujemy podstawowe parametry c_ind = 0 c_row = [''] * 11 points_list = [] coords_prec = int(os.environ["COORDS_PREC"]) all_tags = self.tags_tuple num_dict = {all_tags[1]: 3, all_tags[2]: 4, all_tags[3]: 5, all_tags[4]: 6, all_tags[5]: 7, all_tags[6]: 8} rep_dict = {"ul. ": "", "ulica ": "", "al.": "Aleja", "Al.": "Aleja", "pl.": "Plac", "Pl.": "Plac", "wTrakcieBudowy": "w trakcie budowy"} rep_dict_keys = np.asarray(list(rep_dict.keys())) with sa.orm.Session(SQL_ENGINE) as db_session: addr_phrs_uniq = db_session.query(UniqPhrs.uniq_phrs).all()[0][0] for _, curr_node in xml_contex: c_val = curr_node.text c_tag = curr_node.tag if c_tag == all_tags[0] and c_val != "Polska": c_row[c_ind] = c_val c_ind += 1 elif c_tag in [all_tags[1], all_tags[2], all_tags[3], all_tags[4], all_tags[5], all_tags[6]]: c_val = c_val if c_val is not None else "" sub_in = [substring in c_val for substring in rep_dict_keys] if sum(sub_in) > 0: c_key = rep_dict_keys[sub_in][0] c_val = c_val.replace(c_key, rep_dict[c_key]) c_row[num_dict[c_tag]] = c_val c_ind = 0 elif c_tag == all_tags[7] or c_tag == all_tags[8]: c_val = c_val.split() c_row[-2:] = [round(float(c_val[0]), coords_prec), round(float(c_val[1]), coords_prec)] if c_row[0] != '' and c_row[1] != '' and c_row[2] != '': points_list.append(c_row) uniq_addr, uniq_ids = np.unique(np.asarray([unidecode(c_row[i]).upper() for i in (3, 4, 5, 6, 7) if c_row[i] != ""]), return_index=True) addr_arr = uniq_addr[np.argsort(uniq_ids)] self.addr_phrs_list.append(addr_arr[self.perms_dict[len(addr_arr)]].tolist()) for el in addr_arr: if el not in addr_phrs_uniq: addr_phrs_uniq += el + " " c_ind = 0 c_row = [''] * 11 # Czyscimy przetworzone obiekty wezlow XML z pamieci clear_xml_node(curr_node) with sa.orm.Session(SQL_ENGINE) as db_session: db_session.query(UniqPhrs).filter(UniqPhrs.uniq_id == 1).update({'uniq_phrs': addr_phrs_uniq}) db_session.commit() return points_list @time_decorator def check_prg_pts_add_db(self, points_arr: np.ndarray, woj_name: str, teryt_arr: np.ndarray, json_arr: np.ndarray, wrld_pl_trans: osr.CoordinateTransformation, sekt_addr_phrs: np.ndarray) -> None: """ Function that converts spatial reference