contestId
int64
0
1.01k
name
stringlengths
2
58
tags
sequencelengths
0
11
title
stringclasses
523 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
sequencelengths
0
7
demo-output
sequencelengths
0
7
note
stringlengths
0
5.24k
test_cases
listlengths
0
402
timeConsumedMillis
int64
0
8k
memoryConsumedBytes
int64
0
537M
score
float64
-1
3.99
__index_level_0__
int64
0
621k
412
Poster
[ "greedy", "implementation" ]
null
null
The R1 company has recently bought a high rise building in the centre of Moscow for its main office. It's time to decorate the new office, and the first thing to do is to write the company's slogan above the main entrance to the building. The slogan of the company consists of *n* characters, so the decorators hung a large banner, *n* meters wide and 1 meter high, divided into *n* equal squares. The first character of the slogan must be in the first square (the leftmost) of the poster, the second character must be in the second square, and so on. Of course, the R1 programmers want to write the slogan on the poster themselves. To do this, they have a large (and a very heavy) ladder which was put exactly opposite the *k*-th square of the poster. To draw the *i*-th character of the slogan on the poster, you need to climb the ladder, standing in front of the *i*-th square of the poster. This action (along with climbing up and down the ladder) takes one hour for a painter. The painter is not allowed to draw characters in the adjacent squares when the ladder is in front of the *i*-th square because the uncomfortable position of the ladder may make the characters untidy. Besides, the programmers can move the ladder. In one hour, they can move the ladder either a meter to the right or a meter to the left. Drawing characters and moving the ladder is very tiring, so the programmers want to finish the job in as little time as possible. Develop for them an optimal poster painting plan!
The first line contains two integers, *n* and *k* (1<=≀<=*k*<=≀<=*n*<=≀<=100) β€” the number of characters in the slogan and the initial position of the ladder, correspondingly. The next line contains the slogan as *n* characters written without spaces. Each character of the slogan is either a large English letter, or digit, or one of the characters: '.', '!', ',', '?'.
In *t* lines, print the actions the programmers need to make. In the *i*-th line print: - "LEFT" (without the quotes), if the *i*-th action was "move the ladder to the left"; - "RIGHT" (without the quotes), if the *i*-th action was "move the ladder to the right"; - "PRINT *x*" (without the quotes), if the *i*-th action was to "go up the ladder, paint character *x*, go down the ladder". The painting time (variable *t*) must be minimum possible. If there are multiple optimal painting plans, you can print any of them.
[ "2 2\nR1\n", "2 1\nR1\n", "6 4\nGO?GO!\n" ]
[ "PRINT 1\nLEFT\nPRINT R\n", "PRINT R\nRIGHT\nPRINT 1\n", "RIGHT\nRIGHT\nPRINT !\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRINT ?\nLEFT\nPRINT O\nLEFT\nPRINT G\n" ]
Note that the ladder cannot be shifted by less than one meter. The ladder can only stand in front of some square of the poster. For example, you cannot shift a ladder by half a meter and position it between two squares. Then go up and paint the first character and the second character.
[ { "input": "2 2\nR1", "output": "PRINT 1\nLEFT\nPRINT R" }, { "input": "2 1\nR1", "output": "PRINT R\nRIGHT\nPRINT 1" }, { "input": "6 4\nGO?GO!", "output": "RIGHT\nRIGHT\nPRINT !\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRINT ?\nLEFT\nPRINT O\nLEFT\nPRINT G" }, { "input": "7 3\nME,YOU.", "output": "LEFT\nLEFT\nPRINT M\nRIGHT\nPRINT E\nRIGHT\nPRINT ,\nRIGHT\nPRINT Y\nRIGHT\nPRINT O\nRIGHT\nPRINT U\nRIGHT\nPRINT ." }, { "input": "10 1\nEK5JQMS5QN", "output": "PRINT E\nRIGHT\nPRINT K\nRIGHT\nPRINT 5\nRIGHT\nPRINT J\nRIGHT\nPRINT Q\nRIGHT\nPRINT M\nRIGHT\nPRINT S\nRIGHT\nPRINT 5\nRIGHT\nPRINT Q\nRIGHT\nPRINT N" }, { "input": "85 84\n73IW80UODC8B,UR7S8WMNATV0JSRF4W0B2VV8LCAX6SGCYY8?LHDKJEO29WXQWT9.WY1VY7408S1W04GNDZPK", "output": "RIGHT\nPRINT K\nLEFT\nPRINT P\nLEFT\nPRINT Z\nLEFT\nPRINT D\nLEFT\nPRINT N\nLEFT\nPRINT G\nLEFT\nPRINT 4\nLEFT\nPRINT 0\nLEFT\nPRINT W\nLEFT\nPRINT 1\nLEFT\nPRINT S\nLEFT\nPRINT 8\nLEFT\nPRINT 0\nLEFT\nPRINT 4\nLEFT\nPRINT 7\nLEFT\nPRINT Y\nLEFT\nPRINT V\nLEFT\nPRINT 1\nLEFT\nPRINT Y\nLEFT\nPRINT W\nLEFT\nPRINT .\nLEFT\nPRINT 9\nLEFT\nPRINT T\nLEFT\nPRINT W\nLEFT\nPRINT Q\nLEFT\nPRINT X\nLEFT\nPRINT W\nLEFT\nPRINT 9\nLEFT\nPRINT 2\nLEFT\nPRINT O\nLEFT\nPRINT E\nLEFT\nPRINT J\nLEFT\nPRINT K\nLEFT\nPRINT D\n..." }, { "input": "59 53\n7NWD!9PC11C8S4TQABBTJO,?CO6YGOM!W0QR94CZJBD9U1YJY23YB354,8F", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT F\nLEFT\nPRINT 8\nLEFT\nPRINT ,\nLEFT\nPRINT 4\nLEFT\nPRINT 5\nLEFT\nPRINT 3\nLEFT\nPRINT B\nLEFT\nPRINT Y\nLEFT\nPRINT 3\nLEFT\nPRINT 2\nLEFT\nPRINT Y\nLEFT\nPRINT J\nLEFT\nPRINT Y\nLEFT\nPRINT 1\nLEFT\nPRINT U\nLEFT\nPRINT 9\nLEFT\nPRINT D\nLEFT\nPRINT B\nLEFT\nPRINT J\nLEFT\nPRINT Z\nLEFT\nPRINT C\nLEFT\nPRINT 4\nLEFT\nPRINT 9\nLEFT\nPRINT R\nLEFT\nPRINT Q\nLEFT\nPRINT 0\nLEFT\nPRINT W\nLEFT\nPRINT !\nLEFT\nPRINT M\nLEFT\nPRINT O\nLEFT\nPRINT G\nLEFT\nPRIN..." }, { "input": "100 79\nF2.58O.L4A!QX!,.,YQUE.RZW.ENQCZKUFNG?.J6FT?L59BIHKFB?,44MAHSTD8?Z.UP3N!76YW6KVI?4AKWDPP0?3HPERM3PCUR", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT R\nLEFT\nPRINT U\nLEFT\nPRINT C\nLEFT\nPRINT P\nLEFT\nPRINT 3\nLEFT\nPRINT M\nLEFT\nPRINT R\nLEFT\nPRINT E\nLEFT\nPRINT P\nLEFT\nPRINT H\nLEFT\nPRINT 3\nLEFT\nPRINT ?\nLEFT\nPRINT 0\nLEFT\nPRINT P\nLEFT\nPRINT P\nLEFT\nPRINT D\nLEFT\nPRINT W\nLEFT\nPRINT K\nLEFT\nPRINT A\nLEFT\nPRINT 4\nLEFT\nPRINT ?\nLEFT\nPRINT I\nLEFT\nPRINT V\nLEFT\nPRINT K\nLEFT\nPRIN..." }, { "input": "1 1\n!", "output": "PRINT !" }, { "input": "34 20\n.C0QPPSWQKGBSH0,VGM!N,5SX.M9Q,D1DT", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT T\nLEFT\nPRINT D\nLEFT\nPRINT 1\nLEFT\nPRINT D\nLEFT\nPRINT ,\nLEFT\nPRINT Q\nLEFT\nPRINT 9\nLEFT\nPRINT M\nLEFT\nPRINT .\nLEFT\nPRINT X\nLEFT\nPRINT S\nLEFT\nPRINT 5\nLEFT\nPRINT ,\nLEFT\nPRINT N\nLEFT\nPRINT !\nLEFT\nPRINT M\nLEFT\nPRINT G\nLEFT\nPRINT V\nLEFT\nPRINT ,\nLEFT\nPRINT 0\nLEFT\nPRINT H\nLEFT\nPRINT S\nLEFT\nPRINT B\nLEFT\nPRINT G\nLEFT\nPRINT K\nLEFT\nPRINT Q\nLEFT\nPRINT W\nLEFT\nPRINT S\n..." }, { "input": "99 98\nR8MZTEG240LNHY33H7.2CMWM73ZK,P5R,RGOA,KYKMIOG7CMPNHV3R2KM,N374IP8HN97XVMG.PSIPS8H3AXFGK0CJ76,EVKRZ9", "output": "RIGHT\nPRINT 9\nLEFT\nPRINT Z\nLEFT\nPRINT R\nLEFT\nPRINT K\nLEFT\nPRINT V\nLEFT\nPRINT E\nLEFT\nPRINT ,\nLEFT\nPRINT 6\nLEFT\nPRINT 7\nLEFT\nPRINT J\nLEFT\nPRINT C\nLEFT\nPRINT 0\nLEFT\nPRINT K\nLEFT\nPRINT G\nLEFT\nPRINT F\nLEFT\nPRINT X\nLEFT\nPRINT A\nLEFT\nPRINT 3\nLEFT\nPRINT H\nLEFT\nPRINT 8\nLEFT\nPRINT S\nLEFT\nPRINT P\nLEFT\nPRINT I\nLEFT\nPRINT S\nLEFT\nPRINT P\nLEFT\nPRINT .\nLEFT\nPRINT G\nLEFT\nPRINT M\nLEFT\nPRINT V\nLEFT\nPRINT X\nLEFT\nPRINT 7\nLEFT\nPRINT 9\nLEFT\nPRINT N\nLEFT\nPRINT H\n..." }, { "input": "98 72\n.1?7CJ!EFZHO5WUKDZV,0EE92PTAGY078WKN!!41E,Q7381U60!9C,VONEZ6!SFFNDBI86MACX0?D?9!U2UV7S,977PNDSF0HY", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT Y\nLEFT\nPRINT H\nLEFT\nPRINT 0\nLEFT\nPRINT F\nLEFT\nPRINT S\nLEFT\nPRINT D\nLEFT\nPRINT N\nLEFT\nPRINT P\nLEFT\nPRINT 7\nLEFT\nPRINT 7\nLEFT\nPRINT 9\nLEFT\nPRINT ,\nLEFT\nPRINT S\nLEFT\nPRINT 7\nLEFT\nPRINT V\nLEFT\nPRINT U\nLEFT\nPRINT 2\nLEFT\nPRINT U\nLEFT\nPRINT !\nLEFT\nPRINT 9\nLEFT\nPRINT ?\nLEFT\nPRINT D\nLEFT\n..." }, { "input": "97 41\nGQSPZGGRZ0KWUMI79GOXP7!RR9E?Z5YO?6WUL!I7GCXRS8T,PEFQM7CZOUG8HLC7198J1?C69JD00Q!QY1AK!27I?WB?UAUIG", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT G\nRIGHT\nPRINT Q\nRIGHT\nPRINT S\nRIGHT\nPRINT P\nRIGHT\nPRINT Z\nRIGHT\nPRINT G\nRIGHT\nPRINT G\nRIGHT\nPRINT R\nRIGHT\nPRINT Z\nRIGHT\nPRINT 0\nRIGHT\nPRINT K\nRIGHT\nPRINT W\nRIGHT\nPRINT U\nRIGHT\nPRINT M\nRIGHT\nPRINT I\nRIGHT\nPRINT 7\nRIGHT\nPRINT 9\nRIGHT\n..." }, { "input": "96 28\nZCF!PLS27YGXHK8P46H,C.A7MW90ED,4BA!T0!XKIR2GE0HD..YZ0O20O8TA7E35G5YT3L4W5ESSYBHG8.TIQENS4I.R8WE,", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT Z\nRIGHT\nPRINT C\nRIGHT\nPRINT F\nRIGHT\nPRINT !\nRIGHT\nPRINT P\nRIGHT\nPRINT L\nRIGHT\nPRINT S\nRIGHT\nPRINT 2\nRIGHT\nPRINT 7\nRIGHT\nPRINT Y\nRIGHT\nPRINT G\nRIGHT\nPRINT X\nRIGHT\nPRINT H\nRIGHT\nPRINT K\nRIGHT\nPRINT 8\nRIGHT\nPRINT P\nRIGHT\nPRINT 4\nRIGHT\nPRINT 6\nRIGHT\nPRINT H\nRIGHT\nPRINT ,\nRIGHT\nPRINT C\nRIGHT\nPRINT .\nRIGH..." }, { "input": "15 3\n!..!?!,!,..,?!.", "output": "LEFT\nLEFT\nPRINT !\nRIGHT\nPRINT .\nRIGHT\nPRINT .\nRIGHT\nPRINT !\nRIGHT\nPRINT ?\nRIGHT\nPRINT !\nRIGHT\nPRINT ,\nRIGHT\nPRINT !\nRIGHT\nPRINT ,\nRIGHT\nPRINT .\nRIGHT\nPRINT .\nRIGHT\nPRINT ,\nRIGHT\nPRINT ?\nRIGHT\nPRINT !\nRIGHT\nPRINT ." }, { "input": "93 81\nGMIBVKYLURQLWHBGTFNJZZAZNUJJTPQKCPGDMGCDTTGXOANWKTDZSIYBUPFUXGQHCMVIEQCTINRTIUSPGMVZPGWBHPIXC", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT C\nLEFT\nPRINT X\nLEFT\nPRINT I\nLEFT\nPRINT P\nLEFT\nPRINT H\nLEFT\nPRINT B\nLEFT\nPRINT W\nLEFT\nPRINT G\nLEFT\nPRINT P\nLEFT\nPRINT Z\nLEFT\nPRINT V\nLEFT\nPRINT M\nLEFT\nPRINT G\nLEFT\nPRINT P\nLEFT\nPRINT S\nLEFT\nPRINT U\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT R\nLEFT\nPRINT N\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT C\nLEFT\nPRINT Q\nLEFT\nPRINT E\nLEFT\nPRINT I\nLEFT\nPRINT V\nLEFT\nPRINT M\nLEFT\nPRINT C..." }, { "input": "88 30\n5847857685475132927321580125243001071762130696139249809763381765504146602574972381323476", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 5\nRIGHT\nPRINT 8\nRIGHT\nPRINT 4\nRIGHT\nPRINT 7\nRIGHT\nPRINT 8\nRIGHT\nPRINT 5\nRIGHT\nPRINT 7\nRIGHT\nPRINT 6\nRIGHT\nPRINT 8\nRIGHT\nPRINT 5\nRIGHT\nPRINT 4\nRIGHT\nPRINT 7\nRIGHT\nPRINT 5\nRIGHT\nPRINT 1\nRIGHT\nPRINT 3\nRIGHT\nPRINT 2\nRIGHT\nPRINT 9\nRIGHT\nPRINT 2\nRIGHT\nPRINT 7\nRIGHT\nPRINT 3\nRIGHT\nPRINT 2\nRIGHT\nP..." }, { "input": "100 50\n5B2N,CXCWOIWH71XV!HCFEUCN3U88JDRIFRO2VHY?!N.RGH.?W14X5S.Y00RIY6YA19BPD0T,WECXYI,O2RF1U4NX9,F5AVLPOYK", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 5\nRIGHT\nPRINT B\nRIGHT\nPRINT 2\nRIGHT\nPRINT N\nRIGHT\nPRINT ,\nRIGHT\nPRINT C\nRIGHT\nPRINT X\nRIGHT\nPRINT C\nRIGHT\nPRINT W\nRIGHT\nPRINT O\nRIGHT\nPRINT I\nRIGHT\nPRINT W\nRIGHT\nPRINT H\nRIGHT\nPRINT 7\n..." }, { "input": "100 51\n!X85PT!WJDNS9KA6D2SJBR,U,G7M914W07EK3EAJ4XG..UHA3KOOFYJ?M0MEFDC6KNCNGKS0A!S,C02H4TSZA1U7NDBTIY?,7XZ4", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT 4\nLEFT\nPRINT Z\nLEFT\nPRINT X\nLEFT\nPRINT 7\nLEFT\nPRINT ,\nLEFT\nPRINT ?\nLEFT\nPRINT Y\nLEFT\nPRINT I\nLEFT\nPRINT T\nLEFT\nPRINT B\nLEFT\nPRINT D\nLEFT\nPRI..." }, { "input": "100 52\n!MLPE.0K72RW9XKHR60QE?69ILFSIKYSK5AG!TA5.02VG5OMY0967G2RI.62CNK9L8G!7IG9F0XNNCGSDOTFD?I,EBP31HRERZSX", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT X\nLEFT\nPRINT S\nLEFT\nPRINT Z\nLEFT\nPRINT R\nLEFT\nPRINT E\nLEFT\nPRINT R\nLEFT\nPRINT H\nLEFT\nPRINT 1\nLEFT\nPRINT 3\nLEFT\nPRINT P\nLEFT\nPRINT B\nLEFT\nPRINT E\nL..." }, { "input": "100 49\n86C0NR7V,BE09,7,ER715OQ3GZ,P014H4BSQ5YS?OFNDD7YWI?S?UMKIWHSBDZ4398?SSDZLTDU1L?G4QVAB53HNDS!4PYW5C!VI", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT 8\nRIGHT\nPRINT 6\nRIGHT\nPRINT C\nRIGHT\nPRINT 0\nRIGHT\nPRINT N\nRIGHT\nPRINT R\nRIGHT\nPRINT 7\nRIGHT\nPRINT V\nRIGHT\nPRINT ,\nRIGHT\nPRINT B\nRIGHT\nPRINT E\nRIGHT\nPRINT 0\nRIGHT\nPRINT 9\nRIGHT\nPRINT ,\nRIGHT\n..." }, { "input": "100 48\nFO,IYI4AAV?4?N5PWMZX1AINZLKAUJCKMDWU4CROT?.LYWYLYU5S80,15A6VGP!V0N,O.70CP?GEA52WG59UYWU1MMMU4BERVY.!", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT F\nRIGHT\nPRINT O\nRIGHT\nPRINT ,\nRIGHT\nPRINT I\nRIGHT\nPRINT Y\nRIGHT\nPRINT I\nRIGHT\nPRINT 4\nRIGHT\nPRINT A\nRIGHT\nPRINT A\nRIGHT\nPRINT V\nRIGHT\nPRINT ?\nRIGHT\nPRINT 4\nRIGHT\nPRINT ?\nRIGHT\nPRINT N\nRIGHT\nPRINT..." }, { "input": "100 100\nE?F,W.,,O51!!G13ZWP?YHWRT69?RQPW7,V,EM3336F1YAIKJIME1M45?LJM42?45V7221?P.DIO9FK245LXKMR4ALKPDLA5YI2Y", "output": "PRINT Y\nLEFT\nPRINT 2\nLEFT\nPRINT I\nLEFT\nPRINT Y\nLEFT\nPRINT 5\nLEFT\nPRINT A\nLEFT\nPRINT L\nLEFT\nPRINT D\nLEFT\nPRINT P\nLEFT\nPRINT K\nLEFT\nPRINT L\nLEFT\nPRINT A\nLEFT\nPRINT 4\nLEFT\nPRINT R\nLEFT\nPRINT M\nLEFT\nPRINT K\nLEFT\nPRINT X\nLEFT\nPRINT L\nLEFT\nPRINT 5\nLEFT\nPRINT 4\nLEFT\nPRINT 2\nLEFT\nPRINT K\nLEFT\nPRINT F\nLEFT\nPRINT 9\nLEFT\nPRINT O\nLEFT\nPRINT I\nLEFT\nPRINT D\nLEFT\nPRINT .\nLEFT\nPRINT P\nLEFT\nPRINT ?\nLEFT\nPRINT 1\nLEFT\nPRINT 2\nLEFT\nPRINT 2\nLEFT\nPRINT 7\nLEFT\nP..." }, { "input": "100 1\nJJ0ZOX4CY,SQ9L0K!2C9TM3C6K.6R21717I37VDSXGHBMR2!J820AI75D.O7NYMT6F.AGJ8R0RDETWOACK3P6UZAUYRKMKJ!G3WF", "output": "PRINT J\nRIGHT\nPRINT J\nRIGHT\nPRINT 0\nRIGHT\nPRINT Z\nRIGHT\nPRINT O\nRIGHT\nPRINT X\nRIGHT\nPRINT 4\nRIGHT\nPRINT C\nRIGHT\nPRINT Y\nRIGHT\nPRINT ,\nRIGHT\nPRINT S\nRIGHT\nPRINT Q\nRIGHT\nPRINT 9\nRIGHT\nPRINT L\nRIGHT\nPRINT 0\nRIGHT\nPRINT K\nRIGHT\nPRINT !\nRIGHT\nPRINT 2\nRIGHT\nPRINT C\nRIGHT\nPRINT 9\nRIGHT\nPRINT T\nRIGHT\nPRINT M\nRIGHT\nPRINT 3\nRIGHT\nPRINT C\nRIGHT\nPRINT 6\nRIGHT\nPRINT K\nRIGHT\nPRINT .\nRIGHT\nPRINT 6\nRIGHT\nPRINT R\nRIGHT\nPRINT 2\nRIGHT\nPRINT 1\nRIGHT\nPRINT 7\nRIGHT\n..." }, { "input": "99 50\nLQJ!7GDFJ,SKQ8J2R?I4VA0K2.NDY.AZ?7K275NA81.YK!DO,PCQCJYL6BUU30XQ300FP0,LB!5TYTRSGOB4ELZ8IBKGVDNW8?B", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT B\nLEFT\nPRINT ?\nLEFT\nPRINT 8\nLEFT\nPRINT W\nLEFT\nPRINT N\nLEFT\nPRINT D\nLEFT\nPRINT V\nLEFT\nPRINT G\nLEFT\nPRINT K\nLEFT\nPRINT B\nLEFT\nPRINT I\nLEFT\nPRI..." }, { "input": "99 51\nD9QHZXG46IWHHLTD2E,AZO0.M40R4B1WU6F,0QNZ37NQ0ACSU6!7Z?H02AD?0?9,5N5RG6PVOWIE6YA9QBCOHVNU??YT6,29SAC", "output": "RIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nRIGHT\nPRINT C\nLEFT\nPRINT A\nLEFT\nPRINT S\nLEFT\nPRINT 9\nLEFT\nPRINT 2\nLEFT\nPRINT ,\nLEFT\nPRINT 6\nLEFT\nPRINT T\nLEFT\nPRINT Y\nLEFT\nPRINT ?\nLEFT\nPRINT ?\nLEFT\nPRINT U\nL..." }, { "input": "99 49\nOLUBX0Q3VPNSH,QCAWFVSKZA3NUURJ9PXBS3?72PMJ,27QTA7Z1N?6Q2CSJE,W0YX8XWS.W6B?K?M!PYAD30BX?8.VJCC,P8QL9", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT O\nRIGHT\nPRINT L\nRIGHT\nPRINT U\nRIGHT\nPRINT B\nRIGHT\nPRINT X\nRIGHT\nPRINT 0\nRIGHT\nPRINT Q\nRIGHT\nPRINT 3\nRIGHT\nPRINT V\nRIGHT\nPRINT P\nRIGHT\nPRINT N\nRIGHT\nPRINT S\nRIGHT\nPRINT H\nRIGHT\nPRINT ,\nRIGHT\n..." }, { "input": "99 48\nW0GU5MNE5!JVIOO2SR5OO7RWLHDFH.HLCCX89O21SLD9!CU0MFG3RFZUFT!R0LWNVNSS.W54.67N4VAN1Q2J9NMO9Q6.UE8U6B8", "output": "LEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nLEFT\nPRINT W\nRIGHT\nPRINT 0\nRIGHT\nPRINT G\nRIGHT\nPRINT U\nRIGHT\nPRINT 5\nRIGHT\nPRINT M\nRIGHT\nPRINT N\nRIGHT\nPRINT E\nRIGHT\nPRINT 5\nRIGHT\nPRINT !\nRIGHT\nPRINT J\nRIGHT\nPRINT V\nRIGHT\nPRINT I\nRIGHT\nPRINT O\nRIGHT\nPRINT..." }, { "input": "2 1\nOA", "output": "PRINT O\nRIGHT\nPRINT A" }, { "input": "2 2\nGW", "output": "PRINT W\nLEFT\nPRINT G" }, { "input": "3 1\n.VP", "output": "PRINT .\nRIGHT\nPRINT V\nRIGHT\nPRINT P" }, { "input": "3 2\nUD0", "output": "RIGHT\nPRINT 0\nLEFT\nPRINT D\nLEFT\nPRINT U" }, { "input": "3 3\nMYE", "output": "PRINT E\nLEFT\nPRINT Y\nLEFT\nPRINT M" }, { "input": "4 1\nC5EJ", "output": "PRINT C\nRIGHT\nPRINT 5\nRIGHT\nPRINT E\nRIGHT\nPRINT J" }, { "input": "4 2\n5QSW", "output": "LEFT\nPRINT 5\nRIGHT\nPRINT Q\nRIGHT\nPRINT S\nRIGHT\nPRINT W" }, { "input": "4 3\n!F3D", "output": "RIGHT\nPRINT D\nLEFT\nPRINT 3\nLEFT\nPRINT F\nLEFT\nPRINT !" }, { "input": "4 4\nS!?Y", "output": "PRINT Y\nLEFT\nPRINT ?\nLEFT\nPRINT !\nLEFT\nPRINT S" }, { "input": "5 1\nIP4!N", "output": "PRINT I\nRIGHT\nPRINT P\nRIGHT\nPRINT 4\nRIGHT\nPRINT !\nRIGHT\nPRINT N" }, { "input": "5 2\nI7??5", "output": "LEFT\nPRINT I\nRIGHT\nPRINT 7\nRIGHT\nPRINT ?\nRIGHT\nPRINT ?\nRIGHT\nPRINT 5" }, { "input": "5 3\nASNUW", "output": "RIGHT\nRIGHT\nPRINT W\nLEFT\nPRINT U\nLEFT\nPRINT N\nLEFT\nPRINT S\nLEFT\nPRINT A" }, { "input": "5 4\n3?,4L", "output": "RIGHT\nPRINT L\nLEFT\nPRINT 4\nLEFT\nPRINT ,\nLEFT\nPRINT ?\nLEFT\nPRINT 3" }, { "input": "5 5\n30COA", "output": "PRINT A\nLEFT\nPRINT O\nLEFT\nPRINT C\nLEFT\nPRINT 0\nLEFT\nPRINT 3" }, { "input": "4 2\nABCD", "output": "LEFT\nPRINT A\nRIGHT\nPRINT B\nRIGHT\nPRINT C\nRIGHT\nPRINT D" } ]
31
0
0
6,376
628
Bear and String Distance
[ "greedy", "strings" ]
null
null
Limak is a little polar bear. He likes nice strings β€” strings of length *n*, consisting of lowercase English letters only. The distance between two letters is defined as the difference between their positions in the alphabet. For example, , and . Also, the distance between two nice strings is defined as the sum of distances of corresponding letters. For example, , and . Limak gives you a nice string *s* and an integer *k*. He challenges you to find any nice string *s*' that . Find any *s*' satisfying the given conditions, or print "-1" if it's impossible to do so. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use gets/scanf/printf instead of getline/cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
The first line contains two integers *n* and *k* (1<=≀<=*n*<=≀<=105, 0<=≀<=*k*<=≀<=106). The second line contains a string *s* of length *n*, consisting of lowercase English letters.
If there is no string satisfying the given conditions then print "-1" (without the quotes). Otherwise, print any nice string *s*' that .
[ "4 26\nbear\n", "2 7\naf\n", "3 1000\nhey\n" ]
[ "roar", "db\n", "-1\n" ]
none
[ { "input": "4 26\nbear", "output": "zcar" }, { "input": "2 7\naf", "output": "hf" }, { "input": "3 1000\nhey", "output": "-1" }, { "input": "5 50\nkzsij", "output": "zaiij" }, { "input": "5 500\nvsdxg", "output": "-1" }, { "input": "1 0\na", "output": "a" }, { "input": "1 1\ng", "output": "f" }, { "input": "1 25\nr", "output": "-1" }, { "input": "1 15\no", "output": "-1" }, { "input": "10 100\naddaiyssyp", "output": "zzzzcyssyp" }, { "input": "50 100\ntewducenaqgpilgftjcmzttrgebnyldwfgbtttrygaiqtkgbjb", "output": "azazecenaqgpilgftjcmzttrgebnyldwfgbtttrygaiqtkgbjb" }, { "input": "2 1\nzz", "output": "yz" }, { "input": "8 8\nabcdefgh", "output": "ibcdefgh" }, { "input": "1 25\nz", "output": "a" }, { "input": "1 24\nz", "output": "b" }, { "input": "1 24\ny", "output": "a" }, { "input": "2 49\nzz", "output": "ab" }, { "input": "1 26\na", "output": "-1" }, { "input": "1 25\na", "output": "z" }, { "input": "4 17\nrzsq", "output": "azsq" }, { "input": "69 1701\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzy", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaax" }, { "input": "2 9\nbc", "output": "kc" }, { "input": "2 48\nab", "output": "zy" }, { "input": "1 8\nc", "output": "k" }, { "input": "2 25\nyd", "output": "ac" }, { "input": "5 24\nizrqp", "output": "zsrqp" }, { "input": "1 13\nn", "output": "a" }, { "input": "5 21\nfmmqh", "output": "zlmqh" } ]
0
0
-1
6,396
203
Photographer
[ "greedy", "sortings" ]
null
null
Valera's lifelong ambition was to be a photographer, so he bought a new camera. Every day he got more and more clients asking for photos, and one day Valera needed a program that would determine the maximum number of people he can serve. The camera's memory is *d* megabytes. Valera's camera can take photos of high and low quality. One low quality photo takes *a* megabytes of memory, one high quality photo take *b* megabytes of memory. For unknown reasons, each client asks him to make several low quality photos and several high quality photos. More formally, the *i*-th client asks to make *x**i* low quality photos and *y**i* high quality photos. Valera wants to serve as many clients per day as possible, provided that they will be pleased with his work. To please the *i*-th client, Valera needs to give him everything he wants, that is, to make *x**i* low quality photos and *y**i* high quality photos. To make one low quality photo, the camera must have at least *a* megabytes of free memory space. Similarly, to make one high quality photo, the camera must have at least *b* megabytes of free memory space. Initially the camera's memory is empty. Valera also does not delete photos from the camera so that the camera's memory gradually fills up. Calculate the maximum number of clients Valera can successfully serve and print the numbers of these clients.
The first line contains two integers *n* and *d* (1<=≀<=*n*<=≀<=105,<=1<=≀<=*d*<=≀<=109) β€” the number of clients and the camera memory size, correspondingly. The second line contains two integers *a* and *b* (1<=≀<=*a*<=≀<=*b*<=≀<=104) β€” the size of one low quality photo and of one high quality photo, correspondingly. Next *n* lines describe the clients. The *i*-th line contains two integers *x**i* and *y**i* (0<=≀<=*x**i*,<=*y**i*<=≀<=105) β€” the number of low quality photos and high quality photos the *i*-th client wants, correspondingly. All numbers on all lines are separated by single spaces.
On the first line print the answer to the problem β€” the maximum number of clients that Valera can successfully serve. Print on the second line the numbers of the client in any order. All numbers must be distinct. If there are multiple answers, print any of them. The clients are numbered starting with 1 in the order in which they are defined in the input data.
[ "3 10\n2 3\n1 4\n2 1\n1 0\n", "3 6\n6 6\n1 1\n1 0\n1 0\n" ]
[ "2\n3 2 ", "1\n2 " ]
none
[ { "input": "3 10\n2 3\n1 4\n2 1\n1 0", "output": "2\n3 2 " }, { "input": "3 6\n6 6\n1 1\n1 0\n1 0", "output": "1\n2 " }, { "input": "4 5\n6 8\n1 2\n3 0\n10 2\n0 4", "output": "0" }, { "input": "4 10\n6 6\n1 2\n2 2\n0 0\n0 0", "output": "2\n3 4 " }, { "input": "10 10\n1 1\n0 3\n6 4\n3 3\n6 3\n5 2\n6 4\n1 3\n5 5\n2 6\n6 4", "output": "2\n1 7 " }, { "input": "5 5\n1 1\n2 0\n3 2\n4 4\n10 0\n0 1", "output": "2\n5 1 " }, { "input": "4 10\n1 2\n1 0\n0 0\n2 0\n1 3", "output": "4\n2 1 3 4 " }, { "input": "1 22\n3 5\n1 3", "output": "1\n1 " }, { "input": "10 20\n3 5\n3 0\n0 3\n1 2\n1 3\n1 1\n3 0\n0 3\n0 3\n3 1\n3 1", "output": "2\n5 1 " }, { "input": "10 50\n1 1\n7 10\n6 6\n1 0\n2 5\n2 6\n9 7\n3 5\n7 6\n7 10\n7 7", "output": "6\n3 4 5 7 2 8 " }, { "input": "15 30\n13 19\n10 20\n9 0\n11 15\n10 8\n18 3\n13 15\n2 14\n9 16\n8 4\n13 10\n19 2\n13 19\n6 17\n16 4\n15 6", "output": "0" }, { "input": "30 50\n1 3\n2 2\n3 2\n3 3\n0 1\n0 2\n1 3\n1 3\n1 1\n0 1\n0 2\n1 3\n1 0\n1 0\n2 1\n0 1\n0 0\n0 3\n2 3\n2 2\n0 1\n2 3\n2 3\n0 3\n0 3\n3 3\n1 2\n2 1\n1 3\n3 1\n0 3", "output": "13\n16 12 13 4 9 15 20 8 14 27 5 10 29 " }, { "input": "50 50\n6 10\n10 0\n1 9\n8 2\n4 9\n0 7\n2 0\n7 5\n4 8\n10 7\n2 4\n5 6\n6 8\n3 2\n4 6\n7 8\n6 9\n7 7\n7 3\n9 5\n3 10\n7 2\n4 3\n2 0\n6 5\n5 3\n1 7\n1 7\n9 1\n10 4\n10 5\n4 2\n10 10\n0 7\n1 2\n10 1\n1 7\n3 7\n8 7\n5 2\n6 1\n3 1\n4 7\n7 10\n1 5\n10 8\n5 5\n5 1\n3 3\n1 6\n2 1", "output": "3\n6 23 50 " }, { "input": "1 100\n6 10\n14 19", "output": "0" }, { "input": "2 160\n6 9\n11 9\n6 6", "output": "1\n2 " }, { "input": "2 1000000000\n10000 10000\n50000 50000\n100000 100000", "output": "1\n1 " }, { "input": "2 1000000000\n10000 10000\n100000 0\n100000 100000", "output": "1\n1 " }, { "input": "1 1000000000\n1 1\n1 1", "output": "1\n1 " }, { "input": "6 1000000000\n9999 10000\n10000 9998\n10000 10000\n10000 10000\n70000 70000\n10000 10000\n10000 10000", "output": "5\n1 2 3 5 6 " }, { "input": "3 10\n1 10\n0 1\n3 0\n3 0", "output": "2\n2 3 " }, { "input": "2 1000000000\n10000 10000\n0 100000\n100000 100000", "output": "1\n1 " }, { "input": "3 3\n1 1\n3 0\n1 0\n1 0", "output": "2\n2 3 " }, { "input": "2 1000000000\n10000 10000\n100000 100000\n50000 50000", "output": "1\n2 " }, { "input": "2 1000000000\n10000 10000\n0 90000\n100000 100000", "output": "1\n1 " }, { "input": "3 1000000000\n10000 10000\n100000 0\n100000 100000\n0 0", "output": "2\n3 1 " }, { "input": "2 1000000000\n10000 10000\n10000 10000\n100000 100000", "output": "1\n1 " }, { "input": "2 1000000000\n10000 10000\n100000 100000\n100000 0", "output": "1\n2 " }, { "input": "3 1000000000\n10000 10000\n99999 0\n100000 100000\n100000 100000", "output": "1\n1 " } ]
1,078
15,769,600
3
6,408
335
Banana
[ "binary search", "constructive algorithms", "greedy" ]
null
null
Piegirl is buying stickers for a project. Stickers come on sheets, and each sheet of stickers contains exactly *n* stickers. Each sticker has exactly one character printed on it, so a sheet of stickers can be described by a string of length *n*. Piegirl wants to create a string *s* using stickers. She may buy as many sheets of stickers as she wants, and may specify any string of length *n* for the sheets, but all the sheets must be identical, so the string is the same for all sheets. Once she attains the sheets of stickers, she will take some of the stickers from the sheets and arrange (in any order) them to form *s*. Determine the minimum number of sheets she has to buy, and provide a string describing a possible sheet of stickers she should buy.
The first line contains string *s* (1<=≀<=|*s*|<=≀<=1000), consisting of lowercase English characters only. The second line contains an integer *n* (1<=≀<=*n*<=≀<=1000).
On the first line, print the minimum number of sheets Piegirl has to buy. On the second line, print a string consisting of *n* lower case English characters. This string should describe a sheet of stickers that Piegirl can buy in order to minimize the number of sheets. If Piegirl cannot possibly form the string *s*, print instead a single line with the number -1.
[ "banana\n4\n", "banana\n3\n", "banana\n2\n" ]
[ "2\nbaan\n", "3\nnab\n", "-1\n" ]
In the second example, Piegirl can order 3 sheets of stickers with the characters "nab". She can take characters "nab" from the first sheet, "na" from the second, and "a" from the third, and arrange them to from "banana".
[ { "input": "banana\n4", "output": "2\nbaan" }, { "input": "banana\n3", "output": "3\nnab" }, { "input": "banana\n2", "output": "-1" }, { "input": "p\n1000", "output": "1\npaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa..." }, { "input": "b\n1", "output": "1\nb" }, { "input": "aba\n2", "output": "2\nab" }, { "input": "aaa\n2", "output": "2\naa" }, { "input": "aa\n3", "output": "1\naaa" }, { "input": "aaaaaaaabbbbbccccccccccccccccccccccccccccccc\n7", "output": "8\nabcccca" }, { "input": "aaaaa\n10", "output": "1\naaaaaaaaaa" }, { "input": "baba\n3", "output": "2\naba" }, { "input": "a\n1000", "output": "1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa..." }, { "input": "aan\n5", "output": "1\naanaa" }, { "input": "banana\n5", "output": "2\naabna" }, { "input": "a\n5", "output": "1\naaaaa" }, { "input": "aaaaaaa\n5", "output": "2\naaaaa" }, { "input": "abc\n100", "output": "1\nabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "zzz\n4", "output": "1\nzzza" }, { "input": "aaabbb\n3", "output": "3\naba" }, { "input": "abc\n5", "output": "1\nabcaa" }, { "input": "abc\n10", "output": "1\nabcaaaaaaa" }, { "input": "aaaaa\n100", "output": "1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "abc\n1000", "output": "1\nabcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa..." }, { "input": "a\n10", "output": "1\naaaaaaaaaa" }, { "input": "bbbbb\n6", "output": "1\nbbbbba" }, { "input": "bnana\n4", "output": "2\nabna" }, { "input": "aaaaaaabbbbbbb\n3", "output": "7\naba" }, { "input": "aabbbcccc\n7", "output": "2\nabbccaa" }, { "input": "aaa\n9", "output": "1\naaaaaaaaa" }, { "input": "a\n2", "output": "1\naa" }, { "input": "cccbba\n10", "output": "1\nabbcccaaaa" }, { "input": "a\n4", "output": "1\naaaa" } ]
280
0
0
6,417
244
Dividing Orange
[ "implementation" ]
null
null
One day Ms Swan bought an orange in a shop. The orange consisted of *n*Β·*k* segments, numbered with integers from 1 to *n*Β·*k*. There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≀<=*i*<=≀<=*k*) child wrote the number *a**i* (1<=≀<=*a**i*<=≀<=*n*Β·*k*). All numbers *a**i* accidentally turned out to be different. Now the children wonder, how to divide the orange so as to meet these conditions: - each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously. Help the children, divide the orange and fulfill the requirements, described above.
The first line contains two integers *n*, *k* (1<=≀<=*n*,<=*k*<=≀<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≀<=*a**i*<=≀<=*n*Β·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get. It is guaranteed that all numbers *a**i* are distinct.
Print exactly *n*Β·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces. You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.
[ "2 2\n4 1\n", "3 1\n2\n" ]
[ "2 4 \n1 3 \n", "3 2 1 \n" ]
none
[ { "input": "2 2\n4 1", "output": "2 4 \n1 3 " }, { "input": "3 1\n2", "output": "3 2 1 " }, { "input": "5 5\n25 24 23 22 21", "output": "2 3 1 25 4 \n7 6 8 5 24 \n10 12 9 23 11 \n13 15 14 16 22 \n19 21 20 17 18 " }, { "input": "1 30\n8 22 13 25 10 30 12 27 6 4 7 2 20 16 26 14 15 17 23 3 24 9 5 11 29 1 19 28 21 18", "output": "8 \n22 \n13 \n25 \n10 \n30 \n12 \n27 \n6 \n4 \n7 \n2 \n20 \n16 \n26 \n14 \n15 \n17 \n23 \n3 \n24 \n9 \n5 \n11 \n29 \n1 \n19 \n28 \n21 \n18 " }, { "input": "30 1\n29", "output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 30 24 21 18 14 23 29 7 " }, { "input": "10 10\n13 39 6 75 84 94 96 21 85 71", "output": "9 3 1 13 5 7 4 2 10 8 \n17 12 19 11 39 14 15 18 16 20 \n22 27 6 24 25 30 26 28 23 29 \n36 33 75 34 38 31 35 40 37 32 \n43 44 49 42 46 48 47 45 84 41 \n51 94 52 56 57 54 50 55 53 58 \n64 60 62 61 66 59 63 96 67 65 \n72 69 76 77 70 78 73 21 74 68 \n81 85 87 88 80 83 89 86 79 82 \n93 91 100 99 98 71 90 95 92 97 " }, { "input": "10 15\n106 109 94 50 3 143 147 10 89 145 29 28 87 126 110", "output": "9 4 1 106 6 7 5 2 11 8 \n17 13 19 12 109 14 15 18 16 20 \n21 26 94 23 24 31 25 27 22 30 \n37 34 50 35 39 32 36 40 38 33 \n43 44 49 42 46 48 47 45 3 41 \n52 143 53 57 58 55 51 56 54 59 \n65 61 63 62 67 60 64 147 68 66 \n72 70 75 76 71 77 73 10 74 69 \n80 89 84 85 79 82 86 83 78 81 \n92 90 98 97 96 145 88 93 91 95 \n100 104 105 103 102 108 99 101 29 107 \n111 114 112 116 119 118 28 113 117 115 \n128 120 122 125 129 127 87 124 123 121 \n133 136 130 134 132 131 135 126 137 138 \n142 141 144 148 146 149 110 140..." }, { "input": "15 10\n126 111 12 6 28 47 51 116 53 35", "output": "9 13 1 14 5 16 15 2 10 8 126 3 11 4 7 \n111 22 21 26 20 30 17 23 18 19 24 31 27 25 29 \n43 40 41 39 42 12 45 44 34 37 32 36 38 33 46 \n59 6 57 56 58 49 62 54 50 52 63 61 48 55 60 \n70 67 71 75 69 77 72 65 68 73 76 74 28 64 66 \n80 89 86 79 87 91 81 78 88 83 85 82 90 84 47 \n95 93 51 99 104 98 103 101 100 102 97 96 94 92 105 \n120 115 113 118 109 119 110 116 114 106 121 117 108 107 112 \n135 133 128 125 123 131 129 122 124 53 134 132 130 127 136 \n148 139 141 143 146 144 147 138 137 145 142 149 140 150 35 \n..." }, { "input": "30 30\n455 723 796 90 7 881 40 736 147 718 560 619 468 363 161 767 282 19 111 369 443 850 871 242 713 789 208 435 135 411", "output": "9 22 18 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 31 26 23 20 15 25 455 8 \n723 52 49 60 45 48 34 59 58 44 32 57 61 56 51 33 42 37 41 38 47 53 36 50 54 55 46 39 43 35 \n89 71 796 74 78 70 88 67 84 85 63 83 82 62 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n115 90 102 121 104 106 109 98 112 120 119 105 103 97 113 93 100 118 107 96 117 92 94 116 95 101 110 108 114 99 \n136 133 148 123 144 139 149 142 7 140 138 127 150 129 122 130 143 126 134 152 132 145 131 146 125 151 137 128 124 141 \n154 177..." }, { "input": "1 1\n1", "output": "1 " }, { "input": "2 1\n1", "output": "2 1 " }, { "input": "1 2\n2 1", "output": "2 \n1 " }, { "input": "1 3\n2 3 1", "output": "2 \n3 \n1 " }, { "input": "2 3\n3 2 1", "output": "4 3 \n2 5 \n1 6 " }, { "input": "3 3\n6 7 8", "output": "2 6 1 \n7 4 3 \n5 9 8 " }, { "input": "3 1\n3", "output": "2 3 1 " }, { "input": "3 2\n5 4", "output": "2 5 1 \n4 6 3 " }, { "input": "12 13\n149 22 133 146 151 64 45 88 77 126 92 134 143", "output": "8 11 1 10 5 6 4 2 9 7 149 3 \n14 13 19 12 17 16 22 20 21 23 15 18 \n133 28 34 32 31 25 30 33 24 29 26 27 \n35 42 38 40 43 46 39 41 44 146 36 37 \n56 51 48 49 50 54 53 151 57 52 47 55 \n61 58 65 68 67 59 62 66 69 63 64 60 \n80 70 75 74 76 81 45 72 78 73 79 71 \n94 85 88 83 90 87 86 89 93 82 84 91 \n99 104 98 96 103 105 102 97 77 95 101 100 \n116 109 107 111 115 113 126 108 112 110 114 106 \n127 121 125 118 120 128 123 92 119 122 117 124 \n139 132 136 130 131 140 141 134 137 138 135 129 \n150 142 144 155 154..." }, { "input": "30 29\n427 740 444 787 193 268 19 767 46 276 245 468 661 348 402 62 665 425 398 503 89 455 200 772 355 442 863 416 164", "output": "8 21 17 12 5 27 13 2 20 23 29 16 10 4 6 11 3 26 1 28 15 9 30 25 22 18 14 24 427 7 \n740 51 48 59 43 47 33 58 57 42 31 56 60 55 50 32 40 36 39 37 45 52 35 49 53 54 44 38 41 34 \n90 71 444 74 78 70 88 67 84 85 63 83 82 61 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n114 787 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 146 140 193 138 136 126 147 128 121 129 141 125 133 149 131 143 130 144 124 148 135 127 123 139 \n151 1..." }, { "input": "29 30\n173 601 360 751 194 411 708 598 236 812 855 647 100 106 59 38 822 196 529 417 606 159 384 389 300 172 544 726 702 799", "output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 7 24 21 18 14 23 173 \n47 36 37 35 45 51 49 41 31 33 29 32 46 57 52 48 54 34 55 53 56 30 601 44 43 39 40 42 50 \n77 79 84 86 64 72 75 60 76 78 81 73 80 58 82 69 70 67 83 65 68 62 360 71 61 63 85 66 74 \n90 107 751 110 105 93 98 96 95 97 116 91 109 102 115 87 99 104 114 88 92 113 94 111 101 89 103 112 108 \n140 127 144 134 118 125 141 137 119 133 128 139 124 121 130 126 120 142 136 122 132 117 194 131 129 143 138 123 135 \n147 168 163 154 174 160 146..." }, { "input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793", "output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..." }, { "input": "28 29\n771 736 590 366 135 633 68 789 193 459 137 370 216 692 730 712 537 356 752 757 796 541 804 27 431 162 196 630 684", "output": "8 20 17 12 5 26 13 2 19 22 771 16 10 4 6 11 3 25 1 28 15 9 7 24 21 18 14 23 \n34 55 49 41 54 45 33 37 35 53 29 40 30 32 43 31 36 51 736 44 39 46 38 50 48 52 47 42 \n77 65 78 73 63 56 72 590 76 62 74 57 83 69 58 80 60 79 66 59 64 82 67 70 81 61 71 75 \n107 104 92 94 106 109 84 88 86 99 98 105 366 93 103 101 89 87 95 90 100 85 91 102 97 108 110 96 \n124 125 113 123 119 120 121 134 127 132 117 129 116 130 138 111 118 131 122 139 128 114 112 126 115 136 133 135 \n141 633 142 153 160 152 149 156 166 158 161 144..." }, { "input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793", "output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..." }, { "input": "27 3\n12 77 80", "output": "8 21 18 13 5 27 14 2 20 23 12 17 10 4 6 11 3 26 1 24 16 9 7 25 22 19 15 \n43 32 46 48 51 37 41 49 77 30 40 28 34 38 44 35 31 45 52 50 47 29 36 53 42 39 33 \n62 61 78 63 81 55 70 79 67 73 58 69 59 64 80 54 56 57 68 72 65 60 71 66 74 75 76 " }, { "input": "3 27\n77 9 32 56 7 65 58 24 64 19 49 62 47 44 28 79 76 71 21 4 18 23 51 53 12 6 20", "output": "2 77 1 \n9 5 3 \n8 10 32 \n13 56 11 \n15 7 14 \n65 17 16 \n22 58 25 \n24 26 27 \n29 64 30 \n31 33 19 \n35 34 49 \n62 37 36 \n47 38 39 \n44 40 41 \n42 43 28 \n46 45 79 \n48 50 76 \n71 54 52 \n57 21 55 \n60 4 59 \n61 18 63 \n66 23 67 \n68 51 69 \n72 70 53 \n12 73 74 \n75 6 78 \n81 20 80 " }, { "input": "10 30\n165 86 241 45 144 43 95 250 28 240 42 15 295 211 48 99 199 156 206 109 100 194 229 224 57 10 220 79 44 203", "output": "8 3 1 165 5 6 4 2 9 7 \n17 12 19 11 86 13 14 18 16 20 \n21 26 241 23 24 30 25 27 22 29 \n36 33 45 34 38 31 35 39 37 32 \n46 47 53 41 50 52 51 49 144 40 \n55 43 56 61 62 59 54 60 58 63 \n69 65 67 66 71 64 68 95 72 70 \n76 74 80 81 75 82 77 250 78 73 \n85 28 90 91 84 88 92 89 83 87 \n97 94 104 103 102 240 93 98 96 101 \n106 111 112 110 108 114 105 107 42 113 \n115 118 116 120 123 122 15 117 121 119 \n131 124 126 129 132 130 295 128 127 125 \n136 139 133 137 135 134 138 211 140 141 \n146 145 147 149 148 150 4..." }, { "input": "30 10\n71 146 274 157 190 85 32 152 25 278", "output": "8 20 17 12 5 27 13 2 19 22 29 16 10 4 6 11 3 26 1 28 15 9 30 24 21 18 14 23 71 7 \n146 51 48 59 44 47 34 58 57 43 31 56 60 55 50 33 41 37 40 38 46 52 36 49 53 54 45 39 42 35 \n90 70 274 74 78 69 89 66 84 86 62 83 82 61 72 79 81 80 73 91 68 65 64 88 77 75 63 67 87 76 \n114 157 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 147 140 190 138 136 126 148 128 121 129 141 125 133 150 131 143 130 144 124 149 135 127 123 139 \n153 17..." }, { "input": "7 1\n5", "output": "2 3 1 5 6 7 4 " }, { "input": "6 1\n5", "output": "2 3 1 5 6 4 " } ]
92
0
0
6,427
575
Tablecity
[ "constructive algorithms", "implementation" ]
null
null
There was a big bank robbery in Tablecity. In order to catch the thief, the President called none other than Albert – Tablecity’s Chief of Police. Albert does not know where the thief is located, but he does know how he moves. Tablecity can be represented as 1000<=Γ—<=2 grid, where every cell represents one district. Each district has its own unique name β€œ(*X*,<=*Y*)”, where *X* and *Y* are the coordinates of the district in the grid. The thief’s movement is as Every hour the thief will leave the district (*X*,<=*Y*) he is currently hiding in, and move to one of the districts: (*X*<=-<=1,<=*Y*), (*X*<=+<=1,<=*Y*), (*X*<=-<=1,<=*Y*<=-<=1), (*X*<=-<=1,<=*Y*<=+<=1), (*X*<=+<=1,<=*Y*<=-<=1), (*X*<=+<=1,<=*Y*<=+<=1) as long as it exists in Tablecity. Below is an example of thief’s possible movements if he is located in district (7,1): Albert has enough people so that every hour he can pick any two districts in Tablecity and fully investigate them, making sure that if the thief is located in one of them, he will get caught. Albert promised the President that the thief will be caught in no more than 2015 hours and needs your help in order to achieve that.
There is no input for this problem.
The first line of output contains integer *N* – duration of police search in hours. Each of the following *N* lines contains exactly 4 integers *X**i*1, *Y**i*1, *X**i*2, *Y**i*2 separated by spaces, that represent 2 districts (*X**i*1, *Y**i*1), (*X**i*2, *Y**i*2) which got investigated during i-th hour. Output is given in chronological order (i-th line contains districts investigated during i-th hour) and should guarantee that the thief is caught in no more than 2015 hours, regardless of thief’s initial position and movement. - *N*<=≀<=2015 - 1<=≀<=*X*<=≀<=1000 - 1<=≀<=*Y*<=≀<=2
[ "Π’ этой Π·Π°Π΄Π°Ρ‡Π΅ Π½Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π²Π²ΠΎΠ΄Π°-Π²Ρ‹Π²ΠΎΠ΄Π°.\nThis problem doesn't have sample input and output." ]
[ "Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Π·Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ Π½ΠΈΠΆΠ΅.\nSee the note below." ]
Let's consider the following output: 2 5 1 50 2 8 1 80 2 This output is not guaranteed to catch the thief and is not correct. It is given to you only to show the expected output format. There exists a combination of an initial position and a movement strategy such that the police will not catch the thief. Consider the following initial position and thief’s movement: In the first hour, the thief is located in district (1,1). Police officers will search districts (5,1) and (50,2) and will not find him. At the start of the second hour, the thief moves to district (2,2). Police officers will search districts (8,1) and (80,2) and will not find him. Since there is no further investigation by the police, the thief escaped!
[ { "input": "dummy", "output": "2000\n1 1 1 2\n2 1 2 2\n3 1 3 2\n4 1 4 2\n5 1 5 2\n6 1 6 2\n7 1 7 2\n8 1 8 2\n9 1 9 2\n10 1 10 2\n11 1 11 2\n12 1 12 2\n13 1 13 2\n14 1 14 2\n15 1 15 2\n16 1 16 2\n17 1 17 2\n18 1 18 2\n19 1 19 2\n20 1 20 2\n21 1 21 2\n22 1 22 2\n23 1 23 2\n24 1 24 2\n25 1 25 2\n26 1 26 2\n27 1 27 2\n28 1 28 2\n29 1 29 2\n30 1 30 2\n31 1 31 2\n32 1 32 2\n33 1 33 2\n34 1 34 2\n35 1 35 2\n36 1 36 2\n37 1 37 2\n38 1 38 2\n39 1 39 2\n40 1 40 2\n41 1 41 2\n42 1 42 2\n43 1 43 2\n44 1 44 2\n45 1 45 2\n46 1 46 2\n47 1 47 2\n48 1 4..." } ]
0
0
-1
6,453
797
Odd sum
[ "dp", "greedy", "implementation" ]
null
null
You are given sequence *a*1,<=*a*2,<=...,<=*a**n* of integer numbers of length *n*. Your task is to find such subsequence that its sum is odd and maximum among all such subsequences. It's guaranteed that given sequence contains subsequence with odd sum. Subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. You should write a program which finds sum of the best subsequence.
The first line contains integer number *n* (1<=≀<=*n*<=≀<=105). The second line contains *n* integer numbers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=104<=≀<=*a**i*<=≀<=104). The sequence contains at least one subsequence with odd sum.
Print sum of resulting subseqeuence.
[ "4\n-2 2 -3 1\n", "3\n2 -5 -3\n" ]
[ "3\n", "-1\n" ]
In the first example sum of the second and the fourth elements is 3.
[ { "input": "4\n-2 2 -3 1", "output": "3" }, { "input": "3\n2 -5 -3", "output": "-1" }, { "input": "1\n1", "output": "1" }, { "input": "1\n-1", "output": "-1" }, { "input": "15\n-6004 4882 9052 413 6056 4306 9946 -4616 -6135 906 -1718 5252 -2866 9061 4046", "output": "53507" }, { "input": "2\n-5439 -6705", "output": "-5439" }, { "input": "2\n2850 6843", "output": "9693" }, { "input": "2\n144 9001", "output": "9145" }, { "input": "10\n7535 -819 2389 4933 5495 4887 -5181 -9355 7955 5757", "output": "38951" }, { "input": "10\n-9169 -1574 3580 -8579 -7177 -3216 7490 3470 3465 -1197", "output": "18005" }, { "input": "10\n941 7724 2220 -4704 -8374 -8249 7606 9502 612 -9097", "output": "28605" }, { "input": "10\n4836 -2331 -3456 2312 -1574 3134 -670 -204 512 -5504", "output": "8463" }, { "input": "10\n1184 5136 1654 3254 6576 6900 6468 327 179 7114", "output": "38613" }, { "input": "10\n-2152 -1776 -1810 -9046 -6090 -2324 -8716 -6103 -787 -812", "output": "-787" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "5\n5 5 5 3 -1", "output": "17" }, { "input": "5\n-1 -2 5 3 0", "output": "7" }, { "input": "5\n-3 -2 5 -1 3", "output": "7" }, { "input": "3\n-2 2 -1", "output": "1" }, { "input": "5\n5 0 7 -2 3", "output": "15" }, { "input": "2\n-2 -5", "output": "-5" }, { "input": "3\n-1 -3 0", "output": "-1" }, { "input": "5\n2 -1 0 -3 -2", "output": "1" }, { "input": "4\n2 3 0 5", "output": "7" }, { "input": "5\n-5 3 -2 2 5", "output": "7" }, { "input": "59\n8593 5929 3016 -859 4366 -6842 8435 -3910 -2458 -8503 -3612 -9793 -5360 -9791 -362 -7180 727 -6245 -8869 -7316 8214 -7944 7098 3788 -5436 -6626 -1131 -2410 -5647 -7981 263 -5879 8786 709 6489 5316 -4039 4909 -4340 7979 -89 9844 -906 172 -7674 -3371 -6828 9505 3284 5895 3646 6680 -1255 3635 -9547 -5104 -1435 -7222 2244", "output": "129433" }, { "input": "17\n-6170 2363 6202 -9142 7889 779 2843 -5089 2313 -3952 1843 5171 462 -3673 5098 -2519 9565", "output": "43749" }, { "input": "26\n-8668 9705 1798 -1766 9644 3688 8654 -3077 -5462 2274 6739 2732 3635 -4745 -9144 -9175 -7488 -2010 1637 1118 8987 1597 -2873 -5153 -8062 146", "output": "60757" }, { "input": "51\n8237 -7239 -3545 -6059 -5110 4066 -4148 -7641 -5797 -994 963 1144 -2785 -8765 -1216 5410 1508 -6312 -6313 -680 -7657 4579 -6898 7379 2015 -5087 -5417 -6092 3819 -9101 989 -8380 9161 -7519 -9314 -3838 7160 5180 567 -1606 -3842 -9665 -2266 1296 -8417 -3976 7436 -2075 -441 -4565 3313", "output": "73781" }, { "input": "1\n-1", "output": "-1" }, { "input": "1\n1", "output": "1" }, { "input": "1\n-1", "output": "-1" }, { "input": "1\n1", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "1\n-1", "output": "-1" }, { "input": "1\n-1", "output": "-1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n-2 1", "output": "1" }, { "input": "2\n3 2", "output": "5" }, { "input": "2\n1 2", "output": "3" }, { "input": "2\n-1 1", "output": "1" }, { "input": "2\n0 -1", "output": "-1" }, { "input": "2\n2 1", "output": "3" }, { "input": "2\n3 0", "output": "3" }, { "input": "2\n0 -1", "output": "-1" }, { "input": "3\n-3 1 -1", "output": "1" }, { "input": "3\n3 -1 1", "output": "3" }, { "input": "3\n1 3 1", "output": "5" }, { "input": "3\n-1 0 1", "output": "1" }, { "input": "3\n-3 -3 -2", "output": "-3" }, { "input": "3\n3 -1 1", "output": "3" }, { "input": "3\n3 -1 1", "output": "3" }, { "input": "3\n-2 -2 1", "output": "1" }, { "input": "4\n0 -1 -3 -4", "output": "-1" }, { "input": "4\n5 3 2 1", "output": "11" }, { "input": "4\n-1 -2 4 -2", "output": "3" }, { "input": "4\n-1 -3 0 -3", "output": "-1" }, { "input": "4\n1 -4 -3 -4", "output": "1" }, { "input": "4\n5 3 3 4", "output": "15" }, { "input": "4\n-1 -3 -1 2", "output": "1" }, { "input": "4\n3 2 -1 -4", "output": "5" }, { "input": "5\n-5 -4 -3 -5 2", "output": "-1" }, { "input": "5\n5 5 1 2 -2", "output": "13" }, { "input": "5\n-2 -1 -5 -1 4", "output": "3" }, { "input": "5\n-5 -5 -4 4 0", "output": "-1" }, { "input": "5\n2 -3 -1 -4 -5", "output": "1" }, { "input": "5\n4 3 4 2 3", "output": "13" }, { "input": "5\n0 -2 -5 3 3", "output": "3" }, { "input": "5\n4 -2 -2 -3 0", "output": "1" }, { "input": "6\n6 7 -1 1 5 -1", "output": "19" }, { "input": "6\n-1 7 2 -3 -4 -5", "output": "9" }, { "input": "6\n0 -1 -3 -5 2 -6", "output": "1" }, { "input": "6\n4 -1 0 3 6 1", "output": "13" }, { "input": "6\n5 3 3 4 4 -3", "output": "19" }, { "input": "6\n0 -3 5 -4 5 -4", "output": "7" }, { "input": "6\n-5 -3 1 -1 -5 -3", "output": "1" }, { "input": "6\n-2 1 3 -2 7 4", "output": "15" }, { "input": "7\n0 7 6 2 7 0 6", "output": "21" }, { "input": "7\n6 -6 -1 -5 7 1 7", "output": "21" }, { "input": "7\n2 3 -5 0 -4 0 -4", "output": "5" }, { "input": "7\n-6 3 -3 -1 -6 -6 -5", "output": "3" }, { "input": "7\n7 6 3 2 4 2 0", "output": "21" }, { "input": "7\n-2 3 -3 4 4 0 -1", "output": "11" }, { "input": "7\n-5 -7 4 0 5 -3 -5", "output": "9" }, { "input": "7\n-3 -5 -4 1 3 -4 -7", "output": "3" }, { "input": "8\n5 2 4 5 7 -2 7 3", "output": "33" }, { "input": "8\n-8 -3 -1 3 -8 -4 -4 4", "output": "7" }, { "input": "8\n-6 -7 -7 -5 -4 -9 -2 -7", "output": "-5" }, { "input": "8\n8 7 6 8 3 4 8 -2", "output": "41" }, { "input": "8\n6 7 0 -6 6 5 4 7", "output": "35" }, { "input": "8\n0 -7 -5 -5 5 -1 -8 -7", "output": "5" }, { "input": "8\n1 -6 -5 7 -3 -4 2 -2", "output": "9" }, { "input": "8\n1 -8 -6 -6 -6 -7 -5 -1", "output": "1" }, { "input": "9\n-3 -1 4 4 8 -8 -5 9 -2", "output": "25" }, { "input": "9\n-9 -1 3 -2 -7 2 -9 -1 -4", "output": "5" }, { "input": "9\n-6 -9 -3 -8 -5 2 -6 0 -5", "output": "-1" }, { "input": "9\n5 4 3 3 6 7 8 5 9", "output": "47" }, { "input": "9\n5 3 9 1 5 2 -3 7 0", "output": "31" }, { "input": "9\n-3 -9 -1 -7 5 6 -4 -6 -6", "output": "11" }, { "input": "9\n-6 -5 6 -5 -2 0 1 2 -9", "output": "9" }, { "input": "9\n8 3 6 1 -3 5 2 9 1", "output": "35" }, { "input": "10\n-6 -4 -7 -1 -9 -10 -10 1 0 -3", "output": "1" }, { "input": "10\n-2 -10 -5 -6 -10 -3 -6 -3 -8 -8", "output": "-3" }, { "input": "10\n8 5 9 2 3 3 -6 1 -1 8", "output": "39" }, { "input": "10\n2 10 -7 6 -1 -1 7 -9 -4 -6", "output": "25" }, { "input": "10\n-10 -2 -2 -1 -10 -7 1 0 -4 -5", "output": "1" }, { "input": "10\n4 3 10 -2 -1 0 10 6 7 0", "output": "39" }, { "input": "10\n-2 6 6 5 0 10 6 7 -1 1", "output": "41" }, { "input": "10\n-10 2 8 -6 -1 -5 1 -10 -10 -1", "output": "11" } ]
62
307,200
0
6,454
269
Magical Boxes
[ "greedy", "math" ]
null
null
Emuskald is a well-known illusionist. One of his trademark tricks involves a set of magical boxes. The essence of the trick is in packing the boxes inside other boxes. From the top view each magical box looks like a square with side length equal to 2*k* (*k* is an integer, *k*<=β‰₯<=0) units. A magical box *v* can be put inside a magical box *u*, if side length of *v* is strictly less than the side length of *u*. In particular, Emuskald can put 4 boxes of side length 2*k*<=-<=1 into one box of side length 2*k*, or as in the following figure: Emuskald is about to go on tour performing around the world, and needs to pack his magical boxes for the trip. He has decided that the best way to pack them would be inside another magical box, but magical boxes are quite expensive to make. Help him find the smallest magical box that can fit all his boxes.
The first line of input contains an integer *n* (1<=≀<=*n*<=≀<=105), the number of different sizes of boxes Emuskald has. Each of following *n* lines contains two integers *k**i* and *a**i* (0<=≀<=*k**i*<=≀<=109, 1<=≀<=*a**i*<=≀<=109), which means that Emuskald has *a**i* boxes with side length 2*k**i*. It is guaranteed that all of *k**i* are distinct.
Output a single integer *p*, such that the smallest magical box that can contain all of Emuskald’s boxes has side length 2*p*.
[ "2\n0 3\n1 5\n", "1\n0 4\n", "2\n1 10\n2 2\n" ]
[ "3\n", "1\n", "3\n" ]
Picture explanation. If we have 3 boxes with side length 2 and 5 boxes with side length 1, then we can put all these boxes inside a box with side length 4, for example, as shown in the picture. In the second test case, we can put all four small boxes into a box with side length 2.
[ { "input": "2\n0 3\n1 5", "output": "3" }, { "input": "1\n0 4", "output": "1" }, { "input": "2\n1 10\n2 2", "output": "3" }, { "input": "1\n0 1", "output": "1" }, { "input": "1\n1000000000 1000000000", "output": "1000000015" }, { "input": "1\n0 16", "output": "2" }, { "input": "1\n0 17", "output": "3" }, { "input": "2\n0 16\n1 4", "output": "2" }, { "input": "3\n0 20\n1 18\n2 4", "output": "4" }, { "input": "3\n0 64\n1 16\n2 4", "output": "3" }, { "input": "5\n1 1000000\n100 100\n101 9\n102 4\n103 8", "output": "105" }, { "input": "10\n11 69\n7 56\n8 48\n2 56\n12 6\n9 84\n1 81\n4 80\n3 9\n5 18", "output": "15" }, { "input": "15\n0 268435456\n1 67108864\n2 16777216\n3 4194304\n4 1048576\n5 262144\n6 65536\n7 16384\n8 4096\n9 1024\n10 256\n11 64\n12 16\n13 4\n14 1", "output": "15" }, { "input": "14\n0 268435456\n1 67108864\n2 16777216\n3 4194304\n4 1048576\n5 262144\n6 65536\n7 16384\n8 4096\n9 1024\n10 256\n11 64\n12 16\n13 4", "output": "14" }, { "input": "14\n0 268435456\n1 67108864\n2 16777216\n3 4194305\n4 1048576\n5 262144\n6 65536\n7 16384\n8 4096\n9 1024\n10 256\n11 64\n12 16\n13 4", "output": "15" }, { "input": "14\n0 268435457\n1 67108865\n2 16777217\n3 4194305\n4 1048577\n5 262145\n6 65537\n7 16383\n8 4097\n9 1025\n10 257\n11 65\n12 17\n13 4", "output": "15" }, { "input": "16\n1296 2\n1568 1\n7435 2\n3660 1\n6863 2\n886 2\n2596 1\n7239 1\n6146 1\n5634 1\n3119 2\n1166 2\n7610 2\n5992 1\n630 2\n8491 2", "output": "8492" }, { "input": "17\n8028 11\n4011 32\n8609 52\n1440 25\n6752 42\n536 47\n761 15\n2749 60\n5363 62\n7170 23\n9734 10\n8487 28\n6147 20\n5257 54\n821 49\n7219 19\n6150 43", "output": "9736" }, { "input": "15\n999999986 268435456\n999999987 67108864\n999999988 16777216\n999999989 4194304\n999999990 1048576\n999999991 262144\n999999992 65536\n999999993 16384\n999999994 4096\n999999995 1024\n999999996 256\n999999997 64\n999999998 16\n999999999 4\n1000000000 1", "output": "1000000001" }, { "input": "3\n1 4\n0 17\n2 4", "output": "3" }, { "input": "2\n0 13\n1 1", "output": "2" }, { "input": "2\n0 2\n1 4", "output": "2" }, { "input": "2\n100 52\n101 4", "output": "103" }, { "input": "10\n1 1\n10 1\n100 1\n1000 1\n10000 1\n100000 1\n1000000 1\n10000000 1\n100000000 1\n1000000000 1", "output": "1000000001" }, { "input": "1\n0 268435456", "output": "14" }, { "input": "1\n0 268435457", "output": "15" }, { "input": "1\n1 1000000000", "output": "16" }, { "input": "9\n0 268435456\n2 16777216\n3 4194304\n6 65536\n7 16384\n8 4096\n11 64\n12 16\n14 1", "output": "15" }, { "input": "8\n0 268435456\n2 16777216\n3 4194304\n6 65536\n7 16384\n8 4096\n11 64\n12 16", "output": "14" }, { "input": "8\n0 268435456\n2 16777216\n3 4195304\n6 65536\n7 16384\n8 4096\n11 64\n12 16", "output": "15" }, { "input": "7\n1 16777216\n2 1000000000\n5 65537\n6 16384\n7 4096\n10 64\n11 16", "output": "17" }, { "input": "10\n0 689790649\n10 494030130\n6 210447956\n3 993638872\n7 116080273\n8 802686533\n2 677383122\n9 936407280\n4 593615642\n1 853659941", "output": "25" }, { "input": "2\n0 16777216\n16 1", "output": "17" }, { "input": "1\n1 1", "output": "2" }, { "input": "2\n21 134217728\n1 1024", "output": "35" }, { "input": "2\n10 3\n25 747", "output": "30" } ]
842
0
3
6,455
76
Tourist
[ "binary search", "data structures", "dp" ]
F. Tourist
0
256
Tourist walks along the *X* axis. He can choose either of two directions and any speed not exceeding *V*. He can also stand without moving anywhere. He knows from newspapers that at time *t*1 in the point with coordinate *x*1 an interesting event will occur, at time *t*2 in the point with coordinate *x*2 β€” another one, and so on up to (*x**n*,<=*t**n*). Interesting events are short so we can assume they are immediate. Event *i* counts visited if at time *t**i* tourist was at point with coordinate *x**i*. Write program tourist that will find maximum number of events tourist if: - at the beginning (when time is equal to 0) tourist appears at point 0, - tourist can choose initial point for himself. Yes, you should answer on two similar but different questions.
