contestId
int64 0
1.01k
| name
stringlengths 2
58
| tags
sequencelengths 0
11
| title
stringclasses 523
values | time-limit
stringclasses 8
values | memory-limit
stringclasses 8
values | problem-description
stringlengths 0
7.15k
| input-specification
stringlengths 0
2.05k
| output-specification
stringlengths 0
1.5k
| demo-input
sequencelengths 0
7
| demo-output
sequencelengths 0
7
| note
stringlengths 0
5.24k
| test_cases
listlengths 0
402
| timeConsumedMillis
int64 0
8k
| memoryConsumedBytes
int64 0
537M
| score
float64 -1
3.99
| __index_level_0__
int64 0
621k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
123 | Squares | [
"math"
] | null | null | You are given an infinite checkered field. You should get from a square (*x*1; *y*1) to a square (*x*2; *y*2). Using the shortest path is not necessary. You can move on the field squares in four directions. That is, when you are positioned in any square, you can move to any other side-neighboring one.
A square (*x*; *y*) is considered bad, if at least one of the two conditions is fulfilled:
- |*x*<=+<=*y*|<=≡<=0 (*mod* 2*a*),- |*x*<=-<=*y*|<=≡<=0 (*mod* 2*b*).
Your task is to find the minimum number of bad cells one will have to visit on the way from (*x*1; *y*1) to (*x*2; *y*2). | The only line contains integers *a*, *b*, *x*1, *y*1, *x*2 and *y*2 — the parameters of the bad squares, the coordinates of the initial and the final squares correspondingly (2<=≤<=*a*,<=*b*<=≤<=109 and |*x*1|,|*y*1|,|*x*2|,|*y*2|<=≤<=109). It is guaranteed that the initial and the final square aren't bad. | Print a single number — the minimum number of bad cells that one will have to visit in order to travel from square (*x*1; *y*1) to square (*x*2; *y*2). | [
"2 2 1 0 0 1\n",
"2 2 10 11 0 1\n",
"2 4 3 -1 3 7\n"
] | [
"1\n",
"5\n",
"2\n"
] | In the third sample one of the possible paths in (3;-1)->(3;0)->(3;1)->(3;2)->(4;2)->(4;3)->(4;4)->(4;5)->(4;6)->(4;7)->(3;7). Squares (3;1) and (4;4) are bad. | [
{
"input": "2 2 1 0 0 1",
"output": "1"
},
{
"input": "2 2 10 11 0 1",
"output": "5"
},
{
"input": "2 4 3 -1 3 7",
"output": "2"
},
{
"input": "2 2 9 10 -10 -11",
"output": "10"
},
{
"input": "3 2 -11 -10 10 11",
"output": "7"
},
{
"input": "3 2 11 -12 -12 11",
"output": "11"
},
{
"input": "3 3 12 11 -12 -11",
"output": "7"
},
{
"input": "2 3 -12 13 13 -12",
"output": "9"
},
{
"input": "3 4 -8 5 6 -3",
"output": "3"
},
{
"input": "2 3 2 -1 -10 -1",
"output": "3"
},
{
"input": "4 4 3 2 10 -1",
"output": "1"
},
{
"input": "3 2 -8 -9 -14 -1",
"output": "4"
},
{
"input": "4 4 0 -3 11 -4",
"output": "1"
},
{
"input": "5 3 6 3 3 12",
"output": "2"
},
{
"input": "3 5 -4 -7 5 0",
"output": "2"
},
{
"input": "3 5 -20 19 21 16",
"output": "7"
},
{
"input": "5 6 23 -10 -20 -17",
"output": "5"
},
{
"input": "3 2 8 -25 0 25",
"output": "15"
},
{
"input": "7 7 23 28 -20 -27",
"output": "7"
},
{
"input": "7 7 -30 -29 32 31",
"output": "9"
},
{
"input": "5 8 35 -36 -34 33",
"output": "9"
},
{
"input": "2 9 37 34 -38 -37",
"output": "36"
},
{
"input": "10 8 -44 41 43 -38",
"output": "11"
},
{
"input": "8 9 8 -23 31 -46",
"output": "3"
},
{
"input": "11 10 9 -40 37 -56",
"output": "2"
},
{
"input": "11 5 -71 44 -18 -21",
"output": "12"
},
{
"input": "6 13 -37 12 3 60",
"output": "8"
},
{
"input": "14 9 44 45 -50 -9",
"output": "6"
},
{
"input": "14 16 1967781 241814 1873488 -829353",
"output": "41624"
},
{
"input": "8 12 -14763515 -11730382 -1343471 -4020758",
"output": "1320604"
},
{
"input": "18 17 -26078453 -12853708 26705417 -4593122",
"output": "1695679"
},
{
"input": "5 18 41299309 8851928 -40049166 -35564497",
"output": "12576490"
},
{
"input": "7 20 10771554 -46099323 39192337 54007626",
"output": "9180553"
},
{
"input": "21 24 31005425 54491054 -24732944 -61529693",
"output": "4089503"
},
{
"input": "24 27 -57405669 -65437426 56079726 56139299",
"output": "4897128"
},
{
"input": "17 22 72042304 -75756269 -70969649 64115614",
"output": "6429178"
},
{
"input": "31 29 73305636 76203147 -85238444 -86730133",
"output": "5185118"
},
{
"input": "34 19 -95432112 102651275 96089919 -106537520",
"output": "10545022"
},
{
"input": "26 34 -107153659 6976200 34136365 -95904822",
"output": "3590751"
},
{
"input": "38 5 -13548447 534376 64966608 -29272371",
"output": "10832180"
},
{
"input": "42 45 13921918 62207801 80023961 -85820354",
"output": "2379224"
},
{
"input": "15 11 -140506021 21571904 -148280972 64286933",
"output": "2294999"
},
{
"input": "53 50 -120558789 -138770904 4229051 102239338",
"output": "3450925"
},
{
"input": "29 54 16062290 129524399 -84381788 132177911",
"output": "1686044"
},
{
"input": "12 63 100712190 36906101 87205943 82885374",
"output": "1353043"
},
{
"input": "66 39 -170201625 -169447104 166170410 181151513",
"output": "5204323"
},
{
"input": "72 75 182000846 -19533501 -166922752 -142084479",
"output": "3274129"
},
{
"input": "55 22 189761193 -192020216 -153412991 188486816",
"output": "16447301"
},
{
"input": "86 84 -65173069 221707138 155388823 -224274366",
"output": "3967520"
},
{
"input": "77 101 -241379320 -196400933 220541904 214436435",
"output": "5667263"
},
{
"input": "70 110 221139524 -236077945 -236283510 205078897",
"output": "4084454"
},
{
"input": "18 116 231579605 226020224 -214399491 -217631436",
"output": "24711966"
},
{
"input": "133 122 -258888058 250173335 258738451 -242389122",
"output": "4140119"
},
{
"input": "127 88 66407013 205897916 133496817 264883406",
"output": "496360"
},
{
"input": "146 157 261464154 113810381 214579048 -202712885",
"output": "1244549"
},
{
"input": "148 163 -62225702 -294347345 -98578232 214557359",
"output": "1672568"
},
{
"input": "7 179 -249546082 207791883 267735483 49881404",
"output": "25669363"
},
{
"input": "125 204 91089644 83192699 -300075653 54365352",
"output": "1679971"
},
{
"input": "216 218 15106122 259371253 296596165 -45704666",
"output": "1345335"
},
{
"input": "207 226 -194940280 130461973 246251465 260969752",
"output": "1380917"
},
{
"input": "267 263 -291849914 -111930623 344642355 250706518",
"output": "1871029"
},
{
"input": "288 40 338359015 273791206 -341021431 56950660",
"output": "5781749"
},
{
"input": "321 30 46954660 -343679003 -37851471 373573736",
"output": "13367648"
},
{
"input": "356 10 97627462 341324361 -132835544 -334849729",
"output": "22285554"
},
{
"input": "380 397 -340890121 -349529418 396652406 353599055",
"output": "1895619"
},
{
"input": "388 113 366011910 -387447751 -403158698 353327235",
"output": "6681175"
},
{
"input": "465 469 376765675 358805048 -390193085 -375070460",
"output": "1613801"
},
{
"input": "504 116 -408147784 387006943 367365902 -415105789",
"output": "6800114"
},
{
"input": "509 565 14560229 -77153392 -340426524 82224911",
"output": "455190"
},
{
"input": "605 297 -251700323 -366763764 -445828791 325081312",
"output": "1491538"
},
{
"input": "689 635 344525358 -321493413 12979458 -353392841",
"output": "263749"
},
{
"input": "664 408 -151206136 -299481355 -385233545 310492602",
"output": "1034315"
},
{
"input": "783 827 -98613981 316213558 -275430891 455234090",
"output": "190954"
},
{
"input": "899 549 -249681750 38465319 105189786 -64009701",
"output": "416527"
},
{
"input": "868 969 245648369 212586392 258298826 -389155385",
"output": "339339"
},
{
"input": "1005 557 -451917708 -32771965 501646713 -357583032",
"output": "1147554"
},
{
"input": "1123 1126 438419485 487688122 -477080698 -185247601",
"output": "707229"
},
{
"input": "1174 901 522498777 -499217148 77740787 519316970",
"output": "812037"
},
{
"input": "1425 1444 516172942 520776621 -319341286 -488388923",
"output": "647256"
},
{
"input": "1576 15 -503228573 -531048974 531411118 557082183",
"output": "1783049"
},
{
"input": "1147 1627 473801348 -494462579 -514604760 486124951",
"output": "605100"
},
{
"input": "1811 1038 526157767 549399960 -479125660 -508887739",
"output": "569733"
},
{
"input": "2033 1908 -480144210 482795119 496763189 -594064604",
"output": "538199"
},
{
"input": "86 1341 -197343715 13981506 -529124963 208152056",
"output": "800062"
},
{
"input": "2455 2436 -335351804 -50788097 286734045 222304974",
"output": "182317"
},
{
"input": "2571 2243 474188235 -306739018 48936920 -83297677",
"output": "144603"
},
{
"input": "1558 2911 -239080974 -489789417 369291826 -67795521",
"output": "330670"
},
{
"input": "2795 3024 418200485 -575735266 101404272 -10209857",
"output": "145887"
},
{
"input": "3341 3479 481143880 -383576301 -584637231 166949262",
"output": "232295"
},
{
"input": "3868 1251 -639544998 21536679 -480078735 -457166436",
"output": "255064"
},
{
"input": "4260 4286 -559966975 430515446 630949753 -403746792",
"output": "236255"
},
{
"input": "4685 84 597126772 174658367 -667031403 657366658",
"output": "10398014"
},
{
"input": "5099 3763 239091250 -689089763 -331708609 690647436",
"output": "259173"
},
{
"input": "5431 5421 218916782 582895951 714645533 -634539842",
"output": "158012"
},
{
"input": "5989 6249 -605686335 -602992500 586207791 624769222",
"output": "202009"
},
{
"input": "4238 464 631928630 -699088687 -665579317 658247096",
"output": "2860823"
},
{
"input": "7368 7243 646513016 723552175 -631585348 -678824351",
"output": "181900"
},
{
"input": "6929 8303 -718092932 630511765 717136401 -678221530",
"output": "165239"
},
{
"input": "551 8823 -644698584 720097649 -746775493 -719362914",
"output": "1398855"
},
{
"input": "2036 9146 46737913 478540414 -603176411 -34978692",
"output": "285715"
},
{
"input": "10000 10002 96487781 -692179874 182133670 357089051",
"output": "56746"
},
{
"input": "4209 7951 232804958 -326325341 -138865076 516216059",
"output": "76356"
},
{
"input": "10005 10008 -234169778 -592210597 -126329886 -812018105",
"output": "16370"
},
{
"input": "8387 10012 -275798799 489020846 127010938 154401541",
"output": "36828"
},
{
"input": "10058 9799 -25054219 -611037250 172201377 486371190",
"output": "64360"
},
{
"input": "10088 6166 -735339950 -111273129 787180186 -439981865",
"output": "150116"
},
{
"input": "10311 10242 764996339 626041956 -740573838 -97126465",
"output": "108076"
},
{
"input": "10067 8186 -736794579 -820525762 -407728461 839527984",
"output": "98794"
},
{
"input": "10721 11225 -767745746 709747051 443545879 -717667636",
"output": "117537"
},
{
"input": "13225 984 -760662977 -854994174 786299019 825465374",
"output": "122020"
},
{
"input": "14699 14675 792934253 -867739654 -737526630 840318203",
"output": "110341"
},
{
"input": "20967 19929 821529452 892087465 -867106029 -836044344",
"output": "81480"
},
{
"input": "43649 46022 -793221994 750708255 871188328 -901390875",
"output": "36031"
},
{
"input": "25706 3236 867426580 143799455 254112907 -287546356",
"output": "28116"
},
{
"input": "222075 201776 -663198106 -381459887 -29690718 -65372649",
"output": "2138"
},
{
"input": "526654 264582 -19827600 -757880279 -903623062 -934193021",
"output": "1337"
},
{
"input": "34483 1001201 -483230679 -24466088 827887504 293189155",
"output": "23617"
},
{
"input": "840853 1638188 -425749679 502946202 -953467908 557484181",
"output": "281"
},
{
"input": "4237214 4640696 -612169083 -326390834 887479529 304518522",
"output": "251"
},
{
"input": "2959011 3049607 253816894 -342369389 610124947 440828496",
"output": "192"
},
{
"input": "31288011 27242802 -934902606 343371553 926119543 -195542560",
"output": "44"
},
{
"input": "6152051 53675778 964821583 85960172 -939564894 755134693",
"output": "100"
},
{
"input": "101304499 148554333 -590787464 -890180401 -117457421 997140710",
"output": "12"
},
{
"input": "134699726 208640218 514309071 801051734 276512437 -803859310",
"output": "6"
},
{
"input": "472555248 417950652 -897989583 -805741694 915661619 800897620",
"output": "3"
},
{
"input": "299386785 573704302 956852511 -973861202 -816995136 989470727",
"output": "3"
},
{
"input": "1000000000 1000000000 871940474 991768763 -914352281 -886310260",
"output": "1"
},
{
"input": "781751245 1000000000 -848188940 813653557 978830633 -825182414",
"output": "1"
},
{
"input": "999999999 1000000000 1000000000 -999999999 -1000000000 999999999",
"output": "1"
},
{
"input": "999999 100000 12345 54321 6789 9876",
"output": "0"
}
] | 280 | 0 | 3 | 5,388 |
|
865 | Save the problem! | [
"constructive algorithms"
] | null | null | Attention: we lost all the test cases for this problem, so instead of solving the problem, we need you to generate test cases. We're going to give you the answer, and you need to print a test case that produces the given answer. The original problem is in the following paragraph.
People don't use cash as often as they used to. Having a credit card solves some of the hassles of cash, such as having to receive change when you can't form the exact amount of money needed to purchase an item. Typically cashiers will give you as few coins as possible in change, but they don't have to. For example, if your change is 30 cents, a cashier could give you a 5 cent piece and a 25 cent piece, or they could give you three 10 cent pieces, or ten 1 cent pieces, two 5 cent pieces, and one 10 cent piece. Altogether there are 18 different ways to make 30 cents using only 1 cent pieces, 5 cent pieces, 10 cent pieces, and 25 cent pieces. Two ways are considered different if they contain a different number of at least one type of coin. Given the denominations of the coins and an amount of change to be made, how many different ways are there to make change?
As we mentioned before, we lost all the test cases for this problem, so we're actually going to give you the number of ways, and want you to produce a test case for which the number of ways is the given number. There could be many ways to achieve this (we guarantee there's always at least one), so you can print any, as long as it meets the constraints described below. | Input will consist of a single integer *A* (1<=≤<=*A*<=≤<=105), the desired number of ways. | In the first line print integers *N* and *M* (1<=≤<=*N*<=≤<=106,<=1<=≤<=*M*<=≤<=10), the amount of change to be made, and the number of denominations, respectively.
Then print *M* integers *D*1,<=*D*2,<=...,<=*D**M* (1<=≤<=*D**i*<=≤<=106), the denominations of the coins. All denominations must be distinct: for any *i*<=≠<=*j* we must have *D**i*<=≠<=*D**j*.
If there are multiple tests, print any of them. You can print denominations in atbitrary order. | [
"18\n",
"3\n",
"314\n"
] | [
"30 4\n1 5 10 25\n",
"20 2\n5 2\n",
"183 4\n6 5 2 139\n"
] | none | [
{
"input": "18",
"output": "30 4\n1 5 10 25"
},
{
"input": "3",
"output": "20 2\n5 2"
},
{
"input": "314",
"output": "183 4\n6 5 2 139"
},
{
"input": "1023",
"output": "2045 2\n1 2"
},
{
"input": "100000",
"output": "199999 2\n1 2"
},
{
"input": "1",
"output": "1 2\n1 2"
},
{
"input": "2",
"output": "3 2\n1 2"
},
{
"input": "3",
"output": "20 2\n5 2"
},
{
"input": "4",
"output": "7 2\n1 2"
},
{
"input": "5",
"output": "9 2\n1 2"
},
{
"input": "6",
"output": "11 2\n1 2"
},
{
"input": "7",
"output": "13 2\n1 2"
},
{
"input": "8",
"output": "15 2\n1 2"
},
{
"input": "9",
"output": "17 2\n1 2"
},
{
"input": "10",
"output": "19 2\n1 2"
},
{
"input": "11",
"output": "21 2\n1 2"
},
{
"input": "12",
"output": "23 2\n1 2"
},
{
"input": "13",
"output": "25 2\n1 2"
},
{
"input": "14",
"output": "27 2\n1 2"
},
{
"input": "15",
"output": "29 2\n1 2"
},
{
"input": "16",
"output": "31 2\n1 2"
},
{
"input": "17",
"output": "33 2\n1 2"
},
{
"input": "18",
"output": "30 4\n1 5 10 25"
},
{
"input": "19",
"output": "37 2\n1 2"
},
{
"input": "20",
"output": "39 2\n1 2"
},
{
"input": "239",
"output": "477 2\n1 2"
},
{
"input": "4063",
"output": "8125 2\n1 2"
},
{
"input": "65536",
"output": "131071 2\n1 2"
},
{
"input": "65535",
"output": "131069 2\n1 2"
},
{
"input": "65537",
"output": "131073 2\n1 2"
},
{
"input": "99991",
"output": "199981 2\n1 2"
},
{
"input": "99990",
"output": "199979 2\n1 2"
},
{
"input": "99992",
"output": "199983 2\n1 2"
},
{
"input": "99971",
"output": "199941 2\n1 2"
},
{
"input": "99990",
"output": "199979 2\n1 2"
},
{
"input": "2",
"output": "3 2\n1 2"
},
{
"input": "99991",
"output": "199981 2\n1 2"
}
] | 62 | 0 | 3 | 5,391 |
|
0 | none | [
"none"
] | null | null | Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.
He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles. | The first and the single line of the input contains 6 space-separated integers *a*1,<=*a*2,<=*a*3,<=*a*4,<=*a*5 and *a*6 (1<=≤<=*a**i*<=≤<=1000) — the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists. | Print a single integer — the number of triangles with the sides of one 1 centimeter, into which the hexagon is split. | [
"1 1 1 1 1 1\n",
"1 2 1 2 1 2\n"
] | [
"6\n",
"13\n"
] | This is what Gerald's hexagon looks like in the first sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/84d193e27b02c38eb1eadc536602a2ec0b9f9519.png" style="max-width: 100.0%;max-height: 100.0%;"/>
And that's what it looks like in the second sample:
<img class="tex-graphics" src="https://espresso.codeforces.com/e29076a96da8ca864654cc6195654d9bf07d31ce.png" style="max-width: 100.0%;max-height: 100.0%;"/> | [
{
"input": "1 1 1 1 1 1",
"output": "6"
},
{
"input": "1 2 1 2 1 2",
"output": "13"
},
{
"input": "2 4 5 3 3 6",
"output": "83"
},
{
"input": "45 19 48 18 46 21",
"output": "6099"
},
{
"input": "66 6 65 6 66 5",
"output": "5832"
},
{
"input": "7 5 4 8 4 5",
"output": "175"
},
{
"input": "3 2 1 4 1 2",
"output": "25"
},
{
"input": "7 1 7 3 5 3",
"output": "102"
},
{
"input": "9 2 9 3 8 3",
"output": "174"
},
{
"input": "1 6 1 5 2 5",
"output": "58"
},
{
"input": "41 64 48 61 44 68",
"output": "17488"
},
{
"input": "1 59 2 59 1 60",
"output": "3838"
},
{
"input": "30 36 36 32 34 38",
"output": "7052"
},
{
"input": "50 40 46 38 52 34",
"output": "11176"
},
{
"input": "4 60 4 60 4 60",
"output": "4576"
},
{
"input": "718 466 729 470 714 481",
"output": "2102808"
},
{
"input": "131 425 143 461 95 473",
"output": "441966"
},
{
"input": "125 7 128 8 124 11",
"output": "20215"
},
{
"input": "677 303 685 288 692 296",
"output": "1365807"
},
{
"input": "1 577 7 576 2 582",
"output": "342171"
},
{
"input": "1000 1000 1000 1000 1000 1000",
"output": "6000000"
},
{
"input": "1 1 1000 1 1 1000",
"output": "4002"
},
{
"input": "1000 1000 1 1000 1000 1",
"output": "2004000"
},
{
"input": "1000 1 1000 999 2 999",
"output": "2003997"
},
{
"input": "1 1000 1 1 1000 1",
"output": "4002"
},
{
"input": "888 888 888 887 889 887",
"output": "4729487"
}
] | 77 | 0 | 0 | 5,397 |
|
374 | Inna and Nine | [
"combinatorics",
"greedy"
] | null | null | Inna loves digit 9 very much. That's why she asked Dima to write a small number consisting of nines. But Dima must have misunderstood her and he wrote a very large number *a*, consisting of digits from 1 to 9.
Inna wants to slightly alter the number Dima wrote so that in the end the number contained as many digits nine as possible. In one move, Inna can choose two adjacent digits in a number which sum equals 9 and replace them by a single digit 9.
For instance, Inna can alter number 14545181 like this: 14545181<=→<=1945181<=→<=194519<=→<=19919. Also, she can use this method to transform number 14545181 into number 19991. Inna will not transform it into 149591 as she can get numbers 19919 and 19991 which contain more digits nine.
Dima is a programmer so he wants to find out how many distinct numbers containing as many digits nine as possible Inna can get from the written number. Help him with this challenging task. | The first line of the input contains integer *a* (1<=≤<=*a*<=≤<=10100000). Number *a* doesn't have any zeroes. | In a single line print a single integer — the answer to the problem. It is guaranteed that the answer to the problem doesn't exceed 263<=-<=1.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. | [
"369727\n",
"123456789987654321\n",
"1\n"
] | [
"2\n",
"1\n",
"1\n"
] | Notes to the samples
In the first sample Inna can get the following numbers: 369727 → 99727 → 9997, 369727 → 99727 → 9979.
In the second sample, Inna can act like this: 123456789987654321 → 12396789987654321 → 1239678998769321. | [
{
"input": "369727",
"output": "2"
},
{
"input": "123456789987654321",
"output": "1"
},
{
"input": "1",
"output": "1"
},
{
"input": "3636363636363454545454543636363636454545452727272727218181818181999111777",
"output": "1512"
},
{
"input": "1188",
"output": "1"
},
{
"input": "121212912121291299129191219",
"output": "1"
},
{
"input": "181818918181891918918181918189181818181891818191818191819189",
"output": "54"
},
{
"input": "12191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219121912191219",
"output": "1"
},
{
"input": "444444444444445444444444454444444444444444444444445544444444444444444444444444444444444444444554444444444444444444444444444444444444445454444444444444444444444444444444444444454444444444444444444444444444444444445444444444444444444444444444444444444444444445444444444444444444444444444444444456666666666666666666663555555555555555888888888882333333312567312389542179415242164512341234213443123412341293412341234123412746129342154796124123459123491238471234213451692341278451234125934",
"output": "96"
},
{
"input": "123456789",
"output": "1"
},
{
"input": "3639272918194549",
"output": "16"
},
{
"input": "1121314151617181921222324252627282931323334353637383941424344454647484951525354556575859616263646566768697172737475767787981828384858687888991929394959696979899",
"output": "256"
},
{
"input": "14545181",
"output": "2"
},
{
"input": "272727272",
"output": "5"
},
{
"input": "1212121217272727121",
"output": "4"
},
{
"input": "1212172727",
"output": "3"
},
{
"input": "181817272727",
"output": "12"
}
] | 124 | 1,945,600 | 3 | 5,398 |
|
1,006 | Two Strings Swaps | [
"implementation"
] | null | null | You are given two strings $a$ and $b$ consisting of lowercase English letters, both of length $n$. The characters of both strings have indices from $1$ to $n$, inclusive.
You are allowed to do the following changes:
- Choose any index $i$ ($1 \le i \le n$) and swap characters $a_i$ and $b_i$; - Choose any index $i$ ($1 \le i \le n$) and swap characters $a_i$ and $a_{n - i + 1}$; - Choose any index $i$ ($1 \le i \le n$) and swap characters $b_i$ and $b_{n - i + 1}$.
Note that if $n$ is odd, you are formally allowed to swap $a_{\lceil\frac{n}{2}\rceil}$ with $a_{\lceil\frac{n}{2}\rceil}$ (and the same with the string $b$) but this move is useless. Also you can swap two equal characters but this operation is useless as well.
You have to make these strings equal by applying any number of changes described above, in any order. But it is obvious that it may be impossible to make two strings equal by these swaps.
In one preprocess move you can replace a character in $a$ with another character. In other words, in a single preprocess move you can choose any index $i$ ($1 \le i \le n$), any character $c$ and set $a_i := c$.
Your task is to find the minimum number of preprocess moves to apply in such a way that after them you can make strings $a$ and $b$ equal by applying some number of changes described in the list above.
Note that the number of changes you make after the preprocess moves does not matter. Also note that you cannot apply preprocess moves to the string $b$ or make any preprocess moves after the first change is made. | The first line of the input contains one integer $n$ ($1 \le n \le 10^5$) — the length of strings $a$ and $b$.
The second line contains the string $a$ consisting of exactly $n$ lowercase English letters.
The third line contains the string $b$ consisting of exactly $n$ lowercase English letters. | Print a single integer — the minimum number of preprocess moves to apply before changes, so that it is possible to make the string $a$ equal to string $b$ with a sequence of changes from the list above. | [
"7\nabacaba\nbacabaa\n",
"5\nzcabd\ndbacz\n"
] | [
"4\n",
"0\n"
] | In the first example preprocess moves are as follows: $a_1 := $'b', $a_3 := $'c', $a_4 := $'a' and $a_5:=$'b'. Afterwards, $a = $"bbcabba". Then we can obtain equal strings by the following sequence of changes: $swap(a_2, b_2)$ and $swap(a_2, a_6)$. There is no way to use fewer than $4$ preprocess moves before a sequence of changes to make string equal, so the answer in this example is $4$.
In the second example no preprocess moves are required. We can use the following sequence of changes to make $a$ and $b$ equal: $swap(b_1, b_5)$, $swap(a_2, a_4)$. | [
{
"input": "7\nabacaba\nbacabaa",
"output": "4"
},
{
"input": "5\nzcabd\ndbacz",
"output": "0"
},
{
"input": "1\na\nb",
"output": "1"
},
{
"input": "5\nahmad\nyogaa",
"output": "3"
}
] | 124 | 3,993,600 | 0 | 5,415 |
|
1,000 | One Occurrence | [
"data structures",
"divide and conquer"
] | null | null | You are given an array $a$ consisting of $n$ integers, and $q$ queries to it. $i$-th query is denoted by two integers $l_i$ and $r_i$. For each query, you have to find any integer that occurs exactly once in the subarray of $a$ from index $l_i$ to index $r_i$ (a subarray is a contiguous subsegment of an array). For example, if $a = [1, 1, 2, 3, 2, 4]$, then for query $(l_i = 2, r_i = 6)$ the subarray we are interested in is $[1, 2, 3, 2, 4]$, and possible answers are $1$, $3$ and $4$; for query $(l_i = 1, r_i = 2)$ the subarray we are interested in is $[1, 1]$, and there is no such element that occurs exactly once.
Can you answer all of the queries? | The first line contains one integer $n$ ($1 \le n \le 5 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 5 \cdot 10^5$).
The third line contains one integer $q$ ($1 \le q \le 5 \cdot 10^5$).
Then $q$ lines follow, $i$-th line containing two integers $l_i$ and $r_i$ representing $i$-th query ($1 \le l_i \le r_i \le n$). | Answer the queries as follows:
If there is no integer such that it occurs in the subarray from index $l_i$ to index $r_i$ exactly once, print $0$. Otherwise print any such integer. | [
"6\n1 1 2 3 2 4\n2\n2 6\n1 2\n"
] | [
"4\n0\n"
] | none | [
{
"input": "6\n1 1 2 3 2 4\n2\n2 6\n1 2",
"output": "4\n0"
},
{
"input": "10\n5 9 6 4 8 7 4 9 7 6\n10\n4 9\n4 7\n4 7\n4 8\n9 10\n4 9\n4 8\n1 5\n4 4\n2 5",
"output": "8\n8\n8\n8\n6\n8\n8\n8\n4\n9"
}
] | 30 | 0 | 0 | 5,456 |
|
461 | Appleman and Tree | [
"dfs and similar",
"dp",
"trees"
] | null | null | Appleman has a tree with *n* vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.
Consider a set consisting of *k* (0<=≤<=*k*<=<<=*n*) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (*k*<=+<=1) parts. Note, that each part will be a tree with colored vertices.
Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109<=+<=7). | The first line contains an integer *n* (2<=<=≤<=*n*<=≤<=105) — the number of tree vertices.
The second line contains the description of the tree: *n*<=-<=1 integers *p*0,<=*p*1,<=...,<=*p**n*<=-<=2 (0<=≤<=*p**i*<=≤<=*i*). Where *p**i* means that there is an edge connecting vertex (*i*<=+<=1) of the tree and vertex *p**i*. Consider tree vertices are numbered from 0 to *n*<=-<=1.
The third line contains the description of the colors of the vertices: *n* integers *x*0,<=*x*1,<=...,<=*x**n*<=-<=1 (*x**i* is either 0 or 1). If *x**i* is equal to 1, vertex *i* is colored black. Otherwise, vertex *i* is colored white. | Output a single integer — the number of ways to split the tree modulo 1000000007 (109<=+<=7). | [
"3\n0 0\n0 1 1\n",
"6\n0 1 1 0 4\n1 1 0 0 1 0\n",
"10\n0 1 2 1 4 4 4 0 8\n0 0 0 1 0 1 1 0 0 1\n"
] | [
"2\n",
"1\n",
"27\n"
] | none | [
{
"input": "3\n0 0\n0 1 1",
"output": "2"
},
{
"input": "6\n0 1 1 0 4\n1 1 0 0 1 0",
"output": "1"
},
{
"input": "10\n0 1 2 1 4 4 4 0 8\n0 0 0 1 0 1 1 0 0 1",
"output": "27"
},
{
"input": "5\n0 1 1 3\n0 0 0 1 1",
"output": "1"
},
{
"input": "10\n0 1 1 2 4 3 3 3 2\n1 0 1 1 1 0 0 1 1 0",
"output": "3"
},
{
"input": "100\n0 0 2 2 0 3 5 0 6 2 0 4 0 2 3 7 8 3 15 19 13 8 18 19 3 14 23 9 6 3 6 17 26 24 20 6 4 27 8 5 14 5 35 31 27 3 41 25 20 14 25 31 49 40 0 1 10 5 50 13 29 58 1 6 8 1 40 52 30 15 50 8 66 52 29 71 25 68 36 7 80 60 6 2 11 43 62 27 84 86 71 38 14 50 88 4 8 95 53\n1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1",
"output": "9523200"
},
{
"input": "2\n0\n1 0",
"output": "1"
},
{
"input": "115\n0 0 1 2 0 4 1 3 4 1 4 5 4 5 0 0 3 1 2 3 3 0 5 1 3 4 1 5 2 0 1 3 3 1 3 5 0 4 5 1 3 0 0 1 3 1 1 3 3 3 2 3 1 3 0 2 5 5 1 1 2 2 1 1 3 2 1 2 3 1 5 4 2 1 2 1 1 2 3 4 3 1 5 0 2 4 4 5 2 5 0 2 4 5 5 5 5 0 3 1 1 4 2 2 4 3 3 0 3 3 0 2 0 0\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1"
}
] | 31 | 0 | 0 | 5,469 |
|
622 | Ants in Leaves | [
"dfs and similar",
"greedy",
"sortings",
"trees"
] | null | null | Tree is a connected graph without cycles. A leaf of a tree is any vertex connected with exactly one other vertex.
You are given a tree with *n* vertices and a root in the vertex 1. There is an ant in each leaf of the tree. In one second some ants can simultaneously go to the parent vertex from the vertex they were in. No two ants can be in the same vertex simultaneously except for the root of the tree.
Find the minimal time required for all ants to be in the root of the tree. Note that at start the ants are only in the leaves of the tree. | The first line contains integer *n* (2<=≤<=*n*<=≤<=5·105) — the number of vertices in the tree.
Each of the next *n*<=-<=1 lines contains two integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*) — the ends of the *i*-th edge. It is guaranteed that you are given the correct undirected tree. | Print the only integer *t* — the minimal time required for all ants to be in the root of the tree. | [
"12\n1 2\n1 3\n1 4\n2 5\n2 6\n3 7\n3 8\n3 9\n8 10\n8 11\n8 12\n",
"2\n2 1\n"
] | [
"6\n",
"1\n"
] | none | [
{
"input": "12\n1 2\n1 3\n1 4\n2 5\n2 6\n3 7\n3 8\n3 9\n8 10\n8 11\n8 12",
"output": "6"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "2\n2 1",
"output": "1"
},
{
"input": "10\n4 10\n6 10\n10 5\n10 7\n8 10\n4 2\n9 10\n4 1\n3 10",
"output": "8"
},
{
"input": "10\n2 8\n10 8\n8 3\n4 3\n6 3\n6 1\n10 7\n9 1\n5 10",
"output": "6"
},
{
"input": "10\n1 3\n4 3\n10 4\n10 6\n6 2\n5 2\n7 5\n7 8\n7 9",
"output": "9"
}
] | 30 | 0 | 0 | 5,479 |
|
14 | Two Paths | [
"dfs and similar",
"dp",
"graphs",
"shortest paths",
"trees",
"two pointers"
] | D. Two Paths | 2 | 64 | As you know, Bob's brother lives in Flatland. In Flatland there are *n* cities, connected by *n*<=-<=1 two-way roads. The cities are numbered from 1 to *n*. You can get from one city to another moving along the roads.
The «Two Paths» company, where Bob's brother works, has won a tender to repair two paths in Flatland. A path is a sequence of different cities, connected sequentially by roads. The company is allowed to choose by itself the paths to repair. The only condition they have to meet is that the two paths shouldn't cross (i.e. shouldn't have common cities).
It is known that the profit, the «Two Paths» company will get, equals the product of the lengths of the two paths. Let's consider the length of each road equals 1, and the length of a path equals the amount of roads in it. Find the maximum possible profit for the company. | The first line contains an integer *n* (2<=≤<=*n*<=≤<=200), where *n* is the amount of cities in the country. The following *n*<=-<=1 lines contain the information about the roads. Each line contains a pair of numbers of the cities, connected by the road *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*). | Output the maximum possible profit. | [
"4\n1 2\n2 3\n3 4\n",
"7\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n",
"6\n1 2\n2 3\n2 4\n5 4\n6 4\n"
] | [
"1\n",
"0\n",
"4\n"
] | none | [
{
"input": "4\n1 2\n2 3\n3 4",
"output": "1"
},
{
"input": "7\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7",
"output": "0"
},
{
"input": "6\n1 2\n2 3\n2 4\n5 4\n6 4",
"output": "4"
},
{
"input": "2\n2 1",
"output": "0"
},
{
"input": "3\n3 1\n1 2",
"output": "0"
},
{
"input": "3\n1 3\n2 1",
"output": "0"
},
{
"input": "4\n4 2\n2 3\n2 1",
"output": "0"
},
{
"input": "4\n2 3\n1 3\n2 4",
"output": "1"
},
{
"input": "4\n3 2\n3 4\n1 4",
"output": "1"
},
{
"input": "5\n1 5\n5 2\n4 2\n3 1",
"output": "2"
},
{
"input": "5\n2 4\n2 5\n1 5\n2 3",
"output": "2"
},
{
"input": "5\n1 2\n5 1\n3 2\n3 4",
"output": "2"
},
{
"input": "5\n5 3\n3 1\n4 1\n4 2",
"output": "2"
},
{
"input": "6\n1 2\n2 5\n4 5\n4 6\n3 2",
"output": "4"
},
{
"input": "7\n1 6\n4 6\n5 6\n6 7\n2 6\n3 7",
"output": "2"
},
{
"input": "8\n7 2\n7 1\n6 7\n4 1\n7 3\n6 8\n2 5",
"output": "4"
},
{
"input": "8\n8 6\n1 8\n7 8\n3 1\n2 6\n5 3\n8 4",
"output": "6"
},
{
"input": "9\n8 4\n7 8\n6 4\n8 3\n1 4\n3 9\n5 7\n2 5",
"output": "10"
},
{
"input": "9\n4 7\n5 4\n2 7\n5 6\n3 7\n7 1\n9 2\n8 3",
"output": "8"
},
{
"input": "10\n7 6\n6 8\n10 7\n5 10\n5 3\n2 8\n4 5\n1 7\n4 9",
"output": "12"
},
{
"input": "10\n10 7\n7 5\n10 8\n6 5\n7 2\n9 7\n1 10\n3 5\n4 10",
"output": "6"
},
{
"input": "15\n15 1\n15 10\n11 1\n1 13\n10 12\n1 8\n15 9\n14 13\n10 2\n7 10\n5 15\n8 4\n11 3\n6 15",
"output": "12"
},
{
"input": "15\n10 12\n12 4\n15 12\n15 6\n5 15\n10 1\n8 15\n13 12\n14 6\n8 3\n11 5\n12 7\n15 9\n2 7",
"output": "16"
},
{
"input": "15\n13 14\n10 14\n5 10\n10 6\n9 10\n10 7\n15 6\n8 7\n2 6\n1 10\n3 1\n3 11\n4 3\n14 12",
"output": "10"
},
{
"input": "30\n2 4\n14 2\n2 3\n23 14\n30 2\n6 14\n13 4\n24 30\n17 30\n25 2\n26 23\n28 3\n6 8\n23 29\n18 25\n10 2\n25 7\n9 26\n6 27\n13 12\n22 3\n1 28\n11 10\n25 20\n30 19\n16 14\n22 5\n21 30\n15 18",
"output": "30"
},
{
"input": "50\n7 34\n5 34\n5 11\n11 23\n42 5\n41 11\n12 41\n41 49\n1 49\n12 6\n7 15\n17 42\n20 6\n17 46\n20 19\n46 22\n46 40\n44 40\n43 46\n22 8\n17 29\n44 18\n31 18\n46 9\n7 16\n32 11\n13 41\n20 36\n34 25\n46 28\n39 34\n30 42\n11 47\n45 15\n37 17\n4 23\n35 17\n17 48\n2 17\n34 24\n1 10\n21 5\n2 3\n50 16\n33 5\n20 14\n26 19\n16 27\n38 43",
"output": "88"
},
{
"input": "5\n1 2\n2 3\n3 4\n4 5",
"output": "2"
}
] | 92 | 0 | 0 | 5,495 |
613 | Skills | [
"binary search",
"brute force",
"dp",
"greedy",
"sortings",
"two pointers"
] | null | null | Lesha plays the recently published new version of the legendary game hacknet. In this version character skill mechanism was introduced. Now, each player character has exactly *n* skills. Each skill is represented by a non-negative integer *a**i* — the current skill level. All skills have the same maximum level *A*.
Along with the skills, global ranking of all players was added. Players are ranked according to the so-called Force. The Force of a player is the sum of the following values:
- The number of skills that a character has perfected (i.e., such that *a**i*<==<=*A*), multiplied by coefficient *c**f*.- The minimum skill level among all skills (*min* *a**i*), multiplied by coefficient *c**m*.
Now Lesha has *m* hacknetian currency units, which he is willing to spend. Each currency unit can increase the current level of any skill by 1 (if it's not equal to *A* yet). Help him spend his money in order to achieve the maximum possible value of the Force. | The first line of the input contains five space-separated integers *n*, *A*, *c**f*, *c**m* and *m* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*A*<=≤<=109, 0<=≤<=*c**f*,<=*c**m*<=≤<=1000, 0<=≤<=*m*<=≤<=1015).
The second line contains exactly *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*A*), separated by spaces, — the current levels of skills. | On the first line print the maximum value of the Force that the character can achieve using no more than *m* currency units.
On the second line print *n* integers *a*'*i* (*a**i*<=≤<=*a*'*i*<=≤<=*A*), skill levels which one must achieve in order to reach the specified value of the Force, while using no more than *m* currency units. Numbers should be separated by spaces. | [
"3 5 10 1 5\n1 3 1\n",
"3 5 10 1 339\n1 3 1\n"
] | [
"12\n2 5 2 \n",
"35\n5 5 5 \n"
] | In the first test the optimal strategy is to increase the second skill to its maximum, and increase the two others by 1.
In the second test one should increase all skills to maximum. | [
{
"input": "3 5 10 1 5\n1 3 1",
"output": "12\n2 5 2 "
},
{
"input": "3 5 10 1 339\n1 3 1",
"output": "35\n5 5 5 "
},
{
"input": "2 6 0 1 4\n5 1",
"output": "5\n5 5 "
},
{
"input": "1 1000000000 1000 1000 1000000000000000\n0",
"output": "1000000001000\n1000000000 "
},
{
"input": "1 100 1 2 30\n1",
"output": "62\n31 "
},
{
"input": "1 100 1 2 30\n71",
"output": "201\n100 "
},
{
"input": "1 1000000000 1000 1000 1000000000000000\n1000000000",
"output": "1000000001000\n1000000000 "
},
{
"input": "5 5 10 20 50\n0 0 0 0 0",
"output": "150\n5 5 5 5 5 "
},
{
"input": "5 5 10 20 50\n3 3 3 3 3",
"output": "150\n5 5 5 5 5 "
},
{
"input": "4 5 3 7 15\n4 3 3 1",
"output": "47\n5 5 5 5 "
},
{
"input": "3 6 4 6 8\n6 4 5",
"output": "48\n6 6 6 "
}
] | 31 | 0 | 0 | 5,502 |
|
706 | Vasiliy's Multiset | [
"binary search",
"bitmasks",
"data structures",
"trees"
] | null | null | Author has gone out of the stories about Vasiliy, so here is just a formal task description.
You are given *q* queries and a multiset *A*, initially containing only integer 0. There are three types of queries:
1. "+ x" — add integer *x* to multiset *A*.1. "- x" — erase one occurrence of integer *x* from multiset *A*. It's guaranteed that at least one *x* is present in the multiset *A* before this query.1. "? x" — you are given integer *x* and need to compute the value , i.e. the maximum value of bitwise exclusive OR (also know as XOR) of integer *x* and some integer *y* from the multiset *A*.
Multiset is a set, where equal elements are allowed. | The first line of the input contains a single integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of queries Vasiliy has to perform.
Each of the following *q* lines of the input contains one of three characters '+', '-' or '?' and an integer *x**i* (1<=≤<=*x**i*<=≤<=109). It's guaranteed that there is at least one query of the third type.
Note, that the integer 0 will always be present in the set *A*. | For each query of the type '?' print one integer — the maximum value of bitwise exclusive OR (XOR) of integer *x**i* and some integer from the multiset *A*. | [
"10\n+ 8\n+ 9\n+ 11\n+ 6\n+ 1\n? 3\n- 8\n? 3\n? 8\n? 11\n"
] | [
"11\n10\n14\n13\n"
] | After first five operations multiset *A* contains integers 0, 8, 9, 11, 6 and 1.
The answer for the sixth query is integer <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9e2f3d4f1a7c134a5695ba1d548df2b4f9292206.png" style="max-width: 100.0%;max-height: 100.0%;"/> — maximum among integers <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/6cb1b5a0f9bbad177b1de700e918187c8fb3e972.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7644536d2010111824755b5dd2b6043340b2bf4d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9a437d1611f6c2ae5cd9a275a6ab2df61296988e.png" style="max-width: 100.0%;max-height: 100.0%;"/>, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4e3eeab99fa495ecdcd103c68de47dd72943016f.png" style="max-width: 100.0%;max-height: 100.0%;"/> and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/97b73b0f3e59862ed9f80fa83527d97e0ed0a084.png" style="max-width: 100.0%;max-height: 100.0%;"/>. | [
{
"input": "10\n+ 8\n+ 9\n+ 11\n+ 6\n+ 1\n? 3\n- 8\n? 3\n? 8\n? 11",
"output": "11\n10\n14\n13"
},
{
"input": "12\n+ 4\n+ 4\n+ 5\n? 3\n- 4\n? 3\n- 4\n? 3\n? 3\n- 5\n+ 10\n? 1",
"output": "7\n7\n6\n6\n11"
},
{
"input": "10\n? 1\n+ 1\n+ 8\n- 1\n+ 2\n+ 7\n+ 4\n+ 7\n+ 3\n? 7",
"output": "1\n15"
},
{
"input": "7\n? 1\n+ 941492387\n+ 72235422\n+ 449924898\n+ 783332532\n- 941492387\n- 72235422",
"output": "1"
},
{
"input": "3\n? 5\n? 4\n? 3",
"output": "5\n4\n3"
},
{
"input": "1\n? 4",
"output": "4"
},
{
"input": "14\n+ 4\n+ 4\n+ 4\n+ 4\n? 3\n- 4\n- 4\n- 4\n? 3\n+ 5\n? 3\n- 4\n+ 4\n? 3",
"output": "7\n7\n7\n7"
},
{
"input": "12\n? 4\n+ 4\n? 4\n+ 4\n? 3\n- 4\n- 4\n? 3\n+ 4\n? 4\n+ 1\n+ 1",
"output": "4\n4\n7\n3\n4"
}
] | 2,869 | 268,390,400 | 0 | 5,510 |
|
877 | Olya and Energy Drinks | [
"data structures",
"dfs and similar",
"graphs",
"shortest paths"
] | null | null | Olya loves energy drinks. She loves them so much that her room is full of empty cans from energy drinks.
Formally, her room can be represented as a field of *n*<=×<=*m* cells, each cell of which is empty or littered with cans.
Olya drank a lot of energy drink, so now she can run *k* meters per second. Each second she chooses one of the four directions (up, down, left or right) and runs from 1 to *k* meters in this direction. Of course, she can only run through empty cells.
Now Olya needs to get from cell (*x*1,<=*y*1) to cell (*x*2,<=*y*2). How many seconds will it take her if she moves optimally?
It's guaranteed that cells (*x*1,<=*y*1) and (*x*2,<=*y*2) are empty. These cells can coincide. | The first line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=1000) — the sizes of the room and Olya's speed.
Then *n* lines follow containing *m* characters each, the *i*-th of them contains on *j*-th position "#", if the cell (*i*,<=*j*) is littered with cans, and "." otherwise.
The last line contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1,<=*x*2<=≤<=*n*, 1<=≤<=*y*1,<=*y*2<=≤<=*m*) — the coordinates of the first and the last cells. | Print a single integer — the minimum time it will take Olya to get from (*x*1,<=*y*1) to (*x*2,<=*y*2).
If it's impossible to get from (*x*1,<=*y*1) to (*x*2,<=*y*2), print -1. | [
"3 4 4\n....\n###.\n....\n1 1 3 1\n",
"3 4 1\n....\n###.\n....\n1 1 3 1\n",
"2 2 1\n.#\n#.\n1 1 2 2\n"
] | [
"3",
"8",
"-1"
] | In the first sample Olya should run 3 meters to the right in the first second, 2 meters down in the second second and 3 meters to the left in the third second.
In second sample Olya should run to the right for 3 seconds, then down for 2 seconds and then to the left for 3 seconds.
Olya does not recommend drinking energy drinks and generally believes that this is bad. | [
{
"input": "3 4 4\n....\n###.\n....\n1 1 3 1",
"output": "3"
},
{
"input": "3 4 1\n....\n###.\n....\n1 1 3 1",
"output": "8"
},
{
"input": "2 2 1\n.#\n#.\n1 1 2 2",
"output": "-1"
},
{
"input": "10 10 1\n##########\n#.........\n#.#######.\n#.#.....#.\n#.#.###.#.\n#.#.#.#.#.\n#.#.#.#.#.\n#.#.#...#.\n#.#.#####.\n#.#.......\n6 6 10 2",
"output": "48"
},
{
"input": "10 10 3\n##########\n##########\n##########\n##########\n##########\n##########\n##########\n#########.\n#########.\n####..###.\n10 6 10 5",
"output": "1"
},
{
"input": "10 10 3\n...##..#..\n#.#..#...#\n..#.##.#..\n##..#..#.#\n..#...##..\n.#.#.#....\n#......#..\n.#.####.##\n......#...\n.#.##...##\n4 6 8 1",
"output": "7"
},
{
"input": "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n7 6 1 3",
"output": "2"
},
{
"input": "10 10 1000\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n..........\n.....#....\n3 9 5 1",
"output": "2"
},
{
"input": "10 10 10\n...#......\n##.#.#####\n...#...###\n.#####.###\n...#...###\n##.#.#####\n...#...###\n.#####.###\n.......###\n##########\n1 1 1 10",
"output": "17"
},
{
"input": "2 5 5\n#####\n##.##\n2 3 2 3",
"output": "0"
},
{
"input": "4 4 4\n...#\n.#.#\n....\n##..\n1 1 3 4",
"output": "2"
},
{
"input": "6 6 100\n....##\n.##.##\n.##.##\n......\n###.##\n###.##\n1 1 4 6",
"output": "2"
}
] | 124 | 5,222,400 | 0 | 5,513 |
|
858 | Polycarp's phone book | [
"data structures",
"implementation",
"sortings"
] | null | null | There are *n* phone numbers in Polycarp's contacts on his phone. Each number is a 9-digit integer, starting with a digit different from 0. All the numbers are distinct.
There is the latest version of Berdroid OS installed on Polycarp's phone. If some number is entered, is shows up all the numbers in the contacts for which there is a substring equal to the entered sequence of digits. For example, is there are three phone numbers in Polycarp's contacts: 123456789, 100000000 and 100123456, then:
- if he enters 00 two numbers will show up: 100000000 and 100123456, - if he enters 123 two numbers will show up 123456789 and 100123456, - if he enters 01 there will be only one number 100123456.
For each of the phone numbers in Polycarp's contacts, find the minimum in length sequence of digits such that if Polycarp enters this sequence, Berdroid shows this only phone number. | The first line contains single integer *n* (1<=≤<=*n*<=≤<=70000) — the total number of phone contacts in Polycarp's contacts.
The phone numbers follow, one in each line. Each number is a positive 9-digit integer starting with a digit from 1 to 9. All the numbers are distinct. | Print exactly *n* lines: the *i*-th of them should contain the shortest non-empty sequence of digits, such that if Polycarp enters it, the Berdroid OS shows up only the *i*-th number from the contacts. If there are several such sequences, print any of them. | [
"3\n123456789\n100000000\n100123456\n",
"4\n123456789\n193456789\n134567819\n934567891\n"
] | [
"9\n000\n01\n",
"2\n193\n81\n91\n"
] | none | [
{
"input": "3\n123456789\n100000000\n100123456",
"output": "9\n000\n01"
},
{
"input": "4\n123456789\n193456789\n134567819\n934567891",
"output": "2\n193\n81\n91"
},
{
"input": "1\n167038488",
"output": "4"
},
{
"input": "5\n115830748\n403459907\n556271610\n430358099\n413961410",
"output": "15\n40\n2\n35\n14"
},
{
"input": "5\n139127034\n452751056\n193432721\n894001929\n426470953",
"output": "39\n05\n32\n8\n53"
},
{
"input": "5\n343216531\n914073407\n420246472\n855857272\n801664978",
"output": "32\n07\n46\n27\n78"
},
{
"input": "5\n567323818\n353474649\n468171032\n989223926\n685081078",
"output": "67\n35\n03\n26\n78"
},
{
"input": "5\n774610315\n325796798\n989859836\n707706423\n310546337",
"output": "61\n32\n89\n23\n37"
},
{
"input": "10\n181033039\n210698534\n971006898\n391227170\n323096464\n560766866\n377374442\n654389922\n544146403\n779261493",
"output": "18\n53\n97\n27\n09\n07\n42\n99\n41\n93"
},
{
"input": "10\n197120216\n680990683\n319631438\n442393410\n888300189\n170777450\n164487872\n487350759\n651751346\n652859411",
"output": "12\n09\n43\n42\n01\n74\n72\n73\n46\n11"
},
{
"input": "10\n302417715\n621211824\n474451896\n961495400\n633841010\n839982537\n797812119\n510708100\n770758643\n228046084",
"output": "15\n62\n47\n14\n33\n98\n97\n100\n43\n60"
},
{
"input": "10\n506504092\n561611075\n265260859\n557114891\n838578824\n985006846\n456984731\n856424964\n658005674\n666280709",
"output": "40\n75\n60\n55\n78\n68\n31\n96\n74\n66"
},
{
"input": "10\n510613599\n931933224\n693094490\n508960931\n313762868\n396027639\n164098962\n749880019\n709024305\n498545812",
"output": "61\n22\n44\n08\n68\n39\n64\n88\n43\n12"
},
{
"input": "3\n638631659\n929648227\n848163730",
"output": "5\n2\n0"
},
{
"input": "4\n898855826\n343430636\n210120107\n467957087",
"output": "98\n3\n1\n57"
},
{
"input": "5\n202080398\n357502772\n269676952\n711559315\n111366203",
"output": "8\n57\n26\n93\n62"
},
{
"input": "9\n111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n100000000",
"output": "111111111\n111111110\n111111100\n111111000\n111110000\n111100000\n111000000\n110000000\n00000000"
}
] | 4,000 | 8,806,400 | 0 | 5,517 |
|
821 | Okabe and City | [
"dfs and similar",
"graphs",
"shortest paths"
] | null | null | Okabe likes to be able to walk through his city on a path lit by street lamps. That way, he doesn't get beaten up by schoolchildren.
Okabe's city is represented by a 2D grid of cells. Rows are numbered from 1 to *n* from top to bottom, and columns are numbered 1 to *m* from left to right. Exactly *k* cells in the city are lit by a street lamp. It's guaranteed that the top-left cell is lit.
Okabe starts his walk from the top-left cell, and wants to reach the bottom-right cell. Of course, Okabe will only walk on lit cells, and he can only move to adjacent cells in the up, down, left, and right directions. However, Okabe can also temporarily light all the cells in any single row or column at a time if he pays 1 coin, allowing him to walk through some cells not lit initially.
Note that Okabe can only light a single row or column at a time, and has to pay a coin every time he lights a new row or column. To change the row or column that is temporarily lit, he must stand at a cell that is lit initially. Also, once he removes his temporary light from a row or column, all cells in that row/column not initially lit are now not lit.
Help Okabe find the minimum number of coins he needs to pay to complete his walk! | The first line of input contains three space-separated integers *n*, *m*, and *k* (2<=≤<=*n*,<=*m*,<=*k*<=≤<=104).
Each of the next *k* lines contains two space-separated integers *r**i* and *c**i* (1<=≤<=*r**i*<=≤<=*n*, 1<=≤<=*c**i*<=≤<=*m*) — the row and the column of the *i*-th lit cell.
It is guaranteed that all *k* lit cells are distinct. It is guaranteed that the top-left cell is lit. | Print the minimum number of coins Okabe needs to pay to complete his walk, or -1 if it's not possible. | [
"4 4 5\n1 1\n2 1\n2 3\n3 3\n4 3\n",
"5 5 4\n1 1\n2 1\n3 1\n3 2\n",
"2 2 4\n1 1\n1 2\n2 1\n2 2\n",
"5 5 4\n1 1\n2 2\n3 3\n4 4\n"
] | [
"2\n",
"-1\n",
"0\n",
"3\n"
] | In the first sample test, Okabe can take the path <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/fd8d0b719801e9cfe8f6be340d76a554f6ffb66b.png" style="max-width: 100.0%;max-height: 100.0%;"/>, paying only when moving to (2, 3) and (4, 4).
In the fourth sample, Okabe can take the path <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/a91fe94734a09a4ba86d66070aa8cbeacdb2279f.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/2ee6688fe94ce8e9a746b8e479e906fe25ff4d86.png" style="max-width: 100.0%;max-height: 100.0%;"/>, paying when moving to (1, 2), (3, 4), and (5, 4). | [
{
"input": "4 4 5\n1 1\n2 1\n2 3\n3 3\n4 3",
"output": "2"
},
{
"input": "5 5 4\n1 1\n2 1\n3 1\n3 2",
"output": "-1"
},
{
"input": "2 2 4\n1 1\n1 2\n2 1\n2 2",
"output": "0"
},
{
"input": "5 5 4\n1 1\n2 2\n3 3\n4 4",
"output": "3"
},
{
"input": "7 10 53\n1 1\n7 5\n2 3\n5 3\n1 9\n2 10\n6 1\n7 6\n2 9\n3 3\n3 4\n5 1\n5 4\n1 10\n4 1\n3 10\n7 7\n7 8\n7 1\n1 8\n2 4\n6 5\n3 5\n6 3\n6 6\n2 8\n3 6\n5 2\n3 8\n3 9\n5 5\n7 2\n3 1\n4 8\n1 3\n4 6\n2 1\n7 4\n1 7\n4 9\n6 8\n4 4\n5 8\n5 9\n2 5\n2 6\n3 2\n1 4\n2 7\n7 9\n4 7\n2 2\n4 5",
"output": "1"
},
{
"input": "10 9 38\n1 1\n4 5\n1 8\n9 5\n3 4\n5 6\n1 7\n10 5\n5 7\n4 7\n4 6\n3 3\n6 6\n4 3\n9 6\n3 2\n4 2\n10 6\n2 2\n1 9\n2 9\n3 7\n3 9\n7 6\n3 8\n6 7\n10 7\n2 1\n6 8\n2 3\n3 1\n6 5\n5 5\n1 3\n5 8\n1 6\n4 9\n5 3",
"output": "2"
},
{
"input": "7 9 7\n1 1\n7 8\n3 2\n5 3\n2 8\n4 8\n3 6",
"output": "2"
},
{
"input": "7 9 48\n1 1\n3 9\n7 4\n7 8\n3 7\n4 9\n6 8\n5 9\n3 8\n5 8\n2 8\n7 3\n7 5\n6 5\n4 7\n7 2\n4 8\n2 7\n4 6\n6 6\n6 3\n6 9\n6 2\n6 4\n7 7\n5 7\n5 2\n5 5\n2 6\n7 1\n2 9\n3 6\n5 1\n3 5\n7 9\n3 4\n1 6\n1 5\n5 4\n7 6\n1 9\n1 4\n6 1\n4 1\n1 3\n1 2\n2 3\n4 5",
"output": "0"
},
{
"input": "6 7 38\n1 1\n3 6\n3 2\n1 4\n5 4\n1 5\n3 3\n3 7\n5 5\n2 3\n6 5\n2 2\n5 3\n6 6\n4 7\n6 3\n2 4\n3 1\n4 1\n5 6\n4 5\n6 7\n2 6\n4 6\n5 2\n1 6\n3 4\n1 7\n4 3\n2 1\n2 7\n1 2\n1 3\n3 5\n5 1\n5 7\n6 4\n2 5",
"output": "0"
},
{
"input": "6 8 43\n1 1\n6 2\n5 1\n1 7\n5 2\n1 8\n6 3\n2 7\n1 6\n2 6\n2 5\n5 3\n3 7\n4 7\n1 5\n4 1\n1 4\n3 5\n3 6\n4 3\n2 4\n3 1\n3 8\n4 6\n4 2\n4 8\n3 4\n1 3\n2 8\n6 1\n6 4\n2 1\n3 3\n5 8\n2 2\n2 3\n6 5\n6 8\n5 7\n1 2\n5 6\n5 4\n5 5",
"output": "0"
},
{
"input": "7 11 72\n1 1\n7 3\n5 3\n6 10\n5 4\n5 5\n4 3\n6 9\n4 2\n7 2\n5 2\n5 1\n6 11\n4 5\n4 6\n3 5\n4 4\n3 6\n6 1\n3 7\n5 11\n2 7\n7 9\n3 4\n3 8\n6 4\n3 3\n3 9\n2 3\n6 5\n6 8\n6 3\n2 6\n3 10\n2 8\n5 6\n6 2\n6 7\n4 9\n5 10\n2 9\n4 8\n1 6\n7 7\n7 5\n5 7\n2 4\n6 6\n2 2\n1 3\n1 7\n4 7\n1 8\n4 1\n1 9\n7 8\n4 11\n1 5\n7 11\n7 6\n1 10\n1 4\n5 9\n3 1\n1 11\n7 1\n4 10\n2 1\n1 2\n5 8\n2 10\n7 10",
"output": "0"
},
{
"input": "6 7 2\n1 1\n6 1",
"output": "2"
},
{
"input": "7 10 24\n1 1\n4 7\n7 1\n5 8\n5 3\n7 4\n5 7\n7 5\n4 8\n6 5\n7 6\n6 4\n5 2\n6 3\n4 2\n6 1\n3 8\n4 1\n6 2\n3 1\n5 5\n2 8\n4 3\n4 6",
"output": "2"
},
{
"input": "9 10 69\n1 1\n6 8\n1 8\n4 4\n2 1\n5 6\n1 4\n6 7\n5 8\n4 8\n7 8\n2 4\n1 3\n8 8\n8 7\n3 8\n8 9\n2 2\n4 9\n7 9\n1 7\n1 9\n4 5\n3 9\n8 10\n5 9\n3 1\n9 9\n7 10\n4 3\n1 10\n3 10\n2 5\n2 8\n4 10\n2 9\n4 1\n2 10\n1 6\n1 5\n5 7\n1 2\n3 4\n6 10\n2 6\n8 6\n4 6\n9 7\n5 5\n3 6\n4 7\n7 7\n6 6\n6 5\n5 4\n3 3\n7 6\n2 7\n9 6\n8 5\n3 7\n4 2\n9 10\n5 2\n9 8\n6 2\n5 10\n5 3\n5 1",
"output": "0"
},
{
"input": "6 11 35\n1 1\n6 9\n5 2\n5 4\n2 8\n3 2\n4 3\n6 2\n3 3\n6 4\n3 1\n2 9\n6 8\n5 5\n2 7\n6 1\n5 9\n4 5\n2 2\n2 6\n1 8\n4 4\n6 3\n2 10\n4 6\n3 4\n6 7\n4 1\n2 1\n5 6\n2 4\n6 10\n3 10\n6 5\n3 8",
"output": "1"
},
{
"input": "6 7 2\n1 1\n3 2",
"output": "-1"
},
{
"input": "5 10 48\n1 1\n3 7\n5 8\n5 2\n3 4\n5 7\n4 2\n4 8\n5 3\n3 6\n5 9\n2 4\n1 4\n4 4\n4 1\n4 3\n5 1\n3 3\n4 6\n3 5\n5 4\n2 5\n5 6\n1 3\n1 2\n2 3\n4 9\n3 8\n2 2\n1 5\n5 10\n1 6\n2 6\n5 5\n4 7\n4 5\n4 10\n3 2\n3 9\n1 7\n2 7\n2 1\n2 9\n3 10\n1 8\n3 1\n2 8\n2 10",
"output": "0"
},
{
"input": "7 7 18\n1 1\n5 4\n3 4\n6 7\n5 6\n7 7\n3 5\n6 6\n6 4\n4 5\n2 4\n2 3\n1 3\n5 7\n6 5\n2 2\n5 5\n3 6",
"output": "1"
},
{
"input": "7 8 50\n1 1\n3 1\n4 5\n2 7\n1 5\n5 8\n4 3\n5 3\n3 5\n5 4\n3 6\n4 6\n6 8\n4 7\n7 8\n7 7\n2 5\n6 4\n1 4\n3 2\n2 8\n5 2\n3 7\n1 3\n4 4\n3 3\n6 5\n6 7\n5 5\n1 8\n5 6\n2 3\n4 1\n7 4\n7 6\n4 8\n2 6\n6 6\n7 5\n1 2\n6 3\n5 1\n4 2\n3 8\n3 4\n7 3\n2 2\n7 2\n7 1\n6 2",
"output": "0"
},
{
"input": "10 7 68\n1 1\n9 2\n8 4\n4 1\n4 5\n2 6\n7 1\n3 6\n5 5\n7 4\n2 5\n6 4\n9 1\n9 4\n2 4\n8 3\n7 3\n3 5\n3 7\n8 2\n5 4\n10 4\n6 1\n2 7\n1 4\n6 3\n7 2\n10 3\n1 5\n4 7\n2 3\n5 3\n1 7\n4 3\n8 5\n5 7\n3 3\n5 6\n6 5\n9 5\n1 6\n5 2\n6 6\n10 1\n7 5\n10 2\n8 1\n1 3\n10 5\n8 6\n3 1\n6 2\n2 1\n3 2\n4 4\n1 2\n5 1\n4 2\n9 3\n6 7\n9 6\n2 2\n3 4\n8 7\n4 6\n10 6\n7 6\n7 7",
"output": "1"
},
{
"input": "9 10 3\n1 1\n6 6\n8 4",
"output": "-1"
},
{
"input": "6 8 30\n1 1\n2 5\n6 6\n3 8\n5 5\n3 2\n1 5\n3 1\n3 3\n5 6\n5 4\n4 4\n6 5\n6 7\n3 4\n4 6\n2 4\n5 3\n1 6\n4 1\n2 6\n5 7\n6 8\n2 8\n5 8\n4 3\n4 7\n3 5\n2 2\n4 8",
"output": "1"
},
{
"input": "9 10 55\n1 1\n3 7\n2 9\n2 4\n3 6\n1 4\n2 7\n2 10\n3 8\n4 8\n1 9\n3 5\n1 8\n1 7\n1 5\n3 10\n1 10\n4 5\n4 4\n3 9\n5 5\n4 7\n4 6\n5 7\n4 10\n1 6\n1 3\n6 7\n2 6\n7 7\n3 4\n4 9\n2 8\n3 3\n5 10\n5 8\n2 5\n7 8\n3 2\n8 8\n2 3\n6 10\n7 9\n2 2\n7 6\n3 1\n6 5\n4 1\n5 9\n6 9\n5 1\n1 2\n8 6\n5 6\n5 2",
"output": "1"
},
{
"input": "6 8 20\n1 1\n5 8\n2 3\n5 1\n6 4\n2 7\n4 4\n6 5\n4 1\n6 3\n2 4\n5 7\n4 5\n2 8\n3 7\n4 6\n6 2\n5 6\n6 7\n4 3",
"output": "2"
},
{
"input": "5 10 5\n1 1\n3 2\n5 8\n3 6\n1 8",
"output": "3"
},
{
"input": "3 4 2\n1 1\n2 1",
"output": "1"
},
{
"input": "5 6 4\n1 1\n2 1\n3 1\n4 1",
"output": "1"
},
{
"input": "5 6 5\n1 1\n1 2\n1 3\n1 4\n1 5",
"output": "1"
},
{
"input": "3 3 2\n1 1\n3 3",
"output": "1"
}
] | 109 | 0 | 0 | 5,534 |
|
0 | none | [
"none"
] | null | null | Peter got a new snow blower as a New Year present. Of course, Peter decided to try it immediately. After reading the instructions he realized that it does not work like regular snow blowing machines. In order to make it work, you need to tie it to some point that it does not cover, and then switch it on. As a result it will go along a circle around this point and will remove all the snow from its path.
Formally, we assume that Peter's machine is a polygon on a plane. Then, after the machine is switched on, it will make a circle around the point to which Peter tied it (this point lies strictly outside the polygon). That is, each of the points lying within or on the border of the polygon will move along the circular trajectory, with the center of the circle at the point to which Peter tied his machine.
Peter decided to tie his car to point *P* and now he is wondering what is the area of the region that will be cleared from snow. Help him. | The first line of the input contains three integers — the number of vertices of the polygon *n* (), and coordinates of point *P*.
Each of the next *n* lines contains two integers — coordinates of the vertices of the polygon in the clockwise or counterclockwise order. It is guaranteed that no three consecutive vertices lie on a common straight line.
