File size: 3,750 Bytes
7f34860
 
887d862
7f34860
 
 
 
 
 
ddf3a8c
 
 
ad01faf
 
 
 
 
887d862
 
 
 
 
 
 
 
b5b5291
887d862
b5b5291
887d862
 
 
 
 
7905d3b
 
 
 
7f34860
 
 
 
 
83ec112
 
887d862
 
 
 
7b26c6b
 
 
 
7f34860
7b26c6b
cff203d
7b26c6b
 
 
 
 
 
 
 
 
 
 
 
30af376
7b26c6b
 
 
 
 
 
 
 
06d8db8
7b26c6b
c134d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d8db8
 
7b26c6b
c134d9f
 
 
 
 
 
 
 
 
 
 
 
7b26c6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
dataset_info:
- config_name: default
  features:
  - name: utterance
    dtype: string
  - name: label
    sequence: int64
  splits:
  - name: train
    num_bytes: 7169122
    num_examples: 9042
  - name: test
    num_bytes: 450937
    num_examples: 358
  download_size: 8973442
  dataset_size: 7620059
- config_name: intents
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regex_full_match
    sequence: 'null'
  - name: regex_partial_match
    sequence: 'null'
  - name: description
    dtype: 'null'
  splits:
  - name: intents
    num_bytes: 291
    num_examples: 10
  download_size: 3034
  dataset_size: 291
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: intents
  data_files:
  - split: intents
    path: intents/intents-*
task_categories:
- text-classification
language:
- en
---

# reuters

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).

## Usage

It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset

reuters = Dataset.from_hub("AutoIntent/reuters")
```

## Source

This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset
import datasets



def get_intents_info(ds: datasets.DatasetDict) -> list[str]:
    return sorted(set(name for intents in ds["train"]["topics"] for name in intents))

def parse(ds: datasets.Dataset, intent_names: list[str]) -> list[dict]:
    return [{
        "utterance": example["text"],
        "label": [int(name in example["topics"]) for name in intent_names]
    } for example in ds]


def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
    res = [0] * len(intent_names)
    for sample in ds:
        for i, indicator in enumerate(sample["label"]):
            res[i] += indicator
    for i in range(len(intent_names)):
        res[i] /= len(ds)
    return [(frac < fraction_thresh) for frac in res]

def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]:
    res = []
    for sample in ds:
        if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
            continue
        sample["label"] = [
            indicator for indicator, low_resource in
            zip(sample["label"], mask, strict=True) if not low_resource
        ]
        res.append(sample)
    return res

def remove_oos(ds: list[dict]):
    return [sample for sample in ds if sum(sample["label"]) != 0]


if __name__ == "__main__":
    reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
    intent_names = get_intents_info(reuters)
    train_parsed = parse(reuters["train"], intent_names)
    test_parsed = parse(reuters["test"], intent_names)
    mask = get_low_resource_classes_mask(train_parsed, intent_names)
    intent_names = [name for i, name in enumerate(intent_names) if not mask[i]]
    train_filtered = remove_oos(remove_low_resource_classes(train_parsed, mask))
    test_filtered = remove_oos(remove_low_resource_classes(test_parsed, mask))

    intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
    reuters_converted = Dataset.from_dict({"intents": intents, "train": train_filtered, "test": test_filtered})
```