Configs / script(1).py
Delta-Vector's picture
Upload script(1).py
76eb77d verified
from unsloth import FastModel
import torch
import json
# Model setup
model, tokenizer = FastModel.from_pretrained(
model_name = "NewEden/Gemma-Merged-V2",
max_seq_length = 8192,
load_in_4bit = False,
load_in_8bit = False,
full_finetuning = False,
)
# Add LoRA adapters
model = FastModel.get_peft_model(
model,
finetune_vision_layers=False,
finetune_language_layers=True,
finetune_attention_modules=True,
finetune_mlp_modules=True,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
r=64,
lora_alpha=32,
lora_dropout=0.1,
bias="none",
random_state=3407,
)
# Set up chat template
from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
tokenizer,
chat_template="gemma-3",
)
# Load dataset
from datasets import load_dataset, Dataset, Features, Sequence, Value
print("Loading dataset...")
dataset = load_dataset(
"NewEden/Light-Novels-Roleplay-Logs-Books-Oh-My",
split="train"
)
print(f"Dataset loaded with {len(dataset)} examples.")
# Clean + fix
def validate_and_fix_conversations(examples):
fixed = []
for conv in examples["conversations"]:
if not isinstance(conv, list):
continue
cleaned = []
for turn in conv:
if not isinstance(turn, dict):
continue
role = turn.get("role", "").lower()
content = turn.get("content", "")
if not isinstance(content, str) or not content.strip():
continue
if role == "system":
continue
if role in ["assistant", "bot", "chatbot"]:
role = "model"
elif role in ["human", "usr", "user"]:
role = "user"
else:
continue
cleaned.append({"role": role, "content": content})
if len(cleaned) < 2:
continue
if cleaned[0]["role"] != "user":
cleaned = cleaned[1:]
fixed_conv = []
expected = "user"
for turn in cleaned:
if turn["role"] == expected:
fixed_conv.append(turn)
expected = "model" if expected == "user" else "user"
if fixed_conv and fixed_conv[-1]["role"] == "user":
fixed_conv = fixed_conv[:-1]
if len(fixed_conv) >= 2:
fixed.append(fixed_conv)
return {"conversations": fixed}
print("Validating and fixing conversations...")
dataset = dataset.map(
validate_and_fix_conversations,
batched=True,
desc="Fixing conversations"
)
print(f"Validation complete. {len(dataset)} examples left.")
# Fallback dummy
if len(dataset) == 0:
print("Dataset empty after validation. Creating dummy data...")
dummy_conversations = [
[
{"role": "user", "content": "Hey, what's up?"},
{"role": "model", "content": "All good! How can I help?"}
]
]
flat_examples = []
for conv in dummy_conversations:
flat_examples.append({
"conversations": [{"from": msg["role"], "value": msg["content"]} for msg in conv]
})
features = Features({'conversations': Sequence({'from': Value('string'), 'value': Value('string')})})
dataset = Dataset.from_list(flat_examples, features=features)
print(f"Dummy dataset created with {len(dataset)} example.")
# Enforce strict alternation
def enforce_strict_user_model_pairs(examples):
fixed = []
for convo in examples["conversations"]:
if not isinstance(convo, list):
continue
last = None
valid = True
for turn in convo:
if turn["role"] == last:
valid = False
break
last = turn["role"]
if valid and convo[0]["role"] == "user" and convo[-1]["role"] == "model":
fixed.append(convo)
return {"conversations": fixed}
print("Enforcing strict user/model alternation...")
dataset = dataset.map(
enforce_strict_user_model_pairs,
batched=True,
desc="Filtering strict alternation"
)
print(f"After enforcing alternation: {len(dataset)} examples left.")
# Apply chat template
def apply_chat_template(examples):
texts = tokenizer.apply_chat_template(examples["conversations"])
return {"text": texts}
print("Applying chat template...")
dataset = dataset.map(
apply_chat_template,
batched=True,
desc="Applying chat template"
)
print(f"Chat template applied. {len(dataset)} examples ready.")
print("Sample text after templating:")
print(dataset[0]["text"][:500] + "...")
# Training
from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
eval_dataset=None,
args=SFTConfig(
dataset_text_field="text",
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
warmup_steps=35,
num_train_epochs=4,
learning_rate=1e-5,
logging_steps=1,
optim="paged_adamw_8bit",
weight_decay=0.02,
lr_scheduler_type="linear",
seed=3407,
report_to="wandb",
),
)
from unsloth.chat_templates import train_on_responses_only
print("Setting up response-only training...")
trainer = train_on_responses_only(
trainer,
instruction_part="<start_of_turn>user\n",
response_part="<start_of_turn>model\n",
)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name} ({max_memory} GB total)")
print(f"Starting reserved memory = {start_gpu_memory} GB")
print("Starting training...")
trainer_stats = trainer.train()
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_for_lora = round(used_memory - start_gpu_memory, 3)
print(f"Training took {trainer_stats.metrics['train_runtime']} seconds "
f"({round(trainer_stats.metrics['train_runtime']/60, 2)} minutes).")
print(f"Peak memory: {used_memory} GB. Used for LoRA: {used_for_lora} GB.")
output_dir = "./gemma-finetuned"
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print(f"Model saved at {output_dir}")