The first line of input contains single integer number *N* (1<=≀<=*N*<=≀<=100000) β€” number of interesting events. The following *N* lines contain two integers *x**i* and *t**i* β€” coordinate and time of the *i*-th event. The last line of the input contains integer *V* β€” maximum speed of the tourist. All *x**i* will be within range <=-<=2Β·108<=≀<=*x**i*<=≀<=2Β·108, all *t**i* will be between 1 and 2Β·106 inclusive. *V* will be positive and will not exceed 1000. The input may contain events that happen at the same time or in the same place but not in the same place at the same time.
The only line of the output should contain two space-sepatated integers β€” maximum number of events tourist can visit in he starts moving from point 0 at time 0, and maximum number of events tourist can visit if he chooses the initial point for himself.
[ "3\n-1 1\n42 7\n40 8\n2\n" ]
[ "1 2\n" ]
none
[ { "input": "3\n-1 1\n42 7\n40 8\n2", "output": "1 2" }, { "input": "5\n1 5\n6 7\n17127 17\n17072 42\n17042 77\n3", "output": "2 3" }, { "input": "7\n-976754 20479\n79929143 911181\n9598220 82517\n-51609349 810257\n67416551 266544\n-14170975 307690\n-15476178 491195\n352", "output": "5 5" }, { "input": "12\n-6712 6\n2375 73\n4643 197\n-5660 215\n-378 223\n2228 307\n3305 340\n3449 468\n-4389 707\n-7161 729\n-1838 921\n-1655 985\n730", "output": "11 12" }, { "input": "22\n-5301 602\n-1400 194\n-8512 987\n-282 962\n6484 494\n9091 523\n-7744 92\n6002 461\n5053 305\n-1339 272\n-821 165\n9308 785\n929 421\n8384 883\n1266 157\n8411 923\n-2949 885\n7725 687\n6859 197\n-7630 867\n5031 918\n5662 410\n41", "output": "9 9" } ]
139
20,172,800
0
6,471
919
Seat Arrangements
[ "brute force", "implementation" ]
null
null
Suppose that you are in a campus and have to go for classes day by day. As you may see, when you hurry to a classroom, you surprisingly find that many seats there are already occupied. Today you and your friends went for class, and found out that some of the seats were occupied. The classroom contains $n$ rows of seats and there are $m$ seats in each row. Then the classroom can be represented as an $n \times m$ matrix. The character '.' represents an empty seat, while '*' means that the seat is occupied. You need to find $k$ consecutive empty seats in the same row or column and arrange those seats for you and your friends. Your task is to find the number of ways to arrange the seats. Two ways are considered different if sets of places that students occupy differs.
The first line contains three positive integers $n,m,k$ ($1 \leq n, m, k \leq 2\,000$), where $n,m$ represent the sizes of the classroom and $k$ is the number of consecutive seats you need to find. Each of the next $n$ lines contains $m$ characters '.' or '*'. They form a matrix representing the classroom, '.' denotes an empty seat, and '*' denotes an occupied seat.
A single number, denoting the number of ways to find $k$ empty seats in the same row or column.
[ "2 3 2\n**.\n...\n", "1 2 2\n..\n", "3 3 4\n.*.\n*.*\n.*.\n" ]
[ "3\n", "1\n", "0\n" ]
In the first sample, there are three ways to arrange those seats. You can take the following seats for your arrangement. - $(1,3)$, $(2,3)$ - $(2,2)$, $(2,3)$ - $(2,1)$, $(2,2)$
[ { "input": "1 2 2\n..", "output": "1" }, { "input": "3 3 4\n.*.\n*.*\n.*.", "output": "0" }, { "input": "1 1 1\n.", "output": "1" }, { "input": "1 1 1\n*", "output": "0" }, { "input": "2 2 2\n.*\n*.", "output": "0" }, { "input": "1 1 1000\n.", "output": "0" }, { "input": "1 1 2000\n*", "output": "0" }, { "input": "3 3 1\n.*.\n.*.\n.*.", "output": "6" }, { "input": "2 2 1\n..\n..", "output": "4" } ]
997
12,390,400
0
6,477
291
Spyke Talks
[ "*special", "implementation", "sortings" ]
null
null
Polycarpus is the director of a large corporation. There are *n* secretaries working for the corporation, each of them corresponds via the famous Spyke VoIP system during the day. We know that when two people call each other via Spyke, the Spyke network assigns a unique ID to this call, a positive integer session number. One day Polycarpus wondered which secretaries are talking via the Spyke and which are not. For each secretary, he wrote out either the session number of his call or a 0 if this secretary wasn't talking via Spyke at that moment. Help Polycarpus analyze these data and find out the number of pairs of secretaries that are talking. If Polycarpus has made a mistake in the data and the described situation could not have taken place, say so. Note that the secretaries can correspond via Spyke not only with each other, but also with the people from other places. Also, Spyke conferences aren't permitted β€” that is, one call connects exactly two people.
The first line contains integer *n* (1<=≀<=*n*<=≀<=103) β€” the number of secretaries in Polycarpus's corporation. The next line contains *n* space-separated integers: *id*1,<=*id*2,<=...,<=*id**n* (0<=≀<=*id**i*<=≀<=109). Number *id**i* equals the number of the call session of the *i*-th secretary, if the secretary is talking via Spyke, or zero otherwise. Consider the secretaries indexed from 1 to *n* in some way.
Print a single integer β€” the number of pairs of chatting secretaries, or -1 if Polycarpus's got a mistake in his records and the described situation could not have taken place.
[ "6\n0 1 7 1 7 10\n", "3\n1 1 1\n", "1\n0\n" ]
[ "2\n", "-1\n", "0\n" ]
In the first test sample there are two Spyke calls between secretaries: secretary 2 and secretary 4, secretary 3 and secretary 5. In the second test sample the described situation is impossible as conferences aren't allowed.
[ { "input": "6\n0 1 7 1 7 10", "output": "2" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "1\n0", "output": "0" }, { "input": "5\n2 2 1 1 3", "output": "2" }, { "input": "1\n1", "output": "0" }, { "input": "10\n4 21 3 21 21 1 1 2 2 3", "output": "-1" }, { "input": "2\n1 2", "output": "0" }, { "input": "5\n0 0 0 0 0", "output": "0" }, { "input": "6\n6 6 0 8 0 0", "output": "1" }, { "input": "10\n0 0 0 0 0 1 0 1 0 1", "output": "-1" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 3 0 0 3 0 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0", "output": "-1" }, { "input": "1\n1000000000", "output": "0" }, { "input": "2\n1 0", "output": "0" }, { "input": "2\n1000000000 1000000000", "output": "1" }, { "input": "5\n1 0 0 0 1", "output": "1" }, { "input": "15\n380515742 842209759 945171461 664384656 945171461 474872104 0 0 131648973 131648973 474872104 842209759 664384656 0 380515742", "output": "6" }, { "input": "123\n0 6361 8903 10428 0 258 0 10422 0 0 2642 1958 0 0 0 0 0 8249 1958 0 0 2642 0 0 0 11566 4709 1847 3998 0 1331 0 0 10289 2739 6135 3450 0 0 10994 6069 4337 5854 1331 5854 0 630 630 11244 5928 2706 0 683 214 0 9080 0 0 0 10422 683 11566 10994 0 0 3450 11244 11542 3998 1847 2708 9871 2739 2001 0 12216 6069 0 5928 0 10289 1307 0 1307 8903 0 6361 6135 6632 10428 0 0 632 258 9080 12216 4709 4967 2706 0 11542 2001 6632 0 8249 214 0 10301 4967 10301 7296 7296 10914 2708 4337 0 0 632 0 10914 0 9871 0", "output": "40" }, { "input": "10\n0 3 2 3 2 0 1 3 3 0", "output": "-1" }, { "input": "20\n0 1 2 0 0 0 0 5 3 4 0 0 1 1 3 0 4 0 1 0", "output": "-1" }, { "input": "47\n1 6 0 6 1 1 6 4 3 6 5 3 6 3 2 2 5 1 4 7 3 5 6 1 6 7 4 5 6 3 3 3 7 4 1 6 1 1 7 1 3 1 5 5 1 3 6", "output": "-1" }, { "input": "74\n0 0 0 0 0 37 0 0 0 0 0 0 0 8 0 0 9 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 9 0 7 0 0 0 0 0 0 19 19 0 0 0 0 0 0 0 0 0 0 0 0 17 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0 0 37 0", "output": "5" }, { "input": "3\n1 1 1", "output": "-1" }, { "input": "2\n2 3", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n10000 10000 1 1 10000", "output": "-1" } ]
124
409,600
0
6,498
585
Present for Vitalik the Philatelist
[ "combinatorics", "math", "number theory" ]
null
null
Vitalik the philatelist has a birthday today! As he is a regular customer in a stamp store called 'Robin Bobin', the store management decided to make him a gift. Vitalik wants to buy one stamp and the store will give him a non-empty set of the remaining stamps, such that the greatest common divisor (GCD) of the price of the stamps they give to him is more than one. If the GCD of prices of the purchased stamp and prices of present stamps set will be equal to 1, then Vitalik will leave the store completely happy. The store management asks you to count the number of different situations in which Vitalik will leave the store completely happy. Since the required number of situations can be very large, you need to find the remainder of this number modulo 109<=+<=7. The situations are different if the stamps purchased by Vitalik are different, or if one of the present sets contains a stamp that the other present does not contain.
The first line of the input contains integer *n* (2<=≀<=*n*<=≀<=5Β·105) β€” the number of distinct stamps, available for sale in the 'Robin Bobin' store. The second line contains a sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (2<=≀<=*a**i*<=≀<=107), where *a**i* is the price of the *i*-th stamp.
Print a single integer β€” the remainder of the sought number of situations modulo 109<=+<=7.
[ "3\n2 3 2\n", "2\n9 6\n" ]
[ "5\n", "0\n" ]
In the first sample the following situations are possible: - Vitalik buys the 1-st stamp, the store gives him the 2-nd stamp as a present; - Vitalik buys the 3-rd stamp, the store gives him the 2-nd stamp as a present; - Vitalik buys the 2-nd stamp, the store gives him the 1-st stamp as a present; - Vitalik buys the 2-nd stamp, the store gives him the 3-rd stamp as a present; - Vitalik buys the 2-nd stamp, the store gives him the 1-st and 3-rd stamps as a present.
[]
1,326
268,390,400
0
6,508
722
Broken Clock
[ "brute force", "implementation" ]
null
null
You are given a broken clock. You know, that it is supposed to show time in 12- or 24-hours HH:MM format. In 12-hours format hours change from 1 to 12, while in 24-hours it changes from 0 to 23. In both formats minutes change from 0 to 59. You are given a time in format HH:MM that is currently displayed on the broken clock. Your goal is to change minimum number of digits in order to make clocks display the correct time in the given format. For example, if 00:99 is displayed, it is enough to replace the second 9 with 3 in order to get 00:39 that is a correct time in 24-hours format. However, to make 00:99 correct in 12-hours format, one has to change at least two digits. Additionally to the first change one can replace the second 0 with 1 and obtain 01:39.
The first line of the input contains one integer 12 or 24, that denote 12-hours or 24-hours format respectively. The second line contains the time in format HH:MM, that is currently displayed on the clock. First two characters stand for the hours, while next two show the minutes.
The only line of the output should contain the time in format HH:MM that is a correct time in the given format. It should differ from the original in as few positions as possible. If there are many optimal solutions you can print any of them.
[ "24\n17:30\n", "12\n17:30\n", "24\n99:99\n" ]
[ "17:30\n", "07:30\n", "09:09\n" ]
none
[ { "input": "24\n17:30", "output": "17:30" }, { "input": "12\n17:30", "output": "07:30" }, { "input": "24\n99:99", "output": "09:09" }, { "input": "12\n05:54", "output": "05:54" }, { "input": "12\n00:05", "output": "01:05" }, { "input": "24\n23:80", "output": "23:00" }, { "input": "24\n73:16", "output": "03:16" }, { "input": "12\n03:77", "output": "03:07" }, { "input": "12\n47:83", "output": "07:03" }, { "input": "24\n23:88", "output": "23:08" }, { "input": "24\n51:67", "output": "01:07" }, { "input": "12\n10:33", "output": "10:33" }, { "input": "12\n00:01", "output": "01:01" }, { "input": "12\n07:74", "output": "07:04" }, { "input": "12\n00:60", "output": "01:00" }, { "input": "24\n08:32", "output": "08:32" }, { "input": "24\n42:59", "output": "02:59" }, { "input": "24\n19:87", "output": "19:07" }, { "input": "24\n26:98", "output": "06:08" }, { "input": "12\n12:91", "output": "12:01" }, { "input": "12\n11:30", "output": "11:30" }, { "input": "12\n90:32", "output": "10:32" }, { "input": "12\n03:69", "output": "03:09" }, { "input": "12\n33:83", "output": "03:03" }, { "input": "24\n10:45", "output": "10:45" }, { "input": "24\n65:12", "output": "05:12" }, { "input": "24\n22:64", "output": "22:04" }, { "input": "24\n48:91", "output": "08:01" }, { "input": "12\n02:51", "output": "02:51" }, { "input": "12\n40:11", "output": "10:11" }, { "input": "12\n02:86", "output": "02:06" }, { "input": "12\n99:96", "output": "09:06" }, { "input": "24\n19:24", "output": "19:24" }, { "input": "24\n55:49", "output": "05:49" }, { "input": "24\n01:97", "output": "01:07" }, { "input": "24\n39:68", "output": "09:08" }, { "input": "24\n24:00", "output": "04:00" }, { "input": "12\n91:00", "output": "01:00" }, { "input": "24\n00:30", "output": "00:30" }, { "input": "12\n13:20", "output": "03:20" }, { "input": "12\n13:00", "output": "03:00" }, { "input": "12\n42:35", "output": "02:35" }, { "input": "12\n20:00", "output": "10:00" }, { "input": "12\n21:00", "output": "01:00" }, { "input": "24\n10:10", "output": "10:10" }, { "input": "24\n30:40", "output": "00:40" }, { "input": "24\n12:00", "output": "12:00" }, { "input": "12\n10:60", "output": "10:00" }, { "input": "24\n30:00", "output": "00:00" }, { "input": "24\n34:00", "output": "04:00" }, { "input": "12\n22:00", "output": "02:00" }, { "input": "12\n20:20", "output": "10:20" } ]
61
0
-1
6,529
399
Red and Blue Balls
[]
null
null
User ainta has a stack of *n* red and blue balls. He can apply a certain operation which changes the colors of the balls inside the stack. - While the top ball inside the stack is red, pop the ball from the top of the stack. - Then replace the blue ball on the top with a red ball. - And finally push some blue balls to the stack until the stack has total of *n* balls inside. If there are no blue balls inside the stack, ainta can't apply this operation. Given the initial state of the stack, ainta wants to know the maximum number of operations he can repeatedly apply.
The first line contains an integer *n* (1<=≀<=*n*<=≀<=50) β€” the number of balls inside the stack. The second line contains a string *s* (|*s*|<==<=*n*) describing the initial state of the stack. The *i*-th character of the string *s* denotes the color of the *i*-th ball (we'll number the balls from top to bottom of the stack). If the character is "R", the color is red. If the character is "B", the color is blue.
Print the maximum number of operations ainta can repeatedly apply. Please, do not write the %lld specifier to read or write 64-bit integers in Π‘++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "3\nRBR\n", "4\nRBBR\n", "5\nRBBRR\n" ]
[ "2\n", "6\n", "6\n" ]
The first example is depicted below. The explanation how user ainta applies the first operation. He pops out one red ball, changes the color of the ball in the middle from blue to red, and pushes one blue ball. The explanation how user ainta applies the second operation. He will not pop out red balls, he simply changes the color of the ball on the top from blue to red. From now on, ainta can't apply any operation because there are no blue balls inside the stack. ainta applied two operations, so the answer is 2. The second example is depicted below. The blue arrow denotes a single operation.
[ { "input": "3\nRBR", "output": "2" }, { "input": "4\nRBBR", "output": "6" }, { "input": "5\nRBBRR", "output": "6" }, { "input": "5\nRBRBR", "output": "10" }, { "input": "10\nRRBRRBBRRR", "output": "100" }, { "input": "10\nBRBRRRRRRR", "output": "5" }, { "input": "10\nBRRRRRRRRR", "output": "1" }, { "input": "20\nBRBRRRRRRRRRRRRRRRRR", "output": "5" }, { "input": "30\nRRBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1073741820" }, { "input": "50\nBRRRBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1125899906842609" }, { "input": "20\nRRRBRBBBBBRRRRRRRRRR", "output": "1000" }, { "input": "20\nRRBRBBBBBRRRRRRRRRRR", "output": "500" }, { "input": "1\nR", "output": "0" }, { "input": "1\nB", "output": "1" }, { "input": "2\nRR", "output": "0" }, { "input": "2\nBR", "output": "1" }, { "input": "50\nRRRRRRRRRRBBBBBBRRBBRRRBRRBBBRRRRRRRRRRRRRRRRRRRRR", "output": "479001600" }, { "input": "50\nRBRRRRRBRBRRBBBBBBRRRBRRRRRBBBRRBRRRRRBBBRRRRRRRRR", "output": "1929382195842" }, { "input": "48\nRBRBRRRRBRBRRBRRRRRRRBBBRRBRBRRRBBRRRRRRRRRRRRRR", "output": "13235135754" }, { "input": "30\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "0" }, { "input": "50\nRRBBBBBBBBBBBBBBBBRBRRBBBRBBRBBBRRBRBBBBBRBBRBBRBR", "output": "402373705727996" }, { "input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1125899906842623" }, { "input": "19\nRRRRRBRRBRRRRBRBBBB", "output": "500000" }, { "input": "32\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBR", "output": "2147483647" }, { "input": "3\nBBB", "output": "7" }, { "input": "3\nBBR", "output": "3" }, { "input": "3\nBRB", "output": "5" }, { "input": "3\nBRR", "output": "1" }, { "input": "3\nRBB", "output": "6" }, { "input": "3\nRBR", "output": "2" }, { "input": "3\nRRB", "output": "4" }, { "input": "3\nRRR", "output": "0" }, { "input": "2\nRB", "output": "2" }, { "input": "2\nBB", "output": "3" } ]
93
0
0
6,547
632
Grandma Laura and Apples
[]
null
null
Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market. She precisely remembers she had *n* buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had. So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd). For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is *p* (the number *p* is even). Print the total money grandma should have at the end of the day to check if some buyers cheated her.
The first line contains two integers *n* and *p* (1<=≀<=*n*<=≀<=40,<=2<=≀<=*p*<=≀<=1000) β€” the number of the buyers and the cost of one apple. It is guaranteed that the number *p* is even. The next *n* lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift. It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.
Print the only integer *a* β€” the total money grandma should have at the end of the day. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
[ "2 10\nhalf\nhalfplus\n", "3 10\nhalfplus\nhalfplus\nhalfplus\n" ]
[ "15\n", "55\n" ]
In the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer.
[ { "input": "2 10\nhalf\nhalfplus", "output": "15" }, { "input": "3 10\nhalfplus\nhalfplus\nhalfplus", "output": "55" }, { "input": "10 328\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalfplus", "output": "258300" }, { "input": "1 2\nhalfplus", "output": "1" }, { "input": "5 6\nhalf\nhalf\nhalfplus\nhalf\nhalfplus", "output": "114" }, { "input": "10 2\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus", "output": "1703" }, { "input": "20 6\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus", "output": "6056877" }, { "input": "30 68\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalf\nhalfplus\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus", "output": "59847312584" }, { "input": "40 562\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalfplus\nhalfplus\nhalf\nhalf\nhalfplus\nhalf\nhalf\nhalfplus\nhalfplus", "output": "486750560068982" } ]
46
0
3
6,548
468
24 Game
[ "constructive algorithms", "greedy", "math" ]
null
null
Little X used to play a card game called "24 Game", but recently he has found it too easy. So he invented a new game. Initially you have a sequence of *n* integers: 1,<=2,<=...,<=*n*. In a single step, you can pick two of them, let's denote them *a* and *b*, erase them from the sequence, and append to the sequence either *a*<=+<=*b*, or *a*<=-<=*b*, or *a*<=Γ—<=*b*. After *n*<=-<=1 steps there is only one number left. Can you make this number equal to 24?
The first line contains a single integer *n* (1<=≀<=*n*<=≀<=105).
If it's possible, print "YES" in the first line. Otherwise, print "NO" (without the quotes). If there is a way to obtain 24 as the result number, in the following *n*<=-<=1 lines print the required operations an operation per line. Each operation should be in form: "*a* *op* *b* = *c*". Where *a* and *b* are the numbers you've picked at this operation; *op* is either "+", or "-", or "*"; *c* is the result of corresponding operation. Note, that the absolute value of *c* mustn't be greater than 1018. The result of the last operation must be equal to 24. Separate operator sign and equality sign from numbers with spaces. If there are multiple valid answers, you may print any of them.
[ "1\n", "8\n" ]
[ "NO\n", "YES\n8 * 7 = 56\n6 * 5 = 30\n3 - 4 = -1\n1 - 2 = -1\n30 - -1 = 31\n56 - 31 = 25\n25 + -1 = 24\n" ]
none
[ { "input": "1", "output": "NO" }, { "input": "8", "output": "YES\n8 * 7 = 56\n6 * 5 = 30\n3 - 4 = -1\n1 - 2 = -1\n30 - -1 = 31\n56 - 31 = 25\n25 + -1 = 24" }, { "input": "12", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24" }, { "input": "100", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "1000", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "987", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "2", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24" }, { "input": "5", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24" }, { "input": "6", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24" }, { "input": "7", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24" }, { "input": "100000", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "99999", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "99998", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "99997", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "580", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "422", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "116", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "447", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "62052", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "25770", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "56118", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "86351", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "48108", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "33373", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24\n9 - 8 = 1\n24 * 1 = 24\n11 - 10 = 1\n24 * 1 = 24\n13 - 12 = 1\n24 * 1 = 24\n15 - 14 = 1\n24 * 1 = 24\n17 - 16 = 1\n24 * 1 = 24\n19 - 18 = 1\n24 * 1 = 24\n21 - 20 = 1\n24 * 1 = 24\n23 - 22 = 1\n24 * 1 = 24\n25 - 24 = 1\n24 * 1 = 24\n27 - 26 = 1\n24 * 1 = 24\n29 - 28 = 1\n24 * 1 = 24\n31 - 30 = 1\n24 * 1 = 24\n33 - 32 = 1\n24 * 1 = 24\n35 - 34 = 1\n24 * 1 = 24\n37 - 36 = 1\n24 * 1 = 24\n39 - 38 = 1\n24 * 1 = 24\n41 - 40 = 1\n24 * 1 = 2..." }, { "input": "9782", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "19082", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24\n6 - 5 = 1\n24 * 1 = 24\n8 - 7 = 1\n24 * 1 = 24\n10 - 9 = 1\n24 * 1 = 24\n12 - 11 = 1\n24 * 1 = 24\n14 - 13 = 1\n24 * 1 = 24\n16 - 15 = 1\n24 * 1 = 24\n18 - 17 = 1\n24 * 1 = 24\n20 - 19 = 1\n24 * 1 = 24\n22 - 21 = 1\n24 * 1 = 24\n24 - 23 = 1\n24 * 1 = 24\n26 - 25 = 1\n24 * 1 = 24\n28 - 27 = 1\n24 * 1 = 24\n30 - 29 = 1\n24 * 1 = 24\n32 - 31 = 1\n24 * 1 = 24\n34 - 33 = 1\n24 * 1 = 24\n36 - 35 = 1\n24 * 1 = 24\n38 - 37 = 1\n24 * 1 = 24\n40 - 39 = 1\n24 * 1 = 24\n42 - 41..." }, { "input": "4", "output": "YES\n3 * 4 = 12\n2 * 1 = 2\n12 * 2 = 24" }, { "input": "7", "output": "YES\n5 - 3 = 2\n2 * 4 = 8\n1 + 2 = 3\n8 * 3 = 24\n7 - 6 = 1\n24 * 1 = 24" }, { "input": "3", "output": "NO" } ]
30
0
0
6,556
106
Card Game
[ "implementation" ]
A. Card Game
2
256
There is a card game called "Durak", which means "Fool" in Russian. The game is quite popular in the countries that used to form USSR. The problem does not state all the game's rules explicitly β€” you can find them later yourselves if you want. To play durak you need a pack of 36 cards. Each card has a suit ("S", "H", "D" and "C") and a rank (in the increasing order "6", "7", "8", "9", "T", "J", "Q", "K" and "A"). At the beginning of the game one suit is arbitrarily chosen as trump. The players move like that: one player puts one or several of his cards on the table and the other one should beat each of them with his cards. A card beats another one if both cards have similar suits and the first card has a higher rank then the second one. Besides, a trump card can beat any non-trump card whatever the cards’ ranks are. In all other cases you can not beat the second card with the first one. You are given the trump suit and two different cards. Determine whether the first one beats the second one or not.
The first line contains the tramp suit. It is "S", "H", "D" or "C". The second line contains the description of the two different cards. Each card is described by one word consisting of two symbols. The first symbol stands for the rank ("6", "7", "8", "9", "T", "J", "Q", "K" and "A"), and the second one stands for the suit ("S", "H", "D" and "C").
Print "YES" (without the quotes) if the first cards beats the second one. Otherwise, print "NO" (also without the quotes).
[ "H\nQH 9S\n", "S\n8D 6D\n", "C\n7H AS\n" ]
[ "YES\n", "YES", "NO" ]
none
[ { "input": "H\nQH 9S", "output": "YES" }, { "input": "S\n8D 6D", "output": "YES" }, { "input": "C\n7H AS", "output": "NO" }, { "input": "C\nKC 9C", "output": "YES" }, { "input": "D\n7D KD", "output": "NO" }, { "input": "H\n7H KD", "output": "YES" }, { "input": "D\nAS AH", "output": "NO" }, { "input": "H\nKH KS", "output": "YES" }, { "input": "C\n9H 6C", "output": "NO" }, { "input": "C\n9H JC", "output": "NO" }, { "input": "D\nTD JD", "output": "NO" }, { "input": "H\n6S 7S", "output": "NO" }, { "input": "D\n7S 8S", "output": "NO" }, { "input": "S\n8H 9H", "output": "NO" }, { "input": "C\n9D TD", "output": "NO" }, { "input": "H\nTC JC", "output": "NO" }, { "input": "C\nJH QH", "output": "NO" }, { "input": "H\nQD KD", "output": "NO" }, { "input": "D\nKS AS", "output": "NO" }, { "input": "S\nAH 6H", "output": "YES" }, { "input": "H\n7D 6D", "output": "YES" }, { "input": "S\n8H 7H", "output": "YES" }, { "input": "D\n9S 8S", "output": "YES" }, { "input": "S\nTC 9C", "output": "YES" }, { "input": "H\nJS TS", "output": "YES" }, { "input": "S\nQD JD", "output": "YES" }, { "input": "D\nKH QH", "output": "YES" }, { "input": "H\nAD KD", "output": "YES" }, { "input": "H\nQS QD", "output": "NO" }, { "input": "C\nTS TH", "output": "NO" }, { "input": "C\n6C 6D", "output": "YES" }, { "input": "H\n8H 8D", "output": "YES" }, { "input": "S\n7D 7S", "output": "NO" }, { "input": "H\nJC JH", "output": "NO" }, { "input": "H\n8H 9C", "output": "YES" }, { "input": "D\n9D 6S", "output": "YES" }, { "input": "C\nJC AH", "output": "YES" }, { "input": "S\nAS KD", "output": "YES" }, { "input": "S\n7S JS", "output": "NO" }, { "input": "H\nTH 8H", "output": "YES" }, { "input": "S\n7S QS", "output": "NO" }, { "input": "C\nKC QC", "output": "YES" }, { "input": "S\nAD 9S", "output": "NO" }, { "input": "D\n7H 8D", "output": "NO" }, { "input": "H\nJC 9H", "output": "NO" }, { "input": "C\n7S AC", "output": "NO" }, { "input": "C\n8C 7C", "output": "YES" }, { "input": "H\n9D 8S", "output": "NO" }, { "input": "D\nAC KS", "output": "NO" }, { "input": "H\n8C QH", "output": "NO" }, { "input": "S\n7S TS", "output": "NO" }, { "input": "C\nAH 6S", "output": "NO" }, { "input": "S\nKS QS", "output": "YES" }, { "input": "H\nAC QC", "output": "YES" }, { "input": "S\n9H 8D", "output": "NO" }, { "input": "S\nTS JS", "output": "NO" }, { "input": "S\n8H 7C", "output": "NO" }, { "input": "C\nAH 6S", "output": "NO" }, { "input": "S\n7S QS", "output": "NO" }, { "input": "C\nAH 6S", "output": "NO" }, { "input": "S\nTS KS", "output": "NO" }, { "input": "C\nTH KH", "output": "NO" }, { "input": "H\n9C 6D", "output": "NO" }, { "input": "H\n9C 8D", "output": "NO" }, { "input": "H\nTH AH", "output": "NO" }, { "input": "H\nTH JH", "output": "NO" }, { "input": "H\nQS 9C", "output": "NO" }, { "input": "H\nKC AC", "output": "NO" }, { "input": "H\nAH KH", "output": "YES" }, { "input": "H\nKS QS", "output": "YES" }, { "input": "C\nAD KS", "output": "NO" }, { "input": "H\nQS 9C", "output": "NO" }, { "input": "H\n9D 7S", "output": "NO" }, { "input": "D\n6D 9S", "output": "YES" }, { "input": "H\nAH KH", "output": "YES" }, { "input": "H\nKC AC", "output": "NO" }, { "input": "D\n8S 6C", "output": "NO" }, { "input": "S\nAC KC", "output": "YES" } ]
154
2,867,200
-1
6,567
0
none
[ "none" ]
null
null
One department of some software company has $n$ servers of different specifications. Servers are indexed with consecutive integers from $1$ to $n$. Suppose that the specifications of the $j$-th server may be expressed with a single integer number $c_j$ of artificial resource units. In order for production to work, it is needed to deploy two services $S_1$ and $S_2$ to process incoming requests using the servers of the department. Processing of incoming requests of service $S_i$ takes $x_i$ resource units. The described situation happens in an advanced company, that is why each service may be deployed using not only one server, but several servers simultaneously. If service $S_i$ is deployed using $k_i$ servers, then the load is divided equally between these servers and each server requires only $x_i / k_i$ (that may be a fractional number) resource units. Each server may be left unused at all, or be used for deploying exactly one of the services (but not for two of them simultaneously). The service should not use more resources than the server provides. Determine if it is possible to deploy both services using the given servers, and if yes, determine which servers should be used for deploying each of the services.
The first line contains three integers $n$, $x_1$, $x_2$ ($2 \leq n \leq 300\,000$, $1 \leq x_1, x_2 \leq 10^9$)Β β€” the number of servers that the department may use, and resource units requirements for each of the services. The second line contains $n$ space-separated integers $c_1, c_2, \ldots, c_n$ ($1 \leq c_i \leq 10^9$)Β β€” the number of resource units provided by each of the servers.
If it is impossible to deploy both services using the given servers, print the only word "No" (without the quotes). Otherwise print the word "Yes" (without the quotes). In the second line print two integers $k_1$ and $k_2$ ($1 \leq k_1, k_2 \leq n$)Β β€” the number of servers used for each of the services. In the third line print $k_1$ integers, the indices of the servers that will be used for the first service. In the fourth line print $k_2$ integers, the indices of the servers that will be used for the second service. No index may appear twice among the indices you print in the last two lines. If there are several possible answers, it is allowed to print any of them.
[ "6 8 16\n3 5 2 9 8 7\n", "4 20 32\n21 11 11 12\n", "4 11 32\n5 5 16 16\n", "5 12 20\n7 8 4 11 9\n" ]
[ "Yes\n3 2\n1 2 6\n5 4", "Yes\n1 3\n1\n2 3 4\n", "No\n", "No\n" ]
In the first sample test each of the servers 1, 2 and 6 will will provide $8 / 3 = 2.(6)$ resource units and each of the servers 5, 4 will provide $16 / 2 = 8$ resource units. In the second sample test the first server will provide $20$ resource units and each of the remaining servers will provide $32 / 3 = 10.(6)$ resource units.
[ { "input": "6 8 16\n3 5 2 9 8 7", "output": "Yes\n4 2\n3 1 2 6\n5 4" }, { "input": "4 20 32\n21 11 11 12", "output": "Yes\n1 3\n1\n2 3 4" }, { "input": "4 11 32\n5 5 16 16", "output": "No" }, { "input": "5 12 20\n7 8 4 11 9", "output": "No" }, { "input": "2 1 1\n1 1", "output": "Yes\n1 1\n1\n2" }, { "input": "2 1 1\n1 1000000", "output": "Yes\n1 1\n1\n2" }, { "input": "2 1 1\n1000000000 1000000000", "output": "Yes\n1 1\n1\n2" }, { "input": "2 1 2\n1 1", "output": "No" }, { "input": "15 250 200\n71 2 77 69 100 53 54 40 73 32 82 58 24 82 41", "output": "Yes\n11 3\n13 10 8 15 6 7 12 4 1 9 3\n11 14 5" }, { "input": "4 12 11\n4 4 6 11", "output": "Yes\n3 1\n1 2 3\n4" } ]
1,231
51,097,600
3
6,569
837
Prefix Sums
[ "binary search", "brute force", "combinatorics", "math", "matrices" ]
null
null
Consider the function *p*(*x*), where *x* is an array of *m* integers, which returns an array *y* consisting of *m*<=+<=1 integers such that *y**i* is equal to the sum of first *i* elements of array *x* (0<=≀<=*i*<=≀<=*m*). You have an infinite sequence of arrays *A*0,<=*A*1,<=*A*2..., where *A*0 is given in the input, and for each *i*<=β‰₯<=1 *A**i*<==<=*p*(*A**i*<=-<=1). Also you have a positive integer *k*. You have to find minimum possible *i* such that *A**i* contains a number which is larger or equal than *k*.
The first line contains two integers *n* and *k* (2<=≀<=*n*<=≀<=200000, 1<=≀<=*k*<=≀<=1018). *n* is the size of array *A*0. The second line contains *n* integers *A*00,<=*A*01... *A*0*n*<=-<=1 β€” the elements of *A*0 (0<=≀<=*A*0*i*<=≀<=109). At least two elements of *A*0 are positive.
Print the minimum *i* such that *A**i* contains a number which is larger or equal than *k*.
[ "2 2\n1 1\n", "3 6\n1 1 1\n", "3 1\n1 0 1\n" ]
[ "1\n", "2\n", "0\n" ]
none
[ { "input": "2 2\n1 1", "output": "1" }, { "input": "3 6\n1 1 1", "output": "2" }, { "input": "3 1\n1 0 1", "output": "0" }, { "input": "3 1000000000000000000\n5 4 5", "output": "632455531" }, { "input": "4 1000000000000000000\n0 4 4 5", "output": "707106780" }, { "input": "5 1000000000000000000\n5 7 4 2 5", "output": "46805" }, { "input": "3 999999999000999944\n7 2 6", "output": "534522483" }, { "input": "4 999999999000531216\n8 7 4 6", "output": "908559" }, { "input": "5 152742477016321721\n0 0 2 6 2", "output": "390822817" }, { "input": "6 1000000000000000000\n1 1 0 1 0 1", "output": "10369" }, { "input": "7 1000000000000000000\n77 94 59 82 91 44 93", "output": "1448" }, { "input": "3 999999999000999944\n5 1 2", "output": "632455532" }, { "input": "4 999999999000531216\n1 1 0 1", "output": "1817119" }, { "input": "5 152742477016321721\n1 4 0 5 6", "output": "43752" }, { "input": "6 1000000000000000000\n1 1 1 0 1 1", "output": "10369" }, { "input": "7 1000000000000000000\n20 24 97 16 37 37 84", "output": "1814" }, { "input": "10 1000000000000000000\n1 0 1 0 1 0 0 0 0 0", "output": "411" }, { "input": "10 3\n1 1 0 0 0 0 0 0 0 0", "output": "2" }, { "input": "3 1000000000000000000\n1 1 0", "output": "1414213561" }, { "input": "8 1000000000000000000\n1 1 0 0 0 0 0 0", "output": "1256" }, { "input": "4 1000000000000000000\n612929642 983621174 279363954 332455288", "output": "2137" }, { "input": "3 1000000000000000000\n422931534 210865757 697603256", "output": "68766" }, { "input": "3 563768374159627711\n8849237 586207348 386453596", "output": "356888" }, { "input": "3 1000000000000000000\n1 0 1", "output": "1414213562" }, { "input": "5 1000000000000000000\n1 0 0 0 1", "output": "69992" }, { "input": "11 1000000000000000000\n1 0 0 0 0 0 0 0 0 0 1", "output": "282" }, { "input": "15 1000000000000000000\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "111" }, { "input": "18 1000000000000000000\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "75" }, { "input": "2 1000000000000000000\n758816935 60667976", "output": "1317840910" }, { "input": "8 1000000000000000000\n1 0 0 0 0 0 0 1", "output": "1257" } ]
124
11,264,000
0
6,578
106
Buns
[ "dp" ]
C. Buns
2
256
Lavrenty, a baker, is going to make several buns with stuffings and sell them. Lavrenty has *n* grams of dough as well as *m* different stuffing types. The stuffing types are numerated from 1 to *m*. Lavrenty knows that he has *a**i* grams left of the *i*-th stuffing. It takes exactly *b**i* grams of stuffing *i* and *c**i* grams of dough to cook a bun with the *i*-th stuffing. Such bun can be sold for *d**i* tugriks. Also he can make buns without stuffings. Each of such buns requires *c*0 grams of dough and it can be sold for *d*0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking. Find the maximum number of tugriks Lavrenty can earn.
The first line contains 4 integers *n*, *m*, *c*0 and *d*0 (1<=≀<=*n*<=≀<=1000, 1<=≀<=*m*<=≀<=10, 1<=≀<=*c*0,<=*d*0<=≀<=100). Each of the following *m* lines contains 4 integers. The *i*-th line contains numbers *a**i*, *b**i*, *c**i* and *d**i* (1<=≀<=*a**i*,<=*b**i*,<=*c**i*,<=*d**i*<=≀<=100).
Print the only number β€” the maximum number of tugriks Lavrenty can earn.
[ "10 2 2 1\n7 3 2 100\n12 3 1 10\n", "100 1 25 50\n15 5 20 10\n" ]
[ "241", "200" ]
To get the maximum number of tugriks in the first sample, you need to cook 2 buns with stuffing 1, 4 buns with stuffing 2 and a bun without any stuffing. In the second sample Lavrenty should cook 4 buns without stuffings.
[ { "input": "10 2 2 1\n7 3 2 100\n12 3 1 10", "output": "241" }, { "input": "100 1 25 50\n15 5 20 10", "output": "200" }, { "input": "10 1 5 2\n100 1 2 3", "output": "15" }, { "input": "10 1 5 11\n3 1 3 8", "output": "24" }, { "input": "10 2 11 5\n100 1 3 10\n100 1 2 4", "output": "30" }, { "input": "5 8 6 5\n1 2 5 4\n1 2 6 7\n1 2 3 5\n1 2 1 6\n1 2 8 3\n1 2 2 4\n1 2 5 6\n1 2 7 7", "output": "0" }, { "input": "300 4 100 2\n10 1 24 5\n10 1 25 6\n10 1 26 7\n10 1 27 8", "output": "87" }, { "input": "1 1 1 1\n1 1 1 1", "output": "1" }, { "input": "2 1 2 1\n1 2 1 1", "output": "1" }, { "input": "10 2 13 100\n20 1 3 10\n20 1 2 6", "output": "32" }, { "input": "100 5 8 80\n25 8 2 70\n27 6 7 30\n26 1 6 5\n7 1 1 86\n18 8 4 54", "output": "1670" }, { "input": "150 8 3 46\n39 4 10 25\n31 17 8 70\n37 2 13 1\n29 17 17 59\n54 20 5 39\n53 14 10 23\n50 12 16 41\n8 2 6 61", "output": "2300" }, { "input": "231 10 9 30\n98 11 5 17\n59 13 1 47\n83 1 7 2\n42 21 1 6\n50 16 2 9\n44 10 5 31\n12 20 8 9\n61 23 7 2\n85 18 2 19\n82 25 10 20", "output": "1065" }, { "input": "345 10 5 45\n1 23 14 55\n51 26 15 11\n65 4 16 36\n81 14 13 25\n8 9 13 60\n43 4 7 59\n85 11 14 35\n82 13 5 49\n85 28 15 3\n51 21 18 53", "output": "3129" }, { "input": "401 10 2 82\n17 9 14 48\n79 4 3 38\n1 2 6 31\n45 2 9 60\n45 2 4 50\n6 1 3 36\n3 1 19 37\n78 3 8 33\n59 8 19 19\n65 10 2 61", "output": "16400" }, { "input": "777 10 23 20\n50 90 86 69\n33 90 59 73\n79 26 35 31\n57 48 97 4\n5 10 48 87\n35 99 33 34\n7 32 54 35\n56 25 10 38\n5 3 89 76\n13 33 91 66", "output": "734" }, { "input": "990 10 7 20\n38 82 14 69\n5 66 51 5\n11 26 91 11\n29 12 73 96\n93 82 48 59\n19 15 5 50\n15 36 6 63\n16 57 94 90\n45 3 57 72\n61 41 47 18", "output": "2850" }, { "input": "1000 10 51 56\n2 62 82 65\n37 90 87 97\n11 94 47 95\n49 24 97 24\n33 38 40 31\n27 15 17 66\n91 80 34 71\n60 93 42 94\n9 35 73 68\n93 65 83 58", "output": "1145" }, { "input": "1000 10 1 53\n63 1 1 58\n58 1 2 28\n100 1 1 25\n61 1 1 90\n96 2 2 50\n19 2 1 90\n7 2 1 30\n90 1 2 5\n34 2 1 12\n3 2 1 96", "output": "55948" }, { "input": "1000 10 1 65\n77 1 1 36\n74 1 1 41\n96 1 1 38\n48 1 1 35\n1 1 1 54\n42 1 1 67\n26 1 1 23\n43 1 1 89\n82 1 1 7\n45 1 1 63", "output": "66116" }, { "input": "1000 10 1 87\n100 1 1 38\n100 1 1 45\n100 1 1 73\n100 1 1 89\n100 1 1 38\n100 1 1 13\n100 1 1 93\n100 1 1 89\n100 1 1 71\n100 1 1 29", "output": "88000" }, { "input": "1000 10 1 7\n100 1 1 89\n100 1 1 38\n100 1 1 13\n100 1 1 93\n100 1 1 89\n100 1 1 38\n100 1 1 45\n100 1 1 73\n100 1 1 71\n100 1 1 29", "output": "57800" }, { "input": "1000 10 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100\n100 1 1 100", "output": "100000" }, { "input": "99 10 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100\n100 1 100 100", "output": "0" }, { "input": "1000 10 100 75\n100 97 100 95\n100 64 100 78\n100 82 100 35\n100 51 100 64\n100 67 100 25\n100 79 100 33\n100 65 100 85\n100 99 100 78\n100 53 100 74\n100 87 100 73", "output": "786" }, { "input": "999 10 5 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100\n100 1 10 100", "output": "19900" }, { "input": "1000 10 50 100\n7 1 80 100\n5 1 37 100\n9 1 25 100\n7 1 17 100\n6 1 10 100\n5 1 15 100\n6 1 13 100\n2 1 14 100\n4 1 17 100\n3 1 32 100", "output": "4800" }, { "input": "1000 10 1 1\n1 2 1 97\n1 2 1 95\n1 2 1 99\n1 2 1 98\n1 2 1 93\n1 2 1 91\n1 2 1 90\n1 2 1 94\n1 2 1 92\n1 2 1 99", "output": "1000" }, { "input": "1 10 1 97\n1 1 1 98\n1 1 1 99\n1 1 1 76\n1 1 1 89\n1 1 1 64\n1 1 1 83\n1 1 1 72\n1 1 1 66\n1 1 1 54\n1 1 1 73", "output": "99" }, { "input": "3 10 10 98\n10 5 5 97\n6 7 1 56\n23 10 5 78\n40 36 4 35\n30 50 1 30\n60 56 8 35\n70 90 2 17\n10 11 3 68\n1 2 17 70\n13 4 8 19", "output": "0" }, { "input": "1000 1 23 76\n74 22 14 5", "output": "3268" }, { "input": "1000 2 95 56\n58 54 66 61\n61 14 67 65", "output": "713" }, { "input": "1000 3 67 88\n90 86 66 17\n97 38 63 17\n55 78 39 51", "output": "1232" }, { "input": "1000 4 91 20\n74 18 18 73\n33 10 59 21\n7 42 87 79\n9 100 77 100", "output": "515" }, { "input": "1000 5 63 52\n6 98 18 77\n17 34 3 73\n59 6 35 7\n61 16 85 64\n73 62 40 11", "output": "804" }, { "input": "1000 6 87 32\n90 30 70 33\n53 6 99 77\n59 22 83 35\n65 32 93 28\n85 50 60 7\n15 15 5 82", "output": "771" }, { "input": "1000 7 59 64\n22 62 70 89\n37 78 43 29\n11 86 83 63\n17 48 1 92\n97 38 80 55\n15 3 89 42\n87 80 62 35", "output": "1024" }, { "input": "1000 8 31 96\n6 94 70 93\n73 2 39 33\n63 50 31 91\n21 64 9 56\n61 26 100 51\n67 39 21 50\n79 4 2 71\n100 9 18 86", "output": "4609" }, { "input": "1000 9 55 28\n38 74 22 49\n9 74 83 85\n63 66 79 19\n25 32 17 20\n73 62 20 47\n19 27 53 58\n71 80 94 7\n56 69 62 98\n49 7 65 76", "output": "831" }, { "input": "1000 10 67 55\n10 21 31 19\n95 29 53 1\n55 53 19 18\n26 88 19 94\n31 1 45 50\n70 38 33 93\n2 12 7 95\n54 37 81 31\n65 32 63 16\n93 66 98 38", "output": "1161" }, { "input": "1000 10 37 38\n65 27 78 14\n16 70 78 66\n93 86 91 43\n95 6 72 86\n72 59 94 36\n66 58 96 40\n41 72 64 4\n26 47 69 13\n85 2 52 15\n34 62 16 79", "output": "1156" }, { "input": "1000 10 58 21\n73 85 73 10\n38 60 55 31\n32 66 62 16\n63 76 73 78\n61 17 92 70\n61 79 11 87\n27 31 21 62\n47 9 4 94\n4 71 42 61\n76 5 35 72", "output": "1823" }, { "input": "12 2 100 1\n100 1 9 10\n100 1 4 4", "output": "12" }, { "input": "1 1 1 10\n100 100 1 100", "output": "100" }, { "input": "10 3 5 1\n100 1 3 7\n100 1 2 5\n1 1 1 10", "output": "32" }, { "input": "10 3 5 1\n100 1 3 7\n100 1 2 5\n1 1 1 10", "output": "32" }, { "input": "1000 10 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1\n100 1 1 1", "output": "1000" }, { "input": "10 2 100 1\n4 4 5 7\n6 2 3 4", "output": "12" }, { "input": "8 2 10 10\n5 5 5 15\n50 5 4 8", "output": "16" }, { "input": "8 2 10 10\n5 5 5 15\n50 5 4 8", "output": "16" }, { "input": "4 1 2 4\n10 1 3 7", "output": "8" }, { "input": "4 1 2 4\n10 1 3 7", "output": "8" }, { "input": "10 2 5 1\n100 1 2 5\n100 1 3 8", "output": "26" }, { "input": "1000 10 10 10\n100 1 1 1\n100 1 1 2\n100 1 2 1\n100 1 2 2\n100 1 1 1\n100 1 2 3\n100 1 3 2\n100 1 3 3\n100 1 1 3\n100 1 3 1", "output": "1400" }, { "input": "10 3 5 1\n100 1 3 7\n100 1 2 5\n1 1 1 10", "output": "32" } ]
248
8,192,000
3.922741
6,589
33
What is for dinner?
[ "greedy", "implementation" ]
A. What is for dinner?
2
256
In one little known, but very beautiful country called Waterland, lives a lovely shark Valerie. Like all the sharks, she has several rows of teeth, and feeds on crucians. One of Valerie's distinguishing features is that while eating one crucian she uses only one row of her teeth, the rest of the teeth are "relaxing". For a long time our heroine had been searching the sea for crucians, but a great misfortune happened. Her teeth started to ache, and she had to see the local dentist, lobster Ashot. As a professional, Ashot quickly relieved Valerie from her toothache. Moreover, he managed to determine the cause of Valerie's developing caries (for what he was later nicknamed Cap). It turned that Valerie eats too many crucians. To help Valerie avoid further reoccurrence of toothache, Ashot found for each Valerie's tooth its residual viability. Residual viability of a tooth is a value equal to the amount of crucians that Valerie can eat with this tooth. Every time Valerie eats a crucian, viability of all the teeth used for it will decrease by one. When the viability of at least one tooth becomes negative, the shark will have to see the dentist again. Unhappy, Valerie came back home, where a portion of crucians was waiting for her. For sure, the shark couldn't say no to her favourite meal, but she had no desire to go back to the dentist. That's why she decided to eat the maximum amount of crucians from the portion but so that the viability of no tooth becomes negative. As Valerie is not good at mathematics, she asked you to help her to find out the total amount of crucians that she can consume for dinner. We should remind you that while eating one crucian Valerie uses exactly one row of teeth and the viability of each tooth from this row decreases by one.
The first line contains three integers *n*, *m*, *k* (1<=≀<=*m*<=≀<=*n*<=≀<=1000,<=0<=≀<=*k*<=≀<=106) β€” total amount of Valerie's teeth, amount of tooth rows and amount of crucians in Valerie's portion for dinner. Then follow *n* lines, each containing two integers: *r* (1<=≀<=*r*<=≀<=*m*) β€” index of the row, where belongs the corresponding tooth, and *c* (0<=≀<=*c*<=≀<=106) β€” its residual viability. It's guaranteed that each tooth row has positive amount of teeth.
In the first line output the maximum amount of crucians that Valerie can consume for dinner.
[ "4 3 18\n2 3\n1 2\n3 6\n2 3\n", "2 2 13\n1 13\n2 12\n" ]
[ "11\n", "13\n" ]
none
[ { "input": "4 3 18\n2 3\n1 2\n3 6\n2 3", "output": "11" }, { "input": "2 2 13\n1 13\n2 12", "output": "13" }, { "input": "5 4 8\n4 6\n4 5\n1 3\n2 0\n3 3", "output": "8" }, { "input": "1 1 0\n1 3", "output": "0" }, { "input": "7 1 30\n1 8\n1 15\n1 5\n1 17\n1 9\n1 16\n1 16", "output": "5" }, { "input": "4 2 8\n1 9\n1 10\n1 4\n2 6", "output": "8" }, { "input": "10 4 14\n2 6\n1 5\n2 8\n2 6\n2 5\n4 1\n4 0\n2 4\n3 4\n1 0", "output": "8" }, { "input": "54 22 1009\n15 7\n17 7\n11 9\n5 11\n12 9\n13 8\n13 12\n22 11\n20 9\n20 7\n16 11\n19 12\n3 12\n15 9\n1 12\n2 10\n16 10\n16 10\n14 10\n9 11\n9 9\n14 8\n10 10\n16 12\n1 8\n3 8\n21 11\n18 12\n2 6\n9 11\n11 7\n15 9\n20 11\n6 8\n8 8\n19 11\n15 7\n9 9\n22 7\n12 9\n17 9\n17 11\n12 7\n15 9\n5 11\n11 6\n18 8\n7 10\n4 10\n13 12\n4 8\n20 6\n15 12\n9 7", "output": "180" }, { "input": "1 1 1000000\n1 1000000", "output": "1000000" }, { "input": "4 3 181818\n3 1299\n1 1694\n3 1164\n2 1278", "output": "4136" }, { "input": "50 50 0\n33 0\n26 0\n30 0\n41 0\n38 0\n36 0\n16 0\n7 0\n23 0\n5 0\n39 0\n29 0\n40 0\n47 0\n24 0\n43 0\n14 0\n10 0\n20 0\n3 0\n6 0\n34 0\n13 0\n18 0\n21 0\n9 0\n8 0\n22 0\n25 0\n4 0\n11 0\n17 0\n32 0\n44 0\n49 0\n50 0\n27 0\n28 0\n45 0\n12 0\n35 0\n15 0\n42 0\n31 0\n2 0\n1 0\n48 0\n19 0\n37 0\n46 0", "output": "0" }, { "input": "19 12 199\n7 1\n8 6\n6 14\n1 7\n4 1\n6 6\n3 4\n1 5\n9 2\n5 3\n11 3\n9 4\n1 12\n4 7\n7 3\n12 14\n2 1\n10 8\n6 12", "output": "54" } ]
0
0
-1
6,596
388
Fox and Minimal path
[ "bitmasks", "constructive algorithms", "graphs", "implementation", "math" ]
null
null
Fox Ciel wants to write a task for a programming contest. The task is: "You are given a simple undirected graph with *n* vertexes. Each its edge has unit length. You should calculate the number of shortest paths between vertex 1 and vertex 2." Same with some writers, she wants to make an example with some certain output: for example, her birthday or the number of her boyfriend. Can you help her to make a test case with answer equal exactly to *k*?
The first line contains a single integer *k* (1<=≀<=*k*<=≀<=109).
You should output a graph *G* with *n* vertexes (2<=≀<=*n*<=≀<=1000). There must be exactly *k* shortest paths between vertex 1 and vertex 2 of the graph. The first line must contain an integer *n*. Then adjacency matrix *G* with *n* rows and *n* columns must follow. Each element of the matrix must be 'N' or 'Y'. If *G**ij* is 'Y', then graph *G* has a edge connecting vertex *i* and vertex *j*. Consider the graph vertexes are numbered from 1 to *n*. The graph must be undirected and simple: *G**ii* = 'N' and *G**ij*<==<=*G**ji* must hold. And there must be at least one path between vertex 1 and vertex 2. It's guaranteed that the answer exists. If there multiple correct answers, you can output any of them.
[ "2", "9", "1" ]
[ "4\nNNYY\nNNYY\nYYNN\nYYNN", "8\nNNYYYNNN\nNNNNNYYY\nYNNNNYYY\nYNNNNYYY\nYNNNNYYY\nNYYYYNNN\nNYYYYNNN\nNYYYYNNN", "2\nNY\nYN" ]
In first example, there are 2 shortest paths: 1-3-2 and 1-4-2. In second example, there are 9 shortest paths: 1-3-6-2, 1-3-7-2, 1-3-8-2, 1-4-6-2, 1-4-7-2, 1-4-8-2, 1-5-6-2, 1-5-7-2, 1-5-8-2.
[ { "input": "2", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "9", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "1", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "7", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "10", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "16", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "27", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "29", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "31", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "1000000", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "167959139", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "641009859", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "524125987", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "702209411", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "585325539", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "58376259", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "941492387", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "824608515", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "2691939", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "802030518", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "685146646", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "863230070", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "41313494", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "219396918", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "102513046", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "985629174", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "458679894", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "341796022", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "519879446", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "452405440", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "999999999", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "1000000000", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "9999991", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "999999937", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "536870911", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "73939133", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "999999997", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "1000003", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "999983", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "666013", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "29000087", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "13567", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "15485863", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "601258359", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "987654323", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "387420488", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." }, { "input": "268435455", "output": "498\nNNYYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\nNNNNNN..." } ]
62
0
0
6,603
821
Okabe and Banana Trees
[ "brute force", "math" ]
null
null
Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees. Consider the point (*x*,<=*y*) in the 2D plane such that *x* and *y* are integers and 0<=≀<=*x*,<=*y*. There is a tree in such a point, and it has *x*<=+<=*y* bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point. Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely. Okabe is sure that the answer does not exceed 1018. You can trust him.
The first line of input contains two space-separated integers *m* and *b* (1<=≀<=*m*<=≀<=1000, 1<=≀<=*b*<=≀<=10000).
Print the maximum number of bananas Okabe can get from the trees he cuts.
[ "1 5\n", "2 3\n" ]
[ "30\n", "25\n" ]
The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.
[ { "input": "1 5", "output": "30" }, { "input": "2 3", "output": "25" }, { "input": "4 6", "output": "459" }, { "input": "6 3", "output": "171" }, { "input": "1 1", "output": "1" }, { "input": "10 1", "output": "55" }, { "input": "20 10", "output": "40326" }, { "input": "1000 10000", "output": "74133360011484445" }, { "input": "139 9252", "output": "1137907933561080" }, { "input": "859 8096", "output": "29032056230649780" }, { "input": "987 4237", "output": "5495451829240878" }, { "input": "411 3081", "output": "366755153481948" }, { "input": "539 9221", "output": "16893595018603386" }, { "input": "259 770", "output": "2281741798549" }, { "input": "387 5422", "output": "1771610559998400" }, { "input": "515 1563", "output": "75233740231341" }, { "input": "939 407", "output": "4438222781916" }, { "input": "518 6518", "output": "5511730799718825" }, { "input": "646 1171", "output": "49802404050106" }, { "input": "70 7311", "output": "142915220249910" }, { "input": "494 6155", "output": "4221391613846823" }, { "input": "918 7704", "output": "28569727339126165" }, { "input": "46 3844", "output": "9007500020760" }, { "input": "174 2688", "output": "43730657099581" }, { "input": "894 4637", "output": "5909849585253250" }, { "input": "22 3481", "output": "1548544125646" }, { "input": "446 5030", "output": "1878390629993745" }, { "input": "440 8704", "output": "9470470760118060" }, { "input": "569 7548", "output": "10326205017481606" }, { "input": "289 6393", "output": "1620061541812350" }, { "input": "417 1045", "output": "14758909519725" }, { "input": "841 7185", "output": "19452619774222875" }, { "input": "969 6030", "output": "15265318959845745" }, { "input": "393 4874", "output": "1327174123029975" }, { "input": "817 3719", "output": "2546859449982016" }, { "input": "945 2563", "output": "1115613396515835" }, { "input": "369 4511", "output": "927715710215505" }, { "input": "555 3594", "output": "1061060598862891" } ]
78
7,065,600
0
6,613
39
Company Income Growth
[ "greedy" ]
B. Company Income Growth
2
64
Petya works as a PR manager for a successful Berland company BerSoft. He needs to prepare a presentation on the company income growth since 2001 (the year of its founding) till now. Petya knows that in 2001 the company income amounted to *a*1 billion bourles, in 2002 β€” to *a*2 billion, ..., and in the current (2000<=+<=*n*)-th year β€” *a**n* billion bourles. On the base of the information Petya decided to show in his presentation the linear progress history which is in his opinion perfect. According to a graph Petya has already made, in the first year BerSoft company income must amount to 1 billion bourles, in the second year β€” 2 billion bourles etc., each following year the income increases by 1 billion bourles. Unfortunately, the real numbers are different from the perfect ones. Among the numbers *a**i* can even occur negative ones that are a sign of the company’s losses in some years. That is why Petya wants to ignore some data, in other words, cross some numbers *a**i* from the sequence and leave only some subsequence that has perfect growth. Thus Petya has to choose a sequence of years *y*1, *y*2, ..., *y**k*,so that in the year *y*1 the company income amounted to 1 billion bourles, in the year *y*2 β€” 2 billion bourles etc., in accordance with the perfect growth dynamics. Help him to choose the longest such sequence.
The first line contains an integer *n* (1<=≀<=*n*<=≀<=100). The next line contains *n* integers *a**i* (<=-<=100<=≀<=*a**i*<=≀<=100). The number *a**i* determines the income of BerSoft company in the (2000<=+<=*i*)-th year. The numbers in the line are separated by spaces.
Output *k* β€” the maximum possible length of a perfect sequence. In the next line output the sequence of years *y*1, *y*2, ..., *y**k*. Separate the numbers by spaces. If the answer is not unique, output any. If no solution exist, output one number 0.
[ "10\n-2 1 1 3 2 3 4 -10 -2 5\n", "3\n-1 -2 -3\n" ]
[ "5\n2002 2005 2006 2007 2010\n", "0\n" ]
none
[ { "input": "10\n-2 1 1 3 2 3 4 -10 -2 5", "output": "5\n2002 2005 2006 2007 2010 " }, { "input": "3\n-1 -2 -3", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "1\n0", "output": "0" }, { "input": "2\n-1 1", "output": "1\n2002 " }, { "input": "2\n-1 1", "output": "1\n2002 " }, { "input": "2\n-2 0", "output": "0" }, { "input": "2\n3 -3", "output": "0" }, { "input": "3\n1 1 1", "output": "1\n2001 " }, { "input": "3\n-2 -2 1", "output": "1\n2003 " }, { "input": "4\n-4 2 3 -1", "output": "0" }, { "input": "5\n-3 -3 -4 2 -2", "output": "0" }, { "input": "100\n-1 -9 0 -2 -7 -3 -1 -1 6 -5 -3 5 10 -5 7 7 4 9 -6 1 0 3 0 1 -9 -9 6 -8 3 7 -9 -4 -5 -6 8 2 2 7 2 2 0 -6 5 3 9 7 -7 -7 -2 6 -3 -4 10 3 3 -4 2 -9 9 9 -6 -1 -7 -3 -6 10 10 -1 -8 -3 8 1 10 9 -9 10 4 -10 -6 9 7 8 5 -3 2 2 2 -7 -6 0 -4 -1 4 -2 -4 -1 2 -8 10 9", "output": "5\n2020 2036 2044 2077 2083 " }, { "input": "100\n5 -1 6 0 2 10 -6 6 -10 0 10 6 -10 3 8 4 2 6 3 -9 1 -1 -8 6 -6 -10 0 -3 -1 -6 -7 -9 -5 -5 5 -10 -3 4 -6 8 -4 2 2 8 2 -7 -4 -4 -9 4 -9 6 -4 -10 -8 -6 2 6 -4 3 3 4 -1 -9 8 9 -6 5 3 9 -4 0 -9 -10 3 -10 2 5 7 0 9 4 5 -3 5 -5 9 -4 6 -7 4 -1 -10 -1 -2 2 -1 4 -10 6", "output": "6\n2021 2042 2060 2062 2068 2089 " }, { "input": "100\n10 9 -10 0 -9 1 10 -6 -3 8 0 5 -7 -9 9 -1 1 4 9 0 4 -7 3 10 -3 -10 -6 4 -3 0 -7 8 -6 -1 5 0 -6 1 5 -7 10 10 -2 -10 -4 -1 -1 2 5 1 6 -7 3 -1 1 10 4 2 4 -3 -10 9 4 5 1 -10 -1 -9 -8 -2 4 -4 -10 -9 -5 -9 -1 -3 -3 -8 -8 -3 6 -3 6 10 -4 -1 -3 8 -9 0 -2 2 1 6 -4 -7 -9 3", "output": "6\n2006 2048 2053 2057 2064 2083 " }, { "input": "100\n-8 -3 -4 2 1 -9 5 4 4 -8 -8 6 -7 -1 9 -6 -1 1 -5 9 6 10 -8 -5 -2 10 7 10 -5 8 -7 5 -4 0 3 9 -9 -5 -4 -2 4 -1 -4 -5 -9 6 2 7 0 -2 2 3 -9 6 -10 6 5 -4 -9 -9 1 -7 -9 -3 -5 -8 4 0 4 10 -8 -6 -8 -9 5 -8 -6 -9 10 5 -6 -7 6 -5 8 3 1 3 7 3 -1 0 5 4 4 7 -7 5 -8 -2", "output": "7\n2005 2047 2052 2067 2075 2083 2089 " }, { "input": "100\n-15 8 -20 -2 -16 3 -19 -15 16 19 -1 -17 -14 9 7 2 20 -16 8 20 10 3 17 -3 2 5 9 15 3 3 -17 12 7 17 -19 -15 -5 16 -10 -4 10 -15 -16 9 -15 15 -16 7 -15 12 -17 7 4 -8 9 -2 -19 14 12 -1 17 -6 19 14 19 -9 -12 3 14 -10 5 7 19 11 5 10 18 2 -6 -12 7 5 -9 20 10 2 -20 6 -10 -16 -6 -5 -15 -2 15 -12 0 -18 2 -5", "output": "0" }, { "input": "100\n11 18 14 -19 -12 -5 -14 -3 13 14 -20 11 -6 12 -2 19 -16 -2 -4 -4 -18 -2 -15 5 -7 -18 11 5 -8 16 17 1 6 8 -20 13 17 -15 -20 7 16 -3 -17 -1 1 -18 2 9 4 2 -18 13 16 -14 -18 -14 16 19 13 4 -14 3 5 -7 5 -17 -14 13 20 16 -13 7 12 15 0 4 16 -16 -6 -15 18 -19 2 8 -4 -8 14 -4 20 -15 -20 14 7 -10 -17 -20 13 -1 -11 -4", "output": "4\n2032 2047 2062 2076 " }, { "input": "100\n3 99 47 -26 96 90 21 -74 -19 -17 80 -43 -24 -82 -39 -40 44 84 87 72 -78 -94 -82 -87 96 71 -29 -90 66 49 -87 19 -31 97 55 -29 -98 16 -23 68 84 -54 74 -71 -60 -32 -72 95 -55 -17 -49 -73 63 39 -31 -91 40 -29 -60 -33 -33 49 93 -56 -81 -18 38 45 -29 63 -37 27 75 13 -100 52 -51 75 -38 -49 28 39 -7 -37 -86 100 -8 28 -89 -57 -17 -52 -98 -92 56 -49 -24 92 28 31", "output": "0" }, { "input": "100\n-36 -88 -23 -71 33 53 21 49 97 -50 -91 24 -83 -100 -77 88 -56 -31 -27 7 -74 -69 -75 -59 78 -66 53 21 -41 72 -31 -93 26 98 58 78 -95 -64 -2 34 74 14 23 -25 -51 -94 -46 100 -44 79 46 -8 79 25 -55 16 35 67 29 58 49 75 -53 80 63 -50 -59 -5 -71 -72 -57 75 -71 6 -5 -44 34 -2 -10 -58 -98 67 -42 22 95 46 -58 88 62 82 85 -74 -94 -5 -64 12 -8 44 -57 87", "output": "0" }, { "input": "100\n-76 -73 -93 85 -30 66 -29 -79 13 -82 -12 90 8 -68 86 15 -5 55 -91 92 80 5 83 19 59 -1 -17 83 52 44 25 -3 83 -51 62 -66 -91 58 20 51 15 -70 -77 22 -92 -4 -70 55 -33 -27 -59 6 94 60 -79 -28 -20 -38 -83 100 -20 100 51 -35 -44 -82 44 -5 88 -6 -26 -79 -16 -2 -61 12 -81 -80 68 -68 -23 96 -77 80 -75 -57 93 97 12 20 -65 -46 -90 81 16 -77 -43 -3 8 -58", "output": "0" }, { "input": "100\n-64 -18 -21 46 28 -100 21 -98 49 -44 -38 52 -85 62 42 -85 19 -27 88 -45 28 -86 -20 15 34 61 17 88 95 21 -40 -2 -12 90 -61 30 7 -13 -74 43 -57 43 -30 51 -19 -51 -22 -2 -76 85 1 -53 -31 -77 96 -61 61 88 -62 88 -6 -59 -70 18 -65 90 91 -27 -86 37 8 -92 -82 -78 -57 -81 17 -53 3 29 -88 -92 -28 49 -2 -41 32 -89 -38 49 22 37 -17 -1 -78 -80 -12 36 -95 30", "output": "1\n2051 " }, { "input": "1\n1", "output": "1\n2001 " }, { "input": "2\n1 2", "output": "2\n2001 2002 " }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "100\n2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 " }, { "input": "100\n-29 -92 -94 81 -100 1 -29 2 3 97 -37 4 5 -52 6 7 -81 86 8 9 10 98 36 -99 11 -18 12 -46 13 14 15 16 17 18 19 20 21 23 53 22 23 24 6 17 45 25 99 26 -53 -51 48 -11 71 27 -56 28 29 -36 30 31 61 -53 -64 32 33 89 -90 34 35 54 36 -89 13 -89 5 37 38 39 -57 26 55 80 40 63 41 42 43 44 92 45 46 47 -10 -10 -32 48 49 50 -10 -99", "output": "50\n2006 2008 2009 2012 2013 2015 2016 2019 2020 2021 2025 2027 2029 2030 2031 2032 2033 2034 2035 2036 2037 2040 2041 2042 2046 2048 2054 2056 2057 2059 2060 2064 2065 2068 2069 2071 2076 2077 2078 2083 2085 2086 2087 2088 2090 2091 2092 2096 2097 2098 " }, { "input": "100\n1 2 84 -97 3 -59 30 -55 4 -6 80 5 6 7 -8 8 3 -96 88 9 10 -20 -95 11 12 67 5 4 -15 -62 -74 13 14 15 16 17 18 19 20 21 22 -15 23 -35 -17 24 25 -99 26 27 69 2 -92 -96 -77 28 29 -95 -75 30 -36 31 17 -88 10 52 32 33 34 -94 35 -38 -16 36 37 38 31 -58 39 -81 83 46 40 41 42 43 -44 44 4 49 -60 17 64 45 46 47 48 49 -38 50", "output": "50\n2001 2002 2005 2009 2012 2013 2014 2016 2020 2021 2024 2025 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2043 2046 2047 2049 2050 2056 2057 2060 2062 2067 2068 2069 2071 2074 2075 2076 2079 2083 2084 2085 2086 2088 2094 2095 2096 2097 2098 2100 " }, { "input": "100\n1 2 80 30 95 51 -3 -12 3 -11 4 -90 5 6 7 8 -18 52 77 -82 9 10 11 -51 -16 70 12 13 14 15 16 17 58 18 36 19 -86 20 21 40 -53 94 22 23 27 67 24 -90 -38 17 -71 40 25 72 -82 26 27 -4 28 29 30 31 32 67 33 34 90 42 -52 35 36 37 -6 38 39 -11 30 40 41 42 -42 21 -96 43 -50 44 -73 16 45 90 46 47 48 2 -37 -88 49 -27 -43 50", "output": "50\n2001 2002 2009 2011 2013 2014 2015 2016 2021 2022 2023 2027 2028 2029 2030 2031 2032 2034 2036 2038 2039 2043 2044 2047 2053 2056 2057 2059 2060 2061 2062 2063 2065 2066 2070 2071 2072 2074 2075 2078 2079 2080 2084 2086 2089 2091 2092 2093 2097 2100 " }, { "input": "100\n1 2 3 -72 6 4 5 6 7 8 9 10 11 -57 12 13 14 -37 74 15 16 17 3 18 19 20 21 22 -6 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 -24 39 40 41 42 43 44 45 -52 46 -65 47 -82 48 49 50 47 -28 51 52 53 54 55 -30 56 57 58 59 12 60 61 62 63 -14 64 65 66 67 -77 68 69 70 71 72 73 74 -4 -6 -75 75 -26 76 49 77 -86", "output": "77\n2001 2002 2003 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2017 2020 2021 2022 2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2047 2048 2049 2050 2051 2052 2053 2055 2057 2059 2060 2061 2064 2065 2066 2067 2068 2070 2071 2072 2073 2075 2076 2077 2078 2080 2081 2082 2083 2085 2086 2087 2088 2089 2090 2091 2095 2097 2099 " }, { "input": "100\n10 5 -69 1 -79 -57 -80 87 -38 -54 -91 33 29 81 20 -58 -97 70 2 -13 71 57 -15 98 -18 100 34 -25 -39 75 100 -88 3 95 48 -92 -20 -13 5 4 -19 -99 4 -46 -35 12 -43 -30 -37 -51 77 90 -47 -87 3 -84 -62 -51 69 -38 74 -63 -5 5 6 7 -65 90 -33 -23 8 19 -69 -98 24 28 100 9 -90 -34 -69 72 -15 8 27 -80 6 33 62 -57 -4 10 40 81 -78 58 43 83 57 21", "output": "10\n2004 2019 2033 2040 2064 2065 2066 2071 2078 2092 " }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "10\n2 3 1 3 3 2 1 2 1 2", "output": "2\n2003 2006 " }, { "input": "15\n4 1 4 6 3 2 1 1 3 2 4 4 1 4 1", "output": "4\n2002 2006 2009 2011 " }, { "input": "15\n3 3 3 2 2 2 1 1 1 2 2 2 4 4 4", "output": "2\n2007 2010 " }, { "input": "15\n6 5 2 3 4 1 3 2 4 5 1 2 6 4 4", "output": "2\n2006 2008 " } ]
218
0
3.9455
6,630
148
Bag of mice
[ "dp", "games", "math", "probabilities" ]
null
null
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance. They take turns drawing a mouse from a bag which initially contains *w* white and *b* black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning? If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers *w* and *b* (0<=≀<=*w*,<=*b*<=≀<=1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10<=-<=9.
