File size: 6,057 Bytes
b5a72fa
 
 
de5541d
 
659f386
de5541d
 
 
 
 
659f386
de5541d
 
 
 
 
b5a72fa
659f386
b5a72fa
dcf2982
659f386
 
 
 
dcf2982
 
 
659f386
b5a72fa
620caaa
dcf2982
620caaa
 
 
659f386
dcf2982
b5a72fa
dcf2982
 
b5a72fa
dcf2982
659f386
 
dcf2982
b5a72fa
659f386
de5541d
 
659f386
de5541d
 
 
 
 
 
 
b5a72fa
dcf2982
b5a72fa
dcf2982
b5a72fa
dcf2982
659f386
 
 
dcf2982
de5541d
 
 
dcf2982
659f386
de5541d
 
dcf2982
de5541d
 
dcf2982
de5541d
 
dcf2982
659f386
dcf2982
 
 
 
b5a72fa
 
 
 
659f386
b5a72fa
 
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
 
b5a72fa
659f386
de5541d
659f386
 
 
 
 
b5a72fa
 
 
0bae7d4
 
 
dcf2982
 
 
659f386
 
 
dcf2982
 
659f386
dcf2982
 
 
 
 
 
 
 
659f386
de5541d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import csv
import datasets
from datasets import Audio, BuilderConfig

# Konfiguratsiya sinfi: datasetning til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
    def __init__(self, language_abbr, data_dir, **kwargs):
        """

        Args:

            language_abbr (str): Til qisqartmasi, masalan "uz".

            data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".

            **kwargs: Qolgan BuilderConfig parametrlar.

        """
        super().__init__(**kwargs)
        self.language_abbr = language_abbr
        self.data_dir = data_dir

# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
    """

    Uzbek STT dataset yuklash skripti.

      - Audio fayllar .tar arxiv ichida saqlanadi.

      - Transkripsiya ma'lumotlari TSV faylda mavjud.

      - "audio" ustuni Audio() tipida aniqlanib, HF Dataset Viewer tomonidan "play" tugmasi ko'rsatiladi.

    """
    VERSION = datasets.Version("1.0.0")

    # Faqat bitta konfiguratsiya ishlatilmoqda.
    BUILDER_CONFIGS = [
        STTConfig(
            name="uz",
            version=datasets.Version("1.0.0"),
            description="Uzbek subset of the STT dataset",
            language_abbr="uz",
            data_dir="Dataset_STT",  # Bu yerda asosiy papka nomi
        )
    ]
    DEFAULT_CONFIG_NAME = "uz"

    def _info(self):
        """

        Datasetning ustunlari aniqlanadi.

          - "audio" ustuni Audio() tipida, bu orqali fayl avtomatik dekodlanadi.

        """
        return datasets.DatasetInfo(
            description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
            features=datasets.Features({
                "id": datasets.Value("string"),
                "audio": Audio(sampling_rate=None),  # asl sampling rate saqlanadi
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
            }),
            supervised_keys=None,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split (train, test, validation) uchun:

          - Tar arxiv va mos TSV fayllarning yo'llari aniqlanadi.

          - dl_manager.extract() yordamida tar fayllar extract qilinadi.

        """
        config = self.config  # STTConfig obyekti
        base_dir = config.data_dir  # Masalan: "Dataset_STT"
        lang = config.language_abbr   # Masalan: "uz"

        # Audio va transkript fayllarining yo'llarini aniqlaymiz:
        train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
        train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")

        test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
        test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")

        val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
        val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")

        # Tar arxiv extract qilinadi:
        train_tar_extracted = dl_manager.extract(train_tar)
        test_tar_extracted = dl_manager.extract(test_tar)
        val_tar_extracted = dl_manager.extract(val_tar)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_dir": train_tar_extracted,  # Extract qilingan papka
                    "tsv_path": train_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_dir": test_tar_extracted,
                    "tsv_path": test_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_dir": val_tar_extracted,
                    "tsv_path": val_tsv,
                },
            ),
        ]

    def _generate_examples(self, archive_dir, tsv_path):
        """

        TSV faylini qatorma-qator o'qib, metadata lug'atini yaratadi va

        extract qilingan archive papkasidan mos .mp3 faylni topadi.

        

        Eslatma: Audio ustunini faqat fayl yo'li sifatida uzatsangiz,

        HF Dataset Viewer bu ustunni audio sifatida ko'rsata olmaydi.

        Shu sababli, audio ustuni quyidagicha dictionary shaklida bo'lishi kerak:

            {"path": mp3_path, "bytes": <audio_file_baytlari>}

        """
        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                audio_id = row["id"]
                mp3_file = audio_id + ".mp3"
                mp3_path = os.path.join(archive_dir, mp3_file)

                if os.path.isfile(mp3_path):
                    # Audio faylni baytlar shaklida o'qib olamiz
                    with open(mp3_path, "rb") as audio_file:
                        audio_bytes = audio_file.read()
                    yield idx, {
                        "id": audio_id,
                        "audio": {"path": mp3_path, "bytes": audio_bytes},
                        "sentence": row.get("sentence", ""),
                        "duration": float(row.get("duration", 0.0)),
                        "age": row.get("age", ""),
                        "gender": row.get("gender", ""),
                        "accents": row.get("accents", ""),
                        "locale": row.get("locale", ""),
                    }
                else:
                    # Agar mos audio fayl topilmasa, ushbu yozuvni o'tkazib yuboramiz.
                    continue