All the numbers in the input are integers that do not exceed 1<=000<=000 in their absolute value. | Print a single real value number — the area of the region that will be cleared. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if . | [
"3 0 0\n0 1\n-1 2\n1 2\n",
"4 1 -1\n0 0\n1 2\n2 0\n1 1\n"
] | [
"12.566370614359172464\n",
"21.991148575128551812\n"
] | In the first sample snow will be removed from that area: | [
{
"input": "3 0 0\n0 1\n-1 2\n1 2",
"output": "12.566370614359172464"
},
{
"input": "4 1 -1\n0 0\n1 2\n2 0\n1 1",
"output": "21.991148575128551812"
},
{
"input": "3 0 0\n-1 1\n0 3\n1 1",
"output": "25.132741228718344928"
},
{
"input": "3 -4 2\n-3 2\n5 -5\n5 3",
"output": "405.26545231308331191"
},
{
"input": "3 -84 8\n-83 8\n21 -62\n3 53",
"output": "50026.721415763865583"
},
{
"input": "6 -94 -51\n-93 -51\n48 -25\n61 27\n73 76\n-10 87\n-48 38",
"output": "138283.48383306192359"
},
{
"input": "5 -94 52\n-93 52\n-78 -56\n-54 -81\n56 -87\n97 85",
"output": "131381.40477312514811"
},
{
"input": "10 -100 90\n-99 90\n-98 -12\n-72 -87\n7 -84\n86 -79\n96 -2\n100 36\n99 59\n27 83\n-14 93",
"output": "198410.42563011697403"
},
{
"input": "11 -97 -15\n-96 -15\n-83 -84\n-61 -97\n64 -92\n81 -82\n100 -63\n86 80\n58 95\n15 99\n-48 83\n-91 49",
"output": "133558.52848206287476"
},
{
"input": "10 -500 420\n-499 420\n-489 -173\n-455 -480\n160 -464\n374 -437\n452 -352\n481 -281\n465 75\n326 392\n-398 468",
"output": "4719573.802783449531"
},
{
"input": "10 -498 -161\n-497 -161\n-427 -458\n-325 -475\n349 -500\n441 -220\n473 28\n475 62\n468 498\n-444 492\n-465 264",
"output": "4295926.8918542123392"
},
{
"input": "5 -1 -1\n0 0\n8 5\n10 7\n7 5\n2 5",
"output": "574.91145560693214023"
},
{
"input": "5 -1 -1\n0 0\n20 3\n26 17\n23 21\n98 96",
"output": "60343.711690152746165"
},
{
"input": "10 -1 -1\n0 0\n94 7\n100 52\n87 48\n37 26\n74 61\n59 57\n87 90\n52 90\n26 73",
"output": "50337.739088469255101"
},
{
"input": "10 -1 -1\n0 0\n78 22\n53 24\n78 50\n46 39\n45 56\n21 46\n2 7\n24 97\n5 59",
"output": "32129.068068262814194"
},
{
"input": "49 -1 -1\n0 0\n95 2\n47 1\n42 1\n93 7\n56 6\n47 7\n63 13\n98 24\n94 27\n90 28\n86 28\n17 6\n64 24\n42 19\n66 35\n63 35\n98 60\n75 48\n28 18\n71 46\n69 46\n99 68\n64 47\n56 43\n72 58\n35 29\n82 81\n68 69\n79 84\n72 77\n79 86\n54 59\n35 39\n20 23\n73 86\n80 97\n79 100\n69 99\n29 45\n26 63\n23 56\n12 33\n13 39\n25 85\n27 96\n6 23\n4 47\n1 60",
"output": "52147.296456936975932"
},
{
"input": "49 -1 -1\n0 0\n69 2\n74 7\n62 10\n64 15\n93 22\n78 22\n56 17\n86 29\n24 9\n91 43\n8 4\n90 50\n99 57\n39 23\n81 50\n91 58\n67 46\n95 66\n52 39\n91 69\n69 54\n93 84\n93 98\n70 80\n85 98\n30 39\n55 79\n41 59\n50 72\n57 88\n58 92\n58 94\n37 63\n43 87\n30 63\n19 40\n38 81\n40 86\n38 100\n2 6\n30 100\n23 89\n16 62\n11 49\n12 64\n9 52\n5 62\n1 88",
"output": "58543.579099645794717"
},
{
"input": "27 -999899 136015\n-999898 136015\n-999877 -297518\n-999832 -906080\n-999320 -977222\n-998896 -995106\n-962959 -999497\n-747200 -999814\n417261 -999929\n844204 -999911\n959527 -999826\n998944 -999180\n999413 -989979\n999556 -943026\n999871 -774660\n999993 -261535\n999963 938964\n998309 991397\n989894 997814\n988982 998459\n987145 999235\n972224 999741\n603140 999994\n-812452 999962\n-980920 999788\n-996671 987674\n-999472 977919\n-999808 639816",
"output": "16600304470662.964855"
},
{
"input": "19 -995486 -247212\n-995485 -247212\n-995004 -492984\n-993898 -887860\n-938506 -961227\n-688481 -971489\n178005 -999731\n541526 -999819\n799710 -988908\n905862 -967693\n987335 -887414\n983567 824667\n973128 892799\n914017 960546\n669333 986330\n-441349 986800\n-813005 986924\n-980671 973524\n-988356 849906\n-995289 404864",
"output": "16257949833603.158278"
},
{
"input": "15 -994057 554462\n-994056 554462\n-975707 -994167\n-711551 -996810\n13909 -997149\n809315 -993832\n980809 -984682\n996788 -303578\n993267 173570\n978439 877361\n898589 957311\n725925 992298\n-57849 999563\n-335564 997722\n-989580 990530\n-993875 973633",
"output": "19694832748836.689348"
},
{
"input": "23 -999840 738880\n-999839 738880\n-998291 -847192\n-995443 -982237\n-906770 -996569\n360950 -999295\n800714 -998808\n985348 -995579\n990091 -928438\n996690 -817256\n998844 -736918\n998377 674949\n998008 862436\n993320 971157\n978831 979400\n853341 986660\n802107 989497\n513719 996183\n140983 998592\n-158810 999459\n-677966 999174\n-949021 981608\n-982951 976421\n-993452 962292",
"output": "21831930831113.094931"
},
{
"input": "20 -999719 -377746\n-999718 -377746\n-997432 -940486\n-982215 -950088\n-903861 -997725\n-127953 -999833\n846620 -999745\n920305 -992903\n947027 -986746\n991646 -959876\n998264 -944885\n999301 870671\n994737 985066\n640032 998502\n-87871 999984\n-450900 999751\n-910919 999086\n-971174 995672\n-995406 975642\n-998685 946525\n-999684 673031",
"output": "18331542740428.216614"
},
{
"input": "26 -999922 -339832\n-999921 -339832\n-999666 -565163\n-998004 -942175\n-992140 -985584\n-965753 -998838\n-961074 -999911\n120315 -999489\n308422 -999258\n696427 -997199\n724780 -996955\n995651 -985203\n997267 -975745\n999745 -941705\n999897 -770648\n999841 -211766\n999436 865172\n999016 992181\n980442 997414\n799072 998987\n348022 999183\n-178144 999329\n-729638 998617\n-953068 997984\n-991172 990824\n-997976 939889\n-999483 581509",
"output": "18127026556380.411608"
},
{
"input": "22 -999930 -362070\n-999929 -362070\n-994861 -919993\n-989365 -946982\n-964007 -997050\n-418950 -998064\n351746 -998882\n830925 -996765\n867755 -996352\n964401 -992258\n996299 -964402\n997257 -930788\n999795 -616866\n999689 327482\n997898 996234\n923521 997809\n631104 998389\n-261788 999672\n-609744 999782\n-694662 999001\n-941227 993687\n-997105 992436\n-999550 895326",
"output": "18335297542813.80731"
},
{
"input": "29 -999961 689169\n-999960 689169\n-999927 -938525\n-999735 -989464\n-993714 -997911\n-870186 -999686\n-796253 -999950\n-139940 -999968\n969552 -999972\n985446 -999398\n992690 -997295\n999706 -973137\n999898 -848630\n999997 -192297\n999969 773408\n999495 960350\n999143 981671\n998324 993987\n997640 998103\n986157 998977\n966840 999418\n670113 999809\n477888 999856\n129160 999900\n-373564 999947\n-797543 999976\n-860769 999903\n-995496 999355\n-998771 984570\n-999768 927157",
"output": "21409384775316.574772"
},
{
"input": "3 -3 3\n-3 2\n5 -5\n5 3",
"output": "399.0305992005743379"
},
{
"input": "3 -9 7\n-9 6\n3 -6\n4 2",
"output": "980.17690792001545219"
},
{
"input": "5 -9 8\n-9 7\n-6 -1\n-3 -6\n1 -3\n10 8",
"output": "1130.9820337250702449"
},
{
"input": "6 -6 -1\n-6 -2\n0 -7\n8 -9\n9 -1\n5 10\n-5 0",
"output": "816.18577140262825159"
},
{
"input": "10 -99 91\n-99 90\n-98 -12\n-72 -87\n7 -84\n86 -79\n96 -2\n100 36\n99 59\n27 83\n-14 93",
"output": "198309.89857373595223"
},
{
"input": "11 -96 -14\n-96 -15\n-83 -84\n-61 -97\n64 -92\n81 -82\n100 -63\n86 80\n58 95\n15 99\n-48 83\n-91 49",
"output": "131821.20868619133483"
},
{
"input": "13 -98 25\n-98 24\n-96 10\n-80 -71\n-71 -78\n-31 -99\n82 -98\n92 -39\n94 -2\n94 40\n90 80\n50 96\n-41 97\n-86 80",
"output": "149316.61930888936332"
},
{
"input": "17 -99 -53\n-99 -54\n-97 -71\n-67 -99\n-61 -99\n56 -98\n82 -85\n95 -47\n90 -2\n82 30\n63 87\n54 95\n-12 99\n-38 99\n-87 89\n-90 87\n-95 67\n-96 49",
"output": "144023.17094830233827"
},
{
"input": "19 -995485 -247211\n-995485 -247212\n-995004 -492984\n-993898 -887860\n-938506 -961227\n-688481 -971489\n178005 -999731\n541526 -999819\n799710 -988908\n905862 -967693\n987335 -887414\n983567 824667\n973128 892799\n914017 960546\n669333 986330\n-441349 986800\n-813005 986924\n-980671 973524\n-988356 849906\n-995289 404864",
"output": "16257930301545.657524"
},
{
"input": "15 -994056 554463\n-994056 554462\n-975707 -994167\n-711551 -996810\n13909 -997149\n809315 -993832\n980809 -984682\n996788 -303578\n993267 173570\n978439 877361\n898589 957311\n725925 992298\n-57849 999563\n-335564 997722\n-989580 990530\n-993875 973633",
"output": "19694830011124.045712"
},
{
"input": "23 -999839 738881\n-999839 738880\n-998291 -847192\n-995443 -982237\n-906770 -996569\n360950 -999295\n800714 -998808\n985348 -995579\n990091 -928438\n996690 -817256\n998844 -736918\n998377 674949\n998008 862436\n993320 971157\n978831 979400\n853341 986660\n802107 989497\n513719 996183\n140983 998592\n-158810 999459\n-677966 999174\n-949021 981608\n-982951 976421\n-993452 962292",
"output": "21831929255745.74826"
},
{
"input": "20 -999718 -377745\n-999718 -377746\n-997432 -940486\n-982215 -950088\n-903861 -997725\n-127953 -999833\n846620 -999745\n920305 -992903\n947027 -986746\n991646 -959876\n998264 -944885\n999301 870671\n994737 985066\n640032 998502\n-87871 999984\n-450900 999751\n-910919 999086\n-971174 995672\n-995406 975642\n-998685 946525\n-999684 673031",
"output": "18331521646100.671528"
},
{
"input": "26 -999921 -339831\n-999921 -339832\n-999666 -565163\n-998004 -942175\n-992140 -985584\n-965753 -998838\n-961074 -999911\n120315 -999489\n308422 -999258\n696427 -997199\n724780 -996955\n995651 -985203\n997267 -975745\n999745 -941705\n999897 -770648\n999841 -211766\n999436 865172\n999016 992181\n980442 997414\n799072 998987\n348022 999183\n-178144 999329\n-729638 998617\n-953068 997984\n-991172 990824\n-997976 939889\n-999483 581509",
"output": "18127005627407.454252"
},
{
"input": "22 -999929 -362069\n-999929 -362070\n-994861 -919993\n-989365 -946982\n-964007 -997050\n-418950 -998064\n351746 -998882\n830925 -996765\n867755 -996352\n964401 -992258\n996299 -964402\n997257 -930788\n999795 -616866\n999689 327482\n997898 996234\n923521 997809\n631104 998389\n-261788 999672\n-609744 999782\n-694662 999001\n-941227 993687\n-997105 992436\n-999550 895326",
"output": "18335276455623.960732"
},
{
"input": "27 -999898 136016\n-999898 136015\n-999877 -297518\n-999832 -906080\n-999320 -977222\n-998896 -995106\n-962959 -999497\n-747200 -999814\n417261 -999929\n844204 -999911\n959527 -999826\n998944 -999180\n999413 -989979\n999556 -943026\n999871 -774660\n999993 -261535\n999963 938964\n998309 991397\n989894 997814\n988982 998459\n987145 999235\n972224 999741\n603140 999994\n-812452 999962\n-980920 999788\n-996671 987674\n-999472 977919\n-999808 639816",
"output": "16600299044211.965457"
},
{
"input": "13 -1000000 -1000000\n-1000000 0\n0 -1000000\n999417 840\n999781 33421\n999994 131490\n999993 998865\n962080 999911\n629402 999973\n378696 999988\n53978 999788\n25311 999558\n6082 999282\n1565 998489",
"output": "23547598153913.984406"
},
{
"input": "16 -1000000 -1000000\n-1000000 0\n0 -1000000\n999744 572\n999931 96510\n1000000 254372\n999939 748173\n999894 953785\n999683 986098\n999051 999815\n980586 999969\n637250 999988\n118331 999983\n27254 999966\n9197 999405\n4810 997733\n1661 995339",
"output": "23547697574489.259052"
},
{
"input": "4 0 0\n1 -1\n1 3\n3 3\n3 -1",
"output": "53.407075111026482965"
},
{
"input": "3 0 0\n-10 1\n0 2\n1 1",
"output": "314.1592653589793116"
},
{
"input": "3 0 0\n-1 1\n4 1\n0 2",
"output": "50.265482457436689849"
}
] | 46 | 307,200 | 0 | 5,543 |
|
441 | Valera and Tubes | [
"constructive algorithms",
"dfs and similar",
"implementation"
] | null | null | Valera has got a rectangle table consisting of *n* rows and *m* columns. Valera numbered the table rows starting from one, from top to bottom and the columns – starting from one, from left to right. We will represent cell that is on the intersection of row *x* and column *y* by a pair of integers (*x*,<=*y*).
Valera wants to place exactly *k* tubes on his rectangle table. A tube is such sequence of table cells (*x*1,<=*y*1), (*x*2,<=*y*2), ..., (*x**r*,<=*y**r*), that:
- *r*<=≥<=2; - for any integer *i* (1<=≤<=*i*<=≤<=*r*<=-<=1) the following equation |*x**i*<=-<=*x**i*<=+<=1|<=+<=|*y**i*<=-<=*y**i*<=+<=1|<==<=1 holds; - each table cell, which belongs to the tube, must occur exactly once in the sequence.
Valera thinks that the tubes are arranged in a fancy manner if the following conditions are fulfilled:
- no pair of tubes has common cells; - each cell of the table belongs to some tube.
Help Valera to arrange *k* tubes on his rectangle table in a fancy manner. | The first line contains three space-separated integers *n*,<=*m*,<=*k* (2<=≤<=*n*,<=*m*<=≤<=300; 2<=≤<=2*k*<=≤<=*n*·*m*) — the number of rows, the number of columns and the number of tubes, correspondingly. | Print *k* lines. In the *i*-th line print the description of the *i*-th tube: first print integer *r**i* (the number of tube cells), then print 2*r**i* integers *x**i*1,<=*y**i*1,<=*x**i*2,<=*y**i*2,<=...,<=*x**ir**i*,<=*y**ir**i* (the sequence of table cells).
If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists. | [
"3 3 3\n",
"2 3 1\n"
] | [
"3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3\n",
"6 1 1 1 2 1 3 2 3 2 2 2 1\n"
] | Picture for the first sample:
Picture for the second sample: | [
{
"input": "3 3 3",
"output": "3 1 1 1 2 1 3\n3 2 1 2 2 2 3\n3 3 1 3 2 3 3"
},
{
"input": "2 3 1",
"output": "6 1 1 1 2 1 3 2 3 2 2 2 1"
},
{
"input": "2 3 1",
"output": "6 1 1 1 2 1 3 2 3 2 2 2 1"
},
{
"input": "300 300 2",
"output": "2 1 1 1 2\n89998 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..."
},
{
"input": "300 300 150",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 299 299",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 45000",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 299 44850",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "2 2 2",
"output": "2 1 1 1 2\n2 2 2 2 1"
},
{
"input": "2 3 3",
"output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1"
},
{
"input": "3 3 4",
"output": "2 1 1 1 2\n2 1 3 2 3\n2 2 2 2 1\n3 3 1 3 2 3 3"
},
{
"input": "5 5 12",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n3 5 3 5 4 5 5"
},
{
"input": "7 5 17",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 4 5\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 5 5 6 5\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n3 7 3 7 4 7 5"
},
{
"input": "135 91 4352",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "32 27 153",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 2 27\n2 2 26 2 25\n2 2 24 2 23\n2 2 22 2 21\n2 2 20 2 19\n2 2 18 2 17\n2 2 16 2 15\n2 2 14 2 13\n2 2 12 2 11\n2 2 10 2 9\n2 2 8 2 7\n2 2 6 2 5\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 3 5 3 6\n2 3 7 3 8\n2 3 9 3 10\n2 3 11 3 12\n2 3 13 3 14\n2 3 15 3 16\n2 3 17 3 18\n2 3 19 3 20\n2 3 21 3 22\n2 3 23 3 24\n2 3 25 3 26\n2 3 27 4 27\n2 4 2..."
},
{
"input": "74 83 2667",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "296 218 5275",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "89 82 2330",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "15 68 212",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 2 68 2 67\n2 2 66 2 65\n2 2 64 2 63\n2 2 62 2 61\n2 2 60 2 59\n2 2 58 2 57\n..."
},
{
"input": "95 4 177",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 2 4 2 3\n2 2 2 2 1\n2 3 1 3 2\n2 3 3 3 4\n2 4 4 4 3\n2 4 2 4 1\n2 5 1 5 2\n2 5 3 5 4\n2 6 4 6 3\n2 6 2 6 1\n2 7 1 7 2\n2 7 3 7 4\n2 8 4 8 3\n2 8 2 8 1\n2 9 1 9 2\n2 9 3 9 4\n2 10 4 10 3\n2 10 2 10 1\n2 11 1 11 2\n2 11 3 11 4\n2 12 4 12 3\n2 12 2 12 1\n2 13 1 13 2\n2 13 3 13 4\n2 14 4 14 3\n2 14 2 14 1\n2 15 1 15 2\n2 15 3 15 4\n2 16 4 16 3\n2 16 2 16 1\n2 17 1 17 2\n2 17 3 17 4\n2 18 4 18 3\n2 18 2 18 1\n2 19 1 19 2\n2 19 3 19 4\n2 20 4 20 3\n2 20 2 20 1\n2 21 1 21 2\n2 21 3 21 4\n2..."
},
{
"input": "60 136 8",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n8146 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99..."
},
{
"input": "91 183 7827",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "2 15 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n26 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 2 15 2 14 2 13 2 12 2 11 2 10 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1"
},
{
"input": "139 275 10770",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "114 298 7143",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "260 182 9496",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "42 297 3703",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "236 156 9535",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "201 226 1495",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 299 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 298 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "298 299 100",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "299 299 2",
"output": "2 1 1 1 2\n89399 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 10..."
},
{
"input": "299 299 1",
"output": "89401 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..."
},
{
"input": "298 299 1",
"output": "89102 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1..."
},
{
"input": "299 298 11",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n89082 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97..."
},
{
"input": "298 300 12",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n89378 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1..."
},
{
"input": "298 2 1",
"output": "596 1 1 1 2 2 2 2 1 3 1 3 2 4 2 4 1 5 1 5 2 6 2 6 1 7 1 7 2 8 2 8 1 9 1 9 2 10 2 10 1 11 1 11 2 12 2 12 1 13 1 13 2 14 2 14 1 15 1 15 2 16 2 16 1 17 1 17 2 18 2 18 1 19 1 19 2 20 2 20 1 21 1 21 2 22 2 22 1 23 1 23 2 24 2 24 1 25 1 25 2 26 2 26 1 27 1 27 2 28 2 28 1 29 1 29 2 30 2 30 1 31 1 31 2 32 2 32 1 33 1 33 2 34 2 34 1 35 1 35 2 36 2 36 1 37 1 37 2 38 2 38 1 39 1 39 2 40 2 40 1 41 1 41 2 42 2 42 1 43 1 43 2 44 2 44 1 45 1 45 2 46 2 46 1 47 1 47 2 48 2 48 1 49 1 49 2 50 2 50 1 51 1 51 2 52 2 52 1 53 1 ..."
},
{
"input": "2 298 1",
"output": "596 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 101 1 102 1 1..."
},
{
"input": "300 300 500",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 501",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "300 300 44999",
"output": "2 1 1 1 2\n2 1 3 1 4\n2 1 5 1 6\n2 1 7 1 8\n2 1 9 1 10\n2 1 11 1 12\n2 1 13 1 14\n2 1 15 1 16\n2 1 17 1 18\n2 1 19 1 20\n2 1 21 1 22\n2 1 23 1 24\n2 1 25 1 26\n2 1 27 1 28\n2 1 29 1 30\n2 1 31 1 32\n2 1 33 1 34\n2 1 35 1 36\n2 1 37 1 38\n2 1 39 1 40\n2 1 41 1 42\n2 1 43 1 44\n2 1 45 1 46\n2 1 47 1 48\n2 1 49 1 50\n2 1 51 1 52\n2 1 53 1 54\n2 1 55 1 56\n2 1 57 1 58\n2 1 59 1 60\n2 1 61 1 62\n2 1 63 1 64\n2 1 65 1 66\n2 1 67 1 68\n2 1 69 1 70\n2 1 71 1 72\n2 1 73 1 74\n2 1 75 1 76\n2 1 77 1 78\n2 1 79 1 80\n..."
},
{
"input": "5 5 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n21 1 5 2 5 2 4 2 3 2 2 2 1 3 1 3 2 3 3 3 4 3 5 4 5 4 4 4 3 4 2 4 1 5 1 5 2 5 3 5 4 5 5"
},
{
"input": "2 4 3",
"output": "2 1 1 1 2\n2 1 3 1 4\n4 2 4 2 3 2 2 2 1"
}
] | 233 | 10,240,000 | -1 | 5,556 |
|
622 | The Time | [
"implementation"
] | null | null | You are given the current time in 24-hour format hh:mm. Find and print the time after *a* minutes.
Note that you should find only the time after *a* minutes, see the examples to clarify the problem statement.
You can read more about 24-hour format here [https://en.wikipedia.org/wiki/24-hour_clock](https://en.wikipedia.org/wiki/24-hour_clock). | The first line contains the current time in the format hh:mm (0<=≤<=*hh*<=<<=24,<=0<=≤<=*mm*<=<<=60). The hours and the minutes are given with two digits (the hours or the minutes less than 10 are given with the leading zeroes).
The second line contains integer *a* (0<=≤<=*a*<=≤<=104) — the number of the minutes passed. | The only line should contain the time after *a* minutes in the format described in the input. Note that you should print exactly two digits for the hours and the minutes (add leading zeroes to the numbers if needed).
See the examples to check the input/output format. | [
"23:59\n10\n",
"20:20\n121\n",
"10:10\n0\n"
] | [
"00:09\n",
"22:21\n",
"10:10\n"
] | none | [
{
"input": "23:59\n10",
"output": "00:09"
},
{
"input": "20:20\n121",
"output": "22:21"
},
{
"input": "10:10\n0",
"output": "10:10"
},
{
"input": "12:34\n10000",
"output": "11:14"
},
{
"input": "00:00\n10000",
"output": "22:40"
},
{
"input": "00:00\n1440",
"output": "00:00"
},
{
"input": "23:59\n8640",
"output": "23:59"
},
{
"input": "10:01\n0",
"output": "10:01"
},
{
"input": "04:05\n0",
"output": "04:05"
},
{
"input": "02:59\n1",
"output": "03:00"
},
{
"input": "05:15\n10",
"output": "05:25"
},
{
"input": "03:10\n20",
"output": "03:30"
},
{
"input": "09:11\n0",
"output": "09:11"
},
{
"input": "19:00\n0",
"output": "19:00"
},
{
"input": "23:59\n1",
"output": "00:00"
},
{
"input": "11:59\n1",
"output": "12:00"
},
{
"input": "19:34\n566",
"output": "05:00"
},
{
"input": "00:01\n59",
"output": "01:00"
},
{
"input": "03:30\n0",
"output": "03:30"
},
{
"input": "22:30\n30",
"output": "23:00"
},
{
"input": "22:50\n70",
"output": "00:00"
},
{
"input": "05:12\n0",
"output": "05:12"
},
{
"input": "09:20\n40",
"output": "10:00"
},
{
"input": "15:04\n36",
"output": "15:40"
},
{
"input": "05:37\n23",
"output": "06:00"
},
{
"input": "23:59\n59",
"output": "00:58"
},
{
"input": "21:09\n9997",
"output": "19:46"
},
{
"input": "11:00\n1",
"output": "11:01"
},
{
"input": "20:01\n2699",
"output": "17:00"
},
{
"input": "01:00\n59",
"output": "01:59"
},
{
"input": "07:09\n6538",
"output": "20:07"
},
{
"input": "00:00\n10",
"output": "00:10"
},
{
"input": "02:09\n2074",
"output": "12:43"
},
{
"input": "01:10\n1",
"output": "01:11"
},
{
"input": "23:01\n59",
"output": "00:00"
},
{
"input": "08:50\n20",
"output": "09:10"
},
{
"input": "13:18\n5121",
"output": "02:39"
},
{
"input": "18:31\n2677",
"output": "15:08"
},
{
"input": "14:17\n108",
"output": "16:05"
},
{
"input": "02:45\n5617",
"output": "00:22"
},
{
"input": "00:00\n3600",
"output": "12:00"
},
{
"input": "19:01\n59",
"output": "20:00"
},
{
"input": "19:02\n59",
"output": "20:01"
},
{
"input": "14:00\n2880",
"output": "14:00"
},
{
"input": "01:10\n44",
"output": "01:54"
},
{
"input": "02:01\n59",
"output": "03:00"
},
{
"input": "07:02\n121",
"output": "09:03"
},
{
"input": "10:00\n61",
"output": "11:01"
},
{
"input": "23:59\n61",
"output": "01:00"
},
{
"input": "00:00\n0",
"output": "00:00"
},
{
"input": "23:59\n121",
"output": "02:00"
},
{
"input": "00:00\n60",
"output": "01:00"
},
{
"input": "15:52\n60",
"output": "16:52"
},
{
"input": "00:39\n6525",
"output": "13:24"
},
{
"input": "00:30\n30",
"output": "01:00"
},
{
"input": "00:59\n1",
"output": "01:00"
},
{
"input": "00:55\n4321",
"output": "00:56"
},
{
"input": "10:05\n1",
"output": "10:06"
},
{
"input": "23:00\n60",
"output": "00:00"
}
] | 217 | 307,200 | 3 | 5,557 |
|
430 | Balls Game | [
"brute force",
"two pointers"
] | null | null | Iahub is training for the IOI. What is a better way to train than playing a Zuma-like game?
There are *n* balls put in a row. Each ball is colored in one of *k* colors. Initially the row doesn't contain three or more contiguous balls with the same color. Iahub has a single ball of color *x*. He can insert his ball at any position in the row (probably, between two other balls). If at any moment there are three or more contiguous balls of the same color in the row, they are destroyed immediately. This rule is applied multiple times, until there are no more sets of 3 or more contiguous balls of the same color.
For example, if Iahub has the row of balls [black, black, white, white, black, black] and a white ball, he can insert the ball between two white balls. Thus three white balls are destroyed, and then four black balls become contiguous, so all four balls are destroyed. The row will not contain any ball in the end, so Iahub can destroy all 6 balls.
Iahub wants to destroy as many balls as possible. You are given the description of the row of balls, and the color of Iahub's ball. Help Iahub train for the IOI by telling him the maximum number of balls from the row he can destroy. | The first line of input contains three integers: *n* (1<=≤<=*n*<=≤<=100), *k* (1<=≤<=*k*<=≤<=100) and *x* (1<=≤<=*x*<=≤<=*k*). The next line contains *n* space-separated integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=*k*). Number *c**i* means that the *i*-th ball in the row has color *c**i*.
It is guaranteed that the initial row of balls will never contain three or more contiguous balls of the same color. | Print a single integer — the maximum number of balls Iahub can destroy. | [
"6 2 2\n1 1 2 2 1 1\n",
"1 1 1\n1\n"
] | [
"6\n",
"0\n"
] | none | [
{
"input": "6 2 2\n1 1 2 2 1 1",
"output": "6"
},
{
"input": "1 1 1\n1",
"output": "0"
},
{
"input": "10 2 1\n2 1 2 2 1 2 2 1 1 2",
"output": "5"
},
{
"input": "50 2 1\n1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 1 2",
"output": "15"
},
{
"input": "75 5 5\n1 1 5 5 3 5 2 3 3 2 2 1 1 5 4 4 3 4 5 4 3 3 1 2 2 1 2 1 2 5 5 2 1 3 2 2 3 1 2 1 1 5 5 1 1 2 1 1 2 2 5 2 2 1 1 2 1 2 1 1 3 3 5 4 4 3 3 4 4 5 5 1 1 2 2",
"output": "6"
},
{
"input": "100 3 2\n1 1 2 3 1 3 2 1 1 3 3 2 2 1 1 2 2 1 1 3 2 2 3 2 3 2 2 3 3 1 1 2 2 1 2 2 1 3 3 1 3 3 1 2 1 2 2 1 2 3 2 1 1 2 1 1 3 3 1 3 3 1 1 2 2 1 1 2 1 3 2 2 3 2 2 3 3 1 2 1 2 2 1 1 2 3 1 3 3 1 2 3 2 2 1 3 2 2 3 3",
"output": "6"
},
{
"input": "100 2 1\n2 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1",
"output": "15"
},
{
"input": "100 2 2\n1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2",
"output": "14"
},
{
"input": "100 2 2\n1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2",
"output": "17"
},
{
"input": "100 2 2\n2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2",
"output": "17"
},
{
"input": "100 2 2\n1 2 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 1 2 1 2 1",
"output": "28"
},
{
"input": "100 2 2\n1 1 2 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2",
"output": "8"
},
{
"input": "100 100 50\n15 44 5 7 75 40 52 82 78 90 48 32 16 53 69 2 21 84 7 21 21 87 29 8 42 54 10 21 38 55 54 88 48 63 3 17 45 82 82 91 7 11 11 24 24 79 1 32 32 38 41 41 4 4 74 17 26 26 96 96 3 3 50 50 96 26 26 17 17 74 74 4 41 38 38 32 1 1 79 79 24 11 11 7 7 91 91 82 45 45 97 9 74 60 32 91 61 64 100 26",
"output": "2"
},
{
"input": "100 50 22\n15 2 18 15 48 35 46 33 32 39 39 5 5 27 27 50 50 47 47 10 10 6 3 3 7 8 7 17 17 29 14 10 10 46 13 13 31 32 31 22 22 32 31 31 32 13 13 46 46 10 10 14 14 29 29 17 7 7 8 3 6 6 10 47 50 50 27 5 5 39 39 21 47 4 40 47 21 28 21 21 40 27 34 17 3 36 5 7 21 14 25 49 40 34 32 13 23 29 2 4",
"output": "2"
},
{
"input": "100 3 3\n3 1 1 2 1 1 3 1 3 3 1 3 3 1 2 1 1 2 2 3 3 2 3 2 2 3 1 3 3 2 2 1 3 3 2 2 1 2 3 3 1 3 1 3 1 2 2 1 2 1 2 3 1 3 1 3 2 1 3 2 3 3 2 3 2 3 1 3 2 2 1 2 1 2 1 1 3 1 3 1 2 1 2 1 2 3 2 2 3 3 2 2 3 2 2 3 1 1 2 3",
"output": "6"
},
{
"input": "100 100 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100",
"output": "0"
},
{
"input": "100 2 2\n1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2",
"output": "98"
},
{
"input": "6 20 10\n10 2 10 10 2 2",
"output": "5"
}
] | 140 | 614,400 | 3 | 5,558 |
|
899 | Months and Years | [
"implementation"
] | null | null | Everybody in Russia uses Gregorian calendar. In this calendar there are 31 days in January, 28 or 29 days in February (depending on whether the year is leap or not), 31 days in March, 30 days in April, 31 days in May, 30 in June, 31 in July, 31 in August, 30 in September, 31 in October, 30 in November, 31 in December.
A year is leap in one of two cases: either its number is divisible by 4, but not divisible by 100, or is divisible by 400. For example, the following years are leap: 2000, 2004, but years 1900 and 2018 are not leap.
In this problem you are given *n* (1<=≤<=*n*<=≤<=24) integers *a*1,<=*a*2,<=...,<=*a**n*, and you have to check if these integers could be durations in days of *n* consecutive months, according to Gregorian calendar. Note that these months could belong to several consecutive years. In other words, check if there is a month in some year, such that its duration is *a*1 days, duration of the next month is *a*2 days, and so on. | The first line contains single integer *n* (1<=≤<=*n*<=≤<=24) — the number of integers.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (28<=≤<=*a**i*<=≤<=31) — the numbers you are to check. | If there are several consecutive months that fit the sequence, print "YES" (without quotes). Otherwise, print "NO" (without quotes).
You can print each letter in arbitrary case (small or large). | [
"4\n31 31 30 31\n",
"2\n30 30\n",
"5\n29 31 30 31 30\n",
"3\n31 28 30\n",
"3\n31 31 28\n"
] | [
"Yes\n\n",
"No\n\n",
"Yes\n\n",
"No\n\n",
"Yes\n\n"
] | In the first example the integers can denote months July, August, September and October.
In the second example the answer is no, because there are no two consecutive months each having 30 days.
In the third example the months are: February (leap year) — March — April – May — June.
In the fourth example the number of days in the second month is 28, so this is February. March follows February and has 31 days, but not 30, so the answer is NO.
In the fifth example the months are: December — January — February (non-leap year). | [
{
"input": "4\n31 31 30 31",
"output": "Yes"
},
{
"input": "2\n30 30",
"output": "No"
},
{
"input": "5\n29 31 30 31 30",
"output": "Yes"
},
{
"input": "3\n31 28 30",
"output": "No"
},
{
"input": "3\n31 31 28",
"output": "Yes"
},
{
"input": "24\n29 28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31",
"output": "No"
},
{
"input": "4\n31 29 31 30",
"output": "Yes"
},
{
"input": "24\n31 28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "8\n31 29 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "1\n29",
"output": "Yes"
},
{
"input": "8\n31 29 31 30 31 31 31 31",
"output": "No"
},
{
"input": "1\n31",
"output": "Yes"
},
{
"input": "11\n30 31 30 31 31 30 31 30 31 31 28",
"output": "Yes"
},
{
"input": "21\n30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31",
"output": "Yes"
},
{
"input": "4\n31 28 28 30",
"output": "No"
},
{
"input": "2\n30 31",
"output": "Yes"
},
{
"input": "7\n28 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "4\n28 31 30 31",
"output": "Yes"
},
{
"input": "17\n28 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31",
"output": "No"
},
{
"input": "9\n31 31 29 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "4\n31 28 31 30",
"output": "Yes"
},
{
"input": "21\n30 31 30 31 31 28 31 30 31 30 31 29 30 31 30 31 31 28 31 30 31",
"output": "No"
},
{
"input": "2\n31 31",
"output": "Yes"
},
{
"input": "17\n31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "4\n30 31 30 31",
"output": "Yes"
},
{
"input": "12\n31 28 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "12\n31 29 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "11\n30 31 30 31 31 30 31 30 31 29 28",
"output": "No"
},
{
"input": "22\n31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "14\n31 30 31 31 28 31 30 31 30 31 31 30 31 30",
"output": "Yes"
},
{
"input": "12\n31 30 31 31 28 31 30 31 30 31 31 30",
"output": "Yes"
},
{
"input": "4\n31 29 29 30",
"output": "No"
},
{
"input": "7\n28 28 30 31 30 31 31",
"output": "No"
},
{
"input": "9\n29 31 29 31 30 31 30 31 31",
"output": "No"
},
{
"input": "17\n31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "2\n31 29",
"output": "Yes"
},
{
"input": "12\n31 28 31 30 31 30 31 31 30 31 28 31",
"output": "No"
},
{
"input": "2\n29 31",
"output": "Yes"
},
{
"input": "12\n31 29 31 30 31 30 31 30 30 31 30 31",
"output": "No"
},
{
"input": "12\n31 28 31 30 31 29 31 31 30 31 30 31",
"output": "No"
},
{
"input": "22\n31 30 31 30 31 31 30 31 30 31 31 28 31 30 28 30 31 31 30 31 30 31",
"output": "No"
},
{
"input": "14\n31 30 31 31 28 31 30 31 30 31 31 30 29 30",
"output": "No"
},
{
"input": "19\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31",
"output": "Yes"
},
{
"input": "20\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "1\n28",
"output": "Yes"
},
{
"input": "1\n29",
"output": "Yes"
},
{
"input": "17\n31 30 31 30 31 31 29 31 30 31 31 31 31 30 31 30 31",
"output": "No"
},
{
"input": "1\n30",
"output": "Yes"
},
{
"input": "1\n31",
"output": "Yes"
},
{
"input": "24\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31",
"output": "Yes"
},
{
"input": "24\n28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "12\n31 30 31 31 28 28 30 31 30 31 31 30",
"output": "No"
},
{
"input": "24\n29 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "24\n28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31 31",
"output": "Yes"
},
{
"input": "24\n31 29 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31",
"output": "No"
},
{
"input": "13\n28 31 30 31 30 31 31 30 31 30 31 31 28",
"output": "Yes"
},
{
"input": "15\n31 31 28 31 30 31 30 31 31 30 31 30 31 31 29",
"output": "Yes"
},
{
"input": "23\n31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31 29 31",
"output": "Yes"
},
{
"input": "24\n31 30 31 30 31 31 30 31 30 31 31 30 31 30 31 30 31 31 30 31 30 31 31 30",
"output": "No"
},
{
"input": "23\n29 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31",
"output": "No"
},
{
"input": "15\n31 31 29 31 30 31 30 31 31 30 31 30 31 31 28",
"output": "Yes"
},
{
"input": "12\n31 30 31 30 31 30 31 31 30 31 30 31",
"output": "No"
}
] | 46 | 0 | 0 | 5,577 |
|
0 | none | [
"none"
] | null | null | On the math lesson a teacher asked each pupil to come up with his own lucky numbers. As a fan of number theory Peter chose prime numbers. Bob was more original. He said that number *t* is his lucky number, if it can be represented as:
Now, the boys decided to find out how many days of the interval [*l*,<=*r*] (*l*<=≤<=*r*) are suitable for pair programming. They decided that the day *i* (*l*<=≤<=*i*<=≤<=*r*) is suitable for pair programming if and only if the number *i* is lucky for Peter and lucky for Bob at the same time. Help the boys to find the number of such days. | The first line of the input contains integer numbers *l*,<=*r* (1<=≤<=*l*,<=*r*<=≤<=3·108). | In the only line print the number of days on the segment [*l*,<=*r*], which are lucky for Peter and Bob at the same time. | [
"3 5\n",
"6 66\n"
] | [
"1\n",
"7\n"
] | none | [] | 46 | 0 | 0 | 5,581 |
|
397 | On Corruption and Numbers | [
"constructive algorithms",
"implementation",
"math"
] | null | null | Alexey, a merry Berland entrant, got sick of the gray reality and he zealously wants to go to university. There are a lot of universities nowadays, so Alexey is getting lost in the diversity — he has not yet decided what profession he wants to get. At school, he had bad grades in all subjects, and it's only thanks to wealthy parents that he was able to obtain the graduation certificate.
The situation is complicated by the fact that each high education institution has the determined amount of voluntary donations, paid by the new students for admission — *n**i* berubleys. He cannot pay more than *n**i*, because then the difference between the paid amount and *n**i* can be regarded as a bribe!
Each rector is wearing the distinctive uniform of his university. Therefore, the uniform's pockets cannot contain coins of denomination more than *r**i*. The rector also does not carry coins of denomination less than *l**i* in his pocket — because if everyone pays him with so small coins, they gather a lot of weight and the pocket tears. Therefore, a donation can be paid only by coins of denomination *x* berubleys, where *l**i*<=≤<=*x*<=≤<=*r**i* (Berland uses coins of any positive integer denomination). Alexey can use the coins of different denominations and he can use the coins of the same denomination any number of times. When Alexey was first confronted with such orders, he was puzzled because it turned out that not all universities can accept him! Alexey is very afraid of going into the army (even though he had long wanted to get the green uniform, but his dad says that the army bullies will beat his son and he cannot pay to ensure the boy's safety). So, Alexey wants to know for sure which universities he can enter so that he could quickly choose his alma mater.
Thanks to the parents, Alexey is not limited in money and we can assume that he has an unlimited number of coins of each type.
In other words, you are given *t* requests, each of them contains numbers *n**i*,<=*l**i*,<=*r**i*. For each query you need to answer, whether it is possible to gather the sum of exactly *n**i* berubleys using only coins with an integer denomination from *l**i* to *r**i* berubleys. You can use coins of different denominations. Coins of each denomination can be used any number of times. | The first line contains the number of universities *t*, (1<=≤<=*t*<=≤<=1000) Each of the next *t* lines contain three space-separated integers: *n**i*,<=*l**i*,<=*r**i* (1<=≤<=*n**i*,<=*l**i*,<=*r**i*<=≤<=109; *l**i*<=≤<=*r**i*). | For each query print on a single line: either "Yes", if Alexey can enter the university, or "No" otherwise. | [
"2\n5 2 3\n6 4 5\n"
] | [
"Yes\nNo\n"
] | You can pay the donation to the first university with two coins: one of denomination 2 and one of denomination 3 berubleys. The donation to the second university cannot be paid. | [
{
"input": "2\n5 2 3\n6 4 5",
"output": "Yes\nNo"
},
{
"input": "50\n69 6 6\n22 1 1\n23 3 3\n60 13 13\n13 3 3\n7 4 7\n6 1 1\n49 7 9\n68 8 8\n20 2 2\n34 1 1\n79 5 5\n22 1 1\n77 58 65\n10 3 3\n72 5 5\n47 1 1\n82 3 3\n92 8 8\n34 1 1\n42 9 10\n63 14 14\n10 3 3\n38 2 2\n80 6 6\n79 5 5\n53 5 5\n44 7 7\n85 2 2\n24 2 2\n57 3 3\n95 29 81\n77 6 6\n24 1 1\n33 4 4\n93 6 6\n55 22 28\n91 14 14\n7 1 1\n16 1 1\n20 3 3\n43 3 3\n53 3 3\n49 3 3\n52 5 5\n2 1 1\n60 5 5\n76 57 68\n67 3 3\n61 52 61",
"output": "No\nYes\nNo\nNo\nNo\nYes\nYes\nYes\nNo\nYes\nYes\nNo\nYes\nNo\nNo\nNo\nYes\nNo\nNo\nYes\nNo\nNo\nNo\nYes\nNo\nNo\nNo\nNo\nNo\nYes\nYes\nYes\nNo\nYes\nNo\nNo\nYes\nNo\nYes\nYes\nNo\nNo\nNo\nNo\nNo\nYes\nYes\nNo\nNo\nYes"
}
] | 93 | 0 | 0 | 5,582 |
|
463 | Gargari and Permutations | [
"dfs and similar",
"dp",
"graphs",
"implementation"
] | null | null | Gargari got bored to play with the bishops and now, after solving the problem about them, he is trying to do math homework. In a math book he have found *k* permutations. Each of them consists of numbers 1,<=2,<=...,<=*n* in some order. Now he should find the length of the longest common subsequence of these permutations. Can you help Gargari?
You can read about longest common subsequence there: https://en.wikipedia.org/wiki/Longest_common_subsequence_problem | The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1000; 2<=≤<=*k*<=≤<=5). Each of the next *k* lines contains integers 1,<=2,<=...,<=*n* in some order — description of the current permutation. | Print the length of the longest common subsequence. | [
"4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3\n"
] | [
"3\n"
] | The answer for the first test sample is subsequence [1, 2, 3]. | [
{
"input": "4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3",
"output": "3"
},
{
"input": "6 3\n2 5 1 4 6 3\n5 1 4 3 2 6\n5 4 2 6 3 1",
"output": "3"
},
{
"input": "41 4\n24 15 17 35 13 41 4 14 23 5 8 16 21 18 30 36 6 22 11 29 26 1 40 31 7 3 32 10 28 38 12 20 39 37 34 19 33 27 2 25 9\n22 13 25 24 38 35 29 12 15 8 11 37 3 19 4 23 18 32 30 40 36 21 16 34 27 9 5 41 39 2 14 17 31 33 26 7 1 10 20 6 28\n31 27 39 16 22 12 13 32 6 10 19 29 37 7 18 33 24 21 1 9 36 4 34 41 25 28 17 40 30 35 23 14 11 8 2 15 38 20 26 5 3\n8 18 39 38 7 34 16 31 15 1 40 20 37 4 25 11 17 19 33 26 6 14 13 41 12 32 2 21 10 35 27 9 28 5 30 24 22 23 29 3 36",
"output": "4"
},
{
"input": "1 2\n1\n1",
"output": "1"
},
{
"input": "28 5\n3 14 12 16 13 27 20 8 1 10 24 11 5 9 7 18 17 23 22 25 28 19 4 21 26 6 15 2\n7 12 23 27 22 26 16 18 19 5 6 9 11 28 25 4 10 3 1 14 8 17 15 2 20 13 24 21\n21 20 2 5 19 15 12 4 18 9 23 16 11 14 8 6 25 27 13 17 10 26 7 24 28 1 3 22\n12 2 23 11 20 18 25 21 13 27 14 8 4 6 9 16 7 3 10 1 22 15 26 19 5 17 28 24\n13 2 6 19 22 23 4 1 28 10 18 17 21 8 9 3 26 11 12 27 14 20 24 25 15 5 16 7",
"output": "3"
},
{
"input": "6 3\n2 5 1 4 6 3\n5 1 4 6 2 3\n5 4 2 6 3 1",
"output": "4"
},
{
"input": "41 4\n24 15 17 35 13 41 4 14 23 5 8 16 21 18 30 36 6 22 11 29 26 1 40 31 7 3 32 10 28 38 12 20 39 37 34 19 33 27 2 25 9\n22 13 25 24 38 35 29 12 15 8 11 37 3 19 4 23 18 32 30 40 36 21 16 34 27 9 5 41 39 2 14 17 31 33 26 7 1 10 20 6 28\n31 27 39 16 22 12 13 32 6 10 19 29 37 7 18 33 24 21 1 9 36 4 34 41 25 28 17 40 30 35 23 14 11 8 2 15 38 20 26 5 3\n8 18 39 38 7 34 16 31 15 1 40 20 37 4 25 11 17 19 33 26 6 14 13 41 12 32 2 21 10 35 27 9 28 5 30 24 22 23 29 3 36",
"output": "4"
},
{
"input": "37 3\n6 3 19 20 15 4 1 35 8 24 12 21 34 26 18 14 23 33 28 9 36 11 37 31 25 32 29 22 13 27 16 17 10 7 5 30 2\n10 3 35 17 34 21 14 8 26 28 11 19 27 7 4 23 24 22 12 13 16 1 25 29 5 31 30 20 32 18 15 9 2 36 37 33 6\n19 9 22 32 26 35 29 23 5 6 14 34 33 10 2 28 15 11 24 4 13 7 8 31 37 36 1 27 3 16 30 25 20 21 18 17 12",
"output": "7"
}
] | 93 | 1,536,000 | 0 | 5,590 |
|
305 | Continued Fractions | [
"brute force",
"implementation",
"math"
] | null | null | A continued fraction of height *n* is a fraction of form . You are given two rational numbers, one is represented as and the other one is represented as a finite fraction of height *n*. Check if they are equal. | The first line contains two space-separated integers *p*,<=*q* (1<=≤<=*q*<=≤<=*p*<=≤<=1018) — the numerator and the denominator of the first fraction.
The second line contains integer *n* (1<=≤<=*n*<=≤<=90) — the height of the second fraction. The third line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. | Print "YES" if these fractions are equal and "NO" otherwise. | [
"9 4\n2\n2 4\n",
"9 4\n3\n2 3 1\n",
"9 4\n3\n1 2 4\n"
] | [
"YES\n",
"YES\n",
"NO\n"
] | In the first sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5ff92f27aebea2560d99ad61202d20bab5ee5390.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the second sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/221368c79c05fc0ecad4e5f7a64f30b832fd99f5.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
In the third sample <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/4fb4b411afc0fbad27a1c8fdd08ba88ec3830ef5.png" style="max-width: 100.0%;max-height: 100.0%;"/>. | [
{
"input": "9 4\n2\n2 4",
"output": "YES"
},
{
"input": "9 4\n3\n2 3 1",
"output": "YES"
},
{
"input": "9 4\n3\n1 2 4",
"output": "NO"
},
{
"input": "39088169 24157817\n36\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "YES"
},
{
"input": "39088169 24157817\n36\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4",
"output": "NO"
},
{
"input": "61305790721611591 37889062373143906\n80\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4",
"output": "NO"
},
{
"input": "61305790721611591 37889062373143906\n80\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2",
"output": "YES"
},
{
"input": "565049485241691020 228217260073568804\n40\n2 2 9 1 7 1 2 1 2 1 1 1 9 1 2 1 9 1 3 2 3 10 13 2 1 2 7 1 1 2 2 2 1 1 2 1 6 5 3 2",
"output": "YES"
},
{
"input": "2 1\n4\n2 1 1 1",
"output": "NO"
},
{
"input": "4 1\n2\n3 1",
"output": "YES"
},
{
"input": "72723460248141 1597\n1\n45537545554",
"output": "NO"
},
{
"input": "14930352 13\n6\n1148488 1 1 1 1 2",
"output": "YES"
},
{
"input": "86267571272 102334155\n6\n842 1 841 1 842 145",
"output": "NO"
},
{
"input": "72723460248141 121393\n7\n599074578 122 1 122 2 1 2",
"output": "YES"
},
{
"input": "168455988218483660 53310571951833359\n32\n3 6 3 1 14 1 48 1 3 2 1 1 39 2 1 3 13 23 4 1 11 1 1 23 1 3 3 2 1 1 1 3",
"output": "NO"
},
{
"input": "382460255113156464 275525972692563593\n37\n1 2 1 1 2 1 3 4 5 5 1 4 2 1 1 1 4 2 2 1 2 1 1 2 3 3 1 2 2 50 4 1 4 2 5 109 8",
"output": "YES"
},
{
"input": "1000000000000000000 1\n1\n1000000000000000000",
"output": "YES"
},
{
"input": "362912509915545727 266073193475139553\n30\n1 2 1 2 1 25 75 1 14 6 6 9 1 1 1 1 210 2 2 2 5 2 1 3 1 1 13 3 14 3",
"output": "NO"
},
{
"input": "933329105990871495 607249523603826772\n33\n1 1 1 6 3 1 5 24 3 55 1 15 2 2 1 12 2 2 3 109 1 1 4 1 4 1 7 2 4 1 3 3 2",
"output": "YES"
},
{
"input": "790637895857383456 679586240913926415\n40\n1 6 8 2 1 2 1 7 2 4 1 1 1 10 1 10 1 4 1 4 41 1 1 7 1 1 2 1 2 4 1 2 1 63 1 2 1 1 4 3",
"output": "NO"
},
{
"input": "525403371166594848 423455864168639615\n38\n1 4 6 1 1 32 3 1 14 1 3 1 2 4 5 4 1 2 1 5 8 1 3 1 2 1 46 1 1 1 3 1 4 1 11 1 2 4",
"output": "YES"
},
{
"input": "1 1\n1\n1",
"output": "YES"
},
{
"input": "2 1\n2\n1 2",
"output": "NO"
},
{
"input": "531983955813463755 371380136962341468\n38\n1 2 3 4 1 37 1 12 1 3 2 1 6 3 1 7 3 2 8 1 2 1 1 7 1 1 1 7 1 47 2 1 3 1 1 5 1 2",
"output": "YES"
},
{
"input": "32951280099 987\n7\n33385288 1 5 1 5 1 6",
"output": "YES"
},
{
"input": "6557470319842 86267571272\n6\n76 76 76 76 76 76",
"output": "YES"
},
{
"input": "934648630114363087 6565775686518446\n31\n142 2 1 5 2 2 1 1 3 1 2 8 1 3 12 2 1 23 5 1 10 1 863 1 1 1 2 1 14 2 3",
"output": "YES"
},
{
"input": "61305790721611591 37889062373143906\n81\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "YES"
},
{
"input": "4 1\n1\n4",
"output": "YES"
},
{
"input": "500000000000000001 5\n2\n100000000000000000 5",
"output": "YES"
},
{
"input": "1000000000000000000 3\n3\n3 4 5",
"output": "NO"
},
{
"input": "822981258385599125 28316248989464296\n39\n29 15 1 1 1 4 4 4 1 3 1 5 12 1 1 1 1 1 6 5 2 1 11 1 1 26 1 2 2 2 14 1 1 1 3 2 4 1 1",
"output": "NO"
},
{
"input": "823443107025550834 331822464812968648\n42\n2 2 13 14 4 4 1 1 1 1 2 1 1 1 1 113 1 1 8 1 1 1 1 2 2 1 15 1 5 1 1 2 1 1 1 14 4 3 1 5 1 1",
"output": "NO"
},
{
"input": "226137305050296073 27076290603746056\n30\n8 2 1 5 3 67 2 1 6 1 2 1 5 1 11 8 43 2 1 7 1 95 2 3 1 11 5 2 1 1",
"output": "NO"
},
{
"input": "524928871965838747 313083111434773473\n35\n1 1 2 10 1 4 12 3 28 1 23 1 1 1 4 1 4 3 1 3 2 3 1 4 3 1 3 2 3 11 21 1 35 1 1",
"output": "NO"
},
{
"input": "633468529243155234 4\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "742143496299253703 2\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "550736960584023286 3\n90\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "NO"
},
{
"input": "2 1\n10\n99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999 99999999999999999",
"output": "NO"
},
{
"input": "262882295792523313 105000000000078855\n1\n105000000000078855",
"output": "NO"
},
{
"input": "990130967049151695 166430169817556175\n1\n564668656008429569",
"output": "NO"
},
{
"input": "9 4\n2\n2 3",
"output": "NO"
},
{
"input": "529824479480396864 4705882352941177\n2\n80000000000000007 80000000000000009",
"output": "NO"
},
{
"input": "985625905209512860 565433601688714177\n10\n6423 24947 27507 13031 16414 29169 901 32592 18763 1656",
"output": "NO"
},
{
"input": "913255926290448385 4400000000\n2\n4400000000 4400000000",
"output": "NO"
},
{
"input": "7 2\n2\n2 1",
"output": "NO"
},
{
"input": "10 3\n1\n3",
"output": "NO"
},
{
"input": "4 2\n1\n2",
"output": "YES"
},
{
"input": "1337 42\n1\n31",
"output": "NO"
}
] | 248 | 20,172,800 | 0 | 5,600 |
|
369 | Valera and Contest | [
"constructive algorithms",
"implementation",
"math"
] | null | null | Valera loves to participate in competitions. Especially in programming contests. Today he has participated in the contest with his team, consisting of *n* students (including Valera). This contest was an individual competition, so each student in the team solved problems individually.
After the contest was over, Valera was interested in results. He found out that:
- each student in the team scored at least *l* points and at most *r* points; - in total, all members of the team scored exactly *s**all* points; - the total score of the *k* members of the team who scored the most points is equal to exactly *s**k*; more formally, if *a*1,<=*a*2,<=...,<=*a**n* is the sequence of points earned by the team of students in the non-increasing order (*a*1<=≥<=*a*2<=≥<=...<=≥<=*a**n*), then *s**k*<==<=*a*1<=+<=*a*2<=+<=...<=+<=*a**k*.
However, Valera did not find out exactly how many points each of *n* students scored. Valera asked you to recover any distribution of scores between the students of the team, such that all the conditions above are met. | The first line of the input contains exactly six integers *n*,<=*k*,<=*l*,<=*r*,<=*s**all*,<=*s**k* (1<=≤<=*n*,<=*k*,<=*l*,<=*r*<=≤<=1000; *l*<=≤<=*r*; *k*<=≤<=*n*; 1<=≤<=*s**k*<=≤<=*s**all*<=≤<=106).
It's guaranteed that the input is such that the answer exists. | Print exactly *n* integers *a*1,<=*a*2,<=...,<=*a**n* — the number of points each student scored. If there are multiple solutions, you can print any of them. You can print the distribution of points in any order. | [
"5 3 1 3 13 9\n",
"5 3 1 3 15 9\n"
] | [
"2 3 2 3 3 ",
"3 3 3 3 3 "
] | none | [
{
"input": "5 3 1 3 13 9",
"output": "2 3 2 3 3 "
},
{
"input": "5 3 1 3 15 9",
"output": "3 3 3 3 3 "
},
{
"input": "50 25 1 1 50 25",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 "
},
{
"input": "1000 700 782 1000 892330 648282",
"output": "926 926 926 814 926 926 926 926 926 813 926 814 926 813 813 926 814 926 926 926 814 926 814 926 813 927 814 926 813 926 926 813 926 926 926 927 926 813 926 813 926 926 926 926 813 926 926 926 813 813 926 926 814 926 926 926 814 926 813 927 926 926 927 926 926 926 926 926 926 926 927 813 926 814 926 926 926 926 813 813 814 926 927 814 926 926 813 926 813 926 926 814 926 926 926 926 926 926 814 926 926 927 926 926 926 926 926 814 926 926 813 926 926 926 926 927 813 926 926 927 926 926 926 926 926 926 926 926..."
},
{
"input": "1000 999 500 503 501513 501013",
"output": "501 502 502 501 501 502 502 502 501 501 502 501 502 501 501 501 501 502 502 502 501 502 501 502 501 502 501 502 501 501 502 501 501 502 502 502 501 501 502 501 502 501 502 502 501 501 502 502 501 501 502 502 501 502 502 501 501 502 501 502 501 502 502 502 502 502 502 501 502 502 502 501 502 501 502 502 501 502 501 501 501 501 502 501 502 502 501 502 501 501 502 501 502 502 501 502 502 501 501 502 502 502 501 501 502 502 502 501 502 502 501 501 501 501 502 502 500 501 502 502 502 502 502 502 501 502 501 502..."
},
{
"input": "999 998 500 501 500009 499509",
"output": "500 501 501 500 500 501 501 501 500 500 501 500 501 500 500 500 500 501 501 501 500 501 500 501 500 501 500 501 500 500 501 500 500 501 501 501 500 500 501 500 501 500 501 501 500 500 501 501 500 500 501 501 500 501 501 500 500 501 500 501 500 501 501 501 501 501 501 500 501 501 501 500 501 500 501 501 500 501 500 500 500 500 501 500 501 501 500 501 500 500 501 500 501 501 500 501 501 500 500 501 501 501 500 500 501 501 501 500 501 501 500 500 500 500 501 501 501 500 501 501 501 501 501 501 500 501 500 501..."
},
{
"input": "999 998 500 500 499500 499000",
"output": "500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500..."
},
{
"input": "999 997 500 502 500516 499516",
"output": "501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 502 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 501 502 501 501 501 501 501 501 501 501 500 501 501 501 501 501 502 501 501 501 501 501 501 501 501 501 501 501..."
},
{
"input": "1000 300 50 500 269795 127658",
"output": "203 204 203 203 203 203 203 426 203 203 204 203 425 203 203 203 203 204 203 203 203 425 203 204 203 426 203 203 203 203 203 203 203 426 203 426 203 203 426 203 203 203 203 203 203 203 203 204 203 203 425 203 203 425 425 203 203 425 203 426 203 204 426 426 425 426 203 203 425 203 426 203 425 203 425 425 203 425 203 203 203 203 426 203 425 203 203 425 203 203 203 203 203 203 203 203 426 203 203 203 425 426 203 203 203 203 203 203 425 425 203 203 203 203 203 426 203 203 203 426 204 203 203 203 203 203 203 426..."
},
{
"input": "50 25 1000 1000 50000 25000",
"output": "1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 "
},
{
"input": "100 100 500 1000 75589 75589",
"output": "756 756 756 755 755 756 756 756 756 755 756 756 756 756 756 756 755 756 755 756 756 756 756 756 756 756 756 756 756 755 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 755 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 755 756 756 756 756 756 755 756 756 756 755 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 756 755 756 756 756 756 756 756 756 "
},
{
"input": "1 1 1000 1000 1000 1000",
"output": "1000 "
},
{
"input": "2 2 500 1000 1000 1000",
"output": "500 500 "
},
{
"input": "1000 500 1 1000 500500 500000",
"output": "1 1000 1000 1 1 1000 1000 1000 1 1 1000 1 1000 1 1 1 1 1000 1000 1000 1 1000 1 1000 1 1000 1 1000 1 1 1000 1 1 1000 1000 1000 1 1 1000 1 1000 1 1000 1000 1 1 1 1000 1 1 1000 1000 1 1000 1000 1 1 1000 1 1000 1 1000 1000 1000 1000 1000 1000 1 1000 1000 1000 1 1000 1 1000 1000 1 1000 1 1 1 1 1000 1 1000 1000 1 1000 1 1 1000 1 1000 1000 1 1000 1000 1 1 1000 1000 1000 1 1 1000 1000 1000 1 1000 1000 1 1 1 1 1000 1000 1 1 1000 1000 1000 1000 1000 1000 1 1000 1 1000 1 1 1 1 1000 1 1 1000 1000 1000 1000 1000 1 1 1 ..."
},
{
"input": "1000 500 500 1000 750000 375000",
"output": "750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750..."
},
{
"input": "300 100 1 3 600 200",
"output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..."
},
{
"input": "300 100 1 3 900 300",
"output": "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3..."
},
{
"input": "300 100 1 3 300 100",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..."
},
{
"input": "1 1 1 1 1 1",
"output": "1 "
},
{
"input": "432 32 13 123 28942 3824",
"output": "63 63 63 63 63 63 62 63 63 63 63 63 63 63 62 63 63 63 62 62 63 63 62 63 62 120 62 62 63 63 62 63 63 63 63 63 119 120 63 63 63 62 63 62 63 63 63 63 63 63 63 63 63 63 63 120 63 63 63 63 63 63 63 63 63 63 63 63 63 62 63 63 63 63 63 63 62 63 63 63 63 63 63 63 63 62 63 63 63 63 63 63 63 62 63 63 63 63 63 63 63 119 63 62 62 62 63 63 63 63 63 120 63 63 62 63 120 63 62 63 63 62 62 63 63 62 63 63 63 120 63 120 63 63 63 62 63 63 63 63 62 63 62 62 63 63 63 62 63 63 63 63 63 63 63 62 63 62 63 63 63 62 63 119 62 63 62 ..."
},
{
"input": "504 32 13 123 33704 3791",
"output": "64 63 63 63 63 63 63 64 63 63 63 64 63 63 63 64 63 63 63 63 64 63 63 63 63 119 63 63 64 64 63 63 63 64 63 64 118 119 64 64 63 63 63 63 63 64 63 63 64 64 64 63 63 63 64 118 63 64 63 64 63 63 64 64 63 64 63 64 64 63 64 64 64 64 63 63 63 64 63 64 64 64 64 64 63 63 63 64 64 64 63 63 63 63 64 63 64 63 63 63 63 118 63 63 63 63 63 63 64 63 63 119 63 63 63 64 119 63 63 64 63 63 63 63 64 63 64 64 64 119 63 119 64 64 63 63 63 64 63 63 63 64 63 63 63 63 64 63 64 63 64 64 63 64 63 63 63 63 64 64 64 63 64 118 63 63 63 ..."
},
{
"input": "999 32 13 123 68122 3876",
"output": "66 67 67 66 66 67 67 67 66 66 67 66 67 66 66 66 66 67 67 66 66 67 66 67 66 121 66 66 66 66 67 66 66 67 67 67 66 66 67 66 66 66 66 67 66 66 66 67 66 66 67 67 66 67 67 66 66 67 66 67 66 67 67 67 67 67 67 66 67 67 67 66 67 66 67 67 66 67 66 66 66 66 67 66 67 67 66 67 66 66 66 66 66 66 66 67 67 66 66 66 67 121 66 66 67 67 67 66 67 67 66 66 66 66 67 67 122 66 67 67 67 67 67 66 66 67 66 67 66 66 66 66 67 66 66 67 67 67 67 67 66 66 66 67 67 66 67 67 66 66 66 67 66 67 66 66 66 66 67 67 66 66 66 121 67 66 66 67 66 ..."
},
{
"input": "489 32 13 123 33009 3885",
"output": "64 64 64 64 63 64 63 64 64 64 64 64 64 64 63 64 64 64 63 63 64 64 63 64 63 122 63 63 64 64 63 64 64 64 63 64 121 122 64 64 63 63 63 63 64 64 64 64 64 64 64 64 64 64 64 121 63 64 64 64 64 64 64 64 64 64 63 64 64 63 64 64 64 64 64 64 63 64 63 64 64 64 64 64 64 63 64 64 64 64 63 63 63 63 64 63 64 64 64 63 64 121 64 63 63 64 63 64 64 64 64 122 64 64 63 64 122 64 64 64 64 63 64 64 64 64 64 64 64 122 64 122 64 64 64 63 64 64 64 64 63 64 63 64 64 64 64 63 64 63 64 64 64 64 64 63 64 63 64 64 64 64 64 121 63 64 63 ..."
},
{
"input": "234 32 13 123 16337 3715",
"output": "62 63 62 62 63 62 62 62 62 63 62 63 63 62 63 62 63 63 63 116 62 63 63 63 63 116 62 63 62 63 63 63 62 62 63 63 116 116 62 63 63 63 62 62 116 62 63 116 62 62 62 63 116 62 62 116 63 62 62 63 63 63 63 63 63 63 62 62 62 116 63 62 62 62 62 62 62 62 63 63 62 63 63 63 63 62 62 62 62 62 63 62 63 62 62 63 63 63 63 116 63 116 63 63 116 62 63 63 62 62 62 116 116 63 62 63 117 63 62 63 63 62 63 62 62 116 62 63 63 117 62 116 62 63 62 63 62 62 116 63 62 63 63 62 62 62 63 63 63 62 63 63 62 62 62 62 63 63 63 62 63 62 63 116..."
},
{
"input": "998 997 13 13 12974 12961",
"output": "13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1..."
},
{
"input": "999 999 13 333 169609 169609",
"output": "170 170 170 170 170 170 170 170 170 169 170 170 170 169 169 170 169 170 170 170 170 170 169 170 169 170 169 170 169 170 170 169 170 170 170 170 170 169 170 169 170 170 170 170 169 170 170 170 169 169 170 170 169 170 170 170 170 170 169 170 170 170 170 170 170 170 170 170 170 170 170 169 170 170 170 170 170 170 169 169 170 170 170 170 170 170 169 170 169 170 170 169 170 170 170 170 170 170 169 170 170 170 170 170 170 170 170 169 170 170 169 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170..."
},
{
"input": "999 998 13 533 270345 270332",
"output": "271 271 271 271 271 271 271 271 271 270 271 271 271 270 270 271 271 271 271 271 271 271 271 271 270 271 271 271 270 271 271 270 271 271 271 271 271 271 271 270 271 271 271 271 270 271 271 271 270 270 271 271 271 271 271 271 271 271 270 271 271 271 271 271 271 271 271 271 271 271 271 270 271 271 271 271 271 271 270 270 271 271 271 271 271 271 270 271 270 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 13 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 271 ..."
},
{
"input": "998 123 13 293 151330 33752",
"output": "134 135 135 134 134 135 135 135 134 134 135 134 135 134 134 134 134 135 135 134 134 135 134 135 134 275 134 134 134 134 135 134 134 135 135 275 134 134 135 134 134 134 134 135 134 134 134 135 134 134 135 135 134 135 135 134 134 135 134 275 134 135 275 274 135 274 135 134 135 135 274 134 135 134 135 135 134 135 134 134 134 134 274 134 135 135 134 135 134 134 134 134 134 134 134 135 274 134 134 134 135 275 134 134 135 135 135 134 135 135 135 134 134 134 135 274 275 134 135 275 135 135 135 134 134 135 134 274..."
},
{
"input": "995 993 123 743 437780 437534",
"output": "440 441 441 440 440 441 441 441 440 440 441 440 441 440 440 440 440 441 441 441 440 441 440 441 440 441 440 441 440 440 441 440 440 441 441 441 440 440 441 440 441 441 441 441 440 440 441 441 440 440 441 441 440 441 441 441 440 441 440 441 440 441 441 441 441 441 441 441 441 441 441 440 441 440 441 441 440 441 440 440 440 441 441 440 441 441 440 441 440 440 441 440 441 441 441 441 441 440 440 441 441 441 441 440 441 441 441 440 441 441 441 440 441 441 441 441 441 440 441 441 441 441 441 441 440 441 441 441..."
},
{
"input": "999 999 111 111 110889 110889",
"output": "111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111..."
},
{
"input": "1000 1000 111 111 111000 111000",
"output": "111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111..."
},
{
"input": "1000 567 999 1000 999489 566922",
"output": "999 1000 1000 999 999 1000 1000 1000 999 999 1000 999 1000 999 999 999 999 1000 1000 1000 999 1000 999 1000 999 1000 999 1000 999 999 1000 999 999 1000 1000 1000 999 999 1000 999 1000 999 1000 1000 999 999 999 1000 999 999 1000 1000 999 1000 1000 999 999 1000 999 1000 999 1000 1000 1000 1000 1000 1000 999 1000 1000 1000 999 1000 999 1000 1000 999 1000 999 999 999 999 1000 999 1000 1000 999 1000 999 999 1000 999 1000 1000 999 1000 1000 999 999 1000 1000 1000 999 999 1000 1000 1000 999 1000 1000 999 999 999 ..."
},
{
"input": "1000 567 998 1000 998981 566754",
"output": "998 1000 999 998 999 999 999 1000 999 998 1000 998 1000 998 998 999 998 999 999 999 998 1000 998 1000 998 1000 998 999 998 998 999 998 999 1000 999 1000 998 998 1000 998 999 999 999 999 998 998 999 1000 998 998 1000 999 998 1000 1000 999 998 1000 998 1000 998 1000 1000 1000 1000 1000 999 999 1000 999 1000 998 1000 998 1000 1000 999 1000 998 998 998 999 1000 998 1000 999 998 1000 998 998 999 998 999 999 999 999 1000 998 998 999 1000 1000 999 999 999 999 999 998 1000 1000 998 998 999 999 999 1000 998 998 999..."
},
{
"input": "1000 567 996 1000 997986 566445",
"output": "997 999 999 997 997 999 999 999 997 996 999 997 999 996 996 997 997 999 999 999 997 999 997 999 996 1000 997 999 996 997 999 996 997 999 999 999 997 996 999 996 999 999 999 999 996 997 999 999 996 996 999 999 997 999 999 997 997 999 996 999 997 999 999 999 999 999 999 999 999 999 999 996 999 997 999 999 997 999 996 996 997 997 999 997 999 999 996 999 996 997 999 997 999 999 999 999 999 997 997 999 999 999 999 997 999 999 999 997 999 999 996 997 997 999 999 999 996 997 999 999 999 999 999 999 997 999 999 99..."
},
{
"input": "1000 567 996 1000 997986 566445",
"output": "997 999 999 997 997 999 999 999 997 996 999 997 999 996 996 997 997 999 999 999 997 999 997 999 996 1000 997 999 996 997 999 996 997 999 999 999 997 996 999 996 999 999 999 999 996 997 999 999 996 996 999 999 997 999 999 997 997 999 996 999 997 999 999 999 999 999 999 999 999 999 999 996 999 997 999 999 997 999 996 996 997 997 999 997 999 999 996 999 996 997 999 997 999 999 999 999 999 997 997 999 999 999 999 997 999 999 999 997 999 999 996 997 997 999 999 999 996 997 999 999 999 999 999 999 997 999 999 99..."
},
{
"input": "1 1 1 1000 656 656",
"output": "656 "
},
{
"input": "2 1 1 1000 683 550",
"output": "550 133 "
},
{
"input": "3 2 1 1000 1816 1652",
"output": "826 826 164 "
},
{
"input": "5 5 1 1000 3288 3288",
"output": "657 658 657 658 658 "
},
{
"input": "5 3 1 1000 2732 2055",
"output": "338 685 339 685 685 "
},
{
"input": "1 1 10 100 50 50",
"output": "50 "
},
{
"input": "3 3 1 5 14 14",
"output": "5 5 4 "
},
{
"input": "1 1 1 100 50 50",
"output": "50 "
},
{
"input": "5 5 1 5 5 5",
"output": "1 1 1 1 1 "
},
{
"input": "1 1 1 10 10 10",
"output": "10 "
},
{
"input": "5 5 1 3 5 5",
"output": "1 1 1 1 1 "
},
{
"input": "1000 1000 1 1000 1000000 1000000",
"output": "1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1..."
},
{
"input": "3 3 1 3 9 9",
"output": "3 3 3 "
},
{
"input": "1000 1000 389 999 686847 686847",
"output": "687 687 687 687 687 687 687 687 687 686 687 687 687 686 686 687 687 687 687 687 687 687 687 687 686 687 687 687 686 687 687 686 687 687 687 687 687 686 687 686 687 687 687 687 686 687 687 687 686 686 687 687 687 687 687 687 687 687 686 687 687 687 687 687 687 687 687 687 687 687 687 686 687 687 687 687 687 687 686 686 687 687 687 687 687 687 686 687 686 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 687 686 687 687 687 687 687 686 687 687 687 687 687 687 687 687 687 687 687..."
},
{
"input": "2 2 2 2 4 4",
"output": "2 2 "
}
] | 77 | 0 | 3 | 5,603 |
|
465 | Inbox (100500) | [
"implementation"
] | null | null | Over time, Alexey's mail box got littered with too many letters. Some of them are read, while others are unread.
Alexey's mail program can either show a list of all letters or show the content of a single letter. As soon as the program shows the content of an unread letter, it becomes read letter (if the program shows the content of a read letter nothing happens). In one click he can do any of the following operations:
- Move from the list of letters to the content of any single letter.- Return to the list of letters from single letter viewing mode.- In single letter viewing mode, move to the next or to the previous letter in the list. You cannot move from the first letter to the previous one or from the last letter to the next one.
The program cannot delete the letters from the list or rearrange them.
Alexey wants to read all the unread letters and go watch football. Now he is viewing the list of all letters and for each letter he can see if it is read or unread. What minimum number of operations does Alexey need to perform to read all unread letters? | The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of letters in the mailbox.
The second line contains *n* space-separated integers (zeros and ones) — the state of the letter list. The *i*-th number equals either 1, if the *i*-th number is unread, or 0, if the *i*-th letter is read. | Print a single number — the minimum number of operations needed to make all the letters read. | [
"5\n0 1 0 1 0\n",
"5\n1 1 0 0 1\n",
"2\n0 0\n"
] | [
"3\n",
"4\n",
"0\n"
] | In the first sample Alexey needs three operations to cope with the task: open the second letter, move to the third one, move to the fourth one.
In the second sample the action plan: open the first letter, move to the second letter, return to the list, open the fifth letter.
In the third sample all letters are already read. | [
{
"input": "5\n0 1 0 1 0",
"output": "3"
},
{
"input": "5\n1 1 0 0 1",
"output": "4"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "9\n1 0 1 0 1 0 1 0 1",
"output": "9"
},
{
"input": "5\n1 1 1 1 1",
"output": "5"
},
{
"input": "14\n0 0 1 1 1 0 1 1 1 0 1 1 1 0",
"output": "11"
},
{
"input": "23\n1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1",
"output": "23"
},
{
"input": "27\n0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0",
"output": "25"
},
{
"input": "10\n1 0 0 0 0 1 0 0 0 1",
"output": "5"
},
{
"input": "10\n1 0 0 1 0 0 1 1 0 1",
"output": "8"
},
{
"input": "27\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "0"
},
{
"input": "39\n1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1",
"output": "39"
},
{
"input": "48\n1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1",
"output": "39"
},
{
"input": "71\n0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0",
"output": "59"
},
{
"input": "99\n1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1",
"output": "99"
},
{
"input": "99\n1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1",
"output": "99"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "99"
},
{
"input": "193\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "1"
},
{
"input": "213\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "5"
},
{
"input": "2\n1 0",
"output": "1"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "5\n0 0 0 0 1",
"output": "1"
},
{
"input": "12\n0 1 1 0 1 1 0 1 1 0 0 0",
"output": "8"
},
{
"input": "3\n1 0 0",
"output": "1"
},
{
"input": "5\n0 0 1 0 0",
"output": "1"
},
{
"input": "3\n0 1 0",
"output": "1"
},
{
"input": "6\n1 1 0 0 0 0",
"output": "2"
},
{
"input": "4\n0 1 0 0",
"output": "1"
},
{
"input": "5\n1 1 1 0 0",
"output": "3"
},
{
"input": "4\n1 0 0 0",
"output": "1"
},
{
"input": "6\n1 1 1 1 0 0",
"output": "4"
}
] | 155 | 0 | 0 | 5,607 |
|
40 | Find Color | [
"constructive algorithms",
"geometry",
"implementation",
"math"
] | A. Find Color | 2 | 256 | Not so long ago as a result of combat operations the main Berland place of interest — the magic clock — was damaged. The cannon's balls made several holes in the clock, that's why the residents are concerned about the repair. The magic clock can be represented as an infinite Cartesian plane, where the origin corresponds to the clock center. The clock was painted two colors as is shown in the picture:
The picture shows only the central part of the clock. This coloring naturally extends to infinity.