[ "1 3\n", "5 5\n" ]
[ "0.500000000\n", "0.658730159\n" ]
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag β€” one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
[ { "input": "1 3", "output": "0.500000000" }, { "input": "5 5", "output": "0.658730159" }, { "input": "100 100", "output": "0.666295063" }, { "input": "100 1", "output": "0.990099010" }, { "input": "1 100", "output": "0.336633663" }, { "input": "67 420", "output": "0.536897227" }, { "input": "0 1000", "output": "0.000000000" }, { "input": "1000 0", "output": "1.000000000" }, { "input": "0 0", "output": "0.000000000" }, { "input": "1000 1000", "output": "0.666629617" }, { "input": "32 1000", "output": "0.507870202" }, { "input": "581 406", "output": "0.708455368" }, { "input": "459 52", "output": "0.907503322" }, { "input": "900 853", "output": "0.672635039" }, { "input": "778 218", "output": "0.820333392" }, { "input": "219 20", "output": "0.922525319" }, { "input": "815 665", "output": "0.689921745" }, { "input": "773 467", "output": "0.726347987" }, { "input": "215 269", "output": "0.642626672" }, { "input": "93 633", "output": "0.534192877" }, { "input": "267 270", "output": "0.665290172" }, { "input": "226 72", "output": "0.805082561" }, { "input": "666 436", "output": "0.716435071" }, { "input": "544 519", "output": "0.671862905" }, { "input": "141 883", "output": "0.536951107" }, { "input": "581 685", "output": "0.648844385" }, { "input": "459 487", "output": "0.660077510" }, { "input": "980 133", "output": "0.893190920" }, { "input": "858 934", "output": "0.657333867" }, { "input": "455 299", "output": "0.715932720" }, { "input": "962 35", "output": "0.966054554" }, { "input": "840 837", "output": "0.667020172" }, { "input": "1000 483", "output": "0.754259888" }, { "input": "958 285", "output": "0.813405050" }, { "input": "399 649", "output": "0.617507391" }, { "input": "277 451", "output": "0.617396161" }, { "input": "155 534", "output": "0.563323504" }, { "input": "315 898", "output": "0.574579114" }, { "input": "193 700", "output": "0.560544099" }, { "input": "713 65", "output": "0.922816830" }, { "input": "377 720", "output": "0.603697168" }, { "input": "817 522", "output": "0.719439426" }, { "input": "695 168", "output": "0.836944656" }, { "input": "574 969", "output": "0.614216493" }, { "input": "95 334", "output": "0.562182792" }, { "input": "691 417", "output": "0.726476058" }, { "input": "132 781", "output": "0.538939829" }, { "input": "10 583", "output": "0.504240929" }, { "input": "888 385", "output": "0.767717438" }, { "input": "329 31", "output": "0.920544382" }, { "input": "73 405", "output": "0.541293398" }, { "input": "513 488", "output": "0.672187379" }, { "input": "391 852", "output": "0.593281183" }, { "input": "551 654", "output": "0.648141838" }, { "input": "429 19", "output": "0.959234268" }, { "input": "387 102", "output": "0.827219303" }, { "input": "827 466", "output": "0.735005881" }, { "input": "705 268", "output": "0.783946132" }, { "input": "864 70", "output": "0.930218970" }, { "input": "743 715", "output": "0.670910005" }, { "input": "50 372", "output": "0.531448979" } ]
2,000
10,444,800
0
6,649
234
Cinema
[ "implementation" ]
null
null
Overall there are *m* actors in Berland. Each actor has a personal identifier β€” an integer from 1 to *m* (distinct actors have distinct identifiers). Vasya likes to watch Berland movies with Berland actors, and he has *k* favorite actors. He watched the movie trailers for the next month and wrote the following information for every movie: the movie title, the number of actors who starred in it, and the identifiers of these actors. Besides, he managed to copy the movie titles and how many actors starred there, but he didn't manage to write down the identifiers of some actors. Vasya looks at his records and wonders which movies may be his favourite, and which ones may not be. Once Vasya learns the exact cast of all movies, his favorite movies will be determined as follows: a movie becomes favorite movie, if no other movie from Vasya's list has more favorite actors. Help the boy to determine the following for each movie: - whether it surely will be his favourite movie;- whether it surely won't be his favourite movie; - can either be favourite or not.
The first line of the input contains two integers *m* and *k* (1<=≀<=*m*<=≀<=100,<=1<=≀<=*k*<=≀<=*m*) β€” the number of actors in Berland and the number of Vasya's favourite actors. The second line contains *k* distinct integers *a**i* (1<=≀<=*a**i*<=≀<=*m*) β€” the identifiers of Vasya's favourite actors. The third line contains a single integer *n* (1<=≀<=*n*<=≀<=100) β€” the number of movies in Vasya's list. Then follow *n* blocks of lines, each block contains a movie's description. The *i*-th movie's description contains three lines: - the first line contains string *s**i* (*s**i* consists of lowercase English letters and can have the length of from 1 to 10 characters, inclusive) β€” the movie's title, - the second line contains a non-negative integer *d**i* (1<=≀<=*d**i*<=≀<=*m*) β€” the number of actors who starred in this movie,- the third line has *d**i* integers *b**i*,<=*j* (0<=≀<=*b**i*,<=*j*<=≀<=*m*) β€” the identifiers of the actors who star in this movie. If *b**i*,<=*j*<==<=0, than Vasya doesn't remember the identifier of the *j*-th actor. It is guaranteed that the list of actors for a movie doesn't contain the same actors. All movies have distinct names. The numbers on the lines are separated by single spaces.
Print *n* lines in the output. In the *i*-th line print: - 0, if the *i*-th movie will surely be the favourite; - 1, if the *i*-th movie won't surely be the favourite; - 2, if the *i*-th movie can either be favourite, or not favourite.
[ "5 3\n1 2 3\n6\nfirstfilm\n3\n0 0 0\nsecondfilm\n4\n0 0 4 5\nthirdfilm\n1\n2\nfourthfilm\n1\n5\nfifthfilm\n1\n4\nsixthfilm\n2\n1 0\n", "5 3\n1 3 5\n4\njumanji\n3\n0 0 0\ntheeagle\n5\n1 2 3 4 0\nmatrix\n3\n2 4 0\nsourcecode\n2\n2 4\n" ]
[ "2\n2\n1\n1\n1\n2\n", "2\n0\n1\n1\n" ]
Note to the second sample: - Movie jumanji can theoretically have from 1 to 3 Vasya's favourite actors. - Movie theeagle has all three favourite actors, as the actor Vasya failed to remember, can only have identifier 5. - Movie matrix can have exactly one favourite actor. - Movie sourcecode doesn't have any favourite actors. Thus, movie theeagle will surely be favourite, movies matrix and sourcecode won't surely be favourite, and movie jumanji can be either favourite (if it has all three favourite actors), or not favourite.
[ { "input": "5 3\n1 2 3\n6\nfirstfilm\n3\n0 0 0\nsecondfilm\n4\n0 0 4 5\nthirdfilm\n1\n2\nfourthfilm\n1\n5\nfifthfilm\n1\n4\nsixthfilm\n2\n1 0", "output": "2\n2\n1\n1\n1\n2" }, { "input": "5 3\n1 3 5\n4\njumanji\n3\n0 0 0\ntheeagle\n5\n1 2 3 4 0\nmatrix\n3\n2 4 0\nsourcecode\n2\n2 4", "output": "2\n0\n1\n1" }, { "input": "10 1\n1\n4\na\n1\n3\nb\n1\n4\nc\n1\n5\nd\n1\n2", "output": "0\n0\n0\n0" }, { "input": "2 1\n1\n2\na\n1\n2\nb\n1\n1", "output": "1\n0" }, { "input": "6 4\n3 4 2 1\n10\na\n4\n1 2 3 5\nbe\n3\n0 0 0\nc\n6\n1 2 3 4 5 6\ndr\n4\n5 6 0 0\ne\n6\n0 0 0 0 0 0\nff\n5\n0 0 0 0 6\ng\n2\n6 5\nfdfk\n4\n1 2 3 4\nreer\n2\n5 6\nudfyhusd\n1\n6", "output": "1\n1\n0\n1\n0\n2\n1\n0\n1\n1" }, { "input": "10 4\n2 7 9 10\n10\nfr\n5\n1 0 0 0 0\nedweer\n9\n1 2 3 4 5 6 7 0 0\nfddf\n4\n4 5 2 1\ndsd\n1\n0\nr\n2\n1 5\njh\n1\n4\nj\n2\n0 0\nuyuy\n3\n0 4 6\na\n4\n4 6 3 1\nq\n1\n1", "output": "2\n2\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "100 1\n1\n2\nab\n17\n0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7\nabb\n1\n2", "output": "0\n2" }, { "input": "15 15\n1 2 3 4 5 6 7 8 9 11 10 12 13 14 15\n1\nabvabab\n15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "8 2\n7 3\n5\na\n1\n8\nb\n2\n5 6\nc\n1\n7\nd\n1\n3\ne\n1\n0", "output": "1\n1\n0\n0\n2" }, { "input": "2 1\n2\n10\na\n1\n1\nb\n1\n1\nc\n2\n0 0\nd\n2\n0 1\ne\n2\n1 0\nf\n2\n0 0\ng\n1\n1\ndkjs\n1\n1\nfdkj\n2\n1 2\nedwe\n1\n2", "output": "1\n1\n0\n0\n0\n0\n1\n1\n0\n0" }, { "input": "4 3\n1 3 4\n5\njfmiwymydm\n3\n0 2 1\neky\n2\n4 1\njw\n1\n4\ndfrfaeppgj\n2\n3 0\notot\n3\n4 0 1", "output": "2\n2\n1\n2\n0" }, { "input": "5 3\n4 2 5\n4\nwcrqskxp\n1\n0\niafxiw\n1\n0\noaxzffavxx\n4\n0 2 1 5\nyttce\n2\n1 3", "output": "1\n1\n0\n1" }, { "input": "10 9\n10 4 1 7 2 6 5 9 3\n7\ngipjuaw\n2\n0 7\npogyiwr\n9\n6 2 3 0 10 0 1 5 7\nqkzg\n1\n0\nfdunuu\n8\n4 1 0 7 3 9 0 0\nig\n3\n0 0 9\nqzispi\n7\n3 0 8 10 6 2 1\nviktz\n8\n8 7 4 6 0 9 0 0", "output": "1\n0\n1\n2\n1\n1\n1" }, { "input": "100 50\n73 58 66 59 89 41 95 14 53 76 29 74 28 9 21 72 77 40 55 62 93 99 4 57 67 24 17 46 8 64 26 34 30 96 3 18 63 92 27 79 87 85 86 91 88 7 71 84 69 52\n1\nna\n19\n0 72 0 0 0 1 5 54 33 74 97 64 0 4 79 49 0 0 0", "output": "0" }, { "input": "70 3\n40 16 4\n3\nwueq\n5\n67 68 48 0 25\nm\n49\n0 48 0 0 0 33 65 41 7 23 38 68 59 40 67 9 51 64 0 6 0 0 58 14 0 43 24 37 0 1 0 10 39 3 54 53 56 0 22 12 32 0 27 0 11 61 0 13 0\noy\n57\n34 0 10 17 32 6 65 69 0 63 26 0 42 60 20 58 24 45 61 0 47 16 38 68 54 11 62 70 0 0 14 56 67 15 57 35 51 4 2 66 0 46 25 0 59 43 0 5 37 28 0 22 12 36 3 13 0", "output": "1\n2\n2" }, { "input": "100 3\n21 78 39\n4\nfwwra\n12\n0 0 38 97 76 4 12 0 99 79 80 89\neyba\n51\n3 52 0 68 27 72 80 19 0 54 93 53 46 29 7 61 67 9 42 47 43 49 94 0 63 0 0 0 69 0 58 18 0 25 34 51 36 0 24 56 83 76 0 71 62 81 0 0 40 11 1\nynzr\n5\n54 56 32 19 35\ndrcltuxj\n22\n0 68 100 19 42 36 0 0 0 75 14 0 65 2 0 38 0 21 92 86 84 0", "output": "2\n2\n1\n2" }, { "input": "50 25\n8 18 41 25 16 39 2 47 49 37 40 23 3 35 15 7 11 28 22 48 10 17 38 46 44\n4\nswyzirxhx\n28\n43 32 14 5 0 17 25 39 0 0 36 0 0 34 27 22 6 13 26 0 0 41 12 16 0 0 0 23\nzyn\n3\n36 12 47\np\n33\n38 0 35 0 6 20 43 9 15 37 17 23 2 0 0 0 0 0 34 0 28 10 33 0 5 4 7 12 36 46 0 0 45\nycaqpkbu\n31\n41 26 16 0 0 36 0 23 0 34 0 0 0 10 42 28 29 22 0 12 0 39 0 0 5 0 13 46 0 17 0", "output": "2\n1\n2\n2" }, { "input": "45 15\n17 34 27 3 39 40 2 22 7 36 8 23 20 26 16\n5\nu\n8\n40 9 17 35 44 0 7 27\njyabbcffhq\n25\n42 11 0 10 24 36 0 0 0 0 0 25 34 0 0 19 0 14 26 0 0 32 16 30 0\nkxtcfi\n37\n0 0 23 31 18 15 10 0 0 0 13 0 0 16 14 42 3 44 39 32 7 26 0 0 11 2 4 33 35 5 0 22 21 27 0 0 37\nc\n3\n24 35 23\nmwljvf\n7\n23 24 16 43 44 0 0", "output": "1\n2\n2\n1\n1" } ]
124
6,963,200
0
6,652
929
ΠœΠ΅ΡΡ‚Π° Π² самолётС
[ "*special", "implementation" ]
null
null
Π’ самолётС Π΅ΡΡ‚ΡŒ *n* рядов мСст. Если ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π½Π° ряды свСрху, Ρ‚ΠΎ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ряду Π΅ΡΡ‚ΡŒ 3 мСста слСва, Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ рядами, Π·Π°Ρ‚Π΅ΠΌ 4 Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… мСста, Π·Π°Ρ‚Π΅ΠΌ Π΅Ρ‰Ρ‘ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ рядами, Π° Π·Π°Ρ‚Π΅ΠΌ Π΅Ρ‰Ρ‘ 3 мСста справа. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ мСста ΡƒΠΆΠ΅ заняты пассаТирами. ВсСго Π΅ΡΡ‚ΡŒ Π΄Π²Π° Π²ΠΈΠ΄Π° пассаТиров β€” статусныС (Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π»Π΅Ρ‚Π°ΡŽΡ‚) ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅. ΠŸΠ΅Ρ€Π΅Π΄ Π²Π°ΠΌΠΈ стоит Π·Π°Π΄Π°Ρ‡Π° Ρ€Π°ΡΡΠ°Π΄ΠΈΡ‚ΡŒ Π΅Ρ‰Ρ‘ *k* ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… пассаТиров Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ суммарноС число сосСдСй Ρƒ статусных пассаТиров Π±Ρ‹Π»ΠΎ минимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ. Π”Π²Π° пассаТира ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ сосСдями, Ссли ΠΎΠ½ΠΈ сидят Π² ΠΎΠ΄Π½ΠΎΠΌ ряду ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Π½Π΅Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… мСст ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠ΄Π° ΠΌΠ΅ΠΆΠ΄Ρƒ рядами. Если пассаТир являСтся сосСдним пассаТиром для Π΄Π²ΡƒΡ… статусных пассаТиров, Ρ‚ΠΎ Π΅Π³ΠΎ слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π² суммС сосСдСй Π΄Π²Π°ΠΆΠ΄Ρ‹.
Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ строкС ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ Π΄Π²Π° Ρ†Π΅Π»Ρ‹Ρ… числа *n* ΠΈ *k* (1<=≀<=*n*<=≀<=100, 1<=≀<=*k*<=≀<=10Β·*n*) β€” количСство рядов мСст Π² самолётС ΠΈ количСство пассаТиров, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°ΡΡΠ°Π΄ΠΈΡ‚ΡŒ. Π”Π°Π»Π΅Π΅ слСдуСт описаниС рядов мСст самолёта ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ ряду Π² строкС. Если ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠΉ символ Ρ€Π°Π²Π΅Π½ '-', Ρ‚ΠΎ это ΠΏΡ€ΠΎΡ…ΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ рядами. Если ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠΉ символ Ρ€Π°Π²Π΅Π½ '.', Ρ‚ΠΎ это свободноС мСсто. Если ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠΉ символ Ρ€Π°Π²Π΅Π½ 'S', Ρ‚ΠΎ Π½Π° Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΌ мСстС Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΈΠ΄Π΅Ρ‚ΡŒ статусный пассаТир. Если ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠΉ символ Ρ€Π°Π²Π΅Π½ 'P', Ρ‚ΠΎ Π½Π° Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΌ мСстС Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΈΠ΄Π΅Ρ‚ΡŒ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΉ пассаТир. ГарантируСтся, Ρ‡Ρ‚ΠΎ количСство свободных мСст Π½Π΅ мСньшС *k*. ГарантируСтся, Ρ‡Ρ‚ΠΎ всС ряды ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ описанному Π² условии Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρƒ.
Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ строку Π²Ρ‹Π²Π΅Π΄ΠΈΡ‚Π΅ минимальноС суммарноС число сосСдСй Ρƒ статусных пассаТиров. Π”Π°Π»Π΅Π΅ Π²Ρ‹Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΏΠ»Π°Π½ рассадки пассаТиров, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ суммарноС количСство сосСдСй Ρƒ статусных пассаТиров, Π² Ρ‚ΠΎΠΌ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΈ Π²ΠΎ Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Если Π² свободноС мСсто Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΠ°Π΄ΠΈΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· *k* пассаТиров, Π²Ρ‹Π²Π΅Π΄ΠΈΡ‚Π΅ ΡΡ‚Ρ€ΠΎΡ‡Π½ΡƒΡŽ Π±ΡƒΠΊΠ²Ρƒ 'x' вмСсто символа '.'.
[ "1 2\nSP.-SS.S-S.S\n", "4 9\nPP.-PPPS-S.S\nPSP-PPSP-.S.\n.S.-S..P-SS.\nP.S-P.PP-PSP\n" ]
[ "5\nSPx-SSxS-S.S\n", "15\nPPx-PPPS-S.S\nPSP-PPSP-xSx\nxSx-SxxP-SSx\nP.S-PxPP-PSP\n" ]
Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΠ°Π΄ΠΈΡ‚ΡŒ Π΅Ρ‰Ρ‘ Π΄Π²ΡƒΡ… ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… пассаТиров. Для ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ сосСдСй Ρƒ статусных пассаТиров, Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΠ°Π΄ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ… Π½Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ слСва мСсто, Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π° любоС ΠΈΠ· ΠΎΡΡ‚Π°Π²ΡˆΠΈΡ…ΡΡ Π΄Π²ΡƒΡ… мСст, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ нСзависимо ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° мСста ΠΎΠ½ станСт сосСдом Π΄Π²ΡƒΡ… статусных пассаТиров. Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ, Ρƒ статусного пассаТира, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ сидит Π½Π° самом Π»Π΅Π²ΠΎΠΌ мСстС ΡƒΠΆΠ΅ Π΅ΡΡ‚ΡŒ сосСд. Π’Π°ΠΊΠΆΠ΅ Π½Π° Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠΌ ΠΈ пятом мСстах слСва сидят статусныС пассаТиры, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ сосСдями Π΄Ρ€ΡƒΠ³ для Π΄Ρ€ΡƒΠ³Π° (Ρ‡Ρ‚ΠΎ добавляСт ΠΊ суммС 2). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, послС посадки Π΅Ρ‰Ρ‘ Π΄Π²ΡƒΡ… ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… пассаТиров, ΠΈΡ‚ΠΎΠ³ΠΎΠ²ΠΎΠ΅ суммарноС количСство сосСдСй Ρƒ статусных пассаТиров станСт Ρ€Π°Π²Π½ΠΎ пяти.
[ { "input": "1 2\nSP.-SS.S-S.S", "output": "5\nSPx-SSxS-S.S" }, { "input": "4 9\nPP.-PPPS-S.S\nPSP-PPSP-.S.\n.S.-S..P-SS.\nP.S-P.PP-PSP", "output": "15\nPPx-PPPS-S.S\nPSP-PPSP-xSx\nxSx-SxxP-SSx\nP.S-PxPP-PSP" }, { "input": "3 7\n.S.-SSSP-..S\nS..-.SPP-S.P\n.S.-PPPP-PSP", "output": "13\nxSx-SSSP-xxS\nSxx-xSPP-S.P\n.S.-PPPP-PSP" }, { "input": "5 6\nPP.-PS.P-P..\nPPS-SP..-P.P\nP.P-....-S..\nSPP-.P.S-.S.\nSP.-S.PS-PPP", "output": "6\nPPx-PS.P-Pxx\nPPS-SPxx-PxP\nP.P-....-S..\nSPP-.P.S-.S.\nSP.-S.PS-PPP" }, { "input": "1 1\n..S-PS..-.PP", "output": "1\nx.S-PS..-.PP" }, { "input": "2 2\nPP.-S.SS-.S.\nSSP-SSSS-S.S", "output": "12\nPPx-S.SS-xS.\nSSP-SSSS-S.S" }, { "input": "30 1\nPPP-PPP.-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP", "output": "0\nPPP-PPPx-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP" }, { "input": "1 1\nSPS-....-P.P", "output": "2\nSPS-x...-P.P" }, { "input": "2 1\nSSS-S.S.-SSS\nSSP-.PP.-S.S", "output": "11\nSSS-S.S.-SSS\nSSP-xPP.-S.S" }, { "input": "30 1\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPP.-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP", "output": "0\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPx-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP\nPPP-PPPP-PPP" } ]
109
5,632,000
0
6,664
769
Cycle In Maze
[ "*special", "dfs and similar", "graphs", "greedy", "shortest paths" ]
null
null
The Robot is in a rectangular maze of size *n*<=Γ—<=*m*. Each cell of the maze is either empty or occupied by an obstacle. The Robot can move between neighboring cells on the side left (the symbol "L"), right (the symbol "R"), up (the symbol "U") or down (the symbol "D"). The Robot can move to the cell only if it is empty. Initially, the Robot is in the empty cell. Your task is to find lexicographically minimal Robot's cycle with length exactly *k*, which begins and ends in the cell where the Robot was initially. It is allowed to the Robot to visit any cell many times (including starting). Consider that Robot's way is given as a line which consists of symbols "L", "R", "U" and "D". For example, if firstly the Robot goes down, then left, then right and up, it means that his way is written as "DLRU". In this task you don't need to minimize the length of the way. Find the minimum lexicographical (in alphabet order as in the dictionary) line which satisfies requirements above.
The first line contains three integers *n*, *m* and *k* (1<=≀<=*n*,<=*m*<=≀<=1000, 1<=≀<=*k*<=≀<=106) β€” the size of the maze and the length of the cycle. Each of the following *n* lines contains *m* symbols β€” the description of the maze. If the symbol equals to "." the current cell is empty. If the symbol equals to "*" the current cell is occupied by an obstacle. If the symbol equals to "X" then initially the Robot is in this cell and it is empty. It is guaranteed that the symbol "X" is found in the maze exactly once.
Print the lexicographically minimum Robot's way with the length exactly *k*, which starts and ends in the cell where initially Robot is. If there is no such way, print "IMPOSSIBLE"(without quotes).
[ "2 3 2\n.**\nX..\n", "5 6 14\n..***.\n*...X.\n..*...\n..*.**\n....*.\n", "3 3 4\n***\n*X*\n***\n" ]
[ "RL\n", "DLDDLLLRRRUURU\n", "IMPOSSIBLE\n" ]
In the first sample two cyclic ways for the Robot with the length 2 exist β€” "UD" and "RL". The second cycle is lexicographically less. In the second sample the Robot should move in the following way: down, left, down, down, left, left, left, right, right, right, up, up, right, up. In the third sample the Robot can't move to the neighboring cells, because they are occupied by obstacles.
[ { "input": "2 3 2\n.**\nX..", "output": "RL" }, { "input": "5 6 14\n..***.\n*...X.\n..*...\n..*.**\n....*.", "output": "DLDDLLLRRRUURU" }, { "input": "3 3 4\n***\n*X*\n***", "output": "IMPOSSIBLE" }, { "input": "1 1 1\nX", "output": "IMPOSSIBLE" }, { "input": "1 2 2\nX.", "output": "RL" }, { "input": "1 5 4\n.X**.", "output": "LRLR" }, { "input": "1 10 1\n........X.", "output": "IMPOSSIBLE" }, { "input": "1 20 10\n*.*..............*.X", "output": "LRLRLRLRLR" }, { "input": "2 1 1\nX\n.", "output": "IMPOSSIBLE" }, { "input": "2 2 2\nX*\n.*", "output": "DU" }, { "input": "2 5 2\n.....\n*.*.X", "output": "LR" }, { "input": "2 10 4\n******....\n*.****.*X*", "output": "UDUD" }, { "input": "2 20 26\n.****..*.**.**.*....\n.*.*.*.*...*.****..X", "output": "LLRLRLRLRLRLRLRLRLRLRLRLRR" }, { "input": "2 25 46\n.*...***X....*..*........\n.....*...**.**.*....*...*", "output": "DLLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRRU" }, { "input": "5 1 2\n*\n.\nX\n*\n.", "output": "UD" }, { "input": "5 2 8\n..\n.*\nX.\n..\n*.", "output": "DRDUDULU" }, { "input": "5 5 12\n..**.\n***..\n..X*.\n....*\n**..*", "output": "DDRLRLRLRLUU" }, { "input": "5 10 42\n..**.**.**\n......*..*\n..**...X..\n*.......*.\n......*.**", "output": "DDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUU" }, { "input": "10 1 8\n.\n*\n*\n.\n.\nX\n*\n.\n*\n*", "output": "UDUDUDUD" }, { "input": "10 2 16\n.*\n*.\n*.\n..\n**\nX.\n..\n*.\n..\n.*", "output": "DRDDLDUDUDURUULU" }, { "input": "10 10 4\n*..*...***\nX...*.....\n***...**..\n..********\n.*.*......\n*.**..*...\n.**.**..**\n*.**.**..*\n**.****.*.\n...**..*.*", "output": "RLRL" }, { "input": "20 1 12\n.\n.\n.\n*\n.\nX\n.\n.\n.\n.\n.\n.\n*\n*\n.\n.\n.\n.\n.\n.", "output": "DDDDDDUUUUUU" }, { "input": "20 2 22\n.*\n**\n..\n**\n**\n..\n.*\n.*\n..\n..\n**\n**\n.*\n**\n..\n.*\n..\n..\nX*\n..", "output": "DRLRLRLRLRLRLRLRLRLRLU" }, { "input": "20 10 116\n..........\n....*.....\n.......*..\n*.........\n*....*....\n*........*\n..........\n*.........\n.......*..\n...*..*...\n..........\n...*......\n..*.......\n.....**..*\n........*.\n........*.\n...*......\n.........*\n.....*.X..\n*......*.*", "output": "LDLLLLLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRRRRRUR" }, { "input": "25 1 22\n.\n*\n*\n.\n*\n.\n.\n.\n.\n.\n.\n.\n.\n*\n.\n.\n.\n*\n.\n.\n.\n*\n.\nX\n.", "output": "DUDUDUDUDUDUDUDUDUDUDU" }, { "input": "25 2 26\n.*\n*.\n..\n.*\n..\n*.\n.*\n.*\n.*\n..\n*.\n..\n..\n..\n..\n..\n*.\n.*\n.*\n..\n..\n.*\nX*\n..\n..", "output": "DDRLRLRLRLRLRLRLRLRLRLRLUU" }, { "input": "25 5 22\n.....\n.....\n.....\n**...\n...*.\n...*.\n*..*.\n.....\n...**\n.*...\n.....\n*....\n*....\n*....\n*...X\n.....\n.*...\n...*.\n.*..*\n....*\n.....\n.....\n*....\n.....\n..*..", "output": "DDDUDUDUDUDUDUDUDUDUUU" }, { "input": "25 10 38\n....*...**\n.........*\n.........*\n**...*....\n..........\n.*.....*.*\n***.*....*\n..*****.**\n*........*\n*.........\n.*..*.**.*\n.*....*...\n..*..**...\n...*.*.*.*\n.*.*.....*\n.*.X.*...*\n*...**...*\n..........\n.*..*.*.**\n*.*..**.*.\n*.....*..*\n...**.*...\n...*...*..\n...*......\n...*.....*", "output": "DDDDDLDDDDLLRLRLRLRLRLRLRLRRUUUURUUUUU" }, { "input": "1 2 2\n.X", "output": "LR" }, { "input": "2 1 2\n.\nX", "output": "UD" }, { "input": "2 1 2\nX\n.", "output": "DU" }, { "input": "2 1 2\n*\nX", "output": "IMPOSSIBLE" }, { "input": "2 1 2\nX\n*", "output": "IMPOSSIBLE" }, { "input": "1 2 2\nX*", "output": "IMPOSSIBLE" }, { "input": "1 2 2\n*X", "output": "IMPOSSIBLE" }, { "input": "1 1 1000000\nX", "output": "IMPOSSIBLE" }, { "input": "1 1 1\nX", "output": "IMPOSSIBLE" }, { "input": "1 1 2\nX", "output": "IMPOSSIBLE" } ]
1,044
14,848,000
0
6,666
344
Simple Molecules
[ "brute force", "graphs", "math" ]
null
null
Mad scientist Mike is busy carrying out experiments in chemistry. Today he will attempt to join three atoms into one molecule. A molecule consists of atoms, with some pairs of atoms connected by atomic bonds. Each atom has a valence number β€” the number of bonds the atom must form with other atoms. An atom can form one or multiple bonds with any other atom, but it cannot form a bond with itself. The number of bonds of an atom in the molecule must be equal to its valence number. Mike knows valence numbers of the three atoms. Find a molecule that can be built from these atoms according to the stated rules, or determine that it is impossible.
The single line of the input contains three space-separated integers *a*, *b* and *c* (1<=≀<=*a*,<=*b*,<=*c*<=≀<=106) β€” the valence numbers of the given atoms.
If such a molecule can be built, print three space-separated integers β€” the number of bonds between the 1-st and the 2-nd, the 2-nd and the 3-rd, the 3-rd and the 1-st atoms, correspondingly. If there are multiple solutions, output any of them. If there is no solution, print "Impossible" (without the quotes).
[ "1 1 2\n", "3 4 5\n", "4 1 1\n" ]
[ "0 1 1\n", "1 3 2\n", "Impossible\n" ]
The first sample corresponds to the first figure. There are no bonds between atoms 1 and 2 in this case. The second sample corresponds to the second figure. There is one or more bonds between each pair of atoms. The third sample corresponds to the third figure. There is no solution, because an atom cannot form bonds with itself. The configuration in the fourth figure is impossible as each atom must have at least one atomic bond.
[ { "input": "1 1 2", "output": "0 1 1" }, { "input": "3 4 5", "output": "1 3 2" }, { "input": "4 1 1", "output": "Impossible" }, { "input": "1 1 1", "output": "Impossible" }, { "input": "1000000 1000000 1000000", "output": "500000 500000 500000" }, { "input": "3 11 8", "output": "3 8 0" }, { "input": "8 5 12", "output": "Impossible" }, { "input": "1000000 500000 1", "output": "Impossible" }, { "input": "1000000 500000 2", "output": "Impossible" }, { "input": "2 2 2", "output": "1 1 1" }, { "input": "3 3 3", "output": "Impossible" }, { "input": "4 4 4", "output": "2 2 2" }, { "input": "2 4 2", "output": "2 2 0" }, { "input": "10 5 14", "output": "Impossible" }, { "input": "10 5 15", "output": "0 5 10" }, { "input": "10 4 16", "output": "Impossible" }, { "input": "3 3 6", "output": "0 3 3" }, { "input": "9 95 90", "output": "7 88 2" }, { "input": "3 5 8", "output": "0 5 3" }, { "input": "5 8 13", "output": "0 8 5" }, { "input": "6 1 5", "output": "1 0 5" }, { "input": "59 54 56", "output": "Impossible" }, { "input": "246 137 940", "output": "Impossible" }, { "input": "7357 3578 9123", "output": "906 2672 6451" }, { "input": "93952 49553 83405", "output": "30050 19503 63902" }, { "input": "688348 726472 442198", "output": "486311 240161 202037" }, { "input": "602752 645534 784262", "output": "232012 413522 370740" }, { "input": "741349 48244 642678", "output": "Impossible" }, { "input": "655754 418251 468390", "output": "Impossible" }, { "input": "310703 820961 326806", "output": "Impossible" }, { "input": "1 1 3", "output": "Impossible" }, { "input": "5 1 4", "output": "1 0 4" } ]
30
0
0
6,674
24
Berland collider
[ "binary search" ]
E. Berland collider
1
256
Recently the construction of Berland collider has been completed. Collider can be represented as a long narrow tunnel that contains *n* particles. We associate with collider 1-dimensional coordinate system, going from left to right. For each particle we know its coordinate and velocity at the moment of start of the collider. The velocities of the particles don't change after the launch of the collider. Berland scientists think that the big bang will happen at the first collision of particles, whose velocities differs in directions. Help them to determine how much time elapses after the launch of the collider before the big bang happens.
The first line contains single integer *n* (1<=≀<=*n*<=≀<=5Β·105) β€” amount of particles in the collider. Next *n* lines contain description of particles. Each particle is described by two integers *x**i*, *v**i* (<=-<=109<=≀<=*x**i*,<=*v**i*<=≀<=109,<=*v**i*<=β‰ <=0) β€” coordinate and velocity respectively. All the coordinates are distinct. The particles are listed in order of increasing of coordinates. All the coordinates are in meters, and all the velocities β€” in meters per second. The negative velocity means that after the start of collider the particle will move to the left, and the positive β€” that the particle will move to the right.
If there will be no big bang, output -1. Otherwise output one number β€” how much time in seconds elapses after the launch of the collider before the big bang happens. Your answer must have a relative or absolute error less than 10<=-<=9.
[ "3\n-5 9\n0 1\n5 -1\n", "6\n1 3\n2 3\n3 3\n4 -3\n5 -1\n6 -100\n" ]
[ "1.00000000000000000000\n", "0.02912621359223301065\n" ]
none
[ { "input": "3\n-5 9\n0 1\n5 -1", "output": "1.00000000000000000000" }, { "input": "6\n1 3\n2 3\n3 3\n4 -3\n5 -1\n6 -100", "output": "0.02912621359223301065" }, { "input": "2\n-1000000000 1\n1000000000 -1", "output": "1000000000.00000000000000000000" }, { "input": "2\n-1000000000 -1000000000\n1000000000 1000000000", "output": "-1.00000000000000000000" }, { "input": "2\n-156937950 -374833246\n958300153 463070159", "output": "-1.00000000000000000000" }, { "input": "3\n-881879811 207649703\n458744977 -751771616\n589655887 -175300397", "output": "1.39732645236331265437" }, { "input": "4\n-925572098 -981226339\n-79539996 -599059823\n221011621 -813670952\n769702162 -909895529", "output": "-1.00000000000000000000" }, { "input": "10\n-774675771 179630170\n-743176829 190325067\n-718170081 850285922\n-672683474 -389325596\n-612117485 -338760201\n-200797120 -278253406\n-134576842 748798831\n301079085 755005057\n945958360 -883545251\n955629379 -312997434", "output": "0.03669424359124097423" }, { "input": "20\n-993032259 588930376\n-992093161 915475807\n-916464883 -313099768\n-777812700 -790244010\n-559998666 152323291\n-552926767 745694067\n-489434665 332658987\n-310676193 687524020\n-238620668 88387668\n-183633372 294074811\n-89656750 233743240\n-39938323 194724339\n15621290 -244257473\n118853137 -823979220\n215181269 961240622\n224560970 967953108\n297709949 665893756\n314124971 127542046\n317622290 -269656857\n710505266 635433994", "output": "0.00880495634198667429" }, { "input": "1\n-772620876 2105125", "output": "-1.00000000000000000000" }, { "input": "10\n-904213434 999999991\n-800146111 999999990\n-64167773 999998990\n40786982 999997990\n57739924 999996990\n140713247 -999995990\n242293931 -999996990\n470153869 -999997990\n688427965 -999998990\n979253150 -999999990", "output": "0.04148680711869298654" }, { "input": "14\n-916171372 999999988\n-892307487 999999987\n-882212312 999999986\n-700694118 999998986\n-490374058 999997986\n-179890370 999996986\n-153268251 999995986\n-143722350 -999994986\n822181362 -999995986\n888153520 -999996986\n913366887 -999997986\n971641961 -999998986\n982052281 -999999986\n989641415 -999999987", "output": "0.00477297204519581270" }, { "input": "20\n-990544325 999999983\n-982730292 999999982\n-954108391 999999981\n-843979328 999999980\n-842201083 999998980\n-841368019 999997980\n-713774935 999996980\n-526274553 999995980\n-414200681 999994980\n-380902854 999993980\n-356598408 -999991980\n82002495 -999992980\n337411348 -999993980\n431155182 -999994980\n495442299 -999995980\n500857279 -999996980\n501941044 -999997980\n666074520 -999998980\n766795088 -999999980\n889713230 -999999981", "output": "0.01215230830920432936" }, { "input": "10\n-904213434 999999991\n-800146111 999999990\n-64167773 3\n40786982 2\n57739924 1\n140713247 -1\n242293931 -2\n470153869 -3\n688427965 -4\n979253150 -999999990", "output": "0.88969963939699647781" }, { "input": "20\n-977812598 999999995\n-859749238 999999994\n-795105479 999999993\n-755580921 999999992\n-703290711 999999991\n-684916878 999999990\n-671093572 999999989\n-598373289 999999988\n-430900427 999999987\n-409406663 999999986\n-186156927 999999985\n137241693 999999984\n174675082 999999983\n233164672 999999982\n263947075 999999981\n281714302 999999980\n501584746 -1\n638491974 -2\n654696707 -999999980\n795033851 -999999981", "output": "0.18649120622982412465" }, { "input": "10\n-957843473 999999990\n-892079437 3\n-660108218 2\n-38604909 1\n117904913 -1\n161630686 -2\n300782495 -3\n503931515 -4\n624182611 -5\n946997174 -999999990", "output": "0.95242033302420336938" }, { "input": "20\n-991228878 999999990\n-966272577 999999989\n-832645426 999999988\n-595404692 999999987\n-593256652 999999986\n-403204913 999999985\n-331750739 999999984\n-254714125 999999983\n-252716873 999999982\n-242309489 999999981\n-99999163 999999980\n53963197 1\n102558090 -1\n208915316 -2\n327993195 -999999980\n338364526 -999999981\n353909346 -999999982\n699191947 -999999983\n748932019 -999999984\n807201175 -999999985", "output": "0.20255725684858788549" }, { "input": "5\n-99999163 999999980\n53963197 1\n102558090 -1\n208915316 -2\n327993195 -999999980", "output": "0.20255725684858788549" }, { "input": "1\n-554798529 -923175217", "output": "-1.00000000000000000000" }, { "input": "1\n-780061535 64785965", "output": "-1.00000000000000000000" }, { "input": "2\n635254031 797637946\n855431510 75159864", "output": "-1.00000000000000000000" }, { "input": "2\n-912376737 -339403417\n389839726 -135372297", "output": "-1.00000000000000000000" }, { "input": "2\n-1000000000 1000000000\n1000000000 -1000000000", "output": "1.00000000000000000000" }, { "input": "2\n-1 1000000000\n1 -1000000000", "output": "0.00000000100000000002" }, { "input": "2\n-1 1\n1 -1", "output": "1.00000000000000000000" }, { "input": "2\n-1 1000000000\n0 -1000000000", "output": "0.00000000050000000003" }, { "input": "2\n-1000000000 7\n1000000000 -6", "output": "153846153.84615385532379150391" } ]
139
0
0
6,680
893
Beautiful Divisors
[ "brute force", "implementation" ]
null
null
Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of *k*<=+<=1 consecutive ones, and then *k* consecutive zeroes. Some examples of beautiful numbers: - 12 (110); - 1102 (610); - 11110002 (12010); - 1111100002 (49610). More formally, the number is beautiful iff there exists some positive integer *k* such that the number is equal to (2*k*<=-<=1)<=*<=(2*k*<=-<=1). Luba has got an integer number *n*, and she wants to find its greatest beautiful divisor. Help her to find it!
The only line of input contains one number *n* (1<=≀<=*n*<=≀<=105) β€” the number Luba has got.
Output one number β€” the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.
[ "3\n", "992\n" ]
[ "1\n", "496\n" ]
none
[ { "input": "3", "output": "1" }, { "input": "992", "output": "496" }, { "input": "81142", "output": "1" }, { "input": "76920", "output": "120" }, { "input": "2016", "output": "2016" }, { "input": "1", "output": "1" }, { "input": "6", "output": "6" }, { "input": "32640", "output": "32640" }, { "input": "12096", "output": "2016" }, { "input": "55948", "output": "1" }, { "input": "47262", "output": "6" }, { "input": "22876", "output": "28" }, { "input": "96120", "output": "120" }, { "input": "42160", "output": "496" }, { "input": "38304", "output": "2016" }, { "input": "89408", "output": "8128" }, { "input": "97920", "output": "32640" }, { "input": "55493", "output": "1" }, { "input": "38021", "output": "1" }, { "input": "21445", "output": "1" }, { "input": "100000", "output": "1" }, { "input": "497", "output": "1" }, { "input": "240", "output": "120" }, { "input": "21204", "output": "6" }, { "input": "65536", "output": "1" }, { "input": "364", "output": "28" }, { "input": "1024", "output": "1" }, { "input": "36", "output": "6" }, { "input": "28", "output": "28" }, { "input": "14400", "output": "120" }, { "input": "10080", "output": "2016" }, { "input": "9", "output": "1" }, { "input": "2", "output": "1" }, { "input": "42", "output": "6" }, { "input": "83160", "output": "120" }, { "input": "65534", "output": "1" }, { "input": "1026", "output": "6" }, { "input": "1025", "output": "1" }, { "input": "1027", "output": "1" }, { "input": "2018", "output": "1" }, { "input": "2020", "output": "1" }, { "input": "123", "output": "1" }, { "input": "150", "output": "6" }, { "input": "5", "output": "1" }, { "input": "66", "output": "6" }, { "input": "12768", "output": "28" }, { "input": "156", "output": "6" }, { "input": "99990", "output": "6" }, { "input": "248", "output": "1" } ]
77
0
3
6,709
538
Weird Chess
[ "brute force", "constructive algorithms", "implementation" ]
null
null
Igor has been into chess for a long time and now he is sick of the game by the ordinary rules. He is going to think of new rules of the game and become world famous. Igor's chessboard is a square of size *n*<=Γ—<=*n* cells. Igor decided that simple rules guarantee success, that's why his game will have only one type of pieces. Besides, all pieces in his game are of the same color. The possible moves of a piece are described by a set of shift vectors. The next passage contains a formal description of available moves. Let the rows of the board be numbered from top to bottom and the columns be numbered from left to right from 1 to *n*. Let's assign to each square a pair of integers (*x*,<=*y*)Β β€” the number of the corresponding column and row. Each of the possible moves of the piece is defined by a pair of integers (*dx*,<=*dy*); using this move, the piece moves from the field (*x*,<=*y*) to the field (*x*<=+<=*dx*,<=*y*<=+<=*dy*). You can perform the move if the cell (*x*<=+<=*dx*,<=*y*<=+<=*dy*) is within the boundaries of the board and doesn't contain another piece. Pieces that stand on the cells other than (*x*,<=*y*) and (*x*<=+<=*dx*,<=*y*<=+<=*dy*) are not important when considering the possibility of making the given move (for example, like when a knight moves in usual chess). Igor offers you to find out what moves his chess piece can make. He placed several pieces on the board and for each unoccupied square he told you whether it is attacked by any present piece (i.e. whether some of the pieces on the field can move to that cell). Restore a possible set of shift vectors of the piece, or else determine that Igor has made a mistake and such situation is impossible for any set of shift vectors.
The first line contains a single integer *n* (1<=≀<=*n*<=≀<=50). The next *n* lines contain *n* characters each describing the position offered by Igor. The *j*-th character of the *i*-th string can have the following values: - o β€” in this case the field (*i*,<=*j*) is occupied by a piece and the field may or may not be attacked by some other piece;- x β€” in this case field (*i*,<=*j*) is attacked by some piece;- . β€” in this case field (*i*,<=*j*) isn't attacked by any piece. It is guaranteed that there is at least one piece on the board.
If there is a valid set of moves, in the first line print a single word 'YES' (without the quotes). Next, print the description of the set of moves of a piece in the form of a (2*n*<=-<=1)<=Γ—<=(2*n*<=-<=1) board, the center of the board has a piece and symbols 'x' mark cells that are attacked by it, in a format similar to the input. See examples of the output for a full understanding of the format. If there are several possible answers, print any of them. If a valid set of moves does not exist, print a single word 'NO'.
[ "5\noxxxx\nx...x\nx...x\nx...x\nxxxxo\n", "6\n.x.x..\nx.x.x.\n.xo..x\nx..ox.\n.x.x.x\n..x.x.\n", "3\no.x\noxx\no.x\n" ]
[ "YES\n....x....\n....x....\n....x....\n....x....\nxxxxoxxxx\n....x....\n....x....\n....x....\n....x....\n", "YES\n...........\n...........\n...........\n....x.x....\n...x...x...\n.....o.....\n...x...x...\n....x.x....\n...........\n...........\n...........\n", "NO\n" ]
In the first sample test the piece is a usual chess rook, and in the second sample test the piece is a usual chess knight.
[ { "input": "5\noxxxx\nx...x\nx...x\nx...x\nxxxxo", "output": "YES\nxxxxxxxxx\nx...xxxxx\nx...xxxxx\nx...xxxxx\nxxxxoxxxx\nxxxxx...x\nxxxxx...x\nxxxxx...x\nxxxxxxxxx" }, { "input": "6\n.x.x..\nx.x.x.\n.xo..x\nx..ox.\n.x.x.x\n..x.x.", "output": "YES\nxxxxxxxxxxx\nxxxxxxxxxxx\nxx.x.x..xxx\nxxx.x.x..xx\nxx.x...x.xx\nxxx..o..xxx\nxx.x...x.xx\nxx..x.x.xxx\nxxx..x.x.xx\nxxxxxxxxxxx\nxxxxxxxxxxx" }, { "input": "3\no.x\noxx\no.x", "output": "NO" }, { "input": "1\no", "output": "YES\no" }, { "input": "2\nox\n.o", "output": "YES\nxxx\n.ox\nx.x" }, { "input": "5\n.xxo.\n..oxo\nx.oxo\no..xo\noooox", "output": "NO" }, { "input": "8\n..x.xxx.\nx.x.xxxx\nxxxxxxox\nxxoxxxxx\n.xxxx.x.\nx.xxx.x.\n..x..xx.\n.xx...x.", "output": "YES\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxx..x.xxx.xx\nx..x.x.x.xxxxxx\nxx.x.xxxxxxxxxx\nxxxxxxxoxxxxxxx\nxxxxx.xxxx.x.xx\nx.xxxx.x.x.x.xx\nxx.xx..x..xx.xx\nx..x..xx...x.xx\nx.xx...x.xxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\noxxxxxxx\nxoxxxoxx\nxx...x..\nxx...x..\nxx...x..\nxx...x..\noxxxxxxx\nxx...x..", "output": "YES\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxxx...x..\nxxxxxxxoxxxxxxx\nxxxx...x.......\nxxxx...x.......\nxxxx...x.......\nxxxx...x.......\nxxxxxxxxx...x..\nxxxx...x...x..x\nxxxxxxxxx...x.." }, { "input": "8\nx.......\n.x.....x\nx.x...x.\nxx.x.x..\nxxx.x..x\n.xxx.xxx\n..oxxxx.\n.x.xoo.o", "output": "YES\nx..........xxxx\n.x...........xx\nx.x.........xxx\nxx.x.......x.xx\nxxx.x.....x..xx\n.x...x...x..xxx\n......x.x..xxxx\n.x.....o..xx.xx\nxxxxx.x.xxx.xxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\n........\n........\n........\n..xxxx..\n.xx..xx.\n..xoox..\noxx..xx.\n..xxox..", "output": "YES\nxxx........xxxx\nxxx............\nxxx............\nxxx............\nxxx.........x..\nxxx...x.x...xx.\nxxx..x...x..x..\nxxx...xox...xx.\nxxxxxx...x..x..\nxxx...xxx...xxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx\nxxxxxxxxxxxxxxx" }, { "input": "8\n....o...\n..o.x...\n..x..o..\n.....oo.\n.....xx.\n........\n.o...o..\n.x...x.o", "output": "YES\n....x...xxxxxxx\n..........x...x\n..........x...x\n...........x..x\n...........xx.x\n...........xx.x\n..............x\n.......o......x\nx......x.....xx\nx..........x.xx\nx..........x.xx\nx............xx\nxx...........xx\nxxx.x.......xxx\nxxx.x...x.xxxxx" }, { "input": "8\n.o....o.\n.....x..\n.....o..\n..x.....\n..o...x.\n...x..o.\n...oxx..\n....oo..", "output": "YES\nxx.........xxxx\nxx..........xxx\nx...........xxx\nx............xx\nx............xx\nx............xx\nx......x.....xx\nx......o......x\nx.............x\nx.............x\nx.............x\nx...........x.x\nx...........x.x\nx...xx...xxx..x\nx....x....xx..x" }, { "input": "10\n...o.xxx.x\n..ooxxxxxx\n.x..x.x...\nx.xxx..ox.\nxx.xoo.xxx\n.......xxx\n.x.x.xx...\nxo..xo..xx\n....x....o\n.ox.xxx..x", "output": "YES\nxxxxxxxx...x.xxx.xx\n...x.xxx..xxxxxxxxx\n..xx...x......x...x\n.x....x...xxx..xx.x\nx.xx..............x\nxx.x...........xx.x\n.......x.x.x.x....x\n.x..............xxx\nxx................x\n....x....o..xx...xx\n.xx..............xx\nxx........x......xx\nxx.x.x........x.xxx\nxxxx..........xxxxx\nxx...............xx\nxx.xx..x...x....xxx\nxxxxxx..........xxx\nxxxxxx..........xxx\nxxxxxx.xx.xxx..xxxx" }, { "input": "13\n.............\n.....o.......\n......o......\n.............\n...o........o\no............\n.............\n..o..........\n..........ooo\n.............\n..o...o.....o\n.............\n.o........o..", "output": "YES\nxx......................x\nxx.....x........x.......x\n........................x\n........................x\n.......................xx\n........................x\n........................x\n.........................\n.........................\n.........................\n.........................\n........................x\n............o............\n.........................\n.........................\n......................xxx\n.........................\n........................x\n..x...................." }, { "input": "20\nxxxxxx.xxxxxxxxxxxxx\n.xx.x.x.xx.xxxxxxxxx\nxxxxxx.xx.xx.xxx.xxx\nxx.xxxoxxx..xxxxxxxx\nxoxx.x..xx.xx.xo.xox\n.xxxxxxxxx.xxxxxxxxx\no.xxxxxoxxx..xx.oxox\nxxx.xxxx....xxx.xx.x\nxxxxxxo.xoxxoxxxxxxx\n.x..xx.xxxx...xx..xx\nxxxxxxxxxxxx..xxxxxx\nxxx.x.xxxxxxxx..xxxx\nxxxxxxx.xxoxxxx.xxx.\nx.x.xx.xxx.xxxxxxxx.\no.xxxx.xx.oxxxxx..xx\nx.oxxxxxx.x.xx.xx.x.\n.xoxx.xxxx..xx...x.x\nxxxx.x.xxxxxoxxxoxxx\noxx.xxxxx.xxxxxxxxx.\nxxxxxxoxxxxxx.xxxxxx", "output": "NO" }, { "input": "20\n.xooxo.oxx.xo..xxox.\nox.oo.xoox.xxo.xx.x.\noo..o.o.xoo.oox....o\nooo.ooxox.ooxox..oox\n.o.xx.x.ox.xo.xxoox.\nxooo.oo.xox.o.o.xxxo\noxxoox...oo.oox.xo.x\no.oxoxxx.oo.xooo..o.\no..xoxox.xo.xoooxo.x\n.oxoxxoo..o.xxoxxo..\nooxxooooox.o.x.x.ox.\noxxxx.oooooox.oxxxo.\nxoo...xoxoo.xx.x.oo.\noo..xxxox.xo.xxoxoox\nxxxoo..oo...ox.xo.o.\no..ooxoxo..xoo.xxxxo\no....oo..x.ox..oo.xo\n.x.xox.xo.o.oo.oxo.o\nooxoxoxxxox.x..xx.x.\n.xooxx..xo.xxoo.oo..", "output": "NO" } ]
31
4,608,000
0
6,719
226
Naughty Stone Piles
[ "greedy" ]
null
null
There are *n* piles of stones of sizes *a*1,<=*a*2,<=...,<=*a**n* lying on the table in front of you. During one move you can take one pile and add it to the other. As you add pile *i* to pile *j*, the size of pile *j* increases by the current size of pile *i*, and pile *i* stops existing. The cost of the adding operation equals the size of the added pile. Your task is to determine the minimum cost at which you can gather all stones in one pile. To add some challenge, the stone piles built up conspiracy and decided that each pile will let you add to it not more than *k* times (after that it can only be added to another pile). Moreover, the piles decided to puzzle you completely and told you *q* variants (not necessarily distinct) of what *k* might equal. Your task is to find the minimum cost for each of *q* variants.
The first line contains integer *n* (1<=≀<=*n*<=≀<=105) β€” the number of stone piles. The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≀<=*a**i*<=≀<=109) β€” the initial sizes of the stone piles. The third line contains integer *q* (1<=≀<=*q*<=≀<=105) β€” the number of queries. The last line contains *q* space-separated integers *k*1,<=*k*2,<=...,<=*k**q* (1<=≀<=*k**i*<=≀<=105) β€” the values of number *k* for distinct queries. Note that numbers *k**i* can repeat.
Print *q* whitespace-separated integers β€” the answers to the queries in the order, in which the queries are given in the input. Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "5\n2 3 4 1 1\n2\n2 3\n" ]
[ "9 8 " ]
In the first sample one way to get the optimal answer goes like this: we add in turns the 4-th and the 5-th piles to the 2-nd one; then we add the 1-st pile to the 3-rd one; we add the 2-nd pile to the 3-rd one. The first two operations cost 1 each; the third one costs 2, the fourth one costs 5 (the size of the 2-nd pile after the first two operations is not 3, it already is 5). In the second sample you can add the 2-nd pile to the 3-rd one (the operations costs 3); then the 1-st one to the 3-th one (the cost is 2); then the 5-th one to the 4-th one (the costs is 1); and at last, the 4-th one to the 3-rd one (the cost is 2).
[ { "input": "5\n2 3 4 1 1\n2\n2 3", "output": "9 8 " }, { "input": "2\n2 9\n5\n4 10 7 3 4", "output": "2 2 2 2 2 " }, { "input": "1\n7\n4\n6 2 3 3", "output": "0 0 0 0 " }, { "input": "2\n7 10\n2\n2 4", "output": "7 7 " }, { "input": "1\n10\n5\n5 3 7 7 1", "output": "0 0 0 0 0 " }, { "input": "1\n2\n5\n7 3 9 8 1", "output": "0 0 0 0 0 " }, { "input": "4\n8 10 4 4\n3\n7 8 1", "output": "16 16 28 " }, { "input": "2\n7 9\n1\n9", "output": "7 " }, { "input": "3\n4 5 4\n2\n10 2", "output": "8 8 " }, { "input": "3\n1 6 8\n1\n6", "output": "7 " }, { "input": "2\n9 3\n1\n6", "output": "3 " }, { "input": "5\n9 5 7 3 3\n1\n3", "output": "21 " }, { "input": "2\n7 4\n1\n7", "output": "4 " }, { "input": "4\n7 4 1 7\n3\n6 8 3", "output": "12 12 12 " }, { "input": "3\n3 7 3\n1\n5", "output": "6 " }, { "input": "1\n3\n1\n2", "output": "0 " }, { "input": "1\n1\n3\n2 1 10", "output": "0 0 0 " } ]
93
0
-1
6,724
522
Closest Equals
[ "*special", "data structures" ]
null
null
You are given sequence *a*1,<=*a*2,<=...,<=*a**n* and *m* queries *l**j*,<=*r**j* (1<=≀<=*l**j*<=≀<=*r**j*<=≀<=*n*). For each query you need to print the minimum distance between such pair of elements *a**x* and *a**y* (*x*<=β‰ <=*y*), that: - both indexes of the elements lie within range [*l**j*,<=*r**j*], that is, *l**j*<=≀<=*x*,<=*y*<=≀<=*r**j*; - the values of the elements are equal, that is *a**x*<==<=*a**y*. The text above understands distance as |*x*<=-<=*y*|.
The first line of the input contains a pair of integers *n*, *m* (1<=≀<=*n*,<=*m*<=≀<=5Β·105) β€” the length of the sequence and the number of queries, correspondingly. The second line contains the sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=109<=≀<=*a**i*<=≀<=109). Next *m* lines contain the queries, one per line. Each query is given by a pair of numbers *l**j*,<=*r**j* (1<=≀<=*l**j*<=≀<=*r**j*<=≀<=*n*) β€” the indexes of the query range limits.
Print *m* integers β€” the answers to each query. If there is no valid match for some query, please print -1 as an answer to this query.
[ "5 3\n1 1 2 3 2\n1 5\n2 4\n3 5\n", "6 5\n1 2 1 3 2 3\n4 6\n1 3\n2 5\n2 4\n1 6\n" ]
[ "1\n-1\n2\n", "2\n2\n3\n-1\n2\n" ]
none
[ { "input": "5 3\n1 1 2 3 2\n1 5\n2 4\n3 5", "output": "1\n-1\n2" }, { "input": "6 5\n1 2 1 3 2 3\n4 6\n1 3\n2 5\n2 4\n1 6", "output": "2\n2\n3\n-1\n2" }, { "input": "10 6\n2 2 1 5 6 4 9 8 5 4\n1 2\n1 10\n2 10\n2 9\n5 5\n2 8", "output": "1\n1\n4\n5\n-1\n-1" }, { "input": "1 1\n1\n1 1", "output": "-1" }, { "input": "1 3\n1\n1 1\n1 1\n1 1", "output": "-1\n-1\n-1" }, { "input": "2 1\n1 1\n1 2", "output": "1" }, { "input": "2 1\n1 1\n1 1", "output": "-1" }, { "input": "2 5\n1 1\n1 1\n1 2\n2 2\n1 2\n1 1", "output": "-1\n1\n-1\n1\n-1" }, { "input": "2 4\n1 2\n1 1\n1 2\n2 2\n1 2", "output": "-1\n-1\n-1\n-1" } ]
3,000
6,553,600
0
6,747
547
Mike and Feet
[ "binary search", "data structures", "dp", "dsu" ]
null
null
Mike is the president of country What-The-Fatherland. There are *n* bears living in this country besides Mike. All of them are standing in a line and they are numbered from 1 to *n* from left to right. *i*-th bear is exactly *a**i* feet high. A group of bears is a non-empty contiguous segment of the line. The size of a group is the number of bears in that group. The strength of a group is the minimum height of the bear in that group. Mike is a curious to know for each *x* such that 1<=≀<=*x*<=≀<=*n* the maximum strength among all groups of size *x*.
The first line of input contains integer *n* (1<=≀<=*n*<=≀<=2<=Γ—<=105), the number of bears. The second line contains *n* integers separated by space, *a*1,<=*a*2,<=...,<=*a**n* (1<=≀<=*a**i*<=≀<=109), heights of bears.
Print *n* integers in one line. For each *x* from 1 to *n*, print the maximum strength among all groups of size *x*.
[ "10\n1 2 3 4 5 4 3 2 1 6\n" ]
[ "6 4 4 3 3 2 2 1 1 1 \n" ]
none
[ { "input": "10\n1 2 3 4 5 4 3 2 1 6", "output": "6 4 4 3 3 2 2 1 1 1 " }, { "input": "3\n524125987 923264237 374288891", "output": "923264237 524125987 374288891 " }, { "input": "5\n585325539 365329221 412106895 291882089 564718673", "output": "585325539 365329221 365329221 291882089 291882089 " }, { "input": "20\n452405440 586588704 509061481 552472140 16115810 148658854 66743034 628305150 677780684 519361360 208050516 401554301 954478790 346543678 387546138 832279893 641889899 80960260 717802881 588066499", "output": "954478790 641889899 519361360 452405440 346543678 346543678 208050516 208050516 208050516 208050516 80960260 80960260 80960260 66743034 66743034 16115810 16115810 16115810 16115810 16115810 " }, { "input": "1\n1376", "output": "1376 " }, { "input": "2\n10 10", "output": "10 10 " }, { "input": "2\n10 9", "output": "10 9 " }, { "input": "3\n1 2 3", "output": "3 2 1 " }, { "input": "3\n1 3 2", "output": "3 2 1 " }, { "input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754", "output": "983359971 640274071 598196518 598196518 96204862 71550121 71550121 71550121 71550121 71550121 " }, { "input": "19\n519879446 764655030 680293934 914539062 744988123 317088317 653721289 239862203 605157354 943428394 261437390 821695238 312192823 432992892 547139308 408916833 829654733 223751525 672158759", "output": "943428394 744988123 680293934 680293934 519879446 317088317 317088317 261437390 261437390 239862203 239862203 239862203 239862203 239862203 239862203 239862203 239862203 223751525 223751525 " } ]
841
22,323,200
3
6,761
1,009
Annoying Present
[ "greedy", "math" ]
null
null
Alice got an array of length $n$ as a birthday present once again! This is the third year in a row! And what is more disappointing, it is overwhelmengly boring, filled entirely with zeros. Bob decided to apply some changes to the array to cheer up Alice. Bob has chosen $m$ changes of the following form. For some integer numbers $x$ and $d$, he chooses an arbitrary position $i$ ($1 \le i \le n$) and for every $j \in [1, n]$ adds $x + d \cdot dist(i, j)$ to the value of the $j$-th cell. $dist(i, j)$ is the distance between positions $i$ and $j$ (i.e. $dist(i, j) = |i - j|$, where $|x|$ is an absolute value of $x$). For example, if Alice currently has an array $[2, 1, 2, 2]$ and Bob chooses position $3$ for $x = -1$ and $d = 2$ then the array will become $[2 - 1 + 2 \cdot 2,~1 - 1 + 2 \cdot 1,~2 - 1 + 2 \cdot 0,~2 - 1 + 2 \cdot 1]$ = $[5, 2, 1, 3]$. Note that Bob can't choose position $i$ outside of the array (that is, smaller than $1$ or greater than $n$). Alice will be the happiest when the elements of the array are as big as possible. Bob claimed that the arithmetic mean value of the elements will work fine as a metric. What is the maximum arithmetic mean value Bob can achieve?
The first line contains two integers $n$ and $m$ ($1 \le n, m \le 10^5$) β€” the number of elements of the array and the number of changes. Each of the next $m$ lines contains two integers $x_i$ and $d_i$ ($-10^3 \le x_i, d_i \le 10^3$) β€” the parameters for the $i$-th change.
Print the maximal average arithmetic mean of the elements Bob can achieve. Your answer is considered correct if its absolute or relative error doesn't exceed $10^{-6}$.
[ "2 3\n-1 3\n0 0\n-1 -4\n", "3 2\n0 2\n5 0\n" ]
[ "-2.500000000000000\n", "7.000000000000000\n" ]
none
[ { "input": "2 3\n-1 3\n0 0\n-1 -4", "output": "-2.500000000000000" }, { "input": "3 2\n0 2\n5 0", "output": "7.000000000000000" }, { "input": "8 8\n-21 -60\n-96 -10\n-4 -19\n-27 -4\n57 -15\n-95 62\n-42 1\n-17 64", "output": "-16.500000000000000" }, { "input": "1 1\n0 0", "output": "0.000000000000000" }, { "input": "100000 1\n1000 1000", "output": "50000500.000000000000000" }, { "input": "11 1\n0 -10", "output": "-27.272727272727273" }, { "input": "3 1\n1 -1", "output": "0.333333333333333" }, { "input": "1 2\n-1 -1\n-2 -2", "output": "-3.000000000000000" }, { "input": "1 2\n0 -1\n0 1", "output": "0.000000000000000" }, { "input": "1 1\n1 -2", "output": "1.000000000000000" }, { "input": "3 1\n2 -1", "output": "1.333333333333333" }, { "input": "3 1\n0 -1", "output": "-0.666666666666667" }, { "input": "1 1\n-1000 -1000", "output": "-1000.000000000000000" }, { "input": "1 1\n0 -5", "output": "0.000000000000000" }, { "input": "15 3\n2 0\n2 -5\n-2 5", "output": "18.333333333333332" }, { "input": "9 1\n0 -5", "output": "-11.111111111111111" }, { "input": "7 1\n0 -1", "output": "-1.714285714285714" }, { "input": "3 1\n-2 -2", "output": "-3.333333333333333" }, { "input": "3 1\n5 -5", "output": "1.666666666666667" }, { "input": "1 1\n-1 -1", "output": "-1.000000000000000" }, { "input": "7 1\n-1 -5", "output": "-9.571428571428571" }, { "input": "3 2\n-2 -2\n-2 -2", "output": "-6.666666666666667" }, { "input": "5 1\n0 -4", "output": "-4.800000000000000" }, { "input": "5 1\n-1 -5", "output": "-7.000000000000000" }, { "input": "5 1\n0 -2", "output": "-2.400000000000000" }, { "input": "3 5\n1 -1000\n1 -1000\n1 -1000\n1 -1000\n1 -1000", "output": "-3328.333333333333485" }, { "input": "1 1\n0 -1", "output": "0.000000000000000" }, { "input": "1 2\n0 -3\n0 -3", "output": "0.000000000000000" }, { "input": "7 1\n2 -3", "output": "-3.142857142857143" }, { "input": "3 2\n-1 -1\n-1 -1", "output": "-3.333333333333333" }, { "input": "5 1\n-1 -162", "output": "-195.400000000000006" }, { "input": "5 10\n-506 -243\n727 -141\n-548 -306\n740 880\n-744 -116\n-84 182\n-859 -108\n64 86\n135 446\n69 -184", "output": "864.399999999999977" }, { "input": "5 1\n0 -1", "output": "-1.200000000000000" }, { "input": "5 12\n634 895\n143 730\n901 245\n386 486\n395 -111\n-469 -104\n-681 -623\n-900 843\n889 -883\n476 -304\n777 986\n206 -491", "output": "8107.800000000000182" }, { "input": "3 3\n4 2\n5 0\n6 -1", "output": "16.333333333333332" }, { "input": "1 3\n4 2\n5 0\n6 -1", "output": "15.000000000000000" }, { "input": "85 10\n-223 435\n-771 455\n72 -940\n490 -178\n400 -117\n169 -527\n836 610\n849 944\n572 -237\n-428 -428", "output": "53047.388235294114565" }, { "input": "69 10\n-8 4\n-3 3\n7 5\n5 -9\n8 1\n7 -5\n-8 -8\n9 3\n1 1\n0 6", "output": "420.579710144927560" }, { "input": "1 10\n1 1\n1 0\n1 0\n1 0\n-1 0\n0 1\n1 0\n0 0\n2 1\n9 2", "output": "15.000000000000000" }, { "input": "5 4\n0 1\n0 2\n0 3\n0 -9", "output": "1.200000000000000" } ]
452
0
0
6,766
10
Cinema Cashier
[ "dp", "implementation" ]
B. Cinema Cashier
1
256
All cinema halls in Berland are rectangles with *K* rows of *K* seats each, and *K* is an odd number. Rows and seats are numbered from 1 to *K*. For safety reasons people, who come to the box office to buy tickets, are not allowed to choose seats themselves. Formerly the choice was made by a cashier, but now this is the responsibility of a special seating program. It was found out that the large majority of Berland's inhabitants go to the cinema in order to watch a movie, that's why they want to sit as close to the hall center as possible. Moreover, a company of *M* people, who come to watch a movie, want necessarily to occupy *M* successive seats in one row. Let's formulate the algorithm, according to which the program chooses seats and sells tickets. As the request for *M* seats comes, the program should determine the row number *x* and the segment [*y**l*,<=*y**r*] of the seats numbers in this row, where *y**r*<=-<=*y**l*<=+<=1<==<=*M*. From all such possible variants as a final result the program should choose the one with the minimum function value of total seats remoteness from the center. Say, β€” the row and the seat numbers of the most "central" seat. Then the function value of seats remoteness from the hall center is . If the amount of minimum function values is more than one, the program should choose the one that is closer to the screen (i.e. the row number *x* is lower). If the variants are still multiple, it should choose the one with the minimum *y**l*. If you did not get yet, your task is to simulate the work of this program.
The first line contains two integers *N* and *K* (1<=≀<=*N*<=≀<=1000,<=1<=≀<=*K*<=≀<=99) β€” the amount of requests and the hall size respectively. The second line contains *N* space-separated integers *M**i* from the range [1,<=*K*] β€” requests to the program.
Output *N* lines. In the *i*-th line output Β«-1Β» (without quotes), if it is impossible to find *M**i* successive seats in one row, otherwise output three numbers *x*,<=*y**l*,<=*y**r*. Separate the numbers with a space.
