|
import json |
|
from sentence_transformers import SentenceTransformer, util |
|
import nltk |
|
from openai import OpenAI |
|
import os |
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction |
|
import time |
|
import asyncio |
|
import logging |
|
import sys |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
nltk.download('punkt') |
|
def load_input_data(): |
|
"""Load input data from command line arguments.""" |
|
try: |
|
input_data = json.loads(sys.argv[1]) |
|
return input_data |
|
except json.JSONDecodeError as e: |
|
logging.error(f"Failed to decode JSON input: {e}") |
|
sys.exit(1) |
|
|
|
def initialize_openai_client(api_key, base_url): |
|
"""Initialize the OpenAI client.""" |
|
return OpenAI(api_key=api_key, base_url=base_url) |
|
|
|
def load_model(): |
|
"""Load the pre-trained models for evaluation.""" |
|
semantic_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
return semantic_model |
|
|
|
def evaluate_semantic_similarity(expected_response, model_response, semantic_model): |
|
"""Evaluate semantic similarity using Sentence-BERT.""" |
|
expected_embedding = semantic_model.encode(expected_response, convert_to_tensor=True) |
|
model_embedding = semantic_model.encode(model_response, convert_to_tensor=True) |
|
similarity_score = util.pytorch_cos_sim(expected_embedding, model_embedding) |
|
return similarity_score.item() |
|
|
|
def evaluate_bleu(expected_response, model_response): |
|
"""Evaluate BLEU score using NLTK's sentence_bleu.""" |
|
expected_tokens = nltk.word_tokenize(expected_response.lower()) |
|
model_tokens = nltk.word_tokenize(model_response.lower()) |
|
smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method1 |
|
bleu_score = nltk.translate.bleu_score.sentence_bleu([expected_tokens], model_tokens, smoothing_function=smoothing_function) |
|
return bleu_score |
|
|
|
async def create_with_retries(client, **kwargs): |
|
"""Retry mechanism for handling transient server errors asynchronously.""" |
|
for attempt in range(3): |
|
try: |
|
return client.chat.completions.create(**kwargs) |
|
except Exception as e: |
|
if attempt < 2: |
|
print(f"Error: {e}, retrying... (Attempt {attempt + 1}/3)") |
|
await asyncio.sleep(5) |
|
else: |
|
raise Exception("API request failed after retries") from e |
|
|
|
|
|
async def evaluate_model(data, model_name, client, semantic_model): |
|
"""Evaluate the model using the provided data.""" |
|
semantic_scores = [] |
|
bleu_scores = [] |
|
|
|
for entry in data: |
|
prompt = entry['prompt'] |
|
expected_response = entry['response'] |
|
|
|
|
|
response = await create_with_retries( |
|
client, |
|
model=f"PharynxAI/{model_name}", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
temperature=0.7, |
|
max_tokens=200, |
|
timeout=300 |
|
) |
|
|
|
model_response = response.choices[0].message.content |
|
|
|
|
|
semantic_score = evaluate_semantic_similarity(expected_response, model_response, semantic_model) |
|
semantic_scores.append(semantic_score) |
|
|
|
bleu_score = evaluate_bleu(expected_response, model_response) |
|
bleu_scores.append(bleu_score) |
|
|
|
|
|
avg_semantic_score = sum(semantic_scores) / len(semantic_scores) if semantic_scores else 0 |
|
avg_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0 |
|
|
|
print(f"Average Semantic Similarity: {avg_semantic_score:.4f}") |
|
print(f"Average BLEU Score: {avg_bleu_score:.4f}") |
|
|
|
evaluation_results = { |
|
'average_semantic_score': avg_semantic_score, |
|
'average_bleu_score': avg_bleu_score |
|
} |
|
|
|
print(json.dumps(evaluation_results)) |
|
|
|
logging.info("\nOverall Average Scores:") |
|
logging.info(f"Average Semantic Similarity: {avg_semantic_score:.4f}") |
|
logging.info(f"Average BLEU Score: {avg_bleu_score:.4f}") |
|
|
|
return evaluation_results |
|
|
|
async def main(): |
|
|
|
input_data = load_input_data() |
|
model_name = input_data["model_name"] |
|
|
|
client = OpenAI( |
|
api_key="MIGZGJKYD6PU8KTHTBQ8FMEMGP2RAW5DVXABFVFD", |
|
base_url="https://api.runpod.ai/v2/6vg8gj8ia9vd1w/openai/v1", |
|
) |
|
|
|
semantic_model = load_model() |
|
|
|
with open('output_json.json', 'r') as f: |
|
data = json.load(f) |
|
|
|
|
|
await evaluate_model(data, model_name, client, semantic_model) |
|
|
|
|
|
asyncio.run(main()) |
|
|