The balls can be taken to be points on the plane. Your task is to find the color of the area, damaged by the given ball.
All the points located on the border of one of the areas have to be considered painted black. | The first and single line contains two integers *x* and *y* — the coordinates of the hole made in the clock by the ball. Each of the numbers *x* and *y* has an absolute value that does not exceed 1000. | Find the required color.
All the points between which and the origin of coordinates the distance is integral-value are painted black. | [
"-2 1\n",
"2 1\n",
"4 3\n"
] | [
"white\n",
"black\n",
"black\n"
] | none | [
{
"input": "-2 1",
"output": "white"
},
{
"input": "2 1",
"output": "black"
},
{
"input": "4 3",
"output": "black"
},
{
"input": "3 3",
"output": "black"
},
{
"input": "4 4",
"output": "white"
},
{
"input": "-4 4",
"output": "black"
},
{
"input": "4 -4",
"output": "black"
},
{
"input": "-4 -4",
"output": "white"
},
{
"input": "0 0",
"output": "black"
},
{
"input": "0 1",
"output": "black"
},
{
"input": "0 2",
"output": "black"
},
{
"input": "0 1000",
"output": "black"
},
{
"input": "1000 0",
"output": "black"
},
{
"input": "-1000 0",
"output": "black"
},
{
"input": "0 -1000",
"output": "black"
},
{
"input": "1000 -1000",
"output": "white"
},
{
"input": "12 5",
"output": "black"
},
{
"input": "12 -5",
"output": "black"
},
{
"input": "-12 -35",
"output": "black"
},
{
"input": "20 -21",
"output": "black"
},
{
"input": "-677 492",
"output": "white"
},
{
"input": "-673 -270",
"output": "white"
},
{
"input": "-668 970",
"output": "black"
},
{
"input": "-220 208",
"output": "white"
},
{
"input": "-215 -996",
"output": "black"
},
{
"input": "-211 243",
"output": "black"
},
{
"input": "-206 -518",
"output": "white"
},
{
"input": "-201 278",
"output": "black"
},
{
"input": "-196 -484",
"output": "black"
},
{
"input": "902 479",
"output": "white"
},
{
"input": "-441 572",
"output": "white"
},
{
"input": "217 221",
"output": "white"
},
{
"input": "875 -129",
"output": "white"
},
{
"input": "-469 -36",
"output": "black"
},
{
"input": "189 -387",
"output": "white"
},
{
"input": "847 -294",
"output": "white"
},
{
"input": "-496 -644",
"output": "black"
},
{
"input": "-281 -552",
"output": "white"
},
{
"input": "377 -902",
"output": "black"
},
{
"input": "165 -738",
"output": "white"
},
{
"input": "61 -175",
"output": "black"
},
{
"input": "-42 389",
"output": "black"
},
{
"input": "-589 952",
"output": "black"
},
{
"input": "-693 -929",
"output": "white"
},
{
"input": "-796 -365",
"output": "white"
},
{
"input": "658 198",
"output": "white"
},
{
"input": "555 319",
"output": "black"
},
{
"input": "8 882",
"output": "black"
},
{
"input": "-96 -556",
"output": "black"
},
{
"input": "-129 489",
"output": "black"
},
{
"input": "207 -224",
"output": "black"
},
{
"input": "64 0",
"output": "black"
},
{
"input": "17 144",
"output": "black"
},
{
"input": "60 -448",
"output": "black"
},
{
"input": "-399 -40",
"output": "black"
},
{
"input": "128 -504",
"output": "black"
},
{
"input": "0 72",
"output": "black"
},
{
"input": "168 -26",
"output": "black"
},
{
"input": "72 -154",
"output": "black"
},
{
"input": "117 -44",
"output": "black"
},
{
"input": "-72 -646",
"output": "black"
},
{
"input": "253 -204",
"output": "black"
},
{
"input": "-40 198",
"output": "black"
},
{
"input": "-216 -90",
"output": "black"
},
{
"input": "15 -8",
"output": "black"
},
{
"input": "-180 -432",
"output": "black"
},
{
"input": "280 342",
"output": "black"
},
{
"input": "132 224",
"output": "black"
},
{
"input": "-192 -256",
"output": "black"
},
{
"input": "351 -280",
"output": "black"
}
] | 124 | 4,505,600 | 3.960608 | 5,620 |
727 | Guess the Array | [
"constructive algorithms",
"interactive",
"math"
] | null | null | This is an interactive problem. You should use flush operation after each printed line. For example, in C++ you should use fflush(stdout), in Java you should use System.out.flush(), and in Pascal — flush(output).
In this problem you should guess an array *a* which is unknown for you. The only information you have initially is the length *n* of the array *a*.
The only allowed action is to ask the sum of two elements by their indices. Formally, you can print two indices *i* and *j* (the indices should be distinct). Then your program should read the response: the single integer equals to *a**i*<=+<=*a**j*.
It is easy to prove that it is always possible to guess the array using at most *n* requests.
Write a program that will guess the array *a* by making at most *n* requests. | none | none | [
"5\n \n9\n \n7\n \n9\n \n11\n \n6\n "
] | [
"? 1 5\n \n? 2 3\n \n? 4 1\n \n? 5 2\n \n? 3 4\n \n! 4 6 1 5 5"
] | The format of a test to make a hack is:
- The first line contains an integer number *n* (3 ≤ *n* ≤ 5000) — the length of the array.- The second line contains *n* numbers *a*<sub class="lower-index">1</sub>, *a*<sub class="lower-index">2</sub>, ..., *a*<sub class="lower-index">*n*</sub> (1 ≤ *a*<sub class="lower-index">*i*</sub> ≤ 10<sup class="upper-index">5</sup>) — the elements of the array to guess. | [
{
"input": "5\n4 6 1 5 5",
"output": "5 out of 5"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "4\n100 1 100 1",
"output": "4 out of 4"
},
{
"input": "10\n9 5 10 7 4 4 8 5 10 5",
"output": "10 out of 10"
},
{
"input": "3\n1 1 1",
"output": "3 out of 3"
},
{
"input": "3\n100000 100000 100000",
"output": "3 out of 3"
},
{
"input": "3\n91906 50782 19777",
"output": "3 out of 3"
},
{
"input": "15\n5 10 10 7 7 6 4 6 8 10 8 4 10 9 4",
"output": "15 out of 15"
},
{
"input": "30\n2 3 3 4 3 2 4 4 4 3 3 2 4 2 3 4 4 2 4 3 4 2 2 4 3 3 4 4 4 4",
"output": "30 out of 30"
},
{
"input": "35\n4 2 2 2 4 4 3 2 4 2 2 4 2 2 3 2 3 4 4 2 3 2 2 4 3 3 3 3 4 2 3 2 2 2 3",
"output": "35 out of 35"
},
{
"input": "40\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "40 out of 40"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "47 out of 47"
},
{
"input": "100\n76 92 53 18 65 98 100 65 93 72 100 44 70 62 78 61 89 89 80 32 88 64 67 27 46 30 75 14 78 94 8 86 41 9 68 38 76 29 69 44 23 23 14 24 97 14 7 98 45 80 55 71 58 35 41 100 60 54 64 85 56 98 87 93 40 62 92 6 7 27 88 85 10 94 25 43 99 65 82 65 39 34 17 100 49 27 4 15 84 10 35 76 98 52 72 17 43 10 49 5",
"output": "100 out of 100"
}
] | 358 | 9,113,600 | 3 | 5,624 |
|
513 | Permutations | [
"brute force"
] | null | null | You are given a permutation *p* of numbers 1,<=2,<=...,<=*n*. Let's define *f*(*p*) as the following sum:
Find the lexicographically *m*-th permutation of length *n* in the set of permutations having the maximum possible value of *f*(*p*). | The single line of input contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*cnt**n*), where *cnt**n* is the number of permutations of length *n* with maximum possible value of *f*(*p*).
The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows.
- In subproblem B1 (3 points), the constraint 1<=≤<=*n*<=≤<=8 will hold. - In subproblem B2 (4 points), the constraint 1<=≤<=*n*<=≤<=50 will hold. | Output *n* number forming the required permutation. | [
"2 2\n",
"3 2\n"
] | [
"2 1 \n",
"1 3 2 \n"
] | In the first example, both permutations of numbers {1, 2} yield maximum possible *f*(*p*) which is equal to 4. Among them, (2, 1) comes second in lexicographical order. | [
{
"input": "2 2",
"output": "2 1 "
},
{
"input": "3 2",
"output": "1 3 2 "
},
{
"input": "1 1",
"output": "1 "
},
{
"input": "3 1",
"output": "1 2 3 "
},
{
"input": "3 3",
"output": "2 3 1 "
},
{
"input": "3 4",
"output": "3 2 1 "
},
{
"input": "4 1",
"output": "1 2 3 4 "
},
{
"input": "4 3",
"output": "1 3 4 2 "
},
{
"input": "4 4",
"output": "1 4 3 2 "
},
{
"input": "4 8",
"output": "4 3 2 1 "
},
{
"input": "5 2",
"output": "1 2 3 5 4 "
},
{
"input": "5 7",
"output": "1 4 5 3 2 "
},
{
"input": "5 15",
"output": "4 5 3 2 1 "
},
{
"input": "6 23",
"output": "2 5 6 4 3 1 "
},
{
"input": "7 7",
"output": "1 2 3 6 7 5 4 "
},
{
"input": "7 44",
"output": "2 4 7 6 5 3 1 "
},
{
"input": "8 1",
"output": "1 2 3 4 5 6 7 8 "
},
{
"input": "8 127",
"output": "7 8 6 5 4 3 2 1 "
},
{
"input": "8 128",
"output": "8 7 6 5 4 3 2 1 "
}
] | 935 | 5,632,000 | 3 | 5,630 |
|
665 | Simple Subset | [
"constructive algorithms",
"greedy",
"number theory"
] | null | null | A tuple of positive integers {*x*1,<=*x*2,<=...,<=*x**k*} is called simple if for all pairs of positive integers (*i*,<=<=*j*) (1<=<=≤<=*i*<=<=<<=<=*j*<=≤<=*k*), *x**i*<=<=+<=<=*x**j* is a prime.
You are given an array *a* with *n* positive integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (not necessary distinct). You want to find a simple subset of the array *a* with the maximum size.
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.
Let's define a subset of the array *a* as a tuple that can be obtained from *a* by removing some (possibly all) elements of it. | The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of integers in the array *a*.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*. | On the first line print integer *m* — the maximum possible size of simple subset of *a*.
On the second line print *m* integers *b**l* — the elements of the simple subset of the array *a* with the maximum size.
If there is more than one solution you can print any of them. You can print the elements of the subset in any order. | [
"2\n2 3\n",
"2\n2 2\n",
"3\n2 1 1\n",
"2\n83 14\n"
] | [
"2\n3 2\n",
"1\n2\n",
"3\n1 1 2\n",
"2\n14 83\n"
] | none | [
{
"input": "2\n2 3",
"output": "2\n3 2"
},
{
"input": "2\n2 2",
"output": "1\n2"
},
{
"input": "3\n2 1 1",
"output": "3\n1 1 2"
},
{
"input": "2\n83 14",
"output": "2\n14 83"
},
{
"input": "10\n10 10 1 2 3 3 1 2 1 5",
"output": "4\n1 1 10 1"
},
{
"input": "100\n314 905 555 526 981 360 424 104 920 814 143 872 741 592 105 573 837 962 220 692 560 493 889 824 145 491 828 960 889 87 375 486 609 423 386 323 124 830 206 446 899 522 514 696 786 783 268 483 318 261 675 445 1000 896 812 277 131 264 860 514 701 678 792 394 324 244 483 357 69 931 590 452 626 451 976 317 722 564 809 40 265 709 13 700 769 869 131 834 712 478 661 369 805 668 512 184 477 896 808 168",
"output": "2\n104 905"
},
{
"input": "100\n174 816 593 727 182 151 842 277 1 942 307 939 447 738 823 744 319 394 515 451 875 950 319 789 384 292 190 758 927 103 246 1 675 42 398 631 382 893 646 2 773 157 992 425 804 565 500 242 2 657 611 647 4 331 99 1 694 18 119 364 458 569 94 999 72 7 297 102 982 859 786 868 178 393 642 254 707 41 103 764 934 70 775 41 188 199 767 64 84 899 626 224 279 188 659 374 105 178 154 758",
"output": "4\n1 1 738 1"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "100\n966 680 370 134 202 826 254 620 700 336 938 344 368 108 732 130 134 700 996 904 644 734 184 134 996 46 146 928 320 664 304 160 358 306 330 132 674 16 338 138 926 994 196 960 972 972 756 276 600 982 588 978 868 572 446 578 692 976 780 434 882 344 980 536 856 916 966 936 178 300 294 568 984 54 238 718 582 400 572 142 118 306 222 850 948 954 682 256 70 550 830 980 646 970 688 56 552 592 200 682",
"output": "1\n966"
},
{
"input": "100\n598 236 971 958 277 96 651 366 629 50 601 822 744 326 276 330 413 531 791 655 450 173 992 80 401 760 227 64 350 711 258 545 212 690 996 515 983 835 388 311 970 608 185 164 491 419 295 293 274 93 339 761 155 307 991 857 309 957 563 232 328 682 779 637 312 888 305 184 15 556 427 211 327 313 516 815 914 588 592 988 151 839 828 339 196 462 752 454 865 479 356 529 320 59 908 840 294 882 189 6",
"output": "2\n96 277"
},
{
"input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 204239 1 194239 216480",
"output": "18\n1 1 1 1 1 1 1 216480 1 1 1 1 1 1 1 1 1 1"
},
{
"input": "10\n4 3 1 1 1 1 1 1 1 1",
"output": "9\n4 1 1 1 1 1 1 1 1"
},
{
"input": "2\n1000000 1000000",
"output": "1\n1000000"
},
{
"input": "1\n4",
"output": "1\n4"
},
{
"input": "1\n1",
"output": "1\n1"
},
{
"input": "2\n999997 999994",
"output": "1\n999997"
},
{
"input": "5\n1 1 1 8 9",
"output": "3\n1 1 1"
},
{
"input": "3\n1 5 8",
"output": "2\n8 5"
},
{
"input": "2\n999996 999997",
"output": "2\n999997 999996"
},
{
"input": "2\n1 2",
"output": "2\n1 2"
},
{
"input": "3\n1 8 9",
"output": "2\n9 8"
},
{
"input": "2\n1 1",
"output": "2\n1 1"
},
{
"input": "2\n1 3",
"output": "1\n1"
},
{
"input": "3\n1 9 8",
"output": "2\n8 9"
},
{
"input": "6\n1 3 3 3 3 20",
"output": "2\n20 3"
},
{
"input": "1\n3",
"output": "1\n3"
},
{
"input": "2\n3 3",
"output": "1\n3"
},
{
"input": "5\n1 1 1 8 3",
"output": "3\n1 1 1"
},
{
"input": "1\n9",
"output": "1\n9"
},
{
"input": "3\n2 4 7",
"output": "2\n7 4"
},
{
"input": "6\n2 5 1 1 1 1",
"output": "5\n2 1 1 1 1"
},
{
"input": "3\n1 3 14",
"output": "2\n14 3"
},
{
"input": "1\n6",
"output": "1\n6"
},
{
"input": "3\n2 7 12",
"output": "2\n12 7"
},
{
"input": "3\n3 6 7",
"output": "2\n7 6"
},
{
"input": "3\n7 3 2",
"output": "2\n2 3"
},
{
"input": "3\n1 8 5",
"output": "2\n5 8"
},
{
"input": "2\n1000000 999993",
"output": "2\n999993 1000000"
},
{
"input": "5\n1 5 8 1 1",
"output": "3\n1 1 1"
},
{
"input": "1\n8",
"output": "1\n8"
},
{
"input": "3\n1 13 13",
"output": "1\n1"
},
{
"input": "3\n5 8 1",
"output": "2\n8 5"
},
{
"input": "3\n8 1 5",
"output": "2\n5 8"
},
{
"input": "3\n1 3 8",
"output": "2\n8 3"
},
{
"input": "2\n1 9",
"output": "1\n1"
},
{
"input": "2\n5 5",
"output": "1\n5"
},
{
"input": "1\n5",
"output": "1\n5"
},
{
"input": "3\n1 83 14",
"output": "2\n14 83"
},
{
"input": "5\n123445 32892 32842 432721 39234",
"output": "1\n123445"
}
] | 0 | 0 | -1 | 5,639 |
|
0 | none | [
"none"
] | null | null | Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains *n* settlements numbered from 1 to *n*. Moving through the swamp is very difficult, so people tramped exactly *n*<=-<=1 paths. Each of these paths connects some pair of settlements and is bidirectional. Moreover, it is possible to reach any settlement from any other one by traversing one or several paths.
The distance between two settlements is the minimum number of paths that have to be crossed to get from one settlement to the other one. Manao knows that the Book of Evil has got a damage range *d*. This means that if the Book of Evil is located in some settlement, its damage (for example, emergence of ghosts and werewolves) affects other settlements at distance *d* or less from the settlement where the Book resides.
Manao has heard of *m* settlements affected by the Book of Evil. Their numbers are *p*1,<=*p*2,<=...,<=*p**m*. Note that the Book may be affecting other settlements as well, but this has not been detected yet. Manao wants to determine which settlements may contain the Book. Help him with this difficult task. | The first line contains three space-separated integers *n*, *m* and *d* (1<=≤<=*m*<=≤<=*n*<=≤<=100000; 0<=≤<=*d*<=≤<=*n*<=-<=1). The second line contains *m* distinct space-separated integers *p*1,<=*p*2,<=...,<=*p**m* (1<=≤<=*p**i*<=≤<=*n*). Then *n*<=-<=1 lines follow, each line describes a path made in the area. A path is described by a pair of space-separated integers *a**i* and *b**i* representing the ends of this path. | Print a single number — the number of settlements that may contain the Book of Evil. It is possible that Manao received some controversial information and there is no settlement that may contain the Book. In such case, print 0. | [
"6 2 3\n1 2\n1 5\n2 3\n3 4\n4 5\n5 6\n"
] | [
"3\n"
] | Sample 1. The damage range of the Book of Evil equals 3 and its effects have been noticed in settlements 1 and 2. Thus, it can be in settlements 3, 4 or 5. | [] | 60 | 0 | 0 | 5,649 |
|
19 | Checkout Assistant | [
"dp"
] | B. Checkout Assistant | 1 | 256 | Bob came to a cash & carry store, put *n* items into his trolley, and went to the checkout counter to pay. Each item is described by its price *c**i* and time *t**i* in seconds that a checkout assistant spends on this item. While the checkout assistant is occupied with some item, Bob can steal some other items from his trolley. To steal one item Bob needs exactly 1 second. What is the minimum amount of money that Bob will have to pay to the checkout assistant? Remember, please, that it is Bob, who determines the order of items for the checkout assistant. | The first input line contains number *n* (1<=≤<=*n*<=≤<=2000). In each of the following *n* lines each item is described by a pair of numbers *t**i*, *c**i* (0<=≤<=*t**i*<=≤<=2000,<=1<=≤<=*c**i*<=≤<=109). If *t**i* is 0, Bob won't be able to steal anything, while the checkout assistant is occupied with item *i*. | Output one number — answer to the problem: what is the minimum amount of money that Bob will have to pay. | [
"4\n2 10\n0 20\n1 5\n1 3\n",
"3\n0 1\n0 10\n0 100\n"
] | [
"8\n",
"111\n"
] | none | [
{
"input": "4\n2 10\n0 20\n1 5\n1 3",
"output": "8"
},
{
"input": "3\n0 1\n0 10\n0 100",
"output": "111"
},
{
"input": "2\n0 635254032\n0 75159864",
"output": "710413896"
},
{
"input": "2\n0 861438648\n1 469893784",
"output": "469893784"
},
{
"input": "2\n2 87623264\n0 864627704",
"output": "87623264"
},
{
"input": "5\n0 51690939\n0 62436494\n0 39009053\n0 70426298\n0 631569476",
"output": "855132260"
},
{
"input": "5\n0 968804136\n0 736567537\n2 343136264\n0 259899572\n1 425744418",
"output": "768880682"
},
{
"input": "5\n4 33400980\n2 410698581\n4 794747123\n0 301889198\n3 219919361",
"output": "33400980"
},
{
"input": "5\n5 491957578\n4 747764103\n3 446810728\n4 896625835\n4 190748656",
"output": "190748656"
},
{
"input": "10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n4 561877930\n1 809519308\n4 883486551\n1 114469023\n2 184038037",
"output": "860384990"
}
] | 1,000 | 10,444,800 | 0 | 5,653 |
637 | Promocodes with Mistakes | [
"*special",
"brute force",
"constructive algorithms",
"implementation"
] | null | null | During a New Year special offer the "Sudislavl Bars" offered *n* promo codes. Each promo code consists of exactly six digits and gives right to one free cocktail at the bar "Mosquito Shelter". Of course, all the promocodes differ.
As the "Mosquito Shelter" opens only at 9, and partying in Sudislavl usually begins at as early as 6, many problems may arise as to how to type a promotional code without errors. It is necessary to calculate such maximum *k*, that the promotional code could be uniquely identified if it was typed with no more than *k* errors. At that, *k*<==<=0 means that the promotional codes must be entered exactly.
A mistake in this problem should be considered as entering the wrong numbers. For example, value "123465" contains two errors relative to promocode "123456". Regardless of the number of errors the entered value consists of exactly six digits. | The first line of the output contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of promocodes.
Each of the next *n* lines contains a single promocode, consisting of exactly 6 digits. It is guaranteed that all the promocodes are distinct. Promocodes can start from digit "0". | Print the maximum *k* (naturally, not exceeding the length of the promocode), such that any promocode can be uniquely identified if it is typed with at most *k* mistakes. | [
"2\n000000\n999999\n",
"6\n211111\n212111\n222111\n111111\n112111\n121111\n"
] | [
"2\n",
"0\n"
] | In the first sample *k* < 3, so if a bar customer types in value "090909", then it will be impossible to define which promocode exactly corresponds to it. | [
{
"input": "2\n000000\n999999",
"output": "2"
},
{
"input": "6\n211111\n212111\n222111\n111111\n112111\n121111",
"output": "0"
},
{
"input": "1\n123456",
"output": "6"
},
{
"input": "2\n000000\n099999",
"output": "2"
},
{
"input": "2\n000000\n009999",
"output": "1"
},
{
"input": "2\n000000\n000999",
"output": "1"
},
{
"input": "2\n000000\n000099",
"output": "0"
},
{
"input": "2\n000000\n000009",
"output": "0"
},
{
"input": "1\n000000",
"output": "6"
},
{
"input": "1\n999999",
"output": "6"
},
{
"input": "10\n946965\n781372\n029568\n336430\n456975\n119377\n179098\n925374\n878716\n461563",
"output": "1"
},
{
"input": "10\n878711\n193771\n965021\n617901\n333641\n307811\n989461\n461561\n956811\n253741",
"output": "1"
},
{
"input": "10\n116174\n914694\n615024\n115634\n717464\n910984\n513744\n111934\n915684\n817874",
"output": "0"
},
{
"input": "10\n153474\n155468\n151419\n151479\n158478\n159465\n150498\n157416\n150429\n159446",
"output": "0"
},
{
"input": "10\n141546\n941544\n141547\n041542\n641545\n841547\n941540\n741544\n941548\n641549",
"output": "0"
},
{
"input": "10\n114453\n114456\n114457\n114450\n114459\n114451\n114458\n114452\n114455\n114454",
"output": "0"
},
{
"input": "5\n145410\n686144\n859775\n922809\n470967",
"output": "2"
},
{
"input": "9\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "20\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832",
"output": "2"
},
{
"input": "50\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "10\n234531\n597023\n859775\n063388\n701652\n686144\n470967\n145410\n318298\n922809",
"output": "2"
},
{
"input": "10\n234531\n597023\n859775\n063388\n701652\n686144\n470967\n145410\n318298\n922809",
"output": "2"
},
{
"input": "10\n234531\n597023\n859775\n063388\n701652\n686144\n470967\n145410\n318298\n922809",
"output": "2"
},
{
"input": "10\n234531\n597023\n859775\n063388\n701652\n686144\n470967\n145410\n318298\n922809",
"output": "2"
},
{
"input": "10\n234531\n597023\n859775\n063388\n701652\n686144\n470967\n145410\n318298\n922809",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "10\n145410\n686144\n859775\n922809\n470967\n234531\n597023\n318298\n701652\n063386",
"output": "2"
},
{
"input": "58\n114788\n281502\n080213\n093857\n956352\n501424\n512092\n145410\n673001\n128551\n594100\n396463\n758447\n133173\n411841\n538266\n908733\n318920\n872248\n720334\n055121\n691385\n160045\n232727\n947198\n452683\n443254\n859775\n583935\n470967\n742565\n766870\n799299\n061796\n817406\n377719\n034349\n303546\n254914\n635832\n686144\n806017\n295078\n246631\n569318\n831650\n600679\n207280\n325695\n774622\n922809\n975584\n019664\n667953\n189826\n984471\n868189\n364237",
"output": "1"
},
{
"input": "58\n114788\n281502\n080213\n093857\n956352\n501424\n512092\n145410\n673001\n128551\n594100\n396463\n758447\n133173\n411841\n538266\n908733\n318920\n872248\n720334\n055121\n691385\n160045\n232727\n947198\n452683\n443254\n859775\n583935\n470967\n742565\n766870\n799299\n061796\n817406\n377719\n034349\n303546\n254914\n635832\n686144\n806017\n295078\n246631\n569318\n831650\n600679\n207280\n325695\n774622\n922809\n975584\n019664\n667953\n189826\n984471\n868189\n364237",
"output": "1"
},
{
"input": "58\n114788\n281502\n080213\n093857\n956352\n501424\n512092\n145410\n673001\n128551\n594100\n396463\n758447\n133173\n411841\n538266\n908733\n318920\n872248\n720334\n055121\n691385\n160045\n232727\n947198\n452683\n443254\n859775\n583935\n470967\n742565\n766870\n799299\n061796\n817406\n377719\n034349\n303546\n254914\n635832\n686144\n806017\n295078\n246631\n569318\n831650\n600679\n207280\n325695\n774622\n922809\n975584\n019664\n667953\n189826\n984471\n868189\n364237",
"output": "1"
},
{
"input": "58\n114788\n281502\n080213\n093857\n956352\n501424\n512092\n145410\n673001\n128551\n594100\n396463\n758447\n133173\n411841\n538266\n908733\n318920\n872248\n720334\n055121\n691385\n160045\n232727\n947198\n452683\n443254\n859775\n583935\n470967\n742565\n766870\n799299\n061796\n817406\n377719\n034349\n303546\n254914\n635832\n686144\n806017\n295078\n246631\n569318\n831650\n600679\n207280\n325695\n774622\n922809\n975584\n019664\n667953\n189826\n984471\n868189\n364237",
"output": "1"
},
{
"input": "58\n114788\n281502\n080213\n093857\n956352\n501424\n512092\n145410\n673001\n128551\n594100\n396463\n758447\n133173\n411841\n538266\n908733\n318920\n872248\n720334\n055121\n691385\n160045\n232727\n947198\n452683\n443254\n859775\n583935\n470967\n742565\n766870\n799299\n061796\n817406\n377719\n034349\n303546\n254914\n635832\n686144\n806017\n295078\n246631\n569318\n831650\n600679\n207280\n325695\n774622\n922809\n975584\n019664\n667953\n189826\n984471\n868189\n364237",
"output": "1"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
},
{
"input": "58\n145410\n686144\n766870\n859775\n922809\n470967\n034349\n318920\n019664\n667953\n295078\n908733\n691385\n774622\n325695\n443254\n817406\n984471\n512092\n635832\n303546\n189826\n128551\n720334\n569318\n377719\n281502\n956352\n758447\n207280\n583935\n246631\n160045\n452683\n594100\n806017\n232727\n673001\n799299\n396463\n061796\n538266\n947198\n055121\n080213\n501424\n600679\n254914\n872248\n133173\n114788\n742565\n411841\n831650\n868189\n364237\n975584\n023482",
"output": "2"
}
] | 1,000 | 0 | 0 | 5,663 |
|
17 | Hierarchy | [
"dfs and similar",
"dsu",
"greedy",
"shortest paths"
] | B. Hierarchy | 2 | 64 | Nick's company employed *n* people. Now Nick needs to build a tree hierarchy of «supervisor-surbodinate» relations in the company (this is to say that each employee, except one, has exactly one supervisor). There are *m* applications written in the following form: «employee *a**i* is ready to become a supervisor of employee *b**i* at extra cost *c**i*». The qualification *q**j* of each employee is known, and for each application the following is true: *q**a**i*<=><=*q**b**i*.
Would you help Nick calculate the minimum cost of such a hierarchy, or find out that it is impossible to build it. | The first input line contains integer *n* (1<=≤<=*n*<=≤<=1000) — amount of employees in the company. The following line contains *n* space-separated numbers *q**j* (0<=≤<=*q**j*<=≤<=106)— the employees' qualifications. The following line contains number *m* (0<=≤<=*m*<=≤<=10000) — amount of received applications. The following *m* lines contain the applications themselves, each of them in the form of three space-separated numbers: *a**i*, *b**i* and *c**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*, 0<=≤<=*c**i*<=≤<=106). Different applications can be similar, i.e. they can come from one and the same employee who offered to become a supervisor of the same person but at a different cost. For each application *q**a**i*<=><=*q**b**i*. | Output the only line — the minimum cost of building such a hierarchy, or -1 if it is impossible to build it. | [
"4\n7 2 3 1\n4\n1 2 5\n2 4 1\n3 4 1\n1 3 5\n",
"3\n1 2 3\n2\n3 1 2\n3 1 3\n"
] | [
"11\n",
"-1\n"
] | In the first sample one of the possible ways for building a hierarchy is to take applications with indexes 1, 2 and 4, which give 11 as the minimum total cost. In the second sample it is impossible to build the required hierarchy, so the answer is -1. | [
{
"input": "4\n7 2 3 1\n4\n1 2 5\n2 4 1\n3 4 1\n1 3 5",
"output": "11"
},
{
"input": "3\n1 2 3\n2\n3 1 2\n3 1 3",
"output": "-1"
},
{
"input": "1\n2\n0",
"output": "0"
},
{
"input": "2\n5 3\n4\n1 2 0\n1 2 5\n1 2 0\n1 2 7",
"output": "0"
},
{
"input": "3\n9 4 5\n5\n3 2 4\n1 2 4\n3 2 8\n1 3 5\n3 2 5",
"output": "9"
},
{
"input": "3\n2 5 9\n5\n3 1 7\n2 1 1\n2 1 6\n2 1 2\n3 1 5",
"output": "-1"
},
{
"input": "3\n6 2 9\n5\n1 2 10\n3 1 4\n1 2 5\n1 2 2\n3 1 4",
"output": "6"
},
{
"input": "4\n10 6 7 4\n5\n1 3 1\n3 4 1\n3 2 2\n1 2 6\n1 4 7",
"output": "4"
},
{
"input": "4\n2 7 0 6\n8\n4 3 5\n2 3 7\n4 3 1\n2 1 9\n1 3 1\n1 3 3\n2 3 1\n1 3 2",
"output": "-1"
},
{
"input": "5\n6 8 5 9 0\n8\n4 2 2\n2 3 10\n2 3 6\n4 5 4\n1 3 1\n4 3 4\n3 5 1\n2 3 8",
"output": "-1"
},
{
"input": "5\n10 9 5 0 3\n9\n1 5 1\n1 4 7\n1 4 0\n1 4 6\n3 4 6\n2 3 1\n1 2 2\n1 2 9\n2 3 9",
"output": "4"
},
{
"input": "5\n3 9 2 1 8\n9\n2 5 10\n1 3 8\n3 4 9\n5 4 2\n2 1 4\n5 1 4\n2 4 2\n1 4 7\n5 1 2",
"output": "22"
},
{
"input": "5\n6 10 7 8 5\n10\n3 1 5\n2 4 1\n2 3 2\n4 5 9\n3 5 0\n4 1 9\n4 5 2\n1 5 8\n2 3 7\n1 5 1",
"output": "8"
},
{
"input": "7\n10 0 4 7 3 8 6\n10\n3 2 4\n6 4 3\n6 5 1\n1 2 1\n6 7 6\n7 3 9\n1 6 3\n3 2 1\n6 4 4\n1 4 4",
"output": "23"
},
{
"input": "6\n10 2 4 3 1 6\n10\n1 4 7\n1 6 9\n6 4 1\n4 2 5\n4 5 7\n6 3 10\n3 2 3\n3 4 3\n6 5 2\n1 3 2",
"output": "17"
},
{
"input": "1\n10\n0",
"output": "0"
},
{
"input": "2\n10 5\n0",
"output": "-1"
},
{
"input": "2\n1000000 999999\n1\n1 2 1000000",
"output": "1000000"
},
{
"input": "4\n3 2 2 1\n5\n1 2 1\n1 3 1\n1 4 500\n2 4 1\n3 4 2",
"output": "3"
}
] | 216 | 0 | 0 | 5,683 |
644 | Parliament of Berland | [
"*special",
"constructive algorithms"
] | null | null | There are *n* parliamentarians in Berland. They are numbered with integers from 1 to *n*. It happened that all parliamentarians with odd indices are Democrats and all parliamentarians with even indices are Republicans.
New parliament assembly hall is a rectangle consisting of *a*<=×<=*b* chairs — *a* rows of *b* chairs each. Two chairs are considered neighbouring if they share as side. For example, chair number 5 in row number 2 is neighbouring to chairs number 4 and 6 in this row and chairs with number 5 in rows 1 and 3. Thus, chairs have four neighbours in general, except for the chairs on the border of the hall
We know that if two parliamentarians from one political party (that is two Democrats or two Republicans) seat nearby they spent all time discussing internal party issues.
Write the program that given the number of parliamentarians and the sizes of the hall determine if there is a way to find a seat for any parliamentarian, such that no two members of the same party share neighbouring seats. | The first line of the input contains three integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=10<=000, 1<=≤<=*a*,<=*b*<=≤<=100) — the number of parliamentarians, the number of rows in the assembly hall and the number of seats in each row, respectively. | If there is no way to assigns seats to parliamentarians in a proper way print -1.
Otherwise print the solution in *a* lines, each containing *b* integers. The *j*-th integer of the *i*-th line should be equal to the index of parliamentarian occupying this seat, or 0 if this seat should remain empty. If there are multiple possible solution, you may print any of them. | [
"3 2 2\n",
"8 4 3\n",
"10 2 2\n"
] | [
"0 3\n1 2\n",
"7 8 3\n0 1 4\n6 0 5\n0 2 0\n",
"-1\n"
] | In the first sample there are many other possible solutions. For example,
and
The following assignment
is incorrect, because parliamentarians 1 and 3 are both from Democrats party but will occupy neighbouring seats. | [
{
"input": "3 2 2",
"output": "1 2 \n0 3 "
},
{
"input": "8 4 3",
"output": "1 2 3 \n4 5 6 \n7 8 0 \n0 0 0 "
},
{
"input": "10 2 2",
"output": "-1"
},
{
"input": "1 1 1",
"output": "1 "
},
{
"input": "8 3 3",
"output": "1 2 3 \n4 5 6 \n7 8 0 "
},
{
"input": "1 1 100",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
},
{
"input": "1 100 1",
"output": "1 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 \n0 "
},
{
"input": "12 4 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 "
},
{
"input": "64 8 9",
"output": "1 2 3 4 5 6 7 8 9 \n10 11 12 13 14 15 16 17 18 \n19 20 21 22 23 24 25 26 27 \n28 29 30 31 32 33 34 35 36 \n37 38 39 40 41 42 43 44 45 \n46 47 48 49 50 51 52 53 54 \n55 56 57 58 59 60 61 62 63 \n64 0 0 0 0 0 0 0 0 "
},
{
"input": "13 2 6",
"output": "-1"
},
{
"input": "41 6 7",
"output": "1 2 3 4 5 6 7 \n8 9 10 11 12 13 14 \n15 16 17 18 19 20 21 \n22 23 24 25 26 27 28 \n29 30 31 32 33 34 35 \n36 37 38 39 40 41 0 "
},
{
"input": "9999 100 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "10000 100 100",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2099 70 30",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 \n32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 \n61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 \n92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 \n121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 \n152 151 1..."
},
{
"input": "2098 30 70",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 \n72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 \n141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "10000 1 1",
"output": "-1"
},
{
"input": "1583 49 36",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 \n38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 \n73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 \n110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 \n145 146 147 148 149 150 151 152 153..."
},
{
"input": "4825 77 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "26 1 33",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 0 0 0 0 0 0 "
},
{
"input": "274 25 77",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 \n78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 \n..."
},
{
"input": "694 49 22",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 \n45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 \n89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 \n112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "3585 77 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3 1 6",
"output": "1 2 3 0 0 0 "
},
{
"input": "352 25 59",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 \n60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 \n119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "150 53 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 \n13 14 15 \n16 17 18 \n19 20 21 \n22 23 24 \n25 26 27 \n28 29 30 \n31 32 33 \n34 35 36 \n37 38 39 \n40 41 42 \n43 44 45 \n46 47 48 \n49 50 51 \n52 53 54 \n55 56 57 \n58 59 60 \n61 62 63 \n64 65 66 \n67 68 69 \n70 71 72 \n73 74 75 \n76 77 78 \n79 80 81 \n82 83 84 \n85 86 87 \n88 89 90 \n91 92 93 \n94 95 96 \n97 98 99 \n100 101 102 \n103 104 105 \n106 107 108 \n109 110 111 \n112 113 114 \n115 116 117 \n118 119 120 \n121 122 123 \n124 125 126 \n127 128 129 \n130 131 132 \n133..."
},
{
"input": "4227 91 80",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 \n82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "378 19 25",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \n26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 \n51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 \n76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 \n126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 \n151 152..."
},
{
"input": "2357 43 65",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 \n66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 \n131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "232 71 9",
"output": "1 2 3 4 5 6 7 8 9 \n10 11 12 13 14 15 16 17 18 \n19 20 21 22 23 24 25 26 27 \n28 29 30 31 32 33 34 35 36 \n37 38 39 40 41 42 43 44 45 \n46 47 48 49 50 51 52 53 54 \n55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 \n73 74 75 76 77 78 79 80 81 \n82 83 84 85 86 87 88 89 90 \n91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 \n109 110 111 112 113 114 115 116 117 \n118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 \n136 137 138 139 140 141 142 143 144 \n145 146 147..."
},
{
"input": "2362 91 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4601 59 78",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "4439 74 60",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \n62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 \n121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3733 89 42",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 \n44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 \n85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 1..."
},
{
"input": "335 12 28",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 \n30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 \n57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 \n86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n142 141 144 143 146 145 148 147 150 149 152 151 1..."
},
{
"input": "440 26 17",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 \n18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 \n35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 \n52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 \n69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 \n103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 \n120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 \n137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..."
},
{
"input": "109 37 3",
"output": "1 2 3 \n4 5 6 \n7 8 9 \n10 11 12 \n13 14 15 \n16 17 18 \n19 20 21 \n22 23 24 \n25 26 27 \n28 29 30 \n31 32 33 \n34 35 36 \n37 38 39 \n40 41 42 \n43 44 45 \n46 47 48 \n49 50 51 \n52 53 54 \n55 56 57 \n58 59 60 \n61 62 63 \n64 65 66 \n67 68 69 \n70 71 72 \n73 74 75 \n76 77 78 \n79 80 81 \n82 83 84 \n85 86 87 \n88 89 90 \n91 92 93 \n94 95 96 \n97 98 99 \n100 101 102 \n103 104 105 \n106 107 108 \n109 0 0 "
},
{
"input": "4416 52 85",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5025 75 67",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 \n68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 \n135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4983 89 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "950 17 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "1637 40 41",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 \n42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 \n83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 \n124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "1142 52 22",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 \n45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 \n89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 \n112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "907 70 13",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 \n14 15 16 17 18 19 20 21 22 23 24 25 26 \n27 28 29 30 31 32 33 34 35 36 37 38 39 \n40 41 42 43 44 45 46 47 48 49 50 51 52 \n53 54 55 56 57 58 59 60 61 62 63 64 65 \n66 67 68 69 70 71 72 73 74 75 76 77 78 \n79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 \n105 106 107 108 109 110 111 112 113 114 115 116 117 \n118 119 120 121 122 123 124 125 126 127 128 129 130 \n131 132 133 134 135 136 137 138 139 140 141 142 143 \n144 145 146 147 148 149 1..."
},
{
"input": "7279 80 91",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "1653 87 19",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \n20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 \n39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 \n58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 \n77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 \n115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 1..."
},
{
"input": "15 2 8",
"output": "1 2 3 4 5 6 7 8 \n10 9 12 11 14 13 0 15 "
},
{
"input": "1459 17 86",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 \n88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "3035 40 76",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 \n78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 \n153 154..."
},
{
"input": "3095 50 62",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 \n64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 \n125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3055 65 47",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 \n48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 \n95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 \n142 143 144 145 146 147 148 149 150 151 152 153 1..."
},
{
"input": "2638 80 33",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 \n34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 \n133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153..."
},
{
"input": "29 3 11",
"output": "1 2 3 4 5 6 7 8 9 10 11 \n12 13 14 15 16 17 18 19 20 21 22 \n23 24 25 26 27 28 29 0 0 0 0 "
},
{
"input": "16 18 1",
"output": "1 \n2 \n3 \n4 \n5 \n6 \n7 \n8 \n9 \n10 \n11 \n12 \n13 \n14 \n15 \n16 \n0 \n0 "
},
{
"input": "2240 27 83",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 \n84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "1264 55 23",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 \n24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 \n47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 \n70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 \n93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 \n116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 \n139 140 141 142 143 144 145 146 147 148 149 150 151 152..."
},
{
"input": "5400 75 72",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 \n74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 \n145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "46 3 16",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \n18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 \n33 34 35 36 37 38 39 40 41 42 43 44 45 46 0 0 "
},
{
"input": "1512 27 56",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 \n58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 \n113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4206 86 12",
"output": "-1"
},
{
"input": "2358 14 56",
"output": "-1"
},
{
"input": "5420 35 96",
"output": "-1"
},
{
"input": "7758 63 41",
"output": "-1"
},
{
"input": "9806 87 93",
"output": "-1"
},
{
"input": "99 1 97",
"output": "-1"
},
{
"input": "1053 25 42",
"output": "-1"
},
{
"input": "4217 49 86",
"output": "-1"
},
{
"input": "2312 77 30",
"output": "-1"
},
{
"input": "74 1 71",
"output": "-1"
},
{
"input": "1 99 100",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "1 57 99",
"output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..."
},
{
"input": "4785 55 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "4611 53 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "9801 99 99",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "8096 92 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "5916 68 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "8928 93 96",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 \n98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "7743 89 87",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 \n88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "3128 46 68",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 \n70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 \n137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "3800 40 95",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5368 61 88",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 \n90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2583 41 63",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
},
{
"input": "4056 52 78",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "3822 42 91",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \n92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1..."
},
{
"input": "5358 57 94",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 \n96 95 98 97 100 99 102 101 104 103 106 105 108 107 110 109 112 111 114 113 116 115 118 117 120 119 122 121 124 123 126 125 128 127 130 129 132 131 134 133 136 135 138 137 140 139 142 141 144 143 146 145 148 147 150 149 152 151 154 153 1..."
},
{
"input": "2961 47 63",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..."
}
] | 61 | 0 | 0 | 5,692 |
|
817 | Makes And The Product | [
"combinatorics",
"implementation",
"math",
"sortings"
] | null | null | After returning from the army Makes received a gift — an array *a* consisting of *n* positive integer numbers. He hadn't been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (*i*,<= *j*,<= *k*) (*i*<=<<=*j*<=<<=*k*), such that *a**i*·*a**j*·*a**k* is minimum possible, are there in the array? Help him with it! | The first line of input contains a positive integer number *n* (3<=≤<=*n*<=≤<=105) — the number of elements in array *a*. The second line contains *n* positive integer numbers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of a given array. | Print one number — the quantity of triples (*i*,<= *j*,<= *k*) such that *i*,<= *j* and *k* are pairwise distinct and *a**i*·*a**j*·*a**k* is minimum possible. | [
"4\n1 1 1 1\n",
"5\n1 3 2 3 4\n",
"6\n1 3 3 1 3 2\n"
] | [
"4\n",
"2\n",
"1\n"
] | In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4.
In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2.
In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices. | [
{
"input": "4\n1 1 1 1",
"output": "4"
},
{
"input": "5\n1 3 2 3 4",
"output": "2"
},
{
"input": "6\n1 3 3 1 3 2",
"output": "1"
},
{
"input": "3\n1000000000 1000000000 1000000000",
"output": "1"
},
{
"input": "4\n1 1 2 2",
"output": "2"
},
{
"input": "3\n1 3 1",
"output": "1"
},
{
"input": "11\n1 2 2 2 2 2 2 2 2 2 2",
"output": "45"
},
{
"input": "5\n1 2 2 2 2",
"output": "6"
},
{
"input": "6\n1 2 2 3 3 4",
"output": "1"
},
{
"input": "8\n1 1 2 2 2 3 3 3",
"output": "3"
},
{
"input": "6\n1 2 2 2 2 3",
"output": "6"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "6\n1 2 2 2 3 3",
"output": "3"
},
{
"input": "6\n1 2 2 2 2 2",
"output": "10"
},
{
"input": "4\n1 2 2 2",
"output": "3"
},
{
"input": "5\n1 2 3 2 3",
"output": "1"
},
{
"input": "6\n2 2 3 3 3 3",
"output": "4"
},
{
"input": "6\n1 2 2 2 5 6",
"output": "3"
},
{
"input": "10\n1 2 2 2 2 2 2 2 2 2",
"output": "36"
},
{
"input": "3\n2 1 2",
"output": "1"
},
{
"input": "5\n1 2 3 3 3",
"output": "3"
},
{
"input": "6\n1 2 2 2 4 5",
"output": "3"
},
{
"input": "4\n1 2 2 3",
"output": "1"
},
{
"input": "10\n2 2 2 2 2 1 2 2 2 2",
"output": "36"
},
{
"input": "7\n2 2 2 3 3 3 1",
"output": "3"
},
{
"input": "3\n1 1 2",
"output": "1"
},
{
"input": "5\n1 1 2 2 2",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "9\n2 2 3 3 3 3 3 3 3",
"output": "7"
},
{
"input": "5\n1 1 2 2 3",
"output": "2"
},
{
"input": "4\n1 1 3 3",
"output": "2"
},
{
"input": "4\n33554432 33554432 67108864 33554432",
"output": "1"
},
{
"input": "6\n2 2 2 1 2 2",
"output": "10"
},
{
"input": "10\n1 2 1 2 3 2 3 2 2 2",
"output": "6"
},
{
"input": "10\n9 6 4 7 1 8 9 5 9 4",
"output": "1"
},
{
"input": "4\n5 7 2 7",
"output": "2"
},
{
"input": "3\n7 6 7",
"output": "1"
},
{
"input": "6\n3 2 8 2 5 3",
"output": "2"
},
{
"input": "3\n5 9 5",
"output": "1"
},
{
"input": "5\n6 3 7 6 3",
"output": "2"
},
{
"input": "9\n10 10 4 10 7 9 6 7 3",
"output": "1"
},
{
"input": "5\n9 10 10 3 8",
"output": "1"
},
{
"input": "5\n2 9 5 10 5",
"output": "1"
},
{
"input": "9\n7 1 9 6 6 8 3 1 3",
"output": "2"
},
{
"input": "5\n3 4 4 4 5",
"output": "3"
},
{
"input": "3\n3 1 3",
"output": "1"
},
{
"input": "8\n3 2 2 5 2 2 1 2",
"output": "10"
}
] | 1,106 | 13,926,400 | 3 | 5,701 |
|
822 | Crossword solving | [
"brute force",
"implementation",
"strings"
] | null | null | Erelong Leha was bored by calculating of the greatest common divisor of two factorials. Therefore he decided to solve some crosswords. It's well known that it is a very interesting occupation though it can be very difficult from time to time. In the course of solving one of the crosswords, Leha had to solve a simple task. You are able to do it too, aren't you?
Leha has two strings *s* and *t*. The hacker wants to change the string *s* at such way, that it can be found in *t* as a substring. All the changes should be the following: Leha chooses one position in the string *s* and replaces the symbol in this position with the question mark "?". The hacker is sure that the question mark in comparison can play the role of an arbitrary symbol. For example, if he gets string *s*="ab?b" as a result, it will appear in *t*="aabrbb" as a substring.
Guaranteed that the length of the string *s* doesn't exceed the length of the string *t*. Help the hacker to replace in *s* as few symbols as possible so that the result of the replacements can be found in *t* as a substring. The symbol "?" should be considered equal to any other symbol. | The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=*m*<=≤<=1000) — the length of the string *s* and the length of the string *t* correspondingly.
The second line contains *n* lowercase English letters — string *s*.
The third line contains *m* lowercase English letters — string *t*. | In the first line print single integer *k* — the minimal number of symbols that need to be replaced.
In the second line print *k* distinct integers denoting the positions of symbols in the string *s* which need to be replaced. Print the positions in any order. If there are several solutions print any of them. The numbering of the positions begins from one. | [
"3 5\nabc\nxaybz\n",
"4 10\nabcd\nebceabazcd\n"
] | [
"2\n2 3 \n",
"1\n2 \n"
] | none | [
{
"input": "3 5\nabc\nxaybz",
"output": "2\n2 3 "
},
{
"input": "4 10\nabcd\nebceabazcd",
"output": "1\n2 "
},
{
"input": "1 1\na\na",
"output": "0"
},
{
"input": "1 1\na\nz",
"output": "1\n1 "
},
{
"input": "3 5\naaa\naaaaa",
"output": "0"
},
{
"input": "3 5\naaa\naabaa",
"output": "1\n3 "
},
{
"input": "5 5\ncoder\ncored",
"output": "2\n3 5 "
},
{
"input": "1 1\nz\nz",
"output": "0"
},
{
"input": "1 2\nf\nrt",
"output": "1\n1 "
},
{
"input": "1 2\nf\nfg",
"output": "0"
},
{
"input": "1 2\nf\ngf",
"output": "0"
},
{
"input": "2 5\naa\naabaa",
"output": "0"
},
{
"input": "2 5\naa\navaca",
"output": "1\n2 "
},
{
"input": "3 5\naaa\nbbbbb",
"output": "3\n1 2 3 "
},
{
"input": "3 5\naba\ncbcbc",
"output": "2\n1 3 "
},
{
"input": "3 5\naba\nbbbbb",
"output": "2\n1 3 "
},
{
"input": "3 5\naaa\naabvd",
"output": "1\n3 "
},
{
"input": "3 5\nvvv\nbqavv",
"output": "1\n1 "
},
{
"input": "10 100\nmpmmpmmmpm\nmppppppmppmmpmpppmpppmmpppmpppppmpppmmmppmpmpmmmpmmpmppmmpppppmpmppppmmppmpmppmmmmpmmppmmmpmpmmmpppp",
"output": "2\n5 6 "
},
{
"input": "26 26\nabcdefghijklmnopqrstuvwxyz\nffffffffffffffffffffffffff",
"output": "25\n1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 "
},
{
"input": "3 5\nabc\nxyzab",
"output": "3\n1 2 3 "
},
{
"input": "4 4\nabcd\nxabc",
"output": "4\n1 2 3 4 "
},
{
"input": "3 4\nabc\nabcd",
"output": "0"
},
{
"input": "3 3\nabc\nxxa",
"output": "3\n1 2 3 "
},
{
"input": "3 5\naab\nzfhka",
"output": "3\n1 2 3 "
},
{
"input": "3 3\nabc\nxya",
"output": "3\n1 2 3 "
},
{
"input": "3 3\nabc\ncab",
"output": "3\n1 2 3 "
},
{
"input": "5 5\nabcde\nxxabc",
"output": "5\n1 2 3 4 5 "
},
{
"input": "3 10\nass\nabcdefssss",
"output": "1\n1 "
},
{
"input": "4 4\nabcd\neeab",
"output": "4\n1 2 3 4 "
},
{
"input": "3 4\nabh\nbhaa",
"output": "3\n1 2 3 "
},
{
"input": "2 3\nzb\naaz",
"output": "2\n1 2 "
},
{
"input": "2 3\nab\ndda",
"output": "2\n1 2 "
},
{
"input": "3 3\ncba\nbac",
"output": "3\n1 2 3 "
},
{
"input": "3 4\nabc\nxxxa",
"output": "3\n1 2 3 "
},
{
"input": "2 3\nab\nbbb",
"output": "1\n1 "
},
{
"input": "10 15\nsdkjeaafww\nefjklffnkddkfey",
"output": "9\n1 2 4 5 6 7 8 9 10 "
},
{
"input": "3 3\nabc\nzbc",
"output": "1\n1 "
},
{
"input": "3 7\nabc\neeeeeab",
"output": "3\n1 2 3 "
},
{
"input": "2 6\nab\nxyxbab",
"output": "0"
},
{
"input": "4 7\nabcd\nzzzzabc",
"output": "4\n1 2 3 4 "
},
{
"input": "3 5\nabc\nabzzz",
"output": "1\n3 "
},
{
"input": "3 3\naaz\nzaa",
"output": "2\n1 3 "
},
{
"input": "3 6\nabc\nxaybzd",
"output": "2\n2 3 "
},
{
"input": "4 5\naaaa\naaaap",
"output": "0"
}
] | 77 | 31,436,800 | 3 | 5,702 |
|
301 | Yaroslav and Sequence | [
"constructive algorithms"
] | null | null | Yaroslav has an array, consisting of (2·*n*<=-<=1) integers. In a single operation Yaroslav can change the sign of exactly *n* elements in the array. In other words, in one operation Yaroslav can select exactly *n* array elements, and multiply each of them by -1.
Yaroslav is now wondering: what maximum sum of array elements can be obtained if it is allowed to perform any number of described operations?
Help Yaroslav. | The first line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains (2·*n*<=-<=1) integers — the array elements. The array elements do not exceed 1000 in their absolute value. | In a single line print the answer to the problem — the maximum sum that Yaroslav can get. | [
"2\n50 50 50\n",
"2\n-1 -100 -1\n"
] | [
"150\n",
"100\n"
] | In the first sample you do not need to change anything. The sum of elements equals 150.
In the second sample you need to change the sign of the first two elements. Then we get the sum of the elements equal to 100. | [
{
"input": "2\n50 50 50",
"output": "150"
},
{
"input": "2\n-1 -100 -1",
"output": "100"
},
{
"input": "3\n-959 -542 -669 -513 160",
"output": "2843"
},
{
"input": "4\n717 473 344 -51 -548 703 -869",
"output": "3603"
},
{
"input": "5\n270 -181 957 -509 -6 937 -175 434 -625",
"output": "4094"
},
{
"input": "6\n-403 901 -847 -708 -624 413 -293 709 886 445 716",
"output": "6359"
},
{
"input": "7\n-236 533 869 903 655 -714 27 890 -311 800 307 -682 665",
"output": "7592"
},
{
"input": "8\n-338 134 708 -761 -135 535 631 -354 -259 -973 -147 -281 737 516 -222",
"output": "6463"
},
{
"input": "9\n-690 34 -821 842 -712 -909 36 -62 255 -363 433 794 883 -274 -642 343 -1",
"output": "8094"
},
{
"input": "10\n86 -619 547 620 -383 -928 945 -253 835 -36 373 925 -705 -64 -577 -386 318 535 528",
"output": "9591"
},
{
"input": "19\n-919 -82 -467 -169 100 -363 644 -307 926 971 -695 658 -625 19 -269 -89 63 -733 827 -236 566 95 -496 975 284 157 -373 -656 -245 644 567 -971 -954 337 150 -67 714",
"output": "17413"
},
{
"input": "22\n697 556 -538 879 -623 73 -293 -401 -491 -7 -144 853 -319 395 785 248 -585 0 -420 -830 -720 75 411 -397 746 828 -83 -833 -847 709 181 967 314 -633 -322 415 -450 433 -459 438 508 -870 -949",
"output": "21725"
},
{
"input": "19\n752 -869 -583 -729 984 -321 -477 -462 429 857 -57 -807 184 296 -594 -728 -903 -524 -726 -551 722 -895 696 301 -339 784 -743 -689 -657 170 -957 -88 -197 832 -65 -689 743",
"output": "21400"
},
{
"input": "22\n549 635 969 -519 -858 185 -788 126 -840 533 -560 168 -539 -962 649 -721 -574 245 -986 -859 496 -257 -361 180 -691 -528 -992 -833 -989 -222 901 950 388 -803 624 -536 -588 310 812 320 862 -640 -851",
"output": "26399"
},
{
"input": "34\n-944 484 -717 515 -827 765 -746 763 -333 184 979 101 -524 199 624 -200 -903 -488 -376 543 924 18 958 55 -826 -12 419 497 580 -286 25 -512 -858 214 271 58 897 178 -644 -598 -41 -737 156 -765 -182 702 748 -113 -335 282 -456 -860 688 -306 614 -995 -876 -437 684 -353 -711 363 -545 -324 -418 840 472",
"output": "34048"
},
{
"input": "19\n-550 109 141 -201 -922 45 926 6 -245 -846 -695 572 -788 -963 -253 161 107 879 78 551 486 563 -533 -376 615 627 913 411 -494 -101 -45 -877 -416 736 255 -810 -491",
"output": "17787"
},
{
"input": "56\n-157 136 457 598 -138 -586 -338 752 -566 -718 -333 -965 309 -125 -938 -188 -390 17 -75 -902 -320 163 820 -970 -525 -329 81 488 -412 978 138 344 305 -358 -273 -967 253 -665 -245 187 602 252 -825 -511 828 764 -402 278 995 541 542 549 612 -536 527 -884 225 800 160 -409 -926 -795 -321 -791 981 812 599 381 752 -331 -585 -987 -918 -930 -223 491 -42 -716 836 -412 -497 211 -348 704 -638 6 -840 476 -769 -842 530 616 -97 588 -299 803 228 -250 193 -27 539 -697 417 88 242 578 642 -30 856 -98 70",
"output": "54799"
},
{
"input": "46\n-302 538 -331 769 255 -485 979 -725 937 -136 -469 234 496 -696 857 597 -691 122 -540 139 75 -444 749 887 95 -584 526 595 -44 -992 563 -972 533 335 -913 -58 -369 -602 -550 47 -321 588 337 -392 -956 211 758 940 -122 -861 -310 946 -163 420 608 -252 54 -466 -227 -974 -790 178 35 849 617 219 741 914 358 -759 -246 -58 -52 307 -290 399 15 -655 -14 -462 492 -425 511 956 331 -929 905 -866 181 938 60",
"output": "44689"
},
{
"input": "27\n-401 -840 -583 -612 -298 -384 798 366 -922 -443 -972 -271 127 -201 992 -748 -351 925 -177 -528 355 5 131 -779 833 -382 -990 -379 -816 681 650 660 624 -112 -652 406 446 -999 259 -778 452 -705 -374 -710 -751 -852 119 -689 -789 96 -984 186 70",
"output": "28653"
},
{
"input": "19\n-150 -962 -857 346 257 898 675 629 -104 -105 560 -525 -64 282 647 -341 -781 400 -80 830 360 877 -751 -1 -392 960 989 935 777 -509 -614 -331 301 -305 587 -284 936",
"output": "19402"
},
{
"input": "38\n-593 446 -769 -498 957 958 -510 515 257 -75 -145 -942 -307 965 -749 110 -793 -457 812 -679 38 -803 274 -932 954 -923 -300 -528 -238 -624 801 939 -462 -894 679 102 886 62 -212 966 -877 942 -325 -900 -997 -65 783 723 353 -972 172 -234 197 69 885 964 71 328 -144 -860 -712 -848 -185 672 622 -364 -403 308 -309 -316 -935 -889 -757 -346 528",
"output": "42209"
},
{
"input": "5\n0 0 0 0 0 -1 -1 -1 -1",
"output": "4"
},
{
"input": "4\n0 0 0 0 0 -1 -1",
"output": "2"
},
{
"input": "5\n0 0 0 0 0 -1 -1 1 1",
"output": "4"
},
{
"input": "4\n0 0 0 0 0 -1 1",
"output": "2"
},
{
"input": "2\n-1 -1 1",
"output": "3"
},
{
"input": "3\n-1 1 1 1 1",
"output": "5"
},
{
"input": "5\n-1 -1 -1 2 2 2 2 2 2",
"output": "15"
},
{
"input": "3\n-100 100 100 100 100",
"output": "500"
},
{
"input": "5\n-1 -2 -3 -4 -5 -6 -7 8 9",
"output": "45"
},
{
"input": "5\n-1 -1 -1 -1 -1 -1 -1 -1 -1",
"output": "9"
},
{
"input": "3\n-1 -1 -1 -1 -1",
"output": "5"
},
{
"input": "4\n-1 -1 -1 0 1 1 1",
"output": "6"
},
{
"input": "7\n-5 -10 12 40 20 -33 23 12 -23 21 -32 14 24",
"output": "269"
},
{
"input": "3\n-2 3 4 5 6",
"output": "20"
},
{
"input": "5\n-10 -100 -100 -10 -20 -5 -1 2 3",
"output": "251"
}
] | 46 | 102,400 | 0 | 5,705 |
|
1 | Ancient Berland Circus | [
"geometry",
"math"
] | C. Ancient Berland Circus | 2 | 64 | Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.
In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.
Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.
You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have. | The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point. | Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100. | [
"0.000000 0.000000\n1.000000 1.000000\n0.000000 1.000000\n"
] | [
"1.00000000\n"
] | [
{
"input": "0.000000 0.000000\n1.000000 1.000000\n0.000000 1.000000",
"output": "1.00000000"
},
{
"input": "71.756151 7.532275\n-48.634784 100.159986\n91.778633 158.107739",
"output": "9991.27897663"
},
{
"input": "18.716839 40.852752\n66.147248 -4.083161\n111.083161 43.347248",
"output": "4268.87997505"
},
{
"input": "-13.242302 -45.014124\n-33.825369 51.083964\n84.512928 -55.134407",
"output": "16617.24002771"
},
{
"input": "115.715093 141.583620\n136.158119 -23.780834\n173.673212 64.802787",
"output": "24043.74046813"
},
{
"input": "17.288379 68.223317\n48.776683 71.688379\n23.170559 106.572762",
"output": "1505.27997374"
},
{
"input": "76.820252 66.709341\n61.392328 82.684207\n44.267775 -2.378694",
"output": "6503.44762335"
},
{
"input": "-46.482632 -31.161247\n19.689679 -70.646972\n-17.902656 -58.455808",
"output": "23949.55226823"
},
{
"input": "34.236058 108.163949\n28.639345 104.566515\n25.610069 86.002927",
"output": "780.93431702"
},
{
"input": "25.428124 39.407248\n17.868098 39.785933\n11.028461 43.028890",
"output": "1152.21351717"
},
{
"input": "36.856072 121.845502\n46.453956 109.898647\n-30.047767 77.590282",
"output": "5339.35578947"
},
{
"input": "-18.643272 56.008305\n9.107608 -22.094058\n-6.456146 70.308320",
"output": "9009.25177521"
},
{
"input": "88.653021 18.024220\n51.942488 -2.527850\n76.164701 24.553012",
"output": "1452.52866331"
},
{
"input": "80.181999 -38.076894\n23.381778 122.535736\n47.118815 140.734014",
"output": "28242.17663744"
},
{
"input": "1.514204 81.400629\n32.168797 100.161401\n7.778734 46.010993",
"output": "3149.43107333"
},
{
"input": "84.409605 38.496141\n77.788313 39.553807\n75.248391 59.413884",
"output": "438.85760782"
},
{
"input": "12.272903 101.825792\n-51.240438 -12.708472\n-29.729299 77.882032",
"output": "24908.67540438"
},
{
"input": "35.661751 27.283571\n96.513550 51.518022\n97.605986 131.258287",
"output": "13324.78113326"
},
{
"input": "-20.003518 -4.671086\n93.588632 6.362759\n-24.748109 24.792124",
"output": "11191.04493104"
},
{
"input": "93.583067 132.858352\n63.834975 19.353720\n33.677824 102.529376",
"output": "10866.49390021"
},
{
"input": "-7.347450 36.971423\n84.498728 89.423536\n75.469963 98.022482",
"output": "8977.83404724"
},
{
"input": "51.679280 56.072393\n-35.819256 73.390532\n-10.661374 129.756454",
"output": "7441.86549199"
},
{
"input": "97.326813 61.492460\n100.982131 57.717635\n68.385216 22.538372",
"output": "1840.59945324"
},
{
"input": "-16.356805 109.310423\n124.529388 25.066276\n-37.892043 80.604904",
"output": "22719.36404168"
},
{
"input": "103.967164 63.475916\n86.466163 59.341930\n69.260229 73.258917",
"output": "1621.96700296"
},
{
"input": "122.381894 -48.763263\n163.634346 -22.427845\n26.099674 73.681862",
"output": "22182.51901824"
},
{
"input": "119.209229 133.905087\n132.001535 22.179509\n96.096673 0.539763",
"output": "16459.52899209"
},
{
"input": "77.145533 85.041789\n67.452820 52.513188\n80.503843 85.000149",
"output": "1034.70898496"
},
{
"input": "28.718442 36.116251\n36.734593 35.617015\n76.193973 99.136077",
"output": "6271.48941610"
},
{
"input": "0.376916 17.054676\n100.187614 85.602831\n1.425829 132.750915",
"output": "13947.47744984"
},
{
"input": "46.172435 -22.819705\n17.485134 -1.663888\n101.027565 111.619705",
"output": "16483.23337238"
},
{
"input": "55.957968 -72.765994\n39.787413 -75.942282\n24.837014 128.144762",
"output": "32799.66697178"
},
{
"input": "40.562163 -47.610606\n10.073051 -54.490068\n54.625875 -40.685797",
"output": "31224.34817875"
},
{
"input": "20.965151 74.716562\n167.264364 81.864800\n5.931644 48.813212",
"output": "30115.26346791"
},
{
"input": "105.530943 80.920069\n40.206723 125.323331\n40.502256 -85.455877",
"output": "36574.64621711"
},
{
"input": "104.636703 49.583778\n85.940583 95.426299\n69.375168 93.234795",
"output": "2632.68754075"
},
{
"input": "72.873708 -59.083734\n110.911118 -6.206576\n-44.292395 13.106202",
"output": "19244.42781859"
},
{
"input": "49.320630 48.119616\n65.888396 93.514980\n27.342377 97.600590",
"output": "2437.50897386"
},
{
"input": "6.949504 69.606390\n26.139268 72.136945\n24.032442 57.407195",
"output": "372.09309018"
},
{
"input": "-21.925928 -24.623076\n-33.673619 -11.677794\n4.692348 52.266292",
"output": "5669.99444283"
},
{
"input": "109.515505 37.575315\n5.377080 101.729711\n17.501630 103.324931",
"output": "25142.85604936"
},
{
"input": "-56.880888 172.997993\n81.126977 42.144034\n-51.413417 17.057807",
"output": "29051.57171313"
},
{
"input": "80.895061 94.491414\n42.361631 65.191687\n77.556800 76.694829",
"output": "2386.01792476"
},
{
"input": "165.094169 94.574129\n46.867578 147.178855\n174.685774 62.705213",
"output": "32087.47120554"
},
{
"input": "146.604506 -3.502359\n24.935572 44.589981\n106.160918 -51.162271",
"output": "13799.61044048"
},
{
"input": "139.847022 19.153937\n104.096879 75.379874\n49.164271 46.404632",
"output": "7083.26303902"
},
{
"input": "31.312532 151.532355\n182.646053 56.534075\n15.953947 127.065925",
"output": "25712.80766033"
},
{
"input": "42.147045 64.165917\n70.260284 4.962470\n10.532991 76.277713",
"output": "14261.92257159"
},
{
"input": "129.400249 -44.695226\n122.278798 -53.696996\n44.828427 -83.507917",
"output": "26227.47891833"
},
{
"input": "28.420253 0.619862\n10.966628 21.724132\n14.618862 10.754642",
"output": "1760.14006648"
}
] | 62 | 0 | -1 | 5,708 |
|
213 | Relay Race | [
"dp"
] | null | null | Furik and Rubik take part in a relay race. The race will be set up on a large square with the side of *n* meters. The given square is split into *n*<=×<=*n* cells (represented as unit squares), each cell has some number.
At the beginning of the race Furik stands in a cell with coordinates (1,<=1), and Rubik stands in a cell with coordinates (*n*,<=*n*). Right after the start Furik runs towards Rubik, besides, if Furik stands at a cell with coordinates (*i*,<=*j*), then he can move to cell (*i*<=+<=1,<=*j*) or (*i*,<=*j*<=+<=1). After Furik reaches Rubik, Rubik starts running from cell with coordinates (*n*,<=*n*) to cell with coordinates (1,<=1). If Rubik stands in cell (*i*,<=*j*), then he can move to cell (*i*<=-<=1,<=*j*) or (*i*,<=*j*<=-<=1). Neither Furik, nor Rubik are allowed to go beyond the boundaries of the field; if a player goes beyond the boundaries, he will be disqualified.
To win the race, Furik and Rubik must earn as many points as possible. The number of points is the sum of numbers from the cells Furik and Rubik visited. Each cell counts only once in the sum.
Print the maximum number of points Furik and Rubik can earn on the relay race. | The first line contains a single integer (1<=≤<=*n*<=≤<=300). The next *n* lines contain *n* integers each: the *j*-th number on the *i*-th line *a**i*,<=*j* (<=-<=1000<=≤<=*a**i*,<=*j*<=≤<=1000) is the number written in the cell with coordinates (*i*,<=*j*). | On a single line print a single number — the answer to the problem. | [
"1\n5\n",
"2\n11 14\n16 12\n",
"3\n25 16 25\n12 18 19\n11 13 8\n"
] | [
"5\n",
"53\n",
"136\n"
] | Comments to the second sample: The profitable path for Furik is: (1, 1), (1, 2), (2, 2), and for Rubik: (2, 2), (2, 1), (1, 1).
Comments to the third sample: The optimal path for Furik is: (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), and for Rubik: (3, 3), (3, 2), (2, 2), (2, 1), (1, 1). The figure to the sample: | [
{
"input": "1\n5",
"output": "5"
},
{
"input": "2\n11 14\n16 12",
"output": "53"
},
{
"input": "3\n25 16 25\n12 18 19\n11 13 8",
"output": "136"
},
{
"input": "4\n35 2 38 10\n15 19 31 32\n21 19 22 15\n37 33 2 13",
"output": "274"
},
{
"input": "5\n4 32 1 18 41\n47 38 7 43 43\n48 23 39 40 23\n26 39 33 5 36\n31 29 7 26 47",
"output": "508"
},
{
"input": "6\n45 31 6 24 28 15\n11 46 44 27 12 34\n8 1 19 37 8 36\n13 37 23 56 54 40\n26 21 36 26 54 41\n5 3 58 40 39 40",
"output": "740"
},
{
"input": "7\n11 14 25 9 52 22 42\n25 22 39 2 30 44 69\n67 7 45 14 44 11 69\n45 40 17 29 32 33 17\n43 11 23 7 47 45 22\n9 54 13 66 25 46 57\n0 6 43 58 47 6 68",
"output": "922"
},
{
"input": "8\n78 70 37 40 78 4 48 36\n59 1 3 35 22 78 9 28\n23 38 9 55 25 70 33 73\n5 17 55 45 45 69 21 40\n41 73 7 73 46 6 74 22\n25 0 53 67 10 51 57 67\n23 21 14 31 46 44 1 13\n66 29 0 11 54 45 21 56",
"output": "1404"
},
{
"input": "9\n66 25 86 38 22 68 51 35 53\n80 51 57 20 80 85 61 40 40\n76 88 62 10 26 69 73 37 35\n60 79 22 52 28 79 86 62 52\n65 59 45 47 86 20 57 35 38\n55 54 42 1 42 27 64 59 25\n26 34 55 67 38 79 12 9 26\n8 51 31 53 49 51 3 58 87\n58 28 38 19 80 12 33 8 39",
"output": "1861"
},
{
"input": "10\n98 89 26 80 53 70 44 10 9 91\n35 71 46 99 84 14 90 86 3 16\n50 61 16 12 77 84 86 80 41 56\n13 40 3 6 98 69 37 45 42 72\n5 86 36 97 1 85 23 1 76 35\n94 72 74 17 33 52 48 5 33 19\n17 1 17 79 46 22 87 34 94 92\n60 70 59 3 78 16 50 62 5 57\n69 23 99 93 26 61 67 53 86 58\n75 73 96 31 55 39 21 20 22 18",
"output": "2367"
},
{
"input": "2\n-1 -1\n-1 -1",
"output": "-3"
},
{
"input": "4\n1 1 1 1\n-100 -100 1 1\n-100 -100 -100 1\n-100 -100 -100 1",
"output": "8"
}
] | 122 | 2,867,200 | -1 | 5,717 |
|
390 | Inna, Dima and Song | [
"implementation"
] | null | null | Inna is a great piano player and Dima is a modest guitar player. Dima has recently written a song and they want to play it together. Of course, Sereja wants to listen to the song very much.