[ "2 1\n1 1\n", "4 3\n1 2 3 1\n" ]
[ "1 1 1\n-1\n", "2 2 2\n1 1 2\n3 1 3\n2 1 1\n" ]
none
[ { "input": "2 1\n1 1", "output": "1 1 1\n-1" }, { "input": "4 3\n1 2 3 1", "output": "2 2 2\n1 1 2\n3 1 3\n2 1 1" }, { "input": "1 3\n1", "output": "2 2 2" }, { "input": "2 3\n3 3", "output": "2 1 3\n1 1 3" }, { "input": "3 3\n3 2 3", "output": "2 1 3\n1 1 2\n3 1 3" }, { "input": "1 5\n5", "output": "3 1 5" }, { "input": "2 5\n3 4", "output": "3 2 4\n2 1 4" }, { "input": "3 5\n2 5 2", "output": "3 2 3\n2 1 5\n3 4 5" }, { "input": "4 5\n5 5 3 5", "output": "3 1 5\n2 1 5\n4 2 4\n1 1 5" }, { "input": "5 5\n4 1 3 1 1", "output": "3 1 4\n2 3 3\n4 2 4\n1 3 3\n2 2 2" }, { "input": "10 11\n3 11 6 4 4 11 9 2 1 9", "output": "6 5 7\n5 1 11\n7 3 8\n4 4 7\n8 4 7\n3 1 11\n9 2 10\n6 3 4\n6 8 8\n2 2 10" }, { "input": "10 13\n12 8 7 11 11 9 2 12 10 1", "output": "7 1 12\n6 3 10\n8 4 10\n5 2 12\n9 2 12\n4 3 11\n10 6 7\n3 1 12\n11 2 11\n10 8 8" }, { "input": "10 15\n15 6 1 9 3 10 11 1 14 10", "output": "8 1 15\n7 5 10\n9 8 8\n6 4 12\n10 7 9\n5 3 12\n11 3 13\n9 7 7\n4 1 14\n12 3 12" }, { "input": "10 17\n5 8 13 5 11 12 10 17 16 7", "output": "9 7 11\n8 5 12\n10 3 15\n7 7 11\n11 4 14\n6 3 14\n12 4 13\n5 1 17\n13 1 16\n4 6 12" }, { "input": "10 19\n8 19 17 12 4 5 9 16 7 3", "output": "10 6 13\n9 1 19\n11 2 18\n8 4 15\n12 8 11\n7 8 12\n13 6 14\n6 2 17\n14 7 13\n10 14 16" }, { "input": "50 21\n8 17 19 1 14 17 16 19 6 2 8 5 20 17 6 17 20 4 16 15 16 17 4 3 17 20 17 8 13 10 21 21 6 13 6 13 10 5 12 7 21 21 21 2 12 16 13 5 5 9", "output": "11 7 14\n10 3 19\n12 2 20\n9 11 11\n13 4 17\n8 3 19\n14 3 18\n7 2 20\n9 5 10\n9 12 13\n15 7 14\n11 15 19\n6 1 20\n16 3 19\n5 8 13\n17 3 19\n4 1 20\n9 14 17\n18 3 18\n3 4 18\n19 3 18\n2 3 19\n11 3 6\n15 15 17\n20 3 19\n1 1 20\n21 3 19\n5 14 21\n-1\n-1\n-1\n-1\n15 1 6\n-1\n5 2 7\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n9 3 4\n-1\n-1\n-1\n-1\n-1\n-1" }, { "input": "50 23\n11 20 3 5 5 14 20 18 18 22 9 17 6 13 1 23 21 3 2 3 11 4 16 20 14 22 6 6 19 21 13 10 8 10 21 9 10 9 21 23 6 21 21 17 1 23 15 10 13 20", "output": "12 7 17\n11 2 21\n13 11 13\n10 10 14\n14 10 14\n9 5 18\n15 2 21\n8 3 20\n16 3 20\n7 1 22\n13 2 10\n17 4 20\n13 14 19\n6 6 18\n10 9 9\n18 1 23\n5 2 22\n10 15 17\n14 8 9\n14 15 17\n19 7 17\n10 5 8\n4 4 19\n20 2 21\n3 5 18\n21 1 22\n12 1 6\n12 18 23\n2 3 21\n22 2 22\n1 6 18\n23 7 16\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n14 2 7\n-1\n-1\n-1\n10 18 18\n-1\n-1\n-1\n-1\n-1" }, { "input": "50 25\n19 18 3 12 15 2 22 14 4 4 6 15 16 1 23 1 21 12 13 9 22 5 17 6 8 24 12 2 13 13 22 6 4 7 23 20 8 3 5 6 9 3 1 17 22 7 23 25 23 13", "output": "13 4 22\n12 4 21\n14 12 14\n11 7 18\n15 6 20\n10 12 13\n16 2 23\n9 6 19\n14 8 11\n14 15 18\n17 10 15\n8 6 20\n18 5 20\n10 14 14\n7 2 24\n10 11 11\n19 3 23\n6 7 18\n20 7 19\n10 15 23\n5 2 23\n10 6 10\n21 5 21\n14 2 7\n17 16 23\n4 1 24\n22 7 18\n14 19 20\n3 7 19\n23 7 19\n2 2 23\n11 19 24\n17 6 9\n24 10 16\n1 2 24\n25 3 22\n24 2 9\n11 4 6\n14 21 25\n9 20 25\n24 17 25\n12 22 24\n13 3 3\n-1\n-1\n6 19 25\n-1\n-1\n-1\n-1" }, { "input": "50 27\n12 23 16 12 9 24 3 15 13 23 1 16 17 8 19 17 14 6 22 12 11 16 6 13 15 13 14 19 7 4 23 10 8 4 26 12 8 21 14 6 4 6 12 7 18 2 13 17 24 3", "output": "14 8 19\n13 3 25\n15 6 21\n12 8 19\n16 10 18\n11 2 25\n17 13 15\n10 7 21\n18 8 20\n9 3 25\n17 12 12\n19 6 21\n8 6 22\n20 10 17\n7 5 23\n21 6 22\n6 7 20\n17 16 21\n22 3 24\n5 8 19\n17 1 11\n23 6 21\n14 20 25\n4 8 20\n24 7 21\n3 8 20\n25 7 20\n2 5 23\n14 1 7\n16 6 9\n26 3 25\n20 18 27\n16 19 26\n12 20 23\n1 1 26\n27 8 19\n20 2 9\n-1\n-1\n12 2 7\n15 22 25\n17 22 27\n-1\n18 1 7\n-1\n15 4 5\n-1\n-1\n-1\n16 3 5" }, { "input": "80 29\n19 15 15 27 2 25 2 5 29 11 6 4 20 11 27 16 6 6 10 2 5 12 8 23 11 7 11 13 19 29 8 4 9 13 14 22 16 29 7 12 17 5 17 14 6 15 8 25 11 16 14 4 3 7 25 2 5 2 12 12 22 18 14 16 5 19 25 4 21 24 7 11 21 27 10 16 21 17 19 13", "output": "15 6 24\n14 8 22\n16 8 22\n13 2 28\n17 14 15\n12 3 27\n17 16 17\n18 13 17\n11 1 29\n19 10 20\n10 12 17\n17 10 13\n20 5 24\n9 10 20\n21 2 28\n8 7 22\n17 18 23\n18 7 12\n22 10 19\n18 18 19\n7 13 17\n23 9 20\n6 11 18\n24 4 26\n5 10 20\n10 18 24\n25 10 20\n4 9 21\n26 6 24\n3 1 29\n17 2 9\n18 20 23\n10 3 11\n27 9 21\n2 8 21\n28 4 25\n1 7 22\n29 1 29\n14 1 7\n7 1 12\n-1\n14 23 27\n-1\n-1\n16 2 7\n-1\n19 2 9\n-1\n7 18 28\n-1\n-1\n16 23 26\n15 3 5\n19 21 27\n-1\n15 25 26\n17 24 28\n9 8 9\n-1\n-1\n-1\n-1\n-1\n-1\n9..." }, { "input": "100 51\n49 27 24 32 36 5 25 25 11 42 32 38 17 30 10 49 23 32 12 42 19 44 5 22 30 21 19 18 36 13 48 46 43 21 13 18 41 13 42 3 27 41 21 41 7 26 51 23 14 13 43 6 5 6 32 44 19 5 44 36 29 48 24 22 45 12 24 48 9 7 7 14 29 26 11 30 23 14 37 13 25 28 28 38 22 41 43 46 26 38 44 48 32 49 32 25 50 33 24 4", "output": "26 2 50\n25 13 39\n27 14 37\n24 10 41\n28 8 43\n23 24 28\n29 14 38\n22 14 38\n30 21 31\n21 5 46\n31 10 41\n20 7 44\n32 18 34\n19 11 40\n33 21 30\n18 2 50\n34 15 37\n17 10 41\n23 12 23\n35 5 46\n16 17 35\n36 4 47\n23 29 33\n15 15 36\n37 11 40\n14 16 36\n38 17 35\n13 17 34\n39 8 43\n30 8 20\n12 2 49\n40 3 48\n11 5 47\n41 16 36\n30 32 44\n23 34 51\n10 6 46\n33 31 43\n42 5 46\n27 38 40\n9 13 39\n43 6 46\n8 16 36\n44 6 46\n33 14 20\n7 13 38\n45 1 51\n6 15 37\n32 4 17\n27 1 13\n46 5 47\n25 7 12\n25 40 44\n32 35 ..." }, { "input": "100 53\n43 8 14 35 48 10 4 2 38 50 7 25 20 19 33 31 49 51 14 6 34 31 44 40 30 51 41 44 42 33 33 24 33 53 12 20 25 47 16 2 26 5 45 40 21 17 38 37 2 48 16 45 13 11 5 33 38 19 6 2 37 8 45 39 33 15 5 22 14 36 11 23 28 5 46 5 46 35 32 25 26 36 22 42 15 38 41 45 27 53 51 12 16 12 22 10 1 8 20 29", "output": "27 6 48\n26 23 30\n28 20 33\n25 10 44\n29 3 50\n24 22 31\n30 25 28\n23 26 27\n31 8 45\n22 2 51\n32 24 30\n21 15 39\n33 17 36\n20 18 36\n34 11 43\n19 12 42\n35 3 51\n18 2 52\n23 28 41\n26 31 36\n36 10 43\n17 12 42\n37 5 48\n16 7 46\n38 12 41\n15 2 52\n39 7 47\n14 5 48\n40 6 47\n13 11 43\n41 11 43\n30 29 52\n12 11 43\n42 1 53\n23 14 25\n26 3 22\n11 15 39\n43 4 50\n30 9 24\n24 32 33\n10 14 39\n28 34 38\n44 5 49\n9 7 46\n24 1 21\n28 3 19\n45 8 45\n8 9 45\n32 22 23\n46 3 50\n32 31 46\n7 5 49\n24 34 46\n26 37 47..." }, { "input": "100 55\n9 2 36 28 47 12 54 2 18 34 15 25 19 19 22 27 55 13 41 8 31 31 55 26 49 26 44 15 30 18 3 47 40 16 41 1 5 32 49 51 15 29 43 54 24 30 51 52 34 33 31 51 13 3 12 13 30 21 3 25 39 43 25 25 15 44 26 40 14 40 32 7 39 16 45 26 44 5 35 41 17 14 32 44 30 41 5 35 16 43 25 7 19 1 39 20 5 39 15 16", "output": "28 24 32\n27 27 28\n29 10 45\n26 14 41\n30 5 51\n25 22 33\n31 1 54\n27 29 30\n24 19 36\n32 11 44\n23 21 35\n33 16 40\n22 19 37\n34 19 37\n21 17 38\n35 15 41\n20 1 55\n27 14 26\n36 8 48\n27 31 38\n19 13 43\n37 13 43\n18 1 55\n38 15 40\n17 4 52\n39 15 40\n16 6 49\n28 9 23\n40 13 42\n28 33 50\n25 34 36\n15 5 51\n41 8 47\n25 6 21\n14 8 48\n25 37 37\n27 39 43\n42 12 43\n13 4 52\n43 3 53\n12 21 35\n44 14 42\n11 7 49\n45 1 54\n10 16 39\n46 13 42\n9 3 53\n47 2 53\n8 11 44\n48 12 44\n7 13 43\n49 3 53\n23 8 20\n23 3..." }, { "input": "100 57\n5 19 50 55 18 54 30 56 54 16 44 49 10 47 6 26 5 28 52 28 6 11 1 25 6 43 36 24 48 34 50 46 24 9 35 17 10 28 19 5 23 43 55 25 48 42 15 6 2 26 45 6 22 1 54 17 19 40 32 19 25 10 55 48 14 37 14 42 57 26 23 16 37 43 13 37 37 18 17 16 8 46 28 39 2 11 8 46 33 21 20 9 40 19 12 16 53 53 42 6", "output": "29 27 31\n28 20 38\n30 4 53\n27 2 56\n31 20 37\n26 2 55\n32 14 43\n25 1 56\n33 2 55\n24 21 36\n34 7 50\n23 5 53\n29 17 26\n35 6 52\n29 32 37\n22 16 41\n36 27 31\n21 15 42\n37 3 54\n20 15 42\n38 26 31\n19 24 34\n29 38 38\n39 17 41\n18 26 31\n40 8 50\n17 11 46\n41 17 40\n16 5 52\n42 12 45\n15 4 53\n43 6 51\n14 17 40\n29 39 47\n44 12 46\n36 10 26\n36 32 41\n13 15 42\n28 1 19\n28 39 43\n45 18 40\n12 8 50\n46 2 56\n38 32 56\n11 5 52\n47 8 49\n31 38 52\n31 14 19\n24 37 38\n10 16 41\n48 7 51\n29 11 16\n38 4 25\n1..." }, { "input": "100 59\n48 13 59 51 54 5 35 36 16 25 18 59 9 42 58 1 53 12 19 9 54 5 51 42 45 15 4 35 33 19 36 42 14 46 41 13 7 17 43 43 36 7 24 40 40 1 43 4 42 4 37 51 56 12 5 59 56 21 21 30 54 9 19 30 58 18 7 21 45 32 45 8 12 36 29 52 37 48 27 55 10 28 51 3 33 11 15 49 47 17 22 42 33 14 47 23 42 2 22 10", "output": "30 6 53\n29 24 36\n31 1 59\n28 5 55\n32 3 56\n27 28 32\n33 13 47\n26 12 47\n34 22 37\n25 18 42\n35 21 38\n24 1 59\n36 26 34\n23 9 50\n37 1 58\n27 27 27\n22 4 56\n38 24 35\n21 21 39\n27 33 41\n39 3 56\n27 22 26\n20 5 55\n40 9 50\n19 8 52\n41 23 37\n29 20 23\n18 13 47\n42 14 46\n29 37 55\n17 12 47\n43 9 50\n16 23 36\n44 7 52\n15 10 50\n36 13 25\n36 35 41\n45 22 38\n14 9 51\n46 9 51\n13 12 47\n27 15 21\n47 18 41\n12 10 49\n48 10 49\n29 19 19\n11 9 51\n34 38 41\n49 9 50\n29 15 18\n10 12 48\n50 5 55\n9 2 57\n34..." }, { "input": "100 61\n29 27 54 52 15 7 11 55 3 19 48 52 58 36 41 25 29 20 28 4 57 51 20 16 40 14 15 26 57 2 27 17 39 13 13 50 23 56 5 60 41 9 23 49 34 34 21 41 41 23 24 7 25 36 8 22 9 59 35 58 5 36 47 53 32 11 45 28 10 13 44 52 30 42 41 57 7 7 26 55 17 52 2 6 54 48 58 60 54 53 5 9 40 20 8 18 32 40 24 35", "output": "31 17 45\n30 18 44\n32 4 57\n29 5 56\n33 24 38\n28 28 34\n34 26 36\n27 4 58\n35 30 32\n26 22 40\n36 7 54\n25 5 56\n37 2 59\n24 13 48\n38 11 51\n23 19 43\n39 17 45\n22 21 40\n40 17 44\n35 26 29\n21 3 59\n41 6 56\n35 33 52\n28 12 27\n20 11 50\n28 35 48\n42 24 38\n19 18 43\n43 3 59\n34 24 25\n18 18 44\n34 37 53\n44 12 50\n33 11 23\n33 39 51\n17 6 55\n45 20 42\n16 3 58\n35 21 25\n46 1 60\n15 11 51\n34 15 23\n47 20 42\n14 7 55\n48 14 47\n13 14 47\n49 21 41\n12 11 51\n50 11 51\n11 20 42\n51 19 42\n26 15 21\n10 1..." }, { "input": "100 63\n37 58 22 61 4 24 39 23 3 7 52 9 39 33 28 58 44 32 26 46 51 10 18 14 2 33 36 48 60 45 23 31 62 39 22 59 53 8 45 63 49 37 50 4 7 32 13 62 24 29 57 40 26 58 29 20 3 8 38 8 30 42 16 35 54 9 3 44 15 39 31 59 56 36 27 12 25 14 48 60 61 36 14 6 38 42 55 34 63 52 7 17 39 32 29 22 36 26 11 6", "output": "32 14 50\n31 3 60\n33 21 42\n30 2 62\n34 30 33\n29 20 43\n35 13 51\n28 21 43\n36 31 33\n27 29 35\n37 6 57\n34 34 42\n26 13 51\n38 16 48\n25 18 45\n39 3 60\n24 10 53\n40 16 47\n23 19 44\n41 9 54\n22 7 57\n34 20 29\n36 13 30\n36 34 47\n27 27 28\n42 16 48\n21 14 49\n43 8 55\n20 2 61\n44 10 54\n19 21 43\n45 17 47\n18 1 62\n46 13 51\n27 36 57\n17 3 61\n47 6 58\n27 19 26\n16 10 54\n48 1 63\n15 8 56\n49 14 50\n14 7 56\n33 43 46\n33 14 20\n50 16 47\n34 43 55\n13 1 62\n51 20 43\n12 18 46\n52 4 60\n11 12 51\n53 19 4..." }, { "input": "100 65\n20 39 12 31 16 51 58 15 7 37 58 39 39 44 43 55 59 61 13 22 25 13 8 26 3 55 28 45 27 27 19 59 63 13 14 46 7 36 20 9 30 37 63 12 34 59 50 33 65 56 5 17 17 36 61 12 51 45 30 11 12 62 46 65 11 49 49 40 15 19 15 2 41 34 55 57 8 18 39 36 38 49 49 3 15 43 48 13 3 49 58 5 56 41 25 10 64 52 4 54", "output": "33 23 42\n32 14 52\n34 27 38\n31 18 48\n35 25 40\n30 8 58\n36 4 61\n29 26 40\n37 30 36\n28 15 51\n38 4 61\n27 14 52\n39 14 52\n26 11 54\n40 12 54\n25 6 60\n41 4 62\n24 3 63\n42 27 39\n23 22 43\n43 21 45\n34 39 51\n34 19 26\n22 20 45\n37 27 29\n44 6 60\n21 19 46\n45 11 55\n20 20 46\n46 20 46\n37 37 55\n19 4 62\n47 2 64\n33 43 55\n35 41 54\n18 10 55\n33 16 22\n48 15 50\n35 5 24\n37 18 26\n17 18 47\n49 15 51\n16 2 64\n29 14 25\n50 16 49\n15 4 62\n51 8 57\n14 17 49\n52 1 65\n13 5 60\n29 41 45\n34 2 18\n42 10 2..." }, { "input": "100 67\n66 12 2 49 62 63 59 14 13 26 15 25 22 16 33 52 15 14 13 33 9 10 53 28 17 27 18 39 35 64 1 59 33 24 66 64 4 2 4 5 22 9 52 36 44 57 62 3 52 21 62 55 25 2 65 18 20 40 8 30 27 28 47 19 67 67 42 6 53 17 36 38 57 37 45 13 58 12 31 24 15 67 9 18 56 20 34 8 20 31 13 19 42 12 16 15 54 35 20 33", "output": "34 1 66\n33 28 39\n35 33 34\n32 10 58\n36 3 64\n31 3 65\n37 5 63\n30 27 40\n38 28 40\n29 21 46\n39 27 41\n28 22 46\n40 23 44\n35 35 50\n27 18 50\n41 8 59\n35 18 32\n26 27 40\n42 28 40\n25 18 50\n33 40 48\n43 29 38\n24 8 60\n44 20 47\n23 26 42\n45 21 47\n22 25 42\n46 15 53\n21 17 51\n47 2 65\n33 27 27\n20 5 63\n48 18 50\n33 3 26\n19 1 66\n49 2 65\n30 41 44\n38 26 27\n38 41 44\n30 22 26\n18 23 44\n38 17 25\n50 8 59\n17 16 51\n51 12 55\n16 6 62\n52 3 64\n39 24 26\n15 8 59\n39 42 62\n53 3 64\n14 7 61\n43 39 63..." }, { "input": "100 69\n43 49 44 68 20 67 45 53 55 67 68 32 31 6 13 69 18 20 26 5 6 24 46 13 57 8 11 19 27 46 34 32 10 47 28 66 50 49 31 25 54 67 25 27 11 26 41 36 64 55 43 9 65 29 4 45 63 8 45 16 50 58 41 65 1 57 5 56 29 20 49 63 64 28 5 64 64 35 1 27 25 64 42 69 50 41 52 59 31 19 40 50 56 54 63 51 10 49 14 12", "output": "35 14 56\n34 11 59\n36 13 56\n33 1 68\n37 25 44\n32 2 68\n38 13 57\n31 9 61\n39 8 62\n30 2 68\n40 1 68\n29 19 50\n41 20 50\n28 32 37\n42 29 41\n27 1 69\n43 26 43\n26 25 44\n44 22 47\n25 33 37\n45 32 37\n24 23 46\n46 12 57\n23 29 41\n47 7 63\n28 38 45\n22 30 40\n48 26 44\n21 22 48\n49 12 57\n20 18 51\n50 19 50\n28 22 31\n19 12 58\n51 21 48\n18 2 67\n52 10 59\n17 11 59\n53 20 50\n37 45 69\n16 8 61\n54 2 68\n25 8 32\n25 38 64\n37 14 24\n45 38 63\n15 15 55\n55 17 52\n14 3 66\n56 8 62\n13 14 56\n42 20 28\n57 3 ..." } ]
77
1,638,400
0
6,778
265
Roadside Trees (Simplified Edition)
[ "greedy", "implementation" ]
null
null
Squirrel Liss loves nuts. There are *n* trees (numbered 1 to *n* from west to east) along a street and there is a delicious nut on the top of each tree. The height of the tree *i* is *h**i*. Liss wants to eat all nuts. Now Liss is on the root of the tree with the number 1. In one second Liss can perform one of the following actions: - Walk up or down one unit on a tree. - Eat a nut on the top of the current tree. - Jump to the next tree. In this action the height of Liss doesn't change. More formally, when Liss is at height *h* of the tree *i* (1<=≀<=*i*<=≀<=*n*<=-<=1), she jumps to height *h* of the tree *i*<=+<=1. This action can't be performed if *h*<=&gt;<=*h**i*<=+<=1. Compute the minimal time (in seconds) required to eat all nuts.
The first line contains an integer *n* (1<=<=≀<=<=*n*<=≀<=105) β€” the number of trees. Next *n* lines contains the height of trees: *i*-th line contains an integer *h**i* (1<=≀<=*h**i*<=≀<=104) β€” the height of the tree with the number *i*.
Print a single integer β€” the minimal time required to eat all nuts in seconds.
[ "2\n1\n2\n", "5\n2\n1\n2\n1\n1\n" ]
[ "5\n", "14\n" ]
none
[ { "input": "2\n1\n2", "output": "5" }, { "input": "5\n2\n1\n2\n1\n1", "output": "14" }, { "input": "1\n1", "output": "2" } ]
498
2,662,400
3
6,787
0
none
[ "none" ]
null
null
Andrew and Eugene are playing a game. Initially, Andrew has string *s*, consisting of digits. Eugene sends Andrew multiple queries of type "*d**i*<=β†’<=*t**i*", that means "replace all digits *d**i* in string *s* with substrings equal to *t**i*". For example, if *s*<==<=123123, then query "2<=β†’<=00" transforms *s* to 10031003, and query "3<=β†’<=" ("replace 3 by an empty string") transforms it to *s*<==<=1212. After all the queries Eugene asks Andrew to find the remainder after division of number with decimal representation equal to *s* by 1000000007Β (109<=+<=7). When you represent *s* as a decimal number, please ignore the leading zeroes; also if *s* is an empty string, then it's assumed that the number equals to zero. Andrew got tired of processing Eugene's requests manually and he asked you to write a program for that. Help him!
The first line contains string *s* (1<=≀<=|*s*|<=≀<=105), consisting of digitsΒ β€” the string before processing all the requests. The second line contains a single integer *n* (0<=≀<=*n*<=≀<=105)Β β€” the number of queries. The next *n* lines contain the descriptions of the queries. The *i*-th query is described by string "*d**i*-&gt;*t**i*", where *d**i* is exactly one digit (from 0 to 9), *t**i* is a string consisting of digits (*t**i* can be an empty string). The sum of lengths of *t**i* for all queries doesn't exceed 105. The queries are written in the order in which they need to be performed.
Print a single integer β€” remainder of division of the resulting number by 1000000007Β (109<=+<=7).
[ "123123\n1\n2-&gt;00\n", "123123\n1\n3-&gt;\n", "222\n2\n2-&gt;0\n0-&gt;7\n", "1000000008\n0\n" ]
[ "10031003\n", "1212\n", "777\n", "1\n" ]
Note that the leading zeroes are not removed from string *s* after the replacement (you can see it in the third sample).
[ { "input": "123123\n1\n2->00", "output": "10031003" }, { "input": "123123\n1\n3->", "output": "1212" }, { "input": "222\n2\n2->0\n0->7", "output": "777" }, { "input": "1000000008\n0", "output": "1" }, { "input": "100\n5\n1->301\n0->013\n1->013\n0->103\n0->103", "output": "624761980" }, { "input": "21222\n10\n1->\n2->1\n1->1\n1->1\n1->1\n1->22\n2->2\n2->1\n1->21\n1->", "output": "22222222" }, { "input": "21122\n10\n1->\n2->12\n1->\n2->21\n2->\n1->21\n1->\n2->12\n2->\n1->21", "output": "212121" }, { "input": "7048431802\n3\n0->9285051\n0->785476659\n6->3187205", "output": "106409986" }, { "input": "1\n10\n1->111\n1->111\n1->111\n1->111\n1->111\n1->111\n1->111\n1->111\n1->111\n1->111", "output": "97443114" }, { "input": "80125168586785605523636285409060490408816122518314\n0", "output": "410301862" }, { "input": "4432535330257407726572090980499847187198996038948464049414107600178053433384837707125968777715401617\n10\n1->\n3->\n5->\n2->\n9->\n0->\n4->\n6->\n7->\n8->", "output": "0" }, { "input": "332434109630379\n20\n7->1\n0->2\n3->6\n1->8\n6->8\n4->0\n9->8\n2->4\n4->8\n0->1\n1->7\n7->3\n3->4\n4->6\n6->3\n8->4\n3->8\n4->2\n2->8\n8->1", "output": "110333334" }, { "input": "88296041076454194379\n20\n5->62\n8->48\n4->\n1->60\n9->00\n6->16\n0->03\n6->\n3->\n1->\n7->02\n2->35\n8->86\n5->\n3->34\n4->\n8->\n0->\n3->46\n6->84", "output": "425093096" }, { "input": "19693141406182378241404307417907800263629336520110\n49\n2->\n0->\n3->\n9->\n6->\n5->\n1->\n4->\n8->\n7->0649713852\n0->\n4->\n5->\n3->\n1->\n8->\n7->\n9->\n6->\n2->2563194780\n0->\n8->\n1->\n3->\n5->\n4->\n7->\n2->\n6->\n9->8360512479\n0->\n3->\n6->\n4->\n2->\n9->\n7->\n1->\n8->\n5->8036451792\n7->\n6->\n5->\n1->\n2->\n0->\n8->\n9->\n4->", "output": "3333" } ]
1,000
102,400
0
6,798
514
Watto and Mechanism
[ "binary search", "data structures", "hashing", "string suffix structures", "strings" ]
null
null
Watto, the owner of a spare parts store, has recently got an order for the mechanism that can process strings in a certain way. Initially the memory of the mechanism is filled with *n* strings. Then the mechanism should be able to process queries of the following type: "Given string *s*, determine if the memory of the mechanism contains string *t* that consists of the same number of characters as *s* and differs from *s* in exactly one position". Watto has already compiled the mechanism, all that's left is to write a program for it and check it on the data consisting of *n* initial lines and *m* queries. He decided to entrust this job to you.
The first line contains two non-negative numbers *n* and *m* (0<=≀<=*n*<=≀<=3Β·105, 0<=≀<=*m*<=≀<=3Β·105) β€” the number of the initial strings and the number of queries, respectively. Next follow *n* non-empty strings that are uploaded to the memory of the mechanism. Next follow *m* non-empty strings that are the queries to the mechanism. The total length of lines in the input doesn't exceed 6Β·105. Each line consists only of letters 'a', 'b', 'c'.
For each query print on a single line "YES" (without the quotes), if the memory of the mechanism contains the required string, otherwise print "NO" (without the quotes).
[ "2 3\naaaaa\nacacaca\naabaa\nccacacc\ncaaac\n" ]
[ "YES\nNO\nNO\n" ]
none
[ { "input": "2 3\naaaaa\nacacaca\naabaa\nccacacc\ncaaac", "output": "YES\nNO\nNO" }, { "input": "1 5\nacbacbacb\ncbacbacb\nacbacbac\naacbacbacb\nacbacbacbb\nacbaabacb", "output": "NO\nNO\nNO\nNO\nYES" }, { "input": "5 4\nab\ncacab\ncbabc\nacc\ncacab\nabc\naa\nacbca\ncb", "output": "YES\nYES\nNO\nYES" }, { "input": "9 9\ncaccbcacabccba\naacbcbcaabacbcbcba\nbabccaaacccacbb\ncaaabcaacbababbabbb\nabbaccacabacaaaa\nbccbccababcaacb\ncaacbcaacbababbabbb\nbcacababbbcaaca\nccbbcbababbccaab\nbbcbccababcaacb\naacccbabbacbabacaca\nbbcbcccbabcaacb\nacbacacbcacc\ncaaabcaaabacabbabbb\nabbbabaaaba\naacccbcaabacbcbcba\nabbaccacabbcaaaa\naaccbbcabbacbcbcba", "output": "YES\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nNO" }, { "input": "1 1\nbbbbbbbaaaabbbbbaabbbba\naaabbbabbbbbbbaabbabbbb", "output": "NO" } ]
3,000
10,137,600
0
6,806
687
The Values You Can Make
[ "dp" ]
null
null
Pari wants to buy an expensive chocolate from Arya. She has *n* coins, the value of the *i*-th coin is *c**i*. The price of the chocolate is *k*, so Pari will take a subset of her coins with sum equal to *k* and give it to Arya. Looking at her coins, a question came to her mind: after giving the coins to Arya, what values does Arya can make with them? She is jealous and she doesn't want Arya to make a lot of values. So she wants to know all the values *x*, such that Arya will be able to make *x* using some subset of coins with the sum *k*. Formally, Pari wants to know the values *x* such that there exists a subset of coins with the sum *k* such that some subset of this subset has the sum *x*, i.e. there is exists some way to pay for the chocolate, such that Arya will be able to make the sum *x* using these coins.
The first line contains two integers *n* and *k* (1<=<=≀<=<=*n*,<=*k*<=<=≀<=<=500)Β β€” the number of coins and the price of the chocolate, respectively. Next line will contain *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≀<=*c**i*<=≀<=500)Β β€” the values of Pari's coins. It's guaranteed that one can make value *k* using these coins.
First line of the output must contain a single integer *q*β€” the number of suitable values *x*. Then print *q* integers in ascending orderΒ β€” the values that Arya can make for some subset of coins of Pari that pays for the chocolate.
[ "6 18\n5 6 1 10 12 2\n", "3 50\n25 25 50\n" ]
[ "16\n0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18 \n", "3\n0 25 50 \n" ]
none
[ { "input": "6 18\n5 6 1 10 12 2", "output": "16\n0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18 " }, { "input": "3 50\n25 25 50", "output": "3\n0 25 50 " }, { "input": "1 79\n79", "output": "2\n0 79 " }, { "input": "1 114\n114", "output": "2\n0 114 " }, { "input": "5 1\n1 500 205 6 355", "output": "2\n0 1 " }, { "input": "8 42\n7 24 22 25 31 12 17 26", "output": "4\n0 17 25 42 " }, { "input": "8 91\n74 25 66 50 62 30 50 50", "output": "4\n0 25 66 91 " }, { "input": "8 15\n13 3 5 5 6 14 5 5", "output": "4\n0 5 10 15 " }, { "input": "8 39\n38 17 25 33 7 29 15 22", "output": "8\n0 7 15 17 22 24 32 39 " }, { "input": "15 185\n69 61 185 127 169 42 140 93 12 115 36 46 19 80 123", "output": "34\n0 12 19 31 36 42 46 55 58 61 69 73 78 80 82 88 92 93 97 103 105 107 112 116 124 127 130 139 143 149 154 166 173 185 " }, { "input": "15 109\n92 60 14 9 22 99 17 22 82 28 105 98 109 20 32", "output": "28\n0 17 20 22 28 32 37 39 42 44 45 48 49 50 59 60 61 64 65 67 70 72 77 81 87 89 92 109 " }, { "input": "10 147\n15 76 48 111 39 111 145 16 34 68", "output": "16\n0 15 16 31 48 63 64 68 79 83 84 99 116 131 132 147 " }, { "input": "10 67\n58 39 56 7 51 47 20 26 24 54", "output": "4\n0 20 47 67 " }, { "input": "10 195\n157 4 183 125 63 121 113 3 145 103", "output": "16\n0 3 4 7 63 66 67 70 125 128 129 132 188 191 192 195 " }, { "input": "14 176\n66 109 148 141 65 52 147 65 171 11 157 60 151 19", "output": "4\n0 19 157 176 " }, { "input": "14 54\n54 39 2 16 17 18 41 22 25 30 54 4 27 2", "output": "23\n0 2 4 6 8 16 18 20 22 24 25 27 29 30 32 34 36 38 46 48 50 52 54 " }, { "input": "14 24\n18 16 15 24 18 19 19 8 8 2 4 9 18 9", "output": "14\n0 2 4 6 8 9 11 13 15 16 18 20 22 24 " }, { "input": "5 182\n134 18 48 91 25", "output": "15\n0 18 25 43 48 66 73 91 109 116 134 139 157 164 182 " }, { "input": "15 182\n63 17 134 113 18 48 112 175 91 25 176 55 78 177 175", "output": "15\n0 18 25 43 48 66 73 91 109 116 134 139 157 164 182 " }, { "input": "5 6\n2 71 7 27 6", "output": "2\n0 6 " }, { "input": "5 34\n28 32 91 6 70", "output": "4\n0 6 28 34 " }, { "input": "10 58\n57 2 18 35 3 35 38 7 38 3", "output": "16\n0 2 3 5 18 20 21 23 35 37 38 40 53 55 56 58 " }, { "input": "10 10\n7 4 6 2 9 6 8 8 10 10", "output": "6\n0 2 4 6 8 10 " }, { "input": "10 38\n16 21 7 12 20 37 34 7 6 20", "output": "8\n0 6 12 18 20 26 32 38 " }, { "input": "10 58\n30 51 7 29 25 2 44 28 49 45", "output": "10\n0 2 7 9 28 30 49 51 56 58 " }, { "input": "10 86\n64 5 30 53 65 24 32 36 23 23", "output": "8\n0 24 30 32 54 56 62 86 " }, { "input": "10 10\n5 10 10 10 2 3 4 7 3 5", "output": "9\n0 2 3 4 5 6 7 8 10 " }, { "input": "10 34\n1 28 14 4 11 24 4 11 7 28", "output": "24\n0 1 4 5 7 8 9 11 12 14 15 16 18 19 20 22 23 25 26 27 29 30 33 34 " }, { "input": "10 58\n20 25 11 37 4 48 20 54 2 26", "output": "18\n0 2 4 11 13 20 22 25 27 31 33 36 38 45 47 54 56 58 " }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "2\n0 1 " }, { "input": "9 457\n1 2 4 8 16 32 64 128 256", "output": "32\n0 1 8 9 64 65 72 73 128 129 136 137 192 193 200 201 256 257 264 265 320 321 328 329 384 385 392 393 448 449 456 457 " }, { "input": "9 436\n1 2 4 8 16 32 64 128 256", "output": "32\n0 4 16 20 32 36 48 52 128 132 144 148 160 164 176 180 256 260 272 276 288 292 304 308 384 388 400 404 416 420 432 436 " }, { "input": "9 474\n1 2 4 8 16 32 64 128 256", "output": "64\n0 2 8 10 16 18 24 26 64 66 72 74 80 82 88 90 128 130 136 138 144 146 152 154 192 194 200 202 208 210 216 218 256 258 264 266 272 274 280 282 320 322 328 330 336 338 344 346 384 386 392 394 400 402 408 410 448 450 456 458 464 466 472 474 " }, { "input": "9 442\n1 2 4 8 16 32 64 128 256", "output": "64\n0 2 8 10 16 18 24 26 32 34 40 42 48 50 56 58 128 130 136 138 144 146 152 154 160 162 168 170 176 178 184 186 256 258 264 266 272 274 280 282 288 290 296 298 304 306 312 314 384 386 392 394 400 402 408 410 416 418 424 426 432 434 440 442 " }, { "input": "15 388\n33 232 106 369 266 135 22 169 367 37 14 181 232 25 154", "output": "59\n0 14 22 25 33 37 39 47 51 58 59 62 70 72 84 135 149 157 160 168 169 172 174 181 182 183 186 191 193 194 195 197 202 205 206 207 214 216 219 220 228 231 239 253 304 316 318 326 329 330 337 341 349 351 355 363 366 374 388 " }, { "input": "10 9\n5 2 5 2 5 1 4 1 3 1", "output": "10\n0 1 2 3 4 5 6 7 8 9 " } ]
62
0
0
6,810
899
Dividing the numbers
[ "constructive algorithms", "graphs", "math" ]
null
null
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group.
The first line contains a single integer *n* (2<=≀<=*n*<=≀<=60<=000) β€” the number of integers Petya has.
Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
[ "4\n", "2\n" ]
[ "0\n2 1 4 \n", "1\n1 1 \n" ]
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
[ { "input": "4", "output": "0\n2 1 4 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "3", "output": "0\n1\n3 " }, { "input": "5", "output": "1\n3\n1 2 5 " }, { "input": "59998", "output": "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "60000", "output": "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59991", "output": "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59989", "output": "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "6", "output": "1\n3 1 4 5 " }, { "input": "7", "output": "0\n3\n1 6 7 " }, { "input": "8", "output": "0\n4 1 4 5 8 " }, { "input": "9", "output": "1\n5\n1 2 3 8 9 " }, { "input": "10", "output": "1\n5 1 4 5 8 9 " }, { "input": "11", "output": "0\n5\n1 2 9 10 11 " }, { "input": "12", "output": "0\n6 1 4 5 8 9 12 " }, { "input": "13", "output": "1\n7\n1 2 3 4 11 12 13 " }, { "input": "14", "output": "1\n7 1 4 5 8 9 12 13 " }, { "input": "15", "output": "0\n7\n1 2 3 12 13 14 15 " }, { "input": "16", "output": "0\n8 1 4 5 8 9 12 13 16 " }, { "input": "17", "output": "1\n9\n1 2 3 4 5 14 15 16 17 " }, { "input": "18", "output": "1\n9 1 4 5 8 9 12 13 16 17 " }, { "input": "19", "output": "0\n9\n1 2 3 4 15 16 17 18 19 " }, { "input": "20", "output": "0\n10 1 4 5 8 9 12 13 16 17 20 " }, { "input": "21", "output": "1\n11\n1 2 3 4 5 6 17 18 19 20 21 " }, { "input": "22", "output": "1\n11 1 4 5 8 9 12 13 16 17 20 21 " }, { "input": "23", "output": "0\n11\n1 2 3 4 5 18 19 20 21 22 23 " }, { "input": "24", "output": "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 " }, { "input": "59999", "output": "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59997", "output": "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59996", "output": "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59995", "output": "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59994", "output": "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59993", "output": "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59992", "output": "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59990", "output": "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "100", "output": "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 " }, { "input": "1000", "output": "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "10001", "output": "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "103", "output": "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 " }, { "input": "1002", "output": "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "31724", "output": "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "2032", "output": "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "42620", "output": "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "18076", "output": "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "53520", "output": "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "37193", "output": "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "12645", "output": "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "53237", "output": "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "28693", "output": "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "4145", "output": "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "36042", "output": "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "16646", "output": "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "57238", "output": "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "27542", "output": "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "8146", "output": "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "46659", "output": "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "27259", "output": "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "2715", "output": "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "38159", "output": "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "18759", "output": "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." } ]
124
6,758,400
3
6,814
976
Lara Croft and the New Game
[ "implementation", "math" ]
null
null
You might have heard about the next game in Lara Croft series coming out this year. You also might have watched its trailer. Though you definitely missed the main idea about its plot, so let me lift the veil of secrecy. Lara is going to explore yet another dangerous dungeon. Game designers decided to use good old 2D environment. The dungeon can be represented as a rectangle matrix of *n* rows and *m* columns. Cell (*x*,<=*y*) is the cell in the *x*-th row in the *y*-th column. Lara can move between the neighbouring by side cells in all four directions. Moreover, she has even chosen the path for herself to avoid all the traps. She enters the dungeon in cell (1,<=1), that is top left corner of the matrix. Then she goes down all the way to cell (*n*,<=1) β€” the bottom left corner. Then she starts moving in the snake fashion β€” all the way to the right, one cell up, then to the left to the cell in 2-nd column, one cell up. She moves until she runs out of non-visited cells. *n* and *m* given are such that she always end up in cell (1,<=2). Lara has already moved to a neighbouring cell *k* times. Can you determine her current position?
The only line contains three integers *n*, *m* and *k* (2<=≀<=*n*,<=*m*<=≀<=109, *n* is always even, 0<=≀<=*k*<=&lt;<=*n*Β·*m*). Note that *k* doesn't fit into 32-bit integer type!
Print the cell (the row and the column where the cell is situated) where Lara ends up after she moves *k* times.
[ "4 3 0\n", "4 3 11\n", "4 3 7\n" ]
[ "1 1\n", "1 2\n", "3 2\n" ]
Here is her path on matrix 4 by 3:
[ { "input": "4 3 0", "output": "1 1" }, { "input": "4 3 11", "output": "1 2" }, { "input": "4 3 7", "output": "3 2" }, { "input": "1000000000 2 1999999999", "output": "1 2" }, { "input": "1000000000 1000000000 999999999999999999", "output": "1 2" }, { "input": "1000000000 1000000000 999999999", "output": "1000000000 1" }, { "input": "1000000000 1000000000 2000000500", "output": "999999999 999999499" }, { "input": "2 2 2", "output": "2 2" }, { "input": "28 3 1", "output": "2 1" }, { "input": "2 3 3", "output": "2 3" }, { "input": "4 6 8", "output": "4 6" }, { "input": "6 6 18", "output": "4 4" }, { "input": "4 3 8", "output": "2 2" }, { "input": "4 3 4", "output": "4 2" }, { "input": "4 4 10", "output": "2 2" }, { "input": "4 5 4", "output": "4 2" }, { "input": "4 3 9", "output": "2 3" }, { "input": "4 3 6", "output": "3 3" }, { "input": "4 5 5", "output": "4 3" }, { "input": "6 4 8", "output": "6 4" }, { "input": "4 4 12", "output": "2 4" }, { "input": "10 6 15", "output": "9 6" }, { "input": "6666 969696 6667", "output": "6666 3" }, { "input": "4 5 13", "output": "2 3" }, { "input": "84 68 4248", "output": "22 12" }, { "input": "6 6 9", "output": "6 5" }, { "input": "4 5 17", "output": "1 4" }, { "input": "2 3 4", "output": "1 3" }, { "input": "4 3 5", "output": "4 3" }, { "input": "2 3 2", "output": "2 2" }, { "input": "4 5 12", "output": "2 2" }, { "input": "6 6 16", "output": "4 2" }, { "input": "4 4 6", "output": "4 4" }, { "input": "10 3 18", "output": "6 2" }, { "input": "2 4 5", "output": "1 4" }, { "input": "6 9 43", "output": "2 7" }, { "input": "4 7 8", "output": "4 6" }, { "input": "500 100 800", "output": "497 97" }, { "input": "2 5 5", "output": "2 5" }, { "input": "4 6 15", "output": "2 3" }, { "input": "9213788 21936127 8761236", "output": "8761237 1" }, { "input": "2 5 6", "output": "1 5" }, { "input": "43534 432423 53443", "output": "43534 9911" }, { "input": "999999998 999999998 999999995000000005", "output": "2 999999997" }, { "input": "999999924 999999983 999999906999879972", "output": "1 121321" }, { "input": "6 5 18", "output": "3 5" }, { "input": "4 4 5", "output": "4 3" }, { "input": "6 6 6", "output": "6 2" }, { "input": "99999998 8888888 77777777777", "output": "99991260 6683175" }, { "input": "6 5 6", "output": "6 2" }, { "input": "6 5 17", "output": "4 5" }, { "input": "6 4 12", "output": "4 2" }, { "input": "999995712 999993076 999988788028978212", "output": "1 711901" }, { "input": "999994900 999993699 999988599028973300", "output": "1 3161801" }, { "input": "978642410 789244500 12348616164", "output": "978642396 320550770" }, { "input": "999993774 999998283 999992057010529542", "output": "1 160501" }, { "input": "4 7 10", "output": "3 7" }, { "input": "6 4 9", "output": "5 4" }, { "input": "1000000000 789 788999999000", "output": "2 578" }, { "input": "978642410 789244500 1234861616400", "output": "978640847 495422447" }, { "input": "999999596 999999631 999999226999090676", "output": "1 1058401" }, { "input": "4 7 16", "output": "2 2" }, { "input": "2 2 3", "output": "1 2" }, { "input": "21726 5447 14771", "output": "14772 1" }, { "input": "4 2 6", "output": "2 2" }, { "input": "621282132 311996010 98597740967720109", "output": "305259691 311996002" }, { "input": "803521870 958373820 689637244594465863", "output": "83930798 27" }, { "input": "887584278 701990442 578292377747447929", "output": "63794746 41" }, { "input": "656369902 872526042 566305269065863364", "output": "7328794 36" }, { "input": "839664176 535164910 441498526835463771", "output": "14687578 15" }, { "input": "636553724 546535019 115079316355948443", "output": "425992073 546535018" }, { "input": "2182 23967 52288026", "output": "1 7969" }, { "input": "548492800 434105920 179638683192075937", "output": "134679777 434105920" }, { "input": "4 4 4", "output": "4 2" }, { "input": "6 8 15", "output": "5 6" }, { "input": "6 3 7", "output": "6 3" }, { "input": "949547590 305226065 138144146668766087", "output": "496951426 3" }, { "input": "1000000000 1000000000 3000000000", "output": "999999998 4" }, { "input": "999999998 1000000000 1000000998999999", "output": "998999998 3" }, { "input": "999381438 840037557 128928432510450944", "output": "845902072 12" }, { "input": "742860584 671970249 260211607929646490", "output": "355623786 4" }, { "input": "1000000000 1000000000 1999999998", "output": "1000000000 1000000000" }, { "input": "993142186 628701115 555947810764442157", "output": "108862204 25" }, { "input": "595261150 794915864 332353903994901365", "output": "177161677 794915848" } ]
109
0
3
6,815
389
Fox and Cross
[ "greedy", "implementation" ]
null
null
Fox Ciel has a board with *n* rows and *n* columns. So, the board consists of *n*<=Γ—<=*n* cells. Each cell contains either a symbol '.', or a symbol '#'. A cross on the board is a connected set of exactly five cells of the board that looks like a cross. The picture below shows how it looks. Ciel wants to draw several (may be zero) crosses on the board. Each cross must cover exactly five cells with symbols '#', and any cell with symbol '#' must belong to some cross. No two crosses can share a cell. Please, tell Ciel if she can draw the crosses in the described way.
The first line contains an integer *n* (3<=≀<=*n*<=≀<=100) β€” the size of the board. Each of the next *n* lines describes one row of the board. The *i*-th line describes the *i*-th row of the board and consists of *n* characters. Each character is either a symbol '.', or a symbol '#'.
Output a single line with "YES" if Ciel can draw the crosses in the described way. Otherwise output a single line with "NO".
[ "5\n.#...\n####.\n.####\n...#.\n.....\n", "4\n####\n####\n####\n####\n", "6\n.#....\n####..\n.####.\n.#.##.\n######\n.#..#.\n", "6\n.#..#.\n######\n.####.\n.####.\n######\n.#..#.\n", "3\n...\n...\n...\n" ]
[ "YES\n", "NO\n", "YES\n", "NO\n", "YES\n" ]
In example 1, you can draw two crosses. The picture below shows what they look like. In example 2, the board contains 16 cells with '#', but each cross contains 5. Since 16 is not a multiple of 5, so it's impossible to cover all.
[ { "input": "4\n####\n####\n####\n####", "output": "NO" }, { "input": "6\n.#....\n####..\n.####.\n.#.##.\n######\n.#..#.", "output": "YES" }, { "input": "6\n.#..#.\n######\n.####.\n.####.\n######\n.#..#.", "output": "NO" }, { "input": "5\n.....\n.#...\n####.\n.####\n...#.", "output": "YES" }, { "input": "5\n#....\n###..\n.###.\n..##.\n..##.", "output": "NO" }, { "input": "10\n....#...#.\n.#.###.###\n#####.#.#.\n.#######..\n.#.##.#.#.\n######.###\n.#..#.#.#.\n.#..#####.\n##########\n.#..#...#.", "output": "YES" }, { "input": "8\n.#...##.\n##.##.#.\n#....##.\n#.###.##\n...##..#\n#..#.##.\n#..#.#..\n#....###", "output": "NO" }, { "input": "15\n.#...##.##.....\n.###.#.#.##..#.\n##.#####......#\n#....###.#..#..\n#.##.#.###.###.\n.###....#.###.#\n##.....##..#...\n.#.########...#\n##..#..##..#.##\n#...#....##....\n.......#.......\n.#..#.#.####...\n.#..#...#..###.\n#..#.#..#......\n###.....##....#", "output": "NO" }, { "input": "7\n.......\n.......\n.......\n.......\n.....#.\n....###\n.....#.", "output": "YES" }, { "input": "9\n.#.#....#\n#.#.....#\n.#..#..#.\n#.#....##\n...#...#.\n#..###.#.\n....#..##\n.#.###...\n....##..#", "output": "NO" }, { "input": "5\n#...#\n.....\n..#..\n.....\n#...#", "output": "NO" }, { "input": "3\n.#.\n#.#\n.#.", "output": "NO" }, { "input": "3\n...\n...\n..#", "output": "NO" } ]
155
21,913,600
0
6,837
430
Points and Segments (easy)
[ "constructive algorithms", "sortings" ]
null
null
Iahub isn't well prepared on geometry problems, but he heard that this year there will be a lot of geometry problems on the IOI selection camp. Scared, Iahub locked himself in the basement and started thinking of new problems of this kind. One of them is the following. Iahub wants to draw *n* distinct points and *m* segments on the *OX* axis. He can draw each point with either red or blue. The drawing is good if and only if the following requirement is met: for each segment [*l**i*,<=*r**i*] consider all the red points belong to it (*r**i* points), and all the blue points belong to it (*b**i* points); each segment *i* should satisfy the inequality |*r**i*<=-<=*b**i*|<=≀<=1. Iahub thinks that point *x* belongs to segment [*l*,<=*r*], if inequality *l*<=≀<=*x*<=≀<=*r* holds. Iahub gives to you all coordinates of points and segments. Please, help him to find any good drawing.
The first line of input contains two integers: *n* (1<=≀<=*n*<=≀<=100) and *m* (1<=≀<=*m*<=≀<=100). The next line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≀<=*x**i*<=≀<=100) β€” the coordinates of the points. The following *m* lines contain the descriptions of the *m* segments. Each line contains two integers *l**i* and *r**i* (0<=≀<=*l**i*<=≀<=*r**i*<=≀<=100) β€” the borders of the *i*-th segment. It's guaranteed that all the points are distinct.
If there is no good drawing for a given test, output a single integer -1. Otherwise output *n* integers, each integer must be 0 or 1. The *i*-th number denotes the color of the *i*-th point (0 is red, and 1 is blue). If there are multiple good drawings you can output any of them.
[ "3 3\n3 7 14\n1 5\n6 10\n11 15\n", "3 4\n1 2 3\n1 2\n2 3\n5 6\n2 2\n" ]
[ "0 0 0", "1 0 1 " ]
none
[ { "input": "3 3\n3 7 14\n1 5\n6 10\n11 15", "output": "0 0 0" }, { "input": "3 4\n1 2 3\n1 2\n2 3\n5 6\n2 2", "output": "1 0 1 " }, { "input": "10 10\n3 4 2 6 1 9 0 5 8 7\n5 7\n2 6\n0 1\n5 6\n3 4\n2 5\n2 10\n4 6\n3 6\n3 7", "output": "0 1 1 1 0 0 1 0 1 0 " }, { "input": "3 3\n50 51 52\n1 5\n6 10\n11 15", "output": "1 0 1 " }, { "input": "3 1\n1 2 3\n2 3", "output": "1 0 1 " } ]
77
0
0
6,880
182
Wooden Fence
[ "dp" ]
null
null
Vasya has recently bought some land and decided to surround it with a wooden fence. He went to a company called "Wooden board" that produces wooden boards for fences. Vasya read in the catalog of products that the company has at its disposal *n* different types of wood. The company uses the *i*-th type of wood to produce a board of this type that is a rectangular *a**i* by *b**i* block. Vasya decided to order boards in this company and build a fence from them. It turned out that the storehouse of the company is so large that Vasya can order arbitrary number of boards of every type. Note that Vasya is allowed to turn the boards as he builds the fence. However, Vasya cannot turn square boards. Vasya is required to construct a fence of length *l*, however, an arbitrary fence won't do. Vasya wants his fence to look beautiful. We'll say that a fence is beautiful if and only if the following two conditions are fulfilled: - there are no two successive boards of the same type - the first board of the fence has an arbitrary length, and the length of each subsequent board equals the width of the previous one In other words, the fence is considered beautiful, if the type of the *i*-th board in the fence is different from the *i*<=-<=1-th board's type; besides, the *i*-th board's length is equal to the *i*<=-<=1-th board's width (for all *i*, starting from 2). Now Vasya wonders, how many variants of arranging a fence for his land exist. Your task is to count the number of different beautiful fences of length *l*. Two fences will be considered the same if the corresponding sequences of fence boards types and rotations are the same, otherwise the fences are different. Since the sought number can be large enough, you need to calculate the answer modulo 1000000007 (109<=+<=7).
The first line contains two integers *n* and *l* (1<=≀<=*n*<=≀<=100,<=1<=≀<=*l*<=≀<=3000) β€” the number of different board types and the fence length, correspondingly. Next *n* lines contain descriptions of board types: the *i*-th line contains two integers *a**i* and *b**i* (1<=≀<=*a**i*,<=*b**i*<=≀<=100) β€” the sizes of the board of the *i*-th type. All numbers on the lines are separated by spaces.
Print a single integer β€” the sought number of variants modulo 1000000007 (109<=+<=7).
[ "2 3\n1 2\n2 3\n", "1 2\n2 2\n", "6 6\n2 1\n3 2\n2 5\n3 3\n5 1\n2 1\n" ]
[ "2\n", "1\n", "20\n" ]
In the first sample there are exactly two variants of arranging a beautiful fence of length 3: - As the first fence board use the board of the first type of length 1 and width 2. As the second board use board of the second type of length 2 and width 3. - Use one board of the second type after you turn it. That makes its length equal 3, and width β€” 2.
[ { "input": "2 3\n1 2\n2 3", "output": "2" }, { "input": "1 2\n2 2", "output": "1" }, { "input": "6 6\n2 1\n3 2\n2 5\n3 3\n5 1\n2 1", "output": "20" }, { "input": "4 3\n1 2\n1 1\n3 1\n2 2", "output": "4" }, { "input": "4 6\n1 1\n1 2\n3 1\n5 10", "output": "0" }, { "input": "5 10\n1 2\n2 3\n1 2\n3 1\n2 4", "output": "50" }, { "input": "1 4\n4 1", "output": "1" }, { "input": "1 3\n1 1", "output": "0" }, { "input": "4 6\n2 1\n1 2\n2 1\n2 1", "output": "216" }, { "input": "4 10\n4 5\n5 3\n1 4\n1 2", "output": "2" }, { "input": "5 8\n3 1\n2 1\n2 3\n2 1\n3 1", "output": "62" }, { "input": "10 11\n3 10\n10 2\n2 6\n7 6\n8 1\n2 3\n7 10\n8 2\n6 5\n2 5", "output": "10" }, { "input": "8 20\n18 18\n14 15\n8 4\n5 9\n2 7\n9 2\n9 19\n2 11", "output": "0" }, { "input": "6 7\n3 1\n2 1\n1 2\n4 5\n2 5\n2 1", "output": "94" }, { "input": "7 4\n1 2\n2 2\n3 3\n3 3\n1 1\n3 3\n3 1", "output": "9" }, { "input": "100 3000\n1 4\n2 1\n3 3\n1 1\n5 4\n4 1\n2 1\n5 4\n1 1\n3 3\n4 3\n3 4\n4 2\n2 4\n1 2\n3 4\n5 3\n1 4\n2 4\n4 5\n1 2\n5 2\n2 2\n3 2\n4 4\n1 4\n5 5\n3 4\n4 1\n3 3\n5 2\n3 3\n4 1\n1 5\n4 3\n5 3\n4 2\n3 3\n3 5\n5 1\n5 1\n3 3\n4 3\n1 3\n4 1\n2 3\n1 3\n1 2\n5 5\n5 2\n1 5\n4 2\n1 1\n1 1\n1 2\n4 4\n5 4\n2 5\n1 3\n5 3\n1 1\n3 5\n1 4\n5 2\n2 3\n1 3\n5 1\n3 4\n5 1\n5 3\n3 2\n2 4\n5 2\n2 5\n5 4\n2 4\n1 1\n2 1\n2 3\n4 4\n1 5\n2 2\n1 3\n3 1\n3 2\n5 2\n5 5\n2 5\n2 3\n3 2\n4 1\n2 3\n5 1\n4 2\n2 4\n2 1\n5 3\n5 4\n1 1\n2 3", "output": "440706472" }, { "input": "20 20\n2 1\n1 1\n2 3\n2 1\n2 1\n3 3\n2 3\n1 2\n1 1\n1 1\n2 3\n2 3\n1 3\n2 2\n2 1\n3 2\n2 1\n1 1\n1 3\n3 3", "output": "379149793" }, { "input": "13 10\n4 2\n1 3\n3 3\n2 2\n3 1\n3 4\n4 1\n1 3\n2 3\n1 3\n3 1\n3 3\n2 1", "output": "4551" }, { "input": "10 50\n9 7\n2 2\n7 9\n10 9\n6 1\n8 10\n10 5\n7 5\n4 5\n8 1", "output": "42" }, { "input": "10 30\n12 21\n2 8\n19 7\n7 1\n27 14\n13 3\n14 7\n19 26\n21 17\n17 30", "output": "1" }, { "input": "10 5\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "65610" }, { "input": "100 2000\n2 2\n2 1\n2 2\n1 2\n1 2\n2 2\n1 2\n1 2\n2 2\n2 1\n1 1\n2 2\n2 2\n2 1\n2 2\n2 2\n1 1\n2 2\n1 2\n2 2\n1 1\n2 1\n2 1\n2 1\n1 1\n2 1\n2 1\n1 2\n2 1\n2 1\n1 2\n1 2\n2 2\n1 2\n2 1\n2 2\n2 2\n1 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n2 1\n2 1\n1 1\n2 1\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 1\n1 2\n1 2\n2 1\n2 2\n1 2\n2 1\n2 2\n1 2\n2 1\n2 1\n2 2\n1 2\n2 2\n1 1\n2 2\n2 1\n2 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 1\n2 1\n2 1\n2 2\n2 1\n1 1\n2 1\n1 1\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n1 2\n2 1\n2 2\n2 1\n1 1\n2 2", "output": "842986379" }, { "input": "100 2000\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "370055910" }, { "input": "100 1500\n3 3\n3 2\n1 3\n3 1\n2 3\n3 2\n3 2\n2 1\n3 1\n2 3\n3 3\n3 1\n1 1\n3 1\n3 3\n2 2\n2 2\n1 2\n1 1\n3 1\n2 2\n2 3\n2 3\n2 2\n3 3\n3 2\n1 1\n3 3\n2 2\n1 3\n3 3\n3 1\n1 2\n3 3\n3 3\n2 2\n1 1\n3 3\n1 3\n2 1\n1 2\n2 1\n1 3\n1 3\n1 3\n1 1\n1 3\n3 1\n2 3\n1 3\n2 2\n2 1\n2 1\n2 3\n3 2\n1 2\n2 2\n1 3\n1 1\n1 3\n3 3\n1 3\n3 2\n1 3\n2 1\n2 3\n2 3\n2 3\n3 2\n1 2\n1 3\n2 3\n1 3\n2 1\n3 2\n3 3\n1 1\n3 1\n3 3\n1 3\n3 2\n3 2\n2 2\n1 3\n2 2\n3 2\n1 3\n2 2\n2 1\n3 2\n1 3\n3 2\n1 2\n2 2\n1 3\n1 1\n3 3\n2 2\n3 1\n3 3", "output": "548967810" }, { "input": "100 2500\n3 1\n3 2\n3 2\n3 1\n1 1\n1 2\n3 3\n1 2\n1 2\n3 1\n3 3\n3 2\n1 3\n2 1\n2 3\n2 2\n1 3\n2 2\n2 2\n1 1\n2 3\n1 3\n1 2\n3 1\n2 3\n2 3\n3 1\n2 3\n2 3\n3 1\n1 1\n3 2\n2 3\n3 3\n3 2\n3 1\n3 2\n3 1\n2 1\n1 3\n2 2\n2 2\n3 2\n1 2\n3 1\n3 2\n3 1\n1 2\n3 1\n3 1\n3 1\n2 3\n1 3\n1 3\n2 2\n1 2\n3 3\n3 2\n3 2\n3 3\n3 3\n2 1\n1 2\n3 2\n1 2\n2 3\n1 2\n2 3\n2 3\n3 2\n3 1\n2 3\n1 2\n1 1\n1 1\n3 1\n2 3\n2 1\n2 3\n3 2\n1 1\n3 3\n1 3\n3 2\n3 2\n2 2\n2 2\n2 2\n1 1\n1 2\n1 2\n3 3\n1 1\n3 2\n1 2\n2 2\n3 3\n2 2\n1 2\n2 3", "output": "563987225" }, { "input": "30 2800\n25 12\n43 10\n38 39\n14 8\n35 41\n19 11\n23 5\n28 2\n7 36\n9 36\n38 32\n28 29\n18 31\n22 6\n25 34\n43 25\n36 33\n14 24\n13 40\n1 1\n19 44\n37 18\n7 17\n18 14\n44 35\n15 37\n43 23\n34 29\n3 21\n31 47", "output": "0" }, { "input": "50 100\n45 74\n41 31\n84 56\n14 8\n25 94\n71 76\n35 8\n66 67\n27 54\n67 91\n71 20\n71 91\n7 58\n13 34\n47 60\n68 32\n74 58\n78 55\n67 40\n22 67\n27 59\n2 2\n89 62\n90 60\n41 57\n66 24\n65 93\n55 8\n94 2\n82 81\n91 67\n63 68\n24 12\n95 49\n48 63\n30 23\n32 86\n10 98\n89 71\n73 35\n85 60\n22 46\n9 50\n79 75\n24 53\n48 17\n22 61\n26 49\n89 58\n77 56", "output": "2" }, { "input": "40 700\n11 14\n4 14\n14 13\n12 9\n14 10\n3 9\n7 7\n5 15\n1 11\n5 7\n2 9\n7 5\n3 10\n5 14\n4 11\n13 6\n4 6\n3 9\n1 11\n8 13\n6 4\n12 10\n10 14\n8 2\n1 15\n13 13\n6 11\n7 2\n7 12\n8 7\n1 13\n13 7\n12 10\n1 7\n7 1\n4 4\n10 7\n1 4\n13 8\n13 10", "output": "964762206" }, { "input": "60 900\n38 15\n10 1\n14 37\n13 1\n40 15\n31 26\n31 4\n12 5\n28 34\n37 7\n28 34\n11 30\n30 16\n27 18\n11 18\n17 6\n38 22\n31 37\n20 38\n21 23\n11 12\n24 35\n36 8\n13 13\n34 39\n20 15\n17 3\n23 17\n18 23\n26 18\n11 2\n18 30\n25 25\n32 40\n9 38\n37 39\n39 37\n5 10\n15 19\n14 21\n34 8\n7 36\n29 3\n11 21\n32 2\n21 40\n10 33\n36 39\n15 31\n38 16\n4 14\n6 16\n31 18\n15 23\n1 38\n32 24\n13 12\n15 15\n24 11\n24 27", "output": "457432849" }, { "input": "50 2000\n12 1\n11 29\n7 4\n18 27\n25 17\n28 5\n1 17\n10 29\n10 21\n8 7\n23 4\n20 7\n8 24\n2 27\n13 13\n14 15\n19 15\n7 26\n24 13\n8 25\n7 11\n18 11\n19 1\n30 15\n3 24\n27 7\n24 25\n7 7\n14 23\n3 24\n25 10\n25 3\n4 11\n22 29\n27 28\n23 5\n3 6\n16 3\n30 18\n16 22\n24 7\n11 1\n10 23\n2 3\n27 28\n28 25\n20 21\n25 3\n10 3\n7 25", "output": "771010208" }, { "input": "1 3000\n78 92", "output": "0" }, { "input": "50 30\n9 35\n1 48\n17 43\n41 39\n28 7\n14 10\n3 45\n35 37\n31 27\n11 16\n40 8\n4 7\n15 33\n29 17\n41 45\n11 24\n6 8\n6 2\n2 42\n19 34\n7 36\n14 15\n26 2\n22 33\n15 22\n49 23\n10 41\n6 17\n21 11\n15 37\n49 26\n49 49\n15 29\n12 49\n22 13\n7 49\n25 32\n7 7\n31 37\n23 14\n5 37\n14 6\n44 21\n8 16\n22 7\n43 44\n36 44\n4 26\n22 46\n4 21", "output": "12" }, { "input": "30 80\n27 10\n39 39\n87 45\n70 82\n20 50\n45 51\n67 31\n43 96\n87 26\n59 20\n42 22\n69 71\n10 30\n39 59\n42 100\n4 67\n21 55\n83 69\n33 81\n37 43\n57 12\n30 83\n34 12\n35 32\n11 12\n51 96\n100 68\n96 20\n50 61\n46 61", "output": "1" }, { "input": "100 3000\n1 1\n3 3\n3 2\n1 1\n3 2\n1 3\n1 3\n1 1\n2 3\n2 3\n3 2\n1 3\n3 3\n1 1\n3 1\n2 3\n3 1\n2 1\n3 2\n3 2\n2 2\n1 2\n3 3\n3 3\n3 3\n3 3\n1 3\n3 2\n2 3\n3 2\n3 1\n1 1\n3 1\n1 3\n1 2\n2 1\n3 2\n2 3\n3 1\n3 2\n3 1\n2 1\n1 3\n1 1\n3 3\n2 2\n3 2\n3 3\n2 2\n2 3\n3 3\n2 3\n2 2\n3 3\n3 3\n1 1\n2 3\n1 1\n3 3\n3 3\n2 2\n1 2\n3 2\n3 3\n3 3\n3 3\n3 1\n1 2\n1 1\n1 1\n2 1\n1 2\n3 2\n2 3\n3 2\n1 1\n2 1\n2 2\n1 1\n1 2\n1 3\n2 2\n2 3\n2 1\n1 2\n3 1\n3 1\n3 3\n2 3\n1 1\n3 3\n2 2\n1 3\n3 1\n2 3\n2 2\n3 2\n1 1\n3 3\n3 2", "output": "936413338" }, { "input": "100 3000\n3 3\n2 1\n3 3\n4 1\n2 4\n3 1\n3 4\n1 2\n3 4\n4 3\n2 2\n2 3\n4 2\n3 3\n1 3\n4 3\n3 1\n4 3\n2 2\n2 4\n2 2\n3 2\n2 1\n3 4\n1 1\n1 1\n1 2\n1 3\n2 4\n3 4\n2 4\n2 3\n3 1\n4 1\n1 3\n2 2\n3 2\n2 2\n3 3\n2 2\n4 4\n4 3\n1 3\n2 3\n1 3\n1 1\n2 3\n3 3\n4 2\n2 2\n1 1\n1 3\n4 4\n3 3\n4 2\n1 4\n4 4\n2 4\n1 3\n2 3\n1 3\n1 1\n4 4\n3 2\n2 1\n4 4\n2 1\n2 1\n2 3\n3 3\n2 4\n2 1\n4 1\n3 1\n2 3\n1 2\n1 1\n1 1\n2 2\n1 1\n4 1\n4 4\n3 2\n2 2\n1 4\n2 2\n4 3\n2 2\n4 1\n2 1\n4 2\n2 4\n2 1\n3 4\n4 2\n2 4\n3 4\n2 1\n1 1\n1 2", "output": "822253206" } ]
0
0
-1
6,885
679
Bear and Tower of Cubes
[ "binary search", "dp", "greedy" ]
null
null
Limak is a little polar bear. He plays by building towers from blocks. Every block is a cube with positive integer length of side. Limak has infinitely many blocks of each side length. A block with side *a* has volume *a*3. A tower consisting of blocks with sides *a*1,<=*a*2,<=...,<=*a**k* has the total volume *a*13<=+<=*a*23<=+<=...<=+<=*a**k*3. Limak is going to build a tower. First, he asks you to tell him a positive integer *X*Β β€” the required total volume of the tower. Then, Limak adds new blocks greedily, one by one. Each time he adds the biggest block such that the total volume doesn't exceed *X*. Limak asks you to choose *X* not greater than *m*. Also, he wants to maximize the number of blocks in the tower at the end (however, he still behaves greedily). Secondarily, he wants to maximize *X*. Can you help Limak? Find the maximum number of blocks his tower can have and the maximum *X*<=≀<=*m* that results this number of blocks.
The only line of the input contains one integer *m* (1<=≀<=*m*<=≀<=1015), meaning that Limak wants you to choose *X* between 1 and *m*, inclusive.
Print two integersΒ β€” the maximum number of blocks in the tower and the maximum required total volume *X*, resulting in the maximum number of blocks.
[ "48\n", "6\n" ]
[ "9 42\n", "6 6\n" ]
In the first sample test, there will be 9 blocks if you choose *X* = 23 or *X* = 42. Limak wants to maximize *X* secondarily so you should choose 42. In more detail, after choosing *X* = 42 the process of building a tower is: - Limak takes a block with side 3 because it's the biggest block with volume not greater than 42. The remaining volume is 42 - 27 = 15. - The second added block has side 2, so the remaining volume is 15 - 8 = 7. - Finally, Limak adds 7 blocks with side 1, one by one. So, there are 9 blocks in the tower. The total volume is is 3<sup class="upper-index">3</sup> + 2<sup class="upper-index">3</sup> + 7Β·1<sup class="upper-index">3</sup> = 27 + 8 + 7 = 42.
[ { "input": "48", "output": "9 42" }, { "input": "6", "output": "6 6" }, { "input": "1", "output": "1 1" }, { "input": "994", "output": "12 941" }, { "input": "567000123", "output": "16 566998782" }, { "input": "123830583943", "output": "17 123830561521" }, { "input": "3842529393411", "output": "17 3842529383076" }, { "input": "999999993700000", "output": "18 999999993541753" }, { "input": "2", "output": "2 2" }, { "input": "7", "output": "7 7" }, { "input": "8", "output": "7 7" }, { "input": "9", "output": "7 7" }, { "input": "112", "output": "10 106" }, { "input": "113", "output": "10 113" }, { "input": "114", "output": "11 114" }, { "input": "265", "output": "11 212" }, { "input": "995", "output": "12 995" }, { "input": "200385", "output": "14 200355" }, { "input": "909383000", "output": "16 909381874" }, { "input": "108000000057", "output": "17 107986074062" }, { "input": "385925923480002", "output": "17 385925923479720" }, { "input": "735412349812385", "output": "18 735409591249436" }, { "input": "980123123123123", "output": "18 980123123116482" }, { "input": "999088000000000", "output": "18 999087986204952" }, { "input": "409477218238716", "output": "17 409477218238710" }, { "input": "409477218238717", "output": "17 409477218238717" }, { "input": "409477218238718", "output": "18 409477218238718" }, { "input": "409477218238719", "output": "18 409477218238718" }, { "input": "419477218238718", "output": "18 419466459294818" }, { "input": "415000000238718", "output": "18 414993991790735" }, { "input": "850085504652042", "output": "18 850085504652042" }, { "input": "850085504652041", "output": "18 850085504650655" }, { "input": "936302451687000", "output": "18 936302448662019" }, { "input": "936302451687001", "output": "18 936302448662019" }, { "input": "936302451686999", "output": "18 936302448662019" }, { "input": "1000000000000000", "output": "18 999999993541753" }, { "input": "780869426483087", "output": "18 780869407920631" }, { "input": "1000000000000000", "output": "18 999999993541753" }, { "input": "990000000000000", "output": "18 989983621692990" }, { "input": "999998169714888", "output": "18 999998150030846" }, { "input": "999971000299999", "output": "18 999969994441746" }, { "input": "999999999999999", "output": "18 999999993541753" }, { "input": "999986542686123", "output": "18 999969994441746" }, { "input": "899990298504716", "output": "18 899973747835553" }, { "input": "409477318238718", "output": "18 409477218238718" } ]
93
0
0
6,896
552
Vanya and Scales
[ "brute force", "dp", "greedy", "math", "meet-in-the-middle", "number theory" ]
null
null
Vanya has a scales for weighing loads and weights of masses *w*0,<=*w*1,<=*w*2,<=...,<=*w*100 grams where *w* is some integer not less than 2 (exactly one weight of each nominal value). Vanya wonders whether he can weight an item with mass *m* using the given weights, if the weights can be put on both pans of the scales. Formally speaking, your task is to determine whether it is possible to place an item of mass *m* and some weights on the left pan of the scales, and some weights on the right pan of the scales so that the pans of the scales were in balance.
