|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
import csv
|
|
import json
|
|
|
|
import datasets
|
|
from datasets.utils.py_utils import size_str
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
@misc{yourcitation,
|
|
title = {Your STT dataset title},
|
|
author = {You or your org},
|
|
year = {2023},
|
|
url = {https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.
|
|
Papka tuzilishi Common Voice uslubiga o'xshash:
|
|
audio/uz/[train|validation|test]/*.tar va transcript/uz/[train|validation|test]/*.tsv
|
|
"""
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio"
|
|
_LICENSE = "Apache License 2.0"
|
|
|
|
|
|
LANGUAGES = {
|
|
"uz": {
|
|
"language_name": "Uzbek",
|
|
"num_clips": None,
|
|
"num_speakers": None,
|
|
"validated_hr": None,
|
|
"total_hr": None,
|
|
"size_bytes": None,
|
|
},
|
|
}
|
|
|
|
|
|
N_SHARDS = {
|
|
"uz": {
|
|
"train": 1,
|
|
"validation": 1,
|
|
"test": 1,
|
|
}
|
|
}
|
|
|
|
|
|
_BASE_URL = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio/resolve/main/"
|
|
|
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{split}.tar"
|
|
|
|
|
|
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}/{split}.tsv"
|
|
|
|
|
|
|
|
class NewDatasetSTTAudioConfig(datasets.BuilderConfig):
|
|
"""Bitta config (masalan, 'uz') - xohlasangiz ko'proq tillarni ham qo'shishingiz mumkin."""
|
|
def __init__(self, language, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.language = language
|
|
self.num_clips = LANGUAGES[language]["num_clips"]
|
|
self.num_speakers = LANGUAGES[language]["num_speakers"]
|
|
self.validated_hr = LANGUAGES[language]["validated_hr"]
|
|
self.total_hr = LANGUAGES[language]["total_hr"]
|
|
self.size_bytes = LANGUAGES[language]["size_bytes"]
|
|
self.size_human = size_str(self.size_bytes) if self.size_bytes else None
|
|
|
|
|
|
|
|
class NewDatasetSTTAudio(datasets.GeneratorBasedBuilder):
|
|
BUILDER_CONFIGS = [
|
|
|
|
NewDatasetSTTAudioConfig(
|
|
name="uz",
|
|
version=datasets.Version("1.0.0"),
|
|
description="Uzbek STT dataset with Common Voice-like structure",
|
|
language="uz",
|
|
),
|
|
]
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000
|
|
|
|
def _info(self):
|
|
lang = self.config.language
|
|
|
|
description = (
|
|
f"Common Voice uslubidagi dataset: til = {lang}. "
|
|
f"{_DESCRIPTION}"
|
|
)
|
|
features = datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"path": datasets.Value("string"),
|
|
"audio": datasets.features.Audio(sampling_rate=16000),
|
|
"sentence": datasets.Value("string"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=description,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
version=self.config.version,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
Common Voice misolida bo'lgani kabi:
|
|
train, validation, test splitlari uchun tar va tsv fayllarni yuklaymiz.
|
|
"""
|
|
lang = self.config.language
|
|
n_shards = N_SHARDS[lang]
|
|
split_generators = []
|
|
|
|
|
|
for split in ["train", "validation", "test"]:
|
|
|
|
audio_urls = [
|
|
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i)
|
|
for i in range(n_shards[split])
|
|
]
|
|
|
|
audio_paths = dl_manager.download(audio_urls)
|
|
|
|
|
|
|
|
local_extracted_archive_paths = []
|
|
if not dl_manager.is_streaming:
|
|
local_extracted_archive_paths = dl_manager.extract(audio_paths)
|
|
|
|
|
|
transcript_url = _TRANSCRIPT_URL.format(lang=lang, split=split)
|
|
transcript_path = dl_manager.download_and_extract(transcript_url)
|
|
|
|
split_generators.append(
|
|
datasets.SplitGenerator(
|
|
name=getattr(datasets.Split, split.upper()),
|
|
gen_kwargs={
|
|
"archives": [
|
|
dl_manager.iter_archive(path) for path in audio_paths
|
|
],
|
|
"local_extracted_archive_paths": local_extracted_archive_paths,
|
|
"meta_path": transcript_path,
|
|
},
|
|
)
|
|
)
|
|
|
|
return split_generators
|
|
|
|
def _generate_examples(self, archives, local_extracted_archive_paths, meta_path):
|
|
"""
|
|
Har bir split uchun:
|
|
1) transcript .tsv faylni o'qish
|
|
2) audio tar ichidagi fayllarni "archives" orqali iteratsiya qilish
|
|
3) tsv'dagi 'path' bilan audio fayl nomini bog'lash
|
|
4) natijada (key, example) qaytarish
|
|
"""
|
|
|
|
|
|
metadata = {}
|
|
with open(meta_path, encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for row in reader:
|
|
|
|
if not row["path"].endswith(".mp3"):
|
|
row["path"] += ".mp3"
|
|
metadata[row["path"]] = row
|
|
|
|
|
|
|
|
for shard_idx, archive in enumerate(archives):
|
|
|
|
for path_in_tar, fileobj in archive:
|
|
|
|
_, filename = os.path.split(path_in_tar)
|
|
if filename in metadata:
|
|
|
|
row = metadata[filename]
|
|
|
|
|
|
|
|
|
|
example = dict(row)
|
|
|
|
if "id" not in example:
|
|
example["id"] = filename
|
|
|
|
|
|
|
|
|
|
|
|
example["audio"] = {
|
|
"path": path_in_tar,
|
|
"bytes": fileobj.read(),
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yield path_in_tar, example
|
|
|