A song is a sequence of notes. Dima and Inna want to play each note at the same time. At that, they can play the *i*-th note at volume *v* (1<=≤<=*v*<=≤<=*a**i*; *v* is an integer) both on the piano and the guitar. They should retain harmony, so the total volume with which the *i*-th note was played on the guitar and the piano must equal *b**i*. If Dima and Inna cannot play a note by the described rules, they skip it and Sereja's joy drops by 1. But if Inna and Dima play the *i*-th note at volumes *x**i* and *y**i* (*x**i*<=+<=*y**i*<==<=*b**i*) correspondingly, Sereja's joy rises by *x**i*·*y**i*.
Sereja has just returned home from the university and his current joy is 0. Help Dima and Inna play the song so as to maximize Sereja's total joy after listening to the whole song! | The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of notes in the song. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106). The third line contains *n* integers *b**i* (1<=≤<=*b**i*<=≤<=106). | In a single line print an integer — the maximum possible joy Sereja feels after he listens to a song. | [
"3\n1 1 2\n2 2 3\n",
"1\n2\n5\n"
] | [
"4\n",
"-1\n"
] | In the first sample, Dima and Inna play the first two notes at volume 1 (1 + 1 = 2, the condition holds), they should play the last note at volumes 1 and 2. Sereja's total joy equals: 1·1 + 1·1 + 1·2 = 4.
In the second sample, there is no such pair (*x*, *y*), that 1 ≤ *x*, *y* ≤ 2, *x* + *y* = 5, so Dima and Inna skip a note. Sereja's total joy equals -1. | [
{
"input": "3\n1 1 2\n2 2 3",
"output": "4"
},
{
"input": "1\n2\n5",
"output": "-1"
},
{
"input": "10\n2 2 3 4 5 6 7 8 9 10\n2 2 3 4 5 6 7 8 9 10",
"output": "96"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10\n1 2 3 4 5 6 7 8 9 10",
"output": "94"
},
{
"input": "3\n10000 10000 10000\n5000 5000 1",
"output": "12499999"
},
{
"input": "2\n1 1\n2 1",
"output": "0"
}
] | 109 | 0 | 0 | 5,728 |
|
957 | Tritonic Iridescence | [
"implementation"
] | null | null | Overlooking the captivating blend of myriads of vernal hues, Arkady the painter lays out a long, long canvas.
Arkady has a sufficiently large amount of paint of three colours: cyan, magenta, and yellow. On the one-dimensional canvas split into *n* consecutive segments, each segment needs to be painted in one of the colours.
Arkady has already painted some (possibly none or all) segments and passes the paintbrush to you. You are to determine whether there are at least two ways of colouring all the unpainted segments so that no two adjacent segments are of the same colour. Two ways are considered different if and only if a segment is painted in different colours in them. | The first line contains a single positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the canvas.
The second line contains a string *s* of *n* characters, the *i*-th of which is either 'C' (denoting a segment painted in cyan), 'M' (denoting one painted in magenta), 'Y' (one painted in yellow), or '?' (an unpainted one). | If there are at least two different ways of painting, output "Yes"; otherwise output "No" (both without quotes).
You can print each character in any case (upper or lower). | [
"5\nCY??Y\n",
"5\nC?C?Y\n",
"5\n?CYC?\n",
"5\nC??MM\n",
"3\nMMY\n"
] | [
"Yes\n",
"Yes\n",
"Yes\n",
"No\n",
"No\n"
] | For the first example, there are exactly two different ways of colouring: CYCMY and CYMCY.
For the second example, there are also exactly two different ways of colouring: CMCMY and CYCMY.
For the third example, there are four ways of colouring: MCYCM, MCYCY, YCYCM, and YCYCY.
For the fourth example, no matter how the unpainted segments are coloured, the existing magenta segments will prevent the painting from satisfying the requirements. The similar is true for the fifth example. | [
{
"input": "5\nCY??Y",
"output": "Yes"
},
{
"input": "5\nC?C?Y",
"output": "Yes"
},
{
"input": "5\n?CYC?",
"output": "Yes"
},
{
"input": "5\nC??MM",
"output": "No"
},
{
"input": "3\nMMY",
"output": "No"
},
{
"input": "15\n??YYYYYY??YYYY?",
"output": "No"
},
{
"input": "100\nYCY?CMCMCYMYMYC?YMYMYMY?CMC?MCMYCMYMYCM?CMCM?CMYMYCYCMCMCMCMCMYM?CYCYCMCM?CY?MYCYCMYM?CYCYCYMY?CYCYC",
"output": "No"
},
{
"input": "1\nC",
"output": "No"
},
{
"input": "1\n?",
"output": "Yes"
},
{
"input": "2\nMY",
"output": "No"
},
{
"input": "2\n?M",
"output": "Yes"
},
{
"input": "2\nY?",
"output": "Yes"
},
{
"input": "2\n??",
"output": "Yes"
},
{
"input": "3\n??C",
"output": "Yes"
},
{
"input": "3\nM??",
"output": "Yes"
},
{
"input": "3\nYCM",
"output": "No"
},
{
"input": "3\n?C?",
"output": "Yes"
},
{
"input": "3\nMC?",
"output": "Yes"
},
{
"input": "4\nCYCM",
"output": "No"
},
{
"input": "4\nM?CM",
"output": "No"
},
{
"input": "4\n??YM",
"output": "Yes"
},
{
"input": "4\nC???",
"output": "Yes"
},
{
"input": "10\nMCYM?MYM?C",
"output": "Yes"
},
{
"input": "50\nCMCMCYM?MY?C?MC??YM?CY?YM??M?MCMCYCYMCYCMCM?MCM?MC",
"output": "Yes"
},
{
"input": "97\nMCM?YCMYM?YMY?MY?MYCY?CMCMCYC?YMY?MYCMC?M?YCMC?YM?C?MCMCMYMCMY?MCM?YC?YMYMY?MYCYCM?YC?YCY?MYMYMYC",
"output": "No"
},
{
"input": "100\nC?M?M?M?YM??YMYC?MCYMYM??Y??YC?CYC???YM?YM??MYMY?CYCYMYC?YC?C?CYCMY??CMC?YMCMYCYCYMYM?CYM?M?MCMCMY?Y",
"output": "Yes"
},
{
"input": "100\n?YYYYYYYYYYYYYYYYYYYYYYYYYYYYY??YYY?YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY?",
"output": "No"
},
{
"input": "100\n????????????????????????????????????????????????????????????????????????????????????????????????????",
"output": "Yes"
},
{
"input": "100\nY?CYMYMYMYCYMY?CMCYMYMC?MYCY?CMCYCYMCM?YCMCYMYCYCY?MYMYCYCYCM?CYMYMY?CY?MYCYCY?M?YMYCY?CMCMCY?CY?M?C",
"output": "No"
},
{
"input": "4\nM??C",
"output": "Yes"
},
{
"input": "6\nY?C??C",
"output": "Yes"
},
{
"input": "5\nC???Y",
"output": "Yes"
},
{
"input": "5\nC??MY",
"output": "Yes"
},
{
"input": "5\nCY??M",
"output": "Yes"
},
{
"input": "4\nC??Y",
"output": "Yes"
},
{
"input": "52\n??????????????????????????????????????????????????YY",
"output": "No"
},
{
"input": "3\nYY?",
"output": "No"
},
{
"input": "5\nCC??Y",
"output": "No"
},
{
"input": "8\nCMC??MCM",
"output": "Yes"
},
{
"input": "7\nM?YCM??",
"output": "Yes"
},
{
"input": "6\n?CC???",
"output": "No"
},
{
"input": "100\n??????????????????????????????????????????????????????????????????????????????????????????????????MM",
"output": "No"
},
{
"input": "4\nC??M",
"output": "Yes"
},
{
"input": "4\n?C?M",
"output": "Yes"
},
{
"input": "6\nMC??MC",
"output": "Yes"
}
] | 93 | 0 | 0 | 5,729 |
|
723 | Polycarp at the Radio | [
"greedy"
] | null | null | Polycarp is a music editor at the radio station. He received a playlist for tomorrow, that can be represented as a sequence *a*1,<=*a*2,<=...,<=*a**n*, where *a**i* is a band, which performs the *i*-th song. Polycarp likes bands with the numbers from 1 to *m*, but he doesn't really like others.
We define as *b**j* the number of songs the group *j* is going to perform tomorrow. Polycarp wants to change the playlist in such a way that the minimum among the numbers *b*1,<=*b*2,<=...,<=*b**m* will be as large as possible.
Find this maximum possible value of the minimum among the *b**j* (1<=≤<=*j*<=≤<=*m*), and the minimum number of changes in the playlist Polycarp needs to make to achieve it. One change in the playlist is a replacement of the performer of the *i*-th song with any other group. | The first line of the input contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=2000).
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the performer of the *i*-th song. | In the first line print two integers: the maximum possible value of the minimum among the *b**j* (1<=≤<=*j*<=≤<=*m*), where *b**j* is the number of songs in the changed playlist performed by the *j*-th band, and the minimum number of changes in the playlist Polycarp needs to make.
In the second line print the changed playlist.
If there are multiple answers, print any of them. | [
"4 2\n1 2 3 2\n",
"7 3\n1 3 2 2 2 2 1\n",
"4 4\n1000000000 100 7 1000000000\n"
] | [
"2 1\n1 2 1 2 \n",
"2 1\n1 3 3 2 2 2 1 \n",
"1 4\n1 2 3 4 \n"
] | In the first sample, after Polycarp's changes the first band performs two songs (*b*<sub class="lower-index">1</sub> = 2), and the second band also performs two songs (*b*<sub class="lower-index">2</sub> = 2). Thus, the minimum of these values equals to 2. It is impossible to achieve a higher minimum value by any changes in the playlist.
In the second sample, after Polycarp's changes the first band performs two songs (*b*<sub class="lower-index">1</sub> = 2), the second band performs three songs (*b*<sub class="lower-index">2</sub> = 3), and the third band also performs two songs (*b*<sub class="lower-index">3</sub> = 2). Thus, the best minimum value is 2. | [
{
"input": "4 2\n1 2 3 2",
"output": "2 1\n1 2 1 2 "
},
{
"input": "7 3\n1 3 2 2 2 2 1",
"output": "2 1\n1 3 3 2 2 2 1 "
},
{
"input": "4 4\n1000000000 100 7 1000000000",
"output": "1 4\n1 2 3 4 "
},
{
"input": "1 1\n1",
"output": "1 0\n1 "
},
{
"input": "1 1\n381183829",
"output": "1 1\n1 "
},
{
"input": "2 1\n234089514 461271539",
"output": "2 2\n1 1 "
},
{
"input": "5 4\n3 1 495987801 522279660 762868488",
"output": "1 2\n3 1 2 4 762868488 "
},
{
"input": "10 2\n20515728 1 580955166 856585851 1 738372422 1 2 1 900189620",
"output": "5 5\n1 1 2 2 1 2 1 2 1 2 "
},
{
"input": "20 3\n3 2 2 3 3 3 2 3 3 3 2 748578511 149249674 844954396 321901094 3 255089924 244803836 3 943090472",
"output": "6 8\n2 2 2 3 3 3 2 3 3 3 2 1 1 1 1 3 1 1 3 2 "
},
{
"input": "50 10\n820558149 7 10 7 9 9 7 7 7 9 7 10 8 8 10 8 6 8 9 9 8 971788012 9 8 9 10 6 5 871178015 4 10 5 7 9 10 9 10 4 643998638 8 10 9 10 766953454 5 9 10 10 8 10",
"output": "5 23\n1 2 4 2 3 3 7 7 7 3 7 4 2 2 5 2 6 8 3 3 8 1 4 8 9 5 6 5 1 4 6 5 7 9 6 9 6 4 1 8 10 9 10 1 5 9 10 10 8 10 "
},
{
"input": "80 79\n17 59 54 75 68 69 69 67 62 77 65 78 54 69 59 73 68 57 65 54 66 46 68 68 67 65 75 39 62 63 45 78 72 62 78 34 74 68 78 68 79 60 64 56 68 76 66 44 43 69 74 75 44 66 71 78 41 75 71 77 59 56 78 52 61 64 64 53 79 34 79 79 65 45 79 67 65 78 68 74",
"output": "1 46\n17 7 4 36 22 29 30 20 9 40 13 42 5 31 8 73 23 57 14 54 18 46 24 25 21 15 37 39 10 63 3 47 72 62 48 1 33 26 49 27 55 60 11 6 28 76 19 2 43 69 35 38 44 66 32 50 41 75 71 77 59 56 51 52 61 12 64 53 58 34 70 79 16 45 79 67 65 78 68 74 "
},
{
"input": "2 1\n1 1000000000",
"output": "2 1\n1 1 "
},
{
"input": "9 2\n4681851 569491424 579550098 1 554288395 496088833 49710380 904873068 189406728",
"output": "4 7\n1 1 1 1 2 2 2 2 189406728 "
},
{
"input": "7 4\n1 1 1 1 1 1 1",
"output": "1 3\n2 3 4 1 1 1 1 "
},
{
"input": "10 4\n1 1 2 2 3 3 4 4 4 4",
"output": "2 0\n1 1 2 2 3 3 4 4 4 4 "
},
{
"input": "9 5\n1 1 1 1 1 2 3 4 5",
"output": "1 0\n1 1 1 1 1 2 3 4 5 "
},
{
"input": "5 4\n10 1 1 1 1",
"output": "1 3\n2 3 4 1 1 "
},
{
"input": "4 2\n1 1 1 1",
"output": "2 2\n2 2 1 1 "
},
{
"input": "7 3\n2 2 2 1 3 7 6",
"output": "2 2\n2 2 2 1 3 1 3 "
},
{
"input": "8 3\n1 1 1 1 2 2 2 2",
"output": "2 2\n3 3 1 1 2 2 2 2 "
},
{
"input": "12 4\n1 1 1 1 2 2 2 2 3 3 4 4",
"output": "3 2\n3 1 1 1 4 2 2 2 3 3 4 4 "
},
{
"input": "7 2\n2 2 2 2 2 2 3",
"output": "3 3\n1 1 2 2 2 2 1 "
},
{
"input": "6 3\n3 3 3 100 1 2",
"output": "2 2\n2 3 3 1 1 2 "
},
{
"input": "13 4\n1 1 1 1 2 2 2 2 3 3 4 4 4",
"output": "3 1\n3 1 1 1 2 2 2 2 3 3 4 4 4 "
},
{
"input": "10 2\n1 1 1 1 1 1 3 4 5 6",
"output": "5 5\n2 1 1 1 1 1 2 2 2 2 "
}
] | 46 | 0 | 0 | 5,740 |
|
498 | Crazy Town | [
"geometry"
] | null | null | Crazy Town is a plane on which there are *n* infinite line roads. Each road is defined by the equation *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, where *a**i* and *b**i* are not both equal to the zero. The roads divide the plane into connected regions, possibly of infinite space. Let's call each such region a block. We define an intersection as the point where at least two different roads intersect.
Your home is located in one of the blocks. Today you need to get to the University, also located in some block. In one step you can move from one block to another, if the length of their common border is nonzero (in particular, this means that if the blocks are adjacent to one intersection, but have no shared nonzero boundary segment, then it are not allowed to move from one to another one in one step).
Determine what is the minimum number of steps you have to perform to get to the block containing the university. It is guaranteed that neither your home nor the university is located on the road. | The first line contains two space-separated integers *x*1, *y*1 (<=-<=106<=≤<=*x*1,<=*y*1<=≤<=106) — the coordinates of your home.
The second line contains two integers separated by a space *x*2, *y*2 (<=-<=106<=≤<=*x*2,<=*y*2<=≤<=106) — the coordinates of the university you are studying at.
The third line contains an integer *n* (1<=≤<=*n*<=≤<=300) — the number of roads in the city. The following *n* lines contain 3 space-separated integers (<=-<=106<=≤<=*a**i*,<=*b**i*,<=*c**i*<=≤<=106; |*a**i*|<=+<=|*b**i*|<=><=0) — the coefficients of the line *a**i**x*<=+<=*b**i**y*<=+<=*c**i*<==<=0, defining the *i*-th road. It is guaranteed that no two roads are the same. In addition, neither your home nor the university lie on the road (i.e. they do not belong to any one of the lines). | Output the answer to the problem. | [
"1 1\n-1 -1\n2\n0 1 0\n1 0 0\n",
"1 1\n-1 -1\n3\n1 0 0\n0 1 0\n1 1 -3\n"
] | [
"2\n",
"2\n"
] | Pictures to the samples are presented below (A is the point representing the house; B is the point representing the university, different blocks are filled with different colors): | [
{
"input": "1 1\n-1 -1\n2\n0 1 0\n1 0 0",
"output": "2"
},
{
"input": "1 1\n-1 -1\n3\n1 0 0\n0 1 0\n1 1 -3",
"output": "2"
},
{
"input": "841746 527518\n595261 331297\n10\n-946901 129987 670374\n-140388 -684770 309555\n-302589 415564 -387435\n-565799 -72069 -395358\n-523453 -511446 854898\n-846967 -749453 -341866\n-622388 434663 264157\n-638453 625357 344195\n-255265 -676356 -772398\n-824723 -319141 33585",
"output": "0"
},
{
"input": "454379 373644\n-665078 -385892\n2\n-530 -468 -379786\n-173 -275 -100376",
"output": "2"
},
{
"input": "841746 527518\n595261 331297\n10\n936 -209 -790797\n898 1240 -36994\n759 285 -413562\n174 323 34281\n662 400 -284846\n298 520 42086\n-36 -27 12861\n462 631 -22515\n-499 1105 919372\n582 1490 319884",
"output": "0"
},
{
"input": "-537 648838\n227 -51454\n1\n678 0 235266",
"output": "1"
},
{
"input": "-940 -984641\n403 -942522\n2\n530 0 -63600\n-439 0 95263",
"output": "2"
},
{
"input": "-867 -465880\n793 -581568\n5\n73 0 57743\n-818 0 -635586\n-804 0 -415668\n-383 0 -52854\n1258 0 155992",
"output": "5"
},
{
"input": "-632 -387435\n942 798117\n10\n249 0 135705\n536 0 271752\n750 0 375750\n799 0 -206142\n1102 0 -437494\n-453 0 197055\n-581 0 260288\n-322 0 161322\n1317 0 -878439\n-811 0 594463",
"output": "10"
},
{
"input": "527189 -306471\n-998939 648838\n1\n-950717 -549267 -820616",
"output": "1"
},
{
"input": "454379 373644\n-665078 -385892\n2\n-984641 503905 -909460\n-767954 -468772 -942522",
"output": "2"
},
{
"input": "-589794 344286\n532652 -230711\n5\n-2919 -179425 -546698\n-465880 342737 794428\n-230739 -687865 713836\n-932054 513357 -97639\n-559361 -75096 -581568",
"output": "5"
},
{
"input": "0 1\n2 2\n1\n1 1 2",
"output": "0"
},
{
"input": "0 2\n-2 0\n2\n2 3 -1\n4 0 3",
"output": "2"
},
{
"input": "1 -4\n1 5\n1\n0 1 0",
"output": "1"
},
{
"input": "1 0\n2 0\n1\n1 0 0",
"output": "0"
},
{
"input": "0 0\n0 2\n4\n1 0 1\n1 0 -1\n-2 0 1\n0 1 -1",
"output": "1"
},
{
"input": "100000 100000\n-100000 100000\n1\n10000 0 7",
"output": "1"
},
{
"input": "1 1\n-1 -1\n1\n1 1 0",
"output": "1"
},
{
"input": "1 1\n3 3\n1\n1 0 2",
"output": "0"
},
{
"input": "1 3\n1 1\n1\n1 1 3",
"output": "0"
},
{
"input": "5 0\n15 0\n1\n10 0 -100",
"output": "1"
},
{
"input": "3 4\n2 6\n1\n0 -2 5",
"output": "0"
},
{
"input": "1 0\n1 2\n1\n0 1 -1",
"output": "1"
},
{
"input": "0 0\n0 2\n1\n0 1 -1",
"output": "1"
},
{
"input": "0 0\n0 1\n1\n1 0 10000",
"output": "0"
},
{
"input": "0 0\n0 1\n1\n0 2 2",
"output": "0"
},
{
"input": "10 18\n10 0\n2\n1 -1 0\n0 1 -5",
"output": "2"
},
{
"input": "10 10\n8 8\n1\n1 1 19",
"output": "0"
},
{
"input": "0 1\n1000000 1\n1\n1000000 1 0",
"output": "0"
}
] | 46 | 0 | 0 | 5,741 |
|
749 | Voting | [
"greedy",
"implementation",
"two pointers"
] | null | null | There are *n* employees in Alternative Cake Manufacturing (ACM). They are now voting on some very important question and the leading world media are trying to predict the outcome of the vote.
Each of the employees belongs to one of two fractions: depublicans or remocrats, and these two fractions have opposite opinions on what should be the outcome of the vote. The voting procedure is rather complicated:
1. Each of *n* employees makes a statement. They make statements one by one starting from employees 1 and finishing with employee *n*. If at the moment when it's time for the *i*-th employee to make a statement he no longer has the right to vote, he just skips his turn (and no longer takes part in this voting). 1. When employee makes a statement, he can do nothing or declare that one of the other employees no longer has a right to vote. It's allowed to deny from voting people who already made the statement or people who are only waiting to do so. If someone is denied from voting he no longer participates in the voting till the very end. 1. When all employees are done with their statements, the procedure repeats: again, each employees starting from 1 and finishing with *n* who are still eligible to vote make their statements. 1. The process repeats until there is only one employee eligible to vote remaining and he determines the outcome of the whole voting. Of course, he votes for the decision suitable for his fraction.
You know the order employees are going to vote and that they behave optimal (and they also know the order and who belongs to which fraction). Predict the outcome of the vote. | The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of employees.
The next line contains *n* characters. The *i*-th character is 'D' if the *i*-th employee is from depublicans fraction or 'R' if he is from remocrats. | Print 'D' if the outcome of the vote will be suitable for depublicans and 'R' if remocrats will win. | [
"5\nDDRRR\n",
"6\nDDRRRR\n"
] | [
"D\n",
"R\n"
] | Consider one of the voting scenarios for the first sample:
1. Employee 1 denies employee 5 to vote. 1. Employee 2 denies employee 3 to vote. 1. Employee 3 has no right to vote and skips his turn (he was denied by employee 2). 1. Employee 4 denies employee 2 to vote. 1. Employee 5 has no right to vote and skips his turn (he was denied by employee 1). 1. Employee 1 denies employee 4. 1. Only employee 1 now has the right to vote so the voting ends with the victory of depublicans. | [
{
"input": "5\nDDRRR",
"output": "D"
},
{
"input": "6\nDDRRRR",
"output": "R"
},
{
"input": "1\nD",
"output": "D"
},
{
"input": "1\nR",
"output": "R"
},
{
"input": "2\nDR",
"output": "D"
},
{
"input": "3\nRDD",
"output": "D"
},
{
"input": "3\nDRD",
"output": "D"
},
{
"input": "4\nDRRD",
"output": "D"
},
{
"input": "4\nDRRR",
"output": "R"
},
{
"input": "4\nRDRD",
"output": "R"
},
{
"input": "5\nDRDRR",
"output": "D"
},
{
"input": "4\nRRRR",
"output": "R"
},
{
"input": "5\nRDDRD",
"output": "D"
},
{
"input": "5\nDDRRD",
"output": "D"
},
{
"input": "5\nDRRRD",
"output": "R"
},
{
"input": "5\nDDDDD",
"output": "D"
},
{
"input": "6\nDRRDDR",
"output": "D"
},
{
"input": "7\nRDRDRDD",
"output": "R"
},
{
"input": "7\nRDRDDRD",
"output": "D"
},
{
"input": "7\nRRRDDDD",
"output": "R"
},
{
"input": "8\nRRRDDDDD",
"output": "D"
},
{
"input": "9\nRRRDDDDDR",
"output": "R"
},
{
"input": "9\nRRDDDRRDD",
"output": "R"
},
{
"input": "9\nRRDDDRDRD",
"output": "D"
},
{
"input": "10\nDDRRRDRRDD",
"output": "D"
},
{
"input": "11\nDRDRRDDRDDR",
"output": "D"
},
{
"input": "12\nDRDRDRDRRDRD",
"output": "D"
},
{
"input": "13\nDRDDDDRRRRDDR",
"output": "D"
},
{
"input": "14\nDDRDRRDRDRDDDD",
"output": "D"
},
{
"input": "15\nDDRRRDDRDRRRDRD",
"output": "D"
},
{
"input": "50\nDDDRDRDDDDRRRRDDDDRRRDRRRDDDRRRRDRDDDRRDRRDDDRDDDD",
"output": "D"
},
{
"input": "50\nDRDDDDDDDRDRDDRRRDRDRDRDDDRRDRRDRDRRDDDRDDRDRDRDDR",
"output": "D"
},
{
"input": "100\nRDRRDRDDDDRDRRDDRDRRDDRRDDRRRDRRRDDDRDDRDDRRDRDRRRDRDRRRDRRDDDRDDRRRDRDRRRDDRDRDDDDDDDRDRRDDDDDDRRDD",
"output": "D"
},
{
"input": "100\nRRDRRDDDDDDDRDRRRDRDRDDDRDDDRDDRDRRDRRRDRRDRRRRRRRDRRRRRRDDDRRDDRRRDRRRDDRRDRRDDDDDRRDRDDRDDRRRDRRDD",
"output": "R"
},
{
"input": "6\nRDDRDR",
"output": "D"
},
{
"input": "6\nDRRDRD",
"output": "R"
},
{
"input": "8\nDDDRRRRR",
"output": "R"
},
{
"input": "7\nRRRDDDD",
"output": "R"
},
{
"input": "7\nRDDRRDD",
"output": "D"
},
{
"input": "9\nRDDDRRDRR",
"output": "R"
},
{
"input": "5\nRDRDD",
"output": "R"
},
{
"input": "5\nRRDDD",
"output": "R"
},
{
"input": "8\nRDDRDRRD",
"output": "R"
},
{
"input": "10\nDRRRDDRDRD",
"output": "R"
},
{
"input": "7\nDRRDDRR",
"output": "R"
},
{
"input": "12\nRDDDRRDRRDDR",
"output": "D"
},
{
"input": "7\nRDRDDDR",
"output": "D"
},
{
"input": "7\nDDRRRDR",
"output": "R"
},
{
"input": "10\nDRRDRDRDRD",
"output": "R"
},
{
"input": "21\nDDDDRRRRRDRDRDRDRDRDR",
"output": "R"
},
{
"input": "11\nRDDDDDRRRRR",
"output": "D"
},
{
"input": "10\nRDDDRRRDDR",
"output": "D"
},
{
"input": "4\nRDDR",
"output": "R"
},
{
"input": "7\nRDRDDRD",
"output": "D"
},
{
"input": "8\nRDDDRRRD",
"output": "R"
},
{
"input": "16\nDRRDRDRDRDDRDRDR",
"output": "R"
},
{
"input": "8\nDRRDRDRD",
"output": "R"
},
{
"input": "6\nRDDDRR",
"output": "D"
},
{
"input": "10\nDDRRRRRDDD",
"output": "D"
},
{
"input": "7\nDDRRRRD",
"output": "R"
},
{
"input": "12\nRDDRDRDRRDRD",
"output": "D"
},
{
"input": "9\nDDRRRDRDR",
"output": "R"
},
{
"input": "20\nRDDRDRDRDRRDRDRDRDDR",
"output": "D"
},
{
"input": "7\nRRDDDRD",
"output": "D"
},
{
"input": "12\nDRRRRRRDDDDD",
"output": "R"
},
{
"input": "12\nRDRDDRDRDRDR",
"output": "D"
},
{
"input": "6\nDDDDDD",
"output": "D"
},
{
"input": "10\nRRRDDRDDDD",
"output": "R"
},
{
"input": "40\nRDDDRDDDRDRRDRDRRRRRDRDRDRDRRDRDRDRRDDDD",
"output": "R"
},
{
"input": "50\nRRDDDRRDRRRDDRDDDDDRDDRRRRRRDRDDRDDDRDRRDDRDDDRDRD",
"output": "D"
},
{
"input": "5\nRDRDR",
"output": "R"
},
{
"input": "9\nDRRDRDDRR",
"output": "R"
},
{
"input": "6\nDRRRDD",
"output": "R"
},
{
"input": "10\nDDDDRRRRRR",
"output": "D"
},
{
"input": "9\nRRDDDDRRD",
"output": "D"
}
] | 31 | 0 | -1 | 5,753 |
|
814 | An impassioned circulation of affection | [
"brute force",
"dp",
"strings",
"two pointers"
] | null | null | Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!
Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has *n* pieces numbered from 1 to *n* from left to right, and the *i*-th piece has a colour *s**i*, denoted by a lowercase English letter. Nadeko will repaint at most *m* of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour *c* — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.
For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.
But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has *q* plans on this, each of which can be expressed as a pair of an integer *m**i* and a lowercase letter *c**i*, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan. | The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=500) — the length of the garland.
The second line contains *n* lowercase English letters *s*1*s*2... *s**n* as a string — the initial colours of paper pieces on the garland.
The third line contains a positive integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of plans Nadeko has.
The next *q* lines describe one plan each: the *i*-th among them contains an integer *m**i* (1<=≤<=*m**i*<=≤<=*n*) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter *c**i* — Koyomi's possible favourite colour. | Output *q* lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it. | [
"6\nkoyomi\n3\n1 o\n4 o\n4 m\n",
"15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n",
"10\naaaaaaaaaa\n2\n10 b\n10 z\n"
] | [
"3\n6\n5\n",
"3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n",
"10\n10\n"
] | In the first sample, there are three plans:
- In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable; - In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6; - In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5. | [
{
"input": "6\nkoyomi\n3\n1 o\n4 o\n4 m",
"output": "3\n6\n5"
},
{
"input": "15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b",
"output": "3\n4\n5\n7\n8\n1\n2\n3\n4\n5"
},
{
"input": "10\naaaaaaaaaa\n2\n10 b\n10 z",
"output": "10\n10"
},
{
"input": "1\nc\n4\n1 x\n1 a\n1 e\n1 t",
"output": "1\n1\n1\n1"
},
{
"input": "20\naaaaaaaaaaaaaaaaaaaa\n1\n11 a",
"output": "20"
},
{
"input": "4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 c\n3 c",
"output": "4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n4\n4"
},
{
"input": "4\nddbb\n16\n3 c\n3 b\n1 a\n1 b\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d",
"output": "3\n4\n1\n3\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3"
},
{
"input": "4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 b\n4 b\n3 c\n3 a\n2 d\n1 a\n2 b",
"output": "3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n3"
},
{
"input": "40\ncbbcbcccccacccccbbacbaabccbbabbaaaaacccc\n10\n40 a\n28 c\n25 c\n21 a\n18 c\n27 a\n9 c\n37 c\n15 a\n18 b",
"output": "40\n40\n40\n31\n35\n37\n23\n40\n24\n27"
},
{
"input": "100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n48 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b",
"output": "85\n72\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77"
},
{
"input": "200\nddeecdbbbeeeeebbbbbaaaaaaaaaaaaaaaaaaaaaaabbcaacccbeeeeddddddddddddccccccdffeeeeecccccbbbbaaaaedfffffaadeeeeeeeedddddaaaaaaaaaaaaaabbbbbcaadddeefffbbbbcccccccccccbbbbbbeeeeeeeffffffdffffffffffffaaaaab\n10\n43 f\n118 d\n165 f\n72 f\n48 f\n2 a\n61 e\n94 d\n109 f\n16 a",
"output": "64\n144\n193\n98\n69\n25\n79\n117\n137\n41"
},
{
"input": "5\naaaaa\n1\n1 b",
"output": "1"
}
] | 61 | 3,993,600 | -1 | 5,768 |
|
920 | Swap Adjacent Elements | [
"dfs and similar",
"greedy",
"math",
"sortings",
"two pointers"
] | null | null | You have an array *a* consisting of *n* integers. Each integer from 1 to *n* appears exactly once in this array.
For some indices *i* (1<=≤<=*i*<=≤<=*n*<=-<=1) it is possible to swap *i*-th element with (*i*<=+<=1)-th, for other indices it is not possible. You may perform any number of swapping operations any order. There is no limit on the number of times you swap *i*-th element with (*i*<=+<=1)-th (if the position is not forbidden).
Can you make this array sorted in ascending order performing some sequence of swapping operations? | The first line contains one integer *n* (2<=≤<=*n*<=≤<=200000) — the number of elements in the array.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=200000) — the elements of the array. Each integer from 1 to *n* appears exactly once.
The third line contains a string of *n*<=-<=1 characters, each character is either 0 or 1. If *i*-th character is 1, then you can swap *i*-th element with (*i*<=+<=1)-th any number of times, otherwise it is forbidden to swap *i*-th element with (*i*<=+<=1)-th. | If it is possible to sort the array in ascending order using any sequence of swaps you are allowed to make, print YES. Otherwise, print NO. | [
"6\n1 2 5 3 4 6\n01110\n",
"6\n1 2 5 3 4 6\n01010\n"
] | [
"YES\n",
"NO\n"
] | In the first example you may swap *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, and then swap *a*<sub class="lower-index">4</sub> and *a*<sub class="lower-index">5</sub>. | [
{
"input": "6\n1 2 5 3 4 6\n01110",
"output": "YES"
},
{
"input": "6\n1 2 5 3 4 6\n01010",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01101",
"output": "NO"
},
{
"input": "6\n2 3 1 4 5 6\n01111",
"output": "NO"
},
{
"input": "4\n2 3 1 4\n011",
"output": "NO"
},
{
"input": "2\n2 1\n0",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n0101",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n0001",
"output": "NO"
},
{
"input": "5\n1 4 5 2 3\n0110",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n0111",
"output": "NO"
},
{
"input": "3\n3 1 2\n10",
"output": "NO"
},
{
"input": "5\n2 3 4 5 1\n0011",
"output": "NO"
},
{
"input": "16\n3 4 14 16 11 7 13 9 10 8 6 5 15 12 1 2\n111111101111111",
"output": "NO"
},
{
"input": "5\n1 5 3 4 2\n1101",
"output": "NO"
},
{
"input": "6\n6 1 2 3 4 5\n11101",
"output": "NO"
},
{
"input": "3\n2 3 1\n01",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01110",
"output": "NO"
},
{
"input": "7\n1 7 3 4 5 6 2\n010001",
"output": "NO"
},
{
"input": "5\n5 2 3 4 1\n1001",
"output": "NO"
},
{
"input": "4\n1 3 4 2\n001",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n1011",
"output": "NO"
},
{
"input": "6\n1 5 3 4 2 6\n11011",
"output": "NO"
},
{
"input": "5\n1 4 2 5 3\n1101",
"output": "NO"
},
{
"input": "5\n3 2 4 1 5\n1010",
"output": "NO"
},
{
"input": "6\n1 4 3 5 6 2\n01101",
"output": "NO"
},
{
"input": "6\n2 3 4 5 1 6\n00010",
"output": "NO"
},
{
"input": "10\n5 2 7 9 1 10 3 4 6 8\n111101000",
"output": "NO"
},
{
"input": "5\n2 4 3 1 5\n0110",
"output": "NO"
},
{
"input": "4\n3 1 2 4\n100",
"output": "NO"
},
{
"input": "6\n1 5 3 4 2 6\n01010",
"output": "NO"
},
{
"input": "4\n3 1 2 4\n101",
"output": "NO"
},
{
"input": "4\n2 4 3 1\n011",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n001",
"output": "NO"
},
{
"input": "4\n3 4 1 2\n011",
"output": "NO"
},
{
"input": "5\n2 4 1 3 5\n0110",
"output": "NO"
},
{
"input": "4\n1 3 4 2\n101",
"output": "NO"
},
{
"input": "20\n20 19 18 17 16 15 1 2 3 4 5 14 13 12 11 10 9 8 7 6\n1111111011111111111",
"output": "NO"
},
{
"input": "6\n6 5 4 1 2 3\n11100",
"output": "NO"
},
{
"input": "5\n2 3 5 1 4\n0011",
"output": "NO"
},
{
"input": "4\n1 4 2 3\n010",
"output": "NO"
},
{
"input": "6\n1 6 3 4 5 2\n01001",
"output": "NO"
},
{
"input": "7\n1 7 2 4 3 5 6\n011110",
"output": "NO"
},
{
"input": "5\n1 3 4 2 5\n0010",
"output": "NO"
},
{
"input": "5\n5 4 3 1 2\n1110",
"output": "NO"
},
{
"input": "5\n2 5 4 3 1\n0111",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n101",
"output": "NO"
},
{
"input": "5\n1 4 5 2 3\n1011",
"output": "NO"
},
{
"input": "5\n1 3 2 5 4\n1110",
"output": "NO"
},
{
"input": "6\n3 2 4 1 5 6\n10111",
"output": "NO"
},
{
"input": "7\n3 1 7 4 5 2 6\n101110",
"output": "NO"
},
{
"input": "10\n5 4 10 9 2 1 6 7 3 8\n011111111",
"output": "NO"
},
{
"input": "5\n1 5 3 2 4\n1110",
"output": "NO"
},
{
"input": "4\n2 3 4 1\n011",
"output": "NO"
},
{
"input": "5\n5 4 3 2 1\n0000",
"output": "NO"
},
{
"input": "12\n6 9 11 1 12 7 5 8 10 4 3 2\n11111111110",
"output": "NO"
},
{
"input": "5\n3 1 5 2 4\n1011",
"output": "NO"
},
{
"input": "5\n4 5 1 2 3\n1110",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 8 9 7 10\n000000000",
"output": "NO"
},
{
"input": "6\n5 6 3 2 4 1\n01111",
"output": "NO"
},
{
"input": "5\n1 3 4 2 5\n0100",
"output": "NO"
},
{
"input": "4\n2 1 4 3\n100",
"output": "NO"
},
{
"input": "6\n1 2 3 4 6 5\n00000",
"output": "NO"
},
{
"input": "6\n4 6 5 3 2 1\n01111",
"output": "NO"
},
{
"input": "5\n3 1 4 5 2\n1001",
"output": "NO"
},
{
"input": "5\n5 2 3 1 4\n1011",
"output": "NO"
},
{
"input": "3\n2 3 1\n10",
"output": "NO"
},
{
"input": "10\n6 5 9 4 3 2 8 10 7 1\n111111110",
"output": "NO"
},
{
"input": "7\n1 2 7 3 4 5 6\n111101",
"output": "NO"
},
{
"input": "6\n5 6 1 2 4 3\n11101",
"output": "NO"
},
{
"input": "6\n4 6 3 5 2 1\n11110",
"output": "NO"
},
{
"input": "5\n5 4 2 3 1\n1110",
"output": "NO"
},
{
"input": "2\n2 1\n1",
"output": "YES"
},
{
"input": "3\n1 3 2\n10",
"output": "NO"
},
{
"input": "5\n3 4 5 1 2\n1110",
"output": "NO"
},
{
"input": "5\n3 4 2 1 5\n0110",
"output": "NO"
},
{
"input": "6\n6 1 2 3 4 5\n10001",
"output": "NO"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10\n000000000",
"output": "YES"
},
{
"input": "3\n3 2 1\n00",
"output": "NO"
},
{
"input": "5\n5 4 3 2 1\n1110",
"output": "NO"
},
{
"input": "6\n3 1 2 5 6 4\n10011",
"output": "NO"
},
{
"input": "6\n3 2 1 6 5 4\n11000",
"output": "NO"
},
{
"input": "2\n1 2\n0",
"output": "YES"
},
{
"input": "2\n1 2\n1",
"output": "YES"
},
{
"input": "11\n1 2 3 4 5 6 7 8 9 10 11\n0000000000",
"output": "YES"
},
{
"input": "4\n2 4 3 1\n101",
"output": "NO"
},
{
"input": "4\n3 4 1 2\n101",
"output": "NO"
},
{
"input": "3\n1 3 2\n01",
"output": "YES"
},
{
"input": "6\n6 2 3 1 4 5\n11110",
"output": "NO"
},
{
"input": "3\n2 1 3\n01",
"output": "NO"
},
{
"input": "5\n1 5 4 3 2\n0111",
"output": "YES"
},
{
"input": "6\n1 2 6 3 4 5\n11110",
"output": "NO"
},
{
"input": "7\n2 3 1 7 6 5 4\n011111",
"output": "NO"
},
{
"input": "6\n5 6 1 2 3 4\n01111",
"output": "NO"
},
{
"input": "4\n1 2 4 3\n001",
"output": "YES"
},
{
"input": "6\n1 2 3 6 4 5\n11001",
"output": "NO"
},
{
"input": "11\n9 8 10 11 1 2 3 4 5 6 7\n1101111111",
"output": "NO"
},
{
"input": "5\n1 5 3 4 2\n0101",
"output": "NO"
},
{
"input": "10\n9 1 2 3 7 8 5 6 4 10\n110111100",
"output": "NO"
},
{
"input": "7\n1 2 7 3 4 5 6\n111011",
"output": "NO"
},
{
"input": "10\n3 10 1 2 6 4 5 7 8 9\n111111001",
"output": "NO"
},
{
"input": "10\n1 3 6 5 2 9 7 8 4 10\n001101111",
"output": "NO"
},
{
"input": "10\n1 8 9 7 6 10 4 2 3 5\n111111101",
"output": "NO"
},
{
"input": "7\n1 2 5 3 6 4 7\n111011",
"output": "NO"
},
{
"input": "4\n2 4 3 1\n100",
"output": "NO"
},
{
"input": "6\n1 2 3 4 6 5\n00001",
"output": "YES"
},
{
"input": "6\n2 1 3 4 5 6\n10000",
"output": "YES"
},
{
"input": "5\n3 2 1 5 4\n1100",
"output": "NO"
},
{
"input": "9\n2 1 3 6 5 4 7 9 8\n10011001",
"output": "YES"
},
{
"input": "8\n2 6 4 1 5 7 3 8\n1010010",
"output": "NO"
},
{
"input": "5\n1 2 4 5 3\n1101",
"output": "NO"
},
{
"input": "6\n1 3 5 2 4 6\n00110",
"output": "NO"
},
{
"input": "6\n1 3 6 2 4 5\n10111",
"output": "NO"
},
{
"input": "9\n9 8 7 6 5 4 3 1 2\n11111110",
"output": "NO"
},
{
"input": "10\n6 7 8 9 10 1 2 3 4 5\n111111110",
"output": "NO"
},
{
"input": "8\n6 1 7 8 3 2 5 4\n1011111",
"output": "NO"
},
{
"input": "70\n4 65 66 30 67 16 39 35 57 14 42 51 5 21 61 53 63 13 60 29 68 70 69 46 20 2 43 47 49 52 26 44 54 62 25 19 12 28 27 24 18 36 6 33 7 8 11 1 45 32 64 38 23 22 56 59 15 9 41 37 40 55 3 31 34 48 50 10 17 58\n111111101101111111111110101111111111111101101111010010110011011110010",
"output": "NO"
},
{
"input": "5\n5 3 2 4 1\n0100",
"output": "NO"
},
{
"input": "6\n3 2 6 5 1 4\n11011",
"output": "NO"
},
{
"input": "6\n1 2 4 5 6 3\n10011",
"output": "NO"
},
{
"input": "7\n1 7 3 2 5 6 4\n111001",
"output": "NO"
}
] | 233 | 13,619,200 | 0 | 5,770 |
|
230 | Dragons | [
"greedy",
"sortings"
] | null | null | Kirito is stuck on a level of the MMORPG he is playing now. To move on in the game, he's got to defeat all *n* dragons that live on this level. Kirito and the dragons have strength, which is represented by an integer. In the duel between two opponents the duel's outcome is determined by their strength. Initially, Kirito's strength equals *s*.
If Kirito starts duelling with the *i*-th (1<=≤<=*i*<=≤<=*n*) dragon and Kirito's strength is not greater than the dragon's strength *x**i*, then Kirito loses the duel and dies. But if Kirito's strength is greater than the dragon's strength, then he defeats the dragon and gets a bonus strength increase by *y**i*.
Kirito can fight the dragons in any order. Determine whether he can move on to the next level of the game, that is, defeat all dragons without a single loss. | The first line contains two space-separated integers *s* and *n* (1<=≤<=*s*<=≤<=104, 1<=≤<=*n*<=≤<=103). Then *n* lines follow: the *i*-th line contains space-separated integers *x**i* and *y**i* (1<=≤<=*x**i*<=≤<=104, 0<=≤<=*y**i*<=≤<=104) — the *i*-th dragon's strength and the bonus for defeating it. | On a single line print "YES" (without the quotes), if Kirito can move on to the next level and print "NO" (without the quotes), if he can't. | [
"2 2\n1 99\n100 0\n",
"10 1\n100 100\n"
] | [
"YES\n",
"NO\n"
] | In the first sample Kirito's strength initially equals 2. As the first dragon's strength is less than 2, Kirito can fight it and defeat it. After that he gets the bonus and his strength increases to 2 + 99 = 101. Now he can defeat the second dragon and move on to the next level.
In the second sample Kirito's strength is too small to defeat the only dragon and win. | [
{
"input": "2 2\n1 99\n100 0",
"output": "YES"
},
{
"input": "10 1\n100 100",
"output": "NO"
},
{
"input": "123 2\n78 10\n130 0",
"output": "YES"
},
{
"input": "999 2\n1010 10\n67 89",
"output": "YES"
},
{
"input": "2 5\n5 1\n2 1\n3 1\n1 1\n4 1",
"output": "YES"
},
{
"input": "2 2\n3 5\n1 2",
"output": "YES"
},
{
"input": "1 2\n1 0\n1 0",
"output": "NO"
},
{
"input": "5 10\n20 1\n4 3\n5 1\n100 1\n4 2\n101 1\n10 0\n10 2\n17 3\n12 84",
"output": "YES"
},
{
"input": "2 2\n1 98\n100 0",
"output": "NO"
},
{
"input": "2 2\n1 2\n3 5",
"output": "YES"
},
{
"input": "5 3\n13 20\n3 10\n15 5",
"output": "YES"
},
{
"input": "2 5\n1 1\n2 1\n3 1\n4 1\n5 1",
"output": "YES"
},
{
"input": "3 3\n1 1\n1 2\n4 0",
"output": "YES"
},
{
"input": "10 4\n20 1\n3 5\n2 4\n1 3",
"output": "YES"
},
{
"input": "10 1\n1 1",
"output": "YES"
},
{
"input": "4 1\n100 1000",
"output": "NO"
},
{
"input": "5 1\n6 7",
"output": "NO"
},
{
"input": "10 1\n10 10",
"output": "NO"
},
{
"input": "6 2\n496 0\n28 8128",
"output": "NO"
},
{
"input": "4 2\n2 1\n10 3",
"output": "NO"
},
{
"input": "11 2\n22 0\n33 0",
"output": "NO"
},
{
"input": "1 2\n100 1\n100 1",
"output": "NO"
},
{
"input": "10 3\n12 0\n13 0\n14 0",
"output": "NO"
},
{
"input": "50 3\n39 0\n38 0\n37 0",
"output": "YES"
},
{
"input": "14 3\n1 5\n1 6\n1 7",
"output": "YES"
},
{
"input": "1 3\n1 10\n1 11\n1 9",
"output": "NO"
},
{
"input": "10 10\n2 10\n3 10\n4 10\n2 20\n3 20\n3 20\n100 50\n100 30\n150 30\n200 10",
"output": "NO"
},
{
"input": "9983 34\n6626 5976\n4448 3568\n2794 2309\n3741 8806\n4754 129\n2780 9275\n5785 9243\n3915 6159\n2609 4331\n238 6756\n6987 3887\n3384 5711\n4349 5563\n1135 4483\n9151 1584\n1500 766\n1608 4440\n7768 5005\n7205 2360\n9088 2933\n3923 7814\n7538 9372\n7504 165\n5277 1636\n2061 4384\n7668 1422\n9582 2121\n5483 7967\n487 2944\n7432 5794\n8208 8970\n5747 3800\n4322 3920\n8261 9319",
"output": "YES"
},
{
"input": "1 10\n8 8\n54 3\n1 8\n26 3\n16 1\n29 9\n38 10\n57 8\n48 6\n17 9",
"output": "NO"
},
{
"input": "5 10\n7 0\n7 0\n10 0\n10 0\n7 2\n4 2\n9 0\n6 1\n7 0\n7 0",
"output": "NO"
},
{
"input": "2 3\n1 1\n1 10\n17 2",
"output": "NO"
},
{
"input": "100 5\n99 100\n199 1\n199 1\n199 1\n202 1",
"output": "YES"
},
{
"input": "1 1\n10000 1",
"output": "NO"
}
] | 0 | 0 | -1 | 5,772 |
|
125 | Hobbits' Party | [
"constructive algorithms",
"greedy"
] | null | null | Everyone knows that hobbits love to organize all sorts of parties and celebrations. There are *n* hobbits living in the Shire. They decided to organize the Greatest Party (GP) that would last for several days. Next day the hobbits wrote a guest list, some non-empty set containing all the inhabitants of the Shire. To ensure that everybody enjoy themselves and nobody gets bored, for any two days (say, days A and B) of the GP there existed at least one hobbit, invited to come on day A and on day B. However, to ensure that nobody has a row, for any three different days A, B, C there shouldn't be a hobbit invited on days A, B and C. The Shire inhabitants are keen on keeping the GP going for as long as possible. Your task is given number *n*, to indicate the GP's maximum duration and the guest lists for each day. | The first line contains an integer *n* (3<=≤<=*n*<=≤<=10000), representing the number of hobbits. | In the first output line print a number *k* — the maximum duration of GP in days. Then on *k* lines print the guest lists, (the guests should be separated by spaces). Print each guest list on the single line. Each list can contain an arbitrary positive number of hobbits. The hobbits are numbered with integers from 1 to *n*. | [
"4\n",
"5\n"
] | [
"3\n1 2 \n1 3 \n2 3 \n",
"3\n1 2 \n1 3 \n2 3 \n"
] | none | [
{
"input": "4",
"output": "3\n1 2 \n1 3 \n2 3 "
},
{
"input": "5",
"output": "3\n1 2 \n1 3 \n2 3 "
},
{
"input": "6",
"output": "4\n1 2 3 \n1 4 5 \n2 4 6 \n3 5 6 "
},
{
"input": "7",
"output": "4\n1 2 3 \n1 4 5 \n2 4 6 \n3 5 6 "
},
{
"input": "8",
"output": "4\n1 2 3 \n1 4 5 \n2 4 6 \n3 5 6 "
},
{
"input": "9",
"output": "4\n1 2 3 \n1 4 5 \n2 4 6 \n3 5 6 "
},
{
"input": "10",
"output": "5\n1 2 3 4 \n1 5 6 7 \n2 5 8 9 \n3 6 8 10 \n4 7 9 10 "
},
{
"input": "11",
"output": "5\n1 2 3 4 \n1 5 6 7 \n2 5 8 9 \n3 6 8 10 \n4 7 9 10 "
},
{
"input": "14",
"output": "5\n1 2 3 4 \n1 5 6 7 \n2 5 8 9 \n3 6 8 10 \n4 7 9 10 "
},
{
"input": "15",
"output": "6\n1 2 3 4 5 \n1 6 7 8 9 \n2 6 10 11 12 \n3 7 10 13 14 \n4 8 11 13 15 \n5 9 12 14 15 "
},
{
"input": "16",
"output": "6\n1 2 3 4 5 \n1 6 7 8 9 \n2 6 10 11 12 \n3 7 10 13 14 \n4 8 11 13 15 \n5 9 12 14 15 "
},
{
"input": "20",
"output": "6\n1 2 3 4 5 \n1 6 7 8 9 \n2 6 10 11 12 \n3 7 10 13 14 \n4 8 11 13 15 \n5 9 12 14 15 "
},
{
"input": "21",
"output": "7\n1 2 3 4 5 6 \n1 7 8 9 10 11 \n2 7 12 13 14 15 \n3 8 12 16 17 18 \n4 9 13 16 19 20 \n5 10 14 17 19 21 \n6 11 15 18 20 21 "
},
{
"input": "44",
"output": "9\n1 2 3 4 5 6 7 8 \n1 9 10 11 12 13 14 15 \n2 9 16 17 18 19 20 21 \n3 10 16 22 23 24 25 26 \n4 11 17 22 27 28 29 30 \n5 12 18 23 27 31 32 33 \n6 13 19 24 28 31 34 35 \n7 14 20 25 29 32 34 36 \n8 15 21 26 30 33 35 36 "
},
{
"input": "45",
"output": "10\n1 2 3 4 5 6 7 8 9 \n1 10 11 12 13 14 15 16 17 \n2 10 18 19 20 21 22 23 24 \n3 11 18 25 26 27 28 29 30 \n4 12 19 25 31 32 33 34 35 \n5 13 20 26 31 36 37 38 39 \n6 14 21 27 32 36 40 41 42 \n7 15 22 28 33 37 40 43 44 \n8 16 23 29 34 38 41 43 45 \n9 17 24 30 35 39 42 44 45 "
},
{
"input": "189",
"output": "19\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 \n1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 \n2 19 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 \n3 20 36 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 \n4 21 37 52 67 68 69 70 71 72 73 74 75 76 77 78 79 80 \n5 22 38 53 67 81 82 83 84 85 86 87 88 89 90 91 92 93 \n6 23 39 54 68 81 94 95 96 97 98 99 100 101 102 103 104 105 \n7 24 40 55 69 82 94 106 107 108 109 110 111 112 113 114 115 116 \n8 25 41 56 70 83 95 106 117 118 119 120 121 122 123 124 12..."
},
{
"input": "190",
"output": "20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \n1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 \n2 20 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 \n3 21 38 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 \n4 22 39 55 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n5 23 40 56 71 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n6 24 41 57 72 86 100 101 102 103 104 105 106 107 108 109 110 111 112 \n7 25 42 58 73 87 100 113 114 115 116 117 118 119 120 121 122 123 124 \n8 26 43 59 74 88 101 113 ..."
},
{
"input": "191",
"output": "20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \n1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 \n2 20 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 \n3 21 38 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 \n4 22 39 55 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n5 23 40 56 71 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n6 24 41 57 72 86 100 101 102 103 104 105 106 107 108 109 110 111 112 \n7 25 42 58 73 87 100 113 114 115 116 117 118 119 120 121 122 123 124 \n8 26 43 59 74 88 101 113 ..."
},
{
"input": "209",
"output": "20\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \n1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 \n2 20 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 \n3 21 38 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 \n4 22 39 55 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 \n5 23 40 56 71 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n6 24 41 57 72 86 100 101 102 103 104 105 106 107 108 109 110 111 112 \n7 25 42 58 73 87 100 113 114 115 116 117 118 119 120 121 122 123 124 \n8 26 43 59 74 88 101 113 ..."
},
{
"input": "210",
"output": "21\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 \n1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 \n2 21 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 \n3 22 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 \n4 23 41 58 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 \n5 24 42 59 75 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 \n6 25 43 60 76 91 106 107 108 109 110 111 112 113 114 115 116 117 118 119 \n7 26 44 61 77 92 106 120 121 122 123 124 125 126 127 128 129 130 131..."
},
{
"input": "230",
"output": "21\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 \n1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 \n2 21 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 \n3 22 40 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 \n4 23 41 58 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 \n5 24 42 59 75 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 \n6 25 43 60 76 91 106 107 108 109 110 111 112 113 114 115 116 117 118 119 \n7 26 44 61 77 92 106 120 121 122 123 124 125 126 127 128 129 130 131..."
},
{
"input": "231",
"output": "22\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 \n1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 \n2 22 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \n3 23 42 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n4 24 43 61 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n5 25 44 62 79 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 \n6 26 45 63 80 96 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n7 27 46 64 81 97 112 127 128 129 130 131..."
},
{
"input": "251",
"output": "22\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 \n1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 \n2 22 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \n3 23 42 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n4 24 43 61 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n5 25 44 62 79 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 \n6 26 45 63 80 96 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n7 27 46 64 81 97 112 127 128 129 130 131..."
},
{
"input": "252",
"output": "22\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 \n1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 \n2 22 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 \n3 23 42 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 \n4 24 43 61 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 \n5 25 44 62 79 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 \n6 26 45 63 80 96 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 \n7 27 46 64 81 97 112 127 128 129 130 131..."
},
{
"input": "253",
"output": "23\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n1 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 \n2 23 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n3 24 44 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 \n4 25 45 64 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n5 26 46 65 83 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 \n6 27 47 66 84 101 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n7 28 48 67 ..."
},
{
"input": "254",
"output": "23\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n1 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 \n2 23 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n3 24 44 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 \n4 25 45 64 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n5 26 46 65 83 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 \n6 27 47 66 84 101 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n7 28 48 67 ..."
},
{
"input": "255",
"output": "23\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \n1 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 \n2 23 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 \n3 24 44 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 \n4 25 45 64 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 \n5 26 46 65 83 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 \n6 27 47 66 84 101 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n7 28 48 67 ..."
},
{
"input": "3",
"output": "3\n1 2 \n1 3 \n2 3 "
},
{
"input": "9000",
"output": "134\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 \n1 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9100",
"output": "135\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 \n1 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9200",
"output": "136\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 \n1 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9300",
"output": "136\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 \n1 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9400",
"output": "137\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 \n1 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9500",
"output": "138\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 \n1 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9600",
"output": "139\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 \n1 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9700",
"output": "139\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 \n1 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9800",
"output": "140\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 \n1 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9900",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9998",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9999",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "10000",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9868",
"output": "140\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 \n1 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9869",
"output": "140\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 \n1 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9870",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9871",
"output": "141\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 \n1 141 142 143 144 145 146 147 148 149 150 151 152 15..."
},
{
"input": "9377",
"output": "137\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 \n1 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..."
}
] | 372 | 1,024,000 | -1 | 5,783 |
|
877 | Nikita and string | [
"brute force",
"dp"
] | null | null | One day Nikita found the string containing letters "a" and "b" only.
Nikita thinks that string is beautiful if it can be cut into 3 strings (possibly empty) without changing the order of the letters, where the 1-st and the 3-rd one contain only letters "a" and the 2-nd contains only letters "b".
Nikita wants to make the string beautiful by removing some (possibly none) of its characters, but without changing their order. What is the maximum length of the string he can get? | The first line contains a non-empty string of length not greater than 5<=000 containing only lowercase English letters "a" and "b". | Print a single integer — the maximum possible size of beautiful string Nikita can get. | [
"abba\n",
"bab\n"
] | [
"4",
"2"
] | It the first sample the string is already beautiful.
In the second sample he needs to delete one of "b" to make it beautiful. | [
{
"input": "abba",
"output": "4"
},
{
"input": "bab",
"output": "2"
},
{
"input": "bbabbbaabbbb",
"output": "9"
},
{
"input": "bbabbbbbaaba",
"output": "10"
},
{
"input": "bbabbbababaa",
"output": "9"
},
{
"input": "aabbaababbab",
"output": "8"
},
{
"input": "a",
"output": "1"
},
{
"input": "b",
"output": "1"
},
{
"input": "ab",
"output": "2"
},
{
"input": "ba",
"output": "2"
},
{
"input": "bb",
"output": "2"
},
{
"input": "aa",
"output": "2"
},
{
"input": "babbbaab",
"output": "6"
},
{
"input": "abaaaa",
"output": "6"
},
{
"input": "aaa",
"output": "3"
}
] | 77 | 17,715,200 | 0 | 5,784 |
|
690 | Tree of Life (easy) | [] | null | null | Heidi has finally found the mythical Tree of Life – a legendary combinatorial structure which is said to contain a prophecy crucially needed to defeat the undead armies.
On the surface, the Tree of Life is just a regular undirected tree well-known from computer science. This means that it is a collection of *n* points (called vertices), some of which are connected using *n*<=-<=1 line segments (edges) so that each pair of vertices is connected by a path (a sequence of one or more edges).
To decipher the prophecy, Heidi needs to perform a number of steps. The first is counting the number of lifelines in the tree – these are paths of length 2, i.e., consisting of two edges. Help her! | The first line of the input contains a single integer *n* – the number of vertices in the tree (1<=≤<=*n*<=≤<=10000). The vertices are labeled with the numbers from 1 to *n*. Then *n*<=-<=1 lines follow, each describing one edge using two space-separated numbers *a* *b* – the labels of the vertices connected by the edge (1<=≤<=*a*<=<<=*b*<=≤<=*n*). It is guaranteed that the input represents a tree. | Print one integer – the number of lifelines in the tree. | [
"4\n1 2\n1 3\n1 4\n",
"5\n1 2\n2 3\n3 4\n3 5\n"
] | [
"3",
"4"
] | In the second sample, there are four lifelines: paths between vertices 1 and 3, 2 and 4, 2 and 5, and 4 and 5. | [
{
"input": "4\n1 2\n1 3\n1 4",
"output": "3"
},
{
"input": "5\n1 2\n2 3\n3 4\n3 5",
"output": "4"
},
{
"input": "2\n1 2",
"output": "0"
},
{
"input": "3\n2 1\n3 2",
"output": "1"
},
{
"input": "10\n5 1\n1 2\n9 3\n10 5\n6 3\n8 5\n2 7\n2 3\n9 4",
"output": "11"
}
] | 93 | 204,800 | 3 | 5,807 |
|
985 | Pencils and Boxes | [
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] | null | null | Mishka received a gift of multicolored pencils for his birthday! Unfortunately he lives in a monochrome world, where everything is of the same color and only saturation differs. This pack can be represented as a sequence *a*1,<=*a*2,<=...,<=*a**n* of *n* integer numbers — saturation of the color of each pencil. Now Mishka wants to put all the mess in the pack in order. He has an infinite number of empty boxes to do this. He would like to fill some boxes in such a way that:
- Each pencil belongs to exactly one box; - Each non-empty box has at least *k* pencils in it; - If pencils *i* and *j* belong to the same box, then |*a**i*<=-<=*a**j*|<=≤<=*d*, where |*x*| means absolute value of *x*. Note that the opposite is optional, there can be pencils *i* and *j* such that |*a**i*<=-<=*a**j*|<=≤<=*d* and they belong to different boxes.
Help Mishka to determine if it's possible to distribute all the pencils into boxes. Print "YES" if there exists such a distribution. Otherwise print "NO". | The first line contains three integer numbers *n*, *k* and *d* (1<=≤<=*k*<=≤<=*n*<=≤<=5·105, 0<=≤<=*d*<=≤<=109) — the number of pencils, minimal size of any non-empty box and maximal difference in saturation between any pair of pencils in the same box, respectively.
The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — saturation of color of each pencil. | Print "YES" if it's possible to distribute all the pencils into boxes and satisfy all the conditions. Otherwise print "NO". | [
"6 3 10\n7 2 7 7 4 2\n",
"6 2 3\n4 5 3 13 4 10\n",
"3 2 5\n10 16 22\n"
] | [
"YES\n",
"YES\n",
"NO\n"
] | In the first example it is possible to distribute pencils into 2 boxes with 3 pencils in each with any distribution. And you also can put all the pencils into the same box, difference of any pair in it won't exceed 10.
In the second example you can split pencils of saturations [4, 5, 3, 4] into 2 boxes of size 2 and put the remaining ones into another box. | [
{
"input": "6 3 10\n7 2 7 7 4 2",
"output": "YES"
},
{
"input": "6 2 3\n4 5 3 13 4 10",
"output": "YES"
},
{
"input": "3 2 5\n10 16 22",
"output": "NO"
},
{
"input": "8 7 13\n52 85 14 52 92 33 80 85",
"output": "NO"
},
{
"input": "6 4 0\n1 3 2 4 2 1",
"output": "NO"
},
{
"input": "10 4 9\n47 53 33 48 35 51 18 47 33 11",
"output": "NO"
},
{
"input": "3 2 76\n44 5 93",
"output": "NO"
},
{
"input": "5 2 9\n3 8 9 14 20",
"output": "YES"
},
{
"input": "8 2 3\n1 2 3 4 10 11 12 13",
"output": "YES"
},
{
"input": "10 3 3\n1 1 2 4 5 6 9 10 11 12",
"output": "YES"
},
{
"input": "7 3 3\n1 1 3 4 4 4 7",
"output": "YES"
},
{
"input": "8 3 6\n1 2 3 3 4 7 11 11",
"output": "YES"
},
{
"input": "12 3 2\n1 2 3 9 10 11 12 13 14 15 15 15",
"output": "YES"
},
{
"input": "7 3 3\n1 2 3 4 4 5 5",
"output": "YES"
},
{
"input": "9 3 3\n1 2 3 4 5 6 7 8 9",
"output": "YES"
},
{
"input": "5 2 3\n5 7 7 7 10",
"output": "YES"
},
{
"input": "5 2 7\n1 3 4 5 10",
"output": "YES"
},
{
"input": "16 2 2\n3 3 3 4 5 6 7 9 33 33 33 32 31 30 29 27",
"output": "YES"
},
{
"input": "6 3 3\n1 2 3 4 5 6",
"output": "YES"
},
{
"input": "3 2 15\n1 18 19",
"output": "NO"
},
{
"input": "7 2 2\n1 2 3 4 5 6 7",
"output": "YES"
},
{
"input": "6 3 3\n2 2 2 4 7 7",
"output": "YES"
},
{
"input": "8 3 3\n1 1 1 2 2 3 3 5",
"output": "YES"
},
{
"input": "6 2 2\n1 2 3 4 6 7",
"output": "YES"
},
{
"input": "4 2 3\n1 2 3 6",
"output": "YES"
},
{
"input": "10 4 28\n5 5 6 6 30 30 32 33 50 55",
"output": "YES"
},
{
"input": "8 3 6\n1 2 3 3 7 4 11 11",
"output": "YES"
},
{
"input": "6 3 2\n1 2 3 3 4 5",
"output": "YES"
},
{
"input": "10 3 3\n1 2 3 3 3 3 3 3 3 5",
"output": "YES"
},
{
"input": "1 1 1\n1",
"output": "YES"
},
{
"input": "6 3 4\n1 2 3 4 6 7",
"output": "YES"
},
{
"input": "6 3 3\n1 1 4 3 3 6",
"output": "YES"
},
{
"input": "6 3 2\n1 2 2 3 4 5",
"output": "YES"
},
{
"input": "4 2 12\n10 16 22 28",
"output": "YES"
},
{
"input": "9 3 1\n1 2 2 2 2 3 4 4 5",
"output": "YES"
},
{
"input": "6 2 2\n2 3 4 5 6 8",
"output": "YES"
},
{
"input": "10 4 15\n20 16 6 16 13 11 13 1 12 16",
"output": "YES"
},
{
"input": "18 2 86\n665 408 664 778 309 299 138 622 229 842 498 389 140 976 456 265 963 777",
"output": "YES"
},
{
"input": "6 2 1\n1 1 2 3 4 5",
"output": "YES"
},
{
"input": "10 4 7\n4 3 6 5 4 3 1 8 10 5",
"output": "YES"
},
{
"input": "4 2 100\n1 2 3 200",
"output": "NO"
},
{
"input": "6 3 3\n1 1 1 1 1 5",
"output": "NO"
},
{
"input": "10 3 3\n1 1 1 2 2 5 6 7 8 9",
"output": "YES"
},
{
"input": "11 3 4\n1 1 1 5 5 5 10 12 14 16 18",
"output": "NO"
},
{
"input": "4 2 1\n1 1 2 3",
"output": "YES"
},
{
"input": "7 3 3\n6 8 9 10 12 13 14",
"output": "NO"
},
{
"input": "6 3 3\n1 2 3 4 7 8",
"output": "NO"
},
{
"input": "13 2 86\n841 525 918 536 874 186 708 553 770 268 138 529 183",
"output": "YES"
},
{
"input": "5 2 3\n1 2 3 4 100",
"output": "NO"
},
{
"input": "5 2 3\n8 9 11 12 16",
"output": "NO"
},
{
"input": "15 8 57\n40 36 10 6 17 84 57 9 55 37 63 75 48 70 53",
"output": "NO"
},
{
"input": "10 3 1\n5 5 5 6 6 7 8 8 8 9",
"output": "YES"
},
{
"input": "10 5 293149357\n79072863 760382815 358896034 663269192 233367425 32795628 837363300 46932461 179556769 763342555",
"output": "NO"
},
{
"input": "7 3 3\n1 2 4 6 7 8 10",
"output": "NO"
},
{
"input": "6 3 4\n1 1 3 5 8 10",
"output": "NO"
},
{
"input": "14 2 75\n105 300 444 610 238 62 767 462 17 728 371 578 179 166",
"output": "YES"
},
{
"input": "10 4 1\n2 2 2 3 3 10 10 10 11 11",
"output": "YES"
},
{
"input": "18 3 1\n1 1 1 2 2 3 5 5 5 6 6 7 9 9 9 10 10 11",
"output": "YES"
},
{
"input": "9 3 2\n1 2 2 3 4 5 6 7 7",
"output": "YES"
},
{
"input": "8 4 5\n1 1 1 1 1 9 9 9",
"output": "NO"
},
{
"input": "4 2 4\n9 1 2 3",
"output": "NO"
},
{
"input": "10 3 0\n1 1 2 2 2 2 2 2 2 2",
"output": "NO"
},
{
"input": "3 2 2\n6 7 7",
"output": "YES"
},
{
"input": "3 2 257816048\n1 999999999 999999999",
"output": "NO"
},
{
"input": "11 3 1\n1 1 2 2 3 3 3 4 4 5 5",
"output": "YES"
}
] | 0 | 0 | -1 | 5,813 |
|
792 | Paths in a Complete Binary Tree | [
"bitmasks",
"trees"
] | null | null | *T* is a complete binary tree consisting of *n* vertices. It means that exactly one vertex is a root, and each vertex is either a leaf (and doesn't have children) or an inner node (and has exactly two children). All leaves of a complete binary tree have the same depth (distance from the root). So *n* is a number such that *n*<=+<=1 is a power of 2.
In the picture you can see a complete binary tree with *n*<==<=15.
Vertices are numbered from 1 to *n* in a special recursive way: we recursively assign numbers to all vertices from the left subtree (if current vertex is not a leaf), then assign a number to the current vertex, and then recursively assign numbers to all vertices from the right subtree (if it exists). In the picture vertices are numbered exactly using this algorithm. It is clear that for each size of a complete binary tree exists exactly one way to give numbers to all vertices. This way of numbering is called symmetric.
You have to write a program that for given *n* answers *q* queries to the tree.
Each query consists of an integer number *u**i* (1<=≤<=*u**i*<=≤<=*n*) and a string *s**i*, where *u**i* is the number of vertex, and *s**i* represents the path starting from this vertex. String *s**i* doesn't contain any characters other than 'L', 'R' and 'U', which mean traverse to the left child, to the right child and to the parent, respectively. Characters from *s**i* have to be processed from left to right, considering that *u**i* is the vertex where the path starts. If it's impossible to process a character (for example, to go to the left child of a leaf), then you have to skip it. The answer is the number of vertex where the path represented by *s**i* ends.
For example, if *u**i*<==<=4 and *s**i*<==<=«UURL», then the answer is 10. | The first line contains two integer numbers *n* and *q* (1<=≤<=*n*<=≤<=1018, *q*<=≥<=1). *n* is such that *n*<=+<=1 is a power of 2.
The next 2*q* lines represent queries; each query consists of two consecutive lines. The first of these two lines contains *u**i* (1<=≤<=*u**i*<=≤<=*n*), the second contains non-empty string *s**i*. *s**i* doesn't contain any characters other than 'L', 'R' and 'U'.
It is guaranteed that the sum of lengths of *s**i* (for each *i* such that 1<=≤<=*i*<=≤<=*q*) doesn't exceed 105. | Print *q* numbers, *i*-th number must be the answer to the *i*-th query. | [
"15 2\n4\nUURL\n8\nLRLLLLLLLL\n"
] | [
"10\n5\n"
] | none | [
{
"input": "15 2\n4\nUURL\n8\nLRLLLLLLLL",
"output": "10\n5"
},
{
"input": "1 1\n1\nL",
"output": "1"
},
{
"input": "1 1\n1\nR",
"output": "1"
},
{
"input": "1 1\n1\nU",
"output": "1"
},
{
"input": "1 10\n1\nURLRLULUR\n1\nLRRRURULULL\n1\nLURURRUUUU\n1\nRRULLLRRUL\n1\nUULLUURL\n1\nRLRRULUL\n1\nLURRLRUULRR\n1\nLULLULUUUL\n1\nURULLULL\n1\nLRRLRUUUURRLRRL",
"output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1"
},
{
"input": "3 10\n2\nRUUUULULULUU\n1\nULLLURLU\n3\nLLURLULU\n2\nRRLURLURLLR\n3\nLRURURLRLLL\n3\nLRLULRRUURURRL\n1\nRULLR\n2\nLRULLURUL\n3\nRLL\n1\nULRUULURLULLLLLLRLL",
"output": "2\n2\n2\n3\n3\n3\n1\n1\n3\n1"
},
{
"input": "7 10\n3\nLLULULLLR\n4\nLUUURLLLUURRU\n1\nULURR\n6\nLURLLLLRLR\n2\nULULURU\n7\nRRUUUURLRLR\n7\nUUURRULRRLUL\n7\nULLLRUULULR\n6\nUURRLL\n6\nRULUUULLRLLLUULL",
"output": "1\n6\n3\n7\n4\n5\n5\n3\n7\n1"
},
{
"input": "15 10\n1\nURUUUR\n15\nRRLLURRRURL\n1\nUURRLUR\n13\nLRUULUURLRRRL\n6\nLULUURULUURL\n15\nUULL\n8\nULLLULRLRUU\n8\nULRUULRUURLLRL\n5\nLLUULRLURRRULLR\n10\nLUULLRU",
"output": "12\n15\n7\n11\n10\n9\n4\n9\n1\n10"
},
{
"input": "31 10\n12\nRRRRRRULUURR\n9\nLUUURULLLLU\n24\nLLRRLURLLU\n25\nLLUUURL\n14\nRRRRRRULU\n11\nLRLUULRUULR\n10\nULULU\n30\nLLRLLLLRULRLL\n1\nRRULRLRLLLRULR\n20\nULLULLRR",
"output": "15\n2\n18\n26\n14\n11\n12\n29\n1\n17"
},
{
"input": "4503599627370495 1\n2251799813685248\nLLLLLLLL",
"output": "8796093022208"
},
{
"input": "4503599627370495 1\n2251799813685248\nLLLLLL",
"output": "35184372088832"
},
{
"input": "576460752303423487 1\n1125899906842624\nR",
"output": "1688849860263936"
},
{
"input": "1125899906842623 1\n1\nUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRLULLLLLLLLLLLLLLLLUUUULRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU",
"output": "2147483648"
}
] | 2,199 | 12,902,400 | 3 | 5,816 |
|
232 | Cycles | [
"binary search",
"constructive algorithms",
"graphs",
"greedy"
] | null | null | John Doe started thinking about graphs. After some thought he decided that he wants to paint an undirected graph, containing exactly *k* cycles of length 3.