The first line contains two integers *w*,<=*m* (2<=≀<=*w*<=≀<=109, 1<=≀<=*m*<=≀<=109) β€” the number defining the masses of the weights and the mass of the item.
Print word 'YES' if the item can be weighted and 'NO' if it cannot.
[ "3 7\n", "100 99\n", "100 50\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note to the first sample test. One pan can have an item of mass 7 and a weight of mass 3, and the second pan can have two weights of masses 9 and 1, correspondingly. Then 7 + 3 = 9 + 1. Note to the second sample test. One pan of the scales can have an item of mass 99 and the weight of mass 1, and the second pan can have the weight of mass 100. Note to the third sample test. It is impossible to measure the weight of the item in the manner described in the input.
[ { "input": "3 7", "output": "YES" }, { "input": "100 99", "output": "YES" }, { "input": "100 50", "output": "NO" }, { "input": "1000000000 1", "output": "YES" }, { "input": "100 10002", "output": "NO" }, { "input": "4 7", "output": "NO" }, { "input": "4 11", "output": "YES" }, { "input": "5 781", "output": "YES" }, { "input": "7 9", "output": "NO" }, { "input": "5077 5988", "output": "NO" }, { "input": "2 9596", "output": "YES" }, { "input": "4 1069", "output": "YES" }, { "input": "4 7134", "output": "NO" }, { "input": "4 9083", "output": "NO" }, { "input": "4 7927", "output": "NO" }, { "input": "4 6772", "output": "NO" }, { "input": "5 782", "output": "NO" }, { "input": "4 1000000000", "output": "NO" }, { "input": "4 357913941", "output": "YES" }, { "input": "4 357918037", "output": "NO" }, { "input": "5 12207031", "output": "YES" }, { "input": "5 41503906", "output": "YES" }, { "input": "5 90332031", "output": "NO" }, { "input": "11 1786324", "output": "YES" }, { "input": "10 999", "output": "YES" }, { "input": "8 28087", "output": "YES" }, { "input": "8 28598", "output": "NO" }, { "input": "32 33586176", "output": "YES" }, { "input": "87 56631258", "output": "YES" }, { "input": "19 20", "output": "YES" }, { "input": "58 11316496", "output": "YES" }, { "input": "89 89", "output": "YES" }, { "input": "21 85756882", "output": "YES" }, { "input": "56 540897225", "output": "YES" }, { "input": "91 8189", "output": "YES" }, { "input": "27 14329927", "output": "YES" }, { "input": "58 198535", "output": "YES" }, { "input": "939 938", "output": "YES" }, { "input": "27463 754243832", "output": "YES" }, { "input": "21427 459137757", "output": "YES" }, { "input": "26045 26045", "output": "YES" }, { "input": "25336 25336", "output": "YES" }, { "input": "24627 24626", "output": "YES" }, { "input": "29245 855299270", "output": "YES" }, { "input": "28536 814274759", "output": "YES" }, { "input": "33154 33155", "output": "YES" }, { "input": "27118 27119", "output": "YES" }, { "input": "70 338171", "output": "YES" }, { "input": "24 346226", "output": "NO" }, { "input": "41 2966964", "output": "NO" }, { "input": "31 29792", "output": "YES" }, { "input": "48 2402", "output": "NO" }, { "input": "65 4159", "output": "YES" }, { "input": "20 67376840", "output": "NO" }, { "input": "72 5111", "output": "YES" }, { "input": "27 14349609", "output": "YES" }, { "input": "44 89146", "output": "NO" }, { "input": "22787 519292944", "output": "NO" }, { "input": "24525 601475624", "output": "YES" }, { "input": "3716 13816089", "output": "NO" }, { "input": "4020 4020", "output": "YES" }, { "input": "13766 13767", "output": "YES" }, { "input": "23512 23511", "output": "YES" }, { "input": "23816 567225671", "output": "YES" }, { "input": "33562 33564", "output": "NO" }, { "input": "33866 33866", "output": "YES" }, { "input": "13057 13059", "output": "NO" }, { "input": "441890232 441890232", "output": "YES" }, { "input": "401739553 401739553", "output": "YES" }, { "input": "285681920 285681919", "output": "YES" }, { "input": "464591587 464591588", "output": "YES" }, { "input": "703722884 703722884", "output": "YES" }, { "input": "982276216 982276216", "output": "YES" }, { "input": "867871061 867871062", "output": "YES" }, { "input": "48433217 48433216", "output": "YES" }, { "input": "8 324818663", "output": "NO" }, { "input": "7 898367507", "output": "NO" }, { "input": "6 471916351", "output": "NO" }, { "input": "5 45465196", "output": "NO" }, { "input": "9 768757144", "output": "NO" }, { "input": "8 342305988", "output": "NO" }, { "input": "6 114457122", "output": "NO" }, { "input": "6 688005966", "output": "NO" }, { "input": "4 556522107", "output": "NO" }, { "input": "3 130070951", "output": "YES" }, { "input": "6 558395604", "output": "NO" }, { "input": "5 131944448", "output": "NO" }, { "input": "2 1000000", "output": "YES" }, { "input": "2 22222222", "output": "YES" }, { "input": "3 100000000", "output": "YES" }, { "input": "3 100000001", "output": "YES" }, { "input": "3 100000002", "output": "YES" }, { "input": "3 100000003", "output": "YES" }, { "input": "3 100000004", "output": "YES" }, { "input": "2 1", "output": "YES" }, { "input": "2 1000000000", "output": "YES" }, { "input": "3 1000000000", "output": "YES" }, { "input": "99999 1000000000", "output": "NO" }, { "input": "10 1000000000", "output": "YES" }, { "input": "1000 1000000000", "output": "YES" }, { "input": "10 999999999", "output": "YES" }, { "input": "100 99999999", "output": "YES" }, { "input": "1000 999999999", "output": "YES" }, { "input": "1000 999999998", "output": "NO" }, { "input": "2 536870912", "output": "YES" }, { "input": "10 99", "output": "YES" }, { "input": "10 8", "output": "NO" }, { "input": "3 5", "output": "YES" }, { "input": "3 26", "output": "YES" }, { "input": "10 8888", "output": "NO" }, { "input": "3 8", "output": "YES" }, { "input": "3 984742145", "output": "YES" }, { "input": "4 43", "output": "YES" }, { "input": "1000000000 1000000000", "output": "YES" }, { "input": "4194304 4194305", "output": "YES" }, { "input": "10 899", "output": "YES" }, { "input": "4 47", "output": "YES" }, { "input": "4 822083581", "output": "YES" }, { "input": "3 999987989", "output": "YES" }, { "input": "4 31", "output": "NO" }, { "input": "4 15", "output": "YES" }, { "input": "100000000 100000001", "output": "YES" } ]
93
307,200
0
6,897
985
Team Players
[ "combinatorics" ]
null
null
There are $n$ players numbered from $0$ to $n-1$ with ranks. The $i$-th player has rank $i$. Players can form teams: the team should consist of three players and no pair of players in the team should have a conflict. The rank of the team is calculated using the following algorithm: let $i$, $j$, $k$ be the ranks of players in the team and $i &lt; j &lt; k$, then the rank of the team is equal to $A \cdot i + B \cdot j + C \cdot k$. You are given information about the pairs of players who have a conflict. Calculate the total sum of ranks over all possible valid teams modulo $2^{64}$.
The first line contains two space-separated integers $n$ and $m$ ($3 \le n \le 2 \cdot 10^5$, $0 \le m \le 2 \cdot 10^5$) β€” the number of players and the number of conflicting pairs. The second line contains three space-separated integers $A$, $B$ and $C$ ($1 \le A, B, C \le 10^6$) β€” coefficients for team rank calculation. Each of the next $m$ lines contains two space-separated integers $u_i$ and $v_i$ ($0 \le u_i, v_i &lt; n, u_i \neq v_i$) β€” pair of conflicting players. It's guaranteed that each unordered pair of players appears in the input file no more than once.
Print single integer β€” the total sum of ranks over all possible teams modulo $2^{64}$.
[ "4 0\n2 3 4\n", "4 1\n2 3 4\n1 0\n", "6 4\n1 5 3\n0 3\n3 5\n5 4\n4 3\n" ]
[ "64\n", "38\n", "164\n" ]
In the first example all $4$ teams are valid, i.e. triples: {0, 1, 2}, {0, 1, 3}, {0, 2, 3} {1, 2, 3}. In the second example teams are following: {0, 2, 3}, {1, 2, 3}. In the third example teams are following: {0, 1, 2}, {0, 1, 4}, {0, 1, 5}, {0, 2, 4}, {0, 2, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}.
[ { "input": "4 0\n2 3 4", "output": "64" }, { "input": "4 1\n2 3 4\n1 0", "output": "38" }, { "input": "6 4\n1 5 3\n0 3\n3 5\n5 4\n4 3", "output": "164" }, { "input": "10 9\n1 1 1\n1 0\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9", "output": "1232" }, { "input": "3 0\n267702 32179 757671", "output": "1547521" }, { "input": "10 10\n266211 822328 581514\n8 0\n3 8\n0 3\n1 0\n6 3\n6 2\n1 5\n1 7\n2 1\n5 9", "output": "502871169" }, { "input": "200000 0\n241617 838043 567317", "output": "16810843645382122720" } ]
2,000
27,955,200
0
6,902
333
Lucky Tickets
[ "brute force", "constructive algorithms" ]
null
null
Gerald has a friend, Pollard. Pollard is interested in lucky tickets (ticket is a sequence of digits). At first he thought that a ticket is lucky if between some its digits we can add arithmetic signs and brackets so that the result obtained by the arithmetic expression was number 100. But he quickly analyzed all such tickets and moved on to a more general question. Now he explores *k*-lucky tickets. Pollard sais that a ticket is *k*-lucky if we can add arithmetic operation signs between its digits to the left or right of them (i.e., "+", "-", "<=Γ—<=") and brackets so as to obtain the correct arithmetic expression whose value would equal *k*. For example, ticket "224201016" is 1000-lucky as (<=-<=2<=-<=(2<=+<=4))<=Γ—<=(2<=+<=0)<=+<=1016<==<=1000. Pollard was so carried away by the lucky tickets that he signed up for a seminar on lucky tickets and, as far as Gerald knows, Pollard will attend it daily at 7 pm in some famous institute and will commute to it in the same tram for *m* days. In this tram tickets have eight digits. And Gerald wants to make a surprise for Pollard: each day Pollard will receive a tram *k*-lucky ticket. The conductor has already agreed to give Pollard certain tickets during all these *m* days and he only wants Gerald to tell him what kind of tickets to give out. In this regard, help Gerald pick exactly *m* distinct *k*-lucky tickets.
The single line contains two integers *k* and *m* (0<=≀<=*k*<=≀<=104, 1<=≀<=*m*<=≀<=3Β·105).
Print *m* lines. Each line must contain exactly 8 digits β€” the *k*-winning ticket. The tickets may begin with 0, all tickets must be distinct. If there are more than *m* distinct *k*-lucky tickets, print any *m* of them. It is guaranteed that at least *m* distinct *k*-lucky tickets exist. The tickets can be printed in any order.
[ "0 3\n", "7 4\n" ]
[ "00000000\n00000001\n00000002\n", "00000007\n00000016\n00000017\n00000018\n" ]
none
[ { "input": "0 3", "output": "00000000\n00000001\n00000002" }, { "input": "7 4", "output": "00000007\n00000016\n00000017\n00000018" }, { "input": "0 10000", "output": "00000000\n00000001\n00000002\n00000003\n00000004\n00000005\n00000006\n00000007\n00000008\n00000009\n00000010\n00000011\n00000012\n00000013\n00000014\n00000015\n00000016\n00000017\n00000018\n00000019\n00000020\n00000021\n00000022\n00000023\n00000024\n00000025\n00000026\n00000027\n00000028\n00000029\n00000030\n00000031\n00000032\n00000033\n00000034\n00000035\n00000036\n00000037\n00000038\n00000039\n00000040\n00000041\n00000042\n00000043\n00000044\n00000045\n00000046\n00000047\n00000048\n00000049\n00000050\n0..." }, { "input": "1 10000", "output": "00000001\n00000010\n00000011\n00000012\n00000021\n00000023\n00000031\n00000032\n00000034\n00000041\n00000043\n00000045\n00000051\n00000054\n00000056\n00000061\n00000065\n00000067\n00000071\n00000076\n00000078\n00000081\n00000087\n00000089\n00000091\n00000098\n00000100\n00000101\n00000102\n00000103\n00000104\n00000105\n00000106\n00000107\n00000108\n00000109\n00000110\n00000111\n00000112\n00000113\n00000120\n00000121\n00000122\n00000123\n00000124\n00000130\n00000131\n00000132\n00000133\n00000134\n00000135\n0..." }, { "input": "9999 10000", "output": "00009999\n00019999\n00019998\n00029999\n00029997\n00039999\n00039996\n00033333\n00049999\n00049995\n00059999\n00059994\n00069999\n00069993\n00079999\n00079992\n00089999\n00089991\n00099999\n00099990\n00091111\n00109999\n00109998\n00109989\n00119999\n00119998\n00119997\n00119988\n00110909\n00111019\n00111908\n00111909\n00111910\n00112907\n00112911\n00112999\n00113033\n00113303\n00113906\n00113912\n00113989\n00114905\n00114913\n00114979\n00115904\n00115914\n00115969\n00116903\n00116915\n00116959\n00117902\n0..." }, { "input": "9998 10000", "output": "00009998\n00019999\n00019998\n00019997\n00029998\n00029996\n00024999\n00039998\n00039995\n00049998\n00049994\n00059998\n00059993\n00069998\n00069992\n00079998\n00079991\n00089998\n00089990\n00099998\n00099989\n00109999\n00109998\n00109997\n00109988\n00119999\n00119998\n00119997\n00119996\n00114999\n00119987\n00129999\n00129998\n00129997\n00129996\n00124999\n00129995\n00129986\n00139998\n00139996\n00134999\n00139995\n00139994\n00139985\n00149998\n00149995\n00149994\n00149993\n00149984\n00159998\n00159994\n0..." }, { "input": "9997 10000", "output": "00009997\n00019998\n00019997\n00019996\n00029999\n00029997\n00029995\n00039997\n00039994\n00049997\n00049993\n00059997\n00059992\n00069997\n00069991\n00079997\n00079990\n00089997\n00089989\n00099997\n00099988\n00109998\n00109997\n00109996\n00109987\n00119999\n00119998\n00119997\n00119996\n00119995\n00119986\n00129999\n00129998\n00129997\n00129996\n00129995\n00129994\n00129985\n00139999\n00139997\n00139995\n00139994\n00139993\n00139984\n00130769\n00131768\n00131769\n00131770\n00131896\n00131968\n00132767\n0..." }, { "input": "9973 10000", "output": "00009973\n00019974\n00019973\n00019972\n00029975\n00029973\n00029971\n00039976\n00039973\n00039970\n00049977\n00049973\n00049969\n00059978\n00059973\n00059968\n00069979\n00069973\n00069967\n00079980\n00079973\n00079966\n00089981\n00089973\n00089965\n00099982\n00099973\n00099964\n00109974\n00109973\n00109972\n00109963\n00119975\n00119974\n00119973\n00119972\n00119971\n00119962\n00129976\n00129975\n00129974\n00129973\n00129972\n00129971\n00129970\n00129961\n00139977\n00139976\n00139975\n00139973\n00139971\n0..." }, { "input": "0 300000", "output": "00000000\n00000001\n00000002\n00000003\n00000004\n00000005\n00000006\n00000007\n00000008\n00000009\n00000010\n00000011\n00000012\n00000013\n00000014\n00000015\n00000016\n00000017\n00000018\n00000019\n00000020\n00000021\n00000022\n00000023\n00000024\n00000025\n00000026\n00000027\n00000028\n00000029\n00000030\n00000031\n00000032\n00000033\n00000034\n00000035\n00000036\n00000037\n00000038\n00000039\n00000040\n00000041\n00000042\n00000043\n00000044\n00000045\n00000046\n00000047\n00000048\n00000049\n00000050\n0..." }, { "input": "1 300000", "output": "00000001\n00000010\n00000011\n00000012\n00000021\n00000023\n00000031\n00000032\n00000034\n00000041\n00000043\n00000045\n00000051\n00000054\n00000056\n00000061\n00000065\n00000067\n00000071\n00000076\n00000078\n00000081\n00000087\n00000089\n00000091\n00000098\n00000100\n00000101\n00000102\n00000103\n00000104\n00000105\n00000106\n00000107\n00000108\n00000109\n00000110\n00000111\n00000112\n00000113\n00000120\n00000121\n00000122\n00000123\n00000124\n00000130\n00000131\n00000132\n00000133\n00000134\n00000135\n0..." }, { "input": "10000 300000", "output": "00019999\n00029998\n00025000\n00026258\n00028625\n00039997\n00049996\n00042500\n00044625\n00045005\n00045050\n00045500\n00046254\n00059995\n00052000\n00052508\n00052580\n00054005\n00054050\n00054500\n00055004\n00055040\n00055058\n00055085\n00055400\n00055508\n00055580\n00055805\n00055850\n00058025\n00058055\n00058250\n00058505\n00058550\n00069994\n00079993\n00089992\n00081250\n00082505\n00082550\n00082625\n00085025\n00085055\n00085250\n00085505\n00085550\n00086252\n00099991\n00109999\n00109990\n00101000\n0..." }, { "input": "9999 300000", "output": "00009999\n00019999\n00019998\n00029999\n00029997\n00039999\n00039996\n00033333\n00049999\n00049995\n00059999\n00059994\n00069999\n00069993\n00079999\n00079992\n00089999\n00089991\n00099999\n00099990\n00091111\n00109999\n00109998\n00109989\n00119999\n00119998\n00119997\n00119988\n00110909\n00111019\n00111908\n00111909\n00111910\n00112907\n00112911\n00112999\n00113033\n00113303\n00113906\n00113912\n00113989\n00114905\n00114913\n00114979\n00115904\n00115914\n00115969\n00116903\n00116915\n00116959\n00117902\n0..." }, { "input": "9973 300000", "output": "00009973\n00019974\n00019973\n00019972\n00029975\n00029973\n00029971\n00039976\n00039973\n00039970\n00049977\n00049973\n00049969\n00059978\n00059973\n00059968\n00069979\n00069973\n00069967\n00079980\n00079973\n00079966\n00089981\n00089973\n00089965\n00099982\n00099973\n00099964\n00109974\n00109973\n00109972\n00109963\n00119975\n00119974\n00119973\n00119972\n00119971\n00119962\n00129976\n00129975\n00129974\n00129973\n00129972\n00129971\n00129970\n00129961\n00139977\n00139976\n00139975\n00139973\n00139971\n0..." }, { "input": "9998 300000", "output": "00009998\n00019999\n00019998\n00019997\n00029998\n00029996\n00024999\n00039998\n00039995\n00049998\n00049994\n00059998\n00059993\n00069998\n00069992\n00079998\n00079991\n00089998\n00089990\n00099998\n00099989\n00109999\n00109998\n00109997\n00109988\n00119999\n00119998\n00119997\n00119996\n00114999\n00119987\n00129999\n00129998\n00129997\n00129996\n00124999\n00129995\n00129986\n00139998\n00139996\n00134999\n00139995\n00139994\n00139985\n00149998\n00149995\n00149994\n00149993\n00149984\n00159998\n00159994\n0..." }, { "input": "2 10000", "output": "00000002\n00000011\n00000012\n00000013\n00000020\n00000021\n00000022\n00000024\n00000031\n00000032\n00000035\n00000042\n00000046\n00000052\n00000053\n00000057\n00000062\n00000064\n00000068\n00000072\n00000075\n00000079\n00000082\n00000086\n00000092\n00000097\n00000101\n00000102\n00000103\n00000108\n00000110\n00000111\n00000112\n00000113\n00000114\n00000119\n00000120\n00000121\n00000122\n00000123\n00000124\n00000125\n00000130\n00000131\n00000132\n00000134\n00000135\n00000136\n00000141\n00000142\n00000143\n0..." }, { "input": "3 10000", "output": "00000003\n00000012\n00000013\n00000014\n00000021\n00000023\n00000025\n00000030\n00000031\n00000033\n00000036\n00000041\n00000043\n00000047\n00000052\n00000053\n00000058\n00000063\n00000069\n00000073\n00000074\n00000083\n00000085\n00000093\n00000096\n00000102\n00000103\n00000104\n00000107\n00000111\n00000112\n00000113\n00000114\n00000115\n00000118\n00000120\n00000121\n00000122\n00000123\n00000124\n00000125\n00000126\n00000129\n00000130\n00000131\n00000133\n00000135\n00000136\n00000137\n00000140\n00000141\n0..." }, { "input": "4 10000", "output": "00000004\n00000013\n00000014\n00000015\n00000022\n00000024\n00000026\n00000031\n00000034\n00000037\n00000040\n00000041\n00000044\n00000048\n00000051\n00000054\n00000059\n00000062\n00000064\n00000073\n00000074\n00000084\n00000094\n00000095\n00000103\n00000104\n00000105\n00000106\n00000112\n00000113\n00000114\n00000115\n00000116\n00000117\n00000121\n00000122\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000130\n00000131\n00000132\n00000134\n00000136\n00000137\n00000138\n00000139\n00000140\n0..." }, { "input": "5 10000", "output": "00000005\n00000014\n00000015\n00000016\n00000023\n00000025\n00000027\n00000032\n00000035\n00000038\n00000041\n00000045\n00000049\n00000050\n00000051\n00000055\n00000061\n00000065\n00000072\n00000075\n00000083\n00000085\n00000094\n00000095\n00000104\n00000105\n00000106\n00000113\n00000114\n00000115\n00000116\n00000117\n00000122\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000131\n00000132\n00000133\n00000135\n00000137\n00000138\n00000139\n00000140\n00000141\n00000142\n00000145\n00000148\n0..." }, { "input": "7 10000", "output": "00000007\n00000016\n00000017\n00000018\n00000025\n00000027\n00000029\n00000034\n00000037\n00000043\n00000047\n00000052\n00000057\n00000061\n00000067\n00000070\n00000071\n00000077\n00000081\n00000087\n00000092\n00000097\n00000103\n00000106\n00000107\n00000108\n00000114\n00000115\n00000116\n00000117\n00000118\n00000119\n00000123\n00000124\n00000125\n00000126\n00000127\n00000128\n00000129\n00000132\n00000133\n00000134\n00000135\n00000136\n00000137\n00000139\n00000142\n00000143\n00000144\n00000147\n00000151\n0..." }, { "input": "14 10000", "output": "00000014\n00000027\n00000059\n00000068\n00000072\n00000077\n00000086\n00000095\n00000104\n00000113\n00000114\n00000115\n00000117\n00000122\n00000127\n00000131\n00000135\n00000137\n00000140\n00000141\n00000149\n00000151\n00000153\n00000158\n00000159\n00000162\n00000167\n00000168\n00000169\n00000172\n00000173\n00000176\n00000177\n00000178\n00000182\n00000184\n00000185\n00000186\n00000187\n00000194\n00000195\n00000196\n00000206\n00000207\n00000212\n00000214\n00000216\n00000217\n00000218\n00000225\n00000226\n0..." }, { "input": "9996 10000", "output": "00009996\n00019997\n00019996\n00019995\n00029998\n00029996\n00029994\n00024998\n00025198\n00026833\n00027147\n00027714\n00028336\n00029851\n00039999\n00039996\n00039993\n00033332\n00033498\n00034767\n00034833\n00034968\n00036849\n00036877\n00037476\n00037687\n00037768\n00038334\n00039834\n00049996\n00049992\n00042499\n00043577\n00043833\n00044951\n00045149\n00045177\n00047357\n00047517\n00047751\n00048333\n00059996\n00059991\n00069996\n00069990\n00061666\n00061798\n00062387\n00062833\n00063449\n00063477\n0..." }, { "input": "10 10000", "output": "00000010\n00000019\n00000025\n00000028\n00000037\n00000046\n00000052\n00000055\n00000064\n00000073\n00000082\n00000091\n00000100\n00000101\n00000109\n00000110\n00000111\n00000115\n00000118\n00000119\n00000122\n00000125\n00000127\n00000128\n00000129\n00000133\n00000135\n00000136\n00000137\n00000138\n00000142\n00000144\n00000145\n00000146\n00000147\n00000152\n00000154\n00000155\n00000156\n00000162\n00000163\n00000164\n00000165\n00000166\n00000172\n00000173\n00000174\n00000177\n00000181\n00000182\n00000183\n0..." }, { "input": "256 10000", "output": "00000256\n00000328\n00000464\n00000488\n00000644\n00000832\n00000848\n00000884\n00001255\n00001256\n00001257\n00001282\n00001318\n00001328\n00001338\n00001364\n00001385\n00001388\n00001464\n00001488\n00001515\n00001551\n00001564\n00001588\n00001616\n00001628\n00001634\n00001644\n00001654\n00001679\n00001682\n00001688\n00001697\n00001732\n00001748\n00001784\n00001794\n00001832\n00001848\n00001853\n00001884\n00001932\n00001948\n00001974\n00001984\n00002128\n00002168\n00002254\n00002258\n00002264\n00002288\n0..." }, { "input": "9240 10000", "output": "00009240\n00019241\n00019240\n00019239\n00029242\n00029240\n00029238\n00024620\n00025584\n00025924\n00026077\n00026607\n00026670\n00026770\n00027066\n00027660\n00027706\n00027760\n00028455\n00029245\n00039243\n00039240\n00039237\n00033080\n00033588\n00033858\n00034077\n00034407\n00034470\n00034770\n00035556\n00035578\n00035587\n00035616\n00035655\n00035778\n00035788\n00035877\n00035887\n00036165\n00037044\n00037440\n00037558\n00037588\n00037704\n00037740\n00037758\n00037785\n00037855\n00037885\n00038385\n0..." }, { "input": "7560 10000", "output": "00007560\n00008409\n00008490\n00008945\n00009084\n00009458\n00009840\n00017561\n00017560\n00018409\n00018490\n00018945\n00019084\n00019458\n00019840\n00017559\n00027562\n00027560\n00028409\n00028490\n00028945\n00029084\n00029458\n00029840\n00027558\n00023780\n00024209\n00024290\n00024584\n00024945\n00025407\n00025470\n00025756\n00025849\n00025984\n00026063\n00026079\n00026097\n00026306\n00026360\n00026630\n00026709\n00026790\n00026907\n00026970\n00027054\n00027069\n00027096\n00027540\n00027565\n00027609\n0..." }, { "input": "13 10000", "output": "00000013\n00000049\n00000058\n00000067\n00000076\n00000085\n00000094\n00000103\n00000112\n00000113\n00000114\n00000121\n00000126\n00000127\n00000130\n00000131\n00000134\n00000139\n00000141\n00000143\n00000148\n00000149\n00000152\n00000157\n00000158\n00000159\n00000162\n00000163\n00000166\n00000167\n00000168\n00000172\n00000174\n00000175\n00000176\n00000177\n00000184\n00000185\n00000186\n00000193\n00000194\n00000195\n00000196\n00000207\n00000211\n00000213\n00000215\n00000218\n00000229\n00000235\n00000237\n0..." }, { "input": "9949 10000", "output": "00009949\n00019950\n00019949\n00019948\n00029951\n00029949\n00029947\n00039952\n00039949\n00039946\n00049953\n00049949\n00049945\n00059954\n00059949\n00059944\n00069955\n00069949\n00069943\n00079956\n00079949\n00079942\n00089957\n00089949\n00089941\n00099958\n00099949\n00099940\n00109950\n00109949\n00109948\n00109939\n00119951\n00119950\n00119949\n00119948\n00119947\n00119938\n00129952\n00129951\n00129950\n00129949\n00129948\n00129947\n00129946\n00129937\n00139953\n00139952\n00139951\n00139949\n00139947\n0..." }, { "input": "9901 10000", "output": "00009901\n00019902\n00019901\n00019900\n00029903\n00029901\n00029899\n00039904\n00039901\n00039898\n00049905\n00049901\n00049897\n00059906\n00059901\n00059896\n00069907\n00069901\n00069895\n00079908\n00079901\n00079894\n00089909\n00089901\n00089893\n00099910\n00099901\n00099892\n00109902\n00109901\n00109900\n00109891\n00119903\n00119902\n00119901\n00119900\n00119899\n00119890\n00129904\n00129903\n00129902\n00129901\n00129900\n00129899\n00129898\n00129889\n00139905\n00139904\n00139903\n00139901\n00139899\n0..." }, { "input": "0 1", "output": "00000000" }, { "input": "10000 1", "output": "00019999" }, { "input": "10000 10000", "output": "00019999\n00029998\n00025000\n00026258\n00028625\n00039997\n00049996\n00042500\n00044625\n00045005\n00045050\n00045500\n00046254\n00059995\n00052000\n00052508\n00052580\n00054005\n00054050\n00054500\n00055004\n00055040\n00055058\n00055085\n00055400\n00055508\n00055580\n00055805\n00055850\n00058025\n00058055\n00058250\n00058505\n00058550\n00069994\n00079993\n00089992\n00081250\n00082505\n00082550\n00082625\n00085025\n00085055\n00085250\n00085505\n00085550\n00086252\n00099991\n00109999\n00109990\n00101000\n0..." }, { "input": "1234 123", "output": "00001234\n00002617\n00006172\n00011235\n00011395\n00011965\n00012475\n00014995\n00015247\n00015895\n00016519\n00016795\n00017695\n00018595\n00019495\n00019513\n00019549\n00019558\n00019567\n00019576\n00019585\n00019594\n00011234\n00012617\n00016172\n00011233\n00011379\n00013411\n00014113\n00019137\n00021236\n00022066\n00022618\n00023094\n00023412\n00024123\n00024309\n00026182\n00026206\n00021234\n00022617\n00026172\n00021232\n00021488\n00021548\n00021677\n00021767\n00022256\n00022278\n00022287\n00022616\n0..." } ]
46
0
0
6,919
257
View Angle
[ "brute force", "geometry", "math" ]
null
null
Flatland has recently introduced a new type of an eye check for the driver's licence. The check goes like that: there is a plane with mannequins standing on it. You should tell the value of the minimum angle with the vertex at the origin of coordinates and with all mannequins standing inside or on the boarder of this angle. As you spend lots of time "glued to the screen", your vision is impaired. So you have to write a program that will pass the check for you.
The first line contains a single integer *n* (1<=≀<=*n*<=≀<=105) β€” the number of mannequins. Next *n* lines contain two space-separated integers each: *x**i*,<=*y**i* (|*x**i*|,<=|*y**i*|<=≀<=1000) β€” the coordinates of the *i*-th mannequin. It is guaranteed that the origin of the coordinates has no mannequin. It is guaranteed that no two mannequins are located in the same point on the plane.
Print a single real number β€” the value of the sought angle in degrees. The answer will be considered valid if the relative or absolute error doesn't exceed 10<=-<=6.
[ "2\n2 0\n0 2\n", "3\n2 0\n0 2\n-2 2\n", "4\n2 0\n0 2\n-2 0\n0 -2\n", "2\n2 1\n1 2\n" ]
[ "90.0000000000\n", "135.0000000000\n", "270.0000000000\n", "36.8698976458\n" ]
Solution for the first sample test is shown below: Solution for the second sample test is shown below: Solution for the third sample test is shown below: Solution for the fourth sample test is shown below:
[ { "input": "2\n2 0\n0 2", "output": "90.0000000000" }, { "input": "3\n2 0\n0 2\n-2 2", "output": "135.0000000000" }, { "input": "4\n2 0\n0 2\n-2 0\n0 -2", "output": "270.0000000000" }, { "input": "2\n2 1\n1 2", "output": "36.8698976458" }, { "input": "1\n1 1", "output": "0.0000000000" }, { "input": "10\n9 7\n10 7\n6 5\n6 10\n7 6\n5 10\n6 7\n10 9\n5 5\n5 8", "output": "28.4429286244" }, { "input": "10\n-1 28\n1 28\n1 25\n0 23\n-1 24\n-1 22\n1 27\n0 30\n1 22\n1 21", "output": "5.3288731964" }, { "input": "10\n-5 9\n-10 6\n-8 8\n-9 9\n-6 5\n-8 9\n-5 7\n-6 6\n-5 10\n-8 7", "output": "32.4711922908" }, { "input": "10\n6 -9\n9 -5\n10 -5\n7 -5\n8 -7\n8 -10\n8 -5\n6 -10\n7 -6\n8 -9", "output": "32.4711922908" }, { "input": "10\n-5 -7\n-8 -10\n-9 -5\n-5 -9\n-9 -8\n-7 -7\n-6 -8\n-6 -10\n-10 -7\n-9 -6", "output": "31.8907918018" }, { "input": "10\n-1 -29\n-1 -26\n1 -26\n-1 -22\n-1 -24\n-1 -21\n1 -24\n-1 -20\n-1 -23\n-1 -25", "output": "5.2483492565" }, { "input": "10\n21 0\n22 1\n30 0\n20 0\n28 0\n29 0\n21 -1\n30 1\n24 1\n26 0", "output": "5.3288731964" }, { "input": "10\n-20 0\n-22 1\n-26 0\n-22 -1\n-30 -1\n-30 0\n-28 0\n-24 1\n-23 -1\n-29 1", "output": "5.2051244050" }, { "input": "10\n-5 -5\n5 -5\n-4 -5\n4 -5\n1 -5\n0 -5\n3 -5\n-2 -5\n2 -5\n-3 -5", "output": "90.0000000000" }, { "input": "10\n-5 -5\n-4 -5\n-2 -5\n4 -5\n5 -5\n3 -5\n2 -5\n-1 -5\n-3 -5\n0 -5", "output": "90.0000000000" }, { "input": "10\n-1 -5\n-5 -5\n2 -5\n-2 -5\n1 -5\n5 -5\n0 -5\n3 -5\n-4 -5\n-3 -5", "output": "90.0000000000" }, { "input": "10\n-1 -5\n-5 -5\n-4 -5\n3 -5\n0 -5\n4 -5\n1 -5\n-2 -5\n5 -5\n-3 -5", "output": "90.0000000000" }, { "input": "10\n5 -5\n4 -5\n-1 -5\n1 -5\n-4 -5\n3 -5\n0 -5\n-5 -5\n-2 -5\n-3 -5", "output": "90.0000000000" }, { "input": "10\n2 -5\n-4 -5\n-2 -5\n4 -5\n-5 -5\n-1 -5\n0 -5\n-3 -5\n3 -5\n1 -5", "output": "83.6598082541" }, { "input": "5\n2 1\n0 1\n2 -1\n-2 -1\n2 0", "output": "233.1301023542" }, { "input": "5\n-2 -2\n2 2\n2 -1\n-2 0\n1 -1", "output": "225.0000000000" }, { "input": "5\n0 -2\n-2 -1\n-1 2\n0 -1\n-1 0", "output": "153.4349488229" }, { "input": "5\n-1 -1\n-2 -1\n1 0\n-1 -2\n-1 1", "output": "225.0000000000" }, { "input": "5\n1 -1\n0 2\n-2 2\n-2 1\n2 1", "output": "198.4349488229" }, { "input": "5\n2 2\n1 2\n-2 -1\n1 1\n-2 -2", "output": "180.0000000000" }, { "input": "2\n1 1\n2 2", "output": "0.0000000000" }, { "input": "27\n-592 -96\n-925 -150\n-111 -18\n-259 -42\n-370 -60\n-740 -120\n-629 -102\n-333 -54\n-407 -66\n-296 -48\n-37 -6\n-999 -162\n-222 -36\n-555 -90\n-814 -132\n-444 -72\n-74 -12\n-185 -30\n-148 -24\n-962 -156\n-777 -126\n-518 -84\n-888 -144\n-666 -108\n-481 -78\n-851 -138\n-703 -114", "output": "0.0000000000" }, { "input": "38\n96 416\n24 104\n6 26\n12 52\n210 910\n150 650\n54 234\n174 754\n114 494\n18 78\n90 390\n36 156\n222 962\n186 806\n126 546\n78 338\n108 468\n180 780\n120 520\n84 364\n66 286\n138 598\n30 130\n228 988\n72 312\n144 624\n198 858\n60 260\n48 208\n102 442\n42 182\n162 702\n132 572\n156 676\n204 884\n216 936\n168 728\n192 832", "output": "0.0000000000" }, { "input": "14\n-2 -134\n-4 -268\n-11 -737\n-7 -469\n-14 -938\n-10 -670\n-3 -201\n-1 -67\n-9 -603\n-6 -402\n-13 -871\n-12 -804\n-8 -536\n-5 -335", "output": "0.0000000000" }, { "input": "14\n588 938\n420 670\n210 335\n252 402\n504 804\n126 201\n42 67\n546 871\n294 469\n84 134\n336 536\n462 737\n168 268\n378 603", "output": "0.0000000000" }, { "input": "20\n-45 147\n-240 784\n-135 441\n-60 196\n-105 343\n-285 931\n-195 637\n-300 980\n-165 539\n-210 686\n-75 245\n-15 49\n-30 98\n-270 882\n-120 392\n-90 294\n-150 490\n-180 588\n-255 833\n-225 735", "output": "0.0000000000" }, { "input": "2\n1 1\n1 -1", "output": "90.0000000000" } ]
560
4,915,200
0
6,921
391
Genetic Engineering
[ "implementation", "two pointers" ]
null
null
You will receive 3 points for solving this problem. Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'. Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string "GTTAAAG". It contains four maximal sequences of consecutive identical nucleotides: "G", "TT", "AAA", and "G". The protein is nonfunctional because sequence "TT" has even length. Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.
The input consists of a single line, containing a string *s* of length *n* (1<=≀<=*n*<=≀<=100). Each character of *s* will be from the set {'A', 'T', 'G', 'C'}. This problem doesn't have subproblems. You will get 3 points for the correct submission.
The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.
[ "GTTAAAG\n", "AACCAACCAAAAC\n" ]
[ "1\n", "5\n" ]
In the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein.
[ { "input": "GTTAAAG", "output": "1" }, { "input": "AACCAACCAAAAC", "output": "5" }, { "input": "GTGAATTTCC", "output": "2" }, { "input": "CAGGGGGCCGCCCATGAAAAAAACCCGGCCCCTTGGGAAAACTTGGGTTA", "output": "7" }, { "input": "CCCTTCACCCGGATCCAAATCCCTTAGAAATAATCCCCGACGGCGTTGTATCACCTCTGCACTTGTTAGTAAGGTCAGGCGTCCATTACGGAAGAACGTA", "output": "19" }, { "input": "GCATTACATGGGGGGGTCCTACGAGCCCGGCATCCCGGAAACTAGCCGGTTAATTTGGTTTAAACCCTCCCACCCCGGATTGTAACCCCCCTCATTGGTT", "output": "17" }, { "input": "TTCCCAGAGAAAAAAAGGGGCCCAAATGCCCTAAAAACCCCCTTTGCCCCCCAACCCCTTTTTAAAATAAAAAGGGGCCCATTCCCTTAAAAATTTTTTG", "output": "10" }, { "input": "AGCCGCCCCCCCAAAAAAGGGGGAAAAAAAAAAAAAAAAAAAAACTTTTGGAAACCCCCCCCTTTTTTTTTTTTTTTTTTTTTTTTTGGGGAAGGGGGGG", "output": "7" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "1" }, { "input": "AAAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTGGGGGGGGGGGGGGGGGGGGAAAAATTTT", "output": "5" }, { "input": "AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTCCGG", "output": "50" }, { "input": "A", "output": "0" }, { "input": "TTT", "output": "0" }, { "input": "GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "0" }, { "input": "G", "output": "0" }, { "input": "T", "output": "0" }, { "input": "C", "output": "0" }, { "input": "AA", "output": "1" }, { "input": "GGG", "output": "0" }, { "input": "AAG", "output": "1" } ]
109
0
3
6,944
900
Unusual Sequences
[ "bitmasks", "combinatorics", "dp", "math", "number theory" ]
null
null
Count the number of distinct sequences *a*1,<=*a*2,<=...,<=*a**n* (1<=≀<=*a**i*) consisting of positive integers such that *gcd*(*a*1,<=*a*2,<=...,<=*a**n*)<==<=*x* and . As this number could be large, print the answer modulo 109<=+<=7. *gcd* here means the [greatest common divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor).
The only line contains two positive integers *x* and *y* (1<=≀<=*x*,<=*y*<=≀<=109).
Print the number of such sequences modulo 109<=+<=7.
[ "3 9\n", "5 8\n" ]
[ "3\n", "0\n" ]
There are three suitable sequences in the first test: (3, 3, 3), (3, 6), (6, 3). There are no suitable sequences in the second test.
[ { "input": "3 9", "output": "3" }, { "input": "5 8", "output": "0" }, { "input": "2 12", "output": "27" }, { "input": "1 8", "output": "120" }, { "input": "1 9", "output": "252" }, { "input": "1000000000 1000000000", "output": "1" }, { "input": "1000000000 1", "output": "0" }, { "input": "1 1000000000", "output": "824916815" }, { "input": "1 223092870", "output": "521342052" }, { "input": "1 1", "output": "1" }, { "input": "1 994593600", "output": "558135120" }, { "input": "1 425613469", "output": "455729363" }, { "input": "495219 444706662", "output": "115165527" }, { "input": "9357 18255507", "output": "745979764" }, { "input": "741547455 471761895", "output": "0" }, { "input": "225 315096300", "output": "413133630" }, { "input": "183612440 509579899", "output": "0" }, { "input": "231096994 462193988", "output": "1" }, { "input": "34601 35742833", "output": "60054095" }, { "input": "417485019 230941257", "output": "0" }, { "input": "524 991033864", "output": "172439543" }, { "input": "859550004 563726557", "output": "0" }, { "input": "1 282521795", "output": "436596181" }, { "input": "415879151 194713963", "output": "0" }, { "input": "109936444 989427996", "output": "252" } ]
109
0
0
6,945
28
Bender Problem
[ "implementation" ]
A. Bender Problem
2
256
Robot Bender decided to make Fray a birthday present. He drove *n* nails and numbered them from 1 to *n* in some order. Bender decided to make a picture using metal rods. The picture is a closed polyline, which vertices should be nails (in the given order). The segments of the polyline should be parallel to the coordinate axes. Polyline is allowed to have self-intersections. Bender can take a rod and fold it exactly once in any place to form an angle of 90 degrees. Then he can attach the place of the fold to some unoccupied nail and attach two ends of this rod to adjacent nails. A nail is considered unoccupied if there is no rod attached to it (neither by it's end nor the by the fold place). No rod could be used twice. It is not required to use all the rods. Help Bender to solve this difficult task.
The first line contains two positive integers *n* and *m* (4<=≀<=*n*<=≀<=500,<=2<=≀<=*m*<=≀<=500, *n* is even) β€” the amount of nails and the amount of rods. *i*-th of the following *n* lines contains a pair of integers, denoting the coordinates of the *i*-th nail. Nails should be connected in the same order as they are given in the input. The last line contains *m* integers β€” the lenghts of the rods. All coordinates do not exceed 104 by absolute value. Lengths of the rods are between 1 and 200<=000. No rod can be used twice. It is guaranteed that all segments of the given polyline are parallel to coordinate axes. No three consecutive nails lie on the same line.
If it is impossible to solve Bender's problem, output NO. Otherwise, output YES in the first line, and in the second line output *n* numbers β€” *i*-th of them should be the number of rod, which fold place is attached to the *i*-th nail, or -1, if there is no such rod. If there are multiple solutions, print any of them.
[ "4 2\n0 0\n0 2\n2 2\n2 0\n4 4\n", "6 3\n0 0\n1 0\n1 1\n2 1\n2 2\n0 2\n3 2 3\n", "6 3\n0 0\n1 0\n1 1\n2 1\n2 2\n0 2\n2 2 3\n" ]
[ "YES\n1 -1 2 -1 \n", "YES\n1 -1 2 -1 3 -1 \n", "NO\n" ]
none
[ { "input": "4 2\n0 0\n0 2\n2 2\n2 0\n4 4", "output": "YES\n1 -1 2 -1 " }, { "input": "6 3\n0 0\n1 0\n1 1\n2 1\n2 2\n0 2\n3 2 3", "output": "YES\n1 -1 2 -1 3 -1 " }, { "input": "6 3\n0 0\n1 0\n1 1\n2 1\n2 2\n0 2\n2 2 3", "output": "NO" }, { "input": "4 4\n0 0\n0 1\n1 1\n1 0\n1 1 1 1", "output": "NO" }, { "input": "6 2\n0 0\n1 0\n1 1\n2 1\n2 2\n0 2\n2 2", "output": "NO" }, { "input": "6 3\n0 0\n2 0\n2 2\n1 2\n1 1\n0 1\n4 2 2", "output": "YES\n-1 1 -1 2 -1 3 " }, { "input": "4 4\n-8423 7689\n6902 7689\n6902 2402\n-8423 2402\n20612 20612 91529 35617", "output": "YES\n1 -1 2 -1 " }, { "input": "4 4\n1679 -198\n9204 -198\n9204 -5824\n1679 -5824\n18297 92466 187436 175992", "output": "NO" }, { "input": "4 2\n0 0\n0 2\n2 2\n2 0\n200000 200000", "output": "NO" } ]
122
614,400
3.968356
6,953
622
The Sum of the k-th Powers
[ "math" ]
null
null
There are well-known formulas: , , . Also mathematicians found similar formulas for higher degrees. Find the value of the sum modulo 109<=+<=7 (so you should find the remainder after dividing the answer by the value 109<=+<=7).
The only line contains two integers *n*,<=*k* (1<=≀<=*n*<=≀<=109,<=0<=≀<=*k*<=≀<=106).
Print the only integer *a* β€” the remainder after dividing the value of the sum by the value 109<=+<=7.
[ "4 1\n", "4 2\n", "4 3\n", "4 0\n" ]
[ "10\n", "30\n", "100\n", "4\n" ]
none
[ { "input": "4 1", "output": "10" }, { "input": "4 2", "output": "30" }, { "input": "4 3", "output": "100" }, { "input": "4 0", "output": "4" }, { "input": "10 0", "output": "10" }, { "input": "1 1", "output": "1" }, { "input": "1 0", "output": "1" }, { "input": "1 1000000", "output": "1" }, { "input": "1000000000 0", "output": "1000000000" }, { "input": "100 100", "output": "568830579" }, { "input": "10000 100", "output": "352711099" }, { "input": "100 10000", "output": "859998022" }, { "input": "1000000000 1000000", "output": "617381606" }, { "input": "1000000 1000000", "output": "997878755" }, { "input": "999999 1000000", "output": "504760730" }, { "input": "77674473 447444", "output": "838207299" }, { "input": "333312494 795258", "output": "393290476" }, { "input": "761637147 673329", "output": "223778667" }, { "input": "335185991 514401", "output": "412595240" }, { "input": "203702132 355473", "output": "229710810" }, { "input": "1000000000 999935", "output": "729344740" } ]
2,000
0
0
6,957
908
New Year and Original Order
[ "dp", "math" ]
null
null
Let *S*(*n*) denote the number that represents the digits of *n* in sorted order. For example, *S*(1)<==<=1,<=*S*(5)<==<=5,<=*S*(50394)<==<=3459,<=*S*(353535)<==<=333555. Given a number *X*, compute modulo 109<=+<=7.
The first line of input will contain the integer *X* (1<=≀<=*X*<=≀<=10700).
Print a single integer, the answer to the question.
[ "21\n", "345342\n" ]
[ "195\n", "390548434\n" ]
The first few values of *S* are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 12. The sum of these values is 195.
[ { "input": "21", "output": "195" }, { "input": "345342", "output": "390548434" }, { "input": "9438174368", "output": "419438859" }, { "input": "33340691714056185860211260984431382156326935244157", "output": "683387308" }, { "input": "60659389952427965488066632743799525603106037644498358605868947137979908494800892265261453803791510334840960342863677552781925982028425181448855359993703120262947850907075964314040305228976226486729250", "output": "654963480" }, { "input": "44649014054971081213608137817466046254652492627741860478258558206397113198232823859870363821007188476405951611069347299689170240023979048198711745011542774268179055311013054073075176122755643483380248999657649211459997766221072399103579977409770898200358240970169892326442892826731631357561876251276209119521202062222947560634301788787748428236988789594458520867663257476744168528121470923031438015546006185059454402637036376247785881323277542968298682307854655591317046086531554595892680980142608410", "output": "382433601" }, { "input": "87180", "output": "273914491" }, { "input": "404075833601771942667259010375375556744823902383758960785823552761999143572376325949809260679742124753881851158698439457386070260861271136645763680151691355801985707548363664714643023957647369701126324673656050885747545042127147214166479318245077239696802674619402305982303576335159698484641718860881491887951521487208762", "output": "770789762" } ]
2,000
5,529,600
0
6,977
46
T-shirts from Sponsor
[ "implementation" ]
B. T-shirts from Sponsor
2
256
One day a well-known sponsor of a well-known contest decided to give every participant of the contest a T-shirt as a present. A natural problem occurred: on the one hand, it is not clear how many T-shirts of what sizes should be ordered, and on the other hand, one doesn't want to order too many T-shirts (and we do not exactly paper the walls with the oversupply). After considerable brain racking and some pre-estimating, the sponsor representatives ordered a certain number of T-shirts of sizes S, M, L, XL and XXL. The T-shirts turned out to bring good luck, that's why on the contest day there built up a line of *K* participants willing to get one. Every contestant is characterized by his/her desired T-shirt size (so it happens that for all the participants it is also one of the sizes S, M, L, XL and XXL). The participants come up to get a T-shirt one by one and try to choose the most suitable one, choosing it like this. If there is still a T-shirt of the optimal size left, that he/she takes it without further ado. Otherwise the contestant would prefer to choose a T-shirt with the size as close to the optimal one as possible (the distance between neighboring sizes is considered equal to one). If the variant of choice is not unique, the contestant will take a T-shirt of a bigger size (in case he/she grows more). For example, for a person whose optimal size is L the preference list looks like this: L, XL, M, XXL, S. Using the data on how many T-shirts of every size had been ordered by the organizers, on the size of contestants in the line determine who got a T-shirt of what size.
The first line contains five non-negative integers *N**S*,<=*N**M*,<=*N**L*,<=*N**XL*,<=*N**XXL* not exceeding 1000 which represent the number of T-shirts of the corresponding sizes. The second line contains an integer *K* (1<=≀<=*K*<=≀<=1000) which represents the number of participants. The next *K* lines contain the optimal T-shirt sizes for the contestants. The sizes are given in the order in which the participants stand in the line. It is guaranteed that *N**S*<=+<=*N**M*<=+<=*N**L*<=+<=*N**XL*<=+<=*N**XXL*<=β‰₯<=*K*.
For each contestant, print a line containing the size of the T-shirt he/she got.
[ "1 0 2 0 1\n3\nXL\nXXL\nM\n" ]
[ "XXL\nL\nL\n" ]
none
[ { "input": "1 0 2 0 1\n3\nXL\nXXL\nM", "output": "XXL\nL\nL" }, { "input": "0 0 0 0 1\n1\nS", "output": "XXL" }, { "input": "1 0 1 0 1\n1\nS", "output": "S" }, { "input": "1 0 0 0 1\n2\nS\nL", "output": "S\nXXL" }, { "input": "1 1 1 1 1\n2\nXL\nM", "output": "XL\nM" }, { "input": "1 0 1 1 1\n3\nS\nXXL\nL", "output": "S\nXXL\nL" }, { "input": "1 0 2 1 1\n4\nS\nXXL\nL\nM", "output": "S\nXXL\nL\nL" }, { "input": "1 0 3 0 1\n5\nS\nS\nS\nXL\nL", "output": "S\nL\nL\nXXL\nL" }, { "input": "2 1 0 1 3\n4\nXL\nM\nS\nS", "output": "XL\nM\nS\nS" }, { "input": "2 2 0 2 1\n6\nS\nXXL\nM\nXL\nXXL\nXL", "output": "S\nXXL\nM\nXL\nXL\nM" }, { "input": "3 1 1 4 1\n10\nXL\nL\nL\nXXL\nXXL\nXL\nL\nXXL\nS\nM", "output": "XL\nL\nXL\nXXL\nXL\nXL\nM\nS\nS\nS" }, { "input": "14 3 1 0 2\n10\nS\nXL\nM\nXL\nS\nXXL\nL\nXXL\nS\nL", "output": "S\nXXL\nM\nXXL\nS\nL\nM\nM\nS\nS" }, { "input": "44 314 100 272 270\n10\nXXL\nXL\nXXL\nXXL\nS\nS\nS\nS\nL\nL", "output": "XXL\nXL\nXXL\nXXL\nS\nS\nS\nS\nL\nL" }, { "input": "2 22 11 9 6\n20\nXL\nXXL\nXL\nL\nXL\nXXL\nXXL\nL\nS\nL\nXXL\nXL\nXXL\nXXL\nL\nM\nL\nS\nS\nXL", "output": "XL\nXXL\nXL\nL\nXL\nXXL\nXXL\nL\nS\nL\nXXL\nXL\nXXL\nXXL\nL\nM\nL\nS\nM\nXL" }, { "input": "13 0 2 4 41\n20\nS\nXXL\nXXL\nL\nXXL\nM\nL\nM\nXXL\nM\nXXL\nL\nXXL\nXL\nM\nXL\nXL\nL\nL\nM", "output": "S\nXXL\nXXL\nL\nXXL\nL\nXL\nS\nXXL\nS\nXXL\nXL\nXXL\nXL\nS\nXL\nXXL\nXXL\nXXL\nS" }, { "input": "5 7 2 9 7\n30\nS\nM\nS\nXL\nXXL\nL\nXL\nL\nL\nXXL\nS\nM\nXXL\nXXL\nS\nL\nXL\nS\nL\nXXL\nXXL\nS\nM\nM\nM\nXXL\nS\nXXL\nS\nL", "output": "S\nM\nS\nXL\nXXL\nL\nXL\nL\nXL\nXXL\nS\nM\nXXL\nXXL\nS\nXL\nXL\nS\nXL\nXXL\nXXL\nM\nM\nM\nM\nXXL\nM\nXL\nXL\nXL" }, { "input": "3 17 3 21 16\n50\nL\nXL\nXXL\nM\nXXL\nXL\nM\nS\nXL\nXXL\nXL\nM\nS\nS\nM\nS\nXXL\nXXL\nXL\nM\nL\nS\nXL\nS\nM\nS\nL\nXL\nM\nXL\nL\nXL\nXL\nL\nL\nM\nXL\nS\nXXL\nL\nL\nM\nL\nS\nM\nL\nXXL\nXL\nS\nL", "output": "L\nXL\nXXL\nM\nXXL\nXL\nM\nS\nXL\nXXL\nXL\nM\nS\nS\nM\nM\nXXL\nXXL\nXL\nM\nL\nM\nXL\nM\nM\nM\nL\nXL\nM\nXL\nXL\nXL\nXL\nXL\nXL\nM\nXL\nM\nXXL\nXL\nXL\nM\nXL\nM\nM\nXL\nXXL\nXL\nM\nXL" }, { "input": "2 36 4 48 10\n50\nXXL\nXXL\nS\nXXL\nXL\nXL\nS\nL\nXXL\nS\nXL\nXL\nS\nXXL\nS\nS\nS\nL\nM\nM\nXXL\nS\nS\nM\nXXL\nXL\nL\nS\nM\nXL\nXL\nS\nXXL\nM\nL\nXXL\nXL\nXXL\nXXL\nXL\nL\nL\nXXL\nXL\nXXL\nL\nL\nL\nS\nXL", "output": "XXL\nXXL\nS\nXXL\nXL\nXL\nS\nL\nXXL\nM\nXL\nXL\nM\nXXL\nM\nM\nM\nL\nM\nM\nXXL\nM\nM\nM\nXXL\nXL\nL\nM\nM\nXL\nXL\nM\nXXL\nM\nL\nXXL\nXL\nXXL\nXL\nXL\nXL\nXL\nXL\nXL\nXL\nXL\nXL\nXL\nM\nXL" }, { "input": "450 65 82 309 94\n50\nM\nXL\nXL\nXL\nM\nM\nS\nXL\nXXL\nXL\nM\nXL\nS\nXXL\nS\nXL\nM\nXL\nM\nS\nS\nM\nXL\nS\nL\nS\nXL\nXL\nL\nL\nXL\nXL\nXL\nXXL\nXXL\nL\nXXL\nM\nXXL\nM\nXXL\nXL\nM\nXL\nL\nS\nXL\nS\nM\nXXL", "output": "M\nXL\nXL\nXL\nM\nM\nS\nXL\nXXL\nXL\nM\nXL\nS\nXXL\nS\nXL\nM\nXL\nM\nS\nS\nM\nXL\nS\nL\nS\nXL\nXL\nL\nL\nXL\nXL\nXL\nXXL\nXXL\nL\nXXL\nM\nXXL\nM\nXXL\nXL\nM\nXL\nL\nS\nXL\nS\nM\nXXL" }, { "input": "200 910 49 294 547\n50\nXXL\nL\nXXL\nS\nXL\nXXL\nL\nXXL\nM\nM\nM\nM\nXXL\nS\nXXL\nXL\nL\nXXL\nL\nL\nXL\nXL\nXL\nXL\nS\nXL\nL\nXXL\nM\nXXL\nS\nXXL\nS\nXXL\nS\nS\nL\nS\nL\nXL\nXXL\nL\nL\nS\nS\nS\nS\nXXL\nXL\nXXL", "output": "XXL\nL\nXXL\nS\nXL\nXXL\nL\nXXL\nM\nM\nM\nM\nXXL\nS\nXXL\nXL\nL\nXXL\nL\nL\nXL\nXL\nXL\nXL\nS\nXL\nL\nXXL\nM\nXXL\nS\nXXL\nS\nXXL\nS\nS\nL\nS\nL\nXL\nXXL\nL\nL\nS\nS\nS\nS\nXXL\nXL\nXXL" }, { "input": "85 80 1 27 7\n100\nXXL\nM\nM\nS\nL\nL\nXL\nM\nXXL\nXXL\nXL\nL\nM\nXL\nM\nXL\nXL\nS\nM\nS\nXXL\nXL\nL\nM\nS\nXL\nS\nXL\nS\nXL\nS\nM\nXXL\nL\nM\nXL\nM\nS\nL\nM\nXXL\nL\nXXL\nS\nM\nS\nM\nL\nXXL\nXXL\nM\nS\nS\nL\nXXL\nM\nXXL\nM\nS\nM\nXXL\nM\nM\nXL\nXXL\nL\nXXL\nXL\nXXL\nS\nL\nL\nS\nS\nS\nL\nM\nL\nXXL\nL\nL\nXXL\nS\nS\nS\nXL\nXXL\nXL\nS\nL\nXXL\nS\nS\nM\nL\nXXL\nXL\nXL\nL\nXXL", "output": "XXL\nM\nM\nS\nL\nXL\nXL\nM\nXXL\nXXL\nXL\nXL\nM\nXL\nM\nXL\nXL\nS\nM\nS\nXXL\nXL\nXL\nM\nS\nXL\nS\nXL\nS\nXL\nS\nM\nXXL\nXL\nM\nXL\nM\nS\nXL\nM\nXXL\nXL\nXXL\nS\nM\nS\nM\nXL\nXL\nXL\nM\nS\nS\nXL\nXL\nM\nXL\nM\nS\nM\nXL\nM\nM\nXL\nXL\nXL\nXL\nM\nM\nS\nM\nM\nS\nS\nS\nM\nM\nM\nM\nM\nM\nM\nS\nS\nS\nM\nM\nM\nS\nM\nM\nS\nS\nM\nM\nM\nM\nM\nM\nM" }, { "input": "302 143 40 63 452\n100\nXXL\nM\nXL\nS\nXXL\nS\nL\nXL\nXL\nXL\nXXL\nS\nXXL\nS\nXXL\nXL\nXL\nXXL\nXL\nXXL\nM\nS\nS\nS\nS\nXXL\nS\nL\nXL\nXXL\nXXL\nS\nXXL\nL\nXXL\nM\nS\nL\nL\nXL\nXL\nS\nXL\nL\nXL\nM\nXL\nL\nM\nS\nXL\nXXL\nXL\nL\nXL\nXL\nXL\nM\nM\nXL\nL\nS\nS\nXL\nS\nXXL\nXXL\nXL\nS\nXL\nXXL\nS\nS\nL\nL\nXXL\nXL\nL\nXL\nM\nS\nM\nM\nXL\nXXL\nS\nXL\nXL\nM\nXL\nXXL\nXXL\nXL\nL\nS\nM\nXXL\nM\nL\nXXL", "output": "XXL\nM\nXL\nS\nXXL\nS\nL\nXL\nXL\nXL\nXXL\nS\nXXL\nS\nXXL\nXL\nXL\nXXL\nXL\nXXL\nM\nS\nS\nS\nS\nXXL\nS\nL\nXL\nXXL\nXXL\nS\nXXL\nL\nXXL\nM\nS\nL\nL\nXL\nXL\nS\nXL\nL\nXL\nM\nXL\nL\nM\nS\nXL\nXXL\nXL\nL\nXL\nXL\nXL\nM\nM\nXL\nL\nS\nS\nXL\nS\nXXL\nXXL\nXL\nS\nXL\nXXL\nS\nS\nL\nL\nXXL\nXL\nL\nXL\nM\nS\nM\nM\nXL\nXXL\nS\nXL\nXL\nM\nXL\nXXL\nXXL\nXL\nL\nS\nM\nXXL\nM\nL\nXXL" } ]
374
2,457,600
3.901922
6,984
193
Fibonacci Number
[ "brute force", "math", "matrices" ]
null
null
John Doe has a list of all Fibonacci numbers modulo 1013. This list is infinite, it starts with numbers 0 and 1. Each number in the list, apart from the first two, is a sum of previous two modulo 1013. That is, John's list is made from the Fibonacci numbers' list by replacing each number there by the remainder when divided by 1013. John got interested in number *f* (0<=≀<=*f*<=&lt;<=1013) and now wants to find its first occurrence in the list given above. Help John and find the number of the first occurence of number *f* in the list or otherwise state that number *f* does not occur in the list. The numeration in John's list starts from zero. There, the 0-th position is the number 0, the 1-st position is the number 1, the 2-nd position is the number 1, the 3-rd position is the number 2, the 4-th position is the number 3 and so on. Thus, the beginning of the list looks like this: 0,<=1,<=1,<=2,<=3,<=5,<=8,<=13,<=21,<=...
The first line contains the single integer *f* (0<=≀<=*f*<=&lt;<=1013) β€” the number, which position in the list we should find. Please, do not use the %lld specifier to read or write 64-bit integers in Π‘++. It is preferred to use the cin, cout streams or the %I64d specifier.
Print a single number β€” the number of the first occurrence of the given number in John's list. If this number doesn't occur in John's list, print -1.
[ "13\n", "377\n" ]
[ "7\n", "14\n" ]
none
[ { "input": "13", "output": "7" }, { "input": "377", "output": "14" }, { "input": "2406684390626", "output": "999999" }, { "input": "1", "output": "1" }, { "input": "3705587146357", "output": "3224323" }, { "input": "2644848607501", "output": "4999" }, { "input": "3153355924376", "output": "2500000030002" }, { "input": "2029910151951", "output": "14000000000902" }, { "input": "9673339843751", "output": "14000000000002" }, { "input": "9673339843751", "output": "14000000000002" }, { "input": "9137820308201", "output": "7153729197299" }, { "input": "5673339843751", "output": "11000000000002" }, { "input": "1800000000001", "output": "2699999999999" }, { "input": "5794082000001", "output": "899972999999" }, { "input": "6138242440179", "output": "14000000000092" }, { "input": "7402222686319", "output": "9525991302838" }, { "input": "2524707127593", "output": "310860593773" }, { "input": "2372721962933", "output": "5538764813213" }, { "input": "6052638322329", "output": "2730957676958" }, { "input": "2145870521291", "output": "8642598169768" }, { "input": "9342998561506", "output": "1569702903681" }, { "input": "4461969564061", "output": "3883677670028" }, { "input": "2755560887426", "output": "57704852301" }, { "input": "53824509026", "output": "895481947599" }, { "input": "6651238230626", "output": "9999" }, { "input": "3408709136249", "output": "9998" }, { "input": "78474174626", "output": "999" }, { "input": "8784097568833", "output": "9887" }, { "input": "8791215445823", "output": "9886" }, { "input": "1275196590901", "output": "1000099" }, { "input": "111", "output": "239196208822" }, { "input": "112", "output": "3676929870516" }, { "input": "113", "output": "4106406311593" }, { "input": "4917874132879", "output": "10929066223558" }, { "input": "4444938954466", "output": "839816181759" }, { "input": "4", "output": "-1" }, { "input": "5", "output": "5" }, { "input": "6", "output": "-1" }, { "input": "7", "output": "9366795780274" }, { "input": "9", "output": "327828114109" }, { "input": "10", "output": "-1" }, { "input": "11", "output": "7294553741128" }, { "input": "12", "output": "-1" }, { "input": "13", "output": "7" }, { "input": "14", "output": "-1" }, { "input": "15", "output": "12634170740230" }, { "input": "16", "output": "1877819665068" }, { "input": "17", "output": "5459611452263" }, { "input": "18", "output": "-1" }, { "input": "19", "output": "2703748564012" }, { "input": "20", "output": "-1" }, { "input": "21", "output": "8" }, { "input": "8", "output": "6" }, { "input": "9999999999999", "output": "14999999999998" }, { "input": "9999999999997", "output": "979091474417" }, { "input": "9999999999992", "output": "7499999999994" }, { "input": "9999999999979", "output": "14999999999992" }, { "input": "9999999999945", "output": "719336987555" }, { "input": "9999999999856", "output": "7499999999988" }, { "input": "9972900390626", "output": "999999999999" }, { "input": "9999999999998", "output": "-1" } ]
498
307,200
3
6,986
54
Presents
[ "implementation" ]
A. Presents
2
256
The Hedgehog likes to give presents to his friend, but no less he likes to receive them. Having received another present today, the Hedgehog suddenly understood that he has no place to put it as there was no room left on the special shelf in the cupboard. He will have to choose another shelf, but which one should he choose, how large should it be? In order to get to know this, the Hedgehog asks you to write him a program that will count the estimated number of presents that he will receive during the following *N* days. Besides, he is guided by the principle: - on each holiday day the Hedgehog will necessarily receive a present, - he receives presents at least every *K* days (i.e., if he received a present on the *i*-th day, he will receive the next present no later than on the *i*<=+<=*K*-th day). For the given *N* and *K*, as well as the list of holidays among the following *N* days count the minimal number of presents that could be given to the Hedgehog. The number of today's day is zero, and you should regard today's present as already given (i.e., you shouldn't count it in the answer).
The first line contains integers *N* and *K* (1<=≀<=*N*<=≀<=365, 1<=≀<=*K*<=≀<=*N*). The second line contains a number *C* which represents the number of holidays (0<=≀<=*C*<=≀<=*N*). Then in the same line follow *C* numbers ranging from 1 to *N* which are the numbers of holiday days. The numbers are given in the increasing order, without repeating numbers among them.
Print a single number β€” the minimal number of presents the Hedgehog will receive over the following *N* days.
[ "5 2\n1 3\n", "10 1\n3 6 7 8\n" ]
[ "3", "10" ]
none
[ { "input": "5 2\n1 3", "output": "3" }, { "input": "10 1\n3 6 7 8", "output": "10" }, { "input": "5 5\n1 3", "output": "1" }, { "input": "10 3\n3 3 6 9", "output": "3" }, { "input": "5 2\n0", "output": "2" }, { "input": "1 1\n0", "output": "1" }, { "input": "5 1\n0", "output": "5" }, { "input": "5 1\n1 2", "output": "5" }, { "input": "5 2\n0", "output": "2" }, { "input": "10 3\n2 4 8", "output": "4" }, { "input": "10 1\n0", "output": "10" }, { "input": "10 2\n1 5", "output": "5" }, { "input": "10 1\n0", "output": "10" }, { "input": "10 1\n0", "output": "10" }, { "input": "15 5\n0", "output": "3" }, { "input": "15 1\n1 3", "output": "15" }, { "input": "15 2\n1 10", "output": "7" }, { "input": "15 1\n0", "output": "15" }, { "input": "15 3\n1 11", "output": "5" }, { "input": "20 1\n3 7 9 20", "output": "20" }, { "input": "20 3\n1 11", "output": "7" }, { "input": "20 2\n6 6 9 10 15 19 20", "output": "12" }, { "input": "20 1\n0", "output": "20" }, { "input": "20 1\n1 13", "output": "20" }, { "input": "25 1\n9 2 6 8 10 14 15 17 18 23", "output": "25" }, { "input": "25 1\n0", "output": "25" }, { "input": "25 1\n4 8 10 13 24", "output": "25" }, { "input": "25 1\n1 14", "output": "25" }, { "input": "25 1\n0", "output": "25" }, { "input": "100 3\n0", "output": "33" }, { "input": "100 10\n0", "output": "10" }, { "input": "100 23\n22 2 9 18 22 23 30 44 50 55 58 61 70 71 73 76 79 82 85 88 94 95 99", "output": "22" }, { "input": "100 5\n10 2 17 21 34 52 58 60 64 68 95", "output": "24" }, { "input": "100 4\n2 29 63", "output": "26" }, { "input": "150 16\n9 19 31 47 53 57 96 105 108 120", "output": "13" }, { "input": "150 52\n5 11 37 60 67 86", "output": "6" }, { "input": "150 4\n7 21 54 106 108 109 119 123", "output": "40" }, { "input": "150 3\n0", "output": "50" }, { "input": "150 21\n21 22 26 30 36 39 52 59 62 66 68 78 86 92 96 103 108 113 118 119 125 139", "output": "22" }, { "input": "300 15\n14 3 38 52 57 142 157 175 201 209 238 258 288 294 299", "output": "26" }, { "input": "300 2\n14 29 94 122 123 158 160 164 191 200 202 208 246 272 286", "output": "153" }, { "input": "300 5\n16 22 38 72 78 108 116 140 147 160 189 209 214 227 252 294 300", "output": "66" }, { "input": "300 8\n4 27 76 155 260", "output": "40" }, { "input": "300 24\n20 18 76 80 81 85 103 110 112 129 145 151 172 180 184 201 205 241 257 268 276", "output": "24" }, { "input": "350 22\n11 38 111 115 176 194 204 207 231 274 307 348", "output": "21" }, { "input": "350 22\n73 1 4 8 10 14 16 19 28 37 41 42 43 55 56 64 66 67 79 80 84 87 96 99 101 103 119 120 121 122 127 128 135 141 142 143 148 156 159 160 161 166 167 169 173 189 201 202 205 219 223 227 233 242 243 244 250 257 260 262 263 264 273 291 301 302 305 306 307 314 326 336 342 345", "output": "73" }, { "input": "350 26\n10 13 16 81 99 144 191 223 258 316 329", "output": "18" }, { "input": "350 16\n12 31 76 103 116 191 201 241 256 260 291 306 336", "output": "24" }, { "input": "350 28\n5 23 104 135 305 331", "output": "14" }, { "input": "365 34\n6 80 94 208 256 325 349", "output": "14" }, { "input": "365 19\n7 47 114 139 210 226 266 279", "output": "22" }, { "input": "365 8\n32 1 13 22 25 33 72 80 86 96 117 132 145 146 156 176 177 179 188 198 203 218 225 235 253 256 267 279 286 294 303 333 363", "output": "61" }, { "input": "365 8\n55 3 12 26 28 36 45 47 59 61 65 82 90 103 109 114 117 121 123 126 134 142 144 146 151 154 168 175 189 193 195 197 199 210 212 214 230 232 241 248 254 267 271 291 304 306 308 311 315 317 318 334 335 346 354 365", "output": "74" }, { "input": "365 2\n2 96 241", "output": "183" }, { "input": "365 42\n10 8 66 77 148 161 183 231 301 340 350", "output": "14" }, { "input": "365 40\n30 1 14 21 31 32 36 56 59 68 96 119 131 137 166 179 181 202 235 248 272 294 309 315 322 327 334 341 347 362 365", "output": "30" }, { "input": "365 31\n19 13 18 27 33 46 58 86 114 178 187 198 228 233 240 255 277 332 348 351", "output": "22" }, { "input": "365 54\n21 28 42 56 65 66 67 76 81 85 89 123 132 136 153 195 215 249 294 296 300 355", "output": "22" }, { "input": "365 5\n5 10 31 121 235 322", "output": "74" }, { "input": "365 81\n2 1 75", "output": "5" }, { "input": "365 21\n4 1 17 344 345", "output": "19" }, { "input": "11 2\n5 3 6 7 9 10", "output": "7" }, { "input": "5 3\n2 2 4", "output": "2" }, { "input": "362 360\n0", "output": "1" }, { "input": "18 4\n4 1 9 10 18", "output": "6" } ]
248
20,172,800
0
7,013
55
Flea travel
[ "implementation", "math" ]
A. Flea travel
1
256
A flea is sitting at one of the *n* hassocks, arranged in a circle, at the moment. After minute number *k* the flea jumps through *k*<=-<=1 hassoсks (clockwise). For example, after the first minute the flea jumps to the neighboring hassock. You should answer: will the flea visit all the hassocks or not. We assume that flea has infinitely much time for this jumping.
