File size: 6,057 Bytes
b5a72fa de5541d 659f386 de5541d 659f386 de5541d b5a72fa 659f386 b5a72fa dcf2982 659f386 dcf2982 659f386 b5a72fa 620caaa dcf2982 620caaa 659f386 dcf2982 b5a72fa dcf2982 b5a72fa dcf2982 659f386 dcf2982 b5a72fa 659f386 de5541d 659f386 de5541d b5a72fa dcf2982 b5a72fa dcf2982 b5a72fa dcf2982 659f386 dcf2982 de5541d dcf2982 659f386 de5541d dcf2982 de5541d dcf2982 de5541d dcf2982 659f386 dcf2982 b5a72fa 659f386 b5a72fa dcf2982 b5a72fa dcf2982 b5a72fa dcf2982 b5a72fa dcf2982 b5a72fa dcf2982 b5a72fa 659f386 de5541d 659f386 b5a72fa 0bae7d4 dcf2982 659f386 dcf2982 659f386 dcf2982 659f386 de5541d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
import csv
import datasets
from datasets import Audio, BuilderConfig
# Konfiguratsiya sinfi: datasetning til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
def __init__(self, language_abbr, data_dir, **kwargs):
"""
Args:
language_abbr (str): Til qisqartmasi, masalan "uz".
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
**kwargs: Qolgan BuilderConfig parametrlar.
"""
super().__init__(**kwargs)
self.language_abbr = language_abbr
self.data_dir = data_dir
# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
"""
Uzbek STT dataset yuklash skripti.
- Audio fayllar .tar arxiv ichida saqlanadi.
- Transkripsiya ma'lumotlari TSV faylda mavjud.
- "audio" ustuni Audio() tipida aniqlanib, HF Dataset Viewer tomonidan "play" tugmasi ko'rsatiladi.
"""
VERSION = datasets.Version("1.0.0")
# Faqat bitta konfiguratsiya ishlatilmoqda.
BUILDER_CONFIGS = [
STTConfig(
name="uz",
version=datasets.Version("1.0.0"),
description="Uzbek subset of the STT dataset",
language_abbr="uz",
data_dir="Dataset_STT", # Bu yerda asosiy papka nomi
)
]
DEFAULT_CONFIG_NAME = "uz"
def _info(self):
"""
Datasetning ustunlari aniqlanadi.
- "audio" ustuni Audio() tipida, bu orqali fayl avtomatik dekodlanadi.
"""
return datasets.DatasetInfo(
description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
features=datasets.Features({
"id": datasets.Value("string"),
"audio": Audio(sampling_rate=None), # asl sampling rate saqlanadi
"sentence": datasets.Value("string"),
"duration": datasets.Value("float"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
}),
supervised_keys=None,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""
Har bir split (train, test, validation) uchun:
- Tar arxiv va mos TSV fayllarning yo'llari aniqlanadi.
- dl_manager.extract() yordamida tar fayllar extract qilinadi.
"""
config = self.config # STTConfig obyekti
base_dir = config.data_dir # Masalan: "Dataset_STT"
lang = config.language_abbr # Masalan: "uz"
# Audio va transkript fayllarining yo'llarini aniqlaymiz:
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
# Tar arxiv extract qilinadi:
train_tar_extracted = dl_manager.extract(train_tar)
test_tar_extracted = dl_manager.extract(test_tar)
val_tar_extracted = dl_manager.extract(val_tar)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archive_dir": train_tar_extracted, # Extract qilingan papka
"tsv_path": train_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"archive_dir": test_tar_extracted,
"tsv_path": test_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"archive_dir": val_tar_extracted,
"tsv_path": val_tsv,
},
),
]
def _generate_examples(self, archive_dir, tsv_path):
"""
TSV faylini qatorma-qator o'qib, metadata lug'atini yaratadi va
extract qilingan archive papkasidan mos .mp3 faylni topadi.
Eslatma: Audio ustunini faqat fayl yo'li sifatida uzatsangiz,
HF Dataset Viewer bu ustunni audio sifatida ko'rsata olmaydi.
Shu sababli, audio ustuni quyidagicha dictionary shaklida bo'lishi kerak:
{"path": mp3_path, "bytes": <audio_file_baytlari>}
"""
with open(tsv_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for idx, row in enumerate(reader):
audio_id = row["id"]
mp3_file = audio_id + ".mp3"
mp3_path = os.path.join(archive_dir, mp3_file)
if os.path.isfile(mp3_path):
# Audio faylni baytlar shaklida o'qib olamiz
with open(mp3_path, "rb") as audio_file:
audio_bytes = audio_file.read()
yield idx, {
"id": audio_id,
"audio": {"path": mp3_path, "bytes": audio_bytes},
"sentence": row.get("sentence", ""),
"duration": float(row.get("duration", 0.0)),
"age": row.get("age", ""),
"gender": row.get("gender", ""),
"accents": row.get("accents", ""),
"locale": row.get("locale", ""),
}
else:
# Agar mos audio fayl topilmasa, ushbu yozuvni o'tkazib yuboramiz.
continue |