File size: 5,299 Bytes
b5a72fa
 
 
 
 
 
 
dcf2982
 
 
 
 
 
 
 
 
 
b5a72fa
dcf2982
 
 
 
 
b5a72fa
dcf2982
 
 
b5a72fa
dcf2982
 
 
 
b5a72fa
dcf2982
 
 
 
 
 
 
 
 
 
 
 
 
b5a72fa
dcf2982
b5a72fa
dcf2982
b5a72fa
dcf2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a72fa
 
 
 
dcf2982
b5a72fa
 
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
 
b5a72fa
dcf2982
 
 
b5a72fa
dcf2982
b5a72fa
 
0bae7d4
dcf2982
 
0bae7d4
 
dcf2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import csv
import datasets
from datasets import Audio


class MySTTDataset(datasets.GeneratorBasedBuilder):
    """

    Common Voice uslubidagi minimal dataset skript:

      - 3 ta tar fayl (train/test/validation)

      - Har bir tar fayl ichida .mp3 audio

      - Har bir split'ga mos TSV fayl (train.tsv, test.tsv, validation.tsv)

      - Audio ustuni -> HF Viewer da "play" tugmasi

    """
    VERSION = datasets.Version("1.0.0")

    # Agar ko'p config bo'lmasa, bu qismni soddalashtiramiz.
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="uz",
            version=VERSION,
            description="STT dataset for Uzbek language (example).",
        )
    ]

    DEFAULT_CONFIG_NAME = "uz"

    def _info(self):
        """

        Bu yerda datasetning xususiyatlari (features) e'lon qilinadi.

        'audio' ustuni Audio() turida bo'lsa, viewer pleyer ko'rsatadi.

        """
        return datasets.DatasetInfo(
            description="Uzbek STT dataset: audio in .tar, transcriptions in .tsv.",
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "audio": Audio(sampling_rate=None),
                    "sentence": datasets.Value("string"),
                    "duration": datasets.Value("float"),
                    "age": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "accents": datasets.Value("string"),
                    "locale": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun: tar va tsv fayllar yo'lini belgilab, 

        dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz.

        """
        # local path misoli (reposingizda bo'lsa). 
        # Agar huggingface.co'dan yuklamoqchi bo'lsangiz, URL qilishingiz mumkin
        train_tar = "Dataset_STT/audio/uz/train.tar"
        train_tsv = "Dataset_STT/transcript/uz/train.tsv"

        test_tar = "Dataset_STT/audio/uz/test.tar"
        test_tsv = "Dataset_STT/transcript/uz/test.tsv"

        val_tar = "Dataset_STT/audio/uz/validation.tar"
        val_tsv = "Dataset_STT/transcript/uz/validation.tsv"

        # Bu fayllarni download+extract (yoki local bo'lsa, faqat extract) qilamiz:
        # Eslatma: agar localda bo'lsayu, dl_manager `is_local=True` deb topishi mumkin,
        # ammo baribir .extract ishlaydi.

        train_tar_extracted = dl_manager.extract(train_tar)
        test_tar_extracted = dl_manager.extract(test_tar)
        val_tar_extracted = dl_manager.extract(val_tar)

        # Har bir splitted datasetga mos "SplitGenerator" qaytaramiz
        # "gen_kwargs" -> _generate_examples() ga paramlar
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_dir": train_tar_extracted,  # tar fayl ochilib yoyilgan papka
                    "tsv_path": train_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_dir": test_tar_extracted,
                    "tsv_path": test_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_dir": val_tar_extracted,
                    "tsv_path": val_tsv,
                },
            ),
        ]

    def _generate_examples(self, archive_dir, tsv_path):
        """

        Ushbu metod har bir split uchun audio+transkript juftliklarini geneate qiladi.

          - 'archive_dir' papkada .tar dan ochilgan .mp3 fayllar mavjud.

          - 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz.

        """
        # TSV ni o'qiymiz:
        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                # tsv da shunaqa ustunlar bo'lishi kutiladi:
                # id, sentence, duration, age, gender, accents, locale
                audio_id = row["id"]
                mp3_file = audio_id + ".mp3"
                mp3_path = os.path.join(archive_dir, mp3_file)

                # Agar audio fayl exist bo'lsa:
                if os.path.isfile(mp3_path):
                    yield idx, {
                        "id": audio_id,
                        "audio": mp3_path,  # Audio() -> pleyer
                        "sentence": row.get("sentence", ""),
                        "duration": float(row.get("duration", 0.0)),
                        "age": row.get("age", ""),
                        "gender": row.get("gender", ""),
                        "accents": row.get("accents", ""),
                        "locale": row.get("locale", ""),
                    }
                else:
                    # Audio topilmasa, skip (yoki exception)
                    continue