The only line contains single integer: 1<=≀<=*n*<=≀<=1000 β€” number of hassocks.
Output "YES" if all the hassocks will be visited and "NO" otherwise.
[ "1\n", "3\n" ]
[ "YES\n", "NO\n" ]
none
[ { "input": "1", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "YES" }, { "input": "4", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "10", "output": "NO" }, { "input": "11", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "13", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "NO" }, { "input": "16", "output": "YES" }, { "input": "17", "output": "NO" }, { "input": "18", "output": "NO" }, { "input": "19", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "NO" }, { "input": "22", "output": "NO" }, { "input": "23", "output": "NO" }, { "input": "24", "output": "NO" }, { "input": "25", "output": "NO" }, { "input": "26", "output": "NO" }, { "input": "27", "output": "NO" }, { "input": "28", "output": "NO" }, { "input": "29", "output": "NO" }, { "input": "30", "output": "NO" }, { "input": "31", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "33", "output": "NO" }, { "input": "34", "output": "NO" }, { "input": "35", "output": "NO" }, { "input": "36", "output": "NO" }, { "input": "37", "output": "NO" }, { "input": "38", "output": "NO" }, { "input": "39", "output": "NO" }, { "input": "40", "output": "NO" }, { "input": "41", "output": "NO" }, { "input": "42", "output": "NO" }, { "input": "43", "output": "NO" }, { "input": "44", "output": "NO" }, { "input": "45", "output": "NO" }, { "input": "46", "output": "NO" }, { "input": "47", "output": "NO" }, { "input": "48", "output": "NO" }, { "input": "49", "output": "NO" }, { "input": "50", "output": "NO" }, { "input": "64", "output": "YES" }, { "input": "289", "output": "NO" }, { "input": "170", "output": "NO" }, { "input": "639", "output": "NO" }, { "input": "700", "output": "NO" }, { "input": "95", "output": "NO" }, { "input": "240", "output": "NO" }, { "input": "1000", "output": "NO" }, { "input": "200", "output": "NO" }, { "input": "57", "output": "NO" }, { "input": "871", "output": "NO" }, { "input": "840", "output": "NO" }, { "input": "705", "output": "NO" }, { "input": "685", "output": "NO" }, { "input": "213", "output": "NO" }, { "input": "665", "output": "NO" }, { "input": "868", "output": "NO" }, { "input": "897", "output": "NO" }, { "input": "61", "output": "NO" }, { "input": "817", "output": "NO" }, { "input": "688", "output": "NO" }, { "input": "580", "output": "NO" }, { "input": "373", "output": "NO" }, { "input": "613", "output": "NO" }, { "input": "685", "output": "NO" }, { "input": "116", "output": "NO" }, { "input": "518", "output": "NO" }, { "input": "383", "output": "NO" }, { "input": "260", "output": "NO" }, { "input": "728", "output": "NO" }, { "input": "1000", "output": "NO" }, { "input": "256", "output": "YES" }, { "input": "512", "output": "YES" } ]
109
0
3.9455
7,032
687
Remainders Game
[ "chinese remainder theorem", "math", "number theory" ]
null
null
Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*.
The first line of the input contains two integers *n* and *k* (1<=≀<=*n*,<= *k*<=≀<=1<=000<=000)Β β€” the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≀<=*c**i*<=≀<=1<=000<=000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise.
[ "4 5\n2 3 5 12\n", "2 7\n2 3\n" ]
[ "Yes\n", "No\n" ]
In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
[ { "input": "4 5\n2 3 5 12", "output": "Yes" }, { "input": "2 7\n2 3", "output": "No" }, { "input": "1 6\n8", "output": "No" }, { "input": "2 3\n9 4", "output": "Yes" }, { "input": "4 16\n19 16 13 9", "output": "Yes" }, { "input": "5 10\n5 16 19 9 17", "output": "Yes" }, { "input": "11 95\n31 49 8 139 169 121 71 17 43 29 125", "output": "No" }, { "input": "17 71\n173 43 139 73 169 199 49 81 11 89 131 107 23 29 125 152 17", "output": "No" }, { "input": "13 86\n41 64 17 31 13 97 19 25 81 47 61 37 71", "output": "No" }, { "input": "15 91\n49 121 83 67 128 125 27 113 41 169 149 19 37 29 71", "output": "Yes" }, { "input": "2 4\n2 2", "output": "No" }, { "input": "14 87\n1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619", "output": "No" }, { "input": "12 100\n1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766", "output": "No" }, { "input": "1 994619\n216000", "output": "No" }, { "input": "1 651040\n911250", "output": "No" }, { "input": "1 620622\n60060", "output": "No" }, { "input": "1 1\n559872", "output": "Yes" }, { "input": "88 935089\n967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967", "output": "No" }, { "input": "93 181476\n426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426", "output": "No" }, { "input": "91 4900\n630 630 70 630 910 630 630 630 770 70 770 630 630 770 70 630 70 630 70 630 70 630 630 70 910 630 630 630 770 630 630 630 70 910 70 630 70 630 770 630 630 70 630 770 70 630 70 70 630 630 70 70 70 70 630 70 70 770 910 630 70 630 770 70 910 70 630 910 630 70 770 70 70 630 770 630 70 630 70 70 630 70 630 770 630 70 630 630 70 910 630", "output": "No" }, { "input": "61 531012\n698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 698043 966694 698043 698043 698043 698043 698043 698043 636247 698043 963349 698043 698043 698043 698043 697838 698043 963349 698043 698043 966694 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 963349 698043 698043 698043 698043 963349 698043", "output": "No" }, { "input": "1 216000\n648000", "output": "Yes" }, { "input": "2 8\n4 4", "output": "No" }, { "input": "3 8\n4 4 4", "output": "No" }, { "input": "2 8\n2 4", "output": "No" }, { "input": "3 12\n2 2 3", "output": "No" }, { "input": "10 4\n2 2 2 2 2 2 2 2 2 2", "output": "No" }, { "input": "10 1024\n1 2 4 8 16 32 64 128 256 512", "output": "No" }, { "input": "3 24\n2 2 3", "output": "No" }, { "input": "1 8\n2", "output": "No" }, { "input": "2 9\n3 3", "output": "No" }, { "input": "3 4\n2 2 2", "output": "No" }, { "input": "3 4\n1 2 2", "output": "No" }, { "input": "1 4\n2", "output": "No" }, { "input": "1 100003\n2", "output": "No" }, { "input": "1 2\n12", "output": "Yes" }, { "input": "2 988027\n989018 995006", "output": "Yes" }, { "input": "3 9\n3 3 3", "output": "No" }, { "input": "1 49\n7", "output": "No" }, { "input": "2 600000\n200000 300000", "output": "Yes" }, { "input": "3 8\n2 2 2", "output": "No" }, { "input": "7 510510\n524288 531441 390625 823543 161051 371293 83521", "output": "Yes" }, { "input": "2 30\n6 10", "output": "Yes" }, { "input": "2 27000\n5400 4500", "output": "Yes" }, { "input": "3 8\n1 2 4", "output": "No" }, { "input": "4 16\n2 2 2 2", "output": "No" }, { "input": "2 16\n4 8", "output": "No" }, { "input": "2 8\n4 2", "output": "No" }, { "input": "3 4\n2 2 3", "output": "No" }, { "input": "1 8\n4", "output": "No" }, { "input": "1 999983\n2", "output": "No" }, { "input": "3 16\n2 4 8", "output": "No" }, { "input": "2 216\n12 18", "output": "No" }, { "input": "2 16\n8 8", "output": "No" }, { "input": "2 36\n18 12", "output": "Yes" }, { "input": "2 36\n12 18", "output": "Yes" }, { "input": "2 1000000\n1000000 1000000", "output": "Yes" }, { "input": "3 20\n2 2 5", "output": "No" }, { "input": "1 2\n6", "output": "Yes" }, { "input": "4 4\n2 3 6 5", "output": "No" }, { "input": "1 2\n1", "output": "No" }, { "input": "1 6\n6", "output": "Yes" }, { "input": "2 16\n4 4", "output": "No" }, { "input": "2 3779\n1 2", "output": "No" }, { "input": "2 8\n4 12", "output": "No" }, { "input": "2 24\n4 6", "output": "No" }, { "input": "1 1\n5", "output": "Yes" }, { "input": "10 255255\n1000000 700000 300000 110000 130000 170000 190000 230000 290000 310000", "output": "Yes" }, { "input": "2 1000\n500 2", "output": "No" }, { "input": "4 8\n2 2 2 2", "output": "No" }, { "input": "1 666013\n1", "output": "No" }, { "input": "1 999983\n1", "output": "No" }, { "input": "1 125\n5", "output": "No" }, { "input": "2 32\n4 8", "output": "No" }, { "input": "3 32\n2 4 8", "output": "No" }, { "input": "3 8\n2 4 11", "output": "No" }, { "input": "1 32\n2", "output": "No" }, { "input": "4 4\n2 2 2 2", "output": "No" }, { "input": "8 32\n2 2 2 2 2 2 2 2", "output": "No" }, { "input": "3 24\n2 4 3", "output": "No" }, { "input": "2 4\n2 6", "output": "No" }, { "input": "2 24\n6 4", "output": "No" }, { "input": "1 20998\n2", "output": "No" }, { "input": "1 1\n1", "output": "Yes" }, { "input": "2 20998\n2 10499", "output": "Yes" }, { "input": "1 5\n1", "output": "No" }, { "input": "2 25\n5 5", "output": "No" }, { "input": "5 2\n2 2 2 2 2", "output": "Yes" }, { "input": "3 12\n2 3 6", "output": "No" }, { "input": "1 1\n3", "output": "Yes" }, { "input": "2 16\n8 4", "output": "No" }, { "input": "40 10\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "No" } ]
202
2,048,000
-1
7,060
507
Guess Your Way Out!
[ "implementation", "math", "trees" ]
null
null
Amr bought a new video game "Guess Your Way Out!". The goal of the game is to find an exit from the maze that looks like a perfect binary tree of height *h*. The player is initially standing at the root of the tree and the exit from the tree is located at some leaf node. Let's index all the leaf nodes from the left to the right from 1 to 2*h*. The exit is located at some node *n* where 1<=≀<=*n*<=≀<=2*h*, the player doesn't know where the exit is so he has to guess his way out! Amr follows simple algorithm to choose the path. Let's consider infinite command string "LRLRLRLRL..." (consisting of alternating characters 'L' and 'R'). Amr sequentially executes the characters of the string using following rules: - Character 'L' means "go to the left child of the current node"; - Character 'R' means "go to the right child of the current node"; - If the destination node is already visited, Amr skips current command, otherwise he moves to the destination node; - If Amr skipped two consecutive commands, he goes back to the parent of the current node before executing next command; - If he reached a leaf node that is not the exit, he returns to the parent of the current node; - If he reaches an exit, the game is finished. Now Amr wonders, if he follows this algorithm, how many nodes he is going to visit before reaching the exit?
Input consists of two integers *h*,<=*n* (1<=≀<=*h*<=≀<=50, 1<=≀<=*n*<=≀<=2*h*).
Output a single integer representing the number of nodes (excluding the exit node) Amr is going to visit before reaching the exit by following this algorithm.
[ "1 2\n", "2 3\n", "3 6\n", "10 1024\n" ]
[ "2", "5", "10", "2046" ]
A perfect binary tree of height *h* is a binary tree consisting of *h* + 1 levels. Level 0 consists of a single node called root, level *h* consists of 2<sup class="upper-index">*h*</sup> nodes called leaves. Each node that is not a leaf has exactly two children, left and right one. Following picture illustrates the sample test number 3. Nodes are labeled according to the order of visit. <img class="tex-graphics" src="https://espresso.codeforces.com/e9d0715dc8cd9b4f6ac7a0fb137563f857660adc.png" style="max-width: 100.0%;max-height: 100.0%;"/>
[ { "input": "1 2", "output": "2" }, { "input": "2 3", "output": "5" }, { "input": "3 6", "output": "10" }, { "input": "10 1024", "output": "2046" }, { "input": "10 577", "output": "1345" }, { "input": "11 550", "output": "408" }, { "input": "19 12783", "output": "503251" }, { "input": "28 72803174", "output": "50649698" }, { "input": "39 457181784666", "output": "830699159852" }, { "input": "12 955", "output": "2871" }, { "input": "13 154", "output": "7770" }, { "input": "14 2334", "output": "9440" }, { "input": "15 15512", "output": "14926" }, { "input": "16 21395", "output": "2899" }, { "input": "17 80239", "output": "177237" }, { "input": "18 153276", "output": "328766" }, { "input": "20 589266", "output": "1505684" }, { "input": "21 1687606", "output": "3522472" }, { "input": "24 14428281", "output": "26969983" }, { "input": "29 113463931", "output": "347736449" }, { "input": "1 1", "output": "1" }, { "input": "3 8", "output": "14" }, { "input": "31 1819651953", "output": "3412135549" }, { "input": "33 2599588275", "output": "1357401405" }, { "input": "38 262402936512", "output": "519008349260" }, { "input": "4 13", "output": "27" }, { "input": "40 615535158153", "output": "1572205271927" }, { "input": "42 1042128038474", "output": "3195908899134" }, { "input": "45 17519319833295", "output": "17381304930499" }, { "input": "46 34999315964173", "output": "34646522010881" }, { "input": "49 295606900104348", "output": "820858833984106" }, { "input": "50 905353992267944", "output": "1871650493613618" }, { "input": "3 5", "output": "11" }, { "input": "4 14", "output": "26" }, { "input": "6 40", "output": "88" }, { "input": "7 31", "output": "95" }, { "input": "8 19", "output": "205" }, { "input": "10 359", "output": "91" }, { "input": "11 349", "output": "1057" }, { "input": "13 4796", "output": "10298" }, { "input": "20 742273", "output": "1182599" }, { "input": "22 3343393", "output": "7009189" }, { "input": "24 3543583", "output": "10865127" }, { "input": "25 678676", "output": "31527640" }, { "input": "27 109473899", "output": "209022797" }, { "input": "29 19827102", "output": "478963048" }, { "input": "8 204", "output": "422" }, { "input": "30 414940886", "output": "372407442" }, { "input": "32 3786259360", "output": "8003335020" }, { "input": "35 31233562499", "output": "60951693197" }, { "input": "38 99361414961", "output": "28342263489" }, { "input": "9 43", "output": "391" }, { "input": "40 874338951117", "output": "1800799608767" }, { "input": "33 2696188969", "output": "505562011" }, { "input": "35 12080044014", "output": "2415167450" }, { "input": "12 2715", "output": "4185" }, { "input": "29 524109003", "output": "1052258991" }, { "input": "50 1", "output": "1125899906842623" }, { "input": "50 1125899906842624", "output": "2251799813685246" }, { "input": "50 562949953421312", "output": "562949953421312" }, { "input": "50 844424930131968", "output": "1407374883553280" }, { "input": "50 375299968947542", "output": "50" } ]
140
1,433,600
3
7,066
25
Roads in Berland
[ "graphs", "shortest paths" ]
C. Roads in Berland
2
256
There are *n* cities numbered from 1 to *n* in Berland. Some of them are connected by two-way roads. Each road has its own length β€” an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build *k* new roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances between all pairs of cities. Help them β€” for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road.
The first line contains integer *n* (2<=≀<=*n*<=≀<=300) β€” amount of cities in Berland. Then there follow *n* lines with *n* integer numbers each β€” the matrix of shortest distances. *j*-th integer in the *i*-th row β€” *d**i*,<=*j*, the shortest distance between cities *i* and *j*. It is guaranteed that *d**i*,<=*i*<==<=0,<=*d**i*,<=*j*<==<=*d**j*,<=*i*, and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads. Next line contains integer *k* (1<=≀<=*k*<=≀<=300) β€” amount of planned roads. Following *k* lines contain the description of the planned roads. Each road is described by three space-separated integers *a**i*, *b**i*, *c**i* (1<=≀<=*a**i*,<=*b**i*<=≀<=*n*,<=*a**i*<=β‰ <=*b**i*,<=1<=≀<=*c**i*<=≀<=1000) β€” *a**i* and *b**i* β€” pair of cities, which the road connects, *c**i* β€” the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself.
Output *k* space-separated integers *q**i* (1<=≀<=*i*<=≀<=*k*). *q**i* should be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to *i*. Roads are numbered from 1 in the input order. Each pair of cities should be taken into account in the sum exactly once, i. e. we count unordered pairs.
[ "2\n0 5\n5 0\n1\n1 2 3\n", "3\n0 4 5\n4 0 9\n5 9 0\n2\n2 3 8\n1 2 1\n" ]
[ "3 ", "17 12 " ]
none
[ { "input": "2\n0 5\n5 0\n1\n1 2 3", "output": "3 " }, { "input": "3\n0 4 5\n4 0 9\n5 9 0\n2\n2 3 8\n1 2 1", "output": "17 12 " }, { "input": "3\n0 983 173\n983 0 810\n173 810 0\n3\n3 2 567\n2 3 767\n1 2 763", "output": "1480 1480 1480 " }, { "input": "4\n0 537 1064 656\n537 0 527 119\n1064 527 0 408\n656 119 408 0\n4\n1 4 123\n1 4 344\n3 2 982\n3 2 587", "output": "1950 1950 1950 1950 " }, { "input": "5\n0 954 1255 266 751\n954 0 1677 688 1173\n1255 1677 0 989 504\n266 688 989 0 485\n751 1173 504 485 0\n5\n5 2 837\n3 4 692\n3 5 756\n3 1 151\n2 5 262", "output": "8070 7476 7476 6062 5111 " } ]
1,746
7,475,200
3.549576
7,095
575
Bots
[ "combinatorics", "dp", "math", "number theory" ]
null
null
Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn based. In each turn, one of the players makes a move (it doesn’t matter which player, it's possible that players turns do not alternate). Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already in at any point in the past. Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in the optimal winning strategy, both bots make exactly *N* moves each. But, in order to find the optimal strategy, their algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick the best sequence of moves. They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game that need to be analyzed?
The first and only line contains integer N. - 1<=≀<=*N*<=≀<=106
Output should contain a single integer – number of possible states modulo 109<=+<=7.
[ "2\n" ]
[ "19\n" ]
Start: Game is in state A. - Turn 1: Either bot can make a move (first bot is red and second bot is blue), so there are two possible states after the first turn – B and C. - Turn 2: In both states B and C, either bot can again make a turn, so the list of possible states is expanded to include D, E, F and G. - Turn 3: Red bot already did N=2 moves when in state D, so it cannot make any more moves there. It can make moves when in state E, F and G, so states I, K and M are added to the list. Similarly, blue bot cannot make a move when in state G, but can when in D, E and F, so states H, J and L are added. - Turn 4: Red bot already did N=2 moves when in states H, I and K, so it can only make moves when in J, L and M, so states P, R and S are added. Blue bot cannot make a move when in states J, L and M, but only when in H, I and K, so states N, O and Q are added. Overall, there are 19 possible states of the game their algorithm needs to analyze. <img class="tex-graphics" src="https://espresso.codeforces.com/3d9ef2ab59018319b986a58a65362116fa5be88d.png" style="max-width: 100.0%;max-height: 100.0%;"/>
[ { "input": "2", "output": "19" }, { "input": "1", "output": "5" }, { "input": "3", "output": "69" }, { "input": "4", "output": "251" }, { "input": "5", "output": "923" }, { "input": "6", "output": "3431" }, { "input": "7", "output": "12869" }, { "input": "8", "output": "48619" }, { "input": "9", "output": "184755" }, { "input": "10", "output": "705431" }, { "input": "99", "output": "407336794" }, { "input": "999", "output": "72475737" }, { "input": "9999", "output": "703593269" }, { "input": "99999", "output": "879467332" }, { "input": "999999", "output": "192151599" }, { "input": "524287", "output": "295397547" }, { "input": "131071", "output": "920253602" }, { "input": "178481", "output": "845172388" }, { "input": "524288", "output": "250289717" }, { "input": "1000000", "output": "627314155" } ]
46
0
0
7,103
544
Sea and Islands
[ "constructive algorithms", "implementation" ]
null
null
A map of some object is a rectangular field consisting of *n* rows and *n* columns. Each cell is initially occupied by the sea but you can cover some some cells of the map with sand so that exactly *k* islands appear on the map. We will call a set of sand cells to be island if it is possible to get from each of them to each of them by moving only through sand cells and by moving from a cell only to a side-adjacent cell. The cells are called to be side-adjacent if they share a vertical or horizontal side. It is easy to see that islands do not share cells (otherwise they together form a bigger island). Find a way to cover some cells with sand so that exactly *k* islands appear on the *n*<=Γ—<=*n* map, or determine that no such way exists.
The single line contains two positive integers *n*, *k* (1<=≀<=*n*<=≀<=100, 0<=≀<=*k*<=≀<=*n*2) β€” the size of the map and the number of islands you should form.
If the answer doesn't exist, print "NO" (without the quotes) in a single line. Otherwise, print "YES" in the first line. In the next *n* lines print the description of the map. Each of the lines of the description must consist only of characters 'S' and 'L', where 'S' is a cell that is occupied by the sea and 'L' is the cell covered with sand. The length of each line of the description must equal *n*. If there are multiple answers, you may print any of them. You should not maximize the sizes of islands.
[ "5 2\n", "5 25\n" ]
[ "YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS\n", "NO\n" ]
none
[ { "input": "5 2", "output": "YES\nSSSSS\nLLLLL\nSSSSS\nLLLLL\nSSSSS" }, { "input": "5 25", "output": "NO" }, { "input": "82 6047", "output": "NO" }, { "input": "6 5", "output": "YES\nLSLSLS\nSLSLSS\nSSSSSS\nSSSSSS\nSSSSSS\nSSSSSS" }, { "input": "10 80", "output": "NO" }, { "input": "48 1279", "output": "NO" }, { "input": "40 1092", "output": "NO" }, { "input": "9 12", "output": "YES\nLSLSLSLSL\nSLSLSLSLS\nLSLSLSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS\nSSSSSSSSS" }, { "input": "43 146", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSS..." }, { "input": "100 5000", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "100 4999", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "100 5001", "output": "NO" }, { "input": "99 4901", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..." }, { "input": "99 4900", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nS..." }, { "input": "99 4902", "output": "NO" }, { "input": "99 9801", "output": "NO" }, { "input": "99 10", "output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "99 1", "output": "YES\nLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "100 10000", "output": "NO" }, { "input": "100 10", "output": "YES\nLSLSLSLSLSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..." }, { "input": "50 1200", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL..." }, { "input": "50 1438", "output": "NO" }, { "input": "50 2447", "output": "NO" }, { "input": "49 1719", "output": "NO" }, { "input": "51 1996", "output": "NO" }, { "input": "51 1981", "output": "NO" }, { "input": "34 1060", "output": "NO" }, { "input": "74 3901", "output": "NO" }, { "input": "65 617", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "89 497", "output": "YES\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS\nLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSL\nSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLSLS..." }, { "input": "34 621", "output": "NO" }, { "input": "1 0", "output": "YES\nS" }, { "input": "10 0", "output": "YES\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS\nSSSSSSSSSS" }, { "input": "11 0", "output": "YES\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS\nSSSSSSSSSSS" }, { "input": "99 0", "output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nS..." }, { "input": "100 0", "output": "YES\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\nSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS..." }, { "input": "1 1", "output": "YES\nL" }, { "input": "2 1", "output": "YES\nLS\nSS" }, { "input": "2 0", "output": "YES\nSS\nSS" }, { "input": "2 2", "output": "YES\nLS\nSL" }, { "input": "2 3", "output": "NO" }, { "input": "2 4", "output": "NO" } ]
31
4,608,000
0
7,109
786
Legacy
[ "data structures", "graphs", "shortest paths" ]
null
null
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them. There are *n* planets in their universe numbered from 1 to *n*. Rick is in planet number *s* (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial. By default he can not open any portal by this gun. There are *q* plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more. Plans on the website have three types: 1. With a plan of this type you can open a portal from planet *v* to planet *u*. 1. With a plan of this type you can open a portal from planet *v* to any planet with index in range [*l*,<=*r*]. 1. With a plan of this type you can open a portal from any planet with index in range [*l*,<=*r*] to planet *v*. Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.
The first line of input contains three integers *n*, *q* and *s* (1<=≀<=*n*,<=*q*<=≀<=105, 1<=≀<=*s*<=≀<=*n*) β€” number of planets, number of plans and index of earth respectively. The next *q* lines contain the plans. Each line starts with a number *t*, type of that plan (1<=≀<=*t*<=≀<=3). If *t*<==<=1 then it is followed by three integers *v*, *u* and *w* where *w* is the cost of that plan (1<=≀<=*v*,<=*u*<=≀<=*n*, 1<=≀<=*w*<=≀<=109). Otherwise it is followed by four integers *v*, *l*, *r* and *w* where *w* is the cost of that plan (1<=≀<=*v*<=≀<=*n*, 1<=≀<=*l*<=≀<=*r*<=≀<=*n*, 1<=≀<=*w*<=≀<=109).
In the first and only line of output print *n* integers separated by spaces. *i*-th of them should be minimum money to get from earth to *i*-th planet, or <=-<=1 if it's impossible to get to that planet.
[ "3 5 1\n2 3 2 3 17\n2 3 2 2 16\n2 2 2 3 3\n3 3 1 1 12\n1 3 3 17\n", "4 3 1\n3 4 1 3 12\n2 2 3 4 10\n1 2 4 16\n" ]
[ "0 28 12 \n", "0 -1 -1 12 \n" ]
In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.
[ { "input": "3 5 1\n2 3 2 3 17\n2 3 2 2 16\n2 2 2 3 3\n3 3 1 1 12\n1 3 3 17", "output": "0 28 12 " }, { "input": "4 3 1\n3 4 1 3 12\n2 2 3 4 10\n1 2 4 16", "output": "0 -1 -1 12 " }, { "input": "6 1 5\n1 3 6 80612370", "output": "-1 -1 -1 -1 0 -1 " }, { "input": "10 8 7\n1 10 7 366692903\n1 4 8 920363557\n2 7 5 10 423509459\n2 2 5 7 431247033\n2 7 3 5 288617239\n2 7 3 3 175870925\n3 9 3 8 651538651\n3 4 2 5 826387883", "output": "-1 -1 175870925 288617239 288617239 423509459 0 423509459 423509459 423509459 " }, { "input": "1 1 1\n1 1 1 692142678", "output": "0 " }, { "input": "2 4 2\n3 2 1 2 227350719\n2 2 1 1 111798664\n1 2 2 972457508\n2 2 2 2 973058334", "output": "111798664 0 " }, { "input": "8 8 1\n3 7 2 5 267967223\n1 6 7 611402069\n3 7 2 8 567233748\n2 2 1 8 28643141\n3 3 3 8 79260103\n1 6 8 252844388\n2 1 4 4 827261673\n3 4 4 5 54569367", "output": "0 -1 906521776 827261673 -1 -1 1095228896 -1 " }, { "input": "100000 1 63256\n3 15441 33869 86113 433920134", "output": "-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -..." }, { "input": "100000 3 62808\n1 24005 82398 56477958\n3 24602 1247 28132 162610429\n2 49286 32968 50427 574452545", "output": "-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -..." } ]
46
5,529,600
-1
7,112
142
Help General
[ "constructive algorithms", "greedy", "implementation" ]
null
null
Once upon a time in the Kingdom of Far Far Away lived Sir Lancelot, the chief Royal General. He was very proud of his men and he liked to invite the King to come and watch drill exercises which demonstrated the fighting techniques and tactics of the squad he was in charge of. But time went by and one day Sir Lancelot had a major argument with the Fairy Godmother (there were rumors that the argument occurred after the general spoke badly of the Godmother's flying techniques. That seemed to hurt the Fairy Godmother very deeply). As the result of the argument, the Godmother put a rather strange curse upon the general. It sounded all complicated and quite harmless: "If the squared distance between some two soldiers equals to 5, then those soldiers will conflict with each other!" The drill exercises are held on a rectangular *n*<=Γ—<=*m* field, split into *nm* square 1<=Γ—<=1 segments for each soldier. Thus, the square of the distance between the soldiers that stand on squares (*x*1,<=*y*1) and (*x*2,<=*y*2) equals exactly (*x*1<=-<=*x*2)2<=+<=(*y*1<=-<=*y*2)2. Now not all *nm* squad soldiers can participate in the drill exercises as it was before the Fairy Godmother's curse. Unless, of course, the general wants the soldiers to fight with each other or even worse... For example, if he puts a soldier in the square (2,<=2), then he cannot put soldiers in the squares (1,<=4), (3,<=4), (4,<=1) and (4,<=3) β€” each of them will conflict with the soldier in the square (2,<=2). Your task is to help the general. You are given the size of the drill exercise field. You are asked to calculate the maximum number of soldiers that can be simultaneously positioned on this field, so that no two soldiers fall under the Fairy Godmother's curse.
The single line contains space-separated integers *n* and *m* (1<=≀<=*n*,<=*m*<=≀<=1000) that represent the size of the drill exercise field.
Print the desired maximum number of warriors.
[ "2 4\n", "3 4\n" ]
[ "4", "6" ]
In the first sample test Sir Lancelot can place his 4 soldiers on the 2 × 4 court as follows (the soldiers' locations are marked with gray circles on the scheme): In the second sample test he can place 6 soldiers on the 3 × 4 site in the following manner:
[ { "input": "2 4", "output": "4" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "4 3", "output": "6" }, { "input": "4 2", "output": "4" }, { "input": "1 1", "output": "1" }, { "input": "3 5", "output": "8" }, { "input": "5 3", "output": "8" }, { "input": "506 44", "output": "11132" }, { "input": "555 349", "output": "96848" }, { "input": "757 210", "output": "79485" }, { "input": "419 503", "output": "105379" }, { "input": "515 19", "output": "4893" }, { "input": "204 718", "output": "73236" }, { "input": "862 330", "output": "142230" }, { "input": "494 982", "output": "242554" }, { "input": "967 4", "output": "1934" }, { "input": "449 838", "output": "188131" }, { "input": "635 458", "output": "145415" }, { "input": "156 911", "output": "71058" }, { "input": "409 295", "output": "60328" }, { "input": "755 458", "output": "172895" }, { "input": "936 759", "output": "355212" }, { "input": "771 460", "output": "177330" }, { "input": "563 802", "output": "225763" }, { "input": "953 874", "output": "416461" }, { "input": "354 720", "output": "127440" }, { "input": "915 72", "output": "32940" }, { "input": "860 762", "output": "327660" }, { "input": "396 387", "output": "76626" }, { "input": "675 710", "output": "239625" }, { "input": "728 174", "output": "63336" }, { "input": "883 312", "output": "137748" }, { "input": "701 600", "output": "210300" }, { "input": "824 729", "output": "300348" }, { "input": "886 80", "output": "35440" }, { "input": "762 742", "output": "282702" }, { "input": "781 586", "output": "228833" }, { "input": "44 343", "output": "7546" }, { "input": "847 237", "output": "100370" }, { "input": "169 291", "output": "24590" }, { "input": "961 61", "output": "29311" }, { "input": "695 305", "output": "105988" }, { "input": "854 503", "output": "214781" }, { "input": "1 744", "output": "744" }, { "input": "1 383", "output": "383" }, { "input": "1 166", "output": "166" }, { "input": "557 1", "output": "557" }, { "input": "650 1", "output": "650" }, { "input": "1 995", "output": "995" }, { "input": "1 865", "output": "865" }, { "input": "1 393", "output": "393" }, { "input": "363 1", "output": "363" }, { "input": "1 506", "output": "506" }, { "input": "2 348", "output": "348" }, { "input": "583 2", "output": "584" }, { "input": "2 89", "output": "90" }, { "input": "576 2", "output": "576" }, { "input": "180 2", "output": "180" }, { "input": "719 2", "output": "720" }, { "input": "2 951", "output": "952" }, { "input": "313 2", "output": "314" }, { "input": "433 2", "output": "434" }, { "input": "804 2", "output": "804" }, { "input": "1 991", "output": "991" }, { "input": "1 992", "output": "992" }, { "input": "1 993", "output": "993" }, { "input": "994 1", "output": "994" }, { "input": "995 1", "output": "995" }, { "input": "996 1", "output": "996" }, { "input": "997 1", "output": "997" }, { "input": "1 998", "output": "998" }, { "input": "1 999", "output": "999" }, { "input": "1 1000", "output": "1000" }, { "input": "991 2", "output": "992" }, { "input": "2 992", "output": "992" }, { "input": "993 2", "output": "994" }, { "input": "994 2", "output": "996" }, { "input": "995 2", "output": "996" }, { "input": "2 996", "output": "996" }, { "input": "997 2", "output": "998" }, { "input": "2 998", "output": "1000" }, { "input": "2 999", "output": "1000" }, { "input": "2 1000", "output": "1000" }, { "input": "997 997", "output": "497005" }, { "input": "997 998", "output": "497503" }, { "input": "997 999", "output": "498002" }, { "input": "997 1000", "output": "498500" }, { "input": "998 997", "output": "497503" }, { "input": "998 998", "output": "498002" }, { "input": "998 999", "output": "498501" }, { "input": "998 1000", "output": "499000" }, { "input": "999 997", "output": "498002" }, { "input": "999 998", "output": "498501" }, { "input": "999 999", "output": "499001" }, { "input": "999 1000", "output": "499500" }, { "input": "1000 997", "output": "498500" }, { "input": "1000 998", "output": "499000" }, { "input": "1000 999", "output": "499500" }, { "input": "1000 1000", "output": "500000" }, { "input": "3 3", "output": "5" }, { "input": "1 2", "output": "2" }, { "input": "2 2", "output": "4" } ]
216
20,172,800
0
7,129
612
Square Root of Permutation
[ "combinatorics", "constructive algorithms", "dfs and similar", "graphs", "math" ]
null
null
A permutation of length *n* is an array containing each integer from 1 to *n* exactly once. For example, *q*<==<=[4,<=5,<=1,<=2,<=3] is a permutation. For the permutation *q* the square of permutation is the permutation *p* that *p*[*i*]<==<=*q*[*q*[*i*]] for each *i*<==<=1... *n*. For example, the square of *q*<==<=[4,<=5,<=1,<=2,<=3] is *p*<==<=*q*2<==<=[2,<=3,<=4,<=5,<=1]. This problem is about the inverse operation: given the permutation *p* you task is to find such permutation *q* that *q*2<==<=*p*. If there are several such *q* find any of them.
The first line contains integer *n* (1<=≀<=*n*<=≀<=106) β€” the number of elements in permutation *p*. The second line contains *n* distinct integers *p*1,<=*p*2,<=...,<=*p**n* (1<=≀<=*p**i*<=≀<=*n*) β€” the elements of permutation *p*.
If there is no permutation *q* such that *q*2<==<=*p* print the number "-1". If the answer exists print it. The only line should contain *n* different integers *q**i* (1<=≀<=*q**i*<=≀<=*n*) β€” the elements of the permutation *q*. If there are several solutions print any of them.
[ "4\n2 1 4 3\n", "4\n2 1 3 4\n", "5\n2 3 4 5 1\n" ]
[ "3 4 2 1\n", "-1\n", "4 5 1 2 3\n" ]
none
[ { "input": "4\n2 1 4 3", "output": "3 4 2 1" }, { "input": "4\n2 1 3 4", "output": "-1" }, { "input": "5\n2 3 4 5 1", "output": "4 5 1 2 3" }, { "input": "1\n1", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "-1" }, { "input": "10\n3 5 1 2 10 8 7 6 4 9", "output": "6 9 8 10 4 3 7 1 5 2" }, { "input": "100\n11 9 35 34 51 74 16 67 26 21 14 80 84 79 7 61 28 3 53 43 42 5 56 36 69 30 22 88 1 27 65 91 46 31 59 50 17 96 25 18 64 55 78 2 63 24 95 48 93 13 38 76 89 94 15 90 45 81 52 87 83 73 44 49 23 82 85 75 86 33 47 19 58 97 37 20 40 10 92 4 6 68 77 54 71 12 62 60 100 39 41 99 72 29 57 8 70 32 66 98", "output": "-1" }, { "input": "100\n94 22 24 99 58 97 20 29 67 30 38 64 77 50 15 44 92 88 39 42 25 70 2 76 84 6 37 49 17 71 31 19 26 79 10 35 65 63 32 95 5 8 52 27 83 18 53 93 13 81 48 68 54 82 34 60 87 23 16 86 55 40 61 45 28 7 74 41 14 91 3 72 33 11 98 89 90 69 78 36 80 59 56 21 43 1 75 46 47 12 96 73 57 51 4 85 9 100 66 62", "output": "78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 32 54 84 68 43 4 21 28 73 6 16 62 31 39 65 86 98 75 33 45 19 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 72 37 12 35 99 67 94 1 87 57 8 61 25 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30" } ]
31
0
0
7,136
68
Irrational problem
[ "implementation", "number theory" ]
A. Irrational problem
2
256
Little Petya was given this problem for homework: You are given function (here represents the operation of taking the remainder). His task is to count the number of integers *x* in range [*a*;*b*] with property *f*(*x*)<==<=*x*. It is a pity that Petya forgot the order in which the remainders should be taken and wrote down only 4 numbers. Each of 24 possible orders of taking the remainder has equal probability of being chosen. For example, if Petya has numbers 1, 2, 3, 4 then he can take remainders in that order or first take remainder modulo 4, then modulo 2, 3, 1. There also are 22 other permutations of these numbers that represent orders in which remainder can be taken. In this problem 4 numbers wrote down by Petya will be pairwise distinct. Now it is impossible for Petya to complete the task given by teacher but just for fun he decided to find the number of integers with property that probability that *f*(*x*)<==<=*x* is not less than 31.4159265352718281828459045%. In other words, Petya will pick up the number *x* if there exist at least 7 permutations of numbers *p*1,<=*p*2,<=*p*3,<=*p*4, for which *f*(*x*)<==<=*x*.
First line of the input will contain 6 integers, separated by spaces: *p*1,<=*p*2,<=*p*3,<=*p*4,<=*a*,<=*b* (1<=≀<=*p*1,<=*p*2,<=*p*3,<=*p*4<=≀<=1000,<=0<=≀<=*a*<=≀<=*b*<=≀<=31415). It is guaranteed that numbers *p*1,<=*p*2,<=*p*3,<=*p*4 will be pairwise distinct.
Output the number of integers in the given range that have the given property.
[ "2 7 1 8 2 8\n", "20 30 40 50 0 100\n", "31 41 59 26 17 43\n" ]
[ "0\n", "20\n", "9\n" ]
none
[ { "input": "2 7 1 8 2 8", "output": "0" }, { "input": "20 30 40 50 0 100", "output": "20" }, { "input": "31 41 59 26 17 43", "output": "9" }, { "input": "1 2 3 4 0 0", "output": "1" }, { "input": "1 2 3 4 1 1", "output": "0" }, { "input": "1 2 999 1000 30 40", "output": "0" }, { "input": "17 18 19 20 17 20", "output": "0" }, { "input": "17 18 19 20 16 20", "output": "1" }, { "input": "41 449 328 474 150 709", "output": "0" }, { "input": "467 329 936 440 117 700", "output": "212" }, { "input": "258 811 952 491 931 993", "output": "0" }, { "input": "823 431 359 590 153 899", "output": "206" }, { "input": "292 370 404 698 699 876", "output": "0" }, { "input": "442 705 757 527 868 893", "output": "0" }, { "input": "642 273 18 885 675 788", "output": "0" }, { "input": "291 303 656 660 126 704", "output": "165" }, { "input": "225 862 522 617 630 725", "output": "0" }, { "input": "17 847 715 732 502 778", "output": "0" }, { "input": "41 449 328 474 15724 19169", "output": "0" }, { "input": "467 329 936 440 5705 28145", "output": "0" }, { "input": "258 811 952 491 2995 11942", "output": "0" }, { "input": "823 431 359 590 153 3902", "output": "206" }, { "input": "292 370 404 698 19718 19895", "output": "0" }, { "input": "442 705 757 527 1869 19912", "output": "0" }, { "input": "642 273 18 885 23811 28703", "output": "0" }, { "input": "291 303 656 660 7711 15141", "output": "0" }, { "input": "225 862 522 617 1246 1341", "output": "0" }, { "input": "17 847 715 732 778 27529", "output": "0" }, { "input": "997 998 999 1000 0 31415", "output": "997" }, { "input": "1 2 3 4 0 31415", "output": "1" }, { "input": "541 931 822 948 131 193", "output": "63" }, { "input": "956 800 909 916 89 194", "output": "106" }, { "input": "735 794 942 991 419 490", "output": "72" }, { "input": "818 926 827 575 153 395", "output": "243" }, { "input": "792 858 887 679 179 356", "output": "178" }, { "input": "937 683 742 515 366 373", "output": "8" }, { "input": "616 747 501 875 146 264", "output": "119" }, { "input": "760 773 638 655 111 196", "output": "86" }, { "input": "697 855 997 589 97 192", "output": "96" }, { "input": "998 834 706 722 277 475", "output": "199" }, { "input": "100 101 102 103 10 20", "output": "11" } ]
60
0
-1
7,170
865
Buy Low Sell High
[ "constructive algorithms", "data structures", "greedy" ]
null
null
You can perfectly predict the price of a certain stock for the next *N* days. You would like to profit on this knowledge, but only want to transact one share of stock per day. That is, each day you will either buy one share, sell one share, or do nothing. Initially you own zero shares, and you cannot sell shares when you don't own any. At the end of the *N* days you would like to again own zero shares, but want to have as much money as possible.
Input begins with an integer *N* (2<=≀<=*N*<=≀<=3Β·105), the number of days. Following this is a line with exactly *N* integers *p*1,<=*p*2,<=...,<=*p**N* (1<=≀<=*p**i*<=≀<=106). The price of one share of stock on the *i*-th day is given by *p**i*.
Print the maximum amount of money you can end up with at the end of *N* days.
[ "9\n10 5 4 7 9 12 6 2 10\n", "20\n3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4\n" ]
[ "20\n", "41\n" ]
In the first example, buy a share at 5, buy another at 4, sell one at 9 and another at 12. Then buy at 2 and sell at 10. The total profit is  - 5 - 4 + 9 + 12 - 2 + 10 = 20.
[ { "input": "9\n10 5 4 7 9 12 6 2 10", "output": "20" }, { "input": "20\n3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4", "output": "41" }, { "input": "20\n9 29 8 9 13 4 14 27 16 11 27 14 4 29 23 17 3 9 30 19", "output": "147" }, { "input": "100\n411 642 560 340 276 440 515 519 182 314 35 227 390 136 97 5 502 584 567 79 543 444 413 463 455 316 545 329 437 443 9 435 291 384 328 501 603 234 285 297 453 587 550 72 130 163 282 298 605 349 270 198 24 179 243 92 115 56 83 26 3 456 622 325 366 360 299 153 140 552 216 117 61 307 278 189 496 562 38 527 566 503 303 16 36 286 632 196 395 452 194 77 321 615 356 250 381 174 139 123", "output": "13765" }, { "input": "20\n499559 302871 194704 903169 447219 409938 42087 753609 589270 719332 855199 609182 315644 980473 966759 851389 900793 905536 258772 453222", "output": "4620235" }, { "input": "47\n403136 169462 358897 935260 150614 688938 111490 148144 462915 753991 551831 303917 772190 188564 854800 7094 491120 997932 271873 236736 797113 427200 681780 911765 217707 339475 313125 56785 749677 313468 902148 993064 747609 387815 768631 41886 68862 707668 32853 653517 941150 858711 562604 867235 840369 337814 129019", "output": "12525965" }, { "input": "2\n4 77", "output": "73" } ]
2,000
13,414,400
0
7,187
0
none
[ "none" ]
null
null
As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers *k* and *p*, where *p* is an odd prime number, the functional equation states that for some function . (This equation should hold for any integer *x* in the range 0 to *p*<=-<=1, inclusive.) It turns out that *f* can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions *f* that satisfy this equation. Since the answer may be very large, you should print your result modulo 109<=+<=7.
The input consists of two space-separated integers *p* and *k* (3<=≀<=*p*<=≀<=1<=000<=000, 0<=≀<=*k*<=≀<=*p*<=-<=1) on a single line. It is guaranteed that *p* is an odd prime number.
Print a single integer, the number of distinct functions *f* modulo 109<=+<=7.
[ "3 2\n", "5 4\n" ]
[ "3\n", "25\n" ]
In the first sample, *p* = 3 and *k* = 2. The following functions work: 1. *f*(0) = 0, *f*(1) = 1, *f*(2) = 2. 1. *f*(0) = 0, *f*(1) = 2, *f*(2) = 1. 1. *f*(0) = *f*(1) = *f*(2) = 0.
[ { "input": "3 2", "output": "3" }, { "input": "5 4", "output": "25" }, { "input": "7 2", "output": "49" }, { "input": "7 6", "output": "343" }, { "input": "10007 25", "output": "100140049" }, { "input": "40037 4", "output": "602961362" }, { "input": "5 0", "output": "625" }, { "input": "5 3", "output": "5" }, { "input": "7 1", "output": "823543" }, { "input": "13 5", "output": "2197" }, { "input": "13 4", "output": "169" }, { "input": "5 2", "output": "5" }, { "input": "11 1", "output": "311668616" }, { "input": "11 10", "output": "161051" }, { "input": "6907 2590", "output": "543643888" }, { "input": "3229 153", "output": "552691282" }, { "input": "727 282", "output": "471521101" }, { "input": "7621 6195", "output": "501036626" }, { "input": "4649 4648", "output": "460009811" }, { "input": "5527 1711", "output": "837297007" }, { "input": "1901 633", "output": "557576188" }, { "input": "463 408", "output": "853558215" }, { "input": "6871 5566", "output": "742783884" }, { "input": "4177 556", "output": "594173514" }, { "input": "65213 29960", "output": "65213" }, { "input": "375103 52131", "output": "947042280" }, { "input": "990037 453792", "output": "654009570" }, { "input": "95531 94787", "output": "95531" }, { "input": "498653 116674", "output": "625264514" }, { "input": "561389 213181", "output": "10668315" }, { "input": "649849 339573", "output": "649849" }, { "input": "512287 359783", "output": "542484357" }, { "input": "337411 146419", "output": "532279245" }, { "input": "717887 1", "output": "559281518" }, { "input": "586189 189159", "output": "168174057" }, { "input": "613463 269592", "output": "336849737" }, { "input": "873781 51595", "output": "226847774" }, { "input": "203317 12108", "output": "374893480" }, { "input": "51419 21829", "output": "643913547" }, { "input": "115237 90311", "output": "355904974" }, { "input": "437071 24705", "output": "743969711" }, { "input": "278917 84398", "output": "727771018" }, { "input": "40867 37466", "output": "560078799" }, { "input": "274783 98997", "output": "505696564" }, { "input": "450431 344107", "output": "450431" }, { "input": "288179 113623", "output": "124681010" }, { "input": "807689 9869", "output": "636680820" }, { "input": "69833 569", "output": "69833" }, { "input": "805711 702149", "output": "759894252" }, { "input": "999983 999982", "output": "794678399" }, { "input": "999983 0", "output": "416606930" }, { "input": "999983 1", "output": "844765997" }, { "input": "823457 2", "output": "203355139" }, { "input": "999983 239239", "output": "965993296" } ]
62
0
0
7,218
121
Lucky Permutation
[ "brute force", "combinatorics", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. One day Petya dreamt of a lexicographically *k*-th permutation of integers from 1 to *n*. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.
The first line contains two integers *n* and *k* (1<=≀<=*n*,<=*k*<=≀<=109) β€” the number of elements in the permutation and the lexicographical number of the permutation.
If the *k*-th permutation of numbers from 1 to *n* does not exist, print the single number "-1" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes *i*, that *i* and *a**i* are both lucky numbers.
[ "7 4\n", "4 7\n" ]
[ "1\n", "1\n" ]
A permutation is an ordered set of *n* elements, where each integer from 1 to *n* occurs exactly once. The element of permutation in position with index *i* is denoted as *a*<sub class="lower-index">*i*</sub> (1 ≀ *i* ≀ *n*). Permutation *a* is lexicographically smaller that permutation *b* if there is such a *i* (1 ≀ *i* ≀ *n*), that *a*<sub class="lower-index">*i*</sub> &lt; *b*<sub class="lower-index">*i*</sub>, and for any *j* (1 ≀ *j* &lt; *i*) *a*<sub class="lower-index">*j*</sub> = *b*<sub class="lower-index">*j*</sub>. Let's make a list of all possible permutations of *n* elements and sort it in the order of lexicographical increasing. Then the lexicographically *k*-th permutation is the *k*-th element of this list of permutations. In the first sample the permutation looks like that: 1 2 3 4 6 7 5 The only suitable position is 4. In the second sample the permutation looks like that: 2 1 3 4 The only suitable position is 4.
[ { "input": "7 4", "output": "1" }, { "input": "4 7", "output": "1" }, { "input": "7 1", "output": "2" }, { "input": "7 5040", "output": "1" }, { "input": "10 1023", "output": "0" }, { "input": "7 7477", "output": "-1" }, { "input": "10 10000", "output": "1" }, { "input": "3 7", "output": "-1" }, { "input": "27 1", "output": "2" }, { "input": "40 8544", "output": "2" }, { "input": "47 1", "output": "4" }, { "input": "47 8547744", "output": "3" }, { "input": "50 1000000000", "output": "4" }, { "input": "64 87", "output": "4" }, { "input": "98 854555", "output": "6" }, { "input": "100 1", "output": "6" }, { "input": "9985 5888454", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "-1" }, { "input": "2 1000000000", "output": "-1" }, { "input": "10 1000000000", "output": "-1" }, { "input": "20 1000000000", "output": "2" }, { "input": "777777 1", "output": "126" }, { "input": "777777 2", "output": "125" }, { "input": "777474 10000", "output": "120" }, { "input": "1000000000 1", "output": "1022" }, { "input": "777777777 5", "output": "1021" }, { "input": "777777777 1", "output": "1022" }, { "input": "777477774 1", "output": "989" }, { "input": "444747744 1000000000", "output": "554" }, { "input": "475 88555458", "output": "8" }, { "input": "12 855448", "output": "1" }, { "input": "20 1000000000", "output": "2" }, { "input": "47 99998544", "output": "2" }, { "input": "49 1000000000", "output": "2" }, { "input": "854459 95554455", "output": "126" }, { "input": "77777779 1000000000", "output": "508" }, { "input": "77 47", "output": "5" }, { "input": "6999 85488877", "output": "22" }, { "input": "7479 58884598", "output": "24" }, { "input": "1000000000 1000000000", "output": "1022" }, { "input": "7 1000", "output": "0" }, { "input": "7 124", "output": "1" }, { "input": "7 2048", "output": "1" }, { "input": "7 3001", "output": "1" }, { "input": "7 127", "output": "1" }, { "input": "7 980", "output": "1" }, { "input": "7 5000", "output": "0" }, { "input": "7 4095", "output": "2" }, { "input": "7 3856", "output": "0" }, { "input": "7 5032", "output": "0" }, { "input": "7 4999", "output": "0" }, { "input": "2 3", "output": "-1" }, { "input": "2 4", "output": "-1" }, { "input": "7 985", "output": "1" }, { "input": "4 25", "output": "-1" }, { "input": "6 121", "output": "1" }, { "input": "11 39916801", "output": "-1" }, { "input": "29 1000000000", "output": "2" }, { "input": "10 4589", "output": "1" }, { "input": "10 100000", "output": "1" }, { "input": "10 98564", "output": "1" }, { "input": "10 1", "output": "2" }, { "input": "10 100000009", "output": "-1" } ]
30
409,600
0
7,220
261
Maxim and Restaurant
[ "dp", "math", "probabilities" ]
null
null
Maxim has opened his own restaurant! The restaurant has got a huge table, the table's length is *p* meters. Maxim has got a dinner party tonight, *n* guests will come to him. Let's index the guests of Maxim's restaurant from 1 to *n*. Maxim knows the sizes of all guests that are going to come to him. The *i*-th guest's size (*a**i*) represents the number of meters the guest is going to take up if he sits at the restaurant table. Long before the dinner, the guests line up in a queue in front of the restaurant in some order. Then Maxim lets the guests in, one by one. Maxim stops letting the guests in when there is no place at the restaurant table for another guest in the queue. There is no place at the restaurant table for another guest in the queue, if the sum of sizes of all guests in the restaurant plus the size of this guest from the queue is larger than *p*. In this case, not to offend the guest who has no place at the table, Maxim doesn't let any other guest in the restaurant, even if one of the following guests in the queue would have fit in at the table. Maxim is now wondering, what is the average number of visitors who have come to the restaurant for all possible *n*! orders of guests in the queue. Help Maxim, calculate this number.
The first line contains integer *n* (1<=≀<=*n*<=≀<=50) β€” the number of guests in the restaurant. The next line contains integers *a*1, *a*2, ..., *a**n* (1<=≀<=*a**i*<=≀<=50) β€” the guests' sizes in meters. The third line contains integer *p* (1<=≀<=*p*<=≀<=50) β€” the table's length in meters. The numbers in the lines are separated by single spaces.
In a single line print a real number β€” the answer to the problem. The answer will be considered correct, if the absolute or relative error doesn't exceed 10<=-<=4.
[ "3\n1 2 3\n3\n" ]
[ "1.3333333333\n" ]
In the first sample the people will come in the following orders: - (1, 2, 3) β€” there will be two people in the restaurant; - (1, 3, 2) β€” there will be one person in the restaurant; - (2, 1, 3) β€” there will be two people in the restaurant; - (2, 3, 1) β€” there will be one person in the restaurant; - (3, 1, 2) β€” there will be one person in the restaurant; - (3, 2, 1) β€” there will be one person in the restaurant. In total we get (2 + 1 + 2 + 1 + 1 + 1) / 6 = 8 / 6 = 1.(3).
[ { "input": "3\n1 2 3\n3", "output": "1.3333333333" }, { "input": "9\n2 2 2 2 2 2 2 1 2\n9", "output": "4.5555555556" }, { "input": "7\n2 1 1 2 1 1 2\n2", "output": "1.2857142857" }, { "input": "8\n3 1 5 6 1 5 4 4\n7", "output": "1.6250000000" }, { "input": "2\n1 3\n3", "output": "1.0000000000" }, { "input": "2\n1 2\n2", "output": "1.0000000000" }, { "input": "5\n1 2 3 1 2\n3", "output": "1.5000000000" }, { "input": "9\n1 2 2 7 4 4 1 4 7\n7", "output": "1.7341269841" }, { "input": "6\n1 1 1 1 1 1\n1", "output": "1.0000000000" }, { "input": "10\n35 5 7 41 17 27 32 9 45 40\n30", "output": "0.6500000000" }, { "input": "27\n38 39 19 33 30 42 34 16 40 9 5 31 28 7 24 37 22 46 25 23 21 30 28 24 48 13 37\n24", "output": "0.4333903134" }, { "input": "41\n37 6 18 6 25 32 3 1 1 42 25 17 31 8 42 8 38 8 38 4 34 46 10 10 9 22 39 23 47 7 31 14 19 1 42 13 6 11 10 25 38\n12", "output": "0.5001534565" }, { "input": "49\n46 42 3 1 42 37 25 21 47 22 49 50 19 35 32 35 4 50 19 39 1 39 28 18 29 44 49 34 8 22 11 18 14 15 10 17 36 2 1 50 20 7 49 4 25 9 45 10 40\n34", "output": "0.9154259295" }, { "input": "3\n36 44 44\n46", "output": "1.0000000000" }, { "input": "24\n15 4 49 1 9 19 31 47 49 32 40 49 10 8 23 23 39 43 39 30 41 8 9 42\n38", "output": "0.8604837192" }, { "input": "16\n3 5 3 1 4 2 3 2 1 4 5 3 5 2 2 4\n39", "output": "12.3395604396" }, { "input": "23\n2 2 1 1 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1\n2", "output": "1.1778656126" }, { "input": "18\n2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2\n8", "output": "4.9849398967" }, { "input": "40\n5 8 2 14 14 19 14 2 12 10 17 15 2 9 11 24 7 19 14 21 8 3 24 18 20 10 14 1 9 9 18 18 13 2 23 7 23 2 17 13\n24", "output": "1.6715713966" }, { "input": "23\n16 21 14 27 15 30 13 10 4 15 25 21 6 10 17 4 5 3 9 9 8 6 19\n30", "output": "1.9401705846" }, { "input": "42\n3 2 3 1 1 3 1 3 2 3 3 2 1 3 2 3 3 2 3 3 1 3 3 2 3 2 3 1 2 2 2 3 3 1 2 1 1 3 1 3 3 2\n3", "output": "1.2020905923" }, { "input": "23\n2 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 1\n37", "output": "23.0000000000" }, { "input": "3\n2 2 1\n22", "output": "3.0000000000" }, { "input": "19\n8 11 13 11 7 11 3 11 6 7 3 14 4 10 10 8 2 1 8\n15", "output": "1.6128310974" }, { "input": "28\n3 5 4 24 21 3 13 24 22 13 12 21 1 15 11 3 17 6 2 12 22 12 23 4 21 16 25 14\n25", "output": "1.6461894466" }, { "input": "14\n8 13 28 2 17 31 2 11 39 12 24 3 8 10\n41", "output": "2.4931734932" }, { "input": "8\n9 14 13 2 1 11 4 19\n25", "output": "2.3500000000" }, { "input": "35\n5 1 2 3 1 4 1 2 2 2 3 2 3 3 2 5 2 2 3 3 3 3 2 1 2 4 5 5 1 5 3 2 1 4 3\n6", "output": "1.9851721334" }, { "input": "35\n2 2 1 2 2 2 2 2 2 1 2 1 2 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 2 1 2 1 1\n35", "output": "21.2873098934" }, { "input": "44\n24 19 6 4 23 10 11 16 21 15 18 17 13 9 25 3 1 11 24 26 12 12 21 17 19 2 6 24 21 18 7 2 12 2 4 25 17 26 22 10 22 11 13 27\n27", "output": "1.5513891043" }, { "input": "36\n5 2 4 5 1 4 3 3 5 2 2 3 3 2 5 1 4 5 2 3 1 4 4 3 5 2 3 5 1 4 3 5 1 2 4 1\n10", "output": "2.9649127243" }, { "input": "38\n2 4 2 4 1 2 5 1 5 3 5 4 2 5 4 3 1 1 1 5 4 3 4 3 5 4 2 5 4 1 1 3 2 4 5 3 5 1\n48", "output": "15.0079078318" }, { "input": "40\n1 26 39 14 16 17 19 28 38 18 23 41 19 22 4 24 18 36 15 21 31 29 34 13 19 19 38 45 4 10 2 14 3 24 21 27 4 30 9 17\n45", "output": "1.8507376624" }, { "input": "41\n31 21 49 18 37 34 36 27 36 39 4 30 25 49 24 10 8 17 45 6 19 27 12 26 6 2 50 47 35 16 15 43 26 14 43 47 49 23 27 7 24\n50", "output": "1.5535424434" }, { "input": "30\n2 3 1 4 1 2 2 2 5 5 2 3 2 4 3 1 1 2 1 2 1 2 3 2 1 1 3 5 4 4\n5", "output": "1.8614767098" }, { "input": "50\n2 1 2 1 2 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 1 2\n3", "output": "1.8379591837" }, { "input": "50\n15 28 34 29 17 21 20 34 37 17 10 20 37 10 18 25 31 25 16 1 37 27 39 3 5 18 2 32 10 35 20 17 29 20 3 29 3 25 9 32 37 5 25 23 25 33 35 8 31 29\n39", "output": "1.4997987526" }, { "input": "50\n1 5 2 4 3 4 1 4 1 2 5 1 4 5 4 2 1 2 5 3 4 5 5 2 1 2 2 2 2 2 3 2 5 1 2 2 3 2 5 5 1 3 4 5 2 1 3 4 2 2\n29", "output": "9.8873093486" }, { "input": "50\n3 2 3 2 1 5 5 5 2 1 4 2 3 5 1 4 4 2 3 2 5 5 4 3 5 1 3 5 5 4 4 4 2 5 4 2 2 3 4 4 3 2 3 3 1 3 4 3 3 4\n19", "output": "5.5762635183" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n25", "output": "25.0000000000" }, { "input": "10\n42 18 35 1 20 25 29 9 50 36\n50", "output": "1.5269841270" }, { "input": "7\n42 35 1 20 29 50 36\n50", "output": "1.3142857143" }, { "input": "50\n1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7\n50", "output": "12.0011471293" }, { "input": "1\n1\n1", "output": "1.0000000000" }, { "input": "1\n2\n1", "output": "0.0000000000" }, { "input": "5\n2 3 2 3 6\n30", "output": "5.0000000000" }, { "input": "3\n1 2 3\n7", "output": "3.0000000000" }, { "input": "3\n1 1 1\n50", "output": "3.0000000000" }, { "input": "4\n1 2 3 4\n11", "output": "4.0000000000" }, { "input": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n50", "output": "50.0000000000" }, { "input": "50\n1 2 3 4 4 4 4 4 4 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43\n50", "output": "2.3167627104" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n20", "output": "20.0000000000" }, { "input": "2\n1 2\n3", "output": "2.0000000000" }, { "input": "3\n1 2 3\n10", "output": "3.0000000000" }, { "input": "5\n1 2 3 4 5\n20", "output": "5.0000000000" } ]
1,496
47,923,200
0
7,224
986
Petr and Permutations
[ "combinatorics", "math" ]
null
null
Petr likes to come up with problems about randomly generated data. This time problem is about random permutation. He decided to generate a random permutation this way: he takes identity permutation of numbers from $1$ to $n$ and then $3n$ times takes a random pair of different elements and swaps them. Alex envies Petr and tries to imitate him in all kind of things. Alex has also come up with a problem about random permutation. He generates a random permutation just like Petr but swaps elements $7n+1$ times instead of $3n$ times. Because it is more random, OK?! You somehow get a test from one of these problems and now you want to know from which one.
In the first line of input there is one integer $n$ ($10^{3} \le n \le 10^{6}$). In the second line there are $n$ distinct integers between $1$ and $n$Β β€” the permutation of size $n$ from the test. It is guaranteed that all tests except for sample are generated this way: First we choose $n$Β β€” the size of the permutation. Then we randomly choose a method to generate a permutationΒ β€” the one of Petr or the one of Alex. Then we generate a permutation using chosen method.
If the test is generated via Petr's method print "Petr" (without quotes). If the test is generated via Alex's method print "Um_nik" (without quotes).
[ "5\n2 4 5 1 3\n" ]
[ "Petr\n" ]
Please note that the sample is not a valid test (because of limitations for $n$) and is given only to illustrate input/output format. Your program still has to print correct answer to this test to get AC. Due to randomness of input hacks in this problem are forbidden.
[ { "input": "5\n2 4 5 1 3", "output": "Petr" } ]
46
0
0
7,230
175
Robot Bicorn Attack
[ "brute force", "implementation" ]
null
null
Vasya plays Robot Bicorn Attack. The game consists of three rounds. For each one a non-negative integer amount of points is given. The result of the game is the sum of obtained points. Vasya has already played three rounds and wrote obtained points one by one (without leading zeros) into the string *s*. Vasya decided to brag about his achievement to the friends. However, he has forgotten how many points he got for each round. The only thing he remembers is the string *s*. Help Vasya to find out what is the maximum amount of points he could get. Take into account that Vasya played Robot Bicorn Attack for the first time, so he could not get more than 1000000 (106) points for one round.
The only line of input contains non-empty string *s* obtained by Vasya. The string consists of digits only. The string length does not exceed 30 characters.
Print the only number β€” the maximum amount of points Vasya could get. If Vasya is wrong and the string could not be obtained according to the rules then output number -1.
[ "1234\n", "9000\n", "0009\n" ]
[ "37\n", "90\n", "-1\n" ]
In the first example the string must be split into numbers 1, 2 and 34. In the second example the string must be split into numbers 90, 0 and 0. In the third example the string is incorrect, because after splitting the string into 3 numbers number 00 or 09 will be obtained, but numbers cannot have leading zeroes.
[ { "input": "1234", "output": "37" }, { "input": "9000", "output": "90" }, { "input": "0009", "output": "-1" }, { "input": "100000010000001000000", "output": "3000000" }, { "input": "1000000011", "output": "1000011" }, { "input": "9991", "output": "109" }, { "input": "1000001999", "output": "101000" }, { "input": "100000010000011000000", "output": "-1" }, { "input": "100000010000001000001", "output": "-1" }, { "input": "102", "output": "3" }, { "input": "100", "output": "1" }, { "input": "000", "output": "0" }, { "input": "001", "output": "1" }, { "input": "090", "output": "9" }, { "input": "999999999999999999999999999999", "output": "-1" }, { "input": "12345678901234567", "output": "947035" }, { "input": "12635000000127683", "output": "-1" }, { "input": "428595000000042345353", "output": "-1" }, { "input": "48726340000000", "output": "-1" }, { "input": "93246310000000", "output": "1932463" }, { "input": "00123456", "output": "123456" }, { "input": "001234567", "output": "-1" }, { "input": "0891249843934", "output": "1735183" }, { "input": "04234581000000", "output": "1423458" }, { "input": "10000000999999", "output": "1999999" }, { "input": "69284626624", "output": "935092" }, { "input": "6061357", "output": "61363" }, { "input": "1215", "output": "27" }, { "input": "5305167573651040691", "output": "-1" }, { "input": "948245431759126577", "output": "1506581" }, { "input": "3699951264723380749", "output": "-1" }, { "input": "97862382", "output": "978633" }, { "input": "4073734152", "output": "737433" }, { "input": "9123396793", "output": "913138" }, { "input": "52027725398636318", "output": "1413743" }, { "input": "03990796938958", "output": "-1" }, { "input": "460657644093588", "output": "1105338" }, { "input": "8793853284967905230", "output": "-1" }, { "input": "298036933890712", "output": "1232638" }, { "input": "80796461750373352", "output": "1498819" }, { "input": "2376843019069559343", "output": "-1" }, { "input": "7464340065209674219", "output": "-1" }, { "input": "1551627800131899383", "output": "-1" }, { "input": "20973541540356666047", "output": "-1" }, { "input": "31587335978612", "output": "1565978" }, { "input": "744503034", "output": "744537" }, { "input": "15533274860535679", "output": "939616" }, { "input": "58308242321837", "output": "1006337" }, { "input": "9929120076123816", "output": "323868" }, { "input": "623650711335", "output": "773700" }, { "input": "1066168753173", "output": "981936" }, { "input": "5353645507305053", "output": "1091147" }, { "input": "111111111111111111111111111111", "output": "-1" }, { "input": "1000000999888777666", "output": "2777554" }, { "input": "1000001999888777666", "output": "-1" }, { "input": "9998881000001777666", "output": "-1" }, { "input": "9999991000000999999", "output": "2999998" }, { "input": "9999999999991000000", "output": "2999998" }, { "input": "1000000999999999999", "output": "2999998" }, { "input": "123", "output": "6" }, { "input": "132", "output": "6" }, { "input": "213", "output": "6" }, { "input": "231", "output": "6" }, { "input": "312", "output": "6" }, { "input": "321", "output": "6" }, { "input": "666", "output": "18" }, { "input": "012894600", "output": "894612" }, { "input": "01289400", "output": "289401" }, { "input": "429496729742949672974294967297", "output": "-1" }, { "input": "429496729700", "output": "959414" }, { "input": "429496729701", "output": "959415" }, { "input": "1", "output": "-1" }, { "input": "55", "output": "-1" }, { "input": "99", "output": "-1" }, { "input": "9991999999999999", "output": "2009989" }, { "input": "999199999999099", "output": "1999297" }, { "input": "9991990199999999", "output": "2000189" }, { "input": "99999900999999", "output": "1999998" }, { "input": "4444440044444", "output": "488888" }, { "input": "0089", "output": "89" }, { "input": "00243", "output": "243" }, { "input": "008743", "output": "8743" }, { "input": "0042764", "output": "42764" }, { "input": "00912838", "output": "912838" }, { "input": "001000000", "output": "1000000" }, { "input": "001000001", "output": "-1" }, { "input": "12435900", "output": "435903" }, { "input": "28492300", "output": "849232" }, { "input": "99999900", "output": "999999" }, { "input": "931863000", "output": "863094" }, { "input": "23566000", "output": "566005" }, { "input": "100000000", "output": "1000000" }, { "input": "100000100", "output": "100010" }, { "input": "3246870032", "output": "870362" }, { "input": "04354640947", "output": "645301" }, { "input": "0734620342343", "output": "1076963" }, { "input": "09999990", "output": "999999" }, { "input": "010000000", "output": "1000000" }, { "input": "010000001", "output": "1000001" }, { "input": "01000001000000", "output": "1100000" }, { "input": "1844674407370955161600", "output": "-1" }, { "input": "184467440737105516141111", "output": "-1" }, { "input": "1844674407371055161600", "output": "-1" }, { "input": "1111111111111111111111111", "output": "-1" }, { "input": "999999999999999999999", "output": "-1" }, { "input": "100000110000011000001", "output": "-1" }, { "input": "0018446744073709551616", "output": "-1" }, { "input": "429596729610000001000", "output": "-1" }, { "input": "123456789123456789123456789123", "output": "-1" }, { "input": "011", "output": "2" }, { "input": "10000100001000", "output": "21000" }, { "input": "091", "output": "10" }, { "input": "1234567891012131416123222443", "output": "-1" }, { "input": "429496729642949672964294967296", "output": "-1" }, { "input": "214748364821474836482147483648", "output": "-1" }, { "input": "10000001073741824001000000", "output": "-1" }, { "input": "5000000000", "output": "-1" }, { "input": "999955555555555555555555", "output": "-1" }, { "input": "1844674407371055161699", "output": "-1" }, { "input": "99999999999999999999999999999", "output": "-1" }, { "input": "009", "output": "9" }, { "input": "1844674407370955161611", "output": "-1" }, { "input": "000000999", "output": "-1" }, { "input": "003", "output": "3" }, { "input": "0000000009000000000", "output": "-1" }, { "input": "010", "output": "1" }, { "input": "0", "output": "-1" }, { "input": "000009000000", "output": "-1" }, { "input": "21371283283242384239423423123", "output": "-1" }, { "input": "100000010004294967300", "output": "-1" }, { "input": "429596729600", "output": "969314" }, { "input": "429496729510000001000000", "output": "-1" }, { "input": "2147483648010000010000", "output": "-1" }, { "input": "349967407479541078587181768161", "output": "-1" } ]
93
0
0
7,234
535
Tavas and Karafs
[ "binary search", "greedy", "math" ]
null
null
Karafs is some kind of vegetable in shape of an 1<=Γ—<=*h* rectangle. Tavaspolis people love Karafs and they use Karafs in almost any kind of food. Tavas, himself, is crazy about Karafs. Each Karafs has a positive integer height. Tavas has an infinite 1-based sequence of Karafses. The height of the *i*-th Karafs is *s**i*<==<=*A*<=+<=(*i*<=-<=1)<=Γ—<=*B*. For a given *m*, let's define an *m*-bite operation as decreasing the height of at most *m* distinct not eaten Karafses by 1. Karafs is considered as eaten when its height becomes zero. Now SaDDas asks you *n* queries. In each query he gives you numbers *l*, *t* and *m* and you should find the largest number *r* such that *l*<=≀<=*r* and sequence *s**l*,<=*s**l*<=+<=1,<=...,<=*s**r* can be eaten by performing *m*-bite no more than *t* times or print -1 if there is no such number *r*.