A cycle of length 3 is an unordered group of three distinct graph vertices *a*, *b* and *c*, such that each pair of them is connected by a graph edge.
John has been painting for long, but he has not been a success. Help him find such graph. Note that the number of vertices there shouldn't exceed 100, or else John will have problems painting it. | A single line contains an integer *k* (1<=≤<=*k*<=≤<=105) — the number of cycles of length 3 in the required graph. | In the first line print integer *n* (3<=≤<=*n*<=≤<=100) — the number of vertices in the found graph. In each of next *n* lines print *n* characters "0" and "1": the *i*-th character of the *j*-th line should equal "0", if vertices *i* and *j* do not have an edge between them, otherwise it should equal "1". Note that as the required graph is undirected, the *i*-th character of the *j*-th line must equal the *j*-th character of the *i*-th line. The graph shouldn't contain self-loops, so the *i*-th character of the *i*-th line must equal "0" for all *i*. | [
"1\n",
"10\n"
] | [
"3\n011\n101\n110\n",
"5\n01111\n10111\n11011\n11101\n11110\n"
] | none | [
{
"input": "1",
"output": "3\n011\n101\n110"
},
{
"input": "10",
"output": "5\n01111\n10111\n11011\n11101\n11110"
},
{
"input": "2",
"output": "4\n0111\n1011\n1100\n1100"
},
{
"input": "3",
"output": "5\n01001\n10111\n01001\n01001\n11110"
},
{
"input": "4",
"output": "4\n0111\n1011\n1101\n1110"
},
{
"input": "5",
"output": "5\n01001\n10111\n01011\n01101\n11110"
},
{
"input": "6",
"output": "6\n010010\n101111\n010110\n011010\n111101\n010010"
},
{
"input": "7",
"output": "5\n01011\n10111\n01011\n11101\n11110"
},
{
"input": "8",
"output": "6\n010110\n101111\n010110\n111010\n111101\n010010"
},
{
"input": "9",
"output": "7\n0101100\n1011111\n0100100\n1100101\n1111011\n0100100\n0101100"
},
{
"input": "12",
"output": "7\n0101101\n1011111\n0100100\n1100101\n1111011\n0100100\n1101100"
},
{
"input": "29257",
"output": "60\n011111011111111111111110111111111111111111111111101111111111\n101111111111111111111111111111111111111111111111111111111111\n110111011111111111111111111111111111111111111111101111111111\n111011011111111111111110111111111111111111111111101111111111\n111101111111111111111111111111111111111111111111111111111111\n111110011111111111111110111111111111111111111111101111111111\n010010000000000000000000000000100000010000000000000000000000\n111111001111111111111110111111111111111111111111101111111111\n11111101011..."
},
{
"input": "99990",
"output": "90\n011111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n111011110111111111111111111111111111110111111111111111111111111111111110111111011111110111\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111011111111..."
},
{
"input": "99000",
"output": "90\n011111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n111011110111111111111111111111111111110111111111111111111111111111111110111111011111110111\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111011111111..."
},
{
"input": "99001",
"output": "86\n01111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11101111011111111111111111111111111111111111111111111111111111111111111111111111111111\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111111111111111111111111111111111..."
},
{
"input": "99002",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99003",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99004",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99005",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99006",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99007",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99008",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99009",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99010",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99011",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99012",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99013",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99014",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99015",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99016",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99017",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99018",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99019",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99020",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111011\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99021",
"output": "90\n011111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111110111111111111111111111111111111110111111011111111111\n111011110111111111111111111111111111110111111111111111111111111111111110111111011111110111\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111011111111..."
},
{
"input": "99022",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99023",
"output": "86\n01111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11101111011111111111111111111111111111111111111111111111111111111111111111111111111111\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111111111111111111111111111111111..."
},
{
"input": "99024",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "99025",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "98770",
"output": "85\n0111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1110111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110111111111111111111111111111111111111111111111111111111111111111111..."
},
{
"input": "100000",
"output": "89\n01111111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11011111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11101111011111111111111111111111111111011111111111111111111111111111111111111101111111111\n11110111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1111101101111111111111111111111111111101111111111111..."
},
{
"input": "99999",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "97560",
"output": "87\n011111110111111111111111111111111111111111111111111111111111111111111111111111111111110\n101111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n110111110111111111111111111111111111111111111111111111111111111111111111111111111111111\n111011110111111111111111111111111111111111111111111111111111111111111111111111111111110\n111101111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111011011111111111111111111111111111111111111111111111111111..."
},
{
"input": "98685",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "99994",
"output": "88\n0111111101111111111111111111111111111101111111111111111111111111111111111111111111111111\n1011111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n1101111111111111111111111111111111111101111111111111111111111111111111111111111111111111\n1110111101111111111111111111111111111101111111111111111111111111111111111111111111111101\n1111011111111111111111111111111111111111111111111111111111111111111111111111111111111111\n111110110111111111111111111111111111110111111111111111111..."
},
{
"input": "19",
"output": "7\n0101101\n1011111\n0101100\n1110111\n1111011\n0101101\n1101110"
}
] | 154 | 0 | -1 | 5,817 |
|
992 | Nastya and a Game | [
"brute force",
"implementation",
"math"
] | null | null | Nastya received one more array on her birthday, this array can be used to play a traditional Byteland game on it. However, to play the game the players should first select such a subsegment of the array that , where *p* is the product of all integers on the given array, *s* is their sum, and *k* is a given constant for all subsegments.
Nastya wonders how many subsegments of the array fit the described conditions. A subsegment of an array is several consecutive integers of the array. | The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=2·105, 1<=≤<=*k*<=≤<=105), where *n* is the length of the array and *k* is the constant described above.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=108) — the elements of the array. | In the only line print the number of subsegments such that the ratio between the product and the sum on them is equal to *k*. | [
"1 1\n1\n",
"4 2\n6 3 8 1\n"
] | [
"1\n",
"2\n"
] | In the first example the only subsegment is [1]. The sum equals 1, the product equals 1, so it suits us because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/627b2899a459d42fe3b2ca04fc812d4132b5f2ca.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
There are two suitable subsegments in the second example — [6, 3] and [3, 8, 1]. Subsegment [6, 3] has sum 9 and product 18, so it suits us because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/107ecd38fde9817d6565e2059ccd064562470543.png" style="max-width: 100.0%;max-height: 100.0%;"/>. Subsegment [3, 8, 1] has sum 12 and product 24, so it suits us because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/8abc1793efa3061313ddd52d670a94b430133564.png" style="max-width: 100.0%;max-height: 100.0%;"/>. | [
{
"input": "1 1\n1",
"output": "1"
},
{
"input": "4 2\n6 3 8 1",
"output": "2"
},
{
"input": "94 58\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29 58 1 1 1 29 58 58 1 1 29 1 1 1 1 2 1 58 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 29 1 1 1 1 1 58 1 29 1 1 1 1 1 1 1 1 1 1 1 1 58 1 1 1 1 1 2 1 1 1",
"output": "5"
},
{
"input": "6 76\n1 38 1 1 1 1",
"output": "0"
},
{
"input": "16 53\n53 1 1 1 1 1 53 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "13 16\n2 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "0"
},
{
"input": "90 45\n15 1 1 1 1 3 1 1 5 3 5 1 1 15 15 3 1 15 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 15 1 1 1 1 5 1 1 1 1 15 1 1 1 15 1 1 1 1 1 1 1 1 3 1 1 15 3 1 1 1 15 15 1 1 1 1 15",
"output": "5"
},
{
"input": "9 209\n2 7 31 673 853 1669 5821 7621 16677",
"output": "0"
},
{
"input": "8 27\n8 3 9 8 3 10 7 1",
"output": "0"
},
{
"input": "50 5\n1 5 11 10 3 6 9 3 9 6 1 1 4 7 8 6 11 2 6 10 4 1 8 11 5 6 5 6 7 2 2 3 1 10 8 8 2 10 7 3 8 10 11 7 3 2 10 11 7 4",
"output": "0"
},
{
"input": "16 1\n2 6 1 11 5 9 5 9 7 5 8 5 3 2 7 2",
"output": "16"
},
{
"input": "13 38\n1 10 4 1 5 5 4 4 8 4 11 1 9",
"output": "0"
},
{
"input": "5 15\n10 9 5 2 2",
"output": "0"
},
{
"input": "10 2\n1 1 1 1 10 3 1 1 1 1",
"output": "3"
}
] | 30 | 0 | 0 | 5,820 |
|
448 | Painting Fence | [
"divide and conquer",
"dp",
"greedy"
] | null | null | Bizon the Champion isn't just attentive, he also is very hardworking.
Bizon the Champion decided to paint his old fence his favorite color, orange. The fence is represented as *n* vertical planks, put in a row. Adjacent planks have no gap between them. The planks are numbered from the left to the right starting from one, the *i*-th plank has the width of 1 meter and the height of *a**i* meters.
Bizon the Champion bought a brush in the shop, the brush's width is 1 meter. He can make vertical and horizontal strokes with the brush. During a stroke the brush's full surface must touch the fence at all the time (see the samples for the better understanding). What minimum number of strokes should Bizon the Champion do to fully paint the fence? Note that you are allowed to paint the same area of the fence multiple times. | The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of fence planks. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). | Print a single integer — the minimum number of strokes needed to paint the whole fence. | [
"5\n2 2 1 2 1\n",
"2\n2 2\n",
"1\n5\n"
] | [
"3\n",
"2\n",
"1\n"
] | In the first sample you need to paint the fence in three strokes with the brush: the first stroke goes on height 1 horizontally along all the planks. The second stroke goes on height 2 horizontally and paints the first and second planks and the third stroke (it can be horizontal and vertical) finishes painting the fourth plank.
In the second sample you can paint the fence with two strokes, either two horizontal or two vertical strokes.
In the third sample there is only one plank that can be painted using a single vertical stroke. | [
{
"input": "5\n2 2 1 2 1",
"output": "3"
},
{
"input": "2\n2 2",
"output": "2"
},
{
"input": "1\n5",
"output": "1"
},
{
"input": "5\n2 2 1 2 2",
"output": "3"
},
{
"input": "5\n2 2 1 5 1",
"output": "3"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "2\n999635584 999595693",
"output": "2"
},
{
"input": "10\n3 3 6 4 2 3 2 2 3 3",
"output": "7"
},
{
"input": "14\n1 1 3 1 1 4 4 4 4 4 4 4 4 4",
"output": "5"
},
{
"input": "6\n100 100 100 100 100 1",
"output": "6"
},
{
"input": "7\n5 5 1 5 5 4 1",
"output": "6"
},
{
"input": "4\n3 4 5 6",
"output": "4"
},
{
"input": "4\n2 3 4 5",
"output": "4"
},
{
"input": "8\n5000 5000 5 5000 5000 5000 5000 5000",
"output": "8"
},
{
"input": "10\n4 4 4 3 4 4 3 4 4 4",
"output": "6"
},
{
"input": "9\n4 4 4 4 20 4 4 4 4",
"output": "5"
},
{
"input": "30\n1 4 5 3 9 7 8 4 5 9 2 3 4 2 3 4 5 5 6 8 1 2 9 4 3 7 2 6 5 4",
"output": "26"
},
{
"input": "6\n3 3 3 3 1 3",
"output": "4"
},
{
"input": "12\n10 10 1 1 1 3 3 3 3 3 3 3",
"output": "5"
},
{
"input": "9\n3 4 5 6 1 9 6 5 3",
"output": "9"
}
] | 30 | 0 | 0 | 5,830 |
|
225 | Unsolvable | [
"math",
"number theory"
] | null | null | Consider the following equation:
Let's find all integer *z* (*z*<=><=0), for which this equation is unsolvable in positive integers. The phrase "unsolvable in positive integers" means that there are no such positive integers *x* and *y* (*x*,<=*y*<=><=0), for which the given above equation holds.
Let's write out all such *z* in the increasing order: *z*1,<=*z*2,<=*z*3, and so on (*z**i*<=<<=*z**i*<=+<=1). Your task is: given the number *n*, find the number *z**n*. | The first line contains a single integer *n* (1<=≤<=*n*<=≤<=40). | Print a single integer — the number *z**n* modulo 1000000007 (109<=+<=7). It is guaranteed that the answer exists. | [
"1\n",
"2\n",
"3\n"
] | [
"1",
"3",
"15"
] | none | [
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "3",
"output": "15"
},
{
"input": "4",
"output": "63"
},
{
"input": "5",
"output": "4095"
},
{
"input": "6",
"output": "65535"
},
{
"input": "7",
"output": "262143"
},
{
"input": "8",
"output": "73741816"
},
{
"input": "9",
"output": "536396503"
},
{
"input": "10",
"output": "140130950"
},
{
"input": "11",
"output": "487761805"
},
{
"input": "12",
"output": "319908070"
},
{
"input": "13",
"output": "106681874"
},
{
"input": "14",
"output": "373391776"
},
{
"input": "15",
"output": "317758023"
},
{
"input": "16",
"output": "191994803"
},
{
"input": "17",
"output": "416292236"
},
{
"input": "18",
"output": "110940209"
},
{
"input": "19",
"output": "599412198"
},
{
"input": "20",
"output": "383601260"
},
{
"input": "21",
"output": "910358878"
},
{
"input": "22",
"output": "532737550"
},
{
"input": "23",
"output": "348927936"
},
{
"input": "24",
"output": "923450985"
},
{
"input": "25",
"output": "470083777"
},
{
"input": "26",
"output": "642578561"
},
{
"input": "27",
"output": "428308066"
},
{
"input": "28",
"output": "485739298"
},
{
"input": "29",
"output": "419990027"
},
{
"input": "30",
"output": "287292016"
},
{
"input": "31",
"output": "202484167"
},
{
"input": "32",
"output": "389339971"
},
{
"input": "33",
"output": "848994100"
},
{
"input": "34",
"output": "273206869"
},
{
"input": "35",
"output": "853092282"
},
{
"input": "36",
"output": "411696552"
},
{
"input": "37",
"output": "876153853"
},
{
"input": "38",
"output": "90046024"
},
{
"input": "39",
"output": "828945523"
},
{
"input": "40",
"output": "697988359"
}
] | 280 | 0 | 0 | 5,849 |
|
985 | Chess Placing | [
"implementation"
] | null | null | You are given a chessboard of size 1<=×<=*n*. It is guaranteed that *n* is even. The chessboard is painted like this: "BWBW...BW".
Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to .
In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.
Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made). | The first line of the input contains one integer *n* (2<=≤<=*n*<=≤<=100, *n* is even) — the size of the chessboard.
The second line of the input contains integer numbers (1<=≤<=*p**i*<=≤<=*n*) — initial positions of the pieces. It is guaranteed that all the positions are distinct. | Print one integer — the minimum number of moves you have to make to place all the pieces in the cells of the same color. | [
"6\n1 2 6\n",
"10\n1 2 3 4 5\n"
] | [
"2\n",
"10\n"
] | In the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.
In the second example the possible strategy is to move <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1e06f6a15cce30628c7a2360c4ffa57a8ba0ebd.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 4 moves, then <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c84dfbe0c6a917b45fc3f69467c256c4ac460eeb.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 3 moves, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/598731d81393332209d914cb0bbe97d8566c887d.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 2 moves and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/29f71c065c3536e88b54429c734103ad3604f68b.png" style="max-width: 100.0%;max-height: 100.0%;"/> in 1 move. | [
{
"input": "6\n1 2 6",
"output": "2"
},
{
"input": "10\n1 2 3 4 5",
"output": "10"
},
{
"input": "2\n2",
"output": "0"
},
{
"input": "100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100",
"output": "0"
},
{
"input": "100\n93 54 57 61 68 66 70 96 64 82 80 75 69 77 76 94 67 86 90 73 74 58 100 83 92 89 56 99 88 59 95 72 81 51 85 71 97 60 91 63 65 98 79 84 53 62 87 55 52 78",
"output": "1225"
},
{
"input": "100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 39 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 38",
"output": "1225"
},
{
"input": "96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 49 55 81 35 22 25 79 86 59",
"output": "152"
},
{
"input": "10\n5 6 7 8 9",
"output": "7"
},
{
"input": "20\n1 2 3 4 5 6 7 8 9 10",
"output": "45"
},
{
"input": "10\n6 7 8 9 10",
"output": "10"
},
{
"input": "10\n9 8 7 6 5",
"output": "7"
},
{
"input": "6\n1 5 6",
"output": "2"
},
{
"input": "12\n1 7 8 9 10 12",
"output": "7"
},
{
"input": "6\n1 4 5",
"output": "1"
},
{
"input": "24\n10 21 15 3 11 4 18 24 16 22 14 9",
"output": "11"
},
{
"input": "20\n3 4 6 7 8 10 11 13 14 17",
"output": "15"
},
{
"input": "10\n10 9 8 1 5",
"output": "5"
},
{
"input": "100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 15 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43",
"output": "104"
},
{
"input": "10\n1 7 8 9 10",
"output": "7"
},
{
"input": "10\n1 4 6 8 10",
"output": "1"
},
{
"input": "80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 19 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72",
"output": "47"
},
{
"input": "50\n27 42 41 4 10 45 44 26 49 50 17 28 2 36 18 39 23 12 21 24 19 29 22 40 37",
"output": "59"
},
{
"input": "10\n2 3 4 5 6",
"output": "7"
},
{
"input": "6\n3 5 6",
"output": "2"
},
{
"input": "100\n9 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 6 18 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24",
"output": "160"
},
{
"input": "10\n1 6 7 8 9",
"output": "5"
},
{
"input": "6\n3 4 5",
"output": "2"
}
] | 61 | 0 | 0 | 5,853 |
|
402 | Nuts | [
"greedy",
"math"
] | null | null | You have *a* nuts and lots of boxes. The boxes have a wonderful feature: if you put *x* (*x*<=≥<=0) divisors (the spacial bars that can divide a box) to it, you get a box, divided into *x*<=+<=1 sections.
You are minimalist. Therefore, on the one hand, you are against dividing some box into more than *k* sections. On the other hand, you are against putting more than *v* nuts into some section of the box. What is the minimum number of boxes you have to use if you want to put all the nuts in boxes, and you have *b* divisors?
Please note that you need to minimize the number of used boxes, not sections. You do not have to minimize the number of used divisors. | The first line contains four space-separated integers *k*, *a*, *b*, *v* (2<=≤<=*k*<=≤<=1000; 1<=≤<=*a*,<=*b*,<=*v*<=≤<=1000) — the maximum number of sections in the box, the number of nuts, the number of divisors and the capacity of each section of the box. | Print a single integer — the answer to the problem. | [
"3 10 3 3\n",
"3 10 1 3\n",
"100 100 1 1000\n"
] | [
"2\n",
"3\n",
"1\n"
] | In the first sample you can act like this:
- Put two divisors to the first box. Now the first box has three sections and we can put three nuts into each section. Overall, the first box will have nine nuts. - Do not put any divisors into the second box. Thus, the second box has one section for the last nut.
In the end we've put all the ten nuts into boxes.
The second sample is different as we have exactly one divisor and we put it to the first box. The next two boxes will have one section each. | [
{
"input": "3 10 3 3",
"output": "2"
},
{
"input": "3 10 1 3",
"output": "3"
},
{
"input": "100 100 1 1000",
"output": "1"
},
{
"input": "5 347 20 1",
"output": "327"
},
{
"input": "6 978 10 5",
"output": "186"
},
{
"input": "6 856 50 35",
"output": "5"
},
{
"input": "8 399 13 36",
"output": "2"
},
{
"input": "4 787 48 4",
"output": "149"
},
{
"input": "4 714 7 6",
"output": "112"
},
{
"input": "7 915 12 24",
"output": "27"
},
{
"input": "8 995 3 28",
"output": "33"
},
{
"input": "10 267 4 48",
"output": "2"
},
{
"input": "10 697 1 34",
"output": "20"
},
{
"input": "7 897 49 42",
"output": "4"
},
{
"input": "10 849 3 28",
"output": "28"
},
{
"input": "477 492 438 690",
"output": "1"
},
{
"input": "461 790 518 105",
"output": "1"
},
{
"input": "510 996 830 417",
"output": "1"
},
{
"input": "763 193 388 346",
"output": "1"
},
{
"input": "958 380 405 434",
"output": "1"
},
{
"input": "346 991 4 4",
"output": "244"
},
{
"input": "648 990 5 2",
"output": "490"
},
{
"input": "810 1000 6 5",
"output": "194"
},
{
"input": "683 995 10 1",
"output": "985"
},
{
"input": "307 999 10 7",
"output": "133"
},
{
"input": "974 999 3 4",
"output": "247"
},
{
"input": "60 1000 2 2",
"output": "498"
},
{
"input": "634 993 9 3",
"output": "322"
},
{
"input": "579 990 8 9",
"output": "102"
},
{
"input": "306 993 9 9",
"output": "102"
},
{
"input": "845 996 1 1",
"output": "995"
},
{
"input": "872 997 1 1",
"output": "996"
},
{
"input": "2 990 1 1",
"output": "989"
},
{
"input": "489 992 1 1",
"output": "991"
},
{
"input": "638 1000 1 1",
"output": "999"
},
{
"input": "2 4 1000 1",
"output": "2"
}
] | 62 | 0 | 0 | 5,855 |
|
741 | Arpa's weak amphitheater and Mehrdad's valuable Hoses | [
"dfs and similar",
"dp",
"dsu"
] | null | null | Just to remind, girls in Arpa's land are really nice.
Mehrdad wants to invite some Hoses to the palace for a dancing party. Each Hos has some weight *w**i* and some beauty *b**i*. Also each Hos may have some friends. Hoses are divided in some friendship groups. Two Hoses *x* and *y* are in the same friendship group if and only if there is a sequence of Hoses *a*1,<=*a*2,<=...,<=*a**k* such that *a**i* and *a**i*<=+<=1 are friends for each 1<=≤<=*i*<=<<=*k*, and *a*1<==<=*x* and *a**k*<==<=*y*.
Arpa allowed to use the amphitheater of palace to Mehrdad for this party. Arpa's amphitheater can hold at most *w* weight on it.
Mehrdad is so greedy that he wants to invite some Hoses such that sum of their weights is not greater than *w* and sum of their beauties is as large as possible. Along with that, from each friendship group he can either invite all Hoses, or no more than one. Otherwise, some Hoses will be hurt. Find for Mehrdad the maximum possible total beauty of Hoses he can invite so that no one gets hurt and the total weight doesn't exceed *w*. | The first line contains integers *n*, *m* and *w* (1<=<=≤<=<=*n*<=<=≤<=<=1000, , 1<=≤<=*w*<=≤<=1000) — the number of Hoses, the number of pair of friends and the maximum total weight of those who are invited.
The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=1000) — the weights of the Hoses.
The third line contains *n* integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=106) — the beauties of the Hoses.
The next *m* lines contain pairs of friends, the *i*-th of them contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*, *x**i*<=≠<=*y**i*), meaning that Hoses *x**i* and *y**i* are friends. Note that friendship is bidirectional. All pairs (*x**i*,<=*y**i*) are distinct. | Print the maximum possible total beauty of Hoses Mehrdad can invite so that no one gets hurt and the total weight doesn't exceed *w*. | [
"3 1 5\n3 2 5\n2 4 2\n1 2\n",
"4 2 11\n2 4 6 6\n6 4 2 1\n1 2\n2 3\n"
] | [
"6\n",
"7\n"
] | In the first sample there are two friendship groups: Hoses {1, 2} and Hos {3}. The best way is to choose all of Hoses in the first group, sum of their weights is equal to 5 and sum of their beauty is 6.
In the second sample there are two friendship groups: Hoses {1, 2, 3} and Hos {4}. Mehrdad can't invite all the Hoses from the first group because their total weight is 12 > 11, thus the best way is to choose the first Hos from the first group and the only one from the second group. The total weight will be 8, and the total beauty will be 7. | [
{
"input": "3 1 5\n3 2 5\n2 4 2\n1 2",
"output": "6"
},
{
"input": "4 2 11\n2 4 6 6\n6 4 2 1\n1 2\n2 3",
"output": "7"
},
{
"input": "10 5 100\n70 67 8 64 28 82 18 61 82 7\n596434 595982 237932 275698 361351 850374 936914 877996 789231 331012\n1 7\n2 4\n3 6\n5 7\n1 5",
"output": "2383854"
},
{
"input": "10 5 100\n64 90 3 94 96 97 52 54 82 31\n796554 444893 214351 43810 684158 555762 686198 339093 383018 699152\n6 8\n8 3\n3 9\n2 3\n10 3",
"output": "1495706"
},
{
"input": "10 5 100\n6 18 35 6 87 58 4 53 37 71\n465782 57034 547741 748298 315223 370368 679320 349012 9740 622511\n1 2\n10 9\n6 7\n3 6\n7 1",
"output": "2050129"
},
{
"input": "10 5 100\n78 89 3 2 95 96 87 11 13 60\n694709 921 799687 428614 221900 536251 117674 36488 219932 771513\n4 5\n3 4\n6 2\n2 3\n8 3",
"output": "1791132"
},
{
"input": "10 5 100\n48 73 30 46 95 19 98 73 94 24\n501216 675859 843572 565104 879875 828759 80776 766980 213551 492652\n1 2\n6 5\n7 6\n10 3\n8 1",
"output": "2237435"
},
{
"input": "10 5 100\n68 55 15 94 53 100 52 68 24 3\n286803 660813 226501 624597 215418 290774 416040 961916 910482 50278\n1 5\n7 2\n2 8\n5 3\n10 3",
"output": "1922676"
},
{
"input": "10 5 100\n19 8 95 18 9 79 42 94 20 49\n735491 935681 717266 935275 521356 866021 356037 394445 589369 585077\n9 4\n5 6\n5 1\n1 4\n7 1",
"output": "2456033"
}
] | 1,000 | 5,427,200 | 0 | 5,873 |
|
954 | Path Counting | [
"combinatorics",
"dp"
] | null | null | You are given a rooted tree. Let's denote *d*(*x*) as depth of node *x*: depth of the root is 1, depth of any other node *x* is *d*(*y*)<=+<=1, where *y* is a parent of *x*.
The tree has the following property: every node *x* with *d*(*x*)<==<=*i* has exactly *a**i* children. Maximum possible depth of a node is *n*, and *a**n*<==<=0.
We define *f**k* as the number of unordered pairs of vertices in the tree such that the number of edges on the simple path between them is equal to *k*.
Calculate *f**k* modulo 109<=+<=7 for every 1<=≤<=*k*<=≤<=2*n*<=-<=2. | The first line of input contains an integer *n* (2<=<=≤<=<=*n*<=<=≤<=<=5<=000) — the maximum depth of a node.
The second line of input contains *n*<=-<=1 integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n*<=-<=1 (2<=≤<=<=*a**i*<=<=≤<=109), where *a**i* is the number of children of every node *x* such that *d*(*x*)<==<=*i*. Since *a**n*<==<=0, it is not given in the input. | Print 2*n*<=-<=2 numbers. The *k*-th of these numbers must be equal to *f**k* modulo 109<=+<=7. | [
"4\n2 2 2\n",
"3\n2 3\n"
] | [
"14 19 20 20 16 16 ",
"8 13 6 9 "
] | This the tree from the first sample: | [
{
"input": "4\n2 2 2",
"output": "14 19 20 20 16 16 "
},
{
"input": "3\n2 3",
"output": "8 13 6 9 "
},
{
"input": "2\n2",
"output": "2 1 "
},
{
"input": "6\n2 2 4 2 4",
"output": "182 415 420 980 1216 2432 1536 3328 2048 4096 "
}
] | 77 | 4,403,200 | -1 | 5,879 |
|
644 | Processing Queries | [
"*special",
"constructive algorithms",
"data structures",
"two pointers"
] | null | null | In this problem you have to simulate the workflow of one-thread server. There are *n* queries to process, the *i*-th will be received at moment *t**i* and needs to be processed for *d**i* units of time. All *t**i* are guaranteed to be distinct.
When a query appears server may react in three possible ways:
1. If server is free and query queue is empty, then server immediately starts to process this query. 1. If server is busy and there are less than *b* queries in the queue, then new query is added to the end of the queue. 1. If server is busy and there are already *b* queries pending in the queue, then new query is just rejected and will never be processed.
As soon as server finished to process some query, it picks new one from the queue (if it's not empty, of course). If a new query comes at some moment *x*, and the server finishes to process another query at exactly the same moment, we consider that first query is picked from the queue and only then new query appears.
For each query find the moment when the server will finish to process it or print -1 if this query will be rejected. | The first line of the input contains two integers *n* and *b* (1<=≤<=*n*,<=*b*<=≤<=200<=000) — the number of queries and the maximum possible size of the query queue.
Then follow *n* lines with queries descriptions (in chronological order). Each description consists of two integers *t**i* and *d**i* (1<=≤<=*t**i*,<=*d**i*<=≤<=109), where *t**i* is the moment of time when the *i*-th query appears and *d**i* is the time server needs to process it. It is guaranteed that *t**i*<=-<=1<=<<=*t**i* for all *i*<=><=1. | Print the sequence of *n* integers *e*1,<=*e*2,<=...,<=*e**n*, where *e**i* is the moment the server will finish to process the *i*-th query (queries are numbered in the order they appear in the input) or <=-<=1 if the corresponding query will be rejected. | [
"5 1\n2 9\n4 8\n10 9\n15 2\n19 1\n",
"4 1\n2 8\n4 8\n10 9\n15 2\n"
] | [
"11 19 -1 21 22 \n",
"10 18 27 -1 \n"
] | Consider the first sample.
1. The server will start to process first query at the moment 2 and will finish to process it at the moment 11. 1. At the moment 4 second query appears and proceeds to the queue. 1. At the moment 10 third query appears. However, the server is still busy with query 1, *b* = 1 and there is already query 2 pending in the queue, so third query is just rejected. 1. At the moment 11 server will finish to process first query and will take the second query from the queue. 1. At the moment 15 fourth query appears. As the server is currently busy it proceeds to the queue. 1. At the moment 19 two events occur simultaneously: server finishes to proceed the second query and the fifth query appears. As was said in the statement above, first server will finish to process the second query, then it will pick the fourth query from the queue and only then will the fifth query appear. As the queue is empty fifth query is proceed there. 1. Server finishes to process query number 4 at the moment 21. Query number 5 is picked from the queue. 1. Server finishes to process query number 5 at the moment 22. | [
{
"input": "5 1\n2 9\n4 8\n10 9\n15 2\n19 1",
"output": "11 19 -1 21 22 "
},
{
"input": "4 1\n2 8\n4 8\n10 9\n15 2",
"output": "10 18 27 -1 "
},
{
"input": "1 1\n1000000000 1000000000",
"output": "2000000000 "
},
{
"input": "4 3\n999999996 1000000000\n999999997 1000000000\n999999998 1000000000\n999999999 1000000000",
"output": "1999999996 2999999996 3999999996 4999999996 "
},
{
"input": "5 1\n2 1\n3 6\n4 5\n6 4\n7 2",
"output": "3 9 14 -1 -1 "
},
{
"input": "10 2\n4 14\n5 2\n6 6\n7 11\n8 6\n9 5\n10 13\n11 8\n13 2\n20 2",
"output": "18 20 26 -1 -1 -1 -1 -1 -1 28 "
},
{
"input": "6 4\n2 4\n4 2\n5 2\n6 2\n7 2\n9 2",
"output": "6 8 10 12 14 16 "
},
{
"input": "8 3\n1 2\n3 1\n4 3\n5 3\n6 1\n7 2\n8 8\n9 7",
"output": "3 4 7 10 11 13 21 -1 "
},
{
"input": "10 3\n1 14\n3 2\n5 4\n6 9\n9 1\n12 22\n15 11\n18 8\n28 2\n29 4",
"output": "15 17 21 30 -1 -1 41 49 51 -1 "
},
{
"input": "5 2\n2 7\n3 3\n7 4\n9 1\n10 2",
"output": "9 12 16 17 -1 "
},
{
"input": "4 1\n2 1\n6 5\n9 2\n10 3",
"output": "3 11 13 -1 "
},
{
"input": "4 1\n1 2\n2 1\n3 1\n4 3",
"output": "3 4 5 8 "
},
{
"input": "6 3\n1 2\n2 3\n100 200\n200 300\n10000 20000\n20000 30000",
"output": "3 6 300 600 30000 60000 "
}
] | 3,571 | 6,451,200 | 3 | 5,884 |
|
938 | Run For Your Prize | [
"brute force",
"greedy"
] | null | null | You and your friend are participating in a TV show "Run For Your Prize".
At the start of the show *n* prizes are located on a straight line. *i*-th prize is located at position *a**i*. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order.
You know that it takes exactly 1 second to move from position *x* to position *x*<=+<=1 or *x*<=-<=1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all.
Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend.
What is the minimum number of seconds it will take to pick up all the prizes? | The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the number of prizes.
The second line contains *n* integers *a*1, *a*2, ..., *a**n* (2<=≤<=*a**i*<=≤<=106<=-<=1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order. | Print one integer — the minimum number of seconds it will take to collect all prizes. | [
"3\n2 3 9\n",
"2\n2 999995\n"
] | [
"8\n",
"5\n"
] | In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8.
In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5. | [
{
"input": "3\n2 3 9",
"output": "8"
},
{
"input": "2\n2 999995",
"output": "5"
},
{
"input": "1\n20",
"output": "19"
},
{
"input": "6\n2 3 500000 999997 999998 999999",
"output": "499999"
},
{
"input": "1\n999999",
"output": "1"
},
{
"input": "1\n510000",
"output": "490000"
},
{
"input": "3\n2 5 27",
"output": "26"
},
{
"input": "2\n600000 800000",
"output": "400000"
},
{
"input": "5\n2 5 6 27 29",
"output": "28"
},
{
"input": "1\n500001",
"output": "499999"
},
{
"input": "10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055",
"output": "98054"
},
{
"input": "1\n900000",
"output": "100000"
},
{
"input": "1\n500000",
"output": "499999"
},
{
"input": "1\n999998",
"output": "2"
},
{
"input": "3\n999997 999998 999999",
"output": "3"
},
{
"input": "2\n999997 999999",
"output": "3"
},
{
"input": "2\n2 999998",
"output": "2"
},
{
"input": "2\n500000 500001",
"output": "499999"
},
{
"input": "1\n500002",
"output": "499998"
},
{
"input": "1\n700000",
"output": "300000"
},
{
"input": "2\n2 999999",
"output": "1"
},
{
"input": "2\n999998 999999",
"output": "2"
},
{
"input": "1\n999995",
"output": "5"
},
{
"input": "2\n499999 500001",
"output": "499999"
},
{
"input": "1\n499999",
"output": "499998"
},
{
"input": "2\n100 999900",
"output": "100"
},
{
"input": "2\n499999 500000",
"output": "499999"
},
{
"input": "2\n500001 999999",
"output": "499999"
},
{
"input": "3\n500000 500001 500002",
"output": "499999"
},
{
"input": "2\n2 500001",
"output": "499999"
},
{
"input": "2\n499999 999999",
"output": "499998"
},
{
"input": "2\n2 500000",
"output": "499999"
},
{
"input": "4\n2 3 4 999999",
"output": "3"
},
{
"input": "2\n100000 500001",
"output": "499999"
},
{
"input": "1\n2",
"output": "1"
},
{
"input": "1\n800000",
"output": "200000"
},
{
"input": "1\n505050",
"output": "494950"
},
{
"input": "1\n753572",
"output": "246428"
},
{
"input": "2\n576696 760487",
"output": "423304"
},
{
"input": "10\n3 4 5 6 7 8 9 10 11 12",
"output": "11"
},
{
"input": "4\n2 3 4 5",
"output": "4"
},
{
"input": "4\n999996 999997 999998 999999",
"output": "4"
}
] | 202 | 13,004,800 | 3 | 5,890 |
|
0 | none | [
"none"
] | null | null | You are given a convex polygon *P* with *n* distinct vertices *p*1,<=*p*2,<=...,<=*p**n*. Vertex *p**i* has coordinates (*x**i*,<=*y**i*) in the 2D plane. These vertices are listed in clockwise order.
You can choose a real number *D* and move each vertex of the polygon a distance of at most *D* from their original positions.
Find the maximum value of *D* such that no matter how you move the vertices, the polygon does not intersect itself and stays convex. | The first line has one integer *n* (4<=≤<=*n*<=≤<=1<=000) — the number of vertices.
The next *n* lines contain the coordinates of the vertices. Line *i* contains two integers *x**i* and *y**i* (<=-<=109<=≤<=*x**i*,<=*y**i*<=≤<=109) — the coordinates of the *i*-th vertex. These points are guaranteed to be given in clockwise order, and will form a strictly convex polygon (in particular, no three consecutive points lie on the same straight line). | Print one real number *D*, which is the maximum real number such that no matter how you move the vertices, the polygon stays convex.
Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6.
Namely, let's assume that your answer is *a* and the answer of the jury is *b*. The checker program will consider your answer correct if . | [
"4\n0 0\n0 1\n1 1\n1 0\n",
"6\n5 0\n10 0\n12 -4\n10 -8\n5 -8\n3 -4\n"
] | [
"0.3535533906\n",
"1.0000000000\n"
] | Here is a picture of the first sample
<img class="tex-graphics" src="https://espresso.codeforces.com/f83aa076d2f437f9bb785cae769c3ae310eff351.png" style="max-width: 100.0%;max-height: 100.0%;"/>
Here is an example of making the polygon non-convex.
<img class="tex-graphics" src="https://espresso.codeforces.com/fbadb81630251ca642bd4ddf9088876ade761630.png" style="max-width: 100.0%;max-height: 100.0%;"/>
This is not an optimal solution, since the maximum distance we moved one point is ≈ 0.4242640687, whereas we can make it non-convex by only moving each point a distance of at most ≈ 0.3535533906. | [
{
"input": "4\n0 0\n0 1\n1 1\n1 0",
"output": "0.3535533906"
},
{
"input": "6\n5 0\n10 0\n12 -4\n10 -8\n5 -8\n3 -4",
"output": "1.0000000000"
},
{
"input": "19\n449447997 711296339\n530233434 692216537\n535464528 613140435\n535533467 100893188\n530498867 -265063956\n519107979 -271820709\n482156929 -287792333\n-303730271 -287970295\n-416935204 -263348201\n-443613873 -249980523\n-453444829 -173903413\n-462102798 -80789280\n-462064673 -13220755\n-461368561 482595837\n-457749751 687048095\n-448625206 709399396\n-145117181 710688825\n159099640 711650577\n400454061 711503381",
"output": "24967.1394973334"
},
{
"input": "4\n0 0\n0 10\n10 10\n6 4",
"output": "0.7071067812"
},
{
"input": "4\n-1000000000 -1000000000\n-999999999 -999999999\n1000000000 999999999\n0 -1",
"output": "0.0000000000"
},
{
"input": "4\n-1000000000 -1000000000\n-1000000000 1000000000\n1000000000 1000000000\n1000000000 -1000000000",
"output": "707106781.1865475000"
},
{
"input": "4\n-100000 -100000\n-99999 -99999\n100000 99999\n0 -100",
"output": "0.0000017678"
},
{
"input": "4\n-10000 -10000\n-9999 -9999\n10000 9999\n0 -1000",
"output": "0.0000176781"
},
{
"input": "5\n0 0\n0 10\n10 10\n20 0\n10 -1",
"output": "0.5000000000"
},
{
"input": "5\n10 -1\n0 0\n0 10\n10 10\n20 0",
"output": "0.5000000000"
},
{
"input": "4\n1000000000 1000000000\n1000000000 -1000000000\n-1000000000 -1000000000\n-1000000000 1000000000",
"output": "707106781.1865475000"
},
{
"input": "4\n2 0\n0 0\n0 14\n8 14",
"output": "0.8682431421"
},
{
"input": "4\n0 0\n1 100\n100 0\n1 -100",
"output": "0.5000000000"
},
{
"input": "4\n-1000000000 1000000000\n1000000000 500000000\n1000000000 -1000000000\n-500000000 -1000000000",
"output": "530330085.8899106400"
}
] | 62 | 5,529,600 | 3 | 5,895 |
|
538 | Cutting Banner | [
"brute force",
"implementation"
] | null | null | A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforcesω that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.
There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.
Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES. | The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES. | Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes). | [
"CODEWAITFORITFORCES\n",
"BOTTOMCODER\n",
"DECODEFORCES\n",
"DOGEFORCES\n"
] | [
"YES\n",
"NO\n",
"YES\n",
"NO\n"
] | none | [
{
"input": "CODEWAITFORITFORCES",
"output": "YES"
},
{
"input": "BOTTOMCODER",
"output": "NO"
},
{
"input": "DECODEFORCES",
"output": "YES"
},
{
"input": "DOGEFORCES",
"output": "NO"
},
{
"input": "ABACABA",
"output": "NO"
},
{
"input": "CODEFORCE",
"output": "NO"
},
{
"input": "C",
"output": "NO"
},
{
"input": "NQTSMZEBLY",
"output": "NO"
},
{
"input": "CODEFZORCES",
"output": "YES"
},
{
"input": "EDYKHVZCNTLJUUOQGHPTIOETQNFLLWEKZOHIUAXELGECABVSBIBGQODQXVYFKBYJWTGBYHVSSNTINKWSINWSMALUSIWNJMTCOOVF",
"output": "NO"
},
{
"input": "OCECFDSRDE",
"output": "NO"
},
{
"input": "MDBUWCZFFZKFMJTTJFXRHTGRPREORKDVUXOEMFYSOMSQGHUKGYCRCVJTNDLFDEWFS",
"output": "NO"
},
{
"input": "CODEFYTORCHES",
"output": "NO"
},
{
"input": "BCODEFORCES",
"output": "YES"
},
{
"input": "CVODEFORCES",
"output": "YES"
},
{
"input": "COAKDEFORCES",
"output": "YES"
},
{
"input": "CODFMWEFORCES",
"output": "YES"
},
{
"input": "CODEVCSYRFORCES",
"output": "YES"
},
{
"input": "CODEFXHHPWCVQORCES",
"output": "YES"
},
{
"input": "CODEFORQWUFJLOFFXTXRCES",
"output": "YES"
},
{
"input": "CODEFORBWFURYIDURNRKRDLHCLXZCES",
"output": "YES"
},
{
"input": "CODEFORCQSYSLYKCDFFUPSAZCJIAENCKZUFJZEINQIES",
"output": "YES"
},
{
"input": "CODEFORCEVENMDBQLSVPQIIBGSHBVOPYZXNWVSTVWDRONUREYJJIJIPMEBPQDCPFS",
"output": "YES"
},
{
"input": "CODEFORCESCFNNPAHNHDIPPBAUSPKJYAQDBVZNLSTSDCREZACVLMRFGVKGVHHZLXOHCTJDBQKIDWBUXDUJARLWGFGFCTTXUCAZB",
"output": "YES"
},
{
"input": "CODJRDPDEFOROES",
"output": "NO"
},
{
"input": "CODEFOGSIUZMZCMWAVQHNYFEKIEZQMAZOVEMDRMOEDBHAXPLBLDYYXCVTOOSJZVSQAKFXTBTZFWAYRZEMDEMVDJTDRXXAQBURCES",
"output": "YES"
},
{
"input": "CODEMKUYHAZSGJBQLXTHUCZZRJJJXUSEBOCNZASOKDZHMSGWZSDFBGHXFLABVPDQBJYXSHHAZAKHSTRGOKJYHRVSSUGDCMFOGCES",
"output": "NO"
},
{
"input": "CODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCES",
"output": "YES"
},
{
"input": "CCODEFORCESODECODEFORCCODEFORCESODCODEFORCESEFCODEFORCESORCODEFORCESCESCESFORCODEFORCESCES",
"output": "NO"
},
{
"input": "CCODEFORCESC",
"output": "NO"
},
{
"input": "CODEAFORBCES",
"output": "NO"
},
{
"input": "CODERRRRRFORCRRRRES",
"output": "NO"
},
{
"input": "CODELFORCELS",
"output": "NO"
},
{
"input": "CPOPDPEPFPOPRPCPEPS",
"output": "NO"
},
{
"input": "COXDEXFORXCEXS",
"output": "NO"
},
{
"input": "CODAAAAAFORCES",
"output": "NO"
},
{
"input": "CAOADEFORCES",
"output": "NO"
},
{
"input": "FORCESXCODE",
"output": "NO"
},
{
"input": "FORCESACODE",
"output": "NO"
},
{
"input": "ACAOADAEFORCES",
"output": "NO"
},
{
"input": "CCODEFORCESS",
"output": "NO"
},
{
"input": "ZCODEFORCEZ",
"output": "NO"
},
{
"input": "CODXEFORXCES",
"output": "NO"
},
{
"input": "CODEFORCEZ",
"output": "NO"
},
{
"input": "CODEFORCEST",
"output": "YES"
},
{
"input": "AXODEFORCES",
"output": "NO"
},
{
"input": "RCODEFORCESR",
"output": "NO"
},
{
"input": "CODECODEFORCESFORCES",
"output": "YES"
},
{
"input": "TTTWWWCODEFORCES",
"output": "YES"
},
{
"input": "CODEFORRCEST",
"output": "NO"
},
{
"input": "UJYTYUCODEFORCES",
"output": "YES"
},
{
"input": "CODEXXXXXXXXXXXXXXXXXXCODEFORCESXXXXXXXXXXXXXXXXXXXXXFORCES",
"output": "YES"
},
{
"input": "COXEDYFORCES",
"output": "NO"
},
{
"input": "UJYTYCODEFORCES",
"output": "YES"
},
{
"input": "UJYTCODEFORCES",
"output": "YES"
}
] | 61 | 4,710,400 | 0 | 5,911 |
|
977 | Consecutive Subsequence | [
"dp"
] | null | null | You are given an integer array of length $n$.
You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to $[x, x + 1, \dots, x + k - 1]$ for some value $x$ and length $k$.
Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array $[5, 3, 1, 2, 4]$ the following arrays are subsequences: $[3]$, $[5, 3, 1, 2, 4]$, $[5, 1, 4]$, but the array $[1, 3]$ is not. | The first line of the input containing integer number $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the array. The second line of the input containing $n$ integer numbers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the array itself. | On the first line print $k$ — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive integers.
On the second line print the sequence of the indices of the any maximum length subsequence of the given array that forms an increasing sequence of consecutive integers. | [
"7\n3 3 4 7 5 6 8\n",
"6\n1 3 5 2 4 6\n",
"4\n10 9 8 7\n",
"9\n6 7 8 3 4 5 9 10 11\n"
] | [
"4\n2 3 5 6 \n",
"2\n1 4 \n",
"1\n1 \n",
"6\n1 2 3 7 8 9 \n"
] | All valid answers for the first example (as sequences of indices):
- $[1, 3, 5, 6]$ - $[2, 3, 5, 6]$
All valid answers for the second example:
- $[1, 4]$ - $[2, 5]$ - $[3, 6]$
All valid answers for the third example:
- $[1]$ - $[2]$ - $[3]$ - $[4]$
All valid answers for the fourth example:
- $[1, 2, 3, 7, 8, 9]$ | [
{
"input": "7\n3 3 4 7 5 6 8",
"output": "4\n2 3 5 6 "
},
{
"input": "6\n1 3 5 2 4 6",
"output": "2\n1 4 "
},
{
"input": "4\n10 9 8 7",
"output": "1\n1 "
},
{
"input": "9\n6 7 8 3 4 5 9 10 11",
"output": "6\n1 2 3 7 8 9 "
},
{
"input": "1\n1337",
"output": "1\n1 "
},
{
"input": "2\n456 123",
"output": "1\n1 "
},
{
"input": "7\n100 3 4 7 5 6 8",
"output": "4\n2 3 5 6 "
},
{
"input": "7\n3 3 4 5 6 7 8",
"output": "6\n2 3 4 5 6 7 "
},
{
"input": "12\n1 2 3 4 5 6 7 8 9 10 11 12",
"output": "12\n1 2 3 4 5 6 7 8 9 10 11 12 "
}
] | 2,000 | 24,678,400 | 0 | 5,914 |
|
689 | Mike and Chocolate Thieves | [
"binary search",
"combinatorics",
"math"
] | null | null | Bad news came to Mike's village, some thieves stole a bunch of chocolates from the local factory! Horrible!
Aside from loving sweet things, thieves from this area are known to be very greedy. So after a thief takes his number of chocolates for himself, the next thief will take exactly *k* times more than the previous one. The value of *k* (*k*<=><=1) is a secret integer known only to them. It is also known that each thief's bag can carry at most *n* chocolates (if they intend to take more, the deal is cancelled) and that there were exactly four thieves involved.
Sadly, only the thieves know the value of *n*, but rumours say that the numbers of ways they could have taken the chocolates (for a fixed *n*, but not fixed *k*) is *m*. Two ways are considered different if one of the thieves (they should be numbered in the order they take chocolates) took different number of chocolates in them.
Mike want to track the thieves down, so he wants to know what their bags are and value of *n* will help him in that. Please find the smallest possible value of *n* or tell him that the rumors are false and there is no such *n*. | The single line of input contains the integer *m* (1<=≤<=*m*<=≤<=1015) — the number of ways the thieves might steal the chocolates, as rumours say. | Print the only integer *n* — the maximum amount of chocolates that thieves' bags can carry. If there are more than one *n* satisfying the rumors, print the smallest one.
If there is no such *n* for a false-rumoured *m*, print <=-<=1. | [
"1\n",
"8\n",
"10\n"
] | [
"8\n",
"54\n",
"-1\n"
] | In the first sample case the smallest *n* that leads to exactly one way of stealing chocolates is *n* = 8, whereas the amounts of stealed chocolates are (1, 2, 4, 8) (the number of chocolates stolen by each of the thieves).
In the second sample case the smallest *n* that leads to exactly 8 ways is *n* = 54 with the possibilities: (1, 2, 4, 8), (1, 3, 9, 27), (2, 4, 8, 16), (2, 6, 18, 54), (3, 6, 12, 24), (4, 8, 16, 32), (5, 10, 20, 40), (6, 12, 24, 48).
There is no *n* leading to exactly 10 ways of stealing chocolates in the third sample case. | [
{
"input": "1",
"output": "8"
},
{
"input": "8",
"output": "54"
},
{
"input": "10",
"output": "-1"
},
{
"input": "27",
"output": "152"
},
{
"input": "28206",
"output": "139840"
},
{
"input": "32",
"output": "184"
},
{
"input": "115",
"output": "608"
},
{
"input": "81258",
"output": "402496"
},
{
"input": "116003",
"output": "574506"
},
{
"input": "149344197",
"output": "739123875"
},
{
"input": "57857854",
"output": "286347520"
},
{
"input": "999999999999999",
"output": "-1"
},
{
"input": "181023403153",
"output": "895903132760"
},
{
"input": "196071196742",
"output": "970376182648"
},
{
"input": "49729446417673",
"output": "246116048009288"
},
{
"input": "14821870173923",
"output": "73354931125416"
},
{
"input": "29031595887308",
"output": "143680297402952"
},
{
"input": "195980601490039",
"output": "969927770453672"
},
{
"input": "181076658641313",
"output": "896166653569800"
},
{
"input": "166173583620704",
"output": "822409831653228"
},
{
"input": "151269640772354",
"output": "748648714769352"
},
{
"input": "136366565751970",
"output": "674891892852776"
},
{
"input": "121463490731834",
"output": "601135070936200"
},
{
"input": "106559547884220",
"output": "527373954052328"
},
{
"input": "91656472864718",
"output": "453617132135750"
},
{
"input": "184061307002930",
"output": "910937979445720"
},
{
"input": "57857853",
"output": "-1"
},
{
"input": "1000000000000000",
"output": "4949100894494448"
},
{
"input": "375402146575334",
"output": "-1"
},
{
"input": "550368702711851",
"output": "-1"
},
{
"input": "645093839227897",
"output": "-1"
},
{
"input": "431",
"output": "-1"
},
{
"input": "99999",
"output": "-1"
},
{
"input": "2",
"output": "16"
},
{
"input": "3",
"output": "24"
},
{
"input": "4",
"output": "27"
},
{
"input": "5",
"output": "32"
},
{
"input": "6",
"output": "40"
},
{
"input": "7",
"output": "48"
},
{
"input": "13",
"output": "80"
},
{
"input": "999999999999998",
"output": "-1"
},
{
"input": "999999999999997",
"output": "4949100894494440"
},
{
"input": "999999999999996",
"output": "4949100894494432"
},
{
"input": "999999999999995",
"output": "4949100894494424"
},
{
"input": "999999999999993",
"output": "4949100894494416"
},
{
"input": "999999999999991",
"output": "4949100894494400"
},
{
"input": "999999999999992",
"output": "4949100894494408"
},
{
"input": "999999999999994",
"output": "4949100894494421"
},
{
"input": "4235246",
"output": "-1"
},
{
"input": "34",
"output": "-1"
},
{
"input": "998749999999991",
"output": "4942914518376840"
},
{
"input": "999999874999991",
"output": "4949100275856792"
},
{
"input": "987654129875642",
"output": "4887999937625136"
},
{
"input": "237648237648000",
"output": "1176145105832192"
}
] | 0 | 0 | -1 | 5,916 |
|
412 | Network Configuration | [
"greedy",
"sortings"
] | null | null | The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible? | The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer. | Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer. | [
"3 2\n40 20 30\n",
"6 4\n100 20 40 20 50 50\n"
] | [
"30\n",
"40\n"
] | In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal. | [
{
"input": "3 2\n40 20 30",
"output": "30"
},
{
"input": "6 4\n100 20 40 20 50 50",
"output": "40"
},
{
"input": "1 1\n16",
"output": "16"
},
{
"input": "2 1\n10000 17",
"output": "10000"
},
{
"input": "2 2\n200 300",
"output": "200"
},
{
"input": "3 1\n21 25 16",
"output": "25"
},
{
"input": "3 2\n23 20 26",
"output": "23"
},
{
"input": "3 3\n19 29 28",
"output": "19"
},
{
"input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43",
"output": "122"
},
{
"input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28",
"output": "70"
},
{
"input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71",
"output": "17"
},
{
"input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568",
"output": "17"
},
{
"input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113",
"output": "4995"
},
{
"input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353",
"output": "16402"
},
{
"input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585",
"output": "8122"
},
{
"input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528",
"output": "998"
},
{
"input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881",
"output": "12448"
},
{
"input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
}
] | 62 | 0 | 3 | 5,926 |
|
60 | Where Are My Flakes? | [
"implementation",
"two pointers"
] | A. Where Are My Flakes? | 2 | 256 | One morning the Cereal Guy found out that all his cereal flakes were gone. He found a note instead of them. It turned out that his smart roommate hid the flakes in one of *n* boxes. The boxes stand in one row, they are numbered from 1 to *n* from the left to the right. The roommate left hints like "Hidden to the left of the *i*-th box" ("To the left of *i*"), "Hidden to the right of the *i*-th box" ("To the right of *i*"). Such hints mean that there are no flakes in the *i*-th box as well. The Cereal Guy wants to know the minimal number of boxes he necessarily needs to check to find the flakes considering all the hints. Or he wants to find out that the hints are contradictory and the roommate lied to him, that is, no box has the flakes. | The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000,<=0<=≤<=*m*<=≤<=1000) which represent the number of boxes and the number of hints correspondingly. Next *m* lines contain hints like "To the left of *i*" and "To the right of *i*", where *i* is integer (1<=≤<=*i*<=≤<=*n*). The hints may coincide. | The answer should contain exactly one integer — the number of boxes that should necessarily be checked or "-1" if the hints are contradictory. | [
"2 1\nTo the left of 2\n",
"3 2\nTo the right of 1\nTo the right of 2\n",
"3 1\nTo the left of 3\n",
"3 2\nTo the left of 2\nTo the right of 1\n"
] | [
"1\n",
"1\n",
"2\n",
"-1\n"
] | none | [
{
"input": "2 1\nTo the left of 2",
"output": "1"
},
{
"input": "3 2\nTo the right of 1\nTo the right of 2",
"output": "1"
},
{
"input": "3 1\nTo the left of 3",
"output": "2"
},
{
"input": "3 2\nTo the left of 2\nTo the right of 1",
"output": "-1"
},
{
"input": "3 0",
"output": "3"
},
{
"input": "2 2\nTo the left of 2\nTo the left of 2",
"output": "1"
},
{
"input": "5 0",
"output": "5"
},
{
"input": "6 2\nTo the right of 2\nTo the left of 4",
"output": "1"
},
{
"input": "8 6\nTo the right of 3\nTo the left of 4\nTo the left of 4\nTo the right of 1\nTo the right of 5\nTo the left of 6",
"output": "-1"
},
{
"input": "459 16\nTo the right of 9\nTo the right of 148\nTo the left of 406\nTo the left of 335\nTo the right of 240\nTo the left of 409\nTo the left of 365\nTo the left of 426\nTo the left of 416\nTo the right of 247\nTo the left of 284\nTo the right of 187\nTo the right of 134\nTo the right of 128\nTo the right of 98\nTo the left of 412",
"output": "36"
},
{
"input": "1000 1\nTo the right of 117",
"output": "883"
},
{
"input": "1000 0",
"output": "1000"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "2 0",
"output": "2"
},
{
"input": "1 1\nTo the right of 1",
"output": "-1"
},
{
"input": "1 1\nTo the left of 1",
"output": "-1"
},
{
"input": "2 1\nTo the right of 2",
"output": "-1"
}
] | 92 | 6,963,200 | 0 | 5,936 |
906 | Party | [
"bitmasks",
"brute force",
"dp",
"graphs"
] | null | null | Arseny likes to organize parties and invite people to it. However, not only friends come to his parties, but friends of his friends, friends of friends of his friends and so on. That's why some of Arseny's guests can be unknown to him. He decided to fix this issue using the following procedure.
At each step he selects one of his guests *A*, who pairwise introduces all of his friends to each other. After this action any two friends of *A* become friends. This process is run until all pairs of guests are friends.
Arseny doesn't want to spend much time doing it, so he wants to finish this process using the minimum number of steps. Help Arseny to do it. | The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=22; ) — the number of guests at the party (including Arseny) and the number of pairs of people which are friends.
Each of the next *m* lines contains two integers *u* and *v* (1<=≤<=*u*,<=*v*<=≤<=*n*; *u*<=≠<=*v*), which means that people with numbers *u* and *v* are friends initially. It's guaranteed that each pair of friends is described not more than once and the graph of friendship is connected. | In the first line print the minimum number of steps required to make all pairs of guests friends.
In the second line print the ids of guests, who are selected at each step.
If there are multiple solutions, you can output any of them. | [
"5 6\n1 2\n1 3\n2 3\n2 5\n3 4\n4 5\n",
"4 4\n1 2\n1 3\n1 4\n3 4\n"
] | [
"2\n2 3 ",
"1\n1 "
] | In the first test case there is no guest who is friend of all other guests, so at least two steps are required to perform the task. After second guest pairwise introduces all his friends, only pairs of guests (4, 1) and (4, 2) are not friends. Guest 3 or 5 can introduce them.
In the second test case guest number 1 is a friend of all guests, so he can pairwise introduce all guests in one step. | [
{
"input": "5 6\n1 2\n1 3\n2 3\n2 5\n3 4\n4 5",
"output": "2\n2 3 "
},
{
"input": "4 4\n1 2\n1 3\n1 4\n3 4",
"output": "1\n1 "
},
{
"input": "1 0",
"output": "0"
},
{
"input": "2 1\n2 1",
"output": "0"
},
{
"input": "3 2\n1 3\n2 3",
"output": "1\n3 "
},
{
"input": "22 31\n5 11\n6 3\n10 1\n18 20\n3 21\n12 10\n15 19\n1 17\n17 18\n2 21\n21 7\n2 15\n3 2\n19 6\n2 19\n13 16\n21 19\n13 5\n19 3\n12 22\n9 20\n14 11\n15 21\n7 8\n2 6\n15 6\n6 21\n15 3\n4 22\n14 8\n16 9",
"output": "16\n1 5 7 8 9 10 11 12 13 14 16 17 18 20 21 22 "
},
{
"input": "22 36\n6 15\n6 9\n14 18\n8 6\n5 18\n3 12\n16 22\n11 2\n7 1\n17 3\n10 20\n8 11\n5 21\n4 11\n9 11\n20 1\n12 4\n8 19\n8 9\n15 2\n6 19\n13 17\n8 2\n11 15\n9 15\n15 19\n16 13\n15 8\n19 11\n6 2\n9 19\n6 11\n9 2\n19 2\n10 14\n22 21",
"output": "15\n1 3 4 5 10 11 12 13 14 16 17 18 20 21 22 "
},
{
"input": "22 22\n19 20\n11 21\n7 4\n14 3\n22 8\n13 6\n8 6\n16 13\n18 14\n17 9\n19 4\n21 1\n16 3\n12 20\n11 18\n5 15\n10 15\n1 10\n5 17\n22 2\n7 2\n9 12",
"output": "20\n1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 "
},
{
"input": "22 21\n10 15\n22 8\n21 1\n16 13\n16 3\n7 2\n5 15\n1 10\n17 9\n11 18\n7 4\n18 14\n5 17\n14 3\n19 20\n8 6\n12 20\n11 21\n19 4\n13 6\n22 2",
"output": "20\n1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 20 21 22 "
},
{
"input": "22 21\n14 2\n7 8\n17 6\n11 20\n5 16\n1 2\n22 8\n4 3\n13 18\n3 2\n6 1\n21 3\n11 4\n6 9\n3 12\n4 5\n15 2\n14 19\n11 13\n5 7\n1 10",
"output": "11\n1 2 3 4 5 6 7 8 11 13 14 "
},
{
"input": "22 21\n7 8\n10 14\n21 2\n5 18\n22 8\n2 4\n2 3\n3 13\n11 10\n19 2\n17 20\n10 5\n15 11\n7 4\n17 13\n5 1\n6 4\n16 14\n9 2\n2 1\n10 12",
"output": "12\n1 2 3 4 5 7 8 10 11 13 14 17 "
},
{
"input": "22 66\n15 20\n15 4\n2 22\n8 22\n2 4\n8 2\n5 7\n18 8\n10 21\n22 20\n18 7\n2 20\n5 1\n20 19\n21 4\n8 4\n20 5\n7 8\n7 4\n21 15\n21 22\n7 20\n5 22\n21 7\n5 18\n18 21\n19 7\n15 7\n21 8\n18 15\n18 16\n21 19\n19 5\n21 2\n5 15\n8 3\n7 22\n2 15\n9 2\n20 4\n15 22\n19 18\n19 15\n15 13\n7 2\n15 8\n21 5\n18 2\n5 8\n19 2\n5 4\n19 8\n12 7\n8 20\n4 11\n20 18\n5 2\n21 20\n19 17\n4 18\n22 19\n22 14\n4 22\n20 6\n18 22\n19 4",
"output": "11\n2 4 5 7 8 15 18 19 20 21 22 "
},
{
"input": "22 66\n12 18\n4 12\n15 21\n12 1\n1 18\n2 5\n9 10\n20 15\n18 10\n2 1\n1 14\n20 5\n12 9\n5 12\n14 9\n1 5\n2 20\n15 2\n5 14\n15 1\n17 2\n17 9\n20 18\n3 9\n2 9\n15 5\n14 17\n14 16\n12 14\n2 14\n12 10\n7 2\n20 22\n5 10\n17 19\n14 15\n15 9\n20 1\n15 17\n20 10\n20 9\n2 10\n11 10\n17 10\n12 20\n5 13\n17 1\n15 10\n1 8\n18 15\n5 17\n12 15\n14 20\n12 2\n17 12\n17 20\n14 10\n18 2\n9 18\n18 14\n18 6\n18 17\n9 5\n18 5\n1 9\n10 1",
"output": "11\n1 2 5 9 10 12 14 15 17 18 20 "
},
{
"input": "22 66\n20 9\n3 10\n2 14\n19 14\n16 20\n14 18\n15 10\n21 2\n7 14\n10 2\n14 11\n3 2\n15 20\n20 18\n3 14\n9 7\n18 2\n3 9\n14 10\n7 11\n20 14\n14 15\n2 7\n14 9\n21 1\n18 12\n21 15\n10 18\n18 11\n21 7\n3 21\n18 15\n10 20\n2 8\n15 7\n9 10\n4 11\n3 7\n10 17\n9 18\n20 3\n18 21\n10 7\n9 11\n10 11\n3 15\n10 21\n6 3\n20 2\n3 11\n7 18\n21 14\n21 9\n11 20\n15 13\n21 20\n2 15\n11 15\n7 5\n9 22\n9 15\n3 18\n9 2\n21 11\n20 7\n11 2",
"output": "11\n2 3 7 9 10 11 14 15 18 20 21 "
},
{
"input": "22 66\n17 7\n2 11\n19 17\n14 17\n7 14\n9 1\n12 19\n7 9\n14 18\n15 20\n7 12\n14 21\n6 15\n4 2\n6 22\n7 19\n12 9\n14 19\n10 18\n9 2\n14 12\n18 2\n15 14\n7 2\n17 13\n6 18\n14 2\n4 7\n9 19\n3 12\n17 12\n2 12\n18 7\n17 15\n4 6\n17 4\n4 8\n4 19\n7 5\n15 9\n7 15\n18 4\n14 4\n4 12\n4 9\n2 19\n14 6\n16 19\n9 14\n18 9\n19 15\n15 12\n4 15\n2 15\n7 6\n9 6\n15 18\n19 6\n17 6\n17 18\n6 12\n18 19\n17 9\n12 18\n6 2\n2 17",
"output": "11\n2 4 6 7 9 12 14 15 17 18 19 "
},
{
"input": "22 66\n10 19\n15 6\n2 10\n9 19\n6 5\n14 10\n15 19\n3 14\n10 9\n11 2\n6 8\n18 8\n18 7\n19 14\n18 5\n1 15\n18 2\n21 8\n10 18\n9 18\n19 5\n19 18\n9 15\n6 16\n5 12\n21 5\n21 2\n6 19\n14 6\n10 13\n14 9\n2 14\n6 9\n10 15\n8 5\n9 2\n18 21\n15 2\n21 10\n8 2\n9 8\n6 21\n6 10\n5 2\n8 19\n18 15\n5 9\n14 21\n14 18\n19 21\n8 14\n15 21\n14 15\n8 10\n6 2\n14 5\n5 15\n20 8\n10 5\n15 8\n19 2\n22 21\n4 9\n9 21\n19 17\n18 6",
"output": "11\n2 5 6 8 9 10 14 15 18 19 21 "
},
{
"input": "22 66\n9 22\n9 7\n18 3\n4 1\n4 8\n22 7\n4 7\n16 8\n22 12\n17 3\n20 17\n9 1\n16 20\n4 3\n12 7\n22 16\n16 17\n3 7\n22 13\n1 8\n8 22\n9 16\n9 4\n8 17\n8 20\n7 17\n8 15\n20 7\n16 3\n8 7\n9 17\n7 16\n8 12\n16 4\n2 4\n16 1\n3 22\n1 12\n20 4\n22 1\n20 9\n17 12\n12 9\n14 20\n20 1\n4 22\n12 20\n11 17\n5 9\n20 22\n12 19\n10 1\n17 22\n20 3\n7 6\n12 3\n21 16\n8 9\n17 1\n17 4\n7 1\n3 1\n16 12\n9 3\n3 8\n12 4",
"output": "11\n1 3 4 7 8 9 12 16 17 20 22 "
},
{
"input": "22 66\n16 14\n10 22\n13 15\n3 18\n18 15\n21 13\n7 2\n21 22\n4 14\n15 4\n16 3\n3 10\n4 20\n4 16\n19 14\n18 14\n10 14\n16 7\n21 15\n13 3\n10 15\n22 7\n3 15\n18 11\n13 10\n22 4\n13 12\n1 10\n3 17\n4 21\n13 22\n4 13\n22 14\n18 21\n13 16\n3 22\n22 18\n13 18\n7 10\n14 3\n10 21\n22 9\n21 16\n21 7\n3 4\n22 16\n16 10\n18 10\n6 21\n8 16\n22 15\n21 14\n7 13\n7 3\n18 7\n4 10\n7 4\n14 7\n4 18\n16 15\n14 15\n18 16\n15 5\n13 14\n21 3\n15 7",
"output": "11\n3 4 7 10 13 14 15 16 18 21 22 "
},
{
"input": "22 66\n9 20\n16 1\n1 12\n20 17\n14 17\n1 3\n13 20\n1 17\n17 8\n3 12\n15 20\n6 1\n13 9\n20 3\n9 21\n3 11\n15 19\n22 13\n13 12\n21 10\n17 21\n8 13\n3 9\n16 12\n5 20\n20 21\n16 21\n15 1\n15 3\n1 21\n8 2\n16 20\n20 8\n12 9\n21 15\n7 9\n8 15\n8 1\n12 21\n17 16\n15 9\n17 9\n3 17\n1 9\n13 3\n15 13\n15 17\n3 8\n21 13\n8 9\n15 12\n21 3\n16 18\n16 13\n1 20\n12 20\n16 8\n8 21\n17 13\n4 12\n8 12\n15 16\n12 17\n13 1\n9 16\n3 16",
"output": "11\n1 3 8 9 12 13 15 16 17 20 21 "
},
{
"input": "22 66\n9 13\n7 8\n7 22\n1 12\n10 13\n18 9\n14 13\n18 17\n12 18\n19 7\n1 10\n17 16\n15 9\n7 10\n19 17\n8 9\n17 14\n6 14\n19 10\n9 7\n18 19\n10 17\n17 7\n14 9\n1 19\n10 9\n9 17\n10 12\n13 21\n8 18\n10 14\n13 19\n4 8\n8 12\n19 3\n14 8\n12 13\n19 8\n18 13\n7 18\n7 1\n12 7\n12 19\n18 20\n11 1\n13 8\n13 17\n1 8\n17 12\n19 14\n13 7\n5 12\n1 17\n12 14\n14 18\n8 17\n8 10\n18 1\n9 19\n14 1\n13 1\n1 9\n7 14\n9 12\n18 10\n10 2",
"output": "11\n1 7 8 9 10 12 13 14 17 18 19 "
},
{
"input": "22 66\n11 19\n11 22\n2 22\n6 21\n6 1\n22 5\n13 2\n13 19\n13 22\n6 10\n1 21\n19 17\n6 17\n16 21\n22 19\n19 16\n17 13\n21 19\n16 11\n15 16\n1 11\n21 10\n12 11\n22 6\n1 22\n13 11\n10 16\n11 10\n19 1\n10 19\n10 2\n6 16\n13 21\n17 11\n7 1\n21 2\n22 16\n21 8\n17 10\n21 11\n1 2\n10 1\n10 22\n19 20\n17 18\n1 17\n13 10\n16 13\n2 11\n22 17\n1 16\n2 14\n10 9\n16 2\n21 17\n4 6\n19 6\n22 21\n17 2\n13 6\n6 11\n6 2\n13 1\n3 13\n17 16\n2 19",
"output": "11\n1 2 6 10 11 13 16 17 19 21 22 "
},
{
"input": "22 66\n22 7\n22 3\n16 6\n16 1\n8 17\n15 18\n13 18\n8 1\n12 15\n12 5\n16 7\n8 6\n22 12\n5 17\n10 7\n15 6\n6 18\n17 19\n18 16\n16 5\n22 17\n15 17\n22 16\n6 7\n1 11\n16 12\n8 12\n7 12\n17 6\n17 1\n6 5\n7 17\n1 5\n15 5\n17 18\n15 7\n15 22\n12 4\n16 15\n6 21\n7 18\n8 15\n12 1\n15 1\n16 8\n1 6\n7 5\n1 18\n8 18\n15 2\n7 8\n22 5\n22 18\n1 7\n16 20\n18 5\n5 8\n14 8\n17 12\n18 12\n9 5\n1 22\n6 22\n6 12\n16 17\n22 8",
"output": "11\n1 5 6 7 8 12 15 16 17 18 22 "
},
{
"input": "22 66\n1 13\n12 21\n15 21\n5 15\n16 12\n8 13\n3 20\n13 9\n15 2\n2 5\n3 17\n1 2\n11 20\n11 2\n3 12\n15 12\n2 3\n20 13\n18 21\n20 2\n15 3\n3 21\n20 22\n9 20\n20 12\n12 5\n9 11\n21 2\n20 5\n15 9\n13 11\n20 21\n12 11\n13 15\n15 20\n5 19\n13 5\n11 7\n3 11\n21 11\n12 13\n10 9\n21 13\n1 15\n13 3\n1 3\n12 1\n5 1\n1 20\n21 9\n21 1\n12 9\n21 5\n11 15\n3 5\n2 9\n3 9\n5 11\n11 1\n14 15\n2 4\n5 9\n6 1\n2 12\n9 1\n2 13",
"output": "11\n1 2 3 5 9 11 12 13 15 20 21 "
},
{
"input": "22 66\n15 9\n22 8\n12 22\n12 15\n14 11\n11 17\n5 15\n14 10\n12 17\n14 18\n18 12\n14 22\n19 8\n12 11\n12 21\n22 13\n15 11\n6 17\n18 15\n22 19\n8 4\n2 13\n19 12\n19 14\n18 17\n22 1\n11 19\n15 22\n19 17\n5 12\n11 5\n8 18\n15 19\n8 15\n13 18\n14 13\n5 14\n5 17\n13 17\n13 19\n17 15\n18 22\n13 15\n11 13\n12 13\n8 5\n19 18\n8 12\n11 18\n18 5\n14 17\n5 19\n14 12\n13 8\n17 22\n11 22\n8 14\n16 5\n3 19\n15 14\n17 8\n18 20\n5 13\n11 8\n11 7\n22 5",
"output": "11\n5 8 11 12 13 14 15 17 18 19 22 "
},
{
"input": "22 38\n19 21\n19 6\n1 7\n8 17\n5 1\n14 13\n15 4\n20 3\n19 8\n22 6\n11 16\n9 15\n22 20\n21 15\n12 13\n18 7\n19 5\n1 22\n3 8\n19 1\n22 13\n19 17\n4 2\n5 3\n21 7\n12 10\n7 15\n20 21\n18 17\n10 5\n8 9\n13 20\n18 9\n18 22\n15 1\n5 15\n2 8\n11 21",
"output": "9\n2 5 7 8 11 13 19 20 21 "
},
{
"input": "22 45\n4 1\n8 6\n12 13\n15 22\n20 8\n16 4\n3 20\n13 9\n6 5\n18 20\n16 22\n14 3\n1 14\n7 17\n7 3\n17 6\n11 19\n19 22\n5 11\n13 11\n17 11\n8 15\n10 17\n6 2\n2 22\n18 13\n18 9\n16 11\n10 7\n2 18\n22 4\n1 16\n9 3\n9 8\n9 11\n3 15\n14 4\n13 16\n7 15\n6 3\n4 20\n2 19\n10 1\n16 9\n21 14",
"output": "7\n1 2 3 6 9 13 14 "
},
{
"input": "22 60\n14 6\n16 12\n6 21\n11 16\n2 17\n4 8\n18 11\n3 5\n13 3\n18 9\n8 19\n3 16\n19 13\n22 13\n10 15\n3 1\n15 4\n5 18\n8 17\n2 20\n15 19\n15 12\n14 2\n7 18\n5 19\n10 5\n22 8\n9 8\n14 7\n1 4\n12 6\n9 14\n4 11\n11 2\n16 1\n5 12\n13 4\n22 9\n22 15\n22 10\n11 19\n10 2\n11 5\n2 9\n5 4\n9 3\n21 22\n10 19\n16 8\n13 17\n8 7\n18 20\n10 12\n12 3\n4 10\n14 13\n3 6\n12 2\n1 8\n15 5",
"output": "5\n2 3 8 9 22 "
},
{
"input": "22 80\n8 22\n5 18\n17 18\n10 22\n9 15\n12 10\n4 21\n2 12\n21 16\n21 7\n13 6\n5 21\n20 1\n11 4\n19 16\n18 16\n17 5\n22 20\n18 4\n6 14\n3 4\n16 11\n1 12\n16 20\n19 4\n17 8\n1 9\n12 3\n8 6\n8 9\n7 1\n7 2\n14 8\n4 12\n20 21\n21 13\n11 7\n15 19\n12 20\n17 13\n13 22\n15 4\n19 12\n18 11\n20 8\n12 6\n20 14\n7 4\n22 11\n11 2\n9 7\n22 1\n10 9\n10 4\n12 7\n17 7\n11 1\n8 16\n20 19\n20 6\n11 10\n4 22\n7 8\n4 9\n17 19\n5 11\n13 10\n6 2\n13 9\n6 19\n19 9\n7 22\n15 7\n15 22\n2 4\n3 16\n13 18\n10 2\n7 16\n2 3",
"output": "4\n2 6 7 11 "
},
{
"input": "22 44\n3 22\n1 9\n14 21\n10 17\n3 19\n12 20\n14 17\n6 4\n16 1\n8 22\n2 5\n15 2\n10 14\n7 14\n12 4\n21 16\n1 6\n18 8\n22 19\n22 7\n15 5\n16 9\n21 1\n13 2\n13 15\n8 3\n20 15\n19 10\n19 7\n9 12\n11 8\n6 12\n7 10\n5 11\n4 13\n18 11\n17 16\n11 3\n20 13\n5 18\n9 6\n17 21\n2 18\n4 20",
"output": "10\n1 2 4 6 8 10 13 16 17 18 "
},
{
"input": "22 66\n5 7\n18 15\n21 10\n12 8\n21 22\n17 2\n13 18\n11 6\n7 1\n5 1\n15 6\n13 17\n6 21\n5 4\n19 4\n14 11\n15 11\n4 13\n2 11\n2 6\n10 22\n17 18\n7 4\n19 5\n22 12\n1 13\n11 21\n10 9\n17 14\n3 7\n18 2\n4 17\n20 19\n16 21\n9 20\n3 19\n2 15\n8 19\n21 12\n16 22\n3 5\n10 12\n22 20\n1 18\n16 10\n4 1\n9 3\n8 5\n12 20\n22 9\n6 16\n18 14\n8 3\n15 16\n11 16\n12 9\n7 13\n6 10\n14 15\n9 8\n19 7\n1 17\n13 14\n14 2\n20 3\n20 8",
"output": "6\n2 3 6 7 9 10 "
},
{
"input": "22 40\n2 3\n11 13\n7 10\n6 8\n2 4\n14 16\n7 9\n13 16\n10 11\n1 4\n19 21\n18 19\n6 7\n5 8\n14 15\n9 11\n11 14\n8 9\n3 5\n3 6\n18 20\n10 12\n9 12\n17 20\n17 19\n1 3\n16 18\n4 6\n4 5\n12 14\n19 22\n13 15\n5 7\n20 22\n15 18\n12 13\n8 10\n15 17\n16 17\n20 21",
"output": "9\n3 5 7 9 11 13 15 17 19 "
},
{
"input": "22 57\n5 7\n11 15\n18 19\n9 12\n18 20\n10 15\n9 11\n15 16\n6 8\n5 9\n14 17\n9 10\n16 20\n5 8\n4 9\n12 15\n14 16\n7 11\n13 17\n13 18\n19 22\n10 13\n6 7\n4 7\n16 21\n8 10\n15 18\n21 22\n10 14\n3 6\n11 14\n7 12\n1 6\n17 19\n12 13\n3 4\n13 16\n2 5\n18 21\n17 21\n3 5\n20 22\n1 5\n8 12\n17 20\n7 10\n1 4\n2 6\n8 11\n12 14\n16 19\n11 13\n2 4\n14 18\n15 17\n4 8\n6 9",
"output": "6\n4 7 10 13 16 19 "
},
{
"input": "22 72\n2 5\n6 9\n9 14\n16 19\n14 19\n15 20\n12 15\n10 16\n8 10\n4 7\n10 13\n15 18\n3 5\n2 7\n16 18\n1 6\n6 11\n11 14\n15 19\n19 22\n5 9\n7 12\n13 19\n2 6\n11 16\n11 13\n6 10\n11 15\n12 16\n9 16\n5 10\n1 8\n12 13\n8 12\n3 7\n16 20\n4 6\n3 6\n7 10\n20 22\n18 22\n5 12\n17 22\n14 18\n4 8\n14 17\n9 15\n3 8\n5 11\n7 9\n10 14\n4 5\n1 5\n18 21\n8 9\n8 11\n19 21\n9 13\n2 8\n10 15\n1 7\n14 20\n12 14\n13 18\n20 21\n15 17\n16 17\n6 12\n13 20\n7 11\n17 21\n13 17",
"output": "4\n5 9 13 17 "
}
] | 46 | 5,529,600 | -1 | 5,938 |
|
622 | Not Equal on a Segment | [
"data structures",
"implementation"
] | null | null | You are given array *a* with *n* integers and *m* queries. The *i*-th query is given with three integers *l**i*,<=*r**i*,<=*x**i*.
