|
import os
|
|
import csv
|
|
import datasets
|
|
from datasets import Audio
|
|
|
|
|
|
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
"""
|
|
Common Voice uslubidagi minimal dataset skript:
|
|
- 3 ta tar fayl (train/test/validation)
|
|
- Har bir tar fayl ichida .mp3 audio
|
|
- Har bir split'ga mos TSV fayl (train.tsv, test.tsv, validation.tsv)
|
|
- Audio ustuni -> HF Viewer da "play" tugmasi
|
|
"""
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(
|
|
name="uz",
|
|
version=VERSION,
|
|
description="STT dataset for Uzbek language (example).",
|
|
)
|
|
]
|
|
|
|
DEFAULT_CONFIG_NAME = "uz"
|
|
|
|
def _info(self):
|
|
"""
|
|
Bu yerda datasetning xususiyatlari (features) e'lon qilinadi.
|
|
'audio' ustuni Audio() turida bo'lsa, viewer pleyer ko'rsatadi.
|
|
"""
|
|
return datasets.DatasetInfo(
|
|
description="Uzbek STT dataset: audio in .tar, transcriptions in .tsv.",
|
|
features=datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"audio": Audio(sampling_rate=None),
|
|
"sentence": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string"),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
version=self.VERSION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
Har bir split uchun: tar va tsv fayllar yo'lini belgilab,
|
|
dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz.
|
|
"""
|
|
|
|
|
|
train_tar = "Dataset_STT/audio/uz/train.tar"
|
|
train_tsv = "Dataset_STT/transcript/uz/train.tsv"
|
|
|
|
test_tar = "Dataset_STT/audio/uz/test.tar"
|
|
test_tsv = "Dataset_STT/transcript/uz/test.tsv"
|
|
|
|
val_tar = "Dataset_STT/audio/uz/validation.tar"
|
|
val_tsv = "Dataset_STT/transcript/uz/validation.tsv"
|
|
|
|
|
|
|
|
|
|
|
|
train_tar_extracted = dl_manager.extract(train_tar)
|
|
test_tar_extracted = dl_manager.extract(test_tar)
|
|
val_tar_extracted = dl_manager.extract(val_tar)
|
|
|
|
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"archive_dir": train_tar_extracted,
|
|
"tsv_path": train_tsv,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"archive_dir": test_tar_extracted,
|
|
"tsv_path": test_tsv,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"archive_dir": val_tar_extracted,
|
|
"tsv_path": val_tsv,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, archive_dir, tsv_path):
|
|
"""
|
|
Ushbu metod har bir split uchun audio+transkript juftliklarini geneate qiladi.
|
|
- 'archive_dir' papkada .tar dan ochilgan .mp3 fayllar mavjud.
|
|
- 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz.
|
|
"""
|
|
|
|
with open(tsv_path, "r", encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for idx, row in enumerate(reader):
|
|
|
|
|
|
audio_id = row["id"]
|
|
mp3_file = audio_id + ".mp3"
|
|
mp3_path = os.path.join(archive_dir, mp3_file)
|
|
|
|
|
|
if os.path.isfile(mp3_path):
|
|
yield idx, {
|
|
"id": audio_id,
|
|
"audio": mp3_path,
|
|
"sentence": row.get("sentence", ""),
|
|
"duration": float(row.get("duration", 0.0)),
|
|
"age": row.get("age", ""),
|
|
"gender": row.get("gender", ""),
|
|
"accents": row.get("accents", ""),
|
|
"locale": row.get("locale", ""),
|
|
}
|
|
else:
|
|
|
|
continue
|
|
|