The first line of input contains three integers *A*, *B* and *n* (1<=≀<=*A*,<=*B*<=≀<=106, 1<=≀<=*n*<=≀<=105). Next *n* lines contain information about queries. *i*-th line contains integers *l*,<=*t*,<=*m* (1<=≀<=*l*,<=*t*,<=*m*<=≀<=106) for *i*-th query.
For each query, print its answer in a single line.
[ "2 1 4\n1 5 3\n3 3 10\n7 10 2\n6 4 8\n", "1 5 2\n1 5 10\n2 7 4\n" ]
[ "4\n-1\n8\n-1\n", "1\n2\n" ]
none
[ { "input": "2 1 4\n1 5 3\n3 3 10\n7 10 2\n6 4 8", "output": "4\n-1\n8\n-1" }, { "input": "1 5 2\n1 5 10\n2 7 4", "output": "1\n2" }, { "input": "1 1 4\n1 1000000 1000000\n1 1 1000000\n1 1000000 1\n1 1 1", "output": "1000000\n1\n1413\n1" }, { "input": "1000000 1000000 1\n1000000 1000000 1000000", "output": "-1" }, { "input": "999999 1000000 1\n1 1000000 1000000", "output": "1" }, { "input": "1 1000000 1\n1 1000000 1000000", "output": "1" }, { "input": "1 5000 1\n1 1000000 1000000", "output": "200" }, { "input": "1 1 1\n1 1000000 1000000", "output": "1000000" }, { "input": "447 74474 4\n47 777474 747\n74 744744 74477\n477 477447 777\n7 477777 444444", "output": "-1\n-1\n-1\n7" } ]
108
512,000
0
7,298
264
Good Sequences
[ "dp", "number theory" ]
null
null
Squirrel Liss is interested in sequences. She also has preferences of integers. She thinks *n* integers *a*1,<=*a*2,<=...,<=*a**n* are good. Now she is interested in good sequences. A sequence *x*1,<=*x*2,<=...,<=*x**k* is called good if it satisfies the following three conditions: - The sequence is strictly increasing, i.e. *x**i*<=&lt;<=*x**i*<=+<=1 for each *i* (1<=≀<=*i*<=≀<=*k*<=-<=1). - No two adjacent elements are coprime, i.e. *gcd*(*x**i*,<=*x**i*<=+<=1)<=&gt;<=1 for each *i* (1<=≀<=*i*<=≀<=*k*<=-<=1) (where *gcd*(*p*,<=*q*) denotes the greatest common divisor of the integers *p* and *q*). - All elements of the sequence are good integers. Find the length of the longest good sequence.
The input consists of two lines. The first line contains a single integer *n* (1<=≀<=*n*<=≀<=105) β€” the number of good integers. The second line contains a single-space separated list of good integers *a*1,<=*a*2,<=...,<=*a**n* in strictly increasing order (1<=≀<=*a**i*<=≀<=105;Β *a**i*<=&lt;<=*a**i*<=+<=1).
Print a single integer β€” the length of the longest good sequence.
[ "5\n2 3 4 6 9\n", "9\n1 2 3 5 6 7 8 9 10\n" ]
[ "4\n", "4\n" ]
In the first example, the following sequences are examples of good sequences: [2; 4; 6; 9], [2; 4; 6], [3; 9], [6]. The length of the longest good sequence is 4.
[ { "input": "5\n2 3 4 6 9", "output": "4" }, { "input": "9\n1 2 3 5 6 7 8 9 10", "output": "4" }, { "input": "4\n1 2 4 6", "output": "3" }, { "input": "7\n1 2 3 4 7 9 10", "output": "3" }, { "input": "1\n1", "output": "1" }, { "input": "8\n3 4 5 6 7 8 9 10", "output": "4" }, { "input": "5\n2 3 7 9 10", "output": "2" }, { "input": "3\n1 4 7", "output": "1" }, { "input": "1\n4", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 9 10", "output": "4" }, { "input": "49\n10 34 58 72 126 166 176 180 198 200 208 228 238 248 302 332 340 344 350 354 380 406 418 428 438 442 482 532 536 544 546 554 596 626 642 682 684 704 714 792 804 820 862 880 906 946 954 966 970", "output": "49" }, { "input": "44\n1 5 37 97 107 147 185 187 195 241 249 295 311 323 341 345 363 391 425 431 473 525 539 541 555 577 595 611 647 695 757 759 775 779 869 877 927 935 963 965 967 969 973 975", "output": "15" }, { "input": "3\n21 67 243", "output": "2" }, { "input": "3\n150 358 382", "output": "3" }, { "input": "10\n13 2187 2197 4567 5200 29873 67866 98798 99999 100000", "output": "6" }, { "input": "10\n1 2 4 8 16 32 33 64 128 256", "output": "8" }, { "input": "10\n2 4 8 67 128 324 789 1296 39877 98383", "output": "7" }, { "input": "10\n2 3 4 5 6 8 9 10 17 92", "output": "6" }, { "input": "10\n2 3 10 40 478 3877 28787 88888 99999 100000", "output": "6" }, { "input": "10\n2 3 45 67 89 101 234 567 890 1234", "output": "5" }, { "input": "10\n2 3 4 5 6 7 8 9 10 11", "output": "5" }, { "input": "2\n5101 10202", "output": "2" }, { "input": "1\n99991", "output": "1" }, { "input": "2\n1009 2018", "output": "2" }, { "input": "2\n601 1202", "output": "2" }, { "input": "3\n3 14 22", "output": "2" } ]
1,652
14,028,800
3
7,312
667
Coat of Anticubism
[ "constructive algorithms", "geometry" ]
null
null
As some of you know, cubism is a trend in art, where the problem of constructing volumetrical shape on a plane with a combination of three-dimensional geometric shapes comes to the fore. A famous sculptor Cicasso, whose self-portrait you can contemplate, hates cubism. He is more impressed by the idea to transmit two-dimensional objects through three-dimensional objects by using his magnificent sculptures. And his new project is connected with this. Cicasso wants to make a coat for the haters of anticubism. To do this, he wants to create a sculpture depicting a well-known geometric primitive β€” convex polygon. Cicasso prepared for this a few blanks, which are rods with integer lengths, and now he wants to bring them together. The *i*-th rod is a segment of length *l**i*. The sculptor plans to make a convex polygon with a nonzero area, using all rods he has as its sides. Each rod should be used as a side to its full length. It is forbidden to cut, break or bend rods. However, two sides may form a straight angle . Cicasso knows that it is impossible to make a convex polygon with a nonzero area out of the rods with the lengths which he had chosen. Cicasso does not want to leave the unused rods, so the sculptor decides to make another rod-blank with an integer length so that his problem is solvable. Of course, he wants to make it as short as possible, because the materials are expensive, and it is improper deed to spend money for nothing. Help sculptor!
The first line contains an integer *n* (3<=≀<=*n*<=≀<=105) β€” a number of rod-blanks. The second line contains *n* integers *l**i* (1<=≀<=*l**i*<=≀<=109) β€” lengths of rods, which Cicasso already has. It is guaranteed that it is impossible to make a polygon with *n* vertices and nonzero area using the rods Cicasso already has.
Print the only integer *z* β€” the minimum length of the rod, so that after adding it it can be possible to construct convex polygon with (*n*<=+<=1) vertices and nonzero area from all of the rods.
[ "3\n1 2 1\n", "5\n20 4 3 2 1\n" ]
[ "1\n", "11\n" ]
In the first example triangle with sides {1 + 1 = 2, 2, 1} can be formed from a set of lengths {1, 1, 1, 2}. In the second example you can make a triangle with lengths {20, 11, 4 + 3 + 2 + 1 = 10}.
[ { "input": "3\n1 2 1", "output": "1" }, { "input": "5\n20 4 3 2 1", "output": "11" }, { "input": "7\n77486105 317474713 89523018 332007362 7897847 949616701 54820086", "output": "70407571" }, { "input": "14\n245638694 2941428 4673577 12468 991349408 44735727 14046308 60637707 81525 104620306 88059371 53742651 8489205 3528194", "output": "360142248" }, { "input": "19\n479740 7703374 196076708 180202968 579604 17429 16916 11989886 30832424 6384983 8937497 431 62955 48167457 898566333 29534955 1485775 848444 372839845", "output": "2404943" }, { "input": "35\n306260 278 43508628 54350745 222255 842526 39010821 10627 14916465 3059978 61449 503809 2820 1609513 196062 65695 270869 15079297 2885093 189306 4682268 422616382 1642346 82340 6 2 975464673 1388191 70110665 272855 253160079 1849635 7837751 274070 10394", "output": "34445194" }, { "input": "53\n1014364 40727 75774 243769 314 406417 5272684 14138 10640282 64955 2763 5667043 2121887 204672692 567643 60183 5183 11361359 2792918 199155 174809 16182540 21 392221 19434423 9140891 159733 15438 67903 3816799 616 429181 30392293 413992581 10847741 20771 16366654 1163 414283 156163 55907108 310278 95949614 185865 976650886 197610 87 61264 4586815 107764 26390852 331828 541", "output": "25390787" }, { "input": "3\n1 1 1000000000", "output": "999999999" }, { "input": "10\n1 2 3 4 5 6 7 8 9 1000000000", "output": "999999956" }, { "input": "5\n100000000 100000000 100000000 100000000 500000000", "output": "100000001" }, { "input": "3\n300000000 300000000 600000000", "output": "1" }, { "input": "5\n10 4 3 2 1", "output": "1" }, { "input": "3\n800000000 1 1", "output": "799999999" }, { "input": "3\n1000000000 1 1", "output": "999999999" } ]
15
0
0
7,326
621
Wet Shark and Flowers
[ "combinatorics", "math", "number theory", "probabilities" ]
null
null
There are *n* sharks who grow flowers for Wet Shark. They are all sitting around the table, such that sharks *i* and *i*<=+<=1 are neighbours for all *i* from 1 to *n*<=-<=1. Sharks *n* and 1 are neighbours too. Each shark will grow some number of flowers *s**i*. For *i*-th shark value *s**i* is random integer equiprobably chosen in range from *l**i* to *r**i*. Wet Shark has it's favourite prime number *p*, and he really likes it! If for any pair of neighbouring sharks *i* and *j* the product *s**i*Β·*s**j* is divisible by *p*, then Wet Shark becomes happy and gives 1000 dollars to each of these sharks. At the end of the day sharks sum all the money Wet Shark granted to them. Find the expectation of this value.
The first line of the input contains two space-separated integers *n* and *p* (3<=≀<=*n*<=≀<=100<=000,<=2<=≀<=*p*<=≀<=109)Β β€” the number of sharks and Wet Shark's favourite prime number. It is guaranteed that *p* is prime. The *i*-th of the following *n* lines contains information about *i*-th sharkΒ β€” two space-separated integers *l**i* and *r**i* (1<=≀<=*l**i*<=≀<=*r**i*<=≀<=109), the range of flowers shark *i* can produce. Remember that *s**i* is chosen equiprobably among all integers from *l**i* to *r**i*, inclusive.
Print a single real number β€” the expected number of dollars that the sharks receive in total. You answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
[ "3 2\n1 2\n420 421\n420420 420421\n", "3 5\n1 4\n2 3\n11 14\n" ]
[ "4500.0\n", "0.0\n" ]
A prime number is a positive integer number that is divisible only by 1 and itself. 1 is not considered to be prime. Consider the first sample. First shark grows some number of flowers from 1 to 2, second sharks grows from 420 to 421 flowers and third from 420420 to 420421. There are eight cases for the quantities of flowers (*s*<sub class="lower-index">0</sub>, *s*<sub class="lower-index">1</sub>, *s*<sub class="lower-index">2</sub>) each shark grows: 1. (1, 420, 420420): note that *s*<sub class="lower-index">0</sub>Β·*s*<sub class="lower-index">1</sub> = 420, *s*<sub class="lower-index">1</sub>Β·*s*<sub class="lower-index">2</sub> = 176576400, and *s*<sub class="lower-index">2</sub>Β·*s*<sub class="lower-index">0</sub> = 420420. For each pair, 1000 dollars will be awarded to each shark. Therefore, each shark will be awarded 2000 dollars, for a total of 6000 dollars.1. (1, 420, 420421): now, the product *s*<sub class="lower-index">2</sub>Β·*s*<sub class="lower-index">0</sub> is not divisible by 2. Therefore, sharks *s*<sub class="lower-index">0</sub> and *s*<sub class="lower-index">2</sub> will receive 1000 dollars, while shark *s*<sub class="lower-index">1</sub> will receive 2000. The total is 4000.1. (1, 421, 420420): total is 4000 1. (1, 421, 420421): total is 0. 1. (2, 420, 420420): total is 6000. 1. (2, 420, 420421): total is 6000. 1. (2, 421, 420420): total is 6000. 1. (2, 421, 420421): total is 4000. The expected value is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dfe520d00a8615f7c270ccbccbebe182cc7db883.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample, no combination of quantities will garner the sharks any money.
[ { "input": "3 2\n1 2\n420 421\n420420 420421", "output": "4500.0" }, { "input": "3 5\n1 4\n2 3\n11 14", "output": "0.0" }, { "input": "3 3\n3 3\n2 4\n1 1", "output": "4666.666666666667" }, { "input": "5 5\n5 204\n420 469\n417 480\n442 443\n44 46", "output": "3451.25" }, { "input": "3 2\n2 2\n3 3\n4 4", "output": "6000.0" }, { "input": "6 7\n8 13\n14 14\n8 13\n14 14\n8 13\n14 14", "output": "12000.0" }, { "input": "3 7\n7 14\n700000000 700000007\n420 4200", "output": "2304.2515207617034" }, { "input": "5 999999937\n999999935 999999936\n999999937 999999938\n999999939 999999940\n999999941 999999942\n999999943 999999944", "output": "2000.0" }, { "input": "5 999999937\n1 999999936\n1 999999936\n1 999999936\n1 999999936\n1 999999936", "output": "0.0" }, { "input": "20 999999937\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938\n999999936 999999937\n999999937 999999938", "output": "30000.0" }, { "input": "9 41\n40 42\n42 44\n44 46\n82 84\n82 83\n80 83\n40 83\n40 82\n42 82", "output": "5503.274377352654" }, { "input": "3 2\n1 1\n1 2\n1 1", "output": "2000.0" }, { "input": "12 3\n697806 966852\n802746 974920\n579567 821770\n628655 642480\n649359 905832\n87506 178848\n605628 924780\n843338 925533\n953514 978612\n375312 997707\n367620 509906\n277106 866177", "output": "13333.518289809368" }, { "input": "5 3\n67050 461313\n927808 989615\n169239 201720\n595515 756354\n392844 781910", "output": "5555.597086312073" }, { "input": "6 7\n984774 984865\n720391 916269\n381290 388205\n628383 840455\n747138 853964\n759705 959629", "output": "3215.6233297395006" }, { "input": "3 5\n99535 124440\n24114 662840\n529335 875935", "output": "2160.11317825774" }, { "input": "4 3\n561495 819666\n718673 973130\n830124 854655\n430685 963699", "output": "4444.521972611004" }, { "input": "10 3\n311664 694971\n364840 366487\n560148 821101\n896470 923613\n770019 828958\n595743 827536\n341418 988218\n207847 366132\n517968 587855\n168695 878142", "output": "11110.602699850484" }, { "input": "11 3\n66999 737907\n499872 598806\n560583 823299\n579017 838419\n214308 914576\n31820 579035\n373821 695652\n438988 889317\n181332 513682\n740575 769488\n597348 980891", "output": "12222.259608784536" }, { "input": "12 3\n158757 341790\n130709 571435\n571161 926255\n851779 952236\n914910 941369\n774359 860799\n224067 618483\n411639 902888\n264423 830336\n33133 608526\n951696 976379\n923880 968563", "output": "13333.377729413933" }, { "input": "9 2\n717582 964152\n268030 456147\n400022 466269\n132600 698200\n658890 807357\n196658 849497\n257020 380298\n267729 284534\n311978 917744", "output": "13500.015586135814" }, { "input": "10 7\n978831 984305\n843967 844227\n454356 748444\n219513 623868\n472997 698189\n542337 813387\n867615 918554\n413076 997267\n79310 138855\n195703 296681", "output": "5303.027968302269" } ]
546
13,824,000
3
7,332
61
Enemy is weak
[ "data structures", "trees" ]
E. Enemy is weak
5
256
The Romans have attacked again. This time they are much more than the Persians but Shapur is ready to defeat them. He says: "A lion is never afraid of a hundred sheep". Nevertheless Shapur has to find weaknesses in the Roman army to defeat them. So he gives the army a weakness number. In Shapur's opinion the weakness of an army is equal to the number of triplets *i*,<=*j*,<=*k* such that *i*<=&lt;<=*j*<=&lt;<=*k* and *a**i*<=&gt;<=*a**j*<=&gt;<=*a**k* where *a**x* is the power of man standing at position *x*. The Roman army has one special trait β€” powers of all the people in it are distinct. Help Shapur find out how weak the Romans are.
The first line of input contains a single number *n* (3<=≀<=*n*<=≀<=106) β€” the number of men in Roman army. Next line contains *n* different positive integers *a**i* (1<=≀<=*i*<=≀<=*n*,<=1<=≀<=*a**i*<=≀<=109) β€” powers of men in the Roman army.
A single integer number, the weakness of the Roman army. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
[ "3\n3 2 1\n", "3\n2 3 1\n", "4\n10 8 3 1\n", "4\n1 5 4 3\n" ]
[ "1\n", "0\n", "4\n", "1\n" ]
none
[ { "input": "3\n3 2 1", "output": "1" }, { "input": "3\n2 3 1", "output": "0" }, { "input": "4\n10 8 3 1", "output": "4" }, { "input": "4\n1 5 4 3", "output": "1" }, { "input": "9\n10 9 5 6 8 3 4 7 11", "output": "20" }, { "input": "7\n11 3 8 4 2 9 6", "output": "7" }, { "input": "6\n2 1 10 7 3 5", "output": "2" }, { "input": "4\n1 5 3 10", "output": "0" }, { "input": "3\n2 7 11", "output": "0" }, { "input": "5\n4 11 7 5 10", "output": "1" }, { "input": "72\n685 154 298 660 716 963 692 257 397 974 92 191 519 838 828 957 687 776 636 997 101 800 579 181 691 256 95 531 333 347 803 682 252 655 297 892 833 31 239 895 45 235 394 909 486 400 621 443 348 471 59 791 934 195 861 356 876 741 763 431 781 639 193 291 230 171 288 187 657 273 200 924", "output": "12140" }, { "input": "20\n840 477 436 149 554 528 671 67 630 382 805 329 781 980 237 589 743 451 633 24", "output": "185" }, { "input": "59\n996 800 927 637 393 741 650 524 863 789 517 467 408 442 988 701 528 215 490 764 282 990 991 244 70 510 36 151 193 378 102 818 384 621 349 476 658 985 465 366 807 32 430 814 945 733 382 751 380 136 405 585 494 862 598 425 421 90 72", "output": "7842" }, { "input": "97\n800 771 66 126 231 306 981 96 196 229 253 35 903 739 461 962 979 347 152 424 934 586 225 838 103 178 524 400 156 149 560 629 697 417 717 738 181 430 611 513 754 595 847 464 356 640 24 854 138 481 98 371 142 460 194 288 605 41 999 581 441 407 301 651 271 226 457 393 980 166 272 250 900 337 358 359 80 904 53 39 558 569 101 339 752 432 889 285 836 660 190 180 601 136 527 990 612", "output": "26086" }, { "input": "45\n955 94 204 615 69 519 960 791 977 603 294 391 662 364 139 222 748 742 540 567 230 830 558 959 329 169 854 503 423 210 832 87 990 44 7 777 138 898 845 733 570 476 113 233 630", "output": "2676" }, { "input": "84\n759 417 343 104 908 84 940 248 210 10 6 529 289 826 890 982 533 506 412 280 709 175 425 891 727 914 235 882 834 445 912 163 263 998 391 948 836 538 615 854 275 198 631 267 148 955 418 961 642 132 599 657 389 879 177 739 536 932 682 928 660 821 15 878 521 990 518 765 79 544 771 134 611 244 608 809 733 832 933 270 397 349 798 857", "output": "12571" }, { "input": "32\n915 740 482 592 394 648 919 705 443 418 719 315 916 287 289 743 319 270 269 668 203 119 20 224 847 500 949 910 164 468 965 846", "output": "1230" }, { "input": "34\n718 63 972 81 233 861 250 515 676 825 431 453 543 748 41 503 104 34 126 57 346 616 557 615 733 15 938 495 491 667 177 317 367 85", "output": "1202" }, { "input": "73\n874 34 111 922 71 426 229 972 557 232 144 590 170 210 792 616 890 798 983 797 488 8 859 538 736 319 82 966 474 513 721 860 493 375 81 69 662 444 766 451 571 94 365 833 720 703 826 270 437 542 147 800 146 173 564 160 928 57 732 774 292 250 716 131 949 1 216 456 53 322 403 195 460", "output": "13229" }, { "input": "90\n301 241 251 995 267 292 335 623 270 144 291 757 950 21 808 109 971 340 678 377 743 841 669 333 528 988 336 233 118 781 138 47 972 68 234 812 629 701 520 842 156 348 600 26 94 912 903 552 470 456 61 273 93 810 545 231 450 926 172 246 884 79 614 728 533 491 76 589 668 487 409 650 433 677 124 407 956 794 299 763 843 290 591 216 844 731 327 34 687 649", "output": "17239" } ]
5,000
47,411,200
0
7,337
334
Eight Point Sets
[ "sortings" ]
null
null
Gerald is very particular to eight point sets. He thinks that any decent eight point set must consist of all pairwise intersections of three distinct integer vertical straight lines and three distinct integer horizontal straight lines, except for the average of these nine points. In other words, there must be three integers *x*1,<=*x*2,<=*x*3 and three more integers *y*1,<=*y*2,<=*y*3, such that *x*1<=&lt;<=*x*2<=&lt;<=*x*3, *y*1<=&lt;<=*y*2<=&lt;<=*y*3 and the eight point set consists of all points (*x**i*,<=*y**j*) (1<=≀<=*i*,<=*j*<=≀<=3), except for point (*x*2,<=*y*2). You have a set of eight points. Find out if Gerald can use this set?
The input consists of eight lines, the *i*-th line contains two space-separated integers *x**i* and *y**i* (0<=≀<=*x**i*,<=*y**i*<=≀<=106). You do not have any other conditions for these points.
In a single line print word "respectable", if the given set of points corresponds to Gerald's decency rules, and "ugly" otherwise.
[ "0 0\n0 1\n0 2\n1 0\n1 2\n2 0\n2 1\n2 2\n", "0 0\n1 0\n2 0\n3 0\n4 0\n5 0\n6 0\n7 0\n", "1 1\n1 2\n1 3\n2 1\n2 2\n2 3\n3 1\n3 2\n" ]
[ "respectable\n", "ugly\n", "ugly\n" ]
none
[ { "input": "0 0\n0 1\n0 2\n1 0\n1 2\n2 0\n2 1\n2 2", "output": "respectable" }, { "input": "0 0\n1 0\n2 0\n3 0\n4 0\n5 0\n6 0\n7 0", "output": "ugly" }, { "input": "1 1\n1 2\n1 3\n2 1\n2 2\n2 3\n3 1\n3 2", "output": "ugly" }, { "input": "0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "ugly" }, { "input": "1000000 1000000\n1000000 999999\n1000000 999998\n999999 1000000\n999999 999998\n999998 1000000\n999998 999999\n999998 999998", "output": "respectable" }, { "input": "0 0\n1 0\n0 1\n1 1\n0 2\n1 2\n0 3\n1 3", "output": "ugly" }, { "input": "0 0\n2 1\n1 0\n0 2\n2 2\n1 0\n2 1\n0 2", "output": "ugly" }, { "input": "0 0\n2 1\n1 0\n0 2\n2 2\n1 0\n2 1\n0 2", "output": "ugly" }, { "input": "791649 383826\n10864 260573\n504506 185571\n899991 511500\n503197 876976\n688727 569035\n343255 961333\n439355 759581", "output": "ugly" }, { "input": "750592 335292\n226387 434036\n299976 154633\n593197 600998\n62014 689355\n566268 571630\n381455 222817\n50555 288617", "output": "ugly" }, { "input": "716334 42808\n211710 645370\n515258 96837\n14392 766713\n439265 939607\n430602 918570\n845044 187545\n957977 441674", "output": "ugly" }, { "input": "337873 813442\n995185 863182\n375545 263618\n310042 130019\n358572 560779\n305725 729179\n377381 267545\n41376 312626", "output": "ugly" }, { "input": "803784 428886\n995691 328351\n211844 386054\n375491 74073\n692402 660275\n366073 536431\n485832 941417\n96032 356022", "output": "ugly" }, { "input": "999231 584954\n246553 267441\n697080 920011\n173593 403511\n58535 101909\n131124 924182\n779830 204560\n684576 533111", "output": "ugly" }, { "input": "666888 741208\n685852 578759\n211123 826453\n244759 601804\n670436 748132\n976425 387060\n587850 804554\n430242 805528", "output": "ugly" }, { "input": "71768 834717\n13140 834717\n13140 991083\n880763 386898\n71768 386898\n880763 991083\n880763 834717\n13140 386898", "output": "ugly" }, { "input": "941532 913025\n941532 862399\n686271 913025\n686271 862399\n686271 461004\n941532 461004\n908398 862399\n908398 913025", "output": "ugly" }, { "input": "251515 680236\n761697 669947\n251515 669947\n761697 680236\n251515 476629\n761697 476629\n453296 669947\n453296 476629", "output": "ugly" }, { "input": "612573 554036\n195039 655769\n472305 655769\n612573 655769\n195039 160740\n472305 160740\n472305 554036\n612573 160740", "output": "ugly" }, { "input": "343395 788566\n171702 674699\n171702 788566\n971214 788566\n343395 9278\n971214 9278\n343395 674699\n971214 674699", "output": "ugly" }, { "input": "38184 589856\n281207 447136\n281207 42438\n38184 42438\n38184 447136\n880488 589856\n281207 589856\n880488 42438", "output": "ugly" }, { "input": "337499 89260\n337499 565883\n603778 89260\n603778 565883\n234246 89260\n603778 17841\n337499 17841\n234246 17841", "output": "ugly" }, { "input": "180952 311537\n180952 918548\n126568 918548\n180952 268810\n732313 918548\n126568 311537\n126568 268810\n732313 311537", "output": "ugly" }, { "input": "323728 724794\n265581 165113\n323728 146453\n265581 146453\n591097 146453\n265581 724794\n323728 165113\n591097 165113", "output": "ugly" }, { "input": "642921 597358\n922979 597358\n127181 616833\n642921 828316\n922979 828316\n127181 597358\n922979 616833\n127181 828316", "output": "respectable" }, { "input": "69586 260253\n74916 203798\n985457 203798\n74916 943932\n985457 943932\n69586 943932\n985457 260253\n69586 203798", "output": "respectable" }, { "input": "57930 637387\n883991 573\n57930 573\n57930 499963\n399327 573\n399327 637387\n883991 637387\n883991 499963", "output": "respectable" }, { "input": "52820 216139\n52820 999248\n290345 216139\n290345 999248\n308639 216139\n308639 999248\n52820 477113\n308639 477113", "output": "respectable" }, { "input": "581646 464672\n493402 649074\n581646 649074\n214619 649074\n581646 252709\n214619 252709\n214619 464672\n493402 252709", "output": "respectable" }, { "input": "787948 77797\n421941 615742\n421941 77797\n400523 77797\n400523 111679\n787948 615742\n400523 615742\n787948 111679", "output": "respectable" }, { "input": "583956 366985\n759621 567609\n756846 567609\n759621 176020\n583956 567609\n583956 176020\n759621 366985\n756846 176020", "output": "respectable" }, { "input": "0 50000\n0 0\n0 1000000\n50000 0\n50000 1000000\n1000000 0\n1000000 50000\n1000000 1000000", "output": "respectable" }, { "input": "0 8\n0 9\n0 10\n1 8\n3 8\n3 8\n3 9\n3 10", "output": "ugly" }, { "input": "0 1\n0 1\n0 2\n1 1\n1 2\n2 1\n2 1\n2 2", "output": "ugly" }, { "input": "1 2\n1 3\n1 4\n2 2\n2 4\n4 2\n4 2\n4 4", "output": "ugly" }, { "input": "0 0\n0 1\n0 2\n0 0\n1 2\n2 0\n2 1\n2 2", "output": "ugly" }, { "input": "0 0\n0 0\n0 0\n1 1\n1 1\n2 2\n2 2\n2 2", "output": "ugly" }, { "input": "0 0\n0 0\n0 2\n1 1\n1 2\n2 0\n2 1\n2 2", "output": "ugly" }, { "input": "0 0\n0 1\n0 3\n1 0\n1 3\n2 0\n2 2\n2 3", "output": "ugly" }, { "input": "0 0\n0 1\n0 2\n1 0\n1 2\n3 0\n3 1\n3 2", "output": "respectable" }, { "input": "1 1\n1 2\n1 5\n2 1\n2 5\n5 1\n5 2\n5 5", "output": "respectable" }, { "input": "1 1\n1 2\n1 2\n2 3\n2 1\n3 3\n3 1\n3 3", "output": "ugly" }, { "input": "0 0\n0 0\n1 0\n0 1\n2 1\n1 2\n2 2\n2 2", "output": "ugly" }, { "input": "1 1\n1 1\n1 3\n2 1\n2 3\n3 2\n3 2\n3 3", "output": "ugly" }, { "input": "1 0\n1 0\n1 0\n2 3\n2 3\n3 4\n3 4\n3 4", "output": "ugly" } ]
154
0
3
7,348
555
Case of Fugitive
[ "data structures", "greedy", "sortings" ]
null
null
Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water. The only dry land there is an archipelago of *n* narrow islands located in a row. For more comfort let's represent them as non-intersecting segments on a straight line: island *i* has coordinates [*l**i*,<=*r**i*], besides, *r**i*<=&lt;<=*l**i*<=+<=1 for 1<=≀<=*i*<=≀<=*n*<=-<=1. To reach the goal, Andrewid needs to place a bridge between each pair of adjacent islands. A bridge of length *a* can be placed between the *i*-th and the (*i*<=+<=1)-th islads, if there are such coordinates of *x* and *y*, that *l**i*<=≀<=*x*<=≀<=*r**i*, *l**i*<=+<=1<=≀<=*y*<=≀<=*r**i*<=+<=1 and *y*<=-<=*x*<==<=*a*. The detective was supplied with *m* bridges, each bridge can be used at most once. Help him determine whether the bridges he got are enough to connect each pair of adjacent islands.
The first line contains integers *n* (2<=≀<=*n*<=≀<=2Β·105) and *m* (1<=≀<=*m*<=≀<=2Β·105) β€” the number of islands and bridges. Next *n* lines each contain two integers *l**i* and *r**i* (1<=≀<=*l**i*<=≀<=*r**i*<=≀<=1018) β€” the coordinates of the island endpoints. The last line contains *m* integer numbers *a*1,<=*a*2,<=...,<=*a**m* (1<=≀<=*a**i*<=≀<=1018) β€” the lengths of the bridges that Andrewid got.
If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes), otherwise print in the first line "Yes" (without the quotes), and in the second line print *n*<=-<=1 numbers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1, which mean that between islands *i* and *i*<=+<=1 there must be used a bridge number *b**i*. If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in correct case.
[ "4 4\n1 4\n7 8\n9 10\n12 14\n4 5 3 8\n", "2 2\n11 14\n17 18\n2 9\n", "2 1\n1 1\n1000000000000000000 1000000000000000000\n999999999999999999\n" ]
[ "Yes\n2 3 1 \n", "No\n", "Yes\n1 \n" ]
In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14. In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.
[ { "input": "4 4\n1 4\n7 8\n9 10\n12 14\n4 5 3 8", "output": "Yes\n2 3 1 " }, { "input": "2 2\n11 14\n17 18\n2 9", "output": "No" }, { "input": "2 1\n1 1\n1000000000000000000 1000000000000000000\n999999999999999999", "output": "Yes\n1 " }, { "input": "5 10\n1 2\n3 3\n5 7\n11 13\n14 20\n9 10 2 9 10 4 9 9 9 10", "output": "No" }, { "input": "5 9\n1 2\n3 3\n5 7\n11 13\n14 20\n2 3 4 10 6 2 6 9 5", "output": "Yes\n1 6 3 2 " }, { "input": "6 9\n1 4\n10 18\n23 29\n33 43\n46 57\n59 77\n11 32 32 19 20 17 32 24 32", "output": "Yes\n1 6 4 5 8 " }, { "input": "6 9\n1 2\n8 16\n21 27\n31 46\n49 57\n59 78\n26 27 28 13 2 4 2 2 24", "output": "No" }, { "input": "20 10\n4 9\n10 15\n17 18\n20 21\n25 27\n29 32\n35 36\n46 48\n49 51\n53 56\n59 60\n63 64\n65 68\n69 70\n74 75\n79 80\n81 82\n84 87\n88 91\n98 100\n4 7 6 1 5 4 3 1 5 2", "output": "No" }, { "input": "2 1\n1 2\n5 6\n1", "output": "No" }, { "input": "2 1\n1 1\n100 100\n5", "output": "No" }, { "input": "3 2\n1000000000000000 1000000000000000\n3000000000000000 4000000000000000\n6000000000000000 7000000000000000\n2000000000000000 4000000000000000", "output": "Yes\n1 2 " }, { "input": "3 2\n1 5\n6 12\n14 100000000000\n10000000000 4", "output": "Yes\n2 1 " } ]
0
0
-1
7,370
53
Blog Photo
[ "binary search", "implementation" ]
B. Blog Photo
2
256
One popular blog site edits the uploaded photos like this. It cuts a rectangular area out of them so that the ratio of height to width (i.e. the *height*<=/<=*width* quotient) can vary from 0.8 to 1.25 inclusively. Besides, at least one side of the cut area should have a size, equal to some power of number 2 (2*x* for some integer *x*). If those rules don't indicate the size of the cut are clearly, then the way with which the cut part possesses the largest area is chosen. Of course, both sides of the cut area should be integer. If there are several answers to this problem, you should choose the answer with the maximal height.
The first line contains a pair of integers *h* and *w* (1<=≀<=*h*,<=*w*<=≀<=109) which are the height and width of the uploaded photo in pixels.
Print two integers which are the height and width of the cut area.
[ "2 1\n", "2 2\n", "5 5\n" ]
[ "1 1\n", "2 2\n", "5 4\n" ]
none
[ { "input": "2 1", "output": "1 1" }, { "input": "2 2", "output": "2 2" }, { "input": "5 5", "output": "5 4" }, { "input": "9 10", "output": "8 10" }, { "input": "15 13", "output": "10 8" }, { "input": "47 46", "output": "40 32" }, { "input": "99 100", "output": "80 64" }, { "input": "939 887", "output": "640 512" }, { "input": "4774 4806", "output": "4096 4806" }, { "input": "39271 49032", "output": "32768 40960" }, { "input": "483242 484564", "output": "327680 262144" }, { "input": "4939191 4587461", "output": "4939191 4194304" }, { "input": "9909199 9945873", "output": "8388608 9945873" }, { "input": "49829224 49889315", "output": "41943040 33554432" }, { "input": "49728622 49605627", "output": "41943040 33554432" }, { "input": "49934587 49239195", "output": "41943040 33554432" }, { "input": "48298903 49928606", "output": "41943040 33554432" }, { "input": "49874820 49474021", "output": "41943040 33554432" }, { "input": "48945079 49798393", "output": "41943040 33554432" }, { "input": "99692141 99232337", "output": "83886080 67108864" }, { "input": "998557701 924591072", "output": "671088640 536870912" }, { "input": "644590722 593296648", "output": "644590722 536870912" }, { "input": "792322809 775058858", "output": "671088640 536870912" }, { "input": "971840165 826141527", "output": "671088640 536870912" }, { "input": "944976601 976175854", "output": "671088640 536870912" }, { "input": "1000000000 1000000000", "output": "671088640 536870912" } ]
124
0
0
7,387
250
Restoring IPv6
[ "implementation", "strings" ]
null
null
An IPv6-address is a 128-bit number. For convenience, this number is recorded in blocks of 16 bits in hexadecimal record, the blocks are separated by colons β€” 8 blocks in total, each block has four hexadecimal digits. Here is an example of the correct record of a IPv6 address: "0124:5678:90ab:cdef:0124:5678:90ab:cdef". We'll call such format of recording an IPv6-address full. Besides the full record of an IPv6 address there is a short record format. The record of an IPv6 address can be shortened by removing one or more leading zeroes at the beginning of each block. However, each block should contain at least one digit in the short format. For example, the leading zeroes can be removed like that: "a56f:00d3:0000:0124:0001:f19a:1000:0000" <=β†’<= "a56f:d3:0:0124:01:f19a:1000:00". There are more ways to shorten zeroes in this IPv6 address. Some IPv6 addresses contain long sequences of zeroes. Continuous sequences of 16-bit zero blocks can be shortened to "::". A sequence can consist of one or several consecutive blocks, with all 16 bits equal to 0. You can see examples of zero block shortenings below: - "a56f:00d3:0000:0124:0001:0000:0000:0000" <=β†’<= "a56f:00d3:0000:0124:0001::"; - "a56f:0000:0000:0124:0001:0000:1234:0ff0" <=β†’<= "a56f::0124:0001:0000:1234:0ff0"; - "a56f:0000:0000:0000:0001:0000:1234:0ff0" <=β†’<= "a56f:0000::0000:0001:0000:1234:0ff0"; - "a56f:00d3:0000:0124:0001:0000:0000:0000" <=β†’<= "a56f:00d3:0000:0124:0001::0000"; - "0000:0000:0000:0000:0000:0000:0000:0000" <=β†’<= "::". It is not allowed to shorten zero blocks in the address more than once. This means that the short record can't contain the sequence of characters "::" more than once. Otherwise, it will sometimes be impossible to determine the number of zero blocks, each represented by a double colon. The format of the record of the IPv6 address after removing the leading zeroes and shortening the zero blocks is called short. You've got several short records of IPv6 addresses. Restore their full record.
The first line contains a single integer *n* β€” the number of records to restore (1<=≀<=*n*<=≀<=100). Each of the following *n* lines contains a string β€” the short IPv6 addresses. Each string only consists of string characters "0123456789abcdef:". It is guaranteed that each short address is obtained by the way that is described in the statement from some full IPv6 address.
For each short IPv6 address from the input print its full record on a separate line. Print the full records for the short IPv6 addresses in the order, in which the short records follow in the input.
[ "6\na56f:d3:0:0124:01:f19a:1000:00\na56f:00d3:0000:0124:0001::\na56f::0124:0001:0000:1234:0ff0\na56f:0000::0000:0001:0000:1234:0ff0\n::\n0ea::4d:f4:6:0\n" ]
[ "a56f:00d3:0000:0124:0001:f19a:1000:0000\na56f:00d3:0000:0124:0001:0000:0000:0000\na56f:0000:0000:0124:0001:0000:1234:0ff0\na56f:0000:0000:0000:0001:0000:1234:0ff0\n0000:0000:0000:0000:0000:0000:0000:0000\n00ea:0000:0000:0000:004d:00f4:0006:0000\n" ]
none
[ { "input": "6\na56f:d3:0:0124:01:f19a:1000:00\na56f:00d3:0000:0124:0001::\na56f::0124:0001:0000:1234:0ff0\na56f:0000::0000:0001:0000:1234:0ff0\n::\n0ea::4d:f4:6:0", "output": "a56f:00d3:0000:0124:0001:f19a:1000:0000\na56f:00d3:0000:0124:0001:0000:0000:0000\na56f:0000:0000:0124:0001:0000:1234:0ff0\na56f:0000:0000:0000:0001:0000:1234:0ff0\n0000:0000:0000:0000:0000:0000:0000:0000\n00ea:0000:0000:0000:004d:00f4:0006:0000" }, { "input": "20\n0:0:9e39:9:b21:c9b:c:0\n0:0:0:0:0:a27:6b:cb0a\n2:7:4d:b:0:3:2:f401\n17:2dc6::0:89e3:0:dc:0\nca:4:0:0:d6:b999:e:0\n4af:553:b29:dd7:2:5b:0:7\n0:c981:8f:a4d:0:d4:0:f61\n0:0:1:0:dc33:0:1964:0\n84:da:0:6d6:0ecc:1:f:0\n4:fb:4d37:0:8c:4:4a52:24\nc:e:a:0:0:0:e:0\n0:3761:72ed:b7:3b0:ff7:fc:102\n5ae:8ca7:10::0:9b2:0:525a\n0::ab:8d64:86:767:2\ne6b:3cb:0:81ce:0ac4:11::1\n4:0:5238:7b:591d:ff15:0:e\n0:f9a5:0::118e:dde:0\n0:d4c:feb:b:10a:0:d:e\n0:0:0:ff38:b5d:a3c2:f3:0\n2:a:6:c50:83:4f:7f0d::", "output": "0000:0000:9e39:0009:0b21:0c9b:000c:0000\n0000:0000:0000:0000:0000:0a27:006b:cb0a\n0002:0007:004d:000b:0000:0003:0002:f401\n0017:2dc6:0000:0000:89e3:0000:00dc:0000\n00ca:0004:0000:0000:00d6:b999:000e:0000\n04af:0553:0b29:0dd7:0002:005b:0000:0007\n0000:c981:008f:0a4d:0000:00d4:0000:0f61\n0000:0000:0001:0000:dc33:0000:1964:0000\n0084:00da:0000:06d6:0ecc:0001:000f:0000\n0004:00fb:4d37:0000:008c:0004:4a52:0024\n000c:000e:000a:0000:0000:0000:000e:0000\n0000:3761:72ed:00b7:03b0:0ff7:00fc:0102\n05ae:8ca7:0010:0000..." }, { "input": "10\n1::7\n0:0::1\n::1ed\n::30:44\n::eaf:ff:000b\n56fe::\ndf0:3df::\nd03:ab:0::\n85::0485:0\n::", "output": "0001:0000:0000:0000:0000:0000:0000:0007\n0000:0000:0000:0000:0000:0000:0000:0001\n0000:0000:0000:0000:0000:0000:0000:01ed\n0000:0000:0000:0000:0000:0000:0030:0044\n0000:0000:0000:0000:0000:0eaf:00ff:000b\n56fe:0000:0000:0000:0000:0000:0000:0000\n0df0:03df:0000:0000:0000:0000:0000:0000\n0d03:00ab:0000:0000:0000:0000:0000:0000\n0085:0000:0000:0000:0000:0000:0485:0000\n0000:0000:0000:0000:0000:0000:0000:0000" }, { "input": "6\n0:00:000:0000::\n1:01:001:0001::\nf:0f:00f:000f::\n1:10:100:1000::\nf:f0:f00:f000::\nf:ff:fff:ffff::", "output": "0000:0000:0000:0000:0000:0000:0000:0000\n0001:0001:0001:0001:0000:0000:0000:0000\n000f:000f:000f:000f:0000:0000:0000:0000\n0001:0010:0100:1000:0000:0000:0000:0000\n000f:00f0:0f00:f000:0000:0000:0000:0000\n000f:00ff:0fff:ffff:0000:0000:0000:0000" }, { "input": "3\n::\n::\n::", "output": "0000:0000:0000:0000:0000:0000:0000:0000\n0000:0000:0000:0000:0000:0000:0000:0000\n0000:0000:0000:0000:0000:0000:0000:0000" }, { "input": "4\n1:2:3:4:5:6:7:8\n0:0:0:0:0:0:0:0\nf:0f:00f:000f:ff:0ff:00ff:fff\n0fff:0ff0:0f0f:f0f:0f0:f0f0:f00f:ff0f", "output": "0001:0002:0003:0004:0005:0006:0007:0008\n0000:0000:0000:0000:0000:0000:0000:0000\n000f:000f:000f:000f:00ff:00ff:00ff:0fff\n0fff:0ff0:0f0f:0f0f:00f0:f0f0:f00f:ff0f" } ]
278
23,244,800
3
7,391
753
Interactive Bulls and Cows (Hard)
[ "brute force", "constructive algorithms", "interactive" ]
null
null
The only difference from the previous problem is the constraint on the number of requests. In this problem your program should guess the answer doing at most 7 requests. This problem is a little bit unusual. Here you are to implement an interaction with a testing system. That means that you can make queries and get responses in the online mode. Please be sure to use the stream flushing operation after each query's output in order not to leave part of your output in some buffer. For example, in C++ you've got to use the fflush(stdout) function, in Java β€” call System.out.flush(), and in Pascal β€” flush(output). Bulls and Cows (also known as Cows and Bulls or Pigs and Bulls or Bulls and Cleots) is an old code-breaking paper and pencil game for two players, predating the similar commercially marketed board game Mastermind. On a sheet of paper, the first player thinks a secret string. This string consists only of digits and has the length 4. The digits in the string must be all different, no two or more equal digits are allowed. Then the second player tries to guess his opponent's string. For every guess the first player gives the number of matches. If the matching digits are on their right positions, they are "bulls", if on different positions, they are "cows". Thus a response is a pair of numbers β€” the number of "bulls" and the number of "cows". A try can contain equal digits. More formally, let's the secret string is *s* and the second player are trying to guess it with a string *x*. The number of "bulls" is a number of such positions *i* (1<=≀<=*i*<=≀<=4) where *s*[*i*]<==<=*x*[*i*]. The number of "cows" is a number of such digits *c* that *s* contains *c* in the position *i* (i.e. *s*[*i*]<==<=*c*), *x* contains *c*, but *x*[*i*]<=β‰ <=*c*. For example, the secret string is "0427", the opponent's try is "0724", then the answer is 2 bulls and 2 cows (the bulls are "0" and "2", the cows are "4" and "7"). If the secret string is "0123", the opponent's try is "0330", then the answer is 1 bull and 1 cow. In this problem you are to guess the string *s* that the system has chosen. You only know that the chosen string consists of 4 distinct digits. You can make queries to the testing system, each query is the output of a single 4-digit string. The answer to the query is the number of bulls and number of cows. If the system's response equals "4 0", that means the interaction with your problem is over and the program must terminate. That is possible for two reasons β€” the program either guessed the number *x* or made an invalid action (for example, printed letters instead of digits). Your program is allowed to do at most 7 queries. You can hack solutions of other participants providing a 4-digit string containing distinct digits β€” the secret string.
To read answers to the queries, the program must use the standard input. The program will receive pairs of non-negative integers in the input, one pair per line. The first number in a pair is a number of bulls and the second one is a number of cows of the string *s* and the string *x**i* printed by your program. If the system response equals "4 0", then your solution should terminate. The testing system will let your program read the *i*-th pair of integers from the input only after your program displays the corresponding system query in the output: prints value *x**i* in a single line and executes operation flush.
The program must use the standard output to print queries. Your program must output requests β€” 4-digit strings *x*1,<=*x*2,<=..., one per line. After the output of each line the program must execute flush operation. The program should read the answer to the query from the standard input. Your program is allowed to do at most 7 queries.
[ "0 1\n2 0\n1 1\n0 4\n2 1\n4 0\n" ]
[ "8000\n0179\n3159\n3210\n0112\n0123" ]
The secret string *s* in the example is "0123".
[ { "input": "0123", "output": "1" }, { "input": "1234", "output": "4" }, { "input": "9876", "output": "5" }, { "input": "7158", "output": "3" }, { "input": "7590", "output": "7" }, { "input": "7325", "output": "5" }, { "input": "7524", "output": "5" }, { "input": "7269", "output": "6" }, { "input": "7802", "output": "5" }, { "input": "7436", "output": "6" }, { "input": "7190", "output": "5" }, { "input": "7390", "output": "6" }, { "input": "2548", "output": "5" }, { "input": "2193", "output": "7" }, { "input": "2491", "output": "6" }, { "input": "2469", "output": "5" }, { "input": "2659", "output": "5" }, { "input": "2405", "output": "6" }, { "input": "2058", "output": "5" }, { "input": "2580", "output": "6" }, { "input": "2316", "output": "4" }, { "input": "2516", "output": "4" }, { "input": "8796", "output": "6" }, { "input": "8534", "output": "6" }, { "input": "9067", "output": "7" }, { "input": "8712", "output": "7" }, { "input": "9023", "output": "7" }, { "input": "8645", "output": "5" }, { "input": "8623", "output": "5" }, { "input": "8923", "output": "4" }, { "input": "8567", "output": "6" }, { "input": "8756", "output": "5" }, { "input": "0351", "output": "4" }, { "input": "9863", "output": "6" }, { "input": "0518", "output": "5" }, { "input": "0263", "output": "4" }, { "input": "0462", "output": "5" }, { "input": "0429", "output": "6" }, { "input": "0629", "output": "5" }, { "input": "0374", "output": "4" }, { "input": "0128", "output": "6" }, { "input": "0541", "output": "5" }, { "input": "1680", "output": "5" }, { "input": "1648", "output": "5" }, { "input": "1847", "output": "4" }, { "input": "1592", "output": "6" }, { "input": "1792", "output": "5" }, { "input": "1759", "output": "5" }, { "input": "1958", "output": "5" }, { "input": "1704", "output": "5" }, { "input": "1458", "output": "4" }, { "input": "1870", "output": "5" }, { "input": "3256", "output": "6" }, { "input": "2978", "output": "5" }, { "input": "3189", "output": "4" }, { "input": "2934", "output": "6" }, { "input": "3467", "output": "5" }, { "input": "3102", "output": "5" }, { "input": "3401", "output": "5" }, { "input": "3056", "output": "5" }, { "input": "3024", "output": "5" }, { "input": "3214", "output": "5" }, { "input": "9584", "output": "6" }, { "input": "9340", "output": "6" }, { "input": "9530", "output": "6" }, { "input": "9274", "output": "6" }, { "input": "9706", "output": "6" }, { "input": "9451", "output": "6" }, { "input": "9641", "output": "6" }, { "input": "9618", "output": "6" }, { "input": "9362", "output": "5" }, { "input": "9562", "output": "7" }, { "input": "1047", "output": "4" }, { "input": "0781", "output": "4" }, { "input": "0971", "output": "6" }, { "input": "0947", "output": "6" }, { "input": "1258", "output": "5" }, { "input": "0893", "output": "4" }, { "input": "1094", "output": "6" }, { "input": "1072", "output": "5" }, { "input": "0815", "output": "6" }, { "input": "1026", "output": "4" }, { "input": "2478", "output": "5" }, { "input": "2134", "output": "4" }, { "input": "2645", "output": "5" }, { "input": "2389", "output": "5" }, { "input": "2589", "output": "6" }, { "input": "2345", "output": "5" }, { "input": "2756", "output": "5" }, { "input": "2501", "output": "4" }, { "input": "2701", "output": "5" }, { "input": "2456", "output": "5" }, { "input": "3807", "output": "6" }, { "input": "3561", "output": "4" }, { "input": "3974", "output": "4" }, { "input": "3719", "output": "6" }, { "input": "3918", "output": "6" }, { "input": "3895", "output": "5" }, { "input": "4096", "output": "5" }, { "input": "3840", "output": "6" }, { "input": "4051", "output": "4" }, { "input": "4018", "output": "5" }, { "input": "0946", "output": "5" }, { "input": "1257", "output": "4" }, { "input": "0891", "output": "6" }, { "input": "0635", "output": "4" }, { "input": "1068", "output": "5" }, { "input": "0813", "output": "6" }, { "input": "1024", "output": "3" }, { "input": "0746", "output": "4" }, { "input": "1279", "output": "6" }, { "input": "0924", "output": "6" }, { "input": "2386", "output": "4" }, { "input": "2586", "output": "6" }, { "input": "2340", "output": "4" }, { "input": "2197", "output": "5" }, { "input": "2497", "output": "5" }, { "input": "2153", "output": "4" }, { "input": "2451", "output": "3" }, { "input": "2410", "output": "4" }, { "input": "2610", "output": "4" }, { "input": "2365", "output": "6" }, { "input": "3718", "output": "6" }, { "input": "3917", "output": "6" }, { "input": "3671", "output": "5" }, { "input": "4095", "output": "6" }, { "input": "3829", "output": "5" }, { "input": "3582", "output": "5" }, { "input": "4017", "output": "6" }, { "input": "3750", "output": "5" }, { "input": "3950", "output": "6" }, { "input": "3694", "output": "6" }, { "input": "0179", "output": "5" }, { "input": "0379", "output": "5" }, { "input": "0357", "output": "4" }, { "input": "0547", "output": "5" }, { "input": "0291", "output": "7" }, { "input": "9824", "output": "5" }, { "input": "0468", "output": "4" }, { "input": "0214", "output": "2" }, { "input": "0413", "output": "3" }, { "input": "0379", "output": "5" }, { "input": "1520", "output": "3" }, { "input": "1943", "output": "5" }, { "input": "1687", "output": "4" }, { "input": "1876", "output": "5" }, { "input": "1632", "output": "4" }, { "input": "1598", "output": "6" }, { "input": "1798", "output": "6" }, { "input": "1543", "output": "5" }, { "input": "1743", "output": "5" }, { "input": "1720", "output": "5" }, { "input": "2850", "output": "5" }, { "input": "3284", "output": "5" }, { "input": "3028", "output": "6" }, { "input": "3218", "output": "6" }, { "input": "3195", "output": "6" }, { "input": "2938", "output": "5" }, { "input": "3149", "output": "5" }, { "input": "2873", "output": "6" }, { "input": "3407", "output": "6" }, { "input": "3061", "output": "5" }, { "input": "4513", "output": "6" }, { "input": "4713", "output": "6" }, { "input": "4368", "output": "6" }, { "input": "4658", "output": "4" }, { "input": "4625", "output": "4" }, { "input": "4279", "output": "5" }, { "input": "4579", "output": "4" }, { "input": "4215", "output": "5" }, { "input": "4736", "output": "6" }, { "input": "4390", "output": "6" }, { "input": "0865", "output": "5" }, { "input": "1076", "output": "4" }, { "input": "0821", "output": "6" }, { "input": "1354", "output": "3" }, { "input": "0976", "output": "5" }, { "input": "1287", "output": "5" }, { "input": "0932", "output": "7" }, { "input": "0897", "output": "5" }, { "input": "1098", "output": "5" }, { "input": "0843", "output": "5" }, { "input": "2307", "output": "5" }, { "input": "2507", "output": "6" }, { "input": "2160", "output": "4" }, { "input": "2683", "output": "6" }, { "input": "2418", "output": "5" }, { "input": "2618", "output": "5" }, { "input": "2594", "output": "5" }, { "input": "2349", "output": "5" }, { "input": "2539", "output": "6" }, { "input": "2184", "output": "5" }, { "input": "3647", "output": "6" }, { "input": "3846", "output": "6" }, { "input": "3814", "output": "6" }, { "input": "4025", "output": "4" }, { "input": "3759", "output": "5" }, { "input": "3958", "output": "4" }, { "input": "3926", "output": "6" }, { "input": "3680", "output": "6" }, { "input": "3870", "output": "5" }, { "input": "3847", "output": "6" }, { "input": "0453", "output": "3" }, { "input": "0421", "output": "4" }, { "input": "0165", "output": "4" }, { "input": "0365", "output": "3" }, { "input": "9876", "output": "5" }, { "input": "0532", "output": "5" }, { "input": "0276", "output": "4" }, { "input": "0476", "output": "4" }, { "input": "0453", "output": "3" }, { "input": "0643", "output": "5" }, { "input": "2018", "output": "6" }, { "input": "1752", "output": "5" }, { "input": "1496", "output": "5" }, { "input": "1695", "output": "6" }, { "input": "1673", "output": "3" }, { "input": "1863", "output": "5" }, { "input": "1608", "output": "4" }, { "input": "1807", "output": "5" }, { "input": "1784", "output": "6" }, { "input": "1974", "output": "6" }, { "input": "3458", "output": "4" }, { "input": "3092", "output": "7" }, { "input": "2836", "output": "5" }, { "input": "3269", "output": "5" }, { "input": "3015", "output": "5" }, { "input": "3205", "output": "5" }, { "input": "2947", "output": "6" }, { "input": "3480", "output": "6" }, { "input": "3126", "output": "4" }, { "input": "3416", "output": "6" }, { "input": "9687", "output": "5" }, { "input": "9432", "output": "6" }, { "input": "9176", "output": "5" }, { "input": "9610", "output": "6" }, { "input": "9354", "output": "5" }, { "input": "9543", "output": "5" }, { "input": "9521", "output": "6" }, { "input": "9721", "output": "6" }, { "input": "9465", "output": "6" }, { "input": "9654", "output": "6" }, { "input": "1250", "output": "3" }, { "input": "0874", "output": "4" }, { "input": "0852", "output": "5" }, { "input": "1063", "output": "4" }, { "input": "0795", "output": "5" }, { "input": "0985", "output": "5" }, { "input": "0963", "output": "5" }, { "input": "1274", "output": "5" }, { "input": "0917", "output": "6" }, { "input": "1208", "output": "6" }, { "input": "2580", "output": "6" }, { "input": "2548", "output": "5" }, { "input": "2748", "output": "5" }, { "input": "2491", "output": "6" }, { "input": "2147", "output": "4" }, { "input": "2659", "output": "5" }, { "input": "2405", "output": "6" }, { "input": "2604", "output": "6" }, { "input": "2358", "output": "5" }, { "input": "2780", "output": "5" }, { "input": "8921", "output": "6" }, { "input": "8796", "output": "6" }, { "input": "9102", "output": "7" }, { "input": "8734", "output": "6" }, { "input": "8479", "output": "6" }, { "input": "9023", "output": "7" }, { "input": "8645", "output": "5" }, { "input": "8945", "output": "5" }, { "input": "8923", "output": "4" }, { "input": "9134", "output": "6" }, { "input": "0596", "output": "5" }, { "input": "0351", "output": "4" }, { "input": "0541", "output": "5" }, { "input": "0285", "output": "5" }, { "input": "0263", "output": "4" }, { "input": "0462", "output": "5" }, { "input": "0196", "output": "5" }, { "input": "0396", "output": "5" }, { "input": "0374", "output": "4" }, { "input": "0573", "output": "4" }, { "input": "1936", "output": "6" }, { "input": "1680", "output": "5" }, { "input": "1870", "output": "5" }, { "input": "1847", "output": "4" }, { "input": "1592", "output": "6" }, { "input": "1792", "output": "5" }, { "input": "1537", "output": "5" }, { "input": "1958", "output": "5" }, { "input": "1704", "output": "5" }, { "input": "1904", "output": "6" }, { "input": "3278", "output": "4" }, { "input": "3024", "output": "5" }, { "input": "3214", "output": "5" }, { "input": "3189", "output": "4" }, { "input": "2934", "output": "6" }, { "input": "3145", "output": "5" }, { "input": "3102", "output": "5" }, { "input": "3401", "output": "5" }, { "input": "3056", "output": "5" }, { "input": "3256", "output": "6" }, { "input": "9507", "output": "7" }, { "input": "9251", "output": "6" }, { "input": "9673", "output": "5" }, { "input": "9418", "output": "6" }, { "input": "9618", "output": "6" }, { "input": "9584", "output": "6" }, { "input": "9784", "output": "5" }, { "input": "9530", "output": "6" }, { "input": "9275", "output": "6" }, { "input": "9708", "output": "6" }, { "input": "0948", "output": "5" }, { "input": "0926", "output": "5" }, { "input": "1237", "output": "5" }, { "input": "0861", "output": "5" }, { "input": "1072", "output": "5" }, { "input": "1048", "output": "5" }, { "input": "1348", "output": "6" }, { "input": "0972", "output": "6" }, { "input": "1506", "output": "5" }, { "input": "1259", "output": "6" }, { "input": "7523", "output": "5" }, { "input": "7268", "output": "7" }, { "input": "7468", "output": "5" }, { "input": "7213", "output": "5" }, { "input": "7634", "output": "7" }, { "input": "7389", "output": "5" }, { "input": "7589", "output": "4" }, { "input": "7324", "output": "4" }, { "input": "7845", "output": "5" }, { "input": "7501", "output": "5" }, { "input": "8952", "output": "6" }, { "input": "8609", "output": "7" }, { "input": "8907", "output": "4" }, { "input": "8764", "output": "5" }, { "input": "9075", "output": "6" }, { "input": "8720", "output": "6" }, { "input": "9031", "output": "7" }, { "input": "8975", "output": "5" }, { "input": "9186", "output": "5" }, { "input": "8931", "output": "6" }, { "input": "0416", "output": "4" }, { "input": "0159", "output": "6" }, { "input": "0359", "output": "6" }, { "input": "0327", "output": "5" }, { "input": "0527", "output": "5" }, { "input": "0271", "output": "5" }, { "input": "0471", "output": "4" }, { "input": "0438", "output": "5" }, { "input": "0638", "output": "4" }, { "input": "0382", "output": "6" }, { "input": "1745", "output": "4" }, { "input": "1489", "output": "6" }, { "input": "1923", "output": "7" }, { "input": "1657", "output": "5" }, { "input": "1856", "output": "5" }, { "input": "1602", "output": "4" }, { "input": "2045", "output": "5" }, { "input": "1768", "output": "5" }, { "input": "1967", "output": "5" }, { "input": "1723", "output": "5" }, { "input": "8096", "output": "5" }, { "input": "7831", "output": "6" }, { "input": "8264", "output": "6" }, { "input": "8019", "output": "4" }, { "input": "8209", "output": "5" }, { "input": "8175", "output": "5" }, { "input": "8375", "output": "6" }, { "input": "8130", "output": "6" }, { "input": "8320", "output": "6" }, { "input": "8296", "output": "7" }, { "input": "9427", "output": "5" }, { "input": "9405", "output": "6" }, { "input": "9604", "output": "7" }, { "input": "9348", "output": "5" }, { "input": "9538", "output": "6" }, { "input": "9516", "output": "6" }, { "input": "9715", "output": "5" }, { "input": "9460", "output": "6" }, { "input": "9872", "output": "6" }, { "input": "9627", "output": "5" }, { "input": "1203", "output": "4" }, { "input": "0845", "output": "6" }, { "input": "1056", "output": "5" }, { "input": "0789", "output": "4" }, { "input": "1325", "output": "3" }, { "input": "0957", "output": "6" }, { "input": "1268", "output": "5" }, { "input": "0913", "output": "7" }, { "input": "1436", "output": "3" }, { "input": "1079", "output": "6" }, { "input": "7452", "output": "5" }, { "input": "7642", "output": "6" }, { "input": "7396", "output": "5" }, { "input": "7364", "output": "6" }, { "input": "7563", "output": "6" }, { "input": "7309", "output": "7" }, { "input": "7509", "output": "6" }, { "input": "7485", "output": "5" }, { "input": "7158", "output": "3" }, { "input": "9431", "output": "7" } ]
30
0
0
7,406
16
Fish
[ "bitmasks", "dp", "probabilities" ]
E. Fish
3
128
*n* fish, numbered from 1 to *n*, live in a lake. Every day right one pair of fish meet, and the probability of each other pair meeting is the same. If two fish with indexes i and j meet, the first will eat up the second with the probability *a**ij*, and the second will eat up the first with the probability *a**ji*<==<=1<=-<=*a**ij*. The described process goes on until there are at least two fish in the lake. For each fish find out the probability that it will survive to be the last in the lake.
The first line contains integer *n* (1<=≀<=*n*<=≀<=18) β€” the amount of fish in the lake. Then there follow *n* lines with *n* real numbers each β€” matrix *a*. *a**ij* (0<=≀<=*a**ij*<=≀<=1) β€” the probability that fish with index *i* eats up fish with index *j*. It's guaranteed that the main diagonal contains zeros only, and for other elements the following is true: *a**ij*<==<=1<=-<=*a**ji*. All real numbers are given with not more than 6 characters after the decimal point.
Output *n* space-separated real numbers accurate to not less than 6 decimal places. Number with index *i* should be equal to the probability that fish with index *i* will survive to be the last in the lake.
[ "2\n0 0.5\n0.5 0\n", "5\n0 1 1 1 1\n0 0 0.5 0.5 0.5\n0 0.5 0 0.5 0.5\n0 0.5 0.5 0 0.5\n0 0.5 0.5 0.5 0\n" ]
[ "0.500000 0.500000 ", "1.000000 0.000000 0.000000 0.000000 0.000000 " ]
none
[ { "input": "2\n0 0.5\n0.5 0", "output": "0.500000 0.500000 " }, { "input": "4\n0 0.5 0.5 0.5\n0.5 0 0.5 0.5\n0.5 0.5 0 0.5\n0.5 0.5 0.5 0", "output": "0.250000 0.250000 0.250000 0.250000 " }, { "input": "5\n0 1 1 1 1\n0 0 0.5 0.5 0.5\n0 0.5 0 0.5 0.5\n0 0.5 0.5 0 0.5\n0 0.5 0.5 0.5 0", "output": "1.000000 0.000000 0.000000 0.000000 0.000000 " }, { "input": "1\n0.000", "output": "1.000000 " }, { "input": "2\n0.000 0.551\n0.449 0.000", "output": "0.551000 0.449000 " }, { "input": "3\n0.000 0.817 0.584\n0.183 0.000 0.665\n0.416 0.335 0.000", "output": "0.564400 0.208967 0.226632 " }, { "input": "4\n0.000 0.083 0.548 0.503\n0.917 0.000 0.395 0.144\n0.452 0.605 0.000 0.991\n0.497 0.856 0.009 0.000", "output": "0.163512 0.222554 0.463543 0.150390 " }, { "input": "5\n0.000 0.349 0.202 0.088 0.431\n0.651 0.000 0.435 0.627 0.564\n0.798 0.565 0.000 0.725 0.949\n0.912 0.373 0.275 0.000 0.027\n0.569 0.436 0.051 0.973 0.000", "output": "0.059303 0.233839 0.494324 0.093917 0.118617 " }, { "input": "8\n0.000 0.147 0.783 0.224 0.220 0.651 0.453 0.209\n0.853 0.000 0.246 0.076 0.018 0.349 0.896 0.315\n0.217 0.754 0.000 0.307 0.968 0.400 0.531 0.086\n0.776 0.924 0.693 0.000 0.707 0.842 0.116 0.949\n0.780 0.982 0.032 0.293 0.000 0.908 0.307 0.266\n0.349 0.651 0.600 0.158 0.092 0.000 0.066 0.909\n0.547 0.104 0.469 0.884 0.693 0.934 0.000 0.251\n0.791 0.685 0.914 0.051 0.734 0.091 0.749 0.000", "output": "0.056312 0.054963 0.091124 0.315966 0.093803 0.056812 0.187952 0.143068 " } ]
60
0
0
7,439
685
Kay and Eternity
[ "brute force", "implementation", "sortings" ]
null
null
Snow Queen told Kay to form a word "eternity" using pieces of ice. Kay is eager to deal with the task, because he will then become free, and Snow Queen will give him all the world and a pair of skates. Behind the palace of the Snow Queen there is an infinite field consisting of cells. There are *n* pieces of ice spread over the field, each piece occupying exactly one cell and no two pieces occupying the same cell. To estimate the difficulty of the task Kay looks at some squares of size *k*<=Γ—<=*k* cells, with corners located at the corners of the cells and sides parallel to coordinate axis and counts the number of pieces of the ice inside them. This method gives an estimation of the difficulty of some part of the field. However, Kay also wants to estimate the total difficulty, so he came up with the following criteria: for each *x* (1<=≀<=*x*<=≀<=*n*) he wants to count the number of squares of size *k*<=Γ—<=*k*, such that there are exactly *x* pieces of the ice inside. Please, help Kay estimate the difficulty of the task given by the Snow Queen.
The first line of the input contains two integers *n* and *k* (1<=≀<=*n*<=≀<=100<=000, 1<=≀<=*k*<=≀<=300)Β β€” the number of pieces of the ice and the value *k*, respectively. Each of the next *n* lines contains two integers *x**i* and *y**i* (<=-<=109<=≀<=*x**i*,<=*y**i*<=≀<=109)Β β€” coordinates of the cell containing *i*-th piece of the ice. It's guaranteed, that no two pieces of the ice occupy the same cell.
Print *n* integers: the number of squares of size *k*<=Γ—<=*k* containing exactly 1,<=2,<=...,<=*n* pieces of the ice.
[ "5 3\n4 5\n4 6\n5 5\n5 6\n7 7\n" ]
[ "10 8 1 4 0 \n" ]
none
[ { "input": "5 3\n4 5\n4 6\n5 5\n5 6\n7 7", "output": "10 8 1 4 0 " }, { "input": "10 2\n4 7\n-9 -9\n9 2\n4 4\n7 10\n9 8\n-6 -2\n-9 2\n-7 -6\n0 5", "output": "40 0 0 0 0 0 0 0 0 0 " }, { "input": "10 5\n-7 -3\n-2 7\n4 4\n-1 5\n9 4\n-2 -3\n-5 8\n8 -4\n-6 -6\n8 8", "output": "182 31 2 0 0 0 0 0 0 0 " }, { "input": "10 10\n-8 8\n2 0\n9 -3\n0 -5\n3 9\n-3 7\n6 -10\n8 6\n9 2\n4 -8", "output": "224 243 78 14 0 0 0 0 0 0 " }, { "input": "10 2\n3 9\n0 9\n5 6\n3 7\n7 5\n-4 2\n-8 1\n-4 8\n-2 6\n-5 2", "output": "36 2 0 0 0 0 0 0 0 0 " } ]
842
161,792,000
-1
7,440
452
Magic Trick
[ "combinatorics", "math", "probabilities" ]
null
null
Alex enjoys performing magic tricks. He has a trick that requires a deck of *n* cards. He has *m* identical decks of *n* different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs *n* cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards. The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful. You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.
First line of the input consists of two integers *n* and *m* (1<=≀<=*n*,<=*m*<=≀<=1000), separated by space β€” number of cards in each deck, and number of decks.
On the only line of the output print one floating point number – probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10<=-<=6.