For the *i*-th query find any position *p**i* (*l**i*<=≤<=*p**i*<=≤<=*r**i*) so that *a**p**i*<=≠<=*x**i*. | The first line contains two integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=2·105) — the number of elements in *a* and the number of queries.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*.
Each of the next *m* lines contains three integers *l**i*,<=*r**i*,<=*x**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*,<=1<=≤<=*x**i*<=≤<=106) — the parameters of the *i*-th query. | Print *m* lines. On the *i*-th line print integer *p**i* — the position of any number not equal to *x**i* in segment [*l**i*,<=*r**i*] or the value <=-<=1 if there is no such number. | [
"6 4\n1 2 1 1 3 5\n1 4 1\n2 6 2\n3 4 1\n3 4 2\n"
] | [
"2\n6\n-1\n4\n"
] | none | [
{
"input": "6 4\n1 2 1 1 3 5\n1 4 1\n2 6 2\n3 4 1\n3 4 2",
"output": "2\n6\n-1\n4"
},
{
"input": "1 1\n1\n1 1 1",
"output": "-1"
},
{
"input": "1 1\n2\n1 1 2",
"output": "-1"
},
{
"input": "1 1\n569888\n1 1 967368",
"output": "1"
},
{
"input": "10 10\n1 1 1 1 1 1 1 1 1 1\n3 10 1\n3 6 1\n1 8 1\n1 7 1\n1 5 1\n3 7 1\n4 7 1\n9 9 1\n6 7 1\n3 4 1",
"output": "-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1"
},
{
"input": "10 10\n1 2 2 2 2 1 1 2 1 1\n3 3 1\n4 9 1\n4 8 1\n2 7 2\n2 8 2\n3 10 1\n7 7 2\n10 10 2\n1 5 1\n1 2 1",
"output": "3\n8\n8\n7\n7\n8\n7\n10\n5\n2"
},
{
"input": "10 10\n318890 307761 832732 700511 820583 522866 130891 914566 128429 739710\n4 9 178864\n6 9 741003\n4 9 172997\n4 6 314469\n1 4 694802\n8 8 401658\n7 10 376243\n7 8 508771\n3 5 30038\n2 10 591490",
"output": "9\n9\n9\n6\n4\n8\n10\n8\n5\n10"
},
{
"input": "1 1\n2\n1 1 1",
"output": "1"
},
{
"input": "10 10\n1 1 1 1 1 2 1 1 1 1\n1 9 1\n6 7 1\n2 4 1\n7 8 1\n1 3 1\n10 10 1\n3 5 1\n6 7 1\n1 10 1\n6 6 1",
"output": "6\n6\n-1\n-1\n-1\n-1\n-1\n6\n6\n6"
},
{
"input": "7 1\n2 1 3 2 2 2 2\n1 7 2",
"output": "3"
},
{
"input": "4 1\n3 1 2 2\n1 4 2",
"output": "2"
},
{
"input": "6 1\n3 2 4 3 3 3\n1 6 3",
"output": "3"
},
{
"input": "4 1\n1 3 2 2\n1 4 2",
"output": "2"
},
{
"input": "5 1\n2 3 1 2 2\n1 5 2",
"output": "3"
},
{
"input": "3 1\n1 9 5\n1 3 5",
"output": "2"
},
{
"input": "4 1\n4 2 6 4\n1 4 4",
"output": "3"
},
{
"input": "2 1\n1 3\n1 2 2",
"output": "2"
},
{
"input": "10 1\n2 2 1 3 2 2 2 2 2 2\n2 5 2",
"output": "4"
},
{
"input": "7 1\n6 5 7 6 6 6 6\n1 7 6",
"output": "3"
},
{
"input": "3 1\n2 4 3\n1 3 3",
"output": "2"
},
{
"input": "4 1\n4 2 3 3\n1 4 3",
"output": "2"
},
{
"input": "5 1\n3 2 4 5 5\n1 3 3",
"output": "3"
},
{
"input": "2 6\n1 1\n1 1 1\n1 1 2\n1 2 1\n1 2 2\n2 2 1\n2 2 2",
"output": "-1\n1\n-1\n2\n-1\n2"
}
] | 1,000 | 2,355,200 | 0 | 5,944 |
|
246 | Buggy Sorting | [
"constructive algorithms",
"greedy",
"sortings"
] | null | null | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of *n* integers *a*1,<=*a*2,<=...,<=*a**n* in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number *n* and array *a*.
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of *n* doesn't exist, print -1. | You've got a single integer *n* (1<=≤<=*n*<=≤<=50) — the size of the sorted array. | Print *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of *n* numbers, you are allowed to print any of them. | [
"1\n"
] | [
"-1\n"
] | none | [
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "3 2 1 "
},
{
"input": "4",
"output": "4 3 2 1 "
},
{
"input": "5",
"output": "5 4 3 2 1 "
},
{
"input": "6",
"output": "6 5 4 3 2 1 "
},
{
"input": "7",
"output": "7 6 5 4 3 2 1 "
},
{
"input": "8",
"output": "8 7 6 5 4 3 2 1 "
},
{
"input": "9",
"output": "9 8 7 6 5 4 3 2 1 "
},
{
"input": "50",
"output": "50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "22",
"output": "22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "34",
"output": "34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "50",
"output": "50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "12",
"output": "12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "26",
"output": "26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "38",
"output": "38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "4",
"output": "4 3 2 1 "
},
{
"input": "18",
"output": "18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "30",
"output": "30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "46",
"output": "46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "32",
"output": "32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
}
] | 109 | 0 | 3 | 5,963 |
|
61 | Hard Work | [
"strings"
] | B. Hard Work | 2 | 256 | After the contest in comparing numbers, Shapur's teacher found out that he is a real genius and that no one could possibly do the calculations faster than him even using a super computer!
Some days before the contest, the teacher took a very simple-looking exam and all his *n* students took part in the exam. The teacher gave them 3 strings and asked them to concatenate them. Concatenating strings means to put them in some arbitrary order one after the other. For example from concatenating Alireza and Amir we can get to AlirezaAmir or AmirAlireza depending on the order of concatenation.
Unfortunately enough, the teacher forgot to ask students to concatenate their strings in a pre-defined order so each student did it the way he/she liked.
Now the teacher knows that Shapur is such a fast-calculating genius boy and asks him to correct the students' papers.
Shapur is not good at doing such a time-taking task. He rather likes to finish up with it as soon as possible and take his time to solve 3-SAT in polynomial time. Moreover, the teacher has given some advice that Shapur has to follow. Here's what the teacher said:
- As I expect you know, the strings I gave to my students (including you) contained only lowercase and uppercase Persian Mikhi-Script letters. These letters are too much like Latin letters, so to make your task much harder I converted all the initial strings and all of the students' answers to Latin. - As latin alphabet has much less characters than Mikhi-Script, I added three odd-looking characters to the answers, these include "-", ";" and "_". These characters are my own invention of course! And I call them Signs. - The length of all initial strings was less than or equal to 100 and the lengths of my students' answers are less than or equal to 600 - My son, not all students are genius as you are. It is quite possible that they make minor mistakes changing case of some characters. For example they may write ALiReZaAmIR instead of AlirezaAmir. Don't be picky and ignore these mistakes. - Those signs which I previously talked to you about are not important. You can ignore them, since many students are in the mood for adding extra signs or forgetting about a sign. So something like Iran;;-- is the same as --;IRAN - You should indicate for any of my students if his answer was right or wrong. Do this by writing "WA" for Wrong answer or "ACC" for a correct answer. - I should remind you that none of the strings (initial strings or answers) are empty. - Finally, do these as soon as possible. You have less than 2 hours to complete this. | The first three lines contain a string each. These are the initial strings. They consists only of lowercase and uppercase Latin letters and signs ("-", ";" and "_"). All the initial strings have length from 1 to 100, inclusively.
In the fourth line there is a single integer *n* (0<=≤<=*n*<=≤<=1000), the number of students.
Next *n* lines contain a student's answer each. It is guaranteed that the answer meets what the teacher said. Each answer iconsists only of lowercase and uppercase Latin letters and signs ("-", ";" and "_"). Length is from 1 to 600, inclusively. | For each student write in a different line. Print "WA" if his answer is wrong or "ACC" if his answer is OK. | [
"Iran_\nPersian;\nW_o;n;d;e;r;f;u;l;\n7\nWonderfulPersianIran\nwonderful_PersIAN_IRAN;;_\nWONDERFUL___IRAN__PERSIAN__;;\nIra__Persiann__Wonderful\nWonder;;fulPersian___;I;r;a;n;\n__________IranPersianWonderful__________\nPersianIran_is_Wonderful\n",
"Shapur;;\nis___\na_genius\n3\nShapur__a_is___geniUs\nis___shapur___a__Genius;\nShapur;;is;;a;;geni;;us;;\n"
] | [
"ACC\nACC\nACC\nWA\nACC\nACC\nWA\n",
"WA\nACC\nACC\n"
] | none | [
{
"input": "Iran_\nPersian;\nW_o;n;d;e;r;f;u;l;\n7\nWonderfulPersianIran\nwonderful_PersIAN_IRAN;;_\nWONDERFUL___IRAN__PERSIAN__;;\nIra__Persiann__Wonderful\nWonder;;fulPersian___;I;r;a;n;\n__________IranPersianWonderful__________\nPersianIran_is_Wonderful",
"output": "ACC\nACC\nACC\nWA\nACC\nACC\nWA"
},
{
"input": "Shapur;;\nis___\na_genius\n3\nShapur__a_is___geniUs\nis___shapur___a__Genius;\nShapur;;is;;a;;geni;;us;;",
"output": "WA\nACC\nACC"
},
{
"input": "rr\nrrx\nab\n1\nrabrrrx",
"output": "WA"
},
{
"input": "AB\nBC\nCD\n1\nABCDZZ",
"output": "WA"
},
{
"input": "aa\naaa\nz\n1\naazaaa",
"output": "ACC"
},
{
"input": "aa\naaa\nz\n1\naaazaa",
"output": "ACC"
},
{
"input": "as\nav\nax\n1\n-------",
"output": "WA"
},
{
"input": "a\nab\nb\n1\nabcd",
"output": "WA"
},
{
"input": "c\naba\ncc\n2\nccabac\nabcacc",
"output": "ACC\nWA"
},
{
"input": "ab\na\nb\n1\nabcd",
"output": "WA"
},
{
"input": "ACB\nTB\nAC\n1\nATBACBC",
"output": "WA"
},
{
"input": "cc\naba\ncc\n1\nccabaxx",
"output": "WA"
}
] | 77 | 409,600 | 0 | 5,969 |
919 | Substring | [
"dfs and similar",
"dp",
"graphs"
] | null | null | You are given a graph with $n$ nodes and $m$ directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is $3$. Your task is find a path whose value is the largest. | The first line contains two positive integers $n, m$ ($1 \leq n, m \leq 300\,000$), denoting that the graph has $n$ nodes and $m$ directed edges.
The second line contains a string $s$ with only lowercase English letters. The $i$-th character is the letter assigned to the $i$-th node.
Then $m$ lines follow. Each line contains two integers $x, y$ ($1 \leq x, y \leq n$), describing a directed edge from $x$ to $y$. Note that $x$ can be equal to $y$ and there can be multiple edges between $x$ and $y$. Also the graph can be not connected. | Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead. | [
"5 4\nabaca\n1 2\n1 3\n3 4\n4 5\n",
"6 6\nxzyabc\n1 2\n3 1\n2 3\n5 4\n4 3\n6 4\n",
"10 14\nxzyzyzyzqx\n1 2\n2 4\n3 5\n4 5\n2 6\n6 8\n6 5\n2 10\n3 9\n10 9\n4 6\n1 10\n2 8\n3 7\n"
] | [
"3\n",
"-1\n",
"4\n"
] | In the first sample, the path with largest value is $1 \to 3 \to 4 \to 5$. The value is $3$ because the letter 'a' appears $3$ times. | [
{
"input": "5 4\nabaca\n1 2\n1 3\n3 4\n4 5",
"output": "3"
},
{
"input": "6 6\nxzyabc\n1 2\n3 1\n2 3\n5 4\n4 3\n6 4",
"output": "-1"
},
{
"input": "10 14\nxzyzyzyzqx\n1 2\n2 4\n3 5\n4 5\n2 6\n6 8\n6 5\n2 10\n3 9\n10 9\n4 6\n1 10\n2 8\n3 7",
"output": "4"
},
{
"input": "1 1\nf\n1 1",
"output": "-1"
},
{
"input": "10 50\nebibwbjihv\n1 10\n1 2\n5 4\n1 8\n9 7\n5 6\n1 8\n8 7\n2 6\n5 4\n1 9\n3 2\n8 3\n5 6\n5 9\n2 4\n2 7\n3 9\n1 2\n1 7\n1 10\n3 7\n1 8\n3 10\n8 6\n1 7\n10 6\n1 6\n5 8\n1 5\n2 10\n3 9\n5 8\n8 3\n3 7\n5 2\n1 10\n1 4\n5 3\n3 2\n1 2\n5 8\n10 4\n2 10\n8 2\n1 9\n1 8\n1 2\n3 4\n1 8",
"output": "2"
},
{
"input": "13 37\ndwpzcppjmhkmz\n2 6\n3 6\n6 7\n6 7\n6 7\n6 7\n6 8\n6 8\n6 8\n6 8\n4 6\n4 6\n5 6\n4 6\n4 6\n6 9\n6 9\n6 10\n6 10\n6 10\n6 10\n4 6\n1 6\n1 6\n10 11\n6 11\n1 6\n6 12\n6 12\n6 12\n6 13\n6 13\n6 13\n6 13\n3 6\n2 6\n2 6",
"output": "3"
},
{
"input": "5 8\ntetqw\n2 1\n4 4\n5 5\n5 2\n4 5\n1 5\n1 5\n1 1",
"output": "-1"
},
{
"input": "5 8\nreeet\n4 3\n2 5\n4 2\n2 4\n4 2\n5 2\n3 3\n3 4",
"output": "-1"
}
] | 92 | 2,252,800 | 0 | 5,970 |
|
297 | Color the Carpet | [
"constructive algorithms"
] | null | null | Even polar bears feel cold when lying on the ice. Therefore, a polar bear Alice is going to make a carpet. The carpet can be viewed as a grid with height *h* and width *w*. Then the grid is divided into *h*<=×<=*w* squares. Alice is going to assign one of *k* different colors to each square. The colors are numbered from 1 to *k*. She may choose not to use all of the colors.
However, there are some restrictions. For every two adjacent squares (squares that shares an edge) *x* and *y*, there is a color constraint in one of the forms:
- *color*(*x*)<==<=*color*(*y*), or - *color*(*x*)<=≠<=*color*(*y*).
Example of the color constraints:
Ideally, Alice wants to satisfy all color constraints. But again, life in the Arctic is hard. It is not always possible to satisfy all color constraints. Fortunately, she will still be happy if at least of the color constraints are satisfied.
If she has 4 colors she can color the carpet in the following way:
And she is happy because of the color constraints are satisfied, and . Your task is to help her color the carpet. | The first line contains three integers *h*,<=*w*,<=*k* (2<=≤<=*h*,<=*w*<=≤<=1000,<=1<=≤<=*k*<=≤<=*w*·*h*).
The next 2*h*<=-<=1 lines describe the color constraints from top to bottom, left to right. They contain *w*<=-<=1,<=*w*,<=*w*<=-<=1,<=*w*,<=...,<=*w*<=-<=1 characters respectively. Each color constraint is represented by a character "E" or "N", where "E" means "<==<=" and "N" means "<=≠<=".
The color constraints listed in the order they are depicted on the picture. | If there is a coloring that satisfies at least of the color constraints, print "YES" (without quotes) in the first line. In each of the next *h* lines, print *w* integers describing the coloring.
Otherwise, print "NO" (without quotes). | [
"3 4 4\nENE\nNNEE\nNEE\nENEN\nENN\n"
] | [
"YES\n1 1 2 2\n3 4 1 1\n3 3 2 4"
] | none | [] | 60 | 0 | 0 | 5,976 |
|
0 | none | [
"none"
] | null | null | Dreamoon loves summing up something for no reason. One day he obtains two integers *a* and *b* occasionally. He wants to calculate the sum of all nice integers. Positive integer *x* is called nice if and , where *k* is some integer number in range [1,<=*a*].
By we denote the quotient of integer division of *x* and *y*. By we denote the remainder of integer division of *x* and *y*. You can read more about these operations here: http://goo.gl/AcsXhT.
The answer may be large, so please print its remainder modulo 1<=000<=000<=007 (109<=+<=7). Can you compute it faster than Dreamoon? | The single line of the input contains two integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=107). | Print a single integer representing the answer modulo 1<=000<=000<=007 (109<=+<=7). | [
"1 1\n",
"2 2\n"
] | [
"0\n",
"8\n"
] | For the first sample, there are no nice integers because <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/03b1dc6bae5180f8a2d8eb85789e8b393e585970.png" style="max-width: 100.0%;max-height: 100.0%;"/> is always zero.
For the second sample, the set of nice integers is {3, 5}. | [
{
"input": "1 1",
"output": "0"
},
{
"input": "2 2",
"output": "8"
},
{
"input": "4 1",
"output": "0"
},
{
"input": "4 2",
"output": "24"
},
{
"input": "4 3",
"output": "102"
},
{
"input": "4 4",
"output": "264"
},
{
"input": "3 4",
"output": "162"
},
{
"input": "2 4",
"output": "84"
},
{
"input": "1 4",
"output": "30"
},
{
"input": "1000 1000",
"output": "247750000"
},
{
"input": "10000000 10000000",
"output": "425362313"
},
{
"input": "10000000 9999999",
"output": "930564389"
},
{
"input": "2 10000000",
"output": "990423507"
},
{
"input": "10000000 2",
"output": "19300000"
},
{
"input": "9999999 2",
"output": "999300006"
},
{
"input": "9999999 9999999",
"output": "957764103"
},
{
"input": "10000000 10000",
"output": "723127969"
},
{
"input": "10000 10000000",
"output": "372369289"
},
{
"input": "2 9999999",
"output": "48573499"
},
{
"input": "123456 123456",
"output": "417111819"
},
{
"input": "6407688 3000816",
"output": "895399645"
},
{
"input": "9956532 1084240",
"output": "554368769"
},
{
"input": "3505377 9167664",
"output": "80435138"
},
{
"input": "7054221 7251088",
"output": "7849970"
},
{
"input": "346169 367216",
"output": "358144298"
},
{
"input": "3895014 8450640",
"output": "627604019"
},
{
"input": "861392 6200826",
"output": "180835815"
},
{
"input": "4410236 9316955",
"output": "602743722"
},
{
"input": "2926377 2367675",
"output": "395740917"
},
{
"input": "1507925 5483803",
"output": "727607740"
},
{
"input": "9832578 8599931",
"output": "428281878"
},
{
"input": "8348718 6683355",
"output": "275994807"
},
{
"input": "1897562 4766779",
"output": "148050609"
},
{
"input": "413703 2850203",
"output": "76966774"
},
{
"input": "8995251 5966331",
"output": "451718548"
},
{
"input": "7319903 9017051",
"output": "975259203"
},
{
"input": "9253578 1799941",
"output": "868664771"
},
{
"input": "7835126 9883365",
"output": "119844544"
},
{
"input": "6351267 7966789",
"output": "683811063"
},
{
"input": "9900111 1082917",
"output": "539539383"
},
{
"input": "1 10000000",
"output": "995024507"
},
{
"input": "123456 234567",
"output": "93010021"
},
{
"input": "888888 888888",
"output": "456888843"
},
{
"input": "1001 1500126",
"output": "45074025"
},
{
"input": "9243243 432434",
"output": "203891513"
},
{
"input": "3 10000000",
"output": "986197007"
},
{
"input": "4108931 211273",
"output": "142398939"
},
{
"input": "999999 92321",
"output": "286549418"
},
{
"input": "999999 999999",
"output": "691690639"
},
{
"input": "191919 123123",
"output": "358196438"
},
{
"input": "999999 1000000",
"output": "725921292"
},
{
"input": "31623 10000000",
"output": "382702377"
},
{
"input": "1000023 1000043",
"output": "175442768"
},
{
"input": "666666 666666",
"output": "869302791"
},
{
"input": "7672285 753250",
"output": "461773059"
},
{
"input": "1000000 1000000",
"output": "249917764"
},
{
"input": "6340794 6874449",
"output": "930977735"
},
{
"input": "9998486 9998486",
"output": "988877388"
},
{
"input": "9999997 9999998",
"output": "946983076"
}
] | 62 | 0 | 3 | 5,979 |
|
762 | Two strings | [
"binary search",
"hashing",
"strings",
"two pointers"
] | null | null | You are given two strings *a* and *b*. You have to remove the minimum possible number of consecutive (standing one after another) characters from string *b* in such a way that it becomes a subsequence of string *a*. It can happen that you will not need to remove any characters at all, or maybe you will have to remove all of the characters from *b* and make it empty.
Subsequence of string *s* is any such string that can be obtained by erasing zero or more characters (not necessarily consecutive) from string *s*. | The first line contains string *a*, and the second line — string *b*. Both of these strings are nonempty and consist of lowercase letters of English alphabet. The length of each string is no bigger than 105 characters. | On the first line output a subsequence of string *a*, obtained from *b* by erasing the minimum number of consecutive characters.
If the answer consists of zero characters, output «-» (a minus sign). | [
"hi\nbob\n",
"abca\naccepted\n",
"abacaba\nabcdcba\n"
] | [
"-\n",
"ac\n",
"abcba\n"
] | In the first example strings *a* and *b* don't share any symbols, so the longest string that you can get is empty.
In the second example ac is a subsequence of *a*, and at the same time you can obtain it by erasing consecutive symbols cepted from string *b*. | [
{
"input": "hi\nbob",
"output": "-"
},
{
"input": "abca\naccepted",
"output": "ac"
},
{
"input": "abacaba\nabcdcba",
"output": "abcba"
},
{
"input": "lo\neuhaqdhhzlnkmqnakgwzuhurqlpmdm",
"output": "-"
},
{
"input": "aaeojkdyuilpdvyewjfrftkpcobhcumwlaoiocbfdtvjkhgda\nmlmarpivirqbxcyhyerjoxlslyfzftrylpjyouypvk",
"output": "ouypvk"
},
{
"input": "npnkmawey\nareakefvowledfriyjejqnnaeqheoh",
"output": "a"
},
{
"input": "fdtffutxkujflswyddvhusfcook\nkavkhnhphcvckogqqqqhdmgwjdfenzizrebefsbuhzzwhzvc",
"output": "kvc"
},
{
"input": "abacaba\naa",
"output": "aa"
},
{
"input": "edbcd\nd",
"output": "d"
},
{
"input": "abc\nksdksdsdsnabc",
"output": "abc"
},
{
"input": "abxzxzxzzaba\naba",
"output": "aba"
},
{
"input": "abcd\nzzhabcd",
"output": "abcd"
},
{
"input": "aa\naa",
"output": "aa"
},
{
"input": "test\nt",
"output": "t"
},
{
"input": "aa\na",
"output": "a"
},
{
"input": "aaaabbbbaaaa\naba",
"output": "aba"
},
{
"input": "aa\nzzaa",
"output": "aa"
},
{
"input": "zhbt\nztjihmhebkrztefpwty",
"output": "zt"
},
{
"input": "aaaaaaaaaaaaaaaaaaaa\naaaaaaaa",
"output": "aaaaaaaa"
},
{
"input": "abba\naba",
"output": "aba"
},
{
"input": "abbba\naba",
"output": "aba"
},
{
"input": "aaaaaaaaaaaa\naaaaaaaaaaaa",
"output": "aaaaaaaaaaaa"
},
{
"input": "aaa\naa",
"output": "aa"
},
{
"input": "aaaaaaaaaaaa\naaa",
"output": "aaa"
},
{
"input": "aaaaabbbbbbaaaaaa\naba",
"output": "aba"
},
{
"input": "ashfaniosafapisfasipfaspfaspfaspfapsfjpasfshvcmvncxmvnxcvnmcxvnmxcnvmcvxvnxmcvxcmvh\nashish",
"output": "ashish"
},
{
"input": "a\na",
"output": "a"
},
{
"input": "aaaab\naab",
"output": "aab"
},
{
"input": "aaaaa\naaaa",
"output": "aaaa"
},
{
"input": "a\naaa",
"output": "a"
},
{
"input": "aaaaaabbbbbbaaaaaa\naba",
"output": "aba"
},
{
"input": "def\nabcdef",
"output": "def"
},
{
"input": "aaaaaaaaa\na",
"output": "a"
},
{
"input": "bababsbs\nabs",
"output": "abs"
},
{
"input": "hddddddack\nhackyz",
"output": "hack"
},
{
"input": "aba\na",
"output": "a"
},
{
"input": "ofih\nihfsdf",
"output": "ih"
},
{
"input": "b\nabb",
"output": "b"
},
{
"input": "lctsczqr\nqvkp",
"output": "q"
},
{
"input": "dedcbaa\ndca",
"output": "dca"
},
{
"input": "haddack\nhack",
"output": "hack"
},
{
"input": "abcabc\nabc",
"output": "abc"
},
{
"input": "asdf\ngasdf",
"output": "asdf"
},
{
"input": "abab\nab",
"output": "ab"
},
{
"input": "aaaaaaa\naaa",
"output": "aaa"
},
{
"input": "asdf\nfasdf",
"output": "asdf"
},
{
"input": "bbaabb\nab",
"output": "ab"
},
{
"input": "accac\nbaacccbcccabaabbcacbbcccacbaabaaac",
"output": "aac"
},
{
"input": "az\naaazazaa",
"output": "a"
},
{
"input": "bbacaabbaaa\nacaabcaa",
"output": "acaabaa"
},
{
"input": "c\ncbcbcbbacacacbccaaccbcabaaabbaaa",
"output": "c"
},
{
"input": "bacb\nccacacbacbccbbccccaccccccbcbabbbaababa",
"output": "ba"
},
{
"input": "ac\naacacaacbaaacbbbabacaca",
"output": "a"
},
{
"input": "a\nzazaa",
"output": "a"
},
{
"input": "abcd\nfaaaabbbbccccdddeda",
"output": "a"
},
{
"input": "abcde\nfabcde",
"output": "abcde"
},
{
"input": "a\nab",
"output": "a"
},
{
"input": "ababbbbbbbbbbbb\nabbbbb",
"output": "abbbbb"
},
{
"input": "bbbbaabbababbaaaaababbaaabbbbaaabbbababbbbabaabababaabaaabbbabababbbabababaababaaaaa\nbbabaaaabaaaabbaaabbbabaaabaabbbababbbbbbbbbbabbababbaababbbaaabababababbbbaaababaaaaab",
"output": "bbbbbbbabbababbaababbbaaabababababbbbaaababaaaaab"
},
{
"input": "ab\naba",
"output": "ab"
},
{
"input": "aa\naaaa",
"output": "aa"
},
{
"input": "aaaaabbbaaaaa\naabbaa",
"output": "aabbaa"
},
{
"input": "aaaaaaaaa\naaaa",
"output": "aaaa"
},
{
"input": "abbcc\naca",
"output": "ac"
},
{
"input": "b\ncb",
"output": "b"
},
{
"input": "aac\naaa",
"output": "aa"
},
{
"input": "ba\nbb",
"output": "b"
},
{
"input": "a\nb",
"output": "-"
},
{
"input": "gkvubrvpbhsfiuyha\nihotmn",
"output": "ih"
},
{
"input": "ccccabccbb\ncbbabcc",
"output": "cabcc"
},
{
"input": "babababbaaabb\nabbab",
"output": "abbab"
},
{
"input": "njtdhyqundyedsjyvy\nypjrs",
"output": "ys"
},
{
"input": "uglyqhkpruxoakm\ncixxkpaaoodpuuh",
"output": "uh"
},
{
"input": "a\naaaaaaaaa",
"output": "a"
},
{
"input": "aaa\naaaaa",
"output": "aaa"
},
{
"input": "abcabbcbcccbccbbcc\nacbcaabbbbcabbbaca",
"output": "acbc"
},
{
"input": "caacacaacbaa\nacbbbabacacac",
"output": "aacacac"
},
{
"input": "aa\naaab",
"output": "aa"
},
{
"input": "acbc\ncacacbac",
"output": "ac"
},
{
"input": "bacbcaacabbaacb\ncbbaaccccbcaacacaabb",
"output": "cbcaabb"
},
{
"input": "baababaaaab\nbaababbbbbbb",
"output": "baababb"
},
{
"input": "aaxyaba\naaba",
"output": "aaba"
}
] | 77 | 5,017,600 | 0 | 5,990 |
|
0 | none | [
"none"
] | null | null | A remote island chain contains *n* islands, labeled 1 through *n*. Bidirectional bridges connect the islands to form a simple cycle — a bridge connects islands 1 and 2, islands 2 and 3, and so on, and additionally a bridge connects islands *n* and 1. The center of each island contains an identical pedestal, and all but one of the islands has a fragile, uniquely colored statue currently held on the pedestal. The remaining island holds only an empty pedestal.
The islanders want to rearrange the statues in a new order. To do this, they repeat the following process: First, they choose an island directly adjacent to the island containing an empty pedestal. Then, they painstakingly carry the statue on this island across the adjoining bridge and place it on the empty pedestal.
Determine if it is possible for the islanders to arrange the statues in the desired order. | The first line contains a single integer *n* (2<=≤<=*n*<=≤<=200<=000) — the total number of islands.
The second line contains *n* space-separated integers *a**i* (0<=≤<=*a**i*<=≤<=*n*<=-<=1) — the statue currently placed on the *i*-th island. If *a**i*<==<=0, then the island has no statue. It is guaranteed that the *a**i* are distinct.
The third line contains *n* space-separated integers *b**i* (0<=≤<=*b**i*<=≤<=*n*<=-<=1) — the desired statues of the *i*th island. Once again, *b**i*<==<=0 indicates the island desires no statue. It is guaranteed that the *b**i* are distinct. | Print "YES" (without quotes) if the rearrangement can be done in the existing network, and "NO" otherwise. | [
"3\n1 0 2\n2 0 1\n",
"2\n1 0\n0 1\n",
"4\n1 2 3 0\n0 3 2 1\n"
] | [
"YES\n",
"YES\n",
"NO\n"
] | In the first sample, the islanders can first move statue 1 from island 1 to island 2, then move statue 2 from island 3 to island 1, and finally move statue 1 from island 2 to island 3.
In the second sample, the islanders can simply move statue 1 from island 1 to island 2.
In the third sample, no sequence of movements results in the desired position. | [
{
"input": "3\n1 0 2\n2 0 1",
"output": "YES"
},
{
"input": "2\n1 0\n0 1",
"output": "YES"
},
{
"input": "4\n1 2 3 0\n0 3 2 1",
"output": "NO"
},
{
"input": "9\n3 8 4 6 7 1 5 2 0\n6 4 8 5 3 1 2 0 7",
"output": "NO"
},
{
"input": "4\n2 3 1 0\n2 0 1 3",
"output": "NO"
},
{
"input": "4\n0 1 2 3\n2 0 1 3",
"output": "NO"
},
{
"input": "4\n3 0 1 2\n1 0 2 3",
"output": "YES"
},
{
"input": "3\n0 2 1\n1 2 0",
"output": "YES"
},
{
"input": "2\n0 1\n0 1",
"output": "YES"
},
{
"input": "6\n3 1 5 4 0 2\n0 4 3 5 2 1",
"output": "NO"
},
{
"input": "4\n2 0 3 1\n3 1 0 2",
"output": "YES"
},
{
"input": "5\n3 0 2 1 4\n4 3 0 1 2",
"output": "NO"
},
{
"input": "3\n2 0 1\n1 0 2",
"output": "YES"
},
{
"input": "10\n6 2 3 8 0 4 9 1 5 7\n2 3 8 4 0 9 1 5 7 6",
"output": "YES"
},
{
"input": "10\n2 4 8 3 6 1 9 0 5 7\n3 6 1 9 0 5 7 2 8 4",
"output": "NO"
},
{
"input": "10\n2 0 1 6 4 9 8 5 3 7\n6 4 9 0 5 3 7 2 1 8",
"output": "NO"
},
{
"input": "3\n0 1 2\n0 1 2",
"output": "YES"
},
{
"input": "4\n0 1 2 3\n1 0 2 3",
"output": "YES"
},
{
"input": "3\n0 1 2\n1 0 2",
"output": "YES"
},
{
"input": "5\n1 2 0 3 4\n4 0 1 2 3",
"output": "YES"
},
{
"input": "4\n1 0 2 3\n1 0 2 3",
"output": "YES"
},
{
"input": "3\n0 1 2\n0 2 1",
"output": "YES"
},
{
"input": "4\n0 1 2 3\n2 3 1 0",
"output": "YES"
},
{
"input": "4\n0 2 3 1\n1 2 3 0",
"output": "YES"
},
{
"input": "3\n0 2 1\n2 0 1",
"output": "YES"
},
{
"input": "2\n1 0\n1 0",
"output": "YES"
},
{
"input": "4\n1 2 3 0\n1 0 2 3",
"output": "YES"
},
{
"input": "4\n0 1 3 2\n2 1 3 0",
"output": "YES"
},
{
"input": "4\n1 2 3 0\n1 2 0 3",
"output": "YES"
}
] | 187 | 18,636,800 | 3 | 5,998 |
|
150 | Quantity of Strings | [
"combinatorics",
"dfs and similar",
"graphs",
"math"
] | null | null | Just in case somebody missed it: this winter is totally cold in Nvodsk! It is so cold that one gets funny thoughts. For example, let's say there are strings with the length exactly *n*, based on the alphabet of size *m*. Any its substring with length equal to *k* is a palindrome. How many such strings exist? Your task is to find their quantity modulo 1000000007 (109<=+<=7). Be careful and don't miss a string or two!
Let us remind you that a string is a palindrome if it can be read the same way in either direction, from the left to the right and from the right to the left. | The first and only line contains three integers: *n*, *m* and *k* (1<=≤<=*n*,<=*m*,<=*k*<=≤<=2000). | Print a single integer — the number of strings of the described type modulo 1000000007 (109<=+<=7). | [
"1 1 1\n",
"5 2 4\n"
] | [
"1\n",
"2\n"
] | In the first sample only one string is valid: "a" (let's denote the only letter of our alphabet as "a").
In the second sample (if we denote the alphabet letters as "a" and "b") the following strings are valid: "aaaaa" and "bbbbb". | [
{
"input": "1 1 1",
"output": "1"
},
{
"input": "5 2 4",
"output": "2"
},
{
"input": "7 4 20",
"output": "16384"
},
{
"input": "8 13 9",
"output": "815730721"
},
{
"input": "10 23 9",
"output": "529"
},
{
"input": "10 25 8",
"output": "25"
},
{
"input": "997 1752 1000",
"output": "184834849"
},
{
"input": "784 1 1999",
"output": "1"
},
{
"input": "341 9 342",
"output": "320920086"
},
{
"input": "777 1 777",
"output": "1"
},
{
"input": "542 13 542",
"output": "490685740"
},
{
"input": "1501 893 1501",
"output": "889854713"
},
{
"input": "1321 95 2",
"output": "95"
},
{
"input": "2000 1000 3",
"output": "1000000"
},
{
"input": "1769 849 1000",
"output": "849"
},
{
"input": "1000 2 1",
"output": "688423210"
},
{
"input": "345 1777 1",
"output": "756253754"
},
{
"input": "1999 2000 2000",
"output": "675798323"
},
{
"input": "1984 1847 1992",
"output": "345702953"
},
{
"input": "2000 2000 2000",
"output": "321179016"
},
{
"input": "1451 239 1451",
"output": "968856942"
},
{
"input": "2000 2000 1",
"output": "596636543"
},
{
"input": "1230 987 1",
"output": "890209975"
},
{
"input": "1764 305 843",
"output": "93025"
},
{
"input": "1999 98 132",
"output": "98"
},
{
"input": "2000 2 10",
"output": "2"
},
{
"input": "2000 1999 1999",
"output": "3996001"
},
{
"input": "1678 1999 1234",
"output": "1999"
},
{
"input": "7 10 7",
"output": "10000"
},
{
"input": "15 1 15",
"output": "1"
},
{
"input": "2000 2000 1000",
"output": "2000"
},
{
"input": "1 2000 2000",
"output": "2000"
},
{
"input": "10 10 90",
"output": "999999937"
},
{
"input": "100 100 1",
"output": "424090053"
},
{
"input": "6 6 6",
"output": "216"
},
{
"input": "10 10 1",
"output": "999999937"
},
{
"input": "100 10 100",
"output": "319300014"
},
{
"input": "5 4 5",
"output": "64"
},
{
"input": "5 2 5",
"output": "8"
},
{
"input": "1000 1000 1000",
"output": "850431726"
},
{
"input": "5 5 1",
"output": "3125"
},
{
"input": "1000 1000 1",
"output": "524700271"
},
{
"input": "4 256 1",
"output": "294967268"
},
{
"input": "5 5 5",
"output": "125"
},
{
"input": "10 10 10",
"output": "100000"
},
{
"input": "100 100 100",
"output": "226732710"
},
{
"input": "5 2 1",
"output": "32"
},
{
"input": "4 4 4",
"output": "16"
},
{
"input": "15 5 1",
"output": "517577915"
},
{
"input": "1000 2 1001",
"output": "688423210"
},
{
"input": "100 7 3",
"output": "49"
},
{
"input": "8 2 8",
"output": "16"
},
{
"input": "200 200 200",
"output": "104842676"
},
{
"input": "4 4 1",
"output": "256"
},
{
"input": "1999 1999 1999",
"output": "21610777"
},
{
"input": "17 5 1",
"output": "939447791"
},
{
"input": "100 5 1",
"output": "146981449"
},
{
"input": "10 5 1",
"output": "9765625"
},
{
"input": "11 2 11",
"output": "64"
},
{
"input": "100 1000 1",
"output": "327648028"
},
{
"input": "3 1000 3",
"output": "1000000"
},
{
"input": "3 3 3",
"output": "9"
},
{
"input": "3 5 3",
"output": "25"
},
{
"input": "20 3 3",
"output": "9"
},
{
"input": "10 2 1",
"output": "1024"
},
{
"input": "7 2 7",
"output": "16"
},
{
"input": "13 9 1",
"output": "865810542"
},
{
"input": "11 2 5",
"output": "4"
},
{
"input": "13 13 13",
"output": "62748517"
},
{
"input": "239 123 239",
"output": "221051222"
}
] | 124 | 0 | 3 | 6,004 |
|
190 | Surrounded | [
"geometry"
] | null | null | So, the Berland is at war with its eternal enemy Flatland again, and Vasya, an accountant, was assigned to fulfil his duty to the nation.
Right now the situation in Berland is dismal — their both cities are surrounded! The armies of flatlanders stand on the borders of circles, the circles' centers are in the surrounded cities. At any moment all points of the flatland ring can begin to move quickly in the direction of the city — that's the strategy the flatlanders usually follow when they besiege cities.
The berlanders are sure that they can repel the enemy's attack if they learn the exact time the attack starts. For that they need to construct a radar that would register any movement at the distance of at most *r* from it. Thus, we can install a radar at such point, that at least one point of the enemy ring will be in its detecting range (that is, at a distance of at most *r*). Then the radar can immediately inform about the enemy's attack.
Due to the newest technologies, we can place a radar at any point without any problems. But the problem is that the berlanders have the time to make only one radar. Besides, the larger the detection radius (*r*) is, the more the radar costs.
That's why Vasya's task (that is, your task) is to find the minimum possible detection radius for the radar. In other words, your task is to find the minimum radius *r* (*r*<=≥<=0) such, that a radar with radius *r* can be installed at some point and it can register the start of the movements of both flatland rings from that point.
In this problem you can consider the cities as material points, the attacking enemy rings - as circles with centers in the cities, the radar's detection range — as a disk (including the border) with the center at the point where the radar is placed. | The input files consist of two lines. Each line represents the city and the flatland ring that surrounds it as three space-separated integers *x**i*, *y**i*, *r**i* (|*x**i*|,<=|*y**i*|<=≤<=104; 1<=≤<=*r**i*<=≤<=104) — the city's coordinates and the distance from the city to the flatlanders, correspondingly.
It is guaranteed that the cities are located at different points. | Print a single real number — the minimum detection radius of the described radar. The answer is considered correct if the absolute or relative error does not exceed 10<=-<=6. | [
"0 0 1\n6 0 3\n",
"-10 10 3\n10 -10 3\n"
] | [
"1.000000000000000",
"11.142135623730951"
] | The figure below shows the answer to the first sample. In this sample the best decision is to put the radar at point with coordinates (2, 0).
The figure below shows the answer for the second sample. In this sample the best decision is to put the radar at point with coordinates (0, 0). | [
{
"input": "0 0 1\n6 0 3",
"output": "1.000000000000000"
},
{
"input": "-10 10 3\n10 -10 3",
"output": "11.142135623730951"
},
{
"input": "2 1 3\n8 9 5",
"output": "1.000000000000000"
},
{
"input": "0 0 1\n-10 -10 9",
"output": "2.071067811865475"
},
{
"input": "10000 -9268 1\n-9898 9000 10",
"output": "13500.519287710202000"
},
{
"input": "10000 10000 1\n-10000 -10000 1",
"output": "14141.135623730950000"
},
{
"input": "123 21 50\n10 100 1000",
"output": "406.061621719103360"
},
{
"input": "0 3278 2382\n2312 1 1111",
"output": "258.747677968983450"
},
{
"input": "3 4 5\n5 12 13",
"output": "0.000000000000000"
},
{
"input": "-2 7 5\n4 0 6",
"output": "0.000000000000000"
},
{
"input": "4 0 2\n6 -1 10",
"output": "2.881966011250105"
},
{
"input": "41 17 3\n71 -86 10",
"output": "47.140003728560643"
},
{
"input": "761 641 6\n506 -293 5",
"output": "478.592191632957450"
},
{
"input": "-5051 -7339 9\n-9030 755 8",
"output": "4501.080828635849700"
},
{
"input": "0 5 2\n8 -4 94",
"output": "39.979202710603850"
},
{
"input": "83 -64 85\n27 80 89",
"output": "0.000000000000000"
},
{
"input": "-655 -750 68\n905 -161 68",
"output": "765.744715125679250"
},
{
"input": "1055 -5271 60\n-2992 8832 38",
"output": "7287.089182936641900"
},
{
"input": "4 0 201\n-6 4 279",
"output": "33.614835192865499"
},
{
"input": "-34 -5 836\n52 -39 706",
"output": "18.761487913212431"
},
{
"input": "659 -674 277\n-345 -556 127",
"output": "303.455240352694320"
},
{
"input": "4763 2945 956\n3591 9812 180",
"output": "2915.147750239716500"
},
{
"input": "3 -7 5749\n1 -6 9750",
"output": "1999.381966011250100"
},
{
"input": "28 -63 2382\n43 -83 1364",
"output": "496.500000000000000"
},
{
"input": "315 -532 7813\n407 -157 2121",
"output": "2652.939776235497000"
},
{
"input": "-9577 9051 5276\n-4315 -1295 8453",
"output": "0.000000000000000"
},
{
"input": "-7 -10 1\n-4 3 1",
"output": "5.670832032063167"
},
{
"input": "-74 27 535\n18 84 1",
"output": "212.886692948961240"
},
{
"input": "-454 -721 72\n-33 279 911",
"output": "51.003686623418254"
},
{
"input": "-171 762 304\n-428 -85 523",
"output": "29.065814314662131"
},
{
"input": "192 -295 1386\n-54 -78 1",
"output": "528.483994683445640"
},
{
"input": "-5134 -9860 5513\n6291 -855 9034",
"output": "0.093506651303098"
},
{
"input": "6651 8200 610\n-9228 9387 10000",
"output": "2656.651995660197400"
},
{
"input": "6370 7728 933\n4595 3736 2748",
"output": "343.915768575204200"
},
{
"input": "-6 3 8\n7 2 1",
"output": "2.019202405202649"
},
{
"input": "0 -1 1\n1 -1 1",
"output": "0.000000000000000"
},
{
"input": "0 1 3\n1 -1 1",
"output": "0.000000000000000"
},
{
"input": "-2 0 1\n3 -2 1",
"output": "1.692582403567252"
},
{
"input": "-10000 42 10000\n10000 43 10000",
"output": "0.000012499999992"
},
{
"input": "103 104 5\n97 96 5",
"output": "0.000000000000000"
},
{
"input": "2587 4850 3327\n3278 -204 1774",
"output": "0.009605941526345"
},
{
"input": "826 4417 2901\n833 -2286 3802",
"output": "0.001827539409235"
},
{
"input": "1003 -5005 3399\n-6036 -1729 4365",
"output": "0.000032199896827"
}
] | 93 | 20,172,800 | 0 | 6,021 |
|
150 | Win or Freeze | [
"games",
"math",
"number theory"
] | null | null | You can't possibly imagine how cold our friends are this winter in Nvodsk! Two of them play the following game to warm up: initially a piece of paper has an integer *q*. During a move a player should write any integer number that is a non-trivial divisor of the last written number. Then he should run this number of circles around the hotel. Let us remind you that a number's divisor is called non-trivial if it is different from one and from the divided number itself.
The first person who can't make a move wins as he continues to lie in his warm bed under three blankets while the other one keeps running. Determine which player wins considering that both players play optimally. If the first player wins, print any winning first move. | The first line contains the only integer *q* (1<=≤<=*q*<=≤<=1013).
Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specificator. | In the first line print the number of the winning player (1 or 2). If the first player wins then the second line should contain another integer — his first move (if the first player can't even make the first move, print 0). If there are multiple solutions, print any of them. | [
"6\n",
"30\n",
"1\n"
] | [
"2\n",
"1\n6\n",
"1\n0\n"
] | Number 6 has only two non-trivial divisors: 2 and 3. It is impossible to make a move after the numbers 2 and 3 are written, so both of them are winning, thus, number 6 is the losing number. A player can make a move and write number 6 after number 30; 6, as we know, is a losing number. Thus, this move will bring us the victory. | [
{
"input": "6",
"output": "2"
},
{
"input": "30",
"output": "1\n6"
},
{
"input": "1",
"output": "1\n0"
},
{
"input": "2",
"output": "1\n0"
},
{
"input": "3",
"output": "1\n0"
},
{
"input": "5",
"output": "1\n0"
},
{
"input": "445538663413",
"output": "1\n0"
},
{
"input": "5138168457911",
"output": "2"
},
{
"input": "472670214391",
"output": "1\n23020027"
},
{
"input": "1468526771489",
"output": "1\n613783"
},
{
"input": "1307514188557",
"output": "1\n39283"
},
{
"input": "8110708459517",
"output": "2"
},
{
"input": "7938986881993",
"output": "1\n378028993"
},
{
"input": "34280152201",
"output": "2"
},
{
"input": "8587340257",
"output": "1\n9409"
},
{
"input": "1245373417369",
"output": "1\n908209"
},
{
"input": "48855707",
"output": "1\n18769"
},
{
"input": "614125",
"output": "1\n25"
},
{
"input": "1716443237161",
"output": "1\n5329"
},
{
"input": "49380563",
"output": "1\n289"
},
{
"input": "2975",
"output": "1\n25"
},
{
"input": "5839252225",
"output": "1\n25"
},
{
"input": "266418",
"output": "1\n9"
},
{
"input": "319757451841",
"output": "1\n289"
},
{
"input": "3047527844089",
"output": "2"
},
{
"input": "1408514752349",
"output": "1\n72361"
},
{
"input": "9999925100701",
"output": "1\n0"
},
{
"input": "9999926826034",
"output": "2"
},
{
"input": "6599669076000",
"output": "1\n4"
},
{
"input": "324",
"output": "1\n4"
},
{
"input": "99",
"output": "1\n9"
},
{
"input": "4",
"output": "2"
},
{
"input": "8",
"output": "1\n4"
},
{
"input": "1000000000000",
"output": "1\n4"
},
{
"input": "9",
"output": "2"
},
{
"input": "50",
"output": "1\n25"
},
{
"input": "16",
"output": "1\n4"
},
{
"input": "25",
"output": "2"
},
{
"input": "44",
"output": "1\n4"
},
{
"input": "388",
"output": "1\n4"
},
{
"input": "2000000014",
"output": "2"
},
{
"input": "128",
"output": "1\n4"
},
{
"input": "27",
"output": "1\n9"
},
{
"input": "274875809788",
"output": "1\n4"
},
{
"input": "64",
"output": "1\n4"
},
{
"input": "802241960524",
"output": "1\n4"
},
{
"input": "401120980262",
"output": "2"
},
{
"input": "236",
"output": "1\n4"
},
{
"input": "7420738134810",
"output": "1\n6"
},
{
"input": "12",
"output": "1\n4"
},
{
"input": "57461344602",
"output": "1\n6"
},
{
"input": "81",
"output": "1\n9"
},
{
"input": "30971726",
"output": "2"
}
] | 62 | 0 | 0 | 6,025 |
|
20 | Equation | [
"math"
] | B. Equation | 1 | 256 | You are given an equation:
Your task is to find the number of distinct roots of the equation and print all of them in ascending order. | The first line contains three integer numbers *A*,<=*B* and *C* (<=-<=105<=≤<=*A*,<=*B*,<=*C*<=≤<=105). Any coefficient may be equal to 0. | In case of infinite root count print the only integer -1. In case of no roots print the only integer 0. In other cases print the number of root on the first line and the roots on the following lines in the ascending order. Print roots with at least 5 digits after the decimal point. | [
"1 -5 6\n"
] | [
"2\n2.0000000000\n3.0000000000"
] | none | [
{
"input": "1 -5 6",
"output": "2\n2.0000000000\n3.0000000000"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "1 2 1",
"output": "1\n-1.0000000000"
},
{
"input": "0 0 0",
"output": "-1"
},
{
"input": "0 -2 1",
"output": "1\n0.5000000000"
},
{
"input": "0 -2 0",
"output": "1\n0.0000000000"
},
{
"input": "0 0 1",
"output": "0"
},
{
"input": "0 0 -100000",
"output": "0"
},
{
"input": "0 10000 -100000",
"output": "1\n10.0000000000"
},
{
"input": "1 100000 -100000",
"output": "2\n-100000.9999900002\n0.9999900002"
},
{
"input": "0 3431 43123",
"output": "1\n-12.5686388808"
},
{
"input": "100 200 100",
"output": "1\n-1.0000000000"
},
{
"input": "50000 100000 50000",
"output": "1\n-1.0000000000"
},
{
"input": "-1 10 20",
"output": "2\n-1.7082039325\n11.7082039325"
},
{
"input": "-50000 100000 -50000",
"output": "1\n1.0000000000"
},
{
"input": "1 -2 1",
"output": "1\n1.0000000000"
},
{
"input": "1000 -5000 6000",
"output": "2\n2.0000000000\n3.0000000000"
},
{
"input": "0 -100000 0",
"output": "1\n0.0000000000"
},
{
"input": "1 -100000 0",
"output": "2\n0.0000000000\n100000.0000000000"
},
{
"input": "1223 -23532 1232",
"output": "2\n0.0524974745\n19.1887126645"
},
{
"input": "-1 -2 -1",
"output": "1\n-1.0000000000"
},
{
"input": "1 0 0",
"output": "1\n0.0000000000"
},
{
"input": "0 1 0",
"output": "1\n-0.0000000000"
},
{
"input": "0 0 1",
"output": "0"
},
{
"input": "0 1 -1",
"output": "1\n1.0000000000"
},
{
"input": "5 0 5",
"output": "0"
},
{
"input": "-2 -5 0",
"output": "2\n-2.5000000000\n-0.0000000000"
},
{
"input": "-2 -4 0",
"output": "2\n-2.0000000000\n-0.0000000000"
},
{
"input": "-2 0 0",
"output": "1\n-0.0000000000"
},
{
"input": "0 -4 -4",
"output": "1\n-1.0000000000"
},
{
"input": "1 1 0",
"output": "2\n-1.0000000000\n0.0000000000"
},
{
"input": "1 0 1",
"output": "0"
},
{
"input": "1 1 1",
"output": "0"
},
{
"input": "0 0 0",
"output": "-1"
}
] | 31 | 0 | 0 | 6,028 |
898 | Phone Numbers | [
"implementation",
"strings"
] | null | null | Vasya has several phone books, in which he recorded the telephone numbers of his friends. Each of his friends can have one or several phone numbers.
Vasya decided to organize information about the phone numbers of friends. You will be given *n* strings — all entries from Vasya's phone books. Each entry starts with a friend's name. Then follows the number of phone numbers in the current entry, and then the phone numbers themselves. It is possible that several identical phones are recorded in the same record.
Vasya also believes that if the phone number *a* is a suffix of the phone number *b* (that is, the number *b* ends up with *a*), and both numbers are written by Vasya as the phone numbers of the same person, then *a* is recorded without the city code and it should not be taken into account.
The task is to print organized information about the phone numbers of Vasya's friends. It is possible that two different people have the same number. If one person has two numbers *x* and *y*, and *x* is a suffix of *y* (that is, *y* ends in *x*), then you shouldn't print number *x*. If the number of a friend in the Vasya's phone books is recorded several times in the same format, it is necessary to take it into account exactly once.
Read the examples to understand statement and format of the output better. | First line contains the integer *n* (1<=≤<=*n*<=≤<=20) — number of entries in Vasya's phone books.
The following *n* lines are followed by descriptions of the records in the format described in statement. Names of Vasya's friends are non-empty strings whose length does not exceed 10. They consists only of lowercase English letters. Number of phone numbers in one entry is not less than 1 is not more than 10. The telephone numbers consist of digits only. If you represent a phone number as a string, then its length will be in range from 1 to 10. Phone numbers can contain leading zeros. | Print out the ordered information about the phone numbers of Vasya's friends. First output *m* — number of friends that are found in Vasya's phone books.
The following *m* lines must contain entries in the following format "name number_of_phone_numbers phone_numbers". Phone numbers should be separated by a space. Each record must contain all the phone numbers of current friend.
Entries can be displayed in arbitrary order, phone numbers for one record can also be printed in arbitrary order. | [
"2\nivan 1 00123\nmasha 1 00123\n",
"3\nkarl 2 612 12\npetr 1 12\nkatya 1 612\n",
"4\nivan 3 123 123 456\nivan 2 456 456\nivan 8 789 3 23 6 56 9 89 2\ndasha 2 23 789\n"
] | [
"2\nmasha 1 00123 \nivan 1 00123 \n",
"3\nkatya 1 612 \npetr 1 12 \nkarl 1 612 \n",
"2\ndasha 2 23 789 \nivan 4 789 123 2 456 \n"
] | none | [
{
"input": "2\nivan 1 00123\nmasha 1 00123",
"output": "2\nmasha 1 00123 \nivan 1 00123 "
},
{
"input": "3\nkarl 2 612 12\npetr 1 12\nkatya 1 612",
"output": "3\nkatya 1 612 \npetr 1 12 \nkarl 1 612 "
},
{
"input": "4\nivan 3 123 123 456\nivan 2 456 456\nivan 8 789 3 23 6 56 9 89 2\ndasha 2 23 789",
"output": "2\ndasha 2 789 23 \nivan 4 2 123 456 789 "
},
{
"input": "20\nnxj 6 7 6 6 7 7 7\nnxj 10 8 5 1 7 6 1 0 7 0 6\nnxj 2 6 5\nnxj 10 6 7 6 6 5 8 3 6 6 8\nnxj 10 6 1 7 6 7 1 8 7 8 6\nnxj 10 8 5 8 6 5 6 1 9 6 3\nnxj 10 8 1 6 4 8 0 4 6 0 1\nnxj 9 2 6 6 8 1 1 3 6 6\nnxj 10 8 9 0 9 1 3 2 3 2 3\nnxj 6 6 7 0 8 1 2\nnxj 7 7 7 8 1 3 6 9\nnxj 10 2 7 0 1 5 1 9 1 2 6\nnxj 6 9 6 9 6 3 7\nnxj 9 0 1 7 8 2 6 6 5 6\nnxj 4 0 2 3 7\nnxj 10 0 4 0 6 1 1 8 8 4 7\nnxj 8 4 6 2 6 6 1 2 7\nnxj 10 5 3 4 2 1 0 7 0 7 6\nnxj 10 9 6 0 6 1 6 2 1 9 6\nnxj 4 2 9 0 1",
"output": "1\nnxj 10 4 1 8 7 5 3 6 9 0 2 "
},
{
"input": "20\nl 6 02 02 2 02 02 2\nl 8 8 8 8 2 62 13 31 3\ne 9 0 91 0 0 60 91 60 2 44\ne 9 69 2 1 44 2 91 66 1 70\nl 9 7 27 27 3 1 3 7 80 81\nl 9 2 1 13 7 2 10 02 3 92\ne 9 0 15 3 5 5 15 91 09 44\nl 7 2 50 4 5 98 31 98\nl 3 26 7 3\ne 6 7 5 0 62 65 91\nl 8 80 0 4 0 2 2 0 13\nl 9 19 13 02 2 1 4 19 26 02\nl 10 7 39 7 9 22 22 26 2 90 4\ne 7 65 2 36 0 34 57 9\ne 8 13 02 09 91 73 5 36 62\nl 9 75 0 10 8 76 7 82 8 34\nl 7 34 0 19 80 6 4 7\ne 5 4 2 5 7 2\ne 7 4 02 69 7 07 20 2\nl 4 8 2 1 63",
"output": "2\ne 18 70 07 62 36 20 69 66 57 02 65 34 44 73 60 91 15 09 13 \nl 21 02 80 27 63 19 50 81 76 34 90 98 92 31 26 22 75 39 13 10 82 62 "
},
{
"input": "20\no 10 6 6 97 45 6 6 6 6 5 6\nl 8 5 5 5 19 59 5 8 5\nj 9 2 30 58 2 2 1 0 30 4\nc 10 1 1 7 51 7 7 51 1 1 1\no 9 7 97 87 70 2 19 2 14 6\ne 6 26 6 6 6 26 5\ng 9 3 3 3 3 3 78 69 8 9\nl 8 8 01 1 5 8 41 72 3\nz 10 1 2 2 2 9 1 9 1 6 7\ng 8 7 78 05 36 7 3 67 9\no 5 6 9 9 7 7\ne 10 30 2 1 1 2 5 04 0 6 6\ne 9 30 30 2 2 0 26 30 79 8\nt 10 2 2 9 29 7 7 7 9 2 9\nc 7 7 51 1 31 2 7 4\nc 9 83 1 6 78 94 74 54 8 32\ng 8 4 1 01 9 39 28 6 6\nt 7 9 2 01 4 4 9 58\nj 5 0 1 58 02 4\nw 10 80 0 91 91 06 91 9 9 27 7",
"output": "9\nw 5 91 06 27 9 80 \nt 6 01 29 4 58 2 7 \ne 8 2 8 30 04 26 5 79 1 \nl 8 8 41 72 01 19 59 3 5 \nj 5 58 02 1 4 30 \nz 5 7 9 6 2 1 \ng 10 39 67 3 01 36 4 05 69 78 28 \no 8 19 2 45 6 87 14 97 70 \nc 10 7 94 32 6 78 74 31 83 51 54 "
},
{
"input": "1\negew 5 3 123 23 1234 134",
"output": "1\negew 3 134 123 1234 "
}
] | 92 | 2,457,600 | 3 | 6,056 |
|
380 | Sereja and Brackets | [
"data structures",
"schedules"
] | null | null | Sereja has a bracket sequence *s*1,<=*s*2,<=...,<=*s**n*, or, in other words, a string *s* of length *n*, consisting of characters "(" and ")".
Sereja needs to answer *m* queries, each of them is described by two integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). The answer to the *i*-th query is the length of the maximum correct bracket subsequence of sequence *s**l**i*,<=*s**l**i*<=+<=1,<=...,<=*s**r**i*. Help Sereja answer all queries.
You can find the definitions for a subsequence and a correct bracket sequence in the notes. | The first line contains a sequence of characters *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=*n*<=≤<=106) without any spaces. Each character is either a "(" or a ")". The second line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. Each of the next *m* lines contains a pair of integers. The *i*-th line contains integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) — the description of the *i*-th query. | Print the answer to each question on a single line. Print the answers in the order they go in the input. | [
"())(())(())(\n7\n1 1\n2 3\n1 2\n1 12\n8 12\n5 11\n2 10\n"
] | [
"0\n0\n2\n10\n4\n6\n6\n"
] | A subsequence of length |*x*| of string *s* = *s*<sub class="lower-index">1</sub>*s*<sub class="lower-index">2</sub>... *s*<sub class="lower-index">|*s*|</sub> (where |*s*| is the length of string *s*) is string *x* = *s*<sub class="lower-index">*k*<sub class="lower-index">1</sub></sub>*s*<sub class="lower-index">*k*<sub class="lower-index">2</sub></sub>... *s*<sub class="lower-index">*k*<sub class="lower-index">|*x*|</sub></sub> (1 ≤ *k*<sub class="lower-index">1</sub> < *k*<sub class="lower-index">2</sub> < ... < *k*<sub class="lower-index">|*x*|</sub> ≤ |*s*|).
A correct bracket sequence is a bracket sequence that can be transformed into a correct aryphmetic expression by inserting characters "1" and "+" between the characters of the string. For example, bracket sequences "()()", "(())" are correct (the resulting expressions "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
For the third query required sequence will be «()».
For the fourth query required sequence will be «()(())(())». | [
{
"input": "())(())(())(\n7\n1 1\n2 3\n1 2\n1 12\n8 12\n5 11\n2 10",
"output": "0\n0\n2\n10\n4\n6\n6"
},
{
"input": "(((((()((((((((((()((()(((((\n1\n8 15",
"output": "0"
},
{
"input": "((()((())(((((((((()(()(()(((((((((((((((()(()((((((((((((((()(((((((((((((((((((()(((\n39\n28 56\n39 46\n57 63\n29 48\n51 75\n14 72\n5 70\n51 73\n10 64\n31 56\n50 54\n15 78\n78 82\n1 11\n1 70\n1 19\n10 22\n13 36\n3 10\n34 40\n51 76\n64 71\n36 75\n24 71\n1 63\n5 14\n46 67\n32 56\n39 43\n43 56\n61 82\n2 78\n1 21\n10 72\n49 79\n12 14\n53 79\n15 31\n7 47",
"output": "4\n4\n2\n4\n2\n12\n16\n2\n12\n4\n0\n12\n0\n6\n18\n6\n2\n6\n6\n0\n2\n0\n6\n8\n18\n4\n2\n4\n2\n2\n2\n18\n8\n12\n2\n0\n2\n6\n12"
},
{
"input": "))(()))))())())))))())((()()))))()))))))))))))\n9\n26 42\n21 22\n6 22\n7 26\n43 46\n25 27\n32 39\n22 40\n2 45",
"output": "4\n0\n6\n8\n0\n2\n2\n10\n20"
},
{
"input": "(()((((()(())((((((((()((((((()((((\n71\n15 29\n17 18\n5 26\n7 10\n16 31\n26 35\n2 30\n16 24\n2 24\n7 12\n15 18\n12 13\n25 30\n1 30\n12 13\n16 20\n6 35\n20 28\n18 23\n9 31\n12 35\n14 17\n8 16\n3 10\n12 33\n7 19\n2 33\n7 17\n21 27\n10 30\n29 32\n9 28\n18 32\n28 31\n31 33\n4 26\n15 27\n10 17\n8 14\n11 28\n8 23\n17 33\n4 14\n3 6\n6 34\n19 23\n4 21\n16 27\n14 27\n6 19\n31 32\n29 32\n9 17\n1 21\n2 31\n18 29\n16 26\n15 18\n4 5\n13 20\n9 28\n18 30\n1 32\n2 9\n16 24\n1 20\n4 15\n16 23\n19 34\n5 22\n5 23",
"output": "2\n0\n8\n2\n4\n2\n10\n2\n10\n4\n0\n0\n0\n10\n0\n0\n10\n2\n2\n8\n4\n0\n6\n2\n4\n6\n12\n6\n2\n6\n2\n6\n4\n2\n0\n8\n2\n4\n6\n4\n8\n4\n6\n0\n10\n2\n6\n2\n2\n6\n0\n2\n4\n8\n12\n2\n2\n0\n0\n0\n6\n2\n12\n4\n2\n8\n6\n2\n4\n6\n8"
},
{
"input": "(((())((((()()((((((()((()(((((((((((()((\n6\n20 37\n28 32\n12 18\n7 25\n21 33\n4 5",
"output": "4\n0\n2\n6\n4\n2"
},
{
"input": "(((()((((()()()(()))((((()(((()))()((((()))()((())\n24\n37 41\n13 38\n31 34\n14 16\n29 29\n12 46\n1 26\n15 34\n8 47\n11 23\n6 32\n2 22\n9 27\n17 40\n6 15\n4 49\n12 33\n3 48\n22 47\n19 48\n10 27\n23 25\n4 44\n27 48",
"output": "2\n16\n0\n2\n0\n26\n16\n12\n30\n8\n18\n14\n14\n12\n6\n34\n16\n32\n18\n18\n12\n0\n30\n16"
},
{
"input": ")()((((((((((((((((()(((()()(()((((((()(((((((()()))((((())(((((((((()(((((((((\n51\n29 53\n31 69\n54 59\n3 52\n26 46\n14 62\n6 54\n39 56\n17 27\n46 74\n60 72\n18 26\n38 46\n4 27\n22 52\n44 49\n42 77\n2 20\n39 57\n61 70\n33 54\n10 30\n67 70\n46 66\n17 77\n5 52\n33 77\n26 32\n1 72\n40 78\n38 68\n19 47\n30 53\n19 29\n52 71\n1 11\n22 53\n17 42\n2 51\n4 12\n24 76\n22 34\n21 69\n11 69\n36 52\n17 31\n57 58\n54 62\n23 71\n5 46\n51 53",
"output": "12\n14\n4\n18\n6\n22\n18\n8\n4\n12\n2\n4\n2\n4\n16\n2\n14\n2\n8\n2\n10\n6\n2\n10\n24\n18\n16\n4\n26\n14\n14\n10\n12\n6\n6\n2\n16\n10\n18\n0\n22\n6\n20\n22\n10\n8\n2\n4\n22\n10\n0"
},
{
"input": "(\n1\n1 1",
"output": "0"
},
{
"input": ")\n1\n1 1",
"output": "0"
},
{
"input": "()\n1\n1 2",
"output": "2"
},
{
"input": ")(\n1\n1 2",
"output": "0"
}
] | 93 | 0 | 0 | 6,071 |
|
888 | Almost Identity Permutations | [
"combinatorics",
"dp",
"math"
] | null | null | A permutation *p* of size *n* is an array such that every integer from 1 to *n* occurs exactly once in this array.
