new_dataset_stt / my_stt_dataset.py
Elyordev's picture
Upload my_stt_dataset.py
659f386 verified
raw
history blame
6.06 kB
import os
import csv
import datasets
from datasets import Audio, BuilderConfig
# Konfiguratsiya sinfi: datasetning til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
def __init__(self, language_abbr, data_dir, **kwargs):
"""
Args:
language_abbr (str): Til qisqartmasi, masalan "uz".
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
**kwargs: Qolgan BuilderConfig parametrlar.
"""
super().__init__(**kwargs)
self.language_abbr = language_abbr
self.data_dir = data_dir
# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
"""
Uzbek STT dataset yuklash skripti.
- Audio fayllar .tar arxiv ichida saqlanadi.
- Transkripsiya ma'lumotlari TSV faylda mavjud.
- "audio" ustuni Audio() tipida aniqlanib, HF Dataset Viewer tomonidan "play" tugmasi ko'rsatiladi.
"""
VERSION = datasets.Version("1.0.0")
# Faqat bitta konfiguratsiya ishlatilmoqda.
BUILDER_CONFIGS = [
STTConfig(
name="uz",
version=datasets.Version("1.0.0"),
description="Uzbek subset of the STT dataset",
language_abbr="uz",
data_dir="Dataset_STT", # Bu yerda asosiy papka nomi
)
]
DEFAULT_CONFIG_NAME = "uz"
def _info(self):
"""
Datasetning ustunlari aniqlanadi.
- "audio" ustuni Audio() tipida, bu orqali fayl avtomatik dekodlanadi.
"""
return datasets.DatasetInfo(
description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
features=datasets.Features({
"id": datasets.Value("string"),
"audio": Audio(sampling_rate=None), # asl sampling rate saqlanadi
"sentence": datasets.Value("string"),
"duration": datasets.Value("float"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
}),
supervised_keys=None,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""
Har bir split (train, test, validation) uchun:
- Tar arxiv va mos TSV fayllarning yo'llari aniqlanadi.
- dl_manager.extract() yordamida tar fayllar extract qilinadi.
"""
config = self.config # STTConfig obyekti
base_dir = config.data_dir # Masalan: "Dataset_STT"
lang = config.language_abbr # Masalan: "uz"
# Audio va transkript fayllarining yo'llarini aniqlaymiz:
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
# Tar arxiv extract qilinadi:
train_tar_extracted = dl_manager.extract(train_tar)
test_tar_extracted = dl_manager.extract(test_tar)
val_tar_extracted = dl_manager.extract(val_tar)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archive_dir": train_tar_extracted, # Extract qilingan papka
"tsv_path": train_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"archive_dir": test_tar_extracted,
"tsv_path": test_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"archive_dir": val_tar_extracted,
"tsv_path": val_tsv,
},
),
]
def _generate_examples(self, archive_dir, tsv_path):
"""
TSV faylini qatorma-qator o'qib, metadata lug'atini yaratadi va
extract qilingan archive papkasidan mos .mp3 faylni topadi.
Eslatma: Audio ustunini faqat fayl yo'li sifatida uzatsangiz,
HF Dataset Viewer bu ustunni audio sifatida ko'rsata olmaydi.
Shu sababli, audio ustuni quyidagicha dictionary shaklida bo'lishi kerak:
{"path": mp3_path, "bytes": <audio_file_baytlari>}
"""
with open(tsv_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for idx, row in enumerate(reader):
audio_id = row["id"]
mp3_file = audio_id + ".mp3"
mp3_path = os.path.join(archive_dir, mp3_file)
if os.path.isfile(mp3_path):
# Audio faylni baytlar shaklida o'qib olamiz
with open(mp3_path, "rb") as audio_file:
audio_bytes = audio_file.read()
yield idx, {
"id": audio_id,
"audio": {"path": mp3_path, "bytes": audio_bytes},
"sentence": row.get("sentence", ""),
"duration": float(row.get("duration", 0.0)),
"age": row.get("age", ""),
"gender": row.get("gender", ""),
"accents": row.get("accents", ""),
"locale": row.get("locale", ""),
}
else:
# Agar mos audio fayl topilmasa, ushbu yozuvni o'tkazib yuboramiz.
continue