[ "2 2\n", "4 4\n", "1 2\n" ]
[ "0.6666666666666666\n", "0.4000000000000000\n", "1.0000000000000000\n" ]
In the first sample, with probability <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/64c94d13eeb330b494061e86538db66574ad0f7d.png" style="max-width: 100.0%;max-height: 100.0%;"/> Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed. With the remaining <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/14b21b617fcd2e25700376368355f7bbf975d8de.png" style="max-width: 100.0%;max-height: 100.0%;"/> probability he took two different cards, and the probability of pulling off the trick is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb946338365d9781f7d2e9ec692c26702d0ae3a7.png" style="max-width: 100.0%;max-height: 100.0%;"/>. The resulting probability is <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/f54a03c9fa9df64ba08161730756d50b780a5f43.png" style="max-width: 100.0%;max-height: 100.0%;"/>
[ { "input": "2 2", "output": "0.6666666666666666" }, { "input": "4 4", "output": "0.4000000000000000" }, { "input": "1 2", "output": "1.0000000000000000" }, { "input": "2 1", "output": "0.5000000000000000" }, { "input": "10 10", "output": "0.1818181818181818" }, { "input": "1000 1000", "output": "0.0019980019980020" }, { "input": "1 1", "output": "1" }, { "input": "987 123", "output": "0.0020170953866492" }, { "input": "999 999", "output": "0.0020000000000000" }, { "input": "1 999", "output": "1.0000000000000000" }, { "input": "998 1", "output": "0.0010020040080160" }, { "input": "2 987", "output": "0.7498732894069944" }, { "input": "555 543", "output": "0.0035970508143694" }, { "input": "321 123", "output": "0.0061956542837219" }, { "input": "2 3", "output": "0.7000000000000000" }, { "input": "461 1000", "output": "0.0043315295751250" }, { "input": "678 231", "output": "0.0029413109179425" } ]
623
24,985,600
3
7,448
815
Karen and Game
[ "brute force", "greedy", "implementation" ]
null
null
On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as follows. In each level, you have a grid with *n* rows and *m* columns. Each cell originally contains the number 0. One move consists of choosing one row or column, and adding 1 to all of the cells in that row or column. To win the level, after all the moves, the number in the cell at the *i*-th row and *j*-th column should be equal to *g**i*,<=*j*. Karen is stuck on one level, and wants to know a way to beat this level using the minimum number of moves. Please, help her with this task!
The first line of input contains two integers, *n* and *m* (1<=≀<=*n*,<=*m*<=≀<=100), the number of rows and the number of columns in the grid, respectively. The next *n* lines each contain *m* integers. In particular, the *j*-th integer in the *i*-th of these rows contains *g**i*,<=*j* (0<=≀<=*g**i*,<=*j*<=≀<=500).
If there is an error and it is actually not possible to beat the level, output a single integer -1. Otherwise, on the first line, output a single integer *k*, the minimum number of moves necessary to beat the level. The next *k* lines should each contain one of the following, describing the moves in the order they must be done: - row *x*, (1<=≀<=*x*<=≀<=*n*) describing a move of the form "choose the *x*-th row". - col *x*, (1<=≀<=*x*<=≀<=*m*) describing a move of the form "choose the *x*-th column". If there are multiple optimal solutions, output any one of them.
[ "3 5\n2 2 2 3 2\n0 0 0 1 0\n1 1 1 2 1\n", "3 3\n0 0 0\n0 1 0\n0 0 0\n", "3 3\n1 1 1\n1 1 1\n1 1 1\n" ]
[ "4\nrow 1\nrow 1\ncol 4\nrow 3\n", "-1\n", "3\nrow 1\nrow 2\nrow 3\n" ]
In the first test case, Karen has a grid with 3 rows and 5 columns. She can perform the following 4 moves to beat the level: In the second test case, Karen has a grid with 3 rows and 3 columns. It is clear that it is impossible to beat the level; performing any move will create three 1s on the grid, but it is required to only have one 1 in the center. In the third test case, Karen has a grid with 3 rows and 3 columns. She can perform the following 3 moves to beat the level: Note that this is not the only solution; another solution, among others, is col 1, col 2, col 3.
[ { "input": "3 5\n2 2 2 3 2\n0 0 0 1 0\n1 1 1 2 1", "output": "4\nrow 1\nrow 1\ncol 4\nrow 3" }, { "input": "3 3\n0 0 0\n0 1 0\n0 0 0", "output": "-1" }, { "input": "3 3\n1 1 1\n1 1 1\n1 1 1", "output": "3\nrow 1\nrow 2\nrow 3" }, { "input": "3 5\n2 4 2 2 3\n0 2 0 0 1\n1 3 1 1 2", "output": "6\nrow 1\nrow 1\ncol 2\ncol 2\ncol 5\nrow 3" }, { "input": "3 5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "-1" }, { "input": "9 10\n14 5 6 4 8 9 4 14 14 13\n13 4 5 3 7 8 3 13 13 12\n16 7 8 6 10 11 6 16 16 15\n10 1 2 0 4 5 0 10 10 9\n11 2 3 1 5 6 1 11 11 10\n10 1 2 0 4 5 0 10 10 9\n12 3 4 2 6 7 2 12 12 11\n13 4 5 3 7 8 3 13 13 12\n13 4 5 3 7 8 3 13 13 12", "output": "73\nrow 1\nrow 1\nrow 1\nrow 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 2\ncol 3\ncol 3\ncol 5\ncol 5\ncol 5\ncol 5\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 8\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\ncol 10\nrow 2\nrow 2\nrow 2\nrow 3\nrow 3\nrow 3\nrow 3\nrow 3\nrow 3\nrow 5\nrow 7\nrow 7\nrow 8\nrow 8\nrow 8\nrow 9\nr..." }, { "input": "10 10\n30 30 30 33 30 33 30 33 30 33\n431 431 431 434 431 434 431 434 431 434\n19 19 19 22 19 22 19 22 19 22\n24 24 24 27 24 27 24 27 24 27\n5 5 5 8 5 8 5 8 5 8\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3\n0 0 0 3 0 3 0 3 0 3", "output": "521\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\ncol 4\ncol 4\ncol 4\ncol 6\ncol 6\ncol 6\ncol 8\ncol 8\ncol 8\ncol 10\ncol 10\ncol 10\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\n..." }, { "input": "1 1\n0", "output": "0" }, { "input": "1 1\n500", "output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..." }, { "input": "10 10\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n0 0 0 0 0 0 0 0 0 0\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1", "output": "9\nrow 1\nrow 2\nrow 3\nrow 4\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10" }, { "input": "10 10\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 0 1 1 1", "output": "9\ncol 1\ncol 2\ncol 3\ncol 4\ncol 5\ncol 6\ncol 8\ncol 9\ncol 10" }, { "input": "10 11\n8 7 10 15 5 13 12 9 14 11 6\n6 5 8 13 3 11 10 7 12 9 4\n10 9 12 17 7 15 14 11 16 13 8\n9 8 11 16 6 14 13 10 15 12 7\n12 11 14 19 9 17 16 13 18 15 10\n14 13 16 21 11 19 18 15 20 17 12\n7 6 9 14 4 12 11 8 13 10 5\n5 4 7 12 2 10 9 6 11 8 3\n11 10 13 18 8 16 15 12 17 14 9\n13 12 15 20 10 18 17 14 19 16 11", "output": "120\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 1\nrow 1\ncol 1\ncol 1\ncol 1\ncol 2\ncol 2\ncol 3\ncol 3\ncol 3\ncol 3\ncol 3\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 4\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 6\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 7\ncol 8\ncol 8\ncol 8\ncol 8\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 9\ncol 10\n..." }, { "input": "5 3\n2 2 2\n2 2 2\n2 2 2\n1 1 1\n2 2 2", "output": "7\ncol 1\ncol 2\ncol 3\nrow 1\nrow 2\nrow 3\nrow 5" }, { "input": "3 5\n2 2 2 1 2\n2 2 2 1 2\n2 2 2 1 2", "output": "7\nrow 1\nrow 2\nrow 3\ncol 1\ncol 2\ncol 3\ncol 5" }, { "input": "1 100\n396 314 350 362 287 349 266 289 297 305 235 226 256 385 302 304 253 192 298 238 360 366 163 340 247 395 318 260 252 281 178 188 252 379 212 187 354 232 225 159 290 335 387 234 383 215 356 182 323 280 195 209 263 215 322 262 334 157 189 214 195 386 220 209 177 193 368 174 270 329 388 237 260 343 230 173 254 371 327 266 193 178 161 209 335 310 323 323 353 172 368 307 329 234 363 264 334 266 305 209", "output": "11960\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\n..." }, { "input": "100 1\n173\n164\n99\n114\n255\n223\n280\n235\n207\n190\n136\n204\n206\n282\n253\n335\n267\n184\n288\n299\n263\n243\n341\n111\n278\n111\n214\n133\n125\n245\n99\n144\n232\n203\n131\n204\n117\n315\n269\n206\n262\n125\n212\n95\n220\n243\n141\n163\n311\n171\n222\n266\n141\n314\n329\n138\n187\n342\n272\n181\n300\n261\n339\n110\n194\n187\n183\n129\n151\n187\n129\n185\n322\n167\n99\n340\n285\n99\n176\n175\n272\n126\n220\n164\n237\n214\n96\n162\n129\n141\n144\n135\n172\n191\n155\n333\n186\n324\n237\n318", "output": "11282\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\n..." }, { "input": "1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100 1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0", "output": "0" }, { "input": "1 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1\nrow 1" }, { "input": "100 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "1 100\n500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500", "output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..." }, { "input": "100 1\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500\n500", "output": "500\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\nco..." }, { "input": "2 1\n1\n1", "output": "1\ncol 1" }, { "input": "4 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "3\ncol 1\ncol 2\ncol 3" }, { "input": "2 1\n2\n2", "output": "2\ncol 1\ncol 1" }, { "input": "3 2\n1 1\n1 1\n1 1", "output": "2\ncol 1\ncol 2" }, { "input": "2 1\n1\n2", "output": "2\ncol 1\nrow 2" }, { "input": "2 3\n1 1 1\n1 1 1", "output": "2\nrow 1\nrow 2" }, { "input": "1 2\n1 1", "output": "1\nrow 1" }, { "input": "5 1\n1\n1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "10 3\n101 201 301\n102 202 302\n103 203 303\n104 204 304\n105 205 305\n106 206 306\n107 207 307\n108 208 308\n109 209 309\n111 211 311", "output": "649\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\nco..." }, { "input": "2 1\n10\n10", "output": "10\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1" }, { "input": "4 3\n2 2 2\n2 2 2\n2 2 2\n2 2 2", "output": "6\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3" }, { "input": "3 1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "8 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2", "output": "4\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "1 2\n2 2", "output": "2\nrow 1\nrow 1" }, { "input": "3 2\n2 3\n2 3\n2 3", "output": "5\ncol 1\ncol 2\ncol 1\ncol 2\ncol 2" }, { "input": "2 1\n3\n3", "output": "3\ncol 1\ncol 1\ncol 1" }, { "input": "6 2\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "2\ncol 1\ncol 2" }, { "input": "4 1\n1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "2 5\n1 1 1 1 1\n1 1 1 1 1", "output": "2\nrow 1\nrow 2" }, { "input": "3 1\n500\n500\n500", "output": "500\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\nco..." }, { "input": "5 2\n1 1\n2 2\n2 2\n2 2\n2 2", "output": "6\ncol 1\ncol 2\nrow 2\nrow 3\nrow 4\nrow 5" }, { "input": "4 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3", "output": "9\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3" }, { "input": "5 2\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "2\ncol 1\ncol 2" }, { "input": "1 4\n1 1 1 1", "output": "1\nrow 1" }, { "input": "3 1\n2\n3\n2", "output": "3\ncol 1\ncol 1\nrow 2" }, { "input": "1 5\n1 1 1 1 1", "output": "1\nrow 1" }, { "input": "2 4\n3 1 1 1\n3 1 1 1", "output": "4\nrow 1\nrow 2\ncol 1\ncol 1" }, { "input": "3 3\n1 1 1\n0 1 0\n0 0 0", "output": "-1" }, { "input": "3 2\n2 2\n1 1\n2 2", "output": "4\ncol 1\ncol 2\nrow 1\nrow 3" }, { "input": "2 1\n9\n9", "output": "9\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1" }, { "input": "1 7\n3 3 3 3 3 3 3", "output": "3\nrow 1\nrow 1\nrow 1" }, { "input": "5 2\n3 3\n3 3\n3 3\n3 3\n3 3", "output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "10 11\n250 198 192 182 85 239 295 91 318 216 249\n290 238 232 222 125 279 335 131 358 256 289\n409 357 351 341 244 398 454 250 477 375 408\n362 310 304 294 197 351 407 203 430 328 361\n352 300 294 284 187 341 397 193 420 318 351\n409 357 351 341 244 398 454 250 477 375 408\n209 157 151 141 44 198 254 50 277 175 208\n313 261 255 245 148 302 358 154 381 279 312\n171 119 113 103 6 160 216 12 239 137 170\n275 223 217 207 110 264 320 116 343 241 274", "output": "2770\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 2\nrow 3\nrow 4\nrow 5\nrow 6\nrow 7\nrow 8\nrow 9\nrow 10\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..." }, { "input": "7 1\n1\n1\n1\n1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "5 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "3\ncol 1\ncol 2\ncol 3" }, { "input": "5 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3\n3 3 3", "output": "9\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3" }, { "input": "2 1\n4\n5", "output": "5\ncol 1\ncol 1\ncol 1\ncol 1\nrow 2" }, { "input": "4 2\n3 3\n3 3\n3 3\n3 3", "output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "6 3\n2 2 2\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "4\ncol 1\ncol 2\ncol 3\nrow 1" }, { "input": "5 1\n1\n2\n3\n4\n5", "output": "11\ncol 1\nrow 2\nrow 3\nrow 3\nrow 4\nrow 4\nrow 4\nrow 5\nrow 5\nrow 5\nrow 5" }, { "input": "2 1\n1\n3", "output": "3\ncol 1\nrow 2\nrow 2" }, { "input": "3 2\n1 500\n1 500\n1 500", "output": "501\ncol 1\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\nco..." }, { "input": "10 1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1", "output": "1\ncol 1" }, { "input": "6 2\n2 2\n2 2\n2 2\n2 2\n2 2\n2 2", "output": "4\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "3 5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1", "output": "3\nrow 1\nrow 2\nrow 3" }, { "input": "2 3\n2 1 2\n2 1 2", "output": "4\nrow 1\nrow 2\ncol 1\ncol 3" }, { "input": "5 2\n2 2\n2 2\n2 2\n2 2\n2 2", "output": "4\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "1 2\n1 3", "output": "3\nrow 1\ncol 2\ncol 2" }, { "input": "4 3\n2 2 2\n1 1 1\n1 1 1\n1 1 1", "output": "4\ncol 1\ncol 2\ncol 3\nrow 1" }, { "input": "3 2\n1 1\n2 2\n3 3", "output": "5\ncol 1\ncol 2\nrow 2\nrow 3\nrow 3" }, { "input": "4 2\n1 1\n1 1\n1 1\n1 1", "output": "2\ncol 1\ncol 2" }, { "input": "3 4\n1 1 1 1\n1 1 1 1\n1 1 1 1", "output": "3\nrow 1\nrow 2\nrow 3" }, { "input": "2 1\n2\n3", "output": "3\ncol 1\ncol 1\nrow 2" }, { "input": "5 3\n2 2 2\n2 2 2\n2 2 2\n2 2 2\n2 2 2", "output": "6\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3" }, { "input": "3 2\n1 0\n2 1\n2 1", "output": "3\ncol 1\nrow 2\nrow 3" }, { "input": "3 2\n1 2\n2 3\n3 4", "output": "6\ncol 1\ncol 2\ncol 2\nrow 2\nrow 3\nrow 3" }, { "input": "3 3\n1 1 1\n1 2 1\n1 1 1", "output": "-1" }, { "input": "4 3\n2 1 1\n2 1 1\n2 1 1\n2 1 1", "output": "4\ncol 1\ncol 2\ncol 3\ncol 1" }, { "input": "4 1\n3\n3\n3\n3", "output": "3\ncol 1\ncol 1\ncol 1" }, { "input": "1 3\n2 3 2", "output": "3\nrow 1\nrow 1\ncol 2" }, { "input": "1 2\n1 2", "output": "2\nrow 1\ncol 2" }, { "input": "3 2\n2 2\n2 2\n2 2", "output": "4\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "1 3\n1 1 1", "output": "1\nrow 1" }, { "input": "6 3\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "3\ncol 1\ncol 2\ncol 3" }, { "input": "3 1\n2\n2\n2", "output": "2\ncol 1\ncol 1" }, { "input": "3 1\n3\n3\n3", "output": "3\ncol 1\ncol 1\ncol 1" }, { "input": "3 2\n2 2\n1 1\n1 1", "output": "3\ncol 1\ncol 2\nrow 1" }, { "input": "5 3\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2", "output": "4\ncol 1\ncol 2\ncol 3\ncol 3" }, { "input": "1 2\n2 3", "output": "3\nrow 1\nrow 1\ncol 2" }, { "input": "5 1\n2\n2\n2\n2\n2", "output": "2\ncol 1\ncol 1" }, { "input": "3 2\n1 1\n2 2\n2 2", "output": "4\ncol 1\ncol 2\nrow 2\nrow 3" }, { "input": "3 3\n1 1 1\n2 3 3\n4 4 4", "output": "-1" }, { "input": "2 1\n5\n2", "output": "5\ncol 1\ncol 1\nrow 1\nrow 1\nrow 1" }, { "input": "4 2\n2 2\n2 2\n2 2\n2 2", "output": "4\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "3 2\n5 10\n5 10\n5 10", "output": "15\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2\ncol 2" }, { "input": "4 3\n3 4 3\n5 6 5\n3 4 3\n3 4 3", "output": "12\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 1\ncol 2\ncol 3\ncol 2\nrow 2\nrow 2" }, { "input": "4 2\n1 1\n1 1\n1 1\n2 2", "output": "3\ncol 1\ncol 2\nrow 4" }, { "input": "2 3\n1 1 1\n500 500 500", "output": "501\nrow 1\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nrow 2\nro..." }, { "input": "4 1\n4\n4\n4\n4", "output": "4\ncol 1\ncol 1\ncol 1\ncol 1" }, { "input": "3 2\n1 1\n1 1\n2 2", "output": "3\ncol 1\ncol 2\nrow 3" }, { "input": "2 3\n2 2 2\n2 2 2", "output": "4\nrow 1\nrow 2\nrow 1\nrow 2" }, { "input": "3 2\n3 3\n3 3\n3 3", "output": "6\ncol 1\ncol 2\ncol 1\ncol 2\ncol 1\ncol 2" }, { "input": "2 3\n10 10 10\n5 5 5", "output": "15\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 2\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1" }, { "input": "5 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "3\ncol 1\ncol 2\ncol 2" }, { "input": "1 2\n500 500", "output": "500\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nrow 1\nro..." }, { "input": "2 1\n5\n5", "output": "5\ncol 1\ncol 1\ncol 1\ncol 1\ncol 1" } ]
171
9,420,800
3
7,470
59
Shortest Path
[ "graphs", "shortest paths" ]
E. Shortest Path
3
256
In Ancient Berland there were *n* cities and *m* two-way roads of equal length. The cities are numbered with integers from 1 to *n* inclusively. According to an ancient superstition, if a traveller visits three cities *a**i*, *b**i*, *c**i* in row, without visiting other cities between them, a great disaster awaits him. Overall there are *k* such city triplets. Each triplet is ordered, which means that, for example, you are allowed to visit the cities in the following order: *a**i*, *c**i*, *b**i*. Vasya wants to get from the city 1 to the city *n* and not fulfil the superstition. Find out which minimal number of roads he should take. Also you are required to find one of his possible path routes.
The first line contains three integers *n*, *m*, *k* (2<=≀<=*n*<=≀<=3000,<=1<=≀<=*m*<=≀<=20000,<=0<=≀<=*k*<=≀<=105) which are the number of cities, the number of roads and the number of the forbidden triplets correspondingly. Then follow *m* lines each containing two integers *x**i*, *y**i* (1<=≀<=*x**i*,<=*y**i*<=≀<=*n*) which are the road descriptions. The road is described by the numbers of the cities it joins. No road joins a city with itself, there cannot be more than one road between a pair of cities. Then follow *k* lines each containing three integers *a**i*, *b**i*, *c**i* (1<=≀<=*a**i*,<=*b**i*,<=*c**i*<=≀<=*n*) which are the forbidden triplets. Each ordered triplet is listed mo more than one time. All three cities in each triplet are distinct. City *n* can be unreachable from city 1 by roads.
If there are no path from 1 to *n* print -1. Otherwise on the first line print the number of roads *d* along the shortest path from the city 1 to the city *n*. On the second line print *d*<=+<=1 numbers β€” any of the possible shortest paths for Vasya. The path should start in the city 1 and end in the city *n*.
[ "4 4 1\n1 2\n2 3\n3 4\n1 3\n1 4 3\n", "3 1 0\n1 2\n", "4 4 2\n1 2\n2 3\n3 4\n1 3\n1 2 3\n1 3 4\n" ]
[ "2\n1 3 4\n", "-1\n", "4\n1 3 2 3 4\n" ]
none
[ { "input": "4 4 1\n1 2\n2 3\n3 4\n1 3\n1 4 3", "output": "2\n1 3 4" }, { "input": "3 1 0\n1 2", "output": "-1" }, { "input": "4 4 2\n1 2\n2 3\n3 4\n1 3\n1 2 3\n1 3 4", "output": "4\n1 3 2 3 4" }, { "input": "4 4 1\n1 2\n2 3\n3 4\n1 3\n1 2 3", "output": "2\n1 3 4" }, { "input": "2 1 0\n1 2", "output": "1\n1 2" }, { "input": "4 4 1\n1 2\n2 3\n3 4\n1 3\n1 3 4", "output": "3\n1 2 3 4" }, { "input": "3 2 0\n1 2\n3 2", "output": "2\n1 2 3" }, { "input": "3 2 1\n1 2\n3 2\n1 2 3", "output": "-1" }, { "input": "4 4 4\n1 2\n2 3\n3 4\n1 3\n1 2 3\n1 3 4\n1 2 4\n1 3 2", "output": "-1" } ]
1,370
78,028,800
-1
7,473
124
Permutations
[ "brute force", "combinatorics", "implementation" ]
null
null
You are given *n* *k*-digit integers. You have to rearrange the digits in the integers so that the difference between the largest and the smallest number was minimum. Digits should be rearranged by the same rule in all integers.
The first line contains integers *n* and *k* β€” the number and digit capacity of numbers correspondingly (1<=≀<=*n*,<=*k*<=≀<=8). Next *n* lines contain *k*-digit positive integers. Leading zeroes are allowed both in the initial integers and the integers resulting from the rearranging of digits.
Print a single number: the minimally possible difference between the largest and the smallest number after the digits are rearranged in all integers by the same rule.
[ "6 4\n5237\n2753\n7523\n5723\n5327\n2537\n", "3 3\n010\n909\n012\n", "7 5\n50808\n36603\n37198\n44911\n29994\n42543\n50156\n" ]
[ "2700\n", "3\n", "20522\n" ]
In the first sample, if we rearrange the digits in numbers as (3,1,4,2), then the 2-nd and the 4-th numbers will equal 5237 and 2537 correspondingly (they will be maximum and minimum for such order of digits). In the second sample, if we swap the second digits and the first ones, we get integers 100, 99 and 102.
[ { "input": "6 4\n5237\n2753\n7523\n5723\n5327\n2537", "output": "2700" }, { "input": "3 3\n010\n909\n012", "output": "3" }, { "input": "7 5\n50808\n36603\n37198\n44911\n29994\n42543\n50156", "output": "20522" }, { "input": "5 5\n61374\n74304\n41924\n46010\n09118", "output": "64592" }, { "input": "8 8\n68785928\n11981277\n32480720\n72495162\n69969623\n42118868\n64235849\n81412116", "output": "52901157" }, { "input": "7 1\n1\n0\n8\n5\n4\n9\n8", "output": "9" }, { "input": "3 8\n34848224\n16307102\n25181102", "output": "8612277" }, { "input": "2 8\n13633861\n68468345", "output": "14445725" }, { "input": "4 4\n0950\n0634\n9264\n8684", "output": "3738" }, { "input": "6 5\n65777\n80932\n32260\n49089\n00936\n85557", "output": "41439" }, { "input": "5 6\n687443\n279213\n765651\n611680\n500192", "output": "258067" }, { "input": "8 6\n034753\n917195\n222679\n778596\n980006\n467267\n482763\n807481", "output": "647026" }, { "input": "8 6\n075967\n240855\n352399\n791547\n103244\n982259\n409866\n926586", "output": "491255" }, { "input": "3 1\n7\n2\n9", "output": "7" }, { "input": "6 4\n5407\n4617\n3050\n7647\n8647\n1993", "output": "6474" }, { "input": "8 5\n47553\n55138\n81768\n78902\n50691\n73010\n93969\n01675", "output": "71123" }, { "input": "8 7\n5945843\n9094433\n0750024\n6255984\n1784849\n7275947\n6513944\n0145523", "output": "5152379" }, { "input": "8 7\n8112819\n8982110\n5457941\n4575033\n5203331\n7410823\n0532182\n8151054", "output": "6194602" }, { "input": "8 8\n63315032\n20587190\n05461152\n76872565\n71177578\n53541174\n00451913\n85740357", "output": "60622457" }, { "input": "2 3\n135\n725", "output": "4" }, { "input": "7 1\n9\n5\n8\n9\n7\n6\n9", "output": "4" }, { "input": "5 3\n560\n978\n543\n846\n714", "output": "435" }, { "input": "7 2\n53\n74\n84\n62\n14\n77\n59", "output": "69" }, { "input": "3 4\n0537\n2174\n5299", "output": "3583" }, { "input": "7 5\n13532\n16394\n97663\n73133\n22712\n58185\n65035", "output": "26455" }, { "input": "8 5\n07936\n07927\n46068\n99158\n90958\n41283\n59266\n87841", "output": "52364" }, { "input": "8 6\n867468\n695388\n700723\n444270\n545657\n178053\n315040\n554471", "output": "559559" }, { "input": "7 7\n6575460\n6965366\n1912357\n7080608\n2561692\n5209630\n0439095", "output": "5917123" }, { "input": "1 2\n96", "output": "0" }, { "input": "1 3\n289", "output": "0" }, { "input": "1 8\n78795220", "output": "0" }, { "input": "8 7\n2407792\n7023368\n2609925\n0587109\n3543873\n6602371\n4579875\n9893509", "output": "6790457" }, { "input": "4 6\n065169\n150326\n924608\n490012", "output": "488134" }, { "input": "4 4\n8851\n6190\n0521\n1659", "output": "6596" }, { "input": "4 4\n4381\n3147\n7017\n5593", "output": "3690" }, { "input": "8 4\n0344\n9196\n1379\n5470\n0989\n8316\n7096\n7918", "output": "7801" }, { "input": "1 6\n430254", "output": "0" }, { "input": "8 1\n4\n0\n8\n5\n9\n0\n4\n7", "output": "9" }, { "input": "5 2\n60\n08\n77\n66\n03", "output": "74" }, { "input": "3 1\n9\n8\n2", "output": "7" }, { "input": "7 2\n89\n00\n59\n90\n99\n22\n55", "output": "99" }, { "input": "2 4\n7694\n6577", "output": "712" }, { "input": "8 8\n68785928\n11981277\n32480720\n72495162\n69969623\n42118868\n64235849\n81412116", "output": "52901157" }, { "input": "2 7\n9183508\n9276377", "output": "26912" }, { "input": "5 4\n7411\n3080\n9578\n5902\n3225", "output": "6498" }, { "input": "3 4\n0136\n4556\n4268", "output": "2134" }, { "input": "6 8\n99358096\n38390629\n71597322\n35940809\n48949759\n66204248", "output": "53570178" }, { "input": "7 2\n23\n11\n88\n25\n22\n45\n10", "output": "78" }, { "input": "2 3\n834\n630", "output": "24" }, { "input": "4 2\n87\n03\n95\n23", "output": "48" }, { "input": "2 8\n10715643\n97664296", "output": "1244714" }, { "input": "6 1\n9\n3\n1\n3\n4\n5", "output": "8" }, { "input": "8 5\n47553\n55138\n81768\n78902\n50691\n73010\n93969\n01675", "output": "71123" }, { "input": "4 4\n7603\n0859\n5241\n7680", "output": "5518" }, { "input": "1 7\n4605461", "output": "0" }, { "input": "3 4\n3061\n3404\n6670", "output": "2916" }, { "input": "8 4\n1847\n0962\n3216\n0772\n6399\n3082\n7997\n0625", "output": "7246" }, { "input": "2 6\n834527\n764560", "output": "577" }, { "input": "5 6\n959808\n303464\n414335\n758650\n828038", "output": "486245" }, { "input": "4 1\n0\n7\n5\n1", "output": "7" }, { "input": "6 7\n4565736\n9842969\n1412800\n6411011\n5744909\n3791659", "output": "4066781" }, { "input": "4 1\n0\n7\n5\n1", "output": "7" }, { "input": "1 3\n250", "output": "0" }, { "input": "2 1\n2\n0", "output": "2" }, { "input": "8 8\n96805230\n73119021\n06552907\n86283347\n88650846\n19155689\n37032451\n19310120", "output": "53604668" }, { "input": "3 2\n64\n94\n65", "output": "10" }, { "input": "8 4\n8008\n4983\n0295\n0353\n5838\n1960\n0270\n7144", "output": "7475" }, { "input": "4 8\n22025344\n54085308\n77633421\n59238322", "output": "7681556" }, { "input": "5 3\n504\n878\n599\n683\n083", "output": "615" }, { "input": "5 4\n7663\n4755\n2941\n4588\n0232", "output": "5346" }, { "input": "6 2\n97\n57\n40\n99\n22\n94", "output": "77" }, { "input": "6 7\n4104025\n1370353\n3472874\n5258456\n5595923\n0279404", "output": "2790148" }, { "input": "8 2\n42\n86\n25\n30\n27\n64\n67\n38", "output": "61" }, { "input": "5 2\n52\n22\n05\n37\n74", "output": "51" }, { "input": "2 2\n63\n50", "output": "13" }, { "input": "6 7\n4104025\n1370353\n3472874\n5258456\n5595923\n0279404", "output": "2790148" }, { "input": "6 2\n95\n56\n06\n46\n77\n51", "output": "62" }, { "input": "3 5\n97424\n96460\n47766", "output": "9536" }, { "input": "2 3\n596\n246", "output": "35" }, { "input": "3 1\n1\n2\n2", "output": "1" }, { "input": "4 2\n87\n03\n95\n23", "output": "48" }, { "input": "7 5\n41078\n41257\n35324\n70082\n66783\n99954\n85784", "output": "56901" }, { "input": "8 7\n8943041\n2427704\n3775080\n2956111\n1345704\n0937172\n1979973\n7081540", "output": "3544246" }, { "input": "6 6\n505845\n903151\n055779\n733849\n508266\n029177", "output": "249045" }, { "input": "4 4\n1871\n9417\n7444\n4294", "output": "5368" }, { "input": "2 5\n60106\n07866", "output": "5224" }, { "input": "3 3\n195\n860\n567", "output": "258" }, { "input": "8 5\n68186\n57779\n78079\n47451\n69788\n82172\n75373\n50157", "output": "32237" }, { "input": "4 7\n5342341\n5194611\n4032103\n8739798", "output": "4056779" }, { "input": "4 8\n91401735\n53979237\n20857777\n94594293", "output": "34567247" }, { "input": "1 2\n95", "output": "0" }, { "input": "6 4\n0443\n7108\n7211\n4287\n6439\n7711", "output": "5301" }, { "input": "6 7\n5794383\n4078451\n0263676\n7682294\n7436158\n3363189", "output": "3560125" }, { "input": "2 5\n07259\n51985", "output": "23657" }, { "input": "3 3\n624\n125\n097", "output": "247" }, { "input": "8 1\n9\n7\n6\n2\n9\n6\n4\n8", "output": "7" }, { "input": "6 3\n530\n862\n874\n932\n972\n157", "output": "442" }, { "input": "3 2\n51\n39\n97", "output": "58" }, { "input": "8 4\n4650\n1735\n4269\n8023\n0948\n9685\n3675\n6017", "output": "6836" }, { "input": "5 3\n168\n513\n110\n386\n501", "output": "403" }, { "input": "6 2\n01\n81\n60\n27\n23\n67", "output": "70" }, { "input": "4 4\n2759\n7250\n3572\n8067", "output": "2028" }, { "input": "8 5\n12658\n00588\n23491\n09985\n63973\n78517\n98187\n29863", "output": "68592" }, { "input": "3 1\n5\n4\n2", "output": "3" }, { "input": "7 8\n24925537\n07626274\n77060131\n82415056\n70422753\n60455207\n32176884", "output": "54680138" }, { "input": "5 8\n94157433\n85577189\n62547277\n11815893\n35445851", "output": "15679126" }, { "input": "5 5\n31164\n27213\n17981\n48806\n01273", "output": "33367" }, { "input": "3 6\n743197\n172242\n635654", "output": "261245" }, { "input": "4 6\n760130\n653002\n902824\n380915", "output": "268111" }, { "input": "8 8\n83239439\n62184887\n58968944\n39808261\n68740623\n38480328\n81965504\n52600488", "output": "44481119" }, { "input": "8 2\n99\n20\n22\n39\n33\n60\n54\n08", "output": "91" }, { "input": "1 7\n3545113", "output": "0" }, { "input": "6 7\n3761949\n8095136\n4875085\n5017784\n4459097\n4354762", "output": "4126934" }, { "input": "6 8\n50157346\n63836375\n03176371\n83637145\n28631038\n18617159", "output": "24702445" }, { "input": "1 5\n84932", "output": "0" }, { "input": "4 3\n204\n515\n280\n840", "output": "467" }, { "input": "8 2\n40\n41\n02\n55\n26\n52\n60\n25", "output": "58" }, { "input": "2 5\n90526\n32565", "output": "586" }, { "input": "4 4\n3058\n2370\n0288\n5983", "output": "2972" }, { "input": "6 7\n9085507\n7716507\n1952887\n6569746\n1900754\n9212439", "output": "3180457" }, { "input": "5 2\n01\n07\n63\n71\n99", "output": "89" }, { "input": "6 4\n4505\n3672\n4248\n2783\n9780\n6579", "output": "4484" }, { "input": "2 3\n281\n498", "output": "127" }, { "input": "8 5\n16966\n36762\n49579\n71703\n66646\n41125\n94022\n26623", "output": "66868" }, { "input": "1 6\n170086", "output": "0" }, { "input": "4 1\n4\n2\n2\n2", "output": "2" }, { "input": "3 8\n12418144\n74773130\n10504811", "output": "22901234" }, { "input": "6 7\n3761949\n8095136\n4875085\n5017784\n4459097\n4354762", "output": "4126934" } ]
60
0
0
7,506
0
none
[ "none" ]
null
null
Once Vasya and Petya assembled a figure of *m* cubes, each of them is associated with a number between 0 and *m*<=-<=1 (inclusive, each number appeared exactly once). Let's consider a coordinate system such that the *OX* is the ground, and the *OY* is directed upwards. Each cube is associated with the coordinates of its lower left corner, these coordinates are integers for each cube. The figure turned out to be stable. This means that for any cube that is not on the ground, there is at least one cube under it such that those two cubes touch by a side or a corner. More formally, this means that for the cube with coordinates (*x*,<=*y*) either *y*<==<=0, or there is a cube with coordinates (*x*<=-<=1,<=*y*<=-<=1), (*x*,<=*y*<=-<=1) or (*x*<=+<=1,<=*y*<=-<=1). Now the boys want to disassemble the figure and put all the cubes in a row. In one step the cube is removed from the figure and being put to the right of the blocks that have already been laid. The guys remove the cubes in such order that the figure remains stable. To make the process more interesting, the guys decided to play the following game. The guys take out the cubes from the figure in turns. It is easy to see that after the figure is disassembled, the integers written on the cubes form a number, written in the *m*-ary positional numerical system (possibly, with a leading zero). Vasya wants the resulting number to be maximum possible, and Petya, on the contrary, tries to make it as small as possible. Vasya starts the game. Your task is to determine what number is formed after the figure is disassembled, if the boys play optimally. Determine the remainder of the answer modulo 109<=+<=9.
The first line contains number *m* (2<=≀<=*m*<=≀<=105). The following *m* lines contain the coordinates of the cubes *x**i*,<=*y**i* (<=-<=109<=≀<=*x**i*<=≀<=109, 0<=≀<=*y**i*<=≀<=109) in ascending order of numbers written on them. It is guaranteed that the original figure is stable. No two cubes occupy the same place.
In the only line print the answer to the problem.
[ "3\n2 1\n1 0\n0 1\n", "5\n0 0\n0 1\n0 2\n0 3\n0 4\n" ]
[ "19\n", "2930\n" ]
none
[ { "input": "3\n2 1\n1 0\n0 1", "output": "19" }, { "input": "5\n0 0\n0 1\n0 2\n0 3\n0 4", "output": "2930" }, { "input": "10\n-1 2\n-3 0\n5 5\n4 4\n-2 1\n1 1\n3 3\n2 2\n0 0\n-1000000000 0", "output": "41236677" }, { "input": "10\n-678318184 2\n-678318182 3\n580731357 2\n-678318182 1\n-678318184 1\n-678318183 0\n-678318181 2\n580731357 1\n580731358 0\n-678318183 2", "output": "41627304" }, { "input": "15\n-491189818 2\n-491189821 6\n-491189823 4\n-491189821 4\n-491189822 5\n-491189819 1\n-491189822 4\n-491189822 7\n-491189821 1\n-491189820 2\n-491189823 3\n-491189817 3\n-491189821 3\n-491189820 0\n-491189822 2", "output": "936629642" }, { "input": "20\n900035308 3\n900035314 0\n900035309 2\n900035307 0\n900035311 0\n900035313 2\n900035312 0\n900035313 0\n900035311 3\n900035310 0\n900035311 2\n900035311 1\n900035308 2\n900035308 1\n900035308 0\n900035309 3\n900035310 2\n900035313 1\n900035312 3\n900035309 0", "output": "362446399" }, { "input": "25\n-611859852 0\n-611859842 0\n-611859837 0\n-611859843 0\n-611859863 0\n-611859851 0\n-611859857 0\n-611859858 0\n-611859845 0\n-611859865 0\n-611859836 0\n-611859839 0\n-611859850 0\n-611859854 0\n-611859838 0\n-611859840 0\n-611859860 0\n-611859853 0\n-611859848 0\n-611859844 0\n-611859861 0\n-611859856 0\n-611859862 0\n-611859859 0\n-611859849 0", "output": "93673276" }, { "input": "20\n1000000000 3\n-1000000000 3\n-1000000000 6\n1000000000 7\n-1000000000 5\n-1000000000 8\n-1000000000 0\n1000000000 0\n-1000000000 9\n1000000000 5\n-1000000000 4\n1000000000 4\n1000000000 2\n-1000000000 7\n-1000000000 2\n1000000000 1\n1000000000 9\n1000000000 6\n-1000000000 1\n1000000000 8", "output": "205917730" }, { "input": "2\n72098079 0\n72098078 1", "output": "2" }, { "input": "2\n-67471165 1\n-67471166 0", "output": "1" }, { "input": "2\n-939306957 0\n361808970 0", "output": "2" }, { "input": "2\n-32566075 1\n-32566075 0", "output": "1" }, { "input": "2\n73639551 1\n73639551 0", "output": "1" } ]
61
0
0
7,524
851
Arpa and an exam about geometry
[ "geometry", "math" ]
null
null
Arpa is taking a geometry exam. Here is the last problem of the exam. You are given three points *a*,<=*b*,<=*c*. Find a point and an angle such that if we rotate the page around the point by the angle, the new position of *a* is the same as the old position of *b*, and the new position of *b* is the same as the old position of *c*. Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
The only line contains six integers *a**x*,<=*a**y*,<=*b**x*,<=*b**y*,<=*c**x*,<=*c**y* (|*a**x*|,<=|*a**y*|,<=|*b**x*|,<=|*b**y*|,<=|*c**x*|,<=|*c**y*|<=≀<=109). It's guaranteed that the points are distinct.
Print "Yes" if the problem has a solution, "No" otherwise. You can print each letter in any case (upper or lower).
[ "0 1 1 1 1 0\n", "1 1 0 0 1000 1000\n" ]
[ "Yes\n", "No\n" ]
In the first sample test, rotate the page around (0.5, 0.5) by <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9d845923f4d356a48d8ede337db0303821311f0c.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test, you can't find any solution.
[ { "input": "0 1 1 1 1 0", "output": "Yes" }, { "input": "1 1 0 0 1000 1000", "output": "No" }, { "input": "1 0 2 0 3 0", "output": "No" }, { "input": "3 4 0 0 4 3", "output": "Yes" }, { "input": "-1000000000 1 0 0 1000000000 1", "output": "Yes" }, { "input": "49152 0 0 0 0 81920", "output": "No" }, { "input": "1 -1 4 4 2 -3", "output": "No" }, { "input": "-2 -2 1 4 -2 0", "output": "No" }, { "input": "5 0 4 -2 0 1", "output": "No" }, { "input": "-4 -3 2 -1 -3 4", "output": "No" }, { "input": "-3 -3 5 2 3 -1", "output": "No" }, { "input": "-1000000000 -1000000000 0 0 1000000000 999999999", "output": "No" }, { "input": "-1000000000 -1000000000 0 0 1000000000 1000000000", "output": "No" }, { "input": "-357531221 381512519 -761132895 -224448284 328888775 -237692564", "output": "No" }, { "input": "264193194 -448876521 736684426 -633906160 -328597212 -47935734", "output": "No" }, { "input": "419578772 -125025887 169314071 89851312 961404059 21419450", "output": "No" }, { "input": "-607353321 -620687860 248029390 477864359 728255275 -264646027", "output": "No" }, { "input": "299948862 -648908808 338174789 841279400 -850322448 350263551", "output": "No" }, { "input": "48517753 416240699 7672672 272460100 -917845051 199790781", "output": "No" }, { "input": "-947393823 -495674431 211535284 -877153626 -522763219 -778236665", "output": "No" }, { "input": "-685673792 -488079395 909733355 385950193 -705890324 256550506", "output": "No" }, { "input": "-326038504 547872194 49630307 713863100 303770000 -556852524", "output": "No" }, { "input": "-706921242 -758563024 -588592101 -443440080 858751713 238854303", "output": "No" }, { "input": "-1000000000 -1000000000 0 1000000000 1000000000 -1000000000", "output": "Yes" }, { "input": "1000000000 1000000000 0 -1000000000 -1000000000 1000000000", "output": "Yes" }, { "input": "-999999999 -1000000000 0 0 1000000000 999999999", "output": "Yes" }, { "input": "-1000000000 -999999999 0 0 1000000000 999999999", "output": "No" }, { "input": "-1 -1000000000 0 1000000000 1 -1000000000", "output": "Yes" }, { "input": "0 1000000000 1 0 0 -1000000000", "output": "Yes" }, { "input": "0 1000000000 0 0 0 -1000000000", "output": "No" }, { "input": "0 1 1 2 2 3", "output": "No" }, { "input": "999999999 1000000000 0 0 -1000000000 -999999999", "output": "Yes" }, { "input": "0 0 1 1 2 0", "output": "Yes" }, { "input": "0 0 1 1 2 2", "output": "No" }, { "input": "1 1 2 2 3 3", "output": "No" }, { "input": "0 2 0 3 0 4", "output": "No" }, { "input": "1 1 1 2 1 3", "output": "No" }, { "input": "0 0 3 4 3 9", "output": "Yes" }, { "input": "589824 196608 262144 196608 0 0", "output": "Yes" }, { "input": "0 0 1000000000 1 1000000000 -999999999", "output": "No" }, { "input": "0 0 2 45 0 90", "output": "Yes" }, { "input": "0 0 0 2 0 1", "output": "No" }, { "input": "0 2 4 5 4 0", "output": "Yes" }, { "input": "0 0 2 0 4 0", "output": "No" }, { "input": "1 1 3 3 5 5", "output": "No" }, { "input": "1 1 2 2 3 1", "output": "Yes" } ]
31
0
-1
7,526
616
The Labyrinth
[ "dfs and similar" ]
null
null
You are given a rectangular field of *n*<=Γ—<=*m* cells. Each cell is either empty or impassable (contains an obstacle). Empty cells are marked with '.', impassable cells are marked with '*'. Let's call two empty cells adjacent if they share a side. Let's call a connected component any non-extendible set of cells such that any two of them are connected by the path of adjacent cells. It is a typical well-known definition of a connected component. For each impassable cell (*x*,<=*y*) imagine that it is an empty cell (all other cells remain unchanged) and find the size (the number of cells) of the connected component which contains (*x*,<=*y*). You should do it for each impassable cell independently. The answer should be printed as a matrix with *n* rows and *m* columns. The *j*-th symbol of the *i*-th row should be "." if the cell is empty at the start. Otherwise the *j*-th symbol of the *i*-th row should contain the only digit β€”- the answer modulo 10. The matrix should be printed without any spaces. To make your output faster it is recommended to build the output as an array of *n* strings having length *m* and print it as a sequence of lines. It will be much faster than writing character-by-character. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
The first line contains two integers *n*,<=*m* (1<=≀<=*n*,<=*m*<=≀<=1000) β€” the number of rows and columns in the field. Each of the next *n* lines contains *m* symbols: "." for empty cells, "*" for impassable cells.
Print the answer as a matrix as described above. See the examples to precise the format of the output.
[ "3 3\n*.*\n.*.\n*.*\n", "4 5\n**..*\n..***\n.*.*.\n*.*.*\n" ]
[ "3.3\n.5.\n3.3\n", "46..3\n..732\n.6.4.\n5.4.3\n" ]
In first example, if we imagine that the central cell is empty then it will be included to component of size 5 (cross). If any of the corner cell will be empty then it will be included to component of size 3 (corner).
[ { "input": "3 3\n*.*\n.*.\n*.*", "output": "3.3\n.5.\n3.3" }, { "input": "4 5\n**..*\n..***\n.*.*.\n*.*.*", "output": "46..3\n..732\n.6.4.\n5.4.3" }, { "input": "1 1\n*", "output": "1" }, { "input": "1 1\n.", "output": "." }, { "input": "1 10\n**********", "output": "1111111111" }, { "input": "1 10\n*.***.**.*", "output": "2.212.22.2" }, { "input": "10 1\n*\n*\n*\n*\n*\n.\n*\n.\n*\n*", "output": "1\n1\n1\n1\n2\n.\n3\n.\n2\n1" }, { "input": "10 1\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.", "output": ".\n.\n.\n.\n.\n.\n.\n.\n.\n." } ]
31
0
0
7,528
932
Tree
[ "binary search", "dp", "trees" ]
null
null
You are given a node of the tree with index 1 and with weight 0. Let *cnt* be the number of nodes in the tree at any instant (initially, *cnt* is set to 1). Support *Q* queries of following two types: - Add a new node (index *cnt*<=+<=1) with weight *W* and add edge between node *R* and this node. - Output the maximum length of sequence of nodes which starts with *R*. - Every node in the sequence is an ancestor of its predecessor. - Sum of weight of nodes in sequence does not exceed *X*. - For some nodes *i*,<=*j* that are consecutive in the sequence if *i* is an ancestor of *j* then *w*[*i*]<=β‰₯<=*w*[*j*] and there should not exist a node *k* on simple path from *i* to *j* such that *w*[*k*]<=β‰₯<=*w*[*j*] The tree is rooted at node 1 at any instant. Note that the queries are given in a modified way.
First line containing the number of queries *Q* (1<=≀<=*Q*<=≀<=400000). Let *last* be the answer for previous query of type 2 (initially *last* equals 0). Each of the next *Q* lines contains a query of following form: - 1 p q (1<=≀<=*p*,<=*q*<=≀<=1018): This is query of first type where and . It is guaranteed that 1<=≀<=*R*<=≀<=*cnt* and 0<=≀<=*W*<=≀<=109. - 2 p q (1<=≀<=*p*,<=*q*<=≀<=1018): This is query of second type where and . It is guaranteed that 1<=≀<=*R*<=≀<=*cnt* and 0<=≀<=*X*<=≀<=1015. denotes bitwise XOR of *a* and *b*. It is guaranteed that at least one query of type 2 exists.
Output the answer to each query of second type in separate line.
[ "6\n1 1 1\n2 2 0\n2 2 1\n1 3 0\n2 2 0\n2 2 2\n", "6\n1 1 0\n2 2 0\n2 0 3\n1 0 2\n2 1 3\n2 1 6\n", "7\n1 1 2\n1 2 3\n2 3 3\n1 0 0\n1 5 1\n2 5 0\n2 4 0\n", "7\n1 1 3\n1 2 3\n2 3 4\n1 2 0\n1 5 3\n2 5 5\n2 7 22\n" ]
[ "0\n1\n1\n2\n", "2\n2\n3\n2\n", "1\n1\n2\n", "1\n2\n3\n" ]
In the first example, *last* = 0 - Query 1: 1 1 1, Node 2 with weight 1 is added to node 1. - Query 2: 2 2 0, No sequence of nodes starting at 2 has weight less than or equal to 0. *last* = 0 - Query 3: 2 2 1, Answer is 1 as sequence will be {2}. *last* = 1 - Query 4: 1 2 1, Node 3 with weight 1 is added to node 2. - Query 5: 2 3 1, Answer is 1 as sequence will be {3}. Node 2 cannot be added as sum of weights cannot be greater than 1. *last* = 1 - Query 6: 2 3 3, Answer is 2 as sequence will be {3, 2}. *last* = 2
[ { "input": "6\n1 1 1\n2 2 0\n2 2 1\n1 3 0\n2 2 0\n2 2 2", "output": "0\n1\n1\n2" }, { "input": "6\n1 1 0\n2 2 0\n2 0 3\n1 0 2\n2 1 3\n2 1 6", "output": "2\n2\n3\n2" }, { "input": "7\n1 1 2\n1 2 3\n2 3 3\n1 0 0\n1 5 1\n2 5 0\n2 4 0", "output": "1\n1\n2" }, { "input": "7\n1 1 3\n1 2 3\n2 3 4\n1 2 0\n1 5 3\n2 5 5\n2 7 22", "output": "1\n2\n3" }, { "input": "10\n2 1 763067550989283\n1 0 404066435\n2 0 350165872150325\n1 0 831080886\n2 0 47563543064530\n1 3 609986253\n2 0 151075754777266\n1 3 606995641\n2 4 527728826230421\n1 3 681313421", "output": "1\n1\n1\n1\n1" }, { "input": "10\n2 1 633078426977137\n1 0 800912454\n2 3 727618790065827\n1 3 948480822\n2 3 585770542458810\n1 3 133293607\n2 3 130260797368909\n1 5 60738455\n2 3 745688604384907\n1 3 913945672", "output": "1\n1\n1\n1\n1" } ]
30
0
0
7,538
0
none
[ "none" ]
null
null
As we know, DZY loves playing games. One day DZY decided to play with a *n*<=Γ—<=*m* matrix. To be more precise, he decided to modify the matrix with exactly *k* operations. Each modification is one of the following: 1. Pick some row of the matrix and decrease each element of the row by *p*. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing. 1. Pick some column of the matrix and decrease each element of the column by *p*. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing. DZY wants to know: what is the largest total value of pleasure he could get after performing exactly *k* modifications? Please, help him to calculate this value.
The first line contains four space-separated integers *n*,<=*m*,<=*k* and *p* (1<=≀<=*n*,<=*m*<=≀<=103;Β 1<=≀<=*k*<=≀<=106;Β 1<=≀<=*p*<=≀<=100). Then *n* lines follow. Each of them contains *m* integers representing *a**ij*Β (1<=≀<=*a**ij*<=≀<=103) β€” the elements of the current row of the matrix.
Output a single integer β€” the maximum possible total pleasure value DZY could get.
[ "2 2 2 2\n1 3\n2 4\n", "2 2 5 2\n1 3\n2 4\n" ]
[ "11\n", "11\n" ]
For the first sample test, we can modify: column 2, row 2. After that the matrix becomes: For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:
[]
2,000
15,872,000
0
7,546
167
Wizards and Trolleybuses
[ "implementation", "math" ]
null
null
In some country live wizards. They love to ride trolleybuses. A city in this country has a trolleybus depot with *n* trolleybuses. Every day the trolleybuses leave the depot, one by one and go to the final station. The final station is at a distance of *d* meters from the depot. We know for the *i*-th trolleybus that it leaves at the moment of time *t**i* seconds, can go at a speed of no greater than *v**i* meters per second, and accelerate with an acceleration no greater than *a* meters per second squared. A trolleybus can decelerate as quickly as you want (magic!). It can change its acceleration as fast as you want, as well. Note that the maximum acceleration is the same for all trolleys. Despite the magic the trolleys are still powered by an electric circuit and cannot overtake each other (the wires are to blame, of course). If a trolleybus catches up with another one, they go together one right after the other until they arrive at the final station. Also, the drivers are driving so as to arrive at the final station as quickly as possible. You, as head of the trolleybuses' fans' club, are to determine for each trolley the minimum time by which it can reach the final station. At the time of arrival at the destination station the trolleybus does not necessarily have zero speed. When a trolley is leaving the depot, its speed is considered equal to zero. From the point of view of physics, the trolleybuses can be considered as material points, and also we should ignore the impact on the speed of a trolley bus by everything, except for the acceleration and deceleration provided by the engine.
The first input line contains three space-separated integers *n*, *a*, *d* (1<=≀<=*n*<=≀<=105, 1<=≀<=*a*,<=*d*<=≀<=106) β€” the number of trolleybuses, their maximum acceleration and the distance from the depot to the final station, correspondingly. Next *n* lines contain pairs of integers *t**i* *v**i* (0<=≀<=*t*1<=&lt;<=*t*2...<=&lt;<=*t**n*<=-<=1<=&lt;<=*t**n*<=≀<=106, 1<=≀<=*v**i*<=≀<=106) β€” the time when the *i*-th trolleybus leaves the depot and its maximum speed, correspondingly. The numbers in the lines are separated by spaces.
For each trolleybus print a single line the time it arrives to the final station. Print the times for the trolleybuses in the order in which the trolleybuses are given in the input. The answer will be accepted if the absolute or relative error doesn't exceed 10<=-<=4.
[ "3 10 10000\n0 10\n5 11\n1000 1\n", "1 2 26\n28 29\n" ]
[ "1000.5000000000\n1000.5000000000\n11000.0500000000\n", "33.0990195136\n" ]
In the first sample the second trolleybus will catch up with the first one, that will happen at distance 510.5 meters from the depot. The trolleybuses will go the remaining 9489.5 meters together at speed 10 meters per second. As a result, both trolleybuses will arrive to the final station by the moment of time 1000.5 seconds. The third trolleybus will not catch up with them. It will arrive to the final station by the moment of time 11000.05 seconds.
[ { "input": "3 10 10000\n0 10\n5 11\n1000 1", "output": "1000.5000000000\n1000.5000000000\n11000.0500000000" }, { "input": "1 2 26\n28 29", "output": "33.0990195136" }, { "input": "7 8 3\n1 3\n5 26\n7 3\n10 15\n18 7\n21 17\n23 21", "output": "2.1875000000\n5.8660254038\n8.1875000000\n10.8660254038\n18.8660254038\n21.8660254038\n23.8660254038" }, { "input": "3 6 6\n2 10\n14 19\n18 14", "output": "3.4142135624\n15.4142135624\n19.4142135624" }, { "input": "10 7 8\n2 4\n3 13\n4 7\n5 1\n9 16\n10 9\n12 18\n16 4\n17 16\n20 6", "output": "4.2857142857\n4.5118578920\n5.6428571429\n13.0714285714\n13.0714285714\n13.0714285714\n13.5118578920\n18.2857142857\n18.5118578920\n21.7619047619" }, { "input": "8 4 13\n0 18\n6 24\n10 25\n11 5\n12 18\n20 22\n21 8\n22 12", "output": "2.5495097568\n8.5495097568\n12.5495097568\n14.2250000000\n14.5495097568\n22.5495097568\n23.6250000000\n24.5495097568" }, { "input": "1 2 7\n20 13", "output": "22.6457513111" }, { "input": "3 3 3\n13 1\n18 12\n19 2", "output": "16.1666666667\n19.4142135624\n20.8333333333" }, { "input": "8 7 21\n2 11\n3 4\n4 3\n9 23\n15 9\n16 5\n22 17\n24 10", "output": "4.6948051948\n8.5357142857\n11.2142857143\n11.4494897428\n17.9761904762\n20.5571428571\n24.4495798319\n26.8142857143" }, { "input": "3 6 19\n12 3\n20 24\n30 2", "output": "18.5833333333\n22.5166114784\n39.6666666667" }, { "input": "4 5 14\n11 1\n16 20\n17 15\n21 7", "output": "25.1000000000\n25.1000000000\n25.1000000000\n25.1000000000" }, { "input": "1 1 722397\n556297 454495", "output": "557498.9958402590" }, { "input": "1 100000 363166\n560443 753304", "output": "560445.6950547304" }, { "input": "1 124232 477338\n899117 898233", "output": "899119.7721151346" }, { "input": "1 1000000 1000000\n0 1000000", "output": "1.5000000000" }, { "input": "1 1 1\n0 1000000", "output": "1.4142135624" } ]
46
0
0
7,550
730
Delete Them
[ "constructive algorithms", "implementation" ]
null
null
Polycarp is a beginner programmer. He is studying how to use a command line. Polycarp faced the following problem. There are *n* files in a directory and he needs to delete some of them. Polycarp wants to run a single delete command with filename pattern as an argument. All the files to be deleted should match the pattern and all other files shouldn't match the pattern. Polycarp doesn't know about an asterisk '*', the only special character he knows is a question mark '?' which matches any single character. All other characters in the pattern match themselves only. Formally, a pattern matches a filename if and only if they have equal lengths and all characters in the corresponding positions are equal except when the character in the pattern is '?', in which case the corresponding filename character does not matter. For example, the filename pattern "a?ba?": - matches filenames "aabaa", "abba.", "a.ba9" and "a.ba."; - does not match filenames "aaba", "abaab", "aabaaa" and "aabaa.". Help Polycarp find a pattern which matches files to be deleted and only them or report if there is no such pattern.
The first line of the input contains two integers *n* and *m* (1<=≀<=*m*<=≀<=*n*<=≀<=100) β€” the total number of files and the number of files to be deleted. The following *n* lines contain filenames, single filename per line. All filenames are non-empty strings containing only lowercase English letters, digits and dots ('.'). The length of each filename doesn't exceed 100. It is guaranteed that all filenames are distinct. The last line of the input contains *m* distinct integer numbers in ascending order *a*1,<=*a*2,<=...,<=*a**m* (1<=≀<=*a**i*<=≀<=*n*) β€” indices of files to be deleted. All files are indexed from 1 to *n* in order of their appearance in the input.
If the required pattern exists, print "Yes" in the first line of the output. The second line should contain the required pattern. If there are multiple solutions, print any of them. If the required pattern doesn't exist, print the only line containing "No".
[ "3 2\nab\nac\ncd\n1 2\n", "5 3\ntest\ntezt\ntest.\n.est\ntes.\n1 4 5\n", "4 4\na\nb\nc\ndd\n1 2 3 4\n", "6 3\n.svn\n.git\n....\n...\n..\n.\n1 2 3\n" ]
[ "Yes\na?\n", "Yes\n?es?\n", "No\n", "Yes\n.???\n" ]
none
[ { "input": "3 2\nab\nac\ncd\n1 2", "output": "Yes\na?" }, { "input": "5 3\ntest\ntezt\ntest.\n.est\ntes.\n1 4 5", "output": "Yes\n?es?" }, { "input": "4 4\na\nb\nc\ndd\n1 2 3 4", "output": "No" }, { "input": "6 3\n.svn\n.git\n....\n...\n..\n.\n1 2 3", "output": "Yes\n.???" }, { "input": "4 2\n.b\n.c\ndbt\ne.\n2 4", "output": "No" }, { "input": "27 27\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz\n.\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27", "output": "Yes\n?" }, { "input": "27 26\na\nb\nc\nd\nee\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz\n.\n1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27", "output": "Yes\n?" }, { "input": "27 26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nkq\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz\n.\n1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27", "output": "No" }, { "input": "1 1\nuevim.mrr\n1", "output": "Yes\nuevim.mrr" }, { "input": "2 1\nkbfyvezmy\nsbfammwcy\n1", "output": "Yes\nkbfyvezmy" }, { "input": "5 3\nlmljeqklg\nlclydkkxj\nuylscbk.g\neplpqakme\nablibhkfg\n1 3 5", "output": "Yes\n??l???k?g" }, { "input": "5 4\nabacaba\naaaaaaa\naaaaaab\naaaaaac\naaaaaad\n2 3 4 5", "output": "Yes\naaaaaa?" }, { "input": "5 4\nabacaba\naaaaaaa\nbaaaaab\ncaaaaac\ndaaaaad\n2 3 4 5", "output": "Yes\n?aaaaa?" }, { "input": "5 5\nabacaba\naaaaaaa\nbaaaaab\ncaaaaac\ndaaaaad\n1 2 3 4 5", "output": "Yes\n??a?a??" }, { "input": "5 3\nabacaba\naaaaaaa\nbaaaaab\ncaaaaac\ndaaaaad\n2 3 4", "output": "No" }, { "input": "5 4\naaaaaaa\nbaaaaab\ncaaaaac\ndaaaaad\nabacaba\n1 2 3 4", "output": "Yes\n?aaaaa?" }, { "input": "5 3\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\ndddddddddd\neeeeeeeeee\n1 3 5", "output": "No" }, { "input": "5 4\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\ndddddddddd\neeeeeeeeee\n1 3 4 5", "output": "No" }, { "input": "5 5\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\ndddddddddd\neeeeeeeeee\n1 2 3 4 5", "output": "Yes\n??????????" }, { "input": "5 4\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\ndddddddddd\neeeeeeeee\n1 2 3 4", "output": "Yes\n??????????" }, { "input": "5 4\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\neeeeeeeee\ndddddddddd\n1 2 3 5", "output": "Yes\n??????????" }, { "input": "5 4\naaaaaaaaaa\nbbbbbbbbbb\neeeeeeeee\ncccccccccc\ndddddddddd\n1 2 4 5", "output": "Yes\n??????????" }, { "input": "5 4\naaaaaaaaaa\neeeeeeeee\nbbbbbbbbbb\ncccccccccc\ndddddddddd\n1 3 4 5", "output": "Yes\n??????????" }, { "input": "5 4\neeeeeeeee\naaaaaaaaaa\nbbbbbbbbbb\ncccccccccc\ndddddddddd\n2 3 4 5", "output": "Yes\n??????????" }, { "input": "2 1\na\nb\n1", "output": "Yes\na" }, { "input": "2 1\na\nb\n2", "output": "Yes\nb" }, { "input": "2 2\na\nb\n1 2", "output": "Yes\n?" }, { "input": "2 1\naa\nb\n1", "output": "Yes\naa" }, { "input": "2 1\naa\nb\n2", "output": "Yes\nb" }, { "input": "2 2\naa\nb\n1 2", "output": "No" }, { "input": "2 1\nb\naa\n1", "output": "Yes\nb" }, { "input": "2 1\nb\naa\n2", "output": "Yes\naa" }, { "input": "2 2\nb\naa\n1 2", "output": "No" }, { "input": "2 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac\n1", "output": "Yes\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" } ]
109
0
0
7,557
329
The Evil Temple and the Moving Rocks
[ "constructive algorithms" ]
null
null
Important: All possible tests are in the pretest, so you shouldn't hack on this problem. So, if you passed pretests, you will also pass the system test. You are an adventurer currently journeying inside an evil temple. After defeating a couple of weak monsters, you arrived at a square room consisting of tiles forming an *n*<=Γ—<=*n* grid, surrounded entirely by walls. At the end of the room lies a door locked with evil magical forces. The following inscriptions are written on the door: Being a very senior adventurer, you immediately realize what this means. In the room next door lies an infinite number of magical rocks. There are four types of rocks: - '^': this rock moves upwards; - '&lt;': this rock moves leftwards; - '&gt;': this rock moves rightwards; - 'v': this rock moves downwards. To open the door, you first need to place the rocks on some of the tiles (one tile can be occupied by at most one rock). Then, you select a single rock that you have placed and activate it. The activated rock will then move in its direction until it hits another rock or hits the walls of the room (the rock will not move if something already blocks it in its chosen direction). The rock then deactivates. If it hits the walls, or if there have been already 107 events of rock becoming activated, the movements end. Otherwise, the rock that was hit becomes activated and this procedure is repeated. If a rock moves at least one cell before hitting either the wall or another rock, the hit produces a sound. The door will open once the number of produced sounds is at least *x*. It is okay for the rocks to continue moving after producing *x* sounds. The following picture illustrates the four possible scenarios of moving rocks. - Moves at least one cell, then hits another rock. A sound is produced, the hit rock becomes activated. - Moves at least one cell, then hits the wall (i.e., the side of the room). A sound is produced, the movements end. - Does not move because a rock is already standing in the path. The blocking rock becomes activated, but no sounds are produced. - Does not move because the wall is in the way. No sounds are produced and the movements end. Assume there's an infinite number of rocks of each type in the neighboring room. You know what to do: place the rocks and open the door!
The first line will consists of two integers *n* and *x*, denoting the size of the room and the number of sounds required to open the door. There will be exactly three test cases for this problem: - *n*<==<=5,<=*x*<==<=5; - *n*<==<=3,<=*x*<==<=2; - *n*<==<=100,<=*x*<==<=105. All of these testcases are in pretest.
Output *n* lines. Each line consists of *n* characters β€” the *j*-th character of the *i*-th line represents the content of the tile at the *i*-th row and the *j*-th column, and should be one of these: - '^', '&lt;', '&gt;', or 'v': a rock as described in the problem statement. - '.': an empty tile. Then, output two integers *r* and *c* (1<=≀<=*r*,<=*c*<=≀<=*n*) on the next line β€” this means that the rock you activate first is located at the *r*-th row from above and *c*-th column from the left. There must be a rock in this cell. If there are multiple solutions, you may output any of them.
[ "5 5\n", "3 2\n" ]
[ "&gt;...v\nv.&lt;..\n..^..\n&gt;....\n..^.&lt;\n1 1\n", "&gt;vv\n^&lt;.\n^.&lt;\n1 3\n" ]
Here's a simulation of the first example, accompanied with the number of sounds produced so far. In the picture above, the activated rock switches between the '^' rock and the '&lt;' rock. However, no sound is produced since the '^' rock didn't move even a single tile. So, still 4 sound. At this point, 5 sound are already produced, so this solution is already correct. However, for the sake of example, we will continue simulating what happens. And the movement stops. In total, it produces 8 sounds. Notice that the last move produced sound. Here's a simulation of the second example: Now, the activated stone will switch continuously from one to another without producing a sound until it reaches the 10<sup class="upper-index">7</sup> limit, after which the movement will cease. In total, it produced exactly 2 sounds, so the solution is correct.
[ { "input": "5 5", "output": ">...v\nv.<..\n..^..\n>....\n..^.<\n1 1" }, { "input": "3 2", "output": ">vv\n^<.\n^.<\n1 3" }, { "input": "100 100000", "output": ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>v.\n^v<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<.\n^>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>v.\n^v<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<.\n^>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>v.\n^..." } ]
60
0
0
7,558
939
Hamster Farm
[ "implementation" ]
null
null
Dima has a hamsters farm. Soon *N* hamsters will grow up on it and Dima will sell them in a city nearby. Hamsters should be transported in boxes. If some box is not completely full, the hamsters in it are bored, that's why each box should be completely full with hamsters. Dima can buy boxes at a factory. The factory produces boxes of *K* kinds, boxes of the *i*-th kind can contain in themselves *a**i* hamsters. Dima can buy any amount of boxes, but he should buy boxes of only one kind to get a wholesale discount. Of course, Dima would buy boxes in such a way that each box can be completely filled with hamsters and transported to the city. If there is no place for some hamsters, Dima will leave them on the farm. Find out how many boxes and of which type should Dima buy to transport maximum number of hamsters.
The first line contains two integers *N* and *K* (0<=≀<=*N*<=≀<=1018, 1<=≀<=*K*<=≀<=105)Β β€” the number of hamsters that will grow up on Dima's farm and the number of types of boxes that the factory produces. The second line contains *K* integers *a*1, *a*2, ..., *a**K* (1<=≀<=*a**i*<=≀<=1018 for all *i*)Β β€” the capacities of boxes.
Output two integers: the type of boxes that Dima should buy and the number of boxes of that type Dima should buy. Types of boxes are numbered from 1 to *K* in the order they are given in input. If there are many correct answers, output any of them.
[ "19 3\n5 4 10\n", "28 3\n5 6 30\n" ]
[ "2 4\n", "1 5\n" ]
none
[ { "input": "19 3\n5 4 10", "output": "2 4" }, { "input": "28 3\n5 6 30", "output": "1 5" }, { "input": "1 1\n1", "output": "1 1" }, { "input": "0 2\n2 3", "output": "1 0" }, { "input": "30 4\n4 5 5 4", "output": "2 6" }, { "input": "120 7\n109 92 38 38 49 38 92", "output": "3 3" }, { "input": "357 40\n12 10 12 11 12 12 12 10 10 10 12 12 12 12 12 10 12 10 10 10 11 10 12 10 12 10 12 10 10 12 12 12 12 10 10 10 12 12 12 12", "output": "4 32" }, { "input": "587 100\n92 92 76 95 61 60 64 79 64 96 63 92 60 61 95 71 60 61 65 63 84 76 98 63 90 61 61 71 63 61 95 90 79 71 77 67 63 61 63 60 100 71 98 88 67 95 60 61 79 76 70 61 64 65 64 77 96 95 84 100 67 60 84 92 70 100 63 79 61 77 92 74 60 90 84 80 76 61 88 79 64 61 79 60 61 67 98 98 92 76 61 60 80 77 77 76 63 88 99 70", "output": "19 9" }, { "input": "98765 30\n89 841 599 240 356 599 92 305 305 536 356 92 622 1000 751 522 89 149 356 598 305 518 996 92 622 536 356 91 779 770", "output": "28 1085" }, { "input": "947264836 50\n977141206 956777871 186433588 538218068 759102378 327484438 88827268 266300062 670616672 756092978 414181331 913675814 898008516 343057716 99416265 236586817 52751842 550467703 684435578 844649988 917709231 550467703 493542638 707106470 414181331 198095018 913675814 99416265 550467703 679553907 186433588 355713982 670616672 977141206 504598561 327484438 414181331 463431413 546229641 132582931 463431413 759102378 273063720 683939057 924604119 759102378 463431413 52751842 552131077 903126340", "output": "16 4" }, { "input": "600003000040000507 10\n334302557805985467 334302557805985467 681026146296527968 157006854340095780 188330644415015186 803011712275585087 638039699540420111 638039699540420111 600874219702299205 923891462598005659", "output": "5 3" }, { "input": "666 2\n1 300", "output": "1 666" }, { "input": "899999999999999991 1\n199999999999999998", "output": "1 4" }, { "input": "10 1\n11", "output": "1 0" }, { "input": "999999999999999999 1\n500000000000000000", "output": "1 1" }, { "input": "2 1\n2", "output": "1 1" }, { "input": "199999999999999999 1\n100000000000000000", "output": "1 1" }, { "input": "999999999999999999 1\n1000000000000000000", "output": "1 0" }, { "input": "1000000000000000000 1\n500000000000000001", "output": "1 1" }, { "input": "1000000000000000000 1\n2", "output": "1 500000000000000000" }, { "input": "1000000000000000000 5\n500000000000000010 500000000000000010 500000000000000010 500000000000000010 500000000000000030", "output": "5 1" }, { "input": "1000000000000000000 1\n900000000000000000", "output": "1 1" } ]
93
8,601,600
3
7,602