Let's call a permutation an almost identity permutation iff there exist at least *n*<=-<=*k* indices *i* (1<=≤<=*i*<=≤<=*n*) such that *p**i*<==<=*i*.
Your task is to count the number of almost identity permutations for given numbers *n* and *k*. | The first line contains two integers *n* and *k* (4<=≤<=*n*<=≤<=1000, 1<=≤<=*k*<=≤<=4). | Print the number of almost identity permutations for given *n* and *k*. | [
"4 1\n",
"4 2\n",
"5 3\n",
"5 4\n"
] | [
"1\n",
"7\n",
"31\n",
"76\n"
] | none | [
{
"input": "4 1",
"output": "1"
},
{
"input": "4 2",
"output": "7"
},
{
"input": "5 3",
"output": "31"
},
{
"input": "5 4",
"output": "76"
},
{
"input": "200 1",
"output": "1"
},
{
"input": "200 2",
"output": "19901"
},
{
"input": "200 3",
"output": "2646701"
},
{
"input": "200 4",
"output": "584811251"
},
{
"input": "400 1",
"output": "1"
},
{
"input": "400 2",
"output": "79801"
},
{
"input": "400 3",
"output": "21253401"
},
{
"input": "400 4",
"output": "9477912501"
},
{
"input": "600 1",
"output": "1"
},
{
"input": "600 2",
"output": "179701"
},
{
"input": "600 3",
"output": "71820101"
},
{
"input": "600 4",
"output": "48187303751"
},
{
"input": "800 1",
"output": "1"
},
{
"input": "800 2",
"output": "319601"
},
{
"input": "800 3",
"output": "170346801"
},
{
"input": "800 4",
"output": "152620985001"
},
{
"input": "1000 1",
"output": "1"
},
{
"input": "1000 2",
"output": "499501"
},
{
"input": "1000 3",
"output": "332833501"
},
{
"input": "1000 4",
"output": "373086956251"
},
{
"input": "4 4",
"output": "24"
}
] | 93 | 307,200 | 0 | 6,073 |
|
420 | Bug in Code | [
"data structures",
"graphs",
"implementation",
"two pointers"
] | null | null | Recently a serious bug has been found in the FOS code. The head of the F company wants to find the culprit and punish him. For that, he set up an organizational meeting, the issue is: who's bugged the code? Each of the *n* coders on the meeting said: 'I know for sure that either *x* or *y* did it!'
The head of the company decided to choose two suspects and invite them to his office. Naturally, he should consider the coders' opinions. That's why the head wants to make such a choice that at least *p* of *n* coders agreed with it. A coder agrees with the choice of two suspects if at least one of the two people that he named at the meeting was chosen as a suspect. In how many ways can the head of F choose two suspects?
Note that even if some coder was chosen as a suspect, he can agree with the head's choice if he named the other chosen coder at the meeting. | The first line contains integers *n* and *p* (3<=≤<=*n*<=≤<=3·105; 0<=≤<=*p*<=≤<=*n*) — the number of coders in the F company and the minimum number of agreed people.
Each of the next *n* lines contains two integers *x**i*, *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=*n*) — the numbers of coders named by the *i*-th coder. It is guaranteed that *x**i*<=≠<=*i*,<= *y**i*<=≠<=*i*,<= *x**i*<=≠<=*y**i*. | Print a single integer –– the number of possible two-suspect sets. Note that the order of the suspects doesn't matter, that is, sets (1,<=2) и (2,<=1) are considered identical. | [
"4 2\n2 3\n1 4\n1 4\n2 1\n",
"8 6\n5 6\n5 7\n5 8\n6 2\n2 1\n7 3\n1 3\n1 4\n"
] | [
"6\n",
"1\n"
] | none | [
{
"input": "4 2\n2 3\n1 4\n1 4\n2 1",
"output": "6"
},
{
"input": "8 6\n5 6\n5 7\n5 8\n6 2\n2 1\n7 3\n1 3\n1 4",
"output": "1"
},
{
"input": "3 2\n2 3\n3 1\n2 1",
"output": "3"
},
{
"input": "4 1\n3 2\n4 1\n4 2\n1 2",
"output": "6"
},
{
"input": "4 2\n3 4\n4 3\n4 2\n3 1",
"output": "6"
},
{
"input": "4 3\n3 2\n4 3\n2 4\n3 2",
"output": "5"
},
{
"input": "4 4\n2 3\n3 4\n2 4\n2 1",
"output": "2"
},
{
"input": "5 1\n4 2\n4 5\n5 1\n5 1\n4 2",
"output": "10"
},
{
"input": "5 2\n4 3\n1 3\n4 2\n1 2\n1 4",
"output": "10"
},
{
"input": "5 3\n5 3\n5 1\n2 1\n5 3\n1 4",
"output": "9"
},
{
"input": "5 5\n3 2\n3 4\n2 5\n3 2\n4 3",
"output": "3"
},
{
"input": "10 1\n4 9\n8 9\n7 6\n1 5\n3 6\n4 3\n4 6\n10 1\n1 8\n7 9",
"output": "45"
},
{
"input": "10 2\n10 2\n9 3\n9 4\n7 2\n4 6\n10 1\n9 2\n3 10\n7 1\n5 1",
"output": "43"
},
{
"input": "10 3\n6 3\n6 10\n2 5\n5 7\n6 2\n9 2\n8 1\n10 5\n5 10\n7 6",
"output": "34"
},
{
"input": "10 4\n8 7\n1 5\n7 4\n7 8\n3 2\n10 8\n3 6\n9 7\n8 7\n4 1",
"output": "19"
},
{
"input": "8 8\n6 5\n1 6\n1 6\n1 6\n1 6\n1 2\n1 3\n6 4",
"output": "1"
},
{
"input": "5 5\n3 2\n3 4\n1 2\n1 2\n1 2",
"output": "3"
},
{
"input": "8 7\n7 8\n7 8\n1 6\n1 6\n1 2\n1 3\n6 4\n6 5",
"output": "0"
},
{
"input": "6 5\n5 6\n5 6\n5 6\n5 6\n1 2\n3 4",
"output": "8"
},
{
"input": "10 10\n5 6\n1 4\n1 4\n1 2\n1 2\n1 2\n1 3\n1 3\n1 3\n1 4",
"output": "2"
},
{
"input": "6 4\n2 3\n3 1\n1 2\n5 6\n6 4\n4 5",
"output": "9"
},
{
"input": "5 5\n4 5\n4 5\n4 5\n1 2\n1 2",
"output": "4"
},
{
"input": "5 3\n3 4\n3 4\n1 2\n1 2\n1 2",
"output": "7"
},
{
"input": "4 4\n3 4\n3 4\n1 2\n1 2",
"output": "4"
},
{
"input": "4 4\n3 4\n4 3\n1 2\n2 1",
"output": "4"
},
{
"input": "4 3\n3 4\n3 4\n1 2\n1 2",
"output": "4"
},
{
"input": "8 5\n5 6\n5 7\n5 8\n6 2\n2 1\n7 3\n1 3\n1 4",
"output": "5"
},
{
"input": "6 6\n5 6\n5 6\n5 6\n1 2\n1 3\n3 4",
"output": "0"
},
{
"input": "4 4\n2 3\n4 3\n2 1\n2 3",
"output": "3"
}
] | 30 | 0 | 0 | 6,087 |
|
921 | Labyrinth-1 | [] | null | null | You have a robot in a two-dimensional labyrinth which consists of *N*<=×<=*M* cells. Some pairs of cells adjacent by side are separated by a wall or a door. The labyrinth itself is separated from the outside with walls around it. Some labyrinth cells are the exits. In order to leave the labyrinth the robot should reach any exit. There are keys in some cells. Any key can open any door but after the door is opened the key stays in the lock. Thus every key can be used only once. There are no labyrinth cells that contain both a key and an exit. Also there can not be both a wall and a door between the pair of adjacent cells.
Your need to write a program in *abc* language (see the language description below) that will lead the robot to one of the exits. Lets numerate the labyrinth rows from 0 to *N*<=-<=1 top to bottom and the columns – from 0 to *M*<=-<=1 left to right.
In *abc* language the following primary commands are available:
- move-DIR – move to the adjacent cell in the direction. *down* increases the number of the row by 1, *right* increases the number of the column by 1. In case there’s a wall or a closed door in this direction, nothing’s happening. - open-DIR – open the door between the current cell and the adjacent one in *DIR* direction. In case there isn’t any door in this direction or it’s already been opened or the robot doesn’t have a key, nothing’s happening.- take – take the key in the current cell. In case there isn’t any key or the robot has already picked it up, nothing’s happening. The robot is able to carry any number of keys.- terminate – terminate the program. This command is not obligatory to use. In case it’s absent the command is added at the end of the program automatically.
Also, there are the following control commands in *abc* language:
- for-N OPS end – repeat the sequence of the *OPS* commands *N* times, 0<=<<=*N*<=≤<=100000. Each loop counter check counts as a command fulfilled by the robot. - if-ok OPS1 else OPS2 endif – carries out the sequence of the *OPS*1 commands, if the previous command of moving, taking the key or opening the door was successful, otherwise the sequence of the *OPS*2 commands is being carried out. Should there be no previous command run, the sequence *OPS*1 will be carried out. If-ok check counts as a command fulfilled by the robot. - break – stops the current *for* loop. - continue – finishes the current *for* loop iterations.
Note that the control and the primary commands can be fit into each other arbitrarily.
The robot will fulfill your commands sequentially until it exits the labyrinth, or it runs out of the commands, or the *terminate* command is run, or the quantity of the fulfilled commands exceeds the bound number 5·106.
In *abc* language each command is a separate word and should be separated from other commands with at least one space symbol.
You should write a program that prints the sequence of commands leading the robot out of the labyrinth. Of course, as you are a good programmer, you should optimize these sequence.
The number of the non-space symbols in the sequence should not exceed 107. If you succeed in finding the way out of the labyrinth *i* you’ll be granted the number of points equal to:
- *W**i* – labyrinth’s weight, some fixed constant. - *G**i* – number of robots moves. - *O**i* – number of fulfilled commands. Note that this number includes commands like *take* executed in the cells with no key, as well as opening commands applied to the already opened doors. - *L**i* – sequence length in symbols, excluding space symbols and line breaks. - *Q*<==<=10·*N*·*M*.
In case your sequence doesn’t lead the robot to the exit you’ll be granted 0 points. Your programs result will be the sum of all *S**i*. You should maximize this total sum.
All labyrinths will be known and available to you. You can download the archive with labyrinths by any of the given links, password to extract files is aimtechiscool:
1. [https://drive.google.com/file/d/1dkIBfW_Gy6c3FJtXjMXZPMsGKRyn3pzp](https://drive.google.com/file/d/1dkIBfW_Gy6c3FJtXjMXZPMsGKRyn3pzp) 1. [https://www.dropbox.com/s/77jrplnjgmviiwt/aimmaze.zip?dl=0](https://www.dropbox.com/s/77jrplnjgmviiwt/aimmaze.zip?dl=0) 1. [https://yadi.sk/d/JNXDLeH63RzaCi](https://yadi.sk/d/JNXDLeH63RzaCi)
In order to make local testing of your programs more convenient, the program calculating your results (checker) and the labyrinth visualizer will be available. This program is written in *python*3 programming language, that’s why you’re going to need *python*3 interpreter, as well as *pillow* library, which you can install with the following command pip3 install pillow. *pip*3 is a utility program for *python*3 package (library) installation. It will be installed automatically with the *python*3 interpreter.
Example command to run checker and visualizer: python3 aimmaze.py maze.in robot.abc --image maze.png. The checker can be run separately of visualization: python3 aimmaze.py maze.in robot.abc. Flag --output-log will let you see the information of robots each step: python3 aimmaze.py maze.in robot.abc --output-log. Note *python*3 can be installed as *python* on your computer.
To adjust image settings, you can edit constants at the beginning of the program *aimmaze*.*py*. | The first line contains integers *i*,<= *W*,<= *N*,<= *M*,<= *x*0,<= *y*0,<= *C*,<= *D*,<= *K*,<= *E*.
- 1<=≤<=*i*<=≤<=14 – labyrinth’s number, which is needed for a checking program. - 1<=≤<=*W*<=≤<=1018 – labyrinth’s weight, which is needed for a checking program. - 2<=≤<=*N*,<=*M*<=≤<=1000 – labyrinth’s height and width. - 0<=≤<=*x*0<=≤<=*N*<=-<=1,<= 0<=≤<=*y*0<=≤<=*M*<=-<=1 – robot’s starting position (*x*0,<=*y*0). - 0<=≤<=*C*<=≤<=2·*NM* – number of walls. - 0<=≤<=*D*<=≤<=105 – number of doors. - 0<=≤<=*K*<=≤<=105 – number of keys. - 1<=≤<=*E*<=≤<=1000 – number of exits.
The *x* coordinate corresponds to the row number, *y* – to the column number. (0,<=0) cell is located on the left-up corner, so that *down* direction increases the *x* coordinate, while *right* direction increases the *y* coordinate.
Each of the next *C* lines contains 4 integers each *x*1,<=*y*1,<=*x*2,<=*y*2 – the coordinates of cells with a wall between them in a zero based indexing. It is guaranteed that |*x*1<=-<=*x*2|<=+<=|*y*1<=-<=*y*2|<==<=1,<= 0<=≤<=*x*1,<=*x*2<=≤<=*N*<=-<=1,<= 0<=≤<=*y*1,<=*y*2<=≤<=*M*<=-<=1. Also there are always walls around the labyrinth’s borders, which are not given in the labyrinths description.
Each of the next *D* lines contains door description in the same format as walls description. It is guaranteed that doors and walls don’t overlap.
Each of the next *K* rows contains a pair of integer which are the key coordinates in a zero based indexing.
Each of the next *E* rows contains a pair of integer which are the exit coordinates in a zero based indexing.
It is guaranteed that the robots starting position as well as keys and exits are located in pairwise different cells. | Print a program in *abc* language which passes the given labyrinth. Commands have to be separated by at least one space symbol. You can use arbitrary formatting for the program. | [
"1 1 30 30 1 1 1 1 1 1\n1 1 1 2\n2 2 2 3\n1 4\n9 0\n"
] | [
"for-1111\n take\n open-up\n open-left\n open-right\n open-down\n move-left\n if-ok\n for-11\n move-left\n take\n open-up\n open-left\n open-right\n open-down\n end\n else\n move-right\n if-ok\n for-11\n move-right\n take\n open-up\n open-left\n open-right\n open-down\n end\n else endif\n endif\n\n move-up\n if-ok\n for-11\n move-up\n take\n open-up\n open-left\n open-right\n open-down\n end\n else\n move-down\n if-ok\n for-11\n move-down\n take\n open-up\n open-left\n open-right\n open-down\n end\n else endif\n endif\n\nend"
] | none | [] | 46 | 5,632,000 | 2 | 6,097 |
|
129 | Students and Shoelaces | [
"brute force",
"dfs and similar",
"graphs",
"implementation"
] | null | null | Anna and Maria are in charge of the math club for junior students. When the club gathers together, the students behave badly. They've brought lots of shoe laces to the club and got tied with each other. Specifically, each string ties together two students. Besides, if two students are tied, then the lace connects the first student with the second one as well as the second student with the first one.
To restore order, Anna and Maria do the following. First, for each student Anna finds out what other students he is tied to. If a student is tied to exactly one other student, Anna reprimands him. Then Maria gathers in a single group all the students who have been just reprimanded. She kicks them out from the club. This group of students immediately leaves the club. These students takes with them the laces that used to tie them. Then again for every student Anna finds out how many other students he is tied to and so on. And they do so until Anna can reprimand at least one student.
Determine how many groups of students will be kicked out of the club. | The first line contains two integers *n* and *m* — the initial number of students and laces (). The students are numbered from 1 to *n*, and the laces are numbered from 1 to *m*. Next *m* lines each contain two integers *a* and *b* — the numbers of students tied by the *i*-th lace (1<=≤<=*a*,<=*b*<=≤<=*n*,<=*a*<=≠<=*b*). It is guaranteed that no two students are tied with more than one lace. No lace ties a student to himself. | Print the single number — the number of groups of students that will be kicked out from the club. | [
"3 3\n1 2\n2 3\n3 1\n",
"6 3\n1 2\n2 3\n3 4\n",
"6 5\n1 4\n2 4\n3 4\n5 4\n6 4\n"
] | [
"0\n",
"2\n",
"1\n"
] | In the first sample Anna and Maria won't kick out any group of students — in the initial position every student is tied to two other students and Anna won't be able to reprimand anyone.
In the second sample four students are tied in a chain and two more are running by themselves. First Anna and Maria kick out the two students from both ends of the chain (1 and 4), then — two other students from the chain (2 and 3). At that the students who are running by themselves will stay in the club.
In the third sample Anna and Maria will momentarily kick out all students except for the fourth one and the process stops at that point. The correct answer is one. | [
{
"input": "3 3\n1 2\n2 3\n3 1",
"output": "0"
},
{
"input": "6 3\n1 2\n2 3\n3 4",
"output": "2"
},
{
"input": "6 5\n1 4\n2 4\n3 4\n5 4\n6 4",
"output": "1"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1",
"output": "0"
},
{
"input": "5 4\n1 4\n4 3\n4 5\n5 2",
"output": "2"
},
{
"input": "11 10\n1 2\n1 3\n3 4\n1 5\n5 6\n6 7\n1 8\n8 9\n9 10\n10 11",
"output": "4"
},
{
"input": "7 7\n1 2\n2 3\n3 1\n1 4\n4 5\n4 6\n4 7",
"output": "2"
},
{
"input": "12 49\n6 3\n12 9\n10 11\n3 5\n10 2\n6 9\n8 5\n6 12\n7 3\n3 12\n3 2\n5 6\n7 5\n9 2\n11 1\n7 6\n5 4\n8 7\n12 5\n5 11\n8 9\n10 3\n6 2\n10 4\n9 10\n9 11\n11 3\n5 9\n11 6\n10 8\n7 9\n10 7\n4 6\n3 8\n4 11\n12 2\n4 9\n2 11\n7 11\n1 5\n7 2\n8 1\n4 12\n9 1\n4 2\n8 2\n11 12\n3 1\n1 6",
"output": "0"
},
{
"input": "10 29\n4 5\n1 7\n4 2\n3 8\n7 6\n8 10\n10 6\n4 1\n10 1\n6 2\n7 4\n7 10\n2 7\n9 8\n5 10\n2 5\n8 5\n4 9\n2 8\n5 7\n4 8\n7 3\n6 5\n1 3\n1 9\n10 4\n10 9\n10 2\n2 3",
"output": "0"
},
{
"input": "9 33\n5 7\n5 9\n9 6\n9 1\n7 4\n3 5\n7 8\n8 6\n3 6\n8 2\n3 8\n1 6\n1 8\n1 4\n4 2\n1 2\n2 5\n3 4\n8 5\n2 6\n3 1\n1 5\n1 7\n3 2\n5 4\n9 4\n3 9\n7 3\n6 4\n9 8\n7 9\n8 4\n6 5",
"output": "0"
},
{
"input": "7 8\n5 7\n2 7\n1 6\n1 3\n3 7\n6 3\n6 4\n2 6",
"output": "1"
},
{
"input": "6 15\n3 1\n4 5\n1 4\n6 2\n3 5\n6 3\n1 6\n1 5\n2 3\n2 5\n6 4\n5 6\n4 2\n1 2\n3 4",
"output": "0"
},
{
"input": "7 11\n5 3\n6 5\n6 4\n1 6\n7 1\n2 6\n7 5\n2 5\n3 1\n3 4\n2 4",
"output": "0"
},
{
"input": "95 0",
"output": "0"
},
{
"input": "100 0",
"output": "0"
},
{
"input": "62 30\n29 51\n29 55\n4 12\n53 25\n36 28\n32 11\n29 11\n47 9\n21 8\n25 4\n51 19\n26 56\n22 21\n37 9\n9 33\n7 25\n16 7\n40 49\n15 21\n49 58\n34 30\n20 46\n62 48\n53 57\n33 6\n60 37\n41 34\n62 36\n36 43\n11 39",
"output": "2"
},
{
"input": "56 25\n12 40\n31 27\n18 40\n1 43\n9 10\n25 47\n27 29\n26 28\n19 38\n19 40\n22 14\n21 51\n29 31\n55 29\n51 33\n20 17\n24 15\n3 48\n31 56\n15 29\n49 42\n50 4\n22 42\n25 17\n18 51",
"output": "3"
},
{
"input": "51 29\n36 30\n37 45\n4 24\n40 18\n47 35\n15 1\n30 38\n15 18\n32 40\n34 42\n2 47\n35 21\n25 28\n13 1\n13 28\n36 1\n46 47\n22 17\n41 45\n43 45\n40 15\n29 35\n47 15\n30 21\n9 14\n18 38\n18 50\n42 10\n31 41",
"output": "3"
},
{
"input": "72 45\n5 15\n8 18\n40 25\n71 66\n67 22\n6 44\n16 25\n8 23\n19 70\n26 34\n48 15\n24 2\n54 68\n44 43\n17 37\n49 19\n71 49\n34 38\n59 1\n65 70\n11 54\n5 11\n15 31\n29 50\n48 16\n70 57\n25 59\n2 59\n56 12\n66 62\n24 16\n46 27\n45 67\n68 43\n31 11\n31 30\n8 44\n64 33\n38 44\n54 10\n13 9\n7 51\n25 4\n40 70\n26 65",
"output": "5"
},
{
"input": "56 22\n17 27\n48 49\n29 8\n47 20\n32 7\n44 5\n14 39\n5 13\n40 2\n50 42\n38 9\n18 37\n16 44\n21 32\n21 39\n37 54\n19 46\n30 47\n17 13\n30 31\n49 16\n56 7",
"output": "4"
},
{
"input": "81 46\n53 58\n31 14\n18 54\n43 61\n57 65\n6 38\n49 5\n6 40\n6 10\n17 72\n27 48\n58 39\n21 75\n21 43\n78 20\n34 4\n15 35\n74 48\n76 15\n49 38\n46 51\n78 9\n80 5\n26 42\n64 31\n46 72\n1 29\n20 17\n32 45\n53 43\n24 5\n52 59\n3 80\n78 19\n61 17\n80 12\n17 8\n63 2\n8 4\n44 10\n53 72\n18 60\n68 15\n17 58\n79 71\n73 35",
"output": "4"
},
{
"input": "82 46\n64 43\n32 24\n57 30\n24 46\n70 12\n23 41\n63 39\n46 70\n4 61\n19 12\n39 79\n14 28\n37 3\n12 27\n15 20\n35 39\n25 64\n59 16\n68 63\n37 14\n76 7\n67 29\n9 5\n14 55\n46 26\n71 79\n47 42\n5 55\n18 45\n28 40\n44 78\n74 9\n60 53\n44 19\n52 81\n65 52\n40 13\n40 19\n43 1\n24 23\n68 9\n16 20\n70 14\n41 40\n29 10\n45 65",
"output": "8"
},
{
"input": "69 38\n63 35\n52 17\n43 69\n2 57\n12 5\n26 36\n13 10\n16 68\n5 18\n5 41\n10 4\n60 9\n39 22\n39 28\n53 57\n13 52\n66 38\n49 61\n12 19\n27 46\n67 7\n25 8\n23 58\n52 34\n29 2\n2 42\n8 53\n57 43\n68 11\n48 28\n56 19\n46 33\n63 21\n57 16\n68 59\n67 34\n28 43\n56 36",
"output": "4"
},
{
"input": "75 31\n32 50\n52 8\n21 9\n68 35\n12 72\n47 26\n38 58\n40 55\n31 70\n53 75\n44 1\n65 22\n33 22\n33 29\n14 39\n1 63\n16 52\n70 15\n12 27\n63 31\n47 9\n71 31\n43 17\n43 49\n8 26\n11 39\n9 22\n30 45\n65 47\n32 9\n60 70",
"output": "4"
},
{
"input": "77 41\n48 45\n50 36\n6 69\n70 3\n22 21\n72 6\n54 3\n49 31\n2 23\n14 59\n68 58\n4 54\n60 12\n63 60\n44 24\n28 24\n40 8\n5 1\n13 24\n29 15\n19 76\n70 50\n65 71\n23 33\n58 16\n50 42\n71 28\n58 54\n24 73\n6 17\n29 13\n60 4\n42 4\n21 60\n77 39\n57 9\n51 19\n61 6\n49 36\n24 32\n41 66",
"output": "3"
},
{
"input": "72 39\n9 44\n15 12\n2 53\n34 18\n41 70\n54 72\n39 19\n26 7\n4 54\n53 59\n46 49\n70 6\n9 10\n64 51\n31 60\n61 53\n59 71\n9 60\n67 16\n4 16\n34 3\n2 61\n16 23\n34 6\n10 18\n13 38\n66 40\n59 9\n40 14\n38 24\n31 48\n7 69\n20 39\n49 52\n32 67\n61 35\n62 45\n37 54\n5 27",
"output": "8"
},
{
"input": "96 70\n30 37\n47 56\n19 79\n15 28\n2 43\n43 54\n59 75\n42 22\n38 18\n18 14\n47 41\n60 29\n35 11\n90 4\n14 41\n11 71\n41 24\n68 28\n45 92\n14 15\n34 63\n77 32\n67 38\n36 8\n37 4\n58 95\n68 84\n69 81\n35 23\n56 63\n78 91\n35 44\n66 63\n80 19\n87 88\n28 14\n62 35\n24 23\n83 37\n54 89\n14 40\n9 35\n94 9\n56 46\n92 70\n16 58\n96 31\n53 23\n56 5\n36 42\n89 77\n29 51\n26 13\n46 70\n25 56\n95 96\n3 51\n76 8\n36 82\n44 85\n54 56\n89 67\n32 5\n82 78\n33 65\n43 28\n35 1\n94 13\n26 24\n10 51",
"output": "4"
},
{
"input": "76 49\n15 59\n23 26\n57 48\n49 51\n42 76\n36 40\n37 40\n29 15\n28 71\n47 70\n27 39\n76 21\n55 16\n21 18\n19 1\n25 31\n51 71\n54 42\n28 9\n61 69\n33 9\n18 19\n58 51\n51 45\n29 34\n9 67\n26 8\n70 37\n11 62\n24 22\n59 76\n67 17\n59 11\n54 1\n12 57\n23 3\n46 47\n37 20\n65 9\n51 12\n31 19\n56 13\n58 22\n26 59\n39 76\n27 11\n48 64\n59 35\n44 75",
"output": "5"
},
{
"input": "52 26\n29 41\n16 26\n18 48\n31 17\n37 42\n26 1\n11 7\n29 6\n23 17\n12 47\n34 23\n41 16\n15 35\n25 21\n45 7\n52 2\n37 10\n28 19\n1 27\n30 47\n42 35\n50 30\n30 34\n19 30\n42 25\n47 31",
"output": "3"
},
{
"input": "86 48\n59 34\n21 33\n45 20\n62 23\n4 68\n2 65\n63 26\n64 20\n51 34\n64 21\n68 78\n61 80\n81 3\n38 39\n47 48\n24 34\n44 71\n72 78\n50 2\n13 51\n82 78\n11 74\n14 48\n2 75\n49 55\n63 85\n20 85\n4 53\n51 15\n11 67\n1 15\n2 64\n10 81\n6 7\n68 18\n84 28\n77 69\n10 36\n15 14\n32 86\n16 79\n26 13\n38 55\n47 43\n47 39\n45 37\n58 81\n42 35",
"output": "8"
},
{
"input": "58 29\n27 24\n40 52\n51 28\n44 50\n7 28\n14 53\n10 16\n16 45\n8 56\n35 26\n39 6\n6 14\n45 22\n35 13\n20 17\n42 6\n37 21\n4 11\n26 56\n54 55\n3 57\n40 3\n55 27\n4 51\n35 29\n50 16\n47 7\n48 20\n1 37",
"output": "3"
},
{
"input": "51 23\n46 47\n31 27\n1 20\n49 16\n2 10\n29 47\n13 27\n34 26\n31 2\n28 20\n17 40\n39 4\n29 26\n28 44\n3 39\n50 12\n19 1\n30 21\n41 23\n2 29\n16 3\n49 28\n49 41",
"output": "4"
},
{
"input": "75 43\n46 34\n33 12\n51 39\n47 74\n68 64\n40 46\n20 51\n47 19\n4 5\n57 59\n12 26\n68 65\n38 42\n73 37\n5 74\n36 61\n8 18\n58 33\n34 73\n42 43\n10 49\n70 50\n49 18\n24 53\n71 73\n44 24\n49 56\n24 29\n44 67\n70 46\n57 25\n73 63\n3 51\n30 71\n41 44\n17 69\n17 18\n19 68\n42 7\n11 51\n1 5\n72 23\n65 53",
"output": "5"
}
] | 124 | 307,200 | 3 | 6,124 |
|
70 | Cookies | [
"math"
] | A. Cookies | 1 | 256 | Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square *k*<=×<=*k* in size, divided into blocks 1<=×<=1 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie *k* in size. Fangy also has a box with a square base 2*n*<=×<=2*n*, divided into blocks 1<=×<=1 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure:
To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end. | The first line contains a single integer *n* (0<=≤<=*n*<=≤<=1000). | Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106<=+<=3. | [
"3\n"
] | [
"9"
] | If the box possesses the base of 2<sup class="upper-index">3</sup> × 2<sup class="upper-index">3</sup> (as in the example), then the cookies will be put there in the following manner: | [
{
"input": "3",
"output": "9"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "4",
"output": "27"
},
{
"input": "6",
"output": "243"
},
{
"input": "11",
"output": "59049"
},
{
"input": "14",
"output": "594320"
},
{
"input": "15",
"output": "782957"
},
{
"input": "7",
"output": "729"
},
{
"input": "0",
"output": "1"
},
{
"input": "1000",
"output": "691074"
},
{
"input": "657",
"output": "874011"
},
{
"input": "561",
"output": "842553"
},
{
"input": "823",
"output": "858672"
},
{
"input": "850",
"output": "557186"
},
{
"input": "298",
"output": "999535"
},
{
"input": "262",
"output": "946384"
},
{
"input": "910",
"output": "678945"
},
{
"input": "617",
"output": "247876"
},
{
"input": "857",
"output": "562128"
},
{
"input": "69",
"output": "327984"
},
{
"input": "589",
"output": "889192"
},
{
"input": "928",
"output": "794863"
},
{
"input": "696",
"output": "695035"
},
{
"input": "226",
"output": "376094"
}
] | 77 | 0 | 0 | 6,143 |
534 | Exam | [
"constructive algorithms",
"implementation",
"math"
] | null | null | An exam for *n* students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (*i* and *i*<=+<=1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.
Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side. | A single line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of students at an exam. | In the first line print integer *k* — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.
In the second line print *k* distinct integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*), where *a**i* is the number of the student on the *i*-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |*a**i*<=-<=*a**i*<=+<=1|<=≠<=1 for all *i* from 1 to *k*<=-<=1.
If there are several possible answers, output any of them. | [
"6",
"3\n"
] | [
"6\n1 5 3 6 2 4",
"2\n1 3"
] | none | [
{
"input": "6",
"output": "6\n5 3 1 6 4 2 "
},
{
"input": "3",
"output": "2\n1 3"
},
{
"input": "1",
"output": "1\n1 "
},
{
"input": "2",
"output": "1\n1"
},
{
"input": "4",
"output": "4\n3 1 4 2 "
},
{
"input": "5",
"output": "5\n5 3 1 4 2 "
},
{
"input": "7",
"output": "7\n7 5 3 1 6 4 2 "
},
{
"input": "8",
"output": "8\n7 5 3 1 8 6 4 2 "
},
{
"input": "9",
"output": "9\n9 7 5 3 1 8 6 4 2 "
},
{
"input": "10",
"output": "10\n9 7 5 3 1 10 8 6 4 2 "
},
{
"input": "13",
"output": "13\n13 11 9 7 5 3 1 12 10 8 6 4 2 "
},
{
"input": "16",
"output": "16\n15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2 "
},
{
"input": "25",
"output": "25\n25 23 21 19 17 15 13 11 9 7 5 3 1 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "29",
"output": "29\n29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "120",
"output": "120\n119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "128",
"output": "128\n127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 "
},
{
"input": "216",
"output": "216\n215 213 211 209 207 205 203 201 199 197 195 193 191 189 187 185 183 181 179 177 175 173 171 169 167 165 163 161 159 157 155 153 151 149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 216 214 212 210 208 206 204 202 200 198 196 194 192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158 156 154 1..."
},
{
"input": "729",
"output": "729\n729 727 725 723 721 719 717 715 713 711 709 707 705 703 701 699 697 695 693 691 689 687 685 683 681 679 677 675 673 671 669 667 665 663 661 659 657 655 653 651 649 647 645 643 641 639 637 635 633 631 629 627 625 623 621 619 617 615 613 611 609 607 605 603 601 599 597 595 593 591 589 587 585 583 581 579 577 575 573 571 569 567 565 563 561 559 557 555 553 551 549 547 545 543 541 539 537 535 533 531 529 527 525 523 521 519 517 515 513 511 509 507 505 503 501 499 497 495 493 491 489 487 485 483 481 479 47..."
},
{
"input": "1111",
"output": "1111\n1111 1109 1107 1105 1103 1101 1099 1097 1095 1093 1091 1089 1087 1085 1083 1081 1079 1077 1075 1073 1071 1069 1067 1065 1063 1061 1059 1057 1055 1053 1051 1049 1047 1045 1043 1041 1039 1037 1035 1033 1031 1029 1027 1025 1023 1021 1019 1017 1015 1013 1011 1009 1007 1005 1003 1001 999 997 995 993 991 989 987 985 983 981 979 977 975 973 971 969 967 965 963 961 959 957 955 953 951 949 947 945 943 941 939 937 935 933 931 929 927 925 923 921 919 917 915 913 911 909 907 905 903 901 899 897 895 893 891 889 8..."
},
{
"input": "1597",
"output": "1597\n1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 1575 1573 1571 1569 1567 1565 1563 1561 1559 1557 1555 1553 1551 1549 1547 1545 1543 1541 1539 1537 1535 1533 1531 1529 1527 1525 1523 1521 1519 1517 1515 1513 1511 1509 1507 1505 1503 1501 1499 1497 1495 1493 1491 1489 1487 1485 1483 1481 1479 1477 1475 1473 1471 1469 1467 1465 1463 1461 1459 1457 1455 1453 1451 1449 1447 1445 1443 1441 1439 1437 1435 1433 1431 1429 1427 1425 1423 1421 1419 1417 1415 1413 1411 1409 1407 1405 1403 1401 1399 1397 ..."
},
{
"input": "1777",
"output": "1777\n1777 1775 1773 1771 1769 1767 1765 1763 1761 1759 1757 1755 1753 1751 1749 1747 1745 1743 1741 1739 1737 1735 1733 1731 1729 1727 1725 1723 1721 1719 1717 1715 1713 1711 1709 1707 1705 1703 1701 1699 1697 1695 1693 1691 1689 1687 1685 1683 1681 1679 1677 1675 1673 1671 1669 1667 1665 1663 1661 1659 1657 1655 1653 1651 1649 1647 1645 1643 1641 1639 1637 1635 1633 1631 1629 1627 1625 1623 1621 1619 1617 1615 1613 1611 1609 1607 1605 1603 1601 1599 1597 1595 1593 1591 1589 1587 1585 1583 1581 1579 1577 ..."
},
{
"input": "2048",
"output": "2048\n2047 2045 2043 2041 2039 2037 2035 2033 2031 2029 2027 2025 2023 2021 2019 2017 2015 2013 2011 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 1951 1949 1947 1945 1943 1941 1939 1937 1935 1933 1931 1929 1927 1925 1923 1921 1919 1917 1915 1913 1911 1909 1907 1905 1903 1901 1899 1897 1895 1893 1891 1889 1887 1885 1883 1881 1879 1877 1875 1873 1871 1869 1867 1865 1863 1861 1859 1857 1855 1853 1851 1849 1847 ..."
},
{
"input": "2999",
"output": "2999\n2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 2799 ..."
},
{
"input": "3001",
"output": "3001\n3001 2999 2997 2995 2993 2991 2989 2987 2985 2983 2981 2979 2977 2975 2973 2971 2969 2967 2965 2963 2961 2959 2957 2955 2953 2951 2949 2947 2945 2943 2941 2939 2937 2935 2933 2931 2929 2927 2925 2923 2921 2919 2917 2915 2913 2911 2909 2907 2905 2903 2901 2899 2897 2895 2893 2891 2889 2887 2885 2883 2881 2879 2877 2875 2873 2871 2869 2867 2865 2863 2861 2859 2857 2855 2853 2851 2849 2847 2845 2843 2841 2839 2837 2835 2833 2831 2829 2827 2825 2823 2821 2819 2817 2815 2813 2811 2809 2807 2805 2803 2801 ..."
},
{
"input": "4181",
"output": "4181\n4181 4179 4177 4175 4173 4171 4169 4167 4165 4163 4161 4159 4157 4155 4153 4151 4149 4147 4145 4143 4141 4139 4137 4135 4133 4131 4129 4127 4125 4123 4121 4119 4117 4115 4113 4111 4109 4107 4105 4103 4101 4099 4097 4095 4093 4091 4089 4087 4085 4083 4081 4079 4077 4075 4073 4071 4069 4067 4065 4063 4061 4059 4057 4055 4053 4051 4049 4047 4045 4043 4041 4039 4037 4035 4033 4031 4029 4027 4025 4023 4021 4019 4017 4015 4013 4011 4009 4007 4005 4003 4001 3999 3997 3995 3993 3991 3989 3987 3985 3983 3981 ..."
},
{
"input": "4990",
"output": "4990\n4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 4789 ..."
},
{
"input": "4991",
"output": "4991\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4992",
"output": "4992\n4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 4791 ..."
},
{
"input": "4993",
"output": "4993\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4994",
"output": "4994\n4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 4793 ..."
},
{
"input": "4995",
"output": "4995\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4996",
"output": "4996\n4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 4795 ..."
},
{
"input": "4997",
"output": "4997\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4998",
"output": "4998\n4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 4797 ..."
},
{
"input": "4999",
"output": "4999\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
},
{
"input": "5000",
"output": "5000\n4999 4997 4995 4993 4991 4989 4987 4985 4983 4981 4979 4977 4975 4973 4971 4969 4967 4965 4963 4961 4959 4957 4955 4953 4951 4949 4947 4945 4943 4941 4939 4937 4935 4933 4931 4929 4927 4925 4923 4921 4919 4917 4915 4913 4911 4909 4907 4905 4903 4901 4899 4897 4895 4893 4891 4889 4887 4885 4883 4881 4879 4877 4875 4873 4871 4869 4867 4865 4863 4861 4859 4857 4855 4853 4851 4849 4847 4845 4843 4841 4839 4837 4835 4833 4831 4829 4827 4825 4823 4821 4819 4817 4815 4813 4811 4809 4807 4805 4803 4801 4799 ..."
}
] | 124 | 921,600 | 3 | 6,193 |
|
999 | Cards and Joy | [
"dp"
] | null | null | There are $n$ players sitting at the card table. Each player has a favorite number. The favorite number of the $j$-th player is $f_j$.
There are $k \cdot n$ cards on the table. Each card contains a single integer: the $i$-th card contains number $c_i$. Also, you are given a sequence $h_1, h_2, \dots, h_k$. Its meaning will be explained below.
The players have to distribute all the cards in such a way that each of them will hold exactly $k$ cards. After all the cards are distributed, each player counts the number of cards he has that contains his favorite number. The joy level of a player equals $h_t$ if the player holds $t$ cards containing his favorite number. If a player gets no cards with his favorite number (i.e., $t=0$), his joy level is $0$.
Print the maximum possible total joy levels of the players after the cards are distributed. Note that the sequence $h_1, \dots, h_k$ is the same for all the players. | The first line of input contains two integers $n$ and $k$ ($1 \le n \le 500, 1 \le k \le 10$) — the number of players and the number of cards each player will get.
The second line contains $k \cdot n$ integers $c_1, c_2, \dots, c_{k \cdot n}$ ($1 \le c_i \le 10^5$) — the numbers written on the cards.
The third line contains $n$ integers $f_1, f_2, \dots, f_n$ ($1 \le f_j \le 10^5$) — the favorite numbers of the players.
The fourth line contains $k$ integers $h_1, h_2, \dots, h_k$ ($1 \le h_t \le 10^5$), where $h_t$ is the joy level of a player if he gets exactly $t$ cards with his favorite number written on them. It is guaranteed that the condition $h_{t - 1} < h_t$ holds for each $t \in [2..k]$. | Print one integer — the maximum possible total joy levels of the players among all possible card distributions. | [
"4 3\n1 3 2 8 5 5 8 2 2 8 5 2\n1 2 2 5\n2 6 7\n",
"3 3\n9 9 9 9 9 9 9 9 9\n1 2 3\n1 2 3\n"
] | [
"21\n",
"0\n"
] | In the first example, one possible optimal card distribution is the following:
- Player $1$ gets cards with numbers $[1, 3, 8]$; - Player $2$ gets cards with numbers $[2, 2, 8]$; - Player $3$ gets cards with numbers $[2, 2, 8]$; - Player $4$ gets cards with numbers $[5, 5, 5]$.
Thus, the answer is $2 + 6 + 6 + 7 = 21$.
In the second example, no player can get a card with his favorite number. Thus, the answer is $0$. | [
{
"input": "4 3\n1 3 2 8 5 5 8 2 2 8 5 2\n1 2 2 5\n2 6 7",
"output": "21"
},
{
"input": "3 3\n9 9 9 9 9 9 9 9 9\n1 2 3\n1 2 3",
"output": "0"
},
{
"input": "1 1\n1\n2\n1",
"output": "0"
},
{
"input": "1 1\n1\n1\n1",
"output": "1"
},
{
"input": "1 1\n1\n1\n100000",
"output": "100000"
},
{
"input": "50 1\n52 96 99 37 143 148 10 140 131 29 82 134 56 73 121 57 98 101 134 4 103 10 86 70 4 98 102 35 149 47 136 87 4 127 142 105 78 10 123 75 67 149 81 78 34 79 62 12 43 115\n31 132 59 75 4 135 138 33 33 60 135 5 30 127 61 74 102 131 11 16 74 4 101 74 70 45 29 12 137 59 24 52 25 122 64 147 92 77 23 6 19 76 26 55 126 130 4 148 86 3\n94393",
"output": "1321502"
},
{
"input": "50 1\n995 1815 941 1716 725 1098 747 627 1728 1007 34 1001 679 1742 22 1495 1299 1696 507 631 1971 775 1052 1665 1035 203 1564 1329 1592 1295 983 177 734 1442 172 943 33 486 1078 946 947 592 1524 563 396 1541 1670 326 543 79\n176 214 1601 1758 1468 972 628 1524 1506 425 746 309 387 1761 1002 625 496 1638 1855 1115 47 1813 1258 289 891 518 1247 1782 788 1449 1174 183 899 1728 366 1270 1641 327 1839 1093 223 1005 1214 1866 1432 1715 25 1240 1234 324\n52314",
"output": "104628"
}
] | 187 | 24,268,800 | 3 | 6,250 |
|
137 | Postcards and photos | [
"implementation"
] | null | null | Polycarpus has postcards and photos hung in a row on the wall. He decided to put them away to the closet and hang on the wall a famous painter's picture. Polycarpus does it like that: he goes from the left to the right and removes the objects consecutively. As Polycarpus doesn't want any mix-ups to happen, he will not carry in his hands objects of two different types. In other words, Polycarpus can't carry both postcards and photos simultaneously. Sometimes he goes to the closet and puts the objects there, thus leaving his hands free. Polycarpus must put all the postcards and photos to the closet. He cannot skip objects. What minimum number of times he should visit the closet if he cannot carry more than 5 items? | The only line of the input data contains a non-empty string consisting of letters "С" and "P" whose length does not exceed 100 characters. If the *i*-th character in the string is the letter "С", that means that the *i*-th object (the numbering goes from the left to the right) on Polycarpus' wall is a postcard. And if the *i*-th character is the letter "P", than the *i*-th object on the wall is a photo. | Print the only number — the minimum number of times Polycarpus has to visit the closet. | [
"CPCPCPC\n",
"CCCCCCPPPPPP\n",
"CCCCCCPPCPPPPPPPPPP\n",
"CCCCCCCCCC\n"
] | [
"7\n",
"4\n",
"6\n",
"2\n"
] | In the first sample Polycarpus needs to take one item to the closet 7 times.
In the second sample Polycarpus can first take 3 postcards to the closet; then 3 more. He can take the 6 photos that are left in the similar way, going to the closet twice.
In the third sample Polycarpus can visit the closet twice, both times carrying 3 postcards. Then he can take there 2 photos at once, then one postcard and finally, he can carry the last 10 photos if he visits the closet twice.
In the fourth sample Polycarpus can visit the closet twice and take there all 10 postcards (5 items during each go). | [
{
"input": "CPCPCPC",
"output": "7"
},
{
"input": "CCCCCCPPPPPP",
"output": "4"
},
{
"input": "CCCCCCPPCPPPPPPPPPP",
"output": "6"
},
{
"input": "CCCCCCCCCC",
"output": "2"
},
{
"input": "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC",
"output": "20"
},
{
"input": "CPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCP",
"output": "100"
},
{
"input": "CCCCCCPPPPPPCCCCCCPPPPPPCCCCCCPPPPPPCCCCCCPPPPPPCCCCCCPPPPPPCCCCCCPPPPPPCCCCCCPPPPPP",
"output": "28"
},
{
"input": "P",
"output": "1"
},
{
"input": "C",
"output": "1"
},
{
"input": "PC",
"output": "2"
},
{
"input": "PPPPP",
"output": "1"
},
{
"input": "PPPP",
"output": "1"
},
{
"input": "CCCCCCCCCC",
"output": "2"
},
{
"input": "CP",
"output": "2"
},
{
"input": "CPCCPCPPPC",
"output": "7"
},
{
"input": "PPCPCCPCPPCCPPPPPPCP",
"output": "12"
},
{
"input": "PCPCCPCPPCCPCPCCPPPPPCPCPCPCCC",
"output": "20"
},
{
"input": "CCPPPPPCPCCPPPCCPPCPCCPCPPCPPCCCPPCPPPCC",
"output": "21"
},
{
"input": "CPPCCCCCCPCCCCPCCPCPPPCPCCCCCCCPCCPPCCCPCCCCCPPCCC",
"output": "23"
},
{
"input": "PPCCCCPPCCPPPCCCCPPPPPCPPPCPPPCCCPCCCPCPPPCPCCCPCCPPCCPPPPPC",
"output": "26"
},
{
"input": "PPCPPCCCCCPCCCPCCPCCCCPPPCCCCPCPCCPCPCPCPPPPCCPPPPPPPCPCPPPCPCPCPCPPPC",
"output": "39"
},
{
"input": "CCPCPPPPCPPPPCCCCPCCPCPCCPPCPCCCPPCCCCPCCCPCPCCPPPCPPPCPCPPPPPCPCCPCCPPCCCPCPPPC",
"output": "43"
},
{
"input": "CCPPCPCPCPPCCCPCPPPCCCCCPCPPCCCPPCPCPPPPCPPCPPPPCCCPCCPCPPPCPCPPCCCPCCCCCCPCCCCPCCPPPPCCPP",
"output": "47"
},
{
"input": "PPCPPPPCCCCPPPPCPPPPPPPPCPCPPCCPPPPPPPPCPPPPCCCCPPPPCPPCPCPPPCCPPCPPCCCPCPPCCCCCCPCPCPCPPCPCPCPPPCCC",
"output": "49"
},
{
"input": "CCPCCCPPCPPCPCCCPCPPCPPCPPCCCCCCCPCPPCPCCPCCPCPCPCCCPCCCPPPCCPCCPPCCCCCPPPPCPCPPCPCPCCPCPPP",
"output": "53"
},
{
"input": "PCPCPPPPCPCPPPCPPCCCPCPCPCPPCPPPPCCPPPCPPPCPPPPCCPPCCCPCCPCCCCPCCPCPPCPCCCPCPPCP",
"output": "47"
},
{
"input": "PCCPPCCCPPCPPCC",
"output": "8"
},
{
"input": "CCCPPPPPPCCCCPCCPCCCCCCPCCCPPPCPC",
"output": "15"
},
{
"input": "CPPCCPPCCPPPCCCPPPPCPPPPPPPCCPCPCCPPPPCCCPPCCPCCPPCCCPCCPCPPPPCCPP",
"output": "31"
},
{
"input": "CCCCCPPPCCPCPCCPPPPCPCCCPCPPCPCPPPPPCCPCPCPC",
"output": "25"
},
{
"input": "PPPPPPPPPCPCP",
"output": "6"
},
{
"input": "PPPCPCPCCCPPCPCCPPPPCCCPCCP",
"output": "15"
},
{
"input": "PCPCCPCPPPPPPCPCCPCPCPCCPPPCPCPCPPCPPCCPCPCCCPCCCPPCPCPCCPCPPPPCCCCCCPPCCPCCCCCPCCCCPPPCPCCCCCPCPCP",
"output": "59"
},
{
"input": "PCCPCPPCCCCCPCCCPCCCPPCCCCCPPPCCPPPPPPPPCPPPCCPPCPPCPCP",
"output": "26"
},
{
"input": "CPCPCCPPPPCCPPCPPCPPCCCCCCPCCPPPCPPCPCCCCCCPCPCCCCCPCCCCCCPCCPPCCP",
"output": "35"
},
{
"input": "PPCCCCCCPP",
"output": "4"
},
{
"input": "CCCCCCCCCCCCPPCCCCPP",
"output": "6"
},
{
"input": "PPPPPPPPPPPCCCCCCCCCCCCCCCCCCP",
"output": "8"
},
{
"input": "PPPPPPPPPPPPPPPPPPPPPCCCCCCCCCCCPPPPCCCC",
"output": "10"
},
{
"input": "PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPCCCCCCCCCPPPC",
"output": "12"
},
{
"input": "CCCCCCCCCPPPPPPPPPPPPPPPPPPPPCCCCCCCCCCCCCCCCCCCCCCCCPPPPPCC",
"output": "13"
},
{
"input": "CCCCCCCCCCCCCCCCCCCCCCCCCPPPCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC",
"output": "15"
},
{
"input": "CCCCCPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPCCCCCCCCCCCCCPPPPPPPCCPPP",
"output": "18"
},
{
"input": "PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPCCCCCCCCCCCCCCCCCCCCCCCCCCCPPPPPPPPPPPPPPPPPPP",
"output": "19"
},
{
"input": "PPPPPPPPPPPPPPPPPPPPPPPCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCPPPPPCCCPPPPCCCCCPCC",
"output": "23"
}
] | 92 | 0 | 0 | 6,254 |
|
730 | Bottles | [
"dp"
] | null | null | Nick has *n* bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda *a**i* and bottle volume *b**i* (*a**i*<=≤<=*b**i*).
Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends *x* seconds to pour *x* units of soda from one bottle to another.
Nick asks you to help him to determine *k* — the minimal number of bottles to store all remaining soda and *t* — the minimal time to pour soda into *k* bottles. A bottle can't store more soda than its volume. All remaining soda should be saved. | The first line contains positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of bottles.
The second line contains *n* positive integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100), where *a**i* is the amount of soda remaining in the *i*-th bottle.
The third line contains *n* positive integers *b*1,<=*b*2,<=...,<=*b**n* (1<=≤<=*b**i*<=≤<=100), where *b**i* is the volume of the *i*-th bottle.
It is guaranteed that *a**i*<=≤<=*b**i* for any *i*. | The only line should contain two integers *k* and *t*, where *k* is the minimal number of bottles that can store all the soda and *t* is the minimal time to pour the soda into *k* bottles. | [
"4\n3 3 4 3\n4 7 6 5\n",
"2\n1 1\n100 100\n",
"5\n10 30 5 6 24\n10 41 7 8 24\n"
] | [
"2 6\n",
"1 1\n",
"3 11\n"
] | In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain 3 + 3 = 6 units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take 1 + 2 = 3 seconds. So, all the soda will be in two bottles and he will spend 3 + 3 = 6 seconds to do it. | [
{
"input": "4\n3 3 4 3\n4 7 6 5",
"output": "2 6"
},
{
"input": "2\n1 1\n100 100",
"output": "1 1"
},
{
"input": "5\n10 30 5 6 24\n10 41 7 8 24",
"output": "3 11"
},
{
"input": "1\n1\n100",
"output": "1 0"
},
{
"input": "1\n100\n100",
"output": "1 0"
},
{
"input": "1\n50\n100",
"output": "1 0"
},
{
"input": "10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 38 13 99 37 47 76",
"output": "3 100"
},
{
"input": "20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 16 90 38 99 81 100 19 79 65 26 80 62 47 76 47",
"output": "9 217"
},
{
"input": "30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 9 75 84",
"output": "10 310"
},
{
"input": "40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 58 8 66",
"output": "11 560"
},
{
"input": "50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 1 32 5 20 71 39 87 80 60 86",
"output": "17 563"
},
{
"input": "60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 13 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60",
"output": "19 535"
},
{
"input": "70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 24 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49",
"output": "26 756"
},
{
"input": "80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 33 63 79 72",
"output": "21 909"
},
{
"input": "90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 85 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30",
"output": "25 955"
},
{
"input": "10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 43 4 84",
"output": "8 8"
},
{
"input": "20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 80",
"output": "13 187"
},
{
"input": "30\n33 4 1 42 86 85 35 51 45 88 23 35 79 92 81 46 47 32 41 17 18 36 28 58 31 15 17 38 49 78\n36 4 1 49 86 86 43 51 64 93 24 42 82 98 92 47 56 41 41 25 20 53 32 61 53 26 20 38 49 98",
"output": "22 123"
},
{
"input": "40\n31 72 17 63 89 13 72 42 39 30 23 29 5 61 88 37 7 23 49 32 41 25 17 15 9 25 30 61 29 66 24 40 75 67 69 22 61 22 13 35\n32 73 20 68 98 13 74 79 41 33 27 85 5 68 95 44 9 24 95 36 45 26 20 31 10 53 37 72 51 84 24 59 80 75 74 22 72 27 13 39",
"output": "24 290"
},
{
"input": "50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 79\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97",
"output": "34 283"
},
{
"input": "60\n70 19 46 34 43 19 75 42 47 14 66 64 63 58 55 79 38 45 49 80 72 54 96 26 63 41 12 55 14 56 79 51 12 9 14 77 70 75 46 27 45 10 76 59 40 67 55 24 26 90 50 75 12 93 27 39 46 58 66 31\n73 23 48 49 53 23 76 62 65 14 67 89 66 71 59 90 40 47 68 82 81 61 96 48 99 53 13 60 21 63 83 75 15 12 16 80 74 87 66 31 45 12 76 61 45 88 55 32 28 90 50 75 12 94 29 51 57 85 84 38",
"output": "42 368"
},
{
"input": "70\n67 38 59 72 9 64 12 3 51 58 50 4 16 46 62 77 58 73 7 92 48 9 90 50 35 9 61 57 50 20 48 61 27 77 47 6 83 28 78 14 68 32 2 2 22 57 34 71 26 74 3 76 41 66 30 69 34 16 29 7 14 19 11 5 13 66 19 19 17 55\n69 41 84 91 10 77 12 7 70 74 55 7 30 63 66 79 89 88 10 93 89 15 91 81 41 26 65 67 55 37 73 94 34 94 47 6 90 31 100 25 69 33 2 3 43 97 37 95 35 85 3 78 50 86 30 73 34 21 32 13 21 32 11 5 13 80 23 20 17 58",
"output": "38 484"
},
{
"input": "80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 24 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68",
"output": "50 363"
},
{
"input": "10\n5 12 10 18 10 9 2 20 5 20\n70 91 36 94 46 15 10 73 55 43",
"output": "2 71"
},
{
"input": "20\n8 1 44 1 12 1 9 11 1 1 5 2 9 16 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10",
"output": "2 90"
},
{
"input": "30\n10 1 8 10 2 6 45 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15",
"output": "3 122"
},
{
"input": "40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 85 26 41 10 65 23 56 58 93 58 7 100 7",
"output": "5 281"
},
{
"input": "50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 92 31 43 89",
"output": "6 337"
},
{
"input": "60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 20 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38",
"output": "7 368"
},
{
"input": "70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 6 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75",
"output": "7 426"
},
{
"input": "80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 46 86 45",
"output": "8 434"
},
{
"input": "90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 1 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69",
"output": "8 562"
},
{
"input": "32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 3 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2",
"output": "13 46"
},
{
"input": "38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 4 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3",
"output": "19 40"
},
{
"input": "35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 58 18 92 66 7 24 25 92 30",
"output": "10 307"
},
{
"input": "35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 50 75 19 52 66 13 88 62",
"output": "14 432"
},
{
"input": "69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 58 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73",
"output": "22 801"
},
{
"input": "63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 94 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89",
"output": "18 638"
},
{
"input": "73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 71 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72",
"output": "30 808"
},
{
"input": "90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 76 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8",
"output": "26 899"
},
{
"input": "85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 60 87 69 20 1 30 95 44 50 20",
"output": "29 987"
},
{
"input": "81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 18 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29",
"output": "26 754"
},
{
"input": "2\n1 1\n1 1",
"output": "2 0"
},
{
"input": "1\n1\n1",
"output": "1 0"
},
{
"input": "1\n1\n2",
"output": "1 0"
},
{
"input": "2\n1 1\n1 100",
"output": "1 1"
},
{
"input": "2\n1 1\n100 1",
"output": "1 1"
},
{
"input": "86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 6 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3",
"output": "32 101"
},
{
"input": "90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 4 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4",
"output": "35 109"
},
{
"input": "33\n33 20 33 40 58 50 5 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24",
"output": "13 356"
},
{
"input": "83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 61 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49",
"output": "26 944"
},
{
"input": "70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 43 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30",
"output": "21 867"
},
{
"input": "77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 36 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98",
"output": "19 937"
},
{
"input": "77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 20 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19",
"output": "24 932"
}
] | 2,000 | 10,137,600 | 0 | 6,260 |
|
586 | Laurenty and Shop | [
"implementation"
] | null | null | A little boy Laurenty has been playing his favourite game Nota for quite a while and is now very hungry. The boy wants to make sausage and cheese sandwiches, but first, he needs to buy a sausage and some cheese.
The town where Laurenty lives in is not large. The houses in it are located in two rows, *n* houses in each row. Laurenty lives in the very last house of the second row. The only shop in town is placed in the first house of the first row.
The first and second rows are separated with the main avenue of the city. The adjacent houses of one row are separated by streets.
Each crosswalk of a street or an avenue has some traffic lights. In order to cross the street, you need to press a button on the traffic light, wait for a while for the green light and cross the street. Different traffic lights can have different waiting time.
The traffic light on the crosswalk from the *j*-th house of the *i*-th row to the (*j*<=+<=1)-th house of the same row has waiting time equal to *a**ij* (1<=≤<=*i*<=≤<=2,<=1<=≤<=*j*<=≤<=*n*<=-<=1). For the traffic light on the crossing from the *j*-th house of one row to the *j*-th house of another row the waiting time equals *b**j* (1<=≤<=*j*<=≤<=*n*). The city doesn't have any other crossings.
The boy wants to get to the store, buy the products and go back. The main avenue of the city is wide enough, so the boy wants to cross it exactly once on the way to the store and exactly once on the way back home. The boy would get bored if he had to walk the same way again, so he wants the way home to be different from the way to the store in at least one crossing.
Help Laurenty determine the minimum total time he needs to wait at the crossroads. | The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=50) — the number of houses in each row.
Each of the next two lines contains *n*<=-<=1 space-separated integer — values *a**ij* (1<=≤<=*a**ij*<=≤<=100).
The last line contains *n* space-separated integers *b**j* (1<=≤<=*b**j*<=≤<=100). | Print a single integer — the least total time Laurenty needs to wait at the crossroads, given that he crosses the avenue only once both on his way to the store and on his way back home. | [
"4\n1 2 3\n3 2 1\n3 2 2 3\n",
"3\n1 2\n3 3\n2 1 3\n",
"2\n1\n1\n1 1\n"
] | [
"12\n",
"11\n",
"4\n"
] | The first sample is shown on the figure above.
In the second sample, Laurenty's path can look as follows:
- Laurenty crosses the avenue, the waiting time is 3; - Laurenty uses the second crossing in the first row, the waiting time is 2; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty uses the first crossing in the first row, the waiting time is 1; - Laurenty crosses the avenue, the waiting time is 1; - Laurenty uses the second crossing in the second row, the waiting time is 3.
In the last sample Laurenty visits all the crossings, so the answer is 4. | [
{
"input": "4\n1 2 3\n3 2 1\n3 2 2 3",
"output": "12"
},
{
"input": "3\n1 2\n3 3\n2 1 3",
"output": "11"
},
{
"input": "2\n1\n1\n1 1",
"output": "4"
},
{
"input": "2\n1\n1\n2 1",
"output": "5"
},
{
"input": "3\n1 100\n1 1\n100 100 100",
"output": "204"
},
{
"input": "4\n5 6 7\n8 9 10\n1 8 8 1",
"output": "47"
},
{
"input": "4\n1 2 3\n2 2 3\n2 3 4 3",
"output": "18"
},
{
"input": "48\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "96"
},
{
"input": "48\n2 1 1 2 1 1 1 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 1 1 1 1\n1 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 2 1 2 2 2 2 1 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2\n2 1 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 1 1 1 2 1 1 2 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1",
"output": "143"
},
{
"input": "48\n7 3 1 5 3 8 5 6 4 6 8 7 7 6 9 6 4 1 10 3 2 7 6 9 4 9 1 10 6 10 9 1 5 7 8 8 1 1 3 2 2 10 3 7 8 4 7\n4 9 9 4 2 6 2 4 3 9 2 9 7 3 10 1 5 2 2 10 2 1 6 2 10 5 4 6 10 2 5 10 3 1 8 1 2 6 5 2 3 5 8 1 1 8 4\n4 6 4 3 10 4 8 9 1 10 4 2 2 10 4 7 4 5 4 1 10 6 10 8 4 9 4 10 8 5 3 2 10 10 1 10 10 10 6 10 1 7 6 10 5 8 6 4",
"output": "435"
},
{
"input": "48\n47 3 47 2 29 33 39 16 27 34 31 9 2 40 16 28 15 8 37 9 25 36 14 5 24 48 49 26 43 47 46 23 31 27 30 44 34 12 41 21 2 9 27 49 42 27 9\n6 46 24 12 19 6 39 50 37 30 39 44 14 9 39 47 13 13 1 28 36 22 15 28 43 22 2 19 36 48 34 45 44 9 24 28 41 20 39 8 19 23 25 36 37 16 21\n1 35 9 12 25 39 4 27 26 20 15 4 28 30 21 46 34 30 39 22 6 2 31 2 27 44 3 16 47 12 8 32 37 37 47 8 40 2 2 4 33 38 20 25 3 43 45 45",
"output": "2404"
},
{
"input": "48\n25 48 43 29 32 6 22 4 33 17 25 2 50 19 39 45 38 8 5 3 23 14 24 31 35 11 20 37 10 13 14 43 18 6 42 44 14 37 29 28 2 20 12 3 30 11 24\n46 14 32 22 21 37 6 42 26 20 10 45 18 20 2 36 41 44 17 17 10 21 45 23 26 41 6 45 16 4 16 48 2 6 26 8 15 1 48 30 20 27 39 24 49 27 36\n10 29 17 21 21 13 27 43 27 3 33 20 22 39 37 21 9 41 7 23 30 17 31 4 45 49 9 43 41 42 38 30 5 49 45 30 43 3 2 43 29 35 11 47 12 12 15 43",
"output": "2243"
},
{
"input": "48\n3 42 46 11 44 25 1 42 38 49 14 42 44 10 4 12 2 20 27 44 14 50 33 10 42 27 41 48 26 42 40 18 9 42 1 2 47 8 20 39 45 42 47 8 19 41 32\n36 32 45 48 26 26 38 38 10 7 31 50 23 23 15 17 18 25 24 44 29 12 29 30 16 14 18 20 50 10 3 1 10 7 32 35 43 36 20 40 16 26 12 8 20 38 5\n19 15 33 18 13 29 50 17 28 48 2 36 13 2 12 43 47 6 17 40 8 28 27 15 14 9 10 37 47 25 10 19 11 11 32 3 45 9 11 33 18 35 43 14 13 27 31 34",
"output": "2202"
},
{
"input": "48\n26 55 85 65 66 16 31 85 42 78 14 83 42 52 22 32 73 68 30 92 82 18 43 40 43 36 87 77 64 61 46 79 88 86 92 16 28 47 89 34 58 47 76 24 100 27 80\n78 15 79 90 84 28 98 65 60 65 5 65 89 9 72 9 52 52 85 77 66 9 78 76 4 76 3 26 77 91 58 76 76 17 50 83 64 83 40 1 6 61 37 20 55 7 82\n61 19 9 30 98 19 6 4 36 32 54 99 18 46 28 24 12 1 21 15 38 23 39 82 66 92 95 88 65 97 98 4 22 62 96 79 1 8 85 82 38 71 50 82 4 81 58 57",
"output": "4754"
},
{
"input": "48\n54 99 43 46 23 80 6 77 2 60 54 26 32 93 45 41 92 23 49 33 31 100 52 19 4 61 4 38 89 27 72 58 79 22 5 20 58 14 30 49 55 69 65 79 97 15 92\n22 41 46 100 36 13 14 61 94 56 26 12 93 12 77 48 34 83 38 66 86 100 16 25 90 91 15 2 12 48 45 25 84 68 98 14 88 22 16 65 53 11 56 54 68 10 39\n74 17 18 74 36 43 75 82 41 15 73 65 17 9 45 95 88 66 93 78 70 88 88 39 35 60 100 70 63 27 75 10 78 78 90 2 57 14 97 29 88 72 45 99 55 46 24 6",
"output": "4262"
},
{
"input": "48\n82 39 88 16 77 57 94 61 57 42 93 70 26 26 60 58 14 85 67 85 83 78 57 3 61 69 25 91 97 97 94 24 66 55 10 24 88 85 68 60 52 80 46 33 85 98 3\n58 59 5 18 92 6 46 57 36 47 51 67 5 24 94 83 7 15 3 42 13 98 50 78 76 6 19 77 42 8 28 78 88 22 54 40 12 56 76 37 95 53 74 92 88 22 100\n83 8 34 25 78 60 48 57 42 10 91 35 8 72 69 71 75 31 65 28 2 45 30 87 91 16 1 55 64 56 55 99 46 93 89 24 6 15 97 72 39 73 24 24 14 15 86 47",
"output": "4664"
},
{
"input": "48\n2 92 42 94 30 34 65 53 13 24 37 14 17 63 83 79 37 31 93 26 28 60 67 74 22 77 42 52 17 67 20 95 54 91 15 36 18 60 6 62 45 94 31 92 78 82 15\n2 73 72 31 32 92 67 49 75 30 72 22 13 31 3 22 89 50 69 27 33 89 84 26 59 33 34 48 72 64 15 35 4 65 10 70 36 91 48 4 46 2 93 26 1 29 69\n92 2 42 76 12 84 29 19 43 93 10 97 3 31 86 42 51 96 29 87 26 10 79 40 64 79 7 49 66 90 27 93 7 5 83 38 50 21 6 11 85 77 14 41 69 83 52 95",
"output": "4018"
},
{
"input": "48\n30 36 96 71 92 99 48 41 72 3 77 61 7 97 98 96 51 93 11 67 76 45 84 57 79 85 63 13 34 38 39 77 53 23 27 32 39 35 43 81 42 13 16 46 75 66 22\n46 91 30 49 88 81 95 45 9 13 93 69 17 42 20 57 79 73 34 16 57 88 18 83 57 44 46 24 2 20 2 80 12 20 66 97 59 34 12 68 92 56 16 64 17 32 34\n97 100 50 24 58 100 99 93 45 88 24 66 93 98 10 17 38 72 98 46 50 83 21 100 32 35 4 34 60 20 7 95 59 12 73 60 2 27 10 55 35 74 9 58 32 48 18 36",
"output": "4492"
},
{
"input": "49\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "98"
},
{
"input": "49\n1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 2 1 2\n2 2 2 1 1 2 1 1 2 2 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1\n2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 2 2 2 2 1 2 2 1 1 1 2 1 2 2 2 1 2 2 1 1 1",
"output": "136"
},
{
"input": "49\n5 1 1 2 6 1 10 9 5 5 1 3 6 7 2 3 4 5 7 10 6 7 1 1 5 10 7 5 5 8 6 3 6 5 8 10 4 8 2 1 6 7 3 3 2 6 1 9\n9 7 2 1 10 9 9 4 10 5 9 8 1 7 7 4 6 5 6 4 3 3 3 10 7 8 9 3 6 6 1 8 8 6 7 7 2 5 4 9 5 10 8 5 8 8 4 2\n9 10 9 9 7 3 10 5 7 8 2 6 3 1 7 3 1 3 6 4 4 5 10 2 7 9 7 10 1 2 6 2 2 8 9 9 10 10 8 10 9 7 8 9 3 8 8 3 7",
"output": "476"
},
{
"input": "49\n9 3 7 10 7 8 5 1 10 7 10 2 2 8 7 2 7 9 6 9 7 1 10 2 2 7 8 6 1 8 2 6 3 8 3 6 3 9 4 2 9 1 4 10 1 3 5 9\n7 6 9 7 3 8 5 8 7 6 8 2 2 10 6 2 3 10 1 2 4 7 8 7 2 9 8 7 8 3 6 6 9 8 8 1 5 2 3 2 4 9 6 7 9 3 1 3\n8 1 1 3 10 7 1 2 4 10 10 9 8 1 6 8 3 4 8 7 4 2 10 2 2 4 1 10 3 6 8 3 4 10 1 4 3 4 8 7 1 4 9 3 3 6 2 4 2",
"output": "523"
},
{
"input": "49\n37 26 4 44 25 50 32 7 34 46 49 12 7 41 26 30 17 1 27 50 35 48 42 29 30 21 17 26 16 36 13 22 49 17 38 21 11 9 5 36 44 47 17 36 13 28 29 15\n29 42 5 42 1 43 22 15 34 35 42 13 41 40 2 35 35 35 30 4 35 6 13 19 10 25 4 8 50 14 36 33 45 43 7 1 42 44 10 30 12 48 30 4 28 33 31 43\n27 36 12 11 35 41 36 14 5 39 30 39 46 3 46 10 46 47 2 21 12 43 1 2 26 14 24 19 8 29 16 45 7 19 2 50 49 46 20 45 39 2 35 43 46 4 41 20 20",
"output": "2472"
},
{
"input": "49\n11 20 15 26 29 19 7 45 43 28 39 9 47 24 49 1 32 13 45 49 38 26 5 12 41 37 38 33 32 3 39 4 36 3 35 29 45 30 42 43 49 11 10 49 1 16 45 1\n47 9 19 36 32 18 14 49 25 10 47 26 45 49 41 13 9 50 15 31 34 32 7 9 25 37 29 46 2 1 39 48 50 49 33 25 23 12 24 30 11 16 10 20 35 48 40 42\n43 37 4 35 12 8 37 9 19 5 28 2 21 25 26 24 6 6 34 36 12 50 19 8 32 41 18 49 34 26 22 11 5 37 4 2 15 43 13 42 22 23 40 8 16 49 48 31 29",
"output": "2542"
},
{
"input": "49\n35 14 11 50 36 42 45 37 49 10 28 49 45 4 14 10 4 13 17 44 28 12 15 41 48 49 5 44 49 23 7 21 36 35 48 30 21 5 26 50 42 30 37 3 2 49 2 45\n19 18 36 37 30 42 10 34 16 27 2 34 6 16 27 45 44 15 50 5 25 20 6 41 48 2 50 30 8 38 46 2 50 5 17 48 16 30 45 23 11 35 44 29 39 13 49 28\n1 39 4 2 36 32 38 42 42 25 19 11 37 50 9 35 28 10 7 47 3 6 42 26 29 27 16 29 11 24 37 26 42 9 11 11 16 36 9 39 17 44 49 26 32 47 1 29 37",
"output": "2612"
},
{
"input": "49\n75 32 47 38 45 100 90 67 82 21 4 16 61 69 49 86 95 13 79 70 92 98 92 48 64 1 95 47 90 31 41 12 89 98 22 95 62 54 94 57 43 1 72 8 12 71 98 41\n40 31 71 13 20 32 48 81 17 13 68 6 48 50 44 17 37 8 76 100 57 65 91 15 51 33 83 64 44 66 22 20 44 69 18 32 50 91 43 25 95 42 28 20 16 68 69 70\n52 51 67 93 7 99 59 90 53 66 35 25 8 89 80 64 49 80 87 76 3 38 71 86 88 18 41 91 55 27 12 84 44 81 14 51 35 82 33 93 1 50 62 30 65 60 41 12 85",
"output": "4518"
},
{
"input": "49\n99 77 96 11 98 68 62 59 38 4 44 64 51 6 60 3 10 71 97 18 44 75 9 28 25 9 16 4 7 9 63 90 84 31 35 91 96 29 31 60 32 16 57 66 8 55 6 77\n54 98 89 57 9 52 40 15 99 34 23 10 52 59 79 99 72 66 56 24 56 99 48 2 66 45 58 95 1 53 75 36 94 22 45 60 85 63 14 71 41 72 65 37 20 33 82 65\n60 98 13 18 76 61 60 85 63 28 34 84 32 64 60 29 21 39 15 37 53 94 40 41 94 3 39 21 35 17 77 92 42 7 58 53 39 30 79 93 96 68 25 94 31 9 48 26 35",
"output": "4427"
},
{
"input": "49\n27 21 50 89 60 45 49 47 1 82 88 11 49 43 87 20 32 26 19 63 93 61 14 11 82 22 33 61 23 76 81 61 79 67 36 99 30 4 69 70 37 38 34 21 1 38 21 21\n72 57 11 8 2 81 44 49 90 55 70 18 63 72 18 73 3 27 41 47 47 33 93 88 85 49 29 29 61 44 32 44 53 78 75 84 24 23 86 18 91 91 3 53 31 2 91 59\n68 49 48 34 49 40 57 76 82 90 32 43 49 31 48 89 89 93 43 9 94 55 97 1 99 89 45 54 7 7 33 15 37 22 10 59 48 73 25 90 87 85 76 63 1 57 55 25 94",
"output": "4541"
},
{
"input": "49\n51 65 96 71 14 18 24 31 56 68 27 51 40 81 98 29 55 84 41 4 41 43 28 90 39 38 55 22 35 46 8 31 66 95 48 3 55 79 6 85 30 49 19 75 90 22 29 65\n90 23 25 64 88 1 40 96 77 76 25 22 66 81 53 54 27 92 26 67 46 71 41 74 100 60 5 55 21 31 77 60 95 38 5 8 59 99 50 65 40 10 29 66 38 63 9 53\n84 100 94 58 22 14 58 63 4 60 19 2 73 7 23 58 61 52 67 74 48 3 65 65 1 82 38 84 95 13 1 27 27 44 58 64 48 8 80 86 77 10 35 28 59 98 62 36 53",
"output": "4447"
},
{
"input": "49\n75 14 49 48 71 87 8 23 20 50 75 95 30 14 25 50 77 38 59 57 82 21 45 69 100 46 80 83 56 16 34 9 57 32 57 7 89 50 44 96 31 71 12 34 86 10 40 1\n4 82 38 4 73 33 32 30 68 1 80 35 77 98 89 28 62 54 7 95 37 5 94 61 24 76 80 89 65 18 30 64 50 90 40 27 94 59 22 11 94 28 67 82 49 28 14 47\n92 48 28 74 4 88 59 58 23 21 18 73 90 78 7 23 26 14 3 31 90 56 22 20 98 68 36 18 71 3 57 35 21 66 2 70 56 51 18 99 60 27 98 97 29 51 69 38 12",
"output": "4688"
},
{
"input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100"
},
{
"input": "50\n19 43 43 6 20 8 25 17 19 22 27 30 50 1 16 18 6 48 28 26 15 12 38 6 11 13 4 9 24 47 38 11 27 15 3 7 17 40 32 25 38 21 7 20 23 19 44 13 25\n40 21 42 10 13 34 13 8 39 13 29 43 7 4 22 47 50 45 10 1 43 5 44 11 46 40 24 44 27 9 26 18 24 34 25 49 19 39 24 36 32 6 2 25 33 35 44 6 41\n37 48 32 4 4 41 5 5 30 15 48 11 6 29 5 45 40 13 16 34 19 10 44 24 42 27 3 11 29 8 13 12 25 43 14 36 2 1 48 4 24 42 5 4 22 19 25 21 8 41",
"output": "2189"
},
{
"input": "50\n47 38 39 30 32 23 9 5 28 4 17 20 36 31 35 39 29 6 46 20 14 40 47 35 18 21 13 23 40 18 14 32 18 1 16 12 43 11 19 40 31 32 38 16 12 48 9 7 39\n3 35 43 7 33 30 43 49 14 19 37 46 13 39 4 32 16 30 30 42 27 4 39 34 7 7 9 4 10 12 34 15 34 14 49 38 45 3 21 36 47 44 15 29 48 44 35 15 42\n29 14 5 20 5 28 19 21 17 24 14 29 40 40 15 4 26 28 15 37 38 15 38 10 36 11 29 1 43 23 11 27 23 49 23 29 49 47 39 22 33 11 17 45 33 34 34 41 36 32",
"output": "2553"
},
{
"input": "50\n30 98 29 67 86 51 9 45 25 85 75 2 91 37 7 29 14 92 46 14 8 4 98 40 62 90 10 41 77 95 16 74 11 4 86 64 66 21 33 99 74 1 29 31 66 20 91 14 15\n28 41 39 21 17 86 46 45 41 52 62 9 93 44 26 18 97 81 57 97 68 65 2 58 30 54 96 68 20 18 78 56 84 43 92 33 66 60 25 97 8 71 55 79 58 33 47 59 63\n90 82 54 3 42 44 43 71 16 93 91 64 43 51 30 3 87 22 60 83 13 24 64 3 9 73 64 24 29 60 63 49 61 63 9 34 85 83 23 80 17 63 53 100 70 20 19 92 66 63",
"output": "4675"
},
{
"input": "50\n55 51 83 45 43 16 84 33 80 71 23 46 82 74 34 46 28 43 68 59 60 90 8 23 19 99 32 98 85 61 42 56 6 40 95 72 100 92 71 18 67 24 6 89 55 8 3 50 41\n90 59 91 11 45 78 81 35 58 7 70 12 98 79 8 53 54 66 80 88 6 17 88 73 45 29 26 24 7 71 82 2 44 74 16 76 38 28 72 43 34 5 72 90 23 43 41 76 14\n24 94 31 77 43 27 62 25 7 52 8 39 26 16 94 58 11 83 9 39 77 92 62 96 3 3 36 22 94 71 53 71 13 69 18 77 32 80 14 1 76 23 19 45 77 23 73 66 44 58",
"output": "4620"
},
{
"input": "50\n83 91 33 26 97 92 67 25 36 49 62 89 72 7 45 56 54 5 86 100 1 68 17 6 80 11 53 55 9 28 60 26 1 72 7 68 22 67 9 24 68 34 99 44 52 91 14 94 55\n53 81 43 92 66 74 19 18 79 58 83 23 15 14 90 85 16 50 4 87 32 66 74 88 57 96 60 84 94 16 98 53 92 4 36 11 10 96 18 96 57 43 84 94 84 52 35 84 62\n66 14 4 51 44 22 80 94 2 15 32 6 6 81 66 21 43 43 55 88 46 47 63 82 8 36 24 20 54 87 48 94 53 75 18 16 70 77 9 22 31 92 85 93 80 30 32 36 23 45",
"output": "4859"
},
{
"input": "50\n3 35 86 4 51 65 51 9 95 31 6 29 66 36 68 77 73 59 4 49 49 50 34 86 37 27 74 16 22 98 91 93 93 9 8 80 52 38 46 35 60 49 84 2 40 79 26 38 74\n16 99 87 89 98 66 53 5 100 9 87 27 24 53 63 8 81 31 28 86 66 15 61 3 69 76 90 32 77 69 6 7 44 30 60 46 70 68 61 46 76 81 5 5 45 61 29 92 9\n4 31 74 17 49 5 95 56 100 82 49 82 89 46 38 79 67 4 4 40 7 11 65 67 2 66 100 14 10 3 46 8 5 81 30 55 24 81 96 39 90 61 47 42 91 36 87 6 6 44",
"output": "4472"
},
{
"input": "50\n31 80 40 85 12 38 30 97 51 18 45 81 56 82 91 94 95 13 26 93 98 35 44 69 98 39 83 77 38 68 13 71 80 41 21 80 81 17 88 46 61 67 65 49 29 55 37 74 88\n71 8 42 74 14 70 100 96 25 56 95 38 41 88 45 43 46 16 55 77 100 68 51 30 73 51 25 88 64 26 22 50 4 57 88 85 45 32 11 96 94 19 9 12 10 66 24 8 60\n46 55 55 95 50 96 13 26 91 41 74 53 65 10 11 30 99 77 46 93 71 67 70 44 100 96 73 8 74 14 32 30 62 87 31 3 71 78 82 60 41 26 17 87 98 39 45 80 84 39",
"output": "4804"
},
{
"input": "50\n55 24 86 55 70 15 9 89 6 96 85 20 47 11 6 11 18 75 44 34 50 13 53 40 59 48 4 30 54 34 31 46 75 73 26 85 15 92 21 56 58 81 54 3 26 42 53 18 6\n37 22 90 56 39 67 34 83 46 11 7 49 58 27 23 74 100 1 83 76 38 17 41 45 84 26 51 48 47 75 26 4 60 87 7 20 13 3 58 45 13 57 22 23 79 75 18 17 7\n80 71 24 69 51 91 35 92 90 100 90 28 52 71 67 89 31 42 92 53 40 26 75 38 98 30 53 6 34 30 31 52 6 92 43 46 17 75 73 74 4 95 79 35 5 46 4 58 63 26",
"output": "3834"
}
] | 77 | 131,481,600 | 3 | 6,262 |
|
218 | Mountain Scenery | [
"brute force",
"constructive algorithms",
"implementation"
] | null | null | Little Bolek has found a picture with *n* mountain peaks painted on it. The *n* painted peaks are represented by a non-closed polyline, consisting of 2*n* segments. The segments go through 2*n*<=+<=1 points with coordinates (1,<=*y*1), (2,<=*y*2), ..., (2*n*<=+<=1,<=*y*2*n*<=+<=1), with the *i*-th segment connecting the point (*i*,<=*y**i*) and the point (*i*<=+<=1,<=*y**i*<=+<=1). For any even *i* (2<=≤<=*i*<=≤<=2*n*) the following condition holds: *y**i*<=-<=1<=<<=*y**i* and *y**i*<=><=*y**i*<=+<=1.
We shall call a vertex of a polyline with an even *x* coordinate a mountain peak.
Bolek fancied a little mischief. He chose exactly *k* mountain peaks, rubbed out the segments that went through those peaks and increased each peak's height by one (that is, he increased the *y* coordinate of the corresponding points). Then he painted the missing segments to get a new picture of mountain peaks. Let us denote the points through which the new polyline passes on Bolek's new picture as (1,<=*r*1), (2,<=*r*2), ..., (2*n*<=+<=1,<=*r*2*n*<=+<=1).
Given Bolek's final picture, restore the initial one. | The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100). The next line contains 2*n*<=+<=1 space-separated integers *r*1,<=*r*2,<=...,<=*r*2*n*<=+<=1 (0<=≤<=*r**i*<=≤<=100) — the *y* coordinates of the polyline vertices on Bolek's picture.
It is guaranteed that we can obtain the given picture after performing the described actions on some picture of mountain peaks. | Print 2*n*<=+<=1 integers *y*1,<=*y*2,<=...,<=*y*2*n*<=+<=1 — the *y* coordinates of the vertices of the polyline on the initial picture. If there are multiple answers, output any one of them. | [
"3 2\n0 5 3 5 1 5 2\n",
"1 1\n0 2 0\n"
] | [
"0 5 3 4 1 4 2 \n",
"0 1 0 \n"
] | none | [
{
"input": "3 2\n0 5 3 5 1 5 2",
"output": "0 5 3 4 1 4 2 "
},
{
"input": "1 1\n0 2 0",
"output": "0 1 0 "
},
{
"input": "1 1\n1 100 0",
"output": "1 99 0 "
},
{
"input": "3 1\n0 1 0 1 0 2 0",
"output": "0 1 0 1 0 1 0 "
},
{
"input": "3 1\n0 1 0 2 0 1 0",
"output": "0 1 0 1 0 1 0 "
},
{
"input": "3 3\n0 100 35 67 40 60 3",
"output": "0 99 35 66 40 59 3 "
},
{
"input": "7 3\n1 2 1 3 1 2 1 2 1 3 1 3 1 2 1",
"output": "1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 "
},
{
"input": "100 100\n1 3 1 3 1 3 0 2 0 3 1 3 1 3 1 3 0 3 1 3 0 2 0 2 0 3 0 2 0 2 0 3 1 3 1 3 1 3 1 3 0 2 0 3 1 3 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 2 0 3 1 3 1 3 1 3 0 3 0 2 0 2 0 2 0 2 0 3 0 3 1 3 0 3 1 3 1 3 0 3 1 3 0 3 1 3 1 3 0 3 1 3 0 3 1 3 0 2 0 3 1 3 0 3 1 3 0 2 0 3 1 3 0 3 0 2 0 3 1 3 0 3 0 3 0 2 0 2 0 2 0 3 0 3 1 3 1 3 0 3 1 3 1 3 1 3 0 2 0 3 0 2 0 3 1 3 0 3 0 3 1 3 0 2 0 3 0 2 0 2 0 2 0 2 0 3 1 3 0 3 1 3 1",
"output": "1 2 1 2 1 2 0 1 0 2 1 2 1 2 1 2 0 2 1 2 0 1 0 1 0 2 0 1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 0 2 1 2 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 1 0 2 1 2 1 2 1 2 0 2 0 1 0 1 0 1 0 1 0 2 0 2 1 2 0 2 1 2 1 2 0 2 1 2 0 2 1 2 1 2 0 2 1 2 0 2 1 2 0 1 0 2 1 2 0 2 1 2 0 1 0 2 1 2 0 2 0 1 0 2 1 2 0 2 0 2 0 1 0 1 0 1 0 2 0 2 1 2 1 2 0 2 1 2 1 2 1 2 0 1 0 2 0 1 0 2 1 2 0 2 0 2 1 2 0 1 0 2 0 1 0 1 0 1 0 1 0 2 1 2 0 2 1 2 1 "
},
{
"input": "30 20\n1 3 1 3 0 2 0 4 1 3 0 3 1 3 1 4 2 3 1 2 0 4 2 4 0 4 1 3 0 4 1 4 2 4 2 4 0 3 1 2 1 4 0 3 0 4 1 3 1 4 1 3 0 1 0 4 0 3 2 3 1",
"output": "1 3 1 3 0 2 0 4 1 2 0 2 1 2 1 3 2 3 1 2 0 3 2 3 0 3 1 2 0 3 1 3 2 3 2 3 0 2 1 2 1 3 0 2 0 3 1 2 1 3 1 2 0 1 0 3 0 3 2 3 1 "
},
{
"input": "10 6\n0 5 2 4 1 5 2 5 2 4 2 5 3 5 0 2 0 1 0 1 0",
"output": "0 5 2 4 1 4 2 4 2 3 2 4 3 4 0 1 0 1 0 1 0 "
},
{
"input": "11 6\n3 5 1 4 3 5 0 2 0 2 0 4 0 3 0 4 1 5 2 4 0 4 0",
"output": "3 5 1 4 3 5 0 2 0 2 0 3 0 2 0 3 1 4 2 3 0 3 0 "
},
{
"input": "12 6\n1 2 1 5 0 2 0 4 1 3 1 4 2 4 0 4 0 4 2 4 0 4 0 5 3",
"output": "1 2 1 5 0 2 0 4 1 3 1 4 2 3 0 3 0 3 2 3 0 3 0 4 3 "
},
{
"input": "13 6\n3 5 2 5 0 3 0 1 0 2 0 1 0 1 0 2 1 4 3 5 1 3 1 3 2 3 1",
"output": "3 4 2 4 0 2 0 1 0 1 0 1 0 1 0 2 1 4 3 4 1 2 1 3 2 3 1 "
},
{
"input": "24 7\n3 4 2 4 1 4 3 4 3 5 1 3 1 3 0 3 0 3 1 4 0 3 0 1 0 1 0 3 2 3 2 3 1 2 1 3 2 5 1 3 0 1 0 2 0 3 1 3 1",
"output": "3 4 2 4 1 4 3 4 3 5 1 3 1 3 0 3 0 3 1 3 0 2 0 1 0 1 0 3 2 3 2 3 1 2 1 3 2 4 1 2 0 1 0 1 0 2 1 2 1 "
},
{
"input": "25 8\n3 5 2 4 2 4 0 1 0 1 0 1 0 2 1 5 2 4 2 4 2 3 1 2 0 1 0 2 0 3 2 5 3 5 0 4 2 3 2 4 1 4 0 4 1 4 0 1 0 4 2",
"output": "3 5 2 4 2 4 0 1 0 1 0 1 0 2 1 5 2 4 2 4 2 3 1 2 0 1 0 2 0 3 2 4 3 4 0 3 2 3 2 3 1 3 0 3 1 3 0 1 0 3 2 "
},
{
"input": "26 9\n3 4 2 3 1 3 1 3 2 4 0 1 0 2 1 3 1 3 0 5 1 4 3 5 0 5 2 3 0 3 1 4 1 3 1 4 2 3 1 4 3 4 1 3 2 4 1 3 2 5 1 2 0",
"output": "3 4 2 3 1 3 1 3 2 4 0 1 0 2 1 3 1 3 0 4 1 4 3 4 0 4 2 3 0 2 1 3 1 2 1 3 2 3 1 4 3 4 1 3 2 3 1 3 2 4 1 2 0 "
},
{
"input": "27 10\n3 5 3 5 3 4 1 3 1 3 1 3 2 3 2 3 2 4 2 3 0 4 2 5 3 4 3 4 1 5 3 4 1 2 1 5 0 3 0 5 0 5 3 4 0 1 0 2 0 2 1 4 0 2 1",
"output": "3 5 3 5 3 4 1 3 1 3 1 3 2 3 2 3 2 3 2 3 0 3 2 4 3 4 3 4 1 4 3 4 1 2 1 4 0 2 0 4 0 4 3 4 0 1 0 1 0 2 1 3 0 2 1 "
},
{
"input": "40 1\n0 2 1 2 0 2 1 2 1 2 1 2 1 2 1 3 0 1 0 1 0 1 0 2 0 2 1 2 0 2 1 2 1 2 1 2 1 2 0 2 1 2 1 2 0 1 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 0 2 0 1 0 2 0 1 0 2 1 2 0",
"output": "0 2 1 2 0 2 1 2 1 2 1 2 1 2 1 3 0 1 0 1 0 1 0 2 0 2 1 2 0 2 1 2 1 2 1 2 1 2 0 2 1 2 1 2 0 1 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 1 0 2 0 1 0 1 0 1 0 2 1 2 0 "
},
{
"input": "40 2\n0 3 1 2 1 2 0 1 0 2 1 3 0 2 0 3 0 3 0 1 0 2 0 3 1 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 1 3 0 2 0 1 0 1 0 1 0 3 1 3 1 2 1 2 0 3 0 1 0 3 0 2 1 2 0 1 0 2 0 3 1 2 1 3 1 3 0",
"output": "0 3 1 2 1 2 0 1 0 2 1 3 0 2 0 3 0 3 0 1 0 2 0 3 1 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 1 3 0 2 0 1 0 1 0 1 0 3 1 3 1 2 1 2 0 3 0 1 0 3 0 2 1 2 0 1 0 2 0 3 1 2 1 2 1 2 0 "
},
{
"input": "40 3\n1 3 1 2 0 4 1 2 0 1 0 1 0 3 0 3 2 3 0 3 1 3 0 4 1 3 2 3 0 2 1 3 0 2 0 1 0 3 1 3 2 3 2 3 0 1 0 2 0 1 0 1 0 3 1 3 0 3 1 3 1 2 0 1 0 3 0 2 0 3 0 1 0 2 0 3 1 2 0 3 0",
"output": "1 3 1 2 0 4 1 2 0 1 0 1 0 3 0 3 2 3 0 3 1 3 0 4 1 3 2 3 0 2 1 3 0 2 0 1 0 3 1 3 2 3 2 3 0 1 0 2 0 1 0 1 0 3 1 3 0 3 1 3 1 2 0 1 0 3 0 2 0 3 0 1 0 1 0 2 1 2 0 2 0 "
},
{
"input": "50 40\n1 4 2 4 1 2 1 4 1 4 2 3 1 2 1 4 1 3 0 2 1 4 0 1 0 3 1 3 1 3 0 4 2 4 2 4 2 4 2 4 2 4 2 4 0 4 1 3 1 3 0 4 1 4 2 3 2 3 0 3 0 3 0 4 1 4 1 3 1 4 1 3 0 4 0 3 0 2 0 2 0 4 1 4 0 2 0 4 1 4 0 3 0 2 1 3 0 2 0 4 0",
"output": "1 4 2 4 1 2 1 3 1 3 2 3 1 2 1 3 1 2 0 2 1 3 0 1 0 2 1 2 1 2 0 3 2 3 2 3 2 3 2 3 2 3 2 3 0 3 1 2 1 2 0 3 1 3 2 3 2 3 0 2 0 2 0 3 1 3 1 2 1 3 1 2 0 3 0 2 0 1 0 1 0 3 1 3 0 1 0 3 1 3 0 2 0 2 1 2 0 1 0 3 0 "
},
{
"input": "100 2\n1 3 1 2 1 3 2 3 1 3 1 3 1 3 1 2 0 3 0 2 0 3 2 3 0 3 1 2 1 2 0 3 0 1 0 1 0 3 2 3 1 2 0 1 0 2 0 1 0 2 1 3 1 2 1 3 2 3 1 3 1 2 0 3 2 3 0 2 1 3 1 2 0 3 2 3 1 3 2 3 0 4 0 3 0 1 0 3 0 1 0 1 0 2 0 2 1 3 1 2 1 2 0 2 0 1 0 2 0 2 1 3 1 3 2 3 0 2 1 2 0 3 0 1 0 2 0 3 2 3 1 3 0 3 1 2 0 1 0 3 0 1 0 1 0 1 0 2 0 1 0 2 1 2 1 2 1 3 0 1 0 2 1 3 0 2 1 3 0 2 1 2 0 3 1 3 1 3 0 2 1 2 1 3 0 2 1 3 2 3 1 2 0 3 1 2 0 3 1 2 0",
"output": "1 3 1 2 1 3 2 3 1 3 1 3 1 3 1 2 0 3 0 2 0 3 2 3 0 3 1 2 1 2 0 3 0 1 0 1 0 3 2 3 1 2 0 1 0 2 0 1 0 2 1 3 1 2 1 3 2 3 1 3 1 2 0 3 2 3 0 2 1 3 1 2 0 3 2 3 1 3 2 3 0 4 0 3 0 1 0 3 0 1 0 1 0 2 0 2 1 3 1 2 1 2 0 2 0 1 0 2 0 2 1 3 1 3 2 3 0 2 1 2 0 3 0 1 0 2 0 3 2 3 1 3 0 3 1 2 0 1 0 3 0 1 0 1 0 1 0 2 0 1 0 2 1 2 1 2 1 3 0 1 0 2 1 3 0 2 1 3 0 2 1 2 0 3 1 3 1 3 0 2 1 2 1 3 0 2 1 3 2 3 1 2 0 2 1 2 0 2 1 2 0 "
},
{
"input": "100 3\n0 2 1 2 0 1 0 1 0 3 0 2 1 3 1 3 2 3 0 2 0 1 0 2 0 1 0 3 2 3 2 3 1 2 1 3 1 2 1 3 2 3 2 3 0 3 2 3 2 3 2 3 0 2 0 3 0 3 2 3 2 3 2 3 2 3 0 3 0 1 0 2 1 3 0 2 1 2 0 3 2 3 2 3 1 3 0 3 1 3 0 3 0 1 0 1 0 2 0 2 1 2 0 3 1 3 0 3 2 3 2 3 2 3 2 3 0 1 0 1 0 1 0 2 1 2 0 2 1 3 2 3 0 1 0 1 0 1 0 1 0 2 0 1 0 3 1 2 1 2 1 3 1 2 0 3 0 2 1 2 1 3 2 3 1 3 2 3 0 1 0 1 0 1 0 1 0 3 0 1 0 2 1 2 0 3 1 3 2 3 0 3 1 2 1 3 1 3 1 3 0",
"output": "0 2 1 2 0 1 0 1 0 3 0 2 1 3 1 3 2 3 0 2 0 1 0 2 0 1 0 3 2 3 2 3 1 2 1 3 1 2 1 3 2 3 2 3 0 3 2 3 2 3 2 3 0 2 0 3 0 3 2 3 2 3 2 3 2 3 0 3 0 1 0 2 1 3 0 2 1 2 0 3 2 3 2 3 1 3 0 3 1 3 0 3 0 1 0 1 0 2 0 2 1 2 0 3 1 3 0 3 2 3 2 3 2 3 2 3 0 1 0 1 0 1 0 2 1 2 0 2 1 3 2 3 0 1 0 1 0 1 0 1 0 2 0 1 0 3 1 2 1 2 1 3 1 2 0 3 0 2 1 2 1 3 2 3 1 3 2 3 0 1 0 1 0 1 0 1 0 3 0 1 0 2 1 2 0 3 1 3 2 3 0 3 1 2 1 2 1 2 1 2 0 "
},
{
"input": "100 20\n0 1 0 3 0 3 2 3 2 4 0 2 0 3 1 3 0 2 0 2 0 3 0 1 0 3 2 4 0 1 0 2 0 2 1 2 1 4 2 4 1 2 0 1 0 2 1 3 0 2 1 3 2 3 1 2 0 2 1 4 0 3 0 2 0 1 0 1 0 1 0 2 1 3 2 3 2 3 2 3 0 1 0 1 0 4 2 3 2 3 0 3 1 2 0 2 0 2 1 3 2 3 1 4 0 1 0 2 1 2 0 2 0 3 2 3 0 2 0 2 1 4 2 3 1 3 0 3 0 2 0 2 1 2 1 3 0 3 1 2 1 3 1 3 1 2 1 2 0 2 1 3 0 2 0 3 0 1 0 3 0 3 0 1 0 4 1 3 0 1 0 1 0 2 1 2 0 2 1 4 1 3 0 2 1 3 1 3 1 3 0 3 0 2 0 1 0 2 1 2 1",
"output": "0 1 0 3 0 3 2 3 2 4 0 2 0 3 1 3 0 2 0 2 0 3 0 1 0 3 2 4 0 1 0 2 0 2 1 2 1 4 2 4 1 2 0 1 0 2 1 3 0 2 1 3 2 3 1 2 0 2 1 4 0 3 0 2 0 1 0 1 0 1 0 2 1 3 2 3 2 3 2 3 0 1 0 1 0 4 2 3 2 3 0 3 1 2 0 2 0 2 1 3 2 3 1 4 0 1 0 2 1 2 0 2 0 3 2 3 0 2 0 2 1 4 2 3 1 3 0 2 0 1 0 2 1 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 0 2 1 2 0 1 0 2 0 1 0 2 0 2 0 1 0 3 1 2 0 1 0 1 0 2 1 2 0 2 1 3 1 2 0 2 1 2 1 2 1 2 0 2 0 1 0 1 0 2 1 2 1 "
},
{
"input": "100 20\n2 3 0 4 0 1 0 6 3 4 3 6 4 6 0 9 0 6 2 7 3 8 7 10 2 9 3 9 5 6 5 10 3 7 1 5 2 8 3 7 2 3 1 6 0 8 3 8 0 4 1 8 3 7 1 9 5 9 5 8 7 8 5 6 5 8 1 9 8 9 8 10 7 10 5 8 6 10 2 6 3 9 2 6 3 10 5 9 3 10 1 3 2 11 8 9 8 10 1 8 7 11 0 9 5 8 4 5 0 7 3 7 5 9 5 10 1 7 1 9 1 6 3 8 2 4 1 4 2 6 0 4 2 4 2 7 6 9 0 1 0 4 0 4 0 9 2 7 6 7 2 8 0 8 2 7 5 10 1 2 0 2 0 4 3 5 4 7 0 10 2 10 3 6 3 7 1 4 0 9 1 4 3 8 1 10 1 10 0 3 2 5 3 9 0 7 4 5 0 1 0",
"output": "2 3 0 4 0 1 0 6 3 4 3 6 4 6 0 9 0 6 2 7 3 8 7 10 2 9 3 9 5 6 5 10 3 7 1 5 2 8 3 7 2 3 1 6 0 8 3 8 0 4 1 8 3 7 1 9 5 9 5 8 7 8 5 6 5 8 1 9 8 9 8 10 7 10 5 8 6 10 2 6 3 9 2 6 3 10 5 9 3 10 1 3 2 11 8 9 8 10 1 8 7 11 0 9 5 8 4 5 0 7 3 7 5 9 5 10 1 7 1 9 1 6 3 8 2 4 1 4 2 6 0 4 2 4 2 7 6 9 0 1 0 4 0 3 0 8 2 7 6 7 2 7 0 7 2 6 5 9 1 2 0 1 0 4 3 5 4 6 0 9 2 9 3 5 3 6 1 3 0 8 1 4 3 7 1 9 1 9 0 3 2 4 3 8 0 6 4 5 0 1 0 "
},
{
"input": "98 3\n1 2 1 2 0 2 0 2 1 2 0 1 0 2 1 2 0 2 1 2 1 2 0 1 0 2 1 2 1 2 0 2 1 2 0 2 0 2 0 1 0 1 0 1 0 2 1 3 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 2 1 2 1 2 0 2 1 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 1 2 1 2 1 2 0 1 0 1 0 1 0 2 1 2 0 2 1 2 0 2 0 1 0 2 1 2 0 1 0 2 1 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 1 2 1 2 0 1 0 2 0 2 0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 1 2 0 1 0 2 0 2 0 1 0 2 1 2 1 2 1 2 0 2 1 2 1 2 1 2 0 1 0 1 0 2 0 2 0",
"output": "1 2 1 2 0 2 0 2 1 2 0 1 0 2 1 2 0 2 1 2 1 2 0 1 0 2 1 2 1 2 0 2 1 2 0 2 0 2 0 1 0 1 0 1 0 2 1 3 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 2 1 2 1 2 0 2 1 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 1 2 1 2 1 2 0 1 0 1 0 1 0 2 1 2 0 2 1 2 0 2 0 1 0 2 1 2 0 1 0 2 1 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 1 2 1 2 0 1 0 2 0 2 0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 1 2 0 1 0 2 0 1 0 1 0 2 1 2 1 2 1 2 0 2 1 2 1 2 1 2 0 1 0 1 0 1 0 1 0 "
},
{
"input": "2 1\n0 2 1 4 1",
"output": "0 2 1 3 1 "
},
{
"input": "2 1\n0 2 1 5 1",
"output": "0 2 1 4 1 "
},
{
"input": "3 3\n1 12 9 11 6 8 1",
"output": "1 11 9 10 6 7 1 "
},
{
"input": "3 2\n0 7 4 7 1 3 2",
"output": "0 6 4 6 1 3 2 "
},
{
"input": "2 1\n1 3 2 4 1",
"output": "1 3 2 3 1 "
},
{
"input": "4 1\n5 6 5 6 5 6 1 3 1",
"output": "5 6 5 6 5 6 1 2 1 "
},
{
"input": "2 1\n0 2 1 3 0",
"output": "0 2 1 2 0 "
},
{
"input": "2 2\n98 100 1 7 2",
"output": "98 99 1 6 2 "
},
{
"input": "3 1\n8 10 9 10 3 5 1",
"output": "8 10 9 10 3 4 1 "
},
{
"input": "3 2\n0 4 3 5 2 5 2",
"output": "0 4 3 4 2 4 2 "
},
{
"input": "2 1\n4 5 2 4 2",
"output": "4 5 2 3 2 "
},
{
"input": "3 1\n0 2 1 2 0 2 0",
"output": "0 2 1 2 0 1 0 "
},
{
"input": "1 1\n5 7 2",
"output": "5 6 2 "
},
{
"input": "2 1\n3 4 1 3 1",
"output": "3 4 1 2 1 "
},
{
"input": "3 1\n0 4 3 5 0 5 0",
"output": "0 4 3 5 0 4 0 "
},
{
"input": "3 1\n1 3 2 3 1 3 1",
"output": "1 3 2 3 1 2 1 "
},
{
"input": "2 1\n0 8 7 100 0",
"output": "0 8 7 99 0 "
},
{
"input": "2 1\n1 3 2 5 1",
"output": "1 3 2 4 1 "
}
] | 186 | 0 | 0 | 6,307 |
|
386 | Fly, freebies, fly! | [
"binary search",
"brute force",
"implementation"
] | null | null | Everyone loves a freebie. Especially students.
It is well-known that if in the night before exam a student opens window, opens the student's record-book and shouts loudly three times "Fly, freebie, fly!" — then flown freebie helps him to pass the upcoming exam.
In the night before the exam on mathematical analysis *n* students living in dormitory shouted treasured words. The *i*-th student made a sacrament at the time *t**i*, where *t**i* is the number of seconds elapsed since the beginning of the night.
It is known that the freebie is a capricious and willful lady. That night the freebie was near dormitory only for *T* seconds. Therefore, if for two students their sacrament times differ for more than *T*, then the freebie didn't visit at least one of them.
Since all students are optimists, they really want to know what is the maximal number of students visited by the freebie can be. | The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=100), where *n* — the number of students shouted "Fly, freebie, fly!" The second line contains *n* positive integers *t**i* (1<=≤<=*t**i*<=≤<=1000).
The last line contains integer *T* (1<=≤<=*T*<=≤<=1000) — the time interval during which the freebie was near the dormitory. | Print a single integer — the largest number of people who will pass exam tomorrow because of the freebie visit. | [
"6\n4 1 7 8 3 8\n1\n"
] | [
"3\n"
] | none | [
{
"input": "6\n4 1 7 8 3 8\n1",
"output": "3"
},
{
"input": "4\n4 2 1 5\n2",
"output": "2"
},
{
"input": "10\n4 7 1 3 8 5 2 1 8 4\n3",
"output": "6"
},
{
"input": "8\n39 49 37 28 40 17 50 2\n10",
"output": "3"
},
{
"input": "2\n1 1\n1",
"output": "2"
},
{
"input": "2\n1 1\n2",
"output": "2"
},
{
"input": "2\n1 1\n1000",
"output": "2"
},
{
"input": "2\n1 2\n2",
"output": "2"
},
{
"input": "2\n450 826\n1000",
"output": "2"
},
{
"input": "3\n3 1 1\n1",
"output": "2"
},
{
"input": "3\n3 1 2\n2",
"output": "3"
},
{
"input": "3\n3 4 3\n1",
"output": "3"
},
{
"input": "3\n3 4 3\n1",
"output": "3"
},
{
"input": "100\n63 69 36 40 74 31 86 42 81 95 60 55 98 98 2 16 84 37 61 47 81 91 85 62 85 32 79 74 65 48 39 60 97 90 59 76 98 73 58 5 16 54 59 42 9 27 95 24 9 6 42 49 64 61 22 27 43 60 39 87 99 57 5 62 48 67 81 36 27 87 41 88 5 33 43 81 82 65 46 52 43 68 85 75 81 99 30 56 67 55 92 4 3 3 66 32 30 45 22 88\n5",
"output": "11"
},
{
"input": "100\n97 29 39 42 68 100 44 54 6 70 17 100 52 85 67 1 43 49 1 47 98 35 5 38 37 73 84 20 13 15 78 65 29 92 20 40 38 11 12 100 24 94 29 92 83 47 25 63 23 85 85 93 61 60 35 40 96 50 19 15 28 19 98 59 42 14 54 65 2 53 38 9 15 69 43 63 63 8 55 12 81 57 69 21 57 11 99 45 23 31 59 2 16 61 43 36 12 39 42 13\n50",
"output": "62"
},
{
"input": "100\n31 1 56 82 96 98 25 41 74 73 8 66 95 50 89 77 98 12 69 45 6 10 48 59 1 77 15 77 9 52 66 8 6 71 39 3 58 73 66 45 8 22 67 83 58 6 96 79 46 43 44 90 13 67 56 32 83 96 93 22 49 10 100 79 99 41 13 71 42 96 89 10 84 95 89 7 18 49 16 54 61 35 25 71 26 68 22 40 68 19 30 51 18 20 12 61 11 23 86 72\n1",
"output": "6"
},
{
"input": "100\n30 74 20 6 3 63 48 45 36 26 33 24 60 71 45 5 19 37 74 100 98 82 67 76 37 46 68 48 56 29 33 19 15 84 76 92 50 53 42 19 5 91 23 38 93 50 39 45 89 17 57 14 86 81 31 6 16 5 80 6 86 49 18 75 30 30 85 94 38 33 50 76 72 32 73 96 28 3 18 20 96 84 89 48 71 64 6 59 87 31 94 24 9 64 15 86 66 11 32 40\n90",
"output": "94"
},
{
"input": "100\n398 82 739 637 913 962 680 125 963 931 311 680 20 530 795 126 881 666 226 323 594 416 176 6 820 317 866 723 831 432 139 706 608 218 963 550 592 544 874 927 763 468 121 424 91 956 42 442 883 66 299 654 964 730 160 615 515 255 709 278 224 223 304 292 41 450 445 556 477 327 647 518 90 470 894 837 655 495 612 113 746 610 751 486 116 933 314 348 736 58 219 429 976 773 678 642 696 522 161 422\n1",
"output": "3"
},
{
"input": "100\n760 621 622 793 66 684 411 813 474 404 304 934 319 411 99 965 722 156 681 400 481 462 571 726 696 244 124 350 403 566 564 641 381 494 703 3 348 213 343 390 27 660 46 591 990 931 477 823 890 21 936 267 282 753 599 269 387 443 622 673 473 745 646 224 911 7 155 880 332 932 51 994 144 666 789 691 323 738 192 372 191 246 903 666 929 252 132 614 11 938 298 286 309 596 210 18 143 760 759 584\n10",
"output": "6"
},
{
"input": "100\n923 357 749 109 685 126 961 437 859 91 985 488 644 777 950 144 479 667 1 535 475 38 843 606 672 333 798 42 595 854 410 914 934 586 329 595 861 321 603 924 434 636 475 395 619 449 336 790 279 931 605 898 276 47 537 935 508 576 168 465 115 884 960 593 883 581 468 426 848 289 525 309 589 106 924 238 829 975 897 373 650 41 952 621 817 46 366 488 924 561 960 449 311 32 517 737 20 765 799 3\n100",
"output": "18"
},
{
"input": "100\n98 63 672 100 254 218 623 415 426 986 920 915 736 795 407 541 382 213 935 743 961 59 660 512 134 935 248 378 739 356 543 714 28 667 602 596 759 791 103 564 225 520 159 542 966 332 983 655 517 273 95 242 593 940 286 236 41 318 941 727 384 225 319 627 982 359 232 769 854 172 643 598 215 231 305 30 347 469 929 919 90 294 739 641 368 270 932 452 234 741 309 234 357 392 707 873 808 398 417 483\n1000",
"output": "100"
},
{
"input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n1",
"output": "100"
},
{
"input": "100\n2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 1 2 1 2 1 2 1 2 2 2 1 1 2 1 2 2 1 1 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1 2 2 2 1 1 2 2 1 2 2 2 1 2 2 1 2 2\n1",
"output": "100"
},
{
"input": "100\n3 3 1 2 3 3 1 3 3 2 2 2 2 1 2 3 2 1 2 2 2 2 3 2 1 3 3 3 2 1 3 1 2 1 1 2 2 3 2 2 3 1 1 3 1 2 1 3 3 1 1 3 1 3 2 3 3 2 2 2 2 1 1 1 2 1 1 2 1 1 1 1 1 3 2 2 1 3 1 1 3 1 2 2 1 3 1 1 1 1 2 2 2 3 2 2 3 1 1 3\n1",
"output": "72"
},
{
"input": "100\n2 1 3 4 1 1 4 1 3 2 1 4 4 4 4 4 3 2 1 1 2 2 1 3 3 1 1 1 2 3 4 3 1 1 1 4 2 2 2 2 4 1 2 4 2 2 4 3 3 4 1 2 4 1 3 4 1 2 1 2 1 3 3 2 1 1 4 2 1 3 3 2 3 4 1 2 2 4 2 1 4 3 4 3 1 4 3 1 2 3 3 3 2 4 1 1 4 1 2 3\n1",
"output": "55"
},
{
"input": "100\n5 1 3 1 2 3 2 5 5 2 5 1 1 4 1 1 3 5 3 3 3 3 4 4 3 5 4 1 1 3 1 4 2 5 2 5 4 2 3 5 1 3 5 5 5 2 2 5 1 4 1 5 1 5 1 3 3 2 2 4 3 2 1 4 2 5 4 1 2 1 4 3 3 5 4 3 5 5 1 2 4 1 4 2 1 1 2 5 3 3 4 1 3 3 3 5 4 1 1 1\n1",
"output": "41"
},
{
"input": "100\n1 7 8 10 9 4 2 1 6 5 10 6 3 1 10 1 8 4 3 1 7 4 3 7 4 9 1 3 3 5 10 3 7 10 10 10 3 6 2 8 1 3 3 6 2 8 3 7 8 3 4 1 6 4 4 2 10 6 2 10 10 1 7 8 8 1 9 8 7 8 5 2 5 9 2 5 7 10 3 9 8 3 9 4 3 8 6 8 2 8 9 6 7 10 7 9 6 4 4 8\n1",
"output": "24"
},
{
"input": "1\n1\n1",
"output": "1"
},
{
"input": "1\n1\n1000",
"output": "1"
},
{
"input": "1\n849\n1",
"output": "1"
}
] | 46 | 0 | 3 | 6,319 |
|
717 | Potions Homework | [
"implementation",
"sortings"
] | null | null | Harry Water, Ronaldo, Her-my-oh-knee and their friends have started a new school year at their MDCS School of Speechcraft and Misery. At the time, they are very happy to have seen each other after a long time. The sun is shining, birds are singing, flowers are blooming, and their Potions class teacher, professor Snipe is sulky as usual. Due to his angst fueled by disappointment in his own life, he has given them a lot of homework in Potions class.
Each of the *n* students has been assigned a single task. Some students do certain tasks faster than others. Thus, they want to redistribute the tasks so that each student still does exactly one task, and that all tasks are finished. Each student has their own laziness level, and each task has its own difficulty level. Professor Snipe is trying hard to improve their work ethics, so each student’s laziness level is equal to their task’s difficulty level. Both sets of values are given by the sequence *a*, where *a**i* represents both the laziness level of the *i*-th student and the difficulty of his task.
The time a student needs to finish a task is equal to the product of their laziness level and the task’s difficulty. They are wondering, what is the minimum possible total time they must spend to finish all tasks if they distribute them in the optimal way. Each person should receive one task and each task should be given to one person. Print the answer modulo 10<=007. | The first line of input contains integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of tasks. The next *n* lines contain exactly one integer number *a**i* (1<=≤<=*a**i*<=≤<=100<=000) — both the difficulty of the initial task and the laziness of the *i*-th students. | Print the minimum total time to finish all tasks modulo 10<=007. | [
"2\n1\n3\n"
] | [
"6\n"
] | In the first sample, if the students switch their tasks, they will be able to finish them in 3 + 3 = 6 time units. | [
{
"input": "2\n1\n3",
"output": "6"
}
] | 467 | 6,041,600 | 0 | 6,330 |
|
0 | none | [
"none"
] | null | null | First-rate specialists graduate from Berland State Institute of Peace and Friendship. You are one of the most talented students in this university. The education is not easy because you need to have fundamental knowledge in different areas, which sometimes are not related to each other.
For example, you should know linguistics very well. You learn a structure of Reberland language as foreign language. In this language words are constructed according to the following rules. First you need to choose the "root" of the word — some string which has more than 4 letters. Then several strings with the length 2 or 3 symbols are appended to this word. The only restriction — it is not allowed to append the same string twice in a row. All these strings are considered to be suffixes of the word (this time we use word "suffix" to describe a morpheme but not the few last characters of the string as you may used to).
Here is one exercise that you have found in your task list. You are given the word *s*. Find all distinct strings with the length 2 or 3, which can be suffixes of this word according to the word constructing rules in Reberland language.
Two strings are considered distinct if they have different length or there is a position in which corresponding characters do not match.
Let's look at the example: the word *abacabaca* is given. This word can be obtained in the following ways: , where the root of the word is overlined, and suffixes are marked by "corners". Thus, the set of possible suffixes for this word is {*aca*,<=*ba*,<=*ca*}. | The only line contains a string *s* (5<=≤<=|*s*|<=≤<=104) consisting of lowercase English letters. | On the first line print integer *k* — a number of distinct possible suffixes. On the next *k* lines print suffixes.
Print suffixes in lexicographical (alphabetical) order. | [
"abacabaca\n",
"abaca\n"
] | [
"3\naca\nba\nca\n",
"0\n"
] | The first test was analysed in the problem statement.
In the second example the length of the string equals 5. The length of the root equals 5, so no string can be used as a suffix. | [
{
"input": "abacabaca",
"output": "3\naca\nba\nca"
},
{
"input": "abaca",
"output": "0"
},
{
"input": "gzqgchv",
"output": "1\nhv"
},
{
"input": "iosdwvzerqfi",
"output": "9\ner\nerq\nfi\nqfi\nrq\nvz\nvze\nze\nzer"
},
{
"input": "oawtxikrpvfuzugjweki",
"output": "25\neki\nfu\nfuz\ngj\ngjw\nik\nikr\njw\njwe\nki\nkr\nkrp\npv\npvf\nrp\nrpv\nug\nugj\nuz\nuzu\nvf\nvfu\nwe\nzu\nzug"
},
{
"input": "abcdexyzzzz",
"output": "5\nxyz\nyz\nyzz\nzz\nzzz"
},
{
"input": "affviytdmexpwfqplpyrlniprbdphrcwlboacoqec",
"output": "67\nac\naco\nbd\nbdp\nbo\nboa\nco\ncoq\ncw\ncwl\ndm\ndme\ndp\ndph\nec\nex\nexp\nfq\nfqp\nhr\nhrc\nip\nipr\nlb\nlbo\nln\nlni\nlp\nlpy\nme\nmex\nni\nnip\noa\noac\noq\nph\nphr\npl\nplp\npr\nprb\npw\npwf\npy\npyr\nqec\nqp\nqpl\nrb\nrbd\nrc\nrcw\nrl\nrln\ntd\ntdm\nwf\nwfq\nwl\nwlb\nxp\nxpw\nyr\nyrl\nyt\nytd"
},
{
"input": "lmnxtobrknqjvnzwadpccrlvisxyqbxxmghvl",
"output": "59\nad\nadp\nbr\nbrk\nbx\nbxx\ncc\nccr\ncr\ncrl\ndp\ndpc\ngh\nhvl\nis\nisx\njv\njvn\nkn\nknq\nlv\nlvi\nmg\nmgh\nnq\nnqj\nnz\nnzw\nob\nobr\npc\npcc\nqb\nqbx\nqj\nqjv\nrk\nrkn\nrl\nrlv\nsx\nsxy\nvi\nvis\nvl\nvn\nvnz\nwa\nwad\nxm\nxmg\nxx\nxxm\nxy\nxyq\nyq\nyqb\nzw\nzwa"
},
{
"input": "tbdbdpkluawodlrwldjgplbiylrhuywkhafbkiuoppzsjxwbaqqiwagprqtoauowtaexrhbmctcxwpmplkyjnpwukzwqrqpv",
"output": "170\nae\naex\naf\nafb\nag\nagp\naq\naqq\nau\nauo\naw\nawo\nba\nbaq\nbi\nbiy\nbk\nbki\nbm\nbmc\nct\nctc\ncx\ncxw\ndj\ndjg\ndl\ndlr\nex\nexr\nfb\nfbk\ngp\ngpl\ngpr\nha\nhaf\nhb\nhbm\nhu\nhuy\niu\niuo\niw\niwa\niy\niyl\njg\njgp\njn\njnp\njx\njxw\nkh\nkha\nki\nkiu\nkl\nklu\nky\nkyj\nkz\nkzw\nlb\nlbi\nld\nldj\nlk\nlky\nlr\nlrh\nlrw\nlu\nlua\nmc\nmct\nmp\nmpl\nnp\nnpw\noa\noau\nod\nodl\nop\nopp\now\nowt\npk\npkl\npl\nplb\nplk\npm\npmp\npp\nppz\npr\nprq\npv\npw\npwu\npz\npzs\nqi\nqiw\nqpv\nqq\nqqi\nqr\nqrq\nqt\nq..."
},
{
"input": "caqmjjtwmqxytcsawfufvlofqcqdwnyvywvbbhmpzqwqqxieptiaguwvqdrdftccsglgfezrzhstjcxdknftpyslyqdmkwdolwbusyrgyndqllgesktvgarpfkiglxgtcfepclqhgfbfmkymsszrtynlxbosmrvntsqwccdtahkpnelwiqn",
"output": "323\nag\nagu\nah\nahk\nar\narp\naw\nawf\nbb\nbbh\nbf\nbfm\nbh\nbhm\nbo\nbos\nbu\nbus\ncc\nccd\nccs\ncd\ncdt\ncf\ncfe\ncl\nclq\ncq\ncqd\ncs\ncsa\ncsg\ncx\ncxd\ndf\ndft\ndk\ndkn\ndm\ndmk\ndo\ndol\ndq\ndql\ndr\ndrd\ndt\ndta\ndw\ndwn\nel\nelw\nep\nepc\nept\nes\nesk\nez\nezr\nfb\nfbf\nfe\nfep\nfez\nfk\nfki\nfm\nfmk\nfq\nfqc\nft\nftc\nftp\nfu\nfuf\nfv\nfvl\nga\ngar\nge\nges\ngf\ngfb\ngfe\ngl\nglg\nglx\ngt\ngtc\ngu\nguw\ngy\ngyn\nhg\nhgf\nhk\nhkp\nhm\nhmp\nhs\nhst\nia\niag\nie\niep\nig\nigl\niqn\njc\njcx\njt\njtw..."
},
{
"input": "prntaxhysjfcfmrjngdsitlguahtpnwgbaxptubgpwcfxqehrulbxfcjssgocqncscduvyvarvwxzvmjoatnqfsvsilubexmwugedtzavyamqjqtkxzuslielibjnvkpvyrbndehsqcaqzcrmomqqwskwcypgqoawxdutnxmeivnfpzwvxiyscbfnloqjhjacsfnkfmbhgzpujrqdbaemjsqphokkiplblbflvadcyykcqrdohfasstobwrobslaofbasylwiizrpozvhtwyxtzl",
"output": "505\nac\nacs\nad\nadc\nae\naem\nah\naht\nam\namq\nao\naof\naq\naqz\nar\narv\nas\nass\nasy\nat\natn\nav\navy\naw\nawx\nax\naxp\nba\nbae\nbas\nbax\nbe\nbex\nbf\nbfl\nbfn\nbg\nbgp\nbh\nbhg\nbj\nbjn\nbl\nblb\nbn\nbnd\nbs\nbsl\nbw\nbwr\nbx\nbxf\nca\ncaq\ncb\ncbf\ncd\ncdu\ncf\ncfm\ncfx\ncj\ncjs\ncq\ncqn\ncqr\ncr\ncrm\ncs\ncsc\ncsf\ncy\ncyp\ncyy\ndb\ndba\ndc\ndcy\nde\ndeh\ndo\ndoh\nds\ndsi\ndt\ndtz\ndu\ndut\nduv\ned\nedt\neh\nehr\nehs\nei\neiv\nel\neli\nem\nemj\nex\nexm\nfa\nfas\nfb\nfba\nfc\nfcf\nfcj\nfl\nflv\nf..."
},
{
"input": "gvtgnjyfvnuhagulgmjlqzpvxsygmikofsnvkuplnkxeibnicygpvfvtebppadpdnrxjodxdhxqceaulbfxogwrigstsjudhkgwkhseuwngbppisuzvhzzxxbaggfngmevksbrntpprxvcczlalutdzhwmzbalkqmykmodacjrmwhwugyhwlrbnqxsznldmaxpndwmovcolowxhj",
"output": "375\nac\nacj\nad\nadp\nag\nagg\nagu\nal\nalk\nalu\nau\naul\nax\naxp\nba\nbag\nbal\nbf\nbfx\nbn\nbni\nbnq\nbp\nbpp\nbr\nbrn\ncc\nccz\nce\ncea\ncj\ncjr\nco\ncol\ncy\ncyg\ncz\nczl\nda\ndac\ndh\ndhk\ndhx\ndm\ndma\ndn\ndnr\ndp\ndpd\ndw\ndwm\ndx\ndxd\ndz\ndzh\nea\neau\neb\nebp\nei\neib\neu\neuw\nev\nevk\nfn\nfng\nfs\nfsn\nfv\nfvn\nfvt\nfx\nfxo\ngb\ngbp\ngf\ngfn\ngg\nggf\ngm\ngme\ngmi\ngmj\ngp\ngpv\ngs\ngst\ngu\ngul\ngw\ngwk\ngwr\ngy\ngyh\nha\nhag\nhj\nhk\nhkg\nhs\nhse\nhw\nhwl\nhwm\nhwu\nhx\nhxq\nhz\nhzz\nib\nib..."
},
{
"input": "topqexoicgzjmssuxnswdhpwbsqwfhhziwqibjgeepcvouhjezlomobgireaxaceppoxfxvkwlvgwtjoiplihbpsdhczddwfvcbxqqmqtveaunshmobdlkmmfyajjlkhxnvfmibtbbqswrhcfwytrccgtnlztkddrevkfovunuxtzhhhnorecyfgmlqcwjfjtqegxagfiuqtpjpqlwiefofpatxuqxvikyynncsueynmigieototnbcwxavlbgeqao",
"output": "462\nac\nace\nag\nagf\naj\najj\nao\nat\natx\nau\naun\nav\navl\nax\naxa\nbb\nbbq\nbc\nbcw\nbd\nbdl\nbg\nbge\nbgi\nbj\nbjg\nbp\nbps\nbq\nbqs\nbs\nbsq\nbt\nbtb\nbx\nbxq\ncb\ncbx\ncc\nccg\nce\ncep\ncf\ncfw\ncg\ncgt\ncgz\ncs\ncsu\ncv\ncvo\ncw\ncwj\ncwx\ncy\ncyf\ncz\nczd\ndd\nddr\nddw\ndh\ndhc\ndhp\ndl\ndlk\ndr\ndre\ndw\ndwf\nea\neau\neax\nec\necy\nee\neep\nef\nefo\neg\negx\neo\neot\nep\nepc\nepp\neq\nev\nevk\ney\neyn\nez\nezl\nfg\nfgm\nfh\nfhh\nfi\nfiu\nfj\nfjt\nfm\nfmi\nfo\nfof\nfov\nfp\nfpa\nfv\nfvc\nfw\nfwy\n..."
},
{
"input": "lcrjhbybgamwetyrppxmvvxiyufdkcotwhmptefkqxjhrknjdponulsynpkgszhbkeinpnjdonjfwzbsaweqwlsvuijauwezfydktfljxgclpxpknhygdqyiapvzudyyqomgnsrdhhxhsrdfrwnxdolkmwmw",
"output": "276\nam\namw\nap\napv\nau\nauw\naw\nawe\nbg\nbga\nbk\nbke\nbs\nbsa\nby\nbyb\ncl\nclp\nco\ncot\ndf\ndfr\ndh\ndhh\ndk\ndkc\ndkt\ndo\ndol\ndon\ndp\ndpo\ndq\ndqy\ndy\ndyy\nef\nefk\nei\nein\neq\neqw\net\nety\nez\nezf\nfd\nfdk\nfk\nfkq\nfl\nflj\nfr\nfrw\nfw\nfwz\nfy\nfyd\nga\ngam\ngc\ngcl\ngd\ngdq\ngn\ngns\ngs\ngsz\nhb\nhbk\nhh\nhhx\nhm\nhmp\nhr\nhrk\nhs\nhsr\nhx\nhxh\nhy\nhyg\nia\niap\nij\nija\nin\ninp\niy\niyu\nja\njau\njd\njdo\njdp\njf\njfw\njh\njhr\njx\njxg\nkc\nkco\nke\nkei\nkg\nkgs\nkm\nkmw\nkn\nknh\nknj\n..."
},
{
"input": "hzobjysjhbebobkoror",
"output": "20\nbe\nbeb\nbko\nbo\nbob\neb\nebo\nhb\nhbe\njh\njhb\nko\nkor\nob\nor\nror\nsj\nsjh\nys\nysj"
},
{
"input": "safgmgpzljarfswowdxqhuhypxcmiddyvehjtnlflzknznrukdsbatxoytzxkqngopeipbythhbhfkvlcdxwqrxumbtbgiosjnbeorkzsrfarqofsrcwsfpyheaszjpkjysrcxbzebkxzovdchhososo",
"output": "274\nar\narf\narq\nas\nasz\nat\natx\nba\nbat\nbe\nbeo\nbg\nbgi\nbh\nbhf\nbk\nbkx\nbt\nbtb\nby\nbyt\nbz\nbze\ncd\ncdx\nch\nchh\ncm\ncmi\ncw\ncws\ncx\ncxb\ndc\ndch\ndd\nddy\nds\ndsb\ndx\ndxq\ndxw\ndy\ndyv\nea\neas\neb\nebk\neh\nehj\nei\neip\neo\neor\nfa\nfar\nfk\nfkv\nfl\nflz\nfp\nfpy\nfs\nfsr\nfsw\ngi\ngio\ngo\ngop\ngp\ngpz\nhb\nhbh\nhe\nhea\nhf\nhfk\nhh\nhhb\nhj\nhjt\nhos\nhu\nhuh\nhy\nhyp\nid\nidd\nio\nios\nip\nipb\nja\njar\njn\njnb\njp\njpk\njt\njtn\njy\njys\nkd\nkds\nkj\nkjy\nkn\nknz\nkq\nkqn\nkv\nkvl\n..."
},
{
"input": "glaoyryxrgsysy",
"output": "10\ngs\ngsy\nrgs\nry\nryx\nsy\nxr\nysy\nyx\nyxr"
},
{
"input": "aaaaaxyxxxx",
"output": "5\nxx\nxxx\nxyx\nyx\nyxx"
},
{
"input": "aaaaax",
"output": "0"
},
{
"input": "aaaaaxx",
"output": "1\nxx"
},
{
"input": "aaaaaaa",
"output": "1\naa"
},
{
"input": "aaaaaxxx",
"output": "2\nxx\nxxx"
},
{
"input": "aaaaayxx",
"output": "2\nxx\nyxx"
},
{
"input": "aaaaaxyz",
"output": "2\nxyz\nyz"
},
{
"input": "aaaaaxyxy",
"output": "2\nxy\nyxy"
},
{
"input": "aaaxyyxyy",
"output": "3\nxyy\nyx\nyy"
},
{
"input": "aaaaaxxxxxx",
"output": "2\nxx\nxxx"
},
{
"input": "aaaaaxxxxx",
"output": "2\nxx\nxxx"
},
{
"input": "aaaaaxyzxyxy",
"output": "5\nxy\nyxy\nyzx\nzx\nzxy"
},
{
"input": "aaaaadddgggg",
"output": "6\ndd\nddg\ndg\ndgg\ngg\nggg"
},
{
"input": "abcdeabzzzzzzzz",
"output": "5\nab\nabz\nbz\nzz\nzzz"
},
{
"input": "bbbbbccaaaaaa",
"output": "4\naa\naaa\nca\ncca"
},
{
"input": "xxxxxababc",
"output": "5\nab\naba\nabc\nba\nbc"
},
{
"input": "dddddaabbbbbb",
"output": "4\naab\nab\nbb\nbbb"
},
{
"input": "xxxxxababe",
"output": "5\nab\naba\nabe\nba\nbe"
},
{
"input": "aaaaababaaaaaaaaaaaa",
"output": "6\naa\naaa\nab\nba\nbaa\nbab"
}
] | 62 | 5,632,000 | 0 | 6,334 |
|
0 | none | [
"none"
] | null | null | The GCD table *G* of size *n*<=×<=*n* for an array of positive integers *a* of length *n* is defined by formula
Let us remind you that the greatest common divisor (GCD) of two positive integers *x* and *y* is the greatest integer that is divisor of both *x* and *y*, it is denoted as . For example, for array *a*<==<={4,<=3,<=6,<=2} of length 4 the GCD table will look as follows:
Given all the numbers of the GCD table *G*, restore array *a*. | The first line contains number *n* (1<=≤<=*n*<=≤<=500) — the length of array *a*. The second line contains *n*2 space-separated numbers — the elements of the GCD table of *G* for array *a*.
All the numbers in the table are positive integers, not exceeding 109. Note that the elements are given in an arbitrary order. It is guaranteed that the set of the input data corresponds to some array *a*. | In the single line print *n* positive integers — the elements of array *a*. If there are multiple possible solutions, you are allowed to print any of them. | [
"4\n2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2\n",
"1\n42\n",
"2\n1 1 1 1\n"
] | [
"4 3 6 2",
"42 ",
"1 1 "
] | none | [
{
"input": "4\n2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2",
"output": "2 3 4 6 "
},
{
"input": "1\n42",
"output": "42 "
},
{
"input": "2\n1 1 1 1",
"output": "1 1 "
},
{
"input": "2\n54748096 1 641009859 1",
"output": "54748096 641009859 "
},
{
"input": "3\n1 7 923264237 374288891 7 524125987 1 1 1",
"output": "374288891 524125987 923264237 "
},
{
"input": "4\n1 1 1 1 1 702209411 496813081 673102149 1 1 561219907 1 1 1 1 1",
"output": "496813081 561219907 673102149 702209411 "
},
{
"input": "5\n1 1 1 1 1 9 564718673 585325539 1 1 3 1 9 1 1 365329221 3 291882089 3 1 412106895 1 1 1 3",
"output": "291882089 365329221 412106895 564718673 585325539 "
},
{
"input": "5\n1 161 1 534447872 161 233427865 1 7 7 73701396 1 401939237 4 1 1 1 1 1 7 115704211 1 4 1 7 1",
"output": "73701396 115704211 233427865 401939237 534447872 "
},
{
"input": "5\n2 11 1 1 2 4 2 1 181951 4 345484316 2 4 4 4 2 1 140772746 1 634524 4 521302304 1 2 11",
"output": "181951 634524 140772746 345484316 521302304 "
},
{
"input": "5\n27 675 1 1 347621274 5 2 13 189 738040275 5 1 189 13 1 959752125 770516962 769220855 5 5 2 675 1 1 27",
"output": "347621274 738040275 769220855 770516962 959752125 "
},
{
"input": "5\n2029 6087 2029 2029 6087 2029 527243766 4058 2029 2029 2029 2029 2029 2029 2029 2029 165353355 4058 2029 731472761 739767313 2029 2029 2029 585281282",
"output": "165353355 527243766 585281282 731472761 739767313 "
},
{
"input": "5\n537163 537163 537163 537163 537163 537163 1074326 537163 537163 537163 515139317 1074326 537163 537163 537163 539311652 321760637 170817834 537163 537163 537163 537163 537163 537163 392666153",
"output": "170817834 321760637 392666153 515139317 539311652 "
},
{
"input": "4\n1 188110 607844 2 1 1 695147 1 1 1 143380513 1 1 1 1 2",
"output": "188110 607844 695147 143380513 "
},
{
"input": "4\n3 1 96256522 120 360284388 3 3 2 2 2 3 12 12 2 1 198192381",
"output": "120 96256522 198192381 360284388 "
},
{
"input": "4\n67025 13405 1915 1915 1915 1915 5745 676469920 53620 5745 660330300 67025 53620 380098775 533084295 13405",
"output": "380098775 533084295 660330300 676469920 "
},
{
"input": "4\n700521 233507 759364764 467014 468181535 233507 233507 890362191 233507 700521 467014 233507 946637378 233507 233507 233507",
"output": "468181535 759364764 890362191 946637378 "
},
{
"input": "3\n484799 1 1 744137 1 1 909312183 1 1",
"output": "484799 744137 909312183 "
},
{
"input": "3\n1 716963379 1 1 205 1 1 964 1",
"output": "205 964 716963379 "
},
{
"input": "3\n5993 781145599 54740062 5993 5993 267030101 5993 5993 5993",
"output": "54740062 267030101 781145599 "
},
{
"input": "3\n121339 121339 121339 55451923 531222142 121339 121339 435485671 121339",
"output": "55451923 435485671 531222142 "
},
{
"input": "5\n4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1",
"output": "1 2 4 4 4 "
},
{
"input": "4\n1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3",
"output": "1 1 3 3 "
},
{
"input": "6\n1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6",
"output": "1 3 3 6 6 6 "
}
] | 202 | 10,444,800 | 0 | 6,349 |
|
353 | Two Heaps | [
"combinatorics",
"constructive algorithms",
"greedy",
"implementation",
"math",
"sortings"
] | null | null | Valera has 2·*n* cubes, each cube contains an integer from 10 to 99. He arbitrarily chooses *n* cubes and puts them in the first heap. The remaining cubes form the second heap.
Valera decided to play with cubes. During the game he takes a cube from the first heap and writes down the number it has. Then he takes a cube from the second heap and write out its two digits near two digits he had written (to the right of them). In the end he obtained a single fourdigit integer — the first two digits of it is written on the cube from the first heap, and the second two digits of it is written on the second cube from the second heap.
Valera knows arithmetic very well. So, he can easily count the number of distinct fourdigit numbers he can get in the game. The other question is: how to split cubes into two heaps so that this number (the number of distinct fourdigit integers Valera can get) will be as large as possible? | The first line contains integer *n* (1<=≤<=*n*<=≤<=100). The second line contains 2·*n* space-separated integers *a**i* (10<=≤<=*a**i*<=≤<=99), denoting the numbers on the cubes. | In the first line print a single number — the maximum possible number of distinct four-digit numbers Valera can obtain. In the second line print 2·*n* numbers *b**i* (1<=≤<=*b**i*<=≤<=2). The numbers mean: the *i*-th cube belongs to the *b**i*-th heap in your division.
If there are multiple optimal ways to split the cubes into the heaps, print any of them. | [
"1\n10 99\n",
"2\n13 24 13 45\n"
] | [
"1\n2 1 \n",
"4\n1 2 2 1 \n"
] | In the first test case Valera can put the first cube in the first heap, and second cube — in second heap. In this case he obtain number 1099. If he put the second cube in the first heap, and the first cube in the second heap, then he can obtain number 9910. In both cases the maximum number of distinct integers is equal to one.
In the second test case Valera can obtain numbers 1313, 1345, 2413, 2445. Note, that if he put the first and the third cubes in the first heap, he can obtain only two numbers 1324 and 1345. | [
{
"input": "1\n10 99",
"output": "1\n2 1 "
},
{
"input": "2\n13 24 13 45",
"output": "4\n1 2 2 1 "
},
{
"input": "5\n21 60 18 21 17 39 58 74 62 34",
"output": "25\n1 1 1 2 2 1 2 1 2 2 "
},
{
"input": "10\n26 43 29 92 22 27 95 56 72 55 93 51 91 30 70 77 32 69 87 98",
"output": "100\n1 2 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 2 2 1 "
},
{
"input": "20\n80 56 58 61 75 60 25 49 59 15 43 39 21 73 67 13 75 31 18 87 32 44 53 15 53 76 79 94 85 80 27 25 48 78 32 18 20 78 46 37",
"output": "400\n1 2 1 2 1 1 1 1 2 1 1 2 2 2 1 2 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 1 2 1 1 "
},
{
"input": "50\n49 13 81 20 73 62 19 49 65 95 32 84 24 96 51 57 53 83 40 44 26 65 78 80 92 87 87 95 56 46 22 44 69 80 41 61 97 92 58 53 42 78 53 19 47 36 25 77 65 81 14 61 38 99 27 58 67 37 67 80 77 51 32 43 31 48 19 79 31 91 46 97 91 71 27 63 22 84 73 73 89 44 34 84 70 23 45 31 56 73 83 38 68 45 99 33 83 86 87 80",
"output": "1936\n1 2 1 2 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 2 1 2 2 1 2 2 2 2 1 2 1 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 1 2 2 "
},
{
"input": "2\n10 10 10 11",
"output": "2\n1 2 1 2 "
}
] | 218 | 6,963,200 | 0 | 6,359 |
|
128 | Numbers | [
"constructive algorithms",
"implementation"
] | null | null | One day Anna got the following task at school: to arrange several numbers in a circle so that any two neighboring numbers differs exactly by 1. Anna was given several numbers and arranged them in a circle to fulfill the task. Then she wanted to check if she had arranged the numbers correctly, but at this point her younger sister Maria came and shuffled all numbers. Anna got sick with anger but what's done is done and the results of her work had been destroyed. But please tell Anna: could she have hypothetically completed the task using all those given numbers? | The first line contains an integer *n* — how many numbers Anna had (3<=≤<=*n*<=≤<=105). The next line contains those numbers, separated by a space. All numbers are integers and belong to the range from 1 to 109. | Print the single line "YES" (without the quotes), if Anna could have completed the task correctly using all those numbers (using all of them is necessary). If Anna couldn't have fulfilled the task, no matter how hard she would try, print "NO" (without the quotes). | [
"4\n1 2 3 2\n",
"6\n1 1 2 2 2 3\n",
"6\n2 4 1 1 2 2\n"
] | [
"YES\n",
"YES\n",
"NO\n"
] | none | [
{
"input": "4\n1 2 3 2",
"output": "YES"
},
{
"input": "6\n1 1 2 2 2 3",
"output": "YES"
},
{
"input": "6\n2 4 1 1 2 2",
"output": "NO"
},
{
"input": "4\n999999998 1000000000 999999999 999999999",
"output": "YES"
},
{
"input": "5\n6 7 6 7 6",
"output": "NO"
},
{
"input": "8\n3 5 8 4 7 6 4 7",
"output": "NO"
},
{
"input": "10\n10 11 10 11 10 11 10 11 10 11",
"output": "YES"
},
{
"input": "6\n1 2 3 4 5 6",
"output": "NO"
},
{
"input": "4\n294368194 294368194 294368194 294368195",
"output": "NO"
},
{
"input": "5\n637256245 637256246 637256248 637256247 637256247",
"output": "NO"
},
{
"input": "5\n473416369 473416371 473416370 473416371 473416370",
"output": "NO"
},
{
"input": "5\n650111756 650111755 650111754 650111755 650111756",
"output": "NO"
},
{
"input": "10\n913596052 913596055 913596054 913596053 913596055 913596054 913596053 913596054 913596052 913596053",
"output": "YES"
},
{
"input": "16\n20101451 20101452 20101452 20101452 20101453 20101452 20101451 20101451 20101452 20101451 20101452 20101451 20101454 20101454 20101451 20101451",
"output": "NO"
},
{
"input": "13\n981311157 104863150 76378528 37347249 494793049 33951775 3632297 791848390 926461729 94158141 54601123 332909757 722201692",
"output": "NO"
},
{
"input": "50\n363510947 363510954 363510943 363510964 363510969 363510950 363510951 363510960 363510967 363510952 363510956 363510948 363510944 363510946 363510965 363510946 363510963 363510962 363510947 363510955 363510954 363510948 363510961 363510964 363510963 363510945 363510965 363510953 363510952 363510968 363510955 363510966 363510968 363510950 363510967 363510949 363510958 363510957 363510956 363510959 363510953 363510951 363510966 363510949 363510944 363510962 363510945 363510958 363510961 363510957",
"output": "NO"
},
{
"input": "3\n1 2 1000000000",
"output": "NO"
},
{
"input": "8\n1 1 2 2 5 5 6 6",
"output": "NO"
},
{
"input": "16\n1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7",
"output": "YES"
},
{
"input": "8\n1 2 2 2 2 3 3 3",
"output": "YES"
},
{
"input": "8\n1 2 2 2 3 3 3 4",
"output": "YES"
},
{
"input": "8\n5 4 3 2 1 2 3 4",
"output": "YES"
},
{
"input": "20\n2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 5 6 5 6",
"output": "YES"
},
{
"input": "8\n1 2 3 2 3 2 3 2",
"output": "YES"
}
] | 652 | 18,944,000 | 3 | 6,366 |
Subsets and Splits